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Hownno Aruror,t

H urvo.a Anton obtained his B.A. trom Lehigh University, his M.A. from the
Univelsity of Illinois, and his Ph.D. from the Polytechnic University of Brooklyn,
all in mathematics. In the early 1960s he workecl for Burroughs Corporation and
Avco Corporation at Cape Canaveral, Florida, where he was involved with missile
tracking problcms for the manned space program. In 1968 he joined the
Mathematics Department at Drexel University, where hc taught full time until
1983. Since that time he has been an adjunct professor at Drexel and has devoted
the majority oi his time to textbook writing and acriviries for mathematica] asso-
ciations. Dr. Anton was President of the Epentl Seclion of the Mathematical
Association of America (MAA), served on the board of Governors of that organi-
zation, and guided the creation of thc Student Chapters of the MAA. He has pub-
lished numerous research papers in Functional Analysis, Approximation Theory,
and Topology, as well as pedagogical papers on applications of mathematics. He
is best known lbr his textbooks in mathematics, which are among the most wide-
ly used in the world. There are currentJy more than ninety versions of his books,
including translations into Spanish, Arabic, PortugLLese, Italian, Indonesian.
French, Japanese, Chinese. Hebrew, and German. Dr. Anton has an avid interest in
computer technology as it relates to mathematical education rnd publishing. He
has devcloped pedagogical software fbr teaching calculus and linear algebra as

well as various sofiware programs for the publishing industry that automate the
production ol'fbur color mathenatical text and art. For relaxation he enjoys trav-
eling and photography.
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Wh"n I U"gon writing the first edition of this calculus text almost 25 years ago, the task, though

daunting, was straightiorward in that the content and organization of a standard calculus course was nearly

universal-the chalienge for me at that time was to present the material in a livelier style and with greater

cla.rity rhan my predecessors. Since this calculus text is still among the most widely used in the world, I
take comfort that the goals I set for myself as a young w ter and mathematician have been achieved.

Howevel, times are changing, and the era of a standard and unive$al calculus course seems destined lbr
the repository of slide rules and three-cent stamps. We are witnessing a lot of experimentation with the con-
tent, organization, and goals of calculus-sonre of which has been successful and some of which has not.

Thus, my challenge in writing the sixth edition has been to create a text that has all of the strengths of (he

earlier editions, yet incorporates those new ideas that are clearly important and have withstood the objective
scrutiny of skilled and thoughtful teachers.

In preparing for this edition, I sought advice fiom outstanding teachers at a wide variety of institutions.
Needless to say, I received a diversity of opinioDs-some leviewers advised against any major changes,

arguing that the book was already clearly written and wo|king well in the classroom, while others felt that
major changes were required to ircorporate technology and rnake the book more contemporary. I listened

carelully, and the lively discussions that followed hclped me formulate my pbilosophy for the new edition.
Many of the specific changes are itemized in the pretace, but here are some of the general goals:

. Add graphing calculator and CAS materials to the text in a way that will allow students who have

rhose roois ro use them but that will not prevent tbe text from being used by those students who do not
have access to that technology.

. Place more emphasis on mathematical modeling and appiications.

. Incorporate new examples and exercises that will be neaningf'ul to today's students and will more

accurately convey the role of caiculus in the real world.
. Widen the variety of exercises to focus ntore on conceptual understandilrg through coniecture, multi-

step anaiysis, expository writing. and what-if anaiysis.

In addition, I wanted to provide some optional innovative materials that would capture the student's interest

and plovide the kind of prob!em-solving experience that he or she might find in a research or industrial set-

ting. This gave birth to atr exciting set of modules that we have called Erp lding tlrc C.tlculus Hori?.o .

These ruodules appear at the ends of selected chapters and each has an optional Internet component that we

hope will grcw dynamically over time with input from teachers and students.

In developing this edition I have stood firm on two principles lhat were adhered to in earlier editions:

. The text material is prcsented at a n'lathematical level that is suitable for students who will embark on

careers in engineering and science.
. lt remains a primary goal of the text to teach the student clear, logical. mathematical thinking.

Informal discussions play an imponant notivational role in the exposition and are used extensively, but

cventually I want the studert to be able to read and understand the language of mathematjcs.

Although tbis edition has many changes and new features, they have been implemented in aJleible way
that will accommodate a wide vadety of teaching philosophies. Thus, I am confidcnt that professors who
have had positive experiences with earlier editions will be comfortable with this revision, and I am hopeful
that those prcfesson who are looking for a contemporary text with an established history ol success in the

classroom will be pleased with the innovations in this new edition.

Sincerely,
t-,

l"*t- r''^+"'''
Howard Anton



A
tlt times the words of a complete stranger are difficult to accept. That is why I am

about to take this first opponunity to intloduce myselL Hopefuily by revealing a bit
about myself and how I relate to this textbook may help you find these words more
compelling.

Hello, my name is Ajay Arora and I am an Electrical Engineering student at
McMaster Uniyersity in Hamilton, Canada. I too was in your place when I began my
entry into the much dreaded field of CA LCULUS. The vast amounts of rate of change
and antiderivative problems were overwhelming. With a little struggle and hard work, I
successfully completed that course only to be faced with three more advanced level cal-
culus courses, What I am about to write is the unbiased truth on how you can be suc-
cessful in calculus and how this textbook will assist you on yourjourney.

I have been a member of the Student Advisory Board for this textbook for over a
year now. The committee came together as a venture from the authors and publisher to
get more student input in the development stages instead of simply focusing on feed-
back when the book was published. After a chapter was completed by the author, each
student committee member evaluated, commented, and in some cases, recommended
altemative approaches. These tasks involved lots of special deliveries, E-mails, faxes,
telephone calls, conference calls, and of course, a whole lot of calculus! But in the end
it was a total rewarding experience-

How many times have you asked yourself, "Is math really useful?" Or how about,
"Will I ever use calculus in the real world?" I know I havel This textbook will dehnitely
help you answer some of these questions with true applications of the theories you
leam. The modules entitled Expanding the Calculus Horizon have been included for
precisely that purpose. Every module has been critiqued extensively by the Student
Advisory Board, and I encourage you to try them. Not only will these applications of
calculus surprise you, but they may actually help give you direction in a field that you
might want to pursue after cotlege.

I wish you success in this course, as well as the
youl college career. Good Luckl

many others you will face during

Sincerely,

4PJ*-
Aiay Arora
McMaster Univercity

Success from the Student Advisory Board

Fatenah lssa' Ittyola IJniversin of Chicago

Lrurie Haskell Messina Uriversin o{ Oklahona

Steven E Pav' Allred Universiry

Best Wishes for

Dan Arndt, Ufii\)efiiry of TeMs ut D'tllds

Aiav Arora, McMasl et Universr\

al"i, e.i".",. Walw State lJniversiry



Aeour THrs Eorrroru

T
I his is a nrajol revision. In keeping with current trcnds in calculus, the goa] for this

edition is to focus morc oD conceptuctl understanding and applicabiliQ of the subject
matter In designing this edition, we worked closely with a talented team of reviewers to
ensure that the book is sufficiently leriDle that it will continue to meet the needs of
those using the last edition and at the same time provide a fresh approach for those
instructors who are taking their calculus course in a new direction. Some of the more
significant ohanges are as follows:

Technology This edition provides extensive materjals for instructors who want to use

graphing calculators or computer algebra systems. However, these materials are imple-
mented in a way that allows the text to be used in courses where technology is used

heavily, moderately, or not at all. To provide a sound foundation for the technology
material, I have added a new section entitled Graphing Functions on Calculators and

Computers; Computer Algebra Systems (Section 1.3).

Horizon Modules Selected chapters end with modules called Expanding the Calculus
Horizon. As the narne implies. these modules are intended to take the student a step

beyond the traditional calculus text. The modules, all of which are optional, can be

assigned either as individual or group projects and can be used by instructors to tailor the
calculus course to meet their specific needs and teaching philosophies. For example,
there are modules that touch on iteration and dynamical systems, modeling from experi-
mental data by culve fitting, applications, expository report writing, and so forth.

Mathematical Modeling Mathematical modeling plays a more prominent role in this
edition. The concept of a mathematical model is introduced in Sectiol 1.5 and is used

extensively thereafter The Horizon module for Chapter 5 discusses how to obtain
mathematical models liom experimental data. In Section 10.3 we discuss mathematical
modeling with differential equations, and in Section 1i.10 we discuss mathematical mod-
eling with Taylor series. The Horizon module for Chapter 17 develops a mathematical
model of a hurricane.

Applieability of Calculus One of the goals in this edition is to link calculus more

closely to the real world and to the student's own experience. This theme starts with the

Introduction and is carried through in the modules, examples, ard exercises. Applications
appearing in exercises and exitmples are carefully chosen to be sufficiently sinple that

they do not divert time from learning important mathematical fundamentals. More exten-
sive applications appear in various Horizon moduies.

Earlier Differential Equations Basic ideas about ctifferential equations, initial-value
problems, direction fields, and integral curyes are introduced concurently with integm
rion and then revisited in more detail in Chapter 10.

Quicker Entry to Functions Chapter 1 begins immediately with lirnctions, and the
precalculus material that lormed the first chapter in earlier editions has been moved to
the appendix.

For the Raader This element is new. At vafious points in the exposition the student
is assigned a brief task. Sone tasks are appropriate for all readers, while others are

x



Preface xiii

appropriate only for readcrs who have a graphing calculator or a CAS. The tasks for all
readers are designed to immerse the student more deeply in(o thc text by asking them to
think about an idea and reach some conclusion; the tasks for students using technology
are designed to familiarize them with the procedures for using that technology by asking
them to read their documentation and perform some tcxt-related computation. Some
instructors may want to make these tasks part of their assignments.

Earlier i-ogarithms and Exponentiais Logarithrnic and exponential funcrions are
introduced in Chapter 4 florn the exponent poinl of view and thelr revisited in Section 7.9
from the integral point of view. This provides a richer variety o1'functions to work with
earlier in the text. fits in better with the discussions ol modeling, and makes for a Jess

fragmented presentation of the analysis of glaphs. However. fbr instructors who prefer a

later presentation of logarithnric and exponential functions, there is a guide for doing this
on pages xvi and xvii below.

Early Parametric Option There is a new option lbr introducing parametric curves
in Section 1.7 of Chapter I and rcvisiting the material in Chapter 12, where calculus-
related issues are discusscd. Instructors who prefer the traditional late discussion of
parametric equations will have no problem teaching Section L7 as part of Chapter l2
or 13.

More Variety in Exercises The exercise sets have been revised extensively to create

a richer variety-there are rnany more exercises that include conjecture, explomtion,
multistep analysis, and cxpository writing. The goal has bcen to put more focus on co,r-
ceptual Lutderstarrlirrg. There are also rnany new exercises that are intended to be solved
using a graphing calculator or a CAS. These are marked with icons for easy identification.

Analysis of Functions The old "curve sketching" material has been replaced by
Sections 5.1 5.3 on the AniLiysis of Functions. The name change reflects a mole con-
temporary approacl'r to the nraterial-there is more emphasis on the intelplay betwecn
technology and calcultrs and more focus on the problem of findin1 a complerc graph,
that is, a graph that contains alJ of the significant features of concem.

Principles of lntegral Evaluation The old "Techniques oflntegration" has been

renamed Principles of Integral Evaluation to reflcct its more contemporary approach to
the material. The chapter has beer condensed and there is now more emphasis on general

methods and lcrs on tricks tbr evaluating complicated or obscure integmls. The section
entitled Using Integral Tables and Computer Algebra Systems has been expanded and

rewritten extensively.

Supplenrentarv Hxercises Supplementary exercises have been added at tbe ends of
chapters.

New Appendix on Solving Polynomial Equations Appendix F, enritled Solving
Polynomial Equations, is new. It reviews the Factor Theorem, the Remainder Theorem,
and procedurcs lbl finding rational roois. Many students are weak on this material, yet it
plays an imponant role in dctcrmining whether a polynomial graph generated on a cal-
culator or computel is conrplete.

Rule of Four The "rule ol fbr.rr" r-efers to the presentatiorl of material from the verbal,
algebraic, visual, and nunrerical points of view. It is used more extensively in this edi-
tion. where appropliate.



xiv Preface

OrurR Fenrungs

lnternet An intemet site http://www.wiley.com./college/anton has been established to
complement the text. This site contains additional Horizon modules and technology
materials. The site is experimental, but we expect it to grow dynamically over time.

Flexibility This edition has a built-in flexibility that is designed to serve a broad spec-

trum of calculus philosophies, ranging from baditional to reform. Graphing technology
can be used heavily, moderately, or not at all: and the order of presentation of many sec-

tions can be permuted to accommodate specific course needs.

Trigonometry Review Deficiencies in trigonomeby plague many students, so I have

included a substantial trigonometry review in Appendix E.

Historical Notes The biographies and historical notes have been a hallmark of this
text from its hfft edition and have been maintained in this edition. A11 of the biographi-
cal matedals have been distilled from standard sources with the goal of captudng the
personalities of the great mafiematicians and bringing them to life for the student.

Graded Exercise Sets Section Exercise Sets are graded to begin with routine prob-
lems and progress gradually toward problems of greater difficulty. However, in the
Supplementary Exercises I have opted not to grade the exercises by level of difficulty to
avoid giving the student a predisposition about the level of effort required.

Rigor The challenge of writing a good calculus book is to strike the dght balance
between dgor and clarity. My goal is to present precise mathematics to the fullest extent
possible for the freshman audience, but where clarity and rigor conflict I choose clarity.
However, I believe it to be essential that the student unde$tand the difference between a

careful proof and an informal argument, so I try to make it clear to the rcader when argu-

ments are informal. Theory involving 6-€ arguments appear in separate sections, so they
can be bypassed if desired.

Mathematical Level This book is wdtten at a mathematical level that is suitable for
students planning on career\ in engineering or science.

Computer Graphics This edition makes extensive use of modem computer graphics

to clarify concepts and to help develop the student's ability to visualize mathematical
objects, particularly in 3-space. For those students who are working with graphing tech-

nology, there are exercises that are designed to develop the student's ability to generate

mathematical graphics.

Student Review A Student Advisory Board was actively involved in the development
process of this edition to provide information on pedagogical clarity and to advise on the

development of examples, exercises, and modules that students would find interesting
and relevant.



Much of the precalculus material has been moved to appendices to allow for an earli
er presentation of functions. However, where appropriate, we have included quick
summaries of review material in the body of the text.

The material on logarithmic and exponential functions has been reorganized, so it can
be covered in the first semester (an early transcendental presentatjon). Therc is a guide
on the next page for implementing a late transcendental presentation.

The first 13 chapters ofthe fifth edition are covered io the first 12 chapters ofthe sixth
edition.

The first 7 chapters of the fifth edition conespond to the first 9 chapters of the sixth
edition. However, the number of sections is about the ssme, so there is no increase
in the number of lectures required to cover the materinl.The new subdivision rs more
natural in that the chapter titles now reflect the chapter content more accurately.

In the sixth edition, as in the fifth edition, instructors teaching on the semester system
should have no trouble covering material on integration in the first semester.

Chapter 11 on Infinite Series has been condensed from 12 sections to 10, and the mate-
rial has been reorganized so that Taylor polynomials and Taylor series appear earlier.
This makes it possible to cover these topics without covering the entire chapter.

The material on analytic geometry and polar coordinates, which occupied Chapters 12

and 13 in the fifth edition, is covered in Chapter 12 of the sixth edition.

LHopital's rule was moved to an earlier position, so it can be used to analyze the end-
behavior of iogarithmic and exponential functions.

The two parts to the Fundamental Theorem of Calculus, which appearcd in separate
sections of the fifth edition, row appear together in the same section (Section 7.6).



In keeping with current trends, Chapters 1 to 8 of this text are organized so that the
basic rnaterial on logarithmic and exponential functions is covered in the first semester
(commonly called an "early transcendental" presentation). This is achieved by inffoduc
ing logarithms informally from the exponent point of view (Section 4.2) and deferring
the integral representation of the natural logarithm (Section 7.9). However, we have

included the following guide for instmctors who prefer to covcr logarithmic and expo-
nential functions in the second semester (as in the fifth edition). Depending on your
preference, you can place the deferred material after Chapter 7 or alter Chapter 8. The
guide shows how to place it after Chapter 8. To place it after Chapter 7, ignore the exer
cise modjfications listed for Chapter 8.

Section Text Modif ications (bulleted) Exercise Modificaiions

I
2

3

4

5

6

7

1.1

1.2

1.3

t..1

1.5

1.6

t.1

Functions and ADalysis ol Gmphical Informafion
Properlre. nr Fun. rion,
Graphing Funclions on Calculators and Computers

New Functions from Old
Nlarhematical Models: Linear Models

Familres of Functions

Plrametric Equations

8
g

t0
11

12

2.1

2.2

2.3

2.4
25

Limi[s (lnluilive)
Linits (Compuradonal)

Limits (Rigorous)

Continuity
Limits / Conlinuity of Trigonometric Functions

l3
l4
t5
16

t7

]B

3.1

3.2

3.1

3.4

3.5

3.6

Tangent Lines and Rates ol Change

The Derivative

lcchnrqJe: Jl Drller(nr ! lron

Dedvatives of Trigonometdc Funclions

The Chair Rule

Local LinearApproximalion; Diflerenlials

t9 4.3

4.62A

Implicil Dillerentiation
. Dcfer the concluding subsection on derivatives of

inverse functiors (pp. 252 253).

Related Rates
. Defer the alteuadve solulion to Example 3 at

the bottom of p. 272.

Defer Excrcises 10, 53 56.

Dcfer Exercise 37.

Defer Supplementary Exercises l-6,8 14, l6 24.

21

22

2_l

5.1

5.2

5.3

Analysis I: Increase. Decrease, Conca\'lly
. Defer Examplcs 6(a) and 6(c) on p. 29:

Analysis Il: Relative Extrema

Analysis III: Applying Technology
. Dcttr Example 8 end the discussion of logistic

curves that follows iI (pp. 316 319).
. Dr'er rhe H^r,/on \4oou.e lur Clrapler <.

Defer Exercises 2l-24, 38. 41. 53.

DeferExercises 15, 31, 32, 39 42, 50, 51.

Defer Exercises 39-48, 53-55, 69. 70.

Defer Supplemenlary Exercises 17 24,33,37 39.

24 6.1

25 6.2

26 6.3

21 6.4

28 6.5

Absolute Maxima and Minima
Applied Maximum and Mirimum Problemc

Rectilinear Motion

Defer Exercises 31, 32. 4,1

Defer Exercise I5.
Defer Exercise 16.

Newton's Mefiod
Rolle's Theorem: Nllean-Vallre Theorem

Defer Exercises 1:1. 16

Defer Exercise 36

Delcr Supplementary Exercises 7(d). 8(d), 22.



31 1 .6 The Fundamental Theorem of Calculus Deter Exercises 7, 8. 19. 20, 24, 2E(b), ,15(b),46(b),55(b),59.

. Deter the firsI Ihree of the four integrals in

Example 5, p.,119.

35 '7.'7 Rectilinear Motion Re\ rsrted Defer Exercises l3(b). 1,1(al. 23, 24, 27. 28, 53. 54.

.lo /.R Lv:lL r .np Delrnire llreprrl. ") S rb{ lu|on De er L.(r' i... 'r or. ll. I I b ,)l I r8 4' 4N

. Defer Exemple 2(a). p. 422. Defer Supplemenlary Exercises 12, 13, l4(c), 37.

. Defer Example 3, p. 4213. 39 41, 49.

37 8.1 Area Between Two Curves Defer Exercise 13.

18 b ' \o ne. b) Sl..lns: D:'k' i_o \\.r.1, r. Deler Exer.r'e. I l. 1.2. J8.

19 8.3 Volumes by Cylindrical Shells Defer Exercise I l.
!0 b.1 Lcngrhol aPl'lreCu.e Deler trerci.e' -. lJ. 14. 15. lo.
,11 8.5 Surlace Area Deler Exercises 13, 15, 22-

29 1.1 An Overview of the Area Problem Def-er Exercise 9.

30 1.2 Indcfinite Integral; Integral Curvesr Dilectlon Fields Defer Exercises l(b). 19, 20, 25, 34, 39(b).

Defer Exercises 2(e).3(c), (d). (e), 5, 6, 19-22,2'7,28,
35, 36..15 .18, 54.

32 1.1 Sigma Notation Defer Exercises 2(c), (e). 39(b).

33 7.5 The Deflnite lntegral Defer Exercises 6. 13, 14, 33(b), 38(a), 45(a).

42 8.6 Work
43 8 7 F-luid Pressule and Force

4J 4.5 Derivalives ot' Inverse Tris Functions

50 ,+.7 LH6pital's Rules

. Defer integmtion formulas (6), (10), (ll) nl

Table 7.2.I on p. 38,+.

. Defer the lasl (fifth) integrrl in Exemple 2 on p. 385.
{ I -.J lnlL frdrior by 5l b.lirJliun

. Deler Example 5. p. 393.

. Defer Example 7, p. 39.1.

Chapter ,1 Supplementary (3, 4, I l)
Section 5.3 (39-,13. 45-48)
( heorer5 \ pllen'Lnrdr) r.r l') 1l '4 t la

. Pick up Horizon module from Chapter 5.

41 4.1 loverse Functions Pick up Exercises:
. Pick up material deferred tiom Seclion 4.3. Section4.3 (53 56)

Chapter 4 Supplementary (1. 6).

45 4.2 Logarithmic aad E\Fonentiil Funcuons Pick up Exercisesl

Section 4.3 ( 10)

Chapter 4 Supplementaty (5.9,17,20 22).

46 1.4 Derivatives ol Log and Exponenlial Funcdons Pick up Exercises:
. Pick up material defened from Section 7.2. Section ,1.6 (37)

. Pick up mateial defened from Section 5.3. Chapter,l Supplementary (10. 12, 14, 16, 19,23,21)
Section 5.1 (21-24. 38. 41. 53)

Section 5.2 (15. 31. 32. 39-,12, 50, 5l)
Section 5.3 (44, 53 55)

Chapter 5 Supplementary (20. 33. 39)

Section 6.1 (31, 32,44)
Section 6.2 (15)

Secdon 6.3 ( 16)

Section 6.4 (14, 16)

Section 6.5 (36)

Chapter 6 Supplenentary (7(d). 8(d). 22)

Chapter 7 (all defeired)

Section 5.3 (69,70)

Chapter 8 (all deie.red).

Pick up Exercises:
. Pick up material defered from Section 4.6. Chapter4 supplementary (2, 8, 13, 18).

48 '/.9 Logaithmic Functions; Integral Poinl ofview
40 8.8 Hlpc-l.n r. I unl-tron, -nLl H].rp rs Cablp.

Pick up Exercises:
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Cut.utr.,, is a compilation of ideas that provtdes a way of viewing and analyzing the
physical world. As with all mathematics courses. calculus involves equations and fornru-
las. However, if you successfully learn to use all of the fbrnulas and solve all ol tbe prob
lems in this text but don't master the underlyitg ideas. you will have missed the most
important part ofcalculus. Keep in mind that every single problelr in this tcxt has ah-eady

been solved by somebody. so your ability to solve those problems gives you nothil'tg
unique. However. if you master the ideas of calculus. then you will have the tools to 

-9o
beyond what other people have done, limited only by your own talents and creativity.

Before stafiing your studies, you lray find it helplul to leaf through this lext to -qer a

gene|ll I'eelrnl lor rl. diil'erenr prrt\.

ts At the beginning of each chaptel you will fincl a page that gives cn overview
of the chapter, and at the beginning of each section you will lind an introduc
tion tbat gives an oven'iew of that section. To help you locaie specific infor-
mation, sections are divided inlo topics described by headings in the margin.

h Each section ends with a sel 01'exercises. The answers to rnost odd-numbered
exercises appeal in the back of the book. Worked out solutions to the odd-
numbered exercises are given in the Stutlent Resource IatLuaL and on a CD,
which ale available as supplemcnts to the iext.

g. Some of the exercises are tagged with icons to indicatc that some kind of tech
nology is required for their solution. Il your calculus course does noL tncolptr-
rale thc use of technology. then your-instructor will probably not assign these.
Those excrcises taggecl with the icol E require graphing tcchnology, which
might be either a graphing calculator or a computer ptogram that produces
graphs fuom equations. Thosc excrcises tagged with the icon E requirc a

computer algebra system (calied a CAS). which is a program that can perfbrn
symbolic as well as numerical calculations. The most commoli CAS programs
are Motllenaticct, Mdple, avJ. Derive. Sone of the ncwer calculators incorpo
rate CAS capabilities.

F Each chapter ends with a set ol supplementary exercises, many of which
involve a combination of ideas fron various sections within the chapter.

b Near the end of the text you will find seven appeldices. Appendices A F
review sone precalculus material, including trigonomelry. and Appendix G
contains some prooli thrt may or may not be part of your course.

F There is also referelce matedal on the endpapers that are inside thc liont and

back covels of the text.

h lllusfations in the exposition are referenced using a triple-number systen. For
exanple, Figule L6.3 is the third figule in Section L6, and Figure 7.2.5 is the

fifth figure ill Section 7.2. The sane numbeling system is used fol theorems
and definitions. lllustrations in the exelcises ae identified by the exercise
number with which they are associaled. For cxanrple, in a particular exercise
set, Figure Ex-7 would be associated with Exercise 7.



xxxii For the Student

> The ideas iD lhis text were created by real people wjtb interesting personalities
and backgrounds. Pictures and signatures of many of these people appear on

the opening pages of the chapters, and biographicrl sketches of various mathe
naticians appear throughout the text as fbotnotes.

) At various places in the text you will see eiements labeled "For the Reader,"
which are designed to reinforce ideas in the text. Sone of these ask you to
think about an idea, some ask you to perfonn a computation, and (for students

using technology) some ask you to read your reference manual and then use

the technology to perform a computation or to generate a graph.

As you read through this book, you will find some ideas that you understand imme-
diately. others that you don't understand until you have read them several times, and oth-
ers that you do not unde.stand, even atier numerolls readings. Don't become discour
aged-some calculus ideas take time to "percolate," and you may well find that the idea

suddenly becomes clear iater when you least expect it.
If you find that your answer to an exercise does not natch that in the back of the

book, do not presume immediately that your answer is incorect-there may be more than

one way to express the answer. For example, if your answer is V3/3 and the text answer

is l/V3, then both are correct, since your answer can be obtained by rationalizing the text
answer. In general, if your answer does not match that in the text, then your best first step

is to look for an algebraic manipulation or a tdgonometric identity that relates the two
answers. In cases where the answer is a decimal approximation, your answer may differ
ftom that in the text because of different choices in the number of decimal places used in

fie computations.
Some exercises require a verbal answer. Express those answers in complete, correct-

ly punctuated, logical sentences-not fragmented phrases and folmulas.
It is ,1ot essential to have graphing technology to read and use this text. Exercises

requiring technology have been tagged with icons precisely so they can be omitted if nec-

essary. Text elements requiring technology are relegated to the "For the Reader," so they
can be omitted as well. If you have graphing rechnology, then you may want to use it as

you read the text or to check yom work in exercises that are not tagged with icons.

However, it is not essential.
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2 CalL:lu,: A New Horrzor ror An(ie L Roors

CALCULUS TODAY
Calculus has aD enomrous. but ofteu unnoticed, impact on our diiily lives. To providc
some sense of how you and I alc being affectcd by calculus. I have selected a lerv of
its applications to iields of contemporary research. All of these applications involve other
blanches of scicnce and trlathematics, but they all use calculus in son.ie essential way. The
first thrce applicatiors are based on a new and exciting area of mathematics called the theory
of }'a|e1els. Wavc]cts rnake i1 possible to caplure aod store mathematical represeDtations of
images and signals using much less data than previously possible. As a result, the cunent
rcsearch literature is literally exploding with ncw applications of wavclcts to such divclsc
fields as astronomy, acoustics. r]ucleal engineering. inrrge plocessing. neurophysiolo-qy,

nrusic, rnedicine. speech synthcsization. earthquake prediction. and pllre rnathematics, to
name only a lcw.

FBI l-ingerprint Cornpression The U.S. Federal Bureau oflnvcstigation bcgan col-
lecting lingerprints and handpfints in 1924 and norv has more than 30 million such prints in
its liles, all ofwhich arc being digitized fol storage on computer. It takes about 0.6 megabyte

of storage space to record a Rngeqlrint and 6 negabytes to record a pait of handprints, so

that digitizing the cuffent FBI archive woulcl result in about 200 x l0r2 bytes of data to
be storecl, which is thc capacity of roughly l3E million lloppy disks. At today's prices for
computer equipment. stolage medil, and labor. this would cost roughly 200 million dollars.
To reducc this cost. the FBI's Criminal Justice Inl'ormation Service Division bcgan rvolking
in 1993 with thc National Institute of Stanl:lards. the Los Alamos Niitional Laboralory, and

severrl olher groups to devise compression methocls fbI rectlcing the storage space. These

methorls. which arc based on wavelets, are pr-oving to be highly successtul. Figule 1 is a
good example the imagc on the left is an original thumbprint and the one on the right is

a mathematicirl reconstruction fiom a 26: I drtr comprcssion.

Music Researchers with the Nunerical Algolithms Research Group al Yalc University
lrave investigated the xpplicalion ol'wavelets 1o sonnd synthesis (musical and voice). To
approximate the sound of !l musical instr-Lonent or voice, sar-nples are taken and decomposed
mathenratically into nunrbers called r'vavelet ftu:ket coeflir:le,,rls. These coet'ficients can be

storcd on a computer and later the sound can bc rcconstructed (synthesired) frorn lhc
coI1lpulcr di(a. This area of research makes it possible to repr'oduce complcx sounds lionl
a small anount of data and 1o transmit those data electronically in a highly compressed
fbrm. This research may eventually speed up thc transmission ol \ound over the lnternet,
tbr example.

Removing Noise from Data-ln liclcls ranging t'rorr planetary scienca to molecular
spcctroscopy. scientists ale laced with ihc problern of recovering a true signal from in-
complete or noisy data. For examplc, wcak signals liom deep space probes are often so

overwhelnecl with background noisc thiLt the signal ilself is barely detectable. yet the signal

must be used to produce a photograph or provide othcr infbmatiort. Researchers at Stanfbrd

University and elsewhere have been working fot several years on using wavelet nethods to

filter out suclr noise. For example. Figure 2 shorvs a signal fron] a medical imaging signal

that has been cleanecl up (de-iroisecl) nsing rvavelets.

Originrl

i

Noi!) srgnrl

Figure 2

De noised signrl
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Airflorv Past an Autonobilc Problerns involving lluid flow (air'. water. and bloocl.
tirr example) are a nrajor fircus of scientific reseuch. The Anny High Peltbnnance Com
pLrting liescarch Center'(AHPCRC) sponsors nun]crous Llnclassificd resetrch projccts that
involvc tcams of researchcrs l'rom various sciencc and engincerin-sl disciplincs. One such
plojcct cleals \!ith ailllorv past an automobilc (they use a Ccneral Motots Saturn SL2).
Thc problem is qLritc conrplcx since it takcs into account the body contoLrrs, the rvlreels.

tl're recessed headlights. irnd the spoiler'. Figure 3 shows a simulation ol uifilow past an

autonobilc that was plocluced using state-of-tlre-iilt Inathematical nletltods ilnci a Crav T3D
sLrpcrconrputer.

Weather Prcdiction - Modern mctcorology is a maniage between nrathelrlatics and
phlsics. Todal's meteorologists rre concemed u itlr much more than prcdicting daily $,ealher
chlnges their researrh dclr cs into such ateas ls global uarming. holcs in theozone layer
(Figule .11. and rveather pallcrns on other-plancls, ID 190.1 the Nonvcgian rneteorologist
Vilheln Bierknes (1862 I 95 I ) proposed that thc statc of dre atmosphcrc at any future tirnc
can be detcrmincd by nrcusuling appropriate variables at a singlc instlnt of timc and then
solviu-o certain hydlodynamic equalions. Although Bjclknes' idea is trurc in ptinciple. it is
cliilicult to apply- bccause ol Lrncertainties in mcasured variables. thc enornrous amounts
of data to bc processeci. lnd technical complications involved $'ith solving thc equations.
Horvelcr. nerv mathenratical cliscor,eries have drarlltically improred nrctcorological prc-
diclions and spau'ned cnorlrous economic benefits. For erample. it costs about 50 million
dollals to prepare for a hurricane over 300 naulicll nriles ofcoastlinc. cven if the hurlicane
does not hjt the area. On the other hand, if the hurricane hits withoUt lclequlle prepanlion.
tlren the ildded cosls crn rlount to billions ol'ckrlla|s (let alone the loss of litc). Thus. each

rew rnathemlrtical breakthrough thlt pr'<)duces morc accuftrte hurricane prc'cliclion trrnslates
into enortnous econonric savings and preservation ol human litc.

lUedical lmaging and DNA Structure - Advortccs in nrrrJc,al trtltncur )esondtrrt
(NMR) have made it possible 1rl dctermine the slructure of biologicul ntacronrolecules.
sludy DNA rcpljcation. aD(ldctcrmine how proteins ac( ls enzymes and antibodies. Related
udvlnces in nktgnetiL t(torutt\c irangi,g (MRl) lrave nrade it possiblc to view internll
hrrlr0n tissue without invlsivc sLlrgery and to proviclc leal_time imlgcs cluling surgical pro-

ccclu|cs ( Figule 5). High-quality NMR and MRI would not be possible withoul rnathematical

discoveries that have occurrccl within the last decadc.

Controlling Chaotic llchayior in the Human Heart - Cllaos tlleory. which is one of
tlrc nrost exciting ne$ btanches ol mathenratics. is concerned $ ith identifying rcguliuities in

phcnornera that on the surlacc sccm randonr and unprcdictable (Figure 6). Todry's rcsearch

literatrn.e itbounds rvith applicrtions of chaos theory 1() alnrost every inlrginable branch of
scicDce. Recently. reselrchcr' a1 thc Applied Chaos Laboratory at Ceorgia Tech University
coll boralccl with physicilns at the Emory Univclsity Medicai Center in applying chaos

theory to control the chrotic behavior ofheart tissuc (hilt is undergoing vcntricular libr iliation
(ca[diac arresl). The rcscarch. though experinieDtiil. is already shorvinr pro|uising rcsults.

The World Nlodel of the Future In rnticipation of the 1992 Unitcd Nations Eanh
Sunrnrit. researchers at the Irstitute tbr Econonric Analysis (lEA)lt Ncl York Universitv
u'erc cornmissiored b1' a numtrer of llorld leadels with thc daurting trtsk of creating a

model that uould predicl tlrc cconomic and envilonrrenlal liture ofthe world. Thev started

with (he World Moclcl ancl World Database clevclopcd by Nobel laureate Wilssily Leoltiel
ancl his colleagues at Harvard in the 1970s. bLrt they expanded on thc nrodel by incor-
poratirlg such environnrcntal liicton as the cost ol'controlling pollutant enissions (fionl
nrining. cner-sly creation. ancl automobiles. fol cxanrple). They also accounted lbr the eflect
of pqrulation gro\\.th r lcs on the added demand lir| cnergy and othet nalural rcsources.

Moclcls such as this lctlrrilc a team eflort by go\,ellurcnt. academic. and industrial experts

ir'r il vlricty of fields and play an important lolc in guiding the decisions of governnental

agcncics.
Dcep Space Exploration - Alcxandcr Wolszczlur of Penn State Unircr*it; nral go

clown in histoly as the first scientist to identily a pliLretary system beyond our own. Whilc
Ch oric ventricLrhr iihrillLiLion

Figure 6
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scarching thc raclio sky. Plolessor Wolszcziut cliscoverecl a neu'pulsar, PSR1257-l-12. that
seened to wobbLe rs it tlaveled through space. As a result of an extensive natherrratical
analysis. rnany scientists iLre no$ convillced that the wobble is caused by two or ihree planets

otbiting PSR 1257* 12. Althou-gh scienlisls hlrve been able lo cletect pulsars lor some timc
b1'sealching fol flint peliorlic ra(lio signals lronr outer spiice. it is on]y recenlly llrat the

rnathematiclil techniclucs bavc bccn cleveLolled 10 analyze lhe dlrla in a way that stands up to
scientillc scrLrriny. Wolszczan plcdicts thrt thc planets orbiting PSR 12-57+ l2 rre bauen lllld
inhospitable beciluse of stellar winds. but his mcthods open the possibility of discovcling
ne$ pirnetruy systcms thal mii] suslain irtelligent life.

Todry's cxciting ilpplications of calclllus have roots that clin be tfticccl k) thc work ol lhc
Greek rrrathernrtician Archilnedes, but the actual discovery of the fundiimculal principlcs
ol calculus was rnatlc independerrtly b), Isalc Ne$'ton and Gotttlicd Lcibniz in thc lalc
se!enteenth centul-),. Thc work ,rf Newton end Leibniz was nlotivated by four major cLirsscs

ol scientilic and mathern|lticri plotrlcms of the time:

Find thc langent line b x general curvc'lt r given poin1.

Find the area of a gcncral rellion. 1he length of ir general curve. iurcL the volurne of ir
generrl solicl.

Fincl thc ruaxinrunr or rninimlnr value of il .llliLntity fir| exarrplc. th.. mnxinrunr anci

nriDinrum Liistances of a planet fl.om the Sun. olthe maxirnum range attrinrble fin r
pr'je. tilc 15 r.rrr rrri it ilr'-'.c ',1 lre.

Civcn u formula lbr the dista|ce lr-avele.l by a bocly in any spccific,:l rmount ol timc.
lird the velocity anci ilccclerirlioll of lhe bod)' at aoy ilstant. Convet sely. given a firt ntula

that specilies tl're acceleratioll ol vckrcity al any instanl. lind the disli,Lnce trlveleci by
thc body in a spcciliecl peiocl o1'time.

Even though thesc ploblcms nray scem diverse ancl unlelated. $ e \\' ill see lllter that thcv ilrc
all closely linkecl by thc lirndrmcnlal principles ofcalculus and that rllofthern involve i?ll
,ilc 2r?c rsscs in sorle rvav. These same pIinciplcs ancl ploccsses uDdellie lhe contempor-ary

applicatious thrt wc cliscr.rssed lt the beginning of this section.

There is sorrething vcrl satistying itbout sliuling a task and blinging it to a step-by-step

conclusion. Howcver. the real world is repiete w ith proccsscs 1llal by their vety nature cannot

be cornpleted iu linilcly rrran)'steps. ancl hence must Lrc lci unlinished ili some sense. For
example, whe|eus thc colrplete decinral expansion ollhc liaclioD I / 8 can be obtained in
three steps bv long clivision.

l/E:.125
thc complete clecinral cxpansiort o1' n/l c,'nnot be Lrht.Lrned in .L hnitc number ol steps by

aln pr-occclulc. Allhough there ale numcrous clgorltltrs (i.e.. step by step ptoceclu|es) for'

approximating .,/2 to an1, clesirecl ciegtee of accuracy. none ol lhem procluces the exact
value in linitely many sleps. One such algorithm. callcd thc mecltattit's rale. is based on

the lbnrula

INFINITE PROCESSES

: j(, ';) (1)

\0. \t,li, \'1..,. (2)

that get closer and ckrser to J2. achicving an arbitlary degree of accuracy in tinitely many

stcps. This is done by lirst setting ri) : 1 and ther using the second part of Forrrula (l) to
generate each ncw approx in'uition r',,1r ft om thc prcccding apploximation r',' . For example.

TaLrle I shows the tilst six approximrtions ,,i J2 pn'duec.l b) th( rne!hanic's r-ule. The

lr'actions in thc talrle wel e obtained using a compLlter- progl an'r, ciiletJ a Cottputer Algebra
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Syslerz (CAS),* that is capable of perlbming algebraic operations exactly. We used the
same plogram to convert the fractions to decimai apploximations with l2 digits, but we
could also have used a calculator. At n : 4 the decimal approximations began to tepeat
because we had reached the accuracy limit ol a 12-digit display.

Table I

/ t\
= -\\n+ t/

-!o= I (Slarling value) r.0000000000i)

Lf, 2l .1'-rL'-11 1
r.50000000000

I _1[1r ] l_17' rl-lLt r/ll- l 1.41666666667

,.,..=jlT-,-L]=# l'1t 12t 568Q1

I f\11 I I
l+= iLros +j77iaosl _ 665.857

.170.832

fuoi.dr 2 f 880.,.088,bo
lr1r."._ "o\rr a nr'rJ , .' t .rb- l].t,t

1.4112135623',7

We leam il elementary arithmetic that the decimal expansion of ] is

1.."..
:.)).1)).._

3

(all decimal digits being 3). We can rewrite this equation as

I
- : 1+.01+ .003 - .0001 F .00001
t

or alternatively, as

133333
I l0 l0' t0 ' l0' ' L0'

(3)

This formula expresses the nunber 1 as an unending sum with infinitely many tenns; such

sums are called infinite series. An infinite series denotes an addition process that camot
be completed in finitely many steps-one can add the first l0 terms, the filst 100 terms,

or even the first 10,000 tems (with the help of a computer), but one cannot add a// of the
tems in the usual sense because there are inlinitely nany of them. However, if we stalt at

the beginning ol'the series and add terms one by one, then at each step the surn gets closer

and closer to J. For exan.rple,

l3
3 l0
133
3 t0 tOl

1333
^1 L L_

-r 10 102 101

t)1J
= *-*-r I0 I0r 10'

*The 
most widely used CAS progums arc Marl?,iarl.d. by wolfram Research. Inc.; Ma|1a. by waterloo Maple

Software, lnc.: and D?rir,r, by Soti Wffehousc, lnc.

11112135623',7

INFINITE SERIES

:.333

3 ....
t04
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CALCULUS AND THE SEARCH
FOR ,r

Thus. Fornula (3) is intelpleted to tuean that I can be approximated to any desired degrec

of accuracy by addjng sulllciently man1, tems ftom $e bcginning of thc :clic:.

The need fol an rccllrirtc approximltion of ;z datcs back to the sulveyols of the euly
Brbylonian and Egyptian civilizations. Tho Grcck mathcmatician Archimccles calcitlrtecL

/r to two decilnal places by Sconrclric mcans and lotcr mathcmrticians obtaincd greater

accuracy by inproving his georretric methods. With the aclvent ofcalcLrlus, valious infinite
selics firr iz wcrc discovered. The flst such series rvas

'r:.1 (l :+1 i+,1 )

Although this series is cluite beautiful in its simplicily. it hrs littlc practical Yalue because

enorrrous numbcLs of tenrs ue lecluirecl to achieve good approximalions. For cxample. a

conrputc'r' computation of the sunr of the first 50(X) ternrs in this scrics yiclds thc approxi-
mation

n ! 3.14139

which is colrect to only thrce decinal phces in spite of the large amount of computation.
(Compalc this 10 tl're vrlue of x that vour calculator prodirccs.) Later in this lext you will
encounter infinitc scries that ale better suited fol app|oxirlatirg x because they procluce

better accuracy using fcrvcr lenns. The activity oi linding algorithms that produce better
accuracy rvith Iess compLrtalion is an area of currert lnathenatical research in a branch of
rn.rllrelrirt.c\ ( rlleJ tuueritul umtll:it.

Fornrulas li)I the areas of plaue regions with st|right-linc boundaries (squares. rectangles.

lr'iangles, trapezoids. ctc.) rvere rvell known in nan.v' early civilizrtions. TIowevcr, obtaining
firnnulas lbr regiorls with cun ilincrr boLrndaries (a circle being the sitnpiest case) caused

ploblcrrs for early rnathematicians. An iclea fbr corrputing thc arca of a circle to an albitlary
degree of accuracy u,ls suggested around '130 B c. by the Crcek scholal Antiphon and was

later systematizcd b)' the Greek nathernatician Eudoxus into an algorithm called the method
ol exluustion. That mcthod. when applied to a circle o[ raclius r. consists of inscribing a

succcssion of regular poJygorrs in thc cilclc and allorving the numbel of sides /r to increase

iudelinitcly (Figure 7). As n increases. the polygons tend to "exhlltrst'thc region inside the

circle. and the ueas of those polygons bccome better ilnd belter approximations to the exact
area of thc cilcle.

@ooooo
To scc how this works numer ically. lct 2 0i) clenote the area of a regular n-sided polygon

inscribccl in a cilcle o[ radius r. We can lincl a tirmula fol p 0r ) by sttbdivicling the polygon

into , congruert tliangles (Figure 8a) arrd aclding thc rucrs oI those triangles to obtain the

zuca of the ertire polygon. Each triangle is isosceles. since two of its sides are radii of
the circle; and the angle at the apex t't creh tLiaLtcle rs lr/tt. since thc trranglcs divide tlle

o
o
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central anglc olthe circle into r equal parts. Thus, with thc hclp ofsome basic trigonometry
(Figure 8b). we deduce that thc alea of each tliangle is

,u",,: ] base height

: \ '2(rsintrln)(r cosz/n) : 12 sin(z/a) cos(r/n)

frorn which it fbllows that the area of /? triansles is

lt(tt) - nrz sin(tr fn) cos(r/r) (4)

As n increases, this tbrmula should produce better and better approximatioi'ts to the exact
arca ol'thc circle. To see that this is so, we used a calcLllator set to the radian mode to generate

lhble 2. Later, using the tools o1'calculrLs, we will show definilively that p0?) convergcs 10

the linrit irr'l as l increlses

(.,) (b)

figurc li

Figule 9 shows !r vaiation of the rnelhod of exhaustiol that appearccl in a teventeenth
century Japanese manuscript. ln thal manuscript the area ol the cilclc is approximated by
inscribed rectangles, rather lhan polyguls.

100 3.139525976,17 rl
200 I l-110759078 | r'l
300 I l,:tr T362c)1i250 rl
rlr:)0 3.1,11.163.16236r1

500 3.14150997034 rr
600 i.14151523487 rl
700 l.141550'l6El5,:
800 3.141560355:18 r2

900 3.14156711,108 r'r

1000 l.1,1i 57l9ll27li rr
2000 3.14158748588 rl
3000 3.1.:1159035683r1

4000 3.l,1l59l16l66, r

s000 3 l.:l159 T82676 rl
6000 3. r,1r 59207940 , :

7000 3.1,1159223174r.1

8000 3.14159233061r1
9000 3 1415923t)839 rl
I0000 L 1.11592,!16llll rl

A form of ca culus ca ed \'?r,i
(c rcle pr fcip e) was deveioped ln
seventeenth century Japaf by the
maihematlc af Sek Kowa and his
pupils. Th s i ustration, datngto
1670, shows an approx mat on of the
area of a clrc e w th inscribed
reclang es.

Figurc 9

Tangcnt iincs k) ljcneral curves were of great inter-est to the mathematicians ancl scientists
of the seventeelth ceotury because of their applicalion to the design of lenses. To determine
how a ray of light passes throlrgh a lcns using the laws of optics, one must know the angle at
which the ray strikes the lens. This angle is measured betwccn the ray and the rormal line to
lhe lens sudace. dre nonnal line bcing perpencliculrr to the tangent line (Figure 10). Thus,
lhc study of various lcns shapcs led to the mathematical problen of ilnding the tangent line
al a Point on a gencral curve.

For circles, the concept of a tangent line is simple a linc is tangcnt to the cilcle if it
rneets the circle at precisely one point. However. this does not work for othel kinds of curves
(Figure 1 1).
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.r I

(.i)

Figure I I

{^A
(.b) (c)

CALCULUS AND THE MYSTERY OF
CONTINUOUS MOTION

In order to apply the concept of a tangent line to curyes other than circles, we must
view tangent lines another way. For this purpose, suppose that we are interested in the
tangent lioe at a point P on a circle, and let Q be any poiut on the circle different from
P (Figure l2a). If we draw the secant line though P and 0. and then alLow Q to nove
aiong the circle toward P, then intuition suggests that thc secant line will rotate toward a

"limiting posirion" that coincides with the tangent line at P. This viewpoint about langent
lines is important because it can be applied to more general curves (Figure 121r). Thus,
the geometric problem of finding a tangenl line leads to a problem involving an infinite
process finding the limitin.q position of secant lines.

Figure 12

One of the early triumphs of calculus was i1s use in clarifying and quantifying continuous
motion. The ancient Greeks had two schools of thought on the nature of space and tirne:
the rllscrzte and the c ontinuous.Ftomthe discrete viewpoint, space and time are composed
of small ir?diri.rirle units (points and inslants) and mofion is a succession of small djscrete

iumps that gives the illusion of smoothness to the eye (like a movie). From the continuous
viewpoint, every unit ol space and time, no matter how small, can be t'ufther subdivided,
and n-rotion is a smooth continuous process.

The Greek philosopher Zeno (bon c. 490 B.C.) raised perylexing questions about both
theories of motion with some paradoxes. (.A paradox is an argument that appears to be

logically correct but that leads to a contradiction or reaches a conclusion that flies in the
face of con]mon sense.) Zeno questioned the discrete theory of motion with his Ari?w
Pal?do-r and the continuous theory of motion with hjs Parzdo x ol AchiLles and theTortoise:

Zeno's Arrow Parador: lf tine and space are distrete. then an tu row cannot mote tfuough
the ait . Fat at ea(h instant of time the at t'ou, is at a derttirc poi\t dnd henae is att rcst Ltt that
instont. ThLts. the drrow is always at rest.

Ze o's Patailox of Achilles and the Tortoise: lf time and spacc are continttous, ancl if a
tattoise is Rilen the slighlest heod slatt h a rdce u,ith Achilles, then Acltilles will tteyer carch

Fi!!re l0
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!ha tot tt)isc. For \rh(tl AL ltilla: rcathes tlte tortoisc s sturtittl4 point.llt? tt[toist: I ill hd\r nk)\ t:l
ulttadtottptintB.l\'ltcttAtltillesrcdr'hasthepaiitt B tlk toitoisctill ltlrc ntoytd alrutl to a

point C---<k! itlrtnitut)l.Thrrs.thetrntoist,rrill al',r.\.rhtulttutl.etrliilrr.aldir'(Figurc ll).

-frw

figurc l.l

Even todi,ry thc paradoxes ofZeno raisc bolhersomc philosophic l issues aboLrl llrc nature

of ll1o{ion. H0wever. ill lhc curly founecnth centlLry the emphrsis shifled a\!ay frorr thc
philosophical issues towarcl the quanlitiltive study of spccd and accclcration. The (lillicult)
taced bl rrathcnraticialls an(l scientists of lhat per iod wi.rs the lack ol a precise .1('rlrii.rt oi
spced that could trc used ils a starting poinl fin quaolilalivc irnrlysis-arrd that turned out

to bc a nontl ivirl matter.
To understancl the ditficulty. supposc that a car lriivcls 75 miles in a 3Jrour pcriod. We

sxy th^t the ./r'(,/.rg. spced of the car is 25 nriles per hour' (75/3 - 25 mi/h). More gcncrall)'.

the zn rri:r,qc .r1z'r,r1 of an objcct duling a specilied tinrc interval is clch necl as

(lislxnce trrvele(l
lvelagc speed :

THE ROLE OF RIGOR AND PROOF
IN CALCULUS

tirne elapscci

llo$ever. it is inrportant to reco-qllizc that this isjusl ilr rvelaqe- car rvilh n tvcrage
speed of 2-5 nli/h on a trip nced not travel al a constlnl speed ol 25 rlli/h il ml)' speed

up iud il nla)'slou dorln. Molcover. lverilge speed is not a ver) usclul quinlil) in (erliln
silLritlions. Fo| exarnple. il the car hrppens lo hit a tree. lhen thc rcsulling,:lamirgc will not

be cletelnrincd by the averlgc speed up to the time of inlpact. but rather by thc ,r rt./ttt(tkaus
speed at the prccisc nruDcnl oi ill-Ipilct.

But exactl)'what do \\'e |ncan b)'"instilntancous speecl" and how do \\'e conrpLrfe ifl
Wc cannot sirnply carry ovcr the process li)r colnpuling average spectl. sintc in .ttt1 gircn
iuslant lhe distilncc travele(l is 0 and the tinre elapsed is 0. so the clisliulce tmveled divirled
b) the timc clapsed is 0/0. which is rneanirlgless. Thus. although instantaneous spced is a
ph),sical rellit),. there ir dillicultl compuling it for lack of lL precisc dcfinition.

MathemaliciaDsanclscienlislsultirnatel)resolvedtltisdifficullybyusingthe$ell-dclincd
notion of over gc speed togcther rvith an inliDitc process lo definc thc concepl ol instan-

l{neous specd. The idea is as lbllows: Suppose that we iLlc inteteste(l in lhe instrrttal)eous

spcccl of an obiect at some I inrc l. lntuition suggests tlrirt over a -rlrrrl/ tinrc inten al thc spccd

of the object should not change very much. Thus. if t + il is a point in liDre slighlly Iatcr thar
l. lhen tire irvcrilge speed over lhe timc interval fron'l t 1() / + /r shoulcl be vcry close to the

inslantaneous speed at tinle L Moreovcr. the closer / + /? is to /, the betler \\,c shoultl expect
lhe approxinrirtion to be. This sLrg-sests thrt the inslant neo[s spectl itt time r be Jefined as

thc limiting vllue of the avcrage speed computcd ovcl snraller and srraller tinrc itrtctvals
stlutirg at tinrr' /.

What is lascinating about this is the link between prccise n'rathemxtical definitiol'l Dd rcal-

world appiications oncc ph1'sicists wcrc rrnied $'ith the right definilion of instlntdneous
velocitv. thcl rvere ultimatell'able to fincl equations lbr tlre motion ol-thc planets arrd clcvclop
l'undamcntill theoies lrboul gravitational .rttraction.

Although the cotlcept of deduclive proof dalcs back to ELtclid. rnost of the developurcnts in

ll]ilthematics l|om about 2(X) B.(1. to 1870 wcrc based on inluition and crlrpirical discovcrl'
the idea ol pro\ ing rre\\, nrlthematicrl lcsttlts rigorously tls lirrgelf i,tnorecl. Horrevel. as
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calculus developed, concepts related to intiuite processes began to challcngc the lcliabil-
ity of intuition and eventually an emphlsis on prccise definitions and careful proof was

reestablished.
To illustralc horv inluilion can lail *,hen dealing uith inlinite proccsscs. consiclcr thc

inflnite scrics

I l+l ll-l-l+.
We might bc tcmpled to conclude that the sun of this series is zero by grouping the terms
AS

(l -l)+(l l)+(l l)+ :0+0+{) + .

Howcvcr-. lvc can also gr'oup the terms as

l+( l-l- l)+( l+ l)+( I+ l)+ : I +0+0+0+ '

which suggesls that the \um is 1. Something has 10 ilc wrolgl (Later. we ilill see that

neithel conclusion is correct.) 
-l-he difficLllt)' is our lack of nlathenralical p|ccision; rvc hlvc

not cstalrlished a plecise clellnition oi'wl]rt rvc rnean bv the sum of ln infinite ser-ies. ancl we

have assurncd without .justitication that the rlrles ol g|ouping lbr linitcly nlany temls also

rpply to infinite selics.
ln this text nrany ideas $ ill be inlrodlrced infoflnillli' at first to develop our intuition. but

evertually we rvilltake grerl calc to dclinc 1cl'nrs preciscly lncl stlle exacl co ditiorls urder
which results are valid. Thc plcccding cxanple should conrince ),ou 1ha1 this is no1 aD idle
malhelnatical exercise but rather an essential piu t ol avoiLling scl'ious nrathcnrittical crrors.

The derelopmelt ofcalculus wils an evolutionary plocess thilt culrrinate(l itt the cliscovetv

of r lLmdirmerlal r.elationslrip betwecn thc p|oblcm ol lincling r|cls rnd the prolllen ol
finding tlingcnt lincs. The discovely of that result, rvhich was macle inclependently bl Sir'

lsaac Newton (English) and Golltiied Wilheln Leibniz (Gernran). is consideted tu be the
"discover1," of calculus. Ne$rloll nade the discovery l0 years betbre Leibniz bnt did not
publish his rvork urtil 20 ycars alicl Lcibnir publishecl his work. This situalion led to u

stormy debirle o!el the rightfiLl discovcrcr ol calculLrs that cngullcd Europe 1or hali il centLrry.

with the scientists ol thc Col]tiuent suppolting Leibuiz and those tiorn Englancl suppoltiDg

Ncu lon. The conflict wils extrcmcly unlbnuDitte llecause N"e\rton's inferiol notation badly

harnpc|cd scicntilic delelollnent in llnglancl, irDd thc C(mlincnl in tlun losl thc be elil ol'

Ne\ton's discovcrics in lstl'orloIrly and physics fol nea|ly 50 year!. hr spilc of it illl. Ncw 1on

and Leibniz uele sinccre admirers oleach other's work-

I $AAfi li.{ LIT;'T rl ti i}. 6 /-1'}- "" J. 7' ii. t \

Newton was born in the village of Woolstholpc. Englancl. His lather died befbre he u'as

boln and his lliother loised him on the lanrily thrm. As a )outh l1c sllo\led little evidettce

of his later blilliaDce. except ti)r an unusull lalertt u'jtlt trechanical clevices-he rpparcDlly
built a working water clock anci a tol flour nill po*eied b1'a mouse. In l66l hc cntclcd
Trinity College ir Cambridge *'ith a clclicicncy in geometr-v-. Fortunately. Nervton citught

the eye of Isaac Barrow. a gitted mathematician and tcachcr. Undei llair-ow's guidance

Ncwtoli imrrrersecl himsclf jn milthenratics and science. but lre gl odualcd witlloul any speciirl

distinction. Bcciruse the Plague rvas splc.ttling rapidly through London. Newton returnecl

to his home in Woolsthorpe and stayed ther.e during the yea|s ol 1665 and 1666. h] those

two nlomcntous years the entire fiamework of modern science was miraculously creltecl in

Nervton s mincl-he djscovered calculus, r'ccognizcd lhc undcrlying principles of planetary

motionandgluvity.anddeterminedthat'white'sunlightwascontposedofallcolors.redto
violet. For some reasons he kept his discovelies to h im scll'. In 1 667 hc returnecl to Carl bridge

to obtai| his N4aster's clcgrcc and upon graduatien becanre a lcrchcr at Trin ity. Then in I 669
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Newton succeeded his tetchcr. Isaxc BalTow. to the Lncasian chair of mathenatics at Tl.inify,
one ol'tlre nost honored chairs of mathematics in thc world. Thcleafter. brilliant discovcrics
flowed fronr Newlon steiLdily. Hc fin mulated tlte law ol' gravitltion and usecl it to exploin
the motion of the Moon. thc planets. and llre tides: hc lir|nrulated basic theories of light.
tlrermodlnamics. ancl hydlodynanrics: and he deviscd and constructed the first nodern
leflectin-q telescope.

Throughout his lil'e Ncuron $'as hesitant to publish his nrajor discovelies. revcaling
thern only to a sclcct circlc of fliends. perhaps becausc of a t'ear of criticisnt or conlroversy.
ln 1687. onll' rfier intense coaxing by the astronon]cr'. Edntond Halley (Hallcy's comet),
did Newton publish his nrastclpiece. PllibsophiK N(tutttlis Principiu Mttthenqtiu (The
l\4arhematical Principles ol'Natural Philosophy). This wolk is geDera]ly considered to be

1l're n]ost important llnd iniluential scientillc book evcr wlitten. ln i1 Newton explainecl the
rvorkings of the solar systcnl lnd lirlrnulated the brsic luws of molion which to this clay are

Inndrmcntal ir engineering iLncl physics. However. not even the plcas of his friends could
conrince Newton to publish his discovery ol'calculus. Only alier Leibniz published his
lesults did Newton rclcnt antl publish his ou n rvork on calculus.

After 25 years as a prt-rlissor'. Ncuton suffered cleprcssion and a ncrvous breakclown. He
glve up research iu l(r95 to acccpt a position as rlarden and latcr tnastel oftlte London tnint.
During the 25 ycars thilt lle worked at the mint. he did virtually no scientihc or mathenratical
work. He rvas knighted in 1705 and on his death wirs butied in Wcstminster Abbey with
all the honors his collnlry could bestow. It is irteresting to note that Ncwton was a lcalned
lheologian who viewecl the plirnary value of his rvo|k kr be ils support of the existcncc of
Cocl. Throughout his lilc hc wo|ked passionately to date biblical cvents by relating them
to ilstronomical phcnomcnl. Ile rvas so consunred with this passion that hc spent yeiLrs

scrrching the Book of Daniel lbr clucs to the erd ol'thc world and the geography of hell.
Neuton described his blilliant accomplishments as firllows: .'[ seenr to haye bccn only

like a boy plaling on thc scllshole and dir.erting nrysell'in now and then finding a smoother
pebble or pretticr slrcll th n oldinary'. $hilst the grcat occan of truth lay all undiscovered
befbre nre.''

GOT',TFRtHE Wtt-["tELtVt $_H|EMZ { I646-1 7 r 6}

This gitted genius was onc of the last pcoplc to have mtstcred most major liclds ol
knorvledge an impossiblc accornplishnent in our ou'n cr of spec ialization- He rvas an cx-
pert in la\\'. religion. philosophy. literature. politics. geology. nrctaphysics. alchemy. history.
and mathe natics.

Lcibniz was born in Leipzig. Gcrmany. Hi; father. a pl olcssor oi mor al philosophy itt the
University of Leipzig. dicd rvhcn Leibniz u as six ycals old. The plecocious boy then gained

dccess to his father's librlry rnd began reading volaciously on a wide range of subjects. a

habil thal he nraintained throughou t lris life. At age I 5 hc cnteled the University ol' Lcipzig
as a law student and lry thc agc of 20 received a doctulate ftom the Univcrsity of Altdoll.
Subsecluently. Leibniz lirllowcd a ca|eer in law and international politics. serving as counsel
to kings and princes.

During his numerous Iolcign missions, Leibniz cume in contact u,ith outstanding math-
cnraticians lnd scientists \r,ho stimulated his intelest in ntathclniltics most notably. the
physicist Christian Hu1'gcns. ln nrilthematics Leibniz wus self-taught. learning the subjcct
by reading papers llnd -ioulnlls. As a rcsult of this fiagnented mathematical cduca(ion.
Leibniz ofter rediscovcrcd thc re\Lrlts of others. and this helped to fuel the debate over the
discovery of calculus.

Leibniz nevcr marricd. He wils moderate in his habils, quick-tenpered. but easily ap-
pcased, and charitable in his.jndgnent ol'other people's wor k. In spite of his great achieve-
ments, Leibniz never received the honors showered on Newton, and he spent his final years



L2 Ca culus: A New Horizon from Ancient Roots

ExERcrsE SEr FoR lNTRoDUcroN E cAS

as a lonely embittered mln- At his funeral there \{as one moutrrer. his sccrctary. An eye-
witness stated. 'He was buried more like a robber than whrt he reallv wls an onament
0f his coLlntry. '

1. The repeating decimal 0.137137137 . . . cln be expressed as

a ratio ol integers b-v $r'iting

-r : 0. 137137137. . .

1000-r : 137.137I37I37...

ancl subtracting to obtain 999t : 137 or.r - ,-[. Use this

idea. where needcd. lo exprels lhe tbllorving dccitniiis as

ralios oi intcgcrs.
(a) 0. 123 123 l2l . . . lb) 12.1111 . . .

(c) -18.07818181 . . . (d) 0..1296000... (:0..1296t

{ll. cir r'.r1. .:'.1 rnl,, rv,,,.r'e',r'c \. t epea!ittB der inMh,t i
nonrepeattttg decinals. ltt l |epeatin-u clccimal there is solne

poinl ailer which a lirecl block of integers repeat\ o\rer tnd
over. For example. all of the decirnals in Exercise I are r-e-

peating. [n r nonlepeating clecimal there ts io Jietl ltlock
of digits thal repeals over alld ovcr. For exnrllple. rlthough
the decimal 0. I 0100I 000100001 ... has delinite PiLtlern.
it i\ nonrepeating.'l-hose reel numbers whosc decimals arc

repeating iuc callcd ldtiutal flu befi alld those *'hosc dec

imals arc nonrepealirl-s rre crlled irt?liox ttl ttunhers. h can

be proved thirt the rationll numbers arc pretisel) those real

numbers thrl can be explessed rs thc l.rljo of two integers (as

rt' trer'.irc l) s. rrre :rrl.lr..r ir't;rttun.rl ntr rhcr. :'re -. ',/ l.

"6, 
.r5 . Such nunbe.s cannot be expressed as the ratio

uf trn u trleccrr.

E 2. (a) Use the preceding discLrssion to explrin in onc scnlence

why r cnnnol be equal to ?.
(b) Thc accorlpanyin-e figutc show! n to 50(l decimal

places. Use il to detelmilic rvhether ; is greatc| than

or less than tr.
(c) Use l CAS to duplicate the resLrlts in the accompanying

{lJ'r rre

3. Thc following arc all famous approximiltions of n:

22 223 331 355

1 11 106 |l'
bl /r7+ ls,5 \
:,\i+trJs/

I l.1 I 59265 158979311E,16261318317950188'll9l I 69199115 I 05

8 2097.19.1 159 23018 I 61062 86 208r198 6180:-18l5l.ll I I l06l9li2
1.180865I 3282-r066:17091344( 955058123I 715i59l0E I 21118I

I 17,15028.110270191852 I l05559arl'16119,1895.1930-llil 961'113

8109756659111,16 I 181756:i8131786783 16527 i l0l 901) l'la6.18

56692:1,1603486 10.151-ll6a).181 I l r93d)7260249 I I I 27372,1537

0066063 I 55E8 I 1.t88 152091096181915.t09 I 7 I 5-r64l6llJ9li90
i6001 I l l05l0s.l8ii20-16(152118.1 1.1695 I 9115 I 1609.111051270

365759591953092 I rJ6r r 7lr l9r26r r 793 105 I I 1i5.18071.161379

9617.1954)7:15 I 88-575llllll9 I 227t18 I 8301 L9l9 I l
Figlre E\-2

(iL) l-lse a calculating device to ordcr thcsc approximations
accorcling to sizc.

(b) Which ol thcsc apploximations is closcst k) but largcr
thrll ir'l

(c.) Which ofthcsc approxinntions is closest to bLrt srnaller
than r:l

(d) Whiclr ol' these approxirnirtions is nrosl accLlriLte l
(e) The lasl rpproximalion is due 1() a finlx)us sell-huSht ln

dian mathcrnatician. named Rarnrnujrn (1887-1920).
Do somc reading about his fnscinatiug but trrgic Li1e.

il. The Rhi0d PapyrLrs. which is a ir.a-emcnt of Egyptian math-
eulatical \!riting tio[r about ]650 B C.. is one ol the olclest

known examplcs ol wdttcn rnathematics. lt is stated in the
papyrus that the area .,1 of a circlc is relatcd to its diarncicr
Dby

1: (i D)

(a) What lpproximation of r were the Egyptians using l
(b) Use a calculating device to determine il this approxi-

lnation is better or worse than the rpproximation i.
5. In this section wc statcd that 7r can bc cxprcsscd as thc inli-

nite scries

r:,r(r l+l j]+,, )

However. this series is of little practical value because it
.rrrl,e/ge.! too slowly; that is, too many terms are recluiled
10 obtrlin a good approximation. A more practical lpproiich
is based on the lbllowing formula. discovercd in 1706 by
thc English astroromer John Machin (1680 1752);

/1 I \, lol I\\ {.\
,lttrl-_---...1
\)t9 12i,, 5 'l'/ J

Xl:,.hitr ' -., r trl:r $:.\ u).J in ,.l'r., thr I \lAC ..'rrr
putcr:r1 the Ballistic Research Laboratolies to plocluce the

lir sl colnpute| calculatiou ol i (2037 decimaJ places). Shorv

that thc tcrms shown in Machin's fbrnrula give a lnore rccLr

rate approximation ol n than fie stlm ofthe first l0 terrrs of



the fi rst series. lsr.g.ge-rlion- Compare your calculated values
to the approximation of z in Figure Ex-2.1

In each part, use a calculating device to find the decimal
expansion of the ftaction, and then use that expansion to
express the fraction as an infinite series. (Show at least the
first six terms of the series-)

("); 0); k)f
Repeat the direction. ol Erercire 6 lor

lntroduction l3

In each part use the algorithm stated above to approximate
the square root to four decimal places.

(a) J3 (b) v5
Repeat the directions of Exercise 8 for9.

t0.

@1 Jl

7.

In Fonnula (1) we gave an algodthm, ca\led the mechanic's
iale. lor rpprorimatinp .nD to anv degree ol rccurrcy. Thcl
algorithm i. a .pecial crrse ol the lollou ing more general al-
gorithn for approximating the square root of iuy positive
number p lo any degree of accurac):

I, D\yo-1. t" r-:{t;*-l/ \ t,, J

L se thi\ re\ull in fxercise\ 8 rnd g.

(b) .'6b.

Ifd and , are distinct real numben, say a < ,, then it can
be proved that there must be real numbers between a and b.
One such number is the aithmetic averag e lflt + U1.

(a) Explain why there mLLst be inflnitely many real numbers
between any two distinct real numbers.

(b) Do you think it is true that

0.9999999... < 1.0000000...?

Explain your reasoning.

(c) Find the decimal representation ofthe aithmetic aver-
age of 0.9999999... and 1.0000000.... Is this result
consistent with your answel in part (b)? Explain.

(d) Use the method of Exercise 1 to express the decimal
0.9999999... as a ratio of two integers. Is this result
consistent with your answer in part (b)? Explain.

ru) * o) * c);.



Rare l)ese cttes

FuxcrroNS

ne of thc lnrpoltirnt tllcntes in calcirlus is thc anal

vsis ol lclationships bcluccn ph1'sicr1 ol nntltcntatical
clLrantities. Srrch lelltionsltilts can bc rlesclibccl i1t tcrnts o1'

Illtphs. lirlmLrlas. nunrcljcltl clall. ol r,uord\. In thi\ chiipler
rve uill clcr,clop thc conccpt of a lirttttiort. uhich is the

basic iclca that unclellies alrnost lll riilLthcntatical anrl phls-
lcltl r-e-llttionships. regaltlless ofthc tbrnr irt ri hich thev ale

c'tplcsscd. \\rc rvill stLrclv properties of sontc' ol lhc ntost

basic l'unclion: that (Jccur in cllculr-rs. lrnd irc u'ill cxant

inc sonrc lltrrililu iclcus involr,ing lines. polYnotlials. and

tli-qononr,,-tr.ic tirnctions lrrt,- vicri'poirrts that nrlr,bc lcu.
\\'c u'ill also Lliscuss irlcas rclitling to thc Lrsc ol graphin-u

lrtilitics such ls -tlaphing cirlculxlors und gr.aphing soli
\\ iu-!- ti)r contputL-t s. Belir|e voLl stlrt rc-:iclin-t. vorr lltay
\\'irlt to sciill tlrrough thc appendices. sincc thc_v contain
ialious kinds ofpr-ccllculus rlltelial that rnlv bc hclplul
if vou nccd 1o rer icr.r' sonre ol'those ldcas.



16 Functioirs

SCATTER PLOTS AND TABULAR
DATA

Table 1.1.1

INDIANAPOLTS 5O[)

QI]ALIFYIN(J SPEEDS

\EAR / SPEED J
{mi/h)

I975 191.976

tg'/6 188.957

1917 198.884
1978 202.156
1919 193.736

1980 192.256

l98l 200.5,16

1982 201.004
r 983 20'/.39s
r984 210.029

1985 212.s83

l9rJ6 216.E28
rg87 215 390

1988 219.198
ls89 22:r.il85

1990 225.301

199 r 224.|3
1992 232.182
i99i 223.961
1994 228 011

1.1 F!-!n CT{Ol'dS Ar'lP Tl-lE ATALYS|$ CIF GRAPI-f|CAL
!quFGftr"4,qTt*r{

In this sectiott u'e nill deftne a d detelop the conL'ept ofa ftutctiort. Functiont ut.
used by mathematicidrls and scientists to describe the reltttionships betu,ee vtrieble
qudtltities and hence plat q central role in culculus und its ct14tlicatiotts.

Many scientific Jaws are discovered by collecting, organizing, and analyzing experimental
data. Since graphs play a major role in studying data, we will begin by discussing the kinds
of inlbrratjon that a graph can aonvey.

To stafi, we will focus on paired data. For example. Table 1.1.1 shows the top qualifying
speed by year in the Indianapolis 500 auto race from 1975 to 1994. This table pairs up each

year I between 1975 and 1994 with the top qualifying speed S fbr that year This paired
data can be represented graphically in a number of ways:

. One possibility is to plot the paircd data poilts in a rectangular l.t-coordinate system
(r horizontal and S vefiical), in which case we obtain a s(atter plol ()f S versus I
(Figure l.l.la).

. A second possibility is to enhance tl're scatter plot visually by joining successive pornrs

with straightJine segnents, in which case we obtain a line grqph (Figure 1.1.l&).

. A third possibility is to represent the paired data by a rar grapft (Figure 1.1.1.).

All three graphical representatiols reveal an upward trend in the data. as one would expect
with improvemcnts in automotive tecllnology.

2:15

It5

€ 205

l, 195

t85

t975 t980 19ua 1990 t995

Year r
(.d)

215

IU5

r970 1975 1980 1985 1990 1995

Year /

(b)

? 225

! 2r5

E 205

EXTRACTING INFORMATION FROM
GRAPHS

1975 t980 l9E5 t99rl 1995

(.)

Figure 1.1. 1

One of the first books to use graphs for representing numerical dala was Tre Comntercial
and Politicttl Arlas, publishecl in 171i6 by the Scottislr political economist William Play-
fair (1759 1823). Figure J . I .2a shows an engrav ing from that wol k that compares exports
and impo s by Engiand to Denmark and Norway (combined). In spite of its antiquity. the



1.1 Functions afd the Analysis of Graphica lnformaton l7

crrgraving is moderu ir spirit and provides a rvealth of intbmatioit. You should be able to
extract the following infornrtion lrom Playfair's graphs:

In the year. 1700 impolts rvcrc valued at about 70.000 pounds and exports at about
35,000 pounds.

During lhe pcriod flom 1700 to about 1754 imports exceeded exports (a trade deficil
lbr England).

In the year' 1754 the imports and expofis werc equal (a tr-ade balance in todal s ecnnornic
terrninology).

From 175,1 to 1780 exports exceeded imporls (a rrade stuplus for Englancl). Thc greatest

su|plus occurred in 17E0. at wllich timc cxports exceeded imports b1' about 95,t)00
pourds.

During the Pcriod lio]n 1700 k) 1725 impor-ts wele rising. The)' peaked in 1725, and
lhen slowly lell until about 1760. at which tirnc they bottomed out and bcgan to rise
again slowly until 17E0.

Duling the peliod trom l760 to 1780 e,rports and impolts were both rising, bul cxports
r.vere rising nore rapidly than imports. r'esulting in an ever wiclcning rrade surylus lor
Englard.

CIGARETTE CONSUN4PTION PER IJ S ADIlI'I

3 t.nrl

S r..oo

warn ngs

Playfau's Gnph af 1786j The hor zontal sca e s n years from 1700
to 1780 and the vert ca scaleis n L.rn ts of 1,000 pounds sierl ng
from 0 to 200.

la)

Figure l.l.l

Srurcer U S. Department of Hea th and HLrrnaf Serv ces.

(h)

l-olt lllF. ltF \l)l:lt. Use the graph in FigtLre 1.1.20 to plovide reasonablc answers to the
follorving questions:

Fi-eure 1. L2, is a morc contempolaly graph: it describes the per capila ctlItsumption of
cigarcttcs in thc Unitcd States between 1925 and 1995.

When dicl the lnaxir']-Iulll annlLal cigarette consumption per adult occur and how many
u'ete consumed'l

What factels are likely to cruse sh:u-p decreases in cigatettc consumption'l

What factors are likely 1<l cause sharp incLcases in cig.rrette consunrption?

What were the long antl short term effects of the lllst surgeon general's report on the
health risks of snoking'l

b .nit ft.h l)ELMAIrr< & JomtlY fdtr r 10 va{

r7.o t7F 172o 17jo )74.
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GRAPHS OF EQUATIONS
Graphs can be usecl to describe mathematical equations as well as physical data. For example,
consider the equatiolr

.', : ,t.,/9 -r2 (l )

For each value of r in the interval -3 : ,r : 3, this ecluation produccs a coresponding
real value of r, which is obtained by substituting the value of ,r into thc right side of the
equation. Some typical values are shou,n in Table I . L2.

Table 1.1.2

"l

,. o .i i _ri-.t.1 2.8t8.]] 0

t2
2\r2 = 2.828.13 2\i5 = .1.47214

-2
I

0
I

3

0

The sct of nl1 points in tllc r-t'plane whose coordinates satisfy an equation in -r and

_r' 
js called the grqph of that equation in the -1' planc. Figure I .1 .3 shows the graph <t1'

Equation (l) in the { plane. Notice that the graph extends only over the intclval [ 3. 3].
This is becausc valucs o1'-r outside ofthis interval produce complex values of _r', and in these
cases the ordcred pairs (x, _r') do not con-espond to poilts in the,r).plane. For exanrple. if
r - 8, then the corrcsponding value of I is r :8'/5 - R'/A5,,.Lnd the ordered pair
/E. XV\5 /) t\ n',t .r p,Inl tn Ihe \ r pli: le.

Example 1

Figure 1.1..1 shows the graph of iin unspecified equation that was used to obtain the values
that appear in the shaded pa.ts of the accompanying tables. Exanrinc thc graph and conf,r m
thatthevalueSiothetabIeSarereasonab1eapproximations'<

-3 l0
2t 1

- 1 -0.t

0 0.7
1 

";'
2 0.4

Tables. graphs, and equations provide tlree methods 1'or describin-{ how one cluantity de-
pends on another-numerical, visual. and algebraic. The llndamental impotancc ol this
idea wrs recognized by Leibniz in 1673 when he coined thc rcr'r''t Jitnction to clescribe the
dependence of one quantity or another. The lbllowing examples illustrate how this tern is
used:

. The area A of a circle depencls on its radius l. by the equation A : n,.1. so we say that
A is o liotction ol r .

lrisure Ll.3

FUNCTIONS
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The velocity r-, o1'a ball tirlling liee1y in thc Elrrth s gravitational iield increases u,ith
tinre I LLntil it hits the ground, so we say that I is oJunctiott ol t.

In a blctclia culture. the nurnl]en of bacteria present altcr I hour of growth depends
on the number n0 of bacteria present initially. so we say that n is a fitnttion oJ nn.

This idea is captured in the following delinition.

l.l.l ,l rl\lll',\ lll r:rrirhlr' \ Jepend.on a rlri,rhc r itr \uclt a uir) lhi,l eirch
value ol'-r dctcrmincs cxilctly one value olr,, llten we say thatl iJ c function ofx.

Figurc 1.1.5

^ 225

€ 200

! 175

3 riO

; r25
* r00
'q, 75gio

In the nid-eightecnth ccntury the Swiss mathernatician Leonhard Euler* (pronouncetl
"oiler") conceived the icien ol denoting functions by lefters of lhe alphabet. thereby making
it possible to dcscribc lunclions without stating specilic lormulas. graphs, or tablcs. To
understand Euler's iclea, think of a function as a computer program that takcs an lrptl _t,

operates on it in some wav, and produces exactly one o!4),/ r The computer progrrm is an

object in irs own right, so wc can give it a name. say /. Thus. the t'unction f (the computer
program) associates r unique output l with each inpul r (Figure 1.1.5). This suggests the
follou'ing definition.

l.l.l I't t\' ' '\. A Juncli(rn .t i,:r |u c rhrrr t\.nciates I rrniquc orrtput with ercir
input. Ifthe input is denoted by .r. thcn the output is denoted by /(t) (read "f ofr").

IiliNl,\ItK. ln this delioition the tenn rrrl4!e means "exactly onc.'Thus, a functjon cannot
assign lwo dillerent outputs to the same irput. For example. Figure 1 .1.6 shows a scttter
plot of weight versus age for a random samplc of 100 coljege studetts. This scatter plot
does not describe the weight W as a t'unclior'r o1'lhe age A because there are some values of
A with more than one coresponding value of lV. This is to be expected, since two people
with the sane age need not have thr: samc weight. ln cottrast. Table I . L I desclibes S as

a t'unctioli ol I bccausc thcrc is only one top qualifying spccd in a given year; similarly.
Equation ( l) describes ,r as a functiorcf -r because cach input.r in the interval 3:-r:3
ploduces exactly one output r'- -r\/9 rl.

+ r'|rfr rrrrr(1707 ll83).Euler$asprobabll the nrolr prolillc lnolhclnatician who ever lived. lrha!bccn
\.rid that Eulcr $dc nrathcrlatics .rs ciforllc\sly .ts rro\t men brerthe. He !va\ born in Ba\cl, Switzerland. and

was thc son of a n.otest.rnt lnirister r|ho had hinrself sludied mathematics. EuLcr's genius developed early. He

tniended thc University oI Ba\cl. $hcrc by .rge l6 be obtained both :L Bachelor ol A.t! dcgrce and a Master's
dcgrec in philo\odrr Whilc at Ilascl, huler had rhe good fbrtune to be trtorcd onc day a $eek in marhematics b)
r drslingujshed nlalllc iltician. Joha.ll Uernoulli. Al lhc urging ol bis futher, Euler rhen began to study thcolog].
'lhe lrre of rnrlheln.llics !rra! too greal, ho$e\er. and by Sc l 8 Eulcr had begun to do mathematical rescarch.

Ne\eltheless. the;nfluence ofhisirther.rnd his theological st dics rcmai.ed. and throughout his lifeErlcrwas
tu decply rcligious. un|lllctcd pcrson. At \arious liDres Euler tausht rt St. Petersburg Acadcmy of Sciences (in
liussial. the Uni\crsily ol Basel. and dre BerliD Acad.my r)l Scicnles. Euler's energy and cap.rcit] fttr lvork s,ere
!irtuallr boundless. His coliected rorks linm Dlore than I00 quado \i7ed volumes and it is belieled that much

of his $ork hlls bccn Iost What j! prrticularlt astonisbin! is tbnt Euler was blind tbr dre last lT ycrrs ol his life.
and this was onc ol his r ost prodL,cli\e pc,iodsL Eule.s flrwlc\s Dremory was phenomenrl. Early in his ljtc he

menmdred the entire la,r?&1b) Virgil .Lnd .Lt r-!e l0 colrld rrot olllv .ccile tbe eDtire work. but could also state the

lirst and 1lsL sentence on crch ptrge ol the book n.oln r\hich he me o.izcd ihc work. His abiliiy 1{) solve problems
inhisbeatt$asbeyondbelief. He workedoutin his h€ad mrjorproblcmsoi lunarmotim that baffled Isaac Ncwton
and oDcc did r complicrlcd crlcuhLion in his head b seltle an argume.t bctwccr iwo sludeDts whose computations
diltered in the trtrielh decilnal placc.

Follo\!ing the development ofcalculLrs b! Leibniz ard Nc$lon. rclult! in rnathemaiics deleloped rapidh in a

di\organized way. Eulcr's gcnius galc cohcrcncc ro the maLhenaricallandscape. He was the first nathelnatician to
bring rhe full pouer of calculrs to bear on problenis from physics. I.le Drade naior contributions ro virtually every

branch of mathemarics as well as to the theory of optics. planetary rnolion. electrici!y. magneiism. and general

l0 l5 20 25 l0
Age ,1 (years)

1.1.6
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FOUR WAYS TO DESCRIBE
FUNCTIONS

Functions can bc replescnted in fbur basic wuys:

. Numericrlly by tables

. Geometrically by glaphs

. Algebraically by lirrnulas

. Verbally

The nethod of representiitiorl otien depends on how the function ariscs. Fo| exanrple:

Table 1.1.1 is a nrulerical representlllion of S lrs a function of l. This is the natural wily
in which data of this type are recorded.

Figure L 1.7 shows a scismic graph of an carthquake's intensity H as a function ol the

elapsed time /. In this case the function origin.rtes as a glaph.

Somc of the nost familiar examples of functions arise as lbmrulasi fbr exanple. the
fbrmula C - 2zr expresses the cilcumt'elence C of a c irc le as a tunction of its radius /-.

Sometimcs lunclions are descibed in worals. For cxrmplc, Isaac Newton's Uliverseil
Law of Gtavitation is often stated as follows: The gravitational tbrce of iitlraclion
between two bodies in the Universe is dilectly proportional to lhe product o1'fteir
rrasses and inversely proportional to the sqLLare ol'lhe distance bctwccn thcm. This ls

the verbal descriptiol of the fomrula
]11 r 111.F:G . (2)

in which F is the lbrce ofattractioll, r? | and r?] are the masses, /. is the distancc bet\\'een
thcm. and C is a conslanl.

Tmeof
earthqLrake
shock

llu

Arr val of

minutes

Table 1.1.3

U.S. PoPULATToN

ril*; l;;;u"^i-"F,
lm llons l

t19A 3.9

. 1800 5.1

lE10 1.2

lE20 9.6
1830 t2
1ir40 t7
1850 23

Saurce: fhe Warld Alnanac

Sometimes it is desilable to convefi one r-epr-eser'rtatiorl of a function into anotl]er-. For-

example, in Figurc 1 L1 we conveLted the nuneical relationsl'rip between S ancl / into a

graphical relationship, and in writing Formula (2) we convertecl the verbal rcprcscntation
of the Universal Lau, o1'GravitaLion into an algebraic rclationship.

The problem ofconverting numerical repl esentations offunctions into algeblaic lormulas
otien requiles special techniques known as curre jftlling. For example, Table LL3 gives

the U.S. population lt 1o-year intervals from 1790 to I 85 0. This tablc is a numcrical rcprc-
scntation of the functioo P : /(/ ) that relates the U. S. population P to the year t. If u'e plot
P versus t, we obtain the sciitter plot in Figure I . L 8a. ancl if we use culve-iitting methods
that \\'ill be discusscd latcr, wc can oblain thc approximation

P .' 3.94(1.03)' rTel

Figure I . I .llb shows the graph of this equation imposed on the scafter plot.

lirne in m nutes



1.1 Functions and the Analysis of craphical lnformation 2l

Figurc 1.l.li

Engirrccls and physicists distinguish 5etween continuous dats 
^t1d 

discrete data. Ce:otin
r.rorrs clata have values tlllt \L\t-y toulittuousl'- over an intervll, tvhcreas discretc dlltlr l[lve
values that make rlis.it,tr,.jumps. For examplc, tbr the seisnic data in Figulc L l.7 bolh
lhe tinre ilnd intensity viuy continuously. whereas in ?rble 1.1.3 and Figurc l.l.l3a both
lhc ycar lrnd population nrake cliscrete jurnps. As a rule. continuous data leatl to graphs

lh t are continuous. unbtoken curves, whcreas discrete data lead to scalteI plots con,,isling
ol isolated p()ints. SoDetinles, as in Figure L1.8b. it is desirable to appr()xiolrle it sc.tlrcr
plol by ir c(nrtinuous curve. Tlris is useful for lnaking conjectures iibout thc villues ol thc
!lU:rrllrlrc5 b! luccrr llle rL'!(\r(lc\l ,Ltrr pn nL..

Soruetines a Iunclion is truried in thc statement of a problem. ancl it is up 10 thc problenl
solvcr to uncover it ancl usc it in an appropriate way k) solve the problcm. Here is itn cxarnple
thitt illustrates thc powcl ol gmphical reprcscntatiorls of functions as a problem-solving tool.

Example 2

Figurc l.l.9a shows iut otlsl'torc oil well located at ir point W thal is -5 krn flom lhc closcst
poinl ,4 on a straight shorcline. Oil is to be piped fiom ly to a shorc point I that is ll knr
liour ,1. lt cosrs Xi I .(XX).(XX)/ knr to lay pipe under w|llcr lnd $500,000/knr ovc| Iand. Tn

yor.rl lolc rs ptoject nraniLgcr yttu receive three ploposlls fbl piping thc oil fronr W 1() B.
P|oposal I claims thal il is cheapest to pipe directly iiom W to B. since the shortest (listitnce

between t$'o points is u straight line. Proposal 2 claims lhat it is cheapest to pipc directly
lo point A antl therr along the shoreline to B. thereby using the lelst amounl ol-cxpcnsive
underwatcr pipe. Ploposal 3 claims that il is clreirpest to complorrise by piping undcI wilter
lo sorle wcll-choserr poinl between A and B, and then piping i ons the shorelinc 1() B.
Which ploposal is correcl l

Shoreline

;l0

520

€ ros

? -l{r

et5
Et0
q 

t5

€ ttts

DISCRETE VERSUS CONTINUOUS
DATA

GRAPHS AS PROBLEM-SOLVING
TOOLS

!,'I
rtrFr

ikm

,1

? l0
ie
68l;
6)

=aEr

l-- s r<m --.-,1
D stance rfrorn po nt t (knr)

(r )

l5(r7

Fig re L l.9

ltt )
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ExERctsE SET 1.1 E Graphing Ca culator

.: I (r,,t, + ,5 ) * 0.5(8 .r): u4, +x +o.s(s ')

Sohttion, Let P be any point between A and B (Figure 1 .1.90), and let

r : distance (in kilometers) between A and P

c : cost (in nillions of dollars) for the entire pipeline

Proposal I claims that -r : 8 results in the least cost. Proposal 2 claims that it is x - 0, and
Proposal 3 claims it is some value of -r between 0 and 8. Frorn Figure L 1.9b the length of
pipe along the shore is

8 .r (3)

and from the Theorem of Pythagoms, the length of pipe under waler is

J*2 +zs (1)

Thus, fron (3) and (4) the total cost c (in millions of dollars) 1br the pipeline is

(5)

where 0 < r < 8. The graph of Equation (5), sbown in Figure 1.1.9c, makes it clear that
Proposal 3 is conect the most cost effective stmtegy is to pipe to a point a little less than
3 km from point A.

Use the cigarette consumption graph in Figure L 1 .2, to an-

swer the following questions, making reasonable approxi-
mations where needed.

(a) When did the annual cigarette consumption reach 3000
per adult for the first time?

(b) When did the annual cigarette coDsumption per adult
Ieach its peak, and what was the peak value?

'c' Can )ou lell lrom lhe grdoh hnu mdn) ciecrelles $ere

consumed in a given year? Ifnot, what additional infor
mation would you need to make that determination?

(d) What tactors aJe likely to cause a shary increase in an-

nLlal cigarette consumption per adult?
(e) What factors are likely to cause a sharp decline in annual

cigarette consumption per adult?

The accompanying graph shows the median income in U.S.

households (adjusted for itrflation) between 1975 and 1995.

Use the graph to answer the following questions, making
reasonable approximations wheie needed.

(a) When did the median incorne reach its maximum value,

and what was the median income when that occufed?
(b) When did the lnedian income reach its minimum value,

and what was the median income whel that occurred?

(c) The median income was declining during the 4-year
period between 1989 and 1993. Was it declining rnore

rapidly during the first 2 years or the second 2 years of
that period? Explain your reasoning.

MEDIAN U.S. HOUSEHOLD INCO]IIE IN
THOUSANDS OF CONSTANT I995 DOLLARS

1975 1979 t9E3 t9N7 1991 1995 
$r{)

Solrcei Census Bureau, fularch 1996
Ii996 measLrres 1995 income].

Figure Ex 2

Use the accompanying gnph to answer the following ques-

tions, making reasonable approximations were needed.
(a) For what values ofr is I : 1l
(b) For what values of 'rr is y : 37
(c) For what values of y is r - 3?

(d) For what values ofx is 1 5 0?
(e) What are the maximun and minimum values of l and

for what values of ,r do they occur?

$31
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Use the table in the accompirnying ligure to ansrver dte ques-

tions posed in Exercise 3.

1.1 Functions and the Anaiys s of Graphical lnformation 23

over a 1-week pcriocl. would you expect the graph oi'
the number of boxes on the shelf versus tinlc to be i1

continuous (Lrnbroken) curve? ErpJain youl reasoning.

9. A construclion company want! to build a rectirngular en-
closure with aI] areir of 1000 square leet by fencing in three
sides ancl using its office building as the iour th side. Your ob-
jective as supelvising engineer is to dcslgn the enclosurc so

that it uses the least iimount ol l'enciDg. Proceed as lbllotvs.
(a) Let -r ancl I be the dimensiolls o1'thc enck)surc, and lct

L be the length ol fencing reclired tbr those dimen
sions. Since the area must be 1000 squarc feet, we nlust
have r_r' - 1000. Find a tbrntula fbr L in temts of -r and
r'. and then express L in terns ofr alone by Lrsinc thc
area equirlion.

(b) Are there any restrictions on the value of -t'l Explain.
(c) Make a grrlph ol L veLslts r over il l-cusonable inter.val,

and Lrse the graph to estinate lhe valLte ol-r that results
in the smallest value of 1,.

(d) Estirnirte thc smallest valuc of L.

10. A manulacturer- constructs open boxcs from sheets ofcard-
board that are 6 inchcs square by cutting small squar.es lr.onr
the corners and folding up the sides (as shown in the ac

companyin-s figure). Thc Reseatch ancl Devclopment De
parLrnent asks you to determine the size of tltc square that
ploduccs a box of gr-eatest volunle. Proceed as lbllows.
(a) Let .r be the length of a sicle ol rhe sLluare to be cut.

and let y be the volume of the rcsultins box. Shorv thrrt
V: r(6 2-r)r.

(b) Are thele any lestlictions on the valLlc oi t? Explain.
l.) M.r\e.r lt:6.1r ul V \ft.t.\ \ n\et rn -lft,,fllJtr t1te.

vtl. and use the gruph to estilnate the value ol r thirl
results in the latgest volume.

(d) Estimirte lhe largest volorne.

E

4.

'x 2 1 0

Figurc E\ I

23:1
ltl

56
09

E

5 Usc thc cqudtion r' -,rl 6-r + 8 to answer the fbllowing
clLlestions.
(a) For whal valLres ol r js r : 0l
(b) For whal values of r is i, : - l0t
(c) For what values 01'r is \, : 0?
(d) Does _r'have a mininum valrLe? A maximum valuel lf

so. find them.

Use the equation \, - I + ."/i to answer the tbllowrlg ques

tions.
(a) For what values of-t is i - 4?
(b) For what values of .r is t :0?
(c) For what vallres of-t is 1 ; 6?
(d) Does ) have a tllinirrlum valuclr A maximum valuel ll

so. lind them.

ll you had a device thal could record the Earth's pop
ulation continuously. would you expect the graph of
population versus time to be a continLrous (unb|oken)
curve? Explain what might cluse breaks in the curve-
Sr.rppose that a hospital patient receives an injection ol'
an anlibiotic every 8 l'rours and thal betlveen injections
the concentlalion C of the antibiotic in the bloodstream E ll.
decreases as the antibiotic is absolbed by thc tissues.

What nright the gr-aph ol C versus the elapsed time r
look like?

lf you had a device that could recor-d the temperaturc
of a room continuously over a 24-hour period. would
you expect the graph of temperature versus tilne to be a

, o rrinuou. l..nhroLrn) . ur r e" t r lrl.rir ) nlrr aeJ.ot.ing.
li you had a conputer that could track the number of
boxcs of ccrcal on thc shelf ol a market continuouslv

. 6n ,i . o:, -
FigLrc Ex l{)

A soup conrpany [/ants to manutactl]re a can in lhe shape
of a right circular cylinder that will hold 500 crnr of liquicl.
The material lbr the top and bottotr costs 0.02 cent/cntl,
and the natedal tbr the sides costs 0.01 cent/cml.
(a) Use the method ofExercises 9 and I0 to estimatc the r-a-

dius ,- alld heiSht I ofthe can that cosls the least to man-
uiacturc. lsrls.ge.rtior: Expre\s the cost C in lenns ol /--]

(b) Suppose that the tops nd bottoms ol radius r are

punched out tiom scluare sheets with sides ol lcngth
2r' and the scraps are waste. If you allow tirr thc cost ol

6.

7. ti)

(b)

8' (a)

iffi

(hl
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thc waste. \\,oul.i you expect the can of least cost to bc

taller or shoflcr than the onc in part (a) l Explain.
(c) Estimate the riidiu\, heighr, and cosl ol the can in part

, h.. .rrl.l Lletc r n ir c \\ l'clLc' \ nrrr L , 'n rc r.rd \\ !\ c, rr r(\'1.

B 12. The designer of a sporls lxcility wails fo pril a quafier mile
( 1320 li) runlling trlck around a tbotball lleld, oriented rs
in the accomp|tnying 1]gure. The t-ootball liclcl is 360 ft long
(including the end zones.) llnd 160 ti widc. Thc track consists

ol't\\o straightaways and two scmicirclcs.
() Show llral il is possible to construct a qua el-miletrack

around the lbolball field- lSrrgqr.r'trrrl: Fincl the shortest

track llrtl can be constructed arounclthc licld.]
lb) Let I be the length of a straighteway (in lcet). an.l let

.r be the diltancc (irl lecl) belween a sideline ol the

lbotball liclcl iLnd a straightaway. N4ake a glaph of L
vclsLl\ r.

(c) Use the graph to estimale thc value of -r that produces
the sho est sfi aightaways, and then iind this value of .r
exactl-!.

(d) Use the graph to estimate the length of the longesl pos
sible staightaways, and then find that length exactly.

lrigur. 1]\ ll

INDEPENDENT AND DEPENDENT
VARIABLES

1.2 lsR0pElqTiES nF F"L]f\iCT{0f,{$

In tltis settion uc vill c.tplore prcpcrties of t'iotttiotts in nlore detdil. We rill assune
1l1.tt ,-ou .ttc laniIidr with the standard notatiott Jbr intcn'ttls and the b.tsit pt,tp,ttiLs
ol lbsolutc \'(lt!.. Ref ie\rs of these topi(s ae prcided itt Appendices A and B. *

Recall from the liist section that a function f is a rule that associates a unique output .l(.{)
with each inpLrt.r. This ontput is sometimes called the rdlre of .l at -r or the image ol r
Lln.lel f . Sometimcs wc \\"ill wanl 10 dcnolc thc oLrlputby asingle letter, say,r,, and u'rite

This cquation expresscs -r' lrs a funclion of .r; the variablc x is callecl the independent
variable (.ot argwnenl) of / . and the valiable l is called the dependent variable of /. This
lcrnrinology is intended to suggest that.r is fr.ee to vary. but that once ,r has a sileci6c value a

cor-l espon.ling value ol r. is clctcnninccl. For now wc will only consider t'unctions in which the
independent and dependent variables are real nunrbers, in which case we say that I is areal-
valued.function of a rcal vuriqble. Later. we will considet other kinds of functions as well.

Table 1.2.1 can be vje\\,'ed as a nurnericrl representation of a function of /. For this
lilnction we have

./(0) - 3 / rs$ci,Ll.:r=r"irrrl =0

'table L2.1

012
!l :ll

l(.21 - t

.l(3) : 6

I r.n)ci:rcsr =,1 \rirh r = !.

/i\iciNtc;r: iwilh r: l

/r\e,cirtc\r=6wnhr:l

To illuslrale llow t'urctiors can be defined by ecluations, consider

t:3rr 4.tf2 (1)

This equtrtion has lhe fonn r'- /(r). where

./(r)-3.rr ,1.r*2 (2)

The outputs of l (the r'-values) are obtained b)' srLbstituting numerical values for r in this
finnula. For example.

.l(t))=3(0)r :lQ)+2:2 /.socialcs r = 2$ilh.! -0.

ll 1.7)= -l( 1.7) - 1(-1.7) -l):11.1'/ / r!{rciarcs r = rT.rTwitrrr= r7.

':,

..:

. 360' -

I\^",D ) - 3(.J1 f - 4,,/a+2 - 8 4Ja / rssociatcs r = li a,t5 rvirh r = .,2



DOMAIN AND RANGE
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RENIARK. Although.l. ,r. and,r'are the most common notatious fbrfunctions and variables.
any letters can be used. For example, to indicate that the area A of a circle is a function of
the radius r, it wouid be more natural ro wrire A : f(r) lwhere .f(t.) : rrzl. Similarly,
to indicate that thc circumference C of a circle is a function ol the radius r. we might
writc C : .g(r-) [wherc g0 ) = 2zr]. The area function and the circumfercnce function are
dill'erent, which is why we denoted them by different lettem. .l and g.

lf \' : l (r). then the set ofall possible inputs (-r-values) is called, tb,e domain of /, and the
set of outputs (),-values) that result when r varies over the domain is called the rarege of I .

For example. consider the equations

r' - -r2 and r' : r2. .y >- 2

In the lirst equation therc is no restriction on r. so we may assume that any real valuc
of .r is an allowable input. Thus. the equation delines a function .l(,r) : ,tr with domain

-.L < -r -< +z- In the second equation, the inequality r : 2 restricts the allowable inputs
to be greater than or equal to 2, so the equation defines a tunction g(,r) : .rl..r > 2 w th
domain2ar<aa:.

As ,r varies over the domain of the function l(-r) = rl. the values of r, : 12 vary ovel.
the inlerval 0 : l < +:.. so this is the range of f. By comparison, as x varies over thc
domain ofthe function g(.r) = .rl, r > 2, the values of r, = .r:. .r Z 2 vary over the interval
4 5 -r' < +co, so this is the range 01 g.

It is impofian( to underst^nd here that even though ./(.i) = -rr and .q(r) : x2, x > 2
involve the same fbrmula, we regatd them to be different functions because they have
difftrent domains. In sho , t.)li,/1r' .k.t Lt'ibe o Jimction you ttttrst ttot ortll spatift the rule
that rclqks the itlptlts 1d ouq)ufi. but l'ou ntust ulxt spet'if,the futnuin. thot is. the set of
ollowable inputs.

lf .l is a real-valued lunction ofa rcal variable. then the g/aptr ol .l in the.w-plane is defined
to be the graph of the equation r' : l (-r ). For example, the graph of the funcrion /(-r) : .r
is the graph of the equation r' = r, shown in Figure I .2. L That tigure also shows rhe graphs

-.1 3 2-l 0 l.t6N

GRAPHS OF FUNCTIONS
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Figure 1.2.1
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of some other basic functions that may already be tamilial to you. L,ater in this chapter we

will discuss techniques tirr graphing functions using graphing calculalors and computcrs.

Graphs can provide useful visual infbrmation about a function. For exarnple, becausc

the gr-aph of a t'unction ./ in the.rl' plane consjsts of all points whose coordinates satisfy

the equation ) : l(-r), the points on the graph of f are ofthe forn (r.l(t)):hence each

l coordinate is the value of .l at the .r coordinate (Figure 1.2.2a). Pictures of the domain

and range of f can be obtaincd by projecting the graph of f onto the cootdinate rxes
(Figulc 1.2.20). The values of -r for *'hich .f(,r) : 0 arc the.r coordinates ofthe points

where the graph of / intersects the ,1 axis (Figure L2.2c); these valucs of r alc called the

z.eros of.f . the roots of ./ (-t) : O, ot tllc x-intercepts of l: l(.r).

(,,) th)

I has z€ros at rr, (1. rr. rl

1c1

THE VERTICAL LINE TEST

Figure 1.2:

Not e!ery curye in the ,r-r'-plane is the graph of a tunction. For excmple. consider the curve

in Figurc 1.2.3, which js cut at two dislinct points. (.l, D) and (4. c), by a vertical line. This
curve cannot be llle graph of -r' 

: ./(-r) lbr any lunction /; otherwise, we would havc

1(.a) - b 
^nU ,rnr:'

which is impossible, since / cannot assign lwo different values to a. Thus. lltere is no

function f whose graph is the given curve. This illustratcs the following general result,

rvhich we will call the verticdl line test.

l-2.1 lLIIiVtrt{TIC,\l-l.lNF-TI:sl. A, trrtei tlrc \)-l,lotrc ts tlL Bt tL!.h oJ ljonleJLtncliotl

J if and on.l.l ilnr.'ictliull lirc intersects tlrc curte norc lll(u1o\cc.

Example I
The graph of the cquation

rr + r,2 : 25 (3)

is a circle ol radius 5. ccntered at the origin (sec Appendix D for a teview of ci|clcs). and

hencc there are veftical lines that cut the graph ntorc lltan once. This can also bc seen

algebraically by solving (3) Ibr I in terms of .t;

t::--- ,l -:tVlJ \

This equation does rlot dellne -I as a furction of -r because lite right side is "rnultiplc valued"

in the scnsc that values of ,r ilr the interval ( 5.5) produce two corrcsponding values of t'.
For exarnple, if -r : ,1. then t : j3, ancl hcnce (4. 3) and (,+. 3) are two points on the

circlc Lhat lie on the samo vcrtical line (Figure 1.2.44). However. we can regard the circJc

as thc union of two semicilcles:

'-rS-.r- rnci '--rIt-i
(Figure]'2'4,)'cachofwhichdefincS.}aSafunctionol-\.'<

I
,.'""--... tr..lt') ,,/



THE ABSOLUTE VALUE FUNCTION
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Figure 1.2.,1

Recall that the arsrlute value or magnitude ol a real number r is delined by

I r. -r >()
l," - l-". r-0

The effecl of taking the absolute value of a number is to stdp away the minus sign if the
number is negative and to leave the number unchanged if it is nonnegalive. Thus,

tst-5. a} :+, ol:o
A more detailed discussion of the propefties of absolute value is given in Appendix B.

However, for convenience we provide the following summary of its algebrric properries.

: 1.2.2 pRopERTtEs oti ABSOLUTE vAr,riF,. IJa tutd b are real ruunbers, then i

(.a) a:a
(b) ab) - lal b

(c) alb:a/b

:9lii'L:lL:)bt- r::":*'ck*""'1"! I

ltl:l\,lAIiK. Symbols such as +ir and r are deceptive, siDce if is tempting to conclude
that +I is positive and --r is negative. However, this need not be so, since -rr itself can be
positive or negative. For example, if ,r is negative, say,r - -3, then r = 3 is positive
and +,r : -3 is negative.

The graph of the function f(.x) : al can be obtained by graphing the two parts of tbe
equation

Ir, x:o
' lr. x.o

separately. For r 2 0, the graph of y' : ;v is a ray ol slope I with its endpoint at the origin,
and for r < 0, the graph of _r' = ,r is a ray of slope -l with its endpoint at the o gin.
Conbining the two pafis produces the V-shaped graph in Figure 1.2.5.

Absolute values have importirnt relationships to square roots. To see why this is so, recall
from algebra that every positive real number.r has two square roots, one positive ald one
negative. By definition, the symbol ^"4 denotes the po-ritlue squ.ue roor of ,v. To denote the
negative square root yoLr must wlite - y4. For erample. the positile square root of 9 is
.u6: 3, and the negative square root is ttr - l. (Do not make the mistake of writing

^/,9 
: +3.)

A nn'nbe.aml irs negarive have thc same absolure vrlue.

Thc rbsolute vllue oia pr.dnct is the pioducL ol thc rbsolure vdues.

The absolule elue ol! rllio is thc rrrlo ofrlr. rhntjile vn L.\

5

4

3

2:

5,1 I210123,1 5

Fis$c 1.2.5
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FUNCTIONS DEFINED PIECEWSE

Care must be exercised in sinrplifying expressions ol thc fil.ttr lF. since il is liot always
true that /F : r. This cquation is correct ifr is nonnegative. but it is false for negative.r.
For example, if .r : -4, thcn

^/":[4,:J16=+St
A statement that is correct tor all rcal values of .r is

"F - lrl

I.oR THE RE^DER Verify this relationship by using a graphiug utility to show that the
equatiorls,r : r/rl ancl 1 : ]r Jravc the same graph.

The absolute value function ./ (.r. ) : lr I is an example of a tunct ion that is d afil],ed piecewisc

in the sense that thc formula fbr./ changes. depending on the vrlue of .\.

Example 2

Sketch the graph of the function defined piecewise by the formula

.i (r) :
0. .r S -l
.,,/ lrll. -l . .r . I

-r, .r-l

Solutiort. The formula for' .f changes at the points .v : - I ancl .r = l. (We call these

the breakpoittts for the fbrmula.) A good procedurc for graphing functions defined piece-
wise is to graph the function separately over thc open intervals determined by the breuk-
points, and then gr-aph .f al the breakpoints thcmsclvcs. For the function / in this ex-
ample the graph is the horizontal line segment.r' : 0 on the interyal (-2. l). it is

the semicircle t' = Jl -.r: on the interval ( l. l), and it is thc line segment ,r' : .\'

on the interval (1, *..). The tbrmula fol f specilies thrt the equation -r' : 0 applies at

the brcakpoint -l lso r = .l(-l) : 01, and it specifies that the equition,r : r up-
plies al the breakpoint J Iso r' = .l(l) : 11. The graph ol .l is shown in Figure 1.2.6.

RENI.\RK. In Figure 1.2.6 thc solid dot and open cilclc t thc breakpoint.t : I serve to
emphasize that the point on thc graph lies on the line segrncrrt nd not the semicircle. Thcrc
is no ambiguity at the breakpoint .r : I because the two pans of the graph join rogether

continuously there.

Example 3

Increasing the speed at which air moves over a person's skin increases the rate of moisture

evapomtion and makes the person 1'eel cooler. (This is why we tur oul selves in hot wcather,)

The windchill index is the temperature at a wind spcocl ol 4 nri/h that would produce thc
same sensation on exposecl skin as thc cunent temperatule and wind speed combination.
An empirical formula (i.c., a fbmula based on experimenl l data) for the windchill index
W at 32"F for a wind speed of u mi/h is

I 32. 0<u<4
Iw- I qt.++ 59.4(0.0203u - 0..t04,r/r' o.474t. 4<t.<45
I

[ 3.6, uZ45
Acomputer-geneIatedgraphoflV(t')isshowninFigurcl.2.7.<

Fisurt 1.2.6
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Wind speed u (m /h)

Figure 1.2,7

Sometimes, restrictions on the allowable values of an independent variable result from a
mathematical formula that defines the function. For example, it .f(x) :1/x, then.r : 0

must be excluded from the domain to avoid division by zero, and if li,r) = .,4, then
negalive values of r must be excluded from the domain, since we are only considering
real-valued functions of a real variable for now. We make the following definition.

1.2.3 DEFINITIoN. If a real-valued function of a real variable is defined by a formula,
and if no domain is stated explicitly, then it is to be understood that the domain consists
of all real numbers for which the formula yields a real value. This is called the ,raturat
darzain of the function.

Example 4
Find the natural domain of

THE NATURAL DOMAIN

(a) /(x) :13
(c) /(x) : tan x

(b) /(x) : l/(r - l)(r - 3)

(d) f(i--J7=sx+o
Solulion (a). The function / has real values for all real r, so its natural domain is the
interval (-co, +oc).

Solution (b), The function / has real values for all real .,r, except r : I and x : 3, where

divisions by zero occur. Thus, the natural domain is

{x:xllandxl3} :(-cc, l) u (1,3) u (3, +oc)

Solution (c\. Since /(.r) : tanx : sinx/cosx, the function / has real values except

where cos x : 0, and this occurs when r is an odd integer multiple ofz/2- Thus, the natuml
domain consists of all real numbers except

n 31 5tr

222

Solution (d), The function / has real values, except when the expression inside the radical
is negative. Thus the natural domain consists of all real numbers x such that

x2-5x+6:(x-3)(r-2)>0
This inequality is satisfied if r 

= 
2 or x Z 3 (verify), so the natural domain of / is

(-oo, 21 u t3, +co)
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THE EFFECT OF ALGEBRAIC
OPERANONS ON THE DOMAIN

RLN.IARK. In some problems we will want to limit the domain of a function by imposing
.pecific restrictions. For errmple. by writing

l(t) : t2, x z 0

we can limit the domain of / to the positive ,r-aris (Figure 1.2.8).

,.'. .." -,'' lt:l t o

Figure 1.2.8

Algebraic expressions are frequently simplified by canceling common factors in the nu

merator and denominator However, carc nust be exercised when simplifying fbrmulas for
functions in this way, since this process can alter the domain.

Example 5

The natural domain of the function

,2 _4

consists ofall real r except r = 2. However, if we factor the numerator and then cancel the

common factor in the numerator and denominator. we obtain

l(r) : .r-2

(r - 2)(x + 2)
J6) - -"f,,)

f(x):x*2, t#2

which i.r delined at r : 2 [since "f(2) 
: 4 lor the altered function ./1. Thus, the algebraic

simplillcation has altered the domain ofthe function. Geomet cally, the graph of y = x +2
is a fine of slope 1 and \'-intercept 2, whereas the graph of ,l = (x2 - 4)/(x - 2) is the

same line, but with a hole in it at r : 2, since ) is undefined there (Figure 1.2.9). Thus, the

geometric effect of the algebraic cancellation is to eliminate the hole in the original graph.

In some situations such minor alterations in the domain are irrelevant to the problem under

consideration and can be ignored. However, if we wanted to preserve the domain in this

example, then we would express the simplified form of the function as

l23.r5

Figurc 1.2.9
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Example 5

Find the domain and range of

(a) ./(r) = 2+.!E I (b) /(.r) = (r + l)/(.r - l)

Sol ion (ar. Since no domain is stated explicitly, the domain of / is the natural do-
main u,*:c). To determine the range, it will be convenient to introduce a dependent
variable ) = 2 + \E 1. As ; valies over the interval [1, *ca), the v.ilue of .[ - I

varies over the interyal [0, *cc), so the value of 1 = Z 1 ./I - t varies over the inter-
val [2, *:c), which is the range of l. The domain and range are shown graphically in
Figure 1.2.10a.

Sol iort (b). The given function / is defined for all real -r, except r : l. so the nalural
domain of / is

lx: x I tl = (-cc, 1) u (1, +cc)

As in the preceding part of this example, it will be convenient to introduce a dcpendent
variable

Although the set of possible r'-values is not immediately evident from this equation, the
graph of (4), which is shown in Figure I .2.l0b, suggests that the runge of / consists of all

l, except ) : L To see that this is so, we solve (4) l'or .r in terms of t :

(x-l)Y:141
.rI ],:.r+l
r)-x:)+1

,r(.v-l):,r+l
.-.r'+l^ -.-l

It is now evident from the right side of this equation that r' : I is not in the mnge; otherwise
we would have a division by zero. No other values of ) are excluded by this equation, so

the range of the furction I is {y : 1 I l} : (--, l) U (1, +..), which agrees with the
result obtained graphically.

5

4

3

2

I

'=:+r/"t-t

a--
I 2 3 4 5 6 7 8 9 t0

ir+l
tJ (4)

Figure 1.2.10

(u')
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DOMAIN AND RANGE IN APPLIED
PROBLEMS

(a)

Figurc 1.2.11

0 111 20 l0 10 50 60

8:05 A.NL llm€ i (s) 8:06 A.NL

Figure 1.2. L2

1

I

In applications, physical considerations often impose restictions on the domain and range

of a lunction.

Example 7

An open box is to be rnade from a 16 in by 30 in piece of cardboard by cutting out squares

of equal size t'rom the four comers and bendin-q up the sides (Figure 1.2.1 la).

Let y be the volume of the box that rcsults when the squares have sides of length x.
Find a lbrmulr lol V a. a furtcliott ol r.

Find the domain of V.

Use the graph of y given in Figure 1.2.11( to estimale the range of y.

Describe in worcls what the graph tells you aboul the volume.

(a)

(b)

(c)

(d)

2, 'l
0123,1 5678

S de -r of sqLrare cut (in)

lb') (,)

Solution lu). As shown in Figure 1.2.110, the resulting box has dimensions 16 2,r by
30 2-r by.r. so the volume y(ir) is given by

V(.r) : (16 2x)(30 - 2-r)r : 480-t 92x2 + 4xi

S\lution (h). The domain is the set of -t-values and the range is tlre set ol y-values.

Because x is a length, it must be nonnegative. and because we cannot cut out squares whose

sides are more than 8 in long (why?), the.r-values in the dotnain must satisfy

o:-r<8
Solutiort (t ). From the graph of y versus n in Figure 1 .2. I I c we estimate that the y-values

in the range satisly

0 < v <125

Note thai this is an approximation. Later we will show how to lind the range exactly.

Soluliott kll. The graph tells us that the box of maximum volunre occurs for a value of ,t

ftat is betwecn 3 and 4 and that the maximum volume is apploximately ?25 in3. Moreover,

the volume decreases toward zero as x gets closer to 0 or 8. {
In applications involving tine, fomrulas fbr functions are often expressed in terms of a

vadable, $,hose starting value is taken to be t : 0.

Example 8

At 8:05 A.M. a car is clocked at 100 ft/s by a radar detector that is positioned at the edge

of a straight highway. Assuming lhat the car majntains a constant speed between 8:05 ,q.v.

and 8:06 A.M., hnd a function D(l) that expresses the Llistance traveled by the car during
,5u1 1rl-rq nlqrrrl a\ i.r luncliun Lr' Ihc Irme /.

Soluliott. It would be clumsy to use clock time fbl the variable r, so let us agree to measLlre

the elapsed time in seconds, starting with r : 0 at E:05 ,1.u. and ending with t - 60 at

E

o
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ISSUES OF SCALE AND UNITS
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1]:06 A.Nl. At each instant. the distance traveled (in ft) is equal to the speed of the car (in
ltls) multiplied by the elapsed time (in s). Thus.

D(t) = 100t. 0 5l :60
ThegraphofDveISuSliSshowninFigurel'2.12'<

ln geometric problems where you want to preserve the "lrue" shape of a graph, you must
use units of equal length on both axes. For example, if you graph a circle in a coordinate
system in which I unit in the _r'-direction is smaller than 1 unit in the r-djrection, then the
circle will be squashed vertically into an elliptical shape (Figure L2.I 3). You must also use
nnits of equal length when you want to apply the distance fbrmula

,1 : Vt, rr': + LD )if
to calculate the distance between two points (;r1 , 11) and (x2. _r2) in the -r1,plane.

However. sometimes it is inconvenient or ir.npossible to display a graph using units of
equal length. For example, consider the equatiot'l

If we want to show the portion of the graph over the interval 3 : ir : 3. then thers is
no problem using units of equal length, since _r, only varies from 0 to 9 over that interval.
Horvever, if we want to show the portion of the graph over the intelval - 10 S ir : l0, then
there is a problem keeping the units equal in length, sinca the value ol l,varies between 0
and 100. ln this case the only reasonable way to show ail of the graph that occurs over the
interval l0 : -r : l0 is to compress the unit of length aloDg the )-axis, as illustrated in
Figule l.2.14.

Figure 1.2.14

ItliNl.\liK. In applications where the variables on the two axes have unrelated units (say,

centimeters on the I' axis and seconds on the r-axis), then nothing is gained by requiring
the units to have equal lengths; choose the lengths to make the graph as clear as possible.

Lrn t on the r-axis has a smaler
ength than I unii on the r-ax s. '

Figure 1.2.13

ExERctsE SET 1.2 E Graphirg Ca cu ator

I The circle is squashed because I

1. Find /(0), f(2), f(.-2). "f(3), f(./2 ), and f(3r).
(a) /(.r) :3r.2 2

t1
(brfrjr):I;'r>3

1,., 1s3

2. Find g(3). g(-l), s('r). g( l.l),ands(t'?- l).
r+1

(:L) 5(.rt: ,

t"t+r 1:r
(b) g({):{ _

Ij. '\<l
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ln Exclcises 3 6. nnd the narural domain ol the function al-

-eebraica1ly, ald confirm that yoLu result is consistent wjth
the graph produccd by your graphing utility. [No/e. Set your
graphing utility to the ra.lian Inode when graphing tligono-

\s7*,
0L

L

J

Figurc Ex gFie'rre E\-8l
J. 'ar /"'- ,. t ,b'

(c) C(.r) - u/rt J,, 5 (d)

1
(e) /z (,t ) : L \rn r

4. (a) /(.r) - 5ri+7

i-rr - 'l1c; c{r) : 
1/ r. +

3

(d)

2 cos r

(.i) l(') : J3 -'(c) /r(r)-3*.u/-r
(e),9(r):3sin-r

(a) l(.t) : ./ar :
I

S(r): y''-rr - 3

h (,{) - n-r' 3rl

rl I,,",_ 
.. + l

(b) s(.r) : /a r:
(d) G(;L) :,1r 1l

(b) s(-r) : /e - 4-Y:

3
(d) G(.t) : -

I
10.

11.

A cup of hot coffee sits on a table. You pour in some cool
milk and let it sit for an hour. Sketch a rough graph oi the
temperature of the coffee as a funclion of time.

A boat is bobbing up and do*'n on some gentle waves. Sud-
denly it gets hit by a lalge wave and sinks. Sketch a ro gh

graph of the hejght of the boat above the ocean floor as a

function of time.

Make a rougli sketch of yoLrr weight as a l'unction of time
from birth to the present.

ln Exercises 13 and 14. express the f'unction jr piecewise

lorm without using absolute values. lsrsse.r/i.r?: 11 may help
to generilte the Sraph of the function.]

(b)

12.

5.

6.

7.

8.

9.

13.

14.

15.(c) h (r) :

(e) H(r) : sinr .",[

ln each part of the accompanying figure, determine whether
the graph dennes _r as a function of r-

(c) kt)

Figure Ex 7

Express the length I of a chord of a circle ivith radius l0 cm
as a function of the central anSle d (see the accompanying

ligure).

As shown in thc accompanying figure, a pendulum of con

slaDt length I makes an angle 6 with its vertical position.

Express the height I as a lunctioti of the angle d.

(a) .l(r) : ir * 3r * I (b) s(r) - I.rl + r. ll
(a) /(-r) - 3 + 2-t 5l (b) s(r) = 3J,r: 2l r + I

As shown in the acconpanying figule, aD open box is to be

constructed from a rectangular sheet of metal, 8 jnches by
l5 inches, by cutting out squareswith sides oilength.r tiom
each corner and bending up the sides.
(ir) Express tlle volume V as a function of r.
(b) Find the natural doilain and the raDge of the function,

ignoring any physical restrictions on the valLres of the
varirhles
Modity the domain and range approprjirtely to account
Lr tl're physical Iestlictions on the values of V and .t.
ln words. describe how the volume I/ of the box \,niies
with.!, and discuss how one might construct boxes of
maximum volume and minimun] volurne.

3 * u/-r

(d)

(c)

1

E in

I

I ._ ii in .-----.---*l

Figure Ex 15

As shown in the accompanying figure. a camera is mounted

at a point 3000 f't from the base of a rocket launching pad.
E 16.



In Exercises l7 and l8: (i) Explaill why the lunction .f has

o e orrnore holes ir'r i1s graph. and stale the {-values at which
lhose holes occur. (ii) Fiid a luDclion,q whose g.rph is ider
t:c.rl lu lh:rl n' /. h.rr + irlr''rrt thc lr, lc..

19. Fo| a given outside lentpcrature I ancl wind spcccl l. the
rvindchill index (WCI) is thc equivalent temperalurc that
exposed skin would t'eel with a wind speed ol,l rni/h. An
cmpirical lbrmlila lbr thc WCI (based on expericnce and
obse|vation) is

lr 
1, I 1

$,r I r ' / ":,. , 't. I

1,,, -. ,'.

rvhere I is lhe rir leDpcrature in F', u is the \.viicl specd
in mi/h. and WCI is tlte equivalent lempcratlrrr: in 'F. Fil.l
lhe WCI to thc ncarest desree if the air ternpcrature is 2-5 [i
,lnal

(a) r,:3rni/h
(c) u :46 ni/h.
lAdrpted liom IIMAP Module 658. l4ill,./(Jril/. W. Bosch
ancl L. Cobb. COMAP Arlington. MA.l

lrr E\( . r,rr '{r ". u.( lh. lol1_rr:r nr tlre \^:t](l(htll illJr\
dcscribed in Exercise 19.

Find thc air teurperatLue 10 the nearcsl deg|cc if the WCI is
reputcd as 60'F wilh a wind spced of .18 mi/h.

Fincl the air terrperaturc to the netrest degree il the WC'l is

r.cported iis l0'F $ ilh a wind lpced ol 8 mi/h.

Find the r.vlnd speed to thc ncarest mile per hour ilthe WCI
is rcportcd d! l5'F \\,ith an air-tcnpcftLture of 20 li.
At 9:23 A.l\,1. ri lunar liLnclcr that is 1000 ft above the Moon s

sr.rrface begiris r verlical descent. touching do$,n at 10:13

A.Nl. Assuming thitt the lrncieI rraintains a constant speed.

lind irfunction D(1)that e\prcssc! thc altitude ofthe lander'

abovc the N{oolr's sLirfrce rs a lirnclion of a.

1.3 Graphing Functlons on Calculators and Cornputers; Computer A gebra Systems 35

(.\ + 2)(\r l) .! + v{iThe shuttle rises vertically when hurchecl. and thc camct a's

clevation angle is constantiy adjLrsled 10 lbllow thc botionl
of the rocket.
(a) Choose letters to represent the l'leighl ol the rockct and

thc clcvation angle ofthe camelr, and express the hei.qhl

i. r IuI( rin, ol- LF elerrlio r rrglr.
(b) Find the nanlrll donain and the range ol thc functiol.

ignoring any physical restrictions on the values ol thc
var iables.
Modity the domain and lauge appropliately to accouDt

lor the physical restrictions on the values of thc viui
ables.
Generatc the grirph of height vcrsus the elevation on
ir grirphing utility. an(1 usc il to eslimatc thc hcight of
the rockel when lhe elevalion angle is x/.1 - 0 735.1

radian. Compare this estimate to the exact heighl- f,t?r{

S?.rrirr. lf you are usirg a glaphing calcuhlor. the 1r ace

irnd /',^nr retlrrre., r^ill be hclJ'iul lrere.

(d)

17. ft.t): 18. l(.i) -(r +l)(.\ - L)

(b) r' : l5 ni/h

21.

(c)

Figurc Ex 16

20.

),

21.

GRAPHING CALCULATORS AND
COMPUTER ALGEBRA SYSTEMS

1. 3 Gft At3fr-.t !i\G Fil i\eT$*FdS *[U Ciql_f I,fi_AT$FtS
AISft f SfklFIJTHi?$ ; C0tuTFti'i"HH At-$fi $3 RA $YSTHIV]$

In tllis s(tiotl r.r'r, r,r,r/1 rllsr as.r issues thLtt rcldte te g(fi(,tutin! gruplts ttf equations
tutd liotttions n'itlt graphing urilities (grdphing ral(ulutot's L!n.l Lotllputo.t). Bc..ut.v.
graplittg utiLities t'ttrt'tidclt. it is tLilhcult to nuke ,getteral stdtenrcnts ctbout then.
Tharcline. ut lutious plu(cs irt tltis scttion u'c nill qsk )1n! to ttler to thc lo(Mltentd-
tiottJbr your outt graphirtg utilit.\'Iot slic(irt( tlctuils about t11( la.\'it t)lcrqr(s.

The development of nerv technology has signillcanll) chan-qecl how and where mathemati
ciilrs, engineers. and scientists perlbmr thcir work, as well irs their approaclt to problcm
solving. Not olrly have portable compulcrs ancl handhelcl calculatols u,ith graphing ca-
pabilitics bccomc standard tools in thc scientilic commLrniiy, but ther.e hlrve been major
rew innovations in complLtel-soltwae. Among tlle most signiilcanl of thcsc innovations
are prograns c,\Ile(l Cofltputer Algebra Slstems (abbreviated CAS). the most common

Camera
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being Mtrthemoticcr, Mctple,and Derive.* Computer algebra systems not only have powedul
graphing capabiJities. but, as their name suggests, they can perform many of the symbolic
computatiors that occur in algebra, calculus. and branches of higlter mathematics. For
example, it is a trivial task lor a CAS to perform the tactorization

,16 + 23ri + 147.r" 139i3 - 3464-12 21D-r r23040: (r * 5)(r - 3)2(i + 8)l

or the exact numerical computation

225 19 12451 1 6420829 1 259320230 122866923

3 8289595581 9369204449565 9,15 3 692031616883-t5

Technology has also made it possible to generate graphs ol equations and j'unctions in
seconds that in the past might have taken hours to produce. Graphing technology includes
handheld graphing calculaton, computer algebra systems, and software designed for that
purpose. Figure i.3.1 shows the graphs of the function I (.r) - ra - rr - 2.r2 plocluced with
various glaphing utilities; the iirst two were generated with the CAS programs, Md tlrcnl.ot ic (r

and Maple, and the third with a graphing calculator. Graphing calculators produce coarser
graphs than most computer programs but have the advanlage ofbeing compact and portable.

/ b1456 ,11907 r 
l

("t"* ,r85*ii ) -

Getrcrotcd bJ Mathutknica

Figure 1.3.1

Ctn?takt1 b| d graphiilg cdlcullbr

VIEWING WNDOWS
Graphing utilities can only show a portion of the:1-plane in the viewing screen, so the
first step in graphing an equation is to determine which rectanguler portiol of the 'rq, plane
you want to display. This region is called the viey,ing window (or viewiflg rectangle).
For example, in Figure l.3.l the viewing window extends over the interval L 3.31 in the
r-direction and over the iDterval [-4,,1] in the 'i,-direction, so we say that the viewing
window is | 3,31 x [ 4.4] (read "[-3, 3] by [-4,4]"). In genera], if the viewing window
is [d, b] x 1., dl, then the window extends between r : .7 and -ri : l, in the r-direction
and between ) = c and ] : 11 in the l,-direction. We will cL\l\ [a. bl the x-intelval fbr the

window and fc , tll the y-interval for the window (Figure 1.3.2).

QL. d) (b, rt)

I
lc. dl

I
A,,l(r..) l. r., lr -l

I The wlndow frl. rlx [., d] '

Figure 1.3.2

* 
Mathetnatica 1s a ptc:cJ',tct of Wolfram Research, Inc.i t/dtle is a product of Waterloo N,laple Sofiwtue. Inc.; and

D?rir,? is a product of Soft Warehouse.Inc

G(tlerdtd br Mut)l(



TICK MARKS AND GRID LINES
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Different graphing utilities designate viewing windows in different ways. For example,
the first two graphs in Figure l.3.1 were produced by the commands

Plotlx^4 x^3 2*x^2, [x, -3, 3], PlotRange >l-4, 4]l
(Met11en1dic0)

plot( x^4 x^3 2*x^2, x = -3..3, y = 4..4);
(M apte)

and the lastgrapb was produced on agraphing calculatorby pressing the GRAPH button after
setting the following values for the variables that determine the r-interyal and l, inteNals:

,rMin : -3, rMax : 3, )Min - -4, _r'Max : 4

FOR l'HE RF-ADER. Use your own graphing utility to generate the graph of the functioo

./(r) = ra -.rr - 2-r2 in the window t-3.31 x t-4. al.

To help locate points in a viewing window visually, graphing utilities provide methods for
drawitg lick marks (also called sccle narfts) on the coordinate axes or at other'locations in
the viewing window. With computer programs such as Matltenatica arrd. Maple, there are
specilic commands for designating the spacing between tick marks, but if the user does not
specily the spacing, then the programs mtke certain default chorces. For example, in the
first two pafts of Figure 1.3.1, the tick marks showD were lhe default choices.

On graphing calculators the spacing between tick marks is determiled by two.rcale
variables (a\so called, scale factots), which we will denote by

-rScl and 1,Sci

(The notation viuies among calculators.) These variables specily the spacing between the
tick marks in the ,v- and l.'-directions, respectively. For example, in the third part of Fig-
ure 1.3.I the window and tick marks were designated by the settings

,rMin : 3

lMin = 4

xScl - 1

rMax : 3

_)Max : 4

"-Scl - I

Most graphing utilities allow for variations in the design and positioning of tick marks.
For example, Figure L3.3 shows two vadations of the graphs in Figure 1.3.1 ; the first was
generated on a computer using an option for placing the ticks and numbers on the edges of
a box, and the second was genented on a graphing calculator using an option for drawing
grid lines to simulate graph paper.

0

2 r012l
Generaled bI Muthenatica G.netuLed b.\'a gruphiry calLulator

Figure 1.3.1

Example I
Figure 1.3.,1n shows the window [-5, 5] x [-5, 5] with the tick marks spacad .5 uDit apa

in the -r-direction and 10 Lrnits apaft in the y-direction. Note that no tick marks are actually
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CHOOSING A VIEWING WINDOW

visible in the r'-direction because lhe lick mark at the origin is covercd by the r-axis, and

allotheItickmarksinlher'-dircctiontaIloutsideoftheviewingwindow.<

|5.slxI s.sl
.\Scl =.5. r'Scl = l0

(d)

Figurr l.l-.1

[ 10. l0lx[ 10. l0]
\Scl = .1. \Sc =.l

(t)

Example 2

Figure 1.3.4b shows the winclow [-10. l0] x[ 10. l0l with thetick marks spaced.l unit
apart in the r- and r'-directions. In this case the tick marks arc so close together thal thcy
cleate the effect of thick lines on the coordinate axes, When this occurs you will usually
want k) increase the sc{le thctors to reduce the number of tick nalks ar]d make thenl

legible.

FoR l llE RF.\DEII Craphing calculators provide a way of clearing all settings and re-

luming lhem lo ./.f trlt vrltrcs, For example, on the author's calculatol the default window
is [-10. l0l xl 10. l0] and thc default scale factors are.rScl = land -r'Scl : l.Check
your documentation to dctcrninc the delault values fbr your calculator and how to reset

the calculator te its delhult ctufiguration. Ifyou are using a computer program, check your
documentation to detennine the conrmands for specifying the spacing between tick marks.

When the graph ol u function cxtclrcls indefinitely in so]'nc clirection, no sing)e viewing
window can show the entire graph. In such cases the choice of tlte viewing window can

dlastically affect one's pcrccption of how the graph looks. For example, Figure L3.5 shows

a computer-generatcd glaph ol r'= 9 rz,andFigurc l 3.6 shows tbur v iews of this graph

generated on the author's calculator:

In part (.d thc glaph falls completely outside of the window, so the window is blank
(except fbr the ticks itnd axes).

Inp rt (/r) the graph is broken into two pieces because it passes in and out ofthe window.

ln part (.J the graph appears to be a stlaight line because we hlve zoomed in on such a

srrall segn]ent ol lhe cLlrye,

In pafi (d) we havc a rrrorc complete pictule of the graph shape because the window
encompasses all of thc irnportant points, namcly thc high point on the glaph and the
intersections with the .{-lxis.

For a function whose graph does not extend indelinitely in either the r- or r-directions,
the domain and range of the tunction can be used to obtain a viewing window that contains

the enrire graph.

Example 3

Use the clomain irnd range of tlre tunction J1x1 : 1\2=j.p to detemine a vierving

window that contains the entite graph.

Fi_!rrrc l.l.i
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12.21)<l 2.21
rScl=1,lScl=1

(a)

| ,t,4l x [-2. s]
isc = 1, r'Sc = I

(b)

t2.5,3.51x f 1, 11

,rScl=.1. rSc = I

(c)

FiSure 1.3.6

t 4.41x13. 101

(d)

,l
Forrr vewsot\ -9 ,l

l

I3.3lxL l.4l
isc =l.ISc =I

Figure 1.3.7

Solutiott. The natural domain of / is | 2,21 and the range is [0..."/]21 (verify), so the
entile graph will be contained in the liewing window t-2. 21 . t0. .,./i21. For clarity, it is
desirable to use a slightly larger window to avoid having the graph too close to the erds
of the screen. For example, taking the viewing window to be [-3, 3] x [- ] , 4l yields the
graph in Figure 1.3.7.

If the graph of / extends indefinitely in either the r- or y-direction, then it will not
be possibJe to show the entire graph in any one viewing window. In such cases one tdes
to choose the window to show ali of the impofiant features for the ploblem at hand. (Of
course, what is important in one problen nlay not be important in another, so the choice of
the viewing wildow will often depend on the objectives in the problem.)

Example 4

Graph the equation -r, - xl 12r2+ 18 in the following windows and discuss the advantages

and disadvantages of each window.

(a) I-10, l0l x [-10, 10] with rSct = l, ]Scl - I

(b) t-20,201 x | 20,201with rScl : I,1Sc] : I

(c) [ 20,20] x [ 300,20] with,rScl : 1, I'Scl : 20

(d) t 5, l5l x [ 300,20] with rScl = 1, yScl : 20

(e) [1,2] x L-1, 1l withrscl: .1, r.Scl : .1

Sohiion (t). The window in Figure 1.3.8o has chopped off the portion of the graph that
intersects the 1,-axis, and it shows only two of three possible real roots for the given cubic
polynomial. To remedy these problems we need to widen the window in both the r- and

l,-directions.

Sohttiort (b), The window in Figure J.3.8b shows the intersection of the graph with the

_r' axis and the three real roots, but it has chopped off the portion of the graph between
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the two positive roots. Moreover, the ticks jn the l,-direction are nearly illegible because
they a.e so close together. We need to extend the window in the negative y-direction and
increase 1Scl. We do not know how far to extend the window, so some experimentation will
be required to obtain what we want.

Sohttion (c). The window in Figure 1.3.8c shows all of the main features of the graph.
Howeveq we have some wasted space in the x direction. We can improve the picture by
shortening the window in the -r djrcction appropdately.

Solrttion kl), The window in Figure 1.3.8d shows all of the main features of rhe graph
without a lot of wasted space. However. the window does not provide a clear view of the
roots. To get a closer view ofthe roots we must forget about showing all ofthe main features
of the graph and choose windows that zoom in on the roots themselves.

Sohttion (e). The window in Figure 1.3.8e displays very little of the graph, but it clearly
showSthattherootintheinteIval[l,2]isslightlyleSsthanl.3'Sayr-1.29.<

L-10, l0l x [ ]0. l0l
rscl=l,,rsc =l

(a)

| 20. 201 x I 20, 201

rScl= l. rScl= I

(b')

| 20. 201 x | 300,201
irscl = l.I Scl = 20

(.)

l-5. lsl x l-300.201
-rsc = l. )'Scl = 20

ta

Il.2l xl i.1l
isc =.1.lScl=.l

(€)

Figure 1.1.8

FOIt lHFi ltl-.,\l)F.lt Sometimes you will want to determine the viewing window by choos-
ing the "r-interval for the window and allowing the graphing utility to determine a )-inteNal
that encompasses the maximum and minimum values of the function over the x-interval.
Most graphing utilities provide some method fbr doing this, so check your documentation to
determine how to use this t'eature. Allowing lhe graphing utility to determine the l-ioteryal
of the window takes some of the guesswork out of problems like that in part (b) ol the
preceding example.

The process of enlarging or reducing the size of a viewing window is called zooming. If you

reduce the size of the window, you see less of the graph as a whole, but nole detail of the

see more of the graph as a whole, but less detail of the palt shown: this is called zooming
ouf. Mosl graphing calculators provide menu items lbr zooming in or zooming out by llxed
factors. For example, on the author's calculator the amount of enlargement or reduction is

ZOOMING
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controlled by setting values for two zoom factory, xFact and lFact. If
rFact - l0 and lFact:5

then each time a zoom command is executed the viewing window is enlarged or reduced by a
lactor of l0 in the .r-direction and a factor of 5 in the -\,-direction. With computer prognms
such as Matllenaticu an(l Muple, zooming is controlled by adjusting the r-inteNal and
y-interval directly: however, there are ways to automate this by programming.

l()RTHF Rh\T) lt lf you are using a graphing calculator, read your documentation to
determine how to use the zooming feature.

Enlarging the viewing window fbr a graph has the geometric etl'ect of compressing the
graph, since more of the graph is packed into the calculator screen. If the compression is
sumciently great. then some of the detail in the graph may be lost. Thus. the choice of the
viewing window frequently depends on whether you want to see nrore ofthe graph or more

of the detail. Figure L3.9 shows two views of the equation

-r, 
: t5 (-r 2)

In part (a) ofthe figure the \'-interyal is very large, resulting in a vertical compression that
obscures the detail in the vicinity of thc r-axis. ln part (b) the r,-interval is smaller, and

consequently we see morc of the detail in the vicinity of the -,i-axis but less o1'the graph in
thc l -direction.

Example 5

Describe the graph of the tirnction ./(.t) : ,r * 0.01 sin 502,r; then graph the function in the
following windows and explain why the graphs do or do not ditl'er from your description.

| 5.51 x [ 1000, 10001

rscl = 1, \Sc = 500

(.r)

f-5.51 r|10, l0l
rSc=l.rSc=l

(.b)

Figure L3.9

(a) [ 10. l0] x [-10. l0]
(c) l-.l..ll x f -.1. .ll

(b) [-1. l] x [-1. I I

(d) [ .01..01]x[ .01..011

Solution, The formula fbr./ is the sum ofthe function -r (whose graph is a straight line)
and the function 0.0I sin 5Orx (whose graph is a sinusoidal curve with an amplitude of 0.01

and a period of 2zl502 : 0.04). Intuitively, this suggests that the graph of ./ will lollow the
generai path of the line l = ,r but will have snall bunps resulting from the contributions
of the sinusoidal oscillations.

To generate the tbur graphs. we first set the calculator to the radian mode.* Because

the windows in successive parts of this example are decreasing in size by a factor of 10,

it will be convenient to use thc zoom in feature of the calculator with the zoom factors set

to l0 in the,t and r'-directions. ln Figure l.3.l0n the graph appears to be a straight line

| 10. l0lx [-10. l0]
rScl= I,r'Scl= I

(d)

Figurc 1.3.10

I l. Ilx [-1. ll
rscl=.1. rSc =.1

(h)

[ .1..l]x [-.1, . ] l
rscl=.0l.rScl= 0l

(c)

t-.01, .0ll x i .01, .0ll
.rscl=.001, rScl=.001

kr)

*ln 
this text we follo*'lhe conlcntior that anglcs arc mcasured in r:dinns unlcss dcgree measure is spec;fied
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ASPECT RATIO DISTORTION

because compression has hidden the snlall sinusoidal oscillations. (Keep in mind firit the
rmplitude of the sinusoidal portion of the funcrion is only 0.01 .) In part (r) the oscillzLrions
havc begun to appear-since the l,-interval has been leduced, and irI part (.) the oscillations
hilve become very clear because the I'ertical scale is more in keeping with the amplitude of
the oscillations. ln part (/) the graph appears to bc a line segrnent because rve have zoomed
in on such a snall po ion ol the curve.

Figurc 1 .3.1 1n shorvs a circle of |adius 5 and trvo petpendiculal Iines graphed in the windorv
[ 10. ]01 r [-10. l0l wifi rSc] - I and lScl : 1. However. the circle is distorted
and the lines do not appear perpendicular because the calculator has not used the same
length fbr I unit on the -r-axis and I unit on the l axis. (Complre the spacing between
the ticks of the axes.) This is ca]t\ed aspect rutio distortiott. Many calculators provide a

menu item tbr automaticall), correcting the distortion by adjusting the viewiitg windou'
approp ately. For example, the author's calculator makes this conection to the viewing
uinouu I lU. r)l ' lU. l0l b1 cha gi g ir ro

[ 16.9910611481 . 16.997061118111 x | ]0. l0l

(Figure 1.3.1 ib). With contplrter progriuns such as Mathenqticc! a,ncl Map[e . aspect ratio
distortion is controlled with adjustments to the physical dimensions of the viewing window
on the computer- screen. rather than altelilg the -r- and r intervals of the viewing rvindow.

I 10. l0lx [ 10. l0
-rscl= l.r'Scl= I

kt)

lrigure l.l.I I

[ 16.997067,1.187. 16.997067,1IE71x [ 10, l0
rsc = l. \'Scl= I

(.b)

PIXELS AND RESOLUTION

lrolt -lll r lll, \l)l,lt. Read the documeltation fbr your glaphing utility to determine how
k) conlrol aspect ratio distortiol't.

Sonetimes graphing utilities producc unexpected r esults. For example, Figurc I .3. I 2 shows
the graph of _r, 

: cos(102-y) generated on the author's graphing calculator in fbur different
windows. (Your ou'n calcLrllltor may producc dit'ferent results.) The first graph has thc cor--

rect shape. but lhe remairring three do not. To explain what is happening here u'e need to
understancl more precisely how glaphing utilities -eencrate 

graphs.

lr.rlxLr.ll
rsc =.5. \Sc = 5

fuJ

l-igure 1.3.12

| 12.6. 12.61 xILlj
rsc =1.rSc =.5

(i)

| 12.-5. l2 6lx | 1. ll
rscl= l.iSc =.5

(c)

I6.61 xf l ll
rscl = l. rscl = .5

(i)



A v eu/ ng w ndow with
I resolut on 6l x 127

(63 ro$/s of 127 pixe s)

Figurc 1.3.13
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Screel displays lbr glaphing utilities are divided into rows and columns of rectatgular
blocks, calledpltelJ. For black and-rvhite displays each pixel has two possible stales an

activated (or dark) state and a deactivated (or light) slate. Since irraphical elements are
produced by activating pixels, the more pixels that a screen has to wolk wilh. the greater
the amount of cletail it can sho\\'. For examllle. tlte author's calcuiator has a resohttion of
63 x 127, meaning that there are 63 rows with 127 pixels per ro\\' (Figure I .3. l3). In con! ast,
the author's computer scLeen has a resol ution ol l 024 x I 280 ( 1024 rows with 1 2E0 pixels
per row), so ihe computer scrcen is capable of clisplaying nuch srnoothcr graphs that the
calculator.

11 ) rt Tl IF. Ii I l \ t) t .tt If you are using a graphing calculator, check the docunertation to
determine its resoLution.

The procedure lhal a graphing utility fbllows to generate a graplt is sintilar 1() the proce

clurr: ibr plotting points by hand. Wher a viewing window is selected and an equatiolt is
entered, the gaphing utility determines lhe -r-coordinates of certain pixels on the -r-axis
iind computes the corresponcling points (-r, r') on the graph. It then activates the pixels
whosc coolclinates rrost closely match those of lhe caiculrtcd points llnd uses sorne built in
aigorithn to activate additional internediate pixels 1o create the curve shape. The point to
keep in rrind lrere rs that thdnging tlte u'intlou' L hatt?c.s thc poi ts plottel l)J the grupli g

,itlli/r'. Thus. it is possible that a parlicular rvinclow will produce a false impression about
tire graplr shape because signil'icant characteristics of the glaph occtr betwec the plotted
pixels. This is cdl'etJ samplin g error". This is exactly what occun ed in Figule L 3. 1 2 when
we glaphed.l : cos(l0ir-r). In pan (D) ofthe iigrne the plotted pixcls happened to fall at

dre peaks of lhe cosine curve, giving the false implession that the graph is a horizontal line
at -t' - 1. ln part (.J thlr plottcd pixels fell at successively higher points along the graph.
and in pitlt (r1) the ploned pixels fell in a strlrnge way thal creiited yet another rrrisleading
imprcssion of the glaph shape.

ItFlNl.\ltK. Figure 1.3.12 suggests lhat for tligonometric glaphs with mpicl oscillations,
rcstricting thc .r -intewal to a fcw periods is likely to produce a nore llccurate I cpl-c\cntatinn
about the graph shape.

Sometimes glaphs that are continuous apllear to havc gaps when they ale genel ated ot] a

calculator. These false gaps typically occur where the graph rises so rapidly that Ver.tical

space is opened up benveen successive pixels.

Example 6
Figure 1.3.14 shows the glaph ofthe semicircle r' = J9 -rl in two viewing windows.
Although this semicilcle has r intercepts at the points -r : 43, palt (a) o1'thc figure shorvs

false gaps at those points bccaiusc thl]re are no pixels witlr.l-coordinates *3 in the window

SAMPLING ERROR

FALSE GAPS

t-s. sl x l-5. sl
.rScl= l. r'Scl= I

(rt)

Figure 1 .l.l,l

[-6.3.6]jxl5.5l
rscl= l. r'Sc = L

(h)

- 

121 P xe s -
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FALSE LINE SEGMENTS

selected. In pafi (b) no gaps occur because there artJ pixels with r-coordinates r : +3 in
the window being used.

ln addition to creating lalsc gaps in continllorls graphs. calculators can en in the opposite
direction by placing false line segments in the gaps ol discontinuous curves.

Example 7

FJguIe 1.3.15a shows the graph ol _r, : 1/(r 1) in the default window on the author's
calculator. Although the graph appears to contain vertical line segments neal'i : l. they
should not be there. There is actually a gap in the curve at r : 1, since a division by zero
occurs at that point (Figure 1 3.15/r).

L i0. 101 x | 10. l0l
rsc = 1. r'Sc = 1

_r=l/ar 1)wthfase inesegments. Actualcurveshapeoi\.=l/(-r l)

( 
'1)

Figure 1.3.1 5

(.b)

ERRORS OF OMISSION
Most graphing utilities use logarithms to evaluate functiot]s with ftactional exponents sucll
as l(r1 : rr/r : i/il. Howevel, because logarithms are only deflned folpositive numbers,
many (but not all) graphing utilitics will omit portions of the graphs of functions with t'rac-
tional exponents. For example, the author's calculator graphs -r, 

: r2/3 as in Figure I .3. l6rr,
whereas the actual graph is as in Figure L3.l6r. (See the discussion preceding Exercise 29
for a way of circumvcnting this ploblem.)

t4.4JxL 1.,11

r:Scl= l. \,Scl= I

(.a)

Fieure I.3.16

(b)

WHAT IS THE TRUE SHAPE OF A
GRAPH?

FOlt 1l lE READER. Determine whether your graphing utility produces the complete graph

Although graphing utilities are powerful tools for generating graphs quickly, they can pro-
duce misleading graphs as a result of compression, sampling er-ror, false gaps, and false line
segments. In short. grophi g Lftilities con suggest graplt slnltes, bm they cunot estqblisl1
then vitlt ..r1.1i?n . Thus, the mole you know about the lunctions you are graphing, the
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crsier it will be to choose good viewing windows, and the better you wili be able to judge
the rellsonableness of the results produced by your gtaphing utility.

The main source of infornation about your graphing utility is its own documentation,
and liom time to time we wjll suggcsl that yeu refe. to that documentation to learn some
particular technique.

EXERCISE SET ]..3

l. Use a graphing utility to generate the graph of the function

./(,r) - xr - rl in the given viewing windorvs. and specily
thc windo$,that you think gives the best !iew ol the grirph.
(a) 50 :.r : 50. -50 : -\' : 50
(b) 5:-r:5, 5:l:5
(c) 2=r=2, 2a)':.2
(d) 2..t =2. lSt':l
(e) I.5 : i : 1.5. -0.5 5 i 5 0.5

2. Use a graphing utilitv to generale tlle graph ol the lLriction

l(-i) - r' - rr in the given viewing win.lows, ancl sllecity
the window tlrar yoLr think gives the best view ol the graph.
(a) -50 5.! : 50, 50: r' :50
(b) 5:r:5, 5:!:5
(c) 2=.x::2- 2ata2
(d) 2::r::2. l:!:l
(e) l.-5 : .r : 1.5. 0.5 : r' : 0.5

3, Use a graphing L(ility to generate the graph ol the l'LLnctiorl

/(r) - -tr + 12 in the given vierving windows, and specify
the window thlit yolr think gives the best view of the graph.

(a) I :.r : l. 13: r: 15

(b) 2=\a2. ll:i:15
(c) -4: r :4, l0:,f :28
(d) A window of yoLrr choice

4. Use a glaphing utility to generate th.. graph ol the functior)

JG) : 12 .r2 in thc given viewirg windows. and spec-

ity the window that you think gives tl're besl view oi the
graph.
(a) l: r: I, 15:_\:-13
(b) -2:.,::2. 15: J,:-ll
t(r 4 ' _-1. 28 r lo
(cl) A \\,indow ol your choice

ln Exclcises 5 ard 6, use the domaln and ran,ee ol / to deter-

minc a viewing window lhill contains the enlire graph. and

gcncr.ttc the grapb in thiil window.

(b) 205-r:20, -20:,f :20
wilh -rscl : I and -i,Scl : I

(c) 5:-r:20, 5005):50
with jscl : 5 and _i Scl : 50

(d) -2:.v: -1, -1 : r 
= 

I

with :rScl : 0.1 and ,r'Scl : 0.I
(e) 9:.r:ll. -486: -1,5 484

with -rScl : 0.1 and _r'Scl : 0. I

8. Graph the iunction /(-{): -rr-12.r2*4.t+48usingthe
statecl windows and tick spacing, and discuss tlre advantages

and disadvantages of each window.
(a) l0: -L : 10. I0 : _r' : l(i

with -rSc1 : I and lScl - I

(b) 20: -r : 20. 20 : _r :20
with,rscl : I and l,Scl : I

(c) 16 : r :4, -250 5 r, :50
with rscl = 2 and -r'Scl : 25

(d) 3:-r: 1.-l:.1 :l
with rScl : 0.I and ),Scl : 0.1

(e) --9 1t =-1- -241 <\'< 239
wilh -{Scl : 0.I and lScl : 0.l

ln Exercises 9 16, generate the graph ol / in a viewing win-
dow that you rhink is appropriate.

9. /(.t) - -rr 9-r - 36 16. 1,',: IIJ' r-9

s. /(-r) - Jt6-r,. 6. ./(-tl : u6 zt -C
7. Graph the function /(r) :,1r - l5i2 - 3^ + 45 using lhe

stated windows dnd tick spacing. ancl discuss the advantages

rncl disadvantages of each window.
(a) I0:r-:10. 10:r:10

with rScl : I and IScl : l

ll. .l(r) :2cos80r 12. J(.x): l2sin(-rl80)

13. l(r) : 300 10r: + 0.01-rl

14. l(r) : r(3{) 2-r)(25 2x)
.l15.7',7-.r r 16. ft,r-Jll\ 18

.I

ln Exercises l7 and 18, genel ate the graph of .f and deten'r'iine

whether your graphs contain false line segments. Sketch the
actual graph and see if you can make the false line segments

disappeal by changing the viewing window.

18. /(-,): l;17. l(-r) : .j ,
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The -traph of the equation .rl + -rl : 16 is a circle oi raclirrs
,1 ccDtered at the origin.
(a) Find a function rvhose graph is the upper semicircle and

graph it.

(b) Find a lirnction whose 8raph is the lowel sernicircle and
graph it.

(c) Graph the ullper and lowcl scnicircles togcthcr. If the
combined graphs do nol appear circuLar, scc if you can

adjust the vierving wirldow 10 elimir]rle the aspcct ratio
distol tion.

(d) Graph thc portion o1 the circle in the ii$l quadrant.

(e) Is there a funclion whose graph is lhe righl half oi lhe
circle'l Explain.

ln erch pa1t. graph the equation by solving for l in terms
of -t ancl graphing the resLrlting lxncfions together.

28. Draw the graph of

l,'i,' ril
/1 ,, l, ; 1., ,

l ''.^ut 4ax
\\, rr''ttLl in lh( le\l lllJl tor litncri'\n\:n\ol\inq lrJLtionitl
e\porreIt.,or r,lJi\al.r. ;rJphtnF Ittlitt.. \otnclime\ omit
poltions ol lhe graph. If /(r) - r/'/'?. where p/q is a pos-

itive liaclion in ltnresl ternts, then you can circurnvent tltis
problerr as lbllow!:
. lt /,r.c\en rJ.1 i..'Ju. rlrr'rr!r.rLrlr!,.r r- I insrerd

. Il 2 is odd and 4 is odd, then graph g(-r) : (l-!l/.r) .r Pi 4

iislead ol l(.r).
We will explain why this rvorks in the exercises ol the next
seclion.

(a) Ccnelate the graphs of .l(;r) : -tl/5 and 8(,v) : l-vl2/',
and detemrine whether yourgr aphing utility misscd palt
.r lhe !r: I'lr ul /

(b) Gcncratc the graphs ol the t'unctior'rs .l(r) : ,tri 5 and

,g (-r) : ( r /-r ) l,r r/j, and then detennine whelher your
grrphing utility nlissed part of fhe graph of l.

r.', C(n(ralc:r (urrplele grJph nl l\c e,l.r:'ri,.rn

t,: (r l)1./5

rdr Ccrrer:rtr r, on'pl(lc !rJI)h rl lhcequJrron

_r':(-r1l)rA

lh, pr':ph. ol i - tr ,lt:'.n,1 ' l,' -r,l'
sholrld be the sanre. Does your graphing utilit), produce thc
siLme glaph lbr both equaiions? If not, what do you think is
happening?

In each part. graph the function for various values o1 .r, and

iv:ite a parag|aph or two that clescribes how changes in c
affect the -er.rph in each case.

(c) ,\, :.rr + )r +.
(b) )' = -rr + c-t

The graph ol al eciLrirtion of the form l2 : ,r (.r -.,)(.r r)
(where 0 < a < D) is callecl a bipartite cubic. Thc accom-
panying ligule shows a typical gftph of this typc.

Bipart te cubic

2[.

6) l14+.\'!lc):l (b) tr -.rr: I

21. Rearl the cl,rcurnenttlion tbr your grrphing uiilily to deler-
mine how 10 griLph lunctions involving absolute values, and

graph the given equation.

(c) _r: rl l
(e) t = sin rl

29.

(b) _t: t.- I

(d) r': sin.tl
(f).t -.r .r+I

22. Biised on yoLrr knowledge ol lhe absolute value lunction.
skctch the graph o1' l(-r ) : l,r /.i. Check your result using
a glaphing utility.

23. Make a conjecture abolrf the rellltionship betrveen the graph

of r : l(-r) andtlre graplr olr' : l(r) ; checkyourcon

iecture $ ith some specilic tunctions.

24. Make a conjeclure about the relationship between llle graph

of ,r' : /(.r) and the graplr ol _r' 
: l(ltl); check your corl

jccture with sonle specilic functions.

25. (a) Bascd on your knowledge ol the absolule value lirnc
tion, skelch the graph ol r' : -r r1 . where d is a

co stant. Check your result using a graphing utility and

some specilic values ofa.
(b) Sketch the graph ol \' : lr I + r 2 : check your

Icsult with a graphing ulility.

26. Horv are the glaphs of ,r' : .r and r' : r/.r: relatccl? Check
your answer with a graphing utilily.

Most graphinB utilities provide some way of graphing func
tiorls thdt are defincd piecewise: read the docuInentalion lbr
your g|aphing urility to llnd out how to do this. However. if
your lioal is jlrsl to find the general shape of the graph. you

can graph each poftior'r of the lunction separately and com-
bine the pieces with a hand-.hawn sketch. Use this rnethod
in Exercises 27 ar'rd 28.

30.

-lt_

32.

27. Draw thc graph of

,u,:{5 
_ Figure tx-32



(a)

ARITHMETIC OPERATIONS ON
FUNCTIONS

Graph the bipartite cubic y2 : .r(x - 1 ) (x - 2) by solv-
ing for y in terms of -r and graphing the two resulting
functions.
Find the ,t -intercepts of the bipartite cubic

J2 - t(.r a)(x b)

and make a conjecture about how changes in the values
oi.r and 6 would rffect rhe grrph. l est ) our conjecrure

by graphing the bipartite cubic for various values of a
and r.

1.4 New Functions from Old 47

Based on your knowledge of the graphs of y : ;g 216

) : sin r, make a sketch ofthe graph ol l' : .x sin,y. Check
your conclusion using a graphing utility.

What do you think the graph of _r : sin(l/.r) looks like?
Test your conclusion using a graphing utility. lsuggestiotl:
Examine the graph on a succession of smaller and smaller
intervals cantered at -r : 0.]

(b)

34.

1.4 NEW FUNCTIONS FROM OLD

lust as numbers can be added, subtracted, multiplied, and divided to produce other
numbers, so functions con be added, subtracted, muLtipLied, qnd divided to pt'o(luce

other fDlctions. In this section we wilL discuss these operations and some others that
have no onologs itt ordiqorv orithneti,.

Two functions, / and g, can be added, subtracted, multiplied, and divided in a natuml way
to form new functions /+8, f - S..fg, and //g. For example, l +C is defined by the
formula

("f + s)(") : /(x) + 8(r) (1)

which states that for each input the value of / + I is obtained by adding the values of /
and g. For example, if

"f(r):r and EG): x2

then

(-f + g)(.r) : l(;r) * g(x) : x *;r2
Equation (1) provides a lbrmula for / + I but does not say anything about the domair of
/ f g. However, for the right side of this equation to be defined, .r: must lie in the domain
of f and n the domaio of g, so we define the domain of / + 8 to be the intersection of n
those two domains. More generally, we n.rake the following definition:

: 1.4.1 DEt-tNtl'loN. Given functions f and g, we define

(.f + s)(-r) : l(-t) + s(.{)
("f-g)(r):/("r)-s(r)
U s)G) : .f(x)s(.r)
(f /s)Q) : f (x) /sG)

For the functions f + S, J - 9, and /g we define the domain to be the intersection
of the domains of / and g, and for the function //g we def,ne the domain to be the
intersection of the domains of I and g but with the points where g(r) : 0 excluded (to

avoid division by zero).
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STRETCHES AND COMPRESSIONS

(f /e)G) = f(x)/e'l')
(1 f)(x) :1 f(x)

RF.\{ARK. If / is a constant tunction, say /(x) : c for all x, rhen rhe product of / and g
is cg, so multiplying a function by a constant is a special case ofmultiplying two functions.

Example 1

Let

/(r):1+/r-2 and s(r):x 3

Find (l + g) (,r), ("f - g) (x), (;fg)(x),(J /g)(x),and (7 /)(r); state the domains of / +g,
f - e, fe' f ls, andi f
Solttliott , First, we will find formulas for the functions and then the domains. The formulas
are

("f +e)(x): "f(x)+s(r): (1 + J' - 2 ) * (,t - 3) : ,r 2+"G 2 (2)

(J s)(r) = /(.r) -s(r) : (t+tC-Z) (x 3):4 ,+,6-z (3)

(/s)(r) = l(r)s(x) : ti + Jr - 2 )(x 3) (4)

1+ Jx 2

r3
- /+ l\/( f

(5)

(6)

In all five cases the natunl domain determined by the fbrmula is the same as the domain
specified in Definition 1.4.i, so there is no need to state the domain explicitly in any of
thesecases.Forexample,thedomainoflis[2,+oo),thedomainofgis(.c,+.c),andthe
natural domain for /(x) + g(.r) determined by Fonnula (2) is [2, *cc), which is precisely
the intersection of the domains of f and g.

RLI\{ARK. There are situations in which the natural domain associated with the formula
resulting from an operation on two functions is not the coffect domain for the new function.
For example, if /(;v;: f and g(r) : 

^u,t, 
then according to Delinition 1.4.l the domain

of /g should be [0, +..) n t0, +-) : f0, *"o). However, ("fg)(r) - "/i..[ = -r, which
has a natuml domain of (--, +-). Thus, to be precise in describing the formula for /g,
we must write ("fg)(x) = r, r > 0.

Multipiying a functl:on f by anonnegatire constant c has the geometric effect of stretching
or conpressing the graph of / vertically. For example, exan.fne the graphs of r, : l(,r),
f :2.f(x), ana y : j/(x) shown in Figure 1.4.1a. Multiplying by 2 doubles each y-
coordinate, thercby strctching the graph, and multiplying by ] cuts each l,-coordinate in

?-! = fG/2)

) = l(2r)

Figure 1.4.1
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half', thereby compressing the graph. In general, if c > 0, then the graph of y : c/(,r) can
be obtained from the graph of y : l(r) by compressing the graph of 1 - /(r) vefiically
byafactorof l/c if 0 <. < I . or stretching it by a factor of c if c ;. 1.

Analogously, multiplying the independent variable of a function / by a nonnegative
constant c has the geometric affect of strctching or compressing the graph of / horizontally.
For example, examine the graphs of .r : .f(r), y : JQ.t), and t' : l(r/2) shown in
Figure 1.4.10. Multiplying r by 2 compresses the graph by a factor of 2 and multiplying
x by I stretches the graptl by a factor of 2. [This is a little confusing, but think of it this
way: The value of 2r changes twice as fast as the value of :r, so a point moving along the
r-axis will only have to move haif as far from the origin fbr y : /(2x) to have the same
value as 1, : /(x).l ln general, if c > 0, then the graph of y : /(cx) can be obtained from
the graph of ) - f(.x) by stretching the graph of y : l(r) horizontally by a factor of c if
0 < c < I , or compressing it by a factor of c if c > l.

Adding two functions can be accomplished geometrically by adding the corresponding y-
coordinates of thefu graphs. For example, Figure L4.2 shows line graphs of yearly new car
sales N(t) and used car sales U(r) in the United States between 1985 and 1995. The sum
ofthese functions, T (.t) : N (t) + U (t), represents the yearly total car sales for that period.
As illustrated in the figure, the graph of T (t) can be obtajned by adding the values of N (r)
and U(t) together at each time I and plotting the resulting value.

Example 2

Referring to Figure 1.2.2 for the graphs of r,.. : vf and ) : I /-r, make a sketch that shows
the general shape of the graph ol I - "E 

+ lh fol x I 0.

Solutiott. To add the corresponding y-values of 1, : "rf and r- - l/r graphically, just
imagine them to be "stacked" on top of one another. This yields rhe sketch in Figure 1.4.3.

We now consider an operation on functions, called corrpasltioir, which has no direct analog
in ordinary a thmetic. Infonnally stated, the operation of composition is performed by
substituting some function for the independent variable of another tunction. For example,
suppose that

JQ) = x2 and g(r)-aa1
If we substitute g(x) 1br r in the formula for /, we obtain a new fLrnction

./(,c(x)) : (8(r))'? : (r + l)'?

which we denote by / o g. Thus,

("f oe)(.r) : "f(g(x)) 
: (s(x))'?= (r * l)?

1995

3,1

32
l0
28
26
24
22
2A
t8
l6
14

12

l0
8

6
4
2

1985 1990

Sorrcei NADA.

Figure 1.4.2

COMPOSITION OF FUNCTIONS

Car Sa es ln l\/lil ons

Figu.e 1.4.3
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In general, we make the following definition.

COMPOSITIONS VIEWED AS
COMPUTER PROGRAMS

1.4.2 DEt-tNIT1oN. Given funcrions I and. g.the composition of
by f og. is the function defined by

(.1 o.<) (r) : ./(s(,t))

I with g, denoted

The domain of I o I is defined to consist of all x in the domain of g for which g (r) is in
the domain of /.

RLN,IARK. AlthorLgh the domain of / o g may seem complicated at first glance, it makes
sense intuitively: To compute /(g(r)) one needs x in the domain of g to conpute g(,r),
then one needs g(,r) in the domain of / to compute l(g(r)).

In Section l.l we noted that a function f can be viewed as a computer program that takes
an input.r, operates on it, and produces an output /(-r). From this viewpoint composition
car be viewed as two programs. g and f , operating in succession: An input,{ is fed first to a
program g, which produces the output g(-r); then this output is fed as input to a program /,
which produces the output .l(g(.r)) (Figure i.4.,1). However, rather than have two separate
progmms operating in succession, we could create a single program that takes the input
-r and directly produces the output /(g(-r)). This program is the composition / cg since
(.1 

" e) (r) - .l(s(r)).

Computer
Progl am

Outout gfr)

Computer
Progmm

cl,rn; n"r;i \

Figurc 1.4.:l

Example 3

Let l(-r) : -t2 + 3 and 3(r) : f. Find

(a) (.l o s) (r) (b) (so l)(-r)

Solution (.a). The formula 1br l(g(,r)) is

-f(scr)) = [e(,r)]r + : = (.,t)'? + 3 : r + 3

Since the domain of g is 10. +o.) and lhe domain of /is( co, 1:o), the domain of /og
consists of all r in [0. *-) such that g(.r) : yf lies ir ( ... +co); thus, the domaiD of
I og is 10, +',). Thelelbre,

(/o8)(x):.r+3, x>0

Solution (h). The fbrmula for g(/(r)) is

s(t(.r)): J114=J,'1j
Since the domain of .f is (-:c. +.o) and the domain of g is [0, +.o), the domain of 8 o /
consists of all r in ( o., +..) such that /(-r) : ;r2 + 3 lies in [0. +c.). Thus, the domain of
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.qo.f is (-%. +^r). Therefore,

(go.l)(.{)-v-'r'':+3
There is no need to indicate that the domain is (-cc, frc), since this is the natural domait
of '4rJJ.
Illr\l\RK. Note that the functions /og and go/ in the preceding example are not the
same. Thus, the order in which functions are composed can (and usually will) makc a
difference in the end result.

Compositions can also be defined fbr three or more functions; lbr example, (/ o g o I ) (r)
is computed as

(./os o/r)(.r) - .l G(h(x)))
ln other words, first find h (.{), then find g(i?(.r)), and then find .l(g(ir(.r))).

Example 4

Find ( f o.q o h)( t) if
/(-r) : .,/i. B(.r) : l/,r', /r 1,r.1 :1r

Solutiort.

('fogoh)(x):./(s(/l(.r)))=l'(.g('.)):J'\l/x1)=,/1/xl:11^lll<

Many problerns in mathcmatics are attacked by "decomposing" functions into compositions
EXPRESSING A FUNCTION AS A
;A',,i|,iltilN'' -.'" ""'"* ^ of simplel functions. For exanple, consider the function /r given by

,(.r): (r + l)r

3J;:1ff::i$ii,'J.1"1illl ]i"""$;L;il ;,"H3l';[:ff"" 
x * 

'I 
and 

'lhen 
square 

'[he

8(.r) =.{ + I ancl l(-r) : 12

We can express /r in terms of ./ and g by writing

/r(;r) : (.r + 1)']= [g(.{)l: =,f(S(r))
so we have succeeded in expressing /i as the composition ,[ : jf og.

The thought process in this example suggests a general procedure for decomposing a
function i into a composilion /r : .f og:

. Think about how you would evaluate /r(r) for a specilic value of-!, trying to break the
evaluation into two stcps pertbrmed in succession.

r The first operatiou in the evalualion will deterntino a function g and the second a func-
tion /.

r The formula for i can then be written as r(.() = ./(g(-r)).

For descriptive purposes, we will refer to g as the "inside tunction" and Jl as the "outside
function" in the expression /(g(-{)). The inside function performs the first operation and
the outside function perfbrms the second.

Example 5

Express /r(x) : (,r - 4)s as a composition of two functions.

Solttliott, To evaluate ft(.{) for a given value of ,r we would lirst compute r - 4 and thcn
raise the rcsuh to thc liflh power. Therefore, the inside function (first operation) is

8 (t) :.t 4
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and the outside l'unclion (second operation) is

so ft(,r) = l(g(.t)). As a check,

l(s(r)) : [.c(r)]5 : (-r 4)i : i?(.r)

Example 6

Express sin(rl1 as a composition of two functions.

Solutiott, To evaluate sin(-r3), we would first compute rr and then take the sine,

F(r:) - -tr is the inside function and /(;v) : sinr the outside function. Therefore,

sin(,!r) : /(s (.r)) (Lrr=\r,'n!l /1rr: nr (

Example 7

Table L4. I gives some more examples of decomposing l'unctions into compositions.

Trble 1.4.1

FUNCTION
s (r)

INS]D]]
lh)

atotllPoslTtoN

(.r2 + I 110

sinl'-r

tan (-r:5)

r/+ - :.t
8 + r/-t

I

.r+ l

rl+ I

sin.r

,1 - 3_r

\tr

.r+ l

lan -r

8+n

1

(-rr + l)ri)= l(3(v))
sinr r = l(g(-r))

tan 1151 = 71g1.r11

.,8-:t=/tgt-Ol
8+rir=l(s(r))

I

{+l = /(3(\l)

IiFll\,lARK. [t should be noted that there is always more than one way to express a function
as a composition. For example, here are two ways to express (rr + I)10 !s r compo\ition
that differ tlom that in Table Lri.l:

1r2 + tyro: [1-'] + t)'?]5 :./(s(.r))

1.r2 + 1110: [{.r] + tlr]r0/r - ./(s1r))

rrrr = (rr + r)r rntl ltit = rj

q(t) = (rr + l)r rnd /(r) = rro'r

SYMMETRY
Figure L,1.5 shows thc glaphs of thlee cuNes that have certain obvious symmetdes. The
graph in part (a) is symnetric about the x-.rris in the sense that for each point (r, )) on the
graph the point (-t. -r') is also on the graphi the graph in part (b\ is symmetric sbout the

J-a.ris in the sense that for eilch point (-r, _.l,) on the graph the point ( ri, -r) is also on the
graph; and the graph in pan (c) is syrznrelric about the origin in the sense that fbr each point
(r,l) on the graph the point ( ,r, 1) is also on the graph. Geometrically, syrnmetry about

the origin occurs ifrotating the graph 180" about the odgin leaves the gmph uncharged.
Symmetries can often be detected from the equation ofa curve. For example, the graph of

J:r3 (7)

must be symmetric about the origin because for any point (,r, ]) whose coordinates sat-

isfy (7), the coordinatcs of the point (-,r. -1,) also satisfy (7), since substituting these
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(r, l,

;1ffi;"b";l
t,-l!::1' j

(a)

Figure 1.4.5

; tr."ttb ,il]
. 'ff ill r

coordinates in (7) yields

l:( r)'
which simpJifies to (7). This suggests the following symmetry tests (Figure 1.4.6).

i.-;d'",,"; lr the !-axls l)'l
(.b)

EVEN AND ODD FUNCTIONS

1.4.3 THEOREM (S)'nnetry Tests).

(.a) A plane cur-ve is symmetric about the y-a:;is if and only if replacing x by x in its
cquation produce' an equivolent equotion.

(.b) A plane curve is symmetric about the x-axis if and only if replacing y by -y in its
equation produces an equivalent equqtion.

(.c) A plane cto-ve is slmmetric dbout the origin if and only if repktcing both x by x
and y by y in its equation produces an equiy.tlent equation.

For the graph of a function / to be symmetric about the )-axis, the equations y : "f(r)
ard l : l ( r) must be equivalent; for this to happen we must haye

f(.x): f (.-x)

A function with this propety is called an even function. Some examples are x?, x4. x6,
and cos r. Similarly, for the graph of a function / to be symmetric about the origin, the
equations ) : /(x) and ) : "f( ir) must be equivalent; for this to happen we must have

f(x) - - f(-x)
A function with this property is called an odd function. Some examples are :r, xr, r5, and

sin x.

(j. ))

Symmetric about
the or gir

lytt.t* rb*i
: the r axis 

i
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TMNSI.AITONS

trOR TIIE READER. Explain why the graph of a nonzero function cannot by symmetric
about the r-axis.

Once you know the graph of an equation y : /(x), there are some techniques that can be
used to help visualize the graphs of the equations

r:f@)*c, y: f(x)-c, y: f(x+c), y: f(x-c)
where c is any positive constant.

If a positive constant is added to or subtracted from /(x), the geometric effect is to
translate the graph ot y 

= 
f(*) parallel to the y-axis; addition tmnslates the gaph in the

positive direction and subtraction translates it in the negative direction. This is illustrated in
Table 1.4.2. Similarly, if a positive constant is added to or subtracted from rhe independent
variable r, the geometric effect is to transtate the graph of the function parallel to the x-axis;
subtraction translates the graph in the positive direction, and addition translates it in the
negative direction. This is also illustrated in Thble L4.2.

Subtract a positiveOPERATION ON

v = .f(x)

NEW EQUATION

Add a positive
constant c to /(r)

Translates the graph of
J) =/(x) up c units

Subtract a positive
constant c from /(.r)

Translates the graph of
]/ =/(r) down c units

Add a positive
constant c to x

Translates the graph of
) =/(r) left c units

constant c from -[

) =./(;r) + c r = .f('\) - c ))=f(x+c) r=fU-c)
GEOMETRIC

EFFECT
Translates the graph of
y =/(r) right c units

r

Before proceeding to the following examples, it witl be helpful to review the graphs in
Figure 1.2.1.

Example 8
Sketch the graph of

(a1 y:Jxl (b) y:.\,+l
Solution. The graph ofthe equation y : 1,4 L can be obtained by translating the graph

left 3 units (Figure 1.4.7).

EXAMPLE

T[ble 1.4.2

f t =.r2 -z

y=1t+2\2

Figure 1.4.7
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Example 9

Sketch the graph of t' = r-31 +2.

Solution. The graph can be obtained by two translations: first translate the graph of
y : lxl right 3 units to obtain the graph ofy = l-rr 3 , then translate this graph up 2 units
to obtain the graph of l : lr 3 * 2 (Figure L4.8).

Fisure I ,l I

RLNlAltK. The graph in the preceding example could also have been obtained by perform-
ing the translations in the opposite order: first translating the graph of _r' : r up 2 units to
obtain the gmph of I : -r + 2, then translating this graph right 3 units to obtain the graph
of y: v-31 12.

Example 1O

Sketch the graph of 1 : ,r2 4.r * 5.

Suhttiort. Completing the square on the first two telms yields

): (;r2 4x +4) -4+5: (,r -2)2 + I

(see Appendix D for a review of this technique). ln this fbrm we see that the graph can be
obtained by translating the graph of ) : 12 right 2 units because of the -t 2, and up 1 unit
because ofthe +1 (Figure 1.4.9).

Example 11

By completing the square, an equation of the form ! : dxz + hx + c with a I 0 can be
expressed as

)-:q(x -h)2 +k (8)

Sketch the graph of this equation.

Sohttitlt. We can build up Equation (8) jn three steps tiom the equation 1, : .r2. First,
we can multiply by 4 to obtain ) : axz. Il a > 0, this oper-ation ltas the geometric effect
of stretching or compressing the graph of ) : -r2; and if a < 0, it has the geometric effect
of reflecting the graph about the l-axjs, in addition to stretching or compressing it. Since
stretching or compressing does not alter the general parabolic shape of the or-iginal curve,
the gmph of -y : a-t2 looks roughly like one of those in Figure L4.10a. Next, we can
subtract l? from 'l; to obtain the equatioo )' : atx - 112. rnd then we cut add t to obtain

) - lz(-{ ,)2 + ft. Subtracting,4 causes a horizontal translation (right or left, depending
on the sign of A), and adding t causes a vertical translation (up or down, dependiDg on the
sign of t). Thus, the graph of (8) looks roughly like one of those in Figure I .4.10b, which
areshownwithl > 0andt > 0 for simplicity.

,1=1' I l=lY 3 j I = r 3 +21
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(b)(a)

REFLECTIONS

Figure L4.l0

The graph of 1 = /(--r) is the reflection of the graph of y : /(r) about the y-axis, and

the graph of y : /(-r) lor equivalently, y : /(,r)l is the reflection of the graph of
) : /(r) about the ;-axis. Thus, if you know what the gmph of y : /(-r) looks like, you

can obtain the graphs of y : 1i r) and ) = -"f(.r) by making appropriate reflections.
This is illustmted in Table 1.4.3.

OPERATION ON

t=.f(x) Replace x by -.x Multiply/(r) by -l
NEW EQUATION ) = "f(-Jr) ) = -"f(r)

GEOMETRIC
ETFECT

Reflects tle graph of
'r = /(.n) about the ) axis

Reflects the graph of
) = 

^r) 
about the jt-axis

EXAMPLE

Example l2
Sketch the graph of y = ]/Z - *.

Solution. The graph can be obtained by a reflection and a translation: first reflect the
graph of y : Ni about the y-axis to obtain the graph of 1 : ]-x, then translate
this gmph dght 2 units to obtair the graph of the equation y = :/-G -, - i2 -,
(Figure 1.4.I 1).

. =.ii i
ll

Figure L4.11

-.:-.r

Table 1.4.3
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Example 13

Sketch the graph of y : 4 lx - 21.

Solutiln, The graph can be obtained by a reflection and two translations: first translate
the graph of y = lr right 2 units to obtain the graph of y = x - 2 ; then reflecr this graph
about the n-axis to obtain the graph of y - lx - 2l: and then translate this graph up 4
units to obtain the gfaph ofthe equation y = x-2 +4=4-lx 2l (Figure 1.4.12).

iir
Figure 1.4.12

EXERCISE SET 1.4 E Graphins Ca cu ator

..=_,"_2ii
...^. ir ':i

1. The graph of a function / is shown in the accompanying
figure. Sketch lhe graphs o[ the iollowing equa(ion..

4. Use the graph in Exercise 1.4.3 ro sketch the graph of the
equation I : /(lxl).

2. Use the graph in Exercise 1.4.1 to sketch the graphs of the
following equations.
(a) y: -l(-r)
(c) _r: I f(2 ,)
The graph of a function / is shown in the accompanying
figure. Sketch tbe graphs of the following equations.

Tn Exercises lJ-l6..kerchrhe graph or lheequalion b\ tran\
lating, reflecting, compressing, and stretching the graph of
y : .u/i appropriately, and then use a graphing utiliry to
conlim that your sketch is corlect. 

l

(a) y: /(x) I
(c) ): +,r(')

(a) )-/(r+1)
(c) y : lf(:r)l

(b) y: /(;r 1)

tal y: "r (- jr)

Figure Ex l

E6.r-2 (x't l)2

E 8. r: i(,' 3)2 +z
B 10. -r,-r2*6;v - l0

872.t:+e2-2x+3)

E 14. r,: I + ^/C=
E 16. )'= v[;

E 18.):*

Es.y:t+(x-2)2
8 7. Y: 2(x + 1)2 -3
E 9':r=t'+6t

E 11.):l*2x x2

E 13.y-3 \G+l
E ls. y: 1.,& + t

(b) y= /(2-x)
(d) ): +/(2.r)

(b) y : /(zr)
(d)r:l-l(r)l

In Exercises 17-20, sketch the grapir oitt'r" 
"quution 

ty t.-r- l

lating, reflecting, compressing, and srrctching the graph of :

y = 1/;r appropriately, and then use a gmphing utility to l

conlirm thal yout \kerch is correct

In Exercises 5-12, sketch the graph of the equation by trans-
lating, reflecting, compressing, and stretching the graph of
r -- r: approprrare15. and then u.e a grrphing ultlity tocon-
firm that your sketch is correct.

Fieure Ex 3 E 17. r: I
.3
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I
19. r' :2 -r+l E zo., - t;'E

E
E

In Exelcises 2l 2.1. sketch the graph olthe eqLultionby trans

latin-e- reflecting. corrpressing. ilnd strctchinS the graph of

.r' : ,r lrppropriately. and then usc a grapliing utility to con-
ntm t\,rr intt .letih i. (,' rr, L

21.t::i)-2 822.r:1 .r 3

23. -1 : 2-t ll + I E 24. ,i : v/rr '1" + '1

ln Exercises 25 28, skctch the Sraph olth(]equiltion by tr-ans-

lating. rellecting. courpr-essing. and strelching the Sraph ol
y - ]{i appropriately, and then use a graphing utility to

In Exercises 39 44, find formulas for' / o g and g o /, and

state the domains ot' the flmctions.

39. /(r) - 2-r * 1, g(.t) - -r2 1

40. f(.r) -2 -tr. g(r) -,tr
41. /(,t) --r'?, s(-Y) : ./r - r-

"12.7'r'-.,, i. g,., '- r., '.t
l+r

,13. /1r1 -. .rlr):-
l\11

rl
44. 1lr1: 

-, 

,q(r) - -
L + t- r

In Exercises 45 and 46, find a lbrmula for fogo,.

-t45. /(.r) : -rr + l. ,s(,t) : . /z(*) - 1l
x

ll
46. [ ,\ -. I'r\ - n/r. iltt - ,t+r \

lnE\erctres,l )U.(\ptr..r r J. ,l C^mpO.tlinr or two lun.

tionsi that is, nnd 8 and, such that / - pofi. lNole: Each

exercise has more than one solution.l

confirm that voLll sketch is cofiec1.

E 2s.

(1 '"
29.

),-l 2it 826.):i! z :
-r':2+Jr+t E28.r+J5 z:O
(a) Sketch the graph ol -\' : -r + -r by adding the cor-

responding -r coordinates on the graphs ol r : -t and

(b) Express the equation i - .r * -rl in plecewise fonn
witlr no absohrtc valLres, and confirnr that lhc graph yor.r

obtained in par-t (a) is consistent with lhis equation.

Sketch the graph ol-r' : r+(l/-y)byaddingcoresponding

-r' coorclinates on the graphs ol r' - -r and 1 : l/-t Usc a

graphing utility to conlirm thiit your skelch is corrcct.

30.
47. (a)

48. (a)

,19. (.r)

50. (a)

l6): ^rFi
l('):'r+l

.l(l) : 3 sin(r':)

.f(-t) : -t2 3x * 5l

I
1t"' - 

'r -3
3

5+cos-r

/(x) - 3 sin: x + 4 sin,t

(b)

(b)

(b)

(b)

Tn Exelcises 3l 3,1, find fbrmulas for / * g. .l - S, .lS. and

/ l .r l. rlJlc Lhc J.,n'rln. ol lhe llln(l','1..

3f . l(.i) :2-t, s(.r) : -rr + I

32. /(.r) :3.r 2. .e(.r) : -Yl

JJ. /{ '-2..r-l. rrr' v{-|

ln Exercises 5l and 52, express I lis a conlposition ol three

f'unctionsr that is. find I g, and i? such that F : f og"h.
LNot?. Each exercisc has more than one solulion.l

51.

53.

34.

35.

-!ll(t):- s(\):+\ '\

Ler l(r) - ,r{i and g(.t) - -1r '1 1. Find
(b) s(./(a))
(d).q(s(0)).

36. Let,,,r, , r u 'r/r'rr co..r.li'J

(a) F(-r) : (t +.in1"1)'
I

(.r) F(.r) : 

-
I1

Use the table in the accompanying figure to make a scatte.
plot of J, - /(s(-r)).

-rJll0l2-{
f{,\') 1 { ) -. 0 l
.s(r) ''1 012 3 2 -3

Fisurc Ex 5l

Find the domain of 8 o / for the functions .l and I in Exer-

cise 53.

Sketch the graph of y' : l(8(.r)) for the lunctions graphed

in the accompanying ligure.

(L,l r'(-rl: V't iri
(b) F(.r) - 15 * 2r

(a)./(,s(2))
(c).1(l(16))

(a) s(/t (0))
(c) s(.q(l))

37. I-et l(-r) -.rr + L Find
(a)./(r':)

,.) i (+)
(e) /(J-t )

(b) /r (g(ri r/2 ))
((1) h(h@14).

thJ /i/ + l) (c) /(1 + 2r

(f) /( r)(e) /(-i + r)

(h) /(3-r).

38. Let,q(j:) : .ulr. Find
(a) s(5r + 2) (b) s(J-Y + 2)

(d) -L (e),e(s(-r))
8(-r,)

(e) s0/.,[) (h) .q((.r - 1)r).

(c) 3g(5r)

(1) (s(r))r g( r:)

54-
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Complete the table in the accompanying ligure so that the
graph of y : /(r) (which is a scatrer plor) is symmetric
about

A-r
I

Figure Ex-64

(a) the )-axis

56. Sketch the graph of l, : g(/(r)) for the functions graphed
in Exercise 55.

57. Use the graphs of f and g in Exercise 55 to estimate tie
solutions ofthe equations /(g(-r)) = 0 and S(/(.r)) : 0.

58, Use the table in Exercise 53 to solve the equations

-f(g(.r)) :0 and g(./("r)) = 0.

: In Exercises 59 62, flnd

f(x + h) f(x)

: and simplify as much as possible.

I'I
__)/
-..-.s!

\
(b)

-t++\r
I
(d)

\1,^''\ / \r
\/\

I
(tt)

--., 1',--lf,
I

(c)

Figure Ex-63

63, ln each part of the accompanyjng figure determine whether
the graph is symmetric about the i-axis, the 1-axis, the ori-
gin, or none of the preceding.

64, The accompanying figure shows a pofiion of a gmph. Com-
plete the graph so that the entire graph is symmetric about
(a) the -r-axis (b) the l-axis (c) the odgin.

(b) the origin.

l-rt I'-z i . o r-, u . :a ._,r -, : --a

frt, I I 0 -5

Figure Ex-65

The accompanying figure shows a portiorr ofthe graph of a
function /. Complete the graph assuming that
(a) / is an even function (b) / is an odd function.

Fisurc Ex-66

Classify the functions graphed in the accompanying figure
as even, odd, or neither

66.

59. f(;r) ::r2 - S

61. f(x) - tlx
60. /(r) = 12 + 6;r

62. f(x): t /x2

6'7.

J-I
(h)

\- l'
(ct)

Figur€ Ex-s5

Figure Ex-67
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68. Classiiv the firnctions whosc values a|e !iven in the fbllow-
ins tahle rs even- odd. or neithcr'.

x-3
fQi)5
s(,\') 'l
h(r) 1

(a) ./(.t) -,t2
(c) l(.r) - lrl

aj-a
(e) /(_r) : I +.i

70. (a) .r = 5-r''] + 9
(c) rr :5

71. (a) .tl = 2r'r + r'

t-2021.1
5lt-1 8 5 2

(b) ./(.t) : -tr
(d) ./(r) - -r + I

(f ) .f(.r) - 2

2 -l 0 1 2 3

3llt,-r5

69. ln c[ch part, classify thc functioD as even, odd, or neither.

In Exercises 70 and 71. use Theorem 1.,1.3 to detcn ine
whelher the grrph has symnrelries about thc -r-axis. the ,\'-
axis. or the origin.

l-igurc E\-7.1

75. The equation \, : l.l(.r) can be written as

f /itr. /(.r) > 0
'-l ./i'). ./{.r) <0

which shows that the graph of r' : ll(\-)l can be obtxined
from the graph of r' = ./(.r ) by rctaining the portion lhat lies
on or above the,r-axis and rellecting rbout the.\- xis the
portion that lies below lhe -r-iLxis. Use this method to obtain
the graph ol r' : 2r - 3 L liom the graph ol i, = 2,r - 3.

ln tre|cr.e.7b rnJ 77. u.e lhe melhud Je".r'it'cd in Ex.'r'-

cise 75.

76. Sketch the graph of r' = | I - .!rl.
77. Sketch the graph of

(a) l(r) - lcos.!l (b) /(r):cosr + Jcos.rl.

78. Tlle greatest inleger futrction, Irl. is defined to be the
greatest i11teger that is lcss than or eqLlal to,r. For example.

[1.'71:2,1 2.31 : -3. and [4] :,1. Sketch the gruph ol'
(b) l(-r) : trrl
(d) ./(-r): lsjn r I.

(b) .t2 - 2,r,2 :3

-{*r-
(c) .r'r : l.tl 5

In Exercises '72 ,.nd'73. (i) Use a graphing utility to graph

thc equation in the lirst quitdrilnt. lN.rt{,. To do this you will
have 1o solve the equation lbr ]' in lerms ofr.] (ii) Use syrn-

nrctry to mrke ir hand dlrwn sketch of the entire graph. (iii)
Confirnr your work by generaling thc glaph of the eqLration

in thc renraining three quadrtnts.

9.rr+,t11:36 p 73. 4tr * 16-r'r: 16

The graph ofthe equation .ri:rr + r':/r : 1. which is shown

in thc acconrpanying ligure. is called a /oar-cusped hypo-
cycloid.
{d) Use Theorem l.zl.3 to conlirrrr that this graph is synl-

metric about the .r-ilxis. the t -axis. and the origin.

(b) Find a tunction ./ whosc graph in ihe first cluadrarlt

coincidcs with the four-cLlsped hypocycloid. and use a

gruphing utility to conlirnr your wolk.

(c) Repeat pan (b) lbr the remaining three quadrants.

79. Is it ever true tlrat .l o3 : g o / if / and.g are nonconstant
functions'l [f not. plove iti if so. give some examples tbl
which it is true.

80. ln the discussion preceding Exercise 29 of Scction 1.3.

we gave a procedure lbr generating a conrplete grirph oi
f(x) - yt'i't in which we suggested graphing thc flrnctiorl

s(j) - rl/'/'i instead ol,l(-{) when p is even and u7 is odd
and graphing g(r) = 1 .r /,r)l,t i'l'? if p is odd rnd,/ is odcl.

Show that in both ciises ./(.1) - g(r) il-! > 0 or.r < 0.

[Hi?t. Show that l(-r) is an even fulction if p is even and

17 is odd and is an odd l'unction if p is odd and r7 is odd.l

(a) l(.r): hl
(c) /(.r) - [-r]r

E 72.

a 74.

Four cusped hypocycloid
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1.5 IVIATI-IIi/IATICAL MODELS: Lll\iEAR MODELS

It1 thi.t \k ti(r1 }l c ll i1/ r/i.i.rrr.i nuthcnntit ul uotle ling. thich it tltc pt-o((ss tltdt i.t

used lo a.yptct.s.t,:ictttiht ltur.s in ttnrlrcnttticul lirtn. We r ill ulso rcyicrt,sonte n,:ults
uhout littes u qtph tltos( t(sults to ntdtlt(tuuti(ul nu tling.

This section includes a quick rcvierv ofprecalculus rnaterial on lines. Readers who wlnt
to review this material in rnore depth arc rel'erred to Appendix C.

A nntlrcn1lical tod?/ ol a ph)'sical law is a clescription of thtrt l|u, in the lorguage of
nrirthcnrirtics. The prrxcss oi coustrucling ir nrilthe|laticill nroclc'l is callcd nalhenalical
nodeling. For cxanplc. suppose lhal 1\o !lr'irbl!'s..r and r'. rrrt lclatcd bl sorne phlsical
la\\' tl'rtl wc wouid like to dc'scribc by a mrlhcnlrticirl nrodcl. lvloclcls can bc cxplessed
in lclrrs ol'glaphs. tablcs. or equlrtiotls. r'anging fiorl sinrplc t<l cxtremcly cornplicllcd.
However. rnany inrpoltMt nriltl'rernalicrl nredcls uc sirnply eclLratioDs of the fblrl

that relal!' .r' and r'. For such ruodcls the tirndlmental ptoblenr is to find a llnction I
that rccuritlely dcscrilrs ll're ph\sicll rclrtioDsllip bctNee| the !il[iahles. Sonrctinres an

appropriatc lirnction / nrighl bc suggested by cxpclinrental datiL. in which casc we suy that
llrc m{)dcl is obtainecl indtuliyclt. and sonrctinrcs it might bc clcrivecl liorr sonre generll
theory prollosecl by r |csc lcher. in which cirsc wc sry lhat lhc rnoclel is obtained lcdrrrtitty'r'.

The nlllc tnctols one t.lkcs into llccount whcn crcllting a mrthcnatical modcl, the nror-e

conrplicatcd the model tcrrcls to become. so tlrcrr i\ alu,avs a balrnce to be struck bcl$,eer
kccping a nodel lnalhcnr t icall), simple and accoLrnting lirr all ol the phvsicrl tactors that
nright allect the relalionship between thc raliables. For cxanrple. il'a mcteorologist wcle
tlying 1r) r)odel the rclirtionslrip []etween thc spced o1'a Iainch op wltcn i1 hits the gr0uncl iutd
the heighl ol thc cloucl in rvhich it rvas tbrrnecl. then hc or she would cemainly hlvc to take

lil rcsistlnce into account. Howcver. the nlctcorologist woul(l likcly ignore thc glavitltional
pull of the plarct Pluto since its eiltct is so snrall.

Oncc il rn.rtlrenuticll rroclcl of a ph)'sicill Lr$ is obtained. it nay be possiblc to use

Inltlrcn'r ticrl l]]ethods 1o dcducc results irbou( thc physical world thrt ar-e no1 scll-cvident
ol havc never been obsclvccl. For examplc. th0 possibility ol placing a satellitc in orbit
arouncl the lfa h was dcclucccl rrlthematically li.om lsaac Newton's nrodel of mcchanics
neatly 1(X) yeirrs belirrc thc huochin-s o[ Sputnik- and Albert Einstein's relativistic n]odel
o[mechanics in l9l5 explrined a prcccssion {position shiti)in the'perihelion ofthe planet

Mercury that was not conlilnrcd by ph1'sical nrcusulcnent until 1967.

A lrood rrltheDraticrl nrodel is onc that prorluces results thal i![e consistcnt with ob
scr!ations in the physical world. lf a time conres when the rnathenriiljcal lcsnlts proclucecl

by thc nloclel do not ag|cc rvith real-rvorld obscrvations. then thc rnodel rnust bc abru-
clonccl in favol of a new nroclcl that cloes. This is thc natur.e ol lhc scientific method-old
modcls constantlt, being tcplaccd bl nerl uorlcls that more accuriltcly describe thc real

rvodd.

An equitlion that is expressible ir thc lil nr

/.t*8r'*C-0 (l)

wherc A rncl B are not bolh zcro. is called .\.firstdegree equation \t Lt.litrcar equatio ir
r ancl r'. It is shonl in prccalculus that er ery lirst-dcgtee equatioD in .r and -r' hils a stnight
line as its graph ancl. convcrsely'. ererl'straight Iine car be rcprcscnted by a lirst-dcgrree

equatioD ir'r .r and r . FoI this reason ( I ) is sonretiD)es called the generul eqr.ulir[ ol i] lioe.

A QUICK REVIEW OF LINES
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Recall that equations of lines can be written in scvcral di1l-elent fblms:

) - -\'r : /7?(r .rr)

DouhL.-inrc..ctr inmr (4)

(2)

(3)

(s)

(6)

In thcse equatioDs nr is tbe slope of the line, a is the.r-intercept, D is the 1 intelcept, and

(r1 . _r,1) is any point o[ the line (Figure 1 .5. l). Keep in mind that thcsc equations do not

apply to vefiicai lines. For vcrtical lines {he slope rs untlcfined, or stated infbrrlrally, a veftical
line has infnite slop€. Ve ical and horizontal lines have pa|ticularly sinple equations:

Thc vcricrl linc *nh r iire..epr r

Thc horirorul lnre $irh 1 lnrcrccfl ,

Figu.c 1.5.2

\-nt, t'

Figure 1.5.I

Equation (2) is especially usel'ul because the slope and the ,) intercept of the line can

be determined by inspection: the slope is the coeflicient of .r, and the -v intercept is the

constant term (Figure 1.5.2). This equation expresses I rs a fLLnction of ,r, the function
being l(.r) : n.r + b. A function ofthis fonr is callecl '.r linear function ol x.

The sloperl ofa nonverlical linet = nz-t *b has two important interpretations (wlrich are

related but different in vicwpoint):

. /?? is a measure of the slcc2rcss of the line.

. ,? is the rate of change of 1 with respect to i.

The steepness interyretation has an aniilog in surveying. Sutveyors measure the grade or

slope o1'a hill as the ratio of its rise over its run (Figure 1.5.34). The same idea applies

to lines. Consider a particle that moves lcft ro right along a nonvenical line fron a point

INTERPRETATIONS OF SLOPE

(fr. -r' )

P.(-r)..rr)

Figure .5 l

(,r )
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Pr(ri,l,r) toapoint P:(l:,,t':). In the course of its travel fie point moves 1,2 - l,L unit!
vertically as it tmvels 12 ,r1 units horizontally (Figure 1.5.30). The vertical change, which
is denoted by A'r - 12 - l,t, is called the nie, and the hodzontal change. which is denoted
by Ax : x2 - rl, is called the ran. The ratio of the rise over the run is aiways equal to the
slope, regardless of where the points Pl and 4 are localed on the line; that is,

a) )2-lrm:---
Ax x2-xl

(1)

ANGLE OF INCLINATION

REMARK. The symbols Air and A1' should not be interpreted as products; rather, A-r
should be viewed as a single entity representing the cr.ngc in the value ol' r. and A) as a
single entity representl|igthe chcnge in the value of _r. Il general, if u is any valiable whose
value changes from an initial value of ut to a final value of r2, then we call Au : u2 - rr
(final value ninus iritial value) an increment tl r. Increments can be pos itive or neg! ti! e.

depending on whether the final value is larger or smaller than the initial value.

The slope oi'anonvertical line a is related to the angle that L makes with the positive.! a\is.
If d is the smallest positjve angle measured counterclockwise fron the n-axis to Z, then

the slope of the line can be expressed as

m - taDO (E)

(Figure I .5.4c). The angle @, which is called the a ngle of inclination of the line. satisfies
0": d < 180" in degree measure (or, equivalently,0: d < zinladian ineasure). If @is
an acute aDgle, then m : tan 4 is positive and the line slopes up to the right, and if d is an

obtuse angle. then r? : tan d is negative and the line slopes down to the right. For example,
a line whose angle ofinclination is zt5' has slope z : tan 45" : l, and a line whose angle
of inclination is 135' has a slope of n : tan 135" : -1 (Figure 1.5.46). Figure 1.5.5

shows a convenient way of using the line r : I as a "ruler" for visualizing the relationship
between lines of various slopes.

i

-2

3 Negat ve

slope

Figure L5.5

SLOPES OF LINES IN APPLIED
PROBLEMS

(a)

Figure 1.5.4

(t )

ln applied ploblems, changing the unjts of measurement cao change the slope of a line,
so jt is essential to include the units when calculating the slope. The foilowing example
illustmtes this.

Example I
Suppose that a unilbrm rod of length 40 cm (: 0.4 m) is thermally insulated around the
lateral surface and that the exposed ends of thc rod are held at constant temperatrLres of
25'C and 5'C, respectively (Figure 1.5.6a). It is shown in physics that under appropriate

T!n
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I A I unit increase niaways
r.produces an ,,r-Lrn t change in r. 

,

Figure 1.5.7

4t)

(a)

in the two cases are
5 )5 -)Otn -- 

- -0.5 C/cm40040
5)S70

nt - = 5r, C/m
04-0 04

0 t020t0 10

D stance ir (cm)

(b)

0 0.1 0.2 0.3 0.,1

Distance -r (m)

(d

(e)

( 10)

:?o
I 15

! l0
9i

:20
I 15

s l0

F

Figrre 1.5.6

conditions the graph of the tempemture T versus the distance,r from the left-hand end of
the rod will be a straight line. Parts (D) and (c) of Figure 1.5.6 show two such graphs: one in
which r is measured in centimeters and one in which it is measured in meters. The slopes

The slope in (9) implies that the temperature decrcases at a rate of 0.5"C per centimeter

of distance from the lefi end of the rod, and the slope in (10) implies that the temperature

decreases at a rate of 50'C per meter of distance fiom the lefi end of the rod. Tlte two
StatementsareequivalentphySica1ly,eventhoughtheslopesdiffer<

Example 2

Find the slope-intercept form ofthe equation ofthe temperature distdbution in the preceding

example if the temperatrue 7 is measured in degrees Celsius ('C) and the distance x is

measured in (a) centimeters and (b) meters.

Sol ion @), The slope is /7? : -0.5'C/cm and the intercapt on the 7-axis is 25", so

f: 0.5r +25. 0:r540
wherc the restriction on -r is required because the rod is 40 cm in length. The graph of this
equation with the restriction is a line segment rather than a line.

Soltttiut (b\. The slope is il = -50"C/m, the intercept on the Z-axis is 25', and the

restriction on -{ is 0 : ,r : 0.4. Thus, the equation is

?= 50x *25. 0<r<0.4

lf I is a linear function of .r, say ) : ,?r + D, then it lbllows from (7) that

Al = lttA-r

Tl'rus, a 1-unit increase inr (Ar : 1) produces an r, -unit change in ) (A) : rr). Moreover,

this is true at every point on the line (Figure 1.5.7), so we say that ) changes at a corslo,?l

rulc with respect to x, and we call m the tate of change of y with respect to x. This idea
can be summarized as follows.

11.5,1 LTNEAR N4.ATHLM,{IIC,\L MODEI,5. If a vdriable y is telated to a variable x in 
I

'. such a wa\ tlnt the rate of change of y- \rith respect to x is conskLn.t. sq) m, then y is a 
,

litttor lut,,1irn 11 t ol tht lurnt
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It follows from this that linear models are lppropriate whenever experimentation or theory
suggests that the rate of change ol -r, with respect to .r is constitnt.

One of the important themes in calculus is the study of motion. To describe the ntotion of
an object completely. one must specify its speerl (how t'ast it is going) and the dircction in
which it is moving. The speed and the direction of motion together comprise what is called
the velocib, ofthe object. For example. knowing that thc speed ofan aircraft is 500 mi/h rells
us how tast it is going. but not which rvay it is moving. In contrast, kno\a'ing that thc velocity
of the aircraft is 500 lnri/h duc south pins do$'n the speed and the direcrion of motion.

Later. u'e will study the motion of particles tlrat nove along curves in two- or tltree-
dimensional space. but fbr now we will fbcus on trrotion alollg a line; this is called recdlinear
motion.In gene(Jl rectilinear rnotion, apa iclecan move bilck and forth aJong the line (as

with a piston moving up and down in a cylinder); however, lor no* we will oniy consider'
the simple case in which the pafticle moves in just orrc r/r'rzrtlan along a linc (as with a car
traveling on a stlaight road).

For simplicity, we will assume that the motion is along I coordinate line. such as an.!-ilxis
or,r'-irxis. and that the palticle is moving in the positive direction. In general discussions
we rvill usually name the coordinate line the r axis to tvoid being specific. A glaphical
description of rectilinear nrotion along an s axis can be obtained by making a plot of the
r-coordinale of the particle versus the elapsed time t. This is called the position versus time
curve for lhe particle. Figure 1.5.8a shows a typical position versus tine curve tbr a car
ntor ing irr Ihe po.itive direc(ion ll,,n! rn .'-r\i\.

(n)

I ()lt THF Rl.At)lilt. How can you tell from the position versus time curve in Figurc L5.8n
that the car does not reverse dircction'l

Because we are assuming that the particle is moving in the positive direction of the s-
axis, there is no ambignity about the direction of motion. rnd hence the terrns "speed" and
"\'clocity" can be used interchangeably. However. later. when we consider general rectilinear
motion or motion along a curvcd path. it wiil be necessary to distinguish between these terms,
since the direction of motion may vary.

For a particfe in rectilinear motion along a coordinatc axis, we deflne the average velocity
r,,," of the particle during thc time interval from /0 to 11 to be

sl -Jo (lt)
tt-to

0

ff-./,L V)
\/\r__/

Elapsed t me

@ I
t)

Figurc 1.5.8

AJ
Af

where se and ril are the.i-coordinates of the particle at times /e and tl. respectivcly. Ge-
ometrically, this is the slope ofthe secant line connecting the points (ro.so) and (lr.,rr)
on the position versus tirre curve (Figure 1.5.8/r). The quantity As : .rl se is called
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Figurc I 5 r)

the displscemett ot' chsnge in positiofl of the particlc durin-q the time interval frort tn to
1r . With this terminology, Forrrlrla ( I I ) strtes th.rt fbr a particle in rectilinear motion lrc
urenLge telotitt ot'er a ttfie itlletvLl i.s tltc tlisplutentett tluring the titlle intertal tli|iied
bt the lcttgth of tlrc tine itlt(t1ol. Fot example. il a cal moving in one direction along a

slraight road travels 75 niles jn 3 hours, then ils avcrage velecity is 75/3 :25 rni/h.
ln lhe special case where the average velocity ol a particle in rectilinear motion is the

sarre over cvcry lirne interval, the particle is said to have conJlant velocity tnd unifurm
rectilitrcar notiort.Il the avcrilgc velocity over every time interval is r. then we will reftr
to u as lhe reloclly ofthe particle (dropping the acliective 'average").

For a pa|ticle r,vith unilbnn rcctilincar motion 1he clisplaccmsnt ovcr 4rI tine irtervirl is

-s,iven by the formula

displacemert: velocity r elapsecl time ( l2)

Example 3

Suppose lhat a car moves with a colstant velocity of E8 ft/s in the positive direction of an

J axis. Civen that thc .r-coordinalc ol the car at tinrc I - 0 is s : 101). tind :in cLlurltion tbr
r:r, r irrnction o'r. rrd:r:rpl- t\e po.iti"n \etrr.\ lirre cur\e.

Sttlution. It firllows llonr ( I2) thaL in a period ol l sccoDds, thc clr will movc ll8l 1'cct

fr-onr its stalting point. so its coordinate.! irt time I will bc

i : l(X) * 88t

ThegrapholthiScquationiSthelineinFigurel,5.9.<

It is not accidentrl that lhc position vcrsus timc curve lurned oul to bc a line in the last
example: this will always be the case tbr unifbrm rectilinear motion. To see why this is so,

supposc thal a pa icle rnoves with constant velocity I in the positive direction along an

.! axis. sllllting ar thc point.r0 at time I - 0. lt follows fiom (12) that in I units of Limc Lhc

palticle will move i,t turits 1'rom its starting point se, so i1s coo.diniltc r a1 tine I will be

rvhich is a line with .r-intercept .rir and slopc u (Figutc 1 .5. l0). Tt tbllows frorn this equalion
ancl 1.5.1 lhal we can view the ve locity r as the rate of change of s with respect to /. that is.
llrerJrcrrl .hi.r!, ''t I','.irr''rt,.rith rr'1cct t.' tirrte.

Example 4

Figur-e L5.1 I shows the position Versus tinre cune lbr a particle noving along an ! axis.
Dcscribe the motion of the prfticle in words.

,Solutiorr, Attime . - 0theparticleis at the origin. From time / = 0tor = 2theslope
ol the line segnent is j. so thc palticle is moving with a constant velocity of j : 0.5 rr/..
At tinrc r - 2 the particle is at the point.r - I (i.c.. 1 mctcr from thc origin). Frorn tinre

t = 2 to t - 4 the slope of the line segrrent rs ]. .o the nJr cle is nror ing with a cqrstrnt
velociti'of]-l.5ni/s.Attimc1::titisa11hepoint.l-.1.<

In evcryda)' language we say that an obiect is "accelerating" if it is speeding up rincl 'decel-

el ating" if it is slowing do$ n. Mathenatically, the scceleratiott of a particle in rectilinear
motion is defined to be rhe rote ol change ol veloc itt' vrith rc.\pect to tinrc. whcrc thc acccl-

eriition is positivc il the velocity is increasing and negative if it is decreasing. Thus, for a

particle that moves in the positivc dircction of an s-axis. negalivc acceleration means the
particle is "decelerating' in cvcryday languagc. Acceleration, like velocity, can be variable
or constant. For example. by pressing thc gas pcdal of a car toward the l]oor smoothly. ll'ie
dliver crn makc the cal's velocity increiise at a constant ratc (il conslanl acccleratior'r); how
ever, ifthe driver suddcnly slams the pedal to the floor. the car will lurch for*ard. reflecling

Pos t on versus t rne curve for
a pad cle w th coord nate 11)

at time / = 0 and rnov ng w th
constant ve oc ty u

Iriqur. l5ll

CONSTANT ACCELERATION
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a nonconstant acceleration. Later in the text we will stucly acceleration in more depth, but
fbr now we will only consider the case in which acceleration is constant.

RL\lAliK. The units of accclcration are units of velocity dividcd by units of tirne. For
cxampie, if the velocily of a parlicle is increasing at a ftite of 3 ttet per second each second,
then its acceleration is 3 fr/s/s (velocity in ft/s <iivided by time in s); this is usually writren
as 3 ft/s2 (read "3 feet per second per second" or "3 feet per second squared"). Similarly,
if the velocity of a particle is decreasing at a rate of 3 fect per second each second, then it
has an acceleration of -3 ft/s2.

Graphical infomation about the acceletation ofa pafticle can be obtained fiom the grapll
of velocity versus timc; this is called the velocity versus time crrre. ln the case where the
particle has coDstant acceleration, the velocity versus time curve will be linear, and its slope,
which is the rate of change of ve Iocity with time, \\'ill be the acceleration (Figure 1 .5. 12).

Example 5

Suppose that a car moves in the positive dilection of an J-axis in such a way that its velocity
u increases at a constant Iate of 2 l't/s2.

(a) Assuming that the velocity ofthe car is slJ ft/s at time I : 0, find an equation fbr u as

a function of t.

(b) Make a glaph of velocity versus time, and mark the point on the graph at which the
car attains a velocity of 100 ft/s.

Sohliolt ((). Since the rate of change of r) with respect to r is 2 ft/s2, ancl since t, : 88
ft/s if r : 0, the equation for velocity as a lunction of time is

r=88+2r (13)

Solution (b). To find the time il takes fbr the car ro reach a ve]ocity of i00 ft/s, we
substiture u : 100 (13) and solve for /. This yields r : 6. The graph ol (13) and the
pointatwhichthevelocityreachesl00ft/SiSshowninFigure1.5-13'<

125

100

l5
50

25

u=llll+2r

2:l 6 8l0 l2l.llar l820

I Veloc ty versus time cuNe ior
. a pariic e wlih a veloc tv of 88fi/s
I at tlme /=0 and anov ngwlh a

i constaft acce eiation of 2 ft^2 
.

Fis re 1.5 1:l

Recali ftat a variable t is said to be dirs ctl! proportionsl to a vai able ir if there is a positive
constant k, called the constant of proportionelity. such that

l : &t ( 14)

The graph of this equation is a line through the origin whose slope fr is the constant of
proportionality. Thus. linear models are appropriate in physical problems where one variable
is directly proportional to another.

I Ve ocity verslrs t me curve lor
z oari. e wiih vel.. iv r, rt

, trme r = 0 and nrov ng with
I constani accelerat of a

Figurc 1.5.12

LINEAR MODELS FROM DIRECT
PROPORTION



i*i'il3: i:'tltli

-- 
--'(*

=
lt >

,| .-:
l.l-

!",

68 Frnctions

\ is d rectly proportional lo r.

Figure 1.5.14

Hooke s law* in physics provides a nice exanlple of direct proportion. lt follows fiom
tbis law that il a weight of .r units is suspended fiom a spring. then the spring will be

stretched by an amount \'that is dircctly propoltional to,r. that is, t : t-t (Figure 1.5.14).

Thc constant k depends on the stifl'ness of the spring: the stil'fer the spring, the slraller the
value of k (why?).

Example 6

Figule L5.15 shows an old fashioned spring scalc that is calibratcd in pounds.

(a) Given that the pound scale marks are 0.5 in tpart. fincl an equaliorl that expresses the

length -r, that the spring is stretchcd (in inches) in terus of the suspended weight r in
pounds).

(b) Graph the equation obtained in part (a).

Figure 1.5.l5

Soltttion \al. lt follows fioln Hooke's law that l is related to -r by an equatiorl ct1'tlle forln

.i, : /r,r. To find k we rewrite this equation a( ft - _y/r, and use the fact that a wcight of
-r = I lb stretches the spring r'- 0.5 in. Thus,

6

6l

5r

: 0.5 and hence r, : 0.5-r

Soltttion(b).Thcgr.aphoftheequation}'-0'5,riss1-rowninFigurel.5,l5.<

Sonretines linear rncdcls are suggested by glaphical data. Fot example, Figure 1.5.16a

shows a graph o l' ten.rperature vcrsus allitude that was transmitted by the Magellrrn space-

craft when it enterod the atmosphere of Venus in October 1991 . The graph strongly suggests

thal llrere is a linear relationship between tempcrature and altitude for altitucles between 3-5

km and 60 kn.

Example 7

(a) Use the graph tlansmiLted by the Mugellcrtt spacecrafl to find a linear model o1'lem-
perature vcrsus altitude in the Venusian atnosphere that is valid fol altitudes between

35 km and 60 km.

(b) Use the nodel to cslimate the temperatlrre at the sulface ofVenus. and discuss the

assunptions you are naking in obtaining the cstinlate.

" Hookc s lau', named lor thc English physicisr Robcrr llooke 11635-1703). applie! only lor small ,:lisplrrcenenls

rhxr do not strctch the \Drjn.q to the poirl oj pcrm.lnently tlistorling it.

I:0.s
-tl

LINEAR MODELS FROM
GRAPHICAL DATA
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Figll€ L5.16

Solution (a\, Let T be the temperature in kelvins and /r the altitude in kilometers. We will
tirst estilnate the slope rn of the linear ponion of the glaph. then estinate the coordinates
()1'a dala point (11 . f|) on that portion of the graph, and then use the poinGslope tbrn of a

line

The graph nearly passes through the point (60. 250), so we will take /r I : 6{) and I ,: 250.
In Figule 1.5.160 wc havc sketched a lile that closely approximatcs the linear portion of
the data. Using the intersections of that line with the edges of thc glid box. we estinate tlte
slope to be

100 490 390
r]1 ^. - :Y 8 125 K/knr78- )0 48

Substiluling our cstilrates ol /i L f1, and rr into ( 15) yields the equation

T-)5{l R l)5/r -r\lll
or cquivalently,

7' : -8.125h + 13',7 .5

LINEAR MODELS FROM
NUMERICAL DATA

Solfiion (b), The Mogellon spacecraft stopped transmitting data at an altitude of approx
imately 35 km. so we cannot be certain that the linear model applies at lower altitudes.
However. since rve have no other-data to work rvith. let us rrssairre that lhe model is valid
at all lower altitLides. in which case we can approximate the tcmpcraturc at the surface of
Venus by setting ft : 0 in ( l6). We obtain T ::131 .5 K.

RE\l,\llK. Thc nctlrod o[ the prcccding cxamplc is crude, at best, since it relies on ex
tracting rough estimrtes of numerical data fiorn a graph. Nevertheless. fie final rcsult is

quite good. since the most recent infonnation fron NASA places the surltica tenlperature
of Venus at rbolrt 740 K (hot enough to melt lead).

Orc rrretlrod lol Jeterrrririn! uhetlrerrr loints
(.rr. r'r), (r:, tr). ..., (.!,..1,)

lie on a linc is to comparc lhe slopcs ol lhe line segmcnts joining successive points. The
points lie on a line if and only if those slopes are equal (Figure L5.l7).



70 Functions

Table 1.5.1

; i-t l

1.5 . 0.3

2.5 1.1

3.5 1.9

s.5 6.7

OTHER APPLICATIONS OF LINEAR
FUNCTIONS

Successiv€ ne segments
,,have.the same slope. ,

Figure 1.5.17

Example 8

Consider the data in Table 1.5.1.

(a) Explain why a linear model is appropiate fbr the data in the table.

(b) Find a linear equation lhat relates -r and -r', and graph the equation and the data together.

Sohttiotr la). The flve data points lie on a line, since eaclr I r.tnit increase in r produces

a corresponding 0.8-unit increase in ) . Thus, the slope of the line segmenl jo in irrg an1 tw o

successive data points is

Av 0.8
n1 :----- - -:0.8Arl

Sttluliott lb). A linear equation relating .r and 1 can be obtained flom the point-slope form
ofthe line using the slope 17? - 0.8 calculated in parf (a) and any one ofthe live data points.

lf we use the first data point, (1.5. 0.3). we obtain

_r' - 0.3 : 0.8(-r 1.5)

or in siope-intercept form,

.r = 0.llr 0.9

ThegraphofthisequatiolltogetherwiththegivendataareShowninFigurel'5-l8'<

RENL\RK. Sometimes, data points that should theorelically lie on a iine do nol because of
experimental erlor and other factors. In such cases curve-fitling techniques are used to lind
a line that most closely flts lhe data. Such techniques will be discussed laler in the text.

Linear functions alise in a variety of practical problems. Here is a typical example.

Example 9

A university parking lot charges $3.00 per day but offels a $40.00 monthly sticker with
which thir stuclent pays only 1i0.25 per day.

(a) Find equations for the cost C of parking for,t days per nonth under both payment

metbods, and graph the equations for 0 : r : 30. (Treat C as a continuous function
of ,t, even though ';r only assumes integer values.)

(b) Find the value of -r fbr which the graphs intersect, and discuss the signilicance ofthis
value.

Solulion la). The cost in dollals of parking for ,r days at $3.00 per day is C : 3,r, and the

cost for Lhe $40.00 sticker plus.r days at $0.25 pel day is C :40 F 0.25 r (Figure 1.5.19).

r'=0.8-r-0.9

Fieure 1.5.l8

C=40+0.25.\

5 l0 15 20 25 :10

N!mber of park ng days

Figure L5.l9
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Solttion (b). The graphs intersect at the point where

3x:40+0.25,t
which is ,t : 40/2.'75 t 1,1.5. This value of x is not an option for the srudenr, since .r
must be an integer. Howevet it is the dividing point at which the monthly sticker method
becomes less expensive than the daily payment method; that is, for r - 15 it is cheaper to
buythemonthlystickerandfor.r:14itiScheapeItopaythedailymte,<

ExERclsE SET 1.5 E Graph ns ca culator

Exercises 1 26 involve thebasic properties oflines and slope.

In some of these exercises you wili need to use slopes to de

termine whedrer two lines are parallel or perpendicular. If
you have tbrgorten how ro do this' leview ooo":ot-r. 

"-:.. .., -,

l. (a) Find the slopes ol the sides ofthe triangle with veftices
(0, 3), (2, 0), ana (c, t).

(b) Is this a right triangle? Explain.

2. (a) Find the slopes of the sides of the quadrilateral with
vertices ( 3. l), (5. l), (7,3), and ( l,3).

rbl I. tlris a pdrallc'ogr;m? Erpl:tir'.

3. List the lines in the accompanying figure in the order of
increasing s1ope.

7,

Fisure Ex 4

Use slopes to determine whether the given points 1ie on the
same line.
(a) (1, 1), (-2, -5), and (0, -l)
(b) ( 2,4), (0, 2), and (1, s)

A particle, initially at (7,5), rnoves along a line of slope
,? : -2 to a new posirion (r,1).
(a) Find I ifr - 9.
(b) Fjndr if ): 12.

A particle. initially at (1,2). moves along a line of slope
nr : 3 to a new position (j, -'-).
(a) Find t ifr :5.
(b) Find r if y: 2.

Find .{ and -} if the line through (0, 0) and (-t, -y) has slope
. irnd lhe line lhroueh l,r. J 

r ,r.]J ,'7.5\ hu..lope 2.

Find * if,h" ,lop" ofthe line through (1, 2) and (r, 0) is the
negative of the slope of the line thl ough (4. 5) and (r, 0).

a4.

III

Figurc Ex 3

List the lines in the
increasiI1g slope.

accompanying figure in ihe order of
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In hxerci.e. l0 Jnd I l. finLl rhe Jnglc rf inclinclion of lhe line
with slope n to the nearesr degree. Use a calculating utiliry,
where needed

(b) m- t
(d) nr: -57
(b) ,n : I
(d) ,? :57

10.

11.

(a) nr: ]

(a) ,,1:-+
(c) n:-2

E 2s'

a 26-

(d)

Figure Ex-25

In Exercises 12 and 13, find the angle of inclination of the
line to the nearest degree. Use a calculating utility, where
needed.

12. (a) 3) =z .,6t (b) r-4:i+7=0
13. (a) ,r : r/:r + z (b) _1,+ 2i + 5 = 0

14. Find equations for the .r and I -axes.

In Exercises l5-22. find the siope-intercept form ofthe equa-
tion ofthe line satisfying the stated conditions. and check your
answer using a graphing utility.

15. Slope : 2, y-intercept:4
76, n=5.b:-3
17, The line is parallel ro -r' - 4-r - 2 and its _I-intercept is 7.

18. The line is parallel to 3x i 2y : 5 and passes through
(- l, 2).

19. The line is perpendicular to the equation ,r = 5.r * 9 and
has t'-intercept 6.

20. The line is perpendicular to .r - 4_r' : 7 and passes through
(3, -.t).

21. The line passes through (2. 4) and (1. 7).

22. The line passes through (-3.6) and ( 2. l).
23. In each part, classify the lines as parallel, per?endicular or

neither.
(a) l:4x 7 and ) :4.r + 9
(b) r, = 2r - 3 and_1, = 7 - +.(
(c) 5.r - 3l * 6:0 and 10.r - 6r'* 7:0
(d) Ar *81'-|- C : 0and B.t - At * D :0
(e) ) - 2 : rt(.t - 3) and 1 - 7 : J 

(J. 3)

24. Iu each part, classify the lines as para1lel. peryendicular. or
neither.
(a) .r' - 5-r* I and,r' - 3 -5.r
(b) r - I -2(r -3)and_r'-4= 1(-r+7)
1cr 4r 51 7=Uand5r-4r- q--0
(d) A.r + B) + C =0and A-r * Br'* D =0
(e) 1=].tandr:]r'

ln Exerci.es 25 lnd 26. u.e rhe graph ro hnd the equd(i,rn of
the line in slope-intercept tbrm. and then check your lesult
by using a praphing urilir) ro grJph rhc equarion.

(d) (h)

Figurc Ex-26

The accompanying 6gure shows the position versus time
(ur\e tbr J p.rni.le moving rlong an.r-ari".
(a) What is the velocity of the particle?
(b) What is the -r-coordinare of the particle ar time I = 0?
(c) What is the -(-coordinare ofthe panicle at time t = 2?

(d) At what time does the particle have an -r-coordinate of

Figurc Ex-27

A paniclc moving along an r-axis with constant velocity is
at the pointr: I when t:2and is at the point ,r : 5

(a) Find the velocity of the particle if r is in meters and I
is in seconds.

(b) Find an equation that expresses -r as a function oi 1.

(c) What is the coordinate of the particle at time t = 0?

A particle moving along an x-axis with constant acceler-
ation has velocity u : 3 ft/s ar time I - I and velociry
u=-lft/sattimet=4.
(a) Find the accelerarion of the particle.
(b) Find an equation that expresses u as a function o1't.
(c) What is the velocity ofthe particle at time r :0?

27.

E
E
E
E

E

E

E
E

2A-

29.



33.30. The accompanying figure shows the vclocity versus time
(ur'\e lorJ prflicle mor'n-, Jlulg lhc \.J\r..
(a) What is the acceleration of the particle?
(b) What is the velocity ol'the particle at time 1 : 0'l
(c) What is the velociiy ol the pa.ticle at time 1 : 2'l
(d) At what time docs thc particle have a velocity of 

"- 
: 3

ftls'l

Figure !x 30

31. The accompanying figure shows the position verslLs timc
curve i,r ir pJ Ii. lr morirrU.rlurr! .rn ' :rrir.
(a) Describe the motion of the particle in words.
(b) Find the irverage velocity of the particle from 1 - 0 to

t:10.
(c) Find the average speed of the particle from . : 0 to
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A locomotive travels on a straight track at a constant speed
LJi -10 llri h. _r1'e\ eh(, Jtrect ton ttrLl retLrr\ tn \ \rat tlnd
point. traveling ar a constant speed of 60 mi/h.
(a) What is thc average velocity for the round tuip?

(b) What is the average speecl tbr tl're round-t p'l

(c) What is the total distance naveled by the tr.rin if thc
total trlp took 5 h?

A ball is tossed straighr up at lilne r : 0 wirh an initial re
locity ol64 fi/s. Wc will show later LLsing basic principles
of physics that the velocitv ol the ball as .l function ol'time
is r :6,1 32r.
(a) What direction is the ball travelins 3 s al'ler it is re-

leased? Explain your reasoning.

(b) At what time does the ball reach its rr.raxirnum height
:rbo\e rhc pfnLn,l.'I rpl.rin rou r'cr.nn r'

(c) What can you sav allout the acceleration of the ball?

A car is stopped al a toil booth on a straight highway. Start
ing at time / : 0 it accelerates at a constant ratc of l0 ft/sl
lbr I 0 s. It then travels at a constant speed ol I 00 fi/s fbr 90
s. Al thal tirne it begins to decelerate at a constant .ate ol'5
1i/s2 ibr 20 s. ar which point in time it reacltes a full srop at

a traffic light.
(a) Skctch the velocitv versus time cutve.

(b) Erpress u as a piecewise tunction of t.

N'lake a reasonable sketch ofa position versus time curve for
a particle that moves in the positivc -r-direction with positivc
constant accelcration-

A spring with a natu.al length of 15 in stretches to a length
of 20 in when a 45 lb object is suspended fion.r it.
(a) Use Hooke's law to ltnd an equation that expresses the

length i that the spring is shetched (in inches) in terms
oi the suspended weight r (in pounds).

(b) Graph the equation obtained in pafi (b).

(c) Find the length ol'the spring when a 100 lb oblect is

suspendcd fiom it.

(d) What is dre largelt weight that can be suspended from
the spdng ilthe spring cannot be stretched to more than
twice its natural lengthJ

The spring in a heavy-duty shock absorber has a natural
length of 3 tt and is compressed 0.2 ft by a load of I ton. An
additional load of -5 tons compresses the spring an additional
I tr.
/irl A..Jmin!'lhil Hnnke . a irlpl;e. tJ LUnrpre\\ nrl n.

well as extension, find an ecluation that expresses the
length _\' that the sp ng is compressed from its natural
length (in feet) in tenlls of the load -r (in tons).

(b) Graph the equation obtained in part (a).

(c) Find the anount that the spriDg is conlplessed lr'om its
natural lcngth by a load ol 3 tons.

(d) Fincl the maximrur load that can be applied lf salety
regulations prohibit compressing the spring to less than
half its natural length.

34.

3s.

36.

38.32.

Figure Ex-31

The accompanying llgure shows the
cuNe for a pa iclc moving along an

rnotion of the particle in words.

vebcity versus lin'le
r-axl\ Descrihe the

Figrre Ex -12



39.

In Exercises 39 and 40, confirm that a linear model is ap
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plopriate for the relalionship between -,r and,r'. Find a linear
equation relating r. and _r'. and verify that the data points lie
on the graph of your ecluation.

40. :nI-i 0 2 5

:y I 12.6 10.5 6.3 0

4
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Figure Ex ,16
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,15. Suppose that the rnass of a spherical morhball decreases

witlr tir'ne. due to evaporation, at a rate that is proportioDal

to its surface area. Assuming that it always retains the shape
oi a sphere, it can be shown tlrat the radius r of the sphere

decrcascs lincarly with the time r.
(a) If, at a certain instant. the radius is 0.80 mm and 4 days

later it is 0.75 mm, llnd arl equation fbr r (in millimeters)
in terms of the elapsed time / (in days).

(b) How long will it take lbr the mothball to completely
evaporate?

,16, TlIe accompanying figure shows three masses suspended

from a spring: a mass ol l1 g, a mass o1'24 g, and an un

known mass of lV g.

(a) What will the pointer indiclrte on the scale if no mass is

suspended?

(b) Find w.

11. There are two coInlnon syslems for mcasuring tcmperature.

Celsius and Fahlenheit. Water freezes at 0'Celsius (0'C)
and 32'Fahrenheit (32' F); it boils at 100' C and 2l2'F.
(a) Assuming that the Celsills lemperature 7c and the

Fahrenheit temperatule IF arc related by a linear equa

lion. 1l nd the equation.
(b) Wirat is the slope of the line Ielating ?p and Ic i1 I,' is

plotted on the horizontal axis?
(c) At what temperature is the Fahrenheit reading equal to

the Celsius reading?
(d) Normal body temperatLrle is 98.6'F. What is il in '' C?

Thermometers are calibrated using the so-called "tlip]e
poinf' of water, which is 273.l6 K on the Kelvin scale and

0.0 I 'C on the Celsius scale. A one-degree diflerence on the

Celsius scale is the sane as a one-degree difference on the

Kelvin scale. so tllerc is a liner relationship between the

tcmperature 76 in degrees Celsius and thl] temperature &
in kelvins.
(a) Find an equation that relates Tc tnd, Tr.
(b) Absoltne zero (0 K on lhe Kelvin scale) is the tem-

perature belolv which a body's temperature cannot be

lowered. Express absolute zero in "C.

To fte extent that water can be assumecl to be incompress

ible, the pressure p in a body ol water va es linearly with
the .iisfence /? helow lhe srLrface.

(a) Given that the pressue is I atmosphere (l atm) at the

surlace and 5.9 atm at a dcpth of50 m, lind an ecluation
that relatcs pressure to deplh.

(b) At what depth is the pressure twice that al the surface?

A resistance thermometer is a device that determines tem-
perature by measuring the resistance of a fine wire whose

resistance varies with temperature. Suppose that the lesis-
tance R in ohms (Q) varies linearly with the temperalure
7 in 'C and that R : 123.4 Q when 7 = 20'C and that

R-l33.9Qwhen/:45'C.
(a) Find an equation for R in telms ol1.
(b) If R is rneasured exper imentally its 128.6 f2, what is the

tcmperature'l

The price for a round-trip bus ride fiom a university to cen-
ter city is $2.00. but it is possib)e to purchase a monthly
commuter pass fbr $25.00 with which each roLrnd trip ride
costs an additional Xio.25.

(a) Find equations for the cost C of making .r round tdps
per nonth under both paymeni plans, and graph the

eqLrirtions fbro : r : 30 (treating C as acontinu-
ous iunction of r, even tholrgh r assumes only integer
values).

(b) How many round-trips per montl'l would a studeit have

to make tbl the comr'r'luter pass to be worthwhile?

A student rnust decide between bllying one of lwo used cars:

car A for $'1000 or car B for X;5500. Car A gets 20 miles
per gallon ol gas, and car B gets 30 miles per galion. The
student estimates that gas will run $1.25 per gailon. Both
cars are in excellent condition. so the student feels that re-
pair costs should be negliglble for the foreseeabie future.
How many miles would the student have to drive before car
B becomes the better buy?

(The Age ofthe Universe) ln the early 1900s the astrononer
EdwinPHubble(1889 1953) noted an unexpected reiation-
ship between the radial velocity ofa galaxy and its distance.l
liom any relerence point (Earth, lor example). That relation-

30

47.
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48.
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49.



ship, now known as Hubble's lav, states that the galaxies

are receding with a velocity I ihat is directly proportional to
the distance .1. This is uslrally expressed as u : H./, \\,here

H (the constant ot' piopor1ionality) is called Hubble's cott-
Jl4nl. When applying this formula it is usual to expr-ess r,

in kilometers per second (km/s) and d in millions of lighr
years (Mly), in which case H has units ol kn/s/Ml)'. The
accompanying figure shows an originirl plol and lrend line of
the velociiy clistance relationship oblained by Hubbie aDd a

collaborator Milton L. Humason (1891 1972).

(a) Use the trend line in ihe figure to estimate Hubble's
constant.

(b) An estinatc ol the age of the universe can be obtained

by assuming thal the gala\ies nove with constant ve

locity u, in which case ! and / ale related by./ : NI.

Assuming that the Universe began with a "big bang"
that initiated its expansiorr, show that the Universe is

roughly 1.5 r l0r0 years old. [Take H : 20 km/s/Mly,
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which is in keeping wilh cuu-ent estimatcs that place 11

between 15 and 27 km/s/Mly. (Note that the cunenr
estimates are signilicanlly less than that rcsuiting liom
Hubble's data.)l

(c) ln a nore realistic model ofthe Universe, the velocity u

would decrease with time. What eflect woLrld that havc
on your estitnate in part (b) l
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FAMILIES OF LINES

1.6 FAfinlLlES 0F FunlCTi0thlS

Functio s are oflen grouped into.fanilies actortling la the Jbrn of their de.fining.t'br-
nttrkrs or other (ommotl (hdidcteristi(s. In this scttioti we u,i// disor.r.r sonrc ol the

nrost hasic Iamilics ot' fun<'tiotts.

This secliotr includes quick reviews of prccalculus material on polynomials and

trigonometry. Readers who want to review this material in more depth are referred to
Appendices E and F. Instructors who want to spend some additional tirne on precalculus
review can divide this section into two pafis, coveing the tigononetry material in a

sgcond lecture.

A 1'unction f whose values are all the sa re is called a constant function. For example, the
fomula /( r ) - . delines the constant fLnctior wl'rose value is c for all r. The glaph of tlre
constant function l(-r) : c is the horizontal line l : c (Figure l.6.la). If we vaty c, then
we obtain a set or /arzil-|, of horizontal lines (Figure L6.1b).

Figure L6.1
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REMARK. The expression ./(x) : c can be confusing because it can be interpreted either
as an equation that is satisfied for certain r (as in x2 = c) or as an identity that is satisfied
for all x; it is the latter intelpretation that deflnes a constant function. Thus, when you see

an expression of the fonn /(r) : c, you will have to detennine from its context whether it
is intended as an equation or a constant functioD.

The quantities n and , in the equation ) : r??r + D can be viewed as unspecified constants

whose values may change from one application to another; such changeable constants are

called parameters.
If we keep D fixed and vary the parameter rn in the equation ]' : rrr + r, then we obtain

a family of lines whose members all have )-intercept , (Figure 1.6.2a); and if we keep llz

fixed and vary the parameter r, then we obtain a family ofparallel lines whose members all
have slope lz (Figure 1.6.2b).

,-"rt,b r-tn-|t
rDt joard,rrr,rlr eJ r,',' 163p67'n"|r.g,

(a\ (b\

Figure L6.2

Example I
(a) Find an equation fol the family of lines with slope I.
(b) Find the nember ofthe family in part (a) that passes though the point (4, 1).

(c) Find an equation for the family of lines whose members are petpendicular to the lines

in part (a).

Sohttion (a). The lines of slope I are of the fonn

v:\x+b (l)

where the parameter D can have any rcal vdue.

Solutinn (b). To find the line in the family that passes through the point (4, l), we must

find the value of 1, for which the coordinates r = 4 and ) : I satisfy (1). Substitutirg these

coordinates into ( 1) and solving for D yields b = - I, and hence the equation of the line is

)=jr-1 (2)

(Figure 1.6.3a).

Soluthn (c). Since the slopes of perpendicular lines are negative reciprocals, it follows
that the lines perpendicular to those in pafi (a) have slope -2 and hence are of the tbrm

y = 2xtb
sometypica1lineSinfani1ieS(1)and(2)aregIaphedinFigurel.6.3D.<

.......','.-.....

,-/.-.'.
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THEFAMILYy=x'

Figurc 1.6.3

A function of the form /(-r) : .r /', where p is constant is called a power function. If p is a
positive integer, say p : fi, then the power functions have the fbrm / (-r) : ,r". The graphs

of the curves l = r" fbr r : l, 2, 3, 4, and 5 are shown in Figure 1.6.4. The first graph is

the line r' - x with slope I that passes through the origin, and the second is a parabola that
opens up and has its vertex at the origin (see Appendix 2).

Fot tr > 2 the shape of the graph of 1' : r" depends on whether r is even or odd
(Figure 1.6-5). For even values of ,r the graphs have the same general shape as the parabola

,r' : .r2 (though they are not actually parabolas if l > 2), and fol odd values of r greater

than I they have the same geneml shape as r :.{1. The graphs in the family r :,r" shae
a number of important characteristics:

For even values of fi the functions J(x): t" arc even, and their graphs are syrnmetric

about the l axisl for odd values of ,? the functions JQ) : x" ffe odd, and their gmphs

are symmetric about the origin.

For all values of fl the graphs pass through the odgin and the point ( I , l). For even

values ofn thc gnphs pass through ( I,l),andforoddvaluesofntheypassthrough
(- l. l).
lncreasing ,r causes the graph to become flatter over the interval I < .r < I and

steeper over the intervals x > I andr < l-

Itl-lN,lARK. The last characte stic can be explained numerically by considering the effect of
raisilg a real number :r to successively higher power s, lf.r is a liaction, that is, l<;r < I,
then the absoiute value of .r" clecreases asn increases (try raising ] or ltohigherand
higher powers, for example). This explains why successive graphs in Figure L6.5 become

flatter over the interval -l < r < I . On the other hand. if x > I orx < -l,thenthe

Figure L11.4
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r'= r, ]

I O, oaat :

FiSure i.6.5

l,=.
I (ir even) 

.

THEFAMILYy=x-n

absolute value ol x" intreuses as ir iltcreases (rry raising 2 or' 2 to higher and higher
powels). This explains why successive graphs become steepel if,,; > I ot ,r < i.

If p is a negative integet, say 17 : ,, thell the power lunctions f(x) : at' have the fonn
/(.r) : .t-" : l/-r". Figule 1.6.6a shows the graphs of r, : i/r and l : l/r2. and
Figule 1.6.6b shows how these glaphs lelatc to other members ofthe tamily. The gtaph of
-r : l/.t is called an equilateral hyperbola (fbr reasons to be discussed later).

1
..1 = lA

1

1

1

(' t) (1,)

For odd values of /? the graphs have tho sanrc gcneral shape as ) = l/.r, and for even

values of n they have the same geleral shape as -\' = l/r2. The graphs in the fanrily
l : 1/,t" share a number of important characteristics:

. For even values of'1 the functions /(.r ) : 1/r" are even, and their graphs are symmetric
about the t -axis, for odd values of r thr; functions I (.r) : .r" are odd, and their graphs

are symmetric about the origir.

. For all values of r the graphs pass through the point (l, 1) and have a break (called

a discontiftuity) af the origin. This is caused by the division by zero that occurs when
.;r : 0. For even values ol ir the graphs pass through ( l. 1), and for odd values of n
they pass through ( 1, 1).

. lncreasing fl causes the gmph to become stgeper over the interval -1 < ;r < 1 and

flatter over the intervals r > l andr < -1.

| ) = l/rr'
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Rl]N,lARK. The last characteristic can be explained numerically by considering the effect ol
raising the rcciprocal ofa number,{ to successively higher povrers. Ifr is a nonzero fraction,
then it lies in the interval -l < -r < I, and its reciprocal satisfles l/-r > 7 ot l/x < l.
Thus, as a increases the absolute value of l/r" also increases. This explains why successive
graphs in Figure 1.6.6 become successively steeper over the interval - 1 < -{ < I . On the
other hand, ifr > 1or.:r < -1,then 1< 1/-r < 1. Thus, as n increases the absol ute value
of 1ft" decreases. This explains why successive graphs in Figure 1.6.6 get successively
flatterifr>lor,v< 1.

If p = 1/r, wherc ir is a positive integer, then the power functions ,f(.r) = r/' have the
form /(r) : x\ln - {)4. In particular, if ir : 2, tl.ren .f (.rl - n, and if ir : 3, then

.f(") : Jt. The graphs of these functions are shown in parts (a) and (b) of Figure 1.6.7.
ObseNe that the graph of y : NT extends over the entire,{-axis beoaLrse f(r) : Jr is
defined for all real values of ,r (every real nunber has a cube root); in contrast, the graph
e1 -y = ^rG 

only extends over the nonnegative x-axis (negatiye numbers have imaginarl
square roots). Observe also $at the grrph of r' : uA is rhe upper hllf of the parabola
;y : y2 lFigure 1.6.7c).

For even values of r the glaphs ef 1 : {4 have the same general shape as 1, : .7G,
and for odd values of, they have the same general shape as r' : ]T.

liOR fHl- RLADER Sketch the graphs of y = tx for n : 2,4,6 on one set of axes and
for a : 3, 5, 7 on another set. Use a graphing device to check yorLr work.

Power functions can aiso have fractional or iffational exponents. For example,

/tr)=,\'. lrr., = /r'. /(.rJ =,r 
-P and /(.r) -.{J2 (3)

are all power functions of this type; we will discuss power functions of these forms in later
sections.

Iro R TH 1- READER. Read the note precading Exercise 29 of Section 1 .3, and use a graphing
utility to generate complete graphs of the functioDs in (3).

Recail tlrat a variable y is said to be inversely proportionul to o vuriable x if there is a
posilive constant k, ca\\ed the constant of proportionality, su.ch that

k
)= (4)

Since I is assumed to be positive, the graph of this equation has the sane basic shape as

]' : l/-t but is compressed or stretched in the r direction.

Figure 1.6.7

POWER FUNCTIONS WITH
FRACTIONAL AND IRRATIONAL
EXPONENTS

MODELS INVOLVING INVERSE
PROPORTIONS
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Boyle's Law (P = k/Y)

\

Observe that in Fomula (4) doublingr decreases ] by afactorof l/2, ffipling.{ decreases
y by a factor of 1/3, and, more generally, increasing.r by a factor of r decreases y by a

factor of 1/r .

Models involving inverse proportion arise in various laws of physics. For example,
Boyle\ law in physics states that at a constant tempemturc the pressure P exened by a

fixed quantity ofan ideal gas is inversely proportional to the volume y occupied by the gas,

that is,

k

v
(Figure 1.6.8).

If y is inversely proporlional to x, then it follows from (4) that the product of ], and

x is constant, since y.rr = [. This provides a useful way of identifying inverse propollion
models in experimental data.

Example 2

Table 1.6.1 shows some experimental data.

Table 1.6.1

(a) Explain why the data suggest that y is inversely proportional to r.
(b) Express ) as a function of r.
(c) Graph your function and the data together for r > 0.

Solution. For every data point we have xy : 5, so ) is invenely proportional to.{
y : 5/r:. The graph ofthis equation with the data points is shown in Figure 1.6.9.

and

As the volume of the gas changes,
the temperature control unit adds or
temoves heat to maintain a constant
temperature.

Figure 1.6-8

A detailedreview ofpolynomials is given in Appendix R but for convenience we will review
some of the teminology here.

A polynomial in .x is a function that is expressible as a sum of finitely many terms

of the forrn c:rn, where c is a constant and /1 is a nonnegative integer. Some examples of
polynomials are

12345678910
Fieure 1.6.9

A QUICK REVIEW OF POLYNOMIALS
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2x + 1. 3-t? + 5-t ^,/t, rr. 4 (:4,t0), 5r7 ta + 3

The function ("'?- +)r is also a polynomial because it can be expanded by the binomial
fbrmula (see thc inside front cover) and expressed as a sum of terms of the iom cr":

(rt 4)t : (.")t : (r'z)'? {+) + 3(r'?)(42) - (,1r) : '6 r2.r4 + .18nr 64 (5)

A general polynonial can be written in either of the following for-ms, depending on

whether one wants the powers of r in ascending or descending order:

cotcrr*czr2+. + c,,,t"

t:,,x" + c,, tx't I 1. .* cr-t + co

Thc constants c0, c 5 . . . . c,, are called the coefficients of the polynomiai. When a polynorrial
is expressed in one of these fbrms, the highcst power of .r that occurs with a nonzero

coefficicnt is called the degree of the polynomial. CoDstants are considered to have degree

0, since we can write c : c,r0. Polynomials of degree 1, 2. 3. 4, and 5 alc dcscribcd as

lbtear. quadratic, cubic, quartic, and 4ainric, respectively. For example.

3+5,r

x2 3r*l

2l -7
8,x4 - 9.rl + 51 3 Has.legEe:l (quanicl

V5+"r+.r5

("' '+)'

The natural domain ofapolynomialin r is ( o, 1 z), since the only operations involved
are multiplication and addition; the lange depends on the parlicular polynomial. Wc aiready

know that the graphs of polynomials of degree 0 and I are lines and tbat the graphs of
polynomials of degree 2 are parabolas. Figure 1.6.10 shows the graphs of some typical
polynomials of higher degree. Later, we will discuss polynomial graphs in detail, but fot
now it suffices to observe that graphs ofpolynomials are very well behaved in the sense that

they have no discontinuities or sharp corners. As illustrated in Figure I .6. I 0, the graphs uf
polynomials wander up and down for awhile in a roller-coaster fashion, but eventually that

behavior stops and the graphs steadily rise or tall indellnitely as one travels along the curve

in eithel the positive or negative direction. We will see later that the number of peaks ancl

valleys is determined by the deglee of the polynomial.

A fulction that can be expressed as a ratio of two polynomials is called a /afiola l.function.
If P(r) and 0(r) are polynomials, then the domain ofthe rational funclion

Pl-rJ
ft.rt: 

-
" QG)

Has degrcc I (linclrl

Hrs dcgrcc 2 (quadillic)

Has desree 3 (cubic)

H$ dcgrcc 5 GLrinl'c)

Hls desree 6 tsee (5)l

Figure L6.l

E''*rl
0

RATIONAL FUNCTIONS
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.rl + Lrt=; 
'

Figure l.6.ll

consists of all values of .r such that 0(.r) f 0. For exarnple, the donain of the ralional
[unction

.rl + l.rl{.\')= _\- - |

consists ofall values of r, cxccpt .r - land.l: -1. Its graph is shown in Figure 1.6.11

along rvith the graphs of two other typical rational f'unctions.

l=.l r. l

Thc gmphs of rational functions with nonconstant denominators difler l-rom the graphs

of polynornials in some essential ways:

. Unlike polynomials whose graphs iue continuous (unbroken) curves, the graphs of
rationill functions havc tliscontinuities iLt tl]e points whele the denoninatrrr is zero.

. As -i gets closer and closcr to a point of discontinuity, thc graph rises or fnlls incle6-

nitefy. getting closcr and closer to a vertical line. called a verticsl asJ,nptotct thcsc Ne
represented by the drshed vertical lincs in Figure I .6. I I .

. Unlikc thc graphs ofpolynonrials, whiclr eventually risc or flll indefinitely, the graphs of
rrany (bu1 not all) rational functiors eventually get cleser altd closer to some horizontal
linc. callcd a lrorizantal asymptote, as one travels along thc curve in either the positivc

or negative direction; these lrre reprcsented by the dashecl horizontal lines in the lirst

two parts of Figurc 1.6.1 l. tn the third part of the ligure the .r axis is a horizontal
asynrptotc.

Funclions that can be constructed fiom polynomials by applying finitely many algebraic op-

erations (addition, subtraction, division, and loot extraction) L.'fe c'dlled qlgebrsic ftutctiorts.
Some exarnples are

./t.tr= u4, -+. l(.r):3JT(2+.r). /{,r) : ,r:t:,.t * r,'
As illustratcd in Figulc L6. I 2. the graphs of algebraic functions vary u'idely, so it is diflicult
to makc general staternents about them. Lalcr in this text we will develop genct al ca)culus

nethods lbr aDalyzing such ftlnctions.

A dctailcd rc\'ie$' of trigonometric functions is given in Appendix E. but for convcnicnce
rvc will surnmarize some of the main ideas here.

It is otten conr,enient to think of the trigonometric f'unctiorts in telms of circlcs ritther
than tdangles. For this purposc, considcr I point that moves eithel clockwisc ol'counte]-

3

r:+ I

ALGEBRAIC FUNCTIONS

A QUTCK REVTEW OF
TRIGONOMETRIC FUNCTIONS



Figure 1.6.12
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clockwise along the unit circle u2 + u2 : 1 in the a u-plane, starting at ( l, 0) and stopping at
a point P (Figure l.6.l3a). Let x denote the signeil arc length naveled by the moving point,
taking .I to be positive for counterclockwise motion and negative for clockwise motion.
(We allow for the possibility that the point may traverse the circle more than once.) When
convenient, the variable x can also be interpreted as the angle in radians that is swept out
by the radial line from the origin to P, with the usual convention that angles are positive if
generated by counterclockwise rotations and negative if generated by clockwise rotations.
We can define cosr to be the a-coordinate of P and sin-r to be the u-coordinate of P
(Figure l.6.l3b).

The unit circle x2+ u2 = I

(a)(a) (r)

Figurc 1.6.i3

The remaining tdgonometric functions can be defined in terms of the functions sin r and
cos r:

sn.r
tan x : 

-
cos.r

I
SeC r : 

-
cos-f

cos .r
cot.t : 

-
sln J

1

sinr
The graphs of the six trigonometric functions in Figure 1.6.14 should already be familiar
to you, but try generating them using a graphing utility, making sure to use ndian measure
for x.

REMARK. In this text we will always assume that the independent variable in a trigono-
metric function is in radians unless specifically stated otherwise.

12345

(1,0)

P(cosi, sin -r)
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.r' = col.t

Figure 1.6.I'1

PROPERTIES OF sin x, cos x,
AND tan x

Many of the basic properties of sin.,ri and cos.r can be deduced liom the circle definitions

of these functions. For example:

. As the point P(cos,r. sin r ) moves aound the unit circle, its coordinates vary between

- 1 and l. and hence

-l 5sinn51 and -1 :cosxSl
. If .r increases or decreases by 2z radians, then the point P(cos,r. sinr) makes one

complete revolution arnund the unit cilcle, and the coordinates retum to their starting

valucs. Thus, sin -t and cos r have period 2ri that is,

sin(.r * 2z) : sin,r-

cos(.r+27)-cos,r

. As P (cos,r, sin r) moves around the unit circle, sin -r is zerc when P is on the horizontal

axis (which occurs when.I is an integet tlultiple ofz), and cos-t is zero when P is on

the vertical axis (which occnls when ,r is an odd multiple of z/2). Thus,

sinr :0 if and only il ,r :0. tn,l2r.J-3tr,...
cos,\ :0 ifand only it r - tr/2. t3n/2. +5tr/2. ...

. As P (cos ,v, sin -t ) moves around the unit circle !]2 + u2 = I , its coordinates satisfy thii
equation for all -t, which produces the fundamental ttigononetric identity

cos2'r+sin?-r=l



Figurc L6 l5

RADIANS AS A DIMENSIONLESS
UNIT

t\

/ ','
/,(6 !

i ll s in rad ans

Figurc l.aJ.l6
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Observe that the -qraph of r' : tan r has vertical asymplolcs at thc points \ : +n12,
flirl2.t5z/2.....I'hisisiobecxllcclcdsincctan,i-:sint/cosr.rndthesearethe
values of r at u,hich cos t is zelo. What is less ohvious. hou'ever. is the fact thal tan.r repcats

every n radians (i.e.. hrs period lz). even tholrgh sin-r and cos.r have period 2r. This cirn

bc cxplained by interpreting

sin r-

tarl -\ - cos.r

ls the slope of the line I that passes through the origin and the point P (cos.\ . sir.\ ) o1l the

unit circle in the r/ir-planc (Figurc. 1.6.l5). Erch linle .r increlses or decreases by ir riicliar]s,

thc poil1{ P traverses halfthe ci|cunrferencc. rncl thc linc L rotiltc! z rrdians. srr its \tJrtiDg
ancl cnding slope are the sane.

The choicc ol radial lreasure as opposed io degree measure depends on the nirtlr.: ()1'the

problenr being consiLlcrcd: degree measure is usually chosen in engiueering problens iir
volving measurelnents ol angles, and racliar lrcasurc is usually choscn whcn thc functiorr
propcrtics ol sin \, cos.\. tln-\. ... afe the prinrary fbcus. Radian measure is also Lrsnally

chosen iI problerrs involving arc Jengths on circles because of the blsic lesull in lrigonorr
etry which states that the arc lcDgth .r of a scckn rvith ladius r and r ccntlal lDglc ()1 /)

(raclians) is given by

s=re (6)

(Figure L6.16).
In applicatiOns involVing unglcs. raclians rccluire special trealnrenl to ensure lhirl quirnli

ties arc rssigrcd proper uuits. To see r.vhy this is se. let Lrs rewrite (6) as

.t0-

Thc lcli side ol'1his eqllxtion is in radians. arrcl the right side is ihe ratio of tu'o lengths. say

lneters/neters or ftct/l'cet. However. becilLrse these units of leugth cancel, the r.ight side of
this cqLration is irctLrLtlly tliDttl\ionlt.\.\ (has no unils). Thus. to cnsLrre consistellcy between

the lwo sidcs ol'the equatiou. we would have to ornit the urliis of mdians on thc lclt sidc

10 nrake it dimensjonless as wcll. ln practical lenns this rneiins that units of radians can be

uscd in intermediate computations, whcn convcnienl, bLrt they need to lre or]ritted in lhe end

resull to ensure corsistency of units. This is conlusing. to say the lea\I. but the lollorving
exrrrplc should cllrit-v the i.lel.

Example 3

SLrpposc llritt 1wo satellites cilcle the ecluator in an orbit of radius i : -+.]-l ^ lU rn

(Figule 1.6.17). Find the arc iength r thai sepi,Lftrlcs thc srtcl]itcs il llley have an angulat

scparation old :2.00

Solutiort, To apply Folmula (6). we must convert the argular sepu.atiou to t.aditns:

2.oo' - 
n (2.ool :0.03:19 r'ad

180

Thus, fiom (6)

.\ : rd - (,1.23 r l0r rn)(0.03:19 rad) - l.'18 x 106 m

In this computation the producl rd prodLlccs unils ol nleters x ladians. but if u'e tt eat t adians

as dimcnsionlcss. we have lneters x radians - meters, $'hich correctly prodLlce\ Llnits ol
meters (m) tbr the arc length r.

figurc l.6.ll
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THEFAMILIESy=AsinBx
ANDy=AcosBx

Many important applications lead to lr'igenonretric functions of the folm

./(r)-Asin(B-t-C) and .q(-r) =Acos(B-r-C) (7)

where A. B. and C are nonzero constants. The graphs ol such lunctions can be obtained by
strclching. comprcssin-q. translating, and reflectilg the glaphs of r' = sin.t and .l -cos.r
applopriatell. To see why this is so. let us s1arl with thc case whele C : 0 and consider
hou, the glaphs of the ec]uations

.\ : A sin lj-r and r' : ,4 c,ls B-r

rehle to the graphs of r' - sin r and r' - co\ r- If A and B are positive. then the cfi'cct of
the constant A is to stletch or corrpress the graphs of r : sin.r and t, : cos-r ve|tically
by a factor of ,'1, and the effect of the constant B is to cornprcss (n stretch the graphs of
sin r and cos,r horizontally by a tactor of B. For example, thc graph of -r, 

: 2 sin 4 r can be

obtained by stretching the gr-aph ol r' - sin.r vertically by a fack)r o1' 2 anci compressins it
horizontally by a factor of,1. (Recall fron Section 1.4 that the multipliel of r -rt"/.t?c.! when
it is lcss than 1 ancl rorrpr.erses u,hen it is greater thrn l.) Thus. as shown in Figure 1.6.18,

the graph of r' - 2 sin 4.r varies betu'een -2 and 2, and rcpcals cvery 2r/4 : iz/2 units.

Figuri'I6.l8

ln genelal. if A and B are positive numbers. then the graphs of

) :AsinB-r- ancl l :AcosBt
oscillate between A and A and repeat ever)'2.r/B urrtr. so we \ii) thal llresc lunctions
have amplitude A and period 2tr I B . I n addition, we de li rtc thc frequency of these tunctioos
to bc the rcciprocal ()1 the period, that is. thc ficquency is B/2n. Tf A or B is negative.
then thcsc constants cause relleclions o1'lhc graphs about the axes as rvell as compressing
oI strctching them; and in this case the anrplitude. pcliocl, ancl frecluency;ue given bv ;11.

2rl B . antl Bl/2r. r'cspcctivcly.

Example 4

Make skelchcs ol the lbllorving graphs thal show tlre periocl and amplitucle.

(a) r':3sin2r.r (b).i: 3cos0.5.t (c) r':1*sinr

,\olulion \ol. Thc equalion is of the lbnn.r' : AsinB-r ivith A - 3 md B - 2;r.
so the graph ha\ the shape of a sine function, but u'ith arnplitude A : 3 and period
2:rl B - 2n/2tr - I (Figure l.6.l9a).

Soltrlion(h). The equation is of the for m r : A cos -B.r with A : -3 and B :0.5, so the
glaph has the shape of a cosine function that has been rellected about the r-axis (because

A : -3 is negative), but with amplitude Al : 3 and periocl 2tr/B - 2tr/0.5 : hr
(Figule 1.6.19b).

Solution (tl. The graph has the shape ofa sine function that has been translated up I unit
(Figure 1.6.19.).

.r = l\in 4\
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AmpLtude Ampliiude

Figure 1.6.19

(c)

To investigate the graphs of the more general families

):Asin(B,r C) and y:Acos(Bx-C)
it will be helpful to rcwrite these equations as

u-,c,in[s/-" t\.l end v-e"""lr/,..-!'l l- L \ B /.1 L \ B/)
In this fom we see that the graphs of these equations can be obtained by translating the
graphs of y : A sin Br and ) : A cos Br to the left or right, depending on the sign of
C/-8. For exarnple, if C/B > 0, then the graph of

) : A sinlB(r C/B)l=Asin(Bx-C)
can be obtained by translating the graph of y : Asin-Bx to the right by C/B units
(Figure 1.6.20). The quantity C/B is called the phase sftfi of the function; a positive
phase shift corresponds to dght tanslation, and a negative phase shift corresponds to a lefr
translation.

Example 5

Find the amplitude, period, and phase shift of

u: 1"n. lzt + 1\\ 2t
and confirm your results by gnphing the equation on a calculator or computer.

Solutiott, The equalion can be renritten a:

f , n,1 f , Jf Iy:rcosl2r ( ,ll =.tcos12(r ( 4))l
which is of the form

.,,:Acosl"/'-9)l' | \ B/t

THE FAMILIES y = A sin(Bx - C)
ANDy=Acos(Bx-C)

Period

p

Fieure 1.6.20
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with A : 3, B - 2. and C/B : -z/4; thus, the graph has the shape of a cosine
function, but with amplitude -A : 3, period 2t/ B : r, and phase shitt CIB : -t/4
(Fieure 1.6.21).

Example 6

Frgve 1.6.22a shows a table and scatter plot of temperature data.ecorded over a 24-hour
period in the city of Philadelphia.* Find a function that models the data, and graph your
function and data togethe..

I'ROM l:00 A.M. TO 12:00 MIDNIGHT ON 27 AUGUST 1993

./ = HOIJRS AFI'FR MIDNIGH'I' AND 7= DFGRF,FS FAHRFNHFIT)

P.M,

I i00
2:00

3:00
4:00
5:00

6:00

7:00

8:00

9:00
10:00
i l:00
12:00

78'
'1',l"

71'
'76"

76"
'7 5"
'7 5"
71'
79"
83"
87"
90'

91'
93"
91"
95"
93'
92'
89"
86"
84'
83"
81'
'79"

l
2

3

4
5

6
'7

8

9

10

ll
t2

13

1,1

15

l6
l1
t8
19

20
21

22

23

24

Scatier p ot of data

10. 2sl x 170. 1001

tT

(.a)

Nlodel for data
?= 85 + 10sinl(?7/12)(r- 10)l

[0, 25] x [70, 100]

tT
(b)

Saurce: Philadelphia lnquirel, 28 ALrg!st 1993.

Figure 1.6.22

Solution. The pattern of the data suggests that the relationship between the temperature
7 and the time r can be modeled by a sinusoidal function that has been translated both
horizonrally and vertically, so we will look for an equation of the form

Since the highest temperature is 95 " F and the lowest temperature is 75'F, we take 2A : 20
or A : 10. The nidpoint between the high and low is 85'F, so we have a vertical shift of
D : 85. The period seems to be about 24, so 2r/B :24 or B : n/12. The phase shift
appears to be about 10 (verify), so C / B - 10. Substituting these values in (8) yields the
equation

(Fie\re 1 .6 .22b) .

*This 
exanple is based on the aticle "Everybody Talks About Itl Wealher InvesdgatioDs." by Gloria S. Dion

and his Bl"m Felta, ?le Mdthematics Teacher, Vol. 89, No. 2, February 1996, pp. 160 165.

(8)z : D+AsinlBr - cl : D*Asin [t t, ;)]

f r I7-8s+l0sinlt2ir 10)l

Figure L6.21
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ExERclsE SET 1..6 El CrapfngCalcuator
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In rddition to the functions mentioned in this section. there are exponential and logarithmic
tunctions, which we \\,ill study later. and various spccial ftrnctions that arise in physics and

engineering. There are also nrtrny kinds of functions that have no nurnesi indeed, one of the
imputant themes of calculLrs is to pr ovidc methocls fbr anaiyzing new types of t'unctions,

(a) Find an equation forthe fanily oflines whose membcls

have slope lr : 3.

(b) Find an equation lbr the member of the ianrily tlrat

passes through (- l. 3).

(c) Sketch some members of the famil5. irnd label thenr

with their equations. lnclude the line in part (b).

Find an equation for the family of lines rvhose membe$ arc
peryendicular to tlrose in Excrcisc l.
(a) Find an equation lbr the fanily of lines with ,r-intercept

b :2.
(b) Find an equation lbr the member ol thc tamily whose

angle of inclination is 13-5' .

(c) Skctch some menbers ol the tanily. and label thenl

with their equations. hrclude the linc in part (b).

Find an equalion fbr
(a) the farnily ol lines that pass through thc cn igin

\b) rhe lJmily ol line: wrth r intercept (r : I

(c) the family of lines that pass through the poinl ( l. 2)
(d) the familyof lincs parallel to 2.\.*.h = l.

In Exercises 5 and 6, stilte a geomet c ptopeny common to
all lines in the t'amily. and sketch llve of tlte lines.

5. (a) The tamily r : -r * b

(b) The family r' : rrt.t I

(c) The family ,r' = at(.t. -i- .1) * 2

(d) The fhmily .r - kr' : I

6. (a) The t'amily t' : /r

(b) The family Ar + 2l. + I : 0

(c) The family 2.t * IJ,t * I :0
(d) The family r' - | : nr(r * 1)

7. Find an equation lbr the tamily oflines tangent to thc circlc
with center at the origin and radius 3.

8. Find an equation fbr the iamily of lines lhat pass through

thc intersection of 5.r - 3J + Ll - 0 and 2.r - 9r'i 7 = 0.

9, The U.S. lnternal Revenue Service uses il lo-year iinear de-

preciation schedule to determine the valuc of various busi-

ness items. This means that an item is assumed to haYe il

value of zero irt the end of the lenth year and that at in(er-
mediate tinres the value is a lineal luDction of the elapsed

time. Sketch some typical depreciltion 1incs. and explain
the practicai signilicance of the i -interccpts.

Find all lincs through (6. l) lbr which the producl ol lhc
r- and r'-intercepts is 3,

ln each part. nrittch thc equation witlr one of the accompa-
nying graphs.

(a) r:7f
(c) -r' = - l/.r s

(er\:V.\-'

Figurc E)i I I

The tablc iD thc acconlpanying Iigu|c givcs approximate vll-
Lres of three fLlnctions: one ol'lhe lirnn i-rl. one of the fi:t m
l.r r. and one ol the fbrm k.rl/1. Iclentily rvhich is which.
and estimate k in each casc-

10.

,,

3. (b) l'= 2r.s
(d) r' : 8'
(f) r' : l/8'

4.

t2.

_t 0.15 0.ir7 2.1 '1.0 5.8 6.1 1.9 9.3

f(-r) 6,10 191 1.08 0.156 0051.1 0.0420 0.0203 0012.1

s(i) 0.03l2 0.068.1 l.l0

/r{r) 0.150 0.150 6.09

Figure En ll

8.00 l6.r.t

16.0 t7.9

:t t.2 41.219.2

:t0.9
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ln Exelcises l3 and 1,1, sketch the graph of the eqlLation lbr
n : I. 3. and 5 in one coorclinate system and for n : 2, 4.

and 6 in another coordinate system. Check yoL[ work witl] a

gr,lphing utility.

252.5 5 l0 1.5 20

0.1 r .0 L4 1.7 2 2.3

d
(meters)

t
tseconds) ()

E
tr

13. (a) -r' : .t" (b) r:2-r " (c) r-(J-l)rirr

-r': 3(.t+2)r''
Sketch the glaph of 1 : a.r2 lbro - t I,42, and *3
in a single cooidinate systenl.
Skerch the g.aph of y : -vr + D lbr D : t]. *2, and

t3 in ir singlc coordinate syslem.
Sketch some typical nernbers oi the family of curves

Sketch the graph ol 1 : ,t JV tor a : t 1 . t2. ancl {3
in a single coordinate system.
Sketch the graph of 1 : t/r l bfotb- *1,*2,and
a3 in a single coordinate system.
Sketch lome typiczrl members of the lamily of curves

Figure Er 23

(a) The table below provides data on llve moons of lhe
planei Saturn. ln this table r is the arbital radius (lhe
average distance between the moon and Saturn) and r is
the time in days required for the rnoon to coinplete one

orbit arouncl Saturi. For each clata pair calculate tr 3/2,

and use yoLlr results to find a reasonablc model for r as

a function of t.

(b) Use the nrcdcl from part (a) to cstimate the orbital ra-
dius ol the moon Enceladus, given that its o.bit time is
r ! 1.370 days.

(c) Use the model liom part (a) io estimate the orbit time
of the moon Tethys, given that its orbital radius is
/-! 2.9467 x 105 krn.

Moon Radius Orbit Tirne
( 100,000 km) (days)

t.3'/61
1.3935

1.4110
1.5142
1.5147

21.

.14.

15.

(r)
(c)

(a)

(h)

(c)

16. (a)

(b)

(c)

E

E

E

E

r980s28
19E0S27

1980S26
1980s3
I 9,30s I

0.602
0.613
0.629
0.691
0.695

)'- tlJ\ + b

In Exerciscs I 7 20. sketch the -sraph of the ecluation by mak

ing appropriate t|ansibnrations 10 the graph of a basic power'

lunction. Check youl work with a graphing utility.

17. (a) ) - 2(-r + l)2 (b) 1 - 3(i. 2)r_.r Ilcl \ (, lrr rLll ' ,r-.r)'
18. 'r" I .r-2 rbr r', I ''/':

rcJI L'l i 
' 25'' LL\l r l -l-.r.1

19. (a) r':lr+l (b)i:l-v6-:
(c) !-(r-l)5+2 (d) ]-lir

r 
-tl

20.(a) \'-1+- (b) r: t+2.. -t,
2(c)r:; (d) r':-tr+2r

Skctch the graph ol -r - -vr F 2.r by completirlg the squarc

and making lppropriate transfornations to the graph of

(r) Use the graph of r' = y[ to help skelch the graph of

l' : .,,,4;1.

(b) Use the graph ol,r - Jt to help sketch the graph of

) : i/l;l
The table in the accompanying figure provides data about

the relationship bel\&een distance 1 traveled in meters and

elapsed time / in seconds lor an obicct dropped near the

Earth's sudace. Plot rime ver-sus distance and make a guess

at a 'square root function ' that provides a reasonable model

lbr t jn terms ofr/. Usc r graphing utility to confirm the rea

sonableness ol your guess.

As discussed in this section. Boyle's law states that at a con-
stant temperature the pressure P exerted by a gas is reLated

to the volume V by the equation P : k/V.
(a) Find the appropriate units for the constant t if pressure

(which is fblce per unit area) is in newtons per square

meter (N/m2) and volume is in cubic meters (mr).

(b) Find t if the gas exefts a pressure of 20,000 N/mr when

the volume is I litcr (0.001 mr).

(c) Make a table that shows the pressures tbr volumes of
0.25. 0.5, 1.0. 1.5. and 2.0 liters.

(d) Make a graph ol'P versus Y.

A mantfactwer of cardboard drink containers wants to con-
struct a closed rectangular containcr that has a square base

and will hold ,1 liter'(100 cnr). Estimate the dimeDsion oI
thc container that will require the least arnount ol material
for iis manLlfactllre.

A variable 1 is said to be inversely proportionalto the square
of a variable x if y is rciatcd to -r by an equation of the tbrm

) = t/,t2, whcre,t is a nonzero constant, cal\edlher, statut

of proportiottalitJ. T his teminology is used in Exercises 27

and 28.

26.

21.

22.

E 23.



)1 According to Coulomb's law. the lbrce F of attraclion be
tu,een positive and ncglrtive pojnt charges is inversely pro
porlional lo thc squilre of the distance r bctween them.
(a) AssurrinS thirt the force ofattractio between two poinl

charges is 0.0005 newton when the distancc between
them is 0.3 meter. find the constiint of proporlionality
(rvith propcr units).

(b) Find the lblce of attraction between the point charges
when lhev arc 3 mctcrs apart.

(c) Make a graph of force versus distance for the ttvo
chargcs.

(d) What happens to the force.is the particles get closer-and
closer together'? Whel happcns as thcy get ftrlhei and
farthel apart l

I1 l'ollo$,s i-orn Nervton's UniversalLaw ofGravitation thiit
the weighl l{ ol an object (relative ro the Ear'lh) is invcNely
ploportional to the square of the distance r bctween the
object and tlre ccnter of the EarTh. rhar is. W : C lx' .

(a) Assullring that a wealher satellite \\,eighs 2000 pounds
on the suface ofthe Earth alld that the Earth is ir spltere
ol ra,:lius 4000 miles. llnd the constant a .

{b) Flnd the weighl ol lhe satellite when it is 1000 miles
above the su ace ol the Eatth.

(c) Make a graph ol the salellitc's weight versus its distance
f'rom the centel ol the Earth.

(d) ls there any dlstance fioln thc center ol the Earth al
which the weight oi the satellite ii zero? Explain your
reasoning.

In each part, match the equrtion rvith onc of the accompa
nying graphs. and give the equations fbr the ho zontal rnd
vefiical asymptotes.

l3l f:-' \']
2rl

\" + |

1.6 Families of Functions g1

30. Flnd an equarion of the forn ) : l/(.rr + /7_r + .) whose
glaph is a reasonable match to that in fie accompanfiug
liuulc. Check youl work wirh a graphing utilitV.

Figurc [x 30

| ' Erih r.e. 1l irnd l'.\lfJ\\ I r'.r<lmllrrc lr.rtl thc.rr qrn r',lL
the given ang1e. and determine whetl'tel the six trigonometric
lunctions are positive. negative, or-undeiined for that angle.

28.

-ll. t:r, 
T rbr 'r' 1'

t j tt' 
J

-5/ llrrd\ -t ,.r 
; 

ait _

lr 5r
32. r:r' h' . )l4

5'r/dl . ,er ,l ,t.r

iT

332

1
29.

(b) r:
(d) -t:

.i. I

,t-t ., ()

4

(-r + 2):

In Exercises ll ancl 34. irse I calculating Lrtility set to the ra
dian mode to confiin the approximations sin(r/5) - 0.588
and cos(r/8) :: 0.924, ancl then use these values to approx
imitte the given expressioDs by hand calculation. Check yoiU.

rnswcrs using the tli-sonomctric function operations ol your-
calculatine utility.

4t
33. (a) sin _)

7t(l ) ,ro\
u

(e)

.r4. (r) \in (b)
5

tar "i'' { a) (cr\ t6 /

, r, Illr(bt tos l-- I lct sil, lt/ 5

(l) cosr I
5

41"r(c) sin
5

(f) tanr I
IJ

.2n
sln

5

/ l7i \
uor I I

\ 8/
21t

cos
8

35. Assur-ning that sin.y : ,r. cos B = /r. and tan 1., : .. express

tl'le stated quantities in telms ofa, D, ancl c.

(a) sin( cr )

,1
1d1 rinl- ryl\]
(g) sin(2p)

() csc(d + r)

(b) cos( -fl)
(e) cos(..r ,8)

(h) cos(28)

(k) col(/ + 5r)

(c) tan (-ll)

(l) sin(d + n)

(i)

(t)

sec(p + 2rr)

',"'(f )FgurF. lt)



36.

92 Functions

A ship travels from a point near Hawaii at 20" N latitude
directly north to a point near Alaska at 56' N latitude.
(a) Assuming the Eafih to be a spherc of radius 4000 mi,

nnd the actual distance traveled by the ship.

(b) What fraction of tie Earth's circumference did the ship

travel?

The Moon completes one revolution around the Earth in ap

proximately 29.5 days. Assuming that the Moon's orbit is a

circle with a radius of 0.38 x 10e m from the center of the

Earth, find the arc length traveled by the Moon in I day.

A spoked wheei with a diameter of 3 ft rolls along a flat Ioad
without slipping. How far along the road does the wheel roll
if the spokes turn thrcugh 225" 1

As illustrated in the accompanying figure, suppose that you

holdonequarter flatagainsl a tablewhile you rotate a second

quarter arcund it without slippage. Through what angle will
the second quarter have tulned about its own center when it
retums to its or-iginal location?

37,

38.

39.

Figure Ex-39

40. Suppose that you begin cutting wedge shaped pieces from a

pie so that the arc lerlgth along the oLLter crust of each piece

is equal to the mdius. what fraction of the pie will remain
after all pieces that can be cut in this way are eaten?

ln Exercises 4l and 42, find an equatiorl fb1 the gl aph assum

ing lhar there '' no phJ'e .lrill.

Figure Ex 42

In each pafi, flnd an equation for the graph that has the tbrm

):yo+Asin(Bt-c).

Figurc Ex 43

44. In the United States, a standard electrical outlet supplies

sinusoidal electrical current with a maximum voltage of
y : 120/2 volts (V) at a frequency of 60 cycles per sec-

ond. write an equation that expresses y as a function of the

time /, assuming that Y : 0 if I : 0.

In Exercises 45 and 46, f,nd the amplitude, period, and phase

shift, and sketch at least two pedods of the graph by hand.

Check your work with a graphing utility.

43.

E 45. (a) ) - 3 sin4;r

(c) ):2+cos(;)Figurc Ex 4l

(b) ): 2 cos z,



g 46.

a) 47.

(a) 1: I ,lsin2r (b) r : ]cos(3-r z)
,X

(c) r:-+sin( +2'rl- lJ /

Equations oi the lbrr

.r - A I sin rrt + At cos rrl

arlse in the study ol vibrations and other perioclic motion.
(a) Use the trigonomeflic identity lbr sin(a + r) to show

that this equation can be expressed in the fbrm

,r:Asinkl+d)

1.7 Paranretric Equat ons 93

(b) Slale lbDrulas that express ,,1 ancl l,t in terms 01 lhe con-
stanls A t. A). and a).

(c) Express the equation

. : 5l/3 sin 2zr + I cos 2zr

in the lbmr \ : A sin(a,i+ar), and use agraphing utility
to conJl r tl'rat both cquations have the same grliph.

E :18. Detennine the nLnrber ol solutieus of .r : 2 sin.r, and use
a graphiDg or calcuiating utility to estimate theln.

PARAMETRIC EQUATIONS

1.7 PARAM6TFilC EQUATt0ntS

Tluts fttr, our sndt o.f graplts ltus focu:;ed on graphs of finttiorts. Hotteyer, bec:ttuse

such grttph.t nrttl pas\ the |erlical line lest, tllis lintittniott preclutles turt,es v:ith self
itler.\eclions or et'ett ,suth busit: trut,es ds circ[cs. Itl /hi.t su:tiar we will ,study an
ulf(rn(live rnatluxl lbr tlescribing curtes al,qebraiLuLlt thfi is ttot subject to the .\etere
re\trit:tiot of the verlicul line test.

This material is placcd here to provide an early paranetric opLion. However. :t can be
deltrred until Chapter 12, if p.eterred.

Suppose that a particle noves along a curve C in the -\.\'plrne in such a way that its .r- and

t -coordinates. as functions of time. are

.\- l(t). .\': g(/)

We call these the pora etric equatiorts ol rnotion fbr tbe particle and refer to C as thc
trajectot! of the particle et the graph of the equations (Figulc 1.7.l). The variable t is
ca|Ied the parqmeter fol lhe equatioDs.

Example 1

Sketcll the trajectoly over 1he time interval 0 : t :
equati0ns 0l' m01ion are

-r:/ 3sin/. r'-4 3cos/

I0 of the palticle whose paranetic

(1)

A mov ng pad c e w ih tralectory C

Figure 1.7.1

S|lution. One way to skctch the tra.jeclory is 1(] choose r representative succession of
times. plot the (.r. \') coordinittes ofpoints on the trajectory at those titnes, and connect thc
points with a smooth curve. The trajectory in Figure 1.7.2 was obtained in this way fuonl
Table L7.I in rvhich the app|oximate coor-dinates ofthe particle are given ar tilre incrcmenls
of I urit. Observe that there is no r axis in the picturc; thc values of t appear only as labels
on the plottcd points. and even these are Lrsualiy omilted unless it is important to elr.lphasize

thelocation0ftheparticleatspeciiictimeS'<

l oR ll [ ]r ,\ r ) Ltt Read the documentation for your graphirlg Lr til ity 10 learn how to graph
piuametdc equalions, and then generate the trajectory in Example 1. Explore the behavior'
of thc particle be)'ond limc t : 10.

Although parametric equations commonly arise in problems of motion with time as the
parameter, the), arise in other contexts as well. Thus. unless the problem dictates that the
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Table 1.7.1

;ri j! )
l

0 0.0 1.0

I i.5 2..1

2 0.7 5.2
3 2.6 ',7.0

4 6.1 6.0

5 7.9 3.1

6 6.8 l.l
7 5.0 1.1

I 5.0 4.4

9 7.8 6.1
10 I1.6 6.5

palamefer / in the equations

-r : l(I). .],: s(1)

reprcsents time, it should be viewed silnply as an independent vadable that \ aries over some

interval of real numbers. (ln fact. there is no need to use the letter a for the parameter; any

Iettel not reserved fbr anothel purpose can be used.) If no restrictions on the parameter are

stated explicitly or implied by the equations, then it is understood that it varies from !. to
+-. To indicate that a parameter t is restricted to an interval ln, bl, u'e rvill write

Figurc 1.7.1

-r: /(r), )'-,s(t) (a<t<b)

.r : cos/. 1,= \tnl (o < t 
=2n)

Example 2

Find the graph of the parametr ic equations

Lr=cosi.t =\rn/
rn <, ! )-l

Figure 1.7.3

Solutiotr, One way to find the graph is to elininate tire parameler I by noting that

,r2+.2:sin2t+cos?r:1
Thu s, thc graph is the unit circle -r 

I + r'2 : 1 . Th is result can also be deduced geometrically
by interpreting I as the angle swept orLt by the radial line from the orisin to the point
(-r, r) : (cost. sinl) on the unit cilcle (Figure 1.7.3). As r increases from 0 to 22, the
point tnces the circle counterclockwise. starting at ( 1 . 0) when I : 0 and completing one

full revolution when l = 22. One can obtain dil'ferent portiols of the circle by varying the
inlerval over which the parameter varies. For exanple,

(2)

(3)

ORIENTATION

,r:cosl, ) -sinl (0:I:n)
repreSentSjuSttheuppersemicirc1einFigure1'7.3'<

The direction in which the graph of a pair of parametic equations is traced as the parameter

ilrcleases is called thc direction of increasing parqmetet or sometimes rhe orientqtion
imposed on the curve by thc equations. Thus, we nake a distinction between a c fl,e,
which is a set of poir-lts, and t\ parqmetric curve. which is a curve with an orientatiou
imposed on it by a set of parametric equations. For example, we saw in Example 2 that the
circle represented par-ametrically by (2) is traccd counterclockwise as I increases and hence

has c oLtntertloLl;u,ise orientatiott. As shown in Figures 1.7.2 and i.7.3, the orientation of a
parametric curve can be indicatcd by alrowheads.

To obtain par-ametric equations for thc unit cilcle u,ith ckxkv'ise oricnrtlt' rr, \\e can

rcplace t by -1 in (2), and use the identilies cos(-l) - cos I and sin(-t) : - sin t. This
y ields

r : cosf. sinr (0: / :2/r)



.t = cos (-r), r'= sin ( /)
(o<t<2n)

Fisurc 1.7..1
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Here. the circle is traced clockwise byapointthat stans at (1,0) when r :0and completes
one lull revolution when t = 2z (Figure 1.7.4).

lroli IHIT.READEII When parametric equations are graplted using a calculator, tite oden-
tation can often be determined by watching the direction in which the gnph is rrflced on the
screen. However, many computers graph so tast that it is olle! hard to discern the orien-
tation. See if you can use your graphing utility to confirm that (3) has a counterclockwise
orientation.

Example 3

Graph the parametric curve

by eliminating th" parameter, and iDdicatc the orientation on the graph.

Soltttiott, To eliminate the parameter we will solve the fi$t equation for / as a function
of .r, and then substitute this expression for / into the second equation:

r: (]) 1r+3)

,y = 6(l) (-r+3) -7
,v=3.,r+2

Thus, the graph is a linc of slope 3 and _r,-intercept 2. To lind the odentation we must look
to the original equations: the direction of increasing t can be deduced by observing that
,r increases as t increases or-by observing that l increases as I increases. Either piece of
informationtellsusthatthelineiStraced1efttorightasshowninFigurel.7.5.<

l{F.\l \RK. Not all paramettic equations produce curves with definite orientations; if the
equations are badly behaved. then the point tracing the curve may leap around sporadically
or move back and forth, failing to determine a definite direction. For exampJe, if

.r = sin l, -r = sin2 t

then the point (i, t') movcs along the parabola J : ,r2. However, the value of ,r varies
periodically between - I and l, so the point (.r. r) moves periodically back and lbrth along
the parabola between the points (-L I) and (1. 1) (as shown in Figure 1.7.6). Later in the
text we will discuss restrictions that eliminate such erratic behavior- but fbr now we will
just avoid such complications.

r=l/ -1, i=6r-7

(r.0)

\

"/
(.1. r)

Figure 1.7.6Figure 1.7-5
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EXPRESSING ORDINARY
FUNCTIONS PARAMETRICALLY

GENERATING PARAMETRIC
CURVES WITH GRAPHING UTILITIES

\=3rj 5r'r+1..r'=r
1.5<r<1.5

Figorc L.7.8

An equation l : 
"f 

(r) can be expressed in parametric form by introducing the parameter
f : .{: this yields the paramelric equations x : .. -\, : ./(r). For example, the ponion of
the curve -\' : cos r over the interval [ 2n. 2r] can be expressed parametrically as

-r'-I. ) =cosr (-27r=t 
=2it)

(Figure L7.7).

Figurc 1.7.7

Many graphing utilities allow you to graph equations ofthe fo11,1 : f(x) butnotequations
oftheform-r-.q(,r).Sometimesyouwillbeabletoreu,1i1g-s=g(1)intheform-y:/(.r):
howcver. ifthis is inconvcnient or impossible, then you can graph r : g(l) by introducing
a parameler t - r'and exprcssing the equation in the parametric form ,r : C(1), r" = /.
(You may have to experimcnt with various interyals for t to produce a complete graph.)

Example 4

Use a grrphing utility to grirph lhe equarion \ 315-5r:+1.

Solutiort. lf we let l : r' be the parameter. then the equation can be written in parametric
fonn as

r :3r5 - 5rl + l, .r'= /

Figure1.7'8shorvsthegraphoftheseeqrrationSfor_l'55ls]'5.<

.,r = llcos / Tcos(31/7)r
\ - 3lsin i -7sin (31/7)r

(0<1< l,h)

Figrre l.?.9

.r = lTcos I + lcos (17l7)t

r = lTsh r 7\in (17l7)r
(0<r<l.h)

.L = cos / + d;)c;s 7;; (r/3)sin 17r

.r = sin / + (1/2)sin 7r + (l/3)cos 17r
(-5<r<5)

Some parametric curves are so complex that it is virtually impossible to visualize them
without using some kind of graphing utility. Figure I .7.9 shows three such curves.

FOR THE READER. Without spending too much time, try your hand at generating some

parametuic curves with a graphing utility that you think are interesting or beautiful.
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lfa palanretric culve CisgivenbytheeqLrationsr-l(r).r:g(/),thena(klinsaconstant
to f (/) translates the curvc C'in the.r' dilecrion, and addin-g a constant to 8(t) trmslates
it in the I direction. Thus. a cilclc ol rldius /-. ccntered at (.r1). _\)0) can be represenled
paranretrically as

-r: -ro +/-cosr. r': rh +rsin1 (0 at a 2n) (4)

( Figure I .7. l0). lf clcsi|ccl, we can elim inare the parameter. from lhese equations by noring
that

(r-ro)l+(r' ,i,)t - (i cosl)l * (r.sint)l =12
Tlrus, we have obtainccl the faniliar equation jn l ectangular coordinates lbr a circle ofr ailius
r'. centerecl at (-ro. ti):

(r .to)r + (.r' .rt,)2 : r2

|r.i r ti \l)l r Use the pariimetric capabiiity of your graphing utility to generatc a
cilcle of |adius 5 that is ccntered at (3. -2).

lf a parametr.ic cuive C is givcn by the equations -t : /(t), -i : g(l). then multiplying
./ (r) by a conslant slretchcs or compresses C in the -! direction, and multipiying g(t) by a
constant str-etches or cornpl-csses C in the t,-direction. For cxample. we woulcl expect the
parametl ic eqLlatioDs

r:3cosr. r,:2sinl (0:t <2rr)

to represenl an ellipse, centered al the oligin. since the glaplr of these equations results fi.om
stretching the utit circle

-r = cosr. t-sinr (0 lt a2n)
by a factor of 3 il lhe ,t clirection ald a faclor of 2 in the \, direction. In general, if a and b

-rc l,.r'itire.on\l:l t:. lllcl lhe prttlnrtri( (qUrtio \

., -,,c,r\/. '- /..i r ,0 _r 2,1 (6)

represcnt rn ellipse, centered tt the oligin. and extending between -./ an.l .l on the _r axis
and between -b and b on the,r axjs (Figurc 1.7.11). The nurnbers ri and b are callcd the
s?mian€s of thc cllipse. Ifl:iesired, we can eliminate tlte parameter'I in (6) ilnd rcwrite rhe
equations in rectangular coordinates as

r- l
n1 b:

(1)

li)i rr 11r \r)l:r Use the parinnetric capability of your graphing utilirl togcne|utc.Ln
ellipse that is centered at thc origin and thal exlencls between 4 and,1 in the {-direclion
and between -3 ancl 3 in the r'-direction. Generate an ellipse with the sane dilneusions,
bLlt translaled so that its center is at 12- 3J.

In thc rnicl- 1850s the French phvsicist Jules Antoine Lissajous ( 1822 1880) became inrer
ested in parirmetric equiitions of the tbnt]

r : sin.71. .\' - sin D/ (8)

in the course of studying vibrltions that combine two perpendicular sinusoidal motions.
The first eqtLation in (8) dcsclibes a sirrusoidal oscillation in tlte r dircction with frequency
tf2tr- and the scconcl clescribes a sinusoidal oscillation in the r-direction with ftequency
b l2:r. ll o / b is t ntional number, then the combined effect of thc oscillations is a periodic
inotion irlong a path called a Zlssaious curve. Figure 1.7.12 sl'iows sqne typical Lissajous
cufves,

r'= \r +rsinr'
{0</<2')

Filure I 7.10

(s)

SCALING

\=/co\r.J=bsit/
(0<t<2--)

Fisure l.l.I I

LISSAJOUS CURVES
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cYcLolDs

l-OR TllI ltE/\DEII. Generate some Lissajous curves on your graphing utility, and also see

ifyou can iigurc out when each ofthe curves in Figule 1,?.12 begins to repeat,

If a wheel rolls in a straight line along a flar road, then a point on the rim of rhe wheel will
trace a curve called a cJclrid (Figure I .7.13). This curve has a fascinating history, which
we will discuss shortly; but fir'st we will sl'tow how to obtain parametric equations lbl.it- For
this purpose, let us assume that the wheel has radius a and rolls along the positive r-axis of
a rectangular coordinate system. Let P(ir, _t') be the point on the rim that traces the cycloid,
and assume that P is initially at the origin. We will take as our parameter rhe angle I that
is swept out by the radial line to P as the wheel rolls (Figure 1.7.13). Ir is srandard herc to
regard I to be positive, even though it is generated by a ckrkwise rotation.

' o .1.!,0 
,

Figurc L7.13

The motion of P is a combination ofthe movement ofthe wheel's centerparallel to the
,r-axis and the rotation of P around the center. As the radial line sweeps out an angle d, the
point P lraverses an arc of length a0, and the wheel moves a distance a0 along the r-axis
(why?). Thus- as suggested by Figure I .7. 14, the center moves to the point (4d, a ), and the
coordinates of P(,r.,r,) are

r = u0 - astnA, )): c -.7cos0
These are the equations of the cycloid in terms of the parameter 9.

Figure I.7.12

5

(e)

Figure 1.7.14



loil llll ltl:\l)l li Use your graphing utilit), to
produccd by a point on llre rim ol a wheel of rilclius
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sencrate l\\'o "archcs'oi the cycloid
L

THE ROLE OF THE CYCLOID IN
MATHEMATICS HISTORY

Fisure 1.7.15

The cl,cloid is ol interest l)ecausc it provides tl]e solution to l\\rr famous matheDralical
problenrs the Dlachistochrone problerrr (fl(nn Grcek words nteirning -shortesl linte") and

lhe tautoch,'one problem \frc:m Grcek wo|ds meanin-s "ccluzrl linle"). Thc brocltistochrone
problcnr is to deterninc the shape of a rvile along u hich I bead nright slide i on a point P
to anolhel point Q. nu directll,below. in the .rr1r'l?rr all/k,. Thc taulochrone problern is to
tir.rd thc shape of wire lhur P 10 0 such thlr two bea(ls stated iL1 any poiDts on lltc wire
bct\\'een P 

^nd Q reach Q ilt thc sanre amounl ol tirne (Figule I .7.l5). Tlrc solution to both
problcms tums out to be an inverted cycloid.

ln Jur're of 1696. Johann Bernoulli" posecl thc brachisbchronc problenr in the fbrnr of a

challcnge to othcr rnathematicians. At lirst. onc nrigl]t con.jectulc that the rvire shor.rlcl ibrnr
a stlaight linc. since lhat slr.lpe rcsults in thc shorlesl (listance tlonr P io O. Horuevel. the

invened cycloicl allows the bead to irll lnore r piclly al lirst. building up sutlicient initial

rcientisls Nikol.ru\ llc roulli (l6l:l 1708)..' (trrfgin. llc(t lionr Arlr\\,crp to cscLipe rcli!io0s pcrsccutro irnd

lr rhe ['ni\.r\it! ol Brscl. \\'hen h(' \lried $ orkins in nrrlhenr.rlics. hc kDc\ norhiDg ol \c\\ r1nr-s lnd l-cibnir'
$'olk.Hee\eDlualhhce.trnclnmilinr$ithNewtor'\rcsulls.hulbecnurcsoliltleol Leibniz w(nk$fftublished.
.1.'kob duflic.'lcd mnr\) ol l-cibnir' rc\ulr\.

rl Groningcn in Holl rd. Nnd then. r!hcn Jrkoli !li.d in I705..11)hrnn succe.ded hinr rs m.rthcnntics prolc\sor Lit

odern piobrbilili rheori.
ADong lhc olher rrtr'rnbcrs ol lhe RernoLrlli tu'nill. DlDiel.\orrol J(tunn I. a\lhcmosl lxnrou; Hc\.rsi

phlsic\ irl Bir\el. tlc (li(lwork in fl'lculu\ rnd trrl'bubilil). hLLl is best kro{n lbr his !\ork in fh}sics. A hnsic l!*

l0 tiDrc\ lin \ork on \ ihritins \trings. tidcs ol lhc sei. n(l kiDetic lhcoN ol g.!scs.

Johu.n ll \ucceedr\l hi\ tirhcr irs proltss{n of Inalh.rrrrlics al Ilrscl. His rcscrrch \\lls orr the lheor) ol hetil

rceommendrtion ol l-cibniz. h. $t'! 
'rppoinlcd t'roies\or ol nrirlhenralic\ rt I'rdta n(l thcn \crtt to tirscl i\ir

JLikob 1l su(cceded his !Lncle Driicl xs prolts\o| ol lnllh.nulics al St. I'ercr\bur'! Acrdcrr) in Iiussiir. Tfuli rn
in.redibl,: l:'n'il\ |

(l611 171[]l

r 165.1 lllr5r ( l66l ll+Sl

\iloh ' I \iLol,,l^ ll l)rnicl l,,hrnn II
rt6s7 !7i9r I tarr)5-t116t r!t00-tr_slr ltlt0 t790r
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ExERclsE SET 1.7 E Graphng calcuator

(t'ra I

't-. ;: ,. 
- -- 

i4" /-a - '?. 
y* ^ t'^r. ,a

f2:. a ' r-^''4'" iL;-I r:*t a t,i
\ctrbrr's solution ol- thc brachislochroDe

problenr in hi\ o\{n hxndritillg

speed to reach Q in the shortcst time. even though it travels a longcl clistance. The prcblem
was solved by Ncwton and Leibniz as well as by Johann Bernoulli and his oldcl brothcr'
Jakob: it was fbnnulatecl inrd solved iricoi.rrt?A ycars callicr by Galileo. who thought rhe

answet was a circular atc.

1. (a) Byelininating the p{rameter. sketclr the trljectoy over
the linre interv l 0 : / : 5 of the pa iclc lvhose para-

n)etric equrtions ol rnotion ilre

In Exercises l-3-18. find par nretric equations fol thc curve.
rnd check your work by gerrentint thc culve with a graphin-s

utility.

13. A circle of radius -5. cenlered iit the ori-sil1. orienred clock-
wise.

l:1. Thc poltiorr of tlre circle .tl + r'l : I that lies in rhe third
quirdrnnl. orientcd counterclockwise.

15. A ve icil linc inteNecting lhe -f-dxis at.t : 2. oriented
upwald.

16. Thc cllipsc i + i - l. oricntccl counterclockwisc.

17. The portion ol' the parabola .1 = r'l joining ( l. - l) iLnd

( l. I ). oricnled down ro up.

lll. The circlc ol |adius 4. centered at ( l. 3). orientc(l coun
terclockwise.

19. In cach plrt. mltch the paramctric equation with one of the

\ur\e\ lirbele(l rTr rVT).:IrLI e\plrin )our rei\or)irUt.
(a) .r: .r. r': sinSr (b) .r :2cosr. .r'= 3sin/

]r Jrltc,.\:/eos/. r_lrirr/ rdr , _ 
,_r,. 1.: L ,.

t\ 2t:
t,) \ ::--------. (l/.\: l.\Jr/, f :\in)/

1.1 /- I F/-

0++

(b)

(c)

(b)

(c)

Indicatc the directioll ol motion on yollr sketch.

M ke a table of .\'- nd l coordinrtcs ol the particlc lt
limes I : 0. l. 2. 3. 4. 5.

M rk the posilioIr ol lhe particlc on tlre curve rt thc time\
in palt (c). and ldbel those positioDs with tllc values ol /.

B5 clirrrrr.-rtinl tlre pulirrnctsr..lcl.h lhc lIu'r,.l.rr1 or st
tlre li re iDtelval 0 : r : I of the p rticlc rvhose pala-

ntctr'ic equafions ol nrolion are

.r:cos(zt). r=sin(jr/)

lncliciite the clilectior'r ol-nrotion on your sketch.

Make u 1able ol.r'- lnd ] cooldinales of tlre padicle at

tinles r : 0- 0.25. 0.5. 0.75. l.

Miuk the position ofthc parlicle on thc curve at the tinles
in part (c). antl llbeltlrose positions willr the valuesol /.

E

E

E
(d)

2. (a)
E
E

E

(d)

In Excrcises 3 12, sketch thc clLlve by clinrinating the pa-

Iillt)ere!. JnLi inJi(i'rc lhc direurron ol inLrc.r.i i l.

-1. r:31 -4..\':6/+2
4. .r' = r - 3. ,r' : 3t - 7 (0:.:3)
5. .r = 2cosr, .\' -5sinr (0 :. t :2n)
6..t:,tr.l.:21 +4
7. .r =3+2cosr. .r, :2+4sin/ (t) : / : 2tr)

8. -r = sec t. .\' - tan / (n : I < 3ir/))
9..r'=cos2r. r':sinl (-z/2 

=t =;t/2)
10. .t :,1r + 3. i = 16r: - 9

11. .r = 2 sinl l, -r':3cosl/
12. .r = secl1. r - tdnl r

Tigurc F \-lg



20. Use a elaphing Llrilily lo -lrcrcrillc lhe curves in Exercise 19.
rrrrrl irr.'l.ilt c.r.c l(lc ttl) lh, ,'.t(It.rli,.n.

E 21. (r) Llsc it slilphing ulilily to generillc thc lrajecfory ol r p!u.-
liclc tvhose equntions ol nrofion o\'er thc ti le interval
{)<r:5atc

.r:6t ]rr. ):l+.1/l
Makc a table (]1 .r- lnd I coordindtes ol thc piu.ticle al
tintcs r - 0. l. l. :i. l. 5.
Al wlrat tinres i\ lhe parliclc oD the r. axisl
During u'hat timc intervrl is r, < 5l
Al whrt tiIne is lhc.r' coo|clinirte ol the pNrticle ntirxi
Drunr'l

lJse l graphing ulility to gencftrlc thc trtjechn. ol-it
paper lir-plane whosc equrtions ol ntolion ti)t I : 0 trc

.\:1 2sin/. i,:3-lcosr

E

(b) Assunting th thc pltnc fljes jn ir roon in \hich tlre
lloor. is at r. : {). c'xpllin \\,lry lhe plirne $,ill not crash
i to lhc lloor. ll-ot sinlplicil). itnore the pltysicrl size
olthe plane hy lrcittin-s it iis il parlicle.l

(c) How hish must lhc ceilin-u lrc lo cnsute thitt thc plane
doe.s trot touch tx crash into il:,

In Excrciscs 2-l lnd 24. gr.aph thc cqLration using a -uliiphing
utility.

21. (a) .r = r'r +2r + I

rh\ , -.i-. 
-)- - , r-

24. (e) r=r'*2r'r-r,5
(b) .\' = tirn r'- :t/2 < t < tl2

25. (Lr) By clintitt tirlv thc prranrctcr.. show thrl thc ccluntions

I't \ = r. t., \,,/
rcprcscnt the line pilssinn throush the poinls ( \-r. riJ)
rn(l (.r t. \'t ).

(b) Show that tf 0 < t : l. lhcn lhe equlrion\ in pir (a)
rcptcsent the line seglnenlloirin-q (.r1r.Ir)i!n(l (.\ . r.r ).
oricnled in the direclicu lr-ont ( r'r. r0) to ( ri . r,t ).

(c) U\c lhc tcsuft ir Ilirrt ( b)to lind pitrnntctr.ic cquations fbr
thc Iinc scgDrert ioirrine rhe poinls ( l, -l) nd (1. ,l).
orionrcd in rhe dircction li(nn ( l. 2) to (1. 4).

(d) Use llle resull in Pitrl (b) b iind plritnrerric equittions lbr
(hc linc scsntent in piu.t (c). but oricnrcd in the dircclioD
tron) (2. .l) lo ( I . -l ).

26. Use the result in Excrcise 25 lo lin(l
(a) pittun'tetric ccluirfions for the linc scgnrcnt.joil]inu the

points (-3. :l) ancl ( 5. li. oficntcd frollt (-i. .1)

to ( -5. l)
(b) puilntelric cquations tbr the linc segmcnt trlced tiom

({). b)to (a.0). oficntcd tionr (0. r)ro (a.0).

27. (r) Supposc that the lilte segneDl li(nn the poillt p(.r0. rl))
to C)(.rt. r'r ) is replcsented pardntctricall\ b1,

.r =.\lr + (\ -.\.{r)1.
((J 1r<l)\'= \i+(\'t -r'1r)a

(c)

1.7 Parametric Equa|ons 1Ol

irn(l lhilt R{ r. t ) is the poinl d1 the line se-gl]]enr cone
.f,,'.liI! tn:,.lcuidefl r. 1t11g,,1y,e,-tl.eircconlf, r).ni
tigur-e). Show that I - r./r/. whcrc I is the clistance liom
P to R alrd./ is lhe distilnce li)nt p to O.
Whrl \. lue ol I produce\ lhe lli(lpoinl betwcen poinls
/'j irncl Q?
Wl)al valuc of / produces tlte poirlt that is thrcc tbu hs
ol the wa)'frolt P 1o f)J

rl1.\ . \ r)

Figuru Dr-17

28, Finci ltallrnet|ic cquittions for the Iinc segn]el)t joining
P(2. -l) and Q(3. l). lnd usc thc resull in Exercise 27
to fi|(l
(a) lhe nridpoint betrvecn p and 0
(b) lhc point th|Lt is one-fblrrth ol tl.tc wLly lrcm /, to e
(c) the point thal is lltree lbulrhs ol rhe wry t'r.orn p lo p.
E\pllin \\h) the pitlitnrch-ic curvcr

r:/1. .r:/r I l:r5l)
doe\ nol hirve I delinilc orientalion.

(a) ln l)it s (a)ilncl(b)ofExercisc l5 \r'e obtajnc(l paramel
ric ccluations Ior a line segnrcnl in which lhe pnranreler
vtricd tlonl 1 : 0 to a : l. Sonietimes il is clesir.
ablc to hitve piuluuetric ecluations for a linc scglrent in
r'"hich the plualtctcr. vNries ov(.r sofie other.inlerval. say
tn 

= 
t a tt. Use the idcas in Exercise 25 to show lhat

thc line segmenl .ioitling the points 1 rn. riy) itnd ( tr. r )
can bc lcprcscntecl par.amctricitlly as

IL
.\ = r,r +i\t- t{r) -- -.tr-lo

(/o : r : /r)
1 It)r: \r + I\t - tLr)-tt|

(b) Which wav is fhc line segntcn( orjenlecl.?
(c) Fincl palarlctric equ tions fbr the line scgnlcnt traced

tjonr (-1, I ) k) ( | , ,1) as I varies liorr lto2.itnclcheck
yoUr resull with a graphing utility.

(a) By climinatir)g thc paralneler. shou, that if a iu)d . arc
rr, 

't 
butll /rr (). tllcn tll( s rif\lt rll lhc parrn trlr ic cquutiorrs

.\'- t+b. \.:(t+I lt|1t 1rt)

(b)

(b)

(c)
(d)
(c)

A 22. (aJ

29.

E

E -10.

is a linc segrnenl.
(b) Sketch tlre palan)chic curve

.t = 2t - l. r.: r + I

rnrl indicatc its orientatiolt.

-11.

(l at::2)
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102 Functions

(a) What can you say about the line in Exercise 31 ifa or
. (but not both) is zero'J

(b) What do the equations represent if a and c are botll
zelo?

Parametric curves can be de6ned piecervise by using ditl'cr-
ent formulas for different v lues of the paranretel. Sketch

the curve that is represenled piecewise by the parameiric

equations

t: lr. r'. 4rl {t) < I < ll
t-)-)t. r=2r i-</ l)

Find parametric equdlions fol the rectangle in the accont-
parrying ligule. assuming that lhe rectangle is traccd coun-

terclockwise as. varies t'ronr 0 to l. starring at (]. ]) when

t : 0. fHint: Represent tlre rectangle pieceNise. letting t
vary from 0 to 1 for rhe tinr edge. from J to ] tbL the

second edge. and so fonh.l

A shell is lirecl tion] a cannon iit an angle ol d = 45 with
an initial speed of ro : 800 n/s.
(a) Find parametric equations for the shell's trajectory rel-

ative to the coordinatc system in Figure Ex-36.
(b) Hou,high does the shell rise?
(c) Horv far does the shell travel horizontally?

A robot arn. designed to bu ff flat surfaces on an automobilc,
consists of t$,o attached rods. one that moves back and fbth
horizontally, and a second. with the buffing pad at thc cnd.
thal moves up and down (see the accompanying figure).
(a) Suppose that the horizontal arm of thc robot noves so

drat the -r-coordinate of the bul'jer's center at time /

is r - 25sinnl rDd lhe vertical arm moves so thal
thc ,\'coordinate of the bufTer's center al tinre I is

.r' : 12.5 sinzt. Graph the trujectory of tlre center oi
the bulling pad.

{b) SLrppose that thc.\- nd I'coordinates in pa (a) arc
r : 25sinzrrl and r' = l2.5sinzr/, where the con-
stants d and, cirn be controlled by procramming the
robot rrm. Craph thc lrajeclory ol the center ol the pad

ifa-4andb:5.
(c) Investigate ihe t|ajcctories that res lr in part (b) tbr var-

ious choiccs of a and D.

Figurc Ex l8

Describe the firnrily ol curves described by the par{nrelric
equations

.\ -dcos/+r. .\': /rsin/+k (0:/ 52tr)
if
(a) I and t are lixed but 4 and17 can vary
(b) ll and l, are fixed bul h and I can vary
(c) .i : I and D : I . but /? and I vary so that I = i + I .

A hypocycloid is a curve traced by a point P on the cir-
cunference of a circle that lolls inside a lalger nxed circle.
Suppose that the fixed circle has mdius zr. the rolliDg circle
has radius /r. and the lixcd circle is centered at the origin.
Let 0 be the angle slrown in lhe lbllowing figure. and as-

sumelhat rhepoint P isat (4.0) whend :0. Show that the
h) poeye loid gener ted is gir cn b1 rhe pa ra merric equalioDs

t.t , \
.r - '., - /r r ;rrs r, - h co. | ; dl\/,.)

r : t.r - brsi'o -lr,,;n /L'a,\
\ , -/

E 3E.

34.

E 3s. (a) Find parametric equations tbr the ellipse that is centered

at the origin arld has intercepts (4,0). ( 4,0). (0.3).
and (0, -3).

(b) Find parametric equations lbr the ellipse thirt results by
translating the ellipse in prrrt (a) so that its center is at
(- l. 2).

(c) Contirm your results in pafts (a) and (b) using a glaph-
ing utility.

We will show later in the text lhrt if a projectile is fircd ti orll
ground level with an initial speecl ol un meters per second

{t an angle a with the horizontal, and il air resistance is

neglected, then its position afiel a seconds. relative to the

coordinate system in dre accompanyjng {igule is

1: (uecosa)t. r'= (!osir'rd)l !Sr'
whereg*9.8m/sl.
(a) By eliminating the partnreter. show that the trajcctoty

is a parabola.
(b) Sketch the trujectory if o : 30 and r1y : 1000 m/s.

FiSUre E\--t+

.19.

-t6.

40.

Figure Ex -16



4t. lf D : Ja in Exercise 40. then llle resulting culve is callecl

a foul-cusped hypoc,vcloid.

SupplementaryExercises 103

(a) Skelch this cuNe.
(b) Show that the curve is given by the piuametrjc equations

,r : a cos:r d, l' :.r siD3 d.
(c) Show that the curve is given by the ecluation

_r:,,1 + rl,,l _ d2li

in tcct.rrrgtrlcr . uonli rirlc..

E 42. (a) Use a graphing utility to srudy ho\r the cuNes in rhe
farnily

r : 2a cos2 /, .1,- 2zr cos / sin / (. 2n < I < 2it)

change as.i varies 1iom 0 to 5.

(b) Confimr youl conclusion algebraicdlly.
(c) Write a brief paragraph that describes your lindil.ts.

Irigure Ex .10

2.

1. Referring to the cigarette cLrnsumption graph in Figule
I . L2lr, during rvhal 5-year period was the annual cigarelte
consumptioD per aduit increasing nost l!rpidlJ' on average?

Explain your reasoning.

Use the graphs oithe functions / and.q in the acconlpanying
fisure to rolr e the follor. irrg lroblem..
(a) Find the values of /(-l) and.q(3).

(b) Fol what values of .r is /(r) : g(.!)?

(c) For what values o1'-i is /(r) < 2i
(d) Whrt are the domain and mnge ol f l
(e) Whal are the domain and range ofg?
(1') Find the zeros of .l ancl g.

Figure Er 2

A glass 1llled wilh water that has a temperature of 40"F
s pla.ed in a roon'in uhiclr lhe'ernlerarLre:5 a co \rant

70'F. Sketclr a rough graph that reasonably describes the
temperatur-e of the waler in the glass as a i'unclion ol the

elapsed tirne.

A student begins driving toward school but 5 minutes into
the trip remembers that he lbrgot his home$or-k. He clrives
home hurriedly, rctrieves his notc!. and then drives at great
speed toward school, hiltiDg a tree 5 minutes ailer leaving
home. Sketch a rough grapll that reasonably describes thc
sludell's distance from home as a l'unction of the elapsed
time.

A rectangular slorage container with an open top and a

square base has a volume of 8 cubic tneter s. Malerial fbr the
base costs ll5 per square meter. and matelial for the sides $2
per square meter. Exprcss the toial cost ol the lualerials as

a function of the length of a side of the base.

YoLr want to paint the lop ol a circular table. Find a tbnnul2r
thal expresses thc amount ol paint required as a function
of the radius, and discuss all of the assr.rmptions you have

made in hnding the fonrula.

Sketch the g|aph ol the f'unction

[-t. r< 5

I

/{ir:{J)5 r 5., .<

I

l' 5, .\:)

A ball of radius 3 inches is coated unilbrnlly with plastic.
Express lhe volulne of fie plastic as a functiolr of its thick-
ness.

A box with a closed top is to be made fiom a 6-lr by l0
ft piece oi caldboard by cutting out foul squares ol equal
size (see the accompanying figure). folding along the dashed
lines, and tucking the two extra llaps iDside.
(a) Find a lbrnula fiat expresses ihe volume of the box

as a function ol the leirgth oI the sidcs of the cut-out
squares.

1.

6.

7.

8.

9.

3.
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(b) Find an inequality that specifics the domain ot'the tirnc-
lion in part (a).

(c) Estinrale the dimensions of thc Lrox of largest volume.

. tofr *]

.-s1 .l-5n -]

Figurc Ex-9

Let /(.r) : -rr and g{.\) = l/v4i. Find the natural do-
nains of f :;.9 and .9 r, /.
Given that J ( r) - 2.r 5 and,r,,(.r) - .1.t 2. fi nd a value

ol .r suchihat /(.q(.r)): !(l(.r)).
Lcr l(.r): (2.r l)/(.r + l) ndg(.\) - l/(-r l).
(a) Find /(s(.r) ).
(b) Is the naturrl .lornain ofthe function .l (,9({)) obtained

in paft (a) the same iis thc domain ol / c g l Explain.

1.1. Find f(.q(r(r))). given that
rl

/{\)--. S(.\):-t-l t

Civen that ./ (-r) : 2.v + I tnd /r(.r) : 2.rr +.1.r + l. lind
a f'unction,g such thal / (g(.r)) = l(.r).
Complcte lhe lbllowing table.

Find the coordin tes ol all intersections of thc grtphs
of] : c6"-1-andr: sin2r il 2nar:2r.an(l Llse

a graphing utility 10 check your answer

A surveyor neasurcs the angle oielevation tr ofa tower
fronr a point r{ duc sr)uth ofthe to['erand also measur'cs
the angle of elev tion /9 ffilm a point B that is / teet
due east of the point A (see the accompanying ligure).
Show that the height i of the to$,er in feet is given by

11 sirr r, s irr I
h: '

v(iril +7 t'rn(cr d)

Use a caiculalin-s Lrlility to ilpproxiirale the height of
the tower to the nearest tenlh of a foot il a = 17.
l3 : 12 . and cl : 1000 ft.

I
6rt

.L

(b)

19. (a)

(b)

t0,

I t-

12. ,1

l{.

15.

(s..1Xr)

(a) Write an equalion tbr thc graph that is obtained by re-

llcciing the 8raph olr' = .r - I about the _r'-axis. thcn
stretching that glaph ve(ically by a factor of 2. then

translating that graph down 3 units. and then reflecting
that graph about lhe r - xis.

(b) Sketch thc original -sraph and thc final graph.

ln each part. classity the llnction as even. odd- or neither.

Fi-surc Ex 19

Suppose that the expected low lemperaturc in Anclrol ge.

Alasla tin Fr. is rnodeled bl,the equarion
2tI : -50sin 
-t. 

- l0l) + 25
36s

where r is in clays and I : {) conesponds to January L
(a) Sketch the grdph ol. 7 versLrs 1 tbr 0 : r : 365,
(b) Use the model to predict when the coidcst day ol'thc

year will occur'.
(c) Based on this mo(lel. how many days during the year

would you expect llre tempelature to be below 0 F'l

The accompan),ing figure shorvs the graph of tlrc cqurtiorl
r : ]r 1 sin.r tbr -22 = 

.r : 2r. Find the coordinltes of
the point\ .4. B. C. nrl D. Erplarn Iour rerrsonrng.

Figure Ex I I

The accolnpanying iigute shows a model lin the lide varia-
tion in an inlct 1C) San Francisco Bay during a 24-houl pelicxl.

Find aD equation of the tbrm I - )Ir + -\'r sin(.rr + /2) 1'or

tlre model. assuming rh.rt l : 0 corresponds to midnight.

ir{.r; :.1r- I

t234
2111

20.

2t.

"t 4 3 -2 -l 0

f(r)01213
.gC\.) -l

( F.sX-0

(a) .r 
I sin r

(c) i + -r2

(b) sinl t
(d) sin -i tan -r

I --1 -l '+ I -2

16.

17,

(l) Find exact valucs tbr.rll .r-intercepts of

.1 :COS,!-Sin2.f

in the interval 2r < ); ::2n.

\

tlt. 22.
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Figurc Ex-12

In each pafi describe the famlly ofcurves.
(a) (.r .r)r i (.r. a:)r : I
(b) r': a + (r 2a)2

(a) S uppose that the equalions r : /(t), ] : g(a) describe
a curve C as t increases flom 0 to 1. Find paramettic
cqLrations that describe the same curve C but tlaced in
the opposite direction as / iDcreases fiom 0 to L

(b) Check youl wolk using the parametric glaphing leatLrre
of a graphing utility by generating the line segnenl be-
tween ( I, 2) and (4, 0) in both possible directions as r
incrcases from 0 to I

Sketch the graph ol the equiition -r2 - 41,: : 0.

Find an equation fol a parabola that passes through the
poinls (2.0). (8. l8), and ( 8. 18).

Skelch the curve described by the paratnetric eqLrations

ir: tcos(2zr), \'- /sin(2na)

and check your result with a graphing utiliiy.

The electrical resistlnce R in ohms (Q) for a pure metal
wire is lelated to iis lemperalure 7 in C by the fblmula

R:Ro(l*tZ)
in which R1 and t are positive conslaDls.
(a) Make a hand-drawn sketch ol the graph of R versus f,

alid cxplain the geonreldc signilicance oi R0 and k for
youl graph.

(c)

ln theory, the resistance R of ir wire clrops to zero rvhen
lh( lcnrperalure r'e.r.he' rh.'.lut< ,, <ro , / - l- t ( '.
What informiition does this give you about l'l
A tungsten bulb filament has a resistllnce ol 1- I O al a
temperatu[e of 20'C. What ir]lbrmation does this give
you about Ro lbr the frlament'l

(d) At what temperature will a tungsten lllament have a
resistance of 1.5 O?

Most of the foilowing excrcises require access to graphing
and caiculating utilitics. When you are asked to hn.[ a an-
swer or to.ro1l'c an equation, you may choose to llnd eilher
an exact resuh or a trumerical approximalion, depending orl
the particular technology you are using and your own imag-
ir'ration.

29. Find lhe distance between the poinl P ( 1 , 2) and an arbirrary
point,r.,/r,unrhecur\e r,,/i.Craphrhi.drilJnce\er-

SLtpplementary Exerc ses 105

sus .r, and use the craph to find the J-coordinate of the point
on the curve that is closest to the point p.

.10. Find the distance between rhe poinr P(1. 0) and an arbi-
hary point (.i. l/-r) on the cuNe ,\, : 1/-r, where.r > 0.
Graph this distance versus _1, and use the graph to find the
-r-coordinate ol the point on the curve that is closest to the
point P.

ln Exercises 31 and 32, tse Archimetles' principle.. A bodl
wholh or partiolly intntersed in a Jluid is buolecl up hy a ftr'ce
etluul to rhe weigllt olthe fluid tllar it dispk!&s.

31. A hollow metal sphere of diamerer 5 fcct weighs 108 pouncls
and floats partially submerged in seawatcr. Assurning that
seawater weighs 63.9 pounds pet cubic fbot. how far be-
low the su 'ace is the boltom of the sphc|c? lllint: If a
sphere of Iadius r- is submerged to a clepth l, thei the vol-
ume y of the submerged portion is givcn by the fo|mula
v = nh)0 - h/3).1

32. Suppose that a hollow metal sphere ol'diameter 5 feet and
weight r0 pounds floats in seawatel. (See Exercise 3l .)
fJ) Crjrph u ver.u\/' for 0 _ /r 5.

(b) Find the weight ofthe sphere ifexactly halfoithe sphere
is submerged.

33. A breeding group of 20 bighorn sheep is released in a pro-
tected area in Colorado.It isexpected thal with carelulman-
agement the number of sheep, N, after. r years wlll be given
by the tbrmula

I + l0(0.83)'

and that rhe sheep population will be able to mainrain ilself
without furtlter supervision once the population reaches a
size of 80.
(a) GLaph N versus /.
(b) How many year s ntust the slate of Colorado mainlain a

progranl to ca.e foa ihe sheep?

(c) How many bighom sheep can the envir-onment in the
protected arca support? JHlrtr Examine the graph of N
versus t 1br large values of t.]

ln Exercises 34 and 35, use the following empirical formula
fbr ihe windchill index (WCI) [sec Example 3 ol'Section 1.2 ]:

tI 0 r .1

",' l-', r / ''i,. ^.,r,. ,.-r. r'

I'n,., ,-,'.
where I is the air temperature in 'F, u is the wind speed in
mi/h. and WCI is the equivalent te tperirtut.e in . F.

3

!!
I

24.

25.

26.

27.

24.

(b)

3il. (a) Graph 7 vcrsus u over thc irter.val .1 : | : ,15 lor
wcr : 0.

(b)

35. (a)

Use your eraph 1o estimate the values of 7' for WCI : 0
colresponding lo u : 10,20.30, to the nearest deg.ee.

Graph WCI versus u ovet the interval 0 1 | I 50 for
T :20.
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(bJ Llse !'our graph to e\tiDrlte thc values i)l the WCI cor-
responding trr r' = l(). l(). l0- -10. Io lhc ncilresl degree.

(c) Use )ourgraph loeslinratethe v lul'\ ol I colespo|d-
ing to S./CI : -:0. - 10. 0. i0. to thc nearest rnile per

hour'.

E -16. Find thc donain iLocl r nllc ol lhc l.unction

sin r-

/(.r)- 

-

r' r'-f

B -17, Finrl the donrain ilncl rirngc of the function

/(\):r r li.t \'
An o!en is llreheaied ilrd lhLrn rcmrins al ii constant tempcr-
lflrfe. r\ potato is placc'cl in thc ovcn to bitkc. Supposc ilut
lhe lenlperilture 7' (in F) oi the porilk) / nrinules later is
givenb) I :l{X) il5(0.97}r.Thepotflo\\ill beco sid-

ered clone $ hen ils teDtpcrirturc is iLr\'\\'hcrc bcl\\ een 160 F

lncl lii0 F.

(a) During \\hitt interval of tinlc Nould thc potnt0 be con
siderctl done-'

1b) llo$ lolrg (loe\ il take lbr the len)pelaiure of thc potato
to rcuch 95fi ol lhe oven telt)periiture l

-19. SLrppose thul uqrackxgeoltnel:iiclll supplies is (lroppcd 1l L)m

a helicoplel shnight do\\n by plrilchLrle into a remote itrea-

The relocit] r (in f-eer pcr sccond) ol lhe packagc / seconds

after il i\ rele{sed is Sivcn br r'=14.61(i 1(}.2rii')).
(a1 Glaph l venus t.
(b) Sho$'thirl lhe -graph hirs ii horizontaL il\yDrptote | - ..
(c) Thq constanl ( is crlle(l lhe terninal yelocit!. Expl]r'l

whlrl tl)c lerminxl !elocit\, l,l]calts in praclici!l lerlns.
(d) Crn thc plckar:e rctulll\ rcach its tenninal velocitr,l

E\pLrin.
(e) Ho$ long (loes il talie lbr tlre packagc to rcach 93t oi'

its tenrinirI vc]ocit\'?

38.

Iteration and Dynamical Systems

vnr tl thc futdttutin,q idus to tltitlt it lcotls.

a.1
0.6
0.5
c.4
.r.:l
a.2
it.i

Barnsley s fern

0.: c.4 0.5 0.3
A cobweb diagram A lulia set

[! lterative Processes

Rccali lhnt in thc rlotation r' : /(.r). the va|iablc .r is called an ir?pl , of the function /. and

the variable I is called the concsponding or,tlr.rl. Suppose that wc start rvith sonre input. say'

.! : (, aDal coch time \\.e conlpule an output we teed il back into f ls an input. Tllis generates the
tbllowing seclucncc of nunrbcrs:

l (c). .f(Itc)t. .f(l\lk))). .l(./(.1(.1(( )))), ...

This is callcd M iteruted ,function tequence lor' .l (tlom the Lllin word lte|zrlrrs. rrclning 'io
rcpeat"). The numtrer-c is callcil lhe seed raftre lbr llre sequence. lhc tc! rns in the sequercc ale called
iler?t?s. and circh linre f is rLppliecl rve sal that ue have pedorn)e(l ,t\ ileration.lteratcd llrlrction
sequenccs arise in a rvicle vuiety of phvsical processes that are collectively callecl dynatnical
s!sfurr.r.
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i;;;;;;;"'i Let l(,t) :,1:.
(a) Calculate the first l0 iterates in the iterated function sequence for l. staming with seed values

of r' = 0.5. l. and 2. h.r each case make a conjeclurc aboLtt tlle long-term behavior ol the
iterales. that is, the behaviol ofthe ilerates as more and more ilelatiolts are perfonlecl.

(b) Try your own seed values. ancl make a conjecturc about thc ctlect of a seed valuc on the
long-term behavior of the iterates.

Recursion Formulas
The prolif-eration of parentheses in an iterated l'urrction sequence can become confusing, so for
simplicity lct us introduce the lirllowing notation for the successive ilerates

.r,n = <:. 11 : .l(c). .r': = .l(./(c)). 1.r = ./(.1(.1(c))). r,r = .l (/(/(.1(c))) ). ...

or expressed more simply.

.rlr =(. fr:./(tir). .\'r:./(.\'r). .r'r: "f(Jr). .r+ = l(.r'r)....
Thus. successive terms in the sequence are related by the formulas

.1,0 = (. ,\t+1 : _f(.U) (/t :0, 1.2.3. ...)

These two fonnulas. taken together. comprise what is called a rzclr.r'izrir.rtrrnirln for lhe iterated
function sequencc. In general. a recrrrsro n fornrula is any fornula or set of formulas that prcvides
a method fbr genelating the te rs ofa sequence lion the preceding teLms and a seecl value. For
exanlple , the lecursion folmula fbr the iterated function sequence of .l (.r ) = .r 

? with seecl value c is

lb - t. lt+r =.rl]
As another cxanrple. revielv thc fbrmula in the discussion preceding Exercise 8 in the Intx)duction.
As noted in that discussion. the rccursion formula

1r)=l.,,-=I(,,,*f') (r)
I \ \,./

produces an itcr ted function scquence whose iterates can be useci to approximate y? to any

degrce of accuracy.

/i.rrr.irI J Use (1) to approximate J5 by genelating successive iterates on a calculator until
you encollnter lwo successive iteta(es that ilre the sanle. Compare this approxirnrtion of v6 to
that produced directly by your cnLculator

1:.r'rlcirc .l

(a) Find iterates Ir up to \t of the sequence thirt is generated by the recursion fomrula

.rb: l. r',,+r : lu
(b) By examining the terms generuted in part (n). find a fbmrula that expresses t,, as a function ofrr.

IitL'rLitt j Suppose that you deposit $1000 in a bank at 5% intcrest per year and allow it to
accumulate value without making withdrawals.

(a) lf r',i denotes the valuc of the occount at the end of the ,?th ycar, how could you find lhe value
of r',,r r if you knew the vaLue of r',,?

(b) Staning with Io - 1000 (dollars). use the rcsult in part (a) to calculate |l- \'1. -rr.1l, and Is-

(c) Find a lecursion folnula fbl the sequence of yearly account values assuming that ri) : 1000.

(d) Find a formula thal expresscs r;, as a function of rr, and use that lblnrula to calculale tlre value
of the account at the end of the l5th vear.
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M E!'$;o!-ing iiev*t*d Fu*cilc,n Sequences

Ilcraled turction sequences for a function f can be explor-ed in various ways. Hclc arc three

possibilities:

. Choose a specilic seed value. ancl investigate the long-term bchavior of the iterates (as in
Exercise iJ.

. Let the seed value bc a variable.r (in ivhich case the iterirtes becorre f'unclions ol',r). ancl in

vestigate whathappens to the graphs ofthe iterltcs as morc and moLe iteralions ate pettbrmcd.

. Chcnse a specilic iterale, say the loth, and invesligate horv the value ol this iterate var ies $'ith
dil'ferent seeci values.

/r"t'r' Let rr,'-.,/r'
(a) Find fomulas lbr the first live ilerates in the ilcraled lunction seqllence lbr l, taking the seed

value to be t.
(b) Graph the iterates in palt (a) ir the same coordinate system. and makc a conjectule about the

behavior of thc graphs as more anci more iteratiotls arc perfolmed.

Cilni'i$uBii [:va*tlofi$ a d Fit]onacci Sequences

If /(.r) : I/-r.andtheseedvalueisr,thentheiteratedfunctionsequencefbr.fflip1lopsbet$'ccrt
-t anci l/r:

lll
\t t' ,- - 1. .\f l/\ \

tl
l+r lt+

1+r

I'r' l+ 
lI+ 

tr+ 
r +.!

I
.r',r: V{:r.

However, if I (.t ) : I / ( r + i .), then the iteraled function seqLrencc becomes I sequence of fraclions

llrat, if continued incleiinitely, is an exa:nple of a conlinued fractiott.

Il+ 
11+_l+.r

ji.t|rti'.r, I' Lel l(,r): I/(-r + I) and.: L

(a) Fincl r,.rat / r'ri1r.s til the first l0 tenns in lhe iterated fLrnction scquence for' ./ ; thlt is. cxpress

euch tcrm as a fraction p/r7 rvith no conmon factors in lllc numer-ator and .lenominalor'

(b) Write down the numelators llom part (a) in sequence. ancL scc if you can discovet how eaclt

tenn aller the first lwo is related to ils predecessols. The sequence of nuneralors is called a

Iribonacci sequeflce lin honor of its mcdieval discovercl Leonarclo ("Fibonacci"l da Pisal.

Do so re research on Fiboracci and his sequcnce. aild wlite a papcr on tlle subiect

(c) Use the pattern yolr discovered in prrt (b) to wr.ite down thc exact vlllues of thc second l0
lerrnr irr thi rl(t!l(d'u r\'li^n.equ(tl. e.

(cl) Find a tecu|sion lbnrula thiit will generate all the terms in the Fibonacci sequence atter thc

firsf two.

(e) It can be provcclthat the terms in the jterrte.l Iunclion seque|ce fbr.f get closer and closcr'10

onc ()1'the two solutions of the equation .l - I I (1 + t ). Which solution is it? Thjs solutiol is

a number-known as the goltlen rttio.Do sonle research on the goldell ratio, and wt ite a paper

on the sLlbject.

r Appiicati0ns to gcDisgli

Thcrc are nurrelous rnoclels fbl pledicting the growlh and decline of populations (11owers. phnts,

people. animrls, etc.). One way to rroclcl populations is to give a recursion tirtmula that describes

how lhe number of inclividuals in eilch gencratiotl r-elates to thc number of indivicluals in the
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preceding generation. One ofthe simplest such models, called the exponential model, asstmes
that the numbeI of individuals in each generation is a lixed percentage of the number of individ-
uals in the preceding generution. Thus, if there are c individuals initially and if the number of
individuals in any generation is r times the numbcr of individuals in the preceding generation,
then the growth through successive generations is given by the rccursion formula

.f0 - ., l;+t = ,-li (tr :0, 1,2.3, ...)

l'i.',"t,l'<iu'7 Suppose that a population with fln exponcntial growth model has c individuals ini-
tially.

(a) Express the iterates l t, t). )r, and r! in terms of c and r.
(b) Find a firrmula for li,+r in terms of( and r-

(c) Describe the eventual fate ofthe population if r: l.i-< l. andr > l.
There is a more sophisticated model of population growth, called the l.ogistic nrodel, rhnt

takes environmenfal constraints into accounl. In this model. it is assumed that there is some max-
imum population that can be supported by the environment, and the population is expressed as

a flaction ol'the maximum. Thus, in each generation the population is represented as a number
in the interval 0 < 1,, < 1. When -1,,, is near'0 lhe population ltas lots of loom to grow but when
r,, is near I the population is close to the maximum and the environmental factors tend to inhibit
furthel growth. Models of this type are given by recursion formulas of the form

.lo:t. l;+r : l:lt(l -.)n) Q)

in which k is a positive constant that depends on the ecological conditions.
Fig[re I illustrates a graphical method for tracking the growth ofa population describcd by

(2). That figure. which is called a coDweb diagran. shows graphs of the line r' : -r ancl the curve

li.r'r,i r i r c ,\ Explain why the values r'1 , r,1. and r'r are the populations for the first thre e gener-
ations of the logistic glowth model given by (2).

li.t t,rL itt, {) The cobweb diagram in Figure 2 tracks tlre growth of a population w ift a logistical
growth model given by the recursion fonnula

.ro:0.1. r;,*1 :2.91;,(l - r;)
(a) Find lhe populations r'1. r'2. . . . . -t-s of the lirst five generations.

(b) What happens to the population over the lon-q tenr?

0.t3

0.1

0.6

0.5

0.1

0.3

0.2

0.1

0.t

Figurc ?
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Chaos and Fractals
Observe that (2) is a recursion formula for the iterated function sequence of .;f(x) = tx(l - .r).
Iterated function sequences of this form are called iteraled qaod.ratic systems. Tt\ese are impor-
tant not only in modeling populations but also in the study of chaos and fracah-two important
fields of contemporary research.

Module by:C. Lynn Kiaer, Rose-Huln?an I stitute ofTechnology
Hou'ard Anton, Drcxel University
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THE TANGENT LINE, AREA,
AND VELOCITY PROBLEMS

2.1 LtMtTS (AN tNTUtTtVE TNTRODUCTTON)

As discussed in the itt'oduction to this .hapter, the concept of a limit is the futldq-
ntentaL building block on which all other calculus concepts are based. In this section
we will study limits informally, with the goal of deleloping an "intuitbe .feel" for the

basic ideas. In the next tut'o sections we will focus on the computational methods and
precise defnitions.

Mary of the basic ideas in qalculus can be motivated by the following thee prcblems.

THE TANGENT LINE PROBLEM. Given afunction / and a point P(r0, )0) on its graph,

find an equation of the line that is tangent to the graph at P (Figure 2.1.1).

THE AREA PROBLEM. Given a function /, find the area between the graph of / and an

interval [rr, b] on the x-axis (Figure 2.1.2).

THE INSTANTANEOUS VELOCITY PROBLEM. Given the position versus time curve for
a particle moving along a coordinate line, find the velocity of the pafiicle at a specified
instant of time-

Traditionally, that portion of calculus arising ftom the tangent line problem is called

differential calculus and that adsing from the area problem is called integral calculus.

However, we will see later that the tangent line and areaproblems arc so closely related that

the distinction between differential and integral calculus is often hard to discem.

In order to solve the three problems posed above, it is necessary to have a more precise

understanding of wh at the terms tangent line, area, atdvelocity at an instant aci)ally mean.

Let us bcgin with the notion of a tangent line.

In plane geometry, a line is called tangent to a circle if it meets the circle at preciscly one

point (Figure 2.1.3a). However, this definition is not appropdate for more general curves.

For example, in Figure 2.1.3b, the line meets the curve exactly once but is obviously not
what we would regard to be a tangent line; and in Figure 2.I.3c, the line appea$ to be

tangent to the curvg, yet it intersects the crlrve more than once.

To obtain a definition of a tangent line that applies to curves other than circles, we must

view tangent lines another way. For this purpose, suppose that we arc interested in the

targent line at a point P on a curve in the "r)-plane and that 0 is any point that lies on the

curve and is different from P. The line through P and Q is called a secant line for the cu e

at P. Intuition suggests that if we move the point p along the curve toward P, then the

Figure 2.1.1 Figurc 2.1.2

TANGENT LINES AND LIMITS



(a)

Figure 2.1.i
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,/ti
-r"r-- /- lr,!;\,

(c)

secant line will rotate toward a 1ir?itil?gposirior. The line in this limiting position is what we
will consider to be the tangent line at P (Figure 2.1 .4a). As suggested by Figure 2.1.4b, this
new concept of a tangent Jine coincides with the traditional concepl when applied to circles.

a,

AREAS AND LIMITS
Just as the general notion of a tangent line leads to the concept of llrrit, so does the gen-

eral notion of area. For many plane legions with straightline boundaries, areas can be

calculated by subdividing the region into rectangles or triangles and adding the areas of
the constituent parts (Figure 2. i.5). However, fbr regions with curved boundaries, such as

that in Figure 2.1.6a, a more general approach is needed. One such approach is to begin by
approximating the area of the region by inscribing a numbel ol rectangles of equai width
under the curve and adding the areas of these rectangles (Figure 2.1.6b). Inuition suggests

that if we repeat that approximation process using more and more rectangles, then the recC

angles will tend to 1i11 in the gaps under the curue, and the approximations will get closer
andcloserto the exact area underthe curve (Figure 2.1.6c). This suggests that we can define
the area under the cuNe to be the limiting value of these approximations.

' L , rNe,'
-i:*[ ,, ,,\\

'- --* \-'
Figure 2. L5

Figure 2.1.4

Figure 2.1.6
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INSTANTANEOI,IS VELOCITY
AND LIMITS

Recall from Fonnula I I l) ol Scction 1.5 that if a pa icle moves along an .r-axis. then its
verage velocity i.':,\c over lhe time inteNal fiom lo to lr is defined as

As .rt -.t0
Ll It-lt

Now that we have sccn how the concept of a linril enters into solving the tangcnt line, area.

and instantaneous velocily problems. let us focus oD thc lirnit concept itself.
The luosl basic use of limits is 1o describc how it futrction behaves as the independent

variable approaches a giver value. For exanlple. lct us examine the beltavior of lhe llnction

.l(.r) :.rr -.r + l
as .r gets closer and closcr to 2. lt is evident tiorlr the graph and table in Figulc 2.1 .9 that

the vtlues of I (-{ ) get closel ancl closer to 3 as .r gets c]oser and closet to 2 itom either the

leti side or the right side. Morcovcr. the graph and table both suggesl tltal wc can make the

vulues of .l ( t) as close as we like to -j by making .r sut'licicntly close to 2. We clesclibe this
bysayingthatthe"limitof.rl-,r*lis3as.rapproaches2fromeithelside."andu,eu,filc

lim (.r.r -r + l) = 3 (3)
\_]

Observe that jn dris linr it rinalysis we are only concemed with the values of ./ /tctl/' the po int

.r = 2 and not the value oi' l (/ the point -r : 2.

(l)

where so and sr are tlrc cooldinates ofthe particlc at times I0 and t1. respectively. Geometli-
c lly. 1,,,,," is the slopc of the secant line joining the points (h. so) irnd (tr . .i r ) on the position
velsus time culve for llre pa icle (Fi-qule 2.1,7).

Suppose, however. that we are not interested in the average velocity over a tirre interval.
but rather the velocity |i,)i t a specific inslant ol linre. lt is not a simple nrattcr of appl)'ing
Fo nula ( I ). since lhe disphcemcDt and the elapsed tin]e ir ar instant ilrc both 0. However.

intuilion suggests thirl over a sufficiently s all time interval. thc vclocity of the panicle
will not valy nuch: thus. therc should not be much dil'1blence []etween tlre instanlaneous

velocity at an instant of tinre. say / : lo, arld lhe avcragc velocity ovet a tinle interval
fnrrn r = tu to I = /1. provided that the tin]e inlcryal is small. This sLrggesls thal we can

approxinate uin.r as

t,iu,r ! f",. - 
Jr - Jo 

e)
lt-to

MoleoveL the closel tl is to 10. the better the approxin]ation- However. ts Ir gels closer and

closcr to lp. the slope of the secant line in Figure 2.l.li rvill approach the slope ol thc tangent

linc 10 thc curve at time I = /r): and this suggests lhat we can clcfinc'thc instantaneous

vclocity ofthe particle al tin]e I : t0 to be lhe slopc of tlre argent line to lhc position velsus

time curye at that point. Tltr.rs, once we know lrow to calculale slopes of tatr-Qent lines, we

will have a methocl fbr calculating instantaneous veiocities.

LIMITS

' = l\t) '.4/'
t,'. t,,t t/

Fgure 1.1.8
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)=/(r)=12 r+1

R ght side

Figure 2.1.9

This leads us to the following general idea.

2.1.1 LIMITS (AN INFORMAT vIEw). If the values of /(x) can be made as close as

we like to Z by making -x suffrciently close to a (but not equal to a), then we wdte

,t11/tx) 
: L (4)

which is read "the limit of /(.r) as x approaches a is 1."

Expression (4) is also commonly written as

f(.x)-'> L as x-->a

With this notation we can express (3) as

x2-r*1-+3 as x >2

Example 1

Make a conjecturc about the value of the limit
xtim:----j' (5)

'-oJx*l-t

Solution. Observe that this function is undefined at r : 0. However, this has no beadng

on the limit, since the limit is concemed with the behavior of / for -rr near, but not equal to,

0. Table 2.1.1 shows successions of r-values approaching 0 from the left side and the right
side. In both cases the values of /(,t), calculated to six decimal places, appear to get closer

Table 2.1.1

Right side
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antl closer to 2. and hence we conjecture that

lirr --]_ 2 10 rJ' + I I

However. it should bc kcpt in mind that lllis conjecture is based on a limited amount of
numerical evidence; we are gllcsslrrg tltat il we were to extend the tabLe and conlinue to
let.r ger closer and closcl to 0 from either side, then the values of .l(-r) would conlinue to
get closer and closer to 2. Fortunately, in this cxarlpie we ltave othet ways of conlirming
our conjccture. One possibility is to simplify For]nula (5) algebraically by rarionalizing the
denominator. This yielcls

.l(r):

lim-=l

t(.,4+l+1)
(.r + l) I

:"!+t+t (rlo) (7)

It is evident from this altenative fonnulii for I that as -t gets closer and closel-to 0. the
values of .f (-r) : ..,G +-f + I get cioscr and closer to 2, confirrning (6). Yet anorhel
confirmation of (6) can be obtained tionr the graph of /. lt fbllows fion (7) that rhe graph
of ./ is idcntical to the graph of r' : y{ -1- 1 + l. crcept fol a hole at,r : 0, wher-e I
is undefined (Figure 2. l.l0). This figule su-qgests thilt as ,r moves along the -r,axis toward
0 from either side, the values of r' : .l (-t) get closer anci closer to 2, rvhich again agrees
with (6).

Example 2

Make a conjecture about the value of the limit

sin -r
lim _

Sohttirtrt. Thc function /(-r) : (sin.r)/.r is urdeilned at r - 0. but, as discussccl previ-
ously, this has no bearing on the lin]it. With the help of a calculaling utility set to radian
measure, we obtain Table 2.1.2, which suggests that

(8)
'l'ahle 2.1.2

(RADTANS)
slll \-

-t= a

This result is consislent with the graph of l(r; : (sinr)/.r'shown in Figure 2.1.11;but
unlike the prcccding exarnple, where we were able b confirm the limit algebraically by
simpJifying the fbrrnula fbr the lunction, that is not possible here. However, ]ate1 in tltis
chapterwewillgiveageome1licalgumenttop1ovethaloLll'conjcctufeiscorrecl.<

As.\ approaches Ll from the eft
or righi.lli) approaches l.

Figurc 2.1.I I

FOR TIIE READEtt. Use a calculating utility to confirm limit (8). Does the limit change if
,r is in degrees'l

Although numerical evidence is helpful for guessing at limits. it can leacl to incorrect
conclusions. FoI example, Table 2.1 .3 shows values of I (r) : sin(z/-r ) at selected values
of -r on both sides of 0. The numerical data in that table suggest that

/JT\lirn:inl l:0\,./

t 1.0

10.9
r0.8
!0.'7
r0.6
t 0.5

r0.,1

t0.3
!0.2
+0 1

t0.01

0.84 r47

0.87036

0.89670

0.92031

0.9,1107

0.95885

0.97355

0.98507

0.9933s

0.99813

0 gr)qg8

Fisurc 2.1.l{l

NUMERICAL PITFALLS
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However. this conclusion is incorrect, as evidenced by tlte graph of I shown in Figure 2. L 12.
This graph shows thert as j -+ 0, thc values of I oscillate beiu,een ,1 and I rvith increasing
lapidity, and hence do not approach a limit. Thc numerical dala in Table 2.1.3 deceived us

into believing thc limit to be zero because we happened to choose values of ,r that were all
.r-intercepts.

Table 2.1.3

(RADTANS)
7r

fr.t = "i" (')

-r = 10.1

-t = t0.0I
t = t{1.001

r = tll.000l

!1r
t l0?7'

t l00rr
1l000zr
t 10.000a

sin(t,T) = 0
sin( L l0'I) = 0
sin(1100?7) = 0
sin(t 10002) = 0
sin(110.000?r) = 0

ONE"SIDED LIMITS

Figure 2.1.12

Numerical evidence carr also lead to incolTect conclusions about Iimits because ol round-
off error or because the table of values used 10 Iind the limit is not extensive enough 1o i eveal
the behavior of the function complctely. Thus, when a lin.rit is conjecturcd li om numer ical
dala i1 is important to look foI conoborating graphical or aleebraic evidence to supporl the
conjecture.

The limil iir (4) is conmonly called a two-sided limit because it requires the values o1' I (-r-)

to gel closcr and closer to L as ir approaches a from t,rtlrc| side. However, sonre functions
exhibit different behavior s on the two s ides of a poirrt ri. in which case ir is nece ssur'5 ro

distinguish whether r is near r/ on the leti side or the right side for purposes of investigating
the limiting behavior. For example. consider the flmction

, I r r>o,t
- [-1, .\-u

(Figure 2.1.13). As .r approaches 0 from the right side, the values of l(r) approach I

(in fact, they are exactly I for all such x), ilnd as r approaches 0 fr or.n the left sidc. the
values of /(r) approach L We describe these two statements by saying that'lhe lirnit of
l(-r) : lr /-'r is I as.r approaches 0 frorn rhe righl" and that "the limit of l(-r) : l-r /-r is

I as.r approrches 0f'rom the left"; we denote these limits by writingl

Irlr= ' '

IrigLrc 2. L II

rl rLim '-l :,,rrd lim --l\-0_ I L-0 I
(9 10)

Wilh this notation, lhc superscript "+" indicates a limit from the right and the superscript
" " in.iicates a limit from the left.
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This leads us to the following general idea:

Expressions ( I 1) and ( 12), which are called, one-sid.ed. limits, are also commonly written as

;f(x) --> L as x --> a+ and /(.r)-+Iasx-+a
respectively. With this notation (9) and (10) can be expressed as

El--las"--o+ and ]].L-+-1 as-x-+0

THE RELATIONSHIP BETWEEN
ONE-SIDED AND TWO-SIDED
LIMITS

In general, there is no guarantee thatafunction will have a limit at aspecifledpoint, and there
is some terminology to describe such situations. If the values of /(r) do not get closer and
closer to some sfugle number Z as ,r + a, then we say that the limit of /(x) as x approaches
q does not exist (and similarly for one-sided limits). For example, the two-sided limit of
f (x.) : lx.)/x does not exist as x --> 0 because the values of /(n) do not approach a single
number*the values approach 1 ftom the left and 1 from the right.

In general, the following condition must be satisfied for the two-sided limit of a function
to exist.

2.1.3 THE RELATIoNSHIP BETWEEN oNE SIDED AND Two SIDED LIMITS. The two-
sided limit of a function / exists at a point a if and only if the one-sided limits exist at
that point and have the same value; that is,

lim/rrr-L if andonly if lim /{-r) - L: lim frtt

REMARK. Sometimes, one or both of the one-sided limits may fail to exist (which, in
tum, implies that the two-sided limit does not exist). For example, we saw earlier that the
one-sided limits of /(,r) : sin(z/;r) do not exist as r approaches 0 because the function
keeps oscillating between - 1 and 1, failing to settle in on a single value; and this implies
that the two-sided limit does not cxist as -{ approaches 0.

Example 3

For the functions in Figure 2.1.14, find the one-sided and two-sided limits at x : a if they
exist.

2.1.2 ONE-SIDED LIMITS (AN INFORMAL vIEw). If the values of /(;r) can be made
as close as we like to I by making,r sufficiendy close to a (but greater than a), then we
write

,\|. "f(x) 
: r

which is read "the limit of /(,r) as;r approaches a from the righr is 2." Similarly, ifthe
values of /(.r) can be made as close as we like to I by making r sufliciently close to a
(but less than a), then we write

lim f (.x) = L (12)

(11)

Figure 2.1.14
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Sohdiott, The functions in all three figures have the same one-sided limits as r + c, since
the lunctions iire identical. except at,r = ri. These limits are

.1-r /(r) : 3 and .]im l(r) : I

In all three cases the two-sided limit does not exist as x -+ d because the one-sided linits
are not equal.

Example 4

For the functions in Figure 2. 1.15, find the one-sided and two-sided limirs at -r : a if they
exist.

A FIRST LOOK AT CONTINUIry

Fisui:2.1.15

Sohttion. As in the preceding example, the value of / at r = 4 has no bea ng on the
limits as r -+.r. so that in all three cases we have

.$_ "rt,rl 
:2 and ,[rn /(x):2

Since the one sided limits are equal, the two sided limir exists and

lim/(-r)-2 <

Plane cuNes can be divided ioto two categories-those that have breaks or holes and
those that do not. Breaks or holes in a curve are called discontinuities; a curve with no
discontinuities is called continuous (Figure 2.1.16).

A d scontinuous curve

Fisure 2. L

n rnni nLroLr., rr ve l
l

l6

Examples 3 and 4 provide some useful insight into what it means fbr the graph of a

function to be continuous. Of the six functions in those examples, only the last one does
not have a break or hole in its graph at -{ : a. Fol the functions in Example 3, the break in
the gmph at ir : a results from the fact that the one-sided limits at that point have different
values. A break of this type is called a jump d.iscontinuity in the graph. For the first
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INFINITE LIMITS AND VERTICAL
ASYMPTOTES

two functiens in Example 4, the hole in the graph is caused by a misnatch between thc
value of the function at r : ,/ and dre two-sidcd limit as -t approaches a. ln the fi|st graph.
the flrnction is simply unclefined at -r - .1, Ieavjng a hole: and in the second graph. l(n) is

defincd, but its valuc is clitlerent fiom the limit, resuhing in a poinr thar is displaced froin
the main part of the graph. A br eak due to ir hoie or a displaccd point is called a remoraDle
discontinuity in the graph. The third graph is continuous at -r : 17. since the value of / at

-r : ri is the sirme as the two sided limit of ./ as r approachcs a. thereby ensuring that there
is no jurnp or hole.

All of this sLiggests that three conditions nust be satisiied to ensure that the graph of a

l.rnLlr^rr Ju(\ nul lr:r\c a di.ioltin.-rit) al d Jr\en poinl:

. Thc luuction lnusl be delined al the poinl.

. The two sided limit must exist at the point.

. The value of the l'unclion aird lhe value of the two-sided limit must bc the same.

There will be more on this Iater.

Sometimes one sided or two-sided limits $,ill fail to exist because the valLres of tlie func
tion increase or- decrease indelinitely. For example, considef the behavjor oI the lunction

l(.x) = l/,r rs r gets closer.and closer to 0. It is evident from the table and graph in
Figure2.l.lTthatas.rgetscloseranclcloserto0ftomtheright,thcviiluesof .l(.t) - 1/-t
are positive lncl incleasc indclinitely: and as -r gcts closel and closer to 0 from the left. the
values of f (,r ) are negatlve and declease indefinitely. We denote these Iimiting behaviors by
wliting

llin : +, aod
r-0 -\-

More generally:

2,1.-l INI--t\l t-F I IN t s (,\N INt:olt\'t,\t. \' ,\\'). Il'lhc valucs of l(r) increase indefi-
nitely as,r approaches n from the right or left. then we write

liin /(r) - +- or lnr /(r) - +:c

as appropriate. anci rve say that /(r) ir?creases without bound as r > at or r > n
Similarly, if the values of / (.r) decrease indefinitcly as .r approachcs .r f'rom thc right or
lefl, then wc write

.t r "ft.t) - -:. or. ,lin .l(r) : :c

as approlrriate, alrd say tllat I(r') decreqses witltout boun(l as r > .r+ or' ! - rr

Moreover. il bolh one-sided linjts are +:.. then we rvrite

lim .l(-r): +z

and if both one-siiled limits are ... tl'ren we write

lin l(,r): :r

ItFll\1,\ltK. 11 should be emphasized that dre symbols +3: and -r, as used here. descibe
the pa icular way in which dre limits fail to exist: they are not rumel ical lin jts ald colse
quently cannot be manipulated using rules of algebra. For example. it is ir'-,r colrect to \\ rite
(+..)-(+..)-0.

I
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.lt
T; -

:- _ , _.,1

-r I -0.1 0.01 0.001 0.0001 0 0.0001 0.00t 0.01 0.1 I

I r r0 ruu -louo 10,000 10.000 1000 r00 t0 l:!-
l'<

Left side R ght side

Figurc 2.1.17

Example 5

For the functions in Figure 2.1.18. describe the limits at r = r, in appropriate limit notation.

Sohttion (.a), In Figure 2.1.1Sr;, rhe function increases indefinitely as r approaches .7 from
the right and decreases indefinitely as,t approaches a from the left. Thus,

I1
Iim 

-:+- 

and lim 

-:_..
r+r',t Cl \-! X A

Sohttion (.b). In Figure 2.1.l8b, the function increases indefinitely as r approaches a from
both the left and right. Thus.

111lim 
-_ 

linr- --lim ._-,.
' . (r o)- (.r -,r) ., (r' ar)i

Sohttiort (c), In Figure 2.1.18(, the function decrcases indefinitely as r approaches a from
the right and increases inde0nitely as r approaches a from the lett. Thus,

-llin _:_- and
Ilim _ : +..

Sohttion ld), In Figure 2.1.18d, the function decreases indefinitely as x approaches n
from both the left and right. Thus,

I I -1linr __ lrm _ lim' ,rf n) , t\ o)2 -, (\' a')

-l

r
(tt)

Figure 2. Ll8

(')
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LIMITS AT INFINITY AND
HORIZONTAL ASYMPTOTES

Geomctrically, iI /(,r') + +- as r approaches rr ftom the lcft oI Iight. thcn thc graph

of r : /(-r) eventually gets closer and closer to the line r - d as the glaph js traversed i]r
the posiiive -r-dilection; and if l(,r)= .. as r approaches., frorn the left or right, then
the graph of ,i : .f(r) evenlually gets closer and closer to the line ,r - rr as the graph is

traversed in the negative l'-direction. We cali fiis line a r'./.tiul .t\ntptota (fror't tl'ie Greek
./J}'r?ltloao.r, meaning "nonintelsecting").

2.1.5 DE NITION. A line -r : a is called a verticql aslmptote of rhe graph of a l

il:'l:'l T {'ql 1lr:11": +: T-:i:.:ipr:1'.T::illT lh: l:fTi lgr'l l

Example 6

The fou r funclions graphed in Figule 2. L I tl all have a vertical asyrnpl ote al r - ./, which
is jnclicated by the dashed vertical lines in the ligure. {

Thus far, we have uscd limits to clescribe the behavior of /(,r') as .r approaches a point

,r : a. However, sonetimes we will nol be concerned with the behavior of l(;) near a

specific point, but rather with how fie values of / (-r) behave as x increases wilhoul bouncl

or decreases without bounci. This is sornetimes cal1ed the end behaior of lhe function
bccause il describes how the function behaves for values of ,r thal are far lrom the oligin.
For example, it is evident florn the table and graph in Figule 2.1.19 thrt as r inereuses

without bound, the values of l(-t) : l/-:r ale positive. but get closer iind closel to 0; and

sim ilarly, as r decreases without bound. the values ol /tr ): l/,r rre ncBative, but also get

closer and closer to 0. We denote these limiting behaviors by writing

Ililn --0 and

More generally:

t2.1.6 LINI ITS AT INFINlTY (AN INI-oRN4AL vlEwl. Ifthevaluesol'J(-r)evenluall)'ge1

; closel ald closer to a number L as r increases without bound. then we \\ rite

lim ./(r):r (13)

Similarly, if the values of l(-r) eventuaily -qet closer and closer lo a nLrmbel L as r
decr'erres rilhoul buullc. titen \\e \ r ite

ti,n 1:o

lim .l(r) - I ( l4) ,
:

-.--''---.I

,l
lm i=11:

r- -.,- .,, l

l0

0.1

I I I l0 r00 1000 10.000

-r I : I 0.1 o.0l 0.001 0.0001

,r_ r 10.000 -1000 100

f(r.) 0.0001 0.00 0 o

Figure 2. L l9 r decreas:ng without bound r ncreas ng w tholrt boLr rd
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Geometrically, it f(x) ---> L as x r +co, then the graph of ) = /(x) eventually gers
closer and closer to the line y : Z as the graph is traversed in the positive direction (Fig-
\\te 2.1.20q): and if /(x) -+ l, as .rr > -c., then the gmph of y : /(x) eventually gets
closer and closer to the line y : L as the graph is traversed in the nagative r-direction (Fig
ure 2.1.200). In either case we call the line y - 1 a 1to,'ltontal asymptote of the graph of /.
For example, the four functions in Figure 2.1.18 all have l : 0 as a hodzontal asymptote.

EiSure 2.1.20

2.1.7 DEFINITION. A line y : L is called a horizontal asymptote of the gmph of a
function ./ if /("x) + Z as r ---> +.o or as x > co.

Sometimesthe existence ofahorizontal asymptote ofafunction / willbe readily apparent
from the formula for /. For example, it is evident that the function

lx+l I
l(Y): :3+-

XX

has a horizontal asymptote at ) = 3 (Figure 2.1.21), since the value of 1/.r approaches 0 as

,n -+ +co or -{ -+ oo. For more complicated functions, algebraic manipulations or special
technjques that we will study in the next section may have to be applied to confilm the
existence of horizontal asymptotes.

Limits at infinity can fail to exist for various reasons. One possibility is that the values of
/(x) may increase or decrease without bound as .{ --+ +co or as r + -:c. For example, the
values of /(x) = 13 increase without bound as,{ -+ +.o and decrease without bound as

r + co; and for /(x) : -x3 the values decrcase without bound as x -+ +.o and increase
without bound as x -+ -cc (Figure 2.1.22). We denote this by wdting

lim ;r3 : *-, lim 13 : o., Jim 1 xr; : --, lim 1-x3) = 1".,t

More generally:

2.1.8 INFTNITE LIMITS Ar INFINITY (AN INFORMAL vtEw). If the values of /(,r) in-
crease without bound as j -+ +.. or as x -> cc. thgn we write

lim /(r) : fco or lim f(,r) = +ccr+ +a

as appropriate; and if the values of /(r) decrease without bound as ; + +.o or as

x -+ -cc, then we write

lim /(r) - o or lirn /(r) : -m

as appropriate.

Figurc 2.1.21

Figrtre 2.1.22
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There s no limit as

-\ ++60T-l--) 6.

Figure 2.1.23

ExERctsE SET 2.1 E Graphine ca culator E cns

Limits at inlinity can also fail to exist because the graph of the function oscillates indef-
initely in such a way that the values of the function do not approach a fixed number and do
not increase or decrease without bound; the figonometric functions sin r and cos I have
this propefiy, for example (Figure 2.1.23). In such cases we say that the limit /ails to exist
because of oscillation.

2.

1. For the functjon / graphed in the accompanying figure, find
(a) 

.hq- .f(r) (t) ,9. "f(") 1c) .111 /G)
(d) ./(3) (") ,!T-f(") (f) .1T-.1(').

For the function I graphed in the accompanying flgure, flnd
(a) 

.11_ ./(r) (t) ,9. /(r) (c) lrnl f(r)
(d) f (2) (e) . lim-- /(x) (t) ,!T, l(").

For the function 8 graphed in the accompanying figure, find
(a) .9 s(') (b) 

.Lqr s(') (c) 
.1,j1s(')

(d) s (4) (.) .\T_g(') (r) .IT.s(").

4. For the function 8 graphed in the accompanying figure, find
(a) lim s(x) (b) lim s(x) (c) lim g(.r)

.!-0 l+0+ r+0
(d) e(0) (").1!-s(*) (f) .1T-g(").

Figurc Ex-4

5. For the function F graphed in the accompanying ligure, find
(a) lim .F(x) (b) lin F(;r) (c) lim F(r)

r- -2
(d) F(-2) (e) lim F(x) (f) lim F(x).

3.

Figure Ex-5

Forthe function F graphed in the accompanying figure, find
(a) lrm F(r) (b) lim F(r) (c) lim F(\)

,,1 ,,1
(d) r(3) (e) lim F(jv) (f) Iim F(.r).r+ +-

6.

Figure Ex-l

Figure Ex-2

Fi-eure Ex 3 Figure Ex-6



7.

8. For the function d graphed in the accompanying figure, find
(a) lim d(.r) (b) lim d(r) (c) lim /(r)
(d) 0 G)

For the function d graphed in the accompanying figure, find
(o) .11 4(') (b) ,lia_d(.{) (.) ,\T,d(*)
(d) O( 2) (e) lim d(*) (l) lim /(.t).

(e),1!-d(") (t),1T_d(').

For the function / graphed in the accompanying figure, find
(a\ lim /(,r r llr) lim /r-l /c) lim /1'r''LI l
rd) /r.l) (e) 

, 
lim* /h r rl) 

, 
lim. /r r r.

Forthe function / graphed in the accompanying figure,lind
(o) .1'q f(') (b) 

.LT. /(x) (c) 
,lTt "r(r)

(d) l(0) (e) lim l(ir) (f) lim /(.t).

2.1 Limits (An lntuitive lntroduction) 125

Forthe function G graphed i. the accompanying f,gure, f,nd
(a) .\ G(x) (b) 

.Lq, G(.r) (c) 
.lim G(x)

(d) c(0) (e) lim G(.t) (f) lim G(,r).

For the function G graphed in the accompanying figure, find
(a) 

.lim G(,r) (b) 
,liT, 

c(.r) (c) 
.111G(x)

(d) G(0) (e) lim G(.r) (f) lim G(x).

Consider the function g graphed in rhe accompanying fig-
ure. For what values of irp does lim g(;r) exisr?

lt,

12.

9.

l3-

Figure F.x-10

Figurc Ex-7

Figure Ex-11

Figure Ex-8

r = c(')

Figure Ex-l2

Figur€ Ex 9

10.

Figuie Ex-ll
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1'1. Consider the furclion .l graphed in the accompanying fig
ure. For what values oi-rr does lin l(r) exist?

iiLnt\+l)20.,rr lrn , I \ -U. rr.:. U', -0oq -0o'lq
l 5. 1.1. 1.01. 1.001

sin{5-Y )(b, lrm - t rn l< n I 0 nrrl lr rrtlrl
r Lr \n{l\l

ln Exercises 21 and 22: (i) Approxin-iate the r'-cooldinaies o1'

all horizontal asymptotes of I - /(-r) by evaluating / at the
points +10. +100. +1000. +100.000. and =100.000.000.
(ii) Confimr youlconclusions by graphing r' : l(.r) overan
appropriate interval. (iii) If you have a CAS. then Lrsc ir to
find the horizontal asymptotes.

tcl

ln Exercises l5 and 16. lind all points of disconlinujty fo1

the lunction, arld loI each such point state \\,hjch ol lhe three

condition(s) fbr continuity fail to hold.

15. (a) Thefunction.f in Exercise I
(b) l'he function F in Exercise 5

(c) The function .f irr Exercise 9

16. (a) Thc tirDction I in Exercise 2
(b) The function F in Exelcjse 6
(c) The firnction I in Exercise l0

ln Excrcises 17 20: (i) Make a guess lt the lirnit (if it
exists) by evaluating thc function rl the specilled poirlts.
(ii) Conlirm your conclusions about the lirtlit by graphing

the function o\rer an appropriate intcrval. (iii) If you hitve a

CAS, then Lrse it to lind thc limit. [N.)t.,. For lhe lrigonomet-
lic functions. be su-e to set your calculating and graphing

utiliti..s to the raclian mode.l

Figure E.1-14

r-l
17. (r) linr 

-i
-t r'- I

r+l
(1) r linr 

-:
Ll\l

1+l(c) lim 

-i 

.r- : 0. 0.5.0.9. 0.99. 0.999. 0.9999
r -l -tr- I

"{+r I
Itl. r:I lrrre rt l; L0 0001.

\ -i) {
+0.0001

Jr-l+l
rbt lirn

r-l ,!

"f+t+t,./ lrr 
- 

:\ 0.:5. 0.1. -0.001.
r -0 .f

0.000l
sin3t

19. 1:,1 lim r - *0 '5 ro o {x)l l(l {)001
.0 I

cos t
I r lim I , -n -o.5 o.r). f).'x). r).q()().

, r*l
l.-5. 1 l. 1.01. ,1.001

lr i l
tr 21. (a) .l(r) : (b) l(-t):-ri4

.rr+l(r) l(!):' \+l

-.1 I
22. li1) ltr)

5.\ +l
. sin J(c) /(-r):

.f

('. i)'

rr,r ir.r : (z + 1)'E

ln Excr-cises 2i and 24. express the limit as an equivalent

limit in which.r -+ 0+ or'.r -+ 0 . as applop|iate. IYou need

not cvaluiltc the limit. ]

23. (a) linr

(c) lim

l-rlbr lirnI + l+\

11",1 11- |' r '+, I +_r

t:ostz/ r )l.l- r,,r linr -_ -' \ '+z irlr
(c) ljm (l + 2-,i )rr'

25. (a)

(b)

26. (a)

(b)

27. (tr)

.''" (+)

('. i)
tr

tr

r. :2. 1.5. 1.1, 1.01. I.001.0.0.5. 0.9.

0.99.0.999

.r-:2. 1.5. Ll. 1.01. 1.001. 1.0001

tr

Skelcir the graph of a function that has two hoijzontal
asymplotes.

Can thc graph of a liri]ction intersect its holizontal
asynlptofesJ Il not. explain wh)-. Ii so, sketch such a

glaph.

Do .'n1 oi lhc lr'!.Jr., nel_i, llrn.t:nr.. .irt r. Lr'.,.
tan.i'-, cot r. sec r. csc r. have horizontal arsymptotes?

Do any of them have vertic.il asynrptotes? whelel

Let

. 3.l(\ I : \'' r()00

Make a con-iecture abolll lhe lirnit of f as r - 0l
[r gr;l.rrtirt3 / i,r the po.r,r. r - l.0 75. 0.5. 0.'5.
0.1.0.05.

tr



(b) Evaluare I at rhe poinrs r : 0.01.0.001. 0.0001.
0.00001. 0.000001, and make another conjecture.

(c) What flaw does this reveal about using numerical evi-
dence to make conjectures about limits?

(d) Il you have a CAS. use it to show that the exact value
of rhe limir is - I /2000.

RoundotT enor is one source of inaccu.acy in calcLrlator
and computer computalions. Another source oi error, called
catastrophic subh'aclior, occurs when twoneallyeqLlal nun-
bers are subtracted, and the result is used as part o[ arnotl]er

calculation. Fol cxample, by hand calculation we have

(0. 1234567E90I 23.15 0.123456789012344) x 10r'' - I

However. the author's calculator produces a value of 0 lbr
this complrtation because ii can onlv store 14 decirnal digitii,
and the numbers being sublacted are identical in the first 14

decimal digits. Catastrophic subfiaction can sometimes be
avoided by rearranging formr.rlas algebraically, but yoLu best
det'ense is to be aware that il can occru-. Watch out fol it in
the next exercise.
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lf you have a CAS, use it to show tltat the exact value
of the limir is .L

The accompanying figure shows graphs o1'thc funcliolt
from Exelcise 28 over two different inlervals. What is
happening'l

Use your graphing utility to generate the gr.aphs, and
see whether the same problem occurs.
Would you expect a similar problem to occur in the
vicinity of -r - 0 fbr'the furction

l-cosr
/(r) : 

-'

-r

See il' it does.

(d)

E 2e. (a)

(b.)

(c)

E 28. (a) Let

(c)

(b)

-Y-Slnr
/(t.l : '

Make a conjecture about the limil ol'I as,v > 0+ by
evaluating / at the points j : 0. i, 0.01, 0.001 . 0.0001 .

Evaluate / at the points .r : 0.00001. 0.0000001,
0.0000000 l, 0.000000001. 0.0000000001. and rnake
another conjectule.

What flaw does this reveal about using numerical evi-
dence to make conjectures 4bout limits?

Erratic :<r.!|h :?netxteLl b\ Mathtnktiut

Figurc Ex-29

2.2 LTMTTS (COMPUTATIONAL TECHNTQUES)

In lhe lust se(tian we distussed limits inlorndl\. forusing on the hasit itleas. In thi.c

se(tiotl, u,( r,lil discliss ctlgebraic ffiethods for frtdiug linits. rcse^ing thc .lis(ussiotl
ol the underly-ittg theon beh[nd tllese methods Jbr the nert sectiotl.

Our strategy for ilnding limits algebraically has two parts:

. First we will establish tire limits of some simple functions.

. Then we will ilevelop a repertoire of theorems that will enable us to use the limits
of those simple lunctions lls building blocks for finding limits of more complicated
functions.

0.166656

0.166666

SOME BASIC LIMITS
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The ten limits in the following theorem, all of which should be evident from Figure 2.2.1,
will fom our building blocks-three involve the constant function /(r) : t, three involve
the linear function "f(;r) : x, and four involve the rational function /(r) : 1/r.

f-ru'' t=tr. rJ'--* 't -- _ l

/(, =.'

!
t

l[t) = -L

Tf"*;.1
L '-r I

In the case ofthe constant function /(r) : t, the values of /(;r) do not change as.x varies,

which explains why the limit of /(x) is t, regardless of whether the limit is computed at a

2.2.1 THEoREM,

limt:l

limx-a

lim t=l
lim x : *cc

1

lim -:-m

lim k: &

lim ,r: -co

I1im :01
Iim tim 1:o

Figurc 2.2.1
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point 4 or as r approaches +.c or -... Fol example,

lim-3 = 3. lim 3-3, lim 3:3, lin 0:0, lim 3:3, lim 0:0r -2 r+-2 r++' r++-.
The linits ol tlre function f(,r) : I/x shouldmake sense to you intuitively, based on your

expe ence with fractions: naking tlle denominator closer to zero incl€ases the numerical
size of the fraction (i.e., iltcreases its absolute value), and increasing the numerical size of
the denominator makes tlte numerical size of tlte fraction closel to zero. This is illustrated
in Table 2.2.1 .

Table 2.2.1

11.'

l .r .01 .001 .000i
1 l0 100 1000 10,000

As ,r ) 0+ the value ol 1l
increascs without bound.

1l.r
-l ,.1 .01 .001 .0001

I -10 -100 -1000 10.000
As -Y -+ 0- the value of ll
decreases without bound

ll..
l l0 100 1000 10,000
l l .01 .001 .0001

As -t -> +- the value of l/-r
decreases Ioward zero

| 1.,

l l0 100 1000 -10,000
-r ,.1 .01 .001 .0001

As -t + - thc value of l/-r
increases Ioward zerr'r

The following theoren, palts of which are proved in Appendix G, will be our basic tool
for findirg linits algebraically.

, 2.2.2 l1ILOREN4 . Let lim stand fo
l': lim .Il Lt : lim /(r) attd Lz: lir
, /-\ li,- I tt-\ I -/-\l - 

ti- l/-\ ,

2.2.2 l1ILOREN4. Let lim stand for one of rlrc 1l.rylts lim ,

lim .f Zl : lim/(r) attd L, : limgG) hoth exisr. then

(a) lnr [/(r) + s(.]r')l :liml(.r)+lims(.r)
(b) ltu[.](x) s(.r)] :lim/(i) Iirn s(.r)
(c) lim [/(-r)s(x)] : lin /(r) ti11g(-r) = LrLz

:LtlLz
:Lt-Lt

(.d')

(e)

,. /(\) lim/(\) L\
g(,r) lin g (r) L2

,. t)t 

- 
t)t-rrm v / {,{ ) - vlrm/trl= proticletl L1 7 0 if n is eten.

tfLtl0

In words. this theorem states:

rat 7hc limit ol a tum is the sum of the lintit'.
(b\ The Iintt of q diftcrcncc is rhe dil{erence ,tf the limit:.
(!) The timit of a product is the product of rhe limits.

(d) The Lintit ot' a qtotiettt is the quotient of the limits prorided. the limir of the
inator is not zero.

(e) The limit oJ an nth root is the ftth root of the limits.

RE\{,\RK. Although results (4) and (c) are stated for two functions f and g, these re-
sults hold as weli for any linite number ()1'functions; that is, if the limits lim/r(r),
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lim fu (r),...,liml,,(;r) all exist, then

lim[/r(r) t fz(.x) i.. + l,Q)l = lim /r (:r) ilimfi(.r) +.. *liml,(x)

lim [/i (.r),{(r) . . 
"f"(")] 

: lim /1 (x) lim I("r) . . lim J, (x)

In particular, if fl, fz, ..., ,, arc allthe same function /, then (2) reduces to

lim [/(x)]" : [lim /(l)]"
It follows from this result that

Jr11r' 
: [*lim x]" = a"

and

1 / lY'
.ll-;: (,,!T.;/ :0

For exanple,

tim..\'r - 34 - 81. lim l, 
= u.

\-l t-+z xr

(1)

(6)

(2)

(3)

(4)

1
lim

1lim ,:Q

(u"i)

Another useful result follows from part (c) of Theorem 2.2.2 n the special case where
one of the factors is a constant &:

lim &/(;r) : lim k 1im /(-r) : k lim /(-t)

ln words, the lirst and last expressions in (6) state:

LIMITS OF POLYNOMIALS
ASx*a

Example I
Find lim rx' 4x-J)and justrfy each 5lep.

Solution.
lim t-r- ax -J) - lim.r lim 4r r lim J r "". ,'.)2"'../'

r-5 J i

- lim r'- 4 lim x r lim J -q"' "';'"'5 \-.5 ^ .t

- 5- - 4151 - 3 rq-rr "r 'r '

:8
Our next result will show that the limit of a polynomial p (jr) at a point,r : d is the same

as the value ofthe polynomial at that point. This greatly simplifies the computation of limits
ofpolynomials by allowing us to evaluate the polynomial instead. Moreover, as discussed in
the last section, this result also establishes that graphs ofpolynomials are continuous curves
(see the discussion in the subsection of Section 2. I entitled A First Look at C ontinuit!).

2.2.3 THEoREM. For any polynomial

P(.r)=co*crx]-" ! c,,x"

and any real number a,

lim p(x) : ca + cg +. . I c,a'' - p(a)



Proof.

*iyn, l(r) =
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,lim (cn * r1.r +. . F c,,-r")

lim co * lim cr.r +.. + lim c,,r"

: lim co i cr lim r * .* c,, Iim r"

- ca I cta I -i c,,u" - p(a)

Example 2

If we apply Theorem 2.2.3 to the problem in Example I, we can bypass the interrediate
steps and write immediately

Iim (x2 4n + 3) :5'? - 4(5) + 3 :8

In Figure 2.2.2 we have graphed the polynomials ofthe form x" 1br n = 1 , 2. 3, and 4; and
below each figure we have indicated the limits as x + +:c and,r > cc. The results in the
figure are special cases of the following general results:

LIMITS OF xn AS x - + co
ORx--e

.lim-r" : *cc, n:1,2,3,...

l+-. n:2.4.6....lim r"-I
[ ". lr = 1. -].5....

(1)

(8)

r; , --Jl.-*l
I lim .r= -li'-*- -.-l

Figure 2.2.2

Multiplying,r" by a positive real number does not affect limits
by l negatrve rell number rever.er the signs.

Example 3

lim 2r5 : *cc, lit'r. 2xs : --r++a

lim 7 '6 
-r. Iirn 1 t" - *

rj +a

(7) and (8), but multiplying

i,'-

iL

i ttm.t=*-;l\;-i
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LIMITS OF POLYNOMIALS AS
x -+ccORx --cc

Therc is a uselil principle about polynornials which, expressed intbrntally. states that:

A Ttolynomial hehattes like its tent of highest degree os x --+ +n or x ---> -n.

Stated more plecisely, if r:,, I 0, then

lim (ro*crx*.. *c,,x") : lim c,x" (9)

lim (cu+crx* . *c,,r''): lim cn-r" (10)

We can motivate these rcsults by factoling out the highest power of -r from the polynomial
and examining the limit of the tactoled expression. Thus,

\(,'+',.\+ ..*,,,.1" =.t"{a t ".I..+.,, I
\.f' r'r /

As .r- > *cc or .r + -:., it lirllows from (5) that all o[ the tenns with positive powers of ,r
in the denominator approach 0. so (9) and ( J0) a|e certainly plausible.

Example 4

. !I. {z.tt 4rr + 2r - 9) = , 
lim- 7-r5 : --

lim ( 4,r8 + l7.rr -5.r * l): lim 4t8: -ic

The method of the prccecling cxamplc will nol work iI the limit of the denominator is
zero, since Thcoren 2.2.2((/ ) is not applicable in this situation, Howevel, if the numelator
and denominatol Dollr approach zero as .r approaches c, lhen lhe numerator and denominator
will have a common flctor ol .\ - rl and the limil can oflen be obtained by lll'st canceling
the comnlon factors. The tbllowing example illustrates this technique.

Example 6
,t ,.1

Frnd lim ' -
r-l -r 2

Solntion. The numerirtor and denominator both have a limit of zero as -t approaches 2,
so they share a common factor of .r - 2. The limit can be obtained as follows:

,l-4 (r-2lr+2)
lim : lim i--------------- - lim (.\ + l) = 4r 't -l: 2 .r-t .r'- 2 r -:'

Recall that a ntional llnction is the ratio of lwo polynomials. Theorem 2.2.3 and Theorent
LIMTTS OF RATIONAL FUNCTIONS
As x - a 2.2.2(r/) can oticn be used in combinalion to compute limits ol'rutional l'unctions.

Example 5
5-t I + 4

Find lim
r l.\ 3

Sohrtiott.

lirn r -5.r 
I + 4lrr t+ 5.2r l,l

,.' r' J linr t.t -3t 2 3
r-:



2.2 Limits (Computationa Techniques) 133

RENlARK. Although col rect. the second ecluality in the preceding computalion needs some
juslillcatiou. since canceling the l'actol .r 2 alters the tunctiolt. Howcver. as discussed in
Example 5 ol Section 1.2. the two t'ultclions arc idenlical, except at.r = 2 (Fisurc I 2 9)
and we know florn our discnssions in the last section thal this cliffetence ltas no effect on
the limit as,r approaches 2.

Example 7

Find

rl 6r+9
la) lirr' r-.1 -t-3

lL F 8lb) lin,- l.\l+.\ l)
Solution (a). The nLrrerator and clenoirinaior both have a limit of zero as -r approaches
3, so there is a col-rrrllon lhctor of r 3. We proceed ls lollows:

lr - 3)l' = Iinrlr 3J-f)
r -l \-l'

Solution (b). The numerator and denominator both ltave a limit of zero as.r apploaches
,1, so there rs a corrmon factor of .r - (-a) - r + ,1. We proceed as follows:

)tl8 2,r,,1 r I llinr - li r' - l.rrr. r--r-1.2 a\ dr(.\ .1.r t

If the limit of the clenominaror is zero, but the limit ol the numerator is not. tlren there
are llrree possibilities fb| the limit ofthe rational lxnction as,! --+,r:

. The limit may be *2.

. The limit may be ::.

. The linit may be +:. from one side and :. frorr the other.

Figure 2.2.3 illuslr'ates th is graph ically tbr lunctions of the tblm l/(: u),1/(.r-a)2,and
I I (..r o)1 .

12 6-r +9lirtl - lim\ ,l r 3 r-l

I.=-

-_ \

I

I

.t

Figurc 1.2.1

2.r (b) ]nn

I

-----....\ -t,/---\/\/\ltlt,lt
ITa .= i

'+, 
(.\ ./ )-

Example 8

Find

(a) lin linr(.r 4)(.t * 2) (r 4)(.r + 2)
(c)

.\ -r (.r 4) (r + 2)
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- -0,- -- -. Sohttiott. In all threeparts the I im it ofthe numerator is -2, and the limit ofthe denominator

-r t i- is 0, so the limit ofthe ratio does not exist. To be more specific than this, we need to analyze
Ihe sign of the ratio. The sign of the ratio, which is given in Figure 2.2.4, is determined by

senof . -+, thesignsof 2 r - r - 4, and r * 2. (The method of test points, discussed in Appendix A," r' 4ri,+rr
provides a simple way offinding the sign ofthe rario here.) It fbllows fiom this figure that

Figure 2.2.4

L,MrsoFRAr.NALFUNcroNS :ilifi::HT,X"il:T:nil1*ffi:il::iii;:;:il:li,iilli:::inili::1i;TJ
AS r + +re OR x * - c,c,

constants oI powers of 1/rr. The fbllowing examples show how this observation together
with (5), (9), and ( l0) can be used to lind limits of r ational functions as .{ -+ +.o or.n -+ -?:.

Example 9
lx+5Find lim

-!-+- 6-y 8

Sohttitn, Divide the numerator and denominator by the highest power of x that occuls
in the denominator; this is x1 :.r. We obtain

.. .1., 15 .. J 5 r ,lim rJ-5 r)

.;+. 61 8 '-+- 6 8/-r .1T- (6 8/.r)

lim 3+ lim 5/x 3*5 lim 1/r
, r++a r++z r++?

lin 6 lim 8/.r 6 8 lim l/,r

Example 10

Find

4rl - r(a) lirn 

- 

(b) lim
5x1 -2x2 +7

,'j-::.,2x3 5 '"' .::. 3.r * 5

Sol ion (a\. Divide the numerator and denominator by the highest power of.r that occurs
in the denominator, namely rr. We obtain

.. 4rj-r 4 r r r' ,lim 14 t I r:t
.l 2r -5 '. . 2 5.\' ,lim '2-5lrrr

\.4 (t) 0 0

2 - (s.0) 2

Sohttion \b). Divide the numerator and denominator by,r to obtain

5x3 -2,{2+ I ,. 5x2 -2x+l/xlin - hmJr-r5 315/.r

as;r approaches 4 from the r-ight, the ratio is always negative; and as ir approaches 4 from
the left, the ratio is eventually positive (after r exceeds 2). Thus,

)tlrlim - . and lirn 

--+.
', (r a)(r 2) (r 4)G 21

Because the one-sided limits have opposite signs, all we can say about the two sided limit
is that it cloes not exist.

r++z r++a

3 + (5.0) I

6 - (8.0) 2
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where the linal step is justified by the facl that

5,t2 - 2r --+ -P:c, 1/r -+ 0, and 3 * 5/r + 3

as -r --r -%.

S ince a polynonial behaves like its lem ol'highest de gree as n + +r: 01 jr + ..,irfollows
that a rational function behaves like the ratio ofthe terms ofhighest degree in the nunerator
and denominator as r ++..or-r > :.: that is, ifc,, I0andrl, I0,then

A QUICK METHOD FOR FINDING
LIMITS OF RATIONAL FUNCTIONS
AS x - +o OR x - -o

LIMITS INVOLVING RADICALS

4x2 .r 3 2lrb) lim (1, lim 

-

2r' 5 \ I I

(b) lim

lim

lim

and

co + clr + ..t c,,x'' : li. t""

: tim il:

(11)
\++.. do+ dtx *.. * d,x^

co+clr+.. lc,,x"
(.12),+ -.do+d\x+. +d,,r,'

Example L L

Use Formulas (11) and ( l2) to find

lr F5(at lirn 

-

' r++'6Y l{

Solutiott (tt).

3.r5]rlllrm lun - llm -t++-6x-8 i'+-6.r ,-+-.2 2

which agrees with the result obtained in Example 9.

Solttlion (b).

4,' , rt,' )
lrrn -l=i _ lim ,_ lirn -_0

2.i' 5 2x .\

which agrees with the rcsult obtained in Example J0.

Solution lcl,
3 - 2xa -2xalim - --' : lim :- : lim -2.tr - -zr++- r+1 r-+- r .r-+z

ItE\l.\t{K. WeemphasizethatFormulas(II)and(l2)areonlyapplicableif .r + +:c or
,r + .c, they do not apply to linits in which -t approaches a finite rtrrmber a.

Example

Find lim

Soltttiort.

lim riu.r 
3" * 5

Thcorenr 2.2.2(e)

Example l3
Find

./.,, , + :(a) lrm' ' r-+- 3if - 6

Jx2 +z
Jr 6
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LIMITS OF FUNCTIONS DEFINED
PIECEWSE

lim : lim!-'+- 3r,6 '-+'

= lim
f _+z

-/.2 -'>r^F: llr-rl 

-

i-+- (3r - 6)/,r

t^ J4zl.f
l; (3j t

ln both parts it would be helpful to manipulate the futction so that th.J powers of ,r become
powers of 1/r. This can be achicvecl in both cases by dividing the numerator and denominator-
by I,r and using the fzrct that J.t2 : rl.

Soltrlion (al. As,t --+ *:o, the values of -[ are eventua]ly positive, so we call replace -r
by r where helpful. We obtain

.,E *tal
(3-r 6) ll.r

J'' +r/,c

lin ( 1 + 2/r2) lim 1+2 lim l/-rlr- +-i r+ +'
lim 3 6lim 1/.rr+ +' r+ +,

by r where helpt'ul. We obtain

. /' 2 . r/r 2 r
l n.r+ ,3rv-6 '- . (3r - 6)/l_r

v! + ,hl: lrm.'- - (6/x)-3

: lim

I

l

J ,, + zl"F
(3r 6)/( i)

For functions that are deflned piecewise, a two-sided limit at a poinl where the fbrmula
changes is best obtained by first finding the one sided limits at the point.

Example 14

[r5..i3
Find lim rlrtforltrr. {

l/,-ll. ,i l

Solutiott. As x approaches 3 from the left, the fomula for / is

Iir): t- 5

so that

Iim l(.r) : lim (rr 5) :3r 5 =,1,+l - \..'l

As;r approaches 3 from the right, the formula for / is

"f(,r): "/, + t:
so that

lim /1,1- lim..r 13- 7_hm (rJt r lo 4
V

Since the one sided limits are equal, we have

,trnt lt"l : +

lim (3 6lr)

_,/r+c-ol r

3 (6.0) 3

Solttiotl (.b). As -r + -, the values ofr are eventually negative, so we can rcplace .:r
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EXERCISE SET 2.2

Given that

JT, .l(') : 2. lim s(t) : -4. lim, /r(r) : 0

hnd thc limits that exist. If the limit does nor exist. explain
why.
(a) liln lf(r) * 2s(r)l (b) lim [h (-r) - 3s(r) + 1]

(c) lnn l/(.r)s(.r)l (ri) lirn [g(r)]r

(e) tin ,/6+ fcit (f) iim 2

,_,9(r)
.. 1/,'' Rc'ir lrllc) lir rr (h) lirnhr,' 2/'., ' a','

Use the graphs ol t and s in the acconipanying figure to
find the limits that exist. lf the linrit does not exist. explain
why
(a) lim ll(-r) + q(-r)l\_]
(c) lim [l(.r) + s(-i)l

(e) lrnr,-r I +,9(.()
(r) lrm ./ f(\)

Figure Ex'2

3. In each part, hnd the lirnit by inspection

(b) lim [/(.r) + s(r)]
(d) liln If(.r) + s(-r)]

I + .t(.\ 
)

(T ) lnn 

-

r .r lr,x1

(h) 
,lim v?n

(b) lirr ( 3) (c) lim z
\ -0+

(e) lim l2r (l) lim (-2n)

lim 

- 

30-

lim = : -12.

'-r r'r -36
\ *u

lim -_ 34.

lim - 36..-t rr-2r-8
7-615lim 38.i-+- I +3
6rllim __ 40.

1 -+'.1ti +3
.r-9lim -. 42.

lim /r 44.

,lim-(3 r) 46.

liln (1 + 21 3.t) 48.

Let

ll.

15.

9.

i7.

'1 I
tiln _

r-l+ -I I

.\ +frr +-llnn _
r+ rrl 31 4

3-r+l
llm.--.21 5

I
lim -

'--- -t *4
-r2

linr,'-,rr+2-{+l
.,G,, 2

linrr-. _r+3

2r'lim:I - /7 +6),:

"/:" + 'trm 

-lim _r-r r 3

t1* Ir-r J 3

rl+B
10. Iimt-, z t *2

t:-4t+4
12- lirn, r rl+\ 6

1r+11 5.+ll;l lirn
t-\ tJ 3t +2

I16. lirrt- ., x - l2

5-r2 + 7I8. linr!- +. 3rl - Y

t---:
r/:. ' 4.r'

t/ **i
Js'z z

-r-F3

21

17.

19.

21.

20. 1im

22- linr

(o) ]T,7
(d) lirr l-r

'\- 2

( \' l)fr 2)5. lirn "-
r+t ) + 1

r: 16
7. lim _

- -r/l.rl by in-

lirr

. vJ\'+ r

1T '^, 8

11,n Ir 'l .! 3

linr r
r-l+ rr 4

lim 

-
\-l \- 4

, ' +6
I ltll

tim _
' -,t* r2 )t R

3rtim _
., -.1 .rl 2r I

5-2rl
Iim

IIin _
' -: r 3l

lim
'-'' 2 - Jt
.!T,..r
lil]l (2.r3 - 100.r + 5)

(") lT1./c').

27.

29.

39.

il1.

43.

4. In each part. lind the stated limit of /(-r)
spection.
(a) ljm.f(r) (Lr) lim .l(-r) (c) hn l(r)r+5 \-' 5 \ '+i
rrlt ltrn fuI rc) lrn /(.r't (l) lir. /1i1

Find the limits in Exercises 5-,18.

4'.7.

49.

-.1 2-t
6. linr

L-i r* l

6-r I
8. lim -,-Lr lr- l2r *l

r:3
.r>3

lim flr)

I r - t.

[-]' - I
Find
(a) ,l'q ./(-r) (b)
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50. Let

Ir2, r > oqtrt:lr z. r<0
Find
(a) Iim

51. Let f(r)

s(r) (b) lim ,q(r)
I +{l+

13 I

;;l
lim /(1).

{.,/"t + r t)

(/,r? 3,{ jr)

and 4 (r) --+ *o as ,r + +-.
(r) lim : I

uG\(c) lim : +-,L-+.4(.r)

60.

61.

62.

63.

64.

57.

58.

59.

Find

(c) lim s (/).

Find the limits in Exercises 57-60.

1im

lim

lim (.,/.r2 + ar r)

.1q-r"4- + "' ,17 + t^t
Discuss the limits of p(x) : (l - i)" as jr + +' and

-r + - for positive integer values ot' n.

Let pG) : (1 r)" and q(r) : (l - x)"'. Discuss the
limits of p(r)/4(x) as r + +T and.i:'-r' -- for positive
integer values of /fi and 7r.

Let p(.r) be a polynomial of degree a. Discuss the limits
ol p(x)/x"' as jr -+ +6 and.r; + u for positive integer
values of m.

In each pat, lind examples of polynomials p(i:) and 4 (,{)

that satisfy the stated condition and such that p(x) > +'

(a)

(b)

52. Let

Sketch the graph of y - /(,r).

,.,:l#.*-,
[, r: r

(a) Find k so that F( 3) - lim F(.v).
r+ l

(b) With f assigned the value,lim3 F(r). show that F(r)

can be expressed as a polynomial.

{ar E\pliin why rhe lollo$ingcJl.ulation r. in.o|rect.

/t r\ l l,"rl, ^),'ll , "s,
-+t (+-):0

/l r\
qbl Slro'r that lirn { . l ..

0* \ \ \' /
/1 1\

Find lrnr { +; I,-0 \r x./

v'i +4 2 -/ai; )
50. llm

.L+0 ,t

53.

,5, 11,n 411 :6

(d) lim [p(r) - q(;r)] - 3

65.

66.

54.

In Exercises 55 and 56, first ratiollalize tl're iumeraior, then

find the limit.

Lei p(r) and 4(.{) be polynomials, and suppose q(x0) : 0.
Discuss the behavior of the graph of )' - p(r)/4(r) in the
vicinity ofthe point x : ro. Give examples to support your
conclusions.

Find

lm .o+clr+ +c,,n"
t-+- dr+ dtx +...+ d,,r,,

where c,, l0 and rl,, + 0. f,ryirli Your answel will depend
on whether in < n. m - tt. or nt > n.l55. lim

2.3 LtMtTS (DTSCUSSED MORE RTGOROUSLY)

Thtts far, our tlisctrssiort rf limits has heen based on our intuitit'e feeling ol ,thdt it
neans for the ralues of a fatctiort to get closer and closer to a limititg yalue. Hou,
eyer. this lewl of informality can only take us so.far. so our goal in this scinon is to
deline lintits precisely. Front a purel,v nlathenwtical point of |iab,these deJinitions are
needed to establish limits with certainrl- and to protte theorens about them. Ho\tever.
they will also provide us y,ith a deeper understanding of the linti concept, naking it
possible for us to visuqlize some of the more subtle properties of linctions.

In earlier sections we inlerpreted the limit

lli tt'r : r
to mean that we can force the values of f(r) closer and closer to I by making x closer and

closer (but not eclual) to a. Our goal here is to try to make the notion ofa limit more precise by
giving the informal phrase "closer and closer to" a precise mathematical meaning. However,

DEFINITION OF A LIMIT
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the concept is subtlc. so we will build up to it by giving two preliminar)i definitions that
cllptule the essential ideas, al-Icl then giving the final definition as it is commonly stated.

To stirrt. consider lhc function f graphedinFigule2.3.lalbrwhich f (r) + l as,r -+ n.
We have intentionally placed a hole in the graph itt,r - .r to emphasize that fhe function ./
nccd not be delined at t - a to have a limil there.

., = /1r)

Figurc 2.3.I

To motivate an appropriate dennition 1br a two-sided limit, suppose that we choose,//?_],

positive number. say e, and draw horizontal lines frorn the points I + € ancl a € on the
1-lixis to the cllfve -r' = ./(-r) ancl ihen draw vertical lines tiom those points on the cuNe
to the -r-axis. As shou'n in Figute 2.3.1b. let rn and Jt be points whcre the veltical lines
intelsect the .r ax is.

Next, imagine that.r gets closel and closer 10 .r (liom cither side). Eventually, -r will lie
inside lhe intcNal (11. r1). whlch is rnalkeil by the green band in Figute 2.3.1c: ancl when
this happens. the value of l(.r) will fall between l, € and I + €. marked bv the red bancl

in the llgure. Thus, we colclude:

Il f (x 1- L us x > u , lhett lbr tun positiyc tlunlher e, v'a c an fittcl cttt oltcu interral on
tli( x (l.\is tll(rl (otlldins tll( poitll r - a dn.l ltus tha propcrry that fbt'cLtdt x itt thut
intctral ler(ept possibll lbr t - tt). the yLtlue oJ l O; ) is bettecn L € und L + (.

Wllrl is important abouL this result is that i1 holds no mattcr how small we make e . However.
nraking e smaller and smaller fblces / ( t) L Loscr and t loscr to L which is precisely the

concept \ve wele trying to capture mathenatically. This suggests the tirllowing deiinition
of a llvo-siciccl lirrit.

2..1.1 l.1N1lr{t- tsTpi{Et-l\ NAII\t)trFl\tTIoNl. Let l(.r)bedefinedforall,r insomc
open interval containing the numbet a. with the possible exception that f(,r) need not
be defined at rr. We will write

lim l(.r) - I

i[ given any number € > 0 we can find an open ilterval (,!0. .r]) containing the point ./
such that l(ri) satislies

l, € < 1lI) < L+€
lbr each -r in thc inlcrval (r0. -rr ). exccpt possibly -r : a.

ObseNe thal in Figure 2.3.1r'the interviil (,r0. rt) extends farllrer on the right sidc of .r

thar on ihe lefl sicie. Horvevcr', titr many pulposes it is preferable to have an it.tteNal that
extends the same distance or1 both sides of a. For this pueose. let us choose arrl positire
numbcr d that is smallel than both.rl - ./ and.r -,r0, and considcr thc intcNal (.7 6. r + r).
This intclval cxtends the sane distance 6 on both sides of .7 and lics insidc of the intelval
(,rn,-t1) (Figure 2.3.2). Molcovcr. thc condition L e < f(.x) < l*e holds 1br every
r in this interval (except possibly r - .r), since this condition holds on the lar-qer interval
(-re. r1). This suggests the following lefomrulittion of Definition 2.3.l.

. ri'- <J'

1 #
11) i? D d ./+d !l

Figure l.:1.2
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I 2.3.2 LIMIT (sEcoND PRELTMTNARY DEFrNrrroN). Let /(,r) be delined fbr ali,t in ]

I some open interr'al containing the number rl, with the possible exception that /(ir) necd i

I not be defined at c. We will wlite i

lim l( L) : I

(3.r 5) I <e if 0<lx 2 <3 (l)

if given anynunber< > 0 we can find a numberd > 0 such that /(r) satisfles

L-<<f(.x)<Lte
' for each,r in the interyal (a - d, a * J), except possibly,y : .7.

For our final version ofthe limit delinition, we note that in Deflnition 2.3.2 the condition
L - e .< f(x) < I + € canbeexpressed as

f(t)-Ll<e
and the condition that r lies in the jnterval (a - 3. u * d), but.r f a, can be expressed as

0< r a <3

Thus. we can rewrite Definition 2.3.2 as follows.

2.J.3 r r\4n Dr r r\rr( '\ r INAL F;R; 1., ,,., ' bc detined tbr rrll .r in .orne operl
iirterval containing the number a, with dre possible exception thal f(.r) need not bc
denned at a. We will write

lin /(r) : t

if given any number e > 0 we can find a nunbel6 > 0 such that

' .f(") L <e if 0<l.r-a <d

REMARK. This defines a two-sided limit. The deflnitions for one-sided limits arc similar.
the diffelence being that the condition 

"f(.r ) - l, | < € is only rcquired to hold on the interva]
a < x < al5 fbr right-sided limits and on the interval a 6 < r < .r for le fi-sided limits.

In the preceding sections we illustrated various numerical and graphical methods fol
gre.r.siirg at limits. Now that we have a precise definition to work with, we can actually
confim the validity of those guesses with mathematical proof. Here is a typical example of
such a ploof.

Example 1

Use Definition 2.3.3 to prove that lim (3r 5) : 1.

Sohttion. We must show that given any positive number e, we can find a positive number
6 such rhat

!._.:

/( r) L d

There are two things to do. First, we must dlsco|e| a value of 6 for which this statement
holds, and then we rnust/7?r,c that the statement holds for that ,. For the discovery paft we
begirr by.implil)inp {lr and uriring ir rr

3x-61 <e if 0< r-2 <r)

Next, we will rewrite this statemelt i]r a folm that will facilitate the discovery of an applo-



It shoulcl be self-evident that this lasl statemeDl holds il 6 : €/3, which cotnpletes the
cliscovery poltion of our. work. Now we neecl to pr-ove that (1) holds lbL this choice of 6.
However. statement ( I ) is equivalent to (2), and (2) holds rvith 6 : e/3. so ( 1) also hokls
with, = €/3. This ploves that limi (3-r 5) : L

RLNIARK. This exalnple illustrales the general lirn]r of a limit ploof: We ./.r.rr/r?c rhat we
are given a positive liumber €. ard \\,c try tolrr|c that we can lind a positivc number 6 such
that

priate J:

3.r 2 <e, if 0<.r 2 <6
r 2l < €/3 if 0<.r-2 <6

.l(tJ - Ll <e if 0<.r nl <d

or nole simply,

v[<e if 0<-r<6
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(2\

(3)

('t)

This is done by llrsl discovering ri, ancl then proving tltat the.liscovered J wo|ks. Since
the iugument has 10 be generrl enough to rvork for ali positive values of €, the quantity
d has to be expressed as a flnctiol.r o1'<. ln Example I we found the lunction d : e/3
by some simple algebra; however. most Iimit proofs recluire a little more algeblaic and
logical in-qenuity. Thus, if you lind our ensuing discussion of "d e" ploofs challenging. clo

not becorre discouraged; the concepts and techniques are intlinsically dil'llcult. In fact. a

precise understandirrg of limits evaded the finesl mathernatical minds for nore than l-50
years after the basic corcepts of calculus wcre cliscovelecl.

Example 2

Prove that ,ll1 J.r : 0.

Soltttiott. Wc nust show thal given e > 0, there exists a 6 > 0 such that

J,! 0l <e il 0<,r-<0+J

THE VALUE OF 6IS NOT UNIQUE

t/ !) r/ D ,/ t/+.' d+n

But, try squar-ing both sides of the inequality .rf = e, ive can rewrite (4) as

-r.er if o<.r<d (5)

It should be self evident that (5) is tlue if r! : €rl and since (5) is a lelbrnulation of (4). we
have showr that (4) holds with, : €'. Thrs proves that ,,]l /T - ll. <

RIiNlAltK. ln this example we were only concemed wilh the linrit from the right because

/ (.t) = ^/r 
has imaginary values fb| r < 0. Thus. the lirnit fiom the left and the two-sided

limit are rot applicable at.! : 0.

ln preparation for our next erample. we note that the value of 3 in Defir'iition 2.3.3 is oot
unique; once we have found a value of 6 that fullills the rcquirements of the definition, then
any -sifla1ler. posilive number 61 will also fu]fill those requirements. That is, if it is true thal

.l(r) I <e il 0< r rr <J
then it will also be true drat

l/(.r) - l, <e if 0<.r-rr <d1

This is because {r:0 < I.r -al = d I } is a subset ol {r : 0 < t a <6} (Figure 2.3.3),
and hence if l/(-r) I < e is satisllccl fol all.r in the larger set. then it \\"ill autonaticillly
be satisfied fbr all -t in the subset. Thus, in Example l, where we used 6 : </3, u,e could
have used any snraller.r,alue of d such as d : </4,6: < /5, or 3 - e 16.
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Example 3

Prove that lim -r-2 : 9.

Soltttiott. We must show that given any positive number €, we can lind a positive number
6 such that

lrt 9 <e if 0<l;-31 <d (6)

Because I,r - 3l occurs on the right side of this "if statement," it will be helpful to factor the
left side to introduce a tactor of ;r 3 . This yields the following alteroative form of (6):

l\,31r 3l , iI 0lr.3 5 (1)

(e)

(10)

To make this statement hold we need to lind a 6 that "contlols" the size of botl'r factols on
the left side. However, the condition on the right side gives us direct control on the size of
l.r - 3 but not of -r * 3I. To circumvent this difficulty, let rs tempot'atib) replace the factor

ljr + 3 by a positive coDstant k and look for a 6 such that

kl, 3 <e if 0<lr 3l <d

This statement can be rewritten as

lr 3 <€/k il 0<l.r-31 <6
which can be satisfied by taking

Now let us assume that,t ceur be chosen so that

l.r:*3 <k
in which case

(E)

LIMITSASx*+ooOR

lx*3 r-31 <e if kl-r -31 <e

Thus, if we can find k so that (10) holds, then choosing 6 as in (9) will make (8) hold, and
this in turn will make (7) hold.

To find k, let ls arbitrct il.\, agree that we will choose J so that 6 < l. This is justif,ed
because of our eariier observation that once a value ol d is found, then any smaller positive
value of d can be used. Thus, if it so happens that d > I in(9),wecanused = linstead,
thereby guaranteeing that 6 : 1. If we impose this restriction on J, then it will follow from
rhe right side of (8) rhar

i,r -3 <i or 2<,r<,1 or 5<x+3.<7
fiorn which we can conclude fhaf

r + 3l < 7

Thus, given e :' 0, we can take ft = 7 in (8), and hence from (9) we can take 3 : €/7
(ol smaller), subject to the restriction that 6 < L We can achieve this by taking 6 to be the
minimum ofthe numbers </7 and 1, which is sometimes written as 6 : min(€/7, 1). This
proves that lim x2 :9.

\-l

ItE\,lAItli. You may have wondered how weknew to make the restriction d 
= 

I (asopposed
to J : j or 3 : 5, for example). Actually, it does not matter; any restriction of the folm
6 5 c would work equally well.

In Section 2.1 we discussed the limiis

.!1. "f{") : z and .11- /(r) : .
from an intuitive viewpoint. We interpreted the iirst statement to mean that the values of
I (rv) eventually get closer and closel to I as x increases indefinitely, and we interpreted the
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second statement to nean that the values of /(x) eventually ge1 closer and closer to Z as ,r
decreases indefinitely. These ideas are captured more precisely in the following deflnitions
and are illustrated in Figure 2.3.4.

2.3.5 DEFINITION. Let /(-r) be defined for all .r in some inlinite open interval ex
tending in the negative jr-dircction. We will w te

,t!\.,f (x) - t
if given any number e > 0, there corresponds a negative number N such that

Lf(.x)- L <e if ,r<1V

To see how these deflnitions relate to our informal concepts of these limils, suppose

that .l(r) > I as ;r + +:o, and for a given < let N be the positive number described in
Definition 2.3.4.lf x is allowed to increase indelinitely, then eventually n will lie in the
interval (N, +,), which is marked by the green band in Figure 2.3.4a; when this happens,

the value of./(x) will fall between L- < andL *<, marked by the red band in the figure.
Since this is true for ali positive values of e (no matter how small), we can force the values of
/(r) as close as we like to I by making N sufficiently large. This agrees with our infomal
concept of this limit. Similarly, Figu,re 2.3.4b illustrates Definition 2.3.5.

l/(O l-l <€if -r>N

(,1)

r'=/(.1)

l(.\)-l <€ f.\ <N l- -i;-

L+e
l(.n
L

Le

Figurc 2.1.4

Example 4
l

Prove that lim - - 0.
r;+ar

Soltrtion. Applying Delinition 2.3.4 with .f(x) : llx artd L
given e > 0, we must llnd a nunber 1y' > 0 such that

lr 0 <r if r:'N
r

: 0- we must show that

2.3.4 DEFlNtTtoN. LeL f(x) be deilned fo| all r in some inlinite oper interval ex-
tending in the positive r direction. We will write

,lT-"r(.r): r
if given any number e > 0, there conesponds a positive nurnber N suclt that

lG)-L <e if .r>N

(11)
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Because r -+ +co we can assume that,rr > 0. Thus, we can eliminate the absolute values in
this statement and rewdte it as

1

-<< if x>N
x

or, on taking rcciprocals,

if x>N (.12)

It is self-evident that N : 1/e satisfies this requirement, and since (12) is equivalent to ( 11)
for,r > 0, the proof is complete.

In Section 2.1 we discussed limits of the following type from an intuitive viewpoinr:

lim /("r) : 1co, lim /(,r) : -co

lim /(r) = r:o. lim /t,r) - o.

lin /(x) : 4co, lim /(x) : co

Recall that each of these expressions describes a particular way in which the limit fails to
exist. The +oo indicates that the limit fails to exist because /(x) increases without bound,
and the -€ indicates that the limit fails to exist because /(x) decreases without bound.
These ideas are captured more precisely in the following definitions and are illustrated irr
Figure 2.3.5.

2.3.6 DEFINITION . Let f(x) be defined for all ;r in some open interval containing a,
except that /(r) need not be defined at a. We will wdte

.t91, /k) : +*

if given any positive number M, we can find a number 6 > 0 such that /(n) satisfles

[(t) > ll4 if 0. lr -nl < d

2.3.7 DEFINITION . Let f(x) be defined for all x in some open interyal containing a,
except that /(jr) need not be defined at d. We will write

,111/(x) = -co

if given any negative number M, we can find a number d > 0 such that /(x) satisfies

[(.t) U il 0. x-a <6

To see how these definitions rclate to our informal concepts of these limits, suppose
that /(x) + +.n as x > a, and for a given M let 3 be the coresponding positive number
described in Definition 2.3.6. Next, imagine that "x gets closer and closer to lz (from either
side). Eventually, .x will lie in the interval (a - 6, a * d), which is marked by the green band
in Figure 2.3.5a; when this happens the value of /(x) will be greater than M, ma-rked by the
red band in the figure. Sinca this is ftue for any positive value of M (no matter how large),
we can forca the values of /(,r) to be as large as u,e like by making,r sufficiently close to
a. This agrees with our informal concept of this limit. Similarly, Figure 2.3.5b illustrates
Definition 2.3.7.

1

(

INFINITE LIMITS

(13)

(14)

(1s)
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/\.\J l,t rl u l' ,l o i\') M n ., o

(u) (l')

Fieure 2.3.5

REN,IARK. The definitions for the one sided limirs in (14) and (15) are similar, the differ-
ence being that the conditions /(r) > M and /(,r) < M are only requircd to hold on the

intervald<r<a+dlbl the right-sided limits and on the interyal d - d < -r < a for the
left-sided limits.

Example 5
I

Plove that Jim , - a-.

Solrttir.ttt. Applying Definition 2.3.6 with lG) - 1lx'1 and a = 0, we must show that
given anumber M > 0, we can find a numberd > 0 suchthat

I
;>M if 0<.r 01 =d

or. on rrking reciprol:rl. and (irnpiilying.

-,.'.1 if ocrt<d
M

I.OR IIIL IILADLR. How would you define

lim f(x) = +r. lim l(r) : -..r j -l-a .rJ +z

lim /t.r't -- . lrm f(r\-- ?

(16)

(.t'7)

Brtxz < lf Mill.rl<11^,fM,sothat6:l/1&satisfies(17).Since(16)isequivalert
to (17), the proof is complete.

(18)

ExERctsE SET 2.3 E Graph ng Catcu ator

d .! a+6

1. (a)

(b)

Find the largest open interval. centered at the oligin on

the r-axis, such that for each point .r in the interval the

value ofthe function /(-r) : r + 2 is within 0.I unit of
the number l(0) : 2.

Find the laryest open interv.rl, centered at the point
r :3, such that for each point ,y ir,) lhe intelval lhe

value of the function .l (x) : 4x - 5 is within 0.01 unit
ofthe nuDber l(3) = 7.

Find the largest open inier-val. centered at the point
r :4, such that fbr each point r in the interval the

value of the function .f(-r) : 12 is within 0.001 unit of
the number /(4) - 16.

2. In each par1, find the largest open interval, centered at the
point l = 0, such that for each point ri in the interval the
value of /(r) :2x * 3 is wilhin € units of the number

.r(0) : 3.

(a) e :0.1
(c) e - 0.0012

(c)
(b) e :0.01
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3. (a) Find the values of -r I and -{r in the accompanying figure.
,b lirrd.r po.itrre numbero.u.h rh.rr ,,rT 2 nn.;1

0< x :l <6.

II
13. lim : -; €:0.05 14. linr, r :0: e -0.05

Figure Ex-3

(a) Find the values ol r I and xt in the acconpanying li gur e.

(b) Fincl r positive nurnber , such that ( l/r) I < 0. I il
0<l-r l<J.

In Exercises 15-28. use DeliDition 2.3.3 to
slaled limit is correct

plove thal the

16. llm (,1-r - 5) :7
r_3

18. iim (2 3x) - 5

rl 920. lim : -6r- l -r+3

22. lim (-rr 5) :4

I

24. lrm 

-: 

I.r-:ril

26. limJl+3:3

f.' I rAl
Itm /rr t - l. $Lere /r r r {

lro ' - I

lrrr 112 1 3..r l) : cr

r '.1

(a) Find the smallest positive number N sucl'r that fbr eaclr
point j in the intelval (N. +-), the value of dre flrnction

l(r): l/ rr is rvithin 0.I unit of L-0.
(b)

(c)

(d)

Fir]d the snrallest positive number N such that fbr'
each point r in the interval (N, +z), the value of
/(-r) : -r/(-t + l) is \lithin 0.01 unit of l, : L

Fiid the largest negative number N such that for each
poinl r jn the interval (,. N). the value olthe t'unctio|r

.f(.r) : l/rr is within 0.001 unit of I - 0.

Find the largest negative number N such that fol each
point -r in the interval (-2. N), the value ofthe function

.f(-t) - r/(,t i 1) is within 0.01 unit of L : L

In each part. find the smallest positive valuc of N such

that for each point -r in the interval (N, +-), the function

l(.r) : l/rr is within . units of the number L - 0.
(a) € : 0.1 (b).:0uL (e)--0001

(a) Find the values oli{ | and-y. in the eccompanying fi gure.

(b) Find a positjve nunber N such that

tl
I l<e
It+.t

for r > N.

(c) Find a negative number N such that

1,1

--l<€

l+\l

for -t < N.

2 + 0.05

l
2 {J.05

Nrt ltutrn 1. t al?

Fisure Ex '1

lim 3-r : 15

lim (2r 7l - 3

lirn = I

lirn 2-rl:2

Ilim -3

lim ^,/r - 2

l5_

17.

19.

23.

25.

21.

)1

1.

5.

6.

7.

8.

28.

29.

In Exercises -5 14. a positive irumber e and the limit L of a
function f at a point.r are given. Find a number 6 such that

l(r) L <eill < r a <J.

lim 2.r : 8; e :0.1

rn, 1,: r, .:ot
,- I i

lirr (7r i 5) : 2:

lirn^ (5-r 2) : 13; e

30.

3t.
r : 0.01

:0.01

.24
9. Iim :4: < :0.05

,-l I - 2

.rl I
10. litll : 2: e -{).05r ' tril
11. liin -rr : 16; e :0.001

12. lin J-r:3; € :0.001
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411fim 

-:): 

e-O1r- -2r l-5

1i- l:t: € : o.oolr+:r+140.

In Exercises 41-48, use Definitions 2.3.4 and 2.3.5 to prove
that the stated limit is correcf

41-32.

45.

Figure Ex-32

In Exercises 33-36, a positive number e and the limit a of a
function / at +co are given. Find a positive number N such

tna'tlf(x) - L <eifx>ly'.

43.

(a) Find the laryest open interval, centered at the origin on
the x axis, such that for each point r in the interval,
other than the center, the values of f(x) : ll12 arc
greater than 100.

(b) Find the largest open intefr'al, centered at the point
.d : l, such that for each point x in the interval, other
rhan the cenrer. lhe vaLues oI lhe lunction

fG)-rl x 1l

arc greater than 1000.

(c) Find the largest open interval, centered at the point
x : 3, such that for each point ir in the interval, other
than the center, the values of the function

f(x) = 11:l' - 3)'?

are less than - 1000.

(d) Find the laryest open interval, centercd at the origin on
the r-axis, such that for each point jr in the interval,
other than the center, the values of f(x) : -llxa are
less than - 10.000.

50. In each part, find the laryest open interval, centered at the
point x : I, such that for each point.{ in the inteNal the
value of /(ir) : 1/(,{ - 1)2 is greatet thar M.
(a) M : t0 (b) M: 1000 (c) M: 100,000

In Exercises 51 56, use Definitions 2.3.6 and 2.3.7 to prove

that the stated limit is correct.

34. lim I 
-0: e :0.005

:++r x +2
35. 1;- -l : t: e - 0.001j++an+1

4x-136',9i-2"+s -2i e: o't

I
Iim - -9

1lim :0.t---x+2
1- l:1

4x-1lim -2r+ -,2x + 5

llim _ : lco,- r (-r 3),
I

'-0 hl

142. lim - :0
l44" lim = 0,.+-x+2

46. lim - 1,--'.r*1
4x-148. lim _ :2!++?2x+5

-1-52. lim-..._:-o.-r (r - l),
54- lim I :+-

'-rl.r-11
1

56.Jtm^,=1o:

Not dt-awn to s&le Figurc Ex-31

(a) Find the values ofr L and x2 in the accompanying figure.
(b) Find a positive number N such that

t1 0: ,;-= <€</x L V,r

for -:r > /y'.

(c) Find a negative number N such that

I lrl_ _n : t_t <.li "l lil

e = 0.01

47.

49.

:.1. -rim,]:o;

51.

53.In Exercises 37-40, a positive number € and the limit I of a
function / at -.o are given. Find a negative number N such

that /(r) ll <<ifx<N.

I
-17. lim _ :0: e :0.005t+-- x +z

138. lim ;=0; €:0.01
In Exercises 57 62, use the remark following Definition 2.3.3

to prove that the stated limit is conect.

/ r\
55. llm l-- l: cc

r-o \ r+/
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57. lim (.t + l) = 3
r-l

-9. litn .//-\--- = 0

58. Iin (lr * 2) = 5

60. linl /-i - 0

65, (a) liut (.r + l) : +z (b) lim (.r + l) - '.

[t. r 2
61. lim /(.r) = l. uhcrc /{.r) = I -', []' \-l

f,. ' l
6.2. lirn /r.r) = 6. whcr! lt.t) = {[r'. ' - ]

In Exercises 63 itnd 64. use lhe rerrlark lbllowing Dclinilior'ls
2-:1.6 and 2.3.7 to provc thrl thc shted limil is conecl.

I
6-1. {irl lirn

L-t I t

I
64- (a) liut - = *:c

For Exelcises 65 and 66. write out deiinitions ofthe fout'lim-
ils in ( l8). and use your clefinitions to provc that thc stitted

limil is correct.

(a) linr (.r: - 3) : az 1b) lim (rr + 5) : -,,r- +z

Prove the result in Example 3 undel the assumption that
d:2ratherthanr:1.
(a) ln Definition 2.11.3 the|e is a conclition requiring that

/(-t) be dellned for all .{ in sone open inlerval contain-
ing a, except possibly at.r itsell. What is the purpose

of this requirement'?
(b) Why is lim ,'/i: 0 an inconecl slttcmenr?

.r-l)
(c) Is linl ./r' = 0.1 a correct statenrent?

69. Cenerate the graph of /(.r) : .rr - 4.r'+ 5 with a graph-

ing utility. and use thc graph to tind a nuDrber 6 such that

Ll(,t) 2l < 0.05 if0 < l.t - ll < 6. [flirrt. Shorv

that thc inequality lf(.i) - 2l < 0.05 can be rervritten as

1.95 < .rr - 4-r * 5 < 2.05. ancl estirnate the values of r
lbrwhichrr -:lr *5 : 1.95 and.tr -.1.r *5 : 2.05.1

70. Usc the method ol Exercise 69 10 find a nunber.! such tlrat

t"6.r.+ t -.1 <0.5if 0<.r-3 <d.

66.

67.

68.

I{b} linl : +'
r-t I

I(b) linr

E

E

DEFINITION OF CONTINUIW

2.4 CONTINUITY

A ntt|.ittg ohjut &tunot vt ish ut sotlt( poinl enal rcultltutr xtncplucc elsa I(t (onlinte
its tlbtion. Thus. ra par<cita tlrc putlt fi u n:a.lrirtg ohject cts u !)nlinuous (urta. Illdl
is. ct turve \ritlnut gups. brcqks. or holes. Edrlier. r'c r1l.r< rrsscr/ u)ntinuil\' lion1 etl

intuiti|e ricu'point; in thi.\:i?ttion vrc vill dcfina tlis (on(Pt ptuiscll cttrcl tletelop
sonrc litntlanentttI 1)rq)('tti('s of untinuous (L!tles.

Recall from Sectiorl 2. I thAt the graph of a function .f will h ve I hole or a break in it at a

point . il any ol the firllowing situittions occur:

The function l is undclined at c (Figule 2.4.14).

The limil of .l(.r ) does not exist as.r approaches ( (Figufes 2.,1.l/r.2.4.l().

The value ofthe liurctiur rrd the value ofthe limit at ( rrre ditlercnt (Figurc 2.4-l11).

,=9r--

Fi!nrc 2-4.1



2.4.1 DEFINITION. A function f is s aid to be continuous al a poilrl c if the follow ing
conditions are srf isfi ed:

1. /(c) is delined.

2. lim /(,v) exists.

3. lim /(r) : .f(c).

2.4 Continuity 149

This.ugge.ts the lollowing definition.

If one or more of the conditions in this definition fails to hold, then we will say that I has a

discontinuit! at the point r : c. If f is continuous at each point of an open interval (a, D),
thenwewill say that I rs continuous on (a, D). This definition alsoappliesto infinite open
intervals of the form (a,+a),(-cn,b), and (-.o, +-) lnthecasewheref is cotrtillroLrs
on (-.., +..), we will say thar f rs continuous everyvhere.lf I is continLlous on an open
interval, but the particular interval is not important for the discussion, we will say that l is
continuous (wrthout refercncing the interyal).

REMARK. The lirst two conditions in Definition 2.4.1 are actually superfluous, since it is
implicit in the third condition that /(c) is delined and the limit exists (otherwise the equality
would make no sense). We have included the lirst two conditions for emphasis and clarity,
but, as a praclical matter, you need only confirm that the third condition holds when you
wcnt ro show thal ir funclion / is continuous at a point,.

Example L

Determine whether the following functions are continuoLls at the point,r : 2.

/(x) =
rl 4 "_l'"-t

124
x2

3,

.ltqlG): ltqr(r): ltnllG) = .litr

. tl2 ,(rl = l=
u

x +2

r =2

Solution, In each case we must detelmine whether the Iimit ofthe function as,r -+ 2 is
the same as the value of the function at r = 2. In all three cases the functions are identical,
except at the point x = 2, and hence all three have the same limit at x : 2, namely

x2-4
= ltm" (,r + 2) :4

The function / is undefined at x - 2, and hence is not continuous at that point (Fig-
ure 2.4.2a). The function I is defined at r : 2, but its value there is S(2) : 3, which is not
the same as the limit at that point; hence, g is also not continuous at -y - 2 (.Fig:jje 2.4.2b).
The value of the function h ar x - 2 is h(2) - 4, which is the same as the limit at that

,'1="'"

Figurc 2.4.2
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CONTINUITY IN APPLICATIONS

CONTINUITY OF POLYNOMIALS

poillt: hence, /? is continuous at.r : 2 (Figule 2.4.2r). (Note that tl]e function /r could have
been written more simply as i (r) -.r + 2, but we wrote it in pieccwise fonn to emphasize
its relationship to./ and g.)

L1 applications. discontinuities often signal the occunence ol irnportant physical phenorn
ena. Fol example, Figure 2.4.3a is a graph of voltage versus tirrre for an undel-qround cable
that is accidentally cut by a work crew at time I : 10 (the voltage drops to zelo when the line
is cut). Figure 2.:1.3b shows the -qraph of jnventory versus time for a company that restocks
its warehouse to \'1 uuits when the i|iventory fal1s to l,r units. The discontil]uities occur at
tlrose limes when restocking occurs.

(.a) Q)

Figu,c 1.1.3

Given the possible physical significance of discontinuities. it is impoflant to be able to
identify poirts of discontinuily for specific functions, and to bc able to rnake general state

ments aboLrt the conlinuity prope ies of entire tamilies of functions. This is our next goal.

The general procedure for showing that a function is contiluous everywhere is 1o slrow that
it is continuous at an r, bltizi-r point. For exarnple, we shorved in Tlteorem 2.2.3 that il p(r)
is a polynomial and a is aly real number, then

1im, p(r) : p (a)

Thus. we have the following result.

2.-1.2 l r ll' tltl \1. P,'t.ttl, n1tol "l. t,,11l1ntt.'tt\ ct cl )tt ttc, c

Example 2

Shorv drat r is continuous everyrvhere (Figule 1.2.5).

Solutittu. We can write ,r as

I L if r'()
Irl={ {l i1 r-tl
I

[-.t il r<l)
so lr is the same as the polynomial r on the interyal (0. F-) and is the srme as the
polynomial -\.- on the inlerval ( z. 0) But polynomials arc continuous lurctions, so r : 0

is the onLy possibie point ofdiscontinuity for ,r . At this point we have l0 = 0, so to plove
the continuity at j : 0 we rrust show that

l1'1, 'l - o

Because the folmula for' l-r

(1)

changes at 0, it wjll be helplul to consider the one sided limits



2.4 Continuity l5l

at 0 rather than the two-sided limit. We obtain

lim ..rl- lim r=0 and lim r = lim r-xt-0\ 0 -u , ,o

fhus, (1) holds and rl is continuous at x : 0.

The following theorem, which is a consequence of Theorem 2.2.2, will enable us to reach
SOME PROPERTIES OF
;biiiliii;ii'iiji"ciibrus conclusions about the continuity of functions that are obtained by adding, subrracrirg,

multiplying, and dividing continuous funcrions.

CONTINUITY OF RATIONAL
FUNCTIONS

2,;1.3 THEOREM. If the functiot\s f and g are t:ontinuous at c, then
(.a) f + g is cottinuous at c.

(b) f - C is Lontinuous at c.

(c) fg is continuous at c.

(d) f / g is continuous at c if g(c) I 0 and has a discontinuir) at c if g(.c) = O.

We will prove part (d). The remaining proofs are similar and will be omitted.

Proot. Fitst, consider the case where g(c) : 0. In this case f(c)/Sk) is undefined, so
the function //g has a discontinuity at c.

Next, consider the case where g(c) I 0. To prove that //g is continuous at c, we must
show that

. f (.r) flc)lrm:- - " (2)i-r g(-t) cG)
Since / and g are continuous at c,

,t11 /ir) : /(c) and lim s(r) = g(c)

Thus, by Theorem 2.2.2(d)

.. /("1 .111 /lx) ft.cllrm--r*c g(x) J'* s(r) s(c)

which proves (2). I

Since polynomials are continuous functions, and since rational functions are ratios ofpoly-
nomials, part (d) ofTheorcm 2.4.3 yields the following rcsult.

2.4.4 TI-IEOREM. A rational function is continuous everlwhere except qt the poitlts
where the denominator i.t zero.

Example 3

For what values of .r is there a hole or a gap in the graph of

12 -gv = ^ '?- xL 5x+b

Solution, The function being graphed is a ntional function, and hence is aontinuous
everywhere except at the points where the denominator is zero. Solving the equation

t2 5x*6-0
yieldstwopointsofdiScontinuity,rr:2andx:3.<
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CONTINUITY OF COMPOSITIONS

IOIt lllh Rh.\DL,lt IlyouuseagraphingLrtilitvtogenelatethegraphof the equation in
this example. then there is a good chance that you will see the .liscontinuity at,r : 2 but
not al.r : 3. Try it. and explain u,ha1 you think is happening.

The lblllvin.g theolem, rvhose proof is given in Appendjx G, rvill be usclul ibr cirlculating
liruils ol corupositirms ol lirnctions.

2."1.-i 1'llt ORt \'1. Lt,t litn"-tutrlfirrnrcofth(linlits lin.,1i:rl ,.1ili.,lim..or',li]r,.
/l lirrlg(r) - Lantlilthclinttiolt.f isconrinutnrsull.l/r./rlim.l(g(-i)): l(L).Thqt

In worcLs. this theor-ern states:

A litnit synfiol tart be ntotetl through u.fiortiott sign protided the linit ol the exprcs-
sion insicla tlrc lunctiou .sign erists turtl the functiou is cotttiru,rous at t]tis linit.

Example 4

Supposc thal lirn g(.r) cxisls. where lim slands lbr arly of the limits in Theorem 2.4.5. We

Itnorv liom Example 2 that lhe lunction .r] is continuous evelywhele; thus, it fbllows that

ir. lirn /(3(.r)) =./(lim.q(r))

lim ,q(.r) = lim,q(.r) (3)

that is. a limit synrbol can bc mrvcd thlough an absolute value sign, provided the limit of
the expression inside the absolute value si-gns exisis. For example,

Tlie fbllowlng theorem is concerned with the continuit), of compositions of tunctionst
thc llrsl part deals lvith continLrity at a specific point, and the second part with continuity
evervrvhcrc.

2..1.6 T IoRI]l\t.
(o) Il tltc lirtLtiott ,4 is tortlirtnotts L!1 llte poitll t:. ttutl tltc funttiort J ir- rontinuoul ,u

th( point :<\r').lhett th. (t)nryosiliot1 l .g i., t otllinuaLts ul (.
(h1 l.fthclLrnrtion g is truttintrotts tler-ru ltarc antl tltefuntlion.fis(onltnut,t!rLlLtl

there. then llte (oittposition | .g is (oiltitlLtous e)et\'\4here.

.lhry'. Wervill provc pa (.r) onl);lhe prool'ol parl (/r) can be obtained by applying part
(r1) rt fll albitral)" poilrt a. To prove that I 'rg is continuous at a. we must show that the
value of .l c,g tncl the value of its linit are the same ilt -r - .. But this is ro, since we crn
write

lim (1.,q)(r) : lim ./(g(.r)) : l(lim,g(.r)) :.1(S(.)) : (l "g)k)

Thc.,r r I .15 ( i\.otrinu,,!\ rr .

\lt knorv from Exanple 2lhat lhe functiol] .rl is continuous everywhere. Thus. if ,((r)
is contimous at the point c. then b1,palt (a) ofTheotem 2.4.6. the function lS(,r) mustalso
bc continuous at llle point .: and, rrore generally, if g(-r ) is coDtinuous everywhere, then
so is g(\') . Statcci inlonrally:

The obsolute rdlLte of a corttirtttous fwtt.lio is cotltitlLous-



CONTINUITY FROM THE LEFT
AND RIGHT

Figurc 2.4.4
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For example. thc polynomial g(.r) = 4 .rl is continuous everywhere. scl wc can conclude
that the function l4 - .rl I is also continuous everywhere (Figure 2.4.4).

FOJI lllEIthADnt. Can thc absolute value ofafunclion thiit is uol continuousbe contin
uous'l Justily yoru answct.

BecauseDefinition2.4.liuvolvesalwo-sidedlimit.lhatclellnitiondocsnotgenerallyapply
at the endpoints of a closed interyal [/r. D] or al thi: endpoint of an interval of the forn'l

Vt . b ). (a. b). (-t. bl. or lu. +%), To remecly this problem. we will agrec rhar a funcrion is
continuous at an endpoint ol dn interval if its value at thc endpoil1l is cqual t() the appropriare
onc-sidccl limit at that point. Fo[ cxample. the l'unctien graphecl in Fi_eule 2.4.5 is conrinuous
at the right endpoint ol'thc intcrval ftr. Dl because

,lim /(t): l (b)

but it is not continuous irl the leli endpoirrt because

.linr_ / 
(-r) I l(a)

In general. we will srry u futrcti(nt I is continuous rt.o ttlrc lelt L\t L\poi:nt c il

.111 .rt-'.t - t,,,
a].j rs continuous ,fro,n the right L\t a point . il

.lim l(.r) 
: I (r')

Usin-q this terminology rvc tlcfine continuily on a closed intervll as tilllows.

2,-1,7 DLI'|\tlto\. A lunctiorr I is said to bc co[tr'rtuous on a closed intcrvql la . bl
if the follorving corrditions lrc satisfied:

l. f is contiuuous on (c. b).

2. .f is cortinuous fr'on tlte ri_sht at d.

3. f is contiuuoLrs ftorn the lcli at D.

FOR TIII ltl]ALll.llt. We leavc i1 lir| you to modit_v this definition approp|iately so d]at it
applies to intervals ol lhc li)lm fu. +'J:). (-''.. b]. (4. b l. and Ia. b ).

Example 5

What can you say about lhc continuity of the lirnction l1.rt = V!_r.: r

Soluliut, Because thc nrtulirl tlomain of this l'unctiorr is the closecl intclval [-3. -j]. w'e

will ncccl b investigate the continuitl, of ./ on the open intery l (-3.3) and at tlle two
cDdpoints. If c is any point in lhc intclval ( 3.3). tl]en it follows flun Theorem 2.2.2(c)
fh,tf

lin /( r) : tinr u6 - .r: = /ffi (, -.1 : v6 - r.: : ./((.)

which proves I is cis continuous t each poinl of thc interval (-3. 3). Thc lirnction / is also
conlinuous at the errclpoints since

.4 fr.'l - ,ri,1 v! --,r = =0: l(3)

.]m.,.l{.rt - 
, 

tinr, uf,r -.,t : 
, 

fi* r', - 0 = /{ --?r

r'=l.l-rrl

Figure 2.,+.5

/ linr (9 .\'r)

Thus.f.iscontinuouSonthccl()scdinterval[.3.3].<
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THE INTERMEDIATE.VALUE
THEOREM

APPROXIMATING ROOTS USING
THE INTERMEDIATE-VALUE
THEOREM

Figurc 2.4.6 shows the graph of a function that is continuous on the closed interval [ri. D].

The figure suggests that if we draw any horizontal line r, : k, where li is betwcen /(a) and

/ (&), then that line will closs the curve r' - /(jr) line at least once over the [a. D]. Stated in
numerical terms. if / is continuous on [n, D], thcn the tunction f must take on every value
t between I (a) and / (/r) at least once as r varies from a to 1r. For example, the polynomial
plr): -r5 -r +3 hasavalueof3 at-r - land avalueof 33atr - 2. Thus, it follows
from the continuity of p that the equation 15 r f 3 : k has at least one solution in the
intervdl L 1. 2l tbr every value of l: between 3 and 33. This idea is stated more precisely in
the following theorem.

2.4.8 rllLolt[N] (Internetliate"value Theoren). IJ J is Lotltinuous on a (losed iterrql '1

lu. bl and k is art,t rtunther hetu een f(a) 4t J (b), inr lusi'e. tlrctr therc is dt least one '

nunlber r in the intcnal la. bl such thal f(x) : k. :

DaSCRIPTIOi'

Aithough this theorcm is intuitively obvious, its proofdepends on a mathematically precise

davelopmenl of the real number system, which is beyond the scope of this te\t.

A variety of problems can be reducecl lcl solving an equation ./(-r) - 0 for its roots. Some-
limes it is possible to solve for the roots exactly using algebra, but otien this is not possible

and one n-iust settle for decimal approximations of the roots. One procedure tor approxi-
mating roots is based on the following consequence of the Intermediate-Value Theorem.

I 2.-1.9 THEoRE\i. If f is tonrittLrous on [a, bl, and if f(u) ond l(b) dre nonzero ct d

', ha|e opposite sigtls. thol therc is aL leqst otte solutiou ol the equdtion .f(x) - 0 in the

, itltet |Lt[ (d, b).

This result, which is illustrated in Figure 2.,1.7, can be proved as follows.

I'nrof. Since .f (a) and f(b) have opposite signs, 0 is between /(d) and l(b). Thus. by

the lntennediate Value Theorem there is at least one number -r in the inteNal [n, b] such

that /(r) : 0. However, /(ri) and l(b) are nonzelo. so,r must 1ie in the intelval (a. D),

which completcs the proof. I
Before we illustrate how this theorem can be used to approxinlate roots, it will be helpful

to discuss sone standard terminoiogy for describing errors in approximations. If .r is an

approximation 1() a quantity -r0, then we call

€: -! ,I0

the absolute error or (less plecisely) the eryor in the approximation. The fbllowing termi-
nology is used to describe the size of such errors:

Table 2.4.1

lr -rnl ( 0.1

lr .t6l ! 0.01

t - -tnl S 0.001

.r tel < 0.0001

.r -.tol ( 0.5

Ir -rj < 0.05

It -re ! 0.005

lr -.vn < 0.0005

.r app.oximttes -r0 with an eror of at mosl 0.1.

.r appr-oximales r0 with an efior of at most 0.01.

r approximates r0 with an enor of at most 0.001.

.r approxinates r0 with an error of at most 0.0001.

r approximates.\0 to the nearesl integer.

.,; approximates r9 to I alecimal place (i.e., lo the nearest tenth).

.r app|oximates 11 to 2 decimal places (i.c.. to the nearesl hunclredlh).

-r approximates.r0 to 3 decimal places (i.e., lo the nearest thousandth).

I (1,) < o

Figure 2.,1.7



lc *l

, !-a-L(/ 1r1) r b

Every fumber r n the rnterval ll/. rl
diflers from \o by at most €, and
the midpoint of the interval dillers
from.\r, by at most €/2.

Fi!urc l..l.li

r=r.\ l

Fi!:urc l.{.q

APPROXIMATING ROOTS BY
ZOOMING WTH A GRAPHING
UTILITY
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We will also nccd the fbllowing result. which should bc evident geometrically ftonl
Fisure 2.4.8.

2..1.10 ,\Pf,l{o\rNl.r 1oN r)r{l\crpL[. Suppose that the equalion ./(.r) : 0 has n root
r0 in the inlcrval J4. /rl llnd thnt this intelval has length € : D - a. Then any nurTlber.r
in the interval [.r. /r] approxinates r0 with an error ofat most e, and the midpoint of the

interval approxirnates .r0 wilh an elror of at nrost e/2.

Example 6

Thc equ ti0n

.r3-.t-l:0
cannot bc solved algeblaically vcry easily because the left sicle has ro simple lactor's.

However'. if wegraphp(.r) =.1r .r I with a graphin-s utilily (Figur.; 2.4.9).thenwcarc
led to conjecturc that there is one real root and that this root lics inside the inteNal . 21.

Tlrc cxistcrlce of a root in tlris intcNal is also conlilmecl by Theorem 2,4.S, since Tz( l ) = -l
ancl 2(2) : 5 have oppositc signs. Approximatc this root to lwo dccirnal pLace accu|acy.

Soluliott. Our objective is to npproximate lhe unkno"vn root .r0 with an error of at nrost

0.005. It fbllorvs from lhe Approximation Principle (2.4-10) thal il we can find an intcrval
of lcngth 0.0 | that coutains lhe [oot. then the n]idpoint of that intcrval will approxinrate the
root with an error ()1' al nrost 0.01 /2 : 0.005. which will achieve the desired accura.^y.

We know that the loot .r0 lies in the intelval ll.2l. However. this inlerva] has length
l. which is too large. We can pinpoint the location of the root lnore plecisely by dividing
the inlerval ll.2l into l0 cqual parts and evaluating /r at the points of subdivision using
a calcul tingr utility (Table 2..1.2). In this table p( L3) and /r( I.4) have opprrsite sigls. so

ra'e krrow that the rcot lies in thc inteNal !.3. I .41. This interval has length 0.l. which i;
still kx) Iurge, so we rcpeat thc process by dividing the interval | 1.3. L4l into I0 parts ancl

evaluating p at the poinls ol subclivision; this yicltls Table 2.,1.3, which tells us thal lhc root
is irside the intcrval | .32. l.33l.Sincethisintclval has length 0.01. its midpoinl 1.325 will
approximate the root with !m cn(n ofat most 0.005. Thus. -r-1 - L325 to lwo decimal-place
accuracv,

'l'ablc 2.,1.2

,f(-r)

t.6 1 .1

l.s0 2.2t

2

5

t.9I

-1

1.1 L2 r .l
0 7'7 -O.1',7 -0.t0

1.1 L5

0.3:t 0.81{

Table 2.{.,1

1.ll

,1.0,1 3.9h

_ -.,r. 1.3 l.ll 1.32 l.3l 1.34 1.35 1.36 1.37 1.38 1.39 1.,1

/(-r) -{).lU3 -0.062 -0.020 0.023 0.066 0. I l0 0.155 0.201 0.2411 o.296 li.l44

The method illustrated in Example 6 can also be implementecl with a glaphing utility
follows.

Step l. Figure 2,4. l0c shows the graph of .l in the window l-5, 5l x [ 5,5]
with rScl = I and ,r'Scl : L That graph places the root between
r: 1and.r = 2.

Step 2. Since we know that the ()ot lies between,r : I and -r = 2, we will
zoom in by regraphing / ovel an r-intcrval that extends between
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these points and in which rScl = . L The r,-interval and ) Scl are l-Iot

clitical. as long as the ) -inteNal extends above and below the,r-axis.
Figure 2.4. 100 shows the graph of I ir the window | 1, 2 j x I l,l]
with xScl - .1 and 1,961 : .l. That graph places the root between
v : i.3 and -r : L4.

Step 4. Since we know that the root lies betweer r : 1.3 and I : 1.4, u,e
rvill zoom in again by regraplring f over an.r-interval that extends
between these points and in which -rscl : .01 . Figure 2.4.10c shows
the graphof / in the window |1.3, 1.41 r [ .1,.1]with -tScl:.01
and lScl - .01. That graph places the root between .r : 1.32 and

-r : 1.33.

Step 5. Since the interval in Step 3 has length .01 , its midpoint I .325 applox-
imxtes the root with an error of at most 0.005, so -r9 ! 1.325 to two
decinral place accuracy.

I 5.51 x L 5.51
.rSc = l. r'Sc = I

(/)

ll.llx I l.lj
rSc =.1. \'Scl -.l

(r)

t1.3. l.:11 xI.1..lL
\Sc = .01. rScl = .01

(( )Fig' r( ] l. (l

EXERctsE SET 2.4 E Graphlns Ca cr ator

ItlrNllltK. To say that.r approxinrates .r0 {o /? decimal placcs clocs /ro[ nleon that the litsi
, decimirl placcs of .r lncl .r0 will be the sarrc whcn the nurrbels are rounded lo // decimrl
places. For exarlrple. r - 1.011:l apploximatcs r0 : 1.087 to t$'o decirnal places becausc

-r .tn | : 0.003 ( < 0.005 ). However. if u,e round these vill ues to lwo dec imtrl placcs. thcn
we oblirin .r - 1.08 and.r0 'Y 1.09. Thus. ilyou itpploximaLc a numbcr to /r cle cirrrlll plilces.

then you should display that approximation to at least /r + I decill'lal places to pleserve thc
accuracy.

Iolt lllLlili\L)hlt. flsea-eraphingorcalculatingutility1()showthattheroot-\0inExiutlpLe
6 ciin be appr-oxilnated ls r0 = 1.3245 to three decimal-place accuracy.

ln Exercises l-4.let f be the lunction whose gftlph is show n.

On which ol lhe lbllorving interr,als. if any. is f continuoirsl
(.r) ll.ll (b)(1.3) (c)1.21
ld) ( l. 2) (e) 12. 3l (f) (2. 3)

On lhose illlervals wherc ./ is not continuoLrs. state where lhe

discdrtinLritics occur.

l.
s.

6.

Suppose that./ ancl g are coDtinl()Lrs functions such fhat

f(2) : lrnd lirtl [/(r) i4.q(\)]: ll. Fincl
\ -:

(x) {(2 r (b) lim.8(-r ).

Suppose thrt / and g are continuous functions such thut

JTl1.s(.r) - 5 and l(3) - 2. Finrl lnn, Ll(.t)/s(.r)1.
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24. On \\'hich ol lhe lbllowing inlcNirls is7. hr each pafi skctch the graph of a lunction I lhat satisfics
tl're srated conditions.
(ii) / is continuous everywhere cxccpt at.\' : 3. at which

point il is contiDuous lroln thc right.
(b) / has a two-si(lecl linrit at.t : 3. br.rl it is not continr.rous

at that point.
(c) t is not cortinuous at.! : 3. but if its lalue at.! : 3

is changed liotr.l(3) : I to./(3) = 0, il beconrcs

continuous ill .f :3.
(d) I is continuous (nr the inter.virl 10.3) Lrnd is defined on

the closed inteNrl 10. Jllbut f is nol conl inuous on the

inten al t0. -l I.

8. Find lirrmuhs fol sonre functions thnt iue corllilluous on thc

inte 'als ( z. 0) ilnd ({). +z). but arc nol confinuous on lhe

iDtcrval ( z. +z).
9. A sludent parking lot at a university charges $2.00 fbl thc

tirst half hour (or any paft) and $ L(X) lbr erich subsequcnt

half hour (or any pi|lt) up Io a daiiy mnxintunr of S10.00.
(a) Skctch a gllph olcost as a llnction ol the tinre parketl.
(b) Discuss the signiliclnce ol'the discontinuities in the

graph to a studcnt u,ho parks there.

10. In cach pa deternrille whether the l'unclion is continuous

oI Dot. ancl cxplain yoLrr reasoning.
(a) The Earth s popLrltition as a lurction of tilne
(b) Your exact hcighl as a function of iinre
(c) The cost of llxi ride in your city as a llnction of the

distance travelcd
(d) The volunle ol r nlelting ice cubc as a lunction of time

Irt Ercr.i.e. I I 22. lin.l lhc point. nl (li5c,\rttirtuil). if Jlr\.

It. /(f) - rr 2.r + -l
.\l.l. l(.\ r: -.

\- + I

r4
15. ll.t t : '--\ - l()

.f

\'1

12. .l(t) = (.t -,5)rr

'l':-l
,lr*l

.\'_ + /\' :
5 2.r

.r+3
h'] + L'1

I

/\'tr----:
J.t-l

conlinuo!s'l
{a) [2. +z)
{c) (2. +z)

rl,? r,, 1r.r-
.t
r'-2

\bt \-:1. +-.)
(d) ll. 2)

A lunction I is sai(l lo ltile a rcntoyable discontinuit! i\t
r : ( if lim l(.r) exisls. but

.l(()+lin1./(.r)

eithc'r bcciluse /(( ) is undchned or the v.lluc of /(.) diff'ers
tionr lhe \.alue ol thc Iirril. This terminologt' will be ncerled
in Exercises 25-21{.

25, ( ) Skelch lhc gliiph ol a lunctiorl with o removable dis-
coitinuity at .r : r lirr rvhich / (c) is undeliDed.

(b) Sketch llre grilplr ol r iunclion wilh a renrovablc dis-
continuily nl -\ = r tbl rvhich / (( ) is delined-

26. (r) The terminologl rcnrtultlc dird,trtirluitl is appropri-
rte []ecr(se a rcmovable discontinuity of a lunction /
at a point .r : l can be ''renovccl ' by redelining thc
value ol / applopliately at -r : ( . What value lor l(( )

r-cnroves tlte discontin r.r ity?

1b) Sho\! that thc fbllo$iig lunctions luve removablc dis-
continlrilics itl .r : l. .Lnd skctch lheir graphs.

.rj-r [l 
\ 'l

./t.\ j = 
--: 

Jld (r.\r: {() .\-ltl
ll\'r

(c) What values shoulcl be assignecl to /(l) and B(1) to
renrove the cliscontinuitiesl

In Exercises 27 ancl 21i. find the points ol discontinrity. iLnd

clelernrinc whether the disconrinuities are rerDovable.

14. /(.t):

16. f1.\.) =

18. .l(.r) = ,;l + 3r

19.

2t.

22.

/(.t): ltr 2.trl 20- .l1r):

^,,:{;:.i :,]

^.,:{-:11
2.1. Find a value for the constant (. il possiblc. that \rill make

thefunctio c0nlinuous.

[7t-]. r.l
lirl /l\):l ,

tAt-. \ 'l

l {.r't. r . l
lb) Ilr): I

[2. +/i. .r > 2

.r+3
(c) / (r) - .r'-2

- .,1 - J

[:.t 3. r:]
/(.il = L

[.r-. r >

[.t',+5. , + t

[6. r: l

Use a glaphing utility to gene.ate tlrc graph of the 1'unc-

tror. /r.r) : 1i - 1r rl.' - 5.r'- lr. .rnJ ther u.e

the graph lo nlake a corjecture rbollt the nulnber and

location of ll cli\conlinuitics.

Check youl corrjccture by frctoling the dcnominator.

28. (a)

(b)

(c)

E 29. (r)

(b)
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B 30. tar U\e :rpraphrns urilil) ro!drcr!l(lheprdl\holtlrclurre
tion /trr .r lr' -.r -.'r. and lhen u.e the glaph to
make a conjccture about the nLrmber and location of all
discontinuities.

(b) Use the Intcrmediate Value Theorern to approximiile
thc locatioD of all points ol disconlinuity lo two deci-

mal places.

31. Prove that l(.r) : -rl/5 is continuous everywhere, carefully

.iustifying each slep.

J2. Prnrr rlr.rr ,/,.r, - I Vf | -r- | i..ontinuou, ererv-
where, carefully justilyinS each sfep.

33. Let I and B be discontinuous at.. Give examples to show

tlrat
(a) .l + .q can be continuous or disconlinuous al c

(b) lg can be continuous or discontinuous ilt c.

34. Prove Theorem 2.4.4.

35. Prove:
(a) part (a) olTheolen 2.4.3

(b) part (r) ol Theoren 2.4.3

(c) part (.) of Theorem 2.4.3.

-16. Plove:lf I andSarecontinuouson[a.D],andl(a) > g(a),

l(D) < 8(r), then there is at least one solutioi ol the eclua

tion l(r) - g(i) in (,i, D). [F1i]li Consider l(r) - S(r).1

37. Give an example of a function f thal is deiine.l at every
point in a closed inteNal. and whose values at lhe endpoinls

have opposite signs, but fol which the equalion f(r) : 0

has no solution in thc inteival.

38. Usc the Inte! mediate-Value Theorem to show that there is a

square with a diagonal length that is between;- and 2r ancl

an area that is half the arca of a circle ol radius r.

39. Use the Intennediate-Value Theorem to show that there is

a right circular cylinder of height /r and radius less than r
whose volume is equal to that of a light cilcular cone ol
height i and radius r.

In Exercises .10 and 41. show that the equation has al least

one solution in thc given intelviLl-

| 5,11 x | 3.61
rscl = l. r'Sc = I

Figure Ex-43

Use a graphing utility to solve the problem in Exercise 43
by zoorning.

The accompanying llgure shows the graph 6f-1 :J r rr.
Use the method of Example 6 to approximate the roots of
thc equation 5 - -r -.rrl - 0 to two decimal-place accuracy.

a 11.

45.

E 46.

47.

,lS.

49.

Ls.,rlxt3.6l
rsc = l. \Scl = I

Figure Ex 45

Use a graphing utiljty to solve the problem in Exercise 45
by zooming.

Use the lact that J5 is a solution of -r2 5 : 0 to approxi-
mrt. ."/i wrth rn err,.r of al mo.t u.ftr<.

Prove that if.r an.l , are positive. then the equation
tt l>+ :0rl\l

has at least one solution in the interval (1,3).

A sphere of unknown radius -{ consists of a spherical core
and a coating that is I cm thick (see the accompanying fig-
ure). Given that the volume oflhe coating and the volume of
the corc are the samc, approximate the radius of the spherc
to three decimal place accuracy.40. -r3 ,1.r + I - 0; ll . 2l

,ll. -rr + -r2 2-r : I; I l. ll

,12. Prove: lf p (,r ) is a polynomial of odd degree. ihen lhe equa-

tion p(.r) : 0 has at least one r-eal solution.

43. The accompanying figule shows the graph of-i, - rr1.t 1.

Use the method of Example 6 to approximate the -y

lntercepts with an error oI at most 0.05. Figurc Ex 49



50. A monk begins walking up a nrountain road al l2:00 noon
and reachcs the top at l2:00 nidnight. He meditates and

rests until l2:00 noon the next day. at which time he bcgins
$alking )!vn the same road. rcaching the bottonl at l2:00
lnidnighl. Show that there is al leasl oDc point on the road
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that he reaches at thc same time of day on the way up as on
the tvay down.

51. Let I be definetl at.'. Prove that f is continuous al. il-. given
€ > 0.thereexistsud > 0suchthat l1.r)- /(..) < € if
l-r: <6.

CONTINUITY OF TRIGONOMETRIC
FUNCTIONS

2.5 LIMITS AND CONTINUITY OF TRIGONOMETRIC FUNCTIONS

In this sedidl ve vill irtcstigate the cotl ltuitt prq)crties ol the trigoattttctriL lint
tiu1s, und r,c rl11 rllsclss s(r11( intportant linrits ittvtlting tlrcse flortions.

Bclblc we begir, recall thal ir the expressions sin.!. cos-!, tan.r, cot.ri. sec.r, ltncl csc,r it
is understood that,\. is in radiun measure.

ln trigonometry, the grilphs of sin-r and cos.r arc drawn as continuous curves (Fi-g-

ure 2.5.I ). To actually provc that these functions are continuous everywhere. wc ntust sho\\,

that the following equalities hold for cvery real number r':

( I 2)

2.5.1 lHLOliENl. Il c is atn nuntber itltlle nqturul (lonrctin of tlle stLtte(ltf i,qunnrcLir
fint tiott. then

lirn sin-r - sinc and lim cos.r : cos r:

Although we will not formally prove these results. wc can r.nake them plausible by consid-
cring the behavior of lhe point P(cos.r. sinr) as it rnoves around the urrit cilclc. For this
purpose, view c as a fixed angle in radian measure. ancl let Q(cos c. sin r') be thc corresponcl

ing point on the unit circle. As.r + c (i.e., as the anglc.r approaches thc angle ( ), the point
P moves along the circle lorvard p. and this implies thal the coordinates ol' P approach the
conesponding cooldinates of Q: that is. cos r -+ cos ( . and sin t - sin r' (Figurc 2.5.2).

I'igurc l.i.l

Formulas (1) and (2) can be used to find limits ofthe remaining trigononretric functions
by express ing them in terms of sin -\. and cos -r: for examplc. if cos r I 0. then

sin.r sin (
lin tan r - lim 

- 
= 

- 
: tan.r-. cos,I cos (

Thus. we are led to the following theorem.

lirn sin -t : sinc

lim csc -r - cscc

lim cos x - cos c

lim sec.r : sec c

Iim tan -r : tan c

linr cot.r - cot c

It tbllows fiom this theorem, for example. lllat sin .r and cos.r are continuous everywhere

and that tan.\ is continuous, excepl at the points where it is undcfinecl.

P(cos.. siD.)

Figur( 1.5.l
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OBTAINING LIMITS BY SQUEEZING

Example I
Find thc limit

/ rl I r
lirr t's l l

\.'- r,i

Sttltttion, Reciillliom the last section that a limit symbolcan be moveclthrough a funcliorl
sign if the function is continuous and the limit ol the expression inside the tirnction sign
exists. Thus.

, tl I \lirleoslj|:linrc..rst't]l):cos(linl(-r*1)):cos2<\, ]t I

ln Sectiorr ,. t *" ur"U U]" nu,r]ericllI ev idence in I able 2. I .I to (!rrf.'(lrl" thrt
sltl.rlim :1 (3)

2.5.2 tttf{)tit,\1 (Ttu squeezi glheoten). Lct .f . g. utttl h heJinttions satisfittg

However. it is not a simplc malter lo establish this linit with certainty. The ditiiculty is that

the numerlilol'illld delorrinatol both appr-oach zero as r > 0; such limits are calledindeter-
ninate Ionns oJ type 0/0. Sometimes indeternrinate fomrs of this type can be establishecl

by manipulating the ratio algeblaicrlly (as in Example 7 ol Section 2.2): but in this case no
simple aLgebraic manipulation will wolk. so we musl look for othcr methods.

Thc proL.rlern with incletenrinate fol.r'ns of t1,pc 0/0 is that therc arc two conflicting
influcnces a1 work: as the numerator llpproaches 0 it d|ives the maguituclc of thc ratio
tou'ilfd 0. and as the denominator approaches 0 it dIives the magn itude ofthe ratio toward +:r
(clepending on the sign of thc cxpression). The lilniting behavior ol the ratio is cletermined

by thc precise way in rvhich these influences oUset cach othcr'. Later iD lhis texl we will
dlscuss general nrethods lor attacking incieteminate fbr'rns, bul fol the lirnit in (3) we can

usc a method cxlled styLrt'c:ittg.

In the nrethod ofsqueezing onc proves thal a lunclion I has a lirnil L at a point c by

tl opping the lirnction between two othel firDctions. .g ancl /r , whosc lim its itt c rire known 1o be

L (FiguIc 2.5.3). This is the idea behind the following theorem. which wc statc without prool'.

; 3(.r):1 .l(t) < /r(-r')

fttr ull r in sontc open intertul uuttuiting lhe pt)inl c. r'itlt rhe pos.sibla eveplion thut
lhe i ult.t(liti(s n(a.l nrtlutltl ut t.If g uttl li hu\'r' lhe senc lintit as r approatlrcs c. sa,'-

]1, 
gtt) = lim ft(r 1 - |

then .f dlso hds thii limil ats.t dpl)tot!(lt(s t. thLtl is.

linr /'.rr-L

rot rlllll{l:\l)l:lt The Squeczing Theolel].i also holds for olre-sided limits ancl limitsat
+:. ancl -z How do you think thc hypolheses ol lhe theorem would change itr those cases?

The useiulness of thc Srlucezirlg Theorem will be evident in our ploctf of the fbllowin-q

theorern (Figure 2.5.4).

'2.5.-1 rHtloRF\r.

tm -" .irr rr,/r lim - \b)
I r:os rlim =0

Irigute 2.5 3

Iiigurc 2.5..1
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However, before giving the proof, it will be helpful to review the fbt]nula lor the area A of
a sector with radius r and a central angle of d radians (Figure 2.5.5). The area of the sector
can be derived by sctting up the fbllowing proportion to the area of the entire circle:

A

*a
0 f!re.rol lne,e.lnr c(nrril rnsleol the sc,:Lorl

)t, Li-(rot r\ecir.l. ccrrrl :ngleolrhe.ir. c I

Fronr this we obtain the formula

,t = \r2e (4)

Now we are ready tbr the proof of Theorern 2.5.3.

Proo.l (a\. ln this proof we wili interpret r as ali anglc in radian measure, and we will
assume to slaft that 0 < x < trf2.It lbllows from Formula (4) that the area of a sector of
radius 1 and central angle r is r/2. Moreover, it is suggested by Figure 2.5.6 that the area
of this sector lies between the areas of two {riangles, one with area (tan-r)/2 and one with
area (sjn r),/2. Thus,

tan-r>j>siDJ
2 -2- 2

Multiplying through by 2/(sin-r) yields

I r,-lr1
cos r sln,r

and then taking reciprocals and reversing the inequalities yields

sin.rcos-{:-:l (5)

Moreover, these inequalities aiso hold for -ir12 < x < 0, since reptacing r by -r in (5)
and using the identities sin(-r) : -sin.r and cos( -r) : cosr leaves tlle inequalities
unchangecl (verify). Finally, since the futctions cos-r and i both have limits of I as r + 0,
it fbllows fron the Squeezing Theorem lhat (sin -,i)/r also has a iirnit of 1 as -r + 0.

L

A.ca ol Lriangle

!!11
)

I

sin r
2

I

I>
2

Figure 2.5.6

Prool lb). For this proof we will use the limit in part (a), the continuity ofthe sine function.
ancl the trigonometric identity sin2 -r : 1 cos2 -r. We obtain

i cos rlim_- Il co\.r I lco:.rl .in] illm i-. 
- 

l- lrm
- | .\ I+ro\r | "1l rn.rlt

(1, Lflr

'x-
,r\

4., \ (1, 0)

t/

:(r*T)(:r.frk)=(,(*):o r
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Example 2

Find
tan r

(a) lim 

-
Sohttion (a).

sin 2d

sin 26(b) lim
sin 3,r(c) lim '-

tJnr /rinr I \lirr - lrm {- 
- 

l rltrl.t I." \ ,\ r co\\/

Sohttion (b). The trick is to multiply and divide by 2, which will make the denoninator
the same as the argunent of the sine function Ljust as in Theorem 2.5.3(a)l:

sin 26lim-:]im2.-:rlin.r
"-u 0 d-o 20 e-a 20

Now :lake the substitution ,r = 20, and use the fact that -r + 0 as d + 0. This yields

;io )0 'in 16 iin rlirn -2lirn -_ -2lim_-2(l)-2o-o A t-o 20 r+o j

Sohttiott (c).

sin 3r . sin 3-t
. rn .1.\ -r J,r .l I .l

im - - lil:l _: lrr- 

-

.-rsin5-r .-o sin5,r r-0-5. sin5r 5.1 5

r5J

sin 26

r +0

, =."{lr
(Lt)

FoR l llD RIADLR. Use a graphing utility to confiun rhe limits in the last example graph-

ically, arrd if you have a CAS, then use it to obtain the limits.

Example 3

Make conjectures about the limits

and confim your- conclusions by generating the graphs of the functions near -r = 0 using a

graphing utility.

Solfiion (a). Since 1/.r ; +:c as .r - 0+, we can view sin( I/-r) as the sine of an angle
that increases indefinitely as -r + 0+. As this angle increases. the function sin(l/r) keeps

oscillating between I and I without apploaching a limit. Sinilarly, there is no limit fiom
the left since llx - - as.t + 0 . These conclusions are consistent with the graph of
) : sin(1/.r) shown in Figure 2.5.74. Observe that the oscillations become tnore and mote
rapid as,r approaches 0 because 1/-t increases (or decreases) nore and nore rapidly ls,r
apploaches 0.

Solution(b). The valuesof.r sin(l/.r) oscillate between.r and r.bothofwhichapproach
0 as x apploaches 0. Thus, the Squeezing Theorem suggesls that ,r sin(1/,r) + 0 as .r + 0.

This is consistent with Figure 2.5.7r.

REN4ARK. It follows from pafi (b) of this example that the f'unction

,., li"^.i',(]) ,o ,'q''.'"(l)

Jrrintltrt.
[0.

JQ) _
l

' 
= ." (+),

(.b)

Fisure 2.5.7

is continuou s at ri : 0. since the value of the function and the value of the Iimit a1€ the same

at that point. This shows that the behavior of a lunction can be very conplex at a point of
continuitv-
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ExERctsE SET 2.5 E i;rr1rt,r,g i..r,:1. ,t-' E :^s

ln Exercises I-10. lind the points oi diiicontinuirJ,. il- n).

/r\
/t.tt=cos1 

-,

/(.r)-1.
I * rin'.r

lt.'t = r/f+ toni'

/t.,, : l
' .5+f co\.r

la) sin(.rr + 7.r + l)
{c) cosr(.\ + l)
(e) sin(sin.r )

(b) lsin.r'l
(d) v5 rsinli
(f ) cos5r lcosr-t+ |

ll. Use Theor€nr 2..1.6 to show thal thc following funciions
ilre continuous evcr!whcrc by cxprcssing thcnr as compo-
sitions ofsimplcI functions that rc known to be continuous-

/(r) = lcos.rl
I

' I -lsinr

choices tbr g.

Find the Iimits in Exercises l3-35.

/r\l-1. lirn cosl-| 14.
\'t /
/ nr' \

15. lint sinl-l 16.
\.i--t.t/

sin 3d
17. tim 

- 
lE.

sin r
t9. tinl 

- 
20.

, .o l.rl
sin t21. linr 
- 

22.
, -,f 5J.i

lxnTr
2-t. tim _ 2t-

r -0 sin l1

25. 11- 1
l-0 lAn/l

0)
27. tinl 

-

d-o I - cosd

29. lim o

d -t) COs 4

I - cos 5/r11. linr --------------:
,i .rr cos 7/r _ |

.t.t. rin' 
"u* 

1 1)
\.t /

Ir + sin t
-lS. lim ------------

Find a v luc for the constunt * thaf makes

I \in l\'. l-. r. l(rl(r): { .r
IIt. .t:0

conlinLlous al r =0.
Find a nonzero valuc for tlre constant I llral mitkes

I lanlr
l-. .\ < o

/r.r): | \'

l-1r + llr. .r'2 o

continuous at \' : 0.

Is

Isint
| 

-. 
r * 0/t.t): I I.rl

lr. .r:o
corltinteus att .r = 0l

In each part. lind the limit by nlaking the indic tcd subsli-
tution. l I ll(ir) linl .r sin -. l H . Ler t = -.1.r L tl
. t Ir I Ilth) lrm .t l I . co. - 1. lllint. Let r : -. 1,. . \ .rt L .l

r'T - .I(c) lim . . llliirt. Let t = ir -.r',1r .r Sln.f

,.orrz/rr f t r IFin(l lin) ^:. I Hirit: Lct r = ^''j .f -r L t .t .l

sinl:r-r) lanr-l
Find linr -----------. 12. Fir(l linl -----l

. .l .r-l ',"il ,r-z/4
Use the Squeezing Theorcm to show lhill

5(h
linr -r-cos 

- 
=0\ -0 .\'

and illustrare dre principle involveil by using a grilphing util-
ity to gr.rph .1 : .{. .r' : -.r, and .t = .t cos(502/.r) on the
same screen over lhe -t-interval fiom - I to l.

Use the Squeezing Theorem to show thut

, /50r\
lirn r' sin | -- l:(l,- \ V.r,/

and illus(rirtc the principle involved by using a gruphiDg util-
ity to graph l = .rl. .t : -.r1. and r' : .tr sin(50r/Jr )

on the same screen over the r-inlervrl fiom -0.5 k) 0-5.

l. l(.r) = sin(.rr - 2)

-1. t(.r ) : cot.\

5. f(.r) = csc.t'

2.

4.

6.

8.

10.

sin /r
lirn 

-
t, n2h
.. sin H
Illll 

-
stn- t

linr 1---;

sin 6t
lim _\ 'o sin 8.\'

sinl d
linr _
H .tt (l

sin /,
26. linr _/,-o |-cos/ll

23- tin ----L-,.,,cn,(i,,-.r)

30. li'r j-
,-I I-coyjI

/t\
-12. linr sin | - |, -0. \.t,/

r'- - i\rn lt4. linr 

-

37-

7.

9.

12. (a) Provc thilt if.g(.r) is continuous ever)'where. then so are

sin(g(.\ )). cos(g(.r)). g(sin(.r ) ). ltnd g(cos(.r) ).

(b) ll[rstrate the rcsult in prl1 (a) $ith sorre of your orvn

,Ilr. -'' (i)
40.

,ll.

;l-1.

44.

,15, Sketch the graphs of r' : I - r:. r' = cos.r. und r' = /(.r ).
where / is any continuous lunclion lh{l satislies the in-
equalitie5

I - .r: 5 /(.r:) S cos r
Ii)r dll r in lhe interval ( -tr/2. n/l). whar can you say abour

rhc lrmir ol /i r ) :rs .r - 0? Explain your rer.onin!:.
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46. Sl<etch the graphs of r : l/r.-r': -l/-t.andr': l(r) in
one cooldinate systern. where.f is eD), continuoLrs funclio
that satislies the inequalities

11
-- a [(t) a

I,I
for all .t in the inter val 11, +z). What can you say about the
linrit nl /r ' ,1. , I trl'lrirt ,.otrl rer:,onrnl.

47. Find fblmulas lbr tirnctions .9 and /? such that ,9(r) - 0 and

l( r) > 0 as r + +:a and such thlt
sin r:.r(r): : l(-r)

.!

tbr posilive virlues ol r- Whal can you say alrout the limit
sin l

limr-+, .t

Explain your reas,.rning.

48. Drirw pictLres analogous to Figure 2.5.3 that illustrate the
S\Jcc/ir! Thcorern lor l'rnil.,'l lh(',.rrn lin,r tr r, .ttd

,!i, /i.'t'

Recall that unlcss statcd othcrwise the variable t in trigono-
Inelric lunclions such as sin-! and cos.! are assunled lo be

in riicliirn neasure. The limils in Theorcm 2.5.3 are based on
that assumption. Excrcises,l9 and 50 cxplorc rvhat happens

to thosc linlits if clcer-ce nrcasurc is used fbr.r.

49. (a) Show rhar if,t is in degrees. then

sin -r ft
lirnr-o .r 180

(b) Coniirln thirt the limit in pan (a) is consisleil with tlte
resLllts prodLlce.l by yoLlr calculaiing utility by setting
llre ulil l) lo dc!ree Ire,r\Llrc aId , rlcul:rtitl! r.iu ' , r'

lbr some values of r thal gel closer and closer lo 0.

50. Whal is the limil ol'(1 cos r)/r as r +0if risindcgrecsl

51. lt fbllows lrorn paft G/) oi Theolem 2.5.3 that ii 0 is smail
(nea1 zero) and measurcd in ladians. then one should expect
the approxim.ttion

sir 0 
^, 

r,

to be good.
(r) Find sin l0 using a calculating utility.
(b) Find sin l0' using the rpproximation above.

52. (a) Use the appr-oxirnation ol sint that is given in Exer'-

\ r.e ) I r,'rcrhcr r" ilh rlrc rJcnril) ..,. -o - I l.rrr'"2
wrth a - A 12 to show that if ll is small (near zero)
and mcasurcd in raclians. thcn onc lhould expect the
approxirn!rtion

cos0.=l-]dr
to bc goocl.

(b) Find cos l0' using a calculating Lrtility.
(c) Finrl cos l0 usin-q the approximiilion above.

53. lt lollows fiorn part (a) ofExample 2 that if li is small (near'

zero) and measurcd in radians, then one should expect the

approxlniatroll

to be qood.
(a) Find tan 5 using .i c.rlculating uljlily.
(b) Find tan 5' using the appr-oxirration above.

llet-erring to the accompanying figure. suppo!e th.it the an
gle ol elevation ol the top ol a buildjn-c. as measured flom
a point l, t-eet lrorn ils birsc, is tirund to be a degrees.
(a) Use the .elatiorship /r : L tan a to calculale llte height

of a building lbl which l, : 500 t't and a : 6".
(b) Show thal il L is large comparecl lo the building hcighr

/1, then one should expect good results in approximaling
hby h ^: l La ll80

(c) LIse the result in paft (b) to iLpproxinare the buildlng
height, in parr (a).

. _- td ,, 1L7

Figurc Dx 5,1

(a) tlse the lntermediate Value Thcorem to sho\\, that the
eqllation.r - cos-r has at least one solLltion in the in
terval 10,7r/21.

(b) Show graphically thal tl'rere is exactly one solution irl
the inleNal.

(c) Approximate the solution to thrce decimal places.

(a) Use the L'llerDediate-Vahle Theorent to show that the
equalion r + sin,r : I has at least one solLrtion iD the
intclval f0, z/61.

(b) Show graphically that there is exactly one solution in
the interval.

(c) Approximate the solution to thlee clccimal places.

In the study of falling objects near llre suface of the Eatth,
lhe dcceleration g due to grorit! ts.o:mlrorly takcn to be
9.8 n/sr or 32 ti/s2. However. thc clliptical shape ol rhe

Ea h and other factors cause !a ations in this constani thilt
are lalituclc dependent. The tbllowing formula. known as the
Geodetic Rcierencc Fomrula ol 1967. is commonly Llsed lo
predict the value oI g at a latitude of d degr.ees (eirher no!1h

or soulh of the equatol ):

. -,r-!0tlb<, 10 0 nns2-8xil5 \rn'?
- 0.000023462 sina d) m/sl

(a) Observe that g is an even functiolt of d. What does this
suggest about the shape of the Eafth. as nlodeled by the
Geodetic Refer-erce Formula?

(b) Show thal g : 9.8 m/s2 solnewhere between latitudes
ol 38' and 39'.

Ler

I I tl .t t. r r'r. onrl rt.rrrrbrr

lU rt ..r .. rr. [ri,trnnrl _rrr]rhrr

(a) Mirke a conjecturc aboul the lirnit of l(r) as ,1 + 0.
(b) Makc a coniecture rbout the lirnit ol' r/(r) as.i - 0.
(c) Prove yorrr conjeclures.

54.

55.

56.

57.

5lt.
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l. For the funclioD f graphed in tl'le ilccompanying figule.llnd
the linlit il it exisrs.
(l) llm f(.r) (b)

r - l

(d) lim /(f) (e)

(.s) lirn l(r) (h)

Figure Er-l

(e) Fiid a lor|r'iula for a rational functior] that has a vefii-
crl asymptotc at -y : 1 and a horizontlil asympiotc at

(b) Chcck )'oLrr work by using a graphing utility to Sraph
thc liurciiorl.

(a) writc a paragraph or two that describes how the limil oi
a function car lail to exist at a poirlt,r : ,r. Accompany
your descrillion $ith so|ne specific cxamplcs.

(b) Writc a palagraph or two that dcscribes how the limit
ol r llnction cain fail to exist as r + +r or r > a.
Also, acconrpany youl description with some specilic
exanrple\.

(c) Write a prragraph or lwo thal describes how a tunction
cirn f'ril to be conliruous at a point r - /r- Accompany
your clescliption wilh some specilic examples.

Sho\\,that the lnle redirte-Valuc Theolem is hlse il / is

not conlinuous on the intervel lrl.l2l.

ln cach prlt. evtluatc the l!l-lclion for the strted valucs of ,!.
and nlrke a coniectul-e aboLrt the value ofthc limit. Conlirnt
yoLr coijecture by linding the lllrit algebtaically.

r.-2
'i' /r\' ,: lim rrr,: r :.5.21..2.0'.

\4,1

lJ.

(b) Confirn your approxinlaLior Lrsing g|aphical evidence.

According 10 Ohnr's law, when a voltage of y volts is np-
plied across a resistor- wilh a r'esi!tance 01 R ohuts. a curcnt
o. / - \ R Jmpere\ lov.. rlrfor.eL tr,e fe.,i.tnr.
(a) How much current florvs il a voltage ol1.0 volts is rp-

plied across a rcsistance of 7.5 ohnisl
(b) Il'the resistance varies by t0.1 ohnl. an.l llle vollage

remains constanl al 3.0 volls, whal is llle resulting lange
ol values for the cunent?

'-. ll lernl.rJlJre rrriJlio . .iuss lne re,r.l3r..e lo \ir)
by :16 fronr ils value of 7.5 ohrns. and the volirge re-

nrains constant at 3.0 volts. what is the resulting rirnge

of values tbr tl're current?
(d) If the cufent is not allowed to vary by lnore than

e - t0.00 1 ampere at a voltage ol3.0 volts. rvhat vrfi-
ation ol +d from the value o1 7.5 ohms is allowable l

(e) Certain alloys become superconductors as their tem

perature approaclles absolute zero ( 273 C), meaning
that their resistance approaches ze|o. If the voltagc re
I rirrn. . nrl.lanl. '\ h:rl halfr||. 1,, rll( ( rrrl -Il in :, \r'lcI
conducloras R + 0+?

Suppose that / is contlnuous on the intervrl 10, 1l and that
0 : ./(.r) : I ior all.r ln this interval.
(a) Sketch thc graph of ) - r. togethcr with a possibie

graph fol l over the interval 10. ll.
(b) Use the lntermcdiate Value Theorem to help prove that

thcrc is al least onc Dumbcr. in the intcrval 10, I I such

llm. .l(r)

,!1,.tt'r
,ln1 ./(-t)

k) liq.l(r)
(f ) .1im,.l(-r)
(i) liln) I (.r)

F2.

F"t

9.

1.

that l(.r) : c.

10. Use algebraic methods to tind

/I co\d\ i I
L:') linr trn I I (b) irn

/ tJ! I

lim
(2r l)s

(c) ,-;- (3rr + 2i 7)(rr 9r)

ll.

+0.00 l. +0.000 l. +0.00001

6. In each prft. find lhe hor-izontal asymllloles, il any.

/ srnt d I zt\
tLl) lim cus I L| .o \ ld I

Suppose that / is .onti*ou, on the lnterval 10. ll. that

.l(0) : 2. and that f has no zeros jn the inleryal. Plove thlit

.l(r) > 0 lor all -r in 10. 11.

Suppose that

I ,r r r r < )r. I'/r'r 
I x, +.r. i,,t

Is f continuous everywhele? Justily your conclusion.

Show that the equation rl + 5rl + 5r I :0 has at least

two real solutions in the interval [ 6,2].

Use the lntermediate-Value Theo|enr to ilpproximate J]l
to thrcc clecimal places. and check your answer by linding
1l1e 'or't ,lIe tl) wt.h i.a.c .h r^ ltIl.r).
Suppose that f is continuous and that l(.r0) > 0. Cive ei-

ther a d-€ proof or a convincing vclbal arguNcnl lo show

lNn.lr(b) l(t)= I lilr./(r);
2.001,2.0001,2.0u001

-r - 11.0. +0.l. t0.01.

2-t 1
\rll-

T._4I

\r 1l+10
(b) \: lr2 

'1-t
2-r: 6(c) r:: -r +-\\

7. (rr) Approxinlalc the valLle for lhe limit
3' 2'

lim 

-

f _1) _I

to lhree decilnal placcs by conslructing an appropriate

table of values.

t2.

13.

14.

.r5613

15.
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that there must be an open inteNal containing xn on which

"f(") :' 0.

16. Sketch the graph of /(.r) : l-t: ,lll(-rr 4).

17. In each part, approximate the points ot' discorltinuity of /
to three decimal places.

J-r+1(,tJ /(rJ - .r +2,r 5

-rl
(h) f(\): lsrn \ \l

18. In Exanple 3 ofSection 2.5 we used the Squeezing Theorem
10 pro\]e thal /r\

JJm .r sin | | :0Lr \r./
Why couldn't we have obtained the same result by wlitinS

,l\ /l\linr '.inl I lim r.lirn.ir{ |.0 \\,/ , .l \\/

-o.lim.irr i')-0,\./

In Exercises l9 ancl 20, find ,lim,l(,!), if it exists, for

a - 0, 5+, -5 5, 5. "., +T

le. (r) /rr) : t5 - , {b) /(.r) : () - -25)/(.r 5)

20. (a) /(r) : (-r + 5)/(-rr 25)

['.i-5, .r' 5. r,.5
(lr ) /(.Y) - {

[0. 1 - 5

In Exercises 2 I 28. find the indicated limit. it it exisls.

lim 
- 

(,r+0.i=01

sin 3-r
1imr-o taD 3.i'-

sin 29 { sir'l-rlim 2,1. lirl.n .l ' ,, I -(u\r-
sin r sin2 ak rl

lim - 26. lim , | +l)Jr '" \

l\ sinrl r )lrrn . *70

2;r -F r sin l-t
lirrr-+- 5-\r 2.r + I

The autllor's dictionaly describes a continLlous function as

"one whose value at each point is closely approached by jts

values at neighboring points."
(a) Horv would you explairl the meaiing of the te ns

"neighboring points" and "closely approached" to a

nonmathematician?
(b) Write a paragraph that explains why the dictionary def-

inition is cor'rsistent with the definiion given in the text.

! 30. (a)

(b)

(c)

Show by latiolalizing the nurnerator that

. .,11a 2 r

ltm--
r+0 xl 4

Evaluate /(.r) for

-r::11.0. +0.1, +0.01, +0.001. +0.0001, +0.00001

and explain why the values are not getting closer and

closer to the limit.

The accompanying figure shows the graph ol .l geD

eratcd with a graphing utility and zooming in on the
origin. Explain what is happening.

I 5.51x l-.1..51
rsc = I. _rsc = .1

t .s..sl x | .1..51
rsc = .1. _rsc = .1

,f R
32. lim

\-l J - 3

34. lim -r tlt.oot; r/'

| 5x l0 6.5x l0 6lx t .r..51
.rSc = l0 o. r'Scl = .l

21.

22.

23.

In Exercises 3l 36, approximate the limit of d]e fuDction
by looking al its graph and calculating values for sone ap

propriate ciloices oI.r. Compare your answel with the !alue
produced by a CAS.

F gure E\ l0

lrmrl+rr ' fal

sin r. sin I
tim _ t-d\l
.. , /
,1! (v,+vr-/r /

lirn {l'+5')r '

The limir

lim :I

27. E 31.

E 33.

q 3s.

E 36.

37.

28.

29.
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ensurcs that therc is a numbcr 6 such that

\in.l I - 000t

if i) < r < ,. Estirlare the largesl such .!.

Il'$1000 is invested in aD accoLurt that pays 77, interest
conrpounded a litlres each )err. then in 101eals thele rvill
be 1000(l * 0.07/rr)lr" dollal.s in the itccolrnt. How nruch
money will be in thc lccount in l0 ycars if thc intercst is

compounded quarteriy (rr - 4)lr Mouthly or : l2)'l Daily
(rr : 365)l llorv mLrch money rvill be in the account in l0
years if the intcrest is compounded ( arrri?rrr.!/r'. that is. as

lhere are various uurncrical ncthocls olherlhan the lrletho(l
discLrssed in Sectiur 2.41o oblaill approximate 50luliol]s ol'
cqualjons ofthc fonn l(.r') : 0. One such nrelho(l rcclLrircs

that th.] cquatioD bc explcssecl in the fb|n .! :,9 (.! ). so thal
a solution .r : r' can be interpr-etecl as the value of .! where
thelincr' : r interseclsthecLlrver : g(r),assho$,ninthe
accompanying ligure. ll.r is rn initial estimate ol. and the
glaph of r' : g(.r) is not 1oo stecp in thc Vicinity of t . then

a bcllcr rPproximalion can tre otrldined ll-orlr rt - ,q(rt)
(\ee tlre iiguie). An even tlelter approximiltion is oblxined
llonr rr - g(-rtJ. and so lbr1h. The lblmuliL r,,* : ,q(r,)
i,'t rt l. -'. .1. . :(rr( r,l(\ .. .\(.\i\e i'pl,ru\'miltiurr\
.!1.,!1..!1. ... lhal gel closer iLnd closer 10 (.
(a) TIle eqLlirlioD rl r I : 0 hls onl! one lell sololion.

Shov r l:rr thr\ cq,ri.troI j.Ir br .\'r.1..n.r.

.r-.q(.t)-Jr+l
(b) Craph.r - .r aDd 1 - .q(.r) in lhe same coordinate

svstcrr for -l < r <l
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(c) StartinS rvith an arbitrary poirt -r1, makc a sketch that
.Lou. thr ,'r.rt:,'n ol tlre.rrc.csrrr. itr'r'.rter

.rt : S(.rt). rr :,q(-yt)....

(cl) Use r : I and calculiite rt, r:r..... contiltuing until
you obliiill lwo c(rtscclrtive values tltal difler by lcss
than l0 I. Experinrent with othcr starting values such

ils.rl :2olrl:1.5.

Figurc Er lr)

:10. Thc mcthocl clescribed in Exercise 39 will not al\\,ays work.

(a) The equation tl -t I : 0 can be explessed as

.1 - g(i) - .rr 1. Graph r' : .r an(l ) : 
"(-r) 

in
lhe same coordinate system. Starting rvilh an arbitrary
poinl -rt. miike a skctch illustrating the localion ol Il'te

tuccessivc itcratcs -t, - g(-rt), rr : g(.rt). . . . .

(b) Use rr : I ancl calculatc the successive iterates -r,, lbr
rr : 2.3..1.5.6.

lrr L\(l.r.! ll i.r.n 11. lhe rlre mcrhod ol l](l.i\. 19 to
approximirte lhe rools of the equation.

39_

,l l, r5 .r 2:0 12. t cosr:0
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/t /t^ /or, ,/ f J an\ pnv.rcill pnenomellil Irrolvc chrnging\- -/ w 1,/
quantities-the speed of a rocket, the inflation ofcul ency,

the number of bacteria in a culture, the shock inte;rsity of
an earthcluake, the voltage of an electrical signal, and so

forth. In this chapter we will develop the concept of a

derivati,e. which is the mathematical tool that is used to

study riltes at which physical quantities change. In Sec-

tion 3.1 we will show that there is a close relationship

between rates of change and tangent lines to graphs, and

we will show how the familiar idea of velocity can be

viewed as a rate of change. In Sections 3.2 to 3.5 we will
define the concept of a derivative precisely and develop

the mathematical tools tbr calculating them.

One of the important themes in applied science is de-

veloping methods for approximating quantities that are

diflicult to calculate exactly. In Section 3.6 we will show

how derivatives can be applied to certain kinds of approx-

imation problems.
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SLOPE OF A TANGENT LINE

3.1 TANGENT LINES AND RATES OF CHANGE

In this sa(tiotl uc vill establish a basic relationshill between tatlge t lines uncl rutes
of change. Otrr vork here is inrendcd to bc itlit-ma! o1.l intft)du.tot!, ond all of the
itleus th.rtte devlop uill be rc\'isited in uor<'tletail in latcr sctticttts.

In Scction 2.1 we observed infbrmalLy that if a secant line is drawir belween two clistinct
points P and Q on a crLrve f : "f(-I), 

and if Q is allowed to move along the curve toward
P, then we can expect the secant line to rotate toward a 1ir?i1ii?g lraslrlol, which can be
rcgarded as the tangent line to the curve at the point P (Figure 3.1.1). In the next section
we will give a precise mathematical dcilnition of a tangent line, but for now this intuitive
idea will suffice.

ln many ploblcms we will bc mole concelned with the s/ope of the tangent line thao
with the tangent line itself. so it will be helpful to understand the rclationship between the
slope nmr of the tangent line at P and the slope ,?.". of the secart lioe between P and 0
as the point Q moves along the curve _r : l(-r) toward P. Fol this puryose, suppose that
the secant line passes through the distinct points P(,t|, l(-to)) and B(-r1. l(,rr)). in which
case its slope is

.l(xt) .l (.ro)
77?scc: l :: (l)

-l I -ro

(Figule 3.1 .2). As this figure suggests, tl'te point Q moves along the curve toward P if and
only if ,r1 approaches -r0. Tl.rus, from (1) the slope of the tangent line at P is

.. /({r) - /(ro)
jr ,ro

Aithough tangcnt lines are of intcresl as a miitter oi purc geornetry, rnuch ofthe impetus for
studying them uose in the seventeenth century wher scientists recognized theil importance
in studying the rnotion of obiects that rnove with nonconslant velocity. Some of the relevant
ideas were discussed in Scction 1.5. but it will be helpful to review them here.

Recailthat a partjcle moving aiong a line, say an s axis, is said tohaye rectilineur motion.
In the most ger'reral kind ol lectilinear motion tlre particle rnay move back and forth on the
line; however. here, as in Section L5. we u'ill assrLme that the particle noves in one direction
only-the positive direction of the .i-zrxis. As discussed in Section 1.5, this allows us to use

the telms spee./ and i,c/rrlrI interchangeably. sirce there is only one possible direction of
mofion. Gener-al rectilinear nlotion will be discussed later

AVERAGE VERSUS
INSTANTANEOUS VELOCITY

Tangent

Figure 3.1.1

/(\,1

lfir) l(.\o)

Filrlrc I I 2
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We shorvecl in Scctior] I.5 that ifa particlc h|s unifonn reclilinear motion. thnt is. it
moves u,ith constant velocity l akrng a line. lhen ils position vcrsus time cttne is a line
ol slope r,: conversel). il thc position versus linre cuNc fu a pa icle in rectilincar nx)tion
is a linc ol slope l. then the particle has conslart velocit! t'. Here. wc rvill cottsitlet the

more gcnclal case of a pllrticle r'loving in thc positive .s-directiott wilh ldridrlc velocity. irt

which cirsc the position versus time curve nccd not be linear. Fot this purposc we will need

to exanrinc the rleaning of the lerm lclocitl nrotc critically.
lf a car travcls 7-5 nilcs ovcl a stlaight lotd in a 3 hour pcriotl. thcn its average velocity

during thc rlip is 75/3 : 25 nri/h. Houever. llris (k)es nol nlciln that the car tlavcls at

25 ni/h lbr llle entire llip: it mity specd up ltnd slow do\n 01 various timcs. Thus. the

avcragc vclocitl, proviclcs inliutuation aboui lhe velocity ol thc cltr ovcr thc entire trip lrul

no infornration about its velocity at specific titues during thc trilt.
AlthoLlgh averlrge veloc it)' is useful for ntany puryoses. thcrc iu c lltllny situlltioos in whicll

it is of no help. For exlnrple. il a car strikes !l trce clurillg a trip. thc danrage sustiline(l is rrol

deternrinecf by the avel ge velocily up to thc tirnc of impact. but ralher by the lrist(ttlttttc(rus
lclocitl ll thc plccise lnonlcnl oI itrrpact. Hor.vcvct. the cotrcepl ttf instanlancous vclocitl'
is subtle. anil a clear undc|sliurclirrg of its meaning evadctl scictttists until the a(lver)l of
calculus in the sevenleenth ccnlLuy.

A nicc cxpltnation of thc dithculty in clctinirrg and calculaling instrntancoLrs vclocity
rvas givcn bv Morris Klinc \\'ho \\'r'ote:

ln (t,ntt!\tin! aya,rt!( vlo(it\'tti!h instut dn.t,It.t rr4ocirr rr'r' iuplitirlt urili t t li:tirtrtiut
h(n\ccr in!?rral ':ukl inrtdttl. . . . An d\(ttr!t'\(lt\il\ is ott( lltdl (t)tt(cit1s vhot lttfl)t'tlt t^?t
Lttt itttt'ttttl tl lintc .t ltatnt.5 scunttls. rtttt-hult sttotkl. dtkl st) lir'lh.Thc intctttl tttrtt ha

snlltll or ldrst. bur it &r't rcprcscnt rfu porsugL'rtl rttlclinilad tt)ttnl of lintt.\lc usc tltc ttttttl

itrskltt. ht)'|a''t'i. !a !tdtr thr l&l Ihut strtklhitt:: htppens so litst rlal tta tintc cltpsas. Tht

rrrnt is nbnl(nt(t-\' llra,r'('.\r/r'-/i),..k/tttlrla.tlltttitis-lrirhtL.wl\'lct-t()attittstttttl..t
It(t i:( k)ur.t1t. Il tlt(' hq)st: of tittt( is I)i(urul ht lt'ttgrlt tthtn'i t lin(. llk'tt in itttut\!l kt tintL')

is tt'l)n:rt:nt.l h\ u lint,sll?tr'nt. .lhttt'us tn invLtnr totrL'sltrtttls ltt tt point. Tltt' notit ttr ttf att

i stdnt. tlthou,qh i is r/.ra(/ irr.r'.rr',1/r lil?. is tlt-irtlI Ll tttulllt'r)tuli(41 i(lruliltli()t1.
Ot!t \ttt\s t)f llinLittg (tlntur rtttl etcttl.ttrtrrrt'rrslrtsptukin!t')t)tsttittsldntsuttltrlt)tit)

liJlt ultits. ,\ 1,ru3a rL,lu i^. vhith is sinltl\ thr listoN. tnt|rlrl lnrittll trttnc intcrrtl rl rintc

t^ri lhis l)t-t)trss tt) i ittnt( (ous |rlodt\'. lhL'listuntc un uutttDttltilt trav:l.t itt ottt: itrstttnt is

isll/ll.r'lt ltistiikt irr.g/r,rr 7/ras. ulthalllt i,ttutn tlcarllrthxit.titupltttitul nttlit.t.rlrtrc
srL,rtt tt) l)L' d li|tr( ttllI itt ttlr ulutin.q it. uttl t!nl!s! tt ( .tut (d[( ttfulr il. r. .rt]ttu)t I t)) L rillt it
t|(Iltrnd!i(ill)

Oul geal. ther, is to detinc the concept ol insttDtaneous velocity in a rvay that it can bc

calcul lcLl irnd worked wilh nlalllematically. For this pur'posc. consiLlcr a car thilt lllovcs in

a singlc (lircction alon!: a stlaight road. and assltlttc that arl \-axis l'las been introduced with
its positivc clirection in llrc clircction of motiorl. As showtt in Figule 3.1.3. stlpposc thitl a

clock tmcks the elapsed tinre /. stafiing at / : 0. and tl'tat the coordinate ol'llle c r as a

function trl lis{: I(/). The tiurction l iscalletl the posilio tt .futtclioD ol lhc c.lr. and thc

graph ol's = f(I ) is \\'hal we llave been citlling lhe Position \clstls tirre curve. Thc tlrird

part of Figure 3.1 .3 shorvs it typicill position vctsu\ time curve fbl a car whose coortlinale
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1

Figur. 3.1.:l

lt .flt i) .. '

al tine r - 0 is.r1. Obselve that we ltave drawn the curve so that I incrcascs with t. Tltis is
because we have assumed the car to be traveling in the positive direction. ancl dccleasing
values 01'.r would imply a motion in the negative direction.

'=./(i)

The position ver sus time curve provides I simple geometlic inlerpretiLtion of the average
velocilyo1 lhccarovclatimeintelv!ll.sayfromi)tor|.IfthecathasacoordinalcJit = /(/t))
at time h and coordinate rL - l(lt) a1 timc at, where t1 > I0, tlten the distance tl-ilveled
during the time ilrterval is sr - so and the time elapsed is 11 - tr. Thus, the average velociry
durinp tl c l.nre rnrer\rl.,lcnolc.l h1 r ... i.

.t r .10 .l (.1 ) | (.to)
(l)tt lo lt ta

l,t ' /r()
''I - ll|l r,\. - llrl

t_tr tt_t0
(r)

r =l(r)
| (.1t) l{.tt)

+"a:-'

Figurc 3.1.5

5.95 5.98

4.1JU 1.92

6.00

5.00

f4.00.6.001 f4.50,6.001 f5.00.6.001 Is.50,6.001 15.ri0.6.001 15.90,6.001 1s.95.6.001

1.00 1.50 3.00 3.90 .1.01-)

Is.98,6.001

r1.003.f10

0
,,,.-T-\,I L2",I v 

J

\'--l
Elapsed time

Figure L l.i

which is just the slope ol the secanl line connecting the points (r11. s11) ancl (lr. .rr ) oll thc

llosition versus lirne curvl] (Figure 3.1.4).
Now suppose that we are interested in the instantaneous velocity ol the ctr at time /0.

Intuition suggests that over a small timc inten'rl the velocity of llie ceir cannot vary much.
so if r1 is close to /0, then the average vclocity of the car over thc lime inteNitl tt-or't'l t0 10

l1 should closely approximaLe the instantaneoLls velocity ol'the ctr at tinle r0. Morcover.
the srnaller the line interval betwccn /0 and 11, the belter thc app|oximalion. This sUggests

that if wc let tt get closel and closer to t0, then the aver-age velocity ol the car over the tinre
il.]terval from () to 1] should get closer and closer to tl'te inslantaneous velocity at time /n.

Thus, if we clenotc thc instantaneous velocity of the car at time (r by r,,r,r. we have

Since r,,," is the slope ofthe secant linejoining tlre points (1{), l(n))) and (tr. l(tr)) on the
positior versus lime curve r - .l(I), and since the pojnt (il, /(tl)) ntovcs along this cnrve
towarLl (t0, I (to)) as lr > Ii) (Figure 3. L5). it follows from (3) that r;,,,, crn be itterpreted
as the slope of the talrgelrt line to the position versus time curve at the ltoint (t0. .l(10)).

These ideas are illushated nunrericnLly in Table 3.1.1. The lirsl plrl o1'the table shows
the coo]dinates ofa particle movinq along an s axis over the time intelval frorr / -,1.00 k)

thble l.l.l
I

lG) I ,1.00 .1.50 5.00 5.50

r(tf) ruu rl-s LUU -r.15

580 5r)0

4.21 ,+ 6l

AVtsItAGE VELOCITY
(fr^) 350
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I - 6.00. From these values we can calculate the average velocity of the palticle over a suc-
cession of shrinking time interyals ending at time I = 6.00 s. For example, the calculations
for the average velocity over the time interval [4.50, 6.00] are

5.00 l,25
6.00 4.s0

: 3 75 
- u.so ri,r*

1.50

AVERAGE AND INSTANTANEOUS
RATES OF CHANGE

The resulting average velocities in the second part of the iable suggesl that to two decimal
places the inslanlaneous velocity at time t : 6.00 s is 4.00 ft/s.

The main ideas in the preceding discussion can be summarized as follows.

3.1.2 cFovFr Rrc r\ rFRpRFr ArroN oF IN\TAN IANLOT s r ur olrrv. lI o 1mt n, le
) nctt,es in the positive diretliott t ot'tg atl s qlris. antl i;f the position versus tlme curte I

Ii.ss: /(r), then the instantaneous t'elocitl, ofthe parti.le at time to ts tcplct(lttcl

Velocity can be viewed as a rate ol change-the rate of change of position with time, or in
algebraic terms, the rate of change o1's with l. Rates of change occur in many applications.
For example:

. A microbiologist might be inte|ested in the rate at which the number of bacteria in a

colony changes with lime.

. An engineer might be interested in the rate at which the length of a metal rod changes
with temperature.

. An economist might be interested in the rate at which production cost changes with the
quantity of a product that is rnanulactrLred.

. A medical researcher might be interested in the rate at which the radius of an aftely
changes with the concentntion of alcohol in the bloodstream.

In general, if r and 1 are any quantities related by an equation ) - ./ (,!), we can con-
sider the rate at which l clranges witb r. As with velocity, we distinguish between an

average rate ofchange represented by the slope of a secant line and an instantaneous rate of
change represented by the slope of the tangent line. More precisely, we make the following
definitions.
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.1.1.-l DIFINIT]ON. II r = ./(-!). rhen thc instantaneous rate oJ change of J with
respecl lo x at the poift .r0 is the slope ,r,,,,, of lhe tangent line to the graph ol l at the
poinr .r0 (Figure 3. | .6/r); th l is.

Example I
Lct r' = .rl + l.
(u) Find the avera,ce ralc ol chlnge of l wilh respcct to .r over thc intcrval [3. 5J.

(b) Find the instanlarreous rate of change ol I with respecl 10 .r at thc point .r = -,1.
(c) Findlhe instanlancous |ale of change o1'.r'with respcct to r atagellerill poinl.r:,r0.

s(,lulion lu). Wc will apply Forrnula (:l) rvith ./(.t) : .r'r + 1. (0 : J. and.f r : 5. This
yields

,,,.. = /"Ll-J-l! - /r5) - /{ t) 
- 

16 - lo 
- I\'r \i, ) J - 5-3 -"

Thus. on the avelagc. .r increases 8 units per unit irrcleasc iD r over tlte intcrval [3.51.

Soltliort (ltl. We will apply Folrnula (5) with l(.r.) = .rr + I ancl.rrr : -4. This yields

. /r.\tr- /t.r,r . rt,-lr-17
/tlr',r, = llnl 

-- 

llnl
'tt -.Itt fr ' I .r-1 *'1

a tL

= linr 'r-'l= lirn trr -l)--x,- r.rr*-l , - .r

Bccausc the instantaneous ralc of change is negativc. r' is r/ci rzasiag at thc point .r - 4,
it i. Llccte 'inS al a rult' rri * uttit. pet un it irtr:tcitsc itt .r .

Sttltrlirtn ltl. We procccci as in part (b).

(5)

,rsec s the average rat€ ol change
of r with respecl to.r over the
interual lh, rrl.

,rran is the nstantaneous rate of
change of r with respect to.\ at
th€ po nt rrl

{i))

Ijiguri: -i.1.6

. /(1r) - /1.\iJ),/lhr = lllll
tl - ltr

RATES OF CHANGE IN
APPLICATIONS

: 1ir, ri -t' : lirn (tr + ro) :2.r.
rr+ rr \_l .\-0

TItu s. the inslantancou s r{tc of ch ange of l with [cspcct to.r at.t - -r I is 2-r'o. Obselve that t]re

[csultinPart(b)canbeobtainedtionrthisnrilt.egctret.itllesu1tbyletting.I()=_4,<

ln lppliecl ptoblems. averagc ancl instantlneous rites of changr: must be accornpanicd by
appropriate units. In gcncral. the units tbr a rale oI change of -r' with respect to.r arc obtained
by "dividing" the units of l by the units of .r anci thcn sinrplifying accolcling to the standard
rulcs ol algebra. Herc iue sonle examples:

Il t is in degrees Fahrenheit ( F) ancl r is in inches (ir), then a rate ofchrngc of l, witll
lespect to .r has units ol ciegrees Fahrenheit pcr inch ( 'F/in).
II .r' is in feet per second (lt/s) and -r is in seconds (s). then a rate of cllange of l with
respecl 1() r has units of leet per second pcl sccond (ft/s/s), which would usually be
wrincn as ft/sl.
If I is in ne*,ton-metcrs (N.m) and -r is in mctcrs (m). then a ratc of change of -r' with
respect to.\' llas units ol newtons (N), since N.nr/m = N.

If I is irr foot pounds ( lt lb) and -r is in hou[s (h ). ll]er a rate of change of I with respect

to .r hirs units of tirot-pouncls per hour (ft lb/h).
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Example 2

The linitirg factor il.} athletic endurance is carcliac output, that is. the volurne of blood that
the heiut can pump per unit of time duling an athletic competition. Figule 3.1.7 shows a

stless-tcst gmph of cardiac output V in Jitels (L) of blood versus workloaci W in kilogram-
rnetels (kg.m) fbr' 1 nrinute of weight lifting. This graph illustrates the known mcdical lact
that cardiac outpLrt incleases with the workload. but after reaclting a peak value begins to
decrease.

(a) Use the secant line shown ir Figure 3.1.E.1 to estinate the average late ol changc
of cardiac output with resPect to workload as the \\,orkload increases fiom 300 to
1200 kg m.

(b) Usc thc tangent line shown in Figure 3.1.8/, 1() eslimale the instantaneous ratc of
change of cardiac outpul wilh respecl to workload al llre poinl wlrere llre workloacl is

300 kg m.

SolLtlion (a). Usingthe estimated points (300, l3) and(1200. 19),theslopeol re secant

Line indicated in Figule 3.l.8a is

t9 lr Lt,t : _ .0.0067
ll00 100 kc rrr

Thus. the averagc lirt" of change u1:cot.diac outpul wilh rcspcct to workload over the inter-
val is approximately 0.0067 L/kg.m. This means that oo the average a l-unit increase in
workload produced a 0.0067-L increase ir cardiac output over the interval.

Solfiiotr (b\. Using thc estimatecl tangenl line in Figulc 3.1.8b ancl thc cstinrated points
(l:).7) and (900.25) on this tangent line, rve obtain

25-1 L
/7r,,. = = 0.01-''' q0(l - ft lr'rll

Thus, the instantan.ou, ,ur.-or.nun*. ol cardiac output with respect io workload is ap
proximately 0.02 L/kg.n.i.

100 600 900 1200 ri00

Work oad ll (kg rn)

(.b)

Figurc j.1.8

ExERcrsE SET 3.1

In Exelcises 1-,1. a function r' : /(-r) and values ol,rx ancl

.\1 are givei.
(a) Firld the average rate ot' chlnge of I with lespect 10 r

over the inteNal Iro. rl J.

(b) Find the instantaneous lale of change of \ with rcspect

to -{ at ihe given value of ro.

(c) Find the instantaneous rate of change ol r with r-espect

to .r ill a general Point .r!.
(d) Sketch the graph ofr' : /(,!) together with the secdnt

and tanSent lines whosc slopes are given by the results

in parts (a) and (b).

1. r': ]tr: -ro - 3. rr ::l

2. l:.t; t11 :l, 11 :l

3. I : t/t: 16 :2, .11 - l

,1. 
.r. : l/,tt: .ro : l. rr : 2

ln Exercises 5 8, a function I and a value of .t1 are given.
(a) Find the slopc of the tiingent to thc graph of .l at a general

point .16.

(b) Use the result in part (a) to lind the slope ol the tangent

line at the given vahLe ot' ro.

5. /(-r) : -1r i 1; .r, :2

6. /(-r) - -rr + 3-t + 2; r. - 2

7. f(t 1 : J.r: .ro : i

8. /(-t) : l/Jr; ro -,1
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9, The accompanying figure shows the position ve$us ljme
curve lbr an elevator that moves upwarcl a distance of 60 m
and then discharges its passengers.

(a) Estimate the instantaneous velocity of the elevator at
r: l0s.

(b) Sketch a velocity versus lime culve for the motion of
the elevirtor for 0 < 1< 20.

An automobile, initially at rest, begins to move along a

straight track. The velocity increases steadily until suddenly
ihe ddver sees a concrete barrier in the road and applies the
brakes sharply at time a0. The car decelerates rapidly, but
it is too late*the cat crashes into the ba[ier at time 1l and
instantaneously comes to rest. Sketch a posilior versus time
curve that m;ght rcpresenl the motion of the car.

If a parlicle moves at constant velocity, what can you say
about its position versus tirne curve?

The accompanying ligure shows the position versus time
curves of lour different particles moving on a straighl line.
For each pdrl.cle. detennrne uhrlller il. lllitant,rneou. ve

lo. ir1 i. increa.il'g.rr de.rer.rne u ith time.

Ar a\ l\l,-,rl/./\t/ / \t/./\
V '. --'./ I \-

(a) (.b) () (d)

Figure Ex l4

SLLppose that the outside temperature versus time curve over
a 24 hour period is as shown in the accompanying figure.
(a) Estimate the maximurn temperature and the time al

which it occurs.
(b) The temperature rise is fairly linear hom 8 A.M. to 2 p.M.

Estimate the rate at which the temperature is il'lcleasing
during this time period.

(c) Estimate the tiDle at which the temperature is decreasing
mosl rapidly. Estimate the instantaneous rate of change
of temperature with respect to time at lltis instant.

Figure Ex-15

The accornpanying figure shows the graph of the pressure

p in atmospheres (atm) versus the volume y in liters (L) of
I mole ol an ideal gas at a constalt temperature of 300 K
(kelvins). Use the tangent lines shown in the llgure to esti
mate the rate of change ol pressure with respect to volume
at the points where V : 10 L and V :25 L.

1A

6A

50

,10

l0
20

]l)

13.

14.

12.

15.

q

0 5 t0 15 20

Im€ (s) Figure Ex 9

10. The accompanying llgure shows the position versus time
curve fbr a certain pa icle moving along a straight line.
Estinate eacl] of the following l'rom lhe graph:
(a) the average velocity over the interval 0 : 1

(b) the values of, at which the instantaneous
zero

(c) the values of t at which the instantaneoLrs

either a maximum or-a minimum
(d) the instantaneous velocily when I : 3 s.

:3
velocity is

velocity is

Fisure Ex- 10

ll. The accompanying figure shows the position versus time
cune for a celtain pa icle moving on a straight line.
(a) ls the pir icle noving taster at time /0 ol tine t'l Ex

plain.
(b) At the origin, the tangent is horizontal. What does this

tell us about the initial velocity of the particle?

(c) Is the particle speeding up or sJowing down jn the in-
terval [.0, trl? Explain.

(d) ls the particle speeding up or slowing down in the in-
reNal [1r, 12]? Explain.

c60

G ,10

g '10

Tlme

/rt /t Figurc Ex L l

16.
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17.

01020 10 40

Vo ume l/ (L)

Figure Ex 16

The accompanyjng ligurc shows the graph ofthe helght i i

cenlimetels versus the agc I in years of an individlral lion
birth to age 20.
(a) When is thc grou,th rate greatesl?

(b) Estimate the growth rate at age 5.

(c) At approximately \\rhat age between l0 ancl 20 is the
gr-owth rate srealesll Eslirnale the grolvth rate at thls
age.

(d) Drirw ii lough glaph of the growth rute versus age.

ln L \(rct.e. lb 'l . lt\' I ornrull, 1-.1 JId i tl to tt (l lltr' ,r\ -
er-age and instantaneoLls velocit).

18. A rock is dlopped from a height o1576 fi and fails rowarcl
Earth in a straighl line. In 1 seconLls the I ock .hops ii distance
of .t - 16rr ti.
(a) How many seconds altcr release does the rock hit the

ground?
(b) What is the avemge velocily of the r ock dLuing thc rime

it is Ialling?
(c) What is the average velocity rll the rocli for the lirst 3 s?

(d) What js lhe instantaneous vclocity ol lhe rock rvhen it
hits the groLrnd?

19. Duling thc irst ,10 s o[ a rocket flight, the rocker is plo-
pelled straight up so thal in t seculds it reaches a height oi

(a) How high does the rooket travel in 40 s'l
(b) What is thc avetage velocity of thc rockel clurin-q thc

lirsl40 sl
(c) What is the rveragc velocitv of the rockct during the

first 135 ft of irs flighll
(d) What is the instrntaneous velocitv of the rocket al thc

end oi 40 s'l

20. A particlc moves on a line away fiom its lnitial position
so that afiel / hours it is.r' :3ll + I miles fi-ol]t its inirial
position.
(a) Fir]d thc rvcra-se velocitv ol thc pafticie ovel the inlerval

tl.3l.
(b) Find the instantaneous vclocily at I : l

21. A particle moves in the positive Llireclion along a sttalght
line so that aliel t minutes its distance is.r : 6/l feet from
the origin.
(a) Find the averagc velocity olthe particlc over the intelval

12. 11.
(b) Find thc instantaneolts velocity at / - 2.

ll
* |0(l
q!
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0
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3.2 ThIE DHRIVAT'I\IH

ln thi.t scdou \^e nill intrcdurc tlle (otrept o/a dclivative, u,hith is the p inarl
mLrthcnntirql tooI thdt is usetl to tulculata rates oJ c]rungc antl slopes (t t.utge t Iines.

TANGENT LINES DEFINED
PRECISELY

In the preceding secliotr we showed inlbrmally that the slope ol the tangcnt line to the grap]t
ol r' : l (-r) lt lhe point -r0 is givcn by

. l(.iL) - /tro.t/ ,,, - llnl
'r I -\_l

Howevcr, fol compuiational purposes i1 will be more colrveniel-It to express this fornlula in
a differelt foun by introducing a nerv variable /r : -rr - ro. It fbllo\s that,!1 - -{0 + /?.

ancl consequently .t1 --+ -r0 as h -+ 0. Thus. ( l) can Lre expressed as

.. l(rp * /r.) l(io),,,", :,L,ll, 
/,

(Figurc 3.2.1 ). This suggesls the fillowinS folmal definition of ir lirlrgcnt line.

(l)
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l( \,, + tt) _ \ )
nt /n= m "

l)-(t

Figure 3.1.1

SLOPES OF TANGENT LINES BY
ZOOMING

Zoom fg in on the graph

ofr=rl+l

s.202s - 4.8025 0.4

(5+1h+h\ s

3.2.1 DEFINIIION. If P(-rp,,r0) is a poinr on rhe graph of a funcrion /, rhen the
tangent line to the graph of f at P. a\so ca\led the tsngent line to the graph of .l at x0.
is defined to bc the line through P with slope

f(x.t*h)- f(xo)
(2)

plovided this linit exists. If the limit does not exist, then by agr-eement tl'le graph ltas no
tan.!,ent line at P.

It tbllows from this dellnition that the point slope tbrm ol'the equation ol lhe tangcnt line
at -ro is

,)' ,ru = /,tra',(-r ro) (3)

Example I
Find the equation of the tangent line b the graph of r. = rr 1 1 at the poiot (2.5) (Fig
rre 3.2.2J.

Soltttion. First, we \\,ill find the slopc ofthe tangent line using (2) with l(,r) : .rr + I
and j0 : 2, and then we will find the equation by using (3). We obtain

f(2+h)-.f(2) I(2 + r)r + 1l s

: lim
Itt I ltl

- lrm

- lim (,1 */i) -,1
Thus, from (3) with .r0 : 2, r'0 : 5, and rt,,,,, : ,tr, the poinrslope lorm of the equation of
the ial]gent line is

,t' 5:4(-r 2)

which we can write in slope-intercept folm as l = 4.r 3. <

Stopes of tangert lines can be estirnated by zooming with rraphinr utilities. The idea is to
zoom in on the point oftangency until the sun ounding cul ve segment appears to be ir straight
line tl'rat nearly coincides with the tangent line (Figure 3.2.3). The utility's trace operatiorl
can then be used to estimate the slope. Figure 3.2.4 iiluslrates this procedure for the tangent
line in Example L The firslpafi ofthe Rgure sl'iows the graph olr, - ,tl + I in the window*

I 6.3.6.31 r [0. 6.2], and the second piLr-t shows the glaph after we have zoomed in on the
point (2.5) by a lactol of 10. The trace operation produces the poiffs (2.05,5.2025) and
( 1.95, 4.8025) on the Iine, so the slope ofth.3 tangent line ciin be approximated iis

2.05 - 1.95 0.1

which happens to agree exactly with the result in Example l. It is i portant to urderstald,
however, that the exact agreement in this case is accidental, in general, this melhod will
not produce exact results beclluse of roundoff errors in the computations. and also because

the magnilied cuNe segr.nenl may have a slight curvatule, even llrough it appears to be a
sraight line.

*The 
willdo,v | 6.3. o.3l x 10.6.21 $as choscn becruse it cont.rirs the point olllngency (2.5) anct p|(xluces

corvcnicnL \rcps on rhc xuthor's calculalor when the trace operatlon is applied. Books on graphirg c.rlcLrlatus
sometinrcs call thcsc friendlv wirdows.'

Flcurc:1.2.2
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In genelal. the slope of a targent line to a curve ) = ./(i) will depend on the point r al
which the slope is being computed: thus, the slope is itself a tunction of -r. To illusrrate
this. lel us use (2) to compute rlrin at a general point r fbr rhe curve r. - rr + 1. The
corllpuliltions are similar to those in Example 1. except that now we let -r0 have an arbitrary
value -t6 :.1. whereas in Exunpie I we hacl-rn - 2. We obtain

I (.t i h) l(-t) l(,r +r)r + 1l f.rr + 1l

THE DERIVATIVE

t)+2th+h2+1 -rr I

(2t * i) = 2.r (4)

Now we can Lrse the genelal fbmula n,,,n : 2r to compute the slope of the tangcnt line at

anypointalongthecurve,l:.rl+Isimplybysubstitutingrheappropriatevalucfbr-t.For
example. ifr - 2, then we obtain mrtn - 2x :4, which agrees rvjth the result in Exantple
1. Sinilarly, ifr :0. then nrr,. : 0; and if .r : 2, then rrr"n : 4 (Figure 3.2.5).

To generalize this idea, the slope of tl,e langent line to the graph of t, - .f (,r) at a general
point.r can be obtained by selting -\-{r : .t in (2)- which yieJds the fbrmula

. l(r +/r) l(..\)
/'7 ' 

: lllll
h_o 11

This "slope producing function'is so important that it has some nolation r,rnci terminology
associated with it.

.1.2.2 D[i'tNITIO\. The function /' delined by the folmula

,rrm : lim

: lim

h

)r lt * lt'
- lirn

/'(-t) = linr f (.x + h) .f(.x) (5)

is callcd the d?/iralive qffwith respect to r. The dorrain of l' consists of all ,r fol which
the limit exists.

Recalling from the last section that the slope of a tangent line 10 thc glaph oi r, = / (r)
can be interpreted lrs the instantllneous rate of change of t with respect to -r, it lbllows that
the derivative ol a fulction / can be inferyreted in two ways:

Two interpretations of the Deivative. The derivatiye // of a function / can be inter-
preted either as a function whose vahe at .r is the slope of the tangent line to the gmph
of -r, 

: /(x) at r, or, altematively, it can be jnterpreted as a function whose value at.r is
the instantaneous rate of change of y with respect to r at the point x.

Example 2

(a) Find the derivaiive with respect to r of /(-r) : 1r - -1

(b) GLaph / and /'together, and discuss the relatiorship between the 1wo graphs.

Figure 3.2.5
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,tr + 3,tr/r +3xh2 +ht -,t -/r --rr+x
h

3x2h+3rh2+l't3 h

(3-rr + 3,{i? + rr 1) : 3.r2 I

: lim
h-a

At each point the tangeni l

i li-: f::i:p: - ,,.
Figurc 1.2.7

l"=rr..r = -LI r!\
figurc:.2.S

Solutiotl \o). Later in this chapter we will develop efficicnt methods fin finding clerivatives,
but for now we rvill f,nd the clerivative dilectly fiom Formula (5) in the delinition ol l'. The
computalions are as firllows:

- lim

= Iim

1Q+h)- l(x) [(r ] /r)r (.r + r)l (tr .r)
= liur

h-0

mx*nthlb-m.r-b

Solution (b). Since I '(i ) can be interpreted as the slope ol the tangent linc to the graph of
]: /(.l;) atthe point-r,thcdcrivative f '(r ) is positivc where the tangent line l = l(.r)has
positive slope, it is negative where the tangert line has negative slope, and it is zero where
the tangent line is horizonlal. We leave it tbr tlle reader to verify that this is consislent with
t1]egIaphSofl.(-r)=)::rand/,(-r):],5]1showrrinFigule3.2'6.<

Example 3

At each point r, the tangent line 1() a line l' - ,?r + b coincidcs with the line itself
(Figure 3.2.7), and hence all tangent iines have slope m. This suggests geomettically that if
/(r)=ri.r+1r,thenl'(r)=,rrtblallr.Thisisconfirmedbythelollowingcomputrtrons:

/t\ ttt /f',t [,rr1, l'1 t' t]1,.\ l1l
i r fi .lrnr h :r*:, h

h

Example 4

(a) Find the derivalive with respect 1() r of l(-r) - "zt.
,b' Find lhc.luleul rhrlargerl lin(to\ ,/irr r (J.

(c) Find the limits of l'(.,r) as.r + 0+ and as r > +2. and explain what those lir'rits say

about the graph of /.

Soltttion la), Flom Dellnition 3.2.2.

l(.r+h)-f(t) Jr +/r -.,{i= lim

Qtx + i - ",CltJ* + n + 
',81

(1+rl .1:,JI'.r;,**7,
h(.Jr+h+\E)
h1

-lim..... ............. =lim .................
h-t) h(Jr + h+ Jl n-o J:i! h! Jl

l1

"c +,G 2!E

Solutiott lbl. The slope of the tangent line at ir : 9 is /'(9). and thus ftrm paft (a) this
slope is /'(9) : llQ.\/9) - i
Solution\c). Thegraphsof /(,r) = aE and J'(r) = 1l(.2\/F ) are shown in Figure 3.2.U.

Observe that l '(r ) > 0ifx > 0, which means that all tangent lines to the graph of l =.r/r

Figurc 3.1.6

2:l:l 567
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have positive siopc i)vcr this interval. Since

I

hrl1 

-:+r 
rnd.-o- 2"/,r

Lin -!:o.- +, 2 J.r

DIFFERENTIABILITY

the tangent lines become morc and nrore vertical as .r + 0-, lncl they bccome luore and
more hor-izontal as ,! --'' +2.

FaJR 1'llL RLADEIi. Use a graphing utiliiy to estimate the slope of the tarrgent line to
1 - 1G at -r - 9 by zcxrrnin-r{, anil compale youl tesult to the exacl virlue obtoined in the
last example. If yor.r have a CAS, read thc documentttion to delermine how it can be uscd to
find derivatives, and then use il to confirn the derivatives obtained in Examples 2. 3, and 4.

Recall flom Dellrrition 3.2.2 that the derivalive of a tunciion l is dcilnecl Nr those points
whcrc thc limit (5 ) exists. Points where this limit exists are c alle(l points of dillbrenti{tbilit!
for /, arrd points where this lilnil does not exist are called points of nondilferenti{tbiliqr
for .1 .

Il -r11 is a point of dif1erentiability lbr f,thcnwesaydrat / is differe tiahle atx0ot thL\t

the derit'ative of .f exists 4l .r0; and il' r0 is r point of nondilftlentiab iliry for l . rhen wc
say that llr? derivative of .f does notexistalrn. Il / is diflerentiable itt every p,,i|l in n

open inlerval (./. r). thcn we will say that f \s di.fferentisble on (a, D). This clefinirion also
appliestoinfiniteopeninterualsoflhelolm(ri.l-:c),(,].D.),and(,-.+-).lntheciise
rvhclc .l is clifferentiable on ( :c, +-) we will say ftat l is differentinble everywhere.If
/ is differentiable on an open inlerval but the particular inlerval is not important l'or thc
rliscussion, then we will say that J is differentiable (without rcter€ncing the intervirl).

Geomctrically. the points ofdiffereltiability of I are the poirrts where the cu|r'c r' : /(-r)
has a tangent line, rncl the points ol'nondifferentiability are thc points where the curve
does not have a tangcnt linc. Infblrlally stated. the most conrmonly encountered points 0l
rondilfcrentiability can bc classified as

. Corners

Points of vertical tangency

Points of discontirruity

Figure 3.2.9 illustrates each o[ these situations.

Corner Pol, 
:f 

u"]].,u'l *T"l,.y.l Po ft of d scontinu ty 
.

Figure 31.9

It nakes sense inluilively that comcrs are points of nondiftercnliabilily. since there is no
rcasonable way to dra!u, a unique tangent line at suclt poiltls. For cxamplc, Figure 3.2. l0a
shows a typical corner point P(.r0, l(-!0)) on the grallh of a functiorl ./. At this point the
secant lines joining P and Q have ditferent limiting positions, depcnding on whether C
approaches P froln the left or right; hence the slopes of the secant lines do not have a

two-sided limif

Po fi of vert cal iangencv l
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Siopr.

Fie rc l.:.1()

la) b)

By a point of vniul turpen(). we mean a place on the curve where the secant lines
approach a vefiical liniting position. At such points. tlte only reasonable candidtte for
the tangent line is the veltical line at the point. But vertical Iines have inlinile slopc. so
the derivative (were it to exisl) would not havc a finite real value there, which explains
intuitively why the derivativc does not exist zlt points of venical tangency (Figur.e ,3.2. l0b).

Example 5
The graph of r' : l-r in Figure 3.2.11 suggests that there is il corner ar _y = 0. aDd this
implies lhal .l(r-) : .r is not clillerentiable at that point.

(a) Prove th{t I ( r ) : I.r I is not differentiable ar,r : 0 by showing rhar rhe limir in Den-
nition 1.2.1 does not e\isl lrt lhar point.

(b) Find a folmula for l'(.r).

Solution lal. Fronr Formula (5) with.r = 0, the value of .l'(0), if it were to exisl. woukl
be given by

./(0 + /r) - .f(0) .. l(/')- li0)
= m-

Figurc.1.2.l I

/'(0) : ,rim,

But

hl

so that

l, h > 0

-1. lt <0

.. lrl-l0l .. t/rtllln 

-: 

lrnl 
-h-t\ h h-o h

\-/'(,r ] l r>il
' ll r<lt

lirr 4=-l and tim 4 It'- | lr h-r+ h

Thus.

.ltt irI' 
- 

li-, '

h-h 1t

does lrot exist because the one-sided ]imits are not equal. Consequently, /(_t) : I.rl is not
dilTercntiable at ,t : 0.

Sohttion lbl, A folnula tirr the clelivative of ./(.t): lr canbeobtainedbywritingl.tlin
piecewise form and tr.eating the cases r > 0 and.r < 0 separately. lf _r > 0. tlren /(.r) =,r
and./'(.r) : 1;and if r < 0, thcn.f(.r) = -.r ancl l'(-r) : -1. Thus.

. t l. r>0
l-1. r < ()

The graph of /' is shown in Figure 3.2.12. Observe that f is not a continuous luncrion, so
this example shows that the clerivative of a contiltuous t'unction need not be continur:us. {Figurc .1.:.ll
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It makes scnse intLLitively that a function / cannot be cliflerent iable rt a poinl ol d iscontiltuily.
since there is no reasonrble way to driiw a unique tlrngent line at such points. The follou,int
theorem shows thrt a function / must be conlinuous at each point where it is ditlcrentillble
(oI statcLl anoiher \\'ay, a 1'unction / cannot bc dillerentiable al a poinr of discontinuity).

.t.l..r tH. I ,rtr \t li t t, .ltn, ii,.tt,,t,l, )! .t l\,;tt! \'.,. tl,, tl I t\.t!\,. . . , t t t t t t ! t , , r ! \ tt, \.\ .

Prao/. We are given thal f is differentiable at r-11. so it follorvs l'r-om (5) rhar l'(.rr) c\ists
ancl is givcn bv

/ '( t,,) : lim I' /r- 0

ll) rl (6)

,lin1,L./(io 
+ /r) .l(to)l =

l(.Yo + h) ./(rr,) ,]

lim /i

: l'(r1) .0 - 0

.l('ro./ ( t.o *

To show that./ is continuous ilt r0. we must sho$, that liin /(-r) - /(.r11). or equivalcntll,.

.LIr,l./(r) .l (r1)l :0

Expressing tiris in lclms ofthe valiable /? -.r .r0. we must plove that

/lilrl l(ro + l) /(.ro)l :0

However. this can bc p|ovecl using (6) as lilloivs:

,lll I
tin, I,- L

'I(-re1l/1iLr f

Itt:Nt.\tiK. Theorem 3.2.3 shorvs that cliffe|entiability at { point implies colitinuily at that
point. However, tlre convelse is false: that is. d liutttion nttt bc cotltinl.ta)us dt d pt)itlt but ttol
differentitrblc,th(tc.Infi\cI. tltis occ0rs at any point where the functiitn is colttinllous and

has a corner. For exanrple. we saw in Exanple 5 th t the lunction ./(.r) : -. is continLroLrs

at r : 0. yet not dillcrcntiable there.

The relationship between co|rtiltuity and diflcrenriability was ol glcat histo|ical sig-
nificance in the clevelopment of calculus. ln the early nineteelth century mathematiciats
believed that the graph of a collinuous lLlltction collld not have too many points of non
differeltiabilitl' buncheLl up. They fclt that if a continuous lunclion hod many points ol
nondilferenliability, thcsc points. like the tips of a sawblade. would have to be separulc(l
lion each other and.joined by smoolh curve segments (Figure 3.2. I 3). This nr isconceprron
was shattered by a series of discoveries beginning in 1834. In thrt year a Bohenian priesl.
philosopher, and nrtrthcmaticitrn named Bernharcl Bolztrno* cliscovered a pr ocecluLe litr-con-
st ucting a continuous fuDctiot that is ltot dillerentiablc at any point. Later, in Ili60. the gleat

Br,rt\ri\Rr) aorT\\o (1781 l8l8). Bolzrno. the son of.rn .lft dealcr. was born in Pr.rgLre. Bohc i.r (Czcch
Republic). He $.rs c.lucrtcd rI lhc l,nilcr\irl of Prrgue. nnd eventurll) $on enough mLrthem.rtic.rt lmrc ro bc
recornnendecl Jbr rL nratherratics ch.rir thcrc. Hoq c\ er. BolzLrno becamc a odrjned Ron n Cltholic pricst, .tnd
inlE05hc\!asrppointedrcLich.lirofPhilolophvirlthcLhilcrsiivofPfague.BolzirnoN.rsrmrnoigrerthumrn
conr|r\sron: he spoke out lbr educ.rtion.rl r.lbrnr. hc !oic.d thc right oI indi!idr.tl co !ci$cc o!er !olennnenr
deman.l\. arr.l hc lecturud l)n the lbsurdity oi war rnd nililrris.r. His !ieqs so disenchrnrc.l Enperor l:Ianz I
of Austfia thrt the e,rperor pres\ed the Archbi\hop ol Plrgue to hr!c BolTallo rcclnt his sttltellrents. BolTa|o
r.luscd and 

'!rs 
lhcn lin ccd to rtire in l32ri on a srrall pcrrsion. Dolzrno s mrin cont|ibLrtion ro l]1.llh.Drric\ \'ls

phil(rsophical Hi\ Nork hcltcd convlDcc athem.rticians thxt sound rnrlhcn.tlics lnusl ullim.itely rest on rigorou,i
proof rLtther lhan inILriIion. Ir addilion Io hi\ work in mrtthcnatics. tsolzano invenigaLed problcms conceDin.!
space. lince. .rnd \ r\r prop.rgrl jon.
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DERIVATIVE NOTATION

Geman mathematiciao, K.ul Weierstrass* ploduced the lirst fomula for such a function.
The glaphs of such functions are impossible to draw; it is as if the corners are so numerous
that any segment of the curve, when suitably enlarged, reveals more corners. The discover y

of these pathological functions was impoftant in that it made mathenaticians distrustful of
their geometric intuition and more reliant on precise mathematical proof. However, they
remained only mathematical curiosities until the early 1980s, when applications of them
began to emerge. During the past 10 yeals they have started to play a fundamental role in
the study of geometric objecls called fractals. Fractals have revealed an order to natural
phenomena that were previously dismissed as random and chaotic.

Figure 1.2.13

Tlre process of linding a derivative is called dilferentiation. You can think of differentiation
as an operation on functions that associates a function f' with a function l. When the
independent variable is jr, the differentiation operation is often denoted by

d, ffrr)l
which is read "llre derivative off (x) with respect to x."'lh\ts,

,1

.l71r)l-l1.rr 17)

For example, with this notation the de vatives obtained in Examples 2, 3, and 4 can be

expressed as

.l d,l -l.lr' rl-3ri -1. . [,'r.r L,]= u'. l'/.tl - ^ (81
d\ Jt l^ /JY

To denote the value of the derivative at a specif,c point x6 with the notation in (7), we would

*o^0, 
,uo'o,.rro,r.s (1815-1897). Wcicrstrass. the son of a customs olllcer. w.ls bom in Ostenfelde. Gernany.

As a youth weierstrass showcd outstanding skills in laDguages and nalhenalics. However, at the urging of his

doninant fadrer. weiersrrass cntered the 1aw and commerce program al tlre Univcrsily ofBonn. To lhe chagrin of
his femily. Ihe rugged and congenial young man concenlrated instead on fencing and beer drirking. Four years

larcr he returned home without a degree. ln 1 8 39 weiersn ass entered the Academy of Miinsler to study for a career

in secondary educalion. and he nret and studied under an excellent nrathernalician named Christof Gudermann.

Cudermann s ideas greatly inlluenced lhc work ofWeierstrass. Atierreceiving his teach ing cerifi cate. Weierstrass

spent the next 15 yeal\ ii sccondary educalion teachirg Gennan, geography, ard nalhemalics. ln addition. he

taught handwdting to small children. During this period mucb ol Weienlrass s malhematical work was ignored

becausc hc was a sccondary schoolteacher and nol a college professor. Then. in 1854, he published a paper of
major importance that crealed a sensalion iD the malhenat;cs world and calapufted hin to intemational fame

overnight. Hc was immediately given an honorary Doctorate at the University of Krjnigsberg zrnd began a new

carecr in college teachins at the University of Berlin in I856. ln 1859 the slain of his mathenatical research

caused a remporuy neNous Lrreakdown and led to spells of dizziness lhat plagued him for thc rcs! of his life.
Weierstrass wns a brilliant teacher and his classes overllowed wilh multitudes of a ditors. In spite of his fame,

he never lost his early beer drinking congeniality and was always in the company of students. bolh ordinary and

brilliant. Weierstrass was rcknowledged as lhe leadine nulhemaLical analysl in the world- He and his students

opened the door 1o the modem school olnalhemalical analysis.



write

dl
;t/t'r )ll = ./'(ro)

rr=rn

For example, from (8)

dl n
;l'' 'll =3'l-t-l=2. .ltt,;ahl =ut.Ll^ | t/t , s

tl -ll, [.'/.r] : 
-= = ,r1.\ l,:,, 2J9 h

Notations (7) ancl (9) arc convenient when no dependent variable is involved. However,
ifthere is a dependcnt variable. say,r' = /(,r), then (7) and (9) can be writren as

nJl
, lr'l- /'t.r t und ,: l.r'll - /'{.rrrr(/.\ (1.I l, ,,,

lt is common to omit thc brackets on the left side and write these expressions as

: f'G)
tlr'l
;-l = f'(Yo)

where dr,/r1,r is read irs 'the dcrivative of ], with respect to -{." For example, if _y - ."6,
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(e)

then

dyl
tl.r 2.,G

and
dr-

dx

1' l,=,,,

I ,/r I t I

lV.t,' r/r l,:q 2r/9 b

l{h\IARK. Later. the symbols r/.r' and r1r will be defined separately. However, fbr the time
being, d,r'/rlt should not bc regarded as a ratio: rather. it should be considered as a single
symbol denoting the dcrivative.

When letters other than.r and r. are used for the independent flnd dependent variables,
then the vaious notations for the de vative must be adjustcd accordingly. For example, if
1 - .f(r), then the derivalive with respect toll would be wlitten as

d tlt
iL.l1nl = /'(a) and -:': 

= f 'Q0

OTHER NOTATIONS

In panicular. if r' = \i/t, then

J.r' , ,tr I I
. - 

-----. --- I - :----:.(lrr 2\/!! d,tl,,_,,,, 2Jrlo
r1r'l I I

,1u l,, n 2J9 6

Some writers denote the der ivativc as D. [./(.r)] - l'(.r), but we will not use this notation in
this text. In problems where the name of the independent variable is clear fiom the context,
there are some other possiblc nuations for the derivative. For exatTple, if r : /(,r), bul it
is ciear lrom dre problern that the independent variable is.r, then the derivative with respect
to n might be denotcd by r'' or./'.

Often, you will see Definition 3.2.2 expressed using A-r (dclta,r) rather than ft for rhe
varying quantity, in which case (5) has the form

l'(") : oI,To
/(x+A-{)-/(.r)

Il,r' : /(.r), then it is also common to let

I,r':/(-r+Ar) - /(.r)

A.r
( l0)
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in which casc

,/r' ArI = Iim 
-: 

limdx Ar-04-r Ar+0
.l(;r+lr)-/(x) (11)

DERIVATIVES AT THE ENDPOINTS
OF AN INTERVAL

S ope = ll(d)

Slope = /l(r)

ExERclsE SET 3.2 E Graph ng Ca cr ator

Ar

The geometric interptetations of Ar and Al are shown in Figure 3.2.14.

,\.\ ) - l(.r)

, /.t 1, l,'
. r/r ^rrr) ar

Figure I2.1,1

If a function I is delined on a c losed intet val l.r. /, I and is not def,ned outs ide cl1'that interval,

then the deivative /'(,r) is nol dellned at the enclpoints d and l, because

/tr +/r)- l(.\ )

/(\)-lrDl ;-,-0
is a two-sided Iimit and only orre-sided limits make sense at the endpoints. To cleal with this
sillration, we define derivatives frou the left and riglrt. These are derroted by / and .fi,
respeclively. and are defined by

i 1(r) - lnl .l (-r + h) ./(.r) /Li ,) /( r\
and i til- lirn 

-

/,-l) h

At points where fi (-r ) exisls wc say that the tunctiol ./ is df.fe rentioble frcrn the fight. 
^n(l

at points whcrc .11(,r ) exists we say that I ts dffirentiable from the left. Geometrically,

/i (.r) is thc I im ir of the slopes of tire secant lines approaching ,r from the right. and ll (.r )

is tbe limit ol the slopes of the sccanl lir'res rpprorching -r iiom the left (Figure 3.2.15).

It can be proved that a tiLnction f is continuous from the left at those poinls where it
js differentiable fiom the left and is continuous from the right at those points where it is

differentiable from the t ight.

WcwillcallafunctionldffirentiableonanintervalQftheforn[a.D],[c,+:c),(...r1.
[rr. D), or (zr. &] if it is ditTerenliable at all points inside the inter-\'al, and it is dift'ercrtiable

at the endPoinl(s) flom the leli or ight. as appropiate.

1, Use thc graph of 1 : l(-r) in the accompanying ligure to

cllimate the value of l1l). l'(3). .l'(5), and /'(6)

2. For the function graphed in the accompanyiDg figure. ar-

range rhe numbers 0. /'( 3). .f'(0). f'(2). and l'('1) in

increasing order.

3. (a) If you are given an equation for the tanSent line al the

point (,/. l(.r)) on a curve l : l(r). how would yor.t

go about linding /'(a)?
(b) Given that the langent line to the graph oi r' : /(,!) at

rhe point (2, 5) has the equation -r' : 3 t + l, find l'(2).



21.
,)
23.
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Find l'(t) il l(r) - 4r' + t.
Fiid dv ldt if V : {rrr.
Match the graphs ofthe t'unctions shown in (a)-(f) with the
graphs of their derivatives in (A) (F).

(a) (c)(b)

Figul€ Ex-2

9.

10.

11.

12.

t3.

/(.\):-u:./:J
JQ):x2 .t: a-2

l(.r):-rr;4-Q
.f(t):2.r3+1' 0: r

/(r) - ./r * 1: n:8 14. l(.r) : xa a: 2

(D)

i"

-l T_

24. Find a function / such that /'(r) : I fbr all-,r. and gjve an
infornal argument to.iustity your answer.

In Exercises 25 and 26. sketch the graph of the derivative of
the function whose graph is shown.

25. (a)

ln Exercises 15 20, usc Formula (11) to find /_r,/d-r.

15.

17.

t9.

I

(.1. D constants)

I

16. ,r, :

18. y= I

' -r+l

20. 1 - ,1111

I

F

ln Exercises 2l and 22, use Definition 3.2.2 (with the appro-
priate change in notation) to obtain the derivative rcquested-

.|- rnla, A
'= "T* --1i

(c) For the equation in part (b). what is thc instanlaneous
rate of chaDge of _r with lespect to r at i : 2?

4. Givel that rhe rangent ]ine to l, - /(.r) at rhe point (- i. 3)
passes through the poht (0. ,1), find /'( 1).

5. Sketch the graph ol a function f for whiclr .f(0) - 1,

l'(0) :0, /'(-r) > 0 ii-r < 0, and f'(r) < 0 if .r > 0.

6. Sketch the graph of a fLrnction / for which /(0) : 0.

/'(0) : 0, ancl l'(.r) > 0 if -r < 0 or' -r > 0.

7. Civen that 113) : - I and /'(3) : 5. llnd an equation for
the tangent line to the graph of 1, : I (.r ) at rhe poinr where

8. Given that /(-2) - 3 and ./'( 2) : -4, find an equation
lor the tangent line to the graph of _t. : l(,r) ar the poinl
where x : 2.

In Exercises 9 1z[, use Defi nition 3.2.2 to fr nd /'('r )- and rhen
find the equatioD of the tangent line to J, : I (.r) ar rhe point

26. (a)
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Irr frcr. ire. : i.rl,i lr.'lre I rllrl repre\crll../ i,i, n .orne

function ./ lrnd somc nunber d. Filtd /(.t) and d in each case.

radians). where F is the nagnitudc of the force lhal ciln be

resistecl by a tbrce llith niagnltLrcle lo : l0 lb for a celtain
r-ope and c-vlindcr.

(a) Estirnate the values t)f F and dFlla when the lugle
{J : l0 r'aclians.

(b) It cirn be shown thut the force I satislics thc cquelion
tlF /tle - lF , *,here thc conslanl /r is ciLlled lhe cael-

.licient offriction.Usc thc rcsulls in llalt (t) lo esiimate

the value of /-r .

./t +,\1 Irbr lirn L' ' 
^r'{r Ar

.\i(b) lillr_t \ I

E 3r.

E 32.

trl

(l+r)l 9
27, 1.r) ,lirr ,

28. (a) linr
cos(n+/?)+l

29. Finci r/r//r . L. givcn lhal r :4-rr + 1.

30. fjind r/r'/r1.r \= :, given lhal r' : (5/.i) + I

Fin(l rn equiition lbr the line thirt is tangenl to the curve

t : .rr 2.y + I dl ihc point (0. l). ancl usc a graphing

utility to graph tlie cuNe and its tangenl lirle on tlie samc

Llse graphiDg utility lo graph thc fbllowing on lhc same

scrccr: lhe curvc r : -tl/4, thc tangelit line to this cul'Ve

al .\ : l. dnd thc seca l line .ioining the points (0. {)) rnd
(2. l) on this crLrvc.

3 300

100

a)

.13. Lct l(.r) :2' Estimirte l'(l) by
(a) using a sraphing ttlility to zoolll irl al an appropriirle

point unlil the graph iooks Iike a straight line. and then

estimating the slope

(b) using a calculiiting utility 1() eslirrate the linrit in Defi-

nition 3.2.2 by naking a table ol values 1bt-a sLlccession

tl1' stnallcr lnd srnaller values ol r.
.14. Lcr /(.r) : sin t. Eslirnrte l'(nl4)by

(iL) Lrsing a graphing utility to zoonl irt at an appropriale

point Lrrlil the gruph looks like ii straight linc. and then

estirlrating the slopc
(ll) 0sing a cirlculating Lrtility 1() estintatc the linlit in Deli-

nition -1.2.2 by ruaking a table of vllucs 1oI e successioll

ol snrrllcl lnd srnuller values ol /r

.15. Suppose thtt the cost ol drilling j teel lbr an oil well is

a': l(r) dollars.
(a) What !uc the units of /'(r)?
(b) ln prircticrl temrs. whiil does f '(.t) ilean in lhis case?

'(, \\lrrt \i rl )^J..r) .rbuul lhr\lPnol r'{, .'

(.1) Estiurate the cost o1 drilling an addilionalioot. startirlg

at a dcplh o1300 1'1. given that / (300) : l(X10.

36. A paint manut'acluring coilpany cstimates that it can sell

!, : l(1)) g.tllons ol palrtt at a p|ice of 7r dollats
(r) What nrc the unilsof lgldp'l
(b) In prdclical tenrs. what does r/g /r17r mern in this case l
(c) Whirl can you say about lhe sign ol rlg/12?
(d) Givel thrt tlgldp p1.t - 100. what can you say

aboul the eflccl ol increasing the plice from Sl0 per

gallon to Xi I I pcr grllon l

37. lt is.r lacl lhat \\'hen a llexible rope is wlapped around a

|ough cylirder'. a small tbrce of ntagnitude li) at one end

can resist n large fbrce ol mirgnitude l at the other encl. The

size of l dcpeids on thc angle F, through which lhe rope is

\\ rirlrped .rrl rInd lhe \') ll r\l(r I .ee ll_e .rL co * ni, nrl rf n! rlru\

Thal liglrrc shows thc graph ol f (in pounds) versus d (in

0 I I 6 S l0 ll 1.1

F(r Anger(rad)

38.

Figure E\-17

According to The Wotll Alntdturt und tht' Boak ol Fa(lt
(1987), the estimated world population, N. in illions t-or

the year s 1850. 1900, 1950, and 198-5 was 1 175, 1600.2,1!X).

rnd,18.13, respcctivcly. Although lhe increase in population
is not il continuous lunctiolt of the tinre l. wc can xlfly the

idcils in this section il we iire rvilling 10 appr-oxin'lnle the

g|aph ol N versus / b) r continuolrs cur ve. as showrl in lhe

accompanying ligure.
(a) Use the estiurated tlngcnt line showr in the tigLlre al

lhe poinl where I - 1950 lo approxinrilte the valuc ot
r/N/11 therc. Dcsclibc youl result as t rate of changc.

(b) At any instant, the groldr r?re is delincd as

Use your answer lo pirrl (a) lo approximale the growth

rate in 1950. Expless lhe resull rs a percentage ancl in-
clude thc proper units.

E

:
z
9

!

=

2000

100{J

0

Filure I]x ]8



40.39. According to Nelrtor's La 'olCooling.the rate ofchange
of al object s temperatrrc is plopoltional to the dilTer-
ence betwccn the lemperalurc of the objecl and that of the
surrounding ttredium. The accompanying figure sho$,s the
graph oi the tenrpcrature f (in degrccs Fahrenheit) veNus
lirnc / (iD minutes) lbr a cup of coffee. initially with r tenr-
peratur! of 200 F. that is aliowed to cool in a room with a

constarlt tc|llpcriitLne of 75 F.

(a) Eslinr c T tntcl dT /clt wllen I = l0 min.
(b) Ncwton's L w olConling can bc cxplessed as

. :(rr_%)

wherc I is lhc constant of proporliondlity and 7l) is
the telllperi!1ure (assLLmed constlnt) of the sunounding
mediunr. Use tlle results in paft (a) to estinlale the value
of /i.
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Write a paragraph that explains what il neans tbr a function
to be differentiable. Include some examplcs ofl'unctions tlrat
are not differenliablc. and explain the relalionship betlveen
dift'erentiability and continuity.

Show thrt l(.r) = VI is corltinuous at.r = 0 but not dit'-
ferentiable at.\' : 0. Skctch rhe graph of l.
Show that l(.r) = iG -F is continuous at.i: : 2 but
not differenriflble {r.\ = 2. Sketch rhe gr.lph of /.
Show that

^ l.rl+1. ,r<llrtt: i:.i. .,, t

is continuous ancl clifferentiable at -t : L Sketch the graph

4t.

42.

4-1.

ol .l .

44, Show rhal

is conrinuous bur not differeDriable I.\ = l. Skerch rhe
graph of f.

45. Suppose that a t'unction t is differentiable at.r : I and
ltI + ltllill, /l. = 5. FinJ /'liJnd i 'lr.

tl6, Suppose that l is a differentiable function with the propelty

rhat l(-r + -y) = ./(-r) + l(,r) + 5.rl nn4 1;n' lp : 3.

Find.f(0) and l'(.r). 
n-t h

47. Suppose that I has the propefiy l( r' + r') = .l(.r).1(r.) for
all values ot'.r and I and that /(0) : l'(0) = l. Show
that / is diiierentiablc and l'(,r) = ./(.r-). lHiirl. Start by
expressirlg /'(.i ) as r limit.l

3.3 TECHNTQUES OF DTFFERENTTATTON

lu tlrc last .tc(ion uc dcfincd tlrc tleri,atite of u.linoion .f as a linit. und u'e use.l
thut linlil to tulttrlate u Icu',sintple deritati'es. Irt lhis settiou u'c will tlet'elop some

itllpottqti lltcorents thet u,ill anuhle Lts to calLulate clcriraties nore eJficiently.

The graph of a constiut function l({) - c is the horizontal line t = r'. and hencc the

l ngent line to this gr aph has slope 0 at every point.r (Figure 3.3.1). Thus, we shoulcl expect
lhc dcrivative of a constant tunction to be 0 lor all .t.

f .r'r +2. .r: I

[.t+2, .t ' I

* t5o

!

,f t00

lo :0 :10 .10 50 60

Tme/(mn)
Figurc Ex-39

DERIVATIVE OF A CONSTANT

.l..i,f llltt()ltEtt. Thctluir ileof a c ortsta nt .firttctiou i.s0 that is.

frc:o

The tangent line to the graph of

l(i) =. hasslope0fora .r.

Fi{LDe 3.3. i
*r.r= r', '',:

I'nxtl. Let f(,t) : c. Then fiom the delinition ofa derivative.

lim = linl, "0

l (.x + h) .f(r) : lin0=0
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DERIVATIVE OF x TO A POWER

Example I
If /(x) : 5 for all x, then /'(.t) : 0 for all r; that is,

a,t, = ndx' '

3.3.2 THEoREM (rne co*er nulc).

!b't- n*' 
'dx

Ifn is apositive integer, then

Proof. Let f(x) : x'. Thus, from the definition of a derivative and the binomial theorem

for expanding the expression (r + l?)n, we obtain

DERIVATIVE OF A CONSTANT
TIMES A FUNCTION

:lim

,^"- h r'('- l),"-t6t r" rnrh'''t rhn
: r;- ]l

n+o h

= [m lr"', '-!'n-l'r"'h,...-nr1,^-'-1," 'lt' oL 2l )
:r?r"-r+0+.. +0+0

[",'*rr,' 
to*n(n-1),,-zn2 +...+ nrn' | + n''f x"

REMARK. In words, to dtJferentiate t to a positive integer power, multiply that power b))

x rqised to the next lower integer po\Ner.

Example 2

1t"r-r'". I 1,1-,.,0:,. 1r.'''r-'r,'t1\ dx Ax

3.3.3 THEoREM. lf .f is dtfferentiable at x and c is any real number, then cf is also

dffirentiable at x and

d.d
*lcf (x)) : c *tf 6))

Proof.

d . cl\rLh)-c[\^t .. I frx t ht /r rr'l
*tclrx)t=,1,% l? :;'li.L t ]

ftx-ht- lt^\ d_rtim " __.______- _ c= [/(_r)]r'0 h dx

A constanl lactor
can be moved
rhrough a limit sign.
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DERTVATIVES OF SUMS AND
DIFFERENCES

In function notation, Theorem 3.3.3 states

(cf)' : cf'

REMARK. In word, a constant fadot can be mo|ed through a deriyative sign.

Example 3

d"d..
=-t+*'l = 4: IxEl:4l8x7l = 32^1dx alx

d.^d.^+l-r''l - ( t)+lxrrl= -l2,rrldx .lt

d rx't I d I. l-l= .-l.rl= -dx LltJ ndx 1t

3.3.4 THEoREM. If f and g arc dffituntiable at x, then so arc f lgattd f -gond

ftu,,, * rr't: ftvt*tt+ ftrscl

ddd
*l/(l) 'sk)): ElfG))- dxlltxtl

Proof.

d.. lftx+ht4 B0(+h)l -[/(-r)+8{.r)j' If(r)+s1t'1 = lirn 'dx'" h-u h

,. IJG - ht /rx)l+ [8(.r + /t) - 8r r)l
l'-0 h

.. Jk*h)' [(xl .. s(.r+h) - 8(x) rherimnora
= llm-+llm- sumisthesumol

h -O h h -0 fi rhc timits.

dd
= . [.f(x)] + - ls(x)ldX AX

The proof for / g is similar. I
In function notation, Theorem 3.3.4 states

(f+d':f'+B' $-il':f'-s'

REMARK. In words, the deri.t'ative of a sum equals the sum of the derit'atit,es, and the
derbatiye of a drfference equals the difference of the derivatires.

Example 4

.l-dd
=-[x4 

+ 
"2 

| -+lro]++["]l :4x1 +2xax dx ax

!rcr" -nr= {10*"1 - lg=66xro-o:66xrodx" dx" dx
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Although Theoren 3.3.4 was stated for sums and diffcrences of two tenns, it can be ex-

tended to any mixture of finitely many sums and differences of dilferentiable functions. For
example,

,I . J d,J J
,,tlt' 2r'-rbr r ll-.,,13r" -;l lr | ,, 

a.l 
,1, 

ll

= 24.x1 10xa + 6

DERIVATIVE OF A PRODUCT -1.3.5 I I IEORENj (rhe Product Rute).

product J.g, dnd

ddd
f l Ir I rgr rr1 - fr I rr"l8' rtl - 3(x);Ilrr)l

Proof, The earlier proofs in this section were stmightfbrward applications ofthe definition

of the derivative. However, this proofrequires a trick-adding and subtracting the quantity

l(r + r)g(.r) to the numerator in the de vative definition as follows:

. If(1)[( \ )] - lim
//\ h-t)

: tinr

/(-r + ft) s(j + r) "l("r) s(.r)
h

/(r + /r)g(x + h) - JG + h)s(x) + /(.r + r)8(.r) l(r)s(:c)
l;0 h

f c'r,l' e,1, /," 11, lli r'l
tinr 

1,,.\ 
,' t, 3lr\. h 

I

(r\ 'r) q{.rr /rt+fi,-/r rt: 
/lim /r\ /rr'lim 

- tit lim clr) lim, h -
,t d

- lirn /(\ nt -lBt.i.rl lim 91r rl -[/(xt]/, 0 ,/t rr dr

dd
- r'r,rrll,x) * sl.i)r, l/rx)

fNo/e. ln the last step .f (x + h) - , JG) as /r + 0 because f is continuous att by Theorem

3.2.3, and g(,t)+g(-r) as,4-+0 because g(r) does not involve h and hence remains

constant.l I

The product rule can be written in function notatiolr as

(J d': f s' +s .f'

REN1,\RK. In words, the deri|atite of d pt odttct of th'o fun(tions is the first functiotl times

the det iyatie af the set:ond plus the second Jutldion times the det'ivatire of the rtrst

WARNI\(;. Note that it is rol true in general fiat ( l g)' -.f' 8'; that is, the derivative of
a produci is /rol generally the product of the derivatives !

Example 5
Find .l-r'ld-r i11 : (,1.r2 - 1)(7-rr + rv).

Sulutiott. Therc arc two methods that can be used to lind dy/d-{. We can either use the

produot rule or we can multiply out the factors in -r and then differentiate. We will give both

nreThods.

If f and g are difteretttiahle at x. tfutt so is thc
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Method I. (Using the Produtt Rule)

Jr d .

7" = 7lt4x'- l){7.r'-.r}l
,dtl"

- (4x' - lt , l1.r '* rl I t7.r' + tt *lat - ll
: Gx2 - l)(21r2 * l) * (7xr *.r)(8x): 140x4 - 9,r? - l

Method II. (Multiplying First)

1 : (4r2 - l)(7.{r +.{) = 28rs - 3x3 - -r

Thus-

.hd
,; - ;tzta"'- 3-rr --rl= l4orr 9r2 - |

which agrees with the result obtained using the product rule. {

,1--1.6 TlltioRl-i\t (Ttrc Quotie tRute). If f and g are dffircttiable at x and gQt) +0,
then f /g is differentiahle at x and

dd
,l I t,xtl gtxt , lf(xtl - /rrt1, [stx)J

d- Ls,-l - lc,,llt-

I'roo.f.

d f frx tf
-li 

l=lim
r,lr lgt.rtI /r -{,

.f (x + h) f(x)
g(t + ) - sG) , t m fG + h) ' 8G) - f(x) sG + h)

lt n-o h .g(x).g(x + h)

Adding and subtracting ./(x) . 8(-r) in the numerator yields

,l I flx )l_t t=trm
dr fglrll h-()

JG + h) . s(i) - "f(r) s(-t) - ./(x) . g(.r * l) + /(x) e(x)

: lim I'u'

l(x t h) f(x) s(^ + h) - s\x)llm 8(.r) llm --------------- - lrm /(x) llm 

-

h-n h-0 It h-o ,,O h

,111s(-r) /l'j%8("x 
+ r)o !trr*r,f,lrnqs(-r)J 

^l.f 
(x)) - l,Ln1l(r)1 n,

,hq. S (x) 
,lin1Sk + lt)

dtlg(:r)*[/(x)] - /(.x)ttg(x)l
[g(,r)12

[See the note at theend ofthe proof of Theorem 3.3.5 foran explanation ofthe last step.l I
The quotient rule can be written in function notation as

tf\' s f'-.t s'
\; l = 

=t-

J6+ D
h

- 8(r)h)

i
h)

8(r +
+

)

t

("r

(x

h
I
x*

(.:r

a

'I

rl
).

h

"f(-r

cc
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ItENi \RK. In words, tlrc deri)ati|e ol o .lLtotient af tu,o fLolctiotls is the deitonutl..ttot' times
the deri,ati e of t he tlumeratot minlts the numet'dtor tinles the derit,atit'e tt the denominat(r',
all dit'ided by the denominator squdrecl.

\V^RNINCj. Note that jt is rol generally true that (f /g)' : f' lg';that is, the derivative of
a quotient is 7?ol generally the quotient of the derivatives.

Example 5

Let / (-r ) =
.r2-1
r1 + l

Jr, ./ [r]-ll
R= ,1,l" * t1:

.dtl
'ra - I'ilr - tl- rx - t)- ,r' - ll

(a) Graph ) : ,f(r), and use your graph to make rough estimates of lhe locations of all
holizontal tangent lines.

(b) By differentiating, llnd the exact locations of the horizontal tangent lines.

Solution(a), Figure 3.3.2 shows the graph of 1: /(r) in the window [ 2.2] x[ 1.1].
This graph suggests that horizontai tangent lines occur at -:r : 0, r ry 1.5, and r ! 1.5.

Soltttiort (b). To find the exact location of the horizontal tangent lines, we must find the
points where r11/dr : 0. We start by finding d1,/dx:

t 2.21x L- l. ll
\Sci = 1. rscl = I

- ,Lil
I 

= 
.,.,. r

Figure 3.3.2

(rt + t)?
Thc dillcrcrridlion js conrtlclc.(-r4 + 1)(2.r) - (.{2 - l)(4n3)

1r+ + t)'?

2x5 +1t) +2x
(rr + l)']

Thc rc( is simdilic^Lion

2x(r1 -2x2 - l)

at;t-
Now we will set d)'/dt - 0 and solve for ,r. We obtain

2x(r1 -2r2 - 1\

' :0
(rt + t)

The solutions of this equation are the values of r lbr which the numerator is 0:

2x(xa 2x2 l) :0

The lirst factor yields the solution r :0. Other solutions can be lbund by solving the

equation

t4-2-t2-l:o
This can be treated as a quadratic equation in,r2 and solved by the qua.lratic formula. This
yields

" 2+J81' : - l l,/2
2

The minus sign yields imaginary values of r, which we ignore since they ale not relevant

to the problem. The plus sign yields the solutions

,:1r\'rul
In surnmary, horizontal tangent lines occur at

.\ -u. '-\l-r2 1.55. und,- rl ..2 1.55

which is consistent with the rough estimates that we obtained graphically in part (a). <
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The special case of Theorem 3.3.6 in which l is the constant function 1 is of interest in its
own right. We leave it for the reader to deduce the following result fiom Theorem 3.3.6.

The reciprocal rule can be wdtten in function notation as

/ 1\' p'
I l=:-\o I

ItFNl,\ltK. In words, 1,4e deri,atiye of the reciprocal of a f nttiott is the negativ oJ the
derit'atite of the ftotttion divided by the Junoion scluarecl.

Example 7

d
d lt1 .1,t'lrL;l: r
d[ r I
Jr'l r112t I I

I
x2

, l;r'+ 2x - -ll

^ ^'l(r +rf 3) (rr + 21 3)t

J\'_ + I

THE POWER RULE FOR INTEGER
EXPONENTS

RFNl \RK. The computations in the preceding example could have been done using the
quotient rule, but this would have been more work. Where it applies, the reciprocal rule is
pleferable to the quotient rule.

ln Theorem 3.3.2 we established the tbrrnula

.J

, [r "] = iir"

for posltn,e integer values of r. Eventually, we will show that this fonnula appiies if n is
any real number. As our first step in this direction we will show that it applies for a// l/?te.qer

values of n.

Prtnf. "fhe rcsulthas already been established in the case where r > 0. Ifzt < 0, then let
7, : -, so tha{

ftxr=r'"' =1" l'r

-1..1.7 I HLL,I<, \1 h h? Recipronl Rulc).

l/g is di.ffetentiqble at.\ (tnd

d
) f 1 1 . [,s(r)]- | ' I Lt^

d.r lsix) l- [r(':,)]'

If g is dffirentiable dt r anLl g(x) 10, than

-l,-l.tl THEoREtVt. Il n is any integer. then

(l

;lx") : nx"-' (1)
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HIGHER DERIVATIVES

Flom Theoren 3.3.7.
n

.1 trt ;t',"1
/(.rr= r/I L\, 1 (.r.)

Since r < 0. it fblkrws that rr > 0. so -r"' can bc dift'crentiated usi[g Theolem 3.3.2. Thus.

nt t"'
/ 1..\, -f- -//,r" I = /,/.\ ,rr' I lr4

which proves ( l). lr the case n - 0 Forrnula ( l) reduces to

,t
' lll:U r ':tt

which is corect by'fheoren 3.3.1. I

Example 8

I , "r- 9\' 'r I -9\' 1r

,tr
,/ lll ,t , I I

. I l:. [.' 'l:(-l).\,/r Lr- ,/\ -r 
\

Notethatlhe1astresultagleeswiththat0btainedinEXanPle7'<

In Exlmple,l of Section 3.2 we showecl that

d-t
;I1/tl= ^ - r)t0r l\/x

which shows that Forlrrula (I) also works with a - l, since

,t ,., I I r.
.1r' - lr' )

If the derivative / ' of a function / is itself differentiable. then the clcrivlltive of l' is denoted
by l" and is called the second derivutiye of .f. As long as we have differ entiability, we
can continLre the process of difttrentiating clerivatives to obtain third. foufth, flfth, and even
highel derivatives of l. The successive deivalives of .f ale denoted by

.f' f" - (.1')" l"' - (.f")" l(1\ (1"')' f''' : ( l"')' '

These rue carlled llIe llrsl derivative. the sccurcl dcrivative. the third derivi,Ltive, and so 1brth.
Beyond the thircl delivative. il is too clumsy k) continue using primes, so we switch fiom
prirnes to integers in parcntheses to denote the ord€r'of the derivltive. ht this notation it is
easy to denote a derivative of abitrary order by writing

.f'') Tlr. rrlr d.rnNri'c ol /

The signilicance ol the derivatives o[ orcler'2 anci highcl wil] be discussed later.

Example 9

If l(-r) = l-ra 2.r: +.rr 4-r + 2. then

f'r'r - l)'r r,rl !)v x

l "(-r) - 36.rr - 12.r * 2

l"'(11 :12, - 12

f tl) 6) :72
/( 

j) (-r) : o

:

1t"r1-r) :o oi-5)
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Successive derivatives can also be denoted as follows:

/'(1) = -[/( rr]

d r ,t If'\t\ -i L",.tf, 
,,11

f"'r^t - ',t I 1" irt' ,ll4^ Lax' l

:

In general. we write

/1" (\): 
-[/(.r)]!7 x"

d1: *lf tt))

d3
- - Ll(r)l

:

which is read "the nth derivative of f with respect to r."
When a dependent variable is involved, say.l = ,f(x), then successive dedvatives can

be denoted by writing

d1 dzt d3-r, do! d"y
dx dx dx' dto J.r"

or more briefly,

r. ). I '''.....)'....

ExERctsE SET 3,3 E Graph ng calcu ator E cAS

3. r-3r8+2-,r*t

r In Exercises | 12,l\nd d '-/h.

2. 1t - 3vt2

4. ): l(.r1 +?)

e. t,: ^,f2, + Ol"D)

7. r--\(x1*2:r-9) S. t,=tr
5

9. -r = arl + Dr2 + c,r + d (d, b, c, r/ constant)

t/ - r \
10. r'- l' ., ,l (a.b..con\larl)

./\ b /
11. 1,: 3r-8 12,4 12. y:la 6 -5rq

ln Exercises 13-20, find /'(,r).

r1l.l. /r,, \ ' rr 14. /'.rr-,.'--
15. ./(r) : (3r'?+ 6) (2ir - j)
16. f(,r) : (2 x 3.rr)(7 + -rJ)

17. JQ) : (xr + 7i2 8)(2' 3 + '. 
4)

/1 r\
18. /1.r.1 :l +-l(lr'+17)\r r')

In Exercises 21 and 22, find y'( 1)

21. r' : Jx+2513

I In Exercises 23 and 24. find dx / dt.

In Exercises 25-28, find dy/drl,=1.

3r
23. x- 2t+l

211't< .- r*3

rl+l
3t

4-r+l26.r:' r:-5
27. r: (3'1?)r" + rr

.,-(r,',')(=)
' In Exercises 29 32, find the indicated derivative.

t^
29. ;U6tl
31. V' (r), where V - zr3

LIC
;, where C:2nr
d
- l2a 'ial

19. l(.i): (:" + l)'? 20. /(.r ) : (r' + 2')l
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A spherical balloon is being inflated.
(a) Find a general folmula tbr the instantaneous rate of

change of the volume y with respect to the radius r.
(b) Find the rale of change of y wilh lespect to r iit the

instant when the radius is r - 5.

Use a CAS to check 1l'le answers to the problerns you solved
in Exercises 1 32.

Find g'(,1) given that /(,1) - 3 and /'(4) = 5.

(a) s(r):./r/(.i) (t,) s(-.): I(-t)

Fincl.g'(3) given that l(3) : -2 and /'f:l I ,l

(a) s(r):3-t2 5.1(-r) (rr) g(,) - 1l]
.l ('r )

Fnrd F'(2) given that /(2) - ),, f'(2) : 4, 8(2) - i. and

8'(2) - s.
(a) F(-t) - 5l(t) + 2e(.r) (b) F(.r) : .l(-r) - 3s(-r)

49. Find a general formula for F"[r) if F(.r) : ,t11.t1 on6 I
and /' are dilierentiable at -r.

50. Use a CAS to check the answers to the problems you solved
in Exercises 41 .+6.

ln I \erct.e.5l tnd 52. u.e a rraohinc urilir) lo nl!ke rough
eslinlates of the locations ol all horizontal tangent lines, and
then find their exact locations by diiferentiating.

tr

E 31.

35.

36.

31.

B 51. -i : {-rr - l-tr + 2r E S2. I : -l;

Find an ecluation fbr the line thal is tangent to the cuNe

_r : (l - r)/(1 + .r) at the point $,here.J. : 2.

Find an equatioD oftire langent Iine to the graph of r' : .l (,r)

at the poinl where.r : 3 if f( 3) - 2 and l'( 3) - 5.

d f D^+)11
I ind I . " ';, i' .on.l3r,l).

.1), L r il' l

ln Exercises 53 and 54, use Dellnition 3.2.2 to apploximate

f'(l) bychoosing a smallvalueofft to approximate the 1imit,
and theD nnd the exact value of /'(1) by ditler entiating.

In Exelcises 55 and 56. estimate the value of ./'( I ) by zoorn-
rrc in on the !rirph ol /.:.ndlhencomp.rre)our(irimhrrro
lhe e\acr vdlue obrr'ned h) Jillerenlirlinp.

5.1. rrr'-r rr I 54.,'.\r-)\.(
(c) F(r) - f(.t),e(-t) (d) F(-t) :.1(-r)/s(r)

38.

19.

40.

,11. (a)

(c)

12. la)

(c)

rl - l
E s6. l(-r) : ,-r + |

ln F\ercises 4l and 42. rnd ,1'1 /x .

(b) l, : 12.:t2 2r + 3

(l) 1: (5_t'] 3)(7_rr +-r)

(b) r:3-r+2
(d) r, : (.rr - 5)(2.r + 3)

57. Find a function t' : at2 + bx + c whose graph has an

;-intercept of 1, a r'-intelcept of 2,andaiangentlinewith
a slope of I at the ,i -inlercept.

58. Findt if thecurve1, - 12+fr istargenttotheline) : 2J.

59. Find the.t-coordinate of the point on the graph ot' -y : -r2

where the tangent line is parailel to the secant line drat cuts
the curve at 1:: -l and t :2.
Find the r coordinate of the point on the graph of _r' : u/:r
wllere the talgent line is parallel to the secant line that cuts
the cuNe at .r : I and r : ,1.

Find the cooldinate of all poinis on the graph of \, : I r2

al which the tangent line passes through tl're poinl (2.0).

Show that any two tangent lines to the paabola 1 - a-12.

a I 0. intersect at a point that is on the vertical line halfway
belween the poir]ts of tangency.

Suppose ihat Z is the tangent line at -r - ,r0 to the Sraph of
the cubic equation \, : arr + Dr. Find the .r -coordinate of
the pojnt where I intersects thc graph a second time.

Show thal the segmer'rl of the tangent liDe to the graph of
.t - 1 /r that is cut oif by the coordinate axes is bisected by
the point of tangency.

Show that the t angle that js formed by any tangent line to
the graph oi l : 1/r, r > 0, and lhe cooldirtate axes has

an area of 2 squale Llnits.

Find conditions on 4, &. c, and r/ so that the graph of the
polynomial ./(r) : arr +/rr2 +cir +dhas
(a) exactly t\\'o horizontal tangents
(b) exactly one horizontal tangent
(c) no horizontal tangents.

.J.+1

):4ri-5rr+2,rl-r-2 60.

61.

62.

63.

64.

65.

jl3.

11.

45.

5-t

In Exercises 43 and 44, llnd _1"'.

(a) ) - r '+.r' (b) r: 1/r
(c) ), : ar3 + br +. (zr, /r.. constant)

(a) l,:-5r2 4-r +7 (b) -r':3.i 2+,1.t '+t
(c) -i :arr + br2 + c (r./.17.cconstant)

Find
(a) /"'(2), where f(-r)-3x'-2

dll(b) 
- 

, $here\ -6r'-4.i-

dl{c) 
-11 

'l
L=l

Find
(a) -r"'(0). whele ) :4-.4 + 2r3 + 3

,11r 6(b) 
- 

,wherer:-.d\- , r

Shou th.rtr:r -.ir l.ati\he. r ,.r\ 2r -0.
Show thiit if -r I 0. then l - 1/.r satislles the equation

xl-r'" + r2),' r-r' : 0.

46.

47.

48.

66.



67. Ncwton's Law of Crirvitirtion states that the maSnitudc F
of thc fbrce exerted by a point with mass M on a poiit with
utass /,? is

Gnt MF: .
f

where G is a constanl and / is the clislance betwcen the bod-
ies. Assuming that the points are moving, lind a lormula 1br

the instantaneous rate of change ol F with respecl 10 r.

68. In the tenperature range between 0'C and 700'C the re-
sislance R lin ohms (O)l of a ceriain platinum resislance
themometer is given by

R - lrr i (lr,+li4/ l.--,' .n '/

rvhere 7 is the temperature il] degrees Celsius. Whele in
the interval fiom 0'C to 700'C is the resistance ol the tl'rer

rnorreler ro.r ,e 5 li\P r'rd lcarl .encit've tn lctnpcritlure
changes? [/Jr'l?r. Consider the size ol /R/zi7 in lhe intelval
0:7:700.1

ln Exercises 69 and 70, use a graphing utility to make rough
estimatcs of thc intervals on which /'(.t) > 0. and then find
rh,'.( inrrr \i,1. e\?. r11 b1 Jiiicrenriating.
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Delernrine whether / is dilTerentiable ar .{ - l. Il so. tind
the value of the clerivative there

75. Lel

- [", r':lt'": 
luo. ,>r

76. L,et

',', 
- {;.i "

-'.j

'7'7. Ler

,,.,_I.'' '.r
[,rr +/'. r - I

Detennine whether.l is clifferentiable n1-y : I II so. fincl
the value of the derivefive there

I

F2 69. lt \r=.\ -- f

5r
hj iu. /(.r): L

7I. Apply the product rule (3.3.5) twice to show that if /. g. and

ft are clillerentidble lunclions, then .l s ft is difierentiable.
and

(.l .s.h)':.1's.h+.[ s'.h+.1 s.h'
72. Based on the result in Exercise 71, make a coniecture about

a tbrmula for differentiafing a product of n functions.

73. Use the formula in Exercise 7l to find

,!r / t.I
1r,,, .1r2, tr{l lr, r rl

,1.\ L \ .\,/ l
d- -rhr /. Lr 

\'+ 2\ l)']

7,1. Use the lbmula you obtained in Exercise 72 to lind

,t-
'0, ,, lr ''' )r',4 J"')r' ll

rn, 1[r ,' + t ,t"l
,/r L

Find the values of a and D so that ./ will be differentiable at

78. (a) Let

[ r-. \ -oItrt: { -l"+l '' 'o
Show that

.!ryl l't';:,4 .r't''l

but that l'(0) does not exist.

(b) Let

l-tr, , .0l(tl: l.rt'
Show that /'(0) exists but /"(0) does not.

79. Find all points where I
your answer.
(a) /(,t) - l3.r 2

fails 10 be diflercntiable. Jusfify

(b) /(r) : .i2 - +

ln Exercises 75-79, you will have to determine whether a

function / is differentiable at a point,y! uhere the fonnula
for / changes. Use the lirllou ing lesult:
Theorem. Ler f be tonlinuoLts df xa utld supposa thtrl

Iim l'(.r) and lim l'(.r)

80. In cach part compute /'. .1". ./"' and tl'ren state the fonnula

(a) l(-r):1/-r (b) lIJr) : I /rl
fHint; The expression (-l)" has a value of I if n is even

and I if r is odd. Use this explession in yor.u answer]

(a) Prove:

d2 d1

*lc.l(x)) : , 
,trzLJtr)l

d .t. .t
./., l/,',-s,r' : -_l/]tr,1 .1, lr'',

(b) Do the results ir1 parl (a) generalize to rth clerivalivesl
Justify your answer.

etist. Tlrcn .l i.\ Llilfereiltiublc at \ il antl onl) if tltest limir.t
are equal. Morcoret. in the tasc ofeclualitl

81.
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82, Prove:

83. (a)
(b)

(c)

(f . s),, : f,,.s+2f'.c,+ f.c"
Find /(')(.r) tf f(x) - r".
Find /(')(i) if .f(r) : rr and n > k, where,t is a gS.

positjve inleger
Find /('r) (.r ) if

J(x): ao + att I atx2 I "' + a,,x"

Let /(x) : r8 -2x + 3t find,

f't)+ht-f12\
lim "
h+t) lt

(a) Plove: lf ///(-r:) exists for each i in (d, &), then both /
and;f' are continuous on (a,,).

(b) What can be said about the continuity of / and its
de vatives il /('r)(r) exists for each r in (4, ,)?

DERIVATIVES OF THE
TRIGONOMETRIC FUNCTIONS

3.4 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

The main objective of this sectiotl is to obtain fotmulqs Jbr the der[vatites of trigono-
metric functions.

For the purpose of finding derivatives of the figonometrio functions sin.\, cos.{, ran x,
cot ir, sec r, and csc x, we will assume that r is measured in radians. We will also oeed the
following limits, which were stated in Theorem 2.5.3 (with.r rather than lr as the variable):

sin,4 1 cos ilim-:l and 1im-:0t-o h h+o h

We begin with the problem of differentiating sin r. From the definition of a derivative we
have

d
lsin rl = lim

lim

sin(r + l?) - sin -r

= tir [rin, (to'f I 
) +.o,, ('il' 1l,,1 \ ' / \r/l

[ /.inr\ r l-coslrtl
- lim lco. r'l I .in.r L -llr.oL \h/ \ , )l

Since sin.r and cos x do not involve h, they remain constant as /1 -+ 0: thus,

lim (sinx) : sin.r and lim (cosx) : cosxh-o h-o
Consequently,

,.1 /rinh\ /l-corfir
. lsinrl -corr lim | | sinr liml Idx lt.o\ /,,/ /.0\ l, /

: cosx . (1) - sin-r.(0): cosr

Thus, we have shown that

d

- 
lsin rl : cos.rdr'

The derivative of cos I can be obtained similarly, resulting in the fomula

d

;[cosxl 
: - sinx

The derivatives of the remaining trigonometric functions are

h

sin.r cos /r + cos,r sinlr sinx

(1)

(2)

d^
t ltanx] = sec' -r

d

; lsec r1 : sec r tan.x (3 4)
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dd
- lcot"rl: csc',r [cscr]: -cscxcotx (5 6)dx d.t'

These can all be obtained from (l) and (2) using the relationships

sin.r cosr I I
, recY- , csc.t: 

-cos .rr sln r cos r sln r
For example,

dd
d, .r frinrl cosr'rrlsinrl 'inr';lcosrl
.llrn.\l-- | l--

d r'"- '-' Jr fco. r I co\:.\

cos-r.cosx sinl ( sin;v) cos2r+sin2r I ,_--_i
cos' -t cos -r co\'-r

RIvlAR1(. The derivative formulas for the trigonometdc functions should be memorized.
An easy way of doing this is discussed in Exercise 42. Moreover, we emphasize again that
in all of the derivative formulas for the trigonometrio funotions, .r is measured in radians.

Example I
Find l'(r) if l (:v) : .12 lsn L

Soh ion. Using the product rule and Forrnula (3), we obtain

.Jd
/,rrt_'ld{lan)l|liln\1{|.{|_\/5ecr+2ftan,r<

Example 2
. sin r

FrnddY/dx if l: 
t +co.s-r'

Sohttiort. Using the quotient rule together with Fomulas (l ) and (2) we obtain

ttv il+co(.r' t't.in't -'nr ft l+cos(l
dx (1 *cos-r)2

(l + cosr)(cos,r) - (sinx)(- sin,r)
(1 * cos-r)2

cos r + cos2 -r * sin2 x cosr+ L 1

(1 +cosr)2 (1 *cos,r)2 l+cosr

Example 3

Find l"(z/4) if y(x) = 5ega.

Sohttion.

-)'(,r) : sec,r tan r
,]J.\ {rr - sec r . 

d^ ,,rn r, I ldn r 
d\ [5ec rl

: sec r . sec2,rr + tan x sec -rr tan.x

: secl .{ + sec,r tan2 ,r

Thus,

r" (r l 4) : sec3 (.r / 4) + sec(n l 4) tan2 (rT l 4)

: tuDf + trttttt, = 1"4
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Fisure Lrl.l

EXERCISE SET 3.4 E Gl.phrng Cr cutitor E CAS

Example 4

Suppose that the lising Sun passes directly over a buildins rhar is 100 lccr high. and let 0
be the Sun's angle of elevatiorr (Figur.e 3.,1.1 ). Find the rare al which rhe length .r ol lh(r
builtling's shadow is changing with respect to A when p = 45, . Express rhe answer in units
of fcct/clcgree.

Sttlttliut, The variables.r andFl arc related by tan 0 = i00/.r. orequivalently.

.r- = l00cotd e)
llf:/ is measured in ridians. then Fomrula (5) is applicablc. which yielcls

11.r* = _ l(x) csc- 1)

which is the rate of change of shadow lenglh wilh rcspcct te the elevalion ar]glc d in ulits
of feet/radian. When i/ = 45 (or equivalenrly,0 = 7/4 r.adians), we oblain

./t-; - - l00crc'tr/4t = -100 fccr/r'lJian

Converting radians (racl) lo clcgfccs (cle-e) yields

ft 'r |ad l{)
-100 ..--=--7\ j._lq |lldcg

t rrl I l{{) rler' I
Thus. when e : a:.1rhe shadow lcngth is decreasing (because oi the mir)Lrs iiign) al an
appr.trxinla1cIateof3..19Ji/dcgincrcaseintheanglc()I.clcVation.<

In Exercises l-18. ilnd f'(r). 19. _r. :,t cor.t 20. -1. 
: q5s.y

21. -r':.rsin.t 3cos.t 22. l,:.r2coc.\ +4(in r
2.1. r' : sin.t co".r' 24. r, : tan .t

E 2-S. Use a C,q.S to chcck thc answers to tl'ie protrlcnts you solved
in Exercises l-24.

26. Find the equation ol-the line tangenr ro lhe lr:lph of sin.r at

2.

,1.

1.

3.

8.

10.

7.

9.

lt.
12.

13.

15.

17.

18.

6.

.l(.r) :.t - 4csc r + 2cot \'

I {.\ ) = l{.'' I + csc.r

.f {.r): sin:.r-+cosl r 16.

sin r scc r-
Ii, r 

- 

-

" " - l+.tr"n 
'

(.rl + l)cor r
/r'rr--

I -r'o\\ (\. I

In Exercises l9-2,1. lind r/rr'/u/tl.

l(i):2cos.r 3sinr
sin t

f(.r):.rlsin-r-5cosr

.l(.r) : sec.t - .,/2 t"n t

.l(r) : sec.t tiin r

f (.!) = csc.r col.r

.l(.t) : sitr.t cosr

.l sln.r

.l (.r ) : (-!l + l) sec r

Iirt :
l*tlnr

csc.r

t nr
I

lhe poi11t whcrc
(a) -t :0 (b) .r - r

27. Find the equatiol of the line tirngenr to the graph of tan.r at
thc point wherc
(a) r-0 (b).r: ]z/,1 (c) .t = -zl4.

28, (a) Show th t,r : cos-r and ) : sin.r ure solutions ofthe
equation1"+1:0.

(b) Show that .t = A sin.\i + B cos r is solulion for all
conslants A nd lt.

29. Find all points in thc interval | 2r, 2rrl nr which the graph
o1'.f has a lrorizontal tangent 1ine.
(a) l(.t) - sin.i
(c) ./(-t1 : 111 1

(b) .l(r) :.r { co;.1

(d) /(.r) - sec.r

E -30. (a) Use a graphin-g utility to lnake rough estintdtes o[ the
points in the inter\,.ll l0.2rl at which the graph of
,\' - sin.r cos.r- hits a horizontal tangent linc.



31.

32.

34.

(b) Find the exact locations of the points where the graph

has a horizontal tangent iine.

A 10-11 ladder leans against a wall at an angle 6 with the
holizonlal, as shown in the accompanying figure. The top
of the ladder is -r feet above tlle ground. If the bottom of
the laclder is pushed toward the wall, Iind the rate ai which
-\- chaDges with respect to I when d : 60'. Express the
answer in units ol feet/degree.

An airplane is flying on a horizontal path ai a height of
3800 11, as shown in the accompanying figure. At what rate
is the distance.r between the airplane and the fixed point
P changing with lespect to d when d : 30"? Express the

answer in units ol feet/degree.
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ln Exercises 35 and 36, make a conjecture aboui the deriva
tive by calculating lhe llrst few delivatives and observing the
resultiirg pattem.

:s. {a) $lsin'l
d 100

(b) 
/* [cosxJ

)11
30. -lr sin r.l

,1\ ,

37. In each part, determine where / is differentiable
(a) .l(.r): sin.r

(c) I (r) : 1nn .1

(e.) J (.r.) : sec.t
I

L + COS.r

cos-r(i) l(r): 

-

I - Srnr

38. (a) Delive Folmula (2) using the definition of a derivative.
(b) Use Formulas (1) and (2) to obtain (5).

1.) U,e Formule q21 ro obrdin (41.

1d) U,e Formul:r (l) to obtain r.6;.

(b) /(r) : se5;
(d) /(r) - q61rj

(f) /(,t) - c5c-1

I

Figure E\--r 1 Figurc Ex 32

A searchlight is located 50 m tiom a straight wall, as shown
in the accompanying figure. Find the rate at which the dis
tance D is changing with 0 when d : 45'. Express the

answer in units of meters/degree.

An Eaith observing satellite can see only a portion of the

Earth's srnface. The satellite has horizon sensols that can

detect the angle d shown in the accompanying figure. Let
/ be the radius of the Earth (assumed sllhe cai) and ft dre

dislance of the satellite from the Earth's sLuface.
(a) Show that I : r(csc d 1).

(b) Using r : 6378 km, and assuniDg thal the satellite is

getling closer to the Eluth. llnd the rale at which h is

changing with respect to A when d : 30'. Express the

answer in units of kilometers/degree. IAdapted from
Space Mathenntit s, NASA, 1985.1

(b) Use the result in part (a) to help derive the forinula for
the derivative of tan.r directiy tiom the dellnition of a

derivative.

41, Without using any trigonometric idenlities, lind

Let f(.r) - cos-r. Find all positive integels r tbl which

/0,) (jr) : sin _r.

lan I
(a) Show that 

ilim 
- 

: l.

lim
ran(r + l) tan )'

lHll/: Relare the given limir ro rhe de1'lnirion ot' rhe deriva-
tive of an appropriate function of t .]

Let us agree to call the iunctions cos-r, cotr. and csc,rr

the cofunclions of sin-r, tan,r. and sec -ir, respectively. Coo-
vince yourself lhat the derivative of any cofunction can be

obtained from the derivative of the conesponding function
by introducing a minus sign and replacing each function in
the derivative by its cofunction. Memorize the derivatives
of siD.r, tan,r--, and sec .r and then use the above obsen'atioD
ro.ledu.e rhe deflvrtrre. ol the colun.tionr.

The derivative forrrrulas for sin x. cos x, tan r, cot.r, sec r,
and csc r rvere obtained underthe assumption that r is rnea-
sured in radians. This exercjse shows that diffelent (more

complicated) formulas result if r is measured in degrees.

Prove that if l? and .r. are degree measures, then

39.

il0.

cosi - I(a) lim_-0
dtlc) Isinrl- cosr.rlt' 180

(h) /(n) -
stn i cos _r

sin /r rr
thr linr

h-t\ h i80

42.

Eadh

Figure Ex-34Figurc Ex-ll

13.
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DERIVATIVES OF COMPOSITIONS

3.5 THE CHAIN RULE

Itt tltis sectiort we u'ill derive a formulct that erpresses the .lerir1tire of u (omyosinon

f og in ternts of the tlerivatires oJ J and g. This formula v,ill endble us to dilJerenti7te
complicated fundiorts u.tirtg kttowtt deriratiles tf sintpler.flrnctions.

i 3.5.1 PROBLEM. It' we knov, the det itatircs oJ J and g, ]tov' can v,c usc rhts inf,r 
",

nntiott to fit'J tlr JcriLatir, nI th, c',nlpatltia l aE:'._.-______'.
The key to solving this problen is to introduce depeldent variables

1: (./og)(r) = "f(s(r)) and ,l:.s(r)
so that y - /(d). We are inlerested in using the known de vatives

dt' ,/u-:l(u) and __e'(r)
alu ' ,lx

to find the ulknown derivative

. : , [ /ts (;r))]t1x alx

Stated another way, we are interested in using the known rutes of change d y f du and, d u I cl x
to find the unktown rate of change tly/dx. But iotuition suggests that rates of change
multiply. For example, if 1 changes at 4 times the rate of cltange of tt and a changes at 2
times the rate of change of r, then } qhang.r at 4 x 2 : 8 times tbe rate of cltange 01'-r.
Thus, Figure 3.5.1 sug.gests drat

dl _d,t.tlu
dx du dx

Tlrese ideas arc formalized in the followins theorem.

3.5.2 THEOREM (?he Chain Rure). Il g is differentiable qt the point r antl f is tliJJbr-
entiable at the poitlt g(r). then tlrc co lpositiou f og is dffirentioble 4t the poitlt r.
Moreot,er, tJ

r:.f(S(r)) qnd u = g(x)

1fueny:f(tt)dnd

9:+ Y o)dx du dx

The proof of this result is given in Appendir G.

Example 1

Find dyldx if _y - 4 cos(x3).

Solution. Let z =,r3 so that

):4cosn
By the chain lule,

rlt d t ,lu ,l ,l
= ,lcosri| lr IJ:L du ,lt Ju a^

= ( 4sinu) .(3121 : 1 4sin(r:)) .(3.r2) : -1212 sin(rr)

Rates of change mu trp y:

tl: tfu tlt

Figure 3.5.1



3.5 The Chain Rule 205

REMARK. Fornula (1) is easy to remember- because the lett side is exactly what results
if we "cancel" the dr's on the right side. This "canceling" device provicles a good way to
lemembel thc chain ru]e when variables other than r. i,, and I are used.

Example 2

Find tlutldt if ur : tan-r ald,r : 4t3 + t.

Solution. In this case the chain lule takes the fbrm
Ju Jw J.r ./ ,i:- :-: li- +llirrr \ | 1,1/'.it .1.r ,/r .1.r' Jt

: (secr.t)(t2rr * t) - (12r2 + l) secl(4r3 + r)

GENERALIZED DERIVATIVE
FORMULAS

Although Fomrula (l) is useful, it is sometimes urwielLly because it involves so many
dependent variarbles. A simpler version 01'the chain rule can be obtained by noting that
i : l(a) in (1). so

7- , [.|tu)) anc.

Substitutin-9 these expressions in (l) yields the following alternative fbm ofthe chain rule:

ddu
, [f(tr)J: .f '(u) 

* (2)

This very powetful fbmula vastly extends our diffelentiation capabilities. For exaimple, to
differentiate the function

./(,i) : (rr .r + 1)rr (3)

we can let a - rl -,t * l, so (3) becomes ,/(a) = rrrr. then apply (2) to obtain

,;1 ,' , r' j-,)i,,,',-u*

-Lr(\', ,- rt 11,'-., r r' ,/r_
: z3 (r.'] .r 1 t)r2.{:r l)

More generrlly, if u wer e arry other differentiable funclion of i, the pattem of computatiolts
would be virtually the same. For example, i[ a : cos,r, then

J .l ...fui .. J
.1, 

f"o' ' ,rr " I - "" .,-, - 
1l(o' \-[co\'\'l

- 23 cos2l ,r . ( sin.r) - -23 sin r cos2z ,r

In both of the pleccdiug compLrtations, the chain rule took the fonr-i

.1 .. ,,,[Lt
. ltt l: tJtl

,/r I1\'

This fbrmula is a generalization of the more basic formuia

,/ ..
,lr' =.'r'-- (51

In fact. in the special case where r : t, Fomula (4) leduces to (5) since

'l ,i -2-t,,"'/" = '-1\'"/lf l -2-rr',lt ,/r' ,lt
Table 3.5.1 contains a list ol generaliz.ed derivative formulas that are consequences

of (2).

(4)
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Table 3.5.1

CENERALIZED DERIVAI'IVE FORMULAS

J ,, -lu J' ' t 'lh(/'unrrrrgerl -ll!l--:-.l ,l ,/' . r ,1,

.l . ,lt
dt' ,l\
.l . - t ,!Lr

; [.rn r] = \ec-rr 

^

.l . - ,11

- cos /rl = -srn r,

' 
1\ .1\

d. - .,1u
-lcot!l= L\c r-
,l\ tl\

f tr..,l = ..., tun r'! f 1.,.,t = "..,"ot,4

Example 3
Find

dd(a) ;tsin(2.r)l (b) 
;ftan(.r'?+ 

l)t
,! n

(cr alr/r'-...r1 rdr illrl-,scot l-81
dt d\'

Sohrtiott (u). Taking a : 2.{ in the generalized derivative formula for sin u yields

d d du d

tlsin(2r)J - lsinal: costr^ = cos2t 

^l2x): 
cos2x.2:2cos2-r

Solutiott (b). Taking u : lr2 + I in the gereralized dedvative fbnnula for tan & yields

d - d ^ dn

;ltan(-r'+ l)l : [tanr] - sec'ri^

: \ec {r T r' f , - rf .Es-11j , 11.2,

: 2,r sec2(_,r2 + 1)

Solfiion (c). Taking r = ,r3 + csc j in the generalized derivative formula for .//l,l yields

d-dtJuLI
-['/.r'-cscxl: -lJrrl 

:2rurt, 
2r.i] rc.c.r ,rl" crcil

- --l .r3r - cscr cor,i.r.-
2vtl +.s. * '"-'

3x2 - csc.r cot.r:

2V\'' + csc \

Solulion (d ). Taking a : I + 15 cot -r- in the generalized derivative formula for a E yields

J J ..Ju
,r, lr Lr'cot t' l- ,.,,lri-"1- 8ir ",r,

- 8rr ,'.or ,r o..1"lr 
r.r'.o,., 

1

: -8 (t +-t5cotr) e rr51 csc2,r1 i5,racot;r)

= (8r5 csc2 x 40racotx)(1 +15cotr)-e

Sometimes you will have to make adjusments in notation or apply the chain rule more
than orrce to calculate a derivative.

Example 4

Find d-dtt(a) 
^lsin(V1 

+ cosx)l (b) 
* if u = sec /ot (@ constant)
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S ol ution \a\. Taking ii - 14 1 ctrs -r in the generalized derivative lormula fbr s irr a yields

d,t Ju
= [.in(.,/l F c,'. ,)] f.inrrl - cu.rr
tl\ ,1). ,/ I

: cos(^"4 + c,rrr) 1l.,zr +.",-.t I;l;:*i;Tllii:'ii;:'""
LII lvirhtr:1+.osr

co'i\ l-co' \) 
-'nrlJl+cos.r

sin -r cos(.,/l l cosx)
- It.|(1N

Sohttion lb).
,ltt .l _ ,i \ u.t 1..r I.t' j 

| \ec 
',/.r.r 

I - .ec Ju I trn J.r,r lr/Luil r'., i, .r',,..
,lt dt ,l! ..,.r r .-

As you become more comfortable with the chain rule, you inay want to dispense witll
AN ALTERNATIVE APPROACH TO
ij;fuii iiif ir.ii-rlijiir;"- - actually witing out the exprcssion for r in your computations. To accomplish this. it is

- helpful to express Formula (2) in words. If wc call r the "inside function" and I the
'outside function" in the composition l(r/), then (2) states:

The dertyatiye oJ J (u) is the deri\,otire of the outside function eyaluated at the inside

lunction times the derit'ative of the inside lunction.

For example,

,t^
;lcosr-r -0rl- .itttr or 2r

Denvuuve ol rhc ll.rivlti\e
ou(sdc cvrlu!r.d ol rhc rnridc
rt thc insidc

d - ,l -" lLan rl- " lltan r.7:] 1it.-rrr r1 1.rc: r1 2rarrrsee- rdr ,/\'
De,ivlliveol Ile.i!.ri!e
rhc oursdc o Lht in\ide
cvaluftcd rL

rhe inside

In general, if ./(g(r)) is a composition offunctions in which the inside function g and the

outside function J are ditl'erentiable, then

,l. l/r.sr.;l- f r,er.^)) x t.r.,

De,n'ftiveol De.ilrrile
drc outsidc olrhc ir5ide
evirua,cd N, (6)

rhe inside

Although the chain Iule makes it possible to differentiate extrenel), complicated functions,
DIFFERENTIATING USING
6biuiilir?iiliiiiri"o'iiSrerS rhe computlrtions can be time-consuning to execute by hard. For complicatecl deriv^tives

engineers ancl scientists often usc compuler algebra syslems such as Muthenloli(u, Maple,
and Derie. For exan]ple, although we have all of the mathcmaiicirl tools 1() perfonn ihe
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ExERctsE SET 3.5 E Grrptr ng c:tcu stor El cAS

differenriation

by hand, the computatiolls are sutficiently tedious that it would be more efficient to use a

computer algebra system.

I l:olt -ll Jll lt[,\L)l]lt lf you have a CAS, use it to obtain drc derivatives in Examples 2, 3,
i and 4, and also to perform the dilferentiation in (7).

1.

2.

3.

In Exercises l-24. tind l'(r). 31. r' : cosr(sin 2.t)

33. r: (5r + 81rr (rr + 7-r)rl

34. ) = (2-r - 5;r (.t'? + 4)r

r r-5 rt
35. \,=t_t -36.

\2.r+1/
l2r F ]ll

.37. t': _ 38.' 
(4r r - t)^

fP. 1 = [,t sin 2,r * tontl*71]5

In Exercises 40-43. li nd t!) t I d.t2 .

I + csctrl)
' | - co(.r r 

)

.11-t;:(-rr+2:r)r?

l(r):(3r!:+2.r-t)6
, ?\-l

li.t: {,'- - )
\ .Y,/

./t'r : -1 -(t5-r+l)
ft.rt: ----!-

(3.r, - 2r + l)'
6. .f(-r) : v-'!r - 2\' 15
7. J(.r\: "'q;G 8.

9. /(r) : sin(-r3) 10.

11. /(x) - tan14.v21 12,

13. /(x) : {s055 v 14,

/l\
rs. /(n) : \in ljJ 16.

17. /(x) : I sss:1.r7 )

/!\tt. fttt-cos'li,)
19. .f(-t) : \,60(
20. .f(-t): /3--
21. .f {t) : ljr + csc(,r: + 3)]-l

22. JQ) : [.ra - sec{4.r2 - 21]-a

Z:. l(r) :;r?r,6 ..i 24.

/ l+rl rll, -t I

":;l+"int1,rt)l''

./('t) : sinr 't

/(-r) : cosz(3.,,4)

./(r) :3cota-r

l (x) : csc(x3 )

./(-r): ianr(rr)

/(.')=+

40. r,= sin(3r2)

,, r:,t4"(+)
41. r, = x cos(5r) sinr r

l+Y
4.1. \ = ----' I -r

4tl. Use a CAS to check the answers 10 the proLrlems you solved
in Exercises I 43.

ln Exercises 45 48, lind an equation for the tangent line to
lhe graph at the specified point.

In Exercises 25-39, lind r1.r,/dr.

25. -r, -,tl sinr(5-r) 26.

21. 1, : -y5 5es( I /r) 28.

29. )': cos(cos-r) 30.

45. .r' = .r cos 3-r. -r : z
46. r, : sin( t * rj), ,t : -3
47, r':secr/1-t\- r=-I' \) | 2

I I rl48.r=l.r- l. r=2
\ .r/

In E^er'(i.(\ 4q 57. finJ the indiclited derivatire.

, tlt
49. r' : eot'(r - dt find 

-.
/tn+ht6 di

50. ). : l _-: I : hnd 
- 

(.. ,. (. d conslanls).
\tuid/ tlu

Lt ^51. ;fa cos' nu l- /' sin- rol (.r. /, constantsl.

_r, : ./Ttanr(,,,/,r)
sin t

'r-se(3r+D
.l' : sin(tan 3,r )



52.

E s3.

E s4.

- ttr ,/r
r : csc- {; - r );tind -' 1tt
(a) Use a graphing utility to obtain the gr aph ol lhe funclion

f (r) - xtrE-]t.
(b) Use the graph in pall(a) to make a rouSh sketch ofthe

graph of /'.
(c) Find .l'(,r), and then check yoLU.work in part (b) by

using the graphing utility to obtain the graph of .l'.
(d) Find the equation of the tangent line to the graph of /

at -r : 1, and graph / and lhe tangent line together.

(a) Use a graphing uiility to obtain the graph ofthe tunction

.l(r): sln-r2cos-r over lhe inteNal L rl2,nl2l.
(b) Use the graph in part (a) to nlake a r.oLrgh sketcl] of 1l're

graph ol' l' over the inlerval.
(c) Find /'(.t), and then chcck your work in part (b) by

using the graphing utilily 10 obtain the -eraph ol.l' over

the inlerval.
(d) Find the equation ofthe tangent line to the graph of / at

-r : I, and graph f and the tangcnt line together ovcr
the interval.

If an object suspended from a spring is displaced vertically
fionr its equilibrium position by a snall amounl and Ie
leased, and if the air resistance and the mass ol the spring
are iSnored, then the lesulting oscillation of the obiect is

called simple hqtmonic motion. Under appropriate condl-
tions tl'le displacement I fi-on ecluilibrium in tenns of tirne
t is given by

-v-Acos(,rt
where,4 is the iuitial displacement at time I : 0, and ra is

a coDstant lhat deperds on the mass of lhe objecl and lhe

stiilness oI lhe spring (see the accompanying figure). The
coDstant,4 | is ca],\ed the am plitude of the molion and ., the

angular frequency.
(a) Show that

d2ta - h.l
dtr

(b) The period 7' islhe lime required to make one complete

oscillation. Shorv that I :2r/ro.
G) The rt'equencJ / of the vibration is the number of os

cillarioos per unit time. Find / in terms ofthe peliod 7.
(d) Find the amplitLrdi period, and frequency of an ob-

ject that is executing simple harmonic motion given by

l' : 0.6 cos 15t, where t is in seconds and -i. is in cen-
limeiers.
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FindthevalueoftheconstantA sothat,r : A sin 3asatisiies
the equation

- i2r -4sin-li

The accompanying figure shows the graph of atnospheiic
pressure 17 (lb/inl) versus the altitude ft (rri) above sea level.
(a) From the glaph and the tan-qent line al ft : 2 shown

on lhe graph, estimate the values of /, and d p I cl h at an

altitude of 2 mi.
(b) If the altitude of a space vehicle is increasing at the

rlite of 0.3 mi/s at the instant when il is 2 mi above seii
level. how fast is the pressure changing with time at lhis
instantl

01234567
A titude/1 (mi) Figurc Ex 57

The fbrce F (in pounds) acting at an angle d with the hor
izontal that is needed to drag a crate weighing W pounds
along a horizontal sudace at a conslanl velocity is given by

-56.

57.

55.

58.

ttw
cosd * l,r sind

whele ll is a constant called the coefficient of sliding.fric-
lioi between the crate and the suface (see the accompany
ing figure). Suppose that the crate weighs 150 lb and that

4 = 0.3.
(a) Find dF/dd when I : 30' . Express the answer in Lrnits

ol pounds/deglee.
(b) Find dF/r/r when fl : 30" if d is decreasing at the rate

of 0.5'/s at this instant.

Figure Ex-58

Recall thar

,t [ 1. r>0
dt l-t. r<0

Use this result and the chain rule to lind

Jr 
( srn.r l)

fbr nonzero -r 1n the interval (-2, z).:-, ..,.- . ... .i Figurc Ex-55

59.
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61.
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Use the derivative tbr.mula 1br sinir and the identity

.n. , = ",n 
/I .')\2 t

to obtain the derivative tbrmula for cos,r.

Let
tl. lr sirr -. r l0

I(TI: (

ln, .r -o
(a) Find /'(,r) for -t I 0.
(b) Show that / is continuous at -{ - 0.
(c) Use Definition 3.2.2 to show that /'(0) does not exist.

Le1

lttrinl. t=of(1): I r

[0. .':i]
(a) Flnd /'(r) for r + 0.
(b) Show that / is continuous at,r :0.
(c) Use Delinilion 3.2.2 to iind l'(0).
(d) Show that /' is not continuous at r - 0.

Civen the following table of values, find the indicaled
derivatives in parts (a) and (b).

(a) 8'(2), where s(.r) : t/(*)13
(b) fi'(2), where l(r) - /(-tr)
Given the fbllowing table of values, find the indicated
derivatives in palts (a) and (b).

-i l(-r) f't-r) cf.O .q;t-Ori i z'i -t
204i.5

66.

67.

68.

62.

-r l(r) .l'(-r )
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69.

70.

(a) F/( 1), wherc F(r) : l(g(n))
(b) G'( 1), where G(ir) : s(/(-r))
Civei that f'(0) - 2, S(0) : 0, and g'(0) : 3, lind
(./ 

" s)'(0).

Given that /'(r) : y'3.t 1 4 and g (r) : ':l2 - i, find .F'(x)
ir r(r) : l(8(r)).

Civen that 7,rr : ," and q1r1 - ult' t, nnOr. + I

F'(r) if F(r) : l(c(.r)).
^dFjnd /i ri )if ;l/rr'rJ :r'.

dd
Fjnd . l/(rtl if 

-[f(3r)] - or..1-\ ./:\

Recall drat a function f is even if .f( r) : f(:i) anC, odd.

if /( .r) : .l(.r), for all x in the domain of ./. Assuming
that / is differentiable, prove:
(a) /' is odd if / is even

(b) ./' is even if f is odd.

Draw some pictules to illustrate the results in Exelcise 70,
and write a paragraph that gives an informal explanation of
why the results are true.

LelI : /r(r),u :,(u), u :.lr(ur),andur : i(r).Ex-
press dy/& in tet\lls of d | / d u, du I d r, d u / du - and, d u I d u.

Find a formula for

d
; Il(e(frrt )))l

13.

3.6 LOCAL LINEAR APPROXIMATI0N; DIFFERENTIALS

[Jp lo t\o.,i, v,e ha|e been interprcting dl,fdx as a single entitJ rcpresenting tlrc derit,a-
tiw of ): vith t espeLt to x . In this sectiort y,e v'ill give the quantities ch and clx sep-
arate meanings that v,ill allov, us to tt edt dy/dx as a ratio. We v'ill also slnw hoy'
deritati,es can be used to appro.rimate functitns by sitnpler linear functtotts.

lf the value of a variable changes from olle nulnber to another, then the fina] value minus
the initial value rs called an increme l in the variable. It is traditional in calculus to denote
ar'r ir'rcrement in a valiable x by Ar (read "delta r"). Thus, if the initial value of r is ,t0 and
the final value is ,r1. then

A-Y : -rt -ro

In this notation the expression A.i; is not the product of A and -r; rather, it is a single entity
representing the .rdl?,ge in ihe value of r. This notation can be used with any variable; for
example, increments in ], t, and d would be denoted as Al', At, and Ad.

INCREMENTS
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If r' : /(l), and if,r changes from an initial value .ts to a iinal value -r1, then there is

a conesponding change in the value of ] from _rr0 
: /(n0) to lr : ./(-tr). Stared another

way, the increment A,r = ,rl 16 in -t ploduces a corresponding incremenl Al, = J,l lt)
in 1 , where

A,r: _u, 1,u: /(r1) Iko) (i)
(Figure 3.6.1).

Increments can be positive, negative, or zero, depending o[ the relative positions of the
initial and final points-an increnent in r is positive if the final poinr is ro rhe right of the
initial point. negative if the linal point is to the left of the initial point, and zero if the initial
and flnal points coincide. In Figure 3.6.1, both Ar and A_r, are positive.

Observe that the expressions Ar :,rr -.r0 and Al : 11 1,n can be rewritten as

,.\ I j .\, A.{ alld .r - )u * A1

whiclr sinrply states that the linal talLte of u vtu'iable is ecltul to its ittitial wlue plus its
inctement. With this notation we can express (l) as

)+A_r

i

)

Figrre 3.6.2

r r r+Ar

(2)

Sometimes, it is convenient to dispense with subscdpts on the initial and final values ofa vari-
able, in which case the initial and final values of i would be denoied as .{ and r + Ax, and
the initial and final values ofthe variable ) would be denoted as 1 and t' * Af (Figure 3.6.2).
With this notation the symbols,r and ], piay dual roles-they serve as the names as well as

rhe initial values of the variables. However, this rarely causes any confusion.
With the subscripts omitted, Fomula (2) becomes

Ar = /r.i - A.r) J(t\ t3/

The ratio A)'/A-r can be interyreted as the slope of the secant line joining the points (,r, r,)
and (-r * A,r. _r, + Ar), and hence the de vative oll' with respect to -r can be expressed as

tr_y : /(yx f Ax) ,f(rr,)

dy

dx
/(x+A.t)-/(r)Al

- lim I: lim
ar-(] Ax Ai-0 Ar

(Figure 3.6.3). This is consistent with (11) in Section 3.2.

(4)

)+a)

Figure 3.6.3

When Newtor and Leibniz independently pubiished their discoveries of calculus, they
each used different notations for the derivative, and battles raged for more than 50 years

over which notation was better. ln the end the Leibniz notation cly/dx wot't out because it
ploduced corect fonnulas in a natural way; the chain rule

b,_b du

dx dtr dx
is a good example.

The symbols "dl" and "dr" that appear in the derivative d1/tl-r are called tlffirentials,
and our next objective is to define these symbols so that d) /dr can actually be treated as a

Fieure 3.6.1

DIFFERENTIALS
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ralio. For this purposc. r'egard -r s iixed and &tnc r/,r to be an inclcpenderl variable that can
be assigned ar arbitrar.y value. I1'I is differerrtiable ar r. then we ,/cfil?? .1], by the fblmula

d\. : .f '(t ) dx

If ri.r I 0. lhen we can clivide both sides of (5) by .1.r to obtain

Thus, rve have achieved ourgoirl of clefiningrh and./.r so that thcir ratio is l'(.r).
Becausc

--/1r1-,i,.,,,
wher.e /irL:,r is the slope ofthe tangent fo I - l(r) at t. the ditlere:ttials rlt.ancl r1r crn be
viewed as a corresponcling rise and IUn ol lhis tangent line (Figure 3.6.,1).

Itisi portanl 1o Lln(lersland the d istinct ion between the incrcrncnt A \, rnd the d ifletential
zA . To scc the cliflilence. let us assign tlte independeitt viuiables r/-r ancL A-r the samc vaiue.
so r/-r = A.t.'l'hen Ar represents the changc in I thrt occuls when we sttrl at r and travel
alortg thc ttula 1 - .l(-r') until we have noved A.r (- 1r) units in the.r direction. while
r1r' r'epresents thc changc iu t, that occurs if we slarl al r and travel ulon! th? tdnlent litle
until we have movcd 1\'(: At) urrits in the r-direclion (Figufe 3.6.5).

Example I
If r' = .r:. then the relatiol r/r'/1.t - 2-r can be writterr in the r/r'f!r uridl fot nl

When,r : 3. this bccornes

This tells us ihal if we lravel rlong the tangent to the culve l, : -rl at r : 3. then a cltange
ol r1-r urrits in .r produces r change of 6rl,t units il r'. For exiunple. if the change in r is
11r :4. then the change in l along the tangent is

r1r :6(,1) - 2,1 units

Example 2

1g11 -.,/-r'. Fincl/r'ancl Alat r; = 4withr1.t: A.r - 3. Then nrake a sketch of r : v{i,
showing rA ancl Al in the picture-

Solution, FIom (3) with l ( r ) : .,[ wc obtain

a'-Jl tl' .\-v/: V?.u.,':

(5)

lfr-/r.rhen
r1r' I I I. -r J' - ,1t= tlr,1., 2,/' )J' 2J4

:0.75

Figure i.6.6 shows the curve r'- 
^r'/r 

togcther with r/r'and Ar.

3

4

Points of dillcrcntiabilily lbr a function / can be described infomally in tcmrs of the
behaviol of the gtaph of f under nagrification: lf P is l point of difler-entiability lor'
a flnction f. then stlongel irnd slronger rnallnifications at P eveittually tlakc thc cLlrve

scgmenl conlitining P jook morc ancl mi)ll] like a nonvefiical line, the line being the tangent
line al P. For this reason, a tinction that is diflerentiable lLt a point P is said b be l.7callJ
linear at P (Figure 3.6.7).

It fbllows fiom the preceding obseryatioi'ls that il ./ is dilfcrcntiablc at.\:(r, ther the
tan-qent linc through (.{{)..l(,r(i)) closely approximates thc graph ol / lbr values of r neal

LOCAL LINEAR APPROXIMATION
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\u)

I Th s curve is not loca v I near at P

(/,)

Near \l)the tangent line close y

approximates the curve.

Fig re 1.6.8

tp (Figure 3.6.8). To capture this intuitive iclea analytically, otrseNe that tlte tangcnt line
through the point (-r'0. .l(.ro)) has slope l'(-r'11). so the poinl slope fbrnr of rr\ eLlurtion i\

r' /(.ro) - l'(-!o)(.r -.ro)
which we can rcwritc as

1 : /(ro) * l'(.io)(.r .ro)

To say that this line closely app|oxinates the cLtrye r'- l(r) fblvalues ofj near -r0. we
nean that the approximation

l(.r) ! f(io) * l'(.to)(r - -ro) (6)

gets better and better lls ,! > ,!0. We call (6) the local linesr qpproximqtion o.f .f ot \. An
alte|native version of this fomula can be obtainecl by Jetting A.r = I r0. in which case
(6) can be expressed as

/(-ro + Ar) - l(.ro) + l'(,vo) A,v (1)

Example 3

(a) Find the local linear approximation of I (-r) - sin r at -r0 = 0.

(b) Use the local linear iipploximation obtained in part (a) to lipproximiite sin2', and

cornplue your appr-oximation to tl're result produced directly by your calculating device.

Solution (u). Since l'(.r) =cos.r.ittbllowsfiom(6) lhat the local linerr rpprorim.rtion
ol sin-r lt a point {o is

sin-r :Y sin.ro + (cos-\o)(,r ro)

Thus. the local linear apploximation iit r.0 : 0 i{

sin_t * sin 0 + (cos 0)(.t 0)

which sinplilies to

sin -r ,Y -r (8)

Sohttion (b\, In (8). thc variablc ,; is in ladian measure, so we must nrst convert 2' to
ladians bcfole we can apply this fbrmula. Since

2' : 2(z/ 180) : /r/90 radians

it follows from (8) with -r = z/90 tllat

sin 2 ' - sin(z/90) ::: n/)Q ::: 0.0349066

Th s curve is ocal y lirear at P.



214 The Derivative

This is quite close to the value

sin 2' ^: 0.03,18995

produced directJy on the author's calculator.

Example 4

tat Find the local linerrirpprurimationoi/r,rr=.r[al .rn - L

(b) Use the local linear approximation obtained in parl (a) to approrimrte Jl 1, and
compare your approximation to the resultproduced directly by yourcalculating device.

Solution(t). Since .f'(r) : l/(:2r,E), it follows from (6) that the local linear approxima-
tion of./x at a point,ro is

I
v/r \ Jru -1- _(r .ru)

'v 'o

Thus. the local linear approximation at,v0 : 1 is

.[,:1a]1_L_ry

Sttlulion ( bl. Applying Fomula (9) with r = L l yie]ds

."41 = r + l(o r) : r.os

which compares favorably with the approximation

lJ.:, 1.04881

produceddirect1yontheauthor'Sca1cu1atoI.<

l{E\'i,\IiK. In lhe lasl two examples we used Fomula (6) for the local lirear .rpproximarioll.
We could jusl as well have used Formula (7). For example, with this fomrula the local linear'

applurirnation ol J ',{ ) - ,/x at .r'6 is

I
./rn + Ar. :: -/r^ + 

-n 

r.
z t/ 

^t')

Thus, to approximate /11 with this fomuia, we take re : I an<i Ar : 0. 1, which yields

."/r.r-r++(0.1)=1.05

This agrees with the result in Exarnple 4.

As a general lule, the accuracy of the local lineal approxination to /(x) at a point 16 will
deteriorate as r gets progressively farther from xp. To illustrate this for approximation (E)

in Example 3, let us graph the function

E(x):511t-t1

which is rhe absolute value of the eror in the approximation (Figure 3.6.9).
In Figure 3.6.9, the graph shows how the absolute effor in the local linear approxirnation

of sin,r at 0 increases as -r rnoves progressively farther tiom 0 in either the positive or
negative direction. The graph also tells us that for values of x between the two vertical lines
the absolute error does not exceed 0.01. Thus, for example, we could use the local linear
apploximation sinx - r for all values ofr in the interval 0.35 < r < 0.35 (radians) with
confidence that the apploximation is within :l0.01 of the exact value.

(e)

ERROR IN LOCAL LINEAR
APPROXIMATIONS

.t(-0= sin\ r
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In applications, srnall errors invariably occu: in meeisutecl quantitics. When these quantities

arc uscd in computations. those errors afc propagtted in turn to the computcti quantities:

this is called ?rrol p ropagation. We will now show how 1o use a local lineul approxirnrl ion

to esfirnate the error in a con'rputed qudntity from estimates of thc cn-or ill the lneasulcd

quanlity. For this purpose, suppose that

.r is the quantity being measured

r' : .f(r) is the quiurtity being computed

.ro is the true vlrlue of .r

r'o is lhe true value of -1'

A.r is the measurement cnor in r

AI is the p:opagatecl euor in r,

Thus. the measured value of .t is.to + A.r, and the compuled valuc of l is .\'0 + A,\': and we

are intcrested irt using an estimate of A-ri to find an estimate of Ar'. To do this. we will stlr'l

wilh version (7) of thc Iocal linear approxirltrtion of / ttt .rn:

( l0)

In this fbrmula. .l(rn) : 11, is the true value o[ r'. ilr]cl l(t{r + A.r) : .\ir * Ar is the

computed value of r', so we can rewrite ( l0) as

.\!) + Ar' - )l) + l'(-ro) A.r

Ar, ^, /,(_ro) Ar

Morcover. if wc agree to let ,/.r : A.r, then we can rewrile ll'tis its

Ar' - /'(.r(,) r/,r -.h'

/(.r0 + a.r) - ./(.ro) +.l'(.r'o) a.r

(ll)
which tells Lts lhal the prcpag.tted error in \ c.!n bc c.\lintufe(l l)\' thc .ltfrerc liul ol ) ut .\|
u ith Lt intrrpr,'t,tl as thr nt(Lts./li tttt ttl (t tt,t itl \'.

Although Fonnula ( I I ) looks nice on the surface. it is useless in rtpplied problcms because

the true value r0 is unknown! (Keep in nind that thc only valuc of .r thilt is available (o

the researcher is the measured value.rl1 * r/-r = .rr) + A,r.) Tcr get around this roadblock

researchers use the observed value -r1y * z/,r rather thall the true vllue,r0 in computing the

diffelential. This is usually satisfactorf if r/.t is small. since r0 and .r0 + /.\ are close in value.

We will illustrale how this works in the rtext example, but it will sinlplify out conrputations

il we drop the subscript in ( I l) and wtite the fornula irs

6,1 * af,1. = /'(.r) r/_r ( l2)

Example 5

The radius of a sphere is measured to bc 50 cn with a measurement enol ol +0.02 cm

Estimate the error in the computed voluntc of thc spherc.

.\rtlttti,n. The volurne oI x cphcrc is

V:1nr'3
We are given that the erlot in the radius is Ar - 40.02, alld we want to lind thc crror AV

in V, If we consider Ar lo be small ancl il we let .// = Ar. then Ay cxn be approximated

by r/V. Thus, fton (12).

Lv .:r .tv :4ttr1 tlr

Substituting r' = 50 and r/r' = *0.02 in (13), we obtain

AY !,1n(250(D(+0.02) ! +621J.32

( 1.1)
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Therefore, the errol in the calculaied volume is approximately +628.32 cubic centimeters
(.'',t).

lf the true value of a quantity is 4 and a measurement or calculation produces an ellor Aq,
then Ar7/q is called the reladle eror in the measurement or calculation; when expressed

as a percentager A4 /4 is called the percentage error. As a practical matter, the true value
r7 is usualiy unknown, so thal the measured or calculated value of 17 is used insteadi and the

relative error is approximated by dr7/4.

Example 6

The side of a square is measured with a percentage enor of *57o. Estimate the percentage

eror-in the calculated area of the square.

Soltttittn. The area A of a square with side .r is

so

dA :2x dx

We are given that dr / r : *0.05, ard we want to lind dA/A. But it follows from the two
preceding formulas that

/lA )r'lx )tdt .h.: . = . :2- - 2(+0.05):+0.1 (14)
AA-I.

Thus,thepercentagee[oIinthecalcu]atedareaofthesquareis4l07o.<

FOR TrrL RrrADErt. ln(14)wesawrhatr/A/A-2(dx/x),whichtellsusthatasaruleof
thumb the percentage error in the calculated area of a square is twice the percentage error in
the measured side. What rule of thumb relates the percentage enor in the computed volume
of a cube to the percentage effor in the measured side? Why?

Now that we have defined differentials, every derivative formula has a corresponding dif
ferential formula. For example, if 1 - sin n, then the derivative formula dy/dr : cos,v can

also be expressed as

d] : cos -r rlr

Moreover, all of the general rules ofdifferentiation have corresponding differential versions:

DF,RIVA I IVL I-ORMULA DIFFERENTIAI- I]ORMULA

4t,t=o

!r,t=,{,

!,u.t='l!.ff
lSn=tf .'f

Jl Jr
,/ltl ',h '.1,
; [il= ,,

r/kl = 0

dI(Jl = ( dl

dlJr)=fctr+sdJ

.lt all -ld:
!/l: L=

I C I !-
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ExERctsE SET 3.6 E crapl ng ca crtator E CAS

l. (a)

(b)

2. (a)

(b)

3. (a)

(b)

4. (a)

(c)

14. (a)

(b)

(c)

15. (a)

(b)

16. (a)

Let,- : -r:. Find 1r' and Ai, at.r - 2 wirh

Skelch the graph of r' - 12. showing,7) and Al in the
picture.

Let y - 1l Find .11, and A-r. at.r : I with

Sketch the graph ol ) : rr, showilig d-r' and At. in the
picture.

Let 1 : 1/;. Pir4 7) and A_r at r : I with
r1x: Ax: 0.5.
Sketch the glaph of _r, : l/-r, showing r/t. and A,r, in
the picture.

Let -\' : ./4. Find dl and A), at -r : 9 wifh

6. -r' : tir ,1

8. ) - sin r

(b) Graph / and ils tangent liie nt -t0 togelller. and use lhe
graphs to jllustrate the relationship behveen the exact
values and thc approxirnations of l/J3.9 and l/ J4. L

In Exelcises 17-20, conlinn thal the stated forrluia is the
local linear approximation at,r1 :0.

17. (l*r)15 - l* l5.t
118. /. - L+ ll

I
20. _,. 

1l+-r

the picture.

ln Erercrre.5 b. l:nd lormuld. lor dr' .-rnd Ar rl n lenerJl
poinl,i-.

r/x: A:r: -1.
(b) Sketch the graph of ) : .,/.r, showine d)'and Al in

7. t--x2 2r+1

ln Exercises 9 12, llnd the differential lt'

(b) _r : ,r cos r
(b) t : 5tanr
(b) i,: (l *x) rr

lrl
'",''_)

21.

t)

ln E'dI\ .c,II-2-1...,,' -nl thJ lhe.l.rteo torIn,rl,r i\ lhe-o-
c.-rl r"e:,r'.rl'lrorun.Iron ui / it r, - L rrher'e Ar - r L

,f(.t)-rrt (l* Ar)r;: l*4.rr^-t

/(.') : v4i: Jl + A-r - I + 1A.r

ltrr23.7\ry- ;2-., J l. -{ 9

9. (a) ; :{.5i 7x2

10. (a) ): l/.r
11. (a) t : r'./t -;
12. (a) ): *rf
13. (a) Use Fonnula (6) to obtain the local linear approxima

tion of ,rl at ro - l.
(b) Use Fo nula (7) to r.ewrite the approximation obtainecl

in part (a) in terms of A.r.
Use the result obtained in part (a) to apploximate
(1.02)3, and conlimr thal the formula obtained in part
(b) produces the sane resuit.

U'e Fnrmulr'6r to obtarn llt. l.r(Jl llredr Jplro\rma
tion of 1/-r at -ro : 2.

Use Formula (7) Io rewlite the apploxiInation obtained
in part (a) in tenns of A.r.
Uce rhe re.ull obtained in fi:l aJ) ro rpprori larc
1/2.05. and coilirm lhat the lormula obtained iD part
(b) produces the same result.

Ftnd the ln, al I near apl|or.im.rrion ol /, , , _ ett - 1
al r0 :0, and use il to approximate ,69 and 

"41.Graph I and its tangent line at i0 together, and use the
graphs to illustrate the relationship between the exacl
values and the approximations of 1.6- an<l /L 1

Find the locrl . rnear Jppro\imaliun ul l{.\'- I v[Jt
iio - 4, and use it to apploximate i/v5.9 ancl I /v?. l.

l(r) : (zt i r)r; (5 * Ar)r : l2-5 * 75A-r

(a) Use the local lineal approxination of sin.t at -ro = 0
obtained in Example 3 to approxirnate sin I , 

. and cont-
pare tl're approximatior'l to fie resLllt produced dlreclly
by your calculirtiDg device.

(b) How would you choose r0 to approximate sin 44, l
(c) Approximate sin 4:[': conparc the approximation to the

result produced directly by your ciilculatir'lg device.

(a) Use the local linear apptoximation ol tan _r at r0 : 0 to
approxinate tan 2'. and compare the approximation to
the rcsul1 produced directly by your calculirting device.

(b) How would _vou choose xn to approximate tan6l':
'c, Appru\rm:rle rJrhl : (o lpirtr the,rpfrorinr:ttoIl t.,

thc rcsult produced directly by your calculating device.

In Exercises 27-J5. use aD appropliale iocal linear-approxi
nraliu lu c.rin,rre tlre \,rlLc ol tlr( [:t,en qLt.iIlity.

17.,1,,2r' 28. 11.u77 29..;
30. v51 31. /8o9 ..t2. ,46JR
33. sino.l 34. tan0.2 35. cos3l'

36. The approximation (l + r){ ! I * k.r is commonly used
by engineers lbr quick calculations.
(a) Derive this rcsult, and use it io make a rough estinate

of (1.001)rt.

(b) Compare your estimate to tltat produced directly by
yoLrr calcullrtlng device.

(c) Show that this folmula produces a ve|y bad estimate of
(1.1)17, and explain rvhy.

21.

25.

26.
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In E\ercises 37 .10. corlir-nr thrt the tinrruilr is a local lin

car approxinration iit.r0 - 0. l .l use a glllphing Lrlilil)'lo
cslidrilte iill intcrvill o1 r \dlLles o11 \\hich thc c or irt llte
iipproriilrution is t most +0. L

The l ea ol a light tr ianele rvith r hypotenuse of H is calcu -

iated using the formLrla .1 : j Ar sin 2d, where d is one of
the lcute angles. Use dillerentials to approxinratc the crr-or

in crlculating ,'l il H : '1 cm (c\lctly) iind , : 30 t l-5'.

'l hc sidc of a sclLlarc is rneasured rvilh a possible percenltge
cr|or ol t l%. Use dillerenliils 1() estirniite lhe percenllge
error in the rreil.

Tlre side 01 r cube is nellsured with a possible pcrccnlagc

elroI o1 t29t. LIse clif'tbrentiills to estimatc thc pcrccrtagc
euor in llte volttrne.

'Ihc \,olume ol I spher'e is to be conrputed froln a llrcrsllrc(l
value ol its rlldiLrs. Estimatc thc mnximrrn permissible per'

.PIl.,: ! rrr.rr irrllr. .:,.rr'(Irr"l i tlr. fc ccrr .rpi. rror'r r

ihc volumc rllosl be kept *,ithin t3%. ( l.' = llrr is thc
volunrc of a sphere ol r'tclius r'.)
'I_he arca ol a cilclc is lo be colnputed tiom a measL[ed va]uc

ol its dianlctcr. Eslimiile the rnrxilnurn pernrissible percent-

ilge error in drc mcrsLlrcmenl il the percentiige error in the

nrcn nrust bc kepl \\ithin t lli.
A stccl cube wilh I il] si.les is corled wilh 0.01 in olcop-
per. [J\e .lil]elentials to estimdtc thc volumc of coppcr in

lhe colring. lHlli/ Lct ly bc thc change in thc volune ol'
the cube.l

A relxl rod l5 cul long and 5 cnl ir dianeler is lo be co!
erer:l (except tbr the cnds) rvith insulation lhal is 0.001 crn

thick. Use dillircntlals to estilnrlc lhe volLrlne ol insolalion.

llllli/ Lct Ay bc the changc in volurne ol the lod.l
-l 

he iirnc rcc[rirccl {br one cornp]ele oscillirtion ol l pendLl-

Lum is called il\ /reriod. It' the length I ol the pendulunr

is rnersured in lter irnd the period P in scconcls, lhcn thc
period is given b-\' P : )n,!,'Ll!. whc|e g is r curslanl
ctiletl tltt, tLt t ltrutiott tluc to qrtr ilt. Usc cliffirenLials lcr

show llrll the percentaige elror in P is approximltely hall
the percelliage error in l-.

If the temperaturc 7' ol iL mclirl rod ol lenglh l is chlnged by
lul anloLrnt 1\7. thei tlre lenglh \\ill chiulgc by thc amount

JL : ctL AI. wherc u is crllcci the coeJ:t'iciettl of li eal
?Ipdrsio,. For'nlodcratc chanecs in tell]Peralure d is tltken

as consllnl.
(aJ Sulpose thlt a rocl .10 cm long at 20 C is tbund to be

40.0(16 crn long \\hen the tcmpcrlllule is raised io -10 C.

Find d.
(Lr) Il en rlurninllnr pole is l80 cm long irl l5 C-'. ho$ long

i\ the polc if thc tcmpcralure is raised lo 40 Cl.'[llkc
.r:1.3 x l0 i// C.l

II lhe ienperature 7 ol a solid or licluicl ol volulre y is

ch nsed b-\'rn rurollnt A7'. thcn thc volume will change by

thcalnounl Ay : /Jy 1\7. whcrc P iscrLle.llhe coqlficient
u.[rultrtn, etputtsiotl. F tIrL'l. f .l- \h:,tr!-.:trlrtrrad r'llfP

C is laken as constllnt. Supposc thal r lnnk lruck loads 40(Xl
glllons of cthyl alcohol 11 a lel]lperdlure ol35 C and dcliv
ers its loa.l somelirne hler nt r tempcraturc of 15 C. Using

/j : 7.5 r l{) r/ C tbr eth}'l alcohol. lincl the lumber of
!'elLrns clcliver ecl-

s1.

E

F:1

E

-t
-17. \r+r-\l+ -r:, l

lll-11.l. -r + r
.,/9 .r -l -5.1

-19. tirn r :: \ rar 10. l- I lri.r
1l+1.\

52.

51.

5,1.

5).

56.

ln l-.xercises J1-'1.1. Lrse 1r' to npproxintale Ar' \\hen .t

ch|lllges iis indicrlcli.

,ll. r : y'3r J: ll.()rn r : Iro.\ -l.0l
'12. r'- Jrr i llr tlorr.r:ltor:0.97
Jl- :lr.)n,. 1..'-t""

rr I I

'1.1. r : r.,rlJr + l: liol]r t :3 to.r - 3.1)5

,15, Thc si.le of x sc[rNrc i\ r]lelsLlred to be 1 0 li. \\ ilh il possible

ellol ol t{).I ll.
(n) Usr' clilfe|entials 1o e\timxle thc cnor in lhe cllcLllittcd

(b) Estilnalc the percentilgc crrors irt the sidc itnd thc nrea.

46. The si(lc ol a cul)c is leNsurcd to bc 15 crr. \\'ith il possiblc

el]or ol +l crD.

(a) lJse clifferentiels 1() estinllte the clTor in the clllctrlllted
volLlnre.

(bJ EstilllNte lhc feacentllge elr'ors itl the side ancl volunle.

:17. lhc hypolenlrse olil righl lriiLngle is kno$n lo be l0 il1 ex

lrctl)'. ltnd one of thc acule rngles is nlellsured 10 Lre l0
*,ith a possible crlol ol t I

(x) Ll\e LLiltcrcntirLls to c\tinlatc the errors in thc siclc\ op

posrlc lLnd iid.jilccnl 1() the nlell!urcd lulgle.

(bl Eslir-l]rte the pcrcerltllge ettors in the sides.

.llJ. One side o{ ir riglrt triilngle is kno\\'ll to be l5 crr exrclly.
-lhe arglc oplrositc to lhis \ide is lltcasured 1() be 60 . \\'ith

a possiblc enor ol a0.5
(r) Llsc dillerenliirls 1o c\Lirllilte thc crros irl the Ndrccnt

siale 1ln(l thc h\ potenLlse.

(bJ EsliiiiLle the pcrcenttge errol-s in llle rcliiLcent sidc lllld
h-vpotenLr\e.

:19. lhc clectricdl resisl!!nce n ol ir ccrlirirr \\ire is givcn b)

R - l,rr'r. wher'e A is a collstlurt iill(l r' is Llte raclitts olthc
rvir-c. Assurning that the radiu\ r' hlts a possible enor ol
15'1. Usc dillerentials to e\Li lxte drc pcrcenlaee errot in

/?. (Assulne I is exrct.)

50. A ll lint hclder le ni g aglinst a \\rLll rnakes all anglc tl
\\,ilh llre 1loor. llthc lof ollhe lntlclcr is lr feet trp tbc \\irll.
cxp|css /r in ternls ol d iind lhcn use rll to estiltlatc the

change in /r il d changes horn 60 tu 59

57.

58.

59.

60.
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1. State the definition of a derivative, and give two interpreta-
tions of it.

2. Explain the difl'erence between average and instantaneous
rate of change, and discuss how they arc calculated.

J. Given that r' = .l(x). explain the diflerence between dr. and

A). Draw a picture that illustrates the relationship betwcen
these quantities.

4. Use the definition of a derivativc to lind r/-r'/r/-r, and check

J our unswcr by crlcularing lhe derivilli\ c using approprintc
derivative formulirs.
(a) 1: v! -1.1

In Exercises 5-8. llnd the values of .r at which the curve

r - / (.r ) hds ir horizontal tangent linc.

5. /(,r) = (2.r + 7)6(.1 2)5

7. lI.i) = "6.t.+ 
t(* l)']

Find the equations of all lines through the origin llrlt lrre
tangent Io the curvc f : .r3 - 9.rl 16.t.

Find alivalues ol.r tbr which the tangent line k) t, = 2.rl r2
is perpendicular to tlrc line .r + 4r, : 10.

Find all values ol .r tbr which the line thal is tdngent to
r - l.r tnn.r is p:rlirllrl ro rhe line r -.{ ::.

[.1'-1. r I
SuDDo\e lhrl /irl= I

[tr.r l). \ L

For what values ol li is I
(a) continuous (b) clilTercntiable l
Let /(.r) - rl. Show that foi any distinct valucs of a and

D, the slope of the tarrgent line to r : ./(.r ) ol .r : I (4 + lr)
ir cqurl to rhe slopc ol lhe \ecant li e thlough thc points
(.l. dl) and (r. /rl). Druw a picture ro illtlstfrte llris lesult.

A car is traveling on a straight road tlrat is 120 mi long.
For the first 100 nri the car travels at {n average velocity of
50 mi/h. Show thirt no DiLtlel how ii1sl lhc cilf ttilvels for
the nnal 20 n'rj it cannot bring the average velocity urp to 60
mi/h for the entirc nip.

In each part. use the givcn infomation to find A.r. A-\', and

{a) r' : 1/(-r' - I ): .t clecrcases from 2 to L-5.

(b) .r : tan r: .r incrc.rses ltonr x/4to0.
1c1 ,t - 145-F: .r increases ffdn 0 to 3.

Use the folrnula y : /l lbr the volurne ol'a cubc of side 1

to llnd
(a) the average rate nt which the volLrme of l cube changes

rrith / rr: / rn.tuir'e. [lnnr / : ] ro1 : 4
(b) the inslantaneous rlte at $hich the volumc of a cube

changes $ith 1when 1:5.
The amounl ol'watcl in a tank a miiutes aftcr' it lras started
ro drain is given by W : 100(r l5)r gal.
(a) At what rilte is the lNater running oul :ll the er]d of 5

lnin:)
(b) What is the xverage rnte at which the w ter llolvs out

during the firsr 5 fiinl
U\e un uppropriilte local linear approxrnlillion to c\tinrrle
the value ofcot:16 . nd conrpare youl answer to thc value
obtained \\,ith a calculating device.

The base of dle Cre f Pyramid at Giza is d squiue rhat is

230 m on each sicle.

(a) As illustratecl in the accornpanying ligure. suppose that
an archaeologist standing at the center ol side mea-
sures the angle of elevation of the apex to be d - 5 I'
with an error of +0.5 . Whai can the arch.reologist rea-

sonably say :rbeut the height of the pyramicl)
(b) Use diffelentials lo estimate the allowablc erlol in the

elevation angle thal will ensure an en-or in thc height is
tt most +5 nr.

.

12,

13.

14.

.\+L

t,t 3 tl
6. /1.( ) = *l_+l\

/lt-llrl
8. lrrr= l--l

15.

t6.

9. lhe rccon)piu)ying fisure.hou5lhe crrlph ol r - / I Irlor
rn unspecrtied luncrlon /. l1'
(a) For what values of r does the curve r' : f(,r) have a

horizontal tangent line?
(b) Over what inten als does the cuNe r' : ./(-r ) have tan-

gent lines with positive slopel
Over whal irtteryals does the culve r' : .l(r) have tan- 18.

gent liDcs with negative slope?

Given that f (.y) : /(.r) sin.!, and /(0) : -1. find

3"(0).

(c)

(d)

19.

20.

2t.

In each part. evaluate the expressiofr given that ./( l)
e(1) = -2..l'(l):3, ands'(l) = -1.

to frl,,rrr,',rtl, ,

,t 
-l

(c) 
dr. 

t/ f{.r)ll, 
t

,b, 1lllll' r/.r l6(.r)l ,=,

(d) 
*t./(l)c'(r)r

Fi8urc Ex-9

10.
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Figurc Ex I I

22. The periocl I of a clock pcrlchrluDl (i.e.. Lhe lil)re requircd
lbr one back nnd-lin1h n1(\,cr)'rcnt) is given in telnrs ol i(s

length L b1 f : lo,iJ1a. uherc .q is thc srlviliLriouitl
conslanl.
(ir) Assuming thal lhe length ol a clock pendulunr can

vary (say. duc to ter)rperaturc charges). find the rnlc

olchange oithe peliod f with respecl lo lhe lenslh L.
(b) Il L is in Dreters (m)ancl 7 is in seconds (s). whilt rre

Ihc Lrnits lbr the ratc ol change in part (a) l
(c) Il a pendulunr clock is rLrnning slow. shoLrld tlre leugtll

of the pcnclulLrrtt Lre iltcrcasccl or decreased io cLn-fccl

thc pr0bleIn l
(d) The coDstdrt,( gc|crally decreases wilh altilude. Il )'ou

nrove a pe dulum clock lionr sea lcvel to a higher ele-
viltioD. will it run lirslcr or slo\\'er'.)

{c) Assurri g thc lcnslh ol lhe pendulunr to be cor)sl lt.
lind lhe rilte ol'chrnge ofthe period f \!ith rcspecl lo S.

{ l),AssuDing llrat 7' is in sccon(ls ( s) and.g is in nrclcrs pcr'

second per secorr(l (nr/s: ). tind thc units tbr the [ e of
chanse in pilrl (c).

In Excrcises 2l und 21. zoonr in on the glirph ol.f on ln inter'-

valcontalning-t = .11r Lullil lhe grlph lfi)ks like a slrxight lin!'.
Estinlale the slope ol lhis line lrtcl then check your ilnsu,er by
1iD(ling the exrct vitluc ol /'(.\'0).

2.1. (a) l1.i)-rr-1. r'1; = 1.8

(b) li\): 
\ 

:.rir:.1.5' r'-l

E 2s. l(.r) = 2' E 26. /ttt:.t"'"

3{ir + l)r 5 + 580/r - 3

I (.r + /r) -./(.r)

27. At tine I : 0 a car nloves into the passin-s lane to pnss

a slou-movinc truck. The lvcragc vclocity of llrc cxr lloDt
/-lto/:l+,/ris

l0/r

E

E

Estimtte the instlntlneous veklcily ol lhc car !l1 /: l.
where time is in seconds iurcl rlistance is in leel.

2l'1. A sky diver junrps flonr an lilplane. Suppose that the dis-
tance she falls clr.uing thc perioclbefore herplrrchLrte opens

is r(r):91t6((0.1.l-15)' - l)+ 176/. whcrc.! is in iecl. I is

iuseconds-rnd/ : l.Craphs versusr lbr I 
= 

/ : 10.
and usc r.our graph lo eslinrartc lhe instiutilneous velocitv at

29. Approxinrirle lhe vitlues of .r at Nlrich thc tilngcnl linc lo lhe
grlph ol \' :.rl sil.r is horizonlal.

-10. tJse l graphing utiLity 10 gritph lhc llncti(nl

l(r):lrr .r l-.r'
and lind tlre Yalues ol .r where lhe derivalive olthis lunction
docs not erisl.

@ .11. tlse a CAS to lind dre derivativc ol ./ liom the definition

E

E

nd check the result bV hndiDo rhc dcrivirtive bY hantl.

(c) l(r) : l/r/.r

(e) /(r): V-1.!r +5

In Exclcises -12--17: (r) usc l CAS lo lind l'( r). rnd check
the result b)'hand: (b) usc the CAS lo find /"(.r).

2r + I((l) / (.r) :
(l) l(.t) : sin3t

24. t^l
(b)

l(r):.rr;.r:* 1. .r,' = 1.3

.l(.r): .r + t. t,' = -0.5
E -12. l(.t ) - .rr rin t

l.\ -.r + :l
E -3'1../lf): It * 2

l

lc Jo. fi\r: \lnV\

In Exelcises 25 ancl 26. approxinrate /'(2) by using ihe limil
in Dellnition 3.2.2 wilh surrll vnlrcs ol l?. lfvou luvc a CAS.
see il it car lind the exiicl value ol the lirnit.
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Robotics

&- The Design Flan
Robin s plrLn is to (lcvclop a tlvo-clirnensioniLl vcrsion ol thc robot arnr in FiguIe l. As shoun in
Figute 2. Robin s robot arm \\'ill consisl ol l*rr links ot h\ed lenglh- each ol q'hiclt rvill lotate
indepentlentll boul t gri\(x point. A pairrt sprNcl N ill l)c iltt ched to the cnd 0l lhc scconcl lirrk.
and a com;]rrlcl $'ill vin) lhe angles dl iu(l /./'. thcrcb\ illlo\\ ins the robot Io pilinl tcgioD ()l'the
rr -pllrre.

The hriatheffi atical Analysis
To analyzc thc nrotior ol lhe robot arnr. Robin dcnoles thc coo|dilales ol'lltc I)[inl spraycI by
(.r. t ). as in Figulc 3. artd she delivcs the iirllowing cquolions thirt e\pless.i anrl L il lclrus ol lhe
rn._qlcs eL alld 6t irn(l lhe lcn.qths 1l aud /. ol thc lilrks;

t :11 co\// */:cos(l/L *tlt)
.\ =/r \inr'/r +iIsin(/lr +0r)

'I

(l)

FisLrt l

J: rc;'rirr, .l Wlrirl lc thc coordinates ol lhc qDcl cllcciof il /

J].t|r-r'irr, 1 Use FiguIe 3lo conllmr the cclLlalions in (l).

In the l guage ol robolics. 1rr nd a/t ale cllle(l ll\a tonltol ttryles. the poiDt ( r. r ) is cllled the

end effector. tnttl tlta c(prlliorls in ( I ) lrc c.rllcd thc.[orwarul kinenatic equqtions (ll1)r']r thc Greek
worcl (lncilrrr. me lning "nrotion").

Ji-ir.r',: lrr, -' Whill is lhc [cgion of tlre lhne lhirl c n be rcached hl the encl cllcctrrl ii:
(a) 1r : i.. (b)/r > /'. irnd (c) /r < 1..'

-1r to' rl /,((^rrl +rl.l

Fi:ruc lIigutt I

: 2. i. : 3. d, : 17.1. ,,,,,1
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Simulating Paint Patterns

Robin recognizes that if 0l and 02 are regarded as functions of time, then the forward kinematic
equations can be expressed as

.r : 1r cosgr(t) + /2 cos(dr(I) + 62(1))

) : lr sin dr (/) + /, sin(0r(/) + dr(/))

which are parametric equations for the curye traced by the end effector. For example, if the arms

extend horizontally along the positive r-axis at time r : 0, and if links I and 2 rotate at the

constant mtes of @l and ro2 radians per second (rad/s), respectively, then

01(t) :1lts and 9z(t) - ro.t

and the parametric equations of motion for the end effeqtol become

t : ll cosrrll + lrcos(.rll +.r2l)
) : lr sin r,rrr + 12 sin(.rrt + (o2r)

IixerLise I Showthatif l1 = l2 = l,andifrol :2rad/sandra: = 3 rad/s, then the parametric

equations ol molion are

r:cos2l+cos5/
-) : sin 2/ + sin5/

Use a graphing utility to show that the curve traced by the end effector over the time interval
0 < / < 122 is as shown in Figule 4. This would be the painting pattern of Robin's paint sprayer.

L.ret cisc 5 Use a graphing utility to explore how the rotation rates of the links affect the spmy

pattems of a robot anr.r for which lr - 1' : l.

ExerL:ise 6 Suppose that lr : Lz - l, and a malfunction in the robot arrn causes the second

link to lock at 62 : 0, while the first link rotates at a constant rate of I rad/s. Make a conjecture

about the path of the end effector, and conlirm your coljecture by linding pammetdc equations

for its motion.

Controlling the Position ol the End Effector
Robin's plan is to make the robot paint the dividers in vertical strips, sweeping from the bottom

up. After a stdp is painted, she will have the arm retum to the bottom ofthe divider and then move

horizontally to position itself for the next upward sweep. Since the sections of her dividers will
be 3 ft wide by 5 ft high, Robin decides on a robot with two 3-ft links whose base is positioned

near the lower left comel of a divider section, as in Figure 5a. Since the fully extended links span

a radius of 6 ft, she feels that this arrangement will work.

Figure 4
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(3,0) (3.0)

(r') (.j
Figure 5

Robin starts with the problem of painting the far right edge from (3,0) to (3. 5). With the
help ofsome basic geometry (Figure 5lr), she determines that the end effector can be placed at the
point (3,0) by taking the control angles to be 0t : 1r/3 (: 60") and 0z : -2n/3 (: - 120' )
(verify). However, the problem of finding the cortrol angles that conespond to the point (3, 5)
is more conrplicated, so she starts by substituting the link lengths h : l, :3 into the fbrward
kinematic equations in ( l) to obtain

x = 3 cos 6r + 3cos(0r +42)

-y:3singr +3sin(dl +d2) 
(2\

Thus, to put the end effector al the point (3. 5), the control angles must satisfy the equations

cos Ar + cos(dr * d:) : I

3singr *3sin(pr *t'z):5 
(3)

Solving these equations for d1 and 62 challenges Robin's algebra and trigonometry skills. but she
manages to do it using the procedure in the following exercise.

'.: " .':"'j

(a) Use the equations in (3) and the identity

sin2(gr +o:) +cos21e1 1e,;: 1

to show that

15sin0r *9cosOr : 17

(b) Solve the last equation for sin dr in terms of cos At and substitute in the identity

sin2 dr + cos2 (r, = I
to obtain

153 cos2 0r - l53cos01 +32:0
(c) Trcat this as a quadratic equation in cosdl, and use the quadmtic formula to obtain

"n.4,=]+5fr'2102
(d) Use the arccosine (inverse cosine) operation ofa calculating utility to solve the equations in

parr (c) to obtain

x 0.792436 rad x 45.4032' and d| ^, I.26832rad -'72.6694'

(e) Substitute each of these angles into the lirst equation in (3), and solve for the corrcsponding
values of 62.

(.t)
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At first, Robin was surprised that the solutions for 6l and A2 were not unique, but her sketch
in Figure 5c quickly made it clear that there will always be two ways of positioning the links ro
put the end effector at a specilied point.

r Controlling the Motion of the End Effector
Now that Robin has hgured out how to place the end effector at the points (3, 0) and (3,5), she

tums to the ploblem of making the robot paint the vertical line segment between those points.
She recognizes that not only must she make the end effector move on a vertical line, but she must
control its velocity-if the end effector moves too quickly, the paint will be too thin, and if it
moves too slowly, the paint will be too thick.

After some experinentation, she clecides that the end effectol should have a constant v€locity
of I ft/s. Thus. Robin's nathematical problem is to determine the rotation rates d 0r /dt and tlqz/dr
(in fad/s) that will makedr'/clt:0anddy-/dt:I.Thefir-stconditionwill ensure that the end

effector moves vertically (no horizontal velocity), and the second condition will ensure that it
moves upward at I ft/s.

To find formulas for dx /dt and clv /dt,Robin uses the chain rule to differentiate the forward
kirematic equations in (2) and obtains

.#)
th' de, / de' r19' \
d,= 3cos9,-: r f .1cos/d1 + e,,ll ai * A )

She uses the forward kinematic equations again to simplify these tbrmulas and she then substitutes
d.r/tlt:0andth,/.1r: I to obtain

dt de, / d0,

4, - -3sinet- - lJsin(dr +9,)l( 
Ar

de,
-), -3sintOr

de,.{7 +3cos(or

(le.+6))- -0- ,tt
de,

+ 0,1-: : I

(4)

/:,r-.eir isr li Confirm Robin's computations.

The equations in (4) will be used in the following way: At a given time r, the robot will
repofi the control angles 0 | and d2 of its links to the computer, the computer will use the forward
kinematic equations in (2) to calculate the .rr- and \)-coordinates of the end effector, and then the
values of0l , Al,.[, and t will be substituted into (4) to produce two equations in the two unknowns
tl9 t /d t anrl tl|z/ d t . The computer will solve these equations to determine the required rotation
rates for the links-

IlxL.rList'9 In each pal1, use the given information to sketch the position ofthe links, and then
calculate the rotation mtes for th€ links in rad/s that will make the end efTector of Robit]'s rcbot
rnove upward with a velocity of I fi/s from that position.

(a) 0t = it/3, 0z: -2tr/3 (b) 0t : 1r/2, fu : r/2

Module bt Mury Ann Co nors, USMA,West Poinl. u d Hotl.ird Anlon, Drc.rel Univcrsity, antl
basecl on thc urti(le "Molirtg a Pktnar Robot Arnt" by WaLtar Meycr, MAA Notts Numh<tr 29.
The Mathcmatical Assot'iotion ol Anrcrit'a. 1993.
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AND ExpoxENTrAL

FuxcrroNS

n this chlptel u'e u'ill stud), logulithms ancl cr-
poncnls l'roln lhe lirnclion point o1'viciv. These lirnctions
have rpplicrtions i1r the stlrdv ofpopulation growth. soun(1.

heating and coolin-t, elir'lhqrirkes. and calbon cllting. to

narne a teu. We will rcvicu, the llgebluic aspccts ol logil-
lithnrs and cxponcllls. bLrt rve u ill f'ocus rnainll, on those

rspecls of logurithnric aud cxpor)erlilIl lirnctions that rc-
late to calculus.'l'hc hcat oflhis chrlller is Seclion '1.1 on

ilverse fitnctiolts. in which I c clcvclop lirnclarrental icleas

that link loearithnric ancl cxponcntill lirnctiuns together'

nlLntelicully. rlgcbraicalll. and unrphiculll'. We tlso ap

Plv irvclsc linctions to the stuclv of invetse ttigonor.nclr'ic
I unctions (Section .1.5 ) iu)Ll to the problenr of rlitl'e|entiat-
ing lirnctions rvhose fonnullts cllrlnol be erplessecl in lhc
lirlm r'- /(r)(Sectiotr:1.3). \\re shoil hou'these rncth-
rxls of diflelentiatiou cari bc epplied to ploblents involv-
inu lules o1'chan-ue (Sectior.l:1.(r): lnd llnally. ive tlcvclop
l poir.er'lirl lool tirl evalurlirg linrils. cspecirrlll limits in
volving logaritlrnric lnd cxponential functions.
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INVERSE FI..INCTIONS

4.1 INVERSE FUNCTIONS

In et eryday language tlrc ternt "in,ersiort" cot^'els the iclea oJ a retersal. For example,
in meteorcloqi\ q tenlperutLu'e int,ersiort is a reyersll in tha usual lemperatLo'e proper
ties of dir layers; in musit dn im'ersion is a rettuting tlleme tlvt uses the same notes
in reverse order; antl it grammar dn itersioll is a ret,arsal of the normal order of
y'otds. In malh€mati.s lhe tetm inverse is used to describe futctiotls thdt are teretses
oJ one another fu the sense that ea(h Ltndoes the ellect of the othel'. The purpose oJ this
sediotl is to tliscttss tltis fwtdamentul nathemtttical ideu.

The idea of solving an equatiol'r _y : l(,r) for,r as a function of I, say r : g(y), is one

of the most important ideas in mathenatics. Sometimes, solving an equation is a simple
process; fbr example, using basic algebra the equation

]:rr+1 r'= l(r)

can be soived for,r as a function ol i':

:r:Jr-t r=s(r)

The first equation is betLer fol computing f if r is known, and the second is better for
computin-q :r if _r' is known (Figule 4.1.1).

Figure 4.1.1

Our primary interest in this section is to identify Ielationships that may exist between
the functjons f and g when an equation f- : /(r) is expressed as I : g(1), or conversely.
For exanple, consider the functions "f(.r) 

:,rr * 1 and g(1') : Jr I discussed above.

When these functions arc composed in either order they cancel out the effect ofooe another

in the sense that

8rJ{r)'- fi\^' | - V,rt, h l-'
(1)

"f(s(-r)) : l,c(r)13 + t : (J) - 1)3 + I : l'
The first of these equations states that each output of the composition g(/(r)) is the same

as the input, anci the second states that each output ofthe composition /(g())) is the sane
as the input. Pairs of t'unctions with these lwo properiies are so impofixnt that there is some

terminoiogy for them.

i,l.l.1 ogptulrloN. If the functions / and g satisfy the two conditions
i

i s("f(")) - .r; for every .r in the dornain of f
I f(S(]')) = 1., for every l in the domain ol,g

i then we say that f a:ad g are inverse JunclionJ. Moreover, w e call f an inverse of g and

: g an inverse oJ f.



Example 1

It follows from (1) that./(r) : -rr + I and 8(]') :
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.|-r, J are inverse functions.

It can bc shewn that a function carutot have two different inverses. Thus. if a function

f has an inverse. then the itrverse is unique, and we are entitled to talk about tle inverse
of/. The inverse ofa function / is connonly denoted by / I (read"l inverse"). Thus,
instead of using g in Example l, the inverse of I (r) = rl could have been expressed as

.f 1(r,): |1- 1.

\\'\RNIN(1. The symbol I 1 should always be interpretecl as the inverse ol J ancl never
as the reciprocal 1//.

It is important to understand that :i function is determined by the relationship that it
establishes between its inputs ancl outputs iud not by the letter used for the independent
variable. Thus, even though the fo nulas ./(-r) - 3r and /()') :3y' use clifferent inde
pendent variables, they denne the .rar?e functior] /, since the two formulas have the sane
"form" antl hence assign the same value to each inputi for example, in eilher notation

./(2) - 6. As we progress through this text, there will bc ceftain occasions on which we
will want the independent variables for f and f I to be the sane, and other occasions on
which wc will want them b be different. Thus, in Example I we could have expressed the
inverse of l(-r):.tr + lasf r1.r; = 'i4g I had we wanred ./ and / 1 ro have rhe same
independent variable.

If we use the notation / I (rather than g) in Definition 4. I .l , and if we use -r as the
independent variable in the fornulas fbr both I and / I, then ihe defining equatiolts
relating these functions are

.f '(.f (r)) : x fot every -r- in the domain of /
l(-/-'(")) = ir for every jr in the domain of I | (:2)

Example 2

Confirm each of the following.

(a) The inverse of .f(x) :2x is / r(r) : j;v.

(b) The inverse of -f(r) : .rr is ./ 1(-y) : ,rrll

Solutiort (t).

I '(.1(')) -.f t(2x) - j1z-t1 -,r
l(l'(.r)) = t (j') = z(1') ='

Sohrtiort (.b).

.f-tf..ft.x)):./ r(rr) : (r-3)r/3 : r
,.']

/(/ /.\)l 
- /1.\' )=(r ) =Y

RE\IARK. The results in Example 2 should make sense to you intuitively, silce the op-
erations of multiplying by 2 and multiplying by j in either otder cancel the eftect of one

another, as do the operations of cubing and taking a cube root.

The equations in (2) imply certain relationships between the domains and ranges of / and

.f 1. FoI example, in the lirst equation the quantity l(r) is an input of / I, so points in
the range of f lie in the domain of /-r; and in the second equation the quantity /-1(,r) is

an input of l, so points in the range of I I lie in the domain of /. All of this suggests the

DOMAIN AND RANGE OF INVERSE
FUNCTIONS
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fbllowing |eLationships. which wc strte withoLrt fbrmal prool

clomain of / I = rarge ol f
mnge of / I = donrain of I

(3)

A1 thc beginning of this section we solved lhe equatiorr -r, : ./(.t) : .rr + 1 for r as a
t'unction of l to obtain r : g(t) : .fr J.,,nc1 ue ,,hselretl in Exurrple 1 that g is the
inverse ol I. This was not accidentirl-\\'henever an equatiou r : /(r) is solved fbr.r as

a funclion of t, say -r : s(1). then / rnd I will be inverses. Wc can see rvhy this is so by
making two substitutions:

Substituter' : l(-!) into.! : g(r').Thisyicldsr
in Definition 4. L l.

Substilutc r - s(r.) inlo r. - .l(r). This yiclds r,
tion in Defi nition 4.l.l.

: ,g (.1( r) ). which is the fir.st equatioli

- l(3(r')). which is 1he seconclequa-

A METHOD FOR FINDING INVERSES

Since I and,q slrlisfy the iwo conclitions in Dellnition 4.1.1, rvc conclude that thev are

inverses. Thus. we luve the lbllowins result.

4.1.2 lllEOItEXl. Il trtt etltrutiott t - l\tltLtnhL t,,lt,J[,,t.r,t\.tltuktia]1(t\'.tlrctt 
:

I has an irrer.se antl tlrc rt'sultin14 equalld? is -r - / r(.1).

Example 3

FitrJ tlt; tttrct.c,'l /trr J{, 2.

Solrrtion. Flom Theorenr .1.1 .2 rve can find a fornula fbr l r(r') b), solvin-e the equation

r -l,6r-2
lbr' r :r..r lur'cl orr ol .r. fl c . ornptrtl'tiorts lrr'e

.\l:3-t 2

\':-(\ +l)
f|om which it tollows that

./ (r) : 1(r': + 2)

A1 lhis poillt we have successfully produced il fonnuilr lbr ./-1 ; horvcvcr. we r|c nut quite

done, since thele is no guarantee that thc naturirl clomain associated rvith this fbrrnula is

the correct domilin fin / I. To determine whethel this is so, we rvilL exa:nine llre range of
r - l(-r) : ,,/3r- J. The range consists of all -r' in thc interval 10. *-), so fionr (3) this
interval is also the ciomain of / r(,1 ); thus. the inverse of I is given by the fomrula

./ '(r) - 1(r' + zt. .\' : o

Itl,Nl.lRK. When a fblmula fb| I r is obtainecl by solvin-q the equation r' - /(r) lbr,r as

a funclion of r, the resulting fbmula has l as the indepcndenl variable. If it is pref'efable
1() havc r as the indepcnclenl variablc lin l I, then there tre two ways to proceed: you can

solyer': /(.\)fol .rasafurctiorofr',anclthenreplacerbyrinthc.lirrlfirlmulafirr'/r,
or you can interclrange -r and I in the.r'lgi?.71 equation arcl solve the equation -ri - ./(-r,)
tbr.i in tenns of .r. in which case the final equation will be r - I r(-r). ln Example 3.

eithel of these procedures will produce./ 1(.t):1(.tt+2).,. ]> O.

Thcorem 4.1.2 no1 only provides a method for finding the inverse of a function /. but
it also provides an inteq)retrtion 01'what the values of f I |epresent. The theorem tells us
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thatforagivenr,thequantityfl(r')isthatnumber.r\\,iththepropertytlrat/(.r):f.
For exa[rple. if f I ( I ) : ,1. then you know that /(.1): l:andsimilarly.if l (3) : ?. rhen
you knorv that .l r(7) : 3

Not evely f'unction has an inver-se. In genet-a]. in oltler li)l a 1'unction / to have an ii]verse
it rDust assi-gn distinct outpllts to distinct inputs. To see why this is so. cotisidel lhe func
tion /(r) :.rl. Since l(2) : l( 2):1,1he function I assigns the same output 10 rwo
distinct inputs. ll f were to have an invcr.sc, thcn the equation .f(2) :4 would imply that

/ r (4) : 2, and thc cquation /( 2) = :l woukl imply thal I L(,1) - -2. This is obviously
impossible. since we cannot have two clil'ferent values firr / r(,1). Thus, ./(-r) - ,rl has no
inversc. Auother wav b scc that ./ (-t) : tl has no inverse is to attempt to find lhe invelse by
solving thc eqllation .r' : rl firl r in tellns of r . We run into trouble initledialely becausc
the lesulting equation. -r - *f , does not express t as a slngfu, l-LLllction 01-r'.

Functions that assign distinct outpr.rts to distinct inpuls iue sufllcierlly impo antthatthcre
is a name lor l]rern they are said to L)e one-to-one or invertible. Statccl algebraically. a

function ./ is one-k)-one il .l(rr) I f(rt) whenevet rL f ,rt; and stated geomelrically,
a functioD f is one to one if the grapl] of r' : I (-r ) is cut ir{ most once by any horizontal
linc (Figulc ,1.1.2).

/(rrl

Not one to one. s nce

/(rL) = /(\.) and r +i.
one-to one, s nce l(.\ rl .i l(.rtl

Figure {LI

Onc can provc tlrat a lLrnctiolr f has an inverse il ancl only if it is onc-to-onc. and this
p|oviclcs us Nith the tbllowing geomelric lest 1br (leterninjng whether a flrnction has an

invelse.

.1.1,.1 THEORFI\I lThe Hoti.o'lrat Line Test). t\ fi.tnttion I lns tut inttrse il untl oubif
ils ,qrtplt is tul Ltt nto.rl once ht un| hori:otttul line.

Example 4

We obsclvcd abovc that thc Iunction l(-r) : ,:l cloes not havc an invcrsc. This is confirnrcd
by the horizoulal line test. silce the gr.iph ol .' - .rl is (ut nrore rhrn once by certailr
horiz0ntal lincs (Figure .1. 1.3).

figure 4.1.3

Example 5

We saw in Exurplc 2(b) that the function l(-r) : .i I has an inverse [namely. / (.r l: \ ]1.

Theexistenceoflninverseisconlirnrcclbytheholizonlallinctcst.sirlccthccr.rphotr : rl
isculatno51oncebyanyhorizontalIine(Figute:l.1'4)'<

Iri-surc .1.l.l
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GRAPHS OF INVERSE FUNCTIONS

Example 6

Explain why the function / that is graphed in Figurc 4.1 .5 has an inverse, and find /-r (3).

Solutiutt, The function / has an inverse since its graph passes the horizontal line test. To
evaluate / 1 (3), we view / I (3) as that nunber x for which "f(x) : 3. From the gmph
we seethat l(2) = 3,so I r(3) = 2.

3 -2 -l 0

Figure 4. L5

Our next objective is to explore the relationship between the graphs of l and / I . For this
purpose, it will be desjrable to use r as the independent variable for both functions, which
means that we will be con.rparing the graphs of1: /(r) andy - "f-t(r).

If (c, b) is a point on the graph ] : /(r), then b: f(a). This is equivalent to the
statementthata:/r(b),whichmeansthat(b,a)isapointonthegnphof)-,f-r(r).
In short, reversing the coordinates ofa point on the graph of / produces a point on the graph

of ./ I . Similarly, revening the coordinates of a point on the graph of / 1 produces a point
on the graph of / (verify). However, the geometric effect of reversing the coordinates of
a point is to reflect that point about the line ) : r (Figure 4.1.6), and hence the graphs of
y - /(r) and y : .f- | (x) are reflections of one another about this line (Figure 4.1.7). In
summary. we have the following result.

4.1.4 THEOREN,I. IJ f has an iuverse, then the graphs oJ y = f(x) and y : -f l(jr)

are refections of one afiothet about the line y = v; that is, each is the tniror image of
the other \tith respect to that line.

The poifts (a, b) and (b, r)
are ref ections about ]] = -r,

X

Figure 4.1.4

Figurc 4.1.7Figure 4.1.6



Example 7

Figure 4.1.8 shows the graphs of the inverse functions
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discussed in Examples 2 and 3.

X
i=.,[" u

INCREASING OR DECREASING
FUNCTIONS IIAVE INVERSES

RESTRICTING DOMAINS TO MAKE
FUNCTIONS INVERTIBLE

If the graph of a function / is always increasing or always decreasing over the domain of
/, then the graph of / can be cut at most once by any hodzontal line and consequently
tha function / must have an inverse. One way to tell whether the graph of a function is
increasing or decreasing over an interyal is by examining the slopes of its tangent lines.
We will prove in the next chapter that the graph of / must be increasing on any interval
where /'(x) > 0 (since the tangent lines have positive slope) and must be decreasing on any
interval where /'(.r) < 0 (since the tangent lines have negative slope) (Figure 4.1.9). These
intuitive observations suggest the following theorem, which we state without fomal proof.

4.1.5 THEoREM. IJ the domain of f is an intet'val on which f'(x) > 0 or on which

J'r,{l < 0. Ihcn the fun.notr I has an inverse.

Example 8

The graph of /(r) : ,t5 + -t + 1 is always increasing on (-cc, +oo), since

/'(r)=5ra+1>0
forall.r.However,thereisnoeasywaytosolvetheequation):x5+x+lforxinterms
of ) (try it), so even though we know that / has an inverse, we cannot produce a formula
for it

REMARK. What is impofiant to understand herc is that our inability to find a formula for
the inverse does not negate the existence of the inverse; indeed, one of our goals in later
sections will be to develop ways of finding properties of functions in which there are no

explicit formulas for the functions to work with.

Sometimes a function that is not one-to-one can be made one-to-one by restdcting its
domain. For example, although the function /(jr) : -r2 is not one to-one, the functions

8Q): x2, n u 0

h(x) : a2, ,r : 0

which result from restricting the domain of /, are one to one since their graphs pass the
horizontal line test lthe gnph of 8 is the right half of the parabola 1 : x2 and the graph

of lr is the left half (Figure 4.1.10)1. The inverses of g and h can be found by solving each

Figure 4.1.8

Figure 4.1.9
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CONTINUITY OF INVERSE
FUNCTIONS

DIFFERENTIABILIry OF INVERSE
FUNCTIONS

of the equations y : g(x) and y - h(x) for x as a function of y. For example, to find the
inverse of g we solve

Y - x2, x >O

for x, which yields x : 
^,,O; 

hence, g-' (y) = 
^/1,. 

Similarly, h | (y) = -",f. Geomet-
rically, the graphs of g(,r) : x2, x Z 0 and g r(.r) : ,E arc reflections of one another
about the line ) : r (Figure 4.1.1 1), which reveals that the graph of ] : ./4 is a portion
of a reflected parabola.

Because the graphs ol f aILd f I are reflections of one another about the line ) = r, it is
intuitively obvious that if the graph of / has no breaks, then neither will the graph of / r.

This suggests the following result, which we state without proof.

4,1,6 THEoREM. If afunction f is continuous and has an inverse, then f t is also
continuous.

For example, even though we cannot find a fomula for / I in Example 8, the continuity
of the polynomial / guarantees that /-1 is a continuous function.

Suppose that / is a continuous one-to one function. Speaking informally, the points of
nondifferentiability of / I occur most commonly at come$ or points of vertical tangency
in the graph ofy : /-r1x).However,thegraphof): / 1(r) is thereflection abour ), = n
of the graph of ), : /(x); hence, comers in the glaph of /-r are reflections of comers in
the graph of /, and points of ve ical tangency in the graph of / l are reflections of points
of hodzontal tangency in the graph of /. This suggests that if / is a differentiable function
whose dedvative is nonzero, then / I will be a differentiable function. The following
theorem, which we state without proof, makes this idea precise.

4.1.7 THEOREM (Differentiabiti\r of Inverse Functions).

im,ertible and di.lferentiqble on qn interval I. Then f-l
where f'(f t(r)) 10.

Suppose that the function f is
is dtfferentiabLe at any poixt x

Example 9

We showed in Example 8 that the function -f(") : "5 
+ r + t has an inverse. Use Theorem

4.1.? to show that /-r is differentiable on the interyal ( *, +-).

)=-r2,J>0

Figurc 4. t. t0

,=r2,.\>o

Figure 4.l.l l
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Stthrliort. Let 1 denete the interyal (--, +-). We nust show dtat for each r in 1, the
lunction / has a nonzero derivative at the point / I (,r). But this is so because the der.ivative
oflis

.l'(,t) - 5-ta + t

which is nonzero ibr all -r.

Mosl graphing utilities cannot glaph inverse funciions directly. However, there is a way of
graphing inverse fulrctiol]s by expressing the graph parametlically. To see how this can be

done, suppose that we are interested in graphing the invelse of a one-to-onc function ./. We
observed in Section 1.7 that the equatiol.r 1' : /(,r) can be expressed parametrically as

GRAPHING INVERSE FUNCTIONS
WITH GRAPHING UTILITIES

ExERctsESET4.l E .,,'q. o

.! : /. r' : l(r)
Moreover, u'e know that the graph of I I can be obtained by intcrchanging -t and 1 , since
this reflects the graph of / about the line l - -r. Thus, fiom (4) the graph of f I can be
represenled parametlicaily as

-r- :.l(t), ) : t (s)

Fot example, Figure ,1. I . I 2 shows the gra|h ol /l\ ) - ri + t+ 1 ancl its inverse generatecl

with a graphing utility. The graph ol / was generated flom the palametric equations

.r;:1, .\,:ti+t+1
and the graph of f I was generated from the parametric equations

,r-Ij+1+1. l-t

(,+)

al 2.

3.

In (a) (d), detelrnine whelher ./ and g a1e inverse fulictions.
(a) l(r-) :4-r. s(r) : Ir
(b) /(-r) :3r*l, s(-r):3r I

(c) l(r) : l! J. 31.t1 : -r3 1 2

(d) ./(r) : -ra, s(r) - i{;
Check your answers to Exercise 1 with a graphing utility by

determining whether the graphs of .l and g are reflections
of one another about the line t : r.
In eaclr parl, detemlne whether the function / dcfined by
the tahle is one-to onc.

(a)
56

0l2f

1456

In each palt, determirle whether the function f is one to-
onc. and jLrstify your ans\\,el.
(a) l(/) is the number of pcoplc in line at a movie theater

at time t.
(b) /(r) is your weight on your -rth birthday.
(c) l(u) is the weight of u cubic inches of lead.

hl each part, use the horizontal line test to determjne whether
the function.f is one to one.
,ri /r.\i 3..r l2 'b)/'\, J'
(c) l(-r) : lrl (d) .l(r) :.rr
re' ./r.r' -.tl -2.t-2 ,r' /rrr-5rn\
In each part, generate the graph of the funclion / with a

graphing utility, and determine whether / is one to one.
(a) /(r) :rr 3-r *2 0, /(r.): r3-3.rnr+3.r-l

In each part, determine whether l is one-to-one.
(a) l(r) : tan -r

(b) /(r) -1x11-1, 7r<r<lt
(cl /(r): tlnr. -7rl2 . x - n/)

12
)l

4.

5-

86.

7.

ir
i /(.0

4

(b) 

'r 
r 2

j rt"t + I 6-3 I



In each part, determine whether f is one-to one.
(a) /(-t) - cos r
(b) f(-t) - ccrs-t. tr/2:..t :. n/)
(c) f(.r) : cos.t. 0: r : z
(a) The accompanying ligure shows the graph ofa function

/ ovcl its clomain *8 : .r : 8. Explain rvhy / has an
jnvcrlc. anclusc thc graph to lind I r(2)..1 L( l).and
I r(o).

(b) Find the domain and range of / I.

(c) Skelch the graph ol l r.

E7 ar5.1 3 210lll.l 567It
Figure Ex-9

(a) Explai wh)'the iunction f graphed in the accompany-
ing ligule has no invcrsc on its domain -3 : .r : .1.

(b) Subdivide lhe dornain ir'[o ll']r'ee adjace l inlerviLls on

c,r;h.rinhirhlh. lJ r.lion I hr.:rrr irrr crst.

FigLrrc E\ l0

ln Exercises 11 and 12, dctc|rninc whether the function f is

one to-one by cxarrining the sign of .l'( r ).

fl. (a) l(r) : rr * 8r .. I
(b) .l(-r) : 2.rr +.tr + 3.r +2
(c) /(.t) :2.! + sinr

12. (a) l(.t) : -rr + 3.rr 8

(b) l(-t) -.tf + 8-\:r + 2-r - 1

,I(c) l(-r) - r. + I

In Exercises 13-23. llncl a tbrmula for / r(.\.).
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8.

9.

14. I (.!) :6r
-l+ I

16. I (.r) : ,_ I

17. l(.r) :3.rr - 5 lS. .l(r) : i4-r + 2

19. .l(.r) : i!l- t

20. l(.t) -5l(.!2+ I). r : 0

21. fQ;):3/r:. t<0

22. f(.r)- l2\' rlu
lr-. r - l)

l5/l r. r-l
2.1- Illt: I' l1ir \ 12

24. Find a lbrmula tbr / I (,t ). glveli rhat

7r(.r') : -Yr - 3,r: + 3-t I

25.

26.

2U.

29.

30_

In Excrcises 25-29, find atbmulatbr I I(1), and state the
dorrain of f L.

/(.r)-(.ri2)1, r:0
./(r) - ./.t +: 27. .l(f ) : va _2i
/(i) - 1' +5' 2. r : l)

./(r) :-t 5r2. rll
The for.mula F: ?C+32, whele C: 273.15 Cex
presses the Fahrenheil lemperature F as a fLlnction of the
Celsius tcmperature C.

1:\ Firrd rr Lr|mrrl.r frI the itr\er\e lllrcl on.
(b) ln words. what does the invcrse lunction tell you?
(c) Find the domaln and lange of the inverse function.

(a) One meter is about 6.21,1 x10 a milcs. Find a formula
r' - /(r) that expresses a length.r in meters as a func-
tion ol the same length _r ir r'r'riles.

(b) Find a folmula for the inverse ol f.
(c) ln praclicrl lerrns. what docs the iormula r : I l(l 

)

tell you?

Suppose that / is a one to-one. continuous function sLrch

lhat lim /(.r) - 7. Find lin!.1 r(r1. andjustilyyourrea-
r+l

soning.

33. Let /(-r) : .1, r > l. ancl g(-r) : .i,/;.
(a) Show ihat -f(S(-t)) : -r. r > l, and g(.1(.r)) = .r,

(b) Show drat f and 8 are /?.)r inlerses ol one another by
showing that the graphs ol r : .l(.r) and l : g(,!) are

not refleclions of one anolher aboul ) : -r;.

(c) Do parts (a) and (b) conlradict one another? Explain.

3il. Let /(,r) -a.rr +b-ric,o > 0.Find / rillheclomain

of f is restricted tcr

(a) \ > b/(2aJ

(a) Show that f(r) - (3 .r)/(l -v) is its own lnverse.
(b) whal does lhe result in part (a) rell )'ou about the graph

of 11

Suppose that a line of nonzero siope rr intelsects the -t axis
at (,!0.0). Find an equation tbr the refleclion of this line

'r r 5ho'\ lhlrl I |' - .\' J.,' 2.r r. nol olc-tn-onr n-
( -. +-).

(b) liind the lar-eest value ()1'l such tl'lat f is one to onc on

the interval ( l. t).

t0-

-I.

32.

\b) .r -: b/(.2.u).

15.

16.13. /(r) - -1j

15. /(.t) = 7.t 6



! al. l(-r) -.{r + 0.2.i - l. -l < r < 2

FJ12, rrrt-Jr-,2 r. 5 , )

! +3. l(-r) : cos(cos 0.5r). 0: r : 3

B 44. rrr'- ' (in,. 0 \ h
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38. (a) Show rhar lhe function ./(r) : -r4 - 2r3 is not one,to- 45. Prove that if ,i2 + Dc I 0, then the graph ol
one on ( :.. +:.). ir + h(b) Find the smallest valre of k such that f is one to one l(r) : 

-
on lhc inlerr?l [1. ' J

39. Ler /(x) - 2.rr + 5.r * 3. Find.t if f r(-r)- t. '" 
t"-""ti'"*i" tneline1:a'

r 46. (a) Prove: If I alld g are one-to-one, then so is the compo-
,10. Ler /(\l: .l ..finarrf 1 r1.ry - 2. sition /o.g.

.rr * I (b) Plove: ll / and ( ?ue one to-onc, then

In Exercises 41--,1,1, use a graphing utility and parametric (fog)t-g\,'fl
equations to ciisplay the graphs ol .f and f on the same 47. sketch the graph ..,1 a function th.lt is one-to-one on

( -, +,), yet not increasing on (-r. +-) andnotdecreas-
ing on ( z, +-).

,18. Prove: A one-lo-ore function / cannot have two ditl'erent
inver ses.

49. Let F(-t) : .f(2gQD where /(.r) : -r1 +.rr + I for
0 : r : 2.and g(r) : / r(.{). Find F(3).

4. 2 I.OGARITF.I Ih{IC AI\'lD EXPCIt\lEI\TIAL FI.'NCTIOI\!S

When logarithns v,ere irttt'oducetl in the se|enteerltll ce lui )- Lts o Lompututlolvl toa)|.

thel ptorided scientists ol that period contputing powet that v'as pretiously urintag-
inahle. Althotrglt (onputers ancl taltulators hate lurgely replated logarithnts lbr
tltlmerical ('u|('uletio tts, Lhe logarithnlic lun(tiotls und their telatires hare v,ide-rctfigin.e,

ttltplitatiotts it1 mathenldti(s antl stienca. Some of these wilI be introduced in tltis
se(ti0n.

IRRATIONAL EXPONENTS
In algebra, integer and rational powers of a number b ar.e deflned by

h h h . h (/r lr.t,,r'.]. /, -,l b'-1.
h,

6t't,t : Xl1' : ({tb)t, tt rt,t : L
br /q

If D is negative, then some of the fractional powers of b will have imaginary values; for
exarnple, ( ,tl2 : ^rr t To avoid this corrplication we will assume throughout this
section that /, : 0, even if it is not stated explicitly.

Obserye that the preceding definitions do not include irlzlloral powers of D such as

2", 3"t, and z f

There are various methocls for defining irrational powers. One approach is to define irrational
powers of b as limits of rational powers of D. For example, to deiine 2" we can start with
the decimal representation of z, namely,

3.1415926...

From this decimal we can form a sequence of rational numbers that gets closer and closer
to /I. namely,

3.1, 3.14, 3.141, 3.r415, 3.14159

and from these we can form a sequence ol ratio al powels ol2.

2. . 2, ^. 2t 1" , 2. L r., 2r r4r:o
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'l-ahle 4.2-l

,t

3

3.I
1.1.1

3.1,+l

l. l4l5
3 l,+ 159

I1,11592

8 000000

8.57,11138

ti.8 152,11

8.82 1353

8.82.1,111

,l 82,+962

u u2,1974

THE FAMILY OF EXPONENTIAL
FUNCTIONS

Since the exponents ol the tenns in this sequence approach a limit of r, it seens plnLrsible
that the terms thenselves approach a limit. and it woukl seem reasonablc to rlelae 2' to be
lhis linil. Table 4.2.I p|ovicles nunerical evidence that the sequence does, in fact. havc a

limit and that to ti)Lr.lecimal places tlte vtlue ofthis limit is 2" : IJ.13250. More generally,
lbr any irnitionaL exponenl /, aud positive number D, we can define /r/' as the limit ol'the
rational p()wers of 1, cr-eated from the decimal expansion of p.

roR THE RI:ADFR. Confimr the approximalion 2- - 8.8250 b1' conputing 2" directly
using your calculating utility.

Although oul deiinitioli of 6/' for inational p ccrtainly seens reasonable, there is a

1ol of tedious mathenatical detail required to make the definition plecise. Wc will not be

concelned with such matters here and will acccpt without proollhat the lbllowing fiirnilial
laws hold for all Ieal exponenls:

r)t)b4:r)t) ,. l!-7r, o. (bt))q - btnt

A function ofthe fbrm l(r) : D'. where D > 0 and b I l, is callecl i\n exponentiql

.functiott with base 6. Sonie examplcs are

.l(.rt : :.. ./{rl - 1r,' . .l(_r) - z,
Note that an exponential f'unction llas a constant base and variable exlloneirt. Thus. functiolts
such as /(.r) - .rl and f(.r) - r" would not be classifiecl iis exponential fiLnctions. since
thcy have a valiable base ancl a constant exponent. FLrnctions of this type, which ale callecl
power functions, rvill be studied later.

It can be shown 1hal exponenlial functions ale continuous ancl have one of the basic two
shapcs shown in Figure,1.2.la. depending otr wl]elher 0 < /r < I or D > l. Figure.1.2.l/,
shows the glaphs of sone specific exponential functions.

(.u) (.h)

Fisurc 1.2 I

RE]\,I,\RK. Ifb = l, then the fiLnction Dtr is constanl, since b' - 1' - 1. This case is of
no interest to us here. so we have excluded it fron the lamily o1'exponential fitnctions.

FoR TIIE RE{DER. Use your graphilg utility to conl'irm that the graphs i : (j)' and

I - 2' aglee with Figure 4.2.Ib, and explain why the two graphs are refleclions of one
another about the \'-axis.

Sjnce it is not oLLr obiective in this section to develop the properties ol exponcntial
lunctions in igolous mathematical delail. ivc will simply observe without proof thal the
fbllowing prope|ties of exponential functions are consistelt with the glaphs shown in Fig-
ure 4.2. l.

(0<h'lr ( ) (i)'
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.1.2-l IHEORENI. 111,

\d) The lilnction l (.t)
t t. +.r).

(b) The funttion J (.x 
1

(0. +-).

>0utttl b+1.the .

: b' is tlefinetlfot all real talucs of.t. so its nutto ul tlonuin is

: b' is tontinuous rn the intertal (. -. +-). trtttl its rutt,lc is

LOGARITHMS
Recall t'r.orn algebra that a logarithm is an exponenl. Morc plcciscly. \f b > 0 ttntl b I I
then fbr positive values of r th.logarithm to the Dase D o;fx is denoted by

log,, -r

and is delined to be thiit exponenl to whiclr /, must be raised to ploduce -r. Fo| example,

log,n I00 - 2. lo-qr0(l/1000): -3. log, 16 -'1, log,, l:0. lo-q/,/r: l

lt) = toir lll = l/ l{)01) lr=16

Historically. the lirst logarithms cvel studiecl wele tlte logarithms witir base 10, crlled
conmon logarithmJ. Fol such logalithrns jt is usual to suppress explicit rel'erence to thc
base and write log.r rather than log'.).!. More recently, logarithms rvith base 2 havc played a

role in computer science, since they aise natulally in the binary number system. However,
tlre most widely usecl logarithnls in ilpplications are lhe ndl.ral logaritltms, which have an

irrational base denote.i by thc lettel e in honor of the Swiss mathematician Leonard Euler
(p. l9). who nrst suggestecl its application to logarithns in an unpublished paper written in
1728. This constant, whose virlue to six dccimal places is

e x 2.7 \8282. (l)

arises as 1he horizonlal asynptote of lhe ._qrirpll of lhe equirtion

r lr'r,:{t+ I\ r,/
(Figure 4.2.2).

t_H! vAr.liFs oF (l + llf)\ IPPRO^CH f

I * 
.r'!

('r1)'

(2)

6

5

l
2

l

lll.r567

a horizontal asymptote of (2) ris r + +z and as -r > :c is

I

IO

I0t)

1000

10,000

100.000

1.000,000

2 = 2.000000

l.l 2.5931:t2

1.01 2.70481,1

1.001 1.116921

1.0001 2.71i1l:16

1.00001 2.718268

r.00000 i 2.718280

Figure 1.2.2

The tact that r' - e is

expressed by the limits

('. +)'('.:)' anda= lim e: lim (3,t)
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LOGARITHMIC FUNCTIONS

Later, we will show that these limits can be derived tion the limit

e : lim (1 +.r)r/'
!+0

which is sometimes taken as the deflnition of the number e.

It is standard to denote tbe natural logarithm ofr by ln.{ (r'ead "ell en of-t"), rather than
log",,r. Thus, ln,r can be viewed as that powel to which e must be raised to produce.r. For
example,

ln I :0, lne: 1.

Since .r)=l Sincc. -.

In general, the statements

):lni and ,r:e)
are equivalent.

The exponential fufction /(,r) - e' is called lhe nqtural exponenlial .fuflction. To
simplify typography, this function is sornetilnes written as exp -t. Thus, for example, you
might see the relationship e ',+'r : e',e'r expressed as

exp(rr + rv,) = exp(-rr) exp(-r?)

This notation is also used by graphing and calculatitg utilities, and it is typical to access

the function e' with some variation of the command EXP

FoR THE I{E/\DER Most scientillc calculating utilities provide some way of evaluating
common logarithns, natural logarithms, and powers of e. Check your documenrurion ro see

how this is done, and then confirm the approximation e x 2.118282 and the values that
appear iD the table in Figure 4.2.2.

Figure 4.2.1a suggests that il D > 0 and D I I, then the graph of l' : D' passes the
horizontal Iine test, and this implies that the function l(-r) : D' has an inverse. To ilnd
a fomula for this inverse (with,r as the indep€ndent variable), we can solve the equation
-r : br for I' as a function of -r. This can be done by taking the logarithm to the base D of
both sides of this equation. This yields

Iog, -r : log7,(b)) (6)

However, if we think of 1og1, (Dr ) as that exponent to which b must be raised to produce br ,

then it becomes evident that log/,(1rr ) : r'. Thus, (6) can be rewritten as

,y : log7, x

fron.r which we conclude that the inverse of l(r) : D' is .l -r(-r) : logr -t. This implies
that the graphs of l : D' and _r' = logi, r are reflections of one another about the line r = ,r
(Figure 21.2.3). We call log,,.r the logorithmic function with base b.

Recall from Section 4.1 that a oneto-one furction / and its inverse satisfy the equalioDs

.l ' 
(.J $)) : .r for every -,; in the domain of /

./(l -1 (t)) : r for every r in the domain of f I

lnparticular,ifwetakel(r)=b'and/r(r):logr.r,andifwekeepinmindthatthe
domain of I I is the same as the range of /, then we obtain

log6(b*) : r for allrealvalues of-r

bloc':r forr >0

lnl/e: -1, ln(e2; :2
Sincez L:l/f Sincecr:z:

(s)

Fi!!re 4 2.1

(:1)
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In the special case where, : e, these equations become

ln(e') : .x for all real values ofx
e1n':.x forr >0

In words, the equations in (7) tell us that the functions b' and 1og,.r cancel out the effect
of one another when composed in either order; for example,

1og10'-r, 10log'=r, lne":x. etn " -r, lne5:5, "tno:n

FoR THE READER. Figure 4.2.4 shows computer-generated tables and graphs of ) : ea

and ) : lnx. Use your calculating and graphing utilities to generate the graphs and table
values.

The inverse relationship between bj and 1og5 x allows us to translate propefties of ex-
ponential functions into properties of logarithmic functions, and vice versa.

4.2.2 THEOREM (Compariton of Exponential and lagarithmic Funcnons for b ) l).

ba:1
b1 :b
range b' : (0, *-)
domain b" : (--, +-)
0<b'<1 r/.t < 0

log, 1:0
logsb:1
domain log, x : (0, +c.)

range logr:r : (-.o, +co)

lo96,r < 0 if 0<x<1

It follows from Theorem 4.1.2 that the equation y = e' can be solved for x in terms of
y as ;r : ln y, provided (of course) that ) is in the domain of the natural logarithm function
and ,r is in the domain of the natural exponential function: that is, y > 0 and .r is any real
number. Thus,

y : e' is equivalent to r : ln y if ) > 0 and x is any real number

More generally, ifb > 0 and b I 1, then

) : b' is equivalent t6 "r : 1og, y if y > 0 and x is any real number

You should recall the following algebraic properties of logarithms from your earlier
studies.

4.2.3 THEoREM (Algebr(iic Properties of Logatithns).

log6(ac) :7og1, a *logsc Productpropeny

logo?/c) : lo96 a logoc Quotienr property

logb(a'): tlogba Power property

logi,(l/c):-logrc Reciprocarp.openy

These propefiies are often used to expand a single logarithm into sums, differences, and

multiples ofother logarithms and, conversely, to condense sums, differences, and multiples

(8)

0.25 -r.39
0.50 0.69

1 0
2 0.69

3 1.10

4 1.39
5 1.61

6 1.'79

1 1.95

8 2.08

9 2.20

Figure 4.2.4

I, tl="
1.39 0.25

-0.69 0.50

0 1

0.69 2

1.10 3

1.39 4
1.61 5

l.'79
1.95

q
'7

2.08 8

2.20 9
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5log2+log3 log8: log32+log3 log8:tog1j :lqg12
?t

]lnr ln(r2- 1)+2ln(x+3) :lnrr/3 ln(,r2-l)+tn1x+:12:tn{$1}

Itl,N,lARK. Expressions of the fonn log,,Qr * u) and lo96(ir - u) have no useful sirnplili-
cations in terms of log,, ir and log,, u. In perticular,

logb(, + u) I logr,l + log/, u

),og,,(u - u) I logl u log/, u

Equations ofthe fo.m log, r : & can be solved by converting them to the exponential lbrm
soLVlNG EQuATloNs INVOLVING t : bt, and equations oiihe form b' : f, can be solved by taking a togarithm of both sides
EXPONENTIALS AND LOGARITHMS

(usually 1og or ln).

Example I
Find .r; such that

(a) log;r : r/2 (b) ln(i + 1) = 5 (o) 5' :7

Sol ion (a). Conve ing the equation to exponential form yields

r: loJz ! 25.95

Soltdion lb). Converting the equation to exponential form yields

x*1:e5 o, t="5 lr. 141.11

Sohttion (.c1. Taking the natural logarithm of both sides and using the power property of
logarithms yields

ln7xln5=ln7 or .r:_:1.21
ln5

Example 2

A satellite that requires 7 watts of power to operate at full capacity is equipped with a

mdioisotope power supply whose power output in watts is given by the equittion

P:75e '1t25

where I is the time in days that the supply is used. How long can the satellite operate at full
capacity?

Sohttiott, The power P will fall to 7 watts whelr

'l :'75e t /125

The solution for t is as follows:
'7/75:" 'ttzs

ln( // /5) = ln(e " '' )

tn('7 /'7 s) : -t /12s
t - -t251n{7 /15) x 296.4

sothesatellitecanoperateatfuIlcapacityforabout296dayS,<

of logarithms into a single logarithm. For example,

.' .,'5

I"c; log.rvs - log JT = 1og.r 1 1og y5 -1og11/2 = log,{ +5log} j tog:
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Here is a more complicated example.

Example 3

5e1yq 1- ' - L lor .\ .

2

Soltttiort. Multiplying both sides of the given equation by 2 yields

e'-e':2
or equivalently,

Ie' -2
Multiplying through by e' yields

"1' 7 :2e' ctt e2' 2e' I = o

fhis is really a quadratic equation in disguise, as can be seen by lewriting it in the fornr

("')'?-2"'-t:o
and letting a - e 'to obtain

,,2 2tt 1:o
Solving lbr a by the quadratic formula yields

I r\,[+4 2-v4
) - ) -'

or'since'l:er'
e'=t+J1

But e' cannot be negative, so we discald the negative value I /2; thus,

e':\+J2
lne* - 1n(1 + J2)

,r-ln(1*Jz)-o.sst

ScienrihL ca lcu lalor s generrlly pror ide ke). [or eva luat irrg . ommon logrrith rns rnd n.rtural
CHANGE OF BASE FORMULA FOR
i6A;rH,?nff*" " logarithms but have ro keys for evaluating loguithms with other bases. However, this js

not a serious deficiency because it is possible to express a logarithm with any base in terms
of logarithms with any other base (see Exelcise 40). For example, the following formula
expresses a logarithm with base b in tenns of natural logarilhms:

lnr
log r -:---- (q)

-- ln l)

We can de vethisresultbyletting):log/,r,fiomwhichitfollowsthatbr:-r.Taking
the natural logarithm of both sides of this equation we obtain y ln b = ln r, fiom which (9)

lollows.

Example 4

Use a calculating utility to evaluate logr 5 by expressing this logarithm in terms of natural
logalithms.

Soluti\rt. From (9) we obtain

In5
los, 5 - -- 2.321928- lrt 2
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LOGARITHMIC SCALES IN SCIENCE
AND ENGINEERING

'lbble.l.2.2

Logorithnrsarcuscdinscicnceuclenginecringtodealuithquirntities$'hoseunil\\lr)over
an c\cL'ssivc l) \\'ide range ol yl lucs. For exrrrrplc. lllc 'loudrress' o l a sound can be nrc'asurcd

b)'its irlc[si/,]'1 (in $irlts Pcr squilre neter). \!hich is rclaled to ll]c cDel-s) transrDiltcd b\'
the soun(l witvc-lhc grcatel the intensil). thc grciltel the trlursl}ritlccl eDerg\'. ancl thc loucler

the soun(l is perceived by the hunan car. Ijorvever. intensity Lrnits ate unrvicldy bccause

the! vilr'), ovcr iln enornrolls riurge. FoI cxanrplc. a sound al lhc threshold of hun'i n hcaring
lias an inlcnsitl' of about l0 rl W/m:. a close lr'hisper has an intensitl thirt is lbout 100

tinres the lrearin-s thrcshold. nllcl a jet engine :tl 50 meters lllls rtr) inlcnsil]' thitt is lboul
I .0(X). (X)0. (XX). (XX) - I 0rl t inres the heariug thlcshold. To see horr losarithms cinr t]!' uscd

to recluce this uide spreird. obscrvc that if

.r = log.r

then increusing \ by a lil(11r'ol l0 d.Lli- I unil to r since

lo-e I0.r : log l0+ log.r = I + r
Ph)'sicisls rnd cnginccrs tirkc l(ivrntrge oi this plopeltl, b1' mcasuling loudness in lclnrs ol
tbe so d level li. which is detined b1'

/'i = l0 log(1/ 1r))

uhele /rr = l(t r r w,/mr is a rclcrc nce inten sil! close lo llrc lhrc\lrol(l ol h Lrlirn lrcruing.

The units ol f L\rc decibcls (dB). narned irt honor ol thc tcleplrone inrenlor Alcxander
Graharl lle ll. With this scalc of rDerlurcnrent. ,rirl/i/r1r'i/rg thc inle n sif ) 1 by a lirctol of l 0

alrlr 1{) dB lo lhc sound lcvcI /J (\'erify). This rcsults in a rnore llirclab]e scrlc tharl inlensity
lbr nrcasuling sound louclrtess (Table.1.2.2). Sorre other litmiliat logarithmic sciiles are

the Richler scale Lrsed 10 nrcirsurc eathquake intensitl itnd thc pH scale used 10 nlcr\urc
acidit\.in chcnristr)'. both ol $llich are cliscttsscrl in the exetcises.

Example 5

ln I976rherockgroupThcWhoscttherecor(l li)r tlre loudcsl conceltI I20dB. 131'corrpar'-

ison. n.jackhammer positionccl rt the s[]ne spot ils Thc Who irortlrl hil\'e prodLtcccl lt souncl

lcvcl ol 9l dB. Whrt is the r f io of the sound inlcnsitv of The Who to thc solrncl illtensitY

ol a .iackhartrnrer'l

.5oltrlirttt. Lel/r ancl /jr(= ll0dB)denotelheillensil) ancl sourrd lcvel ofTheWho.and
lct /t im(l ljt (= 9l dB ) clcr'rolc the intensitl' liud sound lcrcl of the .jlckhanrrer. Thcn

ltl l: = (lt I Ir)/(.1:/la)
kr-g(/r/ /: ) = log(1rl/o) - log(/://0)

l0log(/r//r): l0 krg(/r/ /rr) l0log(/://o)
l0log(/r//r) - Pr fl. = ll0 9l - 2ii

Iog(/r/ /: ) :1.8

Thus. / //1 : l0ls .' 631. ivhich telis us thxl the soLrnd irttcnsit)' of The Who wls 631

tin1esgI!'xtclthanajackh.ln1l1]eI|<

The g[o\\,1h pirtter ns of (' ln(l ln .r illusllatctl b}' nrblc 1.2.3 rrc \\'orlll Doting. Bolh litttcl ions

increase irs.r increascs. lrul tl]c)' inclease in thituaticaLll' tlillcrctrt wal's-r" inclelses
extrcmcly lapidll and ln r incleases extlenrely slou'ly. Fot cxanrplc. itt .! : l0 lhc vitltlc of
c' is ,1ver. 22.000. but lt .\ = l(XX)thevalueolltr.i has liol evcn rcachccl 7.

Thc tilblc stlongly sugllcsts thiLl e| + +7, ils r + +-. Ho$ evcL. the g|ou'th of ln.t is so

slo\\ tlllt its lirniting beha!iol as.1+ {z is nol clcal t'fol]r the tilble. Ho\\'e!er. in spitc of
its slo\\ !lr1)\\ th. it is still true th t ln.r + +;. as .r - +2. To scr' tl'tlt this is so. clroosc an1'

posltivenurr'rbelM(aslargelsyoulike).Thcvitlucol'ln-tluillteachMrihenr:cll.sincc

ln.r = ln(r1l ) - M

B rdB)

0 l0('=
l0 l0r =
l0 l0r =
t0 tOr =
10 l( )r =
50 l( ]i =

110 l0rr =

I

l0
100

r.000

I0.000

t(x)-00r)

I .ofl).00( ).(x )0.0(x)

Pelcr To\\ 11\crd ol lhc who \uslrLinc(i

])crmrncnL hurrirg rcdu.Lioll dre 1t) 1lr.

hi.h rltl ihr.l l.!el of his brnd \ mrL\ic.

EXPONENTIAL AND LOGARITHMIC
GROWTH
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Since 1nr increases as 'x increases, we can conclude that lnr > M lor x > eM; hence,
lnx -+ +co as r + fco since the values of lnx eventually exceed any positive number M
(Figure 4.2.5).

In summary,

| -r. :--I--l;_:-::t:::itr-: :-:;,::
-r i ' ir ,1,'i lnr .i - -i .: t"- - t i- -,,

1 2.'72 0.00 ,

2 739- 0.69

3 20.09 1.10

4 54.60 1.39

5 148.41 l.6i
6 401.41 1.79
'7 1096.63 1.95

8

b

2980.96
s io:.os

2.08

2.20
l0 22026.4',7 2.30

100 2.69 x 1 4.61

1000 1.97 x I 6.91

ExERcrsE SET 4.2 E c oot ,rg c,. - ,Lor

The following limits, which are consistent with Figure 4.2.5, can be deduced numerically
by constructing approp ate tables of values (verify):

lim e' : *o:

lim e* :0

lim e ':0

lim lnx : *co (10-11)

(12 13)

( 14- 1s)

The following limits can be deduced numerically, but they can be seen more readily by
noting that the graph of y : e ' is the reflection about the )-axis of the gmph of I : e 

I

(Figure 4.2.6):

lim lnr: co

lim e ':*co

Figure 4.2.5 Figure 4.2.6

I In Exercises I and 2, simplify the expression without using

a calculating ulilily.
, In Exercises 5 and 6, find the exact value of the explession

without using a calculating utility.

1. (a) 82/3

2. (a) 2-a

3. (a) 21 
5i

a. @) 1/u

(b) (-8)2/3

(b) 4''

(c) 8-24

(c) 9 o5

(b) togr (:,1)

(d) loge 3

(b) logro (104)

(d) ln("/€)

5. (a) 1og, 16

(c) loga 4

6. (a) log,6(0.001)

(c) ln(e3)ln Exercr.es 3 and 4. u\e a calculating urilit) lo appro\imare
I the expression. Round your answer to four decimal places. :

I

(b) 5 2',

o) 96;

In Exercises 7 and 8, use a calculating utility to approximate
the expression. Round your answer to four decimal places.

1. (a) log23.2 (b) ln0.74
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8. (a) lo8 0.3 (b) lnz

In Exercises 9 and 10 use the logarithm properties in The
orcm 4.2.3 to rewdte the expression in terms of r, s, and t,
where r : lna,s : lnb, and / : lnc.

In Exercises 34 36, sketch the graph ofthe equation without
using a graphing utility.

9. (a) \n a2 Jbc

lO. (l \n!

11. (a) log(10.r..4J)

l,E +2
12- rr) tos _-

" cos -5r

In Exercises 11 and 12, expand the logarithm in terms of
sums, differences, and multiples of simpler loga thms.

Use a calculating utility and the change ofbase formula (9)
to find the values of log2 7.35 atd 1og5 0.6, rounded to four
decimal places.

InExercises 38 and 39, graph the functions on the same screen
of a graphing utility. [Use the change of base formula (9),

where neededl .

(a) y:1*ln(r 2)

{a) }:(rJ -l
I - '+l

(b) Y-3+e"
(b) 1:lnl-r
(b) y:3lni4l

): lnx, y: e', log.t, 10'

y -log, r. ln,r. Jogr.i. log..r

(a) De ve the general change ofbase fomula

los x
loq. ir : ---:1!-" log" &

(b) Use the result in part (a) to frnd the exact value of
(log2 81)(log3 32) without using a calculating utility.
lHint:Takex:a.l

Use a graphing utility to estimate where the graphs of
) : xo 2 and ), : lnx intersect.

The United Stares public debt D, in billions of dollars, has
been modeled as D : 0.051517(1.1306727)J, where x is
the numbel ofyears since 1900. Based on this model, when
did the debt first reach one trillion dollars?

(a) Is the curve in the accompanying figure the graph of an

exponenlral lunction? Explain lour reasoning.
(b) Find the equation of an exponential function that passes

through the point (4,2).
(c) Find the aquation of an exponential function that passes

through the point (2, i).
(d) Use a graphing utility to generate the graph of an expo-

nential function that passes through the point (2, 5).

ru) 1.+

34.

35.

36.

37.
(b) ln

(b)

(b)

E 38.

E 3e.

40.

E 41.

42.

13.

14.

15.

In Exercises 13-15, rew te the expression as a single loga-
ithm.

41o92 - Iog3 + log 16

] logr - 3log(sin2x) + 2

2ln(x * 1) * j hx - In(cosx)

In Exercises 16-25, solve for.{ without using a calculating
utility.

logle(/r): -l
ht(l/x): -Z
1og5 (5") - 8

In Exercises 26 31, solve for x without using a calculating
utility. Use the natural logarithm anywhere that logarithms
are needed.

E 43.

E aa. (a) Make a conjecture about the general shape ofthe graph

of l, : log0og ir ), ard sketch the graph of this equation
and )/ : logr in the same coordinate system.

(b) Check your work in part (a) with a graphing utility.

16. logro(1 + jr) : 3

18. ln(jY2) - 4

20. log, (3*) :7
22. logro x2 + loglor : 30

23. logrox3/2 - loglo v& : 5

24. 1t4x - 31n(x2) : ln 2

25. lr.(l/x) + ln(2r3) : ln 3

26.3',:2
28. 3e 2' :5
3O- e' - 2xe' :O

29. 2e3' -'7
31. xe '+2e ' =0

17.

19.

21.

In Exercises 32 ard 33, rewite the given equation as a

quadratic equation in a, where a : e'; then solve for,r.

ab3

,,

Figure Ex 43

32. e2' e' - 6
2r.r



46.

1'1.

48.

45. Find rhe lallacy in the tbllowing "pioof lhat + > J. Mul
tiply both sides of the inequality 3 > 2 by 1og ] to get
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where 1n : l0 ll W/url. Darnage to the average ear oc-
curs al 90 dB or gre.rter. Find the decibel leveL of each ol the
following soul]ds an(l state whether it will cause ear-diimage.

SOUND

( )

3log l
rug (l )'

los i
l

l]

> 21og ]

', tog (l )r
:' tng I
t 

.rl

Plovc the lbuI aLgeblaic ploperties ol logarithrrs in Theo-

rcm 4.2.3.

Ii equipment in thc satcllitc ol Example 2 requires l5 walts

to operate corrcctly, what is the operational lifetime ol the

power !upply'l

Thc cquation O : l'?-00:5/ gives the mass Q in gtams ol
radioactive polassiunr 42 that will remain from some initial
quanlity alier r hours of radioactive decay.
(a) How many glfurs wer-e there initiallyJ
(b) Ho\\, many grams remain at'ter 4 houlsl
(c) How long *'ill it take to reduce the amount of radioac

tive potassium .12 1() half ol the inilial amounlJ

The acidit) ol ir substance is neasured by its pH value.
which is detined by the tbflnula

pH - loglH+l

wherethesy bol I H I I denoies the conccntration of hydro
gen ions measured in rloles pcr'liter. Distilled water has a

pl-l of 7; a substance is called aclrlil if it has pH < 7 inld
/)./-ri( if ilhas pH > 7. Find the pH ol each of the lbllowing
subslances and state whether it is acidic ol basic.

(a) Jer aircrafr (frorn 500 fr) l.0x l0lWml
(b) Arnplified rock nusic L0 Wm:
(c) Galbage disposal 1.0 x l0 I w/ln2
(ct) TV (mid volune fron l0 ft) :1.2 ! l0 r W/m

ln Exelcises 52-54. use the deiinilion ol the decibel lcvcl of
a sorud (see Exercise 5 l).

ll one sound is three linles as intense as another. how much
greater is its decibel level?

According to one source. the noise inside a moving auiomo
bile is about 70 dB. while aD eleclric blender genelates 93
dB. Fjnd the latio of tl're intensily of the roise of lhc blcnde|
1() that of the automobile.

Supposc that the decibel level ol iin echo is j the decibcl
level of thc original sound. ll each echo lesults in anolher
echo, holv many cchoes will be heald from r 120-dB sound
givcn that thc avcrage hunian ear can hear a souncl as low
as 10 ctB?

Ot1 lhe Richter scale, the ruagnitude M ol an eiLfthqLlake is

related to the Ieleased energy E in joules (J) by the equation

losE:4.,1 + l.5M

Find the energ]' t ofthe 1906 San Flancisco eafthquake
thai registered M - 8.2 on the Richter scale.
If the released cnergy of one eatthqLrlke is l0 times
thal ol al]olher. how rnuch -qreater is its nragnituclc on
The Richter scale'l

52.

53.

49.

54.

{5

SUBS tAN(rll *)

(a)

(b)

(c)

(l)

Arlerial blood 3.9 x
T(nn,rn)e\ 6'l x
Milk ,:1.0 x
Collee 1.2 x

i0 E mol/L
l0 5 moi/L
10 I no1/L
1(l 6 mol/L

(b)

50.

51.

Use thc delinilion ot pH in Exercise 49 to llnd LH+l iD a

solutjur havirrg a pH ecllral to

\a) 2.14 (Lr) 11.06

The pe|ceivecl loudness /l of a souncl in deciltls (dB) is re-

lated to its intcnsity / in walts/square meter iW/n-rr) by the

equatiorl

d : I0log(//10)

56. Supposc that thc magnitLrdes oi two cafthquakes difier by
I on the Richtcr scale. Find the ratio of thc released enclgy
of the lalger carthcllrake to that of the smaller earthqulke.

[Notc. See Exercise 55 fbr terminology.]

ln Exclcises 57 md 58. usc Formula (3) or'(5 ). as approprialc.
rn llnLl rlre lil]'ir

57. Find lim (l - 2.r)rr'. [Hir[. Le : -2.r.]

58. Find lim (l *3/-t)'. lHint. Let t : 3lr.l
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FUNCTIONS DEFINED EXPLICITLY
AND IMPLICITLY

4.3 IMPLICIT DIFFERENTIATION

In earlier sectiotls u,e u,ere concerned with dllerentidting Jundians that were giten hy
equations oJ the Jbt'n 1' = J(.x). It1 this sectiotl we u'ill consider ntethods Jbr diJJbren-
tiating ftutctiotts Jor \4,l1ich it is i1(on,-enient or impossible t.) et)ress them in this farm.

Up to now, we have been concemed with differentiating functions that are expressed in
tlreformI:/(r) An equation ofthis form is said to deflne y explicitly as a funcrion oi'
r, because the variable ,i appears alone on one side of the equatiolr. Ho$e!et, sometimes
functions are defined by equations in which,i is tot alote on one side; for example, the
equalion

-\'.{+}+1:,Y (f)

is not of the form ) : "f(,r). However, this equation still defines 1' as a function of :r since
iT can be rewriften as

x-1
- r+l

Thus, we say that (1) defines t implicitly as a function ofx, the funclion being

x-l
/(_r):r+l
An equation in r and I can implicitly define more than one function of -r; for example,

if we solve the equation

"'+t'=l (2)

for l in terms of x, we obnin r' : +n/r F, so we ha\,e found Lwo fLrnctions that are
delined inplicitly by (2), namely

J,il: Jr f ancl l)(.v) : Jr - xt (3)

The graphs of these tunctions are the upper and lower sem icircles of the circle xt + t,t : I

(Figure 4.3.1).

i
.r +r = l

Fisur€ 4.3.1

ObseNe that the complete circle -r2 1y2 - I does not pass the vertical line test, and

hence is not itsell the graph of a function of r. However, the upper and lower semicircles
(which are only portions of the entire circle) do pass the vertical line test, and hence are

graphs of functions. In general, if we have an equation in r and t, then any segment of its
graph that passes the vefical line test can be viewed as the graph of a function defined by
the equation. Thus, we make the following definition.

4.3.1 DEFINITION. We will say that a given equation in r and ! deiines the function

f implicitly if the graph of ) : /(r) coincides with some segment of the gmph of the

equation.

- ,/, -:li'-"1



GRAPHS OF EQUATIONS IN
xANDy
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Thus, for cxample, the equation rr * ,yr : I dellnes the functions ,fr(r) = JTIF anO

l(-rt : -"4 -r]implicitly, since the graphs of these functions are segments of the circle
,rl+1.1 :[.

Sometimes it may be difficult or impossible to solve an equation in r and r for l in tcrms
of r. For example. with persistcnce the equation

,rr + r,r :3"-r, (4)

can be solved for l in terms of ,r. but the algebrir is tedious and the resulting formulas are

complicated. On lhe olher hrnd. the equarion

sin(.rr') = r'

cannot be solved for I in tenns of x by any elenentary method. Thus, even though an

equation in -r and ,r' may deline one or more functions of .r, it may not be practical or
possible to find explicit formulas fbr those functions.

When an equation in -r and I cannot be solved tbr I in terms of .r (or -l in tenns of r'), it may

be diflicult oI time-consuming to obtain even a rough sketch of the graph, so the gmphing
ofsuch cquations is usually best left for graphing utilities. In particular. the CAS programs

Mdthutoti& ard MaP k, both have "implicit plot" capabilities tbr graphing such equations.
For example, Figure 4.3.2 shows the graph of Equation (4), which is called the Folium of
Descartes.

: I()lt lll l{1,\lil,1l Figure 4.3.3 shows the graphs oftwo functions (in solid coJor') that

i are defined irnplicitiy by (4). Sketch some nore.

ln genelal, it is not necesslrfy to solve an equalion for r.. in terms of ,r in order to dilferentiate
the functions delined implicitly by the equation. To illustratc this, let us consider the simple

equation

'rl=I
One way to lind r11/.1.r is to rewrite this equation as

I

from which il follows that

IMPLICIT DIFFERENTIATION

(s)

(6)

dlI-- - ---r (7)

However, there is another way to obtain this derivative. Wc can differentiate both sides of

Figurc.l.l.l
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(5) bey'rz solving for _v in terms ofr, treating ) as a (temporadly unspecifled) dill'erentiable
lunction of -r. With this approach we obtain

dd
lxyl : -lllA^ tlx

dtlr, [i]+t, [.r] :0I \ Ll:r

dt.\ , +r =0
d:L
d.r r

If we now substitute (6) into the last expression, we obtain

(lt' 1

dx n2

which agrees with (7). This method ofobtaining derivatives is called implicit differentiation.

Example I
Use implicit differentiatior to find ./_r,/dr if 5y2 + sin r, : x2.

,t-d-
, [5t'' * sin r] : , [r']ar Qx

.1 d5, [,t'']* . [sinl]= 2.r
aI lt
/ r/r'\ ,/r' n- 'tl,, '.5l2r-':1{1co.v,;i-2r,,c'rtcpb-., "
\ ,h./ Ll.r \,ru'ron r.

dt, dt'lot' + tcos ,1 = 2r- ,1\ tl\

Solving for rh'/d,r wr: obtain

d!_ 2x

dx 101, + cos l'
Note that this fomula irvolves both r and y. ln order to obtain a tbrmula for d)-/dx that
involves -{ alone, we would have to solve the original equation for ,} in tenns ofr and then
substitute in (8). However, it is impossible to do this, so we arc forced to leave the formula

(8)

fol rh/d-t in terms of x and -v.

Example 2

Use implicit dillerenlialion to find r/- r' J r' il rl12 2r'- =q.

Solttliou. DifTerentiating both sides of 4x2 2-r,2 : 9 implicitly yields

dl8x-4r':-0
from which we obtain

dt 2x

dx r
Differentiating both sides of (9) implicitly yields

d2 t, (v)(2) - (2x)(dt'/dx)

(e)

( 10)-t-.) - -.1

Substituting (9) into (10) and simplifying using the original equation, we obtain

dt | 2 -v- 2x (2x / t") 2\,2 - 4x2 9

dY ) ) .v'
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In Examples 1 and 2, the resultjng formulas for d1/dr involved both .r and y. Alrhough
it is usually more desirable to have the fornula fol dy/d;v expressed in terms of x alone,
having the folmula in terms of -{ and f, is not an impediment to findiog slopes ancl equations
of tangent lines provided the jr - and ! coordinates of the point of tangency are known. This
is illustrated in the foilowing example.

Example 3

Findthe slopes of the tangent lines at (2, -1) and (2, 1)ro)2 r*1:0.

Sohttiott, We could ploceed by solving the equation for,l in 1et.mr.1r,.ncl then evaluating
thederivativeof):uE-1at(.2,1)andthederivativee6l-.:-.rGLat(2, 1) (Figure
21.3.4). However, implicit differentiation is more efficient since it gives the slopes of Doa,
functior.rs. Differentiating implicitly yields

,l ^ d
, [r'' x + i]: [0]r1:r. d X

d-ddd
, lt'l trl III -;l0l(lX AX AX rl-t

2y . I:0
dt:I
dx 2r

At(2.-l)wehavey: I,andat(2, 1) we have _v : 1, so the slopes of the tangelt lines
at those points are

,,*: ;i,=, : -l -o -,^.- *1,,:)
Example 4

(a) Use implicit differcntiation to find rh/d-r for the Folium of Descartes ,r3 + lr = 3-r"-.

(b) Find an equation for the tangent line to the Folium of Descartes at the poinr (j, ]).
(c) At what points is the tangent line to the Folium of Descartes horizontal?

Soltttion (.a). Differentiating both sides of the given equation implicitly yields

d--t
rjJ.[-r'+ -\,'] = t[3.rrl

^ -,.h ,/v3r'*li' :l.r +lr
tlt dt

, .Jt dt'.r_+]_--\-+1' dx dr
d1'()_ .t )- - v-r_

dy -r-12 (lr)
0x 1 Y

Solutiott (b). At the point (1. l), .. t'ou" -t : I and r : ], so f'rom (lt) the slope /rran

of the tangent line at this poinr is

J; 'r 2r-r3 2r:n""- J, {3 2l tl 2t- |

='l'
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DIFFERENTIABILIry OF FUNCTIONS
DEFINED IMPLICITLY

DERIVATIVES OF RATIONAT
POWERS OF x

Thus, the equation of the tangent line at the point (j, ]) is

I j=-1 ("-;) or r*,r:3
which is consistcnl with Figure 4.3.5-

Solution lcl, The tangent line is hodzontal at the points where d,y/dx = 0, and from (l l)
this occurs wherc )' r2 = 0 or

l'= x2 (12)

Substiruting this expression for -r' in the equation ;r3 t r'r : 3x-y for the curve yields

rr + (r'r)3:3,r3
,16 - 2.r1 =o
-r3(r3-2):o

whosesolutionsarer-0andr:2113.Thus,from(12),thetangentlineishorizontalatthe
points(0.0)and'12|/3'2z/l1!(t'26.l.59),whichisconsistentwithFigure4.3.6.<

When differentiating implicitly, it is assumed that -r'represents a differentiable function of
r. If this is not so, then the resulting calculations may be nonsense. For example, if we
differentiate the equation

"2+r2+1:o
we obtain

dt dt -r-2r + 2r---: :0 or ---: = -' ,/.r dx r

(11)

However, this derivative is meaningless because (13) does not define a ftrnction 01'x. (The

left side of the equation is greater than zero.)
Sometimes it is possible to identify points of nondifferentiability graphically. For exam-

ple. the nrst t'unction in Figure 4.3.3 is differentiable at each point of its domain because
there are no comers, discontinuities, or points of venical tangency; however, the second
Iuncrion ii not dillerentiable at the origin.

In general, it can be dil'licult to determine analytically whether functions defined implic-
itly are differentiable, so we will leave such matters for more advanced courses.

In Theorem 3.3.8 and the discussion immediately following it, we showed that the formula

" r-rr-,,..r L (14)

holds for integer values of ir and for ri : l. We will now use implicit differentiation to
show that this lbrmula holds fbr any rational exponent. More precisely, we will show that

Fieure 4.3.5 Figure 4.3.6
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if r is a rational number. then

n
.:[x'l-r,'' (15)

wherever -r' and ,t'-l are defined. For now, we will assume without proof that r:' is differ-
entiable; the justification for this will be considered later

Let t : r'. Since r is a rational number, it can be expressed as a ratio of integers
r = nf n,Thus, \) : xt = x /n can be written as

di
)" = x"' so Lhat +[r'"] = ;lr" ldx tlx

By differentiating implicitly with respect to.r and using (14), we obtain

,rrt,-r! - urr,,,-r (16)' dx
But

..r-l l..n,nlt | 
- 

.- t-\ t/ )., -r
Thus, ( l6) can be written as

,,,u-trtlnt\l - ,r rtt-l
tlx

so that
r,1r' l

which establishes ( l5).

Example 5

From ( l5)

!1,,ttsr- l",r/sr-t - 
4,-1ri

dx ) )

a,r-- t, - -1 *'--,t,-t - - 
7, : r

dx' 8 8

!l%l- d 1rt/t1=1..-:r'' .ldt'" ' 3' lyF
If u is a differentiable function of -t, and r is a rational number, then the chain rule yields

the following generalization of ( 15):

d tlu. tr,"l: ru'-' '+ {17)utt 4x

Example 6

ftlr' - - +2)''o =tUQ' - - +2) ''o . (p' -, *r1
: l{.r'-" +z)-tt4{zx - t)

f t<...o"t +rs1 : -11sec z-r)-nlt - f [r""or]

4
= -i{secot)-'lt . secrx tanrx 1t

= - 11{ sec ,r-. ) ' 5 tan zx
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DERIVATIVES OF INVERSE
FUNCTIONS

We conclude this section with a brief discussion of the genelal relatiooship between dte
dcrivalives ol ./ and ./ 1. FoI this purpose, suppose that botlt functions are differentiable,
and let

r, : / r(,r)

Rewriting this equation as

.t : / (.r.)

and differentiating implicitly *ith respect to -r yields

, [.i1: ;U(r )l
1l r d\

ll
l: / (\) 

-,/ r

d) :
dt l'( r')

Thus. tr-om (18) we obtrin the following formuia that relates the derivative of ./. 1 to the

delivative of l .

lrr',"11=#u- (21 )

For example. if /-r(.r) : vG, then /(-t) : .r2, so l'(.r) : 2,r; this fonuula inplies that

'l ,r. I I

;Lv Lr 
tr/1 t), r/i

which is consistent with thc known dcrivalivc lolmula lbr./r.
Ar altelnative velsion ofFonnula (21) that uses dependent variables can be obtained by

using ( I 9) to reu'rite .l'(,i ) as d,;/r1r'. in u'hich case (21 ) beconres

\22)

For example. if f - VT, then.r : r'r. Thus, r1.r/dr' : 2r', anci (22) implies that

lt I I

tlt 2 r' 2Jx
which again is consistent with the known derivalive formula lbr r' - J.r.

Ifan explicit fonnula can be obtained for-the inverse ofa function, then the dil r,Jrliabil-
ity and the derivative of the invene can usualiy be deduced tioln that tbruula. However, if
no explicit tbrmula for the invetse crn be obtained, then Theorem 4.1 .7 is the primary malh-

ematical tool fbr estabiishing cliffer entiability of the iu'erse. Once differentiability has been

established, a formLrla fi)I the derivalive ol'11]e inverse can be obtained either by difttrenti
ating implicitly or by using Formulas (21) or (22). The ibllowing example illustraies this.

Example 7

We showecl in Example 9 ofSection 4.I that the inve|se ofthe tunction lt i ) = .r'' +.r + l

is differentiable on the inlcrval (---. +-). Howevel. there is no way 1o obtain an explicit
tbrmula for' /-1, so we rrLrst rcsort to indirect methods to differentiate this fturctioli.

(a) Find the de vative of / I by usilg Formula (22).

(b) Find the derivative of f I by diflerentiating implicitly.

Solution la\, lf we let r. : I I (.r). rhen

(18)

(19)

(20)

tl.', I

dx dx /dy

r:,f(t,):).5+r,+l (21)
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from which it follows that
dx

-:-51,4+ldt
dyll

t^L\
dx dx/dy 5ya - I

Although it would be preferable to have dy/dr expressed as a function ofr, we are forced
to leave it in terms of y, since we cannot solve (23) for y in terms ofx.

Sohttion (b). Differentiating (23) implicitly with respect to r yields

dd-;[x]=-[y'*y*l]
4X AX

' dv d"t
' dx dx

. d,tl:(5y.+t)_1
ax

dvl
tlx 5yo + I

which agrees with (24).

Exencrse Ser 4.3 El cm

'-t
InE-\ercises t-8.nl:!!ly 

l
L.y=l/u-s
t ,= (,*r4)"'

2. y: Y2+tat(t\

--,t.y=,,1 ,r_s
(3 - b)4/3

y = [.os1"t)]-tlt

12. x3 - y3 = 611y

14. x3y2 -5x2y +x =l
- r+v

16. x' = ----:--:x-t

1?. sin(;r2y2) = I

19. tan31'y2 1y; = .t

21, 3x2 4y2 =7
23, x3 y3 -4=o
25. y*siny:x

18. t2: cot )
1+cscy

20. *J3 :l+va
I+secy

22. x3 ay3:l
24.2xy-y2=J

26. rcosy = y

y = x3 (5x2 + 1) 2/3

y = [sin(3/.r)]5/2

In Exercises 9 and lO; (a) Find dy/dtt by differentiating im-
plicitly. (b) Sotve the equation for y as a function of .r, and
frnd dy/dx from that equation. (c) Conflrm that the two re-
sults are consistent by expressing the derivadve in part (a) as

a function of r alone.

9, x3 +xy-2x=7 10. Jy - e- :2
In Exercises 11-20, find dy/dx by implicit differentiation.

In Exercises 27 and 28, find the slope of the tangent line to 
]: the curve at the given points in two ways: first by solving !

j for y in terms ofx and differentiating and then by implicit j

differentiation- I

---'27. x2 +t2 =r; 0/Jl,t/A), 0/Jr,-t/Jr)
28. y2 x * I = 0; (10, 3), (lO, 3)

11. .x2 + )2 = too

13. xzy13xy3_ x:3
6. 1a1=ryx

In Exercises 29-32, we implicit differentiation to find the
slope of the talgent line to the curve at the specified point,
and check that your answer is consislent with the accompa-
nying graph.

ln Exercises 2 l-26, fi rrd, d.2 y I d x2 by implicit differentiation.
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29. .!1 + r1 : 16: (1. y1.5) lLan6\ special quartic)

.10. r,3 + r'.rr + -tr 3tr = 0: (0. 3) Vrtsechixl

It. 2 (rr + r.r)2 - 25(tr t.:): (3. t) Uetn iscatel

32, .rr11+1r'r:4: (-l.3J5) | four-cusped hypocycloitll

Figurc E)i-10

Figure Ex :l I I;iSllre E\ --rl

Find the values of a ancl b fix the curve .rr,l 1 a1r = b if
thepoint (1. l) is on its graph andthe tangent ljne ar (1. l)
has thc cquatioD 4.! * 3r, = 7.

Find the coordinates of the point in the tirst quadr.rnl al
which the tangent line to lhe curve -rr .tr { rl = 0 is
palallel to the.r axis.

Find equations for two lines through the origin that are tan-
gent lo the cun'e.r: - 4.r * r'l + 3 :0.
Use implicit differentiation to show thar the cquation of thc
tangent line to lhe curve r,l = li.r at (.r0. l0) is

r.1,r' - ]t 1r -1- .1111

41.

42-

4.1.

44,

45. Find rh /r1r if

2r'ir + rl r' : I
It land _=_
tl.t cos a

l;r -l-1.

E 14.

lf you have a CAS, read the (locumentation on "implicit
plotting,- and then generale lhe lbur curves in Exercises

Curves with equations ofthe form Ir : i(-r - 4)(,! - t).
where rr < b are callcd bipartite cubics.
(a) Use the implicit plotting crpability of a CAS to graph

the bipartite cubic ,r': : .r(.t - l)(r 2).
(b) At what points does the curye in pa (a) have a hori-

zontal tangent line?
(c) Solve the equatiolr in pilll (a) for I in terms of ,r'. and

use the result to explliD why the graph consists of lwo
separate parts (i.c.. is lrilro tit().

(d) Graph the equation in part (r) without using the implicit
plotting capabilily ol the CAS.

.15. (a) Use the inrplicit plotting capability of a CAS to graph

the rotrted ellipse.r? -.tr' *.r': :4.
(b) Use the graph to cstimale the.r -coo!dinates ofall hori-

zontal tangent lines.
(c) Find the exact values for the .r-coordinates in prrt (b).

In Exerciscs 36 39. use implicit difterenriarion to find the
\pecihed derivalive.

36. ,,6 + Ji:5: tlu/rlt 37. aa -tr -6a'r: tlaldr

38. r'= sinrl 1-r/r1r'.

39, a2 a| + b2),2 - I (d, /r constants); ./o/di
40. At wirat poin(s) is thc langerll line to the cuwe t l : 2rl

perpendicular to lhe liDe 4.r - 3i + I : 0:)

ln Exercises 46 antl 47 , t\ttd d t ltlt in terms of ,r, r'. tnd
(/.f/./t. assuning that.t ancl .r' are cljlfelentiable fuDctions ol'
the variable /. lHil?ai Dilllrentiate both sides of the given

cquJlinn wirh e.nccl lo /.1

,16. .trr'l +r':3 47. nr:sin3r
48. (a) Show that /(.ri) = .t4/r is diffcrentiable at 0, bur nor

twice differentiable at 0.
(b) Show that.l(.r) : .ti"r is twice dilTerentiable at 0. bur

not three limes dit'ferentiable at 0.
(c) Find an exponent t such that ./(.\ ) : rr is (, - I ) times

differentia[rle al0. but not /r limes ditterentiable at 0.

ln Exercises 49 ancl 50. find all rational virlues ol r sucll thtt
t : -r' satislles the given equatiotr.

49. 3.tlr"'+,1r,r'' - 2-r' :0 50. l6r1r'"i24rr"ar' =0

tr

Two curves are said tobe ofihogonatl if their tangent lines .tre
perpendicular at cach point ol inlersection- and two families
ofcurves are said to bc otthogonal lmjectones ofone anotlrer
ii each member of one lanrily is orthogonal to each member
of the other family. This tenninology is used in Exercises 5 I

rnd 52.

Tlre accompanying ligure shows some typical membcru of
the farnilies ofcilcles.r: * (t, - r)2 - cl (black clrlvcs)
and (-r t)r + r,r : (l (gray curves). Show that lhese

families are orthogonal trajectories of onc another. JHirr;
For the rangent lines to be perpendicular at a poirt ol inter-
seclion. the slopes of those tangent lines must be negalivc
reciprocals of one another.l

The accompanying ligure shows some typical nrenrbers

ol the families of hypelbolas r,r' : c (black curves) ancl

rl l.l - & (gray curves). whcre c I 0 and t 10. Use the
hint in Exercise 5l 10 show that these families are orthosol']al
trajectories of one another'.

51.

Firure Ex 29

52.
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In EreI r.e.5.r-56. tind rlrc Jcri\ilri!e ol 7 I b5 urrng For'-

mula (22), and check your lesult by difierentiating implicitly.

53. l(.r) - 5.tr +.r - 7 54. .l(.t)= llrr. r > 0

55. /(.r) : 2.ri +,rr + | 56. /(.r ) = 5.r sin 2-\'

4.4 DERIVATIVES OF LOGARITI.IMIC AND EXPONENTIAL
FUNCTIONS

In this sedion he fill ohtuitl deri'ativ Jbrnulus.lit logarithuit untl etponential

Jinttious. untl rl'e will disL uss tlrc gerrcrql rcltti(rtsltilt betreen the tleriatirc of a
on?1()-on( .fun(tion dtld its it1\'erse.

The natural logarithn plays a special role in calculus that can be no(ivated by differenti-
aling logr, r, where b is an arbitrary base. Fo[ this pulpose. we will a.ssrnrc that log/, .{ is
diffcrcntiable. and hence conlinuous, tbr,r. > 0, We will also need the limit

lim (l + u)ri ": e
r- {)

that was given in Formula (5) of Section 4.2 (with .r rather than I as (hc variable)-

Using the definition of a derivative. we obtain

; llo8r .rJ : 
,1iT

logl,(.r * /r) - log7,.,;

h

(+)I

- lim - kru,.
'lhc quoticnr propenl ol
k)gfirlnN in Theornr.l.l.l

: ri- ] rno. (r * 4\
,-oii -'\ ri/

I: Lim -losi,(l+r)
ll: i l1'1,; 

los/,(l + r,)

I

- ' lirr tog,,rt - i 'r ' ,ll_iii|;"q' t,.,I i -ll
t-

-' rog,,[,rrm,rr-rr ] l,: ii;,:li:iii:,;:;;i.ll;l
I

lr.r doe\ Nr r!! silh r. s ir crirr
hc nnnLd rhroueh rh.linrir sigrr.

: Iog, e
\'

Thus.

t! I

, llog/, il : - log/, c, .r > 0ax ,r

But from Fomula (9) o[ Section 4.2 we have log,, e

derivative fbrmula as

Figure Ex-52Figure Ex-51

: | / ln b. so we can rewrite this
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r = n.\ w th tanqent ifes i

d1
; llog,,-r l- ,. r -0 rlr
d), "r ln,

In the special case wherc D : e, we have log/, e : ln 
" 

: I, so this fbmula becomes

d1
;llnrJ =-, x>0

Thus, among all possible bases, the base b - e produces the simplest derivative formula
for logi, r. This is one of the reasons why the nalural logarithm function is preferred over

other logarithms in calculus.

Example 1

(a) Figure 4.4.1 shows the graph of -r : ln -t and its tangent lines at the poifts r : l, 1,

3, and 5. Fincl the slopes of those tangeot lines.

(b) Do you think that the graph of -r' : ln:r has any horizontal tangent lines? Use the

derivative of ln r to justify your answer.

Sol ion kt). Frorn (2), the slopes ofthe tangent lines al the poil'rts,r = l, 1.3, and 5 are

1 I x : 2. l. {, and }, which is consistent with Figurc 4.4.1.

Solution (b). From the graph of .". : ln r, it does not appear that there are any horizontal
tangent lines. This is confirmed by the fact that d,l/d-r : l /-r is not equal to zero fbr any

leal value of x.

Ifa is a differentiable tunction ofr, and if x(r) > 0,the applying the chain rule to ( 1 )

and (2) produces the following generalized derivative formulas:

(2)

dldu
-[los, 

lrldr' "" ulnb d.r

d lduand . lln al : .t1\: u tl x
(3 4)

Example 2
d-

Find 

^Lln(,t'+ 
1)1.

Soltttiort, Fron.i (zl) with a : .r2 + I,

,t^td12.,
.llnt.i -ttl =, ;i-ll- ,2t- ----;J.\ r +l r'1..\ \ +l .\'+l

When possiblc, the properlies of logarithms in Theorem 4.2.3 should be used to convert

producls, quotients, and exponents irlto sums, dilfelences, and constant nrultiples befbrz

differentiating a function involving logarithms.

Example 3

/ lr"('-'ri ll 'l,rn-{ -ln(,in\) lrnLr ,,'ld.[ \,,/t .],/.1 ,|rL 2 I
2 cosr I
r sin-t 2(1+.r)
2l: - + cot-rr 2+2r

Example 4
d

Find ; Un l-r 11.
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Sohrtion. The function ln l r I is defined for all r, excepr -r : 0; we will consider the cases
x > 0 and.r < 0 separately.

Ifx > 0, then rl - -r, so

ddl
-lnli l: _ flnrl- -dxdrI

Ifr < 0. then r = r, so from (4) we have

dJIdI
, fln x l- [lnl .r)l - -------- . L .r] - :

aX d\ ( .r) ../ \ .r\

Since the same formula rcsults in both cases. we have shown that

d1
, fln 'x]- tf x*0ax a

Example 5

From (5) and the chain rule,

J I I .:,r.x
. []n sin..r ]- . ..lsinr - --colrtlx Slnt .,/r \ln -r

(5)

We now consider a technique called /ogarithmic differentiation that is useful for differen-
tiating functions that are composed of products, quotients, and powers.

Example 6

The derivative of
12 fix - Ar - -- 

- a 16r
(l +.r')

is messy to calculate dircctly. Howeyer, if we fiISt take the natural logarithm of both sides
and then use its properties, we can wdte

ln) = 2inr + +h(7r - 14) -4ln(1 +n2)

Differcntiating both sides with respect to r yields

ldt:?_ 1/3 8x

)-dx x '/x-14 1*x2
Thus, on solving for dy/1x and using (6) we obtain

dt 12.' 7r t4l2 I 8r I/.- (r ",/ li-:,-o t+-r'l

(7)

LOGARITHMIC DIFFERENTIATION

(8)

RE\4ARK. Since ln 1 is defined only for y > 0, logarithmic differentiation of _v 
: /(.r) is

valid only on intervals where f(r) is positive. Thus, the derivative obtained in the preceding
example is valid on the interval (2, +*), since the given function is positive for -,r > 2.
However, the formula is actually valid on the interyal (--,2) as well. This can be seen

by taking absolute values betbre proceeding with the logarithmic differcntiation and noting
that ln l)l is defined for all _r' except y, : 0. If we do this and simplify using properties of
logarithms and absolute values, we obtain

lnly :2ln r +lln 7r-14 -41n 1*x2
Differentiating both sides with rcspect to x yields (7), and hence results in (8).

In general, ifthe dedvative of l, - /(x) is to be obtained by logarithmic dillerentiation,
then the same folm afor dy/dx will result regardless of whether one iir"ct takes absolute
values or not. Thus, a derivative formula obtained by logarithmic differentiation will be
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DERIVATIVES OF IRRATIONAL
POWERS OF x

DERIVATIVES OF EXPONENTIAL
FUNCTIONS

valid except perhaps at points where /(r) is zero. The fonnula may, in fact, be valid at
those points as well, but it is not guaranteed.

We know from Formula (15) of Section 4.3 that the differentiation formula

.1

, lt'l - rx' ' t9.tax

holds for rational values of r. We will now use logarithmic differentiation to show that this
formula holds if r is an_u- real number (rational or irrational). In our computations we will
assume that r' is a differentiable function and that the familiar laws ofexponents hold for
real gxponents.

Let ) : r', where r is a real number. The delivative dy/dr can be obtained by logadthmic
differentiation as follows:

ln):lnr' : rln.r
dd
, [lnl] :, [rlnr]ax ax

)'dx x
d.', r r
-- -!aa i[ ::\

which establishes (9) for real values of r. Thus, for examp)e,

1r., |=,,, "no | 1,.'1 -..,,"dt' ' dx'

To obtain a derivative formula fbr the exponential function

we rewrjte tbjs equation as

x:logl}
and differentiate implicitly using (3) to obtain

( 10)

1dt1 _. ___:

y\nb dx

which we can rewrite using (1 I ) as

dtL-N1nh-h'1r'h
dx

Thus, we have shown that if lr' is a dilferentiable function, thcn its deivative with respect
toris

L,r', - o' ,n,dx' '

In the special case where b : e we have ln e = 1, so that (12) becomes

d
le'l: e'

dx

Morcovet if,l is a differentiable function ofr, then it follows from (12) and (13) that

(.12)

( 13)

(l l)

dduddu
lh'l= b'lnb. :Lnd le"l-."

dx d.t Jt d:r
(14 1s)
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RDMARK. It is impoftant to distinguish between differentiating D' (variable exponent and
constant base) and l' (variable base and constant exponent). For example, compare the
derivative of ,r" in (10) to the following derivative ofzr, which is obtained from (12):

lr'l-iz'lnt
dx

Example 7

The following computations use (14) and (15).

,t ,t
. t2'" 1 - (2''" )(ln2). --l\inrl- (2''n'l(tn.2,(co\r)

d^ J 
^d^^.J

:1" "l- o-".1I 2tl- -2p-2,dr dx
d , -., d

,lrt' )-( .lxt^ )-r^ (

*r*"-, :n""" . f t"o,'l : (sinr)2"o"

Example 8

A glass of lemonade with a tempcrature of 40"F sits in a room whose temperature is a
constant 70"F. Using a principle of physics, called Nevtton's lnw of Cooling, one can
show that if the temperature of the lemonade reaches 52" F in I hour, then the temperature
T of the lemonade as a function of the elapsed time r is modeled approximately by the
equation

T =70 -30e o5t

where ? is in " F and I is in hours. The graph ofthis equation, shown in Figure 4.4.2, confirms
our everyday experience that the temperature of the lemonade gradually approaches the
temperatrue of the room.

(a) In words, what happens to the rate of tempemture rise oyer time?

(b) Use a derivative to conflrm your conclusion.

Solution (a), The rate of change of temperature with respect to time is the slope of
the taDgent line to the graph of Z venus t. As / incrcases, these slopes decrease, so the
temperature dses at an ever-decreasing rate.

Solution (b). The rate of change of temperature with respect to time is

dr d ,..

ai, -AFo-30e 051- JOr 0.5rr 0<'- l5p-nr'

As/increaSeS,thiSd9Iivativ9decreaseS,whichconfirmstheconclusioninpart(a).<

t2315671r
Elapsed time . (h)

Figurc 4.,1.2

15

c70
:65
960
955
3so
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ExERclsE SET 4.4 E Graph ng Calcu ator

In Exercises l-30, find./]/djr. ln Exercises 43 -46. flnd r1_v/r1r Lrsing the method oflogarith-
n'ric differentiation.

l. -v - ln 2-t

3. y: (ln r)2

5. ):h tan:t

7. r: lnlj- )- \ 1 + r- /
9. ) : ln tr 7,.2 3l

11. 1: /1n1
13. -r : cos(tn,r)

15. -y -,r3 log::(3 - 2,v)

l/- f :-' l+logt
19. 1 : a?'

21, -y :,r3e '
e'et)l ,,

' er+e t

25, r,: e'u"'

27. t- : "t' "i't
29. -r - ln( I "re ')

4. t - ln(sin r)
6. t:1n(2+v{)
8, y: ln(1n -r)

10. 1' : 1r 1n,

12. y:,,,/l 11nz t
14. ;,. : 51n21ln,-1

16. -y: r [1og.,1r2 2r;]3

losr
t8_ \'- -

' I + klg "r

20.y:ps"
22. y : st/'

24. ] - sin(er)

26. t--
28. y : expi/t 15-rr )

30, y : 1n(cos e')

y:(r3-zr)r'"
y' : (ln.r)'""'

d
(a) 

dI[1og, 
e]

Ir46. r: (r- + JJ

101 f 1rog.21.

43.

45.

17. Show that for any constants A and B. the function

In Exercises 3 1 and 32, ht1,J df /dx by implicit dilTerentiation.

31, rr * lnrl - I 32. Y : ln(-1 6n r'.1

l - Aez'+ Be 4'

satislies the equation

)"+2)' 8):o
48. Show that for any constants A and i, the function ), : Aell

.ari\he' rhe eqLral'on dy dt :1,1

49. Let /(.r) : er' and g(x) - "-('. Find
(a) /(") (f,) (b),g"')(*).

50, Flnd dy/dt il_y: e rt(A"inrot+Bcosot),whereA,B,
,1, and (, are constants.

51. Find /'(r) if
, T rlI | /\ ,./ \ I|rr- - e\p ,l ll

'/2tto L rr ' ')
whe|e p. and o are constants and o 10.

52. Show that
(a) f: te 'satisfies the equation.t-i' : (l r))
(b) I : re "/2 satislies the equation -r1' : (l - -r2),1.

53, Find

ln Exercises 33 and 34, use the method ofExample 3 to help
perfbnr the indicated differentiation.

dl ,t rl
-.]4. 

- 
lln-/ I/-tl \r+t.l

In Exercises 35-38, find.1)'/.1,r using the method of logarith-
mic diilerentiation.

,l I cos 1 I-l-1. lln -..._ I/, | ,/+ :,, I

35. i:*.,71 1-s2 36. y:

(rr tii /t vtt + I

.ro - 7r * 5

silr r cos r tanl t

Recall from Section,1.2 that the loudness B of a sound in
decrhel. rJb' r. giv.n h) F - l0l.,g,/ /nr where / i. lhe
intensity of the sound in watts per squarc meter (W/m2)
and 10 is a consta[t that is approxinately the intensity of a
sound at the threshold of hunan healing. Find the rate of
change ol B with respect to 1 at the point where
(a) I lla:10 (b) I /ls:1gg (c) 1/10 : 1000

The equilibrium constant,( of a balancecl chemical reaction
changes with the absolute temperature 7 according to the
law

/ rtT Z)\ft:ftnexnl-' I-'\ 2TrT I
where &0, q, and 79 are constants. Find the rate of change
of & with rcspect to I.
(a) Explain why Formula (12) cannot be used to find

(d /dx)[x'1.
(b) Find this derivative by logarithrnjc diff'erentiation.

Find /'(r) if /(r) : r'.

54.

55.

38. ): 
"6

ln Exercises 39-42, find l'(.r) by Formula ( t4) and then by
' logarithmic diffirrentiation.

39. f(x) :2'
41. /(.r) - r'i" '

40. /(r) :3 '
42. f(x) : tt't"'



58. Fincl a point on the g|aph of _r : el' at which tlte tangcnt E 63.
liDe passes through thc origin.

lr frcrti.c. \q:nJ FO. nn.l .lrc lin . -\ tntrT et, tJ | .e (.
prestion as an appropIirte derivativc.

4.5 Derivat ves of lnverse Trigofornetr c F!nctions 261

(a) Sketch theclrrves t : .,f and l : .r inthcsamecoor
dinate systerni then make a corjecture about the gen

eral shape o1'the equation J : e'cos 7-r lbr.r - 0. and
sketch its graph in thc same coordinate system as the
two cxponential t'unclions.

(b) Check yolrr conjeclure in part (a) by using zr graphing
utjlity to gcncrate the glaphs of r - .\, .r : sr. and

l : c' cos rr in the same wiidow ltll 0 : .r : 3.

Suppose that the populatlon ol oxygcn-clependent bacteria
in a pond is inodeled by the equation

60

lnll+rl
59. (rr J lirl. , /,_r) lt

lnr,.l +/r ) )
trl)- lrl lrm' /r-ll h

t 0/, Ilhl lim

2'2
{bJ lim _

\ lr I

tr 64.

F] 61. (a) Make ir conjecture abolrl lhe shape of the grapl] o1'

f: ]t 1nr, and dr arv a rough skctch.
(b) Check yolrr conjecture by graphing the eqLration over

tlre iiterval 0 < r < 5 with a graphing utility.
(c) Show that thc slopcs of thc tangcnt lines to thc curvc at

.i - L"J.r L:rrc rfp,',iL. ,ier.
(d) Whirt does pe (c) imply aboul the existence oi a hoi

,/ontrl trn-sent line to the curve'l Erplain your reasoning.
(e) Find thc cxact .r-coordinatcs of ali horizontal tlngent

lines 1o lhe curle.

62. (a) Use a grrphing utility to -srnph the lunction

l(r):2rr+rr 20-ri4

over the interval 5 < -t < 5.

(b) Working with thc glaph in part (a), make a rough skctch
olthe g|aph ol /'(,r) ovcr thc intclval -5 < r < 5.

(c) Check you| work in par t (b) by generating the graph o1'

.l'(r) wirh .1 griphing utility.
(d) Find the exact locations of the hor izontal tangent lines

to the graplr ol .f over the inleNal 5 < -r < 5.

(e) Conlinn that fie result in part (d) is consistent with the
graph ol l'(r) in part (c).

wherc ,l'(/) is thc populalion (in billions) I days aftcr an

initial obscrvation at time t : 0.
(a) Usc a graphing utility to graph the linction P0).
(b) In words. explain what happens to the population over

tin-e.'(-l-c.k ),,.r (on.llr'iun h1 lndir'3 rrrr lrtr.
(c) In words. whiil happens to thc /r/rc of popullltion gr o\\'th

over tilne l Check your- conclusion bv graphing P'(r).

B 65. Suppose that the populiiliol o I deer ()]r an island is modeled
by the equatjon

95
P(t\ -' 5 1e ttl

where P(r) is the numbc. of dcer I rveeks alter an initial
observation at time r :0.
(a) Use a graphing utility to graph the llnction P(/).
(b) In words. explain what happens to the populrtion over

time. Check your conclusion by finding 
/ 
lim, P(t).

(c) ln worcls, what happens to the /?k, ofpoplrlation growth
over time? Check yoLlr conclusion by graphing P'(t).

5 +1c '

E

INVERSE TRIGONOMETRIC
FUNCTIONS

4. 5 DERIVATIVE$ OF INIVHRSE TR|GOI\{OIVIETRIC FLJruETISI\'$

A tonnton ptoblen in trigonolnet\ is to Jit1.l e1 angle whose trigoonrctric rturtions
qrc known. As lou tnat' recull. probletns of this n'pe ittolve tlte u)]ilpulttiou ol "to-c

fLolt'1iot1.t" .rr(r? a! arcsin.{. arccosr. arclanJ. aul \o lbrth. ln tltis section we vill
tonsitler tlis ideu lrom tlu viewpoillt ol inver.te fLnkiiotls. tt'ith the gotLl ol detelapitt.q
tlcrivutive forntultts for tlle interse tt igotlotnelriL florctiult'.

None of the six basic trigonometric functions is one to one because they all repeat pcriod-
ically iu'id hence do not pass the horizolital line 1est. Thus, ro deline inver\e trigonomerrjc
lunctions we must lirst restrict the domains of the trigonometric fllnctions to rnake them
one-to-one. The top part ol Figure,1.5.1 shows how thcsc restrictiors are made lbt sin.r.
cos -r, tan .r, and sec i. (Inverses of coi -r and csc -r are of lesser inportance and will be leli
for the exercises.) The inverses of these restdcted functions are denoted bv

sin I -t. cos I ,!. tan I ,r. sec | ,!

(or alternatively by arcsin -,;. arccos r, alctan.r. arcsec r) and are defined as lollovs:
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f=:'"''l
4 5.1

4.5.1 DEFINIIoN . The inverse sine function, denotedby sin l, is defined to be the
inverse of the restricted sine function

sinx, -r/2=x =r/2

4.5.2 DEFtr[TIoN. The inverse cosine function, denoted by cos-l, is defined to be
the inverse of the restricted cosine function

cosr, 0.<x<x

4.5.3 DEFINITIoN. Tt1e inverse tangent function, denoted by tan r,isdennedtobe

the inverse of the restricted tangent function

tanx, -rfz <x <tr/2

4.5.4 DEFINITIoN .* 'I\e inverse secant fanction , der]rcted by sec- I 
, is defined to be

the inveme of the restricted secant function

secr, O<x 
=r"withx*n/2

REMARK. The notations sin 11, cos-1-r, ... are reserved exclusively for the invene
trigonometric functions and are not used for reciprocals of the trigonomeftic functions.
For example, to denote the reciprocal 1/ sin.;r in exponent fom, we would write (sin;)-1
ar'd never sln ) x.

The graphs of the inverse trigonometric functions, which are shown in the bottom part
of Figure 4.5.1, are obtained by reflecting the graphs in the top part of the figure about the
line y : '{. If you have trouble visualizing these relationships, then look at Figure 4.5.2

*There 
is no universal agreement on rhe definition of sec-1r, and some mathematicians prefer to restrict the

domain ofsec; sothat0 :. x < 7r/2 ot n Sx < 3zl2, which was the definition used in earlier editions of this
text. Each definition has advantages and disadvantages, but we have changed to the current definition to conform
with the conventions used by the CAS programs Mdthematica, Maple, aJ'd Derive.

Figure
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for a more detailed illusbation for the inverse sine. It may also help to keep in mind that
reflection about ) : 'I converts vertical lines to horizontal lines, and vice versa, and that
x-intercepts reflect into ),-intercepts, and vice versa.

sini Table 4.5.1 summarizes the basic properties of the inverse sine, cosine, tangent, and
secant functions. You should confirm that the domains and ranges listed in this table are
consistent with the graphs in the bottom part of Figure 4.5.1.

Table 4.5.1

FUNCTION DOMAIN BASIC IIELATlONSHIPS

I-1, 1l [-r/2, r/2) sinl(sin;r) =x rf rl23x3rl2
sin(sin rr) = r if -l (.t ( I

Fie!re 4 5.2

EVALUATING INVERSE
TRIGONOMETRIC FUNCTIONS

"os 
1 t-l, ll cos l(cos-,r) =x if 0(x( z

cos(cos lr) = -r if -l 3,r 3 1
[0, z]

tan I ( -, +e) ( rl2, tr/2)
tan r(tan.r) =x il -r/2<t<r/2
tan(tan-lx) =,r if - <.:r < +&

sec I

sec-1(sec x) =x if 0(r( r,r+r/2
(--, -11 u tl, +-) t0, r/2) U (r/2, r'l sec(sec rr) = x if rl ) I

It follows from Theorem 4.1.2 that the equations ]' : sin I x and r : sin ) are equivalent
provided (of coune) that ), is in the domain of the restricted sine function and r is in the
domain ofthe inverse sine function; thatis, -7r/2 = 

y 
= 

n/2 an], -1 3 .r 1 1. Thus,

' [-l < r < I

) - sin | 
"r is equivalent to sin ) :.{ if 

I _-i .-. . .,.,

Similarly,

y : cos-l ,r is equivalent to cos ) : r if

) : tan-l x is equivalent to tan l = r if

]:sec I :r is equivalent to ,"" y : r it {l: 
I 

,^ or {t;= -t' t0<!<-t/2 ln/2<y1t,

A common problem in trigonometry is to find an angle whose sine is known. For example,
you might want to find an angle 0 in radian measure such that

sind : I (1)

and, more generally, for a given value of y in the interval I : -r : I you might want to
solve the equation

sin0 : )
Because sind repeats periodically, such equations
however, if we solve this equation as

d:sinl)
then we isolate the specific solution that lies in the inteNal I rl2,t/21, since this is the
range of the inverse sine. For example, Figure 4.5.3 shows four solutions of Equation (1),

namely, -1,1t/6, -'7t/6, r/6, and 5r/6. Of these, z/6 is the solution in the interyal

l-r/2. r/2), so

J 1<x<l
I o.y.o

J-m<r <fm
l-n/2 .: t, .: r/2

(2)

have infinitell man) iolutions for A:

rln
-/ \ orll \4l4.*M.-v[;v"
Figure 4.5.3 sinl(]) :z/6 (3)
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IDENTITIES FOR INVERSE
TRIGONOMETRIC FIJNCTIONS

I.()R I HL Rl,ADER. Refer to the documentation for your calculating utilily to determine
how to calculate jnverse sines, inverse cosines. and ilverse tangents; and then conllnn
Equation (3) numerically by showing that

sin-r(0.5) ! 0.523598?75598 ... r" tl6
In general, if we view fJ = sin-l ,r' as an angle in radian measure whose sine is r', then the

restriction -rl2 < 0 : z/2 imposcs the geometdc requirement that thc angle d terminate
in either the first or lburth cluadrant or on an axis adjacent to those quadrants.

Example 1

Find exacf values of

(a) sinr(1/./4) (b) sin- r( I )

by inspection, and confirm your results numerically using a calculating utili(y.

Solutirn (a). Because sin-r ( I /v2 ) > 0,wecanviewO = sin \(tlnDl rs rhrr rnglc in
the fi$t quadrant such tlrat sin 0 = l/.,4. Thus, sin rlllu5) - z/4. You can confirm this
with your calculating utility by showing that sin (t/"4') = 0.785 r iil4.

Solrilion (bl. Because sin-L(-l) < 0, we can view d : sin-r1-l; as rLn angle in the
fourth quadrant (or an adiacent axis) such that sin 0 : I.Thus. sin-1(-l) = -tt/2.You
can confirm this with your calculating utility by showing that sin r(-1) x -1.57 - n/2.

FOR l Hh READIR. If 0 = cos L I is viewecl as an angle in radian measure whose cosine
i1; -1,, in what possible quadrants can d lie? Answer the same question for d = tan-l r, and

d:secl1.

1 oR I I lF- R F-.11) LR Most calculators do nol provide a direct method for calculating inverse

secants. In such situations the identity

sec r-r -cos-r(l/r) (4)

is useful (Exercise l6). Use this fomula 1() show that

sec-r(2.25) ry l.ll ancl sec l(-2.25) -2.03
Ifyou have a calculating utility (such as a CAS) that can find sec I r directly, nsc it to check
these values-

Ifweinteryretsinl.rasanangleinradianmeasurewhosesineis.r,andil that angle is

nonnegative. then we can represent sin-rr geometrically as an angle in a right triangie in

which the hypotenuse has length I and the side opposite to the angle sin-r,{ has length.r
(Figure 4.5.4a). By the Theorem of Pythagoras the side adjacent to the nngle sin 1-t has

length l/I--1. Moreover. the angle opposite to sin I ,r is cos | .rr, since the cosine of that

angle is r (Figure 4.5..1r). This triangle motivates a numbel of usefll idcntities involving
inverse trigonometric functions that are valid for I : .r : l; for exanlple.

itsrn .\ +cos .\:t
cos(sin rt): t'i -?
sin(cos I 

-r1 : Vt --11 (7)

(8)tan(sin i.r) =

"''l_.',In a similar manner, tan | .r and sec I r can be represented as angles in the right triangles
shown in Figures 4.5.,+c and 4.5,4./ (verily). Those triangles rcveal more useful identities;
for example,

\ec(tan L.r): y'l +.Lr
t---------:, r/r- - I

sinlseq ' 11 {.r : l)
t

(s)

(6)

(e)

( t0a)



IiFl\{.\l{K. We leave it as an exercise to use (4) and (7) to
is valid for -r > I ard -r < 1 (Exercise 48):
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I

Gt)

obtain the foll,owing identity thar

Figurc 4.5.4

DERIVATIVES OF THE INVERSE
TRIGONOMETRIC FUNCTIONS

(a)

1l .2

(l')
I

k)

vtr I (. 'l) ( 10b)rl

ItL\lAl{K. There is nothing to be gained by memorizing these identitics; what is important
to understand is the ,?ptllo.1 that was used to obtain thcm.

Refening to Figure 4.5.1, obseNc that the inverse sine and inverse tangent are odd lunc
tions: that is,

sin r1-a; : - sin L(,r) and tan r( .r) : - ran | (.r) ( l2)

Example 2

Figure,l.5.5 shows a computer-generated graph of 1 : 5iyr r(sin-r). One might think that
this graph should be fie line ,i' : v, since sin r(sin-r) : ,t. Why isn't it'l

Figur€ 4.5.5

Sohttiotr. The relationship sin l(sin-t) : r is valid on the inteNal trl) 
= 

t : nl2,
so we can say with certainty that the graphs of y, : 5iy.1 

r(sin:r) and -I : .r coincide
on this interval (whicb is conllrmed by Figure 4.5.5). However, outside of this interval
the relationship sin r(sin,r) : -t need not hold. For example, if -r lies in the interval
t/2 

= 
r 

= 
3r/2. then the quantity -r 1r lies in the interyal -n/2 = 

x : r/2, so

sin l[sin(,t ir)] :.r lt

Thus, by using the identity sin(,t - r) : - sinr and the fact that sin 1 is an odd function,
we can express sin I (sin r) as

sin l(sin.r): sin r[-sin(.r - ir)l : -sin rlsin(i z)] - (r r)
This shows that on lhe inteNal r/2 

= 
x 

= 
3nl2 the graph of _i. : sin r(sinjr) coincides

with the line _1' : (,r ir). which has slope -1 and an -t-intercept at r = z. This agrees
with Figure 4.5.5.

Reca]l that if / is a ore to one function whose derivative is known. then there are two basic
ways to obtain a derivative foruula for /- I 1,t)-we can rewrite the equdtion -! : / r (-r) as

r - /(r ), and differentiate inplicitly, or we can apply Formula (21) or (22) of Section ,+.3.

Here we will use implicit ditlerentiation to obtain the derivative formula for -r - sin rr
Rewriting this equation as .r = sin I' and differentiatirg implicitly. we obtain
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dd
;[xJ:;lsinrJ
1 = cosl

11
cos ) cos(sin lx)

At this point we have succaeded in obtaining the derivative; however, this derivative formula
can be simplified by applying Formula (6), which is derived from the triangle in Figure 4.5.6.
This yields

dt, I

dx JI_r.
Thus, we have shown that

'rl = .'n - .'
( 13)

If r.r is a differentiable function of x, then (13) and the chain rule produce the following
generalized derivatiye formula:

d

;[sin-'41 
: (14)

The method used to obtain this formula can also be used to obtain generalized dedvative
formulas for the other inve$e trigonometric functions. These formulas, which are valid for

-l<a<l.are

dy

dx

..1)'- l

I

dy

dx

cos(sin Ir) = r/ I -:r'?

Fieure 1.5 6

d

-fqin

I

J1- u'

du

d,

{1,,n ',1 :
Idu

tE - u: a''

d I du
. [tan ' u] : --_; -*,ax \+u'ax

d
; [sec-' al

1du
t4-r:a'

ldu
l+u2dx

du

d
, lcos 'al

ax

d lcot rldx'

(r5 i6)

(i7 l8)

(t9-20)dud

-lcscdx'
t ul:

u,16iidx' lulf uz - 1dx

DIFFERENTIABILIry OF THE
INVERSE TRIGONOMETRIC
FUNCTIONS

In the derivation of ( 13) we assumetlthatsin I x is differentiable. However, wecanestablish
the differentiability with the help of Theorem 4.1.7. Since l (.r) : sin x and /'(x) : css n,
it follows from that theorem that the function / I (ir) : sin-1 r will be differentiable at any
point x where cos(sin rx) f 0 or from (6) where.,4 12 l0.Thus,sin-r,r is differen
tiable on the interval ( l, 1). The differentiability of the remaining inyerse tdgonometdc
functions can be deduced similarly.

REN,IARK. ObseNe that sin I r is only differentiable on the inteNal ( I , 1), even though
its domain is [-1, I]. HoweYer, it can be seen geometrically that sin-l cannot be differen-
tiable at r : +1. Just observe that the graph of y : 5i1.x has horizontal tangent lines at
(tr/2, l)and( rr/2, l) and that these become points of vertical tangency for ], : sin rr
when rellecred around rle line y Y.
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Example 3

Find dy/dx lf
(a) ,r: sin r(:r3)

Solution (a), From (14)

(b) y: sec I (e-')

3x?

Jt -,u

G-l

Solution \b ). From (19)

dy

dy
dx

ExERctsE SET 4.5 E Graphing calculator

t-

-(.3x'):

I (t')'

1.

2.

Find the exact value of
(a) sin r(-1)

(c) ran r( l)

Find the exact value of
1a; sin r(j"4)
(c) ran 1( 

1)

(a) cos I (cos:r) : ;t

(c) tan r(tan x) :.r

(b) cos r( l)
(d) sec r(1).

1u) cos I (1)

(d) sec r(-2).

(b) sin-r(sinr)
(d) sin r(sin630).

(b) cos-r(cos z)
(d) cos-1(cos 200).

(b) cos(cos rr) :.r
(d) tan(tan I r; : r:

ll. hnd the erlct rulue oi the gi\en

ln Exe|cr.e, l2 irnd lJ. complere lhe identiric. using rhe rri-

, angle method (Figure 4.5.4).

12. (a) sin(cos-] -t) : ?

(c) csc(tan rx) :?
13, (a) cos(tan rr) :?

(c) sin(sec r;r) :?

(b) tan(cos 
j r) :?

(d) srn(tan r) :.'

(b) tan(cot-r jr) :?
(d) cot(csc I jr) :?

E

3.

4.

Given that o : sin ' ( i"6), n"a the exact values of
cos9, tan9, cotd, sec6, arld cscd.

Given that 9:cos I (+), nnd the exact values of sind,
tan d, cot 6, sec P, and csc 0.

civen that B : tun '(3), find the exact values of sind,
cos 9, cot 0, sec 6, and csc 6.

Makeatablethat liststhe six inversetrigonometric functions
together wilh rheir dnmrin. lnd range..

Find the exact value of
(a) sin r(sin z/7)
(c) srn'(srnJ/r//)

Find the exact value of
(a) cos I (cos z/7)
(c) cos r(cos I2z/7)

9. For which values ofr is it true that

14, (a) Use a calculating utility set to radian measure to make
tables of values of1 : 5i1-lr and ) : cos l.r for
r - l. 0.8. 0.b. . . . . 0. 0.2. . . . . L R.rund lour
ans\ er\ lo trro decimllplacer.

(b) Plot the points obtained in pan (a), and use the points to
sketch the graphs of y : sin l 

.rc and ), : cos I n- Con
firm that youi sketches agree with those in Figure 4.5.1.

(c) Use your graphing utility to graph ) : sin-r: and

], : cos-lr; connrm that the graphs agree with those

in Figure 4.5.1.

7,

q

6,

8- The function cot I,r is def,ned to be the inverse of the re-
slricted cotangent function

cot-r. 0 r \z

In Exercises l0 and

quantity.

and the function csc L r is defined to be the inverse of the
restricted cosecant function

cscjr. rf2<x <tr/2, x*0
r Use these definitions in Exercises 15 and 16 and in all sub-

I sequent exercises that involve these functions.

15. (a) Sketch the graphs ofcot Ir and csc l*.
tbr Find rhe domrin and range olcor- r and csc-l r.10. sec[sin I ( i)] tr. sin [zcos 

r(J)]



17, Most scientific calcLrlators htve keys for the values of only
sln l.l. cos lr, and tan l.r. The ibrmulas in Exercise
l6 show how a calculator can be used to obtain values ol'
cot I r. sec 1-t. and csc-L.t iiu positive vaLues ofr. Use

these lormulas ancl a ciilculator to find numerical values

for each of the fbllowin-c inverse tdconometric flrnctions.
Express your unswcrs in dcgrees, rounded to the nearest

tenth of a degree.
(a) cot ro.7 (b) sec I 1.2

ln Exercises l8 20. usc a calculating utility to approximale
the solutiol1 of the equation. where ] adians are used. express

yoLlr ans\ver to lour'decinrll placcs, and where degrees are

used. express it to the nearest tenth ol a degree. [Notc; ln eacll
part. thc solution is not in the range ol the relevant invcrsc

tligol1omeliic lunclion.l

18. (^) sin -r : 0.37 . n/2 < .t < t
(b) sinll: 0.61. 180 < 0 < 270

19. (a) cosr : 0.85. z <.r < 3;t/2
(b) cold - 0.11. -(X) < tJ . 0

20. (a) tanr:3.16. -ir <.r < -irf2
(b) tane: -0.,15, 90 < 1/ < 180

ln Excrciscs 2l 28. find r/r'//t.
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16- Shou,thirt

(c)

.l
cr)f rr-tlnr-. if t>{)

.\'

.l
scc r.\ - co\ ' -. il l.rl ? I

,!
.t

u\c .\': \irt '-. if r 2 L
.\

22. (a) ! - ran r(-rr) (b)

23. (a) r': sec l(\.i) (b)

24. (a) r'- (tan.r) I (b)

25. (a) 
-r' 

: sin r( l/r) (b)

26. (a) r': ln(cos I.t) (b)

(a) Refering to the graph ol \' : tarl I .r in Figure .1.5.1.

make a rough sketch of the graph of z/r'/zh.
(b) Check your $,ork in part (t) using a grrphin-s utilil!.k)

generate the eraph ol rlr'/rlt.
(a) Muke a conjectLrre about tltc shrpe of the graph ()1'

-r' - cos l(cos 
r.)

and skctch the grirph fbr -4r 5 .\ : 4r.
(b) Chcck )rour work in paft (a) Lrsing a glaphing utility to

gencrate the graph.

rlr U\c ir cul(Llulrng utrliLy t,' c\'.rl irte srn (,in l0.l5r
and sin I (sin I 0.9). anclexplain rvhat you rhink is hap
pening in the second calculation.

(b) For \\,hat talues of .t in thc intcn'al I I r a I u'ili
your calculating utility producc il rcal value lbr the func
tion sin l(sin l.r)?

ltr each part. skctch the graph and cl]cck your work with a

graphing utility.

(it) r' : sin l2-r

(a)

(b)

E 32.

E 33.

E 3s.

36.

34.

27. (a) ,r' : e'sec I.r

28. (a) ,r' : sin 1r + cos- I .t

(c) csc I2.-l

i : cor r(.v{i 
)

I

l-anLt
\' : cos l(cos r)

.lr:.\ (\rn .\)

f : sec I.r + csc l.\-

21. (a) r, : sin I ({-r) tbt r': eor r(2x * l)

(b) r=tanr]r
ln each part, express r in tefl]ls ol i and an appropriate
inverse trigonometric tirncLion. [Nl)tc. .\ mi]y not be in the
rrnge oi lhe inversc trigonometric tunctkrn.l

(a) cos,r : t, ilo < k < I and 3z/2 <.r < 2r
(b) tan.r : t. if ,( < 0 and z/l < .r < z
(c) sin2,r:/r- ifO < l < llnd0 <.r < r/2.

f Hinl.'Consider the litlowin-s cilses: 0 < 2r < tt/2
rnd 

'r/2 
< 2,Y < 

'..l
An Ealth-obselving salellite has horizon sensors that can

nleasure thc angle e shown in the irccotrprnying figulc. Let
/l be the radius of the Eirnh (ussumed spherical) and I thc
clistance bctween the satellitc ancl the Earth's sLrl.tace.

R
la) Show that sin, - 

-

'' R+/]
(b) Find,, to the nearest dcgree. lorasiitellitethatis 10.00t)

km from the Earth's surlhce {usc R = 63711kln).

,*-@-a-
W w' -'i;-t

Earth

Figurc Ex 37

38. The number of hours of daylight on a given day at a given
point on the Earth's surlace depend! ou the latitude 7, of the
point. the anglc ]., through which thc Eafih has moved irl its
orbital plane during the time period liotrt thc vernalequinox
(March 2l). and the anglc of inclination d oi the Earlh-s
uxis ofrotation measured fion ccliptic rorth (d - 2-1.55 ).

The number of hours of daylight fi can be approximated by
the fbrmula

37.

(b)

(b)

E

In Exercises 29 and 30. lincl r/r'/r1.r by implicit dillerentiation.

29. ,tl +,r tan 1 r' - r,.'

30. sin r(rr') -cos r(.{ - J)

31. (a) Referring to the graph ol r' : sin I r in Figure 4.5.1 .

make a rough sketch of the graph of r1r/rA.
(b) Check your work in part (a) using a graphing utility to

generate thc graph 0f dl/r/.r.



where

.4 -",r' d r-)
and sin-l D is in degree measure. Given that Fairbanks.
Alaska, is iocated at a latitude of ), = 65" N and also that

), = 90" on Jule 20 and, y = 270' on December 20, ap-
proximate
(a) the maximum number of daylight hours at Fairbanks to

one decimal place
(b) the minimum number of daylight hours at Fairbanks to

one decimal p)uce.

[Note: This problcnr was adapted from TEAM, A Path to
Applied Matheiwtici. The Mathematical Association of
America. Washington. D.C., 1985.1

A soccer player kicks a ball widr an initial speed of 14 m/s
at an angle d with the horizontal (see the accompanying fig-
urc). The ball lands l8 m down the field- lf air resistance is
neglected, then the ball will have a parabolic tajectory and

the horizontal range R will be given by

It = -sin26I
where u is the initial speed of the ball and g is the acceler-
ation due to gravity. Using 8 : 9.8 m/s2, approximate two
values oi I, to the nearest degree, at which the ball could
have been kicked. Which angle results in the shorter time
of flight? why?

Figurc Ex-39

The rcw o)fcos.irss states that

"2 
: o2 + Irz - 2ob coso

where a, ,, and c are the lengths of the sides ofa triangle and

, is the angle fbrmed by sides a and ,. Find d. to the nearest

degree, for the triangle with a = 2,b = 3,a c =4.
An airplane is flying at a constant height of 3000 ft above
water at a speed of400 ft/s. The pilot is to release a suNival
package so that ii lands in the water at a sighted point P.
Ifair resistance is neglected. then the package will follow a

panbolic trajectory whose equation relative ro the coordi-
nute system in the JcJompanying fiSure is

g .l
:L)'

where g is the acceleration due to gravity and u is the speed
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of the airplane. Usin E g = 32 ft/s2, find rhe "line of sighr"
angle 0, to the nearest degree, that will result in the package
hitting the rarget point.

Figure Ex-41

A camera is positioned .r t'eet from the base of a missile
Iaunching pad (see the accompanying 6gure). If a missile
of length a feet is launched vedically, show that when the
base ofthe missile is b feet above the camera lens, the angle
B \ubtended at thc lcns by rhe missile is

{ji. 
* ""

D>l
D, lD <l

D 
= -l

42.

39.
9: cot l l

a+l) - cr)t t

Camera Launchpad

Figure Ex-,12

43. Prove:

40.

44.

45-

(a) sin r (-.r-) : - sin-r x
(b) tan-l( -r): -tan r-r.

Prove:
(a) cos-r(-,r) : z - cos It
(b) sec-r(-.r) : z - sec-r x, if Jr z
Prove:

l.

(a) Slll r -fJn '_-
r/l-xln,x(b) cos- r: -tan- 

-

) /.4 ll_x.
Prove:

/ -L,, \

tln-l * - lon ' y = tan ' { i '' I
\ | -,rl ,/

provided -r/2 < tan-l r + tan-l y < r/2.fHint: lJse an
identity for tan(d + p).1

Use the result in Exercise 46 to show that
(a) tan-r j + :tr.n-l \:r/4
(b) 2tan-r\+tan-1 | : v14.

Use identities (4) and (7) to obtain idenriry (l0b).

47.

sin d sin / tan )"

[_ll

41.

48.



Logarithmic and Exponential Functions

4.6 RELATED RATES

RATES OF CHANGE USING THE
CHAIN RULE

In this section we will study related rates problems. In such problems one tries to Jind
the rate at which some quantitj is changing by relating it to other quantities whose
rates of cllenge qre known.

Figure 4.6.1 shows a liquid &aining through a conicalfilter. As the liquid &ains, its volume
y, height t, and radius r are functions of the elapsed time /, and at each instant these
variables are related by the equation

n^
J

If we differentiate both sides of this equation implicitly with respect to /, then we obrain

Thus, if the values of r, h, dh /dt, and dr/dr are known, then this equation can be used to
find dV /dt. Here are some specific examples that use this basic idea.

Figure 4.6.1

Example I
Assume that oil spilled from a ruptured tanker spreads in a circular pattem whose radius
increases at a constant rate of 2 ft/s. How fast is the area of the spill increasing when the
radius of the spill is 60 ft?

Solution, Let

I : number of seconds elapsed from the time ofthe spill
r : radius of the spill in feet after t seconds

A : area of the spill in square feet after I seconds

(Figure 4.6.2). We know the rate at which the radius is increasing, and we want to find the
rate at which the area is increasing at the instant when r : 60; that is, we want to find

dAl dr''I gi\en rhar 
=-2fll\tjI l,:ao dI

From the formula for the a-rea of a circle we obtail

A: rr2 (1)

Because A and r are functions of I, we can differentiate both sides of (1) implicitly with
respect to I to obtain

dA dr
= 2nrdt dt

dv nf ,dh / drll rt,dh dr\
dr - 3l' at o\"n ))-, (' ;+2'h d, )

T

I

t.-'-t

Figure 4.6.2
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Figure,l.6.3
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ThLls, when r - 60 the area of the spill is increasing at the rute of

dA
, - i2160r121 - 240ir ir- .

or approximately 754 ti2 /s.

With only minor variations, thc method used in Example I can be uscd to solve a variety
of rclated rates problems. The method consists of five steps:

A Strategy for Solving Related Rates Problems

Step 1. Draw a figure and label the quantities that vary.

Step 2. Identify the rates of change that are known and the mte of change

that is to be found.

Step 3. Find an equation that relates the quantity whose rate ofchange is to
be found to the quantities whose rates of change are known.

Step 4. Differentiate both sides ofthis equation with respectto time and solye
for the derivative that will give fhe unknown rale of change.

Step 5, Evaluate this derivative at the appropriate point.

Example 2

A baseball diamond is a square whose sides are 90 ft long (Figure,1.6.3). Suppose that a
player running from second base to third base has a speed of 30 ft/s at the instanl when he

is 20 ft from third base. At what rate is the player's distance from home plate changing at

that instantJ

,S0lutiott, Let

I : number of seconds atter the player leaves second base

r = distance in Itet tiom third base

I - distance in feet liom horne plate

(Fjgure 4.6.3). The rate at which the distance lrom third base is changing is d.r/d/, and the

Iate at which the distance ftom home plate is changing is d1/dr. We want to flnd

ntl Jt
'I siven rlral -' - 3u rr/.

1, l,:,,, " JI ,:ri)
(Note that dr//t is negative because r is decreasing with respect to l.) From the Theorem

of Pythagoras we have

12 + 902 = ,,-2 (2)

Difl'erentiating both sides of this equation with respect to / using the chain ru1e yields

rl.x rjl dt x d x
2x -2l i- oI I=

dr 'dt dt Jdt
(3)

When -r : 20, it follows ftom (2) that

r : u,to, +9op : "6soo 
: ro'65

so that (3) yields

dtl 20 60
| __t.10)_ _6511 .

Lttl=a t0J85 JR5

The negative sign in the answer tells us that ,f is decreasing, which makes sense physically

fron Figure 4.6.3.
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Launching
pad

In Figure 4.6.4 we have shown a camera mounted at a point 3000 ft from the base of
a rocket launching pad. Let us assume that the rocket rises vertically and the camera is to
take a series of photographs of the rocket. Because the rocket will be rising, the elevation
angle of the camera will have to vary at just the right rate to keep the rocket in sight.
Moreover, because the camera-to-rocket dislance will be changing constantly, the camera
focusing mechanism will also have to vary at just the right rate to keep the picture sharp.
The focusing problem is considered in the exercises, and the elevation problem is addressed
in the fbllowing example:

Example 3

Ifthe rocket shown in Figure 4.6.4 is rising vertically at 880 t1/s when it is 4000 ft up, how
tast must the camera elevation angle change at that instant to keep the rocket in sight?

Soluli, , Let

t : number of seconds elapsed from the time of launch

d : camera elevation angle in radians after I seconds

:r : height of the rocket in feet after I seconds

(Figure 4.6,5), At each instant the rate at which the camera elevation angle must change is

dO /dt, and the rate at which the rocket is rising is dr/dt. We want to find

,1(tl dt I-.--l piventhat ;l =880fi/sdr J.=oooo ' dr l.:4o,ro

From Figure 4.6.5 we see that

ran4: 
--I^ 

(4)' 3000

Because @ and -r are functions of l, we can differentiate both sides of (4) with respect ro /
to obtain

,.dA t tlx dQ 1 dx
i\cc- d' 1-''-- -' dt 3000 /r - rlt 3000 secl d dr

When r : 4000. ir follows that

s000 s
.--,/t _' 3000 .3

(Figure 4.6.6), so that from (5)

ool = l'"---.880= t't-

,,/r r.=+oor, 3000 (:), 
ry 0.1 l mdian/s - 6.05 degrees/s

Alternflliw Solttliort. lnstead of differentiating both sides of (4), we could have first
solved the equation for @ and then differentiated:

,/.t \
., = tan-r l- |' \3000/

so

(5)

dQ=
dt

Thus,

1 I dx
. , \2
' \u000/

3000 r/t

! 0.1 I radian/s = 6.05 degrees/s
dol r

71,**:1+(i8#I
880 66

3000- 
: 

625

which agrees with our previous result.



The sane volume has drained, but
the change n height is greater near

. lT ::1',:l.tn'.l "*' l!" t"1: . . -
Figure 4.6.8
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Example 4

Suppose that liquid is to be cleared of sedinent by pouring it through a conical liiter tlrat is
16 cn.r high and has a radius of 4 cm at the top (Figure ,1.6.7). Suppose also that thc liquid
flows out ol the cone at a constant rate of 2 cml/min.

(a) Do you think fhat the depth of the liquid will decrease at a constant rate? Give a verbal
argumerrl that justilies your conclusJon.

(b) Find a fbrmula that expresses the rate of change to the depth of the iiquid in telms of
the depth, and use tllat formula 1o deteflrine whether your conclusion in part (a) is

(:orrect.

(c) At what rate is the depth of the liquid changing at the instant when the level is 8 cm

deep?

Sohttion \aJ, For the volurne of liquid to decrease by a lixed amou, rt tequires a gleater

decrease in depth when the cone is near empty than when it is near full (Figure 4.6.8). This
suggests that fbl the volume to decrease at a constant rate, the depth must decrease at ar
increasing rate.

Solntion \b\, Let

l : time elapsed from the initial obseNation (min)
V : volume of liquid in the cone at time I (cml)

-]' : depth of the liquid in the cone at time t (cm)

-r = radius of the liquid surface at time I (cm)

(Figure 4.6.7). At each instant the rate at which the volume ofliquid is changing is dV/r1r,
and the rate at which the depth is changing is d-t./dt. We want to express d-)/dt in te ns of
I given that z/V/r/t has a constant value of dV ldt = -2. (we must use a minus sign ltere

because y detreuses as t increases.)

From the fonnula for the volumc of a cone, the volume y, the mdius -{, and the depth -v

are related by

Y: ]z,r?-r' (6)

If we differentiate both sides of (6) with respect to /, the right side will involve the quantity

rh/dt. Since we have no direct infomation about lr/d/, it is desirable to eliminate -t tiom
(6) before differentiating. This can be done using similar tliangles. From Figure,1.6.7 we

see that

Substituting this expression in (6) gives

Y=ar'
48

Differentiating both sides of (7) with respect to I we obtain

(1)

dv
,lt

ol'

dt,

dr

t6 dv
ry2 dt

which expresses d-r/1r in terms ofl,. The minus sign tells us that ) is decreasing with lime,
and

,/l .l2

*l- "t'

x1 1or r--1'
l 16 4

=; t,'#)
16 32: ,( 2)= ,,rl ,7r'_

(8)

Figure 4.6.7
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lells us horv tast l is dcclcasing. From thjs fbrnula rvc see that r1l/r1l increascs als ],
decreases, which confirns our conjecture in part (a) that the depth of the liquid decreascs
at an incrcrsin-q rate as the liquid drains through the iilter..

Solutio l(:1. Thc rute at rvhich thc clepth is changing when thc deprh is 8 cn can be
obtained froi'n (8) with r : 8;

r1r' 32 I_. : _ :- 0. 16 cm/nin
.lt , 7{q r

ExERcrsE SEr 4"6

2.

l.

1.

Let .,1 Lre lhe area ol a square whose sicles hlve lenglh .r. and

ilssurne lhat.r varies \!ith thc tinlc /.
(a) Draw a piclure ol lhe squarc with the labels ,4 and.!

placed llppropr iate]y.
(b) Writc an cclultion that relales A iin.l r.
(c) Use the equirtion in pert (b) to find an equtlion that

relates 11,i r/t and /r/.14.
(d) At a celtain instii0t the sides are 3 li long i.rnd increasing

lt r rate ol I ft/min. How last is thc rret iucreasinq ar

thllt instant.)

Lel ,1 be thc area of a circle ol radius r. and assunte that r'

incleases witll the time a.

li.r) Dra$' a picture of the circle \\,ilh the lebels A ancl r
placed rppropriatcly.

(b) Write a eclLralion thrl relatcs A and r.
(c) Use ll)e eqlration in part (b) to llnd an equalion that

reLales r/A/./r anLl tlr ftlt .

(d) ALacerlain instant theradius js 5 cm and increirsiDg al

trrr '.I- .'l 2 . rr .. H,,.r lJ. i: tllc .rrcr inL rc..'tr! :t
tlral il1slilnL.)

Let l/ be dre \olLrne 01 ir cylinder having hei-sht h ancl rlclius
r, and rssume that ft and r- \'af,- \\'ilh linte.
(a) How are.ly/./4. //?/.1r. and./r/1r felxred?
(b) At a certaill inslant. the heighL is 6 in iLncl inc|easilg at I

in/s. rvhile the radius is ll:) in irnd clecleasing at I rn/s.
Ho$ tist is the volume changing at tlrat instant? Is the
volume increasing or decreasing at that instantl

I-et 1 bc thc length of a Llia,soral ol a rectangle whose sides
hrle lengths l encl .t. and assullc that.r and r vilty wilh
tine.
(a) Ho$, rre dlii.11. 1-r/r1t. and r/i /r/t related?
(b) lf r increases at a conslanl rirtc of ] fi/! and r, decreases

ilt l constant latc of I ft/s. how tist is the sizc of thc
dia-uonal chrnging $,hen r : 3 li and r, : 4 fi? Is the
diagonal incrcasing or .lecreasing rt that inslanl l

Let d (in rrdirns) bc an acutc angle in a righl triiLngle. and

lel r rnd \. rcspcctivcly. bc thc lengths ofthe sides a.ljlcent
and opposite r. SLrpposc also thrt.r lnd r vary with tlme.
(r) How arc r/r/,//, /.!/./I. and /r /.1/ relrted?

(bl At a ceflain instant, r : 2 units and is increasing tt I
unit/s. rvhilc _r' = 2 unirs iind is decreasing irt j unit/s.
Horv last is l, changing at that instantl Is d increasing
or decreiising at that inslant?

6. Suppose that : : rl.tl, rvherc both -r aocl _r' are changine
$,ith time. At a certain instant when _r - I ancl I : 2..t- is
decreasing at the late ol2 units/s. and f, is jncreasing at the
rille of 3 units/'s. Ho\ last is; clianging at this jnstantl Is:
incfeasinq or decreasin-s?

7. Thc minute hmd of a cefiain clock is 4 in long. Starting
fiom the nionient \\'hen the hand is pointing straiglit up.
how last is the area ol the sector thlt is s\\,ept olrt b]' the
hand increasing at any inslant dLllins the next le!olution ol
thc hand'l

8. A stone dropped into a still pond sends out a circular.r.ip
p1e whose radius increases at a constilnt ritte ol3 ft/s. Holv
lapicllv is the arca enclosed by the lipple increilsiig.rt thc
end of l0 s')

9. Oil spilled tlorr ir ruplurcd tanker spretds in a cjtcle whose
rrer iDcreascs at a constail rate of6 mil/h. How last is the
radius of the spill increasing rvhen the alea is 9 nil?

10. A spherical balloon is inflated so thal its volume is increas
ine at the rate ol3 fir/min. Horv last is the diaineter ol rhe

balloon increasing whcn the radius is I ft:r

11. A spherical balloon is to be dellated so that its radius.le
cleases at a constant rate of l5 crr/min. At what late nlust
air be removed when the raclius is 9 cn'l

12. A 17 ft ladder is leaning against a wall. If ihebottomof rhe
ladder is pulled along the ground arvay from the wirll at a

constant rate ol5 ft/s, hou, fast lvill the top ol'the laddet be

rnovin-e dorvn the rvall whcn it is 8 ft above the ground?

13. A l3-i1 ladder is leaning againstawall. lf thcropof rhe
lad.ler sllps down the wall at a rate of 2 li/s, how fast will
the foot bc moving awa) from thc wall when the top is 5 ft
aboVe the ground?

14. A l0 ft plank is lclning against a rvall. Ilatacertaininstlnt
the bottolrr of thc phnk is 2 ft tion the wall rnd is being



15.

16.

17.

pushed towald the waii at the rate of 6 in/s. how tast is the

acute arlgle that the plank makes with the ground increasing?

A soitball diaDrond is a square whose sides are 60 t't long.
Suppose that aplayerrunning from llrst to second base has a

speed of 25 ft/s at the instant when she is I0 ft from second
base. At what rate is the player's distance tiom home plate

changing at that irlstantJ

A rocket, rising veftica1ly. is tracked by a radar station thai
is on the ground 5 nri trom the launchpad. How fast is thc

rocket rising when il is 4 mi high and lts distance tiom the

radar station is increasing al a rate of 2000 mi/h?

Forthe cameraand rocket shown in Figurc,1.6.4, at whrlt rate

is the camera-to-rocket distance changing when the rocket
is 4000 ft up and dsing vertically at 880 ftls?

Forthe camera and rocket shown in Figure 4.6.4. at whal rate

is the rocket rising when the elevation angle is z/4 radians

and ilcreasing at a rate of 0.2 radian/s?

A satellite is in an elliptical orbit around the Earth. Ils dis-

tance r (in miles) from the center ol the Earth is given by

4995

I + 0.12 cos P

where d is the angle measured ftom the point on the orbit
nearest the Ealth's sulface (see the acconpanying iigure).
(a) Find the altitude of the satellile atperEss (the point

nearest the suface ofthe Earth) and at apogee fthe point
fafihest lrom the surlace of lhe Earth). Use 3960 mi as

the radius of fie Earth.
(b) At the instant when d is 120'', the angle P is increasing

at tlre r.ate of 2.7'lmin. Find the altitude oi tlre satel-

lile and the rate at which the altitude is changing at this

instant. Express the rate in units of mi/nin.

Figure Ex 19

An aircratt is ffying horizontally at a constant height oi4000
ft above afixed observation point (sce the accompanying Iig-
ure). At a certain instant the angle of elevation 6 is 30' and

decreasing, and the speecl ol the aircralt is 300 mi/h.
(a) How fast is d decreasing at this irstant? Express the

result in units of degrees/s.
(b) How fast is the distance betwcen the aircraii atld the

observation point changing at this instant? Express the

rcsult in units of ft/s. Use i mi : 5280 f].
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A conical water tank wilh vertex down has a radilrs of l0
ft at the top and is 2zt ft high. If water flows into the tank
at a rate of 20 l'tr/min, how last is the depth of the water
increasing when the water is l6 tt deep?

Grain pouring fiom a chute at the rate oi 8 ftl/min forms a

conical pile whose altitude is always twice its radius. How
fast is the altitude of the pile increasing at the instant when
the pile is 6 ft high?

Sand pouring from a chute forms a conical pile whoseheight
is always equal to the diameter. If the height increases at a
constant .ate of 5 tt/min, at what rate is sand pouring from
the cl'rlite when the pile is 10 ti high?

Wheat is pourecl through a chute at the rate of l0 ft3/min,
and talls in a conical pile whose bottom radius is always half
the altitude. How fast wili the circuml'elence of the base be

increasing when the pile is 8 ft high?

An air crat't is climbing at a 30' angle to the horizontal. How
fast is the aircraft gaining altitude if its speed is 500 mi/h?

A boat is pu1led into a dock by means of a rope altached to a
pulley on the clock (see the accompanying ligule). The rope
is attached ro the bow of the boat at a poi11r 10 ft below the
pulley. lfthe rope is pulled through the pulley at a rate of 20
t't/min, at what rate will the boat be approaching the dock
when 125 fi of rope is out?

Figure Ex 26

27. For the boat in Exercise 26, how last must the rope be pulled
if we want the boat to approach the dock at a rate of l2 ft/min
at the instant when 125 ft of rope is out?

28. A man 6 ft tal] is walking at the rute of 3 ft/s toward a

strectlight l8 ft high (see the accompanying figure).
(a) At what rate is his shadow length changing?
(b) How fast is the tip of his shadow moving?

21.

22.18.

19.

26.

24.

Ficure Ex 2{)

Pu ey

Dock

20.
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Figurc Lr 28

Abeircon that makcs onctcvolution eletl' l0 s is located on
ir ship anchored ,1ki](metcrs tiorn a stiaighl shorelinc. How
fast is the beaur Ino!ing rlong thc shoreline when it nrakes
en lnglc o1 ,1-5 uith the shorel

An aircrafi is flylng rt a constant altitudc \!ith a constant
spccd of 600 mi/h. An antiaircrafi missilc is fired on a

str aight line perpendicLrlal to thc 11ilht path of the ailcralt scr

lhat it \\,ill hit the aircrrll rt a point P (sec the accompanying
ligure). A1 the in\ttnt the aircrafi is 2 mi lionr the jmpacl

point P the missile is .1 mi lrom P iucl llling at 1200 mi/h.
At thi{ instant, how rapicllv is the distrncc bct\!een missilc
and iLir'cr irli dec|crsins"l

ll.

Figurc I-r l0

Solve Exercise 30 uDdc| the assuilpliolt lhal thc angle lle
tween the Ilight paths is 120 insteld ol the assuntption thtt
the paths are perycndicLllar. l11ilrt. Use the litw olcosine\-l

A police hclicopter is flyi0g due no(h al 100 mi/h and xl a
constanr altitudc ol ] lri. Below. it ciil ls lraveling $ est on ir
highwey et 75 mi/h. At the ntotnent the helicopter crosscs
ovcr thc highwily lhe crr is 2 mi east of thc hclicopter.
(a) How 1asl is the distrnce bctwccn rhc cat and helicopte|

changing at the moment the hclicoptcrcrosses rhe high
way I

(b) ls the distance bet\\ een the car and hclicopter incretsing
or- dccrcasing at thlt momenl /

A palticlc is moving along the curve whosc cquatlon is

A point P is moving along the ltne wl]osc cquatlon is

.l - 2r. Horv last is thc distance between P lnd the point
(3.0) changing at the instrnt when P is ar (3.6) if .r is
clccreasing at thc rate ol 2 units/s at that instilnt'l

A point P is movill-s along the curve whose eq[ation is
\': J-r. Suppose that.r is increasing at the ratc of .1 unils/s

(a) How Iast is the dislancc between /, and rhe point (2. 0)
changjn-g at this il'lstiintJ

(b) Horv last is the irnglc ol inclination ol the line segulent
floln P to (2. 0) changing at this instant'l

A particle is moving aione the curvc r. : t ]n r. Find all
values oi x at \\,hlch tlle rate ol change ol \, $,ith respect to
time js thlee times that ol .r. lAssume that r/r/r1t is never
zero.l

A particle is moving rlong the cuNe I6rr * c).t,r : 1.t4.

Find all points (,!. !) at which the rates ol change ol-r ancl

_r with lespect to time a|e equa1. lAssuie that rlr/1|t alld
r1t/r1r are nevcr both zero at thc same point.l
'lhe thin lens equation in physics is

where.! is the obiect distancc ftom the lens. .! is the irnese
distance llom the lens. and / is the focal lcngth ol dre lens.
Suppose that a cettrin lens has a tocal lengdt of 6 crr lnd
that [n object is moving lowiird thc lens al the rate- of 2 cut/s.
How fast is the imagc distance changing at the instant $,hen
tlr-u,:cttt. ll)( In ",irn hr lr '. ' l. ths llr...,e I ^\ l -':r$-)
from the lens ot towilrd thc lcns'l

Water is stored in a cone-shaped reservoir (veltex clo[n).
AssLrming the water evaporates at a rale propofiionill lar lhe
surlace arca exposed lo thc air. show lhlit thc deplh ol thc
\\,ater will decr'ease al a constant rtte that docs ltot aleDen(l

o| tlle dimeDsions of the reservoir.

A meteorite entcts the Eat th s attnosphere i1nd bul.DS up ilt a

rate that. at each inltant. is proportional to its sutlace area.
Assuming that the meleuite is alwtys spherjcal. show thal
the radius dccreases al a constant r-ate.

On a ceftain clock lhe minute hand is,1 in long ancl the houl
hand is 3 in long. How fllst is lhe distance llctwee the lips
o1'thc hands chal]ging at 9 o'clock?

Coffee is pouled at a unifbrm rate ol'20 cml/s into i1 cup
$hose inside is shaped likc il ttuncaled conc (see the accorn
p[n]i g ligurc). lf the upper rnd lower re.lii ol the cllp are
.1 cm and 2 cm and the height of the cup is 6 cm. ho\\, rst

will the collec lcvel be rising whcn rhe collee is haltway
up? lHill. Extcnd the cup downwarcl to lorm a cone.]

Assune that Lhe .r coordinttc is lncrelsing at the ratc of 6
LIlits/s \\,hcn thc pllticle is at the point (1. 2).
{a) At \\,hat r'litc is the i-coor,:linate ol'the point changing

at thal inslirntL
(b) ls the particle rising or lalling at that instantl

34, A point P is n]oving alorg thc cruve whose equation is

.\' : .,/rl + 17. When P i! ar (2,5). I is increasing ar the

rxte oi 2 unils/s. How last is .r changing?

t:

35.

36.

29.

3tt.30.

39.

,10.

41.

ltl
r.sf

l,

42.

43--l-t.

r.r'r I
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4. 7 L'HOPITAL'S RULE; lr\tDHTERM'rdATE FSRIIX $

In tlis sc(:tion n,c ul/1 r/iscirss u gieneral ntethod for using derivitives to find Linits.
This nethod will enable us to establislt linits wih ceflaint) tlu eurlier in the text )te
tere otlt uble to cortjetture Lrsing nwnerical or graphicaL evidence. The method tfun
n,c t],iLl disctts.t irt this secliou is an e reme[y- pot"-edii tool that is used iLtermlb by
nldt1\'cotllpLier prcgrunts to calculate litllits ol wrioLts t!^pes.

In earlier scctions wc discussed limits that can be determined by inspection or by some ap

propriate algebraic rnanipulation. In this section we will be concerned with limits that cannot
be obtained by such methods. For example. in Theorem 2.5.3 we were able to show that

sin,rlinr_-I (1)

but it required the Squeezing Theorem (2.5.2) and some tricky manipulation of inequalities.
Our goal here is to develop a more straightfbrward method.

What makes the limit in ( I ) bothersome is the fact that the numcrator and dcnominator
both approach 0 as -r > 0. Such limits are called indeterminate forrns of type 0/0. It
limils of this q/pe there are two tendencies working against each other: as the numemtor
approaches 0 it tends to drive the ratio toward 0, and as the denominator approachcs 0 it
terrds to drive the ratio toward +.c or -... What happens in (1) is that these conflicting
tendcncics oii'sct cach other in such a way that the limit is l.

Although the limit in (1) is not self-evident. it can be conjectured from numerical evi-
dcnce. as in Table 2. L2. However. it can also be conjectured fiom the local linear rpprox
imation ol' sin -r at 0. To see this, recall from Formula (5) of Section 3.6 that if a function

l is ditlerentiable at:r point -y0, then for values ofr near r0, the values of l(-r) can be

apploximated as

l(r):: /(16) -t- /'(ro)(.r .ro)

whele the approximatio]r tends to get better ar]d better as i -+,r0. In particular, we showcd
in Exanple 3 of Section 3.6 that the loca] linear approximation of sjn r at r0 : 0 is

This suggests that the value of (sin r)/r gets closer and closer to 1 as r + 0, and heoce we

can reasonably conclude that

sin.r -rlinr :lim :l
!+1) ,l r-0.l

The idea ol'using local linear approximations to evaluatc indeterminate lorms of type 0/0
can be used to notivatc ii nrore general plocedure lbr finding sucb limits. For this pr.rrpose,

suppose that

lim l
'-".s(-r)

is an indeterminate lbrtr of type 0/0, that is,

linr .l(-r) :0 and lim g(.r) :0 (2)

For si:rplicity, let us also assume that / and g are differentiable al,rr - r0 and that /' and

g' iue continuous at r : -to. The differentiability of / and I at -r : ;ro implies that f and

g i,rre continuous at r - ,l0, and hence from (2)

.l(ro) : lim .l(r) :0 and g(-r0) : lirn A'(r) : 0

Moreover, thc contiruity of /' and g' at x : -r0 implies that

I]HOPITAL'S RULE

(3)
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,$,,.f'l'l - l'(r0) and ,lin,,e'(.r) = e'(.to) (4)

Thus, tiom (3) and (4) and the local linear approximations of / and g at r : r0, we have

l-cost
lim _: lim
.\-0 t r -0

The graphs ofl and .q together with
their local linear approximations at
the point ro

Figurc.+.7.1

rrt,r\'i,\rtK. Figure,1.7.l provides a geornetric explanation ol (5). That figure shows the
graphs / and g and the graphs of their local linear approximations at ro. Note that /(r ) --+ 0
and .g(.t) + Q 35,1 >.r0 in the ligure because the limitof .l/g is an indeterminate fu m of
type 0/0. The figure strongly suggests that for valucs of .r neaL .r9 therc is little difference
betweer thc ratio of .l (.r') and .g(.L), and the mtio of the cor responding values in the local
lincar approximations. which is what wc showed algebraically.

Although we motivated Formula (5) by assuming that.l and 3 have continuous derivatives
at.r = ,r0, the result is true without this assumption. MoLeover, the Iesult is also valid fot
one-sided limits and limits at +c. and --. We omit the formai proof.

4.7.l t Hr1)RE\,r (1-'H6piral's Rule [or Forn r/0). Let )i|n stund.fin' one oJ the lini8 lim 
t,

Iim . fim . lim . ot litn . curd suppose that lim .l (t) : 0 arirl lim S(,r) : 0. {r ,4_ r_!d r++,
lim [.]'(i)/S'( t)] lns t tinira vtl u<' L. or iJ this t init is *'. or --r.. then

f{r) f'ttt
lim i---- = lirn l------s(rc) s'(,{)

I rN4/\ttK. Note that in LHopital's rule the numemtor and denominator are differentiated
separately, which is not the same as dilfcrentiating l(-r)/g(.r).

*,,,',,r,ru,'*ra,u,,r\\ior\l:Dr'rrro|rlr\r (1661 1704). Frcnch nl:rthenratician. UH6pital. bom to parents of
thc French hish nobilit-v. held the titlc ol Marquisde Sainrc Mcsmc CoDrte d'Aurre rent. Hc shou.ed madrcDlatical

talcn( qD ile early and al rge I 5 sol\ ed r ditticult problcm about cyc loids posed by Pascal. As a young man he served

biefly as r caval_a oflicer. bul rcsigncd bec use of nearightedness. l n hisowll tinle hegained fame as lhettuthor
ol tlrc liNt textbook ever published on dillcrcntial calculus. LAr.rA.1?.&s Inlinincnt Pctits pout I lt elliEence
d6 LigDLt Coufie\ (1696). L Hopiral r lrlle appeared for the liN lime in th t book. Actu.rlly. L'H6pital s lule
aDd N)st olthe nuterial in thc c lculus lc)it wclc due to John Bernoulli, who wrs LH6pital s teacher. I-'Hdpilal
dropped his plans for a book on irrlcgrul cnlculus whcn Lcibniz irfbrnred hir)) thnt he inlendcd !o write such a text.

L ll6pi1nl \ras appaEntly lenerous irnd personrble. and his nrany conlucl$ with Dujor mathenraticians provided

lhe vehicle for dissemilraling major diseoverjes in calculus throughout Eurupc.

- litl f'{.r1r ) (.\ -.\o) "f'(,ro)
{'( rrr)(r - .\r' ) B'(.r'o)

which liom (4) can be cxprcssed as

fi r) /'trtlim -lirr- 15)

'- ',, 8(_r) .-', s,(.r)

This result, called L'Hipital's* nrle, converts an incleterrninate forn of type 0/0 into a

new lillit involving dcriYatives that in many situations can be evaluatcd by inspection or by
algeblaic methods. Fol exarnple.

wl]ich aerees with the result

stn \_:lim-:sin0:0
. -o I

2.5.3.

f(.ro) * /'(.ro)(,t -,r-o)
3(.ro) + g'(.ro)(,r - ,r-o)

. lrl
in Tlreorem

f tr -.o,..t
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In the following examples we will apply L Hdpital's rule using the following three-step
process:

Step 1. Check that lim /(x)/g(x) is an indeterminare form. If it is not, rhen
LH0pital's rule cannot be used.

Step 2. Differentiate / and g separately.

Step 3, Find lim /'("r)/g'(-r). If this limit is finite, +oo, or -co, then it is equal
ro lim /(r)/8(-r).

Example I
In each part confirm that the limit is an indeterminate form of type 0/0, and evaluare it using
UHopital's rule.

x2-4 sin 2;r I -sinr e,-l
1a) lim ^ (b) lim 

- 
tc) lim

' 2 r 2 !-O r ,.., co\f r-0 -{'

tan-r I -cos,r i: al
(e) lim i fl) lim , qg; lim 

-

.0 r ,_t \rn|/.{)

Solution (a). The numerator and denominator have a lirrit ol0, so L'Hdpital's rule applies
and yields

d"
.r'_4 ,_[r'-41 2tlim =lim"i =lim--4.,.'.r-2 ,-. Lf, _Zl , : I

AX

Observe that this pa(icular limit could also have been obtained by factoring

t:-4 tx -2)tx+2tlim =: lim 

- 

= lim (n I 2)-4' -l r 2 ,-: x-2
So lution (b). The numerator and denomi nator have a limit of 0, so L'HOpital's rule applies
and yields

d -_ ^ -

sin 2r ; lsln lxl 2 cor 2rlim -lim"' = Iim -2, .0 r \-o d t-O I. [rldr
Observe that this result agrees with that obtained by substitution in Example 2(b) of
Section 2.5-

Solutiott (cJ, The numerator and denominator have a limit of0, so L Hdpital's rute applies
and yields

d..
I .inx ;ll-sintl -.or" olim _= lim _!-*_ = lim _=_=0

. 12 co\.t r-r: Lt n2 \in-r -l;lcos r I

Solution (d \. The numerator and denominator have a limit of 0, so L H6pital's rule appJies
and yields

r)
p' | ;[e' - ll e'

lim l---l = lim ar, = lim -' +a,
'i o .\r '-u alr,l ' 'o lrr

dx' '
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Soltrtion lel, The numerator and denominator have a limit of0, so L'Hdpital's rule applies
and yields

tan -r sec2 rlim _: lim _=_.c
-t-o ,{l .rro 2x

S ohttion ( f l. The numerator and denoninator have a limit of 0, so L'Hdpital's rule applies
and yields

I - cos n sinrlim-= lim ^r-0 r_ r-0 l-t
Since the new limit is another indeterminate form of type 0/0. we apply L'H6pital's rule
again:

I - cos-\lim 
^

sin r cos r. I: Iim 

-: 
lim 

-:
.-o 2r ' -tr 2 2

Solrttion lg). The numerator and denominator have a limit of0, so L'HOpital's rule applies
and yields

.r' -1r-t ix ' olim = lirn --- -i- _ Iim 

-:-=0
' .in(l'r; ,'.(-llxj)uoi(l r) '' cos(l/x; I

wARNIN(1. Applying L'Hopital's rule to limits that are not indeterminate fbrms can lead
to inconect results. For exumple, in the limit

t-F6 6lim = =l.-o _t * 2 2

the numerator approaches 6 and the denominator approaches 2, so the limit is not an inde-
terminate form of type 0/0. However, if we ignore this and blindly apply LH0pital's rule,
we reach the following cnlrcoirs conclusion:

d. [r+6]
tim 4l-

. [.r +2]

..1
! ol

INDETERMINATE FORMS OF

TYPE ooloo

When we want b indicate that the limit (or the one-sided limits) of a function are +- or
.o without being specific about the sign, we will say that the limit is cc, For example,

lim /(r): x nreans lim l(x) = +cc or lim f(r): -:o

.$.ft"l::c means,!T,lG):+-
lim /(r) -.c means lim l(-{): +.c

or ,\1' Jtrl : --
and lim /(r ) = j:c

The limit of a ratio, l (.r)/g(,r), in which the numerator has limit :c and the denomi-
nator has limit .c is called an indetermin&te form of ttpe e l r. The lbllowing version of
L'Hopital's rule, which we state without proof, can often be used to evaluate limits of this
type.

i 4.7.2 tHeosev (L'H6pitat's Rutc fot Fonn 6/.4.7.2 r HEoREN4 (L'H6pitat's Rutc.fot Fonn */-). Let lim stand.far one of the limits
lim, lim, lim, lim ,or lim , and suppose that hm .f (.x) = a and lim gQ) : cn.

a+d .t++2
It'limlt''G)/e'G)l has a.finite |alue L. ot if this limit is +@ or -.., the

.. f(x) .. f'$)ttm-=trm-""'g(n) "' g'(x) 
l
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Example 2

In each part confirm that the limit is an indererminare form oftype r/cc and apply L'H6piral,s
rule.

,t ln r(a) lim (b) li,n 
-

\+ +- e.\ r+0+ CSC r

Sohttion (a), The numerator and denominator both have a limit of +... so we have an
indeterminate fbrm of type o/oc. Applying L'Hdpital's rule yieLds

-rlliln *: lim =0r++-' et \++' e\

Solution (b). The numerator has a limit of .c and the clenominator has a limit of +oo, so
we have an indeterminate form of type -/*. Applying L'H6piral's rule yields

lnr l/xlim : lim
J+ 0+ CSC "r r+0+ CSC I COf I

This last limit is again an indeterminate form of type ::/o. Moreover, any additional ap-
plications of L'H6pital's rule will yield powers of 1/r in the numerator and expressions
involving cscr and cot; in the denominator; thus, repeated application ofL'H6pital's rule
simply produces new indeteminate fbrms. We must try something else. The Last limit in
(6) can be rewritten as

t6)

-- / srnr \l n l--tanYl: llm
'-0'\ \ ) ,-0+

Thus.

lnxlim =0
r +0+ CSC -t-

SlllI

- 
lim ranr:-(l)(0) =0f {-il+

ANALYZING THE GROWTH OF
EXPONENTIAL FUNCTIONS USING
L'H6PITAL'S RULE

If a is any positive integer, then .r" + +.o as ir + +.c. Such integer powers of r are some
times used as "measuring sticks" to describe how rapidly otherf'unctioos grow. Forexample,
wc know that er > +, as r -+ +.c and that the growlh of e' is vety rapid (Table 4.2.3);
however, the growth of r'r is also rapid when n is a high power, so it is reasonable to ask
whether high powers of ,r grow more or less rapidly than e'. One way to investigate this is to
examine the behavior ofthe ratio r"/e' as,r + +.o. For example, Figure 4.7.2a shows the
graph of t : .r5/e'. This graph suggests that r5/a'-> 0 as,r + +.., and this implies that
the growth of fie function e' is sufilciently mpid that its values eveDtually overtake those ol
x5 and force the ratio towarcl zero. Stated infonnally, "e' eventually grows more |apidly than
x5." The same conclusion could have been reaclred by putting e! on top ancl examining the
behavior ofe*/,r5 as x + +:c (Figure 4.7.2b). In this case the values ofe' eventually over-
take those of .r5 and force the ratio toward +.c. More gencrally, we can use L'Hdpital's rule
to show that er et,eriuall;, grows more rapidly than any positite integer pou,e| of -r, dtat is,

Figure 4.7.2
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TYPE 0 . oo

=0 (7-8)

Both limits are indeteminate foms of type ../, that can be evaluated using L HOpital's
rule. For example, to establish (7), we will need to apply LHOpital's rule ,? tines. For this
pulpose, observe that successive difTerentiations ofr" reduce the exponent by I each time,
thus producing a constant for the nth dedvative. For example, the successive derivatives ofrl
are312,6r,and6.Ingeneral,thenthderivativeofx"istheconstant,l(r,1)(/? 2)...1:nl
(verify).* Thus, applying LHOpital's rule /x times to (7) yields

x'' nllim : lim :0
,++a et x++- er

Limit (8) can be established similarly.

Thus far we have discussed indeteflninate forms of type 0/0 and co/cc. Howevel tbese are
not the only possibilities; in general, the limit of an exprcssion that has one of the forms

l(r\
/rrr.g'rr /r.rro"'. f{,\)-g{rr. Jrr' €rU

I (.{.1

is called an i deteminate;form if the limits of /(r) and g(r) individually exe conllicling
influences on the Iimit of the entire expression. For example. the limit

lin rlnx

is nn indeterminate form of Epe 0 . co because the limit of the f,rst factor is 0, the limit of
the second factor is -"o, and these two limits exert conflicting influences on the p.oduct.
On the other hand. the limit

lirn 1.,,4(l ir2)l

is not an indeterminate form because the first factor has a limit of +oo. the second factor has
a limit of --, and fhese influences work togetlter to produce a limit of -:: for the product.

\\'ARNINC. It is tempting to argue that an indeterminate form of type 0 .cc has value 0
sinca "zero times anything is zero." However, this is fallacious since 0 c. is not a product
of numbe$, but rather a statement about limits. For example, the following limits are of the
form 0 cc:

I - I _r
lim ,r.- : 1, lim x'.- :0. lirn /r. = +,,r-0+ 

'r 
J+0- t r-0+ x

Indeterminate tbrms of type 0 . co can sometimes be evaiuated by rew ting the product
as a ratio, and then applying L Hdpital's ru1e for indeterminate forms of type 0/0 or m/ar.

Example 3
Evaluate

(a) lim -rlnr

e\and lrm
,++6 xh

lim 1-

(b) 
,lim,a 

(1 - tan x) sec 2-r

Soltttion (.a), The factor r has a limit of 0 and the factor ln r has a limit of .o, so the
stated problem is an indeterminate form of type 0 . ?:. There arc two possible approaches:
we can rewrite the limit as

ln r -rlim _ or lim _
, -u+ 1/.\ , -ut 1/ ln.r

the first being an indeteminate form of type cc/co and the second an indeteminate form of

* 
Recall that fbr n : 1 the expression ,] | is read n-factoriat and denates the pro.luct of the first l1 rnlegers.
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type 0/0. Howevet the first form is the preferred initial choice because the derivative of
1/x is less oomplicated than the derivative of l/ ln r. That choice yields

ln-r l/r
lim rlnx- lim - lim -: lim r .rr -0, .o ." llx l/t

Solution (h). The stated problem is an indeteminate form of type 0 . ... We will convert
it to an indeterminate form of type c./3r:

hm rl -llnrrsec2-r - lim I tln \ 
- li'n l-l'ln"

. r l/.ec:-\ .-q eor2r

: ti,o -,l"tl --J-,.-"tq 2 sil2x 2

A limit ploblem that leads to one of the expressions

(+-)-(+-), (--)-( -),
( -) ( .). ( .) ( .)

is called an indeterminate form of Qpe a' - co. Such limits ale indeterminate because
the two tenns exert conflicting influences on the expression: one pushes it in the positive
direction and the other pushes it in the negative direction. However, limit problems that lead
to one of the erpre'sions

(+..) + (+-), (+-) ( -),
( -)+( -), ( -) (+-)

are not indeterminate, since the two terms work together (those on the top produce a limit
of +co and those on the bottom produce a limit of 

"o).
Indetenninate foms of type - - - can sometimes be evaluated by combining the terms

and manipulating the result to produce an indeterminate fonn of type 0/0 or -/co.

Example 4
/t r \

Evalurte lim l- - . I.L-u'\.{ srnr/

Solutiott. Both terms have a limjt of +co, so the stated problem is an indeterminate form
of type o. .o. Combining the two terms yields

/l l\ /"inr-t,lim | -l- lim | . I
-o \.r .in-r / u \ .r sin.r /

which is an indeterminate fbrm of type 0/0. Applying LH6pital's rule twice yields

/'inr r\ co\r Ilim I : l- lim -'.^ \ \5lnr / n \lnr \'(o\\
sin -r 0: lirr :-:0

' '^ CO\ r rCO:Y rsinr 2

Limits of the lbrm

tirr7'1r'0
giyerise toindeterminateforms ofthe Epes 00, .r0, and 7' . (.The meaning ofthese symbols
shouid be clerr.) For erirmple. the limit

lim (l 1 .r;1/'

whose value we know to be e lsee Fonnula (5) of Section 4.2] is an indeterminate form of
type l'. It is indeterminate because the expressions i + r and 1/r exeft two conflicting

INDETERMINATE FORMS OF
TYPE 00, coo, 1-
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EXERctsE SET 4.7 B Graphing Ca cutator pCAS

influences: the first approaches l, which drives the expression toward I, ard the second
approaches +.c, which drives the expression toward +:c.

lndeterminate forms of typcs 00, :c0, and I' can sometimes be eyaluatecl by first intro-
ducing a dependent variable

] : I (r)3(r)

and then calculating the iirnit 01'ln l by expressing it as

lim In _r' : lim n(J(.r){r'))l : Iim [g(r) ln /(r)i
Once the limit of ln,r' is known, the limit of ,r. - /("r)r(rr itselfcan generally be obtained
by a method that we will illustrute in the next example.

Example 5

Show that lim (l + -r)r/' = c.

Solutiott. As discussed above, we begin by introducing a dependent variable

.r' : (l +.r)l/.
and taking the natural loga thnolbothsidcs:

ln r'- lnll-x)r '= ]lntl-rt - 
lnrl-r)

Thus,

ln{ I +xr
lim ln r: lim ---------------r-0 i-0 .r

which is an indeterminate form ol'type 0/0, so by L H6piral's rule

ln{l +-r) l/rl tr)
lim ln r'- lim : lim ----_ - I
r-0 \-0 X .r-0 I

Since we have shown that ln r, --+ I as r + 0, the continuity of the exponential function
implies that eln ) -+ el as x -+ 0. and this implies that r'+ e as .r --+ 0. Thus.

lim (l +.r)rr' : e

,)-a )r 5
l. (a) lim tbl lim i: l, :xt-r2x-8 Lr-r 7

-,r2 - l
(h) lim '.

ln Exercises I and 2, evaluate the given limit without using 5. li. n', - I

L H6pital's rule, and then check that your answer is corect ' - 0 srrl r-

tan P
7. tim _F-o 0

sin.r9. lim _
r*n_,r: - 7I

ln r.

I l. lim

13, lim tot't
('0+ ln -r

rl0015. Iim

,r-36. lim

using UHdpital's rule.

' .i-.r 3-r: - 13.. * t,

E. lim _

sin r
10. lim .

12. linr ,

l-lnr
14- tiln 

-lntsin.t tl6- lirn -------------
r-o ln(tan.r)

sln.x
2. (a) lim _' r+0ltn x

ln Exercises 3-36. find the limit.

lnr3. lim _
\-t_t- |

sin 2r
4. limr-o sin 5.r



sin_ l 2-[
17. lirl

19. lim -rc '

21. lirll rsin-
\ ++' _r

23. lim sec3rcos5r

25. lim (l 3/-r)'

27. lim (e' + r)r"'

29' lini (2 r )'"'('i rr'r- I

31. lim (csc r llr)

33. lim (/.rr +.r - r)

35. lim [-r 1n(-t2 + l)l
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are /lo1 indetern'linatc fbrms. Find the followir]s lirnits bv-r:-tanl-r
18. lim ^r+! l-i

20. lim (r z) tan j-r

22. lim tan,r ln -r
'\_0

24. lim (-r - 7r)cot,r

26. lim (1 + 2-r) ri'
! '0

28. lrm rl+,t/ttt'
L-+.

30. 1im lcos(2/r)1"

/ I coslr \
32. lirn {; , I,_l \r \ /

/t r \
14- lirr l- I,-n\\ ,:' )/
36. lim llnr ln( I i -r)lr- +z

37. Use a CAS to check the answers you obtained jn Exercises
31 36.

3lJ. Show thal for any positive integeu

39. ia) Find thc crror ln thc fbllowins calculailon:

.r1 rl+x 1

5{J, There is a myfi that circulales among bcginning calculus
students whicll states that all indelerminatc fbrms of types
0i), -0, and l' have value I because "anything to the zero
porver is l and "l to any power is 1." The lallacy is that
90, 20, and I' are not porver's o1'nunbers. but rather de

scriptions ol limits. Thc tbllowing exarrples. which were
transmitted to me by Prof. Jack Stajb ol Drerel University,
show that sllch indetenninatc tinms can have any pctsitive

real value:

(a) 
,linr [r(r'']/(r-rt 

t)] - 0o : a

1b.) .lin- [r(]"")/{rFri'I)] : -0 - rl

(c) rT [(.r + l)(Lddr/\] : t'' : ct.

Prove thesc results.

ln Exercrses 5l-5.1, veriti that LLldpital's rule is of no hclp
in finding the limit. then find the limit. if ir exists, by some
othcr lllethod.

inspection.

(r) lrm ..0 ln r

(c) lim (cosr)t""'
r- (l rr )-

/t \le) lim I lnrl
,-r \'l /

(b) lim 
-(d) lirr (lnr) cot-r

(f) lin (.r +.t:r)

2r sin r52- lrnl _
r -+-3{+sin_r-

rrl+sinr)
5,1. lim

r-+7- _rl + l

tr

ln.r(a) 
, Ll,n.. r :o

llrn
r- l

(b) lim - +r
- ln r

:Lm
r+ I

(b) Find the conect answer.

.,' 4.,',6.1 1r , I
40. lrroln 

,T JT ] JI T

ln Exercises 4l--,14, make a conjecture about the limit by
graphing the function involved with a graphing utjlity: then
check your conjeclure using L'HOpital's rule.

lnt ln rJ41. lim 

-

,- +- Jx
43.,lim (sin.r)r/r"'

.j. + sir 2r51. lim
I+ +r ,l

tl2+sin2a)
5-1. linr\)+, ,t+l
55. The accompanying schematic diagram represents iln electri

cal circuit consisting olln electrolnotjvc fot ce that produces
a voltage y. ir resistor with r-esistance R. and an inductor
with inductance l,. It is shown in electr-ical circuit lheory
that if the voitage is first applied at tirne r : 0, rhen rhe
currerlt / I'lowing thtough the circuit at linte r is given by

i - rl ? Rt L\
R'

What is the ettect on the cufcnt at a fixed tine t if tl]e
rcsistance approaches 0 (i.e.. ,R --+ 0-) l

3.r2 2r. + I

3rt \
612
6,, 2-

E

E

x-l 42- lim r '

4tan r,-t 44- lim
,-1r trr I + 5e! \

E

E

In Exercises 45 -.l8, make a conjecture about the equations of
hodzurtaL asymptotes. il any, by graphing the equation with
a gl'itphiDg utility: then check your answer using LHOpital's
rule

B 46. -r'=x-ln(l+2e')
rr l l\r

848.':1,+2J

45. t,- l1.r _ c.

47. 
'': 

qtn r)L/.

49. Linirs oi the type

0l-. -/0. D-. , -. +- + (+:c),

+' ( -), -+( -). - (+-)

Figurc Ex 55

(a) Show that liln (tr/2 -.r) tan-r
r-x/l

56.
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Show that

/1 \
lim I innl l:0,-.', \r/2 r )

It follows from pafi (b) that the approximation

I
tan n ^: 

-

n/2-x
should be good for values of ,r near r/2. Use a calcula-
tor to find tanr and I l@12 x) for x : 1.57; compare

the results.

Use a CAS to show that if t is a positive constant, then

lim rlkr/' 1) :lnt

Confirm this result using LHopital's tt\Ie. lHint: Ex
press the limit in terms of r : 1/,r.1

If n is a positive integer, then it follows t'rom pafi (a)

with i : ,? that the approximation

n(fi-t)*tnt<
should be good when/? is large. Use this result and the
square root key on a calculator to approximate the val

ues of 1n0.3 and In2 with tt : 1024, then compare

the values obtained with values of the logarithms gen

eraled directly from the calculator. Flirl. The n th roots
lbr whichir is apowerof2 can be obtained as successive

square roots.]

Let /(-r) : r'] sin(1/r).
(a) Are the limits lim /(i) and lim /(r,) indeterminate' ,o.

IOtms I

(b) Use a graphing utiiity to generate the graph of .1, and
use the graph to make conjectures about the limits il'l
part (a).

(c) Use the Squeezing Theorem (2.5.2) to confim that your
conjectures in part (b) are corect.

Find all values of ,t and i such that

l+coslrlim . :-4

(a) Explain why LHdpital's rule does not apply to the
problem

x2 sin(l/x)
llmr+0 sinx

(b) Find the limit.
r sint l/r I

Find lim ------------:--- if ir exisisr+o+ sin x

(b)

(c) E s8.

@ s7. (a) 59.

60.
(b)

(c)

61.

1. (a)

(b)

(c)

(d)

(e)

(f)

2. (a)

State conditions under which two functions, / and g,
will be inverses, and give several examples of such

functions.
In words, what is the relationship between the graphs

of 1 : f(.r) and 1 - g(x) when / and g are inverse
functions?
What is the relationship between the domains and

ranges of inverse functions / and g?

What condition must be satisfied for a function jf to
have an inverse? Give some examples of functions that
do not have i)rverses.

If / and g are inverse functions and / is continuous,

must g be continuous? Give a reasonable informal ar-

gument to support your answer.

lf / and g rLre inverse functions and / is dilTerentiable,
must g be differentiable? Give a reasonable informal
argument to support your answer.

State the restrictions on the domains ol sinr, cosr,
tan,r, and sec.r that are imposed to make those func-
tions one-to-one in the delinitions of sin 1:r, cos l,;r,

tan I n- and sec-lr.
Sketch the graphs of the restricted trigonometric func-
tions in part (a) and their inverses.

(a) Under what conditions will a llmit of the tbrm

lim t./(r)/g(,r)l

be an indeterminate form?
(b) If limg(.t) : 0, must lim[/(x)/g(r)] be an inde-

telminate fonn? Give some examples to support your
answet

Suppose that lim /(r) : tr and lim g(r) : ta:. In each

of the four possible cases, state whethellim [/(x) - g(r)]
is an indeterminate for.m, alld give a Ieasonable informal
argument to support your answe].

In each part, f,nd f r(.r) if the invelse exists.

3.

4.

(a) /(r) :8-rr I

(c) /(r) : (e')2 + I
(b) l(x) : a2 - 2v.r 1

kD .f(') - (x i 416 I )

7.

Let /(jr) : (ax + b) I (6 + d ). What conditions on 4, b, c,
d guaranteethat f I exists? Find f 1(r).

In each part, find the equation ol the tangent line at the
specilied point.

6) x2/3 )2/r r : l; (1, t)
(b) sinry - y: (n12.1\

(b)



8.

9.

16.

F' t7.

E 18.

20.

10.

ll.

In each part, find the exact numedcal value of the given
expression.
(a) coslcos-r(4/5) + sin r1571311

(b) sinlsin r(,1/5) +cos '(5/13)l
Express the tbllowing function as a rational function of .r:

3 ln (a" 1e'1r) + 2 exp(ln 1)

Suppose that )' - Cer'. where C and I are constants, and

let f - ln _r'. Show that the graph of f ver sus / is a line, and

state its slope and f-intercept.

In each part. find the lilnit.

(a) 
,ljln. 

(e' - jl2)

(c) .limuU. a > 0

Show that the lunction -r : e"' sin bi satisnes

\t, _ 2q,, + (ar + lrr) i, : 0

fbr arny real constants .7 and l,.

Show that the function -i : tan I x satisfies

-r'" - 2 sin I' cosl f
Show that the rate of change o1' 1 : 32'5i' is plopoltional
to )'.

The hypotenuse of a right triangle is growilg at a rate of a
cm/s and one leg is decreasing at a rate of b cm/s. How fast
is the acute angle between the hypotenuse and the other leg
changing at the instant when both legs are 1 cm?

In each pafi, nnd (/ r)'(r) using Formula (21) of Section
4.3, and check your answer by dift'erentiating l -1 directly.
(a) /(-r) - 3/(.r + l) (b) /(.r): /e'
(a) Sketch lhe curves -y : ,le-'/2 ancl -t : e-'l2 sin 2-r lbr

n/2 
= 

r 
= 

3z/2 in the same coordinate system. and

check your work using a graphing utility.
(b) Find all ,r -intercepts ofthe curve 1 - e '/r sin 2-t in the

stated interval, and find the -r-coordinates of all points

where this clLrve intersects the curves ) : +e '/2.

ln each part, sketch the graph, and check yoLrr work with a

graphing utility.
(a) l(.r) :3sin L(r/2)
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(b) /(r) :costx itf2
(c) f(-t) : 2tan-r(-3,r)
(cl) .l(r) :cos I r +sin-l.t

19. In eirch part, use any appropriate method to lind r/_r./r1_r.

ial 1': (l +.r)r/'
(c) r' : 

"tnl" 
rlr

(e) ,-r2/l -1- y,rl/3 - 12

(a) Suppose that the graph of r : log.t is drawn with eclual
scales of I inch per unit in both the -r- and l, directions.
Il a br.rg wants to walk along the graph until it reaches a

height of 5 ft above the -r-axis, how many lniles to the
right oi the origin will it have to travel l

(b) Supposethatthe graphof 1 : 10' isdrawnwlth equal

scales of I inch p..r unit in bolh the j and l.-directions.
I1'a bug wants to walk along the graph until ir rcaches
a height of 100 mi above tlle r axis, how many i'eet 10

the ri._sht ot' the odsin will it have to travcl?

'irr sho$ lh:t thegr.'plr.o r' ln r an,r r' r02 rle .e..l.
(b) Approximate the solution(s) ofrhe equation ln-t - r0l

to three decimal places.

rr' \horn th.rt lur.\ 0 rnd / - U rL..cquJliL'n\

, lnr
t^ : p lnLl

-r

have the same solutions.
(b) Use the graph ol 1 : (ln -r)/-r to determine the values

of k for which the ecluation -rr - e' has two distinct
positive solutions.

(c) Find the positive solution(s) olrs : e'.
Find the value of 1, so that the line l, : Ir is tangent to the
graph 01 _r' - log/,.r. Confirm your result by graphing both
] : r and ) : logr,.r in the same coordinate system.

ln each prrt. llrd the valLrc of t for which the graphs of
_}, : /(J) and J - 1nr share acomnon tlingent line rt their
point of intersection. Conllrm vour result by glaphing

_r. : /(-r) and _r, - lnr in the same coordinate system.

(b) -r'-;("'r
tal r : --Lt+0. I

(1) i -rn/{"4TT\
\ sin\secl /

I l"t(b) lim .i-
'- Vrr I

12-

21.

22.

13.

14.

15.

21.

(a) ./(-t) : 
"r-r 

+ t (b) /(.t) : rv[
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OF FUNCTIONS

ANDTUnnGnepss

r{(d
Q -7fln thi' ch.rptcl rtc uill tr.e rnethod' ol cil.rrlus to

analyze functions and their graphs. Wc rvill be concernecl

here rvith such matters as identitying where the graph o1'

a function is increasing or decreasing, \\,hcrc its high and

lou'points occur, rvhich way it bends. and what its Iimiting
belravior is at ilrpoftant pojnts.

One of the major goais of this chapter is to show how

calculus and graphing utilities, wor-king k)gether, car pro

vide most ol the important infbrn.rxtion about the behavior
of llnctions. Although grephing Lrtilities cln give us gen

eral intbn.nation aboril the shape of a graph, srich graphs

lack per-fect precision. since they are based on numeri-
cal approximations that can be aflected by compression,

distoltion. and sampling error it requires calculus to pin

down the e-ract localion of the key t'eatures and to reveal

the nature of the line detail. On the other hand. graphs

ploduced by graphing utilities olien pr-ovide inlolmation
that is useful in pointing thc calculus analysis in thc right
direction.
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INCREASING AND DECREASING
FUNCTIONS

5.1 ANALYSIS OF FUNCTIONS l: IIICREASE, DECREASE,
AND COt!CAVITY

Althottglr graphing utilities ore useful for tletennining tlrc general shape of a gru4th.

nrtut-t pntblents recluire more precision than grttphing utiLilies are capable of produc
itr14. The ptn'posa of lhis section is to devektp nlathetnaticqL tooLs that ctut be used to
determine the exact shdpe of a grtqh and the precise location of its kq) fedtures.

The tenns itcreasitg, decreasing, a1(l consldnl are used to descdbe the behavior of a

function over an interval as we travel left to right along its graph. For example, the funclion
graphed in Figure 5.l.l can be described as increasing on the interval (--, 01, decreasing
()Ir the interval 10.21, increasing again on the iDterval [2,,11. aDd constant on the inte.va]

14, +.').

Figure 5.1.1

The following definition, which is illustrated in Figure 5.1.2, expresses these intuitive
ideas precisely.

5.1.1 ,r tl\lll('\. Ler 7 bederinednnrninrerri,l.undler r arrd r': denore poinrs in

that interval.

(.tt) f is increasing on the interval if /(.t1) < /(-t2) whenever r1 <-r2.
(b) f is decreasing on the interval if /(.rr) > l(-r2) whenever rr <.{2.
(c) f is constant on the intelval if f(,rr) - ./(.r:) for all points -r1 and 12.

Decreas ng

T---

\

/(, )

\
/1.r)

l('r)

rr -rr

/(-r)</(r.)if r <r,

(.r )

rr -rt

/0)>/(rr) fr <!l

(b) (c)

Figure 5.1 .2

Figure 5.1.3 suggests that a dit'ferentiable function f is increasing on any interval where
its graph has tangent lines with positive slope, is decreasing on any interval where its graph

has tangent lines with negative slope, and is constrnt on any inter-val where its graph has

tangent lines with zero slope. This intuitive observation suggests the tbllowing imp,rnrnt
theorern that will be proved in Section 6.5.

ncreasing
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Tangent lines
have posiiive s ope.

Figure 5.1.3

Tangeft nes
have negat ve s ope.

' -'' ''-."-_ -l, Tangent lnes l

I have zero s ope- l

REMARK. Observe that in Theorem 5.1.2 it is only necessary to examine the dedvative of
f on the open interval (r,, D) to detennine whether / is increasing, decreasing, or constant
on the closed interval [a, D]. Moreovel althoughthis theorem was stated fora closed interyal
[a, bl, it is applicable to any interval 1 on which / is continuous and inside of which / is
djfferentiable. For example, if / is continuous on (a, fc:) and //(r) > 0 for each -{ in the
interval (a, +..), then / is iDcreasing on [a, +sr); and if /'(.r) < 0 on (-oo, +..), then / is
decreasing on (--, +*) lthe continuity on ( -, +-) follows from the differentiability].

Example 1

Find the intervals on which the tbllowing functions are increasing and tbe intervals on which
they are decreasing.

(a) /(rJ : r2 - 4.r + -l 1b) /1x) = vrllqr r',':l.-
Figure 5.1.4

a--

Solution (a), The graph of linFigure5.1.4suggeststhat./isdecreasingfor.r:2and
increasing for.r - 2. To confirm this, we differentiate / to obtain

f'(r):2t 4-2(x -2)
It lbllows that

"f'(t) = 0 if -:n<x<2
l'(.r) > 0 if 2<r<*co

Since / is continuous at ,r : 2, it follows from Theorem 5.1.2 and the subsequent remark
that

I is decreasing on ( !a,21

/ is increasing on [2, *co)

These conclusions are consistent with the graph of / in Figure 5.1.4.

Solutiotr (b), The graph of / in Figure 5.1.5 suggests that / is increasing over the entire
x-axis. To conlirm this, we differentiate / to obtain "f'(r) = 3.r2. Thus,

"f'(r) > 0 if oo <;r < 0

"f'(")t0 if 0<x<fco

s.1.2 rHr .Rl \1. Let I oe a 1in)rion ,h;";;, : ;r;;r r"r: 
"n 

a ctovd iinr"nat lo.bl
1 and dffirentiable on the open interval (q, b).

: (a) IJ f'(.x) > 0for eve1,value of xin(a,b),then f is increasing onld,bl.
: (b) If f'(x) <0.for ette4, valva 67x in(a,b),then f is d.ecreasing onla,b).
1Q) lf .f'(x):0for eveD value of xix(a,b),thenf is constont on la,bl.

Figure 5.1
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/(r) = 3rr +.1.rr t2\l

F ie u,e 5.1.6

Since / is continuous at -r - 0.

.f is increasing on ( ::,01

I is increasing on [0. f:c)
Hencc ./ is incleasing over the entire interval ( -. *-). which is consistent with tlte graph
in FigLrre 5.1 .5 (see Exercise 51).

Example 2

(a) Usethegraphof /(-r):3.r1 +,1-r3 l2rr+2inFigure5.l.6tomakeaconjecrure
about the intelvals on which l is increasing or decreasing.

(b) Use Theorem -5.1.2 to determine whether your conjecture is collect.

Solution (a). The graph suggests that / is decreasing if-r : 2. increasing if 2 : -r : 0,
decreasing i1' 0 : r- : 1. and increasing if r U l

Sohttion (.b). Differentiating / wc obtain

l'(r) - 12..3 + l2-t2 2.1.r = l2.r(.rr *.r 2) - 12-r(x + 2)(.r l)

The sign analysis ol /' in Table 5.1.1 carr be obtained using the method of test points
discussed in Appendix A. The conclusions in that table conllnn the conjecture in part (a).

Tahle 5.1.1

l2r \-+2 -r I f CONCLUSION

r< 2

2<-r<0
0<-r< I

+
++
+++

.f is decreasjng on ( -, 2l
+ I is increasing on | 2,0l

/ is dccreasing on 10. 1l

+ I is increaslng on fl, +-)

CONCAVITY
Altholrgh lhe sign of the derivative of f reveals where the graph of I is increasing or
decreasing, it does not reveal the direction of cur\).ttLlre. For exat\1ple, on both sides ofthe
point in Figure 5.1 .7 the graph is increasing, but on the left sjde it has an upward curvature
("holcls water'") tncl on the right side it has a downward curyature ("spills water"). On

inteNals where the graph 01'./ has upward curvature we say that / rs conccLve up, and on

intervals where the graph has downward curvature we say that I is utnctte dot 't.

For diflerentiablc l'unctions. the direction of curvature can be cherracterized in terms ol'

the langent lines in two ways; As suggested by Figure 5.1.8, the graph of a function /
has upward curvature on intervals where the graph lies abova its langcnt lines, and it has

downwarcl curvirllrre on intervals where it lies below its tangent lines. Alternativcly, the
graph has upward curvature on intelvals where the tangent lines have increasing slopes and

downward curvaturc on intervals where they have decreasing slopes. We will use this latter
( lrJrir. leri/ation ar ou r lormrl Jcti n ition.

, 5.1.3 DEFiNITION. If / is diflerentiable on an open interval 1, then I is said to be

cottcsve up or,I if /' is increasing on 1, and / is said to be corlcave down on I if f is

decreasing on 1.

To apply this deiinitjon we need some rvay to determine tlre intcryals on which /' is

increasing or decreasing. One way to do this is to apply Theorem 5.1.2 (and the remark
thar lollows it) to the function ./'. lt follows from that theorem and remark that l' will be

Fie u e 5.1.1
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(spills water)
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increasing where its dedvative /" is positive and will be decreasing whele its derivative /"
is negative. This is the jdea behind the fbllowing theorenr.

5.1.,1 lHli,Rl \4. Lr'i I t', t'it,, tlt.tt; rcI i.tl'lt o ,1t1 ,,p, t1 ittt, rrnl L

(a) t f"(x) > 0 ou I. then J i.r cottu:e up ort L

(b) I:f .1" (r) < 0 on I . tlrcn I is cortcave dowrt on L

Example 3

Find open intervals on which the following functions are concavc up:rnd open inter-vlrls otr
which they are concave dowr.

(a) .l(.r) =.r'? 4-r t 3 (b) /(.r) =.rr

Solution (a). Calculating the first two derivatives rve obtain

.f'(x) - 2t 4 and .1"(,r) : 2

Since /"(-r) > 0 fbr all .r. the flrnction / is concave up on (-', +a). This is consistent
with Figure 5.1.,1.

Solutiort (b). Calculating the lirst two derivatives we obtain

.l'(r):3.rr and ./"(.r) : 6,r

Sincc.l"(x) < 0if r < 0and/"(.r) > 0if .i-> 0, the tunction f is concave down on
( ..,0) and concave up on (0, 1::). This is consistent with Figure 5.1.5.

Solution (e). Calculating the tirst tuo derivatives u,e obtain

.l'(.r) :3.r2 - 6r and ./"(r) :6.i - 6:6(r - l)

Since /"(.r-) > 0if .r > land /"(.r) <0if .r < I , we conciude that

/ is concave up on (1. *-)
/ is concave down on ( :c. l)

whic1]iSconsisten1withthegr.aphinFiguIe5.1'9.<

Points where a graph changes l'rom concave up t() concave down, or vice versa. are of special
interest. so there is some termiDology associated with them.

5.1.5 DEFINITION-. If .l is continuous on rr) operr rnter\Jl containirrg the point -\-0,

and if .l changes the direction ol its concavity at that point, then we say that f has an

inflection point at x0, and we call the point (-re, .l(,ro)) on the graph of .l an inflectiott
point of | (Figure 5.1 .l0).

(c) l(,r) :.t3 - 3-rr + l

/(r) = tj 3rr + I

Figure 5. 1.9

INFLECTION POINTS

Figure 5.1.10
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For example, the function .f(.t) : xt has an inflection point at x = 0 (Figure 5.1.5), the
function /(r) : x3 - 3x2 + t has an inflection point at x : I (Figure 5.1.9), and the
function /(x) = 12 4x * 3 has no inflection points (Figure 5.1.4).

Example 4

Use the graph in Figure 5.1.6 to make rough estimates of the locations of the inflection
points of /(r) : 3ra + 4rr - 12x2 + 2, and check your estimates by finding the exact
location of the inflection points.

Sohttiott, The graph changes from concave up to concave down somewhere between 2
and - 1 , say roughly at ir : I .25; and the graph changes from concave down to ooncave
up somewhere between 0 and I, say roughly at .r : 0.5. To find the exact location of the
infleotion points, we start by calculating the second derivative of /:

J'Q) - 12l'3 + l2r2 24x

f" (x) : 36x2 * 24x - 21 : l2(3x2 + 2x - 2)

We could analyze the sign of /" by lactoring this function and applying the method oftest
points (as in Table 5.1.1). However, here is another approach. The gnph of f'l is a parabola
that opens up, and the quadratic formula shows that the equation /" : 0 has the roots

1J1 4+rtr= .! 1.22 and r: * 0.5533 (1)

(verify). Thus, from the rough graph of /" in Figure 5. I .1 I we obtain the sign analysis of
/,,inTable5.1.2;thisimpliesthat/haSinflectionpointSatthepointSin(1).<

Trhle 5-1.2

INTERVAL SIGN oF l" coNcl.itstoN

'.+
1 \t<". I +lq
33

,t-f+

In the preceding example the inflection points of / occurred at points where /"(r) : 0.

However, inflection points do not always occur at points where f"@l: O. For example,
if the gmph of /" happens to touch the x-axjs at a point without crossing over it, then /'i
will not change sign at that point, and hence no change in the concavity of / will occur at

that point. Here is a speciflc example.

Example 5

Find the inflection points of /(r) : ir4.

Solution. Calculating the fi1.St two dedvatives of / we obtain

l'Q) -4r3, f"(r'): tz'2

Here /"(x) > 0forr < 0andforr > 0, which inplies that / is concave up for,r < 0

and for,r > 0. Thus, there are no inflection points; and in particular, there is no inflection
point at r :0, even though /"(0) :0 (Figure 5.1.12). <

/ is concave up

.f is concave down

/ is concave up

Figure 5.l.l l

Figurc 5.1. 1 1
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Example 6

Find the inflection points of the lbllowing functions, and contirm that your results zre con-
sistent with the graphs of the functions.

(a) f(,r):.re-' (b) /(-!): sin,r. 0axs2T {c) /t.rt:tanrr'

/(-O = sin r 0<r<2t
(b)

Figure 5.l.ll

,\olulion (a). Calculating the first two derivatives of .f we obtain

/'(,r) - (1 - r)?-'. .1"(-r) = (.r 2)e '
(velify). Keeping in nind that e-' is always positive, it tbllows that the sign of /" is deter-

rnined by the factor -! - 2. Thns, l"(.r) < 0 ifr < 2. and.l"(.r) > 0 ifr > 2, which
implies that the graph is concave down for -r < 2 and concave up fbr -r > 2. Thus, there is

an inflection point at,t : 2 (Figure 5.l.l3rD.

Solutiqn (b). Calculating the filst two derivatives of / we obtain

-f'(r) = cos t. .1"(.r): -sin-r

Thus, f"(r) < 0 if 0 <.r < z,and.f"(t) t 0 if z <.r' < 22, which implies that the
graph is concave down 1br 0 < .r < T and concave up for z < x < 2tt. Thus, there is an

inflection point at r : z * 3. 14 (Figure 5.1.l3b).

Soltdion (l:), Calculating the lirst two derivatives of .f wc obtain

. I .,, 2.t
Ji.rl- ;. / {i)I Lrr' (t + ,:;'

(verify). Thus. /"(.r) > 0 if .r < 0, and /"(-t) < 0 if .r > 0, which implies that the graph

is concave up for,r < 0 and concave down for.r > 0. Thus. therc is an inflection point at

r :0 (Figure 5.1. t 3c).

l:olt TllE REr\DEIt. l1'you have a CAS, devise a method 1br using it to find exact values

tbf the inllection points ol'a lunction /, and use your method to nnd the inflection points

ol f(.t) - x /112 + l). Verify that your results are consistent with the graph of l.

Up to now we have viewed the inflection points ofa curve.r' : l (.r) as those points where tlre

curve changes the dircction of its concavity. However. inBection points also mark the points

on the curve where the slopes of the tangent lines change fiom increasing to decreasing. or
vice versa (Figure 5.1.14): stated another way:

Inflection points mark the places on the curve )i : f(x) where the rate of change of y
with respect to x chonges.fiom increasing to decrcesirxg, or vice versu.

INFLECTION POINTS IN
APPLICATIONS

Figure 5.l.l-1
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ExERctsE SET 5.1 E craph ne catcu ator E cAS

Note that we ale dealing with a rather subtle concept here-a change of a rate of cltange.
However, the following physical exarnple should help to clarify the idea: Suppose that water
is added to the flask in Figure 5.1.15 in such a way that the volume increases at a constant
rate, and let us examine the rate at which the water level y rises with the time /. Initially,
the level ) will rise at a slow rate because of the wide base. Howeveq as the diameter of the
flask narrows, the rate at which the level _v dses will increase until the level is at the nanow
point in the neck. From that point on the rate at which the level rises will decrease as the
diameter gets wider and wider. Thus, the nalTow point in the neck is the point at which the
rate of change of _i, with rcspect to 1 changes from increasing to decreasing.

I (depih of water)

Concave down

. The fflect on po nt
occurs when the water
leve is at the narrowest
point on the f ask

Figure 5.1 . 15

Concave Lrp

1. In each part, sketch the graph of a function / with the stated
prcperties, and discuss the signs of f' and f".
(a) The function / is concave up and increasing on the

interval (-6. +!).
(b) The function ./ is concave down and increasing on the

interval (-6, +-).
(c) The functjon jf is concave up and decreasing on the

interval (-.o. +,).
(d) The function / is concave down and decreasing on the

interval ( ca. +.o).

In each part, sketch the graph ofa function .f with the stated
propefiies.
(a) / is increasing on (-c, ao), has an inflection point at

tl're origin, and is concave up on (0, *-).
(b) / is increasing on ( .c, +.o), has an inflection point at

the origin, and is concave down on (0. fo:).
(c) / is decreasing on (-a. 1::), has an inflection pojnt at

the origin, and is concave up on (0, +co).
(d) .l is decreasing on (-co, +..), has an inflection point at

the origin, and is concave down on (0, +.c).

Use the graph of the equation 1 : /(;r) in the accompa-
nying figure to find the signs of d-i/d.,r andd2yldx2 at the
points A, B, and C.

4. Use the graph of the equation ) - .//(x) in the accompa-
nying fi gure to fi nd the signs of d)'/di and d2 y I d x2 at the
points A, B, and C.

5. Use the graph of _r' : l/'(-r) in the accompanying figure to
determine the "r-coordinates of all inflection points ol /.
Explain your reasoning.

Use the graph of y : /'(r) in the accompanying figure to
replace the question mark wilh .:. or .. as lppropriare.
Explain your reasoning.
(a) /(0) ? 111) (b) f(.D 1 f(.2) (c) /'(0) ? 0
(d) /11) ? 0 (e) l"(0) ? 0 (f) f"Q) 1 0

3.

Figure Ex 3 Figure Ex ,l



5.1 Analysis of Functions : lncrease, Decrease, and Concavty 297

7. In each pan, use the graph of ) : /(r ) in the accompanying
tig-re ro F.rd rhe reque.lrd rnlorm.lriun.
rJr FrnJ rhe irrtelrl'l'.,r uhi.h /'. i rcre;.inE.

(b) Find the intervals on which l is decreasing.

(c) Find the open inter\'als on whicl'i.f is concave np.

(d) Find the open intervals on which f is concavc down.

(e) Find all values of ,r at which / has an inflection point.

Figure Ex 7

Use the glaph in Exercise 7 to make a table that sho$rs lhe

signs ol /' and /" over the intervals (1,2), (2.3), (3,4).
(4. 5). (5.6). and (6.7).

tion points. if any.
(a) f(-r) : (.t a)r

3,1. Given that d is a conslanl and /? is a positive integer what
can you say about the existence of inflection points ol the
function /(,r) : (-{ - a)" ? Justity your answer.

Figure Ex 5

In Exercises 25 30, analyze the tdgonometric function I
ovcr the specilled interval, stating where / is increasing. de-
creasing. concave up. and concave down. alnd stating the r-
coordinates of all inflection points. Conllrrn that your results
are consistent wiih the graph of / generated wjth a glaphing
utility.

25. /(r) : cos.t; f0.2rl
26. .f (l : sinr 2-r: [0. z]

27, f (.x) : t,\nxt l-n/2.n/2)
28. f(xJ :2.r + cot.r: (0, r)
29. f(xl : sin,r cos-r! 10, zl
30. l(-r) : ce5:.v - 2sinr; 10,2;rl

31. In each part sketch a continuous curve \' - /(-r) with the

stated propeities.
(a) J(2) : a. l',(2) :0, f"(x) > 0 for all ,r
(b) ./(2):4,.f'(.21 :O, l"(r) <0fbr.t <2. f"(r).,0

iorr > 2

r.r rl2,-4. I ,rr 0lorr -':rnd lim i '.\'-
lirr 1i.t1 - -

32. In each part sketch a continuous curve t : /(x) with the
stated properties.

k!) J(2) - 1, l',(2) :0, l"(.r) < 0lor all .r
(b) l(2) :4, .l'Q) : 0,.1"(r) > 0tbrr < 2, 1"(.)i) < 0

for -t > 2

(c) .l(2) :4. .l'(r)
.r'T "/'l-rl : +-

> 0lbr-r l2and.lilrr /'(r) - z-

33. In each part, assume that./ is a constant and find the inflec-

(b) /(r) - (r a)a

E
E
E
E
E
E

8.

9.

In Exercises 9 24. find: (a) the intervals on which / is in-
creasing. (b) the lntervals on which / is decreasing, (c) the

open inteNals on which f is concave up. (d) the open inter-
vals on which ./ is concave down. and (e) the r coordinates

01' all infl ection points.
If I is increasing on an inteNal 10.l)), then it fbllows l'rorn
Definition 5.1.1 thal /(0) < l(r) tbr each r in the irlteNal.
lJse this result in Exercises 3-5 38.

E 35. Show that i't < 1 * {;r if r > 0, iind confimr the in
equality with a graphing utility. lHiTli Show that the tinc-
lion /r.\,- I l.\ r I I t tr tncr'er.tn! orr 0.

B 36, Shorv that r < tan-r if(.) < -r < z/2, and conlim the in-
equality with a graphing utility. [Hin1. Show that the tunc
tlon /(r) : tan.r r ls lncreasing on 10. z/2).1

p 37. Use a graphing Lrtility to nake aconjecture about the relative
sizes of r and sin -r for..r- I0, and prove youl conjecture.

E 38. (a) Sholv thal .' : I + i ilr : 0.

(b) Show that e' - I +,r + lr'] ifr : 0.

(c) Confirn the inequalities in parts (a) and (b) with a

graphing utility.

l(r): r -Jl +h

l(r):(-ri2)l

./(x) : 3xa 4rr

.r2
.l(.r):..-r+r

.l(r):iC+u

.l(.r):-rr/r({+4)

.l(r) - in(l + -i2)

./(-r:)-'l-3x--rr

-f(t) :5 + l2.r - -rr

l(r) : -r1 8r-2 + la)

1 +l

/,. ' - 
,l I

.l(-- ) - rr 1n t

10.

12.

14.

16.

18.

20.

22.

15.

ll.
13.

1,7.

19.

21.

23. 24.
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In Exercises 39 and:10, use a graphing utility to genelate the
graphs of /'and /" over the stated interval; then use thosc
graphs to estimate the .r-coordinates oi the inffec{ion points
ol f, the intervals on which / is colicave up or down, and

the inlervals on which .f is increasing or decreasing. Check
your estimates by graphing I.

B 39. .l(-r):l -21x2 + 12n, -5:i:5
I

!40. /, rr-, 5.r'5
41. For the functior /(r.) - .,'/(l +.rr), use the method ol

Example 6 in Section 2.4 to approximate the -v-coordinates
ol'the il1llection poil1ts to lwo decimal places.

il2. For the lunction / in Exercise zl0. use the method ofExam-
ple 6 in Seclion l.,l to approximate the.r coordinates of the
inflection points to t\\,0 decimal places.

ln Exercises 43 and 44, use a CAS to find /", ancl then use

the method of Example 6 in Section 2.4 to iipproximate the
r coordinales ol the inl]ection poinls to one decinral pLace.

Confirm that your answer is consjstent with the graph ()1'.1.

45. Use Dehnition 5.1.I to prole that .l(r:) : -r2 is increasin-g

on [0. +.!).
46. UseDellnilion5.l.l toprovethatf(-r) : l/r isdecreasing

on (0. *z).
ln cach part. determine whetherthe statemeni is true or lalse.
lf it is talse. lind iunctiors for wlrich the statenlent f'rils to
holcl.
(a) 11'/ and g are incr-easing on an intervill, then so is I + g.
(b) Il / ancl g are increasing on an inteNal, then so is l.g.
ln er. lirl. lrrrJ tur'.trnrr' / J rd I IIrJI lre incrr:,.i rr,,r
( d. +-) and for which / g has the stated property.
(a) / g is dccrcasing on ( -. +r).
(b) / g is constanl on (--. +z).
(c) / - g is increasing on ( ', +r.).
(a) Prove that a general cubic polynomial

f (,r) - a,rt +bt:+cr +d (.o+o)

has exactly one inflcction point.
(b) Prove that il a cubic polynomial has ftree r intercepts,

then the inflection point occurs at the average value of
the inter-cepls.

E s0.

51.

52.

F s3.

(c) Use the resull in part (b) to lind the inilection poinr oithe
cubicpolynomial l(r) : -.r-3r2+2x.andcheckyour
result by usiug .f " to detemine where / is concave up
and concave down.

From Exercise 49. thc polynomial l(-.) : .rr + b-r2 + l
has one inflection poirll. Use a glaphing utility lo reach a

conclLrsiur about the effect of the constant b on the location
oi the inllection point. Use l" to explain what you have

observed graphically.

Use Definition 5.L I to prove:
(a) lf / is increasing on the iDtervals (a. cl and [r. b). dren

/ is incleasing on (a. b).
(b) ll I is decrealiDg on the intcNals (a. .l and f.r. ,). then

/ is decreasine on (a. D).

Use part (a) of Exelcisc 5l to show that /(r) : -r + sin.y
t. rc-e.r.itr" n" I e int(t\ rl ,

Supposc that thc spreacl ol a flu lirus on a college campus
is modeled by the function

10011rl/): 

-

I + ggg' 1r "'

rvhere _r'(r) is the nunlber of inlccted students at lime r (in
days, starting wiih I : 0). Use a graphing utility to eslir'r'rale

the dry on which the virus is spreading rrlost rapidly.

54. Let _r' : l/(1 +,!:). Find the values ol'r lbl rvhich t,is
increasing and decreasing most tapidly.

In Exe|cises 55 and 56. slrppose that watcl is flowing at a

colrstant ratc into the container shown. Make a rough sketch

ol lhe graph of the watcr level r' \,er sus the lime t. Make sure
lhat your sketch convcys where the graph is concave up and
concave down, aDd label the \'-coordinales ol the inilection

17.

48.

49.

pornts.

55. 56.

I T



RELATIVE MAXIMA AND MINIMA

Highest
mountain
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5.2 AI{ALYSIS OF FUNCTIONS ll: RELATIVE EXTREIIJIA: FIRST
At{D SHCOI\E DERiVATIVE TCSTS

I tllis section we wi discuss metltods Jbr Jinding the high cnd lovt pctints ctn the
grtrph of a ftrnction. Tlrc ideas tte deveLop lrere will h.ave imponafi applications.

11'we imagine the graph of a function / to be a two dimensional mountain ralge with hills
and valleys, then the tops of the hills are called reLatiye maxind, and the bottoms of ihe
valleys are called relttive ninimtt (Figure 5.2. I ).

The relatjve maxima are the high points h thet inntdidte riclliio,, and the relative
minima are the low points. Note that a relative maxiinum need not be the highest point
in the entire mountain range, and a relative milimum need not be the lowest point-they
are just high and low points reltttive Lo tl're nearby lerrain. These ideas are captured iD the
following delinition.

5.2.1 DEFINITION. A function / is said to have a relative maximum at n0 jf there is
!u open interval containjng r0 on which I (-r0) is the laryest value, that is, /(ro) > /(r)
foralL-rintheinterval.Similarly, f is said Io haye a relstive ndtimun atrx if there is an
open interval containing ,re on which /(ro) is the sn'iallesl value. that is. I (-re) < /(.r)
for all .r jn the interval. lf / has either a reiative rraxinum or a relative minimunr ar r0,

Fijlurc 5.2.1

I then / is said to have a relstive extremum at r.t).

Example I
Locate the relative extrena of the four functions graphcd in FiguIe 5.2.2.

Soluliott,

(a) The function "f(x) : rl has a rclative rninimum at r : 0 but no relarive malima.

(b) The function .l(r) - rr has no relative exlrerna.

(c) The function -f(r):..-r -3.r *3 has a rclative maximum at ,r : landarelative
minimum at.r : L

(d) The function "/0r) : cosx lras relative mlrxjma at all even multiples ofir and relative
minima at all odd multiples of ir.

6

5

3

)
I

t2l
I

,2
l

5

.r. = t:

Figure 5.2 2

Relative
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Po nt of
nondifferent ab lty

CRITICAL POINTS

Relative extrema can bc viewed as the transition points that separate the regions where
a graph is increasing from those whelc it is decreasing. As suggested by Figure 5.2.3. the
relative extrema of a continuous function f occur either ert corners or at points where the
graph of / has a horizontal tangent line. This is the conteot of the fbllowing theorem, whose
prooi'is given in Appendix G.

I 5.2.2 THEoREM. If tt functiot't J has an\, reL(iive extrcnte. then tl.Ley occur eitlrcr crt
: points b,here f'(.t) : g or nt rorlts ,Nllere :f is not diJJerentiuble.

The points at wlrich either /'(r) - 0 or / is not differendable are called the critical poiftts
of /, so ll'rat Theorem 5.2.2 can be rephlased as follows:

The relatiye extrema of a functiott, if any. occur at critical points.

Sometimes we will want to distinguish the critical points at which .f'(r) : 0 from those
points where / is not differentiable, in which case we wili call the critical points at v/hich

/ r r r - 0lhe Jtarirnqry poi ts ol .l .

It is important not to read too rnuch into Theorem 5.2.2 the theorem asserts that tlte
relative extrema must occul at critical points, btt it does not say that a relatiye extrelrum
occuLs at erery- critical point; that is, there rnay be critical points at which a relativc ex-
tremum does not occLll. For example, for tbe eight critical points shown in Figure 5.2.4.
relative extrema occur at all of the points in the top row, but not at any of the points in the
bottom row-

Figurc 5 2.:l

To develop an efTective method for finding criticai points oI a function f, we need some
cliteria that will enable us to distinguish between the critical points where relative extrena
occur and those where they do not. One such cdterion can be motivated by examining ihe
sign of the first derivative of .l on each side of the eight critical points in Figulc 5.2.4:

. At the two relative maxima in the top row, l' is positive to thc left ofn0 and negative
to the right.

. At the two relative minima in the top row, /' is negative to the left of .r0 and posilive to
the dght.

. At the first two critical points in the bottom row /' is positive on both sides of;re.

. At the last two critical points in the bottom row, /' is negative on both sides ofx6.

FIRST DERIVATIVE TEST

Fig re 5.2.3
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These observatioDs suggest that relative extrcna o[ a function f occur at those critical
points. and only those citical points, where f' changes sign. Moreover, if the sign changes
from positive to negative, then a lelative maxirnum occurs; and if the sign changes liom
negative to positive, then a relative mirirnum occurs. This is the content ol lhe tbllowins
theorcm. whose proof is given at the end of this section.

5.f,-l rlll r rRl \l trirclrprirdrne /err) Sup1r,r, .1 it,,,ntit,rtottt nt t, riti, al !,,,int ,,,.

(a) If f'(.t) > 0 on cut open interval e.xtending left.from 4 and J'Q) < 0 on an olten
intervcl e.rtendhg right liom y, then f htts a relative nnxilunt at y.

(b) If f'(x) < A on an open inrerwl errending leJt.fi'ctnt 41tntl .f'(x) >- 0 on an open
intertol e.\tending tigltt Jiont xs, tlklt f hes .L relotite mininTunt at )io-

(c) IJ J'Q) hus tlrc scune sign feitlter,f'(.r') > 0 or f'(x) < l)l ott an ct;ten inten,cl
eften(ling left fto 1 -\o Luld or.tlr ope i tervtl extantling right.fiotn xq, tllen f (Loes

not lur)e 0 relutive ertrenutil dt ro.

+++O-----O++++

Figure 5.2.5

Example 2

(a) Locate the relative maxima and ninina of /(.r) - 115'/r l5-,;l/3.

(b) Conilrm that lhc rcsulh in part (a) agree with the grapb oI l.

Soltttion (.a). The furction / is deiined and continuous tbr rll real values ofr, and its
derivative is

.f'(..) - 5r2/: l0-r r/r-5r r/r(r 2):5(-t=
_r L/l

Sincc /'(,t) does not cxist ifr : 0, and since l'(r) : 0 if -r : 2, there are c tical points
nt .r - 0 and r : 2. To apply the first derjvative test, we examiDe thc sign of /'(-l) on
inter vals extending to the lefi and |ight of the critical points (Figure 5.2.5). Since the sign of
the derivative changes fi-om positive to negative at r - 0. thcr-e is a relative maximum tltere.
and siDce it changes froln negative to positivc at -r : 2, there is a telative minimum tltere.

Solutiott|b)'TheIeSultinpaIt(a)a.erecswiththcgraphof/sJrowninFigule5'2.6.<

l-OR TIIFI RIIALIER As discussed in the subsection of Section 1 3 entitlecl Erors of Ornis-
sion, nrany graphirg utilities omit portions of the glaphs of functions with f'ractional expo
ncnts and lnLrst be "tricked" ilto producing co[rpleLe graphs; and indeed, fbr the function
in the last exanple the author''s calculator and CAS bolh failed to produce the pofiion of
the gr2iph over the negrtive ri-axis. To generate thl] graph in Figure 5.2.6, the author ha.l to
apply the techniques discussed in Exercise 29 of Section L3 to each term in the formula for
f. Use a g|aphing utility to generate this graph.

Example 3

Locate the relative extrema of /lr) - .rr - 3rl + 3r - f. if any.

Soltttiott. Since / is dj1l-erentiable everywhere, the only possible critical points are sta-

tionary poinls. Dilferentiating / yiclds

,/'(;) = 3.r2 - 6,r * 3 = 3(.r I)2

Solving /'(r) - 0 yields.r : I as the only stationary point. Ho\aever, 3(r 1)r > 0 tbr
all -r, so l'(-r) does not change sigi'r at r : l; consequcntly, f cloes not have a relative
extremum at .r = l. Thus, .l has no relative extrema (Figure 5.2.7). {

l,OR TIIE READER. How many relative extrema can a polynomial ol clegree /? have? Ex-
plain your reasoning.

I 2. l0lx | 15.201

rscl = 2. \,Sc = 5

Figurc 5.2.6

/1r)= rr-irr+lr l

Figurc 5.2.7
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SECOND DERIVATIVE TEST

J" <0
Concave down

../. 1, .1.,. > 0

.foncave !p.

Suppose thur f is Nice dilJerentiable at the

There is another test for rclative exffema that is oflen easier to apply than the first derivative
test. It is based on the geomefric observation that a flnction / has a relatir e maLxirnum lr a

stationary point ifthe graph of f is concave down on an open interval containing the point,
and it has a relative minimun if it is concave up (Figure 5.2.8).

5.2..{ THEORE\I (Second De vdiw Test).

point ro.
(.a) IJ J'60):0 lnd.|"(xi > 0, then .f hos a rekiive mininlum at xe.

(b) If .f'(x -0and f"(.ri <0.then f has a rclqrive n&xinuunctt.ro.

(c) IJJ'Ga)-0cuttlJ"(.to)-0,rhenrlutestisincon(lusite:thotis,.f na1, huveu
rclatile n ttinunt. a relative nininunt. or neither et xs.

Itt,NiARK. The proof of parts GD and (b) is giver at the end of this section. For part (c),
consider the functions /(r) - -r3. /(r) = rr, and .l(-r) : r4. In all three cases we bave

l'(0) = 0and l"(0) = 0 (verily); but fiom Figute 1.6.4. l(r) : ja has a relative minimum
atx -0, /(r) - -ra has a relative maximum at -r - 0 (why?), and .l(r) : -r3 has neither
a relative maximum nor a relative mininum at ,r - 0.

Example 4

Locate the relative n'raxima and minima ol.f(,r) : ra - 2;r2, and confinn that your results
are consistent with the graph of /.

Snlrttion.

J'(r'] : 4rt 4-t :4,r(r - 1)(-t + 1)

f" (x) : l2x2 4

Solving.l'(r) :0 yields tlre strtionary points -r = 0, r : I, and r - -1. Evaluating "f"
at these points yields

.f "(0) : -,1 < 0

l"(l) :8 ' 0

l"( 1) :8 > 0

so ther-e is a relative maximum at ri - (i and relative minima at J : Iand-r: l(Figure
5.2.9).

ln Section 5.l we observed that the inflection points of a curve f : l(-r) mark the points
where the slopes of the tangent lines change from increasing to decreasing. or vice versa.

Thus. in the case where I is trvice differenliable, thc infleclion points mark the places on the
curve ) : /(r) where /'(-r) has a relative maximum or minimum (Figure 5.2.10): stated

another way:

Infection points nark tlte places on tlrc cur,,e y : f (.x) crt v,hicll the rate of change of y
with respect to x has a relative maxinum or minirnum; that is, the! arc the places where
y is increasing or decreasing most rtrpidLy in the immediate vicinity.

As an ilhrstration of this principle, consider the flask shown in Figure 5.1.15. We observed
in Section 5.1 that if water is poured il.lto the flask so that the volune increases at a coostant
rate, then the gmph of t versus t has an inflection point when I is at the narrow point in the
neck. However, this is also the place where the water level is rising most rapidly.

Re at ve

t'igurc 5.2.8

Re ative

tlrr= rr lrl

I"igure 5.2.9

MORE ON THE SIGNIFICANCE OF
INFLECTION POINTS
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Figure 5.2.10
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I pRoor 0F THI F]RST DIRTVATIVE TEST {Theorem 5.2.3}

fifrijxk iltf 
il::L*f ',;:iiXl'.1il: iltTi'? ff il:',"j,'"?"I;ffi i:::TT:

/(xo) > -f(r)
lor all r in the interval (a, b). However, the two hypotheses, together with Theorem 5.1.2

:XTJI',:1.Til; ;l+'flJllli,.:' i;l [:::?]li il ]"1ff ililL;:l,Ti f :'*""i

I pnoor 0F TF{E SECOND DERtvATtvE rEST lrhearem 5.2.41

Proof. We will prove part (a) and leave pa (D) as an exercise. We waot to show that if
./'(ro) : 0 and -f"(ro) > 0, then / has a relative minimum at.rr0i that is, there is an open

interyal (/r, r) containing,16 on which

"f(") ' ./("0)

For simplicity, we will assume that /" is continuous at r0. The proof for the case where / is

twice differentiable atr0 is left for more advanced courses. Obserye first thatthe tangent line
at x0 is hodzontal lsil1ce /'(-16) : 0], and hence its equation i s -y = /(rx). Moreover, since

"f"(xo) t 0, and since /" is continuous at r0, there is an open interyal (a, b) containing r0
on which /"(x) > 0. This implies that / is concave up on (a, b), and hence its graph lies
above the tangent line y : /(xs) over the interval (a, b). This shows that /(r) : /(x0) on

the irterval (a, D). I

Slope



304 Analysis of Functions afd Their Graphs

ExERctsE SET 5.2 E Graphrns ca cr ator E CAS

1

2.

1

(b)

4. (a)

(b)

(c)

5. (a)

(b)

In each part, sketch the graph of a continuous t'unction I
with the statecl propenies.
(a) / is concave up or'r the interval ( z. +-) and has ex-

actly one relativc cxtremum.
(b) / is concave up on the intelval ( r.. +?) and has no

relative extrena.
(c) The function I has exactly two relrtive extrcma on the

interval (--, +-), and l(,r) + +- as.! + +-.
(d) The function / has exactly two relative extrerna on the

interval ( z, 1a), and /(-r) + .. as r + +-.
In each part. sketch the graph of a continuous function /
with the stated properiies.
(a) /has exactly one relative exlremun on ( :.,+'.),and

/(,t) + 0 as -v + {r and as r - -.
(b) / has exactly two relative extrenra on (-2. +'), and

/(-r) + 0 as r -+ 1:r and as -r -+ -:c.
(c) I has exactly one inflection point and one relative ex

lremum on (.-t, +L).
(d) .l has infinilely many relative extrema, and /(r) + 0

as -r > +.. and as .r > .o.

(a) Use both the first and second derivative tests to show
that /(-r) :3r2 - 6r + I has a relative minimum at

8. (a) /(-r) : 2.t3 - 6x + 1

O ,., *,, ' I-. ,-, ,,,, _ 
rt * 2

.2 - I
10. tat /i.i t : 

-i
" \- + I

11. (a) l(r) : 'r/r(-' +,1)

12. (a) f(.1):.14/i - 6rr/]

(b) .l(r) : l1a 4r:

(b) /(.t) - rr/l

(b) /(r) : iG + 2

(b) .F(r) : cos 3.r

(b) l(.r) : sh-r

Use boththefirst and seco nd derivative tests to show that

l(r) :-rr - 3i +3 has arelativeminimumatr : I

and a relative maxirntlm at -r : - 1 .

Use both the llrst and second derivative tests to show
that /(n) : sin2 r has a relative minimum at -r : 0.

Use both the fir'st and second derivlrtive tests to show
that g(,r) : tanl,r has a relative ninimum at -r : 0.

Give an informal verbal argument to e\plairl wilholrt
calculus why the functions in parts (a) and (b) have

relative minima at,r - 0.

Show that both of the functions /(r) : (x 1)r and
gr r, - r' ' .1.r 

' Jr' - ' l-il\e .trli.Jlar) po.ntr Jt

What does the second de vative test tell vou about the
nature of these stationary points?

(c) What does tlre nrst derivative tesr tell you about the
naiure of these statjonary points'l

6. (a) Show that l(.r) : I n5 and 3(r) : 314 8rr both
hare ,t.rtioni'ry fin nt. al r :0.

(b) What cloes the second derivative test tell you about the
nalure of these stationary points'l

(c) wlrat does the l'irsl derivative test tell you about thc
nature of these statjonary pointsl

In Exercises 7 I 2. locate the critical points, and classify them
as stationary points or points ol nondiflerentiability.

7. (t) JQ): rr + 3.r2 - 9.r + I
(b) /(.t) - rr 6.t: :

ln Exercises l3 and 14, use the graph oi l'shown in the
Iigure to estimate all values of r at which I has (a) relative
minima. (b) relative maxlma, and (c) inflection poinrs.

In Exercises l5 and 16, use the given dedvative to find the r-
cooldinates ofall critical points of/, and determine whether a

relative maximum, relative rninimum. or neither occurs there.

In Exercises 2l-34, use any method to find the relative ex-
trena of the function /.

.l'(r) :.rr(-r'1- 5) (b) f'(-t) :.re -'

/'(-\,) - "t'?(2' + l)(r - l)
9 4x2

/ (. t : '.Jr + |

In Exercises l7 20, lind the relative extrema using both the
nrst and second dedvative tests

17. f (x) :1 - 4,v -.vr 18. ./(r) : 2.r3 9-r2 + l2.y

19. /(r) :sin2-r. 0<r <22
2U. /'r r l' .rr r. 0 .' 2n

15. (a)

16. (a)

(b)

21. /(-r) -.tr 15; 2

23. /(-t) : x(r l)l
t< r/,r-).1 .1

27. .f(t) : yats

)
29. /t.\l: l.r +l

f(.x) - 1a 2rt *,
/(r) :"r+2tr
/(-r) : (2.r l)5

.11r):2r*rrlr
/t r. t - 

r
' .(+2

24.

26.

28.

30.
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31. l(r) - ln(l +-,i2) 32. /(.r):

33. /(r) : rr -,1

(b) I(.r) : rl+(
E 50. Functions ol the tbnn

16):s,". 
" 

.r>0
whereli is a positive integer and c = l/n!. alise in the
statistical study ol traffic flow.
(a) Use a graphing utility to generate the g|aph of I ibr'

n : 2,3, 1, arld 5. and make a conjeclure aboul the
number and locations of the lelatlve extrerra of ./.

(b) Confirm youl conjecture using the first derivati!e test.

E 51. Functions ol the form

I .,,"/(\): 
-. 

-
J ltr

arise in a wide variety of statistical problems-
(a) Use fie first derivative test to show that / has a iela-

tive maximurn at -r : 0, aDd confirm thls by using a

graphing utility to graph .1.
(b) Sketch the graph of

I

/\\)
^'/ 2tt

where /, is a constant. and label lhe coordjnales ol the
relative extrema.

@ 52, ':' Usc :, CAS Lo rr:rplr llrc llr.r, I,,1

-r4+l/(r): 

-
.r +t

and use the graph to estimate the -r coordinates of the

relative extrerna.
(b) Find the exact r -coordinates by using the CAS to sol!e

the equation ./'(r) - 0.

53, Find values of rr, 1', c. and rl so that the function

l(ri): arl lb]zlcx+d
has a relative minimum at (0. 0) and a relalive maxilnum al
(1,l).

54. Let /r and g have reiative maxin'la at -r0. Prove ol disprove:
(a) ft + g has a relative maximun ai r11

(b) ft g has a relative maximum al-rll.

55. Sketch some culves th.it show that the three parts of the

first dedvative test (Theorem 5.2.3) carl be l alse without the

assumption that I is continuous at -r0.

[e , ,-]
)

l" -r. r>l
Tn Exercises 35 38. find the relative extfema in the interval
0 < r < 22, and confim thirt youl resulis are consistent with
the graph of / generated with a glaphing utility.

E
E

E
E

35. l(r): sin 2r

)J/. Jr\ r - cos .r

39. /(-t) :.v ln 1

;11. /(r) :.r2e 2'

I 0.r - 3
tcl 47. /(.\): -; - .J1 ).1 +6

! 36. l(-r):.f4. + 2tin t
sin ,r

FJ 38. /(.r I

2F 40. l1.r ) :
" 

*t '

Q 12. f(t): l0ln t r

rr 8r +7
ltl 48. /r\ t - ,-!,\ + I

In Exercjses 39-42. use a graphing LLtility to makc a conjec

ture irbout the relative extrerna ol /, and then check your
conjecture using either the first or second derivative test.

E
E

Tn Exercises 43 and 44, use ir graphing utllity to gcncrate the
graphs of l'and f" over the stated interval. and then use

thosc -graphs lo estirnate the -r-coordinates of the relalive ex-

trema oi f. Check that your eslimates ale consistent rvith lhe

graph ol./.

43. .l(r) : va 2111 + 12-Y. -5 : -{ : 5

44. l(x): sin lrcos,r, -rlzlr=rlz
45. Fol the function / in Exelcise 43. use the method of Exirtrr-

ple 6 in Section 2.4 to apploximale the -r-coordinates of the

relative maxima to l$,o decimal places.

46. For thc lunction I in Exercise 44, use the rnethod of Exam-

ple 6 iD Section 2.4 to approximate the r coordinates of the

relative maxina to two decimal places.

Li Excrcises 47 irnd 48, use a CAS to glaph ./' and /" ovcr
the stated interval. Use those graphs 1() make a conjccture
about thc locations and nature ol the relative extrema 01 f,
and chcck your conjecture by graphing ./.

49, ln each part. find ,t so that / has ir lelatlle extremum at the

point:r : 3.
.t(r) l(r ) -.r +
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5.3 ANALYSIS OF FUNCTIONS lll: APPLYING TECHNOLOGY
AIID THE TOOLS OF CALCULUS

Irt tltis sectiort rr.e rli/l rlrcrrss hot to use technologv arrcl the
trc detekryetl it tlte last tto section:t to tnob'ae vtriou:i t\pes
applications.

tools of calarlus tlut
ol gr.lphs that occut' in

This section contains a blief review of material on polynomials. Readers who want to
review this material in morc depth are referred to Appendix F. Instructors who want to
spend morc time on this section c?rn divide the section into two parts, fteating thc analysis
of polynomials and rational functions il one lecture and the remaining topics in a second
lecture.

In many problems. the propcrties of interest in thc graph of a functior are:
PROPERTIES OF GRAPHS

. symmetries

. J irtercepts

. relative extrenta

. interyals of increasc iurd decrease

. asyrnptoteS

. pcriodicity

. r,-interccpts

. inllcction points

. concavity

. bchaviol as.t + +z or -r > :.

A PROCEDURE FOR ANALYZING
GRAPHS

Sone of these properties may not be relevant in certrin cases: for example, asymptotes are

characteristic of rational functions but not of polynomials. and periodicity is characteristic
of lrigonometric frnctions but not of logarithmic or exponential funcrions, Thus. when
analyzing the gmph of a tunction .1. it helps to know sonrething about the general properties
ol the linnily to which it belongs.

In a given problem you will usually have a definite ob.iective ibr your aralysis. For
example. you may be interested in l1t'tdng rcomplete grapl ol r, : /(-r), that is, a graph
that shows all of the important characteristics of l ; or you may be intelested in something
specific. say the exact location oflhe relative extrema or the behaviol ofthe gnph as.{ -+ +,
or'.1 --+ -:c. However. regardless of your objectives. you will usually find it helpt'ul to begin
your analysis by generating the graph with a graphing utility. As discussed in Section 1.3,

this graph nray or may not be complete, and some of the important characteristics may be
obscured by compression or resolution problems. However. with this graph as a starting
point. you can oftcrr use calculus to complete the analysis and resolve any ambiguities.

There are no hard and tlst rules that are guaranteed to produce all of the jnfolmation you
nray nccd about the graplt 01'a function /, but here is one possible way of organizing the

analysis of a function (the ordcr ol the steps can be varicd).

Step 1. Use a graphing utility to generate the graph of / in some reasonablc
window. taking advantage of any general knowledge you have about
the function to help in choosing the window.

Step 2. See if the graph suggests the existence of symmetries, periodicity, or
domain restlictions. If so. try to confirm those properties analytically.

Step 3. Fird the i tercepts, ifneeded.

Step 4. Investigate the behavior ofthe graph as.rr --+ +.o and irs -r ---> -co, and

identify all horizontal and vertical asymptotes, if any.
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Step 5. Calculate /'(-r) and /"(r), and use these derivatives to detemine the
critical points, the intervals on which / is increasing or decreasing,
the interyals on which / is concave up and concave down, and the
inflection points.

Step 6. If you have discovered that some of the significant features did not
fall within the graphjng window in Step 1, rhen try adjusting the
window to include them. However, it is possible that compression or
resolution problems may preventyou from showing all ofthe features
of interest in a single window. in which case you may need to use
different windows to focus on different l'eatures. In some cases you
may even find that a hand-drawn sketch labeled with the location of
the significant features is clearer or more informative than a graph
generated with a graphing utility.

Recall that if n is a nonnegative integer, then a polynomial of d.egree r is a function that
A BRIEF REVIEW oF PoLYNoMIALS can be rvdtten in the following forms, depending on whether you want the powers ofr in

ascending or descending order:

co * cr;r a czx2 + .. + c,x' (c,, + 0)

c,,x" + c,,-\x"-\ * .. * ci.t * co (c,, l 0)

The nunbers ca, c1 , . . . , c,, are called the cofficients ol th.e polynomial. The coefflcient cn

(which multiplies the highest power of -r) is called the leading coefficient, the term c,,r" is
callecL the leading tenz. and the coelficient cs is called the conslanl lerm. Polynomials of
deg|ee I , 2. 3, 4, and 5 u'e caled linear, quadratic, cubic, quarlic, and q4intic, respectively.
For simplicity. general polynomials of low degree are often written without subscdpts on
the coefficients:

p(x) = a C.n\ontpolynomid

p(.x)-u+b (.a10) Line.r poryno',ier

pQ) - tLr2 f bt * c (.a l0) Qurdnric porytromiar

p(x) :.lxt I bxz + cx + d (a l0) cubicpiivnomiar

When you attenpt to factor a polynomial completely, one of three things can happen:

. You may be ablc to decompose the polynonial into distinct linear factors using only
real nurnbels; lor example,

.r3+r2- 2x:x(x1 lx 2): x(x L)(.r+2)

. You may be able to deconpose the polynomial into linear factors using only real num-
bers, but some of the factors may be repeated; for exanrple,

-16 3,r4 + 2rr : rr(.rr 3x * 2) : rr(;y l)'z(r + 2) (1)

. You may bc able lo decompose the polynomial into linear and quadratic tactors using
only real numbers, but you may not be able to decompose the quadratic factors into
lineal factors without using imaginary numbers (such quadratic factors are said to be

irreducible over the real numbers); fbr example,

'1 - I : (r2 - 1)(r2+ 
" : [ : l]ill i]i;'.,11,.,,

Here. the factor x2 * I is irreducible over the real numbers.
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ln gereral, il'p (r) is a polynomial ofdegree r with leading coefflcient a. and if imaginar.y
numbers are allowed, then p(r) can be factored as

p(.x): ctl.\ rr)(.r t) . (r - t,,) (2)

where rt. 12. .... r,r are called the zelos of p(,r) or the /oob of the equation p(-r) : 0,
and (2) is cailcd the cornplete linear factorizatiott of 7r(-r). If son.re of the factols in (2) are
repeated, then they can be combited; fol exanplc, if the firt & factors are distinct and the
rest are repetitions of the fi$t ,t, then (2) can be expressed in the form

p(r') = t11..\ rr)"'L(r r,)"'1 .. (x - rk)"t|. (3)

where11,rz,....rialethe./ls/l/?clrootsofp(-{)-0.Theexponentsn1r.n72.....//rtcllus
how many times tl-le various factors occur in tha complete linear factorizalion: lbr exarrlple,
in (3) the factor (r - ,.1 ) occurs ,? I times. the factor (.{ 12 ) occurs ,r2 timcs. and so fbrth.
Some techniques for lactoling polynomials are discussed in Appendix F In genelal, if a

factor (-r - r.) occuls /n times irr the complete linear factot'ization o1'a polynomial, then we
say that / is a root or zero of multiplicity m, and il (.r r) has no repetitions (i.e., r llas
multiplicity 1), then we say that r. is a sirzzle root or zero. Fot example. it follows from ( l)
that the equatioo -r" 3-r1 + 2.rl : 0 can be expressed as

ir3h - 1)2(ir + 2) :0 (4)

so this eqLration has three distinct roots-a rool -r : 0 of multiplicity 3, a root.r : I of mul
Lipli, it1 .). rnd a.jrrf'le |oot r -).

Note that in (3) the nultiplicities of the roots must add up ro r. since 2 (.r ) has clegree r;
that is.

ml +m2+.. !ttt1 -11
For example. iD (4) the mulliplicitics add up to 6, u4rich is the same as thc dcgree of the
polynomial.

It follows from (2) that a polynomial of degrce , can havc at most /r distinct roots: i1' all
of tlre roots are simple, then there will be z,rrir:tA, ir, but if some are repeated. then there will
be tewer than r. However. when counting the roots of a polynomial, it is slandard practice
to count multiplicities, since that convention allows us to say that a polynonriai o1'clegr.ee n

has/? r.oots. For example, f'rom ( I ) the six roots of the polynomial p( t) : .ro 3,!l +2,r1
are

r=0. 0. 0. l. l, -2
In summary, we have the following impoftant theorem.

I 5..1.I THEORENI. lJ imttgirory roots are allotved. and iJ roots are counted ac<:orcling

thcn a poh,nonitrl ol de,qrce n has etoctL\'t1 toot\.I to their multiplicitt,

ANALYSIS OF POLYNOMIALS
Polynonrials are among the simplest functions to graph and analyze, sirce their only signif
icant features ar(] inlercepts. relativc extrema. inflection points, and the behavior as r > +..
and r + o.. Figure 5.3.1 shows the graphs oftbur typical polynonials in.r.

FieuLe j

a:- ----l
uegtee z

.3.1



l r.3lx l 3. rl
rsc = l.rScl = I

GEOMETRIC IMPLICATIONS OF

MULTIPLICITY
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The glaphs in Figure 5.3.1 have properties thirt itre commor to all polynomials:

Thc natural domain ol a p0lynomial in -r- is the entire -r axis. since thc only opera-
tions involved in its fornula are additions, subfiactions. and nrultiplications; the range
depends on the particular polynomial.

Graphs of polynomials arc conlinuous since polynomials are continLlous functions.

Graphs of polynonials have no shalp corner s ol points of venical tangency. sincc poly-
nolnill. .rrc JIII(renti:tblc lttrrctions

Thegraphofapolynomial eventually increases or decreases without bound as .r ++-
or 1 > z, since the limit of a polynomial as .r + +- or -r > ' is +.. (see the
subsection in Section 2.2 enlitled Lirnits ol Polynomials as -r + +r: or r + .r).

The graph of a polynom ial of degree r has at most rr -l intercepts, at most /? 1 relative
r'\lrsrtt:r. :Urd .rt r'ru.l // .) inflectiort poirrt,.

The last propcrly is a consequence of the fact that the -r intercepts. relativc cxtrcml, and

inflection points occur at real roots of p(r) : 0. p'(-t) : 0, and 2"(.r) : 0. respectively,
so if p(.r) has dcglee /? greater than I, then /r'(,!) has degree , - I and p"(r) has dcgrcc
rr 2. Thu s, tirr examplc, thc graph of a qu adratic polynom ial hasatmostt$,) r-intercepts,
one lelative extremum. and no inflcction points; and the graph of a cubic polynomial has at

ost three -t-intercepts, two relative extrenrl, and one inflection point.

l:OR IltERb.\utrR FoI cach of thc glaphs in Figurc 5.3. I . count the number of r - intercepts,
relative extrena. ancl inilection peints. iind conliIIn that your count is consistent u'ith the
cleglcc of thc polynonial.

Example I
Figure 5.3.2 shorvs the graph ol'

.L = -tl -rl 2,i

produced on a glaphing calcLrlator'. Confinn that thc grlph ir complcte , thal is. it is not rniss-

ing any significant features.

Sqhttion, We can be confident that the graph is complele because the polynomial has

degrce 3. and three roots, two relrtive extr-ema, ancl one inflection point are accounte.l fi)r.
Moreolcr. thc graph exhibits the correci behavior as -{ + +:c and r > z, 'ince

For polynourials. therc is a close relationship between the nrultiplicity of a root and the

bchavior of the graph in the vicinity ol thc roo1. For examille, obselve that the polynomial

,( \') : \ " has a root of lnultiplicity a at,r : 0, and obsc|vc thiit thc graplls in Figule 1.6.,1

hir\( llre iollu\ ir! !enl t'tr'( 0r.'p(rLrc.:

. Whcn r is cvcn. the graph of r : 2(-i) is tangent to the -r-axis at the origin but docs

not cross the.r-axis therc.

. When /? is ocld ancl greater than I, the graph is tangent to the.r axis at the origin, has

rn irflection point at the origin. ancl crosses tlrc r-axis there-

. When n : l. thc graph crosses 're ,r axis at the origin lrut is not taogent to the ,r-axis
there.

These prope ies rrf p(r) - t" at -t : 0 arc special cases ofthe following more general

r.esult. which wc slate without fbr.mal proof (Figure 5.3.3).
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I Roots of even rn!ltiplicity I Roots of odd m!ltiplicity (>1) S mp e roots

Figure 5.3.3

5.3.2 THE cEoMETRtc INlpLtcATloNs orr MULfrpr-rcrry. Suppose that p(.x) is a
poll,nonial -'ith a rcot oJ nLitiplicit! m at x - r.

(a) If n is even, then the gruph of -t : p(r) is tangent to the r-cuis ctt x : r ond does
not cross the r axis thara.

(b) Ifm is odd and greater rhan I, then tlte groph is tangent to tlrc x-ct setx:t,
has an infiection point xhere, and also crosses the x-axis there.

(c) If n : I (.so that the root is sitnple), then the grdph crosses the x-ctxis at x : r but

: is not ta]1gent to the x-axis there.

[ 10. ] 0l xl 10, l0l
,rsc = l,l.'Scl =1

Figure 5.3.5

Example 2

Make a conjecture about the behavior of the graph of

) - rr(3r 4)(x r 2t2

in the vicinity of its r-intercepts, and test your conjecture by generating the gmph.

Solution. The r-intercepts occur at .{ : 0, r : 1, andx: -2. Therootx:0has
multiplicity 3, which is odd, so at that point the graph should be tangent to the -r-axis, cross
the -r-axis, and have an inflection point. The root I : -2 has multiplicity 2, which is even,
so the graph should be tangent to but not cross the r-axis there. The root jr : { is simple,
so at that point the curve should closs the -r-axis without being tangent to it. All of this is
consistent with the graph in Figure 5.3.4. {

Example 3

Generate or sketch a complete graph of the equation

-r,:.'r:l-3-t+2
and identify the exact location of the jntercepts. relative extrema, and inflection points.

Solutiott, Figure 5.3.5 shows a graph of the given equation produced with a glaphing
utility. We can be rcasonably coniident that the graph is complete since the polynomial has
degree 3, and all roots, relative extrema, and inflection points arc accounted for in the graph:
There are three roots (a simple negative loot and a positive root of multiplicity 2), and there
are two relative extrema and one inflection point. The following analysis will confim that
the graph is complete and identify the exact location of the intercepts, relative extema, and
inflection points.

. x-intercepts: Setting,v : 0 yields

-r3 3r F 2: (r * 2)(r2 - 2r + l) : (-r + 2)(jr - t)'? :0
so there is a simple root at r = -2 al]d a root of multiplicity 2 at ir - 1.

Figure 5.r 4
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y-intercept: Setting -t = 0 yields 1 : 2.

Behavior as x ---> In cLnd x-> oo: The graph in Figure 5.3.5 suggests that the graph
increases without bound as r + +.. and decreases without bound as,r + cc. This is
confirmed by the Jimits

lrm (\ J\ +')- lrm x - I'
\ -+- r-+r

,!1. (xr - 3-t * 2) : ,lim..rr = cc

Derivatives:

--:3r' 3 = 3(-t 1)(r*1)
dx
,12 t,

Intervals ofincrease and decrease; relative extrema: Figule 5.3.6 shows the srgn prttern
ofthe first and second derivatives and what they ilnply about the graph shape. In the first
part ofthe figure the upward anows indicate intervals where the graph is increasing, the
downward arrows indicate intervals where the graph is decreasing, and the hor-izontal
arrows indicate the stationary points. The second part of the figure shows what tlte sign
pattern of the second derivative implies about the concavity. Tlre third part oftire figure
shows what the first and second deriyatives together imply abolt the graph shape.

di=3(-r l)(-r+ l)
I

-tlztltlt)=6t

0
Concave

down
Concave

up

J 1t
0r r .

''. .1. .3**,.21

Figure 5.3.7

Figure 5.3.6

Figure 5.3.7 shows the complete graph labeled with the coordinates ol the intercepts,
relative extrema. and inflection point.

Rational functions (ratios ofpolynomials) are more complicated to graph than polynomials
because they have discontinuities and asynptotes.

Example 4

Generate or sketch a complete graph of the equation

2r2-8
' ,t lh

and identity the exact loaation of the intercepts, relative extrema, inflection points, and

asymptotes.

Solutiott, Figure 5.3.8 shows a calculator-generated graph of the equation in the window

[ 10, 10] x | 10, 101. The figure suggests that the graph is symmetric about the _r-axis
and has two vertical asymptotes and a hodzontal asymptote. The figure also suggests that

GRAPHING RATIONAL FUNCTIONS

l-10, l0l x [-10. ]01

rScl = 1. rScl = I

Figure 5.3.E
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there is a relative maximum at x : 0 and two,r-intercepts. There do not seem to be any
inflection points. The following analysis will identify the exact location of the key features
and help r.rs determine whether the graph in Figure 5.3.8 is complete.

. Srarruetrir:s. Replacing jr by jr does not change the equation, so the graph is symmetric
about the )-axis.

. r-it1tercept.t: Setting r' : 0 yields the -r-intercepts -r : 2 and'r : 2.

. :--intercept: Setting r : 0 yields the I' intercept y - 1/2.

. Vertrcol d$]nptore-r: Setting ,t2 - 16 - 0 yields the verticat asymptotes { = 4 and

t HoriLtntaL as\n4rlales. The limits

2t1 8 2rllirn -_ Lm 
--2,-+, _ri 16 -+- rr

2x2 8 2rllim ,. lim , -)l(r r- - ;1'

yield the ho zontal asymptote l :2.

The set of points where -r intercepts or vertical asymptotes occur is { -4, - 2, 2, 4}. These
points divide the,r axjs into the open interyals

(.--, a), (.-4, -2), (.-2,2), (2,.1), (a. +co)

Over each of these intervals, I cannot change sign (why?). We can find the sign of ,l on
each interval by choosing an arbitrary test point in the interval and evaluating ) = /(-r) at
the test points (Table 5.3.I ).

Table 5.3.1

The informaLion in Table 5.3.1 is consistent with Figure 5.3.8, so we can be certain
that the calculalol graph has nol missed any sign changes. The next step is to use the first
and second derivatives 1() determine whether the calculator graph has missed any relative
extrema or changes in concavity.

c Derivatiyes:

r-l v

t\ R\ \t tut\ I l0 .tc\ ot I

d _t,
(r2 16) (,1.r) (2x2 8)(2,r)

d,r (", 16)'

Jrr, 48( lh + lrr )

- 
= , (\ errt])d\. (r, lh)

48.r

(:t - - l6)-
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t Intervals of increttse ttnd decrease; reLative extremo. A sign analysis ol d_)/d,r yields

+++++0--

1-4
S gn of .irldir

Thus, the graph is increasing on the intervals ( cc, -4) and ( 4. 0l; and it is decreasing
on the inteNals [0, 4) and (4, +.c). There is a re]ative maximum at I : 0.

. Concavi4: A sign analysis ofd2)/dr2 yields

Sign of d2r,/dr2

0,1
lt

Concave 4
up

Concav€ 4 Concave
up

t 10, l0l x | 10, 101

jrsc =l.l,Sc =l
(a)

There are changes in concavity at the vertical asymptotes, r : -4 and n : 4. but there
are no inflection points.

This analysis confiflns that our calculator generated graph was, in fact, complete. Fig
ure 5.3.9 shows a complete graph of the equation with the asymptotes, intercepts, and
relative maximum identified.

Example 5

Generate or sketch a complete graph of

12 - 1

x3

and identify the exact location of all asymptotes, intercepts, relative extrema, and inflection
points.

Sohttiott. Figure 5.3.10a shows a calculator-generated graplt of the given equation in
the wjndow [-10, 10] x l-10, 10l, and Figure 5.3.10ll shows a second version of rhe
gmph that gives more detail in the vicinity of the -t-axis. These ilgures suggest that the
graph is symmetdc about the origin. They also suggest that there are two relative exffema,
two inflection points, two r-intercepts, a vertical asymptote at r = 0, and a hoizontal
asymptote at y - 0. The tbllowing analysis will identify the exact location of all the key
features and will determine whether the calculator-generated graphs in Figure 5.3.10 have
missed any of these features.

. Syrnnelrles. Replacing r by -.r and I'by t yields an equation that sinpliiles back to
the original equation, so the graph is symmetdc about the origin.

. x -inte rcepts: Setting 1 = 0 yields the x -intercepts r : landr:1.

. \)-intercept: Setting,r - 0leads to a division by zero, so that there is no ), intercepr.

c Vertical asytnptole.r.' Setting f3 : 0 yields the ve ical asymptote,r : 0.

. Horizontal tts),nplolesr The limits

x2-1 x2 llim , - Iim -;- lrnr =Ur' . .\' .L,t

-.1 1 -,2

ttm ' - 
l= li- ', - t,,n -l -o

r -- rt l

yield the horizontal asymptote ) : 0.

t_J 1l , I_) )t
rsc = l.JSc =l

(b)

Figure 5.3.10

Fisur€ 5.3.9
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Derivattives:

clt xr(2,r) (x) l)(3r:) 3 x)
dr (r,)'
d'J xal-2x1 - (3 - rr)(4rr)

(, t)'

IntervaLs o{ ilcrease and decrease; relative extrema:

S gn of dl /d-r
1t-1 ru^lJ

Thi. -n.rl)'i. rc\eal. a relrlive minimum
,r : J:.
Concavil-;;

at .r : 
^../3 

and a relative maximum at

S gn oi r/11/r1,rl!o o ./o
Concave lnfl Concave Concave nfl Concave
down up down up

Tllis analysis reveals that changes in concavity occur at the vefiical asynptote r : 0

and at the inflection points r : -^.6 anct -r = "6.
Figure 5.3.11 shows a table of coordinate values at the relative extrema and inflection

points together with a complete graph of the equation on which we have emphasized these

poir'rts.

t,
2(..r2 6)

_r,

r/o = z.+s

-r/: = t.r:

rF = r.r:

116 = l.-+)

ll! = it t+
36

-iljl = 0lR
9

4l =0]l{
9

!!! = o t+
l6

Fislnc 5.1.I I

GRAPHS WTH VERTICAL
TANGENTS AND CUSPS

Figure 5.3.1 2 shows fbur curve elements that are commonly found in the graphs of functions
that involve radicals or fractional exponents. ln all four cases r0 is a point of nondifferentia-
bility, and in all tbur cases the tangent line at x point ir approaches a vertical limiting position
as r approaches r0 from either side. Thus, we will call ,r 0 a poilt of \)efiical tatlgenc! fot
the function. ln pafts (c) and (d) ofthe figure the curye segments folm what is called a cr.i7r.

(a)

Fignle 5.3.12

-ro fo

I lm_/'({) = -.
I lm /1r)=+-ll''''t...:

(r. )

The following definition makes (hese ideas precise.

5,3.3 DL.t-l\ toN. The graph of a function / rs sard to ha\ e a vertical tnngent line I

at -r0, and r0 1s ca1\cd a point of vertical tangency 1br I if / is continuous at -r0 and

/'(r) approaches either +- or -r as .r + ,r.t ancl as -t + xn . ln the case where l'(r)
, approaches +- from one side and -- lrom the other side, the function / is said to have

: a cusp at xo.

(r)

I m l'(r)=+-l.-.i
I lm /'(r) = -'
:11"._ _ ,, :

(d)
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Figurc 5.3.13
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tit,\t.\]{K. It is important to observe that veftical tangent lines occl"Ll at points of nondif-
ferentiability. whereas nonvertical tangent lines occur at points of dift'erentiability.

Example 6

Generate or sketch a complete graph of ,\- : (x - !12/t .

Solution. Figure5.3.l3showsacomputer-generatedgraphoftheequarion,y: (r-4;2/r.
(As suggested in the discussion preceding Exercise 29 of Section L3, we had ro trick the
computer into producing the left branch by graphing the equation ), : l-r - 4 2/3 ) To
determine whether this glaph is complete, we let /(.{) : ir - 4.;2/3 and proceed as follows.

. Symmeties: There are no symmet es about the coordinate axes or the origin (verify).
However, the graph of r' : (,r - zt)2/r is symmetric about the line r : 4, since it is a

translation (four units to the right) of the graph of -r = -r2/3, which is symmetric about
the I axis.

c s-itiercepts: Setting -r' = 0 yields the -t-intercept.r : 4.

. \'-intercepts: Setting.r = 0 yields the r, inrercept l : yl6.
c Vertical axmlttoleJ; None. since .l(,r) : (.x - 4)113 is a continuous function.

. Horia.ontttl ostttqrlofeJ. None, since

,1T- (t - 4)2/3 : 1- ancl .l!- f" 4)2t3 = +*
c Derittatives:

.l\' 2 2

- -- / lr) : -lr'- 4)-' -r/.t l'- 3(r-4)r t

): -. .2
- 

- /"{r): --(r'-4)-+/'-dr- 9' q(r - 4)r/1

. Relative extrenq; uttte'ut,ity: There is a critical point at r = 4, since / is not differen-
tiable there; and by the fint derivative test there is a relative minimum at that cdtical
point, since l'(.r) < 0if x < 4and f'(r) > 0if x > 4, Since /"(r) <0if x +4,the
graph is concave down fbl x < 4 and for;r > 4.

. Verticql tangent liresr There is a vertical tangent line and cusp at r = 4 of the type in
Figure 5.3.12d sincc l (r ) = (r - 4)2/r is continuous at ,r = 4 and

)
\lim /'(\ ) = ,liT 3fr_4)r^ - tx

a
lim l'rrt: lim\""; .i'r' ,":'r' 3(.r.- 4.)' ,-'

Combining the preceding infonnation with a sign analysis ofthe first and second deriva-
tives yields Figure 5.3.14. This contirns that the computer-generated graph jn Figure 5.3.13
is complete.

Sign oi dr'ld-r

Sign ot r/rr/r/r2

Figure 5.3.14

Cusp
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C?ttltltted b) Mdth.'t ati(tt

FigLrre 5.3. l5

Example 7

Genelate or sketch a complete graph of r' : 6-.1/3 + 3-rt/r '

Solulion. Figure 5.3.15 shows a computer genemted graph of the equation- Once again'

wc had to call on the discussion preceding Exercise 29 of Section l 3 to tl ick the computer

into glaphing a portion of the glaph over the negative 'r; axis. (See ifyoLt can ligure oLlt how

to do this.) To determine whether the graph in Figure 5'3.15 is complete. we let

f(.,-) = 6,rr/r + -l.rr/r = 3.rr/r12 + .r )

and proceed as lbllows-

. Slranetliesr There are no symmetries about the coordinlte axes ol the origin (vclify)'

. r-itiqcept.\; settingr'=3rrir(2+'r):0yieldsther-intercepts.t:0and t = 2'

. \'-inte,'cept: Setting,r : 0 yields the ,1-intercept r' : 0.

. V?fiical asltnPtoles. Nonc, since l(.r) : 6.rl/r a j1l'/r is contin(ouri

. Ht'tiaoltl(tl d.\\tt4,/aIP.\l None. since

lim (6.r.r/r + 3-t+/3y = lim 3.rr/r(2+.t): +-
r;+a \-+'

Iim (6.11/r * 3-tr/r; = lim 3.ir/r(2+..): +-

. Deritutives:

.I 
- ,',.,., - 'r, :'t a4rr" = Lr r/'(l + lr') :

,/.t

1lI - p ,,, -- -1.. '. + 1.r-t'- 1.r-t', t

,/rl-'"' -l' -1 3

l(2.\ + I)

There ue critical points at -r : 0 and r = -{ FIom tlle lirst derivative test 4nd the

sign analysis of dr,/r|,r in Figure 5.3 16. thete ii a relative rninimunr at 'r : - ] There

is a point of vertical tangency at .r = 0. since

2(2r+l)
lim /())= lim ;, =1tr_u' r_0' .\-

:r:.r I I I

,!1 ,ri',= lll - ,, :' ,

From the sign analysis of r/r,\'/d.r2 in Figure 5.3. l6' the graph is concave up firr' 'r < 0'

concave down fol 0 < .t < l, and coDcave uP again fot.r > 1'

. Inten,t s oJ increase tuttl detrettst: t'oncc|l'itt: Combining the preceding inlbnnation

with a sign analysis of the lirst and second dcrivatives yields the gmph shape shown in

Figure 5.3. 16.

This confirms that the computer-gcnerated graph in FiguLe 5 3 15 is con'rplete except

for the fact that it did not rcveal the very subtle inflection point at -t = l In this casc the

afiistic rendering of the curve in Figure 5.3.16 describes the subtletics ol the gtaph shape

moIeeffectivelythirnthecomputer-genelatedgmph.<

Example 8

Generate or sketch a complete graph of t' : e '':'r: 
"nO 

identity thc exact location of all

relutive ertrcma and intlection pornts

.r,l
4(.r - l)

3 \. 
r/.r
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0r-r:+
...-2l171 ...\Sign ol d),/d.r = 2r-2lr(l + 2.r)

I-3. 3l x l-1, 2l
rscl = l. rsc = I

Figure 5.3. l7

.1 0 I
concave 2 Concave Concave

up down up
Re min lnfl

s gn ot /']11lr'z = ]r 5irir ty

Figure 5.3. l6

Sohttiort. Figure 5.3.17 shows a calculator-generated graph of the equation in the window
[ 3,3] x [- 1, 2]. This figure suggests that the graph is symmerric abour the ]-axis and has a
relative maximum at x - 0, a horizontal asymptote at ) : 0, and two inflection points. The
following analysis will identify the exact location of these features and determine whether
the graph is complete.

. Syrnetrics; Replacing r by r does not change the equation, so the graph is symmetric
about the )-axis.

. x-intercepts: Setting y : 0 yields the equation e x?/2 : 0, which has no solutions
since all powers of c have positive values; thus, therc are no x-intercepts.

. !-intercepts: Setting r : 0 yields the )-intercept ) : 1.

. Vcrti ul o,;rtt,tptoips: \one. since r,- - ir I con(inuou: function.

. Horizontal asymptdes: Since r2/2 -+ +dr as -i: + +co or r -+ -r, it ibllows from
Formula 114) of Secrion 4.2 thar

lirn e-'1/2: [m e "/2:0
Thus, 1= 0 is a horizontal asymptote.

Derivathtes:

d1 ,dl ^2-d.r /rl2l
d'v J,-".,. ,.1
a", - -^,trl"-^ ')- , 'orl tl

=fe t2l2 , xl/z

-lr lY't
Intervals oJ increase and decrease: Since e-r:/z > 0 for all ,r, the sign of d1/d-t is the
same as that of ]r.

0

0

This analysis reveals a relative maximum at r : 0.
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LOGISTIC CURVES

. Col?c.7rir r,,.. Sincee '212 > 0fbrallr,thesignof d2yldx2 is the same as that of 12 - L

t r+1 0 0 r+.+
S gn ol 12 .- I and d1,-/(t\1

-l
Concave lnf

up

I

nf Concave
up

Concave

Logistic growth c!rve

Thus, the inllection points occur atr : I and r : 1. At these points the corresponding

1-valuesarey:ell2-0.61,whichseemsconSiStentwithFiguIe5.3.17'<

When a population grows in an environment in which space or food is limited, the graph of
population versus time is typically an S-shaped curve of the fonn shown jn Figure 5.3.18.
The scenario described by this curve is a population that grows slowly at first and then lnore
and more rapidly as the nunber of individuals producing offspring increases. However, at

a cefiain poirt in time (where the inflection point occurs) the environmental factors begin
to show their effect, and the growth rate begins a sleady decline. Over an extended period
of time the population approaches a limiting value that rcpresents the upper limit on the
number ofindividuals that the ayailable space or food can sustain. Population growth curves
of this type are called logistic growth cunes.

Example 9

We wjll show in a later chapter that logistic growth cu.ves arise from equations ofthe fonn

r= t+*" (5)

where f is the population at time I (l : 0) and A, k. and l, are positive constants. Show
that Figure 5.3.19 correctly describes the graph of this equation.

Sohttiott. We leave it for you to confirm that at time t - 0 the value of ] is

L
' I+A

and that for I : 0 the population ) satisfies

L_<y<l
1+A --

This is consisten( with the graph in Figure 5.3.19. The horizontal asymptote at ) : I is
confirmed bv the limit

lim 

-- 

-L1++'. 1+Ae k1 1+0

Physically, -L represents the upper limit on the size of the population.
To investigate intervals of increase or decrease, concavity, and inflection points, we need

the fiISt and second derivatives of y, with respect to l. We leave it for you to confim that

dvk
dt 

: 
Zt(.L - t) 

(6)

..-.-tl- ')(/ 2v) (7)
dtt L!

Since t > 0, 1>0,andZ-1>0,itfollowsfrom(6)thatdy/dt>0forall r. Thus, y is
always increasing and there are no stationary points, which is consistent with Figure 5.3.19.

Figure 5.1. l 8

Figure 5.3.19
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Since r' > 0 and L - r' > 0, it folbws fiom (7) that

d2 t'

->0 
if L 2v>0

dtz

dlr
.tF <0 if L 2r <o

Thus, the graph of -y versus t is concave up if r, < l/2, concavc down if .r' > L /2, atdhas
an inflection point wherc t, = L 12. all of which is consistent with Figurc 5.3. 19.

Finally, we leave it as an exercise for yon to confirm that the inflection point oecurs at

time
I lnA

I = -lnA: 
-kk

by solving thc ecluation

(8)

2 1 + Ae-kl

for f.

ExERctsE SET 5.3 E Graphing ca culator E CAS

In Exercises l-10, give a complete graph of the polynomial,

and label the coordinates of the stationary points and inflec
tion points. Check your work with a graphing utility. In each part, match the functions with graphs I-VI without

using a graphing utility, and then use a graphing utility to
generate the grapl'rs.

20.

an.

3x2-1.r-4---- tt-lr:21. ,

(b) r'/'
(").t/l

(c) .{ "'
(f).t ril

1. r: 2x-3

5. rr+2rl - I

7. 3-r5 - 5.rl

9. r(r - t)3

2. l+r-rr
4, 2x3 3-r: + l2.r + 9

6, .\1 2.r2 - 12

8. 3rr + 4-tl

10. 15 + -5ra

(u) ,t'/'
(d) *r/s

ln Exercises Il-19, give a conrplete graph of the rational
function, and label the coordinates of the stationary points

and inflection points. Show the horizontal and veftical asymp-

totes, and label them with their cquations. Check your work
with a graphing utility.

2rll. _

rll
14. 

-
rr+l

17. 

-
.\'+ 1

t2- x
rr-l

ts.tt-1

rs. j-
J-.rl

13. -j:tr - |

I6. 

-
.\-l

19. 

-
tl-4

In Exercises 20-22, the graph ofthe ntional funclion crosses

a horizontal asymptote. Give a complete graph ol' the func
tion. aDd label the coordinates ofthe stationary points and in-
ilection points. Show the horizontal and vertical asymptotes,

and label the poin(s) where the graph crosses a horizontal
asymptote. Check your work with a graphing utility.
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24. Skerih r"e genrrt. rh:,pc ol Lhc pr:'ph ul 1 ' 
I .,rlu then

explain in words what happcns to the shape ol tlle graph as

r increases if
(ii) /l is a positive even integer
(b) /r js a posilile odd integer.

In Exercises 25-32, give a complete graplt of the function,
and identify the location of all critical points and inflection
poir s. Check your wuk \\,ith a graphjng utility.

youl sketch to lhat .senerated wjth a graphing utility.

52.

3,t I 8(e) r: _ lb)t: 4

2r-r1(u)r- .^ id)\- + 1 t
Sketch the graph ol

I

(-r .7 ) (-\: h)

.I l-
'' rl I

1 : ---- -------
I

25. u{, - I

27. 2r + 3r'il
29. tJ3 - t

8i ./r l)
-1t -

26. I.r: 1

28. ,lx 3-rr/l

30. 4-r l"l ;l/l

32. 
l+J:
lJr

ln Exercises 33 38, give a complete graph ol the function.
and idcntify the location of all rclative exlrema and inflection
points. Check your work with a graphing utility.

33. ,r * sin,r 34. ,r - cos:r

35. sin-r + cos.r 36. J3cos,v + sin.t

-rl. \ln- t. u<\<lra
38,,!tan,Y. nl2<r<nl2

ln Lrerc .c. .ll 44 \ul Fr d rl-e lrn rls .,1 th< lutr.tt.-,r ''.
r. ) +- and r + r. (b) Give a conrplete graph oi the

function. and identify the location ol'rll lelalive exlrema and

inflection points. Check your work with a graphing utility.

39. -re' 40. .rc :' 41. x:e :'

12. r2i' 43. -tz'' 44. e )i;

In F.xer-cises u15 48: ll) Find the limits of the function as

r + 0+ and -. , +-. (t) Give a complete graph of the

function, and identify the location of all relative extrema and

inlleclion points. Check your work with a graphing utility.

45. r ln-r 46. ..,-r ln r 47. Y 48. +r J.\
49. In each part: (i) Make a conjecture about the behavior of the

graph in the vicinity of its -r-intercepts. (ii) Make a rough

sketch of the graph basecl on your conjecture .ind the limits
oi the polynomials as a.. > +:. and -t + --. (iii) Compare

vour sketch to the graph generated with a graphing utility.
(a) .1 - a1-1 - l)(-t + l) (b) -r': r:(r - l)2(r + I)l
(c) 1, :1r1-' l)r(-r + 1)r (d) -r' : -r(r l):(-r + l)l

50. Sketch the graph ol l : (-t u)'t1(x - b)rt fol the stated

values olr,? and ,?. assuming that.i I b (six graphs in total).
(a) ,rr : 1. tt - 1.2.3 (b) n :2, tt:2,3
(c) nr :3, n :3

51. In each piut. make a rough sketch of llte gt aph using asymp

totcs and appropriate limits but no derivatives. Compare

assuming thal ,r + 1r.

Consjdel the family ol curves ) :tn-t" (hr-O).
(a) Use a graphing utility to generate some members ofthis

family.
(b) Discuss the eft'ect olvarying b on the shape ofthe graph,

and discuss the locations ofthe relative extrema and in-
llection points.

Colisider the family of curves 1 : " 
/"'11, r' 01.

(a) Use a graphing utility to generlte sorre members ofthis
lamily.

(b) Discuss the effect ofviirying b on the shape ofthc graph.

dnd discLrss the locirtions ol the relati!e extrema and in
llection points.

(a) Determine whethcr thc following limits exist, and if so.

find them:

.Irr P co\ r. lin_ , .o..r
\ -+r-

(b) Sketch the graphs of -r : € 
r. i- : e- ', and ) : e' cos x

in the same coorclinate system. and label any points of
intersection.

(c) Use agraphirg utility to generate some members ofthe
iamily _i : e"'cos b-r (a > 0 and D > 0), and discuss

the effect of varying d and b on the shape of the curve.

(Oblique Asymptotes) If a rational function P (r)/ O(r) is
such thlit thc degree of the nurDerator exceeds the degree
nl r''e oefi.nrinflor by L,/,,. lhen lhc lrrph ol Pttt Qttt
wiltlhate anoblique ar)rnplole, tlral is, an asymptote that is

neither vertical nor horizontal. To see why. we perform the

division ol P(,r) by O(.r) to obtain

P(\) R(r)

-:(!/\-+b)+ 
-O().\ Ul^l

*lJe ot + 6 k rhe quotiJnt and R (-r) is the remainder. Use

the fact that the degree of the remainder R(r) is less than

the degree ofthe divisor Q(r) to help prove

[Prr) Ilirn (dr + D) :0
-+, LOlr) ]

f P{r) Ilim l- t,rr*D)l:0
L ?(.r) I

As jllustrated in the accompanying figure, these results tell
us that the graph of the eqlrirtion ) : P(r)/Q(-r) "ap-
proaches" the line (an oblique asymptote) ) - ,i'1 + b as

r ++-otJ +--.

E s3'

E s4.

E ss.

E

tr



In Exercises 57 61, sketch the graph ofthe rational function.
Show all vertical, horizontal. and oblique asymptotes (see

Exercise 56).
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that L : 2r + 800/x for -r > 0. and sketch the gmph of L
versus ir fbr i > 0

A box with a square base and open top is to be made from
sheet metal so that its volume is 500 inj. Let S be the area
of the surface of the box and r the length of a side of the
square base. Show that S : ,v2 + 2000/r for r > 0. and
sketch ihe graph of S versus ;r for I > 0.

The accompanying figure shows a conputer-generated
graph of the polynonial y : 0. 1n5 (-r I ) using a viewing
window of | 2, 2.51 x l-1, 51. Show rhar rhe choice ofrhe
vertical scale caused the computer to miss irnportant fea-
tures of the graph. Find the features that werc missed and
make youl own sketch of the graph that shows the missing
features.

The accompanying figure shows a computet-generated
graph of the polynomial li : 0.lr5 (ir + I )r using a viewing
window of l-2, l.5l x [ 0.2.0.2]. Show that rhe choice
of the verlical scale caused the computer to miss important
features ofthe graph. Find the features that were missed and
make your own sketch of the graph that shows the missit]g
teatures.

r = oLn ,..t-==r--
( P(rl\ : r./r + b)

0(r) .

66-

67.

69.

70.

r=oo

Figure Ex-56

68.

60.

62.

57.

63.

64.

65.

"2 -2

4-rl
t

x2-2x-j
58.

x +2

61.

rr 2)r59. ,

l1r.+I ;
Find all rclue. ol , where rhe graph o1

2ir - 3.r +4
):2

crosses its oblique asymplote. [See Exercise 56.]

Let /(r) : (xr + t)/,t. Show that the graph ot -r, : ,f(.t)
approaches the cLrrye ) : .y2 "asymptotically" in the sense

drat

lim l/r,, , .i'l- U and Iirn lTrr' \ l- 0

Sketch the graph ol1 : /(-\) showing this asymptotic be-

havior

Let l(.r) : (2 + 3.r r3)/x. Show that ! : /(r) ap-
proaches the cu e I - 3 -tl asymptotically irl the sense

described in Exercise 63. Sketch the graph ol l - /(ir)
showing this asymptotic behavior.

A rectangular plot of land is to be fenced ofT so that the
alea enclosed will be 400 1't2. Let L be the length of fencing
needed and x the length of one side of the rectaDgle. Slrow

Suppose that a population )' glows according to the logistic
model given by Folmula (5).
(a) At what rate is I' incieasing at time / - 0?

(b) In words, describe how tlre rate of growth of P varies
with time.

(c) At what time is the population growing most rapidly?

Show that the inflection point ol the logistic growth curye
in Example 9 occurs at the time / gjven by Formula (8).

GeI(t dted br lt4athenati(a G?,eruted h) lt4uficnnti( a

Figure Ex-6E

l. (a) If:ur < -r2, wl'rat relationship must hold between /(.r1)
and f(,r2) for / to be increasing on an interval contain
ing ";r1 and,r? Decreasing? Constant?

(b) What conditior on /' ensures that I is increasing on an

interval [a, D]? Decreasing? ConstaDt?

What conditiolr on /'ensures that./ is concave up on
an open inleNal 1? Concave down?
What condition on f" ensules that / is concave up on
an open interval 1? Concave down?
In words, what is an inflectiort poiDt of /?

2. (a)

(b)

(c)
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3. (a) Where on the graph oi _r, : /(-r) would you expect r to
be incrersing or decreasing most rapidly with respect
lo r'l

(b) In words. whal is a relative extr-emuml

(c) State a procedure fbr delermining where the relative
extrema of .f occua.

4. Delennine whethcr thc statenent is trlre or lalse. Iiil is lalse.
give aD exalnple that illustliites why.
(a) lf / has a relative maximun at r0. then l(:i0) is the

largest value that /(r) can have.

(b) li l(-ro) is the largest value tbr f on the intelvzrl (.r. /r).
then / has a relative maximum at r0.

(c) A lunction / hir! ii relativc extrcnun at each ol jts
critical points.

5. (a) According 1.) tlle llrst derivalivc test. what conditiolts
ensure that f has a relativc maximum at,!1? A telative
nininrum?

(b) According to the second clcrivative tcst. what conditions
ensure that./ has a relative maxirnun al -{o? A relative
m in irn um?

6. ln each palt. skelch a conlinlrolrs cuNe r, : li,r) with the
stated ploperties.
(a) l(2) : a. l'(2):1. f"l);) < 0 for.r < 2, /"(.r) > 0

for'r>2
(b) 112):4. l"(-,,) > 0lbr.r <2. l"(x) < 0for'.r > 2.

and tin /'(t) - 1z-, linr l'(-r) : +-

When usil-e a graphing utilily, iinpoftant features ol a grapl]
may be missed if the viewing u,indorv is not chosen appro
priately. This is illusrrated in Exerciies 25 and 26.

25. (a) Cencrate the graph of l(r) : ].iJ - fr-t over lhe in
ter!al f --5, 5]. and m.lke a conjeclure aboLri the location
and nanue ol all critical points.

(b) Find the exact localion ofall critical points. and classify
them as relative maxirlra. [elativc minima. or neither.

(c) Confirm thc results in pirrt (b) b] graphing f over an

appropriatc interval.

26. (a) Cenerale the graph of

l(.r) - {-t5 l-r + ].rr + lrr,6r
over lhe interval | -5.5], and nlake ii coniecture about
the location and natule rll all critical points.

(b) Find the exact location ol allcriticalpoints,andcliissify
thcrn as relative maxirnr. relativc nrinima. or neither'.

(c) Confirm the results in pat (b) by graphing portions of
f over appropriate iilervals. INotcr It will not be pos

siblc to find a single window in which all of the crirical
points are clearly visible.l

27. (a) Use a -claphing Lrtility to generate the giaphs ol -r, - -r

and r' : (13 8)/(,rl + l) together over the interval

I 5.51, and nake a conjccture about the relationship
betweeu the two graphs.

(b) Use Exercise 56 of Scction 5.3 to conllnlt your conjec
ture in pa (a).

28. In palts (a) (d). th.. complete graph of a polynom ial with de-
gree al mosl 6 is givcn. Fincl equatlons tbr poiynomials thdt
produce graphs rvith thcse shapes, anci check your answcrs
with a graphinS utility.

15.
f +,' ,:u/r\r: Il, ,,0

/(.r) : (1 + .)r1r(3 -.r)rir

ln r

lfr):'lo' '

18. .l(..-) : .rr tn jr

20. .l(.r) : ln(-rr 1 1)

22. .f (x): \e '

24. .l(,;) : rrc' L

16.

17.

l9_

21.

E

E

r 'l \ ':
., i,2. .rl. / ,,. r)thr \ l.. .l ii- / r,,: L

lin l'( r) : -l\ ':.
7. In each pa , lln.l the location ofallcritical points. and use

the nrsl derivirliVe test 1() classif,v them as relativc maxima.
relalive minima. or neither.
(a) l(r) : rr/i(r l)r
(b) l(-r):2sin-r cos2r. 0; -r ;2r
(c) l(.r) = 3.r (.r l)r1l

8. In each pa , find rhe location of all critical points. and use

the second dedvativc test (where possible) 10 classify them
as relative maxinra. r'elalive nriniIna, or neilher.
(a) /(.r) - -v r/: + 1-rr'il

(b) l(.r) - -r: + 8/r
(c) l(-Y): sinr-r cosr, 01-r 122

In Exercises 9 2zl, givc a complctc glaph of /, and identify
thc limits as ,r --+ tr. as rvell as locations ol all relative
extrcma. inllection points. and asymptotes (as appropriate).

/(*) : -ta 3rr + J-rr + I

/1.) : .tj ,1r4 + 4,tl

l(.,i) : 14n1.t: * 
', 

12. l(,t) : -y - qos-y

tr

E

9.

10.

ll.
.t-

13. l(.rt :
\ r + 2\ + 5

25 9tl
14. l(r): .



36.
29-

30.

31.

Find theequations of the tangent lines at allirrflection points

of the graph of

.l(.r) : -,ra - 6.rr + l2r2 8r + 3

Use implicit ditTerentiation to show that a lunction defined
implicitly by sin.r + cos ) : 2) has a critjcal point whcn

ever- cos -l : 0. Then use eilher the lirst or second dedvative
lest to classify these critical poinls as relalive nraxima or
minima.

Lef
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find conditions on r.r, b, c, and r/ to ensure that f is always
increasing or always decleasing on ( -, +-).
ID each part. approxintate fhe coordinates (,t, ),) of the rel-
irli\ ( s\lrcma. and !on Ii nn lhal ) uur Jn.$ err rrr cun\.5tjnt
with the graph of l.
(a) /(r) : -rnr sin -r
(b) l1r): vt4 + t v;l + l

(cl /(') - r_-\rn) ] I

(a) Approximate to two decimal places the ldrgest value ol
li such that the function /(r) : 1 * 2r +.rr * ra is

one to one for,r : t.
(b) Fol the value of k lound in part (a), find the domlrin and

rzrnge of f I and the value of l -r ( I ) fbr thc function

/(r) : I *2-r*rr ra,,r :1.
Consider the family oi curves _r' : re "', .r - 0, where a
is a positive constant.
(a) Use a graphing utility 10 graph some members ol rhis

family.
(b) Find the value of -y at -r : 0 and the limiting value of

) as.J. ) +-; confinn that these values are consistent
with your graphs.

(c) Find fblmLrlas fol the cootdinates of the relative extrema
and inflection points, and confirm that these fbm]ulas
are consistent with the graphs.

(d) How does increasing a allect dre graph?

Consider the iarnily of curves ,r. : e (' ")/2/', where a and

b are constants and 1, > 0.
(a) Use a graphing utility ro graph some members of this

iamiLy, first keeping a fixed and valying r, and then
keeping b lixed and varying o.

(b) Find llre value of I dt x : a and the limiting vaiues o1'

] as r + +:.: coDfirm that these values are consislent
with your glaphs.

(c) Find formulas for the coordinates ot'the relative extrema
arld inflectioD points, and conllnn that these fbrmlrlas
are consistent with the glaphs.

(d) U,7 is kept lixed, how cloes increasing b affect the shape

of the graph?

(e) If , is kept fixed. how does varying a affect the graphl

Show that for successive positive integer values of r, thc
number ( I * 1/n )"+l is smaller than its pre<lecessor [Hlrr.
Consider the function /(.r) : (j + l) ln(1 + l/-r).1

Fl ls.

E 37.

E 38.

Graph r' : /(r), and find the cquations of all horizontal
and vertical asymptotcs. Explain why there is no vertical
asymptote n1 ,1 - j, even though the denominator of I is

zero at that point.

E 32. Let

2rr +,rl 15-r i 7

t2\ l)(lrr+r l)

,vi -,ra - 3.r1 +2r +4
x1 2x6 3Is + 6,11 + 4r IJ

E 33.

(a) Use a CAS 10 faclor lhe l1Llmelator and denominalor ol'

l, and use the results to deternine the locations ol all
vertical asymptoles.

(b) Conllrm that your answel is coDsistert with the graph

of f.
(a) By inspection, find the largest and srnallest possible

values 1br l(r) : rln'. and then confirm that your
answers are consistent with the graph of /.

tbr F:nd the err. t lncrtiorr' ol the relJli\e (\lremJ.
(c) Estimate the locatlons of the inflection points in the in-

telval 0 < r < 2z from the graph of 1".

For the general cubic polynomial

.l(r) -r.rr +bx? +cxfd @10)

39.
3il.
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Functions from Data

yarichlas.Ifithisnt]dnlcweuillclistusssontenlathenotiLol t(llniclues /itt doittgthi.t.a d\\,(\1ill use these itleus to
inlestigate prin(ipl(s ol plunelarl' notion untl the tooling of litluils.

Fitting e urries to Data

Suppose that a scientist is looking fol a telatiorship between two variables -t and t and that
measurements of corresponding values of these vatiiibles have produced a set of r data points

(-rr.Ir), (-r:,.\'r). (.'ir...!:),.., (r,,,r',)

If the scienlist uses the dala in sorre way 1() oblain a rclationship ,r, : I (,r) bet\\'een -r alrd l , then
tlris equation rs called a muthemutical model for the df,ta.

Onc way to obtain a mathematical model lbr a set of dala is 1() look for a lunction f whose
graph passes through all of thc data points: this is callecl an interpolqti g function. Allhough
interpolating functions are appropriate in certain situations, they do not adequatcly account 1br
measurement el-rors in the ciata. For examplc. suppose that the relationship between -r ancl t, is
known to be Iineal but that accuracy linitations in the rneasuring clevices and rand()m viuiations
in experimental conditions produce a scatter plol such as that shown in Figure l.l. Wiih the help
of a computer, one can find a polynomial of dcgrcc l0 whose graph passes through all of the dala
points (Figure l r). However, this polynonial model does not successfully convey the underlyinil
lincar relatiorrship; a betler approach is 1() look tbr a linear equation )' - u1.t + b whose graph

more accLrrately clescribes the linear lclationship. cvcn if it does not pass ihrough ali (or any) ()1'

the data points (Figure lc).

tl
(., (b) (.)

Figure I

f" inding l\{athernaticai ffl*dels
The most challenging part of fincling a mn6"1 1 : ./(r) for experimental data is coming i.rp witlr
an appropriate form for the tunction /. Sometimes the lbmr of the linction will be suggested by
the visual appearance of the scatter plot. alrd sometimes it will be dictated by a known physical

Law that relates r and l. For example, Figure l.r strongly suggests that the relationship between
.r ancl l is linear. so in absence of additional inlbmation it would be natural to look for a linear
mcrdel -r - nr ! b.ln conlrasl, thc scattc| plot ol U.S. population growth in Figure 2 strongly
suggests some lonlinear relationship. so we must ]ook fbr a nonlinear function fol the model.
The possibilities tbr nonlinear models are endlessl however, there are theories in the srudy o1'

population growth which suggest that in absence of envitonmental constraints, populations ol
people can be modeled over timc by cquations ol the form P - POe(/, so in this casc we miglrt
bok lbr an equalion of this lblm b moclel the data.
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l-inear Models

The most irnportant methods fbr'linding linear notlels arc based on the follorvine idea: For any
p|oposed linear nodel r' :,r.t f D, clraw a vertical conncctor i-oln eaclt data point (,ri. r'i) to tlte
line, irnd consider the cliiferences t,; - -r, 

(Figure 3). These differences, which arc called resitluals,
ma1, be viewed as "enors" that result whcn thl] line is used to moclel the data. Points above lhe
line have positive ellors. points bclolv the line have negative enoLs. and points on the line have
n() el-ror.

One way to choose a linear modcl is to look firr a line r' : /7?r * D in which the sLun of
the residuals is zero, the logic being that this makes tlte posilivc and ncgative en-ors balance out.
Howet'eL, one can fincl examples where this proccdLrrc prociuces unacceptably poor moclcls, so

lbr rcasons that we clrnnot discuss herc thc lnost common method fbr firrdirrg a linear modei is to
looklbraliner':nr-r*Dinwhichthesuntofthcstluaresoftheresidualsisassmallaspossible.
This is callcd thc le ast-squares line of best Jit ot the regression line.

Ii.rartist I One of the lines in Figure ,1 is the regression line. Which one is it?

;50
! +rr

E20
j ro

Fl!urc 2 F gure l

ll.rt'rtite )
(a) Most scientific calculators and CAS programs provide a method for finding regression lines.

Read the documentation fbr your calculator or CAS 1() detcrminc how to do this, and theli
lind the legression line fol the lbllowing (.r. r') clata:

.r 1.0 1.5 2.0 2.5 3.0 1 i .r 0

, i' 1.0 2.5 6.0 9.0 10.5 14.5 15.0

(b) Make a scirtter plot of fie dala together with the regression line.

How Good is the l-inear Model?

It is possible to conlpute a regression line. even jn cases where lhe data have no apparent linelr
patteln. Thus, jt is inportant to have some quantitative rnethod of detemining whether a linear
moclel is appropriate for the data. The most conllrion measure 01'linearily in data is called the cor-
relutiut coqfficient, wllich is usually dcnole.l by the letler r'. A detailed explanation of conelatiol'r
coeflicients and the fornuln usecl to compute them is outside the scope of this text. However. here
arc sone o1'the basic ideas:

. The valucs of r arc in the interval I < r < 1. whcrc r has the same sign as the slope of the
re-qression line.

. lf r : a l, ihen the data points all lie on a line, so a linear noclel is a perlect fit for the data.

. If r : 0. then the data poinls exhibit no linear tendency, so a lineal model is inappropiate
l'or the data.

. (ir.t )

U.S. Popu at on Growth

Tme 1s nce 1790 (years)

I:igurc 4
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The closer i' is to +1, the more tightly the data points hug the regression line and the more
appropliate the regression line is as a model; the closer / is to 0, the rnore scattered tlte points and

the less appropriate the regression line is as a model (Figure 5). Roughly stated, thc value of r2 is
a measure of the percentage of data points that lall in a "tight linear band." Thus, r : 0.5 means

that25o/,ofthepointsfallinatightlinearband,andr:0.9meansthat8lo/oofthepointsfallin
a tight linear balld. A precise explanation of what is meant by a "tight linear band" requires ideas

from statistics.

Erertist -l If you have a scientific calculator, read the documentation to determine whether it
produces the correlation coefhcient when it computes a regression line. If you have a CAS, then
the chances are that it will not automatically produce the correlation coefficient. However, on our
website we have provided some CAS "miniprograrns" that can be used to fiod regression lines
with their associated corelation coefficients.

Figure -5

Iixertise 1 Find the correlation coethcient for the data in Exercise 2.

L:x(t'cise 5

(a) Table i.1.1 of Chaprer I gives the lndianapolis 500 qualifying speeds S from 1975 to 1994.

Take 1975 to be r : 0, and find the regression line and corelation coeflicient fol S versus r.

(b) Do you think that a linear model is reasonable for the data? Explain your reasoning.

(c) Predict the qualifying speed for the year 2000.

(d) What assumptjons did you make in parr (c)?

Nonlinear Models

Three of the n-Iost inportant nonlinear models are

. Exponential mod.els (.y - deb')

. Logarithmic models (.1, : a I b ln x)

. Power function models (y = a6b 1

Many scientiflc calaulators and computer programs can fit models of these types to data by the

method of least squares. However, a useful alternative apploach is to use logarithms to transfolm
the oiginal data into a fonn where linear models can be applied. This plocedure, called,linearizing
the data, is based on the following idea:

. A set of (-{i, _ri ) data will have an exponential model if the transformed data (-ri, log l,i) have

a linear model.

. A set of (x7, yi) data will have a logarithmic model if the transtbrmed data (log x;, 11) have a

linear model.

. A set of (:r;, y;) data will have a power function model if the transfomed data (logri. log ]'i)
have a linear model.

The fbllowing exercise explains the reason for this.
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I': re rtisc 6

(a) Suppose that ]' : .r?'r, and let f : ln t,. Show that the graph of y versus,v is a line of slope
D and I intercept lna.

(b) Supposethaty:a*&lnx,andletX=lnx.Showthatthegraphof I' ve$us X is a line of
slope 1, ancl t,-intercept c.

(c) Supposethat):a,tr',andletf:lnt,andX:lnr.showthatthegraphoffversusXis
a line of slope D and y-intercept ln 4.

(d) Show that in parts (a), (b), and (c) the statemerts remain true if the natural logaithm "ln" is

repiaced by the common logarithm "1og".

I).rercisa 7

(a) Find an exponential model -r' : 4el" for the following data by linearizing the data, llnding
the regression line for the linearized data, and then applying pafi (a) of Exercise 6 to find a
and D.

lrl0.l

u 1:.s
'l

1234561
5.3 '/ .2. 9.6 12 l',/ 23 3 r

(b) Make a scatter plot of the data together with the exponential model.

frerr:isr 8 The rable in Figure 6 shows the relationship between the time f lllat it lakes for
each planet in our solar system to make one revolution around the Sun and the mean distance rl
between the planet and the Sun during ons revolution. The graph in Figure 6 is a plot of log 7
versus log r/.

(a) What type of model for ? as a function of I is suggested by the graph?

(b) Find the regr ession line for the (log d. log 7) data.

(c) Use the appropriate part of Exercise 6 to express Z as a function of d.

(d) In part (c) you discovered Kepler's Thild Law of Planetaly Motion. Find some information
about this law, ard state the law in words.

NiEAN DrsrANcE 1 Tlr'tE f FoR

PI ANF'I' FROM'IIIF SIJN ONE REVOLUTION

Mercury
Venus

Earth
Mars
Jupiter
Saturn
UranLrs

Neptune
Plrrro

0.387
0.'123

r.000
l.523
5.203
I 541

19.r90
30.086
3S.507

0.211
0.615
l.000
L881

11.86r

29.151

84.008
164.?8,1

24It.350 0

Log ./

ruotei Distances are measlrred in astronom cal un ts (AU)l

I AU = 93.000,000 mi. Tme is measlred in Earth years.

Fijture 6

Modeling Cooling
If a cup of hot coffee is left on a lable to cool, then the graph of its temperature 7 versus the elapsed

time I will have the general shape shown in Figure 7. The graph suggests that the coffee will cool

Uranus/aNept!ne
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n tla
coffee

temperatL.rre

quickly a1 flrst and then more and more slowly as ils temperature approaches that of the room. To
be more precise. it is shown in Physics that if the temperature of a liquid at time t : 0 is 4) and
il dre room has a constant temperature of d, , whele 4, < 70 (the roonl is cooler than the liquid),
then the temperature 7 of the liquid at tine / is given by

T - T. + (.Tt) - T,)e-kl

u,here k is a /'tcgalllic constant whose value depends on the physical characterisrics of the liquid.
This equation, called Newton's Law of Coofizg, can also be written in the fonn

T 7,, - (Te T")e k'

which states that the dilference between the temperature of the liquid and the temperature of the
room has an exponential rnodel.

Figure 7

llxcrcisc 9 Table 1 shows temperature measurernents of a cup of coffee at 1-minute interyals
aftel it was placed in a room with it constant tenperature of 27'C.
(a) Find a irodel lbr the lenperature 7 as a function ofthe eLapsed time r.

(b) Estinate the temperature of the coffee at the time it u'as placed in the room.

(c) Approxinately how long will it take unlil the coffee temperature is within 5" C of the room
temperatureJ

Motlule by Mary Ann Counors, USMA. Wcst Poiti. and Hou,arcl Anton, Dretcl Univct sitt

:;r!,.i::larf,'*i'

Table I

rrmtni I J a 5 0 \ o '0

7 ('C) 82.) 70 r' --..{ -5.0 7., | -0. bo.2 {16.0 b5. \ h l..r
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AppUCATIoNS
OF THE

DsruvATrvE

,Qrrnu rn^rter we will study various applications of
the derivative. For example, we will investigate problems

that are concerned with finding the "best" way to perfonn
ir task these are c alled optini:ation problem,s. Many op-
timization ploblems are concerned with time and cost.

Fol example, if time is the main consideralion in a prob-

lem, we nright be interested in finding the quickest way to
perlbrm a task, and i1'cost is the main consideration, we

might be interested in finding the most plofitable way to

perforrn the task. Mathematically, optimization problems

can be reduced to finding the largest or smaliest value of
a function on sone interval and detcminir.rg where the

largest or smallest value occurs; thus, part of our work
in this chapter will tbcus on developing the mathemati-
cal tools for solving such problems. We will also use the

derivative to study the motion of a pafiicle moving along
a line. and we will show how the clerivative can be used

lo dpproxirnrte solution. ol equ.ttion..
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ABSOLUTE EXTREMA

6.1 ABSOLUTE MAXIMA AND MINIMA

At the beginning of Section 5.2 we obsertecl th.tt i.f the graph ot' u lunttion f is riev,,ecl
ds u tt4'o-.limensiotial noLoltaitl tdtlge (Figurc 5.2.11. then the relotiye na,tina and
milimLl co|t.espond to the tops of thc hills and the bottoms ctt' the ral/eys; thdt is. the,"-

are the high und lou'points in theit- imme(liate titittity. Itt tllis se(tian u'e u,i be con
cernetl u'ith the morc cfiLoupdssing problem rf .linding the highest antl lori dt poitlts
o|et the entirc moultain range, that is, wc will be ktoking.for the tap of tha higllest
hill and the bottonl of the deepest tullet. In mathentatical terns. ha u,ill be looking lor
thc larycst attcl snullest tulues of d fwtttiotl o|er an intanal.

We will be concerned here with finding the latgest and smallest values of a function over a

iinite or inlinite intcNal /. We begin with some teminology.

6,1.1 D[l.lNlt'lo\. A tuoctjon I is said to have an alrsolute maximum on itn intervti
l at the point,r0 il ./(16) is the largest value of l on l;that is, "/(-t0) 

t l(r) for all r in
,1.Similally,/issaidtohavett1absohrteminimumon / at the poinr.r0 il /(x6) is the

smallest value of f on /; that is. /(ro) < .f(r) for all I in 1. If / has either an absolute' maximum or absolute minimun on 1 at.r0, then I is said to have an absolute etlremunt
' on / at -Yo.

As illustrated in Figule 6.1.1, there is no guarantee that a function I will have absolute
cxtrema on a given intetval.

/ has an absolute
min murn blrt no

absolute max mLrm

..1 has no absolute
extrerna on

, ( -. +€).

I 
7 has an abso ute

I maximunr and

I ( -. +-).

(.a)

/ has an absolute
. maximLrm and

:.'"l1lT ""! bl:.

(.tl)

Figure 6.1.1

l.l has no absolute

I extrema on (./. ,).
I has an abso ute l

maximLrm ai.l l

m n mlm on l(. Dl. l

("f)

(b) (.)

(c)
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The remainder of this section will fbcus on tlte following problem.
EXISTENCE OF ABSOLUTE
EXTREMA

:6.1

l(a)
r(b)

.2 PROBI-EN1,

Detennine whether a flnction / has any absolute extrema on a given intenal 1.

If lherc arc absolute exh€ma. detemine where they occur and what tl'te absolute
maximum and minimun values are .

I No abso rte

l-"-,'
/.',

No absoiute
rn ln mLtm a

Filtlrc 6.1.1

FINDING ABSOLUTE EXTREMA ON
FINITE CLOSED INTERVALS

Pa s (.1) (.) ol Figure 6.l.l show that a continuous f'unction may or may not have relative
maxima or lnininla on an inllnite inlerval or on a finite open interval. However, the following
theore shows that a contil1lrous function must have both an abso]utc maximum and an
absolute mininum onetery fi ite tlo.sed interval lseeparl(/)of FiguLe 6.I.I].

6.1.3 TIIEORLN{ (Extrenre-value Theorunl. IJrt lurttri,ttt I is 
'o,nntntunus ott a rtttitc,

tlosetl intertctl lu.bl.tlrcn I h1s both an absolute ntatinunt and un absolttte mininunt .

on fo. bl.

: FOlt-l-Hh ltt.lDLIi Allhough the proof of this theorem is t(rc difficult to include her.e.

: you should be able to couvince yourself of its validity with a little erpenrnenlalron-lrl'
; graphing various conlinuous functions over tlte interval 10. ll. and convince yourself that
: therc is no $,ay io avoid having a highesl and lowest point ol'i tlte graph. As a physical
i analogy. if you inagine the graph to be a roller coaster track starting at -r = 0 and ending at
: r - I, the roller coastel will have to pass througlt a highest poiltt and a lowest point duling
i the tlip.

The hypotheses il-l the Extreme-Va]ue Theotem are essenlial; fbr cxantpLe, if / is not
continuous. then we could eDcounter a situlltion such as thal in Figure 6.1.2, and if I is

conlinuous but thc intcNal is not closed and linite. then we could encounter situalions suclt
as those in Figure 6.l.1. This is illustlated further in the following exanple.

Example I
The function .l (-r) : 2r + I is continuoLls, and hence is -quaranteed to have both an lrbsolutc
maximum and an absolute minimunl on evely 6nitc closed interval and, in particular, on
the interval [0, 3]. For this interval an absolute minimum occurs at -r : 0 and an absolute
n-Iaxil]lun occurs at.r : 3, at which points the absolute minimum and maximum values
are l(0) : I and l(3) - 7 (Figure 6.1.3).

However, if we consider this same function on the halt'-open interval [0, 3). then there is
no longer an absolutc maximum. To see why this so, obsel ve that l (3) : 7 is no longer the
absolute maximum because we have renoved the point,r : 3 l'rorn the interval. However,

.f cannot have an absolute mrxinum in the interval at a point,r0 tlrat is 1e.r.s than 3, because

.l will have a laryel value at any point i[ the interval to the right of -r11 (Figure 6.l.zt). Thus.

fhasnoabsolutemaXinumontheinteNa1[0.3),<

The Exlrenre-VahLe Theorem is an exan-iple of whai malhematicians call ar exislence the-
orsn. Such theorens state conditions under which something exists, in tltis case absolute
extrema. However, knowing that something exists and finding it are two separate things, so

we will now address the problem of linding the absolute extr.ema.

If / is continuous on the finite closed inlerval l.r. /rl. then the absolute extrema of /
call occur either at the endpoints of the interval or inside ol the open ilten'al (r/, ,). ]l thc
absolute extrema happen to lall insidc, thcn the following theorem tells us that ftey musl
occur at critical points of / .

l(.r)=2.r+1

Fi!:ure 6.1.4
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6.1.4 THEOREM. If l futs an absoLtne extentun on an open interval (,a.b1, then it
nu6t otcLtr tlt .L critica[ point of f .

Praa;f. Il.l has an absolute maximum on (.,. /r) at -r0, then /(,r0) is also a relative maximum
for / ; lbr if /(.ro) is the largest value of .l on all ol (a, b), then /(r0) is certainly the laryest
value for / ir the inmediate vicinity o1'ro. Thus, .r0 is a critical point of I by Theorem

5.2.2. The proof for absolute minima is similar. I

It lbllows tiom this theorem, that if I is continuous oit lhe finite cbsed interval [rr, D].
then the absolute extrerna occur either at the endpoints of the interval or at critical poiltts
inside the interval (Figure 6. J .5). Thus. we can use the lbllowing procedure to find the
absolute exffema of a continuous function on a liritc closed interval ln. Dl.

Absolute maxifirum
occLrrs at an endpo nl.

. Absolute max rn!m occurs
i the open interya (.r,r)at

a noini , ^ where i'rr^r= 0

' Absolute maxlmum occurs
n the open nierval (./. D)

. at a point -ro where./rs
not diiferentiab e.

Figure 6.1.5

A Procedure for Finding the Absolute Extrema of a Continuous Functinn f
on q Finite Closed Interval [a, bl.

Step 1. Find the critical points of / in (a, b).

Step 2. Evaluate / at all the critical points and at the endpoints n and b.

Step 3. The largest of the values in Step 2 is the absolute maximum value of
.f on [q, bl and the sma]lest value is the absolute minimum.

Example 2

Find the absolute maxirnum and minimum values of l(r) - 2.rr l5r2 + 36,r on the
intcrval [1, 5], and determine where lhesc valLies occur

Solution. Since / is differentiable, thc absolute extrema must occur either at the endpoints
ofthe interval 11, 5l or rt stationary points in the open interval ( 1 , 5 ). To find the stalionary
points, we must solve the equation .l'(r) : 0. which can be wrilten as

611 3or * 36:6(12 5r * 6) = 6(1 3)(.r 2) : o

Thus, tlrere are stationary poinls at r : 2 ancl x : 3 Evaluating I at the endpoints and the



11. 5 x ll0.551
rsc=l.rsc=10

Figurc 6.1.6
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stationary points yields

l(l) = 2(l)r - l5(l)r +36(1) - 23

f(2) :2(2)' 1s(2)r + 36(2) : 2E

/(3) : 2(3)r 15(3)r + 36(3) :27
l(5) :2(5)r l5(5)r + 36(5) - 55

from which \\,e conclude lllat an absolLrte trinimum of l(-r) : 23 occurs at,r - I and an

irbsolute maximunr of ./(r) :55 occurs at.t - 5. This is consistenf with the graph of I in
Figure 6. 1.6.

Example 3

Fincl the absolute extrema ol l(.r) - 61113 3-rrlr on the interval [-I.I],andclclermine
where these values occur.

Soluliott. Diftetentiating we obtain

.l'(.r) = 8r-r/r r- r'1r - r r/r(g.r tf : 8,t,r,t

Thus, l'(,r) :0 at.r : j, ancl thele is a point oflnondifferentiilbilily at.r : 0. Evaluatmg

I at these crilical poirrls and thc enLlpoints yields Table 6.1.1, floni which we conclude
that an absollrte mininum ol' l(-r) : I occuls a1 .r - {, and an itbsolute maximum of
l(r) -9occursatr: l. <

We observed earliet that !l colrtir]uous fiurclion may or may not have atrsolute extrena on
an inl'inite intcrval (see Figurc6.l.l). However, certain conclusions .tllout the existence of
absolute extrema ofil continuous functiorr f on ( z. *z) can bc cLawn t'r'om the behavior'
of / ( i-) as -r + 7- and r + +-'r (Tabie 6.1.2).

Table 6.1.2

Talrle 6.1.1

,.* , t ') .l I

./(r): 9 0 : r

ABSOLUTE EXTREMA ON INFINITE
INTERVALS

im l(t) = +-

im ./(.r) = +6 I I nr /(.r) = -6 lm l(\)=+-

/ hiN neither dn absolule
maximum nor arl absolute
lninilrLlm on ( 6. +e).

im f( r) = +-

.f hds neilher an absolute
rneximu nor an absolule
rrinirnum on ( -, +N).

Example 4

Whal can yeu say aboul thc cxislencc of absolute extlema oll ( ,. +'r) for polynomials'l

Solutiort. lf p(.r) is a polynornial ol odd deglee, then

,!1 I't, t und , im f(\ ) (l)

/ hrs {n nbsolutc minimunr
bu1 no rbsolLrte lnaximLrm

./ has an rbsolLllc maximLrn
bu1 no absolutc IninimuDr

have opposite si-qns (one is +, arld the othel is r). so there are no absoiute extrema. On
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I

/1lrl=l'++4.r'

Figure 6.1.7

ABSOLUTE EXTREMA ON OPEN
INTERVALS

the other hand, if p(r) has even degree, rhen rhe limits in (1) have rhe same sign (both +c.
or both -.c). lf the leading coefficient is positive, then both linits are +.., and there is an
absolute minimum; if the leading coefficient is negative, thelr both lirnits are r:, and there
is an absolute maximum.

Example 5
Determine by inspection whether p(x) :3ra + 4-r3 has any absolute extrena. If so, find
them, and sLate where they occul.

Soltttion. Since p(r) has even degree and the leading coefilcient is positive, p(.r) --+ +'
as r -> +.3. Thus. therc is an absolute minimum but no absolute maximum. From Theorenr
6.1.4 fapplied to the inteNa] ( .., +-)1, the absolute minimum must occur at a crirical
point of p. Since p is differentiable, dl critical points are stationary points, so we can find
them by solving the equation p'(-r) = 0. This equation is

t2x) + 12x): 12-r2(-r + 1) :0
fiom which we conclude that stationary poil]ts occur at r : 0 and,r - ,1. Evaluatirg ll
at the stationary points yields

p(0) -0 and P( l)= I

from which we conclude that 7r has an absolure minimum of p(,r) : -1, and this occu$
atr: 1(Figure6.1.7).

We know that a continuous function may or may not have absolute extrema olr an open
interval. However. certain conclusions about the existence of absolute extrcma of a contin-
uous function / on a finite open interyal (d, lt) can be drawn from the behaviol of /(x) as

x-a'and as r 'h (TJble6.l.3).

'lable 6.1.3

LIMITS

rrr Ji\,= - lm /r,,= t-
l- y1r1 = - lm 71,1 - -, -/r \-h

coNcr,rJsIoN tF'

oN (t?, ,)

/ has an absolute
minimum bul no absolute
maximum on (a, b).

f has an absolute
rnarimurr but no absoluie
rninimum on (a, b).

/ ,ra. neirher:rn db.olurc / hc. neilller ;n rb.olutc
nratinturl nor an ah.ulr-te mlrimum nnr'ar "h.n rte

nrinimurr on fu. /,). rnrnimum on r..r. /r.

GRAPTT

Example 6
Detemine whether the function

If(r): -_
_jr- I

has any absolute extrema o[ the interyal (0, 1). lf so, find them and state where they occur



I'\= ' ]

-. :'. ,:' -

Fisurc 6.1 8

ABSOLUTE EXTREMA OF
FUNCTIONS WITH ONE RELATIVE
EXTREMUM
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Soltttion, Since / is continuous en the intervai (0, 1) and

ttlrnl /ir)- lrm , - llln 
-,' \ r ,rrr-l)

llIim /(r)- lim 

-- 

lirrr,.i .r \ j r(r-l)
fte lunction f has an absolute maxinum but no absolute minimum on the interval (0, 1).

By Theor em 6. 1.4 the absolute maximum must occur at a critical poirt of /, so we need to
look fol stationary points or points of nondifferentiabil ity in the inreryal (0, 1). We have

./'(r) -
2t1
- .l("- -r)

so the only solulioll of the equation l'(ir) = 0 is ,r : ,1. The denorrinator of l' is zero if
r = 0 or ,r : I, but these critical points arc of no concem here because they tall outside
ofthe open interval (0, l). Thus, the absolule maximum occu6 llt,! : ]. and this absolute
maximum is

/ (i)

(Figure 6.1.8).

If a continuous function has only one lelative extrernum on a finite or infinite interval 1,

then that relative extremum must of necessity also be an absolute extremum. To utdelstand
why this is so, suppose that I has a relative maximum at a point -r0 on an intelval /, and
there are no other relative extrema of / on 1. If /(re) is /?ot the absolute maxin.ium of f
on 1, tl'ien the graph of / has to make an upward tum somewhere on 1 to rise above /(.r0).
Howevel, lhis cannot happen because in the pr-ocess of making an upward tuln it would
produce a second rclative extremum on / (Figule 6.1.9). Thus, /(r0) rnust be the absolute
maxinum as well as a relative naximum. This idea is captured in the following theorem,
which we state without proof.

6.1.5 trll Rl\1. 5ttl,l,, rettnt l l,,.,tttittut1 :,rt,llt.t,,ta,tlt,,t,, ttlnt^e..i|,.nt!tnt
: on at1 inler|al l. say at xn.

1 @) IJ .f has u relaliye mitinlLtnl dt xt). the l(xr) is tlle qb,tolute minimum of f on L I

This theorem is often helplul in situntions where othcr methods are difficult or tedious to
apply.

Example 7

Find all absolutc extrema of thc function /(,r) = ;;r 3,r2 + 4 on the interval

(a) (-r. +z) (b) (0, +-)

Sol ionla). Because / is a polynomial ofodd degree, itfollows lrom the cliscussion in
Exarnple 4 that there are no absoluie extrena on fh(] intelval ( :., +z).

Solrttion (.b). Srnce

.1T_ L" 3.r2 +,1) : +-

-.L=oG)' l

,/\,/ ._
, --f
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r,f1:l =:1- 
"l :1',1 :i,.

Figure 6.1.10

ABSOLUTE EXTREMA AND
PARAMETRIC CURVES

we know that / cannot have an absolute maximum on the interval (0, +r). However, the
limit

lim (r3 3.r2 ++) :4

is not infinite, so there is a possibility that / may have an absolute minimuln on this interval.
In this case it would have to occur at a statiolary point, which suggests that we look for
solutions of the equation l'(-r) : 0. But,

"f'(.t) : 3r2 - 6x : 3-r (r - 2)

so / has stationary points at,r = 0 and,r :2. However, x :0 falls outside ofthe interval
(0. +'.), so only the starionary point at -r - 2 lies in the interval (0, +z). Thus, Theorem
6.1.5 is applicable here. Since

l"(t) = 6.1 6

we have /"(2) : 6 > 0, so a lelative mininum occurs at -r : 2 by the second derivative
test. Thus, l (r) has an absolute ninimum at jr : 2, and this absolute minimurn is /(2) : 0
(Figure 6.1.10).

Suppose that a curve C is given parametrically by rhe equations

r : J(.t). )' : s(/) (a 
= 

t -: b)

where f and g arc continuous o[ the finite c]osed interval [.r,1r]. It follows from the
Extrene Value Theorem that /(r) and g(t) have absolute maxima and absolute minima for
a :: t 

= 
b, this means that a particle moving along the curve cannot move away from the

origin indelinitely there must be a srnallest and )aqest..r coordinate and a smallest and
largest _}, coordinate. Geometrically, the entile curve is corrtained within a box detennined
by these smallest and ial€est coordinates.

Example 8

Suppose that the equations of motion for a paper airplane during its first 10 seconds offlight
are

.r-t-3sinl, l:,1 3cosl (0<r<10)
What arc the highest and lowest points in the trajectory, and when is the airplane at those
points?

Soltdion. The traiectory, pictured in Figure 6.1.I l, is shown in more detail in Figure I.7.2.
We want to find the absolute maximum and minimum values of 1, over the time interval
[0, 101 and the va]ues of 1 for which these absoiute extrcna occur'. The absolute extrema

F gure 6.1.ll
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must occur- either at the endpoir'rts of the closed interyal I0. i 0l or at stationary points in the
open inteNal (0, l0). To find the stationary points, we nrust solve the equation .1-I/./1 : 0,
which is

3sinr:0
Thus, thele are stationary points in the inteNal (0. 10) at I : tt.2r, ancl3z. Evaluating

_r, 
: 4 - 3 cos l at the en.lpoints and the stationary points yields

_r,-4-3cos0-4 3:1
_r:4-3cosz-4-(.-3)-1
1=4 3cos2z:4-3:1
):4-3cos3z:zl (. 31 -1
.\' = 4 3 cos 10 :v 6.517

Thus, a high point of ) - 7 is reached at timcs I : irandI = 3n, and a low point of1, = I
isreachedattimes/:0alclr=2;r'Thisisconsistentwi1hFigure1.7'2.<

ExERctsE SET 6.1 EG'aprngcacuator E cAS

3.

Ll Exelcises l-2, use the graph to llnd -r-coordinates ol the

relalive extlema and absolute exlrema of f.

In each part, sketch the graph of a continuous function ./
with the stated properties on the interval [0, 101.

(a) I has an absohrte mir]imun] at -r : 0 and an absolute

maximum at .r : 10.

(b) / has an absolute minimum at.r- : 2 ar]d an absolule

maximum al -r :7-
(c) /hasarelalivemininaatr : landr - 8.hasrelative

rnaxima at r : 3 and -t : 7. has an absolute minimum
at -r : 5. and has an absolute naximum at -r - 10.

In each part, sketch the $aph of a continuous lunction I
with the stated properties on the interval ( -. +-).
(a) / has no relative exffena ()1 absolute extrema.

(b) / has an absolute minimum al r : 0 bul no absolute
[laximun].

(c) I has an absolute maximum at -r : 5 and an absolute

minimunr at r :5-

In Exercises 5 14. find the absolute maximum and minilnunl
values of .l on the giver closed interval, and state where those
valttes occut

5. /(r) :4.rr 4.r l l; 10. ll
6. l(x) - 8,t -,cr; [0, 6]

7. f(x) : (r - I )r; 10, 4l

8. /(r) :2-rr 3-rr l2r; l-2.31

e. f(yr - -L; t L. rl
/4 rr + I

10. l(.r) : (;r: +.r)ri 
i; 

[-2,3J

11. ./(-r): x I^n\', I jt/1,n/11

12. f(.\) - siltx cos.r; 10. rrl

13. .l(-r): l+ 9 jrrl; l-5, ll
14. l(.r): 6-,1.r: [-3.3]

In Exercises 15-22, flnd the absolute maximum and lrin
imum values of /. if any, on the given jnterval, and state

where those values occur.

15. l(.r) : 1r - 3j - 1; ( -, +z)

16. f(.r) : 3 41 2.i: ( r, ir)
17. f(x):4xt 3xa; ( :c. 1a)

4.
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18. /(r) :.1r +:i-r: (-,-. +z)

19. /(t) : tr 3r - l: ( -. +-)
20. l(r) : 1.r 9.r + l: ( 7-. +z)

,: L i I
21. lL,' ' ). l, 22. tr,)- -:l ).:l

'.1

lrr Fr, r. i., . '.1 .l L rr,e.r r,rilnh nr ltl.ll\ to e.tl .rr. t\. :,h-

solutc naximum and minimurn values oi .f , il anv. on the
stated intelYal. alld then use calculus ntelhod! (o lincl the ex-
NCt lalLres.

2-1. /t.t) - (r: I)r; ( -. +.rt

21. f (.t) - (.r I ):(.r i 2)1: ( '.. i-)
25. 11r) : -!r/r(20 .!): [ ].201

I)6. tttt: *: | 1..11
r- i

I
27. .l(\)- l* ;(0.i2)

I
t

28. lt.rr- .': [0. *zt
.\ _l_ I

29- l(t):2sec r - tan-r; [0. r/,11

30. /(-r) : sirlr -r + cos.\; I rr, nl

31. /1.t1: rr1 r'1 
11.41

In t
-31. ltrr: :Ll.r

33. /(-r ) : sin(cos r); l0.2xl

-1;1. l(.t) : cos(siu t) 10. ;rl

35. Final the absolLlle maximuln anti mininunr values of

r,,,: 
{1, 

_ t,,, _,, ;
o" ll il

<l
>l

37. .l(.r) :2sin2r * sin4.r -lt. lt.r) -icos ] + lcos i

Ur.c \.r) nl pru'in: tlr ,r\' a, \' lor rll .r'i|:r etc,
interval is to sho!\'that 0 : g(-!) /(-r)for all_r in rhe inrer-
vall and one u,ay ol proving thc llitter inequiility is to sho\!
that the iibsolute mininrum value ol g(.r) l(-r) on thc in-
terval is nonnesrtive. Usc this idea to plovc the inequalilies
In Ev(t( \r\ t,r J rl 40

J9. Plovc that sin -r : -! fu a1l I in the irrlerval [0. 2nl.
,10. Prove that ln.! : -r I on thc intcNal (0. +z)
41. What is the smallesl possiblc slope ior a tangenl to thc cquil-

[tr'nr: I -].\ +5\'.'
42. (a) Show that

6,1 21/(r)- +-
stn r co\ r

has a ninimurr valuc, but no axintum vaiue on the
interval (0. r/2).

(b) Find the miniu'rurr valuc.

:lf. Use a CAS to show that llre absolute mininum valuc ol

. 16rl
/,.t-.' ^ .r R(ai \ )

occurs at { : 4(2.1- -lt)b} using it ro llnd /'(-r) Lincl 10

sol!e the equation ./'(-r) : 0.

44. The conccntration C (1 ) ol a drug in tlte bloodstleant / hours
aflel il has becn injccted is comntonlv modeled b), an equa
tion ol lhe lbrnr

tr

tr
E
E
E

E

E
E

C(r) : Kk ht 
-e 't)

36. I-et /(.r) - .tr + /r.t + r7. Find the values ol /) and ./ such

that .l(l) - 3 is an exncme value of / on 10.2J. ls this
vrlue a mtxil]lLlrn or n'lininlunll

If l is r periodic timction. then the locations of all itbsollrtc
extrcma on the interval ( r.. +-r) can Lre obtained by finding
thc lociltions olthe absolute extrenlr i'or one period ard usin-g

the periodicity to locate the resl. Use this iclea in Excrcise 37

ancl i8 to find lhe absolule maxinrum itncl minimLrm valucs
ol the iunction. and stdte the .r-values at which they occur.

where,( > 0 irncla > /-r > 0.

(a) At whal tinle cloes the Jnaxinlunl concentratioD occur'l
(b) Lct K - I tbr sinrplicity, irnd use a graphing r.rrilit,v

k) check your rcsuh in parl (r) by Sraphing C(r) lbr
various values ol a and D.

;15. It can be proved thal il l is ditTc|entiable on (d. D) ard L
is a line that does nol intersect thc curve \ : /(r) over an

interval (.r. /r). then the poillts at which the clrrve is closest
to or larthesl lio]]r the linc L, if any. occur ut points wherc
the tangent line to the cunc is parallel to l, (see the ec

companying ligure). Use this rcsLrlt to lind the points orl tlte
graph ol r' - -rl that are closesl to ind il thest fton the
line r' :2 r lor I :.t : ,i.

I stance -, -J

., /.\ /



46.

1'7.

Use the idea discussed in Exercise :[5 to find the coordinates
of all points on the graph of t - -rr closest to and t'arthest

from the line r'- 1-r I ti)r I : r : L

Suppose that the equations ol notior'l of a paper ilirplilne
during the first l2 seconds oi llight are

,-t 2sjnr. r-2 2cos1 (.0::t 
= 

12)

What are lhc highcst allcl lowcsl pojnts in the lrajcctory. and

whcn is thc iril.plane al lllose poinls.)

TIle acconrpanying ligure shows the path of a fly rvhose

equations ol molion are

6.2 App|ed lVa.rnun a d lvinrnur Prob er5 339

Let /(l) : arl + br + r'.
.l(.\') : 0 fol all .r il and

Find the minimunr ol ./(.r).1
50. Plove Theorem 6.l..1 in the case wltele the extl-cnte vaiue is

a minirnum.

:18.

l- igurc Ex .18

rvhere a > 0. Prove that
only 1l /.,r 1tL( 

= 
(). lHint:

J9.
cos 1 r:3+sin(2r) 2sinr/ (0at a.Ln)l+sinr

(a) How high and low does it fly?
(b) How t'ar letl rnd right ofthc origin does il fl)'?

CLASSIFICATION OF OPTIMIZATION
PROBLEMS

PROBLEMS INVOLVING FINITE
CLOSED INTERVALS

6.2 APPLIHD IVIAXIMUM ANS IVIIN![1f,Ufrff FROtsLEt\f$

Itt rltis settiott ue u'ill slutu lnu'tlte ntetlptls dis<'ussed in the last scttion tan lrc usccl

lo soh'e tdt ious ultplietl optinti:ulion prtitlents.

The applied optimization problems thitt wc will considcr in this section full into the following
lwo categolies:

. Problems that reduce to maximizing or ninimizing a con{inuous function over a linite
closecl interval-

. Problenls that reduce 1o maximizing or niiniurizing a centinuous fiLlction over an inlinile
intcn'al or a tinitc intcrval thrt is not closed.

For pr oblems ol the lir st type the Extrene Value Theorern (6. L 3 ) guarantees that the prob
lcnr has a solution. and we know that the solulion cau bc obtained by exanining the values

of thc function at the critical points ancl thc crclpoints. However, for pr oblems of the secontl
typc thcre may or may not be a solution. Thus. part of the attack on such problen'rs is to
determinc \\,hether thcrc actually is a solution. If the function is continuous and has exactly
one relative extremum on the interval, then Theorem 6.1.5 guarantees the existence ol a

solution iurcl provides r melhod for finl:ling it. In cases where this theorem is not applicablc
son-ie ingenuity may be requilccl to solve the problcm.

Example I
Find the dimcnsions ol a rectangle with perirneter 100 ft rvhose arca is as largc as possible.

Solttlion. LeI
-1 = length of the rectangle (fi)

1 = wiclth ()f thc rcctangle (11)

A - arca of thc rccianglc (ftr)

Then

(l)
Since the perinetel ofthe rectangle is 100 ti, the valiables r and l are related by the equatiorl

2_r * 2r.- 100 or I - -50 -r (.2)
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Per met€r
2\ + 2\'= 100

Figurc 6.1.I

Table 6.2.1

;.f 0 25 50

t,A o 625 o

(See Figule 6.2.1 .) Substituting (2) in ( 1) yiclds

A - r(5{) ):) - 5{)r - 12 (3)

Because -r r-epresents ii length it cannol be negative, iincl because the t\,vo sjdes o[ le]tglh 'r
cannot have a combilled length exceeding thc total pcrimcter of 100 ft. the variable -r must
satisfy

{):.r:50 (4)

Thus. u,e have reduced the problem to that ofnnding the value (or values) ol'-r in [0.501.
lor rvhich ,4 is maximun. Since A is a polynomial in r. it is centinuous on [0.50]. and so

the maximum must eccllr al an enclpoint of this intcNal or at a stlltionaly point.

Fron (3) we obtain

:50 ).r

Setting rlA/r1r - 0 we obtain

50 2.t - 0

or -r : 25. Thus, thc nlaxilnum occul-s at one of the poiuts

,t:0. .r:25, -r:50
Subslituting these values in (3) yields Table 6.2.1. which lells us that the maxirrlnn area ol
625 li? occurs a1.r : 25. which is consislenl wilh the graph ol (3) in Figulc 6.2.2. Flom (2)

the corresponding vrlue of r' : 25, so lhe rectangle of pcrimcter 100 ft with greatest aleil
is a square with sidcs of length 25 1't.

ItF-\'tAl{K. In this cxiimplc we included r = 0 and -r : 50 as possible values for.r. ever
though both values lead to rectangles with two sides ol length zero. Whelher or nol lhese

values should be allowed will depend on our objective in the prol]lern. Il $,e view this purcly
as a mall'remalical llroblem,lhen tl'lere is nothing wrong wilh allou,inq sicles ol lcngth zero.

However, il we view lhis as an applied prolllern in which thc lectangle will be f-orrred tiom
physical rratcIial. then these values shoukl be excludcal.

Exiunllle I illustrates the following five step plocedure lhal can bc uscd lbr.solvin-s, many
applied maximum and minimum problems-

Step 1, Draw an appropriate figure and label the quantities relevant to the
problem.

Step 2, Find a formula lbr the quartity to be maximized or minimizcd.

Step 3. Usirg the conditions stated in tho problem to eliminate valiables,

express the quantity to be maxinizecl or minimized as a funclion of
one variablc.

Step zl. Find Lhe intelval of possible values for tiris vadable fi om the physical
restrictions in the problen.

Step 5. If applicable, use the tecl.uriques of the preceding sectio|r to obtain
tlle ma\imurn,'l minimum.

Example 2

An open box is to be nade fioni a l6-irch by 3O-iuch piece of cudboard by cuttillg oui
squares of equal size from the four comers and bending up the sides (Figure 6.2.3). Whilt
size should thc squares be to obhin a box with largest possiLrle volunei)

700
600
5ilO

't00
300
200
100 r(f)

5 t0l5 20t5 t{) r5 l01550

Fi-r! rr 6I l
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. l0 Lr -
(r)

(5)

Table 6.2.2

,r0+
r,, ,r !l!!ll - rr,-.)l

FigrLre 6.1..1

tl

0

s

(ln)

+ i0in 

-
(.r )

FiSurc 6.1.l

Solttliut. Let

.r' : length (in inchcs) of the sides of the scluares lcl be cut out

V : volume (io cubic inches) of the resulling box

Because rve are renloving a square oi side.r liont clch colnel. ihe lesulling box will have
dinensio|rs 16 2r by 30 2r by t (Figule 6.2.3b). Since thc volunrc ot I box is rhe
prodLrct ol its (lirncnsions. lve have

\ - 'lb lr,' lO - lrrr lxrrr tl'\ | -1,

The valiable.r iu this cxpression is subject to certain rcshictions. Because.i reprcscnts a

Icn-qth it cilnnot bc nc-qiltivc. and because the width of thc caldboald is l6 inches wc ciLnnot
cut out squiues whose sides are nrole lhan 8 inchcs long. Thus. the variable t in (5)must
satisf,v

0:r:8
irnd hence wc hiivc rccluccd oul problem to finding the valuc (or vrlucs) ol r in tlle intervitl
10. lll lil which (5) is rnaximum. From (5) we obtain

JV
-Jxir l>Jr ljr lrllll +hr .1.\ /rlr

SettinglY/1r:0yields

120 -.i6-r l 3.rr : 0

which can be solved by the quadlatic lbrmLrLr to obtain the critical points

t-4 ancl r:12
Sincc r - l2 tillls outsidc thc intelval 10, lll. the maximun value ol'1/ occurs cilhcr at the

critical point.r = ! c,r at one of the endpoints,r : 0..r - 8. Substituting thcsc valucs in

(5)yields Table 6.2.2, which lells us thal the greirtest possible volLr e y : 1+ in - 72h

inroccur-s when we cut out squares whose sides have length 4 inches.'fhis is consistcnt
rvilhthegtaphol(5)showninFigure6,2'4.<

ln Ex anrple I o 1- Sect ion I . I rve useci approxilnatc graphical rnethocls to so lve a problen
ol piping oil liom an ollsholc wcll to a point on thc shore rvith minimal cost. We u,ill novu,

show llow l(J solvc 1hll problcm cxactly using calculus.

Example 3

Figure 6.2.5 shows iui otlshore oi1 well located at a point W that is -5 km ft.om the closesl
point A on l stmight sholclinc. Oil is to be piped iorn lV 10 a sltore poinl B thal is 8 km f'lrnr
A by piping it,ln a straight line Lroder \\"iller l'rom W to sornc shor-c Poinl P bct$,ccn A tnd
/J ucl then on to /l via pipe along the shoreline. lf the cost of laying pipc is Xi I .000.000/krn
under u,ater ald 1i500.000/kn over lancl. whcre shoulcl thc point P bc loci,itc.l to rrjninrize
thc cost of lirying the pipe l

800
700
600
5(X)
100
i00
100
ti)r)
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Solution, Let
x : distance (in kilometers) between A and P

c = cost (in millions of dollars) for the entire pipeline

From Figure 6.2.5 the length of pipe under water is the distance between lV and P. By the
Theorem of Pythagoras, that length is

Jrt +r5
Also from Figure 6.2.5, the length ofpipe over land is the distance between P and B, which
is

8-l (7)

From (6) and (7) it follows that the total cost c (in millions of dollars) for the pipeline is

(6)

(8)

Because the distance between A and B is 8 km, the distance,r between A and P must satisfy

osr:8
We have thus rcduced our problem to finding the value (or values) of ,r in the interval [0, 8]
for which (8) is a minimum. Since c is a continuous function of r on the closed interyal

[0, 8], we can use the methods developed in the preceding section to find the minimum.
From (8) we obtain

, : t(J,' +x)+ i(8 - x) : J;t + 25 + i@ - x)

dc

dx

Sett\ng dc/dx : 0 and solving for x yields

1

)

_l^
xt : -tx'+25\4

5

,/3

The number -S/Jj is not a solution of (9) and n.rust be discarded, leaving x : 5/"6 as

the only critical point. Since this point lies in the interval [0, 8], the minimum must occur
at one of the points

x. -0, x:s/J1, x:8
Substituting these values in (8) yields Table 6.2.3, which tells us that the least possible cost

of the pipeline (to the nearest dollar) is c : $8,330, 127, and this occurs when the point P
is located at a distance of 5lJ3 * 2.89 km from A. This is consistent with the graph in
Figure 1.1.9c.

Tahle 6.2.3

0 I
.E 8

9 #.(-+)=8.330t21 r/gg = q.+::9sr

FOR THE READER. If you have a CAS, use it to check all of the computations in this
example. Specifically, differentiate c with respect to ,x, solv e the eqnaliot\ dc fd,r : 0, and

pefom all of the numerical calculations.

(e)
x2 +25
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Example 4

Find the radius and height ol'lhc right circular cylinderol'largcst volume that can be inscribed
in a right circular cone with radius 6 inchcs and height l0 inches (Figurc 6.2.6a).

Solulio,t. Let
r'= radius (in inches) ofthe cylindcr

I = height (in inches) ol the cylincler
y - volumc (in cubic iuches) of the cylinder

The lolmula toI the volume of the inscribed cylinder 1s

( l0)

To climinate one ofthe variables in (10) we need a fcliltiooship betwccn r.and /i. Using

siDilar triangles (Figure 6.2,6/r) we obttin

l0 /r l0
- or h=10-r6

Substituting ( I l) into (10) wc obtain

v =zir(t0- ir') = lttrrr ]rr'
which expresses y in tenns oi r alone. Because r- reprcsents a radius it cannot be ne-qlltive.

ard because the radius of lhc inscribed cylinder cannot exceed llle radius of the cone. the

valiable r must satisl),

o:r56
Thus, we have leduced the problcm to thot of linding the value (or vaiucs) of l in 10. 6l
tbr which ( l2) is a maxinunr. Since V is u corrtinuous lunction of r on [0. 6]. the mcthods

developed in thc plcceding secrion apply.
From (12) we obtain

tlV

- -20nt - 5rr' = 5rrA r)

Setting r/l//r/r' = 0 givcs

5zr'(4-r)=0
so r - 0 and / = 4 are critic{l points. Since these lie in the inteNrl J0,61. the maximum
nusl occur at one of the poirlts

r:0. r=4. r:6
Substituting these values in (12) yields Tablc 6.2.4, which lells Lrs tlrat tlre nraxinum volurlre

V : S" ry 168 inr occurs when the insctibed cylintlcr has radius 4 in. When r = 4 it

follows from ( I I ) that /r : 4 . Thus, the inscribed cy linder of laryest volume has ritdiuts

r = 4 in and height /r : 4 in.

Example 5

A closecl cyliDd|ical can is to hold I liter ( 1000 cmr) of liquid. How should we choose the

height and radius to rninimize the amount of material neetled to manufacture the can l

Soltrlion. Lcl
ii : hcight (in cm) of the can

r : radius (in cm) of the can

S - sudlce alea (ill cnr].] of the can

Assuming thele is no waste or overlap. the amount of ntatcrial needecl tbr rlanufacture will
be the same rs the surfirce alea of the can. Since the cttn consists of two cilculal clisks of

(ll)

(12)

Figure 6.:.6

'Irble 6.2.,1

vo+,
r0

PROBLEMS INVOLVING INTERVALS
THAT ARE NOT FINITE AND
CLOSED

6

0
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radius / and a rectangular sheet with dinensions ,4 by 2rr (Figure 6.2.1), {te surface area
will be

S :2rr2 +2rrh (13)

Since S depends on two variables, r and /r, we will look for some condition in the problem
that will allow us to express one of these variables in telms of the other For this purpose,
observe that ths volume ofthe can is 1000 cm3, so it follows from the formula V - rr2h
lor the volume ol a cr linder that

- 10001000:w'h or h: .
Jff'

Substituting (15) in (13) yields

- 2000
S = 2nr' .-y 

-
r

Thus, we have reduced the problem to finding a value of r in the interval (0, +co) for which
,S is minimum, provided there actually is a minimum. However, S is a continuous function
of / on the interval (0, *m) and

t , 2000\ / 2000 \lim f 2irr --;- 1x and lim l2nr --l:+co' 0 \ r ./ . t-\ t /
so the analysis in Table 6.1.3 implies that ,S does have a minimum on the interval (0, +oc).
Since this minimum must occur at a critical point, we calculate

ds 2000
- 4nrdr 12

Setting d,S/dr =0gives
2000 t04trr . =0 or r- 

-" x2o
Since (18) is the only critical point in the interyal (0, +co), this value ofr yields the minimum
value of S. From ( 15) the value of fi corresponding to this / is

r : ro9o_ _ L: r,
rtlo/ J2nt2 Jzn

It is not accidental herc that the minimum occurs when the height of the can is equal to the
diameter of its base (Exercise 27).

Figure 6.2.7

Seeond Solution, The conclusion that a minimum occurs at the value of / in (18) can be

deduced from Theorem 6.1.5 and the second derivative test by noting that

*The 
value r : 0 must be excluded because a cylinddcal can of radius 0 cm cannot have a volume of 1000 cmj

fsee ( l4)l

( 14-15)

( 16)

(t1)

( 18)

,-2nr

@
f _ -------.

I
I

1

I
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FiSUre 6.2.8

Figure 6.2.9
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,y'2s 4000
__ =4trl .at- I'

is positive if r' > 0 ancl hence is positive if r : lO/ lG. This implies thal a relativc
minimum. and thercfore a minimurn, occurs al the critical point r' : ttl/./zz : 5.4.

Thirul Solution, The existence of a minimunr is irnplied by the graph o[ S vcrsus r in
Figure6'2.ti'Asshownin(l8)'thisrrrinimunoccuISalr:l0l|,/2tr.<

ItE\t,\ltK. Note that S has no nraximum on (0. +-r). Thus. had we asked for the clinrensions
of thc can rcquiring the maxinum amount of material for its rrratrufacture. there would have

been no solu(ion to the ploblcm. Optimization problerns with no solutiou ulc sor)retimes

called ill posed.

Example 6

FiDd a point on the curve r' = .rl that is closest to fhe point ( lti. 0).

Sohrtion. Tire clistance L betwcen (1E,0) rnd iln arbitrary poirrt (.r, r') on lhe curve t : .r2

(Figule 6.2.9) is given by

a :.u/(.r - 113)r + (r'- o):

Since (-r. r') lies on the curyc..r and l satisfy r' =.rl; thus.

r = !,{i- l6'f +J (re)

Because thcre are no lestrictions on .r. the problem r.edllces 1o linding a value of ,r in
I ''.. +a.) tbr which ( l9) is minimurn, providecl such a valuc cxists.

ln problenrs ol minirrizing or maximizing a distance. thert is a tlick that is helpful for
sinplifying the computations. It is based on thc obseNation thal tlrc distancc and lhe square

of the distancc have their maxirnum or minirrurr at the same point (see Exetcise 60). Thus,

the minimum value of L in ( I9) and thc rnitrimum value of

s = L: = (.r - 18)r +.r+

occur at the same \-value.
Flon (20).

./s''- 
= 21.r - lE) - l\' =,1r' lf - .16

so that thc critical points sLttisfy 4,rr * 2r - 36 = 0 or- equivrtlentll.

2.rr+.r-18:o

(20)

(21)

(12)

To solve for.r we will begin by checking the div isors of i 8 lo see whcther thc polynotnial ol
the lcft sidc has any integer roots (see Appendix F), These clivisors are + l. a2. a3. *6. a9.
andtlS.Acheckofthesevlluesshowsthal.r=2isaroot,sothatr-2isafactot ofthe
polynomial. Altel dividing the polynonial by this factot we can rewrile (22) xs

(r-2)(2.\'l*4.r*9):0
Thus. the remaining solutions of (22) satisfy the quadratic equation

1.1: a{.1 -1"9:0
But these solutions are imaginary numbe$ (usc thc quadratic fonrula), so that -r = 2 is the

only real solution of (22) and consequently the only criiical point ol S. To determine the

nature ol this critical poillt wc will use the second derivativc tcst. Flom (21),

d2.s

- 
- 

I ) rr -l )
1:S :50 > 0
,1.t r ,:,

rvhich shows that a relative l]]inimum occurs lt.r : 2. Since .r : 2 is the only lelative
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AN APPLICATION TO ECONOMICS

extremum fbr L. it tbllows fioni Theorem 6. 1.5 that an absolute minimum value of L also

occurs al-r : 2. Thus. the point on the curve r- : r2 closest to (18,0) is

(r. r') : (-r. rr) = (2.,1)

Thrce lunctions of impor1ance to an econonrist or a manufacturer-a1e

C(.r) : totaL cost of ploducing r Units o1'a product during somc time peiod

R(.[) : total revenue from selling -r units of the product during the time period

P(r) - x)1n1 p.o6t obtained by selling.r units ofthe procluct during the time period

These are called, r'espectively, the cost .fuftction, revenue Junction, and prortt function.lf
all units produced are solcl, thcn these are related by

P(r): R(-r) - C(r)
tp,oll'l = lreveruel conl

TIre total cosi C(r) of ploclucing -r unils cirn be expressed as a sum

C(r) : a 1,141.t1

whered is a conslant, called overheod,and M(-r) is a functioi rcprcscnltng manuJActuring
co,r/. Thc overhead. which includes such fixed costs as lent and insurance, docs not dcpend

on ,rt it must be paid even if nothing is pr oduced. On the other hand, the manufacturing cost

M(-r), which includes such items as cost of materials and labor, depends on the nurnber of
itcms narufactured. It is shown in economics that with suitable simplifylng assumptioni.
M (-r) can be cxpressed in the form

M ('r') : b; l cYz

where D and c ar.e constants. SubstituLing this in (2,1) yieLds

(23)

(.24)

C (.t) -;1 16t 1.-,-: (2s)

ll a manufacturing lirrn can sell all the itens it produces for 7r dollars apicce, thcn its

(26)

total revenue R(-,r) (in dollaLs) will be

and its total proiit P(-r) (in dollals) will be

P(.r) - [total revenue] - ltotal costl : R(r) C(x) - p,r - C(.r)

Thrs, if the cost lunction js given by (25).

P(.t) = p.r (a * b.r * c-r') (:21)

Depending on such tact(n s as number of employees. amount of machiner y available, eco-

nomic conditions, and competition, the re will be some upper limit / on thc number of ilems

a manufacturer is capable ol producing and selling. Thus, duling a lixed time period the

variable.r in (27) will satisly

o:r:1
By determining the value or values of -t in [0, 1] that marimize (27), the firm can detennine

how many units of its product must be manufactured lrnd sold to yield the grealcsl prollt.
This is illustrated in the following numerical examplc.

Example 7

A licluid form of penicillin n.ianuftrctured by a phalmaceutical firm is sold in bulk at a pricc

of 1i200 pe| unit. If the toial production cost (in dollius) for.r units is

C(r) :500.000 + 80x * 0.00312
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and if thc production capacily ol thc lirm is at nost 30.000 units iD a specified time. how
mruy units ofpenicillin must be manufacturcd and sold in that time to maximize thc profit?

Solulion, Since thc lolal revenue for selling.ri units is R(,1--) = 20()'f, the profit P(.r) on

r units will be

P(.i) = R(r) - C(r) = 200.r' (500.000 * ll0.r + 0.003.rr)

Since the production capacity is at most 30.(XX) units.,r must Iie in the interval [0- 30.(XX)1.

From (28)

- = 2(X) rl{0 - (}.(X)6.rr - 120 - 0.006.t
,11

Setting r/P/d,r = 0 gives

120 - 0.006r :0 or .r. = 20.000

Since this critical point lies in the intenal [0.30,000]. the maxintum profit must occul at

oDe of the points

r = 0. .r - 20.000. or r : 30.000

Subsrituting these values in (2li) yields Table 6.2.5. which tells us lhltl lhe nraximunr protit
P : $700.000 occuls whcn.l = 20.000 units arc manufactured and sold in the specified

Table 6.2.5

0 20.000 30.000

-500.000 700.000 400.000

Econcrrn ists call P'(r ), R'(.,; ), antl C' (.t\ thc marginal profil, nnrginal revenue. all(l mar-
ginnl cos/, respectively: ancl tlrcy interpret these quiLntities as l6c qtl(liliotl.tl prolit, revenuc,

and cost that result fiom producing and selling one additional unit o[ the product when

the produclion and sales levels are at r units. These interpretations fbllow from the local

linear approximations of thc p|ofit. rcvenue. ilnd cost functions. For example. it lirllows
from Folrnula (7) of Section 3.6 that \\,hen lhe production and sales levels are al ;r units the

local lincar approxirration of the profit fiLnction is

P(,r + A.r) ! P(.r) + P'(.r)A.r

Thus. if A,r' : I (one additional unit produced and sold). this fbrmula implies

P(.r + l) ! P(-t) * P'(.r)

and hencc the additio ql proht that results front producing and sclling one additioniLl unit
can bc pproxinated as

P(.t*l)-P(,r):P'1.1;

It follows t'r'om (23) that P'(-r') = 0 at those points wherc C'(.r) : R'(-t), and this implies
that the maximum profit must occur at a point where the mat3inal revenue is equal to the

malginal cost; that is:

Tlrc nru-rimum proltt ot (ut li at a point h'herc lhe cost of knnuJltcturing ancl selling un

atltlitictnal unit ol t 1tt'odutt is e:adh equtl to thc retenne ganouted by tlrc atlditbnal

This is one of the basic principles of economics.

( 281

,t

P(-r)

MARGINAL ANALYSIS

A BASIC PRINCIPLE OF
ECONOMTCS
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ExERcrsE SEr 6.2

)

-t.

J-

t.

5.

6.

L\l)t!s\ lh0 nurnhcr I(l ils r sulr of t\\o n(Dncgllivc rtl-
bers whosc pr'(xluct is irs Ilrge ls possiblc.

Ilrxr shoLrld l\\o rollleliltivc nunrbch be chosen so lhal
I )( f .l l\ I lrrr,l tlrc.trtrr (,illt(ir .qujrtr. i.
(li rs lurse ils possil)lo
(b) s \rrrll us grossiblcl

Firrd r nunrbcr irr tht'clorerl intclral [1. il such thlt thc

\unr r)l lhc DuDrbcr rrxl its reciprocal ir
(x) lls \rl)illl ir\ l)ossible
(b) il\ I!trsc rts pos\il)lc-

A r'cctlrrgrrlirI liclcl is kr bc bor.rrrdecl b)' a tincc oD threc side\
aIil hv a striiight \rrcrnr on tlle Iout.tli sidc. Fin.l the dir]rert-

sions ol thc licld $ ilh nrx\irnunr Nlea thrl ca lTe enclosctl

$ilh l0(X) lccl ol fcncc.

A rcctiingullr l)lol ol lanrl is Lo be lencecl iu using tu'o kittds

ol lcucing. Tuo oppositc siclcs will usc hcavl cluty l!ttc-
inli scllirrrr iirr li3 ir 1inn. \\ hile lhe relraining lrvo sides rl ill
u\c \li r(lilr(l lcncing \clling fin S2 a li)ot. Whilt iire thc (li-

rrcnsions ol lhc lcclilngulrr Plol of grelltest iircn lhal caD bc

tcncc(l ir irl N co\l ol S6(XX)']

,\ rectirnglc is ro l)c illrclibcd in a righl n-illrgle havin{ sitlcs

ol lcngth 6 in. li in. ul(l l0 in. Find llle dimensio s oflhc
rcclnnglc \\ ilh {rcillcsl iucl assulnirrs lhe r'ectan!le' is P()\i-
tiol]e'tl s in thc lecorDpanJ iD-g fisure.

Solvc lhc problcnr in Ercrcisc 6 ass Drins lhc rcclilngle i\
positionul ls in thc accornpanling figutc.

A rcctlnlullr itrc of 3100 til is to l)c lr'nccrl o11. Trvo

oPl'rositc siclcs u,ill u\c ttnciDs co\lins lil pc| lirot arrrl thc
rcrnirining si.les r,.ill use lenci s costing Sil l)cr lin)l. l.ir(l
lhe (linrcnsion\ ol Ihc rcctirnglc ol lcilsl co\t.

5ho\ thr( rmong illl r'ectillrgles \ ilh pcr'ir]rctcr /).lhc squirrc

has the rttarinrurtt ltrcn.

Sho$ thill irnlong lll rectllnglcs Nilh xrri ..1- lhc sqtlirre hrs
lhe nrininrunr pcrimctcl-.

A \ irc of lcnlth ll in can bc ltrrt irtlo it cirelc. bcrl into ir
squilre. o! cul ir)lo t\o piecc'\ to nrakc lroth r eir!lc irnd il
squirre. l lo\\' nrlrch n ilc should bc usc.tl lirl thc cilcle if the
lolll i[cil cnclosc(l b) tlic li-qllrc(s) is 1o b.'

12,

ll,

l-i.

tt.

17.

t9.

(il) it nril\imunl (h) il nlininrrLnr l

7.

r\ r-e'clanglc has its tuo lo$'er conleLs oD the r rxis iLlrd its

f\\() trl)l)cr c()rlcrs on lht cLlrve r - l6 - tl- For llll \tlch
lecli[)glcs. \ llill nlc lhc dinrensions of the one \\ ill] lirrgcsl

lUcit.)

Iiind the rlirrrcrsiorrs ol-lhc recllngle \\'ith lnt\inlur)) itrcil
thll ciln br'inscriltd in a circle ofriLdius I0.

Fincl thc dirttcnsions ol-lhe leclanglc ol gteillesl ilrcil lhill
cln lrc i scril)c(l in a serrticit-cle ol racliu\ R iN sho\\ n in lhc

acconrpany ing tigule.

Supposc thlt thc nuurbc| ol bacle|il iI l cullurc ilt linle / is

givcn by N - 5(XX)(15 + /. "-1r).
(Ll) Firr(l thc llrgcst aDd smallcst nurrtrcr ol bactc|ia il] the

cLrlturc durins the linre intervill 0 : / 'r: I00.
(b) /\t \\,hal tirDe durils lhe liDrc irlcrvirl in l)i[l (ir) i\ lhc

ounrber of blctcrii:r dcclcasing nrost llrpitllr".)

A chLrlch tirrdol corlsistillq ()1-u recliutitlc toppcd bl ir

scnricirclc is to hr\,e r peri|leter 7r Fincl thc rldius ol lhe
\cmicilclc il lhe er ol lhe \\'iDdo\ i\ lo bc nrir\in1unr.

A shec'l ol cirdboirrd ll in stlu:rr'c is urt'tl lo nlirkc:rn opcrr

bo\ b\ culting squarcs ol cclual sirc lionr thc lirur come*
anrl lbkling up thc sid.s. WhlLt \ir!'\rlulrc's shoukl be cut
lo oblrin il bo\ \'ith lat se\t Possible voltrnrc.)

A sqLrarc shcct ol carlboard ol sidc I is usccl lo rnake irn

open box bv cutting sclui.rcs ol ccquirl sizc Iionr the lbLrl
cornets ancl tbLclinc up thc si(lcs. Whlt size sqLrlres should

be cut irolrl the co rcrs 1() oblain il bo\ \.\ itlt Iar'gcst possible

volLrme l

nr ol)en bo\ is to bc nra(lc llonr a J-li by ii-lt rectiugulilr
piccc of shcct lnelal bv cultirls oul scltlrtcs ol cqttll size

llonr lhe liul conler\ luLl bending LrP the sicics. Firrrl lhc
nrlrinrunr volu e lhat ihe bo\ clrn hirvc.

,\ cl()sed recttngular conlnincr ,,r'ilh a rquirtc hlsc is k) ltillc
ru r,olurre ol ll50 inr. -fhc matcrial lin thc top lln(l bofiolrl
ol lhe contirincr till cost Sl;tr irrl. ancl (hc nlllcrirl tit
lhe sides \\ ill co\l 5l pcr inl. Fincl thc' dintcnsions of the

colrl incr of lcilsl cosl.

A closed rectlngullr container rr ith a rqrriuc birsr' is to hlvc
ru rrrlunre of l(XX) cmr. ll co\l\ l\ ice its rruch pcr squilrc

centinletcr ti)r thc lop i.rn(l boltol]] l\ it tlocs lir| thc siclcs.

Fin(l lhe dillensions of thc containcr ol lcusl cosl.

A container *'ith scluale basc. vcr'1icll side\. iin(l open bp is

lo L)e nlNde from l(XX) ltl ol'rnlleriirl. Find lhc (linrcnsions

of thc conlainer widr grellesl volLIrc.

,\ rectlurguliu contrincr rvilh lrvo sclLrlr-c sidcs lrrr.l un opcn

lop is lo hirve l volumc ol y cubic Lr ifs. lrind thc dirlrcrl

sions of the contiliner \\ ilh nlillirnurl strrf:icc lrrcir.

15.

16.

I8.

2I.

ll) ill .

../

.iri,
s

6in

ljiurrc Ii\ 7

ti.

21.

().

10.

77
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.1.1.

.]J.

24.

25.

26.

Finrl the clinrensions ol the right circulll cylinclcr of largest
volume thilt cln l)e inscribcd in u spherc ol lirclius R.

Fincl the dinrersions ol thc right circrldr cylinclcr ol greatest

sulfhce areil that cu tre inscribecl in r sl)here of radius R.

Shor that the right cilcLrlar c\,lin(lcr of grcrtest \olulnc that
can bc insc|ibcd in i right circuhr conc hls volume thal is

"l 
the \'olLrrnr ol-thc cone (FigLlre Er-26).

Figure E\ l(r

A closed. c1'linthicll can is to havc { volLrme ()f l/ cLl-

bic units. Shorv thill lhe can ol nrininrunr srlrf'nce areii is

rchic\ccl whcn lhc height is eqiral to the dirLtrrctcr olthe base.

A closed cylinc| icirl crn is lo have a surlilcc lrcu oi,s sqrure
units. Show tltrt lhe cto of rnaxirrrrrtt volumc is achieveci

rrhen the heiglrt is equirl to the diitnlelcr ol thc base.

A c1'lintlical c n. ope irl lhe top. is to lrolcl 500 cmr ol
liqui(l- Fin(tthc hciglrt nd radius thilt nrinirllire lhc anrount
of Driilerirl lleede(l 10 lnilDufacturc thc ciirt.

A soup crrn in thc shlpe ol a right circ].llrr cylinder ol radius

r [d.] heighl li is to havc l p|escril, cl volume y. Tl're lop
and bottol]r itre cut lioln sqLrarcs as shown in lhe acconrpa-

DliDg ligLrrc. Il thc shaded corDels ilrc- \\'lsled. bul there is

no other \\ sle. lind the ratio r//i fbl thc ciln rcq iring lhe

lcrst nliLleriill (ir)cluding \\a\le).

A box-shl1re(l wire friLne consisls ol two iclcntical lvire
sqrrarcs rvhosc vc|liccs ale connectecl by ti)!rt str'aight wir'es

of cquiil lcngth (Figure Ex-l I ). Ii dre hiure is to be madc

lrrnr u rvilc ol lcngth L. what shollld thc clirreision\ be lo
oblilin a hrr of utcitlcst volunre l
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Find the hcir,tht irncl radius ol the conc of sltllt height L
whose volrLrttc is as largc as possible.

A cone is made ll)nr n circullr \heet ol rllciiu\ n by cutting
out iL seclol'ilDd -gluing lhc cul edges ol lhc rerD:liniDc picce
together (Fi1lufc E\-.].1). What is the rnaxinrum rolurrc
attainablc fbl the conc l

l-igurc 1:\ 3.1

A cone-shaped Papcr ci|inkin-u cLrll is to holcl l0 cmi of
\\' ter. Find lhe height ilnd radius ol lhc cup lhirl \\ ill requirc
llle Ie st amonnt ol'pilpcr.

Fincl lhc djnlcr)sions ol thc isosceles trianglc of least uer
fhat car be circunrsc|ibed about l ci|cle 0l radius R.

Find thc height ancl raclius ofthe ri,eht circular cone lvith leasl
volurrlc that ciln be circuDrscribed irbout l sphcrc olradius R.

A trapezoid is inscrilrccl in a se licirclc ol [ldius ] so lhat
onc side is irlon! the dinmeter (Fi.qrrc Ex-3tl). Fi d the
rnaxinrum possit'tlc area for the tflpezoid. lHrrl: E\press
lhe area ol thc tlnpcroid iD temrs ol ll. ]

A drainngc chlnnel is lo bc nade so thul ils cross section
is l lraperoid rvilh equrlly sloping sicles {FigLrc Ex-39). ll
lhe sides and botton lll havc a lensth ol 5 li. hoq.slroukl
the anglc l/ (0 < t) a il2l bc chosen ro liekl thc greatest

cr os\ sectionlrl rclt.)

t'',\

Figu,r E\ ltl

A larnp is suspendccllbove the center ol ir l ound table ol r-a-

clius r'. Horv high abovc the tabLe sho(lcllhc lanrp be placecl

to achieve mr\inlunr illurninirtion irl thc c(lllc ol the tablel
[,{ss[me that lhc illuminltion / is tlircctll'proportional to
lhe cosiic of thc anele of incidcncc d of lhe light rays Dd

inversely proportionrl to the sqrarc ol tlrc clistance I fion'r
lhc light source (Figurc Ex-40).1

A phrk is usecl tu rcach ovcl a t'ence 8 li high to support a

rvall that is 1 li behincl thc tcnce (Figure Ex-41 ). What is thc
length ol the sholtcst plank that can be usecll lHirrr: Exprcss

-i5.

,16.

-17.

.18.

-19.

27.

2u.

29.

.10.

.l t.

Figtrr. E\ lo

,l --
tl

,l

Fi.rurc E\ -l I

,10.

.12. Suppose that the suDl ol the surllce {r'e$ ol .l sphcrc and it

cube is a consttnt.
(iL) Sho\\ that thc sum of theil volur))es is slDallesl whcn

tl're dilrn]eter ol lhe sphcrc is equirl lo the length ol an

edge oi lhe cubc.
(b) When $ill the suru ollheirvolunres be greatesfl

/:____-r\/ i\
'l

_ !------!.-'_------t-
t")

Fisrrt I:\-l()

,l l.
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lhe length oflhc pliurk in ten s ofthe anglc ft slro$n in lhe
llgure.l

of nondef'cclivc chcrrical ploduccd and tlrc loss is $20 pcl
pound of cleiectivc chemical produccd. how manv poLrnds

of chemical should bc ploclr.rccd daily to n]lixit'nize the lotul
daily plotit l

The cosl ( (in dollars per hour) to run n occan lincr atl ir

constant speed r (in nrilcs per horrrl is giveD by r' : a { /rr,".
u,hcrc a. b. and n are posilive constants with l > L Find
thc spcc(l nccded to rrake llre cheapest 3{XXlni run.

Trvo pafliclcs. A and B. ale in motiou itr thc .\\'plaDc.
Their coonlinales at each inslant of time / (/ : 0) are givcr
b).-v1: p.1, :2a. \'s : l-r.ancl .r'4 = a. Find the
ninimunr clistcnce betwecn A and B.

Ijollow thc <1i|ectiors ol Exercise,17, rvith.r,1 : /. t,.1 : /:.
.ra - 2r. iuCI r'r : 2-

Provc thnl ( I . 0) is the closest point on tlre cuwc.rl +-r I : I

ro (2. 0).

lir(i .rll l,'in. or rh( JLu\e r -./ilirrn. .r. I llt.rl
ale closest {o. and at the gteatest distancc lloln. the point
(1.0).

Find a lloint oi the curve .r : 2l I closest to (0, 9).

Find thc cooldinates ol lhe poini P on thc curvc

I
C) L;shr

t , SOUTCe

46.

17.

Figure Ex-+0 l'iSure E\-Jl

;lll.

{9.

50.

42, A conmercial callle rlnch cul.lcllll\ al]ows ?0 stccrs per
acre olgrazil1g la d: on the atclirgc ils lteeIs \!,cigh 2000lb
al market. Eslinr les b) lhe Agriculture Depann)cnf indic.rte
thiLt the averogc murket weight pcl steer will bc reduccd by
50 lb for each iLclclitionll stccl added per acrc ol grirzing
land. How nranl steers pcr iiclc should be allowcd in order
fbr the ranch to get thc lrrgest possible total Drilltet rveight
tor its crflle?

(a) A chemical nanufaclurer sells sullulic acicl inbLrlkata
price o1 $ l(X) per unit. Il lhe drily total prcxluclion cost
in dollars lbr.r units is

C(.i)= 100.000*50.r + 0.0025rr

and il the daily production crpacity is {l rl1ost 7(XX)

units, how many lLnits ol sLrlluric acicl n1usl be manu-
tactulccl r(l sold daily to D'raxir ize lhe prontl

(b) Would i( bcnelit the nrilnul cturer to expitnd thc dail)-
production capacity'.)

A firm dete nines that.\ urlils ol its producl c{n be sold
claily at 7r clolllrs pe| unil. where

t: 1000 - 2

The cusl ul pro(llrcllr! .r lrnir\ pcr di\ ir

C(-r)=3{X)0*20r

(a) Find the rclcr1ue functior) R(.r).
(b) Find drc prolil function P(.\ i.
(c) Assunring thlt thc produclion capacitl.' is at most 500

units per d y. delermiDe how nlan) unils lhe company
must produce rnd sell eilch diry 1() maxin]izc thc prolil.

(d) Find thc mlxiniurn prolit.
(c) What price pcr uDil nrusl be chalged to obtain the

maxilnum profitl

ln a ce ain chemical manulircturing proccss. the daill
weight l oltlelective chcmical output depen(ls on the totirl
rveight.r ol all output accorcling 1o the empiricul forrrula

r:0.01.t+0.00003.tr

vherc.\ irnd l ilre in pounds. ll'the prolit is Sl(X) per pound

51, Find all points on the curve .r I r't - I closesuo (0. 2).
l-1.

I

52.

5-1.

5{.

(.r > 0)

{.1.

where thc lcgnrenl ol lhc liiltgent line .lt P that is cut otl by
the coordinale axes has its shortest length.

Find thc .r-cooldinate of the point P on the plrabola

r'=l-.rl (0<.\=l)

rvhere thc tr-iringle thiit is enclosed by the t lgent line irt P
and the coordinale axcs has the snrallest oret.

Whcrc on lhe curve r' : (l + .tl) ' cloes the tarrgent line
have the greatest slopel

A lnan is on the bank of il tivcr that is I mile wide. He rvants

to travcl to iL lown on the oppositc bank. but I :tri1e upstreant.
Hc intcnds lo rorv on a strti-cht linc to sonre point P on thc
opposite bank and then $alk thc remairing distance along
the bitnk (Figure Ex--56). To $hal point should he row in
ordel to reach his.leslinttion in ihe least timc if
(r) he c n walk 5 mi/h lnd row 3 mi/h
(b) he cLrn walk 5 mi/h and low.l rni/h'1

A pipe ol negligible diameter is lo be c rried horizontally
around l comer liom a hallwty 8 ft wide illto a hallwa), 4 ti
u,idc (Figure Ex-57). Wh t is the maxinum length that the
pipe ciin have? lAn i|teresting discussion ol tl'lis problenl
in the case whcre the dianreter ol the pipe is not neglcctcd
is eiven b1'Nolrnan Miller in the Anpricun i,'latheDuti(dl
Moadlr'. Vol.56. 1949. pp. 177 179.1

55.

s6.

45.
57.



Il an unknorvn physical tlrrantitl'.r is nre sured r tinres. the

mettsulemenls .r l. .rr- . , . . .t,, ol-tcn Yaf\' lrecausc ot uncon
1r'ollitble faciors such as tenlPeratur'e. tnlospheric prcssure.

ancl so lbrth. 'l hus. a scieilist is often tirccd with thc prob-
lem ol using,l clitlerent obscn'ed measurerrents to olll in
an eslimntc.i of rn unknown quantil) .\'. One nrethocl lbr'

making suclr an estiDlrte is brsed on the fuast squarcs prin-
ciple. which statcs lhal the cstimiile i should be chosen lo
rnininrize

.t = (.rr i)l + (.rr -.i)l + .+ (.r,, -i)l

uhiclr is thc sunr ol the squarcs ot' the dcviations bctrvccn
the cstimate .i and tlre nlcasued v lucs. Shoq that the

estinrdfc resulting liom thc lclst squares principle is

I
.r : -(rt +.\'t +... +-!,,)

that is. .i is thc lrithrnetic avern[te of t]re observed v{lues.

Srpllosc thilt the ir'rlensity of a point litht soutce is clircctly
proporlional lo the strenglh ol the source {nd inYenel) P[o-
portiurnl to the squue of lhc distance lj-onr the soulcc. T\!o
poil]t Iight sources with stlcngths of .l nn(l 8S are separatccl

by a rlistance of 90 crr. Whcrc on the linc scgmenl bcl\.\'ccn
the two sources is the intcrrsily a minilrrunr'i

Prove: Il ./1.r)l0 on nn intcrval / itnd il'./(.!) hrs a

maxilllur]r vlluc oD 1 rt.ri). lhen \/.1(.r) illso hN a n)rxi-
muln v lue at ro. Sinrilarly lor nrinimunt values. lllirrr Usc

the firct lhat y[ is an incrcasing lunclion on the inlerval

10. +?-).1

Fclnrut's* (biogr.lphy on pp. -i52 353) plinciple in optics
statcs thlt lighl lr vcling tloor one poirl to anotlrer Ii)llows
that pnth tbr lvhich the total tlavel tilne is minimum. ln a uni
fomr mediurn. thc paths ol minimum tinle" and shortest

disl nce turn out lo bc the sarne. so thnt light. if unob

struclcd. havels long a straight line. Assunre that $c hayc

a li-gl'rl source, it llat nlirror. iird [n obscNcr in a unilrlnr
mediunr. ll a light rry leavcs the soltrce. bo!rnces otf the mir-
ror. iilld tiavels on lo thc observer. then its path u'ill consist

of two line segnlents. as shown in Figr.ue Ex-61. According
ro Fcflllar's principlc, thc pllh will be such thal the lotal
travel tirne / is nlininum or. since the nrediunr is uttiibnn.
the prlh \\'ill be such thal lhc lotaldistirnce tnvelcd froDr A
to P lo B is as slnall as possible. Assunring thc Drinimum
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occuls when r/t/r/.r : 0. slrol that the light ra),\\ill strikc
llrc Drin or at lhe point P $ herc the "rnglc of inciclclrce" d]

equiLls the 'iu-gle ol lcllcction l):.

Figurc E\'61

Fernr l \ principle (Exercisc 6l) also explains whv light
lil\:\ tr"tvcl no beluecn air ilr]al \\'ater undcrso bending (re-

fraction). Imagine that we hilvc t\\,o unilbrnr media (such

as lir 4nd wiiter) rnd a lighl riry hlveling liont a source
A in one nrcdium lo an obseNcr B in lhc otlrer rnediurl
(Figurc Ex 6f). It is kno\t !') thal light tritvels lrt il cor\hnt
speccl in a unilir|nr mecliunr. but lnorc slo$ly in a dense

mediuln (such ils wdtcr) thaD in a thin rre(liLrm (such ils air).
Consequentl). the prth of shortest tiorc lionr A to 1j is not
necessiuily a straight Iine. bu( riLther sonre blokcn line pirtlr

A to P to B allowing the Iighl to l kc glc0lest advantlge of
its higher speed throlrgh the thin medium. Snell s (biogla
ph) on p- 351) lirw ol rcfnction sl tcs lh t thc path ol thc
light ro)'rill be such thal

sin 1/l sin frl

Il l.:

\\,hs1s 111 is the spccd ol'lithl in the lirsl meditlrr. l,] is the
spccd of light in thc second nrediun. aDd dt irrd F/t iire lhe
anslcs sho$ n in Figrre Ex-(r2. Sho$ th:rt this f'ollo$'s f.onl
the lssumption thilt the path ol nrinimurrr tinre occurs rvhen

A fh rrer \\'anls lo willk at n constant rilte tiom hcr blm to
a sttaighl ri\.er. till her pail. anclcarr)' it to hel ho[sc in thc
lcast tinle.

t
81l

I

FiSLrrc E\-56

'l .li -
Fisure E\ 57

I

58.

62.

59.

60.

6t.

6-1.
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Explain hou this probleIlr r-eLates to Fcrmat's princiPle
and the light leflection problem in Excrcisc 61.
Use the rcsult ol Erercise 6l to clcscribe geonelrically
the best path lbl lhe larmer to takc.
Use part (b) to determinc whele the titnuer shoulcl 1111

hel pail il her hoLLsc encl barn aLe locatcd as in Figure
Er-63.

(a)

(b)

(c)

Figur. Ex 6l

TERMINOLOGY

6.3 qi"i . il'"ji,r,'.1 : "::"! if'!i'' :-".i' .:i :"ll'1G i., |,rii-J

In Settiott ./.5 nc rllslrrrslrl th( nolion ol at patli(lL'moting ttitlt (on!t.tnl tcloLil,\' in

ottc tlircttion ulong o line. und in Scttion 3.1 vc tlisLus.sctl lh? ]itolu)n ol t pttrtttle
nnring .rith vrriubla v,lotir.t in otrc dik'(lioti ulong u linc. I llti\ sc(ion we \1i11

invstigtrtc tltc mot( lcuetal sittnritnt in vltith u purtitlc nlut tl)olc batk ttttl Jorth
uitlt ttuiuble v'locitt'ctlortg t lirte. Sotttc c.tutnplcs urc u ltistott ntotittg up tntl dovtt
in tt rylirttlcr. u l*ot bobbing up antL tloutt in lhe wtnes. o] un ohic(t ullu(|1(Ll to Lt

ribrLtting spring.

In this section rve rvill assune lhilt a particle representing somc objecl is aLlowed to nove
in eithel direclion irlong a coordiDatc line. Thi\ is called /'e.lilinear motiort.Thc cootdinale
line might bc an -r axis. a.r'-axis. ol an axis lhat is irrclined at some angle. To avoicl bcing
specific. u'c uill denote the cooldinatc line as the.i axis. We rvill assume thrt unils arc

chosen for measuring clistance and tirne und thal rve begin obselvilt-Q the pzrrticle rt time

/ : 0. As the particle lllovcs aloug lhe l axis. its cooldinilte is somc funcli,-rn ofthe elapsed

tinre 1. say r : j(r). Wecall.\(1) thc position .frutcliolr ofthe particle. anci*'ccall thc glaph

ofr versus I the positiott wrsus tine curve.

Figure6.3.IshowsatypicalpositionversustimecuNeforapa icle in rectilinear motion.
We can tcll fiom that graph thlt thc coordinate of the particle rt timc I : 0 is s1, and we

can tell fiorn the si-sn of s whcn 1hc pa icle is to lhe lefi or right of the or igin .A it mnr es

along thc coordinate line.

',,' ,,' t,r L r,,r''r (1601 1665). Fe nrl the \on ol Lr \uccc\slul Frcrrch lelther nrerchrul. wl\ ir lr\ty.r t!ho

frrcriccd mathematic\ rts r hobby. Hc recei!ed Lt Brchelor ol Cn il Lrxs degtr'e Iroln the UnivcrsiL) ol Orlcrns in

l6ll.udsub\equcnrlyheld!xriousguvclnmcnlfro\ilion\.includingnposlrscouncillorlolhclbulousep.LrLi.rmenl.
Alrhouglrhcu.r!rpparenrltllnLrncirlllsuccesslul.confidentinl(locunrcnr\ollh.rtlinesugge(thrlhispe bmanlc
ir ofiice rnd r! r h$ )ir \\.rs poor. perhaps trecrusc hr dc!ori'd so nruch tinre to mllhem.tlics. Thnrughoul his lite.

his 
'\ork 

trr rhe m.rgins ol books.rrrl ollen senr his resull\ 10 iricnd! wirlrour k.eping copies tur himlelf. A\ r
rcsulL he neler recei!c(l crrdil ior mrnl'mrior rchielemerrLs unlil hir nxme r'.rs rlised lioln ob\curily in drc

rnr.l{inetccnrh ccnlurl'. II i,. no\\ kno$n lhrl Fcnrlill-;irrl!ltaneousl) rnd inclependenllf ol Dcscrfc\. dclcloled

r- r. ,.l tr'r ' l_.'rrr 'r'( ( .- 'l :. r.

Fcrmrr \olvcd rr.rn\ lirnd.rmcnlirl c.llculus problems. He obt.rined thc lllst proccdurc Io dilltrenti.rting poly-

romirls..rn.l\olved lnrn\ inrB)rr.rrr lrr.r\i ization. minimizrlion. rior. xnd Largcnl problems. His work seNed lo

betwccn $hole numbers. lle $r\ rhc hr\I mrthern.rtirian 1o m.tkc sub\larnial contributions to lhis lleld uilcr lhc

right of the 
"atiEtn

tl.eoref:

PosLt on versLrs t me cL r\r€

FigrLrc 6.3.1
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Example 1

Figurc 6.3.2 shows the posilion versus titne curvc tbl ajacktabbit moving itlolg an .i-lxis.
In words. clcscribe ho\\ ll'rc posilion of the rabbit chirnges rvith tine.

\r;lttttrttt. The rabbit is ilt the point r : 3 at limc 1 :0. l1 uroves in the posilivc direc-
lion Lurtil tinlc I :.1. since.r is inc|elsing. At tinrc 1 :.1 thc ftrbbit is ilt tl]e iroirlt.r : 3.

At that timc it turns alouncl ilnd lralels in the negativc direction until lintc / : 7. since.r is

decrcasing. Al tirnc r = 7 thc rrbbil is irl the point .! : - l. and it renrains \(ltionrr'), ilt that
ptlintthereu1ict..sitlcesisctlnstan11ilt./>7'<

ln rcctilinerr rrlolion. the riltc at \\hich the coor-dinirte ol a paticle chiurges $,ith tinre is

clllccl the rr,/rrlitl t)f the prlicle. Morc precisell. u c nrikc llrc tbllou ing clelinition.

r,..l.l .l Ll, . ltLriti'tlrc0L,ritiorrlll|(li(,llllr .r Plr it lc rrr(,r irr.- rrn;rco,rrLlir]. e

linc. then thc ia,s/crtatrcor.s rclocit)' ol the p lliclc at tinlc t is definctl trr,

SPEED VERSUS VELOCITY

-.,

r(r)

(/) increas ng

u(/)={1/)>0

i

t **'"' l: ,,,', = l4l.ryrr ) Jrl

(l)

Figul! 6.1.1

Ccometriciilly. the inslrrntnneous vclocity at given limc is the slopc oftlre langert liue
to thc posilion lcr\us lirrc curve at thiit tirne. nd hcnce ihc sigll ol'lhc vclocity tells which
\\ il)' tlle pafiiclf is lloYirlg a positi\c velocil)' nrclr)s thirt .\ is incrcasing rvith tirre. so tlre

pi ticlc is m0r'ing in the posilivc dilec(ion: a nesirlivc velocily nreans thirt r is decrcasing
$ith time. so tlrc pa icle is nroving in the negiLtivc direction (Figure 6.3.3). Forcx rnplc.
in Fi-llulc 6.3.2 the rirbbit is lnoving in lhe positiYc (lirection betwccn tirrres / : 0 rLl r = :l
ancl is nroving in thc negative clircctiotl bet\\'ccn lirtres I = J iLncl t = 7.

Recall llom oul discussion o[ unifirrnt rectilirlclr n]otion in Sectiorr 1.5 that therc is !l
clistinctioll belrccn drc tcrrns qrdcrl antl |c1r.,r ilr'-spced descrilts h()$ lirst anobjcct is

mor'ing $ illroul regard lo (lircction. \\ hcrcas velocitl de;cribcs hon flst it is noving irntl in
whal clirectiorr. \4athenratically. wc cl"^tine the itsla,tetreous speed of it parliclc to be llle
absolule valuc ol its instunllncoLrs velocity: thlt is.

(2)

(d)

l-t
r(1)

J(/)decreas ng

u(/)=r'(/)<(l

(h)

Figurc 6.3 .1

llirlirn. Sfxni\h. Lrlin. xnd Crcek. .rnd hc !onrfo\c(l r c{n\r(lcrirl)lt .urorLnl {rl L-rlin po!lr\

r book b\ Diophrnrr\. Fcirrrr scrihhled th.u lin inle-ler \tll(c' ('l ,, qrcrrcr rhln J. the cquLuirrr \iJ + \'' _/r

oilercdirr 1908 lirlhe\oiurioll.hulitis$'orlhlcsslodr\bcrrUscofinlhlion.

( l5t)l 1616). l)Lr.h Drlhcnrlirirn. Sr)t'll \ho ruccccdr(l hi\ lurlrcr r() rhc po\r

unril Snell s worli rhc rel.Llion\lrit) NLrs incoffccll) lhoughl lo hc rrL,lr = //r,/rr. Snell \ lu$ \!rs putrlishc(l b-\'

b\ rriilngrlalion lhrt lirunded lhc D)({l.m I.chniqu!' olnttnlxlin.q.
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Posrtion versus time

Figur! 6.:1.-l

For exarrple, if two palticles on the sane coordinate line ae nroving witlr vclocities u = 5
nl/s and I : -5 nr/s. respectively. then thc particles are ntoving in opposite dirrctions. but
they both have a speed ol lu = 5 m/s.

Example 2

Let r(I) : /r - 6al be the position function ofa particle nrovin-g along an.r-axis, u,lrere r
is in netels and I is in seconds. Find thc instantaneous velocity and spccd. rLnd show lhe
graphs of position. velocity. artl speecl veIsus timc.

Solutiott. Frour (l) and (2). the instantaltcous velocity aud speed are givcu by

,/r
t'ltt - ,,1 

:3t: Ilr n(l lr'{/)l = l.lrr ll/l

The graphs ol position, velocity. and speed vc|sus time are shown in Figurc 6.3.,1. Observe
thill velocity ilnd speed both h vc rurits of metels pcr second (nr/s), since,\ is in melers (ln)
ancl time is in scconds (s).

Veloclty versLrs time Speed versus time

The glaphs in Figure 6.3..1 provide a weulth of visual inlormation about the motion o[
thc particle. Fo[ cxample. thc positiqr veNus lilne cuNc tclls us that the pilrticle is I() the
left of the origin tbr 0 < r < 6. is to the righl o[ the origin lbr I > 6. ancl is ar rlre origin at
limes a : 0 and t : 6. The vclocity ve$us tinle clrrvc tells us that the ptlticle is moving
in the negative clircction il0 < 1 < 4. is ntoving in the posilive dilectiorr if r > 4. ancl is
rnomertarily stoppcd at tirres I : 0 ancl t = 4 (the velocity is zero at those times). Thc
spccd versus time cuNe tells us that the speed of thc particle is increasing tor 0 < I < 2.
decreasing tbr'2 < t < ,1, itnd incrersing again fbr I > :1.

In tcclilinear nrotion. the rate at which rhe velocity of a prrlicle changes willt time is called
ils u<celemtiou. Mole plccisell'. we makc the follorving dctinition.

6.-1.2 Dft.t\ Io\. llc{r}i.lhepo.ili,'nlilnc onol p r.licle lllviIlronJcoordinirlc
line. thel thc ilrstantaneous ucceleration of the pa icle al tirne r is clcfinctl by

a(t\ : v'(t ) :
dv

n

dls
tl t:

or ultc|n.rtively. sincc r,(f ) =.\'(/),

ACCELERATION

(3)

(4)



Acceleration versus trme

Fisurc 6..i.5

INTERPRETING THE SIGN OF
ACCELERATION

ANALYZING THE POSITION VERSUS
TIME CURVE
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Example 3

Lel .r(t ) : tl - 6ll bc the position lunction ol l pur-ticle moYine alons an r axis. rlhere s is
in nretets lrntl t is in secon(ls. Find tlre instiurtlneoLts ltccelelttion .t(l ). ancl shotv the graplt
ol lrccelc'rrlion versus linrc.

Solrtlittrt. Fron Examplc 2. the inslantaneotrs velocity o[thc pirlticle is 
"-(1) = -1r: - 121.

so thc insliurl neous accclclittiol1 is

,,r,r:'!-rr, ll

itnd the i.lccclcrirlion versus limc cune is thc linc shorvn in Figurc 6.3.5. Notc thill in this
examplc thc licceleration hns r.rnits ofm/sl. sincc l is ili mclcls pel second (rl/s) iud time
is ill scconcls (s ).

We rrill srtl lhat particL'in reclilinerr nrotiorr is speedilg rr2 shen its inslantaneous
speed is irrcleasing arrcl is s/orlirrg r/orrn rvhcn its instantancous speed is decrelsing. In
everl,ciay lrnguagc irn objcct that is spccciing up is said to be 'accclcmting and an object
that is slowing clorvn is saicl 10 bc ".lecelerriting'l thus, onc nright expcct that l)|l iclc
ill rcclilinco[ l]rotion will bc speecling up whcn its instantaneous lcccler.ltion is positire
ilnd sk^vin-Q do\\'n whcn it is negatiYc. Although this is true lirr a palticle moving in the
positive (lircclioD- il is /k)l tlue lbr il pa icle novirtg in the ncgative clircclion-il pi liclc
\uith negillive vclocily is speedirtg up rvlren ils uccclclutiorr is ncgltive and slou,ing down
when its irccclcrirtion is posilive. This is becausc a positive accclclirlion implics an irrcrcasing
velocity. lrnd increasing lr ncgative velocity clcc|cases its absolute vliluc: sin]ilarly. il rlcgirtive
accelelation inrplies a clccreirsing velocity. xn(l (lecreasing il ne!lilivc velocit] incrcri*cr itr
absolutc villue. In sullnar'1,:

6.-1,-l t\IlrRpttFTI\(i ll stri\ of \((Ht:tttlto\. Aprrticfu i rc(tilin.'ut totitrt
is sltt,ttlittg up u ltctt its t't,hril.t untl uct cluztliott lttn e tltc :attt<' sigrt antl sku't ittg dortt
rlt, t1 111.1 l' 1,;, 1'1',,.i, .'i.',,'

l;oli llll liL \l)lri{ Forapitrlicleinrectilinearmotion.\\'hatishitppcnins\\,hcnl'(/):01
Whcn.r(/):0'l

Example 4

ln Examplcs I ancl I we founal lhc velocity vcrsus lime curve ilnd thc ilcceleration vclslrs
timc curvc ti)r a particle wilh position lunclion.r(l) : ll 6tl. Use those curvcs 1()

deternrine $'hen the piuliclc is speeding up irntl slou ing dorln. and contitm thal your lcsults
are corrsistclrl \\ itlr the spee(l ve$us time cun,e obtaincd in Exanlplc ].

Solutitttt. Ovcr lhc tinrc intclval 0 < I < 2 lhe velocil)' anci accelelation xrc ncsrtrve. \o
lhe pirrliclc is speeding up. This is consistent with lhe speed versus timc cuNe. sincc thc
spectl is inclcasin-g over this timc interval. Over ll're time interviLl 2<t <l the velocity
is ncsirlivc lnd tlre accelelatiun is positive. so thc particle is slouing dour. This is also

cursistent \\,ilh the spced vclsLrs tilrle curvc. sincc the speed is tlccreasing over tlri\ tinre
interval. Filrall)'. ur thc tinrc interval / > -l the velocit), and acceleralion arc positi!e. so lhe
paticlc is speedilg up. which aglill is consistcnt rvith the speecl vclsus time curvc. {
The position versus limc curve contains rll ol the signiiicant intornrrtion about the position
lnd relrrr.it) rrl ;r |rr|tirle irr Icctilirr, ar nr0liort:

. Where.\(/) > 0. thc px icle is on thc positive side ofthc s-uxis.

. Where.!0) < 0. the palticlc is on the ne-lativc sidc ofthe r-axis.
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. The slope of the tangent line at a point in time is the instantaneous velocity at that time.

Where the tangent line has positive slope, the velocity is positive

moving in the positive direction.

Where the tangent line has negative slope, the velocity is negative,

moving in the negative direction.

. Where the tangelt line is horizoltal, the velocity is zero, and the palticle is momentarily
stopped.

lnfomatjon about the acceleration of a particle in lectilinear motion can also be deduced

from the position versus time curve by examining its concavity. To see why this is so,

obserye that the ilosition versus tine curve will be concave up on intervals wherc 't"(t) > 0,

and it wiil be concave down on interyals where s"(r) < 0. But we know 1'r'om (rt) that s"(1)

is the instantaneous acceleration, so that on intervals where the position velsus time curve

is concave up the particle has a positive acceleration, and on intervals whele it is concave

down the particle has a negalive acceleration.

Table 6.3.I sum[rarizes our observations about the position versus time curve

Trble 6.3.1

and the particle is

and the palticle is

POSITION V!RSU5
TI]\4 E CURVE

CHAI{ACTERISTICS OF THE
CURVEATI=TO

BEHAVIOR Of THE PART]CLE

r\TTllllEl=/O

' r(.0) > 0
. Tirngent line has

positive s1ope.

. CuLve is concave
down.

. Particle is on the positive side of
the origin.

. Particle is moving in the positive
di.ection.

. Velocity is decreasing.

. Pariiclc is slowing down.

. s(10) > t)

. Tangent line has
negative slope.

. Curve is concave

' Particle is on the positive side of
the odgin.

. Particle is moving in the negalive
direction.

. Veiocity is decreasing.

' Particie is speeding Lrp.

. .!(/o) < 0

' Tangent line has

negative sloPe.
. CuNe is concave up.

. Particle is on the negative side of
the origin-

. Particle is moving in the negative
directiorl.

. Velocity is incrcasing.

. Pafiicle is slowing down.

. s(10) > 0

. Tangent line has
zero slope.

. Curve is concave
down.

' Particle is on the posilive side of
the origin.

. Particle is momenta ly stopped.

. Velocity is decreasing.

Example 5

Use the position versus time curve in Figure 6.3.2 to determine when the jackrabbit in
Example I is speeding up and slowing down.

Sohttiort. Fron / - 0 to I : 2, the acceleration and velocity are positive, so the rabbit is

speeding up. From / : 2 to t : 4, the acceieration is negative and the velocity is positive,
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so the rabbit is slowing clown. At t : ,1. the velocity is zero, so the rabbit has momentarily
sk)pped. From | - 1to I = 6, the acceleration is negative and the velocity is negative, so
the rabbit is speeding up. From t = 61o I :7, the acceleration is positive anci the velocily
is negative, so tlte rabbit is slowing down. Theteafter, the velocity is ze|o, so the r-abbit has
stopped.

Example 6

Supposc that the position function of a particle moving on a coordinate line is giverr by
r(/) = 2Ir - 21t) + 60t + 3. Analyze the motion of the parricle 1br I : 0.

Solttlirttt. llte rclu. it1 Jnd d(celellrti,,n:rr lirle r a|c

uft) : {'(r) - 6t) - 421 + 60 : 6(t ,2)Q 5)

a(t) = r'Q) : 12r - 12 = tZ (r - ])
At each instant we can determine the direction of motion tiom the sigr of u (t) and whether
the particle is speeding up or slowing down from the si-qns of u(/) and d(1) togerher (Fig
ures 6.3.6a and 6.3.6/r). The rnotion ofthe particle is described schematically by the curved
line in Figure 6.3.6c. Al time I = 0 the particle is ar rhe poinr s(0) : 3 rnoving righr with
vclocity r'(0) - 60 fi/s, but slowing down with acceleration 4(0) - 42 ft/s?. The parti
cle cortinues moving right until time I = 2, whelt it stops at the point.r(2) : -55, reverses

0++++++++

02 5
S gn ol .,t/ = r.(/ 2)(/ 5l

Posit ve

d rection
Negat ve Pos tlve

d rect on
D reciion of rnot on

S gn of u(l) = 6(/ 2)t 5)

S gi of o(.) = l2(r-l)

Speed ng
do^f + D,F tron or motr.n) --

5

ir
I Pr.ti.r" I

'I
direct onFiguir 6.3.6( Analysis oi the particle s

0++++++++

02 5

S owing Speed ng S ow ng

Figure 6.3.6,

Fi.Lne636. 0
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FREE.FALL MOTION

clilection. and begins to spccd up with an acceleration of.l(2) : - l8 ti/sr. At tirne / : l
the pa icle be-cins to slow dorvn. but continucs moving lcf't uutil littlc / : 5. when it stops

at the point.r(5) : 28. reverses rlirection again. and begins to spccd uP with acceleration

d(5) : t8 ft/sr. The p rticlc ther cotllinues moving right thereulier with incrcnsing spccd.

Itti\ .\ltK. The culved liuc in Figr.lle 6.3.6t is descriptive only. The actual pllll of the

paticlc is back and l'olth on lhe coorclinirle line.

We will now discuss how sonre of the iclens in this section can be lpplied to the study of

Ji'ee-.foll notiotr- which is lhc motion lhal occuls when an objcct |tcar the E rnh is imparted

sonre initial verticat velocily (up ol down). and therclfter moves on I ve ical line. In

rrodeling f'ree-lall nrotion il is lssumed that the only li)rcc ilclillg on lhe object is the

Earth's gravity and thal the obicct slirys sul'liciently close to thc Eilflh's surface so that the

gravitational lifcc is conslrnl. In particular. aiI resistance and the gtavitational pull of otl]er

celestial bodies are ncglectecl.

In our study oi fiee-f!ll nrotion. wc will ignore the physical sizc ol the object by treatillg

it as a particle. ancl wc will assunre that the objccl |noves alottg ill'l .\-axis wllose origirl is

lt the su.face of the El|th ilncl whose positive direction is up. With lhis convention, the

.r-coordinale of the pnfiiclc is the height ol the particle tbovc tlrc Earlh's surface (Fig

L[ e 6.3.7). The lbllowing Icsult will be derived later using calcLtlus aud somc basic princip]es

ol physics.

6.3..1 THE FREE-I.ALL \'{ol)ut.. Suppose that at lime / = 0 an obiect at a height of '

s0 abovc the Earth's surtitcc is intpnltcd an upwatd or dt>rvnwlrd vclocily of r0 and

thereafter moves vcrl ically sub ject otly b the fbrce ol the E nh's grtlvity lfthe positive

tlirection of the s-axis is up. rnd if the origin is at thc suface of the Eafih. then at anY

rime a the heishr .r : .r(I ) ol'lhe object is given by the tbrmula

r : rr, + Lt)/ ]gl' (5)

where g is a constanl. calletl the acceleration due to gt?virJ. ln this text we will use the

tbllowing approxim.rtions lin g. depending on thc units ol mcasurcr'llentl

.rl : 9.8 n/sl l(tinrrec i,r nrcrcr\ rnd rlf,c if \e.ondsl

g : 32 ft/sr [dinri,!! i,j i((r xrrii]c ,n scud\l

It fi)lloNst'loln (5) thitt the instantaneous velocity and icceleration of n objcct in lree-lall

molion are

r.-a:ih .9r (6)

tlt
"-;: r (7)

l{ll\,l.^ltK. Because we havc chosen the positive dilcction ol the .l -itx is to be Lrp. a positive

velocity implies ln qrwatd lnolion ard I uegative velocity n clowttwittcl motion. Thus, it

lnlkcs sense that instilntancoLls itcceleruti0n 6' ts negative. since iitl ttpwittd-moving object

has positive velocitv ancl negittivc ilccclcration. rvhich implies tilitl it is slowing down; llnd

a down$ar-d moving objccl ltls negative velocity and negative acceleration' which inplies
that it is speeding np. (lt is a little conlusing tlut thc positivc corrstimt 3 is calletl the

ut cclcralion due to grrn ltl in 6.3.4. givcn that the inslantaneotls acceleration is actually the

negative constanl -g. This ntisntatch in terminology is causcd by the up\r'ard orientation

of the .r axis in Figurc 6.3.7: hitd we clroscn the positive direction to be down. then the

instantaneous acceler{tion would have tu ed out to be g. Hov'ever. otll orientation has the

aclvantage of allowillg tts to itrterprcl :! as the heiSht ol lhc object.)

1

L

1.

tl
He ehr 

1

^s--'" Farth 4

Figure 6.1.7
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Example 7

Nolar Ryiu. one of the lirstcst baseball pitche|s of iill tintc. was capable ol'rltrowins ir

briscball 150 fi/s (olcl l(): nri/h). Coulcl Nolan Rlan hiive hit the 208-ti ceiliug ol rhe

Ilouston Astrock)mc if hc were capablc o1'givin-s ir bascball dn upwarcl !elocily 0l l(X) ti/s
fionr r height ol7 ft?

S(,lution. nrking,rl = ll lti'sl. r!, : I00 li/s. n(l ro : 7 tr ir (5) rnd (6) )icl(ls the
ccluitliorrs

.r:7 I l00r 16rl itnci r - l{X) llt

l(X) 12. :0Nolt'n lt\xn s rnti. br\rb llcln(l

Figurc 6..1 S

ExERctsE SET 6.3 E Graph ng 0r cLrrtor

rvhose graphs are sho\\'n in Figulc 6.3.8. lt is e\'idcnt fionr the grlph of \ \,ersus t thirl
thc nlaxinrLnr heighl ol lhc biLscbrll is less thiLn 208 li. so Ryan coLrl(1 not lluvc hit thc
ccilin-q. I:lowever. lel us !,o r slcp furr'lher lncl dclclrnine exactly how high the bull \vill
go. The naximunr hcight.i occLrls at the slationar! poinl oblliucd bi' solving lhc c(luati(Jn

tltilt :0. Howcvcr. 11r,/rll : i. *hich incnns that lhc tuaxinrLlnr heighl occrrls t'hen
r, = 0. Nhictr iorn (9)cun be erprcsscd as

(lt-9 )

( l0)

Solvillg this equalion )icl(h / : ]5,/8. To find the heilht .r 11 rhis rirne $c substitrrrc thir
\ lllu( ()l-/ rrt (x I. lr r,rl \\ hi(h $ c ohlirrn

.\ = 7 + 100(2-5/8) - I6(25/8)r - 163.25 fi

whichisr'otrgh1y.15lishollol.hilliDslhecciling'<

l(l \l \lt(. Equirtion (10)cun irlso bc cleduced bl plrYsicll lclsonirrg: Thc b ll is nror,ing
Irpuhcntheveiocitf isposilivcirnrlnror.insdown\\hcnlhcvelocitr.isnegalirc.soil ntakes
scnsc lhilt the velocitl is zcro $lrcn the ball reaches ils Pclk.

l. Thc Srilphs olthree position iunctions iue sho\\n in thc irc-

conrplr\.in! lir.:ule- In cach casc dctcrnrine tlre sign ol lhe
\ekrcil\ and rcceleftltion. lher (lclcrnrinc \!hcther the pili-
ticlc i\ \peedi 

-!r 
up or slo$ ing d(\r n.

1\.+
(( J

t

2. The gftlph\ ol thrcc \,alocilv luncri0rs a|e sho\n in lhc ac-

complnl.ing li!ure. In c.rch cuse cietemrine thc sisn ol the

accclcmtiur- then detc'rnrinc t'hether the pnl.liclc is spc!'(!
irrg up ol slol ing clorvn.

(r/ )

liSurc Fl\ I FiSUre E\ l
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3. The position l'ul]ction ol a particle rnoving on a horizoDtirl

.! axis i! sho\\,n irl tl'le accompanying ligure.
(a) Is the piirticle Drovir'lg lelt or right at time 10J

(b) Is the acceleration positive o[ ncgativc at timc all']

(c) ls thc pa icle speeding up or slowing dou,n at time /01

(d) ls the paricle speecling up or slowing down .it lime /r?

l'igure E\-l

For the graphs in the accompanying figLrc, match the posi

tion fLrnctiol1s \,,ilh their corresponding vclocily lunclions.

Skelch a reasonable glaph o[ s versus 1 for a mouse thal

is lrapped in il narlo\l corridor (an.r'-axis with thc positive

direction to the right) and scurries back and fot th as fbllows.
It rLurs [ight with a constant spced ol 1.2 ln/s for awhilc. thert

gradullly slo$'s down 1() 0.6 m/s, then cluickly speeds up

to 2.0 m/s. then gradlrally slows to 11 slop llut immedjalely
rrrrt.e. drtecl..rtri.'.rqtric(l) .1eed. r,1 t,r I i rrr '
The accolnpanying llgure shows the glaph of .r versus I for
an anl lhal moves along a narro\t- veltical pipc (an s axis

with the positive direclion up).

(a) When. if ever, is thc ant above lhe origin:)

(b) When, il ever, does dre ant have vclocity zero l
(c) When. ifcvcr. is the ant rnoving dolvn the pipcl

The accomplrnying ligule shows the glaph of vclocity ver
sus time for a particlc rnoving along a coordinate line. Make

-Ihe accompanying figure shows the position versus time
graph tbr an elevatol lhat ascends 40 ln tiom one stop to the
nexl,
(a) Estinr4te thc velocity when the clcvator is half$,ay up.
rhr S\etch -nrtplt rr'.rph. nl' lre \.1.\rJ \er'\..\ Lnre.rrr!e

and the accclcration velslrs lime curve.

The accoDrpiir]ying llgl[e shows lhe lelocily versus lime
graph lbr a tesl r un on the Crand Prix CTP Using this graph,

estimlle
(a) the accelention at 60 mi/h (in units of 1i/s:)
(b) the time at which the maximunr acceleration occlrrs.

fData fronr Cal aarl D rier XIuga-,inc. Ocrober 1990.1

8.

a lough sketch of the glrphs
celeration versus time.

ol speed veNus time and ac

Fig' re E\-r
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6.

1.

I0. Lct r-(r ) - sin(rt/,1) be the position function ol a partlcle

nrovin-g []ong a cooldinate line. $tere r is in metcr-s and /

is in seconds.
(a) Make a table sholving the position, velocity, ancl acccl

eration to two decimal places at times 1 = 1.2.3.,1.
ind 5

(b) AI each of the times in port (!). determine whethcr
the piilticle is stopped: if it is rlot. state its dircctiorl of
motion.

(c) At erch of the times in pdrl (a), dctclrDine whell]er the

particlc is spccding up. \lowing clown. or neilher-

(III)
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In Exerciscs ll l:1. the lxt\ilion fUnctio ol it pilrticle tor
irrg lLlon-g a coor'dinale line js given. *here l is in leet lnd t
is in:cconds.
(iL) Fin(l thc vclocit) ii al uccclcritiioll litnclions.
(b) Find the lo:ition. r'clocitv. \peed. rnd rccelerirti(D at

linrc / : L

1c) ,,\1 $hrr tinrcs is the prniclc \toppedl
(d) When is thc pllrliclc \peedins up.)Slouing clo$ .)

(c) Find the totrl distiincc trNveled b\'lhc purlicle froln ti ['
r-(J tolinret-5.

ll. \(/):1r 6rr. / a 0

12. .!(/):1- :1/ l. I - 0

l-1. .r(/) : lco\(nt,/21. 0 < I .: 5

tl. ,rtr:-1. r (l
/ +J

15. Let.!(/) - I,/{/l + 5) L)e the posilion lirnctioll ol I p rticlc
rllovirr! rlorr coor(linatc liDe. \\ltere.r is in nt ers lL cl t
is in scconds. [,'se n grephing Lltilit\ to gel]elltc lhc grilph\
(l1.\(/). r (/). an(lr(/) li)rr > (1. iudusclhosesrlphs\\hcrr
need!:d.
(r) U\e the lppropriatc ul'aph lo rllake l |0uth cstit]trte ol'

the limc rl \\'hich the pllrlicle lirst rcvcrscs the rlirecLion
ol i1\ l1lotion: lrnd then lind tlre tintc cractlr'.

(b) Firld the e\iLcr position i-)l ihe piL icle \\hcn it hrst le,
' . . . , .lrc ,lir' . . , , i ,(,1t,'rr.

{c) [Jse 1l]c rfpropriulc gtilphs 1(1 llllke l r'ough estinllle o1'

lhc tinre irlcr\rl\ on \\ hich the l)lrticle i\ spccding Ltp

irnd ul \\hich it is slowing rloun: and then lllrd lhosc
lilnc inlcr\ill\ e\ilc1l\'.

16. Letl(/): tlrr bc thc position firnction ofr pilllicle utov
ing along l coor(linlLlc iinc. \\ here s is in rnelcrs iud t is

in seconds. Use a l|aphing Lrtilit)r to seneftile thc grllphs ol'
r(1). r'(/). iL al ll(r) lirr / :t (J. and use rhose sftLphs \\'harc
ltcc(lcd.
(x) LJs. thc iLpproPrillc gllph Lo mrkc r 11)u!h eslilrllte ol'

thc tinrc ill \\ hich thc pNrticle lir st I e\'er se\ lhc (lircction
ol its moLionl ilnd thc lilal the tinle e\itctlv.

(bi l--ind rhe e\[cL posilion of the pnrticle \\hen il hrst rc
\ir.-. r '..1 . ri, .,l :1. tlJL-u,l

(c) [l\e ihe approprixre grrphs lo lnrkc r |oush estir]lirle o1'

the limc inlervuls on \\'hich the purliclc i\ speedins Up

iind ol] $hich it i,i slo$ing do\\'ui und then lind lho\c
tinrc inrcrvllls e)iactl\.

ln Excrciscs l7 ll.thel)osiliol1 lLrnclionol'aplllticlelto\in!
rlon! ir coofdinirtc line is gir,en. Llsc thc nrcthocl Lr1 [xa tple
6 to anlllze the nrolion ol thc prLniclc fbr / a 0. tnd livc a

schcmltic pictur-e o1 lhe nrotion (ils in Figure 6.l.arj.
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Iut,: r. (t I lr:1. i :1. -., -, t r

[1. / ]T

2-1. Lei !{rl - 5ll ll/ be the position [l0c1ion ola plrliclc
nlovirs alure a coordinalc line. $hcr.c I is i lect alld / i\
in scconds-
(a) Find the nnrinrum speed ol 1hc pa icle durins the lime

int.'rvill ljr: j.
(b) Whcn. dL[ing rhe tinte i Ler\,rL] I : a : l. is the pilti

clc tdfihesi t'iom the orisir] l Whllt is ils ln)sirion at thll
insteft l

2.1. l-cl J - l(l(l/'(rr + Il) be the positioti fitncli()n ol pilrticle
roving illong n coor-dinrtc lille. \'here r is in leet arrd r is in

seconds. Find thc |Il\imunr spcccl ol llte Pilllicle tbr a : 0.
rnd 1ln.l lhe tlireciion ol nroli0n of the piirliclc $fiell i1 ltiis
its nraxintLrru speerl.

ln E)icrcises l5 19. assLl e lhill the flee llll nroclel npplies
rn.i thilt lhe posilrvc direction is Up. so thlrl ForntLllus (5 ). (6J.

and (Tlcirl be usc(I. ln those proLrlcltls stitlidg thrl iLn objecl i\
''droppcd or'-releasc(l front resl. \ou sho ld inlerprct thitl
to l]rerd thiLl thc iniliul \clocit\ o1 the objcct is zero. Takc
q - il 11,/sr or g = 9 8 n/\1. (lcpcnding on thc unils.

2-5. A \\'rcnch is accidcntril-v cLoppcd rt thc top ol ltn clcvNtor
shull in u tlll brLil(lins.
(l) Ho\\ nriur\ rrclcrs doe\ the \\lcnch tjrll in l-5 sl
(bl Whut i\ the vclocitv (l1'lhc \\'rcnch ilt lhlll linrcl
(c) llo$ lo g docs it take li)r lhc wrcnch 10 l.clch I sl)eeal

ol ll trli'sl
(d) Ho\\ lon! does il tuke for lhe \\'rcnch to llll 100 ml

26. ln l9l9..loeSprinzoltheSrut FrilllciscoSerls BrsebullCluL.r
lltlenrple(l to cittch il l)itll dropl]c.i front a Itlinrll itt il heighl ol'
ll{)0 lt ( lin lhc purpose ol L) eilking thc record li)r ciilchil]s ir

ball droppe,:l lrom thc grellesL hci-ght tct the I)receding \eiir
bv mcrrbcrs ol lhe Clcvchnd Indiln\).
(N) H(^\'lon! doc\ it l ke li)r ir billl to drop lJ0il ltl
(b1 Whet is tlrc vclocirt ol aball iuntilesper hou|trftcr.au

8(X) ir drop (li8 tl/s : 60 nrii/h)l
LN.)1r. ,\s a practicul nlaller. it is uni-ctlistic lo isnor-c wind
resistll-lae in thi\ probletni ho*cver. evelt u ith thc slouilig
ellect ol $'in(l re\istiince- thc intpact of the billl slrnltred
Sprinz s tlove hand into his lilce- liactu|cd his uppcljaw in
ll plilccs. broke live tccth. irn.l knocke(l hinl uncolscioLrs.
Ile droppcd thc ballll

27. A plojectile is LLunchcd Ltp\\iu.i lforr srouud lelel $jlh an
initiuI spee.l ol (r0 m,/s.
(r) IIo$, lorrg doct it tiike lin thc projectile to rcach jts

highest poinr'.)

(b) Ho\\' hirh (loes tlte projcctilc gol
(c) How long rlocs i1 take fi)r the projectile ro drop bilck to

the grou|d Ironr its highest pointi
(d) Whdl is thc spced ol tlte lr(rjcctilc \\hen i1 hirs thc

oroltfd )

17..r- lt+2
19. .r -r' t)t +)11

Ill. r=r' 6.r -9l il
Z0.t:r1 f
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(a) Use the results in Exercise 27 to makc a conjecture about

the relatiorrsllip between the initial and 1lnal speeds ol
a projectile that is launched upwalcl from ground leve1

and retums to g|ound level.
(b) Prove your conjecture.

In Example 7, how last would Nolan Ryan have to throw a

ball upward tiom a hciglrt of 7 ieet in order to hit the ceiling
of the Astr-odorre?

1he free-fall fbrmuias (5) and (6) can be conrbined irnd

rearranged in various usef'ul ivays. Derive thc fbllowing
variations of those forlrruliis.
(a) r,r : ui 2g(.r so) (b) s : s6 f ]{ru + 

"),
(c) s:so+r,r+].grr
A rock, dropped flom an unknown heigl'tt- strikes the ground

\i-ilh a speed of 24 m/s. Use the fon'uula in part (a) of Ex
ercise 30 to find the Lrnknowi heighl.

A rock th|own downward with an unknown iliitial velocity
from a heiglll ol' 1000 ft leaches the ground in 5 s. Use the

lbrmula in part (c) of Excrcise 30 to lind the velocity of the

rock when it hits the ground.

(a) A ball is thlown up*,ald l'rorr t height.r0 with an ini
tial velocity of r0- Use the lormula in pat (a) ol Exer

cise 30 to show that the nraximum height of the ball is
r".. : rr) + rLr/2S.

(b) Use this result 10 solve Exercise 29.

Lets:13 6t2+ l.
(a) Find ! and l when.r :0.
(b) Find s and r/ when 0 :0.
y"1 t : J2t) i I be the positioo function ot' a pdticle
moving along a coor-dinate line.
(a) Use a graphing Lrtility to generate thc graph ol u velsus

t. and rnake a conjecture about the vclocily ol the par

f icle as r -) +2.
(b) Check your coniectule by hnding 

, 
lim,_ r.'.

(a) Use ihe chain rule to show that tbl a prfiicle in leclilin
ear nrotion d : r(tlxl ds).

(b) Letr : J]r +1.t : 0. Findaforrrula lorU inlenns
of s and usc the equation in part (a) to fincl the acceler-

ation when s :5.
Suppose that the position lr.Lnction of two particles. Pt and

P1. in motion along the san'le line are

,1 :lrr t+3 and s.:-jrr+r+l

respecrively.forr:0.
(a) Prove that Pr and Pr do not collide.

(b) How close can Pr and Pr qel to one another'l

(c) During what inteNals ol time are they rnoving in oppo-
site directions?

Lers,1 :15.:+ l0r + 20 aDd.ra : 5r2 + 40r. r U 0, be the
position jlictions of cars A arld I that are moving aloDg
parallel straight lirnes of a highway.
(a) How far is car .A ahead of car B when t : 0?

(b) At what inslants of time ale the cars next to one another?

(c) At what instant ol time do they have the same velocity?
Which car is aheaci at this instant?

'fhe acconipanying iigure shows the velocity versus distance
graph lbl a 222 Remington Magnuin 55 grain pointed soft
point bullet.
(a) Use the glaph to estimate the value of r/u/r/s when the

velocity is 2000 ft/s.
(b) Use the result in palt (a) and the chain rule to appr-ox-

imate the acceleration when the velocity is 2000 ft/s.
lHllrti See Exercise 36.]

lData fioi] the .S/?.).)ter'.r BiD1e. No. 82, Stoeger Publishing
Co., 1991.1
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Prove that a particle is speeding up ifthe velocity and zrccel-

eration have the same sign, and slowing down il'they lrave

opposite siglrs. LHitlt:Letr(t): u(r)l :./u2(r), and lind
f'(/ ).1

38.
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39.-t l.
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6.4 Newton's N4ethod 363

5.4 NEWTON'S METFIOD

Irt Scctitttt ).J trc slnttal lt.rt ro dll)nl\inwtc thc roots ot un altutio .l(\) =(\ b\'
u.tittg tltc lnt t'rntctliat r\ i lttt' Tltutent ond tlso |ty :oorttin,q irt t)n thc \-iutt,i(l1t.t .)f
f -./(r) rl irlr t grQltltitt.q Lttilit\'. lit this s(ttit)| t1r) till .ttwl.: u tt'th iLlue. Lullctl
N(\rtotis Mdlx)d. tltut i,t ttsttLtllt tttctrc cfjjL iL,rtt tltun citltu ttf tlutsc ntetluxls. Nottott s

Mtthtxl is tlt tcclutitlut' uscd lty nutt totttttu'rciul unl scit,rttiltc erlpulct-l1r()!runrs
.t'br finLlin3 nxns.

ln bc-u.inning llgcbra ol'rc lcitrns tltiil thc solulion of a illst-de-trcc cquation ./.\ 16 = 0 is

given hy lhc lirrnula t - -h/t.itnd the soluli(nrsof a secon(l-dc!:rcc equrtiL,n

rr tl + /;.r' l- r' - {)

arc -sivcn bl lhe quttlratic li)r'rl)ula. Fonnulirs ill\o e\ist lin tlre solutions ol all thild- und

tbulth-rlc-ulec equltions. ulthou-ch thc)' re t(x) conrplicltecl to l)c ol placticll usc. In llJ26
il rvas shown by the Nolu,cgian nratherrillician Niels He:uik At)cl" that il is inrpossiLrle 10

conslrucl ir sinilar li)lnrrtla lor the solLrtions 01 ,t ?(nttul hflh-(legree cquiltioD or highcr.
Thus. lirl a.yrcci,4r fifih-(legrcc polynonrial c(luiition sLrch as

,i c.; y] 1]tr 5.rr + l7r' 8-o
itnur lt clillicult ol inrl'nssiblc lo fincl e\rcl vllues fbrall ol-1hc solutions. Sirnilar'(litlicul
ties occur li)r tl igonoDretlic cqua{ions such its

.r - cos.r :0
as u cll irs ccluirtions ol olhcr l),pe\. Fbl srrch cclultions ihc solutions are gcncralll' app|ori-
nrilte(l in somc *ar'- often hl lhe nlelhod se s'ill norr cliscuss.

Sup;xrsc that $ e ate ttr ing lo lincl arQOt/. ol tlrc ccluation llr) = 0. rnd supposc tlrirt b),

sonre nlclhod \\'e rre i,tble to obliliD a roush iniliill cstirlate oi / . say by generatin-u thc 1L[aph
oi r' = / ( r ) with r rraplring irtility ancl exarninin-r, the .r inlerccPls. If we lel .rt dcnotc' our'

\o Atrcl rirol, n trclinrinrr) rlcgrtc in lSll rnd rlrcll cr)rrlinucd ro nu(i\ Irrrhcnuric\ on his osn. lI llJll lre

lhc Acxd.nr\ r\che \eLr\ irllcr his llcnlh.
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initial approximation lo r, then we can generally inrprove on this approxirnation by rnovin-q

along the tangent line to r - /( r.) at -rr until wc mect the -r-axis at a point -r2 (Figule 6.4.I ).

Usually, .r-2 lvill be closer to ,' than -r I . To irrplove the approximation furthcl-, wc can rcpcat
the ploccss by moving along lhe tangent line to r' : /(-r) at r1 until we meet the -r-axis at

a point tj. Contiliuing in this wal we can generate a successiolt ofvalues -tr. tr. -tr. tr. .. .

that will usually get closer and closer to r. This procedure for approxinratin-q i' is callecl

Nev,ton's Melhod.
To implement Newton's Method analytically, we must de ve a fonnLLla that wilLtell us

how to calculate cach improved app[oximation tiom the prececling apploxination. For this
puryose, we note that the point-slope forn of the tangent line to r' : l(r) al thc inilial
approximation,r1 is

.\' .l(-rr) -./'(.tr)(.r tL) (l)

If .l'(ril 10. then this linc is no1 Parallel to the.r-axis and consequcntly it closses llte
.r axis al somepoinl(.rr.0).Substitutingthecoordinatesofthispointin(l)yields

-l(.tL) = /'(.r1)(-r2 --r1)
Solving for r2 we obtain

./(tr)i .\ -- fl\
/ (rr)

The rext approxiluatior can be obtained more easily. If u,c view .tt as thc slir ling rLppro\

iuintion and.rr ths new approxination. rve can sirnply apply (2) with -t] in placc oi'.r1 ancl

.rr in place o[.r]. This yiclds

.l( rr).ri : rr (3)- l'(xz)
pLovided /'(,t2) + 0. In general, il -r,, is the nth approxirration. then it is eviclenl lioln the

patten in (2) and (3) thdt the improved approximatiol .r/,+ r is given by

Newton's Method

f-2.llx t .1.ll
rscl = l. \'Sc = l

r'=':r 'r I

l;gu'. O.+.:

f (.r,)Ir+l :Ir- 

-j
r \xl )

(.r)
n:1,2,3,...

Example 1

Use Newton's Method to apploxirrate lhe real solutions of

.,;l--i-l:o

Soluliott. Let l(,,;) : -tr - -\'- l. so l'(.t) - 3tr I ancl ('1) becones

'l ' - l' r5r
-r \; - I

Froln thc graph of I in Figule 6.4.2, we see that the given equation has only one teal solu-

tion. This solution lies benveen I and 2 because./(I): 1<0and l(2) -5 > 0.We
wilJ userl - 1.5asoulfitstapproximalion(lt : I or.rL :2woulcl also bc reasonable

choices).
Letting ir - I in (5) and substituting.rl - 1.5 yields

it 5)r - I 5 - Ir'-r5 - L14,8.2609
3(1.5)r I

(We used a calculator lhat displays nine digils.) Nex1. we lel ir : 2 in (5) ancl substitute

-r, : 1.3,1782609 to obtain

( 1.3,1782609)r ( 1.347U26()9) 1

-r: : i.347E2609 - 3( 1.34782609)r I
: L32520040
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r- cannoi be pene/u ted

Figurc 6.4.4
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lf we continue this process until two identical apploximations arc generated in succession,
we obtain

rr = 1.5

.r: = 1 3471i2609

.r3 : I 32520040

.tt : !'32471811

.r::1.32471796
ta = 1.32471'796

At this stage there is no ncccl to continue l'ulther becalLse we have reaclred the rLccuracy

lirnit of our calculator, and all subsequent approximations that the calculator genel ates will
betheSame.ThuS,thcsolutionisapproxinateIy.r':'1.3241l796'<

Example 2

It is evident from Figule 6.4.3 that if r is in radians, then the equatioll

has a solution between 0 and l. Use Newton's Method to approximate it.

Solttlion. Rewrite the equation as

.t - COSI :0

and apply (4) with l(,r) =.\' - cos.r. Since l'(x) : I + sinri, (4) becomes

.r',, - cos.[,,

| + stn.r,,

From Figure 6.4.3, the solution seems closer to.! : I than.\- = 0. so we will use.rr : I

(r'adian) as oul initial approxirnation. Letting ,l = I in (6) and substituting rr : I yields

I-cosl
.r, = l- 

-:.7.50363868

- I lsinl
Next, letting r :2 in (6) and substituting this value ol'r2 yields

.tr : .750363868 -
.750363868 cos(.750363868) : .7391 12891

| + sin(.7503631t6li)

If we corltinue this plocess unlil two identical approximations are geDclated in succession,

we obtain

r::.750363868
-r: = .739112891

.rr = .739085133

.rs = 739085133

Thus, to the accuracy limit of our calculator, the solution of the equation cosr =.r is

r : .739085 133.

When Ncwton's Method works, the approximations usually converge toward the solution
with dramatic speed. However, there arc situations in which the method fails. Forexanrple, if
.f'(r, ) = 0 for some n, then (4) involves a division by zero, nraking it imposs ible to generatc

-r,,+1. However, this js to be cxpected because the tangent line to t, : ./(.r) is parallel to the

r-arxis where -f'(,r,) = 0. and hence this tangert line does not cross the -\ ir\is to gencllte
the next approximation (Fi-surc 6.4.4).

Newton's Method can thil tbr other reasons as well; somctimes it may overlook the root
you are trying to find and convergc b a different root, and sometimes it may fail to converge

(6)

SOME DIFFICULNES WTH
NEWTON'S METHOD
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ExERcrsE SEr6.4 E','q .or

altogether. For example. consiclcr the equation

rllr = 0

which has r :0 as its only solution, and try to apploximate this solution by Newton's
Merhod with a starting value of .rn = l. Letting .l(-t) - r'/r, Forrnula (4) becomes

{r,,)"
r,,. t ". ,--------:--

i(1,,)-- r

Beginning with .r'1 : l. the successive values generated by this tbnnula are

-tr : l. .rt = -2. .tr :4. .{l = -8....
which obviously do nol converge to.\ : 0. Figure 6.4.5 illustrates what is happening geo-

metrically in this situati(m.

Figure 6.4.5

To learn more about the conditions under which Newron's Method convetges and fot
a discnssion of enor questions. you should consult a book on numerical analysis. For a

rnore in depth discLrssion of Newton's Method and its lelationship to contemporary studies

of chaos and fi'actals, you rnily want to rcad the anicle, "Newton's Method and Fracral
Pattems." by Phillip Stlaftin, which appearcin Appli&Iions ofCalr'irlrrs, MAA Notes. Vol.

3. No. 29. 1993. publishcd by the Mathematical Association of America.

l-

2-

ln this exercise set. use a calculator. and keep as nrany deciurul

places as it can display.

Approxinate \, by applying Ne*1on's Method to lhe

equation.rl-2=0.

Approximate r/7 by applying Newton's Method lo the

cqurtronr--/=tr.
Approximate J6 by applying Newton's Method 10 the

equation.{1 -6=0.

7. .r5 +.rl 5 : o 8..r5-.r*l=0

ln Excrciscs 9 14. use a glaphing ulility to determine how

nrilny solutions the equation has. and then use Newton's
Method to approximate the solution lhal salisfies thc stated

condition.

[]9..tr+r 3:0;.r<0
! 10.r5 5-tr 2-0; .r>0

B 11. 2sin.t : r; .r > 0 B 12. sin.t = 12; -r > 0

B 13. r-tan.r=0; z/2 <x <3T12

! 14. I - e'cosr :0; 0 <.r < ir

I

4. To what equation would you apply Newton's Method to
approximate the /lth root of.l?

In Exercises 5-8. tlre equation has one real solution. Approx-
imate it by Newton's Method.

ln Exercises l5 18. use a graplring utility to determine the

numberoftimes the cuNes intersectl and then apply Newtol1's

Method. rvhere needed, to approximate the -t-coordinates of
lll intersections.5..\'_-t+J=U 6. tr +.r 1:0



E ls.

E16
al t7.

E r8.

19.

r':.trandr:]t I

.\':a \andr':ln\

.r-rrandr.:J2r+I
r: .1.,r + land r.: cos2r

The ntccltdnic s rulc for approxilrialing squarc roots stltes
that J./ -.!,, r. \\,hcrc

: 1.2. 3. .. .
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ol its chor.Ll \atislles the equalion ll - I sin(fl/2) (see

the accornpanyine iigure).
(b) Llsc Newton's Method to [pl].oximatc ar.

A Jegr?enl of cilcle is thc rc-gion enclosed by an arc llnd
ils chord (see the xccompanying ligurc). Il I is tlte r.adius

ol tlre circlc rn.i 4 the lngle subtendeLl al thc center of ihc
circle. then il can be sho\\'n lhat the atel A ol-lhc sc!,nr--nr
.,l :, - -\ t I.ultrteri,rr.t:.dlrr.. Irr',lrlr..r.rl re

ol6 1bI which thc aleii of fie segnent is one-founh thc arca
ol rhe cilclc. Givc Fl to the nearest dcgree.

26.

',,-i(',.;) ,

iLnd.rl is iLnv positivc approximation to ./a.
(.r) Appl) Ne\\1on s Method to

l(t):tr-a
lo derive lhe nechrLnic s lule.

(b) Use the rrechanic s lule to approxirrtle Jl0.
Mluy cdlculal()r s conpule reciprocals usine fhc tpproxilnii-
tion l/{/ : r,,+1. where

, .,: ,, t._.)....
and rl is rn inilial rpproximittiolr to l/a. This fbrnula
nrakes it possible to per-tbrnr divisions using multiplications
rLnd subtlilctions. \uhich is ir ilsler procedule than clividing
dilectly.
(r) Apply Newton s Melhod 1()

/(.rl - (l/.r) ./

1() .leri\e Lhis approxintatiul.
,r- I .( t - lul.rr l: t.-r :p|'n'r rl.rrc

flsc Newton s Method to tin.l the dbsolute lninilnunl of

11.\)- rr-+\ +t\
Usc Neuton s Method to llnd the absolute rrtxinrLrrn o1'

l( r) : .r sin.r on thc intcrvai 10. xl.

LIse Ne\llo s Melho.l 1() lincl the coordinatcs of the po;nt
on lhe pa.abola r' : rl thal is closesr to the poinl ( l. (l).

Use fiewtol]'s Method to lind the .iinrensions ol the rect

rnsle ol lllrgest ilrea thdl can be iiscribed unaler the cLlrve

r : cos r tbr 0 : \ : ..r/2. s sho\\'n in rhe lrccompanving
li gur e.

f- igure E\-l.l

(a) Show thal on a circle ol rildius r-.1he cenlral angle d thlt
subtencls u arc whose length is l.-5 times the lcnsth 1-

FiSUre I:r 15 FilLrc Er l(r

ln Erercises 27 and 28. use Newtorl's Method to approxi-
mate iill rerl values of .r' satisi-villg the givcn equttion tbr thc
indictted value ol \-.

/t-. 
--..\

\4,/
\,--a-,

20.

21.

2lt. tr cos (1.tr ) : (l: r : 2

29. An annuity is a sccluence ol equal pavntcnts thtl lrre pai(1

or receiveal i1l legular tilne inteaviLls. FoI cranrple- you nay
want to deposil ecluill anrounts at the elal ol cach vcar iulo
rn intelesFbearing accounl fbr the pLlrpose ol accuntulat-
ins r lump surn ilt sonle llturc tinle. lf. at the encl of cach
vcar. interest of i x 100% on the Nccouut bllancc fbr that
vear is adcied to the accounl. thcn thc account is siLid lcl pi:t),

i x I [J07,: intcrcst. conpo t ]e.l an uall!. lt can be shown
that if pay|lenls ol 0 dollars are deposited al thc cnd oi
each ycar into an account thal pavs I r 100% corrpouncled
rnnually. thcn at thc tilne $,hen rlre /rth payntcnt tncl the
accruecl intcrc!t lbr the past yerr'are depositcd. thc amount
.S(/? ) in thc accoLnt is gived bv llre lbrmLrla

o
5(//) -:f(lti)' tl

I

Suppose that vou can invest S5000 in ao interest-llearing ac

count al thc end of each veirr'. arcl youl objcctive is kl hii\,e
S250.000 on the l5th payment. Whlrt rnnual compound in-
ter'est r'ale nrusl the account pal tbt you to achievc your goall
LlJil?/ Shorv tl'lat thc intercst nlte i satislics thc cclLtNtion

50i : (i +i)l' - I. and solve jr using Newton s Nlerhocl.l

-10. (a) Use a -sraphi s Lrlilit) to generate the graph of

/lr r- rj + r

i1nd use il to explain whilt happens if )'ou apply Nerv-
lon's Method $ilh il slllling vitlue ol rl : 2. Check
Your coliclusio bv computjDg .rr, .\r. rt. ndd 15.

23.

21.

)i

FI
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rbr Usethe graph generdredinpan rarloexplain !rhJl hap-

pens ifyou apply Newton's Method with a sta ing value

ofxr - 0.5. Check your conclusion by computing:r2,
,{l, r:1, and t5.

Apply Newton's Method to the function /( x) : x2 + 1

with a stafiirg value of rr : 0.5, and detemine if the
values of;r2, . . . , rl0 appear to converSe.

Explain what is happening.

31. (a)

(b)

ROLLE'S THEOREM

6.5 ROLLE'S THEOREM; MEAN-VALUE THEOREM

In this section we will discuss a result called the Meatl-Value Theorem. This theorem

has so many importqnt consequences that it is regarded as one of the major principles
in caLculus.

We will begin with a special case of the Mean-Value Theorem, called Rolle's Theorem, in
honor of the mathematician Michel Rolle.* This theorem states the geometrically obvious

fact that if the graph of a differentiable function crosses the .{-axis at two points, a and ,,
then somewhele between those points there must be at least one place where the tangent

line is hoizontal (Figure 6.5.1). The precise statement ofthe theorem is as follows:

6.5.1 THEOREM (R otte's Theorem). Let f be dffirentiable on(a,b) and continuous on

la, bl. If f(a) : f(b; :0, then there is at least one point c in (a, b) where f'(c) : 0.

Proof. Eirher /(x) is equal to zero for all x in [a,6] or it is not. If it is, then /'(r) : 0

for all x in (a, D), since f is constant on (4, D). Thus, for any c in (a, b)

f'k) -a
If /(;r) is not equal to zero for all x in [a, D], then there must be a point ,r in (a, &) where

l(-r) > 0 or /(x) < 0. We will consider the first case and leave the second as an exercise.

Since / is continuous on [a, b], it follows from the Extreme-Value Theorem (6.1.3) that

/ has a maximum value at some point c in [a, ]1. Since /(a) : f(b) :0 and /("x) > 0 at

some point in (a, D), the point c cannot be an endpoint; it must lie in (a, &). By hypothesis,

/ is differentiable everywhere on (a, b). In particular, itis differentiable atc sothat /'(c) : 0

by Theorcm 6.1.4. I

+ 
\arcHEL R.rLr-r ( 1652-1719), French mathematician. Rolle. the son of a shopkeeper, received only an elementary

education. He married ea y and as a young man sl uggled had to suppor! his family on the meager wages of
a transcriber for notaies and attorneys. In spite of his financial problems and rnininal education, Rolle studied

algebra and Diophantine analysis (a branch ofnumber theory) on his own. Rolle's fortune changed dramatically in

I682 when he published an elegant solution of a difficult, unsolved problem in Djophantine analysis. The public

rccognition of his achievement led to a palronage undet minister Louvois, a job as an elementary mathematics

teacher, and eventually to a sho lerm adminislrative post in the Ministry ofWar In 1685 hejoined the Acad6mie

des Sciences ir a lowlevel position for which he received no regular salary urtil 1699. He slayed there until he

died of apoplexy in 1719.

while Rolle's fortd was always Diophaniine analysis, his most important work was a book on the algebra

of equations, called ?,?lll d'al.ga,,", published in 1690. In thai book Rolle firmly established the noration {6
learlier wrifien as /@ al for the rth root of/]. and proved a polynomial version ofthe theorem thal ioday bears

his name- (Rolle's Theorem was named by Giusto Bellaviris in 1846.) Ironically, Rolle was one of the most vocal

early aniagonisls of calculus. He strove intently to demonslrate that it gave enoneous results and was based on

unsound reasoning. He quarreled so vigorously on the subject that the Acad6mie des Sciences was forced to

inte eneon severul occasions. Among his several achievemenls, Rolle helped advance thecurrently accepiedsize

order for negative numbers. Descartes, for example, viewed -2 as smaller than 5. Rolle preceded most ofhis
contemporaries by adopting the cunent convenlion in 1691.

) = .f( ')

Figure 6.5.I
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Example I
The function _f(-r) : sin r has roots at -{ : 0 and ,r : 22. Moreover, / is continuous and

differentiable everywhere, so it is differentiable on (0, 2z) and continuous on [0, 2n]. Thus,

Rolle's Theorem guarantees that there is at least one point c in the inteNal (0,2r) where

the tangent line to the graph of y = sin "x is hodzontal. Since dy /dx. : cos ir, we can find
c by solving the equation cos c : 0 on the interval (0, 2z). This yields two values for c,

namely c1 - n/2 and c2 :3r/2 (Figure 6.5.2).

REMARK. In the preceding example, we were able to find the values of c because the

equation /'(c) : 0 was easy to solve. However, ifthis equation cannot be solved, then you

will not be able to find values of c, even though you know they exist. This will rarely cause

problems because usually one is more interested in knowing that the values of c exist tlan
in finding them.

The hypotheses in Rolle's Theorem are critical-if / fails to be differentiable at even one

point in the interyal, then the theorem may fail. For example, the function /(;r) : lrl 1

has roots atr = *1, yet there is no horizontal tangent line to the graph of / over the interyal
( 1, l) (Figure 6.5.3).

Rolle's Theorem is a special case of the Mean-Value Theorem, which states that between

any two points A and B on the graph of a differentiable function, there must be at least

one place where the tangent line to the curye is parallel to the secant line joining A and B
(Figure 6.5.4).

Noting that the slope of the secant line joining A (a, /(ri ) ) and B(.b, f (b)) rs

f(b) - l (a)

b-a
and the slope of the tangent at c is /'(c), the Mean-Value Theorem can be stated precisely

as follows.

B(h, f(h))

A(a,1(a)

Figure 6.5.4

VELOCITY INTERPRETATION OF
THE MEAN.VALUE THEOREM

6.5.2 THEoREM (M ean-value Theoren). Let f be differentiable on (a,b) and continu-
ous on ltL, bl. Then there is at Least one point c in (a, b) where

s1, 1-I'b' f'n' (l)' b-a

There is a nice interpretation of the Mean-Value Theorem in the situation where -r : l(l)
is the position versus time curve for a car moving along a straight road. In this case, the

dght side of (1) is the average velocity of the car over the time interval ftom a < I : li,
and the left side is the instantaneous velocity at time I : c. Thus, the Mean-Value Theorem

implies that at least once dudng the time interyal the instantaneous velocity must equal the

Fisure 6.5.2 Figure 6.5.3

j,=7r'r
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PROOF OF THE MEAN.VALUE
THEOREM

average velocity. This agrees with our real-world experience-if the average velocity fbl a

trip is 40 mi/h, then sometime dudng the trip the speedometer has to rcad,10 mi/h.

Example 2

You are driving oD a straight highway on which ths speed limit is 55 ni/h. Ar ti:05 A.M.
a police car clocks youl velocily at 50 mi/h and at 8:10 A.N4. a second police car posled -5

mi down thc road clocks your velocity at 55 mi/h. Explain why the police have a lisltt to
charge 1,ou with a speeding violation.

Solution. You travelecl 5 mi ir 5 min (= ,I h). so your averagc velocity was 60 nri/h.
Howcver, the Mean Value Theorem guarantces the police that your instanlaneous velocity
was60nti/hat]eas1ol1cc()veIthe5misectionofhighway.<

Motivtlion.for the Prool o.f Theorerfl 6.5.2. Figure 6.5.4 suggests that (l) will hold
(i.e.. the tangent line will bc parallel to the secant line) at a point ( wherc llle vcrtical distance
between lhc curye and the secant line is maxi:lum. Thus, to prove llre Melln Value Thcorem
it is natulal to begin by looking for a fomull fol the veltical clistance u(r) between the

curve i = ./(,r) and the secant line joining @. .l (o\) Lrnd (b. J (1lr).

Prool ol 'l'heorelr 6.5.2. Since the two-point tbrm of the equalior of the secanl line
joining (rr..fkr)) and (r. /(r)) is

f\h) - fldJ
\ - /(i/): ::(.t -rt)' b-tr

or equivalently,

Ith) - fla)1= -- 7(t -()+ I(,t)lr-n
thc diflcrcnce L,(r ) between the height of the gmph of f and thc height of the secant line is

f trbt - lr,tt lr{.r1=/rrl I ; (.\ ./rTlrrrr rlr
L /)_r/ l

Sincc .l(.r) is continuous on la. bl and differcntiable on (a. D), so is ir(,r). Moreovcr.

1,1a1 =0 and r'(D) =0
so that u(.\-) satisfies the hypotheses of Rolle s Theorem on tlle interval [rr. b]. Thus. there
is a point c in (l7. /r) such that u'(c) - 0. But t'nnr Equation (2)

'' |tt') - lta\llt.\.t:./ (.r ) _ *--__
tr-

so

.f tht - .lktt
r,f (.)= I tc) __

tr-at
Thus. a1 1he point. in (.r, r), where u'1c) :9, *" 1]uu"

., [tb) ftu )r{(.j=_ I
btt

Example 3

(a) Generate the graph of .l(r) : (.rr/4) + I over the lnterval [0. 21, ancl use it to deler-
minc the number of tangcnt lines to the graph of I ovef ll]e interyal (0.2) thal arc
parallel to the secant linc joining the endpoints of the graph,

(b) Show thar f satislies the hypotheses oflhc Mean-Value Theorem on the interval [0. 21.

and find all values ofc in the interval (0. 2) whose existencc is guaranteed by the Mcan-
Value Theorem. Corrfinn that these values ofa are consistent with -vou[ graph in part (r).
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Solutiuu (u), The graph of I in Figure 6.5.5 suggests that there is only one tangert line
ovel the interval (0. 2) thal is palalicl to the sccant linejoinjng lhc endpoints.

Solttlion (h). The f'unction .f is continuous and differentiable everyu,here because it is
a poll'nomial. In piuticular. .f is continuous on 10.21 and clifierertiable on (0, 2), so the
hypotheses of the Mean-Valuc Theorem are salished rvith rr : 0 and D : 2. But

l(a) = l(0) -1. f(h): f(2J:3
3 rl

l'(.:) - .

fr'l
.f '(c) : 

4

CONSEQUENCES OF THE
MEAN-VALUE THEOREM

so in this case Formula ( I ) becornes

lrlll
4 2-O

rvlrich has thc two solLLtions c - +2/J3 - +1.15. However, only the positive solution
]iesintheinteNa]|0'2];thisvalueofr'iSconsistclltwithFigule6.5'.5.<

We stated at tire beginning of this seclior that the Mean-Value Theorem is the starting

point til many impor-tant results in calculus. As an example of ft js, we wili use it to provc

Theorem 5.l .2. which was one of our fundamental lools 1br analyzing graphs of fLrnctions.

5.1.2 THEoREiU (Retisirtd). Lct f bedl tldiotllhatist'onliuuousottctcloseditttertal
lu, bl ancl tltJfcrentidbla ou the opctl intet l'a! (o . b).
(.o) Il .l'(t) > 0 for etert valtLe of .t irt (a.b), thcn I is incredsing on la, bl.

(.b) U .l'(t ) < 0 fir| c|c^' rolue ot' r in (a, h). thett f is dau easing ot1 la, hl.

(.c) Il l'(x):0lltrevcr,-talucof -r in (a.b), then J is constant on la. b\.

Proof \al, Supposc lhll -rI ilnd.!t are points in ld. /tl such lllat.rr < .t2. We must show

that.l(rl) < /(r2). Because lhe hypotheses ofthe Meau-Value Theorertt are salisiled on

the entile intcNal l.r. bl. they aIe satislied on the subinterval [.r1,,r1]. Thus. thele is some

point. in the open intcrvirl (rr..rt) such that

. /l!:) /(.t,t
I \L): 

-

.ft -.rl
or ecluivalently.

./(.Lr) -,f(r'r)= /'(c)(rr --tl) (3)

Since c is in the open interyal (-rr. .rt), it follows that 4 < c < D; thus, .f'(c) > 0. However,

-rt-,rt > 0 since wc assuned that -r I < 12.ltfollows fuorn (3)that /(rr) /(rr) > 0or,
ecluivalcntly. /(-r1) < /(-rr), which is what we \\'crc to prove. The proof.s of pa|ts (b) and

(c) are similal ancl are leti as exercises. I

We know liom ou| earliest sludy of derivatives that llle de vative of a constant is zero. Paft
(.) of Theoren 5.1.2 is the convcrse olthat result: that is, a fiurction whose derivative is

zero on an inten'al must be constant qr that interval. If we apply this to the dilference of
1wo functions. we obtllin the lbllowine useful theorem.

6.5.-1 THEoRuv(?heco stant Dil.fercnce't neoreni). IJf and g Ire cotltitluoLts otl a ( lose(l

inten'cl lct, hl. drxl if .f',: ) = g'(.r') Jit dll x in rhe open inte^'ttl (a, b). then f untl g

diJJcrbt,a(otlstqntot|Ia.bl.tlrutis.thereisd(onstuntksudrthat J(r) - s(.r) : k

for all t irt ft1. b).

THE CONSTANT DIFFERENCE
THEOREM

Figurc 6.5.5
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I tl'(.) = q'(0on an interva, l

I ihen the graphs of I and .{j are l
I verti.a tranq 2i ons of .ne :

I another. l
il

Figurlr 6.5.6

Proof. Let h(x) - /(r) - g(-r). Then lbr every r in (n, D)

h'(x) : f'(t) ,s'(r) :0
Thus, /r(-r) - /(r) g(r) is constant on lll, b] by Theorem 5.1.2(.).

Ii L Ni \ Il K This theorem remains true if the closed intenal fa. 1rl is replaced by a lin ile ol
inlinite interval (a,b),la,b), or (d.1rl, provided./ and g are differentiable on (a. b) alid
continuous on the entire interval.

The Constant Difference Tlleorem has a simple geonetric interpretation it tells us that
if I and I have the snne derivative on an irrteNal, then there is a constant k such that

l(r) = s(n) + & for each n in the interval; that is, the grapbs of / and I can be obtained
fron one another by a vedical translation (Figu[e 6.5.6).

ExERctsE SET 6.5 E Graph ne Calcu aLor E cAS

ln Exercises I aid 2, use the graph ol I to lind an interval

[a. D] on which Rolle's Theorem applies, and flnd all values

of c in that intelval tl'ral satisfy the conclusion of the theorem.

1. 2.
ll
l

0

li
l

-6:
5.1.'l-'2-l 0 Lzt.t5

ln Exercises 3-ll, verily that the hypotheses ofRolle's Theo-
rem a1e satisned on the given interval, and find all values of
. in that interval that satisfy the conclusion of the theorem.

3. /(;r) :,r2 6,t + 8; 12,41

4. /(,r) : vr - 3.t2 + 2i; f0,21

5. l(r) : qq51 ln/2,3n/21
.r2 I

6. .f(t): rl;l-1.11
7. .f (x) : *x - "tr; t0. al

141
8. l1x):;-jx+5: tr,3J

9. Use the gaph of / in the accompanying figurc to estimate
all values of c that siltisfy the conclusion of the Mean Value

Theorem on the interval f0, lJl.

Figure Ex'9

10. Use the graph of .f ir Exercise 9 to estimate all values o1'.
that satisfy the conclusion of the Mean-ValLre Theorem on
the interval [0. 4].

In Exercises I l-l 6, verify that the hypotheses ol the lvlean
Value Theorem are satisfied on the given inteNal, and nnd
all \,?rlues of c in that intelval that satisfv the conclusion of
lhe rl,eorem.

11. /(r)--1r+r; I 4,61

12. .l(x): tr +-r 4; | 1,21

13. .f(.i) : vG + t; L0,.ll t4.

Is. /(!)-V25 .r:l | 5.-rl

l
16. /jr) - ;[].5l\-|
17. (a) Find an interval [a. bl on which

'f(;r):-ra+xr -t2+r-2

satisfies the hypotheses of Rolie's Theoren.

l
f(r) : .r + -; 13, 4l

12t45 6 7 lt 9 l0

tr



E llr.

(b) Cencrlitc thc gruph ol /'(.r). an(l usc il lo nrake rough
estimatos ol nll vl[res ol c in the inlcrval oblaine.l in
palt (d) lhril sltisll,the conchrsion ol Rollc s Theoien.

(c) llse Neuton s Mclhod 10 iDrprove on the rou-sh c\ti-
nates obtrincd in prl.t (b).

Lct /(.r) :.!r + -+r.

(r) Find the ecluntior) oi thc sccrnt line through thc points
(-1. l( 2)) ond (1. /(l)).

(b) Show that thc|c is urlly one uumbcr . in the interval
(-2. l) lhrt s tisfic: thc conclLrsion ol the Mean Value
Theorelrl for thc sccrurl li e in pilrt (u ).

(c) Irind thc ecluation ofthe t ngcnl linc to lhe graph of I
ar rhe point {(. l(r')).

(d) LJsc graphing lllilil! to genenlle thc sccxnl line i p:l
(a) an.l the tangcnt line in ptft (c) in the siLlne coor-
(linate systenr. iin(l confimr visually thlt lhe two lires
seeln parallel.

Lcl l(.r ) : ttln.r.
( ) Sho\\'that thcrc i:i no poinl . in the inten,ill (0- :.) \Lrch

that ./ 
'(( ) : 0. e\,en though / (0) : I \i(l - 0.

(b) Explain rvhy tlre result in pilrl ( ) does not Violatc

Rolle 's Theorer)r.

Let /(.r) - .rlrr. rt : - l. and b : ll.
(ii) Show that therc is no Poinl ( ir (./. r) such lhal

6.5 Rolle's Theorem; Mean-Value Theorem 373

Show thnt al son'te instant clLrring this period the tem-
perlture was clccreasing at ir ralc grcater than 3 F/h.

Suppose that two lLrnDeIs in a 100-rr dash linish in a tic,
Slio!\'that they ltitd the same velocity:tt least oncc duriltg
thc racc.

Use thc lact thrl

,t---,\o-l.t--.\J . b\ -l.r r I

10 sho\\,that the eqLlation 6.15 4{ + I = 0 hirs at leasl one
solution in the inteNal (0. !).
(a) Use thc Consldnt Dillerence Theorem (6.5-3) to show

that il / '(.\ ) : !'(.r) for all .\' in the interwal (--. +-,t.
and if .l nd g h.rve the sanre value at any point Io, then

l(,;) :.e(.r) forall.r in ('r. I-r).
(b) Use thc result in part (a) to plove the higononetric

identity sinl .t * cosl.r : L

(a) Usc thc Collstlnt Diflerence Theoren (6.5.3) to show
drat if l'1.\) : g'( t) lbl all .\ in (--. +z). and if
l(.r0) - 3(.to) : . al some point.r0. then

l(r)-s(t):c
lbr rl1.\ il \-:L. +'.).

(b) Use the result in paft (a) to show that lhe functjon

/r(.r) = (.r - l)r (rr + 3)(.r - 3)

is constant lbr all r in (-2. +z). and nnd the constant.
Check the result in part (b) by multiplying out and sint-
pliiying the fi)rmula for /r(.\ ).

Use thc Mean-VLlue TheoreN to show that if / is dit-
t-erentiat,lc on iu interval /.and if /'(.r)l : M for all
values of .r in 1.llren

ll(.r) - /(.\) : Ml.r .\'l

tbr all values oi.t and t in /.
Use thc rcsr.rlt in pa|t (a) to show that

sinr-sinr'I.r .\'

fol all lcal vllues ol r and r'.

Use thc Mean-Value Theorem lo show that il.l is dit-
ferentiable on an open iDrelval /. and if l.f'(-r)l : M
lbr ?rll vtrlues of .\i in 1- then

l(-!) - l(r)l :M.r- r'

tbr all valucs of .r and I ir /.
Use the resuh in pan (a) to show thdt

I tan.r - t n r'l - .r - r'

tbr all valuesof .r and I in lhe inteNal \ n12.t/2).
Usc rhe result in parr (b) ro show that

trn.! + tiin r'l : -r+r'
for rll vrrlues ol r and I in the intclval en/2. rl2).

)i

26.

27.

28.19.

2t\.

llhl - Iktl

(b) Explain why the resull in prrr (ir) clocs nol violiLte the
Mean Virlue Thcorem.

21. (a) Show that il / is dillerentiablc on (-2.+-,). an.1 il
.r' : .l (.r ) alld r' = .l '( r ) rre grilphcd itr thc sanre coor-
dinirte syslern. tltcn bclNee ar)\ two.r-intercepts of /
thcre is irl le st one \ inlercept oi /'.

(b) Give somc cx nrplcs th l illustrlle this.

22, Review Deliritions 3.1.1 rnd 1.1.,1 ol rverilge a d instln-
tirieolrs rrte ofchituge olr with rcspect 1().r. and use the

Mealr Vdlue'flrcorcrn lo show thiil il l is cliilcrcntiable on

1-2. +:.). thcn in ary intela'al [.r|..rtI thcrc is at lcasl ore
poinl $,herc thc i|sllr)lueous late ol ch ngc of -r' rlith r-e-

spect lo r is ct;uil to the aYeftrsc rille ol change ovcr the
ink'l.\,al

ln Exe|cises 2-l-25. Llse thc rcslrll ol Exercisc 22.

2.1, An automobile lril\cls.l mi along u st|iright loird in 5 nrin.

Show llral the spcc(lonleler reud cx ctll' ,18 mi/h at lcast

oncc du ng the trip.

2.1. Af ll A.\t. on il ccrlain molning thc outside tenrperature
was 76 F. Al ll t,.M. thil eve iDg it had clropped to 52 F.

(a) Show tliat irt son'le iusttnt dLfing tltis pe|ioci thc tem-

lrlJlJlC \\ !l:\ JsLICI\.ll:.ll llrj l.llC OI : f ll,

(b) Suppole thrt you know thirt lhc lcr'Dperalure leachcd ir
high ol 88 F somelime betrvccn ll ,\.i\'1. and ll P\'1.

(c)

29. (.t)

(b)

-10. (r)

(b)

(c)
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(a) Use the Mean-Value Theorem to show that

l'-Ty'r' vr<. /-v'
ifO < -t < -i,.

(b) Use the resull in part (a) 10 show that il -r and ], afe

po\rtr\e. then /1\ < -(r + \ ).

Show that il.l is clifferentiable on an open interval / and

.l'6) I 0 on /, the equation /(r) - 0 can have at most

one real root in 1.

Use the result in Exercise 32 to show the followirrg:
(a) The equation,rl +zlx I : 0 hirs exactly one real roo1.

(b) lfb'? 3ac < 0 arld il'd f 0, then the equatio|r

arl +b-rl lt:tj cl :0
has exactly one real root (possibly repeated).

Use the Mean Value Theorem to prove that

:l1t<J3<1.15
lHint. Let .f G) - J-r. a - 3. and b - ,1 in the Mean Value

Theorem.l

(a) Show that if / and I are functions lor which

l'(r) : g(-r) and g'(,r): -.1(.t)
for all,r, then l?(-r) + gr(ir) is a consrant.

(b) Give an example offunctions ./ and g with this propefiy.

(a) Show that if / and g are fLrnctions lbr which

/'(.r) : g(.r) and g'(-r) : /(r)
ior allr, then l2(r) g2(j) is a constant.

(b) Show that the fLrnction /(r): J(n'+ e ') ancl tho

function.q(-r) - j(et e !) have this prope|ty.

Let g(j) :.rr - 4.r + 6. Find./(-r) so thar /(r) : g'(.r)
and.l(1):2.

Let I and 8 be continuous on [n, b] and differentiable on
(rr. b). Prove: If .l(/r) : g(a) and l(lr) : g(D), then therc
is.i point. in (rr, D) whele f'(c): g'(t).

Tllr.tlatethere.trlt inExelcr.e.18b1 dlrwrnerrrrppropri,rre
picture.

(a) Plove: If l"(.r) > 0 for all -r in (d. D), then .l'(.r) : 0
at most once in ((l. D).

(b) Give a geon.retric interyretation ol the result in (a).

Prove part (r) of Thcorem 5.1.2.

Prove part (.) ol Theorem 5.l.2.

36.

37.

38.

-19.

40.

32.

33.

3il.

t{
41.

42.

(a) What inequality nrusl .l'(-rr) satisfy lbr the function I to
have an absolute maximurn on an inteNal ,l at -r0?

(b) What inequality must /(r) satisfy for I to have an ab-

solute miiimum on 1 at.ro?

(c) What is the differcnce between an absollrte extremlrm
Jnd 1 lel:llive e),lrern.rrn'

According to the Extreme Value Theor-em, rvhat conditions
on a function / and an interval / guarantee that / will havc

both an absolute maximum and an absolute minimum on 1?

hr each pa , determine whether the statemenl is lrue or false,

ar]d justify your answer.
(a) ll f is differentiable on the open interval (a,D), and

if / has an absolLrte exlrernum on that intelval, then it
mlLsl occur ill a stationary point of .1.

(b) If I is continuolrs on the open interval (a. b), and if /
is an absolute extrefilum on that inteNal. ihen it must

occul at a stationalY Poinl of /.
Is it tr-ue ol false that a particle iD rectilinear motion is speed-

ing up when its velocity is increasing and slowing dow
when its velocity is decreasing? Juslily your answer.

Suppose that / is continuous on the closed interval l,/. bl
and differenliable on the oper'l inteNal (a, b), and suppose

that /(d) - l(D). Is it true or false that / must have at leasl

one stationary point in ftr, r)? Juslity your answer.

Draw an appropriate picttue, and describe the basic idea of
Newton's Method witl'rout using any fbrmulas.

In each palt, find the absolute minimum r? and the absolute
naximum M of f on the given interval (ii they exist), and

)l^le u hcre lhc .rb,olulc erlrelnr oc. rrr.
(a) .l(-r): l/r; [ 2. -l]
(b) ./(-r): 'r '1: f-1, ]l
(c) l(r) : r'](-r 2)1/r; (0,3l
(d) l(r) : r'lrr; (0. *cc)

In each patt. find the irbsolute minimum ,l and the absolute
maximum M ot' I on the given intelval (ifthey exist), and

\tirle u h(l r lhe Jb\ohrie extremu ucL ur.

(a) .l(.Y) :2rl(rr + 3); (0.21
(b) .l(r):2.r5 5-r1 +7; (-1,3)
(c) l(r) : - r2 2.v ; l,3l
(d) l1r) : -!'; 10, +-)
Use Newton's Method to approximale the smailest positive

solutioll of sin,r + cos ]i : 0.

Use Newton's Method to apploxirnate all three solulioDs of
-.3 4"+1:0.
In each part, determinc whethel all of the hypotheses of
Rolle's Theorem are satislied on the stated interval. If not.
state which hypotheses fail; if so, llnd all values ol. guar

7.

6.

9.

1

3.
8.

10.4.

irnteed in the conclusion of the theorem.

11.

la) /(.r) - /4 -.rr on [ 2. ]l



12.

l-j.

Fl i6

(b) /(tt: r.r'r I on J 1.ll
(c) l(.!) : sin(rr) on 10. vE I

ln eilch paff. clclcrl11il]e whelher all ol the h)potl'reses of the
N,lean Value Theorern ar'e satislleLl oD the state.l inter-\,al. Ii
not. stale which hypotheses tnil: if so. finct all valucs ol c

gLlaranteed in thc conclusion ol'the Lheorem.

(a) /(r) = jr ll on l-2.21
!+l(bt /l ,. t : on []. -ll\l
[] ,t 

'r 
,-l

L./ /.,,-, u', 'l '
[r.' ilr'- |

A church winak)\! consists ol-a blue selllicircular seclion

sLlrmounling r clcer rectrngular-seclion as shorvn in thc ac

companying ligure. The blue ghss lets thlough halfas nruclr

light pcI unit alel ls the cleai glass. Fincl thc radius r- 01'lhe

rvindow that admils the most light if the perimetcr of the

entirc $indo\\' is to be P leet.

Find thc dinrcnsions c)l ll'le recidngle of mlximum lrca thal

can L)c inscr ibed inside the ellipse ( r/.1): + (-r'/3)r : I (see

the iiccoilprn! ing ligLllc).

Figure E\-13 FistLrc h\ l+

(a) Can an obiect in rectilinear rnolion revelse di|ection if
rt\,r\ccIt l:r'n \ (irI\lirnl. lx.1 1r 16-1 rll\\cl tl\in!
a Yclocity VersLls tinle curvc.

(bl Clan an objecl in reclilineiLr motion havc iucreasing

speecl and decrcasing acqeler irtion I Justily )-oul ans\rer
using a velocitl' versLLs linle clllve

SLlpposc that the position function ol'a particle in rectilinerr
rroliod is given by the f-orlnula !(1) : r/(1r + 5) tbr / - 0.

(r) Use r g[lphing utilit] 1() generirte the position. vclocity.
and acccleration !ersus tlme curvcs.

(b) tjse the appropriate Sraph to nrke a rough cstimale ol'
the tinle whcn lhe piir licle reverscs dircction. and therl

tind that tjme exacll).

Find lhe position. r,elocitJ. ancl accelentiol-l al ihe in-
slant when the pallicle reverses direction.

f;se the approprintc lllaphs to make rough estimales of
the tinre inte|va1s on w'hich the parlicle is speeding Lrp

l[rd thc tinrc iDterva]s on rvhich it is slowing dorvn. and

then hnd tho\e tin]e illlervals exactly.

When does the palticlc havc i1s maxinunt and mininlunr
vclocities'l

SupplementaryIxercises 375

A basketball pla)cr. standing near the baskei to grab a re
bound..jumps 76.0 cm veltically.
(a) How much timc docs the player spend in the lop 15.0

cm ol thejump and ho\\' nluch ttme in the bottom 15.0

cnl l
(b) In \\,ords. explain rvhy basketball players seem to be

suspende(l in rir \\'hen they iLrmp.

(a) SLrpposc that an obiect is lelelsed t'rorn rest troln the
top of a high builcliug. Asslrming that r tiee-fall model
applies and thlt time is in seconds ancl distance is in me-
tels. mal(c atablethrtsho$s thedistance traveledby the
objcct anal its spced to onc dccimal plecc at I sccond
in.rementstl-o r : 0lor : 4

(b) Confirll1 thal cloubling thc elapsccl tirnc doublcs thc vc
locity. and explaiD why this happcns.

(c) Conllm that doubling the elapsed tirne increases the
distlnce ticveled by a factor of 4. ancl explaili il'hy this
happens.

Let

, L)

/tr r: l-j
r++ T

(r) Gel]ente the !.rilph ol'r' : l(r). rnd Lrse the grilph to
make lough estimiles ol'the cooldinales ol the iibsolule

(b) Use a CAS to solve the equation /'(.t) - 0 and then
use it to makc molc accurate approxinlations of thc co
or.liDates in pan (a).

As shown in the acco pan)ins llglre. suppose that a boal
enters the river al lhe poinl ( l. 0) and maintains a heading

to\\'arcl the origin. As a lesull ollhe strons current.lhe boal
fbllo\\' s the path

tr Ll)r'l I
t--

*n... , ,,lo 
" 

are in nriles.
(a) Grtph fie path taken bl the boat.

(b) Can thc boiit rcach thc origin'l llnot, cliscuss i1s lale r d

nrrJ hor. .l.r* .t .umr'' lo t r or;!i .

(c) What is the velociLy ol the boill i| dre t-direction at the
instanl \\hen it is closesl 1() the origin if the velocity in
the r-direction is ,1mi/h at this insttnt:r

11.

E re.

lq 20.

18.

11.

t5.

(c)

(d)

I

(1.0)

(\/l): + l r/-l):

FiStLrc h\ l1

(e)

Irigure [\ ]0
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E 21. Suppose that the position lunction ol'iL particlc in ledilinear
i'lotion is given by the fonnula

r2+ls(r): t > Orr+l
(a) Use e CAS lo lind simplified fomulas for tlre velocit],

L,(1) and the acceleralion d(/).
(b) Craph the position. \,elocity. and acceleration versus

tilne curve!.
(c) Use the applopliate graph to make !i rough estinate of

lhe lime at which the particle is farthest fuom the origil1
and its clistancc fr-orr thc origin at that time.

(d) Use the appropliate graph 10 nrake a lough cstimate of
the time intelval during $hich the palticle is moVi11g irl
the posirive direction.

(e) Use the appropliate graphs to make rough estimates of
the lirlle inteNirls dlrring rvhich the palticle is speeding
up and lhe lifie intervals duling which it is slowing
down.

(f) Use the appropriate graph to rnake a rough estimate
of thc maximum speed ol the pafticle and the litrle rt
which the mirxinruln speed occurs.

E 22, Suppose thal lhe nurnber of individuals rt ti e r in a cerrain
rvildliie population is given by

u40

where t is in ycars. At apploxinrately whal instant of tilne
is the size of the population increasing nost rapidly?

Accolding to llepler's /4n. thc planets in our solar systent
move in elliptical orbits alound the Sun. lt' ir planet's closest
approach 1(] the Sun occurs ai linle / : 0. then the distancc
r lrom the center ()1'tlre planet to tlte center of the Sun dt
some latcr time / can be cletelmined ttom the equation

r:n(l -ccosd)
$ here,r r. the J\rr.r l, Ji tl'rrce bet*ecn, r tcr.., i. J lo\-
itive constant that r'DeasLrres the 'flatness" of the elliptical
nrr'il. :,nJ o i. .he.,ol.rtrorr ol K,1'1, : r 1,,'r;,.,.

2nt :,1 i:inri
T

in which I is the linre il takcs tbr one complete orbit ol the
planet. Eslinrate the clistancc from the Ea(h to the Sun when
1 : 90 drys. lFirsl find d from Kepler's equarion, and rhen
Lrse this value ol d to lind the distal]ce. Use a : 150 x l0r'
krr. a:0.0167, and I : 365 days.l

Using the lormulas in Exercise 23, find the clistancc fl-om
the planet Mars to the Sun whcn / : I )'ear. Fo| Mars use

rr:221J r 106 km. c - 0.93,1. and T : 1.88 years.

23.

24.

/>0
| + 9(0.11y
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IxTEGRATIoN

/l rUI
-Qf raditionally. that port ion ol ca lcu lus conce nred wit h

finding tangent lines and rates of change is called dffir
entinl calculus and that portjon concerned with finding
areas is called integral calculus. However, we will see

in this chaptel that the two problems are so closely re-
lated that the distinction between differential and integral
calculus is ofien hard to discem.

ln this chapter we will begin with an overview of the
problem of finding areas-we will discuss what the term
"area" means, and we will outline two approaches to defin-
ing and calculating areas. Followingthis overview, we will
discuss the "Fundamental Theorem of Calculus". which
is the theorem that relates the problems of linding tangent
lines and areas, and we will discuss techniques for calcu-
lating areas. Finally, we will use the ideas in this chapter to

continue our study of rectilinear motion and to reexamine
the concept of a natural loga thm.
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DEFINING AREA

7.1 AI\i OVERVIEW OF THE AREA PROBLEM

Ittthis irttrotluttotr's(ttiotl ta fill gitc un ortnicv ol tltc prohlcm of tlefinittg and
taltultting.oeds ol pldtte rcgions witlt (ur|ilin(ut bou daries. All ofthc rclults in this
st,ttion vill be rec.tuntincd itt ntorc clclail lutcr itt tltis tltLtpter. so our yturpose here is
h intrctdute tltc.fiottlonrcntul toncepts.

The main gorl of this chapter is to study the followint najor problem of ciilculus:

7.1,1 lHl \l{l \ tR' )F I \1. C.,.en r luIcti,rrr / llrirr i\ coIIiIr,ou\ , Id Ionniiirlive
on an interval la. Dl. llnd the ar-ea between the graph of f and the j ter.val [a. bl on the

t-axis (Fieule 7.1.1 ).

Alea formulas tbr basic.eeomenic fi-s.ures, such as reclangles! polygons. ancl circlcs,
dlre blck to dre e.lrliest rritten records of mathernatics. The tjrst real advance beyond the
elenentary lcvcl ofarea comllulation was macle by the Greek nalhematician. Archilredes,*
u,ho devised an ingenious but cumbersonre technique, crllecl lhe neLhod ol c.thuLtstio ,lot'
linciing aleas of regions lrounded by parabolas. spirals. and various other curves.

*\R{rrr\rLtn,s(llJTBc ll2B(.l.Greekm thenr tician nnd scientist Bo in Syrrcuse, Sicily. Archi|redes w.ts

thesonofthcr\tr)irolnc'Phcldir\!ndpos\ibllrchledloHcironll.krngol Syr.rcu\e.Mostoflhefrctsubouthis
lilc rollrc lion rhc Ronrrn biosr.rpher. Plutarch. \\,ho inserted r fe\\'trnLrlizing pagc\ xbour hiln jn rhc r)rlrssrvc

biogr.rthl ol rhc Rollr n\olcljcr.\4rrce1[rs.Intheuol.tlsolorewriler. IherccounlolArchinredesisslippedlike
xri\suc thin shr!ing of ham in r bull-chokingsrllrd$ich.'

Archimedes l.lnks rirh Nc$'ron rnd C.russ as onc ol rhc rhrcc grcircsl mlrhcmrricirns sto cver livcd. and he

isce rinlylhe greutesl rn.rlhcnrrricirn ol rnliquily. IIis nrrlhcn[ricll {ork ir !o nrodcrn irr !p]!il .tnd lcchniquc
rhrtl i1 r( brirl! cli\ringui\hablc tiorn lhat of a sevcnteerxh cerlury rrrthenrxlicixn. r-el iM':Ls xll donc !r'ithout

bereht of.rlgebm or.r convcnicnt nulnbcr s) stcm. Among his mrthcmrticll .rchievcnrents. Archimedes dc!eloped
r -!ercr!l nrcrhod (.rhlusrionl lor lln.lirg arcls rurd !oluncs. x d l)c usccl thc nrcrhod to lincl l'rcr\ botrrdc(i by
p.rrrbohs rnd \tir.rls .rn.l ro lind !olumes o1 cylinders. p rbolonls. and segments ol spheres. He grve x poccd rr
lorrffrlrxinuringTrndboundcdirsvirlucbclwccnlfand-ll.luspircotrhclinlilulionsollheCreeknulnbering
slslenr. he de!ised melhnls lor lln(ling !quurc rools ufd ir\cnrcd ! mcLh(xl busc(tolr lhc Cicck nryriud (10.000)

lbr repFsenling runbers is l!rg. r\ I lbllo$ccl b]'lJ0 nrillior l)illion zcrc\.
Ol rll hi\ r)arhcn.rlicll r(rk. Archinre.:le,i rrs rosl proud of his .liscovery ol lhe nrellro.:l lor iinding lhc

lolumcol x sthcrc hcsho$edthrttheiolurneolllsphereisluothirdsthevolumeofthesll rllestc!linderthrl
can contrin i1. At his re(lue\r- rhc ligrtrc ol r spherc rtnd cl lindcr $ r\ crur r\,1'd on his l.mbs(orc.

Ir .tddirion to xrhc|rLlics. Archimedes so'ked e\lensivel) in mech.rnics rnd hy,:lloslrlics. Nerrl) elerl
\choolchild kno\!s Archinredes us the rblent nrrde(l \crcnrrsr \,lro. on rerlirirg LhaL a llorrillg ($lccr disphc.s
its weighl ol liquid. lcrped lJo r his brlh rnd r.u nrLked through the sircels ol Slr.rcuse shoulirg. Eurek.r.

Eurek.tl (rncrning. lh.rve iourd itl ). Archinredcs.rchrilllt crcirlcd thc di\ciplinc ol hydrosLalic\ rnd uscd ir

AlrholLgh Archirncdcs u.Ls.rpprrently more interested in prLrc rthemrtics lhrn ils uD!lilulion\. hc wrs.rr
cngireering genius. During the (ccond Puric r\!r. \vlrer Sy cuse $.ts rrLrckeLl b) rlrc Rornan llcer under rlr.-

rhree ye.rN. He invenieLl supcr cLrlirpulr\ rhNl !ho$crcd lhc Rornrns wirh rock\ $,cighing il quit.rcr ron or orc-

.rnd l;rrsome mechanicrl d.\'iccs \!irh iron bcxk\lndclxwi lhrl irxchcd olcr lhc ciI) r!.rlls. gr.r\p.d Ihc ships.

rnd spun (heln rgainsl rhc .ocks. Ail.r lhc fir\I rcpul\c. N{.ucellu\ c.r1lcd Archinrcdcs .L gconrctricrl Brirreu,. (.1

hundrcd .lnncd nr)'rhologicrl rnon\Ierl \\ho uses our shifs ljke cufs rc ltl(lle rtiter troni the \er.'
ElcnruNlll thc R(nnrn r r) $1rs !ictorious .rn.l contltlry- to Marcellus specific o ers the 75-terFold

Arclriffcdc\ ua\ killcd bt.L Ronrn soLdier. According to one repo ollhe incident. the soldiercr\t r shrLdow

.Lcro\s lhe s.Lrd in $hich Archirred€s $.r\ \lorking on r mrllrcrnaLic.rl problcm. WhcI thc irrno)ed Aichhrcdcs

I'elled. Don I (lisrurb nry circlcs. rh. \oldicr ie\ inio r rrge ind cut the old ran do$n.
WrLh his derlh lhe (;reek gift ol n lhelnrLtics passcd into olrli!il)n. nol Lo Lrc li111] rc\ullcclc(l rs.rin uDlil lhc

!i).lcenlh cenlury. Urlortunulcl)- thcrc i\ no known Nccur.rLc likcncss or sl.iluc ol Ihir gr'c.ll na|.

Figure 7.1.1
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By the seventeenllt centLll-v- several rrlalhetrliLliciuns hac{ cliscovcr.cci how to obtlin such
ateas ntole siurply by clllcLllrting linils. Hou'ever'. the luelhod ofc\htLlstion ancl its succes
sors lacked generalilv for cach cliftel.ent probletr onc had to de!ise spccial p|oceclures.
The mulol brelkthrough in obtiliuing ll geleral mclhoci fil calculating lr-ciis lvas trlcle indc-
pendently b! Nc*,lon ancl Lcibniz. both of w hotrt .liscolel ed tltal arcas could be obtained Lrl
reversing the prLrccss ofdil'f.:reutiiltion. lhi\ discovcry. which is rcgatclccl as the beginniDg
of calclrlLrs. wirs circullted bv Newton jn 1669 nncl publishedin lTilinapaperenLitled.
Dc Atttlrst ptr Actlt!Lttion(s Nt!ntcn) Ttrntittot tun Inllrtittts (Ott tlt. Ati(tl\'!is hl Mcdns ol
EquLl!iars I ith Iltlinite^ Muny'[ernt.s). and it *'ns cliscovcrecl b1't-eibniz rround 1673 and
sli,LlcLl in irn unpublisherl nranuscript datc'cl NovcnrbeI I I . I675.

Betilre one ciur ttlk logicall) aboLlt lrethods till calcLllalins iueas. it is necessarv to havc a

precise detirition o1' w hat llrc lcrm .rr.r/ nreuos. To a!oi(l li lot of Dtathenratical lbntality. lct
Ll\ as\LLnrc thal thc urclL\ ol scolretric ligur-es with slritight lloLlndaries. sLlch as rcclanqlcs.
triaDgles. lrrcl polygons. arc dchnerl ancl co pule{l Llsiug the stilu(lard fomtulas ibr such
li-gLncs. Ho*ever'. the problenr of clelining lincl corlpLlting urelis of ligutcs wilh r riir,i/iircar.
bounclaIies is nrore conrpliclitccl irntl rvill recluile ltl.ioLrs liniling pl1rccsses. For-exotrple.
ir the inlrodllclor), scclion ol th is te\t we showel:l lhll lhc al cl of I ci|cle could be vic\\ ccl as

lL linrit o1'rreas of insclibed po11'gols {Figule 7 in the IntroclLrclioil ). Thus. once I clelinitiolt
is established 1or lhe ilcu ol il pol)'-gor1. the rrea oft circlc'can be ul,fircrl as a lintit ol-arcas
ol polygors.

There ure two blsic melhocLs lbr linding the tueu of the tegion having the titrr shown in
Figlrre 7. l.l-lhc nt tdn,qlt nt.tlrnl and the ./,7/1./., ir'./riyc ncthcttl. The idea behind the
rectlngle nrethul is as tbllo$'s:

t)ivi(le the inter'\'ll [.1. bl into /] cqual subinterva]s. and over elch \Llbilttervtl construcl
it rectilngle thillexlcncls lronr thc t-uxis to any ltoil]l on thc curvc t - /(.r)thatisabovc
lhe suLrinlcrval; lhc paniclrlur point (loes nol malter it cln be abitve the celttet. abovc
an endpoint. or abovc any othet point in ll'te sUbintcrvill. [tl Fi-sure 7.1.2 it is irbovc the
cetlet.

Fo| each n. the total lirex of the rcclan-Qlcs cln be viewed as an ./pf /url/?latirl/ to the
cxact arcil undcr thc culvc ovel the interval lrr. Dl. \{olcovcr'. it is cvident intuitivelv
thrt irs /? increuses these apploxinratiors will gct bctter and bette| and will approaclt thc
exlLct urer rr a liurit (Figlue 7. 1.3).

This Ploccdu|c sc|vcs both as a nrathcrnatical detiIition lnd a llelhoalol cLr]rIurrLti'rn ue
ci]n tlal)tr the ilren under r - l( r) over ll're inlelvirl ]a. Dl as the lirrit of ihe at.eas ol llte
irllproxirrating rcctlnglcs. anci \\c cln Llse the method itsell to ilpproxinale lttis iuca.

r = tl\r
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To illush-ate this idea. we will use the reclaugle rrlethod to approxirtiate the llrea utdcr thc
curve r' - -r..l oYer 1he intelval 10. I I (Figulc 7.1 ..1). We will berin by divicling the inte|val

[0. 1] into rr equal subintewals. fiorr which it lollows that cach slrbintcrval has lerr-qth l/rr:
the endpoints ol'the sLlbintel.,lals occur at

I 2 3 n-l0. -. Innn
(Figurc 7.1 .5). We wanl 10 consll'ucl a rcctiin.lllc ovcr cach ol these intelvals whose lteigltl
is the value ofthe function l(-r.) :.rl at lny point in the interval. To be speciflc. let us usc

thc righl endpoints. in which case the heights of ,lur. rectiinglcs u ill bc

.t^t.l/ t\ /t\ / 1\tt.tt.ttr\Dt \/?/ \/?/

and since each rectan-gle hiis abasc ol uirlth l/rr. Lhc t,rtul urr:.r A,, ol the rr |ectangles will
be

(;) (l)

Fol cxample. il-n - 4. then the totrl irrea of the firur approxinaling reclrnglcs woulcl bc

T , . .-l.l - lr 
rr t {:) - r,t t-]r'r I {r lrlh-5

Tabie 7. I . I shows the lesult of evrh.urting ( I ) on l conp uler 1br sonle increirsingl), largc
values of n. These computations suggest that the exact area is close to {.

Subd v s on of 0. I into /r

sr b rtervaLs of eqLra ergtir

Figure l.1.5

THE ANTIDERIVATIVE METHOD FOR
FINDING AREAS

n ' 4 t0

,4,, , 0..168750 0.j85000

A'(.r) : Iinr
A(.r * /r) - A(-i)

'I:rble 7.1.1

l(x) l(xx) l1).0(x) t0i).0(x)

r\ .rtrii, r).--i1\.-+ n.rlllfl 0llll-rl

Iolt lllL ltl:.\l)L:lt. Usc youl cillclrlating ulilil)'10 confimr the valuc o1'A111 given in
Table 7.1 . l.

Thc antiderivative nethod for fincling iueas lellects the cenius of Ne$,ton anci Leibniz
thcy sLrggested lhat to lind the area under-the cuNe in Figute 7. I. l. one should tirst consicler

th,: nlore general problem of lindirg the area A(.r) undel the culve flom the point.r to
an arbitrary point -r in lhe inlerval l.r.1'l (Figule 7.1.6). Neilton rnd Leibniz discove|ed
independently thert the ./cr.ir rl/i|c ()1'thc llrnction A(r) is clsy 10 llnd. so thal il one cirn

figurc oul how to nnd A(.r) fron A'(.1). then the arell ulclel the culve frour a to D ciu be

obtained bl substituting \' - /, irr lhe areil fornrula A (.r ).

To illustrate how all of this works. lct rLs bcgin wilh thc problcnr o1'lincling

(2)

For simplicity. consider the cilse \\here /r > 0. The numeralor on the ght side oi (2) is
the diff'erence of lwo areas: the alell between d an(l.r + /r rninus the alea bet\\,een ar and.r
(Figu|e 7. I .7d). If rve let c be the rniclpoint between .r and .r + /i. then this diflererrce o1'rreas

can be approximated by the alea of a rectugle i| ith base /r ard height / (c ) (Figlrre7.I.70).
Thus.

A(r +ir) ,4(r) 
^, 

.l(r) L : ftrl (j)
hh

It seems plausible from Figure 7.1.7b fiat the crror in approxinration (3) rvill apploach

Figurc 7. L:l

F i: ure 7 1.6
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Fi:ure 7.1.7

approach zero as I -+ 0. If we accePt this to be so, then it fbllows from (2) and (3) that

. A {.r' + /i I - ,4 (.r )A(t)-lim+: lirn /r, t (4)It t-"
Since c is rhe midpoint between x and -{ + lr, it follows that c --+ .r as /r -+ 0. But we have
assumed / to be a continllous function, so ./(c) + J (-t) as c -> x. Therefore,

frn1"f(c) = .l (-r)

Thus, it follows frcm (4) that

A'(x): f(x) (5)

This is the result we were lookilg for; it tells us that the derittrtitc QJ thc urcu.futtttion
A(r'1 is the fiutoion t'hose gruph Jirns thc upper hondar'- oJ the ragion.

To illustrate how the antiderivative method worts, let us apply it to the same problem
we investigated with the rcctangle method-finding the area under -r' : rl over the interval
[0. l]. The upper boundary of the region is the graph of .f(.r) : .r1, so it follows from (5)
that the derivative of the uea l.unction is

(/r)la)

A'(.r) : .r2 (6)

Thus, to lind A(r) we must look for a function whose derivative is.r2, This is called an
afltid.ifferentio.tion problern because we arc trying to lind A (.t) by "uncloing" r differenti-
ation. By simply guessing we see thot

A(.r) : lx3
is one solution to (6). But this is not lhe only solution, since it follows frlm Theorem 6.5.3
that

e1-r):lr3+C (7)

also satisfies (6) for any real value of C. We still have some work to do since this fomula
involves an unknown constant C that must be determined. This is whcre the decision to
solve the area problem for a general right-hand endpoint helps. lf we considel the case
where -r.. : 0, then the interval [0.,r] reduces to a single point. If we agree rhar the arca
above a single point should be taken as zero. then it follows on substi(uting.r = 0 in (7)
that

A(0):0+c:0 or c:0
so (7) simplines to

.4 (.r) = {r3 (8)

which is the fbrmula fbr the arca undel I = r2 over the intelvai 10. -rl. For the area over
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EXERCISE SET 7.I

the inteNrl 10. ll we setr: 1 in (8), rvhich yields A(l) - + fortheexactarea under rhe

cune. This confirms definitely what was suggested nunrerically in Table 7.1.1.

IIL\{ARK. Our success in linding thc cxact alea under-the cuNe -r, : .tl hinged on our
ability to guess at a function A(r) whose clelivative is ,rl. Hacl wc not been able to llnd
such a fLlnction. ther the antiderivalivc rnetho.l woukl have failed and we tvould have been
tbrced to rel), on lIlc reclangle method. Thus, wherezrs earliel in this text we wele concelltecl
with the plocess of .lifferentirtion. we will now also be concerrred with dre plocess of
antidifferentiation.

ln Exercises 1 .1, use an applopliate tbrmula from plane ge

onletry 1() llnd the exact areli between the graph of / and thc

givcn intcNel; and then Lrse the rectangle method to make a

tablc of approximiilions A1, A2. -... A1n to the exact a.ea.

rvhcre A,, is the zrpproxination that r-esults by divicling the

inteN4l into r? subinteNals and constrllcli g a reclangle over
each subinterval rvhose height i! the _r-coorclinatc ol the curvc

LeL'1(-r) :4r -rl. CoDfirm that A'(-r) :.1 2r, ancl

use the anticlerivative method to lind the exact area in Exer-

cise 2.

Let A(.r) :3,r: + 2.r. Conlirm that A'(-r) :6-1 1 2, ancl

use lhe antiderivalive method to lind the exact area in Exer'-

cise 3.

Let A(r) - ]rJl ,r: +.1 sin .r. 'fhen conlirm rhar

A'(\): Jl t l. and use the anlidcrivative method to find
the extct area in Exercise,l.

Use the antiderivativc method to find the exact area belween
the.ur\F \ -, rn,l tlrcintcnrl [0, ll.
Use tlre anliderivative mcthod to llnd the exact area bet\{een
the curve r' : sin-r and the intelval [0. r].

r' - /(-{) at the risht endpoint.

6.

7.

8.

9.l. f(-r) : r; f0. ll 2. l1-r ) =,1 - 2.t; l0 2l

3.7', r,r l2:10.21 4.7'.''=rr-' |u.r|
5. Ler A(r) - .tr/2. Confirm that A'(.r) : -r. and use the

Nntiderivlifivc method to linal the exacl rr'ea in Exercise l.
t0.

7.2 THE INDEFINITE INTEGRAL:INTEGRAL CtiRVE$ AND
DIRECTION FIELDS

In the last se(tion t( s.t\\'lhat dnti.ltJ:lbrentidtiotl pl.t).e dn in4)ortLtnt nie in /lnding
erd(J arcus. Iti tllis settiotl u'c uill tlctclop sonrc Jiulcltullentul resulls ubout dntidiftet-
ctltiatiotl tllat v'ill ultintateb leutl us to s)'stennti( ptorcdures Ji, Jltrlitry a Jiut.tion
li onl its clet i|ati|e.

. 7.2.1

interval
D-l r\lllu\ \lun.li,'nFi..rlleLlrrrrazliderivqtiveo(J lun.lioD / onagtvetl
1 if F'(-r) - .l(-t) firr all -i- in the inteNal.

For example, the functiott F(r) - 1r: is an antiderivative of /(.r) =.r2 on the interviil
(-''-. +'.c) because tbr each,t in this interval

tl---Ft\)- llr'l:r-: /rrt,lr' '
However. this is not the only antiderivative of F on lhis il-Itelva]. lf we add any constant
C to {.rr. tl.ren the furction .[(.r) : ],r3 + C is also an antiderivative ol I on (--, +-),
s ince

ntF'(r): [].r + c] = .vr 1s : 11.ty
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In general. once any single antiderivalivc of a function is known, other altiderivativcs can
be obtained by adding conslanls to the known antiderivative. Thus.

1.". ]-rr+2. J-.t-s. j-'r+€
are all antiderivatives of ./(r) : rr.

\\r\RNi\C. Do not confuse de|ivatives all c1 an litler ivit t ivc s-the ,/cr^.arlilc oflhe lunction

/(-t): rr is l'(,r) = 2.r. but the functioirs F(-i) - j.rr +Care(lnti(lctitutiyesel f .

I1 is reasonable to ask if there irre antidel ivatives of a funclion f that cannot be obtained
by adding some consiant to a known antiderivative F. The answer is /1.) once a singlc
lntiderivative ol l on an interval 1 is known. all other antiderivatives on 1ltal intcrval ale
oblainable by adcling constanls 1o that antiderivative. This is so LrecaLrse Tlteorem 6.5.3 tclls
us thal il 1wo functi(ms have thc salnc clcrivative on an interval, then l]rey cliller bv a constant
on that inteNal. Thc fbllowing theorem summarizes these obset valions.

7.1.1 lllli,,l(l \1. ///'.t i.',t,tt,tttti,L titatit, /.t ir t r . ,t ,ttt t,lt, rrl Lrlt,t,.t,t.t,t
(ottst(lnt C tllc.fiul(tiot1 F(-r) + C is also att qiltid(riydtii'c oJ ./ (.t) on tfult itltctrul.
Moreoycr. aqLlt atttitlerirltiv ol f(x) on thc iittertel I (dt1 be c.\ii'(ssctl in the lomt
F(\) + C b\'(lloasi :4 tllc (otlstutlt C upltropriatel,t.

The process of findilg antiderivatives is ca]tled antidifferentiation or integrotion. Thus. if
I
, lF(r)l:.1(i)

then integrating (or antidifferenlialing) /(.,;) p|oduces the antiderivzrtives F(r) * C. Wc
denote thjs by \\,riling

f ,,',tr-l'.r' r (t)

For example, thc anticielivatives ol / ( r) : .rl are the tunctiots f (-r) : l.i 
r + C, so

f ,.r./' : 1.' + c
.t

The "elongatecl s" that xppears on the lelt side ol (1) is crllecl an integral sign' or rt
indertnitu futegral. the lLnction l(,r) is called lhe integrand, rnd the constant C is called
thc constent of ifltegration. You shoulcl read Equation (l) as 'the inlegrrl of l(r) with
respecl 1o .r is equill 1(] F (-r ) + C. ' The adjcclivc " indcfinite" emphasizes thrt the inte-qration

plocess does not produce a r1c,trir. tunction. bLLt rather a whole set of function\.
The 1.r symbois in the differentiation ancl anticliffelentiation opcralions

,lt
;[ 1 ud /l ]r'

ser.ve to iclentity the independent variable. ll an in.lepen.lent variable other than .r is used.
sry r, then the notalion must bc atijLrslcLl approprialcly. Thus.

,t I
-. | (.r tl- frtl rrrJ I I'tt lt - I11 f
tlt .l

are equivalent statemenls.

thc Lnlirr word 1lrrcs ) lo denote inlegration. Then on Ocrober 29. 1675 lrc s!orr. Ir $,ill b. usclll to wriLe /
j(n orrn.. IIms / t tur omn. { . . . . T\!o or three q'eeks laier he retired the notxtion Iunher and Nrote / l l l-r
rather thrn / .rloire. This notation is !o rL\clirl and so po\cilul thet its d.\'clopmcrl b] Lcibniz must bc rcgrftlcd
rs a orrior milcltone in lhc hiskn v ol marhcmarics rnd scicncc.

ErlriLcl liorr rhe rrlnuscrqn ol Leibniz
dlt.d Ocrob.r 19. l615 in $hich llre
in(e!mlsi!n lir\1 npfci! cd
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Example I

DER]VATlVE
FORMULA

EQUIVALENT
INTECRATION FORMULA

;[:.,..a'-=,.,*c

/ 
l="'=''o*'

fs..rrar=tonr+c
It,, ,,,,, = ,,., *,

f trr =:.'

1 .,[t = ]=/, 
",'

! 1arrl = j,rl

Fol simplicity, the dr is sometimes absorbed into the integrand. For example,

[ , o, can be $ritren as I ntIt
11 Idt
| , dx can be written as /.t ^- J \

Integration is essentially educated guesswork given the derivative ofa function f , one tries
INTEGRATIoN FoRMULAS to guess what the function f is. However. many basic integration formulas can be obtained

directly fiom dreir companion diflerentiation formulas. Some of the most important ones

are siven in Tabie 7.2.1.

Tahle 7-2.1

INTECRATION FOR]\1ULA

r fr,r=r lo,=,.,
'*[#]=r'oi,) /.'u,=[{].. o. 

'r
:. l tsin..t =cos., 

/.""..r.. =,,n.,*.

+ {rcos.rr =s;nL /".,,r,=-*,.,*.
s. 

.r]. 
tran.,;t =,ecr' 

Jfsecz.rrr=tan.r+c

e . { i .ot ,.t = .,"r., 
/.".2 ' 

a., = cot.. + c

:;1,r.*,r =sec,ranr f*..o"',,=*..*.
s. jrt."...l =csc.rcorr 

;fcsc., 
cor..rt. = csc,+c

c !,v't="' I"'o,="'.,
',,i[#]=,' J,',,=h-,
,' 411"1,11 =.1 /*=r.,..

Example 2

The second integration formula in this table will be easy to remember if you erpress it in
\Nords to integrate apower oJ x (othertlun 1),addltothepowerandditideb!theneu,
7ral,el . Here are sorne examples:



PROPERTIES OF THE INDEFINITE
INTEGRAL

7.2 The lndefinite lntegral; lntegral Curves and Direction Fields 3g5

t -3l*2ar:l-+c r:2J3
lrtar-l-*c r=l.1 4

[!0, - [,-ta'. - '-'' - c--] t-cJ ts"' .l " -'" -5i t '- 4r+ ''
I - r , rj+'

J "Ea^ 
: 

J 
ri ctx: -ft *. :!x) ac:iq,f +c ,::

l*-'a':l?=^o,*,
If we differentiate an antiderivative of /(-r), we obtain /(x) back again. Thus,

d f t I
Ell tr'tdx):ftxt

This result is helpful for proving the following basic propefies of antiderivatives.

7.2.3 THEoREM.

(.a) A constant factor can be moved through an integral signa that is,

I cftxt a^ :, I tt^t a*J .t "

(b) An antiderivative of a sum is the sum of the antid,erivatives: that is,

llt
J llrv t gr.+tldx = J Itxtax + J satdx

(c) An antiderivative of a d.iference is the dtfference of the aftti(lerivatiyes: that is,

frt
Jlfrxt - erxtldx - J frttax .l erxtdr

ProoJ. h each part we must show that the expression on the dght side of the equation is
an antiderivative of the integrand on the left side of the equation. This can be done using
(2) as follows:

d l" I r,,,a,f =.d I f rrttd.t]-c[(.,axl'J L'^'""t-'a,lJ ' t

i,ll ,,,,a, r le,*,ar]-*ll r,^,0,f ,*ll ,',,0"1
:f(.x)+cG)

*11,,^,a* - | e,^,0.f- :,ll r,r,o^f- -!,11,,.,0,1

: /(r) _ 8('") I
When applying Theorem 7.2.3, it is best to put in the constant of integration at the very

erd of the computations to obtain the simplest form of the answer. This is illustrated in the
following example.

(2)
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Example 3

Evaluate
fl

@) | 4cosxdx (U) / (x+"')dxJJ

Solutinn (a).
ff
| 4cosxdx : 4 I cosxdx:4(sinr+C) :4sinr+4Ctt

ThcoEm 7.2.idr Table 7.2.1

Since C is an arbitrary constant, so is 4C. However, this latter form is unnecessarily com-
plicated and can be avoided by deferring the insertion of the constart until the end of the
computations; this procedure yields

I 4cos x dx : 4 I cos x dx : 4 sin x * C.I .I

Solution (b).

| {'*,')0, = l,o'* | *0, :f; *, *,
l'.o... i.z.l(a; Tabte 7.2.r

Parts (r) and (c) of Theorem 7.2.3 can be extended to more than two functions, which
in combination with palt (a) results in the following general formula:

I Lct ftk) + czfz7) + '.' 'l c.f,(x)ldx
"ttt(3) :,, J lgta^ +cz J ftxtdx +... +c, J f^u)dx

Example 4

l rr,u -:., rix rt)dx :t l'6a' -z l "a, 
+t | *a, + | ta'

3{ -Y *7!' ** *g3 2 ''"
Sometimes it is useful to rewrite an integrand in a different form before performing the

integration.

Example 5

Evaluate
/ cosr I t2 -2t4(a)/., dx @J t4 dt

Solution (a),

f cos,r f I cosr I
I --:--. dx: I 

--dx= 
| cscxcotxdx.: -cscx *CJ sln'x J slnx srnx 

Fomura I h Tabre ?..:. r
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Sohtion (b).
. -) ^,4l'" !-a,: I ( I-2\ a, = [,,, 2,,t,J f J\r, ) J

r-l I=__2t _C=__ 2t_c
-l I

Graphs of antiderivatives of a function f are called integral cunes of f . We know from
Theorem 7.2.2 that if f' : F(-r) is any integral curve of /(r), then all other integral curves
are vertical translations of this curve, since they have equations of the form y : F (r\ i C .

For example, 1' : {r3 is one integral curve for /(x) : x2, so all the other integral curves
have equations ofthe form ) = !.r3 + C; conversely, the graph ofany equation ofthis form
is an integral curve (Figure 7.2.1).

In many problems one is interested in 6nding a function whose derivative satisfies spec-
ified conditions. The following example illustrates a geomet c problem of this type.

Example 6

Suppose that a point moves along some unknown curve I = /(,{) in the r.r.^-plane in such a
way that at each point ("r, )) on the cuIve, the tangent line has slope x2. Find an equation
for the curye given that it passes through the point (2, l).

Solutiutt. We know that dy/d.r : x2, so

t- [ r'a* = {x. +c.t'
Since the curve passes through (2, l), a specific value for C can be found by using the fact
that ) : I if "t = 2. Substituting these values in rhe above equation yields

1:+(23)+c or c:-i
so the curve is _y 

: lt, - i.
Observe that in this example the requirement rhat the unknown curve pass through the

point (2, 1) enabled us to determine a specific value for the constant of jntegration, thereby
isolatingthesingleintegralcurvey:Jrt-lfiomthefamilyy=+n3+C(Figure7.2.2).

387

INTEGRAL CURVES

|l: i".'
Figure 7.2.1

rr sll = ;I

Fig|urc 1.2.2



388 lntegration

INTEGRATION FROM THE
VIEWPOINT OF DIFFERENTIAL
EouATroNs

d\.

dx
are

, = I xrd,r ='.t

We will now consider another way of looking at integration that will be useful in our later
work. Suppose that /(r) is a known function and we are interested in finding a function
F(x r such rhat -\' = F(.r ) satisfies the equation

,1": l(x't t4t

The solutions of this equation are the antiderivatives of /(n), and we know that these can
be obtained by integrating l(,r). For example, the solutions of the equation

(5)

xl
^ +c

Equation (4) is called a differentinl equation beca\se it involves a derivative of an

unknown function. Differential equations are different from the kinds ofequations we have
encountered so far in that the unknown ts a finction ard not a nLtmber as in an equarion
suchas;2*5.r-6:0.

Sometimes we will not be interested in finding all of the solutions of (4), but rather we
will want only the solution whose integral curve passes through a specified point (-r0. )s).
For example, in Example 6 we solved (5) for the integral curve that passed through the point
(2, r).

For simplicity. it is common in the study of differential equations to denote a solution
ol dy/d.x = /(r) as 1'(-r) rather than F(r), as earlier. With this notation, the problem of
finding a function ),(r) whose derivative is /(x) and whose integml curye passes through
the point (xo..lb) is expressed as

d,'t

dx 
: f @, )('o) = yo (6)

For reasons that will be explained later, this is called an initial-value problem, and the
requirement that ,y(.r0) : )0 is called the initial condition for the problem.

Example 7

Solve the initial-value problem

rlt,

,/, = cost. ),(0) = I

Solrtlion. The solution ofthe differential equation is

. = /.o,,*d" -sinx-C (.i )
J

The initial condition.l,(0) = I implies that.,- : I ifx : 0; substituting these values in (7)
yields

l:sin(0)*C or C:l
Thus, the solution ofthe initial-value problem is _'i. 

: sin-{ + l. <

If we interpret d-r-An as the slope of a tangent line, then at a point (x, )) on an integral curve
of the equation dy/dx : JQ). the slope of the tangent line is /(.r). What is interesdng
about this is that the slopes ofthe tangent lines to the integral curves can be obtained without
actually solving the differential equation. For example, if

,-h,

i=lr'+t
then we know without solving the equation that at the point where r : I the tangent line

DIRECTION FIELDS
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to an integral curve has slope .r4- I : .,,5t ancl more generally, at a point where.r : a,
the tangent line to an integral curve has slope Jn2 + 1.

A geometric description of the integral curves of a diflerential equation d_l/.1-r = ./(r)
can be obtained by choosing a rectangulrr grid of points in the,\1"plane, calculating the
slopes of the tangent lines to the integral curves at the gridpoints, and drawing small por-
tions of the tangent lines at those points. The resulting picture. which is called a direc-
tion fieA or slope feld for the equation, shows the "direction" of the integral curves at the
gridpoints. With sufllciently many gridpoints it is often possible to visualize the intcgral
curves thenrselves; tbr example, Figu|e 7.2.3a shows a direction field tbr the diflerential
equatior r/r /l.r -,r2, ancl Figure 7.2.3b shows that same lielcl with the integrrl culvcs
irnposed on it-the nrore gridpoints that are used, the more completely the direction fleld
reveals the shapc of the integral cuNes. However. the amount ofcomputation can be consid-
emble. so computers are usually used when direction fields with many gridpoints are needed.

Direction field for d\'/d-r = .r:

(d)

Direction field with integral

(.b)

Fieurc 7 2.3

ExERclsE SET 7.2 E] Grapntng catcu ator E cAS

In each palt. confirm that the tbrnula is correct, and state a

conesponding integration tbmula.
d-.t(a) - ly'l +.\'j l= 

-

tl.\ /l+ rl
(b) [rc'l = (.r + l)c'

ln each part, confirm that the stated lornllla is colrect by
differentiating,

| 
* ,in t a r: sin .r- - r cos -Y + C

I d' .,. = !+cJ 1t -.t:,1r'r */t - ..

In Exercises 3-6, find lhe derivative and state a coresponding
integlation fbrmula.

,t 

-
3.;fy'r'+5]

5.;lsin(2r,ur)1 6. 

^lsinr 
xcos,rl

In Exelcises 7 and 8. evaluate the integral by rewriting the in-
tegrand appropriately, ifrequired. and then applying Folnrula
2 in Table 7.2. l.

(a)

(b)

7. Gt llttt
8. tar ./ 

Jxrr/.i

In Exercises 9-12, evaluate the integralby applying Theolenr
7.2.3 and Forrnula 2 in Table 7.2.1 appropriately.

rb) l xstl dt {r't | ,',1a,

or /1a' {,t l,-'t'a,

tu, /, ut lu+7)du
J

9. (a) I *\,'
,l I t I

4' 
,i^ L'.: + i-l

t
lo. 

./ 
r.rrr' - +.r-r/' + 4) d.r
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1r. /(' 
r +.rE 3xttl+xrdx

" I G" vr++vr)ai

In Exercises 13 30, evaluate the integral, and check yoLu an

swer by differentiating.

the tangent line has slope - sin r. Find an equation for the
curve. given that it passes through the point (0, 2).

38. Suppose that a point moves along a curve 1 = .l(r) in the

.rJ'plane in such a way that at each point (x, )) on the cuNe
the tangent line has slope (-r + l)2. Find an equation for the
curve, given that it passes through the point ( 2, 8).

3.1

In Erercise' 3a and 40. 'olve t'e inrrial vrlue J'roh em..

15.

17.

19.

Ittt+x\ax

| ,,/.{z ,), a,

ITT','
Ili*"'10'
/t4 

sin-t + z cos rldr

I V r"r' , + csc ). cotr.l d.r

/ 
,"" 

"{."" 
t * tan r) 1-r

Ili-'' ""0]aa

/ J*,,,
Il + sinz o cscal.lo

Evaluate ihe integral

/, **,'

to. I lr * r.)' n,

ta. lr*,''{, ,1n,

n. l!! r,

^ Il+-"a"'fa,

24. 
./ 

sec r ttrn r +cos r )d.Y

,u. ILJ csc I
tf ) 1

28. I ld+ - lddJ L sLn @l
t" rin 2r

30. f 
-2t

dt'
an. hr 

,f , - J\. 1(l)- 2

lt, r + I
{e ) -:: -:. \11):0.lt J.r

,ro. ror 4 :1. u,,,:n,.lt (2r )r

dr' 1(b) r, -;, r( 1)-5

2t.

E J2.

23.

by multiplying the nuDerator and denominator by an ap

plop ate expressjon.

For each of the integrals you evaluated in Exercises 13 3l,
use a CAS to check your answer. Ifthe answer produced by
the CAS does not n]atch yours, show that the two answers

are equivaient.

(a) Graph some representative integral curves of /(-r) : -r

(b) Find an equation for the integral cuNe that passes

through the point (4, 7).

(a) Graph some representative integral curves of the t'unc-

riou J6): e' 12.
(b) Find an equation for the integral curve that passes

through the point (0, 1).

L .e r gmphing r tility to gener.rle {ome repre.ent,lti\ e inte
gral curves of the function l(r) -:.ta - seclr oveL the

lntejiva] (-n 12, n l2).
L:.e a grrphing utility lo gene.ate \ome reple.enlltire irte
gral curves of /(i) : (-r - 1)/-t over the interval (0, 5).

Suppose that a point nioves along a cuive l : /(r) in the

x--v-plane in sr.rch a way that at each point (J., )) on the cuNe

dt' . ,Jz\,b,, .ec / .irr,.t{,} I
tt
dt(c) , :1 V\', l(0):i)

41. Find the general fbm of ir function whose second derivative
is "Jq.lHint: Solve the equarion l"(r) : 1C fbr l(-r) by
integrating both sides twice.l

42. Find a funcrion / such that /"(-t) - ,r + cos.r and such
that /(0) - 1 and /'(0) - 2. [,ryltr. Integrate both sides of
the equation twice.]

ln F\erc r.e.4.l .,15. n nd rn equrtion n'r he crrrve thi r .irtisie\
the given conditions.

43. At each point (.n. )) on the cuNe the slope is 2n + l; the
cuNe passes through the point ( 3.0).

44. At each point ()r, )) on the curve the slope equals tl're square

of the distance between the point and the )-axis; the point
( l. 2) is on the curve.

45. At each point (-r, ]) on the cuNe, ) satisfies ihe condition
dzyldt2 :6r; the line 1 - 5 3,{ is tangent to the curve

at the point where r : l.

46. Suppose that a uniform metal rod 50 cln long is insulated
laterally, and the temperatures atthe exposed ends are main-
tained at 25'C and 85'C, respectively. Assune that an -r-
axis is chosen as in the accompanying llgure and that the

temperatuie 7(r) at each point r satisf,es the equation

tl2 T

-:0dx2

Find I(.r) for 0 : jr < 50.

25"C 85'C.
-reln>050
Figure Ex 46

29.

31.

E 3s.

E 36.

37.



7.3 lntegration by Substitution 391

47. (a) Show that

F (r) : * (3.r * 4)r and c1,r) : ]r'z + 4-r

difler by a constant by showing that they are antidedva
tives of the same tlnction.
Find the constant C such that F(-r) G(,r) : C by
evaluating a(r) and G(-r) at some point -r0.

Check your answer in part (b) by simplifying the ex

6) | s,n2ix /z) a,r tbt 
/c.,srrxrlr,Jr,

(b.)

52. Let F and G be tite funcrions defined piecewise by

[,., o 1r,2. r'o/1r1={ and Crrr={
I, r 0 l,t, \ 0

(a) Show that F and C have the same derivarive.

(b) Show that G(;;) I F(.r) + C lbr any constarlt C.

(c) Do pafis (a) and (b) violate Theorem 7.2.2? Explain.

53. The speed of sound in air at 0''C (or 273 K on the Kelvin
scale) is 1087 ft/s, but the speed u increases as the temper-
ature T rises- Experimentation has shown that the rate of
change of 1) with respect to 7 is

dt_108irtit
dr 2J2i3

where r is in t'eet per second and 7 is in kelvins (K). Find
a fbrmula that expresses I as a iunction of Z.

lc)
pressionlt(r) G(ir)algebraically.

48. Follow the directions of Exercise 47 with

r25f (r\ - 
- 

irnJ 6\r J.r 15 t +5

lI I xerar.e. 4(r -lld :0. u.e J tflpnronretri! idenlil\ lu help
e\,aluate the integral.

il
49. / t.rn-r /r 50. / cor r../r

JJ
51. Use the identities cos 2d : I -2sin2d:2cos2(J l ro

help evalulrtc the integrals

{I.SUBSTITUTION

7.3 INTEGRATIOI\ EY SUBSTITIJTION

In tllis seclioll re \rilL stu(h Lr technique, call.ed substitution. tlldt can often be trsed to
transfonll compLicated intagration problems into simpler ones.

Tl]e methocl ofsubstitution can be motivated by examinine the chain rule tiont the viewpoint
of antidifferentiation. For this purpose, suppose that F is an antiderivatjve of / and that
g is a differentiable function. The chain rule implies that the derjvative of F(g(r)) can be
expressed as

d
/l [F(s(r ))l : F(s(rr)s(r)

which we can wdte in integral form as

/ F'(8t1))B'(r') dr : F(S(\)) + C (l)

or since F is an antiderivative of /,

/ /(g(.r)rs trtdr = FtS(r)) + C (2)

For oul purposes it will be useful to le1:' - g(.r') and to write ./r/d-r : g'(;) in the differ-
ential fonn du : g'(r) dr. With rhis notation (1) can be expressed as

The process of evaluating an integral of fbrrn (2) by converring ir into form (3) with rhe
substitution

4 : g(.r) and 61y1 : g'(x)dx

rs called the rnethod of u-substitution. The following exa[rple illustrates how the method
works.

I tr,t,t,, : Ftut + c (3)
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Example I
Evaluare /tx2 + I )'u 2r dr.

.t

Solutiott. If we let r : x2 + l, then du l dr : 2x, which implies that dlz - 2r dr. Thus,
the given integral can be written as

| {,' + t)'o .2" a" : lu'ua,: #*a: 
(r2 1 1)5r+c

u=r+9
du: l dr-dr

r ,, I ., ua t.r Sr'a

.l 
,, 8t'dr-Ju'drr- )4rC- A +C

It is important to realize that in the method of ,-substitution you have control over the

choice of r, but once you nake that choice you have no control over the resulting expression

for dri. Thus, in the last example we chose u : 't2 + I but du - 2x dx \vas compuled.

Fortunately, our choice of r, combined with the computed du, worked out pedectly to
produce an integral involving a that was easy to evaluate. However, in general, the method

of ir-substitution will fail if the chosen a and the computed d& do not produce at-t integrand

in which no expressions involving r remain, or ifyou cannot evaluate the resulting integral.

Thus, for example, the substitution , - x2 + 1, du : 2r dr will not work fbr the integral

/ (r2 + lt5o 2xcosrdr

because this substitution results in the integral

I utn ,n, * ,]u
J

which still contains an expression involving r.
In general, there are no hard and fast rules for choosing ir, and in some problems no choice

of ir will work. In such cases othermethods need to be used, some 01'which will be discussed

later. Making approp ate choices forl'l will come with experience, bu1 you may find the

following guidelines, combined with a mastery ofthe basic integrals in Table 7.2.1, helpful.

Integration by Substitution

Step 1. Make a choice for ir, say z = g(r).

Step 2. Compute du/dx = g'(x).

Step 3. Make the substitutionr,l - g(x),du: g'(.x) dx.

At this stage, the enlir.e integral must be in terms of a; no jr's should remain. If
this is not the case, try a different choice of r.

Step 4. Evaluate the rcsulting integml, ifpossible.

Step 5. Replace z by B(r), so that the final answer is in tems ofx.

Example 2

The easiest substitutions occur when the iDtegrand is the derivative of a known function,
except for a constant added to or subtracted from the independent variable. For example,

rl
I sin1.r '9;dr - | ''inrrdu --co\a rC= co:rr 9r lCLt



7.3 lntegration by Substitution 393

Another easy r-substitution occurs when the integrand is the derivative of a known
function, except for a constant that multiplies or divides the independent variable. The
following example illustrates two ways to evaluate such integrals.

Example 3

Evaluate / cos -5r ,1r.
.t

Solutiort.
I I I Ir I r
I cos5.r /.r: I (cosr.i). dr- I cosudu = sinz*C=:sin5r*CJ I 5 sJ 5 s

z :5r
.lu:5d\ot,1\: +.tx

Allcrnntivc Sulution. There is a variation of the preceding merhod that some people
prefer The substitution ll : 5x requires dri = 5 dx. If there were a factor of 5 in the inte-
grand, then we could group the 5 and dr together to form the d& required by the substitution.
Since there is no factor of 5, we will insert one and compensate by putting a factor of i in
front of the integral. The computations are as follows:

f tf tt t r

I cos5rdr - - / cos5.r.5dx - - | cosudu - _ sina*C=;sin5r lC {J sJ sJ s 5

oi ]_l',,

Example 4

Evaluate / sin2 t cosr,lr.
J

Solulion. If we let u = sin;. then

du so dr = cosx dx
dx

Thus,

f - I " u' sinlr
./ 

sin'xcosxr,/x: .l u'Ju - J l-C= 3 f C

Example 5
r "J,

Evaluate / :- dx.
J \/x

Solution. If we let ,, : .n4, then

dulll---=- so du=- dx or 2du:- dttlx 2Jt 2J* Jt
Thus,

r.,G r t

J io' - J 
ze" au :2 

J 
t du :2e" -rC :2ei - C

Example 6

I o^ 
^- t+=t[,,a,=-3.u-.-c=-](f"-a)', cJ 1rx- s;' J u: I 4 4\3 t

,=1'-8
da : \.rx or dx = 3ttu
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Example 7

With the help of Theorem 7.2.3, a comptcated integral can sometimes be computed by
expressing it as a sum of simpler integrals. For example,

/ (i *'*'",; * : I + + | sec2 max ="lxt + I se,; nxa,

:lnlxl * | [ru'udultJ
I

).!.i:.:.!.:y"l::-*:

: ln lrl + f tanz + C: ln lxl *ltanz.r+Clfn

Example 8

Evalvte I ta fl-;- 51s 41'
J

Solution. After some possible false starts most readers would eyentually hit on the fol-
lowing substitution:

| '^irr so a,: -* I vnd,: -* I nh d,

t-' ,=i_i,; - ^:
j !: - _?::' 

d: 
?: : E !: 

=.1 
!:.:

=-!**, = -LB-st \ot'+c254/3'- t00\-

Example 9
f ^-Evaluate I x'Jx-1dx.

J

Solution. l3t
u:x-1 so that du:dx ()

From the first equality in (4)

12 =(ull)2:u2 +2u+1
so that

[ ,'Ji tar: [{u'*zu+l)Jidu= [6srz + 2u3t2 +uttz)duJ J J'

= ]u7/2 + luslz 12uttz 4 g

: 2, {x - t)1/2 + tl, - t15/2 + }{, - t)3/2 + c

REMARK. Not every function can be integrated in terms of familiar functions using z-
substitutions. For example, you will not find any ,-substitution that will integate

I sin(r2t a,
J

in terms of functions encountered thus far in this text (try).
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The advent of computer algebra systems has made it possible to evaluate many kinds of
integrals that would be laborious to evaluate by hand. For example, McLthemoticct, Maple,
and Derive all produce the ibllowing result in a matter of seconds:

/ r/2.r -.tr.1.r - |tr- ttr,/Jr -.rr - + sin-r{ I - r) I C.t'
However, just as one would not want to rely on a calculator to compute 2 + 2, so one
would not want to use a CAS to integrate a simple function such as l(,r) : r2. Thus, even

ifyou have a CAS. you will want to develop a reasonable level ofcompetence in evaluating
basic integrals. Moreover, the mathematical techniques that we will introduce for evaluating
basic integrals are precisely the techniques that computer algebra systems use to evaluate
more complicated integrals.

FoR THE ltl:,\DER. lf you have a CAS. use it to calculate the integrals in the examples
of this section. lf youl CAS produces a form of the answer that is different liom the one

in the text, then confirm algebraically that the two answers agree, Your CAS has various

commands fbr simplifying answers. Explore the effect of using the CAS to simplify the
expressions it produces tbr the integrals.

In Exercises l-4, evaluate the integrals by making the indi- (")/ii',:'"..
{d) /e 

5'a't rr = -s'

f"l / ffiaa; l: r lcos3d

4. @ Jx"n+rttx; Lr:tax

rut 
;[lc.cr''in.tr):cos 

r/r: a: sin t

(c) 
/e'""'secrr/r; 

a : tan.\

fal I e'''[ + a att Lt : t + e2l

r", /{{a', t,=.r'+l
J.\--rr

In Exercises 5-36, evaluate the integrals by making appro-
priate substitutions.

cated substitutions.

l. rur 
;l 

:r ('r + l)" dr: ,:.rr- |

tbt /cosl rsin.rr1.\; r/ : cos.\
J
f1

{c) ;l ,U 
srn J.t /r, ,, : Jt

(d, /+, rr:4r'r+5
J V4rj +5

4l

rer /i ,r1.t: t,:r'-4
J\

2. (at / .ec:t4.t + I) r/.\: /r = -l.r + |

J
t

rtr / 
\\/t '2tr.1': r, - lt2i'

t_
tct ;l r/sinrucoszUJe n =sinnq

(e)

3. (a)

(b)

l{r' *r),rt *r, * 3\a/5 dx: u:r:+7,r+3

[ "' ,t.r, r: I+?'J I +e,

;f 
.ot 

".r"2 
t ,/t; , - "ot,,

/{t +"inr)eco.ral; rr: I +sin,

(d)

l - I d.t5. I e:'1, 6. I -.l J 2.t

t. l,e-,')'a, t. frz' r)5d.{

9. / cos 8.r ,1-r 10. / .in lx dx
JJ
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I l. 
/ 

sec 4r tan 4.t 1.r

n. ltJtt,+nar
rs. I l:,?.

J ., ..,, + t

n. [ -:-,t"./ (4.r * l)'
19. 

;f 
c'i" ' cos.r d.r

n. | ,'n '" d'

I srnt5/ r t
2.r. / , ,i.,

zs. 
/.rr,ec2l.rr),/-,,, T,:

29. 
/ 

sinj 3r cos 31 1r

t_
31. 

./ 
eo. +n Jl sin.lg,/P

33. f il".r 2.. tan z-, ,/-,

rs. I l=,r,

/ ,..' :-- a'

l3+7,.
/.jt"
;[ 

r 
"o,{:.,']) 

a-,

| ,. "'' 
a,

I1]=,'

37. For eacb of the integrals you evaluated in Exercises 5-36,
usc n CAS to check your answer. Il'the ansrver ptoduced

by the CAS does not match your orvn. shorv that the two
rnswers are ecluivalent. fSuggestion: You may be able to
obtain a natch by appl,ving thc CAS silnpllty" commands

to thc answer.]

ln Exercises 3ll and 39. evaluate tlle integrals assuming that

,? is ii posilive integer and D 10.

J8. I V,r + b.! /r t/' + 0)

39. l:in'ta+h')cr,sid+l'1 )./ \

40. Use a CAS to check the answers you obtained in Exer-

cises 38 and 39. Tf lhe answcr ploduced by the CAS does

not match yours, sholv that the two answers are equivalent.

lSLrggestiott: Mathenratlca usels rliry find it helpful to apply
dre Sinrplify command to the answer. I

In Exelcises 41 and 42, evaluate the integrals by making the

inJ:cJlrd.r\'lir. i,'n.

l_
,11. / iJr 3Jt: ir:.r -l

42. / }.r:r+lJ v/r + |

The integrals in Exercises 43-48 are a ljttle trickicrthan thosc

vou liave encountered thLrs far. To evalurtc these integrals you

will have to apply a trigorometric idenlity or l1ro.lily the lblm
oithc integrand algebftlicllly belor-e rraking a sLrbstitution.

+J. f rn.. ..e.rr cl. [ 'i,, z,t .t,tt
4s. ['-l tlt 4t.[, .r^

It.l
.tz. / ttr,L ) t.,,c )1,t, 18. f ..,rr ,/iLt
:19. (a) Evaluate the integrril ,/ sin r cos ,v d.r by two methods:

first by letting r : sin.r. then by letting,l : cosr.
(b) Explain why thc t$'o apparently dil'l'eretll answers ob

tained in part (a) are really equivalent.

50. (a) Evaluate /(5-r 1)rr1r by two methods: first square

and iilegrate, then let L : 5-r L
(b) Explain wh]' the two apparently clifferent answers ob

tained in part (a) are really eqLlivalent.

lr L\cr.i.e. 5l .rrrJ 5'..ol\e lhe iriliil rr ueplnhletrrs.

r/r
51. 

-:r/3ril: 
r'(l)-5

tl.x

52. tu:6-5:in2r; t(0):l
53. Find a function f such dlat the slope of the tangent line at

ru p!,rnr r,. ) , n r lne cl f\e , -./,.Y lr /lr ' t.ararte
curve passes through the point (0. l).

54. Use ii gliiphing utility lo generate some typical inlegral
ctrrvcs ol l(-r) : r/(r2 + l) over the interval ( 5. 5).

55. Suppose that a population p ol tlogs is estimated at the start

of 1995 to be 100.000. and the growth model for the popu

lalioi assumes that the rate of growth (in thoLrsands) after I
years will be p'(r) : (4+0.15r)r/2. Estimate the projected

population at the start ofthe year 2000.

14.

16.

20.

22-

'' /*;F"
26. I cosi 2t sir 2t tlt

28. 
J ,,'; 

,t.,

I sin l0l,[. I 

- 

tlH
./ (5 i e ts 29)'

32. 
;f 

t,rnr 5. .""t 51 1t

:,1. 
;/ 

Lstnisin6)l cos a rta

". 1;;
tr

E

tr
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7.4 SIGMA NOTATION

In tllis secliotl we v;ill digress briefl) fron the nain tlrcne oJ this chapter to inrnxhrce
tl tronliotl thol can be used lo trrite lengtht suns itt u t otttlttrt t .forn. Tltis uaterial
w'iLl be needed in 'aunl ol the later cllapters.

The notation we will discuss ilr this section is called srgrza lntation or suflmatinn notatiotl
because it uses the uppercase Creek letter E (signa) to denote Yarious kinds of sums. To
illustrate how this notation works, consider the sum

t:+2r+32+42+51
in which each lerm is of the form &:, where I is one of the integcrs fiom l to 5. In sigma
netation his sum can be written as

5lr:
which is read "the summation of ft2, where k runs fi'om I to 5." The notiltion l(]lls us to
tbrm the sum of the terms that result when we substitute sLrccessive intege|s tbl k in the
expression k2, starting with k = t and cnding with k : 5.

More generally. if /(l) is a function of t. and if m and n are integers such thal ,r : ,r.
then

+
Lt(kt rl)

denotes the sum ofthe terms that result when we substitute succcssive integers lirl. t. staning
with k : zr and ending with t : n (Figure 7.4. I ).

Example I
8

!t3=+:+5r+6r+73+8r

\-.r.-'.I a.1-r. r r1.4 -r2.5_2 F4-r6-.r8-r tu
l-l

5

Itzt + r.r :1+3+s+7+9+ rl
t:0

5

lr-t)*{zr+ l) = I -3+s-7+9- lt

Endlng -------------r

vaueofl +

n

Ji,:,':H -I rt*r
I. _ -^-

Startine
valle of I J
Figure 7.4.1

I

It':t 3)t+(-2)3+( I)3 + or * tr : -2? - 8 -

-l /kn\ n 2n 3z
) {sinl _ l:.in _ -lsin _ +-lsin-? \.s/ s 5 s

I +0+ |

The numbers m and a in (l) are called, respectively, the lower a\d upper limits oJ

sammation, and lhe letter k is called the index oJ sumtnalion. It is not essential to use & as

the index of summation: any letter not rcserved for another purpose will do. For example,

v'I r-l "-^ s-l
!i'L,:,j' 2,
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all denote the sum

lltlll+-+-+-+-+-23456t
If the upper and lower limits of summation are the same, then the "sum" in ( l) reduces

to one tem. For example,

]I
\-rr=zr und \- I 

- 
I 

=-L3 ?1 i!2 t'1 2 3

In the sums

562

lz. fz. and fxl
i:t l=l j=o

the expression to the right of the X sign does not involve the index of summation. In such
cases, we take all the terms in the sum to be the same, with one term for each allowable
value of the summation index. Thus,

5

\-r-r-r-L)--Lr-L)1-'-'
i:l

6

\-7:7-r-: r z*'l1,'
t:l

2

\-.r _ -t, "1 , _l
1-^ -^ r "j:0

A sum can be written in more than one way wirh sigma notation by changing the timits
of summation. For example, the sum of the 6rst five positive even integem can be written
in the following ways:

lzr=z+++o+a+ro
k:t

4

Itzt+zy:2+4+6*8*lo
t=0

6

l<zt-zl=2+4+6+8+10
k:2

On occasion we will want to change the sigma notation for a given sum to a sigma notation
CHANGING THE INDEX OF

;i,fiiiiliilti"' ""* "' with different limits of summation. The following example illustrates a method for doing
this.

Example 2

Express

1

\- st-2
t:3

in sigma notation so ftat the lower limit of summation is 0 rather than 3.

Soltttiott. If we define a new summation index j by rneans of the formula

j:k-3
then j runs from 0upto4as & runs from 3 up to 7. From (2), t: I * 3, so

(2)
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j=o

As a check, the reader can verify that

41

fs;+t anO !5I-2j=0 k=3

both denote the sum 5 + 52 + 53 + 5a + 5s.

REMARK. In the solution of Example 2 the summation index was changed from k to j . If
it is desirable to keep the same symbol for the summation index, we can change the j back
to k at the very end and express the flnal result as

44

f 5r+r instead of I5i+rr=0 j=0

When we want to represent a genetal sum we will use letters with subscripts. For example,

a general sum with five terms might be written as

at+a2+q+a4+as
or in sigma notation as

555

l'*, Do', or la^
t=l j=l m=t

A general sum with rl terms might be rvritten as

bt+b2+"'+b"
or in sigma notation as

Duo, Dr,, or Db-
k=t j=t n=t

The following properties of sigma notation will help to manipulate sums:
PROPERNES OF SIGMA NOTATION

We will prove parts (a) and (b) and leave part (c) as an exercise.

Proof (a),

-L
lrol: ror 4 ca2 + . - - I can : glst la2+"'+a,') :"Doo

7.4.1 THEOREM.

@) lcq:cLa*

@) D@*+bD:La*+L4

@ lap-b,r:Dak-Lbk

744

f sr-z = !stj+:r-z: f s;+t
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SUMMATION FORMULAS

Proof $\.
.1-
Ital- bqt - \at I btl I lazI bzl +. - (an -b"l
k:1 : (qr + az+ "+a")I(br*bz+ "+b")

-\-",. r\-t' I1,'^ 1, " ^
l:1 k:t

REMARK. Loosely phrased, this theorem slales. A constant factor cqn be moved through
a sigma sign; sigma of a sum equals the sum of the sigmas , and sigma of a diference equals

the difference of the sigmas.

The following formulas will be used in our later work.

7,4.2 THEOREM.

,rr \-l: t+2+3- ...r n-'ZJ
i:l

n(n t 1)

2

n(n*I)(2n+1)
(b)

(.)

\-t2: t2 +22 +32 !...rn2:
ZJ

f t3 : t3 +23 +33 t...rn3 :
k:l

6

f n(n 't \fzlrl
We will prove parts (a) and (b) and leave part (c) as an exercise.

Proof (a). If we write the terms of

L
Lk=t+2-3+.. t {,? 2J ttn-lt-n
k=l

in the opposite order, we obtain

-L
\*- n+\n- ttI tn- 2)- -3+2- |

Adding (3) and (4) term by term yields

_!_
2) k-tn +l)+(,1 | l) +(,+l)+.. -(r rl)=r(r+[)

ll-----.----:-
fl terms

Thus,

J-. nln+t)
\ k:-42

Proof (b). This proof begins with a fick. Since

(r+ 1)3 k3:k3 +3k2 +3k+r k3:3k2 +3k+1
we obtain

ft{t + t;' - k3l : LGk2 + 3/r + 1)
k:r l-l

Writing out the left side of (5) yields

[23 - 13] + 133 -231+t43 - 331 +...+ [(z + 1)3 - n3]

(3)

(4)

(s)

(6)
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Observe that in (6) the 23 in the fi$t term cancels out the -23 in the second tenn, the 33

in the second telm cancels out the -3r in the third term, and so forth, so that the entire
sum collapses like a folding telescope (hence, is called a telescoping sum'),leaving only

JL
-t + (, + 11' : lr3k'z+ -r& + l) (j)

t:1
or, from Theorem 7.4.1,

1*(n*r)3 =3Dk2 +3Ik+II (s)
t-l k=t t=l

But

)-r-r+1+..+r:,?
l=l , te-rms

and by part (n) of this theorem

l[-, ntn + ll
1,'-
k:l

Thus, (8) can be wdtten as

,1- t,rn I ltl lir l lt -3lA' -l , +rr
k=)

Therefore,

" r T ",,, lt I
|t,-^|i,r+tr J'""^'" rr IlrI

= 
JL 2 )
n.]-l

- , -[20, - l) 3n 2l

l?rl^ n\n l)(2a- l)
= 6 

t-tt- -tti 

-OExample 3
30

Evatuate lrit + t).

Solutiott,
30 30 30 30

Irlr + r; = I(r'? +ft) - f t' + f t
t:l {:1 i=l k=1

tOt 1l tr6l r l0(l l)
- I - g0)0 -n.o.ctu/42 r.rr,b 2 --

RFN{AItK. In formulas such as

(-/.2_r(r+l)(2t+1)
2"- 6

OI

n(n l)(2n I)
I li " 1it- -- 6

the left side ofthe equality is said to express the sum jn open;fonn and the right side is said

to express it in c/os ed fotm, the open form just indicates the terms to be added, while the

closed form is an explicit formula for their sum.
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ExERcrsE SEr 7.4 E cAS

Example 4

express f (3 + l)2 in closed form.
t:l

Solutittn,

f{:+tr':Le+6k+k2) =f o+olt+f /
a(rr * l)

=9rr*6 ^ *
l. 7, 73

= -tI'+ -tI- + -tl326

*=l l=l /<= I

n(n+l)(2n+l)
6

FOR 'l llll RF \l)lrR. Your numerical calculating utility probably provides some way of
evaluating sums that can be expressed in sigma notation. Check your documentation to find
out how to do this, and then use your utility to confirm that the numerical result obtained
in Example 3 is correct. lf you have access to a CAS, then it provides some method for
linding closed forms for sums such as those in Theorem 7.4.2. Use your CAS to connrm
the formulas in that theorem, and then find closed forms for

\- lr rn,t \- t 5

1- LJ
l=l t=l

Evaluate
3

(u) It'
(d) tr
Evaluate

1 t_
z2)

5

(ar f 2"'-,

6

(b) t(3j - l)
.t

(") I(-2)*

l-3+5 7+9-11 10.

tltl
-1 + - - - + - -2345

r 2tt 3tt
I +cor- +cos- +cos-'7 17
(a)

lllll--+- -+-2345I

(c) t(t2-i)

(f) | sin nz.

(c)
20

\- -21,'

t0

I cos tz.

11.

12.

13.

2.

Express the sum of the even integers from 2 to 100 in
sigma notatioD.

Express the sum ofthe odd integers from I to 99 in sig-

ln Exercises 3 12, write each expression in sigma notation,
but do not evaluate.

3. 1+2+3+.. +l0
4. 3. I +3.2+3.3+...+3.20
5. 1.2+2.3 +3.4+ . + 49.50

6. I +2+21 +23 +21

7.2+4+6+8+ .. +20

8. 1+3+5+7+. +15

ma notation,

14. Express in sigma notation.
(a) at -a2+at-aa+a5
(b) -bo * br -bz*bz-bqtbs
(c) aoIatxIazx2 +. +ahx'
(d) as + alb + a3b2 + a2bJ + Lba + b5

ln Exercises 15-22, use Theorem 7.4.2 to evaluate the sums,

and check your answe$ using the summation feature ofa cal-
culating utility.

(b)

(f)

5

It-tl

f tn,

(b)

(e)

29

Ir'
20

Lr'

100

\- i.1-'
t=3

6

\-r4kr-2t+t)12

16.
I O{)

!r
l0{)

ftrt + ty

15.

18. 19.

77.



nll'2
26. )- "

En
,,n F ('-" 2n'

zr. fill 2)(r+2) zz. f{r ir)
l=r t=l

In Exercises 23-28. express the sums in closed form.
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/b\ j - I a. lhe louer'.rrrr't ol .urlmrliun
rc' j - 'a. lhe loue| lrrnir ot .u mrli.,n.

Exprcss

\- r rr+ll-'
t=5

in sigma notation with
(:-r) l. - I rs the In\ er lrnir ol \u nm.l:on
rbl I - ll ir. lhe upper l.rtit nl'urrnation.

Change the limits ol surnmatjon appropriately to simplify
t2

rLt \- oi 6

Sho\! that the sum ofthe fi1st7r consecutive positive odd inte
gers is nl.

The accompanying llgure shows a square that is n units by
r units that has been subdivided into a one-unit square and

l I "L-shaped" regions. Use this figure to deiive the result
in Exercise 40.

23. I(4,t - 3) 24. Lk2 25. i4
f-" n

,8. i(l ")Ei'i tt | 
-r9.

I

2k

tq 29. For each o1 the sums that you obtained in Exercises 23-28,
use a CAS to check your answer- lf the answer produced

by the CAS does not match your orvn, show that the two
answer s arc equival.]nt.

30. Let

s: \-".r1-
{:0

Slrow that S rS-a ar''+t and hence that
- --r'r'l

Yo,-!,"' r,ttt
=,tr

(A sum of this fornr is called. a geometric sunt.)

31. In each part, r-ewrite the sum, if necessary, so that the lower
limil is 0. and then use the tbr-mula derived in Exercise 30 to

evaluale the sum. Check youranswers using the summation

fearure of a calculating utility.

tat )- sin I )

3, \r-r0i

42. Solve the equation ff :465.
(:l

40.

41.

@ 32. In each part, make a conjecture about lhe lirril by using a

CAS to evaluate the surr tbr r : 10. 20, and 501 and dien

check your conjectule by using the formula in Exercise 30

to express the sum in closed 1brrr, and lhen finding the limit
exactly.

In Exercises 33-36. express the function of n in closed form.
and rhen use L'Hopital's rule to llnd the limit. lNo/e.'
LH6pital s rule was derived lbr flnctions ol a real-valued

variable x, whereas here the \ariable /? assumes only integer

values. Thus, strictly speaki[g. L Hdpital's rule cannot be

used without j ustilying that it applies to functions of integer

valued variables. We will do this later in the text.l

:0 l0 100

(") t3^
,=l i=i

(b) 12* (.) t( 1)**'

l+2+-l+ +/r

When part of each term of a sum cancels pafi of the next
term. leaving only portiol'ls of the first arld last tenns at the
end, the sum is said to telescope.lnExercrses ,13-46. evaluate

-l! r I rr
tbr hm ) l:lit, + E \1/

r.rr lim \-1
n , t, 12 )t

-3s. ri- i1
"- +' fli n!

the telescoping suln.

50 /.,:-- / I I \

!(l r+r l
r00
\-, )l+r 'rl ,

43. Ir:^ 3'')
[=t
t0.
\-/-- ' \
,_.- \k, (l I)r/
(a) Show that47.

33.

3,1.

I irr

lim
12 122 132 +...+ it)

n3

Express I + 2 + 22 + 23 +21 +25 in sigma notation wjth
rdr j - 0 r. lhe louer l'nit ol .umrnlLtiLJn

l.t'1.5' (2, ' l)(2, + l) 2n i I

lo'''
t t/ | l \l

,la l'2,, l) :l:,, t 2n t))

lb) Use the reslllt in part (a) to find

qq-I

.16. ri", $4
'-+ li n)

Ficurc Ex,li

37.
.-+-?'1 (2k 1)(21 + 1)
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48. (a) Show that ys.:r",/Yo
-t, = / ,1

i'': (i',)',+l

(b)

(c)

49.

tJ-: r t 4 ,ttr - )

lou,,, ' :! I l
L ,?(,r+lr n ntI

(b) Use the result in paft (a) to find

tl,''. f i
,,- ," 

?,=1 k(k + lJ

By writing oLrt the sums. deten'nine whether the following
are valid identities.

(bl

Which of the follou,ing are valid identities?

, ., \-., r- \- - \- r.
'",.2'",',1'"11'''l

51. Lel ,i denote the arithmetic average of the l'/ numbel.s
,rl1,rt. ... ! -r,. Use Theorem 7.4.1 to prove thal

\-,' ir:n1,'

52, Plove part (.) of Theorem 7.;+. L
53. Prove paft (c) ofTheorerr 7.4.2. F1l,?t..Begin with the dif'

ference (fr * l)a tr and l'ollow the steps used to prove pafi
(&) of the theorem.l

54. An altisl wants to creale a rough triangular design using
uniform square tiles glued edge to edge. She places n tiles
in a row to fbtm the base tl1'the triangle and then makes each
successive row two tiles sholterthan the preceding row. Find
a formula 1br the number of tiles used in the design. l,ryirl:
Your answel will depend on whether n is even or odd.l

55, An artjst wants to cleate a sculpture by gluing together uni-
fbrm spheres. She creates a rough rectangular base that has

50 spheres along one edge and 30 spheres along the othel
Slle then creates successive layers by gluing spheres in the
grooves ofthe preceding layer. How lnany spheres will there
be in thc sculpture?

(x)

A DEFINITION OF AREA

7.5 Tt-{E ffi HF'Nr,{lTlE INTF"*lt,t},l

Recall Jrom the ir{onncLl discus.tiotr in Section 7.1 thot if a fLulction f is cottruuous
o1d not lagatiNe on (ut ittervdl [a, bl. then tha area under the grcLph oJ J over the
inlerval la. bl ctut be obtairtecl by, either the "rectangle ntethod" or "the ltiderivatie
netlutd." In this section we wi discuss the rectangle method in nore detoil, and vle
n,ill introtluce tlrc concept oJ a "deJinite itegrrLl," which.till link the conc:ept of area
to olher i lport.tnt concepts sLrcl1 us Lengtl.L, voLume, densitt, probahility. ancl work.

Our first goal in this section is to define formally what we mean by the alea of a region R
that is bounded belorv by the -t-axis, bounded on the sides by the vertical lines r : ,, and
J; : D, and bounded above by the curve ) : /(-r). where / is continuous and nonnegative
on the interval fa. Dl (Figure 7.5.1). We will starr by deiining the area of a rectangle to be
the product of its length and width and defining the area of a region composed of finjtely
many rectangles to be the sun of the areas of those rectangles. To deilne the area of the
region R. we will use these deilnition s and the rectangle rnethod of Section 7. I . The basic
idea is as follows (Figure 7.5.2):

Divide the intelval la. bl into,? equal subintervals.

Ovel each subinterval construct a rectangle whose height is the value of / at any point
in the srhinierval

r The union of these rectangles forms a region R,, whose area can be regarded as an
approximation to the "area" A ofthe region R.

. Repeat the process using more and more subdivisions.

Fisure 7.5 l
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. Define the area of R to be the limit ofthe areas of the approximating regions, R,;that
is,

A : area(R) : 
"lim-[area(R,)1

To make all of this more precise, it will be helpful to capture this procadure in mathematical
notation. For this purpose, suppose that we divide the interval [a, b] into n subintervals by
inserting r? - 1 equally spaced points between 4 and b, say

Xt, X2, . .., Xh-I

(Figure 7.5.2). Each of these inteNals has width (& - a)/n, which it is customary to denote
by

Lr:b -no

In each subinterval we need to choose a point at which to evaluate the function / to
detemine the height of a rectangle over that interval. If we denote those points by

xi. x),. , xr

(Figure 7.5.3), then the areas of the rectangles constucted over these intervals will be

/(.ri)Ax, f(x)Lx,..., f(x)Lx
(Figure 7.5.4), and the total area of the region R, will be

area(R") : /('i)Ar + f (x) Lx +. .+ /(;j)Ar
or in sigma notation,

A
arearR, ) = | f(x[)Lx

k:t
With this notation (1) can be expressed as

A= lim t /(r;)ax
,, _ +- i_o

which suggests the following definition of the area of the region R.

7.5.1 DEFINITIoN (Area under a cume), If the function / is continuous on [a, b] and

if /("t) > 0 for all x h la, bf, theT\ the area under the curve y : /(r) over the interval

[a, b] is defined by

A : lim | 11'; rr'n_ t- i_:t
(2)

REMARK. Although this definition is satisfactory for our present purposes, there are some

issues that would have to be resolvedbefore it could be regarded as arigorous mathematical

definition. For example, we would have to prove that the limit actually exists and that its
value does not depend on how the points ri, xj, ..., xj are chosen. It can be proved that
this is tlue if / is continuous on [a, D], but the details are beyond the scope of this text.

The limit in Formula (2) is often difflcult or impossible to find, so that wher' an exact

area is needed the antiderivative method, which we will discuss in the next section, is the

method of choice. Howeveq if an approximation to the area will suffice, then instead of
taking the limit we can approximate the area as

AxLf1il^x
k:1

(l)

=./('ila"

Figure 7.5.2

Figure 7.5.3

l+At+l
Fisure 7.5.4
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Figure 7.5.5

Left endpoint approximation

(a)

Right endpoint approximation

(r)

Midpoint approximation

(c)

yhere n is sufficiendy large to produce the required accuracy. For this purpose it is conve-
nient to rewrite this sum as

-L -L
I"r(rlla' : a-rl"f(xi) : 

^xtf@I+ 
fei)+...+,fk;)l (3)

where Ax : (b - a)/n. The calculation here involves only the sum of the values of the
function at n points, followed by a multiplication by Ax. The points "ri, xi,...,xi can
be chosen arbitrarily in successive subintervals; however, the most common choices are at
the left endpoints, the right endpoints, or the centers of the subintervals, in which cases

Formula (3) is called the Iaft endpoint ryproxintttion, the right emlpoinl qproxinalian,
ot the mifuoint approximatinn of the exact area (Figure 7.5.5).

Example I
Find the left endpoint, right endpoint, and midpoint approximations of the area under the
curtle y : S - a2 qver the interval [0, 3] with n : 10, n : 20, and n : 50 (Figure 7.5.6).

Solution, Detalls of the computations for the case n : 10 are shown to six decimal places

inTable7.5.1andtheresultsofallcomputationsaregiVeninTable7.5'2.<

Thble 7.5.1

n = lO, N. = (b - a)lz = (3 -0)/10 = 0.3

LEFT ENDPOINT
APPROXIMATION

RIGHT ENDPOINT
APPROXIMATTON

MIDPOINT
APPROXIMATION

xt e-G)2 xr 9 - t*f)'? rk e -@f,)z

I

3

4
5

6

7

8

10

0.0

0.3

0.6

0.9
1.2

1.5

1.8

2.1

2.4

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

0.15

0.45

0.75

L05
1.35

1.65

1.95

2.25

2.55

2.85

9.000000

8.910000

8.640000

8.190000

7.560000

6.7s0000

5.760000

4.590000

3.240000

1.710000

64.350000

8.910000

8.640000

8.190000

7.560000

6.750000

5.760000

4.590000

3.240000

1,710000

0.000000

8.977500
8.7975m

8.437500

7.897s00

7.177500

6.277500

5.197500

3.937500

2.497 s00

0.877500

55.350,000 60.075000

^'x,fk;)
(.3X64.350000)

= 19.305000

(.3X5s.350000)

= 16.605000

(.3X60.075000)

= 18.022500

Figure 7.5.6
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Table 7.5.2

LET'T ENDPOINT
iPPROXINIATION

RICHT ENDPOINT N1IDPOINT

APPROXINIA'|ION APPROXII'IATION

l0
20

50

19.305000

18.663750

r8.26E200

r6 605000

r7.3 i 3750

t7.128200

l rJ.022500

r E.005625

18.000900

Iil.\iARK. We will show in the next section that the exact area under -) : 9 ;r2 over the
interval [0,3] is 18 (i.c., lll square units), so that in thc preceding example the midpoint
approximation js more accurate than either of the endpoint approxinations. This can also
be seen geometrically from the approximating rectangles: Since the graph ol I - 9 - -r2 is

decreasing over the interval [0, 3], each left endpoint approximation overestil'nates the area,

each right endpoint approximation underestimates the area, and each rnidpoirrt lpfroxirrir-
tion talls between thc ovcreslimale and thc undcrestinrate (Figure 7.5.7). This is consistent
u'ith the values in Table 7.5.2. Later in the text we will investigate the error that results
when an areil is approximated by the midpoint rule.

The eft endpoint
approx mation
overestimates

The right endpolnt
approxlmat on
!nderest raates

The midpoint approx rnation
is better than the endpo nt
approximations.

THE DEFINITE INTEGRAL OF A
CONTINUOUS FUNCTION

Figure 7.5.7

ln Definitior 7.5.1 we assumed that / is contin[ous and nonnegative on the interval [a. D].

II'./ is continuous and assumes both positive and negative vallres on [a. D], then the linit

lim I frr; ra,r r4r,,.t-E

no longer represents the area between the curye \' = l(-r) and the interval [a, b]; rather it
represents a difference of areas the area of the region that is aboye the interval kr. bl and

below the cuNe ), - l(r) minus the area ofthe region that is below the intervai fa, bl and

above the curve 1'= l(-r).Weca]1 thisthenet signed area between the graph ofr': l(;r)
and the interyal [,/. D]. For example. in Figurc 7.5.8.i. the net sigred area between the curve

l' = l(.r) and the intcrviil [c, b] is

(Ar -t Att ) - An : farea above [rr, D]] farea below [rr, D]]

To explain why $e limit in (4) represents this net signed area, Iet us subdivide the interval

[./. ]l in Figule 7.5.8a into n equal subinteryals and examine the terms in the sum

\- frr, rar (s)
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F-igure 7.5.8

lf l(,rf ) is p,)sitive, then the product l(.rf)A.r represents the area of the rectangle with
height /(ri) and base Ar (the beige rectangles in Figure 7.5.8b). However, if /(,r[) is
negative. then the prod[ct ./(ri)A,r is the negdliv" of the area of the rcctangle with height

ll(.ri)l and base A.n (the green rectangles in Figure 7.5.8b). Thus, (5) represents the total
area of the beige rectangles rninus the total area of the green rectangles. As 

'? 
increases,

the beige rectangles nll out the regions with areas A7 and.4rrl and the green rectangles fill
out the region with area A 71, which explains why the limit in (4) represents the signed area

between J' : /(,r) and the interval [.?. r].
The limit in (4) is so inrportant that there is some terminology and notation associated

with it. We will denote this limit by the symbol

St ulion lc). The graph of i = .,/T - x7 is the upper semicircle ofradius t , centered at the

origin,sotheregionistherightquarter-circleextendingfrom.n:0tox=l(Figure7.5.9c).

J,, 
f txt ax :

ot l,'zd,
7l 

-

tx+2td\ (c) 
/ /l-.r,Jn

Solution laJ. The graph of the integmnd is the horizontal line ,y - l, so the region is a
rectangle ofheight 2 extending over the interval from I to 4 (Figure 7.5.9a). Thus,

rJ
I Za, - (area of rectrngle) :2(l) - 6
lt -

Solution (bl. The gnph of the integrand is the line r' : x + 2, so the region is a trapezoid

whose base extends from .r = - I to -r : 2 (Figure 7.5.9b ). Thus,

,]
I t., + 2td.,, - (area oftrapezoidr .lr3tr I + 4) = l5

J-l

(6)lim t /(.r'i)a-{

which is called the defrnile integral of / from a to ,. Geometrically, the delinite integral
represents the signed area between y : /("r) and the interval [a, b], and in the case where

/(-() is nonnegative on the interval [a, b], the definite integral represents the area under the

curve over the interval [n. b]. The numbers a and b are calledthe lower limit of ir.tegrotian
and upper limit oJ fu.tegratian, respectively, and l (r ) is called the integrand.'fhe rcason
tbr the integral sign will become clear in the next sectioll, where we will establish a link
between the dellnite integral and the indelinite integral studied earlier.

ln the simplest cases, definite integrals can be calculated using formulas from plane

geometry to compute the signed areas.

Example 2

Sketch the region whose area is represented by the definite integral, and evaluate the integral
using an appropriate fonnula from geometry.

^1
,0,,/_,
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Jl-rtrlr: (area of quarter-circle) : lz( l2)

Example 3

Evaluate

/'l
(a) , (r - I)d.r ,0 

lo' 
,, - ,) o,

Solulittrt. Tl.re graph of 1 : -t - I is shown in Figure 7.5.10, and we leave it for you lo
veril'y that the shaded triangular regions both have area ]. Over the interval [0.2] the net

signecl area is Ar - A2 : j - 1 : 0. ud or,er the intelva] [0. l] the net signecl area is

A, : -+. Thus,

It is assumed in (6) that the function / is continuous on the interyal [4, D] and that for
each ,1 this interval is subdivided into 7? subilteryals of equal length to creale bases for
the approximating rectangles. Although equal lengths are usetirl fbr computations, this
restriction is not essential. That is, the signed area between J' : /(jr) and [ur, b] can be
obtained using rectangles with dilferent widths provided that successive subdivisions are

consfucted in such a way that the widths of lhe rectangles approach zero as rr increases
(Figure 7.5.11). Thus, we must preclude the kind of situation that oacurs in Figure 7.5.l2
in which the right half of the interval is never subdivided. If this kind of subdivision were
allowed, the eror in the approximation would not approach zero as n increased.

To provide lbr the added generality of unequal intervals, suppose that the interval [d. bl
is subdivided into n subintervals whose widths are

A,rt, Ar2,...,4.r,,

and let max Ax1 denote the largest of the subinterval widths, which is read "the maximum
of the Axr's." The subinteryals are said to form a psrtition ol the interval [a, &], and max
Arr is called the ,n esl, size of the partition. For example, Figure 7.5.13 shows a partition
of the interyal [0, 6] into four subintervals with a mesh size of 2.

-Ari+i+AJ)+ 
, A-rr ' +Ajrr +

T

4

Thus,

1,,'

Io',." r)d.r =o ona /'{'-l)d.i:-j
THE RIEMANN INTEGRAL

01r96
ttl

Figure 7.5.10

Fisurc 7.5.1l

Figure 7.5.12

Figu re i 5.l l

,maxar,=a-h=] j=z



410 lntegration

To generalize (6) so that it allows fbr unequal subinteryal widths, we nust replace the
constantintelval length Ar by the vadable interyal length Art, and\\'emustreplacen + +.')
by an expression to specify that the lengths of all the subinteryals approacb zero. We will
use the expression max Ar1 >0fbrthis purpose. With these modifications in notation (6)
becomes

The sum that appears in this expression i s called a Riem{tnn* srm, and the limir is sometimes
c,a\led the Riemann integral in hotor ol the German mathematician B ernhard R iemau n who
fbrmulated many of the basic concepts of integration.

ItENIARIi. Some wdte6 use the symbol llA ll rather than max A-r1 for the mesh size of the
partition, iD which case (7) would be written as

Because the definite integral is defined as a lirrit, it is possible that the limit rnay not exist.
in which case the definite integral would not exist. Thus, we make the following delinition:

tb
I fG)dt - lim ) /(ri)AxrJo mi\^r/ -0 tsi

integrsble on a linite closed interval [4, b] if the limit

l'' ft^t,t, - tin i fLri)arr
J,, ^ -a-=t

(.1)

a

more simply i

INTEGRABILITY

7.5.2 DIrFtNfl rON. A function / is said to be Riemann integrable or

At the end ofthis section we will discuss various conditions that ensure integnbility, but
for now suffice it to say that a f'unction that is continuous on a finite closed interyal [a, b]
is integrable on that interval.

*o,,,rr.,,,o,,,*'.'u,,*r,r\R)Rrr\r.\\\(l826 
1866). Gcnnan mathenaiician. Bemhard Riemann. as he is com-

monly knowD, was the sor of a Protestant minister He received his elementary education fuom his falher and

showed billiance in arithmetic at an early age. In 1846 he enrolled at Cdttingen University to study theology

and philology. but he soon transferred to mathematics. He studied physics under w. E. Wcber and mathematics

under Karl Fijcdrich Gaus s, whom some people consider lo be the grealest nathemalician lvho ever I ived. In I E5 I

Ricnann received his Ph.D. under Gauss, alicr which he remained a! Gdllingen to ieach.Ir 1862, one monlh afier

his mamiage. Riemann suftered an attack of pleuritis. and for the remainder ofhis lift was an extremely sick man.

He liDally succu bed to tuberculosis ir 1866 at age 39.

An interesrirg story lunounds Riemann s work in geometry. For his iotroductory lecture prior to becoming

an assocjate professor. Riemann submitted three possible topics to Gauss. Gauss surprised Riemann by cloosing
rhe ropic Riemann liked the least. the lbundations ol geomelry. Thc leclure was like a scene from a novie. The

old and failing Gauss, a Siant in his day. walching intenlly as his brilliant and youthful prot6g6 skillfully pieced

together pofiions of the old man's own work inlo a complcte and beautiful system. Gauss is said to have gasped

u,ith delight as the lecture ncaled ils end. and on the way home he marveled at his studeni's brilliance. Causs

died shortly thereaiiel Thc results presented by Riemann that day eventually evoh,ed into a fundamental tooi tha!

Einstein used sone 50 ycars later to develop relativity theory.

ln addition to his work in geometry, Riemann rnade major contributions to lhe lheory of conplex funclions

and mathenatical physics. Thc notion ofthe definite inregral, as it is presented in most basic calculus courses. is

due to him. Ricmann's early death was a great loss to mafiemalics, for his mathemaiical work was brilliani and

of iu ndame ntal i mportance.



PROPERTIES OF THE DEFINITE
INTEGRAL

The area between

) = t(-r) and d is zero.

Figure 7.5.14
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It is assumed ir Definition 7.5.2 that [4, D] is a finite closed inteNal with a < &. and hence
the upper limit of integration in the definite integral is greater than the lower limit ofintegra-
tion. However, it will be convenient to extend this definition to allow for cases in which the
upper and lower limits ofintegmtion are equal or the lower limit of integration is greater than
the upper limit of integration. For this purpose we make the following special definitions.

7.5.3 DEFINITIoN.

(a) Ifa is in the domain of /, we define

I frrtar:o
J""

(b) If / is integrable on [a, D], then we define

fb
I f(x\dr = I ftxtd^

Jb Ja

7.5.4 THEOREM. If f and g are integrable onla,blandif c is a constant, thencf,
f + g, and f - g are integrable on la, bl and

6) 
l.b 

,f 1,1 d, : , 
f.u 

f {i a,

ru> l"'vat + se)tdx : l.o ,r,r 
o* + 

l,,u 
s{i a*

r,l 
I"o 

v<*r s(r)rdx: 
1,,' 

,r,, o, 
l.u sc,a,

REMARK. Part (a) of this definition is consistent with the intuitive idea that the area
between a point on the r-axis and a curve y : "f(x) should be zero (Figure 7.5.14). Part
(b) of the definition is simply a useful convention; it states that interchanging the limits of
integration reverses the sign of the integral.

Example 4
t)

G) I ldx-o
ro 11

rbt I Jt ;ar: I f ))(i^--!Jr Jo 4

Example 2(c)

Because definite integrals are defined as limits, they inherit many of the properties of
limits. For example, we know that constants can be moved through limit signs and that the
limit of a sum or difference is the sum or difference of the limits. Thus, you should not be

suryrised by the following theorem, which we state without fonnal proof.
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Net signed area > 0

Figurc 7.5.l6

Lrnder/> area u nder g

l.o tr,ro* = l,' ttao'* 
l"o 

rt ro,

no tlldtter lpw the ltoitts are ordered.

Paft (r) of this theorem can be extended to more than two l'unctions. More precisely,

/ Ll ,r., - ftlt)+ I [,.ttt]Jt
rt r, lr '8'

- | l rrtdr I r,'t,J^+. -I 1,.'t,JtJ, J., J.-

Some properties of definite integrals can be motivated by interpreting the integral as an

a].ea. For example. if f is continuous and nonnegative on the interyal [4. b], and if c is a
point between a and b. then the arca under 1 : l(.r) over the interval [.1, r] can be split
into two pafis and expressed as the area undel the graph frorn,i to. plus the area under thc
graph irorr , ro h , Figll-e 7.5. l5 r. rhrrt i..

rhrtt
I tLrtJ^ I tt.\t,t^ - | t'rtJt
J,, J, J

This is a special case ofthe following theorem about definite integrals. which we state with
out ploof.

7.5.5 TIIEORLI,l. ff f is integrahle on ,t clu:tJ intervttl tottrtrintttg tlle tllree points
tt. b- and r:. then

(e)

The lbllowing theorem, rvhich we state without formal proof, can also be motivated by
inrerprering deinire inre! rJ'\ :r\ Jrea..

7.5.6 THEOriFrNi.

(a) IJ J i.t integrable on[a.b)and f(x)2Dforal[x itt[a.b). thett

I J\t\.rY au

(b) IJ J and g are integrabLe on [a. bl and | (x ) 7 g(.x) for dll x in [a. bl. then
rh rh
/ ii.i1,1i / i', ''l.,J,, J,,

Gcometrically, part (a) oi'this thcorem states the obvious fact that if .f is nonnegative
on [a. b]. then the net signed area between the gr-aph of ./ and the intclval [a. b] is also
nonnegi,rtive (Figure 7.5.16). Part (b) has its sinplest interpretation when f and 3 are

r'ronnegative on [a. Dl. in which case thc thcorem states that if the graph of .l does not go

below the graph ofg, then the area under the graph of / is at leasl as lalge as the area under
the gmph of ,9 (Figure 7.5.17).

Rlr\{ \RK. ln words, part (lr) ofthis theorem states that one can iDtegrate both sides ofthe
inecluality l(.r) : g(r) without altering the sense of the inequaliLy. We also nete rhat in
the case where D > ./, both parts ofthe theorem rcmain true if 2 is replaced bI 1, >, or <
throughont.

./(.n

Figurc 7.5.15

Figure 7.5.l7

s(r)
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Example 5

Evaluate

rlI 6-zJr-^'ta'

Sohttion. From parts (a) and (c) ofTheorem 7.5.4 we can wite

ft tt r. tt tl
/ s 3Jt *'14x: I sttt I tJt-^ra,- | sa' s I Jt t2c!.t
lo Jo Ja Ja Jo

The flrst integral can be interpreted as the arca of a rectangle of height 5 and base I, so its
value is 5, and from Example 2 the value of the second integral is z/4. Thus,

ft - ,rt, 3n
I (5 - 3\/ I - xt)dt -5-3 (;) : 5- -J,, 4

CONDITIONS FOR INTEGRABILIW
The problem of determining precisely which functions are integrable is quite complex and

beyond the scope ofthis text. However, there are a few basic results about integrability tlat
are impoftant to know; we begin with a deflnition.

7.5.7 DEFINrrloN. A function / is said to be bounded on an interval 1 if there is a
positive number M such that

-M<f(x)<M

for all n in the interval 1. Geometrically, this means that the graph of / over the interyal
1 lies between the lines ! - M and y: M.

For example, a continuous function / is bounded on ei,ery flnite closed interyal because

the Exfteme-Value Theorem (6.1.3) implies that / has an absolute maximum and an abso-

lute minimum on the inteNal; hence, its graph will lie between the line y : M and

], : M, provided we make M large enough (Figure 7.5.18). In contrast, a function that has

a vertical asymptote inside of an interval is not bounded on that interval because its graph

over the interyal cannot be made to lie between the lines I - - M and y = ,1,1, 1s 1121191

how large we make the value of M (Figurc 7.5.19).
The following theorem, which we state without proof, lists three of the most important

facts about integmbility.

7.5.8 THEoREM. Let f be a function that is defined at all points in the finite closed
interval la, bl.
(a) If f is continuous on la, bl, then f is integrable on la, bl.
(b) If f has Jinitel! mqny points of discontinuity on[a,bl but is bounded on la,bl,

then f is integrabLe on la, b).
(.c) If f is not bounded onla, bl, then f is not integrable on[a,bl.

FoR THE READER. Sketch the graph of a function over the interval
prope ies stated in pafi (&) of this theorem,

, is bo!nded on ld, ,1.

Figure 7.5.18

/ is noi bounded on la, ,1.

Fisure 7.5.19

[0, 1] that has the



414 lntegration

ExERcrsE SEr 7.5 E ces

't. (a) Use an appropriate gcomctric formula to find the exict
alea ,4 under the line .r + .\' - :1 ovcr thc interval 10. 41.

(b) Skctch the rccrongles lor the lef't endpoint approxir'r'rx-

tion to the rea ,4 using D - .1 subintervais. ls that ap-

ploximation grc ter than, less than, or equal to A? Ex-
plain yoiLr reasoning. lnd check your conclusion by cal-

eullting the lclt cndp.rint uppr.rrim.uion.
(c) Sketch the rectargles tbr the right endpoint approxi-

mation to the arel A using n : .l subintenuls. [s that
approximation gre.rter than. less lhan. or equal to A l
Explain your re soning. and check your conclusion by
cirlculuting lhe right cntlpoint approrimrtion.

rd) skeruh the recrlllrgle\ l'or lhr rnidpoint appro\inrrtion
to the area A rrsing a : 4 subinter\,als. Is thal approx-
irnation grellte] than. less than, or eqlal to ,'l l Explnin
youl reasoning, and cl'reck your conclusiorl by calculal-
ing the midpoint opploxinlalior1.

Follow the directions clf Exercise I for the area ,4 undel the

line i : 3r over the intcrvrl [2,6].

Find the leli endpoint. right endpoint. and midpoint app|ox-
imations of the area under the cuNe I : -tl + I ovcr thc

intelrul 10. 5l using a = 5 sttbinterrrls.

Find the left cndpoint. right cndpoint. and midpoint approx-
imations of thc urca undcr thc curve -r' : .r_1 over the inten al

[1. 6] using,' : 5 subintervals.

Find the left endpoint. fight endpoint. and midpoint approx-
imations of the area Lrnder the cu-ve -1 : cosi over the
interval I rl2, irl2l Lrsing l : ,+ subintervals.

Find the lefl endpoinl. right endpoint. and midpoint applox-
inations ofthe area Lrnder the curve 1 : c' over thc intcrval

[0,5] using ri = 5 subintervals.

The accompanying iiglrre shows live points on thc graph

of an unknown iunction .1. Devise a strategy fbr using the

known points to approxinrate the area A under the graph of
1 : l(,r) over the interval Il.51. Describe your strategy.

and use it to approximate A.

ln Exercises I 1,1, use I calculatiDg utility to find the leli
endpoint, right endpoint, and lnidpoint approximations to the
oreo under lhe curve ) - /(r) over thc slaled interval using
/r = l0 subintervals.

10. r'= l/.r:; ll.3l
12. r = "G: 

10. al

14. r': c': I0. ll

(1. l)

21,1 5

9. .r' : l /r: [l. 2l

ll. r'- sin-r; 10. z/21

13. r' : ln t: [|. 21

le. rnt /'z,r'
t.r /' :.'- 3 ttx

zo. at l ',,s a,

t"l ft.. 2ttx

tnr /" /r*ra.

rct 
1., 

f ota.,

(c) ri : 100.

M 
1,,.tr.tt,t.t

ot 
1,,'' 

tt,t,r.,.

tbt f co..r ,/ r

.l
(d) 

/ i/l -.\r,1.r

(o) 
,/,",, 

t"t "'*
^2(u) l, GJ"''

tr

15. ll you have a prognmnrirblc calculator. crcate a program for
calculating the midpoint approximitlion oi the area under a

curvc r' - /(r) o\,eran interval [.r. rl using,r subinterva]s.
lntl u.c thc prusrrnr to linJ nriLlpnrnt ipprr'\ir.rlion. in
Excrcises 9-l,1with
(x) n :25 (b) ri :50

16. Il you have a CAS. devise a procedurc fiu Lrsing it to calcu
late the midpoint approximation ol'the arca under a curve
r' : f(-r) over an interval [rr. b] using rr subintcrvals. and

lr.e lhe procedu e lo hnJ thc midpoinr uppr,rrimilrion, in
Exelcises 9- l4 q,irh

(:r ) ,r : 25 (b) n:50 (c) ri: 100.

4.

6.

In Exercises 17 20. sketch the re-sion whose signed area is
rcprcsented by the definite irtegral. and evaluate the integral
using an appropriate fbrmula fionr geotnetry. where needed.

tbr f .r,1.1
J -l

tdr / .r'ri.r'

rt. r"t /'(r lr) at (b) (t - l-r ) rtr

(t - l.t) z/.t

t7. {a) / 
.rrir

kt f' ,, a,

I,
I"'t.l /'{r l.t) ri.t (cl)

7.

Figure E{-l

(a) Use an appropri tc geonretric fb nula to find the cxact
area .4 under the line \' : 3.r + I over the interval f1 . 5].

(b) Show that thc cxact arca is equal to the avcrage valuc

ol lhe left cndpoint :rnLl right crrdpoint rpptoxitnationr
of A obtained using ,r = :l subintervals.

(c) What is the expl:rnation ol the result in part (b)..)

21. Use thr: arcas shown in the accompanying figure to find
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ln Ller(t.c. Jl iltd .{2. c\aluatc lhe irteerc,- b) .umpler np

the square and applying appropriate lormulas liom gcometry.

Figure Ex ll

22, In each part, evaluate ihe integral. given that

l1 F \r( r.c. J { JIJ J L e\pre\, r1e limit. J. rlcnrrrre rr te!-:rl.
over-the inteNal ld, 1rl. Do not tr-y to evaluate thc integrals.

31. / \'lrr 12./i

33. (a)

(b)

34. (a)

(b)

tt 

-

32. / 
y'or -r'Jr

^',:{;: ;ri
e) lo' f 

r..o a., (b)

r,) l,'n 1u) a' (d)

ni*r /' t/trl * 2g(r)l rir ir

.l', rr,,0, - 5 -d f ,s(-r)r/-r- 3

rino /tt:l{.,) - s(.t)1./r if

l,o 
fr'r r., - 2 and / s(r) /.r : to

rina /' l{--) a-- tr

l,,t 
,r"r rr: -2 and 

1,,' 
f rl a, : t

Eina / 
' /{.,) a' ii

l',rr,,o' =z ^na l,' .f(.,)dx: 6

,".t'...nl.1',,t ir. Ar.: ,t- i.t' t

trrr f ." o.r-, ,t:o.b:l
mJ\ rlr-0=1

liLn f 1','1'l 'r. Lt : t. b : 2.. \.-r)-

I nr f f.in''i11,": ,r - 0. /' " lNJ\ r,r 0 tsi

Tn Exerciscs 35 and 36. evaluate the linit over the interval
lrr, Dl by expressing it as a definjte irltegral and applying arl

appropriate fbrmLLla fiom geometry.

.15. lrrl' f :,. I'Ar.: ., - 0. b - |
n[ rrL ri.i

36. lrr > \la r/ ) A.\a. ,t ),t' )
r" \' ir- \

In Exercises 37 and 38. use FornLrla (7) to cxpress the inte
grals as linits of Riemann sums. Do not t|y to evaluate the
integrals.

.)
37. ie) / :r,lr

"1
38. rat / ln r lr

39, ln this exercise you will find the area A under the graph of
_\' : -i over the interval ll,2l by calculatin! the limit of
right endpoint approximations. For tlris particular problem,
the lrea can be found much more easily using a lbrmr.Lla

fiortr geometly, so oLrr purpose here 1s not to provide a prac
lical method fbr calculating the area, but rather to ilhrstrate
the idea that unclerlies the concept oI a delinite integral.
(a) Suppose that fte inten'al [1,2] is subdivided into rr

equal subintervals ol length A-r : 1//? and that the
points ri,,rl . . . , .r; are the right endpoints ofthe sub-

intervals. Show tlrat the right cndpoint ofthe &th subin-
terval is

A\r'-l+
1t

lsLtggestiotl: Find -ri. -rj. and rj. and therl look lbr the
pattern.l

l',f,.ta,

l,',,,u, 
u'

t1

21.

25.

G) f */'
trrr /tt ir + cos r) /r

ln Exercises 27 and 28, use Theorem 7.5.21 and appropriate
lormulas frolr geometry to evaluate the integra]s.

In Exercises 29 and 30. use Theoren 7.5.6 to determine
uhethcr thc rrlce olthe inle!ral i. po.iri\e or ne!Jri\e.

2i. G) lo 6 +zJt ,')a,, (bt 
/'r+ - s'la,

zt. ot lo.r.t+Jo ,,ta" o,t l'.o 3r )dr

zs. at l,' 
f a, (b) f'- " ,,,

r"l rr g

/. t *l
/l

30. {a) I _d,J J VJ_.{
(b)
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(b) Show that with n subinte als the dght endpoint approx
imation of the area A is

- L llf rui.,a' f lt " 
)

- 
1\ 1,/ t,

(c) Use Theorem 7.,1.2 to show that the right endpoirt ap-

proximation can be expressed as

\- /t ,ltzr*: l+ I
l-. ^ ) ')-
1=t

(d) From (2), the area A is

,t: hnr t /(ri)a,\

Find this limit, and check your answer by using a lor
mula from geometry to calculate A.

40. Find the area A jn Exercise 39 as a limit of left endpoint
app.oximations.

In Exercises 4l -1,1, use the method ofExercise 39 to find the

[t.1t, xl0
' [0. r:o

I l/ r], .r + u(c) l(r) : {" [0. x:0

Isin l/x, x+0
[0. r :0

It can be shown that every interval contains both iational and

irrational numbe$. Accepting this to be so, do you believe
that the function

I I rf r r\ rxrional

[0 rt r rs rnetional

is integrable on a closed interval [a,,]? Explain your rea-
soning.

It can be shown that the ljmit in Fomula (7) has all of the
limit propertles stated in Theoren 2.2.2. Accepting this to
be so, show that

tl tl,
\., lcf$)dx:cl ft()ttrt. J,

ri tb rl
'U, /l.l,,r qrrrl,i r I [\\)ti\ t I sr.xtdxJ,, J. J.

Firld the smallest and largest values that the Riemann sum
l

I I l';) r'*

can have on the interval [0.4] if f(,t) : 1'? 3.t + 4 and
A-tl : 1, 6-tr :2, Ar: : 1.

46.

47.

area under tlte cu e _"- - /(jr) over the interval [a, b] as a

limrt ol rrght and lclt crJp.,int approrimatiur..

'11. y-162.a:0.b:l
42.,t:4 \x2 a:0.b-3
43. y: y: a:2.b:6 48.

44.t:l xl: a - -3. D: -l
45. In each part, use Theorem 7.5.8 to determine whether the

tunciion / is integrable on the interval I l, 11.

(a) l(r) : e' cos x

THE FUNDAMENTAL THEOREM OF

CALCULUS

7. 6 TF'i r rU&i D/{$.fi Ef\, l"An- Tg-i HC}ffi g rV{ * !- *ALC U i-Ll $

In this section we will establish fiNo basic relationships between defnite and indefnite
i.ntegr.is tllat together constitute a result caLled the FundamentaL Theorem oJ Calculus.
One part of this theorem v)ill relate the rectangle qnd ant[derivatit)e methods for cal
culdting ereds, and the second part will provide a powerful method for evaluating
deJinite futegrals Llsing dntideriv(tives.

To motivate the results we are looking for, let us begin by assuming that f is nonnegative
and continuous on the interyal [a, b], in which case the area A under the graph of / over
the interval [a, ]l is represented by the deflnite integral

4-- | lrrt,lr rlr

(Figure 7.6.1).
Recall from our discussion of the antiderivative method in Section 7.1 that if A (-r) is the

area under the graph of l from c to -r (Figure 7.6.2), then:
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r A'(,r) - I (.r)
. A(a):0 Theferunderrrecuncl.om!rodisrherr.aabovcrhcsinslepoidla.andhcnceiszero.

. A(b): A rhc dcr under rhe cun'e nom a ro, is,1.

The formula .zl'(.r:) - ./(r) states that A (r) is an antiderivative of /(-r), which implies rhar
every other antideivative of .l (;r) can be obtained by adding a constant to A (-r). Accord
ingly, 1et

F(.r):A(r)+C
be any antidedvative of /(-r), al1d consider what happens when we subtract -F(ri) frorn
F(1r). We obtrin

F (.b) F(.a) - lA(.b) + Cl lA(.r) + Cl : 4(6) A(a) - A 0: A

and hence ( 1) can be expressed as

I ft, t,lt - Fth) - F\d)

In words, this cquation states that the delinite i[tegral can be eva]uated by f,nding any
antiderivative of the integr-and and then subtracting the value of this antiderivative at the
lower limit of integlation from ils valuc at the upper limit of integration. Although we
derived this result subiect to the assumption that / is nonnegative on l.i, 1rl, thjs assun]ption
is not essential, as we will prove in the lbllowing theoren, which is the main tool used to
evaluate delinite intesrals.

7.6.1 ILIBORE\I (The Fun.ttr ftniat Theoren of Catcuhrs, pafi t). Il .f is tonrinu,tLts

ld, b). dttd it F is any antiderivariye of .[ ou [a. bl, than

I t\Y)d\ = F\b) F((r) (2)
:

llroof. Le!. xt. x2,...,,{,, r be any points in [a, D] such that

d<X)<X)<. <Xn t<b

These points divide 14, lrl into ,? subintenals

ld. -rrl. lir]. r21..... [-r,, 1.b]

\\,hose lengths, as usual, we denote by

(3)

A.rr, A-f2. ..., A-r,,

By hypothesis, F'(-r) : l(,r) fol all.r in [a, Dl, so .F satisf]es the hypotheses ofthe Mean
Value Theorem (6.-5.2) on each subinterval in (3). Hence, we car fird points ri. rj, . . . , r;
in the respective subinteNals in (3) such that

F(rr) - F(a) : F'(ri)(-rr - a) = l(.ri)arr
F(rz) F(.rr): F'(rj)(r, .r1): l(.rj)A.r:
F(r:) - F(r:) - F'(ri)lr: 12) : l(.rl)A.r3

::
F (b) F(r,, r) = F'(xi,)(b .r,,..t) = /(.r;)Ai,,

Adding the prcccding equations yields

I lh) 1(.r) : ) /(.\,1)A.rr (4)

Let us now jncrease /? in such a way that max A,r1 + 0. Since / is assumed to be continuous,

FiB!re 7.6.1
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the right side of (4) approaches ff /(r) r1-r, by Theolem 7.5.8(rr) and Folmula (7) of Sec-
tion 7.5. However, the left side of (4) is a constart thar is independent of n: thus,

F,bt t-t,t' - trrn tr'r;'o. - [ 1'r'a^nk\ \ -U'---: I

It is standard to denote the difference F(/r) F(a) as

FGtt: - F(.b) F(c) or [r(]r)]'): o@) - o(n)

For example, using the first of these notations we can express (2) as

(5)

Example I
,]

Evaluurc / rrlr.

Sohttiott. The function F(r) : jrr is an antiderivative of l(r) = -r; thus, from (2)

['^,t,: l"' :1Lu r'- ltrt'- 2-!:1J'22

Example 2

ln Example I of the last section we approximated the area under the graph of ,i. = 9 - ,r?

over the interval f0,31 using left endpoint, right endpoint, and midpoint rppro\ narrons,
all of which produced an approximation of roughly 18 (square units); and in the remark
following that example we stated without proof that the exact area A is 18 (square units).
We can now confirm this using the Fundamental Theorem of Calculus as lollows:

r ^ , I / )1\4 / ,n r'tJt or-, | -12' ,I u=18
Jc r .l,r \ .i ,/

Example 3
(a) Find the area undel the cuFr'e _t, 

: cos -r over the interyal l0. r/21(Fjgure 7.6.3).

(b) Make a conjecture ilbout the value of the integral

[' ,n' , ,],
Ju

and confirm youl conjecture using the Fundanrenlal Theorem of Calculus.

Soltrtittn (a). Since cos,r > 0 over the intcrval [0. '7/2], 
the area A under the curve is

rt t) I -'2
' I I 

'in- sino- |

^- | co\rar sinrl 
.2Jo 

1,,

Sol iott\b), Thegiven integral can be interpreted as the signed area between the graph of
J, : cos,r and the inteNal [0. z]. The graph in Figure 7.6.3 suggests that over the interval

l0.rl the portion of area above the r -ax is is the same as the portion of area below the r axis,
so we conjecture that the signeil area is zero: this implies that the value of tire integral is

zero. Thi. is conhrmed b1 the computation.

"t, 11'

J" fr^ t a^ - o,*,.1,,

Figure 7.6.3

1,," 
,o"., a., ='-r]; = sjniz sino = o
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Obserye that in the preceding exarnples we did not include a constant of integralion in the
antiderivatives. In general, when applying the Fundamental Theorcm of Calculus there is
no need to include a constant of integration because it wiil drop out anyhow. To see that this
is so, let -F be any lrntiderivative of the integrand on fa. Dl, and let C be any constant: then

rb 1L

| .161ar =F(-rl+Cl : tF(b) +CI-lF(q)iC): 116, - r r,.,,J. )"
Thus, for purposes of evaluating a definite integral we can omit the constant of integration
in

I fttt,lt = F(r) + C

and express (5) as

"h r " tb

I ttrtd,:I I rr^tarlJ"' LJ' .1.,

which relates the definite and indefinite integrals.

(6)

Example 4

l,n "'' o' =

RDMARK. Usually, we will dispense with the step of displaying the indefinite integral
explicitly and write the antiderivative immediately, as in our first three examples.

Example 5

Table'7.2.1 will be helpful for the following computations.

r|' { tln .

I s" ,L^ -s | , rlt - 5e' I -st"' ' en;-513. I)- t0
Jo Jr lL,

,) , 12

I 'n,- rnl, l-rn 2l rn r-tn2 lnr-rn2
Jr I 

I

252:3Q7-t):a

ln -2: ln1-ln2: -1n2

,n, n ) )
-,".(q) ''".( 4)-v? J--0

I no,],',: | ,'Da, 
_n,,: 3,*ll

L'In': '" ] ,:
/" 

,". t ,un r .lr - ,".

lnl

,l:: 
r,

\\ARNINa;. The requirement in the Fundamental Theorem of Calculus that f be contin-
uous on [a. b] is important to keep in mind, for if you anempt to apply this theorem in cases

where the integrand is not continuous on the interval of integration, then you may obtain
e[oneous results. For example, the function JG):1/x2 has a discontinuity at r : 0, so

the Fundamental Theorem of Calculus cannot be used to integrate / on any interval that
contains ir = 0. However, if we ignore this and blindly apply the theorem over the int€rval
[ 1, 1], we obtain

ft 1 tll
Ldr-|-ll rlrl:2
J tx- {-l 

r

wh ich is clearly enoneous because f (x) = I /x2 is a nonnegative function and hence cannot
possibly produce a negative deflnite integral.
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FOR THE READER. If you have a CAS, read the documentation on evaluating definite
integrals, and then check the results in the preceding examples.

The Fundamental Theorem of Calculus can be applied without modification to definite
integrals in which the lower limit of integration is greater than or equal to the upper limit
of integration.

Example 6

lt ^ -rtl' I I

lx'Llt--l---.=0Jr Jl l J

ft) rrllo lo 16l, . /. I I __8
| ^"^- r | -lr )

The latter resull is consistent with the result that would be obtained by first reversing the
limits of integration in accordance with Deflnition 7.5.3(b):

rO 14 :r4

l""n' - - fo" ^a'- :].--L+-:l -'
To integrate a continuous function that is delined piecewise on an intewal [a, D], split

this interval into subinteNals at the breakpoints of the function, and integrate separately
over each subinter,'al in accordance with Theorem 7-5.5.

Example 7

ouulunt 
lou 1',) a" ir

f,,,=11,._,, :;1
Solution, From Theorem 7.5.5

lou tr,',a,= lo'ir,',n,* Lu 
rato,: lo'

.i'l' f3r2 16 18 r 128
- l-l txl -[^ 0ltt42 2)_ -3.ln L2 -1, \3 l - - r

Example 8
t2

Evaluate / t dt.

Solution. Since lx : r when r i 0 and lr : -x when r < 0,

12 r0 72

/ l.tl.lr - I lrdxl I rldr
.l t .l t .ln

r(J r)

- I t-rt,l, -r I ,d,.l .ln

r'lo r'12 I 5- 2 *;1":t+2=a
To evaluate a definite integral using the Fundamental Theorem of Calculus, one needs to be

ablc to find an antideivative of the integrand; thus, it is impoftant to know what kinds of
functions have antiderivatives. It is our next objective to show that all continuous functions
have antideivatives, but to do this we will need some preliminary results.

,' a, + 
lru 

13, - z) d,

DUMMY VARIABLES
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Fomula (6) shows that there is a close relationship betweel the integrals

I r,'t o'

However, the definite and indefinite integrals differ in some impo{ant ways. For one thing,
the two ir.rtegrals are different kinds of objects-the dennite integral is a n r.rmber (the signed
area between the graph of _r, : f(r) aDd the interr'al ft1, bl), whereas the indelinite integral
is afwrtiorL, or more accurately a set of functions lthe antiderivatives of /(x)]. However,
the two types of integrals a]so ditTer in the role played by the variable of integration. In an
indelinite integral, the variable of integration is "passed th|ough" to the antiderivative in the
sense that irregrating a function of -r produces a function of -r, integrating a function of /
produces a funclion of t, and so fofih. For exan]ple,

l''n,:l*,
ln contrast, the variable of integration in a definite integml is not passed through to the end
result, since the end result is a number. Thus, integrating a function of r over an interval
and integrating the same function of I over the same intenal of integratioo produces the
same value for the integral. For example,

21

l"u 
.f l,,,t, ^na

.l 
:'J.t - 1+c ana

l-26 und [ ,-r,=''f' -I I J, ., .1.1,"'a':i].::
2621

THE MEAN-VALUE THEOREM FOR
INTEGRALS

However, this latter result should not be surplising, since the area under the graph of the
cuNe-) - f(r) over an interyal fa, bl on the r-axis is the same as the area under the graph
of the curve t, : /(1) over the interval [cr, b] on the /-axis (Figure 7.6.4).

,- [, .,. I
J t. J:".t'

Figure 7.6.,1

Because the variable of integration in a definite integral plays no role in the encl result.
it is often rcferred to as adummy variable.ln summary:

Whenet,er you fnd it com)enient to change the letter useclfor the yariable oJ integration
[n a definite integral, you can do so without changing tlle vtllue oJ the integral.

To reach our goal of showir'rg that continuous functions have antidedvatives, we will need
to develop a basic propefiy of definite integrals, known as thc Mean-Value Tlteorent for
Integrals. In lhe next section we will use this theoren to eitend the familiar idea of "aver-
age value" so that it applies to continuous functions, but here we will need it as a tool for
developing othel results.

Let / be a corrtinuous nonnegative function on [a. D]. and iet m and M be the minimum
and maximum values of I (-l) on this interval. Consider the rectangle of heights r? and M
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over the interval [4, b] (Figure 7.6.5). It is clear geometrically from this figure that the arca

A: I flx)dx

under y = /(x) is at least as large as the area of the rectangle of height m and no larger than
the area of the rectangle of height M. It seems reasonable, therefore, that there is a rectangle
over the inteFr'al [rz, b] of some appropriate height /("r*) between zr and M whose area is
precisely A; that is,

I fVtax- f tx')tb -a)
(Figure 7.6.6). This is a special case of the following result.

7,6.2 THEOREM (The Mean-value Theorem for Intcgr&ts). If f is continuous ona closed
intenal la, bl, then there is at least one number x* in la, bI such that

I f6) ax : f\x- )(b - a) (7)

Proof. By lheExtrcme-Value Theorem (6.1.3), / assumes a maximum value M and a mini-
mum value nr on [a, &]. Thus, for a1l x inla, b),

m::f(x)<M
and from Theorem 7.5.6(b)

(8)3 l"'

^ t3lo
31,

(e)

Example 9

Since /(,r) : .:r2 is continuous on the intewal [1, 4], the Mean-Value Theorem for Integrals
guarantees that there is a number.r* in [1, 4] such that

I x2dr :.f1x*114 l) = (x+)2(4- l)-3()')'
But

t:

v = f(x)

f"u 
* 0, 

= l.u rr*r o, 
= l"u 

u a,

m(b - a) f(x) dx < M(b - a)

-<);1.'ra)dx<M
This implies that

l ,l"' ru,o,

at some poirt r* in [a, ,]; that is,

|1 l"' tu, o,: /(.x*) or 
f"u 

f ,*t o, : f (x*)(b - a)

is a number between m and M , and since /(x) assumes the values rn ar'd M ot la, bl, it
follows ftom the Intermediate-Value Theorem (2.4.8) that f(;r) must assume the value (9)

- )1
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so that

3(x*)2:21 or (;r*)2 :7 or x* -!J7
Thus,;r* : rt - Z.AS is the number ir the interval [1, 4] whose existenca is guaranteed

by the Mean-Value Theorem for Integmls. {

In Section 7.1 we gave an informal argument to show that if / is continuous and nonnegative
on la, bl, and if A(;r) is the area under the graph of y : /(r) over the interval la, xl (Fig-
ure 7.6.2), then A'(x) : /(r). But A(-{) can be expressed as the definite integral

A\xt - I fa\dr

(where we have used I rather than r as the variable of integration to avoid a conflict with
the r that appears as the upper limit of integration). Thus, the relationship A'(r) = l(r)
can be expressed as

,1 It, 'l
.ll f!)dtl-f(x)ax lJ. .l

This is a special case of the following more general result, which applies even if / has

negative values.

7.6,3 THEOREM (rn e Fundamental Theorem of Cakulus, Part 2), If;f is continuous onan
inten)aL I , then f has qn antideriyatiye on I . ln particulqr, if a is any point in I, then
the function F defined by

F\x ) = I fe)dt

is an antiderivative of f onI;thatis, F1(x1 : f Q) for each x in I , or in an alternatfie
notation

*ll.' ru'o'): ru' (10)

Praof. We will show first that F(r) is defined at each point r in the interval 1.Ifx > a and

r is in the interval 1, then Theoren] 7.5.8(a) applied to the inteNal la, xl and the continuity
of / on 1 ensures that F(r) is defined; and if x is in the interual 1 and x < a, then

Definition 7.5.3(b) combined with Theorem 7.5.8(a) ensures that F(x) is defined. Thus,

F(x) is defined for all x in 1.

Next we will show that F'(r) = /(.x) for each.x in the interval 1. Ifr is not an endpoint
of /- then it follows from the definition of a dedvative that

F(x + h) F(;r)
r'(.t) = rlg1

f(t)ttt l.'t<o"f
f (rdt + I, f(ndtl

: ]':,;11."'

f (t) dt rheorem 7.5.5

Applying the Mean-Value Theorem for Integrals (7.6.2) to the last expression, we obtain

l',.r-,tirn il"/','t hl- tim lrr't

ly,;ll"

l\: l.'
(11)
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where I' is some number between -r and r + ft. Because 1* is between r and -{ + ft, it fol-
lows that t* --+.r as ft + 0. Thus, l(r*) > l(.r) as /r + 0, since I is assumed continuous at

-r. Therefore, it follows from (|I) that F'(-{) = l(-t). Ifx is an endpoint ofthe interval 1,

then the two-sided limits in the proof must be replaced by the appropriate one-sided limits,
but otherwise the arguments are identical. I

In words, Formula ( 10) states:

Ifq dertnite integnl has a variqble upper limit of integration and a continuous integrond,
then the derivotive of the integralwith respect to its upper limit is equal to the integrand
eNaluated dt the upper Limit.

Example lO
Find

d r f^ f
-l 

I t'it ld'lJt I
by applying Part 2 of the Fundamental Theorem of Calculus, and then confirm the result by
performing the integration and then differentiating.

Sql\lion. The inregrand is a continuous function, so from ( I0)

L llatl=^'
,1.r LJr l

Altematively, evaluating the integral and then differentiating yields

l,' ''a' 
: il,=,=; -; j t+

_ ;t :,.

DIFFERENTIATION AND
INTEGRATION ARE INVERSE
PROCESSES

SothetwomethodSfordif1.erentiatingtheinteglalagree.<

Example 11

Since

stn.r
./(r) : 

-is continuous on any interval lhat does not contain the

the interval (0, +..) we have

d I i".sinr I sin,r_t | _dtt:_
d.t lJt t | .r

origin. it lirllows from ( 10) (hat on

Unlike the preceding example, therc is no way k) evaluate the inlegral in terms of familiar
functiolrs. so Fomula (i0) provides the only sin.Iple method ti)r finding the derivalive.

The two parts of the Fundamental Theorem of Calculus, when taken together, tell us that

differentiation and integration arc inverse processes in the sense that each undoes the effect
of the other. To see why this is so, note that Part I of the Fundamental Theorem of Calculus
(7.6.1) implies that

I .f'(t)dt: f i) -.f ta)

which tells us that if the value of /(r, ) is known. then function f can be rccovered from its

derivative f' by integrating. Conversely, Part 2 of the Furdamental Theolcm of Calculus
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(7.6.3) states that

,1 I t' I
. I ft.t),lr - llrtdr LJ., l

which tells us that the function f can be recovered from its integral by differentiating. Thus,
differentiatiol and integration can be viewed as inverse processcs.

It is common to treat parts I and 2 of the Fundamental Theorem of Calculus as a single
tlleorem, and refer to it simply as the Fwtdamettta[ Theorem of Calculur. This theorem
ranks as one of the greatest discoveries in the history of science. and its formulation by
Newlon and Lcibniz is generally regarded to be the "discovery of calculus."

ExERctsE SET 7.6 E Graph ng ca crtator E cAS

l. In cach paft, use a delinite integral to find the arca of thc
region, and check your answer using an appropriate lbrmula
tiom geomety.

2. ln each palt, use a definite integral to find the area under
the culve ]- - /(-r) over the stated interval, and check your
answer using an appropriate fonnula from geometry.
(a) l({) - -r; 10,5l
(b) .l(x):5; t3.91

'.) /{.r) r*l: [ 1.7]

In Exercises 3 8, find the alea under the curve l : f(r) over
the stated interval.

4. l(r) : ra; [-1,1]
6. I (r; - -r r/5 

;1. 41

I
8. l(r)- :11,5l

In Exercises 9 24. evaluate the integrals using Part I of lhe
Fundamental Theor'ern of Calculus-

n. l,' z,uc a,

f,'2 t 2 \I l.+ - ldxJ"h \ stn't/
rt
/ tr'+Jz"' c\cYcot\)dr

For each of the integrals you evaluated in Exercises 9 24,
use a CAS to check your answer. [Note. CAS programs

have conmands for evaluating delinite integrals exactly or
approximately. Use the exact evaluation here.]

Use a CAS to evaluate the integral

I rd2-r 2t,l^

and check the answer by hand.

11.
f,t 

{r,t'' - o, ') n,

;1, ,".' n .rR

;f'{' ,." r tun r) d"

L',.*n'

17.

23.

24.

["] 2s.

lq 26.

15.

19.

?a )

I - ,""'o' 16'

l'1.'o" " u'' 18'

l'.r"'o, 20.

l,' (j -s'n -, ") a,

l.n 
$t "'+ 2-vrl? + l-5/2) /),

1 /r' r-,r. I) ll

s. /(x) : ./x; !, 9l

7. /(r) : e': il, 3l

t. lu.l"' t, +Ta'

t. [':,t-,

r(1 + ir)lrl0- l"
l,'

L,,

lrr Erc-ei.<. )' 29. u.e Thcorcm -.5.5 to eraluate the given
:nt. 

u ralr.

,r. ot 
lot 

2x -3 dx {t) ft"/' .o,,, a'

,r. t^t l_',Jz 
+ s4a, 

", ./' "' 
lldx12.
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E 34.

35.

36.

37.

38.

39.

E 40.
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t ( ,. r .0
29. I trxtdx. uhere 7rr, - |Jt I' r U

30. CAS programs provide methods fol entering functions that
are defined piecewise. Check your documentation to see

how this is done. and then use the CAS to evaluate

r [.'. o , r

I t't',1 ,. uhere /"r-lJo ll r-. .r I

Check tbe answer by hand.

In Exercises 3I 33, use a calcuJating utility to find fie mid-
point approxiiration of the integral using r : 20 subinter-
vals, and then lind the exact value of the integral using Part
I of the Fundamenial Theorem of Calculus.

tionship between the integrals

f' r"
I f(y\ d^ and | 11t 1 dt
.t".tr

(d) Conll1m that your theorem works for the integrals

| | l1t]
/ r Jr rnd / co.. ' J'
J t J -)

42. Use the theorem you invented in Exelcise 4l(a) to evaluale
dre integral

f5,- 
'r5 

+ 
',I 

- 

dt
J 1rr+\ +7

and check your answer with a CAS.

43. Define F(ir) by

t\
Frtt: I tt'+ltdt

I
(a) Use Pait 2 ofthe Fundamentai Theorem ofCalculus to

lind F'(r).
(b) Check the result in part (a) by fiISt integrating and rhen

differentiating.

;14. Define F(r) by

Ftrt- I cos)rlr
J- t

(a) Use Part 2 ofthe Fundamenlal Theorem ofCalculus ro
find F'(.r).

(b) Check the result in palt (a) by first integrating and then
differentiating.

ln Erercr.cs 4: ,1U, u.e Pdn 2 ot rhe Frrndamenral Tlreorern
of CalculLLs lo find the derivaiiveerlvatlve.

6t f l,'s"4"61at

6) * l,'ij
d t'

'n', J,, 
n o'

tE

:r. /' ja, 32. 
1,,'i' 

,in , a, .1.1. / ' 1d..

Compare the answers obtained by the midpoint rule in Exer
cises 31-33 to those obtained using the numerical (approx

imrlc\ rrrtcg|hti.rrr ;ommand ol a CAS.

Find the area under the cLlrve l : 12 + I over the interval

[0. 3]. Make a sketch of the region.

Find the area that is above the r-axis. bul below the curve

l : (1 -r)(r 2). Make a skelch of the region.

Find the area under the curve J : 3 siD .r over the interval

f0.2n/31. Skerch rhe regjon.

Find the area below the interval | 2. 11, but above the
cLrr\( .\ :.\ . VrLe,r.lel(h ol the repion.

FiDd the total area betweel the curve -r' : x2 3n 10

ard the intelval [-3, 8]. Make a sketch ofthe region. lHi?r.
Find the portion of area above lhe interval and the porrion
of area below the interval separately.]

(a) Use a graphing utilily 10 generate the graph of

l
t\t:. lr '71r I l)i.r I/ 51

t{){)

and use the graph to make a conjecture about the sign
of the integral

/ flrtJr

(b) Check your conjeclure by evaluating the inregral.

(a) Let .l be an odd function; that is, /( r) - l(r).ln'
vent a theorem that makes a statement about the value
of an integral of the form

I rrrrJi

(b) Confilm that your theorem works for the integrals

tl t1 )
/ .r ' Jr arrd ,/ 'in.r ,/.rJ J "1

(c) Lel / be an even t'unction: that is, /( -r) : /(-r). In-
venl a theorem lhaT makes a slalernent abolt the relr-

a* J- .o., 
dt fHt'tt L 'e Definition 7 5 -lrbr'l

. I lr dr

|, 

-

Ler Frr l: 
/ 

y'].' + td.. Find

(a) F(2) (b) F'(2)

l' cos rLetFrrt:, _,,// Find
Jt) rr+3

(a) F(0) (b) F'(0)

45.

16.

47.

48.

49.

(b) , , ln.ri

41.

50.

(c:1 Ftt(2)

(c) F"(0)

5r. rer rrrr - [- ' 1r,,o, r
Jn t: +1

(a) Find the value of ,y where F attlrins its minimum value.



Find intervals over which F is only increasing or only
decreasing.

Find open inteNals over which F is only concave up or
only concave down.
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It was shown in ihe proofofthe Mean-Value Theorem for In-
tegrals that if ./ is continLLous on [r], ]1, and if m 

= 
f (.x) 

= 
M

on [d, ]1, then
th

mth at - I 1rtt,l^ - tr41b o1
J,,

[see (8)]. These inequalities make itpossible to obtain bounds
on the size of a dennite integral from bounds on the size of

(e)

FINDING POSITION AND VELOCIry
BY INTEGRATION

(b)

lat 52. Use the plotting and numeical integratior commands of a
CAS to generate the graph of the function F in Exercise -51

ovel the interval 20 : ir : 20, and conlllm that the graph

is consistent with the results obtained in that exercise.

53. (a) Over what open interyal does the lbnnula

I'lrFtxt: I -Jt I

represent an antiderivalive of /(r) - l/x'l
(b) Find a point where the graph of F crosses the 'I axis.

54. (a) Over what open interval does the formula

/'i IFl.r): I 
-dt

Jt t' 9

represent an antiderivative of
1

f(t): ..lr'-9
(b) Fird a point where the gnph of F crosses the i axis.

In Exercises 55 and 56, find all values ofr* in the stated inter

r val that satisfy Equation (7) in the MeaD-Value Tlleorem for
Integrals (7.6.2), and explain what these numbe$ represent.

ss. (a) /(.r) : vt; t0, 9l (b) .l(-t) : 1/t; ft. el

56. (a) /(x) : sin-:r; [-2. z] (b) /(]) : l/x2; [1.3]

its integrand. This is illustrated ir Exercises 57-59. l

57. Find the maximum and minimum values of .nGf + 2 for'
0 

= 
x : 3, and use these values to flnd bounds on the value

of the integral

11 

-

I /1I \/x ttal

58. Find values of n1 ard M such that ,? 5 .! s'n,y < M tbr
0 < j < r, and use these values to find bounds on the value
of the illtegral

I r sinxd.r

59. Show Thal

osf hr d.r < 41n 5

60. Plove:
(a) tcr(r)lll : ctr(r)lj
(b) t,r(.r) + c(r)lj = F G)12 + G(x)lt:,

(c) tF(r) G(x)l!,: F(r)ltl - G(x)l!,.

7.7 RECTILINEAR MOTION REVISITED; AVERAGE VALUE

In SeuiorL 6.3 v,e used the derivatite to dert e the notio s oJ ilstantaneous ttelocity
and dccelerttiotl Jbr a pqfiicle moving along a line. Ift this section we \rill resume the
stL!d)) of sucll motiotl usiflg, the tools of integration. We will also inestigate the general
prcblem of integruting d rate of ch.nge, aftd we v,ill shoy, how the definite integrul
can be used b deftne the ateroge rolue of a continuous functiotl. More applications oJ

integration will be given in Chapter 8.

Recall from Definitions 6.3.1 and 6.3.2 that if s(t) is the position function of a particle
moving on a cooldinate line, then the instantaneous velocity and acceleration ofthe particle
are given by the formulas

dt du d's
urtt - 5 t!t - Jt 

and P{/r -, r/i - dt dt-
It follows from fiese formulas that s (r) is an antiderivative of u(t) and l (l) is an antidedva



,;
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'.r-';'11''
./t -'//'

!
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There s a LrnioLe Dos t on

:iii'llll,i"l'T' i1!1,=.ll :

Figure 7 7.I

s a unique veloc ty
)n such that D(10) = uo.

tive of c (); drat is,

stt t - [ uttl,lt
J

and y61: 
I a\t) dt (.1-2)

Thus, if the velocity of a particle is known, then its position function can be obtained iiom
(1) by integration, provided there is suflicient additional information to detennine the con-
stant of integmtion. In particular, we can determine the constant of integration if we know
the position s0 of the particle at some time 10, since this infomatiot'l determrnes u unique
antiderivative .i(t) (Figure 7.7.1). Similarly, if the acceleration funcrion of the particle is
known, then its velocity function can be obtained from (2) by integratioD jf we know the
velocity u6 of the particle at some tine rs (Figure 7.7.2).

Example I
Find the posirion function of a pafiicle that is moving with velocity uQ) - cos r/ along a

coordinate iine, assuming that the particle has coordinates s : 4 at time t : 0.

Solution. The position function is

rtl,tt'- lu't'dt - I co'nt dt - \in tt I
.l .l lr

Since,r :4 when t = 0. it follows that

14-s(0)- sino+C:C
Jf

Thus.

"{r1 
:1.;n,rr*,,

n
Eig'Lre 7 7.1

UNIFORMLY ACCELERATED
MOTION

One of the most important cases of rectilinear motion occurs when a palticle has constant
accaleration. We call this unformly accelerated motion.

We will show that if a particle moves with constant acceleration along an s-axis, and if
the position and velocity of the particle are known at some point in time, say when t : 0,
then it is possible to derive formulas fol the position,r(r) and the velocity u(t) at any timrl
l. To see how this can be done, suppose that the particle has constant acceleration

u-uo when l-0 (5)

where sp and u0 are known. We call (4) and, (5) the initiql conditiorrs for the motion.
With (3) as a stafting point, we cen integrate d (/) to obtain u (/), and we can integrate u(1)

to obtain s(r). using an initial condition in each case to determine the constant of integratiol.l.
The computations are as follows:

tt
x1r1- | o1t1dt - | odr -ar!C1 (6).t.t

To determine the constant of integration Cr we apply initial condition (5) to this equation
to obtain

u0: u(0): a.0+C1 -Q.,
Substituting this in (6) and putting the constant telm first yields

a(t) : a

and

J:so when /:0

u(t):r0+.It
Since u0 is constant, it follows that

tt
s11 - | u1'1dr - lr.ua+ar)Jr - ua, .ot C.t.t

(3)

(4)

\,"----,l-\-*__-.;,
'-"-.1..-. 

. - ....,.-.-'"

(1)
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To determine the constant C2 we apply initial condition (4) to this equatiqr to obtain

sn:s(Q):16 0+ ja Q+C2:Cz
Substituting this in (7) and putting the constanr term lirst yields

r(/):ro+fo/+ldl?
In sunmaly. we have re following rcsult.

7.7.1 I \llOR\lLY \( ( fl -kArFD \4!rllO \. ll.t l,. ti, lr" nt,,rr t 
^irh,,.t,,r,ltt at r er-

etation Q qlo g q s-axis, attd iJ the position and telocitl at time t - 0 are sn attd rq,
rcspecli\:eb, then lJre positiott and velotitlt futtctions of the particle qrc

s(1):so*ug]-!at2 (8)

(e)r(t): Da + at

i,,,(/) : ir(r) + 11 ( 10)

Since the woman has a constant velocity of 5 m/s, the distance she travels in 1 seconds is

s,,(r) : 5t. Thus, ( l0) can be written as

FOR TIJI. RE,\Dlltt How car you tell from the velocity versus time cuNc whether a puticle
moving along a line has unifolmll' accclcrated motion?

Example 2

Suppose thatan intergalactic spacecraftuses a sailand the "solar wind" to produce aconstant
acceleratiorr of0.032 m/s2. Assuming that the spilcecraft has a vclocity of 10,000 n/s when
the sail is f,r'st raised, how far will the spacecraft travel jn I hour, and rvhat will its velocity
be at that time?

Soltttiott. ln this problem the choice of a coordinale axis is at our discretion. so we will
choose it 10 make the compulalions as simple as possible. Accordingly, let us introduce an
.i-axis ivhosc positivc direction is in the directiqr of notion, and let us take the origin to
coincicle with the position of thc spacecraft at the time t : 0 when the sail is raised. Thus,
the Fonnulas (8) and (9) for unifomly accelerated motion apply wilh

.r0 :.r(0) - 0. u6 : i(0) : 111.999, and 4:0.032
Since I hour corresponds to r - 3600 s, it fbllows fiom (8) that in I hour the spacectaft
travels a distaoce of

s(3600) - 10.000(3600) + +(0.032)(3600)r - 36.207..100 m

and it follorvs from (9) that afier t hour its velocity is

u(3600) - 10.000 + (0.032)(3600) ,Y 10.115 m/s

Example 3

A bus has stopped to pick up riders, and a woman is running at a constant vclocity of -5

m/s to catch ir. Wl.ren she is I I ln behind the front door the bus pulls away with ii constart
accelelation of 1 m/s?. From that poilrt in time, how long will it take for the woman to reach
the l'ront door of the bus if she keeps r unning with a velocity of 5 m/s?

Soltttiott. As shown in Figure 7.7.3, choose the.r-axis so that the bus ard the woman are

moving in the positive directiol, and the front door of the bus is at the origin at the time
/ = 0 when the btts begins to pul] awiiy. To catch the bus at some later time I, the womalr
will have to cover a distance sd (/) that is equal to I I n plus the distance ir(t) traveled by
the bus; that is, the woman will catch thc bus when

rr(r) =5t ll (11)
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THE FREE.FALL MODEL

Sincc thc bus has a constant acceleration of n : I rn/sl. and since s1y : uo = 0 at time
r : 0 (u,hy?). ir follows fron) (8) rhar

:;t'Q ) : It2
Substiluting this equation into ( I I ) and reorganizing lhe lerms yields the quadratic equalion

jr:-5r+11:0 or' t1 -lot+22:0
Solving this ecluation for / using the quadratic fornlula yields two solutions:

r =5-.,4=3.3 and 1 :5+ J3'v6.'7
(verily). Thus. the woman can reach the door at trvo different times, t : 3.3 s nd t :6-7 s.

Thc reason that there are two solutions can be explained as follorvs: When the woDran first
reaclres the dool. she is running faster than the bus rnd can lun pasl it if the drivel does not
see her. However, as the bus spccds up, it eventually catches up to her, and shc has another
chdnce to llag it down. {

ln Section 6.3 we discussecl the tiee fall modcl ol'nrotion near the surfacc of the Earth with
the promise that we would derivc Formula (5) ofthrt section later in the text: we will now
show how to do this. As statcd in 6.3.4 and illustratcd in Figure 6.3.7. we will assume that
the object moves on an .r-rxis whose origin is at the surt'ace of the Ea h md whose positive
clirection is up: and we will ssume that the position rnd vclocity ofthe obiect at time / - 0

are ,ro and L,o, respectively.
It is a fact of physics thal a parlicle moving on a vc ical lineneartheEa h's suface

and subject ooly to the force ol'the Earth's gravity ntoves with co]rstant acceleration. The
magnifude of this constanl. dcnoted by the lettcr ,q. is approximately 9.8 rn/sr or' -12 ft/sr,
tlcpcnding 0rr whether distance is measured in meters or fbet.*

Recall that a panicle is spccding up whel its velocity and acceleration have the same

sign and is slowing down when they have oppositc signs. Thus. because we have chosen

thc positive direction to be up. it follows that lhe acccleration .r(r) of a particle in free fall
is negalive lbr all valucs of I. To see that this is so, observe thal all up\\'ard-nroving particle
(positivc vclocity) is slowing clown, so i1s acceleratioD rrust bc negative: and a downward-
moving particle (negative vclocity) ir speeding up. so i1s acccleration rnust itlso bc negative.
Thus. we concludc that

(/(r) : -,9
antl hence it follows frorn (lt) and (9) that the position and vebcity lunctions of an object
in ti ee fall are

,! (/) : .ro + ust - l3tl

u(1) = uo gt

(t2\

(13)

r , )ri rr l{, \l)t,tt Hacl we chosen the pesitive directioll of the s-axis to be down, then

the acceleration would havc becn 4(/) : I (why?). How would this have affected Fornlulas
( l2) and ( l3) l

F-xanrpie 4

A ball is thlown directly upward with an initial velocity of 49 m/s and is rcleased from a

poinl that is 8 m above the ground. Assuming that thc l'ree-iall model applies, how high will
the b.rll travel?

+ 
Srriclly spcnkins. lhe consrrnr s vrries !virh rhe lariludc and lhc dist nce lionl rhe Earth s ccntcr. lk)wcyer.lbr

nldi(nr at a li\ed larilude rdncrrtllcsu iccolrheEarlh.theassrrrrprionofaconslanrSissali:jl:lctor1fornuny
irpplicirlions.
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Solulion. Since distance is in meters, we take S : 9.8 m/s2. Initially. we have sx : 8

and uo : 49, so t'r-om (12) and (13)

1r(r) - -9 Er + 49

s0)- ,1.912 +49r + 8

Thc bail will rise Lrntil r(t) = 0, that is, until 9.8t * 49 - 0 or r : 5. At this instart the
height above the ground will be

s(5): 4.915;: +49(5) +8: i30.5n

Example 5

A penny is released from rest near the top of the Empjre State BujLding at a point that is

1250 1i abovc the ground (Figure 7.7..1). Assuming that the liee-fall model applies. how
lon-q does it take for the penny to hit the ground, and what is jts speed at the time ofimpact?

Solulirn. Since distance is in feet, we take .q : 32 ft/sr. lnitially, we have ss = 1250 and

uo : 0, so fiom ( 12)

s(1)--1612+1250
lmpact occurs when s(t) : 0. Solving this equation for I, we ()btain

1612+l25o:0
. 1250 625

16 8

25r-+ - !+8.tis
V8

Since I 2 0. we can disc;ud the negative solution and conclude that it takes 25/r,6 t 8.8 s

for the penny to hit the ground. To obtain the velocity at the time ol impact. we subslitute
t = 25/J8. lh : 0, and g - 32 in (13) to obtaiir

/25 t /15\,{a ) o-.r2{-_)_ 'ooJ). )8..8 ir
\ v8./ \ v8./

t hus. the rpeed r lhe lime oi imprcl i.
/ 25 rLrl -li- 100.,/2 lRl.'< ft i
\v8./i

which is n.rore than 192 mi/h.

The Fundamental Theorem of Calculus

I /(,)Jr - F\h)- F\,t) (ls)

r:50

(14)

' lntegraling the s ope of ,r = F(-r)
, over the lnterva fo. rl produces

, the chanee f(r) - F(l7) in th€

I va ue of /:(r).

FjgLrir 7.7.5

has a useful interpretation thilt c be seen by rewriting it in a slightly different tbrm. Since
F is an antiderivative of / on the inter,,al kr. bl, we can use the relationship F'(,r) = /(,r)
ro rewrite ( I 5) as

I f trtd,-f\b)-Frt) \lo.l

In this formula rve can view F'(-r) as the rate of change 01'F(r) with respect to r, and

we can view F(b) - F(a) as the chdnge jn the value of F(-r) as .r increases from a to l,
(Figure 7.7.5). Thus. we have tlre following uscful principle.

7.7.2 INTEClt,{ItNC r\ II^TE OF CH,\N( , E. Tntegraringrhe rrteolchangeoll (,r) wirh
respect to,L over an interval [a, D] produces the change in the valuc of F(x) that occuls

as -r increases fioln.r to 1r.
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DISPLACEMENT IN RECTILINEAR
MOTION

Figure 7.7.6

Here are:,,me errmples ol th i< idea:

lf P(1) is a population (e.9., plants, aninals, or people) at time /, then P'(r) is the rate
at which the population is changing at time l, and

I p'trl,lr : P\b) - P\t )

is the change in the population between times tj and /2.

If A (r) is the area of an oil spill at time t, then A'(t) is the rate at wbich the area of the

spill is changing at time 1, and

I ltr tdr:A(r))-A(r )

1,," 
,r, n, - 

1,," 
,'{il a, - ,r.,,) s(ro) (17)

r(to) s(rr) r(rr)

is the change in the area of the spill between times tl and 12.

.IfP'(r)isthemarginalprofitthatresultsftomproducingandselling.{unitsofaproduct
(see Section 6.2), then

I P p,1,lt - P1r21 - P1r1.t

is the change in the prolit that results when the ploduction level increases from :r1 units
to -ri2 units.

As other application of (16), suppose that r(t) and u(l) are the position and velocity
functions of a pa icle moving on a coordinate line. Since u(t) istherateofchangeofs(t)
with respect to l, it follows from the principle in 7.7.2 that integrating u(t) ovel an interval

[16. 11] will produce the change in the value of s (t) as / incrcases from 4) to l1 ; that is,

The expression s(11) -r(10) in this formula is called the displacement or change in po-
silion of the particle over the time interval [/0, h]. For a particle moving ho zontally, the
displacement is positive if the final posirion of the palricle is to the right of its initiaL posi
tion, negative if it is to the left of its initial position, and zero if it coincides with the injtial
position (Figure 7.7.6).

RFNI/\RK. In physical problems it is impofiant to associate the corect units with definite
integrals. In general, the units fbr the definite integral

lf -)ar

will be units of /(r) times units of ,rr. This is because the def,nite integral is a limit of Rie
mann sLlms each of whose terms is a product of the form /(r) . A,r. For example, if time
is measurecl in seconds (s) and velocity is measured in meters per second (m/s), then
integrating velocity over a time intelval will produce a result whose units are in metels,
since m/s x s = n.r. Note that this is consistent with Formula ( l7), since displacement has

units of lergth.

Negat ve d splacement
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TIME CURVE

7.7 Rectilinear l\4oijon Revisited; Average Value 433

In general, the displacament of a partiale is not the same as the distance traveled by the
particle. For example, a pafiicle that travels 100 units in the posjtive direction and then
100 units in the negative direction travels a distance of 200 units ut has a displacement

of zero, since it retums to its starting point. The only case in whie-r the clisplacement and

the distance traveled are the same occws when the particle moves in the positive direction
\.\ ilhoul reversinp lhe direction ol it. motion.

Folt IHI: I{l::\DI:lt. What is the relationship between the displacement of a particle and

the distance it travels if the particle moves in the negative direction without reversing the
direction of motion?

From (17), integrating the velecity lunction of a particle over a time interval yields the

displacement of a pafiicle over that time interyal. In conffast, to firLd the fot.tl dislatlce
traveled by the particle over the time interval (the distance traveled in the positive direction
plus the distance traveled in the negative direction), we must integrate the absoltie value

of the velocity function: that is, we must integrate the speed:

(18)

Example 6

A particle moves on a coordinate line so that its velocity at time / is u(1) : 12 2t nls.

(a) Find the displacement of the pafticle during the time inteNal 0 : / : 3.

(b) Find the distance traveled by the particle during the tine interval 0 : I : 3.

Soltttion ttt, Florn t I 7 r the displrcement is

t\ /' ^ fr' l'
I urrdr - | rt -2rtdr =l- t'/l 0
Jo Jr [J .ln

Thus, the pa icle is at the same position at time / : 3 as at I : 0.

Solfiiut (.b), The velocity can be wdtten as r,(l) : t2 2t - t(t - 2), fi'om which we

see that u(1) : 0 for 0 < t : 2 and u(1) > 0 for 2 < , : 3. Thus, it follows from (18) that

the distance traveled is

r\ r' r'
I lutr t,Lt -I uvldr-| u'rtJt
Ja Ja J:

"l
= J" -'r

tn Section 6.3 we showed how to use the position versus time curve to obtain information

about the behavior ofa pa icle moving on acoordinate line (Table 6.3.1). Similarly, there is

valuable infomation that can be obtained from the l,e1oc i4, v ersus time cun)e.For example,

the integral in (17) can be interpreted geonetricaLly as the net signed arca between the graph

of u() and the interyal [/0. tr], and it can be interpreted physically as rhe displacement of
the particle over this interval. Thus, we have the followiog result.

l*,'."00, ", I

L ",,, I
= l,"" 

wr'tto'

- zl at + l.' t.t' - zt) at

fr' .l fr ,lr 4 1 8--Lr-'1" l, /'1.-, r,-r'jn
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The net signed area is the
displacement of the particle

dur ng ihe Lnterval 1fu, rtl.

Figure 7.7.7

I 7.7.-l FiNrjr\c DrsPr.AC r-r\,rEN] r-RoNI Illl: \ LLocrT\ \'ERSt \ TI\lE CL RVE. Fbr a
panicle in rectilinear motion, the net signed area between the velocity ve6us time cune
and an interval [6. 11] on the l-axis rcpresents the displacement of the pafticle over that
time inlerval rFisure 7.7.7 t.

Example 7

Fi-qure 7.?.8 shows three velocity versus time curves for a particle in lectilinear motion
along a horizontal line. [n each case. find the displacement ol thc panicle over the time
interval 0 g t : 4. and explain what it tells you about the motion of the particle.

Fisurc 7.7.8

Sululion. ln part (a) of Figule 7.7.8 the net signed;rea under the curve is 2. so the particle
is 2 urits to the right of its starting point at the end 01'the time period. In part (b) the net
signecl a|ea under the curvc is -2, so the particle is 2 units to the left of its starting point at

the end of the time period. [n part (c) the net signed area under the cuNe is 0. so the particle
iSbackatitSStartingpointattheendofthetimeperiod.<

Somctimes we will not want the net signed area between a curve r' : .f(,t) and an inter
val [c, D]. but rather the lotal area between the curve and the interval. This can be l'ound bv
integrating ./(r) rather than l(n) over the inleNal kr,bj.

Example 8

Find the total area between the curve r' : I - r2 and the .r-axis over the interval [0.2]
(Figure 7.7.9).

Sohdirtrt. The area A is givcn by

o = Lt r-,.'1,/,. = /'tr -.,'t - tl),/-r
r1

dr+ J, -rt

['. - il=L I I'
:2

[.-i],
2 /4\
: - I .J

From ( I8), integratin-s the speed lu(l ) I over a time interval [t(,. tl ] produces the distance
faveled by the parlicle during the time interval. However, we can also interpret the integral
in ( 18) as the total area between lhe vclocity versus time cuLve and the interva] [(r. tL] on

the /-axis. Thus, we have the fbllowing lesult.

7.7,-l I t\Dt\r; tjts I \\( Il llr.\\Ft Ft) t.R \l rHl \Ll orlt\ \lRsl s lr\ll '|{\1.
For a particle in rectilinear nrotion, the total area between the velocity versus time curve

. and an inteNal [re, 11] on the /-axis represents the distance traveled by the particle over

. drat time interval.

Figurc ?.7.9
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)

Example 9

For each of the velocity versus time curves in Figure 7.7.8 find the total distance traveled
by the particle over the time interval 0 : I : 4.

Solutiort. In all three parts ofFigure 7.7.8 the total arca between the curye and the interval
[0. 4] is 2, so the palticle tmvels a distance of2 units during the time period in all three cases,

even though the displacement is diffelent in each case, as discussed in Example 7. {

In scientific work. numerical infomation is often summarized by oomputing some soft of
dterage ot mean value of the obseNed data. Therc are various kinds of averagcs, but the
most common is the arithmetic mean or qrithmetic qverage, which is formed by adding
the data and dividing by the nurnber of data points. Thus, thc arithmetic aver age a of 

'?numbers a1. rl2, ... .4,, is

I 1"n-'\.nr'01. ,a,) - ' t.7/
,t t' 

^/--"
In the case where the .rt's are values of a function f, say,

a1 = JQ1),tt2= JG),...,a,,: f(x,,)

then the arithmetic average 7 of these function values is

a: 1f fi., rn-,
We wjll now show how to exteld this concept so that we can compute lrot only the

aithmetic average of iinitely many function values but an average of a/l values of /(r) as

-r varies over a closed interval [c,6]. For this purpose recall the Mean-Value Theorem for
Integrals (7.6.2), which states that if / is continuous on the interval [d, r], then there is at
least one point r* in this inte al such that

| :'1t1clx = /irrl(b .t)

The quantity

i t,'.r :-L ['' 71,1,r,b o J,,

ba
n

will be our canclidate tbr the average value of .l over the interval [a, b]. To explain what
motivates this, divide the interval [d, bl into,? subintewals ofequal length

(le)

(2ol

and choose arbitrary points ri, ,{.j, . . . , r,l in successive subinteNals. Then the arithmetic
average of the numbers l(-ri), l(rj), ...,1(.r,'i) is

I.r!e llrr'r- 7'r;r- . - /r r,l rl
n

or from (20)

tt-j-rle=, l/r.yi )Ar /rr:)Ar t . /ir,; rArl=, ) /r.r;rA.r
n d , 0-

Taking the limit as n :' 1cc yields

ri,n I f 7i'.;11. t ['1s;a,,--, b-uf,-" b aJ,"
Since this equation describes what happens when we compute the average of "more and

more" values of /(r). we are led to the following definition.
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AVERAGE VELOCITY REVISITED

7.7.5 DEFI\fno\. If ./ is continuous on

valueJ ol J on l,r. i,l is detined to be
[a. b], then the average value (or mean

f(x) dx

Itl,\1.\l{K. When / is nonnegative on [a, b], the quantity 1,." has a simple ccornetric inter-
pretation. which can be seen by writing (21) as

rb
/it< {b .r) : | .S1.r1a.r

J,,

The leti side ofthjs equation is the area of a rectangle wilh a height of fa,c and base of Iength
/2 - a, ard the right side is the area under _r, = /(r) over la, bl. Thus, /"," is thc height of
a recttrngle constructed over the intenr'al [a. D], whose area is the same as the area under
the graph of / over that interverl (Figure 7.7.10). Nole also that the Mean-Value Theorem,
when expressed in form (21), ensures that there is always at least one point,r* in [4. ir] at

which the value of f is equal to the average value of I over the interval-

Example 10

Find the average value of the function /(r ) = .",4 ovel the interval I I , 41. and fi nd all points
in the interval at which the value of / is the same as the avenge.

Sttlu lio n.

I t" I tt t[2.::l'1".:t,, 
J,, J,.r,,1-' : r_, J, /',,': I L, l

tltr' )l t4
= I I= :1.6rL3 Jl e

The.r:-r'alues at which l(r) = ./6 is the same as the average satisfy ^,4 
: l4/9. liom

whichweobtain'I=l96/8Iry2.4(Figure7.7'll).<

FiSurc 7.7.1I

In Section 3.1 we considered thc motion of a particle moving in the pos?/ir? .lit c(ion 
^long

a coordinate line, and we motivated the concept ofinstantaneous velocity in that specitl case

by viewing it as the limit ofaverage velocities over smaller and smaller time intervals. That
discussion led us to conclude that the average velocity of the pafiicle over a timc interval
could be ilterpreted as the slope of a secant line and the instantaneous ve]ocity as the slope

of a tangent line to the position versus time curye (Figure 3. L5). We will now show that
the same results are true in the more general case where the particle can move in either
direction along the coordinate line.

For this purpose. suppose that J(1) and u(/) are the position and velocity f'unctions of
such a particle, and let us use Formula (21) to calculate the average velocity of the panicle
over a time interval [10. tr]. This yields

l
(21)*1"'

I =./(-.)
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I I l f' .Ur) s(/o)I ult tdr - I '\t)dt =-l)-t^Jr t.-ttJ, lt ]u

Tl'\rs, the ayerqge velocit.t otter o time i teDal is the displacement divided by the elapsed
lir?e. Geometrically, this is the slope of the secant line shown in Figure 7.7. 12. Moreover,
if we allow tl to approach t0, then the slopes of the secant lines approach the slope of the
tangent line at t0, which is the instantaneous velocity at that instant. Thus, the relationship
between average and instantaneous velocity developed in Section 3.1 also applies to general
rectilinear motion.

,\

td

s(tr)

i Trl',
/o\ / tt

Figure 7.7.12

_ s(lr)-r(10) _ displacement l

rL ro elapsed time 
l

ExERctsE SET 7.7 E Graphing ca cutator E cAS

s(ro)

1. (a) If/z'(r) is therateofchrnge of a child's height measured

in incne. per lear'. nhat doe. the integral fna n,ttct,
represent, and whaf are its units'i

(b) lf r'(l) is the rate of change of the radius of a spherical

balloon measured in centimeters per second, what does

the integral f,']r'(r) 1t represent, and what are its units?

(c) lf F1(/) is the rate of change of lhe speed of sound with
respect to temperature measured in ft/s per'F, what

does the integial 1.,),10 n 61 at represent. and what are

its units?

(d) If u(t) is the velocity of a pa icle in rectilinear motion,
measnred in cm/h, what does the integral Ll,'u0at
represent, and what are its units?

(a) Suppose that sludge is emptied into a river at the rate of
y(a) gallons per minute, stafiing at time I - 0. Write
an integral that represents the total volume of sludge

that is emptied irto the river during the first hour.

(b) Suppose lhat the tangent line to a curve -v : /(r) has

slope 
'?z(.r) 

at the point ,r. What does the integral

/,1' nr (,v) z1lr represent?

In each paft, the velocity versus time cune is given for a

particle moving along a line. Use the curve to find the dis-

placement and the distance traveled by the partjcle over the

time interval0 < t:3.

Sketch a velocity versus time curve lbr a pafiicle that travels
a distance of5 units along a coordinate line during the time
interval0 s r < l0 and has a displacement of 0 unils.

The accompanying figure shows the acceleration versus

time culve for a particle moving along a coordinate line.
If the initial velocity of the particle is 20 rn/s, estimate
(a) the velocity at time t : 4 s

(b) the velocity at time 1 : 6 s.
2.

Figure Ex 5
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6. Determine whether the particlc in Exercise 5 is speeding up
or slowing dow at limes I :.1s and 1 - 6 s.

ln Exercises 7 I 0. a particle moves along an s axis.Usethe
given infonnation to lind tlte position function ofthe particle.

7. (a) f(1) : t3 - 2r2 + l; i(0) - I
(b) 4(t) :4cos2/ r(0) : l; .'(0) : -3

8. (a) N(1) : I + sin t: s(0) - -3
(b) .i(/) - 11 3r + 1; u(0) : 0; r(0) : 0

9. (a) u0):2r-3; s(l):5
(b) a(r) : cos t L)(nl2)-2',.t(ft/2):(i

10. (a) r(r) : r2lr; s(8) :0
(b) rr(r): Jt: r(4): l; s(,1) : -5

In F\erci.e. I | 14. ,l nan:cl( morer with J \elocrty nt ur/ I

m/s along an.r-axis. Find the displacement and the distance
traveled by the particie during the giveD time inierval.

11. (a) r(t): sint; 0:t<lz'/2
(b) i(r): cctsr; t/2ar a2t

12. (a) r,0)-2t-4;0=t 
=6(b) u(r): r-3;0:r:5

13. (a) u(r) :ri k2+2t:O=t=3
(b) r.'(r): e' 2;0</<3

1,1. (a) f (/) : : - t / t: 1 :: t a 3

(b) r0) : 3l 
"/7; 

1 :: t 
= 

<l

In Exercises l5-18, a particle moves with acceleration.t(t)
m/s2 along an s-axis and has velocity ir6 r'r'r/s al timc I : 0.

Find the displacement and the distance traveled by thc parti-
cle during the given time interval.

15. 4(l) : -2; uo :3; l<r<4

In Exercises 2l 24. sketch the curue and find the total area
between the curve and thc given interval on tlle,r-axis.

Figure Ex 20

21.

23.

f--t t<LY -''

) -,tr l; t0.31

-\':c' ll | 1,11

22. -\' : siD -r' [0, ]r/21
,t

t4 .,-' ' lI rl

u(t):t 2 uo:0; 1:1:5
a(t):1/Jst i1; un:2; 0:r:3
a(t) - sinl ro: I, nl4 :: r 

= 
trl2

In eaich part use the given infolmation to nnd the position,
velocity, speed. and acceleralion at time / - 1

(a) u : sin ]7rt; .r :0 when t : 0

(b) a: 11; .r:landu:0wlrent:0
The accompanying figure shows the \,elocity versus tine
curye over the time interval I : / : 5 fbr a pa icle movills
along a horizontal cooldinate Iine.
(a) What can you say about the sigD ofthe acceleration over

the time interval?
(b) When is the particle speeding up? Slowing down?

(c) Wrat can you say about the location of the particle at

dme r : 5 relative to iis location at time t - l'l Explai
your-reasoning.

Suppose that the velocily lunction ofa palticle movilg along
an .r axis is r(t) :20t2 1001 -1- 50 ft/s and rhat the par'

ticle is at the origin at time I : 0. Use a glaphing utility
lo gener.lte the graphs of sft), r(r), and d(l) lbr the first
6 s of i]otion.

Suppose that the acceleration t'unctiolr ol a particle moving
along an.t axis is d(t) : 4, - 30 m/s and that the position
and velocilyattimet : 0are.t0 : -5mand uo : 3 m/s.
Use a glaphing utility to generate the graphs of s(r), u(l).
and d(1) for the first 25 s of motion.

Let the velocity function for a pafiicle tltat is at the origin
initially and noves along an s-axis be u(t) : 0.5 te-t.
(a) Generate the velocjty versus time curve, aDd use it to

make a conjecture about the sigtl of the displacenent
overthetime interval 01r 15.

(b) Use a CAS to find the displacemenr.

Let the velocity function for a palticle thirt is at the origin
initially and moves along an .r' axis be r.r(l) : I ln(t + 0. l).
(a) Cenerale the velocity versus tirne curve, and use it to

make a conjectr.fe about the sign ol the displacement
over the time interval 05/51.

(b) Use a CAS to find the displacement.

Suppose that at time I : 0 a particle is at the origin of an

-t-axis and has a velocity of r,0 : 25 cm/s. For the nrst 4 s

thereafter it has no acceleration, and then it is acied on by
a retar-ding force that produces a constant negative acceiel-
ation ofd : l0 cm/s2.
(a) Sketch the acceleration versus time curve over the in-

teNal 0:1:12.
(b) Sketch the velocily versus time culve over the time in

tcrvalo:1:12.
(c) Find the -r coordinate ol the pa icle at times I - 8 s

ar'ld I : l2 s.

(d) What is the maximum ,r coordinate ol the pafticle over
the time interval 0 

=t::121
Fonnulas (8) and (9) for uniformly accelented moiion can
be rearranged in various useful ways. For simplicity, let
s : .r(,) and | - r(r), and derive the following valiatiol'ts
ol lhosc formulNs.

aa 26.

E 27.

E 28.

16.

t'7.

18.

19.

29.

2I.

30_



(c) .r : .\0 + ur l41r lNote how this dif'l'ers fiom (8).1

Exercises 31-38 invoh'c unifonnly accelelated motion. In
these exerciscs assume thal the objecl is moving in the pos-

itive dircction ol a coordinate line. and apply Formulas (8)

and (9) or those l'ronr Exercise 30, as appropriate. In some of
these problems you will need the fact that 88 ft/s : 60 mi/h.

(a) An autoniobile traveiing on a straight road decelerales

uniformly from 55 mi/h ro 25 mi/h in i0 s. Find ils
acceleration in ft/sl.

(b) A bicycle rider traveling on a straight path acceierates

uniformly fiom rest to 30 km/h in I rnin. Find his ac-

celeration ilt klt't/sl.

A car traveling 60 mi/h along a straight road decelerates at

a constant rate of l0 ft/s2.
'a' Hou .on9 \.ill il lrke unri the.leed r.45 mi h.

(b) Hovi far will the car travel before comjng to a !top?

Spotting apolice car. you hit the brakcs on yournew Porsche

to reduce vour speed from 90 mi/h to 60 mi/h at a constant

rate over a distance ol'200 fi.
(a) Find the acceleratior in ft/sr.
(b) How long does it take ior you to recluce your speed to

55 mi/hl
(c) At tlre accelel ation obtained in pa (a), how lor'lg world

it take fbr you to bring youl Porsche 1o a complete stop

from 90 mi/hl

A particle moving along a straight line is accelerating at

a constant rate of 3 m/s2. Fild the initial velocitv if the
particle moves 40 m iD the llrst ,l s.

A motorcycle. stalting fiom rest, speeds up with a constant

acceleration ol 2.6 r'r'i/s2. At'ter it has traveled I 20 m, it slows

down \\,ith a conslant acceleration of - 1 5 m/s2 until it at-

tains a speed of 12 m/s. What is the distance lraveled by the

motolc)'cle at that poinl?

A sprinter in a 100-m racc explodes out ofthe starting block
with an acceleration of 4.0 m/s2, which she sustains for 2.0

s. Hi]r acceleration then drops to zero foa the rest of race.

(a) What is her time for the race?

(b) Make a graph of her distance from the starting block
versus time.

A car that has stopped at a toll booth leaves the booth with
a consranr acceleration of 2 ft/sl. At the time the car leaves

the booth it is 5000 fl behind a truck traveling with a con-
stant velocity of 50 ft/s. How long will it take lor lhe car

to catch the truck, and how far will the cal be from the toll
booth at that tiire l
In the 1inal sprint of a rowing race the challenger is rowing
at a constant speed of 12 m/s. At the point where the leader

is 100 m liom the noish line and the challenger is 15 m be-

hind, the leadel is rowing al 8 m/s bul stalis acceielating at

a constant 0.5 m/s2. Who $'ins?
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In Exercises 39+8. assume that a free-fall model applies.
Solve these exercises by applying Fomulas ( 12) aod (13) or,
if appropriale, use those from Exercise 30 with a : g. In
lhese e\ercises take 8 : 32 ft/s2 or 8 : 9.8 m/s2, depending
on lhe unils.

A projectile js launched vertically upwardfrom groundlevel
wilh an inilial velocity of 112 tl/s.

'r' I ind rhe lelocrr) !l / - I s and r :5 ..
(b) How hjgh will the projectile rise?

(c) Fild the speed of the projectile when il hils the ground.

A projectile fired do*,n$'ard ftom a height of I l2 ft reaches

the ground in 2 s. What is irs iiitial velocity?

A projectile is lired vertica]ly upward liom ground level
\\'ith an initial velocity oi 16 lt/s.
(a) How long will it lake ior the projectile to hit the ground?

(tr) Ho$ long will the projectjle be rnoving upward?

A rock is dropped fiom the top of the Washington Monu
ment, $,hich is 555 ft high.
(a) How long will it lake lor the rock to hil lhe ground?

(b) What is the speed o1 the rock at impact'?

A helicopter pilot drops a packaSe when the helicopter is

200 ft above the ground and rising at a speed of 20 ft/s.
(a) How long will it take for the package to hit the ground?

(b) What will be its speed at impactl

A stone is thrown dorl,nwad with an initial speed of96 ft/s
liorn a height of I 12 fi.
(a) How long will it take tbr the slone to hir the ground?

(b) What will be its speed at impact'l

A pro.jectile is llred vertlcally up\\ard with an initial velocity
of 49 m/s irom a tower 150 m high.
(a) How long will it take ior the projectile lo reach its max-

imum height?

(b) What is the maxin.rum height?

(c) How long will it take for the projectile to pass its starting
point on the way down?

(d) Whar is the velocity when it passes the stffting point on
the way down?

(e) How long will it take for the projectile to hit the grourd?

(f) What will be its speed at iDrpactl

A man drops a stone from a bridge. What is the height of
the bridge if
(a) the stone hits the water 4 s later
(b) the sound ofthe splash reaches the man 4 s later? lTake

1080 fi/s as the speed of sound.l

In the llnal stages of a Moon landing, a lunar module fircs its
rcfforockets and descends to a height of ft : 5 n above the
lunar sudace (Figure Ex ,17). At that point the rctrorockets
are cut off, and the module goes into tiee fall. Civen that
the Moon's gravity is 1/6 of the Earth's, find the speed of
the module when it touches the lunar surface.

r'r 
' ,l\at a- l(s so)

- lt.' \ol
{b) 1- 

-

uo+r)

3I.

39.

40.

46.

4l-

32.

31.

42.

43.

14.

45.

34.

35.

36.

38.

41.
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48. Given rhar the Moon s gravitv is l/6 ol thc Earth's, ho$,
much fasler would a ploiecfile have to be launched upward
from the surtace of the Eafih than from the sur-tace ol the
Moon to reach a hei8ht ol 1000 tt')

In Exercises 49 5,1, llnd the ilverage value of the lunction
over ihe given intervnl.

it, and then chcck your conjecture by integrating. lTake the
weight dcnsir)r of waler to be 62.4 lb/ftr.1

(a) The temperature of a l0-m long metal bar is l5'C ar

oDe cnd and 30'C at the other encl. Assuming that tl'le
temperalure increases lineariy from the cooler cnd to
the hotler end, u,hat is the average tcmperature of drc
bar?

(b) Explain tvhy thete must be a point on the bat where the
lemperature is ihe sanle as thc averase, and liDd it.

(a) Suppose that a reservoil supplies watel to an industrial
park at a constant rale of r' : 4 gallons per minute
(gal/rrin) between ll:30 A.l\,1 and 9:00 A.M. How much
waterdoes the resel-voir supply during that time period?

(b) Suppose that one of the industuial plants increases its
water consumption between 9:00 A.M. and 10:00 A.M.
and that thc rate !t which the rescNoil supplies water
inclcases linearly, as shown in the accompallying fig
LLrc. How much water does the reservoit supply dLu ing
that I hour ijme peiodl

(c) Suppose rhai flom 10:00 A.M. ro 12 nooD rhe rare ar

which thc rcservoil supplies water is given by the for-
mula,.(/) : l0+Jl gal/nin,wherc/ : 0corresponds
to i 0:00 A.lvi. How much $,ater doe5 lhe rcservoir supply
during thal 2 hour time period?

9:00 ,\.r1. T me (m n) 10:00 A.j\1.

Fig re Er 6l

A traffic cngineer monitols the rate at wl ch cals enter the
nain highway during the alierDoon rush hour. From heldala
she estirnates that bet\\,een 4:30 pM. and 5:30 pN{ tl]e rale
R(t) at which clirs enter the highway is given by the formula
R(.) : 100(1 0.0001t1) cals per nrinure, where / : 0
conesponds to,:l:30 PM.
(a) When does the peak lraffic ffow into the highway occru?
(b) Find thc numbel ol cars that enter the highway during

the rush hour.

(a) Prove: If / is continuous on [a. ]1, then

I lt(,) - /J,(l,i \ :r)
(b) Does there exist a constant c f 

^ve 

such that

/ l/t 'r ilJr:o?

60.

6r.

49. /(.!) - 3r: u 3l

51. /(.r) - sinrr 10. nl

53. /(r):1/.r: Il. cl

50. /(r) : -r:: J- I . 2l

52. .l(r) : cosr. [0.ri]
51. f(.r) - c'; I l. ln 5]

56. (a)
(b)

(c)

57. (a)

(b)

tb)

-s8. (a)

55. (a) Find.l,," ol l(r) : r: over 10.21.
(b) l'ind a point r' in [0.2] such that /(r') : .1i"".
(c) Skelcr the grirph ol llr) - rI over'10. 2l anclconstruct

a r-ectilngle over the interval whose area is the sane as

thc arcl under the graph of / over the inte.\'al.

Find 1,,,," oi l(r) : 2-r over [0..1].
Find a point r' in l().,11 such that.l(r-) : l;,e.
Sketch the gllph of /(.r) - 2-r over [0. 4] and cor)slrucl
a rectangle over the interval whose area is the 5ame as

the arca Lrnder the glaph ol f over the interval.

Suppose that thc velocity function of a particle mo\
rnl:rlnn!.r, on ,lrn,lrr lrn( .: r/r- {/ l'lin,l llre
average velocity ol the particle over the tin'le iDlerval
1:r:4byinteglating.
Suppose that the position function of a pa icle mo\-
ing aiong a cooldinatc line is r(r) - 6rr + l. Find the
avcraqc vclocitv of thc pafiicle ovcr the tiine inte al

l:/:.lalgebraically.
Suppose that the a.celeration lunction ofapa iclemov
ing alorg ii cooldi ate line is a (t) - 1 + 1. Find the av-
cragc acceleration of thc pafiicle ovcr the time intemal
0:1:5b),integrating.
Supllose thiil the velocity liLnction of a parliclc moving
along a coordinale line is r(/) : cos.. Find the aver-

age acceleration ol the pa iclc over thc time initNal
0 : r : r/rl algehraically.

waler is run at a constant rale of I ft3/min to fill a cl'lindrical
tank olra.lius 3 li and heiSht 5 1t. Asslur]ing that the tank i!
ernpl)' initially. n'rake a conjeclure about the averiige weight
of the rvatel in the tank over the time period requiled to llll

t0

^8

c5
19 .1

)
I

62.

Water Consurn pt on

sq.

6-1.
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7.8 EVALUATING DEFINITE INTEGRALS BY SUBSTITUTION

In this section we wilL discuss two methocls for eyaluati.ng deJinite integrals in v,hich a
;ubstitution is required.

Recall from Section 7.3 that indefinite intesrals of the form
TWO METHODS FOR MAKING
suBsnruloNs tN DEF|N|TE [ ,,,,,,,,",,,r,INTEGRALS J'" ""^

can sometimes be evaluated by making the r-substitution

ri : .q(,r), du - g'(x) dx (1)

which converts the integral to the form

I y,ur a,

To apply this method to a definite integral of the form

/ /tg (: ) rs'(t I dr

we need to account for the effect that the substitution has on the x-limits of integration.
There are two ways of doing this.

Method I
First evaluate the indefinite integral

ll\slx))g'(t)dt
by substitution, and then use the relationship

tL f I lr
I lgrttg rxtdr - J / l,g', rrg rr rrh 

IJJ LJ J,
to evaluate the deflnite integral. This procedure does not require any modification of
the x limits of integmtion.

Method 2

Make tbe substitution (1) directly in the definite integral, and then use the relationship
& : I (ir) to rcplace the;limits, r - a andx : b, by corresponding a-limits, a - g(a)
and a : g(r). This produces a new definite jntegral

I t lul ct t'

that is expressed entirely in terms of a.

Example 1

Use the two methods above to evaluate /t ,1"' + t.tt J, .

Solution by Method 1. If we let

u=x2+1 so that du:2xd^
then we obtain

I I I a4 ,r'I lt'
/r'r I"d.r=^ l,"dr- .r- 

--L.
.t !./ 8 '' - 8 ''

(:2)



442 lntegration

Thus.

r' f r I rx2, lrol2/ xrr2 |l;ldr:|/x1x2 tr'dr| - ---l- I

Jo lJ l.-n 8 l. n

625 1: 8 -8:t8

Solution by Method 2. If we make the substitution , : x2 + I in (2), then

a:1 if x:0
,,_< :f -_a

Thus,

t2 I 15 uolt 625 II xrx2 - Ir'dx-; I urdu-+l ---' - -;8Jo 2Jt 81", 8 8

which agrees with the result obtained by Method 1.

The following theorem states precise conditions under which Method 2 can be used. The
proof is a straightforward application of the chain rule and the Fundamental Theorem of
Calculus, but we will omit the details.

7.8.1 THEOREM. If g' is continuous on la, bl and f is continuous and hcLS an anti-
derbative on an interval containing the values of g(x) for a < x < b, then

tb tq(b\
I frgrxlg'rxtdx - I [rutdu
Ja Je\o)

The choice of methods for evaluating definite integals by substitution is generally a

matter oftaste, but in the following examples we will use the second method, since the idea
is new

Example 2

Evaluate

| 314 t tr/8
,u, | + rbr / sin52xco*2xdx

.ln l-r Jo

Solution (a). Let

u:1-x so t\at du: dx

Wifh this substitution we have

u-l if x:0

":l it t:J
Thus.

f3a rix fta du ll'I = I -:-lnlrl IJo l-" Jt u l",

- - ['" / ] \ - rn, rr'l : rn+t\4/ I
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Solntiort (.b). Let

r : sin 2-t so that dr : 2cos2x clx

With this substitution we have

a : sin(0) :0 il' x :0
u=sin(r/4) -1/J2 if r :rl8

(or \ ttu = cos 2r .1-r)

/"/' ,;nt z-, .o, zr n, : ! 
lot' 

" u' ou :

-tlr;* ']

1,,".l''f
2 .j.1,,

I
96

Example 3
ln Exarnple 8 ofSection 4.4 we stated the following model for the temperature 7 in degrees
Fahrenheit ("F) ol a glass of lemonade t hours after being placed in a room with a coltstant
tenperature of 70"F, given that the initial temperature of the lemonade was z[0'F:

T:70-30e o5'

Find the average temperature Trye of the lemonade over the first 5 hours.

Sohttiort. Fronr Definition 7.7.5 the aver age value of f over the rime interval [0, 5] is
, "sr,,,-! I oo 30. o"),/r
)Jl

To evaluate this integral, we make tlte substitution

tL - -0.5r so rhat .1,l : -0.5dt lot dt = -(t/0.5)dul
With this substitution we have

'l:0 if r:0
ir- (0.s)5: 25 if /:5

Thus, (3) can be expressed as

I f -i , I \ I r'l'r".. -l r70 t0c"rl '_l,tr---'-l L7u .ru, rJir) J., \ U.:,/ ) .5 Jn

=-|lro,,-30,'l:f = ||,-,rt-3oe 
25v ( 3o)l

:58+l2e 2 5 ! 58.99'F

RENIARK. Observe that the 
'l-substitution 

i[ this exarnple procluced an integral in which
the upper r-limit of integration was smaller than the lower r limit of integration. In our
computations we left the linits of integration in that order, but had we wanted to we could
have reversed the order to put the larger limit on top and compensated by reversing the sigo
of the integral in accor dance with Definition 7.5.3(b). The choice of procedures is a matter
of taste: both produce the same result (verify).

FoR lttE READER. If you have a CAS, use it to evaluate tlte integral in rhe last example.
See whether it makes any difference in the form of dre answer if you cxpress the exponent
as -l/2 rather than -0.51.

(3)
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ExERcrsE SET 7.8 E cAS

In Exercises I and 2. express the integral in tems ofthe vari-
able rr, bul do not evaluate it.

17. Find rhe arca undet the curle ,], = sin z,r ovcr the interval
t0, 11.

18. Find thc area under the curve _! = 3 cos 2-r over the interval
10. z/81.

19, Find the area under the cula",e l, : l/(x + 5)2 over the in-
terval [3,71.

20, Find the area urrder the curve _r. : I /(3r + I )l over the in-
terval [0. 1].

21. Find the average value of /(,r) = "-2t 
over the inreryal

t0,41.

22. Find the average value of ./(r) : sec2 nr over the interval

I r rl
In Exercises 23-38, evaluate the integrals by any method.

1uy /'r,, + t)7 ctx; u = r-t I

/l 

-

(b) 
/ rr/8-.rrdx; 

a:8-rl

G) lt ,sin(fi) 
de: u - ro

ral /t{.'+zlt* -3)2\tdx; u=x-3

ol 
lut 

u2' 1 tlx: Lt :2x 1

/" lnt(b) 
.il -.1.r: 

tr : ln.r

{.) ;['l'ront,, 
.".' t dx, u = tan x

r1

tar / rlr/'r:*3dr: rr: rr+3

rl
24. Jt J5r - 1 dr

2,6. 
ln ,r.,i {t3 + D'n at

2J.'-_
Jo ./3., + t

2s. I 
-

J-r V\J +9

ln Exercises 3-12, evaluate the definite integral two ways:
finjt by a !-substitution in the definite integral and then by a
l'l-substitution in the coffesponding indefinite integral.

27.

29.

31.

rl , rtl-L,r'Jr Jxl +4t +7

/"Ao 
.in t .n, t 1-.

/r'" s' .or{") a'

1."'n.,n 
t se ae

/, 'to, *o
tllt _

;l 
.,./tan r sec' r ,/r'

t. 
fo' 

e, + Do ar

s. 
/o{r - z'tt.t..

1"8

7. 
Jn 

tJt+xdx

e. 
ln"'' 

o rr',{,lz) a"

tt. I ' ,t,J '"..e'+4

r2
+ 

J, {+x -D3 a,

e. 
f,t 

e - zi'a*
ro-

8. 
J_,xJa-xdt

fi. 
1,,"/o 

2"o$, a'

n. 
Itt"s ", 

G - 4", ) ,t"

ln Exercises l3-16, evaluate the definite integral by express-
ing it in tems of & and evaluating the resulting integral using
a lbrmula lrom geomelry-

Isl)
13. / J25 - 9x2,1x. u-3x

Jo

14. I xJ to - t' ,tr; r : .{l
JN

7t/ )
15. / "indJl -4cos26d0: t,:2cos0

i'J .r5G - (lnrt
16. , " lt: n-lnr

J. " .(

35.

37.

E 3e.

E 40.

:2. /. ;isrnvfat

1,,"lt "in' 
3e ,os:le de

J,"n
l,"h ^n3s. / .re-^' ,lt

For each of the integrals you evaluated in Exercises 23-38.
check your answer using a CAS.

Use a CAS to find the exact value of the integral

fl
/ .,/-l - 2.t - 12 J.r

and then confirm the result by hand calculation. lHi?/; Com-
plete the square.l

fl ?J
(a) Find / /(-1.( + l)(/r if , /l.r)(1.r :5.

Jo J t

tj r"
rbr Find / /r.rxt,1.r il I [r.rtrtx = 5.

Jt Jt
tQ rf

1cr Find / .r/t.r:;r/.r il I [r:1,1x=1.
J i Jt



42. Given that lr and rr are positive integers, show that

,1 "t/ .'-,r . tiar: I.r',1-.rr ,/'lt lt
by making a substitution. Do rot attempt to evaluate the

integlals.

43. Given that /i is a posilive integer. show that

11 : r.r l
/ 'in" .r 1r - / cos" .r r/.r.t,,.t,,

by usilg a trigonometric identity antl making a substitution.
D,r nol .lllempl lo e\rlurlr lhe inteSrrl..

Givcn that r is a positive integer'. evaluate the integral

/ .tt I -.r t" dr

Suppose that at time I : 0 there are 750 bacteria in a growth
nrcdiun and the bacteria population r'(I) grows at the rate

r'(r ) = 802. I37er 5:8', bacteria per hour. How many bacte-
ria will there be in 12 hours?

Suppose that the value of a yachl in dollars after I years of
use i5 y(/) - 2'15,000e 0r7'. What isthe average valr.re of
the yacht over its first l0 ycars of use'l

Suppose that a particle moving iik'lng a coordinate linc has

vclocity u(r) :25 + lOe o{)5' fr/s.
(a) What is the distance lraveled by lhe particle from time

r =0totimeI - l0?
(b) Does fhe term lOe 005' have nruch effect on thc dis-

lance traveled by dle particle over that time interval?

Explain your reasolring.

Fincl a positive value of t such that the area under the grapl)

L'l.r' =,l orerlhe inter\lll 10.( i. 3 squtreLnil..

Elcctricity is supplied to homes in rhe tbrm ol altemating
carr€[r. which means that tlre voll ge has a sinusoidal wave-

form described by an equation of the form

V : V I sin(2iJtl

(sec lhe accompanying figurc). ln this equalion, y/, is called
the pcak voltage or amplitude of thc current, / is called
its frtque ncy, nd 1/l iscalled its period. The voitages V
and V,, arc measr.rred in volts (V). the time t is measured in
seconds (s), and the tiequency is melsured in hertz (Hz) or
sonretimes in cycles per second. (A ctcle is the electrical
term lbr one period of the wavcforrn.) Alternating currenl
voltmeters read u,hat is called thc /Dr$ or root-rnean-square
value ol V. By definition. this is the squarc root of the av-

erage value of Vl over one pcliorj.
(a) Show that

-t;,

1 = l;, sin(241i)

Figure Ex 4cl

Show that if / and g tre continuous functions. thcn

rt tt
I Jr, .\,sr.r).1.r = / /rrtgri r),/.{
.ln .l^

f" F{rl
(a) Lcr/- I ------- ./r.Shou rhur/ =tr/:.Jrr /(i)*/(a-t)

lHint. Lel u = a -.r, arld then express the integrand as

the sum ol two fractions.l
(b) Use the result ol pari (a) to find

rl /a/ u' ,r,
Jo Jr + ./.1 _ .r

(c) Use the result of part (a) to lind

I ' \rnrI ._ _ J.
J0 sln.\' + e o\.r'

rr I

L<t l - | 

- 

L/.t. Sh,-'w that the sub:liluri( .r = L/
J L r T.r

results in

/"1 |

' J 't+r""-
so 2/ :0. which implies that / :0. However. this is im
possible since the integrand ofthe given intcgrul is positive

over the interval of integration. Where is tl're elror?

Find the limit

.\ srn(lrr/rr )trm)-,- +.. ?,! n

by evaluating an appropriate definite integral over the inter-
val [0. l].
Check your answer to Excrcise 53 by evaluating the limit
directly with a CAS.

55. ,ar Pr.rre that if / i: ar odd lLrnution. then
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(b) ln rhe United Stares, elecrrical ourlers supply altemar
ing clllTent with an nls voltage of 120 V at a frequency
of 60 Hz. What is lhe peak voltage at suclt an oullet?

I fut,tx:tt

and cive a geometric explanation ol this result. [Hir?ar
One way to provc that a quantity.l is zero is to show
that .1 : -g.l

\",

45-

50.

51.

47.

52.
48.

49.

53.

E s4'

I,l/i,la. Compute the average over lhe cycle liom I : 0

lo I : l//. and use rhe idenriry sin: d : ] (1 - cos 20)
to help evaluate the integral.l

vt'

"/t
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(b) Prove that if / is an even function, ther and give a geomctric explanatlon of this result. lHirtr
Splil rlre inler\Jl ol .ntegrrtion lrorr a lo a inltr rno
parls at 0.1

7.9 LOGARITHMIC FI,!I\{CTIO[\S FROM TI.{E INITFGRAL POINT
OF VIEW

In Sectiott 4.2 v,e discussed natural logarithnts f|om the |iewpoint of erponents, thdt
is. v,e regctrded l = ln,r ,o meqn that ej : x. In this section we v'ill show that lnt
tdn ulso be expressed as an intagral with a vuriahle upper limit. This integra.l rep-
resetltotiotl of h r is imporldtlt mothemdti('ulb bet'uuse it prot ide.s a cot\,enient waJ-

ol establishing propertie.\ such as diJJbrentiabilitt and continuity. Howeyer, it is also
impottant ih applicLttiafis because it provides a wa1 of reto.qnizing when integral
solutions of problems can be expres,sed as nqtut al logarithns.

The connection between natural loga lhms and integrals was made in the middle of the
seventeenth cerrtury in the cou$e of investigating areas under the curye ), : 1//. The
problem being considered was to find values of /1. tz, tt, ..., 1,,, .. . for which the arcas

A1, A2, 43, .... 4,,, ... in Figure 7.9.la would be equal. Through the combined work of
Isaac Newton, the Belgian Jesuit priest, Gregory of St. Mncent ( 1584-1667), and Gregory's
student. Alfons A. de Sarasa (1618-1667), it was shown that by taking the points to be

tt=e, t2:e2. ts=e3, . tr:e"....
each of the areas would be I (Figure 7.9. lb). Thus, in modem iltegral notation

I !a,-u
which can be expressed as

I ! d, : tntn,, t
.lt t

By comparing the upper limit of the integral and the expression inside the logalithm, it is a

natural leap to the more gcneral result

/'II -,lr:htlr
which today we take as the formal definition of the natural logarithn.

f',,.r,.',0':z l"'' rat a.

THE LINK BETWEEN NATUML
LOGARITHMS AND INTEGRALS

l

A1

.!

I

FigLrre 7.9.I (.t1)

Not bdwn tD ! ale

(b)
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7.9.1 DEFINlftON. The natural logarithm of x isdenotedbyln-r andis dcfined by
the integral

I

-dt. r>0
t

(l)n*: l,'

Ceometrically, In.\ is the area under the curv-e -l : l/l from r - I toI:.rwhen.r > I,
and lnr is the negative of the area under the curyc .r' = l/r ltom t : -r to I : I when
0 < -r' < I (Figure 7.9.2). If .r : [. then lnr = 0, since the upper and lower limits in (l)
are the same. All of this is consistcnt with the conputer-generated graph of r, = l:r.r in
Figurc,1.2.,1.

FiSurc 7.9.2

APPROXIMATING ln x
NUMERICALLY

'thble 7.9.1

a = I0
Lt=llr-aJl =(2 l)/10= 0.1

i;'

I

2

3

4

5

6

1

8

9

l0

1.05

Ll5
1.25

1.35

1.45

t.55

t.65

r.75

t.ti5

1.95

0.9523 it l

0.869565

0.rJ00000

u.740741

0.689655

0.6.15161

0.606061

0.571429

0.5,10541

0.51282t

6.9283-55

lr l flrit = (0. rx6.e28355)

,"'= l'1,= ,t, ,

t-( )lr IF RF \DLR. Revicw Theorem
itive in Definition 7.9.1.

7.5.8. and then explain why r is required to be pos-

r ,.,=/'
+ 

* ='1,'

ltri

Fot speciiic va]ues of .r, the value ofln -r can be approximated numerically by approximating
the definite integral in (l). say by using the midpoint approximation that was discusseci il
Section 7.5.

Example J.

Approximate ln 2 using dre midpoint approximation with rr : 10.

Solution. From ( I ). the exact value of ln 2 is reprcsented by the integral

.t ,

nz: I lar

The midpoint rule is given in Fonnula (3) of Section 7,5. Expressed in terms of f, lha1

tbrmula is

where AI is the width ofeach subinten,al and ti, .1. .,..I; are the midpoints. In this case

we have l0 subintervals, so At --(2-l)llO = 0. l. The computittions to six decimal places

ale showl in Tab]e 7.9. L By corrparison, a caiculator set to display six decimal places gives

ln 2 ! 0.693147, so the magnitude of the enor in thc midpoint approximation is about
0.00031 1. Greater accuracy in the midpoint approximation can be obtained by increasing
n. For example, the midpoint approximalion with ,r : I00 yields ln 2 :Y 0-693 144. which
is corect to five decimal places.

tb tt

I f rrtar r a/ t.t(/i)
{=t

= 0.6928-r6
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DIFFERENTIABILIW AND
CONTINUITY OF ln x AND er

Delinition 7.9.1 is not only useful tbr approximating values of Inr, but it is the key to
establishing many of the fundrmental properties of the natural logarithm. For example, in
Section 4-4 we obtaincd thc derivative

ll
. lln il- {.\' > ()) t2)1r r

by assrnlilg that .l(.r) = ln.r is difTerentiable for -t > 0, Howcvcr, now that we have

Delinition 7.9.1 to work with. both the difterentiability of ln.r and Formula (2) follow
immediately fronr Pnlt 2 ofthe Fundamental Theorem ofCalculus (7.6.3). Moreover, since

diflerentiable furctions are continuous. lhis also shows that ln.r- is continuous for x > 0.

Although it is not our objcctive to prove all ofthe prope ies ofthe tunctions we encounter,

it is worthwhile to underst nd in principle how the diflcrcntiability and continuity of ln;r
can be used to establish differentiability and continuity of othcr important functions. For
example, since the exponential function e' is the invcrse of ln.r, it lbllows from Theorem
4.1.7. with -f(r) : ln.r and .i l(.r) : e'. rhat e' is dif}erentiable at any point.r where

.l'(.f r(,r)) - l/e' I0. Sincc this holds for all .r. it fbllows that c' is differentiable and

hence continuous everywhere.
The differertiability ln.r for r > 0 can be used to prove the differentiability of logb x

firl r > 0 by using Forrnula (9) of Section 4.2 to express logl, .r in terms of ln r, and the

differentiability of r,' can be used to prove the differentiability of b' by expressing D' in
terms of e ' 'r{ lrr - ?r h/,. We omit the details.

In Formulas (3), (4). rnd (5) of Section,1.2 we gave three linrits fbr e, but at that time we

did not have the mathematical tools to prove tlle existence of those limits; the following
theorem does this.

THE DEFINITION OF e REVISITED

7.9.2 TllI,oRt,\r.

(ri) lin (1 +.{)r"' : c (b) lirn
,0 I('.:)':"(' . :)' :" (c) lim

I'rool. We will provc plrt (4), and leave the proofs of the other parts for the exercises.

Our proof will build on the differentiability of 1n r, and morc specifically on the derivative
of ln.r at the point ,r = I . namcly

dl
lln rl = :l

Llt r=t f r=t

If we express this relationship using the definition of a derivalive, we obtain

l: lim
ln(lll) - ln I

Thus. it follows that

tim ln( l+r)r/r'

which from thc continuily ol'/' can bc written as

e : lim eln(l rr't'/r : l r', (1 + /,tlt't -0 h -t)
Except lol a difl'erence in notation, this is what we wanted to prove, I

The functions that we have dealt with thus l-ar in this texl are called elementary Junctions;
they include polynomials. rational functions. power functions. exponential functions,log-
arithmic functions. trigonometric functions, and all other functions that can be obtained

fiom these by addition, subtractio|r, multiplication, division. root extraction, composirion,
and by taking inverses.

ln(l+i)
= lirn "'":' "'- lim ln(l+,/r)lil'

h .t\ h lt .O

FUNCTIONS DEFINED BY
INTEGRALS
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However, there are nlany important lunctions tiat do not fall into this category. Such
functions occur in many ways, but they commonly adse in the course of solving initial-value
problems of the folm

* - lf.n, )(ro) : )o (3)

Recall from Example 7 of Section 7.2 and the discussion preceding it that the basic
method for solving (3) is to integrate /(jr), and then use the initial condition to determine
the constant of integration. It can be proved ttrat if / is continuous, then (3) has a unique
solution and that this procedure produces it. However, there is alother approach: Instead
of solving each initial-value problem individually, we can find a general fomula for the
solution of (3), and then apply that tbmula to solve specific problems. We will now show
that

J (t) dt

isaformulaforthesolutionof(3).TocoDlimthatthisissowemustshowthat.h/dir: l (j{)
and that ) (.{0) : }0. The computations are as follows;

d,t dI r' I
,' - , l\'^ t I Iltttt | -0 F/rr)-/{ y'
dx drl J," I
rt-r,r- 16 I / trttclt .-ys-0 vo

J,,

Example 2

In Example 7 of Seclion 7.2 we showed that fhe solution of the initial-value problern

dt
'1 : cos;r, v(0): I

tl),

is )(x) : I + sin-r. This initial-value problem can also be solved by applying Formula (4)
with /(r) = cos r, r0 : 0, and )o - I . This yields

)(r): I + / cosr,lr:1+ [sinl].) n:I*sin:r

In the last example we were able to perform the integration in Formula (4) and express
the solution of the initial-value problem as an elenentary t'unction. However, somerimes
this will not be possible, in which case the solution ofthe initial-value problem nust be left
in terms ofan "uoevaluated" integral. For example, from (4), the solution ofthe initial-value
problem

-=e 
\ r(0)- I

dx
is

rt
v(x):l+ I e-''dr' Jo

However, it can be shown that there is no way to express the integral in this solution as

an elementary function. Thus, we have encountered a new function, which we regard to be
defned by the tntegral. A close relative of this functioD, known as the error fanctian, plays
an important role in probability and statistics; it is denoted by erf(x) and is defined as

) ff
edl,^r. : I e at 15)

Jn JLt

Indeed, many of the most important functions in science and engineering are defined as

integrals that have special names and notatiors associated with them. For example, the

(4)i{'):ro+/'
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flrnctions defined by

t tni \ fj rrr_r
st rr-;l .t,,(iJJi an.l c,.r'-/ cos(;,) ,,

s',",-.in('rt ) rnd c,Yr-.".('j')

1""" ,r, n,

(.6 1)

EVALUATING AND GRAPHING
FUNCTIONS DEFINED BY
INTEGRALS

INTEGRALS WTH FUNCTIONS AS
LIMITS OF INTEGRATION

are called the 1rresnel sine and cosine Jur?clio[s, respectively, in honor ofthe French physi-
cist Augrlstin Fresnel (1788 1827), who ilrsl encountered rhem in his study of diffraction
of light waves.

The following values of S( 1) and C (1) were produced by a CAS that has a built-in algorithm
fbr approximating definite integrals:

.l -,'srtr- / 'in("- \,t,* 0.41825q. cttt l .o./al.,, 77q8e3
Jo '2/ Jo \',/

To generate graphs of functions defined by integrals, computer programs choose a set

of.i;-values in the domain, approximate the integral fbr each of those values, and then plot
tl]e resulting points. Thus, there is a lot of computation involved in generating such graphs,
since each plotted point requires the approximation ofan integral. The gaphs ofthe Fresnel
functions io Figure 7.9.3 were generated in this way using a CAS.

REMARK. Although it Iequired a considerable amount of computation to generate the
graphs of the Fresnel functions, the derivatives of ,9(r) and C(,r) are easy to obtain using
Part 2 of the Fundamental Theorem of Calculus (7.6.3); they are

(8 e)

These derivatives can be used to determine the locations ofthe relative extrema and inflection
points and to investigate other properties of S(r) and C(r).

Vadous applications can lead to integrals in which one or both of the limits of integration
is a function of r. Some examples are

[' uF;, ,, [ , r' - t,]t. t' 'tt
J, J, "/r", i -8
We will complete this section by showing how to differentiate integrals of the tbrm

( l0)

where 4 is coDstant. Derivatiyes of other kinds of integrals with functions as linits of iDte
gr.rlion \,\ ill bc drscu..cd in lhe c\crci'e..

Fresnel srne f!nct on

Figure t.q.l

Fresne cos ne frncl on '..-_-..-,-.1
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To differentiate (10) we can view the integral as a composition F(g(r)), where

rrxt- [ frnat
J,, "

If we now apply the chain rule, we obtain

d f 1st't f ,t

-l I f\r)drl- , trtst'))l: F'(s(,{))g'(r) = /(s(_r))s'(x)ctx LJ" ) d\
Theorem 7.6.3

Thus.

t at at) : "r(g(,r))g,(x) (11)*11.""

REMARK. In words, to di|:ferentiate an integraL with a constant loia)er limit and (l function
as the upper litnit, substitute the upper limit into the integrantl, and multiply by the derivative
of tlrc ttpper limit.

Example 3

*11,"'"'u - na,]:(r sin2.v)cosr: cos3.r

ExERclsE SET 7,9 E Graphing Ca cutator E cAS

1. Sketch the cuNe ) - 1/r, and shade a region under the
curve whose area is

7, Simplify the expression and state the values of r for which
your simplification is valid.

(a) ln 2 (b) ln 0.5 (c) 2. (a) g- rn'

1c.t tn (e ")
(e) exp(3ln:r)
(g1 ln (e' h)

(b) 
"1";

(d) ln(1/e-)
(f) ln(re')
(h) e' h'

2. Sketch the curve y : l/1, and shade two different legions
under lhe curve whole area i5 ln [.5.

3. Given that ln a : 2 and ln c : 5. find

tbr / !a,

rdt 1," I 
a,

f]" 1

{b) J, -,tr

ft\ ['ldlJ) t

Approximate ln 5 using the midpoint rule with n : 10, and

e.limare the magnirude of rhe enor b1 comparing your rn-
swel to that produced directly by a calculating utility.

Approximate ln 3 using the midpoint rule with n : 20, and

e5(imale lhe magnilude ol' rhe error by comparing l our an

swer to that produced directly by a calculating utility.

8. (a) Let f(x) : e 2' . Find the simplest exact value of the
function lGn 3).

(b) Let /(.{) : e'* 3e '. Find the simplest exact value of
the function /(ln 2).

f*1(3) , dt
Jt t

t,, J, ; r,

4. Given that In a : 4. find

,o,J, 
;,1,

rct [''' !a,
Jt t

9 and 10, express the given quantity as a power

b) 212

(b) i{2', -{ > 0

(b) lim (1 + 2':r)r/r

ln Exercises
of e.

9. (a) 3"

10. (a) z '

In Exercises 11 and 12, lind the limits by making appropriate
substitutions in the limits given in Theorem 7.9.2.

/ I \2'

l'*,/11. (a) lirn
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12. (a) .lim- ('. *)' (b) lim (1 + x)r/3'

: In Exercises 73 
^nd14, 

find g/("r) using Paft2 of the Fun- l

' damental Theorem of Calculus, and check your answer by l

e\aluarins the integrl 
"i1,T" 

o'T'"lll1T

13. gt,rr - [' ,t2 - ttat 14, gryl: I rt -co.ntlrJt J,

In Exercises 15 and 16, find the dedvative using Fomula
(11), and check your answer by evaluating the integral and
then differentiating.

by writing

f' /-l lo r -l f- t II dt -1 . ar rl 
-d'

J,, ! - | Jj^tt+l Jo t- |

Use Exercise 20(b) and the idea in Exercise 23 to show that

,- | ftrtdr - lrgrxtlg txt - fthl)tth l\)

Use the result obtained in Exercise 24 to perform the fol-
lowing differentiations:

nt^'.tfl
p1 : | ,in rdt rnr 1/ ' dr.dxJ^ dxl.l-t
Prove that the function

f3' 1

F(x) : L dr
J" t

is constant on the interval (0, *o) by using Exercise 24 to
find F'(x). What is that constant?

Let F(i = I; fft) dr, where / is the function whose graph
is shown in the accompanying figure.
(a) Find F(0), r(3), r(5), F(7), and F(10).
(b) On what subintervals of the interyal [0, 10]isFincreas-

ing? Decreasing?
(c) Where does F have its maximum value? Its minimum

value?
(d) Sketch the graph of F.

28. Use the appropriate values found in part (a) of Exercise 27
to find the avetage value of / over the interval [0, 10].

In Exercises 29 and 30, express F(-r) in a piecewise form that
does not involve an integral.

1s. (a)

16. (a) Jt+rat (b)

e' dt

sin t dt

/" cos tLerf'(r.): | *dt.Find
J0 | -f J

(a) F(0) (b) F/(0)

LerF(.{): I Jll+ta,.pind
Jt

(r) Ft2) (b) F'(2)

19. (a) Use Formula (11) to find

(t f"
, I tJl+tdt

a,r J1

(b) Use a CAS to evaluate the integral and differentiate the
resulting function.

(c) Use the simplification command of the CAS, if neces-

sary, to confirm that answers in parts (a) and (b) are the
same.

20. Show that
dlt' Irr);ll f(t\drl- -f(x)u.\ LJ) I
d. lt" I,b' .' ll lrttdtl- /rgrrltg'r rr.

d1 LJ"r, r I

In Exercises 21 and 22, use the results in Exercise 20 to flnd 
i

the derivative. 
:

!0,
t* t;'

*t,'
* L'^'

* t;"

(b)

27.

17.

18.

(c) r"(0).

(c) F" (2).

tr

@s ! ['sin(isar

@; * Lor,'*rtooo,
Find

a f r" r-t I
;*ll.,,'+tr'j1

*L#"
* 1,",.*s,0,

(b)
29. F\xt : 

J tlldt

30. r(-,)- [' tr,,,.t,.where /lr) - {' 
u't :

Jo" 12. r'2
ln Exercises 3l-34, use Formula (4) to solve the initial-value
problem.

Figure Ex 27

(b)



/r 
: sec/)' - \in-l; \(7/4) - I

t:1€';)(0):0
Suppose that at time t : 0 there are Pn individuals who
have disease X. and suppose that a certain rnodel for the
sprcad of the disease predicts that the disease will spread at

the rate of r(l) individuals per day. Write a fbrmula for the
number ofindividuals who will have disease X afier -{ days.

Suppose that u(t) is the velocity functio|r of a particle mov
ing along an s axis. Write aformula lor the coordinate olthe
particle attime 7 iftheparticleis atthepoint.rr attime I : 1.

The accompanying figure shows the graphs of1 - /(r)and
| - I; f@dt. Determine which graph is which, and ex-
plain your reasoning.

Figure Ex 37

(a) Make a conjecture about the value ofthe limit

lim I rr ldl (-r > or

(b) Check your conjecture by evaluating the integral, and

then using L'H6pital's lule to llnd the limit.

Let F(r) : f, .l(r) ar, *t .r" / js the function graphed in
the accompanying fi gure.

(a) Where do the relative minima of F occur?
(b) Where do the relative maxima of F occur?
(c) Where does the absolute maximum ol F on the interval

[0,5l occur?
(d) Where does the absolute rninimum of F on the interval

[0,5] occur?
(e) Where is F concave up? Concave down?
(t') Sketch the graph of F.

Figure Ex 39

E 40. CAS programs have commands lbr working with most of
the important nonelementary f'unctions. Check your CAS
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documentation for infon'nation about the erior flrnclion
erf(x) [see Formula (5)], and then complere the following.
(a) Generate the graph ol erf(r).
(b) Use the glaph to make a conjecture about the existence

and location of any relative maxima and minima of
erf(,r).

(c) Check your conjecture in palt (b) using the derivative
of er i(:r ).

(d) Use the graph to make a conjecture about the existence
and location of any inflection points of erf(,r).

(e) Check your conjecture in part (d) usillg the second de-
dvative of erf(x).

(f) Use the graph to make a conjecture about the existence
ol hori/untJl as) mplorcs ol erli y ).

(g) Check your conjecture in pat (f) by using the CAS to
find the lirnits of ed(,t) as x > *a.

The Fresnel sine and cosine functions S(r) and C(.r) were
defined in Formulas (6) and (7) and graphed in Figure 7.9.3.
Their derivatives were given in Formulas (8) and (9).
(a) At what poinls does C (.rc) have relative minima? Rela-

tive maxima?
(b) Where do the infleclion points of C (jr ) occur?
(c) Confirm that your answe$ in parts (a) and (b) are

consistent with the graph of C(x).

Find the limit

3t. !!

32.9-
dx

: 7;; -r(1) :2
x+l

- -;v(1):0

34.

35.

il1.
37.

lnt dt

Find a function / and a number ,1 such that

tr
2'l | .fttdr -e'^

(a) Cive a geometric argument to show that

]r ' 1."' 
!a' ' I r>0

(b) Use the result in part (a) to prove that

x>0

(c) Use the result in part (b) to prove that

and helce that

lim

(d) Use the inequality in part (c) to prove that

E 45. Use a graphing utility to generate the graph of

i: (r + 1)'.' (' ':)'

l\,;I.',.'
38.

39.

43.

44.

t / r\ r

r11<rnlt*;J';

"-.(r+1)'.. r,o

('. i)' -,

( -+) " ( :) r o
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jn the window [0, 100] x [0,0.2], and use that graph and
part (d) ofExercise 44 to make a rough estimate ofthe eror
in the approximation

/ I \''l
"-lt*r/

Write a paragraph that describes the rectangle method 'iot
defining the area under a curve ) : /(r) over aD inter,,al

la, bl.

Whatis an integral culye ofafunction /? How are two inte-
gral curues of a function / related?

The deJinite integral of / over the interval [d, ,] is defined
as the limit

?bh

/ i1rl : lim f /r,lrar^
L nla^r. _0 g

Explain what the various symbols on the right side of this
equation mean.

State the two parts of the Fundamental Theorem of Calcu-
lus, and explain what is meant by the phmse "differentiation
and integration are inverse processes."

Derive the formulas for the position and velocity functions
of a pafiicle that moves with unitbrmly accelerated motion
along a coordinate line.

(a) Devise a procedure for finding upper and lower esti-
mates of the area of the region il the accompanying
figure (in cm2).

(b) Use your procedure to find upper and lower estimates
of the area.

(c) Improve on the estimates you obtained jn paft (b).

46. Prove: If / is continuous on an open interval 1 and a is any
point in 1, then

Frrt: I fttt,ttJ" '
is continuous on 1.

gral, if possible. Il there is not enough information to eval-
uate the integral. then say so.

r1 fl
rar 

/ /'; rJ, ,tt 
J, ttxt,tt rc'

ro rl
'dt .1, s'.x 'dx 'e' in s,)xtdx rt 

'

In each part, use the inlbrmation in Exercise 7 to evaluate
the given integml. lf there is not enough information to
evaluate the integral, then say so.

rl rl
,ar / 11'.rr tg{,rld\ rbr / 7rrrgr,r,/r.ln .lr

G) [' f\!),t,Jo ,g (.x.)
1ay 

1['1+s1'; - 3f (x)lr]x

In each part, evaluate the integral. Where appropriate, you
may use a geometric formula.

rur fl r+ Jt-rra^
l -t

11 

-

rbr /rr/r,+t Jo-r:1dr

t1 

-
1c1 | xJ1- xa dx

Evaluate the integral l| Z, - t./,1, and sketch rhe region
whose area it represents.

One of the numbers z,tt/2.35n1128.1 zis the coraect
value of the integral

f 
'r;nt 

* d*

Use the accompanying graph of y : sinl x and a logical
process of eliminalion to find the correct value. [Do not
attempt to evaluate the integral.l

l,'

t;

5 f(x) dx

[g(r)1'?d.{

9.

10.

7. Suppose that

fo' 
,,,, o, :i, l,'r..,,0,:!,

r) rl
| .frttdt - -t. I stttdt:2Jo Ju

In each part, use this information to evaluate the given inte-

Figure Ex-6
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12.

13.

14.

Figure Ex-11

Evaluate
r -21lL,7^

../ .,. + J

Plinr; Divide eJ + 3 into e2'.1

Give a convincing geometric argument to show that

f! f1
/ lnrr1r* | e',l..:e
J Ja

In each pafi, find the limit by interprcting it as a limit of
Riemann sums in which the interval [0. ]l is divided into 4

subintervals of equal length.

JI +J1+J1 +..+"6
n3l2

1a+24+34+..+na
tt5

el/n + ellk + e3/n +... + enl

In each part, confirm the stated equality.
(a) l.2+2.3+ . +n(n+l): \n(n + l)(, +2)

Hl.J fr r rj(b),,Ir"Lt; ;): ',
l='

t /1 \
r"r !{lri+ ri}:2r

,: \,= /
Express

IE

lrlr :y

in sigma notation witl'l
(a) L :0 e. the iouer limit o[.umntrtion
(b) i - 5 a. the lower linit of 'ummation.
(a) Show that the substitutions ll = secr and u : 1an-r

produce ditlerent values for the integral

I sec'r tan r r/x

(b) Explain why both are correct.

Use the two sllbstitLrtions in Exercise l9 to evaluate the det'

inite integral

/ "eer.rmnrd,r

and conllrm that they produce the same result.

Evaluate the integral

t-

' 
y'l + ' 

r''t/1
.t

by making the substitution z: I +-r2l3.

(a) Express Formula 8 of Section 7.5 in sigma notation.
(b) lf cr, c:, ..., c,, are constants and fy, f2, ..., f,, are

integrable functions on [d, &], do you think it is always
true that

1,,' ( ri:; 
" r','") o' : ;

Explain your re:isoning.

17.

18.

(a) lim

(b) lnn

(c) lim

15. (a) Divide the inte(val [1. 2] into 5 subintervals of equal

length, and use appropriate Riemann sums to show that

0.2 [* + r]r + * + * +.,nl] < 1n2

<0.2[.0-L+$+fr+fr+,*!]

(b) Show that if the interval [] . 2l is divided into n subin-

teNals of equal length, then

,l

lin+k- '' !',u rk

(c) Show that the diffefence between the two suDs in part
(b) is l/2r, and use this result to show that the sums in
part (a) approximate ln 2 with an eror of at most 0.1.

(d) How large must r be to ensure that the sums in part (b)

approximate ln 2 to three decimal places?

The accompanying ligure shows the direction f,eld for a dif-
ferential equation l) lck : l(x). Which of the following
functions is most likely to be /(-r)?

.,?. sin r, r4, r
Explai11 your reasoning.

t9-

20.

21.

l,r 1,,' 
r,oto,f,

Figure Ex 16

16.

22-
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23, Find an integral formula for the antideri\,ative ol I / ( I + -r2 )
on the inlerval (-2. +') whose value at -r : I is (a) 0 and
(b) 2.

f' r I
.24. Let Ff rl : I * Jr.

Jr t + |

(a) Find the intervals on which I is increasing. Decleasing.

(b) Finclthe open intervals on which F is concave up. Con
cave do\,\"n-

(c) Find the -r-values. if any, at which the iunction F has

absolute extrema.

(d) Usc a CAS to graph F. and conllnn that the resulls in
parts (a), (b), and (c) are consislent with the graph.

25. Prove that the function
ttfl/rrr I .1, ,I 

-,t'
.lr, tlt .l , t

i. Lo \tanl LJn lhe rrler\irl 10. .I.

26. What is the natural domain of the function
/"' I

F1.r1: I .. ilt"
Jt I- -9

Explain youl reasoninS-

27. In each part, determine thc values of .r for which F(x) is
positive, negative. or zero without performing the integra-

tiol1; explain your reasoning.

,r, r{ ,,- [ '" -,r, ,b, /'.i'- [,,-, o,
J t' .' "/ r

28. Find a formula (deflned piecewise) for the upper boundary
ofthe trapezoid shown in the accompanying figule. and then

integrate that function to derive the tbnnula 1or the area of
the trapezoid given on the inside liont cover 01'this text.

Figure Ex 28

An cngineer studying ihe power consumption of a manufac-

turing plant determines that the plant's daily rate of electric
ity usage in kilowatts per hour (kW/h) can be reasonably
modeled by the lormula

RL/r - 2000r '8 'suu.in(-rl r0 , l4r

(a) How many kilowatts ot' electricity does the plant Lrse in
a 24 hour period?

(b) Find the averiige mte of electricity usage over the first
8 hours of opemtion.

(c) Generate rhe graph of R (1) over the first 8 hour period.

and use it to make a rough estimate of the maxirnum

rale of clectricity usage during that period altd wlten it
occurs,

(d) Determine the maxinum rate oielectricity usage during
the first 8-hour period to two clecimal places.

Supposc that a tuJnor gro\^,sattherateofr(t) - r/7 glams
(-s) per week. When, during the seconcl 26 weeks ofgro\\th,
is the weight ol the tumol thc same as its average weight
during that period'l

Thc rclo.rt5 nl r prnir lr mu\ir! llun! arr '-.rris r. rte.-r-

sured at 5-s intervals for 40 s, and the velocity function is

modeled by a smooth curve driwn th|ough the data points,
as shown in the accompanying flgure.
(a) Does the palticle have const.int acceleration? Explain

your reasoning-
(b) Is there any l5 s time inteNal during which the accel

er'rtron i. cnn.nnt" frphin 1u.-rr rerrsorrn3.
(c) Estinate the average velocity ol the particle over the

40-s time peliod.
(d) Estimale d1e distance traveled by the particle ftom tilne

l-0totimer:40.
(e) Is the particle ever slowing dorvn during the 4(ls tin'le

per-iod? Explain your reasoniltg.
(i) Is there sulficieDt informatjon for you to determine the

.r-coor-dinate of the particle at time I = l0'l lf so. llnd
it. Ifnot, explain what additional infonnation you need.

31.

(s)

Figure Ex-l I

32. Suppose thlit a particle moves along the,r-axis so that its
-r-coordinate at time a is given by -r - aek' + be k' 

.

(a) Shou' drat the acceleration is proportional to.r.
(b) Assunring that the velocity of the particle at time I = 0

is u0, nnd a lbnrula 1br the acceleration function in
tenns ol,r. D, ,r, and uo.

In Exercises 33J2, evaluatc thc integrals by hand, and check
yoLrr allswers with a CAS if you have one.

I cos lr
.13. I ..............._Jt

J J5 + 2srrr.lr

3s' /(,,r'+l,t/)

* lt#0,
36. 

/ 
-r r".t{.,.rt),1'



/1,n,"') 
ntn1" 'y1.,,

/ ' (, '*,, '' i,r) ,,

1"* * l,'#
f 'l rro\r, t 'ql. I ' " 

-./r 

42. / :.n r'?rrLo\rn,,/!J, " J,

E :13. Use a CAS to ilpproximate the arca of the re-sion in the nrsl
quadrait thal lies below the cune r, : -r * -rl ,rl and

above the -r-axis.

fE 44, In each pari. use a CAS 10 solve the initial valuc problcm.
r/\',.lr 
- 

..Y io.J.r: ,r.,2,- I

dr' ,rl(b) 
.|. 

: 
(1+ r':)r': i r(o) : 2

E 45. In each part, useiiCAS. where needed. to solve fbrl

r,'r I L'' i' l),/' U. I I

,bt / ,r -:in)rr./r -t. t 0

E 46. Use a CAS to approximale tlre lafqest and smallcst values
of the integral

I' iii "
forl<,r<3.

37.

38.

39.

ld 17.

bl 48.

E 4e.
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The lunction Jo denned by

I t-
Jo(x) - I co:(.isinrt,/r

t lt
is called the Be,rsellanction of order 1ero.
(a) Use a CAS to graph the equation -).: Jo(:r) over the

inlervlll0:jr:8.
(b) Find "/o(l).
(c) Find the srrallest positive zero ol "/0(.r).
Let A be the arca under'the cur-ve -r' : 12 over the interval
10, 11.

(a) Find A by using Palt I ofthe Fundamental Theolem ol'
Calculus.

(b) Find A by corputing the limit ol the lefr endpoinr ap

proxinations by hand, and then lind the linit using a

cAs.
(c) Find A by conputing the limit ofrhe r-ight endpojnr ap-

proximations by hand, and then find the Jimir using a

CAS,

ln number theory. r(/?) denotes the nLLmber of prime num
bels that are less tharl or equal to the positive integer r. For
example, it can be shown with the help of a conputer that
z(100.000) : 9592: that is. there ?ue 9592 p me numbers
that are less than or equal to 100.000. Thcre ate two usel-ul

approxirnations to jr(n) that are appropliate fol large values
oi l:

n l" l.-(//) anLl n(/r) Lltln/r J lnt

Ure r CAS to Jcrernirrc $llrih ot thr.c ippr'.,rrn lrion,
produces the bettel estimatc ofr(i00,000).

tslammo the Hurnan Cannonball
Elttrttnrt the Hunan CarnonbaLl r.ti.tl b, fitiJ frunt ,r c,tnnton ttntl hc,lcs ttt lantl in
a ynalL net at the opposite end ol th.e (ircu,s arena. Your job cts BLtunnto's manager
is to do the muthematituI calcultttious thet tlilL alLotL Bkunno to pe]f.)m his deetll
defjing tttt safett. Tlte ntethods that yoLt rrill tLse ttre fron the.field ol ballistics (the
\tLtd\ ol proiectile nbtion).

I The Probler*
Blanmo's cannon has a muule veloci4t of 35 l.r/s, which means that Blammo will leave the
muzzle u"ilh that velocity. The muzzle opening \\'ill be 5 m above the ground, and Blammo's
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objective is to larrd in a net that is also 5 m above the groutd and that extends a distaoce of 10
m betweeo 90 m and 100 m fuom the cannon opening (Figute l). Your mathematicai problem is
to determine the eleration sngle ct of th. cannon (the algle from the horizontal to the can!]on
banel) that will make Blammo land in the net.

5m

Fjgur! I

ModeIing A$sumpti0ns
Blammo's trajectory wiil be deterrnined by his initial velocity, the elevation angle o1'lhc cannon,
and the fbrces that act on hin atier he leaves the lnuzzle. We will assume thal lhe only force acting
on Blammo after he leaves the muzzle is the downward forcc of the Earth's gravity. ln particular,
we will ignore the effect of air resistance. lt will be convenient to introduce tlte -r}-coordiDate
system shown in FigrLre 1 and to assume that Blammo is at the origin at tine r : 0. We will also
assulne that Blammo's motion can be decomposed into t\a'o independent conponcnts, a horizontal
component palallcl to thc "r-axis and a ve.tical component palallel to the 1-axis. We will analyze
tl're horizoDtal and ve ical components of BlaDrmo's motion separate)y, and then we will combine
the infonnation to obtain a conrplete picturc of his trajectory.

BlarTlm0's [quatiori$ 0{ lWot[on

We u,ill denote llre position and velocity functions 1br BIammo's horizontal component of motion
by -,; (t) and rr. (l), and we will denote the position and velocity functions for his vefiical component
of rnotion by _r'(r) and r,, (t).

Since the only force acting on Blammo al'ter he leaves the muzzle is the downward fbrce
of the Earth's griLvity, there are no horizontal forces to alter his initial horizontal velocity u, (0).
Thus. Blammo rvill have a constant velocity of r. (0) in the -t-direction; this implies that

.r(/) = 1r!(0)/ (l)

h the l, direction Blammo is acted on only by the downward force of thc Earth's gravity. Thus,
his motion in this direction is governed by the free fall nodel; hence, liom ( l2) in Section 7.7 his
vertical position function is

\'(/) : \'(0) + u, (0)/ - Jsr']

Taking g = 9.8 m/sr, and using the tnct that -\)(0) = 0. this equation can be w tten as

.i (r) - 1,.161t - 4.ntu (2)

li.yefti\( I At timc r : 0 Blammo's velocity is 35 m/s, and this velocity is directed at an

angle a with the horizontal. It is a fact of physics that the iritial velocity components u, (0) and
u. (0) can be obtained geoiretdcally frorn the rnuzzle velocity and the angle of elevation using
the triangle shown in Figure 2. We will justily this later in the text, but for now use this firct to
show that Equations (1) and (2) car be expressed as

.r(t): (35 cos a)t

-r(1) : (35 sin.Y)1 1.9t2
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u'(0)

Figure 2

Exercise 2

(a) Use the result in Exercise 1 to lind the velocity functions u-(r) and u,(r) in terms ofthe ele-
vation angle d.

(b) Find the time t at which Blanmo is at his maximum height above the r-axis, and show that
this maximum height (in meters) is

Exet'cise 3 The equations obtained in Exercise 1 can be viewed as parametric equations for
Blanmo's trajectory. Show, by eliminating the parameter t, that if 0 < o < z/2, then Blammo's
trajectory is given by the equatiol'l

0.004 ^'y: (tan cv).t - 
"os2 

or'
Explain why BJammo's tlajectory is a pambola.

Finding the Elevation Angle
Define Blammo's lrorizontsl range R to be the horizontal distance he travels until he returns to
the height of the muzzle opening (y : 0). Your objective is to lind elevation angles that will make
the horizontal range fall between 90 m and 100 m, thereby ensudng that Blanrmo lands in the net
(Figure 3).

Exercise I Use a graphing utility and either the parametric equations obtained in Exercise I
or the single equation obtained in Exercise 3 to generate Blammo's trajectories, taking elevation
angles at increments of 10" fuom 15" to 85". In each case, determine visually whether Blammo
lands in the net.

Exercise 5 Find the time required for Blammo to retum to his starling height () = 0), and use

that result to show that Blammo's range R is given by the fbrmula

]nu = 62.5 stn'cv

Figure l

R = 125 sin 2cr
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FierLiyt 6

(a) Use the result in Exercise 5 to iind rwo elevation angles that will allow Blammo to hit the
midpoint of the net 95 m away.

(b) The tent is 55 m high. Explain why the larger elevation angle cannot be used.

l:sercist, 7 How much car the smaller elevation angle in Exercise 6 vary and still have Blammo
hit the net between 90 m and 100 m?

Elarnmo's Shark Trick
Blammo is to be fired from 5 m above ground level with a muzzle velocity of35 m/s over a flaming
wall that is 20 m high and past a s-m-high shark pool (Figure 4). To make the feat impressive, the
pool will be made as long as possible. Yourjob as Blammo's manager is to determine the length
of the pool, how 1ar to place the canron from the wall, ard what elevation angle to use to ensure

that Blanmo clears the pool.

EterLke 3 Preprue a wfitten presentation of the problem and youl solution of it that is at an
appropriate level for an engineer, physicist, or mathematician to read. Your presentation should
contain the following elements: an explanation ofall notation, a list and description ofall formulas
that will be used, a diagram that shows the oientation ofany coordinate systems that will be used,

a description of any assumptions you make to solve the problem, graphs that you think will
enhance the prcsentation, and a clear step by step explanation of your solution.

Module by: John Rickert, Rose-Hulmatr Institute ofTeclmology
Howard A,ttotl. Drexel Universitv
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n the last chaptcr we introduced the definite integral
as the limit of Riemann surns in the context of finding
areas. However, Riemann sums and definite integrals have
applications that extend far beyond the area problem. In
this chapter wc will show how Riemann sums and definite
integrals arise in such problems as linding the volume and

surface area of a solid, finding the length of a plane curve,
calculating the work done by a force, finding the pressure

and force cxefied by a fluid on a submerged object, and
finding properties of suspended cables.

Although these problems are diverse, the rcquired cal
culations can all be approachcd by the same procedure that
we used to find areas breaking the required calculation
into "small parts," making an approximation that is good
because the pafi is small, adding the approximations from
the parts to produce a Riemann sum that approximates the
entire quantity to be calculated, and then taking the limit
ol the Riemann sums to produce an exact result.
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8.1 AREA BETWEEN TWO CURVES

h the lqst chupter we shoyvetl ltow to fnd the area ber**een a cutne | : .f (x) and un
iten,al on the x-a is. Herc tte u,iLL shov, lnw to fuld the area between two .urvct

A REVIEW OF RIEMANN SUMS
Before we consider the problern of finding the area between two curves it will be helpful to
review the basic principle that underlies the calculation of area as a definite integral. Recall
that if / is continuous and nonnegative on [rz, D], then the deflnite integral tbr the area A
under -), - /(r) over the interual fa, bl is obtained in tbur sreps (Figure 8.1.1):

. Divide the interval [4. D] into/? subiDtervals, and use those subintervals to diyide the
rrea unJer thc cur\e r - /t,..r r inro I rtrips.

. Assuming that the width of the lth strip is A.r1, approximate the area of that strip by
the area of a rectangle ol' width A.r1 and height f(-i-l), where rf is any poinr in the .tth
subinteNal.

. Add the approxirnate areas ofthe strips to approximate the entire area A by the Rjemann
sum:

L.: \- rr '.'r,r ',1'J "t ''^
t=1

r Take the limit of the Riemann sums as the number of subintervals incrcases and their
widths approach zero. This causes the error in the approximations to approach zero and
produces the following definite integral for the exact area A:

,4- lirn f ijrrA,r-I[rrtd.t,.o. .,r__ J,

Observe the effect that the limit process has on the vadous parts of the Riemann sum:

. The quantity x; ir the Riemann sum becomes the variable r it the definite integral.

. The interval width Axt in the Riemann sum becomes the dr in the delinite integal.

. The endpoints of the interval [a, r] do rot appear in the Riemann sum, but they
become the limits of integration in the definite integral.

We will now consider the followiltg extension of the area problem.

Ll.l llR\T \Rl \ Pt((,dLl t\I. Supp,,:e rhar J lnd q are conrinuou\'iun.,iun. --rn-
inre.r al ,r. bl lnd

, .l0r) 'g(,r) lol a 
= 

x -: h 
i

llThismeansthatthecur'\'e]:/(-r)liesabovethecurveJ,:g(r)andthrtrhetwocrn
touch but not cross.l Find the area A ofthe region bounded above by 1 = f(r), below i

by,r - s(r). and on the sides by tT TT r : a ",d.'_1 (ols.T I l:?ll - _ _ _ j

To solve this problen we divide the interval fa. bl ioto r subinteNals, which has the
effect of subdividing the region into r strips (Figure 8.1.2r). If we assume that the width of
the kth strip is Arr. then the arca ofthe strip can be approximated by the area of a rectangle
of width Ar1 and height /("{i) - I (ril). where,rf is any point in the kth subinterval. Adding
these approximations yields the lbllowing Riemann sum that approximates the area A:

A - I t/(ni) g(ri)la-rr
t=1

Taking the limit as n increases and the widths of the subjntervals approach zero yields the

AREABETWEENy=f{x)
AND y = g(x)
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Figure 8.1.2

fr.tb sk

following definite integral for the area A between the curves:
nrb

A: lim -f 1/'x1 r 8(r;rjarr - I 11,",- grxtfdx..'", ."Ei r,
In summary, we have the following result:

Figure 8.1.3

In the case where f and g are nonnegaliye on the interval [a, ,], the fomula
7b tb tL

A- I l.f\xt -3rril/r - Lfrxtdx - / e1r,1 d r
J" J" J.

states that the area A between the curyes can be obtained by subtracting the area under
y : g(x) from the area under 1 : /(n) (Figure 8.1.3).

When the region is complicated, it may require some careful thought to determine the
integrand and limits of integration in (1). Here is a systematic procedrue that you can follow
to set up this formula.

Step 1. Sketch the region and then draw a vertical line segment through the
region at an arbitrary point x, comecting the top and bottom bound-
aries (Figure 8.1 .4a).

Step 2. The top endpoint of the line segment sketched in Step 1 will be

/(.x), the bottom one g(x), and the length ofthe line segment will
be /(x) - g(x). This is the integrand in (l).

Step 3. To detemine the limits of integation, imagine moving the line seg-
ment left and then right. The leftmost position at which the line seg-
ment inte$ects the region is.rr : a and the rightmost is x : b
(Figures 8.1.40 and 8.1.4c).

8.1.2 AREA FoRMULA. If / and g are continuous functions on the interval la, rl,
and if /(x) 2 g(r) for all x it [a, bl, then the area of the region bounded above by
y : /(r), below by ] = g(r), on the left by the line -r : a, and on the right by the line
r-bis

e: 
l.o 

rf ,*, - stxtld\ (t)
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Fi|ure 8.1..1

Figurc 8.1.5

r = "flr)

.'t
I = C(f)

, Bolh side borndares
I reduce to points.

tThe ieft hand boundary
I reduces to a point.

Figure 8.1.6

ItFNr \lrli. It is not necessary to make an extrcmely accurate sketch in Step l: the only
purpose of the sketch is to determine which curve is the upper boundary and which is the
lower boundary.

RI:i\11Ri(. There js a useful way ofthinkirg about this procedure: Ifyou view the vertical
line segment as the "cross section" of the region at the point r. then Formula ( 1) states thirt
the area betweer] the curves is obtained by integrating the length of the cross section o\/er
the intervrl flom a to D.

Example I
Find the area of the region bounded above by I : r * 6, bounded below by ) : 12, and
bounded on the sides by the lines -\ : 0 and -r : 2.

Solution. The region and a cr-oss section are shown in Figure 8.1.5. The cross section
extends from g(,r) : -rl on the bottom to /(-r) : r + 6 on the top. If the cross sccrion is

moved thlough the region, $en its letimost position will be r = 0 and its rightmost position
will be r : 2. Thus, fiom ( 1)

It is possible that the lpper ald lower boundaries of a region may intersect at one or
both endpoints, in which case the sides of the region will be points, rather than vertical
line segments (Figure 8.1 .6). When that occurs you will have to determine the poilts of
intersection to obtair the limits of integration.

Example 2

Find the area of the region that is enclosed between the curves r, : 12 and ) : ,r + 6.

*tlulion, A skeLch of the legion (Figure 8. I .?) shows that the lower boundary is 1 : .r2

and the upper bounduy is 1' = ,r + 6. At the endpoints of the region. the upper and lower
boundaries have the same } coordinates; thus, to firrd the endpoints we equate

.),:-r2 and l':,r+6
This yields

.t2:r*6 oL tr-r-6-0 or (,r+2)(n 3)=0
flom which we obtain

.r= 2 and r:3
Although the I coordinates of the endpoints arc not essential to our solution, they may be
obtainedfrom(2)bysubstitutingi:-2andr:3ineitherequation.Thisyieldsl:4
and r : 9, so the upper and lower boundaries intersect at ( 2, 4) and (3, 9).

From(1)withl(r) -r+6,g(r) :x1.(r: 2.anclb:3. we obtainthe area

r : 
lo' 

u,+6) -.{2rd.{ : [; *u" :]" : + -.: i

(2)

f' lr- r. I )1 / l)\ l)54-/ lrr.6r-r-dr l^-6r I - I l-J '' 1.2 rl 2 \ r/ b
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It is possible lol the upper or louer boundary ol'a rcgion to consist ol'two o[ rnore

different curves. in which case it rvill be neccssary to subdivide the rcgiol into snaller
pieces in order to apply Formula (l). This i5 illustrated iD the next cxample,

Example 3

Find the area of the regioll enclosed by -y : r'l and r' = .r - 2.

Soltrlion, To make an accLrmtc sketch of the rcgion. we need to know wherc the curves

.r : r'l and .\' : 11 - 2 intersect. In Example 2 we tbund intersections by equating thc

expressions for r. Hele it is easiel to rewrite the lattcr equation as r : .1 * 2 xnd cqutle
thc expressioDs for .r. nancly

,:tl and .t:r*2
This yields

r'l : r'* 2 or .\': -.r'- 2 - 0 or (.\'+ I)(\'- 2) = 0

(3)

llorn rvhich u'e obtain .\' = - I . l = 2. Substituting these values in either cquittion in (3)

we see that the corresponding,r-\,alues are,r : I and.r = 4. rcspectively. so the points of
iutcrsection are ( 1. - I ) and (.1. 2) (Figure 8.l.lla).

Ti) appl) Formula (l). tlre ecluations of the boundaries nust be writtcn so that I is

exprcssed explicitly as a fu nction of -r. The upper boundary can be *'rittcn r\ \ : Vl
(rewrite -r : r'l as r' : Iv[ and choose the + for thc uppcr portion of the curve). The

lower portion of the bounclary consists of two parts: r'= -.rl.r fbr'0: -r: i iinclr' : .r - 2

lor L:,t 5 ,1 (Figurc 8. L 8r). Bccause of this change in the tbrmula lbr the lower bourdaly,
it is necessary to divide thc |cgion into t$o parts and find the area oi each palt scparately.

Flon (l) with./(.!) = v/f,g(r): -y[.,r =0. anJb = I. ueobtrtn

4

3

Frornrlruilh /r.r r =,r{. L,irr .\-2.,i-Lr)cl /r =-1. u. obtrin

Thus. the area of the entire region is

4 19 9
-.1 6l

l()rt lllERE,\DEll ltisassunedinFormlrla(i)that.l(r)>s(-r)tbrall rinlhcintcrval
Ia. b]. What do yor think that thc integral rcprcscr]ts il this condition is not satislicd. that

is. the graphs of / and I ctoss one another over the interval? Explain youL Leasoning. and

give an example to suppon your conclusion.

Example 4

Figure 8.1 .9 shorvs velocity veBus time curyes fol two rtce cars that mole along a straight

track, starting fronr rest al thc sitmc line. What docs thc atea A between the cttNes over the

interval 0 : I S f representl

So/alior. From(l)
ft l1 rt

I | 1r'rn rrrrrl./i: I rlrtlt I t,rtt,lr
J,, J" JU

But frorn 7.7..1. the first integral is the distance traveled by cat 2 during the time interval.

and the second integral is thc dislance traveled by car l. Thus. A is the distancc by which

car 2 is ahead of car I at time f.

5

4

3

2

l
Ll3'r

1

It,: 
1,,'t"G -(-../r)1./.r =z 

fn' 
ucd..:, [;"'']"

e.- l,'nc -(.1 -2)trlr: l, etr -, +zt,t.t

: [1"" ]"."1,: (T '.')- (i- 1-', - li

Figurc 8. Lit

Fi,qLlrc tl.l.7

(l- l)_'::'-

L = r.(/)
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REVERSING THE ROLES
0FxANDy

Sometimes it is possible to avoid splitting a region into parts by integraring with respect to
I rather than -r. We will now show how dris can be done.

l.l..l r1 ,,,\tr \t-,t \,.1?,'Hr t\l 5 ppo\c lnJr u. rnJ ,. rre conrirrrou\ lUn(li,,n\ o \

on an interval [c,.i] and that

ur(-!) > u(i) 1br c< r'<u/

lT]ris rneans that the curve r : ur(.t ) lies to the right ofthc cLrrve r : u(]) and that
the two can touch but not cross.l Find the area A of the |egion boundcd on the left by
r : r(-r'). on the dght by r : ur(l ), and above and below by the lines r, : d and t, : .
(Figure 8.1.10).

Proceeding as in the derivation of ( I ), but wirh the roles of -r and \. r'eversed, leads to the
followirg analog of Ii.1.2.

8.1.J \l(l \r"R\'l l\. lt u.r irnd u tre continLou\ lunctionr lnd:t ,/(\l ,t\)lor
all I in [c, r1l, thcn the alea of the region bounded ot the lel't by .r - i'(],). on the right
by,t - u(-r'), below by t : c. and above by r'- 11 is

e - l,'' l*,,t- i(\,)ld\, ('1)

The guidirg principlc in applying this formula is the same as with (l): The inregrand in
(4) can be viewed as the length of thc horizoltal closs section at the point ,\., in which case
Formula (4) states that the area can be obtained by intcgrating the length of the hoizonlal
cross section over the interval lc, dl on the l, axis (Figure 8. L I 1).

In Example 3, rvhere wc integrated with respcct to -r to flnd the area ofthe region cnclosed
by r : 12 3n4 -t : r 2, we had to split the region into parts and evaluate two intcgrals. In
the next cxample we will see that by integr-atiDg with respect to r. no splitling of the regiorr
is necessary.

Example 5

Find the alea ofthe region erclosed by r : -r'2 and l - r 2. integrating wilh rcspect
to ).

Solution. From Figure 8.1.8 the left bour'rdary is -r : r,r, the dght boundaly is y' : r - 2.
and the region extends over the intcrval I : I : 2. Howcver'. to apply (4) the equatjons
fbr the boundalies nust bc writlen so that r is expressed explicitly as a funclion of _i . Thus.
rve rewrite l - -r 2 as,r : .) * 2. lt now lbllows tiom (4) that

rl r ..1
.a:/_,t,, +:r,-1,1, : l;

whichagreeswifither9SultobtainedinExample3.<

RliNlARK. Thc choice between Fomulas (1) and (4) is generally clictated by the shape
of the regiorr, and one would usually choose the formllla that requites tlte lcast antoLrot of
splitting. Howcver, if the integral(s) resulting bv one method ale dit'ficult to evaluale. $cn
the other mcthod nright be preferable. even if it requires more splitting.

rtlt 9*2r ;l :,

-1-'=t'1''
\'\

.=,(r)\ |
\l't

Figure L l.l l
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ExERctsE SET 8.1 ! Grapnrng ca crtator E cAS

ln Exercises 1--4. lind the area of the shaded region.

5. Find the area of the region enclosed by the curves r' : ..r;:

and ,r, :,1,r by integrating
(a) with respect to.r (b) with respcct to r'.

6. Find the area ofthe region enclosed by the curves ,r'l : 4.t

and r, : 2r - :1 by integrating
(a) with respect to x (b) with respect lo ).

ln E\erci'e' 7-lo. \ketch lhe rcgron enclosed b1 the eurves.

and lind irs:rrea.

7. r' = -tr. _y - .rf. .t : l/4. x : I

8. r'=rr -4:v. 1:Q..g=Q,,r-2
9. -l=cos2.r, )-0. r= tll, r=tl2

10. r = seclr. ,r :2, -t = -tr/1. r:tl4
11. -\ = sin.r'. ,r-:0. l = rl4. t -3r/4
12. .tl : .r'. t : r' 2

13, r:e', ):e2'..t:0. r:1n2
14. r=l/-r,.r:0, r':1. r:e
15. r' =2*lr - 11.,r'= -]r+7
16. r. : ,r. r' - 4r, .r' = -.r + 2

ln Exercises 17-22, use a graphing utility. where helpful, to

llnd the area ol the region enclosed by the curyes.

17. t, :.rr ,1*2 + 3,t, r. :0. r - 0, .r = 3

Find a horizontal linc r' : t that divides the area between

l :,tl and r' :9 into two equal par1s.

Find a vertical line -\ : k tbat divides the area enclosed by
r : .",5, .r = 2. and ) = 0 into two equal parts.

(a) Find the area of the region enclosed by the parabola

r' = 2.r - -r2 and the r-axis.
(b) Find the value of,, so that the line _), : rrr divides the

regioD in pan (a) into two regions of equal area.

Find the area between the curve ) : sin-r and the line seg-

mentjoining the points (0, 0) and (52/6, 1/2) on the cuNe.

Suppose that / and g are integrable on [a. D]. but neither

/( r) > 8(.r ) nor g(,r) : l(.\ ) holds for all -r in [a. b] [i.e.,
the curves r' = /(,r) and -1, = g(x) are intertwinedl.
(a) What is the geometic significance ofthe integral

/ [/l.r r - s(r r]/r"l

(b) What is the geometric signilicance of the integral

, l/(.r) .qrr)lJ.r?

30. Let A0?) be the iuea in the first quadrant enclosed by the
curves i' : {f{ and r :,t.
ra) By considering hou the graph ol ) - ir4i chanees as

,t increases. make a conjecture about the limit of /k)
as /l --+ +:c.

(b) Conlirrn your conjecture by calculating the limit.

ln E\erci:er -l I and 32- ure Newron r MeLhod (Seclron 6.4).
where neelled. lo appro\imate the.r-coordinates ol the in-

tersections of the curves to at least four decimal places; and
then use thosc upproximations to approximale the areu uf the

region-

31. The region that lies below the curve ) : sin-r and above

rhe line _y = 0.2"r, where -r : 0.

32. The region enclosed by the graphs of r' : -rr and r' = cos r.
33. The accornpanying figure shows velocity versus time curves

for two ca|s that move along a straight track, accelerating
from rest at a common starting line.
(a) How tar apan are the cars atter 60 seconds?
(b) How tir apart are the cars after f seconds, where

0=I<60?

25.

26.

27.

2.

28.

29.

E
E
E
E
E
E
tr

18. r' :.tl 2rl. r':2.r1 - 3r. ,t - 0. .r :3
19. r' : sin -r. .1 - cos -r. .t : 0. :t : 22

20. r,=rr -4_t. 1=Q, x= 2, x:2
21, "r : .r'l -r', x - 0

22. x =t') -4y2+3r',,r =): -l'
23. Use a CAS to find the area enclosed bv r' = 3 2r and

1. : ,16 12r5 3-r1 +.r1.

24, llse a CAS to find the exact area enclosed by the curves

) =.r5 - 2,t3 - 3x and y:'{3.E
Fisure Ex-33
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The accompanying ligure shows acceleration time curves
ior iwo cars that move alLrng a straight track. accelelating
trom rest at the starting line. What does the area A between
the curves over lhe iirterval 0 

= 
t 

= 
T represent? Justify

your answet

35.

36.

Find the area of the region enclosed between the cuNe
.rL/l + ! L/l - alll and the coordinate axes.

Show that the area oithe ellipse in the accompanying figure
rs trttb.lHint; Use a tbrmula irom geometry.l

Figure Ex'36

37. A rectangle with edges parallcl to the coordinate axes has
one vertex at the origin and the diagonally opposite veftex on
the curve ) : t.r"' at the poir'lt where -r : /, (b > 0, I > (i,

and nr > 0). Show thirt the fiactjon of the area of the rcct
angle that lies between lhe cuNe and the n-axis depends on
,? bLLl not on k or /r.

VOLUMES BY SLICING

n a th n s ab, the cross seciions
do not vary much in size and shape.

Figure E.2.2

8.2 VOLUMES BY SLlCltt{G; DISKS A[\D WASI-IHRS

In the lett sectiotl yte showed thttt the ttrea of cL plane region bounded by two curves
can be ohlaitetL bN integrating the length oJ a genen cross secti)n ovLt.Ltn dlprt,ln-
ate i erval. In tllis section --e will see that the sdme basic princ:iple t:an be used to

fnd voltntes of cerlain three dimensionaL so[ids.

Recall that the underlying principle for finding the area of a plane region is to divide the
legion into thin strips, approximate the arca of each strip by the area of a r.ectangle. add the
approximations to form ;r Riemaln sum, and take the limit ofthc Riemtnn sums to produce
an integral for the area. Under appropriate conditions, the same strategy can be used to
find the volume of a solid. The idea is to divide the solid irto thin slabs, approximate rie
volume of each slab, add the approximations to form a Riemann sum, and take tlte limit of
the Riemann sums to produce an integral for the volume (Figure 8.2.1).

llllll; 'rtl h ,,,,,JM #xgh
rtrttt t,xe .ilttl,+,,4W tttl\\lll .:--,.

Figurc 8.2.I

What makes this nethod work is the tact that a fri? slab hls cross sections that do not
vary nuch in size or shape. which, as we will see, makes its volume easy to approximate
(Figure 8.2.2). Moteover, the thinner the slab. the less vadation il its cross sections atd the
better the approxirnation. Thus, once we approximate the volumes of the slabs, we can set
up a Riemann sum whose limit is the volume of the entire solid. Wc will give the details
shortly, but first we need to discuss how to find the volume of a solid whose cross secrions
do not Vary in size and shape (i.e., are congruent).

One of the simplest examples of a solid with congruent cross sections is a dght circular
cylinder ol radius r, since all cross sections taken perpendicular to the central axis are
cir cular regions of radius r. The volume y ol'a right cilcular cylindel of radius r and height
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/r can be expressed in terms of the height and the area of a cross section as

V - rr2h: farea of a cross section] x fheight] (l)
This is a special case of a more general volume formula that applies to solids called riglzl
cylinders. A right cylinder is a solid that is generated when a plane region is translated
along a line or aris that is perpendicular to the region (Figure 8.2.3). The distance /r that
the rcgion is translated is called the ftsigftl or sometimes the reldt of the cylinder, and each
cross section is a duplicate ofthe banslated region. We will assume that the volume y of a
right cylinder with cross-sectional area A and height lr is given by

V - A.h -fareaof acrosssectionl lheightl

(Figure 8.2.,1). Note that this is consistent with Formula (1) for the volume of a right circular
cylinder. We now have all of the tools required to solve the following problem.

8,2"1 pRoBLEM. Let S be a solid that extends along the jr-axis and is bounded on the
left and right, respectively, by the planes that are perpendicularto the x-axis atr : d and
r = b (Figure 8.2.5a). Find the volume V of the solid, assuming that its cross-sectional
area A(x) is known at each point x in the interval [d, ,].

To solve this problem we divide the interval [a, D] into n subintervals, which has the
effect of dividing the solid into n slabs (Figure 8.2.50).

(a) (b)

Figure 8.2.5

If we assume that the width of the fth slab is Ark, then the volume of the slab can be
approximated by the volume of a right cylinder of width (height) Axr and cross-sectional
area A(.tl), where xf is any point in the kth subinterval (Figure 8.2.6). Adding these
approximations yields the following Riemann sum that approximates the volume y:

y * | ai_rlyl"rr

Taking the limit as n increases and the widths of the subintervals approach zero yields the
definite integral

" .h
V- Iim tA(r;l^rr: I A1x1dxm..a, oE1 J.

In summary, we have the following result:

(.2)

I some risht cv indersL:'
Figur€ 8.2.3

8,2,2 voLaMF, FoRMULA. Let S be a solid bounded by two parallel planes perpen-
dicular to the r-axis at.r : .r and r : D. If, for each .r in [a, b], the cross sectional area

of S perpendicular to the r-axis is A(,r), then the volume of the solid is

v : 
f"u 

e{i a'

provided A(,r) is integrable.

(3)

EiguLe 8.2.6
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There is a similar result for cross sections perpendicular to the 1,-axis.

8.2,3 voLUME FORMULA. Let S be a solid bounded by two parallel planes perpen-
dicular to the y-a-ris at ) : c and y : d. If, for each y in [c, d], the cross-sectional area
of ,S perpendicular to the y-axis is A(y), then the volume of the solid is

v = l"o 
a6l ay (4)

provided A(y) is integrable.

oi"
(b)

Figurc 8.2.7

REMARK. In words, these formulas state that the volune ofthe solid can be obtained by
integrating the cross-sectional area from one end ofthe solid to the other.

Example I
Dedve the fomula for the volume of a right pyramid whose altitude is , and whose base is
a square with sides of length a.

Solution. As illustuated in Figure 8.2.1a, we inftoduce a rectangular coordinate system
in which the y axis passes through the apex and is perpendicular to the base, and the r-axis
passes through the base and is parallel to a side of the base.

At any point ) in the interval [0, fi] on the y-axis, the cross section perpendicular to the
y-axis is a square. If s denotes the length of a side of this square, then by similar triangles
(Figure 8.2.7b)

1" h-v a
i - or s -;(,lr -Y1
;anh

Thus, the area A(y) of the cross section at ) is

^a2A()) = s'- -(ft ),)'

and by (4) the volume is

ft' fh a) . a' f'v=l Aty)dy- I ;th yt'dy-jlrh yt'dy
Ja Jo n' n- Ju

a'f I ,lr o)f l^l t-
= -- l --(ft - vt'I = l0 - .h'l - a'hl'L J - J,=o hrl 3 I 3

ThatiS,theVolumeis]oftheareaofthebaSetimesthea1titud9.<

A solid of revolution is a solid that is generated by revolving a plane region about a line that
lies in the same plane as the region; the line is called the arls of revolutian. Many faniiiar
solids are of this type (Figure 8.2.8).

SOLIDS OF REVOLUTION

/ \ ,4 l---rlt / \r '-'-- l: _,
A,so'revolJ-or U V U V

Some fami iar solids of revolution
Figure 8.2.8
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We will be interested in the following geneml problem:

8.2.4 PRoBLEM. Let / be continuous and nonnegative on [a, b], and let R be the
region that is bounded above by y : /(r), below by the r,axis, and on the sides by the
lines .:r : a and r : D (Figure 8.2.9a). Find the volume of the solid of revolution that is
generated by revolving the region R about the r-axis.

We can solve this problem by slicing. For this purpose, obserye that the cross section of
the solid taken perpendicular to the.r-axis at the point r is a circular disk of radius /("r)
tFigure 8.2.9br. The area olthis region is

A(x) : rlf (tP
Thus, from (3) the volume of the solid is

y: | 41/qx112 dx

Because the cross sections are disk shaped, the application of this formula is called the
method of tlisks .

Example 2

Find the volume ofthe solid that is obtained when the region under the curve y = .rf over
the interval [1, 4] is revolved about the r-axis (Figure 8.2.10).

(5)

Fisure 8.2.9

VOLUMES BY DISKS
PERPENDICULAR TO THE X-AXIS

VOLUMES BY WASHERS
PERPENDICULAR TO THE x-MlS

Solution, From (5), the volume is

rb ro ,r2fo n I5nv = I nl[lx)12dx-- I nxdx: . 1:8r '.=:
J" ' Jt 2 lr 2 2

Example 3

Derive the forrnula for the volume of a sphere of radius r.

Solution. As indicated in Figure 8.2.11, a sphere ofradius r can be generated by revolving
the upper semicircular disk enclosed between the r-axis and

x2 +y2:12
about the x-axis. Since the upper half of this circle is the graph of y : f(x) : J7-? ,

it follows from (5) that the volume of the sphere is

fb , ft I . tll' 4y: I nfftttl- dt = | n(r) -.t'td.s. =zlt-r-ll - -nr)J" J, I 3l_. 3

Not all solids of revolution have solid intedo$; some have holes or channels that create

intedor surfaces, as in the last part of Figure 8.2.8. Thus, we will be interested in problems

of the following type.

Figure 8.2.10

Figure 8.2.11
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E.2.5 l)ttoBLElt. Let .l and 8 be continuous and nonnegative on [a. bl. and suppose

that /(.r) - g(r) for all .r in the interval lu. hl. Let R be the region that is bounded
above by r' : .l(r). below by r' : .g(-r). and on the sides by the lines -r = u ancl x = It

(Figure 8.2. l2n). Find the volume ofthe solid of revolution that is generated by revolving
the region R .rbout the.r-lxts.

We can solve this problem by slicing. For this purpose. obscrve that the cross scction of
the solid taken perpendicular to the -r-axis at the point -r- is the tnnular or "washer-shaped"

Iegion with inner radius g(.r) and outer radius /(r) (Figure 8.2.120)l hence its arer is

A(r) = rrll(-y)lr - rlg(-r')l: : lr(tl(.r)lr - [,c(..)]2)

Thus. tiom (3) the volume of the solid is

v = 1,, 
nrlftxt)1- [s(xr]2)dr' (6)

Figurc ti.l.l2

Because the cross sections are wiisher shaped, the application of this fbrmula is callcd the

method ol washers.

Example 4

Find the volume of thc solid generated when the region between the g|aphs of the equa-

tions l(.r) = ] + tr ancl ,g(.r) : -r over thc interval [0,2] is revolved about the r-axis
(Figure 8.2. l3).

Figurc li.l.ll

Solutit,tt. Frorn (6) the rolume is

v : 
1,,'' 

nq111,y1', [s(.,i)]'?) d.r : /t " ([i + -"]' ':) 1.'

69tr

l0

The methods of disks and wlrshers have analogs for regions that are revolved about the -)-
axis (Figures 8.2. 1,1 and 8.2. l5). Using the method of slicing and Formula (4), you should

have no trouble deducing the following ibrmulas lirl the volumes ofthe solids in the tigures.

Y: I zrtlu,(rll2 -[r(],)lr)d)
W^he*

^l
=J,, "(1.") ,.:"[;. !]"

VOLUMES BY DISKS AND
WASHERS PERPENDICULAR TO
THE y-AXIS

v: I rlug 1l: dy

Disks

(7-8)
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Example 5

Find the volume ofthe solid generated when the region enclosed by y : Ji, y :2, and,

.r = 0 is revolved about the )-axis (Figure 8.2.16).

al

&())

VT;
(b)

Figure 8.2.15

Solution, The cross sections taken perpendicular to the y-axis are disks, so we will apply
(7). But first we must rewrite y : 4G as x : y2. Thus, from (7) with u(y) - y2, the
volume is

n.l n2

v=lr1u1yfiay:l
J. Jo

ny512 32r
nv al\r: 

-l 
=-5 lo 5

Figure 8.2. I 6

ExERcrsE sET 8.2 E c,qs

u(y)

FigDrc 8.2.14

In Exercises l-4, find the volume of the solid that results :

when the shaded region is revolved about the indicated axis. l

In Exercises 5-14, find the volume of the solid that results
when the rcgion enclosed by the given cuwes is revolved
about the r-axis.

5. y:12, x =0, x=2, y=0
6, ):sec.r, x=n14, x:t/3, y=0
7, t: Jcosx, x:r/4, x =tt/2, y =0
8, y:x2, y=a3
9. y: J25=j, y =3

10, y:9-x2, y:n
ll. y:s', y=0, r=0, x=ln3
12. y=s-b, y=0, r=0,.:r:l
13.x:O,x=y/4



474 Applications of the Deinite lntegra in Geometry, Science, and Eng neering

14. -r - sin-r. -\. : cos.r. .r : 0. .r : n/;1. [Hll?/: Use the
.J(nlit) co.:.\ - cu.- , .in t l

l4 l-\e.c..er ll-i2. nrJ lne \u.ume.Jl lhc.L,l'J lhJl re.rrlt,
when the region cncloscd by thc givcn curve! is revolvcd
aboLrt the 1' axis.

15. r :'3. r :0. r,- I

16. .t : I i':. -r :0
17. .r : ,/I ]'r . -r : 0. l-3
18. 1=;s: l.r-2.r:0
19. -r = cscr.. f : jt/4. ):32/4, -r :0
lQ. 1,: r-r, .1 : 1,1

21.-t=-r2,.r-t*2
22. r:1 ll,.r-2+r,l. r':-1. -r': I

23. Find the volume of the solicl that results when the region

above lhe.r irxis ar'ld below the ellipse

, I r,/ ll. /' I)l
tt 1)

The base ola certain soliclis the region encloseclhy r : ."/.t.

_t' : 0. and r = 4- Everv cLoss section perpendicular to the
-r-axis is a senlicircle with its diamctcr ac|oss the bllse. Find
the volume oi the solid.

Find the volume of the solid $l'rose base is enclosed by the
circle rl + -r'l : I and whose cross sections taken perpen
dicular fo lhe hise ,rre
(a) scrnicirclcs (b) squares

34.

35-

4'

24.

is r'evolved about the r-axis.

Lel y be the volume of the solid that results when the re-

gion enclosed by -r' : l/:r. 1, : 0,-t - 2. ancl r - D

(0 < D < 2) is relolved about the r-axis. Finci the value of
D lol which V : 3.

Find the volurnc of the solid generated wheLr the region en-

closed by r' :.^ + I .r' : J2r, and t - 0 is revolvecl
about the r-axis. [Hir1. Split thl] solid into two p.uts.]

Fincl the volume of the solid gcncrirtcd when the region en

closed by _r' 
: .u/-r. r : 6 -r, and r'- - 0 is rcvoh'ed about

the r axis. lHirl: Split the solid into t$,o parts.l

Find the volune of the solicl that results when the region

cncloscd by 1, : u/r. r : 0. rnd r : 9 is revolved about

thc line.\- : 9.

Find the volune ol the solid that rcsults when the region iD

Exercise 27 is revolvcd about the line \' : 3.

Fincl the volume ol'the sollcl that results when the regiorl

cnclosed by -r : -r'2 and -r : r is revolved about the line

Find the volume of thc solid that resLrlts when the region in
Exercise 29 is revolved aboul the line .r : l.
A nose cone tbr a space reentry vehiclc is dcsigncd so that
a cross seclio . taken.r li toln thc t4r and peeendicular lo
the axis ol symrnetlv. is a circlc of radius J-r2 ft. Fin,l the

\,olume oi the nose cone given that its length is 20 li.

A certain solid is I lt high, and a horizontal cross scction

takcn,! fi above dre bottom ol the solid is an annulus of
inncr r-adius -rl nnd outer ridius .r[. Find the volun-re ofthc
solid.

Find the volune ol the solid whose base is the regioD

bounded between the cutves r' -..,c and,t :,r1. and whose
(r.,...c(li..n. petI'et,1t.ttl.l o.h! .\-.r\r..rre .qLr.c\.

36. Derive the lornlulli lbr the volume of r risht cilcular cone

with radilrs r. and height r.

lrr L\er.r.e. J- rr,d.{x. u.c J ( \) tn fi ro rre \olrrrre,'l I r.
solid that resuLts when the region enclosed by the cuNes is

re' nl'e,l ,rht'..t 'e.trtcJ:rri..

37. -r'- sins-t. -t -2,il;r, -t - 0, -r : l/2; -r-axis

38. r': e'. -r: : l. r : lt t-axis

39. The accompanying figure shorvs a spherical cap ol rr)tus
p and height /r cut from a sphcrc ol radius /-. Sho$ that the
volurne y ol the spherical cap can be exp.essed as

rJ, y - .r"i/ ,.1/ l'r rb, I - r rir,lr tr I

Figure Ex-39

lf fluid enters a hemispherical vat ivith a raclius oi l0 lt at a

rate ol j ftr/nin, how last \rill the fluid be rising when the

depth is 5 it'? [,11i?r. See Exercise 39.1

The accompanying ligure shows the dimensions of t small
lightbulb at 10 equally spaced points.
(a) Use lburulas 1r'onr geon-relry to make a rough eslirnale

ofthe volun're enclosed by the glass portion ofthe bulb.

tr
tr

t{

26.

27.

?R

29.

30.

31.

40.It

I c ) equil.Lterll trirnele\

1t.
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(b) Use the average of left and right endpoint approxima-
tions to approximate the volume.

Figure Ex'.+ I

Use the result in Exercise 39 to nnd the volunre of the solid
that remains wl'ren a hole of radius r/2 is dlilled through the

center of a sphere of radiLls r, and then chcck your answer

by integrating.

As shown in the accompanying figure, a cocktail glass with
a bowl shlped like a hemisphere of diameter 8 cm contains

a cheny with a diameter of 2 cm. If the glass is tilled to
a depth of /r cm. what is the volLrme of liquid it contains?

[11zrr- First consider the case where the cherry is panially
submerged. then the case where it is totally submerged.]

Find the volul]]e ofthetorus thatresLllts wheD thc region en-

closedbythecircleofracliusI withcenteral (/t. 0). I > r. is

revolved about the _1,-axis. IHi!1. Use an appropriate lormula
Iiom plane geometry to help evaluate the defillite integral. I

A wedge is cut from a right circular cylinder of radius r by
two planes. one pelpendiculAr to the axis of the cylinder and

the other ntking an angle d with the f,rst. Fincl the volunle
of the wedge by slicing perpendicular to the r'-axis as shown

in the accompanyjng ligure.
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Find the volume of the wedge describcd in Exercise 45 by
slicing pclpendic lar to the r-axis.

Two right circular cylindcrs oi radius r have axes that inter-
sect at right angles. Find the voiume oi the soLid common to
the two cylinders. [Hi,rt. Onc-eighth ofthe solid is sketched
in the accornpanying ligure.l

In 1635 Bonaventura Cavalieri. a student ofGalileo. stated

the lbllowing result. called Cavqlieri's principle: IJ ttlo
solid'; ltttt,e the stmte height. antl if the arcus of their crots
se(ions t(ketr parollel to tuttl at equtrl tlisttutces fron their
bases are ulvays eqrnl. tlrcn tlte solids lttr,, e the sanre yol-

rrare. Use this result to find the volunle of the oblique cylin-
der in the accompanying ligure.

w
ll

-l
Fisurc Ex-.{3

46.

47.42.

43.

44.

45.

Figun: Ex-.18

CYLINDRICAL SHELLS

8.3 \i OLt.r{t4 L.S gY CYLlriilR tCp.L $i4H Lt*li

The nethotls Jor cotllpLttin,q ,,,olunrcs that lnt'e been discussed so Jdr tlel)(tul on oLu'

abilin,tu rcnpLtte lhe cross-,\ettiorrci ureu oJ the solitl utttl lo integrote tl14t area

ocross the solid. In this secliofi we will derelolt atoth(r tetlnd Jbt'Jitttlitry volumes

that nny be applicctltle then the cnss-sectiortql arca (uutol be foutd ot' lhe inleBn-
tion is too di.lrtc t.

In this section we will be interested in the fbllowing problcm:

E..3.1 l,ltouLE\l. Let ./ be continuoLrs and nonnegative on [ri. b], and let R be the

region that is bounded above by -r' : ./( r). bclow by the .r-axis, and on the sides by the

lines;r = a and ;r = D. Find the volume V of the solid ol revolution S that is generated .

; by revolving the region R about the _l,-axis (Figure 8.3.1 ) 
l

Sometimes problems of this type can be solved by the method of disks or washers per-

pendicular to the l-axis, but when that method is not applicable or the resulting integral is
diflicult, thenrel,I?od oJ c../intlricttl shells, which we will discuss here. will often work.

' ' t'I '' -i.zi I

I-igure lix :{5

Figure l-lx--17
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A cylinfuical shell is a solid enclosed by two concentdc dght circular cylinde$ (Fig-
ure 8.3.2). The volume V of a cylindrical shell with inner radius /1, outer mdius i"2, and

height h can be w tten as

y - larea olcros. \ectionl lheighrl - rnr] - nrith
: it(rz + r)(r2 - r)h :2tt , [1(rr + rr)] .h.(r2-r)

But i(rr * rz) is the avemge radius of the shell and 12 - rr is its thickness, so

V : 2n . laverage radius] . lheight] . fthickness]

We will now show how this formula can be used to solve the problem posed above. The
underlying idea is to divide the interyal la, bl into n subintervals, thereby subdividing the
regionRintonstrips,R1,R2,...,R,,(Figure8.3.3d).WhentheregionRisreyolvedabout
the )-axis, these strips genemte "tubelike" solids Sr, S:, . . . , S, that are nested one inside
the other and together comprise the entire solid S (Figure 8.3.3b). Thus, the volume V of
the solid can be obtained by adding together the volumes of the tubes; that is,

V: V(Sr) + Y(Sr) + +Y(S')

Figure 8.3.3

As a rule, the tubes will have curved upper surfaces, so there will be no simple formulas
for their volumes. However, if the strips are thin, then we can approximate each strip by a

rectangle (Figure 8.3.4a). These rectangles, when revolved about the )-axis, will produce

cylindrical shells whose volumes closely approximate the volumes generated by the original
strips (Figure 8.3.4b). We will show that by adding the volumes of the cylindrical shells we

FisDre 8.1.l

t
I

(1)
Fisure 8.3.2

Figure 8.3.4
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can obtain a Riemann sum that approximates the volume V. and by taking the limit of the
l{iemann sums we can obtain an integral fin the exact vdume y.

To implcment this idea, suppose that the lith strip extends f'rom the point .\'r I to the
point .r1 and thflt lhe width ol'thi\ \rrip is

Ar4 : -t1 - '1* ,

If we let .li be the nidpoint of thc intervnl lrl 1 tll, and if we construct a rectangle of
heighl .l(1^l') over the interval. then revolving this rectangle about the ,1)-axis produces a

cylindrical shell ol height ./ (.ri ). average radius -ri, and thickness Ar1 (FigLrrc 8.3.5). Fronr
( 1). the volume yr of this cylindrical shell is

V1 : 271rf .f(-r,1)A.t1

Adding the volumes of thc rr cylindrical shells

approximates the volume V:

y ,v I zz.ri f( tf )A.rr

yields the tbllowing Riemann sum that

Taking thc Iimit as r inc:eases and the widths of the subintcrvais approach zero yields the
definite integral

, t^
v- linr | 2r.riJ r.ti tA.r1 - / :r.\/(.r )./.r

",.'\ r\r '(,- J,t

h sumnrary, we have the following result.

Fig'rc 8.3.5

Cutaway v ew oi the sol d

l:igure 8.1.6

VARIATIONS OF THE METHOD OF
CYLINDRICAL SHELLS

1i.3.2 vot.i \1t-. BY cYt.tNl)t|aAl sH1:t.t.s,\lJOUl'tHLJ-,\xls. Let / bc continuous

and nonnegative on [.?. /rl. and let R be thc rcgion that is bounded above by r' = I ( t).
below by thc.r-axis, and on the sides by the lines r : n and.r : D. Then the volume y
of the solid of revolution that is generated by revolving the region R about the t -axis is
given by

v = I,t'2,*y{iax

Example I
Use cylindrical shells to 6nd the volume of the solid gencrated when the region enclosed

between r. : v/i. .r = l. .r : 4. and the.r-axis is revolved rbout the -I axis (Figure 8.3-6).

Solution. Since /(.r) = tF,a - I, and b = 4, FormuJa (2) yields

v-|,.zn.,uGa',=z,|,.,,|.a.,:[-],.,.].=fr.'|:+<

The method of cylindrical shclls is applicable in a variety of situations tha( do not fit the

conditions required by Forrnula (2). For examplc, the region may be enclosed between two
cuNes. or the axis of revolution may be some line othe[ lhan the \ axis. However. rather

than develop a scparate formula fbr every possible situation, we will give t general way of
thinking about the method of cylindrical shells that can bc adapted to each new situation us

it arises.
For this purpose, wc will need to reexamine the integlancl in Formula (2): At each point

.! in the interval l.r. bl. the vertical line segment from the -t -axis to the curvg 1 : I(t) can

be viewcd as the cross section of the region R at t (Figure 8.3.7ri). When the region R is

revolved about the r'-axis. thc cross section at .\ sweeps out the sr{hce of a right circular

(2)
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cylinder of height /(r) and radius x (Figure 8.3.7b). The area of this surface is

2rxf(x)
(Figure 8.3.7c), which is the integrand in (2). Thus, Fomula (2) can be viewed informally
in the following way.

8.3.3 AN I].{FORMAL VIEWPOINT ABOUT CYLINDRICAL SHELLS. The volume Y of a
solid ofrevolution that is genemted by revolving a region R about an axis can be obtained

by integrating the area of the surface genemted by an arbituary crcss section of R taken
panllel to the axis of revolution.

(a) (b) (c)

Figurc 8.3.7

The following examples illushate how to apply this result in situations where Formula
(2) is not applicable:

Example 2

Use cylindrical shells to find the volume ofthe solid generated when the region R in the fiISt
quadrant enclosed between ) : r and y = ;62 is revolved about the y-axis (Figure 8.3.8).

Solution. At each r in [0, 1] the cross section of R parallel to the ]-axis generates a

cylindrical surface of height -t - -r2 and radius,r. Sinca the area of this surface is

2n\\x - x')
the volume of the solid is

v : 
fr' 

zn,<* -r\ a, - t4lr tl ll irI - )nl - - - I : -4), L3 41 6

v:|oazot{zJi)dy:zn|oolzlJ.l,)dy_'"|'o_',;,']":?<

rl - l
2n | 1*2 -r3 s ttx = z"ll

Jo I J

This solld looks like a bow

w th a cone shaped nterior.

FoR THE READER. The volume in this example can also be obtained by the method of
washe$. Confirm that the volume producedby that method agrees with the volume obtained

by cylindrical shells.

Example 3

Use cylindrical shells to find the volume of the solid generated when the region R under
y : x2 over tlle interval [0,2] is revolved about the x-axis (Figure 8.3.9).

Solution, At each tf in the intewal 0 3 y : 4, the cross section of R parallel to the x-axis
generates a cylinddcal surface ofheight 2 - .f and radius y. Since the area ofthis surface

rs2ry(2 f), the volume ofthe solid is

Figure 8.3.8
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Figure 8.3.9

FoR THE READER. The volume in this example can also be obtained by the method of
disks. Confirm that the volume produced by that method agrees with the volume obtained
by cylindrical shells.

ExERcrsE SET 8.3 E crs

In Exercises l-4, use cylindrical shells to 6nd the volume of
the solid generated when the shaded region is revolved about

the indicated axis.

v=^'[ttz

ln Exercises 5-12, use cylindrical shells to find the volume
ofthe solid gererated when the region enclosed by the given

curves is revolved about the y-axis-

;, : cos(r2), x:O, x= lJ;, y:O
y:2r - I, y: -2x !3, x:2

1
y : --;---,,r =0, r = 1, ;r =0x'+t
!=e,', x=1, x-J', y=o
y:2x-x2, y=0

In Exercises 13-16, use cylindrical shells to find the volume
of the solid generated when the region enclosed by the given
curves is revolved about the r-axis.

y2 =x, y =1, x=o
x:2!, y=2, y:3, r:0
y:12, x = I, y:s
xy=4, x!y=5
Use a CAS to frnd the volume of the solid generated when
the region enclosed by ) = sinx ?.nd y - 0 for 0 < x < 7r

is revolved about the }-axis.
Use a CAS to find the volume of the solid generated when
the region enclosed by ) : cosr, ) : 0, and.r = 0 for
0 < x S r/2 is revolved about the )-axis.
(a) Use cylindrical shells to find the volume of the solid

that is generated when the region under the curve

t = x3 -3x2 +2x
over [0, l] is revolved about the y-axis.

(b) For this problem, is the method ofcylindrical shells eas-

ier or harder than the method of slicing discussed in the
last section? Explain.

E.

9.

10.

11.

12.

4.

13.

14.

15.

16.

17.tr

E lE.

19.

5.y=13,x:1,y=0
6, y:Ji, 1:4, x=9.
7,y=t/r, y: Q, a= 1,

}:0
x =3



23.

24.

2tJ.

21.

))
25.

26.
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Use cylindrical shells to find the volune ol fie solid that is
generrtecl when the region that is eoclose.l hy -r' : 1/-rr.
r: I..r:2. .r':0 is relolved lbolrt tlle line -! : -1.
Use cylinclrical shells to [ind the volume ol the solid that
i! lenerated $hell the region that is erlclosed by.i - .tr.
r : l. r : 0 is revolved aboul the line _r - l

Let Rl an.l Rt be regjons oi the lbrn shown in the accom
piuying ligure. Use cylindrical shells to lind a tbrnula tbr
lhe rolLrrne ol the solid that resLllts whe0
,J, tcs,t.,r. rt i, rcr"l'sJ itb,,lt lhc \ . \:.
b tcltrn,4- i. tsr,,lrsJ:'Lout t"c. :lr'..

Usc cylindrical shells lo find thc volunle ol the cone gen-
eratcd when the triangle with verticcs (0,0). (0, r). (h.0),
where r > 0 and I > 0. is revolvccl about the -r-axis.

I erer nrerr. lo.edhctucc_tnec.rrre i l '..r'u hr irc
-f : J[ is revo]ved about tlre line.r - lt. Use cylindli
cal shells to nnd thc volume ol the resLrlting solid. (Assume

I > 0.)

A rrrund hole ol radius ./ is drilled through lhe centcr of a

solid sphere ol radiLrs r. Usc cylindrical shells to lind the
vollrme 01'the porlion rcmovcd. (Assume /- > d.)

Usc cylindricll shells to ind the volume of the to-Lrs ob-
tained b1 r'cvolving the circle -rl .r'l : al about the line
r : i. where D > rr > 0. fHltt; It ntay hclp in the integra-
tion to think ol an integral as an llrea.]

Let y, and y, lle dre volumes ol thc solids that result when
the region enclosed by r: I/,r. ) :0. r: ]. and -r - D

l/ l) i. rcr,,lrcJ -b,'r r th( ,-r\t. Jt)- , a\ .. te.Oec

li\cly. Is thcrc a vallre of D for which V, : V, l

\ =./( \l

Rl 27.

ARC LENGTH

8,{ ' :":';;,,*rr i'ii:: :1! i'i- r,.i{N: (::{-!RHl|i

It1 tlis se(tiotl v,e vill tottsitler the problent of .fittdittg tl'Le lcttgth oJ tt pLatte cun-e.

I

Although fbr-mulas for lengths of circuhr arcs appear in early historical records. very little
was known aboul the lengths of more gcncral curves until the mid seventeenth century.
About thal time fbnnLrlas were discolered fbt a terv specific curves such as the lengtlt ol'an
arch of a cycloid. However, such basic problens as llndin-q the lenglh oi an ellipse defied
the mathcmaticians of llrat period. and alrrost no progress was made on the general problem
of iinding lengths ol curvcs until thc advent of calculus in the next century.

Our iirst objeciivc in this seclion is 10 dey'l?d what we mean by ihe length (also called the
arc letrgth) of !l planc clrfve l : .l(-r) over an inlerval la. Dl (Figufe 8.4.1). Once that is
done we will be able to focus on computational matters. To avoid some complications that
woulcl olllcrwisc occur. we will inpose the requirement llrat .l' bc continuous on la. l,1, in
which case we will say 11,11 y = /(,r) is tt stttooth curve ctn lo. bl (.ot thart f ts a smooth

function on lu. bl).
Wc will bc concerned with the tbllowing problem:

It.{,I \R( t ti\ol t,ttoBL t:i\I. Sullpose that -'- - ./(-i) is a smooth curve on the

intervirl Ld. Dl. Define lncl find a ti)rmula fbr the arc length L of the curve 1, : /(r) over
the inten'al [rr. Dl.

Figorc li.,1 I

The basic idea for deiining arc lergth is to break up the curye into small segments. approx-
irnate the cuNe segrrents by line segmerts. add the lengths o1'lhe line segments to form a

Ricrnann sunr lhat approximates the arc lerrgth l. and lakc the limit of the Riemann sums

t() obtain an inlcgral lor a.
To implement this idea, divide the interval [.].61 into n subintervals by inserting points

.rr.-r2.....r, 1 between a and b. As shown il Figure 8.4.2, let P0. P1, . . . . P,, be the pointsFigure 3..1.2
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onthecuNewith-rcoordinates.T.-rr,-r2...,.r,-r,bandjointhesepointswithstraight
line segments. These line segments form a polygonal path that we can rcgard as an approxi-
mation to the cuNe f - lCr). As suggcsted by Figure 8.4.3, the lengrh Lr of rhe kth line
segment in the polygonal path is

(1)

lf we now add lhe lengths of these line segments, we obtain the following approximation
10 fhe length I ofthe curve

(2)
t:t t=l

To put this in the lbnn of a Riemann sum we will apply the Mean-Value Theorem (6.5.2).
This theorem implies that there is a point;i between r1 r and -rt such that

fr r,l ftt, I

- llr"r or /r.\.r /r.,, r - / rri)Ar
-r1 - rt

ard hence we can rewrite (2) as

/. = \--/l r I/ r.r,'rt?Ar,
(-l

Thus, taking the lirnit as r increases and the widths of the subinten als approach zero yields
the foJLowing integral that defines the arc length l,:

In summary, we have the following definition:

ll..l.2 I)r,r,r\r r ro\. ll r : l(r) is a smooth curye on rhe inreNal fa. Dl, then the arc
length l, ol this curve over [d, D] is defined as

,- 1,,'J*rt,c",ra, (3)

i

:

This result provides both a de6nition and a formula for computing arc lengths. Where con-
veDient, (3) can also be expressed as

L: 
J"'Jl+tr,@)t 

n,= l.'F*1Ol
Moreover, tbr a cuwe expressed in the fonn lr = g(y), where ,q'is continuous on [., d].
the arc lelgth l, fron l, = c to r - 11 car be expressed as

Jr + tc..llr a, : 
1""

Example 1

Find the arc length of the curve r, : rr/2 from (1, 1) to (2.2./4) (Figure 8.4.4) in two
ways: (a) using Formula (,1) and (b) using Forrrula (5).

.1.)/rlion (ai. S ince

d.t- _ : _tlz
,1, - 2'

i- . l
,i l*l . lJv':T,'

(,1)

(5)

l,{ : v{Arr), + e\,rt' - /Ar{f + t/(irr) /lrr r)f?

L -LL^ = I vt^"-t + tr'(.il - /1,',. Jft

Figure 8.4.4
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and since the curye extends from,r : 1 to -r = 2, it follows from (4) that

To evaluate this integral we make the ,-substitution

u :1+ Zx, 4": f,ax
and then change the xJimits of integration (-r
/-. ll -. 22\.
\" - n'" - 1)

. .)24 o r22a gt :l ,,t.'s,,- !,ttlq J.t " 27 1,.., , )1

: 1, x - 2) to the corresponding rJimits

l(T)', - (T)"']

ARC LENGTH OF CURVES DEFINED
PARAMETRICALLY

zzJzz tzJn x 2.09
2'7

Sohttion (b). To apply Formula (5) we must first rewrite the equation y :,:r3/2 so that r
is expressed as a function of y. This yie145 1 : y2l3 and

L - .,, ',-
Since the curve er,Lends from y = I to -y - 2vO. ir follo"s from (5) that

$t'uo,
To evaluate this integral we make the a-substitution

u = 9y2/3 + 4, du:6y tl3 dy

and change the )lillrits of integration (y : 1, I - ZJU to the coresponding a-limits
(.u : 73, u : 22). This gives

, rr2 , al . t:.,2t:t - ! L.,t 2,1,,- t u',1 _' t,)),rr-,t\,. 21-t'u''
t8Jr. 27 1,, 21 21

This result agrees with that in pal1 (a); however, the integmtion here is more tedious. In
problems where there is a choice between using (4) or (5), it is often the case that one of
thefomulas1eadstoaSimp1eIintegIa1thantheother<

The following result provides aformula for finding the arc length ofa curve from parametric
equations for the curve. Its derivation is similar to that of Formula (3) and will be omitted.

REMARK. Note that Formulas (4) and (5) are special cases of (6). For example, Formula
(4) can be obtained from (6) by writing f = f(.x) parametuically as x : /, y : f(.t);
similarly, Fomula (5) can be obtained from (6) by wdting r = g(t) parametrically as

r = 8(/1. ) : /. We leave the detail. as ererciser.

8.4.3 ARC LENCTH FoRMULA FoR PARAMETRIC cuRVES. Ifno segment ofthe curve
represented by the parametric equations

x:x(r), ):)(/) (a<t<b)
is tracad more than once as , increases froma to b, andlf dx fdl and d)/d/ are continuous
functions for a : / : &, then the arc length I of the curve is given by

(#) .(#)'L=J. (6)dt
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Example 2

Use (6) to find the circumference of a circle of radius a ftom the parametric aquations

r =.1cos/, l:4sinl (0 
=t 12r)

Solution.
,)1L: I U1 o li;, ,,1: 1 1a cos rf ar

- 2ra-*l:"

o, - ln"
rla: 

J"

(f )'-' (#)'

FINDING ARC LENGTH
BY NUMERICAL METHODS

ExERctsE SET 8.4 E craptr ng catcu ator E cAS

As a ru1e, the integrals that arise in calculating arc length tend to be impossible to evaluate
in terms of elementary functions, so it will often be necessary to approximate the integral
using a numerical method such as the midpoint approximation (discussed in Section 7.5)
or some other compamble method. Examples I and 2 are rare exceptions.

Example 3

Flom (4), the arc lengthof 1 : sinr from r = 0 to r : z is given by the integral
ra

L: I JI +(cosr12dx
Ja

This integral cannot be evaluated jn terms of elementary functions; however, using a calcu-
lating utility with a numerical integration capability yields the approximation I, ! 3.8202.

FoRTHEREADER. In Figure 8.4.5, the scale on both axes is 2 centimeters per unit. ConfiIm
that the result in Example 3 is reasonable by laying a piece of string as closely as possible
along the curve in the figure and measuring its length irl centimeters.

Eieurc 8.1.5

FoR THE READER. Computer algebra systems and some scientific calculato$ have com
mands for evaluating integrals numerically, and some scientific calculators have builrin
comrunds for approximating arc lengths. If you have a scientjfic calculator with one of
these capabilities or a CAS, read the documentation, and then use your calcuiator or CAS
to check the result in Example 3.

1, Use the Theorem of Pythagoras to llrd the length of the line
segment ) : 2.{ flom (1, 2) to (2,4). and conlim that the

value is consistent with the length computed using

2. Use the Theorem of Pythagoras to find the length of the
line segment ir - l, ) - 5l (0 : t : l), and conf,nn
thar the value is consistent with the length computed using
Formula (6).(a) Formula (4) (b) Formula (5).
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ln Ere[ r.e. .{ E. 5nd lhe e\act .rrc lenpth o. l']e cur\( o\er
'he \laled interval.

3. ):3*t,'' I fiomr:Oto.r : 1

q. .r - 1(tr + 2)3/2 from l, : 0 ro -l : I

5- 1:1- trom\-:lrr)r:X
6.,- : (16 + 8)/16rr fromr - 2 to:r : 3

7. l-+k' 1 e-f) Iron r :0 to.r :3
8. r=*11 +lr'-2 t'ronr': ltor:4

ln E\erc..e.cl-1.1. find lhe e\r.r ar. lenpt\nl he prlarerric
ctLrve without eliminating the parameter.

9..r:1,r. f - +/r (0=r= 1)

10. -r : (1 ir)2. 1-(1 +/)r (0:/:1)
11. r : cos 2r. -r' : sjn 2r (0 

= 
r 

= 
t/2)

12. r:cost*tsint, 1:sint lcosr (0:r:n)
13. r:c'cosr. J,: e'sint (.0 at an/2)
14. -r: e/(sinr +cosr). ): e'(cosr sint) (1 :1:,1)

In Exercises 15 and 16, express the exact arc length of the
culve over the given inteNill as an integral that has been sim-
plilied to eliminate the ladjcal, and then evaluate the integral
using a CAS.

15. l : ln(sec.r) from r :0 to r - r/4
16. t : ln(<in,r) fromx:t/4totl2
17. (a) Recall flom Section 1.7 that a cycloid is the path traced

by a point on the rim oI a wheel thai rolls along a line
(Figuie 1.7.13). Use the parametric equations in For-
mula (9) ollhat sectjon to show that the length Z ofone
alch of a cycloid is given by the integral

12- 

-

l-ul J), co\tttd1
Ja

(b) Use a CAS to show that L is eight times the radius of
the wheel (see the accomprurying flgule).

Figure Ex 17

It was stated in Exercise.ll of Section 1.7 tlrat ihc curvc
given paametically by the equations

-r:dcosl(r, I-dsinrd
is called a./onr-r'n.qred hypocyt:loid (a\so called an aslroid).
(a) Use a graphing utility to generate the graph in the casc

where r/ : 1. so ihat it is tlaced exactly once.
(b) Find the exact arc length of the curve in part (a).

19. Consider the curve ) : irzl1.
(a) Sketch the pofiion of thc curve between ,r - I ald

(b) Explain rvhy Folmula (.1) cannot be used to fincl the arc
length of the culve skerched in part (a).

(c) Find the arc length of the curye sketched in part (a).

20. Derive Formulas (,1) and (5) liorll Formula (6) by choosing
appropriate parametrizations o1 thc curves.

In Exercises 21 and 22. use the midpoint approxination witl'l
n : 20 subintervals 10 approximate the arc length of fte
cuNe over the given inlerval.

21. 1:12 florn'r:0tox:2
22. ,r : sin I from -r' :0 to r, : n
23. Use a CAS or a scientific calculator with n[r]'ierical integra

tjon capabilities to approxjDtate the atc lengihs in Exercises
21 and 22.

21. Let y : f(r) be a smooth curve on the closed inteival
[a, b]. Prove that if there are nonnegative numbers /7? and
M such that /fl : /'(..r) : M for all,r in [d. lrl, then the arc
length l, ot' _r' : .l(.r) over the inteNal [.i. r] satislies the
inequalities

0 dJl+n2:. 1::lb a)[+W
25. Use the result of Exercise 24 to show that rhe arc length l,

of _r : sil ir over the interval 0 : .r : r/4 satislles

,11 ft -.t < t, < -J)4V 2 4

26. Show that the total arc length ofthe ellipse r : acosr,
_i -bsint,0 =t a2nfota > b > 0isgivenby

t1 I 

-

an I v'l ll cosr r,lr

where k : "trF-il/a.
27. (a) Show that the toral alc length of rhe ellipse

r:2cosr, _\': sinr (0: t 5 2r)
is given by

ta ) 

-

4l Jr+-r'inrrdr

(b) U se a CAS or a scjendnc calculator with numerical in-
tegration capabilities to approximate the arc lel'lgth in
part (a). Round your answer lo two decimal places.

(c) Suppose that the parametric equations in pafi (a) de-
scribe the path of a palticle moving in the i_y-plane,
where I is time in seconds and r and ) are in centime
tels. Use a CAS or a scientific calculator with numeri-
cal integration capabilities to approximate the distance
traveled by ihe particle fion-i t : 1.5 s to I - 4.8 s.

Round youl answer to two decimal places.

28. A basketball player makes a successful shol l'rom thc free
throw line. Suppose that the path of the ball from the mo

tr

tr
tr
tr

tr

tq

E 18.



ment ofrelease to the moment it enters the hoop is descl ibed
by

.1 :2.15 + 2.09-1 0.,1112, 0 : -{ :4.6
where -r is the horizontal dislance (in meters) fron the point
of r-elease. and l is the vertical distance (in rneters) above
tlre l'loor'. lJse a CAS or a scientillc calculatol with numel-
ical i11legratior'l capabilities to approximate the distance the

ball travels fron the moment it is released to the moment it
enteis the hoop. Round your answer to two clecimal places.
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E 29. Find a positivc value of I (to two decimal places) suchthat
the cuNe l : tsin.t has an arc length of l, : 5 units
over-the inlelval lion r - 0 to -r - ;r. llJi?i: Find an
inte-cr-al tbr the arc length L in terms ol (. and then use a
CAS or a scientil'lc calcLllalor witlt a nunieric integration
capability to iind integer values of t at which the value! of
L 5lrave opposite signs. Complete the solution by using
the Intennediate-Value Theorem (2.4.8) to approximate the
value of k to two decinlal places.l

SURFACE AREA

8.5 AREA OF A SURFACE OF REVOLUTIOI\{

Itt this seLtiotl ttt uill cctttsider tha pt'ohlan of ltnding the area of u surftrte thtt is
,qenerdted b1- retoltirt.g a pl.tne cLo'r'e ahout a lina.

A surface ol revolution is a surf'ace that is generated by revolving a plane cutve aboul an

axis that lies in the same plane as the curve. For example, the sur-face of a spl'tere cirn be
generated by revolving a semicircle about its dian'reter. and the lateral surface ol a right
circular cylinder car'r be generated by revolving a line segment about an axis that is palallel
to it (Figure 8.5.1).

>--t'"il

"\i;&gjl

Some sLrrlaces o1 r€volut on

Fieure 8.5.1

Lr this section we will be concelned with the following problcm:

ll.5.l strl.tFACE AREA PItoBI.EN4. Suppose that I is a smooth, nonnegxri\e luncrion
on [a. D] ancl that a sudace of revolution is generated by revolving the portion ol the

curve r' = .l(-r) belween r - ll and.r - D aLrout the,r axis (Figure 8.5.2). Deline what
is meant by the .r".1 S of the surtace, and find a fomula for computing il.

To notivate an appropriate definition fbr the area S of a surtace of revolution, we will
decompose the sudace into snail seclions whose areas can be approximated by elementary
fornulas. adcl the approximations of the areas of the sections t() fbrm a Riemann sum that
approxirnatcs S. and then take the lin-tit of the Riemaur sur.r.rs to obtair an integral for the
exrct vrl e of .S.

To implement this idea, divide the interval frr. b] into r subintervals by insefiing points
rl. 12. . . . . ,!r 1 between a and b. As illustrated ir Figule 8.5.3a, these points deilne a

polygonal path that approximates the cuNe .\' : "f(-r ) over the inlerval la, bl. Whcn this

Figurc lt.5.2
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(a) (b)

Figure 8.5.3

polygonal path is revolved about the J-axis, it generates a surface consisting ofn parts, each

ofwhich is a frustum of a right circular cone (Figure 8.5.30). Thus, the area of each pan of
the approximating surface can be obtained from the formula

S:T(\+r)l (l)
for the lateral area S of a frustum of slant height I and base radii 11 and 12 (Figure 8.5.4).
As suggested by Figure 8.5.5, the tth frustum has radii /(.t7.-r ) and /(.rr) and height A,rr.
Its slant height is the length Ll of the &th line segment in the polygonal path, which from
Formula (1) of Section 8.4 is

to: J1t"ry q 61ro1 - JlruSz
Thus, the lateral area Sr of the tth frustum is

s1 : nv(x 1 .'t + f $itJlElFTiGitjGiff
If we add these areas, we obtain the following approximation to the area S of the entire
surface:

g r I rrtl(.ti-1) f /(x1)l
k:t

To put this in the form of a Riemann sum we will apply the Mean-Value Theorem (6.5.2).

This theorem implies that there is a point;rf between x1-1 and rk such that

f(x*) - f\xt-t)
xk-xk I

and hence we can rewrite (2) as

5 - f rll(x1-1) + f(xillJ I + If'tx;)|z axl

However, this is not yet a Riemann sum because it involves the variables x1 1 and x2,

To eliminate these variables from the expression, observe that the average value of the
numbers /(x1 r) and /(.rr) lies between these numbers, so the continuity of / and the
Intermediate-Value Theorem (2.4.8) imply that there is a point Jl* between rr-r and r/.
such that

)lf?k)+/(rk)l :/(ri-)
Thus, (2) can be expressed as

5 = lz" 7t,;- t J I + [/'(xi)]2^x*

Although this expression is close to a Riemann sum in form, it is not a true Riemann sum
because it involves two variables .ri and xf*, rather than ,r; alone. However, it is proved in
advanced calculus courses that this has no effect on the limit because of the continuity of
/. Thus, we can assume that r;* : -r; when taking the limit, and this suggests that S can

(Arr)2 * [.f("rr) - .f (xt-)12 (2)

(3)

Figure 8.5.4

Figure 8.5.5
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be dcilned as

\- llr ) 2.,,,r''r\/l-lf ,r',ra,i
nr.\fL,-0Ei

In summary, we have the following definition:

z,r 7{,1J t + n1'ff ax

I 8.5.2 DI.l,t\.'lt Io\. If / is a smooth, nonnegative linction on [a. D], then the surface
area S of the surlace of revolution that is generated by revolving the portion of the cuNe
r : /(-r) between ,r - zz and r - D aboul the .r axis is defined as

s- | z, 1' r)/l ,l/r.r) ,/.,

dx

-l

This result provides both a delinition and fomula for computing surface areas. Where
convenient, this formula can also be expressed as

Moreover, if g is nonnegative and,r- : g()) is a smooth curve on the interval fc. dl, then the

area of the surface that is generated by revolving the portion of a curve x : g(I) between

_}. - c and I : d about the )'-iixis can be expressed as

(4)

(5)
rl 7J

s- J, 2nsr',,/l ,1q''rl',/i -/ 2'Y[.P,J,,
Example 1

Find the area of the surlace that is genemted by revolving the portion of the curve ) - rl

Figure 8.5.6

A r between r = 0 and.r = I about the "r-axis (Figure 8.5.6).

--- +t
,solution, Since l' : -rl, we have dy/r1r - 3-rl, and hence fiom (4) the surface area S is

s:/ 2".'/,*(f)",
: 

lo' 
zn,tJt + {t'f a'

:zo 
lo' " 

{t+ 9ralL/r l-r

=t- I ut 1,1,,
36 J,

to
- rl0 - lr J.56lb 3 ],,= 21

Example 2

Find the arca ofthe suface that is generated by revolving the portion of the culve r = rl
between ,{ : i and r : 2 about the -}-axis (Figure 8.5.7).

,\olulion, Because the curve is levolved about the l axis we rvill apply Formula (5).

Tolvard this end, we rewrite -l : x2 as r : .r'^ and observe that the l-values conesponding
to { : 1 and .{ : 2 are } = I and _r :4. Sincer:.,,/i. we have d-r/r/-i : 1/(2f ), and

hence from (5) the suface area .! isFigure 8.5.?
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s : l,' 2,,

- I,'"n
71

-, J, Jq; + t a,'

/ ,.:
/,.(fi) ^

(. [" ,,, ' u,

4 J" 
-.1,:, tT -.-: -( 17' ' 5'/') r l0.t{5

6

ExERcrsE SEr 8.5 E c,qs

.(+)'

In Exercises 1 .1, find the area oi the surlace generated by

revolving thc given curve about the -r-axis.

1'l:7r,0<-v<l
z. : = utl, I : -r :4
3. ,r'= v?:?. -l <.r' : I

4. -y:Jf. l:r':8
ln Exercises 5 8, find dre area of the surlace generated by
revolving the given curve about the )'axis.

5.r=9.r+1,0:r,=2
6. ,t : _r,3. 0: r' : l

7. t: fo - y:. -2 = 
) t2

g. .':21 ,r. -l :.r':0
ln Exercises 9 I 2. use a CAS to find the exact area of the sur

tace gener{led by revolviDg the curye aboui the stated axis.

E 9. r = Jf- l.rttt. I 5.r ' 3; .r'-uxis

E t0.r:-..', ]' I-:<.r' ': .\-rxii
p] ll.8.ir::3r'd l. l5r'2: t-itxi.

trn 12- t = ./16 \- 0 < r'< 15: r'-axir

In Exercises 13-16, use a CAS or a scienrific calculator with
nr.rmerical integration capabilities to approximate the area of
the surface generated by rcvolving the curve about the stated

axis. Round your answer to two decimal places-

p 13. i. : e', 0: r : l: r-axis

.L 14- \ = \r1_rr_ {,_ ( <J?:.(-JXIS

l-l ll- r: P l < r' < 1: \'-aXlS

l;l 16- r=lanr-0 r <r/.1: t.axis

17. Use Fo nula (4) to show that the latcral area S of a right
circuliu cone with height ,[ and base radius r- is

s = wu61 +t1
18. Show thal the area of the suriace of a sphere ol'radius r is

ltr'.lllittr:Rev(,|!e rhe \rmicirclc I = .rf2 .ri ubour

the ,\ -axis.l

19. (a) The ligure in Exercisc 39 of Section 8.2 shows a spher
ical cap ofheight /? cut from a sphere ofladius r, Show
that the sulface iuca S oithe cap is 5 = 2nr h.lH ittt:Re-
volve an appropriatc porrion of thc circle,rt + )'l = .'
about the I'axis.l

(b) Thc portion ofa sphcre that is cut by two parallelplanes
is called a zone. Usc the result in part (a) to sho\r that
the sud.rce area of { zone depends on the radius ol the

sphere and the dislance between lhe planes. bul not on

the location ol the zone.

E\erci(es 2U-2{r re.Irire rhe tbrmul!L\ de\eloped rn lhc lol-
lowing discussion: If -r'(l ) and t'(a) are continuous lunctions
and if no segment of the curve

_r:1(r). r.: r,(r) (aat 3b)
is traced more than once. then it cal) be shown that the dred of
the sufirce generated by : evolving this curve aboLrt the.r-axis
is

tl-
S - | 2rtrrr/1., rr)l: I 11'll]lj/r rAl

and the area of the surface generated by revolvirg the curve

about the .r'-axis is

rh-
S - / 2n.iutu/l.r'{r)lr -l l)'{1)lr,il {B)

20. Derive Formulas (4) and (5) fronl Fomrulas (A) and (B)
above by choosing appropriate parametrizations fbr the

curves t = f(n) and.r : g(,1).



21.

tyt'-'

23.

24.

25.

Find the area ofthe surface generated by revoh,ing the para-

nctric curve .r : t2. t :2t-0 5 r 5 4 about the -\--axis.

Use a CAS to find the al€a of the surt'ace generated by re-

volving the parametric curve .\ : e'cosl. -r' : et sint,
0 5 r 5 r/2 about the -r axis.

Find the orea ofthe rurthce generatcd by revolving the para-

metric curvc.\' = I. r' = 211.0 :; I : I about the r'-axis.

Findlhe rea ofthe surface geDerated by rcvolving lhe equa-

fions.r = cosl /, r- - sinl t.0 < I < ir/2 about the -r' axis.

By revolving the semicirclc

-r =rcesl, ,r..: rsina (05/:n)
about the.!-axis, show that the surfhce area of a sphe|e of
radius r is 4zr-:.

The equations

r:nd-asind. r'-a-lcosd Q=012n)
represent one a|ch ol a cycloid. Show that the surtace

area gcncr ted by revolving this curve about the r-axis is

S : (t4tri l3.lHint.Use the iclenrities sinr I - 
t - :()td22

and sinr 6 = (1 -cosrd) sindtohelpwitl] theintegration.l

(a) Il a cone of slant height 1 and base radius r iscutalorg
a latelai edge and laid flat. then as shown in lhe accom-
panying figure it becomes a sector of a circle of raclius

/. Use the fonnula A : +l2e fbr the area of a sector
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with radius / and central angle tl (in radians) to show
that the lateral sudace area of the cone is rrl.

(b) Use the resull in pan (a) ro obrain Formula ( I ) for the
laleral sudace area of a frustum.

,/B\
/ z-- \

^'.t/\\1//; i ?v l
\./, \,,/

Figurc E)i 27

Let -y : l(r) be a smooth curvc on the intervdl l.r,lrl and

assume that /(-r) 2 0fbrn : -r : /r. By the Exn eme-Value
Theorem 6. L3, the l'unction / has a maximum value K and

a minimum value t on la. Dl. Prove: If l- is the arc length
of the cuNe l : .l (.r ) between .r : .l and r =bandil 5
is tlre area of the suface that is generated by revolving this
curve aboul the,r-axis. lhen

2itkL a S 
=21tK 

L

Let -I : .l(r) be a smooth curve on [a. b] and assume that

l(r) : 01br 4 : ,r : 1r. Let A be the area under the curve
r) - l(-r) between.{ = 4 and r : & and let .t be the atca of
the surface obtained when this section of curvc is lcvolved
about the.r--axis.
(a) Prove that 2zA : S.
(b) For what l'unctions f is 2:rA - S?

8.6 WORK

In this section ue u'ill trsc tltL, integration trnls detelopecl in tlte preceding chupter to
stud\,s(,me of the basic printiltles oJ "uork," u'hitlt is one of the fiurdamentul <rncepts
in phtsits d etlgirrceritlg.

In this section we will bc concemed with two rclatcd concepts. r'ori'and c,rrcr'.9_r'. To put
these ideas in a familiar setting, when you push a stalled car for a cenain distance you

are performing work, ard the eftect of your work is to rnake the car move, The energy of
motion caused by the work is called the kiuetic energy of the car. Tha exact lelationship
between work and kinetic elergy is governed by a principle of physics, called the Wor.,t-

cncrg) tlrcorcm. Although we will touch on this idea in this section, a detailed study of the

relationship between work and energy will be lcft fbr courses in physics and engineering.
Our primary goal hele will be to explain the role of integration in rhe study of work.

When stalled car is pushed, the speed that lhe car attains depends on the tbrce F with
which it is pushed and the distance.l over which that lirrce is applied (Figure 8.6.1). Thus,

force and distance are the ingredients of work in the following deflrition.

I.r).1 t' tt\ttt(,\ If rcon\rrnl;rceof rnagnitude Firafptiecr in the direction oI
motion of an object. and if that object moves a distance d, then we defrne the work W ,

pedormed by the tbrce on the object to be

28.

26.

27.

29.

THE ROLE OF WORK IN PHYSICS
AND ENGINEERING

WORK DONE BY A CONSTANT
FORCE APPLIED IN THE DIRECTION
OF MOTION

W:F.d (l)
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Figure it 6.

l oli llll lil: \J)l R If you push against an immovable object, such as a brick wall, you
may tire yo[rse]f out, but you wili perlblm no rvork. Why'l

Common units firr measuring fbrce are newlons (N) in the Intemational System of Units
(SI), dynes (dyn) in the CGS system. and pouncls (1b) in the British Eneineering systcrr.
One newton is the fbrce lequired to give a mass of I kg al acceieration of I rn/'s2, one dyne
is the fbrce required to give a mass of 1 g an accelemtiolt of I cm/sl. and one pounci of
force is the force requircd to give a mass of I slug an accelerition of I ft/s2.

It follorvs from Defnition 8.6.1 that rvork has units of fbrce tin'ies distance. The most
common units of rvork are newton-meters (N m), dyne ccntimetels (dyn.ctr). and foor
pounds (ft.lb). As indicated in Table E.6.l, one ncwlon-meter is also called aTbrle (J), xnd
one dync-centimeter is also called an erg. One lbot-pound is approximately 1.36 J.

Tabl€ lt.6.l

sY5TliNt

Sl nc\\'ion (N)
CGS dync (dyn)

BE pound (lb)

ll]eler (ln)
celitimeler (cm)

tiot (fi)

joule (J)

crg

foot pound (fi.lb)

aroi\ \ EltSlON F,\CTORS:

lN= l05d)ll-02l5lb
li = l(l1erg = 0738 lr lb

I lb = .1..15 \
1 lt lb = 1.36.I = 1.36 x l{lr crg

Exarnple I
An object moves 5 ft along a line rvhile subjected to a constant tbrce of 100 lb in its direction
of motiol. The work done is

W : F.tl: 100.5 :500 ft lb
An object moves 25 m along a line while subjecled to a constant force of ,1 N in iN dir ecrion
of motion. Thc \\,ork done is

W : F. d =4.25 = l00Nn - l00J

Vasili AIexee! lifting .r record'breaking
562 lb in the l916 Ol)nrpics

Example 2

h the 1976 Olympics, Vasili Alereev astounded the world by lifting a Iecord-breaking
562 lb iiom the floor to above his head (aboul 2 m). Eclually astounding was rhe ieat of
strongman Paul Andersor, who in i9-57 braced himself on the floor and used his back to
lift 6270 lb o1'lcad and autonrobile parts a distance of 1 cnr. Who clid more rvorkJ

,\olttlion. To lilt an object onc must apply sufficient force to o\,etcome the gravitational
fbrcc that the Earth exerts on that obiect. The lorcc that ihe Eafih exefis on an objcct is thai
object's rveight: thus, in perfonnirrg thcir feats, Alexeev applied a tircc of 562 lb over a
distance of 2 m arld Anderson applied a force of 6270 lb o\,er a disrance of I cm. Since
pounds are urits in the BE system. meter-s are units in Sl, and centimeters are units in the
CCS systcm, we u'ill need to decide on tl're neasurement systcm we \\'ant to use and be
corsistent. Let us agree to use SI ard express the work of the two lnen in joules. Using thc
conversion laclor irr Table 8.6.1 wc obtain



WORK DONE BY A VARIABLE
FORCE APPLIED IN THE DIRECTION
OF MOTION

l.d)

Figu.c 8.6.2
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562 ]b ^j562 ]b x .1.:15 N/lb - 2500.9 N

6270 lb ::6270 lb r 4.'15 N/lb :27.901.5 N

Using these values and the fact dlat I cm : 0.01 m we obtain

Alexeev s work : (2500.9 N) >< (2 m) = -5002 i
Anderson's work - (27,901.5 N) x (0.01 or) : ?79 J

Therefore, even though Andclson's lili lequired a tremendous upward 1brce. it was applied

ovcrsuchashodiSta|cethatAle\eevclidmolcwork,<

Many important problens are concerned with finding the work donc by a r:arlrdle force

lhat is applied in thc direction of motion. For ex:rmple. Figure 8.6.2a shou r u spring in its
natural state (neithel comprcssed nor stretched). If we want to pull the block horizontally
so tllat it moves with a unifoln speed (Figure 8.6.20). then we would have to tpply rnorc

arrd more lbrce to the block to overcome the ircreasing fbrce of the sh etching spring. Thus,

eur ncxl objective is to define rvlrat is nreant by ti're work perfonned by a variable tbrce ilnd

to tind a lbnlrula l'ol computing it. This will recluire calculus.

8.6.2 PROBLE\,L Suppose that an obiect lnoves in the positive dilcctiqr along a co

ordinate line while subjccted to r variable folce f (,r) that is applied in tlre direction of
motion. Define what is mcanl by lhe }for.t l4/ performed by the force on the object as

the object noves fr'om r :.r 1l] -\. = b, and ilnd a folmula for computjng the work.

The basic idea for solving lhis problem is to break up the interval k. ltl into sLrbintcNals

that alc sul'liciently small that the fbrcc docs nol vary much on each subinterval. This will
allow us to tleat the force as constant on each subintelval and to approximate the work
on each subinterval using Fonnula ( I ). By adding the approxinations to the work on thc

subinlervals. ive u'ill obtain a Ricnann sum drat apploximates the work w over the entile
inter!al, and by takiog the limit of thc Ricmaln sums rve will obtain an iotegral for W.

To impienenl this idea. divide the interval [rr. bl inLo /] subintervals by inserting points

.r l , -r1 . . . . . -\-r I belween a ard D. We can use Formula ( 1 ) to approxirnate the work W1 done

in Lhe kth subirterval by choosing any pojnt r; in this inter.val and regalding thc force 1<l

have a conslanl valLre I (-ri) throughout thc intcrval. Since the width ofthe frth subinter-val

r:.\ ,. A\ . thir 1reiJ. tlrc rpplorirrntiott

lV1 :: P1r;;a t^

Adding these approximations yields the firllowing Ricnann sunl 1l'rat approximates the rvork

W done over thc cntire interval:

u'= \- r,, ,,r,'' 1, t ""
(=l

Taking the limit as /? increases and the widths of the subinlervals approach zero yields the

dclinite integral
'I

ll - lirr f / 1r.'11..'^ - / i'1'1 ,i','=r
ln sunmary. u,e have the tbllowing result:

8.6.3 Dt FINlttoN. Suppose that an obiect rnoves in the positivc dircction along a
coorclinrte line over the interval 1.7. Dl whilc subjccted to a vadable fbrce F(r) that is

applied in the direction of motion. Then rve define the n orlr W perforned by the tbrce

on the object to be

-BockI attached

Ltf llill llt',t;! to spring

IJ'ilIilLrilil.; .

w: 
l,,o 

r@'tr (2)
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Hooke's law fRobert Hooke (1635-1703), English physicist] states that under appropdate
conditions a spring that is stretched r units beyond its natural length pulls back with a force

F (x) = /1a

where k is a constant (called. the spring cokstant ot spring stiffness). The value of ,t depends
on such factors as the thickness ofthe spring and the matedal used in its composition. Since
k : F(x) /x, the constant,t has units of force per unit length.

Example 3
A spring exerls a force of 5 N when stretched 1 m beyond its natural length.

(a) Find the spring constant tr.

(b) How much work is rcquired to sfetch the spdng 1.8 m beyond its natural length?

Solution (a). From Hooke's law,

F(r) : ft.1;

From the data, F(x) : 5 N when r = 1 m, so 5 : /< . 1. Thus, the spring constant is k : 5
newtons per meter (N/m). This means that the force F(,r) required to stretch the spring x
meters is

F (.x) - 51 (3)

Solution (b). Place the spring along a coordinate line as shown in Figure 8.6.3. We wart
to find the work W required to strctch the spdng over the interval from;r = 0 to x : 1.8.
From (2) and (3) the work tV required is

:8.1J

Example 4
An astronaut's lreiglrl (or more precisely, Earth weight) is the force exerted on the asfonaut
by the Earth's gmvity. As the astronaut moves upward irlto space! the gravitational pull of
the Eafih decreases, and hence so does his or her weight. We will show later in the text
that if the Eafih is assumed to be a sphere of radius 4000 mi, then an askonaut who weighs
150 lb on Earth will have a weight of

2.400.000.000
LU(x): j lb

at a distance of ,r mi from the Eafih's canter Use this formula to determine the wort in
foot-pounds required to lift the astronaut to a point that is 800 mi above the surface of the
Earth (Figure 8.6.4).

Solution, Since the Ealth has a radius of 4000 mi, the astronaut is lifted from a point that
is 4000 mi from the Earth's center to a point that is 4800 mi from the Earth's center Thus,
from (2), the work W required to lift the astronaut is

r.48oo 2.4oo. ooo-ooow:l . dx
J4ooo x'

: -s00,000 + 600,000

= 100,000 mile-pounds

: (100,000 mi.lb) x (5280 ftlmi)

= 5.28 x 108 fr.lb

fb /.t8 5"2118w- 
J_ 

Ftxtdt - J, t,Or- ,lo

I
J

0002,400,000,

Flgure 8.6.3

Figure 8.6.4



CALCULATING WORK FROM BASIC
PRINCIPLES
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Some problems cannot be solved by nrechanically substituting into formulas, and one nlust
return to basic principles to obtain solutions. This is illustrated in the next example.

Example 5

A cylindrical warer tank of raclius 10 ft and height 30 i't is half illled with water. How nuch
wolk is required to pump all of the water oul through a hole in the top of the tank?

Srtltttiotr. Our strategy will be to divide the water into thin layers, appro)(inate fte work
required to move each layer 10 the top of dre tank, add the approximations for the layers

to obtain a Riemaml sum that approximatcs the total work, and then take the Limit 01'the

Rienann sunls to produce an integral for the total work.
To implenelt this idea, introduce an r axis as shown in Figurc 8.6.5, and divide the

water intor? layers with A-rr denoting the thickness ofthe frth layer. Although lhe upper and

lower surlaces of the Ath Iayer are at different distances from ihc top, the di1l€rence will be

small if the layer is thin, ard we can reasonably assume lhat the ertire layer is concentrated

at a single point -rf (Figure 8.6.5). Thus, the wolk W1 Iequited to move the lith laycr b the

top of lhe tank is approxirnately

& I Fr(30 -ri) (1)

where F1 is the force required b lift the tth layer. But rhe force required to lift the kth layer

is the fbrce needcd to overcome gravity, and lllis is the same as the weight of the laycr. To

lind the weight Fr of the ftth layer we will mulliply its volune by the weight density of
water (62.4 lb/1il). This yields

FA : (r( l0)2Airr) (62.4) :6240trLx*

Thus, fiom (4)

1V1 :: (30 ,i1i) 62402A11\_--:-
Distrrce lilce

and hence the work W tequired to move all n layers is approximately

il/=tt4 f '.lO r ,,f'24U7rA\^12"12(:1 l=l

To find the er-ao value of the t'ork we takc the limit as ]rax A-r1 - 0. This yields

i
15 It

I
Fisure 8.6.5

l0 ft{

l5

l,r{ -

0

14 = lirr f 1.10 r',{h2'l{17,4.\m..r,. 0Ei (.10 r)162407)Jr

2, 106,000r fi.lb ^i 6.616, 194 ft.lb

Wher you see an object in motion, you can be certain that somehow work llas been expendccl

to create that motion. For example, when you drop a stone from a building the siolle gathers

speed because the fbrce of the Earth's gravity is perfottnilg work on it, and when a hockey

player strikes a puck with a hockey stick, the work perfonned on the puck duling the brief
pedod of contact with the stick creates the ellormous speed of the puck across the ice.

The linkage between work and motion is based on the colcept of Alletic eaer.g-r', which
we will now deline. If a particlc ol'mass i?l is noving with speed u at a cefiain instant, thcn

its kinetic energ! K at that itrstant is defined as

Y : \mu) (5)

It is the followilrg tundamental principle of physics that relates work and kinetic energy.

: 
1,,

:ez+or(:o.t i)]:':

THE WORK_ENERGY THEOREM

1

l0 tl'

I-T-
.'i
.t
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8.6.4 \\ nRK f NERcy THIIoREM. When ct.[nr, e tlocs norL on atr ohiect. it (tttler a
change ir tlrc kinetic energt, of tlrc object that is equal to tlle w.ork pe brmed, tl.rqt is. if
W is the u,ork peibnlred ot1 ut object of nnss n, antl if the initiul tutd final ,tpeeds of
the object are ui Lnd v | , respecti\tel,\r, then

W:\mu2r-\mui

The units of kinetic energy are the same as the units of work. For example, in the Standard
Intemational system kinetic energy is measured in joules (J).

Example 6

A space probe ofmass nr = 5.00 x l0l kg travels in rJeep space subjected only to the force
of its own engine. Starting atatime when the speed ofthe probe is u: l.l0 x lOa m/s,
the engine is lied continuously over a distance of 2.50 x 106 m with a constant force of
4.00 x 105 N in the direction of motion. What is the linal speed of the probe?

Solutiort, Since the force app)ied by the engine is constant and in the direction ofmotion,
the work W expended by the engine on the probe is

W:force x distance: (4.00 x 105 N) < (2.50 . 100 m) : 1.00 ^ l0r2 J

From (6), rhe linal tinetic energy K 1 : \nfi. of the probe can be exprcssed in terms of
the work lV and the initial kinetic energy Ki : \mvl as

Kt:w+Ki
Thus, from the known mass and initial speed we have

K] : (1.00 x l0rr J) + *(S.OO ,, tOr kg)(1.10 x l0r m/s)2 ! 4.03 x l0r2 J

The final kinetic energy is K/ = |rru].,sothefinal speed of the probe is

(6)

wl 
- \l ry L27 x 104 m/s

ExERcrsE SEr 8.5

l0r2 )

1. Find the work done when
(a) a censtant tbrce of 30 lb in the positive .r--direction

moves an object tiorn .r : -2 to r : 5 ft
(b) a variable force of F(.r) : l/,r2 lb in the positive.!-

direction moves anobjectfromr: I tor:6fi.
A variable force ,F(,r) in the positive.r direction is gmphed
in the accompanying figure. Find the workdone by the lbrce
on a partrcle thut nr<lves llom.r :0 to r : 5.

0121J5
Position r (m) Figure Ex 2

A constant force of l0 lb in the positive -r-direction is ap-

plied to aparticle whose velocity versus time curve is shown
in the accompanying figure. Find the workdone by the force

on the particle from time I : 0 to t : 5.

{-r:
'6-
9l

50
240
i:o
$203 r0

0

0lt3.t5
Time / (s) Figurc Ex_j

A spring whose natural length is 15 cm exetts a force of
45 N when stretched to a length of 20 cm.
(a) Find the spring constant (in newtons/meter).
(b) Find the work that is done in stretching the spring 3 cm

beyond irs natural leDgth.
(c) Find the work done in stretching the spling from a length

of20 cm to a length of25 cm.

A spring exens a force of 100 N when it is srretched 0.2 m
beyond its natural length. How much work is required to
stretch the spring 0.8 m beyond its natural length?



7.

8.

6.

9.

Assume thrt ii lbrce ol6 N is rcq ired t,-r conpre\\ il spdn-s

tioln a nirtural lengrh of .1 m to r lenglh oi I ] rn. Fincl the

\,'fk fc.lIirq.rr". nrrlre,. 1. .pflr.' llu :r.;,rr. :, lrn.,
.c:' lcn!llr,'l ' . Hn, ., . 'r,r rpp i.. r,'.. Irl'rr..:,, r..
wl]llas e\lension.)

Assunre lhat l0lt lb ofwork is lecluirecl lo suetch a sprilig
1 li beyond its natLrll lenrlh. Whrt is thc splirlg cotlsl nll
A cl linchical tank of radius 5 ft rncl heighl 9 tt is nvo-thirds
nlled with \\,irter- Find the work |cquired to puurp lll thc

\\ratea over the upper In.

SolVe Exercise 8 assumins thlt the trnk is t$o thi|ds llllecl

with iL liqui.l thrt weighs p 1b/ltr.

A coie-shapcd \laler reservoir is 20 ti in diarneter ltctoss

lhe top and l5 fi deep. Ilthe lcsctvoir is lilled to t clcpth of
l0 li. ho$' mlrch $,ork is |cqui|cd to pump lll the wrtcr to

the lop of thc reservoirl
'Ihc :rl \lr Ill'.il \o fir l) 1-'hitllc('tnl ' r'\\"l(f
to depth ol2 m. Fjnd the rvor.k rcquired lo purnp rll lhe

waler-to thc top ol tlre lat. lUsc 9810 Nlrrr its the wcight
,:lcnsity of u aLer. ]

ln. .\ ir..ri.il t.rk.lruu 'rr 'lr..,.,'rlrl.rltt .'hj.tsi.
LllsJ $ irlr : rL,ltt \^r I in; i'r 1'' I r.r lr. .r,, I re

qrrircd to purnp allthc liquid 1() a lelel I ft iLbolc the top ol
thc tnnk.
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B(rr.0). u'herc.l is nleasurecl in metels. Find the work W
lccluileci to movc charge A along thc r-axis to the origin if
.lr. 9. B i rr ,rrr. ..JlinI:.f,,.

17. lt is a la*'oiph-vsics that tlie gra\itationll tbrce exerted by
the Earth on an objcct varies invclscll- as thc square of its

dislance lfom lhe Earth's center. Thus. lln ol]ject s \\,eighr

r(r) is related to its clisrrnce r liom the Earth s ccntcr bv
a lormlrla oi the lornr

I
r/1r) :

.f

u,here t is a constant ofplopottionality that depencls on lhe

mass of thc ob.jcct.
(r) Usc this lact a ci the assumptiou thlt the Eafth is e

spher-e ol |adius ,1000 mi to obtain the lblrnula lor- llr( r )
in Eranrple.l.

(b) Find a fbrn]LLla tirr the weight rr,( r ) ol a satellitc that is

-r mi tiom lhe Earrlr'r surlace il its weight is 6000 lb.

(c) How much \\,olk is required to liti the sltcllitc tionl the

suriace ol the EiLrth to an orbital position that is 1000 mi
high l

18. (a) The lbmrull u{r) : t,/tr in Exerclse l7 is lppLica-

ble to all celesti1rl bodies. AssLrming that the Nloon is a

sphere ol raclins 1080 mi. llnd the tbrce that the Moon
ererts on an astronaut who is -r nri fionr the surlrce ol'
the Moon if hcl \\cight on thc N{oon s sur liLce is 20 lb.

(b) Ho* mLlch \\'ork is reclLrilecl to lift the lstronaut to a

point that is I0.8 ni above the Nloon's surface?

Thc Yamarushi N,lagleV Tesl Line in Japan that ns betwcen

Sakaigaua and Akiyama is currently testing magnctic lcvj
lation (NIAGLEV) tralns fiat are designcd to lcvitate jnches

abo!e powerlil ulaglletic llelds. SLrpposc that a N'IAGLEV
lrain has a nass ofrr : ,1.00 x l0' kg and thet sta ins at il

tirne \\'hen the train has a speeclof20 nr/s thc cngine applies

r lbrce oi 6.40 x 105 N in the dircction ol-rnolion over- ll
distance ol1.00 x l0r rr. Usc thc \\rork E elg)' Theolem
,q h l' r,,' ,J rh- Iir.l .1cctl .J rl,. rr:..rr.

\.r,r, tlr:.r.r \l:rr.1,r.'oc.t .l.i',/r,:'.lxr r, \rt.
subjccted only 1() the t-orce ol its own cngine. Starling at a

timewhenthespeedoltheprobeis t, : l.rl)0r l0+ m/s.the
cngineis liredcontinuousl! o\eradislinceo12.00r I05 m

\\'ith corslanl lbrce of 2.00 x 105 N in lhe clirection ol
Drotion. Use the \\'ork-Enclg], :l'heorenr (3.6..+) to llncl the

lln.rl speed ol thc plobc.

Ol] Auglrst 10. 1972 a meteorite \\'ith rn estimated mltss

ol.l r l0('kg and an eslilrrated speed ol l5 knr/s skipped

across thc rtmosphele ilbo!e lhe westel n Uniteal States lrnd

CiLna.la but fi)rlunirtely did nol hi1 lhe Earth.
(a) Assuming that lhc meleodte had hlt the Earth with a

speed oi l5 kni/s, what rvould hale treen its changc in
kinetic cncrgl in.loules (J)'l

1b) Express tlre ener-sy as a urultiplc ofthe explosire energy

'i .l(e,rl.Jr'.rl tNl..'ri. :\-rl lr) J

(c) Thc cncrgy ilssociated $ith the Fliroshima alornic bomb

\!ir\ l3 kilotons ol T\T. To how many such bonbs
$'oulcl the uleteorite inlprct ha!e been equivalentl

10.

11.

12.

't 4.

t5.

a'
19.

\l
lti

Fr{Lrc F-\ I I

13. A s\,/iInlning pooL is blrilt in the sliapc ol a reL'trlngulu ptlr-

xllelepiped 101'l deef. 15 fi $,idc. and 20 lt long.
(a) Ilrhe pool is lilled to I tj bclow the top. horv nrttch woLk

is requir-cc1to pu|np all thc *ater il1lo il dritltt ltt the to;l

edgc ol the po,-r1'?

(b) A one-horsepo$,er rrolor can do 550 tt lb ol worl( per

second. what size motor is recluired to emptt the pool

in L hol[']

A r'.rcket weighing 3 tons is filled with.+0 tons of Iiquicl lirel.

ln the inilial part ofthe llight. iueL is bLrmed o11 41 ii constant

ratc of 2 lons per 1000 ti ol verlical hcieht. Ho$ rlluch work
is done ln lifting thc rocket to 3000 fi l
A 100 fr lengrh ol stecl chain \\eighing l5 lb/ti is drngling
lrcrr a puliey. Horv tluch work is reqLlired to rvind the chlin
onto the plrlley l

li tollows I on Coulomb's l w ill physics that t$o ljke elec-

trostalic charges rcpel elch other- \\'ith a lorce invelsell
propoltional Io the scluare ,rl the distance betrveen dler .

Suppose thirl 1\\,o chlrges ,1 iind B rcpel u'ith a lbrce of li
ne\!rou! when they arc posilioied at points '1( r/.0) and

20.

21.

16.
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8.7

Itt tltis sc<tion we ui u.sc tlte ittagrutiort tool.t tlerelopad in tltt pretetling drrpt(r lo
studt!he pt.'ssur(s ttrttl litccs a.rartetl by fluids ott subnergeLl oltjctts.

A/rrd is a substance that flo$,s to conform lo the boundaries ofany container in rvhich it
is placed. Fluicls include /itTirirl.r. such as water. oil. and mcrcury..ls well as.gasc.s, suclr as

hcliunl. or)'gen. and air. The stucll' of ffuids tllls into t$,o categories:./?r/id .slllic-r (the study

of fluicls at rest) and./r/i1 r/r/i.a,//( .r (the study ol lluids in molion). ln this section we will be

conccrnc(i only u'ith fluicl slutics: lowarcl the end ol lhis lext we will investigatc ptoblents

in fluid dynamics.

Thc ct'itct thal a fince has on ln obiect dcpcnds on how that tbrcc is spread over the surthce

of the objcct. For example. u,lrcT 1ou r.r'alk (nr soti snolv *'ith boots. the wei-cht ofyour body
crushes the snow an(lyou sink into it. Hou'ever. il'you pul on a prirofskis to spread the weight
of youl body over a grerter surtilce area. thcn the weight of your bocly has less of a ctushing
eflect on the snorv. and you arc itblc to -qlide rcross thc surt'iice, The concept thal irccour]ts

for both the nirgnitudc ol il li)rce and the area ovcr which it is applicd is called pr'<,s,rrrrr.

ll.7.l )t rl\ttlir\ If aliuccof magnitudc F is applied to a surlace of areaA.lhcn
u,e deline lhc presslrz P cxerted by' the ftlIcc on the suface to bc

(l)

It lirllorvs tlom this detlnilion that pressut'e hus units of lirrcc pel unit arca. Thc nrost

comnlon units of pressue are Dewton\ fer \qLlrre rneter 1N/ntl) in SI ancl pounds per

squarc inch (lb/inr) or pouncls pcl squate foo{ (lb/lir) in thc BE sysleln. As indicatecl in
Table 8.7. I . one newlon llcr squale metel is c llecl a pascal* lPu1. A ptcssure of I P0 is

quirc small ( I Pa : 1.45 x l0 r lb/inr), so in courrtries using SI. tire pressurc gaugcs.rrc

usualll caliblatetl in kilop sctls (kPa). rvhich is 1000 pascals.

ln tl'ris scclion wc rvill l'lc interested in prcssurcs and forces orr objccts subntergecl in

fluids. Prcssures theorselves have no dilcctional characteristics. but the forces that thcy
crcatc always llct perpendicular lcl the tacc of thc subnerged objcct. Thus, in Figure ii.7.1

the wiitel pressure cleates horizontal fbrccs on the sides ofthe tank. ve.tical forces on the

bottom of the lank. and forccs thll \'ary in direction, so as to be pcrpcndicular to the dillercnt
pa s of thc srr imnrcr's borly.

, F L rd forces a ways act perpend cu ar
to the surfac€ oi a s!bmerged obl€ct.

fisur. ti.7.l

*.r ,' ,. , (l611 1662). Frcnch rillhenariciru ard scicnlisr. Prscrl \lnolhcr(iiedwbenhe$aslhrccycr)s

sho$ccl lllr ilclinrtion ii' scicncc rn(l mLrthematics. his lrlhcr rclir\cd 1o lLrfur hirr] in rho\e subjccls unlil he

mu\rered Lrlin rnd Creek. Pasc.rl s \ist!'r rnd trinr.rr! biogrirllher claimcd lhxt hc indepeDdentl) discolcrc'd thc

firsr rhifl\ -l$1) proposilions ol Euclid \\ irhoul e!er rcldin! r book on geornelry. (Ho$d,er il is gcncrnllv it!Ieed
rhat rhc skn) is.rpocDphrl rNc\c hcless. (he precoci('us P \crl published r hilrhl!"tspecrcd css!)'or conic

\ections bi thc rirrc hc \\.rs \i\rcel) )'crrs old. Desca(es. \rho lcrd lhe essiry. lhoughl il so brillianl th.rl hc could

not belierc lhxl il \rs \\'ritlen b) such r }ouDg man. By ngc lli his heallh bcgtin lo Iirjl aDd until his de th hc wus

in fiequenl prin Ho$ever. his cl1rrli!i1r' \vas uninpaired
Pescirl s conlributions to fh) sics includc rhc discovery lhrl!ir fre!sure dccrcrscs wilh rllitude and the prirrciple

oflluidpres{l!rhrbearshi\nu e.ll(n\everlheorigtrr.llirtolhis\orlisquertioncdb}sonlohistorians.Prlcal

' ade uior coDliburn)ns ro x hrxnch {t mathenarics c.rllcd prcJ.crile geoDrelr). rnd he hclpcd k' dclclop
prubrbiln\ rhcon rhrorgh.r \erie\ of lelter\ \\ilh Fcnnll.

In 16.16. Prisenl-s heallh problcms resulled in a deep cn)olional crisis lhrl led lri to becomc i crctrsiDsl)'

concerned $'ilh r!ligiou\ ;llrcr\. Alrh(nLgh bom a Cutholic. hc convcicd lo r rcli!ioLrs doctrine called Jnnscni\m

md sfenl m)sr of his linal !exrs writirrg orr rcligior rnd philosopht.
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Table 8.7.1

SYSTFM FOR'F

SI

BE

BE

newton (N)
pound (lb)

pound (lb)

square neter (m2) pascal (Pa)

square foor (ft2) lb/ft2
squale inch (in2) lb/in2 (psi)

I Pa = 1.45 x l0 " lb/in- = 2.09 x l0 - lb/11'
l lb/in2 = 6.90 x l0r Pa I Ib/112 = 47.9 Pa

FLUID DENSITY

Example I
Referring to Figure 8.7.1, suppose thai the back ofthe swimmer's hand has a surl'ace area

of 8.4 x l0 I m2 and that the pressure acting on it is 1.2 x 105 Pa (a realistic value neal
the bottom of a deep diving pool). Find the fbrce that acts on the swimmer's hand.

Solulion, From (1), the force F is

F : PA: (1.2 r lOi N/m2)(8.4 x 10-r m2) ,.' 1.0 x 10r N

Thisisquitealargefbrce(about230lbintheBEsystem)'<

Scuba divers know that the deeper they dive, the greater the pressure and the forces that

they feel on their bodies. This sense of pressure and tbrce is caused by the weight of the
water and air above-the deeper the diver goes, the greater the weight above and hence the

grealer the plessure and force that he or she feels.
To calculate pressrLres and folces on submerged objects, we need to know sornething

about the chalactelistics of the fluids in which they are submeryed. For simplicity, we

that any two samples of the lluid with the salne volume have the same mass. lt follows
from this assumption that the mass per unit volume is a constant 6 that depends on the
physical characteristics of the fluid but not on the size or location of ihe sample; we

call

Table 8.7.2

WEIGHT D]]NS]TIES

N/mr will assume that the fluids under consideration are homogetleous, by which we mean

Machine oil
Gasoline
Fresh water
Seawater

Mercury

4.708

6,602
9,810

10,045

133,416

lb/fl n

u
n

(2)

Machine oil
Gasoline
Fresh water
Seawater

Mercury

30.0
42.0

62.4

64.0
849.0

All densiries are affccted by variarions

in tei'rpcrature and pressure. Weigbt
densities are aftected by vari ions in,g

the mess de sity of the fluid. Sometinres it is more convenient to work with weigltt per unit
volume than with nrass per unit volume. Thus, we defrr'e the v,eight de sllypof afluidto
be

(3)

where ur is the weight of a fluid sample of volume V. Thus, if the weight density of a fluid is
known, then the weight ro of a fluid sample of volume V can be computecl from the lbrmula
11 : pV. Table 8.7.2 shows some typical weight densities.

To calculate fluid pressures and fbrces we will need Pdscal's principle. wl.rich states that

.t'luid pressure .rt a given cleprh is the sanrc in all directions (Figure 8.7.2). This implies, for
example, that at the bottom corner of a swimming pool the prcssure on the two side walls
is the same as the pressurc on the bottom.

It is a shaightfbrward matter to calculate fluid force ancl pressure on a ilat surface that

is submerged horizontalb because each point on the surface is at thc same depth. If a

flat surface of area A is submerged horizolrtally at a depth & in a containe: of fluid with
weight dcnsity p, then the fluid exefts a lbrce F that is perpendicular to the suface and is

FLUID PRESSURE
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given by

Thus, it follows from (l ) that the pressure P on the surface created by this force is

. By Pascal's principle the pressure

'llilt I B-"9 c l: tr,'11",,

Figure 8.7.2

The fluid lorce is the tluid
pressure times the area,

Fieure 8.7.3

FLUID FORCE ON A VERTICAL
SURFACE

F
A

(4)

(5)

Example 2

Find the fluid pressure and force on the top of a flat circular plate of radius 2 m that is
submerged horizontally in water at a depth of 6 m (Figure 8-7-3).

S\luti\n. Since the weight density of water is p = 9810 N/m3, it follows from (5) that
the fluid pressure is

P = ph : (9810)(6) = 58,860 Pa

and it follows from (4) that the fluid force is

F:phA_ph(tr2.1:(9810)(6)(4z):235'440T,a739,65'7N<

It was easy to calculate the fluid force on the horizontal plate in Example 2 because each
point on the plate was at the same depth. The problern of finding the fluid force on a veftical
surface is more complicated because the depth, and hence the pressure, is not constant over
the suface. To find the fluid force on a venical surface we will need calculus.

8.7.2 pRoBLEIq. suppor.,rru, u nu, ru.r*" i;i;;.t.;;;"i;n y in unuiuoi*.ign,
density p and that the submerged ponion of the surface extends from x : e to x - b

along an x-axis whose positive direction is down (Figure 8.7.4a).For a lx 5 b, suppose i

that ru(x) is the width of the surface and that h(.r) is the depth of the point,r. Define I

what is meant by th e fuitl force F ot the surface, and find a formula lor com puti ng i t. I

The basic idea for solving this problem is to break up the interval [a, b] into subintervals
that are sufnciently small that the depth does not vary much on each subinterval. This has

the effect of dividing the plate into strips over each of which the depth can be treated as

constant. This assumption will allow us to use Formula (4) to approximate the fluid force
on each stdp. By adding the approximations to the forces on the strips we will obtajn a

Riemann sum that approximates the total force F on the entire surface, and by taking the

limit of the Riemann sums we will obtain an integral for F.
To implement this idea, divide the interval [a, D] into n subintervals by inserting points

,r1,x2,.,.,x,, I between 4 and b. To approximate the force on the tth strip we choose any

point.tf in the fth interval and approximate the strip by a rectangle of length u(xf) and

width Axl : r1 x1,1 (Figure 8.7.4b).
Although the top and bottom of the rectangle are at different depths, the difference will

be srnall if the strip is thin and we can reasonably assume that the entire strip is at depth

/r(xi). Thus, from (4) we can approximate the force Fr on the lth strip as

Prx ph(xf). ra(xf)A.r1
\-/J\---,

DeFh Arcaofrcchngle

Adding these approximations yields the following Riemann sum that approximates the total
force F on the surface:

F = I4, xfoh1ul)w(xfiLxr,
t=l &=l

Taking the limit as n increases and the widths of the subintervals approach zero yields the

Figure 8.7.,1
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definite integral

-l_ rb
F- lim ) pl1.r.;r.r.'1.r,1A,rt - I ph\r)w\ttdt

m3\ ^, 
.ofr J.,

In summary, we have the following result:

8,7.3 DEFINITION. Suppose rhat a flat surface is immersed verlically in a fluid of
weight density p and that the submerged pofiion of the surface extends from r : a to
r : b along an ;r-axis whose positive direction is down (Figve 8.1 .4b). Fot a 3 x a b,
suppose that u.,(;r) is the width of the surface and that l?(n) is the depth of the point x.
Then we deflne the. fluid.force F on the surfaca to be

r: L oh(x)w(x)dx (6.)

Example 3

The face of a dam is a vertical rectangle of height 100 ft and width 200 ft (Figure 8.7.5a).
Find the total fluid force exerted on the face when the water sudace is level with the top of
the dam.

Solutiott. Introduce an x-axis with its origin at the water sudace as shown in Figure 8.7.5b.
At a point r on this axis, the width of the dam in feet is u(r) : 200 and the depth in feet
is ,t(r) : r. Thus, from (6) with p : 62.4lb/ft3 (the weight density of water) we obtain
as the total force on the face

Figure 8.7.5 r : 
lo'oo 

{oz.+)t.r)rzoo) a, I .a0 ,2 -l lnn

- I2.480, xdx-12.480 ^ | = 62.400.000 Ib
Jr zJn

Example 4

A plate in the form of an isosceles triangle with base 10 ft and altitude 4 fr is submerged
vertically in machine oil as shown in Figure 8.7.6-a. Find the fruid force F against the plate
.urlace if rhe oilhr\ \ eighr densiry p - ,i0 lbi fr'.

Solutiott. Introduce an r-axis as shown in Figure 8.7.6b. By similar triangles, the width
of the plate, in feet, at a depth of r(r) = (3 + r) ft satisfies

u.'(x) x 5so ir)ix): --rt0 4 2

Thus, it follows from (6) that the force on the plate is

n : 
I,b on{*'t*lr)ar: 

loo 
{zo)lz+,,1 (l') a'

:ts 
loo 

tz, +x2yttx:15[T. +],:34oolb

ExERcrsE SEr 8.7

Figurc 8.7.6

, In this exercise set, refer to Table 8.7.2 for weight densities :

I of fluids, when needed.

1. A flat rectangularplate is submerged horizontally in a liquid.
(a) Find the force (in lb) and the pressure (in lb/ft2) on the

top sudace of the plate if its area is 100 ft'?, the liquid
is water, and the suface is at a depth of 5 ft.
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(b) Find the force (in N) and the pressure (in Pa) on the
top surlace of the plate if its alea is 25 m2, the liquid is
water, and the surface is at a depth ol 10 m.

2, (a) Find the lbrce (in N) on the deck of a sunken ship
il it. rrea r. lbl) m2 dnd l\e pr(\\ure acring on it is

6.0 x 105 Pa.
(b) Fird the force (in lb) on a diver's face mask if its area

is 60 in2 and the pressure acting on it is 100lb/in:.

ln Ererci.e.3 8. Ihe llar .urlace. shown are.ubmerged ver

I ticaily in water Find the fluid force against the suface.

An oil tank is shaped like a right circular cylinder of diam
eter 4 ft. Fjnd the total fluid force against one end when the
axis is horizontal and the tank is halffilled $,ith oil of weishr
density 50 1b/1i3.

A square plate of side a feet is dipped in a liquid of weighr
density p lb/ftr. Findthe fluidfolce on the plate ifavertex is
at the surface and a diagonal is perpendicular to the surface.

The accompanying figure shows a dam whose face is an
inclined rectangle. Find the fluid force on the face when the
water is level with the top of this dam.

The accompanying figure shows a rectangular swimming
pool whose bottom is an ir)clined plane. Find the fluid force
on the bottom when the pool is filled to the top.

t0.

11.

12.

13.

4. 

-TL 

m

l---l,-
4m

5. l. to m ---'e7-
Figure E{-ll Figure Ex-l3

Suppose that a flat surface is immersed vertically in a fluid
of weight density p. If p is doubled, is the force on the plate

also doubled? Explain your reasoning.

AD observation window on a submarine is a square with
2 ft sides. Using p0 for the weighl density of seawater, lind
the fluid force on the window when the submailte has de-
scended so that the window is vertical and its top is al a

depth of , feet.

(a) Show: If the submarine in Exercise 14 descends ver
tically at a constant rate, then ihe fluid force on the
window increases at a constant rate.

(b) At what rate is the force on the window increasing if
the submarine is descending vertically at 20 ft/min?

14.

15.

9.

DEFINITIONS OF HYPERBOLIC
FUNCTIONS

8.8 I.IYPERBOLIC FUNCTIONS AND HANGING CABLES

I n this sec tion y,e u,ill study certdin (ontbitlutions tt e' and e', called " hyperbolic

functiotts." These futctiotts, which drise in yarious engineering qpplicatiofis, llqre
nlen! properties in common y,ith the trigonometric fun.tions. This similarity is some-
v)h.tt surprisilg, since there is little on the sLoface to sLtggest tllqt there shoL d be dny
relationship hetrNeetl exponential and tt'igonometric littctions. This is because the rela-
tionship occurs tNithil the conte.tt of complex nuntbers, d topic u,hich y,e v'ill leqve for
more adtanced coLu'ses.

To introduce the hyperbolic functiols, observe that the function etr can be expressed in the
following way as the sum of an even function and an odd funetion:

, er+c I cr-e r
+

22
!-v--.-
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These functions are sufficiently important that tbere are nanes and notation associated with
them: the odd lunction is ctllecl the l_rTrerbolic sine of x and the even tunction is called the
hyperbolic tosine of -r. They are denoted by

and cosh r: :

where sinh is pronounced "cinch" and cosh rhymes with "gosh." From these two builciing
blocks we can create four more functions to produce the followlng set ol six hyperbolic

.functions.

ll.ll.l L)Et.lNtftoN.

Hyperbolic sine

Hyperbolic cosine

Hyperbolic tqngent

H!perbolic cotqngent

H!perbolic secaftt

Hyperbolic cosecant

ItE\'IARK. Tile telms "tadr,"
"coseech," respeclively.

2

sinh.t
tanh { :

cosh,r-

cosh r-
coih r = sinh.r

cosh -r et + e-\
12

sinh,r :
2

e'+ e r

e'+e ^

Example I
ea-e o

sinh 0 :
1l

sinh.r e\-e \

"sech." and "csch" are pronounced "lanch," "seech." ancl

cosh 0 :

2

c0+e 0

P- ?'sinh2: 

- 

! 3.6269
).

The gnphs of the hyperbolic functions. which are shown in Figule 8.8. 1, can be gcncralcd

with a graphing utility, bnt it is wofibwhile to obseNe that the general shape ofthe glaph of
) : cosh-r can be obtained by sketching the graphs ofy = Ie' and -\' = Ie ' separately

and adding the corrcsponding y -coordinates Isee part (a) ofthe figure]. Similrly, the general

shape of the graph of 1 : sirlh.r can be obtained by sketching the graphs of -]. - je' and

) : ]e ' separately and adding comesponding 1,-coordinates lsee part (r) of the figule].
Obscrve that sinh i has a donain of (-r.. +..) and a range of (-tr . +:c), $'hereas cosh,r

has a domain of ( .., +,) and a range of [1, *-). Observe a]so that ] : ]e' anci -,- - lc -'
are curvilinear asymptotes for ) : cosh r in the sense that the gr aph of t - cosh ,{ gets

closer and closer to the graph of r' : je' as r + *cc and gets closer and closer to the graph

ofr:1"'as,r+ :c. Similarly, -r,: ]e' is a curvilinear asymptotc for t : sinh,! as

x --t +r. and l : ]e ' is a culvilinear asymptote as -r --+ -2. Other properties of the

hypelbolic functions are explored in the exercises.

:l*l:t
2

GRAPHS OF THE HYPERBOLIC
FUNCTIONS
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The design of the Cilte\r'ry Arch near

St. Louis is based on ltn invcrrcd hypcl

FilucN't1

HANGING CABLES AND OTHER
APPLICATIONS

(,')

(./)

tb)

(e)

(()

(J)

HYPERBOLIC IDENTITIES

HyperboJic functions arise jn vibratory n'iotions inside elastic solids and more generally in
many problems rvhere mechanical energy is gradually absorbed by a surlounding medium.
Thcy also occur when a homogcncous, llexible cable is suspended bet\\,ecn t\\o poinls.
as rvith a telcphone line hanging between two poles. Such a cable foms a curve, callcd
x cateftsr! (lrom thc Latin cdlerd. merning "chain"). Tf. as in Figure 8.8.2. a coordinate
systen is introduced so that the low point of the cable iics on the \'-axis. then it can be
shorvn using plinciples of physics that tlle cable has an equation of the fbrm

/Y\r:,rcoshl )\t),

The hyperbolic functions satisfy various identities that are similar to identities for trigono
mehic functions. The rnost fundamental ofthese is

coshl r sinhl-t:1
which can be provcd by wriling

i,rrh r' .i,'h .-l' 'o l' 'o\1/ l r)
= j(er' + 2eo + d r') 1("t' 2et) + e 2^)

(l)

:l
Othcr hyperbdic idcntilies can bc delivcd in a similar manner or, altenatively. by per-

forming algebr aic operations on knowl identities. For example. if we divide ( I ) by cosli] ,r,
we obtain

I tanh2 -r : scchl,r

and if we divicle ( 1) by sinhr .r, we obtain

cothl r l:cschlt
The tbllowing theorem sunrrarizes sonre of the more usel'ul hyperbolic identities. The

proofs of those not already obtained are lefi as exercises.

F ipr re 8I2



WHY THEY ARE CALLED
HYPERBOLIC FUNCTIONS
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8,8.2 THEoRiM.

coshx + sinh n : ei sinh("x + y) : sinht cosh y + cosht sinh ),

cosh x - sinh r : e ' cosh(t + )) : cosh r cosh y + sinh.r sinh y

cosh2x - sinh2x : I sinh(x )): sinhtcoshy - coshxsinhy

1- tanh2 x : sech2; cosh(x - y): cosh,r cosh ) - sinir sinhl

coth2 x - 1 : cschZ x sinh 2-x :2sinhx coshx

cosh(-r) : coshr cosh2r = cosh2.r * sinhz.r

sinh(-x) : - sinh,r cosh 2;r : 2 sinh2 ;r * 1

cosbzx-- zcosh2x- l

Recall that the parametric equations

x:cost, y:sinl (0 < t <21r)

represent the unit circle x2 + y2 : I (Figure 8.8.34)' as may be seen by writing

x2+y2:coszt+s|rft:1
If 0 < I < 22, then the paramelet t carl be interpreted as the angle in radians from the

positive x-axis to the point (cos l, sin l) or, altematively, as twice the shaded arca of the

sector in Figure 8.8.34 (verify). Analogously, the parameftic equations

x: cosh/, y: sinht (-co</<*co)
represent a portion of tle curve x2 - y2 : 1, as may be seen by writing

,t - y2 :cosh2/ - sinh2 t : 1

and obsewing that.r : cosh / > 0. This curve, which is shown in Figure 8.8.3b, is the right
half of a larger curve calledthe unit hyperbol4; this is the reason why the functions in this

section are called hyp erbolic finctiots.It can be shown that if t : 0, then the parameter /
can be interpreted as twice the shaded area in Figure 8.8.3b (We omit the details )

DERNATIVE AND INTEGRAL
FORMULAS

Figure 8.8.3

Derivative formulas for sinh.{ and cosh,r can be obtained by expressing these functions in

terms of e' and e-':
d d fe'-e'1 e"+e'
. lsinhx]- . l- ^ I:--- . = co\hx

dt'-"""' clx I 2 ) 2

d .l [P'+e'l e'-e-^
. lcoshxl: . | ^ l= --. = srnhxdx'---"-'' dxl 2 I 2

Derivatives of the remaining hyperbolic functions can be obtained by expressing them in

terms of sinh and cosh and applying appropriate identities. For example,

(cos r, sin t)
(cosh t, sinh t)
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d d lsinh-rl_lranhrl:_l_l:
dx' - dx I cosbx I

cosh:r * lsinh'rJ - sinh x;lcosh'r1

The following theorem provides a complete list of the generalized derivative formulas and
corresponding integration formulas for the hyperbolic functions.

coshz :r - sinh2 x

cosh2;r

1"
= sech' .r:

cosh'rcosh2 x

Example 2

d^-d
] lcosh(xr) l = sinhr rr) . ] lr'l - 3.{' sinl(.{ 1.)

dx tlx

d I d sech/ x
- lln(Lanhr)l ltanhrl - -dx ' lanh x dx tanh-r

Example 3

/ sinh'r coshx,/.r: lsinhox * C ,l::fl|r-./"
f I sinhxI tanhxdx: , 

-dr
./ J cosh x

= ln lcosh;r f C

= ln(cosh x) * C

We were justified in dropping the absolute value signs since cosh:r > 0 for all .lr. {

Example 4
Findthelengthofthecatenaryy:10cosh(x/10)fromx:-10tox:10(Figure8.8.4).

Solution. From Formula (4) of Section 8.4, the length Z of the catenary is

"ro f ^1L- I .lt + [!t\ a,
J-ro V \dx /

:,1," f*ffJ o,

E.8.3 THEOREM.

d du

; lsinh a] : qosh e d,
ddu
; lcosh al = 5in}t 

o;y

d ^du
*ltanhu):sech'u4,1
d "du
;lcothirJ - -csch'ri;
d. du

*lsechu): -sech u tanhu 4,
ddu
*lcsch 

u) : 
"sch 

u cothu 4,

I srnhu clu: cosh i.r * C

I costu au: sinh a * C

| """t2 
, du : tarhu I C

I cscn2 uau- coth& + C

I sech u tanhu du: -sech ll + C

I csch ucothu du: -cschz * C

Figure 8.8.4

j ay sy.."t y :
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r' l0
:21

Jo

=z /'o"n"lr/a\ a'Ja \ l0/
- t0

= 20 *inh /a\ |\10/lo

:20lsinhl sinlol = 2Osinh I 20(e-^e-t ) r 23.50\2/

INVERSES OF HYPERBOLIC
FUNCTIONS

REMARK. Computer algebra systems, stJchas Mathematica, Maple,andDerive have built-
in capabilities for evaluating hyperbolic functions directly, but some calculators do not.
However, if you need to evaluate a hyperbolic function on a calculator, you can do so by
expressing it in terms of exponential functions, as in this example.

Referring to Figure 8.8.1, it is evident that ihe gmphs of sinh"{, tanh,r, cothi, and csch t
pass the hodzontal line test, but the graphs of coshx and sech -t do not. In the latter case
restricting r to be nonnegative makes the functions invertible (Figure 8.8.5). The graphs of
the six inverse hyperbolic functions in Figure 8.8.6 were obtained by reflecting the graphs
of the hyperbolic functions (with the appropdate restdations) about the line y : :r .

Table 8.8.1 summarizes the basic properties of the inverse hyperbolic functions. You
should confirm that the domains ard ranges listed in this table agree with the graphs in
Figure 8.8.6.

Figure 8.8.6

Because the hyperbolic functions are exprcssible in terms of er, it should not be surprising
that the inverse hyperbolic functions are expressible in terms of natuml logaritbmsl the next
theorem shows that this is so.

With ihe restriction thai r > 0,
the curues) = coshr and

) = sechjlj pass ihe hor zortal
line test.

Figure 8.8.5

LOGARITHMIC FORMS OF INVERSE
HYPERBOLIC FUNCTIONS

(L\a,
\ t 0./
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Table 8.8.1

FI]NCT]ON DOMAIN

sinh-,.r (-€,+-) ( 6,+6.) '1":. l'l1l'] =x ir -€<r<+e
srnh(slnh ))=r Il -6<tr<+@

cosh t;r tl, +-) cosh-licosh.rr =r il .r:0
I0 +-)' cosh(cosh '\) = t if x?l

tanh-lx ( I, I) ranhlrtanhr)=r il -<r <--
(-@- +@)

tanh(lxnh- .rl =.r il -l <.r < I

coth-rj (--,-t)u(1,+-) (,e,0)u(0,+@) cothl(coth.r) =r it x<0orx>0
corh(coth- r) = x if x < -l orr, l

sech rr (0, il [0. +-1 5ech lrcech 
'rr - 'r rf r > 0

sechtsech rr)-.{ r[ 0< r< I

cschr' ( -,0) u (0,+-) (--,0)u(0.+-) cschr(cschx) =r it :r<0or;r>0
csch(csch-r .r)=r il .r <0or:r>0

8.8.4 THEOREM. Thefollowing relationships holdforall x inthe domain ofthe stated

inv e rs e hyp e rb o lic fimction.

sinh l":ln(:r+r,42+ l)

tanh-lx:;r(=)

cosh-rx:ht1x+"F=1)
, I /,t+l\

corh-,x = Zr" (. _ r/

csch 1r :," /1 * f *"'\
\x ,ll

We will show how to derive the f,rst formula in this theorem, and leave the rest as exercises.

The basic idea is to wdte the equation ']r : sinh) in tems of exponential functions and

solve this equation for y as a function of ,t. This will produce the equation y : sinh l.r

with sinh-r ,r expressed in terms of natural logarithms. Expressing r : sinh l, in terms of
exponentials yields

;r=sinh):'+
which can be rewritten as

er 2x-e l:0

Multiplying this equation through by er we obtain

o2! _ 2xer 1 :0
and applying the quadratic fornula yields

2x -J4t2 r4 /c - 
')'" ------: x -L /.t2 + I

Since er > 0, th-e solution involving the minus sign is extraneous and must be discarded.

Thus.

4 :, 1rQ 41
Taking natuml logarithms yields

l,:ln(rr+V?+1) or sinh-r;r:tn(" +vGz+ t)
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Example 5

sinh I I = tn(t + JF + t ) = ln(1 +/t)^,0.8814

,unt -, /l) = 1t. /f+\ = l,n, - o.son,\1/ r I I-11 2- \^ 2/

Theorem 4.1.7 can be used to establish the differcntiability of the inverse hyperbolic func-
tions (we omit the details), and formulas for the derivatives can be obtained from Theorcm
8,8.4. For example,

f r,inr'-',1 = fw<, + Jii tt : ;h(r - uft1)
,F +t+, I

u+ Jx2+tt(./x2+ll J*2+t
This computation leads to two integral formulas, a formula that involves sinh-r.r and an

equivalent formula that involves logarithms:

I --t-: sinh-rx + c: lntx +,Gli t + c

FoRTHEREADER. The derivative ofsinh-l x can also be obtained by letting y : sinh-l x
and differentiating the equation r : sinh l, implicitly. Tiy it.

The following two theorems list the generalized derivative formulas and corresponding

integration formulas for the inverse hyperbolic functions. Some of the proofs appear as

exercises.

8.t 5 ffiEoREM.

I J#: sinlr-r u * c : rnlu a f u2 + 11 + c

I #:cosh-r u*c :rnr, + J,i - t) + c, u > t

f rttt I tanh-rn +C, lrl <l _l,nll+ul*"
I =A: I co*'-ra + c. lrl ,1 2"'lt-ul

I #:-sech-rlzl*.:-''(1t/Fd)""' o< tat' 1

I h= csch-rrur*c:-ln(t#).' u+o

8,8S TIJEOREM.

dldu
-t.inh-,r')dx Jt+u2dx
dldu--tcosh-'r) : -;:-, u>|clx Ju2_14x
.Jldu
+(tanh-'ll)=- "., lul <l
.lt I u' tlx

dldu
+(coth-' a) : 

- 

-;, lal > Itlx l - u'd)t
dldu
- tsech-' a): ---a 1-, 0<a<lclx uJl - uz ax

dldu
f lcsch-' z): -- 

- 

j, u #0.lx lu'\/ I + uz ax
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ExERctsE SET $.$ B Graph ng Ca cr ator E CAS

Example 6
I Jt I

Evrrluate | _:,.r >:.
J J1x)-l t

Solrttion. Let r = 2-r. Thus. r1a : 2dr and

[_r^ _![ :d, __t I o,'=
I Jqr' t :l J+r,-r 2J vri--l

ll
, cosh 

- ' rr 1 C = , cosh '{2.r)+C

Alternatively, we can- use the logar ithrnil equ ivalent ol co:h-l t 2.r'1 ud express the answer
as

f Jt I 
-L^. . : _ tnr2.r + /4.rr _ I ) + C

J V+r-

ln Exercises I and 2. approximate the expression to four dec-

inral places.

(a) sinh3 (b) cosh(-2) (c) tanh(ln4)
(d) sinh r(-2) (e) cosh-r3 (f) tanh rJ

(a) csch( l) (b) sech(ln2) (c) coth I
(d) sech tl (e) corh-r-r (tr crch r( JJ)

3. In each part. find the exact numerical value ofthe expression.

2.

13. r' : csch(1/-r)

15. r, = v6'rcosli6r)
17. r' : .tr tanh2l v[ )

19. r:sinh'(l')
21. ,r' : ln(cosh rr)

I
'' tenh l .
r'-.^osh-l(coshr)

-r' : e'sech lV?

14, r, = sech(e2')

16. i : sinhr (2,r)

18. r': sinh(cos 3.r)

20. r: sinh r( l/-r)

22. r' : cosh rlsinh | 
-r')

24. r': (coth-r .r):

26. .r' : sinh-j (tanh r)
28. r,: (l +-r csch l-r)11)(a) sinh(ln 3)

(c) tanh(2ln 5)

(a) cosh(lD.r)
(c) tanh(2In,!)

9. .t = sinh(4.r 8)

11. r' : coth(ln -r)

(b) cosh( ln 2)

(d) sinh(-3ln 2)

(b) sinh(ln.r)
(d) cosh(- In.r)

10, r' : cosh(,ra)

12. r'= ln(tanh 2.r)

2i.

21.

29.

5. In cach part. a value for one of the hyperbolic functiors is

givcn at an unspecified positive number -r6- Use appropri-
atc identities to find the exact values of the remaining five
hyperbolic functions at -rn.

(a) sinhrp - 2 (b) cosh.r1l : j (c) tanh-vn : 1

6. Obtain the derivative folmLllas lbr csch l, sech .r, and coth.r
Iionr the derivative fomrulas tbr sinh.r, cosh-r, and tanlr.{.

7. Find the derivativcs ol sinh-l-v. cosh-l-r. and tanh Ir by
differentiating the equations .\- = sinh r'. r : cosh,\'. and

.r : tulh ,\' implicitly.

lcl 8, Use a CAS to find the derivutives of sinh-1.r. cosh I.t.

llnh I 
r . colh | 

.r . scch-l .r. lnd csch | .r. und confirm thlt
your answers are consistcnt with those in Theorem 8.8.5.

In Exercises 9-28, lind dt/21.i.

4. In each part, rewrite the explession as aratio ofpolynomials. E Usc a CAS to llnd Lhe derivatives in Example 2. li lhe an-
swers produced by the CAS do not natch those in the lexl.
then use appropriate identities to show that the answe$ arc
equivalent.

For each of the derivatives you obtained in Exercises 9-2ti.
use a CAS to check your answer If the answer ploduced

by the CAS does not nratch your own, show tlrat dte two
answers are equivalenl.

In Exercises 3l-46. evaluate the integrals.

E 30.

-i1. ;[ 
sinh6 r cosh r r/r

33. 
/ 

\,{anh r sechr.r./.r

3s.;ltannrd.r

lz. 
;[,'" 

t 
,"nh -, sech] .r r/.,;

3r. [ +:-J \/l +qrr

32. 
/cosh(2r 

3)r/.1

:+.;[cscnrr:,i)ar

.16. 
;f 

coth: r cschr r r/.r

n. 1"""!jd,
I dxao /u,,'-- tt'/:t



59.

60_

61.
tr

E

41.

47. For each of the integrals you evaluated in Exercises 31-46.
use a CAS to check your answer. lf the answcr produced
by the CAS does not match yolLr owlt. show that the two
answers are equivalent.

48. Use a graphing utility to generatc the graphs ot' sinhr.
cosh,t. and tanh r by expressiig these lunctions in tems
of e' and e ' . If your graphing utility can grriph the hyper-
bolic t'unctions directly, then generate the g1aphs that way
as wel1.

49. Find the area enclosed by 1' - sinh 2,r, l : 0, and-t - ln 3

50. Find the volume of the solid thar is generated when rhe re
gion enclosed by J -sechr, l:0.-r:0,andr = 1n2
is revolved about the -r-irxis.

51. Find the volume of the solid that is generated when thc l.e-
gionenclosedbI ) : cosh2l, ) : sinh2-r, r : 0, and

.r' - 5 i. rerolred about rhe r a.r.i:.

52. Use Newton's Method to approximate the posilive value of
the conslant ,i sr.Lch that the area enclosed by y : cosh a-r,

.) : 0, r : 0. andr : I is 2 square units. Express your
answer to at least five decirnal places.

53, Find the arc length ol _r' : cosit.r between r : 0 and
;r: ln2.

54. Find the arc length of the caleriary ), - a cosh (,1/a ) between
r-0and-r:rr (rr > 0).

55. Prove that sinh,r is an odd function of r and that cosh,v is
an even lunctiolr of i. and check that this is consistent with
the graphs in Figure 8.8.1.

8.8 Hyperbolic Functions and Hanging Cables 5Og

Use Exercise 58 to obtain the derivative lbrmulas for
cosh Lrandtanh l-r.

Prove:

sech i,r:cosh l(1/,r). 0<r=l
corh I,r - tanh 1(l/,r). r > l

csch 1r: : sinh t(l/r). ,r l0
Use Exercise 60 to express the integral

t_
.l 1 u)

entirely in terms of lallh I.

Show rhat

43.

J v! + c.c..+ d

I6=
1," #i45.

(.t > 5/3)

In Exercises 56 ancl 57. prove the identities.

(a)

(b)
(c)
(d)
(e)

(f)
(e)
(h)

(a)

(b)
trnh \ + tanh -r'

I + tanh .r tanh _\'

-2 tenh r(c) tanh 2r
1 + trnh-.r

Prover
(a) cosh Ir -ln(r*"41 l).":t

, I /l+.r\
rbt tarrlr , l.l l.-l .r LI \l \,1

t ::- (.r - o) ,r2.
J ./t c2.

t!',".J.'Jt+4',

l-46.

62.

d1(J) +[.e.h|\]- :d.r i,/l _ rl
dt(b) . lcsch 'l: :

*u5+',l
63. Find the limits, and confirm that they are consistent wilh

the graphs in Figures 8.8.I and 8.8.6.

coshrisinhr:e'
cosh-l-sinh-t:e'
sinh({ + )) : sinh-rcoshr'+ cosh.rsinhl,
sinh 2.t : 2 sinh -t cosh r
cosh(r i l) : coshr cosh i * sinh-r- sinh1'
cosh2r : coshz -r + sinh2 r
cosh 2r : 2 sinh2 -r * I

cosh 2-r - 2 cosh2,t I

I tanh2 -r : sechz -r

(a) lim sinhr

(c) liDr tanh.r

(e) Iim sinh I,t

(b) lim sinhr

(d) 
.lim. tanh -t

(f) lim tanh-r-r
r- l

In each pan, find the limit.

(a) lim (cosh-rr lnr) (b) li- cosht
\ r+r er

Use the first and second derivatives to show tllat the graph
of -r, - tanh I r is always increasing and has an inflection
point at the origin.

Thr inleprr.tron lorrrrulrr. lor' I Ji I in Theorenr 8.8.tr
are valiclfor a > L Show that th.: followins fonnula is va lid
for, < l:

I ;- .n.h r,, ..tnu Jr |.c

Show lhal (sinh.r + cosh r)" : sinh /zr + cosh n.r.

Show that

/'' 2 sinh,.,r
I et\ J\ - 

-

JI
A cable is suspended betwecn two poles as shown in Fig-
ure 8.1{.2. The equation of the curve tb ned by the cable is

), - a cosh(;/a), where a is a positive constant. Suppose
that the .r-coordinates of the points oi supporl are -r - /2

aDCl -r - /r. where D > 0.
(a) Show that the length l, of the cable is given by

1)I : la sinh
a

(b) Show that the sag S (the vertical distrnce bctween the
highcst and lowest points on the cable) is given by

64.

65.

66.

56.
67.

68.

69.

S:acoshl a

58.
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I Exercises 70 and 71

70. Assuming that the cable is 120 ft long and the poles are 100

ft apafi, approximate the sag in the cable by using Newton's
Method to approximate d. Express your final answer to the

nearcst tenth of a foot. [Hlrl] First let & : 50/4.1

71, Assuming that the poles are 400 ft apart and ihe sag in
the cable is 30 fi, approximate the length of the cable by
using Newton's Method to approximate a. Express your fi-
nal answer to the nealest tenth of a foot. ll]lnrr First let
u - 2O0la.l

72. The accompanying ligure shows a person pulling a boat by
holding a rope of length ri attached to the bow and walk-
ing along the edge of a dock. If we assume that the rope is

always tangent to the curve traced by the bow of the boat,

then this cunr'e, which is called a lractiJ, has the propefiy

that the segment of the tangent line between the cutve and

the )-axis has a constant length d. It can be proved that the

equation of this tractrix is

,-rY I.'
)r:dsecn --la' ^-

refer to the hanging cable described in
(r)

(b)

(c)

Show that to move the bow ol the boat to a point (r. 1),
the person must walk a distance

D:asech-'-
from the origin.
Ifthe iope has a length of 15 m, how f:u must the person
walk fiom the origin to bring the boat l0 m fron the
dock? Round your answer to two decimal places.

Find the distance traveled by the bow along the tractrix
as it moves fiom its initial position to the point where
it is 5 m from the dock.

Fxercise

Figure Ex-72

(d)

(e)

1.

2.

3.

4.

State an integral formula for finding the arc length of a

smooth cu e y : f(.x) over an intervai [4, D], and use

Riemann sums to derive the formula.

Describe the method of slicing lor'f,nding volumes, and use

that method to derive an integral formula for f,nding vol
umes by the method of disks.

State an integral formula for finding avolume by the method

of cylindrical she]ls, and use Riemann sums to derive the

formula.

State an integral fomula for the work lV done by a variable
force F(-t) applied in the direction of motion to an object

moving from x : 4 to x : &, and use Riemann sums to
derive the formula-

State an integral formula for the fluid fbrce F exerted on a

vertical flat surface immersed in a fluid ofweight density p,

and use Riemann sums to derive the formula.

Let ,R be the region in the first quadmnt enclosed by ), - 12,

) : 2 + ,r, and r - 0. In each part, set \p,b\t do not eval-

aare, an integral or a sum of integrals that will solve the
problem.

(a) Find the arca of R by integrating with respect to.{.
(b) Find the area of R by integratilg with respect to ]'.
(c) Find the volume of the solid generated by revolving R

about the ,v-axis by integrating with respect to .r.

Find the volume of the solid generated by revolving R

about the ,r-axis by integrating with respect to ].
Find the volume of the solid generated by revolving R

about the l.'-axis by integrating with respect to :r.
Find the volume of the solid genelated by revolving R

about the.y-axis by integrating with respect to }.
Set up a sum ofdefinite integrals thatrepresents the total
shaded area between the cunr'es ) : /(x) and J : g(.:r)

in the accompanying ligure.
Find the total area enclosed between ) : r3 and J' = x
over the interval l- 1, 2l.

(f)

7. (a)

(b)

5.

6.

8.

Figure Ex-7

LetC bethecurve2Tr -)l : 0between ) : 0and)r : 2.

In each paft, set up, bJt do not evalLnte, an integral or a sum
of integrals that solves the problem.

(a) Find the aLrea of the surl'ace generated by revolving C

about the y-axis by integnting with respect to,:r.
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(b) Find the area ol the surlace generated by revolving C

about the -1 axis b) inlegrating \\,ith rcspect to,\'.
(c) Find the area of the surt'ace generated by levolvin-r C

about the line r' : 2 by integrating with respect to -r'.

9. Find the iuc lenglh in the second quadrant of the curvc
.rlll + r'l1l : alll liom the point r : -a 19.1 : ja
(.r > 0).

As shorvn in thc accompan;'ing figure. a cathcdral dome is
dcsigned with three senricircular supports of radius r so that

each horizontal cross section is a regular hexagon. Show that

the volLlrne of the donre is rl J3.

As shown in the accorlrprnying ligure. a cylind|ical hole
is drilled all the uay through the center of a sphere. Sho$
thirt thc volunre of the rerr:rining solid depends olrly on thc

length 1, of the ho!e. not on the size of {he sphere.

@:,

FigLrrc Ex- l0 Figure Ex I I

A footb ll has the shape ol the solid generiLted by re\'olr-
ing thc regior bounded between thc,r-axis and the parabola

-r' 
:4R(.r'r - !tt)ltt about the -r axis. Fincl its volume.

The design oi the Gateway Arch in St. Louis. Missouri. by

architect Eero Saarinan was implemented using cquations
provided by D. Hannskarl Badel. The equation used for the

centerline of the arch r\as

l : 693.8597 (r8.7(172cosh(0.0100333.t) li
1br.r between 299-2239 a .299.2239.
(a) Usc r graphing uiiliry to graph fte centerlinc olthe arch.
(b) Find the lenglh ol thc ccnrerline to four decimal places.

(c) For whrt values ol .r is thc height of the rch 100 til
Round your answers to lbur decinal pllces.

(d) Approximate, to the nerrest degree, tl're acutc angle thal
the tangent line to tlre centerljne n'iakes with thc ground

at the ends of the arch.

A goller nrakes a succcssfirl chip shot to the -ureen. Suppose

thrt the path ofthe ball fiom the moment it is stNck to thc

monrent it hits the glccn is described by

r'= 12.5,1.1 0..11.rr

whcrc.f is the horiTontal distance (in yards) fion] the point
$,herc thc ball is struck. and ! is the vertical distance (in

yards) abole the fairway. Find the distance lhe ball tralels
from the moment it is struck to fhe moment it hits the green.

Ass me tirat the tairway and green are at the sitnre level and

round your answcr to two decimal places.

Derive integration lormulas for

I Ju f d,
J ,t". * r=' / .,,;. -,i

and use those lbmrLrlas to evaluttc

,',[L ,r'', /J \4+.\- r
I tl\ I(c'/ 

2-ri {d) 
./

15.

t0.

I:+
v rr 9

",'l 
6 + 5.,

t8.

19.

16. In each part. prove the identity.
(a) cosh3-r = 4cosh3-r - 3 cosh.\

. t--
tht eorh I.r': U/iieosh r + lt

tct sinh -l r : .l- ]tcLrrh r - lr
I ! j

17. (a) A spring exerts a force of 0.-5 N wlrcn stretched 0.?5 m

beyond its nirtural length. Assunring that Hookc's law
applics. how much work was pcrfbrmed ir stlctching
the spring to this length?

(b) How trr beyond its natural length can thc sprin-lr he

slretched \r ith 2-5 J of $ork f

A boat i5 anchored so that tlre anchor is 150 11 belou,the
suface ol thc wufer. ln the watcr. the irnchor weighs 2000 lb
and the chain wcighs 30lb/ft. How nuch work is recluired
to raise the anchor to the surllcc'l

ln each pal1. sct up. brLt do not eyuluate. an integral lhat
solr es the pr<lblern.
(a) Find thc fluid force exerted (nr a side of a box th t has

a 3-m-sqLrare base ancl is lilled to l depth r)f I nr \\'ith a

liquid ofweight dcnsity p N/nrr.
(b) Find the 1l uid lbrce exerted by a licluid oi weight density

p lb/itr on x lace ofthe vertical pLate shown in parl (4)

of the accornpanying ligure.
(c) FiDd the lluid force exerted (nr thc parabolic dum in part

(D) of the ilcc()lnpanying ligure by $ater thrt exlcnds to
the top ol tl're dam.

(.d) A,
Figu.e [x 19

Suppose th t hollo\r, tube rot tes u ith a constant irngular
\'elocity ol (, rad/s about a holizontal axis at one end ol'
the tube. as shown in the accornpil'rying ligure (Dext page).

AssLure that an object is free to slide wilhout friction in lhe
lube \\,hilc the tube is rotating. Let r be the distrnce ljun
the object to thc pivot point at tinre / : 0. aDd assunre that
the ob.ject is irt rcst and r' :0 whcn t :0- It can bc shorvn

that ifthe tube is hnrizontal at tinrc I :0. then

, : L1rin1lq,,r1 - sin{@r )l

12.

E 13.

14.
20.

FigLrrc Ex-10
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during the pciod that fie object is in the tube. Assume that

t is in seconds and r is in meters, and use g : 9.8 m/sz and

,', : ' rj'.i/s
(a) Graphr versusl ioro : 1 : i.
(b) Assuming that the tlrbe has a length of I m, approxi

mately how long does it take for the object to reach lhe

end of the tube?
(c) Use the result of pari (b) to approximate drldr at the

instant that the object reaches the end of the tube.

21. As shown in lhe accompanying figule, a hotizontal beam

with dimensions 2 in >( 6 in x 16 ft is fixed at bolh ends ard
r.\ubjecrcJ lo,r ur,ilbrml),lr.librted lordol l20lb ll. A.
a result of llre load, thc ceDtelline of the beam undergoes a

defleclion that is descdbed by

y : 1.67 x l0 8(r1 2Lx1 1L2x2)
(0 : .! < 192), where L : 192 inches is the length of the

unloaded beam.,r is the horizontal distance along the beam

measured in inches from the iet\ end, and )'is the del'leclion
ol lhe centerline in inches.
(a) Graph r Versus -r lbr 0 5 ,v 5 192.

(b) Find the maximum deflection of the centerline.
(c) Use a CAS or a calculalor with a numerical integra-

lion capability to lind the length of the center'line of
the loaded beimr. Round your answer to two decimal
places.

E 24.

Figure hx 20

Exercjses 22 25 lead to equations that cannot be solved ex-
actly. Use any method you want lo approximate lhe solulions
of those equations, and round your answers to two decimal
places.

22. Find the area ofthe region enclosed by the curves ) : r2 l
and -\, : 2 siD -{-

23. Referring to the accompanying figure, lind the value ofii so

that the arcas of the slladed regiorls arc equal. lNote: This
exercisc is based on Problem A1 ofthe Fifly-FoLrrlh Annual
William Lowell Putnam Malhemalical Competition.l

Figurc Ex 23

Consider the region 10 tlre leti of the vertical line -r : t
(0 .< k = '7) 

and between the curve -v - sinr and the

r axis. Use a CAS to find the value of ,t so that the solid
generated by revolving the region about the -y axis has a
volume of 8 cubic units.

Suppose tlrat an object moves in the positive direction on an

-r axis while subject to the force
x

,i

r>0
rl +.t'

where r is in meters and F js jn newtons. The object rnoves

2 ln from an unspecified stafijng point i : a (a I 0).
(a) Find r definite integral that gives the work done by F

as a function of d.
(b) Find the value of 4 for \lhich the work done by F is

maximurn. What is that maximum wort? [Airti See

Exercise 24, Section 7.9.1
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PnTNCIPLES

OF INTEGRAL

EvnTUATIoN

(T
(f ,/n earlier chapters we obtained many basic integra-

tion formulas from the corresponding differentiation for-
mulas. Forexample, knowing that the derivative of sin.r is
cos r enabled us to deduce that the integral ofcos x is sin.x.

Subsequently, we expanded our integration repertoire by
intoducing the method of a-substitution. That method en-

abled us to integrate many functions by transforming the

integrand of an unfamiliar integral into a familiar form.
However, u -substitution alone is not adequate to handle

the wide variety of integrals that arise in applications, so

additional integmtion techniques are still needed. In this
chapter we will discuss some of those techniques, and we

will provide a more systematic procedure for attacking

unfamiliar integrals. We will talk more about numerical
approximations of definite integrals, and we will explore

the idea of integrating over infinite intervals,

f::l'.
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METHODS FOR APPROACHING
INTEGRATION PROBLEMS

A REVIEW OF FAMILIAR
INTEGRATION FORMULAS

9,1 A[,{ OVERVIEW CIF IIUTEGRATION METI"{OEs

In tltis settion ua uiI1 .qile d brieJ ove^.ie\l ol nethotls for eraluating integruls. and
y'e yill ret'iey the itnegratioti fomlulas tJtut h'etc (Listussed i earlier s ctiL)ns.

There are ihree basic approaches for evalLrating unfamiliar integrals:

. Technologv-CAS programs sLtch as M hentuticu, Mttple, tind Dsl./r,E are capable
of evaluating extrenely compliclled integrals, ancl more aod morc modem research
tacilities are being equipped with such programs.

. Tables Prior to the development of CAS prograns. scientists relied heavily on tables
to evaluate dithcult integrals arising in applications. Such trbles were compiled over
nlalry years, ilrcorporating the skills and experience of many people. One such table
appears in the endpapers of this tex1. irut morc comprehensive tables appear ln \ iulous
refbrcnce books such as the CRC Stafidqtd M.tthentutital Tttbles and Fornulae. CRC.

Prcss, lDc., 1991.

. 'l'ransformation Methods Transfornation nethods arc methods for converting un

familiar integlals into tanliliar integrals. Thcsc inclucie rr-substitution, algebraic marrip
ulation of lhc inlegrarrd, and othcr methods that we will discuss in this chiipter'.

None of lhe thrcc nicthods is pclfcct; fbr example, CAS programs ol'ten encounter integrals
that they cannot evaluate and they sometirnes produce answers that arc cxcessively comp]i
caled, tables are not exhaustive and helice may not include a palticulal integr-al of interest.
imd transtbnnation methods rely on humrn ingenuity that lnay prove to be inadcquate in
difticult problems.

In this chapter we will focus on transform.rtion nrcthods and tables. so it w:dl not be
,c. c"r.!ar-r' to have a CAS such as Mutltentulita, Mdple, or Derite. HoweveL, if you have a

CAS. then you can use it lo conli n thc results in the exrmples, and there are exercises that
are designed 10 be solved with a CAS. If you have a CAS, keep in mind that many of the
algorithms thlt it Llses are based on the methods we will discuss here. so an unclerstanding
of these methods rvill heip you to use your lechnology in a more infomed way.

The fbliowing is a list of basic integrals that we have encountered thus far:

...)NST,\NTS- POWERS. EXI'ONENTI,,\I-S

+C

u'+l !C. r/ 1

r !7

e" +c

TRICiONONIETRIC] FL]NCI'IO\S

7. 
lsinudu = cosr, +C

9. |,"c2uar:ttnr+C
ll. I sec u tan u tt u - sec r + C

n, I ranuttu: lnlcos,i +c

| 
,orrau: sirlr + c

| """t 
u d u: - cot ir + c

|""r,,otudu:-cscL+c

lrotrau:ln sina *C

1.

8.

10.

12.

2.

6.

J,,a,:ulau:n,+c

|!-"'+c
l,ta,-fi*r,r>o,b+1

1:1.



HYPERBOLIC FUNCTIONS

15. I sinh ir Jr, : coshrr + C
J

11. Isech2udu = tanh& +C
.l

ls. / sech utanhudu- sechl,,l(

ALGEBRAIC FUNCTIONS (a > 1))

(lul < a)

I du I .t)
22. | 

-: 

1311 +C.l a'+u' q q

I du Ltut2J., 

---jec-rl-l 

C t0<q- ut
J uJu, - u, a lal
I du

24, I -;' - lnu y'ri' I a2) C
J Ja'+u'
ldut-

25. I f-r---= - ln 
lu - t/ u'/ - a) lC r0<a.lrlr

r '\tu'- a'
I du 1 lalu

26. L ,-^ lnl lc
J A'-u" to lo-u

tL--: -!'"1'- '/o'-u' c
J ur/(r' - u' 4 | u

(0 < lal <a)

[ 1' == ''n 
o -E-- -,J ur/a' u' a I u
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M. I coshu du: sin-tr u * C

18. I csch2 u du: - coth, + C

20. I csch tr cothu du : cschu!C

27.

REM/\RK. Formulas 24-28 are generalizations of those in Theorem 8.8.6. Readers who
did not cover that section can ignore those formulas for now, since we will develop other
methods for obtaining them in this chapter.

ExERcrsE SET 9.1

Review: Without looking at the text, complete the following integration formulas and then check your results by referring to
the list of formulas at the beginning of this section.

C t tt t sl tt t r I s, Pr tvr c r s. E-t1 t o t Lt' t tl itt I t

la"- I'0":
Iuo': I+:
Iuo": lo'0,-

Tt i.:,,tt,'ut' t t it f unt t i,'ttl

I sinu au :

1"""'rau:

| "o", 
au -

.l 
csc'udu:

| "."rtunrdu: | 
,"ru"otudu -

.f nnua,- 
.[ 

,o,,au=



516 Principles of ntegral Evaluation

Alg(hrai( Fun iotts

I du _ [ d,
I lrt 7 I :+u2

t-4-: f -!!-=-J uJr, I JJt+u,
I du I du

I !,8 J1u:
I t' = t du

J uJl u) J uJ1+,'2

Hlpc rhtlir Tu cli()ns

I stnhu d, :

I secn') u au -

I sech u tanhu ,tu :

Icsch,ucothudu:

| "o"n, 
au :

I cscn' u a, =

In Exercises I 30, evaluate the integrals by n-raking appro-

priate , substitutions and applying the formulas reviewed in
this section.

t\{,'
IE

20. 
;f 

.ectsrndt tan(sinPr cosO Jd

l' cschz(2/r )

I;o'
[ ,''. d,

ti=,.
[ -:-0../ sec(r' )

t7.

19.

'* l*
r. le zfa,

I ^^3. 
./ 

r sec'tr't /.r

I sin l\
5. 

' 

-dI

./ 2+cos3r

7. I e' slnh(e') ttr

9. I e""" csc2 x tLx

iri'. 
Icost1tsinlxtlt

n. [-\a,J \t4+c.,

ts. | ,- dt

z. lrZ+xa-
t. | +" t^t,\ a,

e' l|,70'
f seclhrjlJ tanlln 1)t'l-"

to' I r, )d\

t4. | 

-dt

' l#-
/ coslln r)

24. J-dl
x. l$81a,
,s. [ ,::- o^

J ,\/4 _ e"r:. /Ao,'J srn rr/sin:.r + I

21.

zo. Ixt ar so. It a,J.t
31. (a) UseFomulas (15), (17), and(19) of Section4.5 tode-

rive integration formulas for

[ '^, [:-., I o^

J r/l-r' J I r" J ',,/r I

(b) Use the integration formulas you obtained in paft (a) to
delive Fonr.iulas (21), (22), and (23) in this section.rc. I flt + 1) cor(3r2 + 2i) d.r

DERIVATION OF THE FORMULA
FOR INTEGRATION BY PARTS

9.2 INTEGRATION BY PARTS

In this sectiotl we v,ill discuss an integratiotl technique that is essentialLy the anti-
derivat e formttlation of the formula for differentiating a product of two functions.

If / and g are differentiable functions, then by the rule for differentiating products

frf ,,r11,r1: /(r)g'(x) + s(x)/'(r)
Integrating both sides we obtain

| ftrra,r,,tto'= | yr,tr'r,to,+ | e@f'{x)rlx
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HYPERBOLIC FUNCTIONS

rf
15. 

J,i'thudu = coshi.r -C 16. .l coshudtr -sinharC

17. I sech'udtr -nnhu C 18. Icsch2 udu -- - colh, I CJJ
r9. / sectr u tanh u du - -\ech /.? r

J I C 20. I c\ch r,l codv d, = csch r.r - C

ALCEBRAIC FUNCTIONS (a > 0)

I du ,u
21. L, , -sin-'- C rn -at

r \/a' u'
I du 1 ,u

22. I 

-:-tan-'-f 

C
,J A'iU' A A

I du 1 u
23. I sec ' -C t)<a.lu)

I ,Ju' 02 q q

f du
24. 1 . --- -lnru -,/u2 -a I t CJ t/ a. tu.

I du , r

25. I f-, -r-lnu 
lt/u2 a')l-rc r0<o< ut

r \/u- -a'
f du 1, alul

26' J q' u'- 2atn " ,l-c

27, IJ uJo'-r' n I u

' I 
az -u22s. I !:.--l'nlo'' rcJ ur/a'-u' o I u

IIEN,IARK. Fomulas 24-28 are generalizations of those in Theorcm 8.8.6. Readers who
did not cover that section can ignore those formulas for now, since we will develop other
methods for obtaining them in this chapter

ExERcrsE SET 9.1

Review: Without looking at the text, complete the following integration fomulas and thcn check your results by referring to
the list of formulas at the beginning of this section.

Cotistutlls, Pov cr,t, E.r p tt t t t'n liu ls

la"- l"o":
lo"= I+:
lno": Io'0,=

'h-i yononrctrit F rt tttt ir t u s

I sin, du = | ,o"u au .

I s."2 ua, - | ,""',a,:

| ,""rtunu,tu = | ,""urorudu -

| ,unu,tu - | ,o,uau -
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.\lgt,ltruiL !. uttL rittt.s l l,, 1tt,r lttIiL l" unttiotts

I srlrh,,tu -

I s..f u ,t,, -

/ 
sech a tann ir da :

/ 
csch, corl, d, =

I ru
lt',., Vj

t-+--J ,t^, ,t' I

'| ,/,1 I

l;l;==

I du

.l t+ul

/;m-
I du

.l I rl

I 
-:

J uJ1+u'

I cosn u a, :

| ,rrt't u a, :

In Exercises I 30, evaluate llle integrals by makins appro

priate r substitutions and applying the formLrlas revicwed in
this section.

/T** 18.

t#
;/ 

sec(sin d) tar(sin d) cos d dd

/ ""n,,'," '' ,,'. 22.

l;;,. 24.

ti+,,
lr.,'"

J4 +9t d.r

4,r tan(,r2) r/-r

I

,1+9ir
sec(]n i) lan(ln,r)

l*

/' cosfln r)

/' sinht \ ll)
I 

- 
d.r.

| ,- dr

17.

19.

7.

q

le zi'a,

/ 
r ,".t{"),1,,

15,'
/ 

e' slnhic')r1r

;f 
e'"'' csc2 -v ,i -,

;f 
cosj 7-. sin 7' I'

t;;,.
tp,.

I
I
I
I

to. [ ] ,n,

rr. / "!l' ,,"
J sln rvsrn' \ + |

21.

lI.
zr. .l ,o ,, , :n. I r' ,',
31. (a) Use Fornulas (15), (17), and (19) of Section 4.5 tode

rive integration fonrulas lbr

t :\ [ r' t-t'lJ . ./t' J,"E-t
(b) Use the integration for.mulas you obtained in part (a) to

dclive Folmulas (21), (22), and (23) in this section.rc, Ic"* t)cor(3-r2 +2ri)d.r

DERIVATION OF THE FORMULA
FOR INTEGRATION BY PARTS

14 / L +."1r

9.2 NNTEGRATIOfq BY PARTS

In this settiott v'e v,ill cliscus,t att irfiegraLiotr tcchnique tlnt is essentially the anti-
deriative fornu.Llation of the fomula lbr cliffbrentiating a protluct of tu:o futtct ott".

lf ./ ard g ue dift'erentiable functions. then by the rulc tbr differentiating products

d

;ll(r)s(r)l - /(r)s'(r) + g(.r)l'(.r)

Integratin-q both sjdes we obtain

Ll II
.l i'rl 

,'^r<'r'Jr -;l ir.i'cr.ir,/' / c'.r'/'rr,7r
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.f(x)e(x) + c : I f<xls' <"> a' + | s@f'{xl a,

lr
I -f\)e'txldx: /rr)g(x) - | g1xlf'1x1dx + CJJ

Since the integral on the right will produce another constant of integration, there is no need
to keep the C in this last equation, thus, we obtain

ff
I f(xtg'$)ax - f(xtgtx) - | stx\!'(x\rtx (t)JJ

which is catled the formulafor integrationb! ports.By usingthis formula we can sometimes
reduce a hard integration problem lo an easier one.

In practice, it is usual to rewrite (1) by letting

u : JQ), du : J'Q) dx

u : gG), j11 : g'(x) dx

This yields the following alternative lbrm for (l):

[,a,:u,- fuau e)J.t
Example I
Evaluate I xe'dx.

Solution. To apply (2) we must write the integral in the form

I u au

One way to do this is to let

u=-r and du:e'dx
so that

du:tlx and, ,- ["^dr="^
.l

Thus, from (2)
frf
Ixe'tlx= I Lg'a": ! t',- |e'dx:ya'-a'qgJ J - --a- --.? J -'-, dt .l

REMARK. In the calculation of o from du above, we omitted the constant of integration
and wrote y : I e'dx : e'. Had we included a constant of integration and written
p = ! e'dx = er * Ct, the constant Cl would have eventually can-eled out [Exer.cise
58(a)1. This is always the case in integration by parts [Exercise 58(b)], so we will usually
omit the constant when calculating u from du.

To use integmtion by parts successfully, rhe choice of I and du must be made so thar the
new integral is easier than the original. For example, had we decided above to let

u:e'. dv:xdx, dtr -e^dx. ,: [*Or=lJ2
then we would have obtained

| *r^ a, = 1,,0, = u, - l,au ='rn - : I,.n o,

For this choice of u and du the new integral is actually more complicated rhan the original.
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It is difficult to give hard and fast rules for choosing r.r and dr. It is a matter of experience
that comes with lots of practice.

The next example shows that it is sometimes necessary to use integration by parts morc
than once in the same problem.

Example 2

Eualuarc [ x2e- dr.

Soltiion. Let

u:x2. clu-e'd.,., tlu -)xdx, ,- [r- t1.,, --e
.t

so that

| ,,"-'ar= lrnr:"r- I vctu:-x2e-, +z I re ,d^ (3)

The last integral is similar to the odginal except that we have replaced 12 by r. Another
integmtion by parts applied to /,re ' dx will complete the problem. We let

u=^. tlu-e d.t, du-dx, ,-["'d.t--,'

so that

l,u'a*= l,o,:u,- l,au
- -r" ' - [ "'' d,

.l

= -xe ' e ' I Cr

Substituting in (3) we obtain

[^'"'a*--r2o -2( re ' e'-( )
J

= x2e ' Zxe-'-2e-* l2C1
=,(x2+2x+2)e'+c

where C : 2Cr.

Example 3

Evaluate / lnr dx.
.t

Soltttiotl. Let
lfir_lnr. du_dr. du_ dr. u=.1 dx=t

so that

lt,,o, = | ua, = uu I ud, -*tn^ - /" (].)r'
:,rlnx- 

lax:xlnx-x+C
Example 4

Evaluate / e' cosr d;..
.t

Sohttion, Let

u -- e', du = cos.\./.{, du = e dt, , = [ ,or" ,1" .in..r
.t



Thus,

.[ "' 
,o", ar - .[ 

, o, : ", - .[ 
u da : e' sinx 

.[ "' 
sin r ,1r

Since the integral te'sin.rdx is sim ilar in form to the original integral / e' cos l d;r, it
seems that nothing has been accomp)ished. Howeveq let us integrate this new integral by
pa s. We 1et

u:e', du: sin-rdr, du-e'tlx, y,- [sinxdr - cosx
.t

Thus.

[" 'in"rt" IuJr-uu /rdr: ".ot* /"'.ort,/,.I JJJ
Substituting in (4) yields

rlr"1
/ " cor . dt r' srnr | 

"' 
.or-, t / e' cos x dxJIJ)

ot'
tr
/ e co. r..i r - c'sinx e'cosr / e co: r/r
.t J

which is an equation we can solve for the unknown integral. We obtain

2 I, cosrth -r .inr+P cos-r

and hence

f "' .or ,. ,/.,. - -lc' sin x * ]e' cos;r + C.t'
For definite integrals tlre fonnula coresponding to (2) is

,t 'tb ?b

J" ' 
au : "1"- J., 'o' (5)
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(4)

INTEGRATION BY PARTS FOR
DEFINITE INTEGRALS

RLN4ARK. It is important to keep in mind that the variables u and u in this tbrmula are

functions ofx and that the limits of integration in (5) are limits on the variable r. Sometimes

it is helpful to emphasize this by writing (5) as

. \=h r.':l' r \=b

| ,,,1u ,,rl - I uJu
J ,=,, L:., J )=a

trigonomet c functions.

Example 5

euulunt" /t ta'- 1 x tlx.

Solution. Let

// -- ran l-r. Ju .- dr. a,, - 17a^.
Thus,

l,',on',a, lr,rr=,rf," l^' 
ua,

-r,r, ,l: lO ,1, ,,

(6)

The next example illustrates how integration by palts can be used to integrate the inverse
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REDUCTION FORMULAS

But

I ::- dr
Jo 1+ (l

lo' 
,un ' , ar= 

" 
or ' rl: -

cos" -r as cos"-1 x . cos r and lstting

,l : cos'r-] x

du : (n - 1) cos"-2 x (- sin x) d;v

: (z - 1) cos'-2 x sin r d:r

*t'r],,

rJt ' I r -(+ - 0) - , ln 2 = o - ln r./.1 {

:: 
I,'

2x

- 

dr
1 -l- xr

i: -ln2
2

I

2

u:;[cosrd;r = sint

I
-ln2=
2

Integration by parts can be used to derite rethtction formulas for integrals. These are
fomulas that express an integral involving a powel of a function in terms of an integral that
involves a lower power of that function. For example, if zr is a positive integer and ,? : 2,
then integration by parts can be used to obtain the reduction formulas

Isin" *d* - 
I,in" r-,.n. n I I

J tt '- ' / 
sin" ''r J^

/.o.' -, d* - ].o" ..in , n -) [ ,or' t , ar 16]lnnJ

To iilustrate how such formulas can be obtained. let us derive (8). We begin by writing

so that

/.o. ,a"- /.or'' 'rcosxdx = [rdr-u, IrauJ I LI --'

-co'" lr -in.r -rrr- f '/'in-rcos 
',rd-r

-cor" '-,rin, -t,r- ll /tt cor2r)co.' I r/r
J

:cos,, I.{sin,{ + (, t.t /cos',-rx.ir -tn-tt Icos,,xt]xJ.t
Transposing the last term on the ght to the left side yields

, /.o'' r,/.r -co. ,rsin,r -r t, l; /cor"rd,J.t
from which (8) follows.

Reduction formulas (7) and (8) reduce the exponent of sine (or cosine) by 2. Thus, if
the fomulas are applied repeatedly, the exponent can eventually be reduced to 0 if n is
even or I if n is odd, at which point the integration can be completed. We will discuss this
method in more detail in the next section, but for now, here is an example that illustrates
how reduction formulas work.

Example 6

Fvaluate / cosa r,-/t.
.t
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Suhttiort, From (8) with n :4

| ,or*rar: lcos3rsinr +34 | "ortra, );X,:ti'1.*'

= 1cos3"sin" + I (1.",',i"' .) l r,)

= 1 .o.'".int l.o,-,.in.' , l, , ,488

ExERcrsE SET 9.2 E c,qs

In Exercises 1 40, evaluate the integral. zs. 
lro "., ' nG ae

"tl)t. l" r sin 4.r dr

36. 
l,' 

, "., ',d,

38. 
/ 

(r+rcos,t)d.r

L7.

r. 1,",r1,
t. | ,')"' a,

5. I x si,2, dr

t. 
| 

,' cos, tL"

I
9. J Jt ln.r dx

t. | 0n x)2 ax

z. | ,d'a,

t. | ,'"-" a,

6. I x cos3',lx

8. I x'? sin x tlt

10. 
/ 

.r lnr r1r

t. l'#*
u. I n{,' + +) a,

rc. I cos-] lzx) ax

18. 
lxtarL 

I xtLx

20. I e2' cos3x clx

22. I e4o srn 50 tla

24. I cos(lnxt tlx

26. I xtar? x ctx

28. I xe',- 
J^./ (\ + I )'

r2
$. 

Jn 
xel'clx

,r. l, , o,

3+. ;['/trin-''a'

s. 
lr' 

uE t^n 'nGd, +0. /'tni" + t)a'
41, ln each part, evaluate the integral by making a ,l-substitution

and then integrating by parts.

ot 1"6a, t.bt I cos Ji t:,

19.

| ,nrt, * r) o'

;f 
sin-r' d'

| ,on 'r.zt a,

| "' sin, a"

I e"' s*rbx dx

;f 
sin(ln r) r/x

1,"""'rar

| """ 
a'

l,' ""-u a'

1,""n'a'

fttnr ' +3rdt

42. For each of the integmls you evaluated in Exercises 1+1,
use a CAS to check your answer. If the answer produced

by the CAS does not match your own, show that the two
answers are equivalent.

(a) Find the area of the region enclosed by ) : lnx, the
line l : e, and the x-axis.

(b) FiDd the volume of the solid generated when the region
in pan ra) ij re\ol\ed about the x ari".

Find the area of ihe region between ]/ - .r sin.r and ), : .{

for0=x:n12.
Find the volume of the solid generated when the region be-

tween J, : sin -r and J : 0 for 0 : r 5 zis revolved about
the 1-axis.

Find the volume ofthe solid generated when the region en-

closedbetween I - cosr and I - 0for0 < x < r/2is
revolved about the _!-axis.

A particle moving along the i axis has velocity functiolr
u(t) : 72t: r. How far does the particle travel from time

The study of sawtooth waves in electrical engineering leads

to integrals of the form

I rsir,lkatldt

where ,t is an inieger and ro is a nonzero constant. Evaluate
the irltegral.

Use reduction formula (7) to evaluate

17.

27.

29.

31.

49.

{a);f sin3.rdr {u) 
;f"i 

' 
'in' ' a'' '
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50. Use reduction formula (8) to evaluate
t -'

',1' /co."/r ,U,/ cosb,rJ\.J Jo

51. Derive reduction formula (7).

52. In each part, use integration by pans or other methods to
dedve the reduction formula.

f ser' lrranr n ) |
ra) 

J 
.ec'.rd.r - ,r I n l/ "ec'-.',ir

f ran,,_t t I
rb / ran'rdr::: /ran' rJ,

J n-t Jrtg1 lled, \'r. nll-ccl.,
J,J

I ln Exercises 53 and 54, use the rcduction formulas in Exercise
52 to ev.luJre lhe inlegrirl..

53. '6' /ranrrdr ,u, f *." a, ,c' [^, ,t,
JJJ

st. tot | ^'"^'a, rbt 
;l 

rc /'/t

(a) Use integration by parts to show rhar

I rL,

| .t'rt,t, -bttbt af,rt - | x1 ,^,,i,
J. J"

(b) Use the result in parr (a) to show that if ], : l(ir), rhen

l1 r,D)

J, L'^,,1, httb' att,tt 
J.,, ,',r,r,

(c) Show that if we let d - f(a) and B : /(b), then rhe
result in part (b) can be w tten as

tP f o

J t 't'al - ft '',Bt-ot t,o, 
I " 

t,,,t,

In each part, use the rcsult in Exercise 56 to obtain the equa-
tion, and then conlirm that the equation is correct by per-
forming the integrations.

r2
'u' | .inIrd.r-f .in'tr)-/ sinr 1..rJ ' Ja

?c rl

tbt / ln.r J^ Qe ct-Ied^J, J
(a) In Example l, let

u: x, dx - e' dx,

Jt,_tt. ,: [".a, , -L
J

and show that the constant Cl cancels out, thus giving
the same solution obtained by omitting Cr.

(b) Show that in general

ltuu- 
Judu-tttt 

te t-.l tu C tJu

thereby justilying the omission of the constant of inre-
gration when calculating r] in integmtion by parts.

<1

fHinl: First make a substitution.]

55. Let / be a function whose second derivative is continuous
on [ 1. 1]. Show that

I tf r|dr - Jtlt I It-1, -/'1,+/r Il

56, Recall from Theorem 4.1.5 and the discussion preceding it
that if./'(:r) > 0, then the fuDction / is increasing and has

an inverse. The purpose of this problem is to show that if
this condition is satisfied and if l' is continuous, then a def-
inite integral of / I can be expressed in terms of a definite
integral of /.

9.3 TRIGONOMETRIC INTEGRALS

In the last section we derived reduction formulas for integrating positive integer pow-
ers aJ sine, cosine, tangent, ond secant. In this sectio v,e will show how to work with
those reduction formulds, and u-e will discuss methods for integrating other kinds of
integrals that intobe trigonometric Junctions.

INTEGRATING POWERS OF SINE
AND COSINE

In the precedjng sectjon we derived the reduction fomuias

I srn" ,,tr: 1sin"-l,tcos" + \-J 
lsir"-'ra,

I cos" xdx = lcos'-, -,rsin.t +n -nl 
lcos"-?*dx

In the case wherc n : 2, these formulas yield

Is,o2,d,:,f ,in,,.o,' *) I o,:), lsinrcos.r + c

(2)

(1)

(3)
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f , I tt r II cor.\dr - coir.int-- ldr -.r l:rin.rcosr C (4)I ) )l ) )

Altemative forms of these integration formulas can be derived from the trigonometric
identifies

sin2 -t : i (1 - cos 2"r) and cos2x:1(1 + cos 2r) (5 6)

which follow from the double-angle formulas

cos2,r = I -2sin2r and cos2x:2cos2x - 1

These identities yield

I It I I

Jsin'rdt:1JtI 
cos2.r)dx:.x- 

Osin2x 
l C (7)

I lt I r

;l 
cos'rdr: 

;l 
tI*cos2*)dx:;x+ sinzx IC (8)

Obserye that the antiderivatives in Formulas (3) and (4) involve both sines and cosines.
whereas those in (7) and (8) involve sines alone. However, the apparent discrepancy is easy
to resolve by using the identity

sin 2r : 2 sin.{ cos.r

to rewrite (7) and (8) in forrns (3) and (4), or conversely.
In the case where r : 3, the reduction formulas for integrating sin3 x and cos3 .t yield

/rin'ra" - -{.,nt-,.o., +] /rin,a.- l.in'.'.o., - -^2 co,-, tC 101J J 3J J .r

/.o.'r,i,^ ]co.'r,inrt i/.o'rd, = I .or'.., ,in r - I *rn . { rlulJ \ 3J J 3

If desired, Fonnula (9) can be expressed in terms of cosines alone by using the identity
sin2 x : 1 - cos2 x, and Formula (10) can be expressed in terms of sines alone by using
the identity cos2 -r = I sin2 r. We leave it for you to do this and conflnn that

.[ sir3 x ax= {cos3r - cosx * C

;["os3rd;r: 
sinr ] sin3r * C

FOR THF REAI)FlR. When asked to integrate sin3 r and cos3.r, the Maple CAS produces
forms (1 I ) and ( l2) . Howevet, the Matherutic.T CAS produces

/.in'rJr- j cos.l r,.cosjrT(.t"
/.o. ,dr= ]'inr , ,..in3r ,(.t"

See if you can reconcile Mathematica's results with ( 1 1) and ( l2).

(11)

(.12)

(13)

( 14)

We leave it as an exercise to obtain the following formulas by first applying the reduction
formulas, and then using appropriate trigonometric identities.

.[ sina x ax : ]x ] sin 2.r F .rl sin 4r * C

| "osa 
* ar: $x + ] sin2r + $ sin4x + C
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INTEGRATING PRODUCTS OF
SINES AND COSINES

Fieure 9.3.1

Example I
Find the volume V of the solid that is obtained when the region under the curve ) : sin2 x
over the intewal [0, z] is revolved about the "t-axis (Figure 9.3.1).

Solution. Using the method of disks, Fomula (5) of Section 8.2 yields

y= [" r sino x dx : nll* - ] sin2r *:z! sin+r]l: ilJo

If m ard n are positive integem, then the integral

/ sin'' x cos" x dx
J

can be evaluated by one of the tbree procedures stated in Table 9.3.1, depending on whether
rn and n are odd or even.

Example 2

Evaluate

(a) / sina x cos' x r/ r (b) 
;[ 

sina,r cosa.r dx

Solutian (a), Since n : 5 is odd, we will follow the first procedure in Table 9.3.1:

/rinaxcos5xdx: / ,ina x coso , cos * r/rJJ
- [rlno"tl sin2r) cos.r d.r

.t

- [ uor, u) 12 du
.t
r

- I ,l -2u6 + ustdu

_lu5_]ui+|ue+c
: { sin5x, f sin7 x* } sinex * C

Solution (b). Since iz : n : 4, both exponents are even, so we will follow the third
procedure in Table 9.3.1:

/ sin" 
".oso 

, d, = /1sin2 r.;t1cos2 x.12 r1x.t.t'
f ll \2rl \2

/ lt" -cos2rl,/ (\2Lr t cos2xl) dx

1t
= 

,,U .l 
,, cos'2.u'dx

= | | ,,noz,a,

: ! [ ,;oo u au

1 /3 I l \
- ,, lS' - - "in2u + tsin+u ) t C

311: --:='lr - -.. sin4x * -..' sin8x f C1?-R 1).4 10).4

Note that this cd be obBined more
directly from the original integal using
the identity sin j cosj : + sin2a.

du =2dx ot dx - +d

i,i4::.:ll
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Table 9.3.1

/ sin'r cos" -r r1-r RELEVANT IDENTITIES

n odd

Split off a factor of cos r.
Apply the relevart identity.

Make Ihe substitution ll = sin r.

cos2.,r= I sin2r

nr odd

Split off a factor of sin -r.

Apply the relevant identity.
Make the suhstitution /, = cos -r.

sin2 -r = I cos2 r

Ir? even

I , "u.n

Us,. thc relevant identities to reduce

the powers on sin.! and cos.r.
Jsin'r = ]tl -cos lrr
l.osr r =]tt +cos2r't

Intsgrals of the folm

/ 'in,,, cos, , J.r , / .in,,r i srn rr ,/.r ,.J J
can be fould by using the trigonometric identities

sinacosB : ]lsin{a B)+sin(.r+p)l

sincv sinp : ,1[cos(a - F) - cos(o * 0)]

coscucosp : jlcos(a B) +cos(.v +B)l
to express the integrand as a sum or difference of sines and cosines.

Example 3

Fvaluate / sin 7r. cos lx.1x.

| 
,o, 

^*.or ^ d* ( 15)

( l6)

( 17)

( 18)

+C

( le)

(20)

(21)

(:22)

Suhttiotr. Using (16)

/ sin7,r cos 3.r d-,r
I

* sin 10r) dr : -- cos4.r

yjelds

: ]/r''o' - I cos 10"
20

INTEGRATING POWERS OF
TANGENT AND SECANT

The procedures for integrating powers of tangent and secant closely parallel those for sine

and cosine. The idea is to use the following reduction formulas (which were de ved in
Exercise 52 of Section 9.2) to reduce the exponent in the integrand until the resulting
integral can be evaluated:

[,nn' 'd'- |1l" '" [ ,on"-- *d,J n-t J

f sec'---rranx n-l [,"", ,a,
.l sec"xdx n-r I n-rJ

I tun, ar: ln secxl * C

| ""rt 
ar: ln sec-r + tanxl + C

In the case where z is odd, the exponent can be reduced to 1. leaving us with the problem
ofintegnting tan.r or sec.r. These integrals are given by
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INTEGRANNG PRODUCTS OF

Formula (21 ) can be obtained by writing

I tun*d^.- [ "in 
r d,

J ../ COS x

: ln lcosxl* c ,i1:iij,r-,

: ln lsec:rl + C r'r-'.r: -r" rc"i
Formula (22) requires a trick. We write

| ,,", a, = /,"., (Hi#H) a, = / sl5;;r a"

:ln sec.r+ran;r +c ,jj I iij;iiii"i, *.r^
The following basic integrals occur frequendy and are worth noting:

Iwrz*d*:tanx-:{*C
J

I sec', dr: tanx * C
J

Formula (24) is already known to us, since the derivative of tanr is sec2 x. Formula (23)
can be obtained by applying reduction formula (19) with n = 2 (verify) or, alternatively,
by using the identity

l+tan2x:sec2x
to write

I trn=td, = /tr""tr - lldx =lanr --r +CJ.t
The formulas

Iuln'rd*: jtan2:r -ln secrl+c (25)J'

/s..t*dr = j secx tanx + j lnlsecr +tanxl+ C (26)
J"

can be deduced from (21), (22), and reduction formulas ( 19) and (20) as follows:

I an3 t dt = 
l ,un" - /,"n, I

J 2 I 'd' = 2lan'r-ln secxl lC
f I lt 1 r

/ sec' x d.r - 2 
5ec r tan x + I / sec y dr = - sec x tan x - , ln lsec x + tan .{ | "r C

lf m and n are positive integers, then the integral

(23)

(24)

TANGEMS AND SECANTS 
I vrn,, * 

"rr,, 
, d,

can be evaluated by one of the three procedures stated in Table 9.3.2, depending on whether
ru and n are odd or even,

Example 4

Evaluate

@) lnn2tsecaxd;r {b) /tanrxsecrrdr tc) 
;[ 

tanr r sec x r1r
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Table 9.3.2

/ tan"'r sec" -r r/-t RELEVANT IDENTITIDS

Split off a factor of sec2 -t.

Apply the rclevant identity.

Make the substitution /] = tan r..

sec2,t = tan2 :t + L

nr odd

Split off a factor of sec r tan j.
Apply the relevant identity.

Make the substitution L = sec r.
tan2-r=sec2r-1

Jr? 
even

| ,r odd

Ian2 r = sec2 -t 1

Sohrtion (a). Since n :.1 is even, we will follow the first procedure in Table 9.3.2:

/ ,un- * '.. * J, - / ,un', sec r sec .\ Jrt.t
- /,ontrlranjr I l)\ec- r/r

.l
r

- | utq- - llJu
.l

: Jr5 + Jrr a C: J tan5.t +.1 tanrr+C

Solution (b). Since rz : 3 is odd, we will lbllow the second procedure in Table 9.3.2:

/ '"n' ' 
.".' , d, - [lan rsec x(secrlilnrrJ.r.I,I

- f 1t..t., l1'ecl r1.ec rl,rn YJdr
.t

r-
- / rr' l)ti dtt

.l

: 1r5 - {r.r3 16 : } sec5 -'r ] sec3;r * C

Solutiott (c), Since n : 2 is even and n : 1 is odd, we will follow the third procedure in
Table 9.3.2:

/tun , r.., J, - f1.".t r 1.,:ec rif rt.t
rl

- / 'ec''/r - / sec r d.r sc 2 ,,a 2r'
.t.t

: ]secxtan-t + jlnlsec,r +tan j!l- ln secr +tanr + C

= I secirtan-r - jln sec" +tan.rl +C <

The methods in Tables 9.3.l and 9.3.2 can sometimes be applied if m : 0 or z : 0

to integrate positive integer powers of sine, cosine, tangent, and secant witlout reduction
tbmulas. For example, instead of using the reduction formula to integrate sinl r, we can

apply the second procedure in Table 9.3.1.

Use the rclevant identities to reduce
the integrand to powe$ of sec,i alone.

Then use the reduclion fomula lol
powers of sec ,r.

AN ALTERNATIVE METHOD FOR

INTEGRATING POWERS OF SINE,
COSINE, TANGENI AND SECANT
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MERCATOR'S MAP OF THE WORLD

I sin3 x ax: 
/Gin") ,in' a'

= / {t - cos2 r) sin; ax

- 1,, ,21du

-\", utC: {cosl" cos-r * C

which agrees with (11).

tiEIlAIrK. Vy'ith the aid of rhe identity I + cot2,r : csc2 r the techniques in Table 9.3.2
can be adapted to t1€at integrals of the form

I cot'' r csc'' r 1r
.t

Also, there are rcduction formulas for powers ofcosecant arld cotangent that are analogous
to Formulas (19) and (20).

The integral of sec I plays an inportant role in the design of navigational maps for charr
ing nautical and aeronautical courses. Sailors and pilots usually chart their courses along
paths with constant compass headings; for example, the course might be 30" nofiheast or
135' southwest. Except for courses that are parallel to the equator or run due north or
south, a course with constant compass heading spirals around the Earth toward one of the
poles (as in Figure 9.3.2a). However, in 1569 the Flemish mathematician and geographer.
Gerhard Kramer ( l5l2-1594) (better known by the Latin name Mercator) devised a world
map, called the Mercqtor projectlon, in which spirals of constant compass headings ap,
pear as straight lines. This was extremely important because it enabied sailors to determine
compass headings between two points by connecting them with a stuaight line on a map
(Figure 9.3.2b).

A fligh! with constant compass

heading from New York City to
Moscow as it appears on a globe

(a)

Figure 9.3.2

If the Eafth is assumed

lo incremelts are equally

A flight with constan! compass

heading from New York Cily to

Moscow as i! appears on a

Mercator projection

(b)

to be a sphere of radius 4000 mi, then the lines of latitude at
spaced about 70 mi apart (why?). However, in the Mercator
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projection, the lines of latitude become wider apart toward the poles, so that two widely
spaced latitude lines near the poles may be actually the same distance apart on the Earth as

two closely spaced latitude lines near the equator. It can be proved that on a Mercator ltlap
in which the equatorial line has length Z, the vertical distance Dp on the nap between the
equator (latitude 0") and the line oflatitude f is

or - | lop 
,",, a,

(see Exercises 59 and 60).

(21)

ExERcrsE sET 9.3 E cns

1. 
;f 

cos5 r sin.r r1r

3, I sino, cost, ttx

s. | ,in'?se ae

't. 
I cos' rt a0

9. 
lsin2zt"oslztar

ll. 
/ 

sin'?' cos'?r dr

13. 
/ 

sinr cos 2.r r/-r

15. 
/ 

sin,r cos(r/2) d.r

t7. 
1,,"/^ "o"' 

, d,

19. 
;["/t 

,in' 3r .ort 3" t*

/ sina 3r cos 3r dr

| "o"' 
* a,

I cos3 ot at

;l 
sinr ' "osr ' d'

r .-
./ 

sm- rx cos- l.{ d,r

;f 
sin2 r cosa r dt

I srfia cos2e da

;[ 
cosr/5 , si'', t dt

lo"/t 
,int ! 

"or'L 
a"

l'.,o"'se 
ae

rlr

;/ sin'rr ,"r r

I tuns' a,

l,otz,a'
/' sec t J.r )

J rc or

;[ 
tan5 r ,""t 

" 
l"

I t^o o 
"r"' 

e ae

.l tan' 0 sec 0 d0

I tun'|"",'Ia,

I tun2t 
"""t 

2t ,lt

/ 
,""0 ' ar

I t^n' * a,

./ Jtrn.' secr ' r/r

1,,"'o 
tun' ," n,

/ tan' 
1"r,

/ cots r cscr,r ,1"

| "of 
,a,

31. 38. 
;f 

tanr sec5 -r l.r

40. 
./ 

sec'.r d,r

n. ln#+'a,
44. I anx sec3t2 x ttx

$. 
lo'tu ""r' 

a nna ao

48. ;l'l' r".,* tun,rrdt

50. / cot2:r sec:r ar

52. I csca r t1x

Let r?, n be distinct nonnegatjve integers. Use Fonnulas
(16)-(18) to prove:

(al / srnm;rcosnr dr =0

(b) /t .orr,...o,nrrl* - o

)2"
lc) / sinmr qinrxdr:0.

For each of the integrals you evaluated in Exercises 1 52,
use a CAS to check your answer. If the answer produced

by the CAS does not match your own, show that the two
answers are equivalent.

Find the arc length of the curve ], : ln(cosx) over the

)

4.

6.

8.

10.

12.

14.

16.

18.

20.

7'

24.

26.

24.

30.

32.

34.

36.

47.

19.

51.

53.

39.

,11.

43.

45.

21.

23.

27.

29.

31.

35.

lrr'tu 
,tn2, 

"o"4r 
dt

;[ '""{:-' 
+ t) a'

.l 
e '' tanrc-" t d;,

lseczxdx

I nnt * 
"""' 

, rtt

;[ 
,unt 4t ,..* 4t d"

/ 
sec5 .r tanr r I'

;f 
ton' r ,"." r/t

E s4'

intervai 10, T/41.

56, Find the volume of the solid generated when the region en-
closed by ) : tanr, )' : 1, and x : 0 is revolved about
the.jr axis.

57. Find the volume of the solid that results when the region
enclosedby,l : cosr, ) = sinr,x : 0, andx : z/4is
revolved about the,r-axis.

58. The region bounded below by the ir-axis ard above by the
portion of l - sin -r from :r - 0 to ,r - z is revolved about
the i-axis. Find the volume of the resulting solid.
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59. Use Fornrula (27) to sho$,that if the lenglh ofthe equatorial
line on a Mercator projection is l,, then the vcrtical distance
D between the latitude lines at .r' ar'lcl P'- on the same side
ol tl're ecluator (where a < p) is

L l:,:e 6 +tand
I) - ln);r \ec o + tun aY

60. Suppose that the cqLrirto has a length of 100 cr'r'r on a Mer-
catol projectioll. In cach part, use the resull in Exercise 59
lo answer the question.
(a) What is the vertical distance on the map betwccn thc

equator and the line at 25' north latitude?
What is the ve(ical distance on the nlap between New
Or'leans, Lou isialia, at 30' north latitude and Winnepeg,
Canada, at 50' nofth latitude?

Show that

| ..i.r'1r - ltr u:c r cot , C

Show that the lesuit in pafi (a) can also bc written as

/ .r, r',tr - lrr c:c r col.\ C
.l

and

f.".,,1,:ln Lrnlr +C.t'
Re\\,r'ite sinr + cos-i- in the form

A sin(_r + d)
lind use your result together'\\,ilh Exercise 6l to evalu.ite

I o^

/ \irl .r + cos.y

Use the method of Exercise 62 to evaluale

| ,,/. I nn boln .?e-^l
.,t dsllt,Y+l.cos1:

(a) Use Formula (7) in Section 9.2 lo show that

t1 I - t r")
/ 'irr''/r-' 'l 'in tJ'
.lo n Jti

(b) Use this rcsuli to derive llte Walli.r sire.formukrs..

/"i',i't',a':
t 1l1

/ 'rn" ',r, :

IT

t
2 4 6. (n 1)

I 3 5 1r l) /neren\
24 6 t \unu.:/(b)

61. (a)

(b)

THE METHOD OF TRIGONOMETRIC
SUBSTITUTION

63.

64.

I .'"0 - t.l357 n

65. I :e the \ a ll:. ro"mJld\ tn F\e( Lc b I ru e\xluxrc

(x) / sinr r d.t

,., 
/l] 

.in'r d.r

{r) /"1' 
.in' .. a'

to) /-" .in" ' a'

Use Formula (8) in Secrion 9.2 and the merhocl of Exercise
64 to deive the Wallis cosine fotmulas:

(-n - ,.1

/ aodd \
l...o - ,/

9.4 TRIGONOMETRIC SLIBSTITUTIONS

In lhis secliotl r'e wi discuss a nrcthod for evaluating integrals torttaining raditals
bt- mqking substitLttions irn,olying trigonometri( fin(tiu1s. We u'ill also shtn' hov, inte,
grdls containitry.lLtadrutic polln()nlidls.dn sonetines be eyttluatetl bl,cotupletin.q the
sqtnre.

To start, we will be concemed with integrals that contain exprcssiors of the fom

.,F.t. r'j ,r'. J^ -l
in which a is a positive constant. The basic idea for evaluaiing such iotegrals is to make a
substitution for -r that will eliminate the radical. For example, to eliminate the radical in the

expression /.72 r2, we can make the substitution

x:asin6, r/2=0 
=r/2 

(l)
which yields

,/;7 -" - rri ;j;Fa: /;a -;tt
- o.,4o.,t B : a/ lcos O :dcosd cosd:0since ail:.F.:-t2

66.

62.
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The restriction on 0 in (1) serves two purposes-it enables us to rcplace cos d I by cos d
to simplify the calculations, and it also ensures that the substitutions can be rewritten as

0 = srn '(-\/rr), rt Deeded.

Example I
I dt

Evaluate | _-.
J 

^2J4 x,

Sohttir.trt. To eliminate the radical we make the substitution

r : 2 sin d. dx - 2cos0 d0

This yields

l#-=- | (2 sin F1:r,[ ,1tin: 6

(2 sin 0)2(2 cos 9) 4 .l srn2 e

2cose dA -il#
2 cos e de

=l

-1
2 -,'

n,{ ]

i--,iry1
Figure 9..1.1

=l ["r"'eae. I

4.1 -- cotd+C (2)

At this point we have completed the integration: however, because the original integral was
expressed in terms of r, it is desirable to express cot d in tems of x as well. This can be
done using trigonomeffic identities, but the expression can also be obtained by wdting the
substitution r : 2 sin 0 as sin d : .r/2 and representing it geometrically as in Figure 9.4.1.
From that figure we obtain

cot d =

Substituting this in (2) yields

- t:-------
I o'-_ -luu ' -cJ ,zJt ,, 4 -\

Example 2

euutuu,.;[Jt
dx

x2!,2-'
Sohttiott. There are two possible approaches:we can make the substitution in the indefinite
integral (as in Example 1) and then evaluate the delinite integral using the x limits of
integration, or we can make the substitution in the definite integral and convert the rlimits
to the coresponding 0 limits.

Method I . Using the result from Example I with the x-limits of integration yields

1,"
- 

--a
tlJ4 r'l I

-- I I - | /31-4L * l, 4'
Jt1dx

x2J4 - x2

Method2. The substitution x : 2 sin d can be expressed as;r /2 : sin d or6 : s;n-l(;v/2),
so the 6-limits that correspond to r : 1 and r = r/2 are

.{=l: 0-sin tl.2)-26
x = rt: 0 = sir 16D/D : r/4
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Figurc 9.4.2

Thus, from (2) in Example 1 we obtan

L* it=:1,":,^
2 cos9 d0 r f"/4 de:l

4 J ^16 
sin'/ 0Qsnef J4 - 4ti; 6

. n n/4

- ! ["'- ,rr'e ae: -1 l"nr Bl i
4l^. rn 6

- ',r Jit-rt |

44
Example 3

Find the area of the ellipse

x2u',
7- nt

Solutian, Because the ellipse is symmetric about both axes, its area A is four times the
area in the first quadrant (Figure 9.4.2). If we solve the equation ofthe ellipse for ) in terms
of .r, we obtain

b r-y: t-lq" x"
a

where the positive squarc rcot gives the equation of the upper half. Thus, the area A is given
by

A:4[ !Jor. ,ro,=ab [" uto, -7 o*
Jo a q lo

To evaluate this integral, we will make the substitution r - asin? (dx : acose dA) and
convert the r-limits of integration to dlimits. Since the substitutiol can be expressed as

d:sin 1(x/a), the glimits of integration are

x -0 0: sin 1(0) : 0

x:a.. 0:str;r(1):ttl2
Thus, we obtain

o-! [" Jo2-12dr-ob [ 
' ' o ror e . a cos o d oa lo a rv

r,2 f ,1) |
-4ab I cos2ede -4ab / ,tt cos20tda

Jo Jo z

I I fn/2 rr
-2abla I sin2d I - )abl 0l =nabL 2 ln t2 .r

REMARK. In the special case where a : b, the ellipse becomes a circle of radius a, and
the area fomula becomes A : za2, as expected. It is worth noting that

I Jo' - ,2 d, - )ro2 r3r

since this integral represents the area of the upper semicircle (Figure 9.4.3).

FoRTI-IEREADER. Ifyou have a calculating utility with anumerical integration capability,
use it and Fornula (3) to approximate z to thrce decimal places.

Thus far, we have focused on using the substitution x : aslrl0 to evaluate integrals

involving radicals o f tlre form yE -?. Table 9.4.1 summarizes this method and descdbes
some other substitutions of this type.

Figure 9.4.3



9.4 TrigonometricSubstitutions 533

Table 9.4.1

EXPRESSION IN
THEINTEGRAND SUBsTITUTIoN RESTRICTION ON O SINIPLiFICATION

l) ) r=dsin0 rl2<0<nl2 a2 x2= 42-o2tinze = a2 cos2 A

la2+12 r=dtan0 rl2<0<rl2 a2 +x2 = a2+a2tan2e= a2 secz 0

lx2-a2
(if r : dl
,r,r r'-"'"t 

;-i -o2"tlu u2- 't1n- 
A!o<o<./z

\rl2<0!.r

Example 4

Find the arc length of thecurvey = x212ftomx:0tox - 1 (Figure 9.4.4).

Solution. From Formula (4) of Section 8.4 the arc length Z of the curve is

The integrand involves a radical of the form \,[2 a.r2 with a : 1, so liom Table 9.4.I we
make the substitution

jr - ran9, T/2<e<r/2
dx

- sec'6 or Jt - sec A d0
de

Since this substitution can be expressed as 6 : tan-ljr, the dlimits of integration that
coffaspond to the ,rlimits, r : 0 and .r : 1, are

x:A: 0:tanl0:0
t:7: 0:tan1l-rf4

Thus,

t-lJl-r')a, I Jl nn/e'ec:eda
.ln .ln

r-4 

-
= I .,/sec-d sec oJd

la
7t/ 4

- I sec d sec'd Jg
JA

r- 14

-l seclddo - o..n.e
JO

: [jsec0tand + lln secd + tane ]i/a :i.i:':,i:Tl,

: il"4+nt0+ 1)l - 1.148

Example 5

t,/r2 25
EvaluaLe | 

- 

J.i. assuming that r-;5.
.l 

^
Sohttion. The integrand involves a radical of the form JP iP with 4 : 5, so frorn
Table 9.4.1 we make the substilution

r:5sec6, 050<r/2
dr
- =5sec0tan0 or dx:5sec0tat9d0
de

Figure 9.4.4
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,a"y
5

.
i=Jsecfr

Figure 9.4.5

INTEGRALS INVOLVING
ax2+bx+c

Thus.

t ,C= ,5, 1 "6s '.& :s -
I , -o^-.l 5,..e rs'ecelonel,do

I 5 nne_ t ,ssec0ran0ldd
I 5sect? -

-s It^nreae .'. e ^ in.F't"-""
I

5 / lsec'6 - I )de - 5nn? 5e (
,J

To express the solution in tems of x, we will represent the substitution r : 5 sec 0 geo-

metrically by the triangle in Figure 9.4.5, fiom which we obtain

,/r2 25
rao 0 :

5

From this and the fact that the substitution can be expressed as g : sec - I (r /5), we obtain

r f-t 't<
lu' t',i, 

- Jr')- ls -s...-' (*)-cJ r '5/

Integrals that involve a quadmtic expression ax2 + bx + c, where a f 0 and D I 0, can
often be evaluated by iirst completing the square, then making an appropriate substitution.
The following examples illustrate this idea:

Example 6

Evaluate / -L ctx.
J t, 4r*8

Sohtlion. Completing the square yields

x2 -4r +8 :1x2 -4x +4) +8 -4 : (x - 2)2 +4
Thus. the substitution

u: x 2. du: dx

yields

I. +uo'

Example 7

euatuut" / ls-47-rxt
Sohttion, Completing the square yields

s L"- )"2-i-)r,2-),r 5-),,2-),-1,-)

:5 - 2(x + 1)2 +2:7 2(x i l)2

- I (. #.^": IFio"
: I io".'l ;h
=:l;+,..,1;+
: 

)n<,' + +> + z ()) t^", i + c

r /, t\
- ' lnlrr - 2'2 o1 ,r"-' (^ ,') +c



Thus,

I dx
r-Vl 4\ l.\ lf -tG +If

- t-i:== ,,'i,=,:,:'J ./7 2u.
lldtr:-l 

-

J2l Jtjl2t - u:
I '/ r'r \- rt'n \."0n)*'

: ]rin 1(tEnG+r))+c
^,/2

9.4 TrigonometricSubstitutions

liomula (21), Secrion

lvlth r : J7l2

ExERcrsE SET 9.4 E cAS

ln Exercises I 26, evaluate the integral.

1. I J1-,,,t,
.t

i" rl
.1. | 

-dr5. l-

' I --;'n'

11.

t7.

JJz('

li#-
ld:;P
I#-
I *:re
| ""I "'' a,

fo' "J 
tr, -,' a,,

I;ri=
l,'*F,,*.
The integral

lie'.

can be evaluated eithel by a t gonometric substitution orby
the substitution i/ : ,\2 + 4. Do it both ways and show that
the results are equivalent.

Q 28. For each of the integrais you evaluated in Exelcises l-27,
use a CAS fo check your aDswer. If the answer produced
by the CAS does not match youl- own, show that the two
answers are equivalent.

29. Find the arc length of the curve ) : lnr from r - I to
x:2.

30. Find the arc length of the curve ) = 12 from r : 0 to

10.9.

l,r o;0,

/;;m
[-\0,r V5 +.r

/rm
ls"tr;a,
IG,,
J rr/r- + 25

I.#r"
/ t1J ,/'r -:s
f cos,
l--de

J. ut *r
12 ./t,) t

Jn?0"
I .,*at,"

33. (a) Evaluate

t,!:J r/r.+9

31. Find the area of the sudace generated when the curve in
Ererci.e l0 is rerol,.ed about the r-axis.

Find the volume of the solid generated when the region eD

closed by-r - 1(l i2)'/o,r:0,r..:l,andr:0is
revolved about tl're _], axis.

In Exercise 33, the tligonometric substitLltions x : a sec 0

and r : r1 tan, lead to difficult integrals; for such integrals
it is sometimes possible to use the iyperDolic substit tions

' .r.irhrr lor rnregral' in.olring J.= ,
.r : d cosh & fbr integrals involving Jx2 a2

These substitutions are useful because in each case the hv,
perbolic identity

a2 cosh2l - n2 sinh2 a : a2

removes the radical

14.

16.

ls.

21.

25.

27.

uslng the hyperbolic substitution that is suggested
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(b) Evaluate the integral in part (a) by a trigonomet.ic sub-

stitlrtion and show lhat the results in parts (a) and (b)

aglee.
(c) Use a hypelbolic substitution to evaluate

/J'2 11.\. r'L
34. In Example 3 we found the itrea of an ellipse by making the

substitution -r : d sing ir the requiled integrai. Find the

area by rnakjng the substitution -i: : a cos 0. and discuss

any restrictions on d that are needcd.

@ ,17. For each ol the integrals you evaluated in Exercises 35 -:[6,

use a CAS to check youl answer. If the answer produced

by the CAS does not match your own, sho$ that the two
aI\\\ et\ lre equi\iilenl.

ln Exercises 48 50. there is a good char]ce that your CAS
will not be able 10 evaluate the integral as stated. Il this is
so, make a substitution that convelts the integral into one that

)our CAS ( ,1n e\ r lualc.

Ir
fcl 48. / \\ cor \ -\in,r'' I '-.in , I'

I r-"- "--
fcl 49. | .osxsinry'l -sin"xdr

tt 

-
tat 5u. I -r' Jq, LI r

$.I J'
J 2..\-' 

r +,1.r + 7

.) 1-.

,15. I .-J J4t-r-

I lr -! l
41. I .-"',' dx

./ 4t *4, +5
rl 

-

46. I Jx14 - xtJx

In Exercises 35 -16, evaluate the integral.

/.-i +.*r, * [-!-J Vl.r _ 1-

t--i:.....= 18 /J r'8+lt r- J l6.ir+lbr+5

35.

*.1
/;t- tu + lo

I 

- 

Jt
./ 1r+6r+lo

[ =-!:^J Jt +.' + "t'

,10.

4t. I ."E L, -,. d,

PARTIAL FRACTIONS

9.5 If{TEGRATII\G RATICI'!AI- F{JI\ICTIONS EV PARTIAL
FRACTIO[\I5

Rectrll that e ratiotldl lLt]1ctiot1 is a ratio of tun poltttontials. In this sedion u'e v,ill
gite a general ntethotl .for integrating rutiotlul .fun(tions thqt is based on the idea of
cletomposin,e, a rational ftuttiiort itlto u sunl ol simple ratiottdl l nctions that can be

integrote(l b! the methods studied in earlier seclions.

ln algebra one leams to c()mbine two or more fiactior]s into a single fraction by linding a

common denoninator. For example.

However, for pu4'roses of irtegration, the left side of ( 1) is prelerable to the right side since

each of the telms is easy to inlegrale:

/ 5r l0 I ) I 3
/ "-. - 

'dr- l-,Jt / - 
'ri r'-2lnlr 1 J'n r*l -c./ r -J.r-r J , 4 J \ Ll

Thus, it is desirable to have some method that will enable us to obtain the lelt side of (1),

starting with thc righr side. To illustrate how this can be done, we begin by noting that

on the left side the oumerators are constants al-Id the denominators are the faciors of th9

denominator on the right side. Thus, to find the left side of (1). starting frolr the right side,

we could factor the denominator of the Iight side and look for constants A and B such that

5r-10 A B
/r\

,\ 4rtr ll .\ --I I I

One way to find the constants .4 and B is to multiply (2) through by (r -,1)(-t * 1) to clear
fractions. This vields

2 3 2(-r* 1) *3(.1 -4) 5r-10
r-4 -r+1 (.r 4)lr+i) -rr -3r -zl

(1)

51 10 - A(x * l) * B(.t 4) (3)

Th is relationship holds for all r. so it holds in particular if ;r = 4 or r : I . S ubstituting
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FRACTION DECOMPOSITION
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ir :4 in (3) makes the second term on rhe right drop out and yields rhe equation l0 : 5.4
or A : 2, and substituting .r = -l in (3) makes the frrsr rerm on the righr drop out and
yields the equation l5 : -58 or B : 3. Substituting these values in (2) we obtain

5.r- l0 2 3

(x -4)(ir + 1) 1_4-T..a1 (4)

which agrees with ( l).
A second method for finding the consrants A and I is to multiply out rhe right side of

(3) and collect like powers of r to obtain

5.r - l0: (A + A).r + (A - 48)

Since the polynomials on the two sides are identical. lheir corresponding coel'ticients must
be the same. Equating the co[esponding coefficients on the two sides yields the following
system of equations in the unknou'ns A and B:

A* B- 5

A-48:-10
Solving this system yields A :2 and B : 3 as betbre (verify).

The terms on the right side of (4) are cal led partial fructions of rhe expression on rhe left
side because they each constitute pra l of that expression. To find those partial fiactions we
6rst had to make a guess about their form, and then we had to find the unknown constants.
Our next objective is to extend this idea to general rational functions. For this purpose,
suppose that P (x) / QG) is r proper rqtional .function, by which we mean lltat the degree
of the numerator is less than the degree of the denominator. There is a theorem in advanced
algebra which states that every proper rational function can be expressed as a sum

P(.r)
= =Fr{t) I F:{.t I *.. + 4,( r)
?(.r)

where Fr(,r), Fr(-t). . . . . E,(.r) arc rational functions of the fom
A A.\+ B

\ax + btL {.1.r1 T r.r + c)r

in which the denominators are facto., of Q(r). The sum is called the partial lraction
decomposition of P (.r ) / 0 (.r ), and the terms are called parti al fractions. As in our opening
example, there arc two parts to finding a partial fraction decomposition: determining the
exact form of rhe decomposition trnd finding the unknown constants-

The nrst step in finding the form of the partial fraction decornposition of a proper rational
function P(.r)/O(x) is to factor Q(-t) completely into linear and irreducible quadratic
factors, and then collect all repeated factots so that 0(r) is exprcssed as a product of
dislir?( t factors of the fonn

(at + b)'' and (c.l2 * Dx * c)"'

From these factors we can determine the form of the partial fiaction decomposirion using
two rules that we u,ill now discuss.

If all of the factors of Q ('jr) are linear, then the partial fraction decomposition of P(r )/ Q (-t)
can be determined by using the following rule:

I LINliAtt FACToR RULE. For each factor of the form (ax -l b)"', the partial fracrion :

decomposition contains the following sum of n panial fractions:

AI A' A,,,

ax+b (ar+b)t (ar I b)^

, whereAr, Az..... A. are constants to be determined. In the case where in = I,only l

the lirst lerm in the rum lppears.

LINEAR FACTORS
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Example 1

f dt
Evaluate I.l r:+r-2

Sohttion. The integrand is a proper rutional function that can be written as

I
-2 r, I /v Iri"It!

The factors ;r I and ir + 2 ale both linear and appear to the first power, so each con-

tdbutes one term to the partial fraction decomposition by the linear factor rule. Thus, the

decomposition has the form

IAI}
(x-l)(-{+2) -x-l '.t*2

where A and B are constants to be determined- Multiplying this exprcssion through by
(-r - 1)(.r + 2) yields

I : A(,r * 2) * B(.r - l) (6)

As discussed earlier, there are two methods for finding A and 8: we can substitute values

ofr that are chosen to mtrke terms on the right drop out, or we can multiply out on the right
and equate coresponding coeflicients on the two sides to obtain a system of equations that

can be solved for A and 8. We will use the flISt approach.
Setting r : I makes the second term in (6) drop out and yields 1 : 34 q1 ,4 : J; and

setting i : -2 makes the nnt term in (6) drop out and yields I : _38 ot A : -1.
Substituting these values in (5) yields the partial fraction decomposition

I + -l
t., ttt, tD:r-tTr+2

The integration can now be completed as tbllows:

I dr_:l[ ,t^ _![_dx
.l t, t)lx)-2) - 3,/x-l 3J.rt2

:1r""-r -]rn,+21+c= +C

lf the factors of 0(x) are linear and none are repeated, as in the last example, then the

recommended method for linding the constants in the partial fraction decomposition is to

substitute appropriate values of -r- to make terms drop out. However, if some of the linear
factors are repeated, then it will not be possible to find all ofthe constants in this way. In this
case the recommended procedure is to find as many constants as Possible by substitution
and then find the rest by equating coeflicients. This is illustrated in the next example.

Example 2
I )r )-L

Evaluate / :." '; : dr.
I X - tX-

Sohrtion, The integrand can be rewritten as

2x+4 2x 14
,r 2x1 x2G _Z)

Although.r-2 is a quadratic factor, it is,rot ireducible since 12 : rr. Thus, by the linear
factor rule, -t2 introduces two terms (since m : 2) of the form

AB
-*-

(5)

I lx - I_lnl-1 "r)
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and the factor ;r 2 introduces one term (since l7? - 1) of the form

C

-2
so the pJnirl lracrion decomposIion is

2t+4 A B C

.'(r r, t-F-"-2
Multiplying by jr2(x - 2) yields

2x l4: Ax(x 2) -f B(x - 2) + Cx2

which, after multiplying out and collecting like powers of ,r, becomes

2xI4: (A +C),r2+ (-2A+B)x 28

(1)

(8)

(e)

QUADRATIC FACTORS

Setting r : 0 in (8) makes the first and third renns drop out and yields B = 2, and setting
;y : 2 in (8) makes rhe fiIsr and second renns drop out and yields C = 2 (verify). However,
there is no substitution in (8) thar produces A directly, so we look to Equation (9) ro find
this value. This can be done by equating the coefllcients of .r2 on the two sides to obtain

A+C:0 or A:-C- 2

Substituting the values A : 2, B : -2, and C : 2 in (7) yields rhe partial fraction
decomposition

2x+4 -2 2 2

t\, 2) l-; -r 
2-

Thus,

I2t.1 Ll.t, |dt f d.tI - ^ J.t--2 1- 2l .-21 :J ^.1) -t) J ) J ^. .J f
2t).2: 2ln rl +: + 2tn lr 2 *C:2ln I +:+C,rlr-r

If some of the factors of Q(.r) are irreducible quadratics, then the contribution of those
factors to the partial fraction decomposition of P(x)/QG) can be detennined from the
fol)owing rule:

QLIADRATIC FACIIJR RULL. For each factor of the form (ar2 + hx + c'),,', the partial
fraction decomposition contains the following sum of m partial fractions:

Atx I Bt

ax' + b^ + c
Azx t 82 A,"x I B.+ .+

lax2+bx+()2 (ax2+bx+c1'"

whereA1,42....,A,n,81,82,...,B,,,areconstantstobedetemined.Inthecasewhere
n1 : 1, only the fll.St telm in the sum appears.

Example 3

nvatuate f
x2+x-2

dx.3,r3-'r2+3x-1

Sohttiott. The denominator in the integrand can be factored by grouping:

't2 +.r - 2 x1 +, -2 x2+x-2
3r3 - r2 * 3r 1 y2(3x - 1) + (3x I) (3r - 1)(jr2 + t)
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By the linear factor rule, the factor 3x - I introduces one tenn; namely

A

3rt
and by the quadratic factor ru1e, the factor.l2 + 1 introduces one tenn; namelv

-Br*C
1.r+1

Ihu.. the prrtial fraction deco.npo.itior i.

.r2+r 2 A Bx T C
---]-_(3r 1x:l-':+ D 3rl- r']+1

Mulriplying by (3r 1)(ir2 + l) yields

rt +r 2: A(x2 i l) + (Bx + c)(3x - t)

and

I

(10)

(11)

We could find A by substituting,r : j to make the last term drop out, and then find the rcst
of the constants by equating conesponding coefficients. However, in this crse it is just es

easy to find d11 of the constants by equating coefficients and soiving the resultir]g system.

For this purpose we multiply out the right side of (1 1) and collect like terms:

tt +, -2-(A+38)-\2+( B+3c){+(A c)

Equating,.onesponding coelfi cient' give'

A+38 : 1

- B+3C: I

A - C--2
To solve this system, subtract tl're third equation fron the first to eliminate A. Then use

ihe resulting equation together with the second equation to solve for B and C. Finally,
detemine A frorn the first or third equation. This yields (verify)

/: i, B-:, c:?
Thus, ( l0) becomes

x2+x-2 1, + l
L r 5" 5

3-r ].r2 + 1

1r ,l\ 4I r I/ Jr'r'- sJ3'' r-i J ,' . ta^ -il ,'r r

-]tn,-, I r 2ln,.r2 rl,,3ran-rx,ct5 5 5

(3i-l)(r,+1)

t2 +t 2

(lr l)(r2 + 1)

Fo tt TI I Il RLA DI:R Computer algebra systems have built-in capabil ities tbr finding partial

fraction deconpositions. If you have a CAS, read the documentatiol on partial fiaction
decompositions, ard use your CAS to find the decompositions in Exanples 1.2, and 3.

Example 4

Euatuate;l
Jra+4rr+1612+20,\+q

(r + 2) (ir2 + 3)2
dx.

Solutiort, Observe that the integmnd is a ploper mtional function silce the numerator
has degree 4 and the denominator has degree 5. Thus, the method of pa ial fractions is

applicable. By the linear factor rule, the factor r * 2 iltroduces the single term

A

t+2
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and by the quadratic factor rule, the factor ("r2 + 3)2 introduces two terms (since r'1 = 2):
Bx+C D.r+E

-L

x:+3 ' 1;r:431:
Thus, the panial fracrion decomposition of rhe integrand is

3xo+4x' lbr2-20r-9 A BxrC DtrL
tx- 2rrr:-3)l ,r -2 .r)+3 (r.2 3l

Multiplying by (.x ! 2)(x2 * 3)2 yields

3r4 +4-r3 + t6.12 + 20.r + 9

(.12)

: A(.r2 +3)2 +(Bx +c)(,r2+3)(.r +2) + (D-r + E)(-r +2) (13)

which, after multiplying out and collecting like powers of ,r, becomes

3x4 +4x3 + l6x2 +20x +9
= (A 4 B)xa * (28 * C)rr + (64 + 38 I2C * D\x2

t(68 +3C +2D + E)x + (9A+6C +2E) (14)

Equating corresponding coefficients in ( l4) yields the following system of five linear equa_
tions in five unknowns:

A+ B = 3

28IC:4
6A+38+2C+D=16 (15)
68+3C+2D+E=20

9A+6C+2E= 9

Efficient methods for solving systems of linear equations such as this are studied in a
branch of mathematlcs called linear algebra; those methods are outside the scope of this
text. However, as a practical matter most linear systems ofany size are solved by computer,
and most computer algebra systems have commands that in many cases can solve linear
systems exactly. In this pa icular case we can simplify the work by fiISt substituting.r : -2
in (13), which yields A = l. Substituring this known value of A in (15) yields the simpler
system

B= 2

28+C:4
38 +2C + D: r0 (16)

68+3C+2D+E=20
6C+2E= O

This system can be solved by starting at the top and wor.king down, flrst substituting B : 2
in the second equation to get C : 0, then substituting the known values of I and C in the
third equation to get D : 4. and so forth. This yields

A:t, B-2. C=0. D:4. E:O
Thus, ( 12) becomes

3x1 +4x3+ l6x2+20.r+9 I 2x 4x
(.r t2){rr_3): x'2' x: +3 ' (r2r j)2

and so

I 3xt + 4x1 + t6x2 +20x +9
J tr + 2)(r2 + 3)2

I d" ,[ ,* 
,,t^+4luri,ur,- J .r +2' / r:+

:lnlx+21+ln(Jr2+3) iA*,
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INTEGRATING IMPROPER
RATIONAL FUNCTIONS

CONCLUDING REMARKS

ExERcrsE sEr 9.5 E cAS

Although the method of pa ial fractions only appljes to proper rational functions, al im-
proper rational function can be integrated by perlonning a long division and expressing the

function as the quotient plus the remainder over the clivisor. The remainder over the divisor
will be a proper rational function, which can then be decomposed into partial fractions. This
idea is jllustrated in the following exanple:

Solrrliott. The integland is an improper rational function since the numerator l.)as degree

4 and the denominabr has degree 2. Thus, we first perform the long division

312 + 1

r -r-l tl,l J'- 5.-'r-l
3i4 + 3r3 6x2----7+' 

t

,2 + * -2

It follows that the integrand can be expressed as

Example 5

Euatuate;[
Jrl+3rt-512+r 1

,r2+x-2

3-ra+3rl -5x2+r I

=13xr+l)+- 
-.1- +:\ I

and hence

/3xr+3.r'-5i: r l, | | d\

| , .-: '1i -/'3't ll'rir 
J ^,*- 2

The second integml on the right now involves a proper rational fulction and can thus be

evaluated by a partial ftaction decomposition. Using the result of Example 1 we obtain

/Ltt-,:= ctx-xt+x+lr' |l +c

There are some cases in which the method of paftial fractions is inappropriate. For example.

it would be illogical to usc partial fractiolls to peribrm the integration

f 1'2 r ) -
/ ,- ^' J'- ln r'r2.r -8 -C.l ^t+2r 8

since the substitution ,, = ,rl + 2.r - 8 is more direct. Similarly, the integr ation

f)t I | )t f drl' - at- I -" dt- I -!' - lnrr- tlr lan ,irC
.l .r:-l J , .l J t I

requires or.[y a little algebra since the integrand is already in partial fraction fbrm.

ln Exercises 1 8, write out the form of the patial fraction

decomposition. (Do not nnd the numedcal values of the co-

efficients.) 7.

I - 5r-
.F (i, + D

(.\ + ))'

2r
(-{ l)(r']+ 5)

l-lr4
(.r 2)(rv, + l),

6.

3-t I
(r-rxx+t
2x -3
rl r'

5

-t(rl r)

,t2

(r+rt

In E\erc'.e..r t2. e\aluate rhs tnlegrJl.

' l?i* lo i,n3.*7



-.1

D.l
*.1
n.J

"l
'nl
..1

'"1
'ol
.,r. I
*.1

xl
*.1
E.l
,.J
,.1

^l
^.J

llr*17

-AI

l\r+7r-4
2-r2-9,t-9

-dr

,2 +2
x l2
frr t0

rr - 4.i + 4

r'+2rr+1,

-d.\

).I r 1
l----- d.,

1(\ ll-
-r2 +, 16

.t -
(r+ll(\-3)r"'

r2
(r l 2)J

2x2 I

t4.Y llt'r + 1l

.5 +,ra +4rl +,1r2 +,li +4
(r2 + 2)r

9.6

-Sr - r
l-rr - ll-r 3

dx
-r-(r'- t )

-t2 4
dx.tr I

rr 1r * l
2-r5 --vl - 1

-dr

3-tl -r l l

2.r) 2.r I. J.r

2.\r+-l.r+3

-Ax

(.J. - 1)r

dt
-tt+t
.Yr+ir+.,.+2

tr

I.ir+l)(.\r+2) I
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35. Find the volume of the solid generated when the region cn-
closed by -v - rzl(9 -r2).,i - 0. r : 0. and -t : 2 is
revolved about the,r-axis.

-16. Find the area of the Iegion under the curve J, : 1/( I + c.),
over the interval I ln5. tn5]. lHil?li Make a substirurion
that converts the integrand to a ralionaJ functlon.l

In Exercises 37 and 38, use a CAS to evaluate thl] inte-e1al in
two ways: (i) inregrare directly; (ii) use the CAS to flnd the
partial flaclion decolnposiliorl and integrate the decomposi-
tion- Integiale by hand to check the results.

," ,2a I

31. I ,"' ,rt
/ (12+2r+-l)l

tr "./*.1
n.l

'nl
,rl
..1

ln Er,erci.c. 19 ind -rU. inrerr'.rre bi hlncl ,rnJ ehu.r loUr
ansrvers using a CAS.

rr +lrl + r +'t

-lX

( \ + I )( \ r + l)
rl llrl+2t 3

- 

dtrr+1
-.r + 6-tl + 1or2 +,r

rr+br + [)

33r cur t/ I ttJ,j -\1. I 
- 

d'H+.+sin€--5 .l c'' 4

ln fr,r.i.<..l.l and.r4. ev:'llnte lhe rnre3ral h1 malinl a

substilution that converts the integrand to a rational lunction.

I 16-rl ,l.rl + rl-r I

41. Show rh21

7i,':
42. Use partial tiactions to derive the integration formula

t I I l,r ' r| ,/' - -ltrl , eJ d ^ 21 1,, .\

E 3e.

l.l 40.

1r, * 27r l814 3r3 -

1t

8l,'

9.6 USING TABLES OF INTEGRALS AND COMPUTER ALGEBRA
SYSTEMS

ln this section we \+ill discuss lLotr to itltegrate Llsing tatbles. 4t1d \4,e v'Ll address sorue
of the i.\sues lhat relqte to usitlg computer algebrd systens.ftl inte,qration. Readers
\^,ho ure ot Ltsitl!1 compLlter ulgebra systems cau skip tll(rt nletei'ial wih no prcblen.

Tables of integlals are uset'ul tbr eliminating tedious hand conrputation. The endpapers of
this tcxt contain a relatively brief table of integrals that we will relel to as the Endpaper
Integral Table; more comprehensive tables are published in standard referetce books such
as the CRC Sta]ldut'd Mathematical Tdbles and Fctrmulqe, CRC Press, tnc.. 1991.

All integral tables have their own scheme for classifying integrals according to the for.m
of the iltegrand. Fol cxample, the Endpaper Integra] Table classifies dte integrals into
15 categories: Basic FLtnctiotts, Reciprot:als of Basic Fut1.:tiot1s. Powcts ofTrigononetric
Fun.Jions. Products ol Trigonometric FtuLctions. and so forth. The iirsL step in working
with tables is to read tl]rough the classifications so that you understiud thc classification
scheme and know where to look in the table for integrals of clif'ferent types.

INTEGRAL TABLES
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PERFECT MATCHES

MATCHES REQUIRING
SUBSTITUTIONS

If you are lucky, the integral you are attempting to evaluate will match up perfectly with
one of the foms in the table. However, when looking for matches you may have to make
an adjusffnent for the variable of integration. For example, the integral

/ 
"2 

sir, r dt
J

is a perfect match with Formula (46) in the Endpaper Integral Table, except for the letter
used for the variable bf integration. Thus, to apply Formula (46) to the given integral we
need to change the vadable of integration in the fomula from ,l to r. With that minor
modiflcation we obtain

I r2,in rar =2.x.in-r+t2- r-)co\ r I C

Here are some more examples of perfect matches:

Example I
Use the Endpaper lntegral Table to evaluate

(ar /sin7rcos2rdr bt ItJlIxatJJ
r,' r': f

s1 | "-1---L4^ rdt / t,rr -7r - lysinr.rd.r
.l x.l

Solulion (.a). The integrand can be classified as a product of trigonometric functions.
Thus, from Formula (40) with n : 7 atd n : 2 we obtain

/ cos 9r cos 5r

;l 
sinT,rcor2xdr - - l8 - I0 +C

Solutiott (bl. The integrand canbe classified as apowerof;v multiplying uG+b*.tnus,
from Fomula (103) with a = 7 and D : 3 we obtain

f ^- 2 ^l.r'Jl+*ax -:l;rlJ5r2 - 252r -3q2)(7 3r)': c
./ rEJ5

Soltttiott (c). The integrand can be classified as a power of r dividing .n6t:.r2. Thus,
from Formula (79) with a : r./2 we obtain

lf="=uE 'z '5tn
/1 t /1 -2 I"'' "' " l+cxl

Soluliott (d). The integrand can be classified as a polynomial multiplying a trigonometric
function. Thus, we apply Formula (58) with p(x) : a3 11a 11 and c : z. The successive

nonzero derivatives of p(r) are

p' Q) : 3x2 +'7 , P" Q) - 6x, p"' (r) - 6

and hence

Itrt +7^ + I ) sin nr d.{

x3+1x+1 3x2 +1 6x 6
= ----------------- coszx * -* Sin 7r,i + , cos nj{ - , sinzx *Crr-ttlt

Sometimes an integral that does not match any table entry can be made to match by making
an appropriate substitution. Here are some examples.

Example 2

Use lhe Endpaper lnlegral lable to.ruluut. / r -, 1^: d^.
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Sohttiott. The integrand does not malch any ofthe forms in the table prccisely. It comes
closest to matching Forrnula (1 12), but it misses because of the factor of 4 multiplying r2
inside the radical. However. if we make the substitution

u :2x, du -2dx
then the 4r2 will become a u2, and the tmnsfomed integral will be

IJ' 4x dx=' Ll!,'- u'cluI I I V-

which matches Formula (112) with zr : j. Thus, we obtain

| "e 
u.'0. : +.,rsin (?)1..

r[2, ) r .. I ,/2,-+\l-)l : v' 4r' .rrsin'(- j'/l '
8rl-l- 
-ln 

/. 4r'ln.sitt r8.r lr la

Example 3

Use the Endpaper Integral Table to evaluate

61 | e"' sin-t {e"'1ax ,o, |,6 o, *tr*
Soltttion (u). The integrand does not even come close to matching any of the forms in the
table. However, a little thought suggests the substitution

u: en'. du : te" lr
from which we ohtain

f1f
/ .' rirr r1, )ttr = ' | ,io I u,lrr
.J n.t

The integrand is now a basic function, and Folnula (7) yields

t, 'in 
rrp- rd.r -l1,,rin , rI.ri2l+C.l r'

l

-'1e rin',, , ''/t .-l+c
if

Sohttion (b). Again. the integrand does not closely match any of the forms in the table.
However, a little thought suggests that it may be possible to bring the integrand closer to
the form xr,&2 + a2 by completing the squarc to eliminate the term involving r inside the
radical. Doing this yieJds

lxJ^ 4,r 5d.t - | t J t \ 2 - 4 y - d ) - I .1 x = l-r/r.r -2r:- 1../r rlr
JJ,I

At this point we are closer to the form r r/r2 + ri2, but we are not quite therc because of the
(r 2)2 rathel than 12 inside the radical. However, we can resolve that problem with the
substitution

u-.x 2. du:dx
With this substitution we have r : 4 1 2, so (1) can be expressed in tems of & as

"l
lrlr' ,1.i 5J.r = I'u -2tJu2+lJu lultl I tdu l2ltu' lduJt.t .t

I l, - +

1l )-l
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MATCHES REQUIRING REDUCTION
FORMULAS

MATCHES REQUIRING SPECIAL
SUBSTITUTIONS

The first integlal on &e ght is now a perfect match with Formula (84) with c = l, and

the second is a perttct match with Formula (72) with .7 : 1. Thus, applying these fomulas
and dropping the unnecessary absolute vaiue signs we obtain

t I r - l

/,,/,.r --r , - s,ir 1i,,,'t r, ' 21","/,,t- r-f tn,ii-,/,',+t,l-r
Jlrll22)

Ifwe now replace a byx 2(inwhichcasea2 11:x2 4-r+5),weobtain

/',r r'--l , * 5,i.i - ,(.r 4r 51" 1.r '1r r 4.\ I ).t'
tn,r 'r ,/,. +, St C

Although cotrect, this form of the answer has an unnecessary mixture of radicals and

fractional exponents. If desired, we can "clean up" the answer by wliting

lr2 4r-51'l-'.r' /Lr 5'r/.r' 41 5

from which it tbllows that (ve fy)

/'r,r--11 - 5a/l =r1r' r llr r2 4r I I

.t

+ln(x 2*r/x2-4:r*5)*C

In cases where the entry in an integral table is a reduclion formula, that formula will have

to be applied first to reduce the given integral to a form in which it can be evaluated.

Example 4

U\e rhe Endpaper lnregral Table lo evaluale [ ,." n ,.
J '/l +-t

Sohtliott, The integrand can be classifled as a power of x multiplying the reciprocal of
.76 + llr. Thus, from reduction fbrmula (107) with z7 - l. b - 1, and n : 3, tb]lowed by
Formula (106), we obtain

I t 2rr',4 I r 6 f ..r 
l

I ,!r- _'_ _l _,tt
J Jt J JtIt

2x3J1+ x b[] - . lI r1' 4Y 8rJl r'l C
7 Lr5 _l

r 2r'' l2r2 161 12,
-lt .s f I.-:5Jvt-'-c

TI.re Endpaper Integral Table has two entrjes involving an exponent of 3/2 and nunerous
entries involving square roots (exponent 1/2), but it has no entries with other fractional
exponents. However, integrals involving fractional powers of r can oflen be simplified
by making the substitutiol u : .r] 

t' in which ,r is the leasr common multiple ol the

denominators of the exponents. Here are some examples.

Example 5

Evaluate

l,f(a) / : rlr
J 1+J.t

(b /.+;J t+ z\l)i ot 1"4+ra*
Solutio ( a). The integrand contains r l/2 and,r l/r, so we rnake the substitution a : : r/6

fiom which we obtain

x:116. dx -6ut du
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Thus.

I ffi"= /,#'uu'ta' =o | #ro'
By long division

"'.=uu-u'+rJ-,*---]-l*a: l*rrl
from which it follows that

I ff ,,- = u/ (,. - u. +,,- 
' - j;) .r"

=lul - lus + 2u3 -6n + 6 tan-l ,r + C

: lxtto - t-t5/6 + 2.rl/2 - 6rl/6 +6tan-l(.rl/6)+ C

Solution lbl, The integrand contains xll: but does not match any of the forms in the
Endpaper Integral Table. Thus, we make the substitution & = .xr/2, from which we oblain

,t: u2. tlx:2udu
Making this substitution yields

f d.r I 2u

J ;ta= J 2+2,'t'

: [(,---l-) /, Lone,,i.o,
/ \ t+u)

:a-lnlllal*C

: 
"r[-ln(l +Ji\+C Ab$rule lahe nor nccdcd

Solulion lcl. Again, the integral does not match any ofthe forms in the Endpaper lntegral
Table. However, the integrand contains (1 * e')l/2, which is analogous to the situation in
part (b), except that here it is I + I' rather than x that is raised to the l/2 power. This
suggests the substitution a = (l + e')t/2, from which we obiain (verify)

^ 2tt
.r = ln(r'- l). 41 = -- - du._|

Thus.

l .'t*^o- = 1 
,(;\) r,

f 2u2
= I "-'o'r/ '-)'u Lonld'ri'ion: J\2+_;1/

f / I I \:zu+ 
!1r,,_,_ ,nr)u, 

p"nid rric,ion\

= 2u +lnlx - ll - lnlr + ll +c
lz - I I

=2u-rn l,, r L-.
:zJt + e +tnl./TT7 - ,'l *. Absoru,e 

',ruc

l/T+c'+tl'" norneeded
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Functions that consist ol finitely many sunts, differences, quotients, and products of sin,{
and cos -r are called rational functiotts of sin x ond cos x. Some examples are

sin -r f 3 cos2 -r

cosi+4sinr' I +cosr -coszr' l+4sin,{
The Endpaper lntegral Table gives a few formulas lor integrating .ational functions of

sin-t and cosx under the heacling Reciptot:tls of BcLsic Fr7?ctior?J. For exanple, it lolkrws
from Formula ( 18) that

t1
I 

- 

,/r:tanr qecr*C (2)
./ r + sLn.\

However, siuce thc integraDd is a rational function of sin r, it may be desirable in a pafticular
application to express the value of the integral it terms of sin r and cos r and rewrite (2) as

I 1 sinr-lI ' J': +c./ L+Stnr cosr'

Many rational functions of sin,r and cos.r: can be evaluated by an ingenious nethod that
was discovercd by the mathematician Karl Weierstrass (see p. 18,1). The idea is to make the
substitution

ll : tan(.r/2), -n/2 . x/2 < ir/2

lrom which it follows that

,?,
t = 2 tun ,r. ,ls ------------,ltr

I +u_
To implenent this substitution we need to express sin.r and cosr in terms of r. For this
purpose we will use the identities

sinr : 2sin(r/2)cos(.r/2)
cos r - cos2(ir/2) sin'](r/2)

and the following relationships suggested by Figure 9.6.1 :

/' .,, ),-sirtr r 2r - , lrrd .u. .. -
VlLr- /l u

(3)

(,1)

Fig!rc q 6. I

Substituting these explessions in (3) and (21) yields

I u \/ I \ 2tt

'i"'-r\,, ,,'/ \., ,'/ t-tt

I t \ / ,, \_r-,,cosr:l /-I L
\\l+r/ \rr-,,/ l-"

In summary, we have shown that the substitution u : tan(x 12\ can be implemented in a
rationaL function of sil-r and cos,r by letting

1-u2 2

I+tt' (5)

Example 6

evatuate;f
1-sinr+cos-r

Sohttiott. The integrand is a rational tunction of sin r and cos,t that does not natch any

of the folmulas in the Endpaper Integral Table, so we nake the substitrLtion u - tan(x 12).

. 2tt
Sln I - ^, COSI -I + u'

dx--dulIu)



9,6 Using Tables of ntegra s and Computer Algebra Systems 549

Thus, frorn (5) we obtain

2 du

t +rrr

INTEGRATING WTH COMPUTER
ALGEBRA SYSTEMS

I I - sin .r + cos.\-

ln(l - r). ln(.r - 1).

nlalhdnattu thtt)l(

=I
'- (;;). (];#)

2 du=I (l+r/l) 2u*(l-al1

IiL.I,IARK. The substitution u : t^n(r /2) will convert any mtional function of sin,r and
cos.r to an ordinary rational lunction ofll- Ho$,ever. the ntcthod can lead to cumbersonle
partial fraction decorrrpositions. so it nay be rvonhwhile to explore the existence of simpler
methods when hand computation is ro be used.

Integlation tables are rapidly giving way to cornputerized integration usillg computer alge-
bra systems. However. computerized integration is very much like colnputerized chess-the
conlputel can sort through myriads of possibiLities quickly, but tlte approach is sometimes
nechanical and Iacking in the imagination and judgment of human thought. As a result,
iurswers prod[ced by computer integration are sometimes less satisfactory than those in in-
tegral tables that have becn rctined over many years by nrany excellent mathematical minds.

Sometimes computer algebra systems do not produce the most general form of an indef-
inite integral. For example. the integral formula

I 
-: 

lnl.r _ tl*c
J.r-l

which can be obtained by inspection or by using the substitution ,l : -r I is valid for'
.r f l. However, Mtthanati(t, Muple, and Der.ile evaluate this intcgral as*

ln(r 1)

Observe that none ofthc systems put in the constant of integration-it isjust assumed to be
there. Observe also that none of the systems p in the absolute value signs; consequently.
for Mople an<|Derit., thc rcsulting antiderivative isonly valid if.r > I, and forMatlrcntfticu
it is only valid if r < l. Thus. although the computer algebla systems all produced a correct
antiderivati\.e. none of them produced the most general antiderivative.

Now let us examine how Mdhenatict. Mople, and Derive h:.rndle the integml

/ rr/.rr -qr-sar1=.!rrl -r - I)v/..r: -4.r +5
.t

I lr({ - 2 - 7-"1 ,, - 5'1 (6)

which we obtained in Exanple 3(b) (with the constant of integration included). Derlue
produces this result in a slightly different algeblaic iorn, and Mople produces the result

t-
/ . r/.t, - +.. + s,i., = I t.r= - 4.r + 5)t/1 + : ex - a;ury: - al +5 1 sinh I 

(-r- - 2)
J

This can be rewritten as (6) by expressing the fractional exponent in radical form and

expressing sinh '(t - 2) in logarithmic form using Theorem 8.8.4 (verify). Ma lenatica

'r Results produced by M (th(tiktti( a. A4aple. at\tl Drrn,r may vary dependillg on lhe version of the softwrre that is

used.
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COMPUTER ALGEBRA SYSTEMS
CAN FAIL

produces the result

/rvll4-^ +5d.' - +t,,': " - l)v,t, -,1r a.5 sinh 112 
-r.1

.t

which can be rewlitten in fbmr (6) by using Theorem 8.8.4 together with rhe idenriry
sinh r( r): sinh-rr (verify).

Computer algebra systems can sometimes ploduce inconvenient or unnatural answers
to integration problems. For example, yyhei Mathematica, Maple, and Derive are asked to
integrate (,r ] 1)?, they produce the tbllowing results:

(r + l)x (r + l)rr

+ +. .r +l.rr+?.r3+f;.ra+7xr+l"o+rt+itt
itldplc Dtt\t !4uthr 1u!n1t

Tlre ansrvers producedby Maple and Derlle are in keeping with the hand computation

| . tr+l)8
/(jr+l)'J.\: - +C

,l h

that uses the substitution ll : ,r I l, du = dr. whercas the answer prod\\cedby Mathemat-
ica is based on expalding (,t * 1)7 and integlating tenn by term.

FOIt THE RE:\DF.R If you expand the answers produced by Mnple ancl Derlle, you will
djscover that they contain the term * that did not appear in the Mathemaaicd result. What
is the explanation?

In Exrmple 2(a) of Section 9.3 we showed that

/sirrrrco.'rd.r ::rr<r -:iirr r+ j.innr C.t'
ln contast, Malhen?dli.a integrates this as

*oo*! l1 890 sin " 
420 sin 31 252 sin 5x * 45 sin 7r * 35 sin 9r)

and Maple and Derlre essentiaily integrate it as

- j sin3,tcos6r - j sin,tcos6.r * fr cosax sin,r * .,rg cos2-'rsin;r * fr sin.r

Although the three results look quite different, they can be obtained fiom one another using
appropriate trigonometric identities.

Every computer algebra system has a library of functions that it can use to constmct anti-
derivatives. Such libraries contain elementary functions, such as polynomials, rational t'unc-

tions, tfigonometdc functions, as well as various nonelementary functions that arise in engi-
neering, physics, and other applied flelds. If the result of an integmtion cannot be expressed

in terrs of the functions in the program's libIary, then the program will give some indicatior
that it camot evaluate the integral. For exampLe, when asked to evaluate the integral

t-
/rl lrr,'/l rrinrt',/r r7r

Mathentotica, Maple, and Derive all respond by dispJaying some fom of the unevaluated
integral as an answer to indicate that they could not pedorm the integration.

IOR lllEIiEr\DBlt. Sometimes integrals that cannot be evaluated by a CAS in their given
for-rn can be evaluatecl by first rewriting them in a difterent lbrm or by making a substitution.
Make a u-substitution in (7) that will enable you to evaluate tl're jntegral with your CAS.

Sometimes computer algebra systems respond by exprcssing an integral in terms of
another integral. For example, if you try to inregrrte s' using Marhemqtica, Maple, or
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Derlle, you will obtain an expression involving erf(which stands lot errorfunclior). This
function is defined as

) I'
erfry): : l e' dt

t/n Jt
so tllat the three programs essentially do nothing but express the given integral in tenns of
a closely related integral.

Example 7

A pafiicle moves along an r-axis in such a way that its velocity u(/) at time I is

u(r): lQso57;si1a/ (1 > 0)

Graph the position versus time curve for the pafiicle, given that the particle is at the poinl
,r-lwhent:0.

Sttltttion. Srnce dx/dt : r(l), the position functior] r(r) is obtained by integrating the
velocity function. We will perform the integration using Mathemcuit:a, but tltc procedure
would be the same for Maple or D eri,e. Integrating u(t) and adding the missing constant
of integration yields

t
-r: / -10cos/rsin+lrlr

- .n4,rl 116170 sin r - 23 10 sin 31 254 J sin 5r - 165 sin 7r + 385 sin 9r

+105sinltr)+C
Sincex-1ift:0,itfollowsonsubstitutingthesevaluesinthisequationthatC:1.
TbuS,withthiSva]uefotCthegraphofxversuslisasshowninFigure9.6'2.<

In Exercises l-24:
rrr Use the FndpJfer lntegrJl lrble loe!aluJte the inleeral.

'h) ll yoLr have a CAS. u\e ir ro evaluare rhe 'nregral. pnci

then conlirm that the resuh is equivalent to the one that
you found in parl (a).

E. lJa- /.\ h. lq' l,

t. lJ3:" d" B. I-;- ,t,

19. 
/ 

sin 3r sin 2r r1 x 20. 
/sin2xcos5rrlr

I f lnrI r'ln.rd..' 22. I 
-d.\J J \/X

zt. 
.f "-" s;,'u a, 24. 

.[ 
,' cos2, dr

you found in part (a).

r lf -,a,
z' l*ira'
s. | "Jt, ta,

t. [ --L:a,J r r/4 3-r

e. [ 
--t 

-7,
./ 5 1z

r. | \,G'? 1,1,

r. [ -i:a,J J.t + 4

[ -).- o,./ (2 lr)r

[ --J- o,./ r'(l 5r)

I;,,I#*
Iin"
Iltf ,.

I n;-'.
'o'. -dr. r-r"(4 _ler,)-

cos 2r

4.

In Exercises 25 36:
(a) Make the irrdicated &-substitution, and then use the End

paper Integral Table to evaluate the integral.
(b) lf you have a CAS. use it to evaluate the integlal, and

then confim that the result is equivalent to the one that10.

".I
'u- I

14.

(sin 2r 111 sin 2r1
r/x, u - sil2,r
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ft
21. I dt tt :1-/x

J Jr (gr + 4l
I .os 41

28. I . dr, r-sin4\
J 9+srn 4\

:e. f - ]-.r,.,,=.r,J ./0,, 1

30. 
| 

,J2,\3d,. u: J-2,.

31. l:.ir. rr: lrl
.t ./s 9rl

". l :-,1r a:2r
J I-VJ +Y

t" srnltln r )ll- I /r r:lnr

:+. 
;f " 

t'"ort{" 2')tlx, u-" 2'

35. 
| 

.te )',1r. , - 2,,

:e. 
/tnts.'- 

l)r/.v, a-5r-l

llI 

- 

dt
J \r+4\ -5
I - _ J'J V5+4' r'

| .a ','-c r,

l.;**ou'
49.

In Exercises 53-66:
(a) Make an appropriate rr -substitution of the fbrm u : .r1,"' ,

u - (t + a)li,,, or u : r,', and theD use the Endpaper
Integral Table to evaluate the integral.

(b) If you have a CAS. use it to evaluate the iDtegral, and
then confimr that the result is equivalent to the one that
you found in part (a).

ln Exercises 37 u18:

(a) Make an appropiiate n substitlLtion, and then use the
Endpaper Integral Table to evalttate the intcgral.

(b) If you have a CAS, use it to evaluate the lntegral (nosub
stitLLtion). and then confirm that the result is equivalent
to that in pa11 (a).

l_
s3. 

./ 
r ,"r t 2,tt

t-
55../ r'r/i'+tdr

u. [ =" -=J J,T+ V\

59. I
J r(l-L rl

6l' / rr-r1

6.1. 
' 

' _J\J Jl + \l
6s. 

./ 
sin Jr ,/r

In Exercises 67 72:

6s. [ , 'tF ,
.,1 l-cusd

7r. / -i!:' .i.
,/ I !^OS.\

64.

66.

J Jr+l
t1t .._,1t

/, ."
r' 2l

./.r+1

It+J,,t,Jt /,

/ ,. -t,- ''

.t

-t/, i *-#;t L ),'/#,'
Io; ,0'

| "'rE ^"^,'

l,e,-wn,
;f ' sh 3'.1'

47. le 
r'(1r ,18.

l- "
/ /o -0".,,

[--l--r^
J , r'" 5,.l

/.o, "{a'

I xr,r2 3l) ax

n.[ !:
,/ +\rnt-Jcos:r

'" l^#,"-,

(a) Make a-substitution (5) io conve lhe integrand to a ra-
tional function of ri. and then use fte Endpaper Integral
Table to evalLrate the integ.al.

(b) Ifyou have a CAS. use it to cvaluate the integral (no srb
stitution), and then conlim thal the resLrlt is equivalent
ro rl_ilr rn par {,r r.

6i. I t' 
6s. 

I rtr
./ lt.,rrr ',o.' lr.inr

39.

11.

44.

45.

In Exercises 49 52:
(a) Complele the square, make an appropridte i/-substitution,

ln Ererc .es -.{ and I l. u.( rn} method In .nl\e or').

,r. I I ,,,-0.s.2 x 1
.1, tG t\

JnJ lllen u.e lhe En.lpaper Integrll Trble to errluate tne t
inregral. ,o- J ,,I-r-tr = I r I

'b) ll youhr\eaCAS.uceit roeva uarerheir.e!r,rl rno.rr\
stitution or square completion), and then confinn that the In Exercises 75 78. use any method to fiud the area ol the
result is equivalent to that in part (a). region enclosed by the curves.



15.

76.

77.

78.

\:,1< n, rl r 4

-u-V5rL4, -"--0, r:2
I r 0. r:0..r:1' )5 l6;L I

1 : ,/.r ln-r, _i - 0. ,t :4

In Exercises 79-82, use any method to find the volume of
I the solid generated when the region enclosed by the cuNes

is revolved about the )'-axis.
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ln L\ercr\e\ E- .rnd 88. inlnrmatron i' giren thout llre tnotion
of a particle moving along a coordinate line.
(a) Use a CAS to find the position lunctior of the pallicle for

t > 0. You may approximate the constaDts ofinteg.ation,
where neccssary.

(b) Graph the position versus time cu e.

79. y = cosr, I - 0. r: 0, x: T/2

80. .y: ./C 4, )-0..r:8
81. t=s'. t:0, t:0,;r:3

82. _y = lnr, _y = 0, -t :5

In Exercises 83 and 84, use any method to find the arc length 90.
of the cu e.

83. -r,:2,v2,0:-r:2
84. ],:3lnr, 1<r<3

In Exercises 85 and 86, use any method to find the area ofthe
surface generated by revolving the cuNe about the r-axis.

)r:sin,r,0:-r:n

Y: l/-t. 1 <:r :4

u0) :20coe6 r sinr /. .r(0) - 2

a(r) - e 'sin 2r sin41, u(0):0 s(0):10
(a) Use the substitution a : tan(r/2) to show that

I I rcnrr/2rI secr/r-ln 

- 

e
J I trn" 2r

and conlim that this is consisrent wilh Formula (22)
of Section 9.3.

(b) Use the result in parr (a) to show rhal

Ln t
J 

*. ',r' - ln ran (, 2J C

Use the substiturion,l : ran(r/2) to show that

I I [l -cosr'llc.crdr--ln l,(I 2 fJ*cosr I

and conJlrm that this is consistent with the result in Exercise
61(a) of Section 9.3.

Find a substitution that can be used to integrate rational
functions of sinhr and cosh -r and use your substitution 1<l

evaluale

./ 2coshr +srnhr

without expressing the integrar'ld in terms of e' and e !.

ta 87.

E 88.

89.

91.

85.

86.

A REVIEW OF RIEMANN SUM
APPROXIMATIONS

9. 7 f\{ t Jli# H Ri eAL l l\T'H& F?eTi O hi : $ 1 ftfi P S 0 frd'$ R l".l l- E

The usual procedut'e for e\,aluating a delnite integral is to Jind an antideritoti,-e of
the integrand and appll- the Fwtdamentql Theorent of Calculus. Hob,e1)?1 , if an anti-
derh,atbe oJ the integrand cantnt be found. then we must senle Jbr a numerical ap
proximatbn of the integrdl. In earlier secti(rt.\ h)e discttssed thrce prccedures for
appt oximating areas using Riemann suus-leJi ettdpoint apprcimation. right endpoint
approrimatiotl, and midpoint approrimation. In this sectiotl we will adapt those icletts
to dpproximatitlg general deJinite integrals, and u,e will distus,; some cr apltc'.\'tnLl-
tion methods that oJieft pro|ide morc accuraq u,ith less c:ontputation.

Recall from Formula (6) of Section 7.5 that thc deflnite integral of a function / over an

interval [a. b] is defined as

tb -1-
I I,^,J^ - lirn ) rrlAr
J,, '-+-E

where the sum that appears on the dght side is called a Riemann sum. In this fomula, the
interval [a. D] is divided into n subintervals of width A;r : (b - a)/n, and rf denotes an
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arbitrary point in the &th subinterval. It follows that as,? increases the Riemann sum will
eventually be a good approximation to the integral, which we denote by writing

rb I

I f r.,t,t^ . l /r.,1rn^
Ja k:l

or, equivalently,

I 1,.,',1^ 'l, lfr.r t-l"t:'- - rrr.,']
J, -

ln this sectior we will deoote the values of I at the endpoints ofthe subintervals by

.r,0: /(4). Ir= "f(rr), .tz = "f(r:),..., .y, I = "f(r,-r), r,,: f(.b)

and we wili denote the vaiues of / al the midpoints of the subintervals by

FiSurc 9.7.1

-r'n , lu:. ..., )a,,

(Figure 9.7.1).

With this notation
cussed in Section 7.5

1,,

t\
l

l

l

l

l

l
i

the left endpoint, right endpoint, and midpoint approximations dis-
can be expressed as shown in Table 9.7.1.

Table 9.7.1

LEFT [NDPOINT APPROxINL\TI(]N RIGH'I FNDPOINT APPROXIMATION MIDPOINT APPROX IMA'f ION

l,,.rru 
n, = (8) t.,,, *,,, + . +.v,,l (4.!)1_t, *-', *. . *-',,1 l,'r,', o, = (*)tr^,+ ),,,1 +. + ),,,,,1l.",tn 

o' -

)r Y2

I

I
I

I

I

The left hand and right-hand endpoint approximations are rarely used in applications; how
ever, if we take the average of the left-hand and ghr-hand endpoint approximation\, wc

obtain a result, calledthe trapezoidal approximution, \ahlch ts commonly used:

Trap e zo idal App r oximatio n

fb lh ,\

.l ,I'^',t^ (; Jlr, 2)r I 2v, ',1

TRAPEZOIDAL APPROXIMATION

(l)
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The name n apezoidal approrinatiou can be expiained by considering the case in which

l (.r) > 0 on [a. b]. so that /.1 /(-r) /r represents the area urder ./(r) over [n, b]. Geomet
cally, the trapezoidal approximation lbrmula results if we approximate this area by tlte sum
of the trapezoidal areas shown in Figurc 9.7.2 (Exercise 4l).

Figurc 9.7.2

)O

/

]t

-,

J2

\:

I Trapezoida approximatlon

ba2I ba2l_ : 0.1 and
t0 2n

Example 1

In Table 9.7.2 we have approximatecl

r1 t
ln2: / l,1L

Jt x

using the midpoint approximation and the trapezoidal approximalion. In each case we used
n : 10 subdivisions (r1'the interval [1. 21, so that

:0.05
20

Itlr\I \ltK. In Example I we rounded the numerical values to nine places to the right of
the decirnal poirt; we will fbllow this plocedure throughout this section. lf your calculator
cannot ploduce this many places, rhen you will have to make the appropriate adjustments.
What is impoftant here is that you understand the principles involved.

Table 9.7.2

Midpoint Approximation Trapezoidal Approximation

MIDPOINT

),,i = .f(n1) = llni
ENDPOIN'I' NIULTIPLIER

l

2

3

4

5

6

1

8

9

t0

r05
1.l5
1.25

1.35

1.45

1.55

1.65

1.75

1.85

1.95

0

1

2

3

4

5

6

1

8

9

l0

1.0

l.l
1.2

1.3

1.,1

t.5

I.6
t.7

1.8

1.9

20

0.952380952

0.869565217

0.800000000

o .1 40'7 40'7 1t
0.689655172

0.64516 r290

0.606060606

0.571428571

0.5405405,11

0.512820513

6.928353603

1.000000000

0.909090909

0.8333 33333

0.169230169

0.71,12115714

0.666666667

0.625000000

0.58rJ235294

0.555555556

0.526315789
0 500000000

1.000000000

1.8181 81818

1.666666667

1.538461538

I .4285'7 | 129

r.250000000

1.176470588

t.llllltltl
L05263 r579

0.500000000

I

2

2

2

2

2

2

2

2

2

1

lr' 1o' = ,.n.ruu.rr.r35i603) = 0.6e283s360

f 
'lr' 

,uot,, Lr.8-54'b.o.,) 0.oo.,7-r1u.r

I3.875428063
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COMPARISON OF THE MIDPOINT
AND TRAPEZOIDAL
APPROXIMATIONS

The value oi ln 2 routded to nine dccimai places is

lr I

Il 2:/ Jr 0.bq-rI-+7181 (2)

so tl'ral the midpoint approximation in Example I produced a noLe accurale result than thc
trapezoidal approxim|ttion (veify). To see why this shoLrld be so. we nced to look at tltc
midpoint approxinration ti-om anolher i'iewpoint. LFor simplicity in thc cxplanations. we
will assume that l(-r) : 0, but the conclusions rviil be t|ue without this assumption.l For
differentiable functions, the midpoint apilloximation is so[netimcs cii)ecl the toryenr line
approtinttLtiott because over each subiuterval the iuea of the rectangle used in tltc rnidpoint
approximation is equal to thc area of the trapezoid rvhose lpper boLrndary js the trngent
line to r' - .l(-r) at the midpoint of the intervtl (Figure 9.7.3). Thc cqLialii) of these ar.eas

follows fiom the fact that ihe shaded triangles in Figure 9.7.3 are congrrrcnt.
In thjs sectior we will denote the midpoint ancl rrapezoidal apprrximations ol./,f l (.r) r1-r

with r subintervals by M,, and I . respectively. and we will denote the errors in these
approximations by

It, : 
,[ ,' tt,t,t, u,t, rn.t

In Figure 9.7.4a we hirve isolatccl a subintewal of fri. bl on rvhich the gr aph ol a l'unction

./ is concave down. and we have shadecl the areas that rcprcsent lhe errol.s in thc midpoiltt
anci tlapezoiclal approximations ovcl the subinterval. ln Figure 9.7.4b we show a succession
of fbur illustrations which make it evident that the error liom the midpoint approxjlnation
is less than that from the trapezoidal apploximation. If the glaph ol' .f i,r,ere concave Ltp,

analogous ligur-es u'ould lead to dtc sante conclusiorr. (This argument, clue to Frank Buck.
appeared in 1'he Collegc Mttthenlati(.\ JoLt'nu.l, Vol. I6. No. 1. 1985.)

141 \lidaa. _4 ,4f7 !r'o .,-- -/'-2 ,at7 f2a/ ./.- (,1 ,/l/,, l"*""" ll t t/ /' './l|""Itv,/I{,/(,f f 1 tr 
t

B Lre area = B !e area < Ye iovr area

(.h)

Iiigure 9.7.:la also suggesls lhat on a subintelval whele llte graph is concave dowr],
the nidpoint approximation is lar-qer than the value of the integral and the trapezoidal
approxirration is snritller'. On an interval where the eraph is concave up it is the other wa1
ar.ound. Tn summiuy. we have the lbllowing resull. which we staie without lblmal proof:

9.7.1 THEORE\'1. Let I betontiruutu.tonla.bl.andlet Eyluntl E1 bethe Lh.tolLtte

etor.s tltat revrlt f) on the nidpoint uttJ rt ole. ni,la! ,rllrtttinruti,,rr t ,,J 
.1,t,' .l ( t) tlx u.tirtg

l.a) Ilthegraphol .l iseitlrcrcontureuporcctncaveclownonQt,b),tlrcnlEy <lE7l.
that is. tlle en or.frolti tlk niLlpoint appro-xiitlatioti is less tlnn tltat .fion1 the tt.tpe
-.oi tl u I app n r i nttLt i ort.

(b1 Il tlrc graph ol .f isconcavedowtton(a.b).tlrcn
7l

r,,. | 1tt1,tr - ,v,,
J,

(c) If the grqth of f is utrtttn,e ttlt on (11. bJ. then

,, . l,' /(.r)r/r < r,

The srad€d tr angles
have equa areas.

Figure 9.1.: ,, _ 
L,, 

f,,.,o, r,,

F lurr Lr 7I (.r)
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Example 2

Wc obsen ed eatlier that thc lnidpoint approximltion of ln 2 obtained in Exlnrple I rvas noLe
accurate than thc tnpczoidrl approximation. This is consistent \\,ith pun (Zl) of Theorcnr
9.7.1. sincc l(r) : l/.r is continuous on [I.21 and conca\,e upon ( l. 2). Mo[cover. a

comparison ol the two irpproxinlttions to (2) shows that the ntidpoinl rpfroxirnittion i.
smaller tllan ln 2 and the tl1ipezoidrl applorinatiolt is larger. 'l'his is consisteDt with palt
(r ) ol Theolem 9.7. L

Itl:Nl.\liK Do not effoneollsly colclucle that ihe midpoint opproxintltion is always better
than the trapezoidal approxinillion: fbr functions wilh infiection points. the hapezoidal
llPPto\inrrtron (irn h(' n)(lr{.1(cLflilc.

IrluitioD sullgests that \re nrighl intproYe on the nridpoint and trapezoidal approximations
by leplacing the linear upper boundaries of the approximatirrg srrips in Figure 9.7.2 by
cuned upper bounclarics chuscn to tit the shape of the cun,e r' = l1.t) nxrle closely. This
is the idea be hind .Sitnpson's rflk. \\'hicll uses parrbolic curr,cs ol the tbtrn

l:a.rr+b.,;+r (3)

to approximate seclions ol Lhc cLu.vc t = /(.r). lRec.rll lfonr (7) in Appen.lix D that (3) is
the eqLration of il ll.fabola with lxis of symnelr'y parir]lel to the r'-ilxis.l

To sirnplily the descliption of Siupson's rule rve will assunle lllilt l(.r) - 0 on kr. rl
,.1,\r' thcL wc L n interpret./,, /i!t,/r as ln area. Ho*ever. ll'rc nrethod is valid without this

llssunrption. The heart ol Sinrpsol s rule is the fornula

hA: [fo+.lfr + )/r | (.+)

*,hich -eivcs the arcir undet lhe cur\e

r':n.r'l*b.r+r
over an arbilrary interlal ol width 2ir. ln lllis lbrrnula y0. yr. aud f3 represent thc r,-
vrlues a1 the lefi h and endpoint. t hc midpoint ,r. and the right-hand e ndpoint of thc interval
(Figure 9.7.5).

To derivc (4). observe thrl the leti-hand cndpoinl ol'the interval is ar -/r and the right hand

enclpoint is ,, + /r. so thc arcr A under' r, : a.rl + D.r + . ovcr this interval is

f , ,/ i', IA I r,rt /r.r *,tili= ' ,,1
r,,. t, .r I 1," ,.

Fisrrt 9.7.5

: [0lt + /r)' tDt lt'l+f ltr,+frtr (ut /l)rl+(.[(rr+r) ( t-h)l

r'rr(^L\\\r!I'\o\{1710 
l7a)l) Erlslishlr) t|cmrtician.sil]rpso]l\\rsthesonolir\r.ir\cr.He$ir\Lrlircdtolollo$

$Js lLrou\cd jn 171"1. \'hcr hc r.,ltncsscd !n eclipse ollhc Su. and rcccivcd lwo b(x)ks llom u pcddler. one on

l ughl in.rn.\ening school antl u'r'r'kcd.rt scliing dulin-q thc dr). In l716 hc nr(trcd lo LondoD and published

hi\ fir\l nrathcmir(i.irl $orl in l lr!'riodic.tl c.tlltd rhc lr./i.,.! Dirn (oi trhieh h. hlcr bcc me the edilor). ln
l7l7 he lrbli\hcda \ue!e\slirl!irlculLr\ rc\lbor)k rharenabledhinr logi\e Lrp \\ cir\' iDs coDrlr lc(cl\ .rnd concenhte
on te\rbook $riring rDil rcuching. lli\ li)iuncs iDrpro\ed tur1her in I7l{) \rhun onc Robe{ Herrh nccuscd him
,rl plirlriiri\ Thc prblieil) \\ir\ nriu\.lous. rnd SirDpson proccded kr drsh oll r \ulccsir ol be\Gsell;ns

(live editions plus tlaDslrtior)sr. llrld r)urllcn)u\ olhcr\.
lr is inlcrcsliD! to notc lhll Sin)psrn did nor dir.o\er rhe rulc rhirl bcar\ hi\ nnrtrc. I( \\n\ a \\cll knolvn rcsult

h) Sinrp\on r rinrc.
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or on simplifying,

h-A: jlaGnt +2h't + ht6t,tl +6cl (5)

But the values of 1, : 11s2 + /rr + c at the left-hand endpoint, the nidpoint, and the right-
hand endpoint arc, respectively,

Yo: cr(n h)2 + b(n1 - h) + c

Yt--atn2+bm+c
Y2 -- ct(m * h\1 + b(n + h\ + c

fiorn which it follows that

Yrl Yt *Y.:u(6ut1 +2h2\ +b(6m) +6( (6)

Thus, (4) follows from (5) and (6).

S impson's rule is obtained by dividing the interval lu, b I into an even number of subin-

tervals of equal width lr and applying Formula (4) to apProximate the area under .v = /(r)
over successive pairs of subintervals. The sum of these approximations then serves as an

estimate of /.:f(-r) /r. More precisely, let [.l, bl be divided into 4 subintenr'als of width
h = (h - a) /n (n even) and let

.\,0,)r....,J,
be the values of l : /(.{) at the subinterval endpoints

(1 :1r0,,It,...,.tn=b

By (4) the area under l' = /(r) over the fiISt two subintervals is approximately

h

iI.\'o+41r+r'.I
and the area over the second pair of subintervals is approximately

, [t'.: * '11r + -t'a]

and the area over the last pail of subinteryals is approximately

;[.u-:*4)', r*];l
Adding all the approximations, collecting terms, and replacinghby (b a)/n yields

Simpson's Rule
rh tt
I frx),tt - {?}tyu+4}1 +2}2+4}3 *2t,r + *21', z *4t,-r *),1
J,, \1fi /

We will denote the Simpson's rule approximation with il subintervals by S,, and the eror
in this approximation by

I tb I

lEsl =ll /tr)r/.r-$,1IJ" I

Example 3

ln Table 9,7.3 we have approximated

t)1ln2: I dt
Jt x

by Simpson's rule using r : l0 subdivisions so that

b-a 2 | I

3n 3(10) 30
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Observe, by comparing this result to (2), that Simpson's rule producad a more accurate
approximation of ln 2 than either of the methods in Example 1. <

Table 9.7.3 Simpson's Rule

ENDPOINT MULTIPLIER

0

1

2

3

4

5

6
'1

8

9

l0

1.0

1.1

1.2

1.3

1.4

1.5

1.6

t.'7

1.8

t.9
2.0

r.000000000

0.909090909

0.833333333

0.'7 69230',7 69

0;7 14285',7 14

0.66666666',/

0.625000000

0.588235294

0.555555556

0.526315'.7 89

0.500000000

1.000000000

3.636363636

L666666661

3 .0169230'7'7

1 .4285'7 1 429

2.666666667

1.250000000

2.352941t'7 6

l.l lltlll
2.105263158

0.500000000

I
4

2

4

2

4

2

4

2

4

1

20.'7 94506921

/'1r, " t,o),'1o.7sr506021, 0.6031502J1

ERROR ESTIMATES
With all the methods studied in this section, there are two sources of error: the intri sic
or truncation error d]ue to the approximation formula and the rouftdoff enor inhoduced
in the calculations. In general, increasing n reduces the truncation erlor but incrcases the
roundoff enor, since more computations are required for larger /?. In practical applications,
it is important to know how large n must be taken to ensure that a specified degree of
accuracy is obtained. The analysis of roundoff eror is complicated and will not be consid-
ered here. However, the following theorems, which are proved in books on numerical
analJsrs, provide upper bounds on the tuncation eflors in the midpoint, bapezoidal, and

Simpson's rule approximations.

9.7.2 THEOREM (Midpoint and Trapezoidal Enor Estimatcs). If f" k continuous onla,bf
and if K2 is the maximum taLue of f"(x)l onla,bl, thenfor n subcLivisions of la, bl

tb - a\t K.(a) EM 
= --_i-

tb-nt3K,tbt Er 
= ,; (7 8)

9.7.3 THEOREM (.simpson E or Estinate). If f@) is continuous onla,blandif Kais
the maximum value of lf 

(a)(t onla,bl, thenfor n subditisions ofla, bl

tb - at5 Kn
E5 < 

rSona 
(q)

Example 4

Find an upper bound on the absolute error that results from approximating

nz= I lax
Jt I

using r : 10 subintervals by: (a) the trapezoidal approximation, (b) the midpoint approxi
mation, and (c) Simpson's rule.
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Sohttiort. We will apply Formulas (7), (8), and (9) with

I
"f(;r) = -

tr

We have

:f'a :-+. f"(x)-

tt:7, h-2, and t=10

2

F, t"'trt= !, f'o'rrr:#
Thus,

.)4)4
f 'ttl , ; J'''.1- -. =;: (r0-11)

where we have dropped the absolute values because /"(r) and /(a)(x) have positive values

for I : r : 2. Since (10) and (11) are contjnuous and decreasing on 11, 21, both functions
have their maximum values at,r : l;for(10)thismaximumvalueis2andfor(ll)itis24,
so we can taike Kz : 2 in (7) and (8) and (a = 24 h (9). This yields

rb-attK, 1l 2F, 0.001bbbboTt2n1 12. 102

rb-uttK. |.2Eul- )4nt )4 lo: 
l){llrt)Rlllrl

tb-at5K, 15 24
Esl < -= -j ! 0.000013333- 

1 80ir a 180 104

Table 9.7.4 shows that thc cstimates in the precading example are consistent with the
computations in Examples 1 and 3. In the table we have obtained approxinate values of
lEtl, Eu,and E5 | by computing the absolute value of the difference between the value of
ln 2 (to nine decimal places) and the approximations obtained in Examples 1 and 3. Observe
that these values of Erl, Eu , and Es satisfy the upper bounds obtained in Example 4;
ir fact, they are considerably smaller than the upper bounds. lt is quite common that the
actual errors ir'r the approxinations ale substantially smaller than the upper bounds.

Table 9.7.4

ln2
(NrNE DEcIMAL PL,{cEs) APPROXIMATION

ABSOLUTE VALUE
oF TI{F DIFFFRFN'F

0.693147181

0.693147181

0.693147181

Tn = 0.693711403 lErl = O.11)ezqZzz

Mro - 0.692835360 lCyl = 0.000311821

Sro = 0.693150231 tsl = 0.000003050

Example 5

How many subintervals should be used in approximating
r'l ,

nz: I !a^
Jt x

by Simpson's rule for live decimal-place accuracy?

Solttliott, To obtain flve decimal place accuracy! we rnust choosc the number of subin-
tervals so that

Erl < 0.000005 :5 x t0 6

From (9), this can be achieved by taking /? in Simpson's rule to satisfy

tb a)t K,
180n4



Taking a :
24

180r4
which, on taking reciprocals, can be rewritten as

, 2x 706

- 75

With the help of a calculating utility, and keeping in mind that /i must be an even integer.
you can vedfy that the smallest value of /? that satisfies this requircment is n : 14. Thus,
14subintervalswi11producefivedecima1-p1aceaccuracy.<

RENIr\tiK. In cases where it is difficult to find the values of i(2 and K4 required in Formulas
(7), (8), alld (9), these constants may be replaced by any larger oonstants if such constants

are easier to flnd. For example, if K2 < li, then

th ai K rl' at'KEr - -,,, :_ _=__ {ll)12n2 l2n!
so the right side of (12) is also an upper bound on the value of lEr | (although it is larger
and therefore less desirable than the upper bound using K2).

Example 6

How many subintervals should be used in approximating

t
/cos{tr)dr

Ja

by the midpoint approximation for three decimal-place accuracy?

Soltttion. To obtain three decimal-place accuracy, we nust choose r? so that

ItMl < 0.0005 :5 x 10 a (13)

However, from (7) with /(.r) = cos(r2), c = 0, and b = 1, an upper bound on the error

IEM I is given by

K.
Eu 1 /̂4n'

where K2 is the maximum value of /"(r) on the interval [0, 1]. But.

-f'(r) : -2x sin(r2)

,f"(,r) = 4x2cos(r21 - 2sinir2l: -(4r2 cos(x2) +2sin(r2))
so that

l"f"(r)l: l4x2 cos(;v2) * 2 sin(-'r2)

It would be tedious to look fol the maxin]um value of this function on the interval [0, 1]

analytically. However, it is evident from the graph of /"(r) shown in Figure 9.7.6 that

.f"(x)l<4 for 0:x=1
Thus, it follows from (14) that

K,41
lEul < u* . 24,r]: 4,.rt

and hence we can satisfy (13) by choosing n so that

I

-<5^10-'
which, on taking reciprocals, can be written as

. 101

30

9.7 Numerical lntegration; Simpson's Rule 561

1, b : 2, ar'd Ka, : 24 (found in Example 4) in this inequality yields

5 x 10 6

(14)

(ls)

y = 11111 = 1+-t2 cos 1-rr1 + 2 sin 1-.21

Fieure 9.?.6
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A COMPARISON OF THE THREE
METHODS

ExERcrsE SET 9.7 lcl crs

b-aa_r__
n

We obtain
t.E\ta^K:lh,r)(A\.)

:+
t.

l6l : _ Kr(l' rr)(A.r )ltt
ICt -,*Kt(h '/11a\lt

With the help of a calculating utility, you can show thal the snallest value of /? titat satis
fies this lequirement is /? - 19. Thus, l9 subintervals will prtxluce three clecimal placc
accuracy.

()1 the three methods studied in this section, Simpson's rule generally produces more accu
rate results than the midpoint or tlapezoidal apploximations fbr thc salne amount of work.
To makc this plausible, ler us expless (7). (13), and (9) in ter.ms of the subinrerva] width

(16)

(t7)

(18)

(velily). Thus, 1or Simpson's rule the upper borurd on thc absolute enor is proportional to
(A-r)4, rvhe|eas it is proportional to (A r)l for the midpoirrt and tlapczoidai approxinations.
Thus, reclucing the inlerval width by a factol of 10, fbr example, rcduces the enor.bound by
a lactor of 100 for the midpoint and trapezoidal approxirnations bur rccLuces it by a factor
of 10.000 fol Sinpson's rule. This suggests that the accuracy of Simpson's rulc improves
much rnore rapidly than that of the other approxiolations as a increases.

As a final note, observe that if .l(r) is a polynonrial of degree 3 or less, then we havc

.l't'(.t) : 0 fol all -r. so Kr : 0 in (9) and consequently lE.y : 0. Thus. Simpson's
rule gives cxact lesults tbr polynomials of degree 3 oI less. Similarly, the midpoint arrd
hapezoidrl approxinations give exact results for polynomials of dcgree I or less. (You
should also be able to see lhat tlris is so geontetrically.)

ln E..rr;irL. I r,. u.e r, l \uhili\ i.ion\ 1., JI\lru\.nr.rte
thc integral by (a) rhe midpoint rulc, (b) thc rrapczoiclal r.ule.

ancl (c) Simpson s lule. hr etch case find thc cxact value of
the integrrl iliclapproxinrate the absolutc enol. Expr-ess your
answels to at least four dccinial places.

ttt
l. I ./L-|,/r 2- I ' ,/,J, J' J,

l. 
;f' 

.o' , ,r,

In Exercises 7 12. use inequalitics (7), (8). and (9) to lind
upper bounds or dre erors in parts (a), (b). ,rnd (c) ol lhe
indicated exelcise.

ln E\e|i r.e. Lr lk. L:. r.,],.rlilie. r7' r8'. Jnd,\]rto t ld a

value for n to enlure that the absolute elTor will be iess than
rhe given value if n subdivisions are useclto apProximate the
inregral by (a) thc midpoinl rule. (b) thc rrapezoiclal rule, and
(c) Simpson s rlrle.

:. 
f-.i,,.,,t..

13. Exercise l: 5 x 10 a

15. Exercisc 3; l0 r

17. Exercisc 5; l0 t'

14. Exercise21 5 x l0 r

16. Exercise,l; 10 l

18. Exelcise 6; 10 6

rr Io',/ ,"*t't'
In Exercises 19 24, approximate the integrai using Simp-
son's r ule with lr : I 0 subdivisions, and conlparc the answer
to that produced by a calculating ulility with a numerical
integlation caPability. Express your al]swers to at least ioLri
decimal places.

7. Exercise I

9. Exercise 3

I l. Excrcise 5

ll. Exercise 2

10. Exercise 4

12. Exelcise 6

s 
fu', "a'
f. 

-

11. 
Jr \ 

l+.r1,?.r

20. L'J#,1,
zz. [' =l-.t,JL I \rn.r



.l
2-r.;1, sinr.r 't,/ v 24. / .,/LnrJr

In Exercises 25 ancl 26, thc exact villue of the integral is z
(ve fy). Use7] : 10 subdivisioDs to approximate the inte-
gral by (r) the midpoint rule, (b) the trapezoidal rule. and (c)

Simpson's rule. Find an upper bound on the absolute error',

ilnd express your allswers to at lcasl four decimal places.

9.7 Numerical Integration; Slmpsof's Rule 563

during the first 20 s. Round your answer lo the ncarest foot.

[Hil?l. Distance travelccl - l,i\tu(t)tlt.l [Dara tiom f.)././
../r1 l/zcl. October 1990.1

05r{lt52025
Tme I (s)

zs. [' -i- ,r,
Jo I *'l

zr,. 
1,,' 

Jt -a a.,

90
li0

€ro
E 6{l

: 5t)

;40
3ro3 2t)

l0

o) l,' 
n ,' a* {l) /"'" ",i.,

In Exercises 29 and 30. find a valuc fbr r? 10 ensurc that thc
ebsolute elror ir'l approximating lhe inlegr-al by the i'lidpoint
rrrle will "e e\\ tl12n llr

f- r
2q. / ',in\,/\ 30. / , ,1.r

Jt, J

27. ln Example 5 we showed that taking rr - 1,1 subdivisions
ensures that the ilpploximlltion of

"1 ,

lnz: / 1.7,
Jr t

by Simpson's ru1c is accurate to tivc deciDral placcs. Con
linn this by comparing thc approximatjon of ln 2 produccd

by Simpson's rule with n : 1,1 to thc valr.rc produced di-
rectLy by your c4lcLrlating LLtilit)'.

28, ln parts (a) and (b). dctcrmine whethcr an approximation
ol the inlegral by the trapezoidal rule would be less than or
woulcl be greater than the exact value ofthe inte_qral.

In Exercises 3l and 32, show that inequalities (7) and (8)

are of no value in finding an upper bound m the absolutc
elTor that results fron approximatiDg tl]e inlegral by either
the nidpoint rule ol the lrapezoidal rule.

tt I
.rl. I Jr,/r J2. I .r". ',i 'Jo J ,

In Exercises 33 and 34. use Simpson's rule rvith a : l0
subdivisjons to approximale lhe length of the curve. Exprcss
your answers to at leasl fbur-decimal plilces.

-1-1. r.:sin.r.0:-t<z 3:1. i: l/.r. l:-r:3

Numcrical integralion methods can be used in problems

u,here or'lly measuled or experimentally determined values

ol the integrand are available. ln Exercises 35-40, use Simp-
son's rule lo estirnate the value of the integrai.

35. A graph ol the speed u versus tilne r for a test ruD of an

Iriniti G20 autorobile is shown in the accompanyiltg 1ig-

ure. Estimate ihe speeds at / : 0.5. 10. 15, and 20 s from
the graph, convcrt to fi/s using I ni/h: 22/15 ft/s, and

use these speeds to approximate the number offeet traveled

31.

lrNlE t (s) SPEED u (mi/s) Dlsr;\NcE \ (R) sPrirD u lft/s)

t)

30
6(l

90
120

150

I t{(l

A glaph of the acceleralion a vcrsus time / for an object
moviDg on a straight line is sho\\'n in the accompanying fig-
ure. Estimatc lhc accelerations at t :0. 1.2,....8 s flun
lhe graph aDd usc them to approximate the changc in vcloc-
ity frotrr I : 0 to / : 8 s. RorLnd yoLrr irnswet-to thc nearest

tcnth cm/s. [Hil?r. Chance ]n velociry : ./,f a (t ) 1l.l

0 r21.1 5678
T me 1 (s) Fj!,ufti F.x ta)

The tirble in thc accompanying ligur.e gives the speeds. in
miles per'lccond. irt various times tbr a test rocket that wirs

lired upwiud frolrr the sulface ofthe Ealth. fJse these Viiiues

to approximate the number ol miles tr aveled durir'lg tlle li$t
180 s. Rountl your answcr to the nearest tenth ol a mile.

lllil?1. Distance lravelecl : ./,]80 u(t) r1l.l

The table in thc accompanying figure gives the speeds ol a
bullet at various distirnces liom the muzzle of a rifle. Use
these valLres 10 approximate the number of seconds for-the
bullet to tlavel 11300 lt. Express your answcr-to the nearest

hlu]diedtl] ol a secoid. [Hll?I] Il I is the speed of thc bLll
ldr :'iJ \ '. lhr Ji\lirncc tra'slc.l. then r' - d.t/.1r '., th.rL. .Llol) . , -
Ltf tLt\ - | /r rndt:./Lr lt/r ).11.1

n.0

5 o.s

I

:18.

0.00

0.03

0.08
0.l6
0.27
0.12

0.6s

0

300

600

9(Xl

1200

1500

1800

3100

2903

2125
25:19

23'79

22t6
2059

Fisure Ex 37
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39, Measurements oI ir pottery shard recovered tiorn an archae-
ological dig revell that the shard came fioln a pot with a flat
boltom ancl circular cross sections (see tl'le tccompanying
llgure)- The ligure shou,s interior radius measLrrements of
the shard made every 4 cm from the bottoJn oi the pot to
the top. Use those values to approximalc thc inteior vol
urre of the pot to the nearest tenth ol a liter' (l L - 1000
cm3). [H,rt. Use 8.2.3 (volume by closs sect]ons) to set Lrp

an appropriate inlegral for the volume.l

Derivc the trapezoidal rule by summing the areiis of the
tlapezoids in Figure 9.7.2.

Let ./ be a llrnction thirt is positive, conlinlrous. decreas
ins. rnd concave down on the inrenal [d. b]. Assurning that
fa, D] is subdivided into /l equal subintcNals. arange thc
tbllowing dpproximarions of ,/,1'l(-r ) /,r in orcicr ol increas
ing value: lelt endpoint. right elldpoint. midpoinr, end trape-
zoidal.

Ler./(-r) : co51-yr1.

(a) Use a CAS to apploximate thc mtxil'nunt value ol
l/"(r) on thc interval 10. ll.

(b) How larye llust /r be in the midpoint approxirnatiou ol
./,llt.tl a.t to ensure thal the absoluie enol is less than
5 x I0 r? Compare you| reslrlt with that oblaiiecl in
Example 6.

'r\ tr rlrrrte the rrrc; -l rr.irre tlrc nridfr.,rrt:rpp"urrrnr ion
with the value oln obtained in pafi (b).

Let I i.r) : .r{lll
(a) Use a CAS to approximate the ntaximum vallte ol-

/"(.r)l on the interval 10, ll.
(b) How large rlust n be in the tlapezoidal itpproxin]ation

ot l] llrl a-i to cnsure that the abso[rte error i\ less

rhan l0 r'l
(c) Evaluate the integlal using the trapezoidal approxima-

tion with the value of n obtained in part (b).

Let /(r) : g6s1111.

(a) Use a CAS to approximate the nlaximum value ol
.lg)(.r) on the interval [0. l].

(b) How large musl the value ol n be in the lrpproxit'na

tion ol /;.1(r).1-! by Simpson s rulc ro cnsure rhar the
absolute error-is less than l0 l'l

(c) Evaluate the integral using Simpson's rulc with the
vaLue of n obtained in prrt (b).

Let f(,r) - Jl + rr.
(a) Use a CAS to approxirrate the ntaximum value ol-

/(l)(r) on the inrerval 10, ll.

41,

12.

E 13.

r (cm)

16

l2

1

i6.8 cm 

-

Figure Ex :19 E 44'

Engineers want to conslrucl a straight and level roacl 600
lt long and 75 ft wjde by making a vertical clrr throu-sh
an intervenirg hill (l,.e the accompanying llgure). Heights
ol tlle hill above the ceDtcrline of the proposed road. as ob-
talned at various points from a contour map olthe regiolt. are

shown in the accompanying table. To estimate tlte conslruc
tioD costs. the engineers need to know the volurne ol ea h
that rllusl be r'emoved. Approximate this volume. rouncled

to the nearest cubic foot. [Hi?r: First. sel up an intcgral for
the cross sectional area ofthe cut alon€l the centerline olthe
road. then assune thal the hcight of the hill does not vary
tret$ een the centerlinc and edges ol the road.I

E 4s.

HORIZONIAL HIICHI'
DrsrANcr, -r (10 /? (f0

lel 46.

11.5 cnr-

40.

0
r00
200
300

400

500
600

0
'1

r6
2,1

25

l6
0

(b)

(c)

How large must the value of n be in the approxina
tion of ./ii/(-r) .1-r by Sirnpson's rule to ensure that lhe
absolute error is less than l0 5?

Evaluate the integral using Simpson s lule with the
value of n obtaincd in palt (b).

Figuic t\ l0

9.8 IfdPROPHR lhJTI:GRAL$

U 1:t lo tton ve ltave lbcused on dalftite integruls \^ith .ot1li11uaLts integru ds rLtd litlit(
i er|els of itttellrution. Iti this se(tion we wi e.xtentl Ihe con(elt ol d tleinite integrl
to inclutle infinite intervcls oJ integrution antl integrtncls tltti betonte iqi ite witltitl
the i/.Jer\,a[ ol htegrction.
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It is assuned in the definition of the definite inlegral

ttrat k,.Dl is a ilnite interval and that thc limit that delines the integral exists; that is,
the function l is integrable. We observed in Theorem 7.5.8 that continuous functions are
integlable, as are bounded functions with flnitely many points ol discontituity. Wc aiso
observed in that theorem that functions that are oot boundcd on the intenal of integration
ar-e not irtegrable. Thus, lor cxample. a tunction with a vertical asynptote within the inter-val
of integration $'o!lcl not be integrable.

Our nrain objective il'l this seclion is to extend the concept of a definite integral to allow for
infioite iotervals oI inlcgration and integra]rds rvith vertical asymptores witltin the interval
ofintegration. We will call the vertical asyl'lptotes iflfrrb disconlill&ilies, and we wi]l call
integrals with inlinite intervals of integr-ation or infinite discontinuiries wjthin thc intervrl
of integralion in?rrp et' integrqls. Het e are some cxamples:

. Inrproper integrals with infinite intervals of integration;

l,* 5

INTEGRALS OVER INFINITE
INTERVALS

. Impr.oper integrals with infinite discontinuities in the interval of integrrrion:

I ":. I ''' / r"n',i'
J , r Jr | 1 lu

. Improper integlals with infinite discontinuities and infinite interyals of integration:

f rlr ''lt I-I -. I I ,t.',/r
J,, '/.r J. t q 

,/

To motivate a reasonablc dcfinition fbr in.iproper integlals of the fbrm

| (x) dx

to be
.t,1 (I\ I LIIq I lirn I - lirn

J '- - Jr .t- i)='

I,*

[' ,t, 1l' , ]
/, rr- rl -' I

let us begin with the case where / is continuous and nonnegative on 1.1. +..), so we can think
ofthe integral as the area under the curve -r = /(-t) over the interval k. +..) (Figule 9.8. l).
At nrst. you might be inclincd to aryue that this area is inilnite because the region has inllnite
exlenl. Howevcr, such an argument would be based on vague intuilion rather than ptecise
rnathematical logic. since thc concept of ar-elr has only been delined over intervals offrile
e-rld/rt. Thus, befbre we can make any reasonable statemenls allolll thc area of the region
in Figure 9.8.l, we need to begin by delining what we melrn by the area ofthis region. For
that lluryose. it will help to focus on a specific exanrple.

Suppose we are interested in the area A ofthe region that lics bclo*,the curve r' = [/.r2
and above the interval 1,+..) on the.r-axis. lnstead oftryilg to find the ettire area at
once, let us begin by calculating the poltion of thc alea that lies above a finite interval fl , I l,
whe:-e I > I is albitralv. That area is

(Figure9.E.2). Ifwelou allow / to increasc so lhat 1 > +2, then the pofiion of the area over
the interval I 1. 1l will begiD 10 1111 out the arer ovel the entire intcrval I I . 1z) (Figure 9.8.3),
and hence we can reasonably define the area A under'l : 1/.rl over the interval [l, +-)

(,

fjsurc 9.8.1

FigLre c).It.2

Thrls, the area has a finite value of I and is not infinite as we first conjectured.

(1)
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figure 9.8.3

With thc preceding discussion as our guide, we make the tbllowing definition (which is
applicable to functions with both positive and negative values):

t).8.I t)EFl\ Io\.
4S

I ft^t,t^:

The improper integrql oJ f over the interval la, +oo) is clcfined

,!1 1.,' 
t"'d'

In the case where the limit exists, the irnproper integral is said.Io converge. and the limjt
is defined to be the value of the integral. ln the case whele the limit does not exist, the
improper integral 1s sald Io diverge. and it is not assigned a value.

If .l is nonnegative on [.r. +-) and the improper integral convelges, then the vaiue ofthe
integlal is legarcled to be lhe arca urder the graph of f over the intervai fa, f:c); and il the
integral diverges. then the area under the graph ol I over the interval [.7, +:c) is regarded
to be irfinitc.

Example I
Evallrate

(b)/. f
Solrt lion (u ). Following the ciefinition, we replace thc inlinite upper limir by a finite upper
limil /, and then take the lin]it of the rcsulting integral. This yields

I '11 - ,,"' I ",' -,'- | ,l I - ri"' (j- ,')-',
Solutiort lhJ.

[, 
o,'-tt.,l 

I+ tirn ltn.'1, -.linr lr/ '
InthjScaSetheintegtaldivergesandhencehasnova1ue.<

Because the functions l/xl, 1/,r2, and l/,r are nonnegative over the ioteryal 11, +r),
it follows from (1) and the last example that over this inlerval the area under 1. : 1/x3 is

l, the area under r, = 1/,t2 is I, and the lrrca under ), - 1/,r is infinite. Howcvcr, on the
slldace the graphs of the three flnctions seem very much alike (Figure 9.8.4), and there
is nothing te suggest why one of the areas should be infinite and the other two finite. One
erplanatior is that 1/,rl and 1/rr approach zero more rapidly than I /,r as ,r --+ +.., so rhat
the area over the interval [l,ll accumulates less rapidly under the cuNes ,t' : 1/,v3 and

t' = l/-r2 than under -r' - 1/r as I + +.c, and the dift'erence is just enough that the first
two areas are linite and the third is infinite.

Example 2

For uhat vrluer ofp doer rhe inregral / 
dr 

,.onrerge?

,,{.5

2

Figr re o R..1
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Solutiott. We know from the preceding example that the integral djverges if p - l, so let
us assume that p + 1. In this case we have

1." # : y:- l,' , ' o" : 1i-i'-' ,], :,1* tg - +]
If p > 1, then the exponent 1- p is negative and /l-P -+ 0 as I >1cc; andif p < 1, then
the exponent 1 - 7.r is positive and lr /' + +- as / -+ +-. Thus, the iotegral converges if
p > 1 and diverges otherwise. In the convergent case the value of the inlegral is

f+'" d) t I I I
I -:0-- 

:- (p>1)
Jt \t L I P) p

The following theorem summarizes this result:

9.8.2 THEonEM.

ro':l: ,f
Ir ,t [i",*- ,f

p.l
p 

=l

Example 3

Evatuate / \7-x)e'dx.

Soltttion. Integrating by parts with r = 1 x and du : e-'d,r yields
tr
/,1 rte-'dr- e--rl rt le'd:t--, +^e' c ' C-rc C.t.l

Thus.

| ., r

I ,l t)e'dx=,lim lxc'lo-,!l ,Ja t4 +'

The limit is an indeterminate form of type cc/co, so we will apply L'H6pital's rule by
differentiating the numerator and denominator with respect to L This yields

t+' l
, (l ..\)c 6/v = lim -,-0.lt t- +- e'

An explanation of why this integral is zero can be obtained by inter?rcting the integral
as the ret signed area between the graph of y : (l - r)e-* and the inteNal [0, +-)
(Figure 9.8.5).

We also make the following definition:The net signed area between the
graph and the lnterva [0, +-) is

zerc.

Figure 9 8.5

] = (1 ,!z-\

9.8.3 DEFINITION . The improper integr&l of f over the in lelyal (-oo, ,l is delined as

(2)

The integral is said to convetge if t\eltmit exists and diyerge if it does not. The improper
integrql off over the interval (-rx:, roo) is defined as

f+ t t+
I frxtdt- | frttax- | frt,dx 'JrJ-- J-^ J"

where c is any real number. The improper integral is sal:d to converge if both terms
conrerge and dircrge ifeirher term di\erges.

lo - r,.o o, :,yy- 
l,'' r<o a"
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INTEGRALS WHOSE INTEGRANDS
HAVE INFINITE DISCONTINUITIES

RE\,I.\RK. In tlis deflnition, if / is nonnegative oo the interyal of integration, then the
improper intcgral is regarded to be the area under the graph of f over that interval; the area
has a linite value if the integral converges and is infinito if it diverges. We also note that in
(3) it is usual to choose c : 0. but the choice does not matter; it can be proved that neither
the convergence nor the value of the integral depends on t1-r9 choice of c.

Example 4
f + d t

Evalulte I
.l .1It!

Sohr.tiort. We will evaluate the integral by choosing c : 0 jn (3). With this value for c we
obtain

f+ tlt lt ,! tI - lim t - lim ltan- xl-= Iim ttan l 
'r

.1,' lr.r' ./n l-r- 
) - '

f't ,l r ltt ,!,.
I .- lirr I . lirn ltr'n .l'- lim ( t,rn /'-'./ I-.': '." .1, |- rr 1 t .1. '- "-7

Thus, the integral converges and its value is

I J.r f' J., I d.t tr nI - I I - -1I I ri J_-lr.'r 1,, t-rr ) 2

Since the integrand is nonnegative on the inteNal ( .a, +.c), the integral represents the area

of the region shown in Figure 9.8.6.

Next we will consicler improper integrals whose integrands have infinjte discontinuities.
We will start with the case where the interyal of integration js a linite interyal [a, b] and the
jn6nite discontinuity occurs at the right hand endpoilt.

To motivate an appropriate definition for such an integral 1et us consider the case where

/ is nonnegative on ld, Dl, so we can interpret the improper integral /.0/(,t) d:r as the area

of the region in Figure 9.8.7a. The problem of flnding the area of this region is complicated
by tl're fact that it extends ildeflnitely in the positive -]-direction. However, instead of trying
to 6nd the entire area at once, we can proceed indirectly by calculating the po ion of the
area over the interval [a. /] and then letting / approach, to filI out the area of the entire
region (Figure 9.8.7b). Motivated by this idea, rve make the following definition:

9.8.,1 DEFINITIO\. If / is continuous on the interval [.r, b], except for an inlinite
discontinuity at lr, then the improper integral of .f owr the interval la, bf is defined as

Example 5

cuutuu," /' 4.
Jo Jt -.,

Sohttiott. The integral is improper because the integrand approaches *c.asr approaches

the upper linit 1 from the left. FIom (,1),

Fieurc 9.8.6
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dr
Jl t

dx

Jl lI,'
:,tY 

Ir'
=,$[-'G]1,

: 1i11.1 1-21\l a 21 = 2

Improper integrals with aD infinite discontinuity at the lel't-hand endpoint or inside the
interyal of integration are delined as folkrws.

9.1J.-i DLFI\lt to\. If / is continuous on the intewal [rr. b], except for an infinite
discontinuity at a. thet the improper integral off over the interval la. bl is delined as

.b fb

I f s)a* = tim / l(r)r/r (s)
1,, " t-,'Jr

The integraf is said to converge if the limit exists and diverge if it does not. Il / is

continuous on the interval Ia. rl, except for an infinite discontinuity at a point c in
(a, D), then rhe inproper integrql o.f f over the interral [a, Dl is delinecl as

(6)

Fisure 9.8.8

1,,' 
,r,, o" = l"' rru o, + 

1," 
r<"> a,

The improper integral is said to converge if both terms converge and diverge if either
. term diverges (Figure 9.8.8).

Example 6

Evaluate

''' /, , '
(b) /'ft5

l+' tlx(c) ,
Jo 

"u.t 
(.t * l)

Solution la). The integral is improper because 1he integrand approaches .c as r ap
proaches the lower lirrit I fiom the right (Figure 9.ti.9). From Dellnition 9.8.5 we obtain

f: ,!,i fl ,/ \, -:' = 1;6 / --lll tinr [ - tn tt - r t]j
J, l-^ ,-t J, l-r -r' L

:,llT [-ln -11+lnll /]] =/liln-ln11 -t =-'-c

so the integral diverges.

Sohttion lh). The integral is inrproper because the integrand apploaches + at the point
,t : 2. which is inside the interval of integration. From Delinition 9.8.5 we obtain

ft ,lt f) ,!r fJ d.r

J,, ,,==J ,,-2,, 'nl ,., ,- irt

Rrt
f: ,lt ft d:tI --+ = lim / a= ti6 l.rr/ -2' r-t'l-2)r rl- j

J \.\ - tr " /.2 J (\ l)- 1.:
14 tlr I d'
/ 

";:,ll' 
/ (.+ =,lim l3t4 2tr'r- tt/ -2lttl-3:/1

Thus, tiom (7)

Fisure 9.8.9

J,'-!a-=r+-rJ5
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--1

Sttlttlion Ql. This inLegral is impropcr for two reasons-the interval of integration is

infinite. and there is an infinite discontinuity at,r : 0. To evaluate this integral we will split
the inteNal of integlation at a convenient point. say x : l, and write

Lt ( ft ,lt'I_"'IJ, J'(' ) Jo /'(' l) J, u/r1.r Fll
The integrand in these two improper integrals does not match any of the fonns in the
Erdpaper Integral Table. but the radical suggests the substitution x = u2,tlx :2udu,
l'rom which we obtain

[ 
,, _[ Ltdu 

=:[],'J Jrt.r 11 J tt(', l) J tt I

-2tan 
1u+C:2tantJi+C

Thus.

[* :"Jo Jl(r + l)
flf 1 fr n1

-) 0l+21 -trL4 I L) 4)

THE APPLICATION OF IMPROPER
INTEGRALS TO ARC LENGTH AND
SURFACE AREA

= ',lir lr'n-r .,/i i I lirn lran-r ,, rl'

\\ \rtNINo. It is sometimes tempting to apply the Fundamental Theorem of Calculus di
rectly to an inproper integral without taking the appropriate limits. To illustrate what can
go wlong with this procedure, suppose we ignore the fact that the integral

I.(E)
./,r (r )

is improper and wrile

l ,lt I l-
L I -l-rll -2J,, lr-l)r \ ll,

This result is clearly nonsense because the integrand is never negative and consequently the
integrlll cannot be negativel To evaluate (8) conectly we should write

f ,h I J;. f: d.,.t -t .-l .,J rr - ll: J, r.t l1 J r.r l1

But

lt dr f Jt I I I
L.-limI- - lim ll-lr
Jn rr .lr: J. tr ll L /-l l

so that (8) divcrges.

In Delinitions 8.4.2 and 8.5.2 for arc length and sudace area we required the function / to

be sn]ooth (continuous first derivative) to ensure the integrability jn the resulting formula.
However, smoothness is ovcrly restrictivc since some of lhe nosl basic lormulas in geometry

involve functions that are not smooth but lead to convergent improper integrals. Accordingly,
le{ us agree to extend the definitions of arc length and sulface area to allow f'unctions that
ale not smooth, but for whicb the rcsulting integral in the folmula converges.

Example 7

Derive the formula for the circumference of a circle of radius r.

Solrtliort. For conveniencc, let us assurne thal the circle is centered at the origin, in which
case its equation is ,r2 + ,i,2 = rl. We rvill llnd the arc length of the portion of ahe circle
that lies in the llrst quadmnt and then multiply by 4 to obtain the lotal circuml'erence
(Figure 9.8. l0).Figurc 9.8.i0
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Sinca the equation of the upper semicircle is ,t, = ^.62 - "2. 
it follows t'rom Fomtula (4)

of Section 8.4 that the circumference C is

- r, and hence we

-^,[ !!=Jo V/. ::\

This integral is improper because of the inflnite discontiouity at ,r
evaluate ir by writirg

tt ,ttC:4r,linr L_,-' ,to t/t- x.

-4, li- r,in-r l t)lr r','ur"--.,, rrp'',-; l \r,lo r,rr''.'o.,r,e., .r'h'

,1. ri- [,in '/i \ .in ol/-' L \.,/ l
-4r'lsin rl-sin 0l-4r{r ol-2zr'I

ExERctsE SET 9.8 E Graph ne Calclrator E cAS

1 In each part, determine whether the inteBral is impropel,
and if so, explain why.

@) l,'* @ L':: {") /'rn'a*
ra) l,*- "-'a, G) l.-" # - 6) 

|,,"t',un,a"

2. ln each part, determine all values of p for which the integral
is improper.

,, I,'# $)L'jL G)lot""a,

I.^ft
fa/.

/, 
tun r Jr

['-!:
Ju Jt ,l

I 
--JxJrt J1 2 sin r

l,'3
l",' 't' d"

L.'in,

L"#

/, t'" ,

l.#
I 

- 

tr
J,, 1 - ran r

1 ,,4

l,^c5
l,*;#.-

t. 
lo*' " 'ar

l,'" /ro'
J" ,r,'^'^

/ -,r;-l
f" -s. 

n,

l'-- s o,

I - ua3yd'

18.

20.

17.

19.

2t.

29.

Tn Erercises 3 30. eraluate the rntegrals lha( con\er8e.

1.,'#'0"

1,,*'" '" " a'

1..-#^
I.J+
J -r-*'-

I.-';ro'
ft "'.0,
J - 1+"-''

In F \ercr\e\ J I J/, muke lhe r-.ub\titulion and e\ alualu lllc
.esulting dennite integral.

10.

7.

9.

14.

31./ '----7 d.t,: ,r -\ \ lVr/,.// t-a..y- .l

32. I 

-.u-J)

Jo J,r l,t + 4)

| 

-J't: 

u:l c'
Jr \/1 e'
lNote:u--+ I as x + 1r.]

[*' -:)-r', ,:" '
J1, Jt e"

16. 34.



tr

g x. 
1,,*- 

rn ",t., g 37. f 
t 

" '.or-.1r

38. In cach part. confirm the result with a CAS-

@ 1,.'Y,1,:E @ l*., "a,:.,G
I lnr rl(et | 

-.1r:
Jtr r 1 I

E 39. In each part, try to e\'.iluatc thc integral exactlywithaCAS.
lf your result is not a simple numedcal ilnswel, then use the

CAS to find a nunrerical approximation of the integral.
tt

\,i) I ' ,/\ rnt / ,/r
J ." .i I J, Jt-.t
/ lnr f stnr

';r I 'i' 'J, / dt
Jt , J 1

40. Fincl the length ol the curve l : J9 -rl over the intervaL

t0, 31.
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35. Read your CAS documentatiou to detenrine how to evalu
ate dennite integrals wirh inlinite limils oI integration. aDd

then for each of thc integrals you evaluated in Exercises
1-34. check your answer with 1,or.u CAS.

ln Exercises 36 and 37. express the impropcr intcgral as a

limit. and then evaluate that limit with a CAS. Confirm the

answer by evaluating the integral dircctly with the CAS.

ln Exercises 4l and.:12, use LHdpital s rule to help e\'.iluatc

the improper iDtegral.

r f lrr r4r. I rn',i \ 42. L,/,JJ.\
43. Find the area ofthe region between lhe r axis an.lthe culve

r': e I'fbr,r - 0.

44. Find the areaoithe rc-9ion betrveen the,r axisandthecurve

_\, - 8/(-\-2 -,+) tbr ,: : 3.

45. Suppose that the region betweer the -r-axis ancl lhe cun'e

l' : c' fbrr : 0is revolvedaboul llle-r-axis
(a) Find the volume of the solid that is gcncrated.

(b) Find the surface area ol the solid.

46. Suppose that / and g are continuous functions and that

0i.l(-r):s(-r)
if ,y : d. Give a reasonabic infbnlal argunent using areas

to explain why lhe f(tlowing results are true.
(a) r .l',:' I ll d \ clivcrges, then ./,1'g (-r ) r1.t diverges.

(b) If f]'g(.r) l.r convelges. then /,, 
-/(.r) 

r1.r conver-res

and ],1-l (-r ) /-r .l,l''eQ)rx.
[No/?. The results in thjs exercisc are somet]lnes called cort-
psrison tests lbr improper integrals.]

In Exclcises ,17-5I . use the resulfs if F.rercise :16

E 47, (a) Confirm graphically and algebraically that e '' : e '
if -r > L

(b) Evaluate the integr al

(c)

(b)

(.)

What does rhe result obtained in part (b) tell you abour
the iDtegral

l+I ., ', ,,/r'l
J

Confirm graphically and algebrirically that

| - "' ,.^'0,
2\ + I l\ + l

Evaluate lhe integral

t-
What does lhe reslrlt obtained in palt (b) tell you about
the integral

I ' ,t^ tJrr 2r + I

E 48. (a)

l-et R be tlre regior'r to the right of .r : 1 tl'lat is bounded
by the r-axjs and the curve _t, : 1/r. When this region is
levolved about the.t-axis it generates a solid whose surtace
is known as Galriel's llonr (forreasons that should be clear
from tlie accompanying ligure). Show that the solid has a

llnite volulne but its surface has an infinite area. [N.]ter It has

been suggested thlt if one could saturate the interior of the
solid with painl arld allow il 1() seep through 1() the sllrlace.
then one could paint an infinite surfacc with a linite aulount
of paintl What do you think?l

Fieure Ex-.19

In cach part. use Exercisc,16 to determine whether the in
legra1 convergcs or diver,ees. If it convcrgcs, thcn usc part
(b) ol that exercisc to Jlnd an upper bound on the value of
the integral.

l+- Jr'+ |
1.1) I : Ltl(

u'/,, r,+rr'

tr

49,

50.

(b) 
/ -: ,1,



Show lhal

, I,i'"4ndt,1,1 ,-
is iiD indeternrinale iorm ol type z/2. and dren use

L HOpitill's nrle ro find tlre limit.

(a) Cive r reasonable infbrlnill argunrent. bascd on areas.

that exphins u,hy lhe intc-srals

f- f '

/ sinr,/r rnd / u,r.r',i r

Jr Jt

diverse.

rbJ 5hr\ lhrr I '*1' ,/r.lirr.'r':.:...,/, J'
ln clectloDr!gnetic theorv. thc mirgnctic potential al a poinl
on thc axii of a circular coil i\ si\'cn bv

1t 
"'llr 

I ' ./rI - ------.- I ..k J,, ,,'1r-) -

$hcrc N. /. r'. l. and d irre c(Dstnntr. Fi|d l.-

E 54. The acru3c tpcttl. i. of the nroleculcs olan ideal -eas is

given by

+ r M rrl /
, __:l_. I / r.L. r/..:/r/,'/l

J:t \ )R'l / J',

lttd Ihe ft,( -tn?dn-talriarr qz,erl. r',,,,,. by

, 1 I M r'r t'
',.: -{.^,1 | rt.'tt 'Et,tr

vx \:^/ / J\

where I is thc molecLrlar speecl, 7 is lhe gas temperature. M
is the nroleculur weight ofthe giis. rnd R is the ga! constant.
(a) Use rr CAS to show thiit

t' II 
", 

",r' ,,>r)
.lu ),tl

llll Lr.c lhr. r'crrrlr tu .hou rhrrr i : r \R f .r.V.
(b) Use CAS lo show that

t'- lJ.5
Li', 'l , ' ,/')
,/,, t{,r.

rnd use thi\ result to sho\\ thilt 1,.,,,, = J:nf l lt .

55. hr Exclcisc l7 of Section 8.6. we cletenuined the work rc-
quired 1() lill Lr 6(XX) lb satellitc to D orbital position tlrat is
1000 ni abovc the Errth s sufacc. Thc ideas discusse.l in

thlt exercise will be needed herc.
(a) Fincla clelinile inte-sral that rcplcscuts the work required

to lili n 6000-lb \atellite to a position I miles above thc
Eilnh s surlirce.

(b) Find a dellDitc intc-smlthat reprcsenl\ the u ork requircd
lolili (dx)0-lb satellite an "infinirc distance" abore the

Eanlr's surl'ace. EvalLrate the intcgral. [AI./Ie: The result
oblilinecl here is somelirres cnllccl thc work required tcr
*esclpe lhe Ea(h s gravity.]

51.

s2-

53.
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A tratrsforrr is il tiltnrula that con\.erts or "tr{trstbrms' one
tilnction in(o unother'. Tr-rnsforms are used in tpplications to
convert a difficult problem into an easier p()blem whose so-
lution can lhen be uscd to solve thc original dillicult problem.
The Laplace trat$fotIx ol a fir nction /(/ ). wh ich plays an im-
pofiant role in thc study ol differentiirl equations. is denoted
by :lLf(t)l and is clcfinecl by

ftlttl: I i'' ltnJt
.lr

ln this formula s is tlc ted ts a constant in the integration pro-
cess: thus. the Lapl{cc trunsfonr has the effcct ol transfbmr-
irrg l(r) into I lLlr')ction ol-.s. Use this fbmrula in Exercises

-56 and 57.

56. S horv that llrllr /{l! -..>o rb) /l(rl: :-r I
.\ 1-

I(c) 'tl\intl= --;-------. r > 0\-+l

(J) ll(ostl= . .r>U.
\- + I

57, ln each part. lin(l the Laplirce trlnsfbrm.
ll l(rl:/. \>0 {b) /(r): rr. s > 0

[rt. r.l
{c) l(1):l r'0

ll. t - .l

58. Lirtet in thc text. rve will show that

l-
, d'./.\:i./rt,, ''

Confirm that this is reasonable by using a CAS or a calcu
lrk)r with a nulnericll intcgration capability.

59. Use the rcsult in Exercisc 58 to shou.that
I lr(i) I r'"',/.t=,i .r'0

l. lr/

rhr I [ ,-:',1\-t.o ().

Jlto J .

A conver-qent impropcl iutegral over an infinite interval can

bc approximated by lirst replacing the infinite linti(s) ol in
tegration by linile liDril(s). then usin_s a numcric l integration
lechniquc- suclr as Sinrpsur's rule. to approxinrdtc the integral
$ith finite liDit(s).'fhis technique is illustrated in Exercises
6(l rrrrd 6l

60, Suppose that the intcglrl in Exercise 58 is rpproximirted by
lirst writing ir as

I lt tI , ,/.r = I ( ,i.\, , , '',1.r.t,, J,, J 
^

tlren dropping the second tcrm. and lhen applying Simpson s

rule to the intcglal

/ . '',r'
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The resulting approximation has two sources of elror: the
error from Simpson's rule and the enor

t+'
t- I e' dt

that results 1r'om discarding the second term. We call E the
truncation error.
(a) Approxinate the integral in Exercise 58 by applying

Simpson's rule with il : l0 subdivisions to the integral
rl
I c ",lx

Round youranswer to lbur decimal places and compare

it to j vG rounded to four decimal plirces.

61. (a)

Use the result that you obtained in Exercise 46 and the

factthatc " : ]re " for-t > 3 toshowthatthetrun
cation error fbr the approximation in pafi (a) salisfies

0<E <2.1 x 10-5.

It can be shown that

l+'lnI 

-dt:
J,r rb+l 3

Approximate this integ.al by applying Simpson's rule
with r : 20 subdivisions to lhe integral

rltI 

- 

dx
J6 rn*1

Round your answel to thee decimal places and com
pare it to z/3 rounded to three decimal places.

(b) Use the result that you obtained in Exercise 46 and the
fact that 1/(.16 + 1) < l/16 for r - 4 to show that the
trulcation error for the approximation in part (a) satis-
fies0<E<2xl0a.

f +.
For what ralue' of / does / pr' 1x conrerpe.'

J.
ftdr

Shou thrt | - 
conrelge. if1 . I anddivelge. i{p -; l.Ja xr

It is sometimes possible to convert an improper integral into
a "proper" integral having the same value by making an
appiopriate substitution. Evaluate the following integral by
making the indicated substitution, and investigate what hap-
pens if you evaluate the integral directly using a CAS.

rt ft t--I .l: ::.1* u:,/1-
Jo Vt :\

62.

63.

l"l 61.

(b)

In Erercices 65 and 66. rran\fbrm the giren improper inte-
gral into a proper integral by making the stated ,l substitution,
then approximate the proper integral by Simpson's rule with
n : l0 subdivisions. Round your answer to three decimal
place\.

f cos 1

65. | - dt: u: Jt

/l sin r
66. I 

-dx,u-Jl 

-xJo .,/ I - x

1. Consider the following methods for evaluating integrals:

n-substitution, integration by parts, partial fractions, reduc-

tion formLrlas, and trigonometric substitutioDs. ID each palt,

state the approach that you would try first to evaluate the

integral. If none of them seems appropriate, then say so.

You need not evaluate the integral.

(a) 
/.r 

sh' d'

rct 
./ 

tan/ r u/r

a't l!;a'
{e) ftun ',,a'

(b) 
/ 

cosr sin x l.r

(d) 
/ 

tanT 
" 

sec'z'.1'

o lffia.
O J ,q _,,,1,

Dot evaluate the integral.

@) | ,6 + ,',t'

rct | ,4 N,,r,

at l'6+x a-

(a) 
/ 

sin 7r cos 9.r dr

G) J 
.,,E "'d,

@) | 
x')tr'ctx

$) J Js ",t,
tat I,E sa'

0 I ,/t + @r,1'

tb) /rx7 rt )co' d.r

.ot[ !-
J ,. J4,. il

,,, / flr..

3. (a) What condition musf a rational function satisfy for the
method ol partial fractions ro be applicable directly?

(b) If the condition in pa (a) is not satisf,ed, what nust
you do if you wanl 10 use parlial fiactions?

What is an iD]proper integral?

In each part, find the number ofthe formula in the Endpaper
Integral Table that you would apply to evaluate the integral.
You need not evaluate the integral.

4.

5.

rir I 'J+-xrdr
Consider the following lrigonometu'ic substitutions:

,r :3sind, r - 3tanA, ii :3secd
In e.rch paft, state the substitution that you would try first to
evaluate the irtegral. lf none seems appropriate, then state

a trigonometric substitution that you woLLld use. You need
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,L l
Fvrlurte tlrc irrt.vrrl / ' ,1, t'.in,

J0 J.r_ + I
(a) integration by paris
(b) the substiluliori r -./'!- 1.

Ir each part, evaluate the integral by making an appropriate
substitution and applying a leduclion lbrnula.

7.

rar 
Jr,inr2\,/r {t) ;f 

r cos5{-rr1,i-.

rs. / "6o' 
t, ,.'n,r ,lP

17. / ' t,'nr(rr)secr(rr),/r

t9.t_./ tl +,rt'l
I crrs d2ll. I 

-,lt)

J sin i, osinH + 12

il.I r-r r, 22. [ ]" o 
--,oiJ\T'.'i' Jl:rlr " l2n-4

n. [ =!:,t ,

l+' r,/r
'o' J,, 'r 

+ tr'

i{r. /t' , '/l-. ./. h - l
Jr (t-tt) t

Sor '. IrLc!r:rl.lh.rr crrr bc c'.rlurted o) Ir,rr'J e.rnrror be rrll
uated by all computet .llgebra systents. ln Exc|ciscs 3l-34.
evaluate the intcglal by han.l. aDd determine il it can bc eviil-
Lrated on youl CAS.

31. I _,/.\J tlt t'

::. lrcor ., .\rn ' \' - (o''rr :rl r,.1r

tt
33. / \ \ \.\'. l,/' rHp,r ',, ) ./r ' -.'t

I

tt
-14. / Jr lHir,r Rcurirr'lr. ,le,romrnrrnlr.

.rro (l +-r ,).1

,r. I
,r. 

Ir'

(-r I)(-r * 2)(t - 3)
2J. [ .r'J r(.' +!+l)
za. [" 6 d,

28. / "{,-r,r,

9.

I l.

t+ ,/r tt lt| .-l l ,1'
JLr * r' Ji, V

12. Find the area that is enclosed between the r-axis and the
(.rr\(.r - rl|LY - l' .r' lor , -.

13. Find the volume ol'the solid that is gener4ted when the re
gionbetweenthe r axisandthecurve r: e 'forr > 0is
revolved about the l -axis.

14, Fincl a positive value o1 1/ thal satisfies the equation
t+ I

I 

- 

/r: I

J,, r

ln Exer-cises l5 30. evaluate the inlegral.

lt
Considerthe integrrl | , /,r.

.J\1
(a) EvaLuate the inte_qral using the substitLrtion .r : sec Fl.

For what values oi jr is your'result valid?
(b) Evaluate the integral using the substitution r : sin0.

For what values of .r is your result valid?
(c) Evaluate the iniegral using the method of partial fiac-

lions. For what values of r is your result valid?

(a) Ei,aluate the integral
tt
I -- Jr
J.2, 'l

three ways: using the slrbstitution 4 : \/r. using the

substitution x : ,/2 -r, and completing the square.

(b) Show that the answers in part (a) are ccluivalent.

FiDd lhe alea of the region that is enclosed by tlte curves
r : (-i -3)/(-rr *rr), r - 0, r : l.ancl r : 2.

t' ,l\
\kelch rhe relion nlro.e..r'e.-r i' / ,.,rro u\e\oll

J, t

skelch 10 show thirt

t6. 
1,,"'t 

,^n' e,to

rl \l
t*. J ,,t -2rrr'r./i

2r5 + 26.rr + l5-rr + 6rr f 20.r i43
ro r-J - l8-r'r 2-rl - 39.t1 r 20

t0.

tr

tr

F]

E 35. Ler

./(-):

ti't

(a) Usc a CAS to factor-thc denominator'. and then write
down lhe forrr ol thc paltial tiaction clccorrposition.
You neerl not incl thc values of the constants.

(b) Check your rnsuer in part (a) by using thc CAS ro llnd
the paltial fraction deconposition of f.

(c) Integrate .l by hand, and then check your answer by
integiating with the CAS.

36. The Gamna fufuction.l' (.\'). is clelined as

rl
li' r: / t' , ,lr

J,,

ll can lle showl] thilt this imploper il1tegrirl convelses if and
only if .t > i).

(a) Find l( l).
(b) Prove: I-(r + l):.,il-(-r) for all ,r > 0. [Hll?t] tjse

integriition by lalts.l
(c) Use thc lcsults in par.ts (a) and (b) to lind f(2). f(3).

ancl f (,1); and then make a conjecture tbout f(/l) for
positivc integea values of /?.

(d) Sholv that I-(j) : 
"C. 

fHrar: See Exercise 5l] ofscc-
tion 9.8.1

(e) Usc thc rcsLrlis obtained in parts (b) and (d) to show that
r(j) : jlEana r(l) : j"c



tr

576 Principles of ntegra Evaluauon

37. Refer to the Camma function defined in Exe.cise 36 to show
that

,"t I lnti,i r:1-11'f u - l). 1' t).

[H/la:Leu: -1n.r-.]l,+
rlrr / e d.t.rl" '1. ,, 0.

Jr\rr,/
plinl: Let t : .t". Use the result in Exercise 36(b).1

38. A simple pendulz/r consists of a mass that swings in a ver-

tical plane at the end ol a massless rod of length a, as shown
in the accompaDying ligure. Suppose that a simple pendu-

lum is displaced through an angle 60 and released from 1est.

It can be shown that in the absence of friction. the tilne 7'

required for the pendulum to make oDe complete back and

forth swing. called the peliod, is given by

where k - sin(Po/2). The integral in (2) is called a com-
plete elliptic integrql of the first kizd and is n]ore easily
evaluated by numerical methods.
(a) Obtain (2) ftom (1) by substituting

cosd:1-2sin:(9/2)
cos do : I - 2stnz(0a12)

k: sin(.aol2)

and then making the change of variable

sind - sin(9/2)/sin (00/2) : sir(912)lk

(b) Use (2) and the numerical integration capability of your'
CAS to find the period of a simple pendulum for which
L : 1.5 ft, do : 20', and 8 :32ftls2.

': lY 1,,^'
d0 (l)

./cos 0 cos dp

where d : d(I) is the angle the pendulum makes with the
vefiical at time t. The improper iniegral in (l) is difiicult
to evaluate numerically. By a substitution outlined below it
can be shown that the period can be explessed as

fr r-:
1-1.1' I 

- 
,!e t2.r

! 8 Jo /l k,sjn,@ Figure Ex 18

Railroad Design
)'- cttu conpanl' has a trrltract to ( onslruct a tratk bed for a roih octd line between tou,ns A antl B sltot:tt ctn the contour
nlep in Figure l. The bed tan be created by (Lltting tretlches through the sLufate or by using sone combination of
trenches dnd tunttels. As chieJ engineer, your assignment is to andl\ze the (osts of trenches and tunnels and to propose

d desig,n sn ategy for minimizing the totdl construction cost.

fl Fingiile*rlrp5 lieqLrir"*.nerrls

The Transportation Board subnits the following engineering requirements to your conpany:

. The track bed is to be straight and i0 m wide. The grade is to increase at a constrnt rate

fiom the existing eievation of 100 m at town A to an elevation of 110 m at point M and then
decrease at a constant rate to the existing elevation of 88 m at town B.

. From town ,1 to point M and lrom point N to town B fte track bed is to bc created by
excavating a trench whose vedical cross sections are trapezoids with the dimensions shown
in Figure 2.

. Between points M and N your company must decicle whether to excavate a trench of the type
in Figurc 2 or to excavate a tunnel whose vertical cross sections have the dimensions shown
in Figure 3.
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CONTOI]R \I\P
F:I TV,\TIONS IN \!F IFRS

DrlAll, NrAP

PROPOSED Tl-TNNLL CONSTRUCI IOh\

20.2 10.,1 20.6 20.1J

Kilometers (= I 000 m)

Fisurc l
.. ro,n --i

Iigure l

qlt Co: t f a,:tcr!l

Sudace excavalion ()1'riiilbeds is perfomed using bulldozers, Irydraulic excavatols (backhoes),

loading nactors. and otlre| spec ializecl equipnrcn t. Typically.lhe cxcavi:Lted di is piled at lhe si.le
of the tracks to lb|m sloped cnrbrnkmenls, and thc cxclrvation cost is cstimated from the volunle
of din to bc rcnroved and piled.

Tunnels in rock are often cxcavated by drilling shafis and inserting boring machines (called
,,o1"r') to looscn and remove fock and dirl. Tunnels in soft ground are ofien excavated by starting

at the tunnel flce ancl using buckel oI roiary excltvators housed iuside of shie]ds. As the excavator
progrcsses. lunncl liners are inserted behind il to support the eii h ilnd prevent cavc-ins. Dirt
renoval is perlormcd using conveyors or somctimes using railca|s (called nilc,( .dr.r) that run
on specially construcred tracks. Ventilation and rir comprcssion arc other factor thrt add to the
excavarion cost of tunnels. In general, the excirvation cost for a tunnel can be estiorated tiom tu.o
components. the total volume o[ dirt to be removed and a cost that increascs with the distance to
the tunnel opening.

Vuk.' lhc iirllou irrp co\t a:\trlltPlinn{:

. The excltvation and dirt-piling cost ibr a trench is 1i4.00 per cubic meter

. The drilling and di piling cost tbr a tunnel is $ti.00 per cubic mctcr. and the costs involved
in moving a load ofdirt insicle the tunnel a distancc of I ln towarcl the entmnce along the track
line is ti0.06 pcl cubic meter'.

12 14 t6 tri t0
Kilometers (= I0(X) m)

! ro m -
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Cost Analysis of Trenches
Assume that variations in elevation are negligible for shon distances at right angles to the track,
so that the cross sections of the dirt to be excavated always have the trapezoidal shape shown in
Figure 2 (shaight horizontal edges at the surface).

Exercise I Complete Table 1, and then use the table and Simpson's rule with /, : l0 to
approximate the cost of a ffench from town A to point M.

Tsble 1

Exercise 2 As in Exercise l, use Simpson's rule with n : l0 to approximate the cost of
constructing a trench from (a) point M to point N, and (b) point N to town .8.

Exercise 3 Find the total cost of the project if a trench is used along the entire line from town
A to town 8.

Cost Analysis of a Tunnel

Exercise 4

(a) Find the volume of dirt that must be removed from the tunnel, and calculate the drilling and

difi-piling cost.

(b) Find an integral for the cost of moving all of the dirt inside the tunnel to the tunnel entrance.

[Srggesriaz: Use Riemann sums.]

(c) Find the total cost of excavating the tunnel.

Exercise 5 Find the total cost of the project using a trcnch ftom town A to point M, a tunnel
from point M to point N, and a trench from point N to town 8. Compare the cost to that obtained

in Exercise 3 and state which method is cheaper.

Module by: C. Lynn Kiaer, Rose-Hulman Institute ofTechnology
David Ryeburn, Siwtn Fraser Universily
Howard Anton , Drexel University
Peter Dunn, Railroad Construction Company, Inc., Paterson, NJ

100 _ ,- : ., _ t00 _._.. ..; -,_Q105 l0l : 4

81000

]q,WQ
12.000
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Colin Moclourin

MerunuArrcAl MoonrrNc

WITH DIFFERENTIAL

EeuatroNs

ing concem relationships' between ohanging quantities.
Since rates of change are represented marhematically by
derivatives, it should not be surprising that such principles
are often expressed in terms of differential equations. We
introduced the concept of a differential equation in Sec-
tion 7.2. but in this chapter we will go into more detail.
We will discuss some important mathematical models that
invol* differential equaiions. and we will discuss some
methods fo.r solving and approximating solurions ofsome
of the basic types ol differenrial equarions. However. we
will only be able to touch the surface ofthis topic, leaving

.many importarit topics in differential equations to courses
that are devoted completely to the subjecl.
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10.1 FIR$T-CII?$EF{ MIFFERfiFJTIAL HSUATiOTS
AtsE APp[_'ffATi0fl,!{;

In this section vte will introduce some basic terminologj and concepts coftcerning
difierential eqLntions. We will also discuss methods for solvifig certain basic t1,pes of
diJferential equqtiotls, and we will gi\)e some applications of our work.

Recall from Section 7.2 that a diJferentisl equation rs an equation involving one or more

derivatives of an unknown function. In this section we will denote the unknown function by

1 - 1(,r) unless the differential equation arises from an applied problem involving time, in
which case we will denote it by ) : )(t). The order of a differential equation is the order

of the highest derivative that it contains. Here are some examples:

DIFF]iRENTIAL EQLATION

TERMINOLOGY

SOLUTIONS OF DIFFERENTIAL
EQUATIONS

J) -.,

4-04*c, =u

+-t!!+(i 1r\=e,
drj ch

In the last iwo equations the deivatives of ) are expressed in "prime" notation. You will
usually be able to tell ftom the equation itself or the context in which it arises whether to
intelprct )' as dJ-/dx ot as dy/dt.

A function ) : ) (x) is a solulion of a differential equation on a given intewal if the

equation is satisfied for every .r in that interval when l and its derivatives are substituted in
the equation. For example, ) : e2' is a solution of the differential equation

dy
,--y c rl)

on the interval (.-.L. +a.), since substituting ) and its derivative into the left side of this
equation yields

), .l
..-41.'l e = 2e: ,e- -")rlx ' dx'

for all real values of ;r. However, this is not the only solution on the inteNal (-.", +c.); for
example, the function

Y:Ce'+e2'
is also a solution for every real value of the constant C, since

,.1r d

; r:;tc"'+er'l \ce'+e2') - (ce' +2e2") - (ce' +e2'):e2"

\.2)

One can prove that 4/l solutions of (1) on (-"c, +:o) can be obtained by substituting
values for the constant C in (2). On a given interyal, a solution of a differential equation

from which all solutions on that interval can be derived by substituting values for arbitrary
constants is cailed the general solution of the equation on the intenal. Thus, (2) is the

general solution of (1) on the interval (.--, +:,').
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REMARK. Usually, the general solution ofan nth-order differential equation on an interval
wili contain n arbitrary constants. Although we will not prove this, it makes sense intuitively
because n integrations are needed to recover a function from its /?th derivative, and each
integration inftoduces an arbitrary constant. For example, (2) has one arbitrary constant,
which is consistent with the fact that it is the general solution of thel/-st-o]-d€r squation ( 1).

The graph of a solution of a differential equation is called an lntegral curve fot the eqra-
tion, so the general solution of a differential equation produces a family of integral curves
coresponding to the different possible choices for the arbitrary constants. For example,
Figure 10.1.1 shows some integral curves for (1), which were obrained by assigning values
to the arbitrary constant in (2).

12

t0

8

6

J = Ce'+ e2'

lntegra curves for ,4 1 = a2'

Figure 10.1.1

When an applied problem leads to a differential equation, there are usually conditions in
the problem that determine specific values for the arbitrary constants. As a rule of thumb,
it requires z conditions to determine values for all n arbitrary constants in the general
solution of an 

'?th-order 
differcntial equation (one condition for each constant). For a first-

order equation, the single arbitrary constant can be determined by specifying the value of
the unknown function ) (r) at an arbitrary point rs, say y (x6) : 16. This is cal1ed an lzitral
condition, and the problem of solving a firsrorder equation subject to an initial condition is
called afirst-order initial-value problem. Geometrically, the initial condition )(n0) : ),0
has the effect of isolating the integral curye that passes through the point (rs, ye) from the
complete family of integral curves.

Example 1

The solution of the initial-value problem

dv
,1r-'-. f'wr _J

can be obtained by substituting the initial condition r = 0, I : 3 in the general solution
(2) to find C. We obtain

3 = Ceo + ea : C + |

Thus, C = 2, and the solution of the initial-value problem, which is obtained by substituting
this value of C in (2), is

y - 2e' + ez'
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FIRST-ORDER EQUATIONS

Geometdcaily, the graph of this solution is the integral curve in Figure 10.1.1 that passes

through the point (0, 3).

The simplest first-order equations are those that can be written in the form

Such equations can often be solved by integration. For example, if
dt,

dx

then

f . ,r4
, I \ u \ ----rL

.l +

is the general solution of (4) on the interyal (-T, +:.).

expressed in the form

h(.!) 

^ 
- g(.x)

(3)

(4)

FIRST-ORDER SEPARABLE
EQUATIONS

Equation (4) can be solved by integrating because the right side is a function of .r. However,
if the right side involves both .r{ and y, as with

dl_: : sin(lr,)
alx

then direct integration is not possible and othermethods lrruslbe used. In general, such equa-

tions can be compljcated to solve exactly, and often one must settle for nume cal approxi-
mations of solutions, as we will discuss in the next section. However, if the equation can be

(s)

then we say that the equation is separable. and we can often find the geneml solution by
first rewriting the equatiou in the differential fonn

h(\) dy - g(x) (lx (6)

(all _r,'s on one side and all r's on the other), and then integrating both sides to obtain

tr
lltlylJt - lf(rldY tr./.t.t-

If the equation that results when these integrations arc performed can be solved for t as

a iunction of x. then tl.fs function provides an explicit formula for the general solution of
(5). However, if the equation that results when these integratior'ls arc performed cannot be

solved for y as a function of .rr, then the equation still defines solutions of (5), but it defines

them implicitly.
The process of obtaining (6) from (5) is called separating v{lriables, and the method

we have just discussed tbr solving (5) is called separution of variables. A morc detailed
explanation of why this method works is given in the exercises.

Example 2

Solve the differential equation

./r

- 
: -ztlr'

and then solve the initial value problem

11r'
---_ : 4r \ -. r,(0) : I
dx
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Solrttiort. Separating variables and integrating yiclds

i

-dl= 4xdx

t1 I
I ../': | - .rd.t

.,1 l- .l
I Thp rnrernrinn on rhc l!. nro(lu.(, i (,.n.rrnr.I.

nd rh. inrrlJri,,n.,n rhc riSl,r I|n\lu((' ! con'r.nr
''. Ni hu\( (ombncJ lhere (oD\rrnN i rorhL.un! rlntC:.: .r.

Solving for,r' as a function ofr. we obtain

I
'2r:C (u)

The initial condition _)(0) = I requires that,), : I when x = 0. Substituting these values

in (8) yields C = - I (verily). Thus, ths solution of the initial-value problem is

I
' 2.rr+ I

Sorne typical integral curues and the solution of the initial-value problem are graphed in
Figure 10.1.2.

Example 3

Solve the initial value problem

dt'(4., cosr), -,1.r- =0. -r(0) -0.1\

Solutiort. First, we solve the differential equation. Separating variables and integrating
yields

r/r'
(4r - cos-r,)- = 3.r'

(4t - cos -v) r/,r' = 3rl r/.r
tt
/ (+t cos r'.1rlr' = / 3.r- r1.r
JJ
l\'--slnl-.r_+L

Equation (9) defines the solutions ofthe differential equatior implicitly: it cannot bc solved
explicitly for -) as a function of -r.

For the initial-value problenr, the initial condition r(0) : 0 requires that r' = 0 if .r : 0.

Substituting these values in (9) to determine the constanl of integration yields C = 0 (vcrity).
Thus, the solution of the initial-value problem is

lr--\rnr=t

Fi-qurc 10.1.2

lntegral curves for

r+, - cos rr4 :,r= o'.h

Figure 10.1.3

(e)

Fott THE tiE,\DLlt. Some computer algebra systems can graph implicit equations. For

example, Figure 10.1.3 shows the graphs of (9) fbr C = 0. +1. +2. and +3. with em-
phasis on the solution ofthe initial-value problem. [f you have a CAS that can graph implicit
equations, rcad the documentation on graphing them and try to duplicate this tigurc. Also,
try to determine which values of C produce which curves.

Not every first-order differential equation is separable. For example. it is impossible to
separate the variables in the equation

rl r'
; * 2rr' :.rc '

However, this equation can be solved by a different method that $,e will now consider.

FIRST.ORDER LINEAR EQUATIONS
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A first-order differential equation is called lizear if it is expressible in the form

dt
, P(t\Y -q(t\ (10,

where the functions p(x) andq(x) arc continuous arld may or may not be constant. Some
examples are

dv , dr , .1r

d,r 
I \ \'-d 

,' -lsinr)1 r =0 r' F5t 2

p(r) = J:. a(r) : .' /(r) : sinr, a{r) : Jr p(r) : 5. q(r) = 2

One procedure for solving (10) is based on the observation tltat if we deline p = p.(x)
by

LL: e lt(x) 
'l 
!

thon
Jtt J I
,t,-e 

' 
d, llYtd)-ppt^l

Thus,

d Jy Ju t1r'

;(4t)- l,l^+ n'-lt - t 1.r.p(x)y (11)

ff (10) is multiplied through by /i. and then simplified using (11), it becomes

tt: + tt pl.x )) : pql.^ )

d

*Ql - ttctQ)

This equation can be solved by integrating both sides to obtain

t tf t I
1tv - | pq(xtdt -C or 1- I lpq' 'rdr lClJ PIJ I

To summarize, ( 10) can be solved in three steps, called the method of integr{tting factots'.

The Method of Integrating Factors

Step 1. Calculate

LL = elP(\)'1x

This is called the in tegratikg.factor. Since any p will suffice, we can

take the constant of integration to be zero in this step.

Step 2. Multiply both sides of (10) by pc and express the result as

d-. I p:l - pqt.x)
AX

Step 3. Integrate both sides of the equation obta;ned in Step 2 and then solve
for ). Be sure to include a constant of integation in this step.

Example 4
dt

Sol\e Ihe dilferenrial equation , - 21 - {t
a\

Sohttiott. This equation is separable, but it is also linear', since it is of form (10) with
p(x) - 2 and q(.x) =0; thus, we can solve it by separation of variables or by the method
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of integrating factors. We will solve it both ways, using thc method of integrating factors
first. The intcgrating factor is

U: el-2'l' e 1r

I1'we multiply the dift'erential equation through by 4 and follow Step 2 of the method of
integraling faciors, then we obtain

. [c-",r'] = 6
d\'

Integrating both sides of this equatioo yields

which can be rewritten as

) : Ce2'

Allcrnaliv Solrtliort. Sepanting variables and integrating yields

Wc hLrvc uscd. as theco stAnr oi intce.ationhere ro
r.\.r!. 4 lor rhc.or{anl in lhe linrl ms lr

which agrees with the answer obtained above.

RE\I.\ltK. For first-order equations that are both linear and separable, rhe method of in-
tegrating factors is usually simpler than separation of variables, prcvided the intcgrating
factor can be found easily. Moreover, the careful reader may havc observed in the alternative
solution ol Example 4 thlrt the constant C : +e' is no1 truly arbitrary, since C : 0 is not
an allowable value. Thus, separation of variables missed the solution _1, - 0, which the

method of integrating factors did not. This problem occurred because we had to divide by

,1 to separate the variables.

Example 5

Solve the ilitial-value problem

,,l\-')
tlt

Solution, The differential equation can be rewritten in form ( 10) by dividing through by
::. This yields

,/ r' I

Compaling this to ( 10), we have p(,t ) : - l/,t and q (,t) : l. However, there is a difliculty
here because the method of integrating factors rcquires that /r(.r) and 4(r:) be continuous,
and p (r) has a discortinuity at -{ : 0. Thus, the method of integrating tactors can be applied
if -t > 0 or if .r < 0, but not on an interyal containing r : 0. However, the initial condition

l( l) = 2 is imposed at .{ = l. so we will assume that r > 0. with this assumption, the
integrating factor is

r-r r,, ,,/, -lnr,, I I

' l.rl .r

If we multiply (12) through by p, then fl.orn Step 2 of the melhocl of integrating factors wc

Ii = t,,.
lnlr:2.t*c
r.. -.1,+,

l.r'l = e'c'r'

t, : Ce2'

( l2)
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APPLICATIONS IN GEOMETRY

obtain

,1 /l \ I

. I i l:r/r \.r / -\

Integratir]g both sides of this equarion yields

I
-l:ln'!+C

ol'

r'-,r lnr * Cr

The initial condition r'(l) : 2 requires that _r = 2 if -r = L Substituting these values in
( 13) and solving for C yields C : 2 (verify), so the solution of the initial value problem is

l:rln,r+2,r

We conclude this section with some applic.rtions offirst-order ditlerential equatior.rs.

Example 6

Find a curve in the -i1'plane that passes through (0, 3) and rvhose targent line al a point
(-r. t,) has slope 2-r/t r.

Solutiott. Since Lhe slope of the tangent line is d1/d-t, we have

(r3)

( 14)

(15)

d\' 2t
dr l2

and, since the curve passcs tllrough (0, 3), we have the initial conditioll

-i(0) = 3

Equution f' l) i. reprrablc,,rnd LJn bc rntitlen ar

\-,/\: /l //l

so

ff
l'r,/r=/)t,it n' 1 =r',Ctt

It follows from the initial condition (15) that r' : 3 if r - 0. Substituting these values in
the Iast cquation yields C : 9 (verily), so the equation ol'the desired curvc is

{r'r :.rr + 9 qr i' : 13.rr 127)r/l

MIXING PROBLEMS

5a gal/min

In a typical nrixing problem, a tank is filled to a specifiecl level with a solution that contains

a knowrr amount of some soluble substance (say salt). The thoroughly stirred solution is

allowed to drain t'l om the tank at a krrown rale. and at the same time a solution with a known
concentntion of the soluble substance is added b the tank at a knou'n late that may or may
not differ from the draining 1ate. As time pr.ogresses, the amount of the soluble substance

in the tank will generally change, and the usual mixing problem seeks to detemrine the
amount of the substalice in the tank at a specilied time. This type of ploblem serves as a

model 1br many kinds of problems: dischalge and liltration of pollutanls in a ri\ cr. lnjcction
and absolptiol of ]nedication in the bloodstream, and migrations of species into and out of
an ecological system, for exanple.

Example 7

At time 1 - 0, a tank contains 4 lb of salt dissolved in 100 gal oI \\,ater. Suppose that brine
containing 2 lb of salt per gallon of bline is allowed to entel the tank at a rate of 5 gal/nin
al-Id that the mixed so]ution is dlained frorn the tank at the same rate (Figure 10.1.4). Find
the ernounf of salf in the tank after l0 minutes-

5 gal/m n

F gure 10. ..1
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Sohttion, Let j,(/) be the amount of salt (in pounds) after I minutes. We are given that

,l(0) = 4, and we want to find )(10). We wil) begin by finding a differential equation rhar
is satislied by -r.(t). To do this, observe that dj'/dt, which is the rare at which the amounr
of salt in the tank changes with time, can be expressed as

4! = rate in - rate our

where /z1r li? is the rate at which srlt enters the tank and rete out is the rate at which salt
leaves the tank. But the rate at which salt enters the tank is

rate in - (2 lb/gal) (5 eal/min) - i0]b/min

Since brine enters and drains fron the tank at the same rate. the volume ofbine in the tank
stays constalt at 100 gal. Thus, afier r minutes have elapsed, the tank contains l (t) ib of
salt per 100 gal of brine, and hence the rate at which salt leaves the tank at tltat instant is

/ t,,n \ r'rrt
rille oul I lb/pal I r5 pel/min r - llr/rnrn

\ l{)0 - / ' 20

Therefore, (16) can be written as

,-ir r, /r, \
-10 ' or ',L l0dt 20 dt 20

which is a lirsrorder linear differeltial equation salisfied by r'(t). Since we are given that

t (0) :,1, the l'unction l'-(t) can be obtained by solving the initial-value problem

+ l: 10. rl0l: 1dr )0
The integratirg factor for the differential equation is

LL : ei(tl2o),lt et 
lza

If we multiply the differential equation through by p. then fiom Step 2 of the merhod of
integrati0g factors we obtain

!{e,t2o;-1 = 1o.,rza

n,t.n y : 
I tle,t2attr - 200e,t20 + C

1'11; : 200 I c e 't|r (17)

The initial condition states that I : .1 when / : 0. Substituting these values in (i7) and
solving for C yields C : 196 (verify), so

( l6)

=

E

200

150

100

50

0 0102030 1050607080
Time r (m n)

A MODEL OF FREE-FALL MOTION
RETARDED BY AIR RESISTANCE

-)(/) : 200 - 796e t/20

Thus, at time r = l0 the amount of salt in the tank is

y(10) :200 - l96e or :v 81.1 lb

(18)

FOR THE READER. Figure 10. I .5 shows the graph ol ( 18). Observe rhar r,(r) + 200 as

1-+ +.., which means that over ao extended period of time the amount of salt in Lhe tank
tends toward 200 lb. Give an infomal physical argument to explain why this lesult is to be

expected.

In Section 6.3 we considered the frce-fall model of an object moving along a vertical axis
near the su 'ace of the Ea h. It wits nssumed in that model that there is no air resistance and
that the only force acting on the object is the Eaflh's gravity. Our goal here is to find a model
that takes air resistance into account. For this purpose we make the following assumptions:

. The object moves along a vertical -r-axis whose origin is at the surlhce of the Earth and
whose positive direction is up (Figure 6.3.7).
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. At time r : 0 the height ofthe objecr is s0 and rhe velocity is u0.

. The only forces on the object are the force F6 : -mg of the Earth's gravity acring
down and the force Fn of air rcsistance acting opposite to the dtection of motion. The
lorce Fa i. called rhe drag lorcL.

We will also need the following result from physics:

10.1.1 NEwToN S SLCOND LAw oF MoTrON. If ar object with mass i11 is subjected
to a force F, then the object undergoes an accelemtion a that satisfies the equation

(1e) 
l

In the case offree-fall motion retarded by air resistance, the net force acting on the object
is

FolFn:-nglFp
and the acceleration is d2 s I dt2 , so Newton's second law implies that

dzsmg FR =,11 ,, '20r

Expedmentation has shown that the force FR of air resistance depends ot the shape of
the object and its speed-the greater the speed, the greater the drag force. There are many
possible models for air resistance, but one of the most basic assumes that the drag force Fr
is propofiional to the velocity of the object, that is,

where c is a positive constanl that depends on the objecr's shape and properties of tbe
air" lThe minus sign ensurcs that the drag force is opposite to the direction of motion.)
Substituting this in (20) and writing d2s ldrz as d,L ldr, we obtain

d_-

-mg cr = m-.
dt

or on dividing by n and rearranging we obtain

duc
, * u= ,g

which is a firsrorder linear differential equation in the untnown function o : u(/) with
p(t) = cln and 4ft) : g lsee (10)]. For a specilic object, the coefficient c can be

determined expgrimentally, so we can assume that r?, g, and c are known constants. Thus,
the veiocity function u : u(l) can be obtained by solving the initial-va1ue problem

duc
_! u(0) = u6 (2t)

Once the velocity funation is tbund, the position function .r : r(l) can be obtained by
solving the initial-value problem

ds
, : u(I). s(0) :50

dt

In Exercise.lT we will ask you to solve (21) and show that

ttt):e c""(^+'3\-U
\-clc

(22)

(23)

*Other 
common models assume thal FR = cr2 or, more generally. Fr = cr-r for some value of /.
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Note that

lim u(1; : -1€t++'. C

(verify). Thus, the speed u(l) does not increase indefinitely, as in free fall; rather, because

of the air resistance, it approaches a finite limiting speed u, given by
mR m8,,= --.- l- .' (25t

This is called the terminal speed of the object, and (24) is called, its teminal velocit!.

RI:Ni \JtK. Intuition suggests that near the limiting velocity, the velocity u (t) changes very
slowly; that is, du/dt 

^J 
0. Thus, it should not be surprising that the limiting velocity can be

obtained infomally from (21) by setting du /dt = 0 it\the differential equation and solving
for u. This yields

,:_U
c

which agrees with (24).

ExERctsE SET 10.1 E cr-trrinrg calcirtator E cAs

(24)

l. Confirm thar ) - 2errl3 is a solution of the inirial-value
problem y'= r'?1, y(0) = 2.

2. Confirm that y : j-ra + 2cosr + 1 is a solution of the

initial-value problem y' = xl 2 sin.r, y(0) : 3.

In Exercises 3 and 4. state the ord", ot Lhe differenrial eqra-
I tion, and confirm that the functions in the given family are

.olutions,

dv
3. (a) (l +r);i - 1; y:c(llr)

(b) )" + ):0: ):cr sint+c2cost
dt,4.rat2fr- t r -l: 1:ce')+x-3

(b) r"-y:Q; y = qst!c2e-t

i-
In Exercises 9-18, solve the differential equation by sepa-

ration of variables. Where reasonable, express the family of
solutions as explicit functions of x.

dxt
,I+',dt
1*y dx

13. (1 + )2)l' = e')
15. e-r sinx - ,r'' cos2 r : 0

dt r2 - r'11. . - '---------. =odr sin x

dr
10. I _ (l + 1,,).r,

, l..t r.l
)-,- - -dx )

14. 1' = --t1
16. r'- (l +r)(l + r,2) :0

dt
18. 3tanv Isecl=0

'dt

In gxercises tS-Z+, .ofu" the differential equation by the

method of integrating facton.
In Exercises 5 and 6, use implicit differentiation to confirm
that the equation defines implicit solutions ofthe differential
equation.

dt,
5. In)=x)+C: 

-:
^dt6. rr +x1r:C: 2x,l.'_2tr r',-0

dt

)'+f=cos(e')

(x' + lti1u + x) :0

dt

lv I

dx l+et

19.

21.

23.

t<

20.

1'12

I - .r)
24.

In Exercises 7 and 8, solve the dilTerential equation by the

method of integrating factors and by separation of variables,

and confirm that the two solutions are the same.

In each pan, find the solution of the differential equation

xdx+Y:x
that satisfies the initial condition.
(a) )( 1) = 2 (b) )(- 1) :2
In each part. find the solution of the differential equation

7. (a) , *31 :0

8. fa) +-4x1 :Q

dt
dt

dt

(b)

(b)

26.
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th t satislles the initiaL condition.

lu fr.r'tt... l. .rl. ..,lrc tlr, .trlr:.1-\:. ltr lrfnhl- - l\) ,lL,
rrrcllrurl.

,r.* r,r: r. I (0) :3

zA'28. +r:2. r'(0): I
.lt
. l.:

2S. ' f i.LJ\i

Jll. , ', 2, ."n -n . 
:

.l . 'i.tl.' . \\r'l,/r l' l
.ll. r.,''lr t '.'rrlr.. -,,'.lrlr. r'U' I

.1.t. r.r. Skc.h.nIr; i\nr.iI n rq.r.rl .Ir\e. o r1-.li e-Ir:l
eqrritrnr., - r 2r.

(b) Find arr eqLriltion lbl lhe i legral curve th t passcs

llrrJ. !lr llrc Porr't , i. I L

34. (r) Sketch some ty.pical intqgral cu|r,es olthe diltcrcnlial
e' lll:.11, ' \ \.

(b) Find |n equatiur tor the.integraL cLrNe thllt pllsses

rhr"-, h lh. p.rint r 1.4 r

In Exelcises 15 and 36. solvc the differential equition. and

thcn usc l grirLphing Lltilitv to -Lrchcr|ttc the intcgral c.urves for
a -. l{r l.i

./r
-..t5, (, , r)" ., -r' Fl -l(r.'\ , , .,' 0

,1.

If you havc a CAS that crn graplr inrplicit cqultioirs. solve the
. ill.-Lr lr- jq( rli'rI. I I \(r. i.. .1- ,i {x..rI lrhrrrL,.cr.lc
C\\l,,.ler.lelhrir'tr:.1,i|c.16r(' 1.0.j.'

E37r'

;13. At time / : 0. I tank conlains 25 ounces of salt dissolved
in 50gllof $'ater. Ihe brinc cLrttuiniug:l ounccs olsalt
per gallon of brine is lliowe.l to cnter the tunk 111 i1r-dlc of 2
gal/nin and thc tuixed solLltion is dreincd from the t tk xr

the stnre ri1te.

1a) Ho$ rnuch si.rlt is i the tauk llt an arbitrtry lir1lc / l
(b) llow much slll is in thc tiulk after 25 min:l

,1,1. A ta|k iniliall) conlrins i0il grl o1 purc wirlcr. Then ut tirne
I : 0 br-il]e co tirining 5 lb ol salt per lrallur ol brine is

.rl ,,r','l ,-r q te t.t\'l.r'\ .il : t.rr/ ol l,r j r ,r' . t.l ltr.
mired solLrtiod is drainccl tiun the tiink at the slLmc rate-
(il) llo\!.|tLlch sall is in lhc t li( at an arbitriLr) liIne 1l
(b) How much s lt is in the tiiuk rlier j0 mirll

,15. ,,\ 1tulk witlr a 1000 gill clrjrllcity initirllI corrlein\ 5(X) gitl
olwirter'thal is polLuted wiih 50 1b olpiirticuliile nraltcr. At
tifie r : 0. Ilure \\aler is addcd at a rate ol20 gal/r]]in and
lhe rnixed solutiol is chainccl otT at a rirte ol I0 gal/rnin.
Ilor,' rrruclr particulale nlattcl is in the ltllk \\hen it reachcs
the poilll ol'overllo\\, ine l

46. The wrler il] ilpollutcd lakc juititll\'contri s I lbof mcrcillv
srLltsper 1(l(l.000grlol \\aler. lhclaliciscircular'\'ithdixnr
(r-r .lrln,.llr,lr rr.lollll'lel\tlr { .P,,liul(,1 ,\,rrrt.pu ldd
1r'onr thc lakc at a rate of 1000 gal/h anrl is lcplaced u'itlr
1r'csh u'atc| at thc sanle rate. Conslrllcl it lltble that show\
thc anlolurt of nrcrcLrl in the llke 1il lbs) r( thc endof cNch

lt,,rI n., t :. |- '.,1 |pc|r^. Dt'......"),r....tn1'tiutr.\orl
lulcle. [[Jse 2(r:l -rel/nr].]

.17, lal LIsc thc urcthocl ol inle-srllins firctors to conlll.ln thal
(23 ) is thc solutiur ol initial-vrlue ploblcnr (21 ). [No/..
Keep in mind ihat (. r,?. dnd S ale consLilnts.l

(b) Show that (23) c.rI] bc c\prcsscd in terns ofthe tenninal
speed (25) ls

I (/) - ( (/'r 
' (Ll) r'r )

(c) Sho\! thil j1'.t(0) : \r). lhen thc position tlnctiol o1'

. thc objccl crn bc crpressed as
I

.1, ,.y l , )(
,18. Basecl on thc air rcsilt nce ntoclel discussecl in this sec

ti.nl. a lLrll)' e'qtripped sk1' diver ileighing 2.+0 lb !vould
. heve a lerminal specd ol apploximalel)' Il(l fi/s \\ilh a

c ,.P'll rr.r,, - bI'l.l'pr.r\irrirtrr\ l .t . rrt'h.rrr ^l'r r

parnchute. Sufpose thrl such I sky divcl is dloppe.l tiorn
an airplanc at an llritude ol 10.000 li. liLlls lirr'25 s rvith a

clolcd parachutc. and thel] tllls the resl ol the wuy with an

opcn parachutc.
(a) AssLuuirig that the sk).li!er''s iniliiil Ve ical velocity is

zero. use Exercise r17 to linLl the sk) divcr's vct-ticalve-
locitt Nnd height lt the tilne lhe parachulc opcn!. [Take
q - -12 ti/sr.l

(b) Appro ilnale the l.nal linlc. to the ncarest second. that
thc sky divcr is in fhe air'. fllrrr: You willnot be aLrlc to

' solvc fo| the timc cxlctl),. so consider usillg \eNton s

Mcthod or thc rrcthod o1' Exanrple 6 oi Sectlor 2.,1.l

1t ,,,rr lt.r\(: CA\. _(.tJ rlr .l,..rr . .r''on.rn.. lr.rr-,.lil
rc(Ili.rl (q. Jli,rn. :,nJ rnr' :l \:r'tr( l,ruLJ.nl' ,rn.l ltl.r. Lr'-

thc CAS in Exercises 39 rird,10

@ 39. tlse a CAS 1() solve the difte|ential equations ilr thc od.i
numbered Exercises 9-23. and conllm thut the ans$e.s r.e
.n ,r.tr0t $ irlr rlro.e.I lhe:.I,uer'ecl.or ur tlrp.(\r.

E 10. I ." : C \S rn .^ 'e lh( irr r.,l r.rlrrc I'rol"c '' rrr h- ,'JJ
nunlber'eal Exercises 15 31. and codlirn thi1l the'ars\\'cls
are col)sistent With lhose in the ans\\,er secl.ion of thc tcxt..

Jl. I rrJ.ul -.r..rti"n !,t ir\ t r \( $ rllr' iht,:r.<pl.' *.ro e.ansclt
line at any point (r. r i lras slope .rc' .

! J2. I .e :' lr.rplrinc .r lity ro een(rdle ircLr \e lhrl n:r\'(, r.IrJsn
thc point (1. l) antl rvhose liurgenl line iil (.r. r') is pcrpcn

dicular to thc line rlirough (,r..! ) with slope -2l./(3.rr).



49. The accompanyine figure is a schematic diaglan oi a basic
Rl ser ies electrical cilcuit that collt.rins a po\*'el source with
a time-depeident voltagc of y (/) volis (V), a resistor with
a constant resislance ol R ohms (Q). and an in.luctor with
a constanl induclance o1' I henlys (H). If you don't know
anything.rbout electricai circuils. don'1 \\,olry: iill you need
10 k]]ow is lhat elcctrical theory states that a current of 1(/ )

anperes (A) llows through the circuit where /(r) satisnes

the dillarenlial equation

dIL +RJ:V\I)

(a) Find /(t) if R = 10 O, | : ,1H. y is a constant 12 V
and/(0):0A

(b) What happens to the curlent overa long period oitimel
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thc balrel opening at time a. then

rlt:
ntt' , : (ku'lnt,q)

,1.r

(b) Express -r in terms ol r, giverl tllal,r : 0 \then r, : u0.

(c) AssLrming that

ur :981J m/s. .g - 9.8 n/sl
ar :3.56 x l0 r kg. i:7.3 x l0 tjkg/m

usc the result in part (b) to find our how high the buller
riscs. [Hil?1. Find the velocirv ofrhe bullet ar ils highcsr
point.l

lne rol.ourn. 11i.c.r..ru_ t. nee. ed nr f\er.i.c.:.1 rn(l )4.
Suppose that a tank contajning a liquid js vented to the air
irt the top and has an olrllel al the bottom througl'l which the
liquid can dlain. lt follous ilom Torricelli's /aw in pltysics
that if the outlet is opened at timc 1 - 0. then at each ilstant
the depth olthe liquid I(.) and the area A(/r) ol rhe liquicl's
suface are related by

dhA(h) : kJh

where fr is a positive constanl that depends on such factors
as the viscosity of the liquid and the cross scctional area ol
the outlet- Use this result in Exercises 53 ancl 54. assuming
that I is in feet. A(/r) is in square feet. and / is in seconds. A
ciil. ulitnr \. ill I'e ll* lr

53. Suppose that rhe cylindrical rank ill the accompanying fig
ure is nlled to a depth of 4 1eet at tilue t : 0 and that the
constant in Ton-icelli's larv is,( - 0.025.
(a) Fird r (r).
(b) How many minutes will it take ibr the rank ro dlain

corupletely?

5:1. Follorv the dilections ol Exercisc 53 tbrthe cylindrical tank
in the accolnpanying liguie. assruning that the tank is lille.l
to a depth of 4 leer iLt timc / - 0 and that the conltant in
Torricclli s law is I : 0 (125

i (/)

R

50.

51.

Fisu,t Ex :19

Find 1(t)fortheelectricalcircuitinExercise49 iiR : 6().
L - 3 H, Y(/) - 3sint Vand 1(0) - 15 A

A rocket. fi red uplvard fr oln rest at time 1 - 0. has an iiitial
mass of rr0 (including il! fuel). Assu[rin-e that the lue] is

consumed al a constant rale t. lhe mass ,i of the locket,
while luel is being buned, will be given by n - nta kf .lt
can be shown thirt il air resistance is neglectcd and the fuel
gases are expelled at a constant spccd c relative to the rocket,
tben the velocity u ol the rocket rvill satisfy thc equation

nl :rk nla
dt "

rrlrere, r. tltc r.celerrriun dJe t,, grJ\ t).
(a) Find l (t ) keeping in mind thiit the mass rrr is a function

of 1.

(b) Suppose thdt the firel accounts lbr 807c of thc initial
rrass of thc rocket ancl that all of the fircl is consumcd
in 100 s. Find the velocity of lhe rockel iD mcters pcr
second at the instlnt the t'uel is exhausted. lTake .{l : 9.8
n/s: and c:2500 m/s.l

A bullet of mass nr. fired straight up with an initjal velocity
of u0, is slowed by the force of gravity and a drag force of
ail resistance f,ul. where g is the constant acceler'ation clue

to gravity and * is a positive constant. As the bullet rnoves
uprrarJ. its \elo\ ) r .Jri\ne. the equatinr

dt',r,:(lr+,,7!)

(a) Show that if -\: - r (/) is the height of the bullet above

Figure Ex'53 Figurc L,x 51

1
:l 1t

I

Suppose that a particlc moving along the -r-txis encoun
tcrs a resisting iorce that results in an acceleration ol
a : dxlttt: -0.0,h1. Given that r : 0 cm and r : 50
cm/s at time r : 0, lind the velocity u and position -y as a
lunctionoltforI>0.

52.

55.
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56. Supposc that ir particle moving along the r axis cncourl
tcrs a rcsisting lbrcc that result! in an acceicration of
,1 - 111'ftlt - 0.02v[. Given thlit.r : 0 cm and r' - 9

cm/s at time / - 0. find thc velocity u iincl position.r a! a
functionoftibll20.

57. Find au initial-\'alue ploblem whose solution is

58. Derive Fomrula (7) for solvin-g the separable differential
cquation

,(r') : : S (r)

by milkinS thc substitlrtion _r : _r'(-r), r/r' : -r''(.r) r1r in the
integral

It,t,t,tt

I 0. 2 il l':i [: r,: il {:} i'i i:i f-: i-D $ ; f [J L H ffi '$ hq fi l"[.{ *$

lt1 tllis sa(tiot1 ye y'ill reexdntitte the toucepr ol e directiott lield. dnd v't,u'ill discuss

u methotl litt appto\inluting soIutiotls of.llt st-o Llar cquutiotts tttarcrial[1'. NuntericaI
appro.rinatious qta inlportant in cases vhere tlrc tlilfercntial equctLion cdtulot be soltcd

We will be concerned here rvith first order eqllatiors that are expressed wilh the derivativc
by itsell on one sicle ol tl're equation. For.exanlple,

l' : rr arcl l' : sin(,i.\')

The first of thcsc cquations involves only -\' on the right sidc, so it has thc fom -r" : ,f(.r).
Howevel, the secoud equatiolr involves both .r ancl l on the right side, so it has the form

)' : ./lr. l). where the symbol f(r. r) stantls lor a function of the Lwo variables ,r and 1.
Later in thc tcxt wc will study functions of tr.vo variables in lrorc dcpth, but ti)r now it will
suflice to think of./(r. r') as a fblmula that ploduccs a unique output when values of r ancl

l are given as inputs. For cxamplc, if

.l(-t'.r'):t:+3.'
and if the inputs are .! : 2 and \' = 4. then the output is

/r'-1, ': -tr-J' I l2 -8

ItLNI.\ttt\. ln applied ploblems involving tine. jt is usual to use t as the independent
variablc, in which case u,e woulcl be concerned with eqLrations ol'the fornl l,' : .f(/, l),
whelc r'' : r1r'/rlr.

ln Section 7.2 we introduced tbe concept of a direction field in the context of diflerential
equatiorrs ofthe tbrm r'' : ./(,r); the same principles apply to differential equations of the

lbrrn

1,' : /(-r. r.)

To see why thjs is so. let us rcvie$, the birsic idca. If wc interprct -l'' as the slopc of a tangcnt
line. then the dit'ferential equation states that at each poim (.r. \') on an integral curye, the

s Lope ()1' the langenl iine is equal to the value of I at that point (Figure 10.2. I ). For example,
suppose that ./(,1. f) = t ,;. in which casc rvc havc thc dificrential cqudtiuD

l'-t --i (1)

A geometric description of the sei of integral cuNes ciur be obtained b)' choosing a rectan
gular gr id of points in thc -\ \ -planc, calculating thc slopcs ol lhc tangent lincs to tlle integral
cun'es at the glidpoints. ancl cirarving small segmcnts ol the tangent lines at thosc points.

Thc lesulting picture is called a dileclio n field or a sktpe Jield firl the clifl'clcntial cquation

becausc it shows thc "dilection" or "slope" of the integr-al culves at the gridpoints. The

r' : cosr + 
Jf'

FUNCTIONS OF TWO VARIABLES

DIRECTION FIELDS

At each po nt (r. JJ on an integral
curve of ]' = /(.r. r'). the tangent
I re has s ope l(r. r).

Figurc 10.2.1

S ope = /1.r. r )
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nore gridpoints that are used, the better the description of the integral curves. For example,
Figure 10.2.2 shows two direction llelds for (1) the nrst was obtained by hand calculation
using the 49 gridpoints shown in the accompanying table. and the second. which gives a

ciearel picture of the integral curves, was obtaired using 625 gridpoints ancl a CAS.

56
.l 5

l
1

I

1

3

2

Figure 10.2.2

tt so happens that Equation (1) can be solved exaclly, since it can be wlitten as

l' )'= -Y

which, by comparison w ith Equation ( 10) in Section I 0. I , is a llrst-or der linear equation w ith

p(r) - -1 and z7 (,t) = r. We leave itforyou to usethe method of integrating factors to
.ho$ IhJl lhe generrl rolJlron o lhir cquali,.rn i\

(2)

Figure 10.2.3 shows some of the integral curves superimposed on the dircction field. Ob-

seNe, however, that it was not necessary to have the general solution to construct the direc-

tion field. Indeed, direction ilelds are iutpofiant precisely because they can be constructed

in cases where the differential equation cannoi be solved exactly.

Foli TI lFl li I-:A l) I-llt. Confirm that the firsl direction field in Figure I 0.2.2 is consistent with
the r alue. in tire ac, ompln) rng trble.

Example I
ln Example 7 of Section 10.1 we consicleled a mixing problem in which the amount of salt

),(1) in a tank at time a was shown to satisly the differential ecluttion

+ -- - l0,lr )l)
which can be rewlitten as

r":ro-l (3)'20
We subsequently found the general solution of this equation to be

r,(t) : 200 + Ce 'i2o (4)

and then we found the value of the arbit! ary constalt C from the initial conditiol in the

problem fthe known amount of sa]l r'(0) at tilne / : 01. However, it follows from (4) thal

lim It.)= 200

for all values of C, so regarclless of the amount of salt that is present in the tank initially,
the amount of sait in the tank will eventually begin to stabilize at 200 lb. This can also be

seen geometlically liom the direction field lor (3) shown in Figure 10.2.4. This direclion

):-r+l+cer

Fig re I0.2.3
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EULER'S METHOD

f,eld suggests that if the arnount of salt present in the tank is greater than 200 lb initially,
then the rmount of salt will dccrease steadily over time tou'ard a lintiting valuc of 200 lb;
and if it is less than 200 lb initially, then it will incrcase sreadily torvard a lirniting value of
200 lb. The direction field also suggests thal il the amount prcsent iririally is exactly 200
lb, then the arnount of salt in the tarrk \\'ill stay conslanr at 200 lb, This qan also lre seen

fiom (4), since C :0 in this case (verify).
Observe that fbr ihe directkrn fieLd shown in Figure i0.2.4 the ti.ugent segments along

any horizontal line arc parallel. This occurs because the differenlial equation has the fonn
1':l(r')with/absentf'romtherightside[see(-j)l.Thus.forahxedrthesloper''doesnot
change as time varies. Because of this tirrc inclependence of slope, dilfelcntial equations of
thefbrmt'= /11) are said tcl be autoflontous (from lhe Gl eek word a/!tol7, ,r7, ,/rs, DlcJn ins
"independen(").

Our next objeclivc is to develop a method for approximating the solution of an initial-value
problem ol thc form

t'=.l(.r...\). .\'(.ro) = lb
We will not attenpt to approximate t (r) lol all values of .r': r'ather, we will choose soue
small inclcrnent /r ard focus on approxirnating the values ol t (.r) rl il sLrccessjon of.r-values
spaced /i unils apart, startirlg fron.rn. We will denote these.r-valLles by

,r1 :.t11 {,/i. r1 :.t1 {l. t3 -.r2 }/t. .\r:,rr */t....
and we will denote the approximations of -r'(.r) at drese points by

The tecluique that we will clescribc for obtaining these approximations is called Erler's
Method. Although there are bcttcr approximati(D lrethods available. many of thenr use

Euler"s Method as a starting point. so the underlying concepts arc important to undclstand.
The basic idea behird Euler's Mcthod is to start at the known initial point (,rp. riy) and

drarv a linc segment in the clirection determinecl by the dir ection licld until we reach thc point
(rl, r'l) wilh ,r -coold inate .r'1 : ro * ir (Figute 10.2.5). lf I is small, then it is leasortable to
expect that this line seg ent will not dcviate much fiom the integral curvc \' : r'(.\). ard
thus Il should closely apploxinate,r'(.r1). To obtain the subsecluelt approxinations. wc
repeat the prrcess using the direction field as a guidc at each step. Stafiing at the endpoiDt
(-rr. 

-\'r ). we dmw a line scgment detemined by the direction lie ld until lve reach thc point
(-rr. r'l) with -r-coordinate .rl : .\'r + /r. and fron that poinl wc drau'a liue segnrcnt

deteflninecl by the direction li clcl to dre point (.\-r. \\ ) with .r coord inate .rr : r: * /r , uncl so

forth. As indicated in Figure 10.2.5. this procedule produces a polysonal path thnt tenals to
follow the intcglal curve closely. so it is reasonablc to expect that lhc r'-values r:. r'r. rr. . . .

u'ill closely approximate \'(.r:). ,\'( rj). t (,r.1). . . . .

To cxplain hou' the approximations -\'1. r'1. \1. . . . can be conrputed. let us lbcus ru ir

typical line segnent. As inclicated in Figurc 10.2.6. assur.ne lhat we have founcl lhc point
(,r,,, r,,, ), a:rd we ale trying to deteminc the next point (r,+ r. l)r r). wher e \',,+ L :.r, +ir.

Figurc l{).2.5

Ficure l0.2.al

(!r'l:).
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Since the slope of the line segment joining the points is detemined by the direction field ar
the starting point, the slope is l(;r", 1,,), and hence

\ir+L l; -

which we can rewrite as

tn+r=-1'r+J6",Y,,)h
This fomula, which is the heart ofEuler's Method, tells us how to use each approximation
to compute the next approximation.

Eulct's Mcthod

To approximate the solution of the initialvalue problem

y' : f(x, y), )(xo) = )o

prcceed as follows:

Step 1, Choose a nonzero numberlz to serye as Nr increment ot step size

along the i-axis, and let

x1 : xot h, x2:x1lh, \:x2+h,...

Step 2. Compute successively

)r = )o + "f(ro, yo)/r

)2 : )r + f(.xt, yt)h

]3 :)2+ f?z,y)h
:

l,+r:l+fQ,,Y,)h

The numbers yy , y2, )3, . . . in these equations are the approximations

of y(x1), 1(r2), l(rr), ... .

Example 2

Use Euler's Method with a step size of 0.1 to make a table of approximate values of the

soiution of the initial-value problem

l'= t, r, )(0) : 2 (5)

over the inteNal 0: x : 1

Solutiott. In this problem we have /(.r, y) : ) - r, r0 : 0, and )o : 2. Moreover, since

the step size is 0.1 , the x-values at which the approximate values will be obtained are

ri = 0.1. xz - 0.2, ;r3 = 0.3, ..., xe = 0.9, rro = 1

The first three approximations are

lr = lo +.f(.rg, \oh _ 2 + (2 _ 0)(0.1) : 2.2

lz : )r * .f(xr, y1)h :2.2 I (2.2 - 0.1)(0.1) = 2.41

1,3 =)2+ f (l2, y)h :2.41 + (2.41. - 0.2)(.0.1) = 2.631
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Here is a way of organizing all 10 approximations rounded to flve decimal places:

EULER'S METHoD FoR y' = 1 r, 1(0) = 2 wrrul=0.1

i1 .jitj rh .f()in,t)h yh+t = la+f\n,yt)h

0 0 2.00000 0.20000 2.20000
1 0.I 2.20000 0.21000 2.4r 000
2 0.2 2.41000 0.22100 2.63100
3 0.3 2.63100 0.23310 2.86410
1 0.4 2.86,110 0.2464t 3.11051
5 0.5 3.1105 r 0.26105 3.37156
6 0.6 3.37156 0.27'71,6 3.64812
'7 0.'1 3.64872 0.2948'7 3.94359
8 0.8 3.94359 0.31436 4.25'.795

9 0.9 4.25'795 0.33579 4.59374

'0 t.0 4.59314

obSeNethateachentryinthelaStColumnbecomeStheneXtentryinthethiIdco1umn.<

It follows ftom (5) and the initial condition y(0) : 2 that the exact solution of the initial-
AccuRAcY oF EULER'S METHoD value problem in Example 2 is

l:r+1+e'
Thus, in this case we can compare the approximate values of 1(x) produced by Euler's
Method with decimal approximations of the exact values (Table 10.2.1). In Table 10.2.I the
absolute etor is c^lculated as

lexact value - approximation

and the percenta.ge eftor as

exact value - approximation--- l-acffi x looz'

ItE\lAIIK. As a rough rule of thumb, the absolute error in an approximation produced by
Euler's Method is proportional to the step size; thus, reducing the step size by halfreduces
the absolute etTor (and hence the percentage eror) by roughly half. However, reducing the
step size also increases the amount of computation, thercby increasing the potential for
round-off error. We will leave a detailed study of error issues for courses in differential
equations or numerical analysis.

Table 10.2.1

EXACT EULER ABSOLUTE PERCENTAGE
,TT SOLUTION APPROXIMATION ERROR ERROR

0 2.00000 2.00000 0.00000 0.00
0.1 2.20517 2.20000 0.00517 0.23
0.2 2.42110 2.41000 0.01140 0.47
0.3 2.64986 2.63100 0.01886 0.11

0.4 2.89182 2.86410 0.02712 0.96
0.5 3.14812 3.11051 0.03821 l.2l
0.6 3.42212 3.3?156 0.05056 1.48

o.'7 3.'t1375 3.648'72 0.06503 t.',75

0.8 4.02551 3.94359 0.08195 2.04
0.9 4.35960 4.25'195 0.10165 2.33
1.0 4.71828 4.59314 0.t2454 2.64
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ExERctsE SET 10.2 E Grapnine catcu ator E cAS

1. Sketch the direction field fot y' = q 18 at the gridpoints
tx. yr. uhere x - 0. l. ....4 and; = 0. l. ....4.

2. Sketch the direction field for y'+ ), = 2 at the gridpoints
(r, ),), where t = 0, 1,...,4 and l,, :0,1,...,4.

3, A direction field for the differential equation )' : 1 ) is

shown in the accompanying figure. In each part, sketch the
gnph of the solution tiat satisfies the initial condition.
(a) )(0) : -l (b) y(0) = 1 (c) r(0) - 2

initial-value problem y' : 2y - .;r, y(0) = y0 as r -+ +co,
and check your conjecture by examining the solution of the
initial-value problem.

9, In each pa , match the differcntial equation with the direc-
tion field rsee nexr page). and explain your reasoning.
(a) y':|lx (b) y' =1/r @) y':e-"'

. ,r_r)(d)y:y-l (e)y=-x-)
(f) y/: (sinr)(sin 1,)

---* I

)
\3

11

i3

a4.

86.

Figure Ex-3

Solve the initial-value problems in Exercise 3, and use a

graphing utility to confiIm that the integral curyes for these

solutions are consistent withthe sketches you obtainedfrom
the direction fleld.

A direction fleld for the differential equatiorL y' : 2y x
is shown in the accompanying figurc. In each part, sketch
the graph of the solution that satisf,es the initial condition.
(a) y(1) : 1 (b) y(o) : -l (c) v( 1) = o

Figure Ex-5

Solve the initial-value problems in Exercise 5, and use a

$aphing utility to confim that the integml culves for these

solutions are consistentwith the sketches you obtained from
the direction field.

Use the direction f,eld in Exercise 3 to make a conjecture
about the behavior of the solutions of l,' : 1 - l, as r -+ +co,
and confirm your conjecture by examining the general so-

lution of the equation.

Use the direction field in Exercise 5 to make a conjecture
about the effect of y6 on the behavior of the solution of the

VVI
Figure Ex-9

If you have a CAS or a graphing utility that can generate

direction fields, read the documentation on how to do it and
check your answers in Exercise 9 by generating thedirection
fields for the differential equations,

(a) Use Euler's Method with a step size of h : O.2to 4p-
proximate the solution of the initial-value problem

)/:r+y, ),(0):1
over the interval 0 : r < 1.

E 10.

7.

11.
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(b) Solve the initialvalue problem exactly, and calculate
the el.ror and the percentage error in each of the ap-
proximations in part (a).

(c) Sketch the cxact solution and the apploximate solution
together.

12. It was stated at the end of this section that rcducing the srep

size in Euler's Method by half reduces the error in each ap-
proxirnation by about hall. Coniinn that the eror in y( I ) is
reduced by about half if a step size ol ll = 0.I is uscd in
Exercise 1l.

ln Exercises 13-16, use Euler's Method \a,ilh tlle given step

size h to approximate the solutiol] of the initial-valLre prob-
lem over the stated inteival. Present your answer as a table
and as a glaph.

dylch: u5. t(0) : l. 0 5 r 5 zl, ft :0.5
dvltlx -r r'], r(0): l, 0:,r : 2, h:0.25
dyldr : sin l, r(0): l, 0 

=t::2, 
11 :05

dy/dt : e r'. l(0):0,0:r:1. h:0.1
Consider the initial-value problern 

ZO.
,jj' : cos 21t, l'(0) : I

Use Euler's Method with five steps to approximate ),( l).
(a) Show that the solution ofthe initial value problem

.r': r ",l(0) :0 is

r(1): / . J/
J()

(b) Use Euler's Method with I :0.05 to approxinate the
value of

I\\l) - I I ' Jt
Jo

and compare the answer to that produced by a calculat
ing utility with a numerical integration capability.

The accompanying figure shows a direction lield for the
dillcrential equation l' : x/ l
(a) Use the direction field to estimate 1 (l ) for rhe solution

that satislles the given initial condition _v(0) : 1

(b) Comparc your estimate to the exact value ol1(]) .

Figure Ex- l9

Consider the initial value problen]

-:1. r({)):1
,,/ r )

(a) Use Euler's Method with step sizes of,4 : 0.2, 0.l, and

0.05 to obtain three approximations ofl,(l).
(b) Plotthe three appr-oximations versus ft, and make a con

jectLLre about the exact value of -r'( I ). Explain your tea-
soning.

(c) Check your conjecture by nnding l.(l) exacrly.

t9-

13.

14.

15.

16.

17.

18.

10.3 n10fi EHr\lG W|TF{ E|FFERE!\!T|AL EQUAT|O0{S

Since man,- of the fLtndenrental lau,s of the pltlsicaL and socieL sciences invoLre rates
of change, it shoL d not be sttrprising that sucll la\ts dre m.ode[ed b,; diJ.fercntit eclua

tions. In tllis sectiotl vle will discuss the getlerul idecL of nodeling witlL diJJerential
equttions. ttntl *-e will inlesligale sotne inportotTt nrodels tlu can be appliecl to pctpu-

Lation gro*-th, carbon dating, nedicine. etokryt. ttntl the vibration of springs.

One of the simplest models of population growth is based on the observation that wben
populations (people, plants, bacteria, and liuit flies, for cxample) are not constrained by
environmental limitations, they tend to grow at a rate that is propo{ionai to the size of the
population-the larger the population, the more rapidly it grows.

To translate this principle into a mathematical model, suppose that ) : J(/) denotes
the population at time /. At each point in time, the rate of increase of the population with
respect to tlme is dlldt, so the assumption that the rate of growth is proportional to the

POPULATION GROWTH
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populatjon is described by the differential equation

dt
, = kr' (1)

u'here ,( is a positivc constant of proportionality that can usually be determined expedmen
tally. Thus, if the population is known at some point in tirnc, sJy J : r,0 at time I : 0.
then a general fbnr.rula fbr the population y(t) can be obtained by solving the initial value
problem

1) 
=,tr,. i(o)= ttr.ll

When a drug (say, penicillin or aspirin) is administered to an individual, it enters the blood-
stream and then is absorbed by the body over tine. Medical research has shown that the
anount of a drug that is present in the bloodstream tends to decrease aL a rate that is pro-
portional to the amount of the drug prcsent the more of the drug that is prescnt iD the
bloodstream. the more rapidly it is absorbed by the bocly.

To translate this principle irlto a mathematical model, suppose that _] : ] (/) is fie amount
of the drug present in the bloodstrean at tine t. At eacll point in time, the rate ofchange in
t with respect to t is dy /dt , so thc assumption that the rate of decrease is propoltional to
the amount J in the bloodstream translates into the differential equation

PHARMACOLOGY

SPREAD OF DISEASE

i--^'

d.y

.lt - kr (r - .r,), r(0) = ,io

where I is a positive constant of propol tiona]ity that depends on the drug and can be deter-
niined experimentally. The negative sign is lequired because _r'decreases with time. Thus,
if the initial dosage of the cirug is known, say ) : I0 at time I = 0, then a general formula
fol t (t) can be obtained by solving the initial value problem

. : t\,, r,(D : _ro
alt

Suppose that a disease begins to sprcad in a population of Z individuals. Logic suggests

that at each point in time the rate at which the disease spreads will depend on how many
individuals ue already affected and how many are not-as more individuals are affected,
the opportunity 1o spread the disease tends to increase. bul at the same time there are fewer
individuals who are not afTected, so the oppoftunity to spread the djsease tends to decrease.

Thus, there are two conflicting influences on the rate at which the disease spreads.

To translate this into a mathematical moclel, suppose that ) : I(/) is the number of
individuals who have the disease at time /, so of necessity the number of inclividuals who
do not have tlle disease at tine / is Z _r,. As the value of -r increases, the value of I ]'
decreases, so the conflicting influences of fie two factors on the mte of spread d)/dt are

Irken rnLo accourl by the diilercntirl cquat'on

. : kt'(L r')
alt

where ,t is a positive constant of proportionality that depends on the nature of the disease

and the behavior pattems of the individuals and can be detemined expedmentally. Thus,
if the number of alTected individuals is known at some point in tine, sal -\ : )0 at time
I : 0, then a general formula 1br 1(r) can be obtained by solving the initiai'value problem

(2)

(3)

The population growth n1odel that we discussed at the beginning of this section was predi-
cated on the assumption that the populatjon ) : )(I) is not constrained by the environment.
For this reason, it ls sometimes called the uninhibited growth model Howevet, in the real

world this assumptiorr is usually not valid populations generally grow within ecological

INHIBITED POPULATION GROWTH
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systems that can only support ace ain number of individuals; the number l, ofsuch indi
viduais is calied the cqrrliftg capacity of the system. Thus, when r- > l, the population
exceeds the capacity of the ecological system and tends to decrease toward a; when ) < L ,

lhe population is below the capacity of the ecologicaJ system and tends to increase toward
Z; and when I : L. the population is in balance with the capacity of the ecological systen
and tends to renain stable.

To tlanslate this into a nathematical model, we must look for a differential equation in
which

dt11<0
dt

d.e: >.0

dt

Moreover, logic suggests that when the population is f'ar below the carryrng clp.rcity ii.e.,
! / L ^. 0), then the environmental constriiints should have little effect, and the growth rate
should behave very rnuch like the uninhibited model. Thus, we want

.lt
A simple clifferential equation that meets all of these requirements is

where k is a positive constant of propofiionality. Thus. if t and L can be detemined
exper-imentally, and if the population is known at some point in time, say 1(0) : 10, then
a general founula for the population -y(I) can be determined by solving the initial value
problem

r'(0) : ro

This theory of populatior growth is due 10 the Belgiar mathematician, P F. Verhulst
(1804 1849), who introcluced ii in 1838 and described it as "logistic growth."* Thus, the
differential equation in (:1) is caJled the lo gistic differential equation, and rhe growrh model
described by (4) is called the logistic model ot the inhibited groreth model.

ItENtr\RK. Observe that the differential equation in (3) can lle expressed as

if I>
L

if<
L

if I:

dr' ? \,i:k\l- t),'

I-r(:;)''

dt' , \ ,-] :kl t1- -l\,dr \, I/

\.1)

EXPONENTIAL GROWTH AND
DECAY MODELS

which is a logistic equation with ,{Z rather thall k as the constant of proportiona]ity. Tbus,
this rnodel fbr the spread of disease is also a logistic or irhibited growth model.

Equations (l) and (2) are examples ofa general class ofmodels called e-r?onential mctdals.
In general, exponential models adse in situations where a quantity incLeases or decreases
at a rate that is proportional to the amount of the quantity present. More precisely, we make
the tbllowing definition:

Verhulst's modeL fell i o obscurity for nearly a hundred ),ears because he did not have suf6cient census data
Io tcsl its validity. Howcvc.. nrLcrcsl in lhe nodel was revived in the 1930s lvhen bidogisLs used i! successfully
to describe the growth of fruit fly and fiour beetle populations. Vcrhulsr himself used ihe model ro predict rhat
an upper linil on Belgium s population would be approximately 9,400.000. ln 199,1 lhc populalion was abour

10,118.000.
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10.-1.1 IIF.FI,\'ITION. A quantity 1 = r'(r) is said to hav e an exponential growth tnotlel
if it increases at a rate that is proportional to the arnount of the quantity present, and it is
said to have ar exponential decay model if i decreases at a rate that is proportional to

. the amount ol tl'te quantity plesent. Thus, lbr an exponcntial gr.owlh model, the quantity

-]'(1) satisfies ar'r equation of the fonn

,, kt (I 0t r{r

. and for an exponenrial decay rnodel. the cluantiiy r,(,) satislies an equatio) ofthe fonn

- -lll 0r lb./,lt
The constant ,t is called the g/r)rllr constsnt ot the decq! corrslanl. as approprlate.

Equations (5 ) and (6) are first order lincar equatiols, since they can be re* r'itren as

dt rll
, {r- l) irnJ Li -0Lll tlt

both ()1'which have the lblm of Equatiol (10) in Section 10.1 (but with / rather than .r as
the independent vaiable): in the first equation we have p(l) = I and./(t) : 0. and in
the second we have p(r) - k and 4(l) :0.

To illustrate how these equations can be solved, suppose that r quantily 1'' : y(r) has an
exponential growth model and we know the anount of the quantity at some point in time.
say tj = t0 when I - 0. Thus. a general formula 1oI y(r) can be obtained by solving the
initial value probiem

/r', /.r:0, r(0): r,o

Muitiplying the diflerential equation through by the inregraring factor

P: "i 
k't' - "-r'

yields

- 
ll, "'\,1 = l)

dt'
and then integratiDg \\,ith respect to I yields

" 
r')':C or l:Ccr'

The initial condilion implies that r, = J0 when / - 0. fiom rvhich it follows rhat C = ,r0
(veily). Thus. the solution ofthe initial-value ploblen is

.) : )o"a' (1)

We Ieave it for you to show that if r' : 1111 has an exponential decay model. and if
t,(0) - t'o. ther

The significance of the constant k in Formulas (7) and (8) can be understood by reexamining
the dillerential ecluations that gave rise to these fomulas. For cxample, in the case of the
exponential growfh model. Equation (5) can be rewritten as

)'

which states that the gro\rtll rate as a fiaction of the entire populatiol rernains constanr
over lime, ancl this constant is &. For this reason. k is callecl the r?/a/ife growth rate of th,e

(8)

INTERPRETING THE GROWTH AND
DECAY CONSTANTS
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DOUBLING TIME AND HALF.LIFE

population. It is usual to express the relative growth rate as a percentage. Thus, a relative
growth rate of 3% per unit of time in an exponential growrh modei means that t : 0.03.
Similarly, the constant,( in an exponential decay model is c alled the relqtive decsy rate.

ltEN4,,\ItK. It is standard practice in applications to call the relative growth rate the gowth
rale, even though it is not really correct (the growth rate is d,t/d/). However, the practice is
so common that we will follow it here.

Example I
According to United Nations data, the world population at the beginning of 1990 was ap-
proximately 5.3 billion and growing at a rate of about 2Eo per year Assuming an exponential
growth model, estimate the world population at the beginning of the year 20I 5.

Sohttion. Let

/ = time elapsed from the beginning of 1990 (in years)

) = world population (in billions)

Since the beginning of 1990 conesponds to t = 0, it follows from the given data that

vn: r(0) :5.3 (billion)

Since the growth rate is 29c (k : 0.02), it follows from (7) that the world population at
time r will be

y(r) : ysei/ : 5.3eoo2' (9)

Since the beginning of the year 2015 coresponds to an elapsed time of I = 25 years
(2015 - 1990 : 25), it follows from (9) that the world population by the year 2015 will be

I { 25 ) - 5.J, o'") 5.Jen' - 8.7

whichisapopulationofapproximately8.7bil]jon'<

RE\IARK. In this example, the growth rate was given, so there was no need to calculate it.
Ifthe growth rate or deaay rate in an exponential nodel is unknown, then it can be calculated
using the initial condition and the value of _\' at one other point in time (Exercise 42).

If a quantity _r, has an exponential growth mode1, then the time required fbr the original size
to double is called the doubling time. and if y has an exponential decay rr.rodel, then the
time required for the original size to reduce by half is called the half-life. As it tums out,
doubling time and half-life depend only on the growth or decay rate and not on the amount
present initially. To see why this is so, suppose that _1, - _1,(l) has an exponential growlh
model

) = )0"^' (lo)

and let I denote the amount of time rcquired for y to double in size. Thus. at time / : 7
the value of I will be 21x, and hence from (10)

21'n - yoekr or ekr = 2

Taking the natural logarithm ofboth sides yields kZ : 1n 2, which implies that the doubling
time is

I
T - -In2k

(11)

We leave it as an exercise to show that Formula (11) also gjves the halflife of an
exponential decay model. Observe that this formula does not involve the initial amount 1,,0,

so that in an exponential growth or decay model, the quantity y doubles (or reduces by half)
every 7 units (Figure 10.3.1).
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'Exponential growth model i

*'l! o:,?Iu,ll':. :
Figure 10.3.1

Example 2

It follows from (l l) that with a continued growth rare of 27" per year, the doubling rime for
the worJd population will be

I
T - ln2 x 31.65'/

o.02

or approximately 35 years. Thus, with a continued 2% annual growth rate the population
of 5.3 billion in 1990 will double to 10.6 billion by the year 2025 and will double again to
21.2 billion by 2060.

It is a fact ofphysics that radioactive elements disintegrate spontaneously in a process called
radioactive decay. Experjlnentation has shown that the rate of disintegration is propo ional
totheamountoftheelementpresent,whichimpliesthatlheamountl,: )(/) ofaradioactive
element present as a function of time has an exponential decay lnodel.

Every radioactive element has a specilic half-life; tbr example, the halflife ofradioactive
carbon 14 is about 5730 years. Thus, fiom (11), the decay constant for this element is

I ln2k: hr2: 
- 

!0.000121
T 5730

and this implies that ifthere are 1..e units of carbon- 14 present at time / : 0, then the number
of units prcsent at a time I will be approximately

1(t) = 1,oe 
o ooor2r' (12)

Example 3

lf 100 grams of radioactive carbon- l4 are stored in a cave lbr 1000 yeals, how marly gmms
will be left at that time?

Solution, From (12) with t'0 : 100 and r : 1000, we obtain

)(1000) = 100e 0'00012r(1000) - 100e 012r ry 8E.6

Thus, about 88.6 grarns will be 1eft.

When the nitrogen in the Earth's upper atmosphere is bombarded by cosmic radiation, the
radioactive element carbon-1zl is produced. This carbon-14 combines with oxygen to lorm
calbon dioxide, which is ingested by plants, which in turn are eaten by animals. In this
way all living plants and animals absorb quantities of mdioactive carbon-14. In 1947 the

CARBON DATING
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LOGISTIC MODELS

American nuclear scientist W. F. Libby* proposed the theory that rhe percentage of carbon,
14 in the atmosphere and in living tissues of plants is the same. When a plant or animal
dies, the carbon-14 in the tissue begins to decay. Thus, the age of an artifact that contains
plant or animal material can be esrimared by determining what percentage of its original
carbon- 14 content remains. Various procedures, called carb on dating or cqrbotu-11 dating,
have been developed for measuring this percentage.

Example 4

In 1988 the Vatican authorized the British Museum to date a cloth relic known as the Shroud
of Turin, possibly the burial shroud of Jesus of Nazareth. This cloth, which f,rsr surfaced
in 1356, contains the negative image of a human body that was $'jdely believed to be that
of Jesus. The repofi of the British Museum showed that the f,beIS in the cloth contained
between 92% and 937c of their original carbon 1,1. Use this information to estimate the age
of the shroud.

Sjltrlion. From ( l2), ihe fraction ofthe original carbon,l4 that remains afrer. I years is

I (I) r)L)rl.r2rl

.)o

Taking the natuml logadthm of both sides and solving for' /, we obtain

I /ril)\f= _ln l:____ |
0.000121 \ r', ,/

Thus, taking r(r)/lo to Ue O.S: and 0.92, we obtain

1t:- 1na0.9l) =6000.000 r 2l

1

t : -- lnr0.92) ! 689
0.000121

This means that when the test was done in 1988, the shroud was between 600 and 689 years
old, thereby placing its origin between 1299 A.D. and 1388 ,q..n. Thus, if one accepls the
validity of carbon-l4 dating, the Shroud of Turin cannot be the burial shroud of Jesus of
Nazareth.

Recall that the logistic model of population growth in an ecological system with carrying
capacity I is determined by initial-value problem (,1). To illustrate how this initial-value
problem can be solved for 1(r), let us focus on the differential equation

r-1r' , 1\:i ll lrrlt \ T t'
It will be convenient to rew te Equation ( 1 3) as

dtkk
,1,: LG -"'11 -;r(r-t)

This equation is separable, since it can be rewritten in diffelential form as

I.
dt, =kdtt'(l - r..) -

lntegrating both ..de. 1ie d. lhe equatron

tLt
I d: - l kdr
J )'lL t) J

*W f. LiUly, "nualo.rrbon Dating," Aneri.a,? Scierri.lr, Vol. 44, 1956, pp. 98-112.

( 13)

The Shrord ofnrin
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Using partial fractions on the left side, we can rew te this equarion as (verify)

t/1 I \ tll + ld\:lkdt
J \y L-y/ J

Integrating and rearanging the form of the result, we obtain

ln yl -lnlL Jl:kt+C
t-.

lnl r =kt+cL-y

I , 
= ot'+CLy

I -, 1

-Lt-C -a -Lt
)l

L-t,
)

L"--l- A" ^ (*h.r.4 =-r-')
v

Solving this equation for y yields (verify)

L
I I Ae-kt

(14)

As the final step, we want to use the initial condition ir (4) to determine the constant A. Bur
the initial condition implies that ] : 16 if t : 0, so from (14)

L
" l+A

from which we obtain

. L-vo
)o

Thus, the solution of the initial-value problem (4) is

L

, + (!-r!)" .,

which can be rewritten more simply as

., - 
yol

Typica so ut ons of the ogist c

differential equation

Figure 10.3.2

( 1s)
lo+(L-yde-k'

The graph of (15) has one of four general shapes, depending on the relationship between
the initial population )0 and the carrying capacity Z (Figure 10.3.2).

Example 5

Figure 10,3.3 shows the graph of a population ) = )(t) with a logistic growth model.
Estimate the yalues of y6, l, and k, and use the estimates to deduce a formula for y as a
function of /.

Solution, The gmph suggests that the carrying capacity is t = 5, and the population at
time t : 0 is )o : 1. Thus, from (15), the equation has the form

5
( 16)

0 < yo< L/2

where k must still be determined. However, the graph passes through the point ( l, 2), which
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VIBRATIONS OF SPRINGS

Differential Equations

tells us that ) - 2 if t - l Substituting these values in (16) yields

.- 5
'- ).!4e k

Solving for .t we obtain (verify)

,t:1og8e,0.98

and \ubstituting Ihis in ( l6 t yields

5
l: 1+ 4{ar8t

We conclude this section with an engineering model thatleads to a second-order differential
equation.

As shown in Figure 10.3.4, consider ablock of mass,4 that is suspended from a ve ical
spring and allowed to settle into an e4.rilibriutn position. Assume that the block is then set

into vertical vibmtory motion by pulling or pushing on it and releasing it at time I : 0. We
will be intercsted in finding a mathematical model that describes the vibratory motion of
the block over time-

Figure i0.3.4

To hanslate this problem into mathematical form, we introduce a vertical y-axis whose
positive direction is up and whose origin is at the connection ofthe spdng to the block when
the block is in equilibrium (Figure 10.3.5). Our goal is to find the coordinate y : 1(r) of
the top of the block as a function of time. For this purpose we will need Newton's Second

Law of Motion.

[see (19) in Section 10.1], as well as the following two results from physics:

10.3.2 HooKE'S LAw. If a spring is sbetched (or compressed) I units beyond its
natural position, then it pulls (or pushes) with a force of magnitude

F:kl
where ,t is a positive constant, caIIed, the sping conrtant. This constant, which is mea-
sured in units of force per unit length, depends on such factors as the thickness of the
spring ard its composition. The force exerted by the spring is calledflte restoring force.

Naiural
posiiion Block in

of the spring equi lbriumrp ql
===

== E

=fff

tvtt<t=
t=

=
=o ---tt

Block n

equilibrium

Figure 10.3.5

Stretched Re eased
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10.-1.3 \\ Elcl lI. The glavitational force exerred by the Ealth on an objcct is called the

object's weiglrl (or more precisely. its Earth weigltt).It follows flom Ncwton's Second

Law of Motion that an objcct with mass n has a weight u, ol nragnitude irr3, where
g is the accelention due 10 gravity. However, if the positivc clilcction is up, as we are

assuming herc, ihcn thc lbrcc of the Earth's gravity is in the ncgativc direction, so

The wei.qht of n object is measured in units offorce.

The motion of the block in Figure 10.3.4 r.vill depend on how far it is strctched or
courpressed initially and the forces that act on it while it moves. In our model we will
assume that there are only two such forces: its rveight u, and the restoring force F, of
the sp ng. ln panicular. we will ignore such fbrces as air rcsistance. intemal frictional
forces in thc spring. lil[ccs duc to nrovcment ofthe spring suppolt. and so lbnh. With these

assumptions. the model is called tlre s,zple harmonic nodel and thc rrotion of the block
is ca\\ed sirnple hsrmoftic motiotr.

Our goal is to plodLrce a clitferential equation whose solution gives thc position function
l (r) of the block as a function of time. We will do Lhis by clctclmining the net force F(t)
acting on the block at a general time 1 and then applying Newton's Second Law of Motion.
Since the only forces acting on the block are its weight u.' : -/,i.q and the restoring force
F, of the spring. and since the acceleration of the block at time I is r'"(t ). it lbllows f'rom
Nervton's sccond law that

d siance / I
to

Figurt 10.-1.6

Iu"

Figure 10.3.7

---T-----t-

(t1)

To express F,(t) in terms of r'(l). we q,ill begin by examining the finces on the block
u,hen it is in its equiliblium position. tn this position the downward tbrce of the weight is

perfectly balanced by the upward restoring force ofthe spring. so that the sum ofthese lrvo
lbrces must be zero. Thus. il wc assune that the spring constant is li and (hat the spring is

stretched a distance of 1 units beyond its natuml length when the block is il equilibrium
(Figure 10.3.6). then

F. (t) ng : itl\t' lt )

kl-rng-Q (18)

(19)

This is a second order differential equation whose solution is the position lunction of the

block, and it is shown in courses on difTerential equations that ihc gcncral solution of this
equation is

il
B ock r

eq! lbriurrl

----r

Noq, let us cxanine the resloring l'orce acting on the block when the connectiot point
has coordinate r'(1). At this point thc cnd ofthe spring is displacecl 1 -.\'(/) units fron its

natural position (Figurc 10.3.7), so Hookc's law implies that the restoling force is

n(/) : ((/ .I (1)) = tl - t)(/)
which from ( l8) can be rewritten as

F, (.) : ,,?8 - k.1 (t)

Substituting this in ( l7) and canceling the ,??g tems yields

-kr'(r):7111"11;
which we can rewlite as

''"1,1 
1 ({) 

"i,1 = rr

,',r,:a -r(VTr)

------i3

*,',','(rA,) (20)
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J t, /nt

where c1 and c2 are arbitrary constants. Note that therc are two arbitrary constants because
(19) is a second-order differentjal equation.

i FoIi THE RFADER. Conilm thal the functions in family (20) are solutions of(19).

Since (20) has two arbitrary constants, it requires two initial conditions to detemine
),(t) uniquely. These can be obtained fronr the initial position and velocity of rhe block.
Specifically, we will ask you to show in Exercise 40 that if the posirion of the block at time
/ - 0 is t0, and if the initial velocity of the block is zero (i.e., it is irleased from rest), then

(21)

This formula describes a periodic vibration with an amplitude 01' 1,01, a periocl ? given by

2r
- 2nJnllk (22)

and a frequency ./ given by

" I Jt/,"
T 2tr

(Figure 10.3.8).

(23)

(24)

Figure 10.3.8

Example 6

Suppose that the block in Figure 10.3.4 stretches the spring 0.2 m in equilibrium. Suppose

also that the block is pulled 0.5 m below its equilibrium position and released at time r = 0.

(a) Find the position function ](1) of the block.

(b) Find the amplitude, peiod, and fiequcncy of the vibration.

Solulion la). The appropriate formula is (21). Although we are not given the mass ri? of
the block or the spring constalt k, it does not matter because we can use the equi]ibrium
condition (18) to nnd the ratio k/m without having values fbr,t and n. Specifically, we
are given that in equilibrium the block stretches the spring I - 0.2 m, and we know that

Spr ng compressed in llally (_r'! > 0)

I :9.8 m/sZ. Thus, (18) implies that

ke9.8:e:_:49s l
n10.2

Sor ne stretched init aL! i \.. < 0r .

Substituting this in (21) yields

whele _u..e is the coordinate of the block at time I : 0. However, we are given that the block
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is initially 0.5 m helou the equiliblium position, so r.p - 0.5 ancl hence the position
function ofthe block is r'(r) - 0.5cos7l

iriiliiir,rj i ii r. The amplituclc of the vibr-ation is

rrr plitude - rn 0.51 - rr.i m

and flonr (22). (23). and (2,1) the

periocl: 7'

period

I

49

ancl frecluelcy ale

,"1 frequency
Iti2t

s
1

7
- Hz.

2tr

il,lliiirL !r : 1.i!.3 E : :, !-,.'.;.r E i-'',

(a) Supposethat aquantiiy I : _r'(1) incleases ltrlatethat
is propoltional to the square of the amount present. and
\lrppn.e lh: | :'l limr / - 0. tlre :m.rtrnt pte.ertt ir r,

Find an initial-value problem whosc solution is I (t).
(b) Supposc that a quanlity t : r (r) decreases at a rate that

is ploporlional to the square ol the arrolort prclcnt. and

.,rrppo.e rr.rr r't .r tirrre r 0. lhe Jn o'rrl prc.cnr r. \,.
Find an initial valuc problcm u,hosc solution is r (t).

(a) Supposc that a quantity r - J(1) changes il] such a
way that z/r'/r/r : i JI. rvhclc /r > 0. Dcscribe how r

changes in words.
(b) Suppose that a cllrantity \ : r'(I) ch4ngcs in such a

way that d\,/da : ,trr. r.vhcrc I > 0. Dcscribc how

l changes in words.

3. (a) Suppose lllat a particle moves dlong an .r axis in
such a rvay that its velocity r(/) is always hall
of .r(r). Find a dillclential equation $'hose solLrtion

is .\ (t ).
(b) Suppose that an object moves along an,r-axis in such a

wa) that jts accelcration o (l) is rlways twjce the veloc-
ity. Fincl a diffelcntial equation rvhose solution i! s(r).

Suppose that ir body moves along an.s exis through a re
sjstive mcdiunr in such a way tl'lat the velocil)' r, : L,(1)

decreases at a rale that is t\\'ice the square ol the velocity.
(a) Find a dillerential equation whose solution is the veloc-

ity u(/).
(b) Find a differential equation whosc solution is thc posi

tio11.!(1).

SLLppose that an initial population oi 10.000 bactelia grows

exponentially at a riitc of l7o per houl and lhat I : \'(/) is

the number ol bacleria presenl I hour's laler.
(a) Find an initial value problem whose solutioD is ) (a).

(b) Find a tbmula for _r(1).
(c) How long does it tike for the initial popLrlation ol bac

teria io double?
(d) How long does it take fbr lhe population ol bacteria 10

reach ,15.0001

A cell of the bactcriulrl E. coli clivides inlo lwo cells ever-v

20 minutes \\,hen placed in a nutlient culture. Let r' : r'(t)
be the numbel ol cclls that ere present t minutes atier a sin-
gle cell is placed in the cultule. Assume that the growth of

lhe bectcria is approximated bv a continuous exponentitl
growth modcl.
(a) Find an initial-value problem rvhose sollrtio is i (t).
{b) Find a formula tbr _r(r).
(c) IJow many cell! are prescnt after 2 hours l
(d) How long docs it take for-the nu ]ber of ceLls to reach

r.(xn.000'l

Radon-222 is a radioaclive sas with a half-life of 3.83 days.
This gas is a helilth hazard becausc i1 lcnds to get trapped in
lhe b.rscments of houses. and manv heellh officials suggest

thilt honcowDers scal their basements to prevent entry of
lhe gas. Assunc that 5.0 x 107 raclon aton'ls are tlappcLl in a
basemeDt at thc timc jt is sealed and thal l (/) is lhc nlnnber
of ltonrs plesent r days latcr
(a) Find an initial-va1ue problem u,hosc solution is r'(r).
(b) Find a fo rula fbr f(/).
(c) How manv atoms will be present after 30 clays'l
(d) How long will it take for' 90o/. o1'thc original quantity

of gas to deca)' l
PolonilLnr 210 is a raclioactivc element rvlth a half-lite o1'

1,10 days. Assume thal l0 milligriims of the elemeni are

placccl in a lcad conlainer and thal r'(a) is the numbcr of
milligrams present 1 days latcr.
(a) Find an initial-value problenr whose solutiorl is _r(/).
(b) Find a lbrnrula fbr !(/).
(c) Florv many milligranis will be present al'ter l0 weeksJ
(d) How lonS will itlakc lbr 70./i 01'theoriginal sdmple to

decay'l

Suppose thal 100 fruit flies are placed in a breeding con-
tainer thrt can support at most 500011ies. Assuming that the
poplllation grows exponentially al a lale of 27o per day, horv

long rvill it take lbr the container lo reach capacity'l

Suppose that lhe town of Glayrock had a population of
10.000 in 1987 ancl ii population of 12,000 in 1997. As
suming irn exponential growth model. in what year-will tlte
population reach 20.000?

A scicntist wants to detemrine the halflile ol a ce ain Ia
dioactive substance. She dctermines that in exactly 5 days a

10.i) milligram sample ()1 lhe substance decays to 3.5 mil-
li81llms. Basecl on these data. $hat is the hall lile?

1.
2.

8.

1.

9.

t0.

6. -
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Suppose that 40% of a celtain radioactive substance decays
in 5 year s.

(a) Whal is the half-life of the substance in years'l
(b) Suppose that a cer.tajn quarrtity of this substance is

stored in a cave. What per-centage ofit will remain aftcr
/ years?

ln each pait, lind an exponential growth model _r - _y0eri

that satislies the slated conditions.
(a) r'o : 2l doubling tine ? : 5

(b) r(0) : 5; growth mte 1.5%

(c) r(1): 1r }'(10) - 100

(d) r(l) : 1; doubling time ?' :5
In each paft. find an exponential decay model ) : r'6e t'
that satislles the siated conditions.
(a) .vo : l0: half life f : 5

(b) i(it): l0; decay lale 1.57.
(c) r(1) : 100; r(10) : 1

(d) t(l) : l0; half-life 7:5

projectile points (called the "Folsom points") that had been
made by a Paleo Indian hunting culture. It was clear from
the evidence that the bison had been cooked and eaten by
the makers of the points, so that carbon 14 dating ol the
boues made itpossiblefbrthe researchers todetermiDe when
the hunters roamed North America. Tests showed that llte
bones contained between 27% and 307o of rheir original
carbon-1,l. Use this intbnnation to show tl'lat the huntets
lived roughly between 9000 B.C. and 8000 B.C.

20. (a) Use a graphing utility to make a graph oi 7r,.,,, versus l,
where p.". is the pelcentage ofcatbon-14 tltat remains
iD an atifact after a ),eals.

(b) Use the graph to estimate the percentage of carboi 14

tlr.rt would have to have been preseDt in the 1988 tesi of
the Shroud ofTurin tbr it ro have been tlte burial shroucl

of Jesus. lSee Example 4.1

ln Exercises 2l and 22, the graph of a logistic model

loL

13.

E ls. (a)

(b)

16. (a)

(b)

17.

E

14.

Make a conjecture about the effect on the graphs of
1 : 1,1r(/ and -v : 'r,oz r/of varying k and keepiDg -)0
fixed. Confirm your conjecture with a graphing utilily.
Make a conjecture about the effect on the graphs of
), : -voelt and _r' : 19e 

l/ of varying _r'p and keeping k

fixed. Conlirm youl codecture with a graphing utilit)'.

What effect does increasing -r.6 and keeping l lixed
have on tbe doubJing time or half-life of an exponential
modelJ Justily your arswer.
What effect does jncreasing /r and keeping -f0 lixed have

on the doubling lime and halflife of an exponential
model'l lustill your answer

}.o + (l - _ro)e ^/

is shorvn. Estimate -r,0. l. and t.

2l'tu
ll

6

I
1

(a) Therc is a trick, called the Rule of70. that can be used

to get a tluick estimate of the doubling time or half-
life of an exponential model. According to this rule,
the doubling time ol half life is roughly 70 divided by
the percerltage Srowth or decay rate. For example, we
showed in Example 2 that with a continued growth rate
of 2cl. per year the world population would double ev-
ery 35 years. This result agrees with the Rule of 70,
siocel0l2 - 35. Explain why this rule works.

(b) Use the Rule of 70 to estimate the doubling tine of a

population that grows exponentially at a rate of l'l. per
year"

(c) Use the Rule of 70 to estimate the half life of a popula
tior'l lllat decreases exponentially at a rate o13.5% per

hour.
(d) Use theRuleofT0 to estimate the growthrate that would

be required for a population growing erponentially to
double every l0 years.

Find a formula forthe tripling time ofan exponential growth
model.

ln 1950, a research team diggilig near Folsom, New Mex-
ico, found charaed bison bones along with some leaf-shaped

(a) What is the populalion ai time l : 0'l
(b) What is the carrying capacity l?
(c) What is the constant ft?

(d) When does the population rcach half of the canying
capacilyl

(e) Find an initial-value probiem whose solution is _\.0).

24. Suppose that the growth of a population 1 : y(t) is given
by the logistic equation

1000
l = r+s9% n*

(a) What is the population at time / : 0?

(b) What is the canying capacity l?
(c) What is the constant t?
(d) When does the population rcach'7 5qo oi the canying

capacity?
(e) Find an initial-value probien whose solution is l (r).

2 4 6 E l0

23. Suppose that the growth of a
by the logistic equalion

200 600 1000

population -r' : y(l) is given

60

5l'7e I

18.

19.



(il) wh f is the carf ing crp cit)'.'
(b) Whrt i\ lhe \ rltle ol (.)

lc) For \\'hat \' lue oi .\' i\ lhe populllion gro\\'in!r rosl

rrpidli'l

26. Suppose lhal iL polluliiliotl .r(/)grotvs in itccordance ivitlr
thc logistic model

'/ 
r' :5{)r 0001\-

'lt
(r) Wlrat is the citrrl irr-g cupacitl l
(b) Wlral i\ tlre vrlue ol t l
(c) For Nhrl \'rlue of .r is the ;'xrpulltion sr-oNins rrosl

ripidl) l

E 27. Supposc ihat a collc-sc rcsidcncc hirll hrnrsc\ l(XX) snrdcnls.

Follor',ing the sernesler bleirk.20 studenls in lhc hall relLllrl

\\ith the 1'lu. and 5 Llilys liilor -35 sluLlenls h[\,e the llu.
(r) U!c modcl (.1) to scl up iln iniliiil-vitlLlc proble t whosc

lolution is the nunrtrcr ol studcnts uho !\ill liavc hacl

the flu 1 da) s rttcl thc rctLrrn froln the break. INol.: l he

dil-telential equiltiur in this cusc u ill invoh'e a conslilnl
of proporriorralitl.l

(b) Sol\,c lhe il]itial \,illuc prohlcm. and usc lhc !i\cn (latir

lo tind the co strnt ol prollorliolllllit\'.
(c) l\,l{ke { lahle lh l illllslr:rlcs h(n\ the llu \prcads dnJ lo

diLy o!er'r l-$eek perio(1.

(c]) LIse lt graphins ulility to gcr]erirte l gl tiph thal illLlslrrles
ho*'the flu sp|eads ovcr 2'week pe.iocl.

2ll. lt hls been observcd cxpcrinrcntllly thui nl a consllnl lenr-
pcrilture the rate oi changc ol thc lttmosphc|ic pressttrc /)
\\'ith rcspcct to thc {ltit!(lc , lbovc sca lc\cl is proportionll
l() thc prcs\urc.
(x) Assuming llrilt lhe pre\sure itl selt leYel is 7rr'- lincl itn

illilial value ploblenl \\ hore solulion is /)( /r ). l.\oft'r Thc
dillerential equrtion in lhis clse \\,ill invol\e r const Dl

ol proportionalit!. I

(b) Find r fomrula fbr l(r) in |lnrosphcres (atD) il lhc
plessure rl sea lcvcl is I irtnr iurd lhc prcssurc at -5(XX)

ti abovc sca lcvcl is 0.i13 rln.

N ewlotr's Law ofC ooling st tes lhirt the lltc at $,hich lhe lenr-
peratule ol a cooling obiecl (lecreiises and dre rate tit u hich

l rvalnring object increases iue propollionll to the clillerence
bet$'een the temperaturc of tlre objecl rnd lhe tenrperature of
lhe \unoundin-s mediutn. t-se this lesr,rlt in E\ercire\ l9 ll.

29. A cup ol Narer \\,ith il ten)pcrlllfe of 95 C is placed in iL

room with a constant lcrrrpcrirlurc 2l C.

(r) Assuming thtt Ne$'ton s Lilu'oiCooling applics. scl uP

rnd solve an initial vrluc problcm \\'hose solLltion is lhc
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tellrper'tture ()1'thc willel l Dlinulcs aftel it is placecl in
the roon. JNr)1. The dill'erential ccpration rvill ilvolvc
il constilnt of proportionitlilr'. I

(b) H()\\ mirn\ minules \r'ill il lilke till fhe !\alcr kr rcach a

tenper lurcol-5I Cil itcoolsto85 Cin lminrtel
A ghss oflemonrdc $ ilh l lcnlpenlure ol--10 F is placctl in
a roor1r rvith a constant tcrDpcrnlurc ol70 F. alld lhour'lrtcr'
ils lcnrpclatute is 52 F. Wc slLilcd in Example l{ ol Scction
J..1 thill r hoLrs uller thc lcmonldc is placed in the roorrr

ils lcmpcratLre is given by -f : 70 30c l)5'. Conlinn
this Lr\ing Ncwton s Ll$ ol ('(x)ling an(l the method used in
Exelcisc 19.

'fhe Sreit cletectivc Shcrlock Ilolnles uld his assistrnt
Dr'. \latson are tliscrrssirg lhc nrurrlcr of actor Cornelirrs
\4cHam. l\,lcHam sls shot in thc hcad. and his underslud].
Barr-r'l\.loore. \as tirund \tnndins ovcr lhe bod\'\\ith th!'
rrrrlrier rrclrlr,rr iI lri r(1. Lcl \ li\lcIl ir.

\Vatson: Open-lind-shut case Holmcs N,loore is thc'

nrurdclet.
Holrrcs: Not so tilsl Willson you arc forgettirlg Ne$,-

tol] s Lrrw ol CoolingI
Wrlson: I luh l
Holnrcs: Elcnrentlirv nry rlcar Watson-Moore wlLs ibunrl

stiuding or'cl McHiln ll l0:06 c.rt.. at rvhich

tilnc the coroncr recordcd botlv tcmperature
of 77.9 F irnrl note(l that thc rcom themloslirl
\ as sct to Tf fl ,\t I I:06 p.\r. thc coroncr t<tok

anolher rcildin! lrld recorded a bodl tcnrpcra-
ture o1 75.6 F Sincc McHan s nomral lcmpcr-
llture is 9i1.6 F. irnd sincc trloore wrs anl stlrsc
bet\\'een 6r{X)r,.N1. und 8:00 p.rt.. Moole is obvi-
oLlsly innocenl.

Wltson: I lLrh l
Holnres: Sometinres yorr lrr-c so rlLrlL Watson. Ask anl cal-

culus stLrdenl lo ligure il oLrt lbr you.
Watson: Hrrunrph....

-12. Suppo\c that ilt time l : 0 an rrbiect r\ ilh tcmpcraturc 7ir is

plirccd in ir rou \ithconsl Dl tempe.alu rc T,. 11 
'li < 1,,.

then thc tclrpcr truc ol thc object \\'ill increase. iii(l il'
7ir r. 7,,. {hcn thc lclrpcrirturc $ill decrease. Assunling
that Ncwton s Larv of Cooling applies. shou.thal iD bolh
clscs the tempcrlture 7 {l ) lt lir))e r is given b1

't (t) : t,, l. (ti) - 't,,)t' I'

\\'here t is il posili\'e consllnl.

Erercises ll -13 
inr.olr.e vibrations ol thc block picnrrcd in

Figurc 10.1.-1. Assnnre thnl lhc r'-uris is as shou'n in Figure

10..1.5 lllcl thxt lhe \inlplc hlrnroric nrodel applies.

.1,1. Suppose thirl the block hrs r rrlss ol I kg. the spring con-
stani is l = 0.25 N/nr. Lrnrl the blocL is pushed 0.3 n abovc
its ccprilibriunr position ancl releirsecl al line a :0.
(11 Find the position t'unclioD r'1/ ) ol the block.

25. Suppose that ir po]rllluli(nr r (1)

the logistic rrodel

. : lot I O.lr t,

gLlou's in rccordrnce wilh

-10.

.t l.
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(b) Find the period and frequency of the vibration. 38.
(c) Sketch the graph of )(t).
(d) At what time does the block nrst pass through the equi

iibrium position?
(e) At what time does the block first reach ils maximum

disiance below the ecluilibrjum position'?

Suppose that thc block has a weight of 64lb.lhe spling con

stant is k - 0.25 lb/tt, and the block is pushecl I fi above

its equilibrium position and rcleased al lime I : 0.
(a) Find the position function )(1) ofthe block.
(b) Find the period and frequency of the vibration.
(c) Sketch the graph ol _r'(r).
(d) At what time does the block fil.Sl pass through the equi-

librium position?
(e) At what time does the block lirst reach its maxirnum

distance below the equilibiunl posjtion'l

Suppose thal the block stretches ihe spriDg 0.05 m in equilib
rium, and the block is pu1led 0.l2 m below the equilibdurn
position and released at time 1 = 0.
(a) Find the position funclion l'(t) ol the block.
(b) Find the period and fiequency of the vibration.
(c) Sketch the graph ol l (t).
(d) At what time does the block nrst pass through the equi

librjunr position?
(e) At what time docs the block llrst reacl] its naximun]

distance above the equilibrjLtm position?

Suppose rhat the block stretches the sp ng 0.5 It iD equi-
librium, and is pulled L5 lt belo\4, the equilibrium position
and leleased al lirne r :0.
(a) Firrd the position function _\ 

(l) of the block.
(b) Find the period and frequency of the vibratioD.
(c) Sketch the glaph of,r,(t).
(d) At whal time does the block fiIst pass tlrough the equi

librium position?
(e) At what time does the block first reach its maximum

distdnce aLrove the equilibrium position?

(a) For what values of l woulcl you expect the block in
Erercise 36 to have its maximum speed? Coniirm your
answer to this question mathemalically.

(b) For what values ol t, would you expect the block to

have its minimurn speed'l Conlirm your answer to tiris
question mathemalically.

Suppose that the block weighs u pounds and vibrates with
a peliod of 3 s u,hen it is puiled below the equiliblium posi
tion and released. Suppose also that ifthe process is lepealed
with an additional 4 lb of weight, then the period is 5 s.

(a) Find the spring constant.
(b) Find u.

As shown in the accompanyinS ligure, suppose that a toy
cart of mass ,? is attached to a wall by a spring with spring
coilstant t. and lct a horizontal x-axis be introduced wilh ils
origin at the coDnection point of the spring and cart when
the caft is in equilibrium. Suppose that the cafi is pullecl or
pushed holizontally to a pojnt,!0 and thcn leleased at time
1 = 0. Find an initial-value ploblem whose solutioll is the
po\ilioI luncliun ollheLJrl. Jno sl,rledn) 3\\lrmplron\ )ou
have made.

ffi
ffir,rrrr,,r,i,rr@ a
Figure Ex 39

Use the initial position 1'(0) : r'0 and the inilirl velocity
r(0) : 0 to nnd rhe conslanrs cl and cr in (20).

(a) Show that if D > 1. then the equalion y : r,pD'can
be erffes'eJ .1. ] - \0p for .ome loslli\e con'lanl
k. [No/.i This shows that if D > l. and if y grows in
accoldance with fie equation r' : tobr. then t has an

exponential growth model.]
(b) Show that ifO < D < I, then the equation l' : llrrr can

be e\pre..c,l :rs \' - , r' lor.ome po.itrre corr,larrl
k. fNote: This shows that ifO < D < 1 and il-r'decays
in accor-dance with the eclLration _r' : _robr, then t has

an exponenlial decay Inodel.]
(c) Express -\' : 4(2') in the form ), : -r0er'.
(d) Express I - 4(0.57) in the forn.r -\' : .J0? 

l/.

Suppose that a cluantity r, has an expolential growth nodel
t : )0e^' or an exponential decay model i, - r,1e rr, and

it is knowr tirat ] : }r if t - 11. In each clrse llDd a fonula
for,t in terms of lll. _\'1. and /1, assumiDg that r1 10.

40.

41.36.

37.

What is the relationship between the order of a differential
equation rmd the nunlber ofarbitrary constants in its general

solutiol]? Give an informal explanation ol why one would
expect such a relationship.

Write a paragraph that describes Euler's Method.

3. (a) Lisl the steps in dre method of integrating tactors for
solving fi rst-older lil1ear dif'ferential equatiorls.

(b) What would you do if you had to soive an important
initial value probleI]r involving a lirst order linear dif
ferential equation whose integrating factol could not be

obtained because of the complexity of the integrationl



4. Whichol the lbllowing dillerenlial equirlions are separablel

Ll\' 1.r' ./(-r ){.1I - /lf,Cr\l rlr,
./r ,/\ \,rl
,1, ./r'

'., ,/., / '' q, '' 'O r'' - r /'.\,r' \ r

5. Classify the follorving first ordcr diflelential cquations as

sepiuable. linear, both. or ncither.

(a) 
- -3r':siur (b)11trr.:r

Jr ,1ir.r \ .' I l't, . \rlr,
,lt ,lt

CoDlirrn that the nethods of integrating factoN and scpara

tior ol var iables ploduce the sanre solution ol lhc dill erenlial

equation

:-4.!\.:_r

Consider the model rl \ I d | : li \' ( L - r ) ji)r the spreacl ot' i1

disease. where ( > 0 and 0 < _r :: l- For whal \,alue ol r'
is the disease spreading most rrpidly. and di what rilte is it
spreading?

(a) Show that i1 a clunntily r : -1(t) has dn exponentill
moclel. and if J (ll ) : t and r'(rt) : r'..lhen the dou-

bling tinle or thc half lil! 7 is

rr) r rln2
' h,r.\i

(b) ln a cer-tain l-hour petiod the numbcr of bactcrir in

a colony increases by 25tlr. AssLuring an cxponenlial
growth moclel. what is the doLrLrling lilne lbr lhe colo y l

Assume that a spherical meteoroid burns Lrp at a latc that is
pl-oporlionnl to ils surface area. Given that the radius is olig
inally 4 rr and I nin later its racLjus is 3 m. ind l fomrula
fbr the radius as a function of time.

A tank conlaiDs 1000 gal olfiesh water'. At tinre r : 0 bline
conlaining 5 ounces of salt per gallon ol br ine is pourecl into
the lank at a rate of l0 gal/min. and the mixed solution is

dlained froin the tank lt the sirme rate. AfteI i5 min that
plocess is stopped &nd fiesh waler is poured into the tank

r1t the rate of 5 gal/min. iind lhe mixed solution is drained
liom the fank ljt fhe salne rate. Fiid the anount ol salt in
rhe tank at time r : 30.

SUllore lhi I: r.^rrr cn_.iiin.rlr ll0lr ll ,,1 rif.,lfe( ol .ir_
bon nlonoxide- At time t - 0 cigarettc snokc conlaini g
47. carbon monoxide is introduce.lal therate oI0.l lii/min.
and lhe well cir-culated mixture is vcnlcd liom thc room al

the saDre rate.

(a) Find ii lbrrrula tbr the pelcentagc of carbon nlonoxide
in the room at tirne 1.

(b) Exlended cxposure to iiir coilaiiing 0.0127. carbon

lnonoxide is consideled dangerous. How long will it
take to reach this level'l lThis is based ou r problenr

from Williirm E. Boyce and Richald C. DiPrima. Ek,
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nrctlldi I Diftet eiltitrl Ecluations. 6tb ed.. John Wiley &
Sons. 1997.1

In Exerciscs l2 16. solve the initial-value problcm.

12. r':l*r':. r'(0)- I

13.,': t \(l):i\tl+ 1')

l.l. rr" * 2r' - :lr:. ,r'11) : 2

15. ,r' : .1r I .ecr 2-r. r'(tr/S) : I

16. r' :6 5r i rr. r'((l) : ln2

E 17. (a) Solve the initial valuc problem

i.' r = -r sin 3.r. I(0) : I

by the rnethod ol iilegrating iactols, usiDg a CAS to
prr'nrm rry tl l'tt.ull irlrlralion..

(b) Use the CAS to solve the inilial value problenr directiy.
and conllrm that the answer is consistent with that ob
idined in part (o).

(c) Graph the solLltion.

E 18. Use.rCASloderiveFrrrnrula(23jof Section l0.l bysolving
initial-value problern (2 1 ).

19. (a) lt is currcntly accepted that the halflite ol carbon
l.l trrighl valy 140 years florn its nominal value of
5730 ycars. Does this variation make it possible that the
Shror.rd olTr.llin clates to the tillle ofJesus olNaza|eth]
[See Example 4 o] Seclion 10.3.1

(b) Rcvicw thc subsection of Sectiol 3.6 entitlecl Enor
Propegatior in ApplicatioDs. and then estimate the per-
cenlage er'ror that results in thc corlpLlted 4ge of an

aftit'act tiom an 17. error in the hall'liic ol carbon 14.

20. (a) Use Euler's Meihod with a step-size of /r : 0.I to ap
proximate the solutio|r ol the initial-value problem

r":I*5t t. t(l):5

over the intervrl I. 21.

Fin(l the percerltage error in lhe values conrputed.

Confirn that e' and e ' are solulions ol lhe second

^rder 
ditler-nri.rlrquarron ' r 0

Find some more solutions.

Find a solution r'(j ) such that r'(0) : I and t'(0j : L

Sketch the integral curve ol 2t_r' - 1 that passes

through the pojnt (0. l) .rncl the integral cur.vc that
passes through the point (0, - l).
Skelch the inleglal culve ol r" : -ilr-r'l lhat passes

6.

8.

7.

9.

10.

21.

22.

(b)

(a)

(b)

(c)

(a)1I.

(b)

through the poinl (0. l).

23. Suppose thai a herd of 19 deer is moved to a smitll island
whose cstimatcd calying capacity is 95 dccr'. and assumc

that the poplrlation has a logjstic growth nloclcl.
(r) Given that I year later the population is 25, hov! long

rvill it take fol the deer populaiion to leach 80q of the
island's canying capacity?
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(b) Find arl initial valuc problem whose solutioi ltivcs the
deel population as a function of time.

24. lf thc block in Figure 10.3.,1 is displaced r,0 Lurits fiom
its ecluiliblium position and given an initial velocity oi 

"-0.
ralher thirn beins rclcascd rvith an initial velocily of 0. then
its positio|r functiorl t,(r) givcn in Ecluation (20) ol Sec

tion 10.3 must satisty the initixl conclitions r,(0) : 11 on6

all-r'; ard if it is crediled at lhe end of erch 3 monrh period.
then it is said to be conpoundctl tltrur r.,r-l_\. The more fue

queilly the interest is compoundecl, the bettc|it is for fie
invesior since more of the interest is itseli eanling interest.
(a) Show thal il interest is compounded I times a ycar at

equally spaced intervals, thetr the valLre A ofthe invest
ment atier I years is

A-plt+1\"'\ nl

(b) One can irnagine intercst to be cotnpoundecl cach day.
cach hour. each minute. and so fot th. Carried 1() the limit
ore cln conccive of intet est compounded at each instanl
oftime; this is callcd continuous conpo ttdittg. Thls,
irom pilff (a). the valLre A of P dollllrs atjer r years when
invcsted at an annual lale of i x 1007r. con'lporulded
continuously. is

4- rirr P/r+l)",-t. \ nt

Use the facl that linl. '0(l +.!)11' - c to prove that
A - Pe'1.

(c) Use lhe rcsuit in palt (tl) 10 sltow that money invesled at
cnrrlir.ru"..u ll-,oun,l Irrre.l in(tc:r\u\ rt J l.rte p,o
porlional to the amoLrnt presenl.

27. (a) IfJil000 is invested at 8c/r per year cornpoundcd conrin-
tuously (Exercise 26). what will the investment be wo h
altcr 5 yeals I

(b) lf il ls desired that an iDvestment at lltl. per ycar com-
pounded conti uously should have a value ol S 10.000
afier l0 years. how rruch shouid be invested now?

(c) How l(nrg cloes it take tbr an investrrent at Bo/. per year
comllounclcd continuously 1rl dolrble in value?

\,'(0) - rr.
(a) Show that

/,.L\

I (rr : ir Lrn\ I '/1, l + ,n
\r //' /

, ltT
/ i'"'\t ; ,)

25.

26.

(b) Suppose thlt a block with a nrass of I kg stretches the
spring 0.5 m in equilibrium. Use a grrphing utility to
graph the position function olthe block ilil is set in lrlo
tion by pulling it down I m and impaiting it r1r'r iiitial
upwald velocity of 0.25 m/s.

(c) What is the maximum displacement ol the block froln
the equilibrium positionl

A block attached to a vertical spling is .iisplacccl frorr its

ecluilibrium position ancl released, thereby causin! i1 10 vi

'.rare u;rl'anrpliru(le '. l:rrrrl p.tr.rJ /.
(a) Show that the velocity of the block has maximum mag-

nitude 2tr )0 /f and that the maximum occurs when
rlre I'rncl i. il i1. gqu'libriurn po.irion.

(b) Show that thc accelcration of the block has mirxinurr
rnd!rilu(1, 1. ' f- Jnd tlr.lt lne mr\itnlll o.\ll\
wheD the block is at a top or bottom point of its motion.

Suppose that P dollius is iivested at an annual interest Iate
of r x l00o/o.lf ihe accurrulrled iilerest is creditcd to the
account ai the end ol the year. then the iilerest is said to
be utnqtoutttletL otut urll_r': il it is creclitecl at the end of cach

6-month pe.iod, then it is said to be.nrrTrr.,untlcd sentianntt-
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we will be concemed wtth infnite
serlss, which are sums that involve infinitely many terms.

Infinite series play a fundamental role in both mathematics

and science they are used, for example, to approximate
trigonometric functions and logarithms, to solve differen-
tial equations, to evaluate difficuft integrals, to create new

functions, and to construct mathematical models of phys-

ical laws. Since it is impossible to add up infinitely many

numbers directly, our first goal will be to define exactly

what we mean by the sum of an infinite series. However,

unlike finite sums, it tums out that not all infinite series

actually have a sum, so we will need to develop tools for
determining which infinite series have sums and which
do not. Once the basic ideas have been developed we will
begin to apply our work; we will show how infinite series

are used to evaluate such quantities as sin 17" and 1n5,

how they are used to create functions, and linally, how
they are used to model physical laws.

aa
t a

aa
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DEFINITION OF A SEQUENCE

11.1 SEQ{jE|'{#ES

In everydal, language, the term "sequence" meqns a successiot't of things lfi a defi.nite
order---<hronologit al order. size order, ot'logicql order, for example. In mathematics,
the term "sequence" is commonly used to denote a succession oJ numbers whose or-
der is deternined by a rule or a function. In this section, w,e will develop sctme of the
basic ideas concerning sequences of numbars.

Stated informally, an infinite sequence, or more simply a sequence, is an ttending succes-
sion of numbers, called terms.It is understood that the terms have a definite order; that is,
there is a fi rst telm d l, a second term n2, a third term a3, a fourth term aa, and so forth. Such
a sequence would typically be written as

Aj, AZ.43, Q1, . . .

where the dots are used to indicate that the sequence continues indefinitely. Some specilic
examples are

1,2,3,4, ... , t, +, j, j, ,

2,4.6,8,..., 1, 1, 1, -1, ...
Each of these sequences has a definite pattem that makes it easy to generate additional

terms if we assume that those tems follow the same pattern as the displayed terms. However,
such pattems can be deceiving, so it is better to have a rule or fomula for generating the
tems. One way of doing this is to look for a function that relates each term in the sequence
to its term number. For example, in the sequence

2,,1,6,8,...
each telm is twice the term number; that is, the rth tenn in the sequence is given by the
formula 2n. We denote this by w ting the sequence as

2.4,6.8,...,2n,...
We call the function f(n) : 2n the gefterzl ter.rr of this sequence. Now, if we want to know
a specific term in the sequence, we need only substitute its term number in the fomula for
the general telm. For example, the 37th term in the sequence is2 .3'7 - 14.

Example 1

In each pafi, find the general term of the sequence.

(") j, 3, ;, i, ...
c) j,-?,;,-*,

(u) j. i. i, *r, ...
(d) 1, 3, 5, 7, ...

Solution lu). In Table 11.1.1, the fbur known terms have been placed below their term
numbers. from which we see that the numerator is the same as the term number and the
denomirator is one greater thzm the term number. This suggests that the rth term has
numerator /? and denominator/? + 1, as indicated in the table. Thus, the sequence can be
expressed as

1234 n

2 3 4 5 n+l

Soltttiut \b\. ln Table 11.1.2, the denominators of the four known terms have been ex-
pressed as powers of 2 and placed below their temr numbers, from which we see that the
exponent in the denominator is the same as the telm number This suggests that the denom-
inator ofthe rth telm is 2", as indicated in the table. Thus, the sequence can be expressed as

1111 1

)4816 )'
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Table 11.1.2Table 11.1.1

i TERIII | .) I 4 ...
NUMBER

i

t)14
) I 4 5 n+t

;;', ) r 4 ...
NITMIIFR

l

rF-RM11I1...) )/ )1 )r:"'
l

(1)

Sohrli,tt \c). This sequence is identical to that in part (a), excepr for the altcrnating signs.
Thus, the,?th term in the sequence oan be obtained by multiplying the nth term in part (a)

by ( l)'-r. This factor ploduces the correct altemating signs, since its successive values,
stating withn = I, are 1, -1, 1, 1..... Thus, the sequence canbe written as

I 23 4

) 14 5 n+l

Soltttion ( d l, In Table I 1.1.3, the denominators of the four known terms ltave been placed
below their term numbers, from which we see that each tenn is one less thirn twice its telm
number This suggests that the nth term in the sequence is 2ir I, as indicated in the table.
Thus, the sequence can be expressed as

1,3,5.7,... ,2n - 7,...

Table I1.1.3

r I I / ...
NUMAER , . - '

rrRI4 I 15 - ..2t, l.

l-l)lt lFlF. IiEAI)lr.lt. Consider the sequence whose general tenn is

f@): lQ - 5n + 6n2 - n3)

Calculate the flrst three terms, and make a conjecture about the fourth term. Check your
conjecture by calculating the fourth term. What message does this convey?

When the general tem of a sequence

4t..J2,41,,...,4u,...

is known, there is no need to wdte out the initial terms, and it is common to write only the
genelal tenn enclosed in braces. Thus, (1) might be written as

\o,)I!,
For example, here are the four sequences in Example I expressed in brace notation.

SEQUENCE BRA'F N('fATIoN

I
a'
I
1'

23 4 n
J 4 ]) tt+)
lt l 1?'a'16' '7''

n+ I

Irr+1J,=r

Irl.-
| 2" I,,=

l. . r+l /r l+*
lr-I) ,'*i 1,,=

{2n - 1}ii

I 23 4
t'-3'l' 5'

The letter /? in (1) is called lhe index fot the sequence. It is not essential to use /? for
the index; any letter not reserved for another pur?ose can be used. For example, we might
view the generai term of the sequence a1, a2, a3, . . . to be the lth temr, in which case we
would denote this sequence as {a1}[,. Moreover, it is not essential to start the index at



618 lnfrnite Series

GRAPHS OF SEQUENCES

l: sometimes it is nore colvenient to sta it at 0 (or some other integer). For example,
consider the sequence

,11 I

" l 7r'2r'
One way to write this sequerce is

ltli-
| :, 1,,:,

However, the general term will be simpler if we think of the initial telm in the sequence as

the zeroth term, in which case we can rvrite the sequence as

I I l+

lu L=,

REN4ARK. In general cliscussious that involvc sequenccs in which thg specific terms and

the sta irg point for the index arc not important, it is connon to write {../,,} rather than

{a,,},+], or {a,,},+:',,. Moleover, we can distinguish between different sequences by using
diflerent letters fbr their general terms; thus. \c,,1, Ib,J, and {c,,J denote three diffelent
sequences.

We began this section by describing a sequence as an unending succession of numbers.
AlthotLgh this conveys the general idea, it is not a satisfacbry mathematical defitition
because it relies or the term "succession." which is itself an undefioed term. To motivate a

precise definition, consider the sequence

2,.1, 6, 8. . . .,2n, ...
Ii we denote the geneml tenn by f(n) : 2,,, then we can write this sequence as

f(t). f(2). f(3),.... f(n),...
whicl -; i "list oI \ alue5 oI the Iunctron

.f (.rt 1 :2r. n:1.2,3,...
whose domain is the sct of positive integers. This suggests the tbllowing delinition.

, ll.l,l DF-FI\]TION. A sequence is a function whose domain is a set of integers.

, Speciilcally, rve will regard the expressron l,r,,l;r to be an alremarive notation lbr the

iunctron /rrr ' - tt,.. u - l. 2. .1. ..

Since sequences are functions, it makes sense to talk about the graph of a sequcnce. For
example, the graph of the secluence { l /a }l: is the -eraph of the equation

I

Bccause the right side of this equatior'r is delined only for positive integer values of r, fte
graph consists of a succession of isolated points (Figure I 1 . L 1a). This is in distinction to

L = 1. 
' > r

L

)

(a) (/r)
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the graph of
1 ,r-1

which is a continuous curve (Figur.e I 1.1.1b).

Since sequences are functiol]s, we can inquire about thef limits. However, because a se-
quence {a,, } is only delined for integer values of ,?, the only limit that makes sense is the
linrit of n,, as t1--> +-.In Figure I1.1.2 we have shown the graphs offour sequences, each
of which behaves differently as r --+ +.o:

The terms in the sequenqe {n * 1} increase without bouod.

The tenns in the sequence {(- 1)'+ I I oscillate between -l and 1.

The terms in the sequence Inl@ + l)j increase roward a "limiting value" of L
The terms in the sequence {L + (- j )" } also tend toward a "limiting value" of 1, but clo

so in an oscillatory fashion.

l,-, - l--, J-rt- rr: .,,., ,.r,+rr,= l :ciru;= l

Informally speaking, the linit of a sequence {a,,} is intended to describe how a,, behaves
as /? + +-. To be more speciiic, we will say that a sequence {a,,1 approuches a linit L
if the terms in the seqtLence etentually become arbitrarily close to L. Geon.retrically, this
means that for any positive number < there is a point in the sequence after which all terms
lie between the lines r: l, € andl = I *e (Figure 11.1.3).

f.., tf". p"'* 
"r\ 

tl." i"-t 
l

n ihe EeaLren.e are ai w th n l

€untsofa. lr.j

7

6

5

3

2

I

Fi,rure I1.1.2

Fieurc 11.1.3

234561 23:1 5 618

It,.' c',l"il-i
...-l
ir-rr". 1,,=, l:]

t =l+€
) = L-.

11.1.2 DEFTNITION. A sequence {a,,}is said to converge to the limit L if given any
e > 0, there is a positive integer N such that la,, - Ll < € for, : N. In this case we
write

lim a,,: L

A sequence that does not converge to some finite limit is said to diverge.

The following definition makes these ideas precise.
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Example 2

The first two sequences in Figure I 1.1.2 diverge. and the second two converge to 1; that is,

1:\";n: 1 and 
"IT- 

(r* ( +),') : 1

The following theorem, which we state without proof, shows that the familiar propefiies
of limits apply to sequences. This theorem ensures that the algebraic techniques used to
find limits of the form lim can also be used for limits ofthe form lim

11.1.3 THEoREM. Suppose that the sequences [a,,J and {b,,1 conterge to limits L1
and L2, respectbely, and c is a constant.Then
(a) lim c:c
lb) lim .a,, : c lim o,, - cLt

- +' 4-+'
(c) lim (a,,ib.): lim a, * lim D,:Lt*Lz,++- n++6 n++-
(.d) lim (4,, D,) : littr a,, - lim bn = Lr - Lz

tr++z n++6 h++q
(e) lim (a,,b,,) : lim .r, lim b,, : LtL2n++''. n-+' nj+'

hm a"Ia"\ -+' Ll(l\ rim l. l-',:---. (if Lt +0\' t* \ ,,, , ,,t!!,0,, t,

Example 3

In each paft, detemine whether the sequence converges or diverges. If it converges, find
the limit.

o,l;nl':,
rcl {r rr'*'1}*,

rur lr-t r'*'- ' l*'
| 2r + 1j,,:,

(d) {8 2"lI!,

,,r1\ -(2 + 1/n)

lim I

l'--l u- tD
n++- n+ +6

Solution (a). Dividing numerator and denominator by ix yields

Iim 1n1lim _ - limn++n2n+1 n-+-2+1/n

11- 2+o: a

Thus, the sequence converges to j.
Solution (b). This sequence is the same as that in part (a), except for the factor of (- l),+r ,

which oscillates between +l and -1. Thus, the tems in this sequence oscillate between
positive and negative values, with the odd-numbered terms being identical to those in part
(a) and the even-numbered terms being the negatives of those in pafi (a). Since the sequence
in part (a) has a limit of i, it follows that the odd-numbered terms in this sequence approach
j, while the even-numbered terms approach -+. Therefore, this sequence has no limit-ir
diverges.

Solution (c), Since ,,lim- I /n : 0, the product (- D'+t 0 /n) oscillates between positive

and negative values, with the odd numbered terms approaching 0 through positive values
and the even-numbered tems approaching 0 through negative values. Thus,

.t
Iim 1 1;'*' :0

n++' n

so the sequence converges to 0.



f /(-!) -+ L as -r -+ +-,
ihen l(r) r a as,? -r +-.

(,1)

/(n) -+ I as n ) +-, but.l(-r)
d verges by oscil at of as -r -) +-.

(b)

Figure 11.1.4

Solution, Replacing n by x in the f,rst sequence produces the power function (1/2)r, and

replacing z by x in the second sequence produces the power function 2'. Now recall that if
0 < D < 1, then D' + 0 as x + +co, and if , > 1, then b-' + +m as ;r -+ {cc (Figure 4.2. l).
Thus,
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SoIution(d).,lim-(82n):_a'Sothesequence{8_2z}}1,diverges.<

If the general term of a sequenca is /(ir), and if we replace ir by .:r, where x can vary
over the entie interval [1, *oo), then the values of /(n) can be viewed as "sample values"
of .f(r) taken at the positive integers. Thus, if /(;r) + Z as x -+ +o, then it must also be
tlue that ./(r) --+ L as n -+ ao (Figure 11.1.4a). However, the converse is not tlue: that
is, one cannot infer that /(;r) -+ Z as r > +.o ftom the fact that /(r) --+ l, as a + a:c
(Figure 11.1.4b).

Example 4

In each paft, determine whether the sequence converges, and if so, find its limit.
111 1

(a) 1, 1 22, zz,. , 2,,...

and 1im 2" : +-

Example 5

Find the limir of rhe r.ou.n.. l 1 L' I e'l',

Solution. The expression nf e'' is an indeterminate form of type afn as n - > !a, so

L'H6pital's rule is called for. However, we cannot apply this rule directly to z/e' because the
functions r? and e" are only deflned at the positive integers, and hence are not differcntiable
functions. To circumvent this problem, we will rcplace n by x, and apply L'H6pital's rule
to the function x/e'. This yields

-rllim -: lim --0\++' e\ r++E et
fiom which we can conclude that

lm 1:o

Example 6

show that bm !!6: L,++'
Solution,

lin 'i,E = lim r "- lim errl'-r
n .+r n-+r -+i

Sometimes the even-numbered and odd-numbered terms of a sequence behave suffi-
ciently differently that it is desimble to investigate their convergence separately. The fol-
lowing theorem, whose proof is omitted, is helpful for that purpose.

11.1.4 THEOREM. A sequence converges to q linxit L if and only if the sequences of
even-numbered ternts and odd-numbered terms both con erge to L.

Example 7

The sequence

111
t'a' 2,'

tim !:o
r++.'24

_ oA _ | B\ L Honir. .rulearplied . <rorl/rrLn,

111
?'r' r'
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converges to 0, since the even-numbered tems and the odd numbercd tenns both converge
to 0, and tl-Ie sequence

r. i. r. j. r. +.

Xl].!"ti"t;ia* T "dd-numbered 
terms converge to 1 and the even-numbered terms con-

The fol)owing theorem, which we state without proof, is an adaptation of the Squeezing
THE SQUEEZING THEOREM FOR
sEouENcEs lheorem (2.5.2) to sequences. This theorem will be useful for finding limits of sequences

' that cannot be obrained directlv-

11.1.5 THEOREM (.The Squeezihs Theoren for Sequences). Let [a,,\, {b,,J, and {c,,\ be
sequences such thqt

a" 
= 

b, 
= 

c,, (Jbr all t'alues of n beyond some index N)

If the sequences {a,l qnd {c,l hqye a common limit L qs n > +6, then Ib,,\ also has
thelimitLasn >+.n.

Table 11.1.4
Example 8

Use numerical evidence to make a conjecture about the limit of the sequence*

[,r! l+'
I r" J,=r

and then confirm that your conjecture is colTect.

Solution. Table 11.1.4, which was obtained with a oalculating urility, suggests thar rhe
limit of the sequenca may be 0. To confirm this we need to examine the limit of

nl
"r- n,

as ,? + +co. Although this is an indeterminate fom of type oo/a, L'Hdpital's rule is not
helpful because we have no definition of r ! for values of x that are not intagers. However,
let us write out some of the initial terms and the general term in the sequence:

^ 1.2 ^ 1.2 3 1.2.3...rt
ai -r. r/l='-.'_. 4._;---i...... o = 

-.,,.

z.z J.J J n n n..n
We car rewdte the general term as

I /t-?.. -\,t,,=:l'- "I
n \n n ..n/

from which it is evident that
I

o aa, 1
n

However, the two outside expressions have a limit of 0 as n + +co; thus, the Squeezing The,
orem for Sequences implies that.r,, -+ 0 as I + *co, which confirms our conjecture. {

The following theorem is often useful for finding the limit of a sequence with both
positive and negative terms-it states that if the sequence { ld, l} that is obtained by taldng

* 
Recall that if ,r is a positive inreget then the symbol }?! (read "n factorial") denotes the product of the first n

positive integers; that is.

trl:1 2 3, n or equivalently, nl=n(n-1)(n-2) |

Moreovet it is agreed by convenrion that 0! = 1.

,#
r 1.0000000000
2 0.5000000000
3 0.2222222222
4 0.0937500000
5 0.0384000000
6 0.0154320988
7 0.0061198990
I 0.0024032593
9 0.0009366567
10 0.0003628800
11 0.00013990s9
12 0.000053'7232
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RECURSIVELY
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the absolute value ofeach term in the sequence {.i,,} converges to 0, then {,,,,} also converges
to 0.

ll.l.6 tHFoR.v. /1 lim ltr,, -0.th,tt ltn o, -0.

Przol. Depending on the sign 01'.r,,, eithera,, = la,, ot o)1 : -1a,. Thus, in all cases we
have

- .r,, 
= 

a,, 
= 

a,,l

However, the limit of the two outside terns is 0, and hence the limit of./,, is 0 by the

Squeezing Theoren for Sequences. I

Example 9

Consider the sequence

tll I

' r', 2. r lr'2

If we take the absolute value of each tenn, we obtain the sequence

lil It't'z',u'" 't' "
wh ich, as shown in Example 4, converges to 0. Thus, from Theorern I I . i .6 we have

t tl
Iinr lL-lr l-0,-+ L 2,, )

Some sequences do not arise from a formula for the general telm, but rather lrom a fbrmula
or set of formulas that specify how to generate each term in the sequence from tems that
precede it: such sequences are said to be dellned recursively, and the defining forrnulas
are called recursion .formulas. A good example is the mechanic's rule for rpproxrmaring
square roots. In Formula (l ) of the Introduction, we stated that the recursion fbrmulas

t / 2\r,-r.', -r(',;, i,-0r.2

generate a sequence {1',, } that converges to 14, ancl in Table I of that section we used these
recursion formulas to generate some of the terms in the sequence.

It would take us too lar afield to investigate the convergence of sequences ciefined re-
cul'sively. but we will conclude this section with a useful technique that can sometimes be

used to compute limits of such sequences.

Example l0
Assuming that the sequence generated by (2) converges, show that the limit is \/2.

Sohttion. Assume that 1, > L, where L is to be detennined. Since n + I -+ +.c as

n >+:a,itisalsotruethat_}i,+1--+Lasr--++..;thus,if wetakethe limit of the expression

1/ 2\
l'a+r =:1f,,+- II \ ),,/

as /? -+ +rtr. we obtain

t / t\t:-lt+-lr\ I I

which can O. ..*rrr,"n as L2 : 2.The negative solution of this equation is extraneous
oeci'u\e r. U tLrr all /r. ',' / - vt.

(2)
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ExERclsE SET 1f.1 E Cr.phifg cacLrrairlr E Ci\S

I. In each pafl. firtd a formula for the general rermof the\e-

ltl
I l9 21
I 4 9 16

\tn itn ttt Jtn

2. In each pan. find two formulas for the general term of the
sequence, one starting with a : I and the other with ll : 0.

quence. starting with ,r = I.
lll//^\ I /L\'""' t' q' :r ''

1357
"' l'a'n'R"'

1a1 l. -r. i:. -r't. ...

ltl
92781

111

trt- J3).\Jr J+t.rJ4- Jit....
ll
3/ -13

It' .'3'
(c) Stdrting with /? = 1, and considering the even and odd

terms separately, find a formula fbr the general term of
the sequence

I I I I I r 1.1.1.
3 3 5 -5 1199

(d) Determile whether rhe sequences in parts (a), (b), and
(c) converge. For those that do. lind the limit.

For what positive values of b does the sequence b, 0, Dl, 0.
bl, 0. /r1. . . . converge? Justify your answer.

In the discussion preceding Exercisc 8 of the lntroduction,
we implied that the sequence defined recursiveJy by

I / rr\fo=1, i,,+r :;{1,*-f
z \ \n/

converges to a,?. Assuming that this sequence converges,
use the method ofExample l0 to contirm that this is so.

2s. l.
3

zt. (t -;) (; t) (]-l) (i-r)
(d)

28.

3. (a) write out the 6rst four terms of the sequence

{l + (-l)"}, starting with a : 0.

(b) Write out the first four terms of the sequence {cos n:r}.
stalting withn =0.

(c) Use the resulls in parts (a) and (b) to express the gen-

eral tern of the sequence 4, 0, 4, 0. . . . in two dift-erent
ways, slating wilh /r :0.

4. In each part, lind a fornula fbr the general term using fac-
torials and starting with,i = 1.

(a) 1 2, I .2 . 3 . 4, | .2 . 3 . 4 . 5 . 6.

I.2.3.4.5.6.7.'i....
(b) I, 1 . 2 . 3, t .2. 3 . 4 . 5,1 .2. 3 . 4. 5 . 6 .7. . . .

In Exercises 5-22. write out the first five terms of the se-

quence, determine whether the sequence converges, and if so

find irs limir-

Read your CAS documentation to determine how to find
limits approaching +:c, and use the CAS to check the limits
you calculated in Exercises 5-30.

(a) Use nurnerical evidence to make a conjecture abol( the
limrt ol the seouence I (/ri t+'^

(b) Use a CAS to confirm your conjecture.

(a) Starting vr'ith r - I, write out the frrst six terms of the
sequence {a,, }, where

I|. if rr is ortd
o, : I1fi. rt, rs even

(b) Shning with,t : I, and considering the even and odd
terms separately, lind a formula for the general term of
the sequence

II
30. -. --.3) 3r'

E 31.

E 32.

33.

s. l'l*' 6.
l n 't 21,,=1

'{'(;)}: s

" 
l*' 1 t1\+-

2n+11,,, " t't =l

+l: 10. {u,'11*-,

', {.#l}:
" l+l::,

', {#}:,
$. {*.T}l=,
zO. &Gt + 2,, ,ll'!r 

14.

" {('-;)'}:,

11
24' 

-" 26' "
11. i1 + (- 1)" I,+jr

l, ,,, 2,' l*'
[' " ,r, + If ,,=,

l{r+l}{r+2) l+"
I 2'r l"='

{""'; }^

{(H) }^

15.

17.

19.

2t-

In Exercises 23-30, find the general term of the sequence,

starting with r? : I, detenrine whether the sequence con-
verges, and if so find its lilTlit.

12 3
r';'; '

135)l
)46

,7

s" ' 24.0,

35.
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(a) Find a rccursion lbrmula for a,,11.

(b) Assuming that the sequence converges, use the method

ol Erample lu to firrd the lirrrit.

37. Consider the sequence {a,,}j=f,, whele

12n,r,,:;*- l *;

(a) Find ar. a:. ar, and a+.

(b) Use numeiical evidence to make a conjectLrre about the

iimit of the sequence.

(c) Confirm youl conjectule by expressrng a,, in closed

lorrrr and calculrttng the ltn rit.

38. Follow the directions in Exercise 37 with

12 2) n2
d,:-*-* * ,

t1

ln trer'.r.e' lq and 40, u\e nurnerical e\idence to mal.:,
conjecture about the limit of the sequence, and then Lrse lhe

Squeezing Theorem for Sequences (Theorern I 1 .1.5) to con-
1l1m that youl conjeclure is cofect.

srn_l]
39. lim

41. (a) A bored studeDt enters the number 0.5 in a calculator
display and then repeatedly computes the square of the

number in the display. Taking a0 : 0.5, find a formula
for the general term of the seqrence {.r,,1 of numbers

that appear in the display.

(b) Try this with a calculalor and nake a conjccture about

the limit of .7,,.

(c) Confirrn your conjecture by finding the limit of.7,,.

(d) For what values ofan will this p|ocedLrre produce a con-
vergent sequence?

42. Let

l )t. 0 .r 0.5/trt:{
12' l. 0.5 r I

Does the sequerice f (0.2), f( f (0.2)). f(.f(JQ.2r),...
converge? Justjly your rcasoning.

43. (a) Use a graphing utility to gererate the graph ofthe equa-

tion r : (2'+ 3')1i ', and then use the graph to make

40. ri,n ( 1] " )lt_ +, \ _tt /
(a) e : 0.5 (b) e - 0.1 (c) € - 0.001
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a conjecture about the limit ol the sequence

\12'' + 3'11t'1''
(b) Conlirm your conjecture by calculating the lirnit.

Consider the secluence {a,,}!, whose nth term is

,1r- t
"" u f7 t+tttut

Show that 
,, 

lirn_ a,, : lrr 2 by inlerpreling .1,r as the RiemaDn

sum of a dchnite integral.

Let a,, be the average value of l(-t) - l/-t over the interval

u. 7?]. Determinc whethcr-the sequence {d,, } cor'rver8es, and

il so tind its limit.

The sequence whose le ns are 1, 1.2,3,5,8, 13,21.... is

called the Fibonaui sequence in ho ot cl'Leonardo ( 'Fi-
bonacci") da Pjsa (c i 170 1250). This sequence has dre

properly that atier starting wilh two I's, each lern is the

sum 01'the preceding two.
(a) Denoting the sequence by {,r,, } and starting with .r I : I

and a2 - l, show that

.tn+2 
, * !:t i1 ,,, 1An+\ atn +l

(b) Give a reasonable infbrmal argument io show that if the

sequence {4,,- l/,r/, } converges to some limil l,, then the

sequence {d,i+r/d,,-L} must also converge to l.
rt, Asstrminetn.rt theseqten\e 1,r,. | ,r 'corrcr!c\..ho\r

th:lt rts Lnnrt rs ( I + J:, )/1.

lf we accept the fact thai thc secluence { l/n };=f, convelges
ro the limit L:0. then according to Delinition 11.1.2,

for every € > 0, there exists an integer N such thi1l

a,,-L: (lln) 0 < € when,? : ly'. ln each pafi, llnd
lhe'mall(.1 po\.rhle \alrre ol A ror rhe cr\(- \JlJe or ,.

ll we accept the fact that the sequence

l,'l'
[,, + L J,,=,

converges to the limit L : l. then according to Deinition
11.1.2. for every < > 0 there exists an integer N such that

\u, L:- -1 'el'r+l
when /, - N. In each part. find the smallesl value of N foi
the given value ot' e.

(a) e :0.25 (b) < :0.1 (c) e :0.001

Use Delidtion I 1.1.2 to prove that
(a) the sequence {l/n},+;1, converges to 0

rb) lh. .r.ruen.. | /r I io','"r*".,o ,' t,, lJ 
,

Find lim r", whele r is a realnumber. lFlii?l. Considerthe

cases r <1,r >1.r:l,andr: I separately.]

36. Considel the sequence

11.

:

45.

46.

47.

,18.

49.

E

6+\,f,+ ,G

6+V6+V6

50.
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TERMINOLOGY

TESTING FOR MONOTONICITY

11.2.1 DEFrNrrroN.

strictly increasing lf
increasing il
strictly decreasing rf
decreasing if

A sequence {a,,i,+1, is called
at <42<d:.1 . 14rr 1 .

11.2 MONOTONE SEQUENCES

7'here are many situations h u'hich it is Lmportattlt to knoi,whetlie!-a s(qLtence con
verges, but the linit itself is not releyat to the ptoblem qt hdncl. In this rtctto ttc
v,ill srttdy .cet'eral techriques tlnt can be usetL tu determine v,hether a setluente
cont,etges.

We begin with some terminology.

at :: d2 
= 

4t a . . . S an a . .

(11 >A]>A].>.. >Qn>..
at - 42 - dt 2 . . . 2 an 7 . -

ln words, a sequence is st ctly increasing if each term is larger than its predecessor, in-
creasing if each tenn is the same as or larger than its prcdecessor, strictly decreasing if each
term is snallgr than its predecessor, and decreasing if each term is the same as or smaller
than its predecessor. It follows that every strictly increasing sequence is increasing (but not
conversely), and every strictly decreasing sequence is decreasing (but not conversely). A
sequence that is either strictiy increasing or strictly deereasingis called strictly monotone,
and a sequence that is eithel increasing or decrcasing is called monotone.

Example I

SIQUENC E

t1+ I

I

I
4

12
1' 3'
l.

Strictly increasing

St ctly decreasing

lncreasing; not strictly increasing

Decreasing: not strictly decreasing

Neither increasing nor decreasing

The first and second sequences are strictly monotone, and the third and fourth sequences
aIemonotonebutnotstict1ymonotone.ThefifthsequenceiSnolmonotone.<

FoR THE READER. Can a sequence be both increasing and decreasing? Explain.

In order for a sequence to be strictly increasing, a// pails ol successive terms, .'l,, and
.r,,+1, musl satisfy 4,, < a,,*1 or, equivalentl!, an+1 - dn > 0. Mole generally, monolone
sequences c r be classified as follows:

DI}']]DRENCE BETWEEN

SUCCESSIVE TERMS CLASSIF]CATION

a,,t1 a,,>0
tlr+\-dh<O
a,,*1 a,,20
a,,*1-a,,30

Stricdy increasing

Strictly decreasing
Increasing

Decreasing
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Frequently, one can Src.!.r whether a sequence js monotonc or strictly monotone by
writil]g out some ol the initial ternrs. However, to be ceffain that the guess is cor|ect, ,rne

must give a prccise [lathematical arglnnenl. The lb]lowing exarnple illuslrates one method
for doing this.

Example 2

Show fhef

123 t7

) 3 4 n+l
is a stlictly increasing sequence.

Solutiort. The patteln ofthe initial temrs suggests that the sequence is stlictly increasing.
To prove that this is so. let

' rr I l

We can obtain a,,11 by replacing n byil + I in this lolmula. This yiclcls

,?+l }?+l
n i-' (/i+l)+l ttl2

Thus, fbrn 1l
/?+1 r't rtl +2tt+1 t; 2n I

t' ,t. .O
n!2 +l (.i1 +1)(11 +2) 0r*l)(n*2)

which proves that the sequence is strictly increasing. <
If 4,, and a,,..1 are any successive terms in a strictly increasing sequence, then.r/, < 1r,,+1.

Ifthe terms in the sequence ale llll posjtive, then we can divide bolh sides ollhis inequality
by.i,, to obtain I < .t,,1,t/o,, or. equivalently, a,, 1/u,, > L MoIc genelally. mon()tone
sequences with /r.').rrfi., terms can be classilied as foilows:

ITATIO OF

sIlacFsslvF I FRNIS coNat lisl()N

a,, * 11a,, > I Strictly increasing

.ttt+\la)t< | Strictly decreasing

a,,*1lct,,2l Increasin-q

att,+ jla,<1 Decreasing

Example 3

Shou' that the sequence in Example 2 is stlictly incleasin-q by exanining llle ratio ol slrc-

cessive lerms.

Solttliort. As shown in the solution of Exanple 2,

ti tL T l
.r, llrJ .i,,-- - 

-
tt , 1 n 2

Thus.

qt+j Qtill/fuf 4 n+1 n+1 f +211 +1
ttt rr \/r l) - tt 2 't 

- ttl ll

Sincethenuneratorin(1)exceedsthedenominator,itfoilowsthata,,+t/.r,,>lforr>1.
This proves that the sequence is strictiy increasing. <

The follorving example illustrates still a third technique for determining whether a se

quence is strictly monotone.
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PROPERTIES THAT HOLD
EVENTUALLY

Example 4

In Examples 2 and 3 we proved that the sequence

123 n

2 3 4 tt)- I

is strictly incrcasing by considering the differcnce and mtio of successive terms. Altema-
tively, we can proceed as follows. Let

/txt:1" r+l
so that the nth tenn in the given sequence isa,,: f(n). The function / is increasing for
r > I since

^, (x- l)(l)-x(l; I -/l.t)---- - - - 
--0(r l)' (r * l)

Thus,

a,,: f(n) < f(n*1)-a,,+t
whichprovesthatthegivensequenceisStrict1yincrcaSing.<

In general, lf f(n) : a, is the tth term of a sequence, and if / is differentiable for
ir - 1, then we have the following rcsults:

CONCLUSION FOR

ooruvlrrvr on/ THE sEeuENcE wrrH
FoR-r>l atl=J@)

"f'(t) > 0 Strictly increasjng

,f'(.r) < 0 Strictly decreasing

f'(tc) > 0 Increasing

"f'(-r) < 0 Decreasing

Sometimes a sequence will behave enatically at first and then settle down into a definite
pattem. For exanple, the sequence

9, 8, 1',7,12,t,2,3,4,... (2)

is strictly increasing from the fifth term on, but the sequence as a whole cannot be classified
as stdctly increasing because ofthe erratic behavior ofthe fir'st four terns. To describe such
sequences, we intoduce the following terminology.

11.2.2 DEFINITION. If discarding finitely many tems from the beginning of a se-
quence produces a sequence with a certain propefty, then the original sequence is said
to haYe that property eventually.

For example, although we cannot say that sequence (2) is strictly increasing, we can say
that it is eventually stdctly incrcasing.

Example 5

f 10, l+"
Show that rhe sequence | , I is evenrually srricrly decrcasing.

I n! ),:t

Solution, Wehave
10, I0,+ra - and n,, 1-nl (, l l):
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an+l _
d't

10"+r/(, + l.) !

10'lnl
Frcm(3).a,+1f (1, < I forallir

10'+rnt n ! 10

l0',(n lf - "A-tnl-nII
> 10, so the sequenceis eventually stdctly decreasing.

AN INTUITIVE VIEW OF
CONVERGENCE

Informally stated, the convergence or divergence of a sequence does not depend on the
behavior of its ititial terms, but rather on how the terms behave eyentualLy. Fot example,
the sequence

111J,.q. -lJ. 17. t.:. . .....2J+
eventually behaves like !he sequence

,11 1'' 2'l" 'n"
and hence has a limit of 0.

The following two theorcms, whose proofs are discussed at the end of this section, show
that a monotone sequence either converges or becomes inflnite-divergence by oscillation
cannot occur.

11.2.3 THEOREM. If a sequence [a,,] is eventuaLly increasing, then there are two
possibilities:

(a) There is a constant M , called at1 upper bound for the sequence, such that a,, 
= 

M
for all n, inwhich case the sequence converges to a Limit L sqtifli g L S M.

(b) No upper bound exists, inwhich case 
,,7im*a,, - +*.

11.2.4 THEOREM. If a sequence [a,l is eventually decreasing, then there are two
possibilities:
(.a) There is a constant M, called a lower bound for the sequence, such that at1 > M

for all n, in which case the sequence conyerges to a limit L satishing L > M.
(b) No lower bound exists, inwhich case lim c,, - oo.

Note that these rcsults do not give a method for obtaining limits; they tell us only whether
a limit exists.

Example 6

Show that the sequence converges and find its limit.

Solution. We showed in Example 5 that the sequence is eventually strictly decreasing.
Sinca all tems in the sequence are positive, it is bounded below by M : 0, and hence

Theorem 11.2.4 guarantees that it converges to a nonnegative limit l. However, the limit
is not evident directly from the formula 10'1/nl. fot the r?th term, so we will need some

ingenuity to obtain it.
Recall from Fomula (3) of Example 5 that successive terms in the given sequence are

related by the recursion fomula
l0an+t- n+7a, 

(4)

where a, : lQ"/2 !. We will take the limit as /? + +co of both sides of (4) and use the fact

CONVERGENCE OF MONOTONE
SEQUENCES

J 10', l*-
I ,! L,='
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ffi Iiii, iti,iI'i ! tl:i,lr :::, ;ri,. .'l

that

litn rt,,*1 : lim a,, - 1.,-+.
Wc obtain

/ ltt \ l0/ - lirn,, lrrr. | .r. I tim lim,/,,-r.L 0'' \/, ll / . 
"-t

so tirat
T0ll:lim . -0,-+. nl.

Itl,\l\l{l\. In the cxercises we will show 1ltal thc rechnique illustraled in this example can
be adapted to obtain fie linlit

Irrn -{r t5)
',--, n!

tbr any |erl value of .r (Exercise 26). This rcsult. which shows tltat nl eventually increases
more mpidl)' than anl posilivc integer power of ,r. will bc useful in our later work.

Tn this text we have lccepled the familiar properties ol real numbers without proof. and
inciced, rvc have not eveu attenlpted to deline the lenr /?.?1rrir?bcr. Although this is sufficiert
for rnany purposes. it was recognized by the late nineteelth cenlur\, thal the study of limi1s
and functiol-ls in calculus lcquires a precise axiol-tatic forntulation of the real numbers
analogous k) the a\iomrtic clevelopment of Euclidean geometry. Although we will not
attenrpl to plrsue this clevelopment. we will need to cliscuss one of the axiorns about real
numbcr.s in oldel lo plove Theorems i 1.2.i and I 1.2.4. But l'irst wc ivill intloduce sone
telrninology.

lf S is a nonemptl, sel ol'real rlumbers. then we call r an zpper Doard for S if ir is gleater
than or equal to every nurnbel in S. and we call I ir lower bouncl for S if I is smallel tharr or
equal to every number in S. For example, if S is the set of nunlbcrs in the intetval ( l. 3),
lhen /r - ,1. 10. and ltl0 are rqrpel bounds lbr S and 1 - 10, 0, lrnd + ale lower bounds
fbl S. Obsclve also that u = I is the sl)lllesl r,l all uplcr bolLncls ltld 1 - I is the largest of
all lowcl bountls. The existence of x smallesl upper bound and a greatest lorver bounLl fi)r
S is not accidentall it is a consequence ol the lbllowing axiom.

I 1.2..i ,\\lo\l (Thc Contplde ess Ariont\. lf a nottenp\ scf S (t rcul tillnlb(rs ltts tol
upper botu . tlrcrt it lns a snnlle.st ultpcr bouud (callctl thc least upper bottndl. dnd if
a notleDtpt\'.rcl S ol raul ttuntbars ltets u loucr bound- tltetl it hats Lt lqrgcst lovrcr bountl
(L.t e.l th( grcatest lower bourrd).

P roof rtl Thettrcrn I1.2.3.

(a) Assume there exists a nLLmber M such lhat.i,, a M lot n: 1.2..... Then M is an

upper bound lor the set of lenrs in thc sequence. By the Conpleteness Axionl there
is a lcast uppel bound lbr the tenns, call it l. Now lct € be any positive number Since
Z is the least uppel bound for the terms. L e is not an upper bould fbl the terms,
wl]ich means llrat there is at lcast one tenrr dN such that

atN > L - €

Moreover, since {.1,, } is an increasing sequence, we mLlsl l'lave

atj>tLN > L-F (6)
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when'? > N. But a,, cannot exceed a since I is an upper bound for tlte tcrms. This
obseNatioo together with (6) tells us that I > 4,, :' L-eforn > N,soalltenns
from the Nth on are within € units of L. This is exactly the lequirement to have

,,1:!..., - L

Finalty, Z : M since M is an upper bound fol the terms an.l l, is the least upper
bound. This proves part (a).

If there is no number M such that a, 1M lotn:1.2,.... thenno matterhowlatge
we choose M, there is a tenn .r,, such that

tlN > M

and, since the sequence is increasing.

qjr a 0N > M

when n > N. Thus, the terns in the sequence beconre arbitrarily large as n increases.
That is.

lim a,, = 1:: I

The proof of Theorem I 1.2.rt will be ornitted since it is similar to that of 11.2.3.

EXERCISE SET 11.2

In Exercises l-6. use a,,..r - a,, to show that the given se-

quence {a,, } is strictly increasing or strictly decreasing.

In Exercises 19 24, use any mcthod to show that the given se-
quence is evenllLally strictly incrcasins or eventually strictly
decreasing.

19. \2n2 lnll!,

,, lt
'l + ro- 1,, ,

rl l+'
-r, I=

1.

1.

r lt'
;1 ,:
, l*-'

1rt 1L,:,

t 
{ ,*' 

' 
}-

6. {n - n2Jf,!,

9.tne,,ll,,!,

" {#}:

I )r l+'

'l;r1,,-
'' {#}:,

, I lln'I ;1,,:
20. 1nt , 1t| jjl,

,, !. - n l*-- t n l,,=

21. \nt e " II!,

21.

23.

7.

ln Exercises 1-12. use a,,+tla,, to show that the given se

quence {a,, } is strictly increasing or stdctly decreasir,lg.
25. (a) Suppose that {d,,J is a rDonotone sequence such that

I 
= 

a,, 
= 

2. Must the sequence converge'l lf so, what
can you say about the limit?

(b) Suppose that {a,,} is a monotone sequence such that
l7,, < 2. Must lhe sequence converge? If so, what can
you say about the limit?

26. The goal in this exercise is to prove Fonnula (5) in this sec-

tior. The case where r - 0 is obvious. so we will focus on
the case where,r + 0.

(a) Let 4,, : r "//?1. Show that

lxlct,+t: 
n+14,,

(b) Show that the sequence {d,,} is eventually str.icdy de-

creasing.
(c) Show that the sequeice {d,, } coiverges.
(d) Use the resuhs in p.uts (a) and (c) to show that,i,, --' 0

as /? --+ +T.
(e) Obtain Formula (5) from the resuit in part (d).

, l*
2,r+11,,:t

10" 1+-
Qfitl,,=,

10.

In Exercises 13 18. use differentiation 1() sl'low that the se-

quence is strictly increasing or stdctly decreasing.

l-r. l" l'
[2a 1 1 J,,=,

tll
15. i l

i ,i * ln,r J ,,=,

I lntrr -F 2t I l'
11. I \| ,r+l 1,,=

r+. l: 1l '
I n J,='

16. lne )" lj!,

18. {tan 
I n}f ,
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27. Lcr la.,l be thc.equcn.c delined recur.i\cl) bl n, - .,[
lurd.7,,+r : Jh tr, tor n 7 l.
(a) List the first three terms of the sequence.
(b) Show that a,, < 2lor n a l.
(c) Slrow rhat d;,r al, - 1Z a,,11t + a,,) tbr,? : L
(d) Usc thc results in pans (b) and (c) to show that {a,,}

is a strictly increasrng sequelce. fHiat: Il r and l are

positive real numbers such thal -r2 ,r'2 > 0. then it
lbllows by lactoring that r ) > 0.1

(e) Show that {a,,} converges and find its llmil /.

28. Let {a,,} be the sequence defined recursively by a1 : I anql

",+t 
: \1", + (3/a,,)l for a I l.

(a) Show that a,, : /3 for n a 2. tLHint: what is the
n.rininum value of j t-r + (3/-r)l for.r > 0?l

(b) Show that {a,, } is eventually decreasing. IHil?1r Examine
ar+\ - a| ot arj+tf Lr,, and use the result in part (a).1

(c) Show that {a,,) converges and lind its limjt l'
29. (a) Compare appropriate areas in the accompanying ligure

to deduce the fbllowing ineqLralities lbr r I 2:

/ ln, ./, ln,ri ,/ -n.i .i.rJ J'

(b) Use the result in part (a) to show that

n" (r+lt'+l
. ,1t. _. 

' I
cn rlt

(c) Use the Squeezing Theorem for Sequences (Theolem
11.1.5) and the result in pan (b) to show that

, v/r] t
L++- ll e

Figurc Ex 29

30. Use the left inequality in Exercise 29(b) to show that

tm {7il : +-

11.3 INFINITE SERIES

The purpose of tlis seoiott is to discLtss sums thdt ontaitl itrtnikl)) many terns. The
nost fumiliar etamplas of such sums oc(Llr h the decimal t'epresentation ol re.tl num-
bers. For exdmple, v,hen y,e w te \ h the decinal form \ :0.3333 ..., .n 

^"on
I
; _ 0..r -0.0.r-0.003 - 0.0003+ .

u'ltich suggests that tlte decimal representation of \ can be riewed as e sum of in
Jrnitely many reel numbers.

Our fi.st objective is to define what is meant by the "sum" of inlinitely many real numbers.
We begin with some tenninology.

11.-l.l DEFINITIaN. An inrtnitu series is an expression that can be written in the fonn l

1,r,, - r, + L!2+ L4 + .+ ai + .. l

The numbers r 1, a2, ,/3. . . . are called the lerrn s of the series.

Since it is impossible to add irnnitely many numbers together dircctly, sums of infinite
series are defined and computed by an indirect limiting process. To motivate the basic idea.
consider the decimal

0.3333...

This can be viewed as the infinite series

o.J .0.03+0.003 r 0.0003, .

SUMS OF INFINITE SERIES

(1)
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or, equivalently,

-1 J J -1
(2t10 ior I0r I0+

Since ( 1) is the decimal expansion of {, any reasonable definition lbr the sum of an infinite
series shoulci yield 1 for the sum ol (2). To obtain such a clefinition. considel the following
sequence of (linite) sums:

3
.s, = = 0.1' t()

ll + _ = o 11- to loj
333r,:-+-+-:O3l?-' l0 l0-' I0l
)l1t

11 = I -*-+-=0.-1-l-l-l10 10r lOJ l0r

:

The sequence of nurnbers ,r t , ,t:, .!.1, J4. . , . can be viewed as a succession of approximations
to the "sun" of the infinite series, which we want to be {. As we progress through the
sequence. more and rnore telms of the infinite series are used, ancl the approximations get
better and better, suggesting that lhe desircd sum of ] might be the /irrlr of this sequence
of approximations. To see that this is so. we must calculate the limit of the general term in
the sequence of approximations, namely

))t

liF - - lo,
The problem of calculating

lim s,,- tirn ff*l- I \
''-'\10 l()r -rc")

is complicated by the fact that both the last term and the nurnber of te rs in thc sum change
with n. lt is best to rewrite such limits in a closed lbrm in which the number of terns does
not vary, if possible. (See the remark fbliowing Example 3 in Section 7.4.) To do this, we
multiply both sides of (3) by fr to obtain

13333 (l)
to " tor lo1 l()r t()r: I

and rhen subrract (4) lrom (-l) to obtain

s, - ios,,: to- lo,l+r
I 1/ l\
m":m(''- *J

1/ r\,,::lr_ro,/
Since 1/ 10" + 0 as r -+ +%, it fbllows that

lim s,,

which we denote by writing

13333
r ro ' rtrj - to'- - to, -

(3)

t/ l\ r=,rq.r ('- m/ =,
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Motivaled by the preceding cxample, we are now ready to deilre the eeneral concept of
the 'sum" of an infinite series

Lt t + Lr2 + L!', + . . + &i + . .

We begin with some terminol{)gy: Let .r/r denote the sum of the first , terms of the selies.
Thrrs

-ur+Ltl+u3

.r,, -ti1 l rr. l l, I ' ,'. -\u.
A:I

The nunber' r,, is called the n lft Z artial sum of the series and the sequence lJ,, l,+= r is calle(l
the sequence of pertial sums.

\\|{RNING. In everyclay language the words "sequence" and "sedes" are often used ii'r-
terchangeably. However, this is not so in mathematics-mathematicall), r sequenee i\ x

sl.cessror and a series is a.trlrr. It is essential that you keep this distinction in lnind.

As ir increases, the partial sum s,, - ut l uz * . . * u,, includes more and more tenls
of the series. Thus, if s,, tends toward a limil as /? + +c., it is reasonable to view this limit
as the sum of 4// the terrns in the series. This suggests the following deiinition.

11.3.2 DEFI\trtoN. Let {r,,} be the sequence ofpartial sums ofthe series

Ltt + u1 +1t1, +,. +ai+ .

If the sequence {s,, J converges to a limit S, then the series is said io corry€rg? to S, and

S is called the sun of the series. We denote this by writing

c \-,,
' .1,"1

t=l

If the sequence of partial sums diverges, then the series is said to diyelge. A divergent
sedes has no sum.

RENjARK. Somelimes it will be desirable to start the slnnmation index in an inlinite series

at t : 0 rather than I = I, in which case we will view ilo as the zer'oth term and r0 : r.r0

as lhe zeroth pafiial sum. It can be proved that changing the stafiing value for the index has

no effect on the convergence or divergence of an infinite series.

Example 1

Determine whether the series

1-1+1-1+1-1+ .

converges or diverges. If it converges. find the sum.

Soltttion, It is tempting to conclude that the sum of the series is zero by arguing that the
positive and negative te.ms cancel one another. Howevel, this is /rol corl"c/; the problem
is that algebraic operations that hold for nnite sums do not carry over to infinite series iir
all cases. Later, we will discuss conditions under which familiar algebraic operations carl

be applied to infinite series, but for this example we tum directly to Definition 1 1.3.2. The

-tl

t2

.tl

:
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partial sums are

st : I

12:l-1:0
13:1-l+1:1
sa:l-lll-l:0

and so forth. Thus, the sequence of partial sums is

1,0, 1,0, 1,0, ...
Since this is a divergent sequence, the given series diverges and consequently has no

sum.

In many important geometric series, each term is obtained by multiplying the Preceding
term by some fixed constant. Thus, if the initial term of the series is a and each term is
obtained by multiplying the preceding term by r, then the series has the form

lark :alar larz +ar3 +...+ark +.' (a +o)

Such series are called geometrb series, and the number r is called the.ari, for the series.

Here are some examples:

J -. ' -1.-..-1-t... .:f ,.:r-
t0-l0r- t6r- 'tgr'
rIIl ..1
,- 4+E- 16+. 

.+(-l)^"t+... .=i' -i
l+l+l+ +l+ " a=tt t

l-l+ l-l+ +(-l)l+r l- ' d=r.r--l

REMARK. In some ofthese series we started lhe index of summation at /< : 0 and in others

at t : l, depending on which choice produced the simpler general term.

The following theorem is the fundamental result on convergence of geometric sedes,

11.3.3 THEoREM. A geomett'ic seies

lark : olar lar2 *.. +ark +..' (a lo)

converges if lrl < I and tliverges if lrl >- l. If the series converges, then the sum is

-1.,a\ ,r'^-_,!< 1-r

Proof, Let ts lreat the case lrl = I first. Ifr = 1, then the series is

d+a+a+a+...
so the nth partial sum is sr = (r + l)a and,,lT.t,, = ,1T,(, + l)a = +co (the sign

depending on whether a is positive or negative). This proves divergence. If r = -1, the
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senes rs

0-a+u-q+...
so the sequence of partial sums is

a, 0. a.0. c,0. , , .

which diverges.
Now lct us consider the case where lrl I L The nth partial sum ofthe se es is
sr:u +er Ior7 I...an,.,

Multiplying both sides of (5) by r yields

t-sh : ar + a!r2 I.,. I trr', 4 g1yu+l

and subtracring (6) from (5) gives

J, -r.t,, =A-4t "
ot

(l-r)s,,=a-arurl

Since r I I in the case we are considering, this can be rewritten as

^ rt - tll't+l tt .r -l
l-r. | .r l_r

lflr'l < l,then lim i."+r =0(cann++. you see why?), so [r.,r ] converges, From (g)

is a geometric series with .t :5 at\d r

(s)

(6)

(7)

(8)

lirn .r,, = -a
-+- I _f

If frl > I,theneither,.> lor,.< -l.In thecase r > I, Iim r.,,+t : yr, and in the
case /- < - l, r,,+r oscillates between positive and negarive uli,ii'ino, *ro* in magnitude,
io tr,, ) divergej in both casc:. I -

Example 2

The series

\-) - ) 5 5)_"i=r -;+;*. ._; F...
t=fi * + r+-

the sum is

I -r
520

r1r

: J. Since |rl : I = l, the series converges and

Example 3

Find the rational number repl€sented by the repeating decimal

0.784"184'784 . . .

Solutiun. We can write

0.784784784... = 0.784 + 0.000784 + 0.000000784 +. ..
so the given decimal is the sum of a geomerric series with 4 : 0.7g4 and I : 0.001. Thus.

0:784784784 . . . : n :0784 -0'784 -184t-r-1_ooot:aggg=gg9
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Example 4

Ir each pafi, determine whetlter lhc series conver-tes, and if so find its sum.

1oy i:']rs' * (b) i.ro(=l (-0

Soltttiort (tt). This is a geonetric series in a concealed form, since we c.!r rewrire ir as

^ ,9, I

f ,'s' t -fnl l
- fr: - \)i

Since r. : I r, 1, the series divergcs.

Soluliotr \bl, The expanded fbrm of the series is

f r -l .'-.rj \'1.1-(:0
The series is a geonetric scries with ,t : 1 and /- - -!, so il converges if I,l < I and
divelges otherwise. Wheo the series convcrges its sun] is

t, -.
-II

Example 5

Determine whether llle series

i , I ,.../- ktl. tr I I 2 j .r.4 ,1 .)'

converges or diverges. ll it converges. find the sum.

.Solrtlirn. The /rlh pirrtiijl sum ol thc \cfie\ i.

.+l_t l_r I

' - z-r_, Itl. 1, l.) 2.1 J.d ',',,-1,
To calculate lim s,, we will rewrite s,, in closed forrr. This can be accomplished by rLsing

-+'
the method of parrial fractions to obtain (vefify)

ttl
t(r+D=r ft+1

trom which we obfain the telescoping sum

:i/r r \s,,=) l - ltsi\( k+t t

/ l\ /l l\ 'l lr ,l L
-|-2)-t; 3) (: 4)- -(, ,,+t)

/ t r\ / r l\ / t l, I| (-l-rl-t r .J l-,; ) ,, ,

:1 I

n+1

t I , - l,n, r,- tl,n fr ' \-,
!1 ^', lr ''" r" \' ', ,l

I F-oR l-HF Itl'^DEIt Ifyou have aCAS, read the docunentation to dctermine how to find
i sums of infinite series: then use the CAS to check dte results in Example5.
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HARMONIC SERIES
One of the most important of all divcrging series is the har.no ic series.

which arises in conneclion wilh the overtones ploduced by a vibratirrg ntusical string. It
is rrot immedidtcly cvidcnl tltol this scrics diverges. However, the ciivergence will become
apparent when we exiuDine thc paftitl sums in detail. Because (hc tct.n'ts in the series are all
positive. the paltial suns

sr :1. s::l*1..r:=l+++1. s1 =t+j+j+j....
fomr a stl ictly incrcasing sequence

.'it <.tt<S:(".(,ia { .

Thus, by Theorem I I .2.-j we cun prove cl ivergence by demonstrating lhal lhcrc is no eonstanr
M that is greater than or equ l to crr,/ 1' paflial sum. To this end, wc will consider some
selected partial sllms, namcly s,..rq..r3. st6,.rlt. .. - . Note that the subscripts are successive
powers of 2. so that these are the pLu tial sums of the fom s., . These partial sums srtisfy the
inequalities

.ir:r+1.'j+j=j
s+ :.ir * ] + J' r, +(i + i) :.t:+ ]' l
.r*=sr rl+|+l+*".'+(1 r,l rl lt '',r j']

\r,, - \x r,i + iir - ii + ,.l + * r'r., + i + fr

',.1+ (* + + + + + + + + + * + *r + fi) :ss+1 > i
:

,r+l

If M is any constant. we cun finclapositive integer/1 such thijt ( + l) l2 > M. Bnt tbr this n

n+1
sz, > >M

so that no collstant M is glcillel lhan ol cqual to €t'el-\, pafiial sulr of the halmonic series.
This ploves divcrgencc.

This divergerce prool'. which prcdates the discovery ofcalculus. is clue t() a Frcnch bishop
and teacher, Nicole Oresme ( I323-l3lJ2). This series evettually attlacted the interest of
Johann and Jakob Bcmoulli (p. 99) and led them ro begin thinking about lhc gcneral concepr
of convergence. whiclr wls r new idea rt that time-

.j- I I I I I) -:l+ +-+-+-+...
/,: I ''

\rL 14 /6- +i' Gitu; ,Y'lrl,u, ' +t+

!1654rcw!FD('[!ql4rF|'nd.
:+'1'Ai'tiiE';'qtdl6.

e r i,re, r+I+++ r + Lk.6r6r4a, ir.
ioPl+il!idl"iPoFJd.d{@n6udl4

This i\ ll pruol ol lhc dilcygc'rrc('of
lhe halmonic scries. ns il lppcrirtd in

rn rppcndi\ ol Jrkob Bcm()tllli s

posrhumous publicirioll- 
'l,r{

C/rrl../.r,r/i- Nhich xppcrrcd in 1713.

ExERcrsE SEr 11.3 E cns

l. In each part. lind exiLct vrlues ibr the first lour prrtial sums.

liDd a closed lbrm lbr the ,th pafiial sum, and deterntinc
whcther the scries converges by calculating rhe llmit of the

athpa ial sum, Il lhe series converges. then state its sum.
222(r) 2-:--l- -:: , .

r 5- 5''

2. ln each pan. lind exact values fbr dte first fburpartial sums.
find a closed iorm tbr the /rth paflial sum. and determine
whether the series converges by calculating lhe limit of the
rrth partial sum. Il the series coltvcrges. thcn state its sum.

,.1
,", rll) ,r, i+ ,", f l' ' ' I"'(t\qt '?- ''' fo\r-r k-1)

ln Exercises 3 1,1. determine whether the series converges.
and ifso- find its sum-

l2)1
tb) -+-+-+...+-+...ll-ll

lttl
lL:) - f 

-+--.. 
I 

-+...

l..l l.l +.5 (t+l)tl Fl)



, r./ Ir I(-;)
s- \-,- r ,' 7

= 
b/r

.,i I

" 2 tL +1rI +1\

e.\--L
3 qt'+:/. 

2

rr.i I

Ekz
13. t-

=t^'
ln t\ercrs.. lf l{r. e\pre.. ,he ! ven rel(Jrin:,lecirn: lr.,r
l'raclion-
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Use _eeometric series 1() show thal

rrt fr lrr it -l:: Li

r", f t.t { - rt Lr -4

tcfr"
l=Lr

Lr cach pa , find all values of r lol rvhich the series con
ver€cs, and nnd the sum ofthe selies lbr those values of .t.
(a) .t .rl + -ri -r7 + -r')

1 2 4 I 16(br ;i ,i ,*-* ,*\ \ \- r'
(c).'+r l'+ e r'+n rr+c i\+

It. ) i';
shn*,\- ""-' "^:t1- /,. )

t= \^ 1{

sr,,,*,i/1 ' \-l
3\t, A+2t )

"t,n,' 
l* ' * ' *..:r.l 2 4 3.5
lll\how 

-+ 
+-+ .:

1.t I5 5.7
Sirou, that for all real values ol -t

2 sin.r

2+sinr

the sequencc

4.4414 . . .

5.3'71'7l7 ...
0.78217821782r ...

o.t(1)'-
=.i\1/' t l+

6. \-l 1i
1_\ )l

si/l-'\/-, \ )t l/+l /

10. i-l
,tLkt-1

r:. rr:)/7'n'
t,t. isrrlr r

i=L

16. 0.9999. . .

llJ. 0.1591591-59.. .

20. 0.451 l4l,1l,l

26.

21.

tr
tr

15.

17.

t9.
21.

22.

Use a CAS to check your answer-s to Exerciscs l-1.1.

Il1 each paft, use a CAS to llnd the sun ol the scries il it
conver{es. and thcn confinn the result by hand calculation.

28.

29.

-10.

ll.

3

4

l

2L.r.r fL 1,, 2 t Lf', f ,-3 =5^'
r.) i _L31t. r

23. A ball is c opped fiom a height o1' 1 0 m. Each rimc ir srr ikes
the ground il bounces vertically to a height thal is ] of the
preceding height. Find the total distance the ball will tfavcl
if it is assumed to bouncc infinitely often.

2,1. The accolnpanying figule shorvs an "infinite staircase 'corr
strucled irom cubes. Find the total volume of the staircase.
given lhat the lar-gest cLrbe has a sidc of lcngth I and eiiclt
sLrcccssive cube has a side whose lensth is half thilt of rhe
precedirg cubc.

tt,l
rt f ,\tn \ -\It I g.in \r

Let /7t be any real number. and let {n,,} be

dcfined recursively by

.r,,r 1 : ](d,, + l)
Make a conjectur-e about the limit of the sequence. and
confirln yourconjectrue by expressiis a,, intcrntsofdt and
taking rhe limit.

Rccall that a t.rrrr?./ting cleL inal is a decimal rvhose digits
arc irll 0 from sorrie point on (0.5 - 0.50000 . . . . fbr exam-
ple). Show that adecinal oftheform 0.rrlr4... a,,L)999 ....
where a,, f 9, can be erpressed as a temrinating clecimal.

The great Swiss mathematician Leorhard Euler (biogra
phy on p. l9) sometimes reached inconecl conclusions in
his pioleering work on infinite series. Fot example, Euler
deduced that

l:1-l+l l+ .

and

1:t+2+4+8+.
by substituting.r : -l and r : 2 in the lbmula

t^

-:l+r+.\ 
+1'+

l1

What was the probletr with his reasoning?

ll

34.

25.

'.. Fiqrre F.x 2'1

ln each part. lind a ciosecl form for the r?th partial sLrm of
the selies, and dctcrmine whether the series converges. If
so. tiiid its sum.

l23n
Lr) ln, lrr ,-lr;- 1,.,, 

I

/ l\ / \ , r\,b.n{r ,} rrr(r 
o,J -"(,, ,.)

"(r 't 
"')*
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36. As shorvn in the accornllanying 1lgu1e, suppose thiit lincs
L1 :rnd L. l,'lln ]n ingle P. i v t ). dt thcir noill
of intersection P. A point P0 is chosen thal is on I I aDd a

rlnits fiom P. Starting fiom fl1 a zig-zag path is constrLLcted

by successively goi g back ancl forth between L] and L2

along a peryendicular from one line to lhe other. Find the

following sums in terms of d.

(a) Pf 1'r + PtPtl Pthl '

(b) &PL + PzP)+ P1P5+

(c) P A+ P:P+*PrPr,*

38. In his Tl"aris? otl the Confillut.ationt af Qudlities ond Ma
lirr?r (written in the 1350s), the French Bishop of Lisieux.
Nicole Oresme, used a geometric method to llnd the sum

ol the selies

In part (./) of the accompanying figure. each tcrm in the se

es is represented by thc arca of a rectangle, and in palt (b)

the conllguration in palt (a) has been divided into rectangles

with areas Ar. A:, A:, .... Find the sum Ar *.4:iA:i.. .

t+-:*1*;*+*

.-,, -l
Figrre Ex 36

As shorvl in lhe accompanying l'igure, suppose that an

angle 0 is biscctcd usinS a straiglitedgc and compass to
produce r-!ry Rt. thcn the angle between R1 and tlie initial
side is bisected to produce r-ay Rr. Thercalier. rays Rr, Rr,
R.5, . . . are constructcd in succession by bisecting the angle

betrveen the preceding t\\,o rays. Show lhal the sequence of
angles thri these rays make with the irlilial side has a limit
ol e/3. fThis ploblem is bascd on llisaction ol tttl Allgle
in tn Infinitc Nunher ol Steps by Eric Kincannon, which
appearecl in 7he Collegc M(lthenritics Jout-tial, yol,.21.

No. 5. Novenbcr' 1990.1

t?,

n..
.. R.

,,: R.

lnit a side

Irigurc Er 3l

I

1

i
I A2

4l

I

(b)

37.

(d)

Figure Ex 38

E 3e. (a) See il your CAS can llnd the sum of the sedes

\=- 6^

2 Gr*t ,t.r.r )(l{ 2L)

(b) Fhd A and B such that

6k 2kA 2kB

(lr -r lr+ )llr 2I )
1{ il -r r{+i .t+r

(c) Use the lesult in part (b) to find a closed form for the
7?1h partial sum, and then 1li1d the surn ol the series.

fThis exercise is adapted from a problem thal appeared in the

Fofiy-Fifth Annual William Lowell Putnam Competition.l

In the ldst se( tio lte sho\\'ed hou, to find th( sLt.ra ol a series b! finding q cbsed rtr'm
.for the nth paftial sLtiil and taking its limit. However. it is relutit'e$ rare lhat one

uul it1.l a tlosed lonn lbr the nth pdttidl su\t of a series, so ctltetnati|e methods dte
neetled.lbr.finding stnls of seies.O e possibilit)- is to pnn,e tllot the r,ries ( o/ir e/.\r€.t,

and then ctppro:inate the sun b)- d partictl sult u,ith suJrttientl! mot|! terms to lchiete
the tlesired tlcgree oJ ttt tt.u'aty. In lhis seclio ',te ''t'ill de|elop t)arious tests tllclt cqn be

usecl tut delermine whether a gien series co1tetges or diterges.
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The /rth terrn in an iniinite series I u1 is c alled the general term ofthe series. The following
theorcm establishes a relationship between the limit ofthe general term and the convergence
properties of a se es.

I l.'l.l TIIEORE\4 (The Diyeryence Test).

(o\ It lim u - 0. rheu rlt, .tr^tt,:\rr' Jiterger.

(.h) Il 
^lim 

-ur - 0, then the se ries lu7 ma1 e ither cont,erge or dberge.

i

Pruxt @). To prove this result, it sufhces to show that if the series convetges, then

o 1T- t,, 
: 0 (why?). we will prove this altemative form of (a)

Lel us assume that the series converges. The general telm rk can be wdtten as

(r)

where s1 is the sum of the lirst k terms and J( r is the sum of the first & I tems. If S
denotes the sum of the sedes. then lim r( : S, and since (i I ) + +:c as I + a:c. wet++_
also have 

o 
lin1- sr r : S. Thus, from (l)

lim 11 - lirr-r (r'i -.tr r) - S S:0k- +r k+ +r

Prott (h). To prove this result, it suflices to produce both a convergent series and a divergent
sedes for which lim r1 : 0. The fbllowing series both have this property:k-+'. '

1l 1 11 I
- I .. - l and I ^ .22)2Jr

The 1irct is a convergent geometdc seies and the second is the divergent hannonic series. I
The alternative fom ofpart (a) given in rhe preceding proofis sufllciently important that

we state it separately for future reference.

'

Example I
The series

ie
li *+r -

diverges since

klim _k-+-k+1

l23k
.!-_-!_-!,._ !

2'_l 4 k+r

I:]im _:1-0t-+- I * l/ft

\\AIINl\(i. The converse of Theorem 11.4.2 is false. To prove that a series conrerges rr
does not suflice to show thal lim a1 = 0, since this property may hold for divergent ask++'
well as convergent series. as we saw in the proof of part (b) of Theorem I L4. 1.
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ALGEBRAIC PROPERTIES OF
INFINITE SERIES

For brevity, the proof of the following result is omitted.

11.4.3 THEOREM.

(a) If lup andlu; are convergent series, thenL@t i ur,) and l(up uk) are
cor^'ergent series ond the sums of these series are related by

l{r*+ro1 :I,*+Ir*
k:t k=l t=l

lQu-,0:1,* I,*
k:l l:l k:l

(b) If c is a nonzero cotlstqnt, then the series I u1, and I cup both converge or both

diverge. In the case of comtergence, the sums are related b),

\-",,,:"\-,,,1- --" - 12 "
t=] k:l

(c) Cowergence or divergence is unafiected bt deletfug a fnite number of terms from
a series; in particular, for any positile integer K, the series

f r,:r'+, lr,l. .

_i_
Lu' -'r lu1' -itY''-

both converge or both direrge.

REMARK. Do not read too much into part (c) ofthis theorcm. Although the convergence

is not affected when a finite number of terms is deleted from the beginning of a convergent

series, the Jrr? of a convergent series is changed by the removal ofthese terms.

Example 2

Find the sum of the series

L t; - ...-' I
t-t t -

Solution. The series

+3 1,3,3-
1' tt -,r' t2 ,11(:t -

is a convergent geometric series (q : 1, t = ]), and the series

ala
\ 

- 
) | I -+--.../,.1 t - < <2 (l

L:t "

is also a convergent geometric series (a : Z, r = ]). Thus, from Theorems 11.4.3(a) and

11.3.3 the given sedes converges and

t/3 ',-)-1'. t',- j---:---l
?tq' y-J ?4'?y, t_i l_+ 2

Example 3

Determine whether the following series converge or diverge.
.:5 5 5 5 

-l 
I I I

'^ \r: r-t-, r r I r" to'fti -,o ,, tz
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Soltttittrt, The first series is a constant times the divergent harmonic series, and hence
diverges by part (r) of Theorem 11.4.3. The second series results by deleting the firsr
nine terms from the divergent harmonic series, and hence diverges by part (c) of Theor.em
I 1.4.3.

The expressions
11 r+' 1

\-...'. rnrl I -,t,ot-,t kt J, ,'
are related in that the integrand in the improper integral r'esults when the index t in the
general term of the series is replaced by x and the limits of summation in the series are
replaced by the conesponding limits of integration. The following theorem shows that there
is a relationship between the convergence of the series and the integral.

11.4.4 THEORE\I (The htegral Test). Let L uk be a series with positite rerms,q,,dletl
.f (.x) be the function that rcsLrlts v,hen k is rcpLaced b), x in the general term of the series.
If f is decreasing and continuous t:ut tha inte^'al la.1.,). th.en

)2uk ana
k=1

both cont,erge or both dfierye.

Example 4

Use the integral test to determine whether the following series converge or diverge.

Solution (a), We already know thal this is the divergent harmonic series, so the integral
test will simply providc anothar way of establishing the divergence. If we replace k by
x in the general term 1/k, we obtain the function /(.r) = 1/r, wliich is decreasing and
continuous for x : 1 (as required to apply the integral test with a : 1). Since

t+a t ?l t

I ' a* . lim / idt - li,t, [ln/ ln l]- ':Jr \ Jt )
the integral diverges and consequently so does the seies.

Solution lb). If we replace /c by ,r in the general term 1/ft2, we obtain the function

f(r) :1/x2, which is decreasing and continuous for:r > 1. Since

:,IT" [-+],:,!t- ['- ]]='
the integral converges and consequently the sedes converges by the integral test with
a = 1.

RLNIARK. In pafi (b) of the last example! do r?or erroneously conclude that the sum of the

series is I because the value ofthe conesponding integral is 1. It can be proved that the sum
of the serjes is actually z2/6 and, indeed, the sum of the llrst two terms alone exceeds 1.

The sedes in Example 4 are special cases of a class of series called p-series or hyperhar-
monic series. A p-series is an infinite series of the form

-l 
I I I) 

- - | I ----...-!-- .../- kt )t l/ t/t:t '

l"*' f " "t'

ra) t: (b) )-:
l=r ^ t: ^

f- \ r, = ',. /'4:
Jt x' t-+t Jt r!

p-SERIES
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PROOF OF THE INTEGRAL TEST

where p > 0, Exnmples of p-series are

.:t I I I) -- I+-+-+...+-+...l-L I l t

.1- I I I I\t
/- t -' ): ?' ' rl 't:l ''

-t 
I I I\ -t___?,,t ,/: J1 \r

l)=2

= li. '' 
'l'= 

,,n' |-'-' - ' 
.l

1 I - t) l, '--'Ll- i, | - t,)

The following theorcm lclls when a 7r-series converges.

11.4.5 THEORE\{ (Concrgence of p-Series\.

-l 
I I I

-L^,,-t, t*t+ +(/+ '

l:t "

tonterges iJ p > | uttd tlivcrgcs il0 . p : l.

Pronl. To establish this lcsult whcn 2 I 1, we will use the inlegral test.

[' Ln,= rim //.r-,,/.r
Jt .\t t t Jt

If 2 > I, rhen I - 2 < 0. so 1r-l' -- 0 as 1 -+ +,.. Thus. the integml converges lits value
is l/( l - p)l and conseq[ently the series also convergcs. For 0 < p < I, it follows that
I -p > 0and/r 1'---> !-:-asl--+ l-r, so the integral and the series d iver ge. The case p: I

is the hannonic sefies, which was plcviousl)i shown to diverge. I

Example 5

tlll----+...+Jz J] YA

c1ivergessinceitisa2-seIieswith/,:{.1'<

Beforc rve can prove thc in(ettLal test, we need a basic lesult about convelgence of series
with rroarcgatire terms. lf lral:al-r t--- lup +... is such series. then its sequence

of partial sums is incrcasing. that is.

sl <tt <.r:r: =.t,S"'
Thus, from Theorem I 1.2.3 the sequence of panial sums convcrgcs to a linrit S if and

only if it has sorne upper bouncl M. in which case S 5 M. If no upper bound exists, then
the sequence of paltial sunrs diverges. Since convergence of the sequence of partial sums

con'esponds to conver-tencc ol the series, we havc thc fblkrwing theorem.

11,,1.6 THEOREN,]. 1l !a1 ls q se e.e with ttottttcgutit'c ternts. and il there is q

ao stant M s ('lt thqt

.tx=nl+al+...+u,,=M
lbr etert rt. tlren tlrc scrics (onr(rgcs .ud tlte sunt S sutisfies S 3 M. If no sutl M
c.rists- Ilrcr tlrc series ditcrgcs.

In words, this thcorem implies that a reries u itlt nonncgatire tcrnts uun'erges if arul onlt
if its sequence oJ pcttiul sruus is boLtndetl abore.
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Proof ofTheorem 11.4.4. Weneedonly show that the series converges when the integral
converges and that the series diverges when the integral diverges. For simplicity, we will
limit the proof to the case where a : l. Assume that /("r) satisfies the bypotheses of the

theorem for x > 1. Since

f(1) : u, fQ): u2,..., f(n): u,,...
the values of a l, &2, . . . , ar, . . . can be interpreted as the axeas of the rectangles shown in

The following inequalities result by comparing the arcas under the curve y : /(x) to
the areas of the rectangles in Figure 1 I .4. I for n > 1 :

: sr i lig:" 11 
4 

11

!(x) dx Fisur€ I l.4 lr'

diverges.

r+l
I .f?)a, < ut+uz+" +u,

Jt

sr -al : u2 + u3+ "' + r" . lr"
These inequalities can be combined as

l,'*' f,r, o, < rn ( /rr + 
fr" 

froa,

If the integral Ji /(x) dx converges to a finite value Z, then from the right-hand inequality
in (2)

,,, . u, + l, fi)dx < r, + l,' 1{ia, : ur t L

Thus, each partial sum is l€ss than the flnite constant rt + ,, and the series converges by
Theorem I 1.4.6. On the other hand, if the integal Ji /(x) dx diverges, then

tim / f(x)dx:+x
so that from the left-hand inequality in (2), lim s, = 1co. This implies that the sedes also

(2)

Figure 11.4.1.

1. In each part, use Theorem 11.4.3 to find the sum of the

series.

r", (j + i). (; + |)+ + (+. i).
'E(+-#)

2. In each part, use Theorem I 1.4.3 to find rhe sum ofthe series,

,", Eln:-#] ", I['**.' -#]
r 

"."'l"ll 
i 

""0 
+. '",i;"; ;;"" ;';;;;. i' ""* "^.", I

: llu,r.1r1u":1ille 
whether the series converses. 

___ |
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3. (a)

4. (a)

(d) ir r/3

i=l

rar \-?r-

scrles,

(") t3t,l? trrr il ,., \- I

=k' 
ti(k-t\4

In Exercises 5 and 6, apply the divergence lest, and stale what
iltel1s you about the series.

Suppose that the selies I a1 conver-ges and tlre series I r1

diverges.

(d) Show that the series !(,1 + r'1.) and !Qr1 ur) both
diverge. [Hinr. Assume that cdch scries convelges and

use Tl]eorem I1.4.3 to obraiD a contradiclioll.]
(b) Find examples to show that if I a1 and I r^ both di-

verge. lhen the series l(,tl + ,,1) and l(r1 r.1) may
either converge or divcrje.

lD each paft, use the results in Exercise 28, jl needed. to
determil1e whether the series diverges.

-'i] .'' E[o:
,., il l-

t! Lrttn rl'

Exercise 30 rvill show how a partial sum can be usecl 10 obtail]
upper and lower Lrounds on the sum of the series when the
hypotheser oi the integral test a1€ satisfied. This result will
he n.edPd r" L\Prci\es t | {s

30. (a) Let li=, !r be a convcrgent series with positive lerns,
lct.l(.r) be the ltnclion thal results when t is replaced
by r in the general telm ol the series, and suppose that

l satislles the hypotheses of the intcgral tcst for,r - ,
(Thcolcm I 1.4.4). Usc an area arguDent and the accom
panying figule (following Exercise 35) lo show that

| 11,1,tr t ,," / t\i).t.xt ^l-' r'

(b) Sho\\, that it' S is the sunr of the seies !i=, ,1 and s,,

is the'lth pafiial sum. then

,,,+ 
[,,*" fr,)a'

31. \J) Tl rii.5laled in Ere|ci.c )" tlrlt

i,_n'
7=r k' h

(b)

(c)

Show that il .r,, is the , th partial sum of this series, then

1llr
" 

1 . < _ <\, f/r+l b /r

Calculatc.rl exaclly, and then use the result in part (a)

to show that
29 t2 61

18636
Use a calculating utilily to confirm that the inequalities
in part (b) are correct.
Finci upper and lowe1 bounds on thc crror that results it'

the sum ofthe series is approximated by the 1oth pallial

28.

_ -t,+i+3l. lr)) 

-

E 2k- +1

{c1 icostr
l=l

6. L:,r f ! ,r., ftn{ L..r fl ,a,f Jii

- I v(

ln Excrcises 7 and 8, conllnn that the integral test is applica-
blc. ilnd u.e it rn determrnc \ lrcllr(r llr( \(rie. ( nrver!:e\.

7. rut \- |

a5t+)
s. r", i -i-E 1+k'

29.

.t
,t', f(r+l)KI

rar \- -

+l
[,r,(,,,I (;)

l=l

;l
rur f -L-

f-:t 1+akt

tr f tr.;nr 1l I
2 \kr

rr iri,r"-' 1, "',

ihe series.

2s. i I 
26.

f-1 k(tn k)t'

[E 27. Use a CAS to confirm that

o) te.;t.

r r \- i,]" l''-' 1, '
t=l

24. I sechr i

In Exercises 9-24, use aDy method to determine whether the
\efre\ convefg(\

e.\-r ro.tl r.t I

L1 I n L5t '- J1,-5

,r.I'- ,..i ,,' , '..t"]'t. V' ^ v-n

rs.t A 16.tr. rr.f{r ll'
Llnrt t\ - 

4\ t, t

rs.tl l re.t'on I :0.f I

uk r i-il {- 1Jt, I . s .,,, + 
1,,*' 

lrla*

ln Excrcjses 25 and 26, use the irteglal lest to invesligate thc
relationship between the ra|.re ol p and the convcrgcncc of

t
\-l:I ""a \-l:4?, l' b tilr q0

t1 l(Ln k)llnlln k)l'

aDd then use these results in cach palt to lind the sum of the

(d)
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32. In each part, llnd upper and lower bounds on the error that
results if the sum of the series is approximared by the 10ih
partial sum.

(a) t --]-l', (2k 111:
(b) i -l (.) i!

?t^'+I Ee'
Our obiective in this probler'D is 10 approximate the sum of
the series lf=, l/t3 to two decimal place accuracy.
(a) Show that if S is the sum of tl're series and ,r,, is the ,th

partial sum, then

1l
r. T - S - \.' )tq+ll 2n)

(b) For two decimal place accuracy, the e[or must be less

than 0.005 (see Table 2.4.1 on p. 15.1). Accordjng to
the Approximation Principle (2.4.10), we can achieve
this by finding an interval of length 0.01 (or less) that
contains S and approximating S by the midpoint ofthat
interval. Find the smallest value ofa such that the inter-
val containing S in pafi (a) has a iength of 0.01 or less.

(c) Approximate S to two decimal-place accumcy.

(a) Use the method ofExercise 33 to approxiinate the sum
ofthe series li:, l/ft4 to two decimal-place accuracy.

(b) It was stated in Exercise 27 that the sum of this series

is za/90. Use a calculating utility to connrm tlrat your
answer in part (a) is accurate to two decimal places.

We showed in Section 11.3 that the harmonic series

lf=, 1/.t diverges. Our objective in this problern is to
demonskate that although the partial sums of this series
approach +-, they increase extremely slowly.
(a) Use inequality (2) to show that fbr r : 2

ln(a*1)<s,,<l+lnn
(b) Use the inequalities in part (a) to find upper and lower

bounds on the sum ofthe firstmillion terms in the se es.
(c) Show that the sum offte first billion tenns in the series

is less than 22.
(d) Find a value of7r so that the sum of the llrst n terms is

greater than 100.

lnvestiSale the relationship between the value of d and the
convergence of the series ttr tr r"".

Use agraphing utility to confirm thatthe inregral rest applies
to the series Li=, ktn o. and then detennine whether the
series converges.

(a) Show that the integrai rest applies to the series

ttr l/(kr + 1).

(b) Use a CAS and the integral test to confirm that the seies
convelges.

(c) Construct a table of pailial sums for n:10,20,
30, ..., 100, showin-e at least six decimal places.

(d) Based on your table, make a conjecture about the sum
of the series to three decimal-place accLlracy.

(e) Use part (b) of Exercise 30 to check your conjectule.

Figure Ex 30

34.

35.

36.

a 37.

E 38.

LOCAL QUADRATIC
APPROXIMATIONS

11.5 TAYLOR AND MACLAURIN SERIES

In this section we will rliscttss methods.for approrimating vttLues of trigononetrtc antl
IogcLrithmic ftnctions. This will lettd us to the more genereL problem oJ approximating

fwtctions by polynomials and then to the problem of fintling inllnite seies th con-
ver,qe to speciJic Junction.t. Issue.\ ol conyergence and error estillletion will be dis,
cussed in later sections. Moreover, if desired, tllis section ttm be coverccl ctJtar Section
I1.7 or I1.8. We lnve pLaced it here for those who want a1 eorl.ier disctrssion of
M qc lattrin and Ta )'lor pol\nonio I s.

Recall from Formula (6) in Section 3.6 that the local linear approximation of a function f
at a point ro is

/(r) :: ./(x6) * ./'(ro)(,r - xo) (1)
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In this formula. the approximaling f'unction

p(.r) = f(re) + /'(.ro)(.r ro)

is a first-degree polynomial whose value at ,{0 is I (-r0) and whose derivative at r0 is //(n0)
(verify). Thus, the local lirear approxination of / at -{0 has the propelty that its yalue and
that of its ilrst derivative natch those of / at .r0.

If the graph of a function / has a prorrounced "bend" at a point n0, then we can expect
that the aacuracy of the local linear approximation of / at,re will decrease mpidly as we
progress away from r0 (Figure I 1.5.1). One way to deal with this problem is to rppro\ imcte
the function / at r0 by a polynomial 7r of degree 2 with the property that the value of p and

the value of its lirst two derivatives match those of / at x0. This ensures that the graphs of /
and p not only have the same tangent line at r0, but they also bend in the same direction at

that point (both concave up or concave down). As a result, we can expect that the graph of
p will renain close to the graph of / over a larger intenal around rn than the graph of the
local linear approximation. The polynomial p is called the /ocal quadratic approximation
of f at the point x = xn.

To illustrate this idea, let us try to find a formula for the local quadratic appror,imation
of a function l at the point -{ : 0. This approximation has the form

./(r) ^' co + ctr + c:r2

where c6, c1, and c2 must be chosen so that the values of

P(x):colcrrlctx2
and its first two derivatives match rhose of / at 0. Thus, we wanl

p(0) = /(0). p'(0) : l'(0), p" (0) - f"(0)

But the values of p(0), p'(0), and p"(0) are as follows:

p(.x) : ca * ctx I czx2 p(0) : co

pt(x) - c1 ! 2c2r p'(0) : cr

p"(x\ - 2cz p" (.0) :2c2

Thus, it fbllows from (3) that

co = /(0), cr = /'(0), ,. : f '!!
2

(2)

(3)

and substituting these in (2) yiekts the following formula for the local quadratic approxi-
mationof/atr:0:

f"rot
frxr' .[r\t-/r0ir t 1-I,-

RENl.\liK. Observe that with -r0 : 0, Formula (1) becomes

l(x) I l(0) + //(0)r (5)

and hence the linear part of the local quadratic approximation of / at 0 is the local linear
approximation of / at 0.

Example 1

Find the local lineal and quadratic approximations of e' at r = 0, and graph e' and the two
approximations together.

(4)

Figuft I 1.5. I
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Soltttion. If we let l(,r) : e'. then f'(x) : J"(xt: e'; and hence

.1191 : f'(0): .f " (0) = ett -- t
Thus, fiom (4) the local quadratic approximation of cr at "r : 0 is

e,r,!l+x+,
and the local linear approximation (which is the linear part of the local quadratic approxi-
mation) is

e't I +-r
The graphs of e' and the two approximations are shown in Figure I I -5.2. As expected, the
local quadratic approximation is more accurate than the local linear approximation near
.r=0.

It is natural to ask whether one can improve on the accuracy of a local cluadratic approxi
mation by using a polynonrial of degree 3. Specifically, one might look for a poJynomial ol
degree 3 with the property that its value and the values of its first threc derivatives match
those of I at a point; and if this provides an improvement in accurucy, why not go on to
polynomials of even higher degree? Thus, we are led to consider the following general
problem.

I l.-i,I lttotsLLNl. Given a function / that can be differentiated 
'? 

times at a poinr .ru,

i find a polynon.rial p of degree , with the proper ty thar the value of p and the values of
i its first , derivatives match those of / at the point -{0.

We will begin by solving this problem in the case where xs : 0. Thus, we want a
polynomial

p(r) : co * cr,t +.:."1 + c:rr * ... * c,,r" (6)

such that

.l(0): p(0), /'(0) = p'(0). .f"(0): p" (0), /(")(0): p(r)(0) (7)

But
p(r) : co*crr +c:x2 +c,-r3 +.. + c,,.t"

1t'1t1 : at { 2c2x * 3cr.rl + ... + t1c,tx" I

p" (..y\ :2c2*3.2c3r +...+n(fl l)c,,,r"-:

p"'(x) -3 2q+. .1n(n-l)(r 2)c,,x"-3

:

pI")(x) : n(n - l)(n - 2) (1)c,,

Thus, to satisfy (7) we must have

"f(0) : p(0)

/'(0) :p'(o) :c1

f"(0) : p" (.0) :2cz:2tcz

l"'(0) = p"'(0) :3.2ct =3!ct
:

/(,,)(0) - ,r,,r191 : ,0, _ l)0, 2)...(1)<.,,: nlc,,

which yields the following values for the coefficients of p(-t):

f"(o) .f "'(0\ - _ ,f 
("i{0)

nl
co = ./(0), c1 : f'(O), c2: )t It
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The polynomial that results by using these coefficients in (6) is called the ntll A4dcluurin
polt'rcntial lbr | .

11.5.2 DEFlNll'loN. lf / can be differentiated ,? tines lrt 0, then rve definc the rrrl
Maclaurin poly ttornial for f tobc

p,Q): l(0) + f,(o)x + f-l!!,2 * l'1(D": * * t';lo'", (8)

, This polynomial has the propelty that its value and the values of its lirst n derivatives l

, nlatch the values of / and its filst /r derivatives at,r : 0. a

RF.l\I,\l{K. Observe that pr (-r) is the local Iinear approximatjon of / at 0 and p2(r) is fhe
local quadratic approximation of f at -r : 0.

Example 2

Find the Maclaulin polynomials pa, pt, p2, pr, and pr for dt.

Solutiotl. Lel /(.r) : e!. Thus.

f'(x)- f"(r)- f"'(x)- - ltn)G)-et
ancl

/(0) - /10) - f"(.0) - f"'(0) -. . - /("r(0) - etr -1
Therefore.

po(-t)-/(0):1
pr(r) : f(0) + l'(0).r = I +.t

/ rOJ ,l I
/,{\,-r{rrr /,frrr--r ,-t-.r, , . ,''

' t'rOr r / rrlr ,/,.'.\, - i,0, / {0r\ )! ' ll t

.r:l -rl I l.: I +-r +, + t - I + j + t-r' + 
6.r'

/ r0r t''r0r
/,.trr- /tot r./ rll)r - :: r -...+ ,' t

,tl l": l+r+;* *i
Figure I 1 .5.3 shows the graphs ol e' (in blue) and the graphs of the lir st four Maclaur in

polynomials. Note that the graphs of p | ( r), p2 (ir), and pr (-r) are virtually indistinguishable
tiom the graph of e' near the origin, so that these polynomials are good approximations
of e' for -r neat 0. However, fie fa hel r is fiom 0. the poorer these approximations be-

cone. This is typical of the Maclaurin polynomials tbr a function I (r); they provide good

*,,r.nr,,,,.uur(1698 
1746). scottish rnathcnatician. N{aclaLrrjn s fathcr. a ministcr, rliedwhcnthcboy was

only six monrhs old. and his nrother when he !v.Ls nine yeal1\ old. He was then raised by an uncle who lvas

also .r ministci Mxclrurin entered Glasgow Univeftit) as divhity student. but transfe ed to mathematics xfter
onc ),car. He received his Mrster s degree al .rge l7 and. in spile ol his youlh. began leaching at MrrischLrl

College in Aberdeen. Scolland. He met lsaac Ne$,ton during a lisit 1o Londor in l7l9 and lion Lh.rL Lime

on became Newton s discide. Duing thn! em. some ol Nervron's analytic nelhods $,erc billerly attacked by
m,ijor mLrrhenaticians tuxl much olMaclnurin s important nrathematical work rcsultcd fiom his eilorls 10 dcfcnd
N-ewlon'! ideas geonreLricall). Maclaurin's work.A Trcaisc ol FIL\io s ( 1112). \\' as the fi rst systematic fomulation
of Newton s methods. The treatise was so careflrlly done thit it s,as r \trndad of mathernatical rigo. in calculu\
untilthc work ofCauchy in liJ2l.

N4aclaurin was an oulstanding experimentalisr. He devised Duncrous iDgeniou\ ncchanical deviccs. ln.rdc
jnipofiant asrrononical obsen'alion!. perlomred actuari.rl computltion\ lbr ins rance societics. and hclped to

inrprove maps of the islands around Scotiand.

Figurc I 1.5.1
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approximations of /(,t) near 0, but the accuracy diminishes as _t progresses away fi.orn 0.
Howevel it is usually the case that the higher thc degree of Lhe polyoomial, dre larger tlte
interval on witich i1 providcs a specified accuracy. Accuracy issues will be investigated later.

Up to now we have focused on approximating a function / in lhe vicinity ofthe or.igin. Now
wc will consider the n'iore general case of approximating I in the vicinity of an arbitrary
point,r0. The basic idea is the same as before; we want to f,nd an ,th-degree polynomial p
with the prope y &at its value and the values of its first z derivatives match those of f at
-r0. However, rather than expressing p(n) i[ powers of r, it will simplify the computatior]s
if we express it in powers of ,r -r0; that is,

p(:r) : co * cr (r r0)+c2(.r ro)2+...+c,(r -r0)"
We will leave i1 as an exercisc for you to imitate the computations used in thc case where

to : 0 to show thal

c6 : l(-16). c, : /'(-re). ,r ' f"Qn) f"'(xi f0')('to)- r' t3- 3r ' "- nl
Substituting these values in (9) we obtain a polynomial callecl the r/lt Tuylor* polyuoniol
ahoutx:xoJbt f.

ll.-q..{ D. I l\lllo\ lt ./ can be diferentiated ir rime. al .\1. then \ e dehne the ll/lr
Taylor polynomial for.f about x = xx to be

p.r^t- ftror l./ rrJr) r,.)- / ''0',r \.,,'

, + {f u -,n), * * /('l(ro),, ro),, (lo)

REN,IAItK. ObseNe that the Maclaurin polynomials are special cases of the Taylor polyno-
nials; that is, the /1th-order Maclaurin polynomial is the ,?tlt-order Taylor polynomial about
r = 0. Obselve also that pl(-r) is tl]e local linear approximation of / at,r - -r0 arrd p2(r)
is the local quadratic approximation of f at I - -re.

Example 3

Find the filst four Taylor polynomials for ln,r about r : 2.

Solrttiott, Let /(-{) : ln;r. Thus,

"f(r) =lnr 1(.2) :I\2
.f'(.x) l/x f'(2) - t/2
f"(x) : -rlxz f"(2) - 1/4

./--l 1t/ !'/-- ,-r-''1

*riRooKr.\)LoR(1685-1731).Englishmathematician.Taylor$,asbomofwell-to,.:loparenls.Musicianslndrfiists

were entertajncd lrcqucrltl), in lhc Taylor home, which undoubiedl), had u lastinS influence on ),oung Brook. lD

later years. Trylor publishcd a dclinitj\,e work on the mathernatical thcory oI persPective and obrained tnrjor
mathenalical results .rbout the vibrations of strings. Thcftr also exisrs an unpublishcd work. O, Muri.*. thar $as
intended to be part of a joinl paper with Isaac Nc$1on. Tdllor's life was scarred !vith unhapprness, illness, and
lragedy. Because his filst wife rvrs not rich cnough to suit his lalber, rhe two men argucd bilterly and parted $rys.
Subscquently. his wiie died ill childbifih. Then, after he rcnraricd. his second wife also died in childbirth. lhough
his daughter sLrrlived. Taylor's nost producrive period $as fro lTl,l to 1719. during which rime he wrolc on a

wide range ofsubjects magnetisn], capillary .rction. themlometels, perspccrivc, and calcuius. ln his final years.
Taylor devotcd bis writing cflorts lo religior and philosophy. According lo TtLylor the results thai bcar his name
wcrc lnotivalcd b), coilcchousc conversations about works of Newton on pl,Inetary nrotion and works of Haltey
("Halley s comet') on roots ofpolynomials.

Taylor's writing style was so telse and hard 1o undcrsond ihat he rever rcceived credit for many of his

(e)



l ilure 5. i

652 lnfinlte Series

r'=lnto

SIGMA NOTATION FOR TAYLOR
AND MACLAURIN POLYNOMIALS

Substituting in (10) with -f0 :2 yields

po(r) - .l(2) : Jn 2

p\(r): f(2) + l'(2)(.x - 2) - ln2+ 1(-r 2)

11Q)= JQ)+ /'(2)(.t 21 l lil)1., -2rr-ln2+lt-L ,2) *(.i -2)l2! - r''

/,{rr /{2, , / r:,,\ 2, /^'.2',.r 
' '- !l'' ' , '

2! t!

- tn2 + j(r - 2) - t(_'- u )r + i(.r 2)r

The graph of ln-i (in blue) and its llrs1 lbur Taylor polynornitls about r = 2 zue shown in
Figure 11.5.4. As expected, these polynomials prodlrce their best rpproximations ol ln.r
near 2.

Flequcntly, wc will want 10 express Fomrula (10) in sigma nolation. To Llo this. we Lrse the
notation ./(i)(16) b denole lhe,(th derivative of I ilt r - r0, aDd \\,e nake the convertion
that l(0)(-r0) derotes /(.r0). This enables Lrs to write

f ' 

","",\ 
- \,,, - ltt t- l' \, '{\ - \,,r

j 
/ 'r rr r /' 't.\,,1

l: 
,' r.,r I * ,,1 

,.t 'l ,

ln particular, we can write the rth order Maclaurin polynomial fbr l(-r) as

i"lo' =rr, , u,' ',,n', 
",1u"

-r:l 
K !

(12)

)- |.'.'"',' -.,0r - /(.\0) - /(.',)r, -r,,r + lllr' - ,nr

=,k:" . r'r-',tn',, ,0,, ,r.rr

lhe Taylor series for.f about r = xx.ln the special case where -ro - 0 this series becomes

; 
t'''ror,,- 

1io', - 1101'' 
/rot //ror

- 
K: 2: A: 'r

ir which case we call it the Msclqurin series for f.

TAYLOR AND MACLAURIN SERIES
For a lixed value of ,r neaL -r0, one would expect the approximation of .l(r) by its Taylor
polynomial 7r,,(-r) ilboul .r -.r0 lo inrptLrvc rs rr incrcu.es. rinee increlsing n has the effect
of matching higher rncl higher derivativcs of .l(-r) with those of p,, (.r) at.r : -ro. Indeed, it
seerns plausible that one might be able to rchieve any clesirecL clegtee of accurrcl lL a point

-l by choosing r sufficiently large: that is, the vllllres of p,, (.\ ) night actually converge tcr

l(-r) as n + +z Should this happen. we would have

rl.'r - linr f' '''(.' t,,, f' ""',., r,,l'n i: ;a^:
Later we will study conditiolls under which the series on the right ilitually converges

to /(,r). For the remaindcr of this section, wc will focus ou the computational aspects of
finding these series. Wc make tlre l'ollowing definition.

, 11.5.4 DEFINlt'toN. If I has clerivatives of all orders at .\1, ther we cail the series

( l4)

REN,]ARK. Because the surnmatior] index in (13) starts at fr : 0. it is convenient to call
the initial terD in this scrics thc zcroth tcrn. Thus, a Taylor scrics has a zcroth parlial sun.
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a first partial sum, a second partial sum, and so forth. With this convention the rxth partial
sum of a Taylor series is the nth Taylor polynomial and the zth partial sum of a Maclaudn
series is the l?th Maclaurin polynomial lsee (l l) and (12)].

Example 4
Find the Maclaurin series for

(a) e' (b) sin.r (c) cos-r (O -LI --r
Solution (a). In Example 2 we found the nth Maclaurin polynomial for the function er to
be

Ax{ x2 x"
LA=t rr+r+...+ ,

Thus, the Maclaurin series for er is

-1- xl x2 x3 xk
L^:r tx+r+ H+" +k! +"'
t=o ^'

Solution (b). In the Maclaurin polynomials for sin.r, only the odd powers of r appear

explicitly. To see this, let /(.r) : sinx;thus,

"f(x) : sinx /(0) : 0

/'(.r) = cosx ,f'(0) = I

f"(x) : sin.r ,f"(0) :0
f"'(x): -cosx f"'(0): -l

Since /(a)(x) : sin r : /(-r), the pattem 0, l, 0, - I will repeat as we evaluate successive

dedvatives at 0. Therefore, the successive Maclaurin polynomials for sinr are

Po(r) :0
Pr(x):0*.r
Pz(x):0+.r+0

x3
P3(-r):0+x+0- -J:

JJ
pa(.r) =0+x *0- - *0

J:

x" x-ps(x)=0+x+0- - +0+ -3t 5:
"- x-p6Q)=0Ix+0-;+0+;+0
13 x5 x1

p7(x) = 0+x *0- - *0* - +0- -3t 51 7l

:

Because of the zero terms, each even-order Maclaurin polynomial [after p6(-r)] is the same
as the preceding odd-order Maclaurin polynomial; that is,

-3 -5 . -2liTl" :-l+...-(-ltkj _ rt=0.t.2....)p2k+ttx)- pl|-ztx)=x -Ta SI it (Zk+t)l

Thus, the Maclaurin series for sinx is
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. 
^2' 

I t., ,\5 .r , xtt.l) (_l)' -x I ...rr_t)'_T...
fa i2l T l): 3: 5: 7t r2k - tt'.

The graphs of sinr, pr(r), h(x), p56), and, p7(r) are shown in Figure 11.5.5.

Sohttion (c\. In the Maclaurin polynomials for cosr, only the even powers of x appear

explicitly; the computations are similar to those in part (b). The reader should be able to
show that

po(r) : pr(x) : 1

t2p.(r):p1(r)=1--

;; 14pa(r): p5(r) = I -*,.lt 4!

x2 x4 -16
po(t,) -p(.,\-l 2t 1'. 6l

In general, the Maciaurin polynomials for cosr are

t) to , t)t
pr,(.r) - pna (.r)- I ^, . - ..-f l)' 

-- 
(k =0. 1.2....)2'. 4t (2r ) !

from which it follows that the Maclaurin series for cos.r is

-- ,r I x) t4 vF v)L
\ {-t){--t-l 1i - - - ....1- 1- 11'-! -p ...
- t2(rl 2'. 4'. 6l (2t)l

The graphs of cos -r , pnQ), p2(x), pa(.x), and p6(r) are shown in Figure 1 1.5.6.

Solution (d). Let .f (x)
r : 0 are as follows:

1

f (x)
l-{

ltt,\ I

r'^, -(l r)2
2f"t.tt = 

-

(l n)'
32

J \jt 
(1 -rr
z1 .1. )

!\4)t-\
' (I r)l

:

.kl
(l - 'r )t+ t

:

= 1/(l x). Thus, the values of / and its lirst fr derivatives a1

"f(0) : 1 :0!

l'(0) :1=1!

ttttqt - ) -)l

f-(0) =31

.f 
t1) Q) = 4l

:

/(t)(0) : ,r!

:

Figure 11.5.5 Fisure 11.5.6
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Substituting l{()(0) : ll in Fomula (14) yields the Maclaurin ser.ies

._,
L, -t -L,-L\-l rr

Thus, the Maclaurin series for I /( Lr) happens to be the geometric series with initial telm
I and ratio r.

Example 5

Find the Taylor series about r : 1 lor 1/-r.

Sttlutittrt. Let /(r) - 1/,{. The computatjons are similar lo those in part G1) ofExample
4. We leave it for you to show that

"/1r) - r. f'(1): t, f"(1) -2t. f"'(t) - 3t.

./'t'(t) :41, ..., -F'*'(1) : ( l)tk!

Thus,srLbstituting./(ir(1): ( l)(&!intoFormula(13)withro:lyieldstheTaylorseries

it rl*t' I)( = 1 - (,r - r) * (x r)2 (" - l)r +...
(:0

I]OR ttlt-ltLADEIi. CAS programs have commands for generating Taylor polynomials of
any specilied degree. If you have a CAS, read the documentation to deteruine how this is
done, and then use the CAS to conllmr the cornputations in the exan1pLes in this section.

EXERctsE SET 1l.5 E Graphire Cacrtaior E CAS

1.

82.

In each part, ind the local quadratic approximation of .l al

-r : ,r0, and use that approximation to find the local linear
approximation of I at,ro.
(a) l(r) : e '; -ro :0
(b) /(.r) : cos-r; .ro - 0
(c) ./(r) : sinx x1t:171)
(d) 

"f(r) 
: ,/r; "o: I

In each part, use a CAS 10 find the local quadratic approx-
imation of / at r : r0, and use that approximalioD to lind
the locai linear approximation of / at ,rr - r0.
(a) /(-r) - e''n'; rc1, :!
(b) ./(r) : .,/x; ;ru : 9
(c) l(r) : sec-rr; r11 :2
(d) .t(ir) : sin-r.r; .re :0
(a) Find the local quadratic approximation of./r at 16 : I .

(b) Use the result obtained in paft (a) to approximate Jl.1,
and compale youl approximation to that produced di-
rectly by your calculating utility. lsee Example 4 of
Seclion 3.6.1

(a) Find the local quadratic approximation of cosr at

(b) Use the result obtained in part (a) to approxirnate cos 2',
and compale the approximation to that produced di
rectly by your calculating utility.

Use an appropriate local quadratic approximationto approx
imate tan 61", and compare the resuit to that produced di-
rectly by your calculating utility.

6, Use an appropiate local quadratic approximation to approx-
imate J36.03, and compare the resulr to that produced di-
rectly by your calculating utjlity.

In Exercises 7-16, nnd the Maclaurin polynomials of orders
n:0, 1,2,3, and 4, and then find the Maclau n series for
lhe lunction in sigma notatiorl.

7. , 8. , 9. cos,r r

10. sinzjr 11. h(l *r) 12. I

I +.f
13. cosh-r 14, sinh,y 15. xsin,r
16. rc'
17. (a) Find the Maclaurin series for the polyiomial

/{r, I 2r-r .r'.
(b) Find the Maclaurin series for the polynomial

/(r) : co +crr +r-2r2 +. . +c,,.t".
p 18, For each of the Exercjses 7 16 that you worked on, use a

CAS to check the Maclaurin polynoirial of order n - .1.

ln Ererc ses 'q 20. nnd lhe Tr)lor polynomral. ol orderr
n - 0, 1,2,3, and 4 about ir - -r0, and then ind the Taylor
se es for the function in sigma notation.

19. e'; -rq1 : I

1

21. -: ,ro: -l

e'; xn -112
i

,r+2; ro:3
20.

22.
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23. sin z.r; 16 -
I
t 24. cosr; .rj -

25. lnr; ;rn: | 26. lnx; ro : e

27. (a) Find the Taylor series about,r : I for the polynomial

fr,rr - l-2{ \ 'r u l1'lrr - l,t .,O.
(b) Find the Taylor series about,r- : ,r0 for the polynomial

./(-r): ct, +cr(-r -ro)+.2(r -ro)r+ +.,,(r -r0)"

E 28. For each of the Exercises 19 26 that you worked on, use a

CAS to check the Taylor polynomial of order n : 4.

In Exercises 29-32, find the first foLLr distinct Taylor poly
nomials about -r : ,y0, and use a graphing utility to graph

the given funclioD and the Taylor poiynomials on the same

scteer'1.

Show that the Taylor series for sinh r about :{ : ln,1 is

.- 16 - r-llr) (r - ln 4l'a 8rl

(a) The accompanying ligure shows a sector ofradius,- and

central angle 2a. Assuming that the angle a is small,
use the local quadratic approximation of cos (-l al d : 0
to show that,r ,.., ra2/2.

(b) Assuming that the Eafih is a sphere ot' radius 4000 mi.
use the result in part (a) to approximate the maximum
amount by which a 100-mi arc along the equator wjll
diverge liom its chord.

Jf

, 35.

E
E

29. f(x) - e 2'; re:6 B 30. /(r) : sinr.; r0 : n/2

31. /(,t) - cos.r; .!0 :]t B 32. ]n(-t * 1); ro :0
33. Which of the functions graphed in the lbllowing figule is

most likely to have p(,r) : 1 - r f 2r2 as its second older
Vc.lau'in pollnomirll Erplain )nur reasonrnp

III

Suppose that the values of a function / and its f,rst three

derivatives ati: I are

f (r):2. 
"r11) 

: 3, ./"(r) :0. .f "',(.\) - 6

Find as mary Taylor polynomials for / as you can about

E 37. Let 7r1(r) and p2(x) be the local linear and local quadratic
approximalions of .f (.r) : e'i"' at r : 0.
(a) Use a graphing utility to generate the graphs of /(i),

/rt(r). and /r2(r) on the same screen for -1 5 -r 5 l.
(b) Construct a iable of values of /(,r), p1(r), and pr(x)

fbr r : -1.00, 0.75, 0.50, 0.25, 0, 0.25, 0.50,
0.75, 1.00. Round the values to three decimal places.

(c) Generate the graph of /('r)-pl(,r)l,andusethegraph
to deteimine an intetval on which p1(r) approximates

/(x) with an eror oI at most +0.01. [S&.qgcs/lor] Re
view the discussion relating to Figule 3.6.9.1

(d) Generate the graph of /(.v)-pr(jr),andusethegraph
lo delenniDe an inteNal on which /r2(,r) approximates

l(-r) with an error of at most +0.01.

, RATIO, AND ROOT TESTS

31.

THE COMPARISON TEST

11.6 THE C$[MpARtSSru

In this section u'e t'ill dcvelop sonte nlore basic tont,ergence tests for series with non-
negati\:e terms- Later. v'e will use some ol tllese tests to studl the cont'ergence of
Tavlor serie s.

We will begin with a test that is useful in its own right and is also the building block for
other impofiant convergence tests. The underlying idea of this test is to use the known
convergence or divergence of a seies to deduce the convergence or divergence of another
series.

i

11.6.f fHEOtrLtNl (The compansonTest). Letlf raTandli:rbpbe serieswirhnon- I

ucqolire ltrnl' attd 'ttp1,"'c that

at 1 bt, (tz a bt, a: I b3, ..., ap I b1,

(.a) Ifthe"biggerseties"tbkcomerges,the the"smallerseries"tqka[soconve]ges.

: (.b) Il the "snaller series" tak diveryes, lhen the "bigger series" \bs ulso diverges.
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11.6 The Comparison, Rat o, and Root Tests 657

We have left the proof of this theorem for the exercises: however, it is easy to visualize
why the theorem is true by interpretilg the terms jn the series as areas of rectailgles (Fig-

ure 1 i.6.1). The comparison test states that if the total area I bk is llnile, then the total area

I ar must also be fllite; and if the tota] a|ea ! a1 is inflnite, ther the total area I l?r must

also be iniinite.

tiliNl,\llK. As one would expect. it is not essential in Theorem 11.6.1 that the condition
a1 5 D1 hold for all,t, as stated; the conclusions ofthe theorem renain true ifthis condition
is eventually true.

There are two steps required for using the comparison test to determine whether a sedes

! ri1 with positive relrns conver3es:

. Guess at whether the series ! ri1 convelges or diverges.

. Find a series that proves the guess to be correct. That is, if the guess is divergence, we

must find a clivergent series whose terms are "smaller" than the corresponding terms of

I a1, and if the guess is convergence, we must lind a convergent serigs whose tenns

are "bigger" than the conesponding terms of I u1.

To help with the guessing process in the iirst step, we havc fbrmulated two principles

that sometimes srg.ge-lt whether a series is likely to cooverge or diverge. We have called

these "informal principles" because they are not il.Itended as formal theorems. ln facl, we

will not guaraltee that they ahlal's wotk. However, they wotk often enough to be useful.

I 11.6.2 INFoR\4ALPIilNalPI.F-. Constdnt lerns itt the denominator of Llk (an usLtdlb)
I be deleted without affecting the cotret'gence or divergenca ofthe series.

11.6.-l l\t.oRNtAl- pltl\clPl I:. Ifapoll:nomial in k oppears as a JA.tt it1 the numer
qto-or denamiftqtor of up, all but lhe lea.Litlg tenil iti the Polinomial c:an usually be

discarded \\,ithaut qftecting the Lonrergence or divergeru:e ofthe series.

Example I
Use the compaison test to deteunine whether the following series converge or diverge.

For each rectangle, /)r is the entire
area and rr s the area of the b ue

' pod on.

Fieurc 1l.6.l

(.r) r -.
a=t v( j

G) trF;
Solutittrt (u). According to Principle 11.6.2, we should be able to clrop the constant in

the denominator without affecting the convergence or divergence. Thus, tbe given series is

likely to behave like

)-_rtr

which is a divergent p series (p : j). fnus, we will guess that the given series diverges

and try to prove this by linding a divergent series that is "smaller" than the giveo series.

However, series (1) does the trick since

tt
Jk-+ Jk

Thus, we have proued that the given series diverges.

Solutiott (h). According to Principle I 1 .6.3, we should be able to discard allbut the leading

term in the polynomial without allecting the convergence or divergence. Thus, the given
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THE LIMIT COMPARISON TEST

se es is likely to behave likc

.:- I I -j- I
) 

-- 
) 

- 
t)tz- 1I: 1/J !.:

l=l -' - t:t '

which converges siuce it is a constant limcs a convergent l2-series (p : 2). Thus, we will
guess thal the given serics coovelges and try to pt'ove this by iinding a convcrgcnr sedes
that is "bigger" than lhe given series. However, seLies (2) does the tl.ick since

1l
- tor'( = 1.1....

2k: + k 2k:
Thus,wehaveprtlvedthatthegivenseriesconverges.<

In the last example. Principles I1.6.2 and I1.6.3 provided the gucss about convcrgence or
divergence as well as the series nccded to apply the comparison lcst. Unfonunately, ir is
not always so straightforward lo lind the series requircd for comparisorr. so we will now
consider an altemative to thc corparison test that is usually easier to appl),. The proof is
given in Appendix C.

11.6.-l Tlllr:olit Nt(TheLit itcotnpafivnTes). Letl al and | \ hc seties u,ith positit'e
terns atld sLlppose tllqt

o: lim a' t-+- bt

ll p is finite and p > 0. thet thc series botlt trnt erge or bt)th di\'?rgc.

The cases where p - 0 or p = *:c are discussed in the exerciscs (Exercise 54).

Example 2

Use the limit comparjson tcsl to deten'nine wltether the following se[ies converge ol diverge.

(a) t3 ''tk I

.j- Irb) ) 

-

+ 3r1 -2Ar +4

S oluti ott \al. As in Exanrple I , Principle I I .6.2 suggests drat the series is likely to behave
Iike the divergent ,7.r-scries ( l). To prove that the given series diverges. we will apply the
limit comparison test with

ltrrr: 

- 

and /4 = -=JK ] J(
We obtain

,.i:

o - lim 'r{ = tiu., -JL = lirn -]- - rL' ' --Jk-t /. t t_

\/k
Since p is linite and positive, it fbllows from Theorem I L6.4 that the given series diverges,
which aglees with the conclusion reached in Example I using tlte comparison tesf.

Solution lh). As in Exanrple I, Principle I 1.6.3 suggesrs rhat the series is likcly to behave
like lhe convergent series (2), To provc that the given series converges. wc will apply the
limit comparison test with

1lot=- and r,=-- ltr+i - lAr



we obtain

Since p is finite and posjtive. it follows from Theorem 1 1.6.4 that the given series converges.
which agrees with the conclusion reached in Example I using the comparison test.

Solutiort (c), From Principle 1 1.6.3, the series is likely to behave like
- r /-lt+ -t- t.rr12 Il 1r L4t:t - l=t '

which converges since it is a constant times a convergent p-series. Thus, the given series is

ljkely to converge. To prove this, we will apply the limit comparison test to series (3) and

the given series. We obtain

11.6 The Comparison, Ratio, and Root Tests 659

2k2 2_ ri- ri'. _ It_+'. lK.+k ,_*. t_!-k

THE RATIO TEST

Since p is linite and nonzero, it follows from Theorem 11.6.4 that the given seies converges,

since (3) converges.

The comparison test and the linit cornparison test hinge on first making a guess about
convergence and then finding an appropriate series 1br cornparison, botl.r of which can be

clifficult tasks in cases where Principles I1.6.2 and 11.6.3 cannot be applied. ln such cases

the next test can often be used, since it works exclusively with the tgrms of the given

series it requires neither an initial guess about convergenoe nor the discovery of a series

for compa son. Its proof is given in Appendix G.

3i3 2k2 + 4

k1 _ k\2P- llnl 
- 

. : llm

^-+- 
J A-+-
k,

11.6.5 THEoRENI (rhe Ratiorest\.

that
.. u k+l,: lrm' k+ +' LIL

3k7 -2k6 +4k4
3k1 3k3 + 6

L, t \ u, bt a :, ri c t u i r h p.t.ri t i rc t c rm s a nJ t u pp,'s,

l

(d)

(b)

(c)

IJ p < 1. the series converges.

If p > 1 or p = +x', the set ies diverges.

If p : 1, the series may cou,erge or diverge. so thqt a othet' test must be tt ied.

Example 3

Use the ratio test to detemrine whether the following series converge or diverge.

,0, i1/2tl
t:t '

c) i+ r.r \-i
l:l "'

,,r, i(2t'! tet \- '
/J )L l

Solutiott ((). The series converges, since

. uL | . l/1t r lll .. l:
,- lrm 

-_ 

ltm _ ltmu^ , t,k,. , .11 I t)i

\olttti,tn t bt. The selies conrerges. since

1: Iim =0k-+-k+l

urLi k+l 2k
l, - lim --::---: - lim' t-+- ut t-+. 2kit k

1,<1
2

1

lim
2 t,- +-

ft+1
k
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Solution (c). The series diverges, since

.. uLtl rk + ll' l.l rr - lr/ r I r',= lrm __::_:._ tim !..,, _.liT _,. _. jim ll ;l _" I' t o|t\ t- rk|lrl k, r.t- i. ,1:.\' 
^,,

Scc Theoren 7.9.2(r)

Solution (d), In the preceding parts, the index of summation stafied at l. Although we
could rewrite this series to rnake the index stafi at 1, it is not necessary to do so, since the
requirements for the ratio test need only hold eventually. The series diverges, since

a_ tim 
u, l_ tim t2r{ Flrll . 4'_ _ lim /,21-]_il . t,l' t u, t, . .. 4t-t t2kt,. r_. \ r2l rl a/

-1 t,m t:* i2lt2( F t) - +.
4 a- +.

Solution (e). The ratio test is of no help since

p= rim l1!_-i rim | 
-.] 

I-,,,n 4 l=,
* tt k , .2(,( ll) | I t--.)|,-l

However, the integral test proves that the series diverges since

THE ROOT TEST

Both the comparisol test and the ]imit compadson test would also have worked here
(verify).

In cases wherc it is difficult or inconvenient to llnd the limit required for the ratio test, the
next test is sometimes useful. Since its proof is similar to the proof of the ratio test, we will
omit it.

Example 4

Use the root test to detemine whether the following series converge or diverge.

o,E(ffi). rb) ) _
= 

tln\k + I tlk

Solution (a), The 'eries direrges. since

,. 4i -5p= lim (utt' - lim - =2 - l'.t 2k-l

Solution (b). The serie. converge\. (ince

,to- lim tr.r,,t''- lim ------l -0-' r (. . jnti -lt

'- # - !^ L r,'' , -,Il rrn'2' - ]'- ,"
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ExERcrsE sEr 11.6 E cas

comparison tes1.

r. rar \- -LftsI. k

2.(")i1ll
f'. ^' 

A

corvcr-gcs.

,.,, i-l-3 -r'+'s

,r',, f j-
l=^r

rL,r f -i ,

= 
A'+ t,

,h, f 
-t'n_^

?, t!

3, ln each part, use the conparison test lo sho$ that the series

In Exercises I and 2, miikc a gucss aboui the convergence

ol-divcr'gc ce olthe series, and confirm your suess Llsing the

14. \- tllu' 
2s. tr'r, /'

3.^ ? 26)
:1 ('l+r

u.L n,, 28.L ',^,
tt

2q. t ' .ln. t t l"
:-i \r,i ,' -i l

Jl. t ' Jt 
-,2. t'l :"''z- {( 't I t- I

.t.t.t 14.\_! :s.tl"r
" rl*V( ^ r" " t'

-16. tl J7. t '/' 1': i8. t/ { 
\

- :; llt:/ !1 't' t t

.te. t = .0. t {'nl 41. t ''n t

I 'T. ' t

12. t: I 
4.r. f ''':' 14. t l:'2

z_ t'. 1\ L_, r)t ,'. f-,:A t 21l

In Exercises ,15 and 46, lind the general term of the series,

cnd u.e tlre _rt.o tell lo Lho\\ llrJl lhe ,eric. junv(r'Jc\.

t.2 r.2.1 1.2.].4
45. r, r.l I I5 1.1.5 7

1.3 1.3.5 1.3.5.7
16. It , r"t: )! |

ln Exercises ,17 and 48. use a CAS to invcstigatc the conver
gence of the series.

4. In each palt. use the colnparison test to sho\\' tltat the series

cliverges.

,", i4 (h)
ti t'

\-"
t=l 'r l

In Exercises 5 I 0, use the lirnit compal ison lest to dctcmr ine

u/hether the serics converges.

r-11 41!
ti 8kt +k 8

\-'
(=i 3t tt

n.i '
f=-, 

ql' + a

-.4 r(fr + r)
7. t{)_

f=i (L + t)(k + ))\k +iL+l)(k*l)(li5)

s.t I ro.f I

' 
3 . st- 'l L1 t:A trl

In Exer-cises ll 16, use lhe latio test lo detcnnine whelher
lhe ser-ies convergcs. If lhe lesl is inconclusive. then say so.

r. Ir rr.I: r:. I:f

'.' E,(;)' " ifi ', E-:
Tr Exercises 17-20- use fie root tesi to deler'nirle whelher
the selies converrles. Il lhe test is incollclusive, then say so.

17 \-l-'"--lt-\)L tl

rq.tl
i=t _

In Exerciscs 2l -,1,1. use any methoci to determi e whethel thc

scries converges.

s- ln/ s tr'\/ l,,l
)^cJ8.;r
:-;' :- i I

(a) Make a coniecture about the convergeDce of the series

li , sin(z/[) by considcling the local lineal approx-

ination of sin-t near'-t : 0.

(b) Try to confirm your conjccture using tlre limit compar-

ison test.

(a) Makc a conjecture about the convergence of the ser-ies

-l 
r lr'1\ ll cos I ll

=L 
\r /l

by considering tlle local quadratic approximation of
cos -t ncar,r : 0,

(b) Try to connrm your conjecture using lhe lirnit compar-

ison test.

Show thal ln { < ./.r if ,t > 0, and use this rcsult to iDves

tigate the conver-gence of

E 17.

19.

, r, ,t
18. tl l

ti\100i
20. i(l -" ^)'

' ,]rr \- ' rr \-!--' liu+t -- 25'
It ,", f Y

?:I L:
ir
:: lln I )l

51.

(b)
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For which positive values ofd does the series Itr (.yi/I")
convelgel

Use Theorem 1 1.4.6 to prove the comparison test (Theorem

I1.6.1).

Let I a1 and I D1 be series with positive terms. Prove:

(a) lt lrm {d, /b,t - O nd f b, converge'. rhen l.r-l+'
converges.

ll, ltm ra, b4t - , and I b diverge.. then I./,
diverges.

11.7 ALTERNATING SERIES; CONDITIONAL CONVERGENCE

Up to now we have f<tcused erclusively on series with noarcgdtbe terms. In this sec
tion we y,ill r/lst Lss serles thqt contoin both positive ancl negat[ve terms.

Pt?o/. We will consider only altemating series ofform (1). The idea ofthe proof is to show
that ifconditions (.r) and (D) hotd, then the sequences ofeven-numbered and odd numbered
partial sums converge to a common limit S. It will then follow from Theorem 11.1.,1 that
the entirc sequence of partial sums converges to S.

Figure I 1.7.I shows how successive partial sums satisfying condirions (a) and (b) appear
when plotted on a ho zontal axis. The even-numbered partial sums

J2r t4,,t6,.t8, . . . , ,12r, ...

form an increasing sequence bounded above by a1, and the odd-numbered parlial sums

Jl, J3, Js,..., S2n 1,...
form a decreasing sequence bounded below by 0. Thus, by Theorems 11.2.3 atd 11.2.4.
the even-numbered partial sums convelge to some limit,Sr and the odd,numbered partial
sums converge to some limit Sp. To complete the proof we must show that Sa : So, But
the (2n )-th term in the series is -d2n, so that s2r - .r2n I : 42??, which can be written as

S2n t-s2n+a2t1

(b)
53.

5,1.

ALTERNATING SERIES
Series whose terms alternate between positive and neEative, called &ltern(tting series, arc
of special importance. Some examples are

J- ,.,r r r I I) (-r)*'.=r --._-...
-k2145
J- .r l l i l)(-l)'- tt
f-k2J,1 5

In general, an alternating series has one of the following two foms:

,.l+t
Ll-l)' ,t, a o'|.t\ ct" I
r;,

,.t
121 tt a - at+a -dt+(1a

where the dk's are assumed to be positive in both cases.

The following theorem is the key result on convergence of altemating series.

(:2)

(l)

0 ,, J,l

Figure I 1.7.I

11.7.1 TllL.oREM (Altematins senes Tesr). An alternating r",'i", o7 "ii* J-* 1t1 o',
larn O\ L nnt, recs i! rhc fullowin e two t o dirionr drc:.lirlcd'.
t1t O -q- A.t Ot

', (b) lirr al : Q
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Howevcl.2l + +:c and 2n - | ---t +:c as /t J +j.. so tllrt
So= lim.r:u r= lim (st, ]-a-l =Sr.*0:Sr'-+' ,lL

which completes the prool'. I

l{1,\l\ltli. As might bo cxpcctcd, it is not essantiol fin.condition (a) in the altemating
series test to hold 1br all telms; an alternating series will converge if condition (r) is true
and condition (a) holds eventually.

Example I
Usc the altemating series test to show that the following series converge.

Solution lu), The two conditions in the alternating series test ale satisfied since

ltl
[=. > =(lr-r and liln rrl = lilll - =0R k I I ( ', [--.k

Sttlttlirtrt lltl. The two conditions in the altemating series test are satisned since

{r^+r k + 4 t(t+r) E+4k k2 +4k

t"r ir-rr'*']EA

so

and

l+-llim rr, : limr-+, r--,t((+l)

tb) tt_ l r+r ^ - -'

l- [(i + l)

l3
: lim ^ 

(- 
=0I

l*.
,t

ak (k+1)(k+2) t+3 kr+5t+6 (ir+4k)+(t+6) <l

APPROXIMATING SUMS OF
ALTERNATING SERIES

Itl:NI\ltK. The series in pam (a) ol the last examp)c is called the alternqtit?g harmonic
serie.!. Observe that this selies converges, wheleas the lramonic series diverges.

l{l:\l\llK. If an altemating scrics violates condition (/2) of the alternating sclics tcst. then
thc scries must diverge by the divergence test (Theorenl ll.4.l). However. ifcondition (D)

is satisfied. but conditiot (a) is not. the series can either converge or diverge.'

The following theorem is concerned with the enor that rcsults when the sutr ofan altemating
series is approximated by a paltial sum.

11.7.2 IHEoRE\1. If utt ulteurutittg series satisJt<,s tha ht'potheses (t tltc dlte utitlg
serics test. artd ( S is tlrc sunt of tlrc series. tlru'.
(a) S lies betuecn unt'turt su<cessite pa iql su r:, IhdI is. eilher

J,r < .S < J,,+t 0/' J,,-l < .t <.r,, (3)

clepend[ng on u,hich lrurtial sunt is larger.

(b) II S is approinwted br:;h. then the dbsalut( ('n'or S s,,l satis'flcs

lS s,,l < a,,11 (4)

Morcoter. the sigtl oJ tlrc effot S s,, is tltc ienr( es tfutt of the t'ot'flit'ient oJ u,,;1.

*'lhc 
interested reader *itl lind x)mc nicc exarnples in rn r icle by R. L.rriviere. On Convcrgence Tesr for

Altennrting Scries.' M./thenktti( ! L4 drd:in!. Vol. 29. 1956, p. itit.
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Figure 11.7.2

ProoJ. We will prove the theorem for series of form (1). Referring to Figure 11.7.2 and
keeping in mind our observation in the proof of Theorem I 1.7.1 that the odd-numbered
parlial sums lblm a decreasing sequence converging to S and the even-numbered partial
sums form an increasing sequence converging to S, we see that successive partial sums
oscjllate from one side of S to the other in smailer and smaller steps with the odd-numbered
partial sums being larger than S and the even-numbered partial sums being smaller than S.

Thus, depending on whetheu is even or odd, we have

s,, < S < s,,11 or J,i+t <.S <.h
which proves (3). Moreover, in either case we have

S - ;, < s,11 ,t,, I

But s,,11 s,, : *a,,11 (the sign depending on whether z is even or odd). Thus, it follows
fiom (5) that lS s,, < a,,11, which proves (4). Finally, since the odd-numbered partial
sums are larger than S and the even-numbered partial sums are smaller than S, it follows
that S - s,, has the sane sign as the coefficient of a,,*1 (verify). I
ItLN,tAltK. ln words, inequality (4) states that for a sedes satisfying the hypotheses of the
altemating series test, the magnitude of the enor that results from approximating S by s,, is
less than that of the first term that is ,o1 included in the partial sum.

Example 2
Later in this chapter we will show that the sum of the alternating harmonic series is

rn2-r-1-1- l+...-r rr rl2I1 i.

(a) Accepting this to be so, find an upper bound on the magnitude of the error that results
if ln 2 is approximated by the sum of the lirst eight terms in the series.

(b) Find a partial sum that approximates ln 2 to one decimal-place accuracy (the nearest
tenth).

Solfiion (a). It follows from (4) that

(s)

lln2-ssl < ae- <0.12 (6)

As a check, let us compute s8 exactly. We obtain

llllll1533,,:l------+----
2345b18840

Thus, with the help of a calculator

5llln)-.81 - ln2-^_ . 0.05q
64U

This shows that the enor is well under the estimate provided by upper bound (6).

Solution \b\. For one decimal place accuracy, we must choose'r so that L ln 2 r, 5 0.05.
However, it follows from (4) that

kt2 s,,l < a,a1

so it suffices to choose,? so that a,,+r < 0.05.
One way to nnd r? is to use a calculating utility to obtain numerical values for a1, a2,

a3, ... until you encounter the first value that is less than or equal to 0.05. If you do this,
you will find that it is a,n = 9.65 this tells us that partial sum s1e will provide the desired
accumcy. Another way to find n is to solve the inequality

I
< 0.05n+1

algebraically. We can clo this by taking reciprocals, reversing the sense of the inequality,
and then simplifying to obtain,? I 19. Thus, sle will provide the required accuracy, which
i5 con.istenl with the previou. result.
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With the help of a calculating utility, the value of s1e is approximately sle :: 0.7 and the
value of ln 2 obtained directly is approximately In 2 ,- 0.69, which agrees with s1e when
rounded to one decimal place.

REMARK. As this example illustrates, the altemating harmonic series does not provide
an effrcient way to approximate ln 2, since too much computation is required to achieve
reasonable accuracy. Later, we will develop better ways to approximate logadthms.

The series

l11llil_' 2 22 2\ 24 21 2b'
does not fit in any ofthe categories studied so far-it has mixed signs, but is not altemating.
We will now develop some convergence tests that can be applied to such sedes.

11.7.3 DEFINITIoN. A SeIieS

Lr,:u, Iu2 I ut|'
t:1

is sard to converge absolutel! if the seties of absolute values

L uo :1ut +luz +...* larl *. .

k:l

converges and is sard to diverge absofufely if the series of absolute values diverges,

Example 3

Determine whether the following series aonverge absolutely.

Solution (a), The series of absolute values is the convergent geometdc series

11111lr a' 2'22 2t'2+'2s'
so the given serigs converges.

Solution (b). The series of absolute values is the divergent hamonic sedes

11111+-+-+-+-+...2345
so the given series diverges absolutely.

It is important to distinguish between the notions of convergence and absolute conver-
gence. For example, the series in part (b) of Example 3 converges, shce it is the altemating
harmonic series, yet we demonstated that it does not converge absolutely. However, the
following theorem shows that ifa serles cotyerges absoLuteb), then it conyerges.

11.7.4 THEOREM. If the series

.3-
llu+l- lall*la:l t - url- '

k:1

conl)erges, then so does the series

.1-
\ut=u -u2 uk

k:1

1111lrlrr(a) l-- rbr I -----+--...
221212252145
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tll
(a) I a- 2r+ z.

Proo.f, Ov proof is based on a trick. We will write the series l a1 as

.---
\ur - \l(ut i ut ) ut I (:1)

We are assuming that I lap converges, so thatif we can show that t(tr + lr(.l) converges,
then it will follow frorn (7) and Theorem 11.4.3(a) tlat I ar converges. However, rhe value
ofull tr1 iseither0or2lal],dependingonthesignofal.Thus,inallcasesitistruethat

0 
= 

Ltk + lLtkl 
=2lLtkl

But I2 arl converges, since it is a constant times the convergent series | ,lr : hence

L@ r, + lut ) converges by the compadson test. I

Theorem 11.7.4 is important because it provides a way of inferring convergence of a
series with positive and negative terms from the convergence of a series with nonnegative
tems (the series of absolute values). This is impofiant because most of the convergence
tests we have developed apply only to series with nonnegative terms.

Example 4

Show rhat the following series converge.

ltt+* F-zu+
.1- cos k(b) ) -

Sol ion \tt). ObseNe that this is not an alternating series because the signs altemate in
pails after the firct telln. Thus, we have no convergence test that can be applied directly.
HoweveL, we showed in Example 3(a) thal the series coDverges absolutely, so Theorem
11.7.4 implies rhat it converges.

Solutiort \b). With the help of a calculating utility, you will be able to vedfy that the signs

ofthe telms in this series vary iregularly. Thus, we will test for absolute convergence. The
series of absolute values is

$ cos I
2 r,'

However.

cos f,

Ir'
Butlllkz is a convergent p-series (p : 2), so the se es of absolute values con
verges by the comparison test. Thus, the given series converges absolutely and hence

converges.

Although Theorem I 1 .7.4 is a useful tool for series that converge absolutely, it provides no

information about the convergence or divergence of a series that diverges absolutely. For
example, consider the two series

'-i.i-l* +(-r)k+lf +..

1

k2

ll
-l 23

(8)

(e)

CONDITIONAL CONVERGENCE

Both of these series diverge absolutely, since in each case the series of absolute values is
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the divercent harrnonic series

,tr \-, tr''2k , 
1)l

,t-,t -li

Solution \a). Taking the absolute value of the gencral tcrm ll/i we obtain

)tl 2tlr, = I I)^ l:'' {!l kl

Thus,

,- li- //' lim 2 ' .il linr (r I

lr,^ rk 11. )' k I

which implies that lhe seies converges absolutely and therefore converges.

Sofuliott lb). Taking the absolute value ofthe general tetm ut we obtain

I r2l.- lrl r2L-lrl
1a l-lt lr' , r(lJ

Thus,

11 It*r*,+..+r+...

THE RATIO TEST FOR ABSOLUTE
CONVERGENCE

SUMMARY OF CONVERGENCE
TESTS

i"r \-r lr*{
,t-t k I

,. I/l+l
,o: llm - llln
' 1-1' lrrll t +,

I (lft + 1)!: lrmk-+-.3 (2k 1)l

t2(i + r) rlt 3r
jt+ I (2k - t)!

I

1olim,(2t)(2/r+1):+r

However, series (E) converges, since it is the altemating hamronic series, and senes (9)
diverges, since it is a constant tilnes the divergent Iurrmonic set ies. As a natter of terminol-
ogy. a series that converges but divelges absolutely is saicl to conyerg? c ontlitionally (or to
be conditionall! convergent). Thus, (9) is a conditionally convet€enl sencs.

Although one cannot generally infer convergence or divergence of a series liom absolute
diveryence. the following variation of the ratio test provides a way of cieducin-q divergence
fiom absolute divergence in ce ain sitLrations. We omit the pru)f.

11.7,5 l HEol{E\4 ( RatioTestforAbsohtlcConrersenccl. Lerltrlhcastrtcsv,ithuonzero,
terms artd suppose that

,. ltrr+r,: llm' k++i ukl
(a) IJ p . l, then the series lup c:ttnt,erges absolutell antl therefore conrerscs.

(b) U p .. I or iJ p = +'.. rhe the seri(s lu1 clirergcs.

(t) lfp - l, rto tttntlLrsion ubout (onyergetr( ot (lbsolLte convergetl(e catnbe drautt
ft?n this test.

Example 5

Use the ratio test fbr absolute conver8ence to detennine whether the series converges.

which implies that the seies diverges.

We conclude this section with a summary ofconvelgence tesls thal can be used for referelce.



Summary of Convergence Tests

Divergence Test
(r 1.4.r)

ll lrnr rt + 0. then f rr, clrcrees.

Ratio 'l'est

(11.6.5)

Root'fcst
(1r.6.6)

Limit Comp.rrison Test
(r 1.6.4)

Thc scries need not have positive
terms lnd reed noI be allernaling

Integral Test
( 11.,1.4)

Compftison Test
( .6. l)

Alternating Series l'est
(l r.7.1)

Ratio Test for
Absolute Convergence
( r l.7.5)

'lhis rcst only.ppL.s ro seles LhnL

liy Lhi\ rcst whcn l{i) is crsy ft)

SI'A I ENIEN I

Let I r, be a series *,ith positive terms, and leI.l(.\) Lre lhe
funclion thal results when I is replaced by.! in the general

term of the series. Iff is decreasing anclcontinuolls fbr
-r > I, then

)- ,,, iind / li , r .lt
t=l rl

boih convergc or both diverqe.

I-.t li , 
n* 

"na f i ,l, be series with nonncgativc
terns such lhat

tt1{ hy u2! ht..... ar (br....

Il ! b1 converges. th"n f r, 
"nnu".g.r. 

nnd if I n1

divcrgcs. thcn I D1 diverges.

Let I rrl be a scries with positive temts and suppose that

coNIl\ttsN fs

ll ,Lll_,,, = 0, then I rrr rnay or

may not convcrge.

This test onl) applies to series with
nonnegativc tcrms.

Try this lest as a lasl resorLt othcr
tests nrc olien easier 10 apply.

, = un'r l!1' t++- lrt

(a) Series converges ifp < 1-

(b) Series diverges il p > 1 or p =
(c) The test is inconclusive ilp =

Let I r1 be a series with positive ler.rtls sLrch that

o= l,m l/ii' t-+-' '

(a) The series convelges ifp < l.
(b) The selies divelges it p > 1 oI p = +-
(c) The lesl is ircolclusive ifp = L

Try this lesl whcn ri involves
factorials or,(lh powers.

Try this tcst when,lt involves /ith
powels.

Ler I a^ ancl I b^ be series wilh positive tcrms slrch thal This is casicr ro apply lhin lhe

Ler ! rr^ Lre a series rvith nonzero terms such that

,,= tin' !tl1' r-+- l//il
(a) The series coiverges absolulely il p < L
(b) Thc scrics divergcs rbsolutcly ilp > I or p = +-.
(c) 'lhe lest is inconclusive iip = I
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ExERctsE SET 11.7 E Graph ng catcu ator E cAS

In Exercises I and 2 show that the series converges by con-

firming that it salislies the hypotlleses ol'the altemalin! series

In Exercises 3l 3.1. the series satisfies the hypolheses ofthe

test (Theorem I L7.1).

t. \j- ( l)r+r

r:/-=t 2k + |

- 
l- l)'+l

t.1. ) Il.
33k
/ 

',1+l
r a,- \-' " 1i.

1.L)Is tr t)r-r " '

= 
{(l +l)

f"in!
l=l

\-' 
L',

!: ktn t,

rs. \-/ |\'
!:\ tnk t

.j- r l){{ll+ l)tt\- 2 A1+2

29. \E ( l)r*lk I

?i (2k - 1)l

r \-' rrrll-' 1,' ',

A=l

alternating series test. For lhe stated value ofl, find an upper
bolrnd on thc absolute e1aor that result! iftlre sum ofthe series
i. rrnprori at. J h) lh. /,r\ narli:rl .um.

r/.

In Exercises 3 6. determine whether thc altcrnatins scrics

\on\r"1e.. rnd j u.t .l5 1our.rn.ner.

,. ( 
,

.t. f. tr "-- 4. f r tr
- .((Ll - "/rll

s. f{ t)'t'n | 6. fr-rl^}
^rt

Lr Exercises 7-12. use the ratio test for absolule convergence
(Theorem I L7.5) to dctermine whether the series convelges

or divergcs. If d1e test is inconclusive, then say so.

'. .k
8- \-r t rr- I12 Ilt=

lo. f r-lr'I
l=
'. tt

tz. f r trr*r!
1=

?. )-( l)
:i\ 5i

q. )-r lr'-'1?'t
rr. l rr'f

7'
In Exercises l3 30. classily the selies as ilbsoiutely convcr-
gent, conditionirlly convergent. ()1 divergent.

, rl I

rl. f ' " ,:r1r

, l,ll|
.r-r. | =-; ,, : oo

, l,ll
ia. f "' :,r:l

ti(k+l)ln(r+l)
In Exercises 35 311. the series satislies the hypotheses of thc
altcrnatiDg series lesl. Find a value ofi? lbr which the ,th
prutial sum is ensured to approximate tlre sum of the series

1() lhe slaled accuracy.

tr 
lrt+ 

errr)r - rl.{t(trtl
Er

t' ll' ', c'ror < o.ooooLu^ I|

- 
r lrr-l

37. ) _: n\o decinill olxces

, ,.1+
.lS. \- ' . I 

' one c1<t imal place
f:i(r+l)1n([+1)

In Exelcises 39 and ,10, find an upper bound on the absolute
error that resulls if .rtn is used to approxin-iale lhe sum ol lhe
give:r geonetrit series. Compute .!t0 rounded to four deci
rnal placcs ancl corrpare this valLle with the exacl sum of the
ser-ies.

131 248.. 40. L - -+x lb 12 i 9 :1

ln Exercises 4l-44. the series satisfies the hypotheses of the

alterniiting series test. Approxirnate the sum of the series 10

two decimal place acculacy.

lll 111
il l. I 42. l-i: il 7t :t 1'. b:

rlllil-t. 
-t.t ).)- 1.2, l.tr

lltl.ll.
l' i 4 I I ,l I : ,1 : 7' 11.7

,15. The purpose of tllis exercise is to show that the error bound

in paft (D) olTheorerr I 1.7.2 can lle overly conservative in
ceftain case!.

, ,,t I

..t2. \- '-' ' ,, : s

5- I lr/-r
2A"
51- 

cos f r
- 

i-lr/hrl
1R- \

-t-. k

20_\_( lrr+l'
?i k'+ |

'r, \- ti11--'2 k'

21. 

'. 
11l!

!; Jtti + tt

2r. \j. 
(- l)( ' L

?_)Jk+t+Jk

:ri. i i:o'/'
l- l: + I

,r^' E
3tt. lr tt'+r-

= 
/.+l

3e. l
4

21.
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(a) Use a CAS to conirm that

1 ,_l-1__L_
4-' t'5 1

(b) Use the CAS to show that l(z/4) szo < 10-2.
(c) According to the error bound in part (b) of Theorem

11.7.2, what value of n is required to ensurc that
(n/4) .t,, < 10-22

46. Show that the altemating p-series
I I 

' ,,' I , .t )rt l, 4t ' o,

converges absolutely if p > l, converges conditionally if
0 < p : 1, anddiverges if p 1 0.

It can be proved that any sedes that is corstructed from an

absolutely convergent series by rearanging the terms is abso-

lutely convergent and has the same sum as the original series.

Use this fact together with parts (a) and (b) ofTheorem 11.4.3

in Exercises 47 and 48.

It was stated in Exercise 27 of Section 11.4 that

n2 I 1 I

-:l-t--!-+--t,,.o 22'll'4r
Use this to show that

n2 1 I I

8 - t:'52 72

It was stated in Exetcise 27 of Section I 1.4 that

,1 t1l
l!-!-g0- 't+'34 44

Use this to show that

n4 , 1 l,l
% -'- r,l

It cao be proved that the terms of any conditionally con-
\erFenl \elre5 can be rearranged to gire either a diver'Elenr

.erieq or a condilionclll convergent .eries u hoce 5um is an)
given number S. For example, we stated in Ex.unple 2 that

lttll
in2 - l L)1456

Show that we can rearange this series so that its sum is
+ h 2 by rewriting it as

('-; ).(i ;-;) /1 t r\* ll ro n)*
lHirli Add the flrst two terms in each set of parcntheses.]

! 50. (a) Use a graphing utility to graph

4r-1
./(r) = x>l4t2 2x'

(b) Based on your graph, do think that the series

f, t,''' ! l
fr 4kt 2k

converges? Explain your reasoning.

As illustrated in the accompanying figure, a bug, starting
at point A on a 180-cm wire, walks the length of the wire,
stops and walks in the opposite direction for half the length
of the wire, stops again and walks in the opposite dircction
for one third the length of the wire, stops again and walks in
the opposite direction for one-foufih the length of the wire,
and so forth until it stops for the 1000th time.
(a) Give upper and lower bounds on the distance between

the bug and point A when it f,nally stops. [Hirtr As
stated in Example 2, assume that the sum of the alter-
nating harmonic series is ln 2.1

(b) Give upper and lower bounds on the total distance that
the bug has traveled when it f,nally stops. lHrnt: Use
inequality (2) of Section I1.4.1

. 180 cm +
Figure Ex-51

(a) Prove that if !a1 converges absolutely, then laf
converges.

(b) Show that the converse of part (a) is false by giving a

counterexample.

51.

47.

49.

11.8 POWER SERIES

In the last fwo sections v,e focused extlusiteLy on series whose lerms are numbers.
In this section we will consider series whose terms are functions \rith the objective of
dewloping the matherutical tools needed to in)estigate the conyergence of Taylor and
Maclaurin serie.s.

If co, cr, cz, . . . are constants and,r is a variable, then a selies of the folm

\- ", "k1)'*'"
k:0

POWER SERIES lN x

:i o l(lr .2,(l l. I rrxt .. (l)
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is called a power senes in r. Some examples are

\- 'i : r + r r 1l + rl -r...12
t:0

t1 ,rll+n+t+tn .

Radius of convergence R = 0

Converges
Radius of convergence R = +-

D verges Converges D verges

ROR
Radius of convergence R

\-" :
4- k\

RADIUS AND INTERVAL OF

CONVERGENCE

-,x2'.2r')() I t)" _ t--r
!-6 t2kt'. 21 41 6:

More generally, every Maclaurin series

t ':jo'"' - /ror + / rorx , 'r',0"' trio'-',
"t:r, k!

is a power series in -t.

If a numerical value is substituted for x in a power series I c1,,rr, then the resulting series
of numbers may either converge or diverge. This leads to the problem of determining the
set of x-values for which a given power series converges; this ts called fis convergence set.

Observe that every power series in x converges at r = 0, since substituting this value in
(1) produces the series

co*0*0*0* +0+ '

whose sum is c6. In rare cases,r = 0 may be the only point in the convergence set, but more
usually the convergence set is sone llnite or infinite interyal containing,r - 0. This is the
content of the following theorem, whose proof will be omitted.

11.8.1 THEOREM. For any power series itt x, exactly one of the folloutng is truc:
(a) The series corterges only for x - 0.

(b) The series conrer.qes absolutelj (and hence converges) for all real values oJ x.

(c) The series cot^)erges absolutelJ (and hence conyerges) fot' all x irL sone Jinite
open interval (-R, R), and diverges if x < Rorx> R.At either of the points
x - R or x : R, the series may contterge absolutely, com,erge conditionalll, or
diverge, depending on the porticular series.

This theorem states that the convergence set for a power series in.rr is always an interyal
centered at x = 0 (possibly just the point ,r = 0 itself or possibly infinite). For this reason,

the convelgence set of a power series in r is called the inttlval oJ convergence.In the case
where the convergence set is the single point n : 0 we say that the series has radius o.f
convergence 0, in the case where the convergence set is (-co, +.o) we say that the series
has radius of convergence +&, andirrthe case where the convergence set extends between

-R and R we say that the series has radius of convergence R (Figure I I .8. i ).

Diverges D verges

Fjgure I 1.8.1



672 lnfnite Series

;;;"; ;;;;;;;;; 
The usual procedure for finding the inte al of convergence of a power series is to apply

CoNVERGENCE lhe ratio test for absolute convergence (Theorem I 1.7.5). The following example illustrates
how this works.

Example 1

Find the interval of convergence and radius of convergence of the fbllowing power series.
r .-t ', , t.k k

rat \-rt rtrr \- | rc) \-t!rr ,dr \- t-'r t
"," frkl fr z'3t(&+l)

Solution (a). We apply the ratio test for absolute convergence. We have

.. lr,*' I .. lrt*r ID: lim l-i-l-: | : lim l-l = lim lrl - lxl' t.r'la1 | r-+xlx^ | r-.-'
so the sedes converges absolutely if p: lxl < l and diverges it p: lxl > l. The test
is inconclusive if l.rl = 1 (i.e., if .r : I orx : -l), which means that we will have to
investigate convergence at these points separately At these points the series becomes

It,:r+l+1+l+... a=r

ff tlo:1-1+l-l+ . I: r

7:o

both of which diverge; thus, the interval ofconvergence for the given power series is (- I , 1),
and the radius of convergence is R : I .

Solution lbl. Applying the ratio test for absolute convergence, we obtain

1r,,, I I n*+r kll I r Il)_ lim l__:_r_-l: lim l_. l= tim l__]l=o' r . 'l ar I r-+'l(k+ l)! rrl t . r' l* l ll -

Since p < I for all .r, the series converges absolutely for all -r. Thus, the interval of
convergence is (--, *"") and the radius of convergence is R = +.o,

Solutiott lc). If.rr I 0, then the ratio test for absolute convergence yields

.. 1,,.*, -. lt& - ltlr{ rl
n lim l--r--- = lim l----------:--- -|. lrrn 1{-l)rl=+:oI u' t --" I k'.xl | --"

Therefore, the series diverges tbr all nonzero values of .r. Thus, the interval ofconvergence
is the single point -t : 0 and the radius of convergence is R : 0.

Solulion (tl l. Since l(- l )r l : l(- l )r+r l : I, we obtain

' t-r J{(k I l)l,',- ti- l'r*l l: tim I r .-l' r.r,la1 | r--"13t+r(k+2) .{( |

: ri- lq]./!l-l\l-*_l,Lr \*rzll
=El t,n'' /l+(l/l)\- l-rl- 3 r__, \r+rzlrr/ - .r

The ratio test for absolute convergence implies that the se es converges absolutely if lr < 3

and diverges if x > 3. The ratio test fails to provide any information when J:r = 3, so the
casesx:-3andr=3needseparateanalyses.Substitutingr:-3inthegivenseries
yields

$r lr{r-3rt _i(-l)t{-r)*3' _i r

4-^ 3ttk+D -2 .tr(k+ l) -4*+t
which is the divergent harmonic series I + I +1+41 + . Substitutingx:3 in the given
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which is thc conditionally convergelt alternating hannonic scries. Thus. the interval of
cQnveIgenceforthegiverrseriesis(_3.3]andtheradiuSo1.c()nvcrgenceisR-3'<

If-r0 is a constant. and if .{ is rephced by,r r0jn(l),thenthcresultingserieshastlrefbrm

.r-
)'.r(-'.. -.n)r=ql+( (r - -r0) + cr (r - ro)2 + . . *<r(.r -.ro)i * ..

selies yields

ii r-rr':t _iir-rr( _,
!,,lrrt+rt- 2k+t -'

This is called a power series in x - xo. Some examples arc

- 
r.r - l)r {.r - l) {.r l)l t.r - l)'

/- ktl : :l 4

lll
?'t ,4'

POWER SERIES lN x - xo

(.r * 3)l_+... \,= l
.1!

The first of these is ir power selies in .r I and the second is a powcr se: ies in .r + 3. Note
that a power series in .r' is a power series in -r .rj in which .ro = 0. More generally, the
Taylor series

/(i ), .- ,

\- ., ',,,,t,'' _ 
'',,,^,"-, kl

is a power sedes in -r - .t0.

The nrain resuh on convergence ofa power series in r -,r0 can be obtained by substituting
,r ,r1 for.! in Theorem I 1.8.1. This leads to the following theorcnr.

1f.8.2 THEOIIB\I. Rr ct ltouer series lcl(r ro)(. r,.rzrf/r,onc ot ttre Ji lou.ing
statenrcnts is h1te.

(a) The serit's totttergcs otth lor x - xn.

(b) The series t ont'erges ubsolutell' Qutd hence cont'erges) .fltr ul! reul t'ultrcs of s .

(c) The series convergcs ultsolutely (and hente ttutvcrgcs) fit ull x in sonrc.ftrtite open

itltetyal (xo - R,.ro * R) cncl diter.ges iJ.r < -r0 - R.)/ .r > .\o+ R. At either oJ

the points .\ : .ro - R ,i .r = .r0 + R. Ihe set ies nu\'(onr(rgc ubsolutely, t ottverge

<onclitionulh'. or tlitcrge. elepending on tlte partic'ular scrics.

It tbllows from this theorem that the set of values for which r power series in,t - -rn

converges is always an interval centered at r = -r0; \ ,e call tllis lhe interval of convergence
(Figure I1.8.2). In part (.r) of Theorem 11.8.2 the interval of convcrgcnce reduces to the
singlepoint-r:ro.inwhichcasewesaythaltheseriesltitsrcdiusofconvergenceR=0.
in part (b) the interval ofconvergence is irrfiDite (the entirc real line). in which case we say that

Diverges D verges

Convrrg!s

Rad !s oi convergence H = 0 '

Radius of convergence R = +-

Radius of convergence R

Diverges Diverges

tir R

Figure I 1.3-l

Cofvcrgcs
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the seies has radiu s of convergence R = +oo: and in pan (c) the interval extends between
-r0 R and r0 + R, in which case we say that the series has radias o/ convergence R.

Example 2

Find the inteNal of coDvergence and radius of convergence of the series

i- (-r 5)t

?-.' k2

Sohttiott, We apply the ratio test for absolute convergence.

.. ,//^ , lt.. 5,r I l: I,- lim l-------: - lrtn | |

1,,. lrk+lr' i.r-5r 
I

T,)1
= rim | ' 5 ( ^ , ) IL 'A'r/l
- r-5t lirn ( | I tr-s,

\l-'llitl
Thus, the series converges absolutely il ,{ 5 <1,or 1<x 5<1,or4<x<6.
lhe 'erie' diverges it t 4 r'r i . 6.

To determine the convergence behavior at the endpoints r = 4 and,r = 6, we substitute
these values in the gjven series. lf -r :6, the series becomes

\- t' \-t , I t,t_
l-7-- /-1t-' ' {''4't=t " t=t ''

which is a convergent p-series (p - 2). Ifr :4, the series becomes

\- -l'- 
'-l-l--?A,2J4'

Since this series converges absolutely, the interval of convergence for the given series is

|4,6l.TheIadiuSofconvergenceisR=1(Figurell'8.3).<

Ser es d verges Series converges abso utely Series diverges

Figure 11.8.3

FO R THI R LA DLR. lt wi]l always be a waste of tine to test for convergence at the endpoints

of the intcNal of convelgence using the ratio test, since p will aiways be I at those points

if p: 
,,llm-,1a,,11/a,,1 

exists. Explain why this must be so.

If a lunction / is expressed as a power seies on some intelval, then we say that / is

represented by the power series on that inteNal. For example, we saw in Example ,1 of
Section I 1.3 that

1.
l_r lrt-r - ..

so that this power seies represents the lunction l/ll r.) on the inteival I < x < l.
Sometimes new functions actually o ginate as power series, and the plopenies of the

f'uncLions are developed by wo|king with their power series representations. For example,
the functions

-r 
lrjr'' r- x' ,6

./^l-r) - ) 
- -l2, 2-tkli - ' 2 r llr) 2tr2t.t2 2''Jl12 '

. R=t -1. R=l -l

(2)
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and

r l1'r' t t r' -,:/ /rl - \ I 

-

:;2" {(:,'t ll,l 2 2'rlirr2lr 2rr2irrllr

p - 1i6 1!11 - 11,n
|, +- llt I, +'

r2(l+l)

(3)

which are called Bessel functions in honor of the German mathematician and asftonomer
Friedrich Wilhelm Bessel ( t784 1846), arise naturally in the study ofplanetary morion and
in various problerns that involve heat flow.

To find the domains of these functions, we must detennine where their deflning power
series converge. For example, in the case "/n 

(r) we have

22(k+r) [(l + t)!]2 x2k

rl l

= lim 1:0<li-+. 4{k + 1)rl

so that the series converges for all x; that is, the domain of -/6 (:r) is ( r, fco). We leave it
as an exercise to show that the power series for "/1(,r) also converges for all ,r.

))ltLt\1

FOR THE READER. Many CAS programs have the Bessel functions as paft of their Iibraries.
If you have a CAS, read the documentation to detennine whether it can graph Je(.r) and

"I1 
(r); if so, generate the graphs shown in Figure I 1.8.,1.

ExERctsE SET 1l.8 E Graph ng Catcu ator

Figure I LE.,t

IrrLrercr.e. l-4. hnd rhe rnrer\ alol convergence olrhe pou er

, series, and find a familiar function that is represented by the
power series on that intervai. )-r tr* l=

r _-21+l\-r trr "
?, (2t+1)l

\- 1,1

\-,f^

k t +rrt

i, t,o*'q4 24'

-t=t 
K

i l,l \* ,' +:r* 26.

f, ,,i 
(x * ltrr+ 

28.fr kt+4

j. l(.r - l)'zi 
30.

?,=, (2k + t)l
Use the root test to find the interval of convelsence of

\- 1'

fi t.t"t 1*

Find the dolnain of the function

14.

16.

18.

20.

15.

17.

'19.

21.

13. i "o
i=i k(k + t\

$1 ?!*o'1,

+ (-1){rtt
Li tzr,tt

i, ,'""
{=t

ir-1,*-'-l' .
?j k(ln i )/

s (r 3tr
),.

t, t,' 't - 
4'l

?" lr+r)r

i (21 
1 1)1," 

- 2,,

$ (lnt)(r 3)t

kk
5r- r2r 1r/
12 ,1)k

1. Lt +x2 ,r3 + ..+( l)rrt+..
2. 1 + x2 + x4 +... +-r2i + ..

3. 1+(x 2)+(x 2)2 + .+(.r-2)k+..
4. 1- (.r*3) * (r *3)':- (r +3)3 + .. + ( l)t(x +3)i +..
5. Suppose that the funclion / is represented by the power

series

'. ',//, \l t , ,1 8 -'-t,"V-
(a) Find the domain of /.
(b) Find /(0) and /(1).

6. Suppose that the lunction ./ is represented by the power
series

r 5 ,r 5tl r-r 5t'rrtrr:l--- J 3'
(a) Find the domain of /.
tbr FinJ /rJt.rnd /r6t.

In Exercises 7 30, find the radius of convergence and the

intenal of convergence.

27.

29.

31.

i''
fa,k+1

i*' ,,

D,*-'*
t=0

t 1,,r

9. f- ( t)t*t
kkl

E*18. 11.

32.

!"*
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If a lunclion .f is lepresented by a powcl scnes on an ln
leNal. then the graphs of the partial sums can be uscd as

approximations to dre graph of /.
(a) Use a graplring utility to Benerate thc graph of I /( 1 - -r )

logether with the graphs ofthe first fbur pa ialsumsof
its Maclaurin scries over the interval ( I, I).

(b) In genelal tcmls. where are the grdphs of the partial
sulns the most accurate?

Show that the porver scrics represenlalion ofthe Bessel lunc-
tion Jl (r ) convelges for all .t fFolrnula (3)].

Show that if p is a positive integer. thcn the power series

t l1jl r/
t '-'Lt 

lkl\'

has a radius of convergence of 1/p/'.

Show that if p and q are positive inlegers. then the power

series

i (r+p)l 
rr

ti, kt{k + .t)l

has a radius of convcrgence ol +r..
(a) Suppose that the power series I c1 (-r r0)r hasradius

ofconvergence R and 2 is anonzero conslanl. Whatcan

you say about the radius of convergence of the pou,er

series ! 2c1 ( t r0 )r ? Explain your reasoning. [H]i /r.

Scc Thcorem I L.1.3.1

(b) Suppose that the power series ! r'1(-r - r1)k has a
llDite radilrs of corivcrgence R, and the power series

I .lr l-t -r11)i has a radius ol convergence of +-.
What can you say about the radius ol convergence ol
f, I t .,' ? Erllr.n )our rea\onine.

(c) Suppose that lhe power series !c1(.r--,.;0)r has a
linite radius of coDvergence Rt and the power series

I .i,. (r rlJ)( has r linite radius ot' conversence Rz.

What can yoLr say about the radius ol convergence of
Ir,. d ,' r' - ' .r . f rplarrr ),,ul lcrr."nin!.

Prove: If, li1. ctltik - L. where t I 0. then 1/l is the

radius ol'convelgence of the power series li=o crra.

Prove: Il the power ser ies li o c1-r r has radius ol conver-
gence R, then the selies li o c1-rll has raclius ol conver

gence ^/R.

Prove: If the interval of corvergeDce of the series

Itu.*lt r11)^ is (,rn R, -r0 + Rl, then the serjes col
verges c,lnditionally at -r9 + R.

38.

39.

14-

.35.

16.

40.

37.

1 1.9 CO}d\IERGEIVCE DF TAYLSR SHRIES ; COIMPIJTATION\AL
NWETI{OFS

In Sectiort ll.5 u'e anticiputetl tlrc possibilit llLn a Tq'lot series.fbr d l nctiort night
.t.|u.rll \- (otierge to lhe liutctiotr on sonte inlenal.Irt this sectiott u,e t,ill sntd:- the

convet getre of Td''lor series, crrul v'e vill shov, ltov' tlrc'- tun be u5e6l 1,' oppr,ttintate
It'igottontetrir' . e.\po ential. antl logarithntit funttiorts.

THE nTH REMAINDER
Rccall that the irth Taylor polynomial fir a function f about,r.- : .r0 ltas the property that
its value and the values of its first /? derivatives match those of f at -t9. As n incLeases. more

and more derivatives match up, so it is reasonable to hope ihat for values of ,r neal ,tp the

values ofthe Taylor polynomials might convelge to the value of l(,r); that i\,

t+ \' \'rr)i - f(1) as/?-++L (1)
i=6 dl

However, the nth Taylor polynonrial tbr I is thc nlh partial sum ofthe Taylor series for f,
so (1) is equivalent to stating that the Tirylor series for ./ converges at the poinl r, and its

sum is I (r). ThLrs, we are led to consicler the firllowing problem.

ll.g.l l-(!rBl I\1. Civcn,r lur'.ti..,rr 7 tlrat hrs dfri\alr\e\ul allorJer. al dpoinl r,.
I detem,in" whether there is an open interval containing r0 such that l(,r) is the sum ot ,

' its Taylor series about r : -to at each point in ll're inteNal; lhat is,
-,{,

t,.rr-f ' ,','",. t2r

-t=n 
K !

i--olt TIIE Ii E \ I)Fllt Show thar (2) holds al r - r0, regardless ol the function I .



11.9.2 THEOREM. The equality
/rl ), -- ,

/rrr: \- J ''o'{r - t^io"?-.kl"
holds at a point x if qnd only if lim R,, (x) = 0.

,++o
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To determine whether (2) holds on some open interval containing.16, it will be convenient
to consider the difference between /(r) and its ,th Taylor polynomial about r : ro. This
difference is called the nth remaind.er for f about x = xx, and is denoted by

h rtkt, ,

Rn6): ftx)-t' ,l'o',r-roro (3)

-Kl

This can also be written as

4 r(t), .. \

"ft".i 
: )- #(x - xo)* + R,(x) (4)

'(=0

which is called ?aylor's formula with remainder.
One can think of R,(r) as the erlor that results at the point jr when f is approximated

by its n th Taylor polynomial. Thus, for the Taylor polynomials about,16 to converge to /
at a point r as n + +co, the error R,(r) must approach 0; conversely, if R"(x) + 0 as

n -+ +c., then the Taylor polynomials converge to / at the point.r. More precisely, we have
the following theorem.

It is relatively rare that one can prove directly that R,,(r) --+ 0 as n + ico. Usually, this
is proved indirectly by linding appropriate bounds on R,,(r) and applying the Squeezirg
Theorem for Sequences. The following theorern, which is proved in Appendix G, provides
a bound that can be used for this purpose.

11.9.3 THEOREM (The Remaindcr Estimation Theorem). If the function f can be difur-
entiqtedn+1timesonanintelvalIcontqiningthepointxo,andiflf(l+t)(i.Mfo,
all x in I. then

forallxinl.

(5)

The following example illustrates how this theorem is applied.

Example I
Show that the Maclaurin series for cos.x converges to cos x for all r; that is,

2 
^4 

,6co.r-ft-tt'-i- ='-l*---- t.q)<x.: .ct)
f7, r2i)l 2: 4: 6l

Solution. From Theorem 1 1.9.2 we must show that R,, (x) + 0 for all r as n -> +.c. For
this pulpose let -f(") : cos.,r, so that for all r we have

f0,+1)(r) : tcos,r or. f0'+r)(r) : +sin.{

ESTIMATING THE nTH REMAINDER
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Tn all cases we have

l"f 
ft*') (") :1

so we can apply Theorem I 1.9.3 with M : I and ,re : 0 to conclude that

r l'+l
0 . lR.. rr rl . {61' 0i+l)!

However, it follows flon Formula (5) of Section 11.2 with n * i in place of n and :rlin
place of r that

11 x+l
lim -0 l7),- +. (n ! l)l

Thus, it follows from (6) and the Squeezing Theorem for Sequences (Theorem I 1.1.5) that

lR,, (r) + 0 as r + +.o; this implies that R,, (r) + 0 as r -+ +.. by Theorem 11.1.6. Since
this is true for all -r, we have proved that the Maclaurin series for cos r converges to cos r
for all r. This is illustfated in Figure 1 1.9.1, where we can see how successive partial sums

approXimatethecosinecurvemoreandmorecloSe]y.<

)t
- \-, ,, r'^,.,-L,' ' ,1k,,

I

Figure I1.9.1

REMARK. The method used in Example I can be easily modifled to prcve that the Taylor'
series for cos,r about any point x = r0 converges to cos r for all r, and similarly that the
Taylor series for sin,r about any point r : r0 converges to sinr for all ,t (Exercises 25

and 26). For reference, there is a list of some of the most important Maclaurin series in
Table 11.9.1 at the end of this section.

In general, to approximate the value of a function / at a point r using a Taylor series, there
are two basic questions that must be answered:

. About what point -]16 should the Taylor series be expanded?

. How many terms in the series should be used to achieve the desired accuracy?

In response to the first question, r0 needs to be a point where the derivatives of / can

be evaluated easily, since these values are needed for the coefficients in the Taylor series.

Furthermore, if the function / is being evaluated at the point r, then -re should be chosen as

close as possible to ir, since Taylor sedes tend to converge nore rapidly nearrn. For example,
to approximate sin 3" (: z/60 radians), it would be reasonable to take -r0 : 0, since rr/60
is close to 0 and the derivatives of sinr are easy to evaluate at 0. On the other hand, to
approximate sin 85" (: l7z/36 radians), it would be more natural to take r0 = T/2, s\\ce
172/36 is close to z/2 and the derjyatives of sin r are easy to evaluate at r/2.
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ln response to the second question posed above. the number of terus requircd lo achieve a
specific accuracy needs to be detemtinecl on a itroblem by problell basis. The next exatrple
gives two methods for doing this.

Example 2

Use the Maclaurin series for sin-t to approximate sin 3' to live decimal placc accuracy.

Sttlttlitnt. In the Maclaurin series

r ..'.irr,-fr lr
:-; {21 lrl .': 5i 1'

ft,' (+)1: o ouooos
\htJ'

(10)

However. if we let f(.r) - sin,r. then f('-rr(r) is eilher + sinr or a cos r, ancl in either
case /("+lr1,t1 S 1 lbr all r. Thus. il fbllows liom rhe Remainder Estination Theorent
with M - i, -ro : 0, and r - z/60 that

, tr \ lz160 "rl
R,, I I.\ 6Ll / (rr * 1)l

Thus. we can satisfy (10) by choosing n so that

n /60 "+1

(r? + l)l
With the help of a calculating utility you can verily that the snallest value of n that meels
this criterion is ir : 3. Thus, to achieve live decimal-placc accuracy we necd only keep

tenns up to the third power in (9). This yields

t 1r , l7/60t1
rin ! I I 0.tr52\4\ 60 / l!

(ll)

(8)

the algle r is assumed to be in radians (because the difl'erenliation fi)rmulas for the trigono
netric functions were derived wirh this assumption). Since 3'' : ;z/60 radians, it follows
ftom (8) that

r , r , 1 r bU)' L r 00J (.' 60r\inl -'inoo-(ooj :: * t - t, r'rt

We must now determine how many terms in the series itre required to achicvc live clecimal-
place acculacy. We will consider two possible approaches, onc using the RernaincLer Estima
tiol-l Theorem (Theorem I 1.9.3) and the olher using the fact tlrat (9) satisfies the hy]lothescs
of the altemating series test (Theorem 11.7.1).

lllclhod I lThc Renutirrdcr I:,stintulittn 'l heoreml. Since we want to achicvc five
decimal-place accuracy, our goal is k) choose /'l so that the absolute value oflhc ath r-cmainder

al .' -'6Udoe.rrot crceed 0.000005 - ) l0 ';th.rl r.,

(verity). As a check, the author's calculator givcs sin 3' = 0.05233595624. rvhich agrees
with (11) when roundcd to ilve dccimal places.

Malhotl 2 lThc ;\lltrnuling Strias Ttsl). We leave it lor you to check thal (9) salisiles
the hypotheses of the alternating series lest (Theorem I 1.7.1).

Let.r,, denote the sum ofthe terms in (9) up to and including rhe r?th powcr ofr/60. Srnce

thc exponents in the selies are odd integers. the integeu must bc odd, and the exponent of
the llrst tenn /lot jncluded in the sum .r,, must be rr * 2. Thus, it follows fron part (b) of
Theorem I 1.7.2 that

(rl6u"-2
sin I .r <.

0r + lyt
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This means that for iive decimal-place accuracy we must look for the fir-st positive odd
integer n such that

rz/o0r"+l < 0 000005
(n 'l 2)t

Wirh the help of a calculating utility you can ver-ify that the smallest value of /i that neets
this criterion is /r - 3. This agrees with the result obtained above using the Remainder
Estima{ionTheoromandhenceleadStoapproXination(1])aSb9fo[9'<

Therc are two types of errors that occur wheD computing with series. The first, called
truncation error,\s the efior that results when a series is approximated by a partial sum; and
tlre second, called roundoff error, is the ellor that arises fiom approximations in numerical
computatiolls. For example, in oul deivation of ( I 1) wc took r : 3 to keep the truncation
erlorbelow 0.000005. However. to evalLrate the partial surn we had to approximate z, thercby
introducing roundoff error. Had we not exercised some cale in choosing this epplor inrltion,
the roundoff error could easily have degraded the final result.

Methods for estimating and controlling roundoff errol are studied in a branch of mathc-
matics called nzmerical analysis. However, as a rule of thumb, to achieve n decimaJ,place
accuracy in a final result, all intermedjate calculations Dtust be accurate to at least/r + I
decimal places. Thus, in ( I l) at least six decimal-place accuracy in z is tequired to achieve
the five decimal place accuracy in the final numerical result. As a pritctical matter, a good
working procedurc is to perform all intermediale computations with the maximum number
of digits that your calculating utilily can handle and then round at the el]d.

Example 3

Show that the Maclaurin series for-s' converges to c' for all .r; that is,

- 
f a at \

n' - L t  : I +.r + t + 
-r! 

+..*lt *. ( :.<r<+:c)
{=0 "'

Sohttion. Ler /(r) : e', so that

.f 
t'+\) 6) = e'

We want to show thal R,, (r) -+ 0 as ,,r -+ ar for ail r in the ioterval :c < ,r < *-.
However, it will be helpl'ul here to considcr the cases -r : 0 and -t > 0 separately. lf ,{ < 0,
then we will take llre interval 1 in Tireorem 11.9.3 to be [r.0], and if ,r > 0, then we will
take it to bc [0, ;r]. Since /0'+1)(-r) : e' is an increasing function, it follows that il c is in
the interval [-,r,0], then

l!,*,)(.) : /0,+r)(0) :eo= I

and if c is in the interval 10. rl, then

/(/'+ 
r) (.) :: J.(,+r)(i) :er

Thus, we can apply Theorem I 1.9.3 with M : I in the case where,i; : 0 and with M - ei
in the case wheLe r > 0. This yields

t u*
0 R,,r.r ilr ' 0'0rll)l

lr '+t0 R,,t.r I , ' ------------- it .r 0
(/r + l)l

Thus, in bolh cases it tbllows liom (7) and the Squeezin-q Theorem for Sequences that
R,,(.r) +0asn+*:c,whichinturnimpliesthatR,,(.r)+0as/? >+...Sincethisistrue
lbra11l,wehaveprovedthattlreMaclaurinseliesfore'conveIgeStoc-(fbIal]I'<
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Example 4

Use the Nlaclaurin series for e' to approximate e to live decimal-place accuracy.

Sohrtiott. If we substitute -r = I in the Maclaurin series

l .t' tt,' l-r- -' 2t 1r r:
we oblain

tl I

and hence we can approximate e to any degree of accuracy using an appropriate pafiial sum

11 I?::1+1*=*;* *.
/! tt t1!

Thus, ourproblem is to determine how many tcrms in this pafiial sum are rcquired to achieve
five decimal-place accuracy; that is. \ve want io choose l? so that the absolute value of the

,th remajnder at r : I in the Maclaudn series satisfies

R,, ( 1) : 0.000005

To determine rr we will apply the Renainder Estimation Tlreorem with .l(;r) : e',.,r; = l.
ro : 0, and ./ being the interval [0, 1]. In this case it follows fronr Forrnula (5) that

' l-l- 2 '-rr Ar 
I ( 12)

M
R,(1) I 

-

(ll + L)l
(13)

where M is an upper bound on the v2rlue of l("+r)(r) : c' for -t in the interyal 10. 11.

However, e' is an incrcasing function, so its maxinur.i value on the interval J0, 1l occurs
at r - 1: that is, e' : e on this interyal. Thus, we can take ll4 = e in (13) to obtain

()

R,,(l) < 

-

0i + l)l
Unlofiunately, this ilequality is not very useful because it involves e, which is

quantity we are trying to approximate. However, if we accept that c < 3, then
replace ( 14) with the following less precise, but morc useful, inequality:

l
lR,, ( l.)l = :-

(/r + t)l
Thus, we can achieve five clecimal-place accuracy by choosing I so that

3_ < 0.0000{J5
kfl)l -

With the help of a calculating utillty you can verily thirt the smallest Yalue of /? that meets

this criterion is 
'] - 9. Thus, to live decimal place accuracy

111llt1l, I lr , + I F , 2Tlillit)' ll 41 5: bl 7: 8: 9l

(verify). As a check, thc authu 's calculator gives e : 2.71821i I 82846, which agrees with
theprecedingapproXimationwhenroundedtofivedecimalplaces.<

The Maclaurin series

x2 -rl -t4ln(l- r) (-l r _ l) (15)

x2 -rl -r4
Irrrl -,) -'-, ] 4

( l4)

the very

is the starting point tbr the approxination of natural logarilhms. Unfbrtunately, the useful-
ness of this series is limited because ol'ils slow convergence and the rest ction I <-y: I-
However, if we replace r by -r in this series, we obtain

APPROXIMATING LOGARITHMS

( I : r < 1) ( 16)
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and on subtractiirg (16) from (15) we obtain

I I r t r i tl .r ,In{, l-21...^ I t_,. I\r \/ \ J 5 / /
Sedes (17), lirst obtained by James Gregory* in
logarithm of any positive number l by letting

1+-r
) - 1 -*

or, equivalently,

1l
l,+ I

( 1<r<1) (17)

1668, can be used to compute the natural

and notiig that -1 < .r < 1. For example, to compute ln2 we let f : 2 in (18), which
yields,r : +. Substituting this value in (1?) gives

,",=,[.i*9*9-'9.' 
]

(18)

(19)

In Exercise 23 we wilL ask you to show that Ilve decimal place accuracy can be achieved
using the partial sum with tenns up to and including the l3th power of 1. Thus, to five
decimal-place accuracy

[r tlr' (ll' r]l t.r'lln2'21 I 0.b9J1.5

L3 3 s 1 rr l
(verify). As a check, the author's calculator gives ln 2 :v 0.693 1,171 8056, which agrees with
the preceding approxination when lounded to five decimal places.

ItL\1.\ltK. ln Example 2 of Section I 1.7, we stated without proof that

rllll) l--r-
2t45

This result can be obtained letting x : 1 in ( 15). However, this series converges too slowly
to be of practical value.

APPROXIMATING T
In the next section we will show that

, *l rj \l
tarr'.r- r -- - t I \ ll15t

Letting ,r - 1, we obtain

n.lll
- lan- l- I r.4357

llrrlr-4ll- +,-,+...
L -1 57l

This famous series, obtainedby Leibniz in 1674, converges too slowlyto be ofcomputational
value. A more practical procedure for approximating z uses the identity

nLI
- lan _ tan ' t2l14)l

which was derived in Exercise 47 of Section 4.5. By using this identity and series (20)

(20)

*,r,,,.,,',,.,nr,, (1638 1675). Scottish athematician al1daslronomer. cregory. the son ofaministcr. was lanrous
in his time as the inventor ofthe Gregorian reflecting telescope, so named irl his horor Ahhough he is nor genemlly
ranked with the great mathematicians, nruch ofhis work relating to calculus was siodied by Leibniz ard Newton
.u1d undoubledl] inliuenced sone oi lheir discoveies. There is a rnanuscript, discovered posthumou!ly. which
shorvs that Grcgory had anriciparcd Taylor scrics well belbre Taylor
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to approximate tan-L j ald tan-l j, re value of r can be approximated efficiently to any
degree of accuracy.

If m is a real number, then the Maclaurin series for ( 1 + .r)'' is called the ,inomisl series.
it is given by (verify)

t,(',t l) tr(n - l)(n--) . tnlnt lt ttn I -lrIr/,(I )l ., l, ..\ r I t| I

In the case where l,1 is a nonnegative integer, the function "f(r) - (1 * -r)'n is a polynon.rial
of degree n, so

f(,n+r)(0) /0,+r)(0) f(,,+3)(0) : ... :0
alld the binomial series reduces to the familiar binomiaJ expansion

tn(m - l\ ttttttt - lttnt - )t
tl lrl'-l ,,\ I ^, .r'| ! . \")t ll

which is valid firr -.. < .r < +-.
It can be proved that if ia is not a nonnegative integer, thelr the binomial series converges

to(1+-r)'r if ,rl < 1. Thus, for such values of .r

. ,tt(ut l) , nt\ttt l) (d, - ( -r l)(l+r),"_I+rirr* Ifrn2+...+"''" 'r r" ^ '/,tt+. (22)

or in sigma notation.

i r Yr,, - , ,f ''n'- l\",..m -a - """ ,rlrl - ,z2 Llt:t

Example 5

Fird binomial series for

(a) -l - (b) L
(l+r)' Jl+ r

Soltttion (a). Sinca the gener-al term of the binomial series is complicated, you may find
it helpful to write out sone of the beginning terms of the series, as in Formula (22), to see

developing patter-ns. Substituting r? : 2 in this formula yields

I {-2)(-J) .

,.l tl tl rt'=l'l2l\l 2' r'

, 
t 2rt -lrr-4r,. r 2tr lr' -4rr-5r^, 

,t! 4!

-l .2-, , Jl-t o',' 5l,t 
'..2! lt 4t.

= 1 2r: 3r2,1r3+5,r4+...

: 11-t)r{r + l)''o
t:0

Sohttion (b). Substituting r? = I in 1ZZ1 yietas

I I (-;)(-1-l) , (-')(-I-l)(---2) ,

.,ft t"-'-'.t 2'- r-| l:
I 1.3 ^ 1.3.5.

-l r+-r -) ).)'. 2'.tl
-:_ , r . j . 5 . . . (2i _ D,r

-l ) r l)" )Alt=1

(23)
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For reference, Tabte 11.9.1 lists the Maclaurin series for some of the mosr importlnt
functions, together with a speciiication of the intervals over which the Maclaurin series
converge to those lunctions. Some of these results ;ue derived in the exercises and others
will be derived in the next section using some special techniques that we will develop.

Table 11.9.1

MACLAURIN SERIES
INTERVAL OF'

CONVERGENCE

I -i rl=I+r:+.l+..1+r\fa
l-=i( trl,'r-t ,2rrr 'o ..

e1 .i .r ,r ,1. = ) =l-,+ - - +
l- lll lt lt /1t
t =lr ''

F ,'r-r ,r i_, + .'tn ' = 4 ' I I 
r2r - trt -' i*.: tlt=0

co., \-,_lr r- -t-.'--.! .\"r..
(=-, L)t',| ): 41 6r

lnrl -.rt- i, r,'- " i-
ft14

1ont,=i, 1,''2'l . "-'j-'*.:1 2{rt I s

.inr,, it -''',t',!,...
^-L 

r2t - trt 3i 5: r:

"n.h',.=i "'- t2|)l

(r +-r)"'= r +i
i=t

=1*t:*If*'6*,)t 4t 6l

m(n l). (r? I + l)

1<-r< I

I <r< 1

I <-r ( I

I (r( I

-l <r< 1*
(m + 0, 1,2, ...)

The beha!ior aI the endpoints depend\ on n: F_or rr > 0thc seies converges.bsolurely ar borh
endponrB: ibr r, < 1 dE series diverges .r borh eidpojnLs: and fo, -l < ,, < 0 (be scdes

converges condidonally rt i = L and dilerses at i = 1.

ExERctsE SET 11.9 E crapn ng ca cu ator E cAS

1. Use both of the methods given in Example 2 to approximate
sin4' to llve decimal-place lccuracy, and check your work
by compaiing your answe. to that produced directly by your
calculating utility.

2. Use both of the nrethods given in Example 2 to approximate
cos 3' to three decimal-place accumcy, and check yourwork
by conlparing youl answel to that produced directly by your
calculating utility.

J. lJ{e rhe merhod o[ Example / lo Jpprrrximdte v6 to l.rur
decimal place accuracy, and check youl work by compaling
your allswer to that produced directly by youl ca]culating
utility. [Sr,qge-r/br] write .u2 as e0 5.1

Use the method of Example 4 to approximate l/e to three
decimal-place accuracy, and checkyour work by comparirg
your answer to that produced directly by your calculating
utility.

Use the Maclaurin series for cos -r to approximate cos 0.1

to five decimal-place accuracy, and check your wolk by
compadng your answer to that produced directly by your
calcuiating utility.

Use the Maclaurin series for tan li to approximate
tan I 0.1 to three decimal-place accuracy, and check your'
work by comparing your answer to that produced dircctly
by your calculating utility.

4.

5.

6.



I l.

7.

8.

q

10.

Use an applopriiile Taylol series 10 apprc.rimate sin 85- to
lour decimal-place accuracy, and check your work tr).conl
paling vour ansu,er'10 thal produceLl direclly b] ),our calcu
laling utility.

Use a Taylor series 10 iipp.oxinrrte cos( 175 ) 10 lbur
decimal-place ilccurac)', and check your'\\'olk try cornplrring

)our answer to that produced di|cctly by your-calculating
utility.

Use the Macialrrin series tbr sinh -r to approximate sinh 0.5

to three decimrl place acculac\'. Check your work by com-
putinc sinh 0.5 wilh a calculalilrg utilil),.

Use the Maclaulin series lbr cosh r lo approximate cosh 0. I

to three decinrl-place accuiacy. Check )ou| rvork bv corn

PLrtil1g cosh 0.I with a calculating ulilily.

Use the Renllinder E.ltiuration Theorcm and tl]c clhod ol'
Example I to prove that the Tal'lor scries lbr sin.r xboul

.r : r/4 couverges to sin r tbl all.r.

Use the Rcrrainclcl Eslimation Theorem and the niethocl of
Example J 1rl pr-ove thlt the 'l'a,r,lor selies lbr .r aburt .r : I

converges to a\ lor rll .r.

(a) Use FonrLrla ( I7) in thc tcxt k) lincl a ser ies lhat con
vergcs to ln 1.25.

(b) Approximatc ln I .25 Lrsing thc firsl 1\\'o lemls ol'the se

ries. Round your ans\lel to thrcc dccil11rl places. and

compare the result to that ploducccl clir-ectly by 1'our
calculrting utility.

(a) Use Fonn lil ( l7) to llnd a scrics thirt converges Lo ln 3.

(b) Appro,{ini|te ln3 using thc tirsl two tenls 01 ll1e se

ries. Round your iuls\\'er 1(] three decilnal places. and

compi:rrc the rcsult to thal produced cli|ectl1' b1' your
calcLilating uliLilt.

(a) Use the Maclau|in sclics for tan lr to alfroximale
lan I I iucl tarl L ] to thrcc dccinrrl place accuracr.

(b) Use the results ir part (a) and Fonrllrla (2l) to approxi

ntille,u.
(c) Would 1'oLr be rvilling to slrirrrlnlee thal your-answel

in pa (ll) is accurale lo three decimlll placesi) Explain
your reasoning.

(d) Conpare )'our auswcl-in part (bl lo ihat produced by

1'Oi[ calculating utilitl.

Use an app|opriate Ta1{or series firr 1T to approxinale

J28 to thlee decirual-plilce accurac1. an.lcheck yoLrr answer

b_v colnparing it to thal froduced dilectl)'by your calculating
utility.

(a) Use the Remaindcr Estimation Theorem to find an in

teNal conlaining r : 0 over rvhich sin -r can be approx

imated b1 .v {rr/31) to tln-ee decinal-place accuracy

lhroughoul lhc rnler\'al.
(b) Check your answcr in pafl (a) b) graphing

rinr l, 'l
\ |./

over lhc i ter-val you obtained.

11.9 Convergence of Taylor Series; Computational l\/lethods 685

E 18. (a) Find an intcrval 10. lrl over rvhich c'car be apploxi-
matcd by I i-.r + (rr/21) ro llrree decimal placc accu-
racy th.oLrghoLrt the inter\ral.

(b) Chcck your answc. in pafi (a) by graphiig

, 
'l 

t,'-li+,+ I

\ ],/
ovcr thc intcNal _vou obtained.

E 19. (a) Finci an uppel bound on the error- that can Iesult il cos .r

is approxinlatcd by I (rr/21) + (-rr/41) over the in
tclval | 0.2.0.21.

(b) Chcck )our ans*cr in pafi (a) b] graphlng

ovcl lilc inlcrvll1.

E 20. (a) Find an uppcl tround orr the eflor rh;rr crn resrrlt il
ln(l i- .r) is approximated by .t ovel the interval

[ 0.01.0.0]1.
(b) Chcck your ansrvcr in part (a) by -sraphing

l(l+r) r

over the il]telval.

21. [-rse Fonnula (22) fbr the L]inonial series lo obtain rhe

MaclarLrin ser'ies 1or

12.

13.

I
(llJ

l+.r
I(t) 

( r +.)'Ltl .T+ 
'

llrr is any leiil uuurber. and I is u nonnegirtive jnteger. then

wc dellne lhc rin0lrial coeffcient

/,,\ /,, ,
( 

^ I 
*, ,t'" l",r',u1.,. ( rr,l I .rld

(?) : ntttn l)ttn l t (rr /, + l)
lI

Fotnrula (22) in the text in temrs ol

22.l,l.

15.

for/i : L Expless
binofiirrl .oellicicnt\

t6.

23. ln this exelcise we will use the Remrinder Eslimiilion The-
orenr to detenninc the numbel of terms thlt arc rcciuilcd
in Fonnula ( l9) to approximate ln 2 to live decimal placc

accu(lcy. Fol this pLrrpose lei

l+1
11t1 =In, , =ln(l+.r) -In(l - r) ( 1< r.: l)

(a) Show that

/ ,,, ,,:l '-r' | -

,,t.,
(b) Use thc triangle ineclualjt) lThcorem 1.2.2(/)l to sho|

tltat
,rtl

t "'+ '(.i ) - rtl''..r,,.1,,1
(c) Silrce \\'e want lo achieve hve decirnal-place accLrlacy,

our goal is to choose a so that tilc absolutc valuc ol
the /rth lemalndcr at.! : li docs not exccecl thc value

al t7.
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0.000005 : 0.5 x l0 5: rhar is, R,, (1) : 0.00000-s. E 27.
Use the Remaindcr Estimation Theorem to show that
this condition will be satisfied iill is chosen so that

ll4 t 1t"'l

-l-l 

U.uuuUU5l,rilt'\3/

where /{'r Fr)(-r) 5 M on the interval [0. 1].
(d) Use the result in part (b) to show that M can be taken

as

I rl
1tt _utlt + 

-_, 
II (i) 
I

(e) Use lhe results in parts (c) and (d) to show that hve
decimal place accruacy rvi)l be irchieved if n satislles

(a) ln 1706 the British astronomcr and mathematician
John Machin discovered the follorving iormulr for z/4,
called, Mac hin's formu la :

Use a CAS to approximate 7r/4 using Machin's formula
10 25 decimal places.

(b) In l9l.l the brilliant lndian marhematiciiin Srinivasa
Ramanujan (1887-1920) sho$ed thal

1 :4ton ' ! ,on ' L45239

1_ "6 it 9801 rLL

(lt)r(llo3+26 la0l )
(t t)1396rr

t fr t r' -r , t '"+'-l,, ,(,) -(;l l uuix)uu5
" 't -' '' I

and then show that the snrallest value of r that satislies
this condition is n : 13.

Use Formula ( l7) and the method ofExercise 23 to approxi-
nate ln (l ) to flve decimal place ilccuracy. Then check yoLr
wolk by conpar-ing your answer to that produced dir-ectly
by your calculating utility.

Pr.,rc: Th. Til) lur .erie. lbrco..' rborl .rn) fn:nr \ - ,0

convelges to cos -r ibi all .r.

Prote: Tlre Trllor 'cric. I.rr 'in r .rbu.t: n1 p.rint r : .i,

convergcs to sin-rr fbr all ,r.

Use a CAS to compute the 1l.st four partjal sums in
Ramanujan's formula.

28. The purpose of this cxcrcise is to show that the Tavlol series

ol a lunction f may possibly converge to a value dit'ferent
lio l(r) fbr certiiin ,r. Let

[c r' ., =o/(t): {

lo L:0
(a) Use the definition ofa derivative to show that l'(0) = 0.

(b) With soine difliculty it can be shown rhat lr'r(0) : 0

1br ir I 2. Accepting this lact, show that the Maclauin
series of / convcrges tbr all -r, but converges to f (-r)
only al the point.\- : 0.

11.10 DIFFERENTIATING AND INTEGRATING POWER SERIES;
MODELING WITH TAYLOR SERIES

In tlis sectiort y,e v,ill discttss nrcthotls .for findittg pov,er series Jbr de ratives cLttd

integrctls of ftorctions, tnd we will discttss sonte practicaL netltods Jbr Jinding TttyLor

series tlutt cttrt be used in sitLtdtiors v,here it is diftcult or itnpossible to.fhd tlte seies
direct[\'.

We begin by considering thc lbllowing problem:
DIFFERENTIATING POWER SERIES

11.10.1 PRoBLEM. Suppose that a function / is represented by a power serres on
an opel interval. How can we use the power selies to find thc derivative of / on that
interval'l

Tlle solution to this problem carr be rnotivatecl by considering the Maclauril series for
sin -r:

. rl lr5 -t?\ln.\ -.,\ - .r J.tr 5t 1l

Of coruse. we already know that the derivative of sin -r is cos,r; however, we are concerned
hcrc with using the Maclaurin sedes to deduce tl'ris. Tl're soludon is easy-all we need to
do is differentiate the Maclaurin series term by term and observe that the resulting series is
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the Maclaurin series for cos.r:

dl xl xs x7 I
tf-r-st-lt- .l-

d d f x' xl s4 I
*le'l-^L' n,-t+t*n* 

_l

x2 x4 x6I 3 _+5- -1-+...3! 5! 7!

x2 14 x6
1 - - + - - - + = cos-Y2t 41 6!

Here is another example.

xx2x3x2x3
-l -)- +J--4-+ -l+x ,...:P')! t! 4! 2! ll

FOR THE READER. See whether you can use this method to find the derivative of cos x.

The preceding computations suggest that if a function / is represented by a power series

on an open intewal, then apower sedes representation of /'on that interval can be obtained
by differertiating the power series for / term by term. This is stated more precisely in the
following theorem, which we give without proof.

11.10.2 THEOREM (Differentiation of Power Series). Suppose that a function f is repre-
setlted by a power series in x - xo thdt has a nonzero rad[us of convergence R; that

/(x):Icr(x xo)k (xo R<-r<ro*R)
t:0

Then:

(a) The function f is clffirentiable on the interval (r0 - R, n0 + R).
(b) If the power series representation for f is differentiated tetm bJ lerm, then the

resulting series has radius of convergence R and converges to J' on the ifltet-val
(.re - R,.re + R), that is,

-:- d
Iltl-2 , fcr(r ro)^l (r, R<r<rolR)

-t:oaX

This theorem has an important implication about the differentiabitity of functions that
are represented by power series. According to the theorcm, the power series for /'has the

same radius of convergence as the power series for /, and this mears that the theorem

can be applied to /' as well as /. However, if we do this, then we conclude that /' is

differentiable on the interval (x0 - R, r0 + R), and the power series for /" has the same

radius of convergenca as the power series for / ard /'. We can now repeat this process ad

infinitum, applying the theorem successively to f", f"',..., f i,... to conclude that /
has dedvatives of all orders on the interval (r0 R, r0 + R). Thus, we have established the
following result.

11.10.3 THEoREM. If a function f can be represented by a power series in x -r0

with a nonzero radius of convergence R, then f has deritatives of all orders on the

interval (xn R, tr6 * R).

In short, it is only the most "well-behaved" functions that can be reprcsented by power
series; that is, if a function / does not possess derivatives of all orders on an interval
(,x0 R, .{0 + R), then it camot be reprcsented by a power series in .r - x6 on that interval.
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INTEGRATING POWER SERIES

Example 1

ln Section I 1.8, we showcd that the Bessel function Je(,r) is representecl by the power series
: r.t ti

-ll)lJ,(^\- L-, {l)
t 0 ! r^:'

with r adius of convergence +:c Isee Fomula (2) of that section and the related discussion].
Thus, -/e(r) has derivatives ofall olders on the interval (-!, +a), and these can be obtained
by differeltiating the series term by term. For example, if we wtite (1) as

- 
r ltlrll./n(r)-t*Lrrn^.

{:t _ "''
an,ldilt'. r'cntiate lerrn b) tcnn. rnc obtarn

- 
r-lr'r2lrr: r-lr'rl' I

J"Lr-) . ^ \
f-, 2r'rllr: 1< 2t -t/.'t/' - lt,.

Rh\lAltK. The computations in this example use some techniques that are woflh notirrg.
First, when a power series is expressed in sigma notation, Lhe folmula tbr the general term
of the series will often not be of a form that can be used fol differentiatilg the constant
term. Thus, if the series has a nonzero constant telm. as hele, it is usually a good idea to
split it off from the summation belbre djfferertiating. Second, observe how we simplified
the nnal fbmrula by canceling the fhctor & from one of the factorials in the denominator.
Thrs is r.trndrrd \implifi(rlion le(hniqLe.

Since the derivative o1'a function that is represenled by a power series can be obtained by
differeotiatjng the series term by tenn, it should not be suryrisilg that an antiderivative of
a l'unction represented by a power series can be obtained by integlating the series term by
term. For example. we know that sil'r,r is an antiderivative of cos -r . Here is how this result
can be obtained by integlating the Maclaurin series lbr cos r term bv term:

I ll r' ' .'6 IIco.,,h- I l------- - 1drJ J 2: -+i ol

:[. #.*
_t,_l _'_: _ 'l _.-.inrr,(

L 3: ): 7: l
The same idea applies to definite integrals. For example, by direct integration we have

and we will show later in this section that
rlll

= I + +...4t51
Thus.

lr 11^ I I 1, 

-- 

l.
JLr I+.\r 3 5 7

(:2)

Here is how this result can be obtained by integrating the Maclaurin series for l/(1 + 12)
term by tenn (see Table 11.9.1):

I,' f- = 1,,',' \r + 
'\.1

-* l*.
-l

I dY ,un'-rl -,un I tdro- n o-l
l' ': ln 4 4

\--_--r---JI

16 +...lt],.

,' lr
7 -l,,

111
:+5-t+
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The preceding computations arejustified by the following theorem, which we give with-
out proof.

11.10,4 THEOREM (Intcgratio ofPoverseries). Suppose that qfunction f is represented

by a power series in x - xo thqt has a nonzero radius of convergence R; that is,

/(x):lci(,t ;ro)t (ro-R=x<xe*R)
t:0

(a) Ifthe power series reprcsentatioft of f is integratedterm bJ termusixg an indertnitu
integraL, then the resuLting series has radius of convergence R qnd converges to

I Je) dx on the interval (xn - R, xo + R)i that is,

r 'f r _l

lfvtd^ -)-l/..r, \a)'dxl+ c (xo-R..r.rotR)J" "r oLJ I

(b) If a qnd B are points in the interval (x6 - R,.re I R), and if the pou'er seties

representqtion of f is integrated term by termfrom or to P, then the resulting series

of numbers cowerges absolutely on the interval (xo - R, x0 + R) and

rF .'f tl3 -l

I ftxta, -f l/ .ot* xat'clrlJ, i:6 Lr " .r

For many functions it is diffrcult or impossible to find the dedvatives that are requircd to
obtain a Taylor series. For example, to find the Maclaurin series for 1/(1 + n2) directly
would require some tedious derivative computations (try it). A more practical approach is

to sub\tilule -x2 for,r in the geometric series

1-
t *-llx-.t'-.t,' -l-*.. ( l<x.-l)

to obtain

-]- -' -r' l x'- ro- 18- ..
1+xr

However, there are two questions of concem with this procedure:

. Where does the powar series that we obtained for 1/(1 + x2) actually converge to

1/(l + x2)?

. How do we know that the power series we have obtained is actually the Maclaurin series

for 1/( l +"x2)?

The first question is easy to resolve. Since the geometdc sedes converges to 1/(l - x) if
l,r < 1, the second seies will converge to I/(l + xz) if -x2 < 1 or l-r2 < 1. However,

this is true if and only if lx | < 1, so the power series we obtained for the function 1l(1 + x2)

colverges to this function if -1 < r < 1.

The second question is more difficult to answer and leads us to the following general

problem.

11.10.5 PRoBLEM. Suppose that a function / is reprcsented by a power series rn

x - r0 that has a nonzero radius of convergence. What relationship exists between the

given power series and the Taylor series for / about x : .xs?

The answer is that tbey are the same; and here is the theorem that proves it.
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SOME PRACTICAL WAYS TO FIND
TAYLOR SERIES

ll,10.6 THEoREM. If a function f is represented by a power series in x - xs on
some open intet-val containing xo, then that power series is the Taylor seriesfor f about

ProoJf. Suppose that

f(x): co + ct@ - xd + c2(x -.ro)2 4...+ c*(r - xo)* + ...

for all x in some open interval containing,r0. To prove that this is the Taylor series for /
about .r : .xo, we must show that

f lt) t x^ )
c1 :" ---r- for /<:0. 1.2.3....

Howevet the assumption that the series converges to jf(i) on an open interval containing
x0 ensures that it has a nonzero radius of convergence R; hence we can differentiate term
by term in accordance with Theorem 11.10.2. Thus,

"f(x) : co + cr(r - xd + c2@ - xdz + calx -xs)3+ca(r-xo)a+...
f'(tc) : crl2czQ - xd 4 3ct? - xd2 + 4ct(x - ro)3 + . ' .

f " (x) - 2lcz * G . 2)ct? -.r0) + (4 . 3)ca,(x - xdz + ...

f"'(x) :3lcz.t G.3 2)ctQ -;ro)*...
:

On substituting r = J0, all the powers ofr - r0 drop out, leaving

"f(ro) : co, f'@d: c,, J"Qi :2lcz, f"'(xd:3tct,
from which we obtain

cn:fls), ct=f'(xd, "t:f?, ":l:P-,
which shows that the coefficients c0, ct, c2, ca, . . . are precisely the coefncients in the Taylor
series about xo for./(x). I

REMARK. This theorem tells us that no matter how we arive at a power series rcpresenta-
tion ofa function /, be it by substitution, by differentiation, by integration, or by some sort
of algebraic manipulation, that series will be the Taylor series for / about * : .x6, provided
that it converges to ./ on some open interval containing x6.

Example 2

Find the Mactaurin series for tan-r r.

Solution. It would be tedious to find the Maclaurin series directly. A better approach is
to start with the formula

[-f-or=tan-rx*cJ l+x'
and integrate the Maclaurin series

-L" - '-x2+x4-r6+r8- 
. (-l<x<l)

7+x'!
term by term. This yields

.flttan-lr*c: | __4r: lll_x, I xa _ x6 + x8 _...\dx
J l+xt )

or
, f xJx5x1 x9 -l

tan-'x:l'-T*T- j+ t- l-.
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The constant of integration can be evaluated by substituting x - 0 and using the condition
tan I 0 = 0. This gives C : 0, so thar

, -rl -'.5 xl to
tlnrr-.t r I rclt1519

REMARK. Observe that neither Theorem 11.10.2 nor Theorem 11.10.3 addresses what
happens at the endpoints ofthe interval of convergence. However, it can be proved that ifthe
Taylor series for / about x : ,{0 converges to /(x) for all:r in the interval (r0 R,;ro*R),
and ifthe Taylor series converges at the right endpoint x0 + R, then the value that it converges

to at that point is the limit of f(r) as r + x0 * R from the left; and if the Taylor series

converges at the left endpoint x0 - R, then lhe value that it converges to at that point is the
limit of /(jr) as r + -y0 R from the right.

For example, the Maclaurin series for tan I x given in (3) converges at both .n - I and

.r : 1, since the hypotheses of the alternating series test (Theorem 1 1.7.I ) are satisfied at

those points. Thus, the continuity of tan r-r on the interyal [-1, l] implies that at -r : 1

the Maclaurin series converges to

lim tanlr:tanrl:1
r+ l 1

and atr : -1 it converges to

lin tan rr:ga11 11 11 : 1
r+ rr 4

This shows that the Maclaulin series for tan-l x actually converges to tan ].1 on theinterval

-l < -rr < l. Moreover, the convergence at r = I establishes Formula (2).

Taylor series provide an altemative to Simpson's mle and other numedcal methods for
approximating defi nite integrals.

Example 3

Approximate the irtegml

t1 .

I e-' dx
Jo

to three decimal-place accuracy by expanding the integmnd in a Maclaurin series and

integrating term by term.

Solutiott. The simplest way to obtain the Maclaurin series for e "istoreplacexby 12

in the Maclaurin seies
tt4

e l+-r-L+t2t lt 4t.

to obtain

x1 ,6 ].E
e t'-l-t -l ..

2! 1! 4\
Therefole.

- ,t I" ,tP IIo ,r,-/ lr-,.'Jo lo L 2: J: 4r l
i._ r' .i \ , ." -l'

L'- 3 - 5.2''' - ?.r")-qr4'J - L

=rl-l- I 5.2t 7.lt 9.41
- , 1't

\- r-r)
?':o l2k + t)kl
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FINDING MACLAURIN SERIES BY
MULTIPLICATION AND DIVISION

r ,t*{
' ,, ..
' -*-
, ,r*!.

2

:-+.:)

' !*!I t.l . !*i6 120

't*t'
+...I -10

2r5
+t)

I t5

Since this series clearly satislies the hypotheses of the alternating series tcst (Theorem
I L7. I ). it follows from Theorem I 1.7.2 that if we approximate rhe integral by .\,, (the /?rh
partial suni of the series), then

ftlL .t,
J.. l2'r, - lr - I pr ltl 1),r - t1,,1 lrl

Thus, lor three decimal-place accuncy we must choosc /1 sLlclt that

(2/r+3)(/,+ll! : 0.0005 :5 x 10 a

With the help of a calculating utility you can show that the sntirllesl r,alue of a thar satisfies
this condition is , : 5. Thus, the value of the integrai to three dccimal-pirce rccur3c) is

rr I I I II t dt I _ 1-, O1t1
Jo t 5 21 7 J: q 

'11

As a chcck, the author's CAS produced the approximation 0.7,16824. which irgrees rvith our'

reSult$'helr].oundedtothIeedecima1p1aceS,<

I ( )li I I ll, lt L,\ l) lilt What advantages does the nethod in lllis cxample have over Sinpson's
lule? What are its disadvantages?

The tbllowing examples illushate some algebraic techniques that are sometiincs useful for
linding Tavlor series.

Example 4

Find the nrstlhree nonzero terms in the Maclaurin series tbrlhe l'unction./ (-t ) : c "tan 
1,r'

Sohrtion. Using the ser.ies for e " and tan-rr obtained irr Exalrples 2 and 3 gives

,' r, \t tr r;rrr'r={' (' , .ll,-;l 
I\ / /\ { \ /

Multiplyir-q, as shown in the margin, we obtain

4 . -rt .rr lillr '\ \ --\ +-\ -,,.It0
More temrs in the seies can be obtained by including nrote temts in tlte lactol's. Moreover.
one can prove that a series obtained by llris method converges at elrch point in the intersection
of the intervals of convergence oi'the lactors (and possibly oll a lalger ir]terval). Thus. we
can bc ccrtain that the seties we have obtained converges for all .\ in the inlcrvrl I : .r : I
(why?).

I Oli i I IL lt Ll,\ DllR lf you have a CAS, read the documentation about nult iplying poly-
nomials, and thcn use thc CAS to duplicate the result in the last exanple.

Example 5

Find the llrst three nonzero tenrs in the Maclaurin series for tanr.

Sttluliut. Using the first three terms in the Maclaurin seiies fin sin.r and cos.r. we can
express tan.r as

sln.t

cos -!

.!+ lt 5l
j2 -r4l- + ...)! 4\
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Dividing, as shown in the margin, we obtain

-13 2-r5tanr:-r+3+ 
15 

+

Taylor series provide an important way of modeling physical laws. To illustrate the idea we
will consider the problem of modeling the period of a simple pendulum (Figure I 1.10.1).

As explained in Exercise 38 of the supplementary exercises to Chapter 9, the period Z oI
such a pendulum is given by

MODELING PHYSICAL LAWS WTH
TAYLOR SERIES

ExERcrsE sEr ll.l0 E cns

f, .tt:
r -1,1" 1

\KJtt
wllere

':-J:('-' f)
(verify).

('l)d0

l- : length of the suppofiing rod

g : acceleration due to gravity

,t - sin(do/2), where d0 is the initial angle ofdisplacement from the vertical

/. sind - sin(6/2). where d is the disp]acement from the vertical at tine /

The integral, which is called a complete elliptic integrql of the first k)nd, canrot be ex-
pressed in terms of elementary functions and is often approximated by numelical methods.
Unfofiunately, numerical values are so specific that they cften give little insight into general
physical plinciples. However, if we expand the irrtegrand of (4) iD a Maclaurin series and

integrate term by term, then we can generate an infinite series that can be used to con-
struct valious mathematical models for the period 7 that give a deeper understanding of tl-re

behar ior of the pendulum.

To obtain the Maclaurin se es for the integrand, we will substitute -t2 sinr S for r in
the binomial series for I /Jl + -rr that we derived in Exanrple 5 of Section I I .9. If we do
this, then we can rcwrite (.1) as

Jt krsinr@

[r+li'.-'o+fr',in*d+!ffru,u,oo+ ] 
ap (5),:OE 

lr''
If we integrate term by term, lhen we can produce a Maclaurin series that converges to the

period f. However, one of the most important cases of pendulum motion occurs when the
initial displacement is snall, in which case all subsequent displacements are small, and we

can assume that d ^: 0. ln this case we expect the convergence of the Maclaurin series for
7 to be rapid, and we can approximate the sum ofthe series by dropping all but the constanl
term iD (5). This yields

T:2it,l- (6)
Vs

which is called tbe.first-otder model of I or the model for small vibrations. This nodel
can be improved on by using more terms in lhe series. For example, if we use the first two
terms in the Maclaurin series. we obtain lhe second-order model

(:1)

Fij.rurc I Ll0.l

l ln each palt, obtain the Maclaurin series for the function by
making an appropliate substitution in the Maclaurin series

tbr I / ( I 'f). Include the general term in youl answer, and

state the radius of convergence of the serres.
111

rar {b) 

- 

lc)lrr I r- I lr
I

rd)
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2. In each prrt. obtain the Maclaurin selies for the function by
rnaking an appropriate substitlrtio11 in the Maclaurin series

for ln(l * ,v). Tnclude the generirl term in your answer, and

state the radius ol conveiSence ot' the series.
(a) ln( I -r)

(c) ln( I * 2-r)

3. In each part, obtain the first four nonzero terms of the
Maclaurin series for the function by making an appropriate
slrhstihltion in one of the hinomial series ohfrined in Fx-
ample 5 of Section 11.9.
(a) (2+r) rir

4. (a) Usir the Maclaurin series for l/(l -r) to find the
Mirclaurin series 1'or' 1/(a r), where a f 0, and state

r he rld iu. of cnnr ergetrce ol thc .ct tc,.
(b) Use the binomial series fbr 1/(l + r)2 obtained jn Ex

ample 5 of Sectjm ll.9 to nncl the nrst lour nonzero

terns in the Maclaurin series fbr l/(1/ + r)2. where

4 + 0. and state the radius oiconvergence ofthe se es-

In Exercises 5 8. obtain the first lour nonzero terlr.s ol the
Maclaurin sclics tbr the tunction by rnaking an appropriatc
substitutjon in a known N4aclaurin series and perllo|rning any

algebraic operations that are required. State the radius ol'con

(b) /l +.r1n(l + r)

(b) (l + tr)rtr(t +-v)rir

Irr Fter. r.<. ll JnLl lh. in(l lhe dr\l Ior.t nLJnleIU tcllllr ol
the Maclaur.in series lbr the function by clividing appropriate

13. (a) e' sin -r

14, (a) r, " cos -t

(b) ln(1 + .rr)
(d) ln(2 lr)

(b) (l .r 
2l l

Maclaurin scries.

15. (r) sec\ f: l)
\ cos\/

tan I 
Ja

16. (a) 
,*_,.

41 1.
19. _r- - I

21. (a) f fcos-rl: sir-r

22. (a) 
-lsinh-t] 

: coshr

rb)

lnl l + -r)
ab)

l-r

17, Use theMaclaurin se es lbrc' and e' to derive the Maclitu-
ril series lbr sinh r and cosh l. Include the gencral terms
in youl answers and state the l adiu! ol convetgence of cach
series.

18, Use the Maclaurin series fbr sinh -r aud co\h.r to obtain thc
first lour nonzero terms in the Maclirurin sel ies lbr tanh -r.

lr l-\rrcr\e. l(rarJ./U, iJthenr,r r\e1nt /ernte \ot the

Maclaurin series fbr the lLrnction by using partial fractions
aDd a kDown Maclaurin sedes.

vergence ol the selies-

(d) 12 cos r.t
(d) sin(.r':)

(c) -r(1 -rr)3/l

ll*2.rll

rr+rl+2, )20' \r-t

d1(bl . ln(l*.i)l -/r l--r
.l Iibl , ltxn ' r]: 

-
,\ t+ l

5. lJ) sLnlr (b). (!).'

6. (a) cos2x (b) .t2c' (c) -rc '

7 lA\ 

- 

rhl 1 (inh r1
I*Lr

3. 1n1 I {bl Scosh(lr)rl

ln Exercises 21 aid 22, confrrm the derivative for mLrla by dif'
ferentiating the approprlate Maclaurin scries term by term.

9. (a) sin2 r

In Exercises 9 and 10. lind the first tbur nonzero tenrs of
the MaclaLuiD sedes lbr the tunction by uslng an appropri

ate trigonometric identity or property oi logarithms and then

substituting in a known Maciaurin series.

10. 1e1 cosr r

(b) ln[(1+-rr)r]l
/t ,\

rb) ln 
I I + ,,

ln Exercises 23 and 24. confirm the integration formula by
irtegrating the approp ate Maclaurin selies lerm by term.

23. rrr f c./.i:, C Lbr /.rr'h',i' (n\1, \ CJ.t
2J. tat f sinr,h : ru\.r + c

rr', f I 
"t, -1n1 ; , .1 ,r./ l+\

25. (a) Use rhe Maclaurin series ibr l/(1 ,.r') to find the
Maclaudn series for

/(rl:--Llr
(b) Use the Maclaurin series obtained iD parr (a) to nnd

/{:r(0) and /(6)(0).
(c) What can you say abour the value of /(")(0)?

26. Let f(-t) - .!r cos 2.r. Use the method tl1' Exercise 25 to
find lre.))(0).

11. (a) Use a known Maclaurin series to find the Taylor series

of l/-r aboLLt .l : I by expressing this function as

1l
r 1-(l r)

(b) Findthe inteival ol converSence ofthe Taylor series.

12. Use the method of Exercise I 1 to find the Taylor series ol
l/r about x : JrO, and state the interval ol convergence of
the Taylor series.

ln Exelcises l3 and 14.1lnd the irst fbur nonzero terms ofthe
Maclaurin sedes for the function by multiplying the Maclau-

. rin series of the lactors.
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Thc linil ol iin indetenninJle lolm u..\ '.\i .irn \omelinl(\
bc lbund withoul using L'H6pitrl's rule by expanding tlre
fLrncliorls involvecl in Tal,lor series about,! - .r0 and taking
rlre linril ol the series ternr by term. Usc this mcthod to fin(l
the linits in Exerciscs 27 and 28.

(a) Usc thc relationship

ltI :Jr:rirr 'i *C./ Jl \l

to lind the llrst four nonzero teiDrs in thc Maclaurin
sedes lbr sin lr.

(b) Expr-ess the series in siqnra nolation.

(c) Whal is the radius ol- convcrgcncc.)

We shoucd by Formula ( 12 ) of Scclion I().3 lhirt iI lhcrc iuc
ri) units o[ radioactive carbon I4 prcsent lt lir]e / =0.thcn
lh,J nullrb(r of unit\ prrsenl t r euls lutcl i.

.r'{ t ) : ri}e (r(x{)lll'

(u) Erprr\\.rr/) a. rr V:rL l:rrrrin scricr.
(b) Usc thc hrst two terms in lhc scrics k) sho\r thll thc

number ol units presenl atier I year is applorimltell,
(0.999879)r'0.

(c) CompiLre this to thc valuc ploducc(l by lhc li)mrulr lbr

.\.( r ).

ln Scction 10.I we stlrdied tlre nlolion ol liillingobicctlhat
hrs ma!s ,r and is relarded by iiir resislilnce. We showed thal
il'the initial velocity is u0 urd the dng litce /.j1 is pr.opor-

lional to the velocil)'. that is. l)i = r r. lhen lhc velocitY
of the object at tirne I is

t(r):. "'/",,+lal "r(\ .' /

rvhere g is the accclcration duc to grrlit\' lscc Fonlula (f3 )

of Section l0.ll.
(a) Usc a Maclanrii series lo show llrirl il ( t/rr ! 0- then

the velocily crn be approximlted as

/ t trrr'(rl=io I +Sl/

(b) lmprovc on the approxinration in purt (l).

Suppose th4i a sirnple pendulun] wilh r lenglh ol L : I

mclcr is given an initinl ciisplaccnrcnl ol /l1r = 5 lionl Ihe

ve ical.
(a) Approxirnate the period olthe pendulun) using Formula

(6) tbr the lirst-order rnodel. lTakc ,q = 9.lt m/sr.l
(b) Approximate (he period ol lhe pendulunr using Fi mula

(7) for the second order model.

(c) Use tlre nulllericirl inlegratior c prbilirj'of a CAS to
approximate the period of lhe penduluDl llolll Fornrulu
(.1). and compare it to the valucs obtrincd in pifls (a)

and (b).

Usc the lirst three nonzero terlns in Fonnull (5) iilld the

Wallis sine tbnrula in the Endpdpcr Inlelrml T{ble (Fonnrla
122) to obtain a model tbr thc peliocl ol a sirrple penduliL|r.

Recall that the gravitiitioral tbrce excftcd by thc Earth on
an object is called the object s l1r,lqlr/ (or nrorc pleciscly.
ils Eollt .'].dqht). We notcLi in stalcDrcDl l{).1.3 lhiit il nn

object has mass r?.lhen the Drilgnilude ol it\ weight is r?S.

However. this lesult presLlmes thlt lhc olicct is on the sur

tace of Ihc Earth (meln sea levcl). A Dorc lteDeral lb rula

.r6.

sln.\
27. (a) liln 

-
r '0 .!

l-cosr
28- (a) lim .\-0 Sttl t

lan I .r .\(b) liln .

(b) lirn
In jl + \' - siD 2.\' -17.

In Exercises 29 32. usc Mlclaurin series to approximate the
integral to tlrrcc clecinrrl-place accurac).

I tl -

19. / ,in,.r: r,i.t J0. / trrn , '.i 
rr r1.'

J,. .,u

l ,t - | .1!Jl. I r I- rr./.t .12. / :
'"'"J^l

33. (a) Ditfelentiatc thc Maclanrin selies lor 1/(1 -r). and

usc thc rcsull lo show that
.-,t
) l\': 

- 

lor l .\. I

", ' 
(l-t)

(b) Inlegralc lhc Machurin series fbr l/(l r). and usc

the rcsult lo show thlt

-,1) -=-lntl r) lor I r I

?ik
(c) U\e rhe result in part (b) to sho$ lhat

I
f L-lr'-'l - ln(i , r) ror I r I

t-t
(d) Show that thc serics in pir (c) converges il r : 1.

(c) Use lhc remiirk tbllowing Examplc 2 to show that
. .t

I,-f , ';=lrr lll ror Lr I

3,1. ln cach pilrl. use tlre lesults in Exercise 13 to lind the sunl

of thc series.
.j- r I I r 4r,r)L*-i+i, lr, lr, I

-'' r i ' rrhl ) =-+- | --r'"' (i f ,!, - -l ' l{-lrr ' trJ') ' lr lrl

,., \-,-r'-rl-r I I

''' /- " t-' .ll-r
35. (a) Use thc rclrtionship

fl
/ ,_,1.-.irrh',l(-J V L + I-

1(] tincl tlre iiNt lbur nonrer-o tems in lhe Maclaurirl
reries for sinh | .\.

tbr E\lru{. lhe \eries rn \ignril lrulJlion.
(c) Whal is the radius of convergence:)

.11t.

E 3e.

40.

41.
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for the magnitude ol the gravitationel lblcc that the Eafil'l
exerts on an ob.ject ol mass nr is

rr, RlF:
(n + r)l

whele R is the r-adius of the Ear'lh and I is thc hejsht of ihe
object above ihe Earih's surfhce-

(r) Use the binomial series tbr 1/( I + r)r obtained in Ex-
anrple 5 ol Section ll.9 to express F as a Miiclaurin
selies in powers ol/r/R.

(b) Show thal ilh : 0. then ,E : ar.g.

(c) Show that ilr/,q = 0, thcn F = /,7.q (2mghlR).

lNorr,: The quanlily 2r?,qi/R can be thought of as a
"corection lerm'lbl lhe weighl drat takes thc objcct's
height above the Earth's surface into accounl.]

If we assune that the Earlh is a sphere of radius
ll : 4000 ni at rnean sea ievel. by approxinrately what
pelcentage does a person's weight change in going fron]
mean sea level to thc top of Mt. Everest (29,028 f0?

Show that the Bessel function J0(-r) given by Formula
(2) ol Section I 1.8 satislies the difllrcntial equariolr
,!r'" + r/+ rr' : 0. (This is called the Bessel equation
of order zero.)

(b) Show thai the Bessel lunction Jr (-r) given by Formula
(3) of Section 11.8 satisiics the differential equatiorl
.r:r"+-r-r''+(.t2 l)-r:0. (This is called the -Bessel
equation 0f qrder one.)

(c) Show that -I;(r) : -Jr(-r).
43. Provc: Ifthe porver series !i=u n1.rr and !i=u b1.t( have

the sanle sL[ll on an intelval ( ]-. /-). therl r4 : br for all
values 01'k.

(l)

,12. (a)

3.

t.

6.

1.

4.

5.

What is the diflerence between an infi ile sequencc ancl an

inlinite seriesl

What is meant by the sum of an inlinile seriesJ

(r) Wh.lt is a geometfic seriesl (iive sone cxamples of
.un\\.r'.-eIl ln,i Jire_!<rrt :leomelfr\ \rr'.e\.

(b) What is r /) selies? Give sorre exantples of convelgent
and divergent /r-series.

(r) Wriie down tlie forniula for the Mrcllulin scries lbl f
in signra notation.

(b) Write down fie fbr-rnula fol tl'le Tirylor serics fbl f obout
r : to in signa notation.

SL.rte -or.rrLrort\ r]lldet \\h-ch rn ilLcrrttttirtr icIrr\ \ !llrI
antecd to convcrgc.

(r) Whal does il mean 10 sa)r thal an infinite series con-
verges absolLrtely'l

(Lr) Wlrat relirtionsllip exists bel$,een converqcnce and ab-

solule col]!e.gence ol au jnlinile series?

Il r power series in r -r0 has radius ofc()llvergence R. what
can vou say abolrt the set olr values al which it convel-ses?

8. State the Remlinder Estimation Theoren. ancl dcsclibc
sornc of its uses.

9. Are the iblLowillg staternents tluc or falscl lf true. state

a lheoren 10 juslily )oul conclusioni if fa1se. then give a

counlerexanlple.
(a) Il'f la converges. then l( --+ 0 lis,t -:' +Z
(b) 11'aa ; 0 as t + +2. theD I r/{ converges.
(c) Il l(n) : at l:or : i.2.3..... and if rr,, ; I as

/?++2,the| l(-t)+l,asr + +2.
(d) lf l(n) : dn fot n - l,2.3..... and ii.l(.r.) + L as

-r > +r.lhen r/,, + | rs /? + +2.
(e) ll0 < a,, < I, then {a,, } convelses.

(f) ll0 < rr7, < l. then I rr1 converges.

(g) If l ar and l rl convelge, thcn I(&a + u() dilerges.
(h) Il l irl and ! 11 diverge. then l(rrr - ua) converges.
(i) Ii 0 : ,lr I q and ! u1 converges. then t ur

converSes.

(i) Il 0: ,l( 5 u{ and I r diverges, rhen I u(

cliver.ges.

(k) If an infinite series converges. then it converses
absolutely.

(l) Il an in{inile series divelges absolurely. then il diverges.

10. Stalc whethel each ol the lbllorving is true or false. Justify
yoLrr ans\vefs.
(iL) Tlre fuiction .l( r) : rL/r has a Maclautin series.

(b) r++-j+j-l+j j+ :r
(c) r+l-j+j-l+j j+ -t

lrl \(r(r.(. I I 14.1.. :rn) melhodtooetenrlllre$hetherrh(
seric! convclge.

ll.,h, t ,b, t t!i 
;5 I 

-\,( .

t-2. rrr ir trr j1A

(cJ t k 
.

fu1 l+'in-l

13. r,Lr i
?:tL'+)k+1

rcr t 'o'1 l't'Ek-

rur fr rr,-'(+=)'

(b) t -_]-tir-r+l)r'



15.

16.

17.

t4. ri, t]I rbr f - 
l' ,., f ' ,'' '?tJt iR( 5{-l 

= 
1,,-l
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n2 
"1 

cL(c) I -+ +)l 4t hr

rln ltl iln lt'ld) I Inl, r...2l rl
26. Suppose that the scquence {,/r } is dcfined recur.sively by

a0: c, 7a1 : Jap
Asslnning thiit the sequencc converees, find its litnii if
(a) c: + (b),-l
Research has shown that the proporlioi p of the popula
tion with lQs (intelligence quotients) belween a and p is
approximately

1 lf
t1 : -1- I r r ! ,r/r

16J2tr J"

Use the first three te|ms ol an appropriatc Maclaurin series
to estimate the proportion ol the population that has IQs
between 100 and 110.

Differentiate the Maclaurin series lb[..!'.' and use the result
to show that

i,'+, .)..

-:ltl
Civcn: --l . .,-;otJ_4-

irzIIIShou: -1 -+---+..lt tr lr l-
Lel d. ,, and /) bc positive constants. For which values ot' 1,

.-t
doe.the.erie, ) - \on\erle.'

ti (d + bk\t

In each part. wlitc out the hrst fblrr terms of the series, and
then fil1cl the radius of convergence.

Find the interval ol coltvcfgence ol

\- (' ' )' ,/,, o,
, t"tt h\

Show that the series

.! .!l l-lI + --+.2! -l! 6!

converges to the lunction

fcor y[ \ :0/(\): I
[eorh J r. r <{t

[Hlnt: Use the Maclaulin serics fbr cos.r and cosh Jr to ob-
lJin \ef ie\ lof co. !^. $ llere \ ' tr. irndcn\h u/- r. uhcre
ir : 0.1

Fincl a lonnula lor the exact enol that results when the sum
of the geometric selies !i=,,( 1/5)r is approxinated by rhe
.r,m ol the hrst 100 terms irr r\c:ctie:.

Doesthe selies l- ] *] Iii* .convelge? Justiiy
your answer-,

(a) Find the 1lrllit five Maclaurin polynomia]s olthe function
P(.\):l-1r*5rr+4-r3.

(b) Make a general statement about the Maclaurin polyno
m.:1. ol a poll nomml ol Jc!rcc ,/.

Use a Maclaurin serics and properties ol altemating series
to show rhat ln(l +r) - -rl j.tr/2 ii0 < .r . 1.

Show that the approximation

r.l 15stnr:YI--+- 3t 5!

is accurirte to tbur decimal places il0 a,t 
= 

n/4.

Use Maclaurin series to approximate the integral

/ I -COSfI Jt

to three decimal-place accuracy.

ll can be proved tllat
.fttltl lr vr/: -1. tnd llmn++.. r-+. n e

In each part. use these limits and the root test to detemline
whether the series converges.

-tr -kk
,",\- j 

'h, t-:1, Al t, I'

(a) Show that fr : ft!.

(b) Use the compauison test to show that i k (converges.

(c) Use the root test to show that the selies converges.

)1

18.

19.

20.
28.

29.21.

30.

31.22.

24. In each part, determine whether the series converges; if so,

23. Suppo.e ,t., f,, I I 
. fi".l

-t:l 
1l

(a) u roo (b) 

^ 

liT_ ar

find its sum.

,",r(+ +)l=t _

(.) \- L

/r LtL ) )\

'.' \- ,,,- 1-'''

(b) tth(r + l) lnrl

32.

33.

(d) lttan'(t+l) ton 'tl

In each part, find the sum of the series by associating it with
some Maclaurin series.

4 il t6
{a) .2+-+-+-+ ..

2! lt 4!

(h) 7 + +l! 51 1l

25.



34.

35.
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Prove:

(a) lf / is an even function, then all odd powers of ir in its
Maclaurin series have coefncient 0.

(b) It' I is an odd function, then all even powers of ,r jn its
Maclaurin series have coelficient 0.

ln Section 8.6 we defined the kinetic energy K of a particle
with mass lrr and velocity r to be K = ]n12 [see Formula
(5) of that sectionl. In this fbrmula the mass rir is assumed to
be constant, and K is calledthe Newtonian Kinetic Energy.
However, in Albefi Einstein's relativity theory the mass //?

increases with the velocity and the kinetic energy K is given
by the for:mula

"t r IK:m".': ll
L,/l tufti l

in which ,70 is the mass of the particle when its velocity is

zero, and. is the speed oflight. This is calleithe relslivistic
kinetic eneryJ. Use an appropriate binonial series to show

that jf the velocity is small compared to the speed of light
(i.e., r.,/c * 0), then the Newtonian and relativistic kinetic
energies are in close agreement.

If the constant p in the general p-series is replaced by a

variable r for r > I, therl the resulting f'unction is called
the Rie ann zetaJuzcrior and is denoted by

rrrr = \-
t-= I "

(a) Let .r,, be ihe ,th partial sum of the series fo. {(3.7).
Find,? such that s,, approxiDates {(3.7) to two decimal
place accuiacy, and calculate.r,, using this value of r.
lHinl: Use the ight inequality in Exercise 30(b) ofSec
tion 1 1.4 with /(n) - lhr 7.1

(b) Determine whether your CAS can evaiuate the Rjemann

zetafunctiondirectly. If so,comparethevalueproduced
by the CAS to the value of s,, obtajned in part (a).

lE 36.
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Johonnes Kepler

AxaLYTrc
GuovrETRY
IN CALCULUS

,Q" ^ "n^nter 
we will study aspects of analytic ge-

ometry that are important in applications of calculus. We
will begin by intro ducing polar coordinate systems, which
are used, for example, in tracking the motion of planets

and satellites, in identifying the location of objects from
information on radar screens, and in the design of anten-

nas. We will then discuss relationships between curves in
polar coordinates and parametric curves in rectangular co-
ordinates, and we will discuss methods forfinding areas in
polar coordinates and tangent lines to curves given in polar
coordinates or parametrically in rectangular coordinates.
We will then review the basic properties of parabolas,

ellipses, and hyperbolas and discuss these curves in the
context of polar coordinates. Finally, we will give some

basic applications of our work in astronomy.
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700 Analytic Geometry ln Calculus

POLAR COORDINATE SYSTEMS

12.1 POLAR COORDINATES

Up to noh'y'e haye specified the locatiotl of a poitli in the plafte b)- medns of cooi'-
dinates rclati|e to tu'o perpendi(ular trnrdirute ares. Howe|at'. sonetimrs tt mul ins
point hds a spetial alfotit,t fot some./ircd poirtt, suclt as a pldnat moting in an orbit
atder the tenttal attt a(tio ofthe Swt. In suclt t:ases. the path of the pat'tlcle is best

described by its angular diectiou and its distance Jrom the ft:ted point. In this sectiotl
u'e u,ill disctrss d neu,kind ol coordinate s$ten1 thot is based ou this idea.

A polar coordinate syslerz in a planc consists of a 6xed point O,cdl\edthe pole (.or origin),
and a rcy emanating from the pole. called the polar axis. In such a cooldinate system we

can associate with each point P in the plane a plir ot polar coordinates (r,0), wherc r
is the distance from P to the pole and d is an angle fr.on the polar axis to the ray OP
(Figure l2.l.l). The number r is called the rqdial coordinqte of P and the number 0 the
angular coordinate (ot polar angle) of P. In Figure 12.1.2, the points (6,45'), (5, 120'),
(3,225'),and(4,330")areplottedinpolarcoordinatesysterns.IfPisthepole,thenr:0,
but there is no clearly defined polar angle. We will agree that an albiLrary angle can be used

in this case; that is, (0, 9) are polar coordinates of the pole fbr all choices of 6.

The polar coordinates of a point are not unique. For example, the polar coordinates

(1,31s'). (1. -,1s"), and (1,675")

all represent the same point (Figure 12.1.3). In general, if a point P has polar coordinates
(r, d), then

(r,e +n.360") and (r,0 -n.360')
are also polar coordinates of P for any nonnegative integerr. Thus, every point has infinitely
many pairs of polar coordinates.

o/:

Figure 12.1.i

315"

(1,:151 (1.6751

P( 3, ,r5.)

Figure 12.1.2

\\
(1.31s")

Figure 12.1.3

As delined above, the radial coordinate r of a point P is nonnegative, since it rcpresents
the distance from P to the pole. However, it will be convenient to allow fornegative values of
r as well. To motivate an appropriate definition, consider the point P with polar coordinates
(3.225'). As shown in Figure 12.1.4, we can reach this point by rotating the polar axis
through an angle of 225' and then moving 3 units from the pole along the teminal side of
the angle, or we can reach the point P by rotating the polar axis through an angle ofz[5' and

then moving 3 urits from the pole along the extension of the teminal side. This suggests

that the point (3.225") might also be denored by ( 3,45'), with the minus sign serving
to indicate that the point is on the erl€rslo, of the angle's teiminal side rather than on the

ferminal side itself.

225'

-":
t*r, porar axis

Fisure 12.1.4



RELATIONSHIP BETWEEN POLAR
AND RECTANGULAR COORDINATES

12.1 Polar Coordinates 701

In general, the terminal side of the angle 6 + 180" is the extension of the terminal side
of 9, so we define negative radial coordinates by agreeing that

(-r.0) and (r.9 * 180")

are pollr coordinates ol the srme point.

FOR TI IE R FA DDR For many purposes it does not matter whether polar angles are neasur-cci
in degrees or radians. However, in problems that involvc clerivatives or integriils they lrust
be measured in radians, since the dedvatives of the trigonometric functions were de ved
under this assumption. Henceforth, we will use radian measure for polar angles, except in
certain applications where it is not required and degree measurc is more convenient.

Frequently, it will be useful to supednpose a rectangular -r1-coordinate systen on top of ir

polar coordinate system, making the positive r-axis coincide with the polar axis. lf this is

done, then every point P will have both rectangular coordinates (,1, t,) and polar cooldinates
(r, d). As suggested by Figure 12.1.5, these coordinates are related by the equutions

r=rcose, ):rsind (l)

These equations are well suited for finding x and y when r and d are known. However, to
find r and d whenx and I'arcknown, ii is preferable to use the identities sin2I +cosr e : I
and tan d = sin 6/ cos d to rewdte ( 1) as

12 : x2 + y2, tand (2)

Example I
Find the rectangular coordinates ofthe point P whose polar coordinates 

^te 
(6.2n/3).

Sohttion, Substituting tbe polar coordinates r : 6 artd 0 : 2r/3 in ( I ) yields

2r / 1\r:6cos. :61 ;l: 3
J \ l./

)n /' r\
):6sin I =6[ l l=]/l- \-,/

Thus,theIectangu1arcoordinatesofPare(.3.3/3)(Figurel2'l.6).<

Example 2

Find polar coordinates ofthe point P whose rcctangular coordinates are (-2.2J3).

Sohttiort. We will find the polar coordinates (r,0) of P that satisfy the conditions r > 0
and 0 : 0 < 2tr. From the first equation in (2),

12:x2 +!2:( 2)2 +eJl)2:++tz:rc
so r : 4. From the second equation in (2),

t zJi
r -2

From this and the fact that (-2,2J4 ) lies in the seconci qurdrrnr, it tullows that the angle
satisfying the requiremenl0 S d <2ttis0 = 2z/3. Thus, (4,22/3) are polar coordinates
of P. All other polar coordinates of P are expressible in the folm

I +.:- + 2n, I or I -+.'- + zn" I\3 / \ 3 )
where n is an integer {

_l
Figure 12.i.5

Figu.e 12.1.6
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GRAPHS IN POLAR COORDINATES
We will now consider the problem of graphing equations of the tbrm r = l(d) in polar
coordinates, where A is assumed to be measured in radians. Some examples ofsuch equations
are

4r-2.os6. t - , r-A
I - JStnf/

In a lectangular coordinate system the graph of an equatio|r ) : /(r) consists of all points
whose coordiDates (n, )) satisfy the equation. However. in a polar coordinate system, points
have infinitely many diffcrcnt pails of polar cq)rdinates, so that a given point may have

some polar coordinates that sitjsfy the equation r : f(d) and others tl.rat do not. Taking
this into account. we dellne the graph oJ r = J(0) in polar coordinates to consist of all
points with 4/ /e4J1 ane pair of coordinates (r. 6) that satisty the equation.

The most elernentary way to graph an equation r : /(6) in polar coordinates is to plot
points. The idea is to choose some typical values of 9, calculate the corresponding values

of r, and then plot the resulting pairs (r,6) in a polar coordinate system. Here are sorne

examples.

Example 3

Sketch the graph of the equation r : sin 0 in polar coordinates by plotting points.

Solution. Table 12.1.1 shows the coordinates of points on the graph at increments of
n/6 (= 30' )

Table 12.1.1

)L

_l - 13.rT Il-:0

2T
3

la
6

4L

;) (++) (+*) rcd(J*) CfT)

(0, 0)

Figure l2.l.7

These points are plotted in Figure 12.1.7. Note, however, that there are l3 points listed
in the table but only 6 distinct plotted points. This is because the pairs from 0 = z on yield
duplicates ol the preceding points. For example. ( l/2.'7rlq and (l/2, n/6) represent

the sane point.

Observe that the points in Figure 12.1.7 appear to lie on a circle. We can confirm that
this is so by expressing the polar equation r : sil6 in terms of r and y. To do this, we
multiply the equation through by r to obtain

12-rsind
which now allows us to apply Formuias (l) ard (2) to rewite the equation as

-r2+t2-1,
Rewriting this equation as.r: * -r2 - y : 0 and then completing the square yields

' ,.] ,r-+(r' +) :j
which is a circle of radius j centeled at the point (0, j) in the rl.plane.

Just because an equation r : l(d) involves the variables r and 6 does not mean thal
it has to be graphed in a polar coordinate systenr. When useful, this equation can also be

graphed in a rectangular coordinate system. For example, Figure 12. L8 shows the graph of
r : sin d in a rectangular dr coordinate system. This graph can actually help to visualize
how the polar graph in Figurc 12. 1 .7 is generated:Figur: I2.1.8
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At e = 0 we have ,- : 0. which corresponds to the pole (0. 0) on the polar glaph.

As (l varies fiom 0 to z/2. the value ofr incrcascs trom 0 to 1, so the point (r. 1?) nroves

alorg the ci|elc li 'rr the foie lo rhe hilh point t I l. r' 2,.

As {/ va|ies tiom r/2 lo /T. thc value of ,- decrettscs flom I back lo 0. so the poinl (/.. d)
movcs along the circle fiom the high point b ck to the pole.

AsF varies from z to 3z/2. the values of ,- ilrc ne-sative. varying li om 0 to - 1. Thus.
lhe point (r.6) moves along thc circle fiom the pole to the high point tt (1.n/21.
which is the sane as the point ( - I . 3rr/2). This duplicates the rnolior that occuffed l-ol

0<e<r12.
As 0 vrries fion 3r/2 to 22. the value ofI varies f'r'onr I to 0. Thus. the point (i.I)
moves along the circlc tionr the high point back to thc pole. duplicaling lhc motion thrt
occunecl tirr z/2 :0 : r.

Example 4

Sketch the graph ol r - cos 2d in polar coordinates.

Soltrtion. Instead ofplotling points, we will use the graph of r' : cos2d in reclangulitr
coordinates (Figule 12.1.9) to visuitlize how lhe polar graph of this equirtioD is gcneratecl.

The analysis and the lesu lting polal graph are shown in Figurc I 2. I . 10. Th is curve is callecl

a .fourpctul tosc.

/- varies from
Ito0as0
var es fTom

0 ta n14.

Figure ll.l.l0

, varies from r varies from r varies from
Oto las0 -l to0asd 0tolasd
var es from varies from varies from
r/r .o - I r : ro \ 

'il4 .'ilr Io r

SYMMETRY TESTS

J\ I
/ '\--'-l---Lj

n I n \t^l1E

I

Fig[rc l:.1.9

++++++++
r varies from r varies from / varies from r vanes from
Ito0as0 0to-l asd lto0asl/ 0tolasd
varies from var es from var es from varles from
T 1a 5T11. 5nllla3nl). 3n1210'77,/1. 'TTllIo)n.

Observe that the polar graph of r : cos2d in Figule 12.1.10 is synrnrctric aboul lhe.r-
axis ancl thc r'-axis. This syutnrctty could have bccn pledicted tionr the tbllowing theolcrtt.

which is suggested by Figure I2. L l I (we on'rit the proofJ.

l2.l.l I lllr)RENI (slnutrctry T.ltt).

(q) A u[\'a i polor coorditttrlt's is s,tntntcft i( (htvl th? r-ari.s il raplucittg 0 bl e in
its ctltrtttiott protlut'as un etluitulent eqrlati(r? (Figure l2.l.l la ).

(lt) A tun t' in poltrr urn inulesis srnutelric altoul Ilrc t o.\isif rqrlftittgg b)n e

in its ctltrtttion protltu u un etluitalent crlr(lirr (Figure 12.1.11b).

(t) A trrrt'c in polur ootdinutcs is s\tnnrcft'i( abo l lhe origin il rcplotiug r h -r irt

its <ttlrrtrtion protluces uu cquitalent equrlri)/t (Figure I2.1.II().

Example 5

UseTheoreml2.l.ltoconfinnthatthegmphofr:cos20inFigurcI2.I.l0issynrmetric
about 1he.r-axis and l axis.

Sdulion, To test lbr symmetly abo[t the.r-axis. we rePlace I by -0. This yields

r=cos(-2d):cos29
Thus. replacing d by 0 does not alrer the equation.
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(.a) (r)

Figure l2.l.l I

To test for symmetry about tl.]e r axis, we replace 6 by:r

r' : cos 2(z - 0) - cos(22 - 20) : cos(-2e) : cos 2d

Thus, replacing d by z 6 does not alter the equation.

- d. This yields

Example 6

Sketch the graph ol r : a(l cosd) in polar coordinates, assuming a to be a positiv(]

constant.

Sohttiort. Observe first that replacing d by -d does not alter the equation, so we know in
advance that the graph is symmetric about fie polar axis. Thus, if we graph the upper half
of the cur ve. then we can obtain ihe lou'er half by reflection about the polar axis.

As in our previous examples. we will first graph the equation in rectangular coordinates.
This graph, which is shown in Figure 12.1.12a, can be obtained by rewriting the given

equatior as r : a a cos9, flom which we see that the $aph in rectangular coordinates
can be obtained by first rcflecting the graph of r - .l cos d about the .r axis to obtain the
graph of r : ,r cos 6, and then translating that graph up zr units to obtain the graph of
r - a - a cos 0. Now we can see that:

As d varies from 0 to z/3, r increases fiom 0 to d/2.

As 0 varies fiom r/3 to n/2, r increases from a/2 to a.

As d varies fiom z/2 to 2tr/3. r increases from a to 3a/2.

Asd vaies from 2tr/3tor, r increases from 3a/2to2a.

This produces the polar curve shown in Figure 12.1.12b. The rest of the cur,'e can be

oblained by contiluing the preceding analysis from n to 2T or, as noted above, by reflecting
rhe portion already graphed about the.{-axis (Figure 12.1.12c). This heafi shaped curve is

ca]ledacQrdioid(,ltomtheGre9kword..kaIdia,'forheart).<

A'"r)

(t :)

2

3d
)

1

Figure l2.l.l2

(b) G)
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Example 7

Sketch the curves

(a)r=r $)e=4 rc)r:e rc z0)
4

in polar coordinates.

Solution (a), For all values of 0, the point (1, 6) is 1 unit away from the pole. Thus, the
graph is the circle of radius I centered at the pole (Figure 12.1.13a).

Solution (b). For all values of r, the po\\t (r, T/4) lies on a line that makes an angle of
/4 with the polar axis (Figure 12.1.13b). Positive values of r correspond to points on the

line in the first quadrant and negative values ofr to points on the line in the lhird quadrant.

Thus, in absence of any restriction on r, the graph is the entire line. Observe, however, that
had we imposed the rcstriction / : 0, the graph would have been just the ray in the first
quadrant.

Solutiott (c). Observe that as 0 increases, so does r; thus, the graph is a curve that
spirals out from the pole as 0 increases. A reasonably accurate sketch of the spiral can

be obtained by plotting the intersections with the r- and y-axes for values of 0 that are

multiples of r/2, keeping in mind that the value of r is always equal to the value of 0

(Figure 12.1.l3c).

a:;n
(b)

E
(c)

Figure 12.1.13

REMARK. The spiral in Figure 12.1.13c, which belongs to the family of Archimedean
spirals r : ad, coils counterclockwise around the pole because of the restdction d : 0.

Had we made the restriction 0 < 0, the spiral would have coiled clockwise, and had we

allowed both positiye and negative values ofo, the clockwise and counterclockwise spirals

would have been superimposed to form a double Archimedean spiral (Figure l2.l.l4).

Example 8

Sketch the 8Taph of r2 : 4cos20 in polar coordinates.

Solution. This equation does not express r as a function of A, since solving for r in terms

of 0 yields two functions:

, . zJros2e and r = -ZJcosn
Thus, to graph the equation 12 : 4 cos 20 we will have to graph the two functions separately

and then combine those graphs.

We will start with the graph of r : 2"Eos2.0. Observe flrst that this equation is not
changed if we replace 0 by -0 or if we replace 0 by rr - 9. Thus, the graph is symmetric

about the r-axis and the y-axis. This means that the entire gmph can be obtained by graphingFieure 12.1.14
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the po{ion in the first quadmnt, reflecting that poftion about the }-axis to obtain the portion
in the second quadrant and then reflecting those two portions about the r axis to obtain the
portions in the third and fourth quadrants.

To begin the analysis, we will graph the equation r = 2Jcos20 in rectangular co-
ordinates (see Figure 12.1.15a). Note that there are gaps in that graph over the inteNals
T/4 < e < 3n/4 and 5n /4 < 0 < '7r f4 becarse cos 2d is negative for those values of d.
From this $aph we can see that:

As d varies from 0 to z/4, r decreases from 2 to 0.

As d varies from z/ 4 to 1rf2, no points are genemted on the polar graph.

This producas the porlion ofthe gmph shown in Figure 12.1.15r. As noted above! we can

complete the graph by a reflection about the y-axis followed by a reflection about the x axis
(12.1.15c). The resulting propeller-shaped graph is called a lemniscate (from the Greek
word "lemniscos" for a looped ribbon resembling the number 8). We leave it for you to
vedfy that thc equatton , : 2JcosD has the same graph as r : -2^,8os20, but traced

in a diagonally opposite manner Thus, the graph of the equation 12 - 4 cos20 consists of
two identical superimposed lemniscates. {

Figure 12.1.15

FAMILIES OF LINES AND RAYS
THROUGH THE POLE

If 0s is a fixed angle, then for all values of r tha point (r,96) lies on the line that makes

an angle of 0 : 00 with the pola-r axis; and, conversely, every point on this line has a pair
of polar coordinates of the form (r, d6). Thus, the equation 0 : 00 represents the line that
passes though the pole and makes an argle of 96 with the polar axis (Figure 12.1.16a).If r
is restuicted to be nonnegative, then the gmph ofthe equation 0 : 00 is the ray that emanates

from the pole and makes an angle of d6 with the pola.r axis (Figure 12.1.16b). Thus, as 0s

varies, the equation 0 : ,0 produces either a family of lines through the pole or a family of
rays through the pole, depending on the restrictions on r.

Figure 12.1.16
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We will consider three families of chcles in which a is assumed to be a positive constant:

r = 2ncos9 r = 2asin9 (3-5)

E
(a)

Figure l2.l.l7

The equation r : d represents a circle of radius a centered at the pole (Figure 12.1.17a).
Thus, as a varies, this equation produces a family ofcircles centered at the pole. For families
(a) and (5), recall from plane geometry that a triangle that is inscribed in a circle with a

diameter of the circle for a side must be a right triangle. Thus, as indicated in Figure s 12.1 .17 b
and 12.1.17c, the equation r :2acos0 represents a circle of radius 4, centered on the x-
axis and tangent to the y-axis at the origin; similarly, the equation r = 2a sin9 rcpresents

a circle of radius a, ceniered on the y-axis and tangent to the i-axis at the origin. Thus,

as a varies, Equations (4) and (5) produce the families illustrated in Figures \2.1.1"7 d artd
'12.1.17 e.

REMARK. Observe that r€placing 0 by -0 does not change the equation r = 2acoso,
and replacing I by 1r - 0 does not change the equation r : 2a sin0. This explains why the
circles in Figure 12.1.17d are synmetric about the .x-axis and those in Figure l2.l.l7 e are

symmetric about the y-axis.

In polar coordinates, equations of the form

r = asitn9 r : a cosne (G7)

in which a > 0 and n is a positive integer rcpresent families of flower-shaped curves called
roses (Figure 12.1.18). The rose consists ofl? equally spaced petals of radius a ifn is odd

F=r,ffi]
(D)

f,:r- r' "
@

l.=r'.i.;-l
(e)

FAMIUES OF ROSE CUf,T'ES

#-F#*#
+##>F#

Fieure l2.l.l8
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FAMILIES OF CARDIOIDS AND
LTMA9ONS

and 2rr equally spaced petals ofradius d if n is positive and even. It can be shown tirat a
rose with an even number of petals is traced out exactly once as d varies over the interval
0 5 d < 2z ancl a rose with an odd numbel ofpetals is traced out exactly once as 0 vaies
over the interval 0 a e < T (Exercise 73). A four-petal rose ofradius l was graphed in
Example ,1.

IOR llll: Itl,.\DFR. What do thc graphs ofthe one petal roses look like?

Eq,-'arion. u irh an1 of tlre lour l,'rn\

r:aLbsin9 r:a*Dcosd (8-9)

in which a > 0 ancl b > (l represent polar curves called linaqons (1iont the Latin word
"limax" for a srail-like creature that is commonly called a slug). Thele are four possible
shapes for a limaqon that are delennined by the ratio ll/b (Figure l2.l.l9). ll a - b fthe
case ri/b - l), thcn thc limaEon is called a cardiojd because of its hea -shaped appealalrce,
as noted in Example 6.

(--. \

L maQon with
nner oop

Figui: 12.1.l9

il i,"_=.\
t''-,-----.1 i'"-"l

tllh= I 1<dlb<2 (ll)>2

l

: Card o d I D mp ed r.aEon I Convex lmaEon

a=0.25 a=0.5

Figure 12.1.20

Example 9

Figure 12.1.20 shows the tamily of limagons r : .r + cosB with the constant c varying
fron 0.25 to 2.50 in steps of 0.25. ln ke eping with Figure 12.1.19, the limagons evolve liom
the loop type to the convex type. As a increases fiom the stalting value of 0.25, rhe loops
get smaller and smaller until the cardioid is reached at a = l. As.r itcreases further. the
ljmaQonsevolvethIoughthedinpledtypeintotheconveXtype'<

a=O75 a=1 a= 1.25 a= i.50 a=1.15 a=2.00 a=2.25 a=2.50
oooooooooo

A spiral is a curve that coils around a centml point. As illusllated in Figu|e 12. I .14, spi-
Ials generaily have "left-hand" and "right hand" versions that coil in opposite directions,
depending on the restrictions on the polar angle and the signs of constants that appear in
their equations. Some of the more comnon types of spirals are shown in Figure I 2. L2l for'
nonnegative values of0. a, and b.

FAMILIES OF SPIRALS
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Arch medean sp ra

- .-. := ::! -
Fi!!ir l2.l.2l

Parabo ic sp ral l Logar thmlc splra
t = d(l)tl

SPIRALS IN NATURE
Spirals of many kinds occul in nature. For example, the shell of the chambered nautilus
(bclolJ forms a logarithmic spiral, and a coiled sailor's rope fbrms an Archimedean spirai.
Spirals also occur in flowers. the ttLsks of ce ain animals, and in the shapes of galaxies.

rhe shell of the chambered

nauljlus revexls a log.Llithmjc
spiral. lhe .rni rl lives in the

orlernosr chN'nher

A sailor's coiled rope fo ns
an..\rchinedean spiral.

GENERATING POLAR CURVES WITH
GRAPHING UTILITIES

Fol polar curves that are ioo complicaled for hand computation, graphing utilities must be

used. Although many graphing utilities are capabLe ofgraphing polar curves directly, some

are rof. However, if a gaphing utility is capable of graphing parametric equations, then it
can be used to graph a polar curve r : /(6) by conve ing this equation to parametlic form.
This can be done by substituting f(0) fot r in (1). This yields

-r: : /(d)cosd. I: l(0)sind (i0)

which is a pair of parametric equations for the polar curve in terms of the parameter d.

Example 10

Express the polar equation

5er:2+cos
2

pammetrically, al1d genelate the po]ar graph from the palametric equations using a graphing
utility.

Soltttiort. Subslltuting the given expression forr in-t : rcosd and ) : ,-sin6 yields
the parametric equations

t .561 t .591r-l)-co. lco.6 r-l),cos lsin6| )l L 'l
Next, we need to llnd an interyal over which to vary d to produce the entire graph. To find

Lituus spllal
, =,rE

Hyperbol c sp ral l

r=ale :
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such an inteNal, we will look for the smallest number ol complete revolutions that must
occur unlil thc value ofr begins to repeat. Algebraically, this anounts to finding the smallest
positive integen such tllat

/ 5rA I Lt-t\ 5,2 cus I l-2Lco\-\r/2
OI

For this equality to hold, the quantity 5rz lrrust be an even multiple of z; the smallest n for
wllich this occuls is ii : 2. Thus, the entire graph will be traced in two revolutions, whicll
meAn\ rl c:ll be gcrrerate.l hum lhc pa|amct|ic c,lultir'rrr

f 59 I I spl\ -12 cn{ lco\4. ' l2 co\ .irro r0 0 4n1L 2l L 2l -
This yields the glaph in Figure 12.1.22.

Foli I HL RLADLR Some graphing utilities require that I be used for the pruameter. If
this is true of your graphing utility, then you will have to repiace I by 1 in ( 10) to generate
graphs in polar coordinates. Use a graphing utility to duplicate the curve in Figure 12.1.22.

/5e \ 5i/
co' l; + 5rr.zrf - cos -

l,='*,.,lqt -2
Figure 12.1.22

ExERcrsESETl2.l E" ,. o Lroro

In Exercises I and 2, plot the points in polar coordinates.

l.

:0
-0
<0

(b) r
(c) r
(d) r

and 0a0 <2tt
and 2jt<0:O
and ft<0<n(a) (3, r/a)

(.d) (4,1r16)

2. (a) (2. -rl3)
(d) ( s, 7./6)

(b) (5,2zl3) (c) 11. nl2)
(e) ( 6, z) (f) ( l.9zl4)

(v Ql2, -1n/4) (c) ( 3.3rl2)
(e) (2.1r|13) (f) (0, r)

In Exercises 7 and 8, use a calculating Lrtility, where needed.

to approximate the polar coordinates ofthe points whose rect-
angular coordinates arc given.

In Exercises 3 and 4, llnd the rectangular cooldinates of the
points whose polar coord;nates are given.

. 7. (a)

8. (a)

(4,3)

(-3.,1)

(b) (2, 5)

(b) ( 3. 1.7)

(c) ( I, ran rl)

(c) (2. sin I l)

(.a (.6, n 16)

(d) (0, z)

(a) ( 8. z/4)
(d) (5.0)

(.b) (7,2ftI3)
(e) (1,lln/6)

(c) ( 6, 5'116)

(r) (-5.0)

In Exercises 9 and 10, identily the curve by tlrnslbrming the
given polar equalion 10 rectangular coordinates.

4.

5.

ld (1. rl4) (c) (8.9214)

(e) ( 2. 37/2) (f) (0. 1r)

9.

10.

(a) r :2
(c) r - 3cosd

(a) r:5secd
(c) r:4cosd+4sin0

(b) rsin9:4

ln each pafi. a point is given in rectangular coordinates.

Find two pairs of polar coordinates fbr the point. one pair
satisfying r - 0 dnd 0 I 0 -< 2t, and the second pair
satisfying/ > 0 and -r < I 5 r.
(a) ( 5.0) (b) (2^/3, -2) (c) (0.-2)
(d) (-8, 8) (e) ( 3.3./5) (f ) (1. 1)

In each parl find polar coordilates satistying the stated

conditions for the point whose rectangular coordinates are

(-J3. l).
(a) /--0 and 0a0<2n

and 12, express the giveD equations in polar

(b) ).2 + l'2 :9
(d) 4-r1 :9
(b) 12 + _r,2 : 5

(d) :r21,t2 + y21 - 1'2

(d) r:

(b) r-
(d) r:

3cos6+2sin0
2 sind

sec d tand

In Exercises 11

cooldinates.

(a) x -1
(c) r2 + tr 6r' :0
(a) r': 3

(c).r2+)2+4ir:o



In Exercises 13-16, a graph is given in a rcctangular d/-
coordinate system. Sketch the correspoltding graph in poiar

25. r:6cosd
2'1. 2r : cos e

29- r : 3(l sind)

31. r:4 4cos0

33, r: 1 cosd

35. r' :2 * sind

37. r:3*ztcosd
39. r-5 2cos6

11. 12 :9 cos2?

43. r2 : 16 sir 2d

45. r -40 (0 
=0j

17. r : cos2e

49. r:9si,n40

12.1 Polar Coordinates 711

26. r:1*sind
28. r 2 :2cosA

30. r- 5*5sind

32. r:11251n6
34. r -4+3cosd
36. r:3 cosd

38. i- 5-3sind
40. i-- 3 4sin0

42. 12 : s:irt21

44. r-10 (0> 0)

46. r :40
48. r -3sin26
50. r - 2cos36

14.13.

coordinateS

InExercises 17 20, find an equation for the given polar graph.

17. (a) (c)

Crce

18. (a) ^ r../ \/ ^l)-t--"i-
''----,|

L maQon

(b)

2lt
3

(b)

B 51. For each ol the curves you sketched in Exercises 21 50.
check your work with a glaphing utility.

ln frerci.er 52-55. use a graphire ur ilit) ro penercle lhe po
lar graph. Be sure to choose the palametel inteNal so that a

con'rplete graph is generated-

E s2.

The accompaDyilg 1]gure shows tlre graph of the "butterfly
cuNe"

r : ecosp - 2 cos 4t? + sinl 1
4

Generate the complete butterfly with a graphing utility, and

state the parameler interval you used.

Figurc Ex-s6

E 57. Figure Ex 57 (next page) shows the Archimedeai spiral
r : e/2 produced with a graphing calculator.
(a) What interval of values for rl do you thjnk was used to

generate fhe graph?

(b) Duplicate lhe graph with your own graphing utility.

.0
2

er:0.5-Fcos-
3

A
E53.r:l*lcos-

e
t-l 55. /- : cos -

5E s1.

E s6.

Three p."tal rose

19. (a)

20. ral ,--:1-\- rb){t)t'+-t
Cardio d

22.

24.

ln

21.

23.

Exercises 21-50, sketch the curve in polar coordinates.

if

6

hr0: 
4

r:4sind

Cardio d

Crce

Four-peta rose Lernniscate

F ve-petal rose Clrc e
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I9,9lxt 6.61
-rsci = 1, ],Scl = 1

Figure Ex-57

The accompanying figure shows graphs ofthe Archimedean
spiral r - 6 and rhe parabolic spiral r - ../9. wti"t' i"
which? Explain your reasoning.

ITI
Figure Ex 58

(a) Show that if d varies, then the polar equation

r:asece eT/2 <0 < jt/z)

describes a family of lines perpendicular to the polar
axis.

(b) Show that if & varies, then the polar equation

r:bcsc9 (0<9<z)

descdbes a family of lines parallel to the polar axis.

Show that if the polar graph of ,. : /(6) is rotated coun-
terclockwise around the origin through an angle d, then
r : /(0 a) is ar equation for the rotated cuNe. [I1lrtr If
(16, 00) is any point on the original graph, then (16, de + cr)

is a point on the rotated graph.l

Use the rcsult in Exercise 60 to find an equation for the car-
dioid r : 1 + cos 0 after it has been rotated through the
given angle, and check your answer with a gmphing utility.

(b) Derive Formulas (4) and (5) ftom the fornula given in
pal1 (a).

Find the highest point on the cardioid r : 1 + cos 6.

Find the leftmost point on the upper half of the cardioid
r-1+cos0.
(a) Show that in a polar coordinale system the distance d

between the points (r1, d1) and (r2, 02) is

t^:-
d -,/ri+ri - 2r1r'cosrd -62r

(b) Show that if 0 10t < 0z l n and if r1 and12 areposi-
tive, then the area A ofthe triangle with vertices (0, 0),
(r1,61), and (r2, d2) is

1: )r1r2 sin@2 A)

(c) Find the distance between the points whose polar coor-
dinates are (3, rl6) and(2,t/3).

(d) Find the area of the tiangle whose vertices in polar
coordinates are (0, 0) , (l , 5T / 6:) , nd (2, T / 3) .

In the late seventeenth century the Italian astronomer Cio
vanni Domenico Cassini (1625 1712) introduced the family
of cuNes

(r.2 +y2 +az)z -b4 4tt2x2 :0 (a > 0,b > 0)

in his studies ofthe relative motions ofthe Earth and rhe Sun.
These curyes, which are called Cassini ovals, haye one of
the thee basic shapes shown in the accompanying figure.
(a) Show that if a = 6, then the polar equation of the

Cassini oval is 12 : 2a2 c os 20. which is a lemniscate.
(b) Use the fomula in Exercise 67(a) to show that the lem-

niscate in paft (a) is the curve haced by a point that
moves in such a way that the product of its distances
from the polar points (a, 0) and (a, r) is a2.

Figure Ex-68

Vertical and horizontal asymptotes of polar curyes can often
be detected by investigating the behavior of x : r cos 0 alld
l - r sind as d vades. This idea is used in Exercises 69 72.

B 69. Show that the hlperbolic spiral r = 1/6 (d > 0) has a

horizontal asymptote at y : I by showing that ), -+ 1 and
jy -+ +oo as I > 0+. Confirm this result by generating the
spiral with a graphing utility.

70, Show that the spiral / : 1/d2 does not have any horizontal
asymptotes.

65.

66.

67-

58.

59.

60.

E 61.

5n(d)"4
7f 7f

(a) t (b) t (c) r
62. Use the rcsult in Exercise 60 to find an equation for the

lemniscate that results when the lemniscate in Example 8 is

rotated counterclockwise through an angle of z/2.

Sketch the polar graph of the equation (r - l)(P 1)-0.
(a) Show that if A and B are not both zero, then the graph

of the polar equation

r:Asin6*Bcosd
is a circle. Find its radius.

63.

64.



E 71. (a)

(c)

(b)

Show that the ftoppa curve r : 1tan0 (0 
= 

0 
= 

2n)
has a vertical asymptote at r : 4 by showing that.r --+ 4
and _r --,' +, as d + 1r/2 ancl that r + ;l and l + --
as A --+ r/2+ .

Use the Dethod in part (a) to show rhat the kappa curve
also has a ve ical asymptote at,r : -4.
Conlim the results in palts (a) and (b) by generating
Il-e kanfir crrvr u th a glaphrng urilrrl.

12.2 fangenl Lines and Arc Length for Parametric and Polar Curves 713

B 72. Use a graphing utility to make a conjecture abour rhe exis
lence of asytnptotes for the cissoil r : 2 sin 6 tan 6, and
then confim your conjecture by calculating appropliate
limits.

73. Prove that a rose with an even number of petals is traced out
exactly once as 0 va es over the interval 0 5 d < 2l and a

rose with an odd rumber ofpetals is traced out exactly once
as 6 varies over the inlerval0 < A < /..

12.2 TAfl{fiHNiT fl-II\85 AN'IO I\RC LHR,IGTI TftR P&RAruEETffiIfl
J\${ffi FSLAF CTXRVHS

In thi.\ se(tiol we u,ill derit,e the fbrffiulds required tu ftnd slopes, tangen.t lines, and
urt lengths of pot umett ic and polar cun,es.

We wilL be concemed in this section with curves that are given by paramenie equirtions

-r=,f(t). l -.C(/)
in which ./(1) and g(I) have continuous first derivatives with respect to L It can be proved
tl\at if drldt + 0, then r is a difierentiable function of ;r, in which case the chain rule
implies rhat

dt dyldt
dx dxldr

TANGENT LINES TO PARAMETRIC
CURVES

Radl|s OP has s op,e,r? = tan 1.

This fomula makes it possible to find d),/dr directly from the parametric equations without
eliminating the parameter.

Example I
Find the slope of the tangent line to the unit oircle

ir - cosl, _!: sinl (O at 
=2n)

at the point where t : z/6 (Figure 12.2.1).

(1)

(2)

Solutiort. From (1), fie slope at a general point on the circle is

d.,- tll/dt: .nrt : corldx dxldt - sin r

Thus, the slope at / :1t/6 is

L/r' r -- cot : t/l
dr. ,:,. 6

lih\l \ltK. Note that Formula (2) rnakes sense geometrically because the raclius to the point
P (cos r. sill r) has slope /?? : tan / i hence, the tangent ]ine at P, being perpendicular to the
radius, has slope - 1/z : -11 tart - - cou (Figure 12.2.2).

It follows from Formuia (1) that the tangent line to a parametric curve will be horizontal
at those points where dyfdt :0 ard dxldt I 0, since dt'ldr :0 a1 such points. Two
different situations occur r,,'hen r1r/r/r : 0. At points where dx/dt = 0 a d),/dt + 0. tbe

Figure 12.2.1
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right side of (1) has a nonzero numerator and a zero denominator; we will agree that the
atwe has infinile slope and. a vertical tangen, ,tt e at such points. At points wherc dx / dt
a\ddy/dt are both zero, the right side of (1) becomes an indeterminate form; we call such
points singular points. No general statement can be made about the behavior of parametric
curyes at singular points; they must be analyzed case by case.

Example 2

In a disastrous first flight, an expedmental paper airplane follows the trajectory

r:t-3sinr, y=4-3cost (t>0)
but crashes into a wall at time t : l0 (Figure 12.2.3).

(a) At what times was the airplane flying horizontally?

(b) At what times was it flying vertically?

Figure 12.2.3

Solution (a). The airplane was flying horizontally at those times when dy/dt = Q and
dx/dt ll-Fromthe given tmjectory we have

dt dx

A:3siJdt ar'"td O= I -3cosr

Settr\g dy /dt : 0 yields the equation 3 sint :0, ol more simply, sint = 0. This equation
has four solutions in the time interval 0 S / 

= 
10;

t:0, t:7, t=21t, t:3tt
S:nce dx/dt : 1 - 3cost I 0 for these values of, (verify), the airplane was flying
horizontally at times

t:0, t:ttx3.l4, t =2n-6.28, aqd, t:3nx9.42
which is consistent with Figure 12.2.3.

Solution (b). The airplane was flying vertically at those times when dx/dt : 0 atd
dy/dt I o. Senng dx/dr : 0 in (3) yields the equarion

1 - 3cosr :0 or cosr : j
This equation has three solutions in the time interval 0 < r < l0 (Figure 12.2.4):

l:cos-rl, t:2tt-cos-t j, r:22+cos I j
Stnce dy/dt : 3 sin t is not zero at these points (why?), it follows that the airplane was
flying veflically at times

/ : cos-r j - f.21, txZr-1.23-5.05, tr-21t+1.23x7.51

which again is consistent with Figure 12.2.3.

(3)

l-
l

cos-l !

r=+X t=lot

,=g t=7\J,=6

Figule 12,2.4
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Figure 12.2.5
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Example 3

The curye represented by rhe parametric aquations

x:t2, -r:13 ( -<r<+.€)
is called a semicubical parabola. The parameter r can be elininated by cubing .r and
squaring t', from which it foliows that ,y: : 13. The graph of this equation, shown in
Figure 12.2.5, consists of two branches: an upper branch obtained by graphing r, = xr/2
and a lower branch obtained by glaphing l' - ,tr/2. The two braitches meet at the origin,
which conesponds to I - 0 in the parametric aquations. This is a singular point because
thedeivatives./.I/dt:2landd\)/dt=3l2alebothzerothere.<

Example 4

Without eliminating the parameter, finddt,ldx and d2 y-/dt2 at the poinrs (1, 1) and (1, -l)
on the semicubical parabola given by the parametric equations in Exallrple 3.

Solttliott. From (1) we have

,./r, ,lt Llr lr2 I
= r rt -01Jx dr/dr 21 2

and fiom ( l) applied to r'' : dv/./r we have

dt! dtr dy,'lth 312 3

dxz dx dx/dr 2t 1t

Since the poirt (1,1) on the curye cofesponds to t = I in the parameric equations, it
follows from (4) and (5) thal

(4)

(s)

Jr3 : and
J^ ,:, 2

dt 3--- : -- anddx,:, 2

d?.; l
dr2 ,=t - 4

TANGENT LINES TO POLAR
CURVES

S imilarly, the point ( I . 1) corresponds to I : - 1 in the pal ametric equations, so applying
(4) and (5) again yields

drr I l
I

,ir r l,=- 1

fi: -.f ,tr"rn, + f'@)cos() - rsino +ficose

fi- f t.el,o"e 'p /'(d)sind :,cos(t+!sin|

Note that the values we obtained for the first and second derivatives are consistent with
the graph in Figure 12.2.5, since at (1. 1) orr the upper branch the tangent line has positive
siope and the curve is concave up, and at (1, l) on the lower branch the tangent line has

negative slope and the curve is concave down-
Finally, observe that we were able to apply Fomulas (4) and (5) fol both I : I and

t : l, even though the points (1, l) and (1, -l) lie on different branches. In contrast,
had we chosen to perlonn fhe same computations by eliminating the parameter, we would
hav9hadtoobtainsepaIated9rivativefomu1asfor.r,-x]/2and}=I]/,]-<

Our next objective is to find a method fol obtaining slopes of tangent lines to polar curyes
of the fbrm r : J (0) h which r is a differentiable l'unction of 0. We showed in the last
section that a curye of this form can be expressed parametrically in tenns of the parameler
d by substituting ./(6) fol r in the equations.r = f cosd and t : r sinA. This yields

r = l(6) cos 6. 1 = l(e) sin d

fi orn which we ohtain

(6)
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Thus. if dr/r1d an(I d\ld0 are continuous and fi dx/de
function of ;r, and Formula (1) with 6 inplaceof r yields

+ 0, then l is a difle;entiable

dr
tll,ld/ rcos9asind*

(1)
r)x /dH Jr

/ srn t, + cos fr;

Example 5

Find the slope of the tangent line to the circle r : 4 cos d at the point where d : rr/4.

Solutiort, From (7) with r : 4 cos 6 we oblain (verily)

rlt,_ 4cos2d -4sin2o _ 4cos2d 
= cot2atlx -8 sin d cos 0 -4 sin 20

Thus, at the point wherc 6 : z/,1 the slope of the tangent Line is

dv I

tlx lr=o1,

which implies that the circle has a horizontal tangent line at the point where P = ;T/4
(Figure 12.2.6).

Example 6

Find the points on the cardioid r : 1 - cos 6 at which there is a horizontal targent line, a

veflical rangenl line. o| r ringular point.

Solution, A horizontaltangent line will occur wherc h /d0 :0 and dx /de 10. avelical
tangent line where d\/tl1 I0 and dx/d0 : 0, and a singular point where d\lde : O

a\d dxlde : 0. We could find these derivatives from the formulas in (6). However, an
altemative approach is go back to basic principles and exprcss the cardioid parametrically
bysubstitutingr:1 cosllintheconversionfomulas-r:,"cosdand_r:rsinlJ.This
yields

1-(1 - cosd)cosd. r:(1 -cosd)sind (0<0 <2n)

DilTerentiating these equalions with respect to d ancl then simplifyinc yie ids (verify)

l x r/r'
- 'indl2co.6 l). - (l co'd)(l 2Loq0,,dt3 de

Thus, dxld7 : 0 if sin € : 0 or cos I - \. anrldyltt?:0if cosd = I orcosd: -i.
We leave it for you to solve these equations and show that the solutions ol dx ldA = 0 on

the inteNal 0 
=e =2rarcn^ 

-n.. e -(J. 
1. r. tl|. t-,tH I l

and the solntior.rs of .i_\,/ld : 0 on the interyal 0 : e 12n arc

'' -n, e-0. 2j!. !. t,d033
Thus, horizontal tangent lines occur at 6 : 2ir/3 a,nd e = 4/r/3; vertical tangent lines occur
at 0 - r/3, r. and 5rl3: and singular poirrs occur at d : 0 and d -2tr (Figwe 12.2.7).

Note, however, that r : 0 at both singular points, so there is really only one singular point
on the cardioid the pole.

Formula (7) reveals some usefirl inlbrmation about the behavior of a polar cur,'e r - /181
that passes through the origir. If we assume that r : 0 and, dr /tl1 l0when0-60. lhen
it follows from Founula (7) that the slope of the tangent line to the curve at d : 0o is

tly
dx

: -"n, 1:0
2

l'=t cosrl

Fisure 12.2.7

TANGENT LINES TO POLAR
CURVES AT THE ORIGIN

Figure 12.2.6
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dr, 0 + sina,-
u ) ,n Srn tlr

= rdri o0dr - dr cos6^
U + cos do -_

llH

(Figure 12.2.8). However, tan90 is also the slope ofthe line g : do, so we can conclude
that this line is tangent to the curye at the origin. Thus, we have established the following
rcsult-

12.2.1 THEOREI\,I. If the polar cun,e r - f(e) pqsses through the origin at 0 : 0p,,

and if dr /d0 l0 at 0 : 00, then the line A : eo is tangent ta the (ur|e at the oigin.

This theorem tells us that equations ofthe tangent lines at the o gintothecuNe,.: /(6)
can be obtained by solving the equation /(0) : 0. It is important to keep in mind, however,
that r = J(0) may be zero for more than one value ofg, so there may be more than one
tangent line at the origin. This is illustrated in the next example.

Example 7

The three-petal rose r : sin3d in Figure 12.2.9 has three tangent lines at the origin, whieh
can be found by solving the equation

sin36 :0
It was shown in Exercise 73 ofSection l2.l that the complete rose is faced once as d varies
over the interyal 0 : I < r, so we need only look for solutions in this interval. We leave
it for you to conflrm that these solutions are

0-0. 0- aod 0--3t
Si\ce dr /dA : 3 cos 3d f 0 for these values of 9, these three lines are tangent to the rose
atth9oIigin,whichisconsistentwiththefigure.<

A fonnula for the arc length of a polar curve r = f@) can be derived by expressing the
curve in parametic fonn and applying Formula (6) of Section 8.4 fol the arc length of a
paramet c cuNe. We leave it as an exercise to show the following.

12,2.2 ARC LENC] H t-oltMULA FoR poLAR CURVES. Ifno segnent ofthe polar curve
r : f(0) is traced more than once as d increases from q to B, and if dr /dO is continuous
foro < I < B, thenthe arc length I ftom 0 : ry to g : B is

"" f ^z
'- J.' 1,.+ lfi) ae (8)

Example 8

Find the arc length ofthe spiral r = ed in Figure 12.2.10betweend :0 andd: z.

Solution.

ARC LENGTH OF A POLAR CURVE

1",

1,"

I ., . r --

,1"-l#) n- 
J" "t'";'n"taa

J2/ Ja - Jzo" ln- Jz,e- tr : j1.3

Figure 12.2.8

lTt. ?")

Figure I2.2.10
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Example 9

Find the total arc lergth of the cardioid r : 1 * cos0.

Solrrtion. The cardioid is truced out once as d varies liom 6 : 0 to 6 : 22. Thus.

,: l.'
I ., r
l" *l#) tlA = I /tlt cos4)l+{-sind)]./d

- t:,
=J2 I Jl+cos?tl1

Jo

"\ tr-- i
= 2 /, ,/cosr ;a /o

:z 
l"'"1*")e)de

klcnriry (:15)

Since cos ]9 changes sign at z, we must split the last integral into the sum of two integrals:
the integml ftom 0 to Jr plus the inlegral from z to 22. However, the integral from z to 2z
is equal to the integral from 0 to rr, since the cardioid is symmetric about the polar axis
(Figure 12.2.1 l). Thus,

t' l I i IL=)l ,os-d114=41 co: 0cl0-lu 2 | l, )
s ,tn lal" = 8

2.)n

EXERCISE SET 12.2 B Graphrng Catcutator

FiSurc l2.2.ll

l. (a) Find the slope ofthetangcnt Iine to the parametric curve
,t = rl+l. )' : t/2 t : -l andat/ : I withoul
eliminaiing the parameter

(b) Check your answers in part (r) by eliminating the
parameter and ditlerentialing aD appropliate fur]ciion
of .r.

2. (a) Find thc slope ofthe tangent line to the parametric curve
r = 3cost. r. :4sin/ at t : x/4andat r :'trl4
without eliminating the paranreteL

(b) Check your answers in pan (a) by eliminating the
pahmeter and differenliating an appropriate function
of .r.

3. For the pnrametric curve in Exercise 1, make a conjecture
about the sign ol d2t,ldtz at l : -i and at r : I, and

c0nfirm youl conjecture withoul eljminating the parameter.

4. For the paramet c curve in Exercise 2. nake a conjecture
about the sign of rllr'/d.x2 att =tt/4,ndatt:7r/4,and
conlirm your conjecture wirhout eliminating the paramcter.

In Exercises 5-10, fin d dr/d.t arliJ cl? y/dx2 at the given point
wilhout eliminal ing the parlmeter.

5. .\ : Vl. l,:.1.+4; r: I

6. ." : jrt, 1, : {rr; r :2
7. r =sect. ),:tant, t:nl3
8. r = sinhr. r':cosht: t=0

9.,r : 20+cosU. \' : l - sin6: O : n/3

10. ,r - cos d. -y : 3 sin d: d = 5z/6

ll, (a) Find the equation ofthe tangent line io the curve

-r: e', _t = t,-'

at I : I without eliminating the parameter
(b) Check your answer in part (a) by eliminating the

pammeter.

12. (a) Find thc equalion of the tangenr line ro rhe curye

.\ =2t + 4. )'=8r2 -2t+4
at 1 : I without eliminating rhe parameter.

(b) Check your answer in part (a) by eliminating the
parameter.

ln Exercises 13 aud 14. find all values of/ at which rhe para-
metric curvehas (a) a ho zontal tangent line and(b) avcrtical
tangent line.

13. r - 2cosr. r':4sinr (0=tS2it)
14. x :2tj 15t2 +24t + 7. l' = /2 + / + I

15. As shown in Figure Ex-15 (next page), ihe Lissajous curve

.r: sinr, ) = sin2r (0:t a 2r)

crosses itselfatthe origin, Findequations for the two tangent
lines at the origin.



16. As shown in the accompanying figure, the prolate clcloid

x:2 - ircost, y:2t-]'srl'it (-it=t=1r)
crosses itself at a point on the r-axis. Find equations for the
two tangent lines at that point.

Show that the curve iy - t3 4t, y : /2 intersects itself at

the point (0, 4), and find equations for the two tangent lines

lo lhe curve il lhe poinl of rnler5eclion.

Show that the curye with parametric equations

":t2-3t -5. y-i3-r'-lol a

inte$ects itself at the point (3, 1), and find equations for the
two tangent lines to the curve at the point of intersection.

19. (a) Use a graphing utility to genemte the gmph of the para-

metdc curve

r.:cos3t, y: sin3/ (O <t <2n)

and make a conjecture about the values of 1 at which
singuiar points occur.

(b) Confirm your conjeclure in part (a) by calculating ap-

propriate derivatives.

20, (a) At what values of I would you expect the cycloid in
Figure 1.7.13 to have singular points?

(b) Confirm youl answer in pa (a) by calculating appro-
priate de vatives.

j In Exercises 21J6, find the slope of the tangent line to the
polarcune fol the giren r alue of g.

21. r:2cos0:0:n/3 22. r:llsin9; 0-n/4
23.r:ll0:0:2 24, r -asec2q; 0:nl6
25. r - cos30: 0 -3114 26. r:4 3siri.?: 0 -tr

In Exercises 27 and 28, calculate the slopes of the tangent
lines indicated in the accompanying f,gurcs.

12.2 Tangent Lines and Arc Length for Parametric and Polar Curves 719

In Exercises 29 and 30, find polar coordinates of all points at
which the polar curve has a horizontai or a vertical tangent
line.

29. r=a(l +cosd) 30. r:asina

Q 31. r : 5i19 6652 I Q32.r- 1 2sind

34. r :4cos I
36. r - sin20

38. r :20

In Exercises 31 and 32, use a graphing utility to matr e a con-
jecture about the number ofpoints on the polar cuNe at which
there is ahorizontal tangent line, andconfirm yourconjecturc
by finding appropriate de vatives.

11.

18.

E

33. r = 2cos 3d

35, , = 4n6os20

3'1. r - 7l2cos0

In Exercises 39 44, use Formula (8) to calculate the arc length
of the polar curve.

39. The entire circle r - a

40, The entire circle t = 2a cos 0

41. The entire cardioid r - a(t cosd)

42. r: srn2(012)fromg:0toA =T
43, r:e3o fromd:0to0:2
44. r:sin3(g13)from0:0to0 - r12

45, (a) What is the slope of the tangent line at time r to the
trajectory of the paper ailplane in Example 2?

(b) What was the airplane's approximate angle of inclina-
tioll when it crashed into the wall?

46. Suppose that a bee follows the trajectory

r =t 2sitrt, ),:2-zcost (l > 0)

but lands on a wall at time t : 10.
(a) At what times was the bee flying hoizontally?
(b) At what times was the bee flying vertically?

47. (a) Show that the arc length of one petal of the rose
r - cos n0 is given by

28-r:l 2sin0
,lo'""'

27. r - 2 * 2sin0

r12
(b) Use the numerical integration capability of a calculat-

ing utility to approximate the arc length of one petal of
the four-petal rose / : cos 20.
Use the numerical integration capability ofa calculating
utility to approximate the arc length of one petal of the
,-petal rose r : cos/?6 forlr :2,3,4,...,20;. then
make a conjecture about the limit of these arc lengths
aS n > +c..

Figure Ex 16Figure Ex 15

In Exercises 33-38, sketch the polar curve and find
equations of the tangent lines to the curye at the pole.

l) sin2 n0 ttA

Figure Ex 27 Figure Ex 28

(c)
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48. (a) Sketch the spttal r : e t' (0: O -. +-).
(b) Find an improper integral for tlte total arc length ol the

spiral.
(c) Show that the integral converges and find the total arc

length of the spiral.

Exerciscs,l9 54 require the formulas developed in the fol
lowing discussion: If l'(r) and g'(t) are continuous functions
and if no segment of the curve

x: /(r), r:g(t) (a=t=b)
is traced more than once. then ii can be shown that the area of
the surface generated by revolving this curve irbout the "r-axis
is

about the,r-axis. sltow that the surface area of a sphele of
radius r- is 4rrr:.

The equations

,r: ad asind, ),: d dcosd (O:.0::2n)

represenl one arch of a cycloid. Show that the surface area
generated by revolving this curve about the r-axis is given
by S : 64tra213.

As illustratcd in the 4ccompanying figure, suppose that a rod
with one end fixed at the pole of a polar cooldiiate system
rotates counterclockwise at the constant rate of I rad/s. At
tiDre 1 : 0 a bug on the rod is 10 mm from the pole and
is moving outward along the rod at tlte constant speed of
2 mm/s.
(a) Find an equation of the iorm r : /(d) for the path of

inotion of the bug, assulning that d : 0 when t : 0.

(b) Find the distance the bug tlavels along the parh in parl
(a) during the nrst 5 seconds. Round your answer to the
nearest lenth of a millimeter.

5,1.

5-5.

and the area of the surface generated by revolving the curve
ahoul lhe r-ex is is

s: 
1,,'' 

2,,

s: 
1,,'' 

2,,

49.

[The derivations arc simi]ar to those used to obtain Formulas
(4) and (5) in Section 8.-5.1

Find the area of the surface generated by revolving x = t2,

| : 2t (0 
= 

I : 4) aboul the r-axis.

Find the area of the sudace generated by revolving the equa

tions r : c/cost, f: elsinl (0: 1 
= 

z/2) about the
r-axis.

Find the area ofthe surface generated by revolving the equa-
tions:r : cosl1,) - sin2t (0 : t : T/2)aboutthe }-axis.

Find the area oi the surface generated by revolving -r : l,
r : 2r2 (0 : / : l) about the )-axis.
By revolving the semicircle

_i:,.cosr. J:r-sin/ (05r:r.) 56. Use Fonnula (6) of Section 8.4 to derive Formula (8).

50.

51.

52-

53.

12.3 &RHA l$"'! P#LFifi; C0fiRfflf'{ATHs

In this settion
c&/t es.

we vvill shou, how to lind areas of regions that are bounded by- polar

AREA IN POLAR COORDINATES

i enclosed by the polar curve r : /(6) and the rays 6

I2,.1,I ,\ttF..\ pRout.FN,t Il.I pot.,\R cooRDI\,\Tlts.
fiat satisfy the conditiorr

d < p 
=(t+2n

Suppose that o and B are anglcs i

and suppose that /(0) is continuous for d : d : p. Find the arca of the region R

- a andd : B (Figure 12.3.1).
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In rectangular coorditates wc solved Area problem 7.1. I by dividing the region iDk) an
increasing nunber of vetical sfips, approximating the strips by rectangles. and taking a
limit. In polar coordinates recrangles are clumsy to work with, aDd it is better to divide the
region into wedges by using rays

()= .0=0......0=a,, r

such that

a<01 <02< .<A,,-t<u
(Figure 12.3.2). As shown in that ligure. the rays divide rhe region R into rr wed-qes with
rrcas A1. A1. .... A,, and cenlral anglcs Ad1. A02..... A4,,. The area ofthe entire region
can be written as

A:At+A,+ +4,, =\-e,
t:r

If Adr is small, and if we assume for simplicity thar /(d) is nonnegativc, then we can
approximate thc area A1 ol the tth wedge by the area of a sectol with centrai angle Ad1
and radius /(Ai). where d : df is any ray rhat lies in the /.rh wedge (Figure 12.3.3). Thus.
from ( I ) and Folmula (5) of Appendix E for the arca of a secror, we obrain

A -l- lA: L 4.+ L )l /r,,; i 
:A4. rf r

r:l t=l '
lf we now' increase rr in such a way that max AOr --+ 0, then the sector.s will become better
and better approximations ol tlte wedges and it is roasurable to expect that (2) will appr.oach
the exact value of the area A (Figure 12,3,4); that is,

It I
A : lim f ^17rR,'rlraa^ = |' 11p11:1n

t_ I -
Thus, we have the following solution of Area Problem 12.3.1 .

lf.-1.2 .\Rl,\t\t,oL \ti( oot|)t\\ s. Ifq ancl FJ are angles that satisfy thecondilion

ct<fr3q+2n
and if /(A) is conrinuous firr a 5 d S B. then rhe area A of the region R enclosed by
the polar curve r: /(A) and the rays 0 = ct ]ind0 : f is

llt | , rl1A: 
J,, rtf@n'le=.1-,r'1tte (3)

The hardest part ofapplyin-u (3) is determining the limirs ofintegr.ation. This can be done
as follows:

Step l. Sketch the region R whose area is to be determined.

Step 2. Draw an arbitrary "radial line" from the pole to the boundary curve
r = f (.0).

Step 3. Ask, "Over what interual ofvalues nust g vary in order for the rar:lial
line to sweep out the region R?"

Step 4. Your answer in Srep 3 will derermine the lower and upper limits of
integration.

=0.0

i-
A; .,;,'!=e'

0)
Le,,

Figure 12.3.2

FiS re l2.r.l

Figurc ll.1. t
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The shaded reg on s swept
out by the radia ine as €

I var es from 0 to rr/2.

Figre i2.3.5

Example I
Find the area of the region in the filst quadrant within the cardioid r : 1 - cos 6.

Suhttiut, The region and a typical radial line are shown in Figure 12.3.5. For the radial
line to sweep out the region, d must vary from 0 lo n/2. Thus, from (3) with cv = 0 and

B : r/2, we obtain

l'l l't lr-A= I -:r'Ju / ,l co\d,',16 - ^ / rt 2co'd -co.'!e1ti1Jo 2 J,' 2Jn

Withthehelpof the identity cos2 d : +(1 +cos2d),thiscanberewrittenas

I I -,J I r ll r I to-rlo (r-:.o.e ,to'2elna - zl2a- t'^e 4.in2-..] -;, l<

Example 2

Find the entire area wirhin the cardioid of Example 1.

Soltttiott, For the radial line to sweep out the entire cardioid, g must vary from 0 to 22.
Thus, from (3) with o : 0 and, fl - 2tr,

r)n ' . ")nA-l !,'ae ^/ rr co'oi do.ln t 2 .ltl

If we ploceed as in Example 1, this reduces to

o=t. [' (]-r.o,o ].o,re)re-l)J, \2 : )

ltltern ite Sohrlirr. Since the cardioid is symmetric about the r-axis, we can calculate
the portion of the area above the .{-axis and double the result. In the portion of the cardioid
above the r-axis, e ralges from 0 to z, so that

o -z 1"" ),'ae = l"'t cosil2 aa -!

USING SYMMETRY
Although Formula (3) is applicable if r : f (g) is negative, area conrputarions can some
times be simplified by using symmetry to restrict the limits of integration to intervals wherc
r ; 0. This is illustrated in the next example.

Example 3

Find the area of the region enclosed by the rose cufr'e r : cos 20.

Soltttiott. Referring to Figure 12.1.10 and using symmetry, the area in the flrst quadrant
that is swept out for 0 : d : z/,1 is one-eighth of the total area insirie the rose. Thus, from
Fomula (3)

7t l! 1 7tl+
A-8/ 'r-d4=41 cos'2AJ0

f-4 | f-4
-t I _(l co,4Atd0. 2 l 1l r,.os,1d;d0Ja 2 lo

1 TA ir2d- .in4n i -2 1,, 2

Sometimes the most natural way to satisfy the rest ction cy < B 5 a + 2z required by
Formula (3) is to use a negative value for cv. For example, suppose that we are interested in
finding the area of the shaded legion in Figure 12.3.6a. The iirst step would be to derermine



n/)

I t7\,,.I it/ t,-i-rF i-'\.- I \ ./,/

kl)

Figure 12.3.6
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theintersectionsofthecardioidr:4+4cosdandthecircler'=6.sincethisinformation
is leeded for the limits of integration. To find the points of intersection, we can equate the
two explessions fin r. This yiclds

I4+,lcosr:6 or cosP: i
which is salislied by the posilive anglcs

r5t0: and 9:33
However, there is a ploblem here because the radial lines to the circle and cardioicl do
not sweep througi] the shaded region shown in Figure 12.3.6h as 0 varies over tlre interval
n/3 

=0 
a 5z/ 3. There ar e two ways to cir cunvent this problern one is to takc advantage

ofthe symmetry by integrating over the ilterval 0 : A a n/3 and doubling the result, and

the second is to use a negative lower lilnit of integration and integratc ovcr the inteNal
tl3 < 0 - r/3 (Figure 12.3.6.J. The two methods are illustrated in the next example.

Example 4

Find the area of the region that is inside of the cardioid r - 4 + 4 cos d and outsidc of the

Solulion Ltsirtg tt N egutirc A rtglc. The area of the resion can be obtained by subtracting
the areas in Figures 12.3.6d and 12.3.6e:

A=l rr-l ,4u,r'ut-J0 I t,n,'rl0
' | ) I ) | ,r.,"..r,... 1.

ttI
- I ^lL+ -lcord/i \trl,la- I 'lbco.u l8co. d 101,1u

.l ,2 .l \

- llt .,,ru ,,+, ).ill'ur lt,rl- . - lb\ J a1

Solution Lising Sy tntetr!. Using symrnetq/, we can calculate the area above the polar
axis ancl double it. This yiekls (veriiy)

/'r IA-21 ll(4++cosa)r -36)d0-20\6-2n) - 18"6-42

which agrees u,ith the preceding result.

In the 1asl cxample u,e fourd the iltelsections of the cardioid and circ]e by equating their
expressions tbr r and solving for 9. However, because a point can be represented in different
ways in polar cooldinates, this procedure will not always produce all of the intersecti{)ns.

For example, the cardioids

r:l-cosd and r:l*cosd (4)

inrersect at thrce points: the pole, the point (l,r/2), ard the poirt (1,37r/2) (Figure

12.3.7). Equating the right-hand sides of the equations in (4) yields I cos d = I * cos d

INTERSECTIONS OF POLAR
GRAPHS

./2
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orcosd:0.so
1T0--Ikn. A-0.+1.+2....

Substituting any ofthese values in (4) yields r : 1, so that we have found only two distinct
points of intersection, (1, r/2) and (1,3tt/2): the pole has been missed. This problem
occurs because the two cardioids pass through the pole at different values of 0-the cardioid
r : 1 - cosd passes thrcugh the pole at 6 : 0, and the cardioid r : 1 + cos0 passes
through the pole at d : z.

The situation with the cardioids is analogous to two satellites circling the Eafth in in-
tenecting orbits (Figure 12.3.8). The'satellites will not collide unless they reach the same
point at the same time. In general, wi.ren looking for inrersections of polar curves, it is a
good idea to graph the curves to determine how many intersections there should be.

r2
r=l cos0lr=1+cos0

a ?f"'\
\ M,rt

Figure 12.3.7

The orbits intersect, but the
satellites do not collide

Figure I2.3.8

EXERctsE SET 12.3 @ crapn ng catcu ator E CAS

1. Write down, but do not evaluate, an integml for the area of
each shaded region. "'#

t = sin20'+
t=0 r=1_sind t=cos2e

Evaluate the integrals you obtained in Exercise 1.

In each pafi, find the area of the circle by integration.
(a) r:a (b) r:2asrn9 (c) r=2acosa

(a) Show that r. - sin 6 + cos d is a circle.
(b) Find the area of the circle using a geometric fomula

and then by integration.

(b)(a)

(e)(d)

In Exercises 5-10. find the area of the resion described.

5. The region that is enclosed by the cardioid r : 2 + 2 cos d.

6. The region in the first quadrant within the cardioid
r = 1*sin0.

7. The region enclosed by the rose r : 4 cos 30.

8. The region enclosed by the rose r = 2sit20.
9. The region enclosed by the inner loop of the limaEon

r = 1+ 2cos6. lHint: r 
= 

0 over the inteNal of
integration.l

10. The region swept out by a mdial line from the pole to the
curver=2/0 as A varies over the interval 1<d <3.

In Exercises 11 14, find the area of the shaded region.

1

3.

4.
r=1+cos0

r=0 "F& @
'=!.*ro



In Exerciscs l-5 22, lind thc iircii ol lhe resiol1 described.

15. Thc region insi.lc lhe circle i. : 5sind alld outside lhe
linaqon r' :2 a sin d.

16. The region outside thc car(iioid r. : 2 - 2 cos d arld inside

lhe circ le r- :4.
17. Thc rcgion insi.lc the cardioid,- : 2 + 2cosA and outside

thc circle r- : 3.

1[i. The re-eion that is comlDon to the cilcles r : 4cosd and

19. The region between the loops ol the limaqon r' - ] 1 cos d.

20. The region inside the cardioid r- = 2 + 2cosfl and to the

li-sht ol rhc linc r.cos 6 : ].
21, Thc lcgion inside thc circle r- : l0 ancl lcl the right of the

lincr'-6secd.
22. The region inslde the rose r' - 2acos2ll and outside the

circle r : rrJ2.

23. (a) Find the el.ror: Thc arca that i! inside the lemniscale
/-:al_cos tts

.lr , alr 
'\-/ -.t:,1- / 1,,co.:,i-

Jt,:J.2
t- lr'

- ir-sinlrl I :0r ],,
(b) Find tlle co ect area.
(c) Find the area inside the lenuiscate r'l - .1cos2ll ancl

outsicle the circle i - r,E.

Irind the arer inside the culve r'l : sin ld.
A rirdial line is drawn t'r'om the origin to the spiral r' : nd
(n > 0 ancl d : 0). Fnrd the area swept out during the

seconcl revolulion of the radial line that wiLs not swcpt out
.luril-lg lhe lirsl revoLutiou.

(a) [n lhe cliscussion associated with Exclciscs ,19 5,1 ol
Section 12.2, formulas rvere given 1br the alea ol lhe
surt'rce of revolution that is gcncraled by revolving a

partrnetric curve rbout the.r-iixis or-r axis. Use lhose
fbmrulas to derivc the following lbr.nrulas tbr the ar-eas

oi the su iices ol revolution that irre generated b! rc
voh,ing the poftion ol thc polar cuNe /- : l(0) l'ronr

e : (! to 0 : p abolrt tlle polar axis and about the line

I2.3 Area n Polar Coordinates 725

(b) State conditions ullder which these tbrmulas holcl.

lr, | \cr.r\e. I {rr.5kel. l ll,\'!.rrlJ.e. iind uie rrte r.,!lrLlr\
in Exercise 26 to filrd the suface arer-

27. The surface generated by revolving tlte cir-clc r : cos,
about rhe line A : x/2.

28. The sLufacc gcncrated by revolving the spiral r - a"

Qae a r/2) about the line, : 7/2.

29. The apple" generated by revolvillg the upper ha1l ot'the
ca|dioid r : 1 cos d (0 5 ll : n) abou he polar axis.

30. The sphele of radius a genetated by revolving the semi
circle r : a in the uppcr half plane about fhe polar axis.

E .11. (a) Show lhirt the Foliurn of Descartes rl 3rr, * r'r : 0

can bc c\prcssed in polar coordinales ls

3 sirr 6 cos l,

.osr, + \inr,

'hj I \d.r aA\ t^ \l-ur ln.rl tlle irei i ,tne ot lre lo.,p i. -
(Figure 4.1.2).

E 32. (a) Whal is lhe area that is enclosed b)'one petal olthe rose

r : u cas 0 il rr is rn cven integer'l

(b) What is the alea tlrat is enclosed by one pettl of the lose
I : 4 cos ad il n is an crid integer?

(c) Use r CAS to sho\\, that the lotal irrea encloscd by the
rosc r : ./ cos /lP is lal/2 if the r]urlber of petals is
even. lHlra. See Erelcise 73 of Section 12. l.]

(d) Use a CAS 1() show that thc total arca cnclosed by the
rose , : .r cosrt is znl/.| if thc numbet of petals is

odd.

3-1. One ol the most farDous problems in Greek anticluitl, rvas
''squaring thc circlc"; thilt is. using a straighteclge and com-
pass to consllucl a square whose {r'ea is equal to thal of a

given circle. It u,as proved in the nineteenth centuly that
no such construction is possible. l-Iowever. show that the
shaded arcas in thc accompanying llgule are equtl. thereby
"squaring thc crcsccnt.'

E 34.

E 3s.

Usc a graphing utility to generate the polar graph ol the
equation r : cos 3d i 2. and lllld the alea thal it enclose!.

Use r glaphing utilit) to generare rhe graph of the bfolium
r - 2 cos 0 sinl d. ancl find the alea of the upper loop.

21.

25.

r = .hlsin r

de

26.

0 : r12:

'= l.'
s = 

.[.,"

2;zl sin

l;rr cos
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coNtc sEcTtoNs

12.4 CONIC SECTIONS IN CALCULUS

Irttl s scttiort rc nil/ r/lLrcirsri some of the busic geontetri< prolr tias of paraholas. el-
lipses, ttucl htyerbolas. Tlrcse tun'es plal at1 itltportant role in c'ultulus and also arise
rnturallt' itt u broutl rartg,c rl ultplicatiorts in such Jields as platleto[\'motiot1, dcsign of
teles<<4tes uttcl attertrns. gcotlati( positioilitlg. ancl neditine, to nanrc a feh,.

Some students may already be familiar with the material in this section, in which case

it can be treated as a review. Instructors who want to spend some additional time on
prccalculus review may want to allocate more than one lecture on this mate al.

Circles. ellipses. parabolas. and hyperbolas arc called conic sections or conics because

they can be obtirined as intersections of a plane with a doublc-napped circular cone (Fig-

ure 12.4.1). If the plane passes through the ve ex of the double-napped cone, then the

intersection is a point, a pail of intersecting lines, or a single line. These are called degen -
etate corric sections.

Circle Ellipse HyperbolaParabola

Apont A palr of
' ntersectjng I rnes

DEFINMONS OF THE CONIC
sEcTtoNs

Figure l2..l.l

Although we could derive properties ofparabolas, ellipses. and hyperbolas by defining them

as intersections with a double-rrapped cone, it will be better suited to calculus if we begin
with equivalcnt definitions that arc based o:r their geometric properties.



All points on the
parabola are equ distant

from the focus
and dlreqtrix.
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12.4.1 DEFINITION. A parabola is the set ofall points in the plane that are equidistant
from a fixed line and a fixed point not on the line.

The line is called the directrix of the parabola, and the point is called the/ocas (Fig-
ve 12.4.2). A parabola is symmetric about the line that passes through the focus at right
angles to the directrix. This line, called the aris or the axjs of symmetry of the parabola,
intersects the parabola at a point called the verTex.

12.4.2 DEFINITION. An ellipse is the set of all points in the plane, the sum of whose
distances from two flxedpoints is agivenpositive constant that is greater than the distance
between the fixed points.

The two fixed points are called the/oci (plural of"focus") ofthe ellipse, and tha midpoint
of the line segment joining the foci is called the center (Figure 12.4.3a). To help visualize
Definition 12.4.2,lmagrlJ,e that two ends of a string a-re tacked to the foci and a pencil traces
a curr'e as it is held tight against the stdng (Figure 12.4.3b). The resulting curve will be
an ellipse since the sum of the distances to the foci is a constant, namely the total length
of the stdng. Note that if the foci coincide, the ellipse reduoes to a circle. For ellipses
other than ciroles, the line segment tfuough the foci and across the ellipse is called the
wajor axis (Ftgure 12.4.3c), and the line segment across the ellipse, thtough the center, and
perpendicular to the major axis is called the minor qxis. The endpoints of the major axis
are cal\ed veftices.

Figure 12.4.3

12.4.3 DEFINITION . A hyperbola is the set of all points in the plane, the difference
of whose distances from two fixed distinct points is a given positive constant that is less

than the distance between the fixed points.

The two fixed points are called the;foci of the hyperbola, and the tetm "difference" that
is used in the definition is understood to mean the distance to the farther focus minus the
distance to the closer focus. As a result, the points on the hyperbola fotm two bronches,
each "wrapping around" the closer focus (Figure 12.4.4a). The midpoint of the line segmeot
joining the foci is called the center of the hyperbola, the line through the foci is called the

focal axis, utd the line through the center that is perpendicular to the focal axis is called the
conjugate axis. The hyperbola intersects the focal axis at two points called the yerlices.

Associated with every hyperbola is a pair oflines, called the asJrzplol€s of the hyperbola.
These lines inte$ect at the center of the hyperbola and have the prcperty that as a point P
moves along the hyperbola away from the canter, the vertical distanca between P and one

of the asymptotes approaches zero (Figve 12.4.4b).

The sum of ihe distances
to the foci is constant.

Focus Center Focus
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The d stance from the
father focus minus ihe
distance io ihe closer
focus is constant.

Focal
ax s These distafces approach

zero as the po nt moves
away from the center.

These distances approach
zero as the point moves
away from the cenier

Figurc I2.4 4

EQUATIONS OF PARABOLAS IN
STANDARD POSITION

Fisure 12.4.5

It is traditional in the study of parabolas to denote the distance between tl.re focus and the
vertex by p. The vertex is equidistant from the focus and the directrix, so the distance
between the vefiex and the directrix is also p; oonsequently, the distance between the focus
and the directrix is 2p (Figure 12.4.5). As illustrated in that figurc, the parabola passes

through two of the comers of a box that extends from the vertex to the focus along the axis
of symmetry and extends 2p units above and 2p units below the axis of symmetry.

The equation of a parabola is simplest if the vertex is the origin and the axis of symmetry
is along the x-axis or y-axis. The four possible such orientations are shown in Figve 12.4.6.
These are called the staftdard posilions of a parabola, and the resulting equations are called
the standard equatiors of a parabola.

PARABOLAS IN STANDARD POSITION

To illustrate how the equations in Figure 12.,1.6 are obtained, we will derive the equation
for the parabola with focus (p,0) and directrix -r - p.Let P(x, y) by any point on the
parabola. Since P is equidistanr from the focus and directrix, the distances PF and PD in
Figure 12.4.7 are equal; that is,

PF _ PD (1)

where D(-p, l) is the foot of the perpendicular from P to the directdx. From the distance
formula. the distances PF and PD are

pp=1Q-p14yz ana pD =tTt+ pY

Substituting in (1) and squaring yields

(r-p)t+12=(xlo)2

(2)

D rectrlx

FiCure 11.4.6

Figure 12.4.7 (3)



A TECHNIQUE FOR SKETCHING
PARABOLAS
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and after simplilying

The clerivations of the other cquations in Fisulc i2..1.6 are simillr.

(-l)

Parabolas cun be sketched liont their .irarrrllrrl../11.//i.r?.r Llsin-q tbur basic stcps:

. Delerninc whelher the axis of symtncl4/ is along the .r axis ol the ,r.-axis. Relc[in.e to
Figulc 12.4.6. the axis of synnctry is alorrg rhe .r axis il'the ecluation has a r,l-rer.nr,
xnd it js along the r,-axis il it has an -rl terni.

. Determine rvl'iich wav the piirabola opens. If the axis o1'syrnmetrv is along the -r -axis.
thel1 lhe parabola opcns to the right jf tl]e coeflicient of t is positive. and ir opcns to the
leli if the cocflicicnt is negative. Ii the a,ris of symmetry is along the r. axis. thcn the
parabola opcns u p if thc coetfi cient o[ r is positivc. and it opels down il the cocfli cie nt
is nc-qative.

. Detemine thc vallrc of /) ancl clraw a box extending 7r units fr.orl the origin along the
axis of synlrnetry in the dit.ection in rvhich the palabola opens anci cxtending 2/, rutils
o[ each side of the irxis ol symmetfy.

. Using the box as a guicie. skelch thc palabola so that its vcrtc\ is at the ,trigin rncl it
passes thr.ough the cor'nels ol thc box (Figure I2.:[.8).

Example I
Skelch the graphs o1'thc parabolas

(.i) -tr - 12r' (b) r'r + 8.r :0
and slrorv tlre focus and directrix ol cach.

Solulittrt \(). This equirliou involvcs rl. so the axis of symntctry is along the r. ilxis, ilnd
the coefficient of _r is positivc, so the parabolr opens upward. From the coefllcient of r.. we
obtain 4p - 12 ot p : 3. Drawing a box extencling 7r - 3 units up from thc oligin and
2p : 6 units to the left and 22 - 6 units to the right of lfie r ii\is, thcn using coners oI
lhe box as a guide. yieltls the glaph in Fi-qure 12.4.9.

Thc focus is 2 : 3 units tl-orll the vellex along thc axis of symntelr y in thc dircction in
rvhich the parabola opens. so its coordinrites are (0. 3). The dilecrlix is pclperldicular to the
axis of syrnmelry al a dislimcc of 1) : 3 Lrnits fr-om the vet tex on thc opposite side front the
focus, so ils equation is r' - 3

,Sulrtlion lbi. We filst rewrite the eqLration in the standarcl fbrn

I'r - 8r

This equation irvolves r':, so the axis of synmetry is along lhc -r -axis. and the coellicient 01'

r is negatiYe, so tlle parabola opens 10 the lel1. From the coefficient of .r we oblain 4/, - 11.

so p : 2. Drawing a box extendiirg 1) : 2 units lefi from the origil and 2p - 4 units
above and 2p - 4 units below thc {--axis. theo using corters ol lhe box as a guide. f ields
the graph in Figurc 12.4. 10.

Example 2

Find an equation of the palabola that is symmetric about the \ -axis, hlls ils ve ex at thc
oligin. and passes throush thc point (5. 2).

Solutiott. Since the palaboLa is symmetric aboul lhc r'-lrxis ancl hiis irs vertex al tlte o gin.
the equation is of the fonn

,l t,,, ^, ,1 1,,,

where the sign depends on rvhether the parabola opcns up or dowu. But the parabola must

. Ro!gh skelch

Fisure I2..1.8

Figure 12.4.9
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EQUATIONS OF ELLIPSES IN
STANDARD POSITION

open up, since it passes tbrough the point (5,2),
equation is of the folm

x2 :4py (5)

:4p.2or 4p - ]. Therefore,Since the parabola passes through (5, 2), we must have 52

(5) becomes

*, -.iy
It is traditional in the study of ellipses to denote the length of the major axis by 2a, the
length of the minor axis by 2b, and the distance between the foci by 2c (Figurc 12.4.1l).
The number a is calledthe semimajor.Lris and the numbet b the semiminor qxrs (standard
but odd terminology, since a and b are numbers, not geometric u(es).

There is a basic relationship between the numbers c, b, and c that can be obtained by
examining the sum of the distances to the foci from a point P at the end of the major axis
and from a point O at the end of the minor axis (Figure 12.4.12). From Definition 12.4.2,
lhese sum\ must be equai. so we obrain

267 *rz:kr c)+(a+c)
from which it follows that

o=Jbz+c2 (6)

or, equivalently,

,:\,C7-62 e)
From (6), the distance from a focus to an end of tl-Ie minor axis is c (Figule 12.4.13), which
implies that for a/l points on the ellipse the sum of the distances to the foci is 2a.

It also follows from (6) that d > & with the equality holding only when c = 0. Geomet-
fically, this means that the major axis of an ellipse is at least as large as the minor axis and
that the two axes have equal length only when the foci coincide, in which case the ellipse
is a circle.

The equation ofan ellipse is simplest ifthe canter of the ellipse is at the origir and the foci
are on the r-axis or )-axis. The two possible such orientations are shown in Figure 12.4.14.
These are called the stqndard positions of an ellipse, and the rcsulting equations are called
the standard equatiotxs of an ellipse.

: ELLIPSES IN S'TANDARD POSIT]ON

Figure 12.4.14

To illustrate how the equations in Figure 12.4.14 are obtained, we will derive the equation
for the ellipse with foci on the r axis. Let P(r, y) be any point on that ellipse. Since the
sum of the distances from P to the foci is 2a, it follows (Figure 12.4.15) that

which lies in the flrst quadmnt. Thus, the

',17;7

FigLrre 12.4.i2

^tF;F

Figurc 12.4.1I

Figurc 12.4.13

, r r.0) ,12
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PF' 'l PF = 2u

SO

uG +..1t +t' + "{-.. 
.'t' rr': z.

Transposing the second ladical to dte right side of the equation and squaring yields

'. ,-,j t\'-4,/ -q,,J* ,, 'r-
and, on simplifying,

/ ------: . (
V(-\ cJ'+r'-r/ r

u

Squaring again and simpiifying yields

;*;l ,-Ia a'
which, by vinue of (6), can be written as

t2 r,2
. -l (ol

Conversely, it can be shown thal any point u,hose coordinates satisfy (9) has 2rl as the sum
of its distances from the fbci, se that such a poinl is on the ellipse.

Ellipses can be sketchecl tiom their stdtttluxl equatiott.r usiog three basic sleps:

Detennine whether the major axis is on the,r axis ol the 1,-axis. This can be asceltainecl
from the sizes of the denomjnalors in the cquation. Relelring to Figule 12.4.14, and
keeping in mind that d2 > D? (since a > D), the major axis is along the ,r,axis if -r2

bas the larger denominator, and it is along the I axis if 1,2 has the larger- denominator.
If the denominators are equal, the ellipse is a cilcle.

Determine the values of rr and D and draw a box extendins a units on each side of the
center along the major axis and 1:) units on each side of the cenler along the minor axis.

Using the box as a guide, sketch the eilipse so that its center is at the origin and it touches
the sides ofthe box where the sides intersect the coordinate axes (Figure 12.4.16).

Example 3

Sketch the graphs of the ellipses

.rl tl -lll, =l tl.r.t''2r''.4q t6

showing the foci of each.

Srtltttion lt). Since t,2 has the larger denominatol, the major axis is along the t,-axi\
Moreovel, since al > 02, we musl have a1 = 1[ xnd [2 : 9. so

a:4 and, b-3
Drawing a box extendir.rg ,1 urits on each side of the origin along the l axis and 3 units on
each side of theoriginalongthe-r-axisasaguideyieldsthegraphinFigurel2.4.lT.

The fbci lie c units on each side of the center along the major aris, where c is given by
(7). From the values of rrl and D? above, we obtain

c:lcE:1164-r,A=z.o
Thus, the coordinates of the fbci are t0. vf t and t0. vf ).sjncerhc) lic on thc ),-axis.

12.4 Conic Sections in Calculus

\
i-( . 0)

Figurc 12.4.15
(8)

A TECHNIQUE FOR SKETCHING
ELLIPSES

r1119!'f:!l
Firur e 12.4.16

ll +l = rlI 9 16 
l

Fis,,." I;.;

,/,
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i*i='l
Fisure 12.4.18

S|lttliort l hl, We first rewrite the equatioir in the standard form

,t? r'2

q+t-l
Since.ll has the larger denominator, the major axis lies along the r-axis, and we have

o2 :1andb2:2. Drawing abox extending d :2 on each side ofthe origin alongthe
-r-axis and extendin g b - A ,- 1 .,1 units on each sicle of the origin along the r axis as a

guide yields the graph in Figure 12.r1.18.

Fronl (7). we obtain

c=ylj 1;=rt=t.+
Thus. the coordinates of the foci are (..,4.0) and ( .,4.0). since thev lie on the .r-axis.

Example 4

Find an equation lor the ellipse with foci (0. +2) and najor axis with endpoints (0. *4).

Srtlrtlion. From Figure 12.4.14, the equatjon has the form

;1;=I
and from tlre given infomation. a - 4 anci . :2. I1 fbllows from (6) that

It? - tt2 c2 - 16 - 4:12
so the equation of the ellipse is

r 
-lD 16 '

It is traditional in fte study ofhyperbolas to denote the distance between the vertices by 2./,
the distairce betweer the foci by 2c (Figurc 12.,1.19), and to define the quantily /, as

U-Jc! c;
This lelationship, which can also be expressed as

6-fa2+b2
is pictured geornetrically in Figure 12.4.20. As illustrated in that figure, anLl as we will shou'
laler in this section, the asymptotes pass thlough the corners of a box extencling /, ullits on

each side of the center along the conjugate axis and a units on each side of the center along
lhe focal axis. The lumber a is called the sern focal axis of the hyperbola and the number

b the semiconjugat€ axij. (As with the seminajor ancl semiminor axes of an ellipse. these

are numbers, not geometlic axes).

If V is ole vertex of a hyperbola, then, as jllustrated in Figure 12.4.21 , the distance from
y to the fa her lbcLrs minus the distance from V to the closer focus is

l(c-a)*2al-(c-o):2.t
Thus, tbl r11 points on a hyperbola, the distance to the fartl]er focus rnirlus the distance to
the closer focus is 2a.

The equation of a hypelbola is simplest if the center of the hyperbo]a is at the origin
and thc foci are on the r axis or l axis. The two possible such orientations are shown in
Figure 12.21.22. These are callecl the standard positions of a hypelbola, and the resulting
equations are calied the standqrd equqtioas of a hyperbola.

The derivations of these equations ale similal to those aheady given fol palabolas and

ellipses, so we will leave them as exercises. However, to ilhrslrate how lhe equaLions of lhe
asymptotes are derived, we will delive those equations for the hyperbola

r-l
n)bt'

Figurc 12.4.19

EQUATIONS OF HYPERBOLAS IN
STANDARD POSITION

( 10)

(11)

FigLr.e 12..1.20

Figure 12.4.21
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A QUICK WAY TO FIND
ASYMPTOTES

HYPERBOLAS IN STANDARD POSITION

(c, o)

Y=ax'/',
b '.2

- 1,/
,..'i

/,1,=9,

Ftg\trc 12.4.22

We can rcwrite this equation as

', b2.,y- = ,-;.(x- - c-)

which is equivalent to the pair of equations

y:b-uG- a2 and y --o r/rr-o,qa

Thus, in the first quadrant, the vertical distance between the line y = (b/a)x andthe hyper-
bola car be wdtten (Figure 12.4.23) as

b b r-x l)('-a'

But this distance tends to zero as -x --+ +ca since

/h L _\ h _
lim l".r "J^2-o2 l: lim "Lx Jx2-dt( .r@ \.r a ./ t .--a

,. brx -r/*, o'lt^+uC,-o, I_,!,:_, 
r. Jrr_o,

ah
= .,:\.;17,, _*:o

The aralysis in the remaining quadrants is similar.

There is a tdck that can be used to avoid memorizing the equations of the asymptotes of
a hyperbola. They can be obtained, when needed, by substituting 0 for the 1 on the right
side of the hyperbola equation, and then solving for ), in tems of x. For example, for the
hyperbola

x2 x2

a' D'
we would write

x'v2.Bh
--i:0 or y':-x' ot ):* x

D'A
which are the equations for the asymptotes.

Figur€ 12.4.23



734 Analyt c Geometry in Calculus

A TECHNIQUE FOR SKETCHING
HYPERBOLAS

r Rough sketch l:___l
Figure 12.:1.24

3-t= J'

Hyperbolas car be sketched from their standat d equqtions nsing fouI basic steps:

. Determine whether the focal axis is on the -r-axis or the ],-axis. This can be ascertained
fron the location of the minus sign in the equation. Refering to Figure 12.4.22, the
focal axis is along the r-axis when the minus sign precedcs the 12-term, and it is along
the I axis when the minus sign precedes the 12 tenn.

. Determine the values ofa and D and draw a box extending a units on either side ofthe
center along the focal axis and /, units on either side of the center along the conjugate
axis. (The squares of c and D can be read directly from the equatiol.)

. Draw th,e asymptotes along the diagonals ofthe box.

. Using the box and the asymptotes as a guide, sketch the graph of the hyperbola (Fig-
ve 12.1.24]t.

Example 5

Sketch the graphs of the hyperbolas

r,r I l- : l49 (b) .r''? .r2 : I

showing their vertices, foci, and asymptotes.

Soltrtiort l(). The minus sign precedes the y 2{erm, so the fbcal axis is along the x-axis.
From the denominators in the equation we obtain

tt2 :4 and. b2 - 9

Since a and b are positive, we must have .l :2 and b - 3. Recalling that the vertices lie a

units on each side of the center on the focal axis. it lbllows that their cool dinates in this case

are (2,0) and (-2, 0). Drawing a box extending a : 2 units along the r axis on each side
of the origin and D - 3 units on each side of the origin along the l,-axis, then drawing rhe
asymptotes along the diagonals of the box as a guide, yielcls the g|aph in Figure 12.4.25.

To obtain equations for the asymptotes, we substitule 0 for I in the given equation; this
yields

=0 or r'=4 -t49'2
The fbci lie c units on each side ofthe center along the focal axis, where c is given by (11).
From the values of rr2 and bl above we obtain

c = rlp 1 p = J4 +9= ^/13 
* 3.6

Since the foci lie on the r axis in this case, their coordinates are ("4J,0) and ( 
"4:. O1

Soltttiort llt). The minus sign precedes the r2-term, so the focal axis is along the y axis.
From the clenominators in the equatioo we obtain a 

2 = 1 and b2 : I , flom which it fbllows
that

a:1 and &=l
Thus, the vertices are at (0, l) and (0, l). Drawing a box extending a : I unit on either
side of the origin along the y-axis and D : I unit on either side of the odgin along the

-{-axis, then drcwing the asynptotes, yields the graph in Figure 12.4.26. Since the box is
actually a square, the asymplotes are perpendicular and have equations _r : ar. This can
also be scen by substituting 0 for I in the given equation, which yields 12 - x2 : 0 or

c-Jii*1tz:Jl +1-J1
Sot1]efoci,whichlieonthe't,axis'are(0,"[1and10,^"4)'<

JL'

Figu,t 12.,1.26
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t(t \l \RK. A hyperbola in which rr : D. as in part (b) of rhis example. is called an e4ai-
Iateral hyperbola. Such hypcrbolas always have perpcndicular asymptotes.

Example 6

Finci the equation of thc hyperbola with vertices (0. +8) and asymptores t : t1.r .

Sttlttlion. Since the vertices ale on the r'-axis. the equation ofthe hyperbolos has the lbrm
(t2 la2) (x2 /b]) : 1 ancl the asymprotes are

TI

'b
From the location of the vcrtices we have a : 8. so the given equations of the asymplotes
yield

t84
I = *;r = a;\ =:t:.Il)D-1

frorn which it follows that 1r:6, Thus. the hyperbola has the equation

r,2 tl
64 36

Equations of conics that are translated fron theil standard positions can be obtained by
rcplacing ,r by ,t - /l and l by .t, - t in their standard equatiols. For a parabola. this
translates the vertex liorn the origin to the point (/i. ii): ll.lcl tbr ellipses and hyperbolas, this
translates the center fiom the origin to the point (r. t).

Parabolas with vertex (h, k\ and axis parallel to x-axis

(,r' - l)2 : 4p(x - h) topcns ri-ehu

(.1' - l)r : -4p(x - h\ lopcns rer(l

Parabolas with vertex (h, k) and axis parallel to y-axis

(x - h)2 = 4p(.1'- k\ lope.s uFl

(x - /r)2 : -4p(t - k) lopcnsdownl

( l2)

(13)

( 1,1)

( l5)

Ellipse with center (h, kl and major axis parallel lo x-axis

(x-,/ill (r'-ktl
1)-

El@se with cent* (h, k) and major axis parallel to y-axis

tt-/rrl {\'-k):
., + i =l [] rrrl (17)
b' LI-

Hyperbola with center (h, k\ arul focal axis parallel to x-axis

rr -,4 12 tr -krl,_.=Q' D-

Hlperbola with center (h, k) and focal axis parallel to y-axis

(r'-*)r (.r -/r):
dr - bt -' ( 19)
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Example 7

Find an equation for the parabola that has its verlex at ( I, 2) and its focus at (4. 2).

Solution. Since the focus and vertex are on a horizontal line, and since the focus is to the
dght of the vertex, the parabola opens to the light and its equation has the form

(y-k)2=4p(x-h)
Since the venex and focus are 3 units apart, we have p : 3, and since the vertex is at
(h. k\ = (l ,2). we obtain

(-r'- 2)2 : l2(-r - l)

Sometimes the equations of translated conics occur in expanded form, in which case we

are faced with the problem of identifying the graph of a qua dratic equation in x Lnd yi

A-r2 + c.r'2 *D,r* Er'* F:o (20)

The basic procedure for determining the nature of such a graph is to complete the squares

ofthe quadratic terms and then tly to match up the resulting equation with one for the fbrms

of a translated conic.

Example 8

Describe the graph of the equation

nt-8.t-6r'-23:o

S0lulion, The equation involves quadratic terms in l, but none in x, so we lirst take all of
the l-terms to one side:

12-6,r=8r+23
Next, we complete the square on the _r'-terms by adding 9 to both sides:

(-r'-3)2:8,t+32
Finally, we factor out the coefficient of the r-tenn to obtain

(,r--3)2=8(.r+4)

This equation is of form ( 12) with I - -4, k = 3. and p : 2. so the graph is a parabola

with vertex (-4, 3) opening to the right. Since p : 2, the focus is 2 units to the ght ofthe
vertex, which places it at the point ( 2, 3) I and the directrix is 2 units to the left of the vertex,

whichmeaIsthatitsequationisx:6'TheparabolaisshowninFigure12.4.27.<

Example 9

Describe the graph of the equation

l6x2 +9y1 - 64-r - 54r,* I :0

Solulion, This equation involves quadratic terms in both x and 1', so we will group the

,r-terms and the }-terms on one side and put the constant on the other:

(1612 - 64r) + (91,2 - 54.I) : -1
Next, factor out the coefficients of x2 and .1': and complete the squal€s:

t6(;r1 - 4r *4) * 9(r-2 - 6) + 9) = -1 *64 * 81

or

t6(x - 2)2 I9(t - 3')2 : 144

Finally, divide through by 144 to introduce a I on rhe dght side:

tr-r\2 r' lll
9 16

(-2,3)



(2. 3)

2.1+i7)

(2,3 \i7 )

Figure 12..128
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Tlris is an equation of lorm (17), with /r : 2. k : 3, a2 - 16, and D2 - 9. Tirus. the
equation is an ellipse with center (2,3) ard najor axis parallel to the y axis. Sincc n - ;1.

lhe najor axis extends,l unils abovc and 4 units below the center. so its cndpoints are (2, 7)
and (2. -1) (Figurc 12.21.28). Since D - 3, the minor axis extends 3 units tr) rhe lefr aod 3
units to the right of the center, so its endpoints are ( l. 3) and (5.3). Since

t::Jaz-ot:-16 9:rt
thc loci lie J7 units above and below the center, placing then at the points (2.3 + rt )

and (2.3 rt l.

Example l0
Dcscribe the graph of the equation

-rr - r'2 - 4,t + 8r' 2l :0

Solulion. This ecluation involvcs quadratic terms in both -r and r. so we will group the
,r-tenns and the t tenns or one side and put the corstant on the other:

(t' ,ir) (),t 8_r,) : 2l

We leave it for you to verify by conlpleting the squares that this equation can bc writtcn as

(x 2)2 _ (r' 4)t : I99 (21)

ROTATED CONICS

Tllisisanequationolform(18)rvith/r -2,k-1.a? -9.an'Jb2 = 9. Thus, the equatiol
represents a h)'perbola with centcr (2,4) and tbcal axis parallel to the r axis. Since a - 3.

the vertices are located 3 units to the left aod 3 units to the ight olthe center, or at the iloints
( 1.4) and (5,,1). Fron (111. c - "6rT77 - 

.,,q + 9 : 3."4, so the fbci are located
3^,f units to the Ieft and right ol lhc ccntcr, or rt the points (2 3.Jr. 1) and (2 + 3./4. 4).

The equations ofthe asyflptotes may be found using the trick of substituting 0 for I in
(21) ro obtain

l-t 2)2 lr' ,1)2
/)

99
This can be written as i .1 : t(.r 2). which yields the asynptotes

):-1.+2 and -r: -r-.1-6
Withtheaidofaboxcxtcnclinga:3rLnilslcltandrightofthecentelandD=3units
abor'eandbelou'thecenteI.wcobtainthcskclchirrFisure12'4.29-<

An equation of the form

.1.r: + Brt + Cr: + Dr * E-r'* F :0 (.22)

is called a secol/.degree equation in x and y. The term lJ.u, in this equation is called the
cross-prodact ternt. I l'the cross-producl tem is abseut tion the ecluation ( B - 0), then the
equation reduces to (20). in which case the graph is a conic scction (possibl)' dcgeneratc) tllat
is either in standard position or tlanslatecl tiom its stanclard position. It c:rn bc provcd that if
the cross ploduct term is present (6 + 0). then thc graph is a conic (possibly degenerate)

that is r"Idled liom its standard orientation. A discussion of rotated conics can be found in
the Student ResouK e.\.

Parabolas. ellipses, and hyperbolas have certain rcflcction propertjes that nrake thcm cx-
tremely valuable in various applications. In the exercises we rvill ask you to prove the
f0llowing rcsults.

I 12..1.4 I HEOREN I (Refection Pnpertt of Pflrabolasl ThL tr,/tt:Lti litl .i 0 poult P on 4
' parabo[tL nakes equoL cutgLes witlt tlle Line thrcugll P paralleI to llle axis of ll1'.l:r'.rr'etn

ttncl tlte line tltrough P und the foctts (Figure 12.4.30a).

REFLECTION PROPERTIES OF THE
coNtc sEcTtoNs
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, 12.:1.5 THFIORENI (.Refcdirn prcpertr of l: ipse'). A Ii e tLrlge]t to . 1 ellipse at tL poittt
. I' nutkes eqrnl ttttgles t itlt tlte lin.es .joiting P to 1ld lr.rl (Figurc 12.,1.301r).

l:.1.6 lli. t'Rl \l tRtfltnotr Pr,tp.t^ nJ H)f.rhoht,t. \ lit', tn Ett t t,),t l,\1,, tl,t ln at .t

ltoitl P ntokes et1rtL turgles *ith the Li es joitlitlg P to tlrc.foci (Fi!:\re 12.,1.30.).

Ta ngent

(.a) (b)Figure 12..1.10

APPLICATIONS OF THE CONIC
sEcTtoNs

Incoming signrls tue l.eflected b.\ the

pr.abolic .utennr to the |eceiler rt the

It is a principle ol physics llrat when light is reflected frtlrn a point P ol a surface the
anglc bctween the incoming ray and the tangent line at P is equal to the angle bctween the
outgoin-g ray and the tangent line al P. Thcrcforc. ifa |eflectlng surface htrs parabolic cross
sections with a corrmon tbcus and axis. then it ti)llo$,s fiont Tlteoren 12..1..1 that ali light
rays entering parilllel to the axis rvili bc rcflccted to the lbcus (FigLrre 1 2.4.3 I rr); conversell,
if a light source is located at the focus, then the reffected rays will all be parallel to the axis
(Figure 12.4.31 D). This principle is used in certain lclcscopes to rellect tlte approximarely
parallel rays of light fion the stars and planets otl of a parabolic mirror rr' .rn elepiece rr
thc locus: and thc parabolic rcllector-s in flashlights and automobile headliglrts utilize this
priDciple to tbrm a parallei bearr of light rays liom a bulb plirced at the focus. Thc same
optical principles apply to radar signals and sounci waves. rvhich explains thc parabolic
shape of many antennas.

Fisui. 12.:1.31
(.rl (.h)

Visitors to various rooms in the United States Capitol Builcling and in St. Paul's Cathedral
in l{orne are often aslonished by the "whispcling gallely" etlect in which two lleople at
oirposite ends ol tfie room can hear onc another's whispers Very clearly. Snch rooms have
ceilings rvith elliptical cross sections and common 1irci. Thus, u'heli the two pcoplc stand
at the lbci. their whispers lLIe rellected clirectlv to one anothcr olT 01'the elliptical ceiling.

Hyperbolic navigatiott systerns, rvhich wclc do'cloped in Worlcl War II as navigational
aids to ships. arc bascd or] thc dcllnition of a hyperbola. With these systen'is thc slrip receives

synchronized radio signals fiom two widely spaccd transnrilters r.vith known positions. Thc
ship's electronic receiver measLrrcs the clillerence in reception times betwccn the signals
and lhcn uscs thal dillerence to complrte the diflerence 2ri in its distancc bet*,een the t\\'o
tlansnilters. This inlbrrnation pllces the ship somewhere on the hvperbola whose foci are

at the transmitters ancl whose points have 24 as the dilTerence in thcir distances liom the
foci. By r epeating the process with a second set ol transmitlers. the position of the ship can
be dctermincd as the inlcrseclion of 1wo hyperboias (Figure 12.:1.32).

TaNgeft ne at P

Tafgent I n€ at P
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ExERctsE SET 12.4 E Graph ne calcu ator E cAS

1. In each part, find the equation of the comc. (a) 9(.t - 1)2 + 16(), - 3)2 - 144
(b) 3(.r * 2)2 i 4(r i D2 : 12

(a) (.r * 3)'? + 4() - 5)'? : 16

G) 1'''?+ ;(-r + 2)'? 1 : o

(a) i2 +9),2 +2.r - 18), + I - 0
(b) 4r'? + ],'z + 8i{ - 101,, : -13
(a) 9.r2 +412 i 18r 24y*9=0
(b) 5-t2 + 9y2 20x + 54J, - 56

In Exercises 15-20, sketch the hyperbola, and label the ver-
tices, foci, and asymptotes.

(a) (b)

I

0

-1
2

,3

(d) I
2

I

0

-l
2

3

(o 
:r

2

l

0

I

2

l

72.

13.

14,

(c)

(e)

3

2

1

0

-t
2

3

3

2

I

0

1

2

3. (a) 1'?:6;v

4. (a) ),'? - -l0r
5. (a) (y 3)'?:6(x-2)

6. (a) (l, + 1)2 - '7(x - 4)

7. (a:) x2-4x+2J-l
8. (a) y2-6y-2:r*1-0

ls. (a)

16. (a)

t _,::
164

t _i::
925

(b) 9)2 - 4jr2 : 36

1 (b) l6x2 - 25)'2 : 4oo

. (n - 2)2 t], - 4t2
til, - l94
(b) (y + 3)'? - 9(x + 2)2 : 36

('!, *,1)2 (r 2):

l5
(b) 16(r + 1)'?- 8() 3)'?- 16

(a) x2 4)-2 +2x +8y 7-0
(b) l6:r'z . y'? - 32x - 6y : Jl
(a) 4r2 9y2+1tu+54J, 29-0
(b) 4y2 'lr2 i 40y - 4-t - 60

2. (a) Find the lbcus and directrix of the parabolas that are

given in Exercise L
(b) Find the foci of the ellipses in Exercise 1.

(c) Find the foci and the equations of the asymptotes of the

hyperbolas in Exercise L

I 
" "*r"u". 

,-t, sketch the parabola,

i vertex, and directrix.

17,

,-l

18.

79.

20.

In Exercises 9 14, sketch the ellipse, and label the foci, the

\ enice\- and rhe ends of the minor axi:.

In Exercises 21 26, 6nd an equation for the parabola that

satisfies the given conditions.

21. (a) vertex (0,0); focus (3,0).
(b) Vertex (0,0); directix.r : 7.

22. (a) Vertex (0,0); focus (0, -4).
rbr Vener. {0. Ur: direclri\ J - 2

23. (a) Focus (0, 3); directrix l - 3.
(b) Vefiex (1, 1); directrix t, - -2.

2,1. (a) Focus (6,0); dilectrix x : 6.

r.b1 Focu. 1 l.1): directrix r : 5.

25. Axis,y : 0; passes through (3,2) and (2, -3).
26. Vertex (5, 3); axis parallel to the ), axis: passes throrigh

(e, s).

In fxereise" 27 J2. find an equarion lor the ellip.c rhJr sdr

isfies the given conditions.

27. (a) Endsofmajoraxis (13,0); ends ofminor axis (0, :12).

1b'l Length ol ma;or rxi.26: foci (t5.0).

and label the fbcus,

(b) .r2 : 9y

(b) (.t a 2)2 : (1 + 2)

(b) (r l' :zft - rt

(b) x: t2 4f +2
(b) y :4:r']+ 8-r + 5

I

lTr
lvr

9. (a)

10. (a)

t2 )2

16+t
t2 '!,2

4+ 25

(b) gjr'?+ ],2 : 9

(b) 4ir2 + 9)2 : 36



42.

43.

24.

29.

30.

31.

32.
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(a) Ends of major axis (0. *v6); cnds of minor axis
(+1.0).

(b) Length ofminor axis 16; foci (0. :16).

(a) Foci (+1, 0); l) : .,/2.
(b) c : 2..6; 4 : 4; ccnter at the origin; ioci on a coor'

dinate axis (two answers).

(a) Foci (:l3,0); a :4.
(b) b - 3; c - 4: center at the origin; lbci on a coordi-

nate axis (two answers).

(a) Ends ofmajor axis (46.0): passes through (2,3).
(b) Foci (1,2) ard (1,,+); rninor axis oflength 2.

(a) Center at (0, 0): major and minor axes along the coor-
dinate axes; passes through (3. 2) and (1, 6).

(b) Foci (2, l)and(2,-3): major axis of length 6.

In Exercises 33 38, find an equation for a hyperbola that sat-

isfies the given conditions. (In somc cascs there may be more
than one hyperbola.)

(a) Veftices (*2,0): foci (+3,0).
(b) Vefiices (+1. 0): asymprotes I : +2r.
(a) Vertices (0, +3); foci (0, +5).
(b) Vetices (0, +3); asymptotes l, - +.r.

(a) Asyrnptotes 1 : +)x; b:4.
(b) Foci (0. +5); asymptotes t, - +2r
(a) Asymptotes ) : tJr; c:5.
(b) Foci (+3,0); asymptotes t : +2r.
(a) Vertices (2,4) and (10,4); foci l0 units apart.
(b) Asymptotes )' - 2r + I and _r, - 2r + 3; passes

through the origin.

(a) Foci (1, 8) and (1. -12); veftices 4 urits apart.
(b) Vertices ( 3, 1) and (5, I ); , = ,1.

(a) As illustrated in the accompanying figurc, a parabolic
arch spans a road 40 t'eet wide. How high is the llrch ifa
center section of the road 20 feet wide has a minimum
clearance of l2 feet?

(b) How high wouid the center be ifthe arch were the upper
hall of an ellipse'l

(a) Find an equation lor the parabolic arch with base b and

height /r, shown in the accompanying figure.
(b) Fincl the area under the arch.

As illustrated in the accompanying figure, suppose that a

comet moves in a parabolic orbit with the Sun at its focus
and that the line tiom the Sun to the comet makes an angle
of 60' with the axis of the paralrola when the comer js 40
million miles frorr the center ol the Sun. Use the result in
Exercise 4l to determine how close thc comet will come to
the center of the Sun.

For the parabolic reflector in the accompanying ligure, how
1ar from the vertex should the light source be placed to pro-
duce a beam of parallel rays?

Figure EK 12

44. In each part. nnd the shaded area ir1 the

34.

36.

37,

38.

39.

(a) I t' , (b) . t,\ / \I-1V. /.I\
1'2 8r2 = 5 3-Y2 7r'l = 5
,'-212=0 9)2 2rl=l

llgLLre.

t !l-li\r'1"./
\_1_-/

40.

Figurc Ex 39

45. (a) The accompanying figure shows an ellipse with semi-
major axis a and semiminor axis D. Express the coor
dinates of the points P, Q, and R in terms of 1.

(b) How does the geometric interpretation ofthe parameter
1 differ between a circlc

r:4cos/, J-dsinr
and an ellipse

iv:dcost, ) -/rsinli

Fisure Ex-45

(a) Show that the right and

r l,-
;-t,,-'

Show that the vertex is the closest point on a parirbola to
the focus. lsrgge.ltlor. Intuoduce a convenient coordinate
system and use Dellnition 12.,1.1.1

Figure Er .13

41.
E 46. left brrnches of the hyperbola



c n be representcd paraDetricitlly as

.\- : ,t cosl] t. .1, - 1, sinh / (-, < I < +t:)
r- acoshr. r:bsinhl (-',<t <+zl

(b) Use a graphing utilily to generate both branchcs ofrhe
hypclbola .rr - .i 

I : I on thc same screen.

8 47. (a) Show that dre |ight and lett britnches of the hyperbola

\'- \'
=tt: h:

can be reprcsclted parametrically as

.L- .7sect. r':btlD/ ( nl2<t <n/2)

.r- .rsccl. .t:1rtan/ | .t/2<t <:t/2\
(b) Use a graphing utility to genclate both brlnches of thc

hyperbola -r-r - .i 
I : I on thc same screen.

Finci an equation oithc pirabola traccd by a point thiil lr]oves
so lhill ils distance tl1)m ( I. J) is tlrc same as its distance

Find rn equation of thc cllipse tuced by a point th{t moves
so tl'ral tlre sum of its distances to (4, I ) and (:1. 5 ) is I2.

FiId the equation ol the hvperbola trrced b-t'a point th:tt
moves so thut the dillerence bctvccn its dislances to (0.0)
and(l.l)is1.
Suppose that the basc of a solid is elliptical rvith a nrirjor axis
of lcn-gth 9 ;rnd a rninor axis ol length ,1- Find thc volume
of the solid if the ct)ss seclions pclpcndiculxr lo tlre major
axis irc squarcs (see the accomp.rnying ngure).

Supposc that the brse ol-a solid is elliptical with a miLjor axis
of lcngth 9 and a ninol axis ol leDsth ,1. Find thc volurre
of the solid if the cross sections pclpendicular to thc rninor
axis orc cquilater l tlianglcs (scc the rccompan),in! figurc).
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Show th t the ellipsoid that rcsulrs whcn an cllipsc wirh
semimajor axis a and scmirninor axis I is revolved about
the nlinor ilxis has surtiicc ar-ca

/tt l, ,t+, \S:2:rrbl +-lr) I
\/r . h l

where r' : \,tl Jt.
Suppose that ]-ou $ilnl 1() druw an ellipsc that has gi\,cn |al
ues lbr the Iengrhs ol the major and ntinor axcs by using thc
melhod shown in Figure 12..1.30. Asruning rhat rhc axes
are drawn. explain how a compass can ltc used to locilte the
positions tbr the tacks.

The accorrrpanying hgLre shou.s Kepler's method ti)r con-
structing r parlbolir: I piece oi srring the length oi thc leti
edgc ol thc dralting lr'jongle is racked k) the vertex 0 of thc
trian-glc and the othel end to a fixed poi0t F. A pencil holds
thc striDg taut against lhe base of dtc triangle as thc cdge
oppositc O slides alon-!: r horizontill linc L belo\\' /:. Sho\\
that the pencil traces un arc ola patitbola with tbcus F irnd
dilectrix L.

Figurc Ex-58

The accompanying Iiguic shows a ntethod fbr construcling
a hyperbola: a comer ol t ruler is pinned to a llxed point
Ft and tlrc rr.rler is liee to rotale about that point. A piecc
ol string whose length is less than thlt of the ruler is tiicked
to a poiDl l't and to lhe ltee cornel Q ofthe rulcl on the
same cdge ls fl. A pencil holds the stling taut aguinst the
top edge of the rulcr ils thc ruler rottles irbout lhe point Fl.
Show that the pencil lrilces an arc ol t hypcrbola rvith iitci
l'1 and F2.

Fisurl'F:\'59

Show thrt ifa plane is not parallel to thc axis ofa right circu
lar cylinder. tl'len the intcrscction ol thc plane ancl cylindet
is an ellipse (possibly a circle). [Hilrl. Let f, be tl]s anglc
sho$rr in Figurc Ex-60 (next page). introduce cmrdiDate
ares as shown. and exprcss r' and ,t' in tenns of .r and r.]

56.

57.

58.

48.

49.

50.

51.

52.

59.

5.1.

54.

FigLriJ Ex-51 I:iSurc Ex-51

Sho$, lhal an ellipse with semim jor axis.r and scnriminor
axis b has area A =,'rrrl-r.
(a) Show thrt the ellipsoid thiit results when an cllipse with

scrrlimaior axis { and semiurinol axis D is revolved
about the major lxis has volunre ll - !ruh2.

(b) Sho\\ thatdrecllipsoidthatresults\\henanellipsc$ith
scnrinljor axis a and semi|rinol axis l' is re\'oh'ed
about the ninol aris has volunrc y : lttu)b.

Show that the ellipsoid that results when an cllipse with
semimljor axis a lnd scnriminor axis b is rcvolvcd about
the miior irxis has surtace area

/h ,r ,,\.!:ln,/rl -1--rin ' I\,/ , ,1 I

qhere r': ,r- 
=

55

60.
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61. As illustrated in the acco panying figure. acaryenterneeds
to cut an elliptical hole in a slopcd roof through which a cir.
cular vent pipe of diameter , is to be inserted vefiically.
The carpenter wants to drau, the outline ol the hole on thc

roof using a pencil. tu o tacks. and u piece of string (as in
Figule 12.,1.3b). The center point of the ellipse is known.
and co mon scnse suggcsts thllt its r']liiior axis must be per-
pendiculirr to thc drip line ol the loof. The carlenter needs

to determine the lcngth L ol the string rnd the distance f
betwccn a tack and the center point. Tlre architect's plans

show that the pitch of the rool'is p (pitch : rise over run:
sce the accompanying figure). Find I xnd L in terms of l)
and 1). [Noft,r TI]is excrcise is based on an (icle by WilliLLDl

H. Enos, which appea.re.l tn thc Matlrcnl.tlics Teutlter.Feb.
1991. p. l41l. l

As illustrated in the uccompanying figure. sLlppose that two
observe$ are stalioned at the points f'r(c. 0) and F: (-c. 0)
in an.rr-coordinate systcm. Suppose also that the sound of
an explosion in the.$.plane is heard by thc ,Ft obseNe. /
seconds befbrc it is heard by the .1'l observer. Assuming that
the speed ol sound is a constant u. show that the explosion
occun-ed somewhere on the hyperbola

Y_ f-
l

r,rrrlJ r.r _ {r,-'rt/.ll

Fig rc E{ 69

As illustrated in the ccornpanying tigure. sLlppose that two
transmitting stations are positioned 100 km apart at points
Fr(50. 0) and F:( 50, 0) on a sraight shoreliDe in an .r)'
coolclinate system. Suppose also that it ship is traveling par

allel to the shoreline but 200 km at sea. Find thc coorclinates
of the ship if the stations transmit ir pulsc simultaneously.
but the pulse iiom station ,l.r is recei\,ed by the ship 0.1
nricr-osecond sooner thun the pulse from station ll. [Hi?1.'
Use the forlnula obtained in Exercise 69. assuming that the
pulses traveJ at the spced of light (299.792.,15ii nr/s).1

Figurc Ex 70

As illustratcd in Figure Ex 7 I (next pagc). lhe tank ol an oil
truck is 1[i leel lollS lnd has el]iptical cross sections that are

6 feet rvide and .l leet high.
(a) Show that dle volLrme V of oil in the tank (in cubic feet)

u hen it is nllcJ to r Lleplh ol /l le(l i.
'1

\ -27 a.ir 4-,h :tJ4h-h,-2nl
l2 l

(b) Use thc numerical root finding capability ol a CAS to
detemlinc how many inches fiom the bottom of a dip
stick the calibration marks shorld be placed to indicate
when the tank is j. 1. ana 1 futt.

Consider the second-degrcc cquation

A-r2 + C_r.: * D.r * trr' i F : 0

69.

7ll,

62_

63.

Figurc E\-/rl

Prove: The line tangent lo the pirLl:lbol .rl : .1/I at the
point (ro. -r'o) is ro.r' :2/r(r * -r'o).

Prove: The line tangent to the ellipse

at the point (.r0..\b) has the eqLration

\\0 lllr
a: b2

64. Prove: The line tiu-sent to the hypelbola

at the point (.r1). r\)) has the ecluation

1 \1r .\'.\r

,rr bl

Use the rcsults in Exercises 63 and 6.1 le shou, that if an el-

lipse and a hyperbola have the same lirci. thell at each point
of intersecti(rr lhcir tangent lincs are pcrpcndicula.

Find two values of li such that the line.\' + 2) : fr is tangent

to the ellipse .r 
I * ,1y2 : 3 Find the points ol tangency.

Find the coorclinttes ol all points on the hyperbola

4.r-l-r':=.1

where the two lines that pass through the point and the foci
are perpendicula[.

A line langeDt to the hypeibola 4.\-l - )'l : 36 intersects

the -1, axis at the point (0.4). Find the poinl(s) oftangency.

E 71.

65.

68.
72.



Figure Ex-71

where A ancl C are not both 0. Show b)' corrpleting the

squale:
(a) If AC > 0, then tbe ecluation represents an cllipsc. a

circle. a point, ol has no graph.
(b) lf AC < 0, then the equation represents a hyperbola or

a pair of intersecting lines.
(c) lf AC - 0. then the equation represents a parabola. a

pair olpuallel 1ines. or has no graph.
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ln each part. usc the result in Exercise 72 to make a state-
nlent about thc graph ol the equation. and then check your
conclusion by compleliig the squarc and ldentilying thc
graph.
(a) rl 5-r.r 2.r, l0r 9:0
(b) .rr 3r.r 6_r, i : 0
(c) .1-!: + 8l,r + 16-r + 161 + 20: 0

(d) 3r: + _1.r a 12-r * 2r. f l3:0
(c) r.r + 8-1 l 2t l 14:0
(l) 5 rr +,10r i 2r F9,t-0
Dcrive the equation -r2 : :t7r-r in Figure 12.4.6.

Derive the equaliorl (.rr/b2) + (r,r,/d:) : I giVen in Figure
t2.1.t4.

Derive the equation (,rr/dr) (]'1,/02) : I given in Figure

73.

74.

75.

16.

THE FOCUS_DIRECTRIX
CHARACTERIZATION OF CONICS

12.5 0#F,fiC $HCTiOpdS !tu p0Lp.f{ c00RDtf{ATEs

It will bc shortn later it tlrc text tllut il un object mores in a gratirmional Jield thd is
directed to\tatd Lt li\ed point l.\uch dt the (entar of tlrc Sunl, llrcD the petll ol that ob-
ject lust be a (or1ic seoiotl tt'ith the ftxed poittt .i a JbcLls. For t:tttnLple, planets in our
solclr s|stent nor)e elotg ellipti.ol patl6',t,ith the Sat at a fo(Lt.t, and the co rct,e nt.)te
along purobolic. ellipticul, or hyperbolic patlt.t ttith tlte Swt ut a focLts, depending tnt
tlrc tonditiotrs tmder v,hiclt they teft bon1. For ttpplit:ations o.f thi.t t.tpe it is ttsuaLl,,-

clesircLbLe to erpress the equutio s of tha (onic seLliotl.r in polttr coonlinatt's *-itlt the
pole ot o JbcLts. In tltis se(tid1 v-e vilL sltott llon' to (lo this.

To obtain polar equations fbr the conic sections we rvill need the fbJlowing theoreru.

12.5.1 TIIEOITDN{ (Focus-Dit ecr.Lr P,.openy ofConics). Sry1l|ose tlutt 4 poi1.t P 1o|es in
' the pLdne deterntinet! h a.fired ptint (caLletl tlte focusl ttncl o fixetl lirte (called the

directrix). \rhere tha Jb(us does not lie ort the tlirettrix. I.fllrc point noves it.tuclt a wcLy

that its distallce to tlle focLts divided by its distanL:e to tlle directtix is sone constant e

(called the eccentricity), tlten tlrc cute truced by tlrc point is a conic secliotl. Moreot'er.
the conit: is tt lttu ubolu if e : l, un e llipse if 0 < e < 1. artd a hy,pe hola iJ e > 1.

Rh\1ARK. It is an unfbrtunate historicai accident that the letter .r is used fbr the base

of the natural loguithns and the eccentricity of conic sections. Howcvcr, the appropriate
interpretation will usually be clear from thc context in ivhich the letter is usecl.

We will not give a formal proof of this theoren; rather'. rvc will usc the specific cases

in Figure I2.5.1 to illustrate the basic ideas. For the parabola, we will take the direct x 1(r

be -r : -2. as usual: and lbl thc ellipse and the hyperbola we will take dre dircclrix to be
.\ - t lc. We want to show in all three cases that if P is a poinl on thc graph. F is the
fbcus, and 1) is the directdx, ther the rdtio P,F/PD is some constrnr ., u he|c e : I tbr the
parabola,0 < e < l for theellipse.ande > I for the hyperbola. Wc will give the arguments
tbr the parabola and ellipse and leavc the argunent lbr the hyperbola as rn exercise.

:
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Figur€ 12.5.I

ECCENTRICITY OF AN ELLIPSE AS
A MEASURE OF FLATNESS

FiguLe 12.5.2

For the parabola, the distance PF to the focus is equal to the distance PD to the directrix,
so that PF/ PD : I , which is what we wanted to show. For the ellipse, we rewrite Equation
(8) of Section 12.4 as

ay'(t c)/ + l'/ : 11 r
a

c

a
(l)

-:(+ ')
But the expression on the left side is the distance PF, and the expression in the parentheses

on the right side is the distance PD, so we have shown that

PF: IPD
a

Thu.. PF 'PD ir constlnt. and rhe eccenrriciry i5

If we rule out the degenelate case where a : 0 or c = 0, then it follows from Formula (7)
of Section 12.4 thatq < c < a. so0 < e < 1. which is what we wanted to show.

We will leave it as an exercise to show that the eccenticity of the hyperbola in Fig
ure 12.5.1 is also given by Formula (1), but in this case it follows from Formula (l l) of
Section 12.4thatc > a. soe > 1.

The eccentricity of an ellipse can be viewed as a measure of its flatness-as e approaches 0
the ellipses become more and more circular, and as e approaches 1 they become more and

more flat (Figurc 12.5.2). Table 12.5.I shows the orbital eccentuicities of various celestial
objects. Note that most of the planets actually have fairly circular orbits.

Table 12.5.1

Our next objective is to derive polar equations for the conic sections from their focus-
directrix characterizations. We will assume that the focus is at the pole and tbe djrectrix is
either parallel or perpendicular to the polar a"ris. If the directrix is parallel to the polar aris,
then it can be above or below the pole; and ifthe directrix is perpendicular to the polar axis,

I E lipses with a common focls l

I and equal semimaior axes.

POLAR EQUATTONS OF CONTCS
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then it can be to the left or right of the pole. Thus, there are four cases to consider. We will
derive the formulas for the case in which the directrix is perpendicular to the polar axis and
to the fight of the pole.

As jllustrated in Figure 12.5.3, let us assume that the directrix is perpendicular to the
polar axis and d units to the right ofthe pole, where the constant I is known. li'P is a point
on the conic and if the eccenticity ol the conic is e. then it follows ftom Theorem 12.5.1

IhatPFlPD: e or, equivalently. that

PF: ePD (2)

However, it is evident fronr Figure 12.5.3 thatPl?: r and PD - d -r cos0. Thus, (2) can
be witten as

r:e(d-rcos9)
which can be solved lbr r ancl expressed as

ed

Figurr 12.5.1

SKETCHING CONICS IN POLAR
COORDINATES

i 
*l,r! .f:,:n 

l

Figure 12.5.4

ed

1+ecos0
Directrix right of pole

ed

1+esin0

ed

I -ecos9
Dnecrix leii ofpole

edr=-
1-esint)

I+ecosd
(verify). Observe that this silgle polar equation can represent a parabola, an ellipse, or a
hyperbola, depending on the vrlue of e. In contrast, the rectangular equatioirs for ftese
conics all have different forms. The derivations in the other three cases are similar.

12.5.2 Tl IEOREI,I. If a conic section with eccentricit!' e i.s positionecl it Q polcLr co-
otdinate D)slem so that its JbcLts is al llle poLe and the correspond.ing directrix i.t tl units

from the pole, then the e(lu.1tiotl of tlrc cotric hus one of four possible forms, depending
on itt orientation:

(3 4)

(5-6)

Precise graphs of conic sections in polar coordinates can be generated with graphing utili-
ties. However, it is often useful to be able to make quick sketches of these graphs that show
their oientation and give some sense oftheir dimensions. The ofientation of a conic relative
to the polar axis can be deduced by matching its equation with one of the four foms in
Theorem 12.5.2. The key dimensions of a parabola are determined by the constant p (Fig
ure 12.,1.5) and those of ellipses and hyperbolas by the constants d, ll, and c (Figures I 2.4. I I
and 12.4.20). Thus, we need to show how these colstants can be obtained fron the polar
equations.

Example I
Sketch the gmph of / : 2

l .rr\, in polar coordinates.

Solutiort. The ecluation is an exact inal.ch 10 (4) with d = 2 and e : 1. Thus, the graph is
a paabola with the focus at the pole and the directrix 2 uoits to the left of the pole. This tells
us that the parabola opens to thc right along the polar axis and p = l. Thus, the parabola

1ooksroughly1ikethatsketchedinFigure12.5'4.<

A11 of the important geometric information about an ellipse can be obtained from the

values o1'a, D, and c in Figure 12.5.5. One way to flnd these values fiom the polar equation

D rectr x
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b )\

Figure 12.5.5

of an ellipse is based on finding the distances from the focus to the vetices. As shown in
the figure, let /0 be the distance from the focus to the closest vertex and rl the distance to
the farthest vefiex. Thus.

fA:q-c and 11 =aaa
from which it follows that

a : i?t .t ro)

and

c:|er-ro)
Moreover, it also follows from (7) that

,-- -.,2 .2 - u2

Thus,

b = \Fon ( l0)

REMARK. In words, Formula (8) states that .l is the sithmetic average (also called the
sithmetic mean) of 16 and 11 , and Formula ( 10) states that D is the geometric mean of r11

and 11.

Example 2

Sketch the graph ol r - ^ 
U 

. in polar coordlnares.)+cos6

Solution, This equation does not match any ofthe forms in Theorem 12.5.2 because they
all require a constant term of I in the denominator. However, we can put the equation into
one of these forms by dividing the numerator and denominator by 2 to obtain

3r- ,l+:cosd
This is an exact match to (3) with d : 6 anc! a : j, so the graph is an ellipse with the
directrix 6 units to the right of the pole. The distance r9 from the focus to the closest vertex
can be obtained by setting d = 0 in this equation, and the distance rr to the fathest vefiex
can be obtained by setting d : rr. This yields

rn= ,' ='=r. rt= ' -l b" I llco'0 ; I .cor,r j
Thus, from Fomulas (8), (10), and (9), respectively, we obtain

a:)tt1-r:4, b: \tratt - 2\4, c=!(rt-16:2
Thus,thee11ipselooksroughly1ikethatsketchedinFigure12'5'6.<

All of the inportant infomation about a hyperbola can be obtained fuom the values of
a, b, and c in Figure 12.5.7. As with tbe ellipse, one way to lind these values from the polar
equation of a hyperbola is based on finding the distances from the tbcus to the vefiices. As
shown in the figure, let r9 be the distance from the focus to the closest vertex and rl the
distance to the farthest vefiex. Thus.

(1)

(8)

(e)

I Roueh sketch i,-__l

Figrre I2.5.6

rO=c a and 11 =c14
from which it follows that

0 = \(r1 -rx1

(11)

(12)
Figure 12.5.7
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and

c: |(r1 f ro)

Moreover, it also fbllows fiom ( I l) that

r11r1 - 92 a2 : b?

tiom which it follows that

b : ,fort

Example 3
2

Sketch rhe sraph of r - ----------:---- in polar cooldinates.
1*2sin0

(13)

( 1,1)

Solution. This equation is an exact match to (5) with d = I and e = 2. Thus, the graph
is a hyperbola with its directdx 1 unit above the pole. However, it is not so straightforward
to compute the values ol 16 and 11, since hyperbolas in polar coordinates are generated in
a strange way as d varies fiom 0 to 2ir. This can be seen from Figure 12.5.8a, which is the
graph of the given equatiol'l in rectangular coordinates. lt follows from this graph that the
corresponding polar graph is generated in pieces (see Figure 12.5.80):

As 4 vades over the interval 05 A < 1n16. thevalueofr is posilive and varjes from
2 to +.o, which generates part of the lower branch.

As 9 varies over the interval 'Jn/6 < 0 
= 

31r/2, the value of r is negative and varies
from .. to 2, which generates the right part ofthe upper branch.

As d varies over the intewal 3t f 2 3 0 < ll-. 16. the value of r is negative and varie s

liom -2 to -cc, which generates the left part of the upper branch.

As d varies over the interval 11r/6 < 0 < 2r- the value of r is positive and varies
from +r to 2, which fills in the missing piece of the lower right branch.

Itisnowclearthatwecanobtain/0bysetttng0:rl2and,rl by setting 0 = 3T/2. Keeping
in mind that r0 and 11 are positive, this yields

) 2 2 l2l
'u- l*2.inrr 21 3 t' - I l2.in'ln:, -l rl-'

Thus, fiom Formulas (12), (14), and (13), respectively, we obtain

t ) )J\ t 4o- r't ,,'- j. b- Jrsrl- J. .--rll -ru'-- 
J

Thus,thehyperbola1ooksrough1y1ikethatsketchedinFigure12.5.8c.<

.|....

i - .-. .,
(.,

Yr.l'-"'.1
(b)

. l:uch 
sketch 

l

(c)Fieure 12.5.8
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APPLICATIONS IN ASTRONOMY

Equal areas are swept out
!n eq!al trmes, and the
sqLrare of the period f s

proport ona to a 
1,

Fi!urr 11.5.9

Perigee

ln 1609 Johan nes Kepler" published a book known as As/n'.rirorlir. Nor'./ (or sometimes Corrr-

nretiqrie.s on the Motiorts ol Mlrs) in which he succeeded in distilling thousands of years

of observational astronomy into thrcc beoutilul larvs of pliLnetary motion (Figure 12.5.9).

12.5..3 Kr'l,r.J.R s L.\\\ s.

. First law lk w of Orhilsr. Each planet movcs in an elliplical orbit with the Sun at a

focus.

. Seconcl law ll"aw ol Areas). The radial line lrom the center of d]e Sun to the center

of a planct sweeps out equal areas in cqual times.

. Third law (Irv o/Perinds ). The square ol'a planct's period (the time it takes the planet

to conrplctc onc orbit about the Sun) is proporlional to the cube of the semimajor
rris ol its,'r'hil.

Kepler''s laws, although stated for planetiLry molion irround the Sun, apply to all orbiting
cclcstial boclies that are subiected to a.ri,rg1(, central gravitational force-artificial satcllitcs

subjected on ly to the central lbrcc ol'Erdh's gravity and nroons subjected on ly to the central
glavitational lbrce of l planet. fbr exanplc. Later in the text wc will delive Kepler's laws

iion basic plinciples. bLrt fi)r now we will show how they can be used in basic astronomicll
computations.

In an elliptical orbit. the closest point to the focus is called the pengee and the fanhest
ptitlt rhc apogee (Figure 12.5.l0). The distirnces from the tircus tothe perigee and apogee

are called tlle perigee distattce and apogee distaqce. respectively. FoI orhits around the

Sun, it is rrore common to use the terms perilrclion atd apltelion. rather than pe geeand

rpogee, and to measure timc in Earth years and distances in astronomical units (AU). where

l AU is the scnimajol ilxis a ol the Earth s orbit (approximately l50 x l06 knr or 92.9 x l06

rni.). With this choice of units. the constant ol'ploponionality in Kepler"s third law is I , since

n : I AU produces a period of T : I EiLr(h year. ln this case Keplet's third law can be

expressed as

Figure ll5 l0

( 15.)

Shapes ol'clliptical orbits are often specilied by giving the eccentricity ? and the semi-

major axis rr. so it is useful to express thc polar ecluatiolts of an ellipsc in terns of thesc

*,,,',rrr,r^, rIll57l I6]{)). (;c an astrononrel ilDd physicisl. Kcplcr. $ho\e $uk ptr)\'ided our contcnr-

polaD \ic\\ ol plirnet,rrj nrotio). Icd .l lascirnlins bul ill slarrcd lile. Hi\ nlcoholic tathcr nrudc him qork in

.r fanrily owncd tr\ern as a child. lirrer $ithdraNing hirn lrom clcmenllry school and hidns him ou( as r ljcld

l borer, where lhc hoi conrraclcd srn.rllliox. permnnently crippling his hurrds lud nnpairing his eyesight. ln lalcr
years, Kepler'\ liAl wife and selcrnl childrcD dicd, his nrother wrs accuscd ol wilchcrali, and being r Proiestrrrl

he was ofien subiccted to persecution by Catholic luthorities. He w:N olicn ir)rpovcri\hcd, cliinS our a living as rn

rnrclogcrandpr)gnosiical().Lool,iDgbnckonhisunhpp)chiklhood.Keplerdescribedhislrlhtr.ts ciminally
iDclined nd quarclsomc and his nrolher as g.rrrul()r'\" and 'had Lcnrpercd. Ho$erer. it was his molhcr $ho

lelt xn indelibl!'nrnlt oo thc siri-)'c.ir.]d Kcplerb) sho\ring hilll the comct (n 1577: and in lller Ijte he personall)

prcpared hcr dcjcnsc against lhc $ilchcrati char'.ses. Kcller bccanc acqtuinled \\'ith the work ol Copernicus .rs

r studert rt thc Lj ivcrsit) of liibingcD. whcrc he rcccived his nraslcr's dcgrce ir 1591. He co|linued on a! a

rheolosic l studcDt, but a1 ihe urging of thc uni!er{ily olhci.rls he abxndoncd his clericrl stttdies and accepted a

poriilio a\ ir nl.rthcm ticiirn nd tcachcr iD Gra7. Aurtriir. Howe!er. he l|as expelled tiom lhc city when il crnre

undcrCrrholicconrrol.rndinl6(X)hetinallll]rorcdonl('Praguc-\herehcbecimeanassislirntatlheobseNrbry
of rhc fanrou \ I)rn ish uslronoDler Tlcho B rahe. Brrhc $ .rs .r bri lli.rn( .rnd rDeticu lous aslroDom ic l obser!'er $ho

arrassedthenx)slucculalcastronolrlicaldalakno\\rrlllhalrinc:andlvhcnBrahediedin I60l Kdpler irheriled
the treasufe rftNc ol data. Altcr cighl ycuru of inten\e lilbor, Kepler dcciphcrcd the underlyirrg principles bLrricd

inrhedar,randinl609prblishedhisnronumcntalw(nl.,l.lrdrrrilNrrrt,inwhichhcll.rledhisfirsttwolawsof
pl nerar.- nrotioll. Conrnrcntingon hisdiscover] ofelliplicalorbits. Kcplcr$rde. Ii as almost dri!cn lo mudncss

ir con\;derins nd calcularing this lnatlcr' I coukl nol hrd ori $h) rhc plirnct \\ould rulher go on an ell'pticnt

orbil (r lhcr rhiu x circle). oh ridic[lous me! lt ultirrlrlcl] remuined lirr lsaac Ne\\'ton 1o disco\er lhe la$s ol'

glrvilalion lh.jl cxplained the r€uron li)r elliplical orbits.
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constants. Figure 12.5.1 1, which car be obtained liorn the ellipse in Figure 12.5.1 and the
rclationship c : ed, implies that the distanca d between the focus and the direotdx is

, u u atl e2\a- c- -Pa-cee

a(\ e2)r=-
laecos0

+:Dlrecr'x righ! of pole

iDi.eclrix lef! ofpole

( 16)

from which it follow s that ed : a(l - e2). Thus, depending on the orientation of the ellipse,
the fomulas in Theorem 12.5.2 can be exprcssed in tems of a and e as

a(l e2)

1*esind
+:Directrix above pole

-:Directix below pole

(17 18)
Figure 12.5.1l

Hallcy's conet photographed

April 21. i 910 in Peru

ll in mLrm

Moreover, it is evident from Figure 12.5.11 that the distances ftom the focus to the closest
and farthest vertices can be expressed in tems of 4 and e as

ro-d ea - a(7 e) and 11 :alea:a(Lle)

Example 4

(le 20)

Halley's comet (last seen in 1986) has an eccentricity of 0.97 and a semimajor axis of
a:18.1AU.
(a) Find the equation ofits orbit in the polar coordinate system shown in Figure 12.5.12.

(b) Find the period of its orbit.

(c) Fird its perihelion and aphelion distances.

Sol ion (a), From (17), the polar equation ofthe orbit has the form

a(1 - e2)t: 
1+ecosd

But a(l e2): l8.1ll (0.971'z1 * 1.07. Thus, the equation of the orbrr is

1.0'7

I + {} q7l-os B

Solution (b). From ( 15), with d : 18.1, the period ofthe orbit is

7 : 118. I )3/2 ! 77 years

Solution (c), Since the perihelion and aphelion distances are the distances to the closest

and farthest vertices, respectively, it follows fiom (19) and (20) that

ra:a ea: a(l e) : 18.1(1 - 0.97) ! 0.543 AU

r)=q+ee-a(l*e):18.1(1 + 0.97) - 35.7 AU

or since I AU = I50 x 106 km, the perihelion and aphelion distances in kilometers are

r0 = 18.1(1 - 0.97)(150 x 106):31,599,999p-
rr :18.1(1 + 0.97)(150 x 106) - 5,350,000,000 km

IioR THE RF,\DER. Use the polar equation of the orbit of Halley's comet to check the

values of ro and rr .

Example 5

An Apollo lunar lander orbits the Moon in an elliptic orbit with eccentricity e = 0.12 and

semimajor axis a : 2015 km. Assuming the Moon to be a sphere of radius 1740 km, find
the ninimum and maximum heights ofthe lander above the lunar sutface (Figure I2.5.I3).

Halley s comei

Figurc 12.5.l2
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Solutiott. If we let r0 and ri denote the minimum and maximum distances liom the center
of the Moon, then the minimum and maximum distances from the sudace of the Moon will
be

dnin - ro - 7710

d^"=rt-1740
or from Formulas (19) and (20)

dntn - r0 l'740 - a(.1 e)-1'740 =2015(0.88) 1740!33.2km
d''o*:rtl740:a(1+e)1740:2015(l'l2)l516.8knr<

furlheconrc. in Exerci.es I and 2. find rl-.eeccentricirl ano

the distance from the pole to the directrix, and sketch tlte
graph in polar coordinates.

(b) Parabola; vertex (1,32/2).
(c) Hyperbola; vertices (3, rrl2) and (-1.31t/2).

8. (a) Ellipse; ends ofmajor axis (1,t12) and (4.3n12).
(b) Parabola; ve ex (3, z).
(c) Hyperbola; equilateral; vertex (5.0).

In Exercises 9 and 10, find the distances iiom the pole to
the vertices, and then apply Formulas (8) (10) to find the
equation of the elljpse in rectangular coodinates.

3l. la) r:" 2 - 2cos 0
4

fc)r-:-
2+3cosd

1

3rb)r-_
2+sind

5

Ji.JSINd

32.(a)r:

(c) r:
3-2cosd

I

(b) r:

(d) r:
3 - ,1sin d

I
9. (a) r=

10. (a) r :

(b)r-

(b) r:

2+sind
6

2 cos I
83+3sind 2+6sind

In Exercises 3 and.1, use Formulas (3)-(6) to name and de-
scribe the orientation ofthe conic, andthen check your answer
by generating the graph with a graphing utility.

5+2cosd 4-isind

ln Er,eruise. l l ard 12. find rhe di\lJn..es fror rt a pot" ,n
the vertices, and then apply Fomulas (12)-(14) ro find the
equation of the hyperbola in rcctangular coordinates.

83.(a)r-
(c) r:

B 4. (a) r:

(c) r:

2 3 sin d

l5
1+."rp

64

7 l f.i', 4

(b) r:

(d) r:

(b) ':
(d) ':

16

4+3sin6
12

4 + cosd

2

3+3cosd
12

3 2cos0

(b) r:

(b) r:

10

6 9cosd
l5

2+8cosA

8

1 *rd
1

).
11, (ar r :

I + Ssind

412.6\ r- I )sin4

ln Lrercr.e. 5 b. rind a oolar equarion ior rhe coric that hu.
its focus at the pole and satisfies the stated conditions. Points
are in polar coordinates and directrices in rectangular coor-
dinates for sirrplicity. (In some cases there may be more than
one con rc tlla r .ati.he. the conclilion,. I

5. (a) Ellipse; e: J; directrix.n: L
(b) Parabola; directix r : -1.
(c) Hyperbola; e: ]; directrix 1 : L

6. (a) Ellipse; e: ]; directrix y : 1

(b) Parabola; directrix y : l.
(c) Hype|bola; e: J; directrix;r: l.

7. (a) Ellipse; vertices (6,0) and (,1, z).

I In Exercises 13 and 14, find a polar equation for the ellipse
thathas its focus atthe pole and satisfies the stated conditions.

(a) Directrix to the right ofthe pole; o - 8; 
" 
: 1.

(b) Djrect xbelow thepole; a -l; ":1.(c) Direct x to the left of rhe pole; A : 4; e : 1.
(d) Directrix above the pole: c : 5; e : t.
(a) Directdx above the pole; a - t0; e : j.
(b) Directrix to the left of the pole; o - 6., 

" 
: \.

(c) Directdx below the pole; b : q: 
" - 1.

{dr Direcrri\ lo the nght olrhe pole: i : l0: c 1

(a) Show that the eccentricity ofan ellipse can be expressed
in terms of ro and /-l as

/t - /b

/l+r0

13.

t4.

15.



(b)

16. (a)

Show that

11 _1+e
ra 1-e

Show that lhe eccentricity of a hyperbola can be ex-
pressed in terms of /o and rL as

,-1 + /i)
11 -ro

Show that
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Mars has a perihelion distance of 204.520,000 km and an

aphelion distance of 246,280,000 krrr.
(a) Use these data to calculate the eccentricity, and compare

your answer to the value gjven in Table 12.5.1.
(b) Find the period of Mars.
(c) Choose a polar coordinate system with the center ofthe

Sun at the pole, and {ind an eqLration for the orbit of
Mals in that coordinate system.

(d) Use a graphing utility to generate the orbit of MaIS ftom
the equation obtained in part (c).

Vun,quard I wasTalnched in March 1958 inlo an orbjt around
the Earth with eccentricity e - 0.21 and semimajor axis
8864.5 km. Firld the minimurn and maximum heights of
Vanguard I above the sudace ol the Eardr.

The planet Jupiter is believed to have a rocky core of ra
dius 10.000 km surrounded by two layers of hydrogen a
.10,000-km-thick layer ol cornpressed metallic-like hydro
gen and a 20,000-km-thick layer of ordinary molecular hy
drogen. The visible features. such as lhe Gleat Red Spot,
are at the outer surface of the molecular hydrogen layer.
On Novcmber 6, 1997 the spacectaft Galileo was placed
in a Jovian orbit to sludy the rnoon Eluopa. The orbit had

eccentricity 0.814580 and sernimajor axis 3,51,1,91 8.9 km.
Flnd Galileo's minimum and maxlmum heights above the
molecular hydrogen layer (see the accompanying figure).

Figlrre Er 22

What happens to the distance between the directrix and the

center of an ellipse if the foci remain fixed and e + 0?

(a) Show that the coordinates ofthe point P on the hyper
bola in Figure 12.5.1 .atrrll tlrecqurtion

a
/(t r)-+Y': x o

4

(b) Use the result in part (a) to show that PFIPD: c la.

E 20.

(b)

rl e+1
el 21_

22.

E

In Exercises l7-22, use the fbllowing values, where needed:

radius ol'the Earth - 4000 mi : 6440 km

I year (Earth year) : 365 days (Earth days)

I AIJ:92.9 x 106 mi: 150 x 106 km

17. The pianet Pluto has eccentricity e : 0.249 and semimajor
axisa:39.5AU.
(a) Find the period ? in years.

(b) Find the pedhelion and aphelion distances.
(c) Choose a polar coordinate system with the center of the

Sun at the pole, and find a polar equation ofPluto's orbil
in that coordilate syslen.

(d) Make a sketch of dre orbit with reasonably accurate
proportions.

18. (a) Let a be the semimajo| axis oi a planet's orbit around

the Sun, and let 7 be its pedod. Show that if 7 is mea-

sured in days and a in kiloneters, then T : (365 x
10 e\(al150)3/2.

(b) Use the result in part (a) to find the period of the

planet Mercury in days, givcn that its semimajor axis is

a : 57.95 x 106 km.
(c) Choose a polar coordinate system with the SLln at the

pole, and nnd an equation for the orbit of Merculy in
thal coordinate system given that the eccentricity ofthe
orbitise-0.206.

(d) Use a graphing utility to generate the orbit of Mercury
fiorr the equation obtained in part (c).

19. The Hale Bopp comet, discovered independently on July

23, t995 by Alan Hale and Thomas Bopp, has an orbital
eccentricity ol e : 0.9951 and a period of 2380 years.

(a) Find its semimajor axis in astronomical units (AU).
(b) Find its pe heljon and aphelion distances.
(c) Choose a polar coordinate system with fie center of the

Sun at the pole, and find an equation for the Hale-Bopp
orbit in that cooldinate system.

(d) Make a sketch of the Hale-Bopp orbit with reasonably

accurate proportions.

)l

24,
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2.

Under what conditions does a parametric curve r - /(t),
y : g(r) have a horizontal tangent line'l A vefical tangent
line? A singular point?

Express the point whose i) coordinates are ( I , 1) in polar
coordinates with
(a) r >0,0<0.<2r (b) r <0, 0<A.:.2n
(c)r>0, -r<03tt (d) r<0, -r<0 <tr.

In each pafi, state the name that describes the polar curve
most prccisely: a rose, a line, a circle, a limaqon, a cardioid,
a spiral, a lemniscate, or none of these.

7. In each part, identily the curve by converting rhe polar
equation to rectangular coordinates. Assume that a > 0.

{a) r: a Secl I
2

(c) r :4csc (a :)
B 8. Use a graphing utility to investigate how the family of polar

curves r : 1 + d cos r0 is affected by changing the val
ues of a and n, where a is a positive real number and z is
a positive integer. Write a brief paragraph to explain your
conclusions.

I In Exercises 9 and 10, find an equation in ry-coordinates lor
I the conic section thai safisfies rhe given conditions- 

l

9. (a) Ellipse with eccentricity e : ] and ends of the minor
axis at the points (0, +3).

(b) Parabola with vertex at the origin, tbcus on the )-axis,
and direct x passing through the point (7, 4).

(c) Hyperbola that has the same foci as the ellipse
3x2 + 16y2:48 and asymptotes y : !2.r/3.

10. (a) Ellipse with center ( 3,2), vertex (2,2), and eccen-
tricity e = {.

(b) Parabola with focus ( 2, 2) and vertex (-2,0).
(c) Hyperbola uith \ere\ | 1.7)andas)mptote\

y s =+8(.r* l).

In each part, sketch the graph of the co c section with rea-
sonably accurate proportions.
(a) x2-4x +8),+36:0
(b) 3r'? + 4:I,2 30',lj 8t * 67 : 0
(c) 4r2 5)2 8:r - 30y - 2l : 0

If you have a CAS that can graph implicit equations, use it
to check your work in Exercise 11.

It can be shown that hanging cables form parabolic arcs

Iather than catenaries ifthey are subjected to uniformly dis-
tdbuted downwardforces along theiriength. Forexample, if
the weight oftheroadway in a suspension bridge is assumed
to be uniformly distributed along the suppofting cables, then
the cables can be modeled by parabolas.
(a) Assuming a parabolic model, find an equation ior the

cable in the accompanying figurc, taking the l,-axis ro
be vertical and the oigin at the low point of the cable.

(b) Find the iength ofthe cable between the supports.

l. 4200 ft +
Figure Er'l3

(b) 12 cos20 : a2

(d) r -4cosd +8sina

In each part: (i) Identify the polar graph as a parabola, an

ellipse, or a hyperbola; (ii) state whether the directrix is
above, belou to the left, or to the right of the pole; and (iii)
hnd the distance from rhe pole ru rhe direcrrir.

11

(a) r:3cos0
3

., 
cos 6

(e)r:1-3cosd
(g) r - (3 cos 6)'?

ia)/:-' 3+coso
I(c't r :

3(l + sin9)

I
Figure Ex-6

(b) /:cos3€
(d) r :3 - cosd

(f) 12:3cosd
(h)r-1{3d

fb)r:-
1-3cosp

3(d) r: 

-

I sin F,

The accompanying ligure shows the polar graph of the
equation r : /(d). Sketch the graph of
(a) r = f?a)

/ 1t\tb\r:f\a--)
(d) r - f(0)(c)

(e)

11.

,: r (e +i)
r : f(e) + 1.

E 12.

13.

6.

Figure Ex-5

Find eqDations for the two families of circles in the accom-
panying figure.



t1. A parametric cur-ve of the tbrm

,r=dcot1+rcost. -r:d+lrsinl (0<1<17)

rs callerl a conchoid o.f Nicomedes (scc the accompanling
figure folthecase0 < a < l).
(a) Describe ho\\' thc conchoid

Supp ementary Exercises 753

s

(,r) (b)

Figur. Er l8

T ct R b, t'c r-inn r 'ilr '. .,\.'re .he r rr,.
belween the cutve Dlrz u]t] - i6)

(a) Sketch the solid -senclated by rc\olving
-r -axis. and ind its volume.

(b) Sketch lhe solid gener2rted by relolving

.r axis. anal find its volume.

(a) Sketch ihe culves
lt/ rnd /-1+cosd I cos,

(b)

lu)

ill

,r: cotl +4cos1. r': I + 4sin,

is generatecl as I varies over the intcrval 0 < I < 2r.

Find the horizontal asynrptote of thc conchoid given in

part (a).

For what values ol l does lhe conchoid in part (a) havc

a horizontal tangenl line? A vertical tangcnt line?

Find a polar eqLraliorl l- : I (d) for tbe conchoid in palt
(a). and thcn 1jr1d polar equations lbr the tangent lines

to the conchoid at the pole.

19. and enclosecl

and thc line

R aboLlt lhe

R rbour the

20.

22.

I5.

16.

17.

Figure !I 11

Find the area of thc rcgion that is common to th.] circles
r : I. r - 2cos 6. and r- : 2 sind.

Find the area of the region that is inside the cardioid
r: a(l isin4) and outside the circle,- - /r sind.

(a) Find the arc length olthc polar clrrle | : lle lol
rl1 -. a 1n12.

(b) What can you say about the arc lengtli oltlie portion ol'
the curye that lios inside the circlc i- : l?

(a) Ii a thread is un$ound fr.oni a llxed circLe while being

held taut (i.e., tangent to the circlc), then the end of the

thlead traces a curve c al.ed an involute ofa clrcle. Show

that il the circle is centered at lhc origin, has radius d.

and lhe end ofthe thread is initially at the poinl (d.0).
then the involute can be expresscd parametrically as

(b) Find polar coordinates ofthc intcrscclions ofthc cur-vcs

in part (r).
(c) Show that the cur\es te ortllogonal. that is. thejr tan-

gent lines are pel?enclicular at thc points of intcrsection.

Ho\\ is tlre slrape ofa hyperbola aflected as its eccenticit)'
approaches l? As it approaches i-lr Drarv sorc pictures

to iliustratc youl conclusions.

Use the fbrrrrula obtaincd in part (a) of Exercise 67 of Sec

tion l2.l to find thc distancc bctween successive tips ol tlre
ll'_e.-pel-l ru\c / - \rn.{6. :'n.J .hc.l lour an\\r.r..\'l!
tligonometry.

(a) Find the minimum and maximum r-coordinates ol
points on tlle cardioid r : I i cos 0.

(b) Find the mininum and maximum ) coor.linales ()1-

points on the carclioid in pa (a).

(a) Show that the maxinrum value of the ),-coordinatc of
points on the curve /- : I/J0tbrdintheinterval(0,r1
occurs \!hcn tan, : 26.

(b) Use Ne\\ton's Method to sol\'e the equation ]n part (a)

for f, to at lelist four decinral place accuracy.
(c) Use re result of part (b) to approximate the maximuni

valueoft lbr0 < 6 :;r.
Dellne the lvidth of a petal ol a rose cuNe to be the dimen-
sion shown in the accompanling Iigure. Show that thc widtll
,r nl .rpctJl.rl lh(ll,Ut pcl! o.c, ,o.l*r.,, - 2'G a.

IHirt. Express l in terns of d, and investigate the rnaximunr
value of L]

21.

E 18.

24.

x :a(cosdiesind), _1' :a(sind 0cosfl)

where d is the iingle shown in part (d) of the accompa- 25'
nying figure.

(b) Assuming thal the dog in part (D) of the accompan!lng
ligure unravels its lersh while keeping it tar.(, for rvhat

values of ll in the iilerval 0 : I : 2z rvili the dog be

walking North'l South? East? West'l

(c) Use a graphing utility to generatc the cuNe lrirced by
lhe do8. and show that it is consistent with your answer

in pa (b). Fiqure Ex 25

Peta w dlh
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26. A nuclear cooling to*'er is to have a height of ft feet and

ihe shape ol thc solid that is generated by revolving the

Iegion R cnclosed by the right branch oi the hyperbola
l5fl.r: -225r': : 3.12.225 and thc lirrcs r - 0. r' : /r/1.
and r' - /r/2 about dre r'-axis.
(a) Find the \'olulne ofthe tower.

(b) Irind the lilteral su ace arca of tl'rc tower.

27. Thc muscrrent park rides illustratecl in the accompanyin-r

flgurc consist of two connected rotuling al.ms ol length l-
an inner ilrnr tlrat rotates countcrclockwisc al I radian per

second and iln oulerann thal can bc programnred torotate ei-
rher clock$ ire 2 raLdians per second (thc Sctambler ride)
or couDtcrclockwise at 2 rldi n\ per secord (thc Calypso
ride). Thc ccntcr ol thc rider cage is at the end of the outcr
al.lll.
(a) Show thnt in the Scramblcr ridc thc center of the crge

has parllnr!'tric equations

.1 : Cosa +cos2a. r:sinl-sin2r

rb) Find prr mctfic cquations lbr lhe center of thc cagc in
the Callpsu ride. and usc a grirphing ufilily b confinn
thilt the center trrces the curve shown in the acconrpa-
nying tigLr|e.

(c) Do l,ou think that a ridel travels lhc siirne distance in one

rcvolution oi the Scrambler ride as in one rcvolLrtion of
thc C lypso ridel Justit'v yoLlr corrclusion.

(b) Find the clisttnce between the center of the Earth and the
center ()f the Sur at perihelion. given that the average
raluc ofthe perihelion and aphelion distances between
the ccnters is 93 nrillion miles.

(c) Usc the result in Exercise 29 and SintpsoD's rule or the
numerical integration capability ol a graphing ulility to
approxjmilte thc distance that the Earth travels in I year
(one revoluli0n around the Sun).

It will be shown latel in this text that if a plojectiie is
launched with spccd ri) at an anglc o with the horizontal
and at a height .\i) abole ground lcvcl. then the resulting
trajectory relati\c lo the coordinate systcm in the accompa

'r1inp fisure will lrlrc p.rrurnetric equltion'

r. - ('-0cosd)1. y -,yn1(qlsina)l - l3tl
(a) Show that thc traiectory i! a parabola.
(b) Find the coordinates of the vertex.

Figure Ex 3l

Mickev Mantlc is recognized as basebrll s unofficial king
ollong honre [uns. On April 17. 1953 Mantlc blasted a pitch
by Chuck Stobbs ol'the hapless \\'ashington Scnators out of
Grifiith Stadiurrr. just clcaring the 50-li wull at the 391-fi
marker in lcft ccnter. Assurring that the blll left thc bat at a

height of 3 fi above ll're ground and at an angle of 45 '', use

the parametric cqLrations in Exercise 32 with I : 32 ft/sl
to llnd
(a) the speed ol the ball asitleftthebtlt
1b) the nlaxinrum height of the ball
(c) the distancc along the ground fi-on holne plate where

the ball struck the ground.

Reca1l from Section 7.9 that the Fresnel sine and cosine
lunctions are deiincd as

JJ.

Scrambler ride

FigLrrc E\'17

Calypso ride

E 34'

E 28.

29.

E 30.

Use a graphing utility to erpLore the el1!ct of changing the

rotation rntes lnd the anr lenlths in Exercise 27.

Use the pariinlelric equations \ -./c()st.,\' : bsinl to
sho$ th.lt thc circurnt-erence C ol an ellipse u'ith scminrajor
axis a and ccccntricity c is

rr'l
C : r,/ / r' I cr rinl a,/rt

Use Sirrpson s rulc or the numelicrl integration capability
of a graphing utility to approxiulale the circumference ol
the ellipsc.l.r': + 9r'r - 16 fion lhe integral obtained in
Exercisc 29.

(a) Crlctllirtc thc ccccntricity ofthe Erl.lh s orbit. gi|en thut
the rrlio ol lhc distance between the center of the Earlh

and lhe ccnlcr oi the Sun at periheliur to the distance

between lhe certers at aphelion is fi.

The follou.ing parrnetric curve- rvhich is used to study aDr-

plitudes of light waves in optics. is c llcd a c/o/rrord or
Cornu spiral inhonol olthe French scientist Marie Alfred

f' rrr:\
sr \):/ 'inl.,) ,//

Cornu ( l8,l l-1902)l

.r-c(/):f'*'(, )r,
,:s(r):/'.'"(T),'

-a ci.r=/'*,.(f)a,

(-', < I <+r)

(a) Use a CAS te graph the cornu spiral.
(b) Describe the behavior of the spiral as t - +z and as

(c) Find the xrc length of the spiral lbr - I S t : L

E 3r.



35. As illustrated in the accompanying fieure, let P(r,6) be a
point on the polar curye r : l(0),1et ry' be the smallest
counterclockwise anglc frorn the extended radius OP to the
tangent line at P, and let d be the angle ofinclination ofthe
tangent line. Derive the fbnnula

Expanding the Calcu us Horizon 755

r-l cosd (0:A <27.)

thenlr:0/2.
(b) Sketch the cadioid and show the angle t/ at the poinrs

uhe'e rhe earJiord c1s..p. lLs 1 .r1ir.
(c) Find the angle ry' atthe points where the cardioid crosses

the -\) axis.

Show that tbr a logiLrithmic spiral r : acr''. the angle from
the radial line to the tangent line is constant along the spiral
(see the accorrpanying figure). lNoler For this reason, log-
arithmic spirals are sometimes callecl e4tr iangular spirals.l

dr ldA

by substituting IanQ fot d!/dx in Formula (7) of Section
12.) and appllirg the trrFnnometrrc rdenrrl)

txn (h tAn e
lant(b - e I' l+ten4,tarrp

37.

In Exercises 36 and 37. use the formula lor V/

Exercise 35.
obtained in

36. la) Use rhe trjeonomeuie identily

I cos 60

2 sin d

to show that if (r. d) is a point on the cardioid Figu,e E\ l5 Figurc Ex 37

Comet Collision
The Earth lives in a co.cmic shooting galLer! of conets and asteroi(ls. Although the probabiliO tl6t the Edrth wiLl he
hit by a comet or asteroid in ant, gi\ren |ear is smtLll, the consequences of such a colL[sion u.re so catastrophic that the
international communiqn is now beginning to trcck near Earth objects (NEOs). Yotrr job, as pafi (t the intenetional
NEO tracktng teom, is to conpute the ofiits of i.ncoming comets dnd osteroids, detemli e ho\\ closetheywill come tr.'

colliding with the Earth, and issue a nottrtcation if there is dttnger of u collision or near ntiss.

At the time wher the Earth is at its .rp,4"liol? (its farthest point from the Sun), your NEO tracking
team receives a notiflcation from the NASA/Cxltech Jet Propulsion Laboratory that a previously
unknowo comet (designation Rogue 2000) is hurtling in the direction of the Ear1h. You immedi
ately transmit a request to NASA for the orbital parameters and the current positions of the Earth
and Rogue 2000 and receive the lbllou ing report:

ROGUE 2OOO

Ecccntricity: el - 0 017 Eccentricity: r2 = 0.9$

Semimajor axisr 4t = I AU = I 496 x 108 knl Scmimajor axis: a: = 5 AU = 7.48 x 108 km

Period: f =l)err Period. t =5/rlear.

INITIAI POSITTON INFORMATION

The major axcs of Barth and Rogue 2000 coincidc.

The aphelions of Earth and Rogue 2000 arc on the same side of thc Sun.

Initial polar angle of Eafih: 0 = 0 radians.

Initial polar angle of Rogue 2000: d = 0.45 radian.
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I lnitial conf guratron of Earth and Rogle 2000

Figure I

The Calculation Strategy
Since the immediate concern is a possible collision at intersection A in Figure 1, your teanl works
oul the tbllowing plan:

Step 1. Find the polar equations for Earth and Rogue 2000.
Step 2, Fjnd the polar coordinates of intersection A.
Step 3. Determine how long it will take the Earth to rcach intersection A.
Step 4. Determine where Rogue 2000 will be when the Eafth reaches intersection A.
Step 5. Determine how fiu Rogue 2000 will be fiom the Earth when the Earth is at inter-

section ,4.

Polar Equations of the 0rbits

Exetcise I Write polar equations of the fonn

a(l - e2)/'= l "c'sp
for the orbits of Earth and Rogue 2000 using AU units for r.

Exrtise 2 Use a graphing utility to generate the two orbits on the same screen.

lntersection ol the Orbits
The second step in your team's calculation plan is to find the polar coordinates of intersection ,4
in Figure l.

llxtrcite -i For simplicity,let k1 :at\ el)andkz: az\ ei), and use the polar equations
obtained in Exercise I to show that the angle d at intersection A satisfies the equation

k1 -k1cos r'l : -
het kzer

llxercist I Use the result in Exercise 3 and the inverse cosine capability of a calculating utility
to show that the angle d at intersection A in Figure I is 0 : 0.607 radian.

/trci'cisc.5 Use the result in Exercise 4 and either polar equation obtained in Exercise I to show
that if ,. is in AU units, then the polar coordinates of intersection A are (r, d) = ( 1 .0 t 4, 0.607).

Time Required for Earth to Reach lntersection A
According to Kepler's second law (see 12.5.3), the radial line from the center of the Sun to the
center of an object orbiting around it sweeps out equal areas in equal times. Thus, if t is the time
that it takes for the radial line to sweep out an "elliptic sector" from some initial angle fl to some

linal angle 01. (Figure 2), and if f is the period of the object (the time for one complete revolution),
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then

area of the "elliptic sector"

area of the entire ellipse
(1)

(3)

{ixtr<iye 6 Use Formula (l) to show that

r I r')ae
. Jar
l=-

zrazJl _ e2

l,'),1fffi|'*:
z,,olfr - l,

5J5

(2)

J:l.rc,rlirr, / Use a calculating utility with a numerical integration capability, Forrnula (2), and
the polar equation for the orbit of the Earth obtained in Exercise I to lind the time r (in years)
required for the Earth to move from its initial position to intersection A.

position of Recue ?000 When the [arth [s at lntersection A
The fourth step in your team's calculation strategy is to determine the position of Rogue 2000
when the Earth reaches intersection A.

ir'-r-r.r't ire ,! Dudng the time that it takes for the Earth to move lrom its initial position to
inte$ection A, the polar angle of Rogue 2000 will change from its initial value fi : 0.45 radian
to some final value AF that remains to be determined. Apply Formula (2) using the orbital data for
Rogue 2000 and the time I obtained in Exercise 7 to show that dF satisfies the equation

Your team is now faced with the problem ofsolving Equation (3) for the unknown upper limit
dp. Some members of the team plan to use a CAS to perform the integration, some plan to use

integration tables, and othe$ plan to use hand calculation by making the substitutioru : tal'(o /2)
and app)ying the formulas in (5) of Section 9.6.

il.r:rrt is t 9

(a) Evaluate the integral in (3) using a CAS or by hand calculation.

(b) Use the root finding capability of a calculating utility to find the polar angle of Rogue 2000
when the Earth is at inte$ection A.

ijaIcrJlating the Critical Distancs
It is the policy ofyour NEO tracking team to issue a notification to various govemmental agencies

for any asteroid or comet that will be within ,1 million kilometers of the Earth at aD orbital
intersection. (This distance is roughly l0times thatbetween the Earth andthe Moon.) Accordingly,
the final step in youl team's plan is to calculate the distance between the Earth and Rogue 2000
when the Earth is at intersection A. and then detemine whether a notification should be issued.

Fieurc 2
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Exercise 10 Use the polar equation of Rogue 2000 obtained in Exercise 1 and the result in
Exercise 9(b) to find polar coordinates of Rogue 2000 with / in AU units when the Earlh is at
inte$ection A.

Eiiiitt"'i i Use the distanca formula in Exercise 67(a) of Section 12.1 ro calculate the distance
between the Earlh and Rogue 2000 in AU units when the Earth is at intersection A, and then use
the conversion factor 1 AU: 1.496 x 108 km to determine whether a govemment notification
should be issued.

Note: One of the closest near misses in recent history occurred on October 30, 1937 when the
asteroid Hermes passed within 900,000 km of the Earth. More recently, on June 14, 1968 the
asteroid Icarus passed within 23,000,000 km of the Earth.

ModuLe by Mary Ann Connors, USMA, West Point, and Howard Anton, Drexel IJniversity
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n this chlptel we l'ill discuss rect.rnglrlar coordi-
nate systen]s in thlee dimensions. rnd $,e \\'ili study the

anrlytic geometry ol lines. planes. and othel btsic sur'-

faces. Thc second theme of tlris chaptcr is ll.le s{ud}' of
veclors. These ale the mathcn]itlical objects that phvsi-
cists and cngir.rccls use 1o study tbrces. disphccmcnts,
antl velocities of objects n.ioving on curved paths. Nlorc
generally. vectors are usc.l to represenl all phvsical enti-
ties that involve both a rnagnitude rnd a clilection for their
complete clescription. Wc will introduce valious iilgebraic
operrtions on veclors, arrd rve will appl.v thcse operations
to problens involvin-q 1brce. work. and rotational tcndcn-
cies in trvo and thlee dimensions. Finalll'. u'e u'ill discuss

cylinclrical and sphedcal coordinirte systems. which are

appropriate in problems that involve valious kinds ol svm-
metries ancl also have specitic applications in navigation
and celestial mcchanics.
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RECTANGULAR COORDINATE
SYSTEMS

Itl this se(tion u,e v,ill discuss t'oonlinate s)-stems in three-dinensional spttce and some
basic facts about sutfaces in three dinensiofis.

Irr the remainder of this text rve will call three-dimensional sp ace 3-spece,t\,\/o dimensional
space (a plane) 2-sp4c?, and one-dimensional space (a \ine) 1-spqce. Just as points in 2-
space can be placed in one to one corespondence with pairs of real numbers using two
perpendicular coordinate lines. so points in 3 space can be placed in ene-to one conespon-
clence with triples of real numbers by using three mutually perpendicular coordinate lines,
called the x-a.ris, the Jl-d.ris, and the z-axiJ. positioned so that their origins coincide (Fig-
ure 13.1.1). The thlee coordinate axes form a three-dimensional rectangul.er coordinate
system (ot Cqrtesisn coordinate sjstem). The point of intersection of the coordinate axes
is calied the orkin of the coordinate system.

Rectangular coordinate sysiems in 3 space fall inlo two categories: left-handed arLd

right-handed. A right-handed system has the propefty that when the ilngers of the dght
hand are cupped so that they curve from the positive r-axis toward the positive ],-axis, the
thumb poinls (roughly) in the direction of the positive : -axis (Figure 13.1.2a). Similally tbr
a left handed coordinate system (Figure I3.1.2b). We will use only right handed coorclinate
svslems in this text.

Figure 13.1.1 Figu.e 11.1.2

The coordinate axes, taken in pairs, determine thtee coordinate planes. the x!-plane,
lhe xz-plane, and the lz-plane. To each point P in 3-space we car assign a triple of leal
numbers by passing three planes through P parallel b the coordinate plal.les and letting.J,
b, and t be the coordinates ol the intersections of those planes witlt thc r-aris, 1-axis. and

.-axis, respectively (Figure J3.1 .3). Wecallzr, &, and c the .r- coordinate. !-coordinate, and.

z-coordinate of P, respectively, and we denote the point P tty (.a,b. c) or by P(.7, ,. c).
Figure i3.1.4 shows the points (4. 5.6) and ( 3,2. -,+).

13.1 RECTA!\IG{JLAR COORDIIIIATFS,ru S-$FACF; SFI-IHRE$;
CYLINJSRiCAL S["IRFACES

F -qurc ll. l

FiSure 13. L4
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Just as the coordinale axes in a two-dimensional coordinate system divide 2 space inro
fbLrr quadrants. so the coordinate planes of a threc-dimensional coordjnate system divide
3 space into eighL parts, called octants. The set of points witlt thrce positive cootdinates
forms llief/sl ocldrrl; thc rcmaining octants have no standarci numbering.

You shoulcl bc abic to visualize the following facts about threc-dimensional rectangular
coordinatc svstems:

DISTANCE IN 3-SPACE

,!\' plane Consists oi all points oi the fbrm (r, t. 0)
t; plane Consists oi ull points of the fo r (-r. 0, ;)
r': plane Consists of rll points of dre ibrn (0. _r', :)
t rLxis Consists o[ all points of the form (n. 0, 0)

-\'-a\is Consists of all points of thc fbrm (0. r'. 0)

; axis Consists ofalLpoiits of the hrn (0,0.:)

To derive a formuia for the distance between two points in 3-space. we stafi by considering
a box whose sides have lengths a. b. and c (Figure 13.1.5).Thelengthz/ofadiagonalof
the box can be obtained by applying the Theorem of Pythagoras twicc: lirst to show that a

di:lgon!r ol Lhe hr.e hr.lenctl- ' ,ri l- h-. thcn iriain lo.ho\ lhcr c diJgonrl,'l lhe hlr\ hJ.
length

= Ju2 1ll q tt

(4 2)r+( I 3)r + (3 + l)'? : .,66 : 6

(l)

Fi.eue ll l 5

Figurc 13.1.6

We can norv obtain a lomula lor the distance 11 bctween two points Pr(,,rr. t,t, r.r) and

P: (.r:. .i:, .:) in 3-space by finding tbe length of the diagonal of a box that has lhese poinls
as diagonai comers (Figure 13. 1 .6). The sides of such a box havc lcngths

l.r:2 ,r r l. \'t l1 . and a.2 - z\

and hence from (l) the distance d between the points P1 and Pr is

(where we have ornitted the unnecessary absolute value signs).

Itl,NI ARK. Recall that in 2 space the distance ./ between points Pr (r r, -lr) and P2 (,r2, y2)

is

,1 : v/(,r: -,rl)2 + (12 t.r)l

Thus, the distance tbrmula in 3-space has thc same form as the formula in 2-space, but it
has a third term to account fbr the lclditional dimension. We will see that this is l common

occulrence in extcnding formulas from 2 space to 3 space.

Example 1

Find thc distancc d between the poir]ts (2,3. -l) and (,1. -1.3).

Soltttittr. Frorn Fomula (2)

(:2)

Recall that in an -1)-coordinatc system, thc set of points (r. -r') whose coordinates satisty an

ecluation in .r and I is called the grapl of the equation. Analogously, in an -r,i,a-coordinate
system, the set of points (.r. r. ;) whose coordinates satisfy an equation in r, ,i, ancl ; is

caJled thc graph of the equation. For example. consider the equation

.r *t *--:25

a)+l|)2+c:

(rr - xr 2 + (l: - t'r)2 * (:: -:r
P.(.r,. r'1. :t)

t( rl. l l. .1) Ir 1L

GRAPHS IN 3-SPACE
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SPHERES

The coordinates of a point (.r, y, z) satisfy this equation if and only if the distance from
the origin to the point is 5 (why?). Thus, the graph of this equation is a sphere of radius 5
centered at the origin fFigure ll.l.7).

The sphere with center (xo, yo, zo) and radius r consists of those points (r, y, z) whose
coordinates satisfy

(,-x '+(y -ydz +(z- zo)2:r2 (3)

This is called the standard equation of the sphere with center (ro, )0, ro) and radius r.
Some examples are given in the following table.

EQUATIONFisure 13.1.7

(x - 3)2 + (y - 2)2 + (z - 1)2 = 9
(x+l)2+y2+(z+4)2=5
f+1?+22=7

Sphere with center (3, 2, 1) and radius 3

Sphere with center (-1, 0, -4) and radius {5
Sphere with center (0, 0, 0) and radius 1

Recall that in z-space the standard equation ofthe circle with center (r0, 1,0) and radius
ris

(;r -;rs)2 * (y - !o)' : rz

Thus, the standard equation ofa spherc in 3-space has the same form as the standard equation
of a circle in 2-space, but with an additional term to account for the third coordinate.

If the terms in (3) are squared out and like terms are then collected, then the resulting
equation has the folm

x2 +y2 + zz + Gx + Hy + Iz + J :o (4)

The following example shows how the center ald radius ofa sphere that is expressed in this
folm can be obtained by completing the squares.

Example 2

Find the center and radius of the sphere

*2 +y2 +zz -2x -4y *82-111 :o

Solution. We can put the equation in the fo1m of (3) by completing the squares:

(x2 - 2x) + (y' - +y) + (22 + 8z) : -17
(r2 2x+1)+(y2 4y+4)+(22 +82+16): -17 +21

1,r - 1)2 + (y - 2)2 + (z + 4)2 : 4

whichistheequationofthespherewithcenteI(1,2,4)andradius2.<

In general, completing the squares in (4) produces an equation of the form

(x - xd2 + (y - yd2 + Q - za)2 : k

If t > 0, then the graph of this equation is a sphere with center (-d0, )0, z0) and radius r,/k.
If fr : 0, then the sphere has radius zero, so the graph is the single point (.x0, )0, z0). If
,t < 0, the equation is not satislied by any values ofx, ), and z (why?), so it has no graph.

(r -xo)2 * (l yi)2 + (z- zr)z: r
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CYLINDRICAL SURFACES

13,1.1 THITOREN4. An equatir.,tt of tlrc.fornt
.t -.t _1 .-._ ,,, .,., t=0

,"prnrrrl, ,, ,plr"r". o poi.rtt', or has tto gruph.

Although it is latural to graph equatiorrs in two variables in 2-space and equations in thlee
variables in 3-space, it is also possiblc to graph equations in two variablcs in 3-space. For
examplc.theglapholtheequationi:r2inan,rJcoordinatesystamisaparabolaihorlever.
there is nothing lo prevent us fion writing this equation as i : -r2 + 0. and inquiring about
its graph in an -r-) a-coordinale system. To obtain this graph we need orrly obseNe that the
equation l' : -r2 do"s not impose any restrictions on :. Thus, if we flnd values of ,r and

l that satisfy tl'ris eqrlation, then the coordinates of the poilt (x. r'. :) wi]l also satisfy the
equation for ,rrDilran values of ;. Geometdcally, the poirt (-r. ). :) lies on the verlical Iine
tluough the point (,r, 1. 0) in the -l plane. which neans that we can obtaio the graph of
-r : -r2 in an ,r:r;-coordinatc systcm by 6rst graphing the ecluation in the -ry plane and thcn
translating that graph parallel to the : axis to generate the entire graph (Figure I 3.1 .8).

The plocess oI genemting a surfacc by translating a plane curve paraliel to some line is

ca\letl extrusion, ancl surf'aces that ale generated by extrusior arc calledc!lindrical surfoces.
A famililr example is the surtace of a right circular cylinder, which can be generated by
translating a circle parallel to the axis of the cylinder'. The lollowing theorem provides basic
infor-mrtion about graphing equations in two variables in 3-space:

13.1.2 THEORENI. All eqLlation tfui c(ittains onl,\ tro of tlrc vuriables x,1'. and z

represents o .\'litulrical sLuJbce in ttn xyz-coordinote s)-sten. The su(ace ctn be obtained
b-t graphing the eqtntian in tlte cootdinate plane oJ te flt'o variables tltti oppettr in the

equarion dild then trtnsLtttittg that grc1th paraLlel to the uxis of tlte missittg t ttriable.

Example 3

Sketch the graph of12 +:2 = I in 3-space.

Soltttiott, Since l does not appear in this equation, the graph is a cylindlical surface
generated by extrusion parallel (o fie l-axis. ln the:r:-plane the graph of the equation
.r2+:l:lisacirclc(Figure13.1.9).Thus,in3-spacethegraphisarightcircularcylincLer
along the _\'-axis.

Example 4

Sketch the graph of ; = sin ), in 3-space.

Solution. (See FigLrre 13.l.10.)

2 space 3 space

in an ,$a-coordinate system.

Figure l3.l l0

FOR THE RE,\DER. Describe the graph of.r - J

Fisnre ll.l.N
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ExERclsE SET 13.1 E Graphrng Ca cutator

l. In each purt. find the coordinates of the eight corners of the

A cube of side 4 has its geometric centel at the origin and

its faces paralJeJ to the coordinate planes. Sketch the cube

and give the coordinates of the corners.

Suppose that a box has its faces parallel to the coordinate
planes and the points (4.2. -2) and (-6. I . I ) are endpoints
of a diagonal. Sketch the box and give the coordinates of
the remaining six comers.

Suppose that a box has its faces parallel to the coordinate
planes and the points (,rr, ) r, ;t) and (x:, )2, z:) are end-
points of a diagonal.
rrr Find the coordinate' of the rcmlining .ix comers.
(b) Show that the midpoint ol the line segment joinine

(,rr. ,yr. ;r) and (-rl. 12, :r) is

(1(-rr + t:). ](.rr *,r'r). j(:r +::))

fSuggestiot: Apply Theorem D.2 in Appendix D to
thrce applop ate edges of the box.l

Find the center and radius olthe sphere that has (1, 2.4)
and (3, 4. - I 2) as endpoints of a diameler. [See Exercise 4.]

Show that (4. 5. 2). ( I. 7. 3). and (2. 4, 5) are vertices of an

equilateral triangle.

(a) Show that (2, l, 6), (4, 7. 9), and (ti. 5. -6) are the ver-

tices ol a right triangle.
(b) Which vertex is at the 90' angle?
(c) Find the area of the triangle.

Find the distance liom the point (-5.2, -3) to the
(a) ,rt'-plane (b) -r"-plane (c) r':-plane
(d) .r-axis (e) ,r'-axis (f) :-axis.

ln each part, find the standard equation of the sphere that

satisfies the stated conditions.
(a) Center ( l. 0. - I ): diameter = 8.

(b) Certer (- l, 3, 2) and passing thlough the origin.
(c) A diameter has endpoints (- l, 2. l) and (0, 2. 3).

Find equations of two spheres that are centered at the ori-
gin and are tangent to the sphere of radius I centered at
(3. 2.4).

In each pan. find an equation of the sphere with center
(2, 1, -3) and satisfying the given conditioD.
(a) Tangent to the.ry-plane

(b) Tangcnt to the r:-plane
(c) Tangent to the \,a-plane

12. (a) Find an equation of the sphere that is insc bed in the
cube that is centered at the point ( 2, 1.3)andhassides
of length I that are parallel to the coordintte planes.

(b) Find an equation of the sphere rhat is circumscribed
about the cubc in part (a).

ln Erercises lJ 18. Jescdhe thc surface who:e equution is
given.

13. r' \'| 2-10.r-4r 2: - lq:0
14. :l2 + ll *:2 - r' :0
15. 2,rr + 2r2 +2:r - 2.r - 3r' *5. - 2 : 0

16. .r2 + r'r +;2 i 2,t - 2r'* 2- * 3:0
17. -rr + ,r2 + :: - 3.r * 4,r. - tt: * 25 : 0

18. .r2 +t2+.:2 - 2.r -6t, -8: * I -0
19. In each part. sketch the portion ofthe surhce that lies in the

first octant.

20. ln each part, sketch the graph of the equatiorl in 3-space.

(c).t=;

6.

7.

(a) r: I (b) r': I (c):= |

21. ln each part. sketch the graph ofthe equation in 3-space.
(a) .r: + r,: = 25 (b) rr 1;r : 25 (c) .r'r +:r : 25

22. In each part, sketch the graph of the equation in 3-space.
(a) ):12 (b):=r'? (c) 1, = 1:

23. In each part, write an equation fo1 the sudace.
(a) Theplane that contains the-t-axis and the point (0, 1,2).
(b) The plane that cQntains the -t axisandthcpoint(I.0.2).
(c) The right circular cylinder that has .adius I and is cen

tered on the line parallel to the:-axis that passes through
the point ( l. l. 0).

(d) The right circular cylitrder that has radius I and is cen-
tered on the line parallel to the )-axis thrt passes through
the point ( 1. 0. I ).

24, Find equations tbr thc iollowing right circular cylinders.
Each cylinder has radius rr and is "tangent" to two coordi
nate planes.

In Exercises 25-34, sketch the surface in 3-space.

8.

L

t0.

11.

25. t': sin x 26-l-e'



E

E

,1 -1 ,l 28. ..: : cos r
29.2x-lz:3 30.2x*3-i:6
31. a12 .o-2: j6 J2. : vt'
33. y2 472 :4 34. r,; : I

35. Use a graphing utility to generate the cuNe ] : irl/(I+ir2)
in the -r_r-plane, and then use the graph to help sketch the

surface; : )'r/(l + )2) in 3 space.

36, Use a graphing utility to generate the curye l : .{/( 1 + r1)
in the,u plane, and then use the graph to help skelch the

surface; : )/(1 + )4) in 3-space.

37. lf a bug walks on the sphere

-t2+)t+rt+2r -2v 42. 3-o
how close and how fiu can it get fron the origin?

38. Describe the set of all points in 3 space whose coordinates

satisfy the iiequality x2 + t2 +.2 - 2jr i 8r I 8.

39. Describe the set of all points in 3-space whose coordinates

sarisfy rhe inequality )2 +;2 + 6)' - 4a > 3.

40. The distance between a point P(r, 1,:) and the point

A(1, -2,0) is twice the distance between P and the point

B(0. I . 1). Show that the set of all such points is a sphere,

and llnd the center and radius of the sphere.

,11. As shown in the accompanying figure, a bowling ball of ra-
dius R is placed inside a box just large enough to hold it,
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and it is secured for shipping by packing a Styrofoam sphere

into each comer of the bo.{. Find the radius ol the largest
Styrofoam sphere that can be used. LHIl?r: Take the origin
of a Cartesian coordinate system at a comer of the box with
the coordinate axes along the edges.l

Figure Ex-,ll

Consider the equation

12+J2+12 iG:e i Hyi Izf J-O
andler tr : G2 + H2 + 12 - 4.1.

(a) Prove that ihe equation represents a sphere ii K > 0, a

point if K - 0, and has no graph if r( < 0.

(b) In the case where K > 0, find the center and radius of
the sphere.

Show that lbl all values of A and d, the point

(a sin d cos 0, a sin d siD 0, a cos .y')

lies on the sphere ;v2 * j2 + z2 : tt2.

13.2 VECTORS

Munl physical qLtantities such ds areq, length, mass, and temperature are contpletel,t

destt'ibed onLe the mdgnitLtde of the qudntit! is gi'en. Suclt cludtttiies are called
"scalars." Other physical quantities, caLletl "\,ectors:' are not completeb) deternined
Lntil both a magnitude and a direction are spetiJied. For example. winds are usually
descrihed bl git,ing their speed and diteLti,,n, sa) 20 ntilh northeosr The wintl speed

0nd wind di'ection together fotm a vectot qudnfit) called the v,ind |elo(iry. Other ex-

amples tl wctors ctre force and displacement. Itl lhis se.tion we will derelop the bctsic

matt hem dtiL al prop eft ie s of re ttors.

A paficle that moves along a line can move in only two directions, so its direction of motion
can be described by taking one direction to be positive and the other negative. Thus, the

displat'ement or chdnge inposition of the point can be described by a signed real number. For
example, a displacement of 3 (: *3) describes a position change of 3 units in the positive

directjon, and a displacement of 3 describes a position change of 3 units in the negative

direction. However, for a particle that moves in two dirnensions or three dimensions, a plus

or minus sign is no longer sufficjent to specify the direction of motion-other methods

are required. One method is to use an arrow, called a veclor, that points in the direction
of motion and whose length represents the distance from the stafting point 10 tlle ending

point; this is calied the displncement vector fot rhe motion. For example, Figure 13.2.la
shows the displacement vector of a pa icle that moves from point A to point B along a
circuitous path. Note that the length ofthe anow describes the distance betwecn the starting

aod ending points and not the actual distance traveled by the pa{icle.

12.

43.

VECTORS IN PHYSICS
AND ENGINEERING
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VECTORS VIEWED
GEOMETRICALLY

(a)

Figure 13.2.2

lb)

''/|
,/ .'u+*

la)

1r

Two velocity vectoE that affect
lhe mot on oi the boat

(.)

A displacement
vector

(.a)

Figure ll.l-l

(b)

Figurc ll.2.l

Arrows aLe nol limited to describing displacements-they can be used to describc any

physical quantity that involves bolll a magnitude and ditection. Two important exarnples are

li)rces and velocities. For example. the arrow in Figure 13.2.I b shows a force vectq of l0 lb
acting in a specific direction on a block. and the arrows in Figure 13.2.1c show the velocity
vector of a boat whose motor propels it parallel to the shore at 2 rni/h and the velocity
vectol of a 3 mi/h wird acring at an angle of 45 " with thc shoreline. lntuition suggests thal

the two velocity vectors will conbine to produce some net velocity ibr lhc boat at an angle

to the shoreline. Thus, our first objective in this seciion is to define ntathcmatical operations

on vectors that can bc used to determine lhe combined etfect of vectols.

-l m i/h

ff.BF=-,,,(L::. ,.u,.

Rope

Anto
ll-/'

-_-__-.i

A force vector acting
on a block

(b)

Vecto$ can be represented gconetrically by arrows in 2-space ot 3-space; the direction
of the arow specifies the dilection ol the vcctor and the length ol thc arow describes its

magnitude. The tail ol the arrow is callcd lhe initisl point ol the vector, and the tip of the

attow thetermi alpoirrt. Wc will denote vectors with lowercase boldlhcc type such as a.

k. v, rv, and x. When discussing vectorsi we will refer to real numbels as scalars. Scalars

will be denotecl by lowercase italic type sLrclr as 4, ft, l. ur, and.r. Two vectors, v illld w,
are considerecl to be e4rrl (also called equivalent) if they have thc sante length ancl same

direction. in which case we write v : rr. Geometrically, two vectors are equal if thcy are

runslations of onc anotherl thus, the three vectors in Figure 13.2.2a arc cqual, even though

they are in different positions,

Because vectors are not all'cctcd by trilnslation, the initial point of a vector v can be

moved to any convenient point A by making an appropriate translation. If the initial poinl

ol v is A antl the tenninal point is B. then we writc v : AB when we want to emphasize

the initial and tcrminal points (Figure 13.2.2/r). Ifthe initial and temi:ral Points ofa veclor

coincide, then the vector has length zcro; we call this the zero vector and denote it by 0.

The zero vector does not have a speciflc direction. so we will agrce that it can be assigned

any convenient direction in a specilic problem.

There are various algebraic operations that arc perfo ned on vectors, all ofwhosc defi-

nitions originated in physics. We begin with vector addilion.

l.l.l.l Dl I l\t I ti r\. ll v irnd w cre vecrors, then thc sunr \ I w is lhe veclor liom the

initial point of y to the terminal point of w when the vecto$ are positioned so the initial
point of w is at the temrinal point of v (Figure 13.2.34).

In Figure 13.2.3b we have constructed two sums, v + w (purple arrows) and w + v (green

arrows). It is evident that

Y+w:w+Y
and that the sum coincides with the diagonal of the parallelogram detcnnined by v and w
when these vectors are positioned so they have the same initial point.
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Since the initial and tenninal points of 0 coincide, it follows that

0*v=v*0:v

l-1.2.2 DFFINITIoN. If v is a nonzero vector and k is a nonzero real number (a scalar),
'. lhenthe scalqr multlple tv is defined to be the vector whosc length is & tirnes the lcngth
' of v and u'hose dilection is the same as that of v if I > 0 and opposite to that of v if
,,t < 0. We deflne tv:0 if I = 0 or y:0.

Figure i3.2.4 shows dre geometric relationship belween a vcctor v and various scalar
multiples of it. Obscrye that if I and v arc llonzero. thcn the vectors y alrd ky ]ie on the
sanrc line if their initial points coincide and 1ie on palallcl ol coincident lines if []ey do not.
Thus. rve say that v rnd kt are parallel veclors. Observe also that tlle vector (- 1)v has thc
sanre lengtlr as v but is oppositely directed. We call ( l)v the egative of \ and cicnote it
by v (Figure 13.2.-5). ln paticular, 0 : ( l)0 : 0.

Vector subtr.action is defined in terms of addition ancl scalar multiplication by

v-w-v+(-w)

The difference v - w can bc obtained geornetrically by nrst constructing the vector'-w
and then adding l and -w, say by the parallelogram method (Figure 13.2.6a). However',
if v and w are positionecl so their initial points coincide. then v ry cat be formed more
clirectly, as shown in Figure 13.2.60, by chawing thc vector tiorlt the tenninal point of w
(tire second tenn) to the terminal poirrt of v (the lirst term). Ilr the special casc where v - w
the lerminal points of the vectors coincjde, so their dift'crence is 0; that is,

Y+( v):Y-Y:0

(-llr.."

Firurc 11.2..1

I ;/r

I:igurc 1-1.2.-5 Irisurc 13.l.i)

(a) (h)

VECTORS IN COORDINATE
SYSTEMS

Problems involving vectus are olten best solved by introducing a reclangulal coordinrte
syslem. lfa vectol y is positioned with its initial point at the origin ofa rectangular coot dinate
system, then its tenninal point will have coordinates of the fom (11, r2) or' (r,1. 11, r3),
depending on whether the vecror is in 2-space or 3-spacc (Figure 13.2.7). We call these
coordinates lhc cornponeftts o[ \, and we write

y: (11. u1) or v : (u1. r,2, u3)

: spa.. I strcc

In pa jcular. the zero veck)r'is

0 = (0.0) and 0: (0.0,0)

2-!prre l-sprle

Components provide a simple way of identifying equivalent vcctors. For cxample, con-
sider the vectors y : (u1. u2) and w : (u,1. ur:l) in 2-space. If v : w. then the vector.s

have the same length and same direction, and tllis nreans that their teminal points coincide
when their initial points are placed at thc origin. lt follow that 11 : 1.r I 'nd r,2 : url. so

we have shown that equivalent vectors have the same components. ConYelsely. if u1 - u1

$ (u,, L'. )

r (ut,0'. ur)

Figurc 13.2.7
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lnd u' : p,. then the tennin:rl nn;.
pr"..J 

" 
rrr. 

",iei". ;:1f#11#',H -"-t'le 
vectots. coincide when their initiar poinrs are

we have shown lhar vecrors *,rn ,r" l^flrll]have the same lengrh and same direcrion, so
hnras ro,-, ecro,, ii i.;;.;. l.;:;";J,i:?ili,"J:#):J: 

:luivirrcnt. 
A simlar argumerri

For example,

fu, b, cl : (1, _4,2J

if and only ifn : l, b : _q, ong, _ r.

The next theorcm shows how to perfbrm arithmetic operalions on vectors using components.

,l,l;r11";,'.";;;" 
IIt=lu''u-)ttrtct u=\u,.u'tetet(rtorsitt2-.\ra,.?ardki,

13.2.-l 't 
r tectnetr.

ponenfi are eqUol.

v+w=(ul + ut, vz + a2)
v-w=(u1 _ ut. u2 _ u2,
kv = (ku1. ku2)

Sintilarlt.i/ v = {ut. ut.t,rturul w_

Y+w:(ur * w1, u2 | rr2. uj + u.r)
Y-rv: (Ui _wj,u2_ rr2, U3 _ urj)
kv : (kut. kut kui

Tu o rpg1s4 urr, 
"ruitalr ttt if ttttJ ,tttlt. tl t lteit. r.ot.t.e 5lottJi g r.on-

ARITHMETIC OPERATIONS
ON VECTORS

VECTORS WTH INITIAL POINT NOT

(t)
(.2)

(3)
(u1, w2. w{ are t,eortr.s itt 3_spoce ancl k is ctny

(4) .

(5)

(6)

We wilj not prove this theorem. 
-However, 

results (l) and (3) should be evident fromi-rgure I.t.2.8. Similar 6gures in 3-space can O" ,*o ," rn",iil. ioj,""l,rl Fomrulas (2)and (l)can beobtlined bywriting v L w __ \ + ( _l)w.

Example 1

If r : (-2.0, l) and w = (3. 5. _4), rhen
vf w=/-2.0. l)-., (.r.5._4)_/r 5 r\
rv = {_6,0. l)
-t4 = 1-l -s .1\

, ., J,f/

w -2v: (3,s, _4) _ (_4,0,2) = (7, 5. _6)

Recall rhat we delined the compon
pornt when its inirial Doinr 1,, ,,, ,r"'Tl l)f a. vector lo be lhe coordinillei or irs renninal
irr. -rp"".",, "i, #;;; ;#.[:l'iin we. will not\ consider rhe probtem or rinding

l,li _",, 
1,,,, 

";";',;:. ;,:; +jli::: ? 
ri.: ll,l'i^ l,li.","ll,iL:nli;ru,t:components of lhe vecror FE. As itiustrated i"'rig*. i:.z.slr. .o.n?rit. tt,l, u..to. o,,FA = oi- @ : qr2. r11 - (,rr,.r.r) : (_t: _.rr..r.: _ l,r)

Thus. we have shown thar the comor
rng lhe coordinares ot ils iniriat o;i;l:l'.t 

nf,'ht u"t'nt FC can be obrained by rubrracr-
compurarion\ n,,ij ,""i_rr,,..,'l"t_Ifl 

irom Ihe coordinare\ of ir\ relrninrl p,rinr. similarhave established the ibllowing result:

(.ut + ut, Dj + ujl

Figure 13.2.8



Example 2

In 2-space the vector from 4 ( I , 3) to Pz(4, -2) is
------t
P1P2 = (4 - t, -2 - 3l : (3. -s)

and in 3-space the vector from A (0, -2, 5) to B (3 , 4, - I ) is

Ti : qt - o,+ - (-2), -l - s) : (3, 6, -6)

The following theorem shows that many of the familiar rules of ordinary arithmetic also
hold for vector arithmetic.

13.2.6 TIDoREM. Foranyvectorsqv, andw and any scalars kandl, thefollowing
relationships hold:
(a) u+v:v+u (e) k(lu) = (/<f)u
(b) (u+v)+w:u+(v+w) ff) r(u+v):&u*kv
(c) u*0:0+u=u (s) (r+l)u=&u+/u
(d) u * (-u) :0 (i) lu: u

The results in this theorem can be proved either algebraically by using components or
geometrically by treating the vectors as arows. We will prove part (b) both ways and leave
some of the remaining proofs as exercises.

Proof (b) (Algebraic in 2-space). ygta: (u1, u2l,v : lurv),314 y : (ur1, u,2).
Then

(u +v) +w : ((ut,uzl * Qy, u)) * (w1, u2l

= lr11 J u1, u2 i u) + (u1, u2\

= ((ar * ur) ]-ur,(uz+D)+uzl
: (a1 * (v1 + w),u2+ @2+ u)l
: (u1, u2l I lq * ut, uz I wzl

:u+(v+w)
Proof (b) (Geometric). Let u, v, and w be represented by
Figure 13.2.10. Then

y1y, = fr and

u*v: Fi and

Therefore,
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RULES OF VECTOR ARITHMETIC

u*(v+w):B
(u+v)+w:B

13,2.5 THEoRIM. Il Pf2 is a vector in 2-space with initial point P1g1,y) and
terrninal point P2(x2, y), then

P1P2 : Q2 - xt, jz - ttl

Similarly, if FFz is a vector in 3-space with initial point Pt(xt, yt, z) and terminal
point PzGz, yz, z), then

P1P2: lx2 - xt,y2 - yt,z2 - A) (8)

(1)

Figue 13,2.9

Figue 13.2.10

(u+v)+w:u+(v+w)

FD, Ol, ano n3 as shown in
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Figure 13.2.1I

IIENIARK. It follows fi on] part (,) of this theorern ihat the syrnbol u + v + w is unam,
biguous since the salne vector results no lnatter how the tenns are grouped. Moreover.
Figure 13.2.10 shows that if the vecto|s u, v, and w are placed "tip to tail," then the sum
u + v + w is the vector from the initial point of u to the terminal point of w. This also works
fbl fbur or more vectors (Figurc 13.2.11).

The distance bct*ecn the initial and terminal points of a vector v is called the lengti, the
nom, ot lhe mqgnitude of v and is dcnoted by v I. This distance does not change if the
vector is translaled, so lbr purposes of calculaling thc norm we cat assume that ihe vector
is positioned with its initial point at the origin (Figure 13.2.12). This makes it evident rhar
the norm of a vector v : {u1. u2) in 2-space is given by

NORM OF A VECTOR

;lv:y'r,i+ur'/
and the nom o[ a v".1n. y - (rr . u2, u;) in 3 space is given by

lul- /,? +u3+ua

Example 3
Find the norm ofv : (-2,3) and w = (2.3.6).

(e)

(t0)

l-i-cure j.l l2

Sohttiort. From (9) and (10)

lY:v/(-2)2+3r:Jl3
lw : "Dtl-rl@ - 1q9 =1 <

Recall fiom Definition l3.2.2thatthelengrhof kyis l& rimes the length ofy; rhatis,

ll,tv = kll vll (]l)

UNIT VECTORS

tI
I (0. r)
I.l

.rl
II r
+"*--.. -. - >

' (1. o)

t'
r0.0. lr

ki
ilJl

/'i (). t. ol

/' (1,0.0)

Fisure I i.2.l3

Thus, fbr example,

3Yl :3lYi-3lvl
2vl:) 2lvl:2 vl
v : -1llvl - vl

This applies to vectors in 2 space and 3-space.

A vector of length I is called a unit vector. In an rJ-coordinate system the unit vectot s

along the .r- and t axes are denoted by i and j, rcspectively: and in an q,1-coordinate
systen the urit vectors along lire .r-, _r'-, and : axes are denoted by i. j, and k. respectiveiy
(Figure 13.2.1 3). Thus,

i: (1.0). j: (0. l)
i-(r.0,0), j=(0. 1.0). k:(0.0, 1) r,,r,p^."

Every vector in 2-space is erpressible uniquely in terms of i and j, and every vector in
3 space is expressible uniquely in tcrms of i, j, and k as follows:

y: (ul. u2) : (u1,0) * (0, ur) : p,11.9; + ur(O, 1) : uri + u2j

v: (ur. u2, u:) : ur (1,0,0) *uz(0, 1,0) + ui(0.0, l): uri+u2i+u3k

RI:VARK. Thc brackat and unit vector notations for yectols are completely interchange
able, the choice being a natter of convenience or pelsonal preference.
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Example 4

2-sPAcE 3 sPAcE

If v is a nonzero vector with its initial point at the origin of an r)-coordinate system, and if
d is the angle fiom the positive ;r axis to the radial line through y, then the r-component of
v can be written as lly cosdandthetcomponentaslvlsind(Figure13.2.14); and hence

v can be expressed in trigonometdc folm as

y: lvl (cos{, sin@) or v: llv lcos@i + llvlsin{j
In the special case of a unit vector u this simplifies to

s : (cos@, sin@) or u = cosdi l sindj

Example 6

(a) Find the vector of length 2 that makes an angle of z/4 with the positive ,r-axis.

(b) Find the angle that the vector y : -$i + j makes with the positive.x-axis.

(2. :) = 2; a31 (2, 3,1) = 2i 3j+4k
(-4, 0) = -ai + 0j = -ai (0, 3, 0) = 3j

(0.0)-0i+0j=0 (0,0,0)=0i+0j+0k=0
(3i+2j)+(4i+j)=7i+3j (3i+2j k) (4i-j+2k)=-i+3j-3k
5(6i 2j) - 30i loj 2(i +.i k) + 4(i .i) = 6i - 2j - 2k

ll2i 3jll =!22+(:)2=./r: lli+2j 3kll =!l-l-t;l F=1?
lluii+u2ill=.ti;4 111u,.ur,u3)ll=^6T-8.;7,

A common problem in applications is to flnd a unit vector u that has the same direction as
NoRMALIZING A vEcroR some given nonzero vector y. This can be done by multiplying y by the reciprocal of' its

length; that is,

1v
": fl"ilo: ilnf

is a unit vector with the same direction as v-the direction is the same because & : 1/lv
is a positive scalar, and the length is I because

1

lu - frv l- lll vl -rlvl - . tvl -llvl
The process of multiplying a vector v by fie reciprocal of its length to obt]in r unit vector
with the same dilect\on is ca.lled nonnalizing t .

Example 5

Find the unit vector that has the same direction as y - 2i + 2j - k.

Solutiott. The vector v has length

1t:J2z+22+( 1)2 :3
50 lhe unil reclr,rr u in the same drrectron a' v i"

u:+Y=ii+3j jk

FoR THE READER. Many calculating utilities can perform veotor operations, and some

have built-in norm and nomalization operations. If your calculating utility has these capa-

bilities, use it to check the computations in Examples 1, 3, and 5.

VECTORS DETERMINED BY
LENGTH AND ANGLE

llv cos d

Figure 13.2.14

(.12)

( l3)
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Sulrttion lu). From (12)

, -:co. Ii , r\i' li : Jli + v:j

Solulion lb\. We will uor nralizc v. then use ( l3 ) to lind sin d and cos d, and then use thcsc

values to find (r. Normalizing v yields

I V.lt +.1 Ja. r.=- r+rJ
( -./J ): +

Thus'ctts@=_.,5/2anclsinq)=]'fromwhichweconcludethat4=5llo'<

It is a comnon problem in maDy applications that a dircction in 2-space or 3-spitcc is
determined by some known unit vcctor u. and it is of intelest to find the componcnts of il
vectol v that has the same dircction as u and sonle specified length llvll. This can hc done

by exprtssing v as

v : lv lu !i\ equllro irs lersrh linr.s r unil rccroriI rhc \lrite di.cctio.

and then reading oll'thc components of y lu.

Example 7

Figure 13.2.15 shows a vector v of length J5 th t ertends llong thc lint'through A and B.
Find thc cornponents of v.

Solution, Filst we will lincl the components ofthe vector AE. thcn we will normalizc this

vector to obtain a unit vcctor in thc direction of y. ilnd thcn we will multiply this Lrnit vcctor
by llyll k) obtain the vector v. The computations arc as tbllows:

ei : q:. s. o1 - 0.0..+) = (1.5. -+)

AEt = jt + t +Ia1F = "45: :"5

^p I 1 5 ,r \
I' - \

llABll \Jy'5 -tV: ,iV)i

llrll

VECTORS DETERMINED BY
LENGTH AND A VECTOR IN THE
SAME DIRECTION

. \(0. n.l)

Figllrc ll.l.l5

RESULTANT OF TWO CONCURRENT
FORCES

Fr +F.

a

... 1 ti \ .-/: 5 r\ l2s +\
" - tutl 

\r * / - 
ut\l'e ,"t ,vs/ - \' ' :/

.F

The single torce Fl + F.
has the same etfect as the
two iorces Ft and F,.

Fisurc ll.2 l6

Thc cflcct that a lbrce has on an object depends on the magnitude and dilection of thc litrce
and the point at which it is applied. Thus. fotccs are Iegarded to be vector quantitics and,

indeed. the algebraic operatiurrs on vectors that we have defincd in this section have their
origin in the study of fbrces. Fol exanple. it is a lnct of physics that if lwo forccs F l and

F2 are applied at the same poiDt oD an object. tl'ren the two forces lravc thc same eflect on

the object as the single forcc F] + F] applied at the poinl (Figure 13.2.16). Physicists and

engineers call Fr * F: thc rusaftcttl of Ft and Ft. and they say thrt the fbrces F1 irnd l'1
are concurrelt to indicatc that they ll.re applied at the same point.

In Inany applications. the rnagnitudes o[ two concurrent fbrces ald the angle betwcen

them are known, and the problem is to find the nrtgnitude and dircction ofthe resultant. For

cxamplc. rcf'crring to Figure I 3.2. 17, slrpposc that we know the nagnitudes of thc firlces
Fl and F: and the angle d) betwccn thcrn, and we are interested in linding the magnitude of
the resultanl Ft + Fr and thc ongle (Y that the resullant makes with the fbrce F1. This can

be donc by trigonometric metlrods based on thc laws of sines and cosines. For this purpose.

recall that the law of sines rpplied to the tr ianglc in Figure 13.2.18 states that

a

sin o rin F sin ;,



Fr+Fi

Figure i3.2.17
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and the law of cosines implies that

c2 = cL2 +b2 -2tbcosy
Referring to Figure 13.2.19, and using the fact that cos(z - d) : cos d, it follows

from the law of cosines that

lFr *Fu l2: lFrll2 + lFrll'?+2lFllllFrll cosd

Moreover. it follows from the law of sines that

Fu I Fr * Fzl

sinq sin(z @)

which, with the help of the identity sin(z - d) : sin d, can be expressed as

. lF: llslno/: 

- 

sln@
LFr * F:l

Example 8

Suppose that two forces are applied to an eye bracket, as shown in Figure 13.2.20. Find the
magnitude of the resultant and the angle d that it makes with the positive x-axis.

Solution. We are given that llFrl :200Nand lF:ll : 300 N and tnat the angle between
the vecton F1 and F2 h d : 40'. Thus, it follows from (14) that the magnitude of the
resultant is

lLFr + F:l :

(14)

( 15)

Figurc 13.2.18

- y{266p 4 13oof 121200; 1cos40'

- 471 N

Moreover, it follows from (15) that the angle a between Fl and the resultant is

. -,/ lFzl .\ay=srn'l-stn.rl
\lFr *Frl '/
/300 \: sin l-sin40! |
\ 471 I

^. 24.2"

Thus, the angle d that the resultant makes with the positive r-axis is

d : q * 30' ::24.2" *30" :54.2'
(Figure 13.2.21).

Fr + Frl - 471 N

lF:l =
1',
300 N

Figure 13.2.20 Figure 13.2.21

REMARK. The resultant of three or more concurent forces can be found by working in
pairs. For example, the resultant of three concurrent forces can be found by finding the

resultant of any two of the tbree forces al.ld then finding the resu]tant of that resultant witl
the third force.

+2 Frlll F2 lcosd

llF r

Figure 13.2.l9

llF: = 300 N

Figure 13.2.20
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ExERcrsE SET 13.2

ln Exelcises 1 4, sketch the vectors with dreir initial points
at the oiigin.

ln Erer'.r.e< I I und Ii. perrurr lhe.nled oler,lrions on lhr
vectors u, v, and w.

l.

ln Exercises 5 and 6, l'ind the components of the vector, and

sketch an equivalent veclor with its initial point at the oigil].

u:3i k, v:i .i i2k, rv:3.i
(a) $' v (b) 6u + 4w
(c) -v - 2rv (d) 4(lu + v)
(e) 8(v + w) + 2u (f) 3\{ (v w)

u: (2. -1,3), v - (4,0. -2), $ : (1, 1. 3)
(a) u ry (b) 7v+3w (c) ry+v
(d) 3(u 7v) (e) 3v Ew (11 2v (u+w)

In Exercises 13 and 14, lind thc norm of v.

13. (a) Y:(1,-1) (b) v: i+7j
(d) r: 3i+2j+k
, /..(Dr r-Vll V/.1

(d) v:i+j*k
15. Let u : i- 3j +2k, v : i+j. and$ : 2i *2j -4k. Fhd

(c) v:( 1,2,4)

14. (a) y: (3. 4)

(c) v-(0, 3,0)

(a) u+Yl
(c) -2u + 2l y

I(e) 

-wl$l
16. Is it possible to have lul * iv - u 1 vl if u and v are

nonzero vectors? Justily yor.Lr conclusion geornetricallv.

In Exercises I 7 and I 8, llnd unjt vectols that satislv the stated
conditions.

(a) (2, s)

(d) si + 3j

(a) ( 3,7)
(d) 4i + 2j

(a) (l, 2, 2)

(c) i+2j+3k
(a) ( 1. 3, 2)

(c) 2j k

(b) ( 5, 4)

(e) 3i - 2j

(b) (6, -2)
(e) 2i i

(c) (2,0)

(f) 6j

(c) (0, 8)

(f) 4i

ll.

12.

2.

3.

4.

(0... (r. s)

\' (4' l)

(b) \2.2, -t)
(d) 2i +3j-k
(b) (3.4, 2)

(d) i j+2k

5'(o) (b)

6'(o) (b)

(3, 0.1)

In Exercises 7 and 8. find the compoDents of the vector E4.

7. (a) P1(3.5), Pr(2,8) (b) Pr (7, -2). Pr(0. 0)

(a) Same direction as i +,lj.
(b) Oppositely directed to 6i 4j + 2k.
(c) Same direction as the vector ftorn the point A ( 1 , 0, 2)

to the point B(3, 1. 1).

(a) Oppositely directed to 3i 4j.
(b) Same direction as 2i j 2k.
(c) Same direction as the vector flom the point A(-3,2)

to the point B( I , - 1).

In Exercises i9 and 20, find vectors that satisly fie stated
conditions.

(a) Oppositely directed ro v : (3, 4) and half rhe length
ol v.

(b) Length Jl7 and sanre direction as v : (7,0, -6).
(a) Same direction as v : 2i * 3j and three times dre

length of v.
(b) Length 2 and oppositely directed to v - 3i+4j+k.
In each part, find tl're component tbrm of the vcctor y in
2 space that has the stated lelgth dnd makes the staled anglc
ry' with the positive';r-axis.
(a) lrl :3; Q: nl1 (b) v | :
(c) lvl -5; d-120' (d) vl-

(b) lu + lvi
(d) l3u - 5v + wl

llt(rrllfnfu

l7-

18.

19.

20.

8.

9.

(c) Pl(-5. 2, 1), P2(2.4,2)

(a) Pl(-6. -2), P2e4, l)
(b) Pr (0, 0, 0), Pr( 1, 6, 1)

(c) Pr(4, 1. 3), Pr(g, l, -3)
(a) Find the terminal point olv : 3i- 2j if fie inirial poinr

is (1, 2).

(b) Find the initial point of v - ( 3. 1, 2) if the termilal
poinl is (5,0. -l).

10. (a) Find the temrinal point ofv : (7,6) if the initial point
is (2, 1).

(b) Find the terminal point of v : i + 2,i - 3k ifthe initial
point is (-2. t.4).

2;6:90'

21.



22, Find the component foflns of y + w and v - w in 2-spacc,
given that lvl= l,llw | : l, v makes an ingle of t/6with
the positive ,r-axis, and w makes an angle of 3z/,1 with the
positive x-axis,

In Exercises 23 and,24, find the component fb.m of y + w.
given that v and w are unit vectors.

ln each part, sketch the vector u + v + w and express it in
componeDt form.

ln each part of Exercise 25. sketch the vector u - v + w and

express it in component lbrm.

1s1 u = (1.3), v = (2. l), w : (4, 1). Find rhe vector x
that satisfies 2u - v + x = 7x + w.

Letu: (- l. l),v = (0, l),andw: (3.4).Findthevector
x that satislies u - 2x = x - w + 3Y.

29. Finduandvif u+2!:3i kand3u v-i*.i *k.
30. Finduandvif u+v: (2. 3) and3u+2v: (-1.2).
31. Use vectors to lind the lengths of the diagonals oi the par-

allelogram that has i +,i and i - 2j as adjacent sides.

32. Use vectors to find the fourth vertex of a parallelogram,
three of whose venices are (0, 0), (1, 3). and (2. 4). [Note;
There is more than one answer-l

33. (a) Given that llvll : 3, find all values of I such that

lltYli : s
(b) CiveD that i = -2 and lltvll : 6, find llvll.

What do you know about & and v if lltvll : 0?

ln cach part, find two unit vectoN in 2 space that satisfy the
stated condition.
(a) Parallel to the line ) = 3r + 2
(b) Parallel to the line,r + ] : 4
(c) Parpendicular to the line )' : 5.r + I
In each part, find two urit vectors in 3-space that satisfy the

stated condition.
(a) Perpendicular to the.\_r-plane
(b) Perpendicular to the -r:-plane
(c) Perpendicular to the r':-plane
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37. Let r: (;r, _"-) be an arbitrary vector, ln each part, describe
the set of all points (-r, ]) in 2-space that satisfy rhe srated
condition.
(a) rl :l
Let r = (r,)) and r0 : (i0,.!0). In eaclt part, describe
the set of all points (-{. l') in 2-space rhat satisfy the stated
condition.
(a) llr-r0ll :1 (b) lLr-roli :l (c) llr-r0l >l
Let r : (,r, _t.;) be an arbitrary vector ln each parl, de-

scribe the set of all points (-r. _r.:) in 3-space that satisfy
the stated condition.

(b) rl :l (c) lr > I
38.

24.
39.

(a) llrll - I (b) llrll s I (c) llrll > I

25.

40. Let rr : (-rr, _rr), r:: (,r:, )t), and r = (r. r'). Describe
the set of all points (,r. y) forwhich I r - r1 | + | r - rrll : i,
assuming thattr :' l12 - rrll.

h Exercises 41 46, frnd the magnitude of the resultant force
and tlre angle lhal il make. wrth the positive.f-i.lxi:..

4t' 
1'
I tn 

'nI ou,o ,t--
43.

l4ooN

(b)(a)

42.

26.

27.

28-

34.

35.

A particle is said to be in static equilibrium if the resultant
of all fbrces applied to it is zero. In Exercises 47 and 48. find
the force F that must be applied to the point to produce static
equilibrium. Describe F by specifying its magnitude and the

nSle lhll il makes u ith the po\rtive .r-i.rxir.

;r I50 N

too N

l6_

47. 48.
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49, The accompanying figure shows a 250-lb traffic light sup
ported by lwo flexible cables. The rnagnitudes of the tbrces
that the cables apply to the eye ring are called the cable t?r-
sions. Find the tensions in rhe cables if the traffic light is iD
static equilibrium (dcfined above Exercise.lT).

50. Find the tensioDs in the cables shown in the accompanying
figure if the block is iD static equilibrium (see Exercise 49).

A vector w is said to be a linear combination of the vectors
vl, v2, and v3 if w can be expressed as w : ctvl + c2v2 +
crYi, where cl, cr, and c3 are scalars.
(a) Find scala$ cl, c2, and cr to express (-1,1.5) as

a liiear combinatiol of the vectors v1 - (1,0, l),
v2 - (3,2,0), and v3 : (0, l, l).

(b) Show that the vector 2i +j k cannot be exp.essed as a
linear combination of tlte vectors v I : i-j, v2 - 3i+k,
andyr:4i-j+k.

Use a theorem fiom plane geomely to show that if u and v
are vectors in 2-space or 3 space, then

lu+vl: lul +lvl
which is called the triangle inequalit| for rcctors. Giye
some examples to illustrate this inequality.

Prove parts (.r), (c), and (?) ofTheorem 13.2.6 aJgebraically
in 2-space.

Prove pafis (r1), (.q), and (r) of Theorcm I 3.2.6 algebraically
in 2-space.

Prove part (l ) of Theorem 13.2.6 geometrically.

Use vectors to ptove that the line segment joining the mid-
points of two sides of a rriangle is piirallel to rhe third side
and half as long.

Use vectors to prove that the midpoints of the sides of a
quadrilateral are the vertjces of a parallelogram.

52.

53.

54.

55.

56.

57.

58.

51.

Figure Fr lq Figure Ex 50

A vector w is said to be a linear combination ofthe vectors
vl and v2 if w can be explessed as w - cl vt + a2v2 , where
arL and c2 are scalars.
(a) Find scalars cl alrd c2 to express the vector 4j as

a linear combination of the vectol-s vl - 2i j and
v: :4i + 2j.

(b) Show that the veclor' (3,-5) cannot be expressed as a

linear conbination of the vectors vL : (1, 3) and

vr _ ( 2.6).

13.3 DOT PR0DUCT; PR0JECTIONS

In the last sectiut b,a defined three operatiotls on yectors qddition. subtractiott. dnd
scalar multiplicatiort. In scalar multiplicdtiul a |ectot is multiplied b)- d scalar atld
the result is q r)ector. In this section we will defne a neu, kind of multiplication in
v)l1ich tu,o rettu's at e multiplied to prodLtce a scalctr. This nultiplication operotion has
tanl uses. some of \rllich we v,ilL alsct discuss itt this section.

DEFINITION OF THE DOT PRODUCT ,, ,1.1.-l.l DEFINITION. If 1 : (a), 12) and y : (ur, u2) are vectors in 2-space, then rhe l

dot product of u and v is written as u . v and is deflned as

L.\=Ltlut+u27)2

Similarty, if u : \u1. u2, u1) and v : (tt, 1,,2, ul) are vectors in 3 space, tllen their dot
product is defined as

u. Y: rlut + u2u2 + u!)1
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In words, the dot product of two vectors is fonned by multiplying their corresponding
components and adding the products. Note that the dot product of two vectors is a scalar.

Example 1

I (\. -l 
\ 

-1r-lr-+<lir:71t\. t. _.r_t)+t/.\_0
(1. -.r.4) . (1.5.2) - lrl\ /-3)r5' -412) - -6

Here are the same computatiors expressed another way:

(3i+sj).( i + 2j) :3(-1) + s(2) :7
(2i + 3j) ' (-3i + 2j) = 2( 3) + 3(2) : 0

(i 3j +4k).(i+sj +2k): l(l) + (-3)(s) + (4)(.2) - 6

FoR THE RE^DER. Many calculating utilities have abuilt-in dot product operation. If your
calculating utility has this capability, use it to check the computations in Example l.

The following theorem provides some of the basic algebraic propefties of the dot productl
ALGEBRAIC PROPERTIES OF THE
DOT PRODUCT

13.3.2 THEoRIM. Ift,v, andw are tectors in 2- ot 3-space and k is a scdlar, then

(a) u.v = v.u
(r) u.(v+w):u.v+u.w
(c) k(u .v) : (ru) . v = u. (tv)
(d) v.Y- lYl 

2

(e) 0. v:0
i

We will prove pafts (c) and (d) lbr vectors in 3-space and leave some of the others as

exercises.

Proof (c). lgl u : (a1. u2. u3) 31fl v : (u1. 12, u3). Then

k(u. v) = k(.utut I uzuz * rru:) - (kar)ur + (ku)uz + (t,j)r3 - (tu) 'v
Similarly, t(u ' v) : u.(/<v).

Proof (d). y.y:urur+u2u2+!3u3 -r\+u]+u]:|v1 '?. I

RENIARK. Pay particular attention to the two zeros that appear in part (e) of the last

theorem the zero on the left side is the zero vector (boldface), and the zero on the dght
side is the zero scalar (lightface). It is also worth noting that the result in part (d) can be

written as

lr :.r4. v (1)

which provides a way of expressing the norm of a vector in terms of a dot product.

Suppose that u and y are nonzero vectors in 2-space or 3-space that are positioned so their
initial points coincide. We define the sngle between u and v to be the angle d determined
by the vectols that satisfies the condition 0 

= 
A S r (Figure 13.3.1). In 2-space, 0 is the

smallest counterclockwise angle through which one of the vectors can be rotated until it
aligns with the other

The next theorem provides a way of calculating the angle between two vectors from their
components.

ANGLE BETWEEN VECTORS
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dh&
Figure 13.3.1

133.3 'IHEoREM. If a and v are non4ero yectors in 2-space or 3-space, and if 0 is
the angle between them, than

cosg: -Ijl e)
llullllvll

Proal. Suppose that the vectors u, v, and v - u are positioned to form three sides of a
triangle, as shown in Figure 13.3,2. It follows from the law of cosines that

llv ull2 : llull, + llvll, - 2llullllvll cose

Using the properties of the dot product in Theorem
this equation as

llv-ull2:(v-u)'(v-u)

(3)

13.3.2, we can rewrite the left side of

:(v-u).v-(v-u).u
:v.y-u.v-v.u+u.u
:llvll2_2u.v+llull2

Substituting this back inro (3) yields

llyll2 -2u. v+ llull' = llull'z + llvll2 - 2llullllvll cos0

which we can simplify and rewrite as

1. v = llullllvllcosd
Finally, dividing both sides of this equation by lull I v I yields (2).

Example 2

Find the angle between the vector u : i - 2i * 2k afi
(a) v:-3i+6j+2k (b) w=2i+7j+6k (c) z:-3i+6j-6k

Solation (a).
u.v -1t 11cosd:

Thus,
llullllvll (3)(7) 21

e : "or-t(-#) 
t 2.12 radians 

^, 
121.6'

Solatinn (b'),

0 :0
Thus,0 : n/2, which means that the vectors are perpendicular.

Solutian (c).

tr.z -27cocp-_=_:_l
llullllzll (3Xe)

cosd: u.w
llullllw I llull lwl



INTERPRETING THE SIGN OF THE
DOT PRODUCT
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Thus, d : r, which means that the vectors are oppositely directed. In retrospect, we could
]]aVeSeer]thiswifioutcornputing0'Sincez=3u'<

It will often be convenient to express Formula (2) as

u.y: llulllvlcose (.4)

which expresses the dot product of u and y in terms of the lengths of these vectors atd the

angle between them. Since u and y are assumed to bc nonzero vectols, this version of the
fbrmula makes it clearthat the sign ofu . v is the same rs the sign ofcos 0. Thus, we can tcll
from the dot product whether the angle between two vectol's is acute or obtuse or whether
the vcctors arc pelpendicular (Figure 13.3.3).

Figure 1l.l.l

1

I

i

t. u*_,___*_,.-
uu

u.v<0 lu r=0

\..i ,2 r.k
co\ i, - (:Lr\ r/ -' vlLl .il lr \ lllkl lv

DIRECTION ANGLES

RF.N,{AI{K. The terrns 'perpendicular," "orthogonal," and "normal" are all comnonly used

to describe geometric objects that meet at rjght angles. For consistency, we will say thnl
two vectors are orlftogorzrl, a vcclor is,'rormal lo a plane, and two planes are pelpendicuL(lt.
Moreover. althollgh the zero vector does not make a well defined angle with other vecton,
we will consider 0 to be orthogonal to 4ll vectors. This convention allows us to say that u
and y are o l'rogonal vectors if and only if u . v : 0, and it nakes Formula (4) valid if u or
v (or bofi) is zcro.

In an ]_l'-coordinate system, the direction of a nonzero vector v is conpletely deternined
by the angles .y and B between v and the unit vectors i and j (Figu|e 13.3.4), and in an

.u:-coordinate system the direction is completely determined by the angles u, 13. and y
between v and the unit vectors i, j, and k (Figure 13.3.5). In both 2 space and 3 space

the angles between a nonzero vector y and the vectors i, j, and k are called the dlieclion
angles a1 \, and the cosines of those angles are called the direction cosirres of y. Formulas
for the directiorr cosines of a vector can be obtained from Formula (2). For example, if
v - uti * u2.i + rjk. then

V'l Ul
C()S a/ - 

- 

:
lv li lvl'

Thus, we have the following result:

13.-l.J lllr,,R \l Ttl, dirc, tiot t o'inp\ .J n n.n:c'n vct tot v - t i ,j t \karc
t^ul

cosat = cos i, - 
-.lvl lr

Ul

' vl

Figurc l3.l -l

I The dilection cosines of a vectol v = lrLi + r2j + ujk can be computed by normalizing
v and reading oflthe components ofv/ lvl, since

u, _,'' i__j__u' k=,..,,o,i {co\,.1,j rco:/rkvl lv l'1" lv
We lcave it as an exercise fbr you to show that the direction cosines of a vector satisfy the
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Figure 13.-j.6

DECOI,IPOSING VECTORS INTO
ORTHOGONAL COMPONENTS

t-

; The force of gravity pulls the block

I against the ramp and down the ramp.

equation

cos20+cos2p-lcos2y = 1 (s)

Example 3

Find the direction cosines of the vector v : 2i - 4j + 4k, and approximate the direction
angles to the nearest degree.

Sohttion. First we will normalize the vector v and then read offthe components. We have

llvll : 1/4 + t6 + 16:6, so that v/llvll : ii - ,+ 
j + +k. rhus,

cos cv = 1, cosB: -i, cosy : {
With the help of a calculating utility we obtain

a=cos'(+),Y?1.,p=cos_l(_])ll32",/=coSl(3)-48.<

Example 4

Find the angle between a diagonal of a cube and one of its edges.

Soltttiut. Assume that the cube has side a. and introduce a coordinate svstem as shown
in Figure 13.3.6. ln this coordinate system the vector

d:ui-laj |ak
is a diagonal ofthe cube and the unit vectors i,j, and k run along the edges. By symmetry, the
diagonal makes the same angle with each edge, so it is sutficient to find the angle between
d and i (the direction angle o). Thus,

d-i Qcosd: 

-
ildil iliil ildtl

and hence

" 
: *'-'(:) r 0.e55 radian * 54.7'

ln many applications it is desirable to "decompose" a vector into a sum of two orthogonal
vectors with convenient specified directions. For example, Figure I 3-3.7 shows a block on
an inclined plane. The downward force F that gravity exerts on the block can be decomposed
into the sum

F: Fr *F:
where the force Fr is parallel to the ramp and the force F2 is perpendicular to the ramp, The
forces Fl and F2 are useful because Ft is the force that pulls the block dong the ramp, and
F2 is the force that the block exerts 4goir.r/ the ramp.

Thns, our next objective is to develop a computational procedure for decomposing a
vector inio a sum of orthogonal vectors. For this purpose, suppose that et and e2 a-re two
orthogonal rnit vectors in 2-space, and suppose that we want to express a given vector v as

a sum

v =wl +w:
where w1 is a scalar multiple ofel and w2 is a scalar multiple ofe2 (Figure 13,3,8a); that
is, we want to find scalars &l and k2 such that

v = krer * lru ez (.6)

We can find k1 by taking the dot product of y with er. This yields

v'er : (&rer *f,:e:) .er : tr(er .er) *tz(e:.er): kr ller ll2 +0: kr

1

J'
a
/-'a

\/ 5a-

Figure 13.3.7
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and, similarly,

v'e2 - (frrer !kze).ez: tr(er . e:) * tr2(e2 . e2) :0 * kz e:12:l:
Substituting these expressions for tr and,t2 in (6) yields

y = (v. e1)e1 + (y.e2)e2 (.1)

In this fonnula we call (y . er )er and (v . e2)e2 the vector compoftents of v along eL and

e2, respectively; and we call v . et and y - e2 the scalar components oi \ along e1 and e2,

respectively. If 6 denotes the angle between y and e1, then the scalar components of v can

be written in trigonometric form as

v . er : llv cose and v,e2 : lYl sind (8)

(Figure 13.3.8b). Moreover, the vector components of v can be expressed as

(v.e1)e1 : ( lvlcosd)er and (v .e2)e2 : (lv sin6)e2 (9)

and the decornposition (6) can be expressed as

v = (llv cosd)er 1( vl sin9)e2 (10)

lv cos l?

l\l\ndre2' .,
| ../

"'i nV 
rv rsin p

| ..,'l4a
er ( lvll cos d)el

(b)

Figure 13.3.8

Example 5

A rope is attached to a 1001b block on a ramp that is inciined at an angle of 30" with
the ground (Figure 13.3.9a). How much fbrce does the block exert against the ramp, and

how much force must be applied to the rope in a direction parallel to the ramp to prevent

the block fiom sliding down the ramp? (Assume that the ramp is smooth. that is, exerts no
frictional forces.)

Sohttiott. Let F denote the downward force of gmvity on the block Go lF I : 100 lb),
and let FL and F2 be the vector components of F parallel and pelpendicular to the ramp (as

shown in Figure 13.3.9b). The lengths of Fr and Fz are

/1\Fl- Fl cos60 - 100 1^ l-50 Ib
\2/
/rt\

F. l- Flsino0 - 100 ( '.' ) : 8o.o rbri
Thus, the block exerts a tbrce of approximately 86.6 lb against thc ramp, and it requires a

force of 50 lb to prevent the block from sliding down the ramp. <

The vector components of v along e r and e2 in (7) are also call'ed the orthogonal prcj ections
olv on e1 and e2 and are commonly denoted by

proj",v: (v.e1)e1 and proj".v: (v. e2)e2

In general, if e is a unit vector, then we definc the orthogonal projectiot of \ on e lo be

proj"v: (v.e)e (ll)

Fisure 13.3.9

ORTHOGONAL PROJECTIONS
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r - Pxrtbf

..-i----,-----,--"--. -- . 
-b prcjr,r

Acute ang e

between v and b

. v proti\

. t-i,**____ _
Pnu,v b

0btuse angle
between r and b

Figurc l l.3.l0

Figure 13.3.I I

proiov:(v fr)(#)
which can be reu,ritten as

v.b
projhv - 

llbll: 
b

The orthogonal projectieu of v on an arbitrary nonzero vcctor b can be obtailed by normal-
izing b and then applying Forrrula (11); that is,

WORK

(12)

Gcometrically. if b and v have a common initial poinl. then projbv is the vector that is
cletemrined when a pcrpendicular is dropped f! om the tcnninal point of v to the line through
b (illustrated in Figure 13.3.l0 in lwo cases). Moreovcr, it is evident liom Figure 13.3.10
thaf il we subtract pr(ibv tron1 v, then the resulting vcclor

v - plojt,v

will be orthogonal to b: we call lhis the vector compone of y ortlngortal to b.

Example 6

Fincl the onhogonal projcction of v : i * j * k on b = 2i * 2j, and rhen lind the vector
compoDent of v onhogonal t<l b.

.So/rrdon. We have

v. b = (i*.i +k). (2i+2j) :2 +2 +0 - 4

I bllr :2r + 2r : 8

Thus. lhe onho-sonal projection of v on b is

r.h 4
plojnr - ,,, ,,b - ..(]i +ljr- itj

llDll x

and the vector comporerlt of v orlhogonal to b is

v - proibv - (i +j +k) - (i +j) : k

ThcscresuItsareconsistcn1withFigurel3.3.Jl.<

In Section 8.6 we discusscd thc work done by a constant force acting on an object that moves
tlon,e a line. We delincd the work W done on thc object by a consrant force of magnitude
F actine in the direction ol'motion over a distance d to be

W : Fr1 :lbrce x distancc (13)

If we let F denote a lbrce vector of magnitude l' = F acting in the direction of motion,
then we can write ( l3) as

W - F 1.1

Fu hemore , if we assume that the objcct moves along a line ti om point P 1rl point 0. then

d -- lF6ll. so that lhc wurk can be expressed entirely in vector l'orm as

r/: ilFIiltFail

lFigure 13.3.12a). The vector /'jQ is called the displacenrcnt veclor for the object. hr the
case where a constant force l- is not in the direction of motiot. but rather makes an angic €

with the displaccrncnt vector'. tl]eD we defre the work l/ clonc by F to be

W:IFlcosd)l

(Figure 13.3.120).

FA PQ

r'=i+j+k

t:F (14)
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PO

-ilFDr 

,l
(a)

Figure 13.3.l2

F0 

-l
(b)

REMARK. Note that in Fomula ( I4) the quantiry llF cos I is the scalar comporenr of force
alolg the disp]acement vector. Thus, in the case where cos g > 0, a force of magnitude

lFl acting at an angle g does the same work as a folce of rnagnitude I F lcos d acting in the
direction of motion.

Example 7

A wagon is pulled horizontally by exerting a constant force of 10 lb on the handle at an
argle of 60' with the horizontal. How much work is done in moving the wagon 50 ti?

Solutiott, Introduce ar] r_1'-coordinate system so that the wagon moves from P(0.0) to
O(50,0) along the r axis (Figure 13.3.13). In this coordinate sysren

PQ : s1i

and

so the work

W:F.

F- rlucu.60 ri -{l0srn60 rj -.si -5v/rj
done is

FD:rsi+s"6jt (50i) : 250 (foot-pounds)

ExERctsE SET 13.3 E Graphine Ca cutator E cAS

P(0. 0)

Figure l3.3. l3

1.

2.

3.

In each part, llnd the dot product of the vectors and the
cosine of the angle between thenl.
(a) u=i+2j, v:6i 8j
(b) u: (-7. -3), v: (0. l)
(c) u-i 3.1 +7k, v:8i 2j 2k
(d) u: (-3, 1,2), y: (4,2, -5)
In each pafi use the given information to find u . v.
r,r ' ul - l.l\ l- 2. rhednele herween u a1d r isr tJ.

(b) lul : 2, lv | - 3, the angle between u ard v is 135'.

Ineach part, detemine whetheru andv make anacule angle,
an obtuse aDgle, or arc orthogonal.
(a) u:7i+3j l5k, v: 8i+,lj +2k
(b) u :6i +j * 3k, v :4i 6k
(c) u: (1, 1. 1), Y: ( 1.0,0)
(d) u=(a, 1, 6), y=( 3,0,2)

Does the tri4ngle in 3-space with vertices ( 1,2.3),
(2, -2, 0), and (3, 1, -4) have:n obtuse angle? Justifyyour

The accompanying figure shows eight vectors that are

equally spaced around a circle of radius L Find the dot
product of v0 with each of the other seven vectors.

6, The accompanl,ing ligure shows six vectors that ale equally
spaced around a circle of radius 5. Find the dot product of
v0 with each of the other live vectors.

Figure Ex-5

(a) Use vectors to show that A(2. - 1, l),8(3,2, 1),and
C(1,0. 2) are vefiices of a right triangie. At which
vertex is the right angle?

(b) Use vectors io find the interior argles of the triangle
with veltices (- l, 0), (2, 1), and (1. 4). Express your
answers to the nealest degree.

Find I so that the vector from the point A(1, 1, 3) to the
point B(3, 0, 5) is perpendicular to the vector from A to lhe
point P (,t. t,l).

7.

8.

4.

5.
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9. (a) Show that ilv : .ii + Dj is a vector in 2-space, then the
vecrors

yt- bi!aj and v2:bi dj
nre both orthogonal to v.

(b) Use the result in part (a) to find two unit vectors that arc
o hogonal to the vector v : 3i - 2j. Sketch the vectors
v, Yj. and v2.

10. Find two unit vectors in 2-space that make an angle of 45'
with4i*3j.

11. Explain why each of the following expressions makes no

In each part, llnd the vectol component of v along b and
the vector component of y ofthogonal to b. TheD sketch the
vectors v, projbv, and v - projhv.
(a) Y:2i-j, b-3i+4j
(b) v: (4,5), b = (1, -2)
(c) v = -3i 2j. b:2i +j
ln each pafi, lind the vector componenl of y along b and the
vector compo elr .,l r orthogonl, ro b.
trl r li -j-t;.( 5- 2j l2k
(b) v: (4, 1,7), b: (2,3. -6)

In Exercises 23 and 24, express the veclor v as the sum of a
vector parallel to b and a vecfor orthogonal to b.

(a) v:2i 4j, b: i +j
(b) v:3i +j - 2k. b - 2i k

(a) Y: (-3.5), b - (1, l)
(b) v - ( 2. 1.6), b: (0. 2, 1)

If I is a line in 2-space or 3-space that passes through the
points A and B, then the distance fiom a poiit 1, to the line
Z is equal to the length of the component of the vector AF
that is ofihogonal to the vector A6 (see the accompanying
igure). Use this result to find the distance from the point
P(1.0) to the line through A(2. 3) and B(5, l).

P

I

'.,'tja--. 
----i--L.--:A B Figure Ex-25

Use the method of Exercise 25 to lind the distance from
the point P( 3, 1,2) to the line through A(1. 1.0) and

B(-2.3.4).
As shown in the accompanying figure, a block with a mass

of 10 kg rests on a smooth (frictioDless) ralrlp that is inclined
at an angle of 45' with the ground. How much force does
the block exert on the ramp, and how much force must be

applied in the directioD of P to prevent the block from siid-
ing down the ramp? Take the acceleration due to gnvity to
be 9.8 m/s2.

For the block in Exercise 27, how much force must be ap-
plied in the direction ol Q (shown in 1he accompanying
llgure) to prevent the block from sliding down the ramp?

21.

22.

(a) u.(v.w)
(c) lu.vl

(b) (u. v) +w
(d) r.(u+v)

12. tl

24.

25.

13.

11.

Verify pa s (b) and G) of Theorem 13.3.2 for the vectors
u:6i j +2k, v:2i *7j +4k, w - i+.1 3kand

Let u : (1.2), v : (4. 2), and w: (6,0). Ftud
(a) u.(7v+w) (b) l(u.w)rv
(c) u (v'w) (d) (lu lY) .w.

True orFalse? lf a. b : a. c and if a I 0, then b : c.

Justify your conclusion.

In Exercises 15 and 16. find the direction cosines of v. and

confimr that they satisfy Equation (5). Then use the directioo
cosines to approximate the direction angles to the nearest

degree.

15. (a) v-ilj-k
16. (a) v:3i 2j 6k

17. Show that the direction cosines of a vector satisfy

cosza+coslF*cos2y:1
18. Letd and i be the angles shown in the accompanying figure.

Show that the direction cosines of v can be expressed as

coscr : cos ). cos0

cos B : cos r! sin 6

cos/:sinl
[Hi?/. Expiess v in component loIrn and nori,-ialize.]

19. Use the result in Exercise l8 to find the direcljon angles ol
the vector shown in the accolnpanying figure 10 the nearest

degree.

(b) v:2i - 2j + k

(b) v:31 4L

26.

27.

28.

FiJIure Ex 18 F gurc E\ lo

P

4>/
\/

./ \"
Figure Ex 27

A block weighing 300 lb is suspended by cables A and B,
as shown in fhe accompaDying figure. Detennine the forces
that the block exerts along the cables.

Figurc Ex'28

Show that two nonzero vectors vr and v2 are orthogonal if
and only if their direction cosines satisfy

cos o 1 cos .r2 + cos Bl cos B2 * cos /t cos 1.,: : 0

20-
29.



B 30. A block weighing 100 N is suspended by cables A and B.
as shown in the accompanying figure.
(a) Use a graphing utility to graph the fbrces that tlre block

exerts along cables ,4 and B as functions ofthe "sag" d.
(b) Does increasing the sag increase or decrease the fbrces

on the cables?

(c) How much sag is required if the cables cannot tolerate

forces in excess of 150 N?

13,4 Cross Product 785

Let u and v be adjacenl sides ofa parallelogram. Use vectors

to prove that the parallelogram is a rectangle ifthe diagonals

are equal in length.

Prove that

llu + vllr + llu - vllr :2llull2 + 2llvll2

and interpret the resull geometrically by translating it into a
theorem about parallelograms.

Prove: u. v: Jllu+ "ll'] rlllu - vll'].

Show that if v1. v2, and vl are mutually perpendicular

nonzero vectors in 3-spacc, and if a vector v in 3-space

is exprcssed as

v=alvl+(tv2+atvl
then the scalars ct. ct, and cl are given by the tbrmulas

ci = (v'vi)/lvi l:. i:1.2.3

38.

39.

40.

41.

31. Find the work done by a force F : -3j (pounds) applied

to a poinl that rnoves on a line from ( I , 3) to (4, 7). Assume

that distance is measured in feet.

A boat travels 100 meters due nonh while the wind exens a

force of500 newtons toward the northeast. How much work
does the wind do?

A box is dragged along the floor by a rope that aPplies a

force of50lb at an angle of60' with the floor. How much

work is done in moving the box l5 fi'l

A force of F - 4i - 6j + k newtons is applied to a point

that moves a distance of 15 meters in the direction of the

vector i + j + k. How much work is done?

Find, 10 the nearesl deglee, the acute angle formed by two
diagonals ol a cube.

Find. to the nearest degree, the angles that a diagonal of a
box with dimensions l0 cm by l5 cm by 25 cm makes with
the edges of the box.

Let u and v be adjacent sides ofa parallelogram. Use vectors

to prove lhat the diagonals ofthe parallelogram are perpen

dicular if the sides are equal in length.

42. Show that the three vcctors

vr = 3i j+2k.vr: i+j -k.vr -i-5j -4k
are mutually pelpendicular. and then use the result of Exer-

cise 4l to tind scalars ( r, .2, and .1 so that

ctvt + c2vl + c:rvt : i- j+k

E 43, For each r in ( r, +:.). let u(.r) be the vector from the

origin to the point P(ri. )) on the curve -v : -lr2 + l, and

v(n) the vector tion the origin to the point 8(,t, )) on the

line ,v = -.t l -

(a) Use a CAS to find, to the nearest deg.ee, the minimum
angle between u(-\ ) and v(.1) for x in (-., +.c).

(b) Determine whetirer there are irny real valLres of .r lbr
which u(-r) and v(,!) are onhogonal.

B 44. Let u be a unit vector in the r.l'plane of an .\,\':-coordinate

system, and let v be a unit vector in the -"-a-plane. Let 01 be

the angle bctween u flnd i, let 02 be the angle between y and

k, and let d be thc angle between u and v.
(a) Show that cos d = a sin gr sinp:.
(b) Find d if d is acute and 9r = $:45
(c) Use a CAS to lind, to the nearcst degree, the rlaximum

and ninimum values of € if 6 is acute and d1 : 291.

45, Prove pans (ir) and (e) of Theorem 13.3.2 for vectors in
3-space.

32.

36.

33.

34.

35.

37.

13.4 CROSS PRODUCT

In nruny applications of vectors in mathentetics, physics, ancl engineering, there is a

neerl to Jincl a tector thut is orthogonal to t--o Siven vecturs. In this sectiotr we will
discuss a new type of vector multiplictttion that can be used for tlis purpose.

Some of the concepts that we will develop in this section require basic ideas aborJt deter'

mnarrts, which are l'unctions that assign numerical values to square anays of numbers. For

example. if nr, 4r, 1,l, and /22 are real numbers, then we define a2 x 2 determinanl by

l0 ft -l* 20 ft

Figure Ex-30Figure Ex-29

DETERMINANTS

lrtt arl
, , l: a,l)1 aihth' D.lI'

(l)
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Proof (a).

1o., o)'l = atat o)a) : l)ar 421

Proof (b).

bt bz b a, - b,a, = ra,b lo' o'
Al [t2 u u2 - u2ut - \ut!) ''' '= - lOt O,

We now tum to the main concapt in this section.

The purpose of the arrows is to help you remember the formula-the determinant is the
product of the entries on the rightward anow minus the product ofthe entries on the leftward
arrow. For example,

|-"-{l-r.ltrSr r 2tr4t- l5t8-2J

A3 x 3 determinal is defined in tems of 2 x 2 deteminants by

; i: i', - ",1!, 
o,l-o,lo, o, +o, b !, ,2,

., ", .,1 lcz crl ' ct ca " ct c2

The right side of this formula is easily remembered by noting that at, a2, arrd 43 are the
entries in the first "row" of the left side, and the 2 x 2 determinants on the right side adse

by deleting the first row and an appropriate column from the left side. The pattem is as

follows:
A a, a'l
t', r', u,l:o,4, b'. b-,1 

",1;, 6 ;. -",1;, ;, &l.' ., .,1 l,l' ., ., 'l.' 4 .., " l.' ,, 4l
For example,

lr r

li-1-:-'! l zi il ,',1'
t"'

:3(20) I 2(2) 5(l) - 4q

There are also definitions of 4 x 4 determinants, 5 x 5 deteminants, and higher, but
we will not need them in tbis text. Propefiies of deteminants are studied in a branch of
mathematics called linear algebra, but we will only need the two properties stated in the
following theorem:

N

13.4.1 THEOREM.

(a) If two rows of a determinant are the same, then the talue of the detetminant is 0.

(b) Interchanging two rows of a determinant multiplies its t alue by -1.

We will give the proofs of parts (a) and (b) for 2 x 2 determinants and leave the proofs
for3 x 3 deterninants as exercises.

13.4.2 DEFINITIoN. If a: \ut,u2,u:) andv = (q,u2,4) are vectors in 3-space,
r}lerl tbe cross product u x y is the vector defined by

1,. ,,1 lu u,l . _li, i, k rJ.,u " " - 1,,, ,:lt- lr' ,rl' ,ur u2

or, equivalently,

11 7 y : (u24 teu2)i (urq - uu1)j+ (u1u2 - u2t1)k (4)

CROSS PRODUCT
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Observe that the right side ofFormula (3) has the same fbrrn as the right side ofFornula
(2), the difference being notation and the order of the factors in the three tems. Thus, we
can rewrite (3) as

li .i kl
u v:lut ut ut1

lr, u2 ur 
I

(s)

However, this is just a mnemonic device and not a true determinant since the entries in a
determin.-rnt !lre numbe15, nol \eclors.

Example I
Letu: (1,2, 2) andv: (3,0, 1).Find

(a)uxv (b)Yxu

Sohttion la ).

i.i k
t 2-2
-r01
2 2.lro rl' - l.r ?,.|j f,u:zi-ti ev

ALGEBRAIC PROPERTIES OF THE
CROSS PRODUCT

Soltdion (b). We could use tl're method of part (a), but jt is really not necessary to perform
any conputations. We need only observe that reversing u and v interchanges the second and
third rows in (5), which in turn interchanges the rows of the 2 x 2 determinaltts in (3). Buf
interchanging the rows ofa 2 x 2 determinant reverses its sign. so the net effect ofreversing
the fhctors in a cross product is to leverse the signs of the components. Thus, by inspection

vxu: (uxy)- 2i+7j+6k

Example 2

Show thatu x u = 0 for any vector u in 3-space.

Sohttiort. We could let u : a ri + rrzi * u:k and apply the method in part (a) of Example
I to show that

ijk
ll ^ u: rli ll] trr -0

I

ltt tt) utl

However, the actual computations are unnecessary. We need only observe that if the two
factors in a closs product are the same, then each 2 x 2 determinant jn (3) is zero because
it has identical rows. Thus, u X u - 0 by inspection. <

Our next goal is to establish some ofthe basic algebraic properties of the cross prcduct. As
you read the discussion, keep in mind the essential ditferences between the cross product
and the dot product:

The cross product is defined only for vectors in 3-space, whereas the dot product is
deflned for vectors in 2-space and 3-space.

The cross product of two vectors is a vector. whereas the dot product of two vectors is
a scalar.

The main algebraic propefties of the crcss product are listed jn the next theorem.
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k
Fieure 13.4.1

ixj:k
jxi:-k

'",:li i [l=l? 3li. i f *:*

13.4.3 THEOREM. Ifrt,v, and w are any yectors in 3-space andkisany scalar, then
(a) uxY:-(YXu)
(b) u x (Y+w): (u x y)+(u x w)
(c) (u+Y) x w: (u x w)+(Y x w)
(d) e(u x v):(ftu) x v:u x (iy)
(e) uX0=0xu:0
(/) uxu:0

Parts (a) and (/) were addressed in Examples 1 and 2. The other proofs are left as exercises.

WARNINC. In ordinary multiplication and in dot products the order ofthe facto$ does not
matter, but in cross products it does. Part (a) of the last theorem shows that reversing the
order of the factors in a cross product reverses the direction of the rcsulting vector.

The following cross products occur so frequently that it is helpful to be familiar with
them:

jxk=i kxi:j
kxj=-i ixk:-j

These results are easy to obtain; for example,

(6)

3l'- l;

GEOMETRIC PROPERTIES OF THE
CROSS PRODUCT

However, rather than computing these cross products each time you need them, you can use
the diagram in Figure 13.4.1. In this diagram, the cross product of two consecutive vectors in
the clockwise direction is the next vector around, and the cross product of two consecutive
vectors in the counterclockwise direction is the negative of the next vector around.

WARNING. We can write a product of three real numbers as autr because the associative
law u(uw) = (al)u ensures that the same value for the product results no matter where
the parentheses are insefted. Howeyer, the associative 1aw daeJ ,?o/ hold for cross products.
For example,

ix(jx j):ix0:0 and (ix j)x j:kx j:-i
so that i X (j Xj) I (i X j) X j. Thus, we cannot write a cross product with three vectors
as u x v x w, since this expression is ambiguous without parentheses.

The following theorem shows that the cross product of two vecton is orthogonal to both
factors.

13.4,4 THEOREM.

(a) u' (u x v):0
(r) v. (u x Y) :0

Ifu and v are vectors in 3-space, then

(u x v is orthogonal to u)
(u x v is orthogonal to v)

We will prove part (a). The proof of part (b) is similar.

Proof (a). Letu: lut,u2, 13) and v: (ur, u2, u3). Then from (4)

11y: (a2U3 -u3t2, u3U1 -u1u3, ulDZ - u2DIl

so that

u'(u x v) : ut(uzut - u3u2) + u2(.u3ut utw) +u3(u\D2- u2ur):0

(7)
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Example 3
In Example 1we showed that the cross product u x yofu: (1, 2. -2) andv = (3,0, 1)
is

u x v = 2i - 7 j - 6k - (2, 7, -6)
Theorem 13.4.4 guarantees that this vector is ofihogonal to both u and v; this is confirmed
by the computations

u . (u x v) : \1,2, -2) . \2, -7, -6]) : (1)(2) + (2)(-7) + ( 2)( 6):0
y.(u x v): (3,0, 1) . \2,-7, 6): (3)(2) + (0)(-7) + (l)( 6):0 <
It can be proved that if u and v are nonzero and nonparallel vectors, then the direction

of u x y relative to u and y is determined by a right-hand rule;* that is, if the fingers ofthe
right hand are cupped so they aurl from u toward y in the direction of rotation that takes
u into v in less than 180', then the thumb will point (roughly) in the direction of u x y
(Figure 13.4.2). For example, we stated in (6) that

i<j-k. jxk-i. kxi=j
all of which are consistent with the right-hand rule (vedfy).

The next theorcm lists some more important geometric properties of the crcss product.

13.4.5 THEOREM. Let t qnd \ be nonzero rectors in 3-spqce, and let 0 be the angle
between these yectots v)hen theJ are positioned so their initial points coinclde.

(a) lu x vll : lul lvllsin0
(b) The area A of the parallelogram th.tt hqs \ and y as adjacent sides is

A = llu x Yll (8)

(c) u x v:0if and only if]l and v are parallel tectors, that is, if anclonly if they are
scalar multiples of one another.

Proof (a).

lu lllv lsina : I ulll v 1y{l*zp

: I ulll v I

: v'linf tril'? - G.t

: lu X Yll seelomxra(4).

Proof (b). Referring to Figure 13.4.3, the parallelogam that has u atd v as adjacent sides
can be viewed as having base llull and altitude lyl sin 0. Thus, its area A is

A : (basexaltitude) : lu lllvl sin0 : lu x yll

Proof (c). Since u and v are assumed to be nonzero vcctors, it follows from part (a) that
u X y : 0 if and only if sind : 0; this is true if and only if d : 0 or g : z (since

*Recall 
that we agreed to consialer only dghlhanded coordinate systems in this texi. Had we used left-handed

syslems insiead, a "left hand ru1e" would apply here.

(ul + u22 + u2.)(u? + t)? + u?) - (u1u1 J u2v2 ! u3q)2

(uzvt - utuz)2 I (utuz- uzu)2 I (uruz - ttzur)2

Figue 13.4.3
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0 
=e 1r). Geometrically, this meansthatu X v:0 if and only if u and v are parallel

vecto$. I

,:., Example 4

, l Find the area ofthe triangle that is detennined by rhe points PrQ,2,0), P2(-1,0,2), and
I &(0.4.3).

S ohrtion.
the vectors
SO

directly from the formula

U1 Ut l!1

U.IVXW): Ur U) Ul

rrt Urt aui

the raliditS of which can be .een by wriring

.'! '|\ l'{')=" (l; ;tl' ;. i- 1, ; -)

lr. ,, I lil 1,, t)
" lr' ,'l- "' * ,,1 ' "' ,, ;,
1,,' ,) urI

: lr, u2 ul
t|t Ut W\

Example 5

Calculate the scalar triple product u . (y X w) of the vectors

u:3i-2j 5k, v:if 4j 4k. w=3j*2k

Soltttion.
lr : sl

u''r ^*,-ll 4 -4 =4e
l0 3 2

The

4Pz

< PrPr : ( t0.5. t0)

(verify), and consequently

e-ItFi><Fdtt:f
If u= (ur, u2,u3l,\ - (ur.u:,u:),andw= (rur,ur2.ur3) are vectors in 3-space, thetr the
nurnber

u.(YXw)
is called the scalar triple producl of u, y, ald w. It is not necessary to compute the dot
product and cross product to evaluate a scalar triple product-the value can be obtained

2)Pr(-1, o' P1(0.4.3)
area A of tle triangle is half the area of the parallelogram determined by

and P1P3 (Figure 13.4.4). But PrP2 - \-3, 2,2) andPrPr: \-2.2,3).

PtPz
Pt(2.2,0)

SCALAR TRIPLE PRODIJCTS

(e)

FoIt THE READEIi Many calculating utilities have built in cross product and deteminant
operations. If your calculating utility has these capabilities, use it to check the computations
in Examples I and 5.

If u, v, and w are nonzero vectors in 3 space that are positioned so their initial points
coincide. then these vectors fonn the adjacent sides of a parallelepiped (Figure 13.4.5). The
following theorem establishes a rclationship between the volume of this parallelepiped and
the scalar triple product of the sjdes.

GEOMETRIC PROPERTIES OF THE
SCALAR TRIPLE PRODUCT



Figure 13.4.5

2 = llproj,,*ull

Figure 13.4.6
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13.4.6 THB0REM. Leta,v, and w be nonzero yectors in 3-space.

(a) The volume V of the parallelepiped that has a, v, and w as adjacent edges is

y:lu.(yxw)l (10)

(D) u ' (v x w) : 0 if and only ifl, v, andw lie in the sdme plane.

Proof (u). Referring to Figure 13.4.6, let us regard the base of the parallelepiped with u,
v, and w as adjacent sides to be the parallelogram determined by v and w. Thus, the area
of the base is lly X wll, and the altitude , of the parallelepiped (shown in the figure) is the
length of the orthogonal projection of u on the vector y X w. Therefore, from Formula ( 1 2)
of Section 13.3 we have

u. {v X w)l u. (v ,< wrlft: lproj"^*ull : 

- 

lvxwl= . .:lv x $ l. lv x w l

It now follows that the volume of the parallelepiped is

V: (area of base)(heigh| : lv xwlr: u. (v x w)l

Proof (b). The vectors u, v, and w lie in the same plane if and only if the parallelepiped
with these vectors as adjacent sides has volume zero (why?). Thus, from part (a) the vecton
lie in the same plane if and only if u . (v x w) : O. I
REMARK. It follows from Formula (10) that

u.(YXw):+Y
The + occurs when u makes an acute angle with v X w and the - occurs when it makes
an obtuse angle.

We observed earlier in this section that the expression u X y X wmustbe avoided because it
is ambiguous without parentheses. However, the expression u . y X w is not ambiguous-it
has to mean u . (v x w) and not (u . v) X w because we caDnot form the cross product of
a scalar and a vector Similarly, the expression u X v . w must mean (u X v) . w and not
u X (y . w). Thus, when you see an expression of the form u.v X w or u X v,w, the
cross product is formed first and the dot product second.

Since interchanging two rows of a determinant multiplies its value by -1, making two
rcw interchanges in a determinant has no effect on its value. This being the case, it follows
that

ALGEBRAIC PROPERTIES OF THE
SCALAR TRIPLE PRODUCT

(11)

since the 3 x 3 determinants that are used to compute these scalar tdple products call be
obtained from one another by two rcw interchanges (verify).

REMARK. Observe that the second expression in (11) can be obtained from the first by
leaving the dot, the cross, and the parentheses fixed, moving the flrst two vectors to the
dght, and bringing the third vector to the first position. The same procedure produces the
third expression ftom the second and the first expression from the third (ve fy).

Another useful formula can be obtained by rewriting the first equality in (11) as

u.(vx\Y):(uxY).w
and then omitting the superfluous parentheses to obtain

u.YXw:uXY.w (12)

In words, this formula states that thg dot and cross in a scalar ftiple product can be inter-
changed (provided the factors are grouped appropriately).

u. (v x w) = w. (u X v) :v. (w X u)
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DOT AND CROSS PRODUCTS ARE
COORDINATE INDEPENDENT

MOMENTS AND ROTATIONAL
MOTION IN 3.SPACE

A\lroraul\ use tool! thrt:lre designed I(l

lifr ir ftrres th.t trorl.l i'nnrrt In nt.n(1.d

rotutiirnrl nn)tion lir r srLellilc.

ln Definirions 13.3.1 anci 13.,1.2. we dellnecl thc dot product and thc cross product of 1wo
Vcctor-s in terns of the colnponelts o1'those vectors in a cootdinate system. Thus. it i!
fieoretically possible that changing the coordinate systcn might chatge u. v or u X v.
sincc the componcnis ol a !eutor depend on the coordinate systetn tltat is choscn. Ho\reyer.
the reliltionships

u.v- iul v cosd

luxvl : lul v sind

that were oblained irl Tl]eorems 13.3.3 and 13.:1.5 shorv that this is nol the case. Formula
(li) shorvs that the Value ofu. v depends only on lhe lcngths ofthe vectors and the anglc
betueen theli rot on the coordinate systcrn. Sirnilarly. Fomrula (l:l), in conrbination
with the right hand rule and Theorern l3..l.rl. shows thert u X v does not depend on the
coorclinate syslem (as klng as i1 is righl handccl). Thcse facts are inportant in applications
because lhey allow us to choosc any cqlvenient coordinate systenr lbr solving a problent
ii,ith lirll contidence that the choice rvill not afttct computiLtiens that involve dot products
or cross products.

Cross producls plily an impoltart rolc in dcsc|ibing lotatiollal molion in 3-space. For ex
ample. supposc thal an rstronaul on a satellite repair nission ilt splcc applies a force F at
a point Q on rhc surliicc ol a sphe|ical satellite. If the lbrcc is clirected along a line tltar
passcs through the ccnter P of the satellite. ther Newton's Sccond La$, of Motion inplics
that thc fi)rce rvill accelerate the satellite in 1hc dircction of F. However. if ihe astronaut

ilpplies the sarnc lblce al irn anglc 0 with the vectol Fl, then F will lcnd to cause a roitnon
as well as an acceleration in the direction of F. To see whl this is so. let us resolve F ilto
a suui of otdrogonal conrponents F - Fr * l't, whclc F1 is the ofihogonal projcclion of F

on the vecl{)r F! and F] is the component ol F orthogonrl to F! lFigure 13.4.7). Sincc
the force FI acts along the line through thc ccnlcr ol 1he sateIlite, it contr.ibutes to thc linear
acceleration olthe satellite but does nol causc rnv rotation- However. the force F. is llnoent
to thc circlc around the sotellite in the plane of F and 1'Q, so il causes the s.rtellite to Iotatc
about iln axis that is perlendicular to that planc.

Fisure 13.1.1

You klow liom youl own elperiencc that thc 'tcndency" 1br rotation about an axis
depends both on the amoLrnt il1'tince ancl how fb from the aris it is applied. For example.
it is ersier to close a door by ptLshing o1I its olrter edge t1]an applying thc sanre l'ofce close
10 thc hinges. Thus. Lhe lendency o[ ro1a1ior1 o1'thc satc]lite can be measured bV

I'Q lF: dL\locc I onr (hc ccnrci ! nugnLtL,.rc ornrc turc. (15)

(13)

t14)

Horvever. I I.'r : Fl sin 6. so we can reu"r'ite ( l5) as
>>PQ [' sin,: IPQ x !'i

This is called the scalqr olome,rt ot torque ofF about the poillt P. Scalar nolnents have rnits

of fbrcc tinrcs distxncc-pound-ltct or ncwk)n-metcrs. lir| cxample. The rcct,,r -PQ I
is called the yeclor lnonent (\t torque vsclor of F aboLlt P.
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Recalling that the direction of PQ X F is determined by the dght-hand rule, it follows
that the direction of rotation about P that results by applying the force F at the point p
is counterclockwise looking down the axis of F! x F (Figure 13.,1.7). Thus, the vector
moment PO X F captu.es the essential information about the rotational effect of the fbrce
tlle magnitude of the cross product plovides the scalar moment of the force, and the cross
product vector itself prcvides the axis and direction of rotation.

Example 6

Figure 13.4.8a shows a force F of 100 N applied in the posjtive z-direction at the point
Q(l , 1, l) of a cube whose sides have a length of I m. Assuming that the cube is free to
rotate about the point P(0, 0, 0) (the origin), find the scalar moment ofthe force about P,
rnd describe the dilection of rolation

Suhttiurt, The force vector is F - 100k. and the vector from P to O is
so the Yector moment of F about P is

P8
ijk

.F- r l I - r00i ruu.i

0 0 t00

Thus, the scalar moment of F about P is 100i lOOjll : 100/2 ^, 1,+1 N.m, and the
direction of rotation is counrerclockwise looking along the vector l00i 100j : f 00(i j)
toward its initial point (Figure 13.,1.80).

PQ : i + j + k,

ExERcrsE SEr 13.4 E ces

Figure 13.4.8

(a) Use a determinant to find the cross product

i x (i+j+k)
(b) Check your answei in paft (a) by rewriting the cross

pioducl as

i x (i+j+k): (i x i)+(i x j) +(i x k)

and evaluating each term.

Lr each part, use the two methods in Exelcise 1 to find

3. u=(1,2, 3), v-( 4, 1,2)

4. u:3i*2j k,v: i 3j*k
5. u: (0, 1, 2), y:(3.0. 4)

6. u:4i * k, v:2i-j
7. Let u - (2. 1,3), v - (0, 1,7), and w - (1,4,5). Find

2.
(a).i x (i+j+k) (b)k>ti + j+k.).

In Exelcises 3-6, find u X v. and check that it is orthosonal
to both u and v.

Figure Ex-9

10. Find two unit vectors that ale ofihogonal to both

u:7i*3j*k, v-2i+4k
11, Find iwo unit vectors that are perpendicular to tlte plane

determined by the points A(0. -2, 1). B(1, 1, 2), and
c(-1. 1,0).

12. Find two unit vectols that are parallel to the-\)z-plane and

are perpendicular to the vector 3i j F 2k.

In Exercises 13 and 14, find the area ofthe parallelogram that
has u and v as adjacent sides.

13. u:i j+2k, v=3.i +k
14. u:2i+3.i, v: i+2.i 2k

In Exercises 15 and 16, lind the area of the triangle with
vertices P. O, and R.

(a)uX(vXw.) (b)(uxv)Xw
(c) (uxY)x(vxw) (d) (vxw)x(uxv).

p 8, Use a CAS or a calculating utility that can compute deter-
minants or cross products to solve Exercise 7.

9, Find the direction cosines of u x y for the lectol-s u and v
in the accompanying figure.
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15. P(r. 5, 2). 0((]. 0. i)). R(3. 5. l)
16. P(2.0. 3). 0(r.4.5). n(7. 2.9)

ln Exercises l7 10. lind u. (v X \{).

17. D,-).i 3.i +k. v-.1i+j 3k. \r': j+5k
18. u: (1. 2.2). r - (0.3.2), rv: ( L l. 3)

19. u: (2. l,0). v - (1. 3. l), \y - (4.0. l)

20. u: i. v: i +.i, rv:i+,i +k

InErelcises2l and 22. use l scalar tripleproducttofindthe
volume ol lhe plrallelepipecl that has u. v- and \v as iidjacent
eclges.

21. u- 12. 6.2). v:(0,4. 2). w-(2.2. .1)

22. u - 3i *.i 116. 1:.li +5j-l-k. lv:i+2j+4k
23. ln eiich palt. usc ll sctliu tl ip]e prodLrct to delemrinc whcthcr

thc vcctors lic in the same plane.
(a) u: {1. -2. 1). t : (3.0. l). w: (5. -:1.0)
(b) u:5i 2.i ik. v::li j+k.w:i j
,u'u I Rl r-2. 1.2).u-.r. 1..2

24. Suppose rhar u. (v x w) :3. Find
(a)u.(wXr)
(c)w.(uxv)
(e) (ux w) .r

(b) (vxY).u
(d) v. (u X rv)

(l) v.(1r X w).

(a) Usc the dot procluct to find cos ar.

/b\ U.c .he cr'',.. p nJ. (r l.r hr,d .I ..
(c) Confirm that sinl d + cc,sl1, - L

\\rhat can vou say aboUl the itLngle bctwccn nonzero vectors
uandrilu.r: uXr' l

Shou'thlt il u lnd v arc vcctors in 3-space. then

uXvl:- ulrYr (u'v)l
fNote: This r esult is sornetinres culled Zagrange's identit!.]

The accompanying figure shi:rrvs a fbrcc F of l0 lb applied
in the positlvc r direction to the point 0( L l. l) oi a cube
whose sides have a length ol I tt. In eiLcl'l ptrt. llnd thc
sciilar moule t ol F about the poiltt P, tnd describe the di
rcctlon oirotation. ifany. i1'the cube is flcc to lotate about P.
(a) P is the point (0.0.0). ft) P isthc point (1.0.0).
(c) P is lhc point ( l. 0. I ).

The accompanying figure shows r li)rce F of 1000 N applied
to the corner of a box.
(a) lrind the qcalar nromcut ofF aboLrt the poillt P.
(b) Find the direction angles of thc vcctot rnol]tenl of F'

about the point P to the nearest degrcc.

31.

l)

34.

25. Consider tlre palallelepiped with adjace|t eclges

u:3i,1-2j+k
v - i * j * 2k

w-i+3j+ik
(a) Find the \,olume.
(b) Find thc rea o1'the lace dererrnilred b) u and w.
(c) Find the angle between u and the plane containing tbe 35.

lnce determinecl by Y a d w.

26. Show thiit in 3-space the distrncc / iiom a point P to thc
line I throLlgh points A and B can be expressed as

. AP x ABI
Ll- +

AB

27. Use the |esult in Exercise 26 lo lincl the clrsluce belween
the point /' ancl the line through lhe points A and B.
(tl P( 3. 1.2). A(i.1.0). A( 2.3. -4)
(b) P(rt. 3). .1(2. l), B(0. 2)

It is a thcorcD ol solid geometry th?rt the volume oI !r tetra
hcclon is j(arca olbase) . (heighO. Use this result lo plove
that the \{)lumc ofa letrahedron whose edses are the veclols
u.v.andwisju.(vxn) .

Use the |esult of Exercise 28 1o find the Volunre ol the tetfa-
hedron with vertices

P(-r.2.0). 0(2. l. 3). n(r.0. l). s(3. 2.3)

I-et, be the angle between the vectors u = 2i + 3,i 6k
and v:2i * 3j i6k.

fi!ure E\-ll Fisu!. E\ i+

1000 N

28.

As shown in thc accompanyirg figure, a lorce of 20il N is
applied rt an .rngle ol l8 toapointncutheendolrnonkey
wrcnch. Finclthe scalar nlolnenl ol-the lirrce about the ccntcr
ol the bolt. fTreat this as a problem in two dilnensiols.l

Figurc Ex 15

Prove parls (/,) ancl (c) o1 Theorerr 13.-1.3.

Plove parts (r/) and (c) ofThcorcm 13.4.3.

Prove pan (/)) of Theorcru 13.4. I lor 3 x 3 determiranls.

lJust glve the prool tbr lhe llrst t\\,o ro$ s.l Thcn Lrse (lr) to
provc (d).

Expressions of the fbrnr

ux(vxw) ancl (uxv)x\v

36.

37.

38.29.

30. 39.
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arc c^l1ed vettor triple products .lt ca[ be pro\' ed with somc
eft-ort ftal

u X (v X rv) : (u'\Y)v (u.v]w
(u x v) X $ : (w. u)\' ($ .r1u

'Ihese expressions can be sumnrar-izcd with the lbllowing
nlncrnonic lule:

vector triple prodncl : (ouler . rcmotc)adjaccnt
(outer' . ildjaccnt)remote

See il yoLr can llgure olrt whiil the expressions "outer-.' "re-

lnole.'' lnd "rdjacenl nrean in thrs lule. and then use the
rule lo llnd the lwo veclor uiple prodLrcts of the vcctol-s

u:i*3j k. \,:i+j+2k. *=3i j+2k
Use the result in Exercise l9 1() show thirt
(a) u X (v X w) lies irr the s.lme plane as v and w
(b) (u X v) X lv lies in the srme plane as u and v.

13.5 Paramet[ic Equations of L nes 795

Prove: Il a. b. c. and d 1ie in the samc plane wllen positiolled
rvith a common initial poinL. thcn

(axb)x(cxd)-0

Use a CAS to approxinate the minimum area of a trianglc
i1'two ofits vertices are (2. 1,0),rncl (3.2.2) and its third
vcrtcx is on the culve i : ln-t in ihe -rt-plane.

Il a lblcc F is rpplied to an object at a point Q. then thc line
through 0 pa|r1lel to F is callcd the litrc of actit t)l thc
lbrce. Wc dclined ihe veclor momcnt oi F aboltt a point P to

be FD x Fshorvthrtit O'isanypoinlonthclineofaction
ofF.thenPO xF: PQ'X F: that is. it is nol essentill ro
Llse tlre point of application 1() cor]1pute thc vccto_morrent
a0y poinl on thc line ol actiorl will do. [Hil?/. Write

PQ' : PQ i QQ' anduscpropeftiesoilhecross product.l

1t.

E 12.

43.

:10-

13.5 PARAMHTftIC EQ{"|ATIOI\S OF !-!NE5

In this \tdiotl rtt rtill tlist:Lt.s.t ltut'anrctic equdtions rf lines in 2,s1tate tru! -l-spute. In
3-.t1ttrt c. partunetri( e.luotionJ ol littet ure espetiullt inpoflInt becatse thet generall.t
pttt ide the most (rteniett .fotlil Jor repre\entitlg lines algeltrait:ally.

A line in 2-space or 3 space can be deteminccl u n icluely by specifyilg a point on the line an d

a nonzero vector parallel to the line (FigLue I 3.5. I ). The lbllowing theorem g ir e s pr r'.Lnterric

ecluations of the line through a point P(1 ancl palallel to a nonzct o veclor v:

l-1.5,I TriFrORLx4.

(a) Tht: linc in 2 tput:e lhol passes tllroLtgll lhe poiltt Pn(-re,ie) arrrl is 2rrra el to tlte
on:ero rettor \ - l,a. bl - tli + b.i hL1.\ lLo'Llnetri( eqLftiiotts

LINES DETERMINED BY A POINT
AND A VECTOR

_r -.ro + dt, I : l,r) + lrr. .- - i-o + cI

(b't The line in -1'splte lhat .lLsses thtuLtkll llle poittt Po(ro. -rb.:o) and i.s porallel to
lhe not[!ft) )'eLlor v - fu. b. t) - tti + b.i + t:k hcL.t pctl tnlelic ea]uLttit)n.\

(r)

(2)

1'
We rvill plove pa (b). The proof of (a) is similar.

Projl \b\. I1'1- is thc line in 3-space that passes through the point P0(r0, ,r,0. :0) and is par
allel to the nonzero v"-c1s1y - (a. /,. r'). tl'len L consists precisely ofthose points P (.r. r . :)
tirr which the vector- ffis parallel to v (Figure 13.5.2). ln other words. the pojnt P (.t, t , :)

A uniqLre fe L passes trrolgh
Po and is para e to\'.

is on I if and only if fl1P is a scaliu multiple of v. say

This equation can be written as

(.r r, . ' , t,t. rl,. t,)
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which implies that

x xo=ta, Y-Yo:tb, Z Zo:tc
from which (2) follows. I
REMARK. Although it is not stated explicitly, it is understood in Equations (l) and (2) rhat

-co < I < +cc, which reflects the fact that lines extend indefinitely.

Example I
Find parametric equations of the line

(a) passing through (4, 2) and parallel to v : ( I , 5);

(b) passing ttuough (1,2, -3) and parallel to v : 4i + 5j - 7k;
(c) passing through the origin in 3-space and parallel to v : (1, 1, 1).

Solution (a). Frorn (l) with,r0:4, l0 : 2, a : -1, and, b: 5 we obtain

x:4-t, y:2+5t

Solution (b). From (2) we obtain

x:1-i.-4t, y:2+5t, z- 3 7t

Sohtion (c), From (2) with xs : 0, )0:0, zo:0, a: 1, b: 1, andc: l we obtain

x:t, J'-t, Z=t

Example 2

(a) Find parametric equations of the line I passing through the points h(2,4, -l) and
Pr (5, 0,7).

(b) Where does the line intersect the.D)-plane?

Solution (a). The vector [f : (3, -4, 8) is parallel to Z and the point P1 (2, 4, - l) lies
on L. so ir follow" from r2 )fiar L ha\ panmetric equation"

r = 2 lt. ):4-4t. z. -l - 8r (3)

Had we used P2 as the point on Z rather than P], we would have obtained the equations

r=5 3r. )--4t. ;-7-8r
Although these equations look diflerent from those obtained using P1, the two sets of
equations are actually equivalent in that both generate Z as I varies from -or to +co.

Solution (b), It follows from (3) in parl (a) that the line intersects the,rf -plane at the point
where z : -1 + 8/ : 0, that is, when I = i. Substituting this value of r in (3) yields the

point of intersection (.r, y, t) : (+, ;,0)

Example 3

Let 11 and Z2 be the lines

L1:x:\t4t, y:5-4t, z--1+5/
L2.x-) 8r. y-4 Jt. z-5-r

(a) Are the lines parallel?

(b) Do the lines intersect?

Sohttion (a). The line l1 is parallel to the vector 4i - 4j + 5k, and the line t2 is parallel
to the vector 8i - 3j + k. These vectors are not parallel since neither is a scalar multiple of
the other Thus, the lines are not parallel.



Para le p anes containing skew

lnes lt and Lr can be determ ned ,

by trans atiig each line unti t
intersecis the other.

Figure 11.5.3

13,5 Parametric Equations of L nes 797

Sohttion lb), For rl and l,2 to intersect at some point (,re. y,n, z6) these coordinates would
have to satisfy the equations of both lines. In other words, there would have to exist values
,l and 12 for the paraneters such that

xo:1*4r1, -Io =5 1tr, zo: l+5/r
and

r,=2 8i-. ru=4 ll.z. t,) _5 t1

This leads to three conditions on t1 and t2,

) +4t, - 219'"
5 - 4t1 :4 - 3t2 (4)

1+5rr:5+r,
Thus, the lines intersect if there are values of t] and /2 that satisfy all three equations, and

the lines do not intersect if there are no such values. You should be familiar with methods
for solving systems of two linear equations in two unknowns; however, this is a systen] of
three linear equations in two unknowns. To detemine whether this system has a solution wc
will solve the 6rst two equations for l1 and 12 and then check whether these values satisty
the third equation.

We will solve the flrst two equations by the method of elimination. We can eliminate the
unknown t1 by adding the equations. This yields the equation

6=6i5/:
liom which we obtain /z - 0. We can now lind 11 by substiluting this value of b in either
the first or second equation. This yields 11 : j. Ho*"ue., the values t1 : ] and t2 - Q do
notsatiSfythelhiIdequationin(4)'sothelinesdonotinterSect.<

Two lines in 3-space that are not parallel and do not intersect (such as those in Exarrple 3)
are called sfeu, lines. As illustrated in Figure 13.5.3, any two skew lines lie in parallel planes.

Sometimes one is nol interested in an entire line, but rather some segment ol a line. Para-

metdc equations of a line segment can be obtained by findjng parametric equations fbr the
entire line, then resfficting the parameter appropdately so that only the desired segment is

generated.

Example 4

Find parametic equations for the line segment that joins the points Pr(2,4, 1) and

P, (5, 0. 7).

Sohttiurt. Fron Example 2, the line through the points Pr and P2 has parametdc equations

x :2 !3t, | = 4 - 4t.: : -l * 81. With these equations, the point P| corresponds to
r : 0 and Pz to / - L Thus, the line segment thatjoins Pr and Pr is given by

LINE SEGMENTS

r 2-J/. 1-1 4r. lt8/ l0_r;l)

We will now show how vector notation can be used to express the parametric equations of
a line more compactly. Because two vecto$ are equal if and only if their componenls are

equal, (1) and (2) can be wdtten in vector fonr.r as

(-t.1) : (x6 +(t,h+btl

or, equiYalently, as

(r, y) : (x6, _rs) * t(c. D)

(-t, r. z) : (ro, _yo, zo) +t\q.b,cl
(5)

(6)

VECTOR EQUATIONS OF LINES
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i--- l' 1111
Figure 13.5.4

For the equation in 2 space we deline the vectors r, r0, and y as

1 : (r, 
-r ), ro : (xo, )o), v : @, b) (7)

and for the equation in 3-space we define them as

r - (i, l,:), ro : (xo, )0,:o), y : la. b, c) (8)

Substituting (7) and (8) in (5) and (6), r'espectively, yields rhe equarion

r: r0 + /v (9)

in both cases. We call this the vector equation of a line in 2 space or 3-space. In this
equation, v is a nonzero vector parallel to the line, and r0 is a vgctor whose components are
the coordinates of a point on the line.

We can interyrct Equation (9) geometrically by positioning the vectors r0 and v wirh
thef initial points at tbe origin and rhe vector /y with its inirial point at P0 Gigurc 13.5.4).
The vector /v is a scalar multiple of v and hence is parallel to v and l. Moreover, since the
initial point of tv is al the point P0 on l,, this vector actually runs along l; hence, the vector
r : r0 + ly can be interpreted as the vector from the origin to a point on l. As the parameter
I varies from 0 to +(,, the teminal point of r traces out the portion of -L that extends from
P0 in the direction of v, and as r varies from 0 to -.o, the terminal point of r taces out the
potion of I that extends from P0 in the direction that is opposite to y. Thus, the entire line
is tmcad as 1 varies over the interval (-cc, aoo), and it is traced in the direction of v as t
increases.

Example 5

The equation

(x. _r,, ;) : ( l, 0. 2) + /(1, 5. ,4)

is of fbrm (9) with

16-( 1,0,2) and v-(1,5. 4)

Thus, the equation rcpresents the line in 3-space that passes through the point ( l. 0, 2)
and is parallel to the vector (1,5, 4).

Example 6

Find an equation of the line in 3-space that passes through the points Pr (2, 4. - 1) and
P2(5, 0.'1).

Sohttion, The vector

Pfz : (3, 4,8)

is parallel to the line, so it can be used as v in (9). For r0 we can use either the vector from
theorigin to P1 or the vector from the o gin to P2. Using the former yields

16 : (2, 4, 1)

Thus, a vector equation of the line through P1 and P2 is

.r. r'.: - 2.4. I l/,3. -4.8)

If needed, we can express the line parametrically by equatin'g conesponding components
on the two sides of this vector equation, in which case we obtain the paramerlic equarions
in Example 2 (verify).
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ExERctsE SET 13.5 E Graphns catcuator E 0AS

1. (a) Find parametlic equations for the lines through the cor-
ner of the unit square shown in part (a) of the accom-
panying ligure.

(b) Find parametric equations for the lines through the coi
ner of the unit cube shown in part (b) of the accompa-

nying f,gure.

(a) (b)

Figure Ex- 1

(a) Find parametric equations lbr the line segments on the

unit square ir part (zr) of the accompanying figure.
(b) Find paramet c equations for the line segments in the

unit cube shown in part (D) ofthe accompanying figure.

(..1)

Figure Ex-2

In Exercises 3 and 4, flnd pammetric equations for the line
through P1 and P2 and also for the line segmentjoining those

points.

7. (a) xi + yj - (2i j) + r(4i j)
(b) (.Y, j',;) : (-1,2,4) + t(5,7. -8)

8. (a) (.{,.},) - ( 1.5) + r(2,3)
(b) -ri+rj +zk : (i +j -2k) + /j

In Exercises 9 and 10, express the given parametric equations
ol r line in veclor lorm usrnS bracket notalon and also u.ing
i. .j. I notation.

9. (a) -r: -3+t, y":4+5t
(Dlr-/ t. l: .\ )1.-:l

10. (a) -r:1, !- 2+t
(b) r:l*t, !: -1 +3t, z:4-5t

In Exercises I 1-18, find parametric equations of the line that
,rtishe. the rtated crrnrlition..

11. The line through (-5,2) that is parallel to 2i - 3j.

12. Thelinethrough (0,3) that is parallel to the line n : 5+t,
r - | -2t

13. The line that is tangent to the circle 12 + )2 : 25 at the
point (3, -4).

14. The line that is tangent to the parabola ) : ,{2 at the point
( 2.4).

15. The line rhrough ( 1 , 2, 4) that is parallel to 3i 4j+k.
16. The line through (2, 1,5) that is parallel to ( 1,2,7).

17. The line through ( 2,0.5) that is parallel to the line
,t-1 F21,)-4 t,z-6+2t.

18. The line throuSh the origin that is parallel to the line r : t,

l' : -1 + t, i :2.
where does the line x : I * 3t, _r :2 _ I intersect
(a) the i axis (b) the ) axis (c) the parabola ) : .:r2?

Where does the line (x. )) : (4r.3t) intersect the circle
*2+12:251

ln Erercr.es2l anLl 22. hnJ rhe lnterieclion.or lhe line\uirh
the -r)-plane, the -\:z-plane, and the ),: plane.

25. / :..r 2 r..,-2 3r. -:3-t
/ ' -1,, v=l A! -:4T2t

19.

20.

3. (a) Pr(3, 2), Pr(5, l) (b) Pr(5,-2, 1). P2(2,4,2)

4. (a) Pr(0, 1), Pr( 3,-.1) (b) Pr( 1.3,5), Pze1,3,2)

In Exercises 5 and 6, find parametric equations for the line
$ ho\e \ectorequalion is gi\en.

5. (a) (:r,l) = (2, -3) + t(1, 4)

(b).ti+rj * zk: k*r(i j *k)
6. (a) ri + yj: (3i - 4j) + r(2i +j)

(b) (x, r, r) : (-1,0,2) + 1( 1.3,0)

21. r: -2. r =-l-2r. z J ' I

22. i- -l-2r. r- 3-t.z-1 t

23, Where does the line .{ : I +t,}:3 -t,z:2t intersect

the cyljnder12 i r2 - 16?

2,1. Where does the lil1e x:2-t, ]':31,: - l+2t
intersect the plane 2]) * 3: : 6?

In Exercises 25 and 26, show that the lines -Lt and a? inter-
ser r. rnd hnd rhe ir poinl ol inlerseclron.

I In Exercises
I v parallel toto the line by inspection.

7 and 8, llnd a point P on the line and a vector
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26. Lt:x+ l:.+t. )-3:1.. 1:0
L2:-r F 13: 12I. l,- 1 :6t. . 2-3t

ln Lrsr.i.e. 2 "nJ lq. \rn\ th1l r1e line. / r an(i 1: c

-5 -11

L): \ :1 t, ) :6, a:1+21
28. 11:-r-2+81. l:6 81. i:10t

lr:r :3 + 81. ) :5 3/, i :6 +,
lr l- rrrr r.c. l() rnJ .{U. Jetcrmrne u l.etlre| the linc. L i.nd
l,t are pa1a11e1.

29. L.:x:3 2t. \:4+t, a:6-t
L2:x:5 4t. !: 2+2t...:7 2t

30. L]:x-513t, .t -1 2t. ..: 2+3t
L2.r- 1*9r. r':5 6/. r:3+8/

ln f.rcrer.s. Jl arr.l .l2.rctcrmrnc $helhc.rhe oninr. P. P.
ard Pr lie on the same liDe.

31. Pr (6, 9. 7), P2(9, 2. 0). Pr(0. 5. 3)

32. Pj(1.0.l), Pr(3, -4, -3), Pr(4. 6, 5)

ln tr.erui.e. JJ rnJ.1 l..nu$ lh:l lhe I ne' L i.nd / rre th.
sdme.

33. 11:-r:3 r. 1,:1121
L2:x: 1i3t. r,:9 6r

34. L1:.t:1+31. r': 2+t. z:2t
I:r:-l 6r.\:1 )t. - 2 4t

In Excrcises 35 and 36. describe the line segment represented
br tlrc rcctur cour .on.

35. {-r, -r') : (1,0) + 1( 2,3) (0 : t : 2)

36. (.i. r..) :( 2. 1.4) +I(3,0. 1) (0:t:3)

ln Lrerer.s..i Jnd Jb, -\( Ins llrcll.Jd in trerui'c ]: u.

Section 13.3 to find the distance lioin the point P to the line
L. and theD check your answer using the method in Excrcise
26 of Section 13.4.

Lt:x:21. _r,-3+4r. z-2 6t
ar:i:l+3/, l:6t. -..: 9t

(a) Find parametlic equations for the line through the points
(-r0, _ro. ;o) and (r l . t t . :l ).

(b) Finclparametric equations lbr the linc rhrough lhe poinr
(-rr . ,\. r . :r ) and parallel to the line

-r - ro +.rt. ), : _ro + /r/. a : ao + cl

Lct I be the 1jne that passes through the point (-r0, )tr.;0)
and is parallel to the vector v: (d. r,.), where a. D, and c
are nonzero. Show that a point (.r. r., :) lies on the line L if
and only if

_r n0 _.\i-J,O i :0

abc
These equations. which are callcd the s.yrzmetfic equatiotrs
of l. provide a nonparametric rcplesentation of L.

f"\ Dc.crihc tl.e l'rre wh.r.c \) m rel c eLl.tiltion\ Jrc

r-1_l*3 ,__
21

[See Exercise 42.]
(b) Find parametric equations for thr: line in part (a).

Find the point on the linc segment.joining Pr (1, ,1. -3) and
Pr(l.5, l) that is ] ofthe way from P1 to P2.

Let 1, I and Ll be the lines whose parametric equations are

Lt:r:1+2t. ):2 r. ..:4 2t
Lzt.t:9+t, ):5+3t. z: 4 t

(a) Show that lr and 12 intersect at the point (7, l. 2).
(b) Find. to the nearest degree, the acute angle betwcen l, I

and l,2 at their intersection.

(c) Find parametric equations for the line that is perpen-
dicular to l1 and Lt and passes through theil point of
intersection.

Let l1 and L2 be the lines whose parametric equations are

Lt.r:h, \:1-2t, .:2+2t
L2:.r:l+t. .r,:1-r, i: l+4t

(a) Show that Lr and ar intersect at thc point (2,0,3).
(b) Find, to the nearest degree, the acute angle between l, I

and l,2 at their intersection.

(c) Find pa.airetric equations lor the line that is perpen-
dicular to L1 and L2 alld passes through their point o1'

inlerseclion.

Tn Exercises 47 rnd 48. lind paranetlic equations of the line
that contains the point P and jntersects the line l, ar a ighr
angle.

4',7. P(0,2.1)
L:x-2t, ):1 t. .:2+l

48. P (3, r. 2)
L:r : 2+2t. \.:4+21. .:2+t

10.

41.

12.

43-

44.

45.

46.

37. Pl 2,1.1)
Lt.\:3 t. ):t..:I+2t

38. P(1. 4, -3)
L--l-l/

In Exercises 39 and 40. show that the lines
parallel, and find the distance beiween them.

'lg ,f r - )r -1 , t

L2: x - Il2t.,i -3-4r. z-5-2t

L1 and L2 ate



E 4e. Two bugs are walking along lines in 3-space. At rime I bug
I is at the point (-r. ), .) on the line

x:4-t, ) -l+2t. ..:2+t
and at the same time / bug 2 is at the point (r. _r,, a) on the
line

x-t, !-l+t, .:1+2t
Assume thirt distance is in celtimeters and that time is in
minutes.
(a) Find the distance between the bugs at tirne / : 0.

13.6 Planes in 3-Soace 8O1

(b) Use a graphing utility to graph ihe disrance between rhe
bugs as a f'unction of time tiom I - 0 to r : 5.

(c) What does the graph tellyou about rhe distanceberween
the bugs?

(d) How close do the bugs get?

p 50. Suppose that rhe temperature f at a point (j,l, r) on the
liner:t,),: l+t,i:3 2r is I:25rr1,;. Use a
CAS or a calcLrlating utility with a roor-finding capability
to approximate the maximum temperature on thal portion
of the line that extencls from the .q plane to the n. plirne.

PLANES PARALLEL TO THE
COORDINATE PLANES

PLANES DETERMINED BY A POINT
AND A NORMAL VECTOR

13.6 pffiruES tru 3-SpAfiE

In tlis section y;e v,ilL use vectors to clerive equations ot' pla es in 3-space, and then
be vill use tlrcse equatiotls to solve r.trioLls geonetric problems.

The gnph of the equation r : 1/ in an -r_\)z-coordinate system consists ol all points of tlle
lbrrr (rl, t, i.), where I and : are arbitrary. One such point is (o,0, 0), and ail othe$ are
in the plane that passes through this poirt and is parallel to the 1:-plane (Figure 13.6.1).
Similarly, the graph of t, : b is the plane through (0, l', 0) rhar is parallel to rhe,{:-plane,
and the graph of a - c is the plane through (0, 0, c) that is parallel to the -r}-plane.

Figure ll.6.l

A plane in 3-space can be determined uDiqucly by specifying a point in the plaDe and a
vector perpendieular to the plane (Figffe i 3.6.2). A vector perpendiculal to a plane is called
a aormal to the plane.

Suppose that we wanL to find an equation ofthe plane passing through &)(x0, ),0, a0) and
perpendicular to the vecto. n = (a, D, c). Define the vectors r0 and r as

ro : (.t0. l,o, :o) and r : (r. r,, :)
It should be evidenl lrom Figule 13.6.3 that the plane consists precisely of those points
P(x, ),:) for which thc vector r re is orthogonal to n; or, expressed as rn cquurion,

n'(r ro)=0 (1)

If prcfened, wc can cxpress this vector equation in terms of componeuts as

\a,b,c)-(x .to, l -)0,:-ro) =0 12)

from which we obtain

a(r -.ro) * b()' ,ro) +.r(: - zo) : 0

I The co ored p ane is un que y

I determ ned by ihe po nt P and

, the vector n perpendic!lar to

I the p ane.

(3)

This is callcd the pointanmal fon? of the equation of a plane. Formulas (1) and (2) are
vector versions of this formrla.Figure 11.6.2
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lrOR l llE READI:R. What does Equation (l)representif n = \a,bl.rt): (re. r,n), and

r = (-r, r') are vectors in an.n.plane in 2 space? Draw n picture.

Example I
Find an equation of the plane passiDg through the point (3. - I . 7) and peryendicular to the

vectorn:(4.2,-5).

Solutiott. From (3). a point-normal fbrm ofthe equation is

4(.! -3) +2(r'1l)- 5(: -7):0 (4)

If preferred, this equation can be written in vector form as

14) 5\'1r I t,+l--7\:0

Observc that if we nrultiply oLrt the terms in (3) and sinplily, we obtain an equatioD of
the fbnn

rr.r*Dr'*t:.*r/:0
For example- Equation (4) in Example I can be rewritten as

4.t*2.r'-5:125:0
The following {heo[en] shows that every equation ol lirrnr (5) reprcsents a plane in

3-space.

1.1.6.f THI ORI V. //rr.ir.c. tkl tl tu| tt\t.\tttttl\. tu(l tt.l). tuttl t tur'holttLl :eftt.
then tha grttph tlf tlte e(lLtctli(nt

ttx +by *c:itl =0 (6)

i:; u plute thot llos tlt( \'K'tor n = {u. b. c) as a nornrel.

Itnnf, Since a. b, and < are not all zero, there is al least one point (,rn. 11. :0) whose

coordinates satisfy Equation (6). For example, if a I 0, then such a point is (-d 1a,0,0t,
and sirrilarly ifb I 0or c I 0 (verity). Thus, Iet (,r0. ib. :0) bc any point whose coordinates
satisfy (6); that is.

4ro+b-lb+c:o+./=0
Subtracting this equation lronr (6) yields

4(,r --\-o) *b(,r'- r'o) +c(.: -:o):0
which is the point nolmal lbrm of a plane with nonnal n = (rr. rlr. c). I

Equation (6) is calle d the general form of the equation o1' a plane.

Example 2

Determine whether the planes

3,r -4r'*5;:0 and -6.r +81 10:-4=0
are parallel.

Solution. Itis clear geometrically that two planes are pamllel ifand only iftheir nolmals
are parallel veclors. A normal to thc lirst plane is

n1 = (3, :1.5)

irnd a nolmal to the second plane is

n2 = (-6, 8- - l0)

Since n2 is a scalar multiple of n 1 , the normals are parallel, and hence so are the planes. {

Fi!urc l-1.6.3

(5)



13.6 Planes in 3'Space 8O3

We have seen that a unique plane is determined by a point in the plane and a nonzero
vector nornal to the plane, In contrast. a unique plane is not deterntined by a point in the
plane and a nonzelo vectorl(/1/1/.t to the plane (Figure 13.6.,1). Howcvcr. t Lrnique plane is
deterrnined by a point in the pl ne and two nonparailel vectols tltat iue p{rsllel to the plane
(Figure l-1.6.5). A unicluc plane is also determined by three noncollinea| points that lie in
the plane (Figure 13.6.6).

Example 3

Find an equation o[ thc planc through the points Pr ( I . 2. ]). P:(2.3. l).xndA(3.-1.2).
There are ofin te y many
p anes containing /) and
parallel to v.

Fiqurc I3.6..1

There is a un qre p ane
thro!gh Pthat s parallel
to both ! and w.

There is a un que
plane through three
nonco rnear polnts

Figure 13.6.6

Soltttkttt. Since the points Pr. Pl. and P: lie in the plane. thc vcctols

and PlPr : (2. -3. 3) arc ;:arallcl to the plane. Therefcrre.

li .i kl
P.P, x flPt: I | : =qi -!j- jk

: _l 3

t(, -l\i) + 5;(, : l:

Pt Pt : (1. t.2)

is nounal to lhc planc. sincc it is perpendicular to both PtP: and PtPr. By using this nolmal
and the poinl P ( I. 2. - l) in the plane, wc obtain the poilt normal lbrrrr

90r l)+(r 2)-5(:*l)=0
which can be rcwlittcn as

9.t*.r 5:- 16=0

Example 4

Determinc whether the lin€

-r:-3+8r. r:.1 +5t. ::-3 r

is parallel to the plane.r - 3r' * 5-. : 12.

Solutiort, Thc vcctor v : (8. 5. - t) is parallel to the line and the vecror n = (1. -3. -5)

is lornal to the plane. For the linc and plane to be panllel. thc vcclors v and n must be

onhogonal. But this is not so. since the dot product

y'n = (8)(l) + (5)(-3) + ( l)(5)= 12

is nonzero. Thus. the line ancl planc alc not parallel. <

Example 5

Find the intersection of the line and plane in Example ,1.

Solution. If we let (.r0. ri).:0) be the point of intersection, thcn thc cooldinates of this
point satisly both the equirtion of the plaDc and the parametfic equations ol the line. Thus.

(?)

and fbr some value of l. sity t = 111.

ro - 3 * 8(r. .\ir :4 + 5Io. :o : -3 - lo (8)

Substituting (8) in (7) yields

(3 + 8to) 3(4 * 5rrr) + 5(-3 - ro) : l2

Solving for ro yiclds () = -3 ud on substituting this value in (8), wc obtain

(ro..r'0..0) = (-21. -l I. 0)

Two distinct intersecting plalles determile two positive angles of intersection-an (.rcute)

anglc fy' that satislics thc condition (l 1 e 1 -r12 rnd the supplernent ol that angle (Fig-

ure 13.6.7a ). If n I and n] are norrnals to the planes. then depending on lhc dircctions of n 
1

{,/

ANGLES BETWEEN PLANES
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and n2, the angle P is eithe. the angle betweet nl and n2 or the angle between nl and -n2
(Figure 13.6.7b). In both cases. Theorem 13.3.3 yields the lollowing formula for the acute
angle € between the planes:

nr'n)cos{J: -

lnr ln2 l

Example 6

Find the acute angle of intersection between thc two planes

2x-{yI 4z.=7 and 6.r *2t 32:2

Sohttiott. The given equations yield the normals n1 - (2. 4.4) and n2
Thus, Fonnula (9) yields

- ln,'n:l | 6 J
CO\ d - n I In' .,/.t6 "/ao 2l

fron which we obtain
/ t\

P:co.,rl l.:7a
\],/

Ncxl we will consider tluee basic "distance problems" in 3 space:

. Find the distance between a point and a plane.

. Find the distance between two parallel planes.

. Find thc distance between two skew lines.

----->
D : lprojn 0P0 =

But

Qi,-," r r . .\ , . - \'r . : , - r r

gfn. n - u(x11 .rr) * b(lo - )r) * c(zo ;r)

lnl = vQi +FT?

(e)

DISTANCE PROBLEMS INVOLVING
PLANES

The lhree problems are related. If we can find the distance between a point and a plane, then
we can lind the distance between parallel planes by computing the distance between one
of the planes and an arbitrary point 4) in tlte other plane (Figur.c 13.6.8a). Moreover, we
can find the distance between two skew lines by computing the clistalce between parallel
planes containing them (Figure 13.6.8b).

13,6.2 lltl,oRENl. The distunte D bet--een a point Po(.t|. J'a, z and
dr + h\, + ca. * r/ = 0ls

D: dru+rlu+.;o+./l

(b)

( l0)

Fi.sure 13.6.8

JE+t;la

Proof. Let 00rr,lr,:r)beanypointintheplane,andpositionthenormal n -\ct,b,c)
so that its initial point is at 0. As illustrated in Figure I 3.6.9, the disrance D is equal to the

length of the orthogonal projection of @Fp on n. Thus, from ( I 2) of Section 13.3.

oP-"." riii . n:_:_n = : :: ___ n
n I Inl'

i

,!-"l

(.a)

Figurc 13.6.9



Thus.
(](.xo rr) + r(.!..o - ),r) + c(zo :r)l

13.6 Planes in 3-Space 805

(11)

satisfy the equation of theSince the point O(-rr, ),r, lt) lies in the plane, its coordinates
plane; that is,

ax)+brt+c.t+d=0
or

d: tlrt blr cat

Substituting this expression in (11) yields (10). I
Example 7

Find the distance , between the point (1. 4. 3) and the plane

21 3y*6::-l

Solutiott. Formula(10)requirestheplanetoberewdttenintheformar-lby1-cz.-ftl:0.
Thus, we rewrite the equation o1'the given plane as

2r-3_i*6;*l:0
liomwhichweobtalna-2.b:-3.r:-6,andr/-l.Substitutingthesevaluesandthe
coordinates of the given point in (10), we obtain

Ja1 1bt 1rt

^ (2,,1)-r-3)r-,1r-6r-i)- I I ll l
I) _

J22 + (.-3)2 + 62 '/ '7

D: (2)(3) + 4(0) + (-4)(0) - 7l I

REivlARK. See Exercise 48 for an alalog of Formula (10) in 2 space that can be used to
compute the distance between a point to a line.

Example 8

The planes

-r *2) 2::3 and 2x a4) 4z -'7
are parallel since their normals, ( I , 2. 2) and \2, 4, 4), ue paallel vectol.s. Find the
distance between thl:se planes.

Solutiott. To lind the distance D between the planes, we can select an arbitrary point in
one of the planes and compute its distance to the other plane. By setting ) : r : 0 in the

equation -t + 2y - 2z : 3, we obtain the point P6(3,0,0) in this plane. From (10), the

distance from Pe to the plane 2:r * 4y - 4: : 7 is

Example 9

It was shown in Example 3 ofSection 13.5 that the lines

l1:-r:lf 4r, ):5-4t. .: l+5/
L2: r.:2+8t, f=4 31, :-5*r

are skew. Find the distance between them.

Solntit;tt. Lel Pi and P2 denote paralJel planes containing L1 and L2, respectively (Fig-
ure 13.6.10). To lind the distance D between 11 and 12, we will calculate lhe distance

from a poiot in Pt to the plane P2. Since L1 lies in piane Pl, we can find a point in P1

0r(1,5, l)

Eieure 13.6.l0
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EXERCISE SET 13.6

k
5 :1ti+36j+20k

by finding a point on the line tr; we can do this by substituting any convenient value of
I in the pammetric equations of Zr. The simplest choica is f : 0, which yields the point
0r(1, s, -1).

The next step is to find an equation for the plane P2. For this purpose, obsene that the
vector ut : (4, -4, 5) is parallel to line Z1 and thercfore also parallel to plates pt and p2.

Similarly, u2 : (8, -3, 1) is parallel to Z2 and hence parallel to Pr and P2. Therefore, the
cross product

lr J

n-u yu.=14 4

18 -l
is normal to both P1 and P2. Using this normal and the point Q2(.2,4,5) found by setting
/ = 0 in the equations of a2, we obtain an equation for P2:

1 1(.r 2) + 36(.t - 4) + 20(2. 5) : 0

OI

t1'r + 36y f 20; - 266 - 0

The distance between 0 r ( 1, 5, - 1) and this plane is

^ fll)(l) - l36tr5r- r)0rr lr .26o q5

vlj- _ j6i:ld v/j8t?
which is also the distance between L1 and L2.

Find equations of the planes P1, P2. and P3 that are par-
allel to the coordinate planes and pass through the comer
(3,.1, 5) of the box shown in the accompanying figure.

Find equations of the planes P1, P2, and Pr that are par

allel to the coordinate planes and pass through the comer
(xo, yo, :o) of the box shown in the accompanying figure.

ln frercises 7-10. find rn equation olthe plane indicaled in
lhe ligure.

ln Exercises 11 and 12, find an equation of ,i," piuo" ,hu,
passe\ lhrough lhe given poinl\.

ll. ( 2,1,1), (0,2,3), and (1,0, 1)

12. (3,2,1), (2, 1, -l), and (-1,3,2)

ln Exercises l3 and 14. derermine \r helher lhe planeq are

palallel. perpendicular. or neIher.

Figu,e Ex l Fieure Ex 2

: In Exercises 3 6, find an equation of the plane that passes

. th-rough the point P and has the vector n as a nornal.

P(2,6, t); n: (1, 4, 2)

P(-1, -1,2); n : (-1.7,6)

P(1,0,0); n - (0,0, 1)

P(0,0,0); n - (2, 3, 4l

3.

1.

5.

6.



13. (a) 2r - 81 61 2:0
r +4,), +3; 5-0

(c).r-l*3; 2-0
2xlz:1

ltl. (a) 3x-2)+z.:4
6x 4y*3r:7

(c) r+,1)+7.:3
5:r - 3,,- 1r=0

1. ).,r--l

4x + \, 2z :4

. 1. ),r1
, 1. rI'

In Exercises 15 and 16, determine whether the line and plane

are parallel. perpendrcul:lr. or neilher.

15. (a) x:1+2t, !:-t, z- 1-1t,
3.ri21 *: -7:0

(b) x:r, J-2t. 1:3t:
x-1i2;=5

(cl x- I 2t. r'-,1 r. -l-t:
4xi2y"-22:7

16. (a);:3-t, r-2+t, ?:l 3t:
2x *2Y 5:0

(b)r:1 2t,.\):t, z: t;
61 3y*3::1

t!.J.r:/. 1-l t.: 2 l:
i+-v+:-1

In Exercises 17 and 18, determine whether the line and plane
jntersect; if so, f,nd the coordinates of the intersecfion.

17. (a);t:t, ))-t,.-t,
3-t -2-r*: 5-0

1b,r-2-t.)-3+t.7-t:
2-r*1*r:1

18. (a) r:3t, r:5r,::-t
2r-1iz*l:0

(b) i:1+1, ) : -1+ 3/. 1:214t;
x 1'I1z:1

In Exercises 19 and 20, find tlte acute angle of intenection
of the planes to the nearcst degr...3.

19. -t-0and2,r J+.-4:0
20. .r 21 2. - 5 anLl or Jr 2.- - 8

In Exercises 2l 30, find an equatjon ofthe plane that satisfies

13.6 Panes in 3-Space 807

The plane through ( 1 , 4. 3) that is perpendicular to the
line:r 2: r, I*3:2t,2: t.

The plane through (1,2, -1) that is perpendicular to the
line of intersection of the plines 2,I + l' + : : 2 and

-r+2)+.:3.
The plane ttuough the points Pr (-2, 1, 4), Pr(I.0,3) that
is perpendicular to the plane 4r I i 3z - 2.

The plane through (-1,2, -5) that is peipendicular to dre

planes 2r _r. *z: l andr -l y -22.:3.
The plane that contains the point (2,0,3) and the line
r:-1*t, l:t.z: 4+2t.

29. The plane whose points aie equidistant ftom (2, -1, l) and
(3, l. s).

30. The plane that contains the line x : 3t, I - I +t,z-2t
and is parallel tothe intersection oftheplanes 2,1 f +a - 0

and)+r+l:0.
31. Find parametric equations ol the line though the point

(5, 0, -2) that is parallel to the planes i - 4-r * 2; : 0 and

2ri31 zi1 :0.
32. Do the points (1.0, 1), (0.2,3), (-2, 1,1),and(,1,2,3)

iie in the same plane? Justify your imswer two different
ways.

33. Show that the line x :0. I : l,; - I

(a) lies in the plane 6r * 4_v 4::0
(b) is parallel to and below tbe plane 5ir 31 i 3r - 1

(c) is parallel to and above the plane 6-r + 2y 2z=3.
34. Show that if a, ,, and. are nonzero, then the plane whose

intercepts with the coordinate axes are -r : a, ) : l,, and

z : c is given by the equation

*. *l:laDa
35. Show that the lines

x: 2It, !:3*2t, z=4 t
;::3-t, y-4 2t, z:t

areparallel and find an equalion olthe plane they detemine.

36. Show that the lines

Lr:'r-l-l:4t. y 3:f. :-1:0
Lrx+13:12t, 1' 1-6t, z-2:3t

intersect and find an equation of the plane they determine.

In Exercises 37 and 38, f,nd parametric equations of the line
ot' intersection of the planes.

37. 2:r*31 *7;i 2:0
ir+2)-3.+5:0

38.3x 51 *2r:0
:-0

In fxer. i.e. Jo cnd 40. lind lhe di.lance helween the pornl

and the plane.

39. (1. 2.3): 2x-2,-+t-4

21.

25.

26.

2'.1.

28.

(b)

(b)

rhe 5laled conJitionr.

21. The plane through the origin thal is parallel to the plane

4t 2rr'72.*12:O.
The plane that contains the line i : -2 + 3t. )- = 4 + 2t,

: : 3 t and is peryendicular to the plane,r - 2) +. = 5.

The plane tlxough the point (- 1, 4, 2) that contains the line
of intersection ol the planes 4x ,l *: - 2 : 0 and

2ti y 2z-3:0.

22.
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40. {{r. l.5l: .r\ I 6r l: : 0

In Excrcises zll and 42. fincl the distancc between tlrc siven
parallel plares.

41. -2.r*r'*::()
6.r - 3t, 3. - -5 :0

42.-t*i*--:l
.\i+i+::-l

In Exerciscs.l3 and 4.1. iind lhe distance betwecn the given

skew lincs.

;13.,r: I *7t. r' :3+r. : :5-3t
r:.1 -t- r:6.::'1 +1t

44. .r -3-1. 1, :{{4/. : : I +2/

45. Find au ecpration ofthc sphere \!ilh center (2. l. -3) lhat is

tangenl to the planc.r - 3r'* 2: :.1.

46. Localc the point of intersectidr of the plane 21 +.r - : : 0
rnd lhe line through (3, 1.0) thill is pcrpendicular to the
planc.

47. Show rhat thc line .r : l+/.r:3+2r..= . al1d

thc plilne 21 2r'- 2: * 3 - 0 rre parallel. und lind the

dislirncc belween thenr.

48. Fonnulas (l ). (2). (3). (5). and ( I0). which apply to planes

in 3-spacc. have analogs fbr Iines in 2-space.
(a) Draw an analog ofFigure 13.6.3 in 2 space to illustrate

thiil the equation ol tlre linc thirt piisses through the p,lint
P(.\r). r'0) and is perpendiclllar to the lect(lr n = (o. b)

can be exprcssed {s

n.(r ro) =0
!\hcre r - (.r. r) ilnd ru (\,,. \t),.

(b) Show lhat the vector equation in part (a) can be ex
prcssed as

r/(.r .ro) +r(\,- )o) =0
This is called the prrrit-normal font of a line.

(c) Using the proof ol Theorem 13.6.1 as a guide. show
that jf a and D are not both zero. thcn the -lrraplt ol the
equation

ai.\ +/r1 +c:o
is u line that has n : (a. l') as lr nonnal.

(d) Using the proolol Thcoren I 3.(r.2 ts a guide. show tlrat
the distance D between a point 1'(.r0. i0) and the line
a.r*br'*c:0is

- kr'ro+/'\'o+tl
Ja: + b:

Use the fi)rmula in part ( d ) ol Exercise 48 to hncl the distance
bctween the point P(-,1. 5) and thc line r' : -2.r + l.
(a) Show thal thc distance 1) betwecn parallel plancs

4.r + D) +.: +./r : 0

4.r+rr+c;+./t:0
is

hl' - rl,t

Jaz+h2+c2
(b) Use thc fornLrla in part (a) to solve Exercise 41.

13.7 QUADRTC SURFACES

In thi.\ section rle l'll/ srrrrA qn inpofiutt class of sutaces tlurt ot? tlrc tlrree

lint.u\tnnal et l,'vs "J tlt( rt'nii ri tiuu\.

Although thc -qeneral shape o[ a curve in 2-space can be obtained by plotting points, this
mcthod is not usually hclpfirl tbr surfaccs in 3 space because too nrany points alc requifed.
It is more comnron to build up the shape of a surface with a network ofrnes/r /ireJ, whicll are

curves obtaincd by cutting tl're sLirlacc with well-chosen p Lanes. Fer exarnple, Figure I 3.7. I ,

which rvas genclated by a CAS, sho*s the graph of; =.r] 3tr'l rendcred with a com-
bination of mesh lines and cololization to produce the surlace detail. This surface is called
a "monkey sxddle" because I moDkey sitting astdde the sudace has a place for its two legs

{nd tail.
The mesh line that rcsults when a surfhce is cut by a plane is called the t/.rce of the

sufhce in the plane ( Figure I 3.7.2 ). Usually, surfaces rre built up tiom lraces in planes that
xre parallel to the coordinate planes, so we will begin by shorving how thc cquations ol'such
trlces can be obtained. For this purpose, we will considcl the surfacc

:-\-2+)l (l)
shown in Figurc 13.7.3a.

49.

50.

TRACES OF SURFACES

Figure ll.7.l
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- ,....ioce.f clr{ace /*.

(.a) (b)

Figure 13.7.2 Fl:ure ll.l.l

The basic procedure for linding the equation of a trace is to subslitute the equation of
the plane into the cqualion of the surface. For example, to find the trace ol the surface

i = -r2 + }.2 in the plane : = I, we substitute: : I in (1), which yields

rr+-\'2 - I (.- - 1) (2)

This is a circle ofradius I centered at the point (0,0. 1) (Figure 13.7.30).

ItL\t \t{\. The parenthetical part of Equation (2) is a rem inder that the ..- -coordinate of all
poiots on the trace is; - l. This needs to be stated explicjtly because z d,re\ nr)t appear in

the equation -rr * -rr : I

Figure 13.7.42r suggests that the traces of (l) in planes that are parallel to and abo!e the

I plane fbnn a family of circles that are cenlered on the :-axis and whose radii increase
with :. To conflrm this, let us consider the trace in a general plane.: : ,( that is parallel to
the.r.r plune. The equrtron of the trace i'

,r2+1'2 =i (:-ft)
If I > 0. fien the trace is a circle of radius \/t centered at the point (0, 0. t). In particular,
if ,t : 0, then the radius is zero, so the trace in the -r-r'-plane is Lhe single point (0.0,0).
Thus. for nonnegative values of t the traces palallel to the.i;1 plane form a tamily of circles.

centered on thc:-axis. whose radii start at zero and increase with &. This confirms our
coniecture. If t < 0, then the equrtion ]r2 * -r,l : k has no graph, which means that there

is no trace.

Now let us examine tire traces of ( l) in plancs parallel to the t,: plane. Such planes have

equations of the fbrm -r : ,(, so we substitute this in (1) to obtain

'=f?+)r (-r=.t)
which we can rewrite as

(r=r) (3)

For simplicity, let us start with the case where ft : 0 (the trace in the -r':-p1ane), in which
case the trace has the equati()rl

:: tr (.r - 0)

Yor.r should be able to recognize that this is a parabola that has its vefiex at the origin,
opers in the positive i -direction, and is symmetric about the :-axis (Figurc 13.7.,10 shows

!r two-dirnensional view). You should also be able to recognize that the -kl term in (3) has

the eflect ol translating the parabola: : 12 in the positive; direction, so the new vertex

falls at (0, 0, t2). Thus, the traces parallcl to the rz-plane forrn a family ofparabolas whose

vertices move upward as fr2 increases. This is consistent with Figure 13.7..1c. Similarly, the

traces in planes parallcl to the r: plane have equations of the forn

z k2:x2 (r':i)

i
-,,]:' "l- ra: :,
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which again is a family of parabolas
urc 13.7.,1r1).

whose vcltices mo\:e upward as k: increases (Fig-

THE QUADRIC SURFACES

( r')

(rr>0.0>0.r'>0)

((r) dl)thJ

TECHNIQUES FOR GRAPHING

QUADRIC SURFACES

FiSurc 11.7.1

In thc discussion o1'Formula (22) in Section I 2,4 we noted that a second-degrce eclulLtion

A.rr + B.rr'+ Cr.r f l).i * Er,* F :0
replrrscnts l conic section (possibly degenelatg). Thc analog ol-this equarion in rn .rr:-
coordinatc system is

A.rr + Br,l +C-r + D.ri,+ -6.\'.. + F\': + G.r + F/r'+ 1..-l J =0 (4)

whiclr is callcd .t second-degree equatiott itt x. y. artd z. The glaphs of such equations alc
callecl quaclric surfaces or solnctimes 4rradricJ.

Tlre six nondcgenerlte types of quadric surfhces are shown in TLrble 13.7.I ellipsoicls,
htperlxrloids of one sheat. lnltcrlnloitls ol firo shcets. elliptic tnnes, cllil>tic 1:rcrnboloids,
l:.nd hyx'rl>olic ptutiDoloirA. (The constants d. r. and.lhat appear in lhc cquations in thc
table arc assumed to be positive.) Observc thtt none of the quadric sudaces in the table
bave cross-pfodr.rct terns in their equations. This is because of their olientations rclative
to the coordinilte axcs. Lller in this scctjon we will discuss other possible orientations thiLl
produce cqualions of the cluadlic suft'aces rvith no cross product tern'rs. hr the special case

whc|c thc elliptic cross scctions of an elliptic cone or an elliptic paraboloicl are cilclcs. the
le tls t'ir(trlur conc i\t1d (it(ullr pumbolord al€ [scd.

Accuratc graphs of quadric sultilces are bcst lefi tin graphing utilities. However. the tcch-
niques thal we will now discuss can be uscd to generate rough sketchcs of these surfaccs
thrl rrc usetul tbr valiclus pu|poses.

A rough skctch of an ellipsoid

-;-r;r;-' (5)

+
.t

: /-

Rough skelch

Figrrc 11.7.5

can be obtained by first plotting the intersectior'rs with the coordinalc axes. then skelching
the elliptical traccs in the coorclinate planes. and then skctching the surlhce itself using the
traces as a guide. Example I illuslratcs this technique.

Example I
Sketch the ellipsoid

-=*--- -l (6)4 t6 9

.Solttlittrt. Thc r-intercepts can be obtained by setting,\' :0 and: = 0 in (6)- This yields

.r - a2.Sinilarly.ther-interceptsare,r': t4. and the:-intercepts arc: = 43. From these

inteIceptsweobtainthee|lipticaltmceSandthccIlipstlidsketchedinFigur.el3.7.5'<
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EQU.\1t()\

{*I*"=r
Thc r rccs ir rhe coo(iiDitc
plnlc! nrc cllip\es. as are rh.
rt los ifl rluc plancs rh l rr.
p mllel to thc coo inate plJn.!
nJ inrcN.cr tht suLce in morc

TIe trcc in lhc u-phne is r
poinr (rhe o gil). rod rhc rnccs
in pldn$ par.rllcl r,' rhc $ phne
rre cllipscs- lhc rm.cs iD the \'.:

nd.r-pla e\ arc pnir ol lna
in€Aecting rr rh. orisiD. The
rroces in plune\ l) ftllclro rh.\c

-+ , ,=l

'l-he ulcc in the N phne n rtr

!llipso. Ns ir thc trrccs nr

pldncr p ftllcl10 the \a phDc.

Thc 1rurcs itr lhc r.: planc and

.r:-plirnc ue hlpcrtrohs. as a'e
rhc lhc.s in lho\c tlanc\ lh.l lr!
prNllcl lo thcse a d do not pr$
llnrufh rhc r or\ hte.ceFr
r\r llBsc inrcrccpls lhe lru.es !l:
priF oI intcs.crnrg li"es.

Ft I IPII' PARAI}OLOII)

The tncc if rhe .$ plane js r
poirL (rhc origin). LrM rhc lr ccs

l. fhDcs p.urllll lo r (irln)!.
rlre rr pl0rc uc ellifscs.'l-hc
rrace\ in rhc 1:' nnd.r.- tlrN\
rre pxnhol s. rs rrc lhc rrrccs in

!hncs prnllclr) rhcsc.

a- r'-

'I htrc is no rfuce in tltn phnc.
Itr tlrncs pirillcllo thEn plaDc

rhfl intcrsecr rhe sD'_hc. iD more

lhLul on. tolnr rh€ traccs rrc
cllipscs. In thcr: and r: p[r!s.
rhc lrdccs rrc hyperbohs, rs Nrc

rhcrruccs ir (hosepl.nes rh!l !re

t|lllllcl lo lhese lnd nrtcrsed thc

sulit.c h no.c th.n one poirtt.

HYP!RAOLI'' IARABOI.oII)

NM
::ty\iEj#lit

Thc rruce ir rh(.\r,fhic i\ r
pri. ol lin.s ntrcrs.cting.r rhc

origi. Thc rilccs in phncs
p.rallcl ro lhc.$'phnc a.c
hyperbol,N. Tho hypcrboIs
dbole thc \r fhnc opc in thc

J dirccrnif, rd lhosc bcl$v in
drc.i dir€crion Thc lrLrcc\ in rhe

r- ard r:'phics rrc trrxbolxs.
as arc thc orces in tlmcs
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A rough sketch of a hyperboloid of one sheet

(a>0.0>0.c>0) (7)

can be obtained by first sketching the elliptical trace in the -t1-plane. then thc clliptical traces

in the planes ; : tc. and then the hyperbolic curves that joiD the endpoints of the axes of
these ellipses. The next example illustrates this technique.
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Example 2

Sketch the graph of the hyperboloid of one sheet

_2

.r2-rl ==l (8)'4

Sohrlion . The trace in the .r)-plane, obtained by setting z : 0 in (8), is

12+)2:l (:=o)
which is a circle of radius I centered on the a-axis. The traces in the planes z : 2 and

: : -2, obtained by setting z : *2 in (8), are given by

,r2+.u2:2 (z:]'2)
which are circles of radius lD centered on the z-axis. Joining these circles by the hyperbolic
tracesinthevefticalcoordinateplaneSyieldsthegraphinFigure13.7.6.<

A rough sketch of the hyperboloid of two sheets

Rough sketch

Figure 13.7.6

t| a2 h2

1-

4

(a>0.0>0,c>0) (e)

can be obtained by f,rstplotting the intersections with the z-axis, then sketching the elliptical
traces in the planes z : *2c, and then sketching the hyperbolic traces that connect the z-
axis intersections and the endpoints of the axes of the ellipses. (It is not essential to use the
planes z : A2c, but these are good choices since they simplify the calculations slightly
and have the right spacing for a good sketch.) The next example illustrates this technique.

Example 3

Sketch the graph of the hyperboloid of two sheets

Solulion. The :-intercepts, obtained by settingx = 0and -v:0in(10), are z: *1. The

traces in the planes z :2 and z: -2, obtained by setting I = t2 ln (10), are given by

( 10)

Sketching these ellipses and the hyperbolic traces in the vertical coordinate planes yields
Figure 13.7.7.

A rough sketch of the elliptic cone

x2 12

312 (z : i2)

--2 --2
(a > 0,b > 0) (il)

can be obtained by first sketching the elliptical traces in the planes 2 : tl and then

sketching the linear traces that connect the endpoints of the axes of the ellipses. The next

example illustrates this technique-

Example 4

Sketch the graph of the elliptic cone

f-

4

Solutiort. The traces of(12) in the planes z : +1 are given by

4

Rough sketch

Figure 11.7.?

(:: +1)

(12)
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Sketching these ellipses and the linear tnaes in the vertical coordinate planes yields the
graph in Figure 13.7.8.

REi\']ARK. Obserye that if4 = D in (11), then the traces parallel to the jqr-plane are circles,
in which case we call the suface a circular cone.

A rough sketch of the elliptic paraboloid

x2 
"_2' az'hz

can be obtained by first sketching the elliptical trace in the plane .z : I and then sketching

the parabolic traces in the vertical coordinate planes to connect the origin to the ends ofthe
axes of the ellipse. The next example illustrates lhis technique.

Example 5

Sketah the graph of the elliptic paraboloid

"2 .2

" 4-t (14)

Sohttiort, The trace of (14) in the plane a = I is
tl a 2

-+1=t tz:1)49
I ) Sk"t"hing this ellipse and the parabolic traces in the vertical coordinate planes yields the

graph in Figure 13.7.9.

A rough sketch of the hyperbolic paraboloid

y2 x2

'= ar-7 (a>0,b>0) ( 15)

can be obtained by flISt sketching the two parabolic traces that pass through the origin (one

in the plane x : 0 and the other in the plane ] : 0). After the parabolic tracas are drawn,

sketch the hyperbolic traces in the planes z : :ll and then fill in any missing edges. The

next example illustrates this technique.

Example 6

Sketch the graph of the hyperbolic paraboloid

)2 x2
'49 (16)

Sohttiott. Setting r : 0 in (16) yields

v2
,:4 (r:0)

which is a parabola in the ):-plane with vertex at the origin and opening in the positive

z-direction (since z - 0), and setting y, : 0 yields

,.- \ ():o)
9

which is a parabola in the;v:-plane with vefiex at the origin and opening in the negatiYe

z-direction.
The tace in the plane z : 1 is

','2 x2'_ :1 1.=1)49

Rouph sketch:.
Figure 13.7.8

i0. -1. 1)

r ,-l1)

RoLsh sketch
:l

Fisurc 13.7.9

(a>0,b>0) ( 13)

i 2, il, 1)
:*---.-. tU, J,
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which is a hyperbola thut opens along a line parallel to the l axis (verify), and rhe trace in
the plane. : -l is

(:=-l)94

, ^/
\,a\ r_ \\

:' ,! i lii
rl /"'

.a , ,. n

lt

Rough sketch

which is a hypcrbola that opens along a line parallel ro the .{ axis. Combining all of the
aboveinformationleaclstcltheSketchinFigure13.7'10.<

RL\tAttK. The hypcrbolic paraboloid in Figure 13.7. l0 has an inreresring behavior at the
origin the trace in the.r:-planc has a relative maximum at (0.0.0), and the trace in lhe
_r'---plane has a relative minimum at (0.0.0). Thus- a bug walking on the surface along the
line of the r-axis reaches the top of a hill at the origin. while a bug walking on the surfirce
along the linc of the \'-axis reaches the bottom of a valley at the origin. A point with this
propefty is commonly called a saddle point ot a ,ninimax point.

Figure 13.7. I I shows lwo computer-generated views of the hype:'bolic paraboloid in
Example 6. The first view, which is much like our rough sketch in Figure 13.7.10, has cuts
at fie top and bottun that iue hyperbolic traces parallel ro the.\)-plane. In the second view
the top horizontal cut has beeu omitted; this helps to cmphasize the palabolic traces parallel
to the -r:-plane.

In Section 12.4 we saw that a conic in an -r1-coordinate system can be translated by sub-
slituting r /r for -r and i, - k for ! in its equation. To understand why this works, think
of the 1.1, axes as fixcd, and think ol thc plane as a transparent sheet of plaslic on which all
graphs are drawn. When the coordinates ofpoints are modified by substituling (,r - i?, ) * t)
fbr (;r, _r,), the geometric elfect is to translate the sheet ofplastic (and hence all curves) so

that the point on the plastic that was inilially at (0,0) is noved to the point (lr, k) (see

Figure 13.7. L2a).

Fi_qure 11.7.10

Figurc ll.7.l I

TRANSLATIONS OF QUADRIC
SURFACES

Fisure 13.7.12 (.r ) (b)

For the analog in three climensions, think of the -rlz-axes as lixed, ancl think of 3-space
as a transparenl block of plastic in which all surfaces are enbedded. When the coordinates
ofpoints are modified by substituting (;:- h,y k,z. /) for(x..r, r ), the geometric eltect
is to translate the block of pl stic (ancl hence all surfaces) so that the point in the plastic
block that was initially at (0. 0. 0) is moved to the point (r. ft. i ) (see Figure 13.1.12b).



j:srq
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Figure 13.7.14
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Example 7

Describe the sudace r : (r - 1)': + (y + 2)'z + 3.

.Solution. The equirtion can be reuritlen a'

z 3=(r t)'?+(y+Z)'?
This surface is the pamboloid that results by translating the paraboloid

z-x2+y2
in Figure 13.7.3 so that the new "vertex" is at the point (1, 2,3). A rough sketch ofthis
paraboloid is shown in Figure 13.7.13.

Example 8

Describe the surface

4x2 + 4)'2 + z2 * 8y -'12 : -4

Sohttiun, Completing the squares yields

4x2 + 4(y * 1)2 + (z - 2)2 : I + 4 i 4

or
tz - 2\/x'*(1,*

Thus, the surface is the ellipsoid that results when the ellipsoid

t2+u2+1:l'4
is tmnslated so that the new "center" is

ellipsoid is shown in Figure 13.7.14.

('. r. )

at the point (0, -1,2). A rough sketch of this

REFLECTIONS OF SURFACES
3.SPACE

IN

FoIt THE READER. The ellipsoid in Figure 13.7.14 was sketched with its cross section in
the )z-plane tangent to the )- and z axes. Conflrm that this is conect.

Recall that in an -{])-coordinate system a point (,r. y) is reflected about the,t-axis if 1, is

replaced by -y, and it is reflected about the l,-axis if x is replaced by -.r. In an,r1z-
coordinate system, a point (,t, 1, z) is reflected about the ry plane if z is replaced by z, it
is reflected about the yz-p1ane if r is replaced by -x, and it is reflected about the rz-plane
ifl is replacedby y (Figure 13.7.15). It follows that /"p/acing a variable by, its negltire
in the equation of a sulface causes that sui.fa(e to be reflected lboul a coordinate plane.

Recall also that in an "r)-coordinate system a point (r, )) is reflected about the line -1, 
: ,r

if x and y are interchanged. However, in an rlr:-coordinate system, interchanging t and ;
reflects the point (r, y, z) about the plane ) : .]r (Figure 13.7.16). Similarly, interchanging

1:- ;{-.

it

Figure 13.7.16Figure 13.7.l5
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A TECHNIQUE FOR IDENTIFYING

QUADRIC SURFACES

r and z rcflects the point about the plane ,{ - i, and interchanging y and : reflects it about
the plane ) : z. Thus, it follows that bterchanging firo y.)riables in the equation oJ a
sLlrface reflects that sutface about a plane thttt makes a 45"aflgle with two of the coordinate
planes.

Example 9

Describe the sufaces

(a) ),' :,rt + rt (b) : : -(x2 + l2)

Solutio n \a). The graph of the equation y2 : x 2 4 "2 lesults from interchanging y and ; in
theequation;2:.{2+}2.Thus,thegmphoftheequationl2:;y21;2c4nbeobtainedby
reflecting the graph of:2 : ,r2 + ]'2 about the plane ) - z. Since the graph of .:2 : ;r2 + )2
is a circular cone opening along the z-axis (see Table 13.7.1), it follows that the graph of
12 - ,2 + zz is a circular cone opening along the -"- axis (Figure 13.7.17).

Solution (b). The graph ofthe equation z - -("2 + )2) can be wdtten as -z: x2 + ),2,
which can be obtained by replacing r with I in the equation z - r2 + l'2. Since the graph
of I - r2 + )2 is a circular paraboloid opening in the positive r--direction (see Table 13.7.1),
it follows that the graph of 4 : (r2 + y:) is a circular paraboloid opening in rhe negative
.z-direction (Figure J 3.7.1 8).

The equations ofthe quadric surfaces in Table 13.7.l have certain characteristics that make
it possible to identily quadric surfaces that are derived from these equations by reflections.
These identifying characteristics, which are shown in Table 13.7.2, are based on w ting the
equation of the quadric surface so that all of the variable terms are on the left side of the
equation and there is a I or a 0 on the right side. When there is a I on the right side the
sudace is an ellipsoid, hyperboloid of one sheet, or a hyperbolojd of two sheets, and when
there is a 0 on the ight side it is an elliptic cone, an elliptic paraboloid, or a hyperbolic
paraboloid. Within the group with a I on the fight side, ellipsoids have no minus signs,
hyperboloids of one sheet have one minus sign, and hyperboloids of two sheets have two
minus signs. Within the group with a 0 on the dght side, elliptic cones have no line.lr terms,
elliptic paraboloids have one liDear telm and two quadratio terms with the same sign, and
hyperbolic paraboloids have one linear term and two quadtatic terms with opposite signs.
These characte stics do not change when the surface is reflected about a coordinate plane
or planes of the form r - -y, -{ - t, or ) = Z, thereby lllaking it possible to identify the
reflected quadric surface from the form of its equation.

Example l0
Identify the sudaces

(a) 3r2 - 4\2 + 1222 + 12 : o

Figure 13.7.17 Figure I3.7.18

(b) 4r2 - 4] +.2 :0
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Solutiott (tt). The equation can be rewritten as

)2 \l ,
l4

This equation has a 1 on the right side and two negative terms on the left side, so its graph
is a hyperboloid of two sheets.

Soltttiort (b). The equation has one linear term and two quadratic terms with the same
sign, so its graph is an elliptic paraboloid. {

Table 13.7.2

EQUAT]ON CLASSIFICATTON

,.2 .,2 -2!+l+r:l No minus signs Ellipsojd

.2)212,j-n- ..-' One mimrs sisn Hyperboloid of one sheet

,2 ,l i2 - r Two mlnus signs Hyperboloid of two sheets

u:*=, No linear terms Elliptic cone

, t' u'-n
One linear term:
two quadratic terms

with the same sign

Elljptic paraboloid

One linear term;
two quadratic terms
with opposite signs

Hyperboljc paraboloid

ExERcrsE SET 13.7

i In Exercises I and 2, identify the quadric surface as an el

' lipsoid, hyperboloid of one sheet, hyperboloid of two sheets,

I elliptic cone, elliptic paraboloid, or hyperbolic paraboloid by

I matching the equation with one of the forms given in Ta-

ble 13.7.1. State the values ofa, r, and c in each case.

(d) r:' (e) x:x (f) y:z
4. Find an equation for and sketch the surlace that results when

the hyperboloid of one sheet ,v2 I y2 - z2 : I is reilectecl
about the plane
(a) z:o (b)x:o
(d) r-* (e).rc:;

The given equations represent quadric surfaces whose ori-
entations are different from those in Table 13.7.1. In each

part, identify the quadric surface, and give a verbal descrip-
tion of its orientation (e.g., an elliptic cone opening along
the z-axis or a hyperbolic paraboloid straddling the y-axis).

' \ Y \ ) .' 
,(c) 'b 

, I rb) a b ,

(c) I:o
(r) r::.

2.

12 n2(n)z:4+t
(c) 'I2 + ],r 2.2 - 76

(.e)42-f+4t2
(.a) 6x2 + 3y2 + 422 - 12

(c) 9r2 +)2 - 922 :9
(e1 2z x2 4y2 - o

l - ._2

25

(d) i2+]'2 z2:o
\t) ?.' 1' )':l

(b) 12--r'?-z:0
(d) 4r2 + ),2 422 - 4
,r, r r-2 r..l /..2
\.r) 

'Ll

3. Find an equation for and sketch the surface that results when
the circular paraboloid z : x2 * ))2 is rcflected about the
plane
(a) u:0 (b) x :0

t2 z2

b' c'
2.2 ,2
c- a'

2)
,,1'.1-lr:

bt ,t
t ,l ,l \(i)): {.+i)\r? c /(c) r -0



818 Three-Dimenslonal Space; Vectors

6. For each ol the surlaces in Exercise 5. find the equation of
the sudace that results ilthe siven surltce is reflected about
the-r: planernLl that surhce is thcn reflected aboutthepiane

In Exerciles 7 and 8. find equations of thc tlaces in the co-
ordinirle plarles. and skelch the traces in an .\'_ra coordinate
system. f,tugg.r.rt/o,?. Il yoLr have trouble skelching a trace
direcll)' in three dinensions. start with a sketch in two di
mensions b1, placing the coordinlite plane in the plane of the
papcri thcn transfer that sketch to thrcc dimcnsions.]

ln Excrcises 29-32. sketch thc surfirce.

25.

21.;-u,!r1;
31. .- : ."/-rr + -r'r I

24. r l: -.1..1 :0
26. .r1 3_r.: -'l:r :9

28. 4-rr tl + 4:t : 16

30. ; : v/l -rl \':

32, :: ,,/l +.rr + -r.'r

elliptical lrace in thc planc

major ancl nrinor axes of the

elliptic.rl tl?ce jn the plane

major ancl minor axes of the

.rl 3lt 3:.r : o

2r'l 12 .l- 2;: : 8

1.,1 l al-;-925 1

r.r !+l -9 16 J

(a) )r + !):l -.r
t,:t I 

- rl +'4

8.

't. - I (b) .: = .Lr + 4,rr

(b) ,1.t2 - -r,l * rt:r - 4

ln Exclciscs 9 iincl 10, thc traccs ofthe sudaces in the planes

ar-e conic sections. In each part. find an equation ofthe t1ace,

iLnd state whelher it is an ellipse, a parabola. oI a hypclbola.

9. (a) ,l.r: i il +.:: :4: r, : I

(b) .1r2 + r'r +..2 :4: .r : l
(c) 9-rl r'l :l : 16: -r :-2
(d) 9-rl 1: :l: 16: ;:2
(e) .: : 9r: * 41r; r' : 2

(l) -. - 9.tr i,1r'r; . :4
10, (a) 9.rr r.r +4.:r - 9: -r = 2

(b) 9.r2 .r'r 1 '1..: :9: r' : 'l
(c) -rl +.1-r': 9:l : 0; t : I

(d1 .tr+.l,ir 9"r-0: :: I

(e)::-r2 4,tl; -t:I
(f) 

" -.t2 ,lr'r: : :.1

In Exercises 1l 22, idenlily and sketch the quadric surlace.

,t -l
ll. rr+ +:: I 12.l9
r:.i+l t'-r 

14.4 L) 16

15. 4:l : rl +:t-\,1 16.

17. 9:.r - 4r,2 9rr : 36 t8.

In Exercises 33 36, idcntify the sudace. and make n rough
.l(l(h lh. . .hn$. rt, no.ir'n rlrrrl oricrrt:rtilrr.

33.:-(r+2)r+(r 3)r-9
34. 4-tr .\.2 + 16(: - 2)r : 100

35.9.!:+ lr+,1.r 18-t a 2r.* 16: : lo

36. ,r : 4.rr -F.r,r + 8.t 2], +:l:

l-\e c:.e..t- lr'rJ .lb:'r'c c.,r'ccrnr.l u irlr r rs el rl'.u.rl
4.rr + 9-i: * l8.l:72.

37. (a) Find iur ecluation ol the

..: ,/2.
(b) Find the lenglhs of thc

ellipse in part (a).
(c) Find thc coordinates of the foci o1'the ellipsc in pfft (a).
(d) Describe the olientation oltheiocal axis ol the ellipse

in par-t (a) r-elaliVe to the coordinate txes.

38. (a) Find an equation ol the

(Lr) Find the lengths of thc
ellipse in part (a).

(c) Find the coordinatcs ofthe foci olthe ellipse in pad (a).
(d) Describe lhe orientation of the fircal axis of the ellipse

in palt (a) lelative to the coor.linale axes.

Exercises 39 ,12 reler to thc hyperbolic puaboloid

39. (r) Find en equrltion oithc hyperbolic trace in the phne

(b) Find the veltices of the hyperbola in palt (a).
(c) Find the foci of the hype|bola in part (a).
(d) Describe the orientation olthetbcal axis olthe hyper

bola in part (a) relativc lo the coordioate axes.

40. (a) Find an cquation of the hypelbolic trace in the plane
:: 4.

(b) Find the vertices o1'the hyperbola in part (a).
(c) Find the tbci of the hyperbola in part (a).
(d) Describe the orientlrtion of thc fbcal axis of the hyper-

trol?1in part (a) relalive lo the coordinatc axcs.

19.

21.

20.

.rl+4r'l+9:l:36

rr +.r: z2-9

9r2 +,1_rI 16.r : o

"r l l:r'19
16:.: lr rl
: 3xl 3r,:-0

In E(ercises 23 28. the given equations lepreseDt quadric

sud'aces whose o entations are different from those in Ta-

ble 13.7.l. Identify and skelch the surface.



41. (a) Find an equalion of the parabolic trace in the plane

r :2.
(b) Find the venex of the parabola in part la).
(c) Find the focus of the parabola in parl (a).

(d) Describe thc orientation ofthe focal axis olthe parabola

in paft (a) relative to the cooldinate axes.

42. (a) Find an equation of the palabolic tracc in the planc

) :2.
(b) Find the vertex ol the parabola in part (a). s0.
(c) Find the focus of the parabola in pa.t (a).

(d) Describe the orientation ofthe fbcal axis ol the parabola

in part (a) relativc to the coordinate axes.

lrr Erercises,l.l ind.l4. .ket, h the reeion en,ilu.cLI bctuc.n
ihe surfaces and describe their curve of intersection.

43, The paraboloids:: -.1 +)tand..--4-rl-ll
4,1. The hyperbolic pariiboloicl .t2 : 12 +; and the ellipsoid

,l-c ),1-t.

In Exercises 45 ancl46, lind an equation for the surfirce gen

erated by levolving lhe curve about dre axis-

45. 1' : {ar (. - 0) about the l, axis

46. r, - 2r (: : 0) irbout the l -axis

47. Find an equation of the slrrface consisting of all points

P(r.. _1,.) that are ec[ridistant from the point (0.0. l) and

theplane.: -I Identity the suface.

Find an eqLriition of the surface consjsting of all poirlts
P(.r.., ), r) ihat are twice as far from the pliLne .- : l

as l'roi] the point (0. 0, 1). Identify the surlace.

If a sphere

-+-+-:latatr
of radius d is compress.3d itl the a direction, lhen the result-

ing surthce, caI\ed an oblate spheroid, has an equation of

13.8 Cy ndrca and Spherical Coordinates 819

the lbrnl

!+l+-:r
where . < 4. Show tl'rat the obhte sphcroid has a cjrcular
trace ofradius a in the n'plane and an ellipticzrl tt ace in thc
.i.: plane with major axis of length 2a along the j-axis and

minor axis ol length 2. alon-q the .-axis.

The Eartll's rotalion causes a flattening at the polcs. so its
shape is oliei modelecl as an oblate spheroid rirther than a

splrere (see Exercise 49 ior ternrinology)- One ()1'the models
used by global positioning satellites is the llorld Oeodetic
Systen oJ 1984 (WGS-84), which treats the Ea h as an

oblale spheroid whose eqlratoliirl raclius i! 6378.1370 km
and whose polar-radius (lhe distrnce liom tbe Earth s cen-

ter.to lhe poles) is 6356.5231 kln. Use the WGS-8,1 nrodel
to find iin eqllation fbr lhe su ace ol the Earlh relalive to
the coordinate syslem shown in the ircconrpanying iigu|e.

49.

CYLINDRICAL AND SPHERICAL
COORDINATE SYSTEMS

Figure Ex-50

51. Use the method of slicing to sho\\' that the volume ol the
ellipsoid

r- 1- --

;*;1;:l

1 3.8 CYi-lnlt)RlCAL Al,$D $F)fi fi qf CAL e0{xFi llii":i,:! .:

In tllis .taction vt:e vvill distttss 1w*o new f pes of coordinrtte .\\'.\tent in 3-.space llnl are

often morc ttseJul thtrn rectttngulur trxtrtli ote slslenls for slLt(l\itlg.\utlace.\ wilh.\|n-
netries. These new coordinate syslens also l1L ,e in4)ortent Ltplrlicofion\ in notil,ttion.
q.tttonom)i. dnd the stu(l| ol rotcLtiona[ motiotl LLboLlt u1 LLXi.t.

Threc coordinates are required to establish the location ol a point in 3-space. We have

already done this using rectangular coordinates. However, Figure 13.E. I shows two other
possibilities: part (n) of the figure sho\e,s tbc rectangular coordiflstes (.t,l , .) of a point P,
parl (1r) shows the cllindricql coordinates 0, A, z) of P, and part (.) shows the splerical
coordinates (.p. A, O) ol P .In a rectangular coordinate syslem the coordinates can be any

real numbers, but in cylindrical and spherical coordinate systerns there are restriclions on

the allowable values of the coordinates (as indicated in Fi.ilure 13.8.1).
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CONSTANT SURFACES

Rectangular coordinates
(ir, ,, r)

Cylindrical coordinates

1r,o,z)
(r > 0,0 < 0 < 2n)

(b)

Spherical coordinates
(p,0, +\

(p > 0,0 < 0 < 22r,0 < 6 < r\
(c)(a) (b) (c)

Figure 13.8.1

In rectangular coordinates the surfaces represented by equations of the form

x:xo, y:)0, and z=zo
where.ro, /0, and z0 are constants, are planes parallel to the yz-plane, xz-plane, and .r -
plane, respectively (Figure 13.8.2a).In cylindrical coordinates the surfaces represented by
equatiors of the form

r:ro, 0:0o, znd z=zo
where 16, 96, and zo are constants, arc shown in Figure 13.8,2b:

The surface r : ro is a right circular cylinder of radius r0 centered on the z-axis. At each

point (r, 9, z) on this cylinder, r has the value 16, but 0 and 3 are unrestricted except for
our general restriction that 0 

= 
0 < 2n.

The surface d = 9o is a half-plane attached along the z-axis and making an angle d6

with the positive r-axis. At each point (r, 9, z) on this surface, A has the value 0s, but
r and z are unrestricted except for our general restriction that r > 0.

The surface z = z0 is a horizontal plane. At each point (r, 9, z) on this plane, z has the

value zo, but r and I a.re uuestricted except for the general restrictions.

In spherical coordinates the surfaces represented by equations of the form

p- po, 0=0o, and O:Oo
where p0,00, and d0 are constants, are shown in Figure 13.8.2c:

(r)(a)

Figure 13.8.2
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The surface p : p0 consists of all points whose dislancc p fiorn the inigrn rs p1.

Assuming p0 to be nonnegative. this is a sphere of radius pe centered at the origin.

As in cylindrical coordiniites, the sulface d - do is a hlll'-plane atiached rlong the
:-rr i.. rnlk rng rn :lni le ol ;n u ith thi po.irrr c .r -l r r..

Thc sulf'ace C) = d0 consists of all points from which a line seglnent to tlte origin
makes an angle of d0 with the positive :-axis. Dependilg or rvhether 0 - 41 -- t/2
,::r irf2 < cln < n. this will be the rappe of a cone opening up or opening tftrwn. (lf
Qt - t/2. then the cone is flat. and the surface is the.r-r planc.)

Just as we needed to convefi bctwccn rcctangular and p(tar cooldinates in 2-space. so we

will leed to be abie to conveft between rectangular, cylindrical. and spher.ical coordinates
in 3-space. Tabie i3.8.1 provides fbrmulas fbr making these conversions.

'lirhle l-3-8-1

Cylindrlc[] to rcctmgul

Rectanglllel to cylindrical

(/-. 0. .) J (-r. r. .)
(r, l. r:) + (/-. d, .)

Spherical to cylindrical

Cylirdrical to sphclicnl

(p, al, d) + (r. 0. .-) 7 =psinc6. 11 =p.;=pcosr/
(,r,0,z) > (p,0,6) p = lrl +:1. 0=0. tai+=r1..

r>0.r>0
0!l)<21
0<rl<r

Sphedcirltorectangular (p,e,d)) J(.r,-r.:l r=psindcosg.
Rectangular 1o spherical (!. \..1 - (p. d. +l p = lil +,\'l + .2.

y: psrn$. A-0. :-pcosd

I = psin rf sin d. : = pcos./r

larl 0 = r/.r. cos d =:hi.r'l+r'l+:l

Thc diagranrs in Figure 13.8.3 will help you to understand how the lbrnlulas in Ta-

b le I 3.ll. I arc clcrivcd. For exampie. part (.1) of 1he llgure show s thal in corrverling bctwccn
rectrugulrr coordinatcs (r. \'. a) and cylindriccl coordinatcs (r. d. :). wc can intc|p|et (r'. d)
as polar coordinates of (-r. r'). Thus, the polar-to-rcctangular llnd rectargular to polar con

version lormulas (l) and (2) ol Section l2.l provide the conversion foruiulas betrveen

rectangular and cylindrical coordinates in the table.
Pa (/r) of Figure 13.8.f suggests that the spherical coordinates (p. d. d) of a point P

can be convcrlcd to cylindrical coordinates (r. al.;) by the conversion fornullrs

(tJ

Moreover, since thc cylindrjcal coordinates (r.6.;) ol P can be convcflcd 10 rcctangLllilr

coordinates (,r. r'. :) by the conversion fornulas

,r : rcosd, J: rsind, :: { (2)

we can obtain dilect convcrsion lbnnulas from spherical coordinates to rectangular co0r'di-
nates by substituting (l ) in (2). This yields

y: psin@cosd, y = psin{sind, :: pcosd (3)

The other conversion formulas in Table 13.8.1 are left as exetcises.

Example I
(a) Find the rectangular coerdinates of thc point wiLh cylindrjcal coordinrtes

(r. d. :) : (,1.;z/3. 3)

(b) Find thc rcctangular coordinates of the point with sphcrical coordinates

(.p, e .rb): G.n/3.r11)

" I(\. 
\'. .)

Figurc l3.8.1
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Fieure 13.8.5

Figure ll.8 6

Soltrlion (aj, Applying the cyl indrical-to rectargular conversion formulas in Table 13.8.1
yields

r:r.Losa qco, 1- 2. y=,.,ind-4.inr-2,.3. ---Jll-
Thus, the rectangular coordinates of rhe poinr are (,{. I . 7) = 12. 2J1, - 3) (Figure I 3.8.4).

Solfiiort (b). Applying the spherical-to-rectangular conversion formulas in Table 13.8.1
yields

TN
,r - nrindcosd = 4sin lco. - - n[4l

TN
y - prin@sind -- 4 sin +.in'l - vG13

. :rcosd:+cos1:2.,D
4

Thus, the rcctangular coordinates of the point are (r, y, z) - t"D, 
"G,Z"Q;tFigure 

13.8.5).

Example 2

Find the spherical coordinates of the point that has reotangular coordinates

(;r, l, ;) = (4, 4,4tG)

Solution. From the rectangular-to sphedcal conversion formulas in Table 13.8. I we obtain

p: FI7i7 - 116+16+%: Jns:saA
616: L : 1

4J6 Jtcosd: J;til+" 8A 2

From the resftiction 0 
= 

e < 2r and the computed value of tanA, the possibilities for d

are 0 : 3n /4 and 0 : 7rf 4. However, the given point has a negative r'-coordinate, so we
must haye d = Trl4.Moteoye\ from the restriction 0 < d 5 rr and the computed value
of cos d, the only possibility for @ is / : 16/6. 15ot, ,ne spherical coordinates of the point
arc (p,A,O) - $4,1r/4,r16) (Figure 13.8.6).

Sudaces ofrevolution about the z-axis of a rectangulirr coordinate system usually have sim-
pler equations in cylindrical coordinatcs than in rectangular coordinates, and the equations
of surfaces with symmetry about the origin are usually simpler in spherical coordinates
than in rectangular coordinates. For example, consider the upper nappe of the circular cone
whose equalion in reclangular coordinates i:

,-Jx2+!2
(Table 13.8.2). The cotresponding equation in cylindrical coordinates can be obtained ftom
the cylindrical-to-rectargular conversion formulas in Table 13.8.1. This yields

-= t,aar,,o'- l-ttt,"o. - \I_- f =tr

so the equation of the cone in cylindrical coordinates is 7 : r. Going a step further,
the equation of the cone in spherical coordinates can be obtained from the spherical+o-
cylindrical conversion fomulas fiom Table 13.8.1. This yields

pcosd: psind

which, if p f 0, can be rewritten as

tand: 1

EQUATIONS OF SURFACES IN
CYLINDRICAL AND SPHERICAL
COORDINATES

12, zrE. :)
(4,n/3, 3)

Figure 13.8.4



SPHERICAL COORDINATES IN
NAVIGATION
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Geometrically, this tells us that the |adial line from the origin to any point on the cone makes
an angle of z/4 with the .:-axis.

Table I3.8.2

Example 3

Find equations ofthe paraboloid: : 
"2 

+ 1'2 in cylindrical and spherical coordinates.

Sohttion. The rectangular-to-cylindrical conversion formulas in Table 13.8.1 yield

.. - 12 (4)

which is the equation in cylindrical coordinates. Now applying the sphedcal to cylindrical
convelsion formulas to (4) yields

p cos{ : p2 sinz r!

which we can rewrite as

P:cosdcsc2d
Altematively, we could have obtaincd this equation clirectly fiom the equation in rectangular
cooIdinaLeSbyapp1yingt1respherica1toIectangulaIco[versionformu1as(ver'ify).<

foR TllL IihAD i. Confim that the equations for the aylinder and hyperboloid in cylin-
dlical and spherical coordinates given in Table 13.8.2 are conect.

Spherical coordinates are related to longitude and latitude coordinates used in navigation.
To see why this is so, let us coDstruct a right-hand rectangular coordinate system with i$
origin at the center of the Earth, its positive ;-axis passing through the North Pole, and

its positive r-axis passing through the prime meridian (Figure 13.8.7). If we assume the
Earth to be a sphere of raclius p : ,1000 miles, then each point on the Earth has spherical
coordinates ofthe form (4000. 9, d), where @ and I determine the latitude and longitude of

East

CONL CYLINDIR SPHERE PARABOLOID

el ^--6- -.XF- l--:?---,4E

1,.,*,
'.- .. .-&
- i-F=''-'-"w

1*lw
=>g--"
," iW

I

RFCTANCULAR - = rh-'* i - .2,.2 -r2+i2-:2=l
CY]-INDRICAL z2=l 12

p=cosdcsc2d P2 = sec 2rb

Figure 13.8.1
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the point. lt is common to specify longjtudes in degrces east or west of the prime meridian
and latitudes in degrees nofth or south of the equator. However, the next example shows
that it is a simple matter to determine d and 0 from such data.

Example 4

The city of New Orleans is locared ar 90" west longitude and 30" noflh larirude. Find
its spherical and rcctangular coordinates relative to the coordinate axes of Figure 13.8.7.
(Assume that distance is in miles.)

Sohttion. A longitude of 90' west conesponds to d : 360' - 90" - 210" or A : 3t/2
radians; and a latitude of30' nofih corresponds to d = 90' - 30" :60" ot O - n/3
radians. Thus, the spherical coordinates (p, 0 , 4,) of New Orleans are (4000,3r/2, n /3).

To lind the rectangular coordinates we apply the sphe cal-to-rectangular conversion
formulas in Table 13.8.1. This vields

nfn,nr - 4000 rin -: co: --- - 4000 
- 

10y - 0 mi322
r 1r . l

I =4000sin:sinl 4000 "^"( lr - -2000JJmi-322
z /1\

::4000cos - 1000 1:|-2000miJ \1,/

ExERctsE SET 13.8 E Graph ne Ca cutator E CAS

l t\crur5es I anal ,2.(.rn\erl lrom reclanguldrlo.)lindrical
coordinates.

(b) (.'7,O, it/2)
(d) (.2,3r/2, trl2)

(.b) (3.'7r/4,5n16:)

(d) (4, ft12. ft l3)

In Exercises 9 and 10, convert from cylind cal to spherical
coordinates.

r. (a) (.h/3,4, 4)

(c) (0.2,0)

2. (d 64.-Jt.1)
G) ea. a. -1)

(b) (-5,5,6)
(d) (4, 4v5. 6)

(b) (0. 1, 1)

(d) (2. -2, -2)

7. (a) (5, n 16. n/1)
(c) (1, 2, 0)

8. (a) (.1 , 2tr /3 . 3tr / 1)

(c) (8.7t/6.1114)

9. (a) 6E.r/6.3)
(.c) (2,3n /4.0)

10. (a) (4.5216.4)

(c) (1, rl2,3t

(a:) (.5, r /1,2tt/3)
(c) (3,0.0)

(a) (5, r/2,0)
G) 64,3n14,i

In Exercises 3 and,1, convert from cylindrical to rectangular
coordiDates.

(b) (1, z/4. 1)

(d) (6. 1, 2./5)

(b) (2,0, 2)

(d) (6. z,2)
(a) (4. n /6,3)
(c) (5.0,4)

(a ) (6.57rl.J. /)
(c) (3. t/2.5)

(b) (8,3n/4. 2)

(d) (7, z, -9)
(b) (1, z/2, 0)

(.d:) (1. r12, l)
In Exercises 11 and 12, convert from spherical to cylindrical
coordinates.

11.

12-

(b) l,7 t l6. r)
(d (4, ft 16,1(/2)

(b) (6,0,3rl4)
(d) (5,21t/3,5n16)

In Exercises 5 and 6, convert from rectangular to spherical
coordinates.

s. (a) (1, /3. -2)
G) (0. 3v5, 3)

6. (a) (1,4.4J6)
(c) (2,0,0)

(b) (r. - 1. /2)
(d) ( s.,6. s, 0)

(b) (1, w5, 2)

(d) (.,6, r.2./5)

Irr Excrii.e. 7 and E. con\crt llom .phcrical ro reclangul,rr
coordinates.

E 13. Use a CAS or a programmable calculating utility to set up
the conversion formulas in Tabte 13.8.1. and then use the
CAS or calculaling utility to solve the problems in Exercises
i,3,5,7,9. and 11.

E 14. Use a CAS or a programmable calculating utility to set up
the conversion formulas in Table 13.8.1. and then use the



15.r-3
18.::rcosd
21. 11 +t.2 -l

r:2sec0

CAS or calculating utility to solve the problems in Exercises
2,4,6,8, 10, and 12.

In Exercises 15 22, an equation is given in cylindrical coor
dinates. Express tlle equalioD il1 rectangular coordinates and

sketch the graph.

SupplementaryExercises 825

angular coordinates relative to the coordinate axes of Fig
ure 13.8.7. Take miles as the unit of distance and assume
the Earth to be a sphere of radius 4000 miles.

48. (a) Show that the curve of intersec{ion of the surfaces

a : sind arrd r : a (cylindrical coordinates) is an
ellipse.

(b) Sketch the sudace I : sind fot 0 
= 

0 a rl2.

49. The accompanying figure shows a light circular cylinder ol
radius 10 cn spinnirg at 3 revolutiorN per minute about the

t-axis. At tine r : 0 s, a bug at the point (0, 10,0) begins
walking straight up the face of the cylinder at the rate of
0.5 cm/min.
(a) Find the cylindrjcal coordinates of the bug after 2 min.
(b) Find the rectangular coordinates of the bug after 2 min.
(c) Find the spherical coordinates of the bug atter 2 min.

Figurc Ex 49

B 50. Ref'elring to Exercise 49, use a graphing utility to graph the
bug's distance from the origin as a function oI time.

51. A ship at sca is at point A that is 60' west longitude and 40'
north latitude. The ship travels to point B that is 40' west
longitude turd 20'' nofih latitude. Assuming that rhe Earlh is

a sphere with radius 6370 kilometers, find the shortest dis-
lance the ship can travel in going fiom ,4 to B, given that the
shortest distance between two points on a sphere is along
the arc of the greal cilcle joining the points. lSuggestion:
Introduce an -D: coordinate system as in Figure l3.8.7, and

consider lhe angle between the vectors from the center of
the Eiirth to the points A and B. Ifyou are not familiar with
the term "great circle," consult a dictionary.l

M. A:r/4 17.
19. r' :,lsind 20.
22. 12 cos20 - z

In Exercises 23 30. an equation is given in spherical coor-

djnates. Express the equation in rectangular coordilates and

sketch the graph.

23. p:J

27, p: t s65,P

29. psinQ:2cos0

24, A : t/3
26- p :2secQ
28. pslnr! - 1

30. p 2sin@cos0:0

In Exercises 31-42, an equation of a surface is given in rec
tangular coordinates. Find an equatioD of the surl'ace ir] (a)

cylindrical coordinates and (b) spherical cooldinates.

31.

;-3-.2+3r,1
l{ .1L.2-,1

11 ,2 1.21-2 o

39.2-ti31,i4z-1
11. 12 :16 2.2

lt,,)

31..:V5.rr+3);
36. :l2 + 12 6-r' : 0

38. ;2 : rc2 -1,2

40. -r2 + )2 -.2 : I

42. 12 + t-2 lz2:22

ln Exercises 43 46, describe the region in 3-space that satis-

f,es lhe given inequalities.

12 
=2. =40: r:2sind, 0 < r :3

1 
= 

p:3
o=(h=r/6, 0<p=2
St. Petersburg (Leningrad), Russia, is located at 30" east

longitude and 60'' rolth latitude. Find its spherical and rect-

,13.

44.

45.

46.

47.

(0, r0.0)

1. (a)

(b)

(c)

(d)

What is the difference between a vector and a scalar?

Give a physical example of each.

How can you detemine whether or not two vectors are

ofihogonal?
How can you determine whether or not two vectors ar'e

parallel'?

How can you deterfijre whether or not three vecio$
with a commoD initial pojni lie in the same plane in
3-space?

Sketch vectols u and v for whiclr u i v and u v are

olthogonal.
How can you use vectois to detemjne whether tbur
points in 3 space lie in the same plane?

If forces F1 - i and Fz : j are applied at a point in
2-space, what force would you apply at that point to
cancel the combined effect of Ft aDd F2?

Write an equation of the sphere with center (1. 2, 2)

that passes through the origin.

2. (.a)

(b)

(c)

(d)
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3. (r) DrN\r,r picluic thrt shows the direction itn!rlcs.v- P. and

)/ of I veclor.
(b) What rrc the conrponenls ol-il un il vectol iD I space lhal

luirkes an angle ot 120 lvilh thc posilire r-a\is (1\\o

alts\\'crs)l
(c) Ilow clln you use veclors lo dctcmrinc whcther a lridn-

glc $ith known vertices PL. P]. and /)q has an obtuse

anglcl
(d) TIue ol lirlse: The c(rss pr-oduct ofor-thogonal unit \ec-

t,rr'. i.i r urril rc.t,rr'. FrPlrrirr rout reus,rttitl..:.

:1. (ir) Make l ttble thul shows all possible cross products ol
thc vectors i..i. iud k.

(b) (;ile a Seomelric inlerpretrlion ol rl X \'
(c) (iive rgeomelric irtct Pt ctittion of u'lr X $).
((l) Writc ln equ tion of the plane lhat passes lhrough lhc

origin and is pcrpcDdicullr to the line.\' = t. r' : lr.

5. (u) Listthe si\basicty|csol cluldlicsurlaccs.anddesctibe
theil lraces in plunes l)ariillel lo lhe cootclinatc plancs.

(b) (iive the coor-clinules ol thc points lhrt rcsult \\'hen the
poinl ( r- r . a ) is rcllcctcd about the pl ne .\' - .\. thc
pl:rrcr --.urt,l lhcflirrrc \ -..

{c) Dcscribe the inlelsectio| of the sudlces r' : 5 ancl

:: I ir' . J.rrr.tti.:Ll i,'t'r'rlillrt<..
((l) Dcscribc ihc intcrscctioli ol the suriiiccs ry' : ,'r/,1 irnd

t) - 0 in sphcrical cootclinates.

6. In clch pilrl. Iind {n cqunlior of lhe sphere \\'ith centet
(-3.5. -,1)and srtislling the given condition.
(il) 'lilrUlcnt to thc .\ r'plirnc
(b) 'lirngent lo the r:-phne
(c) 'lirngent lo the r:-pl ne

7. (a) FiDd lhe nre.r ol lhc lrianglc \\'ith vcniccs ,{(1.0. l).
/r(0. l. l). and C(2. l. 0).

(b) LJse the re!ult in Iurt (ii) to ilnd the length of the rllitude
lftnn vefex a to \i(lc A /J.

8. Find the largest antl snriillest disllnce\ ltlwccn thc point

P( L l. l) nnd the sphere

.rl+11+.1 lr'*6: -6-0
9. Lct a = r'i +,1 and b = ;li + 3,i. Find ( so lhll

(a) { und b are oflhogonitl
(b) thc ungle belween a .!ld b is..r/,1
(c) the nngle belween a ilncl b is n/ar
(d) a tnd b are pardllel.

Let A. B. C. and D be four dislinct points in 3-spacc. Explain
\ hr. the linr'tluough A and B n'rust intersect thc linc th|oush

Cancl D il ti x - +0and.rZ. rl7 " idr :o.
Let A. B. ancl C be three distincl noncollireal points in 3-
spirce. Dcscribe the sct of all poinls P thrt satisty the vector

equation,,l/). (AB X ,1C) - ().

Tluc ol tllsel Erplain )'our rel\onir)g.
(.r) Il u. \ :0.thenu :0olr = 0.

Lh) ltu \ r - 0. therr u 0olr=0.
(c) llu.r'=0ltndu x r' :0. thcn u :0 or \':0.
ln each piill. usc the iesult il Excrcisc 39 of Section l3.4 to
proYe the vector idcntit),.
(a) la x b) x (c x d) - (a x b.d)c (a x b.c)d
(b) (a x b) x c + (b x c) x a + (c x a) x b: {)

Show thlt il u irncl v are unit veclors and f, is the angle
between therr. then u v :2sinld.

Consider thc points

A( l. l. l). B(1. l. 0). c( - l. l. 0). D(1. t. - l )

(a) Find thr $ume 
of thc palallelepiped that hirs thc vec-

tols l/J. rl('. AD as a(ljlccrl cdges.

(b) Firrd thc (lislancc tiom D to thc planc containing A. B,
ancl C.

(a) Firrd pirrdnrctric cquations lbr lhe interscction of the
pllnes ?.r +r :: Jiud.r *lIi::3.

(b) Fiicl thc icutc angle belween thc t\\'o planc's.

r\ tliagoral ol r box makes xnslcs oi 50 and 70 \\,ith t\\o
oi its cdgcs. Find to the nearesl dcgrcc the angle thirt il mnkcs

rith thc thirtl ctlge.

Find the veclor $,ilh length 5 an(l dircctioi angles a = 60

lt-t20.)/:l]5
Thc accontpanying llsurc shows a cube.
(r) Fin(l1hc rnglc between the veclors d and u to thc neiLresl

degree.

(b) Make il c()njeclure aboul ll'rc iurgle betwee the vcclors
d and r. and conlirn I oLrr corriecture b)' conlputing the

angle.

l -1.

I 
'1.

15.

16.

11.

t8.

19.

20.

21.

2.2.

t0.

ll.

(iiven rhc poinrs P (3. -l). 0( l. I ). and R(5. 2). usc \cctor'

nelhods to lind thc coordinltcs ot' thc li)urtl] r'cttex of the

parallclogranr u,lrose l(ljrccnt sidcs arc FD ancl Di.
Lct rr) = (.r0. r0.:0) 1nd r'= (.t. r'.:). Dcscribe lhe set ol
lll poinl! (.r. r'. :) iir.$hich
(n) r.r{):0 (b) (r rr)) .ro:0. 

2-1.

12. whrl colldition rDusl thc consfnDts satist,v lilt the planes

./r.r+rLIltt:.=tlt alld .ltr +/ttl it:: -rl:
1() be pelpendiculilr'l

Figurc l'l\ ll

In each p{n. i(lentif)'thc rudlcc b) compleling the squitrcs.
(a) .tr + Jr'l - :l 6r i 8r'*.1-- : o

(b) .r: + r'r *,r + 6-t 4r'* 12: : o

lc) \-+\ .- lr +4\ +l={)



2,1. Tn Exercise 42 of Section 13.5 we defined the symmeiric
cquations of a line in 3 space. Consider the lines L I dnd Zl
whose symmetric equalions are

/.,,'-l:'+; +l
12

r 4 r 3 .+1
-12.2

(a) Ale LI and L] parallel? Pepenclicular'/
(b) FiDd pirrametric equations fol L I and lt.
(c) Do LI rnd L] intcNectl Ilso. where?

25. In each paft. express thc cquatjon ill cylindlical and spheri-

cal coordinates.
(a) rr + r'l : .:

Supplementary Exerc ses 827

ln eirch paft. r.rse the idea in Exercise 3 l(a) to derive a ior'
mula tbr the stated surface of revolution.
(a) Thc surfacc generated by revolving the curve -r : /(l')

in the.r,- plane about thc ,) -axjs.
(b) The surface generated by revolving the cuive r' : /(:-)

in the _t': plane about the a axis.
(c) The surface generaled by revolving the curve: : .l(.r)

in the -r:-plane about the {-axis.

Sketch the surlace whose equalion in spherical coordinates
is p : 6111 cosd). [Fli]ti The surlace iii shaped like a

familiar fruil.l

Assuming that force is in pounds and distance is in feet, find
the work done by a conslant lilrce F : 3i 4j + k acting
on a pa icle that moves on a straight line hom P(5,7,0)
ro 0(6. 6. 6).

Assuming that I'orce is in newtons ar]d distance is in meters.

find the wolk done by the resultant of the constant forces

Fr -i 3j+kandI'2 - i+ 2 j + 2k acting on a particle that
moves on a straight liie lionr P(- l. 2. 3) to O(0. 2. 0).

As sho\\'n in thc accompanying ligurc, a folcc of 250 N is

applicd to a boat at an angle 01 3ll' with the posilive -r axis.
What force F should be applied to the boat to produce a
resultant force of 1000 N dcting in the positive.t-direction?
State your answer by giving the magnitudc ofthc forcc and

its angle with the positive -r-axis to thc ncarcst degree.

F Figu.e F-x 36

SLrpposc that 2r for.ce F with a magnitude of9 lb is applied to
the lever shaft assembly shown in the accornpanying ligure.
(a) Express the force F in componenl form-
(b) Find the vcctor monrent ol F about the origin.

It

13.

34.

(b) .tr r'l :l :0

26. In cach part. expless the equalion in recla gular coordinates.
(a) 1- : rl cos 2d (h) tr.rn,y' cosd cos d - I

35.

In Exercises 27 and 28. sketch the solid in 3-spacc tlral is

described in sphclical coordinates lly the stated inequirlities.

36.27. (Lt) l) a p

(c) 0: p

28. (n) 0:p:5,0: d::ttl2. dnd0lr 1tl2
(b) 0 : dl :z/3 and 0 a. p :.\seco
(c) 0: p ! 2,nd r/6 

= 
A <irl3

Ir, Err r. i.c. " ) :Ird .10. \ksl. h the ..rliJ in I .p.rce I hJl i\ de-

scribecl in cyliiidrical coordinrtes by the statecl inequalities.

29.(a) l:r:2 (b)2:::3 k) r/6::e:.n/3
(d) I < ;- 1 2. 2.. 13, and r/6 a A - itl3

30. (a) r'r+:r:4 (b) r:l (c) t1 +..2 =4 
andr>l

3I. (a) The accompanying figure shows a sutf'ace ofrevolution
thirt is generated by tcvolving the curve \' : /(,r) nl
the -!)-plane about the .r axis. Show that the equatjoll of
tl.ris sudace is r.r +;l : [./(,r)]r. [H,rr; Each poinr on

Ihe curvc traces a cilcle as it rcvolves about the.,.-axis.]
(b) Find an equation oflhe sudace ofrevolLrtion lhal is gen-

elale.l by revolving lhe cuNe -f : er in tl'le |'plane
about the -r-axis.

(c) Show that the ellipsoid 3rl + 4-r'2 i 4:r : 16 is a sur-

face of revolution about tl'le r-axis by finding a curve

r' / I \ , Ir rlr(.r\ plinr lhJ. Seruralc. il.

a2 (b) O a A a nl6
:2 and 0 :.$:..'16

31.

Fisurc Ex-l I Figurc Ex 37
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FuNcrroNs

n this chapter we will consider functions whose

values are vectors. Such functions provide a unified way

of studying parametric curves in 2-space and 3-space and

are a basic tool for analyzing the motion ofparticles along

curved paths. We will begin by developing the calculus of
vector-valued functions-we will show how to differen-
tiate and integrate such functions, and we will develop

some of the basic properties of these operations. We will
then apply these calculus tools to define three lundamen-

tal vectors that can be used to describe such basic char-

acteristics of culves as curvature and twisting tendencies.

Once this is done, we will develop the concept of velocity
and acceleration for such motion, and we will apply these

concepts to explain various physical phenomena. Finally,
we will use the calculus of vector-valued functions to de-

velop basic principles of gravitational attraction and to

derive Kepler's laws of planetary motion.

e:
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PARAMETRIC CURVES IN 3.SPACE

1 4. 1 I {lTfqfi BUC fi 0f,r T{} \"rEC-{"0R-Vp,L-UilD FUNCTTONS

Irt Sectiott l-1.5 ve discussctl patonrctric e(luutions of lines in 3-space. Inthissedon
wc r.r'111 rliscrrss nnre lenetul porunrctri( ctute,s in 3-space, arncl v,e h,ill show hou,vec-
tor notati(rt catt be used to a.\ptess parqnktt i( cquations in 2-space and 3-space in a
nbrc u)nqqct Jbrnt. This 'aill latul us to tousiclar tr rtew kind 0f.function; namely, funt-
tions Ih.rl estodete rc(tors lNillt reul nuntbers. Such Jundiotts harc nwny intl('ttotlt
al\rlititr i, ' .\ i/i 1)/rrri' .s ttttLl . ttliItt1 l iItq.

Recali flom Scction I .7 that if I and g are u,ell-behaved functions, then the paf ofparametric
eqLLatiolrs

x: f(t). r': g(t) (l)
generates a curve in 2-space lhat is traced in r specific direction as the parameter a increases.

We defined this direction to be the orienldrioa of the curve or the dircdion of increasing

ltdrantetar. and we callcd thc curye together with its orientation the g/'4pft of the equations
ot Ihe per(ntett'it ctil|c Iepresented by the equations. Analogously, if /. g, and I are three
wel l-beh.ivcLl [unct ion'. therr thc parametric equrtion.

r : l(r). r :.q(r). .- : lt(r) (2)
Figurc I l.l.l

r = r/ crls l. \'= r/ sln l. : = (1

generate a curve in 3-space lhat is traced in a specilic direction as I increases. As in 2-space,

llris direction is called the onerrlation or direction of increasing pqrqmeter, and the curve
togethcr with its orientation is called the grapft of the equations or the pqrqmetric curve
represented by the equations, If no restrictions are stated explicitly or are implied by the

cquatiuls. then it will be un(lerstood that / varies over the interval (-2. *r).

Example 1

The paran]elric equations

-r:l-t. ):3t. :=2r
represent a line in 3-space thrt passes through the point (-1.0.0) and is parallel to the

vector (- l. 3. 2). Since ,r. r'. and -- increase as / increases, the line has the orientation
shown in Figulc 14.1.1.

Example 2

Describc the parametr-ic curve reprcsented by the equations

\:rlcos/. .1 :(lsint. ::cl
where (/ und ( rte posilive eonslltnls.

Soltttion. As the parametcr I increases. thc valuc of r = c/ also increases, so the point
(-{. r.. :) nloves upward. However, as I incrcascs. the point (.r..1', t) also moves in a path

directly ovcr the circle

.r: arcos/. _r'-asinl
in the r\'-plane. The combination ofthese upward and circularmotions produces a corkscrcw
shaped curve that wraps arouncl a right circular cylinder of radius (i centered on the :-axis
(Figule]4']'2)'Thiscutveiscalledacircularhelix'<

Except in the simplest cases. pluametric curves in 3 space can be difhcult to visualize and

drau, without the help of a graphing urility. For example, Figure 14.l.3a shows the graph of
the paramctlic curve called .\ tot us knot lh^t rvas produced by a CAS. However, even this
computer rendeiDg is difllcult lo visualize because it is unclear whether the points ofoverlap
are intersections or whether one portion of the curve is in front of the other. To resolve this

Conrpuler rcprcscnralion of rhc tNin
helir DNA nrolecule (Deo\] riborruclcic
Acid) This strucrure conlains all lhc

inheiled inslruclions necessary lbr lhc

devclopmcnl ol r living oleanisn.

PARAMETRIC CURVES GENERATED
WTH TECHNOLOGY

((1.1.2)
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visualization problem, some graphing utilities provide the capability ofenclosing the cuNe
within a thin tube, as in Figure 14.1.3b. Such graphs arc called tube plots.

l.Olt TII| READER If you have a CAS, read the documentation on graphing parametric
cur.res in 3 space, and then use it to genente the line in Example I and the heLix

r:4cost, _l:4sjnt, a.=t
shown in Figure 14.1.,1.

(0:/:3it)

PARAMETRIC EQUATIONS FOR
INTERSECTIONS OF SURFACES

(.a)

Figurc ll.l -l Figure 14.1.:l

Curves in 3-space often arise as intersections of surfaces. For example, Figure 14.l.5n
shows a portion of the intersection of the cylinders ; : i3 afrd -r' = -lr2. One method for
finding parametric equations for the cuNe of iltelsection is to choose one of the vadables
as the parameter and use the two oquations to cxpress the romaining two variabJes in terms
of that parameter h particular, if we choose ; = I as the parameter al]d substitute this ilto
the equations: - .r3 and ) : ,r2, we obtain the paranetric equations

x:t, ):t2, z:t3 (3)

This curye is called a tv'isted cubic.The portion of the twisted cubic shown in Figure l4. l 5a
conesponds to I > 0; a computer-generated graph of the twisted cubic for positive and

negative values of l js shown in Figure 14.1.5b. Some other examples and techniques for
linding inlersections of surfaces are discussed in the exercises.

y=1.1,=11,;=13

' '''. -. 
>-0 

-'- -' ,

(a\

Figure 14.1.5

(b)

Since two vectors are equal if and only if their conesponding components are equai, the

two parametric equations in (1) can be expressed as the single vector equalion

ri * r,.i : /(/)i + s(t)j (4)

VECTOR.VALUED FUNCTIONS
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GRAPHS OF VECTOR-VALUED
FUNCTIONS

and, similarly, the three parametric equations in (2) can be expressed as

.ri i i'.i *:k : l()i + s(t)j + ft(/)k (5)

It is possible to write Equations (4) and (5) even more compactly by introducing vectors r
and F(r), which we define as

r = -ri * lj and F(/) = ./(r)i + s(r)j z.sprce

r:-ri *,r,j*:k and F(r): /(r)i+g(/)j +ft(/)k 3.sprce

With this notation Equations (4) and (5) both have the form

r : F(t)

In this equation F(l) is a function that associates a vector r with a real value of 1, so we call
F(.t) a vector-valued funclion of a real variable or nore simply a vector-valued. rttnctiofl.
As an example, the twisted cubic given parametrically in (3) can be expressccl as

,ri + rj +:k: ri + /rj + rrk

which has the form r - F(r) with

r: ri * )j * zk and F(t) :,i + rr.i + rrk

If F(r) : l (t)i + I(1)j +,(l)k is a vector-valued function in 3-space, then the real-valued
functions /(t), g(t). and ft(l) are called the component f nctrofls or the components ol
F(t) (and similarly in 2-space). We define the domain of l.'(.) to be the set of allowable
values of t. If the domain is not specified explicitly, then it will be understood that it is the
set of all values of r for which el,e/) componenl is defined and yieJds a real value; we call
this the nalt ral domai[ of F(/). For example , the components of

r(r) = ln(r - l)i +e'i +.,rk
are

.\{tl= lnil - ll. .r'lt)=r'r. :rtl:,,fi
and the natural domain of r(t) is the set of l-values such that f > l.

If F(t ) is a vector-valued function in 2-space or 3-space, then we deline the grapft of F(r)
to be the graph of the parametric equations that correspond to the vector equation r : F(l).
For example, if

F(.) : (t - r)i + 3rj + 2/k

then the equatbn r - F(/) is

,ri +.rj +:k - (l - t)i + 3tj + 2rk

and the corresponding paramelric equalions are

), - _aj

Thus, the graph of (6) js the line in Figure 14.l.l .

RE\].\tiK. It is common practice to write r : r(/) rather than r : F(l) fbr a geneml

vector-valued function and to write parameric equations.r : .f(t).,I = g(l).: : l(t) as

r - r(t). ,\, : ,I(a), z : :(r). This dual use of letters for dependent variables and function
names rarely causes confusion and has the advantage of reducing the number of letters

appearing in problems.

Example 3

Describe the graph of the vector-valued function r(r) : cos li + sin /j + /k.

Solution. The equation r = r(t) is

ri +,t'j +.k: cosri + sintj + lk

(6)



As r varies, the tip of the
rad us vector r traces out
the curue C,

Figure 14.1.6
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so the corresponding parametic equations arc

x:cosl, )-sin/, 7.=t
Thus, as we saw in Example 2, the graph is a circular helix wrapped around a cylinder of
radius 1.

Up to now we have considered palamet c curves to be paths traced by moving points.
However, if a parametric curve is viewed as the graph of a vector valued function, tlen we
can also imagine the graph to be traced by the tip of a moving vector. For example, if the
cuwe C in 3-space is the graph of

ri * yj *zk :'(/)i+:|r(r)j + z(/)k

and if we position tlle vector r : ,ri * lj + zk with its initial point at the origin, tlen its
teminal point will fall at the point (x,1, z) on the curve C (as shown in Figure 14.1.6).

Thus, the teminal point of r will trace out the curye C as the panmeter I varies. We call r
ths rqdius vector u the position vector fot C .

Example 4

Sketch the graph and a radius vector of

(a) r(/) : cos /i + sin /j, 0=t 
=2n(b) r(r): cos/i+sin/j +2k, 0at <21t

Solution (a). The corresponding parametdc equations are

r:cost, ):sin/ (0<t <2r)
so the graph is a circle of radius I, cantered at the origin, and oriented counterclockwise.
The graph and a radius vector are shown in Figure 14.1.7.

Soltttion (bt. The correrponding paramerric equarions rre

ir: cos/r ]):sinr, z:2 (0<t <2r)
From the third equation, the tip of the radius vector traces a aurye in the plane r : 2, and

liom the flrst two equations, the curye is a circle of radius I centercd on the z-axis and

traced counterclockwise looking down the x-axis. The graph and a radius vector are shown
in Figure 14.1.8.

.'- l
I r,= cos r i+ srnr.t 

l
Figure 14.1.7

il -:::"-l:t*fl
Figure 14.1.8

Recall from Formula (9) of Section 13.5 that if re is a vector in 2-space or 3 space with its
initial point at the origin, then the line that passes through the terminal point of r0 and is
parallel to the vector v can be expressed in vector form as

r:ro+tY
In particular, if r9 and 11 are vecton in 2-space or 3-space with their initial points at the

VECTOR FORM OF A LINE
SEGMENT
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oligin, then the line that pnsses through the tenninal points ofthese vectors can be explessed
in vector fbrm as

r = ro * 1(rr ro) ot

as indicatcd in Figure 14.1.9.

RE\1,\liK. It is comnron tocall cither (7\ ot (8) lhc tv,o-point vectorform ofa line arrd to
say, fin simplicity, that the line passes through lhe poirlts r0 and rl (as opposecl to saying
that it passes through the /(,rr?i?(// poirrs of rn and r 1 ).

h is understood in (7) and (ti) that / r,aries from -:. to +2. Howcvcr, if we resirict t tQ

vary over the interval 0 ! l 5 l. then r will vary fiom rs to rl. Thus, lbr example, the
equation

r=(l-t)ro*rrr (7-ri)

Figurc 1,1. 1.9

r:(l_r)ro+/rr (0<r<l)
rcpresents the line segment in 2-space or 3-space that is traced frorn r0 to r't .

ExERctsE SET 14.1 E Graph ng Catcu ator

(9)

In Exercises 1 4. tind the domain of r(l) and the valuc of
r( ro ).

l. r(t) - cos ri - 3t.i; t0 = z
2. r(r): (.16r + l, rr): /o - I

3. r{/) coszri- lnrj - rl- 2k: to:3
4. 1111 : l2e '. sin-r r.ln(l 1)): 1o :0

ln Erer.r.e. 5-x. exlrer. Ihe pirrJmclric cqurlron\ a\ a

single vector equation of the tbnr] r = .r(/)i + r(l)j or
r =.r(.)i + r(1),i + :(r)k.

5. r:3cost. .l =r+sinl
6..r-rl+1..,:":'
7. t:2t. r,= 2sin3r. ::5cos3l
8, r - ,.in /. r'=lnl. -::io''t

In Exercises 9 12. find the parametric equations lhat corre-
spond to the given vector equation.

9. r: 3rri 2j
10. r. : sinrria (l - cos2r)j

11. 1: (2r - l)i - 3y'j + sin3rk

12. r = re 'i 5r2k

ln Exercises l3-18. describe the glaph of the cquation.

13. r=(2 3r)i-4r.i
l,l, r:3sin2.i + 3 cos 2/j

15. r:2ri-3j+(l + 3r)k

16. r : 3i+ 2cosrj + 2sin/k

17. r = 3cosri +2sinr.i - k

18. r- 2i+rj+(,r- l)k
19. (a) Find the slope of ihe line in 2 space thot is represcnted

by the veclor eqlrirtion r : (l - 2t)i - (2 - 3t)j.
(b) Find the coordinates ol the point whcrc the line

r: (2 +r)i* (l- 2r).i + 3rk

intersects the.\:-pl.rrc.

20. (a) Find the tinlercept of tlre line in 2-space that is repre-
sented by thc vector equation r : (3 + ll)i + 5tj.

(b) Find the coordinates of the point whcre the liDe

r:li + (l + 2.)j 3rk

intersects the plane 3.[ -f : = 2.

In Exercises 2l and 22. sketch the line segnrcnt represented
by thc vector equation.

21. (a) r - (l- r)i +r,i: 0:/51
(b) r:(l-1)(i+.i) +r(i j): 0<r<l

22. (a) r- (l-r)(i +j)+/k; 0:r<L
(b) r-(l-r)(i+.i + k) + r(i +.i); 0SrSl

In Exercises 23 and 24. write a vector equfltion lor thc line
segmcnt from P to O.

ln Exerciscs 25-34, sketch the graph of r(l) and show the

direction of ircrcasing 1



25. rk) : 2i + rj

26. r\t) - (3r - 4. 6r + 2)

27. r(t): (l +cosl)i+(3 sin/)j: 0: t:2n
28. r(/): (2cosI.5sin.)i 0 at a2it
29. t(t) - cosh ri + sinh I.i

30. r(1) : Jti + Qt + 4):

-ll. r(r) : 2cos1i +2sintj +.k
32. r(r) :9cosri -l- 4 sin Ij + rk

33. rQ) : ri +t:j+2k
34. r(1) - ri +.j +sinrk: 0at a2x

In Exercises 35 and 36, sketch the curve ofintersection ofthc
sur'laces, and lind par-ametric equations lor th0 interscction irl
lenns of parameter -r- : r. Check your $'ork wilh a graphing

utility by generating the parameflic cuNe ovcl thc il1lerval

-1 :1: l.

35.:-t2+r'1..r-r:0
36. r. i .r - 0. : : .u,i2 _.: r'l

ln Exercises 37 ancl J8, sketch thc curve ol irttersection ofthe
surfaces, and lind a vector equation fbr the curve in temrs of
rhe orrJmclcr.r

37, 9rl+r2i9.2 :81. r':.1 (: t0)
38. r':r. r+!+:-l
39. Show that the gr:rrph o1

r:rsin/i+/cosrj+rrk
lies on the paraboloid : : .l + r I.

40. Show thiil the graph ol

1+t I rlr' -ri - .i k. t o
tl

lies in the plane.r - -r'+. + I : 0.

il1. Sllow that the grrph of

r: sin ri + 2 cos /.i + J3sin/k
is a circle. and find ils center and radiLrs. lHil?r Show thlLt

the culve lies on both a sphere and a Plane.l

42. Show that thc graph of

r : 3cosri + 3 sinlj + I sin/k

is an ellipsc. and llnd the lengths ol the maior and minor
axes. [Hril] Show that thc graph lies on both a circrrlat

cylindci and r plane ancl use lhe resuh in Excrcisc 60 of
Section 12.4.1

:13. For the helix r : d cos.i +./ sin /.i+ clk. lirrd. (. > 0)so
that the helix will make one complcte tum in a distance of
J..rnit. mcr.rrre l:l.rtrg th. : ari..

14.2 lntroductlon to VectorVa ued Functiol]s 835

Ho$ many rcvolutions will the circLrlar helix

r - d cos 1i+ a sinr.i + 0.2rk

nake in a dislance ol l0 urits measured along thc .- axis'l

Show tlrat thc curvc r: / cos /i+ / sinlj + /k. r - 0. lies
on the cone:: .,\l + -r'l Descdbe the curve.

Describe the clrn,e r : d cos Ii + l7 sin aj + .rrk, where 17.

/r. and l are positlve constants sucll thal.r + /r.

ln eilch part, malch the veclor ec[ratior] wilh one of the ac

uump;n1 it'g .'r':'plrs. rtrd cr.plrrin ) uur r qir\onirr!.
(a) r:ri rj+ /2 rrk
(b) r: sinr/i /,i + /k
(c) r : sirr 1i + cos .j + sin 2rk
(d) r: ]ri + cos 3/j + sin 3/k

E 18.

1II IV

Check )our conclusions in Exe|cise.17 by gcncrating the

culves with a graphinu utility. [4".)r.. Your graphing util-
ity may look at the cuive tiorr a different viewpoint. Rcad

thc documentation tbr lour graphing utilil] lo dctcrnine
how to coltrol dre vieivpoint, and see if you can -gcncrate
a reasonable lacsimile ofthe glaphs shown iD thc ligLrre by

adjusling the vlewpoint and choosing thc inlcNalofa values

approprirtely.l

(a) Find paramelric equations for the culve of intersection
of the circular cylindel -rl + J 

l - 9 and thc pa|abolic
cylinder' ; -.11 in terms of a paranleter / fbr which

(b) Use a glrphing utility lo gener'.lle the cuNe ol intersec-

tion in pafi (a.).

h-l 4e.

B 50. Usc a Sraphing utility io gener-rfe the inlersection of thc

cone: : J.rl + !l iind the plane; - t + 2. Idenlil_v the

cur'vc.rtrJ r: r. I ' 
I : r i r r ) , r t | | fc,r.r-)rr:n!.

44.

45.

46.

17.

E
E



836 Vector-ValuedFunctions

LIMITS, DERIVATIVES, AND
INTEGRALS

1 4. 2 CALCULUS SF VECT0f:A-VA|_i iE{? F{jrqd:?{0ht$

l|1 tllis section *-e vill def.ne limits, tlerivrtit,es, and integrals of t'ettor-talued funt -

tions arul distuss thei properties.

As shown in Table 14.2.I, limits, deivatives, and integrals of vector-valued functions can
be delined by taking the limits, derivativcs, and ittegrals of the components.

Table 14.:.1

2 sPAarE

r(, =r.(r)i+)(r)'
3-sPAcE

r(, = j(ri+i(r)i+:(.)k

k

a,)r

(1.r,,,)

. U,"^,

tin (r) = (lim,-(t))i + (Lm _r(t))j lilll (t = (lim.(0)i + (li. r(r))j * (li. ,(t)

.'(0 = y'(0i + r''(1)j r'(1) = -r'(0i + ).'(r).i +:'(.)k

1,,,.,, ( [,,,,n,:1', (l,,,nli J,r,.tt=(1,,,,r1r, (/., a):-

l"'',r,t 
r, = (.1.",r't *),, ( 1,,",r,t 

n,).i 
l"'rrttdt = (.1,,' uu u,)t, ( 1,,'r,,t 

*)i

The definitions io this table assume that the coordinate systen is fixed and operations on
the conponents of r(l) can be pelformed. Thus, fbr a limit of r() to exist the limits of
all components of r(/) nust exist, for r(t) to be dilferentiable all componcnts must be
d illerentiable. and for r (r ) to be integrable all components must be integrable. In keeping
with the definitior ofcontinuity fbr real valued functions, we define a vector-valued function
r(t) to 6e continuous at a il

/11'ttl : '1n1
Expressed in terms of components, r(t) is continuous at a if and only if each component of
r(t) is continuous at a.

AII of the standard notation for derivatives conlinues to apply. For example, the derivative
of r(t) can be cxplcssed as

d dr
. l.rl,' . ':-, r tl I. rnJ r

tll tJt

Example 1

Let

r(I) : r2i + €'j 2 cos zlk
Then

limrr/)-'lim/'ri rlrm, r.i - llim 2co.,tr]k - j-2k.u ' ,C

r'(.t) : 21i ':, 
"t 

i * 2z sin zrk
r'( 1) :2i + ej

1,,,r,u,- !],'.r1.,, 1,'"-l'u- ]r*i" r)i

Recall that indefinite integration ol a real-valucd function produces a constant of iltegra-
tion C that is an arbitrary real number. Analogously. indefinite integration ofa vector-vaiued
function produces a constant of inlegration C that is an arbitlary vector. This is illustrated
in the following example.
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ExamPle 2

l,zti - tr? :tar = (l r r,)', (/r,'r,) :

:(r2+cr)i+(t3+c)j
: (t2i + t3 j) + cLi + c2j : t2i + t3 j + c

whereC:Cri*CzjisanaIbihaIyvectoIconStantofintegration.<

Because limits, derivatives, and integrals of vector-valued functions are defined in tems
PRo-PERTIES oF DERlvATlvEs AND of the coresponding operations on components, most of the standard theorems on limits,
INTEGRALS

derivatives, and integrals ofreal-valued functions carry over to vector-valued functions. The

following two theorems, whose proofs are left as exercises, list the standard properties of
differentiation and integmtion of vector-valued functions.

14.2.1 THEoRBM (R les of Differcntiation). Lett(t'), tt(t), a dr2(t) be vector-valued

functions in 2 space or 3-space, aftd let f(t) be a realvalued function, k a scalar, and
c a constant vector (thqt is, avector that does not depend on t). Then the following rules
of differentiation hold:

d(a) 
dr 

[c] : 0

dd(b) 
1. [kr(/)] : k ,ltlt(t)l
,1 dd(c) 
*lr1(t) *rz(r)l : dtlrr(t)l + 

drlrz(t)l

ddd(d) 
dtlrtG) - rr(r)l = tlrr(t)l dtLr2(t)l

ddd(e) 
dttf(t)r(t)l 

: f(t)-lt(t)l + dtlf(t)lr(t)

14.2.2 THEOREM (Rutes of Intesration). Let r(t), rt(t), and r2(t) be vector valued

functions in 2-space or 3-space, and let k be q scalar. Then the folloA)iftg rules of
integrqtion hoLd:

o1 | kr<ttat:r I rtttat

{u) 
lv11t] 

+r2(t)ldt: l,,r,ro, + 
lrz{tlat

g1 
l7r11t1 

- rz(t)ldt : I rlt)dt I rzltl at

The results in this theorem are also valid for definite integrals of vector-valued functions.
Most of the familiar integration properties have vector counterpads. For example, vector

differentiation and integmtion are inverse operations in the sense that

*ll,u,o,):,u, and I r'otat:r(r)+c (1 2)



838 Vector-ValuedFunctions

GEOMETRIC INTERPRETATION OF
LIMITS AND DERIVATIVES

r0) approaches L n length
and d rect on if I m r(t)=L

Figure 14.2.I

of r(/). that is. R'(r)lSana

)dt:

and if R(r)

I"' 
,u

: r(1), then

= R(r) R(a) (3)

Example 3
l2

Fvrluate Lhe definite inregral / 12ri 3t'.i1dr.
Jt

Sohttiort. Integrating the componenrs yields

t) .l) 12

I r:',i !2jttlr -, li-,'l;-+i -sjJa )u -o

Alternatfue Solutiorr. The function R (t) : tzi+t3 j is an antiderivative of the integrand
since R'(t) : 2/i + 3/2j. Thus, it follows ftom the Fundamental Theorem of Calculus that

72 -

Jnori+l,,ila,=[nrrr]]:ft,i+r.;]|:(4i+8j)_(0i+0j):4i+8j<
Example 4

Find r(r) given that r'(t) - 3i +2ti and r(1) = 2i + 5j.

Sohttion. Integrating r/(l) to obtain r(t) yields

r{1r lr'ndr = | r 3i - 2r jt d r - 3r i - i j tCJ.J
where C is a vector constant of integration. To find C we substitute I : 1 in this equation
and use the given value of r(1) to obtain

r(l) :3i + j 111 :2i + 5j

so that C = -i * 4j. Thus,

r(r) : 3ri+ r2j - i +4j : (3r - l)i + (/'? +4)j

It is desirable to have a geometric interpretation ofthe limit of a vector valued function that
does not require breaking the vecton into components. For this pulpose, suppose that

lim r(/) : L (4)

which means that each component of r(t) approaches the conesponding component of L.
However, if we position r(t) and L with their initial points atthe origin, then rhe components
of these vectors arc the coordinates of their terminal points. Thus, (4) can be intelpreted to
mean that the terminal point of r(t) approaches the terminal point of L as r approaches a;
that is, the vector r(t) approaches the vector L in both length and dircction (Figure 14.2.1).

To obtain a geometdc interpretation of the derivative of a vector valued function r(l),
we will first need a formula for r'(t) that does not involve the individual compolents.

14.2.3 cEoMETRic INTERPRETATIoN oF LIMITS. If r(/) is a vector-valued function
in 2-space or 3-space. then

lim r(1) : L

if and only if the radius vector r - r(r) approaches L in both length and direction as

I --> A.
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lil.2.;l THEORENI. It r(.t) is u yector-ytt lued function in 2 spate or 3-qn(e, then the
derivatiw of r(t) tan be erpressed as

.,(r) :;,li r(/+r)-r(1)

nrotided this limit erirts

Profi. For simplicity, we give the proof in 2-space; the proof in 3-space is identical, except
for the additional component. Assume that r(/) : .{ (r)i + }(/),i, so

r'(r) :,t'/(1)i + )/ (1)j

rlr I/r) r11) i+ lirn
r(/ +.4) - r'(/) .

,J

[r(r /r)i rO t /rtj] h(/)i I .\{/l,il

r(t + 11) r0)

(-5)

:lim

:lim
/,-0

- lim

With the help of this theorem we can obtajn a geometric interyretation of r/(t). For this
pur?ose, consider pafis (d) and (b) of Figure 14.2.2. These illus[ations show the graph C

ofr(I) (with its orientation) and the vcctors r(t). r(1+ fi), and r(t +l?) r(l) fbr positive ir

and for legative r.In both cases the vector r(/ +l) r(/) runs along the secant linejoining
the tenninal points of r(/ + lr) and r(l) but with opposite directions in the two cases. In
the case where l? is positive the vectot r(t + 11) - r(t) points in the direction of increasing
parameter, and in the case where ,4 is negative it points in the opposite dircction. However,
in the case where I is negative the direction gets reversed when we multiply by 1/r, so that
in both cases the vector

1

llr(r + h) r(.)l :

t'111 = ,lim
r(t + h) r(/)

r(t + h) r(t)

points in the direction of increasing pammetel and runs along the secant line. As fr -+ 0.

the secant line approaches the tangent line at the tenninal point ofr(t), so we conclude thaf
the limit

(if it exists and is nonzero) is a vector that is tangent to the curve C at the tip of r(t) and

points in the direction of increasing parameter (Figure 14.2.2c).

r(/+l)-r(/)

Figrre 14.2.2
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TANGENT LINES TO GRAPHS OF
VECTOR-VALUED FUNCTIONS

l-1.2.5 CEoNit,tRl( tN I Iltt t,t{tiT^t'to\ ori TrrF I)lit{lvr\ \ti. Suppose that C is the
graph of a vector-valued tunction r(/) in 2 space or 3-space and rhat r'(/) exists and is
nonzero lbr a given valuc of L If the vector r'(t) is positioned with its initial point at
the terminal point of the ladius vector r(t), then r'(t) is tangent to C and points in the
direclion of incrcusing parameter.

Motivated by the preceding discussion, we make the following definition.

l-1.2.6 DEFI\rTrr)\. Let P be a point on rhe graph of a vector-valued function r(r),
and let r(re) be the raclius vcctor fron the origin to P (Figure 14.2.3). If r'(/0) exists and

r'(trr) I 0, then we call r'(ti the tangent vector ta the graph of r(t) at r(lo). and we
call tlre line through P that is parallel to the tangent vector the tangent line to the grapl)
of r(1) at rQo).

ll lollows frem Formula (9) of Section l3-5 that the tangent linc to the gmph of r(r) at

r(111) is given by the vector equatiur

r: r(r0) + 1r'(.0) (6)

Example 5

Fiud parametric equations of the tangent line to the circular helix

.r : cosl, \': sinl. :: I

where / : 10. and use that result b find parametdc equations for the rangent line at the
pointwheret-2.

Solulion. The vector equation ofthe helix is

.ri + rj +i.k - cosli + sin/j + /k r=r(r)

and from (6) the vector equalion ol the tangent line at / = t0 is

r = r0o) +.r'(10) Q)

But

r:,ri+rj+^.k
r(r):cos/i+sinrj+rk
r'(1): ( sinf)i+cost.i +k

so that (7) yields

.ri + l,j +:k: cos roi * sin tOj + rok + r[(- sin4r)i + cos tu.i +k]
: (cost) - r sint0)i + (sin10 + /costu)j * ((r * r)k

Thus, the parametric equations of the tangent line at t : 10 are

,r : cos /0 - t sin /0. l =sin/o+tcost0. a:/o*l
In panicular, the tangent line at the point where I :1r has parametric equations

ThegIaphofthehe]ixandthistangentlineareshowninFigur.el4,2'4.<

Tangent
line

Figure l,1.l.l

_- r'(

)/\,tt
I

r(4r)

Figure 1,1.2.,1



DERIVATIVES OF DOT AND CROSS
PRODUCTS

14.2 Calculus of Vector-Valued Functions 841

The following rules, which are derived in the exercises, provide a method 1br dillerentiating
dot products in 2 space aurd 3-space and cross products in 3-space.

d dr. dr
|,lr,'tt.r,rr,1 -t vt.";t' "), -rr,,,

frt,ro xr2(/)l : r,(/) " ff + ! ",.r,1

t4,2.7 TIttroR[Nf. Ifr(t) is a vector-r,alued functiort in2-sltacc or 3-space and r(t)ll

(ti)

(e)

REN1ARK. In (8) the order of the factors in each term on the right does not matter, but in
(9) it does.

In plane geometry one leans that a tangent line to a circle is perpendicular to the radius
at the point of tangency. Consequently, if a point moves along a circle in 2 space that is

centered at the origin, then one would expect the radius vector and the tangent vector at any

poirrt on the circle to be orthogonal. This is the motivation for lhe following useful theorem,
which is applicable in both 2-space and 3-space.

is constant.for all t. the]l

r(r) ' r'(r) :0
that is, r(t) and r'(t) are orthogonaL vctors Jbr all t.

Proo/. It follows flom (8) with rr(.) : r2(r) : r(1) that

,l lr ,lr
;lr r .rri rl - rq t . J! Jt '"|tt

or, equivalently,
d ^ Jr
;tl rft) l'l :2r(r) 

*
But llr(1) l2 is consiant, so its derivative is zero. Thus

( l0)

(1 1)

2r(t) . - :0

from which (10) follows. I

Example 6

Just as a tangent line to a circle in 2 space is perpendicular to the radius at $e Point of
tangency, so a tangent vector to a curve on the surface of a sphele in 3 space that is centered

at the origin is ofihogonal to the radius vector at the point oftangency (Figure 1,1.2.5). To see

that this is so, suppose that the graph of r(r) lies on the surface of a sphere ofpositivc radius

& centered at the origin. For each value of 1 wc have I r(1) : ft, so by Theorem I4.2.7

r(/) . r'0) : 0

andhencetheladiuSvectorr(/)andthetangentvectorr,(l)areorthogona]'<Fieure 11.2.5

ExERctsE SET I4.2 E s1a1 l rg , t. o

1. Sketch the circle r(t) : costi+sinrj, and in each part draw

the vector with its co[ect length.
(a) r'(nll) (b) r"(z) (c) r(2r) -r(3n12)

2. Sketclrthe.rr.lerrr\ - co./i .in/j
the vector with its correct Iength.
(.4) r'(.1t/4) (b) r"(7) (c)

and in each part draw

t(.2n) r(.3n12)
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I Tn Exercises 3 6. lind r'(r).

3. r0) : (4 + 5r)i + (/ r,)j
4. r(l) : 4i - cos tj

l^
5. r1r.1 : -i11a111 1"-L
6. r(r) : (tan i t)i + t cos t j - !4 k

ln Er,ercises T- 10. 6nd the vectot r r 10 r: lhen sketch the graph
olrlttin2-spaceanddrawthetangenlrecIorr'{/0l'

7. r(t): \t. t2l ta-2
8. r(r) : r3i + r'?j; ro : I
9. r(r) : sssli 11an tj. ta:0

10. r(l) :2sinti + 3costj; ts: v/6

In Exercises 11 and 12, find the vector r/(/0); then sketch the I

11. r(/):2sinti+j+2cos/k; ta : rl2
12. rO = costi + sintj + tk to - 1t/4

25. r(t) - 2clrs it.i 4 zshntj + 3tk; h:+
26. r(t) :lDti + e-t j + tskt to :2

I In Exercises 27-30, find a vector equation ofthe line tangent

I to the graph of r(t) at the point P0 on rhe curve. 
l

27. r(t): (2t l)i 1147lZj; po(-1,2)

28. r(r) = 4cosri - 3tji P0(2, -it)
^129. r(t) . ''t-;_ri {4-l')k: P0{/. l.0l

1n,1') jllI:osl! +lan' t)t; P0(0, 1, 0)

lnE\erciSesJl36.evaluateIheindefinileinlegral.
__.

Irt * o,it o,

la"rnr*:)0,

| (,"-r,i*!u) o,

;l(cos 
ri + sinrl) ar

I o"' ,^'t o'

| \" ' , "' 
,t,') o,

ir
TnExerci5es37_42.evalualelhedennileintegral.

r') tl
37. I 'cos3/. -sinlr)d/ 38. I gzi I r'isdrJoJo

3s. I ti + t'? .il dt

t3 -,-40. , ((3 - |'t'. \3 + r t'/', t) dt
J.
lo rl

41. I trt:i-r t2ittlr 42. I t/'i e-,.i-tkltlr
J t J,.t

I In Exercises 43-46, solve the vector initial value problem for
j J(t) by integrating and using the initial conditions to find the l

l"on'11":tl*g*,tol l

a3. y/() : /'?i+2rj, y(0) : i +j
44. y'tit:co.ri sinrj. yr0r -i j

45. 5'rir- i I e'j. yr0r:2i. l'r0r:j
46. y"(t): t2t2i 2t:, y(0) :2i aj, y/(0) :0
ir

ln Er,ercises 47 and 48. use a graphing urilit) Io generate the

I graph of r(l) and the graph of the tangent line at /0 on the I

I same screen.
__l

47. r(/) : sin lrli + t2 i: tn:\
48. r0) : 3sinti + 4cost:: to - n/4

13. lim (/2i + 21j)

i 12+t l\15- lim I -lt- +- \3t, +2 t I

f Z. lirn 1ri - :1 + lt .1

14. 
r 
lima(cos r, sin r)

rr.,u- (fr+i:)
18. r'n 11. =tnt . r,nr,\t .t\/ rl 1 |

l

InFxercises lqand 20.dererminewhether r'l' isconrinuous
at r - 0. Explain your rea.oning.

L

19. (a) r(r) : 3 sin ri - 2/j
^t(b) r(r): r'i +-i+rkt

20. (a) r(/) : e'i +j + cscrk
(b) r(/) : 5i - 14r + 1i +e'zrk

21. Lett(t) : cos /i + sin tj + k. Find
(a) lim (r(1) - r/(.))
(b) lim (r(/) X r'(t))

t+0
(c) lim (r(r) .r'(r)).

r+0
22. Let r(t) : ri + /2j + rrk. Find

lim r(r) . (r/(r) x rii (/))
t-l

I In Exercises 23-26, f,nd parametdc equations of the line tan- !

I sent to rhe graph of r(t ".5lTt!:t"" r * _ i

23. rO: /2i + (2 - lnr)j; ro:1
24. r(t) = e2'i 2aos3t j; to : O

E
E

graph of r(t) in 3-space and draw the tangent vector r/(r0).



E
tr

In Exerciscs 49 anil50. lct d (l) be tlic angle between r(l) ancl

r'(l ). Use a graphing calculator to gcncratc thc graph of fi
versus l, and makc rough cstjmatcs of thc r valucs at whjch
/-intctcepts ol lclativc cxtrema occur. Whal do these valucs
tcll you rboul the veclors r(1) and r'(a)l

:19. r(r):4c6511 13sin/,it 0:/:2n

50. r(r) : rzi + trj: 0: 1 : I

5I. (e) Find the points where the cru-vc

r.: /i + rr,i 3/k

intersects the plauc 2r - t *:: 2.

(b) For the curvc an.l plane in part (a)- find. to the nearest

.legree, thc acLrle al]gle that lhe tangent line to the cuNe
makes wilh a line norlral to the plane at each poiut ol
interscciion.

52. Find where the tangent linc to thc curve

r:? rri + cos /j + 3 sin tk

at the poinl (l . 1. 0) inlersects the _\,: plane.

ln Exercises 53 and 54, show thtt the graphs of rl(1) iLDd

rt(1) interscct al the point P. Find. to the ncarcst dcgrcc. thc

acutc angle belween rhe tangent lines to tllc graphs of rt(r)
iind rr(t) al the point P.

5-1. rr(r) : r:i + I.i + 3rrk
rr(r) : (r 1)i + Jlr.i + (5 r)ki 1'(1. 1.3)

5.1. rr(r) : 21 /i + cos I,i + (/r + 3)k
rr(r) :{l r)i +r:r.i +(/'+4)kr P(2. 1.3)
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In Exercises 55 and 56. calculate
dtl
, ru.rurl .'rd lr Ltl r'.t,

rlt Llt
first by differentiating the producl direclly and thcn by !p-
p vi-l F,.r'rr .r': . S\: nll lql.

55. rL(r) : 2.i + 3rrj + rrk, rr(r) : rrk
56. rr (/) - cos ri + sjn rj + rk. rr0) : i + tk
57, tlse Fonrula (9) to clcrive the dilTerentiation tbmula

r'1 rt):rttt rtt)

58. Let u : u(r), v : v(r). ar'rd w : w(.) be dillerentiablc
vector-valued functions. Use Folmulas (8) and (9) 1() show

fhrtf

59. Let r 1. ,rt, rj. L,l. L,r. ir:. urr . ilt. and urr be differentiable
tunctions ol t. Use Exelcise 58 to show thal

It) 111,

Ur Lrl

1J)1 )t)j

;[u (v x \r') ]

I t. /n]' rrl+u.l' ;l

tt, tt tt 1!,t,,,
1,, ,, , | , ut: u, u u

60. Prnrc I ren-err 11.2.I lor l-,lrc-.
61. Derivc Folnrulas (8) and (9) for 3 space.

62. Plore llrenlerrr l4.l.i rh l .p,rce.

Ju [,ll: . .[v \rl-l-u. .,tt l.tl

I rlt

i''
U,'L

;i

14.3 CHrrfufi: r ir driitf,h4FT*ii?, Ai.i{l s cl;tir:{

We ohscrtecl in earlicr settions lhut a cut-\'c it 2 .space or .1 rpdte cLln be rcprc.eentcl

lttrruntt'tri< al[1 in ntore tlnn onc wdr. For etanryle. itt Settion ].7 wc gale l-^'o pora
nrctrit t cpt'(s(ntutions ol Lt ait(lc 1)nc in u'ltiL'lt the (it.le \\'a.t rratetl tlotkvisa arttl
!hc otller in vthith it vrts ttq((.1 ( ounteft lo(kv i.tc. Somctinrcs it vill be tlcsirublc to
change the parunrctcr.fu'u purumctrit (ut|e to u tlifletetll purdnrclcr lhdl is bellci'
xitetl for the problent (t lla]t.l. In tllis se(tioti I e wil[ in|estig(lt( is.sucs associatctl
u.ith tltanges af podtllcter. untl ue uill shr]n'tltut urt Luryth ple,-s u spetial rcle in
poroilett i( rcprcsarltdtions oJ 'ro1es.

Glaphs ol vcctor-valued functiors range fron continLLolls and snlooth to cliscolrtiDllous
aud \\,'jldly elTatic. In this text we will nol be concemed with grapl]s of the latter type. so

we rvill need to inrpose restrictions to climinalc lhe unwanled behavior. We will say that
t(t) is smoothl! parqnetrized or th.tt rl.t ) ts ,t st tooth .function ol t i[ r'\t ) is cor]linuuus
and r'(t) I 0 for any allorvable value of l. Algcbraically, smoolllness implies llla1 the

cornponcnts ()1'r(t) have coltilllous derivatives that are not all zcro lbr llle same value

ol r. and geometricrlly, il inplies lhat dre tangent vectol r'(/) \'ilries continuously along

SMOOTH PARAMETRIZATIONS
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r. 1.:fl/t=/-r+/ll

Figure 14.3.1

ARC LENGTH FROM THE VECTOR
VIEWPOINT

the curve. For this reason a smoothly parametrized function is said to have a conlinaously
turning tsngent vector.

Example I
Determine whether the following vector-valued functions have continuously ruming tangenr
vectors.

(a) r(t): acosli+asintj +c/k (a>0,c>0)
(b) r(r) : l'r + l-.1

Soluliott ( 0.). We have

r/(1) = 4sinti+acos/j+ck
The conponents arc continuous functions, and there is no value of r for which all firee of
them are zero (verify), so r(l) has a cortinuously tuming tangent vecfor The graph of r(l)
is the circular helix in Figure 14.1.2.

Soltdion lb). Wehave

r \t) - ztt+ Jl-.1

Although the components are continuous functions, they arc both equal to zero jf t : 0, so

r(r) does not have a continuously turning tangent vector. The graph ofr(r), which is shown
in Figure 14.3.1, is a semicubical parabola faced in the upward direction (see Example 3

of Section 12.2). Observe that for values of I slightly less than zero the angle between r'(/)
and i is near :r, and for values of / slightly larger than zero the angle is near 0; hence there is
asuddenreversalinthedirectionofthetangentvectoIas/increasesthIough':0.<

Recall from Theorem 8.4.3 that the arc length I of a parametdc cur.r'e

x:x(r), ):)(r) (.a<t <b)

is given by the formula

(l)

L= l.'

r(r) : ;r0)i + r(t)j
2-space

It follows that

dr dr. dy ._=_r* ..tdt dt dt

2 space

or r(/) :r(/)i+]l(t)j +z(t)k
l-space

dr dx dv dzor _ - _i+ __: i+ _k
dt dr dr" dr

3 space

Gl.el dt (2)

(3)

(4)

Analogously, the arc length I of a pa-rametfic cuNe

y =r(r), ):)(t), z-z(.t) (a<t<b)
in 3-space is given by the formula

tn '

'= J" ,l(oo') ' (o') ('oiS o'

Formulas (2) ard (4) have vector forms that we can obtain by letting



and hence

Substituting these exprcssions h (2) and (.1) leads us to the following theorem.

l:1..1.1 THEORE\1. If C isthe gruphin2-spau or 3,space c.'f d smooth tector-.,alued :

fwlction r(t), then its arc Length Lfion t : a tot : b is

15\ l

Example 2

Find the arc length of that portion of the circular helix

r -cost. l=sina, Z-l
lrom/:0tol-2.

Sohttion. From (4) the arc length ofthe helix is

" r '., ,-, / .
'= l, l(,') (;l) (",;),

/ r/' .,inr,'',ur,5/' Iat = I J2dt -J2rJr Jo
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t- | r 

-,..
fl /(:l) (il)-1,"

:l space

(#)dr
n

,)
(#) . OL

': I.'ll*1"

ARC LENGTH AS A PARAMETER
For many purposes the best paranreter to use 1br representing a cuNe in 2-space or 3-space
parametrically is the length of arc measured along the cune fiom sorne fixed reference
point. This can be done as follows:

Step 1. Select an arbikary point on the curye C to serve as a reference point.

Step 2. Starting from the reference point, choose one direction along the
curve to be the positive direction and the other to be the negatiye
directiott.

Step 3. lf P is a point on the curve, let r be fie "signed" arc length along
C from the reference point to P, where s is positive if P is in the
positive direction from the reference point, and s is negative if P is
in the negative dircction. Figure 14.3.2 illustrates this idea.

By this procedure, a unique point P on the curve is determined when a yalue for s is
given. For example, s : 2 determines the point that is 2 units along the curve in the positive
Jirecrion frorn rhe reference point. and s - -i determines Ihe poinr lh,rl is I unit* along
the curve in the negative direction from the refercnce point.

Let us now treat J as a variable. As the value of i changes, the corresponding point
P moves along C and the coordinates of P become functions of .s. Thus, in 2-space the
coordinates of P are (.r(r),1(s)), and in 3 space they are (x (s ) , 1, (s ) , ..' (s ) ) . Therefore, in
2-space or 3-space the curve C is given by the parametric equations

\ ,irj). r -Jf.) or r =;rls\. r =.,r(s). =-l:\

Reference porni

Figure l.l.l.2
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CHANGE OF PARAMETER

A parametdc rcpresentation of a cuNe with arc lengrh as the parameter is called an arc
Iength parametrimlion of the curue. Note that a given curve will generally have infinitely
many different arc length parametrizations, since the reference point and odentation can be
chosen arbitrarily.

Example 3

Find the arc length parametrization of the cjrcle ,r2 * 12 : a2 with counterclockwise
olientation and ra.0) a., rhe relerence point.

Solutiott. The circle with counterclockwise orientation can be represented by the para-
metric equations

ir =dcos,, -y -.7sinl (0 < t <21r) (6)

in which r can be interpreted as the angle in radian measure from the positive ir-axis to the
radius from the origin to the point P (r, y) (Figure 14.3.3). lf we tal(e the positive direction
for measuring the arc length to be counterclockwise, and we take (a, 0) to be the reference
point, then J and I are related by

s:4t Ol t:S/A

Making this change ofvariable in (6) and noting that s incrcases from 0 to 2za as / increases
from 0 to 2z yields the lbllowing arc length parametdzation of the circle:

-r =.r cos(r/4). r' : a sin(s/a) (0 < s < 2za)

_ 
' 

p aq paiampl.r A r Flg 1d., odr.mF,"

Figure 14.3.4

In many situations the solution of a problem can be simplified by choosing the parameter
in a vector-valued furation or a parametric curve in the right way. The two most common
parameters fol curves in 2-space ol 3-space are time aod arc length. However, there are

other usef'ul possibilities as well. For example, in analyzing the motion of a particle in 2-
space, it is often desirable to parametrize its trajectory in telms of the angle d between the
tangent vector and the positive ;r -axis (Figure 14.3.4). Thus, our next objective is to develop
methods for chalging the parameter in a vector-valued function or parametric curve. This
will allow us to move freely between differenl possible parametrizations.

A, chqnge of parameter in a vector-valued function r(t) is a substitution / : g(z) that
produces a new vector-valued function r(g(r)) having the same graph as r(t), but possibly
traced diflerentll as the parameler 7 rncrease..

Example 4

Find a change of parameter 1 : g(z) for the circle

r(r) : co( ri + sin /i (0<t <2n)

such that

(a) the circle is tracad counterclockwise as r increases over the interval [0, 1];

(b) the circle is traced clockwise as r increases over the interval [0, 1].

Figure 14.3.3
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Sohttion (.a). The given circle is traced counterclockwise as t increases. Thus, if we
choose g to be an increasing function, then it will follow from the rclationship / : g (r) that
/ incleases when r increases, thereby ensudng thatthe circle will be traced counterclockwise
as r increases. We also want to choose g so that 1 increases from 0 to 2z as z increases fron-r

0 to l. A simple choice of g that satisflcs all of the required citeria is the linear function
graphed in Figure 14.3.5a. The equation of this line is

t: g(t):2tt (7)

l,=]y:l
(a\

Figure 14.3.5

.,t =11tt .r1j.
(b)

which is the desired change of parameter The resulting representation ofthe circle in terms
of the paraneter r is

r(g(r)) = cos zzzi { sin 2zri (0 < r < 1)

Sohttion (b). To ensure that the circle is traced clockwise, we will choose g to be a
decreasing lunction such that l decreases from 2z to 0 as r increases from 0 to l. A simple
choice of g that achieves this is the linear tunction

1 - g(r) - 2r(1 .) (8)

graphed in Figure 14.3.5b. The resulting representation ofthe circle in terms ofthe parameter
ris

r(g(r)): cos(22(1 -r))i+sin(22(1 -z))i (0 < r < 1)

which simplifies to (verify)

r(g(r)) : cos2rri sin2rri (0: r : 1)

When making a change of parameter I : g (r ) in a vector-valued function r (t ), it will be
impo ant to ensure that the new vector-valued function r(g(r)) is smooth if r(t) is smooth.
To establish conditions under which this happens, we will need the following version ofthe
chain rule for vector-valued lunctions. The proof is left as an exercise.

1.1.3.2 TIIEoREN,I (Chain RuIe). Let r(t) he d \)ect(r-ralued fntction itt 2 spote ot I

3-spou that is dtJferentiable *-ith respect to t. If t = g(r) is a change of pahtmrter in
u,Itich g is dillerentiable with respe(t to r, then r(g(r)) is differentiable vith respetr ro :

t and 
I

dr dr dt (9)
dr dr dr

A change of parameter r : 8 (r) in which r(g (r)) is smooth if r(r) is smooth is called a

smooth change of parameter.Il follows from (9) that I : g (r) will be a smooth change of
parameter rl dt/dt is continuous ancldtldt f 0 for all valuesofz, since these conditions
imply that dr/dt is continuous and nonzero rl dr/dt is continuous and nonzero. Smooth
changes of parameter fall into two categories-those fbr whlch dt ldr > 0 for all z (called
a positive change of par(tmeter) and those fol which dt ldr < 0 lor all t (called a nega-
tive change of parameter). A positive change of parameter preserves the orientation of a
parametric curye, and a negativg changg of parameter revelses it.

Example 5

In Example 4 the change of parameter given by (7) is positive since dr/dt :2r > 0,and
the change of parameter given by (81 is negative sloce dr/dr - -2n < 0. The positive
change of parameter presewed the orientation of the circle, and the negative change of
parameter reversed it. <
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FINDING ARC LENGTH
PARAMETRIZATIONS

Next, we will consider the problem of finding an arc length parametrization of a vector-
valued function that is expressed initially in tems of some other parameter l. The following
theorem will provide a gereral method for dohg this.

14.3.3 THEoREM. Let C be the graph of a smooth r)ectorlalued function r(t) in
2-space or 3-space, and let r(tfi be any point on C . Then the following formula defines

a positive change of pqrqmeter from t to s, where s is an arc length parameter ha|ing
r(td as its reference point (Figwe 14.3.6):

(10)'= l^'il#lo'

Proof. Frcm (5) with a as the variable of integration instead of l, the integral represents

the arc length of that portion of C between r(le) and r(t) if I > rs and t}le negative of that
arc length if r < /0. Thus, r is the arc length pammeter with r(/0) as its reference point and

its positive direction in the direction of increasing r. I

When needed, Formula (10) can be expressed in component form as

ta , .2

': J",l(H) .lH) .(",:) "

(11)

(\2)

: 
"Dt

Thus, r = s/r,4, so (13) can be reparametrized in tems of r as

/ r \ /s \ rr-cosl -li,sinl Li --k\,/2/ \V2,/ ./2
We are guaranteed that this reparametdzation preserr'es the orientation of the helix since

Formula (10) produces a positive change of parameter.

du 2-spaceGl.el,: 
l^'

Example 6

Find the arc length pa-rametdzation of the circular helix

r : cos ri + sin /j + /k (13)

that has reference point r(0) : (1, 0, 0) and the same odentation as the given helix.

Solution. Replacing t by u \r\ r for integration purposes and taking /o : 0 in Formula
(10), we obtain

r:cosui+sin&j+ilk
dr
t: f- sir ,l)i + cos 4j + k

Figure 14.3.6

dr

lil- ft- *,,' cos'tt - t - rt

'- L 'r:,(': I, "2d' - r2'):jo
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Example 7

A bug, starting at the reference point ( 1, 0, 0) of the helix in Example 6, walks up the helix
for a distance of 10 units. What arc the bug's final coordinates?

Slhttion, From Example 6, the arc length parametrization of the helix rclative to the
reference point (1, 0, 0) is

/s\ /.s \.- * (;)i ni" ()) i- Ol
or, expressed parametrically,

" ."'(;) "-''"(;)
Thus. at s : l0 the coordinates are

("",(#),'-(#) $) - ro tos, o.roe, r ozr

s

^/5

Example 8

Recall from Formula (9) of Section 13.5 that the equation

is the vector form of the line that passes through the teminal point of r0 and is parallel to
the vector y. Find the arc length parametrization of the line that has reference point 16 and
the same odentation as the given line.

Solutiort. Replacing 1by, in r tbr integration purposes and taking 16 : 0 in Formula
(10), we obtain

r:ro+rY
dr
, : V Since r0 jrconsranr

au

ll ,ir l

ll .l: vll
ll du 

)

' : L' l*]au = 
lo' 

M tau= 1v11a]' = 11v11

Thus, r : s/lv l, so (14) can be reparametrized in tems of r as

':.*"(fr)
RL\4ARK. Comparing Fomulas (14) and (15) shows that the vector equation of the line
through the terminal point of r0 that is parallel to y can be rcparametrized in tems of arc

length with reference point r0 by normalizing y and then replacing r by s.

Example 9

Find the arc length parametrization of the line

t-?tLl r,- lt )

that has the same orientation as the given line and uses (1, 2) as the reference point.

Solution. The line passes through the point (1, -2) and is parallel to the vector v = 2i+3j.
To lind the arc length pammetdzation of the line. we need only rewrite the given equations

(14)

( 15)
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using v/llvll mther than v to determine the direction and replace r by s. Since

v 2i+3j 2.. 3

trn: .,/l3: fr'* fri
it follows that the parametric equations for the line in terms of s are

23a: _s*1, y: ---7s -2,/ 13 .,/ l1

Because arc length parameters for a curve C are intimately related to the geometric char-
PROPERTIES OF ARC LENGIH
PARA ETRZAnONS Jcteristics of C, arc length parametrizations have properties that are not enjoyed by other

parametrizations. For example, the following theorem shows that if a smooth curve is rep-
resented parametrically using an arc length parameter, then the tangent vectors all have
length 1.

14.3-4 THEoREM.

(q) If C is the graph of a smooth vector-valuecl function r(t) in 2-space or 3-space,
b'here t is a general parameter, and if s is the arc length patameter for C defined
by Formula (10), thenfor every yalue of t the tangent yector has length

(b) If C is the graph of a smooth vector-yalued function t(s) in 2-space or 3-space,
where s is an arc length pardmeter, thenfor every value of s the tangent yector to
C has length

ll dr ll

ll":- ll : I (17)
ll ds ll

(c) If C is the graph of a smooth yector-yalued function t(t) in 2-space or 3-space,
and if

lldr Ill-l = 1

ll dt ll

for every value of t, then t is an arc Length parameter that has its refercnce point
at the point on C wherc t : 0 .

(16)x*l:#

Proof(a). This result follows by applying the Fundamental Theorem ofCalculus (Theorem
7.6.3) to Formula (10).

Proof (b), Irt r : s in part (a).

Proof (c). It follows from Theorem 14.3.3 that the formula

,: ['l]4:llo"
lo l)du )l

defines an arc length parameter for C with reference point r(0) . However, lldr / dull : I by
hypothesis, so we can rewrite the formula for s as

t! 1tt: I dr=al :t-0:r IJo lo
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The component fonns of Formulas ( l6) and ( l7) will be of suflicietrt interest in ]ater sec
tions that we provide them here tbr rcferencei

dr
,1,

dr
dt

tls

dr
a

dr
ds

l; d, r' ,d,r' ,a*:V(a/ * \;) * la,l ='

(18)

f. , .r . , ., 
-.= /(#) . (#) ' (;) (le)

Gl.(*l
ds

dl

r,h \2 I,-h \2

l;,) *laJ (20)

(21)

l{u\j.\ltK. Note that Formulas (18) and (l9) do not involve te, and hence do not depenci
on where the reterence point for s is chosen. This is to be expected, since changing the
relerence point shifts .r by a constant (the arc Iength between the two reference points), and
th is conslant drop' oul on difierrnriaring.

ExERcrsE SET 14.3

t.

2.

The acconipanyiDg lig(r'e shows the graph of the lbrlr-
cuspecl hypotytloicLr(t): cosrri+sinr/ j (0 <t <2r).
(a) Give an informal explaDation of why r(/) is not smooth.
(b) Confirm that r(1) is not smooth by examining r'(t).
The accompturying figure shows the graph of the vector-

valued function r'(r) : sin ti + sin2 rj (0 : r : 2r). Show
that this parametric cunr'e is not smooth, even though it has

no corners. Give an informal explanltion ofwhat causes the
lrck of smooThness

4. r(t) - cos t2i + "in r2j + e 'k
5. r(/) /( 'r i (1' - l/).t rcos/r,h

6. r(/) : sin trri + (2/ ln r).1 + (r2 t)k

Infrcrii.c.- 10. hnd theerc lengthoithcplrnmetIrccuIre.

.17. Y-co\'/.\:\tn i.. 2:0 / 12

8, r:3cosl, ) :3sin/,: =+,: O:, ::,
9,.r:c'.r':p .-:Jlr'0 , l

19. a:]r. 1={1t r)r/2.i:1(t 11;3/2; -l5r5l
In Exercises 11 1.1, find the arc length oi the graph of r(t).

11. r(r) : rri + rj + ].,Grr1; t:r::
12. r(t) : (4 + 3t)i + (2 - 2t).i + (5+1)k; 3: r:4
13. r(t):3costi+3sinrj+lk O 

=t =2n
14. r(r) - rri+(cosr+/sin/)j+(sinr-rcosr)k; O::t 

=n
ln F\erci'er 5 'E..irlculxle dr ,1r b1 the chrin rule. and

then check your lesult by expressing r in terms of u and

differentiating.

Figure Ex-l Figure Ex 2

In Exelcises 3 6, determine whether r (t ) is a smooth funciion
of the parameter t.

3. r1r.1 - rriq 1-112 2r)j +.2k 15. r: ri+ rrj: r - 4r * 1
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16. r : (-l cos t. 3 si| r); I : rr
17- | - etia- 4( , j: r : t:
18. r:i+lrr1r.i +/k: r:l/r 31.

19. (aj Find thc arc lcngth pariimeliizalion olthe liue

r :1. \'- /

lllal has the same oricntation as fhe gilen lir'le and has

lel'erence point (0. 0).
(b) Find the a.c lcngdr pararnelr'izalion ofthe Line

.r:/. .\':f. ::a

that has the same olientation as the given line and has

rclerence point (0. 0. 0).

20. Find alc length paranlctrizations of tlre lines in Exercise l9
thal ha!e the stated rctircDce poinls but are oriented oppo-

sitc 1o the given lines.

21, (a) Find the arc length paramctrizalion ofthe line

.r-l+r. r.:l 2r. .-1+2t
thet hirs the same dilcction as lhe give line and has

reter-ence point ( l. 3..:l).
(b) Use the paranetric cquations oblained in pa (a) to iind

thc point on the line thtt is 25 units iom the relere|ce
p.ri t in lre,lrrc. trnrr .'i incr'c::ttrg pJri'rr.lrr.

22. (al Find thc arc Iength pararnetlization ol lhe line

r: 5 +-lt. \.:2r. ;:5il

that hrs rhe salle dir-ection as thc given line ancl has

relerence point ( 5,0,5).
(b) Use the prranletric equations obtai ecl in part (t) to find

the point on thc line thxt is l0 unils fiorn the rcfercnce

l,' Il rl lhe d;rerli"i ol-irr. r'c.r.irr' PJrlm(1.r.

Tl1 E\ercises 2l-28, llnd an alc Iength parametrization ol thc

cufve that has tbc same or'ientation as the givcD cLrne and has

r :0 as thc Ielerence poinl.

2-1.

21.

25-

26.

27.

28.

-10.

r(r) : (l + coq /)i + (2 + sin r)ji O=t a2n
r(1) : cos-r ri + sinr t.i: o :: t 1nl2
r(r): lrri+]rrj: r10
r(r) : (l + /)ri+ (l + l)rjr 0:/: I

r(l) - ?I cos /i .]- er sin r.il 0 : I : -/2
r(/): sin.'i-icosz'j + J3.'k: r-0
Show that thc iuc lengtir ol lhe circular hclix .t : n cos t.
1 : asinz..- = cl lirr'0 : 1 : a0 is frJ.rl + c2.

LIse the re\Lrlt in Exe|cisc 29 to sllo\\ the circular helix

r: dcosli + 11 sin t.i + c/k

citn be exprerscd as

l l,,co.'li i,.'n'l.i 'rk
d(

rvhcre r, : Ja2 + c2 and s is al arc length paranreter with
|eference point at (a. 0, 0).

Find an arc lengtl'l paraDretrization of the cycloid

.r = arl ar sin 1
(0 :. t :. 2jt)

l:al-alcosl
with (0. 0) as thc rcfcrence point.

Show that in cylindlical coordinatcs a cuNe givcn bJ' thc
parametric cquations r : t(t). 0 : d(.), . : .(/) fbf
4 : / : l, has arc lcngth

, Ll(i) ,('i) ,('),,.r.. \ \,//,/ \..Jt ) \,/,,i
lHi?lr Use the relationships r :, cosFr.I :, sin, I

ln each part, use the formula in Exercise 32 to find the arc

length ol the curve.
(a) r:?)t.e -t.: -a:t .0: I: ln2
(b) r. :rr.d :lni,.- : {rr; t ; r ; z

Show that in spherical coordinates a cuNe given by the
parametric equalions p - p(t).0 : o(t).(b : AG) fot
d:/:rhasarclength

, rl o> tt - l,("') -, .in .(!'il, l'i\,t,J.. ',,1 \'rt / \r, t \.,t1 /
lHint:.x - psindcosfl, ; - psir@sinfl,: - pcosd.l

In each part, use the ibrmula jn Exercise 34 to liid tlre arc
length of the curve.
(.a) p:e t.A:r.Q:n/+ 0::t::2
\b) p:L.A:lnr.d:z/6: l: r:5
(a) Show thrt r(r) - /i+/r,i ( l:/:1)isasmooth

vector-valued function. but the change of llarameter
I : rr produces a vector--valued function that is not

lmooth. yel has the sarne graph as r(l).
(b) Examinc how the t\\,o vector valued lunclions are tlaced

and see il you can explain what causes the problem.

Find a change oi p anetel 1:g(z)forthesemicircle

r(t): cosri +siDlj (0: I : j7)

such that
(a) thc seDlicircle is traced colrnterclockwise as r laries

over the inlerval I0. 1l

(b) the semicirclc is traced clockrvise as z varies over lhe

inteNal 10. ll.

What change ol parametel I : .g(r) !\,ould you make ii
you $anted to frace the graph of r(t) (0 : t 5 ll in the
opposite direction with r varying fron 0 to ll
As illustrated in the accompanying figu|e, coppercable with
a diarDeler of ] inch is to be wrapped in a circular helix
around a cylinder that has a l2-inch diameter. What lenglh
ofcable (measrucd along its ccDlel line) wjll make one com-

l)

33.

3,t.

-15.

36.

37.

-18.

39.



plete tum around the cylinder in a distance of 20
measured along the axis of the cylinder?
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Let r \o./.' -\:1r.. i . frrr.
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(b) 
.

41. Ler r(1) : ln ri i 2tj+ r2k. Find

(a) r'(r)l b) #

40.

42,

(a) lr'(t)
"l

Gt J,, lr' 
tt) at

{,t l,' ),'.il1,t,.
Enlarced

.ffi,

W,*5-
Figure Ex 39

Prove: If r(r) is a smoothly parametrized functioD, then the
angles between r'(t) and the vectors i,.i, ancl k are contiD-
uous fulictions of 1.

Prove the vectorfbml ofthe chain rule tbr2-space (Theorenl
1.1.3.2) by expressing r(.) in te ns of componenis.

UNIT TANGENT VECTORS

14.4 ilruIT'TAruGf;!\T, fl{$RTV$At. A[.T} M$NSRftSAt VHCTORS

It7 this sct:tion v,e v,ill tlistuss sonte ol the lintlanlentdl geonletti. pt(ryetties of re(tot.,
t'alued Jutt<tions. Our v'ork here v,ill lnte import.tnt applictttic.,tts to tlrc stud)- aJ

motion along a cttved path in 2-.epace or 3 spate antl to the stLkL- of the ,qeonetric
properties of turves and surtac:es.

Recall that if C is the graph of a sr?ooll vectol-valuecl t'unctiort r(/) in 2 spacc or 3-space,
then the vector r'(l) is nonzero. tangent to C. and points in the direction of incr.easing
parameter. Thus, by normalizing r'(1) we obtajn a unit vector

(4, B)
1r2)= !i+:i

llLl \lrr"

r'tt)
T(r) :

r'(t_)l
(t)

that is tangent to C and points in the dilection of incrcasing parameter Wc call T(r) the
unil tangeftt vector to C al | .

ItFlNl;\l{K. Unless stated otherwise, we will assuine that T(t) is positioned with its initial
point at thr: terminal point of rQ ) as in Figure 1,1.4.1. This will ensul e that T(1) is actually
langent to tl're graph of r(l) and not simply panllel to the tangent line.

Example I
Find the unit tangert vector to the graph of r(.) - r2i + ,3j at rhe point where r - 2.

So/lrllor. Since

r'(t) : 2ti + 1t2 j
we obtain

T,2,_.,2' _4i-l2i _4i l2i , , 3 
,

r r2r Jtnq 4Jt0 JtO JtLr"
Thegraphofr(t)andthevectorT(2)atcshorvninFiguIel4.4,2'<

Recall from Theoren 14.2.7 that il'a vector-valuecl lunction r(t) has constant norm. then
r(/) and r'(t) are o hogonal vectors. In particular, T(t) has constant nonn 1, so T(r) an.l
T'(t) are orthogonal vectors. This implies that T'(r) js pelpendicular 1() the langent line to
C at ., so we say thal T'(t) is normal to C at /. It follows rhal if T'(r) I 0, and if we

Figu,e 1,t.4.2

UNIT NORMAL VECTORS



854 Vector-ValuedFunctions

nomalize T'(/), then we obtain a unit vector

T'rr iN'rr= (2)
l'f'rr) I

that is normal to C and poir]ts in the same direction as T'(). We call N0) the princrpa,
unit normal vector to C at I or more simply the ufiit ttormal vector. ()bserye that the unit
nonnal vector is only defined at points where T'(1) + 0. Unless stated otherwise, we will
assume that this condition is satisfled. In particular, this e-rclades straight lines.

RE\4ARK. In 2 space there are two unit vectors that are ot'thogonal to T(1), and in 3-space

there are infinitely many such vectors (Figure i 4.4.3). In both cases the principal unit normal
is that pa icular nomal that points in the direction of T'(t). After the next example we will
show that for a nonlinear parametric curve in 2-space the principal unit normal is the one

that points "inward" toward the concave side of the curve.

'rh;;;t'"";i;;'' l

",ilfi1*d !" I(1- - l

Figure 14.,1.3

Example 2

Find T(r) and N(/) for the circular helix

r =4cosr, .l': asint, a-ct
where d > 0.

Solutitttt. The radius vector for the helix is

r(r) - 61s6.7i rL.5in/j + clk

Thus-

r'(/) = ( asint)i+acos/j+ck

lr rlr l=, rastrrti-{n.ntr)--J-rci r-

rrr) .lsint dcost
Ttlr-

r (/)l Ju +,._ Ju_ _,t t/o2 + ,2
/rcosr asinr

T'(/) : i- ,-.i
lA-+(' \tq +C'

,"t, L a\inl , '-lrrrrl-/{ - 
,,._,,) 

( 
,.,,_,._ )-/,,,+,, tE\c

t,,,-,lll,, - r-co"rri''in1,i

FoR TH E REA DhR. Because the k component of N(r) is zero, this vector lies in a horizontal
plane for every value of /. Show that N(t) actually points directly toward the z-axis for all
I (Figure 14.4.,1).

' 
'". ,rr, ,/'

/Y*

Figure 14.4.1
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IN 2.SPACE

a

C

T()

COMPUTINGTANDNFOR
CURVES PARAMETRIZED BY ARC
LENGTH

: t( sln/)i + (cos@)jlff
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Our next objective is to show that for a nonlinear paramefic cuNe C in 2 space the unit
normal vector always poil.rts toward the concave side of C. For this purpose, let @ (l) be
the angle from the positive jr-axis to T(/), and let n(t) be the unit vector that results when
T(/) is rotated counterclockwise through an angle of z /2 l.Fl,gwe 1,1.4.5). Since T(/) and
n(1) are unit vectors, it foLlows from Fomrula ( l2) of Section 13.2 that these vectors can be
expressed as

T(r) : cos d(t)i * sind(t).i

and

(3)

n(1) : co,:[d() + 1t/2]i + sinl(b Q) +rl2)i: -sin@(r)i*cos/(r).i (4)

Observe that on intervals where @(l) is increasing the vectol n(t) points /on'4rd the concave
side of C. and on intervals where @(t) is decreasing it points awa_r'from the concave side
(Figure 14.4.6).

d/, r'"d...d,/ t. "d.".. d,..d"c.easesas1rlcroo."..

Figure 14.1.6

Now let us differentiate T() by using Formula (3) and applying the chain rule. This
yields

dTn:
and thus from (4)

dT d6
,i n"',r, r5r

B df/dt > 0 on intervals where d(1) is increasing al:rd df/dt < 0 on inter,'als where

d(t) is decreasing. Thus, it lollows fiom (5) that dT/dt has the same direction as n(r)
on irtervals where @(r) is increasing and the opposite dircction on interyals where d(t) is
decreasing. Therefore, T'(l ) - dT/d/ points "inward" toward the concave side of the curve
in all cases, and hence so does N(l). For this reason, N(t) is also called the inward unit
zormal rvhen applied to curves in 2 space.

In the case where r(s) is parametrized by arc length, the procedures for computing the
unit tangent vector T(.r) and the unit nornal vector N(s) are sill.rpler than in the general
case. For example, we showed in Theorem 14.3.4 that if s is an arc length parameter, then

I r/(.r) | : 1. Thus, Formula (1) for the unit tangent vector simplifies to

T(s) : r'151

and consequently Formula (2) for the unit normal vector simplilies to

r"(s)
Nt,i r :

lr"(s)ll

(6)

JT dO

d0 dl

Figurc 14.4.5

,!(.t)

(1)
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BINORMAL VECTORS IN 3-SPACE

Example 3

The circle of radius a with counterclockr.vise orientation and centered at the orisin can be

represented by the vector valued function

r:4costi +./ sintj (0: I : 2r)

ln this rcplesentatiolr lve can interyret 1 as thc angle in radian nreasure liom the positive
-r-irxis to thc rldius vcctor (Figurc 14.4.7). This angle subtends an arc of length J : .,1 on
the circle, so we crn reparanreh-ize the circle in tenDs of .r by substituting .r/a fol r in (8).

This yields

r(.i) : a cos(s/a)i * a sin(s/n) j (0=s a2nd)
'lb find 1'(.r) and N(.r) trrrm Formulas (6) and (7). we must compute r'(.r). r"(s). and

r"(s) l. Doing so, we obtain

r'(r) : - sin(r/.r)i + cos(.r/4)j

r"(s) - ( 1/a) cos(.i/a)i - (l/a)sin(s/a),i

(8)

Thlls.

T(.r) : 1'1.11 = sin(.s/n)i{ cos(.s/n)j

N(.r) : r"(.r)/ r"(s) I : cos(r/a)i sin(.i/n)j

so \(.!) points toward thc ccntcr of thc cilclc firr rll .s (Fi-qure 14.4.8). This makes sense

geometrically ancl is also consistent rvith our earlier observalion ihat ir 2 space the uril
ltormal vcctol is thc inwarcl normal.

If C is tlre graph of a veclor valuetl l'unction r(t) in 3 space, then we deline the binormal
recl(// to C at t to be

B(r) = T(1) x N(1) (e)

It follows from properties of the cross product that B(t) is orthogonal to bodr T(/) and

N(r)ancl is oricnteci relative to T (r ) and N (I ) by the righ( hand rule. Moreover', T (r ) x \(r)
is a unit vcctor sincc

lT(1) x N(r) I - iT(1) lN(/) sin(1/2) : 1

Thus, {T(/). N(r),Il(r)} is a sct ol three mutually o hogonal unit vectors.
J u st as tire vectors i. .j. and k determine a |ight-hancled cooldinaie system in 3 -space, so clo

the vectors'l'0 ). N(I), and B(1). A1 each point on a snooth paranehic curve C in 3 space,

these vectors detemine three mutually pcrpcnclicular planes that pass through the poinl
thc TB-plane (called the rectifying plsne). the TN-plane (calledthe osculating plane). lld
the NB-plane (called the nornal plane) (Figure 14.,1.9). Moreover. one can sho$ that a

coordinate syslem deterlrined by T(r). N(l). and B(r) is right hancled ir the se]rse that each

of these vectors is rclatcd to the other two by the right hand lule (Figule 14.,1.10):

lla

B(r): T(r) x N(/). N(r) = B(r) x 'l(/). T(/) = N(r) x B(/) ( l0)

FLgI e l.+..1'l

, Each vector is the cross ,

prod!ct of the other two .

taken in cJockwise order.

The coordinate systcm dctermined by T(I). N(r ). and B(I) is callecl the TNB -/rame or some-

tifies t11e Frenet .frame in honol of the French mathelnatician Jean Fr6d6ric Frenet ( l8 l6
1900) who pioneerecl its application to the study of space curves. Typically, the ,q':
coordinate systerr determiDed by the unit vector.s i..j, and k remains fixed, wherea! the

TNII-tiame changcs as its origin noves along the crLrve C (Figure 14.:1.11).

Formula (9) expresses B(1) in tc|ms of T(t) aDd N(r). Altematively, the binomral B(l)
can bc cxpressecl directiy in terurs of r(/) as

lr"(s) l : J( l/a)rcosr(s/a) + (-ll.1)2sin2(r/,r) -

lisurc 1:1.:1.8

Norrnal

Rect fying

Figure 11.4 l0
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r(r)

T

Firurc ll.4.ll

r'(t) x r" (t)
B(/) : lr'(t) r"(r) |

and in the case where the parameter is arc length it can be expressed in terms of r(s) as

r't.s) x r"l.sl
Blst = r" (s) |

We omit the proof.

(ll)

( l2)

ExERcrsE SEr 14.4

1 In each part, sketch the unit tangent and normal vectors at

the points P, Q. and R, taking into account the orientation

2. Mnke a rough sketch that shows the ellipse

r(t):3costi+2sinrj
for 0 < I : 2]r and the unit tangent and nonnal vectors at

thepoints r - 0. t : irl4, t : nlz, and t : n.

ln Exercises 3-10, llnd T(t) and N(t) at the given point.

3. r(r) : (12 l)i + Ij; r : I

4. r(r):+/'?i+]r31; r-t
5. r(t) : 5cosli+ 5sin/j; t : r/3
6. r(r):lnli+rj: 1-e
7. r0) : 4cos ri + 4 sin /j + tk: /:n-/2
8. r0) : /i+ llj + {r3tr; r - O

9. -r : e' cos /, l, : et sin t , a : e' ', t:0
10. .r - cosht, ) : sinhl, a : tt t :In2
11. In the remark following Example 8 of Section 14.3, we ob

served that a line r - r0 + lv can be parametrizcd in terms

of an arc length paraDteter s with reference point rn by nor
malizing v. Use this result to show that the tangent line to
the graph of r(/) at the poinl fu can be expressed as

r: r(r0) + sT(ro)

whele s is an arc length parameter with rcference point r(t0).

12. Use the resull in Exercise 11 to show that the tangent line
to the parabola

) -t

at the point (1, 1) can be expressed paramehically as
s2sr:l+.-. t':l*-
v5 v5

In Exercises 13 and 14, use the result in Exercise 11 to find
parametric equations for the tangent line to the graph of r(.)
at /0 in tenns of an arc length parameter ,i.

13. r(1) - sin 1i + cos /j + jr2t<; 4, : 6

14. r0) - /i + I,i + \,6 7k; 10 = I

In Exercises 15-18, use the fomula B(t) : T(/) X N(r) io
find B(t), and then check your answer by using Formula ( I 1)

to find B(r) dircctly from r(t).

15. rG) : 3sin/i + 3cosrj +4rk
16. r(r) : er sin li + e' cos /j + 3k

17. r(l) : (sin t lcos/)i+(cos/+lsinl)j +k
18. r(r): aqe51i lasin/j +ctk (al0,cl{)1

(b)
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In Exercises l9 and 20, tind TG). N(t). and B(/) lbr 1he given
value of1. Thcn filld equations fbr the osculating, nomral, ancl

rectifying plancs at the point that corresponds to that value

of r.

(c) Use the result in pafi (b)and Exelcise 39 ofSection 13.4

to show thrt N(l) can be expressed dircctly in terms of
r(/) as

rl/l
N(| = --------:u0)

where

u(/) - r'(r) l:r"(/) (r'(r) ' r"(r))r'(/)

22. Use the resull in part (b) of Exercise 21 to find thc unit nor-
mal vectol requesled in
(a) Exercise 3

In Exercises 23 and 24, use thc rcsull in part (c) of Exercise
2 to tinJ \rr '.

23. r'(r) : sin /i + cos /j + rk 2,1. r(/):Ii+r2j+rrk

20. t(t):.ri + e/cos/j + e'sin rk; 1:0
21. (a) Use the formula N(1) - B(1) x T0) and Formulas (1)

and (11) to show that N(t) can be expressed in tenns of
r(l) as

19. r(r) : cos 1i +sinlj +k; 1:i/4

Nft) -
r'(t) x r"(t) r'(t\X .,

lr'(.) x r"(t) | lr'(1)

N(r):
(r'(r)xr"(1))xr'(r)
(r'(r)xr"G))xr'(t)

(b) Exercise 7

(h) Use properties of cross products to show that the lbr
mula in part (a) can be exprcssed as

14.5 CURV,\TURfi

DEFINITION OF CURVATURE

ln this settion v,a u,ill trttsitler the problent of obtaining a ntnterical medsure of hou,

slrurply a cun'e in 2-.s1tace or 3-spa(e hettd.s. Oto re.sults u,ill have applicdtions in.

leo rctr.r- arld i the stLtdy of motiou aloug cr r:Lu rcd paLh.

Suppose that C is the graph of a smooth vector-valued function in 2 space or 3 space that
is parametrized in terns of arc length. Figurc 14.5.1 suggests that for a curve in 2-space

the "sharpness" of the bend in C is closely related to .1T/.1.r, which is the ratc of change

of the unit tangent vector T with respect to .!. (Keep in mind that T has constalt lellgth,
so only its direction changes.) If C is a straight line (no bend), then the direction of T
remains constant (Figure 14.5.1a); if C bends slightly, then T undcrgoes a graclual change

of direction (Fi-qure 14.5.1b); and if C bencls sharply, then T undergoes a rapid change of
direction (Figure 14.5. 1c).

G' (b) k)
Figure l'1.5.1

The situation in 3 space is morc complicated because bends in a curye are not limited to
a single plane-they can occur in all directions, as illustrated by the conplicated tube plot in
Figure 1,X.1.3. To describe the bending characteristics of a culve in 3-space completely, one

must take into account dT/d.r. dN/r1s. and dB/ds. A complete study o1'this lopic would

r.ic

rJ

,./ r
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take us too far afield, so we will limit our discussion to dT/ds, which is the most important
of these derivatives in applications.

14.5.1 DEFINITION. IfC is a smooth cuwe in 2-space or 3-spaca that is parametuized
by arc length, then the curvqture of C, denoted by r : r(s) (K = Greek "kappa"), is
defined by

d"t ll/.(r): -ll : lr''(s)ll (1)

ObseNe that r(s) is a real-valued function of s, since it i,s the length of dT/ds that
measures the curvature. In general, the curvature will vary from point to point along a

curve; however, the following example shows that the cur,/aturc is constant for circles in
2-space, as you might expect.

Example I
In Example 3 of Section 14.4 we showed that the circle of radius d, centered at the odgin,
can be parametdzed in terms of arc length as

/J\. /Jrr{.t) : i? cos [; )i+ o 
'in (;)j ,O < \ < 2ta)

Thus,

. I isr- | /\ \r' (s) - -- cos (; )i - -rin(-)j
and hence from (1)

F r ,'.1 r r ,..r' I((sr- llr (r)l -,/l cos{ l' I sin(-ll --VL o 'o') | a ta') a

so the circle has constant curyature 1/a.

The next example shows that lines have zero cuNature, which is consistent with the fact
that they do not bend.

Example 2

Recall from the remark following Exzrnple 8 of Section 14.3 that a line in 2-space or 3-space

can be parametrized in terms of arc length as

r:r0+us
where the teminal point of r0 is a point on the line and u is a unit vector pa.rallel to the line.
Thus,

drdr(.)- . : . lro l usl=0 l u=uc[s ds

r0 E conslanl

and hgnce

dr' ,1r"(s):-:-lul:0ds ds

u ls constant

Thus,

r(s): lr"(s) :0
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FORMULAS FOR CURVATURE
Fomula (1) is only applicable
fbllowing theorem provides two

if the curve is parametrized in terms of arc length. The
formulas for curvature in terms of a general parameter /.

l{.5.2 lltEoRENL lfr(t) isq snootll tector-taluetl ftutttion iu 2-space or 3 spuce.

tlrcn.fttr aat h ralue of t at u'hic h T'(t) attl r" (t) erist. the (urteture K can be e-tpressed
qs

. . lr'(r) |(a) ralll= 

-

r'(I)ll
(2)

(3)(h)
r'(r) x r"(r)ll

llr'(t) ll'

It follows from Formula (l) and Formulas (16) and (17) ofSection 14.3 thatProof lal.

K(tl : arf _ lln/rtr ll _ll arta, il _ llr'(/)ll
a' ll 

- 
ll rrrl,rr lj - ll rlarlar rr I - ilr'U r'l

It follows florr Formula ( l) of Section 14.4 that

lr'(r) iT(/)

I'rool lb).

r'1r.1 =
SO

r"(1): lr'(r) l'T(/) + llr'(r)llT'(1)

But frorn Formula (2) of Section 14.4 and part (n) of this theorem we have

T'(1) - llT'(r)llN(1) and llT'(r)ll : ,((r)llr'(r)ll

so

T'(t) : r(r)llr'(r)llN(t)

Substituting this into (5) yields

r"(r) : lr'(1) 'T(/) + i((t) lr'(/) 2N(r)

Thus, l'rom (4) and (6)

r'(/) x r"(/): llr'(/) llllf'(r) ll'(T(/) x T(r)) + r(r) | r'0)ll3(T(/) x N(/))

But the cross product of a vector with itself is zero, so this equation simplifies to

r'(/) x r"(r) : r (r) llr'(I ) llr(T(I) x N(I)) -,((r)llr'(/)llrB(r)
h lbllows from this equatior and the fact that B(r) is a unit vector that

llr'(/) x r"(/) I = r(r)llr'(r)llr

Formula (3) row follows. I

IttrN4 \RKS. Fornula (2) is useful if T(t) is known or is easy to obtain; however, Formula
(3) will usually be easier to apply, since it involves only r(t) and its derivatives. we also

note that cross products were clelined only for vectors in 3-space, so to use Formula (3) in
2-space we must first wdte the 2-space function r(r ) : .r (t ) i +.r'(t )j as the 3-space function
r(r) =,r(/)i + r'(r)j + 0k with a zero k component.

Example 3

Find r(/) for the circular helix

r:.rcosl. l :.lsinl, z.=ct
where a > 0.

(4)

(s)

(6)
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Soltttion. The radius vector fbr the helix is

r(/) : a cos/i + a sirtj + clk

Thus,

r'(r) - (-d sin r)i + d cos lj + ck

r"(r) - (-acosr)i F( asinr)j
so

r'(/) x r"(r) - Irl-c sin r

l-4 cos /

j kl

ncos/ cl - rn, .inrri rrrrcoslrj+,r'k
-o sin r 0l

ii ,: ":'" .1'llij:
FiAure 14.5.2

Therefore,

lr'(t) | :
and

lr'() x r"(r) : \,I.ac drtTi e;a;os iP +A
- JFeIiF:a^/'irit

so

r t/) r'(/)l n,/u' ,- lt
Kll\ - rrirl' tr/nj .'1, 02-,-)

Note that r does not depend on t, which tells us that the helix has constant curyaturc. <

Example 4

The graph of the vector equation

r:2cosri+3sin1: (0 < t < 21r)

is the ellipse in Figule I4.5.2. Find the curvature ofthe ellipse at rhe endpoints ofrhe major
and minor axes, and use a graphing utility to generate the graph of r(t).

Sohttiott. To apply Fonr.rula (3), we must treat the ellipse as a curve in the ,r1-plane of an

,qz-ooordinate system by adding a zero k component and wdting its equatron as

r=2cosri+3sin/j+0k
It is not essential to w te the zero k component explicitly as long as you assume it to be
there when you calculate a cross product. Thus,

r'(t) - (-2 sin 1)i + 3 cos rj
r"(/) : (-2 cos /)i + (-3 sin r)j

i.i kl.trf/)xr f/)- 2rin/ 3cosr 0l - lf6.in /) ll6corr/rlk-6k
2cosi 3sint 0l

Therefore,

1r ',' 1 = y{ z.inrr - u-4.;n 7 -o,16.''I
lr'(r)xr"(1)l:6

SO

r (1) < r'ti)l b

")r ri,l- 14.in2r I uco.'rl '

The endpoints ofthe minor axis are (2, 0) and ( 2,0),whichcorrespondtor:0andr:2,

( r? srn t)'? + (27 cis /), + c, : yQi I ,;z
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RADIUS OF CURVATURE

respectively. Substituting these values in (7) yields the same cu ature atboth points, namely

r : ((0): K(rr) :
93/2 27

The endpoints of the major axis are (0, 3) and (0. -3), which conespond to l : t 12 and
/ : 3z/2, respectively; from (7) the curvaturc at these points is

Observe that the ourvature is greater at the ends of the major axis than at the ends of the
minor aris, as you might expect. Figure 14.5.3 shows the graph K versus t. This graph
illustrates clearly that the cuNature is minimum at r - 0 (the right end of the minor axis),
incrcases to a maximum at t : n/2 (the top of the major axis), decreases to a minimum
again at r : z (the left end of the minor axis), and continues cyclically in this manner
Figurel4.5'4providesanotherwayofpictudngthecurvatuIe'<

l o.2

I 0.3

tr 0.4

I 0.5

I 0.6
I 0.7tt"

'' 
14 sin2 t + 9 cos: llr/'1

Figure 11.5.3 Figure 1,1.5.4

In the last example we found the curvature at the ends of the minor axis to be i and the

curvature at the ends of the major axis to be ]. To obtain a bener understanding ofthe
meaning of these numbers, r'ecall from Example 1 that a circle of radius d has a constant
curvature of 1/a; thus, the curyature of the ellipse at the ends of the minor axis is the same

as that of a circle of radius l, and the curyature at the ends of the major axis is the same as

that of a circle of radius I €igure 1.1.5.5).

In general, if a curve C in 2-space has nonzero curuature K at a point P, then the circle
ofradius p : 1/r sharing a common tangent with C at P, and centercd on the concave side

of the curve at P, is called the circle of curvature ot oscul&ting circle at P (Figure 14.5.6).

The osculating circle and the curve C not only touch at P but they have equal curvaturcs at

Lhat point. In this sense, the osculating circle is the circle that best approximates tl-Ie curve
C near P. The radius p of the osculating circle at P ls cal\ed, the rad.ius of curvqture at P ,

and the center of the circle is called the center of cttrvature at P (Figure 14.5.6).

,.r' ^"*:f
/ \..

\
t\

'.. 2
i

Figure 14.5 5

,:,(:):,(+)-#-"

Figure 1,1.5.4

Oscu at ng c rc e

Figure 14.5.6



AN INTERPRETATION OF
CURVATURE IN 2.SPACE
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A useful geometric interpretation of curvature in 2-space can be obtained by considering
the angle d measured counterclockwise from the direction of the positive .r-axis to the unit
tangent vector T (Figure 14.5.7). By Formula (12) of Section 13.2, we can express T in
terms of @ as

T(d) : cos di * sin di
C

T

In summary, we have shown that

d6r(.,i: - (8)
ds

which tells us that curyaturc in 2-space can be interpreted as the magnitude of tlle rate of
change of @ with respect to s the greater the curvature, the morc rapidly @ changes with
r (Figure 14.5.8). In the case of a straight line, the angle @ is constant (Figure 14.5.9) and

consequently K(s) : dQ/ds : 0, which is consistent with the fact that a straight line has
zero curvature at every point.

Thus,

dT
- : (- sin @)i + cos di

aQ

dT dT do
ds dQ ds

from which we obtain

drl ld(h Ildr,.l = =l l

Ids ld\llld0 = iil; *"-'-'r I#

0 s constant, so the ine
has zero curvature,

Figure 14.5.8 Figure 14.5.9

We conclude this section with a summary of formulas for T, N, and B. These formulas
have either been dedved in the text or are easily derivable from formulas we have already
established.

FORMULA SUMMARY

ln 2-space, ,<(r) s the magn tude
of the rate of change of d) with
respect to .r.

Figure 14.5.8

T(s) : r/(s)

1 d"l
Nl.r) = K(r) ds

r"(s) _ r"(s)
llr"(s) I i( (.r)

r't.! I x r"ls)B(.r):' lr"(,r) ll

r'tr )
Tfl) :' lr'(/)ll

r'(s) x r"(s)
r(s)

(e)

(10)

(11)

(12)

Figure 14.5.7



B(r) =
r'(r) x r"(r)

llr'(/) x r"(/) ll

N(t):B(/)xT(r)

EXERctsE SET 14.5 E craphing Ca cutator E cAS

( 13)

(14)
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In Exercises 1 and 2. use the osculating circle shown in the

flgure to estimate the curvature at the indicated point.

In Exercises 3-10, use Fonnula (3) to find r(r).

3. r0)-rzi+t3j
4. r(/) : 4 cos ,i + sin tj
5. r(/):e-'l+e .l

6. x:l-t3, y:t-t2
7. r(1) : 4cosri + 4sinti + rk

8. r(/) : ti + jr'zj + Jrrtr
9. x:coshr, ): sinh/, z:/

10. r(/):i+rj+/2k

In Exercises I l-14, f,nd the curr'atut* t* ."ai"t 
"i""r 

'

-:l:i_'" "'1111 i

1l. r(/) : 3 cos /i + 4 sin rj +tV t:n/2
12, t(.t) : eti + e t j + tk; t - 0

13. r - ercost,) - et sint,z : e'; t : 0

14. x:sin/,1l:cosl,;: |t2; t:O

: In Exercises 15 ancl 16, confirm that s is an arc length para- |

: meterby showing that ltlr/.lsl]- 1, and then apply Formula i: (1) to find /.(.r). 
I

1s. r : sin(1 + i) i+*' (r + l).i + "a(r + ]) r

16. r: (t - !")t/ti+ (]")t/ti (o <, < ]1

17. (a) Use Formula (3) to show that in 2-space the curvature
of a smooth parametric curve

;r:x(r), ):,y(r)
is

lx'v' - v'x'
Va + lt2 )111

where primes denote differentiation with respect to t.
(b) Use the result in part (a) to show that in 2-space the

cuNaturc of the plane curve given by y - /(.r) is

d2Yldrz

11 + (dyltlx)tli't

lHirl. Express ], : /(jr) parametrically with r : / as

the parameterl

18, Use part (b) of Exercise 17 to show that the curvature of
) : /(x) can be expressed in terms ofthe angle of inclina-
tion of the tangent line as

d)t
r'(d) : 

- 
cos'dq^'

IH int : ran (b : dy I dr. .l

ln Erercise. lo 24, usetfr" ,"rut, in gr"r"i."
: the curvature at the stated point.

17(b) to frnd

19.

2t.
23.

!:sittx; x-it/2
Y:1lx; x-1
!=tanx. x: I/4

20- y:x313; x:O
22. y:s x; x:l
24. y2 - 4x2 - 9; (2,5)

25. x:t2,y:t3 t:i
26. x : 4cost, J : sirrta t : T/2

27. x:e3'.!-e'; t-0
28.;=1 t3,y:s-t2;1:1
29. x:t,y:1lt; t:1
30. x :2sin2t, ) -3sint', t: tt/2
31, In each part, use the fomulas in Exercise 17 to help f,nd

the radius ofcurvature at tlle stated points. Then sketch the
graph together with the osculating circles at those points.

In Exercises 25 30, use the result in Exercise 17(a) to find
the curvature at the stated point.



(a) J - cost at-r :0andr : z
(b) r : 2cosr,) : sint (0 : I : 27r) att - 0and

1 : tt/2

32. Use the tbnnula in Exercise l7(a) to llnd ((I) ior the curve
-r - e I cos 1,,t - r,' sin /. Then sketch the graph of r(/).

In each part of Exercises 33 and 3,1, the graphs oi ./(-r) and

the associated cuNature function r(-r) are shown. Detemrine
whiih is nhich. rnd erpiain your relsoning.
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Use Formula (3) to show that fbracurve in polal coordinates
de.cribeJ by r - /(.r) lhe cut\:rlure ir

39.

-'do.

J"
)l

J,)

lm

1

+

2+r2

lllinl: Let d be the parameter and use the relationships

33. (a)

14. (a)

In Exercises 35 and 36, use a graphing utility to generate the
graph of y : /(-v), and then make a conjecture about the

shape ol'the graph of _i, - r(r). Check your conjecture by
generatiDg tlle graph of 1 : 711r1.

f(r):xe' for0:-r:5

l(r):lr -r fbr 1:j:1
(a) Ilyou have a CAS, read thc docurnentation on calculat

ing higher-order derivatives. Then use the CAS and palt
rbrot t\ercise lT lo nnJ ({r'lor'/ rr r - r- - l' l

(b) Use the CAS to generate the graphs oi /(-r) : r+ 2-r2

and r(r) on the same screen fbr'-2 : r : 2.

(c) Find the radius of curyaturc at each relalive exlrenum.
(d) Make a reasoiably accurate hand-drawn sketch that

shows the graph of l(-t) : i4 - 2r2 and the oscu
lating circles in their cofect proportions at the rciative
exttema,

(a) Use a CAS to graph the paramelric culve -r : r cos I,
y-rsin/forl -0.

(b) Make a conjecture about the behavior ol ((/) as

(c) Use the CAS and parr (a) ol Exercise 17 to find r(t).
(d) Check your conjecture by linding the limil of r(t) as

-r : r cos d, 
"- 

: r sin fl.]

40. Use the rcsult in Exercise 39 to show that a circle has con-
stant curvature.

In Excrcises .11-44. use the fonnula of Exercise i9 to lind
the curvaturc at the indicated point.

11. r :1 +cos?: 0 :irl2 42. r :eta: 0 :l
43. r:sin3d: d-0 14.r:0:0-1
45. The accompanying ligure is thc grirph of the radius of crLr

vatlrre versus 0 in r€ctangular coordinates for the cardioid
r' : I + cos d. In words, explain what the graph tells you
l]houi lhe cardioid

r = r^(,ll

Figure Ex'45

46, Use the fonnula in Exercise 39 and a graphing urility ro
generale lhe graph in Exercise 45.

47. Find the radius of cuNature of the parabola y2 - 4px at
(0,0).

48. At rvhat poin(s) does _r : e' have maximum curvature?

49. At what poin(s) tloes 4,r2 +9 y2 = 36 have m ininrum radius
of curvature?

50. find tlre ral.-re.rl.r,.r 0, \here r r'hr. marirnurm
cur'vature,

51. Fiid the rnaxinrum and minimum values ol the radius of
curvrrJrrlbrlhccrrr\e.\ :cos/..r -.inl co./.

52, Find the minimum value oi the ladius of curvature tbr the

cutve-t - er.,- - e 
" 

: : J2t.
53. Use the tbmula in Exercise 39 to show that the curvature

ol the polar cuNe / : c"/r is invelsely proportional to /.

54. Use the formula in Exercisc 39 and a CAS to show that
llre cur\dlure ol rhe lemni\cale r - .r[ coJg i" dit.ctl)
plopoltional to r.

E 3s.

E 36.

E 37.

tr

tr

lql 38.
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(a) Use the result in Exercise 18 to show that for the para

bola -r - ,r2 the curyature ((d) at points where the
tangent line has an angle of inclination of (; is

r (4) - 2 cos3 6
(b) Use the result in pan (a) to find the radius of curvature

of the parabola al the point on the paBbola whe[e thc
tailgent line has slope 1.

(c) Make a skelch with r-easonably accul ate proportiorls that
shows the oscLLlating circles at tlre poilit on the parabola
u hcrc thc lrngcrt line h:r. .lope L

The erolute of a smooth parametric curve C in 2-space

is the curve formed from the centers ol curvature of C.
The accompanying figure shows the ellipse r : 3cost.
I : 2 sin t(0 : / : 2i) and its evolute graphed together.
(a) Which pojnts on the evolute correspond to t - 0 and

t : it/z'l
(b) ln what dir-ection is the evolute lraced as 1 increases

irom 0 to 2z?

(c) What does the evolule of a circle look like? Explain
your leasoning.

Figure Ex 56

ln Fre-ci.<r 5- 00. r e,{rll be.on"em.d wilh rheproblenr
ot' creating a single smooth curve by piecing together two
sepalate smooth cuNes. If two smooth curves Ct and C2 are
joined at a point P to folm a curve C. then we will say that

Cr and C, make a .rrtooth transitio at P if the curvature of

60. Find n.b. and c so that there is a smoolh transition at
r : 0 lrom the cuwe 1, : ?r for -r < 0 to the parabola

| : ax2 + bx + c fbr .r > 0. [Hil?l: The curuature is con
tinuous at those points where \" is continuous.l

ln E\er.i.e. hl h4. wr a\5ulllr lhal J i\ rn:lrc lenpth pcrc-
mcter for a smooth vector-valued function r(s) in 3 space
and that dT/r1s and dN/d.! exist at each point on the curve.
This irnplies thal dlJ/dr exists as well, since B : T x N.

61. Sllow that

dT
- r (s )N(s)

tls

and use this result to obtain the fbrrnulas in (10).

62. (a) Show that ./B/1.t is perpendicular to B(.r).
(b) Show that dB/d-r is perpendicular to T(r). fHiif. Use

the lact that Ii (,r) is perpendicular to both T(s) and N(s),
and dif'l€rentiate B 'T with resped ro.r.l

(c) Use the results in parts (a) and (b) to show that r/B//s is

a scalar multiplc of N(s). The legatir,e ol this scalar is

called the lolsior 01'r(s) and is denoted by r (.! ). Thus.

dB

-: 
? (j )N(.!)

(d) Show that r (s) : 0lbr 4li.i if the graph of r(.r) lies in a
plane. lNole: For reasons that we cannot discuss here,
the torsion is related to the "twisting" propefiies of the
curr'e, and r(.r) is regarded as a numerical measure of
the tendency for the curve to twist out of the osculating
plane.l

Let /. be the cur-vature of C and I the torsion (dellned in
Exercise 62). By differentiating N : B X 'I with respect to
.r, show that 1N/d.r : -rT * zB.

The lbllowiDg derivatives, known as the F/e net-Serret.fot-
mzlas, are fundamental in the theoq'of cuNes in 3-space:

cl'f/ds : rN fExercise 61]

r1N/r1s - rT + rB lExercise 63]

r1Bl1s - rN fExercise 62(c)]

Use the lirst two FreDet Sc[et formulas and the tact d']al

r''(s) : T if r : r(s) to show that

lisure Ex's9

lr'(r) x r"(s)l .r"'(s) r'l.r ) ^ r"(.\ )and B:
I r"(s)l

Use the results in Exercise 6r[ and the results in Exercise 30
of Section 14.3 to show that for tlle cilcular helix

r:4 cos ri +dsin/j+clk

56.

63.

C is continuous at P. 64.

57, Show that the transition at r - 0 from the horizontal line

-r' : 0 for-d : 0 to the parabola,l, :,rl for-r > 0 is

not \moollr. uherer. lhr lrarr\rriorr lo I r' lor r . 0 r.

smooth.

58. (a) Sketch the graph of the cufr'e defined piecewise by

J:12 lor r <0,y=jrl forr;0.
(b) Show thatfbr the curve in part (a) the transition at-r = 0

is nol smooth.

59. The accompanying figure shows the arc ofa circle ofmdils 65.
/ with center at (0, ,-). Find the value ol d so that there is a
smooth bansition fron the ciicle to the parabola 1' - a:r2

at lhe point where -r- : 0.

lr"(s) ']



with .r > 0 the tolsion and the binomal veclor are (c)

e (',in')i ('"o.')i'f')r
'tl tl' tl)'

whcrc ro : .,6' + C o,,,j r hur tcfercncc point (d, 0, 0).

66, (a) Use the chain rule and the lirst two Frenct Serrct fbr
mulas in Exercisc 64 to show thal

T' - rs'N and N' : rs'T + rs'B

where primes denote diflerentiation with respect to a.

(b) Show that Fomulas (4) and (6) can be written in the
fornr

r'(t) : r'T ard r"1r) :.r"T + r(.!')rN
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Use the results in parts (a) and (b) 10 show that

r"'1r) :1s"' r215';r11

+ [3/..t"" + ('(.r')2]N + kr(.r')rB

Use the results iD parts (b) and (c) to show that

lr'tt) y t" I )l . r"'\t )r{1)- _r'(r) \ r'li )lr

In Exercises 67 70, use the formula in Exercise 66(d) to find
thetorsionr:r(t).

The twisred cubic r(r) : 2/i + /r.i + 113k

The circular helix r(t) - a cos /i + .i sin 1j + c/k

r0) - eii+ e '.i+ J2tk
r(1) : (r - sin r)i + (l cos 1)j + tk

c
I: .

and

(d)

67.

68.

69.

70.

VELOCITY ACCELERATION, AND
SPEED

4'rr,r

The lenglh of the ve ocity
vector is the speed of the
partic e, and the d rection

14.6 RdOT}fiN ALONdG A CURVE

ln earliet sectiotls we tortsicleretl the motion of a partitle along a line. ln that sit-
ttation there are only tu,o dircctio s ifi r,hich the partiLle .at1 n1o|e-+he positi\:e
dite(tio ot the nqati|e directiotl. Motion in 2-spue or 3-space is nore conplicated
be(a$e thete dte in|initelt- many tlirectiorts itt u,hit'h a partitle (en n1ole. In thi.\ sec-
tiott we u,ill shou, ltou, \'e(tots (at1 be used to analye motiott along tunes i 2-spat
or 3-spate.

Lel us assume that llle motion of a palticle in 2-space or 3 space is desclibed by a smoorh
vector valued fulction r(/) in which the parameter I dcnotes tirne; we will call this the
positiott .function ot trajector! ol the paticle. As the pafiicle noves along rts lrirjector),
its dilection of motion and its speed can vary from instant to instant. Thus, before we
can undertake any analysis of such notion, we must have clgar ans\&els to the following
questions:

. What is the direction of motion of the particle at an instant of timc?

. What is the speed ofthe particle at an instant of time?

We will deilne the direction of motion at time a to be the direction of the un ir tangellt vectot'

T(t), and we willdeiine the speed to be rls/rll the instantaleous rate ofchange ofthe arc

length traveled by the particle fiom an arbitmry rcfercnce point. Taking this a step further,
we will combine the speed and the direction of motion lo form the vector

d.t
\ l/.J - Trrl (l/

whiclr we cail t]iLe velocit! function of the pafiicle at time / Thus, at each instant of time
the velocily vector v(t) poinls in the direction of motion and has a magnitude that is equal
to the speed ofthe particle (Figure 14.6.1).

Recall rhat fbr motion along a cooldinate line the velocity f'unction is the derivative of
the position iillrctiol-I. The same is true 1br motion along a curve, since

dr dr dr d.t T(r):\(r),lt ds dt ,lr

'''--_-l
oi the ve oc ty vector is the.
direction of mot on l

Fisure 14.6.1
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For motion along a coordinate line, the acceleration 1'unction was defined to be the derivative
of the velocity function. The delinition is the same for motion along a cur,/e.

t;1.6.1 DEFtNiTtoN. If r(r) is the posirion funcrion of a particle moving along a curve
in 2-space or 3 - spac e , then the instsnlqne ous velocity . instantqne ous sc cele ratio n, and
instentafleous speed of the particle at tine I are definecl by

dr
Yelocity : v (t) =

dv d2r
acceieration : a(t) - : 

-

speed = lv(r)lf = 
dr

(2)

(3)

(4)

As showu in Table 14.6.1. the position, veiocity, acceleration, and speed can also be ex-
pressed in component form:

Tahle 14.6-1

2 sPAcF 3 sPAcE

POSITION r(0 =.r(/)i +)(r)' rG) = r(0i + )(tj +:(/)k

VELOCITY
Jr. dt .\(t)=.ht+-i.l . dr. Jv. J:-

v(r) = ,r+iJ* rt,n

ACCELERAT]ON Jlr . Jlr .a|t) = t; t+;.t a(4=+i+4.i +4k
Lll' 'lt df'

v(/)ll = ,'*,,,,=\rcF (..,,f {oJ
Example 1

A particle moves along a circular path in such a way that its,{- and l,-coordinates at time I
are

x :2cosl. ,) :2sint

(a) Find the instantaneous velociiy and speed ofthe particle at time l.

(b) Sketch the path of the particle, and show the position and velocity vectors ai time
t - n/4 wlth the velocity vector drawn so that its initiai point is at the tip of the
position vector'-

(c) Show that at each instant the acceleration vector is perpendicular to the velocity vector'.

Solution (a). At time /, the position vector is

r(t):2cosIi+2sintj
so the instantaneous velocity and specd are

dr\(/): : 2sinri *lcosr.i
tIt

lrLr.r i -,. ' :.,ruf-- L:cotrt -:



I = fij+fij
1.. r.

Figure 1,1.6.2
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Solution (b). The graph of the parametdc equations is a circle of radius 2 centered at the
origin. At time / : /r/4 the position and velocity vectors of the pafiicles are

r(.trl4) - 2ces(n/4)i + 2 sh(r l4).i : 
"5i 

+ "Dj
v(r/41 : -2 "in1r 

l4)i + 2cos(rl4) j: -"5i + "Dj
These vectors and the circle are shown in Figure 14.6.2.

Soltttion (c\. Ar rime /,lhe accelerari.n vecro- is

dv
x\ll : f, - -lcosrl - lsln/J

One way of showing that v(/) and a(/) are perpendicular is to show that their dot product is
zero (try it). However, it is easier to observe that a(/) is the negative of r(t), which implies
that v(t) and a(r) are perpendicular, since at each point on a circle the radius and tangent
line are perpendicular.

Since v(l) can be obtained by differentiating r(r), and since a(r) can be obtained by
djfferentiating v(/). it follows that r(r) can be obtained by integrating v(/), and v(r) can be
obtained by integrating a(l). However, such integrations do not produce unique functions
because constants ofintegration occur. Typically, initial conditions are required to determine
thesg constants.

Example 2

A particle moves through 3-space in such a way that its velocity is

v(r):i+/j+I2k
Find the coordinates of the particle at time I - 1 given that the particle is at the point
(- 1, 2. ,1) at time r - 0.

Solnliott. lntegrating the velocity function to obtain the position function yields

r(4 - | v{t)dt - | <t*,:+ t2k)dt :ri+ f,i+ f,t+c
where C is a vector constant of integration. Since the coordinates of the particle at time
t - 0 are (-1, 2.4), the position vector at time / - 0 is

r(0) : -; -r 2.1 '1- 46

It follows on substituting / = 0 in (5) and equating the rcsult with (6) that

c: i+2j+4k
Substituting this value of C in (5) and simplifying yields

. .t .l
nr,=,/ r,i r(',.2)j [', +)l

\l .i \r /
Thus, at time I : I the position vector of the particle is

5 t3
r(1) :0i +, j + ,k

so its coordinates at that instant arc (0, ;, +)

lf a particle travels along a curve C in 2-space or 3-space, the displacemeal of the particle
over the time interval tt 

= 
t 

= 
12 is commonly denoted by Ar and is defined as

Ar: r(/z) - r(rr) (.1)

(Figure 1,1.6.3). Tbe displacement vector, which describes the change in position of the
pafiicle duing the time interval, can be obtained by integrating the \,elocity function from

(5)

(6)

DISPLACEMENT AND DISTANCE
TRAVELED
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Figure 14.6.3

tt to t2l

* : 
t,,' 

v<ttat -- 1,," # o,:.u,]; : r(rz) - r(,,) Dispracemcnr (8)

It follows from Theorem 14.3.1 that we can find the distance J traveled by a panicle over
a time interval rl : t S t2 by integrating the speed over that interval, since

'= I,' #lla'r = 1,,'' tvtrtla'r (9)

NORMAL AND TANGENTIAL
COMPONENTS OF ACCELERATION

Example 3

Suppose that a particle moves along a circular helix in 3-space so that its position vector at
time r is

r(r) : (4 cos zr)i + (4 sin zr)j + ,k
Find the distance traveled and the displacement of the pa icle during the time interval
1<r<5.

So/rrdan. We have

dr
v{r) : ; - t-4nsinzr)i+(4T cosz/)j tk

11t

llv(t)ll: ,tta4n silrt), + (4 - JT4F n
Thus, it follows from (9) that the distance traveled by the panicle from time r : I to r : 5
is

l"5 _
5= | Jto,tl-ldt=4Jt6tT2 1t

J

M0reover, it follows from (8) that the displacement over the time interval is

Ar=r(5)-r(l)
: (4cos 5zi * 4sin5zj + 5k) - (4cos]ri + 4sin zj + k)

:( 4i+sk)_(_4i+k):4k
which tells us that the change in the position of the particle over the time interval was 4
units straight up.

You know from your experience as an automobile passenger that if a car speeds up rapidly,
then your body is thrown back against the backest ofthe seat. You also know that if the car
rounds a tum in tlte road, then your body is thrown toward the outside of the curve-the
grcater the cunr'aturc in the rcad, the greater the force wilh which you are thrown. The
explanation of these effects can be understood by resolving the velocity and acceleration

Displacement = Ar = r(.,) r(rr)



14.6 Motion Along a Curve 871

components of the motion into vector components that are parallel to the unit tangent and
unit normal vectors. The following theorem explains how this can be done.

1,1,6.2 lutrottli\I. Ifapafticlemo|esalongosnolthcurt,eCin2-spaceor3-spate,
tlte at eaah poi on the cun'e relo[it\- and at'telet'tttiort |ectors <ct be vriften as

d.sv=-lT
dt

d2sa: 
-T+rdtz

/, .:
(;)-

( l0)

(ll)

u'here s isanerc letlgth peranrcter for lhe curv. utttlT.N. and K cle otethcu itnngel
|e(toi, Lolil nor nlrector, ond cunuturc qt the point (Figrre 14.6.4).

Praal. Formula ( 10) is just a restatement of ( 1). To obtain ( I 1), we differentiale both sides
of ( l0) with respect to /; this yields

"-'l /{ir) -o:r-o'o!dt \tlt / ,lt'! dt dr

d:.r ds dT dn

- -T+dt: dr tls dt

d:r r.1s r: r/T_ -r_t t_dr: \,lt ) d:

tl2 s: 
-T+dt.

from which (l l) follows.

(fl"- 5::rli'!l!''

I
The coefficients ofT and N in (l l) are commonly denoted by

d2s

in which case Formula ( I l) is expressed as

a=47T+dNN

, , .2

"r=*\i) (12 13)

(14)

In this formula the scalars c7 and c1y are called,rhe tangential scalar component ofacceler-
ation and the normal scalar componenl of acceleralion, ard the vectors a1T and o,yN are

called the tangentiql vector component o,f acceleration and the normsl vector component
of acceleration.

The scalar components of acceleration explain the effecl that you experience when a
car speeds up rapidly or rounds a tum, The rapid increase in speed produces a large value
for d?s ftlt2 , which results in a large tangential scalar component of acceleration; and by
Newtotr's second law this produces a large tangenlial force on the car in the di].ectiul
of motion. To understand the effect of rounding a tum, observe that the nolmal scalar
component of acceleration has the curvature ir and the speed r1s/r/t as factors, Thus, sharp
tums or tums taken at high speed both produce large normal forces on the car.

liL\1 \ltK. R)rmula (14) applies to motion in both 2-space;urd 3-space. What is interesting
is that the 3-space formula does not involve the binormal vector B, so the accelerution vector
always lies in the plane of T and N (the osculating plane), even for the most twisting paths

of rnotion (Figure 14.6.5).

Figure 14.6.4

Figure 14.6.5
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Figure 14.6.6

Although Formulas (12) and (13) provide useful insight into the behavior of particles
moving along cuwed paths, they arc not always the best formulas for computations. The
following theorem provides some more usefirl formulas that rclate d?, alv, and r to the
velocity v and acceleration a.

14,6.3 THEoREM. Ifa particle moves along a smooth cunte C in 2_space or 3-space,
then at each point on the curye the yelocity y qnd the acceleration a are related to a7,
aN , and K by the.formulas

v.a
' llYll

llv x all
" llvll

llv x all

llvll3
(rs-17)

Proof. As illustrated in Figur€
vector 4rT. Thus,

a7 : lf all cos 0 and ay :
from which we obtain

14.6.6,bt e be the angle betwe€n the vector a and the

llall sin I

a" = lalt cos6-llvllllallcosa-v'alvll lvll

arv = liall sind - llvllllall sinO 
- llv x all

Itvil llvll

r : - o!- : :+ :,, 1,= 
llviix,,all : ill 1."il I(d.s/dt)2 llvll, llvll, llvll - llvll3

REMARK. Theorem 14.6.3 applies to motion in 2-space and 3_space, but for modon in
2-space you will have to add a zero k component to y and a to calculate the cross prcduct,
Also, recall that for nonlinear smooth curves in 2-space the unit nomal vector N is the
inward normal; that is, it points toward the concave side of the curve. Thus, the same is true
for apN, since a7y is a nonnegative scalar,

Example 4

Suppose that a particle moves through 3-space so that its position vector at time , is
r(t):ri+r2j+r3k

(The path is the twisted cubic shown in Figure 14.1.5.)

(a) Find the scalar tangential and normal components of acceleration at time ,.
(b) Find the scalar tangential and normal components of acceleration at time , : 1.

(c) Find the vector tangential and normal components of acceleration at time , : 1-

(d) Find the curvature of the path at the point where the particle is located at time , : 1.

Solution (a). We have

v(t) : r'(t) :i+ztj+3t2k
a(t):/(t) =2i+6tk
llv(t)ll : J1 a a,\;za 19$
v(r).a(r):4t+18t3

li i kltt
v(r) x a(r) :lt zt zt l:6r2i-6ti+zk

l0 2 6tl



1+4t2 +9t4' lvl ,/t t t,:t s,q

lv x a ut-36P a36z a'_ : -:' llul Jt +4,, +gto

S\httion (b\. At time r = I, the components ar and aN in pafi (a) are

22 n5
", 

: 
uF4 

t 5.88 and aN :211 ,J 2.33

Solutiott lcJ, Since T and v have the same dircction, T can be obtained by normalizing v,

that is.

vlr)
Tl1) =

llvtr_r I

Attimet - l we have

\rlr il)i -lk ITrll- - ti -2i-lk)
lu(l) I li 2.i - 3kl J t4

From this and pal1 (b) we obtain the vector tangential component of acceleration:

)?, 11 11 22 33
rrrrlrTrlr 

JiT,lr- rri 2jtJkr- ji- j:- jk
To find the normal vector component of acceleration, we rewrite a = 4rT + llNN as

a1,'N = a a7T

Thus, at time , : I the normal vector component of acceleration is

a,v (1)N(1) : a(1) ar(1)T(l)
,| )) ll\

-12.i okl-lfir_j -trl\/ t t /
11 tt 9

- 1i- ji+ jk
Sohttion ld\. We will apply Formula (17) with I = l. From paft (a)

lv(1) | : .',4? and v(l) xa(l):6i-6j+2k
Thus. at time / : 1

lv\a h6 I rE' '' 017
lv lr (/14)' l4'/ 1
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Thus, from (15) and (16)

v .a 4t + 18tt

FoR TH E RLADER. It fbllows from Figure 14.6.6 and the Theorem of Pythagoras that 4N

can be expressed in terms of Jlvl and a7 as

( 18)

Conlilm that this is so in Example 4.

Earlier in this text we examined vadous problems concemed with objects moving verriczrlly

in the Earth's gravitational field (see model 6.3.4, Example 4 of Section 7.7, and the sub-

section of Section 10.I entitled A Model of Free-Fall Motion Retarded by Air Resistance)

Now we will consider the notion of a projectile launched along a c n ed path in the Earth's

gmvitational field. For this purpose we will need the vector version of Newton's Second

9t4+9t2+l
9l +44 1

A MODEL OF PROJECTILE MOTION
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Law of Motion ( 10.1.1)

F:na
and we will need to rrake thrce modeling assunptions:

( le)

The mass n of the object is constant.

The only force acting on the object after it is launched is the force ofthe Eanh's gravity.
(Thus, air resistance and the gravitational effect of other planets and celestial objects
are ignored.)

The object remains sufnciently close to the Earth that we can assume the force ofgravity
ft) be consTant.

Let us assume that at time / = 0 an object of mass ,i is launched from a height of s6 above
the Earth with an initial velocity vector of v9 that makes an angle o with the horizontal.
Furthermore, let us introduce an ,\'y-coordinate system as shown in Figure 14.6.7. In this
coordinate system the positive r'-direction is up, the origin is at the surface of the Eanh,
and the initial coordinate ol the object is (0. sx). Our objective is to use basic principles
of physics to derive the velocity function v(r) and the position function r(r) from the
acceleration function a(1) of the object. Our stafting point is the physical observation rhat
1he downward force F of the Eanh's gravity on an object o1'mass nr is

F : -zgj
where g is the acceleration due to gravity (see 10.3,3 ). It fbllows from this fact and Newton's
second law ( 19) that

na: nt g,i

or on canceling ,r from both sides

(20)

Observe that tlris acceleratiolr function does not involve t and hence is constant. We can
now oblain the velocity t'unction v(/) by integraring this acceleration function and using the
initial condition v(0) = v0 to nnd the constanr of integration. Integraring (20) with respect
to r and keeping in mind that -gj is constant yields

v(tt: t g.idr = -r,r.i +cr

where c| is a vector constant of integration. Substituting / : 0 in this equation and using
the initial condition v(0) : v0 yields

Thus, the velocity function of the object is

Y(t): st.i +yo (.2t)

To obtain the position function r(r) of the object, we will integrate the velocity function
and use the known initial position of the object to find the constant of integration. For this
purpose observe that the object has coordinates (0, s0) at time t :0, so the position vector
at that time is

r(0)=0i*soj:soj 122)

This is the initial condition that we will need to find thc constant of integration. Integrating

a : -.9.1

(21) with respect to / yields

,O= |( Bo+v .lt:-+sr'?j+rYo+c2

Fieure 14.6.7

(23)
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0 in (23) and usingwhere cl is another vector constant of integration. Substitufing / =
initial condition (22) yields

soj = c:

so that (23) can be written as

r(r):(-lsrr+rb)j+rvo

This lbrmula expresses the position function of the object in terms
position and velocity.

(24)

ol' its known initial

PARAMETRIC EQUATIONS OF
PROJECTILE MOTION

RI.Nli\l{K. ObseNe that the mass of the object does not enter into the final formulas lbl
velocity and position. Physically. this means that the mass has no influence on the trajectory
or the velocity of the object-these are completely determined by the initial position and
velocity. This cxplains the famous obseNation of Calileo that two objects ofdifferent mass.
Ielcased tfom the same height. will reach the ground at the same time if air resistance is

neglecled.

Fonnulas (21) and (24) can be used ro obtain parametric equations for the position and
velocity in terms of the initial speed of rhe object and the angle that the initial velocity
vector nrakes with the positive -r-axis- For this purpose, let u0 : llv0ll be the initial speed,
let cr be the angle that the initial velocity vector v0 makes with the positive r--axis, let u,
ard u,. be the horizontal and vertjcal scal;rr components of v(1) at time l, and let ,r and ,t, be
the horizontal and vertical conponents of r(/) al time 1. As illustrated in Figure 14.6.8, the
initial velocity vector can be expressed as

vn: (un cosa)i * (uj sina)j (25)

Substituting this expression in (24) and combining like componcuts yields (verify)

(26)

which is equivalent to the parametric equations

-r = (u{r cos cv)t. ,y = 16 1 (u0 sin a)l - 1612 (27)

Sirnilarly, substituting (25) in (21) and combining like components yields

v(l ) : (uo cos (!)i + (uj sin cr - gt)j

which is equivalent to the parametric equatiolrs

u.r. : uocosd. ur : uo sino - 8l (28)

The parameter I can be elirninated in (27) by solving the first equation for I and substi-
tuting in the second equation. We leave it fbr you to show that this yields

/,,\
.r =.\,+ildnq),r {;_-;-:. l.r't t29)

\ lua co\' 0 /

which is the equation of a parabola, since the right side is a quadratic polynomial in r. Thus,
we have shown that the trajectory of the plojectile is a parabolic arc.

Example 5

A shell. lired from a cannon, hits a muzzle speed (the speed as it leaves the barrel) of 800
ft/s. The barrel makes an angle of 45" with the horizontal ancl, lor simplicity, thc bauel
opening is assumed to be at ground level.

(a) Find parametric equations for the shell's trajectory relative to the coordinate system

in Figule 14.6.9.

r(t) = (u0 cos cy)/i + (so + (uo sin o)r - j gr'])j

(uo si'r (v),i

(uo cos a)i

Figurc 14.6.8

Figure 14.6.9
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(b) How high does the shell rise?

(c) How far does the shell travel horizontally?

(d) What is the speed ofthe shell at its point ofimpact with the ground'l

Solfiion la), From (27) wilh ue : 800 ft/s, cv - 45', so : 0 ft (since the shell starts at
glound level). and g : 32 ft/s2, we obtain the parametric equations

.r: (800cos45')r. 1 : (800sin45')r - 16rr (/ > 0)

which simplify to

.r. = 4O}Jlr, t = 400*6t - t6t2 (/>0) (30)

Solfiion \b\. The maxirnurn height of the shell is the maximum value of .r' in (30), which
occurs when r/r'/dt :0, that is, when

25 !5400,/2-32t:0 L,r r= 
2

Substituting this value of / in (30) yields

.L : 5000 ft

as lhe maximuln height of the shell.

Solution lcl. The shell will hit the ground when r' :0. From (30), this occurs when

4o\rtt - l612 :0 or t (4OOJ' - 16r'):O

The solution I = 0 coresponds to the initial posilion of the shell and the solution
t = 25J2 to the time of impact. Substituting the latter value in the equation for:r in (30)

yields

-r : 20.000 fi

as the horizontal distance traveled by the shell.

Soltdion (d), From (30), the position function ofthe shell is

r(t) - 4\Orti + (400J' - t6r2) j
so that the velocity function is

v(/) - r'{rr = 400vti - (400"[ - 32/)j

From part (c). impact occurs when I : 25/t. so the velocity vector at this point is

\ e5,5) = 400\5i + l40oJ1 - 32(25\A)lj : 40oJ1i - 400rt j
Thus, the speed at impact is

ily (25,A)| = t1.4$A + e4m6 : 800 ftls

ExERctsE SET f4.6 E craphing ca cllator E cAs

In Exercises I 4, r(r ) is the position vcctor of a particle mo\-
ing in the plane. Find the velocity, acceleratiou, and speed

at an arbitrary time /. Then sketch the path ofthe pdrticle

together with the velocity and acceleralion vectors at the in-
dicated time ..

l. rlir=3cosii .rsintj: r:r -1

2. r(t)=ti+t].i: t:2

r(t) :?'i+erj: 1:0
r(/) : (2+4r)i+ (l -r)j: / : I

In Exercises 5-8, find the velocity, speed, and acceleration al

the given time I of a particle moving along the given curve.

r(r) : ri+ jr'j + Jr3t: r = t
.r : I +3r. J =2- 1t.. =7 + tt t =2

3.

4.

5.

6.



'1.

8.

9.

.r -2cosr.r,:2sin1.a:t t - jrl4

r'(t) : e/ sln ri +./costj + tkr 1 :..r/2

As illuslrated in the rccomprn!ing llgule, suppose thtl thc

cqualjons of motion of a lla(icle no\ring along an elliptic
palh are { - ,/ cLrs arl. -l : /) sirl.r)4.
(aJ Show that thc acceleration is dileclcd towirrd the origirl.
(b) Sho$, thal the magnitudc of the acceleration is p.opor

tional to the distancc fiom the palticle to tlie origin.
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15. a(r) - - cos ti - sin rj: v(0)-i: r(0)- j
16. a(r) : i +. 'j: v(0) :2i +j; r'(0) : i j
17. a(t): linti +cosrj +c'k: v(0) -k; r(0): i+k
18. a(1) : (1 + l) rj r I'ki r(0):3i ,ii r(0) - 2k

19. Whrt can you lay about thc triljectory o1 a parlicic lhat
moves in l-spacc or 3 spacc u ilh ;/cro accelerali.nr'l JLlstily

!ouf iinswcl-,

20. Recrll lrour l-heorem 1,1.2.7 dra{ if r0 ) is a vcck)r valucd

lirnctiou ili 2-space or 3-space, irnd if lr(/) is constant li)r

all l, lhen r0) .r'(/) - 0.
(a)'l'rainslatethisthcorcrr illtoaslelclnentaboulthernotiorl

of e perticle ill f space ol 3 space.

(b) Rcplecc r(r) by r'(1) in the theolenl- and tfansliltc lhc
rc\ul1 inlo a strtelnent rbout the nlotion ol a plllticlc in
2 space or J-sptce.

21. Find. to the licirrcst dcglcc. thc angle bet$een v dld a lor
r: t'i + rr.i whcn I : l.

22. Sllow thal the ilngle bet\\'een v iLnd a is constant tor the pori-
tion vecror r : ./ cos ri + ./ sin /j. Fincl tlre anglc.

23. (a) Suppose thirt al lilne 1 : l) tn eleclron has a position
vcclor ol r : 3.5i 1.7.i + k. uld rt N later tiDie I : /r

it has r position vecror ol r : 4.2i i ,i 2.'1k. whrt is

the displacement oltlie electron dLrrins the timc intcNal
lion lo to lL .)

(b) Suppose that dur-ing a certaln time intelvll a proton has

a displacerrent ol Ar - 0.]i+).9.i l.2k and its final
position vector is knou'n to bc r' : 3.6k. What wlr the

initial position vector of thc prolon l
2;1, Suppos.lhirl lhe position function ofa particlc nroving alollg

a circlc in lhe rypLane is r : 5 cos 2,.rli + 5 sin 2ltj.
(a) Skclch solne t)'picul ciisplacement vcclols ovcr lhe line

il]lerval tioni/ -0lo/: L
(b) Whal is the distunce travelecl by the parlicle clLfing llle

ti e intcNill

Itt Lrcr.r'i. )i l'. nrrd llrr dt.llr.rm. I irrlllh. ilr.larl.e
traveled ovcr lhe indicated time intervrl.

25.r:rri+]rr1:11r13
26, t r .r.:rr,,i 1.o.r.i. 0 / .,- l
2'7. r:c'i +c'j+ J2rk: 0:r:ln3
28. r- cos2ri -(l cos2r)j+ (3+ ]cos2r)k: oa.t air

ln Exercises 29 ard 30. the position vectors of two parliclq\
ar-e given. Show that the particles move along thc samc palh

but the specd of the llrll is constant and the spcccl of lhe

29. rL : 2 cos 3ri * 2 sin 3tj
rr - 2cos(rr)i +lsin(rr).i (1 -0)

30. rr : (l + 2/)i + /j + (l .)k
rr : (5 21r)i + 1l rr)j + rik

l!u.E\c)

tr

10. Suppose that l paniclc vibrales irl such a way that its posiljoll
functiol is r(t) - l6sinrai + 4cos21l.i. wherc disllulce
is in rnillimeters and I is in seconds.

(a) Find thc vclocity and acceleration al lirne I : I s.

(b) Show that the particle nloves along a parabolic curve.

(c) Sho\\'that the prfiicle movcs back and tbrth along thc

cuLve,

11. Suppose lhat the position vector ol a padicle moving in the

planc is r : l2vti + rr']j.. > 0. Find the nrininum
speed ol'the plticlc and i1s localion whcn i1 has this sPeed.

12. Suppose that the moti()lr ol-a parlicle is dcscribed by lhe po-

sition vector r - (t al)i 11.i. Find lhe rninirrum spccd

of the palticlc and its location when it has this speed.

13. Suppose that ihe positior lunction ol a parLicle moving in

2 spacc is r : sin 31i - 2 cos ltj.
(a) Usc a graphing utilily 1() graph the spccd ol the perticle

vcrsus lime from t -0tctt:2tt/3.
(b) What are thc nraximum lud minirnum speeds of thc

pafiiclc:r
(c) Use the gruph to eslimate lhe tinle itl whlch tlie m.rxi

mun speed first occurs.
(dJ Fincl the cxacl lirne at which the maxinlum specd list

occurs.

l,l. Suppose that the positioi lunclion of a pa icle moving in

3-space is r : 3 cos 2.i + sin 2r.i + 4Ik.
(a) Use a graphing Lrtility to graph the speed ol thc pa icle

versus lime fi-om I - 0 to t : -.r.

(b) Use the graph to estimate thc maximunl and mitlimum

speeds ol thc particle-

(c) Use the graph to estimatc the li re at \rhich thc maxi
mum specd fir'sl occurs.

(d) Find thc efact values of the maximum and lnini'nunl
specds and the exact timc irt wl'lich the Inaxinlum speecl

llrst occurs.

ln Erer. i'r. 5 !. J.e lll(' !r\(llnlo'tlrrlt!, ln nrrd lhe lL)

sition ancl velocily vectols ol lhe parliclc.

tr
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LrErercises3l 3ll.lhellosilionfunctionof apal1icleisgiven.
Llsc 'fheor.ern 1,1.6.3 lo lind
(a) ihe sc.llar- tangenlial alld nolnlal co tponents ol acceler'

ation at the slaled tilnc t:
(b) tlre vcctor tan-gelttiltl ii d ltor n al conponents o l- acce ler-

alion at the statcd tinte t:
(c) thc curvature ol lhe palh at thc poilit *here the particle

is loc.te.l iil the slaLecl limc /.

31. r:., ri+.,'.i: 1 : t)

32. r: cos(lrli + sin(/r)j; 1 - vE/2
-13. r=17r 2/)i+ (rr .1)j: r:l
-14. r - e' cos li + r,' sin t.i; t:rz/.1
35. r: ri +/:j+rrk: r:1
36, r':t!i+e r'j + rki r:i)
-17. r:3,,in/i+2cos/.i sin2rk: r :;r/2
38. r' - ll 1 7r.; 16ln rk; r : I

In Exercise\ 39 :12. v arcl a nre given 11 I cerlain instant ol
time. Find a7. .rr,. I. ilnd N al this iltstltnt.

39. r:-4;. a:2i +3.i il0. v:i+2j. a:li
41. v: 2i +2j+k, a:it'2k
42. v-3i -,1k. a-i j+2k

ln Exercises.l3 46, the speecl lv of I parlicle ar an arbi-
trarv time 1 1s given. Find the sci!lar tangentiiil componcnt of
iicccleriifion rl the indicated rimc

= J3rr+,1: r:2
:./ll+c r': r-o
- i (.1r 1)l + cosl rr; r : j
:Jrr+5r:Tl:1:l

47. The nuclcar icceieratu lrt the Enrico Fernri I-ilboralory is

cilcular rvith a raclius ol L km. Find the scalal normal com-
ponerl ofaccclcration of a plotor moving llr'ound thc accel-
elalor with a constant speed oi 2.9 r l05krn/s.

.18. Suppose thai a pilrticle nroves \\'ith nonzclo acceleration
xlons the curve \' : l(.r). Use part (b) ol Erercise l7 in
Sectiol] 1.1.-5 1() show thiLt the accelelation Yector i! tangent
to the cur-\'e al each poinl whcre /"(-r) - 0.

ln Exercises.l9 and 50. usc thc given infonnation and Excr
cise 17 ol Section 1.1.5 to tird the no llai scltlar- cornponent
of acceler'ation as a function of r.

il9. A parliclc rnovcs llons the palaboll \ : r: rr,itha constant
speed ol I units per second.

50. A particle rnoves aloig the curve -! : In l with a constant
spced of 2 units per second.

la F\ _(l,e\.1:rn,l .'..t.e thr !i\en Inrn.tnalion In r' J thc
nornal scalar conrponent ol acceleration at time I : L

-sl. a(i) : i +2j *2k: a7(l) - 3

52. a(1)l :9; ar (l)T(l) :2i 2.i + k
53. An autonobile travels at a constant speed around a curve

r"hose radius olcu^'atu:e is 1000 ni. Wlilt is the maxiDtunt
allowable speed if the maximurn acceptable value for the
normal scalar' cornponent ol accelelation is 1.5 m/sll

5;1. ll an aLrlomobilc ol mass ar rounds a culve. then its inwar.(l
vector' colnponeDt of acceleraiion .r,! N is caLlsed by the fiic
tional fotce F ol the roacl. Thus. it toilorvs fiont the vector
lorln of Ne$toli s second law (Equalion ( l9)) tliat the 1,ric

tional lbrce and the norlnal sctlar compoDeltt of acceleralion
are relate.l by the equation F : nra.r,N. Thus,

r '/r rlF -rrrI I\ ,fi I

Use this rcsult to find the n,agnitucle ol thc frictional lbrcc
it nervtons e\er'lcd by the roacl on a 500 kg go cart driven
al a specil of l0 km/h around a circuLar track o1 radius 15

m. [Nrk,. 1N: l k8 /!]l
55. A shcll is ited tiorr g|ound 1evel with a nuzzle spced of

320 lt/s lnd elevation angle ol60 . Find
(a) paranletric eqllalions for the shell s tltiectory
(b) ihe maximum heishl reached by the shcll
(c) the horizo lal distatrce tirvelcd by the shell
(d) tlre specd ofthe shell ar impact.

56. Solve Exercisc 55 irssrming that the rnuzzle speed is 980
ln ' : nd tlrs cls\illl"n : ^.1- i l:

57. A loc k is thro$r'i downward from the top of a building. 168

ft high. at an rngle o1 60'wirhthehorirontal.Howtarfrom
the basc olthe buildins willrhe rock lalrd ifits initial speed
is lJO li/s?

58. Solve Exc|cise 57 assuming thilt the rock is thlown hori
zurtally ar a specd of 80 tr/s.

59. A shell is to be lired from ground level at an elevation anglc
of 30 . What shoulcl the nuzzle specd be in order 1br tlle
nlaximunr heigllr of the shell ro bc 2500 ftl

60. A shell. llrccl fr om ground levcl ar an elevation anglc of45' .

hits tlie ground 24,500 m away. Cllculate the muzzlc speed
of the shell

6I. Find two elevation iingles that will enabie a shell, llred iiom
ground level \\'itlt alnuzzle speed o1 800ft/s, to hit a groLlrd-
level targel l0.00il ft away.

62. A ball rolls off a table .:l lt high rvhile mor,ing at a conslanr
speed oi 5 fil s.

(a) How long does it lilke for the ball to hit the floor alier
il leavcs the table?

(b) At \\,hat speed does rhe ball hit thc floo.?
(c) 11 a baLl wcre dropped fiom resr ar rable heighr jusr as

the rolling bali leaves the table. which ball would hit
the grouncl fitst? Justify vour-ansrver.

.l-1. Iv
:l:1. v
,15. v

,16. i i



68.63.

69.

As illustrated in the accompanying figure, a llre llose sprays
lvater with an initial velocity of 40 tt/s at an angle of 60'
wilh the hoizontal.
(a) Confim fiat the water will cle:u corner poi[t A.
(b) Conlim fiat the water wilL hit the roof.
(c) How far fiom comer point A $,ill the water hil lhe root'l

what is the minimum initial velocity thal wili allow the
water in Exercise 63 to hit the roof?

As shown in the accompanying ligure. water is spra-ved fiom
a hose with an initial velocity of 35 m/s at an angle of 45

with the horizontal.
(a) Whatistheradiusofcu atul e ol the strean at the point

where it leaves the hose?

(b) What is lhe maximum llcight of fie slrearn above lhe
nozzle of the hose?

Figurc E{ 6-l Frgurc Ex-65

As illuslrated in the accompiuying liSure. a train is tt aveling
on a cuNed track. At a poinl where the train is traveling at a

speed of 132 ft/s and the radius of cul vature of thc track is
3000 lt. the engineer hits the brakes 1() i'lake the tlrin slow
down at a constant rate of 7.5 li/sr.
(a) Find the magnitudc of the acceleration veclor at the in

stant the engineer hiis the brakes.

(b) Approximate the angle bctwcen the acceler-ation vectol

iud the urit tangenl vector T at the inslanl tlte engineel

hits the brakes.

. Figurc Ex 66

A shell is fired fiom glound levcl at irn elevalion angle ol.r
and a muzzle speed of r'9.

(a) Show that the niaximum height reiiched b-v the shell is

( r'o sin a )l
nrrr rmllrn heroht:'29

(.b1 The horizontal range R oI the shell is the horizontal
distance ffavcled whei the shell retums to glound Ievel.

Show that R : 1rj sin2a)/g. Forwhatelevalion angle

will the range be maxiniuml) What is the Iltaximum
range?
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A shell is fir'ed fiom ground lcvel with an elevzrtioi iinglc d
and a muzzle speed ol rr1 Find two irlgles that can bc uscd to
hit a targct at grouDd level that is a distance ol thlee lburths
the maximum rance ofthe shell. Express your-answer ltl the
nearesl tenlh ot' a deg|ee. fHr'rrt. Scc Excrcise 67(b).1

At tirne / : 0 a biiseball that is 5 ft above the ground is hir
\ itlr i brt. lhe h.rll lce'e. lh( h:rl \\ rl.t.l \pcc'l ul bO ll . ilt
an angle ol30' above the horizontal.
(a) How long \\ill it take lbr the baseball to hit the ground?

Expless youl answer lo the nearest hunclredlh ol n

second.

(b) Use the result in part (a) to llnd the horizontal disrance

lraveleal by tlre ball. Express yollr answcr la) thc ncarcst
lenlh ol a foot.

At timc I : 0 a plo jcctilc is llcd flon a hcight /i abovc lo'cl
ground at an elcvation anglc of a \\'ith a spccd L. Lct R bc

the horizontd dist4nce to the point wherc the projcctilc hits
the grourd.
rlrl SIrurr lhlt av,ln,l R It.r.l .rlirl\ lll. -qu.rliun

g(sccrcr)R: 2rr(tand)ll 2rr, - 0

(b) If .q, l. and u arc constant. then thc cquation in part
(a) defines R implicitly as a function ol cr. Lct R! bc

thc nlaximum valuc of R ancl cr1 the valuc of rr whcn
R - R, I .c rrnfl , itdi ld ertr'r ,,n .^ h.J JR ././.rnd
show lhrl

tJnd. : 
-

- {Rl
IHilrlr Asslrire that /R/1a : 0 when R is maxi uln.I

(c) Use the results in piirfs (a) and ([t to lhow that

Ro: y'rr+2glr
g

64.

65.

70.

66.

and

tan r J:
./r,r + 2.q,

E 71. A1 time 1 : 0 a skier leitves the end of a ski jump rvith a

speed of 10 ft/s rl ln anglc a rvilh thc horizontal (see the ac

companying ligure). The skier lancls 259 tt down the incline
2.9 s later.
(a) Approxill]iile ur to the lealest fi/s and .! lo the nearest

dcglcc.
(b) Use a CAS or a calculating utility with a numerical intc

gralion capability to approximiite the distancc travelcd
by the skier'.

(Use,q : 32 ii//sr as thc accelcration .lue 1() grarity.)
67.

.::.
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KEPLER'S LAWS

CENTRAL FORCES

lJ.7.l KFPI.Fr{ s l.A\\s.

14.7 KEPLER'S LAWS OF PLANETARY MC}T|OT\I

Ona rl tlte grcqt o(l\'tn(s itt tltc histor| of ostroturlt| otoored itt the curl-'- 1600,t
u'ltett.lohatutes Keplcr" clttlutetl Jiont entpiritttl Llotu lltul al! pldtlets itt our ,xtlct
.\\,ttt,L]t nlr\'(,in elliptitul t)rbits with the Suri at a litttts. Subsequenll\', lso.t( Ncv,totl
slnvrel nutlrcntutitall) tlut su(h platletarl nntion is tha t onsetluent'a of tn inrcrse
,\quat-a luw of groritotirtnul uttt-(utiott. Itt tltis sectiott uc nill use thc utrttepts d<'tal-
qttd itt the precarlilrg r.,( tl.rr.s tt this chaptu to dui\'('tlue( bosic lou's ol pluncturt
nurliotr. ktl?ln'tr as Keplet's lavs.

In Section 12.-5 rve stateci thc tbllowing laws o[ plunctaly motion thal rverc published by
J ohannes Kepler in I 609 in h is book known as ,4,rrttrtonria N rn'u.

!!

o

o

Filst lau'(Law o.f Orrrb). Each planet moves in an clliptical orbit rvith thc Sun at a
t'ocrrs.

. Second law (I-eh, of Arees). Equal areas alc swept out in equal timcs by the line
from the Sun to a plirrcl.

. Third law (Zau o/Perlods). The squale ofa planet s period (the time it takes thc plaret
1tl c()mplete one orbil about llle Sun) is propor(ional to the cube of the scnrimajor
axis of its orbit.

lf a particle moves untlcr thc iltluence of a sirr.r;/r, lolcc that is alrvays dircctcd toward a
lixed point O. thcn thc pa icle is said to be moving in a cefiral force feld. The force is

c,ljle<l a central fotce. ancl the point O is callccl the cenler of force. For exanrple. in thc
sinrplcsl model ol planetlry nrolion. it is assunred thal lhe only fbrce acting ()n a planet
is thc firlce of the Sun s grrvily, dirccted towatd the ccntcr of the Sun. This mocicl. which
ploduces Kepler''s laws. iguores the fbrces that olhcr cclcstial obiects exert on the plrnet as

wclL as thc minor etlect thint the planet's gravity has on the Sun. Ccntral fbrce moclels arc

rulso used to study the motion of comets, asteroids, planctlry moons, and artificiarl satcllites.
They also have importlnt applications in elcctronrlgnetics. Our objcctive in this section
is 10 dcvclop some basic plinciples about ccntrul tbrce lields and thcn us{r those resLrlls to
clclivc Kcpler's laws.

Suppose that r purticle P ol mass ,i moves in a central force lleld duc to a tbrce l'that
is directed tovard a fixed point O, and let r - r(/) be the position vector fiol'r'r O to P
(Figure l'1.7.1). Let \' = v(t ) oncl !r : a(l) be the velocity and acceler-ation flnctions of the
pilrlicle, and assume thrt Ii ](L a are related by Newton's second law (F: / a).

Our lirst objective is to show that the prrticle P nrovcs in a plane contrining the poinl
0. Fol this purpose r)bservc that a has the same direction as tr'by Newton's seconcl law. and

lhis implics that a ilnd r are oppositely direcled vcctols. Thus. it follows from part (( ) of
Thcorcn l3.4.5 thrt

rXa-0
Since the velocity and accclelation of the particle a:c givcn by v : tlr / tl t and a = d \ / d t,
rcspcctivcly, we have

I tlv tlt'
. (r \ r ) - t 

^ 
--- * -- \ r : (r X a) + (v X v) : 0 + 0 : 0 (t)

lt ll (ll
Intcglating the left nd right sides of this equation with respect to I yields

rXV:b

o 
Scc triography on p. 7-18.

(l)



NEWTON'S LAW OF UNIVERSAL
GRAVITATION
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where b is a constant (independent of I). Howcvet b is ofthogonal to both r and v. so we

can conclude that r : r(l) and y = v() lie in a fixed plane containing the point O.

RIiNtARK. The preceding cliscussion shows that eaqh planet n'roves in a plane through the

center of the Sun. Astronomers call this pLane the ecliplic ol the planel,

Our next objective is to derive the position function of a particle uroving ultder a central

forcc in a polar coordinate sysleIn. For this purpose we will nccd thc tirllowing tesult, known
as Newton's Law of Universal Gravitation.

1{.7.2 NE$To\ s t-.\\\ ot: tr\tVERSAL clRAvlrAI to\. Evcry particlc of mattcr in

the Universe attracts evcry othel particle of matter in the Univcrse with a force that is

proportional to the product of thei[ orasses and invcrscly proportional to thc squarc of
the disrance belween thenr. Specilically. ifa particle ofnlass M and a pa icle of massrri

are at a distance r liom one another, then they attmct each other with equal and opposite

forces, F and -F. of uragnitudc

(3)

where G is a constant called the universal grqvitationql constant.

To obtain a fomula for the vector tbrce F that mass M exerts on nrass ar. we will let r
be the radius vector l'rom mass M to mass ,r (Figure 14.7.2). Thus, the distance r- between

the masses is llrll. and the lbrce F can be expressed in terms of r as

F : llFll = llFll

which from (3) can be expressed as

GMntU: -,fr (4)

One way to find a lbrrnula for the position function of the mass ,? is to fi nd the acce leration

function a : a(1) lnd thcn inlegrate twice with respect to / to obtain v : Y(l) and then

r : r(/). We will use.r slightly ditl'elent approach, but we will still need to start by fincling

a formula for the acceleration lunction. To do this we use Formula (4) and Newton's second

lrw fo obtain

GMnt
nta: ;f

fiom which we ohtain

GM
a:- . f (s)

ItENlr\RK. Observe that the acceleration a depends on the rnass M bul tlot on the mass nr.

Thus, for example, the acceleration ol a planet is affected by the m ss of the Sun but not by

its own mass.

To obtain a fbnnula for the position function of the mass ,r. w€ will need to introduce a

coordinate system and make some assumptions about the initial conditions. Lct us assume:

. The distance l from /rl to M is minimum at rime t : 0.

. The mass rr has nonzero position and velocity veclors r0 and v0 at timc, = 0.

G Mtn
lF: .

(fr) / r\(-;)

M exerts force !'on ,r and

ff exerts force -F on M.

Fieure 14.7.2
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. A polar coordinate system is introduced with its pole at mass M and oriented so g - 0
attimel:0.

. The vectol v0 is perpendicular lo the polar axis at time / : 0.

Morcover, to ensure that the polar angle I increases with t. let us agree to observe this polar
coordinatcsysternlookingtowardthepolefronlhetcnninalpointofthevectorb=r0Xv0.
We will also llnd it use[ul to superimpose an .n,---coo|dinate system on the polar coordinate
system with the positive : -ax is in the direction of b (Figure 14.7.3).

For computational purposes, it will be helpful to denote llr0ll bv rp and llvllll by up. in
which case we can exprcss lhe vectors r0 and v0 in -r't':-coordinales as

ro : ihi and vo : uo.i

and the vector b as

b = ro X Yo : roi x uo,i : touok (6)

(Figure 14.7.4). [t will also be useful to introduce thc Lu'rit vector

r : cos di + sin 9j (7)

which will allow us to exprcss thc polar form of the position vector r as

r =,'cosdi + r sin 0j : r(cosdi + sinpj) : ru (8)

and to express the acceleLation vector a in terms of u by rewriting (5) as

We are now ready to derive the position function ol the mass nr in polar coordinates. For
this pulpose, rccall frem (2) that the vector b : r X v is constant. so it follows lroln (6)
lhat the relationship

b=rXy:r-0uok ( l0)

GMA: - ---tu (e)

holds for a// values of l, Now let us examine b fioln anothel point of view. lt lollows from
(8) that

tlr d dt drv:-: (iu):1-4-u
Jt tlt tlr Jr

and hence

b:rXv-(ru)X (11)

But (7) ilnplies that

,i u ,lu,la de---=- = ( -sinpi+cosa.il .,lt a ! " l!
so

tlrt deux-: kdt dt
Substiluting ( l2) in (ll) yields

b:r- . k

Thus, it fbllows from (7), (9). and (13) that

GM / .tlg \
a x b: ,., 

(costii +sind.i) x {\,';u/

: G M (.- sit'rli ! cose il! - C U*

/ Jr /-\ .1u dr . du
(,; * Z"/ - r'u x ; -, iu x u :r''u x 

1I

(.t2)

(13)

Figure 14.7.3

Figure 14.7.4

( 1,1)
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From this formula and the fact that /b/1, : 0 (since b is constano, we obtain

,1 db dv dt
,._rv 

rb)=v x;+d/ x b =axlr-G14 k
Integrating both sides of this equation with respect to t yields

vxb:GMu+C (15)

where C is a vector constant of integration. This constant can be obtained by evaluating
both sides of the equation at t = 0. We leave it as an exercise to show that

C:Coue-GM')i
from which it follows that

v x b: cMu + (ntvi - GU)i (17)

We can now obtain the position t'unction by computing the scalar triple product r . (v X b)
in two ways. First we use ( l0) and property (l l) ofSection 13.4 to obtain

( l6)

(18)

(19)

(20)

(21-22)

r. (v x b) = (r x v)'b =b.b =ro2rr3

and next we use (17) to obtain

r. (v x b) : r. (G Mt) +t. (roui - GM)i
/ r\

=t. (cM;) -ru.rr,,r,i GL4ti

: GMr + r(roui - GMlcosa

lf we now equale this to ( l8). we obtain

,|ui : G Mr + r(roui - G ul cose

which when solved for I gives

roDo

CM
GM + (rove - C M) cosq

'.(H r)"o,a

or more simply

k

1*ecosd
where

..2 ".2
1= !19 111i

GM

r6u6

rnui

GM
We will leave it as an exercise to show that z - 0. Accepting this to be so, it follows

by comparing (20) to Formula (3) of Section 12.5 that the tmjectory is a conic section
with eccentricity c. the focus at the pole, and d : k/e. Thus, depending on whether
e < l.e: l, ore > l. the trajectory will be, respectively, an ellipse, a parabola, or a

hyperbola (Figure 14.7.5).

Note from Formula (22) that e depends on r0 and u0, so the exact form of the rrajectory
is determined by the mass M and the initial conditions. If the initial conditions are such
that e < l, then the mass n becomes trapped in an elliptical orbit; otherwise the mass

,r "escapes" and never retums to its initial position. Accordingly, the initial velocity that
produces an eccentricity of e : I is called the escape speed and is denoted by u".". Thus,
it follows from (22) that

(verify).

2GM
r0

(.23)



884 VectoFvalued Functions

KEPTER'S FIRST AND SECOND
LAWS

It follows from our general discussion of central force Ilelds that the planets have elliptical
orbits with the Sun at the focus, which is Kepler's first law. To derive Kepler's second law,
we begin by equating (10) and (13) to obtain

.(10

''- ,1, 
: 

'uuo

To prove that the radial line from the center of the Sun to the canter of a planet sweeps

out equal areas in equal times, tet r = f(0) denote the polar equatior of th€ planet. and

let A denote the area swept out by the radial line as it varies fiom any fixed angle P0 to an

angle d. It follows from Theorem 12.3.2 that A can be expressed as

fel
A : | ;U\O)t'dO

where the dummy variable d is introduced for the integration to reserve 0 fbr the upper
limit. lt now follows from Pan 2 of the Fundamental Theorem of Calculus and the chain

rule that
dA .lAd0 l. - ^ ..(le I ,de

- I ft9\l - - r'-dt d0 dt 2" dt 2 dt
Thus, it follows from (24) that

dAl
- 

= _tt\u^
rh 2" "

which shows that A
in equal times.

To derive Kepler's third law, we let a and b be the semimajor and semiminor axes of the

elliptical orbit, and we recall that the area of this ellipse is zab. It follows by integrating
(25) that in t units of time the radial line will sweep out an area of A : lrqusl. Thus, if I
denotes the time required for the planet to make one revolution around the Sun (the period),
then the radial line will sweep out the area of the entte ellipse during that time and hence

r6b: \r6u0T

from which we obtai[
- 4n1u1b)

Tz = ----_- t26t
r'o- ud

However, it follows from Formula ( l) of Section 12.5 and the relationship c2 = u2 - b2 fot
an ellipse that

, JFr;
Thus, b2 = a2(1 e?) and hence (26) can be written as

4n2"14 \l - c2)

,j,i
But comparing Equation (20) to Equation ( l7) of Section 12.5 shows that

k: a(l - e2)

Finally, substituting this expression and (21) in (27) yields

(.21)

4rza3 4#a3 rlu?

t24)

(2s)

changes at a constant rate. This implies that equal areas are swept out

KEPLER'S THIRD LAW

-2

-L

.,i ud "
,0 "0

,iui cu
i,1

GM
(28)

which is Kepler's third law. WhenThus, we have proved that Il is proportional to a3,
convenient, Formula (28) can also be expressed as

JCM
(2e)



ARTIFICIAL SATELLITES

EXERCISE SET 14.7

cM = 4.90 x l0rl mr/sr

GM = 4.90 x l0r knr/sl
cM= 1.73 x I0lrftl/sl
cM = t.53x 1011)nilThl

14.7 Kepler's Laws of P anetary [,4otion 885

Kepler's seconcl and third laws ancl Formula (23) also apply to salellites thiit orbit a celestirl
body; we need only interyret M to be the mass of the body exe|ting the force and ,7? to []e
the mass of ihe satclliic. Valucs of CM that are recluired in many of the formulas in this
section have been determined experimentally 1br various attracting bodies (Table 1,1.7.1).

'l'ahl€ 14.7.1

ATTITACIlNC BODY IN I LRNAI IONAL 5YS1 E]\I L]ItI I 15H E\CI\EE]{INC SYSTENl

6M = 3.99 x 10r4 m:/s2

GM = 3.99 r 105 kmr/sl
GM = 1.11x I 016 ti r/s:

GM = 121x t01l nir/lil

GM = ,1.69 x I02l fr3/sl
GM = ,1.13 x 10lr nrir/hl

Recall that for olbits of planets arouncl the Sun, rc point at which the distance between
the center of the planet and the center of the Sun is maximum is called the aphelion and
thc point at which it is minimum the 7r.r'rleliott. Fot satellites around the Earth the point
at which tlre maxinum distance occurs is called the spogee and the point at which the

m inimum distancc occurs is cal Led the p?rigee (Figure I 4.7.6). The actual distances betwecn
the centers at apogee and perigee are callcd th,.. apogee distance and thc pe,'igee distance.

Example I
A gcosynchronous orbit for a satellite is a circulal orbit about the ecluator of the Eardr in

which thc satellitc stays lixed over a point on ll're eqLLlrtor. Use the lirct $at the Eiuth mirkes

one revolution about its axis every 241]ours lo lind the altitude in miles of a eummuni!fliol1s
satellite in geosynchronous orbit. Assumc thc Earth to bc a sphclc ol radius :1000 nri.

Sttltttitttt. To remain tixecl over a poinl on thc equalor, lhe salcllile rnust have a period of
T : 24 h.It follows from (28) or (29) ard the Earth value of C,&1 = 1.2:l x l0rr mir/hl
from Teble 14.7.I thrt

and hence the altitude I ef the satellite is

It :26.252 4000 - 22.2-50 ni

CM = l.33 x l02o rrl/sl
GM = l.3l x l0ll kmr/sl

In Exerciscs that require numerical valLres, use Table 1,1.7.1

and the following values, where needecl:

radius ol Earth - 4000 mi : 6440 km

radius of Moon : 1080 mi - 1740 kn
I year (Earth lrcar) : 365 days

l. Suppose that a particle is in an elliptical orbit in a central

iolce field in rvhich dre cenler of force is at a focus, and

let rD,,n and rm.x denote the minimum and maxin'ium dis-

tanccs from the particle lo the center of tbrce. Review lhe

discuss ion of ellipses in polal coordinales in Section 1 2.5,

and show that iI the ellipse has eccentricily c and selnimajor
axis a. then Iu,;' : a( l - c) and fmr' : .t (1 + ?).

2. (e) Use the results in Exercise I to show thiit

r r\ + rdj,r

(b) Show that
1+cr.^ - rl"i,, l p
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(a) Obtain thc value of C given in Fonrula ( 16) by se ing
r:0in(15).

(b) Use Fonnulas (7). ( 17). and (22) to show that

v x b: GM[(e + cos r)i + sin Pi]
(c) Show that v X bl : lv b .

(d) Usc the results in parts (b) and (c) to show thar thc spced

ol l p.rlticlc irr.rn cll.pticrlorb.t ..

t - !\/ +licosr+lIt.
Use the result in Exercise 3(d) to show that when a pa jcle

in an clliptical orbit with eccentricity e reaches an end ol
the minor axis. its speed is

lr ,,r,- r ,i! I +t
flsc the lesult in Exercise 3(d) to show that for a pa icie
in an clliptical o|bit with eccent1icity e. the maximurn and

r,nil]inl{m spceds are reli}ted by

1+e
1-\n;,r : l)mi'r ).e

Use Formula (22) and thc result in part (d) ol Erercise 3

to show that thc speed l of ii particle in a circular olbit ol
radius r0 is constant and is given by

lr;v

l]se thc rcsult in Exercise 6 to llnd the speed in kn/s ot' a
satellite in a circulal orbil that is 200 km above the sudace
of the Earrh.

Use thc rcslLit in Exercise 6 to lind the speed in mi/h of
a colnmurications satellite that is in geosynclironous orbit
iuound the Earth. lSee Example L]

Find the escape speed in km/s lbr a space probe in a circular
orbit that is 300 km above rhe surface of the Eal1h.

The univcrsal gravitational constant is approximately

G : 6.67 x l0 rr mr/kg.s2

and the semimajor axis ofthe Earth s orbil is approximately

a-l496r106krr
Estimate the mass of the Sun in kg.

(a) The eccentricity of the Moon's orbit liround rhe Earth
is 0.055, and its semimajor axis is a : 238,900 mi.
Find the maximun and minimum distances between
tl're surface of the Earth and the sLuface of the Moon.

(b) Find the period ofthe Moon's orbit in days.

(a) Vangudid / was launched in March 1958 with perigee
and apogee altitudes above the Earth of 649 km and
,1340 km. respectively. Find the length of the semima
jor axis of ils orbit.

(b) Use the lesult in part (a) ol Exercise 2 to ilnd rhe ec

ceniricity of its orbit.
( ) Find tlre perinci ot lattquorJ I tn minul(\.

(a) Suppose that a splice probe is in a circular orbit at an

altitude ol 180 mi above the surface of the Earrh. Use
the result in Exercise 6 to find its speed.

(b) During a very short period ol time, a thruster rocket on
the space probe is f,redto increase the speed oftheprobe
by 600 mi/h in its direction olmotion. Find the eccen-
t city ofthe resulting elliptical orbir, and use rhe result
irr pa (b) of Exercise 2 to f,nd rhe apogee allitLLde.

Show that the quantity e defined by Fomula (22) is nonneg-
ative. [Hrl?1. The po]ar axis was chosen so that /- is minimun]
rvhen d - 0.1

9.

t0.

11.4.

t2.

7.

14.

l. In words. what is Deanl by the griiph of a vector-valued
lunclion r(r)?

2, Dcscribc thc graph o1 thc vcctor-valued lunction.
(a) r:h+r(rr -ro)
(b) r: ro + t(rr - ro) (0: I : 1)

(c) r: r{r + Ir'(/o)

3. In words, describe whirt happens geometically to r(a) if
lim r(/) - L.

4. Suppose that r(r) is the position lLrnclion ol a panicle mov
ing in 2-space or 3-space. In each part, explain what the
given quantity represents physjcally.

State the delinition of 'curvature" and explain what it means
geometrically.

In Supplementary Exercise 36 01 Chaprer 12. rve defined
the Comu spiral parametrically as

This curve, rvhich is graphed in the accompanying ligure, is
used in highway design 1o create a gradual transilion from a

straight road (zelo curvatule) to an exit ramp tvith positive
curvature.
(a) Express the Comu spjral as a vector-valued function

.(r). and then use Theorem 14.3.3 to show that s : t
is the arc length parameter with r-eference point (0,0).

(b) Replace I by.\ and use Formula (l) of Section 14.5 to
show that r(.!) : z s . LNoler If s I 0. then the curva

7.

, I .0.( r1,,, , -f .',,(=r) ,,,

@) f ot l,' * dt (c) r(,)

Suppose that r(r) is a smooth vector-valued function. State

the dcnrritiorrr olTtrl N1r1. rnd B'r1.



ture ((.\ ) = 7I.! incrEases from 0 at a constanl rale with
respect to.r. This nlakcs the spiral icleal for.joining a

culved Ioad lo a straight road.l
(c) What happens ltl the cuwatule ol the Cornu spiral as

.r --+ {a'l In words. explaio why this is consistent with
the graph.

SupplementaryExercises 887

If a particle ol nass rr hirs unitbrm circular ntotion (see Ex
ercise 9), then the acceleration veci(n a(l ) is called the cen-
tipetal acceleralion Accorciing to Newton's second law.
this acceler-aljon r]'rust be producecl by sonie fbrce F(1).
c.\llcd tlle centripetal force, that is reldted ro a(/) by the
eqoation F-(/) : rra(l).lfthis lbrce is i'tol presenl. ll'ren rhe
p.rrlirle cinnnl underpu unihrrrrr ciriulrrr rnotron.
(a) Shoq,that the dircction ol the ccntripetll lbrcc varies

widr tirne but that it has constant lnasnitude F sivcn bv

(b) An astronaul r.ilh a mass ofrr : 70 kg orbits the Earlh
nt un altitude of l! - 3200 klll with a constaDt spccd of
r. : 6.5 km/s. Find her centripctal accclcration assunr
ing thal the radius of the Eadh is 6440 knr.

(c) What centripetal gravitational lbrce in ne\\rloni does the

Eilfih exeff on the astr-onaut'l

ll, (a) Sho\\, that thc graph of the vector'-vtlued fimclion
r(/): r sin rli +tj+/cosffklicsonthesurfaceof
a cone. and sketch the cone.

(b) Find parametric equations fbr the ill(etseclion of fte
sulJnccs

r'- r- anrl l\ r' I r).-l : 14

and skctch thc intersection.

12. Sketch the eraph ofthe Yector-valued I'unction that isdelined
picccwisc by

1r,i 0l/l+
I1r'-l't .{r,i ,.1/ t,.i. l:rsi
[,,t /,.i isrst

Suppose that the position fllnction ol r point r'r'roving in the

.u'p1ane is

r:r(t)i + r'(t)j

This equation can be expressed in polar coolclinatcs by mak
ing the substitulion

r(I) :,.(t)cosA(.). 1(t) : /.(/)(inA0)

This yields

r : , (. ) cos a(1)i + ,-(r ) sin {, (r ).i

rvhich can bc expressed as

r : rft )e, (/)

where e, (1) - cos6(t)i + sintl(r),i.
(a) Show that e, (1) is a unit vector that has the srme di-

reclion as the radius vector r if r(t) > 0 and that
err(1) - sinB(1)i + cosd(t)j is lhc unit vector that
resLrlls when e,.(l) is rolatecl counlerclockwise through
an angle oi n/2. The vector e,. (/ ) is callcd thc /.rdidl
unit wctor. ard the \eclor c, ( / ) is ca llcd tlre lr44srelse
rrr,i/ veclo/ (scc the accompanl,ing l)gure).

10.

R

tt_ (a) What does Theorem 14-2.7 tell yoLr aboLrr thc vclocity
veclol ol I piirticle that moves ovcr a sphere]

(b) What docs Theorem l:[.2.7 tell you about thc accclcro-
ti(nr vectorol'a particle lhat moves with constant speed?

(c) Show that thc pa,liclc with position fuiction

rtr)= \ I j.',.:,-o.1; Ut, ..".rr 'rr rj l..r.rk
noves over a spherc.

As illustlirted in the accoDpan)'ing figure. suppose thitt ir

particle rnovcs counlcrclockwise around a circle oi raciius

R qentcrcd at the origin at a constant rafe of ro radians pcr
seconcl. Tlris is called rray'olra circular rnotion. ll \re as-

srme thilr lhc pirrticlc is at the point (R,0) at time t : 0.
then its position lunction will be

r(/): R cos (rti + R sin (l)/j

(a) Show thit thc velocity vector v(t) is alwrys tangent to
the circle irnd thal tlrc pa icle has constrnt speed I given

by

(b) Show thal lhe tcceleration vector a(/ ) is aiways direcled
towald thc ccnler ol'lhe circle and has constanl tlllgni-
tude (l givcn b),

a : Ro2

(c) Show th the tiIne T rcquired fbr the particle to r)rlke
one conplete revoluliotr is

2:t 2tr R

(d ll

Figure Ex 7

9.

13.

Figure Er I
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(c)

Show that the velocity iunction y : v(a) can be ex-
pressed in tenns of radial and transverse components

dr de\': e, +/ _ e,
Llt dI

Slrow that the acceleration function a - a(t) can be

expressed in terms ofradial and transvcrse componenis

Figure Ex- l3

As illustrated in the accompanying ligure, the polar coordi-
nates of a rocket are tracked by radar hom a point that is ,
units from the launching pad. Show that the speed u of the
rocket can be expressed in tenrs b. A. anrl dA /dt as

. da.r-hsec'0
dt

i
'1

)
dJ

-h 
-

Figurc ts{ l:1

Find the arc lengtlt parametrizalion of the line through
P(-1,4. 3) and O(0, 2, 5) that has reference point P and
orients the line in the diredion tiom P to O.
A player throws a ball with an initial speed ot' 60 ft/s ar an

unknown angle a with the horizontal from a point thal is 4
fl abovc the floor Given that the ceiling of the gyrnnasium
is 25 ft high, determine the maximum height ft al which the
ball can llit a wa1l that is 60 ft away (see the accompaDyirg
flgure).

60 ft ." -
Figure Ex-16

Find ali points on the glaph of r(r) - lri + lO/j + 5r2k at
\a,hich the tengent line is peryendicular to the tangent line

Solve the vector initial-value problem

dr
. -r. r(0) :ro

dt
for the unknowD vector-valued funclioo r(r).
At time t - 0 a particle a1 the origin of an ,rl:,coordirlate
systenr has a velocity vector of v0 : i + 2j - k. The accel
eration function of the particle is a(r) : 2t2i +j + cos 2ik.
(a) Find the position function of the particle.
(b) Find the speed ol the particle at time I - l.
Let v : v(r) and a : a(r) be the velocity and accel
eralion vectors for a particle moving in 2-space or 3-space.
Show that the rate of change ol its speed calt be expressed

d1
.(\l):_(v.a)ll \ |

15.

16.

(b)

I t-, , ,le ,:1 I d a rt, .tc1

"- lr, '(r,J]" l'r, tii)".

17.

14.
18.

19.

]. 6oft '. *
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QJ n this chapter we will extend many ol the basic

concepts ofcalculus to functions of two or more variables,

commonly called functions of "several variables." We will
begin by discussing limits and continuity for functions of
two and three variables, then we will define derivatives of
such functions, and then we will use these derivatives to

study tangent planes, rates of change, slopes of surfaces,

and maximization and minimization problems. Although
many of the basic ideas that we developed for functions of
one variable will carry over in a natural way, functions of
several variables are intrinsically more complicated than

functions of one variable, so we will need to develop new

tools and new ideas to deal with such functions.

.'"-**-.
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NOTATION AND TERMINOLOGY

15.1 Ft"!$UCTlOlVg SF ?141S ilffi ,x/nORE VfqRN$-BLfis

In previous sections we studietl reaL-valued.functions of a real variahle and vector
valued fwtttions ol a real variable. In this sedion we will consitler real-valued Junc
tions of two or more real yari.ttbles.

There are many familiar formulas in which a given variable depends on two or more other
vadables. For example, the area A ofa triangle dcpcnds on the base length, and height ft by
the formula A : ;rr; the volume V ofa rectangular box depcnds on the length l, the width
ur, and the height /r by thc formula V : I ulr; and the alithmetic average i of n real numbers,

'Il, x2, . . . ,.r,,, depends on those numbers by thc lbrmula t : (-rl +x2 +. . .*,t,)/n. Thus,
we s.Iy th.rt

A is a function of the two variables b and /r:

V is a function of the three variables /, u, and h;

-i is a function of thc n variabies ,r1. 12, . . . , x,,.

Thc teminology and notation for functions of two or more variablcs is similar to that
for functjons of one variable. For example, the expression

z - /(x, ))
means that z is r function ofr and l, in the sense that a unique value ofthe dependent variable
z is detemined by specifying values fbr the independent variables r and ). Similarly,

w - f (x, y, z.)

expresses r0 as a tunction ofr, y, and;, and

4: f(x1,x2,...,x,,)
expresses r as a function ofrr,x2,..., an.

One can think ofa tunction f of two or more variables as a computcr program that takes
two or more inputs, opemtes on those inputs, and produces an output (Figure 15.l.l). tn
this section we will only be concerned with functions whose inputs and outputs are real
numbers. One can also think of such functions in more geometric terms. For example, if
r : l(r.,y), then we can view (r, l) as a point in the -ry-plane and think of f as a rule
that associates a unique numerical valuc: with the point (r, I,); similarly, we can think of
ur = /(-r,,rr,;) as a rule that associates a unique numerical value u with a point (x, ), :)
in an ,r_rrz-coordinate system (Figurc 15.I .2).

[, prt -r )./

lnput l '

Colnputer
Program

Ql'et)

lnput -r

h,pri ]

lrput .

Computcr
Program

0utput u

lnput nl

llprt -t,

Computer
Program

Ortprtlr)

Figurc 15.1.1

As with f'unctions of one variable, the inputs of a function of two or more va ables may
be restricted to lie in some set D, which we call the domain of /. Sometimes the domain
will be determincd by physical restrictions on the variables. If the function is delined by a
formula and ifthere are no physjcal restflctions or orhcr restrictions stated explicitly, then it
is undcrstood that the domain consists of all points fbr which the formula yields a rcal value
for the output. We call this tlrc nstural domain of the function. The following definitions
slrmmaize this discllssion
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Figure 15.1.2

The solid boundary line is

included in the domain.

15.1,1 DEFINITIoN. A function f of two vari.ables, x and y, is a rule that assigns a

unique real number /(.x , y) to each point (r , y) in some set D in the ,r1,-plane.

15,1.2 DEFINITIoN. Afunctionf of three varfuiblcs, x, y, and z, is a rule that assigns

a unique real number /(r, ), z) to each point (x, y, z) in some set D in tfuee-dirnensional
space.

REMARK. In more advanced courses the notion of "n -dimensional space" for n > 3 is
defined, and a functian f of n real varinbles, x7,x2,...,x,, is regarded as a rule that
assigns a unique real number /(.x1, -rz, ...,,r,) to each "point" (xr, xz, ..., r,) in some set

in n -dimensional space. However, we will not pursue that idea in this text.

Example 1

l-,et

f(x,y)--3x2Jt-1
Find /(i, 4), /(0, 9), f (t2 , t), f(ab,9b), and the natural domain of /.

Solution. By substitution

f(1,4):3O)2.,t4 I :5
f(o,e):3Q)2Je - 1 : 1

Ir./. : 3rr212 { - I : 3r4,fi - |

f(ab, gb) : 3(ab)2 J96 - r : gazuzJo 1

Because of tle radical .uf in the formula for /, we must have y - 0 to avoid imaginary

values for /(x, y). Thus, the natural dornain of / consists of all points in the;qr-plane that

are on or above the.r-axis. (See Figure 15.1.3.)

Example 2

Sketch the natural domain of the function /(,r, y) : ln(r'? - y).

Solution. ln(x2 - y) is defined only when O < x2 - y or y < .r2. To sketch this region,

we use the fact that the curve y : x2 separates the region where I < 12 from the region
where y > .x2. To determine the region where y < 12 holds, we can select an arbitrary

"test point" off the boundary y : ;r2 and determine whether y . x2 or y > .x2 at th€ test

point. For example, if we choose the test point (r, y) : (0, 1), then .r2 : 0, y : l, so this
point lies in the region where y > ;r2. Thus, the region where y < .{2 is the one *lat does

not contair the test poirt (Figure 15- 1.4).

Fieure 15.1.3

The dashed boundary does

not belong io the domain.

Fisure 15.1.4
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Example 3
Let

f(r,y,d:$ t2-y2-zz
Find / (0, |, -l) and the narurat domain of /.

Solution. By substitution,

GRAPHS OF FUNCTIONS OF TWO
VARIABLES

(l)

f (0, i, -l) :,h - roy -6 - F* : It
Because of the square root sign, we must haveD 3 I - x2 - y2 - z2 in order to have a real
value for /(r, y, z). Rewriting this inequality in the form

x'+y2+2231
we see that the natural domain of / consists of all points on or within the sphere

,2+y2+22=l

Recall that for a function / of one variable, the graph of /(x) in the.ry-plane was defined

to be the graph of the equation ) : /(r). Similarly, if / is a function of two variables, we

definethe gmph of /(x,y) in ryz-space to be the graph of the equation a = f(x,y).ln
general, such a graph will be a surface in 3-space.

Example 4
ln each part, describe the graph of the function in an ryz-coordinate system.

(a) ,f(r, y) : t - , - lt (b) /(.r, y) :
(c) "f(x,y) 

: -F$
Solution (a). By dennition, the graph of the given tunction is the graph of the equation

z:r-x-iy
which is a plane. A triangular portion of the plane can be sketched by plotting the intersec-

tions with the coordinate axes and joining them with line segments (Figurc 15.1.5a).

(a, (b) (c)

Solution (b). By definition, the graph of the given tunction is the graph of the equation

z = \n - x'? -P
After squaring both sides, this can be rewritten as

t'+y2+zz:l
which represents a sphere of radius 1, centered at the origin. Since (1) imposes the added

condition that z : 0, the graph is just the upper hemisphere (Figure 15.1.5b).

Solution (c). The graph of the given function is the gaph of the equation

Figurc 15.1.5

z:-Jxzarz (2)
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Wire Frame
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Aftel squaring. we obtain
)))

which is the equation of a circular cone (see Table I3.7. I ). S ince (2) imposes the condition
that:l()'thegraphisjuStthe1orvernappeofthecone(FiguIc15'1.5.).<

Except in the sin.iplest cases, graphs of functions of two viiriables can be difficult to visual-
jze without lhe help of a graphing utility. CAS programs have extensive suface-graphing
capabilities, as do many commercial conputer prograns specifically designed for this pur-

pose. In addition, many newer graphing aalculalors incorporate surlace graphing t'eaturcs.

Table l5. L t jLlustrales various ways that graphing iechnology can be usecl to rcprcsent thc
glaph of a function of t\\,o variables. The table shows six typical graphical representations

ofthe function /(r. r') = cos x sin ,r' over tire donain 0 : ,! : z. 0 :: J a2n.

Trhle l5.l.l

SI,TRF,\CE IJLS('ItIPIION

. Coloration by Hcight

The sudacc is tbrned fuom

[resh lines. Transparcncy
allows the esh in the back

to be seen through the
nlesh in fr'ont.

The regions cnclosed by
the mesh lincs have an

opaque white 1lll, and the

surlace is drawn tiom back

to fiont so thal the nresh ir1

back becornes hiclden.

The opaque surfacc is
colorized b) sjnlLrlating the

etTecl of colored lights
shininS on the surlace fronl

Lanclscrpe Style

Thc surface is cololed by
heighl jlr ir spectrum liom
bluc at the lowest points to
red at the highest points.

This is celled "lelnperatur-e
(iolorrlion'

Thc opaque sur-face with no

nesh lines is colorized by
siJrlulating the effecl oI
colored lights sl'rining on

Paillted Faces

'&; J

the surface fior! ccrtain
positions.

The regions enclosed by
the mcsh linc on the 'top"
and "botlorn'faces of thc

surtace arlr painled wilh
clilferent solid colors.

We are all familiar with the topographic (or contour) maps jn which a three dimensional

landscape, such as a mountain range, is represented by t\\"o-dimensional contour lines or
curves of constant elevation. Consider, lol example, fie model hill and its contour nlap

shown in Figule 15.1.6. The contour map is constructed by passing planes of colstant
elevation through the hill. projecting the resulting conlours onlo a flat suface, and labeiing

LEVEL CURVES
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the contours with their elevations. h Figure 15.1.6, note how the two gullies appear as
indentations in the contour lines and how the curves ale close together on the contour map
where the hill has a steep slope and become more widely spaced where the slope is gradual.

6

g)
!+
42
El

A perspective view of a model
hil' wilh two gullies A contour map ot the model hill

Figure 15.1,8

Figure 15.1.6

Contour maps are also useful for studying functions of two variables. If the surface
z : f(x,y) is cut by the horizontal plane z : ,t, then at all points on the intersection we
have /(x, y) : &. The projection of this intersection onto the xy-plane is called the level
cume of height k or the level cume with constant k (Figure 15.1.7). A set of level curves
for z : /(.r, y) is called a contour plat or contour map of f.

Example 5

Thegraph ofthe function /(-r, )) = y2 -x2 inryz-spaceis thehyperbolic paraboloid (saddle
surface) shown in Figure 15.1.8a. The level curves have equations ofthe form y2 -.r2 = t.
For t > 0 these curves are hyperbolas opening along lines parallel to the y-axis; for t < 0
they are hyperbolas opening along lines parallel to rhe.r-fiis; and for & = 0 the level curve
conSistSoftheintersectinglines}+j:0andy_x:0(Fi8urel5.1.8b)'<

(a) (b)

Example 6

(a) Sketch the contourplot of /(r, y):4.r2 + y2 using level curves ofheight t = 0, 1,2,
3,4,5.

(b) Sketch the contour plot of /(x, y) : 2 - -r - y using level curves of heightk : -6,
-4, -2,0,2,4,6.

Solution (a). The graph of the surface z = 4x2 + y2 is the paraboloid shown in Fig-
ure 15.1.9, so we can reasonably expect the contour plot to be a family of ellipses centered
at the origin. The level curve of height t has the equation 4.r2 -l- f = k.If k = 0, then the

Figure 15,1.7
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Figurc 15.1.9

graph is the single point (0, 0). For i > 0 we can rewrite the equation as

xz \2

- 
f 1:l

k/4 k

which represent\ a family otellipses \ ith x-inlercepls -rlk/2 and y-intercepts +/k. The
contour plot for the specifled values of ,t is shown in Figure 15.1.10.

Solution (b). The graph of the surfacez:2-x yistheplaneshowninFigurel5.l.ll,
so we can reasonably expect the contour plot to be a family ofparallel lines. The level curve
ofheight fr has the equation 2 - r - ) : t, which we can rewrite as

y:-x*(2-k)
This represents a family of parallel lines of slope 1. The contour plot for the specified
values ofl is shown in Figure 15.1.12.

CONTOUR PLOTS USING
TECHNOLOGY

Except in the simplest cases, contour plots can be difficult to produce without the help
of a graphing utility. Figurc 15.1.13 illustrates how graphing technology can be used to
display level cuwes. The table shows two graphical representations of the level cur,'es of
the function f(x,y) : lsin"r sinyl produced with a CAS over the domain 0 : .r : 22,
0 

= 
y 

=2tr.

Observe that the graph of 1, : /(x) is a curve in 2-space, and the graph of z : /(r, y) is
a surface in 3-space, so the number of dimensions required for these graphs is one greater

than the number of vadables. Accordingly, there is no "direct" way to gmph a function of
tbree variables since four dimensions are required. However, if L is a constant, then the
graph of the equation f(x, y, z) : & will generally be a suface in 3-space (e.g., the graph

of x2 + y2 * z2 : 1 is a sphere), which we call the level surface with constant k. Some
geometric insight into the behavior of the function / can sometimes be obtained by graphing

these level surfaces for various values of t.

Figure 15.1.10

Figure 15.1.11 Figure 15.1.12

LEVEL SURFACES
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FiSUre 15. l.I l

ItFl\1,\ltK. The tenn "level surlace" is standard but confusing, since a level sur-fnce need
/?r1 be level in the sense of being horizontal; it is simply a suface on which all values of /
are the sane.

Example 7

Describe the level surfaces of

(a) l(r. -r,:) :.rr + t,2 +:r (b) /(-r,,-. r-) -:2 -rr - 1.2

Sttlutirnt (o). The level sufaces ltave equatiols of tlte ibrm

.r2 + l2 +.? : ft

For i > 0 the glaph of this ecluation is a sphere of rrdius ..,4, rcntcred at the origin;
lor k : 0 thc graph is the sirlgle point (0.0.0); and for,t < 0 there is no level surface
(Figurc 15.1.14).

Solution (bJ, The level surfaccs have equations ol the fornr

:2 .rl .ir:k
As discussed in Section 13.7, this equation represents a cone il,t - 0, a hyper.boloid of two
sheetsif,(>0,andalryperbo1oidofoneSheetifk<0(FiguIel5'1'l5)'<

larol SL td, o oi -e,e r-r a e, o

l(.r, r.:) = -\r + r'l + -l l(.r,),:)=:2 ; lr

(<0

F lurr l-s Ll+ Figurc I5. l.l5
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Generating surfirces with a graphing utility is mole complicated than generating plane curves
because there are more factors that must be taken into account. We can only touch on the
ideas here, so if you want ro use a graphing utility, its documentation will be your main
source of inlbrmation-

Graphing utilities can only show a portion of -U:-space in a viewing screeo, so the lirst
step in graphing a surface is to dctemine which potion of-r1:-space you want to display.
This region is called the viewing window or viewing bor. For example, the lirst row of
Table 15.1.2 shows the effect of graphing the paraboloid : = 12 + )2 in thrce different
viewing windows. However, within a lixed viewing window, the appearance of the surface

is also affected by the viev'point,thatis,the direction from which the surface is viewed. and

the distance fiom the viewer to the sudace. For example, the second row of Table 15.1.2

shows the graph of the palaboloicl :. : ,2 + ),2 from three different viewpoints usjng the

viewing window in the first part o1'the figure.

Tahle l5-1.2

10

:5

2t)

; t0

0

I ott tFih rtlr,\r)lR. If you have a gmphing utility that can Senerate sufaces in 3 space,

read the documentation and try te duplicate Table l5. L2.

I()R TIIE RE,\DEli. Table 15.1.3 shows six surfaces in 3-space. Examine each surface

and convince yourself that the contour plot describes its level curves. This will take a lit1le

thought because Lhe nesh lines on the sudace are traces in vettical planes, whereas the

level curves are traces jrl horizontal planes. ln these contour plots the color gradation is
from dark to light as : increases. If you have a graphing utility that can generate surfaces in

3-space, try to duplicate some of these figures. You need not match the colors or generate

the coordinate axes.
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lhble 15.1.3
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Exerciscs I 8 arc concemed with functions of two variablcs.

1. Let /(r. -v) : r:) l-l.Fiod
(a) l(2, I ) (b) l(1. 2) (c) l(0. 0)

(d) /11, 3) (c) l(3a,a) (t) Jkb,a b).

2. Let l(.Y, ,r) : .! + Vt. Find

5. Find F(g(-r).lz(1)) if F(r,)) - -r"'r, 8(r) : -rr, and
It(.i,) : 3y 1 1.

7.

Find g(u(.r, )), u(.r, r')) il.g(r, r) : y sin(r2]),
r.r(r, r) :,1lyl,and u(.r. 1) - 7-1-y

Let /(-r. y) : -r * 3-r2tr, r(t) - lr, and -r(r) : t:r. Find
(a) .l(-r(r), .!(t)) (b) .l(r(0). r(0))
(c) /(.r(2), )'(2) ).

8. Letg(-t,-v):},c r', r1r1 : ln(rr+ 1), and yG) - v{.
Find s(-r(I), r(r)).

(.t) J Q, t2) (b) l(.r, .r2) (c) .f (2\'2,11.

Lct/(.r,l):.r) + 3. Find
(a) .l(-t * 1. -r - y) (b) .l('r,3.2-vr).

Let 8(,v) - -t sin,t. Find
Exercises(a) g(.r/-v) (b) g(.rr') (c) s (,r - -\').

9-12 involve functions ol thrcc variables.



9. Let f(,r, y, z) : ry2r3 + 3. Find
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31. . :.r2+))2i t :0, I,2,3,4
32. z.-ylx; k= 2, 1,0,1,2

33- z.:12+),t k: -2, -1,0, 1,2

34. z:x2 l9t2 k:0, 1,2,3,4

35. z:x2 -t2. k: 2,-1.O.1.2
36. ;: l cscr; k:-2,-1,O.1,2

tl Ur:i:l:"r,-U, skelch the level surface f(r, y, z) :*.

37. f(r,y,z):4x2+y2 1472 k:16
38. /(r, y, tr) - ,' + y' - z2; k :0
39. f(x,y.z):z-x2 - y2 +4: k:7
40- f(x,y,z.)-ly )y17 k-l

(a) f (2, t,2)
(c) l(0,0,0)
(e1 f Q, t2 , -t)

(b) /( 3,2, 1)

(d) f(a, a, a)

(f) f(a -l b, a - b, b).

10. Let l(ir, ), z) : ;r) * r. Find
(a) l(r + ), -r ), ir2) (b) /(r), y/-r, x:).

11. Find /r( /("r), g(l), r(.)) ii r(r, -y, .) : 1e'rz,;r(x) : ,r2,

8()) - ! + l, ancll(;) : 12.

12. Find g(a(x,1, z), r'(r, l. z), u(r, y,:)) if
g (-r, y, z) : z sin.r-y. a(*, ), z) - r2r3, r(r, J, ;) - zr)':,
and u(r, Y.7) :11/;.

Exercises 13 and 14 are concerned with functions oflbur or
morc vadables.

13.

14.

(a) Let f(x, ), ?, 1): x2!34Vlt.
Find f(J5.2,r,3n). 

,,

(b) Let l (rr. 12,...,.r,,1 : lt-,r1.
Find /(1, 1,..., 1). t=r

(a) Let f(u. u, L.4): e'+'cos I tand.
Find.f ( 2,2,0, r/4).

(b) Let/(x1,,v2,...,.r,,):-ti +x;+ + x1,.

Find/(1,2,...,n).

In Exercises 41-44. describe the level surfaccs in words.

41. f(.Y, ),i) : G - 2)2 + !2 + 2.2

42. fO.,r,z)-3x- !l2z 43. /(jr, 1,, r) : .r2 +.2
44. f(x. y. z) : z x2 )2

45. Let/(-r,;,)-12 2jrr +3.r). Find ancquationofthe level
curve that passes through the point
(a) ( 1. 1) (b) (0,0) (c) (2, 1)

Let /(r., J) - ye'. Find nn equation ol'the level curve that
passes thJough the point
(a) (1n2. 1) (b) (0,3) (c) (1. 2).

47. Let /(r, ), r) : x2 + ),) ... Find an equation ofthe level
sLlrface that passes through the point
(a) (1, 2,0) (b) (1,0,3) (c) (0,0,0).

Let /(r, ),.) : n)r + 3. Find an equation of the level

surface that passes through the point

InExercises 15 18, sketch thedomainof/. Usesolid lines for
portions of the boundary included in the domain and dashed

lincr lor F'r'tions not ittcludetl.

15. /rr.1r-lnrl-.r' \') 16. /{.\.)r-"4':f t-l

t7. f(x, y): 18. l(r, Y) : l1;Y

ln Ercrcises l9 and 20. dc.crrhe,r,"i.rrlli" of / in words.

19. (a) f(x, y) - aa 't-+1
rb) /{.r ).. r yfr r - u'
(c) l(r. ),:) : e'"'

J4,P
20. (a) /(\.]): lb) /(r, -v) : ln(./ 2r)

t2 +3
(c) f(\, y, z) : II

r+l+z
In Exercises 21 30, sketch the graph of l.

21. f(x, Y) :3
23. f (r,i: ET y'z

25. |Q,y\-"t -f'
27. f(x,y): rFlT u
29. f(x,y):t+l

22. f(x.y)-Jg f -y2
24. f(r. y) : ,' + J'
26. f(x,l) : 4 12 !2

28. f(x, y): vtt +ltl
30. /(r, r') : x2

lf f (,r, )) is the temperature ar apoint (jr, )) on athin metal
plate in the -ilt-plane, then the level curvgs ol'T are called
isothermal curves. Allpoints on such acurve arc at the same

temperature. Suppose that aplate occupies the first quadrant

and 7(r, y): -ty.
(a) Sketch the isothermal curues on which T : I, T : 2,

andT:3.
(b) An ant, initially at (1, 4), wants to walk on the plate

so that the temperature along its path remains constant.
What path should the ant take and what is the temper-

ature along that path?

If y(,v, )) is the voltage or potential at a point (r, )) in the

,ry pfane, then the level curves of y are called equipote tiql
crrres. Along \uch i curve. the roltage remuinj conslanl.

Given that

(a) (1,0.2) (b) (-2,4, l) (c) (0.0,0).

v (.r. 1) :
/t6+12+y2

48.

49.

In Exercises 31-36, sketch the level curve a

specified values of k.
sketch the equipotential curves at which V :2.0, V -
and Y :0.5.

50.

1.0,
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51. In each part, match thccontourplot with one ofthe functions 53.

./(-., r) : ,(:JlJ, ./(ir, r) : .rr + -r'2.

.l(r,l) : l -.tr - l':
by inspection, and cxplain your reasoning. The larger the
value of:. the lighler the color in the conlour plot, and the

contours correspond to equally spaced valucs of;.

52. In edch part, match the contour plot with one of the surfaces

in the accompanying figure by inspection. and explain yout'

reasoning. The largcr the value ol;, the lighter the color in
thc contour plot.

(a)

(c)

(b) :

!0

rJr

r'0

In each part. the questions reler to the contour map in the
accompanying ligure.

'a) l{ A or B thc higher point? E\pldin )oLrr re,ironin!.
(b) Is A or B on the stceper slope? Explain your reasoning.
() Stuninp at A lnJ moring ro rhlt l rcrrrinr constant

and r incrcases. will the elevation begin to increase or
decrease?

(d) Stilning at B and rnoving so lhll l remuins constant
and.r increases. will the elevatioD begin to increase or
decrease?

fe) SIJling ul A :ind mo\ing ro lhll .ri r(mirinr const:rnl
and t dccreases, will the elcvation begin to increasc or
decrease'l

(f) Slafline lt I lntl rnoving ro thrt.\ rernirin\ collslaDt
and -r decre ses, will the elevation begin to increasc or
decrease?

"M
W
@reol6

'L Tvp\rq
XIX'2 0 :

Figure Ex 5l

54. A curve connccting points of equal atrnospheric pressurc

on a weather map is called an riaDar. On a typical weather

map the isobars reter to pressure at mean sea level and ale
given iD units of rr i/rircls (mb). Matheulatically, isobars are

level curves lbr the pressure iunction /r(.r, )) defined at the
geographic poinls (,r.,}') represenled on the map. Tightly
packed isobars correspond to steep slopes on the graph of
the pressure function, and these are usually associated with
strong winds-the stceper the slope. the greater the speed

of the wind.
(a) Refeuing to the accompanying wcrfhermap, is the wind

speed Sreater in Calgary or in Chicago? Expldn your
reasoning.

(b) Estimate the average rate ofchangc in atmospheric pres-

sure fronr Calgary to Chicago, givcn that the distanca

between the cities is approximutcly 1600 mi.

o6

(lll)

Fisure Ex 52 FiEure Er 5{



Fl ss.

E s6.

E s7.

Lct /(.!. -I) : rl + tl
(a) Usc a graphing utility to generate the level curve that

passes throlLgh the pojnt (2. 1).

(b) Generatc thc level curve ol height l.
Let.f(.r..1) : 2,/5r.
(a) Use a graphing Lrtility to genelale the level curve that

passes through thc point (2. 2).
(b) Generate the Lc\,el culve of height 8.

Let.l(r, -r) - 14 r'r ':r.
(a) Use a CAS to generatc the grapl] oi./ ior 2 : .r : 2

and 2: l :2.
(b) Generate a contour plol lbr the sLrfacc, and conhlm

visually that it is consistent $'ith thc suface obtained

in part (a).

(c) Read the appropriate documcnlalion and explore the

effcct of generating thc glaph of I f|om various view-
points.

(d) Rcad lhe appropriate docurrenlalion rnd generatc thc

surJace in differcnt styles. as in Table 15.1.1.
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Let /(.r. !) - frd sin -r'.
(a) Use a CAS to genelate the graph of I for 0 : -{ : 4

and0: r:2tr.
(b) Gcncralc a contour piot for the surface, and conlirm

visuall)'that il is consistent \\,ith the surfacc obtained
in paft (a).

(c) Rcad thc appropriatc documcntatioD ancl explore the
effecl of generaling the -ulaph ol .l fi-om various vicw
poirlts.

(l) Read the appropriate documentation and generate the

suface in di1'lelent stlles, as in Table 15.Ll.

In each palt. describe in worcls how ihe graph oi g is related
lo lhe grrph of /.
(a) g(.t. i):.1(.r l, r) (b) S(r, r'): Ii.l(-r..r')
(c) 8(r. 1) : /(t. r + l)
.J skelcn tne gli,J'h ol r, ,. r 

'

(b) ln this prfi, describe in.rvords hou,the -sraph of the
function 8(-r.,\') : c d{\- I r is related to the graph of

/ for positive values of a.

E s8.

59.

60.

15.2 | tll.,:1i|, :".::, ti,t,: ; :' .' tt'.!t ) i.';.;,.i: ":' )

OPEN AND CLOSED SETS

A boundary '
poirt

An inierior' polnt

Fig re 15.2.2

ln this.section n'e vill introtluce th( ttotioils oJ lintit atrl conlin it) lor.fLtn.tions ol
ttlo ot t11orc tariables. Wc v,ill not go itlto gt(dt dctail tur ohj(ti\c i.t to clctclop
the busiL: rot'LLepts Llrcurdtcb drttl lo obtuirt results ncetlecl itt lutcr scctiotts. A ntore

e ensite studl oJ these topics l.r rrsanl/,r'gnerr itt athantetl utltulus.

In our study of functions of one viuiable, the domains of the functions we encountercd were
generally intelvais. Folfunctions of two or tliree valiables dre silualion is more cotrrpLicated,

so rvc will need to discuss some terniinology about sets in 2 space and 3 space that \!iLl
be helpful when we want to accuratcly dcscribe lhe donain of a function of two or thlee

variablcs.
lf l) is a set of points in 2 spirce, then a point (-tn. \i) is called aD interior point of D

if thcrc is soiire circular disk with positive radius, ceotered at (-tn. r1), and containing only
poirtsin D (Figurc 15.2.t).Apoint(-r{r. r'0) is callcd a,otrrdar! poitl of l)\f l;r'erlci1cu!f,1

disk with positive radius and cenlered at (-r0.1I) contains both points in I) and points not
in D (Figule 15.2.l). Similarly. if D is a set ofpoints in I space, then a point (.t{r, )1),:0J is

called an interior poinl of D if thele is so,rie spherical ball with positive radius. centered at

(.rp. -r'11.:x), and containing only points in D (Figure 15.2.2). A poitit (-te, -t'0. .x) is callecl a

boundory pointol D iIclert spherical ball *ithpositivc radius and centered at (,r0.11,:o)
contains both points in D and points not in D (Figure 15.2.2).

For a sct , in either 2-space or 3-spacc. the set of ail boundary points of D is called the

bourulary oI D and the sct of all intetior points of D is callecl the interior ol D.
Recall that an oper ioterr'al (d. /r) on a coordinate line coltains fieill?rl itf its enrlpoinls

and a closed intelval fri. b] contains botlr of its cndpoints. Analogously, a set /) in 2 sprce

or 3 space is callecl open if jt contains /?ore of its boundary points and clossd if it contains

all of its boundar-v points. The set I) of all points in 2-space has no boundary points; it is
regrrdcd as both open and closcd. Similarly, the set D of all poinls in 3-space is both open

and closed.

A boundary

Figtrrc 15.2. I
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Example 1

Let D be the set containing points in the -ry-plane that are inside or on the circle ofradius I

centered at the origin. The sot D, its interior 1, and its boundary I can be expressed in set
notation as

D: {(r, _r.) : .t: +.r'l S l}. 1: {(,t.r):xr+,r'l .l}, B: {(r,,r.):.r2+ r.2:l}
reSpectively(Figurel5.2.3).TheSetDiscloSedandtheSet1iSopen.<

I t-,

Figure l5.2.3

..1 +rl< l

BOUNDED SETS
Just as we distinguished between finite intervals and inlinite intervals on thc real line, so we
will want to distinguish betwcen regions of "linite extent" and regions of "innnite extent"
in 2-space and 3-space. A set of points in 2-space is called bounded if the entire set can
be contained within sorne rectangle, and is called unbounded if there is no rectangle thal
contains all the points ofthe set. Similarly, a set ofpoints in 3 space is ,otrrded if the entiro
set can be contained within some box, and is unbounded otherwise (Figurc 15.2.4).

A bounded set
in 2-space

An unbounded
set in 2 space

A bounded
set in 3-space

LIMITS ALONG CURVES

Fi8urc 15.:.4

For a tunction of one variable there are two one-sided limits at a point ,r0, namely

lim J(r) and lim J(r)

reflecting the fact that there are only two directions from which -{ can approach r0, the
right or the left. For functions of twe or three variables the situation is more complicated
because there are inflnitely many different cuwes trlong which one point can approach
another (Figure 15.2.5). Our first obiective in this section is to define the limit of /(.r, t)
as (,r. .l') approaches a point (;re, r'e) along a curve C (and similarly fbr functions of three
variables).

lfC is a smooth parametric curve in 2-space or 3-space that is represented by the equations

.r : r(t). ,r.= .!(r) or r :.r(f), ) : f(r), : ::(r)
and if "tn =,y(;6).1u = }(16). and zo : ;(ro), then the limits

lim /(.r. r'r rnd lim l(r. r...r
irlung C ' (rl.n!a 

'

Figurc 15.2.5
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are defined by

lim "f("r, r) : lin /(r0), r(r))(r, ))J (Jo, ro)
(alonsc)

(a) the;v axis (b) the )-axis
(d) the line 1, : -'i: (e) the piirabola 1' : lr2

( l)

t'

lim f(x.y,z)= lim /(r(r), )(r),.(r)) (2)
(-t, )',.)+ (Jo, ro,:o) 1+1a

(alonsC)

Simply stated, limits along parametdc curves are obtained by substituting the parametic
equations into the lolmula for the function / and computing the appropriate limil of thc
resulting function of one variable. A geometric interyretation of the limit along a curve
for a function of two variables is shown in Figure 15.2.6: As the point (r(/), _v(r)) moves
alorg the curve C in the.ry-plaoe toward (r0, ,)0), the point (r (t). -r0 ), /(,v (r), _'r 

(r))) moves
directly above it along the graph of r : l (r, y) with / (,r (/). y (/)) approaching the limiting
value l. In the figure we followed a common practice of omitting the zero : coordinate lor
points in the r-ir-plane.

REMAItK. In both (l) and (2), the limit ofthe function of / has to be treated as a ooe-sided
limit if (,r0, ]0) or (n0, 16, z6) is an endpoint of C.

Example 2

Figure 15.2.7a shows a computer-generated graph ofthe function
-t 1'

f(r, r'l: - ...r. + )
The graph reveals that the surface has a ridge above the line ) : -r, which is to be expected
since l(r. -r') has a constant value of I for 1 : --r, except at (0,0) where / is undelincd
(verify). Moreover, the graph suggests that the limit of l(x. 1) as (r, -r') + (0,0) along a

line through the origin varies with the direction of the line. Find this limit along

C

(-r( 1), r(0)

, im /(r. r) =r
(.r. r):(ro. )r)j':'::1,. , .,

Figure I5.2.6

(c) the line _v 
: r

Soltttion (aJ. The;r-axis has parametric equations x : t, _r, 
: 0, with (0, 0) couesponding

tol:0-so

lim ./(".-r'- lim/ri.0r- lim | " ) . lirn0. 0
r,. l 0.r '0 u \ /',/ 0

which is consistent with Figure 15.2.7b.

Sohttion (bJ. The y axis has parametric equations -r : 0, li : t, with (0. 0) corresponding

to/=0,so
/ 0\lim /(r, r) - lim /(0. t) - Iim L l- lim{}-{J

.r.r./'rc 0 .,'\ /.,/
(alonsr :0)

which is consistent with Figure 15.2.7b.

Sohrtion (c). The line y = x has parametric equations,r - t,y - t, with (0,0) cone-
sponding to I : 0. so

/ I \ , l\ Ilim /tr. \') - lim/{/./r- lim | ^,1-lrrnl ^l-(r ))i(0.0) " -- r+0' r-tt \ 2tr/ ,-u \ 2,/ 2

which is consistent with Figure 15.2.7r.

(i(/). J.( r), J(-r(1), )(/))
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Soltttion (dJ. The line 1' = r has parametric equations.r : t. r = -1, with (0.0)
corre\pondins ln r - [r. .o

lrrn /tr.tt-lim t\t. rt - lirr-t " - tirn 
l-l

., Lr ,', t-O )t2 .\) )
(alone \ - r)

which is consistent with Figure 15.2.7b.

,\olution le). The parabola 1, - 12 has parametric equations r : l, l, : t2, with (0,0)
corresponding to r : 0, so

Irm irr.r; -lim/L/./ )=lrm {---l. }=ri- I f-\ 0
1-'\ t) lt ) o\ | t /

This is consistent with Figure 15.2.7c, which shows the parametric curye

at
I + /r

superimposed or tbe suface.

0.5

:0

05

I

(a)

Fijlurc 15.2.1

GENERAL LIMITS OF FUNCTIONS
OF TWO VARIABLES

0.5

:0

-0.5

(:
=0
=0)

('= -l) -r

(b)

Although limits along specific curves are usefui for many purposes! they do not always
tell the complete story about the limiting behavior of a function; what is required is a limit
concept tlrat accounts for the behavior of the function in at\ entire yi(it1it+ of a point, not
just along snooth curves passing through the point. As illustrated in Figul€ 15.2.8, we will
want the shtenrent

lim f(r, r') : I

to nean that the value of .f(,r, _rr) can be made as close as we like to Z (say within e units of
L) by restricting (r. t) to lie within (but not at the center of) some sufliciently small circle
centered at (-16,1'6) (say a circle ofradius d). This idea is conveyed by Delinition 15.2.1.

15.2.1 DEFINITIaTN. Letl be a function of two variables. We will wrire

lim .l(.r, _r,) = t ,r,(J.)) - (ro.)o)

if given any number < > 0. we can lind a number 6 > 0 such that f(,r, r) satisfies

"f 
(r. r) L .<. e

whenever (,t, t ) lies in the dolrain of ./ and the distance between (-r, 1,) and (:r0, _r0)

salisfies

O . u{r - r.11;r 1 1-r, 1.,ut' . a



Figure 15.2.8
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When convenient, (3) can also be written as

f(r, t)--+ L as (x, y) + (-t6, y6)

We note without proof that the standard propefiies of limits hold for limits along cuNes and

for general limits of functions of two variables, so that computations involving such limits
can be pedolmed in the usual way.

Example 3

lim f5;rr yr - 91 :(, rl-r1..1)

The following theorem, which we state without proof, establishes an important relationship
between general limits and limits along smooth cur-ves.

15.2.2 rr rEoRtsM.

(a) If f(x,y)---> L as (-r, y) + (.t0, yo), then f(x,y)-->L a.r(r.1) + (xn,yd along )

any smooth cut-ve that lies in the domain of f.u't! rt'Lvu.'L L4t

(b) If the limit of f(x,y)fqils to exislas(r,))-+ (x0, yo) dlong some snooth cw t e :

in the domain of f, or if f(x, y) has different limits as (x, y) + (xn, y6) along two :.

different smooth curves in the domqitl oJ f, then the limit of f (.x, y) does not exist )

as (r . 1) - I 16. 1n).

Example 4
The limit

{rtlim ,r ,(r \)- (0.0) r'+ v'
does not exist because in Example 2 we found two different smooth curves along which
this limit had different values. Specifically,

PROPERTIES OF LIMITS

lim l5rrr2l lim q
1r r )- rl.4r lr.rr-114r

r rlr -l
sl lim 'll tim 

', 
1 s

fr,,r-rt.+r I lr' ,r-rr.+r'l

5(1)3(4)2 9 =',l1

RELATIONSHIPS BETWEEN
GENERAL LIMITS AND LIMITS
ALONG SMOOTH CURVES

lim -.^*) ^-o ,nd lirn ^t) ^- l(,,rr'\00r f +I'/ ,.jr ''nn r I Y 2(alon-sr:O) (alons): r)

This c rcular region wiih the

centet removed cons sts of

a I polnis (r, t) ihat satisfy

o < {i ro! +ly 1o;z< a.

For each point (x, )) w thin

ihis region we have

f(i. )) -ll < €

ln this particu ar figure, ihis
condition s a so saiisfled at

(ro, )o), although this is not

relevani to ihe lirnit.
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CONTINUIry

ItFl\l \ltK. One cannor provc tlat l(r, t') -+ 1- as (r,l) -+ (xo, )o) by showing that

/(-r, r) + I as (,r. -y) + (r0, ye) along a spccific curve or even an entire family of curves.
The problem is that there may be some curve outside of the f'amily for which the limit does
not exist or has a limit that is difl'erent from L (see Exercise 38, for examplc).

Stated infbmally, a function of one variable is continuous if its graph is an unbroken curve
without jumps or holes. To extencl this idea to functions of two variables, imagine that the
graph of z - /(r, -r ) is molded from a thin sheet of clay that has becn hollowed or pinched
into peaks and valleys. We will regard / as being continuous if the clay surface has no
tears or holes. The lunctions graphed in Figure 15.2.9 fail Lo be corrtinuous because of their
behavior al (0,0).

t@
-@\

Ved cal jump
zttheorgn

x and y.

Example 5

Usc Thcolcm 15.2.4 to show that f (-r, y) : 3x2t,5 and /(x, y) - sin(3x2,y5) are aontinuous
functions.

Solutittrt. The function /(x. -y) - 3-1215 is continuous because it is the product of the
continuous functions g(-r) - 3r2 and 11(-y) : y5, and the function /(,r, -r') - sin(3-r2y,5) is

l
fI#

-.. \

1"" "l'1,:."'.5 "

Figure 15.2.9

l'

I lnfinite ai lhe or qin

The precise definitirnr ol continuity at a point for functiuns of two variables is similar to
that for functions of one variable we rcquire the limit of the function and the value of the
function to be (he same at thc point.

f-i.2.-1 L)LI1\tt lol\t. A furction /(-r) is said to be continuous at (xo, yo) il
. lim /(,r. y) = l(xe, yn)
. (tr.1) + (ro.rir)

' Morcover, if ./ is continuous at cach point of a region R in the ry-planc, then we say
thatf is continuous oz R; and if f is continuous at every point in the,rt' plane, then we
say that / is continuous everywhere. hr addition, we will say that f is a continuous

. fanction if it is continuous at each point of its donain.

The following theorcm, which we state without proof, will help us to identity coltinuous
functions of two variables-

(b) lf g is a twntinuous functiott oJ one t,eriable afid h is a t ontinuous .f uttrlion oJ ty)o

variables. then the enqrosltiol f(r. t,) - g(h(x. l)) is a continuous Junction of
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DISCONTINUIry
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continuous because it is the composition of the continuous function sin x and the continuous
tunction 3,r2y5.

Theorem 15.2.4 is one of a whole class of theorcms aboul continuity of functions in two
or more variables. The content of these theorems can be summarized informallv with thrce
basic principles:

. A composition of conlinuous functi,'n. is t.,rrtinuoui.

. A sum, difference, or product of continuous functiol'rs is colllinuous.

. A quotient ofcontinuous f'unctions is continuous, except wherc the denominalol is zero.

By using thesc principles and Theorem 15.2.4, you should be able to connrm that the
following functions arc all continuous:

,"" + Jt/3. cosh(nt3) J,r-rl, "l ,

l+-Y2+)2

Example 6

Evalulte lim , 
tt' 

,.
L, v)-( l,ll ,\l + tl

Solltlion. Since l(r, y) - rl,/(i2 + )2) is continuous at ( l, 2) (why?), it follows from
the definition of continuity for functions of two variables that

rr r l)r2; 2
lim

".' t.,rirv ( l)' t2)' 5

Example 7

Sinca the function

- ,rl)2
/ (r, r') - .| - r'1

is a quotient of 
"on,inunu, 

funcfions, it is continuous except where 1 x) : 0. Thus,

/(r,1)iscontinuouseverywhereexceptonthehyperbolaly:1.<

Sometimes it is easy to recognize when a limit does not exist. For example, it is evident that

Ilim _:*r
(,, J 1- tu.or r/ + yr

which implies that the valucs of the function approach +.. as (-{,l,) --t (0,0) along any

smooth curve (Figure 15.2.10). However, it is not evident whether the limit

lirn (ir2 + ],2) 1n(r2 + }.2)
(r.r)+(0,0)

exists because it is an indeterminate form of type 0 . o. Although L'H6pital's rule cannot
be applied direcdy, the following example illustrates a method for findjng this limit by
converting to polar coordinates.

Example 8

Find lim (rr + y2) ln(r2 + r'-2).(r,))+ (0,0)

Sohttiott. Let (r, d) be polar coordinates ofthe point (.r, l) with r I 0. Thcn wc havc

ir:,'cosa, y:rsind, 12 -x2 ly2
Moreover,sincer-0wehave/=u,{:+y.,.orlatr-0+rlanrJonlyif(.r,y)-+(0,0).

FiAure 15.2.10
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EXTENSIONS TO THREE
VARIABLES

Thus, we car rewrite the given limit as

lim 1,r'- y'1ln1x2 +y2): llm rzlnr2
(r.j ) - (0.0) , 0'

= li_ 2Tf rhi\ m1vp 1,,r r,nn,o d
, .o- l/r' ITP eflraFromorrypeo o.

2/r
= lim 

- 

L Flopiraj\ rule
t -0+ 2/rr

: lim (_r2) :0
t-A+

REMARK. Recall that for a function / of one variable, a hole occurs in the graph of / atx6
if /(.r0) is undef,ned but /(,r) has a limit as ,t --> x6 (Figure 2.4.2a,for example). Similarly,
a hole will occur in the graph of /(,r, y) at (xp, y6) if /(x6, y0) is undeflned but /(x, y) has
a limit as (x, y) -+ (:16, ye). In particular, it follows from the last example that the gmph of
f(x, y) = (r2 + ),2) h(,r2 + ),2) has a hole at (0, 0) (Figure 15.2.11).

A11 of the results in this section can be extended to functions of three or more variables. For
example, the distance between the points (,r, y, z) and (.rs, y6, x6) in 3-space is

so the natural extension of Definition 15.2.1 to 3-space is as follows:

15.2.5 DEFINITIoN. Let / be a function of three variables. We will wdte

lim f(x.y.z\- L f4t
O. r,.) - (ro.yo, ro.)

if given any number e > 0, we can find a number 6 > 0 such that /(;r, y, z) satisfies

lf(x.,y,z) - Ll < e

whenever (.:r,l,,z) lies in the domain of / and the distance between (;r,y,z) and
(.t0, lo' zo) satisfies

O . t/t, a1') ty yntz - Q - zo)2 < 6

As with functions of one and two variables, we define a function /(.r, y, z) of three
variables to be continuous at a point (r0, y0, z0) if the limit ofthe function and the value of
the function are the same at this point; that is,

lim ftx. y. zt : /t.r6. ye. zet(r,),rl- (x0, y0,r0l

Although we will omit the details, the properties of limits and continuity that we discussed
for functions of two variables carry over to functions of three variables.

ExERcrsE SEr 15.2

Figure 15.2.I I

(t to)z + (t - ld2 + (z - ziz

In Exercises 1-8, sketch the region where the function / is

continuous.

f (x, y) : a1E=y

.f(x,y):it(2x ytl)

8. "f(t. y) : tan-l() .r)

In Exercises 9-12, describe the region on which the function

/ is continuous.

: Jx"er cos(x)Z)

- 1tt(4 x2 - t2 - z2)

)+1

, / - .----=--d-: slnvx. + Jr. + Jz.

l. f(x,y): ),h(l +r) 2.

,2,
3. f(r,r,) - -======:: 4.

J25-x2-y2
/r.o\s. f(x, )) : *r |, * j+ 

r,, /

9. f (.x, y, z)

10. f(x, y, z)

11,. f(x, y, z)

12. f(x, y, z)6. f(x, y) : e1-'! 7. .f (t, i = sin r(xr)
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"\/;t+,'+a35. lim
(x. 

'.:) 
+ (0.0,r)
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In Exercises 13-18, use limit laws and continuity properties
to evaluale rhe lrmrr.

13. lim t4.r1r xr 14. lim ,.\) .in \ ',. r -\l .1.

-t\il15. lim :L 16. 1im e2. )l
(r,_,)+( 1,2)x+y lr._,1+(1. l)

17. lim In(l + xllr) tt' 
'' 

ntJTo ''' 
/r'r + 2'

36.

37.

J;t+f+a
.l r Ilim tan'l_- l

1r r ' -1000) L1l +.r2 +.-':1
The accompanying f,gure shows a poftiorl of the graph of

r2t
l(.r. )) : jrt t'

In Exercises 19 and 20, show that the limit does not exist by
considering the limits as (r, ]) ---t (0. 0) along the coordinate
axes.

Based on the Sraph iD the f,gure, does /(r. y) have a

limit a. r'. r'r' r0.0rl Explainlourrearoning.
Show that /(ir, )) -+ 0 as (.y, )) + (0,0) along any
line 1 - 771y. Does this imply that /(i. )) + 0 as
(r, )) + (0,0)? Explain.
Show that /(x,1,) ) ] as (r, 1') --+ (0,0) along the
parabola 1 ::r2, and confinn visually thal this is con-
sistent with the graph of /(r, t).
Based on parts (b) and (c), does .l(r, 1,) have a limit as

(,t, y) -+ (0,0)? Is this consislent with your answer to
paft (a)'/

approaches 0

(a)

(b)

l
19. (a) lim 

-

l,,r)-10.01 -r + l)-

-20. (a) lim 1 +It I )- r0.0r ,r. + ),.

In Exercises 21-24, evaluate the limitby making the substitu-
tior.z :,r: +_L2 and observing that z -+ 0+ as (j, -r) -+ (0. 0).

(c)

0.5

:0

l

Figurc Ex-37

38. (a) Show thzrt the value of t !
2'o i: aPProaches 0 as

(r, )) + (0, 0) along any straighl line ) :,r,r, or along
anyparabolay:1x2.

{bi Sho$ lhal lirrr - 
t } 

, do". no' exi.r b) leuinft
" ,, 2x'- v

,.i.)r- 0. 0 | along the curre v - t'.
39. (a) Show thal the value 01 ---lll. .{,+}1 +a4

as (r, 1.1) + (0.0.0) along any line.r

tbl Shorn lhar rhe lrmrl llm ^ 
tt: 

. doe. not

exist by letling (x, 1,,;) + (0.0,0);long the curve
1:72,y:1,1:1.

Find
[ '2+l Ilim tan- l lr, L)-(0.rJ L\. + (),- r)-l

Find
f rr I Ilirn ran Ll 

- 

|

1, , -10 r, L'l.r + (1,- I )rl

(b) lim

(b) lim
(i.,)+ (0.0)

j+)
r+t'
cos.I)i

.r+))
(d)

sinlrz + \,2 )21. limr.,r-.100r .\/ + )r

23. lim e r/(-rr+rr)
(J.\)-(0.0)

I costxl + 1l )22. lim .+1r r- (rl0l .r' + r'

24. lim(r.r); (0.0)

e t/ J'.+r.

Fi,
In Exercises 25-32, detemine whether the limit exists. Ifso,
find its value.

14 l4lim ,--+ 26-('\-ro,r)Jr'+l!

lirn ,t) , 28.
1,, -ro.or lr/i2yr

_, z2
lim

(r,r,:)+{2. r,2) J12 + ),2 + z?

lim 1n(2x * r' z)
ar.r.:)+ 12.0. 1)

27.

29.

30.

lim(r.r)- (0.0)

lim

x  16),'

;ti4;
l-12-.,1

,\ ),'

31. lim
(r.r',.)+ (0,0.0)

sin(.{l+)l+-:l)
Jrz+y2+22

tin..6,+t'+.t32. lim
1! r :r '1rr0lrJ xt + \it + 7:

In Exercises 33 and 3,1, evaluate the limit, if it exists, by con-

veding to polar coordinates, as in Example 8.

40_

Jl. Iim !ln{..\ + r J J4. lrm 't-)
' ' 0 ' ...'- Lr" u/r2 Jj

In Exercises 35 and 36, evaluate the limit, il it exists, by con
verting to spherical coordinates; that is, le11 : p sin { cos 0,
y - psin@sin9, z: pcosf and obseNe that p '+ 0+ as

(x.1-. z) + (0,0,0), since p : .u[: + ]'2 + r2.

,11.
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I sinrr2 + r])
42. Ler itr'. tt - I rr J2 

l'r r\ -l l0 0)

I

[ ' f\ \\={00)
Show that / is continuous at (0.0).

t er r,x.I r - 1 . l. il po.{ible Io dedne /,U.0r .oxt+rt
that / wili be continuous at (0, 0)?

Let /r\. "- r.rlnr.r' \',. l(itp^s\ibleroJefine/r0 0,
so that I will be continuous at (0.0)?

15.3 PARTIAL N}ER'IIATIVES

ff z: f(x.t), then one (en inquire ho*- the vdlue of z. changes il x is held lLxed and
y is allowed to tarl or if t is held fxed and x is allowed to tat r-. For entmple, the
ideal gas law in physics states that under dppropriate conditions the pre,ssure ererted
b1- a gas is q function of the yolune of the gas and [ts temperature. Thus, a physicist
stLtd))it1g gdses might be interested in the rate of change of the pressure if the tolume
is held ftxed and the temperature is qllo\red to yar! or if the temperature is held Jtred
qnd the t'olume is alloy,ed to tary. Irt this section we will dewlop the mathematical
tools Jbr studling rates oJ chqnge that inw ve t',\to or more independent variabLes.

Recall that if _r' : /(r), then the rate of change of I wirh respect to r is given by the
derivative of / with respect to r, which can be expressed using Formula (10) of Section 3.2

43.

11.

PARTIAL DERIVATIVES OF
FUNCTIONS OF TWO VARIABLES

This suggests the following delinition.

15.-l.l l)trr,rNIIlON. If .: /(r, )), thef' the pqrtiel derivative of .f with respectto x
(also calied the parlial derivative of z with respect to x) is the derivative with respect to
r of the function that results when I is held flxed and .:r is allowed to vary. This partial
derivative is denoted by l(x, l') and can be expressed as the limit

f'(.' ) : lirn /(x * Ar) 
"f 

(x)

Al{

.i(,r, r) : lim
,\r - (J

/(r + Ar, l) - /(x, y)

f(;r.r+ar)- /(.r, r)
/' (r, t) : lim

A)-(r Ay

Example L

Find the partial derivatives of f (r. -r ) - 2x3 12 + 2y + 4x .

Soluliott. Treatilg I' as a constant and differentiating with respect to -{, we obtain

"/,(r, r) : 6x2Y? + 4

Trcating,r as a constant and differentiating with respect to ), we obtain

.1, ('r, r) : 4-r3r' + 2

A-r

Simila y, the p.r/rudl derivative of f with respect to ! (also called the partisl derivative
of z with respect to y) is the derivative with rcspect to ) of the function that results when
r is held Iixed and y is allowed to vary. This partial derivative is denoted by /,,(r, 1) and

can be expressed as the limit



PARTIAL DERIVATIVES VIEWED AS
RATES OF CHANGE AND SLOPES

Figurc 15.3.I
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lolt lHh ltl-].\Dhlt If you have a CAS. read tbe relevant documcntation on calculating
partiai derivatives, and then use the CAS to perforrr the compurarions in Example 1.

Recall that if I : /(,r), then tlre value of /'(16) can be inrcrpreted eilher as rhe rarc of
change of 

"' 
with respect to ,r al the poill r0 or as the slope of rhe tangent line to the graph

of / at the point,r0. Pa ial derivatives trave analogous inter?retations. To see that lhis is
so! suppose that Cl is &e intersection oI thc surface a - l(r.I) with the plame t, - _r,6

and that C2 is its interscction with the plane r : .ro (Figure 15.3.1). Thus, /,(_r, 1.q) can be
interpreted as the rate of change of : with respect to -t along the curve C l ald l. (r9, _r) can
be interpreted as $e rale ofchange of .a with respect to I' along the curve Ct. In particular..

l,(re, y6) is the latc of change of: with respect to r along tlre cun'e C1 at rhe poilrt (,r0, ).0).
and i.(rO, )'0) is the rate of cltatge of I with respect to ,f along the curve C2 at tl.te point
(-rs, _v..e). Gcometrically, l*(;re. _t1) can be viewed as the slope ofthe langent line to the curve
Cr at the point (,,rs, 11), and 

"1,(.t:0,,r'o) can be vieu,ed as the slope of the tangelt line to
curve Cr at the point (16, 1s) (Figure 15.3.1). Wc will call f (,16. _r,6) the slope o f the surface
inthex-directionat(r0.!0),and.l(,rn.,-ltheslopeofthesurfaceinthe!-directionat
(ro. ro).

S ope = /,(-ro,lo)

I

(_r0,,!o)

Example 2

Let l(-r. t') = .r2i * 5Ir.

(a) Find the slope of dre surface z : /(x, t,) in rhe r direcrion at the point (1. -2).
(b) Find the slope ofthe surface.z - l(r. l) in the l, direction at the point (1, 2).

Solutiott la). Differentiating / with respect to -r with J,. held fixed yields

L(r' r) : 2-tl

Thus, the slope in the ,r-direction is /.(1. 2) : 4; that is, ; is decreasing ar rhe Iarc of
4 units per unit increase in r.

Solttlion \bJ. Diflerentiating ./ with respect to ) with r held nxed yields

l"(r,l):t2+15r'2
Thus, the siope in the 1-clirection is .f, (1. -2) : 6l; that is. L is increasjng at the rate of 6l
units per unit increase in r,.

Example 3

Figure 15.3.2 shows the graph ofthe function

Slope = l, (rn, ro)

{

(ro. )o)

Figure 15.3.2

r .r l'

/(r, 'l - I '- - 
"' 

Ir' r\ I fo {l\

[0. it ,\.)r-{0.0)
(3)
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PARTIAL DERIVATIVE NOTATION

l(Ax,0) - /(0,0)

Th is is similar to the function considered in Example 2 of Section 15.2, except that here we
have assigned / a value at (0, 0). Except at this point, the paftial derivatives of f are

(4)

(5)

Figure 15.3.2 suggests that at each point on the x-axis [except possibly (0.0)] rhe surface
has slope 0 in the r-direction and at each point on the 1-axis [except possibly (0,0)] the
suface has slope 0 in the y-direction. This can be confirmed by evaluating /* at a typical
point (r,0) on the r-axis and evaluating /" at a typical point (0, )) on the l,-axis. Setting

), = 0 in (4) and x : 0 in (5) yields

.ft('t,0) :0 and l',(0, 'r) :0
which confirms our conjecture.

It is not evident lrom Formula (3) whether / has panial derivatives at (0,0) and if so,
what the values of those derivatives are. To answer that question we will have to use the
definitions of the partial derivatives (Definition 15.3.1). Applying Formulas (l) and (2) to
(3) we obtain

l.(0,0) : 
^ljTo

/, (0, 0) - lim
Ar .0

Ax

/(0, Ay) - /(0.0)

0-0: lim 

-=0
ar+o Ax

0-0:lim _=0
Ar-0 A)AT

This shows that;f has partial derivatives at (0,0) and the values of both partial de vatives
are 0 at that point.

If : : /(.r, ,] ), then the panial derivatives l, and 1,. are also denoted by the symbols*

IMPLICIT PARTIAL
DIFFERENTIATION

af 4..
ano3r' lr

Some typical notations for the partial derivativcs of z : l (n, J) at a point (,{0, }0) are

df a. I al af dz.
fu l,_,. ,_," a* i,, ,,, t 1,," ,., a'(ru n.') t{r0 \h)

Example 4

Find 3;/0.r and 0zl0,r if r : xa sin(x-r,l).

S0lulio .

0: a . i) A

;i - 5" lt"in,x""l =xo*:lsinr.)'r1 -.inrxyrt ;|txar
: ra cos(r)r) . )3 + sin1ry3l . 413 - :ra)3 cos(x),3) + 4r: rin(tl3)

,t = Ju,*o 
*,n,t, ttl = to*lrinttr'tl + rinrtt rt *r*o I

: -ra cos(r.r'3) . 3x.r,2 + sin(-r)'3) . 0 - 3x5)2 cos(-r}l) <

Example 5

Find the slope ofthe sphere.r2 + J2 +;2 : I in the )-direction at the points (3, i, ?) *A
(3. i, - i) (Figure 15.3.3).

Af Az

-.-d) rty

*Thc 
\) mhol t i, calle,l a panial derivati!e \rgn. lt i\ deriteil from thc Clrillic alphaber.



HIGHER.ORDER PARTIAL
DERIVATIVES
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Solutiort. The point (1, t, ]) ties on ttre upper hemisphere; : ./l - xr - f, and rhe

point(], j, -])liesonthe lower hemisphere z = - [=i, -] We could find the slopes
by differentiating each expression for: separate)y with rcspect to :l"' and then evaluetting the
derivatives 21 'I = ] and 1 = {. However, it is more efficient ro differentiate the given
equation

,1 +yt +z':l
implicitly with respect to .!, since this will give us both skrpes with one differentiation. To
perform the implicit differentiation, we view : as a function of x and ,r. and differentiate
both sides with respect to .)', taking x to be lixed. The computations are as follows:

d.n
^ [.t'*t'+i'] =^ Lll
,J ! d\'

0+2t+22!=o
d)

oz l'
0r' ?.

Substituting the 1.- and ;-coordinates ofthe points (i, .1, 3) -a (i, l, -j) in this expres-

sion, we find that the slope at the point (], j. ]) b -{ anO the slope ar (i. j, -i) ir j

I.( )l{ 1 I lE Ii E.{ DhR. Check the results obtained in Exarrple 5 by differentiating the functions
; = u/i - x') ,i a16; = - u-t - x' r'2 directly.

Example 6

Suppose that 6r : uGTl1: is ttre length of the diagonal of a rectangle whose sides have
lengths -r and -l that are allowed to vary. Find a formula for the rate of change of D with
respect to.{ ifx varies with .1, held constant, and use this fbrmula to find the rate of change
of D with respect to r at the point where -r : 3 and r = 4.

Solution . The instantaneous rate of change of D with respect to ;r with 1l held constant is

ADI-{
- = -{ r: I \.,}-' ,{l_r)
dx 2 Jx)1tt

lrom which it follows that

aDl 3 3

0x l,=,,=o J! +42 5

Thus,Disincreasingata[ateofiunitperunitincreaseinratthepoint(3,4)'<

Since the panial derivatives 0f /0x and 3f /01, are functions of .{ and 1,, these functions
may themselves have panial derivatives. Thisgiyes rise to fout possible second-order paftial
derivatives of /, which are defined by

a2.f a ta.f \ a2I

0rr 0,r \d.r/ 0r'r

a2.f

Ditrerentiale nrsr wnh

* (#)

:*(#):^,

#: * (#)=,,"
Differendac nGl lvnh

Figurc 15.3.3
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The last two cases are cnlled the mixed second-order partial deiv.ttives or the mixed second
partials. Also, the derivatives 0J/0x and 0f/0y are often called the frst-order portial
deivatives when it is necessary to distinguish them from higher-order partial derivatives,

wi\l{NINcl. Observe that the two notations for the mixed second partials have opposite
conventioos for the order ofdifferentiation. In the "r" notation the derivatives are taken right
to left and in the "subscript" notation they are taken left to right. However, the conventions
are logical if you inscrt parcnthcses:

a2f a / a,f \ Ri8hr Io retl
_ 

- 
| : I Ditlcrchrirrc,nsidc

0y0.t 0y \ 0x / ,hc prrcn,hc\c\ n' r.

- Lclr ru fifhr
/,, ( /. ), D,hcren,,!,e,n ,.re

lhcpn,crthesestirst-

Example 7

Find the second-order partial derivatives of /(x, ,v) : r2)3 + x4_y.

So/trlion. We have

af af
lf = 2rvr I 4xrv and ?:3*2y2 t xaAt( 3 v

so that

# - *(#) : *"" *4x3v) : 2v3 + t2x2v

'',+ 
- *(fr) : fio"',' +x4) -6x2y

g:: (q{)= n 13"r' rxat=bxr,2-4xr\xAy 0r \Jyl dx

j1 - "a 
(1/) = 3,*r, *4riy)- 6xy2 +4xri).yd.r 0y \ 0r / Ay

#-*(#): 
^.. #: *(#):^,-

aI _a(a'J\_, \oJ _a(d'I\_,
ilJt ay \ aya'/ - ''t' ar4= : a" \ayarrT 

: r""

Example 8

Let./(r, l,) - y2e' I y. Find /,,".

Soluliort.

, _ E-f _a: laf\_a, a
J.'r' -- 

a y; a-,, 
: ;;l \a" / 

: 
a r,6"t ) = ;;Qve' t : 2e'

|{LN1ARK. Observe that the mixed second partials in this example are equal. ln the next
section we will state precise conditions under which this occurs, and we will see that most
of the standard functions have this property.

Third-order, fourth-order, and higher-order partial derivatives can be obtained by suc-
cessive differentiation. Some possibilities are



THE WAVE EQUATION

'l-hc vihration ol a pluckcd slrifg is

govcrncd by the wrvc cqurlilJn.

15.3 Partial Derivatives 915

Consider a string ol lcngth L that is strctched tirLrl betwcr:n the points,r = 0 and r - I
on an,r-axis. and suppose lhat thc st,ing is sel inlo vibratory motion by "plucking" it at
,;.s 1 :0 (Figure 15.3.,1a). The displacemcnt ol a poinl on the string depends both on its
coordina(e -r and thc elapscd linle 1. and hence is described by a function r(.r. t) ol lwo
variablcs. For a fixed value t. the l'unction u(-(. t) depcnds on.r alone, and the graph ol n

versus .r clcscribes the shape ol the string-think ol'it as a "snapshol" ul thc string at time
t (Figulc 15.3.4b). It follows thal at a tixed time t.1hc partial derivativc i)rr/Dr represents

the slopc of the slring at thc point -r, and the ijign ol the second partial dcrivative aza/i),r2
tells us whethcr thc string is concave up or concirvc down al thc point.r (Figure 15.3.4c).

Firurc l5.l..l

For a lixed value oI r. thc tunction .l (-r, /) dcpcnds on / alone, and lhc E|raph of a versus

/ is the position vcrsus tinrc curve ofthe point ur thc string with coordinate.r. Thus, for a

lixcd vuluc of -t, the partial derivative 0il/i)I is thc velocity ofthc point with coordinatc -r,
rnd ;tlri. irll ir the accelclirliorr,rl th.rt point.

It can bc proved that undcr appropriate conditions the function !(-{, t) satisties an equa-

tion of lhc fbrm

d2u . t)]Lr
(6)

wherc ( is a positive constrnt lhal depcnds on the physical characteristics ofthe string. This
equation. which is callecl thc one-dimensionql wave equation, involves pr ial derivatives

ol lhc Lrnkrown function ir(.r. 1) and hence is classiliccl u a parlial differential equation.
Techniques for solving partial dillLrential equations are studied in ldvanced courscs and

will not be discussed in this lcxt.

Example 9

Show th t the function r/(n. /) : sin(r - r'r) is a solution ofEquation (6).

.5o/rr1lrlt. We have

i)u

a.

u

n

d2u: cos(r -.T). ar.] = sin(t r'/)

i) Lr

= -c cos(-r cl). 
^,. 

: -.i'siil(r -(1)

PARTIAL DERIVATIVES OF
FUNCTIONS WTH MORE THAN
TWO VARIABLES

Thus, r/(.r. /) satisiies (6).

For a Iunction l(,r. r'. :) of thrce variables, there arc three partial derivatives-.

.i(.r.1..). .4.(r. r'.:). ./ (:r. r.. :)
The partial derivative f, is calculateci by holding l and: constant ancl ciitlerentiating with
respect to,r. For.l the variables,r and: are helcl constant, and for f- the variables r and

], lrc hcld constimt. lf a clepcnclent variable

ur : .l(.r..r'.:)
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ExERctsE SET 15.3 E Graphine ca crlator E cAS

is used, then the three paflial derivatives of / can be denoted by

Htr A1t) A1t)
and0x 0y Az

Example l0
If /(-!, ),.) : xl)2za * 2.r) * z, then

- r-l..2-1/ru.l,4/-J^ I t TLI
f,".,,r-).1.,.4-!).

l(r,1, z) :4.13]223 + I

Let, 1.2) = 4(-1)3(1)'z(2)3 + 1 : -31

Example I I
lf f {.p,0,0 : p2cos{sin0,then

fo(p,0, 0) : 2p cos d sin d

fpo@ ' 
0, Q) : -2P sin d sind

fpoe@, a , Q) = 2P sin @ cos 6

Ingeneral,if/(rr1,u2,...,u,)isafunctionofavariables,therearenpartialderivatives
of /, each of which is obtained by holding r - I of the variables flxed and differentiating
the function / with rcspect to the remaining variable. If w : f(tt, u2, ..., r,,), tl.ren these

partial derivatives are denoted by

\u.t dut 0w

iJ ur du2 Au,

where 0u/3u1 is obtained by holding all variables except r; fixed and differentiating with
respect to ui.

Example l2
Find

0 r-
- [Vri fxi * *ri]
d1,

fori-1,2,...,n.

Stthttion. For each I : 1,2, . . ., r? we obtain

^" l/ii ,i'r-. +.r;l . "'1,1 .'l t. ,i,l|
oxi )t/xl_tj- ..._)t o.t,

I ," r A rr.rm. .\.cpr

-'l-\rl

'21 \i+\; * *r;

',q +i+..=7"

1. Let /(r, )) : 3rr]2. Find
(a) "i(x,r) (b) "4"(*,r) (c) "f-(1,r)
(d) f.(.r, 1) (e) "fi(l, r) (f ) i(jr, 1)

(g) f,(1, z) (h) l;(1.2).

2. Let i : z2r sin ]. Find
(a) 3zl6x (b) az/a! (c) 0rl3;r 1s.r)

(d) dzl0r[,.0r (e) arla] (0,]) (f) 0rl6y r,,or

(g) drl0r In.:,01 (h) 3zl3ylo,:.0r.



3. Lct .: : ulicos l. Find
(a) i}r:/iJ-rr (b) ,r./4,\ l

(c) ar:/ii.r il\' (d) i]2:/i]r'il.r.

Lel .f(.r. r ) :4.rr - 2r' + 7.rr-\'j. Find
(a) l;, (b) .f,r (c) /.r (d) 1,,.

Lei /(.v. r') : u/3r + 2r,.
(a) Firtcl the slope of the surlace .

dircction at the point (4, 2).
(b) Find lhe slope of the surfacc :

direclion at the point (4. 2).

Let.t(.r.r')-re I *5t.
(a) Firr(l the slope ol the surface .:

direction at the point (3.0).
(b) Find the slope ol the surlirce :

dircctior at the poinl (3. 0).

Let::sin(r'l-4r).
(a) Fincllhe rate ofcha geol : with respecl to .\ at the point

(2, l) with I held iixed.
(b) Find the rate ofchange ol .: with respect te r lit tlle poirlt

(2. l) with ,\ held fixed.

1_.g .- = (.t * ).) r.

(a) Find the rate of changc ol: with respcct to .\ at the poiDl

(-2.,1) \\'ith j, held Ijxcd,
(b) Find thc ratc ofchangc of : with respect to ) at tlre poirrl

(-2. 4) \\,ith ,r hckl lixcd.

Usl- thc inlbrnration in thc ccompanying tigure lo find thc
yalues ol thc lirst order partial derivativcs of ./ at the poinl
(1.2).

what ciin you say aboufthe signs ofA:/a.r. t?.Ia.\),i)./a\'.
and dl:/i)r'l at the point P in lhe accompanying ligure? Ex-
plain your reasoning.
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19. .l(.r. i,) = r' rrrtan r(-r/.r,)

20. /(.t. r') :.rlr, ' + r'r sec v[
21. /(r. r') = (tltan.t) rrl

22. l{r. r') = cosh{/i)sinhr{.rr':)

In Excrcises 2l-26. evalLratc thc indicaled partial clerivalives.

2-1. f(.t.r):9- rr-7.\'rr /,(3. 1)..1,.(3. l)
2.1. l(r. r') =.t:r'e'': D//dr(1. I). il.f/D,r'(1. l)
25. : : v/.r.: +4r'r: d:/a\(1. 2). d-.1Dr'(1.2)

26. rr, : .rr cos.r.r': au,/ar(],r),4u,/ar (1.;r)

ln Exercises 27-32. conllm thal the Inixed rccolr(l-order par

tial deri\,{tives of I are lhc s mc.

27. /(-r. r') :,l.tl - 8r}r + 7r'5 - l
28. ./(r, -r') = f + ; 29. l(i. ,r) - ?r cos l'
.10. .f(-v. r') : c' " -31. l(t. r') : ln(,I.r 5r')

-12. l(.v. r') : (.tr \'r)/(.!r +.\':)
.1.1. Usc a CAS to check the answcrs to the problcms th{t lou

solved iD Exercises 11 22.

,14. Usc a CAS to check the calculrtions in the problcms that
you solvcci in Exercises 27-32.

35. (a) By tliffercntiating implicitl)'. find the slope ol lhe hy
perboloitl rl + r'l .:l : I in thc -r dilcction at the
poinrs (3.4.2J6) an(l (3.,1. l/6).

(b) Check lhc rcsults in pa (r)Lry solving tbr'. anci .liller-
entialing the Iesulting funcliolrs direclly.

-i6. (a) By ditlerentirting implicitly. find the slope of thc hy
perboloid.rr + 1l ;: = I in the r'-directioll at thc
points t3. 4. 2.,6) and (3..1. 2vG ).

(b) Check thc results in part (r)by solviig lor: lnd dift'er
entialing lhe resulting functions direclly.

In Exerciscs 37-40. calculale iJ.:/il.r nnd iJ./al. usirrg implicil
tliif'erentiation. Lcavc your answers in lemrs ol -!. r'. alnd a.

(.rl + r.: +.])j'r : 1

tl +; sin.r r': :0
-18. ln(2.r1 + r'-.:r) : -r

rl0. r'r sinh; - :l.r * I :0
The acconrptnying figure shorvs lhe graphs ol an unspeci-

lled tunctiort l( r. r') and ils prrtialderivatives l, (.r. r') and

./, (.r. r'). Dctemrine rvhich is wlrich. ancl cxpl in your rea

sonins.

{.

!.

6.

7.

: .l(.f. r') in the r-

: .f(.r.r) in the r-

: ./(.r. r) in the r,

: l(.r. \') in the r'

E

fsl

8-

9.

10_

l'="
,' i" :t .,).. "
------...-.-.\.'

Figurc Ex-10

3'7.

39.

41.

In Exercises I l-16. find il:/i).r and 0:/dr'.

ll. " - 4,,."'
13..-.trln(l+tr, ri5)

15. ,: -:!!
-\_ + t-

12. : - cos(.r5]1)

14.;-e')sin4r'l
-tltl

16. -.: 

-
J.\ +.\

In Exclciscs l'7 22.f.nd /!(.r. r') and /, (.r. r').

17.7rr.r':' 1.1 1 -.r'i tt. 1,t.'''= I-i

,@:W:
I II

(1, r. 1)
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42. The accompanying figure shows a contour plot for an un-

specified function /(*, y). Make a cofljecture about the

signs of the paflial derivatives /,(ro, yo) and -f" (:ro, yo),

and explain your rcasoning.

Figure Ex 42

Given /(r, y) -x3ys -2x2y+x,find

55. u - ye sin rz 56. r ^2 v2D: 
fu22

57. w: Jxz a yz a rz 58. .: y3 
"b+3'

59. Let f(x, y, z) : y2 e" . Find
@) af /Axk\.\.)) (b) 3f /0y t.r.tt @) 3f /\zlu1t.

60. Letu : Jx2 + 4y2 - z2.FiILd
@) 6w/Axft21. 11

(c) 0w /32 p.t.-r.1.

E 61. Use a CAS to check the answe$ to the prcblems you solved
in Exercises 51 58.

A 62. Let f(.x, y) : s' tit,. Use a gaphing utility to graph the
functions /"(0, y) and l,(.t,0).

In Exercises 63-66, flnd Au/Ax, Au/3y, and AD/az using
implicit differentiation. Leave your answe$ in terms of r, ),,
z, and w.

63, (x2 + y2 + z2 + w\3/2 4

64. ht(2x2 !y z3 +3u1 -2
65. w2*ustnxyz:1
66. e'r sinh n, - z2w ! 1 :0
67. Let f(x, y , z) = x3 y5 zi + x!2 + ,3 z.Flnd

(.a) f"y (b) /,. (c) f", (.d) f,"
(e) f,yt (, .f,., (e) "4y, O) ,f,,,".

68. Let ro : (4x. - 3y + 2z)5.Fttd

(b) 6u.,/dy p,1, 1;

44. Gryen z: (2x y)5,find
03 z.(a) 

-

tJt d x dlr

(b) lwr (c)

632(b) * (c)
dx" dy

(a) 
"f,,r' frrr.

daz

aw
(c) /,,,, (0. 1).

civen /(r, 1,) : y3e 5', flnd
(a) /,,'"(0, 1) (b) i",(0, l)

46. Given i.u - eI cos,t, flnd
n I \ju.t I

'u' ala*1,,,,0, rb) a,rayl, ,,0,

47- Express the following dedvatives in "a" notation.
(a) t,, (b) -f"iy (c) t)", (d) "f,irr
Express the dedvatives in "subscdpt" notation.

ln Exercises 69 and 70. find /, and /,.

A2 tn
la)' 3x02.

33ut
(b)

AxAyAz

34tn
@ azr,'y,,t

,r# . a^t a4{ a5l
tb) --', (c) ^ ,^- (d) 

-dro 01 1x'/ 8,r-dyl

49. Let f(x, y, z) - x2yaz3 I xy + z2 + l.Find
(a) /, (', y, z) (b) 6(', y, z) (c) t (x, ), z)

(d) l.(t,y,z) (e) f'(1,2,2) 6) f,(1.2,3).

50. Let u : ;r2y cos z. Find

6) aw/Ax(r, y, z) (b) 0w/0t@,y.2)

"t' 
dt

ln Exercises 1l ancl72,f,ndAu/A.ri fot i 1,2,...,n.

u : cos(-rl I2r.2 1. . I nt,)
/ , \l/'

,: [)-'ol
Show that the functiol satisfles Laplace's equation

32 z. 32 z.__!_ ll

.-2 -.2 ' .,--.
\a) 4 

^ -j 
-f L^))

(b) z : e'sir ), * e) cosx
(c) z - h1(x2 + y2) +2tan t(ylx)

Show that the functio\ satisfles the heat equation

0z ,02 z

- :.':--- (c > 0, constant)

(a) a- e t sit(xlc) (b) z : e-' cos(x/c)

70. f (x, y) = 1," ",, 
a,6s. f(x,r: I!

(c) 0w /32(x, y, z)

(e) 0w /AyQ,I, z)

(d) 0u /3x(2, y, z)

$) au lazQ,1,0).

; 
t:i"-t:' 

:.ro, 
nnd /: /,,11t: - _ ]

51. /(-r, 1', z) = z 1n(.:r2) cos z)
/",\

52. f(r, y, z) : y r/2 sec { 1 
)\)./

53. f(x, ), z) : t--' { -j , I\xy'z'I
54. f (x, y, z): cosh(^/4 ) sifi'z(r2yz)

In Exercises 55 58, find Aw I a x, a u / a!, a\d au / a z.

74.
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76-

Show lhat tlie function L (r. l) : sin.ral sjn.rr satilfies the
wave equalion lEquation (6)l tbr. all real valLLes oI.r.
In each part, show that ,l(..!-.,r) ancl r(,v. i) satisfy the
C auch y*R i e ntunn e quatio n s

iJ tt i)L i)t ilr: Andi]-r iJ I .i\ ij.t
(a) u:r2 ):, u:2rr
(b) r : c'cos r'. | : .r sin \'
(c) r-ln(i2+-\,2). r:2tan r(r,/r)

Show that if r(-r. r,) and r(,r-. _r) cach havc cc1ual mixcd
second pafiials, and if rr and l satisfy the Cauchy Ricmann
equations (Exc.cisc 76). then a. r. and ?r + u sdlisly Li1

placc's equation (Exelcise 73).

A poiDl nroves along the intersection of thc clliptic parab-

oloid: : -rl + 3-r'2 and the planc -r : 2. At what ratc is a

changing with 1 when the point is at (2, 1.7)?

79, A point moves along the jntersection ol the plane r : 3 and

the surface a : /:O .rl r'1. At lvhat ratc is .- changing
with respect to ,r whcn the point is at (4. 3. 2)?

80. Find the slope ol the lange t line at ( 1.1.5) tolheculve
of intersection ol the slrrface : - .r2 + 4r I and
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According to the ideal gas la!v, the pressute, tempciature.
and volunre oI a gas are related try P -kl lV, [,hele I is
a constanl of proportionality. Suppose that y is measurcd
in cubic inches (inr). I is measur.ed in kelvins (K), and that
for a certain gas the constant of proportionality is [ - 10

in.lb/K.
(a) Fin.l the instantaneous late ol'change of pressure witll

respect to temperature if the temperatrLre is 80 K and
.lre \olume'emJinj ti\ed.rr )0 llr

(b) Find the instantaneous rate of change of volume with
respect to pressure il the volumc is -50 inl and the tem
peratlxe remains llxed at lio K.

Find para et.lc equations for the tangent line at ( l, 3, 3) to
the curve of intcrscction of tlie surface ; : rl t and

8'r.

85.

86.

77,

78.

The volume y ol a right cilcular cllincler is givcn b) lhe
lomrula V : irrzlr, $hcrc r is thc r-aclius and ft is thc height.
(a) Find a fomula lor thc instantancous ratc of changc of

y withrespect to r if/-changes and r remairls conslarrl.
(b) Find a fbrmula loI tlle inslantaneous rate of change ol

V with respect to /r if I changes and r renains constant.
(c) Suppose that /r has a constant value of4 in, but r varies.

Find the rate oi change ol V with respect to r" at the

poinlwherer-6in.
(d) Suppole that r has a constant value of8 in. but/? varies.

Find the inslalrlaneous rate ofchrnge of y with respect
to ft al the point whe|e /r = l0 in.

The volume V of a right ci|cular conc is giver by

t - 
-,tt. +.' ,l'
)1

il,hele ! is the slant height and 11 is the diameter ol the base-

(a) Find a lbmula tbr the instantaneous rille of change ol'
y wilh lespec{ to .r if ./ lemains conslant.

(b) Fincl a formula for lhc irslaDlaneolls rale of change ot'
y with relpect 10 ,1 if .! remains constant.

(c) Suppose that I has a constant valuc of 16 cm, but s

varies. Find the rate of change of y \\'ith respcct to .t

whens:l0crn.
(d) Suppose that s has a constant value ol l0 cm, but rl

varics. Find the rate ol cllange of y $'ith respect to./
rvhcnd:16cnr.

(a) lhe planer : l (b) the piane -r : 3

Suppose that sin(j + .) + sin(-r r') : l. Use implicit dif
ferentiirtion to find il;/3.r. a;/a). and 42.-/a-rilt,in tcrms
of -t, ) . and a.

The volume of a right circular cone of radius r and height
I is V - lzr'ri. ShoN rhat ifthe hei-sht remains consranr
uhilc thc r:rJiu..l alcc\. ll,(l rhe \ olune \ali.re\

av 2v

The temperalure al a poiDt (-r. ]') on a metal plate in the
.r-r'-plirne is T(.i, -r,) : -vr + 2r'l + .t degrees. Assunle that
distance is measured in ccntimeters and llnd the lale irl which
temperature changes with distancc if we statt at the poinl
( I , 2) and move
r.r\ 'n'h, ripht ,rr J prrrllel lo Inc , .r\i.
(b) upward and parallel to th(j _r-axis.

When two r-esistor-s having resistances R1 ohns and R2 ohrns
are connected in palallel, theil combined lesistance R in
ohnrs is R : RrRr/(l? + R.). Show rhar

a]R A2R 4Rr

aRi aR; (ftr * xr)a

Let l(r. r) - 2-rr 3-rr'+ 11. Use Defirlition 15.3.1 lo
find /,(2. 1) and i.(2, l). Then cl'reck youl work by
calculating the derivative in the usual way.

Lel l(.r. r ) - (,!: + _\.2)r/r. show that

f 4r

/'r.''-1" ''r 
' Y)r-uu'

II o ] ') ool
[This problerr. due to Don Cohen. appeare d it Mathentatics
und Contptter Educa ri.rr. Vol. 25. No. 2. 1991, p. 179.1

Let /(r. r,) : (-rr + r,r)r/l
(a) Show that 

^ 

(0. 0) - 1.

(b) At $,hat points, il any. does ll (r, t) fail to exisfl

(a) the plane -r : I (b) the planc,r - I

87.81.

I 9.

82.
89.

90.

9t.
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1 5.4 SiFFfi ft r r'.iTl,Sffi ! t".!TY rqrun CF,A! lii i:l iji-r-:I

ln this sectiotl we v'ill extend the notiotl of dtJjerentiabiliq^ to functians cl twct ruri-
ables afid deri,e t'ersions of the thain rule Jbr these Jun(tions. We hare rcstricted the
clisctrssion in this sectiotl to fwtttions oJ ru,o tariables betuuse sonte oJ the results ,t'e

v,ill discuss hat,e g,eometrit interpretdtions that onb epply to such functions. Lqter. u,e

will ertend the contept.\ dewloped here to liotctions of three or ntorc tariables.

Recali that a function f of one valiable is called differentiable at -r0 if it has a derivative at
,ro, that is. if the limitDIFFERENTIABILIry OF FUNCTIONS

OF TWO VARIABLES

Figure L5.,l.l

ifr>0.-t>0
otherwise

(l)

exists. A function / that is differentiable at a point x6 has two important properries:

. .l(r) is continuous alro.

. The graph of _r : /(-r) has a nonvertical tangent line at r0.

Our prinary objective in this section is to extend the notion of differentiability to functions
of lwo vadables in such a way that the naturai analogs of these two properties hold. More
precisely, when /(r, t ) is dilferentiable at (xn, _r'n), we will want ir to be the case that

. ./(x,l) is continuous al (.r0. _}.0);

. the surtace : : .l(r, f ) has a nonvertical tangent plane at (-ro, t.o) (Figule 15.4.1).

It would not be unreasonable to conjecture that a function / of two valiables should be
called differenriable at (r0, )0) ifthe two pa ial derivativcs /,(rj, ,r1) and l(.r0,10) exist
at (-{0, lb). Unfortunately, ftis condition is not strong enough to meet our objectivcs, since
there are functioDs tlrat have piutial derivativcs at a point but are not continuous at that point.
For example, consider the function

I t il t oattd r 'o
' I 0 orher\\jse

whose graph is shown in Figure 15.4.2. This function is discontinuous at (0, 0) but has

partial derivatives at (0,0); thcsc derivatives are lr(0,0) : 0 and /,.(0,01 - g 1*1,"11.
To motivate an appropriate definition of differentiabiliLy fol f'unctions of two vari;rbles,

it will be helpful to reexamine the definition of differenliability for a function .f of one
variable. To say that / is differentiable at ,r0 neans that there exists a number /'(-r0), which
we call the derivative of / at,r0, suclr that

| 'l

Figurc i5.4.2

/'(ro) : 
^liT 

o

.l(,rr*Ar)-/(.ro) (:2)

For convenience. let us express the numerator as

Al-l(,rolAr)-l(,ro)
which allows us to rewrite (2) more conpactly as

Af
/ ( ro.l = lim

l\-0 /\1
or altematively as

fn/ IIrm ..-/r.r.,rl-0 t3/l,.oLA.r I
Now, let us define 6 Lor more accuratel),, € (Ari)l to be the elTor in approximating /'(r0) by
Al / A-t; that is,

. : /'l.,L,l
AT



llro + A -r)

l(ro)

Figure 15.4.3
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Thus, we can rewrite (3) as

lim €=0 (4)
.Ar-0

which suggests the following altemativc definition of differentiability for functions of one
variable.

15.-l.l ,rt t\rtt',\. A lunllron f olone varirhle ir sirid ro be r/r/ercr niablc a1 y0 tl
, there exists a number /'(-te) such that Af can be written in the form

AJ-lrr,'Ar 'Ar \5/

I where < isaf'unctionof A-r suchthal€-+0as Ar +0,ande :0if A-r : 0.

Alrhough dris definition of difierentiability is nore complicated than that given earlier in
the text, it plovides the basis fol extending dre notion of ditTerentiability to functions of
two or more variablcs. A geometric intcrpretatior of the telms appearing in (5) is shown in
Figue 15.4.3. The term A/ represents the change in height that results wh(Jn r point nroves

along the graph of / as the r-coordinate changes from -16 to xs + An: the te1m /'(r0)A-r
represents the change in height that results when a point noves along the tangent line at
(,r0. /(r0)) as the -r-coordjnate changes fron r0 to,!0 + Ar; linally, the term € Ar represents

the difference beiween A/ and l'(re)A,t.

liENlr\liK. It is evident from Figure 15.,1.3 that €Ar > 0 as Ai --+ 0. However. (5)
actually nakes the stronger statement that e > 0 as Ar -+ 0. This is not at all evident from
Figure 15.4.3, but it follows flom (4). It is this propelty that distinguishes the tangent lire
from all other lines through the point (,r0, ,/(.ro)).

If; - I (r, -r), then the change in the value of I ('lv. 1) as (r, _r,) moves l}om some initial
position (re, _1,0) to some new position (r0 + A-r, )0 + Al) is called the in crern ent in f ctr

the increment in z and is denoted by A/ or A:. Thus,

A/: l(16 * A-r,1e a Ar') -./(ro, to)
(See Figure 15.4.4.)

Motivated by Definition 15.,1. i, we now make the following definition of diflerentiability
lor functions of two variables.

15.;1.2 DEFINITION. A function f of two variables is said to be differentiqble at
(re. tp) if | (rp, r'e) and l(.rn,1,0) exist and A/ can be written in the fonlr

Al : l.(16. _ro)Ar * l(xn. _r'0)A1 + 6r Ar + €2Ar' (7)

where e1 and e2 are functions of Ar and A-r, such that e1 + 0 and e: > 0 as

(A;r. Ar') > (0. 0) and e 1 -61 : 0 if (An. A1) : (0. 0).

(6)

Figure 15.4.4

' t;l::;;:-"* (ro + a-r. r'o + al)
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SUFFICIENT CONDITIONS FOR
DIFFERENTIABILITY

RELATIONSHIP BETWEEN
DIFFERENTIABILIry AND
CONTINUIry

If a function / of two variables is differentiable at cach point of a region R in the,r1-
plane, then we siry that .f rs differentiable on ft; and if I is differentiable at every poinr ilr
the -r_\'plane. then we say thtrt J is differentiable everlwhere. Moreover, we will say that
f is a dffirentiable function if it is diflerentiable at each point of its domain.

The term "di1'ferentiable" has differeDt implications for a function of two variables than for
a function of one variable. A function of one vadable is diff-er-entiable at a point if it has a

derivative at that point. However, it is not necessalily true that a lunction of two variables
is differentiable at a point if both of its lilst-orcler pilrtial derivatives exist at that point. (We
will give an example to illustrate this later in this section.) The following theorem, which
is proved in advanced calculus courses. provides sufllcient conditions for a funation of fwo
variables to be differentiable at a poit]t.

15,i,-l llll ORL\l U Ih,trht't-.,tJ(t tvt!;Lll Jctittltit..\ot L.t,hfoinrit,.r,,|tc,itr^tt-
lurregioncenteredat(.xn,y$.andilthasepaftidlderivttitesute(ontinuousat(ro,yo),.

. then f is diJlerentiable at (.xt), ys).

Example 1

Show that .f(-t, l) : "3ta 
is a differentiable function.

Solution. The partial derivatives f, : ly?_14 nn,1 ,r. = 4r3l,l are defined and continuous
everywhere in the -r1-p1ane. Thus. the hypotheses of Theorem 15.4.3 arc satislied at each
point(j0,],0)inthe,r].p1ane,so/(r.-v):.I3J.4iSeveIywheredifielentiab1e.<

Earlier, we set two goals for our dellnition of difierentiability: we wanted a function that
is differentiable at (r0. _r'0) to be continuous at (re. re), and we wanted its graph to have a
nonveftical tangent plane at (-r0, )b). The next theorem shows that the conrinurry crirerion
is met; the existence of a nonvcrtical tangent plane will be demonstmted in the next section.

. 15.,1.,1 TIIEoRBNt. If f is ttilferenruDlc ai 1111. 111. rhett I is tontittuour dr (r0. .r,0). 
l

,P/oay' We must prove that

lin /(r..i,) : l(-to, ro)

which, on letting x :,to * Ar and t' - -yo * Al, is equivalent to

lim /(-rs * A-r, _16 { A_r,) = l(re, 11)
(Ar. dr)- 10.0)

which from (6) clln be rewritten as

lim A./ = 0
(1r.drI-(0.0)

But f is assuned to be differentiable at (-r0. vo), so it follows tiom (7) thar

A./ : l'(16. _16)Ax * l(16. yx)A1' f rr Ar + €2Al

where <r + 0. €2 > 0 as (A-r, A_r') -+ (0, 0). Thus,

.. .1i1"..... A./ - lim ^. [l,(.rr,. yo)A,r * /,(ro,lo)AI+€rA-r+€2^ll -0l^r.A'l+l(1.(l) aAr.Ar)+ r0 i)i

which completes the proof. I
By combining Theorems 15.4.3 and 15.4.4, we obtain sulficient conditions for continuity

in terms of partial derivatives.
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15.4 Diflerentiability and Chain Rules 923

15.4.5 CoRoLLARY. If f has first-order partial deriycttiyes at each point of some
circular region centered at (xu, ys), and if these partial deriy.ttiyes are continuous qt
(x6,yd, then f is continuous at (xo,yi.

REMARK. We stated earlier in this section that for a function of two variables the existence
of the two fi$t-order partial derivatives at a point does not imply that the function is dif-
fercntiable at that point. For example, the function gmphed in Figure 15.4.2 has first-order
partial dedvatives at (0, 0), but it is not differentiable at (0, 0) because it is not conrinuous
at that point.

The following theorem, which we state without proof, shows that with appropriate continuity
restdctions the mixed second-order partial dedvatives of a function of two variables are
equal.

15.4.6 THEOREM. Let f be a function of two variables. If f,, fy, f\, and fr" are
continuous on qn open set, then f,, : f", qt each point of the set.

Example 2

Let f(x,y) : 2e'! s]'Iry.It should be evident from the form of this function and from
Theorem 15.2.4 that / and all its pafiial derivatives are continuous everywhere. Thus,
Theorem 15.4.6 guarantees that j|r : li' everywhere. This is confirmed by the foltowing
computations:

f,(x, y) : 2ys't sin y = (2y sin y)e')

,f,r(x, y) : (2y sin y) (re')) + e') (2/ cos y + 2 sin y)

:2e'r (xy sity + ) cos y + sin y)

ft(x , y) : 2e*Y cos y t 2x e"t sh y

fy,(x, !) : 2ye't cos ) + 2tl€'r sir ) + 2e*v slny
: 2ett (x.y siny + y cos y + sin y)

Thus, ,{r(,r, ),) : 6,(x, }) for all (,r, y).

In general, the order of differentiation in an zth-order partial derivative can be changed
without affecting the final rcsult whenever the function and all its partial dedvatives of order
n or less are continuous. For example, if / and its partial derivatives of the first, second,

and third orders are continuous on an open set, then at each point of that set,

/rr)- /ra! - /wr

or in "E" notation,

a,f atf a3f

afar: ayaray: i;iF
If I is a differentiable function of I and ;r is a differentiable function of r, then the chain
rule for functions of one variable states that

dy dy dx
A: d. dt

We will now derive versions of the chain rule for functions of two variables.
Assume that a is a function of .x and y, say

CHAIN RULES

z - f(r, y) (8)
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and suppose that .r and ), in turn, are functions of a single variable I, say

-r :.r(/), l': )(1)

On substituting these functions of I in (E), we obtain the lelationship

: : l(jr(r), ](/))
rvhich expresses ; as a function of the single variable r. Thus, we can ask for the derivative
dz/dt, and we can inquire about its relarionship to the derivatives 0zl0x , 0z/3:' , dx/dt ,

ancl d )- /dt .

(e)

Prool. Frcm the derivative deflnition for functions of one variable,

dz - Ai
-- 

llrn 
-dt ar+o At

dz A-- f o: Ax 0 Ar Ar Avl
- lim - lim I r --__+r,- tF) |dr r. ' a1 -/ .o Lar A/ a' A/ Ar Arl

But

( 10)

Since z = ./(-r, y) is differcrtiable at the point (jr, 'r) : (.r(), r,(t)). we can express A: in
lhe folm

d? Az
Az : -Ax + 

al. 
A) + €r^r + 6241, (11)

where the partial derivatives alle evaluated at the point (r(/). r-(r)) and er > 0, e: > 0 as

(Ar, Ar.') + (0, 0). Thus, from (10) and (11),

(.t2)

Therefore, if we can show that er -+ 0, ez + 0 as A1 > 0, then the proof will be complete,
since (12) will reduce to (9). But Ax -+ 0 and A1 -+ 0 as At + 0, since

Al dxlim Ar: Iim _aI : .0=0

A-r dxlim : and
Ar+o A/ dt

^r+0 
AI

Al rA'
Iim

Ar-0 At dt

]
.1-l'

n

dt

and similarly fol A1,. Thus, as Al tends to zero, (Ar, A1') + (0.0), which implies that

e 1 -+ 0. <2'-+ 0. I
Formula (9) can be reprcsented schematically by a "tree diagram" that is constructed

as follows (Figure 15.4.5). Starting with . at the top of the tree and moving downward,
join each variable by lines (or branches) to those variables on which it depends di-ecrly.
Thus, z is joined to -r and 1' and these in tum are joined to r. Next, label each branch with a

derivative whose "numerator" contains the vadable at the top end of that branch and whose
"denominator" contains the variable at the bottom end of that branch. This completes the
"tree." To find the tbrltula lor dz/dt. follow the two paths through the tuee that start with ;
and end with t. Each such path coresponds to a tern in Formula (9).

Example 3

Suppose that

z= jv2-v. x:t2, ):13

tl

d: 3: dx Az tl," ,i=^,i'a,i:
Figrre 15.4.5
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Use the chain rule to tind dz/dt, and check rhe result by expressing z as a funcrion of / and
differentiating directly.

Solutiott. By the chain rule

d: 0- d.x 6: dt
1' - ::= +;:+ = (2-r.r)(2r) | (.r2)(3r2)dI dxdt d|dt

- \2tj)\2t )+ (/4)(312):7rb

Altematively, we can express z directly as a function of t,

- _ _2. /,2,2,.1. .1<-^ )- t'./\r./-r

and then differcntiate to obtain dz/dt : 716. However, this procedurc may nor always be
convenient.

Example 4

Suppose that

a:r,4,t'}-y, x =cos0, -r':sin0
Use the chain rule to find dz/tl9 when 0 - r/2.

Solution. From the chain rule with 0 in place of /,
dz. , 02. dx . Dz d!
de Ax d0 Ey d0

we obtain
d:. I .,, l ,-
.^ - ^(r.\' t- r')-"'())(- sind) I :(r r + f)-'"(x + l)(cos€)da2)

When d : z/2, we have
JTTr:cos-:0. v=sin-=l22

Substituting x : 0, y : 1, 0 : z/2 in the formula for dz/do yields

d. I I r

- -:(l)fl)(-lJ+:(l)(lJ(0)=,-
do o ) 2 2 2

RL\].-\ltK. There are many variations in derivative notations, each ofwhich gives the chain
rule a different look. If z = /(r. _y ), where x and ,r are functions of /, then some possibilities
are

d. -dx - dy
dr dt dt

df _af dx ,af dy
dt Ax dt i)y dt

__ _ f,x,lt)+ f\.r,\t)

In the special case where .: : F(-r. ,l) and y is a differentiable function ofr, chain-rule
formula (9) yields

dz DF Jx _3F d: _0F ,6F dt
i- ul'-*dr,1r=a-r-a',i... (13)

This result can be used to find derivarives of functions that are defined implicitly. Suppose
that the equation

F(r.Y) =0 (14)
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deflnes y implicitly as a differentiable function of .rr. and we are interested in finding d)/d,r.
Differentiating both sides of (14) with respect ro ,{ and applying (13) yields

AF tsF dt,

-T -, -v.l x tJ\t /l x

Thus, if 0Fl3y I 0, we obtain

dy 0F /6x
t1X at / a|

In summary, we have the following rcsult.

Example 5

Given that

rl + -i'2,Y 3:o
find dy/d:r using (15), and check the result using implicit differentiation.

Solution. By (15) with F(-r, y) : v3 I y2x - 3,

dy 3F /6x
dx AF /Aj

Altematively, differentiating the given equation implicitly yields

, t d\\ dy 3*'-y'Jr -t -rl2v- l-0=0 or
\ d',/ dx 2J,

which agrees with the result obtained by (15).

In Theorem 15.4.7 the variables r and y are each functions of a single variable L We
now consider the case where x and y are each functions of two vadables. Let

3.{' + l'
2)t

:: "f(.x, r)
and suppose that x and ] are fuDctions of a and u, say

x - x(u, u), y = y(a, u)

On substituting these functions of ,l and u into (16), we obtain the relationship

2: f(x(u, u), y(u, r))
which expresses z as a function of the two variables I and r,. Thus, we can ask for the
partial dedvatives 3z/0u atd 3z/3u; and, we can inquire about the relationship between
these dedvatives and the derivatives 0z/0x,32/Ay,Ax/Au,Ax/At),A1,/Au.and0y/3u.

15.4.9 rHEoREN,t (cnain nuu). If x : x(u,u) ond ! : j(u,D) haye rtrstotder
partial deriNqtives at the poitlt (u,u), arul if z : f(x,y) is di|ferentiable at the poilt
(,r(4, u),l(a, u)), then z = f(.x(u, r),1(2, u)) has Jirst-order partial deriyatives dt
(u, u) given by

Az 0z 3x 0z 3y

Au 3x 3u il:, Au

dz dz. dx 42. d\and +3u 3x 3u 0y 3u

( 16)

15.4.8 THEOREM. If the equation F(x, y) : 0 deJines y implicitly as a differentiable

function of x, and if AF /01 I 0, then

dy 0F /0x
E: - aFiay (1s)
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Proof. If u is held lixed, then x: x(a, u) and ) : 1(a, u) become functions ofr alone.
Thus, we are back to the case of Theorem l5.4.7. If we apply that theorem with u in place

of r, and if we use a rather than d to indicate that the variable u is fixed, we obtain

5=55*53du dr du d\) du

The formula for 3z/0r is derivecl similarly. I

Figure 15.4.6 shows ftee diagmms for the formulas in Theorem 15.4.9. The fomula for
0z/Au canbe obtained by tracing all paths through the trce that start with z and end with
u, and the formula for 3z/0u can be obtained by tracing all paths through the tree that start

with z and end with u.

Example 6

Given that

Z:ext, x:2ulu, l:u/tt
find 0zl0u and 0z/3u using the chain rule.

Ar
A"

Solution.
oz 

- 
4zox 

- 
u-o' 

-(le"){2} r,r",,/l\ -6u 0.r. 6u dr Au \ ,,/

.l4ur,+Dle.2"-.,,,_lY, r'1 "," 
,"

[u u ) Lu .l

1'= lt1'-39 -(r",",rr t,."'"(-{)du d.x t1! d) du

: i, " (#)]," = [; rzu +,t (!,)f "t"*'r'ro
r"2

- '" -tzu+utru/ut

dx ^ dy

-:t 
ann 

-:ldt dt
at the instant when

x : 8, ) :6

fzr + i]a'

Figure 15.4.6

RELATED RATES IN TWO
VARIABLES

2 fi/s t
I

A

8ft

3 fvs

Example 7

At what rate is the area of a rectangle changing if its length is 8 ft and increasing at 3 ft/s
while its width is 6 ft and incrcasing at 2 ftls (Figure 15.4.7)?

Solution. Let
x = length of the rcctangle in feet

y : width of the rectangle ir feet

A : area of the rectangle in square feet

I = time in seconds

We arc given that

(.17)

(18)

We want to find dA/dl at that instant. For this purpose we use the area formula A :.{} to

obtain

dA AAdx AAdv dx d\
- 

- 
| - 

-\'-1.\ 
-

dt fir,L 3t dt 'dt dt

Ar Az Ar az a!
au axau dAu

Az Az Ax Az ar
t-ta,-a''a,

Figure 15.4.7
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ExERcrsE SEr 15.4

Substituting ( l7) and ( l8) in this equation yiclds

dA

di-6(3)+lJ(2)=34
Thus, the area is incrcasing at a rate of 3.1 ft?/s at the given instant.

ln Exercises I 6, use an appropriate form of the chain rule
to lind di:/d..

:: J-r: r l; {: rl. -! - t2

: : ln(2,t: + l,); ,r :,f, ), : rrll

.: : 3 cos -r - sin.i- r; -r- : 1/t, I : 3t

.r - u,''I + r 1t r''t; .\- : ln I. \, : /

: - al rr' .r : rllr, J, : /l

,l
20. Ler.l'rirrulctotrnd I i..-r ':, /.\-/ tr.

Ja , r

ln t'elc,.c. 'l 'zt. .r.u rl)rlu nnd,/r ,/\ and cLeck )o..r
re:ull u.rn: rnrfili, I di'l. e Ii iur .

21. -tl_r,r +cosr:0 22. x1 3.112 +_r'r - 5

23. e'r * r,cr : I 21. .x v4t + 3), : 4

25. Two straight roads intersecl at right angics. Car A. moving
!,r unc ol lne rord'. r11r'orche. tl_e i lcr.(Llioll Jl 2) nl. 't
and car-B, moving on the other road, approaches ihc intel-
seclion al 3(l mi/h. At what rirte is the distance between the
cars changing when,,l is 0.3 mile from the intersection and

B is 0.4 mile from the intersection?

26. Use the ideal gas law P : kI'/V rvith V in cubic jnches

(jnr). T in kelvins (K). and ft : l0 in lb/K ro find rhe rale

at whicll the temperaturc of a gas is changing when the vol
ume is 200 inl and increirsing at thc ratc of4 inl/s, while the
plessure is 5lb/inr and decreasing at the ratc of L lb/inr/s.

27. T*'o sidcs of a triiingle have lengths a : ,1 cm and D - 3

cm. but arc incrciising at the rate of 1 cnr/s. If thc area of
the tridnglc remains constant, at whal rate is the anglc d

bet\\,ecn ./ and l, changing when , : i/6'i
28. Two sides ol a triangle have lengths d : 5 cm and b - 10

cm, and the included a11gle is 6 : n/3- If a is increasing at
a rate of 2 cm/s, D is increasing at a rate ol I cm/s, and d
remains constant, at what rate is the third sidc changing? Is
it rncreasing or decreasing? [t1inl. Use the law of cosines.]

29. Suppose that the portior of a tree that is usable for lumber
is a riglrt circular cylinder. Il'the usable height of a tr.:c in-
creases 2 it per year and the usable diametcr iltcrcases 3 in
per year. horv tast is the volume ot' usable lumbcr increasing
when the usable height ol fte tree is 20 ll and thc usable

diarneter is 30 in?

30. Suppose that a particle moving along a metal plate in the

r-r plane has velocity v - i 4j (cm/s) at the point (3.2).
Givcn that the temperatule of the plate at points in the ,9,
plane is f (.t.,r') - '.r 

ln.r. r : 1, in degrees Celsius, lind
/7 /d. at the point (3,2).

lrr Frcrr..c. I I .rnd .l l. de,cribe r -e tt f e\l ^pen :rl on \^ h:( h

the hypotheses of Thcorcm 15.:1.6 are satisfied, and conlirm
rhrr / and / rle equr' nn rh. r ., t.

31. (a) l(r.l) :,1rr-r,* 3.r2-r' (b) l(-r. t) - xr/t

6. ::coshl r-r'; r:r/2.],:e/

t.

2.

3.

1.

5.

7.

8.

9.

10.

tl.
12.

13.

ln Excrciscs 7 12, usc appropriate forms of the chain rule to
nnd 0:-/4,l and d.:/3r.

; - Sxr-r'- 2j + 3\': -r : uL). ) : Lt t)

a : -!2 - -! tan,\--i .r : uf ,.:. t : tr2uz

a : r/)l -r : 2cosrr, -v : 3sinr'

.. -.1\ 2r': r -,r I lnr/. \ - r, - r'ln,

.: rr ': ,t: Jlu. _r.: l/u

i : cos,f sin): .!: ll - |, -\' : t'+ 1)'

Let 7 : -\:1.! ,tyl +2; .t: rcosr. -\': rsin6. Usea
chain rule to find 07 l,t ,n(1 ,)T /A0.

Let fi - e2, ,': s - 3,y'. 1: flll llse a chain rule to lind
dRldo.

Lett:ulx.u:l -r2. r : 4.t-r,r. Use a chain rule to
find Ar/iJ-{ and rJt/3 r.

Letu) : rsl|)is2):r :r/r.s - r 2r.Useachain
rule 10 llnd Au lAu and ru)/l)r'.

Ju
I .e r,:hain rrle 1,, lind the \.rlr-. ol' il

/s,=r,+
ut: r' - r tan?, y : uli.0 : tts.

Use a chain rule to lind the value of

,) [ .)l
I e nfl

dui,,: ,= . ;1r ,,=r .= l
rl /r,,r-\J , 2r': ,-\,/..\ rr'

Usc a chain rule to 1 d the value of

d- J-
and'" -. o ae -

if a: -{r'?'r' r:,-cosd.l,:rsin6.

14.

t5.

t6.

11.

Ilt.

t9.



32. (a) /(.r. y) = J;r +;'-
(b) 

"f(.r, r) = sin(.Lr + 13)

33. Let .l be a function of two variables with continuous third-
rnd fourth-order partial delivtrtir e'.
(a) How many of the third-order partial de vatives can be

disrincl?
(b) How many ofthe fourth order?

34. Let /(r, -1 ) = e'r''.
(a) In words, explain why l...., n.., and 1,.., arc equal.
(b) Calculate the derivatives in parl (a), and confirm their

equality.

A function /(,r. r') is said to be r.omog"neous ofdegree n if
/(t,t. t_y) :1"./(.r. r') for t > 0. This terminology is needed

in Exercises 35 and 36.

35. ln each pafi, show that the function is homogeneous, and

fiDd its degree.

(a) ./(,t. r) = 3x2 + J'2

lc) /{,t. )') : n-r'- l\'

36. (a) Show that if ./(.r. t') is a homogeneous function of de-
gree,r, then

0f af
il-r a r

lHinr: Let u = t,r and u : I,r' in l(t-r. tr'), and difter-
entiate both sides of t(r. u) : t"/(,r. r) with respect
ro r.l

(b) Confirm that the functions in Exercise 35 satisfy the
equation in pan (a).

37. (a) Suppose that i = l(!) and r - g(r, y). Draw a tree

diagrarn, and use it to construct chain rules that express

0z/d''r and 0z/0.v in t errns of d zfdu,DufBx,ard 3u /01.
(b) Show that

d:: dz d:u Ll'-: I du trl
;hr tlu 6x: rlul \ar )
d:: tl: 0:u d2- / 0u \'
----:: --: 

- 

! ----: I I

3rl (/rr A\': dr: \Ar/
32: d: 02u d2:.0tt 1tr

ar'd.t r/ir ar'd.t d,rl Ar Ar

38. (a) Let:: l(-rr - t'2 ). Use the rcsult in Exercise 37(a) to
show that

d: d:r,--Fr-:0'dr ,lr,

(b) Let I = /(;rli, Use the result in Exercise 37(a) to show
that

0z 0-:

n x .t\'

(c) Confirm the result in part (a) in the case where

:=sin(x2--r,2).
(d) Confirm the result in part (b) in the case where .: : s'r.
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Suppose that the equation . : l(.r,.I') is expressed in rhe
polar form r - g(r. 6) by making the substitution
,t:tcosdandl:rSind.
(a) View r and I as functions of -r and -r, and use implicit

differeltiation to show that
11 ^ Ce sind
ilx 0-r

(b) View r and 6 as functions of ,y and .t, and use implicit
differentiation to show that

Dr Ae cos 6_ _srnf/ anal _=_
d-r a,\' r

(c) Usc the results in parts (a) and (b) to show that

i]- i1-: I a--_: co(a_ __qind
a-1 Ar r d0

a: a: - lJ:: srn0+ --cosl,a,r ar t ae

(d) Use the result in parl (c) to show that

(;; i r ;i) = (#) -- (#)
(e) Use the result in part (c) to show that if : = l(-r,l)

satisfi es Laplace's equation

tt-: d-:

- 
* 

- 
-0.rt_ df_

thcn ; - gtr. dt satisfies thc equation

0r; l0r: la:
I ] --:lldr- t- dlt t tJt'

and conve$ely. The latter equation is called the pol.rr
form of Laplace's equation.

Show that the function

, 2tt'z:tcn 

-
.r'- \'_

satislies Laplace's equation; then make the substitution
.r = rcosd, ), : rsiro, and show that the resulting lunc-
tion of r and I satishes the polar folm of Laplace's equation
given in part (e) of Exercise 39.

(a) Show that if 
'l(r.,r') 

and u(,r. 1) satisfy the Cauchy
Riemann equations (Exercise 76. Section l5-3). and if
-r : ,-cos I and -r' : r sin 0, then

0u I du A! l6u
- and0r r30 dr r00

This is called the por@r form of the Cauchy-Riemann
equatiofls.

(b) Show that the functions

u : ln(-r2 + )2). u:2tan-l(_r,/r)

satisfy the Cauchy-Riemann equationsi then make the
substitution r : ,- cos 6, ), : r sin 6, and show that the
resulting functions of r and P sati$fy the polar form of
the Cauchy-Riemann equations.

Let.. : "f(-r r'.,r' -r). Show rhat i);/a,r + a:/ar':0.

39.

(b) "f(r, r) : v'? +T
lcll -/(r.1.) : --{.\ - + zj'')-

40.

4t.

42.
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43. Recall from Fonnula (6) ol Section 15.3 that under appro-
priate conditions a plucked string satisfies the wave equation

tJ'tt - d tt

at2 " ar.
where c is a positive constant.
(a) Show that a tunction of the form ll(-r, /) - l(r +./)

satisfies the wave equatioD.
(b) Show that a funclion of the fbrm a(.t. r) : g(r ct)

satislies the wave equatjon.
(c) Show that a iunction ofthe form

u(.t. t) - l(.r + cl) + g(-r (t)
satisfies the wave equation.

(d) It can be proved that every solution ofthe wave equation
is expressible ir the lbnn statcd in part (c). Confirm thar
L (r. t) : sin 1 sin -r salisfies the wave equation in which
c : 1, aDd then use appropriate tdgonometric identities
to express this flLrction in the Iorm /(i +/) +g(r. 1).

ln Exercises 44 47. use Definition 15.,1.2 10 eslablish the dif-
ferentiability of the given function. [R?r?d]-l. €l and €t are
r'lot unique.]

44. l(,r. -i) - -r-i

46. /1-r, y1 : 1r1,

48. Let /(i, )') : y';r + rl
(a) Show that l is continuous at (0,0).
(b) Use Delirition 15.3.1 to show that l.(0,0) does nor

exist. and hence that / is not differentiable at (0. 0).

49. Let

fs lr 2r. -r .0orr 0
I t.r. r'r : {' I 0. r 0rndr 0

Show that 

^(0,0) 
and /,.(0,0) exist, but / is 1'rot conlinu

ous at (0. 0).

45. l(r.r)-tt+J'
17. J (x, :-): 3.t * ) 

2

Let
r .rt
L ,. i\.r)/(0.0)

l(r, \): { r'+ r'
I " '|\'\' ruor

(a) Use Delinition 15.3.1 to show that L (0, 0) and.l (0. 0)
exist.

(b) Show that / is not continuous ar (0. 0). fHiar. Examine
the limit ol /(r, r') as (-r, 1) + (0, 0) along _! - 0 and
aiong ) : -t.l

Let

lrr{r2-rl)I 
- 

r'.'\1r00)
/(1.)):( \ +\l

I o. ,u. u.)

(a) Use Definition 15.3.1 to show that l.(0,0) - 0 and

.i.(0, 0) : 0.
(b) Show that 1.,(tl, r) - 1 ior all .r and f.(r.0) : r

for all -r..

(c) Use Definition 15.3.1 to show thal 1,. (0,0) - I anO

/,..(0.0) : 1.

(d) Does this violate Theorem 15.4.6? Explain.

Prole: Il l, f ,, and /, are continuous on a circular region
containing ,1(-r0, ),0) and B(rr.l,r), then there is a poinr
(.r*, ,r') on the line scgment joining A and B such that

.f(rr, _r'r ) l(ro. _r'o)

: | (r-. _.r,*) (.r1 - ,ro) * l, (r-, t,*)(t,r - ro)
This result is the two-dimensional version of the Mearl
Value Theolem. lFli?L Express the ljne segment joining ,4

and B in parametric lorm and use the Mean Valuc Theorem
lor functions ol one variablc.]

Prove: If L (r. -i,) : 0 and f,.(r, _r) : 0 thloughout a cir-
cular region, then I (r, 1) is constant on thal region. lHilrt:
Use tlle result ol Exercise 52.]

50.

5l

15.5 TAruGENT PLANES;TOTAN- DIFFERENTIALS FOR FUNCTIONS
OF TWO VARIABL€S

In this se.tion we :l.ill cliscuss tdngent plales to stulices in three-tlimensional spac:e.

We u,ill be concerned uith three m(lit1 .luestio \'. Wltqt is a tungetlt p[ane'] Wlrc do
tungefit planes eristl Hov' do we Jind equdtiofis of tangetlt planesl Once we haye an-
su,ered these questiotls. u,e v,ill u.se our re.tults ott tctngent pktnes ta e\tend thc (otl(apt
ol a difurcntiuL to.futlctions of nn vttriables.

Recall that if C is a smooth parametric curve in 3-space. then tl'te tangcnt line to C at a
pointP0isthelinethloughPea)ongtheunittangcntvectortoCatP0(Figure15.5.1).The
concept of a t4lrgcl?t 7rlare builds on this definition. If P0(,r0, _r0. :0) is a point on a surface
S, and if the tangenr lines at P0 to all smooth curves on the surface that pass through Px Jie

in a common plane, then we will regard that plane to be the tangent plaze to the surface

TANGENT PLANES
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Figure I5.5.l
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at Pe, and we will call the line through P6 that is perpendicular to thc tangent plane the
normal line to tbe surfrLce at Pe (Figure 15.5.2).

The follorving theorem states conditions that ensure the existence of a tangent plane and
gives an eclualion lor lhat plane.

15.5.1 lHl,.i)REN,1. Let PoGo, )0. zo) bc atty poinr ott the surface 1 - f Q,1.'). Il
J (.x. y) is differentiuble ut (xsl,yfi, then the stuface hqs a ta genL pLtule at Po,andthis
plane lws the equatiort

.,&(,r0, to)(;r -.y0) + /,(.r0, )0)(,v - -ro) - (z -:o) :0 (t)

1'rr,rol. To plove the existence of a tangent plane at the poillt 4r(ro. to, :o), we must show

that all smooth curves on the surface r: - ./(r, _!) that pass through P0 have tangent lines
at P6 that lie in a common plane. We will do this by showing that the unit trngent \ecrors
to these curves at &) are all ofihogonal to the vector

n : .1,(ro. yo)i * /,.(-to, r.o)j - k (2)

This will sho* that thc tangent liDes at Po(,r0, to,:o) lie in a common plane that has n as a

non]ial and that (1) is thc point-normal cquation ofthc plane, thereby completing the proof.
Assume that C is any smooth culve that lics on the sudbce I - l(1. 1) and passes

tluough Pe(.re, 1e,;x), and suppose that C can be expressed parametrically as

r-r(s), l -.1,(r). :::(j)
where.s is an arc length parameter with reference point (-r0. _y0,:0). Because C lies on the
surface : = f (-r. \'). we must have

;(s) : l(r(.t).,1(s))
tbr all valucs of s. Since / is clifferentiable at the point (,r0, Io,:o), and since this point
coffespoDds to r : 0, it tbllows that:(r) is differentiab]e at.r = 0 and its der-ivative at that
point is given by the chain rule

d. 0J dx . dJ d,t'

ds er lr 0-r' ds

or, etluivalently,

dl ,lt Df dt ,1.

ilr ,/r nr ,/r ,./s - "

This equation can be wiiten in vector form as

tb! A! \ /dr d' .l \
l'i - j kl.{;i-;j+",k1-o
\"Y 'rr / \r/J /t! ur /

By Formula (6) of Scction 14.4, the second factor in this dot product js the unit tangent
vector T(s). Thus, at s : 0 this equation can be w tten as

(1.(.16, r'6)i *./,(ro, to)j - k) . T(0) :0
which shows that all snooth curves on the surface that pass tluough the point P0(xo, ltt, :o)
have unit iangent vectors at that point that arc orthogonal to the vector

n - f,(-ro. Io)i *,/,(.ro, t'o)j k

Since the nonral linc to the surlace at the point Po(-r:0, )0,:o) is parallel to lhe vector n
in (2), it follows that this line can be expressed parametrically as

x : -to * /.(.r0, )o)/. rr: l0+ 6(x0, )0)/, z -z.o , (:)

, ntt tangent in". i

atP| ie n the ,

tangent p ane, '



932 PartialDerivatives

THE GEOMETRIC SIGNIFICANCE OF
DIFFERENTIABILITY

TOTAL DIFFERENTIALS

Example I
Find an equation for the tatgent plane and parametdc equations for the norual line to the
sur{ace ; - x:y ar lhe poinr 12. 1.4).

Solution. Since /(r, 1) = x2), it follows that

f,(* , y) : 2x.y and fy(x, y) : x2

so that with -x : 2, y : 1,

J,(2,l) : 4 and fr(2,1):4
Thus, a vector nomal to the surface at (2, 1, 4) is

n : f,(2, l)i + fj(2, l)j - k : 4i +4j - k

Therefore, the tangent plane has the equation

4(x-z)+4(y-I)-k $:0 or 4.r*4)-z:8
and the normal line has equations

x:21-4t, y=l+4t, z:4-t

In the last section we set two goals for the definition of differentiability of a function /(x, y)
of two variables at a point (.rq, yg)-we wanted / to be continuous at (.16, ye) and we
wanted the sudace z : /(r, )) to have a nonvetical tangent plane at (r0, y0). Both ofthese
goals have now been achieved; we showed in Theorem 15.4.4 that differentiability implies
continuity, and now Theorem 15.5.1 shows that differentiability implies the existenca of a

nonvertical tangent plane. [The tangent plane is nonvefiical because the third component of
its nomal vector n : f,(:r, y)i + /y(;r, y) j - k is nonzero.l

Recall that if I : /(x) is a function of one vadable, then the differential

dy : f'(xi dx

represents the change in l along the /attgent line at (x6, y6) produced by a change dr in ;r
and

Ay:/(;ro*A,r)-/(ro)
represents the change in y along the curye y : /(r) produced by a chaage A.r in .r.
Analogously, if z : f(x, l) is a function of two variables, we will define d.z to be the
change in z along the tangent plane at (x.0, yo, zd to the surface z : "f(r, y) produced by
changes dx and d) in.x and ), rcspectively. This is in contuast to

Lz- f(xoiLx,Jof Ay) - /(.r6,ye1 G)

which represents the change in z along the sutfece produced by changes A,t and Ay in "r
and y. A comparison of da and Az is shown in Figure 15.5.3 in the case where dl : Al
and dy : Ay.

Tangent
plane at Po

Po({0,)0, zo)

\"
])f(x,

tr,

(xo + Ar, )o + A),)
(ro + 1r, )o + d],)

Figure 15.5.3
ire, )s)
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To derive a formula for d:, let Pp (xx, y6, 16) be a fixed point on the surface ? : "f(.r, ),).
If we assume I to be differentiable at (xj, yn), then the surface has a tangent plane at P0,

given by the equation

l,(x6. _rs)(r ro) * /,(xo, ro)(t _yo) (: ;o) : 0

OI

: ::o * i(.r0, ro)(r r0) + f (:ro, lo)(r - ro)

It follows from (5) that the tangent plane has height:6 when:r
height

z, - [.(xo. r', ) dr - f t'ru. r'u) dl
when r : x0 + d-{, } : }o * l). Thus, the change d? in the height of the tangent plane
as (r, )) varies from (16,10) to (.rr0 + dr,lo * d_v) is obtained by subtracting z0 from
expression (6). This yields

1J7 = f,(xn, yl dx A l.(-ro, yo) dt (.1)

Often, we will omit the subscripts on.rr0 and )0 in Fomulas (4) and (7) and write these

(5)

: ,:ro, ) : )0, and it has

(6)

(8)

(t l)

LOCAL LINEAR APPROXIMATION

gquatiolls as

Az : "f(r + Air, ) + Ay) - "f(x, 
y)

"/(;r, 
y) - "f(ro, 

yo) * "f,(xo, ro)(r - x0) * l'.(re, yo)(t - to)

which is the two-variable analog of Formula (6) in Section 3.6.

dz : f,(x, y) dx + f"(x, y) dy (9)

We call d; the totql differential of z or the total differcntial of f. In these formulas,
A-r, A1, d,r, and r11- are usually viewed as variables and r and I as fixed numbers. When it
is desirable not to use a dependent variable, we will wlite d/ for the total differential of /.

If: : /(r. .y) is differentiable at the point (x6, ).'0), then it follows from Definition 15.4.2

that

A/ : l,(,16. y6)Ax * | (xo, yo)At + €rA.r + €2At'

where 11 + 0 and e2 + 0 as (Ar, Ay) + (0,0); and from (4) with A/ in place of A: we
can rewrite this as

"f 
(ro + Ax, _r'o + A1) : /(re, -ro) * l, (ro, _vo)Ar * l,(:ro, yo) Al * <r Ax + €2^._)

Thus, if Ar ! 0 and A) ^: 0, the terms involving e1 and e2 will be smali, and we can

approximate ,f (}:o + A,t, )o + A)) as

./(-ro + Ar,,yo + A)) ! /(x0, )0) + l.(r0, ]0)Ar *./r(ro, lo)At, (10)

This fonnula, which is the two variable analog of Fomula (7) in Section 3.6, is called the

local linear approximatiott of f at (x0, yn). When convenient, we can replace A;r and Ay
in this forrnula by Ar - .r - r0 and A1 : ) - I0 and rewrite the formula as

RH\I\RK. lt follows from Formula (5) with ;0 = l(re, l0) that the right side of Formula
(11) is the height of the tangent plane at (.re, ye) above the point (,r, y). Thus, the local
linear approximation approximates the value of f(r, y) at a point (r,1) near (re. 1e) by
the height of the tangent plane above the point (,t, l). This is analogous to approrimating
the value of /(jr) at a point x near x6 by the height of the tangent line above the point r
(Figure 3.6.5).
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APPROXIMATIONS USING TOTAL
DIFFERENTIALS

Example 2

(a) Find the local linear approximation of /(,r, t) : aG{l at a point (xe, yp).

(b) Use the local linear approximation that you found in palt (a) to approximare

/rJ.04. J.q8r - u4J.0al '3.o31:.

So/ulion (a). We have

(rr.yr- --= and /,rr.yr- ,u ,J,' )' rr-'Jr
Thus, it follows from (1l) that the local linear approximation of / at (.r0, y0) is

(12)

Solution (.b), Applying Formula (12) with,{0 : 3, }0 = 4, r = 3.04, and } = 3.98 yields

vi3 04), + o98t ^, s +;(0.04) + 1( 0.02) = 5.008

We leave it for you to confim with a calculator that ./t3.04! + t198f t 5.00819 to five
decimal places.

tf z. = f(x, y) is differentiable at the point (r, y), then it follows from Definition 15.4.2
that the incremerlt Az can be written as

A. : 
^(x, 

))4.{ * "6,(,r, 
y)Al * e rAr + €24} (13)

where e1 + 0 and <2 + 0 as (A;r, A)) -> (0, 0). In the case where d.r = An and d) : A),
it follows from (13) that this fomula can be rewritten as

Az-dz+€tLx+€2Lr'
Thus, when Ax : dx and A) : d) are small, we can approximate Az by

(1,1)

Geometdcally, this appoximation te1ls us that the change in I along the suface and the
change in I along the tangent plane are approximately equal when Al : dl and Ay = /y
are small (see Figure 15.5.3). This is the extension to functions of two vadables of Formula
(12) of Section 3.6.

Example 3

Let z = 4x3!2.Flrrd dz.

Solution. Since f(r, 1) =,{v3y2,

,f,(", t) : l2x2 y2 and "f,,(", t) :8131

so

A,z. x dz

dz : l2x2 !2 dx * 8x3y dy

Example 4

The radius ofa right circular cylinder is measured with an error of at most 270, and the height
is measured with an erlor of at most 4%. Approxinate the marimum possible percentage
error in the volume y calculated from these measurements.

Solutiort, Let r, h, and y be the true radius, height, and volume of the cylinder, and let
Ar, A/r, and Ay be the errols in these quantities. We are given that

Ar Lhl- - 0.02 and 
- 

- 0.04
lr - h
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We want to find the maximum possible value of IAV/ V l. Since the volume of the cylinder
is V : rr2 h, it follows fiom (9) that

av 3v
Jv -l-dr+Lrtn =27rrhJt I nrt.lh3r cl lt

If we choose dr = Lr a:f.d dh = Al?, then we can use the approximations

LV dV
AV ^.dV and 

-!-vv
But

dV 2rrh dr -+ nrz ,lh dr tllr_ 
-l 

r

v ",'\, 
-'; - h

so by the rdangle inequality (1.2.2)

l.lvl I dr (lhl ltlrl ltlhll- l= 12 -+-l<21-l+l-l- l(0.02) l().04)=0.0ttlvl l, h l- Irl lr, l

ThuS,themaximumpercentageerrorinyiSappIoXimately87'.<

ExERcrsE SEr 15.5

In Exercises 1-8, lind an equation for the tangent plane and

parametric equations for the nomal lilre to the surface at ihe

point P.

l. : :4-13)2 + 2-r'; P(1. -2.12)
2. 1- \t1 t-2 P(2,4,4)

3. : : -re-r; P(1.0, l)
4. . : 1n r/aT $; p(-1. 0. 0)

5. : - e3) sin3x; P(r/6,0, 1)

6. 7 : ytl2 i ytl2; p(4,9,5)

7. 12 + J2 + 22 = 25, p(-3, 0, 4)

8. -r?-y -4;2 = -1i P(-3.1.-2)
9. Find all poinb on the sudace at which the tangent plale is

horizontal.
(a) : : .rr) 2

(b) : : 12 - r)' + .)'2 -2r +b'
10. Find a point on the surface; = 3r.? - )2 at which the tan-

gent plane is parallel to the plane 6r.- + 4) : : 5.

11. Find a point on the surface z : 8 - 3xl 2y? at which

the tangent plane is perpendicular to the line -t : 2 - 3t.
1,:7+8r,;=5-t.

12. Show that the surfaces

,=,,F+yt un6 .= r!1r.+t.)+ j
inter'sect at (3, 4, 5) and have a common tangent plane at

that point.

13. Let /(r, 1 ) = x2). Find d/ and A/ at the point (1, 3) with
Ar = r/.t = 0.1 and At : d)' : 0.2.

14. Let z :3x2 -2).. Find d; and az at the point (-2, 4) with
Ar = dr = 0.02 and A) = d-r' : -0.03.

15. Let; = r/y. Find the increment in a as (.r'. ]) varies from
(- l, 2) ro (3. 1).

16. Let g(n. r) - 2uu - ur. Find the increnent in I as (u, u)
varies from (0. 1) to (4, -2).

In Exercises 17 and 18. find formulas for./-: and A. at a
general point (,r. }).

17.;:.11-tz 18. : : e''

In Exercises 19-22, fiDd d..

19, z:1r 2y 20.;=5r2r,s-2-t+4t+7
21. i:tan r-rr, 22. : = sec2(,r - 3_v)

23. In each pan, confirm that the stated fonnula is the local
linear approximation at (0. 0).

(a) e'sin -r r= 
-r'

2.r -F I
(b) -------. -l+2-r-r'\'+l

24. Show that ifd llandpl I, then the local linear approx

imation of the function /(-r, ,r) = -yo-r'l at ( I, I ) is

.r-"rp - I +d(.r - l) +p() - l)

25, Suppose that 7(r, -v) is the Fahrenheit temperature at a

point (i, )) on a metal plate. Given that Z(1.3) : 93'F,
L(1,3) : 2'Flcm, and r\(1,3) : -l'F/cm, use a lo-
cal linear approximation to estimale the tempelature at the
point r(0.98,3.02).

26, Suppose that p(r. )) denores the atmospheric pressure at a

point (r, 
"-). 

Given that p(100. 98) : 1008 mb (millibars),
p.(100.98) - -2 mb/km, and p,.(100.98) = I mb/km,
use a local linear apprcximation to estimate the atmospheric
pressure at the point (104. 103).
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lll F\rr(i.c...1/ lnJ lb. u\c ilrl Jlproprr.rt( |.rclrl littcut lp
proximation 10 estinratc thc value ol thc given quantil;. and

lhcn check vour ans\\'er usiDg a calculrtiDg utility.

where k is a constant. Use dil'lercntials to approximate thc
percentlgc change in pressure il lhe temperature of a gas is

increased 37c and the volume is increased 57r.

An angle 0 of a right triangle is calculated try the fonnula

rvherc a is the length ol the side opposilc to {, and c is the
length of the hypolcnuse. Suppose that the nreasuremenls

rr - .l inche. rntl , = 5 rn.h(\cich hrre r nurinrum 1o.-
sible c11 or of 0.0 ] inch. Use diffcrcntials to approximate the

maximum possible cror in the calculated valuc of d.

A cylindrical can th l is open at ore end has an inside radiLls

ot' 2 crn and an inside height of -5 cn. Usc diftlrentials to
approximate the volurne of mctal in the can if it is 0-01 cn1

thick. {//iil; The volume of met l is the differcrce. AV. in
the volumes ol two cylirrders.]

The period I ol a sirnplc pendulum u'ith small oscillations
i\ calcul tr.d lrom the lornrula T = ::tr1 U11. uhcrc L is

the lenglh of dle pendulum and g is lhe acceleration due to
gravity. Suppose tl'rat vllues of L and g havo errors of at

most 0.5% and 0. l%. respectivcly. Use dilierentials to ap-

proxinrate the maxinrum percentAge error in the calculated
valrre of I.
Thc angle olelevalioD t'ronl a poir'rt on the ground to the top
of a building is nreasured as 60 with a maxinun possible

error of 0.2'. Supposc that the dislance from the point to
the bLlilding is measurcd as 100 li rvith a maxinrum possible

error ol 2 in. Use dillelentials to approximate the maximunl
possible enoi in the calculaled height ot' thc building.

Suppose that.\i and l have cnors of at most ,-% and s%.
respeclively. For each of the following forrrrulas in r and

l. use ditlcrentials to approximlte the maxinrum possiLrlc

error in thc calculated lesult.

la) .rr' (b) .r/r' (c) .rrli (d) .rr.,/t
Show llral the v(tuDre of the solid bounded by the coordi-
nate plancs and the plane tangent to the portion ol the sur-

face.rr'; : l. t > 0. in the lirst octant does not depend on

the point of tangency.

(a.) Find all points of intersectioD of the line .r = I + a.

r:1.1.. = lr - - .rnd the rulfac< .- =t Jl.
(b) At each point ol intersection. lind thc cosine oflhe acutc

angle betu,een thc given line .ud thc line normal to thc
surlirce.

Show thrt if / is dillerentiablc 4nd.- : r.l(.r'/r'), then all

tangent plancs to the graph ofthis equation piiss through lhe

origin.

Show that the equrtion of the plane that is t ngent to tlrc
ellipsoid

r- f
;*;*;=ltt- D

at (r0. rl).:0) can bc written in the fin m

\ir.t llrl :1r--
!]:]l 

-tt- D

41.

27. 28. ( 1.05 )r)i (0.97 )('l
\ (3.91)r + 13.01)l

In Exercises 29-J2. usc ii totltl dillerentiiil to approxilniLlc thc

chlnge in l(.!. \') as (.r. r') valies lrom P to Q.

29. /(.\..\') - fr +2rr'-:l.u P(1.2).0(1.01.2.04)

-10. /(r.r) -.rL,'rr,rrr' /llt.9). O(7.711,9.03)
\'+\'

-jl. /(r. \')
.\'t'

-12. l(.r, _\') = ln /l +.rr.r P(0.2). O(-0.09, l 98)

-1.1, Onc leg of it right trianglc increases lion 3 cm to -1.2 cm.

\\'lrile the other leg decrclscs t-rom.l cln lo 1.96 cnl. [Jse a

lolal diffcrcDliirl Io approxinratc thc chiLnge in the lclrglh of
the h)'potcnLlsc.

-1.1. The volLrilc y ofa right circularconc ofradius r and height

/r is gi\en bv l' - 1zrr,li. Suppose thrt lhe height decre ses

fltllr 20 in lo 19.95 in. $ hile the radius incrcases llonr 4 in
to.l.05 in. Lisc r toral di1'lcrential 10 approximate tlre chiingc
in volumc.

-15. The length lnd \\'idth ofa rcclirngle are lnersured t{ilh errors

ol al nrost 3(/. ancl 57r. lespectively. Usc differentiuls to ap-

proxirnate lhe maxinruln pclcenlage errol in the cillcLrlaled

ltcii,

-16. I he rrdiLls irn(l height of a right circu[rr cone are r]lcasurcd

wifh elrors ol rt nrost l.l irod.1%. rcspcctively. Usc diflir
entirls 1o irpproximdfe thc nraximunr pcrcentage error in the

cirlculaled volulne-

-17. The lcngth and width ol r rcctanglc arc r)rcasured \rilh clTors

ol'irl rrosl , 7. \\,hcre r is srnall. Use dillerentiirls to lpproxi
nliile the nrrxiDruru pcrccnlilge error irl the calcLLliLtcd lellStl'l

of the diagonal.

.11|l. The legs ol ir right triiugle are neitsurcd lo be -l cm and J
cm. with a n)itximum errot o10.05 cn't ir each nlexsurenlenl.

Use diflercnlidls to approxinrlte the nldximum possible er'

ror in the culculated Yaluc of (r) the hypotenusc and (b) the

:rrea oi the lriilDsle.

-19. I'hc lotal resislance R ol lwo resistiinces Rl and Rt. con-

nocted in p{rilllel. is

R, R.R: '----:
Rr *R:

Suppose lhrl R1 rnd r{1 iile Deasul-ed lo be 200 ohns and
.1{)0 oh s. rcspectivcly. with a maxintum error of 2% in
cach. Use dilltlentiirls to approximale the maxiDlurr per-

centagc clTor ilr the calculated valuc of rR.

40, Acco|ding lo the idenl gits larv. the pressure, lcntperature,

iLnr:l loiunrc ol a conlinccl gas are relirted by P = kT lV,

12.

,1.1.

14.

45.

16.

t1.

;llt.

19.
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50. Show that the equation of the plane thal is tangenl to the

palaboloid

_t_ l-
I

,tt l.'1

at (-r0. r0, a0) clm be written in the iorm

I r11.r 216i'

b-

Prove: Ifthe surfaces; : /(-t, _r) and: - g(-r. -\') iilersect
at P(-t6, -r'0, :0), and if I and g are differenfiable a1 (r0, l0).
then the nolmal lines at P are perpendicular if and only if

I (ro. )o)g. (--0. to) * l, (-t11. 11).9'(rp. 11): I

52. Use rhe result in Exercise 5l to show that the nomral lines to

the cones: : v/r2 + ),2 and: : ,/rr i 1l ae perpen-

dicular to the nomal lines to the sphere ;r? +,,-2 + z.) - a2 at

evely point ol intersection (see the accompanying 1lgure).

l-ieure E\-51

1 5.6 D$RFCTIOruAL DERIVATIVHS AIVD GRADIEf'ITS
FOR FUNCTIOI\IS OF TWO VARIABI.ES

'I'he partial tleri,,'atives f ,(x. )) Ltnd J\(.r. j) reptesent the rutes of chzn!,e oJ JQ.l)
in di'ections parallel to the x- und ) dxes. lt1 this se(tion u'e u,ill [nestigute rates ot
clwnge of .f(x.:) itt other direttions.

Our ilrst objective is to cietermine how to find the slope of a surfacc : - /(,r, r') at a pojnt
(,,r0, -vr) in at arbitrcrrl specified direction. Since there are infinitely many direclions in
which a poinl can move in the -il-plane, we need some rnethod fbr describing a speciiic
direction starting at (-re.,1e). One way to do this is to use a unit vector

u=utiluzj
that has its iritial point al (,r0. -\'0) ard points in the desired direction (Figure 15.6.1). This
vector cletennines a line / jn the -r)-plane that can be expressed parametrically as

r = -r0 +.r,l1. r, : 1! +.t/12 (l)

where s is the arc length paramcler that has jts ref-erence point at (r0, )0) and has positive

valuesinthcdirectionofu.Fors-0,thepoint(-r.t)isatthereferelcepoint(-r0.)'0)andit
moves along the line 1 in the direction oI u as s increases. ConculTenlly, a colnpanion point

0(-t, 1, ./Cr, y)) on the vertical line through (r, -r) moves along the surface.. - ./(.r. -t),
tracing out a curve C (Figure 15.6.2). We wjll call the rate of change of .r. with respeci

to .r along C at .! : 0 the slope of the surface in the direction o/ u at (-re, 16). lf / is

difl'erentiable at (r0. -l'0), then this slope can be calculated by finding the value ot,/:/lr at

.i : 0. To do this. we start with the chain rule

,l: Jt Jr. : /,(r.r) , *,/,(r.t) ,ds dJ 05

or from (1)

. : /,t., r)rr + /,(-r.1Jr/l
ds

At.s : 0, the point (-r. r') is (ro. rl), so

1 l = /,tro, lo)irr * /,(ro, ro)a: (2)

which is a formula fbr the slope of the surface in the direction of u at (rr, -ro).

-51.

DIRECTIONAL DERIVATIVES

Figure 15.6.1

S ope in u d rection = rate of
change ol : w th respect to .!

\ .,/\,,'\/ :=/(r.!)
7 4. _,^-..

./ -/'i C

,f/



938 PartialDerrvatives

If we now keep the vector u : u\i + u2j in Formula (2) fixed but replace the specific
point (.r0. )0) by a general point (-r. _r'), rhen the resulting expression

l,(r. t')rrr * l,(-t, i')a:
is a function of r and _y whose value ar the point (r. _r) is the slope of the surface in the
direction of u at that point. This "slope-producing function" is sufficiently important tllat it
has some teminology and notation associated with it.

15.6.1 DI.FINITIO\. If I is a ditferentiable function ofr and _r,, andif u : uiluzj
is a unit vector, then the directionql deriyotive off in the direction of u is denoted by
D.l and is delined by

D".f (.x, y): |(-r, ),),r1 -f .f,(.x, y)u2 (3)

Note that llre value of l),./(r, _r,) depends on rhe point (_t, 1,) and the direction of u. Thus,
at a fixed point thc slope of the surface may varv with the direction (Figure 15.6.3).

Recall fiom Formula (13) of Section 13.2 that a unit vector u can be expressecl as

u:cosdi*sindi
where d is the angle from the positive r axis to u. Thus, Formula (3) can also be expressed
AS

D""f(x, .y) : /r(x.I)cosdilr(r,_v)sind (4)

Example I
Find the directional derivative of /(.r, y) - 3-rrl' at the point (1, 2) in the directior of rhe
vectora:3i+4j.

Solutiott. The vector a is not ir unit vector', so rve must normalize it to apply Formula (3).
This yields

ai34u-'al 
., X'li 

-aj'-ri l5j

from which we obtain rr1 : I and a2 : {. Since the partial clerivatives of / arc

.L(.t..r') - 6-tt'. l,(.r. r) : 3r2

it follows tiom (3) that the dircctional delivalive of / in the direcrion of u is

D".f(r,,r) = to'r) (i) + t:") (1) = {r1- + !x,
Thus,

D"f(t,2):T+f:{

Example 2

Find the directional derivative of ./(.r. _r,) : elr at (-2. 0) in the direction ofthe unit vector.
lhJl makes rn a Sle ol ir 3 u ith the poritrvc , -ar,i,.

Soltttitnt, The partial derivatives of / are

l.(r. _r') - r,e'r. "f,(r, )) ::re'-'
l.( 2.0) :0. l,( 2,0) : -2

The unit vector u that nakes an ar]gle of z/3 with the positive -r-axis is

u : cos(T/3)i + sin(z/3)i

. . t ,, ,,,. ..,
The s ope of the surlace varies,
w th the d reciion of n

Figure 15.6.3



15.6 Directonal Derlvatves and Gradients for Functions of Two Variables 939

Thus. from (,1)

D,.) f (-2. O) : .f (-2. 0) cos(r/3) + .f, (-2. 0) sin(z/3)

:0t/2)+( 2)(J3/2): /3

(5)

D i.l(ri,.r): -Ql(L.t): f.(r. -r')

THE RELATIONSHIP BETWEEN
DIRECTIONAL DERIVATIVES AND
PARTIAL DERIVATIVES

THE EFFECT OF REVERSING
DIRECTION

It follorvs fiom Folmula (4) that the dilcctional cle valivc of a function I in the direction
of the unit vector i is

Di./(,r. t ) - .i(-!. r') cos0 + /.(.!.l ) sin0: "/;(-r, J)

ancl the dir ectiorral cle|ivativc of / in thc direction of the unit vector j is

Dil(-r,I) - .1.(r.1)cos(r/2) * /,(-r, t) sin(z/2) : l (t, r)
Tllus, the partial delivative of / with respect to i is the directional cLerivative in the positivc
,r direction, and the partial clerivative of / $'ith respect to I is the dilectional derivative in
thc Posilive I direction.

Also Dote tl'rat Formula (3) cxprcsscs Du./(.r... t ) in tems ol l,(.r. t ) and 1,.(r. 1) and

the componcnts of u, so the values of n/1 directional derivatives at a point are coirpletely
cletemined by values of the clireclional derivatives in the directions of i anclj.

Since reversing the direction of a vectol u reverses the signs of its components. it lbllows
1'rolr-I Fonnula (3) that

D ,.1(.t. i ) : Du /(-r. r)
Thus, for exanpie,

D ;l(-r. r') : D; /(-r, -r') - ./.(.r. )) aud

Fomula (5) makes sense intuitively if you view clirectional derivatives as slopes and

considel thc cffcct ol rvalking in opposite directions on the sidc of a hill. At each lloint on

the side of the hill the "uphill grade" and the "downhill gtade" are thc samc, bul in one

clirection you are lrscending and in the opposite ditection you are descending.

THE GRADIENT
The direclional derivative

ll, l(.r. r) : l,(-r. r')rr *.1,(r. r')a:

can be cxprcssccl in lhe fol]n of a dot ploduct as

D"./(,i, t) : (1.(t, r')i +.1,.(.r,.r)j) . (a1i + a2,l) r6)

The sccond vector in the clot product is u. Holr,ever. the ll]It vector is new; it is called tlle
gradienr ol f anc\ rs denotecl by the symbol V/ ot V/(,r. ,t ). ' The nottrtion Vi is also used

if . = .l(r. .r,).

' 15.6.2 DF-l-tlillloN. Ifl is afunctionof-r andl, then the gradient off is deFtnedby

,Vl(' 
.r,) : .f,(.t. r')i + /,.(.r.,r,)j (7)

With this notation Formula (6) can be expressed as

D"l(r, r') - Vf(n,,I) .u (8)

which states that thc slope ofthe suftace ; : /(r, l ) at the point (r. -r') in the di|ection ol
u is thc dot product ofthe gradienl with u (Figure 15.6.4).

ItEl\l \l{K. lt is important to keep in nind lhat Vl is rlot the product o1'V and /. The

syrnbol V does not have a value in rnd of ilscll: rather. you should think of it as an operator

'NThe slmbol V (rtad dcl ) is rn inlerted dellN ]n oldcrbooks rhis symbol is somelimc\ clllc.l a nrbla because

of its sinilarir! in tirrm to rn ncienl IIcbrcw ten stfinged h p oi that namc.

(.r. \)

Fier rr l5 6.1
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PROPERTIES OF THE GRADIENT

that acfs on the function ./ to produce the gradient V/ in the same sense that r//di is an

operalor that lrcts on a l'unclion .l to produce the derivative l'.

Example 3
Find the gradient of ,/ (.r. f ) = 3,r.- 

r 
-r' at the point ( 1, 2) and use it to calculate the directional

derivative of / at (1. 2) in the direction of the vector a : 3i + 4j.

Solutiott. Fron (7)

Vtr.r.r ) = r r.r.r'i-.t i.r. \ rj = o.rri+-1.rlj

se thc gradient of ./ al ( 1. 2) is

V/I1. 2) : l2i + 3j

The unil veclol in the direction of a is
rl 14

u = -'-- - -'Ji 4,ir=:il -jail ))
Thus. liorn (8)

D".ltt.2) :v.f(r.2\. u : (l2i+3.i). (*i+ *j) : +
whichagleesr,virhtheresultobtainedinExamplel.<

The gradient is not nrcrcly er notational device to simplily the for'rlrula for the clirectional
derivalive; wc will see thlt the lenglh and direction ol the gradient Vl provide important
infbnnation about the function .l and the surtace.- : /(,r. -r'). For example, suppose that

Yf(.r. f ) I 0. and let us use Fomula (4) of Section I3.3 to rcwrite (8) as

Dr l(.r. ,\') - Vl(,r. r) . u : llv/( r. ,r)llllullcos d : llV/(.r-. r) ll cos0 (9)

wherc d is the angle between V/(.r. -r') and u. This equation tells u$ lhat the maxinunr
value ol Du.l(r. ,1) is Vl'(.r.r)1,andthismaxirnunoccurswhend:0,thatis.whenuis
in the dircction of V/(.r . r'). Gconetrically, this neans that t he sut lac e i = / (-r, r) /ras its
nto.rinunt slope at a point (.r . 1) in the direttiou rl tlrc grudient. ancl thc mu.timunt slope is

llYl(.r. f )l (Figure 15.6.5). Similarly, (9) tells us that the minimum value of Du/(r. r') is
- llVl (.1. f ) ll, and this minimum occurs when 0 = z, that is, when u is oppositely direcled
to Vl (.r. r'). Gcome trically, th is means that the saJhce : : /(r. r') ,[ns ilr rr irinttott slope
d e lloiul (x. \', itt tlte dircttiott tlrut is oppositc to the gt'adiett. atrd tltc ntiuinttutt slopc is

-lYf(.t, r) ll (Figure 15.6.5).

Finally, iD the case where V/(,r,1) : 0, it tbllows froln (9) that D,./(.{.,}) : 0 in all
directions at the point (.r, r'). This typically occlrrs where the surface : : .l(r, r') has r
"relative maximum," a "rclalive minimum," or a saddle point.

15.6..1 tuEoRENI. Let f he a Jiutctiotr oJ tu o |qriuhles rhat is tlillereutiuhle at (t . t').
((1) 1./ Yf(-r, -r) - 0. than ull dirattional tlerltutires of f at ()t. \') ara .ero.

(h) IIYJ(.x. t) + 0. thu cunong all possible tlireoional deriativcs d .f ar (x. t'),
thc deritatiye in the tlircctiou of YJ Q , l') hcrs the lorgest talua. The talue of that
cl i re cri ona I d er ivat it'i, is ll V/(r. .r') ll.

(rJ i./ Vl(,r.r) + 0. then antong all possible tlirecriotul deriarives of f at(x.t'),
tha clarivni'e in thc tlircctiott opposite to tltet ol Vf(ti. \') has the smollest taluc.
The wlue of that tlire(riotul derh,etie ru -llY/(.r,,y)ll.

Example 4

Let .l(,r, r') = .r2er. Find the maximum value of a directional derivative at (-2. 0), and

find the unit vector in the dirsctior in which the maximum value occurs.

FiSUrc i 6 5



GRADIENTS ARE NORMAL TO

LEVEL CURVES

15.6 Directional Derivatives and Grad ents for Frnctions of Two Variables 941

Solalion. Sincc

V/ft, -r) : fi(r, -r')i + .1,(t, -r) j : 2x.r i + x2e; j
the gradient of I at ( 2,0) is

Y/(-2, 0) : -4i + 4.i

By Theorem 15.6.3, the maximum value of the directional derivative is

I v/(-2, o)l : J( 4)2 + 42 : "5i : +"4

This marimum occurs in the direction of VlI 2,0). The uoit vector irthjs djrectjon js

V/1 2.0t I .. Iu- - i ri ;jr:.-i- ^jV/1 2.01 4J2 r2 r2

We have seen that the gradient points in the direction in which a surface; : .f(,r. _r,) has

its maximum slope. We will now consider how the direction of maximum slope can be

determined from a contour map of the functio|r. To do this we will need to investigate the
geometric relationship between the gradient and the level curves of a functioll.

Suppose that Vf(,t. f) is the gradient at a point on the level curve / (r, -i ) : s, and

assume that this level curve can be smoothly parametrized as

r =,r(s). _] : t,(s) (10)

where s is an arc length parameter.* Our objective is to show that at each point on the level

curve the gradient is orthogonal to the unit tangent; that is, the gradient is nor.nzal to the

level curve. For this purpose, recali from Formula (6) of Section 14.4 that the unit tangent
vector lo (10) al r' is

/ i./r \ /,,i r \Trsr=l li+l+l.i
\4J./ \4r./

If we now differentiate both sides of the equation .l(;r, -v) : c with respect to .r using thc
chain rule- we obtain

0t dr df dt',:- + -__ I:0;lr ,.t r /lr',/r

which we can rewrite as

t0f. d./.\ /J^. Jr.\I i .i l'l;i-+.i l-0
\.ir .t\ ./ \ d.i Lt\ /

or alternatively as

V/ (.r, -v) 
.T(s):0

Thus, the gndient is oflhogonal to the unit tangcnt vector, which is rvhat we wanted to
show.

15.6.'1 rHEOR|N4. tf f is dtfferentiable ar (ro. ro) and if Yfgn, ), + 0. than

V/("0, fo) is normal to the level tzrve tf f thrcLtgh (xo, \\)).

RE\I,\ltK. If (.r0, l\r) is a point on thc lcvel cuwe /(r, l ) : c, then the slope ofthe surface

: : l (,r. f) at that poiDt in the direction of u is

D" l(ro, tr) : v/(-ro, l'o) 'u

*lt 
is proved in advanced courses thar ifrhe gradient oia dilierenliablc function./ is nonzero at a poinl. then therc

is a unique level cuNe through lhe point, and this level cuI!e can be smoothly pa.ametrized in lerms olarc length.
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AN APPLICATION OF GRADIENTS

If u is tangent to the level cuNe at (r0, ye), then /(x, y ) is neither increasing nor decreasing in
that direction, so Dul(rg, lo) : 0. Thus, V/(,t0, yo), -V/(xo, yo), and the rangent vector
u mark the directions of maximum slope, minimum slope, and zero slope at a point (rs, y6)
on a level curve (Figure 15.6.6). Good skiers use these facts intuitively to control their speed
by zigzagging down ski slopes they ski across the slope with their skis tangential to a level
curye to stop their downhill motion, and they point their skis down the slope and normal to
the level curye to obtain the most rapid descent.

Example 5

Sketch the level curve for the function /(t. )) = x 
2 + y2 through the point (3, 4), and draw

the gradient vector at this point.

Sohrtiut. Since /(3,4) : 25, the level curye through the point (3, 4) has the equation

"f(r, r') - 25, which is the circle

x-+rJ-=,/l

Since

Y/(". r) : f(x,1)i+/,(x, y)j:zxi+2ti
the gradient vector at (3, 4) is

vl(3,4)=6i+8.i
(Figure 15.6.7). Note that the gradient vector is pelpendicular to the circle at (3, 4), as

guaranteed by Theorem 15.6.4.

There are numerous applications in which the motion ofan object must be controlled so that
it moves toward a heat source. For example, in medical applications the operation ofceftain
diagnostic equipment is designed to locate heat sowces generated by tumors or infections,
and in militaly applications the trajectories of heat-seeking missiles are controlled to seek
and destroy enemy aircraft. The following example illustrates how gradients are used to
solve such problems.

Example 6

A heat-seeking particle is located at the point (2, 3) on a flat metal plate whose temperature
at a poiot (.ir, l') is

f (x. r) : 10 - 8-r2 - 2),2

Find an equation for the trajectory of the particle if it moves continuously in the direction
of maximum temperature incrcase.

Solutiort, Assume that the trajectory is reprcsented parametrically by the equatjons

x:r(/), tl:)(/)
where the pa icle is at the point (2, 3) at time I = 0. Because the paflicle moves in the
direction of maximum temperature increase, its direction of motion at time I is in the
direction of the gradient of Z(r, )), and hence its velocity vector v(/) at time r points in
the direction of the gradjent. Thus, there is a scalar i that depends on I such that

v(r) : tvr(r, r)
from which we obtain

tJx dv
, i + i.i = k( l6ri 4l.i)

Figure i5.6.7
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Equating components yields

dr d.":-16kx. .= 4k\idt dt
and dividing to eliminate t yields

dy _ -4kt, _y
dx -l6kx 4r

Thus, we can obtain the tmjectory by solving the initial value problem

- 1- 0. y121 :3

The diff'erential equation is a separable firs1-order linear equation and henca can be solved
by separating the variables or by the method of integrating factors discussed in Section 10.1.

We leave it for you to show that the solution of the initial-value problem is

3 ,,.
\'--I't't2

The graph of the trajectory and a contour plot of the temperature function are shown in
Figure 15.6.8.

1. The accompanying figure shows some level curves of an

unspecif,ed function /(x, y). Which of the three vecto$
shown in the figurc is most likely to be Vf? Explain.

The accompanying ligure shows some level curves of an

unspecilied function /(;r, y). Of the gradients at P and 0,
which probably has the greater leDgth? Explain.

Figure Er 1

10. /(x, i,) : -r,2 tans x: (z/4, 3)

In Exercises 11-14, find DDl at P.

ll. /(.r,-r.)-11 +ry)3/2; P(3, 1); u - jt. jt
12. /(.r.r)-e2''r; P(4,0); u= li+{;
13. f(.r,y):ln(l+,r'?+)); P(0,0); u: 

*t *,
--Ls-

14. /rr.r'r-'._ .':PtJ.4r: u-1i j:
, 

j_}

ln Exercises 15-20, find the directional derivative of / at P
in the direction of a.

15. /(:r,l) :4r3!2; P(2.11, 
" 

: +f - :j
16. /(:r,y) -12 3r! *413; P( 2,0): a-iI2.i
17, t'G.l:-v2ln-t; P(l,4); a: 3i+3j
18. /(,t, r) : eI cos ); P (0. n/4)t a - 5i 2j

lS. /',r.)r-tanrt.v lr: PL-2.2r a--i- j
20. /(-r, y) :7s)' - ye"; P(0,0); a:5i - 2j

InErercises2l 24. fin.lLhedirecrionalderiratireoi r ar P in
the direction of a vector making the counterclockwise angle
A with the.positive .r axls

21. ./(r. y) = Jn'-: P(1,$t e : rl3

22. l\^.\) *-llPi l. 2r:.0-n,2r+l

ln Exercises 3 6. find Vl.

3. z:4.r-8)
r. -5. a:lnVx'+)'

j In E*"r"ir", 7 10, find the gradient of /
i point.

7. -f(', l) - 1r'z-1- r1)3; ( 1, 1)

8. "f(r, r) : Q2 + Y\-rtz\ (3.4)

9. ,f(', r) = 1,ln(:r { y); (-3, 4)

4.

6. ;:e - Secx'J'
I

at the indicaled

Figore Ex-2
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23. ./(r.1) : ran(2r + f )t P(.Jt/6,r13), e :7n14
21. f(x. t) : sinl'l,r cosh -r,; P(0.0)r 9:r

In Exercises 25 28, sketch the level curve of /(.r, r'-) that
passes throlgh P and draw the gradient vector at P.

25. f(x, ]"):tv 2y i3: P(1,2)

26. f(r,t,): yl12 P( 2,21

27. t'(x, :-): -r2 + 4-v2; P( 2,0)

28. ttr.rr-r -rl: Pt). lt

In Exercises 29 32, find a unit vectol in the direction in which

.f increases most rapidly at P; and lind the rate of change of

.l ar P in that direction.

29. f (x, \'):,1rr-v2; P( l, 1)

30. /(r, r) : l1 -ln1; P(2.4)

31. /(i, )) : /jrr + -\,2: P(4. 3)

32. f(r. r') : -' P1o. r1r+r

ln Ll.erur:t s JJ -tb.nndaunrl \ ector rn rhr direclron in wh i. h

t decrcases most rapidly at P: and tind the rate of change oi
/ at P in that dircction.

33. f(.r, i) :20 x2 l''?; P( l, 3)

34. /(-r.1) : at:; P(2,3)

35. /(;,'y) : cos(3.v - y|; P(irl6,tl1)

/- .
.16. /( !. )) : - / ; P(3, l)

\].r+\
37. Find the directional derivative of /(r. )')

40.

P(1,0) in the direction of O( 1. 1).

Find the directional derivative of /(,t, y) - e '5ss -1, il1

P(0, r/4) in the direction of the origiD.

Find the directionai derivative of /(r.l,) - ./,Ttpr at

Pr L lr in lhe direclion ot lhc regative r axr..

Let f(r. r') : r . FiDd a unit vector u fbl which
Jr+_t

Dtf(2.3) - 0.

Find a unit vector u thal is normal at P(l, 2) to the level
curve ol f(r, y) : ,lr2y through P.

Find a unit vector u that is normal at P(2. 3) 10 the level

curve of /(-r. y) : 3-r2) r-y through P.

Suppose that Dtl(1.2): -5 and D,.l(].2) : 10, where

u: al iJ rno v: ;l + il. lmo
(a) /, (1, 2) (b) i(1,2)
(c) the directional derivative ot' / at (1, 2) in the direction

of the origin.

Given that.^( 5, 1) - 3 and /,(-5, l) : 2, find the

directional derivative of / at P( 5, 1) in the direction of
lhe vector liom P t() 0( 4. 3).

Given that V/(4. -5) : 2i j, flnd the directional deriva-
tive of the function I at tlte point (4. 5) in the direction
ola-5i*2j.

Given that V/(tlr. _\.6) : i 2j and D"/(;r6, ye) - 2.
llnd u (1wo answers).

The accompanying ligure shows some level curves of an

unspecified function f(.r, l).

16.

17.

(a) Use the available information to approximate the length
ofthe vector V/(1,2), and sketch the approximation.
Explain how you approximated the length and deter
mined the directioil of the vector.

(b) Sketch an approximatjol ofthe vector V/(4,4).

48. (a) The accompanying figure shows a topographic map ofa
hill and a point P at the bottom ofthe hili. Suppose that
you want to climb from the point P toward the rop of
the hill in such a way that you are always ascending in
the direction of steepest slope. Sketch tlte projection of
yolLr path on the contour map. Tl]is is cdled lhe path of
steepest asunt. Explain how 1'ou detemrined the palh.

(b) Suppose lhat when you are at the top you want to climb
down the hill in such a way that you are always de

scending in the direction of steepest slope. Sketch the
pro.jection of your path on the contour map. This is

called, the pqth of steepest descent. Explain how you
detemrined the path.

49. Let.. :3.r2 -v2. Fincl all points at which I V: - 6.

50. Given that: : 3r + _r'2, find V lV; I at the point (5,2).

51. A parficle moves along a path C given by the equations
r : / and ), : -t2.Il z: x2 + )-2,fi]Ild dzlds a10ng c at

the instant when the panicle is at the point (2, -4).

52. The temperature at a point (,y, ]]) on a metal plate in the

.n prane i. frr. I r , '] de,'ree. celriu..t+r +!
(a) Find the rate of change of temperature at ( I , 1) in the

direcrion ofa:2i -j.
(b) An arrt at (l , l) \\,ants to walk in the direction in which

the temperature drops most rapidly. Find a unit vectol'
in that direction.

39.

41.

4-3.

Fieure E\-47 Fie ure E\ a8

44.
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53. If the electric potential at a point (r. r,) iD the.\l'plane is
y (-r, l ), then lhe slsctric inle sitJ wctortt the point (,r. r')
is E - VV(.r. y). Suppose that y(r. )) - e r\ co(2r'.
(a) Find the electric intcnsity vector at (r/4,0).
(b) Show that at each point in the planc. thc electric po-

tential dccrcascs most rapidly in the direction of thc
vcctor E.

On a certain mountain. the elcvation i. in miles above a point
(-t, r) in an.r'r.planc at sea levcl is a : 2000 2-rr 4l'
fi. The positive.r-axis points east, and the positive _r' irxis
norlh. A climber is at the point (-20, 5. I100).
(a) Ifthe climber uses a compass rcacling to walk due west.

will she begin to ascend ol descend'l
(b) lfthe climber uses a compass reading to walk noltheast.

will she ascerld or descend l At what rrte'l
(c) ln what compass directiou slrould lhe clirnbel begin

rvalking to travel a levcl path (two answers)?

Letr:v/-rl+_r'2.
(a) Show that Vr -

/ l,r
'Lrr Slror^ tltat V/ ' 

r r /', 'Vr , ,.

Use the fomrula in part (b) of Exercise 55 to lind
(a) V/(r) if f(r)-va 3'

(b) /(r) if Vf(r) : 3r:r and .f(2) : L

Let u,. be a unit vector whose countcrclockwise angle fron'r

the positive .r-axis is d. and let ud be a unit vector 90' coun

terclockwise from u, . Show that if .- : l(r. 1).r: r-cos6,
and -\. 

: r sir'l0. lhen

i): I rJ-V--:lu, * u"
dt t i)0

l.rylrtr Use part (c) of Exercise 39, Section 15.4.1

Prove: If I and g are dil'ferentiable. then
(a) V(/+g):Vl+Vs
(b) VG l ) - .V/ (c constaDt)
(c) V(.ls) : lYe + sY.f

/t\ cV/ /Vc
rd) Vl l-#\.(,/ x-
(e) V( l") - nf" tv.l 

.

ln Exercises 59 and 60, i1 heat-seeking pal-ticle is Iocated at
lhe nornl P nn a llil rrr(l:r' flirle $ lro.e tenrfernIlle dr J f.,iilt
(.t. r') ]s I(-r. r'). Find parametric cquations ior the tlajec
tory of the particle if it nrove! contiltuously in the directio
of maximum temperature inclease.

59. I(-\:. -r) - 5 ,1rr y:; P( l, 4)

60. I(r. r) : 100 - r2 - 2-r'2: P(5.3)

61. Use a graphing utility to generate the flajector.y ol tl're par

ticle together wilh solllc representative level cuNes of the
temperature function in Exercise 59.

62. Use a graphing utility to generare the trajectory of thc par-
ticle together with some representative level curves of thc
teinperature function in Exercise (r0.

6-1. (a) Use a CAS io graph /(.r. -r') : 1r: 131r1" r'r+'rt.

(b) At how rranv points do yolr think it is true thai
D",/(.t. r) - {) tbr all unit veclor.s u?

(c) Use a CAS ro nnd V/.
(l) Use a CAS to solve the equation Vl(r. _i,) : 0 lbr r

and r,.

(e) Use the rellLlt iD part (d) iogether with Theorem
1-5.6.3(.r) to check yoLu coniecture in part (b).

64. Prove: If ,t -.r(t) and ) : _r(t) are differentiilble at r. ancl

if . : /(.r. _r) is differentiable at the point (r(1). l, (r) ), then

1a-V.rrrr
dt

$,here r(1) - -t(r)i * r'(t).i.

65. Plove: Il .l . /,, and i ale continuolrs on a circular rcgion.
and if V/(r. r) : 0 lhlouShoul the recion, ihen l(,!, -r)
is constant on the region- UJi?t. See Exercise 52. Secliolr
15.4.1

66. Prove: If the function .l is differentiable at the point (i, ) )
and it Dul(i, -\') : 0 in two noupar.allel directions. then

D".l(r. -t) :0 in all directions.

5,1.

E

E

tr55.

56.

r
, where r :.yi + rj.r

57.

-58.

15.7 DIF'FERENTIABILITY, DIRECTIONAL DFRIVATiVFS,
AND GRAFIENTS FOR FUI\CT[OI\$ OF THREH
OR MORE VARIAELES

I this sectiotl we vill ertend nost ofthe results obtainetl itt the last ttttt.tcttiunt rLt

.fLolctiotls ol thrce ot norc rariables.

The definition of dift'erentiability for functions of thrce variables and the basic theor.ens
about diff'erentiability are direct generalizations of the conesponding rcsults for functions
of two variables. (See Definition 15.4.2, Theorem 15.4.3, Theorem 15.4.,1. and Theorem
r.5.4.7.)

DIFFERENTIABILITY
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15,7.1 DEFINITIoN. A f\nction / ofthree variablcs is saidto be di,fferentiable atthe
point (.r0. r,o.:o) ifthcpaltial clerivatives f,(-ro.)0..-0). l,(.te. I'0.:o),iind l.(;vo. _ro,:o)
exist and

A./ = /(.re * A.r. rtr + Ar'.:0 + a:) -./(.rr). ll)..:0)

can bc written in the lonrr

A./ = l(rn. r'11. -n)A.r + l;(n0. 10,:0)A.r'+ l,(.t0. r'0.:o)A: * <rA.r + €:A-\'+ <34:

wherc €1. €2, and €r are lunctions of A-r. Ar'. itnd A. such that el + 0, el + 0. and

€r--+0as(A-r. Ar'. A;)'+ (0. 0. 0). ande 1 =(2: (t:0 if (Ax. Ar. A:): (0, 0. 0).

15.7.2 'tt tEoRE\I. IJ .l hus first oxler pe iul det'ir'qti|es Qt ettdt poiut of sonrc spher-
i<ttl rcgiott cetltercd ul (.\'0. lir.:0). uMl if tltcsc p{uliIl deivti|c:; (oc ro tin ous at
(.t0..r'0.:rr). then f is clillcrcutitrDlc ar (.rp. r11..11).

15.7.-1 tHIroRE\1. If .l is tli.lJcrcttitltlc .tt tlt( l)t)ittt \\t). \\t. ao). tan I is con!inu,tus

15.7..1 fllEoRE\r (chain Rutel. f-r:.r(/).r':v(r\.utul:::(t)arcdillerentiulll(
ut th('lloint t antl u = ./(.r. \',:) lr dift('cntictbla qt thc lloirtt (r(1), r'(/), ..(t)\. then

ur : /(.i-(l), r'k).;(t)) i.\ (liftcrc tiublc.tt t. (tttd

tltt 0w tlr lrt dt' dw dz

dr 0t tlt ' lt dt ' D: dt

A tree diagram for this version of the chain rule is shown in Figurc 15.7. L

Rtii\1,\tiK. The most signilicant difftlence betwcen working with functions of two viui-
ables and lunctions of three variables is geometric. For a f'unction of two variables the

equ.rtion : : /(r. r') can be graphed as a surfacc in three dimensional space. Howevcr, fot'

a function of three variables. (herc is no direct way to graph u, = .l(.r. l. :), since "fbur
dimensions" would be requircd (one dimension fbr each variable). This is not devastating,

however; it simply means thiLt we must rcly morc hcavily on the analytic tb nulas than on

the geometry.

Recall that the directional derivative Du f(.r0. -rl) can be interpreted eithel as the slope of
the surllce : : .l (r. r') at thc poitrt ( r0. ,\'0) in the direction of u ol as the rate of change ol':
with rcspcct to.r. whcre r is thc atc length measured from (.r0, -\0) in tlte direction ofu along

a line. For a function of three variables, we will use the latter inte4rrctation as the basis for
the dctinition of the directional derivative ol u = .l (r. -r', r.) trt the point (.r0, t,0. ;o) ir the

direction of a unit vector u in 3-space; thal is, we will interpret D,, (.r0. 10. .:o) to be the rate

of change ol u with respect to the arc length .! measured from (,r0. .rir. :o) in the direction

of u along a line (Figure 15.7.2).

We leave it as an exercise lor you to obtain thc fbllowing formal definition by imitating

the motivational cemputations that led to Formula (3) in Section 15.6.

1S.7.5 l)t |\ t,)\. lt / ts Llrferentiable i.Lt r.r..r.:). and il'u = rr i- rr.j lir,k
is a unit vector, then the directionsl derivative of / at (,r. -r'. r.) in thc dircction of u is

deflned by

D./(,r'. r.:) = /.(.r. r'.:)irr *,f,(.r. r'.;)r; * l.(,r. r.;)rrr

(l)

n

.lu nrcd\ IUA\ ad:
,lt J\ lr .rr J/ it: Jt

Figure 15.7.1

DIRECTIOML DERIVATIVES AND
GRADIENTS

Figure 15.7.2

(2)
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Formula (2) can be expressed in vector fonr as

D,l(r, t,. ;) = (1,(-r. _r,. r)i * l,(-r, r-,:)j +.i(-r, t,.;)k) . (a1i + r2j + a3k)

Thus, we deline the gradienl of / as

V/(r, -\', :) : f,(;r, 1,:)i + /,.(,t, ,v,:) j + l.(x, r,;)k
which enables us to express (2) as

Dul("r, _v, r) = V/(r. r. z) .u

(3)

(,1)

GRADIENTS ARE NORMAL TO
LEVEL SURFACES

Iolt lllLltE,\DElt. What is the -qeneralization of Fomula(,1) of Section 15.6bt'unctions
of thrcc variables?

The tbllowing theorem is the three-variable analog of Theolem 1-5.6.3.

15.7,6 TtiEORENI. Lct .f be u.futtri,tn t'f thtLL t',tri,thlcs rlur is tltlJeretttiable at
(r, r',:).
(d) Yf(x.y.z):0,thetlalldireLliondl tleri|uti|e.\ ol J ctt(.x,t,z)arezero.
(D) f Vl(-r,,1.:) f0,thenantongallpossibletlirettionaI.le]itati|esoJJat(.r.].z),

the dairqtire in tlrc direction ol V/(r, r.:) ltas the largest talue. The vtlue of
thqt ditedionul derilatn,e is lVl(-t. _r,,:) |

(c) f V/(x.1,:) l 0. rhen antong alL possible direct ional derivtires ol f ot Qi,j..),
the deri|ati'e in the diret:tion opposite to tlut d Y f(x. ),, z) htts the smallest ralue.
The t'dlue of rhut dircctional deildtie r.r - lV/(-r, r, .)l .

Example I
Find the directional derivative of /(.r, l.:):r21,-l:3*..althepoinl P(1, 2.0)inrhe
direction of the vectol a - 2i * j - 2k, and find the maximum rate of increase of f at P.

Srt/rrlial. Since

l.(r.1.;) :2.r1. /,.(.r, ). r) : r? ::r. ./.(.r, r.:) = 3]:2 + I
it tbllows that

V7,r.'. .' - 2tri -,r' - :'rj -'-tr.-' - l,k

v/(1.-2.0)--4i+j+k
A unit vector in the direction of a is

al 212u- - ,2i *.i -2kr ;i-^.i -.k
IA J9 J J

Therefore.

Dul(1,2,0):v/(1.-2,0).u:(-4)(i) + trt (i) +(1X ;)- 3

The maximum rate of increase of f at P is

lV/(r. 2.0) -J( tl. + (1)2+(l)2:3v5

We saw in Section 15.6 that tbr a 1'unction of two variables the g1 adient at a point is nonnal
to the level curve through that point. For functions of three variables the gradient at a point
is normal to the level sr.llice through that point. Although we will not give a formal proof
of this result, it is not hard lo motivate. Fol this purpose, suppose that .f(.r:,1,:) : c is a

level surface through the point (-ro. ,"'.0, :o) and that u is any unit vector in the tangent plane
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to the level suf'ace at this point (Figure 15.7.3). Bccause the flnction / is constant on the
level surtace. it is reasonable to expect that the directional derivative D,.l(re, 11.;n) will
bc zcro. Thus, 1br all unit vectors in the tangent plane at (xs. _rs. ;j) we have

D,l(.ro,,il, :o) : $/(.5e.,1x, ;e) . u - o

Geometrically, this neans that V/(rn, _r'n.:0) is ofihogonal to every unil vector u in the
tangelt plaoe. This implies that V/(,ro. )0,.o) is normal to the tangent plane itself and

hence is normal to {he level sudace.

' 15.7.7 TIIEOREN t. IJ .t' is tliJJerettri,tl,le ar lr|. tn. 1,1 ortJ ilVlt\0. r\r, i.0) + 0, trc,
, V/(re, 1e,:e) is ttormal to the letel suttace ol J(..t.1., z) thrtngh (-ro, ),,t,:o).

In Section I 5.5 rve showed how to find the tangent plane to a surface of ths fe11 ; : /(r. i,)
(see Theoren 15.5.1). We $'ill now consider the problen of finding targent planes to
sudaces that are represented implicitly by equations of the form F(r. 1. ;) : c. Such an

equation represents a level surface of the tunction F(-l , t , :), so the vector VF(,r0, )0, :0)
will be nonnal to the sudace, and hence nomal to the tangcnt plane. at any point where
VF(ro,,ye,;n) I 0. Thus, wherc this condition is satisfied it tbllows fron Fornula (3) of
Section 13.6 that the tangent plane at (-ro. )0,lo) can be expressed in point-norrnal fbnn as

F,0ro, t'0,.r.r)(t ro) * Ir,(r0, )0.;0)(l - t0) * F.(xo, Io,:o)(: - ro) :0 (5)

Altematively, we can express this equation in vector fblm by letting r - ,ri + l j + :k and

r0 : ,roi + -r0.i +:ok, in which case it becornes

The grad ent s normal to
the evel sLrrface.

Figure l5.7.3

USING GRADIENTS TO FIND
TANGENT PLANES

cos I

Thus,

lvF(1,2, 1) llk (2J66)(t)

VF(-t6, 1,6,;n; . (r - ro) :0

Example 2

Find an equation of the tangent plane to the ellipsoid 12 * 4,i,2 + :2 : l8 at the point
( 1, 2, 1), and detemrine the acute angle that this plare makes with the r.r, plarre.

Solution. The el]ipsoicl is a levcl surface ofthe function F(r, t.;) :,rI + 4.I +.'1, ro
we begin by linding the gradient of this function at the point (1, 2, 1). The computations
are

iL ar aF
Vfqr. r'..-' - i- . .i - k 2ri- ttr'.j - 2:k

d.\ rr r Ll --

vF(I,2, 1) = 2i + 16j + 2k

Thus.

R(l.2. 1) - 2. F,(1.2, 1): 16, F.(1,2,t') -2
and helce fion.i (5) the equation of the tangent plane is

2(-r- 1)+16(t -2)+2(: l):0 or -r+8i+::18
To find the acute angle d between the tangent plare and the -\_r plane, we will apply

Formula (9) of Section 13.6 with n1 - YF(.1,2.1) - 2i + 16j * 2k and n: : k. This
vields

vF(1,2. l).k 2 t

(6)

4
3
2
L

:0
-1

2

Figure 15.7.1

Jao
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USING GRADIENTS TO FIND
TANGENT LINES TO
INTERSECTIONS OF SURFACES

I(r, -r. :) = 0

vc I r."
v),,

,.^

' ! \ 1'e, yo,,o)

c(i.).:) = 0

Figure 15.7.5

In general, the intersection of two surfaces F(-r, _r,:) :0 and G(r. r'.:) = 0 rvill be a

curve in 3 space. Il'(;16. )0,:0) is a poillt on this cut,,e. thcn VF(rt. io, ;n) will be nolinal
to the sudaca F(r. r, ") 

: 0 at (r0, -i0,:0) and VC(,rg. _r'0.;o) will be nolmal to the sur
face G(-r, f,,:) - 0 al (r0. _l,0.;n). Thus, if the curye of intersection can be smoothly
parametrized. then its unit tangent vector T at (,tj. r0.:o) will bc orthogonal to both
VF(ls, 1...p,;6) and VG(16. _vn.:n) (Figure 15.7.5). Consequently, if

VF(xo, lo, :o) x VG(x6, -r,0. ;1) I 0

then this cross procluct will be parallel to T and hence will b.] taDgent to the curve of
intersection. This tangent vector can bc uscd to detcrmine the direction of the talgent line
to the curve of intersection at the point (-ro. .f'0, ;r,).

Example 3

Find parametric equations of the tangent line to the curve of intersection of the paraboloid
: : r2 + ) 

2 and the ellipsoid 3rr + 2)2 * :2 : 9 at the point (1, 1, 2) (Figule 15.7.6).

Soltttiort. We begin by rewriring thc equalions of the suft'aces rs

-I2+-r,l t=0 ancl 3-rl +2,i2 +;2 9:0
and we take

F(x,,i.:):12 11'2 : and G(.t,-t,,:):3r2+2tl +a2 9

Wewillneedthegradientsofthesefunctionsatthepoint(1.1.2).Thecornputatronsrrc

VF(-r. )',:) = 2-ri * 2r'j k
VC(-r.,r'. ;) : 6-ri + 4)'j + 2rk
vF(r, 1,2):2i+2:-k
VG(l, 1. 2) - 6i + '1.i + 4k

Thus. a tangent vector at (1. 1. 2) to the curve of intelsection is

VF(l. 1,2) x VG(l. 1.2) - ;
6

j kl

I 1]- lzi l4j 4k

14
Since any scalar n.rultiple of this vector will do.just as well. we cal lnultiply by ] to reduce
the size of the coefllcjents and use the vector of 6i 7 j 2k to deter-n]ine the direction of
the tangent line. This vector and the point ( I . I . 2) yield the parametric equetions

r l*6r. r'-l =) )t

The following formulas are nlrtural extensions of Formulas (8) and (9) of Sectior l-5.5 to
functions ur = l(r. ),:) ofthree variables:

lu : /(r + A.r, I + Ar.; * A:) l(r,1,:) (.1)

dw: .f,(x.t,.z)dx +f,(,r,_\,,.)d)*1.(.t.y,:)r/: (E)

We call Arl,' (also wlitten Lf ) the increment ir p or the incrcment ift f , ancl we call rlur

(also wlitten d/ ) the total dilferential of y' ot the total dffirential of f .

Although increments and tolal dil'Icrentials have geolletric interpretations lbr Iur'rclions
of two variables (see Figure 15.5.3), there are no corrcsponcling geometric interyretatiurs tbr
functions of three variables-these quantities must be viewed algebraically. For example,
you should think of the increment Au.' as the change in the value of ur : l(,r. r,.::) when

x, l, and: are changed by the amounts A.r. Ar,, and A:, respectiveLy.

TOTAL DIFFERENTIALS
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lf w : f(x,1, z) is differentiable at the point (x, y, :), then it follows from Definition
APPROXIMATIONS USING TOTAL
DIFFERENT|ALS 15.7.1 that the increment in xr can be w tten as

Au = ,f,0r, J,, z)Ar + i(r, -r,, z)A) * i(r, y, z)Az + €r A,{ + €24} + €3Az

where e1 >0,e2 >0,e3 >0as (A.r, Ay, Aq)+ (0,0,0).If d,r : Lx, dy: A), and
dz : Ar. then it follows from (8) that this fonnula can be rewritten as

Lu : du + €14.r + €24], + €3Az

fhus, when dx : Ar, d] : A], and d: : At are small, we can approximate Au by

Lwx dw

;liffijT-",-:r'i::i,J: l:"-^ 
of three variabres of Formula (12) in Section 3 6 and

Example 4

Ihe length, width, and height of a rectalgular box are each measured with an eror of at
most 5olo. Estil.nate the maximum percentage enor that results if these quantities are used
to calculate the diagonal of the box.

Solulion. Let r,1, z, and D be the true length, width, height, and diagonal of the box,
respectively; and let Ar, Ay, Az, and AD be the errors in these quantities. We are given
that

lAx/xl < 0.05, lAr/y < 0.05, lAzlzl < 0.05

We want to estimate IAD/DI. Since the diagonal D is related to the length, width, and
height by

D : y/ x, + ),, + t
it follows that

AD AD ADdD- dxt dr+ dz.dr d)' d.

] ), 1 , z ,

''r.-1 
j,'7, -- +J--72- \n'+v ti'

tff;Tffifr.;,1r,or = dI. and a.z : dz. then we can use the approximation

dDr'v: ),
D - ^' r,-' f"^ - ;-ll;"' -r22"-

OI

dD r2 dx \,2 dy 2.2 dz.

D r-t )2 z'r'" ) 7.y .r / j-
Ihus.

JDl12dsy2Jyztdz
' ..1 -:t ., ' ..t . -) -u x- r)-rz-.{ ,{-.y.+7" y x,rl +-; a

.,I dt 12 ./r zz dz
' .-) ..) -) .- | .-, ...,, -, .. | .r -, -, -Y )'Z r Y ) t- ) X.,r.tz.;l

t2v)'
, ,(0.05) t , -, 

-,10.05)- ; 
'; 

;r005)r I I :' _r, J I : r '1. , .

:0.05

Iherefbre,weestimatethemaximumpercentageenorinDtobe5vo.<
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Most ofthe definitions and theorems we have stated for functions of two and three variables
can be extended to functions of four or more variables. Recall that if

w: J0r, u:, ..., u,)

is a function of r variables, then there are n partial derivatives

Au Au \ul
d u du du,,

each of which is calculated by holding z 1 of the variables fixed and differentiating with
respect to the remaining variable.

TOTAL DIFFERENTIALS
If nr : /(ur , u2, . . . , u,,). then we defitile the incremenl Aur to be

Lw: f(ut * Au1, u2 * Au2,..., u, + Au,) - f(u1,u2,...,u,,)

and we define the lotal differential to be

4tu 3w 0udw:----4, - - dvt l - - l ^ du,.
dl r dU) dUn

(e)

(10)

where Au1, Au2, . . ., Au, and dq, du2,. . ., du,, are variables representing changes in the
values of 11 , uz, . . . ,'un. These are the natural extensions of Fomulas (7) and (8).

Ifur, u2,.... u,, are functions ofa single variable r, then u = /(ur, u2,..., rn) is a function
CHAIN RULES of l. and the chain rule for d?r/dt is

dut lut du, 0u Ju, 6w du.

-:-----__-dt \ut dt AD) dt 3t', dt
(11)

fs

ab du a\ AL,i]\ Aua..
.1. -,rr ,rr ar dr d- dl

l
rl
a ) AttA! AtuAr AbA?:

'As Ai Ar dr.,s a?.h'a'
Figure 15.7.7

This is a natural extension of Fomula (9) in Theorem 15.4.7 and Formula (l) in Tbeorem
15.7..1. Observe that ( I 1) is the formula that rcsults if we formally divide both sides of (10)

by dt.
There are infinitely many variations of the chain mle, depending on the number of

variables and the choice ofindependent and dependent variables. A good working procedure

is to use tree diagrams to derive new versions of the chain rule as needed.

Example 5

Suppose that

u):ej)t, r:3r*s, ):3r-s, z:r2s
Use appropriate forms of the chain rule to find 0u; /0r and 3 u/3s.

Solution. From the tree diagram and coresponding formulas in Figure 15.7.7 we obtain

--- : I -e" (3) + rz.,'':(3) *rye'r'(2rs): e'r''(3)r *3rz*2xyrs)
Ar

and

:11 : l.e,'-(t) f x;e,'.1-1) *rye'):(12y : s\:.(yz xz+xy12)
as

If rjesired, we can express 0w/0r and,3u/6s in terms of r and s alone by replacing;r, y,
and I by their expressions in terms of r and s.

Example 6

Suppose that u = -r2 + )2 - u2 and

1: psin@cosd, 1 : psin@sind, :: pcosd

Use approp ate forms of the chain rule to flnd Au.) /Ap and Au /Ae .
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Aw Aw A.t Au at
l0 tt\ dH d\ 'dH

p,bep,b

Sohttinn. From.the tree diagram and coresponding formulas in Figure l5.7.8 we obtain
3u
^ - 2\ .in@cosd - 2y.ind'in0 - 2. ..or@
Ao

: 2p sln2 4 cos2 0 + 2p s1n2 O sin2 e - 2p cos2 (.,

: 2p sin2 d(cos2 o + sin2 d) - 2p cos2 4

= 2p (sit2 Q - cos2 Q)

: -2p cos26
3ut

- - t2x.i nrindsinFr - r2r'rp.in@to'6

- -2p2 sin2 d sin 0 cos O + 2p2 sin2 d sin 0 cos 6

:0
This result is explained by the fact that ur does not vary with 0. You can see this directly
by expressing the variables r, y, and : in terms of r, 0, and 6 in the formula for ir. (Verify
1511 p = p2 cos 2@.)

Itispossiblefbrsomeofthevariablesinafunctionro: f(r1, u2,. . . , un) to be functions
of the remaining variables. Tree diagrams are especially helpful in such situations.

Example 7

Suppose that

I-r)+);, )=sinr, z-el
Use an appropdate lom of the chain rule tofrnddw/dx.

Solution. From the tree diagram and corresponding fonnulas in Figure 15.7.9 we obtain

du.t
, - )+(_r+a).os,r+ lld'

dx : sin;r * (r * e') cos x + e' sin r
This result can also be obtained by first expressing u.r explicitly in terms of ir as

ro = r sinx .l- e' sin -t

and then differentiating witlt respect to r, howeyer, such direct substitution is not always
possible.

w.AliNlNc. The symbol 02, unlike the differential dz, has no meanirg of its own. For
example, if we were to "cancel" partial synbols in the chail-rule formula

3z _ 6z 0x ,02 0l
0u i)x 0u i)y 0u

we would obtain
0z ,Az *02du du du

which is false in cases where 0z/da I 0.

ln each of the expressions
r!

.z: sin,rv. 7: L. z-er)- I + rl'
the independent variables occur only in the combination n), so the substitution I = -r)
reduces the expression to a t'unction of one variable:

.t
-r : srn /. l+/

Conversely, if we begin with a function of one variable .- : /ft) and substitute r : ;rl,

Figure 15.7.8

-r .r

1a* a* a*a, a*a. I

dx - 3r rr Lk 't. Jt'

Fig re 15.7.9

lu JbU )uA\ aua-
Ap d\ ap A! Ap A. ap

a

d.
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we obtain a function: : /(.ry) in which the variables appear only in the combination r).
Functions whose variables occur in fixed combjnations adse frequently in applications.

Example 8

Show that if a:/ar and 8:/dt exist, then a furctjon of the lonn : : /(;rt ) satisfics the
equation

at:-

A. dz-r -l, :[)a.\ ' a\,

Suhttiut. Let I : -r\i, so that a

obtain the fomulas
d: ,.lt Dr dt. ,J:

rnd3-r dI dx 'dt t]r
from which it follows that

3z Az dz dz

lx il r, ,lr dr

: /(t). From the tree diagram in Figure 15.7.10 we

dz 6t d.
dt 0y dt

Firtrre 15.7.10

ExERcrsE SET 15.7 E cirs

In Exercises l-4, use an appropr-iate form of the chain rule

lo Lnd,/t, .i /.

l. u :5r2],i:4: ;6 -;2, 1, :11.; :15

2, 4 - 1n(3-rl 2I + 4:r); ,r : trl:, -r :12i3,7:1 )

3. o-5..r.\) .itrtr,: \:' ,.J - /.: r'

5, Suppose that

u : irr),2:4; t : t2, )t - t I 2, z - 2ra

Find the rate ofchange of rL' with respect to / at / : I by us-

ing the chajn rllle, and then check your work by expressing

d a. J funcrion ol'/ rrd Llillerenliling.

6. Suppose that

u - -r sinl,:2; -r: cost,_v -12.a.:el
Find the rate ofchange of u with respect to I at I : 0 by Lls-

ing the chain rule, and then check yout work by expressing

u :rs ir lurclion nl/ anJ Jincrcn(ialr tP.

In Exercises 7 10. lind the gradient of I at P, and then use

the gradient to calculate Du / at P.

7. / r,r . r . : , - 4 r r r ' - : P{2. L lr: u -i I Li k

8. /(i, ). ;) : |e" I z?, P(0, 2. 3); u : ;i ]: + it
q. /,\.\.-':lnrr: l2'' l '': P'-1.1.4':

,r: ,,li ,,lj _ 
].?k

10. /(.,;. \,,:) : sin.rl.: f (i. ]. z);

u: 
^i ,-j + 7;t<v.) vJ v-l

Jn Exercises 1l-14, iind the directional derivative of / at P
in the direction of a.

11. f(-r, -r,,:) : ri: - )12 + ::; P(2, -1,l);a:3i j+2k
12. J(x,y.z.):_'. .'/'r+:2; P( 3, 1.4); a:2i ?i k

13. /(.r.r',:): ?; P(r,0, -3): a: 6i*3j 2k:+),
4. 1tt.r..-'-" ' . P' ).). lr- a 20i ,lj I 5kI

In Exelcises 15-18. find a unit vector in the direction in which

/ increases inost rapidly at P, and find the rate of increase
of / in fiat dircction.

I8.

15.

16.

17.

2t).

21.

./',.'.-'-.(. -r. *. - l: P'1.1.-lr

/(r, r', ;) - .v/-r - 3) + 4;: P(0, -3. 0)
1

./(r,-\,. r: + ,l Pll,2. l)
: -l'

./:,. \
/(.\. \. r .JT I l: Prl.2.i)\l +:/

ln Exercises 19 and 20. find a unit vectoi in the diiection in
which f decreases most rapidly at P, and lind the rate ol
change of / in that direction.

x+i
19. l(.r. r'.:) : : P(5.7.6)

a-_l

/(r. -y, :') : 4e'r cos:; P(0. 1.z/4)

Find the directional derivarive of
.l'./(r,t.--): ]:

.Y+a
at P(2. 1, 1) in lhe direction ftom PtoQGl.2.0).
Find Lhe drre.ti.rnrl ,.ien\:rti\e L'Ilhe [uLrclior'

l(-r.1,;) : ;112;5 2tz+la+3x
rl P' l. 2. I r in rhe,lirecrion or lhe negJrive . -J\is.

22.
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23. Given that the directionirl dcdvative ol l (.r. l , : ) at rhe point
(3. 2. l) in the direclion ola - 2i -,i - 2k is 5 and rhat

lYf(3, 2. Itl = 5. llnd V/(3. l. l).

24. The temperaturc (in dcsrees CelsiLrs) ill 1l pnint (r. r'. :) in
a nretal solid is

Find pa ametric cclLntions firt the tangent liue io the curve ol
inlct.ectton,,l lhc.i)lrrJcrr.\ . =15r,rrd i .'-25
rt thc point (3, -1.4).
-fhe 

acconrpanying li-gure sho\\'s the intcrsection olthe sur-
taccs a: ll -.r: - rl and J.r 12r : = 0.
la) Find p{rrnretric cquations tbf thc (irngent line to the

curVe olinterseclion lltthe poinl ({). 2.4).
(b) Usc a CAS to ge ncnte a r-easonable lircsinilc of the lig-

urc. Y(ru need not gcner-ale thc colors. bLrt try to obtain
a similar lieu'point.

35.

[q -]6.

f(r.r'.:)= .\\':
I +.\'l + rl +.::

(r) Find the rate ol change of tcmperature wilh rcspect to
distance irt ( I. l. l) in thc direction ol the origin.

tbr I ind rlrr,liIeetiL,n irr !\hr(h rhe relrnerirlurc fr.r\ Iro\r
ripiJl\ irl lhc F'irrl { l. l. I i. {L\prc\\ \i'uI uI\!\rr r\ ir

unit vectoal
r.l firJ llh rirlc irl Nhrih lhr lenrfclilltrrc Iisc\ rDo\Ir!,

fiom ( l. I , I ) in thc direction obtaincd in pa lb).

25, Considerthccllipsoid.rr +rI a4:r - 12.

(a) Ulc thc mcthod of Exanrple 2 to lincl irn cquation ol lhe
tangcnt plrnc to (he elljpsoid at thc point (2. 2. l).

(b) Find prr.rrrelric cqultions of the line that is normal to
the ellipsoid ar the point (1. l. l).

(c) Filld rhc acutc angle thar rhe tangcnl pl r]e at rhe poirl
(1.2. l) rr) kes wilh thc \\'plane.

26. Consider the srrrlircc.t: .r':i i r':l = 2.

(a) Llse lhe methocl ol Exanrple 2 to lind ln cqultion ol the

tan-gent planc to thc surt'ace at thc poinl (2. I . I ).
(b) Find purnfictric cquations of the linc lhal is nornral to

lhe sur liLce rl lhc point (2- l. I ).
(c) Find the lcute iursle tlrat thc tangcnt plitne rt thc point

(2. - l. I) nrakes \!ith the r-] planc.

ln Exercises 27 irnd 2ll. liDd two Lrlit vectors thlit rre nornal
to the given sLxt cc at thc point P.

I ::: ,1't-1.5. 1)

!r I

sin r: .lcos r': =.1: /'(rz.;r. l)
Show that cvcry linc thlt is normal to the sphcrc

,:l+rl+:l=l
prsscs tluough the origin.

Findallpoinlson thccllipsoid2.tr+3rl+-l-:l : gat\\'hich

the tangent phne is parallel to the pl.ulc.r - 2r' * l: : 5-

Fird all poiils on lhe surlace .\'l +.rl - :l : I al u'hich thc
nomral linc is plrilllcl to the line ihrough /'( l. l, l) and

0(4.0. l).

Show that thc cllipsoid 2rr + 3r'r + --l = c) ancl the sphere

r I.r'l : rr.\ R\ I rl-l:l)
have a comnron tangent planc at the point ( l. I . l).
Find pirramctric cqrltiolrs for the lrngcnl Iinc to the cur!e ol'
iotelsection ol lhc paraboloid; : r: + r'l Lrnd thc ellipsoid
.1r 1{v2 1 .r : 9 ar rhe point (1. 1.2).

Fincl pa|amctric cqLlutions tbr the tmgent line to thc culvc
ol intersection of thc conc : : v/.rl +.\'l and thc plane

,! + 2r' + 2: : l0 irt thc point (.1.3.5).

39. u,:8t-3i *-{..

4{1. u,= -lrlr'1.:r 3.r'r'*: * 5

,ll. u' : tan | (.rr': ) a2. u' : aF 1 t5 a uc-

4-1. Use a lotrl dillerenfial to lpproxintille llrc change in
l(.r.r'.i) - l.ril-:l as (.r. t.:) \'lries lfom P(1. l.l)
to o(0.99. - 1.01. 2.02).

44, Use a lot l dillcrcntirl to approxinliitc the change in

/(r.r.:) : r'r'.-/(r + r'+:) as (.r.r'...) r'aries ll.onr
P( l. l. l) k) 0( 1.01. 1.98. 1.97).

The len-eth. u idth. and hcight ol a lectlngular box are nre{-
sured to be -l cn). -l cnr. lnd 5 cm. respeclivcly. with a max-
irrum elror ()1 0.05 crn in each mcasurenrent. Use diffelen-
tillls to approxinrillc the maxilnLrnr cffor in the clrlculilted
volume.

The total resistance R ol thrce resisltnccs Rr. R,. ancl Rr.
connccted in ptrallcl. is gir en bv

Suppose that Rt. /lt. ilnd,4r ar-e nreasurcd to be I ()0 ohms.
100 ohms. ancl 500 ohms, rcspectively. with a maximurn
elror of l0% in each. Use diffcrentials to approximate the
maxinrum percentlle err-or in the calculated valuc ol R.

Figure E\ :16

In Exclcises -17 rn(l 3!i. tio.l

lrcncral point (r. r. --).

,17. u -.rj.r'l:
lr Exerciscs -19--lf. lind r/u,.

tblrlulas tirl r/r, and Au, rt a

38. r,: r""

21.

28,
t(l

:15.

30.

31.

33. IIII:-*-*-
RRI R' RI

34.

'16.
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47. The a|ea of a tiangle is to be computed fron the formula
A : \ab sln0, where a and b are the lengths of two sides

nnd 0 is the included angle. Suppose that a, l, and d are

mcirsuled to be;10 ft.50 ft, and 30', respectively. Use dift'er-
entials to approximate the nraximum enor in the calculated

value of A if the naxirlrum erors in a, b. and d are I ft,
j tl, and 2', respectively.

The length, width, and height of a rectangular box are n-iel-

sured with erols of at most rol. (where r is sma11). Use

differentials to approximate the maximum percentage elror
in the computed value olthe volume.

In Ilxercises,l9 52, lind the indicated partial derivatives.

.l(r. rl. r.1,) - 4l2il3-t:4)5;
r.f lax. a.f law, a.f /ax. af lat
ur : rcos.!f +c" sinu7-l

au/at- aul,s. aulat. au lau
..t ..2

51. /(r1. t1.,,.,'r1: ifll];
rri + uj

af lnL)t. a.[lAx).3.1 lAv,, al lau
V:_re2. r +ue:,, + _l,ur;

0v lar. dvl3t, dVlA..,Av/a )

Let rr(ur. ;, J . ;) : rer u sin2 :. Find
i).

1a) -(0.0. 
l. r)

(c) (0,0. l. ]')

Dl tt
ae)

Jr lr lu /l -:

5/r. Ler f(r. u.-r,)):2lr1/2 r4r'/')'tit.Find.l; (1, 2,4,8),
1,,(1. 2.,1.8),l,(1. 2.4,8).andl'(1, 2.4.8).

In Exercises 55-58, use appropriate forms ol the chain rule

to find fte dcrivatives.

55. Let.: - 1n(j2 + 1), where,i- : rcos6. Find 0z/Ar ancl

hzl30.

56, Lct a : ,.r2 ln 1, l' : -r:,.\. :4-r * 1.1 : r-t'1. Find Aa/Ar
and 3r/iJr.

57. Let ur - 4_rr + .ll,? + .r, _r : p sin / cos g,

1' : psin@sind, . - pcosQ. Find dro/Ep, 0rol0@, and

au/aa.
58. Let u:3r),1:1, r. - 3x2 +2, z: Jx LFtndduld\.
59. The length, width, and height of a rectangular box are in-

creasing at rates 01'l in/s, 2 in/s, and 3 in/s. respectively.
(a) At what rate is the volume increasiDg when the length

is 2 jn, the width is 3 in, and the height is 6 jn?

(b) At what rate is the length ol the diagonal increasing at

that instant?

60, The area A of a triangle is given by A : jaD sin d, where a

and D are the lengths of two sides and d is the angle between

these sides. Suppose lhat 4 - 5., : 10. and d - /r/3.
(a) Find the rate at which A changes with respect to a if,

and d are held constant-

(b) Find the rate al which ,4 changes with respect to d if 4
and l, are held constant.

(c) Find the rate at which b changes with respect to a if A
and d are held constant.

Let / be a differentiable function of one variable, and let
: : /(r * 2_r,). Show that

) :0
A x a_]'

Let / be a differentiable function of one variabie, and let
i : /(r2 + )2). Show that

dz Dz
I I :{)
Av ;ir

Let ./ be a differentiable function of one variable, lrnd let
rrr : /(p), where p - (,r2 + lr +.::)r/2. Show that

Let / be a diflerentiable lunction ofthree variables and sup-
pose that ur : /(,r I. _"- i. I jv). Show that

A1t, i)r/r Au)

-+ + =0dr A) Az

Let I be a difterentiable function of three variables, and let
rr- /(x,-\i,?), 1: psin@coso, 1 : psin{sin6. and

z- pcos6. Express du/0p, AulA4),and aur/a, in terms

of Aur/dr, au /a\, and au /a z.

Assume that F(x, -v,:) : 0 delines: implicitly as a func-
tion ol r and -r. Show that if 3F /dz I 0, then

Az AF /ax

61-

48.

62.

61.

61.

49.

50.

52.

s3.
Itt(b) (0,0. l,7r)

3u(d) 
-f0.0. 

l. r)
Aa

lf) _.

65.

66.

(#1.(Hi .(yl:(#J

"no 
!:
0t

aF /ay
3F /3:.

In Exercises 67 ?0, llnd 3r/0r and ar/a) by implicit dif-
ferentiation, and coniilm that the results obtaincd ag.ee with
those produced by the formulas in Exercise 66.

67. x2 3_r';2*xyl-2:0
68. ln(l +r)*x-r'2*r:l
69. 1e' - 5 sin 3: : 3:

70. e'r cosl: ei: sinr; * 2 : 0

71. Given that the equationsrr : u (r, 1, :), r, :1(.1 ;, ;). and

a : u(x, )]. z) are all djflerentiable, show that

at at )/Yl','.,t.,':iV, -U VL, I Vu

72. Let:U,: l(,t,1, r), where: : g(x, _r,). Taking x and y as

the independent va ables, exprcss each ofthe following in
terms of 0fl0x, af /ay, al /d<, !z/3.t. and D.:/3).
('a) du /Ax iul a u /c.i

73. Ler ur - ln(e' + e' + e' + e'). Show that

utst,: -6et+t-t+u 
4r)

lllirl. Take advantage of the relationship
e"':e,*es+et+e'.1



74-

956 PartialDerivatives

Suppose that u is a differentjable function of .t 1. .r3. and r1.
and

-Yt = arl ft +btll
.rr=drJ-l+Dr-\'l
.\-r = arr]l + lrr]2 7ll_

where the a's and /r's lre constants. Express i)u,/d-ir and

a u,/0\'t in terms of a u'/d,r 1. Du,/0.t1. and i) u'/D.tl.

(a) Let u, be a differentiable t'unction of.rt. .r:. .\r. and.rr.
and lct each ri be a function of/. Find a chain rule
firlrnula fbr dur/r/r.

(b) Let ur be a differentiable t'unction of .r ..\l..rl, and 14,

irnd let each ri be a dittercntiable t'unction of ut . rl. ard
lr. Find chain-rule li)rnrulas for au'/0ut. ilr/,/aL,t. and

; xr/d rr3.

and then diflerentiating the function

Fot. L't = I f(r\dr
J,.

with respect to,r.

Two sufhces l(r, -r,.:) - 0 and g(r, -t,:) :0 are said to
bc orthogonal at a point P of intersection il Vl and V.g
arc nonzere at P and the normal lines to the suriaces are
perpendicular at P. Show that if V/ (-rl. to.:o) I 0 and

Vg(to..r'0.:4) I 0. then the surt'aces l(-r, -\',;) = 0 and
g(-r, l,:) : 0 are orthogonal at the point (;rn. 1i, ;i ) ifand
only if

L.s. + ./,.,qr + .f .c. : tt

at this point. lN.,te.- This is a more general vemion of the
resull in Excrcise 5l ofSection 15.5.1

Use the resull of Exercise 78 to show that the sphere

.r2 + j 2 +:: = al and the cone .:l = j2 +,-l are ofthogonal
at every point ol intcrsection (see the accompanying figure).

75.

79.
76. Let u,= 1-ti + x] + ..+ r,l)(, whererl > 2. For rvhat

va[les ol k does

dl u' t)]tl-----;* -' , * *,,.fi d ri
hold']

We showed in Exercise 24 ol Section 7.9 that

d [!11)
+ I /t/ r.// : /l!{\,r-('(t) - Jl,fr{.t))r'(\ }

Dcrive this same result by letting rr - .q(.r) and ! - ,b(.r)

i)lu'
iJ.t,l

77.

EXTREMA

Figurc Ex-79

15.8 lvlAXlMA A{\D [VllNlMA OF F[JNCfiOr'iS OF rWO VARlrlELES

Earlier in tllis tefi we leautctl lutw'to firtd rtta.ritnLun tuttl ntinintunt volues of ct ftutttiott
of one vuriuble. In this seclion v,e will develop .sinilar tecluiquc.t for.ftutctiorts of tu,o
varieble.s,

If we imagine the graph of a function l of two Yariables to be a mountain range (Fig-
ure 15.8.1 ). then the mountaintops, u'hich arc (hc high points in their immediatc vicinity,
are called relutive nta,ritt:,r.r of .f . and the valley bottoms. which are the low points in their
immediate vicinity, are called ralative nininu ol .f .

Just rs a geologist might be interested in fiDding the highest mountain and decpest valley
in an entire mountain range, so a mathematician might be intcrested in linding the largest
and smallest values of l(.r. r') oyer the entil" domain of ll These are called the rrbsolrrle

na.rinrutr and ubsolute ntiuinrunt volues of l. The following detinitions make these informal
ideas precise.

15.1i.1 I)til,rNITION. A function / oftwo variables is said to have a,.e/alire maxi,num
at a point (.r0. -r,0) if there is a circle centered at (,r0, r'o) such that /(,r0, )0) > J (.r . t )
fbr all points (r, -r') in thc domain of f that lie inside the circle, and ./ is said to have an
qbsolute naxinitm at (.\(,. ri)) if .f (re. ,r'e) > ./ (,t. -r) for all points (-r. r') in the domain

, of .f.

ligure l5 x.l
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f 5,lJ.2 I)t-iFINIlto\. Alunction I oi-two variables is saiclt Q hatte .r relative mirinurn
at a point (,\'0. rb) ifthere is a circle centercd al (.r0. ro) such tltat l(rr). ib) < ./(.r..r.)
tbr all points (r. r') in the donain of -/ that lie insidc the circle. and f is saicl to have an
absqlute nittinum al (.r0. \'i)) if /(.re. r'e) 5 / (.r. r') lirr all points (.r. I ) in thc domain
,rl /.

If / has a relative naxinrLur'r or l relative miniDlurlr ilt (.r{r,,rr). then wc sily tlrat / has a

relative exhtnun at (.\'1. t1)). and if I has an absolLlle rlaximum or alrsolute minimum tt
(.rrl. rl)).lheD we say that / has an arJolute extremun at(,r0.rb).

Figulc I 5.8.2 shorvs the graph of a f'unction .f wlrose domain is thc closcd square region
in the.r'r'plane rvhosc points satisfy the inequalitics 0 :.r < 1.01r'5 LThc f'unction.l
has rclative nrinima at thc points A and C and a rclllti!e maximum at B. There is an absolutc
mininrLlm at '4 and an absolute (and relative) rnaximum at l).

For llnctions of two variables we will be conccrnccl with two import nt clue\ti,)n\:

. Are there any relativc or absolute extrema'l

r If s0. whcrc are they loc ted?

I'-ol lunctions of one Yarilblc thirt arc continuolrs on a closed interlal. thc Extreme Value
Theorcm (Tllcorem 6. 1.3) answcrcd thc existence qu€stion for absolutc cxtrcma. Tlte fol
lowing thcurcnr. \\hich we state without plool. is the corresponding rcsult lirr l'unctions ol'
tw0 valiables.

ls.lJ..l -lHI-loRL\l (Extcn,c-vdrc Theorcn'\. /./ .l(.r. r ) is cuttinuou, rtn u closed untl
lxtunde<l set Il. then l hus lxnh tut ubsolule tu.\inturn antl or tbsolutc tnirtinurn ort R.

Example I
The scluarc rcgion R whose points satisty the inequrlities

{)=.r:l and 0Sr,:l
is a closed and boundcd sct iir the .\1 plane. Thc lunction / rvhose gr*ph is shown in
FiSurc 15.8.2 is continuous on R: thus. ir is guarantccd to ha\e an absolute nraximum and

minirnuDl on R by the lasl thcorcm. These occul t points D and ,,1 lhul are shorvn in thc
ligure.

Itt Nr.\ttK. Ilany ofthe conclitions in the Exnenrc-Valuc Theolen firil to holcl. then thele is

no SLratantee that an absolute Dtaximum or absolute nrinimum cxists on lhe legion R. Thus,

a disconlinuoLrs function oD a closed and boundcd sct need not have any absolute extrena,
and a continuous linclion on r set that is not closcd and bounded also nced not have anv

absolutc exlrema.

Rccall that if a fllnclion g of onc variable hrs lt rclative cxtremurr ilt a point r0 wherc
g is differentiablc. then ,ri'(.rrr) : 0. To obtair the analog of this result fbl functions ol
two variables, supposc that l(.r. r') has a |clative maxilnum at !l point (.\0. r'0) and that the
partial derivatives ol.l exist iit (.\-0. \'0). It seems plausiblc geometrically that thc traccs o[
thc suriace : : .l(.r. r') on the planes.r :.r0 iud i = rt) ha\,e horizonlill langent lines at
(.t0. )ir) (Figurc 15.8.3). so

.ll(.rp..riy.) - 0 and /,(.t.r). ri)) :0
The sumc conclusion holds il l has a relativc nrinimum at (,r0. r'o), all ol which suggests

thc lbllo*ing result, which we slale without fblnrll prool.

AbsoLrtemnmufil

Figurc I5.8.1

THE EXTREME-VALUE THEOREM

FINDING RELATIVE EXTREMA

L___l-____--_- :
/ /D

/ 1,8 /
/ :-A //- 

-- 1-- l
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The funct on/(.(. \') = -r'2 r:
has neither a relative maximum
nor a relative minimum at the
critical point (0.0).

Figure l5.li.4

l,(ro. lo) = 0 raid f(-ro. rr) :0

15.8.4 'tHEORl-\1. If l hus u reLativ extretrutm at a point (ro. \, . and if the jirst-orde r
pqt'tiql derivatites of f exist et this point, then

FiSurc 15.8.3

Recall that the crlllcdlpri?t.! ofa function ./ olone variabJe are those values ofx at which

.l'(-r) : 0 or f is not djfferentiable. The following deflnition is the analog for functions of
two variables.

15.8.5 l)LFINITIoN. A point (-rn, 11) \s called t critical point of the function ./('l . I )

if l.(rq. rb) : 0 and i(,rg. .\'0) : 0 or if one or both panial derivatives does not exist at

tt lbllows t'rom this detinition and Theorem 15.8.4 that if f has first-ordcr partial de vatives,

then the relative extrema occur at clitical points, just as tbr a function of one variable.

However. recall that lbr a tunction of one variable a relative extremum need not occur

at er,?n critical point. For example. the function might have an inflection point with a
horizontal tangent line at the critical point (see Figure 5.2.4). Similarly, a funclion of two
variables need not have a relative extremum at every critical point. For examplc, consider

the f'unction

/(;r. -r) = yr -.rr
This function, whose graph is the hypcrbolic paraboloid shown in Figure 15.8.4, has a

critical point at (0. 0), since

l.(,t..r') : -2r and li(.i, r') = Z.t'

from which it follows that

.^(0,0) =0 and .1,.(0,0)=0

However. the function / has neither a relative maximum nor a relative minimum at (0. 0).

For obvious reasons. the point (0,0) is called a suddle point of J.ln general, we will say

that a surfaoe ; = .l(.r. f) h^s a ssddle point at (,rn, 1,s) if there are two distinct vertical
planes through this point such that the trace of the surface in one of the planes has a relative
maximum at (-r0. rl)) and the tlace in the other has a relative minimum at (,r0. .v0).

Example 2

The three functions graphed in Figure 15.8.5 all have critical points at (0,0). For the

paraboloids, the partial derivatives at the origin are zero. You can check this algebraically
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f(x' Y) = x2 + f
t(0,0) =6(0,0) = 0

relative and absoluie min at (0,0)

(o)

f(x. y) = 1-x2-y'?
t(0,0) =/,(0,0) = 0

re atlve and abso lte max at (0,0)

(b)

/(r, )) = !ir1 + y'
i(0,0) and/r(0,0) does not ex st
relaiive and absoluie mln at (0,0)

(c)
Figure 15-8.5

THE SECOND PARTIALS TEST

by evaluating the partial derivatives at (0, 0), but you can see it geometrically by observing
that the traces in the xz-plane and yz-plane have hodzontal tangent lines at (0,0). For the

cone neither pafiial derivative exists at the origin because the baces in the .Iz-plane and

the )z-plane have comers there. The paraboloid in paft (a) and the cone in part (c) have a
relative minimum and absolute minimum at the origin, and the paraboloid in part (b) has a

relativemaximumandanabsolutemaXimumattheorigin.<

For functions of one variable the second derivative test (Theorem 5.2.4) was used to deter
mine the behavior of a function at a cdtical point. The following theorem, which is usually
proved in advanced calculus, is the analog of that theorem for functions of two variables.

15.8.6 THEOREM (The Seco d. P('ttiats Test). Let f be a function of two variables with
continuous second order partial derivqtives in some circle centeted at a critical point
(xo, yd, and let

D: /,,(ro, )o).fi,r(,t0, yo) ,ff (-ro, ro)

(a) If D > 0 and f,,(xn, yi > 0, then f has a relative minimum at (xo, ))d.
(D A D .0and f",(.xn, yi <0, then f has a relatbe maximum at (xs,yi).
(c) If D < 0, then f has a saddle point at (xo, yd.
(.d) If D = 0, then no conclusion can be drawn.

Example 3

Locate all rclative extrema and saddle points of

f(t, y) : 3r2 2xv + v2 - 8v

Solution. Since/,(x,y):6x-2yardft(x,y): 2x+2J - 8, the critical points of
/ satisfy the equations

6x-2Y-Q
-Zx +2Y 8 :0

solving these for n and y yields x :2,y : 6 (verify), so (2, 6) is the only critical point.
To apply Theorem 15.8.6 we need the second-order pafiial derivatives

f*(x,y) - 6, fr(x,y):2, f,t@,y):-2
At the point (2, 6) we have

D = f,,(2,6)ftrQ.O - f:yQ,6) : (6)(2) ( 2)'? : 8 > 0
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.11t. lJ = -'l t: 1q + .r 
r - 8.r'

Figure I5.8.6

0

t0

20

30

40

I.r,r)={', rr lr

41,-4"r3:0
4r -41,3:0

and

f..(2.6) :6 > 0

so f has a relative minimum at (2,6) by pat't (a) ofthe second partials test. Figure 15.8.6
ShowSagraphof./inthevicinityoftheIelativeminimum.<

Example 4

Locate all relative extrema and saddle points of
rJl

/t.r'. 1,=4I| r -r'

So/rrliari, Since

l,(n..1) = 4,\, 4-r3

/, (.r. .r') : 4,t - 4.r'l

the critical points of l have coordinates satisfying the equations

or ' 
-.,r

Substituting the top equation in the bottom yields.r : 1,tr)r or.re -.r : 0 or r (r8 - I ) = 0,
which has solutions.r : 0..r : l. -r : -1. Substituting these values in the top equation of
(2), we obtain the corresponding ] values t':0. l : I,l = -l. Thus, the critical points
of / alc (0.0). r l. l r. und t-l. -l r.

From ( I ),

.f,,(r,t)= -l2,rr, .4,(-i,t): 12tr. 1.,(,r. r'):4
which yields the fbllowing table:

(l)

(2)

CRTTICAL IOINI
(-h, t'r)

(0, 0)
(1. l)

(- t, - t)
12
t1

I,,,,.r0, i\ {.\,.. \, i /,,r.r,..r'|' p=1, tr-t],

0

-t2
-t2

-t6
r28
128

4

4

4

-2 -l 0 l 1

At the points (1, I ) and (-1, - l), we have D > 0 and l, < 0, so relative naxrma occur
at these critical points. At (0. 0) there is a saddle point since D < 0. The surface and a
contour plot are shown in Figure 15.8.7.

l:OR l Ht, ltl'.,\l)ER. The "figure eight" pattern at (0, 0) in the contour plot for the surface
in Figure 15.8.7 is typical fbr level curves that pass through a saddle point. If a bug starts

at the point (0, 0, 0) on the surface, in how many directiors can it walk and remain in the
JrY plane'l

The fbllowing theorem, which is the analog for functions of two variables of Theorem
6.1.4. will lead to an important method for finding absolute extrema.

15,8.7 l l.llrOREN,l. If aJlutttktrt f (tr||-o vqrktbles has att qbtolute extrcntun (either
cur ebsolute tn.txintrn or ut ctbsolme niinuun) ut un interior point oJ its donrain, tlrcn
this e.ltrtnt n or(utr . d (t itic(l poitt.

Prool. Il' J has an absolute maximum at the point (x6. -r'0) in the interior of the domain
of /, then .f has a relative maxinum at (-r0. _r\)). If both partial de|ivatives exist at (,r0, tb),

Figurc l5.x.7



FINDING ABSOLUTE EXTREMA ON
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then

"f.(ro, to) - o and l(,re..11) : Q

by Theorem 15.8.4, so (16.1e) is a critical point of /. If either pa*ial derivative does not
exist, then again (-16. y9) is a critical point, so (irO, _]h) is a critical point in all cases. The

prooffor an absolute minimunr is similar. I

If /(r, -,-) is contillrous on a closed and bounded set R, then the Extreme-Va]ue Theorem
(Theorem 15.8.3) guarantees the existence of an absolute maximum and an absolute min-
imum of / on R. These absolute extrema can occur either on the boundary of R or in the

interior of R, but if an absolute extemum occurs in the interior, then if occurs at a c tical
point by Theorem 15.8.7. Thus, we are led to the following procedure fbr finding absolute

extrema:

How to Find the Absolute Extrema of a Continuous Function f of Two
Vaiahles on a Closed and Bounded Set R

Step 1. Find the critical points of I that lie in the interior of R.

Step 2. Find all boundary points at which the absolute extrema can occur.

Step 3. Evaluate f(n, )) at the points obtained in lhe preceding steps. The
largest of these values is the absolute maximum and the smallest the
absolute minimum.

Example 5

Find the absolute maximum and minimum values of

,f(x, f) : 3::Y - 6r - 3r'* 7 (3)

on the closed triangulu region R with vetices (0,0), (3, 0). and (0,5).

Solutiort. The region R is shown in Figure 15.8.8. We have

cf
d"-

so all critical points occur wherc

3y 6=0 and 3x-3:0
Soh'ing these equations yields r : I and .|- : 2, so (1, 2) is the only critical point. As

shown in Figure 15.8.8. this critjcal poinl is in the interior of R.

Next. we want to detemine the location of the points on the boundary of R at which the

absolute extrema might occur. The bounda|y of R consists of three line segments, each of
which we will treat separately:

The Line segnent bem-een (0.0) and (3,0): On this line segmett we have ] : 0, so (3)

simplifies to a function of the single variable -t,

a(x): /(x.0) : 6x+7. 0:,r:3
This function has no critical points because u'(x) : -6 is nonzero for all ,{. Thus the

extreme values of r(r) occur at the endpoints -r : 0 and r - 3, which correspond to the

points (0, 0) and (3, 0) of R.

The Line segment benteen (0,01 and (0,5): On this line segment we have x : 0. so (3)

simplifies to a function of the single variable 1,

u(),): l(0,r): 3r*7, 05r:5
This function has no critical points because u'()') - 3 is nonzero for all ). Thus. the

extretle values of u()) occur at the endpoints ] : 0 and l' : 5, which corespond to the

points (0, 0) and (0, 5) of R.
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Two sides each have aTea ia
Two sides each have aTea Ja

The base has area rr

Figurc I5.8.9

The lhe segntent bettveen (.3,01 and (0. 5): ln the u'plane. an equation for this lioe segment
is

l:-:'t+5, 0:'r:3 (1)

so (3) sirnplifies to a function of the single variable r.
u(r):.1 (r, I.r +s) :3r( J.r +s) -6-t 3(-i.\ +s) +7

: 5.rr + t4-r li. 0: .r : 3

Sinceu'(-r) - l0-y+ l,l,theequation u'(-r) -0yields.r - 1 as the only critical poinrol
u. Thus, thc extreme values of u occur either at thc critical poinL -r - 1 or at thc cnclpoints
-r : 0 and r : 3. Thc endpoints correspond r,, the points ilr. 5)rnd (1.0) of R. and fronr
(4) the critical point corresponds to (], !).

Finally, Table 15.E.1 lists the values of /(.r. t,) ar rhe interior.criticrl poinr and ar rhe
points on the boundrry whete an absolute extremum cat] occur'. Front thc table we colcludc
that the absolute maximurn value of .l is l(0.0) - 7 lncl the absolule miDimum value is

f(3,0) : tl. <

Table 15.8-1

Example 6

Determinc the dimensions of a rectangular box. open at the top. having a Volume ol 32 ftr,
and requiring the least arnount of material fbr its construction.

Solutiott, Let
,i- : length of Lhe box (in t'eet)

l - widlh of the box (in feet)

; : height of the box (in i'eet)

S = surlace area of the box (ilr squarc leet)

We may reasonably assume that the box with least surlace area requircs the leiist amount
ol material, so our objective is to minimize the surlace area

S:-rr'*2r:42-r';
(Figurc 15.E.9) subject 10 thc volume requiremcnt

xta:32
From (6) we obtain : = 32/r t, so (5) can be rewritten as

64 64.l:rla-*- (7)
!-r

which expresscs S as a function of two vadables. The dimensions -r and r. in this ibrmula
nust be positive, but otherwise havc no limitation, so our problem reduces to tiodirg the
absolute minimun value of S ovsr the region for which .r > 0and r.> 0 (Figure 15.8.10).
Because this region is not bounded, we ltavc no mathenlalical gualantee rt tltis stage that
an absolute minimum exists. However, if it does, then i1 occurs at a critical point of ,t, so
we will begin by ilnding the critical points. Ditlerenriating (7) we obtain

a.s 64 dS 64
-\--. -1A.\ tl d.r ..

so the coordinates of the critical points of S satisfy

64 64
I .:0. .r--:Q

1- t.

(5)

(6)

Figure l5 3.l0
(E)
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Solving the first cqualion lbr I yields

64

and substituting this expression in the second equation yields

61
\' _ 

-:0

(6-llrr)l
which can be rewritten as

.t ll l-o
The solutions of this equation are r : 0 lrnd ,r = 4. Sincc wc require r > 0, the only solu-
tion ofsignificance is r = 4. Substituting this vrlue in (9) yiclds t - rl. To see that wc
hrvc located a relative llrinirrrunr. we use the second partiuls lcs1. Flom (8),

(9)

ars 128

drl \_l'

t25

l(x)

1a

50

Figure l5.8 ll

ExERctsE SET 15.8 E l' 1r,t r,: i-,'.., ,l.r g :.1

Tl'rus. u hen .t : 4 and r' = .1. ue have

;]r.s )rs ;)l.s

,,r /11 - ,J|rll

and

,lls,lls / ills \lD ^ , l+)=,2,,1, rr,'=l;)rr i)r,r \,1r,;).'i /
Since arS/A.r: > 0 ancl D > 0. it follorvs ftonr thc sccond partials test that a relativc
rninirrLrm occuls when.r : .r : .1. Substitutin-c these values in (6) yiclds: - 2. so the box
using least material has a height of2 ft and a squarc basc whose edges ale.l ft long. {
RI \l \ltK. Striclly sperking. the solutior in rhe last exarnple is incolllplctc since rve have

not shou'n that an (//r.r.)1irlc mininunir fot ,l occurs rvhen .r : ) : '1 and : = 2, only a

relative minimunr. Thc ploblern of showing that a rclativc cxtremun is also an absolutc
extrcmun can be ditticult lirr lunctions of two or more vuilblcs and will not be consideled
in this iext. Howcver, in dpplicd problcms we c r sometilnes use physical considerations to

dcduce that an absolLrlc extrernu|r has been tbund. Another possibjlity is to usc glaphical
evidencc. For exarnp)e. thc g| ph of Equation (7) in Figurc 15.8. I 1 strongly suggests that
the rclative minimum al .r : 4 rnd r' : ,1 is also an absolute mininrum.

i)rs l2u dr.t
-t;)rj r' ;)r;)r

ln Exerciscs I and 2. locatc II bsolutc maxirua and rt'titt-

ima, if any, by inspectiorl. Thcn check yout answcrs using

calculus.

l. (a) /(.t.1'): (1 2)r+(f +l):
(b) /(.t. ,i ) : L.r .rr (c) /(.!. r') : t * lr' 5

2. (r) l(r. 1) - I - (.r * l)r - (., 5)l
(b) l(.t. r') : e'r (c) / (.r. r') : rl r'l

In Exercises J and 4. conrplctc the squares ald locate irll ub-

solute maxima and minima, il any. hy inspcctior. Then check
your answers nsing calculus.

.l(.r. r') - 13 - 6r *.rr + 4.t + r'r

l(r.i):I 2r .rlI'h -2r'l

ln Exercises 5 8. the contoLu plots show all signilicarrt tea-

tLrres ol the tunction. Mirke a conjecture about the number

ancl the lociition ol irll relirtive extlema and sirddle points, rnd
then use calculus to check your conjecture.

3.

4.

3tt0l:3
/l r. r) = .rr 3Lr -rl/(\ r)= ir +.1\r+\-

5.
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7.

12. .l(.1, r') -.rl .rt -.t'
14..1(.t.r)=tel

24
16. /(.r..\'):rr'*-*-.r l'
18. l(.t, r,) = r. sln-t

I ,t o I l
./1t. r') =.tr + r'r 3-r -:r

In Excrcises 9-20, locale all reiati\,e maxinrt. relative min-
ima. iLnd slddlc points. ifany.

9. l(.\. .].) : \'r +.Li + -1r' + 2r + 3

10. l(.r. r') =.{r +.\..\' - 2r' - 2r * I

11. l(.\'. \') : tl + -.r' *.r'l 3-r
a

13. /(.r. \ t :.r'- * r'* -J_1

15. /(.r. r') : .rl + \. ?r

17. f(r. r') = c' sin r'

19. l(-r. !) =,, t':+"+l')

nt h)
20. l(.r,.\') :r.r'*._+- (o+0.h+Ot

I\'

21. Use r CAS to gencratc a contour plot of

./(.r. -r') : 2r: - 4.rr'+ ra + 2

for-2: r:2aid,*2 I J : 2, and use the plot to

approxirrate the location 01 all relative exlrerlra and saddle

points in the region. Cbeck your answer using calculus. and

idcntill rhc rcliri\c cxrrcttra ir:\ reliti\e m:r\inlil ur rnininla.

Use a CAS to geDerilte a contour plot of

l (.r. r') - 2l:.r - .t..: + 'lt.
fbr -5 : ri : 5 and -5 : I : 5. ancl use thc plot to
apploximate the location ol all relalive extremit and saddlc
points in the re-sion- Chcck your answer usirlg calculus. and

iJer)til-v thr relati\'e crtrenru ir\ relalire nrilrirrru ol rrrinimu.

(a) Show that thc second panials test providcs no intbrma-
tion.rbout thc clitieul point' ul /t.r. r'r =.rl lr.

(b) Cldssity all critical points ol / as relirti!e Draxima, rc1-

irtive rninima. or saddle points.

(a) Show that the second partials test provides no irlbmra
tion irboul thc (rilrcll ptrints ol /t.r. .r ) =.rl -.lI.

(b) Classify all critical points of f as relati\,e nlilxima. rel

ative minima. or sAddle points.

Recall liom Theorenl 6. I .5 that il a continuous function oi
ortc ruruble hu' cr.ritly onq reltlr\r c\lrcrnLlrrr on rn rn-

tcrvdl. then that relative extremum is an absolute extremum
en thc intenal, This exercise shows that this rcsull does not
extend to functions of two variables.

(a) Show that.l(r.,r'1 : 3.r:cr -.ri - err has only onc
critical point and that a relative nttxinum occuls there.
(See thc accompanying llgure.)

(b) Show that / does not have an rbsolute maximunt.

lThis exercise is based on the article "The Only Critical
Point in Town Test" by Ira Rosenholtz and Lowell Srrylie.
Matlrcnntics Mtga:i/re. Vol. 58. No. 3. May 1985. pp. l,l9-
r50.1

If / is a continuous lunction of one variable with twu rcl-
ative nraximu on an intewal. then there must be a reliitive
mininum bctwcen the relativc lnaxima. (Convince yourself
ofthis by drawing some pictures.) The purpose ofthis cxer-
cise is to show that this result does not cxtend to functions
of two variables. Show that /(.r. r') : 4,r:er ?-!l - (,1r

lras nvo r-elative nraxima but no other critjcal points (see the
accompanyiirg ti gure).

[This exercise is bascd on the problem Two Mounttins
Without a Valley proposed and solved by lra Rosenholtz,
Malhe (ti(r Mdga.jtle- Vol. 60. No. l. Febmary I9ll7.
p..l8.l

l
l

0

r:i
2rl .tlr' 26.

q

._r','.''l-'.'

Figurc Er 25

a = Jrl.r 1\ 1 r,rr

F;gu'r Er-16g 22.

23.

In Excrcises 27-32. lind the absolllte cxtrema of the givcn
funclion on thc indictted closed and bounded set R.

27. J(t. r) -.r.r'-.\ - 3r'; R is the triangular region with
vertices (0.0). (0.4). and (5.0).

28. ./(r. -r') : .r.\'- 2.ri R is the triangular region with vertices
(0. 0), (0.4). and (,1.0).

29. l (x.l) -.rl-3r'r-2-r+6_j; R is lhe squarc region with
vertices (0.0). (0. 2). (2.2). and (2.0).

30. .l(r. r') : .rc' - -rl r,r : R is the rcctangular region with
vcnices (0. 0). (0. l). (2. l). and (2. 0).

31, /(.r, -i,) -.t:+2.r': ,r; Risthecircularregion-rl+11 5 4.

32. .l(r. r) - -t,r'l; R is the region that s tisfies the inequalitics
.r - 0, -\'> 0. and.rl + ),r S l.

33. Find three positive numbers whose sLrm is 48 and such that
their product is.rs large as possible.

24.

l0

25.



34.

36_

37.

38.

39.

Find threc positive nurnbers rvhose sum is 27 and such that

the sum of their sqllaies is as small as possible.

FrrJ rl fnrttt. "rr tnc l,, lr''r, ul ll'c nlrrc r ' - < irr

the lirstoctantatwhich l(r. r', :) : v.1r;r h15i1lnarinrum
!a]tre.

Find thc points on the sulircc.rl r': : 5 lhet are closest

to the origin.

Find thc clincnsions of tltc tcctangular box ol rlirximulrl
volune that can be inscdbed irl a sphcre of rirLdiLls.l.

Find thc maximum \(tu e ol a rectrngLrlar box $,ith three

lace\ in the coordinale planes and a veatcx in the lirst octant

ontheplane.r+l+a:I
A.l^\c. t.(tr.n!u i bor '.rith lr \.lr mr ^t lri tt' .. rn.rJ.

tiom two kinds o1'ltiatenals. The lop a d bottom arc made

ol niaterial costing l0c per square liot and the sicles ftorn
rnaterial costing 5e per squalc fbol. Find the diniensions o1

rlle box so thlrl the cost of materilll! is tninimizerl.

A manutacturer lnakes two mcrdel\ ol an item. slandard and

rleluxe. [t costs 1i.10lo mir]rLllaclur-e thc slandard model ancl

$60 lbr the dcluxc. A market lesearch firm estimates lhat il
the'standard rnodel is priced at.i dollilrs and tlte deluxe nt

-r clollnrs, thcn the ma ulacturer will sell 500(r .t) of thc

standard items and J5.000 +500(.r 2r')olthedelureerch
year. How should the items be priccd 1o rrlaximlze the plotit?

Consider the tunction

l(-r. r') - 4tr 3-rr + lr!
ovcr the unit square 0 I.r : l.0 : r' : L
(a) Fin.l the maximunr and minimum valucs ol'f on each

cdge of the scluare.

(b) Find the maxillrLrn and minimum values of I on each

diagonal ol the s,:lLlare.

(c) Find the maximum and minirllum vrlucs of f rln tlle
cntire square.

Show that among all parallelograms wilh perirlieter 1,

.r .qrrlc ut.h .'Jr. 't l.rilh / -l I'r. rrrlr.r'' rtrr ' r".
lHllr: The a|ca of a parallelogran is glven by thc lbr
nula A : absincr. *,liere./ andl) are the Lengths of two

adjrcent sides and a is the angle bctween thetn.I

Dctermine the clinlensions of a rectangultr box. open at the

top, having volume y. ancl rccluiring the least amount ol-

material tbr its c(nrstruction.

A length ol'sheet mctal 27 inches \\idc is to be made into

a water trough by bcnding up two sides as shown in the

acconpanyi g figu|c. Find r ancl d so lhat the trapezoid-

shnped cross section has a lnaxilnum arel.
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A cornlnon probleI]l in experinrental work is 10 obtain a math
erralical r-elationship ] : f{,!) between lwo variables.r and

-r b) "1ltling" a curve to poinl\ in the plane lhat correspoDd
to experiIrle tally detemi ed values of r and _r, say

(rr. t1). (r1. 11), . .(!, 1))
'fhe curve r' = /(.r) is called a nalheuatical nodcl ol thc
data. The gcncral lbm ol the lLrnction f is conmonlv deter

ninccl bl some underl),ing ph),\iciil principle. bul sonlelimes

it is iust determined by lhe pirftern ol the dala. We are con-

ccrncd with fining ir slraighl line I : ,?-r + 12 lo data. LsLr-

al1y, lhe dirla will not lie on r li e (possibly duc to cxpcri
mental error ol varjations in experilrcntal conditions), so the
problenr is to find a Iinc thlit fits thc dala "besf'according to

some critcrion. One criterion li)r selecting the line of best lit
is to choosc n and , to minirlliTe the lilnction

+
\lnt.11): Llni.\t+h I )-

it
This is callecl the 

'rethod 
oJ least squares. and the resultins

line is crllcd thc regressiort litrc or rhe least-squares line of
,eslfl. Gcomctrically. nl):, + b )i is the veltical distance

bctween the datr point (-r,. r'i) and the line i : rrr.r * b.

These veltical distances ale cirlled the restdrals ol thc dllta
points. so the ellecl ol rninimizing g(rr. D) is to minimire the

surr ol tlre scluues of thc rcsiduals. In E\ercises .15 and 46.

we will dcrivc a lbrmule fbr lhe regression line. Mor-e on this

topic can bc fbund in the module entitled "Functions liorr
D ir" rt th! c J u'C-'irnr.I <.

,15. The purpose olthis cxclcise is lo llrld the vallles ofr? and

D that producc the regression line.
(a) To mininize,.j0r,,). we start by linding values o1 r,

:rrrJ /, ..r, lr lr:l j .,r, - U :rnJ i t ;r/ o. Sr'oq

that these equations are sltislicd if rrr ancl D satisfy the

conditions

40.

11.

42.

43.

44.

/t.l\,,, * l,r ' \i,: f ,, 
',\=t\=t=

/i ',),,, +,,/,: r.r
\=/ =l-igurc E\ 11
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(b) The equations in part (a) arc two linearequations in the
two unknowns rri and b. Solve these equations to obtain

ul,,.t; -lt'!r',

'i't - (t',)

.rl2 -l .t

l L5 1.6 2. 1 3.0

r,, l I 3 .1 5

r .1.2 3.5 3.0 2.4 2.0

The following rable shows the life expeclancy
birth of t'enrales in thc United srdtcs:

50.

. t, , \r:IlJ-',-,,5-,, I'\i ? l
lNore. We have shown that.g has a critical point at these
values ofrr and b. In the next exercise we will show that
g has an absolute nininun) at this critical poinl. AccepG
ing this to be so. wc have shown that the line.l = ,r,\'+,
is the regression linc for these values oi nr and b.]

46. The purpose ol this excrcise is lo show thal.g(rl. /r) has an

absolute minirnum for the values ol'rr and /, obtained in
Exercise 45.
(a) It was shown in Exercise 58 ol'Section 6.2 that the

value of !j'=, (,ri - ,i)2 is minimized by taking .i to be
the arithmctic average

t.\.r=_) r,tr=

Use this tacl to show that
/ \ /, \l

'(.E':i lr"i .'
lNorer lj'-,(r; -.r)r > 0 ii rhe.\i s are not all the
same.l

(b) Find the partial derivativcs g,,,,,tqt. b),9i,/,0,r. ir). and

&t'r,o . b)- and then apply the second panials test to
show that g has a relrtive minimum at the critical point
obtained in Exercisc 45.

(c) Show that the graph of the equatiorl ; = g(ar.b) is

a quadric surface. [Ht,rt. See Fornlula (4) of Section
13,7.1

(d) It can bc proved that the graph of: = f(D,. ,) is an el-
liptic paraboloid. Accepting this to be so, show that
this paraboloid opens in the positive .:-direction. and

explain how this shows that g has an absolute minimum
at the critical point obtained in Exercise 45.

ln Exercises 47-50. use thc formulas obtained in Exercise,l5
to find and draw the regression linc. IfyoLr have calculating
utility that can calculate regression lines. use it to check your
work-

by year ol'

YEAR or-BrRrH 1930 1940 1950 1960 1970 1980 1990

LIFE ExpEcrANcy 6l.6 65.2 '71.1 '13.1 '71.'7 '7'1.5 '18.8

(a) Take r : 0 to be the year 1930. and let I be the lile ex-
pectancy fbl birth year t. Use the regression capabiliry
of a calculating utility to find rhe regrcssion line of I
:Is a t'unction of l.

(b) Use a graphing utility to make a graph that shows rhe
data points and the regression line,

(c) Use the regrcssion line to make a conjecture about the
lite expectancy ol females born in the year 2000.

52. A cornpany managcr wa[ts to establish a relationship be-
tween the sales ol a certain product and the price. The
company rcsearch depanmenl provides the following data:

E sl.

E

Llt:t (r)_l* l9:l.ils_ is3s.00 $40.00 $45.00

iituT,ittt' 
uotu"t (n) *n ?5 6tt

P (xroPArc^r.s) l3.l 112 155 t60 t7l

I(ocElsrus) 0 20 40 60 80

$48.00 $50.00

66 63

E

( ) Use u calculating utility kr find the regression line of r.
as a function of .r.

(b) Use a graphing utility to make a graph that shows the
data points and the regrcssion line.

(c) Use the regression line to make u conjecture about tbe
number ol units that would be sold ar a price of$60.0O-

53. Il'a 8as is cooled with its volume held consrant, then it
foflows fiom the ideal gas law in physics that its pressure

drops proponionally to the drop in temperilturc. The tem-
peraturc that. in theory. conesponds to a pressure of zcro is
callecl absolute zero. Suppose that an experiment produces
thc following data tbr pressure P versus tenrperature I wirh
the volume held conslrnf:

t84

t(x)

(a) Use a calculating utility to find the regrcssion line of P
as a llnction of f.
Use graphing utility to make a graph that shows the
data points and lhe regression line.

47. 48.

/b)



54.

(c) Use the regression line to estimale the r,alue ofabsolute
zero in Celsius.

Find:
(a) a continuous functiqr ./(.r.1) that is defined on the

entire -\_r plane and has no absolute extrena on the

.| plane:
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(b) a function.l(r.r) that is dctined e|er),where on thc

rectangle 0 <.r'< 1.0 : r' : I and has no absolutc

extrcma on the ieclirnglc.

55. Shorv drat if ./ has a relative nllxitnurrt at ({0. rb). then

C(\ ) : l(r. rb) has a rclativc nraximurr af .r :.r0 and

Hrrr- /t1,, ' ) hJ\ r lel:rtl\( lll.t\illltl nal \ - r,

EXTREMUM PROBLEMS WTH
CONSTRAINTS

15.9 LAGRAfiIGf, Mij{-TIPLIER$

In this se(tion nc r|i1l .rlrirA u pottefiil tlell tl1ell1od Jot'mu.rini:ing ot nlititni:.itlg a

function subject to ()nslfttinls o lhe \'.lrit1bles. Tlti.s ttrctluxl rtill ltelp us to solre (er
tutin optitrliaotiotl ltntblents tltut urc tlillia t or irultossible lo solre using llrc rcllods
snrlied in the lrL\l s?di(rt.

In Example 6 of thc last scctiru. wc solvcd thc problem ol ntinimizing

S : r-i * 2,r: * 2r':

subject to the consttaint

r.]: 32 = 0

This is a special case of thc fbllowing general problem:

(l)

(.2)

LAGRANGE MULTIPLIERS

15.9.1 Three-Variable Exlrennm Problem with One Constrair
Maximize or minimize the tunction /(,r. .r'.;) subject to the constraint.g(,r. .r'. :) : 0.

Wc rvill also be intercsted in the tbllorving trvo-variable version of this problerr:

15.9.2 Two-Variqbk Extrenurn Problen witlt Orrc Cottstraiti
Maximize or mjnirrize thc t'unction / (r, r') subject to thc constraint 3 (,r, \ ) : 0.

One way to attack .problcms ol lhese types is to solvc tl'tc col'tsllaint ccluatiorl lor oDc ol
the variablcs in lerlns of the others and substitute the lesult inlo l. This produces a nerv

function of one or two vari blcs thal incorporates the constr int ulai can be maximizecl or
minimized by applying slandirral nlelhods. For example. to solve lhe ploblem in Exalnple 6
ofthe last section wc substitutcd (2) into (1) to obtain

64 6.1S:,rr* +-
\' .t

which we then mininrized by finding the critical poitrts ancl apPlying the second partials

test. However. this apploach hinges on our ability to solve the constrllirt equation lbr onc

ol the variables in telms ol (lre others. ll lhis cannot be done. tl]en other lnethods must be

used. One such rnetllod. callcd the nethotl of Lugrtnge* m tipliert. will be discussed jn

this section.
To motivate the nrethod ol [-agtange multip]icrs. supposc lhitt rvc iue lr1 ittg to marirnize

a limction I (-r. -I) subject to the constraint g (.t. .i ) : 0. Ceon]et rically, this means thlt $e
are looking for a point (.r1r. rt)) ()n the graph of the colstrlint cLllve tt which l(-r. r ) is as

lar ge as possible. To help locate such a point. let us construct a contour plot ol./ (,1. \') in thc

same coordinate systcr'n irs thc e|aph of .9 ( r. r') : 0. For exilnlple. F igurc I 5.9. l rr sho$'s

some typical level curles ol /(.r. r') = c. \\'hich rve ha\.c labclcd r' = l(X). 200.300. -100.

and 500 for purposes of illustration. In this figule. etrch point ol'inlc$eclion of 3(.!. \') : 0
with a level cun e is a candidate fol r solution. sincc thcsc points Iic ot the c,.rnstraint !tlr\e.

'Sce biography on frge 96tr.
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lvlax m!m ol J{.r. r ) is .100

kt)

l\/l nmumofl(r.\)s200

ll'
l-igurc l5.q.i

,i\mong lhe sclcn sltch intersections shown in the ligure. the traximum value of ./(t. r.)
occurs at the intersection whcre l(.r, r.) has a value of 400. which is thc point rvherc thc
constr-rint curvc and the level curve just touch. Obser\c that at this point the level cut.\,e
and the constraint culve have a common nornral linc. This suggests thrt the naximum of
l(.i. r ), if it exists. occllrs at I poinl (-rx. r1) on thc constt-airt cul.\,e at \\,,hich tl.tc gradient
vectors Vl ancl Vg iire scllar multiples of one allothcr: that is.

Yl(-r1..r'1) = ;.V!(.r1. 11) (3)

tbl sonrc scalar r.. 'fhe sanre condition holds at poinrs on the conslraint curve where .l (r. r)
hiis a ninimunr. For example, if the lcvcl curves ale as shown in Ficule 15.9.1b. then the
minimum value of l(.r. t) occur-s where the constraint curve jusl touchcs !l level cutve.
Thus, to find lhe maximunr or nrininrunt ol l(.r. \,) subject to the conslraint ,g 

(,r . t.) - 0.
we look lor points rt which (3) holds rhis is thc mcthod of Ltrgrangc multipliers.

C)ur l)ext objcctivc in this section is to ntakc the preceding intuitive argllmeitl more
plccisc. Fol this pulpose it rvill help to bcgin with solne tenninology about Lhe ploblcn of
rnaxirrizing or nririrrizing a function /(.r. r.) subject to a constraint ,9(.r, -r,) - 0. As rvith
other kinds of maxirnizrtion ancl minitnization problems. we neecl to clistinguish betwccn
rclativc rnd rbsolute extrena. Wc will say that l has a constrai .ed ebsolute maxinum
(trtirtittturn\ ill (,r1.rl)) il l(r11. r,11) is the largest (smallest) value 01'/ on the consrraint
cr.ri \:e. and we will say that / has a cotlstrained rekrtire maximun Qninimwn) al (_r-0. r.u)
ifl(J0.r'i))islhclalgcst(smallest)valueof./onsotnesegmentoftheconstraintcurvl]thilt
extends on bolh siclcs ol the point (-r0. ll)) (Figure 15.9.21.

Lc1 us lssume that a cor'tslraincd rclative lnaxilnuln or mininrun occuls at the poiltt
(rx,r1) and fbr simplicity. lct us tirrthel assumc that the equation,q(.r. r) : 0 can be
smoolhly parametrized as

r - \.(.r). i: r'(-r)

whc|c .r is an arc length pilrameter $'ilh |eterence poilt (-tn. tlr) at.\ : 0. Thu\. the qlrantity

: - I (r (.r ). r(!))
has a lclativc maxinrLrn or nlinimum at.r = 0. and this inplics that rl/r1r - 0 at that point.
Frorn the chain rule. tlris cqurtion can be expressed as

't; .r/,i, l/./r /at br \ /.1, ,-ir' \
-li.il.l.i.ilrr,t, , \,1. , /' \, \' ;\"/ \,i ' ,t.'" /

whele the derivrtivcs arc all cvaluated at r - 0. Howevcr'. the iirst tactor in the dot product
isthegladientol l.anci the sccond factor-is the unittaugcnt vectorto the constt.Lintuur\e.

ro\ frL,or i\ (!r\\l (1116 18111. l-rench It.rlirn r!rhcn)alician and.rslroro|rer. t_agrr !.. thc son ol a

public olticial, wrs Lr(!n irr Turif, Itirlr-. lBrprisnial records lj\r Iis n.rmc rs ciLrsepfe Lodovico Llgrrngir )

nrc]noir bl thc aslmnorrer Hrlley. AI.lgc l6 hc Lrcgnn to s(ud] nLrLhematirs 0r his run and by.rge l9 $as appoin(cd
Lo x |rolc\s(r\hit lt thc Rolll Anillcry School in Tunr. Thc lirlloiri|g lerr Lrgrurgc scnl Eulcr solutions to

nronrLnrental th.rt b\ rlc l5 hc \i|s rcgrudcd bt nr.rir) of his conrcmporaries as dr€ greatesl li\ ing m.rthem iciar.
ln 1716. on Ih. rcconrnrcrrd:Lllon\ ol Euler. he \\'Lrs choscn to \lccccd Euler rs the dirccror ol rhe Berlin

Acadcln). Durirg his slrLy in Be in. I-agnrgc distingui\hed himself not onl) rr cclesrirl nrech.Lnjc\. bul irtso in

Irtrrl\ XVI IIc $ irs sr\ en rpurtNent\ in the Loulrc !.d lrelted $ ith lrert honor. c\.n dLI ing the relolution
\rt)ol.or \rir\.r gr.rx( adrrircr ol Lrgmnge and lho$'crcd hiln with honor\ coLrnl..jcn.rtor. xnd Leglon oj

Horor. l'hc ycars Lrgr rngc \prnl in P,rri\ u ere ilelote.lpri rarill10didaclictreLrrises\!|I ri/inghisnrathenratical

fic(r'! ol rnech!.ics 1o .r lcw gcncr,rl 1(nmulas lrrn) which rll orhcr ncccssar! eq atlons could bc dcri\ed.
h is an inlere\Iirg lristori.rl lrcr that I-xgrrnge's f.lther \peculalr.d u.succcs.fully in se\eral hnd.irl !cnLurcs.

so his lturil! \\'rs nnced ftr li\'e quite nrode,illt l.!gr!n!c hinsell srated th.Lr if hi\ iurfill hird money. he $ould
nolhlr\c ldc mrlhemrlics his \l)crLtion ln spileoJ lris linlc. Lagtunge $,a\ al\\.r!s .1 \h) rnd rnodcsr man. Or
hi\ drxth. hc r!x\ bLricd \rith honor in the Pantheon

,lr r.1) = 0

!.,.....,

a

A cofstra ned re at ve

max mLrm occurs at (.1,). r'o) i
l(rr,. ro) > /(\. r') of some
segment ot C that extends on

both s des of (rrr. ro).

100

200
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Since the point (-r0, t,0) corresponds lo.r : 0, it follows from this cquation thxt

V/(-ro, yo) . T(0) : 0

which implies that the gradient is normal to the constraint curvc at a constrained relative ex-
tremum. However, the constraint culve I(-r,l ) : 0is a levelcurveforthefunctionI(-r,l,),
so Vg(-re, 10) is also normal to this curve at (,r0,10). Thus. wc have shown that V/(r9. )0)
and Vg(-re, )0) are parallel vectors at any poirt on the constrajnt curve whete a constrained
relative extremum occurs. Stated another way, at a constrained relatiYe exfternum tlterc is
some scalar i such that

Vl (ro, ro) = )"Vg(-ro, yo) (,+)

This scalar is called a Lugrange multiplier. Th:us, the method oJ Lagrange muhipliers lor
linding constrained rclative extrema is to look for points on the constraint curve I (r, l, ) - 0

at which Equation (4) is satisfied for some scala l.

I 15.9.3 'IHLORLM (Co struined-Extrcnun l\inci efor'Iho Vafiables a dOneCo straint). Let
:. f cLnd g be functions of f,to tariobles with (:ontitlLtous frst pLtrtiLll dq'i1)L!tit(t olt sone

open set conlaining the constrcint cLlrve S(.{. l') : 0. and asstune that Yg f 0 at a':n'

point on this curve. IJ f has a constrained relative extentutt, tllen tllis ettenunl ocots
at a point (.rx, tt) on the conslraint curve at wliclt the ,qradient vector.s YJ Qs, tn) ancL

Vg(rn, lo) qrc patalLeL; that is. tlrcre is some nunber ). sLtcll th.lt

V/(,t0, ro) : .).V,C(,r0, Io)

Example I
At what point or poiDts on the circle r? * -y2 : I does /(r, ) ) - ,rt have an absolutc
maximum- and what is that maximum?

Solutiott. Sincethecircler2+t,?: I is a closed and bounded set, and since /(,r:. r) :,rr,
is a continuous function, it follows from the Extrerne-Value Theorem (Theorem 15.8.3) that

/ has an absolute maximum and an absolute mininum on the circle. To find these extr-ema,

we will use Lagrange multipliers to find the constrained relative extrena, ard then we will
evaluate / at those relative extrcma to iind the absolute extrena.

We want to maximize ,f(r, f) : t_r, subject to the constraint

8k,.r.):-r2+.y2 l:0 (5)

First we will look for constrained relatite extrema. For this purpose we will need the
gradients

Vl = r-i+rj and Vs - 2xi*2yj
From the formula lbr V.g we see that Vg :0 if and only if r = 0 and,i' :0, so Vg l0 at

any point on the circle .]r2 + y 2 : I . Thus, at a constrained r elative extremum we must have

Vl = l"Vg or r,i+xj: r(2,ti+2r'j)
which is equivalent to the pair of equations

_y :2xi and r - 2),1

It follows fiom these equations that if -r - 0, then I : 0, and if l, : 0, then -r = 0. Tn either
case we have J;2 * -'r. 

r : 0, so the conffaint equation 12 + }.2 - I is rot satisfied. Thus. we
can assume that i and I are nonzero, and we can rewrite the equations as

1: ! 
"n6 1:12x 2-t
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from which we obtain

2.t 2,r

or

.r,: = ,rr (6)

Substituting this in (5) yields

2.r'r-l-0
i om which we obtain r : * I /r/2. Each of these values, when substituted in Equation (6),

produccs ,r-values ol' t : tl /rt. Thus. constrained relative exffcma occur at the points
(/A.t/O).(t/rt. -t/A\.et/A.1/Jt),and(-t/A. I /r./2 ). rhe values or
.L r at these points are as follows:

( r/\0. r/r|') (t1",11.-tl\E) ( tl\8.11\5)(r. r')

l2 -t/2 v2

Thus, the function .l(,t. l') : .r,r'has an absolute maximum of + occurring at the two points

(l/rt.11"A) and (-l/J1. -l/\r). Although it was not asked for, we can also see

that./ has an absolute mininrum of -] occurring at the points (ll',D,-11.,4\ al
e l l \4, l l A). Figule 15.9.3 shows some level curves ;r I' = c and the constraint cur'\'e in
the vicinity of the maxima. A similar ligure for the minima can be obtained using negative
valucs ol c 1br the level cuwes ,rr : c.

Itl:\I.\ltK. Ifc is a constant. then the functions g(.{.r') and g(,{.,}) - c have the same

gradientsince theconstant c dropsout when we differentiate. Consequently, it is xot essential
tol€wliteaconstraintol'thelbtnrg(.r,-]):tas.g(.r.r')-c:0inordertoapplythe
constrained-extremunr principle. Thus, in the last example, we could have kept the constraint
intheforn1211,2:Iandthentaken8(,t.-1,)=-1141,r1n1herthan8(,r.r,)=12+):-1.

Example 2

Use the method of Lagrange multipliers to find the dimensions of a rectangle with perimeter
p itnd maximum area.

*tlulion. Let

.r : length ol'the rectanglc

1, = width ofthe rectangle

A = area of the rectangle

We want to maximize A : .r.r' subject to the perimete r constraint

2-\ + 2\' : t)

llwe let.l(.r. -r) = -rI and.q(,t. ) ) : 2t * 2r', then wc have

Vl : ,r'i +,rj and V.q : 2i * 2j

Noting that Vg + 0, it follows from (,1) that

I'i+r,i - )'(.2i + 2i)

at a constrained relative maximum. This is equivalent to the two equations

r' = 2.1, and .r : 2.1,

Eliminating ,i, frorn these equations we obtain,r : 1 , which shows that the rectangle is actu-

allyasquar.e.Usingthi5conditionandconstraint(7)'weobtain-r=p/4,t.=p/4.<

(7)

(-rl\8, r/\[)

Fijrure 15.9.3



(iro, )o, an)

THREE VARIABLES AND ONE
CONSTRAINT

A constrained re ative maximum occuts
at (,r0, ]'0, zo) ifl(iyo,]0, zo) >,f(.x, J,.)
on some patch of sthat contains
(,ro,ln. zo) ln its interior.

Figure 15.9.4
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The method of Lagrange multipliers can also be used to maximize or minimize a function
of three variables /(.r, y, z) subject to a constmint g(x,y,z) - 0. As a ru1e, the graph
of g(x,y,z) : 0 will be some surface S in 3-space. Thus, from a geometric viewpoint.
the problem is to maximize or minimize ./(x, y, z) as (x, y, z) varies over the surface S

(Figure 15.9.4). As usual, we distinguish between relative and absolute extrema. We will
say that / has a crnstreined sbsolute m&ximum (minimum) at (xo, yo, zo) if /(n0, .10, z0)
is the largest (smallest) value of /("r, ), a) on S, and we will say that f has a constrqined
relative mqximum (minimum) at (.r0, yo, zo) if /(xo, yo, zo) is the largest (smallest) value
of f(x, y, z) on some patch of the surface S that contains (x6, 1s, z6) in its interior.

The following theorcm, which we state without proof, is the three-vadable analog of
Theorem 15.9.3.

15.9.4 THEOREM ( Constrained-Extremum PfinciplefotThrceuafiabbs at'd one Constaint). Let

f and g be functions of three variables with continuous Jirst partial derivatit es on some

open set containing the constraint surfqce g(x , y , z) = 0, an(l assume thqt Vg + 0 qt

any point on this surface. If f has a constrained relative extremum, then this extremum

occurs at a point (;ro, yo, zo) on the constraint sutface at v,hich the gradient vectors
Yf (xo, yo, zi and Vg(10, !0, zo) are parallel; that is, there is some number ). such that

V/(xo, yo, zo) : ).V8(xo, yo, zo)

Example 3

Find the points on the sphere.r2 + !2 + z2 = 36 that are closest to and farthest from the
point (1, 2, 2).

Solution, To avoid radicals, we will find points on the sphere that minimize and maximize
the square of the distanca to (1, 2, 2). Thus, we want to find the relative extrema of

f(x,y,z) - 1x - 1)2 -| (! - 2)2 + (z - 2)2

subject to the constraint

,' + yt + z' :36 (8)

If we let g(;r, 1, z) - x2 + y2 + 2,2, d:'er vg : 2xi + 2yj + 2zk. Thus, Vg : 0 if and only
if x : )r : z: 0. It follows that Vg I 0 at any point ofthe constraint curve (8), and hence

the constrained rglative extrema must occur at points where

Yf (x, y, z) : lVC(x, y, z)

That is,

2(x - l)i t 2(.y - 2) j + 2(.2 - 2)k : ),(zxi + 2J) : + Zzk)

which leads to the equations

2r r - l) - 2{).. 2ty - 2) - 21),. 2(. 2\ - 2i,
We may assume that x, y, and z are nonzero since ,r : 0 does not satisfy the fi$t equation,

) : 0 does not satisfy the second, and z : 0 does not satisfy the third. Thus, we can rewrile
(9) as

-,')a)

lz
The first two equations imply that

xly2

(e)

r-1
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from which it follows that

.r' = 2r

Similarly, the first and third equations imply that

Substituting ( l0) and (1 1) in the constmint equation (8), we obtain

9x2 :36 or x : 12

Substituting these values in (10) and (l l) yields two points

(2, 4,4) and (-2. -4, -4)
Since /(2, 4.4) -- 9 and f(-2, 4. -4) : 81, it follows that (2, 4, 4) is the point on the

spherecIoSestto(l,2'2),and(_2,4._4)iSthepointthatiSfarthest(Figurel5-9.5).<

Next we will use Lagrange multipliers to solve the problem of Example 6 in the last

section.

Example 4

Use Lagmnge multipliers to determine the dimensions of a rectangular box, open at the top,

having a volume of 32 ft3, and requiring the least amount of material for its construction.

Solution. With the notation introduced in Example 6 of the last section, the problern is

to minimize the suface atea

S =,rl + 2iz + 2}:

subject to the volume constraint

x\'a.:32

lf we let ./(-r, 1, :) : 11 l2xz * 2yz and g(.r, y. t) = .rr,:, then

V/: (r'*2:)i* (x *2:)j+(2-t 12.v)k and V8 : ,r':i +,t;j +llk

(12)

tt follows that Vg I 0 at any point on the surface r}: : 32, since r. r'. and: are all nonzerc

on this surface. Thus. at a constrained relative extremum we must have V/ = ,)"V9, that is,

(v * 2z)i * (,r * 2:)j + (2r + 2r)k = l(-rzi * -r:j * xlk)

This condition yields the thrce equalions

r * 2z = ),t.:, x I2z: ),x2, 2x 12! : ),xy

Because x. l. trnd z are nonzero, these equations can be rewritten as

t2 12 22
- I =1. l-=I. F-:l:t:t,y.\-

From the first two equations,

( l0)

(ll)

! 12. 4,4)

o1t,2,21 
,.

Figure 15.9.5

and from the lirst and third equations,

-_t,.

Substituting (13) and (14) in the volume constraint (12) yields

+x3 :32
This equation, together with (13) and (14), yields

"r -4. l'=4, z.:2
whichagreeswiththereSultthatwaSobtainedinExample6ofthelastSection.<

(13)

(t4)
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There are variations in the method of Lagrange multipliers that can be used to solve
problems with two or more constraints. However, we will not discuss that topic hcrc.

ExERctsE SET f 5.9 E Graph ne ca cr ator E cAS

1. The accompanying fi gure shows graphs ofthe line x +_r - 4

and the level curves ofheight c - 2,4, 6, and 8 for the func-
tion /(,r, y) : v1.
(a) Use thc figure to find the maximum value of the func-

tion /(i, )) : irl subject to the constraint,r + )' - 4,

and explain your reasoning.

(b) How can you tell f'rorn the ligure that you have not ob-

tained the rninirnum value of ./ subject to the constraint?

(c) Use Lagrange multipliers to check your work.

The irccorrpanying figure shows the graphs of the iine
3r + 4] : 25 and the level curves of height c - 9, 16,

25. Jb. ard 4q lhr rl"e luncriun ltx !r -.rl + y2

(a) Use the accompanying figure to nnd the minimum value

of the function l(t, r) : "' + l'2 subject to the con-
.lrainr Jr 4r 25. anJ cxpl.rin lour rersoninp.

(b) How can you tell fiom the accompanying figure that
you have not obtained the maximurr value ol./ sub.ject

lo the constraint?

(c) Use Lagrange multipliers to check your work.

In Exercises I I 18, solve using Lagrange multipliers.

11. Find the point on the line 2r - 4), : 3 that is closest to the
origin.

12. Find the point on the line -)' : 2n + 3 that is closest to (4. 2).

13. Find the point on the plane -r i 2,v i :. - I that is closest
to the origin.

14. Find the point on the plane,lr + 3! +: : 2 that is closest
to (1. l. 1).

15. Find the points on the circle 12 + _)'2 : 45 that are closest
to and farthest from ( I, 2).

16. Find the points on the surlace -y-r -.:l : I that ae closest
to the origin.

17. Find a vector in 3 space whose iength is 5 and whose com-
ponents have the largest possible sum.

18. Suppose that the temperatllre at a point (r.1,) on a rnetal
plate is 7(r, )') -,1r2 4rf + -r'1. An ant. walking on the

plate, traverses a circle of radius 5 centeled at the oli-sin.
What are lhe highest and lowest tempcratures encountered
by the ant?

19, (a) Use a graphing utility to graph the circle -tl + r,2 : 25

and two distinct level curves of l(r. r') - 12 ! that
just louch the circle.

(b) Use the results you obtained in part (a) to approxinate
the maximum and nininum values of .f subject to the
con\hilrnt i\- + r' : 5

(c) Check your approximations in paft (b) us'ng Lagrange
lr'lultipliers.

20. (a) If you have a CAS that can generate implicit curves, use

it to graph the cjrcle (-r 4)': + (-i zt)2 :,1 and twcr

level curves of the function ./(n. -I) - .rr + -!r 3.t-r

that.iust touch the circle.

2.

Figure Ex-1 FgueE\2

tr

tr
In Exercises 3 10, use Lagrange multipliers io find the rnax-

imum and minimum values of f subject to the given con-

straint. Also, llnd the points 4t whjch these extreme values

occui_

l(-r, )') = ir_r; 4x2 1812 : 16

/(.1.ll:1- l: i-+r'-:ll
./(.r, y) :,1,r3 1 yr; 2-tr 112 : I

./(x, -r,) : .r - 3-r - l; :r2 i 3Y2 = 16

f(x, y. z) - 2x I | - 22., 12 + -v2 + -:2 : 4

/rr.).a'-r, h\ 12.:2r'+41 -rl -0

./(;. -r',:) : r1';; t2 + 12 +;2 : I

f(x,y,z) - xa * ),t + ra; r *yi;: I

Use the resLrll you obtained in part (a) to approximate

the minimum value oi I subject to the consffajnt
(' 4)r + (-r, .1)2 - 4.

Confirm graphically that you have found a minimrm
and not a maximum.
Check your approximation using Lagrange multiplie$
and solving the required equations nurnerically.

,)
24-

21.

23.

I

4.

6.

7.

8.

9.

I0.

(b)

(c)

(d)

In Exercises 2l-28, use Lagrange rnultipliers to solve the
indicated problems flom Section 15.8.

Exercise 34

Exercise 36

Exercise 35

F.xercise i7
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25.

27.

E 2e.

Exercise 39

Exercise,l2

26. Exercise 4l

28. Excrcisc 43

30.

Let cv. C, and / be the anglcs ol a trian-sle.
(a) Use Lagrange multipliers to find the maximum value

ol l(d. t'J.y) : cosrJcosPcost/, and cletermine thc
anglci fol which the lnaximum occlrrs.

(b) Express l((r. fl. y) as a functioD of cr and p alone, and

use a CAS to graph this llnction oi two variables. Con-
llrn that the lesult obtained in part (a) is consistent with
the grrph.

The accompilnying llgLre shows the intersection of the el-
ljptic paraboloid .- - rr +,1)l and the right circular cyl
incler.rl + -rI - L Usc Lagrange multipliers to find the
hjghest and lowest pojnts orl the cuNe of intersection.

l. (a) A company n'lanufactures lwo lype! ol computer moni-
tors: standard and high resolution. SLlppose that 1, (i, ),)
is the profit that results tlorr producing and selling -r

slandard monitors and l high resolutioD monitor-s.

What do rhe two partial clerivltives AP/Ar an(lAPldf
represent?

(b) Suppose that lhe tenlperaturc at tirnc / at a point (r. t )

on the surface ol a lake is I (.v. t,. t). What do the partial
derivatives rl/4.r, A7/dr'. and 

'17/ar 
represent?

Let:- / (.t, t ).
ra, f \lre,. ;"' a ' .rr.d ,i; n.f ,r. mtr..
(b) In worcls, what do thc delivatives L (-r:0, tir) and

| (rn. -r'1) te1l you about the surface. : ./(". f)?
(c) In words. whirt do the derivatives l:/0,v(-t9. -r,11) and

Aa/il] (r0, 1,0) tell you aboul tl'le rates ol changc of a

with respect to .r ilnd -r l
(d) In \\ords. \\,hat does il'le derivative D, l(r0. _10) tell yotL

about the slnlace : : .l(r. l )'l
5h,'u thut thc lcrc ..r-rc. u tl-c (unc .- - ./, , ,nJ
the paraboloid: - ,!l + -\l irre circlcs, and rnake a sketch
that illLrstrates the dilference bctween the contour plots of
the two functions.

(a) How are thc dircctional de vative and the gr adient of a
lunction relrted?

(b) Under what conditions is lhe directional derivative of a
diflerentiahle tLrnction 0J

Whal do A/ and d/ represent, and how are they related'l

Let /(,t, -r,) - e'ln r'. Find
(a) I (]n r. .') (b) l0'+r.rs).
Sketch the domain of / using solid lines for portior'rs of the
boundary included in the donain and dashed lines for por
tions not included.
(a) l(r. r) : ln(.r-y - l)

6.

7.

8_

2.

3.

(c)

5. (a)

(b)

9.

10.

11.

12.

13.

(b) f(r, r): (sin rx)/ar

In Exercises 9 12, verify fie asseflion.

If ar : tan(r2 + -r2) + .rf, then Ur,, : ,r,r,.

Il io - ln(3x 3)) + cos(-r + )), rhen

tu/ar' - a2u /t)\'2.

If I (-r, ]'. .) : 2rr 3(ir: +-!r).. then f;. + 4.r + 1.," : 0

If /(-r, ),, .) - -y1'; f -t: + ln(]/r), rhen L,- : 1,,.. .

The pressure in N/m: ot' a gas in a cylinder is given by
P - l0T /V with 7 in kelvins (K) and V in m3.
(a) If I is increasing at a rale of 3 K/min with V held fixed

at 2.5 nll, find the rate at which the pressure is changing
when T :50 K.

(b) li 7 is held fixed at 50 K while y is decreasing at the
rate ol3 ml/min, find the rate at which the pressure is
changing when V - 2.5 m3.

Findtheslopeofthetangentlineatthepoinr(1, 2, 3)on
thc curve olintersecfion 01'the sudace: - 5 4r2 v2 with

4.

14.

In \\,hat direction does the directional delivative of a dif-
lerentiable lirnction have its rnaximum value? Its rrin-
imum value?

In words. desc be the level surfaces ol the functioi
/(,t. i', :) : a2.t1 + a1r,1 1 ;1. whcrc a > 0.

Find a funclion /(-r. r',:) rvhose level surfaces l'orm a

talnily of ci.cLllar paraboloids that open in the positive

a directiorl.

In Exercises 15 and 16, (a) lind the linit of the funcrion

l(jr, l) as (.r. l) -+ (0,0) if it exists, and (b) determile

lr) the plrne \ = I (b) the plane r - 2.

whether f is continuous at (0.0).

-r1 -r + -t - rl)1s. /l r. ;1 :
.t- - _\'



16./(r,-v) lT
if (r, r) I (0.0)

il'(.r, 1) : (0, 0)

At the point (1, 2), the directjonal derivative D,, f rs 2J2
toward P1(2.3) and 3lowaid Pr(l.0). Find D'/(1,2)
toward the oriSin.

Find equations for the tangent plane and normal line to the
given sudace at Po.

(a) z - x2 e2Y; Po(l.1n2,4)
(b) x21r.a +.J.). - 2; Po(2, l, i)
Find all points P0 or1 lhe slLrlace z :2 ry al which the
normal line passes through the origin.

Show that for all tangent planes to the surlace

r2lr+)2/rilz/l_l
the sum of the squares of the ,r-, _\'-, and a intercepts is L

Find al1 points on the paraboloicl z - 9r2 + 4),2 at which
the normal line is parallel to the ljne througlr the poirlts
P(4, 2,5) and 0( 2. 6, 4).

If trl : ,r2l - 2xy * ,-2t. find the increment Ata and the
differential 1u.' il(x.1) varies tiom (1,0) to (1.1, 0.1).

Use differentials to estimate the change in the volume
V : lx2l of a pyramid with a square base when its height
,4 is increased from 2 to 2.2 m, while its base dimension,r
is decreased from 1 to 0.9 m. Compare this to Ay.

In Exercises 2,1 26. locate all relative minina, relative max
iDra, and saddle points.

24, .f (x, t) : .r2 + 3rl i 3)2 6-r + 3 r,

25. ./(:c, f) : -r2) 612 3-rl

26, t.r.vr-,{ - J,{) I .fl

ln economics, aproda ction model is amalhematical relation-
ship between the outpLLt ol'a coi'lpany or a counffy and lhe

labor and capital equipDent required to produce that output.

Much ofthe pioneering work in the lleld ofproduction models

occurred in the 1920s when Par.rl Douglas ofthe University
of Chicago and his collaborator Charles Cobb proposed that

the outpul P can be expressed in telms of the labor l, and the

capitai ecluipnrent r( by an equation of the form

P : cL"Kl
where. is a constant of proportionality and a ancl p are co -

stanlssuchthat0 <.! < I and0 < B < l.Thisiscalled
Lhe Cobb-Douglas prcduction model. Typically, P, l,, ancl

tr are all expressed in terrs ol thejr equivalent monetary

values. Exercises 27 29 explole properties ol this model.

27. (a) Consider the Cobb-Douglas production moclel given

b) rl-e lormulJ P: L'-'h ''' sk(l(hlh(lcrsl .urre.
P(L. K) - l, P(L. K) :2, and. P (L. K) : 3 in an

Ltr-coordinate systcn (l, horizontal and K vertical).
Your sketch need not bc accurate numerically, but il

SupplementaryExercises 975

should shorv the general shape ol the curves and their
relative positions.

U.e a ur.rplrinp u..lit1 lo .lr\e 
:r m,,r'c c\.enrivc cnIr,'r.r

plot of thc nodel.

Flnd AP / AL ancl A P IAK lor rhe Cobb-Douglas produc-
tion modcl P - cL"Kl.

(b) The delivative ilP/AL is called the marginal protlutc-
tivity of labor, and the dcrivative AP/ar( is called thc
morginal prcductiyit! of copital. Explain what these
quantities mean in plactical tcrms.

(c) Show that if B : I a. then P satislies thc partial dif-
lerential equiltion

AP APK +L :PNK i)I

29. Considcr the Cobb Douglas production model

P:1000/.06K01
(a) Find the maximum outllut value ol P if labor costs

$50.00 per unit, capital costs $100.00 pcr unit, and the
lotal cost of labor and capital is set at $200.000.

(b) How should the 5200,000 bc allocated between labor
and capital to achleve the lnaxinru ?

Solve Exercises 30 and 3l two ways:
(a) Use the constraint to eliminate a variable.
(b) Use Lagrange multipliers.

30. Find lll relative extrcma of.tlr,l subject io the conslraint
,|.2+l.l:lJ

31. Fincl fte din'lensions of the rectanguL.ir box ol Inaximunt
volume that can be irlscribed in thc ellipsoid

(xl all + (r l b\2 ! (z l t\2 : I

In each part, use Theorem 15.4.8 to l'lnd r/_r/r/-r.
(a) 3,tr - 5-,rr'+ tan-tt :0
(b) -rlnlisin(.t )):;z
Given that F(-r, 1) : 0. use Theorem 15.,1.8 to express

d21/d-rr in terms of partial clclivativcs ol F.

As illustrated in the accompanying figure. suppose that a

current 1 branches into cunents 11, 11. and /: through re

sistors Rl, fi:. ancl R: in such a way lhat the total en

cr!) lu lhe llree re\.lnr\ '. il mirri_,.lIl. lirrJ thc r.rLi,'s

,lt : 1: : 1i if the energy delivered to R; is /,rRi (t : 1. 2. 3)
and/r *1r*/::/.

(b)

28. (a)
1,7.

'18.

19.

20.

21.

))

23.

32.

33.

34.

E Figure Ed 1.1

Suppose the equations ofmotion ol a particle irre r : t - l.
\ - 4e '. z - 2 yf. wherc r > 0. Find, to the nearest

tenth of a degree, the acute algle betwcen the velocity vec-
tor and the normal line to the surface (rl/4) + ) l + al : I

35.
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at lhe points where the particle collides with the sudace.
Use a calculating utility with a rootfinding capability where
needed.

36. I-et

It can be shown that if ./(r, I) and i).f /Ar are continuous 38'

lora 1-r 1/, and c: )' : ./, then

"l .
r L,t - I 'lla,

J 3'
(a) Use this result to lind I'(-t) if

ll
Ft\): I \in(.\.')d)

JLt

(b) Use a CAS and the result in part (a) to iind the maximum
value of F(-t) for'0 < ,r : 2. Express your answer to

six decimal places.

Angle A of triangle ABC is increasing at a rate of z/60
rad/s, side ,4 B is increasing at a rate of 2 cm/s, and side
AC is increasing at a rate of 4 cm/s. At what rate is the
length of BC changing when angle A is z /3 ftd, AB : 20
cm. and AC : 10 cm? ls the length of BC increasing or
decreasing? lIlirt. Use the law of cosines.l

Let : - f(.:r, t), wherer : g(/) and ) - r(r)
(a) Show that

tt toz\ d--d^ ,]t J)ttdt \Jx) :)\ dt dllr dt

and

.l
rr,: f, .ttx..!lar, d:r 

=b

d
n

/ cl? \ 32: dr 02-: drI l:--+ 1
\iJr,/ A)Ay dt Ayt dr

(b) Use the formuias in part (a) to help find a fonnula for
d2.l d t2 .
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? pn this chapter we will exlend the concept of a

definite integral to functions of two and three variables.
Whereas functions of one variable are usually integrated
over intervals, functions of two variables are usually in-
tegrated over regions in Z-space and functions of three

variables over regions in 3-space. Calculating such in-
tegrals will require some new techniques that will be a

central focus in this chapter. Once we have developed the

basic methods for integrating functions of two and three
variables, we will show how such integrals can be used to
calculate sudace areas and volumes of solidsl and we will
also show how they can be used to find masses and cen-

ters of gravity of flat plates and three-dimensional solids.
In addition to our study of integration, we will generalize

the concept of a parametic curve in 2-space to a paramet-

ric surface in 3-space. This will allow us to work with
a wider variety of surfaces than previously possible and

will provide a powerful tool for generating surfaces using
computers and other graphing utilities.
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VOLUME

16.1 DOUBLE INTEGRALS

The notion of a defnite integral can be extended to functions of two or more vrLriables.
h1 this section we wi discr,tss the double integral, whiclt is the extension to functions
of m-o variables.

Recall that the definite integral of a function of one variable

arose from the problen of flnding arcas under cuwes. Integrals offunctions oftwo vadables
arise from the problem of linding volumes under surfaces:

i 16.1.1 THE voLUME PROBLEM. Given a function / of two variables thar is continu- I

. ous and nonnegative on a region R in the ,rl-plane, find the volume of the solid enclosed 
I

,,b:,:*:"ll"j":lTl-l!::rl"lim:-:.1:"i!Ii*:1"16:1:11: *- _ l
Later, we will place more r€strictions on the region R, but for now we willjust assume that
the entire region can be enclosed within some suitably large rectangle with sides parallel to
the coordinate axes. This ensures that R does not extend indefinitely in any direction.

The procedure for finding the volume V of the solid in Figure 16.1.1 will be similar to
the limiting process used for finding areas, except that now the approximating elements will
be rectangular paiallelepipeds rather than rectangles. We proceed as follows:

Using lines parallel to the coordinate axes, divide the rectangle enclosing the region R
into subrectangles, and exclude from consideration all those subrcctangles that contain
any points outside of R. This leaves only rcctangles that are subsets of R (Figure 16.1 .2).

Assume that there are iJ such rectangles, and denote the area of the frth such rectangle
by AAp.

Choose any arbitrary point in each subrectangle, and denote the point it the kth subrect-
angle by (-rf, 1l). As shown in Figure 16.1 .3, the product /(.rf , yf) AA1 is the volume
of a rectangular parallelepiped with base area AAr and height /(,vf , yl), so the sum

\- rr 't "' ' 
n .q,.

12 k /1

can be viewed as an approximation to the volume V of the entire solid.

l.u rr,, o*:,lT- I rr';ro'* (1)

Figurc 16.1.I

Figure l6.i.lFigure 16.1.2

t"r-1rll



This suggests the lollowing definition.

16.1.2 DhFlNfl ION (vottune Un.ler suio.L,). 1f i js l lunerion of two va ablcs that is

continuous and nonnegrtive on a region R in the r)1tane, then the volune of the solid

16.1 Double lntegrals 979

. There are two sources of enor in the approximatior'ti first, the parallelepipcds have flat
tops, whereas the surface: : /lr..y) may be curved: second, the rectangles that lornl
the bases of the parallelepipeds do not completely cover thc legion R. However. if we
repeal the above process with morc and nrore subdivisions in such a way that thc lengths
and widths of the base tectangles approach zero, then it is plausible that the errors of
both types approach zero. and the exact volume of the solid is

Y : tinr I frri, t'i )a 1r

enclosed between the surface i: - ./(.r. l ) and the region R is denned by

v : Lim f /r:i. t,r'ilAt

: lirn f /txl , ri ra Ar

/(.t. r) lA

(2)

(3)

DEFINITION OF A DOUBLE
INTEGRAL

Ittr\i,\llK. ALthough this definition is satist'acbry fbr our presenl purposes, there are var
ious issues that would haye to be resolved before it could be regarded as a rigolous math-
ematical definition. For example. we would have to prove that the limit actually exists and
that its vrlue does not depend on how rhe points (ri. -r,i), (.r1, 1j), . . . , (.r,1, r.,f) arc chosen.
It can be proved that this is true if / is continuous on the region R and this region is not roo
"complicated." The details lire beyond the scope of this tcxt.

It is assumed ir Delinition 16.1.2 that / is nonnegative olt $e rcgion R. If f is continuous
on R and has both positivc and negative vah.res, then the lintit

_lL
lim ) fr \r. \ ,AA t4J

' -+'l-' 
t '^

no longer represents the volume between R and the suface: : I (i. ,!); rathel, it l-epresents
a diference ol vo)umcs-the volume between R and the porlion of thc surface that is above
the u.plalle minus the vo]ume between R rnd the portion of ti'te surlace bclow the n'plane.
We call this the rr?f signed volume between the region R and the suface : : I (:r, _y).

The linit in (,1) is sufficiently important that there is sonre notltion rnd ter-minology
associated with it-the sums in (4) are c a\lecl Riernann sums, and the limit of thc Ricmann
sums is denoted by

|| r,', n, uo (s)

which is called the double integral ol [ (.r . ] ) over 1i.

lf / is continuous and nonnegative on the regioD R, then volume formula (3) can be

expresscd as

(6),=II
n

If .f has both positive and negative values on /i. then a positive value for the double integral
of I ovcr R means that therc is morc volume above R than below, a negative Vitlue tbl'
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PROPERTIES OF DOUBLE
INTEGRALS

the double integral means that there is morc volume below than above, and a value of zero
means lhat the volume above is the same as the volune below.

To distinguish between double iutegrals of functions of two vaiables and definite integrals
01 l'unctions 01'one variable, we will refer to the latter as single integrals. Because double
integrals. likc singlc intcgrals, arc definetl as limits, they inherit many of the properties of
limits. The followiog resu)ts, which we state without proof, are analogs ofthose in Theorem
1.5.4.

EVALUATING DOUBLE INTEGRALS

}) dA (c a constant)

'1,''a'-+].:,,-+

.=l(r.t)
ll ,,,,,,roo =, ll t,,,
,( /t

| | rtr'. rt+B(r,r')rrA - | | ru,r,ro * | l rr,, rtoo
,tnR

llva,'t s(r,r)rrrA : ll r,,,',rno- llsu,,-tae
RRR

ll t,,.,too- ll r,,,rroo* ll ra,tno
,( fiL fi:

(1)

( 10)

(8)

(e)

Il

The vo ume of the ent re sol d

s the sLrm of the vo umes of the
so ds above Rl and R,.

Figure 16.1.-l

lt is evident irrtuitively that if /(r, _r') is nonnegative on a region R, then subdividing R

into two regions Rr and R, has the efftct ofsubdividing the solid between R and . : ./(-r, f)
into two solids, the sun of whose volumes is the volume of the entile solid (Figure I 6. I .4).

This suggests thc following result, which holds even if / has negative values:

The proofofthis result will be omiued.

Exccpt in thc simplest cases, it is impractical to obtain the value of a double integml from
the linit in (5). Howeyel we will now show how to evaluate double integrals by calculating
two successive single iDtegrals. For the rest of this section, we will limit our discussion to
the case where R is a rectangle: in the next section we will consider double integrals ovcr
more complicated regions.

The partial derivatives of a function /(r , -\.) are calculated by holding one ofthe variablcs
fixed ald diffelentiating with respect to the other variable. Let us consider the reverse of
this process. palial integration. The symbols

rh rJ
/ 7tr..rr,/r rnJ I lr.t.ttrt;J,, J,

denote partial defnite integrals, the ilrst integral, called the partial defnite integral with
respect to x. is e\aluated by holding y flxed and integrating with respect to r, and the second

integral. called the partial definite integral with respect to y. is evaluated by holding .t
fixed and intcgraling with respect to 1,. As the tbllowing example shows, the partial dellnite
integral with respect to ,r is a function of 1', and the partial definite integral with respect to

-r' is a ftrnction o1'-r.

Example 1

/'.'r'a., 
: r'
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[' ^t'on - , [' ,'on =*!t-f' : Il' -'"Jo' J.l,=o l
A partial definite integral with respect to r is a function of) and hence can be integrated

with respect to )'; similarly, a parlial definite integral with respect to l, can be integrated with
respect to r. This two stage integration process is called iterated (or repeated) integrqtion.

(12)

We introduce the following notation:

f, l.' ru',t o' o, : l"' ll"' ra,,t o.]0,

l.' l""u',,,, o. = l"' ll"' ra, t o,f o,

These integrals are c alled iterated integrals .

(11)

Example 2

Evaluate
ff t:

(a) / / tt + Sxyldydx

Solution (a),

,2 ?3

rb) .l .l^ 
rt + t*t,t a' ar

lo' l,' <t + to a, o, : I: ll,' o * r,,t n,] o,

: 
ln' 

lr + +*f)?,=, a'

: 
lo'L{r*tu,) (t +4x)lttx

: 
lot 

o * r2x) dx - 1r + or'?yll : sz

Solution (b).

l,' fo' 
Q + a*i a* * : l,' ll,' u+ 8rr)axl av

: 
l,' l, * o,'r),'"=o o,

: 
l,' r, * rur) o, - (3) + r sr,r)]? = 57

The following theorem shows that it is no accident that the two iterated integrals in the
last example have the same value.

16.1.3 THEoREM. Let R be the rectangle def.ned by the inequalities

a 1; x ! b, c < y 
= 

d

If f(x, y) is continuous on this rectangle, then
tt td tb rh rrl
ll.trx.ytat- I Llv. yt,|x,ly - I I frt. ytdt,t;,

J J J. J.. J. J..
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This important theorem allows us to evaluate a double integral over a rectangle by
converting it to an ikrated iniegral. This can be done in two ways, both of which produce
the value of the double int€ral. We will not formally prove this result; however, we will
give a geomeffic motivation of the result for the case where .;f(r, y) is nonnegative on R. In
this case the double integral can be interpreted as the volume of the solid 5 bounded above
by the surface z = f(x,y) and below by the region R, so it suffices to show that the two
iterated integrals also represent this volume.

For a fixed value of y, the function /(x, y) is a function of r, and hence the integral

e<vt: 
f"b ft*,ia,

represents the area under the graph of this function of r. This area, shown in yellow in
Figure 16.1.5, is the cross-sectional area at y ofthe solid S bounded above by z : f(x,y)
ard below by the region R. Thus, by the method of slicing discussed in Section 8.2, the
volume Y of the solid S is

v: 
["0 

eovav: l"'ll.' ra,rta,f at- 
f"o l.u ro,,,o,o,

Similarly, the integral

Atx) -- I f \x, y) dy

represents the area of the cross section of S at x (Figure 16.1.6), and the method of slicing
again yields

v: 
Lu 

e{ia'= l,'ll"' r<,.rtar)a'- l.' l.' r@,v)dvdx

This establishes the result in Theorem 16.1.3 for the case where /(r, y) is continuous and
nonnegative on R.

Figure 16.1.5

Example 3

Evaluate the double integral

overtherectangle R : {(r, y) : -3 = 
x 

=2, 
0 < y < l}.

Solution. In view of Theorem 16.1.3, the value of the double integral may be obtained
from either of the iterated iniegrals

(13)

(14)

lln"oo

^2 rl al a2

J-,Jo r'*oro' o' 
Jo J-,fxdxdt

Using the first of these, we obtain

Figure 16.1.6

(ls)



ll ;^oo: I',1,'y)xctvctx - l',1',r'^11,,=,or
n

- [" "0': L'l' - t
l_,3 6l.1 6

You can check this result by evaluating the second integral in (15).

REMARK. We will often express the rectangle {(r, y) : a 3 x 
= 

b, 0 - y 
= 

dl as

[a, D] x [c, d] for simplicity.

Example 4
Use a double integral to find the volume of the solid that is bounded above by the plane
z-4- x y and below by the rectangle R : [0, 1] x [0,2] (Figwe 16.1.7).

Solution.

,: ll'o x ytdA: 
fo' l"',0 * y)d).d,

R
1 -l

- ['lo. .j ,r]' o, : [' ('^ ,\ o,JoL 2 '),=n ' Jo\2')
f7 ,,,212:l-v 1l :-5
12' 2 )n

The volume can also be obtained by first integating with rcspect to ) and then with respect
to r.
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FoRTHEREADER. Mostcomputeralgebrasystemshaveabuilt-incapabilityforcomputing
iterated double integrals. If you have a CAS, read the relevant documentation and use the
CAS to check Examples 3 ard 4.

ExERcrsE SEr 16.1 E cAS

Figure 16.1.7

In Exercises 1 12, evaluate the itemted integrals. In Exercises 13-16, evaluate the double integral over the rec-
tangular region R .

11 12

Jo Joa 
+3)ata^

,4 "1

I l^'1yd*dy
J 2 JA

J" J" e'+) dy dx

ta t5

J ,1, o, o,

L' L'"*rono'
,ln2 "l

Jn Jn 
w""" at a*

l,' l' ,rr, - 4v) dv dx

lo f',t " * ,'t o, o,

"2 rl

Jn Jn ts'n.*dtdr

l^' fl,o, o,

l l'^rosrydyd,
Jn/2 Jt

I.'L';or*

14.

13, | | 4xy3 dA: R-l{x.y,: -lS r5l.-2<),.21
R

[[-J:^,
lrJ Jt2 +12 +1
R - [(x,y) : 0 Sr < 1,0 < y : 1]

ll t.'/l -x'/dA; R-l{-{.y):0Sr s 1.2 <y < ll

I I tx sin v - 'v sinx) dA:
JJ

,R

R : [(.r, t) : 0 3 x 1 112,0 
= 

y < tr/3\

Use aCAS to check the answers to the problems you solved
in Exercises 1-16.

7.

9.
16.

E 17.

10.
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18, Use a CAS to show that the volume V under the surface

; - r)l sin xJ over the rectangle shown in the accompany-

ing figure is V - 3/r.

Figure Ex I8

In Exercises 19 22, use a double integral to nnd the volllme.

19. The volume under the plane: : 2x * -v and over the rec-

tangle R: {(,!, -\') :3: r :5. l:) <2}.

20. The volume undel the surface a - 3.rl + 3-r2l and over the

rectangle R : {(r. r) : I < .r 5 3. 0 :: I = 
2}.

21. The volume of the solid enclosed by the surface ; : 12 and

the planes -r : 0, -t : 2. -r' : 3. r :0. and; - 0.

22. Thc volume in the lirst octant bounded by the coordinate

planes, the plane ) : .1. and the plane (r/3) + (r/5) : l.

27, Find the average value of ./(r. ) ) : I sin i) over the rec-
tangle [0, ll x 10, tt /2].

28. Find the average value of l(-r. ),) = r(,r2 * -l)L/2 over the
interval [0, 1] x I0,31.

29. Suppose that the temperature in degrees Celsilrs at a point
r.r. \ron r flatmct.rl plrte i., f'r. rr - lo 8r2 2v:.
u'here r and -! are in metcrs. Find thc avcragc temperature
ot' the rectangular portion of thc piate lbr which 0 : n : I

and0<t 52.
30. Show that if f(jr, )) is constant on the rectangle

4 = [a. D] x fc, r/1, say /(r, r.) : I, thcn /avc : ft ovcr R.

Most cornputer alSebra systems have commands tbr approx-
lmating double intcgrals numerically. For Exercises 3l and

32. read the relevant documentation and use a CAS to llnd a
numcrical approximation of the double integral.

r1 rl
31. / / sinr/tr+rldrdr

.t4t
i2. I / n,,,+.r.1,.7,

J tl t

33. In thjs exercise. suppose that /(.r. -r) : g(-r)/z(1) and

R : {(r, -i) . a 
= 

x 
= 

b. c 3.'- 1d}. Show that

[[ ,'^.,'oo- [/ ,*,r,]l I nr,nr]JJ IJ, - ]LJ ')
Use the result in Exercise 33 to evaluate tlle integral

rlnl .l
I L/F' +tt'n\dt.J\J,, J

by inspection. Explain your reasoning.

Use a CAS to evaluate the iterated integrals

rl r/ / ------,r., a, ,no I I )----a,a^
J, J, (' ))' L J, l, ')'

Does this violate Theorem 16.l.31Explain.

(a) Let .l (-r, _r') : r 2_y, and as shown in the accompa-

rying ligure. let the rectangle R : [0,2] r [0,2] be

subdivided into the 16 subrectangles. Take (-y;, )l) to

be the center of the lth rectangle, and approximate the
double integral of / over -R by the resulting Riemann
sull'1.

(b) Compare the result in part (a) to thc exact vallLe of the
integral.

In Exercises 23 
^nd 

21, the iterated inteFal represents the
volume of a solitl. Make a sketch of the solid. lYou do nor

have to llnd the volume.)

Evaluate the integral by choosing a convenient order of
integration:

24.

E 3s.

// ' c".' r' 'eu.'r''.i 4:R-[0..] lu. 'l

26. (a) Sketch the solid in the 1lIst octant that is enclosed by
the planes x : 0.: : 0. r = 5,:--1':0.and
;--21 *6.

(b) Find the volume of the solid by breaking it into two
parts.

The average velue or ntean ralue of a continuous function

f(-t, y) over a rectangle R - fa. Dl x lc. dl is dellned as

I tt
/^": 

- 
ll f G.\')dAAIK) tt
,(

where A(R) : (b o)(d - c) is the area ol the rectangle R
(comparc to Delinition 7.7.5). Use this definition in Exercises

21-30.
Figure Ex-36
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16.2 DOUBLE IT.ITEGRALS OVER MNRECTAT'iGULAR REGIONS

In tlis section we will shot llorN to evdluate double i.ntegrals over regions otlter than
rcctongles.

Later in this section we will see that double integrals over nonrectangular regions can often
be evaluated as iterated integrals of the following types:ITERATED INTEGRALS WTH

NONCONSTANT LIMITS OF
INIEGRATION

(l)

Example 1

Evaluate

{ar ft [' tt, o, o,' la J,.' '

DOUBLE INTEGRALS OVER
NONRECTANGULAR REGIONS

f,t I r l- r: / -cos r':inr c/y = l-;co.')l -;Jo z L o lo J

Plane regions canbe extremely complex, and the theory ofdouble integrals over very general

regions is a topic for advanced courses in mathematics. We will limit our study of double

integrals to two basic types of regions, which we will call 4pe I andtvpe I l:lhey are defined

and is bounded below and above by continuous curyes I : gr (") and ) : g2(n),
where g1(:r) 

= 
g2G) fot o 5 r : r (Figure l6.2.la).

A tJpe II rcgian ist)ounded below and above by horizontal lines -r, 
: c and .t' : r/

and is bounded on the left and right by continuous curves x : ftr(-ri) and x :l?:(i ) I

I sadsfyingftl(.r)</r:(r)forc5r<d(Figurel6.2.lb). i
i ...,,-..--.- - ..

l,,o 1,"",' ,u,nord.: I" [/"''ru,r,r.,] *

L' L':i,',"u, i dx dv = l,' ll,'::,' 1rx, v> dxf av (2)

We begin with an example that illustrates how to evaluate such integrals.

(b) 
1," L*';rsinydrr/r,

l,' l.'. r',oro": l,'ll,',r'.*f* = l'[*].:., ^

Soluliln I l)'t.

= l'(+ - t) ^ = [; ,L]"
32 256 128

t5 )4 l5

;[" /"" ",in', a" o r' = l"' U,"""'"in.,, 
a'] ar : l" [u'," r.] _,,
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The following theorem will enable us to evaluate double integrals over type I and type
II regions using iterated integrals.

16.2.2 Tr-rFoR F.M.

(a) If R is a type I region on which f(.x, y) is continuous, then

L

A type I region

(.a) ..1 th)\\)ll fe,vtae: I I
J J J. Jr,,111

1

I (D)

l
l

1*_.-_

rr rb rA"r(rl

ll t,t.s,ae-| | lt^. ),tdyd),
JJ Jr Jr'trr

R

If R is a type II region on which f (x, l) is continuoLts, then

f(r, y) dx dy

il'f:'l "i:ii
(b)

Figure 16.2.1

We will not prove this theorem, but for the case where /(r, y) is nonnegative on the
region R, it can be made plausible by a geometic argument that is similar to that given

for Theorem 16.1.3. Since /(x, y) is nonnegative, the double integral can be interpreted as

the volume of the solid S that is bounded above by the surface z : /(x, y) and below by
the region R, so it suffices to show that the iterated integrals also represent this volume.
Consider the iterated integral in (3), for example. For a fixed value of r, the function /(jr, ))
is a function of y, and hence the integral

,'rr( r)

A(r): / l(r.r)dy
J* L.r

represents the area under the graph of this function of l, between the points y : 91 (r) and

]' : g2(r). This area, shown in yellow in Figure 16.2.2, is the crcss-sectional area at x of
the solid S, and hence by the method of slicing, the volume V of the solid S is

," l' r rr t.l
v=l I ftr,ttdtctx

Jo Je r,t

which shows that in (3) the iterated integml is equal to the double inregral. Similarly for (4).

Figure 16.2.2

To apply Theorem 16.2.2, it is helpful to start with a two-dimensional sketch of the region

R. [It is not necessary to graph /(:v,1,).] For a type I region, the limits of integmtion in
Formula (3) can be obtained as follows:

Step 1. Since ;r is held fixed for the first integration, we draw a veftical line
through the region R at an arbihary fixed point-r (Figure 16.2.3). This
line crosses the boundary of R twice. The lower point ofintersection is
on the curve ] : 91 (x) and the higher point is on the curve y : g2(x).
These two intersections determine the lower and upper yJimits of
integration in Formula (3).

SETTING UP LIMITS OF
INTEGRATION FOR EVALUATING
DOUBLE INTEGRALS
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Step 2. Imagine moving the line drawn in Step I flrst to the lelt and then
to the right (Figurc 16.2.3). The leftmost posirion where the liDe
intersects the region R is .r : a and the rightmost position where the
line intersects rhe region R is r : b. This yields the linirs for the
-r integration in Fornula (3).

Example 2

Evaluate

/ / rr,iA

ovel the region /i erclosed between ) : j-r, ) : vG, r : 2. and -r : zl.

Sulutiott, We view R as a type I region. The region R and a vertical line coresponding
to a fixed ,r are shown in Figurc 16.2..1. This line neets the legion R at the lorver boundary
1' = j-r and the upper boundary 1 : .rf. These are the ),-limits of integration. Moving
this line first left and then ght yields the.r-limits of integration, .r - 2 and;r :4. Thus,

If R is a type II region, then the linits of irtegration in Formula (4) car be obtained as

follows:

Step 1. Since,y is held fixed for the first integration, we draw a horizontal
line through the region R at a fixed point r'" (Figure 16.2.5). This line
crosses the boundary of R twice. The letimost pojnt of intersection
is on the curve r : ir(-r) and the rightmost point is on the curve

-r = h2 ()). These inte$ections determine the r-limits of integntion
in (,1).

Step 2. Inagine moying the line drawn in Step I first down and then up
(Figure 16.2.5). The lowest position where the line intersects the
region R is y : c, and the highest position where the line intersects
the region R is r. = d. This yields the 1, limits of integration in (4).

Example 3

Evaluate
ff
lltl^ \'- ) dA

overthetliangularregionRenclosedbetweenthelinesl--r*1,_r-r*1,andt'=3.

ll ,,,0 I'1.,,,,0^-lt+] .,,-1.'(, ,)*
n

[r' .r'l (b4 2so\ /8 t6\ |=_n ,,1,=(o ,=/-l; rir=h

Figure I6.2.5
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Solution. We view R as a type II region. The region R and a horizontal line conesponding
to a tixed _v are shown in Figure i6.2.6. This line neets the region R at its left-hand boundary
.r : 1 - ) and its right-hand boundary ;r : _i' L These are the rlimits of integration.
Moving this line first down and then up yields the )-limits. 1' : 1 and 1, : 3. Thus,

t+ +1,- 1,,

,1'
I

l

I
j

l

I

I

l

!.'

l2r
!----*---.:-/R

llrr, ,\ao: l,' l,'"'rz, !'),t,,t,:/'[",,r,.,,]]:l . r,'

: 1tt,t 2t + 21'2 -rt) - (1 - 2r + r')lri-u

(2-Ir - 2)r) .1r' -
68

3

Rl,\l \ltK. To intcgrate over a type II rcgion, thc lcft- and right-hand boundaries must be

expressed in the form x : ftr(l') aod r : l2(.'). This is why we rewrote the boundary
equalions l - -r * l and}:.r * I as-r - 1-l and-t:1 I in the last example.

In Example 3 we could have treated R as a type I region, but with an added complication:
Viewed as a type I region, the upper boundary of n is the line r' = 3 (Figure 16.2.7) and
the lower bounday consists of two parts, the line l, : -r * I to the left of the origin and
the line 1' : r + I to the right of the origin. To carry out thc integratjon it is necessarl ro
decompose the region R into two parts. Rr and R2. as shown in Figure 16.2.7, and write

tr tt f t
//12, - r' t,l,q - ll12r - r''t,/A - llr), -vttd,q

.t .t .t J .l .t
RRI RI

ro t' t2 t'
- l / r2.r - v:t'ltdx- | | rzr 1-rl;,i r

J tJ , t J' .1 ,,

This will yield the same result that was obtained in Example 3.

Figure 16.2.6 Figurc 16.2.7

Example 4

Use a double integral to find the volume of the tetrahedron bounded by the coordinate planes

and the plane r :1 4r - 2y.

Suhttion. The tetrahedron in question is bounded above by the plane

z:4 1x-2t' (5)

and below by the triangular region R shown in Figure 16.2.8. Thus, the volume is given by

v- llA 4r - 2r,).,/A

R

The region R is bounded by the i axis,the) axis, and the line l = 2 2-r lset;:0in
(5)1, so that treating R as a type t legion yields

FiEurc I6.2.7

Figure 16.2.8
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, - ll,^-4t -2r.t,tA - I^' fr' 
",0 4t -2r)r/r.r/r

rl , /l
= J" lo, - +.r.' - r':]"i ,tx. I 14 - 8 r - 4 r': r d.r = 

a

Example 5
Find the volume ofthe solid bounded by the cylinder.rl + -r2 = 4 ancl the planes r,t: = 4and:=0.

Solulion, The solid shown in Figure I 6.2.9 is bounded abovc b1 rhe plme : : 4 r, and
bclow by the region R within rhe circle rr + r.r - 4. The volurne is given by

v - [[,q-,,aa
JJ

R

Treating R ar I rypc I region wc obt:iin

r: r.tii r:- , a.l (iv-l I e-''r,r'',r, = /-l+r l''=l' rt,J-:J "/i- J _L r .1 , J;=
rl 

-
- I gJl -.rr,/.t = 8(2r) = l6r spr rd,r,ur rrr.,rseJrn,n,,.l

J-t

Sometimes the e'aluation of an itemted integral can be simplified by reversing the order or'
integration. The next example illustrates how this is done.

Example 6
Since rhcre ir no elcmenlcry anrrderivrrive of e,'. rhe inregral

]1 . LI I 
",' 

,1,,t,
Ju l, t

cannot be evaluated by perfbr.ming the f-integration fi$t. Evaluate this integral by express_
ing it as an equivalent iterated integral with the order of integration reversed.

Solution, For thc inside intcgration. r, is fixcd and .r varies f'xtm the line r = r./2 to the
line ,r = | (Figurc 16.2. l0). For the outside integration, r. varies fr.om 0 b 2, so the given
iterated integral is equal to a doublc inrcgr.al over the triangular region R in Figure 162. 10.

To reverse the order of integration. we treat R as a type I rcgion. which enables us to
write the given integral as

f f) tt tt t: r)

J^ J,,."' ,tt,t\- JJc,dA= Jo J,, " ,t,,r, _f, l. ''l;:,,r.
R

: 
l,,t 

z.rn" a.r: r"],, = , - ,

Although double integrals arose in the context ofcaiculating volumes, they can also be used
to calculate areas. To see why this is so. recall that a'r.gll cr.lirrrler is a solicl that is generated
when a plane region is tnnslated along a line that is perpendicular to the region, In Formula
(2) of Section 8.2 we stated that the volume V 01,a right cylinder with cr.oss-sectional area

,a'.) ,

I

\\..\!

),, _

-z!

Figure 16.2.9

REVERSING THE ORDER OF
INTEGRATION

AREA CALCULATED AS A DOUBLE
INTEGRAL

14 and height ll is

(6)

Now suppose that we are interested in finding the arca A of a rcgion R in thc ,n-planc. .

we translatc the rcgion R upward l unit, then the resulting solid will be a lishr cvlinder thrt

,'=fi-
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Cylinder with base -R and height I

Figurc 16.2.11

has cross-sectional area A, base R, and the plane z : 1 as its top (Figure 16.2.11). Thus, it
follows from (6) that

[ [ too: (area of R) I
JJ
R

which we can rewrite as

areaorR: ll tdA: ll ,A (i)

REMARK. Fomula (7) is sometimes confusing because it equates an area and a volume;
the fomula is intended to equate only the numerical yalues of the area and volume and not
the units, which must, of course, be different.

Example 7

UseadoubleintegraltofindtheareaoftheregionRenclosedbetweentheparabolay:|x2
and the line ) : 2x.

Solution, The region R may be heated equally well as type I (Figure I6.2.12a) or trye II
(Figure 16.2.120). Treating R as type I yields

area or R : ll ,^ : 
I,^ I,',,,r, 

o, = 
loo lrl':=.,,, o*

R

far l \ T. t]1a lt)
= Jo \rr ,x')dx = l'- 

"1.: 
-

Trcating R as type II yields

areaorR: ll ^: I,' l,li," 
o,*: l,'Vl{?,,,a,

R

- l,' (rr, - !,) o,:l+,'' {],: T

Figure 16.2.12
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ExERctsE SET 15.2 E Graphine Catcutator E CAS

In Exercises I 10, evaluate the iterated integml. S. [ [ *tl + yzt | ) dA: R i\ rhe regron in rhe firsr quadrant
JJ

enclosed b) y-x2.y -4.andx -0.

| | x co< y dA: fi is rhe triangular region bounded b) rie
R

lines y : x, y : 0, and r =2.

| | r3r - 2ytdA: R is the region enclosed by rhe circle

x2+!2:1.

| | v dA: R is lhe region in the nrst quadrant enclo:ed be-

R

tween the circle -r2 + y2 : 25 and the line r + y = 5.

[ [ *rOO,Ristheregionenclosedbyy: uzr.y -6,r.
.t.t

and)-0.

I I x dA; R is Lhe re8ion enctosed by y : 5;n I 
'x.

x: ll A,afiy =0.

lltx-llal: R i. rJle region in rhe first quadranl enclosed

R

betweeny:.:rand),,:x3.

[ [ *' a o, n ;" rr,r r"gion in rhe fi rst quadant enclosed b)
.t.t

R

ry=1,y:x,a\d],:2r.
Use aCAS to check the answers to the problems you solved
in Exercises 1-22.

(a) By hand or with the help of a graphing utility, make
a sketch of the region R enclosed between the curves

) = 4x3 x4 andy :3 - 4t *4x2.
(b) Find the intersections of the curves in paft (a).

tct Find ll x dA.

lo' l,', 
*r' o, o,

lo' loF ,a,at

| | si"Laya,
J "E JO

1.",1,"' l*"1o'o'
t1 ?x

l, J" rJ* v2 dr dx

,. J, l,' ,0,0,

+ 
l,',,l,', '[!, 

at a'

u. 
J_, J_,.,* rt tty ttx

t. 
lo' fo' "" 

at a,

n. 
Ir2 l0' "'t" 

d, dv

16.

17.

18.7-

I l. In each pun. nna [ [ ,y alorer rhe shaded region R. 
l9'

'.t.t'
R

tl
12. In each part. find | | {x I y\ dA over the shaded region R.

JJ
R

I I I a* a is the repion bounded bv y : 16/\. y: x.
JJ
and*:8.

ll tv'de: R is the resion enclosed by J : l. y : 2.
JJ

.r=0,andy:r.

22.

E 23.

a 24.

In Exercises 13-22, evaluate the double integral.

In Exercises 25 28, use double integration to fitrd the area of
the plane region enclosed by the given curves.

25. y - si11, un6, = cosx, for0 : x < 1t/4.

26. y2 : -x atd3y - x :4.
27. fz -9 xandy2:9-9a.
28. y : ees[1, y : sinhr,r : 0,and"r : 1.

In Exercises 29 a$d 30, use double integmtion to find the
volurne of the solid.

14.
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29. .

In Excrcjscs 3l 38, use double inlegratjon to find the volume
of eech solid.

31. The solid bounde.l by the cylinder -rr + -r'r : 9 and thc
planesa:0andi:3 ,r.

32. The soljd in the lir.st octant bouDded above by the paraboloid

: : r2 + 3-r,1. below by thc planc: : 0. and latelaily by

J : ,rl itnd -r' 
: -t

33. The solid bounded above by the palaboloid. : 9..2 + -r:.
below by the plene : : 0. and laterally by the planes r - 0.

r':0.r:3.andt -2.
34. The solicl enclosed by r'r : .r. . : 0. and .r + . : l.

35. Thewedgecutfrolnthecylinder4.tr+l: : 9 bytheplanes
::0and.:-r'*3.

36, The solicl in the first octanl bourlded above by : : 9 rr,
bclow by r - 0, and laterally by -r'2 

: 3-r.

37. The solid that is cormon to the cylillders -rl + r,l : 25 and

'l r -l - )5

38. The solid bounded above by the paraboloid i : -r2 + lr,
bounded laterally by the circularcylinclerxr 11y llr:1,
and bounded belorv by the rtplane.

In Excrciscs 39 and,10. use a double intesral and a CAS to
lind thc volume of the solid.

39, The soli.i boundecl above by the paraboloid.- : I -rr - ):
rlld below by the.\_r'-planc.

40. Thc solicl in the lirst octant that is bounded by the paraboloid

: : -rl + -\2. the cylincler -rl + -r'2 - .1 and the coordinate
plr rr(s.

ln Exerciscs,ll 46. expless ihe lntegrrl as rn equiviilent in-
tegral with the order ol intcgration reversed.

I I I t"
4t. I I /{ \. r,,i,./., a2. | | .t' \. ' ,./, ,/'J. J. J, J

t t t i'$. IIl,'.',,/\,/r 14. II trt.,tdtd,
I, J J J,

,l t I t

1s. ll i ('.'),i \,/r 46. ll /r\ rr./r'/
Ja J l, I

ln Exercises r[7 50, eva]uate the integral by first reversing

the order of intcgration.

tt
Ftl ulre / I .in{\'r,/A. \\ne.e /? .,.lre re"rl-n b,'ur.1..., o,

] : J{. l : 2, and.t : D. lHht: Choose the order of
integration carelirlly.l

tt:'.u:'rc // r a,t. ulrerc R '. th< re!r.rn buurr.lc.l o1

r : lnl. -r : 0. ancl -r : e. [Hiitt: Choose thc order of
integration carefully.l

Try to evaluatethe integrl] $ilh aCAS using the stated order
of integration, and then by lever-sir'lg the older ol integt atjon.

"1 "1
rrt / / sin.r i' J r ,/ r

r'l ,rl
\b) I I .ecrieor r1./r ,-/r

Ja J ,

Use the appropriale Wallis firrmula (see Exercise Set 9.3)
to find the volume of the solid enclosed betwcen the circu-
lar paraboloid : : -r: + -r:. the Iight cilcular cylinder
-tl+ -i 

2 : :1, ancl the rl'plane (see the accompanying figure
for cut view).

EralL.ate / / rr-.1,4,,re|thcrc i,,n R\n(^\ irrrhelc.om
.t.t

panying figure.

50.

I"' l',

I,'ln

47.

49.

30.

c'' tlx dy

48.
./ /.corir'r,ir.i,,

I Lr,?r,/i

l.l s3.

tr

E

Fisurc Ex 5:1 Figure Ex-55

56. Give a geometric argument to show that

" "-/ iI I .'l-, r '1.rJ' -J J, 6

The average yalue or tnean ydhre ol a contjnuous tilnction

/ (-r. _!) over a region n in tl, e -!'plane is defined as

r ff
t,.:_ It t.t\dA

A\ R) ,J ,I
R

where A (R) is the area olthe regioD R (compare lo the defi
nition preceding Excr cise 27 of Section I 6. I ). Use this dell -

nition in Exercises 57 and 5R.



Find the average value of l/(1 +.rr) over the fian-qular
region with vertices (0,0), (1, l), and (0. l).

Find the avetage value ol I (:r, r) : -r2 rr over the region
encloscd by r) = -r and l = 3-t -r1.

16.3 Double lntegrals in Polar Coordinates 993

p 59. Use a CAS to approximate the intersections of the curves

.1, = sinr and 1 : 1/2, and then approximate the vol
ume of the solid in the first octant that is below the surface

1 = ,/i 1r + 1, and above the r.egion in the _rt.plane that
is enclosed by the curves.

SIMPLE POLAR REGIONS

16.3 DOUBLE INTEGRALS IN PCII-AR EOORDINATES

Itt this sectiotr +re :".ill stutll'tlouble integrals itl tthicll tlrc integnud turtl tlrc region of
integretion arc esltressed itt ltolur coordirutes. Sllcl1 inte.gtals arc itttlto cutt lor tu'o
rcasons. first. tltey arise nuturally irt ntetq applications, and secotttl, mant double
integrals itt reclangular coorditrtes um be evahnted morc easill if thet ure cotterletl
to poldr @rditletes.

Some double integrals are easiel to evaluate ifthe region ofintegration is exprcssed in polar
coordinates. This is usuaily truc if the region is bounded by a cardioid, a rose curve, a spiral,
or, more generally, by any curve whose equation is sinpler in polar coo|dinates than in
rectangular coordinates. Moreover, donble integrals whose integrands involve r-2 + r,? also

tend to be easier to cvaluate in polar coordinates because this sum simplifies to r'l when the
conversion formulas r = rcosI and l : rsinp are applied.

Figure 16.3.1n shows a rcgion R in a polar coordinate system that is enclosed between
two rays,0 : a and 0 : B. and two polarcun;es,,-- r1(0) and r : r':(9).If, as shown in
that figure, the functions rt(0) and /'l(6) are continuous and their graphs do not cross, then
the region R is called a sirr2lc polar rcgiou.If r'1(d) is identically zero, then thc boundary
r : rt(o) reduces to a point (thc origin), and the region has the gencral shape shown in
Figure 16.3. I b. If, in addition, B : q + 27. then the rays coincidc, and the region has the
general shape shown in Figule 16.3. lc. The following definition expresses these geometdc
ideas algebraically.

16.-3.1 DfFtNtiloN . A simple polar region in a polar coordinate systern is a legion
that is enclosed between two rays, A : d and 0 - p, and two continuolls polar curves,
r : rt(0) and r : r:(e). where the equations ol'thc rirys and the polar curves satisfy
the following conditions:

u=B

(l)a<fl

(,1)

(ii\ F-a <2n (iii) 0: rr(d) 5 r?(0)

B=d+1i

S mple po ar reg ons l

(b) (c)

ItF\r\RK. Conditions (i) and (ii) together imply that the ray g = fl cN be obtained by
rotating the ray A = a counterclockwise through an angle that is at most 2r radians. This

Figure 16.3.1
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DOUBLE INTEGRALS IN POLAR
COORDINATES

r = rt(0)

1

Figurc 16.3.2

is consistent with Figure 16.3.1. Condition (iii) implies that the boundary curyes r : rr (0)
and r - rz (6 ) can touch but cannot actually cross over one another (why?). Thus, in keeping
with Figure 16.3.1, it is appropdate to descdbe r - rt(0) as the inner houndnry of the
region and r : rz(0) as the outer boundary.

Next, we will consider the polar version of Problem 16.1.1.

To motivate a formula for the volume y of the solid in Figure 16.3.2, we will use a lirnit
process similar to that used to obtain Formula (3) of Section 16.1, excapt that here we will
use circular arcs and rays to subdivide the region R into blocks, calledpobr rectangles. As
shown in Figure 16.3,3, we will exclude from consideration all polar rectangles that contain
any points outside of R, leaving only polar rectalgles that are subsets of R. Assume that
there are rx such polar rectalgles, and denote the area of the tth polar rectangle by AAr.
Let (r[,0i) be any point in this polar rectangle. As shown in Figure 16.3.4, the product

fQi, ei) LAp is the volume of a solid with base area AAp and height /(rl, df), so the sum

LfG'ebner
can be viewed as an approximation to the volume V of the entire solid.

'.0 = a

If we now increase the number of subdivisions in such a way that the dimensions ofthe
polar rectangles approach zerc, then it seems plausible that the erors in the approximations
approach zero, and the exact volume of the solid is

-LV lim ) Iv;.e; tLAk rlr
n _ +@ ;__1

If /(r, 9) is continuous on R and has both positive and negative values, then the limit

.]-lim ) f(ri.9i)LAt (2\
t''u-t

represents the net signed volume between the region R and the sudace z : /(r, 6) (as with
double integrals in rectangular coordinates). The sums in (2) are called polar Riemann
surzs, and the limit of the polar Riemann sums is denoted by

16.3.2 THE voLUME PROBLEM IN poLAR cooRDrNATES. Given a function /(r", 6)
that is continuous and nonnegative on a simple polar region R, find the volume of the
solid that is enclosed between the region R and the surface whose equation in cylindrical
coordinates is z : /(r, d) (Figure 16.3.2).
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EVALUATING POLAR DOUBLE
INTEGRALS

'i

I,,
..-l----......-l/ \aa,

Figure 16.3.5

lim t i (r,1. o,l )4A,.n-+'=

which is callcd thc polar double integral ol l(r,r) over R.lf .f(r,0) is continLrous and
nonnegative on R. then the volulne fonnula (1) can bc expressed as

ItINi,\ltK. Polar double integrals are also caLled double integrals in pokr coordinates
to clistinguish them trom double integlals over regions in the r_r,-piane, which are called
double integrals in rectangular coordinales. Because doublc integlals in polar coordinates
are clefinecl as limits. they have the usuai integral propeflies, such as those stated in FornLrlas
(7), (8), and (9) of Section 16. I .

In Scctions 16.1 and 16.2 we evaluated double irrtegrals in rectangular coordinates lry
expressing them as iterrted integr-als. Polal double intcgrals are evaluated the same way. To
motivate the fbrmula that expr-esses a double polar integral as an iterated integral. we will
assume thlt /(r, e) is nonnegative so that we can inierpret (3) as a volume. However, the
results that we will obtain will also be applicable il'/ has negative values. To begin, let us

choose the arbitrary point (rf. 0^" ) in (3) to be at the "center" of the t1h polar rectangle as

shown in Figure 16.3.5. Suppose rlso that this polar rectangle has ll central ugle Ag1 and
a "radial thickless" Ari . Thus, the inner ladius of this polar rectangle is rf - j Ar1 and the

outer radius is ,-i + + Ari. Treating the arca A,47, of this polar rectangle as the dillclcnce in
arca of two scctors. wc obtailr

a4 (,- .A,.) An . (r"- ia,.) a4

which simplifies to

AA1 - rl at, a6^

Thus, fiom (3) and ('1)

v I I ;', ,r,J r - tim T .", ;.. o1r,- a/ ad
tt I t_a
R ^'

lf *,'too=
,R

v: ll ro, et ae (4)

(3)

(s)

0

Fisurc 16.3.6

which suggests that the volume V can be expressed as the ilerated integral

rf
v - ll Lt, ,p)JA: l Ll1.e),d,ae (6)

.l .l .l . .1, a'
/t

in which the limits of intcgratiqr are choseu to cover the rcgion R: that is, with tl lixecl

between q and B, the value of r varies fiom 11(0) to rr(d) (Figure 16.3.6).

Although rve assumed f(r. d) to be Donnegative in deriving Formula (6), it can be proved
that the relatioDship between the polal double integlal and the iterated integral in this fornula
also holds i[ / has negative values. Accepting this to bc so, we obtain the tbllowing theorem,
u hich rve strte u ith, 'ut l'r'rmrrl ln,ni.

16.-1.-l IlltOlttr\1. IJ R is Lt sit11p[e polatr rcgionwhose L)olltttltuies ure rh, /i/r,.\ d - {-r

ontl 0: f uttl the turt,es r : rt(0) untl r : r:(0)s/,y., in Figtue 16.3.6. und if
f(.r.0) is cotttittuous ott R. then

aB .) t4\

ll ttr.r,t,ts - I I
J | .t,, t, ,,

j o,;

| = t\(0)

.f (r.0)r tlr d0 (1)
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To apply this theorem, you will need to be able to find the rays and the curves that form
the boundary of the region R, since these detemine the limits of infegration in the iterated
integral. This can be done as lollows:

Step 1. Since 0 is held fixed for the first integmtion, draw a radial line from
the origin though the region -R at a fixed angle I (Figure 16.3.7a).
This line crosses the boundary of R at most twice. The innemost
point of intersection is on the inner boundary curye r : rr (0) and
the outermost point is on the outer boundary curve r : rz(d). These
intersections determine the rlimits of integration in (7).

Step 2. Imagine rotating a ray along the polar;r-axis one revolution counter-
clockwise about the origin. The smallest angle at which this ray
intersects the region R is e : a arLd the largest arlgle is e = P
(Figure 16.3.7b). This determines the 0limits of integration.

e=F 0=B

Figure 16.3.7

Example I
Evaluate

[[ sine a,q
.t.t

where R is the region in the first quadrant that is outside the circle / : 2 and inside the
cardioidr:2(1 * cos 9).

Soltttiott, The region R is sketched in Figure 16.3.8. Following the two steps outlined
above we obtain

tn/2 .2\I+co\d )

ll r eda - l^ .1, rsinTtrctrtta
R

/" r 2(l +cos A)

= [''' !,r"tntl ot
JN L IJt=)

fn12
:2I 11l-cosdl2sind sin 0l d0

Jo

fl^T/2
=21 l'1+cosd)'+cosdlo

_,I I / l\l_q-'L: \:/l-:

r. = 2(1 + cos 0)

Fieure 16.3.8
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Example 2

The sphere of radius a ccntcrcd at the origin is expressed in rectangular coordinates as

r: + r,2 + -2 = ril. and hence its equation in cylindrical coordinates is 12 +.-l = o2. Use

this equation and a polsr double integral to find thc volume of the sphcrc.

Solrrtion. In cylindrical coordinates the upper hemisphere is givcn by the equation

t-:=la- r-

so the volume enclosed by the entire sphere is

tt 

-

V =21//,,/a:-r:tlA
R

where R js the circular region shown in Figure 16.3,9. Thus,

r) r, 

-
, - . JJ Ja' - ,:ra : J" J, J,,, r:i,t,tr da

R

tt lr' 4 ,

L 3 .1,, .l

: 
I,'- I 

t 
u'' - 

"t'/'l" ,,ae 
- L='i'"0

FINDING AREAS USING POLAR
DOUBLE INTEGRALS

CONVERTING DOUBLE INTEGRALS
FROI\4 RECTANGULAR TO POLAR
COORDINATES

Recall from Formula (7) of Section 16.2 that the area ol a rcgion R in the -o'plxne can be

expressed as

area or R : [[roo: [[oo (8)
.t .t .t J

I .r1 r ,.t l

-"/ 'in .ra,/.,:; / {I-cosoP){/t,
L J\J 1 JI)

ll .,in69 l" I

= le _l =_n+l 6 1,, 1

The argunent used to derive this resuit can also be used to show that the fonnula applies 1()

polal doublc integrals over rcgions in polar coordinates,

Example 3

Use a polar double integral to find the area enclosed by the three-petaled rosc r = sin 3d.

Solution. The rose is sketched in Figure I6.3.10. We will use Formula (tl) to calculate

the area of the petal R in the tirst quadrant and multiply by three.

ff ff,I f$ lr

A-]llrA=r/ I tdt Lra
,i .J Jr Jr

Sometimes a double integral that is difficult to evaluate in rectangular cooldinates can

b9 evaluated morc easily in polar coordinates by making the substitution -rt = rcosB.
1, = r sind and expressing the region of integration in polar fom; that is, wc lcwrite the

double integral in rcctangular coordinates as

ll fu.troo: ll ft,ro,o.,,inltttA = ll tr,,n c.,,ing)rttrttg (e)

R R rpF)I'nrrc

Figurc 16.3.9

Figure 16.3.10
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ExERcrsE SEr 16.3 E cas

Example 4

! tl
[.epo.irrcoorJinrre.toe\aluate / / t\ ''.1 ,/r'dr'.

JJ
Soltttion. In this problen we are starting with an iterated integral in rectangular coorl:li-
oates ratherthan a double integral. so betbre u'e can make the conversion to polar coordinates
we will have to idcntily the rcgion ofintegration. To do this. we observe that for lixed -r the

l -integralion runs from ,i = 0 to ,r' - /1 - -r2. which tetls us that the lower boundary of
the region is the -{-axis and the upper boundary is a semicircle ol'radius I centered at the
origin. From the,r-integration we see that r varies from I to l. so we conclude that the
region of integration is as shorvn in Figure I 6.3. I I . In polar coordinates, this is thc region
swept out as r valies between 0 and I and d varjes betweet 0 and z. Thus,

f t.
I I ri r'r ',/rJ.r llrt t-, -,ta
J J, JJ

ItliNl \ItK. The conversion te polar coordinates workcd so nicely in tbis example bccause
thc substitution r : r cos O. -\' : r" sin fl collapsed the sum r? + tl into the single lcrm i.2.

thereby simplifying the integrand. Whenever you see an expression involving ,r2 + l r in
the ioteglard, you should consider the possibility of converting to polar coordinates.

f - f I

-l lqrlr,tr,ta-l'n-!
J' J,, ./o 5 t

Fieu€ l6.l l1

ln -Exercises l-6. evaluate the iterated inteeral.

t tr I tl .a

t. I | , t,t'o,tr,t,, 2. I I ',1,a'Jo Jn Jr J,

s. 
1,," 1,,t"""' 

,t 
"ora,t, 

ae e. 
1,,"'' 10""" 

,t a,-d,.

InExcrcises7 1 2. use a double integlal in polar cooldinates

In Exercises l3 18, use a double integral in polar coordinates
to filrd the volune of the solid that is desc bed.

14.13.

* l" 
" 

/,'""',/ |

to find the area of tbe regiorl described-

7. The region enclosed by the cardioid r : I cosd.

8. The region enclosed by the rose r - sin 29.

9. The region in the first quadlant bounded by r - I and

r : sin 2d. with n/4 < A 
= 

ft12.

10, The region inside the circle x2 + l l : 4 aud to the right of
the line -r : L

11. The region inside the circle r : 4 sin 0 lnd orLtside the circle

12, The region inside the circle / - I and outside the cardioid
r": I +cosFl.

16.15.

ns de ofrl +r'l +:l = 9

Outs de of rl + r'l = I

a"to*.=.,it*t'
lns de of rr + _\r = 2r'

g" o* .- = 1rl + r.t) l/l

OLrts de oi r2 + rl = l
nsdeof-rl+r'l=9

Above . = 0

Beowa=1 .rl 1l
lnside of rr + rr -r = 0
Above . = 0



17. The solid in the first oclant bounded above by the surface

r : ," sin P, below by the ir)-plane, and laterally by the plane

t : 0 and the surtace r = 3sin6.

18, The solid inside of tlre surface r"2 i :2 : 4 and outsicle ol
thesurfacer:2cosr.

In Exercises l9 22. use polar coordinates to evaluate the dou

ble integral.
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32, (a) Use a double integral in pollir coordinirtes to find lhe
volunre of the oblate spheroid

l- \_ -

---+,-l 
(0 , ,,1

(b) Use the result in part (a) and the World Geodetic System
ol 1984 (WGS-84) discussed in Excrcisc 50 ofSection
13.7 to find the volurne 01 the Earlh in clrbic meter-s.

Use polar coordinates to lind the volume of thc sdid that is

inside 01' the ellipsoid

.l ,t l
r rl l

a

above the -rl piane, ard inside of the cylinder
rl + t? ar, :0.
Find the area of the legion enclosed by the lemniscate

r1 : 2a2 cos 20.

Find the area in the first quadrant that is inside 01 tl'ie circle
r :4 sin d ancl outside ofthe lcmniscate r2 : 8 cos 2d.

Sho\\ ll' lhe \hrJed arec rn tre rccomp.rnlrng hgrrre i'
a2Q - \a2 s|,n 26.

tt
19. I L ' ,1A. u here R i\ rhc rcriun enclo'ed b\ lhe \ i-"t.t-

cle x2 + -v2 : 1.

ZO. ll Jo - \: l d4. where R is rhe reg:or 'n .he fir.l

quaclrant wiihin the circle,r2 + 12 : 9.

21. I I i . /A, *h"t" R r. the.e, lor rn lhe fir.l qtrall
JJ 1+^!+)'t
rant bounded by -i1 

: 0, )' : r. and J: + -r2 : 4.

22. ll 2tJA, where R i. lhe relion in lhe hr.r q. rJrarrr
.t.t

bounded above by the circle (t l)'z + y2 : I and be-

Iow br the line r - x

ln Exercises 23-30, evaluate tlle iterated integral by convert-

ing to polal coodinates.

l" J" (r2+r2rd)r1.r

7: ,' J+-"
I I c r' +' )./,\./1
J :J 1\-

"l ..1--

l" l, .,/L + ia; a'

l,' I"'' "

I"' l ,'" " (or0)

t tJi 

-

,, l" J, r/1u 1 r'd,r dl'

..i .-fr-
'n'l J" v'l - ''' ' 

d"i'

I I rlr rlt

Use adouble integral in polar coordinates to llnd the !olume
of a cyiinder ol radius rr and height ft.

Figure Ex 36

Thc int<1ral | , ' ,lr. qhteh i.rises in pr.,blbilirl rlre

ory. can be evaluated using the fbllowing rnethod. Let the

value ol the integral be /. Thus,

f+' . l+'
l:l e'dt:l "'Jt.ln .lr

since the lelter used for the variable of integration in a def-
inite integral does not matter.
(a) Give a reasonable argunent to show thal

34.

37.

23.

24.

26.

27.

30.

cos1,t2 + ,"-r1r1.t d-r

dy tlx

a + r'?l )TD
(b)

(c)

F -18. (rr

t+ t+t.:l I c"+,rJrJr
.lr .lt

Evaluate the iterated integral in part (a) by convcfiing
to polar coordinates.

Use the result in part (b) to show that I : 
"d/2.

Use the nunerical integlation capability of a CAS to
approximate the vallre 01'the double integral

I I e -' rl dr

Compare the approximation obtained in parl (a) to the

approximatior'l that results if the irltegral is first con

verted to polar coordinatcs.

\ f r=2asin9

31.

(b)
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Suppose that a geyser. centered a1 the origin ol a polar co-
orclinate system, spnys woter in a circular pattern jn such

a way that the depth D of waler that reaches a point at a

distance of r feet from lhe origin in I hour is D : ie '.
Find the total volume of water that the geyser sprays inside
r circle ol radius R cenrered tt the oriein.

Eluluate I / .rr./A orerthe rcsion R \hu\n in theaceoln-
.t.l

panying figure.

39.

40.

PARAMETRIC REPRESENTATION OF
SURFACES

16.4 PARAMETRIC SURFACES; SURFACE AREA

Irt pretiotts sectiotl.\ $e urtsitlered parantetfic cu^'es in 2-space uvl 3-space. In this
sectiorr \:e till disLttss partuttetric'su4fttt'es in 3-space. As ue v,ill see. paranttrit
rcpresetrtotions of surfAces urc tvl ortll intpotldrlt itt cotttltuter gntpltit:s but also allo',t
tts to stud\ ntore generul kinds ol sutfaces tlnn lhose encottnterccl so.far. In Sectiott
8,5 v'e showed llor: to.find tlrc surrtlce (rea of a sut'ftt<e ol revolution. Our work on
pttrcutrctric sLu'fir:es will etruhle tLs to darive arecL.formulas .fLtr more general kinds ol
sttrfaces.

Wc have seen that curvcs in 3-space can be represented by three equations involving one
parameter, say

.r :,r(t). r' : -r(r). : ::(1)
Surfaces in 3 space can bc represented parametrically by three equ:rtions involving two
prfameters, say

.r _- .rar,. ' 1. ' =I{it.Lri. :=.{/r.UI (l)
To visualize why sucir cquations represent a surface, think of (a, u) as a point that varics

over some region in a u u-plane. lf a is held constant, then u is the only varying parlmL\er in
(l), and hence these equations rcpresent a curve in 3-space. Wc call this aconstant u-curye
(Figulc 16.4.1). Similarly. if u is held constant, then 11 is the only varying parametel in
( I ), so again these equations represent a curve in 3-space. We call this a conslant bcurye,
By varying the constants wc generate a family of r-curves and a tamily of u-curves that
together form a sudace.

Constant r curve

Figure 16..1.1

Example I
Consider the paraboloid : = 4 -.r: - ):. One wav to parrmetrize tltis surtace is to take r = l
and r, : l as the parameters. in which case the surface is represented by the parametric

Figure Ex .10
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equations

-r:r/. .1 = r,, a=4-u2-t7 (2)

Figure 16.4.2a shows a computer-gererated graph of this sufacc. Thc constant rr-curves
correspond to constant r-values and hence appear on the sufitce as ttaces parallel to the

1r-plane. Similar'ly, the constrnt l-curves conespond to constant r'-vlrlucs and hence appeal'

ontheSuffaceastracesparalleltothe.f;-plane.<

Example 2

The paraboloid : : 4 -,r: - r'2 that was considered in Example I can also be parametrizecl

by tirst expressing the cquation in cylindrical coordinates. For this purpose. we make thl:
substitution -r : , cosd. .l' : r sin A. which yields: -.l - r'1. Thus. the paraboloid can be

represented paranetdcally in tcnns ol'r and tJ as

r =rcosd. r':rsinp. ::.1 -rl (-3)

Figwe 16.4.2b shows a conrputcr-gcncrated graph of this surlace fbr 0 : r : 2 and

0 S e 
= 

2n. The constart r-curves correspond to corstant ;-valucs and hence appear on
the surface as traces parallcl to the.\'\'-plane. The constant e-curves appear on the sudace
as traces fiom vertical planes through the origin at varying anglcs with the -r-axis. Parts (c)

and(d)ofFigure16'4'2showtheeffectofreStrictionsonthepaI[lnctcIsrand.,'<

,1+r2s4

kt)

Fisurc 16.,1.2

0<r'!2
,0<0<l7l

(b)

'0<t<2
:.!<a<2."

(.J

1 < t <2
0<0<2n

trl)

lolt Tlll: lil: \1)l:lt. If you have a graphing utility that can gcncrate parametric surfaces.

read the relevant documentation and then try to make rcasonable duplicates olthe surfaces

in Figure 16.4,2.

Example 3

One way to geDeratc the sphere.r: +.r'r +.r = I with a graphing utility is k) graph the

upper and lower hemisphercs

.-ylr ,:-; rurd .-: -vl- i-i
on the same screen. However. this usually produces a ilagrncntcd sphere (Figure 16.,+.3a)

because roundoff efior sporadica]ly produces negative values inside the radical when

I -tt - )t is near zero. A better graph can be genelated by lirst exprcssing the sphele

in spherical coordinates as p : I and then using the sphericrl-b-rccta gular conversion
formulas in Tlble 13.8. I to obtuin rhc parametric equations

,r=sindcosU, .\'=sindsin0. ::cosd
with parameters A and d. Figure 16.4-3b shows the graph of this parametric surface for
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REPRESENTING SURFACES OF
REVOLUTION PARAMETRICALLY

0 aA -2v and0: d: rr. ln the language ol cartographers. the constant d-curves are
lhelineSoJ.latiludeandtheconstant0-curvesarethe/ineso/Iongitude.<

FiSUrc 16.1.3

Example 4

Find parametric equations lbr the portiol] o1'thc right cilcular cylinder ,r? + il = 9 lor
which 0 5 r' 5 5 iD terms of the parameters l and u shown in Figulc 16.4.4rr. Thc para

neter ii is the I coordinate of a point P(-r. r'. :) on thc surface. and u is the anglc shown
in the figure.

Solution. The ladius of the cylinder is 3. so it is evider]l Ijonr the ligurc that r, = ,/.
,i: - 3 cos u. and. : 3 sin u. Thus, the surface can be represented parametrically as

r:3cosr'. .],: rr. .::3sinu
To obtain the portion of the surt'acc flom -r : 0 lo r' - 5. we lct the paralneter r/ vnry over
the interval 0 : r/ : 5. and to cnsurc that thc cntire latenl surt'ace is covercd. we let thc
palameter 1, vary over the iDter\ral 0 

=u a 2v. Figule I 6.4.4b shows a computer -gencrated
graph of thc sulf;rce in which rr iurd u vary over these intervals. Conslant ,-curves appear
as circLllitl tr'aces parallel til the.r-:-plane, ancl constant u-curves appcilr as lines palallel to
the 1 axis.

lu) lb)

Figurc 16.+..1

The basic idca of Example 4 can bc rdapted to obtai! pamnetlic cquations for surl'lces of
revolution. For example. suppose that wc want to tind parametl ic equ.ltions for the sLrrliice

generated by revolving the planc cLrrve l' : .l(.r) about the r-axis. Figure l6.:1.5 suggests

that the surlhce can be repl€scnted parametrically as

,r : rr. r' : .f(rr)cos r,. : : l(r) sin r, (4)

where u is the angle shown. In the cxcrcises we will discuss analogous lbrmulas for surlitces
ol'revolution about other axcs.

,:l

1

I

,:.-
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Example 5

Find parametric equations for the surface generated by Ievolving the currc r : l/r rh0ut
the -r-axis.

Solutitttt. Florn (.1) this surface can be represented parametricltlly rs

ll
.l = i.l. cos Lr, i: : - sln u

LI LI

Figure 16.4.6 shows a computer generated graph of the suface t-or 0.7 : , : 5 and

0 
= 

N a2it. This sur'1irce is a portion o1'Gabliel's horn. which was discussed in Exercise
:19 of Ser:tion 9 8

/(,,) si', u

.l\u1

VECTOR"VALUED FUNCTIONS OF
TWO VARIABLES

/, , :\

PARTIAL DERIVATIVES OF

VECTOR.VALUED FUNCTIONS

Recall that the parametric equations

.r - r(r). t,- l.(1). :::(t)
can be cxpressed in vector form as

r - r(r)i + r,(r)i * :(t)k
where r:,ri * r'j *:k is the radius vector and r(I) : r(I)i +.\'(I)j +:(t)k is a vector-

valued Jtnction of one variable. Similarly. the parametric equations

r - -t(a. u), r' : r'(ir. u). 7.: ..ftr. x)

can bc expressed in vector form as

r -,r(r.r. i,)i * r (]/. r')j + i(r. r)k
whcre the vector r - -ri * ri * :k is called tlle radius vector 

^nd 
whcre dte function

r(rr. r') - .r(//, u.)i + r'(a. r)j * ;(u. r-)k is a vector-valued .function of two variables.

We deiire the graph ol r(a. u) to be the gtaph of thc concsponding pararnetric eqLrrtii\n\

Geometrically, we can view r as a vector frorr the origin to a point (-r. \ . :) thal moves ovel
the surtace r : r(r, u) as ,i and l vary (Figurc 16.4.7). As with vector valued 1'unctions of
one variable. we say thlt r(r. ,J) is continuous il each component is colttirtLlous.

Example 6

Thc paraboloicl in Exanple 1 was expressed parametr-ically as

.r -/1. ),=i. ::,1 ,,) ,l

These equations can be cxpressed in vector fbrm as

r: iri * i'j * (4 ,,2 ur)k

Pal1ia] dcivatives ofvector-valued functions oltwo vaiables rre oblained by taking partial

dedvatives 01'the components. For exanrplc. il'

r(r. u) = -r(r/. r.,)i * r'(ri. u)j +.(,r. r))k

(
(r)



l0O4 l\4ultiplelntegrals

then

dr ilr il r D.

^ :- i*:-j*- kdu du dtl du

ilr ijr lr il
^ -^ i+r.i +.rk
t)L) dlr dt tlll

These derivatives can also be written
expressed as the linits

r(, + r. u) - r(ir, u)

r('l, 0 + /r) r(r, u)

as r,, and r,, or r,(u,o) and r,(L,u) and can be

.:]r

-: 
lim0u n-o

Ar

-:limilr (+o

(5)

(6)

Example 7

For the vector-valued function in Example 6, we have

Dra^
i - ;fri + u: + (.4 - u2 - u2.1k1 : i - 2r,6

iJr A ^

; = tl&i + i,j + (4 t2 ut;tj -1 2r,k

dr
^^_ (:1)

is orthogonal to both tangent vectors at the point (u0, u0) and hence is normal to the tangent
plane and the surface at this point (Figure 16.4.8). Accordingly, we make the following
definition.

TANGENT PLANES TO
PARAMETRIC SURFACES

Oul next objective is to show how to find tangent plaDes to parametric surfaces. Recall frolr
Section I 5.5 that a surlace has a tangent plane at a point if all smooth curves on the surface
that pass lhrough the point have tangent lines and those tangent lines lie in a common plale
(the tangent plane). Moreover, we showed thar if : : /(r, _1,), then rhe graph of I has a

tangent plane at a point if / is differentiable at that point. It is beyond the scope of this text
to obtain precise conditions under which a parametric surlaca has a tangent plane at a point,
so we will simply assume the existence of tangent planes at points of interest and focus on
fi nding their equations.

Suppose that the parametdc surface o is the graph ofthe vector valued function r(a, u)
and that we are interested in the taDgent plane at the poil'lt (ro, _y0,;o) ot the sudace that
coresponds to the par-ameter values l1 : u0 and u : u0; that is.

r(ro, uo) - -roi + lbj + .ok

If u = uo is kept nxed and a is allowed to vary, then r(a, un) is a vector-valued function
ofone variable whose graph is the constant u-curye through the point (1r0, ne): similirtly. if
u - uo is kept fixed and l is allowed to vary, then r(ae. u) is a vector-valued function ol'
one yariable whose glaph is the constant', curve through the point (,6, u0). Moreover, it
follows from 11.2.5 thtrt if Ar /Au I 0 at (un, u0), then this vector is tangent to the constant
u-curve through (r.16, u6): and if Ar/Au + 0 at (&0, u0), then this vector is rangent ro rhe
constant r-curve through (r0, u0) (Figure 16.4.8). Thus, if ar /Au x Ar/dr I 0 at (ris, r.'n),

then the vector

0r
'd"

d-r d] 3r

aLt du dtr

or 3l' d:
6u 3r., 3l
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16.4.1 DEFINITION. If a parametric surface o is the graph of r : r(a, u), and if
3r/Au x 0r /0u I 0 at a point on the surface, then theprincipal unil normal yector to
the surface at that point is denoted by n or n(a, u) and is defined as

3r 3r
X

(8)

Example 8

Find an equation of the tangent plane to the parametric surface

x:uut y:u, z:u2
at the point where ll : 2 ard u : - 1. This sudace, caTled Whitney's umbrella, is at exam-
ple of a self-irtersecting parametdc surface (Figure 16.4.9).

Sohttiorl. We start by writing the equations in the vector form

r -- u1)i + aj + u2k

The partial derivatives of r are

0r.
Aulu,ul:vt+l
ar
,(u, v) = ui t 2vk

and at u : 2 and u : - I these partial derivatives are

3r
^ (2, -1,): -i * jdu

0r

-(2, 
1) : 2i 2k

Thus, from (7) and (8) a normal to the suface at this point is

I i i kl
$tz.-r., , $rz. rr:l-r i ol: zi z.i 2kdu dD 2 o -21

Since a:ry normal will suffice to find the tangent plane, it makes sense to multiply this vector

by - j and use the simpler normal i + j + k. It follows from the given parametric equations

that the point on the surface corresponding to u:2 and u = Iis( 2,2,l), so the
tangent plane at this point can be expressed in point normal form as

(x)-2:)rO-2)+(z 1):0 or x*y*z:1

FoR THII READER. Convince yourself that the result obtained in this example is consistent
with Figure 16.4.9.

Example 9

The sphere ;r2 + y2 I z2 : a2 canbe expressed in spherical coordinates as p : a, and the
spherical-to-rectangular conversion formulas in Table 13.8.1 can then be used to express

the sphere as the graph of the vector-valued function

r(0,0) : a sin@ cos 0i * a sin @ sin dj * <r cos @k

where 0 
= 

Q 1;r md] < 0 <2r (veify).Use this function to show that at each point on
the sphere the tangent plane is perpendicular to the radius vector.
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SURFACE AREA OF PARAMETRIC
SURFACES

ijk
./ cos d cos 6 c co\ O sin d -d sin q,

csind)ind (lsin@cos0 t)

Soltttiott. We will show that at each point ofthe sphere the unit normal vector n is a scalar
multiple of r (and hence is parallel to r)- But

dr

-xa6

0r
a0

U.r 0) d:
ao a0 ad

3.r Dl' 3:
ae ae ae

: .rr sinr O cos 0i + n2 sinr 4 sin gj + 42 sin @ cos @k

and hence

dr ar ll-- \ - -. ar.inr@cosld ,,",inrptin:d +aosin24co+pird da

- u6t.mr@ - c]rn.itJ?
= n'JliF Q = a?lsindl : alsinQ

Thus, it follows from (8) that

I
n= sin@cosdi tsin@sindj+cosdk- -r

ln Section 8.5 we obtained fonnulas for the surface area of a sudace of levolution fsee
FornLrlas (4) and (5) and the discussion preceding Exercise 20 in that sectionl. We will now
obtain a tbmula for the surf'ace arca S of a parametric suface o and from that formula we
wif l then derive a formula for the surface area of surfaces of the fbrm t : 16, y).

Let o be a parametric surface whose vector equation is

r = r(a. u)i * r (ri. u)j + :(r. u)k

We will say that o is asmooth parametric surface on a region R ofthe ru-plane if Ar/a&
and 0r/3u are continuous on R and Ar/Au x Ar/AD + 0 on R. Geometrically, this means

that o has a principal unit normal vector (and hence a tangent plane) for all (a, u) in R and

n = n(r, u) is a continuous function on R. Thus, on a smooth parametric surface the unit
normal vector n varies continuously and has no abrupt changes in direction. We will derive
a surfhce area fbrmula fbr smooth surfaces that have no self-intersections.

We will begin by subdividing R into rectangular regions by lines parallel to the r- and
lr-axes and discarding any nonrectangular portions that contain points of the boundary.
Assume that there are /r rectangles, and let Rl denote the &th rectangle. Let (ar, ur) be the

lower left corner of R1, ard assume that Rr has atea AA1 : Aut^ui, where A t and

Au1 ale the dimensions of R(. (Figure 16.4.10.D. The image of Rr will be some cut'viLinear
p0t(i dr on the suface o that has a comer at r(ur, ur) i denote the area of this patch by A Se

(Figure 16.4.10b).
As suggested by Figure 16.4.10c, the two edges of the patch that meet at r(rk, ur) can

be approximated by the "secant" vectors

r(r.r + Ar{. ur) - r((r, u*)

r(,rr, ur. + A!r) r(rr, ur)

and hence the area of o1 can be approximated by the area of the pamllelogram determined

by these vectols. However, it follows from Formulas (5) and (6) that if Ar1 and Ar1 are

small. then these secant vectols can in tum be approximated by the tangent vectors

dr 0r
;- Attl and ^ Au1
d dll

where the partial derivatives are evaluated at (&r, ur ). Thus, the area of the patch o1 can be ap

proximated by the area of the parallelogram determined by these vectors (Figure 16.4.10d):
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s-I
Thus, if we assume that the errors in the approximations approach zero as n increases in
such a way that the dimensions ofthe rectangles approach zero, then it is plausible that the

(c) (d)

that is,

ll 3r 3r ll lar 3r ll 3r 3r
ASr r ll-Arr y ^ AuAll -ll-x- Ar,Ai/, - ll / A4r t9)

lla, 0u ' ll la, Du ll a, 0t
It follows that the surface area S of the entire surface o can be approximated as

Figure 16.4.10

Ar 3rl
- \ -J AA{
du du

exact value of S is

.\ ll arS: lim ) ll- x
-+6- llAu

or, equivalently,

llJAr 0rl':Jll;";l
R

3r I

- I LA,.
au ll

dA (10)

Example l0
It follows ftom (4) that the parametric equations

x: u, ):acosu, z=asinu
represent the cone that results when the line ] - r in the ry-plane is revolved about the
x-axis. Use Formula (10) to find the surface area of that portion of the cone for which
0 <lz : 2 and0 5 r 5 2z(Figure 16.4.11).

Solution. The surface can be expressed in vector form as

r:ai+acosuj*usinuk (0 < u <2, 0 <!.2T)
Thus,

Ar
^ :i*cosuj+sinuk

ar
^ : -rsinuj +rcosuk

iikdf .lr
^- / -- I cosu sinu l- li - rlcos u.i -rsinukdu dr Iu -ri sln u r.r cos u 

I

t(uk+ Lu*,uk)

Figure 16.4.1 I

ar 3rl
l1u 0u

n2 1( a cos r)2 { (-a sin u)2 -l"l"D- "'4.
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SURFACE AREA OF SURFACES OF
THE FORM z = f{x, y)

Thus, from (10)

': ll y;

Ar ar
XAu A1)

du - 4rJZ

In the case where o is a surface ofthe formz: f(x, y ), we can take;r : a and ), = u as

parameters and express the surface parametrically as

x:u, J:u, 7= f(u,v)
or in vector form as

r : ui + uj-l f(u, u)k

Thus,
3r Af 3z

-:i+--:k:i+-k3u 0u 3-r

3r Af Dz

-:i+- k:.i *- k
dl) dl) riv

0r\ -ldAAu

r2n 12 .2n: 
Jo J, fr,o,ou--2rtJ0

J

0

(#)'. (ff)'

.^ 2 ..,.2

(#) . (;)

I

l

k

Az

a,
ar Ar

3r, ' au -

':ll
R

: -5'- 3:*udx d}

Thus, it follows from (10) that

3z01^
oy

: /(#)'. (#)'. '

+1dA

+1dA

(11)

REMARK. In this fomula the region R lies in the.4,-plane because the parameters are ,rr

and y. Geometrically, this region is the projection on the x)-plane of that portion of the
surface 2 : /(r, l,) whose area is being detemined by the formula (Figure 16.4.12).

Example L l
Find the surface area of that pofiion of the surface z : v?=:l that lies above the rectangle
R in the.rry-plane whose coordinates satisfy 0 < x < I and0 < l:4.
S o httio r t. As shown in Figure l 6.4. l 3, the surface is a portion of the cylin der x2 + 22 : 4.
It follous From 1l I,1 that the 'urface area is

':ll4
:II

R
F ;Y . --' oo : 

L^ l,' ;f7 o' o'

:,1' 
[,-'' (;')].=, dy : 2 

I"^ Zd] 
: :,

Fomula (21)

Figure 16.4.13
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Example 12

Find the surface area ofthe pofiion ofthe paraboloid: - t'+ r-t bclow the plane; = l.

Solutiott. The surf'ace is shown in Figure l6.4.l4.Thetraceof the paraboloid; -tt+.t2
in the plane ; : I projects onto the circle,r2 * 12 : I in the,t-"--planc. and the portion of
the paraboloid that lies below the plane . : I projects onto the region R that is enclosed
by this cilcle. Thus. it follows from (i l) that the sudace arca is

5- // u/+tr+lrr+triA

Theexpression4rl+4r'2+1:,+(.r2+,-2)+lintheiDtegrandsuggcststhatweevaluatethe
integral in polar cot)rdinates. ln accordancc with Fomula (9) of Scction 16.3, we substitute
,r : rcosg and -r'= r-sin6 in the integrand, replace dAby r dr dA, and find the linrits of
integration by expressing the rcgion R in polar coordinates. This yields

f - f r. t t

s / I ,4r2-tt,!rrtl- | l'-,+,'-1, I Jv
J,. J, J, Lr2 I n

ttde:lr{sJs r): l" i','.

In Exelcises I and 2, sketch the paranetric surface.

l. rrr r //. r-u. - J;'-i
(b) -r:r, j:Ju2+x2. z-x
(c) -t - Jrr']*r2, 1:rr,;:p

2. (a1 x:r,J:u,:=r,1 +x2
(b) -r :a, .1, 

: x2112, -: : x

(c) -r-a2*12. i,:u,::u

In Exercises 3 and 4, find a paiametric representation of the

surface in terms ol'lhe parameters ,l : J and r' : l'.

(a) 2:-3.r*4r.-5
(b)::r'?
(a) z*r-tr ]:0
(b) t'2 3: - 5

(a) Find parametric equations tbr the pofiion of the cylin-
der -rl + )2 : 5 that extends between the planes ., : 0

and: - 1.

7. Find paramelric equalions lor the surface generated by [e-
voh'ing the curve -y : sin,y about the .\ axis.

8. Find parametric equations for the suface generated by re-
volving the cuive ) - c' :0 about the r rxis.

In Erercises 9 14. flndiipararnetric replesentation 01'the sur
iace in lems ol the parameters r and 0, where 0-. d.;) are

the cylindrical coordinates ol a poinl on tl'ie surface.

4.

(b) Find parametric eqrations for the portion of ihe cylin
der 12 + -:2 : 4 that exter'lds between the planes ) : I
and _r' - 3.

6, (a) Find parametric equations for th{r portion of the plane

,r +): 1 thal extends between the planes : : l and

(b) Find palametric equations 1br the portion of the plane

), - 2r : 5 that exiends between the planes -r - 0 and

l
9. r- l+_rl+): 10.;:n t'r+'rl

11. ; - 2.{), 12. z: x2 - )2

r - 2Lt + u, ), : a - r,.: : 3u lbr -r <

13. Thc portion of the sphere .tl + r'l + .:2 : 9 on oI above the
plane. - 2.

14. lhepo rrnnnl rrr.one. ,/- r .nnrb".ot ,h"plr."
.:' : 3.

15. Find a pararnetric representation of the cone
/- r - r: - \/ 1r -t- 1\'-

in terms ol parameters p and d, where (p, P. .r) are spherical

coordinates of a point or the surthce.

16. Find a paramctric i eprcscntation of the cylinder,!2 + ]2 : 9

in terns ofparamcters d and @, where (p. d, d) are spherical
coordinates of a point on the surface.

In Exercises 17 22, climinate the parameters to obtain an

equation in rectanglLlar coordinates, and describe the sLllface-

q

17. 11 < +.. and



22.

vt 23.
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); - rcoslr! ti - ?/l! :: : xsinu ioro : n : 2 and

0ar<2n.
{:3sinr,_y:2cosr, i : 2r-, lbr0l:Lt <2nand
1:u:2.
,r - ."tcos !, 1=,rfsinr.::rrtbr0:a::land
0ar<2n.
r(r, u) : 3r cos ui + 4, sin rj + rk for 0 : ,1 : land
Dar<2n.
r( . rl) : sin r cos li + 2 sinrr sin u.i + 3 cos ak lbr
05u5zand0=Lt<2jr.
'I e acconrpanying ligure shows the graphs ol two palamel-

ricr(l e\e|l!l:o r. 'rr\(core: - u{: ':tn' O ; '
(a) Find paranetric equations that procluce reasonable tac-

similes of these surfaces.

(b) Use r graphing utility to check your answer to part (a).

on n and u that produce the sLlface. and check your answer
with a graphing utility.

(b)

18.

19.

20.

21.

29.

30.

31.

32.

34.

(a)

(a)

(a)

(b)

E 27. In each part. the ngure shows a hemisphere that is a portion
o1 the sphere -i- - sin d cos €. l : sindsin6,.a: cosd.
Find reltrictions on d and l, that produce tlte ltemisphere.
and check yoLLr arswer with a graphing utility.

III
Figure Ex-23

E 24, The accompanying figure shows the graphs of two para-
netlic replesentalions oi the paraboloid : : tl + r'l lb.
0:i:2.
(a) Find parametlic equations that produce reasonablc lac-

similes of these !urfaces.
(b) Use a graphing utility to check your answer to part (a).

rll
Figurc Ex 2'l

! 25. In eilch part, the figure shows il portion of the parametlic
surtace -t - 3cosl. l - r.r,: - 3sinr. Find restrictions
on rr and u lhal produce tlre sllrlace. and check your answer
with a graphing utllity.

Each figur-e shows a portion of the sphere .r - sin d cos A,

) - sin d sin d, i : cos ry'. Find restrictions on d and d that
ploduce the surface, and check your answer with a graphing
utility.

E 28.

@@
(b) 

-rl./f+::.,
,1":.1 r i'ar.: 4r'

'."i 
t {

(a) (b)

l,r | \er.r\r\ /,r .{4. nn.r Jn equJto ol tlre t:Irgent plir re lo
the parametric surf'ace at the stated point.

,rt ! r,2. lt ) 5t

r : al, J, : ul, -: : rr l-l; (1,4,3)

r : 3lsina, ), : 2rcosr.. : r2l (0, 2, 0)

r: |i+(, u)j+(r+r)k: a-1,r-'-2
r - acosri + a sinrj + uk; a - 1/2. t - tl1
r: aui * uc"j * ue"k: a:ln2,r -0

The portjon ol the cylinder'_r'r + a2 : 9 that is above the
rectangle R : {(,r. )) :0: -r :2. 3 : -} : 3}.

The portion of the plane 2r + 2_r + . : 8 in the lirst octant.

In Exercises 35 46, find the area of the given surfhce.

ln each part. the figure
sufhce -r : 3cosl, r,

shows a portion of the parametric
: 3 sin l. ; : r/. Find restrictions

35.

al 26.
36.



37. The portjon of the cone .-: : 4.t2 + 4yl that is above the
region in the first quadrant boLrnded by the line .\, - -r and

the parabola -l - ,t2.

The -oltion ot rhp cone - v{ 
- 

= thar l:es :n.itle rre
cylinder:r2 * -r'2 : 2r.

The portion ofthe paraboloid: - I - 12 - -r2 that is above

the rl'plane.

The portion of the surface a - 2x + )r thlit is above tlre

triangular region with vertices (0, 0). (0, 1), and (1, l).

The portion ol the palaboloid

r(r, u) - , cos ri + u sin 4l * alk

forwhich I au 12,0=|::2n.
Thc portion ol the cone

r(r/. r) : ri cos ui + r sir uj + nk

forwhich0 5 r ! 2ir, 0 
= 

| 
= 

n/2.

The portion olthe suface a : ,rl thal is above the sector in

the llrst quadrant bounded by the lines I : -r/./3. -i - 0,

Jndthecrt(le.r +r :I

The portion of the paraboloid 2: : -rr + r'r that is insidc
the cylinder -r2 + 12 : 8.

The portion ol the sphere -r2 1 1'l * rl : 16 betrveen the
planes.-:land;-2.

The portion of the sphere rl + r'2 + ;2 - 8 that is insidc of

the cone : : Jrt + .t 
t.

Use paranetlic equations to derive the tbrmLlla lbr the sLlr-

face alea oi a sphere of radius a.

Use parametric equations to de ve the tbrmula tbr the lat-
eral surt'ace area of a right circular cylinder of radius r irnd

hcight ,4.

The portion ol the sufacc

h-.- r/.'{r'/ 1a,/r -01
a

between the p,-plane and thc plane : : /r is a right circular
cone of height/z and radius a. Use a double integlal to show

thal the lateral surlace area olthis cone is S : ta J a2 + l r2.

The accompanying figu.e shows the loltr.r that is Senelated
by levolving the circle

(r -a)2 +.2:b2 (0<b<a)

ir1 the ra plane about the a-axis.
(a) Show that this torus can be expressed parametrjcrlly lrs

r:(a*bcosl)cosrr
I:(.r+Dcosrr)sjn!
::Dsinr.,

16.4 Parametric Surfaces; Surface Area 1011

wherel'1 and u are the parameters shown in the figure
and 0: lr : 2tt, D 1u 12n.

(b) Use a graphing utility to generate a torus.

Figure Ex-50

51. Find the sudace area of the torus in Exercisc 50(a).

52. Use a CAS to graph the helicoid

ir:rCOsr. ),:rSinU, a-U
tbr 0 : r : 5 and 0 1 r : 4]7 (see the accoirpanying fig-
ure), and then use the numerical double integration opera-
tion of the CAS to appr-oximate the sudace area.

5J. t .r a C AS n grapo tle p,'tutlosphtrt

r : cos ,r sill u

.t - sinl/ sin I
/ ,\-:.osrr+lnltrn I\ 2/

ior 0 : r : 22, 0 < u < z (see the accompanying fi gure),

and then use the numerical double integration operation ol
the CAS to approximate the sufhce area between the planes

": land.-1.

38.

39.

40.

41.

42.

43.

44.

45.

46.

48.

19.

til

tr

47.

Fl s0.

Fie'lle E\ 5]Fisure Ex-52
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Fl s4. (a)

(b)

(c)

Figure 16.5.1

Find palarnetric eqLrations tbr the su.face of revolution
that is generatcd by Icvolving the cuNe . : .f(r) in
lhe -r:-plaDe abolrt thc a-axis.

Use the result obtained in part (a) to lind par-ametric

equations fbr the surfirce of revohrtjon that is generated
by revolviig the curve..: : 1/-y2 in the r: planc abolrt
the ;-axis.

Use r graphing utility to check your work by graphing
lhe parametric surliice.

In Exercises 55 57. the parametric equations represent a
quadric suface fbr positive values of a, b, and c. Identify
the type oi sur'face by eliminating the parameters , and u.
Check your conclusion by choosing speciflc values for the
constants and gcncrating the sLrrface with a graphiig utility.

55. ,r : a cos a cos r.r, I:bsinlcosl, a:.sinu
56, r : acosacoshu, ) -lrsinucoshu, : : csinh

57, r -asinhl, l' : D sinh lr cosh I, i - rcoshlcosh!

15.5 "I.Rf $ri..L li\J iLG*i,&t 9:i

ht tlrc preceding settion.\',Ne deflted and tliscLLssed properties of tlctuble integrals Jbr
functions of two \)u'iabLes. In this sectiotl v,e v,ill deJine triple integrals for functions of
threc vrrrirthles.

A singlc intcgral of a f'unction / (-r ) is defined ovel a finite closed interval on the ir -axis,
ancl a double integral of a f'unction l(r. 1') is defined over a finite closed region R in the
rtplane. Our iirst goal in this section is to definc what is meant by a triple irLtegral of
.f (-t. _r'. :) over a closed solid region G in an :r1:-coordinate systen. To ensure that G does
lrot extend ildefinitely il some direction, we will assunre that it can be enclosed in a suitably
large box whose s ides are ptrallel to the coordinate planes (Figure I 6.5. I ). In this case we
say that G is afnite solid.

To define the triplc integral of /( r. j,. i) over G, we lilst divide the box into n "subboxes"
by planes parallel to the coordinate planes. We then discard those subboxes that contain any
points outside of G and choose an arbitrary point in each of the remaining subboxes. As
shown in Figule I 6.5. I . we denote the volume of the kth remaining subbox by Ay^ and the
point selected in the lth subbox by (ri, yl.:i). Next, we form the product

/(.r1, r'1.:|)AVr
for each snbbox, then add the products for all of ihe subboxes to obtain the Riemsnn surn

\- tr,1 .'-: ,rt,,,1,r 't t\'t'^
t:t

Finally, we repeat this process with more and more subdivisions in such a way that the
length, width, and height of each subbox approach zero, and r approacltes +.c. The limit

Iim f /r;ri.11.;l rAVl
'-"-,

(1)

is called the triple integrql of /(-r, t.:) over the region G. Conditions uDder which the
tr-iple integral exists are studied in advanced calculus. However, for our purposes it sufflces
to say that existence is ensured when / is continuous on G and the region G is not too
"complicated."

E
E
E

DEFINITION OF A TRIPLE INTEGRAL

( ril. ri:, -.i ) -

lll rc,.',tav -
G



PROPERTIES OF TRIPLE
INTEGRALS

EVALUATING TRIPLE INTEGRALS
OVER RECTANGULAR BOXES

16,5 Triple lntegrals 1013

Triple integrals enjoy many propefiies of single and double integrals:

lll "tu,y,z)dv:" lll r,,,r,,toy (c a constanr)

CG

lllrr,y.z)+s6,y,z)tdr: lll rc,r,,t0, * lll ,<,,,,,t0,
GGG

lllrra,r,,t sG,y,z)tdv: lll r<,,r,,,0, lll r<',r,,t0,
AGG

Moreover, if the region G is subdivided into two subregions G1 and G2 figure 16.5.2),
then

.ff1 rr.,,,,,0, - lff 1.,,,,ta, . .fll r(x,y.z)dv
GGt

We omit the proofs.

Just as a double integml can be evaluated by two successive single integrations, so a triple
integral can be evaluated by three successive integrations. The following theorem, which
we state without proof, is the analog of Theorem 16.1.3.

16.5.1 THBOREM. Let G be the rectangular box. defined by the inequalities

a <x <b, c <y 3d, kaz=l
If f is continuous on the region G, then

lll rr,,r,aor: I.' I,' |' rl,y,z)dzdydx (2)

G

Moreover, the iterated integral on the right can be replaced with any of the fve other
iterated integrqls that result by altering the order of integration.

Example I
Evaluate the triple integral

[[[ p,,',' av
.t.t.t

G

over the rectangular box G defined by the inequalities - 1 SrS2,0.y.3,QSz=2.

Solution. Of the six possible iterated integrals we might use, we will choose the one in
(2). Thus, we will fiISt integrate with respect to z, holding x and y fixed, then with respect
to y, holding r fixed, and finally with respect to .{.

lll ,r.r',' n - l:,l,' l,' r2xv2z3 dzdv dx

G

: L Ir' lt,y'zofz,=o o, o, = f' , lo' 
or,yz dy d*

11 12

- / fro*y'l' ^d*- | a32,d,
J-t J-\

:216x2f2 t:648
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EVALUANNG TRIPLE INTEGRALS
OVER MORE GENERAL REGIONS

Next we will considcr how tliple integrals can be evaluated over solids that are not rec-
tangular boxes. For the momen( we will limit our discussion to solids of the type shown in
Figure 16.5.3. Specifically. we will assume that the solid C is bounded above by a surface
; : g2(-r. -r) and bek;w by a surface 1 : g1(r, _r') and that the projcction of the solid on
the r-r'-plane is a type I or type ll rcgion R (see Definition 16.2.1). In addition, we will
assume that 8r(.r.,1') and g2(x, l ) ate continuous on R and that gr(r. )) 5 92(,r, 1,) on R.
Geometrjcally. this means tlrat thc surfaces may touch but cannot cl'oss. We call a solid of
thrs type a simple xy-solid.

IG
lr-l

,/ ,..'"---' .',

/ |- R-- )

I I I re.t',:),tv= /i tl_,, ttx.t.z.tazfaa
.cR

a = g t(.r,,\.)

Fisurc i6.5.1

The lbllowing theorem. which we state without proot, will enable us to evaluate triple
integrals over simple.n-solids.

16.5.2 THE0RL\|. Let C be u sinlple .$ solid with ul4)er sLltuce: : 8.(.r. -\') ar?.,/

lover suqface :. : g1(.r. y). tnd let Il be the ptojediotl oJ G on the x-plute. If /(r'. l . :)
is cotttirtuous on G. thert

(3)

:

In (3), the fiISt integration is with respect to a, a1ler which a tunction ofr and -y remains.
This function of -r and .\' is then integrated over the region R in the r]'-plane. To apply (3), it
is helpful to begin with a three-dimensional sketch of the solid C. The limits of integration
can be obtained from the sketch as follows:

Step 1. Find an equation z : g2(x. l) for the upper surface and an equation

; = gr (r. )') for the lower surface of G. The functions gr (x, I) and

gz(,r. r') determine the lower and upper zJimits of integration.

Step 2. Make a two-dimensional sketch of the projection R of the solid on
the rl-plane. From this sketch determine the limits of integntion for
the double integral over R in (3).

Example 2

Let G be the wcdgc in thc first octant cut from the cylindrical solid r: *;2 5 I by the
planes _r' 

:,t and -t : 0. Evaluate

[[[ ,,
G



!2+22=l
(z = r/r _rt )
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Solution. The solid G and its projection R on the 4)-plane are shown in Figure 16.5.4. The
upper surface of the solid is formed by the cylinder and the lower sudace by the r),-plane.
Since the portion of the cylinder y2 * z2 : 1 that lies above the ry-plane has the equation

7 - {t - y2, afi the "ry-plane has the equation z : 0, it follows from (3) that

] lil "': I!llj "'f '^ (4)

For the double integral over R, the x- and )-integrations can be performed in either order,
since R is both a type I and type II region. We will integrate with respect to x first. With
this choice, (4) yields

III,,,
G

- l,' I' I^,dzdxdv- l,' 1,''rrf- ,,0,
Figure 16.5.4

I t' |r l,l' r: t Jo 
(, - Y'\ dv : )l1t' - 4r'1. - 8

VOLUME CALCULATED AS A
TRIPLE INTEGRAL

lll a, = _lir_Inv*
c "-'

which Figure 16.5.I suggests is the volume of G; that is,

volumeof G : III ,,
G

(s)

Example 3

Use a triple integral to find the volume of the solid within the cylinder ]l:2 * ]2 : 9 and

between theplanes z : 1 andx * z : 5.

Solution. The solid G and its projection R on the r]-plane are shown in Figure 16.5.5.

The lower surface ofthe solid is the plane z : 1 and the upper surface is the plane r +z : 5

or, equivalently, z : 5 ;. Thus, ftom (3) and (5)

vorume orc = [[[ o, - [[l ['-^ o,] oo (6)lll ll llr I
GR

For the double integral over R, we will integrate with rsspect to ) first. Thus, (6) yields

: 
L' L' ){, - r') o, o, : I I"', -,h,!,',,_oo,

FOR THE READER. Most computer algebra systems have a built-in capability for computing
iterated triple integrals. If you have a CAS, read the relevant documentation and use the
CAS to check Examples 1 and 2.

Triple integrals have many physical interpretations, some of which we will consider ir the
next section. However, in the special case where /(r, y, z) : 1, Formula (1) yields

Figure 16.5.5
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vorume or c - I . l arr= 1," o, or o, - I'. l E rf,.', or o "

: l.l:;-- x)dtdx: f' <s-z4'5 "a'

:'(;4 - l",.roo.
:'(:c -0:36r

-rllz

Example 4
Find the volume of the solid enclosed between the paraboloids

z - 5r'J 5])' and z :6 lx" - y'

Solution, The solid G and its projection R on the,rf,-plane are shown in Figure 16.5.6.
The projection R is obtained by solving the given equations simultaneously to determine
where the paraboloids intersect. We obtain

5x2 +5y2:6-ix2 -y2
OI

2x2 + y2 :1 (7)

which tells us that the paraboloids intersect in a curve on the elliptic cylinder given by (7).
The projection of this intersection on the,ry-plane is an ellipse with this same equation.

Therefore.

vorumeorc = [[[ or : ffl f " "' a,]aeJJI JJlr,,,,, lGRFigure 16.5.6

"tlrt n"q Z? n6-7*'-\'

- J,-,J,,,. J.._,. o,o,o,

d/4 ,"\ r?
=I / ,o- t2.t'-6v)tdydr

J I/J2 J JI L,2

rttrtr tJt x
- I lo, r 2r2ry zytl dx

J-t J2L Jt.-Jt- z,-

^ "n2 3n
-S/ tr - 2r't" rt^: o-l 

,orogde - 1'-
J .r7 \/2 J ",2 \/2

J.e rne qdlll'co(ine fomu r-"^ J2 - 
in trer-.e60olSecriona.J

In Formula (3) for integrating over a simple ry-solid, the z-integration was performed lirst.
However, there are situations in which it is preferable to integrate in a different order. For
example, Figure 16.5.7a shows a simple xz-solid, and Figure 16.5.70 shows a simple yz-
solid. For a simple rz-solid it is usually best to integrate with respect to ) first, and for a

),2=6-7x2 -t2

INTEGRATION IN OTHER ORDERS
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simple yz-solid it is usually best to integrate with respect to ,r first:

[1,r, 
v, z) dv : { ll,':: : rG, t, ) atf aa

| | | ra,,, o o, : IJ ll,':: : f6, v, 4 dxf ae

(8)

(e)

f;pb;-rE
(")

Figure 16.5.7

l^{'pb"ill
(b)

Sometimes a solid G can be viewed as a simple.r1-solid, a simple,rz-solid, and a simple
yz-solid, in which case the order of integration can be chosen to simplify the computations.

Example 5

In Example 2, we evaluated

f [[,n,
.t.t.t

G

over the wedge in Figure 16.5,4 by integrating first with respect to z. Eva.luate this integml
by integrating fimt with respect to .n.

Solution. The solid is bounded in the back by the plane x : 0 and in the front by the
planex:l,so

IIl,,,: llll,' .,.1^
GR

where R is the projection of G on the )z-plare (Figure 16.5.8). The integration over R can

be pedormed first with rcspect to z and then ) or vice versa. Pedorming the z-integration
first yields

^t .-/t,z ,, ,t ,-[l It

J J J 
,ou - J^ J," Jo 

zctx dzctr = l, J, ,* 
), .oo, 

o,

t rJtt ,' , ^ 
-l V' " ,"' I ^ I

= I I z1 dzdy = I .,r', 1 ay: | .,rt y'ztycty - rJo Jo Jo z J.=o Jo z

which agrees with the result in Example 2. <

(z=r/r yr)
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ExERcrsE SEr 16.5 E cns

In Excrcises l-8. evaluate the iterated inteSr-al.

tl t: rlt. I II,-t,- :'r!, tt,r

all .r rl, J, / /, ,, '.in, ' 
.i-,r. ,r '

t 
J,, J, J,r-'t"t-'t'

,: L I r,:t 1,, / / , .,,, , .r. .i ',r'

t 
1,, I / rrrr,/r,/,

nl rLr rln:o'l, |, 1,, r''r''t/ rr

,. . 1 ,: ., ,r ,l
7. I I / r1:,rr,ri

.t .tt) , r rrLL:

/l /l t'1

" l, l l,, ., -rr.ir,/
Jn Exer-ciscs 9 12, evirlLlate the triple integral.

[ [ [ , , ,r. r.., /y. $ hc-c r, i\ rhc fcjr. nr.rlr b.,r Jerined

by the inequalities 0 : .r : n,0 : .! : 1,0 -:: a: nl6.

Ill ,,,, rllrere G s r1e .nl,,l elc.o.ed bv l]e plire
a

.. - r, the Ji.pllnc. and the parabolic cylinder r, : I rl.

| | | , .: ,tl . $ llere L t. rhe .ultd tn llrc hr.t u.lrnt rhrl

is bounded by the parabolic cylinder.: : 2 .tl and the
planes: :0- l' - r, and r'- 0.

/ / / ..,.'. r',/t . uhc e., i.rhc.oliLl ,lennrJ l') r e ir
(;

eclualities r/6 : I : n/2, -1' : .r : 7r/2. 0 : : : r-r'.

Use a CAS to check the answels to the problcms you solveci

in Exercises I I2.

Use the numerical triplc intcgral opcriition of a CAS to
!pproxilnatc

lttilI,' ,tv

where C is thc spirc|icirl region rl + r: + al : 1

9.

10.

11.

ln l-\ercr.e' l: lb..r.e-r-rlle rrrc!rul l.r nno rl_e rnl.rmc ot
rrc snlrd

15. Thc solid in the flrst octant boundeclby the coordinatc planes
irnd the planc 3.t i 6r i 4: : 12.

16. The solict bounded by the surface: : u,5 and the planes

r+i: l. r :0. and: :0.

17. The solid bounded by the sufacc,t, - -tl and the planes

I i. :4 and.. : 0.

18. The wedgc iu thc first octant that is cut from the cylinder

-r'2 +:r : I by thc phnes l : r and -r :0.

ln Hxercises l9 22. set up (blrt clo not evaluate) an iteratecl
lriple integral lbr thc volume ol the solid encloscd between
the given sul1accs.

:=.l.rl+l.l :=3r.1+rl
:=-l 3r'r :=8 .vl .r'l

21. The elliptic cylinder.tr + 9r'r : 9 and tl're planes . - 0 nnd

:=-r+-].
22. Thecylindersrr+Jr: I and.tr +:l : l

ln hrcrc..c' 2J Jna 21. i.rt( lr lh( ..rlirl rnho.e t.rlunrc ir

-eivcn by the integral.

12.

E 13.

E 14.

23. (a)

(b)

(c)

24. (a)

(b)

(c)

ri r.L{r r,+L

J I -- 1,, J-'ir'l1r

1"" 1,,"' I"'" 
" ,1. ,t, ,11

rl |,

l"ll,'t"t-'r"
1,,' l.o. 1,,' 

,t,,t,,t,

l,' I,'' l,'' 
' ,t,,t,,!;

l'. lo' 
" 

ln' 
o^,,-,,,



Thc average value ttr neatt v4/re ol iL continuous lirncliorr

f(r. r. :) over a solici G is defined as

1 t'fl
/,,,: lllltt.t. tJV

\ \u) Lt .l
l;

whcre y (G) is thc Volume ol lhe solid (conpfue to the cleli-

nition prcccding Exercise 57 ol Sectjon 16.2). LIse this dcfi
''i ,, ; I \ct. i\c. 1i 1 J lri.

25. Find the averagc lalLrc o1 l (.r. r.:) : r + r' +: over thc

Letr ahedron shown in the accorrpanying figure.

f!rcL\15

27.

Find llle avcragc value o1 / ( r.. 
,1 , .-) : .\r': over the sphcr

ical |cgion.rl + r': +:l : L

Lct a; bc the tetral]edrol] in fie {irst octant bolrnclcd b\ thc

c(nrdinate plancs ancl the plane

' I - I r.' u., r)/

(a) List six dillerent iterated intcgrals thitt lepresenr the E 32'

volume of C.
(b) Evrhrate any one ol the six lo show that the volume of

In parts (r) (c). explcss thc iDteglal as an equivalent in-
tegral in which the;-intcglirtiou is perlbrrned l'ist. the r'-
intc!rution second. and the.r-ilitcgrrtion li1sl-

,r ..L' ../r ,r:
," I I l' /.r.r -,/,/\'/

.11 .11 ./a

I6.6 ac1r.ord. Cenle o'Grdviry. Tl-eoren of Dappu, 1019

rl rl /, l
(h) / / / /(r.r,.-rJr,/.,/\

J,I J' J'I

tJ r)
,,, 1 I / r,,.,. t.t,r-t!t

.lt la .l'

Use a tliple iltegral 1o clerive the fbrnrula tbr thc volunc of
the elJipsoid

lt ' l ' 
tt 

- ,

,,: t': ,I '

LcI 0 bc thc rectangular box dellned by the inequalities
.r :.r : r,. : \' :1. 1 : . : 1. Sholv that

I I I l(,.).!(\)/?(--)./Y

- f' ,',,d,llf ",,,.r,llL ,.ilIJ ]LJ ]LI" ]
Use the result ol'Exercise 30 to evaluate

'," [[[ ,, .ir,. ,/v. where G r. rhe .er nr pninr. .r'i.

fying I 1-r ! 1.0 :1 \' a l.O a.. a nl2.

,o' l l l , ,ll . uhcrs o i. rlrc.cl ut f.,inl. .:rri.r)
c)

ingo5.! : 1,0 : r : 1n3.0 !. 5 ln2.

(a) F-ind the region C over which the triple integrnl

IIL, .'r ,'2 -rt,1\
.t

(;

29.

31.

28.
has its rrnximum vll]ue.

Usc thc nulnerical triplc integlal operation of a CAS to
approximrtc thc maximum valuc.

Find the exrcl rnaximuln value-

(b)

(c)

16.6 CEglTFlSiE, ilEr,{TER SF 6N{A\1{TY, Tf-lESRnr'n fiF p,e,FF}ll$

Suppos( th(t u rfukl pht'sicttl bodv is uuetl on b\'o gt.litotiotlol field. Because the

l:todt is t:ontposecl ol nttutt ltartitles. eath o.f v,lich is tfficted bt gtrrt,it\). tlle u(tiot1

ol .1 ctrl.ttutlt gruvitutionul lieLd ott the body cotlsists of a large nwnber ol fbrt:es tlis

tribLttetl oter the entirc both. Hov,et'er. these inditiduul lorces can be replat'ed bt a
single .force .t(tifig ut o poitlt t:alled the center of g|oit! oJ tlrc both. Itt this section

v,e *ill sfutvt lto\, tlo tle oul triple ittqlrdL\ cL1lt be usetl to locdle centers o;f gravitt.

Lct us consider an ideal ized tlat objcct that is thin enough to be viewed as u two climensional
planelegion(Figr.rreI6.6.I).Suchanobjcctiscalledalaminu.A).am1natscaledhonoge-
rreoas if its composition is unifbrm throughout and i,rhonroge,t€otts otherwise. The d€nJi4'
ctl tr ltontogener.'us lanina is detined to be its mass per unit area. Thus, the density 6 of a

homogeneous laminl of mass M and area A is given by 3 = M / A.

DENSITY OF A LAMINA
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The thickness of a

lam na s neg igib e.

Figurc 16.6.1

Figurc 16.6.1

For an inhornogencous lanrina the composition may vary from point to point. and hence

an appropriate definition of"density" must reflect this. To motivate such a definition. suppose

thlrt thc lamin is placed in an.!\-plane. The density at a point (r. -\') can be specified by a

function 6 (-t. r, ). called the r/€[sio'/unclion. which can be interpreted as tbllows. Construct

a srnall recta:rg)e centeled at (.r, r') rnd let AM and AA be the mass and area oflhe po ion
ofthe lamina cnclosed by this rectangle (Figure 16.6.2). Ifthe ratio AM/AA approaches a

limiting vaiuc as the dimensions (and hence thc area) of the rectangle approach zero, then

this linrit is considered to bc the density ofthc lamina at (.r.,r')- Symbolically.

MASS OF A LAMINA

AM
J (.r. r'): Iinr 

-\.1 -. l AA
From this relationship wc obtain the approxinration

(l)

AM - J(.r. r )AA (2)

which relatcs the mass and uea of a small rectugular poltion of the lamiDa centered at
(.r. r'). It is assumed that as the dimensions of the lectangle tend to zero. the error in this

approximation also tends to zero.

The tbllowing r-esult shows how to lind thc mass of a lanrila from its densily function.

16.6.1 \1 \ss ot A 1.,\NIIN \. lf a lamina with a contiDLrous density llnction d(.r. r')
occupies a region R in the.\\'plane- thcn its total mass M is given by

(3)u - l l tc,. ,t aa

Figurc 16.6.1

This formula can be motivated by a familiar lilr.liting process that can be outlincd as tbllows:
lnagine the l nrinr to be snbdivided into rectangular pieces using lines parallel to thc

coordinate axcs and excluding fi om consiclerltion any non|ectangular parts rt the boundaly
(Figure 16.6.3). Assume that there are /r such rectangular pieces, and suppose that the tth
piece has area A 41. If we let (.rf . -r'f ) denote the center of thc tth piece. then from Fonnulit
(2). the mass A M{ of thi; piece can be app|oximated by

AMt ^:6(r;, r'*)AA^

ancl hencc tlre nrass M of the enlire laminx can be approximated by

,tz.= \-,!tt, r';tn^,
t:l

Il' we now incrcase n in such a way thaL thc dimensions of the rectanglcs tend to zero, thcn

it is plausible that the effors in oul approxintations will approach zero. stt

M: lirrr f dr.rf . r'itA/1

Example I
A triangular lamina with ycrticcs (0.0). (0. l).and(1.0)hasdensityfunctionS(r.,r)=.rr'.
Find its total mass.

Sttlulion. Ref'enirg to (3) and Figure 16.6.4, the mass M of the lamina is

\4)

: || u,'' ',u'o

ll ,,.,.,, no : ll,roo- l,' l,'''
R/l

I lj',']:, u": l'[j" - ,' * ]'] ": * (unit ol mass)



CENTER OF GRAVIW OF A LAMINA

16.6 Centro d, Center of Gravity, Theorem of Pappus 1021

Assuning that the force of glavity is constant and acts downward, consider the fbllowing
problem.

16.6.2 PRoBI-ttN4. Suppose that a lamila with a continuous density function r(.{, ))
occrLpies a rcgion R in a horizontal xr.-plane. Find the coordinates (i. I ) of the center of
gravity.

To notivate the solution, consider what happens if we try to balance the larnina on a

knife-edge paral1el to the ,r-axis. Suppose the lamina in Figure 16.6.5 is placed on a knife
edge along a line I = c that does not pass througb the center ofgravity. Because the lamina
behaves as ifits entire mass is concentrated at the center ofgrayity (-i, t), the lamina will bc
rotationally unstable and the lbrce of gravity will cause a rotation aboul l - c. Similarly,
thelanlinawillundergoarotationifplacedonaknifeedgealongt:d.However,ifthe
knife-edge runs along the line -r' - _ri thlough the center of gravity, the lamina will bc in

pedect balance. Similarly, the larnina will be in pedect balance on a knife-edge along the
I ine -r - t througi'r the center of gravity. This suggests that the center of gravity of a lamina
can be determined as thc intersection of two lines of balance, one palallcl to the .r-axis ancl

the other parallel to the l -axis. In order to find these lines of balance, we will need some
preliminaly results about rotatiol'rs.

Children on a seesaw learn by experience that a lighter child can balance a heavicr one

by sitting farther from the fulcrun or pivot point. This is because the tcndency tbr an object
to produce rotation is propoltional not only to its nass but also to the distance between the

object and the fulcmm. To make this more precise, consider an -r-aris, which $ e view as

a wcightless bcam. lf a point mass /?1 is located on the axis at a point r, then the tendency
for that mass to produce a rotation of the beam about a point a on the axis is measured by
the following quantity. called the zroment of n qbout x = {t.

In,n''''"nr nt,,,lI l-/r(1 -rr)L .r hoLr I rr l
The number -r .r is called the /erel ann. Depending on whether the mass is to the right or
left of.r, the lever arm is either the distance between r and a or the negative of this distance
(Figure 16.6.6). Positive lever anns lesult in positive noments ard clockwise lotations.
wlfle negative lever arms result in negative moments and coulterclockwise rotations.

Force of grav ty act ng on the
center of gravlty of ihe amifa

Figu.e 16.6.5

Pos tiv€ raoment
about d

(clock!fise rotation)

Negative moment
about .r

(countercLockw se rotat on)

Suppose that masses n|t. n7i, ... ,,?,, are located atpoints,t1, 12, .. . . -r,, on a coordjnate
aris and a fulcrum is positionecl at the poirll d (Figure 16.6.7). Depending on whether the

suln ol the noments about 4.

-t_
) ,t11;r1 d ) - ,/ | ( \ | - , / I - //, l.\' ,r) ///rl.\r ,t)
7:,

is positive, negaLive, or zero, a weightless beam along the axis wjll rotate clockwise about 4,
rotate counterclockwise about.r, or balance perfectly. In the last case, the system of masses

is sai(lto be ln equilibrium.
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Figure 16.6.8

The preceding ideas can be extended to masses distributed in two-dimensional space. If
we imagine the rl'-plane to be a weightless sheet supponing a point-mass,, located at a
point (x, ,I), then the tendency for the mass to produce a rotation ofthe sheet about the line
x : a is m(x - a), called the moment of m obout x = d, and the tendency for the mass to
producearotationabouttheline,):cis'r()'-c),calledtherzornentoJmabout!=c
(Figure 16.6.8). In summary,

frnomcnt ol ml frn,'menr ofrr'l
I abour rne l-,2(r-at and I rbuur the l=ntv t)
Itine*-, | | ttne'=. I

(s-6)

lf a number of masses are distributed throughout the Jy-plane, then the plane (viewed as

a weightless sheet) will balance on a knife-edge along thc line x : a if the sum of the
moments about the line is zero. Similarly for the line y = c.

We are now ready to solve Ploblem 16.6.2. We imagine the lamina to be subdivided into
lectangular pieces using lines parallel to the coordinate axes and excluding from consider-
ation any nonrectangular pieces at the boundary (Figure 16.6.3). We assume that there are

x such rectangular pieces and that the kth piece has area A,4t and mass AMp. We will let
(xf, 1f) be the center of the kth piece. and we will assume that the entire mass of the &th
piece is concentrated at its center. From (4), the mass of the /<th piece can be approximated
by

AMi I 3(rl, 1l)AAr

Since the lamina balances on the lines r : i and v : t, the sum of the moments of the
rcctangular pieces about those lines should be close to zero; that is,

AA
) {.ri -.r)aMr - ) (.{ -;)3{(('. ri)AAr !0

;,.,'i -,,-)o* : irli - 1:)6(rl,,rl)AA1 r o

If we llow increase n in such a way that the dimensions of the rectangles tend to zero,

then it is plausible that the enors in our approximations will approach zcro, so that

_lL-
lim ) (-r',: - x)3( rl. r;raA, . 0

r-+tlr '

Alim ) t;j - r't6tri. \i r^i4( - 0

from which we obtain

Since i and y are constant, these equations can be rewritten as

//,* - t,, t, . r') ,/A = o
JJ

//,i - 0,r,.. t)dA =0

ll,o,,.rae:t ll to.rae
Rf

| | ,u,", .,, oo : 
'- | | do. ,t aa

RR

.,!.

from which we obtain the fbllowing formulas for the center of gravity of the lanina:
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Center of Gravity (i , y) of q Lemins

||.ut'''too llno'tae (7-8)

M. 1 ff;= ll xlrx.ttdAM mass of R .,1.,1
n

M- 1 trn= ll vbtx.ttdA' M mass of R .,/.,1 
-

R

(10)

(e)

Example 2

Find the center of gravity of the tdangular lamina with vertices (0, 0), (0, 1), and ( I , 0) and

density function d(r, )) : rI.

Soluliott, The larnina is shown in Figure 16.6.4. In Example I we found the mass ofthe
lamina to be

rt tf IU- lltrr.rrd4- //rldA .
.t .J JJ 21
RR

The moment ol the iaminr rbout the I axi. i'

, = II,u,,.t,at ll,',ae L' L" rzydlt1r
1tR

r.r[l , I ' I ft r | " | ,\ |

-/"Lr"l.-'--l (r'" Y. I2r)d\-bo
and the moment about the .r-axis is

, : 
ll10,t.ytdA- ll^r'oo- l,' I, 'xy2tt1d,

RN

llua,,toollN,,,too'

Observe that in both formulas the denominator is the mass M of the lamina lsee (3)1. The
numerator in the fomula for i is denoted by M,, and is called th efitst moment of the laminq
&bout the !-qxis,the numerator ofthe formula for y is denoted by M, and is called therrsl
moment of the laminq obout the x-qxis. Thus, Formulas (7) and (8) can be expressed as

: l' []',']*,' ": I'
From (9) and (10),

_ M| t/60 2 M,
M 1124 5', ' M

so the center of gravlty n (i, i).

1/60 2

1/24 5

In the special case of a homogeneotLs lamina, the center of gravity is called the centroid of
the lsminq or sometimes the centroid of the r?gion -R. Because the density function 6 is

constartt for a homogeneous lamina, the factor d may be moved through the integral signs

in (7) and (8) and canceled. Thns, the centroid (i, 1:) is a geometric property of the region

CENTROIDS
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R and is given by the following formulas:

Centod oJ a Regbn R

II'oo"-tr;

ll,oo

-#*ll "^

:^L..,ll
R

tdA

(11)

(.12)

II '^
R

Example 3

Find the centroid ofthe semicircular region in Figure [6.6.9.

Solulion. By symmetry, -i = 0 since the r -axis is obviously a line ofbalance. From ( l2),

r= I [[,ro=-! [[ ,no
urea of R .,1./ ' .nn2 .l .lR-n

CENTER OF GRAVITY AND
CENTROID OF A SOLID

= # 1"" 1"" "'in 
rdrde

= + 1"" [1"''"']"-"'
:#(1") l""neae=#

,o tt" 
""nt.olo 

l, (0, f ).

M: massorc : lll ur".r.,to,
c

E\uluaring in

(:'):*

For a three-dimensional solid C, the formulas for moments, center of gravity, and centroid
are similar to those for laminas. lf G is homogeneous, then its det sitJ is defined to be its

mass per unit volume. Thus, if C is a homogeneous solid ofmass M and volume V, then its
density d is given by 6 : M lV .If G is inhomogeneous and is in an .ry:-coordinate system,

the its deDsity at a geneml point (.r-, 1', r) is specilied by a density .function 6(.r, J,;)
whose value at a point can be viewed as a limit:

AM
6{-r. \'. - ) = lim 

-
' 

^y 
.o Ay

where AM and AV represent the mass and volume ofarectangular parallelepiped, centered

at (.r. 1,,;), whose dimensions tend to zero (Figure 16.6.10).
Using the discussion of laminas as a model, you should be able to show that the mass M

of a solid with a continuous density tunction 6(.r, ,r', :) is

Figure 16.6.9

Figurc 16.6.10

( t3)



Figure 16.6.11

16.6 Centroid, Center of Gravity, Theorem of Pappus 1025

The formulas for center of gravity and cenfoid are

Centel of Gralit! (r,y,Z) of uSolidG Centro l(i,y,Z)of qSolidc

.: j lll.x,,r,,tav
G

,-fi lll,ur,,,,,tov
G

z: j lll ,ua,,,,t0,

,=i lll.,,
c

o=+lll",
G

,: i lll ,,,
c

(14 l5)

Example 4

Find the mass and the center of gravity of a cylindrical solid of height /z and radius a
(Figure 16.6.11), assuming that the density at each point is proportional to the distance
between the point and the base of the solid.

Solution. Since the density is proportional to the distance z ftom the base, the density
function has the form 5(x, y, z) : t;, where k is some (unknown) positive constant of
propoftionality. From (13) the mass of the solid is

, - [[[ ,r.y,!)dv: [' [t' ' 
fo 

^,o,oro^ilt J "J,-.,JaG

",, ",rt J- .:rl | !n'aya,

-m' [" \cr2--r2r1-rJ"

- !r L) --2 I nerprer rhe inregrJ s
Lnc rc-of1.emr- rrle

Without additional infomation, the constant,t cannot be detemined. However, as we will
now see, the value of t does not affect the center of gravity.

From (14),

z-- j lll,ur.,,,o * : Fh lll z6',v'z)dv

ra r Jar r' rh

J-" J ,.-,,J, /kz\ctzctl ctx

["[-'.=!n'ata'

lk ht ra2 2 
t^

- !,khr"", - i"
Similar calculations using (14) will yield t = y :0. However, this is evident by

inspection, since it follows from the symmetry ofthe solid and the form of its dersity functior
thatthecenteIofgIavityiSonthe.-axis.ThuS,thecenterofgIavityis(0,0,3,)'<

G

I
:h

k

lkh2ra2
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THEOREM OF PAPPUS
The following theorem, due to the Greek mathematician Pappus,* gives an imporrenr re
lationship between the centroid of a plane region R and the volume of the solid generated
when the legion i\ revol\ed abour a Iine.

Proof. Intochtce an r)-coordinate system so that L is along the y-axis and the region R
is in the first quadrant (Figure 16.6.12). Let R be partitioned into subregions in the usual
way and let Rp be a typical rectangle intedor to R. If (,{f, }f) is the center of Re, and ifthe
area of R1 is AAk : A,t1A11, then from Formula (l) of Section 8.3 the volume genemted
by Rt as it revolves about I is

2trxi LxpLyp : 2rxi LAt

Therefore, the total volume of the solid is approximately

v - \- r,rx,n A,.12
k:)

from which it follows that the exact volume is

llr",ao =2" ll .,ae
t?4

Thus, it fbllows from (11) that

V :2r . i . [area of R]

This completes the proof since 2iri
revolved about the r-axis. I

is the distance traveled by the centroid when R is

Average

Vo ume = 22. average rad us . thlckness . he ght

= 2r-ri^ r(4,\i

1.-r

T

Figure 16.6.12

* 
re rrL s or. ,rLr,x,rxonr,r 14th century A.D.). Greek mathematician. Pappus lived duing the eady Christian erawhen

nrathenialical activily was in aperiod ofdecline. His main contributions !o malhematics appear€d iD a series ofeight
books called Ir? C,ll?dion (wriltcn abou1340 A.D.). This work, which survlves only paltially, conlaired some
oiginal rcsults but was devoted lnostly to statements, refinements. and proois ol'rcsults by e,Lrlier mathematicians.
Pappus' Theorem. slaled wilhout proolin Book VII of The Callediot1, w1\s probably known and provcd in earlier
ti es. This result is sometimes called Culdin's Theorenr in recognition of the Swiss mathematician, Paul culdin
(l 577-l 641), who rediscovered rt independendy.
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I The centrold travels l

., a.distance 2Td. .

Fisure 16.6.13
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Example 5

Use Pappus' Theorem to llnd the volume V ol the torus generated by revoh'ing a circular
region of radius l, about a line at a distance 4 (greater than D) from the center of the circle
(Figurc 16.6.I 3).

Sohttion, By syrrmetry, the centroid of a circuJar region is its center. Thus, the djstance
travelecl by the centroid is 2za. Since the area of a circle of raclins D is zD2. it follows from
Pappus'Theorem that thc volunre ol the torus is

Y:(krtr)Qrb?):2r2ub)

ExERctsE SET 16.6 E Graph ng calclrator E cAs

l. Where should the fuicftr'n be placed so that the beam in the

accompanying figure is in equilibriurn?

2.

.O. .O. "\/l\,|1'1-----
0

Fillnc Ex I

Given that the beam in lhe accompanying figure is in eqLli

librium. what is the nass rr'l

For the regions ir Exercises 3 rnd 4. make .i conjectLrre about

the coordinates of the ccntloid, and connrm your conjeclure

023
Figurc Ex 2

In Exercises 5-10, find the cerltroid of thlr region.

9. The region above the -r-axis and between the circles
,rr 1 ,i,2 : 611 and.r: + t,2 : b2 (..1 < b).

10. The region encloscd between the -\' irxis and the right hllll
of the circle,rl i -J 

l - al.

In Exer-cises I l- 14. llnd the mass and center 01 gravitv of the

lil ninr.

11. A lamina wiil'r density d(r, _1') : -r i r, is boundcd by the

.\ a\i\. ll'e l:ne \ l. rnd.he cur'vc r - yf.

12. A lamina with density d (r, ) ) : r is bounded by r' - sin r,
r' :0. r :0, and r:2.

A lanina with density lj(r,,l') - -r-\, is in the llrlt quadrant

and is bounded by the circle,r I a -r,l : al and the cooldinate
axes.

A lamina wirir density d(r, r) - rr + l2 is boundcd by the

i rri..rnJ thc Lrpper hrlf ollhecir.lcr' I r : L

13.

by integrating.

14.
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For thc scllicls in Exercises l 5 and 1 6. make a conjecturc about
thc coordinates of the centroid. and confirm your conjectule
by integnting.

(b) the density is plopQrtional to the surn of rhe dislances
to the laccs tlrtt lie in the coordilate planes.

29, Usethenumerical tliple integr al capability of a CAS to ap-
proximate the locntion ol the centroid oi the solid that is

bounded abo\,e by the suftoce: : 1/( I +.rr + r'l). bclcrw
by the s plane. und laterrlly by the plane l : 0 and the
sudace -\ : sinr lirr 0 : .r : 'r 

(see the acconrponying
ligure).

30. The accompanying ilgulc shows the solid that is bounticd
above by the surf'ace., = l/(.rr + lr * l). below by the
.\'r-plane. and latclally by the sudace,*2 1 1,1 : 41,
(a) By symiretry. thc centroid of thc solid lies on thc :-

lxis. Make a conjcctu|e about the behavior ol the .-
coordinate ol the ccrrtroicl as a - 0+ and as a --+ *2.

(b) Find the : coordinirte ol lhe ccntroid- and check your
conjectule by calculating the appropriate linits.

(c) Usc a graphing ulilily ro plot the : coordinate of the cen-
troid r'er-sus a. anci use thc grlph to estimate the vdlue
old fbr which the centroid is (0.0.0.25).

tr
rs. t' 16. r

I

a(0' o. l,

L-l
/ ll, n, 0l

I

.(l_l.l)

/,

In Exeroises l7 22. find thc centroid of the solid.

17.'Ihc tetrahedron in the firsl oclrnt cncloscd by thecoordinate
plancs and the plane r + r'+: = L

18. The solid bounded by thc pulabolic cylinder - : I r r and

tltc Planes r *: : 1. r :0. urrd: = 0.

19, The solicl bounded by thc su ace : : r'l and thc plancs

.r : 0..r' : I. and a: l-

20. Thc solid in the first octant bounded by the surtace: : rl
irnd the planes: - 0- r :2. and r'= 2.

21. The solid in the first octant tlrat is bounded by the sphclc
.rl + r'l +.:: : al and the cooLdiniltc plnnes.

22. 'Ihe solid enclosed by thc.\.r-pl ne arld the hemisphere

;:r/a1l-1l-1l

l t\trji.e.l.l lr,.' o th ir\..ln.Lccnrc.,'l prr\it) dt rltr
solid.

24.

'l hc cube that hff density .l( r. r . :) = rr r and is delined
btthc inequalities0 : r :,.r.{} 5 \' 5./.aDd0:. :.r.
The cylindrical solid that has density 6(.\. r . :) : /, : :rnd

is enclosed by rl +,r'l : al. : : 0. and: : l.
Thc solid that has density 6(.r. i.:) : r': irnd is enclosed

by:: I- r'r itbr,i l0).:-0,.t: -l,andr- L

The solid thiil has density.t(.!. r'. . ) = .r: ancl is enclosed

b} r:9 rr (tbrr:0). r = 0.r'- 0.::0,and- - L

Find the center olgravity ol the squarc lamina l'ith tertices
(0. 0). ( l. 0). (0. l). and ( l. I ) if
(a) the density is proportional to tl'rc squarc ofthe dislance

lioln the origin
(b) thc dcnsity is proportional to rhe distaDce liom the i -

llx is.

Fincl the center of gravity ol the cube that is determined by
the inequalities 0: "r : l,0:.1 : I.0 <. 5 I if
(a) the densiry is proportional ro the square of the distance

to the oriSin

l- ig'rrc Ex'19 Figurc Ex-30

Shorv that in polar coordiniltes lhe lbrmulas ibr the centroid
( i. -\.) of a region R arc

i- I [[,:.u'u,r,,tu
rrer ol R .1./

f
I f I

i: ll r-s rtd,lt Je
area of R ././

R

Use the resull ol Excrcise 3l to find the centroid (i. rr) ol'
the rcgion enclosed by thc cardioid ,. : lr( | + sin A).

Use the result of Exercise 3l to hnd the centroid (.r. \-) of
the petal of the lose / = sin 2f,/ in the first quadrant.

Let R be the rectangle bourded by the liles.r : 0,.r : 3.

.r' : 0, and i' - 2. By inspection, find the centroid of 1l ancl

use il to evaluate

tt tt
lJ i,tA and lJ \ lA
R/t

31.23.

25.

26.

27.

32.

33.

?R

34.



36.

Use the Theorern olPappus and the iact that the volume of a

sphere ofradius ,i is V : ]r4l to show that the centroid of
fie lanlina that is bolulded by the r-a\is rnd the semicircle

_" : .,[, 
- 

is (0,4al (3i)). (This problem was solved

dircctly in Example 3.)

Use the Tlieorem ol Pappus and the result of Exercise 35

to find the volume of the solid generated when the region
bounded by the.t axis and the semicircle I - -'/o2 rl is

revolved about
(a) the line r : a

Usc the Theorem ol Pappus and the iact thal the area of an

ellipse with seniaxes .'l and b is rab to find the volume of
the elliptical torus generated by revolving the ellipse

Ir k)2 ll
n + ti-l

about the -r axis. Assume that,t > a.

Use the Theoren of Pappus to find the volume of the solid
thal is generated when the region enclosed by .! - .r2 and

.y - 8 -rl is revolved about the.ri-axis.

Use the Theorem of Pappus to lind the centroid of the tri-
angular region with vertices (0, 0), (rl, 0), and (0, ,), where

.i > 0 and , > 0. [Hlrl.' Revolve the region about the.r-axis
to obtain ): and about the J axis to obtain -i.I
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The tendency of a larnina to resist a changc in rotational mo-
lion aboul an axis is measurcd by its morzent of inefiia abort
that axis. tl the larrina occupies a rcgion R of the r_r'-plane,

and if its density function lj (r, ) ) is conlinLrous on R, then thc
noments ofinertia4bout the r.-axis, the )-axis, and the i axis
are denoted by /.. 1,. arld ,I,. respectively, and are delined by

ll tt
t. ll r o't.1,t,t. t-ll,:oL,.rtdA..t.tt.t,4n

tt
/.: I I tr 1yr;tr1r. r1J4

.t.t

These definirions will he used in llxercises 40 arrd zll.

40. Consider the rectangular lamina that occupies the region
described by thc inequalities 0 : r : a and 0 : _r : b.
Assuming that the lamjna has constant density 6, show that

(b) the line r' : -r d.

37.

38.

39.

41. Consider the circular lamina thal occupies tl're region de

scribed by the inequalities 0 : .r2 + -r2 1 o2. Assuming
that the lamina has constant density 3, show that

6ncL1t, - It - q

6a-r /'
', _ l

, J,r/'l.rr + hr )

'3

fitrtLl
'2

TRIPLE INTEGRALS IN
CYLINDRICAL COORDINATES

16.7 TRiPLH |$\dTIGRALS $r\I eYilruFF{{Cp,t", A'',SN} Spt"{ERtCAL
{fii:}RDiniATfrS

Ettrlier we sa,- that some douhle integrtrls ttre easier to evulture in polctr coonlirule.s
thLtn in re(tangulat coordinates. Simiktrl:,, some triple ittegrdls |re eusier to evLlludte

in c\-lirulricul or spherical coordinates th.tn in recta gul.tr coordinates. Itt tltis section

we will stut\ triple irtegrctLs in Lhese coordinate slstems.

Recall that in rectangular coordinates the triple integral of a continuous 1'unction ,f over a

solid region G is dellned as

where AV1 denotes the volume of a reclangular parallelepiped interior to G and (-rl, il. ;i)
is a point in this parallelepiped (see Figure 16.5.1). Tr-iple integrals in cylindrical and

spherical coordinates are defined sjmilarly, except that the region C is divided not ittto
rectangular para)lelepipeds but into regions more appropriate to these coordinale systems.

ln cylindrical coordina{es, lhe simplest equations are of the form

,-: constant, 6: constant, :: constant

As indicated in Figure I 3.8.2b, the first equation represents a right circular cylinder centered

on the : axis, the second a vefiical half plane hinged on the ;-ax is, and the third a ho zontal

plane. These surfaces can be paircd up to deternine solids called cylindrical wedges or

ttt ', ' :r,/r - ri' f 7,\^ \;. i^t.
J !.J "-+'-t,
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1 r"r'r 4( . :ii )

cylindrical elenents of volurne. To be precise, a cylindrical wedge is a solid enclosed
betwcen six surfaces of the fbllowing fbrm:

two cylinders r - t't. r: r'1 (r'1 < 11)

two half-planes e -At. 0-0. (4 <0)
twe planes i = :1. : : z: (lL < ::)

(Figure 16.7.1). The dinrcnsions 02 - Pr. r': - rt. and al at are called the ce[tral anglc,
thickness. an<l heighl of the wedge.

To define the triple integral over G of a function /(r. d...) in cylindrical coordinatcs we
proceed as follows:

Subdivide G into pieccs by a three-dimensional grid consisting of concent c circular
cylinders centered on the :-axis, half-planes hinged on the :-axis, and horizontal planes.

Exclude from considcration all pieces that contain any points outside of C. thereby
leaving only cylindricul wedges that are subsets of C.

Assume that there are /r such cylindrical wedges, and denote the volume of the tth
cylindrical wedge by AV1. As indicated in Figure 16.7.2, lct (r;,6;,:;) be uny point
in the iith cylindricai wcdge.

Repeat this process with more and more subdivisions so that as l increases, the height,
thickness. and central angle of the cylindrical wedges approach zero. Deline

Iim I frri.4i.;frava,'.+'E (t)

For ct>rrrputational purposcs. it will be hclpful to express (l) as an iterated integral,
Toward this end rve note that the volume Ayr ofthe lth cylindrical wedge can be exprcssed

AV1 = farea ofbasel . lhcightl (2)

lf we denote the thickness. central angle, and height of this wedge by Ar1, Ad1, and
A;1. and if wc choose the arbitrary point (if,0;".:i) to lie above the "center" of the base
(Figulcs 16.3.5 and 16.7.3), thcn it follows frorn (5) of Section 16.3 that the basc has area
LAL - tiLttLHt. Thu:- t2t cln bc u r illcn ls

AV7, : r'i6r^a9^a:a = /iA:(ArrAO^
Substituting this expression in ( I ) yields

lll rr,.o.. )/v - lim f .1r'1.u;.;i ),ia:ra/raerIII",,,L.lr"JJJ 't:t
G

which suggests that a triple integml in cylindrical coordinates can be evaluated as an iterated
integral ol'lhe form

f(r.0, :1r d:. d r d0

tit:\t \t((. Note the extra factor of r that appears in the integrand on convetiDg fiom the

triple integral to the iterated integral. In this formula the integration with respect to : is

done first. then $ ith rcspect to r'. and then with respect to A. but any order of intcgration is
allowable.

The following theorem. which we state without proof. makes the preceding ideas nrore

precise.

Figure 16.7.3

lll rc' ,tu':
6

lll r,,.'.t^, = lll
C ppropriatc

limits

( -1,,

Volume AV/,

Figurc 16.7.1

(,i:ldi :i:)

Area = ,\Ar =,ta^,i^dl
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k=42s,2)
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The type of solid to which Formula (5) applies is illustrated in Figure 16.7.4. To apply
(4) and (5) it is best to begin with a tbree-dimensional sketch of the solid G, from which
the limits of integration can be obtained as follows:

Step l. Identify the upper surface x : g2(r,0) and the lower surface

2 : 91Q,0) of the solid. The functions gy(r, d) and g2(r, A) de-

temine the z-limits of integration. (If the upper and lower surfaces

are given in rectangular coordinates, conve11 them to cylindrical
coordinates.)

Step 2. Make a two-dimensional sketch of the projection R of the solid on

the ry-plane. From this sketch the r- and d-limits of integration may

be obtained exactly as with double integrals in polar coordinates.

Example 1

Use triple integration in cylindrical coordinates to find the volume and the centroid of
the solid G that is bounded above by the hemisphere I : Jri -7-, below by the

rt -plane, and laterally by the cylinder x' + y' :9.

Solutiott. The solid G and its projection R on the xy-plane are shown in Figure 16.7 5.

In cylindrical coordinates, the upper surface of G is the hemisphere z : J25 - 12 md the

lower surface is the plane 2 : 0. Thus, from (4), the volume of G is

''T".','arfa,q
': lll * - lJll, I

For the double integral over R, we use polar coordinates:

r," ..\ tJ2.-; r2r f)

' J" J, J, rdzdrda: J, J,l")i-l' a'ae

t2n r.t /,,f ,r2s_,r,r..] 
(1e- 1,, J,'Ju r'drdo- 1o s 3 r,-n

: I,"T*:
t22

3"

2= gr(r,0)

_{@..c

Figure 16.7.4

16.7.1 THEOREM. Let G be a simple ry-solidwhose upper sutface has the equdtion

7 = g2(r, 0) and whose lower sutface has the equotion z : 91(r, 0) in cylindrical coor-
dinates. If R is the projection of the solid on the xy-plane, and if f(r,0, z) is continuous
on G. then

where the double integral over R is evaluated in pol.tr coordjnates. In particular, ifthe
proiection R is as shown in Figure I6.7.4, then (4) can be written .ls

III t".t ztav - lua | '," 
l,',,,:' [rr.0.ztrdtdrd0

(4)

(s)

Figure 16.7.5
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CONVERTING TRIPLE INTEGRALS
FROM RECTANGULAR TO
CYLINDRICAL COORDINATES

From this result and (15) ofSection 16.6,

,=i III,* =*Ul ,,, -;rllLl'" ",,-l,o

) .ii r'' r'va:= i .t? "r-, - rta;t t ',r,ae--l-l / ll,.. l Jrdo- tDn Jo 1,, Jn : 
trr" 1,, J,, 11" ). u

3 rr' r] 3 /r" -169 ItoT
=- I I t25r-t'')Llrde . t ----de = -

214n Jn lx 244n J1, 4 488

By symmetry, the centroid (i,,i,:) of G lies on the :-axis, so i : _i : 0. Thus, the
centroid is at the point (0.0, 1107/488).

Sometimes a triple integral that is diflicult to integrate in rectangular coordinates can be
evaluatcd morc easily by makingthe substitution r = r cos 6, ) : rsinA..:: to convert
it to an integral in cylindrical coordinates. Under such a substitution, a rectangular triple
integral can be expressed as an itemted integral in cylindrical coordinates as

lll ro,r,tav =
a

III
linrils

/(r cos d, r sin d, z) r d z tlr d0 (6)

ItlrNL\RK. In (6), the order of integmtion is first with respect ro :, then r, and rhen d.

However, the order of integration can be changed. provided the limits of integration are
adjusted accordingly.

Example 2

Use cylindricd coordinates to evaluate

/ 3 r"/'r ,r ro-r:-ri
I I / .rr,i:,1r'r1.i
JtJ ,g Jo

Solulhn, In problems ol this type, it is helpful to skerch the region of integration G and
its projection R on the -n'plane. From the "limits of integrarion, the upper surface of 6 is

the paraboloid " 
: 9 -,rl - r'2 and the lower ru,tua" tr ,1.r" r'r-plane.: : 0. Ftom the,r-

and r'-limits of integration, the projection R is the rcgion in the -n-plane enclosed by the
circle x2 +,y2 = 9 (Fi8u[e 16.7.6). Thus,

/r /,6 i ., trr ,j
t' t" / ' .'.i.-a.',i, - lll ,'u,
J-zJ .q J'. 

t

= I! ll," 
" 

'.''o*'a 
a.] oo - 

L'" l,' 1""-' 
1r: col 0t ,t.dr <t0

= 
Ir- Lt L' 

'' ,, ,or. 0 ,t, ,t, de : L" Lt [:,r 
cosr c]e i' ar aa

r)1 r\
= J, J^,,,' - r:tco':0,tr,!a l" [(T - a ).* "]' , ,,

)43 f'' - 243 f" | 24ln= n Jn 
,ot'e lt : o J,, ;(l * cos2ot tl9 : - o



TRIPLE INTEGRALS IN SPHERICAL
COORDINATES

(pi, Pl. di)

Vo Lrme Ali

p:pt, p-p: (pt < pt)

a:0t. 0:4 @t < 0z)
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In spherical coordinates, the simplest equations are of the folnt

p- constant, d: constant. d: conslant

As indicated in Figure 13.8.2c, the f,rst equalion represents a spherc centered at the odgin,
the second a half-plane hiDged orr the i'-axis, and the thil d a r-ight circular cone rvith its vefiex
at the origin and its line of symmetry along the i -axis. By tL spherical wedge ot splrcricol
element of voluwe we mean a solid cnclosccl bctween six surfaces ofthe followinq lbrn:

two spheres

two half-planes

nappes of rwo ight circula:.cones ,b : rbr. 4 : h (.0t . rbz)

(Figure 16.7.7). we will refer to the nurbe:ls p1 pt.el A1.andQ2 $ 1 Lts the dimensiotts
of a spherical wedge.

If G is a solid region in thrce-dimensionaL space, then the triple integral ove| G of a

continuous function .f(.p.0.Q) in spherical coordirates is sin.iilar in deilnitior to the lriple
integral in cy]indrical coordinates, except that fte solid G is partilioned into spherital
wedges by a three dimens ional glid consisting of spheles centered at the orig in. h alt-planes
hinged on the a-axis, and nappes ofright circular cones with veftices at the origin and lines

of symmetry along the a-axis (FiguLe 16.7.8).

The defining equation of a triple integral in sphcrical coordinates is

where AV1 is the volume of the ,tth spherical wcdge that is interior to C, (pi'. di'. dl) is

an arbitrary point in this wedge, and n increases in such a way that the dimensions of each

iDlerior spherical rvedge tend to zero.
For computational pu.poses, it will be desirablc 10 cxpress (7) as an iteratcd intcgral. In

the excrcises we will help you to shorv that if the point ( pi, ei' , Ai) is suitably chosen, then

the volume Ayr in (7) can be written as

AV1 : plr sin@lAp1A@1Ada (8)

where Ap1, Adr. and Ad^ are the dimensions ofthe weclge (Exercise 38). Substituting this

in (7) we obtlin

lll ,,r.o.Qt,lr - lirn I irri ."1 .d^,p^ .ino^af a@,40.
I:

a

whicb suggests thal a tiple integral in spherical coordinates can be evalurled as an ilcratcd
integral of the tblrn

[[l ,,0, ott,tv - titn ) ,,r^.n.^^'o,rlr n-+' E
(1)

.f (p. 0 , Q1p') sin $ dp ttQ de (e)lll rc,,,0t^,: lll
C apfropdate

i.nil\

ItF.N].\ltK. Note the extra factol of p2 sinf that appears in the iDtegrand of the iterated

integral. This is analogous to the extra factor of /- that appeared $hen \\,c in{cglatcd in
cylindlical coordinates.

The analog of Theorem 16.7.1 for triple integrals in spherical coordinalcs is tcdious to
state, so instead wc will give some exampies that illustrate techniques 1br obtaining the

limits of integration. In all of our examples we will use the same order of integralion-first
with respect to p, then d, and thcn 0. Once you have mastered the basic ideas. there should

hc ro trouble using olhel order. ol integtrtion.
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Suppose that we want to integrate l(p. 0. d) over the spherical solid G enclosed by the
sphere p : p0. The basic idea is to choose the limits of integration so that every point of the
solid is accounted for in thc integration process. Figure I6.7.9 illustrates one way ofdoing
this. Holding 0 and / fixed foL the first integntion, we let p vary ftom 0 to p0. This covers a

Iadial line from thc origin to the sudace of the sphere. Next. keeping B fixed. we let d \'ary
lronr 0 to r so that the radial line sweeps out a f'an-shaped region. Finally, we let p vary
fron 0 to 2ir so that the fan-:haped region makes a complete revolutioll, thereby sweeping
out the ertire sphere. Thus, thc triple integral of f(p, e. ch) over the spherical solid G may
be evaluated by writing

lll r,n,0,,,, .l' I^' 1,,' r,o.a ato',ingdprtetttt
a

p varies from 0 to po

with0anddfixed.
d var es from 0 to ?'
with 0 fixed.

tlt ttl.I r I

,N-- I I I p:sin|,traQJu
.t" .t,, .to

FiS rc 16.7.9

Table 16.7.1 suggests how the limits of integration in spherical coor-dinates can be ob-

tained for some other common solids.

Example 3

Use spheical cooldinates to ljnd the volume and the centroid ofthe solid G boLrnded above

b1 thc 'phere.r: - rl I :2 = l6 and bclow b) lhe conc. - u4F -;
Solulion. The solid C is sketched in Figule 16.7.10.

In spherical coordinates, the equation ofthe sphere.r I + lr +.:l : 16 is p :4 andthe
cqudtion oflhe cone. - u/.r: - r' is

p co' d - ,,,/itin'd.oi ., , pl*in- O rin+
which simplifies to

pcosd:psind
or, on dividing both sides by p cos @,

tand: 1

Thus @ - n /4. s') the volume o[ G is

'q11.:

Figure 16.7.10

,__III
G

: 
L,- I"','' [4''"r],=.

: l,- 1,"'' !sinattaae

dQ da

= Y [' f- eo.,rln'r ,/d :
-l J,, ' )q)=\t

64tr
= _(2 _ ./2)

T l.* (' 
, +),'

{] varies from 0 to 2r.
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Tahle 16.7.1

DFTFRI\'TINATION OF I,IMITS

ln"-'' 1""-'' 1"" nr. u. g)p2 sln c! ttp ttc! ctl

d varies from 0 to d var es from 0 to

r/2wth0hed rl2.
: flxed. l

p varies irom 0 to
po with 0 and d

I I I [rp. o.4,ti ,in (.t tlp,tg rto

,, va r"< lro _ 0lo 0 vrr "'-'or n _o

drrwth6held : .r"
. var es lrom 0 to
po with 0 and d

p varies from 0 to l

po with d and .l l

,/ var es from ,fj
to ri,- with l] held l

fixed l

A't
2n

varles lrom 0 to



1036 Multiplelntegrals

Table 16.7.1 \t|ninued )

DETERMINATION OFLIMITS INTEGRAL

lr'" I"r' l"'""" 
r 

or. 0. g)p2 sin g dp tt(> ttg

: fu* ". fr-or o to-l
' d sec d with t,
,anddhedfxed.

O *r* t,.r O t" I

do with 0 held 
:flxed. 
l

-L"
f(p,0, gpz sin g dp tlr! deI,''I,

;=-
/ i."E ,\lffi

O uariesr'om o lo I,2T.

t---, l

I p uu, 
"s 

from O, i

Itofiwith dafd 
,

I .l held f xed.

Th s so d is enclosed between two
concentric spheres, p = pj and p = b.

d vales from 0 to
,wthdhed
il:9,- -- -,.1

By synmetry, the centroid (t, 1,,2) is on the t-axis, so i : y : 0. From (15) of Section
16.6 and the volume calculated above.

"-t, lll,^, -to L" 1,,. 

o/',p.o,@,p',in 
@dptt6d0

c

: 
+ l"* 1,"'" lf; '*"^rl,",,or o'

:Y 
1,,'" 1,,"'' "^ocosadade:+ I,'"1)" 'rf",'' *

t6 [" "" 
32n j

- v J,, "" n- 
^2 

{r)

CONVERTING TRIPLE INTEGRALS
FROM RECTANGULAR TO
SPHERICAL COORDINATES

Wilh the help ofa calculator, z - 2.56 (to two decimal places), so the approximate locarion
ofth9centroidinthe-,c'1-z-coordinatesystemiS(0,0,2.56)'<

Referring to Table 13.8.1, triple integrals can be converled from rectangular coordinates
to sphedcal coordinates by making the substitution 't : p5in@coso, y : psin{sind,
; : p cos @. The two integrals are rclated by the equation
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/ 12 + r'2 =,r

Figurc 16.7.I I

ExERc r:rr. SF.r 16.1 E

| | | f A, t, r, o, - | | | f ,, 
"u, 

l, 
"os 

d, p sin / sin6, p c os r!) p1 sln r! dp dQ d0 (10)

c appropriate
llmirc

Exarnple 4

Use spherical coordinates to evaluate
a-----:------

I I l" -7.-r:-.:_.-.i-,t,.r,

.\tlttiirn. ln ploblems like this. it is helpful to begin (when possible) with a sketch of
the region G of integration. From the .: limits ol integralion, the upper surface of G is the
hemisphere: : J4- r2 - llandthelowersurtaceisthe-rl'plane;:0.Fromthe-r and

-\'limits of integration. the projection of the solid G on the,ry'plane is the region enclosed by
the circle,r2 * .i'2 = 4. From this infornation we obtain the sketch of G in Figurc 16.7.I l.
Thus.

i "Jt-i ,^/t ,, ,,

J J ., I, u{ ,:1-,7 v,,1'

- ftt , r',r', J/ilt-''
G

t)a ta ) t)
= I I I p' io-: n, ,in o J p J ot J d

.lr .ln .ln

/lr fal t)
- I / . co. ,r,.inE'l@,io

Jo JLt

:: 
L'" [ ]*ur]"",,, :'i 

1"" 
ut:T"

In Exercises 1 ,1, evaluate tlre iterated integral.

.:-x , "./t It l,, l,l, :rlzrtrle

.r ) ..'.n .):
z' L l,, ln '"'n'u""'

(a>o)

In Exercises 5 8, use cylindrical coordinates to find the vol-
ume of ihe solid.

The solid enclosed by the paraboloid 1 : 12 a 12 and the

plane ; : 9.

7.

The solid that is bounded above and below by the sphe|e
,' + )'t + :t : 9 and inside the cylinder -tl + )2 : 4.

The solid that is inside the surface rr *:r - 20 and below
thesurfacet-r-2.

The solid enclosed bet[cen the cone; : (/rr)/a ancl the
plane.: : /r.

"nl) "111 "l3. / / / p .ind.". q)JpdqJ0
.la .l t .lr

"1' "r/r r',r\..d
4. 1 I I 1, 'in,pJpJ,pJd.lr' .lr, .l I

In Exercises 9 12. use sphedcal coodinates to find the vol-
'Inre oi rlre.nlrd

9. The solid bounded above by the sphele p - 4 and below
by the cone d : 'r/3.
The solirl within the cone d - z/4 and between the spheres

p-landp-2.
The solid enclosed by the sphere,tl + -12 + i2 : 4d2 and

theplanes::0and::a.
The solid within the sphere -rl + tl +;2 : 9, outside the
cone ; - ,/,t2 + -\,2, and above the.r\,-plane.

t0.

11.



16.

E 17.

E 18.

19.

20.

1038 l\4ultiplelntegrals

ll Frercr.e' Lr 1b....(.)lrrdnLirl orsphericr conrdin,r'c.
to evaluate the integral.

r.r.// I .",t. J\,/r t../ o.l.t.t,,.t,
i r.r* ",/ ' ,.

A. I l' l" d-rr,l\
I Jt Jl

p 1r4- .,/[ ,.*
15. ll I ,t r,d,

Jn J0 J /, +,,

/r ,./e ,r ../e {r ,

I I' l' ' I i drJ'
J rJ v/! rrJ Jt) tr Ll

Use a CAS to check your answers to the problems you solved
in Exerciscs I 16.

Use a CAS to evaluate

r'rI rr + .Lo.il

I L/ o .o'*.", o-,t, rt4'ar'

F nJ rhe \nlu le nt r ' 
I ;l ,,- u.IrE

(a) cylindrical coordinates

(b) sphericalcoordinates.

Let G be the solid in fie nrst octant bounded by the sphere

Jl + l,l +:l :4 and tl')e coordinale planes. Evaluate

I I I rr':Jt

(a; uusing rectangular coordinates

(b) using cylindrical coordinates
(c) Lrsing spherical coordinates.

25. The solid that is bouided above by the sphcre

r +1 +-':2
anclbelow by the paraboloid; :11 -p _y2.

26. The solid thar is bounded by the cone ; : VC, -1- f and
theplanel:2

lr L\e1i'e\ 27 lnd '8. 'r.. rpl-encilcoorLlin:11e. 1,, n1d rhe

cenlroid of the solid.

27. The solid in thc fir st octant bounded by the coordinate planes
JrLl lhe .phcr( Y- | .r .l d'.

28. The solid bounded above by the sphere p : 4 and below
by the cone d : z/3.

Irr Ere|cr.e. 2., i nJ .rU. u.e lhe \\.ll \ to-rnul.r! in f\erci\e:
64 and 66 ol Section 9.3.

Find the centroid ol the solid bounded above by the para-
boloid r - rr + -\':, belo\,! by the plane . : 0, and laterally
by the cylinder (-,c 1)l + t'2 : l.

Find the mass ol the solid in the first octant bounded above
by the paraboloid ; : 4 -.t2 )2, belo\! by the plane

r- : 0, and laterally by the cylinder,r2 *,y: : 2r and the
plJle r 0.,r..urn n8 rl'e Llen'il) ru be or,. r. , - -

29.

30.

In Exercises 2l and 22. use cylindricai coordinates.

I r I \cr. rsc. I | - {(\. \^lvr rhe prublenr u,irrg eirher c) linLlrical
or spherical coordinates (whichever seems appropriate).

Find the volume olthe solid in the first octant bounded by the
splrere p : 2, the coordinate planes.andtheconesO:nl6
and O - n/3

Find the nass of thc solid tl'tat is enclosed by rhe spltere

'2 r'-i - l und lier wirhin r re (one: - r/, f, i,

t'c den.it1 r\ ' , \. j. . ' /i -l --
Find the center of gravity of the solid bounded by the para
boloid : : I - r2 -r2 and the -q,plane, assuming the
density to be r(r, ), i) - -r2 + -"'2 + 22.

Find the center ol gravity of the solid that is bounded by
rhecvlinJer '2 r'2 - l.ths(unc. - ufr.1:.andthe
,r-plane il tl-e den,it) is o'.r. r.. :
Find the center of grality of the solid hernisphere bounded
by z: fa2 -rl - y2 and 1 :0ifthe densily is propor-
tional to the distance tiom the origin.

Find the centroid of the solid that is enclosed by the hemi-
.pl-ere. 1-./,1 -.r'l-r4 r -:.,1nd rl-e

plane I :0.
Suppose that the density at a point in a gaseous spherical
star is modeled by the fo.mula

d - 60{, feltlr

where 66 is a positive constant, R is the radius of the star,
and p is the distance from the point to the stai's center Find
the mass ()1-the star.

31.

32.

21. Find the mas! of the solid wjth densjty d(.r, _1 , :) - 3 - :
that is bounded by the cone . - \/'Il + -rl and the plane

..' : 3,

22. Find the mass of ir right circLrlar cylinder o1'radius a aird

height i ji the denlity is proportional to the distance from
the base. (Let I be the constant of ploportionality.)

ln Excrciscs 23 and 2,1, usc spherical coordinates.

23. Find the mass of a spherical solid of radius a if the density
is proportional to the distance from the center. (Let I be the
constant of p.oportionality.)

24. Find the mass of the solid enclosed between the spheles
12 +-r'2 +.:2: I and 12 * ) 

r + :2 : 4 if the density is

d(r. r'. r-) : (r2 + l,: +::) rir.

In Exercises 25 and 26, use cyli11drical coordinates to find the
cenlroid of the solid.

33.

34.

36.

37.



38. In this exercise we will obtain a formula for the volume ot'
the spherical wedge in Figure 16.7.7.
(a) Use a triple integral in cylindrical coordinales to show

that the volume ofthe solid bounded above by a sphere
p : pn, below by a cone @ = /e. and on the sides by
0 :01 ard.0 : $ (0t < At) ts

Y - 1p;(1 cos@6)(d2 d1)

Fllzt. In cylindrical coordinates, the sphere has ihe
equation 12 + a2 - pi and the cone has the equa-
tion i : r cotd0. For simplicity, consider only the case

O<Qj<tl2.l
SLlbtract approp ate volumes and use the resuit in part
(a) to deduce that the voiume AV ofthe spherical wedge
is

AY = -+' {cor@ -,n.ct.r'4. -a '

Apply the Mean-Value Theorem to the functions cos d
and p3 to deduce that the tbrmula in part (b) can be
written as

AV = p*2 sin @* Ap Ad A0

where p* is between pt arld p2,0* is between dl and

02. and Lp : p2 - pt, LQ : Qz - Qt L0 : 4 - 0t.

16.8 Change of Variables in lvlultiple lntegrals; Jacobians 1039

The tendency ofa solid to resist a changc in rotational motion
about an axis is measttre(tby tts moment ofinertia aboutthat
axis. Il the solid occupies a region G iD aD,rl:-coordinate
\).lcrn. -rd ir il' den.'ry luI(lron d ,. ., . . r 

:. ( LJnllnuL,u\ \rn
G, then the moments ol inerlia about the i-axis, the 1-axis,
and the i-axis are denoted by 1,, /r, and 1:, respectively. and
are defined by

I : I I I (r:+--r)d(r. \.-r,1y
.t.t.t

t - I I I t.1+zrr6(r.r,.zrJV
.t.t.t

G

t- I I I t.: + i 
I 

) 6 (:i . r . - ) ,? y

G

(compare with the discussion preceding Exercises 40 and 4l
of Section 16.6). ln Exercises 39 42, frnd the indicated mo-
ment of iDertia of the soljd, assuDting that it has constant
deisity 6.

(b)

(c)

CHANGE OF VARIABLE IN A SINGLE
INTEGRAL

39. 1. for the solid cylinder -,r2 + -r2 a az,O:. 
= 

h.

40. | 1br rhe solid cylinder r2 + r'r 
= 

a2,0 a.. a 11.

41. 1" for the hollow cylinder ai : -rr + .).2 : al,o 
= 

z < n.

42. /- for the solid sphere 'jr2 + )r + | a d2.

16.8 CI-IANGE OF VARIABLE$ II\ MULTIFLE IT'ITEGRAI.S;
..,ACOEIANS

ln this sectiofl we will tliscuss .t geneftll metho.l for eyalutlting double and triple inte-
grals b), .tubttitLnion. Most of tlte results in this se(Jion arc \,et'- diJlio t to prova, so

our approoch will be hfonnul tmd motivafiondl. Ottr goal i.t to provide d tcotitttti(
understanditg of the httsic principles and an exposLtrc to computttional tecllniques.

To motivate techniques for evaluating double and triple integrals by substitution, it will be

helpful to consider the eff'ect of a substituliqn r : ,q (ir) on a single integral over an interval

la, bl.lf g is differentiable and either incrcasing or decreasing, thcn g is one-to-one and

rh rt' ht

| ,,, 'a, . I ttgtt!ttg tttJu
Ju J': el

ln this relationship /(r) and dr are expressed in terms of ,l, and the ,/-limits of integration
result tiom solving the equations

a - g(u) and b- g(u)

Inthecasewheregisdecreasingwehavegr(D)<g-llal,whichiscontrinytoourusual
colvention of w|iting definite integrals with the larger limit of integration at the top. We
can remedy this by reversing the limits of integration and writing

tl' t. ,,, f\ r.'
| 1'r',Lt '- l .1tqt11ttgt11t,l11 | t,g",,t e rt,, dt,
J, J t J ,.t
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where lhe absolute value resuhs from the f'act that .g'(ll) is negative. Thus. regarclless of
uhetlrel c rr in,rer rir; Ll Lle, rer\in! rve c.rn rrtite

tr tl
I Ttttdt: / ./rSri/))JS rr)ld& (l)
J,, J,

where d and B are the r limits of integration and d < p.
The expression g'(r/ ) that appears in ( I ) is called thc Jacollar of the change of valiable

t : g(a) in honor of C. G. J. Jacobi.* rvho macle the fir'st ser.ious study of changc ol'
vadables in rrtiltiple integrals in the mid 1800s. Formula (l) reveals threc elfccts ofthe
changc of varilblc -r - g (u):

Thc nov intcgrand becones ./(g(r)) times the absolute valuc of drc Jacobian

r/; becomes r/rr-

Thc -r interval of integration is tr.ansfor.med into a 
'l 

interval of integration.

Our goal in this section is to show that analogous resulls hold for changing variablcs in
double and triple integrals.

In callier sections rve considered paranetric equations of firee kinds:
TRANSFORMATIONS OF THE
PLANE

]:\(1). .::(I)
-r : -r(a. u), r' : r'(ii.l), 1-.-(a, u) A{ r.en,l+],r.c

Now, wc will consiclcr parametric equations of the lonn

-t : -r (a. r-'). r - -r(r. | )

Pi,lrametric cquations ol lhis type associate poinls ir] the r]'planc with points in the ru-plane.
These ecluations can bc wrilten in vcctor li)nr irs

r- r,//.,, - r'i,. r ri + r'rri. r r.i

rvhelc r : ri * -r,j is a position vector in the -fI plane and r(ri. u) is a veclor'-vtlucd l'unction
ofthe vuiables a and u.

It will also be useful in this section to dririk of the parametric equations in (2) in tenns
of inputs and outplrts. II we lhink ol'the pair of numbers (a. r,) as an inpul. thcn the two

* 
t lll0.1 l85l). (lernrxn nr.lthemarician. .Jacobi. the son of .r br.ker, grew up i. a

brckground ()1 
'\cxllh 

a.d culture rnd sbo\\'ed brillirnce in mathen.rtirs errly. He rcsisted stlrdying n themrtics

b) rolc. Ueltffing in\te.rd to learn general principles liom lhe woRs oi lbe ln.rsters. Eulcr and Lagrnnge lle
c.I.red lhe Unilersity oi Berlin dt |gr 16 as a stLrdr-rtt ol nr;tlhe rltics and chssical !rudic\. Ilos,clcr. hc soou

realized that he could nordoboth and turncd Jllly ro nuihcrnatics !rith a blazing i.rcnsily thlt hc would mrintai.
throughout his lile IIc rcccivcd his Ph.ll. in 1825 and \\'as .Lble to secure a positior as a lecnner ai the Unilersity
ol Berliir by gr!illg up Judaisrn and becomnrg a Christian. Holvever. his promolion opp.ntunities remrired limited
and hc nrove,:l on to the Lhile$ity ol Kanrigsberg. Jdcobi wxs bor. () leach he had a dvnaNic per\on.tlil), .Lnd

delivcrcd his lcclrLri\ wrrh x cl.ritr" rnd enthu\ias'n rh.li ilequenlly lefi his.ludience,tpellbonrd. 1n spite ofexten\ive
tcrching commitments. he ivrs.rble to publish volunes o1 r.!olu(ionrry mathematicrl rese.rch th.ri eventually
nr.rde hiln rhe leading LuropelLn nratherratici.rn illier Causr. His main body ofrelerrch ras i. the rrea ol ellipljc
funcLions. ir brar)ch ol rrathcnratics \,, ith impo{rnt:Lpflicaiions in .LstronoJny and ph!sics as well as in other fields

ol maLhcrn.rics. B...r se ofhis 1a|ril), $e:rlth. Jacobi$'as noidependent on his leachin-q sal:uf in his ea ) \'eais.

Howc!cr. his conrfortable $odd e\'entLrnlly colilipsed. ln l8-10 his f.rmi1! $ent bxnkrupt and he \ias personrlly
wipcd out fin:Lnciallr". ln l8-12 he bad a ner\ous breakdown lioDr o!er$ork. In l84l be becrme seriously ill \ith
.liabetes and moled Io Berlin \rifi the help of a golelnmcnt :rant to defiay his medical erpenses. ID l8'18 he

mrde x sLLrpid poliricrl r.m;rrk th.rl clru\cd thc govcr.mc.I to $ithdrar ihc grrnt. c!c.irrlly rc\Lrltillg in rhc loss

oJ his honre. His hcnlth continuecl to decline and in l85l he linrlly surcumbed to successive bouts of infiuenz.r Lrrd

sffrl1pox. In spite ol all Iris problenr\, J.tcobi $as a rjrclcls $orkcr to Lhc cnd. Wh.n .r lrjcnd cxp.csscd co.ccr.
rbout rhe ellecl ol rhe bard sork on his health. .lacobi retlied. Cenainl-v'.. I h.Lve sonretimes endrngere.l nry health

b) o!crwork, but $lrar of itl Onlf cabbages hrle no nerles. no wories. And what do thcy gcL out ol thcir pcrlcct

sell bcil1g!'

(2)
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equations, in combination, produce a uniqlre olrtput (.r, ))). and hetce dennc a flnction f
that associates points in the..,;1, plane with points in the arr plane. This tunction is described
by the formula

T(u.u) : (r(ir, r). r(ri, u))

We calj T atrensformqtion fromthe Llu plane to tlre r)-plane and (r, l') tlle irzage of (u, t)
under the transformation r. We also say that T naps (.t1. r,) into (r, l). The set R ofa[[
images in the Jrl planeofasetSinthear-planeiscalledtheitnageofSunder 7. Ifdistinct
points in the ,u-plane have distinct images in the,i'plane, then T is said to be one-to-one.
In this case the equations in (2) define a and u as lunctions of -r and 1 , say

tr : u(x, i), u - r(r, ))
These equations, which can often be obtained by solving (2) Ior r and u in terms of ,{ and

). define a transformation from the rt plane to the,lr plane that maps the image of (r.r. l)
under T back into (a. u). This ffansfonnation is denotecl by 7 I ancl is called the inyerse
of 7 (Figure 16.8.1).

Figurc 16.8.1

One way to visualize the geometric etTect ol a transfbrmation 7' is to determine the
images in the rqrplane of the vertical and horizontal lines io the .i u plane. Sets of points in
the r)-plane that are imagcs 01'horizontal lines (u constant) arc called const(nt u-curves,
and sets of points that are images of vertical lines ('l constant) are called c onstant u-curves
(Figure 16.8.2).

Figurc 16.8.2

Example I
Let f be the transfornation fiom the au plane to the.\,y plane defined by the equations

,1 - j1u + r,), r: +@ u) (3)

(a) Find 7(1, 3).

(b) Sketch the constant u-curves corresponding to u - 2, 1.0, 1,2.

(c) Sketch the constant r-curves coresponding to tr - -2, -1.0,1,2.
(d) Sketch the image under I of the square region in the iru plane bounded by the lines

tr= 2.u:2,x:-2, and u :2.
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JACOBIANS IN TWO VARIABLES

Solution (a). Substitutingll : 1 and u :3 in (3) yields f(1,3) : (1, -l).
Solutions (b and c). In these parts it will be convenient to express the txansformation
equations with ,l and l as functions of ,r and y. We leave it for you to show that

,, t- r-, .,-a-
)\ v-'4 I

Thus, the constant r,-curves correspondifigto u - 2, 1,0, 1, and 2 are

2x j:-2, 2t -y:-1, 2x-y-Q, 2x ):1, 2x-y:)
and the constant ,-curves corresponding to u : -2, -1, 0, 1, and 2 are

2x+y--2, 2x-ly--1, 2x*y=Q, 2xly:I, 2x+y:2
In Figure 16.8.3 the constant u-curves are shown in green arld the constant i,l-cur.,,es in red.

Figue 16.8.3

Solution kl). The image ofaregion can often be found by finding the image ofits boundary.
In this case the images of the boundary lines a : -2, u : 2, u : 2, and u : 2 enclose
thediamond-shapedregioninth9x],-p1aneshowninFigure16.8.4.<

To dedve the change-of-variable formula for double integrals, we will need to understand
the relationship between the area of a smal/ rectangular region in the ,u-plane and the area

of its image in the -ry-plane under a bansfomation 7 given by the equations

x = x(u,u), y = y(u,u)

For this purpose, suppose that Ar and Au are positive, and consider a rectangular region S
in the au-plane enclosed by the lines

u-uA) tL=uO+' Au, t-U0, U:U0+AU
If the functions x(a, u) and y(a, u) are continuous, and if Aa and Au are not too large,
then the image of S in the]ry-plane will be a region R that looks like a slightly distorted
parallelogram (Figure 16.8.5). The sides of R a-re the constant &-curyes and u-curyes that
correspond to the sides of S.

Figure 16.8.4
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u=uo u=uo+Lu

Figure 16.8.5

If we let

r: r(u, u) : x(u,u)i+ y(u,v)i

be the position vector of the point in the r)-plane that corresponds to the point (a, u) in
the rurplane, then the constant u-curye corresponding to u : u0 and the constant ,l-curye
corresponding to a : a0 can be reprcsented in vector form as

rtu-u}l:xlu. u0ri I J(a. u0lj coNran, ururue

r(r0. u) -,I(r0. U)i I J,(ll0. Ulj (on.rarr/ -u1e

Since we are assuming Au and Au to be sma1l, the region R can be approximated by a
parallelogram detemined by the "secant vectors"

(4)

(5)

shown in Figure 16.8.6. A more useful approximation of R can be obtained by using
Formulas (5) and (6) of Section 16.4 to approximate these secant vectors by tangent yectors

as follows:
r(uo+ Lu, u6) - r( 0. u6) .

Lu

ar /3x 3r, \!_all:l^ i+;1jllr
.JU \d4 du /

. r(,0, uo + Au) - r(ilo, uo)D= 

-At

Au

3r /3x av \!-Au-I i+ lilAu
du \ iJ, du" )

where the partial derivatives are evaluated at (r0, u0) Gigure 16.8.7). Hence, it follows that
the area of the region R, which we will denote by A.A, can be approximated by the area of
the parallelogram detemined by these vectors. Thus, from Fomula (8) of Section 13.4 we
have

a: r(ao * Az, uo) r(r,0, rro)

b : r(ao, uo + Au) - r(r.0, uo)

0r ar I ll ar 3r
-Ali 

\ Aull = ll- I 
-6u 0u li ll a, 3u

L.u L.u (6)

where the dedyatiyes are evaluated at (r0, u0). Computing the cross product, we obtain

ijk

^-1 0

3x 3r___.o
Du 3u

The dete.minant in (7) is sufficiently important that it has its
notation.

dr 0r
lar 0y lq ax

_ la, a,lu _ la, u,1o

la* ayl lay a)l
lau ou I a, arl

(7)

own terminology and

lnage of Lt = ua + Lu

Fieure 16.8.6

Figure L 6.8.7
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16,ll.l L)Lt,tNl o\ If 7 is the transfom'iation tionr the ru plane to the;r_r'plane
defined by the equations ,r : ,r (ii. r), y: 1 (rr, u), thel the Jacobian o/f is denoted
by "/(r. r,) or by A(ir. \)/i)(u. N) and is defined by

lLr\ d.r

.1.\. , J :ttt lr' ;r r ',1
J(u., t

attt. t r ;i.\ i,\ ;:lrr :)r

Irr ir'I

[]sing the notation in this definition, it tbllo\\'s fi'om (6) and (7) that

dl!.1) k Ar Ar,
,,(/i. u )

fl ff l0rr.irl
JJ tr.t.:'at - JJ ttrrtt.r,.\r!r.d,, ,,,,,,;lro

where rve have attached subsclipts to the dA's to help iclentify the associated variables.

i) \' an

d// d 1.'

CHANGE OF VARIABLES IN
DOUBLE INTEGRALS

or. since k is a Llnit vector.

,llr. r rlAA '----- lA,, Ar t8/a(ri. r )l

At the point (ri 0. u0) this important formula relates the areas of the regions R and S in
Figure 16.8.5: it tells us that lbr.rr? aLl values oJ Lu and L.u, the oratt of R is tqtltroximatel.l'
tlte dbsolLttc valua of the Jttutbitul tinles tlTe areu o/ S. Moreover, il is provcd in advanced
calcLllus courses lirilt the relalivc cn-or in the approximation approachcs zero as A& > 0
and Af -J 0.

Our next objective is to provide r geon'retic motivalion tbr the following rcsult.

I6.ll,2 ( 1t\N(;t, ot: \1t{ABt.t, t.oRN1t t..\ I,oti DotrBl.Ft t\Ti-ta;ti,\t.s lfthe transfbr,
malion -\ : -r(1. u), l : 1,(ir. r-) maps the r.egion S in the ,u-plane into the regioo R
in lllc -r'plane, and if the Jacobian d 6, _r,)/d (r.r. u) is nonzero and does not change sign
on ,1. thcn with appropriate lestr-ictjons on tlte transfonnation lnd the regions it follorvs
that

(e)

Itl,\l \ltli. A precise statenent of conditions under which Formula (9) holds would take us

bcyond the scopc ol this course. Sullicc it to say that the fbrmula holds if 7 is a one-to-one
transformation. l(-r. r,) is contiNrous on 1i, the partial derivatives 01'r(tl. u) and _r,(u. r')
exisl and are continuous on S, and the regions R and S are not too complicated.

To nlotivate Fonnula (9), we proceed as fbllo\\,s:

Subdivide the region S in the r.u-plane into pieces by lines parallel to the coordinate
axes, and exclude from consideration any pieces that contain points outside of S. This
leaves only reclangular regions that arc subsets of S. Assume that there are ,? such

regions and denote the tth such region by .!i. Assume that 51 has dinrensions Aa1 by
Ar1 and. as sl]own in Figure 16.8.8a. let (Li, ui) be its "lower left corner."

As shown in Figure I 6.8.11b, the transfbrmation I defined by the equations ,r- : -y (,, u),
r' : ,f(r/. u) maps S( into a curvilinear parallelogram R1 in the -r1-plane and maps the
point (a|, ui) into the point (ri, t'[) : (,r (ai. ul ), ] (tli-, ui)) in Rr. Denote the area of
R1 by AA1.
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ln rectangula. coordinates the double integral of /(,r, _r.) over a region R is defined
as a limit of Riemann sums in which R is subdivided into rettungular subregions. It
is provcd in advanced calculirs coulses that under approp ate conditions subdivisions
into currilifiear p?jrallelograns can be used instead. Accepting this to be so, we can
approximate the double integral ol'/(r, r') over R as

ll jrr.ttat f 7rri..r^ rAAr1 i=

I r,.,,,,,.u'. rr,ri.u' l1:]. ]: -',,, ^,^ llrr// U)

where the Jacobian is evaluated at (ai, rl). But the last expression is a Ricmann sum
for the integral

tl ld(.\.r)ll ft.rttr. L)). \ \tt. t )) l - d4,,
JJ ld(rr.u)
J

so Fonnula (9) lbllows if we assurne that the enors in the approximations approach
zeroasr )+.r.

1r'^.11)

(.b)

Flgure 16.8.lj

Example 2

Fvalurtc

I I :.1A

where R is the region enclosed by the lines i - _r : 0, r _r,- l, r+,): l,and.r*r:3
(Figure 16.8.9c).

Solulitttt, This integral would be tedious to evaluate directly because the region R is
oriented in such a way that we would have to subdivide it and integrate over each part
sepamtely. However. the occunence ofthe expressions r - l and.r + ) in the equations of
Ihc boundarl :uggc\t: lhl the rranrforrnrti.rr

a : r * -"_, U : -I - )
would be helptul, since with this translormation the boundary lines

.r+-!:1, -r+-1 :3, .r 1:0, r -v:l
are constant r/-curves and constant r-cu.r'es corresponding to the lines

u:7, u:3, r'-0, r:1
in the tlu-plane. These lines enclose the rectangular region S shown in Figure 16.8.90. To
find the Jacobian d (,r, -r,)/0 (rr. L,) of this transibrmatioo. we first solve ( l0) for ,r and 1, in

( l0)

.L+,r=l

Figure 16.8.q
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terms of a and u. This yields

x=|@+u), y:|1u-u)
ftom which we obtain

tAx ?tx

a(x. vr ln ; l+

a\u, u) 
I 
a, a, l+ _

I Au A,

Thus, ftom Formula (9), but with the notation dA rather than dA,r,

il :-:, ^ - l l i11"..':,1 0o..

R,t

: [[Yl-! o, I r' t] 'y ur 2 '"'-tJ, J, ,ouou
,t

r .l 'r3: '. I unpll a,zJo l, r

- 1tn. /' udu=lh32 lo 4

rlzl r r r

tl 4 4 2

rl

REMARK. In retrospect, the underlying idea illustrated in this example is to find a one-to-
one transformation that maps a rectangle -t in the a u-plane into the rcgion R of integration,
and then use that transfomation as a substitution in the integral to produce an equivalent
integal over S.

Example 3

Evaluate

[[ 
",, 

oo
.t.t
n

where R is the region enclosed by the lines y: j-r and;r,:x and the hyperbolas l = 1/x
arld y :2/x (Figure 16.8.10a).

Solution. As in the last example, we look for a ftansformation in which the boundary
curves in the.r7-plane become corstant u-curves ard constant a*curves. For this purpose
we rewdte the four boundary curves as

vlrtL=;. 1= l. xy=1. xl=2alx
which suggests the txansformation

vu: -, u: xy (11)

With this hansformation the boundary curves in the,r7-plane are constant z-curves and
constant u-curyes corresponding to the lines

u: ), u:1, u: I, u:2
in the au-plane. These lines enclose the region S shown in Figure 16.8.100. To find the
Jacobian 3 (x, y)/3 (r, u) of this transformation, we fust solve (11) for .x and y in terms of
a and u. This yields

Figxre 16.8.10 *: Julu, y: rq;
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from which we obtain

0 (x, )) 
=

0 (u, v)

11
4u 4u

la* Ex l1l! \

la" a, I zu',l u 2Juu

lu, u,-l ,p r[;
lau ou I z,,l , 2,,1 ,

: 
) L' I',,! e" rtu ctu = : l,' " t^ tutf:,,,-,,,,1,

I
2u

CHANGE OF VARIABLES IN TRIPLE
INTEGRALS

Thus, from Formula (9), but with the notatior, dA lathet rar dA,!,

ll ," oo - ll ,l+loo., - 

" 

ll ), ,^.,
RSS

- !nl ft "",tr=L r") -"t\n).z Jt 2

Equations of the form

x: x(u,u,w), y: y(u,u,w), z:z(.u,u,w)
define a trunsformetion T from uuu-space to f,]z-space. Just as a transformation
x : x(.u,v), y : y(u, u) in two variables maps small rectangles in the au-plane into
curvilinear parallelograms in the,rl,-plane, so (12) maps smal1 rectangular parallelepipeds
in ,,r'u-space into curvilirear parallelepipeds in .r7z-space (Figure 16.8.11). The definition
of the Jacobian of (12) is similar to Definition 16.8.1.

For small values of Aa, Au, and Au, the volume Ay of the curvilinear parallelepiped
in Figure 16.8.11 is related to the volume Az Au Atu of the rectangular parallelepiped by

(12)

( 13)Fieure 16.8.11

I 0(x. v. zt I

AY lv |-"'--"': r ' l A.u L.u Au
l3(a. u, u) |

which is the analog of Formula (8). Usirg this relationship and an argument similar to the
one that led to Formula (9), we can obtain the following result.

16.8.4 cHANcE OF,VARIABLE FoRMULA FoR TRtpLE INTEGRALS. If the transfor-
mation r : x(a, u, w), y : y(u,u,1D),2:1(a, u, u) maps the region S in auu.,-space
into the region R in,q,z-space, and if the Jacobian 3 (x, y, 7) / 3 (u, u, u.r) is nonzero and
does not change sign on S, then with appropriate restdctions on the tansformation and
the regions it follows that

| | | t,,. r,,0r, - I I 1,"',. a. u,. rtu.,). u,. ztu. a. ut, 
I 

jl;l ;l I 
-",,, 14)

16.8.3 DEFINITIoN. If 7 is the transformation ftom ruu-space to ;r1z-space defined
by the equations "r : x (u, u, u), y : y (u, u, w), 2 = 2(u, u, w), then the Jacobian of
? is denoted by J(u,u,w)otAQ,y,z)/A@, u,u)andisdefinedby

3x 0x 0x

A" A, A*
0y 0y 0y

0u 0u 0w

dz dz. dz.

A" A, A*
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Example 4

Find the volume of the region G enclosed by the ellipsoid

,+-+:-tD' a'

Solution. The volume y is given by the triple integral

v-- llldv
.t.t.t

G

To evaluate this integral, we make the change of variables

x:au, !:bt. z:cu (15)

which maps the region S is auu-space enclosed by a sphere ofradius I into the region G
in rlz-space. This can be seen from (15) by notjng that

x2 ,'1 ,2',--+', - I become' u)l u:tu.,2-l
11' ('

The Jacobian of ( 15) is

hx i')x bx

A" A, A"t

rjl dy iiy
Au Arl Htl

d: \lZ. dz

A, A, A,

3 (,r, t, z) _
0 (u, u, w)

a00
- 0 b 0 -ahc

00c

Thus, ftom Fonnula (14), but with the notation dy rather than dK);,

, - ill ,, - III #i* av. ,, - ",,lll av,,'
G5S

The last integral is the volume enclosed by a sphere of radius 1, which we know to be {2.
ThuS,thevoluneenclosedbytheel1ipsoidiSv:1Iabc.<

Jacobians also arise in converting ftiple integrals in rectangular coordinates to iterated
integrals in cylindrical and spherical coordinates. For example, we will ask you to show in
Exercise 42 tlat the Jacobian of the transfomation

r:rcose, .):rsin6, z-2.
is

3 (r, l, z)

aQ, 0, z)

and the Jacobian of the transfbrmation

;r: psin@cosd, y = psin@sind, z= paosO

is

A(r, r. . )
- ,'srn a,

a@,6.a)
Thus, Formulas (6) and (i0) of Section 16.7 can be expressed in tems of Jacobians as

6 (x. v. zt
f(r co:0. r:inA. z.t ' - dz dr d0" d(t,0, z)lll rc,,.a,,: lll

6 appropnate
linits

( 16)
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lll rc','a,,: lll
G aplropriate

lim s

f tp sr; O cos0. p sin Q sin 0. pcosqylllldp dqd0'a@.6.0) '

(17)

REMARK. The absolute value signs are omitted in these formulas because the Jacobians
are nonnegative (see the restrictions in Table 13.8.1).

ExERcrsE SEr 16.8 E cAs

In Exercises I 4. find the Jacobian 0:x. y t/0tu. ut.

1. x:ul4u, y:3u-5u
2. t - u !2u2, y:2u2 -u
3..r =sina -cosrr. ):-cos&+sinu

2u 2u
4. x: u, y: -u.+. u.+u-

In Exercises 5-8, solve for.x and y in tems of a and u, and

then find the Jacobiar:,6(x, y) l0(u, u).

5. u :2x 5y, u:x*2y
$. y-sr, p:ye-t

j.u=x2 y2, p:x2 +1,2 (r>0,)>0)
8. r:r), u:xJ3 (x >0, l>o)

ln Erercises 9 12. findfieJacobian Atx. ),.2)/Atu.u.ut.

9. x:3utp, y=u-2w, z=u+w
10, X-u-uu, y:uL) uD1!) Z:uuu
ll. u:xy, D:!, u:x+z
12. u-x+J+2, u=x.+y-2, w=x l+z

In Exercises 13-16, sketch the image in the j!1,-plane of the

set S under the given transformation.

x=2u
)=3u

17. Use the transfomation u : jr -2j,u:2x+ytoflll,d
I I t - )\'
I I rlA
JJ 2x+t

where R is the rectangular rcgion enclosed by the lines
x-2y:l.r-2y:!-)x -r): l.2x+): J.

18, Use the tansformation , : r + y, u : r - ) to flrld

llr"-vte^'-"dA
JJ
n

over the rectangular region R enclosed by the lines

't+y:0,t*) : 1,;-y: 1,x-t=4.

19. Use the tansformation a : j(r*y),u - ](,t y)tofind

/ I sin ltx + y)cos l{ir - },)dA
JJ
rt

over the trialgular region R with vertices (0,0), (2,0),
( 1, 1).

Use the transformation u : yf x, u : ry to find

l[ 'u'at.t.l
R

over the region R in the fiIst quadrant enclosed by ) : x,
y:3x,xy=1,xy=4.
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The transfbrmation .r = 4I. .r' : hr kt > 0. b > 0) can
be rewrittcn as.t/a = a. t/b : t'. and hence it maps the
circular rcgion

,l+ulg1
into the elliptical region

tl \':__L:<l

In Exercises 2l-24, perform the integration by nansforming
the elliptical region of integration into a circlrlilr region ol
integratior and then evaluating the transfornted integral in
polar coordinates-

21. ll Jl6l: I gr'./A. whcre R i:, the reEion erclosed hy

thc cllipsc (.rrl9) + (12/ tf.,) = t.

22. l l ( "' | ./A. , hcre R r\ the lesion encl,rred b1 rhe

ellipse (.r:/4) + 1.: : t.

:-t. //.inr+.rr - q)rr./A. whcre R rs lhe rcgion in rhe fir,r
.t.t

quadrant enclosed by the ellipse,l-rr + 9t,l = I and thc
coorditute axes.

24. Show that thc area of the ellipse

t- 1_

-+::l,t) b)

rs nqh,

ll .1. /,. und ( ilrc posilive conslunts. then the lranslulrrHtion
-r = 4r,, J : bt. : = cu, can be rewrittcn as .rfa - u.
y/b: v,:/c: u,, and hcncc it maps the sphcrical region

rrl+u2+r,2:l
into the ellipsoidal region

.\' \.-;*;*;Jl
Q- t)- ('

In Exercises 25 and 26, perlbrm the integration by rranstbrm-
ing the ellipsoidal region of inlegration into a spherical region
of iDtegration and then evalualing the transformcd integl-al in
sphe cal coordiDates.

ZS. 
| | | 

.rt a v. *ncrc G is rhe region enclosedby rhe ellipsoid

a
,r-l /..:, -l

26. Find the moment of ineftia about the .r-axis of the solid
ellipsoid bounded by

.r: , .r'l , :l ,--T;f;-l
-D-a

given that d(.r. ) , r) : l. lSee the definition prececling Ex-
ercise 39 ofSection 16.7.1

In Exercises 2?-30. evaluate the integral by making an ap-
propriate change of variables.

27. I I -- ::,fA. wherr R r. rhc r;gion en( tu.eJ by rhc line(JJ ) +'+r

.r'- 4r. r' :4.r -r 2. r' : 2 - -1.r. I = 5 ulr'.

28., / (.\'r-ri),i.4.where ni\lherecrirn.sul rregione0closed
.t.t

bSrheline.r =-r., - | -r.) =.'.r': r 2.

li" sin/r - rl
29. I I ' ,/A. whrre R is rhe rliirnpulrr region en-

.,1../ eos(r+t)
ts

closed by the lines r' :0. 
-r' =.r..r + ! - tr/1.

n. 
.[ [ "t' 

rr/r\+t) 1A, where R is rhe rcgion in rhe lirst quad

rant enclosed by the trapezoid with vertices (0. l), ( l, 0),
(0, 4). (4. 0).

.31. Use an applopriare change of variables to find the urea ofthe
region in thc first quadrant enclosed by the curves r' = .\,
-r' : 21, .t = 11. .r : .1,r.2.

32. Use an appropriate change o1'viLliablcs to finci the volume
ol the solid bouncled above by the plane _r + l.+ a = 9,
below by thc.n.plane. and larerally by the elJiptic cylinder
4.rl +9-r'l = 36. lHirr.. Express the vdume as a double inte,
gral in,w-coordinates. then se polar coordinates to evuluate
the transfbrnted integral.l

33. Use the transfin mation ,r : ,r. | =; - -y: r, - _r) to find

f/Ir., - ..rt.'''.rv
.t.t.l

C

where G is thc rcgion enclosed by the surfaces.t = l..t : 3,
; :,1..: :.\'+ l..t,\' - 2, rr,:4.

34. Use the iransfornlation : ,{Jj. u = J.::. r, : -tit to find the
volume ol tlte regioD in thc llrst oclant thal is enclosed by
the hlperbolic cylinder. r.r' : l..r.r' = 2. r- - l. r..- : 3-

'l; : l. -r: :4.
.15. (a) Verify rhar

a. l't d' b:l .t Lt;--l) t, ,t11,;-h lll
,.t

, r .ir .: J.l ,yr1-ds r b._ rJyl._l

(b) If ,t = .r(ll. u). \' - r'(t/. t) is a one to onc trunsfor-
mation. then ir : u(.r. -r'). r. : r1(r. l.). Assurrring the
necessary dill'erentiability. use the result in part (a) and
the chain rule to show that

;l( \ , f) i,(r/. r,)-,--l
;J(lr. r') iJlr.1l

36. tn each pafl. confirm thar the fornrula obtained in part (b)
ofExercise 35 holds fbr rhe given llansfomation.
(a) ,t : tr - au. r' : rru
(b) r : riu, ),: rr2 (r > 0)
(c) -r: l(&r * Lr2), _v: +(r, * u,) (a > 0. u > 0)



The formula obtained in part (b) ofExercise 35 is useful in in-
tegration problems where it is inconvenient or in]possible to
solve the transformation equations r : I (r, 1),y:g(x,1)
explicitly for -r and -r, in tenns of rr arld u. ln Exercises 37-39,
Lrse the relationsllip

a (\, v) . f Jtu.,r\
0t.rll -'l ,1\^-)

to avoid solving for.t and I' in tenrs of a and u.

Use the transformation r : -rJ, l - r),4 to find

I I sint: ytJA

where R is the region enclosed by the curyes.r)' : z!
-r:-r' : 22, rl4 : l. xra :2.
Use the transfbrmation rr : 12 -v2, u : --2 + -v2 to find

[ [ ^, ,,0.I,I

where R is the region in the IiISt quadrant that is enclosed

by the hypelbolas -r2 )2 - 1. -r2 - )2 : 4 and the circles
,r2 + -y: : 9.;r2 + r'l : 16.

Use the transformation r : r), 1] : 12 y2 to find

[ [ ut v')''' ,/A

where R is the legion in the lirst quadrant enclosed by the

hypelbolas ry : 1, r) : 3, -,c2 - y2 : 3.12 )2 :4.
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The three variabie analog ofthe formula derived in parl (b)
of Excrcise 35 is

0(.i, r',:) il(ri. u. u) :I
a(r, r. u) iJ(i, ),.)

Use this result to show that the volume y ofthe oblique par-
allelepiped that is bounded by the planes r + ) + 2: : +3,
x 21 *: - +2-4.r + J i: - t6is V = 16.

(a) Show that il R is the triangular region witlr vertices

,10.

41,

37.

38.

39.

(b)

(0,0), (1,0), arld (0, 1), fien
tt f
ll fV+tttlt- | trf t.ultlu

J J Ja

Use the result in part [a) to evaluate the integral

I I c"a'dA

Consider the transformation ,r : 1q65 B, } : 1 5i1B
from rectangular to polar coordinates, where r - 0.

Show that

a(.r.l i

-ll(t. H)

Consider the tlansformation x - psin@cos6. _i, :
p sin d sin 9, i = p cos @ from spherical to rectangular
coordinates, where 0 :< r, : 7. ShQw that

I d(r. i,.ll........._]: : D-Stnd)
I ar p.0. r!\

42. (a)

(b)

1. The double integral over aregion R in thejt-l-plane is defined

ll1't.,t,tt- lirr | /,'1.r^rA4
I t -+'-

Describe the procedure on which this definition is based.

The lriple integral over a solid G in an ,r-!:-coordinate sys-

4. (a) Write down parametdc equations for a sphere ofradius
d centered at the origin.

(b) Write down paranetric equations for the right circular
cylindeI ol radius o and height h that is centered on th.]

;-axis, has its base in dre rl,-plane, and extends in the
positive : direction.

5. (a) In physicaltenns, what is rneantby the center of gravity
of a lamina?

(b) What is meant by the centroid of a iamina'l
(c) Write down fomulas for the coordinates of the center

oi glavity of a lamina in the,r,r-plane.
(d) Write down formulas for the coordinates oI the centroid

of a lamina in the,n.plane.

6. Suppose that you have a double integral over a region R in
the -U' plane and you want to transform that integral into .rn

equivalent double integral over ir region S in the r.rrr plane.

Describe the procedure yoLr would use.

7, Let R be the region in the accompanying figure. Fi1l in the

missing limits of integration in the iterated integral

tem is def,ned as

lll trt..,..tdv -
G

Lim t fr ri. ,i..; )a\ a

Describe the procedure on which this deflnition is based.

(a) Express tl're area ofa region R ill thery-p]ane as a double
integral.

(b) Express the volume of a region G in an ,rfr-coordinate
system as a triple integral.

(c) Express the arca of tbe portiol'i of the surface

r : /(r, l') that lies above the region R in the.ry plane

as a double integral.
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ttf r)
| | .16. tltrr ttrJ- J-

over R.

8. Let R be the region shown in the accompanying figure. Fill
in the missing limits ofintegration in the sLrm ofthe iterated
integrals

L' l",,^\)d)d.r" l.' | 1,,.,,a;d,

over R.

B' J,, 1"",,,=, 
,,, ,'

.r/l ,rr1+u\r'r

". 1,," J., rlrra t,t > 0t

In Exercises l7 nnd 18. evaluate the double integral.

lU. //.r:rintrA.l: R i\lheregionthat isboundedbyr :.r]
.t.t

): 13, and J = 8.

tr
18, / / r+ .rj - r 

jrrlA: 
R i\ the \eclor in the nrst quildrilnr

.t.t

bounded by the circle -r: + ,1? = 4 and the coordinate axes.

19. Convert to rectangular coordinatcs and evaluate:

I I rsin)0,lr rlt

Conven to polar coordinates and evaluate:

"i ",ti=I I 4tr.dr.rt.r

Convefi to cylindrical coordinates and evaluate:

,l " "/l= " 
lo

J . J "r= J,,.-,,.'r"/:'/"/'
Convert to sphcrical coordinates and evaluate:

. r 
^ "{:ll ^ 

-,\ -: ^1I I t"I' J' J' 
' 

+rY, +): 1'J 'iY(1r

Let G be the region bounded above by the sphere p = 61

and below by the cone d : z/3. Express

[[[ ,,' *,=,,rv

In Exercises 15 and 16, sketch the region whose area is rep-
resented by the iteratcd integral.

as an iterated integral in
(a) spherical coordinates (b) cylindrical coordinates

(c) rectangular coordinates.

24. Let G = {(.r. r'. :) :,r: + _r'r : I 3 4.r }. Express thc vol-
ume of G as an iterated integral in
(a) rectangularcoordinates (b) cylindricalcoordinates.

In Exercises 25 and 26. find the irrca of the region using a

double integral.

25. The region bounded by -r : 2-rr. 2.r +,\' : 4. and thc .r-axis.

26. The region enclosed by the rose r = cos 3d.

t4. 
J,', L'v:,t,,tl

(a) Fjnd constants a . b, c, and d such that the transforma-
lllo\ r : au I br, v : cL + dr maps the region S in
the accompanying ligure into the region R.

(b) Find the area of the parallelogram R by integrating over
the region S. and check your answer using a formula
from geometry.

21.

10.

Figure Ex 9

Cive a geometric argunrent to show that

t- f"0<, I rin-/tv,/r',/r < r'
Jr Jo

ln Exercises I I and 12, evaluate the jterated integral.

I l.
rl .2,

J ,,, Jo "o"'"" d 

' 
a*

"t "t\

J,, J-, 
*"" a" ar

In Exercises l3 and 14, exprcss the iterated integral as

an equivalent iterated integral with the order of integration
revcrsed.

n. 
lu' lo''' ". ",- 

a, a,

Fisurc Ex-8Figure Ex 7



In E\ercises 17 and lli. lind the rolunre of thc solid using il

lriple inte-sral.

27. The solid hor.rnclecl bclorv by thc cone (, : ir/6 a .l llbo\rc

by the plrne.- : 11.

28. The solid cncloscd bclween tlle sudilccs -! - fl + .l rncl
t: I r'l.

29. Find the surlilce ifcil o] lhc portion of the hlpclbolic
puaboloid

r(r. r) : (/r-l- r')i + (r/ l,)j + r/r,k

tbr \\hich r/l + r': 5 J.

.10. Firrd thc surlucc arc! ol-the po iolr ol lhe spiral ramp

r(]l. r ) = rcos r i + ir sin rj + rk

lbr$hich1) : r/ 5 2.0 : r a lll.

ln Exerciscs 3l arcl 32. lincl the ecpration ofthe trngent pliiuc
to thc \urliLce lt the spcciliccl point.

31. r: r.i + rli + {Ul I r,l)k: l/ : l. r, :2

32. .r - rr cosh r,. .r' = rr sinh r'. -- : rrl: ( 3.0.9)

ln Exercises -iJ rnd J-1. lind {he centroid of the re!ion.

33. The rc-!:ion boundccl bl r: - Jt and rl :3(r l).

34. The lppcl hall ol the cllipsc (.r/r)r + (r''/r)r : L

In Exerciscs 35 lncl l(r. lind thc ccntroid ofthe solid.

Supplementary Exercises 1053

thc accompanying ligure thal is s\\ epl otlt b\ sliding a cit cle
ol ladius I along the helix

.t
.\ -.r'\/. f -\rlr,. :=- {i) i Jtl

J
in such lt way that the circle is irlivays centered on tl]e helix
and lics in thc planc pcrpcndicular ft) thc hclix.

The accompanying llgure shows thc gluph ol an asroi.Lrl
sphere

\- +\ *:- -,r
1l) Sho\\' that this \Llrlace can be repre\ented pirl.alnelrically

r : rr(cos u cos r,)l

\- :.r(sinr cos r)l (0 < lr 
= 

7. () 
= 

r : l7)
: : d(sin r)l

(b) LIse a CIAS to approximatc (hc surfircc illcii in thc casc

where .l : L
(c) Usc a CAS to approximrtc thc volunte in thc casc $ here

',lr S r,'u thrt I lr r\:r. r \('lunlL \ -r.T/J5

l11rrt. Let.r : I cosl /r llnd ) = / sinl rr. whcrc
0:/:land0:.uarl2.l

[E 3e.

35. The solicl boundc(l ltro\e lry the conc with veflex (0,0. /r).
boundeclhelo*, by thc.\\'pllne. anclwith bare.rI+.r'l j:,rl
in the \\'lrltl]c.

The soljd bounrlccl b1'.r' :.1':. .- : {). and r +: :,1.

Show thal

tllrI I 

-,/r,/r 

?t
.1,, 1,, il+rr tr.rr l

[Halr/. See L\crcisc.i7 ol Section 16.].1

38, It c n be pro\'c(l thilt il :l bounded plane regio slides rlonll
a heli\ in \uch l !\'lv that thc |egion is al*11s cfthogonal
tu l . llcli\ 't.(.. ,,ft11.,,.:,.n.ll tn thc .rnit rr't!s rr \r.'rr\l l,'
the helix). thcn lhc volunre swcpt oul by the regiol] is c(luitl

lo the rrell ol thc rcgion timcs the distance tr-aveled by ils
centroid. [-lsc this rcsult to iind thc vo]Lrlne of the ']ubc" in

l i!r rc E\-lN Fi!I c I-\-rrr

.36.

37.

,10. Find the averagc distaucc irom u point inside a sphere ol rir
dius./ lo the center. [See the dclinilion prcceding Exc|clsc
l5 0l Section i6.5.l

,ll. (r) Descfibe the surface thlt is Icpfcscnlcd b),the panmet
nc equatlons

.r - a/ sin gt co\ /)

I - b sin d sin ll

rvhcLe a > 0.} > 0.ancl r'> 0.
(b) Use a CAS lo lpproxinrirte the illcir of the suriace lor

a:2.h:3.t:1.

\0 
= 

4, : it. 0 : A : 2r)
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ff .#ou have reached the final chapter in this text, and

in a sense you have come full circle back to the roots of
calculus. The main theme of this chapter is the concept
of afow, and the body of mathematics that we will study
here is concemed with analyzing flows of various types-
the flow of a ffuid or the flow of electricity, for example.
Indeed, the eady writings oflsaac Newton on calculus are

replete with such nouns as "fluxion" and "fluent," which
are rooted in the Latin/Lens (to flow). We will begin this

chapter by introducing the concept of a vectorfeld,which
is the mathematical description of a flou In subsequent

sections, we will introduce two new kinds of integrals
that are used in a variety of applications to analyze prop-
erties ofvector fields and flows. Finally, we conclude with
three major theorems, Green's Theorem,lhe Divergence

Theorem, and Srokes'Theorem. These theorems provide
a deep insight into the nature of flows and are the basis

for many of the most important principles in physics and

engineering.

il-rr Fiii,ilr,cir
Cli i lr s.r

Effi\ '.

pvt "o "u. "i
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VECTOR FIELDS

I7.1 VECTOR FIELDS

ht tltis sectiort te .r ill crnsitlcr Itttldio s thut.lssociate tedors rith points in 2-spcrte
or 3-spdce. We fill sc( tlttt suclt liotttiorts pl.l\' tut intportetlt nlc iu the studr of fluitl
.flotr,, ,qratitution.ol fttrta lialds. clcttntrnagnetic .liLrce.helds. atld u tirlt' runge ol otlrcr
ttltplicd prcl:tlents.

To motivate the rnirlhcn ticol ideas in this section, considcr rL arrlt poinl mass located al
any point in the Universe. According to Newton s Universal Law ol Cravitation, the Earth
exerts an atffactive lorcc on the nrass that is directed toward thc ccnter of the Earth and has

a magnitude that is invcrscly propoltioDal to the square ol thc distance fionl thq mass to
the Eaflll's ccnter ( Figure I 7. L I ). This association of lbrcc vcctors wilh poinrs in space is
called the Earth s ,g nttitotiorurl .lield. A sirnilar idea ariscs in fluid llow. lntagine a stream
in which the *ater flows horizontally at every level. and colsider thc laycr of rvater at a
specific depth. At cach point of the layer. the water has a certuin velocity, wltich wc can
represert by a vector- at that poinl ( Fi€lule I 7. 1.2 ). This assoc iation ol velocity vector s rvitl]
peints in the two dilnensional Jayer is called thc veloc|t fteltl at tl'raL )ayer. These idcas are

captured in 1hc following clelinilion.

l7.l.l nl l'\ltlr)N Ayecf{rrfel(ti't luncrionrh,tl il\.n rt(\ .r untqLtc vcclor I I P,
with cach point P in a region of 2-space or 3-space.

Observe that in this clcfinition thele is no re1lrence to a coordinlte systen]. Howcver, tbr
computational puryoses it is usually desirable to introduce a coordiDatc systcnr so that vec-
tors can be assignc(l conrp(nrents. Specifically. if F( P) is a vcctor held in an .n-coordinate
system. tlren the poinl P will have somc coordinates (.r. 

-t ) and thc associated \,cctor rvill
have components that iue fhnctions of .r and,r. Thus. the vccbr tield F( P) can bc cxpressed
AS

F(.r. r') - .l(.r. r')i + t(.r. r').i

Sinrilally. in 3-space with iul .r.\'.:-coordinate systern, a vector lielcl l'(P) can be expressed as

F(-t. r',:) : .l(.r. r'.:)i * s(.\..\'..-).i f /r(r. r',:)k

A vector lield in 2-space can be pictured gcometrically by drarving rcprcsentartive Reld vec-
tors F(,r. I ) at some wcll-chosen poirlts in the u'plane. But..just ils it is usually not possiblc
to describe a plane cun'e coInpletely by plotting finitely many points. so it is usually not pos-
sible to describe a vectoI lleld conrpletely by drawing finitely many vectot s. Ncr,crtheless.
such graphical rcprcscntations can provide uscful irrfbrnation about thc genelal behavior
of the field if the lectors are choscn appropriately. Horvelcr. grirphicul repleseDtiltiurs of
vector fields require a subslantial rnrount ofcoDrputation. so they ale usually crcated using
cornputeIs. Figurc l7.l .3 showr fbur compu{er-gencrated vector liclds. Thc vector field in
parl (.!) mighl dcscribc thc velocity of the current in a stream al valioLts depths. At thc
bottoln ofthe streanr the velocity is zero, but the speed of tlte cLtrrcnl incleases as the depth
decreases. Points at the samc dcpth have the same speed. Thc vectol lield in paft (lt) might
describe the velocity t points on a Iotating whcel. At the center ol thc whccl the velocitv is

zcro. but the speed increases wilh thc clistance ti-om tlte centcr. Points at tlte sanrc distance
flom the center havc thc sanlc speed. The veclor llcld in part (c) might describe the Iepulsivc
tbrce of an clcctrical charge-the closcr to the charge. the grcatcl the tblce of repulsion.
Part (d) shows a Yector 6eld in 3-space. Such pictures tcnd te be cluttered and hence are

of lesser value than graphical rcprcsentations of vector ficlds in 2-space. Note also that the
\.ectors in pans (1r) and (c) alc not to \cale their lengths have been cornpresscd frrr clarity.
We will follorv this procedure througlloLrt this chapter.

I ,il

Figurc 17.1.1

- _ ,,"- L-

4.,- < .\*-..\ *- 
-

li!!rc 7ll

GRAPHICAL REPRESENTATIONS OF
VECTOR FIELDS
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Vetkr'.t not to .v:0le

'. -.-'
/ _i\ 

\, ---:)i ,t
t// /,-\ \\\''/.-.-, '\\\//tiiA',^itll

ll|.t,"!)_i.) 111llt.'\\J:t/tl'\\\\r--7_//

\' \.--1-- ,,/.a.--__--
.-.t 

--0

I

3 l

Fgurel7l.l

l0t

FIr, r r= \lr i

(.a)

321012
l

F(:r.\') = r'i +.rj ,

l

GmM r

-ri + tj
l0(i'+ \ )'-

l'( r. r)

(,)

.rr + r'r +:l{ :

Ftr. r. )= ;--- 
-lr-+r_+")''

(d)(.b)

FOR TIJE RFADER. If you have a

the relevant documentation and try
Figure 17.1 .3.

graphing utility that can generate vector fields, read

to make reasonable duplicates of parts (a) and (D) of

A COMPACT NOTATION FOR

VECTOR FIELDS

Sometimes it is helpful 1r] denote tlre vector fields F(-r. r.) and F(x. 1.:) entirely in vector
notation by identifying (jr- t,) with the radius vector r : .ri + lj and (r.1,.:) with the
radius vector r : .ri + .l'j + :k. With this notation a vector field in ei|her 2-space or 3-space
can be written as F(r). When no confusion is likely to arise, we will sometimes omit the r
altogether and denote the vector lield as l'.

According to Newton's Universal Law of Gravitation. obiects with masses nr and M attract
each other with a force F of magnitude

GnMFl- . (1)

where," is the distance between the objects (treated as poirt masses) and G is a constant. If
we assume that the ob.ject of mass M is located at the origin ol'an 4r-r--coordinate system and

r is the radius vector to tbe object of mass ,i, then r = lr L and the force F(r) exerted by
the object of mass M on the object of mass nr is in the direction of the unit vector -r/ lr I.
Thus. fron ( 1)

INVERSE-SQUARE FIELDS

CnM
F(r) = 

-:---,:----:-r 
(.2)

lrl- r lrl'
11' n and M are constant, and we let c : Gt11M, then this formula can be expressed as

Fr"r - 1"
lrl '

Vector fields of this form arise in electromagnetic as well as gravitational problerns. Such

1ields are so important that they have thcir own tenninology.

Observe that if c > 0 in (3), then F(r) has the same direction as r, so each vector ilr the
field is directed away from the origin; and if c < 0, then F(r) is oppositely directed to r, so

U..tors ,ot to t.tl.

si/,4
':741rN:



-l

1058 Topics in Vector Calculus

GRADIENT FIELDS

eacb vector il'r the field is directed toward the origin. In either case the magnitude of F(r)
is inversely proportional to the square of tlte distance from the terminal point of r to the
origin, since

lc l,tr'/r)l- l r :,
lr l' l'lll

We leave it for you to verify that in 2 space Formula (3) can be wdtten in component folm
AS

Frx. yr - ---L-rxi yjr
(x. + ).r_,.

and in 3-space as

F{.r.)..)=:; f ;;;(,ri ryjlzk)
lx'+y'+z')''' (5)

(4)

lsee parts (c) and G/ ) of Figure 17.1.3].

Example 1

Coulomb's law states that the electrostatic force exerted by one charged particle on tnother
is directly proportional to the product ctJ the chorges and inversely proportional to the
sqtnre of the distance befiNeen them. This has the salre form as Newton's Universal Law of
Gravitation, so the electrostatic force fleld exerted by a charged particle is ;in inverse-squilre
fleld. Speciflcally, if a particle of charge Q is at the origin of a coordinate system, and if r
is the radius vector to a particle of charge 4, then the force F(r) that the particle of charge

C exerts on the particle of charge 4 is of the form
n()F(r)- '- r

4nep rl r

where e11 is a positive constant (ealled the permittivity constant). This formula is of form
(3) with c : qQ/4treo.

An important class of vector fields adses ftom the process of finding gr.adients. Recall that
if @ is a function of three yadables, then the gradient of d is defined as

Ab A(h Abvd: +i+ ^ j+; k
,-r r dt dt

This formula detines a vector field in 3-space cailed the g/a dient Jield oJ O.Similarly, the
gradient of a function of two variables deiines a gradient fieid in 2-space. At each point in a

gradient lield where the gradient is nonzero, the vector points in the direction in which the
rate of increase of d is maxirnum.

Example 2

Sketch the gradient lield of q'(r, y) : r -1- ;y.

Solution, The gradient ofd is

Ab A(hvd:ali+^"j:i+i

w1]ichistl]eSameateachpoint'ApoItiono1.thevectorfieIdisSketchedinFigurel7.I.4'<

If F(r) is an arbitrary vector field in 2-space or 3-space, we can ask whether it is the gr.adient
fleld ofsome function @, and ifso, how we can find @. This is an impo.tant problem in various
applications, and we will study it in more detail later. However, there is sone terminology
for such fields that we will introduce now.

5

3

2

I

Figure 17.1.4

12345

CONSERVATIVE FIELDS AND
POTENTIAL FUNCTIONS
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17.1.3 DEFI\lTIoN. A vecror ficld F in l-sp.rce or -l spilce is silid to be c onservative
in a rcgion il it is the gradient field 1br some firnction d in that region. The tlnction @ is ,

cdled apotential funclion fbr F in the region.

Example 3

Inverse square ilelds are conservative in any region that does rot contain the odgin. For
examplc. in the two-climcnsiolrill case the function

c
dr.r. r)- , (6.r

lr + f )'

is a potentinl f'unclion lor (.1) in any Iegion nol containing the origin, since

tln) .JdV/tt. i.) =ri+- j
ilr dr

r'j
-i.i

1., .l r:t1 - t\- | \'./ "

(:

. .i.ii i ,.i,(.\ + r')'
: F(.r, r,)

In a later section we will discuss methocls tb. finding potential functions for conservative
vector fields.

We will now define two imporlant opelzrtions on vector tields in 3 space the tlivergetrte
and the carl of the field. These names originate itr the study of fluid flow, in which case the

divergence relxtes kr the wly in which fluid Rows krwarrl or awry ti(nr iL point and the curl
relates to the r-otlltional propertier of the fluid at a point. We u"ill investigate tlre physical

intelpletations of these operatiolrs in nore detail later, but for now we will lbcus only on

their co putation.

17.1.:l DEI'rNlrroN. 11 l'(-r. ),. :) : .l(.r, ),. :)i * g(-r, t.;) j * l(r. .),. . )k, rhcn $c
defite lhe divergertce o/ l'. wlitten div F, by

.]f .') p lltdivF=1+--:+-a.rr A,! Az.

(1)

17,1.5 DEFrNrrloN. llF(r. r,, ") 
:

define the carl o/ F, written curl F. by
l(-r, r', :)i * g(-r. .1 , :)j + /i(.r. l', :)k, then we ,

(8)curl F = (# - #)''' (# #),-' (# - #)-

RhNl,\ltK. Obserye that div F and curl F clepend on the point at which they are computed.

and hence are more properly vritten as div F(-r. r,.:) and curl F(r, r', r). However. even

though these flnctions are exprcssed in terms of -r, r', and:, it can bc provcd lhat thcir
values at a fixed point depend on the point but not on the cooldinate system selected. This is

important in applications, sincc it allows physicists and cngileers to conpute the curl and

divergence in any convenient coordinatc systcm.

Befbre p|oceecling to some exanples. we note that div F has scalar values, whereas curl F
has vector values (i.e., curl F is itself a vector lleld). Moreover, tbr computational purposes
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it is useful to note that the formula for the curl can be expressed in the determinant form

l: i Il
"".r 

r: la .a d 
i"""' - a' a" tl (e)

It c hl

You should verify that Formula (8) results if the determinant is computed by interyreting
a "product" such as (a/dr)(g) to mean AglA.rr. Keep in mind, however, that (9) is just i
mnemonic device and not a true determinant, since the entries in a determinant must be
numbers, not vectors and partial derivative symbols.

Example 4

Find the divergence and the curl of the vector field

F(r, -r, z) : "r2.yi 12.r'3zj * 3:k

Soluliort. From (7)

^. 
a il-divF-. t.ritf )-:-(2rr.) - -(3.:)dr dI da

: 2rI * 6,y2: -l 3

and from (9)

J

a

qt

a
(32) - -i,;

Thus

di"r:.1* (;). * (i). * (;)l

kl
al

I

a.l
r. 

l

rz".,1l i1f],.,'y, 3t:.r'l iJ Ld: dX J

'. f lrz1,.-, - lt,,''rl r.
L,Jx d-\' I

tl
t^

",,.t 
R = l1

I i)r

1,,,,

_[a
Lar

= -2)3i * .r2k

r()tt tHl- ItFir\t)FIt Most computer algebra systems can colnpute gradient fields, diver_
gence, and curl. Ifyou have a CAS with these capabilities, read the relevant documentation
and use your CAS to check the computations in Examples 2 and 4.

Example 5

Show that the divergence of the inverse-square field

F(.r. r'. :) - . --*fri + t j + :kr

is zero.

Soluti\ . The computations can be simplified by letting r = (x? + )2 + 12) 
t/2, in which

case F can be expressed as

- cxi - cyj - cZk Lx . cv .2.l(r'. \.:i = -------- = -;i-;,i ;k' fJ r) r." rr
We leave it for you to show that

0rxOrjArz
0xrdlr0zr

(10)
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But

0 r .r\ r lt -.r (3rr)(t/r)
-t-t-a.r \rll (rr)2
0 r!r I 3tl

t:t:-- I
iJr \rrl 11 15

* (;) :: 'i

7 3x2

THE V OPERATOR

Substituting these expressions in (10) yields

tJ Jr2 Jy Jz2l ti Jr'IdivF-,I l-,1 -l- 0
fr' ,i I Lr' ,.'l

Thus far, the symbol V that appears in the gradient expression V@ has not been given a

meaning of its own. However, it is often convenient to view V as an opemtor

v: i+-.i *^ k
dx d)) dz

(l i)

which when applied to d ("r, ), :) produces the gradient

db ab d(bv0--. i+ .i +-k
d,i d't t17

We cau (11) the del operator. This is analogous to the derivative operator d/dr, which
when applied to /(r) produces the deivative /'(.,r).

The del operator allows us to express the divergence of a vector field

F: f("r, ), z)i + s(x, I, r)j + t(x, r, z)k

in dot product notation as

At 0s AhdirF-V.F---:---:+a.\ Ay Az

and the curl of this field in cross product notation as

(12)

(13)

The operator that results by taking the dot product ofthe del operator with itself is denoted
by V2 anrl is called the Laplacian* operator. Thrs operator has the form

,a)*a2v':v.v:_*_*Dx2 3y, 022

When applied to d (r, y, z) the Laplacian operator produces the function

^ tl'h d'h tl'h
v,o - { * _ * -.tx r1l]. t)z

Note that V2d can also be expresse<i as div (Vd). The equation V24 : 0 or, equlvalertly,

A2 (h Azk ,):,t

-*-+-:0o,\ ' oy' t11'

is known as laplac e's equqtion. This partial difibrential equation plays an impofiant role
in a wide variety of applications, resulting from the fact that it is satisfied by the potential
function for the inverse-square field.

curlF:Vx
i .i kl

la a alF=t- - -tI 3,t 0r, dz I

lr c hl

THE LAPLACIAN V]

( l4)

*See 
biography on page 1062.
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ExERctsE SET 17.1 E craplr rg Ca cu ator E cAS

In Exercises I and 2. match thc vecto. field F(.r. \') with one

of the plots. and explain ]'our reasoning.

1. (a) F(.r, r) =.ti (b) t'(r. -r') = sin.ri i j

2. (a) F(r. r') : i +.i
t\'rblF(.r.rr=,' li--7-i ', j

Jr- \- V.r -r.\

In Exercises 3 and .1. determine u'hether the statement about
the vector field Flr . r') is true or lllsc. If false. explain why.

3. F(r. r') = rri - r'j.
(a) As (.r..r) gets closer.to tho origin, the lengths ot'the

vectotS decrcase.
(b) If (r. r') is on the positive r-axis. then the vector points

in the negatir,e -r' direction.
(c) If (.!. r') is in the lirst quadrant. then the lcclor points

down rnd to the righl.
tt{. F: \.\'=- ,i . j

\,\'-+ \' Jr-+f_
(a) As (r. r') nloves away llom the origin. the lcngths of

the !ectors decrease-
(b) lf (r. r') is a point on the positive .r -axis, then the vector

poillts up.
(c) If (.i. r') is il point on the posilive _\' axis. the vector

points to the right.

In Exercises 5-1i. sketch the vector field by drarving some

representativc lloninlersecting vectors. The vectors need lrot
be drawn to scirle, bul they should be in reasonably corect
proportion rclative to each othcr,

I

I

I

I

I

t''" "r " "'
,/ ./ ,/ ,/ ,/ ,f ,/ ,/ ./ ,/ ,/,/,/,/,//r,//./,/,/.//././/r././//./
,/,/./,/ / / /,/,/,/,/ \
./ L/ ,/ ,/ ,/ / ,/ ,/ L/ >,/./,/,/,/!,/,/,//,/
,/ ,/ ,/ ,/ ,/ ,N ,/ ,/ ,/ ./ ,//,/,// /,1 /,/././,/,/,//,/,/I/,/,///
,/./,/,/,/ r,/,/./,/,/

5. F(r.r')=2i-j 6. F(.r. 1) - lj. \' > 0

7. F(r. r') - ri - rj. [Nore: Each vector in the licld is per-
pendicular to the position veclor r : Jri + 1j.l

ti+\i
8, Fr'.r'r - ., ..lVn/.r Erch vecr,'r rr thc ficld r\ c

r/t-fr'
unit vector in the same dircction as the position vcctor
r: ri * r'.i.l

*"',ou' r,r,,,'. , \,\..(17,19-ltl27).Frcnchmatherr.tlicinnaDdphlsicisl. l-upllce is sonetinrcs rctcrled to
as lhe Frcnch lsolc Newton becruse ol his work in celestiLll rrechanics. In a livc-\,olurre trearisc cnlilled Tidirl
Lle Ilnni.t .,C//?rrr,. he solved extfelrrely difficult prnncms involvnrg gravit tion;Ll inleractiois belwoen thc

planets. ln p nicular. he \ras able to \how lhal our solar syrteln is stablc and not pro|e to calasroirhic collapse as

a rcsuh ol lhcsc interactioDs- This t\'iN an issue of fiaior corcem al lhe time bccirusc Jupiler's o$it apPeared lo
bc shnnking and Srtum s expaDding: Lxplrce sho$ed that these qere erpected pcriodic anonralier. ln irddirion to

his $ork in celcstiul mcchanics. hc lbunded modem prohabilily thcort. sh(Nved with I.avoisicr (hat rcspiralion is

a fbrm ofcofil srion. rd de\,clopcd rnclhods rhat fostered r)ra y nclv braDches olpure nratheffatics.

Laplace lv s bom to moderltcly succcsslul parenrs in No niurdy. his 1lrLhe| being r farmerand cidcr nrelch.rnt.

He malricLll.rlcd in the theobgy pr\)gnru dt thc Unilcrsily oi C en rr agc l6 bul leli lbr Paris at gc l8wilha
leuer of il)lroducrir)n ro lhe inlluenlill marhematician d Alcnrhcrr. lvho e!enturlly hclpcd him ulxlerrake a career

in marhen)irtic\. Laplace \\,a\ a p.olihc \riEr. and alier hi\ eleclion ro rhe Acndemy of Scicnccs in 1773. lhe

secrerarv Nrotc thnt lhc Acaden) hrd [e\er recei\ed so mLrn] iDrpofianl rescarch papc$ by so ]otnel a person

io such a sho iinrc. t-aplacc had liltle iDleresr in prre nr lhcDratics he reglrdcd nr:rthematics lncrely as a tool

lin sohing applied problems. ln his;nrpalience $ith nr drcnralical delail. he ircquenily omillcd complicated

argunents \\,ilh lhe \tatement. lt is ensy to show that. . . . He admi!!ed. howclcr. thot irs tinre patscd hc olien had

trouble recon\ll'!rcting the omitted details himsclll
Atrhchcighlol hi\ liiDre. Laplace \erved on man] go\erDDrenr commitlees nd held the posls ol Minister

ofrhe linerior Dd chancellor of rhe Sen Ie. He barcl] c\cirped iDprisonnrenl nd executioD dudng lhc pcriod

of the Rerolution. ptubabl! bccruse he $as able to con\incc cach opposing part! Lhal he sided \rith lhenr.

Napoleon dcscdbed hiIn as a great muth.natician bul n poor adnrinislralor \\rn) sought subtlctics cvcry\\'here.

had onl), doubtlil id.as. and... c.{ded the spirit of thc irlinilcly snall into adnriniit lion.'Inspiteofhisgenius.
Laplace ras both cgoristic and insccrrc. altemptin8 to ensrrc his pl.rce in histofy by convenicnlly lniling to credit

nrathenaticirns uho\e $'ork he rsed-trn unnccessirry pettiDes\ since hi\ o$n work \ias so brilliant. Ilowe!er,
on the posirifc side he rvas supporlive ofyoung mathenraticians. olien neating rhcm as his osn children. Laplace

mnks rs one ol the mosl irllLrenlirl nrulhematicians in hist(n\'.
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ln Exercises 9 and i0, use a graphing utility to generate a plot
ot' the vector fie1d.

9. Ir(,r,1,)=i+cos,\j B 10. F(.r,'r.)-)i rj

ln Exercises I I lind 12, conllrm that d is a potential function
lor Frr'.,n.um( re!rnn. rrd 'trte the rc;ior.

11. (a)

(b)

12. (a)

(b)

@ (.t. -i) :1x1 rt.'
l'!(.\.i):-ri 

-J

l+1 \ 1+t l'

@(,r, -r,.:) : r: 3): +.1r2
F(.v. i,.;) :2ri 6,tj * 8:k

cbG,i-2:2 *3.r2) -rr'3

F(,r, -r) : (6.,.-r' l'')i + (.1r,+ 3.r'? - 3.r),')j
.r(r., _\',.) : r sin : + I sin.r + a sin l,
F(:r, r,;) : (sin... + ) cos.,r)i + (sin.r +:cosl)j

+ (I cos.: + sin t.)k

In Exerciscs 13 18, flnd dlv F and curl F.

13. F(r, )...) :;ri 2j + ):.k
14. F(.r, ). .:) - r:ri + 2-ir*2.i + 5;2r'k

15. F(r,1,:) - 7J,r.2i - 8-r2i5j 3.r,i,rk

16. F(-t. -r'. t) : e'r i - cos 
-r' 
j + sinl .k

l
17. Fr " -,- , ,r'i-r'.i .k,

\ I +.t +_:

18. F(-r, ).;) : lnri + erlrj + tan r(r/.r)k

In Exercises l9 and 20. find V . (F x G).

19. F(r. r,,:) - 2,ri +j+4r'k
G(-r, r,.:) : -ri l lj .k

20. F(.r. ,i, :) : -r':.i + r:j + -t-r'k
G(r, 1. :) : -t1j i ry:k

In Exercises 2l and 22. find V . (V x F).

21. F(-r, 1.:) : sin.ri + cos(-r - -r)j +:k
22. l,-(x, \',.) - r,';i * 3-rer j er''k

In Exelcises 23 and 2,1, find V x (V x F).

23. F(-r, -r.:) :1_1'j 1-tl':k
24. F(-i, t'.:) = -ir-ti 31..-j +.rlk

In Excrcises 25 32, let I be a constant, and let F : F(,r. ) , :),
G : G(-r, f , :), and @ : /(.t. _r,. :). Prove the lbllowing
identitics. assLlming that all dcrivatives involved exist and

are continuoLls.

div(/rF) : ft div l' 26. curl(ftF) : k cur'] F

div(F*G): divF+divG
curl(F + G) : curl F*curl G

dn(dF):ddivF+Vd.F

17.1 Vector Fields 1063

30. cur'l(@F) : d curlF+ Vd X F

31. div(cuLl F) - 0 32. curl(Vd) :0
33. Rewrite the idenlities in Exerciscs 25.27.29, and 3l in an

equivalent tbrm using the notation V . Ior dilergence and

V x for curl.

3il. Rcwritc thc identitics in Exercises 26.28, 30, and 32 in an

cqlLivalcnt fbrm Lrsing thc notation V . fbr divcrgcnce and

V x for curl.

35. Use a CAS to check the calculations in Exerciscs 19, 2.1,

and 23.

36. Use a CAS to chcck the calculations in Excrcises 20. 22.
and 24.

In Exercises 37 and 38, verily that the radius \,ector
r: -ri + r,j +.k has the stated property.

tr

tr

37. (a) curl r - 0

38. (a) div r : 3

In Exercises 39 and 40. let r : -ri i r'.i 1 ..k. let r : rl .

let / be a differentiable functioli of one variable. and lct
F, r, lr t.

39. (ir) Use the chain rule and Exelcise 37(b) to show that

lt,)vl(rl : r

(b) Use the result ir1 part (a) and Exercises 29 and 33(a) to
show thal

div F - 3/0.) + r./'0.)

40. (a) Use part (a) of Exercise 39, Exercise 30, and Excrcjse

37(a) to show that

curlF:0
(b) Use thc result in paft (a) of Erercise 39 and Exercises

29 and 38(a) to show that

, t'ir )V1'r, 2- l'r'

4I. Use the resLllt in Exercise 39(b) to show lhat the divergence
ol'the inverse-squarc f,e1d F : r/ r I is rero.

42. Use the lesult of Exercise 39(b) to show that if l' is a vectol'

lleld of theformF: /(lr )randildi! F:0. then F is an

inverse-square l'leld. [Sugge.'-tiorr. Let r : r l rnd Dru]tiply

3 fl.t) + t.f'(r) : 0 through b)' r:. Then u,rite the result as

a dcrivative o{ a producl.

,13. A crLlve C is called r fow line of avcctortieldFil Fisa
tangent vectol to C at each point aiong C (scc Figure Ex ,:13

on page 1064).
(a) Let C bir a flow line fbr F(r. -r') : r'i + ,:j. and let

(.r, l) be a point on C lbr rvhich 1 + 0. Show that the

Ilow lines satist-!''. the difttreDtial equatjor)

lv t
dt

rbt Vr:-l
Lrl

{h, v1: i-rl rl '

25.

27.

28.

29.
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(b) Solve the diflererltial equation in part (a) by separation
ofvariables. and show that the flow lines are concentric
circles cerltered irt thc o gin.

.r/.'c
---' /, 

F ow tines or

-- 
--"t ' avectorfel.l

:,, , -'-
Fi-sure Ex-.11

In Exercises,14 46, f,nd a dill'elential cquation sarisfied by
the Ilow lines of F (see Exercise 43). and solve it to find equa-
tions for the llow lines of F. Sketch some typical llow lines
i1nd tansenl vectors

44. F(.r, )) : i +rj ;15. F(r.1) :.ri + j. r > i)

46. F(r. -r') : ri .t j. -r > 0 and _r > 0

17,2 LI[\E T$TEGRALS

h earlier chapters we tonsit]ered thrce kinds of integr(ls in rectcut.gul.ar t:oordinates:
sing[e irtegrtls oter intervLLs. doubLe integrttls o\)er t\to dimensional regiotts, ancl
rriple integrttl.s over three-dimensiortal regions. In this settion we wiL[ discuss integrals
elong cun,es in ty,o- or tltree-dimensional spttce.

Integrals along curves a se in a variety of problems. One such problent can be staled as

lollows:

17.2.1 /\N,\RI-.i\ PROBLF.NI. LetC be r r mooth c Lrr\ e thxt erLends bet$, een two points l

in the +plane, and let f(,r, I) be continuous and nonnegative on C. Find thc area of ,

the "sheet" that is s$'ept oul by the vertical line scgment that extends upward from the l

point (,r, r') to a height of /(r. i) and moves along C flom one endpoint to the other
lf igurc 17.'.l).

We use the followilg limit process to find tlte area ol the sheet:

Divide C into r arcs by inse il'lg a succession of distinct points Pt, Pz, .... P,, r be-
tween the initial and tclminal points of C in tlte direction of increasing paramerer.. As
illushated on the left side ofFigure 17.2.2, these points divide the surl'ace into /? stdps.
If we denote the rrea of the kth strip by AAi, then the total area A of the sheet caD bc
expressed as

A:AAr+AA:* *AA,

The next step is to approximate the area AA1 of the kth slip, assuming that this strip
is narrow. For this purpose, let Arr be the lenglh of the arc along C at the base of the

LINE INTEGRALS

Firlrre 17 2 l

: Ior*

Figurc 17.2.2
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,tth strip, and choose an arbitrary point ,Pl("1, fi) on this arc. Since the srrip is narrow
and / is continuous, the value of I will not vary rnuch along the,tth arc, so we can
assume that f has a constant value of /(r1*, yi) on this arc. Thus, the area AAr of
the kth strip can be closely approxinated by the area of a rcctangle with base A.i1 and
height ./(rl, r'i), as shown in the right part of Figure 17.2.2: that is,

AA1 = l(xf,1l)As1
from which it follows that. +"...A = L l(.\t. t{ )l\rl

/r=l

. If we now increase, so that the length ofeach arc approaches zero, then it is plausib]e
that the error in this approximation approaches zero, and the exact surface area is

,r lim f /r.r ^ 
. ]i rA.r I ll

-+, t-

In deriving Formula (1) we assumed that f is continuous and nonnegative on the cune
C. lf .l is continuous on C and has both positive and negative values, then the limit

lim \- r'rrl. r,,f ras,
r-+'22' | '^

does not reprcsent the area ofthe surface over C; rather, it represents a dlrj?rence of areas-
the area between the curve C and the graph of /(,t, _r') above the ry-plane minus the area

between C and the graph of /(.r, f) below the,r1-plane. We call this Ihe net signed area
between the curye C and the graph of /(,r. 1). Also. we call the linrt rn (.7) the line integral
of f with respect to s c/ong C and denote it by

With this notation, the area ol the surface in Figure 17.2.1 can be expressed as

t: I f o.tt,t,
,lc "

(2)

(3)

RF]\{ARK. In Section E.1 we observed that the area of a region in the in.plane under a
curye or between two curves over an interval [.i,lr] is obtained by integrating the length

of a vertical cross section of the region from 4 to D (see the remark preceding Example
1 in Section 8.1). Similarly, Fomula (3) states that the area of a sheet along a curve C is
obtained by integrating the length of a vefiical cross section of the sheet along the curve C.

Except in simple cases, it will not be feasjble to evaluate a line integral directly from (2).

However. we will now show that it is possible to express a line integral as an ordinary
definite integral, so that no special methods of evaluation are required. To see how this can

be done, suppose that the curye C is represented by the parametric equations

r:x(/), ): )'(r) (.a tt 
=b)

Moreover, suppose that the points P7 1 ar\d P7 in Figure17.2.3 correspond to parameter
values of 4 r and lk, respectively, and that Pl(']ri, fi) coresponds to the parameter value

{. If we let Alr = /l - ll- r, then we can approximate Asr as

l7rr.ytd"- lim | /r.r;. )i rar,
,L t:l

EVALUATING LINE INTEGRALS

. (*l^-(Ax1)2 * (Ayr

Figure 17.2.3

(#i (4)
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from which it follows that (2) can be expressed as

Solutiott, It follows from Formula (5) that

which suggests that

r rb
I Jrx.ytrls - LSp1t1. yg11
Jc J"

l" ta, t o, : 
l,,u 

r{,{,), r{,)) o,

Example 1

Evaluate the line integrat ,[r11 + xy2) ds from (0, 0) ro ( 1, 2) along the line segrnent C that
is represented by the parametric aquations -{ : t, } : 2t (0 < I < 1).

(5)

In words, this formu la states thet a line integral can be evaluated by expressing the integrand
in terms of the parameter, multiplying the integrand by an appropriate " radical," and then
integrating from the i.nitial vaLue of the parameter to th.e fnal value of the parcLneter

In the special case where 1 is an arc length parameter, say I : s, it lbllows from Formula
(20) ofSection 14.3 that the mdical in (5) reduces to 1, so the integration formula simpli6es to

(6)

l,rt t ,t2,,t, - 
Io' 
,, ,,,,o,',,11|,)' - dt

: 
lo' 

r.t + +,'65 a,

= Jil, + ,^l'o: zJi

Sohttiott. The area A of the surlace can be expressed as the line integral

t^/=l(l x')ds

erJ

Example 2

Find the area ofthe surface extending upward from the circle 12 + ),2 : I in the;r)' plane
to the parabolic cylinder z : 1 12 (Figurc 17.2.4).

Figure 17.2.4

(1)
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where C is the circle x2 + y2 : L This circle can be parametrized in terms of arc length as

j = coss, -y = sir.r (0 < r :22)
Thus. it iollou. from (6) lnd (7) thrt

" ")1q- /rl--r'tJ,,- / rl-co\2r)/(.lr .1"

r)n 1 r)n

- I .,in:..,./.. - I / rr-q65 lsl/r- zJo 2 Jo

REMARK. We will show later in this section that we would have obtained the same value
for (7) had we used any other smooth parametrization of the circle 'I2 + t2 : I in the
.4'-plane.

lf C is a smooth curve that extends between two points in an ,r1z-coordinate system in
3 space, and if /(r, y, z) is continuous on C, then the line integral of f with rcspect to s
along C is defined as

tim I /();. yi. zi)ls*

LINE INTEGRALS IN 3-SPACE

l, r@, r, ,) a, : (8)

where the sum on the right side is obtained by subdividing the curye C into r arcs, choosing
an arbitrary point (r;, f;, z;) ir the ftth arc, multiplying /(,r1, .rl, zi) by the length A.rr of
the tth arc, and summing over all n arcs. lf the curve C is represented by the parametric

equations

.]; =;r(r), ) =](r), z.-z(t) (aar!b)

then (8) can be evaluated from the fonnula

I r, f,,-'t . '-t '-rt
JrI,^., z,as: 

J""/{xrr). ),r.. 
u,,,rll";,) t (?) t (T) ,, ,e

and if / is an arc length pammeter, say I : ,r, then it follows from Formula (21) of Section
14.3 that the radical in (9) reduces to l, so the integmtion formula simplifles to

l,f e, r, i a,: /'/t'{"), r{"),.{")) r" ( l0)

REMARK. Observe that Formulas (9) and (10) have the same form as (5) and (6) but with
an additional .z-component. In general, line integrals along curves in 3-space do not have a

simple area intelpretation, so there is no aralog ofFormula (3). Howevet we will see later in
this section that line integrals along curves in 3-space have other imponant interpretations.

Example 3

Evaluate the lire integral /1. (,ry + z3) ds from (1, 0, 0) to (-1, 0, r) along the helix C that
ir reple.ented by the pararnetric equations

r -cost, l,: sint, Z=t (0<t<r)
(Figure 17.2.5).

Figure 17.2.5
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Solution. From (9)

;[ i', +.') a" =/"{.o,,,in, nr,ftiuJ *(.,ffi o,

- / 
,co.l'ini -r',r/, rin/r2 | ico:/,' , ldr

- rD/"(.or r sin r + rt) ar

,; I sin] r="'l ,
. rr l" rtr'

rl t

MASS OF A WRE AS A LINE
INTEGRAL

We will now show how a iine integral can be used 1rl calculate the mass of a thin wire. For
this purpose consider an idealized thin wire in 2-space or 3-space that is bent in the shape of
a curve C. Ifthe composition ofthe wire is unilorm so that its mass is distributed unifbrmly,
then tlre wire is said tobe homogeneous, and we define the fine&r mass densit! of lhe wlre
to be the lotal mass dividcd by the total length. For example, a homogeneous wire with a

mass of 2 g and a length of 8 cm would have a linear mass density of j = 9.25 t7.r.
However. if the mass of the wire is not uniformly distributed, then the linear mass density
is not a usel'ul measure. since it does not account for variations in mass concentralion. In
this case we describe the mass concentration at a point by a mass density functian d, whjch
we view as a limit; that is,

AM6- lim 
-

aJ+0 Al
where AM and As denote the mass and length of a small section of wire centered at the
point (Figlur 17.2.6). Observe that AM /Ls is the linear mass density ofthe small section
of wire, so that the mass density function at a point can be viewed informally as the limit
of the linear mtLss densities oJ small wire sections centered qt the point.

To translate this informal idea into a useful lbrmula, suppose that J : 6(x,l) js the
density function for a thin smooth wire in C in 2-space. Assume that the wire is subdivided
into r small sections; let (ri, t;') be the center of the /rth section, let AM1 be the mass of
the kth section, and let A-sr be the length of the tth section. Since we are assuming that the
sections are small, itfollows from (1 1) thaf the mass ofthe,tth section canbe approximatedas

AM^ :Y d(jri:,,lr)A.rr

and hence the mass M of the entjre wire can be approximated as

A,1 -Y AM, .: \-2irr,' rlrAs,-12"1-
k=l k=l

lf we now increase i? in such a way that the lengths of the sections approach zero, then it is
plausible that the error in ( l2) will approach zero, and the exact value of M will be given
by the line integral

(13)

Similarly. the mass M of a wire C in 3 space with density function 6(r, t, z) is given by

(14)

Example 4

Suppose that a semicircular wire has the equation l : .v45 --t and that its mass density
is 6 (x, y) : 15 - 1 (Figure 17.2.7). Physically, this means the wire has a maximum density

(11)

(12)

u: l,tr,, i a,

u: 
l'sQ't'z)ds

Fisure 17.2.6

Fisure 17.2.7
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of 15 units at the base (t : 0) and that the density of the wire decreases linearly with
respect to I to a value of l0 units at the top (.\' : 5). Find the mass of the wire.

Soltttion, The mass M ofthe wire can be exprcssed as the liDe integral

tf
u= I t(.t,t)tts = l(|5-r)dr (15)

Jc Jc

along the senricircle C. To evaluate this integral we will express C parametrically as

.r:5cosl, l -5sinr (0<r:7r)
Thus, it follows from (5) and ( l5) that

ARC LENGTH AS A LINE INTEGRAL

LINE INTEGRALS WTH RESPECT

TO x, y, AND z

v= [tts ';a.: / 1rs-ssinr),/f 
/.'I-(4)'r,

lc Jc V\Jr./ \,/r./
t1

= / t rs - 5,,in r rf 5ri,vt: + l5cosrrrr/r
Jt)

=s / trs-5sinr)./r
lu

= I Lt5/ I co: /1,)

.t 751.. - 50 .:! I 85.6 units of mass

In the special cases where .l(x.,y) and ./(.r, r', z) are l, Formulas (5) and (9) become

l. 
-1 

-21,,,: L' lffi -(#).(f),,
However, it fbllows from Formulas (2) and (4) of Section 14.3 that these integrals represent

the arc length of C. Thus, we have established the following result.

17.2,2 l HEORENI. IJ C i,t o snLooth pontmetric (Llrve in 2 space or 3-qnce , then it,t

arc length L can be exprcssed as

, _ t .,"
" - 1,"'

dtt,

(16)

IIE\IARK. This result adds nothing new computationally, since Fonnula (16) is just a

reformulation ofthe arc length formulas in Section 14.3. However the relationship between

line integrals and arc length is impofiant to know.

There are other impo ant types ofline integrals that result by leplacing Asr in definitions
(2)and(tt)by A,r1 :11 -,1*-,,4.\'*: lr -,U r,orA:r::^-:^-r,where(,tr,-r'r...r)
and (-r1-1. r'1 1,;r r) are the coordinates ofthe points P1 and Pp 1 in Figure 17.2.2. Fot
example, in 2-space we define

I f r.r. t t tl.r lim ) _ Ji r;. !i )AIr
r( t=t

/ /r.r'. r't rir - tim )- /t ti. '; rl.trt- n-+z 
-

(17)

(llr)

,'= L' l(-ti . (#l
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and in 3-space we define

t
I ft^. y' z)dx - - 

Iin-.I /(x;. y;, z;)axr
JC

t)t

| flx.t.ztdr = -lim--t/r-r;. yi.zi\ay*
t=l

flL
I ftx,y.z)dz - lim ) 

-.ftxi.yi,zitazr
Jc ,-+-E

(le)

(20)

(2t)

We will call these [ne integrah with respect to x, !, and z (as apFopriate) in conuast to
(2) and (8), which are line integrals with respect to r (also called line integrals wilh respect
to arc length).

The basic procedure for evaluating these line integrals is to find parametric equations for
C, say

x:x(t), y:f(t), z:z(i) (a<t<b)
and then express the integrand in terms of t. For example,

| 
" 

rr,, i a" = l,' lr <,r,>,,r,,'#f o, = | 
"u 

r,*,,,. y( t t)x, (t I dt

We omit the formal proof.
For reference, we list tlle relevant formulas.

rtb
| !u.y)dx: I y1xut, ytt 1\x' (r) dt
Jc J"

ttb
I It". yl ay : | 71xtt1. ytryy'91 atJc J"

ftb

I ftx.r,dax: I f {x{t), rtt), z(nx' G) dt e4)Jc J"

lrt<,,t,oat: I,u f{'tl, r<rr, z(t))y'|(t) dt (zs)

ttb

Jrf{r, r, r, or: 
J" f<,ut, ttt), z(t))z'(t) (tt e6)

Frequently, the line integmls with respect to r and ) occur in combination, in which case
we dispense with one of the integral signs and write

frt
J.IG't)ttx + s(x,v)dv -- Jcf7,v)dx 

+ J,s6.."dt Q1)

and similarly,

t
Jr 

IG, t. z) dt + sG, y, z\ dy + h(x, y, zt dz

lfr
- Jrfk,t.ztdx* Jrtu.t,ddt+ J,hG.t,ztdz (28)

(22)

(23)
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Example 5

Evaluate

I zxy ax + (*2 + v2) dy
Jc

along the circular arc C given by x : cosf, ]: sint (0: t .< Tl2) (Fig]urc 17.2-B)-

Sohrtio . Fron (22) and (23)

n = cos r, )' = sin t (0 < l < r/2)

Figure 17.2.8

LINE INTEGRALS ALONG
PIECEMSE SMOOTH CURVES

lrz*r 
ar = /'/trz.o,, 

,rn, , [4,.o,,,.l ,,ldt .l

Thus, from (27)

lr2xt 
dx + (x

: -' 
Iu"'' "'nt ' "o' 

r ar : - ] 'n' 
r]:"'' : -:

lre' * r'l o, = lo''' l"or',+ r-',1 
lf, trin,l] a,

t,:
= l,' cost at - 'inr ln 

: I

' +_"2)dn = I zty.lx+ / (x2 +)2)./.vIt ' Jc
2t
t-3

Example 6

(a) Show that /c /(.t, l) r/.r : 0 along any line segment parallel to the .1 -axis.

(b) ShowthatJ; /(r. y)dr = 0along any line segment parallel tother-axis.

Sol tion, A line segment parallel to the )-axis can be represented parametrically by
equationsoftheformr:k,.y:l,whereftisaconstant.Thus,-r'(l):0in(22).Similarly,
a line segment parallel to the -r-axis can be represented parametrically by equations of the
formI:''}:&,where&isaconstant.ThuS,},('):0in(23).<

FoR THE READER. What is the analog of Example 6 in 3-space?

Thus far, we have only considered line integrals along smooth curves, However, the notion
of a line integral can be extended to curves formed from finitely many smooth curves

C t, Cz, . . . , C,, joined end to end. Such a curve is calledpiccewise smooth (Figlure 11 .2.9).

We define a line integral along a piecewise smooth curve C to be the sum of the integrals

along the sections:

L=L*L,* *l,

Figure 17.2.9
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CHANGE OF PARAMETER IN LINE
INTEGRALS

REVERSING THE DIRECTION OF
INTEGRATION

Example 7

Evaluate

I r'r dr f t r/1'

in a counterclockwise direction around the triangular path shown in Figure 17.2. I 0.

Solutiott. We will integrate over C1, C2, and C3 separately and add the results. For each

of the three integrals we must find pammetric equations that trace the path of integration
in the corect directjon. For this purpose recall from Formula (9) of Section 14.l that the
graph of the vector valued function

r(r): (1 - /)ro +/rr (0:/: l)
is the iine segment joining re and rl , oriented jn the direction from r0 to rt . Thus, the line
segments C1, C2, and C3 can be reprcsented in vector notation as

c1 : r(r) : (1 -r)(0,0) + /(1,0) = (/,0)

C2: r(t) : (l r)(1,0) + t\l.21 - \1.2t)
C3:r(/): (l -t)(1,2) + r(0.0) - \1 - t.2 - 2t)

where I varies from 0 to I in each case. From these equations and Exanple 6 we obtain

I I rt ^ ,t
I \'z\'d\ ' r J1 = / 12' dr - / 1,211U1 

'. lrlJr =0J,. J, J, Ll !

Thus-

/ r rr' ,/r + r /,r : 0 * 2 * ( ;) :i.t.

Since the parametdc equations of a curve are used to evaluate line integrals along that curve,
it seems possible that two differelt parametrizations of a curve C might produce dillerent
values for the sane line integral dong C. The fbllowing theorem, which we state without
prooi', shows that this is not the case.

17.2.3 THEOREM (hdependence of Parutnetrization). The vttltLe of a line htegral aktng I

a cun,e C does not depe d on the parqmetiaqtion of C in the Sense thqt an,\ t\No

paralnetrizations of C witlt tlle same orientation prodtrce the some rctlLre lbr the lil1e

integral.

REI4ARK. This is lrn extremely important theorem because it allows us to choose any

convenient parametrization for the path of integration without concern that the choice will
allect the value of the integral. Indeed, we have tacitly used this result in all of the examples

in this section where we chose the parametdc equations for C.

Srippose that C is a parametric clrrye ttlat begins at point A and ends at point B when traced
in the direction of increasing paraneter. If the curve C is rcparametlized so that it is traced
froln B to A as the parameter increases, then we denote the reparametrized curye by C.

Thus, C and C consist of the same points but have opposite orientations (Figure 17.2.1 I ).

1,.,'ro, + xtlt : l,,xat = l,' t lfetn, =,

/,'",r'+,,i,:/'rr rit2 2r*u tat+lot tfrrz zt)(it

:z 
fn'r, rl3at+z lntt t)cu - + l- ;
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11.2 Line lntegrals lO73

When thc olientation ol'C is reversed, the signs of A.r.1. Ar,1, and A:r in ( l?) ro (21 ) are
reve$ed, so the effect is to reverse the signs of the line intcgrals with respect 1().r, r,, and

::. However. rcversing the oricrtation of C hrs no eflect on a line integral witlt respect to s
because the quantity A.r( in (2) and (8) dcnotes an arc length. which is positive regardlcss
ofthe orientation. Thus. we have the following result. rvhich we state without formal proof.

17.2.J llll ',Rl \l lReretsal oI Utic,ttationl. l[(' i.t,t.,rtt,u,tlt l,oton]ttti. tuttc. !lt(tt tt
snpoth churge of pqt entekr that re|erses tlrc oriet .ttionolC charyes tlrc sign of o line
ittellt'el ulo gCtritlttvspectIo-r.y.or1.. Itut leores tltc vrlue ofu litre intcgrul along
C with rc.V)ed to art' lettgtlt untlnngetl.

It follows Irom this theorem that

L,

1,,

./(-r, ,r) z1r * g(.t, J) /r : - /

/(.r, -r) r/s : lrtO, t a,

.f(.r. r') rh * ,g (.r, ,r') d,r' (29)

(30)

(31)

WORK AS A LINE INTEGRAL

and similarly tor line integrals in 3 space.

In Section 8.6 we first delincd the work W pcrlbnned by a tbrce of constant nragnitudc
acting on an object in thc dircction of motion (Definition t1.6.l), and later in that scction
we extendcd the delinition to allow fbr a fbrcc of variable magnitude acting in thc direction
of motion (Definition 8.6.3). tn Section 13.3 wc took the concept of q'olk a step firrther
by defining the work W perlbrmed by a constant force F acting at a llxcd rngle to thc

displacement vector P0 t0 be

w =F.PQ
lFonnula ( l4) of Section I 3.3]. Our next goal is to definc a rnorc general concept of rvork-
the work pcrlormed by a variable lorce rcting on a particle that nroves along l cull-ved path

in 2 space or 3-space.

In many applications variable fbrces iirisc lionl force fields (gravitational llclds. electro-
magnetic liclds, and so forth). so we will consider the problem of work in th.rt conlext. More
precisely. let us assumc that ?l panicle moves long a smooth parametric curvc C thror.rgh

a continuous lbrce field F(.t. r') in 2-space or F(-r. \'.:) in 3-space. We will call the work
done by l' the vorft performed by the force rteld. To moti\^tc an appropriate definition fbr
the wort performcd by the force field, we will use a limit plocess. rnd since thc plocedure is

the same in 2-sprce and 3-space. we will discuss it for 3-space only. Thc idea is as follows:

Assume that the palticle movcs along C from a point ,4 to a point B as the pararrr-

ctct increases. and divide C into n a:cs by inserting a succession of distinct points

Pt, P2.,,,, P,, I bctween A and B in the direction ol'increasing parametel. Denote
the length of the &th arc by A.r(. Let (rl, l.;. ai) be any point on the (th arc, and let
Ti = T(ri.,rf.:i) be the unit tangcnt vector and Fi : F(,vi. r'i. -.i) thc tbrce vector
at this point (Figure 17.2.l2).

If the &th arc is small. then the force will not vary much. so we can assume that the
force has a constant value of Fi on this atc. Moreover. the direction ol'rnotion will not
vary nuch over the small arc, so we crn assume thal the p{rticle moves in the direction
of Ti tbr a distance of A.{r : that is. the particle has a linear displacenrenl As1Ti. Thns.

it follows from (3 | ) that the work All/r pe brmed by the vector field along the kth arcFigure 17.2.12

(ri, ti:i)
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can be approximated as

AW( -F;. (As1Ti) = (Fi. Ti)Asr

and the total work W perfbrmed by the vector field as the particle moves along C from
A to B can be approximated as

w ,: t(Fi .r;)^r*
(=1

. If we now increase r so thal thc lcngth of each arc approilchcs zclo. thcn it is plausiblc
that the error in lhe approximations approaches zero. and tlte extct work peftxmed by
the vector field is

IW- lim ) tFi.Titlrl = | Ftr.r.:).Tt.r.r.;)r1.r, .,,i4 J(.

Thus, we are led to the following definition:

17.2.5 DEI-INII toN. Il F is a continuous vector field and C is a smooth panmetric
curve in 2 space or 3-space with unit tangent vector T, thcn thc rrolkperJonned by tlrc
vectorfield on a parlicle thtt moves along C in the direction ol inc|casing palameter is

w=[r.r,t, r.,i)
Jc

IIEIIARK. In words, this definition states that fue $'ork pctlbt'tttul bl a vttor.fieltl on u

i::;::,'::':;i.i:':;,!:;";'."""'' "'re C is obtaitted bv it esrutitry ttrc s&tor tdnsentidt

Although Formula (32) can be used to calculate work, it is not usually the best choice. A
A METHOD FOR CALCIILATING
WORK more useful formula can be obtained by using Fonnula (6) of Section I 4.4 to express T as

drT:
ds

This suggests that (32) can be expressed as

fW: I F.dt
J.

in which dr is interpreted as

dr =dxildyi or dr:dxi*dy jldzk

-z -1 0 I 2 depending on whether C is in 2-space or 3 space.

(-l-l )

(34)

2t012
l'-igure 17.2.l3

a Example 8

.r Find the work done by the fbrce field

F(-r. .r') : ,rr.t,i * (x - r')j
2 

on a pMicle that moves along the parabola J : r2 hom (-2.4) to (l.l) (see Fig

| \tre 17.2.13).

Soltttiort. If we use .r = I as the parameter, the path C of the particle can be expressedo parametrically as

.r-r. r=/r (-2=r<t)
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REIVI.\RK. In light of Theorem I 7.2.4, you might expect that reversing the orientation of
C in Forn.rula (32) would have no effect on the work W perfonned by the vector field.
However, reversing the orientation of C reverses the orientation of T in the integmnd and

or in vector notation as

t(t):ti+t2i ( 2<t<l)
Thus, from (33) the work W done by F is

* [r'ar-[,x1ir11 rrjr.rd\i- d]jr
Jc Jc

' ["'yar+tx )'tdy- [ ,,' -rr -t't12r11tltJc J t
I I 1.t: rn+ /' t'l :l6 r 2 )_,

wheretheunitstbrI4/dependontheunitschosenforforceanddiStance.<

hence reverses the sign of the integral; that is,

| ,r.ra,:- f,r.ra,

l_,r.0,-- 1,, 
. o,

p . 4y : J6, y) dx + s(x, y) dy

so (33) can be expressed as

v - I Jtr.ytdx-grx.ytdy
JC

and similarly in 3-space as

V : | frx. y. -tdx - gtx. y. ztd! + htx. ).ztdt

(35)

(36)

Thus, in Example 8 the work performed on a particle that moves along the given parabola
fiom (1, l) to ( 2,4) is 3, and the work performed on a parlicle that moves along the
parabola fiom ( 2.4) to (1, l) and then back along the parabola to ( 2,4) is zero.

We conclude this section by noting that it is sometines uselul to express Formula (33) in
scalar form. For example, ifF - F(x, f) = /(r, I)i + g(n, ))j is a vector lield in 2-space,
then

WORK EXPRESSED IN SCALAR
FORM

ExERcrsE SET 17.2 E c,qs

(.37)

(38)

1. Let C be the line segment fron (0, 0) to (0, 1).Ineachptifi,
evaluate the line integral along C by inspection, and explain

2. Let C be the line segment from (0, 2) to (0, 4). In each part,

evaluate the line integral along C by inspection, and explain
yoLLr reasonmg.

1a1 | dr

your reasonlng.

tal I clsrbr / sinrr dr t, 
1,"', 

a*
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3. Let C be the curve reprcsented by the equations

x=2t, y:3t2 (0:lSl)
In each part, evaluate the line integral along C.

@) 1,6-ftts
kt La-ta,
Let C be the cuNe represented by the equations

x:t, t:3t2, z-6t3 (05r<1)
In each part, evaluate the line integral along C.

l16 *rr)0" + (x - y)dy

C'.x=2cost, ] =4sinr (0<t <tr/4)

Iro' v21dx +xdv

C:x:t2/3, y:t (-l <t =l)
lr-t,dx+xdt
C: y2 = 3a 1o* 13, 3) to (0, 0)

lr(t - x) dx + x2t at

C: y2 :;x3 61o111 11, -l) to (1, l)

l,{"'+f)a,-'ay
C.. x2 + y2: 1, counterclockwise ftom (1,0) to (0, 1)

16. | (y x)dx i xy dy

C: the lire segment from (3, 4) to (2, 1)

fi. I vzctx - xz.dy + xy dz
.t"-
c,t-"t, y-e3', z-e-t (o=t=1)

t8. [ ,2 at + xt' tlt' ! z2 dz
.t.
C::Y : sint, ),:cost, z:P Q<t <it/z)

19, Use a CAS to check the answers to the problems that you
solved in Exercises 7-18 by evaluating the integml with
respect to I that you obtained.

20. In each part, use a CAS to evaluate the line integral along
the parametric curve C.

G) [x\v'ds
Jc
C: x:cos3l, ]':sin3t (0 

=t =tr/Z)
bl I xtzdxI'7ydyIy2zdz

Jc
C..x=t, y=t2, z=lnt (1 <t<e)

In Exercises 2l and, 22, evaluate /a I d.r - r dy along the

curve C shown in the figure.

21. (a)

{a) f,wz" 
ds

{c) f"wz'at

b) J,@ ictx

{rt) lrxtz2 
dx

@) l"xtzz 
ttz

14.

In each part, evaluate the integnl

lt3x+2y)dx+\2x-ytdy
along the stated culve.
(a) The line segment from (0, 0) to (1, 1).

(b) The parabolic arc t, : t2 ftom (0,0) to (1, 1).

(c) The curve y : sin(Tx 12) from (0,0) to (1, 1).

(d) The curye.x : ],3 from (0,0) to (1, 1).

In each paft, evaluate the integral

l'vdxlzdt-xdz..t-
along the stated curve.
(a) The line segment from (0, 0, 0) to (1, 1, 1).

(b) The twisted cubic x : r, y : t2, z = t3 from (0, 0, 0)
to ( 1, 1, 1).

(c) Thehelix.r: cosirt,): sinrt,z: t from (1,0,0)
to (*1,0, 1).

In Exercises 7 10, evaluate the line integml with respect to J

along the parametric curue C.

tr

tr

7.
f1

J" 4 "dtC:r =1. 1r:4tll2 l0.r <3t

J"r;no'
C'x=l+2t, ):, (0:t:1)

J"3x'tz 
ds

Ct\=t, y -r, z:i,t (0:/:ll

J" ,' * ,o'
Ct r.:2cost, ],:2sinr, z=t (0=t=2it)

In Exercises l1-18, evaluate the line integral along the para-

metria curve C.

10.
22. G)



ln Exercises 23 and 24, evrluate /c x2.-dx 1,x) Jr' * 3 d:
along lhe curve C shown in the figure.

ln Exercises 25-28, evaluate I F. .1r along the cu]-ve C.

ln Eretr.e. {q,rJ/lU.fil.l rlle uor^ cllJle b1 rhelote rrlLJ

l4
F( r.r): '.i* 

-j
\ +\ r-f l'

on ii particle that moves along the culve C shown in the figure.

ln Exercises z1l and 42. use a lire integral to find fie areil ol

38.

17.2 Lne ntegrals 1077

l

21.23.

.l

25. F(r. r') - -tr; 1 .11 1

C: r(1) - 2co<ri +rslntj (0: / : r)
F(.t. r,) - .tr1i 121;
Ctr(t) - eii+ e'i (0 : / : 1)

F(r.1) : (rr + r.:) rir(ri+Li)
C:r(/) :.,rsin/i + r'cos /j (0:t: l)
F(r, _r'. ;) : .i + r.i + rk
C:r(r) : sinri+ 3<inr.i + sinr/k (O 

=t 1nl2)
29. Find the mass of a thin wire shaped in the tbrm 01'lhe cir'

cular arc ! - J9 -t: (0 : -r : 3) ifthe clensity t'unction
is ,(-r. -!) - r.r,5

30. Find the mass of a thin wire shaped in the fbrm of the curve
.t : e/cos1. J : a/ sin t (0: I : l)ilthedensityfunction
d is propoltional to the distrnce from the origin.

31. Find the mass ol a thin wire shaped in the lbrm of the hclix
-!' : 3 cos /, _\, : 3 sin r, : : 4t (0 :: | 5 n/2) if rhe density
iunction is d : l.r/(1 + _rr) (l > 0).

.12. Find the mass 01'a thin wile shaped in the lbrm ol the curve
x:2t.)-: lnr,::4Jt (1 

= 
/:4) il'rhe densiry

function is proportional to the distance above the !'plane.

ln Exercises 33-36, find the work done by the force field F
on a particle that moves along the curve C.

33. F(.t. i) - -r-\i + .{r j
C -r : r,r from (0. 0) to ( i, 1)

34. l-(-r. -r,) : 1-r2 + rr')i i (r -.:r)j
C: r.-1. t =ll1 (lata3)

35. F(-r:, 1,;) : -rri + r,:.i + r:k
C: r(1) : ti +.2i + lrk (0:t: l)

36. F(t. v,:) - (.r + -!)i + -r,yj i2k
C: along line segmenls from (0. 0. 0) to ( l. 3, I)to
(2. l. 4)

ln Exercises 37 and 38. Ilnd ./. F . .1r by inspectio for the
fblce field F(x, 1) - i + j and the culve C shown in thc
figulc. Explain your reasoning. lFol clarity, the vectors in the
force ielcl are sholvn at less than true scale.]

The surlace tlrat extcnds upward lionr the parabola 1. : -r2
(0 : -r : 2) in the r.) plane to the plane i : 3.r.

The surtace thal extcnds upward 1'r'orr the scmicircle
, - J4 ri rn the rr-plune to.he 'rrrr.e - :.r' r'

As illuslraled in the accompanying [igure, a sinusoidal cul
is made in the top of a cylindrical tirl can. Suppose that the
b.r.c i. rnoJelcJ b1 thc p-r'rretric eqrdlintr\ r -.n\/.
-r : sin /, . :0 (0 : a : 2,'.), and the height ofthe cLrt as

a firnction of / is r - 2 i 0.5 sin 3t.
(a) Use a geornetric ilrsumcnt to llnd the lateral sudace atca

of tlre cut can.

(b) Write down a linc intesral for the surface area.

(c) Use the line inte,eral to cillculiite the sufilcc a1ea.

40.

26.

27.

28.

41.

12.

43.

44.
I t ,lt r '/rfrilrratcthcintcyra. I 

- 

.'\heret i.rhe.rr'. lcl, t-+r-
tr:r\ ct c.r-(uunlerclo. \ wi.e

Suppose that a particle moves through the lbrce ficld
F(r. _\. ) :.r_ri + (-\: ))j liom the poinr (0, 0) to the point

45.
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( 1. 0) along thc curve -! - 1, .) -it(l-t).Forwhatvalue
of i will thc work done by the lbrce lield be I ?

46. A iarmel weighing 150 lb canies a sack of grain weighing
20 lb up a circular helical staircase ar-ound a silo of radius
25 ft. As the farrner clirnbs, grain leaks fion the sack at a

rate of I lb per l0 ft oiascent. How nuch wor-k is pefbrmed
by thc iarmer in climbing through a vertical distance of 60
ft in exactly four revolutions? [Hil?r.' Find a vector field t]'lat

.cprcsents the force exerled by the fanner in lifting his own
rveight plus thc wcight of rhe sack upward at each point
along his path.l

17.3 IIUEEPEt$DEI\CE CIF FATI{; COI\$ERVATIVE \IECTOR FlEl-bs

In tlis section v,e ttill studJ properties of vector fields that reldte to tlle -'ork thq)
perforn on particlas ntoving tiortg vtrrioLrs curves. In particuLar, we wiLL sho-- that

fbr certain kitds of vector JieLds tlle ,,tork tlut the field pelbnns on u patlicle moving
along a cut,e depends onl on tlle endpoints ol the cun,e dnd not on the curve itself.
Suclt vector Jields are of specid inlportance in physics and engineeing.

We saw in the last section that if F is a vector field in 2 space or 3 space. then the work
pedormed by the field on a particle moving along a par-ametric curve C lrom an initial point
,4 to a final point B is given by the integral

/ t. tr,, or. eqrrirrlenrll. [ , . ,,I, J,

Accordingly, we call an integral of this type a work integral. At the end of lhe last section
wc noted that a work integral can be expressed in scalar fom as

WORK INTEGRALS

I, f(,t. r ) r1-r * g(r, t') dr' I sPiccl'.dr:

lro.n,= l, fA.t.z)dx + sO.,r',:)./,r +l(-r.-i',.).1.

[,
(l)

(.2)

INDEPENDENCE OF PATH

where l. g. aod ft are the component f'unctions of F.

The parametric curve C in a work inlegral is called the padr of integrution. One of the
ilrportant problcnrs in applications is to detennine hor,v the path of inlcgration affects the
work performecl by a vcctol i]eld on a particle that movcs liom a lixed point P to a fixecl

point 0. We will show shonly that il Lhe vector lleld F is conseNative (i.e., is the gradicnl
ol'some potential function d). then the work that thc field pertbrms on a particle that moves

from P to 0 does not depend on the pa{icular padl C that the particle follows. This is

illustrated in the lbllowing cxamplc.

Example I
The vector field F(-r. r') - r'i + -tj is conservative since it is the gradienL ol @(r, 1) = 11'
(veriiy). Thus, the preceding discussion suggests that tlle work pertbrmed by thc ficld on

a particle that moves from the point (0. 0) to thc poini ( I , I ) should be the same along
dil'lcrent paths. Confirm that the value of the work integral

is the sane along the following paths (Figure 17.3.1):

(a) The line segment J' =.r from (0,0) to (1. l).
(b) The parabola l, : .r2 fi'om (0. 0) to ( l , l).
(c) The cubic ) : rr from (0.0) to (1. l).

1,, u,

l)

Vcctors nono u ale

*--- -'t 

":/ 

/

-*..-,2,,'/

I
I

---.-.,./
_--../,

t

I
t+t
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Solulion (a). With -r : l as the parameter, the path of integration is given by

x:t, y:t (0<t<l)
Thus.

rtf
I F.dr- / ()i+rj).\dxi+d),.0- | ;dr+xdyJc Jt Jc

7l
I t. -t.

- | zrut - t
Jo

Soltttiort (b\. With .{ = / as the parameter, the path of integration is given by

x:t, ]l':t: (0<t<l)
Thus,

1,, 
.o': f; a* + * ar : 

fo' 
,,'o, -,

Soltttion lc). With x : t as the parametet the path of integration is given by

x:t, ):13 (0<t<1)
Thus.

l,r. o, : l,r d.x + * at : 
ln' 
t' a, : t

Recall from the Fundamental Theorem ofCalculus (Theorem 7.6.1) that if F is an antideriv-
ative of /, then

I f\x)dx = Flb) - Fla)

The following result is the analog of that theorem for work integrals in 2-space.

(x1. y1) and that f(x, y) and g(x, y) arc contitruous in this region. A

F(x, y) : Vd(x, Y)

and if C is any piecewise smooth parametric cune thqt snr,"ts 4l (-r0. )'0),
(x1, y), and lies in the region D, then

, F(x. )) . dr = QGt. yl ) - d{xo. )o)

or. equivalentLy,

f
I VA . dr = d(xr. )r ) - Qlxo, yot

ends at

(3)

Proof, We will give the proof for a smooth curve C. The proof for a piecewise smooth

curve, whichis leftas anexercise, canbe obtainedby applying the theorem to each individual
smooth piece and adding the results. Suppose that C is given parametdcally by,t : x(t),
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) : J (/) k S I < t), so that the initial and flnal poinrs of the curve are

(xo, )o) = (x(a), y(a)) and (,r1, y1) : (-i(b), )(b))
Since F(,r, r') - Vd, it follows that

dh tlthF(r,1): ji+ ^ jt1x iJ v

so

I - f Jo Ao f"lAalt |atltJI Ftr.r.r.dr= I :,1.t -: dt= I l:::- ----L ,lt
Jc J, dt ilv - J" LBt dt 6y dr )

fb d 1b: I I lo,r,,'. ))ttt\ldr - p'rur. 'rin lJo dt J, ,

- QQ{.h), y(b)) - Q(.x(.a). y(a))

: d(rr,lr) d(,r0, to) I

Stated informally, this theorem shows th at the volue of a work integral along a piecewise
smooth path in a conservative vectorfeld is independent of the peth that is, the value of
the integral depends olr the endpoints and not on the actual path C. Accordingly, for work
integrals along paths in conservative vector lields, it is common to express (3) and (4) as

r(,.) ) ,.(,r,rr)
I F.dr- I yQ.dr:Qe.,y) Qeyyd (s)
Jt*u.ro., Jt,o.u-,

Example 2

(a) Conlirm that the vector field F(;r, y) = li * -rj in Example 1 is conservative by
showing that F(x, y) is the gradient of d (.t, y) : x).

(b) Use the Fundamental Theorem of Work Integrals ro evalrate /t"'" . rr.
Ji0 0)

Sohttion (al.
A(h A(hV0- a,i +frj:vi+xj

Soltttion (b). From (5) we obtain

t| tt

I F'dr=d{i.lr @{0.0r-l-0-l

which agrees with the results obtained in Example 1 by integrating from (0,0) to (1, 1)

along specific paths. {

tiLMAltK. You can visualize the result in this example geometrically from the pjcture of
the vector field shown in Figure 17.3.1 and the relationship

Ir'0,:Ir.ro,
Jc Jc

We see from this that the more closely the unit tangent vector T to C aligns with F along
C, the greater the integmnd and hence the greater the vaiue of the integral. However, the
length of the curve C also affects the value of the integral. Thus, in compadng the three
curves in Figure 17.3.I , we see that the alignment of T with F is best for the line, bur rhe
line has the shoftest length. The alignments ale not as good for 1 = x2 and l : rr, but
they have greater lengths to compensate. Thus, it seems plausible that the integrals have the
same value.
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Palametric curyes that begin and end at the same point play an important role in the study
of vector fields, so thcrc is some special terminology associated with them. A paramctric
cune C that is represented by the vector valued function r(/) for d : I S l, is said to be
closed tl the initial point r(a) and the terminal point r(D) coincide; that is. r(4) : r(b)
(Figure 17.3.2).

It follows tiom (5) fiat if a particle moving in a conservative vector ficld traverses a

closed path C that bcgins and cnds at (-r0. \.0), then the work performed by the field is zero.
This is because the point (-r1 , _r'1) in (5) is the same as (x6. _rn) and hence

Our next objective is to show that the converse ofthis result is also true. That is. we want
10 show that uDder appropdate conclitions a vector neld in which the work is zero along
all closed patlls rnust be conservative. For this to be tlue we will need to require that the
domrin D of the vectot fieldbe connected, by which we mean that any two points in D can

be joined by some piecewise smooth curve that lies entirely in D. Stated informally, D is

connected if it does not consist of two or more separale pieces (Figure 17.3.3).

17,-1,2 ttttl)ttt-.\i. If .f(.x.1) tntl g(x.y) ore conti]'tuous on sone open con ected
regiott D , then the following stdte lents arc equivalent (.all ttLe or a[L JiLLse l.
(a) F(-r, r,): l(-r,_v)if g(r, y)j is a consentttit,e vectorfiekl ontheregictnD.

1,1 
' ar:,P1.,,, ,-,t d(ro..ro) : o

(b) I,

I,

F . dr = 0lor et,ert'piecewise unootlt closetl cun-e C in D.

(c)

every piecewise sntooth ctute C in D.-t

A(h i)b

- - ftx. r'1 and - : S(r. j)dI (i\

-D-I tt \
i'.
'',.- I '": , I

Not connecled

F . dr is independent ofthe parhfrom anl,point P in D to an!- poifi Q tu D.for ,

,, ,,i...,,^;,,' .",,,,,th , ,,^," /- ;. rl

This theorem can be established by proving three implications: (a) =+ (D), (b) + (c),
and (c) + (a). Since we showed above that (a) + (D), we need only prove the last two
implications. We will prove (c) =+ (a) and leave the other implication as an e\ercisc.

!'utoJ. k) + (d). we are assuning that ./c F . 1r is independert of the path for every
piecewise smooth curve C in the region, and we want to show that there is a function

d : d(.r. l') such that Vd = F( r, _r) at each point ofthe region; that is,

(6)

Now choosc a lixed point (a. b) rn D,let (i, }') be any point in D. and define

/.rr rr
.p,.{.\,- | f lr ,'r

J \,1 h)

This is an unambiguous dcfinition bccausc we have assumed that the integral is independent
ofthe path. We will show that Vd = F. Since D is open, we can find a circular disk centered
at (r. l ) whose pojnts lie entirely in D. As shown in Figure 17.3.4, choose any point (r1 . -r )
in this disk that lies on the same horizontal line as (.r, }) but that is diflerert from (r.1).
Because the integral in (7) is independent ofpath, we can evaluate it by llrst integrating from
(a, D) to (x1.1) along an arbitraly piecewise smooth cuNe C1 in D. and thcn continuing
along the horizontal line segment Cr from (-r1 . y ) to ( r, 1). This yields

d(r,-r') : l, t. a,+ L1. o,:1",,''t . a,+ 
lr.Y. 

a,

Figurc 11.3.2

Filrure 17.3.4

Since the first term does not depend on -r, its partial derivative with respect to r is zero and
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A TEST FOR CONSERVATIVE
VECTOR FIELDS

hence
a6 at Af---:- I F.dr:- I f\.t. vtdx I8{r.y)d)0x 3x Jc, h Jc,'

However, the line integral with rcspect to y is zero along the hodzontal line segment C2, so
this equation simplifies to

dadl
_:; / ltx.y\dx (8)dx dx .1.-

To evaluate the integral in this expression, we beat ) as a constant and express the line C2
parametdcally as

x:t, y:y (xl 
=t=x)

At the risk of confusion, but to avoid complicating the notation, we have used x both as

the dependent variable in the parametuic equations and as the endpoint of the line segment.
With the latter interpretation ofr, it follows that (8) can be expressed as

Now we apply Paft 2 of the Fundamental Theorem ofCalculus (Theorem 7.6.3), treating l
as constart. This yields

a6
^ :.f(x,v)

whichproves the first pafi of(6). The pro ofthat A A /Ay : g (r, y) can be obtained in a similar
manner byjoining (.{, }) to a point (r, }1) with a vertical line segment (Exercise 33). I
Although Theorem I7 .3.2 is a\ important characterization of conseryative vector flelds,
it is not an effective computational tool because it is usually not possible to evaluate the
work integml over all possible piecewise smooth curyes in D, as required in parts (b) and
(c). To develop a method for determidng whether a vector field is conservative, we will
need to introduce some new concepts about parametdc curyes and connected sets. We will
say that a parametric culve is simple if it does not intersect itself between its endpoints.
A simple parametric curye may or may not be closed (Figurc 17.3.5). in addition, we will
say that a connected set D in 2-space is simply connected if no simple closed curve in D
encloses points that are not in D. Stated informally, a connected set D is simply connected
if it has no holes; a connected set with one or more holes is said tobe multiply connected
(Figure 17.3.6).

The following theorem is the primary tool
2-space is conseryatiYe.

Figure 17.3.6

for determining whether a vector field in

#=* l"',r<,',t0,

{a\ 
r\a) r\b) 

ttbl

-\.,H -) {)L// \ \--r'\..--l /-J t \r(r) rtat \-_-/ r(a) = r(r)

G;;;? cb"d b,., ii.pr" r,r I E" o 
" 
,,ol

notcosed_] 1or simoF, jgj:gll Ico.ed L

#
[-rvJGu_l
L."lqgl

Figxre 17.3.5

17.3.3 THEOREM (Conservatire Fietd Test). If f(x,y) and g(x,y) are continuous and
have continuous first pLtti( derbatives on some open simply connected region D , then
F("r, y) : /(;r, y)i + g (.r, y)j is q conseryative yecbr rteld on D if and only if

af :asEy 0x

at each point in D.

(e)



I
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V(ttur\ nat 1a \(dle

\\..\\
\t. l \ \_- / t I
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A complete proof of this theorem requires results from advanced calclrlus and will be
omitted. However, it is rot hard to see why (9) must hold if F is conservative. For this
puryose suppose that F : V4, in which case we can express the 1'unctions l and g as

tJh .lh

"'-l and ..'=c tl0)dl .J1'

Thus.

At J tA6, l'6 a.' 3 tAa, f,'rn
- I l- and I l: -.:-Jj Jj \Jr/ JrAr --;,\ ar \"1 / Jrar

But the mixed partial derivatives in these equations are equal (Theorem 15.4.6), so (9)
follows.

\\ARNINC. In (9), the i-component of F is differentiated with respect to ) and the j-
component with respect to.r. It is easy to get this backwards by mistake.

Example 3

Use Theorem 17.3.3 to detemine rvhether the vector field F(r. _],) - (r + x)i f (f n) j
is conservative on some simply connected opell set.

Soltttiort. Let llr,,r) = r- t r and g(r, r) - 'r - r. Then

dl 0p1:l end j:_l
A i' 6.r

Thus, there are no points in the 0.plane at which condition (9) holds, and hence F is not
conservativeonanySimplyconnectedopenSet,<

RhN{ARK. Since the vector field F in this example is not conseryative, it follows from
Theorem 17.3.3 that there n.rust exist piecewise smooth closed curves in every simply
connected open set in the r}-plane on which

tf
lt ar: / F.T./s70
J. J.

One such curve is the circle shown in Figure 17.3.7. Tbe figure suggests that F . T < 0 at

each point of C (why?), so /c F . T ds < 0.

Once it is established that a vector iield is conservative, a potential function for the field
can be obtained by 1iISt integrating either of the equations in (10). This is illustr-ated in the
lbllowing example.

Example 4

Let Frr. r'r = 2rr i- ' I +Jrl)2'j.
(a) Show that F is a conservative vector lield on the entire jrr-plane.

(b) Fhd d by first integrating dd/Ar.

(c) Find d by first integrating 0@/d,r'.

Soltttitttt (u). Since.l(;;, -r) : 2r-,-r and g(r, )) - 1 * 3.12)2, we have

df ls
A,I ' d;r

so (9) holds for all (:r,1).

Solution (b\. Since the lleld F is corrservative, there is a potential function @ such that

irh . ithi1 :21yr and a:1+3r2-rr (11);,r' lr

2 -t 0 I 2

. 
F(r, r ) = () + r)i + (r .r)j 

.,

Figure 17.3.7
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Vc(kr'\ not to s.al?

--,-,,,,r',/
r\\)i==<.:ji z
l\xl:- - - -\,.'
:1::: - - -::"\"

lntegrating the first ofthese equations with respect to,rr (and treating ]' as a constant) yields
r-

4= J2xyJtlx:*-)'+l(t)
(t2)

where /<(-1 ) represents the "constant" of integration. We arc justified in treating the constant
of integration as a function of ,y, since l is held constant in the integration process. To lind
k(] ) we differentiate (12) with respect to ) and use the second equation in (1 1) to obtain

A(b

fr -- ,..t.t.t + k'( r) = l* 3rrr2

fron which it fbllows that l'(,\') : I Thus,
tl

ktlr- / A tr r,1r' - J ldr -r'.rJJ
where K is a (numerical) constant of integration. Substituting in (12) we obtain

d:,tl)'r+.r'+K
The appearance of the arbitrary constant .K tells us that O is not unique. As a check on the

computations, you rnay want to verify that Vd : F.

\olulion t(1. Integrating the second equation in (l l) with respect to.l (and treating r as

a constant) yields

O : I O + x=,-tld,y :.y *-r2r'r * k(r) (13)

where &(-r) is the "constant" of integration. Differentiating ( l3) with respect to .r and using

the f,rst equation in ( I i) yields

a-! : 2rrt *t'{rr= 2ryl
3t

from which it follows that k'(x) : 0 and consequently that /i(-r) : K, where K is a
numerical constant of integration. Substituting this in ( I 3) yields

4:y+x2r'3+K
which agrees with the solution in pan (b).

Example 5

Use the potential f!nction obtained in Example 4 to evaluate the integral

/ 2" rt,/., +tl+3xrr'r)dr'
Jr t..tr

Solutiuu. The integrand can be expressed as F . dr, where F is the vector lield in Example

4. Thus, using Formula (3) and the potential function @ = .v + .t2-v3 * K for F, we obtain
.I.i.I ) ,"rl,l,
/ 2tr't.1"-1 tl tJ.rrr'2)c1r': / F./r=d(3. l) d(1.4)

J, r. r J rt.^'

:(10+K) (68+r) =-58

r| \r \lrK. Note that the constant K drops out.ln future integration problems we will omit
K from the computafions.

Example 6

Let F(r. r) : ?) i + -\-er i.
(a) Verify that the vector field F is conservative on the entire r-"--p)ane.

I 0 I (b) Findtheworkdonebythelieldonapaniclethatmovesfrom(1,0) to(-1,0)along
Figure 17.3.8 the semicircular path C shown in Figure 17.3.8.



However. thc calculations involved in integrating along C are tedious, so it is preferable to
apply Theorem 17.3.1 . taking advantage of rhe facr lhal rhe lield is conservative and rhe

Solution fuI. For the given field we have .f(,r'. r,) = er and .g(.r. -r') = xsr. Thus,

Ad_(sl )=c':_-_(.ret)dI r,t
so (9) holds for all (,r. r,) and hence F is conservative on the entire .\.\-plane.

Sttlulion lhl. From Formula (33) of Scction 17.2, thc work done by the fielcl is

ftW= IF.(/r= / e'd.r +.Ler dl
JC J('

integral is independent of path. Thus, wc write ( I4) as

.l - Ll)r

W = I ejrl.r+.tc)(/r'=d{-1.0)-d{1.0)
Jrttt

As illustrated in Example 4, we can find d by integrating either of the equations

06 d6
---: = cr and ---: = \'.,\A.\' ilr

We will integrate the Rrst. We obtain

6: I e' dl =.re' * ii(r')

17.3 lndependence of Path; Conservative Vector Fields 1085

( l4)

( l5)

(16)

( t?)

Dil'l'erentiating this equation with respect to r. and using the second equation in ( 16) yields

A(h
--: =.\.c\ + k'(r.) = r'd\

from which it follows that ii'(r') = 0 or t(r') = K. Thus, lrom ( l7)

0=xe:+K
and hence from ( l5)

W : O( -1.0) -d(1.0) = (- I)(r' - t,,{): -2

All of rhe results in this scction have analogs in 3-space: Theorems 17.3.1 and 17.3.2 can
be extended to vector tields in 3-space simply by adding a third variable and modifying the
hypotheses appropriately. For examplc, in 3-space, Formula (3) becomes

/. 
rfr, r, .l . dr = OOt. yt, zi - d (-ro. Jo. ro) (18)

Theorem 17.3.3 can also be extended to vector fields in 3-space. We leave it lbr the exer-
cises to show that if F(.!, -1, :) = "f(-r, t. .)i + g(.r. t,, :)j * /r(x. .y. :)k is a conservarive
field, thcn

Al 0g af ah 0g ah

01 0x 0z 6x Az 0r'

that is, curl F: 0. Conversely, a vector field sarisfying these conditions on a suitably
restricted region is conservative on that region if ./. g, and,h are continuous and have
continuous lirst partial derivatives in the region. Some problems involving Formulas ( l8)
and ( 19) are given in the supplementary exercises at the end of this chapter

If F(x, 1,. ;) is a conservative force field with a potential function @ (r. ,r. :). then we call
y(-\. t. a) = -d(.r. ),.:) the potenlial energy of the field at the point (.r. r,.:). Thus. it
follows tiom the 3-space version of Theorem 17.3.1 that the work lV done by F on a

CONSERVATIVE VECTOR FIELDS IN
3.SPACE

( l9)

CONSERVATION OF ENERGY
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ExERcrsE SET 17.3 E ces

particle that moves along any path C from a point (ro, )r0, zo) to a point (r1, y1.21) is
related tc, the potentialenergl b1 Lhe equarion

* : .1,r-clr:Otrt.yt,.r) d(r0,)0,r0)- [V(rL,-rr,rr) V(ro,)0,:o)] (20)

that is, tne work done by the field is the negative of the change in potenrial energy. In
particular, it follows from the 3-space analog of Theorem 17.3.2 that if a particle traverses a
piecewise smooth closed path in a conseNative vector field, then the work done by the field
is zero, and there is no change in potential energy. To take this a step further, suppose that
a particle of mass ,n moves along any piecewise smooth curve (not necessiuily closed) in a
conservative vector field, starting at (ro, yo, u o) with velocity ui and ending at (rl , )1, zt)
with velocity lrj. If we let yi denote the potential energy at the starting point and V7 the
potential energy at the final point, then it follows from the Work-Energy Theorem (Theorem
8.6.4) rhat

!nu2,-l,"ui:-lvJ-vil
which we can rewrite as

)mu2r+Vy = lmul +vi
This equation states that the total energy of the particle (kinetic eneryy + potentiitl energy)
does not change as the particle moves along a patl in a conservative vector lield. This result,
called the conservstion of energy principle, explains the origin of the term "conservative
vector field."

In Exercises I 6, detemine whether F is a conseNative vec-
tor field. lf so, lind a potential f'unction fbr it.

1. F(x. )) : ri + ]''j

3. F(x, r) - x2)i + 5-r)'2j

4. F(r, r) = e'cos)i e'sin)j
5. F(x, _v) : (cos y f ycos-r)i*(sinr-;rsiny)j
6. F(r, y) : irlnli + )lnrj
7. (a) Show that the line integral /. y2 d.r * 2.ry dy is inde-

pendent of the path.

(b) Evaluate the integral in part (a) along the line segment
from (- 1, 2) to (1, 3).

(c) Evaluate the inte grat !,1r3,\, y' a, + zi) d)) using The-
orem 17.3.1. and confirm that the value is the same as

that obtained in paft (b).

8. (a) Show that the line integral [ ) sin.r d,r cosxd_} is

independent of the path.

1,,'ou' "o' 
*" o'

J* 
e'sinrdr*e'cosrdl

Ilj^i' 
t,"' o, * x2e, dy

lll,,'1,,o, , * I) dr - (* + 4! +2) dl

II'o' '",' 
o"+ 3v2'r2 dr

2. F(r. ,i r : 3r ri + 6rl,j

9.

10.

11.

12.

13.

u./"''(''",, ?)* '(,
and 1 are positive.

"r 
tnr) dt, where ,t

(b)

(c)

Evaluate the integral in pafi (a) along the line segment
from (0. 1) to (2, i).
Evaluate the integral,/,f,], ') y .;n 

" 
a" cosrd-r, using

Theorem 17.3.1. and confirm that the value is the same

as that obtained in part (b).

In Exercises l5-18. confirm that the force field F is conser
vative in some open connected region containing the points
P and 0, and then find the work done by the lbrce field on a
particle moving along an arbitrary smooth cuNe in the region
lrom P ro 0.

15. F(r, y) : ir)'2i +x2)j; P(1, 1), O(0.0)

16. F(r, r) - 2r]3i + 3r2),2j: p( 3,0). O(4, 1)

F(.r, 1) : y,c'ri 1 -te') j; P(-1, l), 0(2, 0)

F(.r, y) : a 'cos:ri e r sin,rj; P(z/2, l), Q( 1r/2,0)

In Exercises 9 14, show that the
the path, and use Theorem 17.3.1

integral is independent of l 17,

18.
to find its value.



r In Exercises 19 and 20, find the exact value ol /:. F . dr using
dn) rnelhod.

19. F(x. f) : (sr { 1e')i i (rer * e')j
C :r(r) : sin(21l2)i+1nrj (1 at::2)

20. F(r. f) : 2;ryi 1 (;2 l cosy).1

C: r(r) : 1i + l cos(tl3)j (D - t :. n)

21. Use the numerical integration capability of a CAS or other
calculating utility to approxinate the value ofthe integral in
Exercise 19 by direct inte$ation. Conflrm that the numeri
cal approximation js consistent with the exact value.

22. Use the numerical integration capability of a CAS or other
calculatjng utility to approximate the value ofthe integral in
Exercise 20 by direct integration. Confirm ftat the numeri-
cal approximation is consistent with the exact value.

ln Ererc;'e\ 2J and 24. r\ Ihc \culor field con\er\,1rive.'t\-
plain your reasQning.

I1.3 ndependence of Path; Conservative Vector Fields 1087

is a potential functjon fbr the two dimensional inverse-
square field

FrI rr- r'ri -ljr(,r' + r ')'
but we did not explaln how the potential function
,l (,r, ).) was obtained. Use Theorem 17.3.3 to show that
the two dimensional inverse square field is conserva-
tive everywhere except at the origin, and then use the
method of Example 4 to derive the fbrmula fbr /(x, _r).

(b) Use an appropriate generalization of the method of Ex-
ample 4 to derive the potential function

(
uri,.:'------ u \ .)

for the tbree dimensional inverse-square field given by
Formu .r (5) of Sectiorr I7 I

In Exercises 29 and 30, use the result in Exercise 28(b).

29. ln each pal1, nnd the work done by the thlee-dimensional
inverse square field

1
Flr) : 

-rrl'
on a particle that moves along the cuNe C.
(a) C is the line segment from P (1. 1. 2) to QG,2. l).
(b) C is the curve r(r) : (2r'] + l)i+ 0r + 1) j + (2 -^r)k,

where0:r:1.
(c) C is the circle ofradius I centered at (2, 0, 0) traversed

counterclockwise.

30, Let Frx.l):-,i- ,j.\_ ,-). ,r. , .\.
(a) Show that

[ ,.n,= [ ,.0".t..t.
if C1 and C2 are th; semicircular paths tiom (1,0) to
(-1,0) given by

Cl:x:COS/. ):sint (05r:z)
C2:r -cosl. l: sinl (0<1<n)

(b) Show that the components olF satisfy Formula (9).

(c) Do the results in parts (a) and (b) violate Theorem
17.3.3'l Explain.

Prove Theorem 17.3.t if C is a piecewise smooth curve
composed ofsmooth curves C1, C2,..., C,.

Prove that (D) implies (c) in Theorcm 17.3.2. fHinr: Con
sider ary two piecewise smooth oriented cuNes C1 and C2

in the region from a point P to a point 0, and integrate
around the closed cuNe consisting of Ct and C2.]

Complete the proof of Theorem 17.3.2 by showing thal

0d/0r, : S(r, y), where /(;r.1) is the l'unctjon in (7).

tel

tr

tl )

25. Prove: lf F(-r, -r. :) - l(.jr, t, .)i + g (r, J, z) j + h(r, y. z)k
is a conseNative field and l, g. and lz are continuous and

have continuous flrst partial derjvatives in a region, then

af 3g aJ ah 0s

dl dL ,).- Ar iJ--

in the region.

Use the result in Exercise 25 to show that the integral

/ vzd.n+x-:1i + i r r./-.
J,

is not independent of lhe path.

Find a nonzero function l fol which 
31.

F("t, -!) : ll(-r)fr sin l, + ) cos )li
* h (r) [r cos Y I' sin 1]j

is conservative.

28, (a) In Example 3 of Section 17.1 we showed that

c
/(r ' rl : 

-

(r' + I') ''

0lt

at

26.

27.

32.

33.
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GREEN'S THEOREM

17.4 GREEN'S THEOREM

In this section we wiLl discuss a remcLrkqble ontl beautiful theorem that expresses the
double futegral over a plane region in terns of a line integral around its boundary.

17.4.1 THEOREN{ (Green's* Theorem). Let R be a simply connectecl plane regionwhose I

boundary is a sirytle. closed, piecewise smooth curue C oriented counterclockwise. If I

f (.r, y) and g(x, y) are contintrous and have continuous ftrst partial deriyatives on some
open sel containing R, thefi

I, f(x, y) dx + s6, r) hl

Proaf, For simplicity, we will prove the theorem fbr regions that are simultaneously type
I and type II (see Definition 16.2.1). Such a region is shown in Figure 17.4.1 . The crux of
the proof is to show that

I f r afI [rx.vtdr- ll -JA arrdJc' Jl ;))'
R

(2 3)

R vr"w"o a at,o-t,ego Rv"w-ddsd.,pF Il "eor

Figure 17.4.1

To prove (2), view R as a type I region and let C1 and C2 be the lower and upperboundary
curves, orjented as in Figure 17.rt.2. Thet

.l(r, 1') d;r

or, equiYalently,

l,ra.to, - 1,,
/(r, r,) dr

ttt
/ f(r. r,rdt = I i$. y1dt i IJ, Jr J

: ll (Y K)^ (,

l,sa,ray- II#r^
,R

(4)ftr.ltd., - l_r,Figure 17.4.2

*,'r,,u,'. 
no.',,., (1793-1341). English mathematician and physicisr. Green letl school at an early age ro \r,ork

in his father's bakcry and coDsequently had litile earJy formal educarion. When lis farher opened a mill. the
boy used the top room as a stud] in which he taughr himsclf physics and mathemarics fro library books.
In IE2E Green published his mosl imporlaDt wo*, Ar tisa_!, or the Applirction af Mathenatical AnalJsis ta
the Theoies oI Electtk:i\' and Magnetisn. Ahhough Green's Theoren appcared in thar paper, rhe resulr wenl
virtually unroticed because ofthe small pressrun and local distribuiion. Following rhe dearh ofhis farher in 1829.
Green was urged by friends 10 seek a colLege education. In 1831, after four years of scll study to close the gaps

in his elcnentary education, Green was admiited to Caiu! College, Cambridge. He graduarcd lour years tater but
wrth a disappointing pcrtbrmance on his iinal examinations possibly because he was more inrerestcd in his own
research. After succession ofworks on light and sound. he was named to be Perse Fellow at Caius College.]wo
ycars later hc died. lD 1845. lour years after his death, his paper of 1828 was published and rhe rheories developed
therein by this obscure. selflaugh! baker's son helped pave the way to the nrodem theories of eledricity and
magnetism.



A NOTANON FOR LINE INIEGRALS
AROUND SIMPLE CLOSED CURVES
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(This step will help simplify our calculations since C| and -C2 are then both oriented left
to right.) The curves C1 and -C2 can tr expressed parametrically as

Ct.x:t, y = gt!) (a<t <b)

-C2:x:t, y:92() (o<t.<b)
Thus, we can rewrite (4) as

lfbfb

JcIt^.r)dx = J" ftt.nttttx'tiar - J" .f(t. s21\x'(t) dt

1b rb: I f(.sft))dt- I fa,sz\t))dtJA J"
tb: _ I lfc, s2(t\) _ f(r, st?Dldt

J"

: - 1,' lo,, r)',l,,u 
u',, 

* : - 1.' ll,:r',',* *)*
- - [u [nu' loro" - - II Kr^l" l s,,,t ot 

/r

since x =,

The proof of (3) is obtained similarly by treating R as a type II region. We omit the
details. I

Example 1

Use Green's Theorem to evaluate

Ix2ydx+xdy
Jc

along the triangular path shown in Figure 17.4.3.

Solutiott. Since/(x,y) = xzy and g(x, y): x, it follows from (1) that

l,x2 t, ttx + x dr = I I l*, - fia' rt]oo : I"' I"'" u - x21 dy d'
i

: ft 2, -u''1a^- l" - {l' = ]Jo' L 2)o 2

This agrees with the result obtained in Example 7 of Section 17.2, where we evaluated the
line integral direcdy. Note how much simpler this solution is. {

It is common practice to denote a line integral around a simple closed curve by an integral
sign with a superimposed circle. With this notation Formula (l) would be written as

f,r,,.tta*+s1x,y)dy = ll e-K)r^
R

Sometines a dircction arrow is added to the circle to indicate whether the integration is
clockwise or counterclockwise. Thus, if we wanted to emphasize the counterclockwise
direction of integration required by Thmrem 17.4.1, we could express (1) as

f,r@.ttd,+s<,,ytdy: II (#-'i) r^ (s)

n

Figurc 17.4.3
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FINDING WORK USING GREEN'S
THEOREM

lt fbllows from Formula (37) of Section 17.2 that the integml on the left side of (5) is the
work perfomed by the vector field F(-t. r') : /(x..r)i * g(r.,r)j on a particle moving
counterclockwise around the simple closed curve C. [n the case where this vectol field is
conservative, it follows from Theorem 17.3.2 that the irtegrand in the double integral on
the dght side of (5) is zero, so the work pedormed by the fleld is zero, as expected. For
vector ields that are not conservative, it is often more efficienl to calculate the work around
simple closed curyes by using Creen's Theorem than by parametrizing the curve,

Example 2

Find the work done by the force field F(-t..r) : (e' - .\'r)i + (cos,\' + -r3)j on a parricle
that travels once around the unit circle -y2 + tl : I in the counterclockwise direction
(Figure 17.4.4).

-1

I

Figure 17.,1.,1

FINDING AREAS USING GREEN'S
THEOREM

The work W performed by the field rs

F.,ir - d (e' - r'rr,h - rcos.r' +.rrrrh
Jc
tt f i) o-,"'-''t,lae

=// [;,.*' 
I r')-, 

I

- ll ,r,' +i,r)./A -t ll ,.,'*ftae
RR

"2a "l=r / IJu Jo

Solutiott.

* =f,

. -3 /r" 3t(r-\t,lt de:- I d0=:1lo 2

^= llo^=f.-u, a'd A: II ,^=/,-',,r,
,4n

Grcen's Theorem leads to some useful new formulas fbr the arca A of a region R that
satisfies the conditions of the theorem. Two such formulas can be obtained as fbllows:

Setir.r) = \ aDd

3(r-l) = 0in ll).

A third formula can be obtained by adding these two equations together. Thus, we have the
following three formulas that express the area A of a region R in terrns of line integrals
around the boundary:

-ltdx*xdt

lil-lN|\liK. Although the third formula in (6) looks more complicated than the other two,
it often leads to simpler integrations; but each has advantages in cenain situutions.

Example 3

Use a line integral to find the arca enclosed by the ellipse

x2 v2
.*_:l

Solulion, The ellipse, with counterclockwise odentation, can be represented parametri-
cally by

.r =.rcosr, ,r':bsint (o 
=t =2n)

e=f ,ar:-f,ro,=)f, (6)
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If we denote this curve by C, then from the third formula in (6) the area A enclosed by the
ellipse is

f,

/ l,-rr,n,,,-n.in/r- r.r.o\ r ){l,, cos / rlJr

: i"o .1,, 
{sin: r 4 cos: r ;r/r

I
2

I

2

Recall that a plane region is said to be simply connected if it has no holes and is said to be
multiply connected if it has one or more holes (see Figure 17.3.6). At the beginning of this
section we siated Grcen's Theorem for a counterclockwise integration around the boundary
of a simply connccted region R (Theorem 17.4. 1). Our next goal is to extend this theorem ro
multiply connected regions. To make this exter'rsion we will need to assrnle lh,,\t the rcgion
[ies on tlte leftwhen tu1\' portion ol tlrc boLutdntf is taversetl inthe dircctiotl ofits orientutiotl.
This implies that thc outcr boundary curve of the region is orielttcd counterclockwise and
the boundary cL1ryes that enclose holes have clockwise orientation (Figure 17,4.5n). If all
portions ofthe boundary ofa multiply connected region R are oliented in this way, then we
say that the boundary of 1? has positive orientqtion.

We will now delive a version of Grcen's Theorem that applies to trultiply connected
rcgions with positivcly oliented boundaries. For simplicity, we will consider a rnultiply
connected region R with onc hole. and we will assume that /(,r. l.) and g(-t, r.) have con-
tinuous fil'st partial derivatives on some open set containing R. As shown in Figure 17.4.50.
let us divide R into two lcgions R'and R" by introducing two "cuts" in R. The cuts are
shown as line segments, but any picccwise smooth cuNes will suflice. If we assume that /
and g satisfy the hypotheses of Green's Theorem on R (and hence on R' and R"). then we
can apply this theorem to both R' and R" to obtain

: \", fo" 
o,

GREEN'S THEOREM FOR MULTIPLY
CONNECTED REGIONS

cl

tn\\_-..--. c, \1 ,.'*i l/ ) llt, \*/ I

lu)

(b)

Figurc 17.-1.5

__---q_-

iR'\ c,\
,)*(-, \-.]r-=7 F

\ R'.''-' ,/

R-
il ff x),^: II
RR'

=$
rr' ,/,1,',y

.l A

f
/rr. \ )i/.\ +grr.\r,/\ +0 /t.r. r't,1r -91.t. r'1r1r

.t
Boudlrl

ot a,,

However, the two line integrals are taken in opposite directions along the cuts, and hence
cancel there, leaving oniy the contributions along C1 and C2. Thus,

which is an extension ofGreen's Theoremto amultiply connected region with one hole. Ob-
serve that the intcgral around the outer boundary is taken counterclockwise and the integral
around the hole is taken clockwise. More generally. if R is a multiply connected region with
r holes. then the analog ol'(7) involves a sum of ,r + I integrals, one taken counterclockwise
around the outer boundary of R and the rest nken clockwise around the holes.

Example 4

Evaluate the integral

/ r J.r .l-.t r/r'0-
Jc r f t-

if C is a piecewise smooth simple closed curye odented counterclockwise such that (a) C
does not enclose the origin and (b) C cncloses the origin.

II ff ^!)ae:{, 
1t.. 

'r.r,. 
+.s(-r.-r)d-r'+ /. /t,*, r'ra-' +.ct..."ra" (7)
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ExERcrsE SEr 17.4 E irs

S0lttliqtr l(1. Let
l,t

/{\..\ r - - -------. g{.\'. rr = .. r_ .\tr].
)o Lhlt

dg .r': -,t: rI
d\ (.\- + \-l- ,r\'

if r and ,i' are not both zero. Thus, if C does not enckrse the origin, we have

ip Aft =0

on the simply connected rcgion encloscd by C. and hence thc giYen integral
Green's Theorem.

(8.)

S0iution \ht. Unlike the situatior in part (a). we cannot apply Green's Theorem directly
because the function s I (r . r') and I (-r. r') in (8) are discontinuous at the origin. Our problems
are further compounded by the fact that we do not have a specific curve C that we can
parametrize to evaluate the integral. Our strttegy circumvcnting these problerns will be to
replace C u'ith a specillc curvc that produces the same vrlue tbr the inlcgral and then use
that clll.Ve for thc cvaluation. To obtain such a curve. we will apply Creen's Thcorem fbr
multiply connected regions to il legion that does not contain the origin. For this purpose we
construct a circlc C,, with ry'or'li'flsc olientation. centercd at thc ol.igin, and with sulhciently
snrall radius .l that it lies inside the region enclosed by C (Figure 17.4.(r). This creates
a multipl)' connected region R whose boundary curves C and C,, have the orientations
required by Formula (7) and such that within R the functions /(.r. r') and g(.i. r,) in (8)
satisfy the hypotheses of Creen s Theorem (the origin is outside of R). Thus. it follou,s
fiom (7) and (9) that

l" -r'r/r -l- t,/r' i' -r'rlt -F trlr' f fp. ,,+,'-*f '=.', JJotA'o
It fbllows flom this equation thilt

ir r c/.r l- r rlr' f -r'r/.r + r,/r',l' -=-{' 
--l, r I J, rj+\''

which we can rcwritc as

i' -'J.rrr,1r / -r',/.t -.i,1t R cr ^h r"r'r'n
0 ---_:0 , r-\. r'. nd,, .

J, .\' I \'- ,/-t .f- ! \'- ' i,,.!,.

But C,, has clockwise orientation. so -C,, has counterclockwise orientation. Thus, we have
shown that the original integral can be evaluated by integrating clockwise lround a circle
of radius c that is centered at the origin and lies within the region encloscd by C. Such a
circlecanbeexpressedparamctricallyas,r:.rcosI,t-4sint(0:tS27r):andhence

1" -r'r/.t *.r r/r' /1. 1-rrrinr)(-risinl)dr + (rrcos/)kicosr)./r

Y, .\': + r: J,, ({r cos / )l + (ll sin / )l

= 1,," 
,u, ==,

(e)

is zcro by

Figurc I7.-1.6

ln Exercises I and 2. evaluale the line integral using Green's

Theorem and check lhe answer by evaluating it directly.

t. / .:,i.r -.r't,/t.whercC i.lhesquJre $llh \enr(e:. rl). ll).
'lc
( 1, 0). ( 1 , l ). and (0. l ) orientcd counterclockwise.

2, 6 :J.' -.t r./.r.rrhelef . rhe Lrnir rilclc rrljcr)ted coultcr
'l('
clockwise.

In txer!i.c. J l j. u.e Creen. Thcorerrr tocvllulte the irr-

tegral. In each exercise- assume that thc curvc C is odented
counlerclockwise.



.1. / :'. -l-r - 2.r) ./r. $hsre a i\ rhe r(clanlle bulnLled ))
.lr
-r : -2. -t :4, r. : l, and r. :2

,f. d i.rt- t-)d(-\tl).unereCr.thecrc.e,- ''.lc

5. $ r cor r J., r.inrdr.urre-er'.the.quarcuithlrr-

ll.r rr, t,r, 1z 2.07. 1,' 2. r 2;. rntl 1u. r )1.

6. $ r tani r/\ | tan ' Jr'. qhere C i. thc e'r.lc
.lc
.!2 + (-I + l)2 : l.

l. 4 rrt ;J\ .rdi.nhcrc/^ i.thc.ir. le r: r'2 4.
.lc'

t d,, r'1r?.r - 1r , ,Jr'. rlere a . rhc bornJ*r)
.t,
of tlie region betwecn ) : J2 and -\' : r
/ rr

9. 
f ll I - r''lr , ., 

dr. uhcr, a rr lhe tr:rni e $.rh

vertices (0.0). (2.0). and (0.4).

0 .''l ,i.i -. - ' a'. \ nrre C r.lhe o^undJr) ul 'he -elion
.lc
in the first quadrant, enclosed between the coordinatc axcs

and the circle xr + ll : 16.

/ .,1-
d r..- l.lr . , Jl.ul-e-eCr.,he.quirewrh\er-
.lc t + r
tices (0.0), (1.0), (1, l), and (0. l).

d ,,* '.'n rr' | .in.r co.r dr. uhrrr C r. rhe trrrn.ole
.t'-
with vertices (0,0). (3.3), and (0,3).

d 
", 

rr (r .\l r/',uhelea 5I-eooundorr olthe
Ie
repron enel.,.rJ b1 I tr.-tao t -.r
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Use the formula

1fe:.Q \,/\+\./l

to lind the arel of the region swept out by the line from the
origin lo thc ellipse.r - .7 cos r. li - b sin r il t va es j'rom

r :0 to I :.r) (0: ro : 2tr).

Use the tbrmula

1l
1 - : O l d1 + r ,A

to find the area of the region swept out by the line liom the
origin to the hyperbola r : d cosh I, J : /r sinh r il'r varies
fromr-0to/-ro(ro-0).

In Exercises 2l and 22. use Green's Theorem to lind the work
done by the fbrce field F on a particle that moves along thc
staled path.

21. F(ri, f) : -t-ii + (jrr + x-i,)j; the particle stafis at (5.0).
traveNes the upper semjcirclc -rl + !2 : 25, and rcturns to
ils starting poirlt along the -y axis.

22, F(,!. r) : v{, i + /rj: the pafiicle moves counterclock
wise one time around the closed curve given by the equations

_r = 0. x : 2, and -r' : rl/:1
I

23, Frrlurrc S r /r' \,/). une-c a r. rne cirrd ord
l.

/- :a(l +cosr) (0 ::e a2n)

24. Lel R be a pliLne region with area A whose boundary is a
piecewise smooth simple closed curve C. Use Green's The
orem to prove that the centroid (t, l:) of R is given by

r/, t r,. _n .,,. " __g ; dt^- )4'f " '- :r'l
lrr Erer'er.e.25-2{. use rhe re\lrlr in f\er.r.e ll lo hnJ rhe

19.

20.

10.

11.

12.

13.

tr

rq

1:1. For the problems that you solved in Exercises i 13. use a

CAS to check Green's Theorem by evaluatirlg the line inte-
gral aDd the double integral.

15. Use a CAS 10 check Green's Theorem by evalllating both
integrals in the equation

t ttf , l
ril. J.r-vc.l' ll ",r,, !,,,lJa
.t, ll lJx d' I

1t

wherc
(a) C is the circle 12 + )-2 : l

(b) C is the boundary ofthe region enclosed by -"- 
: tr2 and

ir: _t-,

16, ln Example 3, we used Green's Theoren to obtajn lhe area

of an ellipse. Obtain this area usirlg the llrst and then the

second formula in (6).

17. Use a line integral to find the alea of the region enclosed by
the astroid

-r: cos3d, l:dsinrd Q.Q12n)
lsee Exercjse 18 of Section 8.,1.1

18. Use a line integral to find ihe area of the triangle $ith ver-

tices (0.0). (d.0). and (0. b). rvhere a > 0 iind b > 0.



25.

30.
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Find a simple closed curve C with counterclockwise orien-
tation that maximizes the value of

d ltt,l, + (.r - l..t) ,/r'
JI

and explain your reasoning.

(a) Let C be the linc se-qment liom a point (rl. ,) to a point
(c. d). Show that

l-tdx+ttlv:ttJ-b,
.t.

(b) Use the result in part (a) to show that the area A of a

triangle with successive vertices (-rt, -r'l), (-rr.lt), and
(r ,. rr t poing countcrclo(lwi\c i\

A: +[(.yr.r.: - _r:] r)
* (-r:.r': -,rtr':) * (rltr -rrlr)]

(c) Find a formula for the area of a polygon wirh successive
vertices (.r1.,r'l), (.r2. t-2)..... (,r,,. t.,,) going counrer-
clockwise.

(d) Usc the result in part (c) ro find the area of a quadrilat-
eral with vertices (0. 0), (3. 4). (-2. 2), (- l. 0).

In Erercrse. J I anJ 32. evdlua{e the integral .t.. F . ./r. u here
C is the boundary of the region R and C is oriented so that
the region is on the left when rhe boundary is traversed in the
direction of its odentation.

31. F(-r. r) : (.r: + ),)i + (4.r - cos y)ji C is rhe boundary of
the region R that is inside lhe square with vertices (0.0).
(5, 0), (5. 5), (0. 5) but is outside the rectangle with vertices
(r. r). (3. l). (3.2). (r.2).

32. F(r,,r') : (e-' + 3,I)i + -di C is the boundary of theregion
R between the circles rt + J,2 = l6andrl-2,r+1.1 :3.

I 7.5 gpxqlppq;g ir',tT[:GRA[" $

In previotts sectiofis we considered.four kinds of integraLs-integrals over intervals.
double integrals over nyo-ditttettsional regions, tripLe integre s over three-dinensional
solids. ond line integre s ttl2ttlq cunes in n-o- or three4itnensiottttl spuce. In this sec-
tiott v;e will disctrss integtals over sutfaces in three tlimensiottttl space. Such integrals
occur it problents inrolrittg fuid ard lrcat flow. electric[h, nngnetism, nnss, antl
center of grat'i'}'.

Recall that if C is a smooth paramet ccurvein 3-space, and .f (.r, r.;) is continuous on C,
then the line integral of ./ along C with respect to arc length is defined by subdividing C
into 7'? arcs and defining the line integral as the limit

where (,r1, yf,:i) is a point on the lth arc and As1 is the length of the &rh arc. We will
define surface integral.s in an analogous manner.

Let o be a surface in 3-space with finite surface area, and let /(-r..r,,:) be a continuous
function defined on o. As shown in Figure 17-5.1, subdivide o into patches,ot,o?. .... on

with areas ASr. ASr. . . .. A$,, and form the sum

I fl,';, r;,.ilas* (r)

where (.xi, yf, zi) is an arbitrary point on dr. Now repeat the subdivision process, dividing
o inlo more and more patches in such a way that the maximum dimension of each patch
approaches zero as r --+ *cc. lf (1) approaches a limit that does not depend on the way rhe
subdivisions are made or how the points (,r1. ;1, zi) are chosen, then this limir is callcd the
surfoce integral ol /(,r. _r'. :) over cr and is denoted by

DEFINITION OF A SURFACE
INTEGRAL

/ r,.,..,.;rrl,= ti'n I/r ri.r'i -i rAs,
l- ,t

ll r<,,r.oas: lim f/1;r;,y,i.:i,1aS1 (2)

There are various procedures tbrevaluating surface integrals that depend on how the surface
o is represented. The following theorem provides a method for evaluating a surtace integral
when .r is represented parametrically.

rri. rl,.-ft

Figur( ll5 l

EVALUATING SURFACE INTEGRALS
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i 17.5.1 THEOREI\\. Let o be o smooth pclrqmetric surlace \lhose vector eqLrution is :

I r: r(ir, r)i * t,(r, u)j * l(u, u)k l

i, where (u.u) varies over o regictn R in the uu-pLane. If f(x,y,z.) is conrinunus nn o, ',

; rhen 
itl 

11 tr,t.,r*: II ;rQ(.rr.ut.!{i,.,'|,.ri,,, L#*#ll^ (3) 
i

i_ ._ " .., , .,1

To motivate this result, suppose that the parameter domain R is subdivided as in Fig-
ure 16.,1.l0, and suppose that the point (rl, )i, z;) in (2) corespords to parameler values

of irf and uf. If we use Formula (9) of Section 16.4 to approximate ASr, and if we assume

that the elTors in the approximations approach zero as n -+ +.., then it follows from (2) $at

lllt^.t..r/S- linr f t,r,r;.u ). v'ri.r; t.ztu'. t); tt
J J ' ,'-+'7t

which suggests Formula (3).

We will discuss various applications and inleryretations of suface integrals later in this

section and in subsequent sections, but for now we will focus on techniques for evaluating

such integrals.

Example I
Evaluate the surface integral // x2 dS over the sphere ,r2 * )2 + :2 : l.

Solution. As in Example 9 of Section 16.4 (with a : 1), the sphere is the graph of the

vector-valued 1'unction

r@,e)-sindcosai+sindsin6j+cosdk (0<O <iT, 01a :.2tr) (4)

and

lAr nrl
- 

X = sindao dd

From the i component of r, the integrand in the surface integral can be expressed in terms

of@anddas,r2:sin2dcos20.Thus,itfollowsfrom(3)with@anddinplaceofaandu
and R as the rectangular region in the @6-plane determined by the inequalities in (4) that

ilr Crx l:AtiJu au

ll;as- fi c,n,a,o",et
o/?

ilr dr ll

A(b A0

: 
lot" [u' 

,ir',t Q ros2 e cta do

- L'" U"" "^' r ulf"o,' e ae

- l 
'[]'* 

' ."'o]"o' ra''

:1 
1,,," "o"' 

, o,

Secrion 9 3

,1 l- I 1 12" 41t: I 6+ sin2P I_rl2 4 ln 3

Formula (8),
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SURFACE INTEGRALS OVER
z = glx, yl, y = c(x, z), AND
x = gly, zl

In the case where o is a surface ofthe form z: g(-r, y), we can take.r : u and y = u as
parameters and express the equation of the surface as

r:ui+uj*g(z,u)k
in which case we obtain

ll 3r 0r

llr ';ll:
.^ \2 ,^ .2

(#) . (ff) -''
[see the derivation of Formula (11) in Section 16.4]. Thus, it follows from (3) that

Note that in this formula the region R lies in the ry-plane because the parameters are .r and
y. Geometrically, this region is the projection ofo on the ry-plane. The following theorem
summarizes this result and gives analogous formulas for surface integrals over surfaces of
the form y = g(.r, z) and; : g(y,z).

17.5.2 THEoREM.

(a) Let o be a surface with equation z = g(x, y) and Let R be its projection on the xy-
plane. If g has continuousrtr partial deivatives on R and f(x,y,7) is continuous
on o, then

(b) lzt o be a swface with equation y = g(x, z.) and let R be its projection on the xz-
plane. If g has continuouslrst ponial derivatives on R and .f (x, y, z) is continuous
on o, then

(c) Let o be a surface with equation x = g(y, z) anl let R be its projection on the yz-
plane. Ifg has continuous rtr$ panial derivatives on R and f(x, y, z) k continuous
on o, then

ll rc,t,,tas: ll ra,t,sa,t>
on

ll rc,,,a0'= fi rc,s<.,,>,,t
dR

(5)

(6)

(7)ll r<.,t,,tas: ll reo,,t.t.,t
oR

t^ 12 ,^ .2

(#) .G) +1dA

(#l. (,ul

(#1. (#i

Example 2

Evaluate the surface integral

I I xz.dStt

*t 
""r" 

o i, th" purt of the plane x + y + z: I that lies in the first octant.

Solutiott. The equation ofthe plane can be written as

z:l-x-y

ll ,r,,r,,,0t = ll tr,,r,r,,,r,,
dR
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which is of the form : : g(.{, }). Consequently, we can

I - g(r, y) : 1 ,r l,and /(.r, _r', z) -.r:. We have

.17 d7--:: _l and i- 1dx iJ)

so (5) becomes

ll.^zJS / / r r I - r - v r n/ r - 1 i: I1 1,' IJA

Surface lntegrals 1097

apply Formula (5) with

(8)

Figure 17.5.2

where R is the projection ofd on the.rr)-plane (Figure 17.5.2). Rewdting the double integral
in (8) as an iterated integral yields

Example 3

Evaluate the surface integml

[[ ,',' tts

whe"re o is the part of the cone i - uG: + f that lies between the planes ; - l and : : 2

(Figure 17.5.3).

Sohttiort, We will apply Formula (5) with

z : g(r, ]) : lF *; and /(.r, y, z) - y2

II",ot:n L' I,'-'u x2 xy)dydx

o 
", .:*l[,,.'r-i] ,,,

: n I,' (;-.'tf;)o'
:*l+ +.+l:: f

Fisure I7.5.l

Thus,

0-: .r 3;and 
-:0r Jrt + y, a,y

so

(*i. (fr1

.,4
/ntn\ !

111, o, o1

+1-J2

Gtv
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MASS OF A CURVED LAMINA AS A
SURFACE INTEGRAL

(velify). and (5) yields

// '. ,iS: // r (/.rr lr)-Jl,1A = /2 // 
"r.'- 

- '-,,i 4
JJ JJ JJ
oRll

where R is the annulus eDclosecl between rl +.r'l = I and,r: * l1 = 4 (Figure 17.5.3).

Using polar coordinates to evalLrate this doubie integral over the annulus R yields

(r sin e)1(t 1)r 
d r (le

71t 71

= A I I t\ sinl tt,lt ct1

.:r o rl rr rlr
=Al ;-i,r'ul Je-+ / ,in:u,ld

l" 6 -.t,-, rlJn
ll I I 1 l- )lit:-_ |-rt- .in)HI =-' r'rn'ulJ'-'

' lr / - 1 ,- s<r'lo)
v: L- JO VZ

"41 r1

lJr.',rs=rtJ" J,

AM
AS

The thickness of a curved
lamina rs neg igrble.

Figurc i7.5..+

In Section 16.6 we defined a /4rrird to be an idealized flat object that is thin enough to be

viewed as a plane legion. Analogously. r curved lamin& is an idealized object that is thin
enough lo be viewed as a suface in 3-space. A clrlved lamina may look like a bent plate,

asinFigure 17,5.4, or it may enclosc a region in 3-space. liketheshell ofan egg. Ifthe
composition ofa curved lanrina is uniform so that its mass is distlibuted uniformly, then it is
said to be hornogetreoas, and we define its mqss dettsity to be thc total mass divided by the

total surftrce area. Howevcr. if the mass ofthe lamina is not unifurmly distributed, then this
is not a useful mcasure. since it does not account for the variations in mass concen[ation-
In this case wc describe the m.rss conccntration at a point by a rrrnss density funclion 6.

u'hich we view as a lirnit; that is,

6= lim

whe|e AM and AS denote the nass and su acearc4ofasmall sectionoflunrinacontuining
the point (Figure 17.5.5).

To translrte this infonnal idea into a useful formula. suppose that 6 = d(.t, r'.:) is the

density tunction of a smooth curved lanrina o. Assume that the lamina is snbdivided into n

smrll sections; let (-rl. ri. .-i) be a point in the ,(th section. lct AM1 be the mass of thc Ath

section, and let AS1 be the surl'ace area of the kth section. Since we are assuming that the

sections are smtrll, it fbllows from (9) that the mass of the kth section can be approximated
as

AMr - d (,ri. ri,:i)A.lr
and hence the mass M of the entire lamina can be apploximated as

M = L 
^Mk 

r lar.rf. 1i, "i)AS1
t:l l=l

lf we norv increase rr in such a way that the dimensions of the sections apploach zero. then

it is plausiblc that the error in ( l0) will approach zero, and the exact value of M will be

given by the surface integral

(ll)

Example 4

Suppose that a curved lamina o with constant density 6(r. r'. :) = 6o is the porlion ol'the
paraboloid; = .rr + r'r below the plane -- = I (Figule 17.5.6). Find the mass ofthe lamina.

(9)

u: ll do.,.,tas
r_ + _r'-

/" 

"' 
,,.

Figure 17.5.5

( l0)

Figure 17.5.6

t'
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SoltLtiotr. Since : : !(.t, r,) : ;g2 + 12, it foilows that

d: d-
=)x rn,l -110r 0_r

Substituling thcse expressions and 6(.r,1,:) :6(r, y, g(.r. ))) : Jo into (ll) yields
tt ll f fv- llo.,t.s l l a.,f 

'2.,,2 - r2r r: - l,iA onllJt,r-t; tJA (12)
,I .I JJ JJ
oRIl

where R is the circular region enclosed by 12 + )'2 = L To evaluate (12) we use polar'

coordinates:

M = 6,' fn" Iu' 
J4,'\ 1,,t,,la : I l,'"

: I l,'" "''.,- 
l)de: ?(5"5 r)

In the special case where l(.r, r', :) is l. Formula (3) becomes

{+,t+t)t/t]'nae

SURFACE AREA AS A SURFACE
INTEGRAL

ExERcrsE SEr 17.5 E cas

Ar 3r

-X3u 8u

However, it ibllows from Formula (10) of Sectiolr 16.4 that this irtegral represents the
suface area oi'n. Thus, we have established the following result.

dAII,':II

17.5.3 tHEORENI. Ifo i,t a sLnootll paranetric surJace in 3-space, then its surtece
area S can be expressed tts

S-,ldS (l.rl
.t.t

RE\r.\RK. This result adds nothing new computationally, since Formula (13) is just a

reformulation of Formula (10) in Section 16.4. However, the relationship between surface

integrals and surface area is important to understand.

In Exercises l-10. evaluate the surt'ace integral

||rr'.t,,tas

l. l(.t. -r'. :) : i:2; (tisthepotionoltheconer:Vtr+t
between the planes :: : I and r - 2.

2. .l(-r. _l', :) - .r) ; o is the portion of the plane -r + ) + r = I

lying in thc first octant.

3. l(r. r, r) :,r2l; o is the portioli ofthe cylinder
x2 + z2 : 1 between the planes r' - 0, -l : 1, and

above the ,t-! plane.

/(-t. r.:) : (r: + -r,2):; d is the portion of the sphere

-rl + l,l + a2 : 4 above the plane. : L

/(r, t,.:):,r -r ir; .t is the ponion oi the plane

r l r, - I in the lilst octant between a - 0 and; - l.

7.

9.

/(,r. -i , :) : -r + ); o is the portion of the plane

z : 6 - 2t 3) in the nrst octant.

.l(r, _11..) = n + _r + ild is the surface ofthe cube denned

by the ineclualities 0 : ,r : 1,0: ),: 1.0 5.: L
lHlrztr Integrate over each face separately.]

.f(-r.l.;) :! |]L: .t is the upper henisphere
,.: Jt ir': _r,2.

l(r. r'.:) = /r2 + )2 +.r; d is ihe portion of the cone

; - u6: 1 f belo* the plane . : l.

/(.r. ),, .-) : rl * r'2; o is the sulface ofthe sphere

r.l + ].2 +.:2 : al.

ln Exercises 1 I and 12, set up, but do not evaluate, an iterated

integral equal to the given sulface integral by projecting o on
(a) the,r-r-plane, (b) the 1,; p1nn", and (r) the -r;-plane.

10.
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ll. ll xyzdS. whereo i\thepo ionofrheplane
.t.t

2x + 3! + 4z : 12 in the first octant.

12. / / vz /5. where o i5 the portion o[ rhe sphere

] * r, n r,: a2 in the first octant.

13. Use a CAS to confim that the three integrals you obtained
in Exercise 1l are equal, alld find the exact value ol the
suface integral.

14. Try to confinn with a CAS that the three integrals you ob
tained in Exercise 12 ale equal. If you did not succeed, what
was the difnculty?

i In Exercises 15 and 16, set up, but do not evaluate, two dif- i

ferent iterated integrals equal to the given integml. 
i__l

15. ll ttt,1S. uhereo islheDonionof rhe surlace ri -.r.t.t

b?tween the planes.z :Q,7=4,y:l,a dy:2.

16, / / x'/ydJ. uhere o is the ponron ofrhe cylinder

),2 + z2 : ,t2 in the first octant between the planes
.t - 0, "r : Q, 7 : y, and 7 : 2y.

17. Use a CAS to confirm that the two integrals you obtained in
Exercise 15 are equal, and lind the exact value ofthe surface
integral.

18. Use a CAS to f,nd the value of the sudace integml

I I t2vz ttS

oveithe portion ofthe elliptic paraboloid z -5 3x2 -2y2
that lies above the iq,-plane.

In Exerci.e. 19 and 20. find rhe rnass of the lamina wifi

i:"::ii*T"""u: _ _ i

19. The lamina that is the pofiion of the circular cylinder
.r2 + z2 : 4 that lies directly above the rectangle
R : {(r,y) : 0 < jr 5 l, 0 5 y 3 4} inthe.ry-plane.

20, The lamina that is the portion of the paraboloid
)z -- xl - y) inside the cylinder \ )' = 8.

21, Find the mass of the lamina that is the podion of dle surface

1,2 : 4 - zbetween the planes r : 0, * : 3, ) : O, and

] : 3 if the density is 6 (,t, y, :) - y.

22. Find the mass of the lamina that is the portion of the cone

7: Jx2 ly2between z = I andz = 4if the density is
6(x, y, z) : x2z.

23. If a curved larrina has constant density 60, what relationship
must exist between its mass and suface area? Explain your
reasoning.

24. Show that if the density of the lamina x2 I y2 a 72 : 62
at each point is equal to the distance between that point and
the -D/-plane, then the mass ofthe lamina is 22a3.

The centroid of a surface o is deflned by

[[^as [[,ot [[,otJJ Jt" .t .t --
'" 

area ol d ' atea ol o ' area of o

In Exercises 25 and 26, find the centroid of the surface.

25. The portion of the paraboloid z : iQ2 + y2) below the
plane z : 4.

26. The poftion of the sphere ,x2 + ),2 + z2 : 4 above the plane

ln Erercises 27-30. e\aluare rhe inLegral !!" ftt. y.z,dS
over lhe sudace o represenled b) d)e \ector valued lunction

i r(r, u). I

trr. 

,li,,rn : 'rr'r-r(,,,;:,""rr, i,,,',: ir,l(1 
=u <2,0 

=D =t/2)
-2L-2

28. lt.y.zt -' '' : rtr.r,,r - 2cosui -1- rj 2.inuk
.)

(1 :r:3,0<D=21t)
I

29. f 6. \.2\ -::
Jl+4t2+41,

r(u, u) : ll cs5 2i 1,l sin uj + a2k
(0 < r./: sinu, 0 S u < z)

30. f(x,y, a1 : a ';
r(a, r-r) : 2sinir cos ui 1 2 sinr sin uj + 2cosrk
(0 

=u 
Str/2,0 <u < 2tt)

31. Use a CAS to approximate the mass of the curved lamina
z : e '2 v' that lies above the region in the.rry-plane en-
closed by x2 - ) : q given thar Lhe density funcrion is
Ar" ',,\--l-,*] L-2

32. The surface o shown in the accompanying figure, called a

Miibius strip,ls rcrtresented by the parameftic equations

.r : (5 + 
'l 

cos(D/2)) cos r)

) : (5 + & cos(1,/2)) sin r.' ( 1=uS1,O<u=2tt)
z : u sin(u/2)

(a) Use a CAS to generate a teasonable facsimile of this
suface.

(b) Use a CAS to approximate the location of the cenftoid
ofo (see the definition preceding Exercise 25).

tr

tr

tq

tr

Fieure Ex 32



FLOW FIELDS

17.6 APPLICATIONIS OF

17.6 App cations of Surface lntegrals; Flux 1101

1iURF&CH IFJTEGRAI $; FLUX

h1 thi.\ se(tiol we wilL cl.iscuss applictnions c{ surt'ace integraLs in vector liekls ussoci
uted v'itlt Jluid flov, and electrostatic Jbrces. Howet,er. the ideas rhcn v,e v,ill tlevelop
v,ill be general in rnttrre artd appLicable to otller ki.lLs of vectnr JieLds ct.t well.

We will be concerned in this sectjon with vector fields in 3-space that invoh'e soinc type
of "flow" the flow of a fluid or the flow of charged particles in an electrostalic field, fbr
examplc. ln the case of fluid flow. the vector field F(r. r.:) reprcscnts the velocity of a
fluid particle at the pojnt (-t, _r,.:), and the fluid parriclcs flow along 'streantlines" that
are tangential to the velocity vectors (Figure 17.6.1a). In the case ofan electroslatic 1leld.
F(-r,1...;) is the tbrce that the ncld cxerts on a small unit of positive chatge at the point
(r, y,:), and such charges accelerate along "electric lines" that are tangential to thc force
vectors (Figures 11.6.1b and 11.6.1c).

-- :.' ...'
,:.1 : -

The ve oc ty vectors of the
f u d pariicles are tangent
to the stream ines.

(a)

FiE!re l7 6.1

By Co!lomb s law the eiectro
stat c field resu t ng from a

s ngle pos t ve charge s an

inverse square f e d n wh ch F
is the repLrlsive force on a

small unit posit ve charge.

The e ectroslat c iield I. that
resu ts frorn two charges of
eqLra strength but oppos te
po ar ty.

(b) (..)

ORIENTED SI.JRFACES
Our main goal in this section is to study flows 01'vector fields through permeable sudaces
placed in the licld. For this pulpose we will necd to consider some basic icleas about
surfaces. Most surfaces that we encounter in appJications have two sides a sphere has

an inside ard an outside, and an infinite horizontal plare has a top side and a bottom side.
for example. However, there exist mathernatical surfaces with only one sicle. For exampie,
Figure 17.6.2n shows the construction of a surfhce c led'.r Mtibius strip fin holor of the
German mathematician August Mdbius ( 1790 I 868)1. The Mcibius strip has only one side in
the sense that a bug can travelse the .rntiz surface without crossing an cdgc (Figure 17.6.2r).
In contrast, a sphere is two-sided in the sense that a bug walking on the sphere can traverse
the inside suface or the outsicle surface but cannot ffaverse botir wi{lrou1 somehow passing

' lf rn ant staris ri P wiih is h2.k l

' facing VoLr and makes one circu t ,

' aroLrnd the strip then ts back I

I w lliace away irom you when it
I retLrns to P. Thus, the fu]6b Lrs

, str p has only one s de

Figure 17.6.2
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through the sphere. A two-sidecl suface is said to be orierrlalle, and a one-sided surface is

said to be rrolorielrraDle. ln the rest of this text we wiil only be concerned with orientable
snr'llLces.

In rpplications. it is irnportant te have some way of dislinguishing between the two sidcs

ol'an oricntable surface. For this purpose lct us suppose that o is an orientable surface that

has a unit nonnal vector n at cach point. As illustrated in Figure 17.6.3, the vectors n and

-n point to opposite sidcs of the surfacc and hence serve to distinguish between the two
sidcs. It can bc provcd that if r is a smooth orieltable surface. then it is always possible to
choose the dircction of n a1 each point so that n : n(.{-. } , z) varics continuously over the

srrltirce. These unit vectors re then said to f<>rm an orientatioz ofthe surfacc. Itcanalsobe
pr or,ed that a smooth orientable su ace has only two possible orienutions. For example. the

surlace in Figure I7.6.4 is oricnted up by the purple vcctors and down by the Sreer vectors.

Howcver. we cannot create a third orientatioD by mixing the two since thjs ploduces points

on the surlhce at which thcrc is an abrupt change in direction (across the black cun e in the

fi-qure. tbr examplc).

Figurr l7 6 l

ORIENTATION OF A SMOOTH
PARAMETRIC SIJRFACE

Fi!ure 17.6 5

FiSUrc 11.6.-l

Wlren a surfacc is cxpressed parametrically. the paranetric

ert|lion of thc surface. To see why this is so, recall lrom
paranretric sulfirce o is given by thc vcct equation

r : .r(ll. u)i -1- r'(rr. r )j + :(rr. r')k

thcD the unit nonnal

ilr
X

n = n(ir. r,) =
Ll ar ;)r llLl \ -1ll dit ;) r'

is ir conlinuoLrs vector-r'aluecl liruction itfa and r. Thus, Formula ( I ) dcfines an orientation of
the sufacel we calf this lhe positive orierraliorl ol'the parametric surface and we say that n
points in theZositive dr'recfio[ from the surl-ace. The orientation deter[rined by -n is called

the negative orient{tlior, ol'the suface itnd we say that -n points in lhe negative directiott
fronr the surlhcc. For exlrnple. colsidcr the sphere that is represented paramehically by the

vector equxtiorl

r(d.tJ) :(isinqtcosAi+(sindsin0j+acos0k (0 < S < r. 0 :e 
=2n)

We showed in Example 9 of Section 16.,1 that

In= r

This vectol poirrts in the same direction as the rudius vector r (outward fiom the center).

Thus. firf the given parametrization, the positive orientation of the sphere is outuard awl
the r)egati\e orisntltion is irrrlarrl (FigLue 17.6.5).

1{)lt lllL,litr.\l)l,lt Scc if you can find a paranetrizat ion of the sphere in which the positive

dilcction is inwalcl.

equations creatc a natural ori-
Section 16.4 that if a smooth

ar
i), (l)
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17.6 App cations of Surface lntegra s; Flux 1103

In physics. the tenn J4uld is used to describe both liquids and grses. I-icluids ar.c nsually
regarded to be ircrlnpressr'Dle. rreaning that the liquid has a uniforn dcnsilr' (rnass per unit
\olume) that cannot be alter-ed by compt cssivc lbrces. Gases are iegardcd 1o be.or npressible,
merning that the density may vrry liom point ro point and can be olleled bv conrpressive
forces. In this text we will be conccmed p|ima|ily u'ith incompressible fluids. Morcovcr,
we will assume that the Yelocity 01'thc fluid rt I fixed point docs no1 vary with tinte. FlLlid
flor,vs with this plolre y are said tobe in asteadJ state.

Our next goal in this section is to define a fundilmcntrl concept ofphysics knoNn as

.fur (from the Latin word /1rfl'/r. rneaDine "llow '). This concept is altlllicablc in any vector
iielcl. but we u,ill motivatc it in the context of sterdv stiile flow ol an incorroressihle llllid
We consider the following problem:

l?.fr.l ll 'nl \l Srrpnn.ctlrlt innricnt(o.urlL.co I, imrr'cr.c,l rr: l \nllp"c\.
ible. steady state fluid floW and assurnc fLrrlhcr'lhat the surtice is perneable so tlrilt thc
lluid can flow drrough il ficclf in cithel clilection. Fiod the net volLnrc ol'llLrid O thrt
passes through the sullilce per unit oftirre. \rhele the ncl volumc is interpleted to rneat]

the volume that passes tl'lrough thc surface in the positive directiol nrinus thc vohrnre
thal passes thlough the surface in the negatire direction.

To solvc this problcm. suppose thitt the velocit)' of tlte lluid dl ll point (.r. r..) on the
surt'rce o is given by

F(.r. t..) - l(-r. r'.:)i * g(.r. r'. -)j + /r(r. _\',:)k
Let n be thc unit nomal loward thc positive side ofo at the point (r.r'..). and lct T
be a urit vector that is orthogonal to n and lies in thc plane of F ud n. As illustrated in
Figure 17.6.6, the velocity vector F can bc rcsolvcd into two or'thogonal colnponcnls-
a component (F . 'l')T along thc "lircc' of the su|face o and I colnpo|ent (l- . n)lr thar
is perpendicular to o. The componcnl 01'velocity along the I'ace ol thc surlacc does not
contriblrle to thc llow through d ancl hence can be ignored in oUr cot-npllti.ltions. Mol eover,
obse[\'e that the sigu of F . n determines the direclion ol llow-a positive value tneans the
llorv is in the direction ol n and a negative valLre mcrns that it is opposite to n.

To solve Problen 17.6.1. we subdivide o into /? patches ot. o). . (r, with aleas

asl. asr..... as;,

Il tl'ie patches are small and the flow is not too enatic, it is rersonable to lssume thai the
velocily does rrol vary rnuch on each palch. Thus. il (ri. \,i'. :i) is tnl point in the tth patch,
\\,,c can assunle that F(-r. r'..) js conslirnt and eqLrirl to F(ri'. r';:..i:) throlrghout the patch

and that the compolrent of velocity 4cross the sLtl.tace o( is

F(.r;i. _r'/.:f ) . n(,i,l, ri..i)
(Figure 17.6.7). Thus. we crn inlerplet

(['. n)n

(x, ), .)

Figurc 17.6.7

F (.r;. r'i. .i)
(.2)

!-(.rf . r'i. :i ) . n(-r^l. rl..i)A,!r
as the approximate volurne of lluid crossing the patch oa ir1 thc dilcction of n pel unit of
timc (Figurc 17.6.8). For exanrllle. if the conrponcnt of vclocit) in the cli|ection of n is
Fi.rf,1l,:i) .n - 25 cnr/s. tnd the area ofthe patch is AS1 : 2 cmr. theti the volume of
fluid A/1 clossing the patch in the direction of n per unit 01 limc' is rpploxirnatcly

Ayr ! F(.rf . .r';. :i) . n(-r^. li..i)ASr = 25 cm/s . 2 cmr.: 50 crur/s

In the case where the velocity comporent F(ril. _]i', .i) . n(-ri'. r'i. .i) is negative, the flow
is in the direction opposite to n. so that -Ay( is thc app|oximate volunte of fluid crossing
the patch o1 in thc dircction oppositc to n pcl unit time. Thus. the sunr

I r1.'-;, ri..i) ' n(ri..r.i, :i)ASr

The vo ume of f uid
crossrng.tr in the
direction of n per

!n t of time.

Figure 17.6 8
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measurcs the approximate net volume of fluid that crosses the surf'ace o in the direction of
its orientation n per unit of time.

If we now increase i? in such a way that the maximum dimension ofeach patch approaches
zero. then it is plausible that the errors in the approximations approach zero, and the limit

o: Iim f Ft-'l,r';,-i.r . n1r1', rl,:f)ASr (3)
n-+t12 t:l

represents the exact net volume of fluid that crosses the surface o in the dilection ol its
orientation n per unit of timc. The quantity @ defined by Equation (3) is called thefnr o:jf

F across o. The flux can also be explessed as thc surface integral

. n(.r . ,r . ;) r/S

A positive flux means that in one unit of time a greater volume of fluid passes through o
in the positive direction than in the negative direction, a negative flux mears that a greater
volume passes through the surface il the negative direction than in the positive direction,
and a zero flux means that the same volume passes thr-ough the surface in each direction.
Integrds of fonn (4) arise in other contexts as well and are calledflux integrals.

It I t\l \ It ti If the fluid has rnass densily 6, then O d (volume x density) represents the net
mass of lluid that passes through d per unit of time.

An effective formula for evaluating flux integnls can be obtained by applying Theorem
17.5.1 and using Formula (1) for n. This yields

tt l:f ar lr
JJF'nd5= JJ''n,.u' f,, rA
oR

dr iJr

-X_11,ffi 3r
A"

3r\. JA
,.1u

\

,lr \
.)'o

In summary, we have the following result.

o= llrr,.t,,t (.1)

EVALUATING FLUX INTEGRALS

17.6.2 Ttll,ot ,\t. Let o be a snnotll puranrctric stLrface represented by tlte tector
equalian r : r(r, u) in whiclt (u,u) varies otter q rcgion R in the uu-plane. If the
component .fun(tions of the vector JieLd F qre contintrous on o. and if n determines the
positiva orientdtion of o, tlten

(5)

wlkre it is Loldarstood that tlrc integnnd o11 the rigltt sitle of tlte equation is expressed
in tenns of u and u.

Example I
Find the ffux ofthe vector field F(-r, ), ;) : zk across the sphere -r211,2112 : a2 oriented
orrfward.

= ll, (#,"

.:ll,."as:llr (#,.#)*
oR
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Solution. The sphere with outward positive orientation can be represented by the vcctor-
valued function

r(.4r.0): d sin d cos 0i + 4 sin d sin g j + a cosdk (0<d ar, 0=e <2l.)
From this formula we obtain (see Example 9 of Section I6.4 fbr- the computations)

:t x a: 
-,, 'in'@co,di I nr,inrpsinuj n2.inpco.pk)6 Je

Moreover, for points on the sphere we have F - :k : c cos dk; hencc,

/ 3r dr\F' I ^, " ^- |-n'.,in@co. @
\d@ da,/

Thus, it follows fiom (5) with the parameters?l and u replaced by @ and g that

3r\
-ldAa0)

a3 sin 4 cos2 6 d6 de

"'L, [-+];r,

o: llr."as

: ll, (#"

= l,^ l,'

:,41," *_T

ORIENTATION OF
NONPARAMETRIC SURFACES

RItNlARK. Although the computations in tltis example give a conect resull, they are techni
cally flawed in that the parametric reprcsentation used for the spltere is not smooth at d : 0
or d : /r (see Example 9 of Section 16.4). However, this difficulty can be circumvenred
by cutling holes with a small radius in the sphere around the: axis (to avoid the pr-oblem

areas), perfbrming the required computations on the cut surface, and then taking the limit
as the radius apploaches zero. It can be shown that this leads to the same result that we
obtained in our formal computations. In general, [o problems occur when Formula (5) is
applied directly to spheres that are parametdzed as in this example.

I{iNl,\ttK. Reyersing the orientation of the surface o ill (5) reverses the sign n, hence
the sign of F. n, and hence reverses the sign of @. This can also be seen physically by
interpreting the flux integral as the volume offluid per unit time that crosses o in the positive
direction minus the volume per unit time that crosses in the negative direction reversing
lhe odentation of o changes the sign of the difference. Thus, in Example I an inward
orientation of the sphere would produce a f'tx of 4ra3f3.

Nonparametric surfaces of the form ; = g(.{, ,r), } : g(:, -r), x1fl -1 : g(1,;) car be

expressed p?fametdcally using the independent variab]es as parameters. More precisely,
these surfaces can be represented by the vector equations

r: ri + lrj *g(r.r, u)k, r: ri *g(u, r)j * iik. r = g(il, u)i+ rj + uk (6-8)

\ - 8(.,_r)

These representations impose positive and negative oientations on the surfacas in accor-
dance rvith Formula (l). We leave it as an exercise to calculate n and n in each case and
to show that the positive and negative o entations are as shown in Table 17.6.1.
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Table 17.6.1

l' = s(:..r) ,r = cO,.)

frr ff.i*r.n=:
r/(*)' . (f I. ,

Posit ve or entat onPositive
k-conrponent

Pos t ve
j component

(#)'.'(#)'.''
'-4.i lu

Posit ve

i component

dr. i)-:.- r+-.l K

-n=
(,*)'.(*)'.'

Negat ve

k component
Negat ve or entat on

ill,. j+ !I1
A.

Negative
j-componeni

(#I'(#)'.'

. 0r. dr-l+-l+-k
dt d:

(fr)'.'(#)'',
Negat ve

i-componeni
Negative orientation

The results in Table 17.6.1 can also be obtained using gradients. To see how this can be
done, rewrite the equations of the surfaces as

z 8(r, )) : 0, l - 8(2, x) :0, x g(1, ;) : 0

Each of these equations has the form G('r, y, l) : 0 and hence can be viewed as a level
surface of a function G(x, y, z). Since the gradient of G is normal to the level surface,
it follows that the unir normal n is either VG/lVG I or VG/lVCll.However, if
G(x, !, z): z-8(.r, )), then VG has ak componentof l;if c(-r, y,;) : I -g(2, x), then
VG has a j-component of l:andif G(x, y, 2) : x g(y, z), then VG has an i-component
of 1. Thus. it is evident fuom Table 17.6.I that in all three cases we have

VGn__ 1gr
ivc I

Moreover, we leave it as an exercise to show that if the sudaces z : g(x, y), 1, : g(2, r),
and x : 90, z) are expressed in vector fonns (6), (7), and (8), then

flr 6rVC:-x-Au il rr
t10)

lcompare (l) and (9)]. Thus, we are led to the following version of Theorem 17.6.2 fot
nonparametdc surfaces.

17.6,3 THEoREM. Leto be a;mooth su(ace of the.formz:g(.{,}),}:g(z,x),
o, a : g(y, z), and suppose that the component functions of the vector rteld F are
continuous on o. Suppose also that the equationfor o is retyritten as G(r, y, z) : 0 Dy

taking g to the left side of the eqtLation, and let R be the proj ection of o on the coordin e

plane detenined b! the independent variabLes of g. If o has positive orientation, then

o= ll r . 
"as: llr.vcoo

oR
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Formula (11) can either be used dfuectly for computations or to derive some more spe-
cific formulas for each of the three surface types. For exarnple, if3 : g(r, y), then we have
G(x, y, z) = z - 8(r, y), so

os. os. or_r_L,n*vr,=-6ir ayJ+K=-- Ay_

Substituting this expression for VG in (l l) and taking n to be the projection of the surface
3 = g(.r, y) on the ry-plane yields

II E."ds = II". (-#'- fit*) ^6R

d of dlc fan z = ./(r, y) (l2\
rd aicnr.d up

' of th! fotm z = /(r, ))

The derivation ofthe corresponding formulas when y = g(e, r) and -r = g0, z) are left as
exercises,

Example 2
I,et o b€ the portion of the surface z = I - x2 - y2 that lies above the ry-plane, and
suppose that o is oriented up, as shown in Figure 17.6.9. Find the flux of the vector field
E(x, y, z) = ri + )J + zk across o.

Solution. Fron (12) the flux @ is given by

,= II,."as= llr. (-X,-fii.)^
oR

= I I <ri* ri* 
"k) 

. (2ri +2rJ + k)dA
i

= ll <*'+t, +oat ;ffi.,;;*-r-,,
n

= lo'" lo'<,r*r)roro, :Ti#,ffiffi

= ['^ G\ot =4lo \+)-- 2

11,."^= Ilr. (ffr*f,-r.) *
oR

(13)

ExERcrsE SEr 17.6

z= I -x2 -y2

1. Supposc that the surfaceo ofunitcube in the accompanying
figure has an ouMard orientation. In each part, determine
whether the flux of the vcctor fleld F(.r, y, z) = zj across
the sp€cificd face is positive, negative, or zero.
(a) Tbc facc .r : I
(c) The face y : I
(e) The face z : I

(b) The face x = 0
(d) The facc y = 0
(f) Thefaces=0

2. Answer the questions posed in Exercise 1 for the vector field
F(r, y, z) : .ri - zk. Figurc Er- l



3.

4.
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Answer the questions posed in Exercise I forthe vectorfield
F(-r, )'..) = ri + I j +.k.
Whal is the flrLx of thc constant vector field F(r. _r, ;) : i
across the entirc surface o in Figure Ex 1? Explain your
reasoning.

Lct o bc the cylindrical su ace that is represented by the
vcctor-valued function r(r. u) : cos fi + sin r.i + nk wjth
0:r:land0=r=2n.
(a) Find the unit normal n : n(a, u) that dennes the posi,

tive orientation ()1'.'.

(b) ls the positive orientation inward or outward l Justil'v
your answer.

Lct o be the conical surf'ace that is represented by the
paramctric ccluatiolls .r = rcosd.,r : r-sind, a: r- with
0: r: I and0 <0 a2n.
(a) Find the unit normal n - n(r. fl) that clefines the posi-

tive oricrltiltion ol o.
(b) Is the positive orientation inward or outward? Justify

l/oLlf answef,

In Exercises 7-12. lirld llle flux of the vcctor' ficld F across o.

7. lrr.r. '-ri 'j / k:" i.rhcpo|t.unul theiurhce
: - I 12 -r'2 abole the -rl' plane, oriented by upward

8. F(-r. r'. r-) : (r { r')i * (-\'+.)j + (. * r)k; o is the por-
tion ol the phne -r + l + .: : I in the first octant, oriented
by unit normals with positive corlponents.

9. F'(,r, t,.) - .ri i fj * 2.k: o is the poftion of the cone
:l : rl + r'2 bctweel the planes a : I ancl .- : 2, oriented
by rqrrviird r.rnit nonnals.

10. F(-i,r',.) - r'.i +k: o is the portiorl oI the paraboloid
a - r.2 + \l below the plane; :4. oriented by downward
unit normals.

11. F(-t, _r'.;) - rk; the sulface .' is the porlion ofthe parab-
oloid-:: -t: + \,2 be1owtheplane t - _r, orientedby clown
wau d unil norr]lals.

12. F(.!.-r.:) - .rri + -r-r 
j +:-rk: o is the pofiion oi the plane

6.r + 3-f + 2.: - 6 in the lirst octant, oriented by unit nor
r':rl. u ith pu.ili\ e L., npuncnl\.

In Excrciscs 13 16. f,nd the ffux oithe vector lleld Facross
o In ll'e d:rr, li'rn,'l lo::li\( ,,ricnl:rliun.

13. F(r. r'. .) : -!i + ],j + k; o is tire portion ofthe paraboloid

r(r. r,) : r cos ui + i.r sin rj + ( l ,ll)k

wirhl: !la2.01t)12n.
14. F(-r. r.:) : z ri .ij + -r sinrk; o is the portion of the

elliptic cylinder

r(rr. u) : 2 ce5 1l -l- 5in rj * ak

with0:a:5.0:rl2n.

15. F(-r, ). .) : f . + I L; " is rhe porlion of the cone

r(r, u) : a so5 Pi 4 ?./ sin uj + 2rk

with05r<sinu,0:!:/r.
16' F(-t.1, r) :.ri + ]i +.k; o is the portion ofthe sphere

r(r.r, u) : 2 sin r cos ui + 2 sinll sin uj + 2cosak

with 0: ll 
= 

r13,D:: x a21t.

17. Let cr be the surface of the cube bounded by the planes
-r : tl. _r, : *1, I : tl, oriented by outwar-d unit nor-
mals. In each part. lind the flux of F across o.
(a) F(-t. t.:) : ri
(b) F(J., )'.:) :;vi 11'.j *;k
(c) F(,r, ]'. r) : -r2i + _r2j + i2k

18, Let n be the closed surface consisting of the portion of the
paraboloid;:,r2+)r fbrwhich0 S:: I and capped by
the disk -r2 + )'l 5 I in the plane . : L Find the flux ofthe
vector field F(.r, _!,..) : ;j - fk in the outward direction

In Exercises 19 and 20, find the flux ofF across o by ex
plessing o parametrically.

19. F(.r.l. r) : i +j + k; the suiface o is rhe pofiion of rhe
.on". : .,/rt *;,2 below tlte plane. - l, oriented by
downward unit normals.

20. F(x, r,,:) : -ri * _vj l zk; o is the portion o1'the cylinder
:2-l lr? between the planes ) : 1 and y = 2, orienied
by outward unit nomtals.

21. Let F(x. r,. ;) : 2ri 3]i + rk be the velociry vector (in
m/s) ol a fluid pafticle at rhe point (.r, _\i. .) in a steady state
fluid flow.
(a) Find the net volume of fluid that passes in ihe upward

direction through the porrion ofrhe plane.r +) +.: : l
in the first octanl in 1 s-

(b) Assuming that the fluid has a mass density of 806
kg/mr, find the net mass of fluid that passes in the up-
ward direction through the surlace in part (a) in I s.

22. Let x , ,t,, and : be measured in rlteters, and suppose that
F(r, _r, :) : --)i +. j + 3rk is the velocity vector (in m/s)
of a fluid panicle at the point (r. ,-, r) in a steady-state in
compressible fl uid 1low.
(a) Find the net volume of fluid that passes in the upward

direction through the hemisphere z - /9 .I: - ,,: 1n

I s.

6.

(b)

23. (a)

(b)

Assuming that the fluid has a mass density of 1060
kg/m3. find the net mass of fluid that passes in the up-
ward direction through the surface in pafi (a) i[ I s.

Derive the analogs ol Formulas (12) and (13) for sur-
faces ol the lbrm.n : .c(). :).
Let d be the portion of the palaboloid x : -y2 1 ;2 for
r < 1 and : > 0 oriented by unit nomals with negative



24' (a)

(b)

i components. Use the result iD part (a) to nnd fte flux
of

F(r, t,, i) : ri :j + Ek

across o,

Defive the analogs oi Formulas (12) and (11) tbr sur-

l'aces of the tbrm _r' : 8(r. r.).
Let o be the poftion ol the paraboloid 1 - ;r 1 -r2 tbr

-\ 5 I and : : 0 oriented by unit normals with positive

_! compoDents. Use the resull in paft (a) 1(] find the flux
of

F(-r. r..) :.!i + -\'j + rk

acfoss o.

17 .7 lhe Divergence Theorem 1109

LerF: lr ir, where r:.ri+_\..i+;k rndt is a constant.
(Note rhar il'l : 3. this is an inverse-scluirre lield.l Lct o
be the sphere ofradiLrs 4 centcrcd at the origin and oriented
by the outward nornal n : r/ ir : r/a.
(a) Find the flux of F across r without pcrfbrming any in-

tegrations. [Hi7]t. The suface area of a sphere ol |adius
tu is hral .l

(b) For $,hat velue offr is the flux inciependenl ol tlle radius
of the sphere?

Let

F',.' ' ,rri rr, arj-,,-k

ancl let o be the sphere oi radius 1. ccntered at the origin
anclo entecl outward. Approximate irll values of.r such that
thc flux of F across o is 10.

25.

26.

ORIENTATION OF PIECEWISE
SMOOTH CLOSED SURFACES

t7 .7 1" AV $rlii;R{i b.{*Cf; T$"tk"*Rr"rt4

In this .\ectiotl we will he conce]t7ed with fou acrctss surfites. suclt us sphercs. thcn

"ertclose" tt region of spuce. \le y'ill slntv thtt the fu\ acttt.ss stL(h surfat:es ctn be
e\pressed in rernts of rlte diver,qence of the rcctor lieltl. tntl vye will use thi,; resulr to

,qit,e a plty.;ical interprexnion of the c(ncept of divergence.

In the last section we studiecl flux acloss gener-al surfaces. Helc wc will be concel-ned

exclusively with surfaces that are boundaries of lirite solids-thc sur'l'ace of a solid sphere.

the suface of a solid box. or the surlacc of a solicl cylinder. for example. Such surtaces a|e
said to be cftrJrd. A closed surl'ace may or may not be smooth, but most of thc surfaces

that adse in applications are generally pi€ce ise smooth.lhal is. the] consist of linitely
many smoolh surlaces joined togcther al the edges (a box. lbr example). We rvill limit
our discussion to piecewisc sn'iooth surlaces that crn be assignecl an inward orientqtiotl
(toward the interior of the solid) arld an outward orien ldlio[ (awiry li om the interior). It is

very difhcult to make this concepl mathernatically precise, but the basic idea is that each

piece of the sudace is orientable, and oriented pieces iit iogether in such a wa! that the
entire surlace can be assigned an orientation (Figure 17.7.1).

In Section 17. I we delined the divergence of a vector field

F(x, r-, :) - l(-r, r. :)i *,q(-r. t. :) j + /i(r, r'.:)k
as

Af dp i)ltdi\F--+:+.J-r dl da

but we did not attempt to give a physical explanation of its meaning at that time. The
following result, known as the Diyerge,tce Theoten or C4rrss's ?lcorerz, will provide us

with a physical interpretation of diVergence in the context of fluid flow.

THE DIVERGENCE THEOREM

"See bio.eraphy on page i 110.
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17,7.1 l-HEOttt ! (the Di'ergance Theorenl. Let G be o solid vllose surfuce o [t ori-
ated outtra l. If

F(r. r'.:) : l(.r. t. :)i +.q(.r. r'.:)j + /r(r. r'. :)k
rltere f. g. and h ltaye uutlitrLrous first partial tlerivutires on so11rc op(n set (on|(lining
G . tlten

lll 0,, u o,II, (l)

n, ,, ,,',,u,,, ( \r.\ (17??-1N55). tlerman mathematiciil|l rurd scienlisl someti res clllcLl lhc prirce oi
rriLlhcnrtLticians." Gauss rLrnks !vi1h Newr(nr a|d Archimedes rs onc oi drc rhree greatest mLrdrcnrrlicians who
cvcr lived. Hi\ lathcr. a laborcr. wirs 0n uncouth bLu honc\t rur who would have likcd Crtr.rss to take up a lrade

s!ch.rs g rdeoing or brickhlinsi brLl the Lro] s genius fir mrlhcmLities \\'.rs not to bc dcnicd. ln the entire history

ol nrilhem tics there mrv ne\cr h yd bccn a child so precoci()us \ Cluss-by his own account he worked oDI

rhc rudinrcDts ofar;thD€tic beli)re hc could lalk. One dal. belilre hc $.ri c\cn lhree lears old. his gcnius became

.rpp:rcnl k) his prrcnts in r \ert dran)alic \ra) Ilis lalher $fls prcpLrring thc \leekll payroll tbr thc laborcrs under
hi\ ch:rg. $hile rhc bo\ \llchcd quierl]' fi'()lD a cornc. Ar lho end of the long and redious calcolarion. Gauss

inli) nedhisfathe.thatthere\\rsirncll(ninrheresuhandstntcdthc.fisuer.\\'hichhehadnorlcdoolirhishead.
-lb 

rhc d\tonishnienr ol hi! prrcnls, r chcck ofthc irompur,rlions showcd Causs ro be correctl
Iin his eleDrenrary education Cluss was enrolled in r squalid school run by a nran nancd B[iltncr whose ajn

Lo ching tcchnique !v.rs thmshing. tsiillncr w.ls in thc habit of lssigning long addition proble|)s which, unknolvn
to his studcn!!. \,"erc arilhnietic progrc\sions that he coukl sunr up using fonnulas. On the lirst d.ly thur Gauss

cntcrcllthe.rdtlrmcticclirs\.lhcslLLdcnl\\','ereaskedtosunrthcnulllbcrsill)nlltol00.Butnonx)nerhadBUttncr
strrcd rhe problem th.l C uss tu r.d olcr his slate and c\chiorcd in his peasant dialect.'l-i!gcl \e.'(Hereit
lies.) For nearl) an hour Biillner ghr!'d at Causs. $ho sar $ith tirlded hands $hile hi! chssinalcs toiled a\ra).
Whcn Bnrtncr eramined lhe slales irt $e e|d of lhc pcriod. Cluss s slarc conrained a single nunlbcr. 5050 lhe
olll! correcr solrrion in rhc (l ss. n) his credit. Biltner rccocnizcd rhe geoiu\ of Gauss and rirh rhe hclp of his

ilssistirnt. Johr Ba'tels- had hinr b(rusht lo the r(ention ol Krrl wilhclm Ferdinand. Duke of Bruns$'ick. The
shy Lr d.r$kward bo). !\ho $rs rhcn lluneen. so capli!aled Lhc Duke lhrl he \ubsidizcd him throrsh prcp:rra(ory

\chool. college, and the errl) pLrrt o1 his c.reer.

FroDr 1795 10 1798 Gauss studied nrrtlrcmlLics al the Uni!ertily ol Cltitlingen. receiving his dcgrcc in absentia

Iioln thc Univcrsity of Helmstrdr. ror his dissertalion. hc ga!c lhe lirst conrplctc prool ol lhe fundrnrell1ll thcLrcm
olAlgcbrr,lvhichstate\lhrlererypolynomirle.iLratio.hls!sm.uysolulionsasi!sdegree.Atagel9hc!)lvcda
problcrrr thar baiflcd Euclid. inscrihing r regular polygon ol I7 sidcs iD a circle using straighredge .lnd co rpl1ss:

rnd in l80l. ai age l.l. lrc publishcd his lirsr maslerpiece. Dtrgrir\itio (s Ati nftlicaz. considcred b) DraDy Io
bc one ol rhe Drost brillinn( achi!'\'cnrcntr in mirthemrtics. Ill lhrr book (iiu(s svttematized the study ol nun]ber
tlreort (propenies ofrhe intcgcrs)irn(l li)rD lated tlle basic concepts rh r lbrn drc foundation ol rhat subject-

lD rhc srme year drat the Divt.iri/i1D.J \ras publishcd. Callss rgain applied his phcnonlelrl conrputalional
skills i0 n drainatic wa! Thc astrnromer Giuseppi Piazzi had obscn'cd the asteroid Ceres for $ oi its o$it. bLrt

losl it in rhe Sun. Using onl] thrcc obscrvdioDs ard the met hod of lcrs( sq uarci' 1bat he h ddevclopcdi 1795.

G uss conrputed the orbit $ith such.rccuracy that astrcnonieLs hrLd no lroublc irlocutiDg it thc lollowing ycar

This irchievenent brought hinr instLrnt rccognition !s lhe Dremicr nrilthcm.rrician rn Eurc'pe. rnd in lll0? he was

nrldc Prclcssor of Anronomy nLl heacl of lhe asrronoruic.rl obscr\ltor'] t Cdttinge .

ln rhc ycxr! rha! fillo$cd. Crrs\ re\'olutiorlzed mathcmrtics by brin-!ing to it stanclards oi prccision and rigor
rlndrelnreil of bt his predeces$rr. llc had,l pas\ion lbr perlectim tht( droye him lo polish aDd rcr,"ork his papers

r rhcr rh:rn publish less llnished \\o ir) grenler ll nbel1' hi\ lirrorile \ir\ins was Pauca. scd nr ur.r" (Fe$. bul

ripc). As r result. rnan) of his inrport nt discoleries \ere squirrclcd a\at ir diaries that remaincd unpublished

unril ycius nlier his dea$.
Aln(nS his lnldad achievcrncnls. Ciruss discovered thc C.russiiu or "bell-shaped errorcur\c lundanentalin

prob.rbility. gr\c thc 1ll1rt lconicllic inleDrelation of complcx nunrhcff ard est:rblished thcn fundlnrenral role in

nr them tic\. deleloped nrethods ol-chaructcizing sufaces intrinsictllly b) rnenns ofihe cunes lhilt lhcy conlain.

lleveloped the lheory of conn)n .rl (:rnglc preservhg) maps. and discovered non-Euclidean Econrcrry 30 years

beline lhe ideas were puhlishcd b) othcr\. ln physics he made nrriior contdbutions to the thcory ol ienses and

c:rpill.lry aclion. and !rirh Wilhelnr Weher he did fundancntirl work in electromagnetism. Causs invenled lhe
hcliorlope. bililarnragneronicrcr. Lrnd n elecoolelegraph.

G uss \us deepll religious nd:rrisrocraric in demeanor. He nr.rrrcrcd fbreign lansuages with case, read

cxrcrrsilcly.,rnd enjo)ed niner k)!) rnd bolan! as hobbics. llc disliked lerching and $as usuall] cool and

discouraging to othcr nrathcnlaticinns. possibl! because he h.rd alrcady anlicipated dreir $ork. lt has bccn said

lhur if Gtuss had puhlished all of his disco\eries. lhe currenl stale ot nritlhcmatics would be ad\irnced bt_ 50 lrcars.
He wrs \\'ilh lt r douht the greirtest Iralhenratician of the nodcflr era,



17.7 The Divergence Theorem llll

The proof of this theorem for a general solid G is too difficult to present herc. However,
we can give a proof for the special case where G is simultaneously a simple ry-solid, a
simple yz-solid, and a simple ?r-solid (see Figure 16.5.3 and tle relared discussion for
terminology).

Proal. Suppose that G has upper surface z = gze, y),lower surface 2 : 91(;r, y), and
projection R on the ry-plane. Let ol denote the lower surface, o-2 the upper surface, and
03 the lateral surface (Figure 17 .7 .2a). If the upper surface and lower surface meet as in
Figure 17.7.2b, then there is no lateral surface o3. Our proof will allow for both cases shown
in those figures.

Formula (l) can be exprcssed as

ll tfv.t.zti+s@,y.2)J+h(x.y.z)kt.nds : III (#-H.#) *
so it suffices to prove the three equalities

| | ra't',tr' "ds 
: 

J I I #d,
oA

ll '<.,,,,>:."ds 
= Ill Xd, (2b)

dG

II or,'r',r*'"ds: JJI#d, ec)
OG

Since the proofs of all three equalities are similar, we will prove only the third.
It follows from Theorem 16.5.2 that

I I I # * = I ! ll,::,:,' #o,f ^ - I I V 
o',' ulil,,,'*,, ^

so

lf I ah f f
JJJ Ao, = JJLh(x,y,ez(x,y))-h(x.y,g1e,y))ldA (3)

6R

Next, we will evaluate the surface integral in (2c) by integrating over each surface of G
separately. If there is a lateral surface o3, then at each point of this surface n . k = 0 since
n is horizontal and k is vertical. Thus,

ll n<*,r,,tx.nas=o

Therefore, regardless of whether C has a lateral surface, we can write

ll n<,.r,"tt*."^t: II h@,y,2)k.ndst II or,,r,,ru.not (4)

On the upper surface 02, the outer normal is an upward normal, and on the lower surface
ol, the outer nomal is a downward normal. Thus, Formulas (12) and (13) of Section 17.6
imply that

ll or.'r',rn'^,t: ll he,v,g2r",v))k' (-#t- fr:*)oo01 R

: ll n6, , , ,,1,, ,yy aa
i

(2a)

Figre l7 .7 .2
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USING THE DIVERGENCE THEOREM
TO FIND FLUX

and

II
- ll hrt. i.F(x..r))dA

SubsLituting (5) and (6) into (,1) and combining the terms into a single integral yields

tt tt
I I /ttt, _i. .)k ' n../S : | | [/r(.r.1.3r(r,1)) ,4(x. r, gr(x, r.'))] lA (7).t.t.t.t
dR

Equation (2c) now follows from (3) and (7).

h (.r, r,.:)k. ",ts 
: ll h(.r, -i,, s1(r. r,lr, (f r + fr.i r) a,r

(6)

Ilt-\tARK. In words, the Divergence Theorem states that the ftu oJ a yectur rteld actoss
tt closed surfoce vtith outrNerd orientation is equal to the tripLe integrul of the divergence
over the region enclosed by the surtace. This is sometimes called the outward flux across
the surface.

Somelimes it is easier to nnd the flux across a closed surface by using the Divergence
Theorem fhan by evaluating the flux integra] directly. This is illustrated in the following
example.

Example 1

Use the Divergence Theorem to find the outward flux of the vector field F(r. 1', ;) : ;(
iterir:: the.phere rl- r2-:l a).

Solutiqtt, Let o denote the outward-oriented spherical surface and C the region that it
encloses. The divergence of the vector field is

3-dirF: -I4..

so from (1) the flux across o is

. - .f I r. "rt - [ [ [.rv - uoru-"orG : T
NotehowmuchSimp]erthiScalcu]ationiSthanthatinEXamp1e1ofSection1?.6.<

The Divergence Theorem is usually the method of choice for flnding the llux across
closed piecewise smooth sudaces with multiple sections, since it eliminates the need for a

separate inlegral evaluation over each section. This is illustrated in the next three examples.

Example 2

Use the Divergence Theorem to find the outward flux of the vector field

F(.r', r, :) = 2,ti + 3,i. j + :2k

r.'ru.\ rhe unit cube in figure 17.7.J.

Sulution . Let o denote the outward oriented surface of the cube and G the resion that it
encloses. The divergence of the vector iield is

daa
divF : :(2j) + :(3I) + :(:?) : 5 +2.dr cJr d-Figure 17.7.1



Figure 17.7.4

17.7 Ihe Divergence Theorem 1ll3

so from (1) the flux across o is

.: ilr."ot: lll<t*zztav= fo' fo' fo'o+z,ta,ata"oc

: l, L' rt,+tl)-oaya, - fo' fo' 
uoro* :o

Example 3

Use the Divergence Theorem to find the outward flux of the vector field

F(r, y, z) : x3i 4 y31 .1 ;ztr

across the surface ofthe region that is enclosed by the circular cylinder x2 + y2 = g nrd
theplanesz:0andz = 2 (Figtre 17.7.4).

Solution. Let o- denote the outward-oriented surface and G the region that it encloses.
The divergence of the vector field is

4-r" n - ^a 
,"', * 11rt,- 

"u 
,,', - 3xz -3y2 I 2zox dt, dz

so ftom (1) the flux across o is

o: llY."as: lll <2,'+zy. + z,t av
G

?2n ,a 
^2: l, J, J, 

\3r2 +2ztr dzdr da

"2, .3: 
J" J" lr',+z,,fl_oa,ae

: J, J, 
,u, + 4r\ dt da

- f" f t +2,'f' aelo Lz lo
f2" 279

- Jo 2 do =ztoT

, Using cylindncal I

Figure 17.7.5

Example 4

Use the Divergence Theorem to find the outward flux of the vector field

F(r, y, z) :.,r3i + )3 j + z3k

across the surface of the region that is enclosed by the hemisphere 4 : ,G7aV - y, 
^rathe plane z :0 (Figure 17.7.5).

Solutian. Let o denote the outward-oriented surface and G the region that it encloses.
The divergence of the vector field is

d^.1 -.1
6;r p: -ar,rrr + U:r),3r l;/t - l.t '- tu2 I 3.2

so from (1) the flux across o is



I114 Topics in Vector Calculus

DIVERGENCE VIEWED AS FLUX
DENSITY

.:1 ,rl1 Lt

=t 1,, l^ .1,, 
orsin4'to't4da

=,1," 1,,''=l!, rf,',, 
,,0,u,

=+ lu" lu"i"i"a'to'te

= + 1," 1 .o"qli,/' ae

1.,5 rl' 6tt,tj: ,1, "n- ,

. : .ff , . 
"ut 

: 
.f [ [ c,' + 3,,] + 3::)r1y

o(;

":a r1/1 ?t: l, l, .l,,r3p 
tp:sinQttnre,ttt

The Divergence Theorem provides a way of interyr'eting thc divergence of a vector field
F. Suppose that G is a sntull spherical region centered at the point P0 and that jts surlace,
denoted by o(G), is orienled oulward. Denote the volume ol the region by vol(G) and the
flux of F across o(G) by O(C). If div F is continuoLrs on C, then across the smtrli region

C the value of div F will not vary much from its value div F(P0) at the centet and we

can reasonably approximate div F by the constant div F( Prr) on G. Thus, the Divergence
Thcolcn implies that the flux <D(G) ofF across o(G) can be approximated as

,rc,- llr."rt= lll div Fdv : di' F(pr, Ill ,, - <riv F(pu) vor(G)

olc) Q (i

iiom which we obrrin the lpprorirnrtion

OrC)
ctiv FrP,,r 

= 
{8.)

\ol((J)

The expression on the right side of (8) is called the .utpard fux densiq of F across G.
lf we now let the radius ol'thc sphere approach zero lso that vol(G) approaches zeloj. then
it is plausible that the error in this approximation will approach zelo, and the divergence of
F at the point Pn will be given exactly by

O{G}
div I'(4,) : lim _

\ !lrc )- r) lot(U )

which we can express as

I lfdivF{P,,)- lim /l f .n.lS" \,,r,c,-(, vol(G) J J
6lG )

This limit- which is c alled rhe outwardfux densily of F at Pn, tells us that ir .r st?.r.1-r'rt4te

.fluitl.flov, div F catr be interprcted os the linitirgllu.r par utit volunlc dt d poinl. Moreover.

it tbllows fiom (8) that tbr a srnall spherical region G centercd at a point Pq1 in the flow, thc

outward flux across the surface of G can be approxirnated as

@(C) 'v (div F(Po))(Vol(C))

t{tN.l,\ttK. Formula (9) is sometimes taken as the definition ofdivergence. This is a useful

altemative to Dellnition I ?. L4 because it does not require a coordinate system.

(9)

(r0)



SOURCES AND SINKS

17 .7 The Divergence Theorem I L 15

Il Pr) is point in an inconlpressible fluicl rt which dir.F(Prr) > 0. then it tbllows tionr (ll)
that O(C) > 0 fbr l sullicicntl) small sphcrc G centeled rl Prr. Thus. therc is a grcater
r oluurc ol lluid goins oul tlrrough the surllce of G than coming in. But this can only happen

il lhcrc is soore point irrsirir,(he sphele rt which lluid is entering the flow l!'onr itn extenlal
sourcc (sily by condensali0n. mclting of a solicl, or a chenricll reacrion): otlrerwise the nel

outwiir(l llow through thc sr.rllace rvould result in a clecrease in clensity rvithin the spherc,

contradicting the incomprcssibilit)'assunlption. Sirnilarll'. if cliv F(P0) < 0- there would
have k) be a point iirlrlc lhc splrere at $hich lluid is lear,ing thc l)ou'(say by e\,aporation):

othcr$'isc the net inNllrd flou through tl'rc surface r.r'ould n-'sult in ur increasc in density

$'ithiD the sphere. hr an incomprcssible fluicl. points at which div F(P0) > 0 are called

sorrrcer and points at rvhich div F( Po) < 0 arc called sirtks. l-'luial enlers the flow at a source

ancl clrlins oul at a silk. ln att incorlprcssiblc lluid without soutccs or sinks we t't'tLlst havc

dirI,'(P):0
irtc\c$,poirrt P. In hydlodvnamics this is clllccl tlre conlriurily cquation for inco tpressiblc

fuids uNJ is sometines lrken as thc dcfining chuacteristic ol-an incompressible fluid.

The Divclg,cnce Thcorc nr irpplied to invetsc-sq uarc llelds (see Definition I 7. 1 .2 ) ptocLuces

r resull cirlled Ganss's Law.fbr ltuerse-Squure Fields. This lcsult is the basis lbr many

irnpoltant principles in physics.

17,7.2 C.\uss s L \\\ t,ot{ 1\\'ERSE sotr,\l{t I'tFLDs. Il'

Frrt = _! r
lr L'

is an inverse square liclcl in 3-space. and if o is l closed olicntablc slnJace thlt sLrrrounds

the origin. then the ()ut\\'ard flux of F actttss o is

GAUSS'S LAW FOR

INVERSE.SQUARE FIELDS

. : II ,.n,r.s : Ji.

Recall lionr l.-ornrula (5 ) of Section ll. I thrt l' ern he erptesscd itt conrponent titrm as

F (.r. \'. :) : : . .. (r'i +t\r+ r- +- )rl
lj - :k)

l[[tn,u,
But we showcd in Examplc 5 of SectionlT.lthatdivF:0.so(13)vields

(ll)

Sincc thc conrponents ol F ale not continLroLrs at the origin. we cannot ap]lly thc Divergence

Thcorcnr ucross the solid enclosed by o. However, we can circumvent this dillicully by

constrLlcting !l sphere ol lllcliLls ar centere(l llt the origin. whclc the radius is sLrllicicntly

small that the sphere lies errtirely within tltc legion enclosed by o (Figute 17.7.6). We rvill
de|ote the surl'ilce ofthis sphele by q,. Thc solid C enclosed betwcen r',, and o is rn exanrple

ol a tl'r'cc-dirlrer!iorral solitl with al intelnal cavit\ ." J ust as wc wctil able to extend Green s

Theorem to multiply connccted regions itr lhc llane (regions with holes). so it is possible

to extend thc Divcrgcncc Tltcolcrn to solids in 3-space with intcrlttl cavitics. provided the

surlircc irtcgral in thc tl'rcorcrr is taken over t hc .,/?lil1' boundiuy with thc outside boundary ol
thc solid oricntcd out\\ ald ld the boundari!'s olthe cavilies 0ticnted inu'ud. Thtts. ilF is the

inr crsc-square field in ( l2 ). ilDd ifo,, is ol i€ntcd in\\'ard- thcn thc Divergence Theolctlt yields

( l2)

(13)

( l4)

: ll , . nrr.s +;f r,'. nas

llr."os- l[,."n'
We ciLn cvaluate the surlitcc integtal ovet o,, lry expressing thc intcgland in terms ofcompo
nents: however, it is ersier lo leave il in vector lbrrr. At each point on the sphere the unit nor-



1ll6 Topics in Vector Calculus

GAUSS'S LAW IN ELECTROSTATICS

ExERcrsE SEr 17.7 E r:ll;

mal n points inward along a radius from the origin, and hence n : -r/ llrll. Thus, ( l4) yields

llr "os=- ll #' (-,fr)"

: [[ ' ,t,.,tas
I I rlt

tl (l

= I I 
-JSJ I irl'

t f f
= n Jl ,t rr-,,on.

= l4nnt t rhr inrePml i' rhe srtucc

a2'"" arerolrhe\Pherr

: 4ttc

which establishs (l l).

It follows from Example I of Section 17.1 with 4 : I that a single charged particle of
charge 0located at the origin creates an inverse-square field

Ftri: !-.
,ln€o l rl r

in which F(r) is the electrical force exened by O on a unit positive charge (4 : I ) located
at the point with position vector r. In this case Gauss's law ( 17.7.2) states that the outward
flux @ across any closed orientable surface o that surrounds p is

o- [[e.n,rs=+,( Q \:aJJ \4neoJ (o

fni, ,"roit, which is called Gaa ss's Law Jbr ElectricFi€rds, can be extended to more than
one charge. It is one of the fundamental laws in electricity and magnetism.

In Exercises 1 4, verify Formula ( I ) in the Divergence Theo-
rem by evaluating the surface integral and thetriple integral.

1. F(r. 1'...) = -ti + .r'j * :k; a is the surface of the cube
bounded by the planes.r : 0..r : l. r' : 0.,r' : 1. : : 0,

2. F(r, -u...:) : ri + )j * ;kl a is the spberical surlace
*2+y:+;2:i.

3. F(r, r',:) = 2.li - y:j * z3k; the surface o is the parab-

oloid I -I: + -r2 capped by the disk 12 + ),2 : I in the
plane : : l.

4. F(-r, -y, :) : .t_r'i + y:j + rzk; a is the surface ofthe cube
bounded by the planes r = 0. ,r = 2. -r' : 0. ) - 2, z : O.

:.-2.

In Exercises 5-15, use the Divergence Theorem to find the
flux ofF ac.oss the surface (, with outward orientation.

F(-r, ,r, z) : (n'?+J)i+.2j+(e) -z)kio is rhe surface of
the rectangular solid bounded by the coordinate planes and
the planes x - 3, r' - l, and : = 2.

F(r,.1.") : zri - xll +,r'3k, where o is the sphere
t2 + y2 + z2 : a2.

F(r,1.:) : (.r -z)i+ (.y -r)j+(r - ))k; o is the surface
of lhe cylindrical .olid bounded by x: + v2 : a'.. -o.
andz:1.

F(,r, y, z) = ri + ],j +:k; o is the surface of the solid
bounded by the paraboloid z : I - x: - y2 and the -t.1,-

plane.

F(x, y, :) - xri + ytj + ;'k; o is the surlace ofthe cylin-
drical solid bounded by r2 + .r,2 = 4, : = 0. anrl : : 3.

F(,t. r'.:) : (,r.'?+ ) )i+-rlj - (2,r: * 1)k; o is the surface
of thetetrahedroninthefirstoctantboundedbyx*y*z : I
and the coordinate planes.

7.

9.

10.
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- r:vl/ \,lv11. F(:r. ,r,. ;) - (rr -.,r )i + (,rr + sin; )j + (ir - -r,\,)k. where
o is the surface of the suliJ bounJed by : = u/4 r' r'l
and the r.r'-plane. [Hinl; Use spherical coordinates.]

F(:r. -y, ;1 : 2v;1-1- -ui j +;2k, where d is the surtace of the
hernisphencrl <olrd bounLled rbore hy.: = V{; ' ' 

r

and below by the.r\-planc.

F(.r. -r. -) : -r2i + r':j + ;rk: d is the surlace ot' the conical
solid bounded by; = u/rr + \'i irnd.: = L

F(.r.,r,. ;) : -rl-yi -.r.I 
l.i + (. + 2)kl o' is thc surface of thc

solid bounded above by the plane i = 2 \ and below by the
paraboloid; : *t + j x.

F(.r. r'.;) : .rri + jl.\, j +r\k: d is the surfuce of tbe solid
bounded by: :4 -.rl. r'*: : 5. : = 0. an<] r :0.
Let F(-r, -y. :) :,ri + bj +. k be a constant vector field and
let.r be the suface a solid G. Usc the Divergence Theorem
to show that the flux ofF across o is zero. Give an informal
physical explanation of this result.

Prove that if r : .ri + \,j +;k and o is thc surfacc of a solid
6 oriented by outward unit normals. then

lllrrv'r
r.l

[,'
lHit:

II,

22. V.q - sV/) . n/s :
Interchange f and g in 2

."ds: lllvt d,
G

(b)

25,

12.

13.

14,

15.

t6.

24. Show thut if Fr r) - , I i. tn in\er\e \qulre ticlJ. (hcn
llrl/'

divr:0.exceptatr:0.
In each part, the ligure shows a horizontal layer of thc vec-
tor field ol a I'luid l]ow in which the flow is parallel to the
-ry-plane at every point and is identical in each layer (i.e.. is
independent of;). For each flow. what can you say iibout the
sign ofthc divergence at thc origin? Explain your reasoning.

(a)

17.

r

I f fvol(C)- - ll r.ndJ
.\ .l .l

where vol(C) is ihe volune ol'G.

18. Use the result in Exercise l7 to lind rhe ourward flux of the
vector field F(-r. r'. :) = .ti + _r'j + :k across the surface .t
oi the cylindrical solid bounded by rl + 4r * r'l : 5.
;:-l.and;:4.

In Exercises 19-24, prove thrl identity, assuming that F. r.
and O satisfy the hypothescs ofthe Divergence Theorem and
that all necessary ditTerentiability requirenrcnts fbr the func,
tions l(-r. _\.. i) and g(.r.1,.;) are mer.

19. / / curl F.n/l =UlHnrr. SeeFtercire.ll.secrron l7.l.l
JJ

^. IIo, .,ds = lll v?at,
6c

(r'r:u-4* t * 1])
\ .tl d\'- ')a- /

n. ll rrvo. "as: lll cv's + vr.vs)dv
dli

26. Find a vector field F(r. _r,..:) that has
(a) positive divergence e\rerywhere
(b) ncgativc divergence evervwhcre.

In Exercises 27-30. deternline wltether the vcctclr licld
F(r, _r.:) is fiee ol sources irncl sinks. Il it js nol. locutc
them-

27. F(-r. r'.:) : (.r'*:)i -r:r.i + (.rl sin \')k
28. F(.,r. 1..) =.rJi -r-1j + l:k
29. F(r. r, :) =.(ri + _rrj +.rk
30. F(r. ), i) : (r3 -r)i f (t,r - t).i + (.'r :)k

E 31. Ler o be the surlace of the solid 6 rhar is enclosed by the
paraboioid : : I -tl r': and the plane: : 0. Use a
CAS to verity Formula ( l) in the Divergence Theorem fbr
rhe vector lield

F: (-rr,I, - ir)i + (rr -.t)j * (2x i 3; - l)k

by evaluating the surface integral and the triple intcgral.

17.8 $TGKES'TN-IEOREM

Iit this ,tectiotl we will distu.ys a generuli:qtiott of Green's Thcorcn to three dinten.yions
thet hes itnportont trppli<utiutts h the sudy of rcctor feltls. purticularlt in thc tutul-
)sis oJ toIaliotldl notiott offuids- This theoren till also ptot.itle us vith o phtsical
ittterprak ion of the curl ol o vecttn'field.
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RELATIVE ORIENTATION OF
CURVES AND SURFACES

We rvill be concerned in this section rvirh oriented surf-aces in 3-spacc thlr are bounded
by simple closed pararnehic cur\es (Figure l7.8.la). If o is an oricnted surface bounded
b1 a simple closcd pitftn]ctric curve C. then there are tlvo possiblc lelationships betweer
the orientations ol o and C. r,hich can be descdbed as follows. lrnagine a pcrson walkirg
along the cur\'e C \\'ith his or her l]cad in the directjon 01'thc orientittioD of.r. The per-son

is saicl to be *alking in thc posiliy? tlirectiort of C relatile to tlte orientttion of o if the
surlirce is or the per.son s lefi (Figure 17.8.1D). and thc pcrson is said to bc walking ir the
negqtiye direction of ( [cllitivc to the orientation ol.r il the surlacc is on the person's right
(Figure 17.8.1.r). The positire clirection of C establishes a right-hand relationship bctween
the orientations of l' and ( in thc scnse that itthe lingers ol thc right hand arc cupped in the
positive direction ol a'. thcn thc thumb points (roughly) in the direclion ol'the orientation
ol o.

(

The oriented surface d s

boLrnded by the s mp e c osed

c
5J,,Li

.,,,'.-(# f),-,(#-i*),-,(* il-=i +; .,

The pos trve d rect on of ('
re at ve to ihe or entat on ol it

E
n
t)

The negative dlrect on of C
aelative io the or eniat on of .t

Iri!ur! l7.lt.I

la) (r) (()

ln Section 17. I \\.c dcllncd the curl of a vector lleld

F{-t. r. ,1 : l(.r. r'. :}i +,9(.r. r. :)j + l(.!. r.:)k
lls

but we did not atternpt to givc a physicrl explalation ol its nrcaning at that time. The
lblloningresult.knownirs.S/okes"'Theoren,willproviclcuswithlphysicll interpretation
ot thc cuIl in tnc .Untrxt.)l lluiLI llL)\\.

STOKES'THEOREM

. .. rlSlg-1901). lr\h nrnrhenlariciaD and ph)sicist. Borr ir)SkrccD. ft,illnd- Sbkes.aDre
llom n liDril] dccplt rootcd iD thc Clh!rrch ol lrehnd. Hii Iarhcr u ir\ ir rccror. hi\ nx)rhcr rhe dlughrer ol a rccror-

and thrc. oahis hr)rhcr\ ro1)k h,)l\ (nicrs. He recei\ ed his earl] cducxtioD 1;(nn hi\ lirrhcr rd a locrl pari\h clcrk
h) l8ll. he enlcrcd Pcrrhrolc ('ollc-ec rn(i rlter gr.idLratir.q \ilh top horror\ ucccptcd r jello\lship .rt the collcgi'.

bur ([c thrt had lo\1 ils esrccm lhn)r !h th. )e!r\. By r ir ruc ol his accomplishrrr!nls. Srok.s rlli]nrtcl\ rc\L(ncd thc

positioll rc the eminercc it oncc hcl(1. Linii)flLrnrlely. the position p id !crf litllc rLr(lStiikes $us linced io tcach

11 rhc Co\crnnrcn{ School ol Nlincs (trLring the lll50s 1o supplcrrcnr his ineonrc.

SLolcs was onc rn sciclLrl oulsl rl(lin! nineteenth cenrury scicntisls {ho hcllr!(l lu r the physic.rl scicnccs in
r nrore enrtiric.rl dirccljon Ilc rysrcn licrillt studied hldrcd)-n.Lmics. clrstlclty ol solids.behrviorof$avc\in
elListic nnid\. and dittr.lction ol light tin Slokcs. nathenl.rtics $as x tool I(n his nhy\icrl studic\. He u |ote classic

prper\ on rhe morion of \ iscou\ lluid\ lh.rt l.rid the ioLmdation tbr modcrn h\(lrodyntlnricsi he eLrborated on th.

s!icner r)l Scodrs)
Sroker uas honorud ir) his latcr'lcars $irh degree\. nredals..rrd mcnrbc^hit)s irr lirrei-cn rocieties- Hc t\a\

[,uightcd in l8ti9. Th(,ushoul his lrlc. Sloke\ gir\t' g. ncroujl] ol hi\ lime to le1ll1rr\l nr.ic(ics :rnd rcnLlil] assisled

lho\c $ ho sought hi. hclp in sol\ ing froblenr\. He \\ aj deepl! relig()us rn(l \ irill\ c(lrceflred \ ith the rclarhnship
bcr\\cen rcien.c and rcligior.



17.tl.l l Hr.o
is bounded by

17.8 Stokes'Theorem l119

lE\\(.Stokes' Theoren). Let o be a pieceryise smooth oriented sutface that :

't simple, closed, piecewise snooth cut-ve C with positive orientation. If i

RE\\(.Stokes' Theorem). Let o be a pieceryise smooth oriented sutface that
l simple, closed, piecewise snooth cut-ve C with

the components ol the vector field

F(r,1, z) - l(r, r, r)i * s(r. r, ;)j * ft(;r, y, z)k

are colttinuous and hate continuous first partiol deri\)atives on sonxe open set contditling

The proofofthis theorem is beyond the scope ofthis text, so we will focus on its applications.

RLN{ARK. Recall from Formula (32) of Section 17.2 that the iDtegral on the left side of (2)

represents the work pefolmed by the vector field F on a pafticle that faverses the curve C.
Thus, loosely phrased, Stokes' Theorem states that the workpe(bnned by tt vectorfeld on
a porticle thcrt tra\,erses a sinple, closed, piecewise smooth cune C in the positive direction
can be obtained by integrating the normal component of the curl over an oriented su(oce
o bounded by C.

For computational purposes it is usually prefemble to use Formula (33) of Section 17.2 to
rewrite the fomula in Stokes' Theorem as

(2)

USING STOKES' THEOREM TO
CALCULATE WORK :ilf, F.dr (curlF).ndS (3)

Stokes' Theorem is usually the method ofchoice for calculating work around piecewise

smooth curves with multiple sections, since it eliminates the need for a separate integral
evaluation over each section. This is illustrated in the following example.

Example I
Find the work performed by the vector field

F(;r, y, r) =,rzi + 4rr.-3 j + l,trk
on a parlicle that trave$es the rectangle C in the plane z = ) shown in Figure 17.8.2.

Soltttiort, The work pedormed by the field is

n: d F.dr

However, to evaluate this integml directly would require four separate integrations, one

over each side of the rectangle. Instead, we will use Formula (3) to express the work as the
sudace integml

14/: I I (curl F).ndS

in which tie plane surface o enclosed by C rs assigned a downh,ardorjentation to make

the orientation of C posilive, as requircd by Stokes' Theorem.
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Example 2

VerifyStokes'TheoremforthevectorfleldF("r,y,z):221-l3xj+5)k,takingotobe
the portion of the paraboloid z : 4 - x2 - y2 for which i. : 0 with upward odentation,
and C to be the positively oriented circle .r2 + ,\'2 : 4 that forms the boundary of o in the
ry-plane (Figure 17.8.3).

Solution. We will verify Formula (3). Since o is oriented up, the positive orientation
of C is counterclockwise looking down the positive r-axis. Thus, C can be rcpresented
parametrically (with positive orientation) by

,x = 2cosr, ):2sint. z:0 (0<t <2T)

Since the surface o has equation : : ) and

ti j kl
la a alcurlF: ^ : ll=2vli )2.i -4)rkrJ-{ dj ozl
;rt 4xt t xy'I

it follows from Formula ( l3) of Section 17.6 with curl F replacing F that

w: llrc"aF,.nr1s: ll,,,nr,. (ff' ' j,l.i-u)a^
oR

= [ [ ,t"r, - ]2 j + 4]3k) . (oi + j - k) dA
JJ
n

"' lt, .r'' -4ytttlvdr= J" J,

r' frr * u"lr ,,=-/, Lr r.=n

: - [' goa" = -go
Ju

Therefore,

6 " 
0, = 6 2z,tx +3xtty -s,az

Jc Jc
f2n

= /" ln- t6cosr rr2cosr r+ 0ldr

: ['. n"nt',d, = l 
f I I ]2'

Ju 2lrt + 
osin2r lo - l 2/r

To evaluate tbe right side of (3), we start by finding curl F. We obtain

i.i k
l,r a al

curl F=l- .. :-l=5i+2j+lk
I dx crl. dz.I

lz.- 3r sr I

Since o is o ented up and is expressed in the form z : g(r, ]) :4 - x2 - y2, it follows
from Formula (12) of Section 17.6 with curl F replacing F that

ll rc,nn . 
"ds 

: II(.*r D . (-#r - ,q.i* u) ,,
oR

tt: ll t5it 2.i F3k) .(2xi+2t.i t ktdA
R

(4)

Figlrre 17.8.3
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(10-r + ,1-y + 3) dA

: 
lot' lot 

{to, ,o"e + 4r stu e i 3)r ctr cta

= l'" [+ -,, + f ,ino *+],',,=,*

= l'" (T.",, + f .i"e + o) ae

r:rrrl F

since 09/62 : Af /Az = 0. Substituting this expression in (6) and expressing the integrals
in tems of components yields

:il

f,' '": ll '""' 'ono
n

But

li .i kl

ll i ^il -f'-1,-(# ij )--(:: li)-
fso

f f t /3o af\
f tlt_tlt _// (r; ur)ro

n

tRO t2
-l-sind - cos4 t60 l - l2n

L J -l -1,,

RELATIONSHIP BETWEEN GREEN'S
THEOREM AND STOKES' THEOREM

As guaranteed by Stokes' Theorem, the value of this surface integrd is the same as tlle
value of the line integral obtained above. Note, however, that the line integral was simpler
toeva1uateandhencewou]dbethemethodofchoiceinthiscase'<

!r,\1 \li \ Obserye that jn Formula (3) the only relationship required between o and C is
that C be the boundary of o and that C be positively oriented relative to the orientation ol
o. Tlrus, if o1 and o2 are diJ:ferent otiented sudaces but have the szmrc positively oriented
boundary curve C. then it follows fiom (3) that

/ / curl F.nriS = / / .Lrrl F. ndSII II

For example, the parabolic surface in Example 2 has the same positively oriented boundary
C as the disk R in Figure 17.8.3 with upper orientation. Thus, the value of the surtace integral
in that example would not change if o is replaced by R (oI by any other oriented surface
that has the positively oriented circle C as its boundary). This can be useful in computations
because it is sometimes possible to circumventa difficult integration by changilrg the sulface
of integration.

It is sometimes convenient to regard a vector 6eld

F(r, y) : /(-r,1)i { s(.i, y)j
in 2-space as a vector field in 3-space by expressing it as

F(x, y) : /(-r,1)i + s(-r,1)j + 0k (5)

If R is a region in the,U-plane enclosed by a simple, closed, piecewise smooth curve C,
thel we can trcat R as aflct surface, and we can treat a surfhce integral over R as an ordinary
double integral over R. Thus, if we orient R up and C counterclockwise looking down the
positive:-axis, then Formula (3) applied to (5) yields

(6)
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CURL VIEWED AS CIRCULATION

rvhich is Crcc'n s Theorenr IFormLriir ( I ) of Seclion 17..11. Thus. wc lrave shown that Green's
Thcolcnr cnn be r,iervccl ls a special casc ol'Stokes' Thcorenr.

Stokes' Thcoren prlvides a way of interpretir)g thc curl efa vcclol field F in thc context of
fluid flow. For this putpose lcl o,, be a snrall oricllted disk of t|tlius a centered irt a point P0

in an incoluplessible steacly-stiltc lluid flow. and lct n be a unit nornral vector at the center
of the clisk that poirts in thc clircction of ofientation. Let us assrl|ne that the flow of liquid
prst the disk causes it to spin around tlre irxis thlough n. and lel us try to lint] the dilection
of n that will producc the rnaxirnum rotation late in thc positive clirection of the boundrrv
culvc C,, {Figure I7.8.-1). Fol convenierce. wc will denote the rrca ol the djsk o,, try A(.t,, ):
that is. A(o,,) - z.rl.

If thc rlircction of n is lixed. then al circh point of C,, ll're orly component oi F that
contributcs to the rot.rtion of the disk about n is the componcnl F . T tangcnl k) C,, (Fig-

ure l7.fi.5). Thus. firl a tixetl n the intcsrll

Figrrc l7.ri.5

can tre viewed as a measurc ol'1he terdency lbr the fluid to flow in the positivc tlilcction
around C,,, Accordingly. (7) is called thc circukiiott ol F around C,. For cxamplc. in the

extremc cilsc $'here the flow is nonlal k) thc circle at each poirrl. thc circulation around
C-,,isze'r'o.sinceF-T-0utcachpoint.ThemorccloselythrtFrli-rnsrvithTalongthe
circle. thc larget tlre ralue ol F . T and tlre lirrgL.r tlrc value of thc cilculation.

To sce the lelationship br't\\ceD cir-culatioll llnd curl. supposc that cu F is continuous on

.t,, so that whcn q, is snrall the value ofcurl l'ut any point ol o,, will not vary rrruch flonr
the valrlc ol cLrl F(P0) at thc ccnler. Thus. tir| r.i small disk o,, rve can rcasonably lssumc
thatcurl F hrs a constant \,illuc ol curl F( Po ) on .t, . Moreover. bcc usethesurfhccq, is llat.
the unit nonnal lcctors thitl orient o,, arc all ctlual. Thus- thc |cct(n quantity n in Fornrula

1 i I clttt hc lrL:rl( d ir\ ;r ( rnt\ll ll. :lr)d !\ c cilrt \ rilc

F.Trls \7)

F.Tr/.i

where tlre line integral is tlkcn in the positivc dilcction of C,,. But thc double integral in

this cqLrillioll reprcsents tlrc suf:rce arca ol-o,,. so

d n'f ,1,, [curl F' /1,r.n14r".'

flom rvhich we obtain

lt
cull Fr/1,).n:- 

-6 

F.Tr/r (8)
At'',) .1,

Tlrc quanlity on the dght side of t8) is called the circrtlatio (tensit! of F around C,,.

If u'e now let the radius ( ol thc disk apploach zero (with n fixed). then it is plirusible that

theenor in this rpprrxinrrtion will approach zclornLl theexacl v lue olcurl F(P0). nwill
he given bv

crr'r r.'rp,,r. n - 1;,n -l d t.t,r.,,, .r A\o,,) J(

f

rt , [[,,,-././ 'eurlI'. n,/s iurl I:r P,,'. 
.r.,f

(9)

Wecall cLrrl F(Po) .n 1e circulation densit! of F at P0 in tlte direction of n.Thisquantity
has ils mrrxirrr.rnr value whcn n is in the sanle clirection as curl F( /i)): this tells us thL\ttLt c.tdt
point in t srattth-stute .fluil llot the nutinwnt drt'ulation tlcntilt otturs in tlte dirc<tiott ol
t/re crri /. Physically. this means that if a snrrll pacldle wheel is inrnrersed in tlre fluid so tlrat

the piYot point is at P0. then the paddlcs u ill turn nrost rapicllv u hen the spindle is aligned
uithcull F(Prr)(Figure 17.8.6). If cur'] F:0 rt each point of u fegion. then F is said to be

it','otatiotnl ir rhat tegion. since no circulatiolr occurs aboul any point of the rcgiou.

IrisLrre l7.ii.-l

Figurc l7 lt.6
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Itl,\l \ltl(. Fomula(9)issonetimestrkenasadefinitionofcurl.Thisisrusefulaltemative
to Definition 17. L5 because it does not require a coordinate system.

ExERcrsE SEr 17.8 lal .A-c

Thc figulcs in Exercises I and I shorv a holizontrl liLyer o1'

the vector field of a fluid llolv in rvhich the llow is parallel

to thc.r,plane at e!eD' poir'rt and is identlcal in each layer

(i.e.. is independent of:). For cach 1low. state whether you

bclicvc that the curl is nonzero at the origin. and explain your'

reasoning. Ifyou belie!e that il is nonzero. then state whethel

.t potn.r in Llrc n,'.itlc o rtr"rlr\r ' drrecr on.

F(.r. r'.:) : .r:i + 3rr\,lj + J,.tk: C is the rectangle in thc
pLanc .- - r shown in Fjgure 17.8.2.

F( r. r'. :) : l:i + ,h:j + 2r'k: C is the holrndary of the
pilr.aboloid shown in Figure 17.8.3.

F(-t. r'. -) = 3-rri +.1".i i 6rkl C is the triangle in thc
plane: : ]1,\\,ith vcrticcs (2,0.0). (0,2. l), and (0,0.0)
wjth a counterclock\{ise orienlation looking down the pos-

itive:-axis.

F( t. i . :) : \r'i + .rrj + .rki al is thc intcr-section of the
par-aboloi.l : :.1 +.r'l and the planc i - t with a coun-
lerclockwise orienlation looking down thc positive.:-axis.

F(.r. !. :) : .r.r'i +.\:j + ark: C is the lrianglc in thc planc
r + r' +: : I \\'ith veltices ( l. 0. 0), (0, 1.0).and (0.0. l)
\\'ith lt counlerclockwise olicntttiut lookine front the lirst
octant toward the origin.

F(r.r'.:) : (r l)i + (\ - -.)j + (. r)k: C is the

circle rl 111 : rrl in the.t-r plane rvith countctclockwise
,' irrl rlrnr,.,h krn' Ll, \ rllr( pL,.ilr\c .r\i .

!-(.r. r.:) - {- + sin.r )i + (r +r'r),i + (\' + n')kl C i. rhc

inlerseclion ol the sphclc.tl i .r'l + .:l : I and the coDe

; : ,,/tl a r I u,ith counterclockwisc oricntation lookin-g
doun the positive :-axi\-

Consider the \reclor field given bv thc lbrmula

F(r, r'..:) : (.r - .)i + (r -t).j i (. .rr')k

(r) Use Stokes Theorem to tind thc circulation aroLrrcl

the tliiingle wjlh verlices A(1.0.0). ll(0.2.0). alrd
(.'(0.0. l) oriented coLrnterclockwise looking ll.oln the
origin towrrd lhe llrst octant.

(b) Fincl the circulrtion clensity ol Ir'at the origin in tbc
clirection ol k.

(c) Find tho unit vector n such thilt the cilculatjon clensity

ol F at the origin is rnlximum in the .lilection ol n.

(r) Show that il F is a vector fielcl $,hose comporents
have continuous second-order partiiil derivatives. then

div(cutlF) :0.
(b) Use thc result in part (a) io show tliat if the surlace o of

a solid G has outrvard orientation. n is the outward unit
nonnal to rr. !nd thc components ofF have continuous
first piirtial der-ivatives on and within n. then

//t.L',i F .nr,/! - o

(c) The vector llelcl curl(l') is callecl thc . urtJietd ol t'. ht
words. interpret the tbrmula in part (b) rs a stalenleil
about the ffux of the curl held.

8.

9.

1. (a) (b)

,, '' -:-'.'', -_-- -..,,,,,'tii,t rrlll'
\'-:-'-'

r0.

.

t2.

t3.

14.

15.

2. (\)

l.

5.

.\'. ;) : r:i + l l.i + ark: o is the poltion of the cone

,",/..1 + r'l below the plane: - L

r'. . ) : -ri * r.i + :k; l' is the upper hemisphcre

F(-i.

F(..

6. F(jr. r,..) : (: -r)i+(:+-r).i (.r+,\)k;.t isthcponion
of thc paraboloicl a : 9 rl r'l lbovc thc .r-r' plane.

In Exercises 7 14. Lrse Slokes' Theolcm to evaluate the inle

rr:rl $ F.Jr'.

7. F(.t. i. :) : :ri + 2rj rlk; c isthccirclc.rr +.\r : I

in thc]o plane rvith counterclockwisc olicntation looking
down thc positive: axis.

ln Exercjscs 3 6. velily Formula (l) in Slokes Theorem by
cvaiuiiting the line inte.qrirl and the clouble integral. Assunrc
rh: I Lhr .lI Lr.'r hr. rrt t prr.rr,l nriur tJ'1 ,'.

3. F(-t. r,. :) - (-f r')i+ (-1 -.)j a (: t)k: o is the portion
of the plane .r + l + . : I in lhe filst octant.

t6.



1124 Topics in Vector Calculus

17, In 1831 the physicist Michael Faraday discovered that an

electric cunent can be produced by varying the magnetic
flux through a conducting loop. His experiments showed
that the elecfomotive force E is related to the magnetic
induction B by the equation

I rr aROE./r:-ll .nls
.1" .l .l dt

Use this result to make a conjecture about the relationship
be(\ een curl E and B. i,nd erplain )our rea:,oning.

E 18. Let o be the portion of the pamboloid z : I - x2 y2
for which z - 0, and let C be the circle x2 * )2 : 1 that
forms the boundary of o in the]ry plane. Assuming that o
is oriented up, use a CAS to verify Formula (2) in Stokes,
Theorem 1br the vector field

F: (x2) - rr)i + (y3 - r)j * (2x * 3z t)k

by evaluating the line integral and the surface integral.

1. In words, what is a vector field? Give some physical exam-
ples of vector fields.

2. (a) Give a physical example of an inverse-square fleld F(r)
in 3-space.

(b) Write a fomula for a general invene-square lield F(r)
in terms of the radius veclor r.

(c) Write a formula for a general inverse-square field
F(,v, y, r) in 3-space using rectangular coordinates.

3. Assume that C is the pammetric cu er=x(r),y:l(r),
where I varies from a to b. In each part, exprcss the line
integral as a definite integral with variable of integration /.

fftar I lt^.ytd) rg{..\.),,/l 1br / 71x.11/.Jc Jc
(a) Express the mass M of a thin wire in 3 space as a line

integral.
(b) Express the length of a curye as a line integral.
(c) Express the area of a surface as a surface integral.
(d) Express the area of a plane region as a line integral.

In each part, give a physical interpretation of the integral.

11. Assume that d is the parametric sudace

r : ,r(a, u)i + tl(rl, u)j a z(u, u)k

where (u,lr) varies over a region R. Express the surface
integral

/ / ./Ur. r. z.tds

as a:ouble integral with variables of inregration rr and u.

State the Divergence Theorem and Stokes' Theorem, in-
cluding all required hypotheses.

In our discussion ofhyperbolic t'unctions in Section 8.8. we
stated without prooi that the paramete in the parametric
equations

-{=coshl, ) -sinht
of a hyperbola can be interprgted as twice the shaded area
in the accompanying flgure (see the discussion relating to
Figure 8.8.3). Use Green's Theorem to p.ove this.

12.

13.

(a) 
Jf 

F. rds rtt lln."as
6.

7,

Slir(e 
"ome 

altemarive notations lor I u .rrr.
J,

(a) State the Fundamental Theorem of Work Integrals, in-
cluding all required hypotheses.

(b) State Green's Theorcrn, including all of the requled
hypotheses.

What conditions must C, D, and F satisly to be assured that

I F'Jr=0
around every piecewise smooth cu e C in the legion D in
2-space?

How can you tell whether the vector field

F(r, )) : l(r, ))i + s(-r, )) j
is conservative on a simply connected open region D?

Make a sketch of a vector lleld that is not conseNative, and
give an argument in support of your answer.

As discussed in Example I of Section 17 .1, Coulomb's law
states that the electrostatic force F(r) that apaflicle ofcharge
0 exerts on a pafiicle of charge 4 is given by the formula

aOF(r): '- r
4ncsl rl r

where r is the radius vector llom 0 to 4 and €0 is the per-
mittivity constant.
(a) Express the vector field F(r) in coordinate folm

F(.r, 1, ;) with O at the oigin.
(b) Find the work performed by the vecror field F on a

charge 4 that noves along a straight line from (3, 0. 0)
to (3, 1,5).

Figure Ex- l3

14.

9-

10.



15, As discusied in Scction 17.l. it fbllows from Nel!,|o, .t U/ri-

versol La\t'(t Gr.oil4lio, that the gralitational force F(r)
exened by an object of mass M on an object of mass irt is
given by thc fonnula

GntMFlrl = --r Ir'
wherc r is thc radius vectol from M lo /, and G is the

universal gruvitational constant.
(a) Show that the work ly done by the gravitational field

F(r) when the massrn moves from a distance ofrl tionr
M to il di.mnce o[ r: Ironr M is

/t t\
W =Gutt'l I I

\rr tt /
(b) The value of thc constant GM tbr the Earth is approxi-

marely 3.99 x 105 kml/s2. Find the work done by the

Earth's gravitational field on a satcllite with a rrass of
1000 kg that moves from a pcrigcc of600 km abovc thc

suriace of the Earth to an apogcc of 800 km abovc thc

sufacc of thc Earth, assuming lhe Earth to be a sphere

of radius 6370 km.

16, Use Grccn s Theorem to show that the coordinates of the

centroid (,r, r ) of a region with area A thdt is bounded by it
simple cLoscd piecewisc smooth curve C can be expressed

as

I r,. _ Ir=- r .\-r'l\'. 1'--- / rl,/.,'' )AJc ]Al,
where C has counterclocku,ise orientation.

In Fxercises l7-20. use the result in Exercise l6 to conllrm
that the centroid ol the region is as shown in the figure.

Supplementary Exercises L l25

il I and g u e diflerentiable functions .ud C is a sim pJc.

closed. piecewise smooth curve.
(b) what does this lell )'ou about the lcctor field

F(.r. r') = ./(.i)i +.9(1.)j:,

The purposc of this exercise is to estirhlish the role of the
curl in describing thc rotation of a rigid body. As illustraled
in the accompanyjng ligure, considcl t Iigid body rotating
about the :-axis of an r).' coordinate systen at a constant

angular speed ol at rad/s. Let P be a point on the body, and

1et r be thc position vector of P. Thus. the velocity ol P is
v - r1r/r11. where v is tangent to the circle ol rotation of P.
Let I and @ bc thc angles shown in thc figure. and define

rhe a gulor rek)cit! of the poirt /' t<t bc cu : rok.
(a) Show thrt v: (' X r.
(b) Show thal v = tr.,-i i * rr.,-rj.

(c) Show ihat curl v : 2cr.
(d) Is the velocity neld v conservativc l Justity youl answer.

Do you think thot the surlace in the nccol]rpanying ligurc is
orientable? Explain your reasoning.

Fjgure Ex-22

Let 6 be a solid wirh the suriace o oriented by outward
unit nornlals. suppose that d has continuous first and sec-

ond partial derivatives in some open set cootaining G. and

let 1).d bc the dircctional derivative of 4t. Show that

ll lllf A:tb itlrrt ,rrra-lll D,,A,t.s = llll-- -- -ldvJJ JJJ 14, ,J:-I
6I;

Let ct be the sphcrc -rl + )'l + :l = l, lct n be an inwald
unit normal. and let Dnl be the directional derivative of

/(,r.,r'.:) = .t: +.\'l + al. Use thc result in Exelcise 2:l to
evaluate the surfhce integral

llD^frs

LerF(-t.r): (r'e'r l)i+.{?'! j.
(a) Show that F is a conservative vecmr tield.
(b) Find a potential t'unction for F.
(c) Find the work perlbmed by the vectol lield on a parti-

cle that moves along the sawk)olh curve represented b)'

the parametric equations

r =r+sin lt\ina)
rt, < / E?r

r = l2/.'Tl\iD (sin.)
(see Figure Ex'26 on page I 1261.

23.

18.

20.

- r,,- 14l'.inn

I Jse Grccn's thcorcm to prove that

| .t,.r, o, * g(-r') d-' = o

Figurc Ex-23

21. (x)

26.
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25 of Section 17.3 thar il'F js conselvative in the region,
then

af tg al ah

dr' 0r ' Az. rJ r

27.

Figurc E:{ 26

Lct F(-t, -r') - ii ]rj.
(a) Find a nonzelo funclion /?(-y) such that l?(,r)F(.r, r ) is

a conservati!e Vector field.
(b) Find a nonzero iunction g(_1) such that g(])F(r. 1) is

a conservative vcctor ficld.

Let F(r. _\,. ;1 : /(r, r,. z)i i g(r, .r. :) j + /r(r. _\'. ;)k and

suppose fiat /, g. and /r are continuols and have c()lttinuous
hrst partjal de.ivatives in a region. It was shown in Exercise

As - Ah

.la A,r

there. Use this result and Stokes' Theorem to help sho$ that
F is conservatlve in an open spherical region il and only if
curlF:0inthatregion.

In Exercises 29 and 30, use the result in Exercise 28 to detel
mineu,hetherF is conse ative.If so. findapotential litnction
'n il

29. (a) F(.r,,r..) -:ri + e rj+2.r:k
(b) F(.r. _\.. ;) : .r,i i + ,rrj + sin .k

30. (a) F(r, ]..:) : sin ri + rj + _rk
(b) F(-t, ). :) = :i + 2t'.j + -r'?k

ffiffi:"::

Hurricane lModeling
,li'.' ach |eor jtoptltttion ( enters thft)Ltghout the worl(l ctrc ruwtgetl l:>,- ltu rrtr,tnes, ,tnd
it i.t the mi\sion of tlr Nutional Hu'ricane Center to minimize the danage and lo,us

of life bt issuing warnings tr.nd Jbreca.sts of h.urritunes tlet,elc4ting in the Ctribbean,
Atlantic. GulJ of Mexico, tuttl Eastent Pdcilic regiotls. Your assignnent tts a trdinee
el the Center is to.onstrLL.t tL simple t dthenrcticttl model of a hurricane u.siug l:tttsit
principle.s oJ fluid JLoL- and ptoperties oflettor.fields.

riJi,rje!irli".1 i', r:'lrt i:.r:r lirtr i, i ll

You have been notified of a developing hunicane in the Bahamas (designated hurricane lsaar:)
and hiive been asked to constrLrct a model of its veiocity field. Because hunicanes are complicatecl
three-dimensional fluid flows, you will have to make nany simpliiying assumptions abolrt the
structure of a huricane and the properties of thc iluid flow. Accordingly, you decide to rnodel
the moisture in Isaac as an ideal fluid, neaning that it is in compressible and its yiscosi4r can bc
ignored. An incompressible flujd is one in which the density of the fluid is the same at all points
and cannot bc altered by cornpressive forces. Experience has shown that water can be regarded as

incompressible but water vapor cannot. However, incompressibility is a reasonable assumptiol
for a basic hunicane model because a hu icane is not restricted to a closed container that would
produce compressive tbrces.

All fluids have a certain amount ol viscosity, which is a resistance to flow oil and molasses
have a high viscosity. whereas waler has aimost none at subsonic speeds. Thus, it is reasonable
to jgnore viscosity jn a basic model. Next, you decide to assume that the llow is ii1 a steqd! state.
meaning that the velocity ofthe fluid at any poiut does not vary with time. This is reasonable over
very short time periods for huricanes that nove and change sloivly. Finally, although huricanes
arc three-dimensional llows, you decicle to tnodcl a two-dinensional horizontal cross section, so

you make the simplitying assumption that the fluid in the cross section flows horizoutally.
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The photograph of Isaac shown at the beginning of this module reveals a typical pattern of a

Caribbean hurricane a counterclockwise swirl of fluid around the eye through which the fluid
exits the flow in the form ofrain. The lower pressure in the eye causes an inward-rushing air mass,

and circular winds around the eye contdbute to the swirling effect.

Your flrst objective is to lind an explicit fonnula 1br Isaac's velocity fleld F(r, 1), so you begin

by introducing a rectangular cooldinate system with its origin at the eye and its 1-axis pointing

north. Moreover, based on the hurricane picture and your knowledge of meteorological theory,
you decide to build up the velocity field for Isaac froln the velocity fields of simpler flows-a
counterclockwise "vortex flow" F1(r. y) in which fluid flows counterclockwise in concentdc

circles around the eye and a "sink flow" F2(x, 1) in which the fluid flows in straight lines toward

a sink at the eye. Once you find explicit formulas for Fr(r, t) and F2(r. r,), your plan is to
\se lhe superposition principle from fluid dynamics to express the velocity f,eld for Isaac as

F(r, )) : Fl(r, ]) + F2(x, l).
nqodellng a Vortex F lov"'

Acounterclockwise vortexflow of an ideal fluid around the origin has four delining characteristics

(Figure 1a on the following page):

. The velocity vector at a point (.rr, )) is tangent to the circle that is centered at the origin and

passes tbrough the point (r, )).
. The direction of the velocity vector at a point (r, t,) indicates a counterclockwise motion.

. The speed of the fluid is constant on circles centered at the odgin.

. The speed of the flujd along a circle is inversely proportional to the radius of the circle (and

hence the speed approacbes +oo as lhe radius of the circle approaches 0).

In fluid dynamics, the strength k of a vortex flow is defined to be 2z times the speed of the fluid
along the unit circle. If the strength of a vortex flow is known, then the speed of the fluid along

aDy other circle can be found from the fact that speed is invelsely proportional to the radius ofthe
circle. Thus, your filst objective is to find a fonnula for a vofiex flow F|(r. 1) with a specilied

strength &.

li.r-ri rirr J Show that

!'r(-r, 'r) - -. . .l ' .. (yi - "j)rn(.r'' +'r-)
is a model for the velocity iield of a counterclockwise vortex flow around the origin of strength

ft by confirming that

(a) Fl(r, l,) has the four properties required of a counterclockwise vortex flow around the origin;

(b) ft is 2r times the speed of the fluid along the unit circle.

Lttr(itc ',| Use a graphing utiljty that can generate vector lields to genemte a vortex flow of
strength 27t.

Mocleling a $ink Fle w

Aunffbrm sinkflow of an ideal fluid toward the origin has lbur defining characteristics (Figure I b):

. The velocity vector at every point (,{,l,) is ditected toward the origin.

. The speed ofthe fluid is the same at all points on a circle centered at the origin.

. The speed ofthe fluid at a point is inversely proportional to its distance from the origin (from
which it follows that the speed approaches +co as the distance from the origin approaches 0).

. There is a sink at the odgin at which fluid leaves the 1low.

As with a vortex flow, the strength q of a uniform sink flow is defined to be 2z times the speed of
the fluid at points on the unit circle. If the strength of a sink flow is known, then the speed of the
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fluid at any point in the flow can be found using the fact that the speed is inversely proportional
to the distance from the origin. Thus, your next objective is to find a formula for a uniform sink
flow F2 (x, 1) with a specified strength 4.

Exertise -l Show that

F2(x. )) : ^ .4 
-. 

(ri + yj)
zfi\r- + )" )

is a model for the velocity field ofa uniform sink flow toward the origin ofstrength 4 by conflrming
the following facts:

(a) F2(x. .v) has the four properties required of a uniform sink flow toward the origin.
[A reasonable physical argument to confirm the existence ofthe sink will suffice.]

(b) 4 is 2z times the speed ofthe fluid at points on the unit circle.

Excrcisc I Use a graphing utility that can generate vector fields to generate a uniform sink
flow of strength 2ir.

Figure I

A Basic Hurricane Model

It now follows from Exercises 1 and 3 that the vector field F(-t, y) for a hurricane model that

combines a vortex flow around the origin of sftength k and a uniform sink flow toward the origin
of strcngth 4 is

F(x, y) :

Iixer<isc 5

(a) Figure 2 shows a vector field for a hurricane with vortex s[ength f : 2z and sink sftength
q:2r.Useagraphingutilitythatcangeneratevectorfieldstoproduceareasonablefacsimile
of this figure.

(b) Make a conjecture about the effect of inoeasing t and keeping q fixed, and check your
conjecture using a graphing utility.

(c) Make a conjecture about the effect of increasing 4 and keeping /< fixed, and check your
conjecture using a graphing utility.

I

-lex+ky\i+(qy-kxt:l

21t\x. + )( )
(l)
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Figure 2

Modeling Hurricane lsaac
You are now ready to apply Formula ( I ) to obtain a model of the vector field F(x, y) of hurricane
Isaac. You need some obseryational data to detenrilre the constants k and 4, so you call the
Technical Suppofl Branch of the Center for the latest information on huricane Isaac. They rcpo{
that 20 km from the eye the wind velocity has a component of t5 km/h toward the eye and a

counterclockwise tangential component of 45 km/h.

Ii:erdse 6

(a) Find the strengths I and 4 of the vortex and sink for hurricane Isaac.

(b) Find the vector field F(r. y) lor hurricane Isaac.

(c) Estimate the size of hurricane Isaac by finding a radius beyond which the wind speed is less
thrn I km/h

Streamlines for the Basic Hurricane Model

The paths foliowed by the fluid particles in a fluid flow are called the streqmlines of the flow.
Thus, the vectors F(r, 1) in tbe velocity fie)d ol a fluid flow ale tangent to the streamlines. If the
streamlines can be represented as the level curr,'es ofsome function lr(jr, 'r). then the function ly'

ts called a stream funcrior? for the flow. Since Vry' is normal to the level curves ry'(r. _t) : c, it
follows that VV/ is nomal to the streamlines; and this in turn implies that

Vry'.F=O (2)

Your plan is to use this equation to find the stream functjon and then the streamljnes of the basic
hurricane model.

Since the vortex and sink flows that produce the basic hurricane model have a central sym-
metry, intuition suggests that polar coordinates may lead to simpler equations for the streamlines
than rectaogular coordinates. Thus, you decide to express the velocity vector F at a point (,', d)
in tems of the odhogonal unit vectors

u' : cos 6i + siD dj and uB : - sin 9i + cos dj
The vector u, , called the radial unit vect /, poi nts away from the ofigin, and the vector ud, called
the trqnsverse unit vector, ts obtained by rotating u, counterclockwise 90' (Figure 3).

Ex(rcise 7 Show that the vectorfield for the basic hurricane model given in (1) can be expressed

in terms of u, and ud as

IF: - 
- 

(4u, - LuF)
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u, = -sin di

Figure 3

It follows from Exercise 57 of Section
expressed in tenns of u,. and ue as

V.l, =

0=rl2

F decomposed into radial and
tranwers: compolen! al (], d).

15.6 that the gradient of the stueam function can be

Alt I alr-;-u1 * - -;-u6

cos ti + sin 0j

/r'.rrlcir, 3 Confirm that for the basic hurricane model the orthogonality condition in (2) is
satisfied if

Dlt k At] : = and ---:6rr00

I)rr'rtiv,t) By integrating the equations in Exercise 8, show that

{t:klnr+qe
is a stream function for the basic hurricane model.

ll r t rt i:r: I ( ) Show that the strearnlines fbr the basic hurricane model are logarithmic spirals of
the fonn

r = Ke-'to/k (K > 0\

l').wrcitr ll Use a graphing utility to generate some typical streamiines for the basic hurricane
model with vortex strength 2z and sink strength 22.

Streamlines for Hurricane lsaac

f:rt,r'r'isc 1J In Exercise 6 you found the strengths k and 4 of the vonex and sink for hunicane
lsaac. Use that information to find a formula for the family of streamlines for Isaac; and then use
a graphing utility to graph the streamline that passes through the point rhat is 20 km from the eye
in the direction that is 45'NE from the eye.

Module bt: Josef S. Torok, Rochester Institute ol Technology
Howarcl Anton. Drercl Uniwtsity



REAL NUMBERS

APPENDIX

Real Numbers, Intervals
and Inequalities

ieqa, *r? Dac,vrb{

The early Greeks believed that every measurable quantity had to be a rational nllmber.
However-, this idea was ovcr.turncd in thc fifth century B.c. by Hippasus of Mctapontunr*
who denronstrated the existence of irrational nurnbers. that is, numbers that cannot be

expressed as the ratio of lwo jntegers. Using,qeomet c rnethods, he showedthatthe length
of the hypotenuse of the tlian-qle in FiguIe A.2 could not be cxpresscd as a ratio of inlegers,
thereby proving that .,/2 is an in ational number. Some other exarnples of irrational numbers

Figure A. I describes the val ious categofies of n umbers that we wili encollnter in this text.
The sirnplesl nLlrnbers are the natural nwnbers

I.2.3,.1.5....
Thcse are a slrbset of the integers

4, 3, 2. I.0. 1,2.3.,1....
and these in turn are a subset of the rqtiortul nwnbers, which ue the nunbers forr.ned by
taking ratios of integers (avoiding division by 0). Some examples are

.,J

\2..'
./l

./.
I

"5. v5, t +J1. h, z. cos 19' no| Ia-Ydw{h.r,'"'"{

The rational and irrational numben togethel conrprise whlt is called tbe re al numher system,

and both the r-ational and inational nunbers are called resl numbers.

Because the squarc ol a real number cannot be lregative, the equation

hers no solutions in the real number system. In the eighteenth century mathelDrticiuns reme-
died this problem b), invcnting a Dew number. which they denoted by

and which they definsd to havc the properLy lr - - 1. This, in turn, led to the developnent

*,',',.r,.,, 
r,, r:\r\)\LL\r (circa 500 uc ). A GrceL P),lhagorcan philosopher. According to legeocl. HippasLrs

made his discovery rL sc.t a.d was throlvn o\'erboa by f atic Pythagoreans becnuse his result contrudicted their
doctrine. Thc discovery of Hippasus is one of the lnosl ilndamcnlal in thc crr(irc hjrlory of scie!,cr

COMPLEX NUMBERS

Comole,( n!mbers:
a + /,t, where r = r[J

Real numbersl

Ratonal 2 7ltnro i

2. - 1.0, 1. 2. 3, ,t. ...
Natr.rra nunbers:

l, 2, 3. ,1. 5. ...

Figure A.l
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DIVISION BY ZERO

of the complex numr€ls. which are numbers of the form

olbi
where a and rb are real numbers. Some examples are

2+3i 3-4i 6i :

Observe that every real number a is also a complex number because it can be written as

a:t]-0i
Thus, the real numbers are a subset of the complex numbers. Those complex numbers that
are not teal numbers are called imqginqry lr!.rflrels. Although we will be concerned pri-
marily with rcal numbers in this text, imaginary numbers will arise in the course of solving
equations. For example. the solutions of the quadratic equation

a,r2+br+c:0
whiclr are given by thc quadratic formula

-/'+tE, -44
24

are irnaginary if the quantity Dl - 4ac is negative.

Division by zero is rrot allowed in numerical computations because it leads to mathematical
inconsistencics. For example, if l/0 were assigned some numerical value, say l/0 = p,
then it would follow that 0 p : l, which is incorrect.

Rational and irratjonal nunlbers can be distinguished by their decimal representations. Ra-
DECIMAL REPRESENTATION OF
ffii'iluliB'ii;*"'^'-'' - tional numbcrs have decirnals that are repeati,tg. by which we mean that at some point in

the decimal some fixed block of numbers begins to repeat indefinitely. For example.

1 = l..r:-r.... +: .212127. .. I =.50000..., 5t : .714285'1142857 t4285 . . .

lill,i:ii:;il;li:liiiii.l;;l;:::;:;iii:;i;i Decimals in which zero repeats from some point on are called tenzirmting decimals.For

l:;I;;ll:;l;:1i:ll:1::li,iil;ii.iiiiiiillll brevity, it is usual to omit the repetitive zeros in terminating decimals and for other repeating

:;l::;:;:iijl;l;;:ll:;::i::;;:;il;i;lll;:;;r decimals to write the repeatins disits only once but with a bar over thenr to indicate tho repe,

i:!:lii,i;illli:lil;llliiiiilil,lillli;tiili; tition For cxampre'

.:,.,.;, "i , 'll; 1=s. +-r. rr=3r. j-r3. i 27. ;:7r4r8s
:;li::i:l;:,1::;:;1.:::il;l,i;;;i;liill;,i Irrational numbers have nonrepeating decimals, so we can be cerrain thar rhe decimals

:iial::llllllii:;:::;l:ii^i:;;i:::i;il1;ir; Jz= t.qr+ztzsoz3l3oes . . . and z= 3.r415e26s358e7e3...

do not repeat tiom some point on. Moreover, if we stop the decimal expansion ofan irrational
,', number at some point, we get only an approximation to the number, never an exact value.

;:::1]:,:l::lll;:;ii;;;l;...:::.,;i"' "' " For example, even if we conrpute z to 1000 decimal places, as in Figure A.3, we sti have
only an approximation.

lt r . \ I \ rt rr Beginning mathematics students are sometimes taught to approximate z by ].
Keep in mind, however, that this is only an approximation, since

+:31wai
is a rational number whose decitnal representation begins to differ tiom z in the thid deci-
mal place.
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Rea Numbers, ntervals, and lneq!alites A3

ln 1637 Ren6 Descartes* published a philosophical work callctl L)istourse ttn thc A4atlutcl

oJ Rightlr Corttlucting the Re usoa. In the back ol thrt book was an appendix that the Blit
ish philosopher John Stuart Mill describcd \ "the greatest single step ever madc in the
progless of the exact sciences." In that appendix Ren6 Desciutes linked together rlgebra
and geon'retry. thereby cre ting a new sub.jecl c.\1lc(1 analytic gcozretry, it gave a wiry ol'
describing algebrajc lbrnlulas by geonretric cLtrves and, conversely. geometric curvcs ily
algebraic tbnnulas.

The kcy step in analytic gcometry is to establish a corespondcnce betu'een rcal nunrbers
and points on a line. To do this. choose an) point on the line as rclcrcnce point. and call
it the orugi,r: and then arbitrarily choose one ol thc lwo directions along thc linc to be the
positive direction. and let thc othcr be th e trcgdtiye dircction. It is usurl to mark the positive
direction with an arrowhead. as in Figurc A.4. iilld to take the positive direction to thc righl
u'hcn the line is horirontal. Next. chtxrsc a c0nvenient unit ol r)rcilsrrre. and rep[eser]t cach
positivc number l by the point that is r units llonr the origin in thc posilive direction. caclr
negativc number l' by thc point that is /' units lion the oligin in thc negative direction
t'rom thc origin. and 0 by thc origin itself (l-igurc A.5). The nunrbcl associatcd rvith a poiut
P is called the c(,rrdirrrrrt of P. and the Iirc is called a coordirtate lirre, a reul ftntnber line.
or t real linc .

0rgn
Figurc A.-l

I

1.75 l

INEQUALITY NOTATION

a a l. a . . a . a a. a >
-.1 I 2 -l 0 I I -r I

Figurc 4.5

Thc real nurnbers can be ordered b)' size as lbllows: If/, .r is positive. ther we rvritc eithcr
a<,b(rcad"rrislessthanl1')otb>a(rcnd"Disgreaterth n.r").We\r'rited5/tto
rnear (l < b or u : b- and u'e write tt < lt < c to mean that rr < /r and /-r < t. As one

trave$cs a coordinrte linc in the positive clilcction, the real runrbers incrcl\L'in \i/e. \Ll

on a horizontrl coordinatc linc the inequality a < /.r inplics ll'rirt (/ is b lel't 01 r. aDd the
inequalities q ... b < ( inrply thrt ur is to the lefi of r'. ancl , Iies between a ancl r'. The
meaning of such symbols ts

0::1,<(. (1:b=(. and .r<lt<t<d
should bc clcar For examplc. you should bc ablc to corrllnn that all of the lbllowing are

lrue stalements:

3<ll. 7< l.-5. -12<-r, 555. 0:2:.1.
8>3. 1.5:, 7. -r> 12. 5U 5. 3>0> l> 3

In the tirllowing discussion we will be conccrned with ccrtain sets ofreal numbcrs. so it will
be helpful to review the basic ideas about scts. Recall that a sel is a collection ol objects.
cL\lle(l elements ot me,rDers ol the set. lr this text we $,i11 be conccrned primarily with sets

whose nrembers are numbers or points thirt lic on a line. a planc. ol in three-dilr)ensional

I.(1596 1 65{ )). l)c:icirrrc\- a Frelch lri\l()crirl - $asrheson olil!o\c.Dnicnr ot_licill Hc1rrlduirlcd
Iil'nr dle Unirersi!) of Poiiier\ $ilh r h$,degree rr rlc 10. r\lier.r briel prohc i t() rhc pleasurs ol Plis hc

hcc.rrDe r nlilitary cngiDeer. till\t lir thc Dutch Prinee oi Nrssau and then lin thc Ccrman Duke ol l}r\rrj:r. lt
wils duriDg hi\ scrvjce r\ a \oldicr lh.rt l)esca es begrLn to puffue mathem.rlics scriouslr' .rncl Ll€\'clop his un.rlytic
geonrclry. Alicr the \lars. hc rclumcd to Paris wher. hc slrlkcd dre cill as lrn cercllric. wearing sword in hjs bclt
andapluDrcdhat.Helivcdinlcisure.seldonaroscb.ti)rell^.\r-anddabhlcdinlhe\ludyolhun),rrrfhysi{)1og}.
philosoph!. glacicrs. meteors. tlnd r.rinhous. He e\crN.rll\ nro\ed Io HolhDd. \\hcrc hc tublished lris /)isrrrrrz
o ttu tllthtul..rnd finall)'t,) St\eden qhcrc h. dicd $hilc seniDS a\ tut(n to Queen Christinr. Dcscarte\ is

resardcd rs r geniLrs olthc hrst rDrrgniludc In ddiri(nr Io n rrior conrriblr tioll\ ir) nralhcnurics.rDd philos(, r\. he

is considcrcd. rlong !vith Willi|lD Hxrve!. to tre r lbrLndcr ol moden ph)\nnogy.

REVIEW OF SETS
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INTERVALS

space. We will denote sets by capital letters and elements by lowercase lettet.s. To indicate
that 4 is a member ol'the set A wc will write a € A (read "d belongs to A"), and to indicate
that a is not a member of the set A we will \vrite 4 e A (read "4 does not belong to A").
For example, if A is the se( of positive integers, then 5 e A, but -5 d A. Sometimes sets

arise that have no members (e.g., the set of odd integers that are divisible by 2). A set with
no members is called ai empt! set ot n tlrll sel and is denoted by the symbol Z.

Some sets can be described by listing their members between braces. The order in which
the members are listed does not matter, so, for example, the set A of positive integers that
are less than 6 can be exprcssed as

A - {1.2.-1.4.5} or A = {2.3. 1,5.4}

We can rrlso write A in slt-l)uil.ler notetiu as

A : {r :r isan integerand0 <,r < 6}

which is read "A is the set ol all .r such that r is an integer and 0 < .r < 6." ln general,
to express a sct S in set-builder notation we write ,S : {-t , _ } in which the line is
replaced by a pr-opelty tlrat uniquely defines the set S.

In caiculus we wi1l bc concelned with sels ofreal numbers, c alled intervals, that correspond
to line segments on a coolclinate line. For example, if a < b, then the open interval from a
to D, denoted by (a.,r2). is the line segrnent extending from a to b. erclldin8 the endpoints;
and the closed interval from u to ,lr, denoted by [4. b], is the line segmcnt extending from
tt to b. itclutlitg the endpoints (Figurc ,4.6). These sets can be expressed in set-builder
notation as

(a.D) : {,r'.t <.r < bl

la. bl - {.r : .r :: .{ : /r}

The open inlc^al koma ro b

Thecloied inrenrl from d ro,The open interval ((. r)

ah

ab
The c osed nterva ld.rl

Figure A.6

RE\1.\IiK. Observe that in this notation and in the corresponding Figure ,4.6, parentheses
and open dots rnalk endpoints that are excluded from the inte al, wheleas brackets and
closed dots nark endpoints that are included in the inteNal. Observe also, that in set-builder
notation for the intervals, it is understood that r is a real number. even thoLlgl't it is not stated
explicitly.

As shown in ?rblc l. an interval can include one endpoint and not the other; such
intervals are called ftalf-open (or sornelines half-closed). Moreover, the table also shows
thar it is possible fbr an interval to extend indeiinitely in one or both directions. To indicate
that an interval extcnds indclinitely in the positive direction we write +:o (read "positive
infinity") in place of a right endpoint, and b indicate thar an inrerval extends indelinitely
in the negative dircction we write -:c (read "negative infinity") in place of a left endpoinr.
Intervals that extend bctwccn two real numbers are called JAI ile inlemqls, whereas intervals
that extend indelinitely in one or both directions are called izlnite intervals.

Ith\1,\ltK. By convention. inlinite intervals of the form la. +n) or (-*, hl are considered
to be closed becausc they contain their endpoint, ard intervals ol' the fbrm (a, {rc) and
(-,., b) are considered to be open because they do not include their endpoirrt. The interval
( -. +-). which is the set of all real numbers, has no endpoints and can be regarded as

either open or closed, as convenient. This set is often denoted by the special symbol 1R.

To distinguish verbally between thc open interval (0, +.c) : {,r : ; > 0} and the closed
interval [0. +..) : {-{ : -\' - 0}, we will call r positive ifx > 0 and nonnegative tl
,! - 0. Thus, a positive nunrber must be nonnegative, but a nonnegative number need not
be positive. since it night possibly be 0.
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Trhle 1

INTERVAL
NOTATION

SET

NOTATION
GEOMETRIC

PICTURE

(a, b)

la, bl

[a, b)

(a, bl

( -, Dl

( -. b)

Ld, +-)
(a, +*)

(--, +-)

lx:a<x<b\
{x:a<x<b\

\x:a3x<bl
lx:a<x3bl
{x:t1bl
{x:x<bl

[x:x2a\
{x:x>al
R.

ab

ab

b

b

Finite; open

Finite; closed

Finite; half open

Finite; half-open

Infinite; closed

Infinite; open

Infinite;closed

Infinite; open

Infinite; open and closed

UNIONS AND INTERSECTIONS OF
INTERVALS

ALGEBRAIC PROPERTIES OF
INEQUALITIES

If A and B are sets, thenthe union of A arLd B (denoted by A U B) is the set whose members
belong to A or B (or both), and tJte intersection of A and B (denoted by A n B) is the set
whose members belong to both A and B. For example,

{x:0<;r <5} U{;r:7 <x <7\:{r:0 <r <7}

{r :r < 1}a{x :r > 0J : {.r : 05,r < 1}

{x:;r < 0} a{x: x > 0J:O
or in interval notation,

(0,5)u(1,7):(0,7)
(-co, 1) n 10, foo) : [0, 1)

(-oo, 0) n (0, +*) : Q

- ./ 
t 

_.,

\ -O B)
l 9, *--

The following algebraic propeties of inequalities will be used ftequently in this text. We
omit the proofs.

A.1 THEoREM (Prcperties of Inequalities). Leta, b, c, and d be real numbers.

tat lJa < bandb<c. Ihena<..
(b) Ifa < b, thena + c < b + c enda - c < b - c.

(c) If a < b, then ac < bc when c is positive ond ac > bc when c is negative.

(d.) Ifa < b andc < d, thena + c < b + d.

(e) If a and b are both posttive or both negqtive and a < b, then I/a > l/b.

If we call the direction of an inequality its rerse, then these properties can be paraphrased
as follows:

The sense of an inequality is unchanged if the same number is added to or subtracted

from both sides.

The sense of an inequality is unchanged if both sides are multiplied fu the s ame positiv e

number, but the sense is reversed if both sides are multiplied by the same negatiNe

number

(b)

(c)
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(.d) IneqLralities t ith the same sense carL be qclded.

(e) If botlt sides of (rn inequalitt- have the sone sign, then the sense of the inequalirJ^ is
reversed by taking the reciprocctL of errh side.

RE\,tARK. These properties remain ffue if the symbols < and > iire replaced by : and :
in Theorem A.1.

Example I

STAI{TINC
INEQUAI-ITY

RESULTINC
OPERATION INEQUALITY

2 < 6 Add 7 to both sides. 5 < l3
-2 < 6 Subtract 8 from both sidcs. 10 < 2

2 < 6 Multiply both sides by l. -6 < 18

2 < 6 Multiply both sides by 3. 6 > -18
3 <'l Multiply both sides by 4. 12 < 28

3 <7 Multiply both sides by 4. 12>-28
3 <'7 Take reciprocals ofboth sidcs. i t i
8 < 6 Take reciprocals ofboth sides. * t :
4<5.7<E Add conesponding sides. 3<13

Asolution ol aninequality in an unknown I is a value for x that makes the inequality a true
statement.Forexample,r:lisasolntionoftheinequality.r<5,butx:Tisnot.The
set of all solutions of an inequality is called its solution set.It can be shown that if one does
not multiply both sides of an inequality by zero or an expression involving an unknown,
then the operations in Theorem A.I will not change the solution set of the inequality. The
process of finding the solution set of an inequality is called solling the inequality.

Example 2

Solve3 +7r:2.r 9.

Solutiort, We will use the operations of Theorcm A.1 to isolate x on one side of the in-
ecluality.

3!7x!2x 9 ci""n.

1x a.2x 12 we subtracted 3 from bolh sjdes.

5-t : 12 wesubtracted2r fromborh sides.

t : ? we tuldpLied hoth sides by +.

Because we have not multiplied by any expressions involving the unknown r, the last in-
equality has the same solution set as the first. Thus, the solutioD set is the interval ( *, +l
shown in Figure A.7. {

Example 3

SolveT:2-5x<9.

Soltttion. The given inequality is actually a combination offie two inequalities

112-5x and 2-5r<9
We could solve the two inequaiities separately, then determine the values of jr that satisfy
both by taking the intersection ofthe two solution sets. However, it is possible to work with
the combined inequalities in this problem:

SOLVING INEQUALITIES

,2.
5

Figr re { 7
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7.<2 5x<9 Gven.

5 3 -5.r <7 we subtracted 2 fron each member.

7 we mu.Lrotreo ov I aad ever,ed
-'' ^' - S rnrsrn.eolrheinequal,re,

'7

-: <.X < I
5

Thus,th9SolutionSetiStheinteryal(],_1]showninFigureA.8.<

Example 4

Solve,r2 3,r > 10.

Sohttion, By subtracting 10 from both sides, the inequality can be rewritren as

*2 -3* lor.o
Factoring the left side yields

(.r*2)(,r-5)>0
The values ofx for which r f 2 = 0 or-r - 5:0 are x : -2andx:5. These points

divide the coordinate line into three open intenals,

( *, -2), (-2,5), (5, +oo)

on each ofwhich the product (r * 2)(x - 5) has constant sign. To determine those signs we
will choose an arDitrary point in each interyal at which we will determine the sign; these
arc called, test points. As shown in Figure A.9, we will use -3, 0, and 6 as our test points.
The results can be organized as follows:

For clarily. we rewrote the inequalitjes
with the smallernumberon tbe left.

1
5

I

Figue A.8

SIGN OF
(r+2Xr-5)

INTERVAL TEST POINT AT THE TEST PO]NT

(*,2)

(5, +-)

(-)( ) =+
(+X-) = -
(+X+) = r

-3
0

6

The pattem ofsigns in the intervals is shown on the number line in the middle ofFigure A.9.
We deduce that the solution set is ( .., -2) lJ (5, +co), which is shown at the bottom of
Figure A.9.

-l q ,9 ,
-25 Test po nts

Sien of (r + 2xir - 5)

Solution set for
(i + 2Xr 5)>05

Example 5
2x-5Solve < I
x -2

Solution, We could start by multiplying both sides by x - 2 to eliminate the fraction.
However, this would require us to consider the cases.r -2 > 0andx 2 < 0 separately

0+++-r++0

Figure A.9
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because the sense of the inequality would be reversed in the second case. but not the first.
The following approach is simpler:

< I cilen.

- n w! {,bLr'rred I onr h.rh qiLl6

', br'if .L 0 o rhe i.l'r

< 0 we c,nnbindl krmsr2
rl - n $e. nprPo.
x2

Thequantityr-3iszeroifr-3,andthequantity,r-2iszeroif-r:2.Thesepoints
divide the cooldinate line into three open intervals.

(. -.2). (2,3). (3, +-)
on each of which the quotient (x - 3)/(,r 2) has constant sign. Using 0, 2.5, and 4 as test
points (Figure A.10), we obtain the following results:

2x5
).2

2s5
Ix2

/)r -5r ,r )r

IN'I'I]RVAL

SICN OF(r 3y'(-r 2)
o'' r". -/r.r r"'*r

( -.2)
(2,3)
(3, +-)

0

2.5

I

()/()=+
(-)/(+) =
(+)/(+) = +

The signs ofthe quotient are shown in the middle of Figure A.10. From the ligure we see

that the solution set consists of all real values olr such that 2 < ,rr < 3. This is the interval
(2, 3) shown at the bottom of Figure A.10. <

0 t5 I
23 I Test points l

Figure A.l0

Stgn ot __

I So ltion set for
'E<o

ExERcrsE SET A

l. Among the terms i eger, ratiottul.
ones apply to the given numbel'l
(a) J tut o

(d) 0.25 (e) JtA

and irnrtiotul. which

(.) ?
g) 21t2

(s) 0.020202. . . (h) 7.000...

2, Which ol the terms inlpig?r. rafion(l. 
^nd 

iffafkna[ app\y
to the given number?
(a) 0.3l3l13lll3llL1... (b) 0.729999...
(c) 0.316237623162 . . . (d) 171

3. The repeating decimal 0.1 37 I 37137. . . can be expressed as

a ratio of integers by writing

x - 0.131131131 ...
1000-t - 137.137137i37...

and subtracting to obtain 999-r : 137 or r - #. Use this
idea, whele needecl, to express the lbllowing decimals as

ratios of integers.
(a) 0.123123123 . . .

(c) 38.07818181 ...
(b) t2.'/111 ...
(d) 0.4296000. . .



4. Show that lhe repeating decimal 0.99999. . . represents the

number l- Since 1.000...is also a decimal representation
ol l, this problem shows thrt a real number can have trvo
diflerent decimal representations. rlirt.' Use the technique
ol Exercise 3.]

5. The Rhind Papyrus. which is a tiagment ofEgyptian natl]-
emalical writin-e fiom about 1650 B.c.. is one of the oldest
known examples of w tten mathemiltics. It is stated in the
papyrus that the arel A of a circle js related to its dianleter
Dbv

A - (; r))-

(a) What lpploxirnalion to n were ihe Egyptians using'l
(b) Use a calculating utility to determine if this approxi

mation is better or worse than the appioximalion oi +.
6. llle t,'ll,rwtn! rrc:ll t*muU..l'ptor'rrrrnr's ro '.

333
Adrirn AthonazooD- c. l5El

106

355
Ts' Chnne Chiand othcN

lll
/ -\6J / t/ + t5./5 \.l-l'..,,.."

)5 I 
" 

, rq /i ,-- \/|'-v-./
22

A.chi.redes
'7

223
Archimedes

1l

(a) Use a calculating Lltility to order these approximalions
according to size.

(b) Which of these approximations is closest to but larler'
than i?

(c) Which ofthese approxirnations is closest to but smaller

than r?
(cl) Which of these approximations is most accurate'l

7, In each line of the table in the accompanying figure, check

the blocks, ifany. thatdescribe a valid relationship between

the real numbers.T and D. The llrst line is already completed
as an illustration.

a b a<b n:-b tt>P oaq a b

16,/"/

6l
t5
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In each line of the table in the accompanying ngure. check
the blocks. il any. that describe ir valid relationship between
the ieal numbers ar. lr, and ..

', b , i<1 . a-l'-, ,,. L)!. n -n\.

8.

t0l
211
Lll
::.1

075 r15 r15

Figrrc Ex 8

9. Which ol the lollowing are always corect il zr 5 ,?
(b) a= b

(d) 6.r < 6D

(l) d' 
=.rlb

11.

to A'l
(a) {0. I, 2. 3} (b) {3.2. r}

(a)a-3-b 3

(c) 3 a:3 D

(e) i <ab

10. Which oi the lbllowing ar,r always conect il'4 : b and

lb) a-2c <b 2d

11. For rvhat values of a are the following inequalities valid'l
(t)n<a (b)a<o

c 1d!
(a)d+2(=h+2tl
(c)a-2c>b-2d

lfrr I b and l, : a, what can you s.ry about r./ and /r?

(a) If a < l' is true. does it fbllow that 4 5 D must aLso be

true?
(b) Ifd : D is true, does it follow that rl < /2 must also be

trueJ

Il1 each part. list the elements in the set.
(a) {r : r: 5r :0}
(b) {.t : -r is an integer satislying 2<,r<3}
In each paft. express tl'le set in the notation {.r : }.
(a) 11.3.5.7.9....]
(b) the set of even integers
(c) the sel ol jrrational numbers
(d) {7.8. e, l0}

Let A : {1.2.31. Which of the following sets are equal

12.

13.

t5.

16.

rltr
Figurc Ex l

(c) {.r : (.r - 3)(.rr - 3.! + 2) - 0}

L1 the accornpanying figure, lct

S - the set of points inside the square

/ : lhe set of poiils inside the triangle

C - the set of poir'rls inside the cilcle

ancl let a. b, and c be the points shown. Answer the follow-
ing as truc or false.

17.
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(a)rcC
(c\ a 4T
(e) De landbe C

(g)c€Tandc+C

(b) 7cs
(d)aEs
(f) a €C ota eT

37. (r - 4)(.r + 2) > 0

39. -r2 9-{ + 20 : 0

23
41. , <

43. ,r-r x2 t-2>0

38. (r-3)(r+4)<0
40. 2 3r +x2 - 0

12. 1-3
r+1-n 2

44. x) 3r+2::0

Figure Ex- l7

45, u/r2 * -t - U 46. .|- ::
Vx-1

ln Exercises 45 and 46, flnd all values of r for which the
given expression yields a real number.

18. List ail subsets of
(t) ldt, a2. a1l

19. In each part, sketch on a coordinate line all values of .t
that satisfy the stated condition.

(b) -r > 3

(e)il<9

47. Fahrenheit and Celsius temperatures are related by the fbr-
muta C : i(l 32). lfrhe temperature in degrees Celsius
ranges over the interval 25 

= 
C : 40 on a ceftain day, what

is the temperaturc tange in degrees Fal'uenheit that day?

48. Every integer is eiihel even or odd. The even integers are
those that are divisible by 2, so n is even if and only if
n = 2t fbr some integel ,t. Each odd integer is one unit
larger than ar even integer, so r is odd if and only if
n - 2k + 1 lbr some integer ft. Show:
(a) If ,t is even, then so is n2

(b) If n is odd, then so is n2.

49. Prove the following results about sums of rational and
irrational numbers:
(a) rational + rational : rational
(b) rational + irrational: inational.

50. Prove the fbllowing results about products of rational and
irrationrl nrlmbels:
(a) rational . rational : rational
(b) rational . inational : irrational (provided the rarional

thctor is nonTero).

51. Show that the sum or product of two irational numbem can
be rational or iffational.

52. Classify the following as rational or inational and justify
your conclusion.
(a) 3 +77

rc) "4v5

@14
(.cl) Jt

(See Exercises ,19 and 50.)

53. Prove: The avcrage of two rational numbers is a rational
number, bLlt the average of two irrational numbers cal be
rational or irrational.

54. Can a rational number satisfy 10' : 3?

55. Solve: 8rr - 4ir2 2.]r + I < 0.

56. Solve: 12rr 2Ox2 7 1lx 12.
57. Prove: Il4. r, c, and d are positive nulbers such that a <,

and c < d. then ric < bd. (This result gives conditions
under which inequalities can be "multiplied together.")

58. Is the number represented by the decimal

0. 10100100010000r 000001 . . .

rrtional or inltionrll trpl.rin )orr rea'oning.

(:b) ta.

20. ln pans (a)-(d), sketch on a coordirlate line all values ofr,
if any, that satisfy the stated conditions.

(a) .{:4
(d) x'] :9

(a) r>4
(b) jv:2

23.3r-2<8
25.4+5-r:3ir-7
27. 314 2x <7

29. t .4
-t3
3r + l31. < It -2

4tt < I

2.t
35. -r2 > 9

(c) l:r:7
(f) ir2 > 9

and r<8
or .r>5

(c) -r> 2 and ,r>3
(d) r :5 and r '-'l

21. Express irl jnterval notation.
(a) {x :r2 :'1} (b) {.v :,r2 > 4J

22. In each pal1, sketch the set on a coordinate line.
(a) I 3, 2l u ll, al

(c) (-4,0) u (-5. l)
(e) ( 2,4)n(0,5l

(b) t4.61 u 18, lll
(d) t2, ,1) u (4,7)
(f) 11.2.3).O.4,\5)

(s) (-a, - I ) u (-3. +z) (h) (--, 5) . 10, +6)

In Ererciie\ 2.-44. sol\e rl"e l)equllil) anLl .kelch the.olL
tion on a coordinate line.

24. \x+6; 14

26. 2.t - | > I lr i 9

28. 213 8-r2-11
30.4>-28r

lt 332.' --1
4+r

3
34. _ <2,r 5-
36, .r2 < 5



APPENDIX

Absolute Value

ABSOLUTE VALUE

RELATIONSHIP BETIIVEEN SQUARE
ROOTS AND ABSOLUTE VALUES

Il.l I)t,l t\llto\. The absolute value or magnitude of areal numberrt is denoted by

lcl and is defined by

( n if a>0
l,,l : I

Ia if rr.{)

Example 1

I - \ 71 - 7

sincc5>o snre-'!16

Note that the ellect of taking the absolute value of number is to strip away the minus

sign ifthe number is negative and to leave the number unchanged if it is nonnegativc.

Example 2

Solve I,t - 3l :4.

Solution. Depending on whether,r - 3 is positive or negative, the equittion -r - 3l : 'l
can be written as

.r 3=zl or r 3=-4
SolVingthesetwocquationsgives-{:7and.t=_l'<

Example 3

Solve l3-( - 2l : l5,t + 41.

S0lutiott. Because two numbers with the same absolute value are either equal or ditler in

sign, the given equation will be satisfied if either

3x-2=5x +4 or 3,r 2= -(5;r+4)
Solving the first equation yields -r : -3 and solving the second yicltls.t = -J: thus. the

giVenequationhastheso1utions-t=_3and'r:_1.<

Recalf from algebra that a number is called a square root of a if its square is a. Recall also

that every positive real number has two squtrre roots, orle positive and ole negative; the

po:ilrve square root is denoted by y[ rnd the negatir e squlre root b) -.r[. For example.

ihc positive square root of 9 is yG = 3, and the negative square root of 9 is .,4 : -3.

0 =0
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ItliNlARK. Readers who may have been taught to write J9 : +3 should stop doing so,

since it is incorrect.

It is a common eror to wdte 
"Q,2 - o. Ahhough this equality is correct when a is

nonnegative, it is false for negative n. For example, if a : -4, then

J", - Je), : Jto: + 7 o

A result that is correct for all a is given in the following theorem.

Il.2 THEoREN,I. For any real number a.

Proof. Since a2 = (la)2 = (-a)2, the numbers +4 and -a are square roots of a2, If
a Z 0, then +rl is the nonnegative square root ofo2, and ifc < 0, then a is the nonnega-
tive square root of ri). Since r,/a2 denotes the nonnegative square root of a2, it follows that

Ja\ - +a

Jo' : -o

That i,s, Jo? : a .

0

0

I

if aZ
if a<

PROPERTIES OF ABSOLUIE VALUE i li.3 rneont'v. Ifa and b arc real numbers, then

' kl | -al - lal A numhe, Jnd ,r. neFlrvc have the :.,ne.hv,rure vrruc.

We will prove parts (a) and (b) on]y.

ProoJ @). From Theorem B.2,

|-al:1l-ny - JF:kl
ProoJ @). From Theorem B.2 and a basic property of square roots,

laul: J@D, : J*az = "E'fiF - l"llt'l

IIEi\,IARK. In part (c) of Theorem B.3 we did not explicitly state that, I 0, but this must
be so since division by zero is not allowed. Whenever divisions occur in this text, it will be

assumed that the denominator is not zero, even if we do not mention it explicitly.

The result in pan (b) of Theorem B.3 can be extended to three or more factors. More
precisely, for any z real numbers, a1, a2, . . . , 4,,, it follows that

1a1a2... a,l : la1lla2l... la,,l

In the special case where at, a2,. . . , a,, have the same value, a, it follows from (1) that

la' : lal"

(l)

: (b) labl : lallbl rhe bsolute value or a produc( is he prduct of rh€ absolure varues.

tl 
@ l" /t l: la l/lrl rhe absorure uruc ora ratio is the ratio of rhc absoture vdues.

\2)



GEOMETRIC INTERPRETATION OF
ABSOLUTE VALUE

l*u ,. -l
(a)

l*a_b-
(.b)

Figure B.l

INEQUALITIES WTH ABSOLUTE
VALUES

B.4 THEORENI (Distance Formula).

coordinates a and b, respective\-.
If A and B are points on

then tlle distance d b?.th,ccn. A

Absolute Value Al3

The notion of absolute value arises naturally in distance problems. For example, suppose
that A and B are points on a coordinate line that have coordinates zr and b, respectively.
Depending on the relative positions ofthe points, the distance d between them willbe b a
ora b(FigureB.l). In either case, the distaoce can be written asd = lD-a,sowehave
the following rcsult.

This theorem provides useful geometric interpretations of some common mathematical
expressions:

CEOMETRIC INTERPRETATION ON A COORDINA'I'E LINE

lx al

lx+a
lrl

The distance betrveen;r and a

The distance between r and d (since li + a = l-t (-d)l)
The distance between r and the orjglo (since lrl = lx 0 )

Inequalities ofthe form lx -a <&andlx a > ,t arise so often that we have summalized
the key facts about them in Table l.

Table I

INEQUALITY GEOMETRIC
(,t > 0) TNTTRPRETATToN

ALTERNAT]VD FORMS

OF'I'HE INEQUALITY

lx-al<k _ l*r '" 
t'=]. t '"it'-']_-r is within I

units of a. a-k<r<a+k

lr al >k r is nore than
,t units away
from d.

_l-r,nit.']*l 
,nit.=] 

" _
x a< kolx-a>k
x<a kor x>a+k

Rhl\.{ARK. The statements in this table remain true if < is replaced by : and > by >, and
if the open dots are replaced by closed dots in the illustrations.

Example 4
Solve

(a) -r 3l <4 (b) x*41 >2 1lc) >5
2x-31

Solution (a), The inequality r 3 < 4 can be rewritten as

-4<r-3<4
Adding 3 throughout yields

-l < x .< '/

which can be written in interyal notation as (- I , 7). Observe that this solLrtion set consists
of all r that are within 4 units of 3 on a number line (Fjgure B.2). which is consistent with
Table I .Figure 8.2
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AN INEQUALITY FROM CALCULUS

1)q525
Figurc B.4

o. r ol : u._.

Soltttiott (b). The irequality -r 4 4 2 2 will be satisfied if
x+4=-2 or jr+4>2

Solving for :r in the two cases yields

-Y: -6 or i:: 2

uhich can be expressed in inte|ral n.-,talion a'

1,.c, _61 u | 2, +-)
Observe that the solution set consists of all i that are lrt least 2 units away from 4 on a
number line (Figure B.3), which is consistent with Table I and the remark that tbliows it.

Sohttio n (c). ObseNe lirst that,r : ] results in a division by zero, so this value of -r cannot
be in the solution set. Putting this aside for the moment, we will begin by taking reciprocals
on both sides and reversing the sense of the inequality in accordance with Theorem A.l(d)
of Appendix A;then wewill useTheoremB.3 to rewrite the inequality lll2x -31 >5in
a more familiar form:

l2x - 3l <{
2r lt =l rheoremB 3(r)

I ;t . $ wcmnltiPlicdbollrsidesbyl/21:1/2.

-*.t-j=* rdbrer

] = ;r = ! wc added r/2 rhroughout.

As noted earlier, we must eliminate .rr : ] to avoid a dilisiol by zero, so the solulion sel is

7t]R-<Y<; Or ;<r<1
whichcanbeexpreSSedinintena1notationas(].i)u(],t)(SeeFigureB.4')<

One of the most important inequalities in calculus is

0<.r:-al <6 (3)

where d (Greek "delta") is a positive real number. This is equivalent to the two inequalities

0<,r a and l,r e <6
the first of which is satisfied by all x except -r : a, and the second of which is satisfled by
all r that are within 6 units of a on a coordinate line. Combining these two restrictions, we

conclude that the solution set of (3) consists of all x in the interval (.i 6, 12 + 6) except
r : a (Figure 8.5). Stated another way, the solution set of (3) is

(a d, a) U (a, a * 6) (,1)

It is rrrl generally true that 14 + b : lal { lDl. For example, if a : I and } : - I, then

Ja + bl :0, whereas a1 + bl : 2. It is true, however, that the absolute volLte of (L sum

is always less than or equal to the swil of the absolute vdaes. This is the content of the
following useful theorem, called the trxangle inequality.

THE TRIANGLE INEQUALIry

i 8.5 THEoREM (Tia sk I equaw). If a and b are aq, real numbers, then
i

(5) l' la-l b < a +lb

Praa/. Observe lirst that d satislles the inequality

a :LI 
= 

lal
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because either a : lal or a - a , depending on the sign of.r. The conesponding inequal-
ity for , is

b)<b< bl

Adding the two inequalities we obtain

-(al + 1,l) 
=a+b'(ct + b) (6)

Letus now consider the oases4 +, - 0 and a+b < 0 separately. In the lirst case,
q+ b = a+b, so the dght-hand inequality in (6) yields the rriangle inequality (5). In the
second case, /7 + /, : a + ,1, so the left hand inequality in (6) can be written as

-(al + Dl)< a+b
which yielcls the triangle inequality (5) on multiplying by 1. I

RIIUARK. The name "triangle inequality" arises from a geometric interpretation of the
inequality that can be made when a and, ale complex numbers. A more detailed explanation
is outside the scope of this text.

ExERcrsE SET B

1. Compute ,r if
(a) x:7
(c)r-t2

@ t: tD
(d) .r : -k2.

2. Rewrite r/(.n 6)2 without using a square root or absolute
r a lue .ipn.

ln Exercises 3-10, llnd al1 values of -t for which the given
statement is true.

3. r-31 :3 r 4. lri2=ri2
5. I' e -.1 o 6. lxr-5,:,r) 5.i

7. Jr' 2r =rJr 2 8. o 2r -21' l
q. vi\+5r=r-5 tO. u4r' :l-:-,t'

11. Verify Jal - a fora-'l anda: -7.
12. Verify the inequalities la :. a < la fbr a : 2 and for

a - 5.

13. Let A and B be points with coordinates a and D. In each

part find the distance between A and B.
(b) a:2. b:3
G) a:rt, b: 3

(e) J ll.h- / (l),r:0. D--5
14. Is the equality \,/a1 : a2 valid for all values of a'i Explain.

15. Let A and B be poil1ts with coordinates a and r. In each
paft, use the given infbrDation to find ,.
(a) .1 : -3, B is to the lelt of A, and lb a :6.
(b) a- 2, Bistotherightof A.and b - al:9.
(c) a:5, b-a:7,andb>O.

16. Let E and F be points with coordinates e and I. In each
part, determine whethei I] is to the left or to the right of F
on a coordinate line.
(a) f - e:4
(c) f e:6

' In Exercises 17 24, solve for r.

l3*2r :11

l4x*5:18;r 3

2x 7:lx+l
r-l
r +4

In Exercises 25 36, solve for x and express the solution in
ienns of intervals.

11. l6t 2 :7
19. l6x 7:l3t2xl
21. l9r 11:r

x+523. :62-.i

l;i6 <3

i3-r * i <4

15 2.r:4
I >5

3r * 1l

2_<l
.r + 3l

26. 11 -xl=5
29. x*21 >l

27.

30.

32. l1x-ll >3 33.

35. 3

2xl

12x 3:6
11, r > )

I <2r-l

18.

20.

22.

24.

25.

24.

34.

(a) a:9. b:1
(c) a: -8, b:6

36.

37.

38.

39.

(b) ? f -a
(d) e- J:-'t

'1.

,l

For which values of:r i, ,/(tt st + 6)2 = 12 5-r + 6?

Solve3l r-2 37 fotx.
Solve lr 3'? 4l-r 3:12 1brr. rlinr; Beginby let-
tingll : l.r 3l.l

40. Ve.ify the triangle inequality la I b ! la * bl (Theorem

B.5) for
(a\ a=3, b:4 (b) a--2. b-6
(c) a: 1. b: 8 (d) a : -1, b :4.

41, Prove: a b :: a +lbl.
42. Prove: a - bl:. a bl.

zl3. Prove: lal - lrl I < la - b . fHint: lJseBxercise 42.]



RECTANGULAR COORDINATE
SYSTEMS

ffi
APPENDIX fu
and Lines

Just as points on a coordinate iine can be associated with real numbers, so poilts in a plane
can be associated with pairs ofreal numbers by introducing a r e ctantgular coordinate s!stern
(also ca1led a Cartesian coordinate syslen). A rectangular coordinate system consists of
two perpendicular coordinate lines, ca1\ed coo liwte ux€s. that intersect at their origins.
Usually, bul not always, onc axis is horizontal with its positive direction to the right, and
the other is vertical with its positive direction up. The intersection of the axes is called the
ongln of the coordinate syslem.

It is common to cirll the horizontal axis the r-a.xr'J and the vertical axis the y-aJt.!, in
which case the plane and the axes together are relened to as the.rJ-plan€ (Figure C.1).
Although labeling the axes with the letters -r and -t, is common. other letters may be more
appropiate in specillc applications. Figurc C.2 shows a riu-piane and a ts-plane-the first
letter in the name of the plane always let'ers to the horizontal axis and the second to the
vertical axis.

Every point P in a coordinate plane can be associated with a unique ordered pair of real
numbers by drawing two lines through P. one perpendicular to the,r-axis and the other
peryendiculnr to the 1 -axis (Figure C.3). Ifthe first line intersects the r-axis at the point with
coordinate d and the second line intersects the )'-axis at the point with coordinate D, then we
associltte the ordered pair of real numbers (a, D) with the point P. The number a is called
the x-coordinste ot aDscjssa of P and the number, is called they-coordinqte or ord urte ol
P. We will say that P has coordinstes (.7, ,) and write P (a. b) when we want to emphasize
that the coordinates of P arc (d, b). We can also reverse the above procedure and ilnd the
point P associated with tbe coordinates (ri. D) by locating the intersection of the dashed

Figu e C.1 Fie u re C 2

COORDINATES
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)ines in Figure C.3. Because of this one-to-one correspondence between coordinates and
points, we will sometirnes blur the distinction between points and ordered pairs of numbers
by hlking about the poii?t (a, 1r).

RFNi,\ltK. Recall that the symbol (.r,lr) also denotes the open interval between a and D:

the appropfiate interpretation will usualiy be clear fiom the context.

ln a rectangular coordinate system the coordinate axes divide the piane into four regions
called quadrants.These are numbered counterclockwise with romlrn numerals as shown in
Figure C.,1. As indicated in that flgure, it is easy to determine the quadmnt in which a given
point lies from the signs of its coordinates: a point with two positive coordinates (+, +)
lies in Quadrant I, a point with a negative r-coordinate and a positive ),-coordinate ( . +)
lies in Quadrant II, and so fbrth. Points with a zero r-coordinate lie on the -r-axjs and points
$ rth r zero r-coordinate lie,rn the r-rrir.

To plot a point P(.r, b) means to locate the point with coordinates (d, D) in a coordinate
plane. For example, in Figure C.5 we have plotted tl're points

P(2,5). Q(. 4,3), R(-5. -2), and S(4. 3)

Obserye how the signs of the coordinates identify the quadrants in which the points 1ie.

6

5

I
O(-1,3) r 3

r P(2, s)

7-6-5-'r-3-2 -r 
I

i:
R(-5. -2) 3

1

5

Fjgure C.5

.1 567

t s(+. :)

GRAPHS
The correspondence between points in a plane and ordered pairs of real numbers makes il
possible to visualize algebraic equations as geomet c curves, and, coN'ersely, to represent
geometric curves by algebraic equations. To understand how this is done, suppose thal we

have an 11-coordinate system and an equation involving two variables r and 1, say

6r-4r:10, f = v4, t:r,i+1. or' -.:1y2:1
We deline a solution of such an equation to be any ordered pair of real numbers (d, r)
whose coordinates satisfy the ealuation when we substitute r = 4 and ) : ,. For example,
the ordered paf (3, 2) is a solution of the equation 61 4-r' = 10, since the equation is

satisfied by -r = 3 and _r' : 2 (verify). However, the ordered pat (2,0) is not a solution of
this equation. sirca the equation is not satisfled by,{ - 2 and .!.. - 0 (verify).

The following definition makes the association between equations in i and y and curves
in the r)-plane.

:C.1 DEFINI ON. Thesetofall solutions of anequationin.r and t, is called the sola-
I liofl Jel of the equation, and lhe set of all points in the ry-plane whose coordinates are ]

rmemhersofthesolrriionseTiscrlledtheg/dplroftheequation. 
I

I r coordinate f

Fjgure C.4
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2: 4 ( 2,4)
31 9 (3.9)

Figure C.6

One ofthe main themes in calculus is to identify rhe exact shape of a gmph. Point plotting
is one approach to obtainjng a graph, but this method has limitations, as discussed in the
following example.

Example I
Sketch the graph of y' = -r2.

Solutiott. The solution set of the equation has infinitely many members, snce we can
substitute an arbitrary value for ,r into the dght side of l' = ,r2 and compute the associated

) to obtain a point (r, )) in the solution set. The fact that the solurior'r set has infinitely
many members means that we canDot obtain the ezlirc graplt of 1 : 12 by point plotting.
However, we can obtatl an apprcxinlation to the graph by plotting some sarnple nembers
ofthe solution set and connecting them with a smooth curve, as in Figure C.6. The problem
witlr this method is that we cannot be sure how the graph behaves between the plotted
points. For example, the curyes in Figure C.7 also pass through the plotted points and hence
are legitimate candidates for the graph in the absence of additional informatiorl. Moreover,
even if we use a graphing calculator or a computer program to generate the graph, as in
Figure C.8, we have the same problem because graphing technology uses point-plotting
algorithms to generate graphs. lndeed, in Section l.3 of the text we see examples where
graphjngtechnologycanbefooledintoproducinggross1yinaccuIat9gmphS.<

In spite of its limitations, point plotting by hand or with the help of graphing technology
can be useful, so here are two more examples.

Example 2

Sketch the graph of 1 : 16.

Sohttiort. If ,r < 0, then f is an imaginary number. Thus, we can only plot points for
which r > 0. since points jn the,ry plane have real coordinates. Figure C.9 shows the graph
obtajn9dbypointplottingandagIaphobtainedwithagIaphingca1cu1abr.<

Example 3

Sketch the graph of ),2 2y - r : 0.

Solutiott. To calculate coordinates of points on the graph of an equation in r and y. it is
desirable to have 1 expressed in terms of r or ofr in tems of -y. In this case it is easier to

[ 4,,1] x 10. 101

rscl = I, rrscl = 2

Fisnre C 8

Firur( C.7

t, , j

"'.,, i ,,",li

- , - . - ... . . .- : : ,.. l- . :i- --. - - -- - - .
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Figure C.9
10, 5l x t0, 4l

rscl = 1. )Scl = l

express r in terms of y, so we rewrite the equation as

x-y' 2y

Members of the solution set can be obtained from this equation by substituting arbitmry
values for y in the dght side and computing the associated values of,r (Figure C.10). <

REMARK. Most graphing calculators and computer graphing programs require that y be
expressed in tems of r to generate a graph in the.x)-plane. In Section 1.7 we discuss a

method for circumventing this restdction.

Example 4

Sketch the graph of y : 1/.r.

Solution. Because 1/;r is undefined at r : 0, we can only plot points for which r + 0.

Thisforcesabreak,ca|ledadiscontinuiD],inthegraphat-{=0(FigureC.11).<

1
3 3 (+,t
1
2 2 G.r)
i (1. 1)

2 1
2 Q.i)

3 1
3 G,+)

L
3 -3 c+, ,
1
2 -2 (i' ,)

-t -1 (1 1)

_-!
2

/ r -l\
3

1
3 C,, l)

Fisure C.l0

(3, !3) = (3, 1.7)

Figure C.11
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INTERCEPTS

SLOPE

Example 5

Find all iDtercepts of

(a) 3.r + 2-t = 6 {b; .r = 1,2 - 2r, (c) r = I /,t

Points rvhere a graph intersects the coordinate axes are ofspecial intercst in many problems.
As illustrated in Figure C.12, intersections of a graph with the ,r-axis have the form (a, 0)
and intersections with the ,]'axis have the forrn (0, b). The number a is called an x-intercept
of the graph and the numbef h a !-intercept .

Sohttiott (a), To fi nd the x-intercepts we set -] : 0 and solve fbr r:

3-r =6 or r:2
To find the _r'-interceprs we set ,r : 0 and solve for l:

2r':6 or r':-l
As we will see later, the graph of 3.r a 2 r. : 6 is the line shown in Figure C.13.

Soltttion (b\. To find the .r-intercepts, set r' : 0 and solve lor.r:

r:0
Thus, ,r = 0 is the only -{-intercept. To find the ,r intercepts, set x = 0 and solve for -r:

-v2 2:' : o

.](.r'-2)=0
So the ,t'intercepts are 1' :0 and,l : 2. The graph is shown in Figure C.10.

Solrttion (c). To find the.(-intercepts, set,). - 0:

I
- -0

This equation has no solutions (why'l), so there are no;r-intercepts, To lind )-intercepts we
wouldsetx:0andsoLvefor.v.But,substitutingr:0leadstoadivisionbyzero.which
is not allowed. so there are no ,1"-intercepts either. The graph of the equation is shown in
Figure C.l l.

To obtain equations of lines we will first need to discuss the concept of r1ope, which is a
numerical measure of the "steepness" of a line.

Consider a parlicle moving lett to right along a nonvertical line from a point Pr (xr, 1.r )

to a point P2(r2, _r'2). As show r in Figure C.14, the particle moves 12 - ),r units in the

),-direction as it travels,:r1 - x1 units in the positive -r-direction. The vertical change 12 -.y1
is called the rlse. and the horizontal change -r2 - rrl the rrar. The ratio ofthe ise over the run
can be used to rneasure the steepness of the line, which leads us to the following definition.

C.2 DEFINT oN. If Pl(,r1..r'1) and P2("r2.,)l) a.e points on a nonvenical line, then
the slope m of the line is defined by

zr : tlse I: - ]t
mn -[2 - .{l

(l)

Figure C.l2

Fieure C-ll

Figure C.1.1
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Coordinate P anes and Lines A2l

REVARK. Observe that this definition does not apply to vertical lines. For such lines we
have ;r2 : 1r (a zero run), which means that the formula for m involves a division by zero.
For this reason, the slope of a vertical line is undefined, which is sometimes described
informally by stating that a vertical line has infinite slope.

When calculating the slope of a nonvertical line from Formula (1), it does not matter
which two points on the line you usc for the calculation, as long as they are distinct. This
can be proved using Figure C.15 and similar trialgles to show that

l'2-)r ri yl

x2 - rl xi x't

Moreover, once you choose two points to use for the calculation, it does not matter which
one you call Pj and which one you call P2 because reyersing the points reve$es the sign of
both the nunerator and denominator of (1) and hence has no effect on the rario.

Example 6

In each part find the slope of the line through

(a) the points (6,2) and (9, 8)

(b) the poinrs (2,9) and (4, 3)

(c) the points (-2.7) and (5,7).

Solutiort,
82

m=2
Trave ng eft to r ght, a poinl on the
line rises two !n ts for each unit it
moves in the positive r direct on.

Figure C.l6

39
(.b) n: o_r-

6

2

6

3 -2

Example 7

Figure C.16 shows the three lines determined by the points in Example 6 and explains the
significance of their slopes.

Pr(2. a)

2

6

P,(4,3)

: m=-3 
l

I Trave ing eft to rlght, a point on the
line falls ihree unrts for each Lrn t t

moves in the posit ve 1-drrect on.

As illustrated in this example, the slope of a line can be positive, negative, or zefo. A
positive slope means that the line is inclined upward to the dght, a negative slope means that
the line is inclined downward to the right, and a zero slope means that the line is horizoDtal.

Pr(6.2)

i .=o l

i Trave ng eft to r ght, a po nt on l

Ithe ine neither rises nor falls. lll
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PARALLEL AND PERPENDICULAR
LINES

An unde{ined slope means that the linr: is vertical. Figure C.17 shows various lines through
the origin with their slopes.

The following theorem shows how slopes can be used to tell whether two lines are parallel
or perpendicular.

(b)

r c.3
: (u)

.Rt\4.

Two nonyertical lines with slopes m 1 and n2 ure paralLeL il and onLy if they haw I

the utme slope, that is, 
I

mt =tn\ 
|

Twct rcnve rtical lines with slopes m\ and nt2 are perpendicular iJ and onty if the )1

lproduct oftlrcir slopes i.\ 1, thdt is, 
l

n1m2 - -l
l

This rekttionship ccLn aLso be etpressedas m1 - lfm2orm2- llmt,which':
statesthatnonvefiiccrllhesareperpendicularifandonLyiftheirslopesorenegorive'
reciprocals of one a"ill:"|: __ ___ -:

A complete proof of this theorern is a little tedious, but it is not hard to motiyate the results
informaily. Let us starl with part (.r.

Suppose that Z 1 and L2 are nonvertical parallel lines with slopes rz 1 and z2, respectively.
If the lines are parallel to the jr-axis, then n1 : t112-0,and we are done. Ifthey are not
parallel to the r-axis, then both lines intersect the r-axis; and 1br simplicity assume that
they are oriented as in Figure C.18a. On each line choose the point whose rul relative to
the point of intersection with the x axis is 1 . On line Z 1 the corresponding rise will be ,? I

and on 12 it will be /r2. However, because the lines are parallel, the shaded tdangles in the
figure mustbe congruent (verify), so m I : n2. Conve$ely, the condjtion r?t : m2 can be
used to show that the shaded tiangles are congruent, from which it follows that the ljnes
make the same angle with the t-axis and hence are parallel (verify).

L1

ligurc C.18

Now suppose that Zt and Z2 are nonyefiical perpendicular lines witl] slopes it1 and nr2,
respectively; and for simplicity assume that they are oriented as in Figure C.180. On line
Zt choose the point whose run relative to the point of inte$ection ofthe lines is 1, in which
case the conesponding rise will be m 1 ; and on line L2 choose the point whose rise relative
to the point of intersection is -1, in which case the corresponding run will be llm2.
Because the lines ale perpendicular, the shaded trianglcs in the figure must be congment
(verify), and hence the ratios of corresponding sides of the trialgles nust be equal. Taking
into account thal for line 12 the vertical side of the triangle has length I and the horizontal
side has length I f m.2 $trrce m2 is negative), the congruelce of the triangles implies that

3

Figure C 17
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mt/l = ( I/mr)/1ot mjml - l. Conversely, the condition z1 = 1/ntz can be used
to show that the shaded triangies arc congruent, from which it can be deduced that the lines
are perpendicular (verify).

Example 8

Use slopes to show that the points A(1,3), B(3,7), and C(7,5) are vertices of a right
triangle.

Solutiott. We will show that the line through A and B is pcrpendicular to the line through
-B and C. The slopes of these lines ale

5-'7 Iand n. -- '7-3 2

Slope of rhe line
throulh B and C

13
mr : 

-:2
'31

LINES PARALLEL TO THE
COORDINATE AXES

Lvery pornt on Lt nas an
r r-.oord nate.f, and

every poirt on L, has a

r coordinate of ,.

Figure C.20

LINES DETERMINED BY POINT AND
SLOPE

Since nlrz' : l,thelinethroughAandBisperpendiculartothelinethroughBandC;
thus, ABC is a right triangle (Figure C.19).

We now turn to the problem of finding equatiors of lites tbat satisfy specified conditions.
The simplest cases are lines parallel to the coordinate axes. A line parallel to the y axis
intersects the,rr-axis at some poitrt (.], 0). This line consists precisely of those points whose
x-coordinate is equal to n (Figure C.20). Similally, a line palallel to the r-axis intersecls the
y-axis at some point (0, D). This line consists precisely of those points whose 1'-coordinate
is equal to, (Figure C.20). Thus, we have the following theorem.

C.4 THEOREN,I. Theverticallinethrough(a,0)(mdtllehoriz.ontallinerhrouglt(0.b):
otc tppt.\e41ed. respectir,lt. h\ tlh (qu, iot1\

.x-o nnd y-b

Example 9

The graph of ,r : 5 is the vertical line through ( 5, 0), and the graph of ), : 7 js the
horizontal line through (0.7) (Figure C.2l). {

There are inilnitely many lines that pass through any given point in the plane. However, if
we specify the slope of the line in addition to a poil]t on it, then the point and tha slope
together determine a unique line (Figure C.22).

Let us now consider how to find an equation of a nonvertical line l, that passes through
a point P1 (-r1 , ,y1) and has slope rrz. lf P (r. 1) is any point on I, different from P1, then the

/\
// ,,-'' ' ctl 5\

Figurc C.l9

Figure C.2l
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There is a unlque line
ihrough P wiih s opem.

slope n can be obtained from the points P(x, y) and P1(x1, ),r); this gives

Y-ylm=-x-xt
which can be rewritten as

!-Yl : m(x - xl) (2)

With the possible exception of ("r1, y1), we have shown that every point on, sarisfies (2).
But x : 11, ) = yl satisfies (2), so that all points on t satisfy (2). We leave it as an exercise
to show that every point satisfying (2) lies on Z.

In summary, we have the following theorem.

C.5 THEoREM. The line passing through P1Q1, y11 and having slope m is given by
the equation

y-yt:m(x x) (3)

This is called the point'slope form of the line.

Example l0
Find the point-slope form of the line through (4, -3) with slope 5.

Solutiott, Substituting the values rr = 4,),r : -3, and m: 5 in (3) yields the point-slope
form y + 3 = 5 (-t - 4).

A nonvertical line crosses the J-axis at some point (0, D). If we use this point in the point-
slope form of its equation, we obtain

y-b=m(x-0)
which we can rewdle as y : pa * &. To summarize:

C.6 THEOREM. The line with !-intercept b and slope nn is given by the equation

y=mx+b (4)

This is called the slope-intercept form of the line.

REMARK. Note that ) is alone on one side of Equation (4). When the equation of a line is
written in this way the slope ofthe line and its )-intercept can be detemined by inspection
of the equation-the slope is the coefficient of .x and the l-intercapt is the constant term
(Figure C.23).

Example I I

Figure C.22

LINES DETERMINED BY SLOPE
AND y-INTERCEPT

y=tw+bfiftg ) \ilEa*il
EQUATION V-INTERCEPT

!=3x+'7
-..-lt--^-t

,=^Jzx-z

m=3 b='7
Im=-r D=t

m=l b=O

^=.lz D = 8

^-n t -1

Figure C.23
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Example 12

Find the slope-intercept form of the equation of the line that satisfies the stated conditions:

(a) slope is 9; crosses the 1-axis at (0, -4)
{b) 

"lope 
is l:passes through Lhe origin

(c) passes through (5, -1); perpendicular to ) : 3r + 4

{d, pa5\e\ through rl.4) and t2. 5).

Solutiort (a). From the given conditions we have z : -9 and b - -4, so (4) yields
j:-9x-4.
Soltttion (.b1. From the given conditions n = I and the line passes through (0,0), so

b : 0. Thus, it follows from (4) that ) = -r + 0 or ) : r.

Solfiion (ci. The given line has slope 3, so the ljne to be determined will have slope
m - ]. Substituting this slope and the given poirt in the point-slope form (3) and then
simplifying yields

)' - (-1) : -1(,r 5)

r--jr+l
Soltttion kl), We will first find the point-slope form, then solve for y in terms of r to
obtain the slope intercept form. From the given points the slope of the line is

m.: :92-3
We can use either of the given points for (,r1, y]) in (3). We will use (3, 4). This yields the
point-slope foIm

1, 4:9(;r,3)
Solving for y in terms ofx yields the slope-intercept form

) :9r 23

We leave it for the reader to show that the same equation results if (2, 5) rather than (3, 4)

is used for (rr , yr ) in (3).

An equation that is expressible in the fom
THE GENERAL EQUATION OF A
LINE Ar*By+C:0 (5)

where A, B, and C are constants and A and B are not both zero, is called afirst'degree
equatiofi in r and 1,. For example,

4r+6) 5-0
is a first-degree equation in'd and )' since it has form (5) with

A-4, B:6, C:-5
In fact, all the equations oflines studied in thjs section are first-degree equations in x and )'.

The following theorem states that the first-degree equations in,r and 1' are precisely the

equations whose graphs in the.ry-plane are straight lines.

C,7 fHEoltEN4. Etery first-degree equation in x and y has a straight line as its grapll
and, conversely, every straight line can be represented by afrst-degree equation in x
and y.
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l:-, +1*tz=01

Figurc C.24

Because of this theorem, (5) is sometimes cdled the general equation of a llne or a
linear equation in x and y.

Example l3
Graph the equation 31 4,y + 12 : 0.

Solutiott. Since this is a linear equarion in ,r and r,, its graph is a straight line. Thus,
to sketch the graph wc need only plot any two points on the graph and draw the ljne
through them. It is particularly convenient to plot the points where the line crosses the
coordinate exes. These points are (0,3) and ( 4,0) (verify), so the graph is the line in
Figure C.24.

Example l4
Find the slope ofthe line in Example 13.

Solutiott. Solving the equation tbr I yields

y=Jr+3
whichiStheSlope-in1eIceptfbrmoftheline'Thus'theslopeisnr:J'<

ExERclsE SET C

1. DIaw the rectangle. three of whose veltices are (6, l),
( 4, l), and (6.7), and find the coordinates tl1'the tbufth
vertex.

2, Dlaw the triangle whose vertices a1e ( 3,2), (5,2), and
(.1,3), and find its area.

Find the slopes of the sides ol the triangle wirh veftices
( 1. 2), (6, 5), and (2, 7).

Use slopes to detenrine whethel the given points lie on the
same line.
(a) (1. l), ( 2, 5), and (0, l)
(b) ( 2, 1), (0.2), and (1.5)

Draw the line through (4.2) wirh slope

t4.

15.

In Exercises 3 and 4, draw a rectangular cootdinate system
and sketch the set ofpoints whose coordinates (i, ),) satisfy
the given conditions. (a) n:3 (b) rn : 2 ,al ,,: ].

17. Draw the line through ( 1, 2) with slope
(b) ar: -l (.c.:1 nt : Jt.

16.

3. (a) r :2
(d) r: x

4. (a) x :0
(c) -v<0
(e) .t :3

(b) -t, : -3
(e).v-r

(c) r 10
(f) l;v > 1

(b) y: o

(d)r2land,r,52
(f) r :5

In Exercises 5 12, sketch the graph of the equation. (A cal

. 
culatlnC utllity willbe helpful in some ofthese problems.)

5. 1-,1 -,r2 6. 1-l-r2
7.y:J' 4 8.): /.r+ I

9.:r2--r1y'-Q 10. ":]'3--u2
11. .v2y: 2 12. ty: -1
13. Find the slope of the line through

An equilateral trlangle has one vefiex al the origin, another
on the,r-axis, and the third in the first quadrant. Find the
slopes of its sides.

List the lines in the accompanying figure in the order of
increasing slope.

+r. 4r/ -l--,j+ _ f _,

/

18.

l9-

(a) ( 1,2) and (3,4) (b) (5.3) and (7. 1)
List the lines in the accompanying
increasing s1ope.

(t G.J\ and( 3,/2) (d) (-2,-6)and( 2, 12).
20. figure in the order of
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21- A particle. initially at (1.2), moves aiong a line of slope

ni : 3 to a new position (r, 1).
(a) Find I' if .r :5. (b) Findr if y - 2.

(a) Find 1 if-t - 9. (b) Find r if-r : 12.

(b) r :3
(d) y:2x - '7.

(b).r: 8

(d).r:3y+2.

(b) -v :3

(b) 1 : J-r

33. Find the slope and -v iniercept of

27.

(a) t:3r+z
(c) 3-r*51 :8
(-.) f - : L

34. Find the slope and )-intercept ol
(a) )- -4n+2
(") t+i:l
(e) aox*arr:0 (arlO).

Let the point (3. &) lie on the line of slope n 5 firough
( 2.4);1ind t.
Civen that the point (ft, ,1) is on the line through (1. 5) and

(2. 3), find fr.

Find.r ifthe slope ofthe line through (l, 2) and (.r, 0) is the

negative of the slope ol the line through (,1, 5) and (x, 0).

Find r and I if the line through (0. 0) and (r, -r') has slope
j, and the line through (r.1,) and (7,5) has slope 2.

Use slopes to show that (3. 1), (6.4). ( 3,2). and

( 6, 3) are vertices of a parallelogram.

Use slopes to show that (3, l), (6, 3). and (2. 9) are vertices

of a dght triangle.

Graph the equatjons
(a)2ri5r:15
(c) ): 2

Graph the equations

t"r I l-r
l4

(c) r-o
Graph the equations
(a) I :2t I

(c) l : z-'.

Giaph the equations
(a) 1:2 3ir

(c) r' : J:

(a) (b)

Figurc Ex 36

ln Lrerurse: J/ r8. nnd rhe.lope-il'lercepr'orm o'rhe line
satisfying the given conditions.

37. Slope: -2, ) intercept:4.

38. n:5-b:-3.
39. The line is parallel to 1, - 41 2 and its ]-intercept is 7.

40. The line is parallel to 3r i 2_v : 5 and passes through
(- l, 2).

41. The line is perpendicular to ) : 5r + 9 and its ] intercept
is 6.

42. The line is perpendicular to,r - 4_! : 7 and passes through
(3. ,1).

43. The lirle passes through (2, 4) and (1, 7).

44. The line passes through ( 3,6) and ( 2, I).
zl5. The 1 intercept is 2 and the r intelcept is ,1.

46. The r'.intercept is b.rnd the \-rnlercepr i. n.

47. The line is perpeDdicular to the _r,-axis and passes through
( 4, 1).

48. The line is parallel to l' : 5 and passes through ( 1. 8).

49. In each part. classily the lines as parallel, perpendicular, or
neither.
(a) 1:4-t-7and_y:4r*9
(b)r:2r-3andl:7-ljr
(c) 5;: 3y * 6 :0 and lOx 6y * 7 :0
(d) Arf ,B1,*C-0andBr Al+D-0
(e) y - 2:4(x 3) and r, 7: j{' :)

50. ln each part, classify lhe lines as parallel. perpendicular, or
neither
(a) l: 5r+land)':3 5,r

(.a)

Figure Ex 35

22. A particle, initially at (7,5), movcs along a line ol slope
lri : 2 to a new position (r. r).

23.

24.

25.

26.

28.

29.

30.

31.

32.

(b) -):3 ]'
(d) r: 1

(b) -r-3j+2
(d) -v-3:0

In Exercises 35 and 36, use the graph to llnd the equation of
th{] line in slope intercept form.
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(b) ,y I : 2(r - 3) and ,y - 4 : ](,r+7)
(c) 4-r +5) +7 = 0and 5r -4-r' +9 = 0

(d) Ar + B)+ C =0and Ar * B,r * D : 0

(e) y:]randx=ly
51. For what value ofk will the line 3x + lr' :4

(a) have slope 2

(b) have )-intercept 5

(c) pass through the point (-2,4)
(d) be parallel to the line 2.r - 51 : 1

(e) be perpendicular to the line 4.r r3\':2?
52. Sketch the graph of .r'2 = 3r and explain how this graph is

related to the graphs of -r' : rfi and r : -J3r.
53. Sketch the graph of (.r - .I)(x + )) : 0 and explain how it

is related to the gmphs of -r - ,], : 0 and,r + -! : 0.

54. Graph F:ZC +32in a CF-coordinare sysrem.

55. Graph z : 3u2 in a ru-coordinate system.

56. Craph )' :4X * 5 in a yx-coordinate system.

57, A pojnt moves in the.r).plane in such a way that at any tirDe

/ its coordinates are given by r = Jt * 2 and _r' : r - 3. By

expressing ;- in terms of ,t, show that the point moves along
a straight line.

A point moves in thex)-plane in such a way that at any time
/ its coordinates aregiven by I : I *3r2 and y = 2 t1.B!
expressing }' in terms ofx, show that the point moves along
a straightline path and specify the values of .{ for which the
equation is valid.

Find the area of the triangle formed by the coordinate axes

and rhe line through ( 1 , 4) and (2, I ).

Draw the graph of4;rt - 9y' = 0.

ln each part, name an appropriate coordinate system for
graphing the equation [e.g., an nB-coordinate system inpart
(a)1, and state whether the graph of the equation is a line in
thatcoordinate system.
(a) 3d 2p-5
(b) A:2000(1+0.06r)

(c constant)
(,' and C constant)
(r conslart)
(ft constant)

58.

59.

60.

61.

(c) A:nz
(d) E : nc2
(e) Y:C(l -rl)
(f) v -:ftr?h
(g) v - \nr2h



DISTANCE BETWEEN TWO POINTS
IN THE PLANE

APPENDIX

Distance, Circles, i

and Quadratic Equations i

Suppose that we arc interested in finding the distance z/ between two points P1(.r1, r'1) and

P:(x:. ]':) in the.f\'-plilnc. ll. as in Figule D.1, we forn'] a right t|iangle with Pr and Pl as

vertices, then it follows Il'oln Theorerl B.zl in Appendix B (hat the sides of that triangle
have lengths lx2 -.t1 and ]r,: - t r . Thus, it follows 1'rom thc Theorem of Pythagoras thltt

,r - util' '-,; n', -,ut = /,, -,ii ;in .,.'"--

and hence we havc the following lesult.

D,l THI.oRr,Nt. The tlisttor:e d lrcfiyeeu hto poit s Pt(.rt. .r't ) turtl P1(x2. t:-) it tr

coonlinote plute is givett b

(l)

'' , 
{..

Figure D.l

I{[\].\RK. To apply Formula (l) the scales on the coordinatc axes rnust be thc same:

otherwise, we would not have bccn able to use the Theolen of Pythagoras in the derivatioD.

Moreover, when using Formula ( I ) it does not matter which point is labeled Pr and which
one is labeled Pt. since rcversing the points changes the signs of-t] - .rl and .r'r ,\'r; this

has no effect on the valuc ol rl because these quantities ale squarcd in the lormula. When it is

important to emphasize the points, the distancc between Pr and P: is denoted by d( Pr. Pr)

or d(Pr. Pr).

(."2 -.rr)l + (l: - rr)r

I.t r -.tr
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THE MIDPOINT FORMULA

Example 1

Find the distance between the points (-2, 3) and (1.7).

Soltrtiort. If we let (.r1, rr)be (-2,3) andlet(,r2,r-r)be(1.7),then(l)yields

,t - r/lt e\)2 +li 1l : !F+4, - !,T:5
Example 2

It can be shown that the converse of the Theorem of Pythagoras is true; that is, if the sides
of a triangle satisfy the relationship rrr * b2 = c?, then the triangle must be a right triangle.
Usc this rcsult to show that the points A (4. 6), B(1. -3), and C(7. 5) are venices of a right
tdangle.

Solutiurt. The points and the triangle are shown in Figure D.2. From (l). the lengths of
the sides of the triangles are

JtA. Bt vtl -lil;j - 6l-- = v/s , 8l - /qb

ct(A, c) :,F -'+fT75 - 6P = lg + t :',,m
rl,B.t t= li:li:ls:;l|: - vtb-M -.,/roo= Irr

Since

Lrl(A, B\12 + t./(A. C)l: :Lcl(B.C)f
itfollowSthatAABcisarighttrianglewithhypotenuSeBc.<

It is often necessary to 6nd the coordinates of the midpoint of a line segment joining two
points in thc plane. To derive the midpoint formula, we will start with two points on a coor
dinate line. If we assume that the points haYe coordinates n and D and that (l S b, then,
ns shown in Figurc D.3. the distance between n and /r is D 4, and the coordinate of the
midpoint between 4 and l' is

a+:(.b .tt: \u+ lb = +kt +b)
which is the arithmetic average 01'd and b. Had the points been labeled with lr S 4, the same
fbrmula would havc rcsultcd (verify). Therefore, the nidpctitrt o.f t\ro ltoittts on a coordin(ite
line is tlrc aritlntetic average ol their coordinqtes, rcgutdless oftheir t"elqtit,e positiotts,

If we now let Pr (.rr . t'r ) and P2 (r2. 1,2) be any two points in the plane and M (;r, _})) the
midpoint of the Iine segment ioining them (Figure D.4), then it can be shown using similar
trianglesthatj isthe midpointol.rt and.r?onthe-faxisandt'isthemidpointoft,l andy2
on the t axis, so

.t : ](,t, + r.) and r' : 1(r,' + r'.)
Thus. we have the following result.

D.2 THFloliE\l (fhe Midpoi,tt Forn la). Tlrc ntirlpoint of tlte line segntent .joining no
toint.t (.\t. \'t) aul (:i, \'1) in e coor.linale plarte is

Figurc D.l

(](", + -',), {(.rr + r,:)) (2)

Example 3

Find the midpoint ofthe line scgmentjoining (3, -,1) and (7,2),

.\olrrtiotr. From {2)the rnidpoint is

(lt: +rl. :e4 + D) = (5. -l)

FierLre D.l

P'(.r1, t:)



CIRCLES

FINDING THE CENTER AND RADIUS
OF A CIRCLE

hp nl.rr.lF i

Figure D.6

OTHER FORMS FOR THE EQUATION
OF A CIRCLE

(" "o)2 + (r )o)2

r coordin.le offie ccnlcr is j0 r'coordirate ofthe center rs r0

Example 6

EQUATION OF A CIRCI,E CENTER (-r0,,ro) RADIUS r"

Distance, Circles, and Quadratic Equations A3l

If (r0, _!0) is a fixed point ir the plane, then the circle ofradius r centered at (x0, ).0) is the
set of all points in the plane whose distance from (,r0, y6) is r (Figure D.5). Thus, a point
(-r, 1) will lie on this circle if and only if

f. --
V l.\ .ro)- + ll lu)- : r

or equivalently,

(r - ro)t + () )o)' : "t
This is called the sLr ndard form ofthe equation ofa circle.

Example 4

Find an equation for the circle of radius 4 centered at (-5, 3).

Solutiott. From (3) with,re : 5,)0=3,andr =,1 we obtain

(3)

(r + 5)2 + (1, 3)'? = 16

If desired, this equation can be wdtten in an expanded form by squaring the terms and then

simplifying:

(r2 + 1o.r +25) + ()'? 61 +9) 16=o

,r2+y:+lo" 6y+18=o

Example 5

Find an equation for the circle with center (1, 2) that passes through (4, 2).

Solutiott. The radius r of the circle is the distanca between (4,2) and (1, 2), so

r:ln-1)2+( 2 \2-5
We now know the center and radius, so we can use (3) to obtain the equation

(, 1)2+(I+2)':=25 or x2+1,2 2x +4J 20:0

When you encounter an equation ofform (3), you will know immediately that i1s graph is a

circie; its center and radius can then be found from the constants that appear in the equation:

..2

(,r - 2)2 + (-f 5)2 = 9

(.r+ /)-+() + J = Lt)

(2, s) 3

(7, 1) 4

(0.0) s

(4,0) 16

The circle x2 + y2 : 1, which is centered at the origin and has radius 1, is of special

importance; it is called the unit circle (Figure D.6).

An alternative version ofEquation (3) can be obtained by squaring the tems and simplifying.
This yields an equation of the form

,2 + 1,1 + d, + er + f :0 (4)

where rl, c, and f are constants. (See the final equations in Examples 4 and 5.)

Figure D.5
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Still another version ofthe equation ofa circle can be obtained by multiplying both sides

of (4) by a nonzero constant A. This yields an equation of the form

Ax2+A12 +DX+E1'+F:O (5)

where A, D, E, and F are constants and A 10.
Ifthe equation ofa circle is given by (4) or (5), then the center and radius can be found by

first rewriting the equation in standard form, then reading off the center and radius from that
equation. The following example shows how to do this using the techniqre of completing
the square. However, in preparation for the example, recall that completing the square is a
method for rewriting an expression of the form

x2 +bx

as a difference of two squares. The procedure is to take half the coefficient of x, square it,
and then add and subtract that result ftom the original expression to obtain

x2 + bx : x2 + bx + (b I D'? - (b / 42 : lx + (b I 2))z - (b / 2)z

Example 7

Find the center and radius of the circle with equation

(a) .rr +.)2 - 8r * 2i, * 8 :0 (b) 2x2 +2y2 +24x 8l :0

Soltttion (aJ, First, group the .{-terms, group the )-terms, and take the constant to the right
side:

(x2 - 8r) + (r't + 211 = -3
Next we want to add the appropriate constant within each set of parentheses to complete
the square, and subtract the same constant outside the parentheses to maintain equality. The
appropriate constant is obtained by taking half the coefficient of the first-degree term and
squaring it. This yields

(.r2 -8x+ 16) - 16+ (r,2 +2y+ 1) t: -8
from which we obtain

(,x-4)2+(-v*l)r:-8+16+l or (x-4)2+(y+l)2:9
Thus from (3), the circle has center (4, l) and radius 3.

Solution (bl. The given equation is of form (5). We will first divide through by 2 (the

coefficient of the squared terms) to reduce the equation to form (4). Then we will proceed

as in part (a) of this example. The computations are as follows:

x2 + y2 + 12r - $ :0 we divided throueh bv 2.

(x2 + t2;r) +)'? : +
(.x2 + l2x+36) a,v'?= $ +36 we compreled rhe squ.rc.

(r + 6)2 +.1'2 : +
From (3), the circle has center (-6,0) and radius /F.
There is no guarantee that an equation ofform (5) represents a circle. For example, suppose

that we divide both sides of (5) by A, then complete the squares to obtain

(.r--ro)2+(r'-lo)2:t
Depending on the value ofk, the following situations occur:

DEGENERATE CASES OF A CIRCLE
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(ft > 0) The graph is a circle with center (.16, y6) and radius ^u4.
(t = 0) The only solution ofthe equation is;r : ;ro, ), : y6, so the graph is the singte

point (no, )o).
(fr < 0) The equation has no real solutions and consequently no graph.

Example 8

Describe the graphs of

(a) (.r l)2 + (y + 4)2 - -9 (b) (x - l)'? + (y + 4)2 :0

THE GRAPH of y = ax2 + bx + c

Solution (a). There are no real values of .x and y that will make the left side of the equation
negative. Thus, the solution set of the equation is empty, and the equation has no graph.

Solution (b). The only values of .{ and y that will make the left side of the equation 0 are

x:1,}=_4'Thus,thegIaphoftheequationistheSinglepoint(1'4).<

The following theorem summadzes our obseruations.

D.3 THEOREM. An equation of the form

Axz + Ayz + Dx + Ey + F :o

where A 10, represents a circle, or a point, or else has no graph.

(6)

REMARK. The last two cases in TheoremD.3 arc called degenerate cases.In spile of lhe
fact that these degenemte cases can occur, (6) is often called the general equation of a
circle.

An equation of the form

y--ax2 +bx+c (a+o) ('t)

is called a quadratic equation in x. Dependhg on whether a is positive or negative, the
graph, which is caJled a parabola, has one of the two forms shown in Figwe D.7. In both
cases the parabola is symmetric about a vedical line parallel to the l,-a"\is. This line of
synrmetry cuts the parabola at a point called the vertex. The vertex is the low point on the

curve if a > 0 and the high point if a < 0.

_b/(2a)

7,=*t7o,tl
| ,ao 

i

DJ

,bl(2a)

f,";;;l]',.0 I
Figule
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-1
0 -2
I l
2

3

In the exercises (Exercise 78) we will help the reader show thar the r-coordinate of the
vertex is given by the formula

br:-- (8)
2o

With the aid of this formula, a reasonably accurate graph of a quadratic equation in r can
be obtained by plotting the vertex and two points on each side of it.

Example 9
Sketch the graph of

(.a) Y:az 2x-2 (.b) y- a2 14"-t

Solution (a), The equation is of form (7) with a : 1, b : -2, and c : -2, so by (8) the
,r-coordinate of the vertex is

bx- :l
2a

Using this value and two additional values on each side, we obtain Figure D.8.

Solutinn (b). The equation is of form (7) with a -- -I, b : 4, and, c : -5, so by (8) the
r-coordinate of the veftex is

hX: 
-:2

Using this value and two additional values on each side, we obtain the table and graph in
Figure D.9.

Quite often the intercapts of a parabola !:qx2+bx +c are important to know.
The y-intercept, y : c, results immediately by Setting r :0. However, in order to obtain
the x intercepts, if any, we must set y : 0 and then solve the resulting quadratic equation
axz+bx+c:0.

Example L0
Solve the inequality

x2-2x-2.0

Solution. Because the left side ofthe inequality does not have readily discerrible factors,
the test-point method illustrated in Example 4 of Appendix A is not convenient ro use.
Instead, we will give a graphical solution. The given inequality is satisfied for those values
of .r where the graph of y : a2 - 2, 2 is above the -r-axis. From Figure D.8 those are
the values of r to the left of the smaller intercept or to the dght of the larger intercept. To
find these intercepts we set ) : 0 to obtain

x2-2x-z=o
Solving by the quadratic formula gives

b+JT:j;; 2_,/L
.,--,1- = .) -r-r\J

Thus, the .r-intercepts are

x :1t J5 x 2.7 and x - I - J1 ,- -0.'7

FigureD.9

L{,:=
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and the solution set of the inequality ls

( -,r "6) 
u (t +"5, +-)

ItEI,IARK. Note that the decimal approximations ofthe intercepts calculated in the preced-
ing example agree with the gmph in Figure D.8. Observe, however, that we used the exact
values of the intercepts to express the solution. The choice of exact versus apploximate
values is often a matter ofjudgment that depends on the pulpose for which the values are to
be used. Numerical approximations often provide a sense o1'size thal exact values do not,
but they can introduce severe e[ors if not used with care.

Example l1
From Figure D.9 we see that the parabola y : -x2 +4r -5hasnoj{ intercepts. This can

also be seen algebraically by solving for the r intercepts. Setting ], : 0 and solving the
resulting equation

-x'+41 5:o
by the quadratic fomula yields

4 + !16 ,26
-2+ia

BecauSetheSo1utionsarecomplexnumbeIS'theIearcno(Ieal),r-inteIceptS'<

Example 12

A ball is thrown stmight up from the sudace of the Earth at tjme / : 0 s with an initial
velocity of 24.5 m/s. If air resistance is ignored, it can be shown that the distance r (in
meters) of the ball above the ground after t seconds is given by

s :24.5t - 4.9t2 (9)

(a) Graph s versus t, making the t-axis hodzontal and the s-axis vertical.

(b) How high does the ball rise above the ground?

Soluliort (ul. Equation (9) is offom (7) with a - -4.9, b - 24.5, ald c : 0, so by (8)

rhe r-coordinate oI the rertex i:

,: h : 24.5 :2.5,
2a 2 (-4.o)

and consequently the ,r-coordinate of the vertex is

s - 24.5(2.5) - 4.9(2.12 : 30.625 m

The factored fonr.r of (9) is

s = 4.91(5 t)

so tlte graph has t-intercepts I : 0 and I : 5. From the vertex and the intercepts we obtain

the graph shown in Figure D.10.

Solrttiott (b 1. From the s-coordinate of the vertex we deduce that the ball rises 30.625 m

above the ground.

If x and y arc interchanged in (7), the resulting equation,

*:q,2+br+,
is callecl a quadratic equation in y.The graph of such an equation is a pambola with its line

E

.9

40

l0

2t)

l0

t 23 4

Tme (s)

Figure D.10

Eadh surface

THE GRAPH of x = ayz + by + c
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of symmetry parallel to the jr -axis and its vefiex at the point with l-coordinate I : -b I (.2a)
(Figure D.1 I ). Some problems relating to such equations appear in the exercises.

.=";r,+;'r+.'

Figure D I I

, ..0

EXERCISE SET D

1. Where in this section did we use the fact that the same scale
was Llsed on both coordinate axes?

In Exercises 2-5. find
(a) the distance between A and B
(b) the midpoint oi the line segment joining A and B.

2. A(2,5). B( l.l) 3. A(7, 1), B(r.9)

13. The line is the peryendicllar bisector of the line segment
joining (2,8) and ( 4.6).

14. The line is the peryendicular bisector of the line segment
joining (5, l) and (4,8).

15. Find the point on the line 4i 2f + 3 :0 that is equidis
tant frorn (3. 3) and (7, -3). rllrrl; First flnd an equation of
the line that is the peryendicular bisector ofthe line segment
joining (3,3) and (7, -3).1

16. Find the distance from the point (3, 2) to the line
(a) _r, :.1 (b) .:c - 1.

17. Find the distance tiom (2, l) to the line 4r - 3_r * I0:0.
[-Flirt. Find the foot of the perpendicular dropped fiom the
point to the line.l

18. Find the distance fiom (8, 4) to the line 5.r * 121 36-0.
FlirL See the hint in Exercise l7.l

19, Use the method descibed in Exeicise 17 to plove that the
distance I from (r0. 10) to the line A-{ + B) + C : 0 is

4. A(2. 0). 6(-3. 6) 5. A( 2, 6), B\ 7, 1)

ln Ercr'.'.c. r' I U. .t\e r'(' di\lance tnrrul.r to.olre the piven

Droblcfll.

6. Provethat(1, l),(-2. 8),and(4. 10) lieonastraightline.

7. Prove that the triangle with vertices (5. -2). (6, 5), (2. 2) is
isosceles-

8. Provethat(1,3).(4.2),and( 2. 6) are vertices ofa right
triangle and then specily the vertex at which the right angle
occul s.

9, Prove thar (0, 2), (-.1. 8). and (3. l) lie on a circle with
center ( 2,3).

10. Piove that for all values of 1 the point (r. 2t 6) is equidis-
tanl from (0. ,tr) and (8. 0).

11. Find k, given that (2. l)isecluidistantfiom(3,7)and(9, 1).

12. Find r and ] if (4. 5) is the midpoint of the line segment
joining ( 3,2) and (-r', )').

In Exercises l3 and 14, lind an equation o1'the given line.

Use the fomula in Exercise 19 to solve Exercise 17.

Use the formula in Exercise l9 to solve Exercise 18.

Prove: Fol any triangle, the perpendicular bisectors of the
sides meet at a point. lllirl. Position the triang]e with one
vcrlex on the ) axis and the opposite side on the r-axis, so

that the vertices are (0. a), (0,0), and (c,0).1

20.

2t.
22.



Distance, Circles, and Quadratic Equations A37

In Exercises 23 ancl24, find the center and radius of each
circle-

Gmph

(a) .r: /4 I2 (b) r:3+/4 
-y2

t-r /-' ,l .,2 r{
(b) (r l)':+ (-\' ,1)2 : 16

(c) (r*l)']+(-v+3)'?:5
(d) n'?+ (-v + 2)'? - 1

21. (a) x2 + y2 :9
(b) (r 3)2 + (r 5)2 :36
(c) (.r *4)2 + (t + l)2 :8
(d) (r + 1)2 + v2: I

ln Erercr.e. 2:-J2. find rhe \rrndrro equflion ot rhe circlr
salisfying the given conditions.

25. Center (3. 2); radius - 4.

26. Center ( 1.0); diameter - r./8.

27, Centet ( 4, 8); circle is tangent to the r-axis.

28, Centcr t5.8': eirulc r' t:rngcnt lu lhc r urr..

29. Center (-3. -4)icircle passes drrough the origin.

30. Center (4. 5): circle passes through (1, 3).

31. A diarreter has endpoints (2. 0) and (0, 2).

32, A diameter has endpoints (6. l) and ( 2.3).

ln L.re|cr.e. JJ 44. dclermrne rhelher rhe equaliun rcprc-
sents a circle, a point. or no graph. If the equation represeuts
a circle find the center and radius

33. -r2 + _r2 2x -,ly - 11 :0
34. -r2 1-y2i8-ti8:0
35. 2r2 + 2y2 * 4-r 4r : 0

36. 612 + 6y? 6-r * 6r - 3

37. x2 +y2 *2,ti21 i2-0
38. 12+ t,2 4r-61 * 13:0
39. g-Yr + 9_!2 - I

40. (1211) + (.rrl4) : 1

41. rr 1_12 + 10),+ 26: 0

42. x2 + 1,2 l0,r 21 f 29 - D

43. 16-12 + 16_\,2 +40.v * 161, - 7 : 0

44. 4x2 + b,2 161 24_r. : 9

45, Find ar1 equation of
(a) the bottom halfofthe circle -tr I -r2 : l6
(b) thetophallolthecircle.r2+t2*2r 4y 1 1:0.

46, Fird an equatjon ot'
(a) the right half ol'the cilcle 12 + r.-l : 9

(b) the lelt hau ol the circle x2 + t 2 4-ri3:0.
47, Graph

(a) 1,:/25 i,:

Find an equatiorl of the line thal is tangent to the circle

r +r :2.\

al lhe point (3.4) on the circle.

Find an equation of the line that is tan-sert to the circle at
the point P on the circle
(a) rr lr2+2i:9; P(2. l)
(, -'..r + -r2 6.r i 4r : 13; P(4,3).

For the circle -r: + _r'2 - 20 and rhe poinr P(- l. 2):
(a) ls P inside, outside. or on the circle l
(b) Find e lar8est and smallest clistances betlveen P and

points on the circle.

Follow the directions ol Exercisc 5l fbr the circle

.tl + t,l lt ,1 0

and the point P (3. ;).
Ret-erring to the accompanying figule. find thc coordinates
of the points I and 7'. whcre the lines L and l,' arc tangent
to the circle of radius I wilh ccnter ai the origilt.

L,

ligure Ex 53

A point (.r. y) moves so that irs distance to (2.0) is v5
tiJnes its dislance to (0. l).
(a) Show that the point moves along a circle.
(b) Find the center rnd radius.

A point (r, r) moves so that the suln ol-lhe squares of its
rli.t.rnecs fr,,rn 1l I ':,rd 1' 5y :,215

(a) Show that ihe point nroves alons a circle.
(b) Find the center and radius.

Find all values of c tbr which the systen of cquations

f tr - 'r - 0ll.
l(, cl +\ -l

has 0. l, 2. 3, or 4 solutions. JHirt. Sketch a graph.l

In Exelcises 57 70, graph the parabola and label thc coordi-
nates of the vertcx and the interseclions rvith the coordinate

49.

51.

s2.

54.

56.

axes.

58. 1:rr 3(b) r-r,G+4-. r2.
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59. -v-12+2r-3
61. ): r2+4r+5
63. 1:(x D2

65..r2 2ri-v-0
67. | :3l1 2x + |
69. x - -\2 +2)- +2
71. Find an equation of

(a) the ight half of the parabola ) - 3 ,r2

(b) th,r left half ot' the parabola -r, 
: ,r2 2t.

72. Find an equation of
rar rheupperha lol'theprrabul.rx -11 5

(b) the lower half ol the parabola -y : -v2 J- 2.

73. Graph
(a)t:Vr+:

74. Graph
(a) -r,: I +.,4-t

costing ti3/lt, while the other two sides will have standard
fenclng costing $2/ft. A total ol $600 is available for the
fencing. Let r be the length of each side with the heavy-
duty fencing, and let ) be the length of each side with the
standard fencing.
(a) Express ) in tems of :r.
(b) Find a formula for the area A of the rectangular plot in

terms of x.
(c) What is lhe largest area that can be enclosed?

78. (a) By completing the square, show that the quadratic equa-

lronf -a\ Ih\ I, c nberewritlenat

jla*0.
(b) Use the result in pait (a) to show that the graph oi the

quadratic equation ) : ajr2 + br + c has its high point
a1 ,y : b/(2a) if a < 0 and its low point there if
a>O.

ln Lrerer.e. /1, and E0.5olve lhe grven inequaliry.

60. -r,:,r2-3x-4
62, t= x2+x
64. 1:(3*r)r
66. .l:2 * 8x * 8l:0
68. y=x2*r+2
70. :r : .r2 4-y + 5

":'(*+ *|*(" *)
(b) r: - v/a 1,.

(b) r-3+J).
75. If a ball is thrown straight up with an initjal velocity of

32 ft/s, then alter t seconds the distance r above its starting

height, in teet. is given by s : 321 16t2.

(a) Graph this equation in a t.r-coordinate systeD (t-axis

holizontal).
(b) At what tjrne I will the ball be at its highest point, and

how high will it rise?

76, A rectangular field is to be enciosed with 500 fi of t'encing

along three sides and by a straight stream on the fourth side.

Let,! be the length ofeach side peryendicLllar to the stream,

and let I be the length ol'the side parallel to the stleam.
(ir) Express -i in ternrs ol-rr.
(b) Express lhe area A of the lleld in terms of,r.
(c) What is the largest area that can be enclosed?

77. A rectangular plot of land is to be enclosed using two kinds

offencjng. Two opposjte sides will have heavy-duty 1'encing

(b).x2-2r+3>o
(b) x? 4r+6<0

79. (a) 2x1+ 5.r - I < 0

80.(a)x':+.r-1>0
81. At time / : 0 a ball is thrown straight up from a height of

5 ft above the ground. After I seconds its distance .r, in feet,

above the ground is given by s : 5 + 401 7612.

(a) Find rhe maximum height of rhe ball above the ground.

(b) Find, to the nearest tenth of a second, the time when the
ball strikes the ground.

(c) Find, to the nearest tenth of a second, how long the bail
will be more than 12 ft above the ground.

82, Find all values ofr at which points on the parabola 1 : ,r2

lie below the line l' - rc + 3.
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Trigonometry Review i

ANGLES

TRIGONOMETRIC FUNCTIONS AI\D IDEI\TITIES

Angles in the plane can be generated by rotating a ray about its endpoint. The starting
position of the lay is called the initial side of the angle, the final position is called the
terminql side of thc angle, and the point at which the initial and telminal sides meet is
called the verle.r ofthe angle. We allow for the possibility that thc r^y may make mole than
one complete revolution. Angles arc considered to beposifiy? if generated counterclockwise
ancJ negative if ge:nerated clockwise (Figule E.1).

\\

Y- u-@-
^ eg, ru" Ar g " g"r".d-"d oJ

I ang e more than one revolut on

A pos tive '

' ange I

Figure E.1

There irre two standard measurement systems for describing the size ofan angle: degree
measure tnd radisn measure. ln degree measure! one dcgrec (written 1o) is the measure

of an angle generated by 1/360 of one revolution. Thus, therc are 360' in an angle of one

revolution, 180" in an algle of one-half rcvolution, 90' in an angle of one-qlrarter revolutiol.r
(a right angle), and so foth. Degrees are divided into sixty equal parls, called nirrules, and

minutes are divided into sixty equal parts. called seco[ds. Thus, one minute (written l') is

1/60 of a degree, and one second (written l") is I /60 of a mimrle. Smallel snbdivisions of
a degrcc are expressed as fiactions of a second.

In radian measure, angles are measured by the length ofthe arc that the angle subtends on

a circle ofradius I when thc vcrtcx is at thc centcr. One unit ofarc on a circle ofradius I is
called one radran (writtel I radian or I rad) (Figule E.2), and hence the entire circumference
of a circle of radius I is 2z radians. It follows that an angie of 360" subtends an irrc of 2n
radians. an angle of 180' subtends an arc of rr radians, an angle of 90" subtends an arc

of z/2 radians, and so forth. Figure 8.3 and Table 1 show the relationship between degree

measure and mdian measure for some impoltant positive angles.

ItFlN,lARK. Observe that in Table 1, angles in degrees are designated by the degree symbol.
but angles in radians have no units specified. This is standard practice when no units are

specified for an angle, it is understood that the urits arc radians.

"o\
.'o e?

nitial s de

Figure E.2
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RELATIONSHIPS BETWEEN ARC
LENGTH, ANGLE, RADIUS, AND
AREA

From the fact that iT radians coresponds to 180', we obtain the following formulas,
which are useful for converting from degrees to radians and conversely.

1. : Lr^6 ry 0.01745 rad
180

r .uo: /4 )' x si"li'44.8',
\",/

(1)

(.2)

Example I
(a) Express 146' in radians. (b) Express 3 radians in degrees.

Solution (a). From ( 1), degrees can be converted to radians by multiplying by a conversion

factor of z/180. Thus,

/tt ' 73:trtaO'- (* 146)rad- 
90 

rad \ 2.54R2 rrd

Solution (b). From (2), radians can be converted to degrees by multiplying by a conversion
factor of 180/2. Thus,

/ 180\" /s40\"3rad:(3 ;): (\ ',) !17re"

There is a theorem from plane geometry which states that for two concentdc circles, the
ratio of the arc lengths subtended by a central angle is equal to the ratio of the corresponding
radii (Figure 8.4). In particular, if s is the arc length subtended on a circle of radius r by a
central angle of d radians, then by comparison with the arc length subtended by that angle
on a circle of radius 1 we obtain

sr
e1

Figure E.3

Table 1
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fron which we obtain the following relationships between the central angle 6, the radjus r,
and the subtended arc length s when d is in radians (Figure E.5):

0:slr and 5=r0 (3-4)

12 ,-l

Figurc E.4

f0 s n radrans,

Figure E.5

The shaded region ia Figure E.5 is callcd a scctor. It is a theorem from plane geometry
that the ratio of the arca A of this sector to the area of the entire circle is the same as the
ratio of the central angle of the sector to the central angle of the entire circle; thus, i1'the
angles are in radians. we have

AE
TT IJf

Solvilg for A yields the following fomula for the ;Lrea of a sector in tenns of the radius r
and the angle B in radians:

A = +r2e

The sine, cosine, langent. cosecant, secant, and cotangenl of a positive acute angle d can
be defined as ratios of the sides of a right triangle. Using the notation from Figure E.6, these
definitions take the following form:

.ind - 
tid" oppotit" 6 : r hypotenuse ,_

(5)

TRIGONOMETRIC FUNCTIONS FOR
RIGHT TRIANGLES

cos6: ',

cscd:

secp:

cotd:

hypotenuse r'
side adjacent to d .r

hypotenuse

side opposite d

side opposite d I
hypotenuse r

side adjacent to d

side adjacent to 0

(6)
.rr

I'
side adjacent to e side opposite 0 _r

We will call sin, cos, tan, csc. sec, and .ot the trigonometric functions. Because similar
triangles have proportional sides, the vaiues of the trigoltometric functions depend only on
the size of d and not on the particular right triangle used to compute the ratios. Moreover,
in these definitions it does not matter whether d is measured in degrees or radians.

Example 2

Recall tiom geometry that the two legs of a 45' 45'-90' triangle are of equal size and
that the hypotenuse of a 30" 60' 90' triangle is twice the shorter leg, where tl'te shofler
leg is opposite the 30' angle. These facts and the Theorem of Pythagoras yield Figure E.7.
From that ilgure we obtain the results in Table 2.
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Figwe E.7

Table 2

sin 45' = l/rD, cos 45" = 1/rE, tan 45" = I

csc 45" = r/2, sec 45' = r/2, cot 45' = 1

sin 30'= l/2, cos 30" = rfV2, tan 30'= l/r/J
csc 30' = 2, sec 30" = 2/r/J, cot 30" = \5
.in b0' = VJ/2, coc trO" = l/2, ," oO' J']

csc 60'- 2/16, sec 60o = 2, cot 60'= 1/r/5

ANGLES IN RECTANGULAR
COORDINATE SYSTEMS

Because the angles of a right triangle are between 0 
o and 90" , the fomul as in (6) are not

directly applicable to negative angles or to angles greater than 90'. To extend the t gono-
metuic functions to include these cases, it will be convenientto consider angles in reclangular
coordinate systems. An angle is said to be n st&ndsrd positioz in an 4r-coordinate system
if its vertex is at the origin and its initial side is on the positive x-axis (Figure E.8).

Figure E.8

To define the trigonometdc functions ofan angle I in standa-rd position, construct a circle
of radius r, centered at the origin, and let P (x, y) be the intersection of the terminal side of
6 with this circle (Figure 8.9). We make the following definition.

Term nal

I A negative ang e in l

I standard oosilion 
]

E.l DT,FINITION.

'v 
'r \':inO=', cosd = , tan0-'rt.l

rt-r
crc0 = , \ecP - -, coro =!x)'

Figure E.9
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P( +.

Figure E.l I
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Note that the formulas in this definition agree with thosc in (6). so there is no conflict with
the earlier delinition of the trigonometric functions for trianglcs. However. this definition
applies to all angles (except for cases where a zero denominator occurs).

Inthespecialcasewhere/':l,wehavesind:r'andcosd:.r.sothererlninalsideof
the angle d intersects the unit circle at the point (cos d. sin p) (Figure E.l0). It follows fiom
Definition 8.1 that thc rcmaining trigonometric functions ofd are expressible as (verify)

sin0 cos6 1 I 1
trnd - -, 

cotd = secF = 
-. 

cscd : 17 l0rcos0 sind tand co\d \rn6

These observations suggest the fblJowing procedure lbr evaluating the tligonometric f'unc-
tions of common anglcs:

Construct the angle A in standard position in an ,tr -ctxlldinate system.

Find the coordinatcs of the intelsection of the tenninal sidc of the angle and thc unit
circle; the.t- and r'-coordinalcs of this intersection arc tlte values ofcos6 and sind.
respectively.

Use Formulas (7) through ( I0) to find the values ol' the remaining trigonometric furc-
tions fuom the values ol cos d and sin 9.

Example 3

Evaluate the trigonometric lirnctions of d : l50'.

Solution. Construct a unit cilcle and place the angle d = 150- in standard position (Fig-
ureE.ll).SincelAOPis30 andAOAPisa30' 60- 90'tri ngle. the lcg A P has lengrh

* (latf tne hypotenusc) and the leg O,4 has length ."4/2 by the Thco|em of Pyrhagori$.

Thus, the coordinrtr's rrf P rre \-Jj/2. l/\. from which wc ohrrin

.'/I -- sin l5{) I /2 I
cosl-s0 =-l tan 150 -.". Ls(, = --J1t '= vr

2

J-1

Example 4

Evaluate the trigonometric functions of 0 : 5z/6-

Solution. Since5z'/6 = I 50' . this problem is equivalent to that of Example -3. From that
example we obtain

.52 I 5ir v5 5r I

..'.5t - ,. r". I : -]-, .o, 
5' - .'1

6 6v/-1 6

Example 5

Evaluate the trigonornetric functions of0 = rr/2.

Sttlution. As shown in Figure E. !2, the terminal side of g

circle at the point (0. - I ). so

sitl(-n/2) = -1. cos(-zl2) :0

sin i50' : I
2

cscl50'= 1 
=2. sec150': I :-

sin 150' cos 150'
t-cotL50:-=-v?-l

tan 150'

Firr'rc E.l2

= -z/l interrects rhe unit
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lrnd fiom Formulas (7) through ( i0),

,_ \in( //2)
tJn(-nl l)

cos(-/r/l)
cos{ -z/) )

cor( 'rl2) : 

-
srn( rrl2)

I
\ec(-zl2)

co\( Jr / l)

-r\c,-t lr = 
l= 

Irin( r/21 I

sin29+cos2d:l (11)

I

- (Lrndctinctl )
{)

0

I

: j (undefined)

TRIGONOMETRIC IDENTITIES

The |eadeI should be ablc to obtain all of the results ir'r Table 3 by the methods illustrated
in the last three examples. Thc dashcs indicatc quantities that are undcllned.

Tablc 3

Rl-l\1,\RK. lt is only in special cases that exact values for tdgonometric functions can be

obtained, usually, a calculating utilily or a conputer program will be required.

The signs of the trigonornetric functions ol an angle arc detelmined by the quadranr in
which the terminal side of the angle talls. For example. iI' the terminal side falls in the flrst
quildrant, then .r and i are positivc in Dellnition E. 1. so all of Lhe trigonometric functions
havc positive values. If the ter minal side ialls in the second quadrant, then r is negative and

I is positive. so sin and csc are positive, but all other trigonometric function\ xrc ncgati\c.
The diaglam in Figure E.13 shows which trigonometric functions are positive in the various
qLrildrants. The Ieader will lind it instructive to check that the results in Table 3 are consistent

with Figure E.13.

A trigononetric iderliry is an equation involving trigonometric functions that is true for all
angles tbr which both sides oflhc cquation are defined. One ofthe Drost impo ant identities
in trigonomctry can be derived by applying the Theorem of Pythagoras io the triangle in

Figure 8.9 to obtain
1)t't +.1 :r

Dividing both sides by r'2 and using the definitions of sin d and cos 0 (Definition E.l ), we

obtain the lollorving fundamerltal result:

d-0 r/6
(0") (30")

d1
(15')

:
l/! 2

r/l
(60')

rl2
(e0")

2rl3
(120")

3r/4
( l3s.)

5tr/6 r 3r/2
( r s0") (r 80") (270")

2n
(360")

sin F.l 0 1/2 ^lttz r/:lr U,!2. t/2 0 I 0

cos 0 I \i3l2 I I.'12 t/2 0 -I/2 -ll\D -rElz -t 0 I

0 l/11 -t -1li3 0 0

csc 0

sec 0

cot d

) 12 2/!3 I 2/i3 tz
lrt

) I

2/!3 1i2 2 2/!3 1

\E r/i3 o 1/!3 I !3 0

The following iclentities can be obtained fiom ( I 1 ) by clividing lhrough by cos2 0 and sin2 d,
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respectively, then applying Formulas (7) through (10):

tan2 d + I : sec2d

1+cot2d:csc2tl

(12)

(13)

(.23)

(.24)

(26)

(27 28)

If(,I,))isapointontheunitcircle,thenthepoints(-r,y),(,r, ;,), and (r, -)) also
lie on the unit circle (why?), and the four points form corners of a rectangle with sides
parallel to the coordinate axes (Figure E.14a). The r- and l, coordinates of each corner
represent the cosine and sine of an angle in standard posilion whose terminal side passes

through the comer; hence we obtain the identities in parts (b), (c), and (d) of Figure E.14
for sine and cosine. Dividing those identities leads to ideltities for the tangent. In summary;

sin(ir -0) =sin0, sin(z*d): -sin9, sin(-d):-sind (14-16)

cos(z-d): -cosd, cos(z*9): -cos9, cos(*o)=coso (11 19)

tan(rr-d) = -tand, ta\(T+e):ate, tan(-P)=-tand (2t)-22)

(-

Figure E.1,1

\ ll
t r+0, -t6n

-r)\

\i. lr+0)=-sinB '

tcos(?r+0)= cosd

(a) (b) (c) (d)

Two angies in standard position that have the same terminal side must have the same val-
ues fbr their trigonometdc functions since their terminal sides intersect the unit circle at the
same point. In panicular, two angles whose radian measures differ by a multiple of 2r have

the same teminal side and hence have the same values for their trigonometric functjons.
This yields the identities

sin0 : sin(6 + 21r) = sin(.e 2r)

cosd - cost0 - 2n) - cos(d - 2r)

and more generally,

srn1 : srn(A l2ntt), n : 0,1,2,...
cosd : cos(6 *2nz), n :0,1,2, .. .

Identities (20) through (22) imply that

tan0:tan(o+1T) and tan 6 : tan(o r)

Identity (27) is just (21) with the terms in the sum reversed, and identity (28) follows fiom
(20) and (22) (verify). These two identities state that adding or subtracting z from an angle
does not affect the value of the tangent of the angle. It follows that the same is true for any

-i
r.ll

i
I

)\ I
lsin(r-01 =sinP :

I cos lr- PJ = -cos 0 l:-, ,: ._- --,,-l
l";"101 = 'lnollcos( d)=cosl, 

l
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multiple of z; thus,

Ane =f3[(e ):nr), n:0,1,2,... (.29)

FigureE.l5 shows complementary angles A ar,d (1r/2) d of a dght triangle. It follows
from (6) that

side opposite dqln|,: 

-

side adjacent to (1r/2) - e

hypotenuse hypotenuse

- \ide adjd(enr to d side opposi(e tr 2l - 0

hypotenuse

\2

tlT
\2

-e)

-d)hypotenuse

which yields the identities

'i" (l - e) : 
"ose,

THE LAW OF COSINES

where the third identity results from dividing the fi$t two. These identities
for angles that are not acute and for negative angles as well.

(30 32)

are aiso valid

The next theorem, called, the Ia$, of cosires, generalizes the Theorem of Pythagoras. This
result is important in its own ght and is also the stafiing point for some important trigono-
metric identities.

E.2 THEoREM (Law of cosines). I;f the sides oJ a triangle have lengths a, b , and c.
and iJ 0 is the angle bet|een the sides with lengths tr and b, then

c2 : a2 + h2 - 2ab coso

Proo/. Introduce a coordinate system so that 6 is in standard position and the side oflength
a falls along the positive r-axis. As shown in Figure E.l6, the side of length a extends frorn
the origin to (a,0) and the side of length b extends from the origin to some poinr (jr, l).
From the definition ofsing and cos0 we have sind : ))/b and cosd : x lb, so

*' (i - a) : 'ne, t^"(i - e) : 
"ote

I: b sin d, r: &cosd

From the distance formula in Theorem D.1 of Appendix D, we obtain

62:1x-a)2 +(y 0)2

so that, from (33),

62 : (bcos1 a)z + bz sin2 e

= a2 + b2 (cos2 a + srn2 e) - 2ab cos e

:a-+b'-Zabcos9

sin(a * f) : sina cos d + cos d sin P

cos(q * f) : cos q cos p - sin cr sin B

sin(a f) : sina cos d - cos o sin B

cos(q F) : cos q cos F * sin o sin P

Figure E.l6

(3 3)

(34)

(35)

(36)

(31)

which completes the proof.

We will now show how the law of cosines can be used to obtain the following identities,
called ihe addition formalas for sine and cosine:

Figure E.l5



P2(cos B. sin P)

Figure E.l7
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We will derive (37) f,rst. In our derivation we will assume that 0 < B < u < 2r (Frg-
ure E.17). As shown in the figure, the teminal sides ofn and B intersect the unit circle at the
points Pl (cos cy, sin a) and P, (cos B, sin B). If we denote the lengths of the sides of triangle
OPlP2by OP:, P1P2, and OP2, then OP1 : 9p, = I and, from the distance formula ir
Theorem D.I of Appendix D,

(Pj P)2 - (cos B - cos a)2 + (sin B sin cr)2

= (sin2a +cos2a) a (sin2B 4 cos2B) - 2(coscrcosB * sinasinf)

- 2 2(cosacosp + sin<rsinfj)

But angle P2OPl - d - P, so that the law of cosines yields

(PtP)2 : @P)2 + @P|)'z - 2(oP)(oP) cos(a P)

:2 2cos(cy-B)

Equating the two expressions for' (P1P2)2 and simplifying, we obtain

cos(a F) - cos cv cos d + sin{1 sin B

which completes the derivation of (37).

We can use (31 ) and (37) to derive (36) as follows:
tn 1 f/r \ 'l

.in'r-r - Br - co'1, t(r 6r.l -c,-rsl( i-")- -nt1

- "n. 
It ol.n', 

/a \
\2 , P) 'in(2 cv)sinr P)

-.n.{t o).or, /tr \
,) , .'-rrn(j (y,\rnP

- sin cv cos d - cos o sin B

Identities (34) and (35) can be obtained from (36) and (37) by substituting -B for F and

using the identities

sin( B) : sin B, cos(-B) : cos B

we leave it for the reader to derive the identities

tan cv + tan p tan(v ta\1p
(38 39)tan(q + B) : tan(cr - P) -1 tanqtdnB 1+tan(1tanB

Identity (38) can be obtained by dividhg (34) by (35) and then simplifying. Identity (39)

can be obtained from (38) by substituting -B for B and simplitying.
In the special case where.y : p, identities (3,+), (35), and (38) yield the double-angle

formulas

(40)

(41)

(.42)

By using the identity sin2 a * cos2 a = l, (41) can be rewdtten ilr the alternative forms

cos 2a : 2 cos2 cv I and cos 2cv : I 2 sin2 a (43 44)

If we replace o by o/2 in (43) and (44) and use some algebra, we obtain the half-angle

fonnulas

sin 2o : 2 sin cv cos a

cos 2a : cos2 o - sin2 o

2tanq
tan2a = 

-

1 - tant cr

.a
2

I - coso- )cl,nd srn_ -2
1 + cosd (4s-46)
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We leave it for the exercises to derive the followingprodttct-to-sumformulqs from (34)
thrcugh (37):

I
sinocosB - ^lsinro -Br +\inrcy I B)lI

l
sinosrnB - .lco:ro pt-cosro+ptl

2

I
cosocosp: -fcosr.v Fr I co.ro adrl

I

We also leave it for the exercises to dedve the following szrz -to-product formulas:

. a-B o Bsina'rinF:2sin ^ cor'2)
^ oIP o'B

slnd-SlnP =lCOs ) 
.,n 

2

. ct-B o p
cos?TcO58 -2cO5 'cos'22

a,8 a-Bco\d-co\B = 2sin , sin ,

(47)

(48)

(19)

(s0)

(51)

(52)

(53)

FINDING AN ANGLE FROM THE
VALUE OF ITS TRIGONOMETRIC
FUNCTIONS

|,..\,
.4 t) ll\ 2 r

o

Unit c rc e

(cr)

f\ \0
o

Unit circ e

(r)

There are numerous situations in which it is necessary to find an unknown angle from
a known value of one of its tdgonometric functions. The following example illustrates a

method for doing this.

Example 6

Finddifsind-j.

Sohttiott. We begin by looking for positive angles that satisfy the equarion. Because sin 0
is positive, the angle 6 must ieminate in the first or second quadrant. If it terminates in the
first quadmnt, then the hypotenuse of AO,4P in Figure E.I 8a is double the leg AP, so

rt : 30" : 1 ,a,lians
6

If d terminates in the second quadrant (Figure 8.18r), then the hypotenuse of AOAP is
double the leg AP, so IAOP - 30", which implies that

5td-180'-30":150": radians
6

Now that we have found these two solutions, all other solutions are obtained by adding or
subtracting multiples of 360" (2iT radians) to them. Thus, the entire set of solutions is given
by the formulas

6=30' *n.360', n-0.1,2,...
and

9: 150" 1n.360', n -0,1,2,...
or in radian measure.

JI0 :)n 2t. ,-0, 1.2...
b

and

5tt
Figure E.l8
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ExERcrsE SET E

1. (a)'/5'

2. (a) 420'

In Exercises I and 2, express the angies in radians. In Exercises 15 ald 16, use the information to lind the exact
vo.ues ol the remrin,ne lrve r r igonomer ric Iunrrion\ u'd.

15. (a) cosd :1, 0.0."/Z
(b) cosd: ], -rl2<0 <0
(c) tand: -llJZ, ir/Z.O.tr
(d) tano: 1/^,/3, nl2 <0 <O
(e) cscr: J1, O <0.rlz
(f) csc6: J2, n/2.0.n

16. (a) sind -I, O<0 <ft12
(b) sind : \, ttlz.0 . tr

(c) cotd - :, O <e <nl2
(d) cotd - \, tr <0 <3r/2
(e) secd - ],,tl2<e<n
(f) secd: -], r<0 <3r'12

rb) .reO L, r 20 (dr llR'
(bJ 15 rc;225 Ld) 165

ln Frercr.e.3.rnd 4. expre'. the lngle. rn degree,.

1.5 (c)

2 (c)

3. (a)

4. (a)

rl15
r /10

(b)

(b)

8tr /5

2tt /5

(d) 3r
(.d) 7 r l6

In Exercises 5 and 6, llnd the exact values of irll six trigono-
metric functions of d.

(c)

l,
6. (a)

ln Exercises 7-12, the angle € is an acute angle of a right
triangle. Solve the problems by drawing an appropriate right
triancle. Do r?,,r use r caleul.rtot.

7. Find sin 6 and cos 0 given that tan d : 3.

8. Find sin 6 and tan 6 given that cos 6 : 1.

g. FtnJ rin d and c.cd piven that .ec,' - l
10. Find cot 0 and sec 0 given that csc 0 : z[.

11. Find the length of the side adjacent to d given that lhe hy-
potenuse has length 6 and cos d : 0.3.

12. Find the length of the hypotenuse given that the side oppo-

site A has length 2.4 and sin 6 - 0.8.

In Exercises 1 3 and 14, the value of an angle d is given. Find'
the values ofall six trigonometric functions ofd without using

a calculator.

13. (tt) 225" (b) -210' (c) 5zl3 (d) 3rl2
14. (a) 330' (b) -120' (c) 9rl4 (d) -3tt

(b)

ln Exercises 17 and

four decimal places

17. tx) tb) A,/t
t/' I,/' i'

.(*to I,z):::-*__-J I

18. (al

19. ln each part, let d be an acute angle of a right t angle.
Express the remaining flve trigonomet c functions in temrs

of a.
(a) sin 6 : a/3 (b) tano :4/5 (c) secd : a

In Exercises 20 27, find all values of d (in radians) that sat '

isfy the given equation. Do not use a calculator.

18, use a calculating utility to find r to

22. (^)

20. (a)

27. (a)

23. (a)

24. (a)

c<ts0: -1/Jl
ian0: -l
sin€:-j
tan? - 1/:E
sin0 - -1

(b) sinl: 1/",5

(b) cosg: I
(b) tan u : r/3

(b) sing : -/3/2
(b) cos € = 1
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25. (a) coid - -1
26. (a) sec6: -2
27. la) csc 0 :2/ ',6

(b) cotd : J3

(b) csc 6 - 2

(b) sec d : 2/ r/3

ln Exercises 28 and 29, find thc valucs ofall six tt igononetlic
fLrnctions ol d

As shown in the accompanying ligure, let r and a be the
radius of the base and the slanr height of a right circular
cone. Show that the lateral sudhce area, S, oi the cone is
S : nrL.lHint. As shown in the figure in Exercise 37, the
lateral surfacc of the cone becomes a circuiar seciol when
cut along a line tiom the vertex to the base and flatteled.l

Figure lx 38

39. Tlvo sidcs ol a trjangle have lengths of 3 cnt and 7 cm and
rneet at an angle of 60'. Find the arca of the tiangle.

40. Let A BC be a triangle whose angles at A and B are 30' and
,15'. If the side opposite the angle B has lengrh 9, find the
lengths of thc remaining sides and thc size ol rhe angle C.

41. A t0-foot ladder leans against a house and makes atr angle
of 67" with level ground. How far is the rop of the ladder
above the ground? Expless your answer to the nearest tenth
ol a tbot.

42, Froni a poirlt 120 l€et on level ground lion a building. the
angle of elevation to thc top of the building is 76''. Find rhe
height ol the building. Express your answer to the nearest
foot.

43. An obser-vel on level ground is at a distance d from a builcl-
ing. The angles ol elevation to the bottom ofthe windows on
thc second and third floors are a and p, respectively. Find
thc distance/? between the bottoms olthe windows in terms
of cv. B. and /.

44. From a point on level ground, the lngle of elevation to the
top of a tower is d. From a point that is d units closer to the
tower., the angle of elevation is p. Find the height ,4 of the
towcr in telms of cr, P, and d.

In Exercises ,15 and ,16, do r?.rt use a calculator.

45. Ifcosd - ] and 0 < e < r'L/2. hnd
(a) sin 26 (b) cos2d.

:2,where0<a<ttl2anrJ

(b) cos(d + B).

47. Express sin 3d and cos 3d in terms of sin 0 and cos d.

In Exercises 4E-5E, de ve the given identities.

cos d sec llzl8. =_-cos dl+rrnjo
cosetan0+sin0

49.

50.
hne

2csc20: sec 6 csc 6

38.

28. 29.

(-2!21.4)

30. Find all values of I (in ladians) such that
(b) cosrr : I (e) tand - I
(c) secd - I (f) cotd : 1.

(b) 150'

(a) sin d : l

(d) csc d = I

31. Find all values of 0 (in iadians) such that
(a) sind :0 (b) cosd :0 (c) tand - 0
(d) csc d is undefined (e) sec I is undefrned
(1) cot 6 is undelired.

How could you use ii ruler and protractor- to approximate
sin 17' and cos l7''l
Find the length oi the circular arc on a circle of radius 4 cm
subtendcd by an angle of
(.d) it/6

Find the radius of a circlrlar sector that has an angle ol z/3
and a circulal arc length of 7 units.

A point P moving counterclockwise on a circle of radius
5 cm traverses an arc length of2 cm. What is thc angle s\a'ept

oul by a radius liom ll're center 10 P?

Find a fornula for the area A of a circuiar sector in terms
ol its radius i" and arc lenStl'r.r.

As shown in the accornpanying llglLre. a right circular cone

is rnade fronr a c ircular piece ol papel ol'r'adius R by cutting
out a sector of angle d |adians and gluing the cut edges of
the ren]aining piece together. Find
(a) the radius r of the base of the cone in tenns of R and d

(b) the height/? ofthe cone in terms of R and 0.

32.

34.

35.

36.

37,

46. Ifrann - I and tanB
0<B<n/2,fi.nd
(a) sin(a - B)

Fi.qlrre Ex-37 51, tan d +cotA =2csc2e



53.

54.

55.

56.

sin 26 cos2e

- 

:.ec6
sind cosp

sin P + cos 2f, - I
= tana

cos I - sin 26
sin 39 + sin0 = 2sin2e cos9

sin 3A sin 9 = 2cos2e sine
d l-cos6 elan 57. tan - -2 sina 2

\ /7t
cos ( : +d) *cos{ : -d I = cos€\t / \J

sin 6

1+"^"rg
64.

62.

63.

65.

66.

Trigonometric Functions and ldentities A5l

/3n \ /lz \
(c) sin ( t - P,) tat cos (7 + e/

Derive identities (38) and (39).

Derive identity
(a) (47) (b) (48) (c) (49).

If A - d + B ard B =q -B.thena : j1e+r1 and

B = lA B) (vedfy). Use this result and identiries (47)
through (49) to deive identity

58.
(a) (50) (b) (s2) (c) (s3).

Exercises 59 and 60 refer to an arbitrary triangle ABC in
which the side of length a is opposite angle A, the side of
length , is opposite angle 8, and the side of length c is op-
posite angle C.

Prove: The area of a triangle ABC can be written as

2rg2 : jDc sin A

Find two other similar fbrmulas for the area.

Prcve the law of sines: In any triangle, the ratios of the sides

to the sines of the opposite angles are equal; that is,
abc

rirA = *rB 
: 

*tc
Use identities (34) through (37) to exprcss each of the fol-
lowing in terms of sind or cos 9.

Substitute -p for p in identity (50) to derive identity (51).

(a) Express 3 sind + 5 cos a in the form

C sin(a * {)
(b) Show that a sum of the form

Asinq+Bcosd

can be rewritten in the form C sin(o * @).

Show that the length ofthe diagonal ofthe parallelogram in
the accompanying iigure is

d:Ji+62*2.1'*rg

59.

61.60.

61.

r"r "m(i +e) rur *. (i + e)



THE REMAINDER THEOREM

ffi
APPENDIX ffi

Solving Polynomial
Equations

1n the subsection of Section 5.3 entitled A Brief Review of Polynomials, we reviewed
some ofthe basic ideas and terminology conceming polynomials. We will assume in this
appendix that you have read that material, ald we will also assume that you know how
to divide polynomials using Jong division and synthetic division. If you need to review
those techniques, refer to an algebra book.

When two positive integers are divided, the numerator can be expressed as the quotient plus
the remainder over lhe divisor, whele the remainder is less than the divisot. For example,

17.l
j-' j

If we multiply this equation through by 5, we obtain

l1 :5.3+2
which states that the numerator is the divisor times tha quotient plus the remainder.

The following theoreln, which we state without proof, is an analogous result for division
ofpolynomials.

F.l THF,oREvi. IJ pQ'l and s (x 1are polynomials, andifs(x) is not the zero polynomial.',
then p(x) cttn be ex1trc.s.sed as

2(ir) : s(it)4(r) + r(.r)

where q(x) and r(x) are the quotient and remainder that resuLt \then p(x)
s (x), and the degree of r (.x'1 is l.ess than the degree of s (x).

a

In the special case where p(x) is divided by a first-degree polynomial of the form ir c,
the degree of the rernainder must be 0, since it is less than the degree of ,r - c, which js I .

This implies that the remainder is a constant, say r. Thus, Theorem F.I implies that

p(;r) = (r c)q(x\.t r

and this in turn implies that p(c) : r. In sumrnary, we have the following theorem.

is dividcd by

l F.2 THEOIIEM (nemai detTheorem). IJ a pollnomiol p(r) isdividedbl .r-c,
: remainder is p(c).

then the a
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Example I
According to the Remainder Theorem, the remainder on dividing

p(x) = 2x3 +3x2 4x 3

byr+4shouldbe

p( l:2( 4)3 +3( 4)2 4( 4) 3- 61

Show that this is so.

Solutiott. By long division

x*42x3 +3x2 -4x 3

2x3 + 8x2

-)x'- 4r
5x2 - 20x

l6x 3

16.r * 64

-61
which shows that the remainder is -67.

Altentative Solutirn. Because we ale dividing by an expression ofthe folm x - c (where

c : 4), we can use synthetic division mther than long division. The computations a-re

=42 3 -4 -3
-8 20 -64

2 -5 16 -6-1

which again shows that the remainder is -67.

TojFnclor a polynomial p(n) is to wdte it as a product of lower degree polynomials, called

factors of p(.x). For.!(x) to be a factor of p(x) there must be no remainder when p(r) is

divided by ;(,r). For example, if p(x) can be factored as

p (.r) : s(.r)q(-r) (1)

then

p (x)

- 
4(\) 12)

.\ (IJ

so dividing p(r) by s(;r) produces a quotient 4(x) with no remainder. Conversely, (2)

implies (l), so .r(r) is a factor of p(;r) if there is no remainder when p(r) is divided by
r(x).

In the special case where,r - c is a factor of p(r), the polynomial p(x) can be expressed

AS

p(x): (x c)s\)
which implies that p(c) - 0. Conversely, if p(c) : 0, then the Remainder Theorem implies
thatr-cisafactorofp(x),sincetheremainderis0whenp(;r)isdividedby-r-c.These
results are summarized in the following theorem.

2x2-5x+16

F.3 THEoREM (Facnr Theoren). A poll,nomial p(x) has a factor x - c if and only if
p(c) = t).
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USING ONE FACTOR TO FIND
OTHER FACTORS

It follows from this theorem that the statements below say the same thing in differ.enr
ways:

. x-cisafactorof p(r).

. z(c) = 0.

. c is a zero of p(x).

. c is a root ofthe equation p(r) : 0.

. c is a solution ol the equation p(x) : 0.

. c is an .{-intercept of y = p(,r).

Example 2

Confirm that r I is a factor of

p(r):r3-3.r2-13ir+15
by dividing.r - 1 into p(-{) and checking that the remainder is zero.

Sohttion. By long division

12 2x 15

, 1[r: - 3"2_ 13r a 15

,r3 - l2
2-r2 - 1 3-r

-2x2 + 2x
l5.r * 15

- 15r * 15

0

which shows that the remainder is zero.

Altenntite Solution. Because we are dividing by an expression of the forrn :r - c, we
can use synthetic division mther than long division. The computatiots are

11 1 3 13 15

| -2 -t5
1 -2 15 0

which again confirms that the remainder is zero.

lf x - c is a factor of p(r), and il q(x) = p(x)/6 - c), then

p(x): (x - c)q(x) (3)

so that additional linear factors of p(r) can be obtained by factoring the quotient 4(.r).

Example 3

Factor

p(r) : 13 - 3,r2 - l3r + 15 (4)

completely into linear factors.

Solutiott. We showed in Example 2 that r I isafactorofp(r) and we also showed that
pr rr '1 lr =.r'' 2.r I5. Thus.

13 - 3"2 - 13-{ + 15 : (x l)(.r2 - 2x - 15)

Factoring.r2 2x 15 by inspection yields

13 3r2 t3.r + t5 = (x l)(r - 5)(-r -1- 3)

whichisthecompletelin9ar1actodZationofp(,t)'<
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A general quadratic equation r,r2 + b, t c = 0 can be solved by using the quadratic

tbrmula to express the solutions of thc equation in tern]s of the coeflicients. Vetsions of
this formula were known since Babylonian times, and by the seventeenth century fotmulas
had been obtained for solving general cubic and quartic equations. However. attenpts to

find fonnulas lor the solutions of general fifth-degree equations and higher proved lruitless.
The reason for this became clear in 1829 when the French mathenatician Evariste Galois
(l8l l-lll32) provcd that it is impossible to express the solutions o[a general lilih-dcglcc
equation or higher in terms of its coeflicients using algebraic operations.

Today, we have powerful computer programs lbr tinding the zeros of;pecific polynomi-

als. For example. it takcs only scconds for a computer algebra systen, such as M..tlrctlutico.
Maple, or Derive. to show that the zeros of the polynomial

p(,r) : lo,ta 23.r.r - lon: + 29.Y + 6

,t\'=-l- .r=-i. .r=:. ilnu \ i/

Ths algorithms that these programs use to find thc intcgcr and rational zeros o[a polynomial.

if any, are based on the lollowing theorem. which is proved in advanced algebra courses.

: l'.'l t-ttlotr:lt. Suppose thd

p(-r) - c,,r' +.,-r.r"-l * *cr,r*co
is ct pohnonictl with inlegar (be|rtcients.

(u) If r is tut integer :erc oJ pft). thett r nust be u tli|isor ofthe constutt tantt Lo.

(b) lf r - a/b is a rutiuu ..eto of p(,t) it thich dl conntonfactors of a utd b hate
heen canceletl- than ( nust be 4 diriso!'oJ lhe (ot$tattl lenrl co, and h ntusl lte a

tlivisor of the leading coelfi.ient c,,.

For example, in (5) the constant lerm is 6 (which has divisors + l. +2, +3. and +6) and the

leading coeflicient is l0 (which has divisors 4 I , {2. 45, and + 1 0). Thus. the only possible

integer zeros of /r(r) are

+1. +2. +3. +6

and the only possible noninteger rational zeros arc

+j -Ll.+,1;.ri.+1. -Ll. r,i +!
Using a computer, it is a simplc matter to evaluate l2(.t) at each of the numhers ir these lists

to show that its only zeros are the numbers in (6).

Example 4

Solve the equation ,rrl + 3.t2 - ?,r 2l :0.

Solulion, The solutions ofthe equation are the zeros ofthe polynomial

p(.i) : -rr + 3rr - 7.1 - 2l

We will look for intcger zeros Rrst. All such zercs must divide the constant tenll, so the

on)y possibilities are * l, 13, *7, and :l21. Substituting these Yalues into p(.r) (or using

the nethod of Exercise 6) shows that,r : 3 is an integcr zero. This lells us that r + 3 is

a factor ol p{ r I uncl tl'lilt pt.t t can be u rilten as

.rr + 3.r2 7x -21 = (.r + 3)./(,r)

where.l(i) is the quotient that results when.r3 + 3.rr - 7r - 21is divided by.r + 3. We

(5)

(6)
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leave it for you to perforn the division and show that 4(x) : 12 7; hence,

x3 +3x2 -7t 21 : (,r a3)(;r2 -7):(x+t)(.r +rt')6 -,0)
which tells us that the solutions of the given equation are r : 3, , - Jj -
x:-h= 2.65.

2.65, and

2.

ln Exercises 1 and 2, find rhe quotient 4 (r) and the remainder 10' Find all integer zeros of

r(,r) that result when p(;r) is divided by s(r). p(r) :,16 + 5r5 l6,ra 15rr l2-y2 - 38ir zl

1. (a) p(.ir) : ra + 3nr 5-r + l0; s(r) :12 , 1 2

(b) p(x) - 6ra + l0x2 + 5; s(x) : 3:v2 1

(c) p(:r) --I5 i x3 * 1; s(r) : -rr + x
(a) z(-r):2x1 -3x'+5x2+2.ri7; s(;r):.rr ril
(b) p(r) : 2,{s + 5i1- 4.rr + 8.r2 * 1;s (x) : 2y2 - ".. 1

(c) p(;c) : 516 + 4r2 + 5; .r(.r) :.rr + I

ln Exercises 11-15, factol the polynomials completely

r In Exelcises 3 and 4, use synthetic division to find the quotient

4(-i) rnd the renrainder,. that result when p(r) is divided by

3. (a) p(x) - 3r3 4,r 1; .r(r) : iv - 2
(b) p(x) ::ra - 5r2 + 4; .r(x) : -r + 5

(c) p(.r) :1j - l; s(,t) : r I

4. (a) p(x) :2x3 - x2 - 2.t * 1; s(r) : x - I
(b) p(x) : 2n1 + 3-r3 l'7 r2 27x - 9; s(.r) - jl + 4
(c) P(x) - x] * 1; .r('r) :r - I

5. Letp(r) :2r1 +x3-3x2+x 4. Use synthetic division
and the Remainder Theorem to find p(0), p(l), p(-3), and
p('7).

6. Let p(r) be the polynomial in Example 4. Use synthetic
division and the Remainder Theoretn to evaluate p(,r) at

r - *1, 43, {7, and {21.

7. Let p(x) : .r3 + 4-r2 + r - 6. Find a polynomial 4(.r) and
a constant r such that
(a) r(x) : (x 2)q(x) i r
(b) p(,t) : (.r + 1)4(') + r.

8. Letp(:r)-a5 l. Find apolynomialq(r) and a constant
/ such that
(a) p(.t) : (.r * l)q(r) + r
(b) p(.r) : (_r - t)4(.r) + r.

9, In each parl, make a list of all possible candidates fbr the
rational zeros of p(r).
(a) p(x):x7 *3r3 x F24
(b) p(r) : 3r4 2.r2 + 7.{ - 10

(c) p(x) :;vr5 - 17

In Exercises l7 21, find all real solutions ol the equations.

17. ,rr + 3r2 * z1.r * 12 - 0

18. 2,rl 5x2 - 10-r + 3:0
19. 3ra + 1,113 + 14;12 - 8,r - 8 = 0

20. 2x1 x3 - 14x2 5x + 6: {)

21. rs -2l - 6.y3 + 5rr -F 8.r i t2:0
22. For each ol the equations you solved in Exercises 17 21,

check your answer using a CAS.

23. Find all values of k fol which -r I is a facror. of thc poly-
nomial p(r): t2,r3 7t-t * 10.

24. Is I * 3 a factor oi -r? + 2187? Justify your answer.

25. A 3-cm-thick slice is cut from a cube, leaving a volLrme
of 196 cm3. Use a CAS to nnd the lensth of a side of rhe

original cube.

26, (a) Show that there is no positive rational number that ex-
ceeds jts cube by L

(b) Does there exist a real number that excceds its cube by
1? Justify your answer.

27. Use the Factor Theorem to show cach ofrhe iollowing.
(a) r - ) is a factor of -r" - )' lbr all posirive integer values

ol n.
(b) 'r + l is a lactor of .t" ]j' for all positive even integer

values of /?.

(c) -r + ] is a tactor ofx" i f' for all positive odd inreger
values of ,?-

11. p(-t) - ;3 - 2x2 .t 12
12. p(r) :3xt + 12 12r - 4

13. 2(:r) : .r4 1 l0rr + 36i2 't 54t i 2'7

14. pG) :2xa + 13 19x2 + g

15. 2(-r) : x5 + 4-{1 - 4.rr 34i2 - 45x t 8

E 16. For each of the factorizations that you obtained in Exercises
I l- 15, clteck your answer using a CAS.

tr

EI



APPENDI- M
Selected Proofs

An extcrlsive excllffiion into prools of limit theorens would be too time coDsuming to
PRo^oFs.of BAslc LIMIT undertake, so we have selected a few proofs of results from Section 2.2 that illustmte some
THEOREMS

of the basic ideas.

(;.1 THfoRLNl. Let k be tt constant, (nd sLLppose tltat.11",.fG) : Li and that

)im,B(.x) : Lz. Then

(., 
.lim,fr =t

(D) Iim t/(r) + 3(r)l : lim /(r) + lim 8(r) : ar + l,
(c) linl./(r)g(,i)l - lim /(:r) lim s(.r): 11L2

Pro|f (u). We will apply Dehnition 2.3.3 with "/(.r) = t and L :.t. Thus, given € > 0,

we must nnd a number 6 > 0 such that

L& tl <e if 0< r c <E

or equivalently,

0<e if 0<,t a <3

But the condition on the leil side ofthis statement is alirdl.t true, no matter how d is chosen.

Thus, any positive value fbr 3 will suffice.

Proof \b), we must show that given < > 0 we can find anumber3 > 0 such that

(,/(r)+g(r)) - (.Lt ILz)l <e if 0 < r-a ... d (r)

However, fron'r the limits of / and g in the hypothesis of the theorem we can find numbers

61 and d? such that

l./(,r) Lt <€12 if 0<lx-d <d1

ls(-r) Lzl .</2 if 0< x-o.<32
Moreover, the inequalitics ol'l the left sides ol these statements bollr hold if we rcplace ,1

and ,52 by any positive number 6 that is less than both dr and 62. Thus, tbr ary such 6 it
follows that

l"f(r) rrL+ g(r) L2 <e if 0<lr cL <3 (2)

However, i1 lbllows from the triangle inequality [Theorem 1.2.2(d)] that

(l(x) + s(r)) (Lt I Lz) : (f(x) Lr) + (8(-r) - a:)
. l/(r) l,rl * c(,{) Lzl

so thal (1) follows from (2).
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PROOF OF A BASIC CONTINUIW
PROPERTY

I' roo.l lc ). Wc must show that given e > 0 we can fi nd a number 6 > 0 such that

l./(.t)g(.r) - LtL:l< € if 0< l.r-rrl <6 (3)

To find 6 it will be helpful to express (3) in a different ftxm. If we rewrite /(r) and I ('t ) rs

/(.r) : Lr + (/(.r) lr) and g(r) : t: * (8(r) Lt)

thcn thc inequ lity on the left side of (3) can be expresscd as (verify)

Lr(s(r) - Lr) + Lr(.f(x) Zr) + (.1(,r) - lr)(.s(.r) Li < e (4)

Since

lim /(r) = 1., nn6 lini,3(:t): l:

we can lind positive numbcts 61, ,2, Jt. and 64 such that

l.f(x)-Ll<JeE if 0< I.r al <dr

l/(r) L <- 
( 

- 
if {)<.r' ,rl <6:

Jr I L:1, 
(5)

le(r)-L2l<J;E if o<lr-al <6r

g{.r) L:l < . , 1- if {) < l.r o <dr
,j(I + L tlJ

Moreover, the inequalities on the lefi sides of these four statements c11 hold if we replace

dj , 62, d;, and dq by any number 6 that is smaller than dr, 6:, 6r. and 6r. Thus, fbr any such

, it follows with the help ofthe t anglc inequality that

tr(s(x) - L) 4- Lz(.|(.r) Lt) + (JG) Lr)(g(x) Lz)

< lLr(g(r) - L:)l + ll.z(l(.t) rr)l + l(/(r) - Lr)(g(x) - L:)l

: lLl lls(,r) - r:l + lL:ll.l(.r) rrl + l./(x) - lrlle(r) Lzl

< llrl_ | ll,l_ + \/t /3\/(/.4 F"rn,5.' '.r1r + lLr l) Lrl.r( 
| t lr-,1) 

+ \t '/ J\/ €/ 
"1

< llrl , t ll:l , (

3l- Lrl .1 I ll:l .r

eteIL. t. j F-l=o .,"."i,.,,.'unui., ,-. ,

which shows that (4) holds for the 6 selected. I

rr NL\ltK. Do not be alarned if the proof of pan (c) seems difficult; it takes some expe-

rience with proofs of this type to develop a f'eel lbr choosing the right d. Your initial goal

should be to undcrstand the ideas and the computations.

Ncxt, we will prove Theorcm 2.4.5 tbr two-sided limits.

. (;.2 rr{EoRt,Nl (:rtrcorcn 2.1.5). {/ }1t st,t) : L and if tlrc firnction f is (:ultinuoLts

: ut L. then lim l(g(.r)) =J(L);thatis, lim /(g(x)): /(lim g(.r)).

/)'rml. We rnust show tha( given € > 0, we can find a number d > 0 such that

.l(g(r))-.1(L)l <€ il 0< l.r-r'l <6

Since f is continuous at L, we have

,lirn. /Qr) : l(r)

(6)
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and hence we can find a number 31 > 0 such that

lf(u) - f(L)l < e if lu ll . 0r

In particular, if z : g(x), then

l"f(e(")) - /(r)l < e if e(.r) Ll . 6t

But,lim 8(,r) : Z, and hence there is a number 6 > 0 such that

g(x)-LJ <31 if 0<;r c <6

Thus, if "x satisfies the condition on the right side of statement (8), then it follows that g(.x)

satisfies the condition on the dght side of statement (7), and this implies that the condition

on the left side of statement (6) is satisfied, completing the proof. I

Next, we will prove the chain rule (Theorem 3.5.2), but first we need a preliminary result.

G.3 THEOREM. If f is differentiable at x and if y - f(x.), thetu

Ay://(x)AxleA-r
where e--+0 as A.r-->0 and e :0 f A;r:0.

(7)

(8)

( 10)

(l l)

Proof , Defi.ne

[ .f\x + Lx) - flx)
.- l'--- o;- - 't't."

Io
If An + 0, it follows from (9) that

if Lx lO
ifA;=0

(e)

e Lx : lf(x + ar) - /(x)l - f'(x)Lx
But

Ly: f(x + A-r) - /("x)

so (10) can be written as

e Al: Ay f '(x) Lx

OI

Ly: ft(x)Lx ieLx (\2)

If Ax : 0, then (12) still holds (why?), so (12) is valid for a1l values of Ax. It remains to
show that e -+ 0 as A.x > 0. But this follows ftom the assumption that / is differentiable
at x- since

lim <: Iim IAr-0 Ar-01
f(x+Lx)-f(x)

A;r - /'(")] : f'(x) - f'(x) -o I

We are now ready to prove t}le chain rule.

G.4 THEoREM (Theoren 3.5.2). If g is diferentiable at the point x and f is differ-
entiable at the point g(x), then the composition f o g is differentiable at the point x.
Moreover, if y: f(g(x)) and u : gQ), then

dy dy du
rlx du dx
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Prool. Since g is differentiable at r n1d a : g(x), it follows from Theorem G.3 that

Lu : g' (x) Ax + €r\x (13)

where e1 --+ 0 as Ax + 0. And since y : /(r) is differentiable at u = g(x), it follows from
Theorem G.3 that

Ly = ft(u) L,u -l e2Au

where e2 --+ 0 as Aa -+ 0.

Factoring out the A& in (14) and then substituting (13) yields

Ay : [/'(r) * ez][g/(x)Ax * e rA.r]

or

(14)

Ay :[ft(u\ ! e2]l9'@) l eia.x

or if A.r I 0,

Av
i,: Lf'@\ + qlle'(x) + (rl (ls)

But (13) implies that Aa -+ 0 as Ax -+ 0, and hence €l --+ 0 and €2 --r 0 as Ax --+ 0. Thus,
from (15)

Av
oliTo * : f'(u)e'G)

or
dy
E = I \u)g \x): dy.du

du dx

PROOF THAT RELATIVE EXTREMA
OCCUR AT CRITICAL POINTS

In this subsection we will prove Theorem 5.2.2, which states that the relative extrema of a
function occur at critical points.

G.5 THEoREM (Theoan 5.2.2). If a function f has any reldtive exftema, then they
occur either at points where f'(x) = 0 or at points where f is not diferentiable.

Proof. T\ere are two possibilities----either / is differentiable at a point xe or it is not. If
it is not, then.r0 is a critical point for / and we are done. If / is differentiable at.r0, then

we must show that if'(.xo) = 0. We will do this by showing that f '(xs) > 0 and /'(xo) < 0,
from which it follows that /'(xo) : 0. From the definition of a derivative we have

/'("0) : ;rnl
f(xo+h)- f(xo)

so that

f'(ro) : lim
,+0+

and

ll^a+h)-fQ.o)I (-\^): llm,-0- h

Because / has a relative maximum at r0,
which /(.r) < /(.16) for all x in (a, b).

h

.f (xo + h) - f(xo) (t6)

( 17)

there is an open interval (a, D) containing .x9 in

Assume that h is suffrciently small so that r0 + ft lies in the interyal (a, ,). Thus,

f(xo+h) < /(r0) or equivalendy, /(xo + h) - .f(xo) 
= 

0
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Thus, if lr is negative,

f lxa'l h) - f t.x
>(,

h-
and if i is positive,

f(to*h)- flx

- 

<{,
h-

But ar expression that never assumes negative values cannot approach a negative limit and
an expression that never assumes positive values cannot approach a positive limit, so that

(18)

(1e)

/'(ro): r\T
and

.f (xo + h) - .f (xo)

h

f(xo+h)- f(xs)

From (17) and ( l8)>0

<0.f'(ro): h+0+ h

Proof. We need only show that I br corverges when I a1 converges and that I b7,

diverges when I a7. diverges, since the remaining cases are logical implications of these
(why?). The idea ofthe proofis to apply the comparison test to I dn and suitable multiples
of I b1. For this purpose let e be any positive number. Since

_. Ak
n: llm' *_+- b*

it follows that eventually the tems in the sequence {ar/r}i must be within € units of p; that
is, there is a positive integer r< such that for tr ; K we have

4kp-€<-<p+€

In pafiicular, if we take e - p/2, thelfor t > K we have

lak 3 13
tp .;. ap ot 

tpbk 
< at < 

tpb*
Thus, by the comparison test we can conclude that

lim From (16) and (19)

PROOF OF THE LIMIT
COMPARISON TEST

Since /'(xo) > 0 and /'(x6) < 0, it must be that /'(xo) : 0.

G.6 THEOREM (Theorcn 11.6.4). Let la1, and lbp be a series with positive tetms
and suppose that

-. Ak
,= llm 

-' k-+- bk

If p is.finite and p > 0, then the series both converge or both diverge.

) :Pr& converges jf

\- 1ob, diverses if

) ak COnVeIgeS

_:_
Lor diverges

(20)

(2r)

But the convergence or divergence ofa series is not affected by deleting finitely many terms

or by multiplying the general term by a nonzero constant, so (20) and (21) imply that

I Di. converges if far converges
k:1 k:1
?L
lb, di'erges if fat diverges
t=l t=l
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PROOF OF THE RATIO TEST G.7 THEOREM (n eoremii.6.s), Letlup be a series with positiye terms and suppose
that

o: 1i- 1111' k++- uk

(.a) If p < 7, the series converges.

(b) If p > l or p :1cx' the series d.iverges.

(c) If p = l, the series may corwerge or cliverge, so that another test must be tried.

Proof (a). The number p must be nonnegative since it is the llmit of u1,a1f u1, which is
positive for all &. In this part of the proof we assume that p < 1, so that 0 : p < 1.

We will prove convergence by showing that the tems of the given series are eventually
less than the terms of a convergent geomeftic series. For this purpose, choose any real
number r such that 0 < p < r < 1. Since the limit of uut / u r is p, and p < r, the tems
of the sequence {u *+t /u i must eventually be less than r. Thus, there is a positive integer
r( such that for f, : f we have

uk+t <r Of URtt <fqt,
Uk

This yields the inequalities

AK+\ < rUK

uK+2<ruK+t<r2uK
LIK-\ < ruK,2<t3uK ,))r
UK+1 < ruK+3 < r4UK

:

But0<r<1,so
ruK+r2uK*r3uy1...

is a convergent geometdc sedes. From the inequalities in (22) and the comparison test it
follows that

uyyl l uy12 f ur+: *. ..

must also be a convergent series. Thus, l.r I * uz * uz + ... I ut +. ..converges by The-
orem 11.4.3(c).

Proof (b). In this part we will prove divergence by showing that the limit of the general
term is not zero. Since the ltmrt of uut/up is p and p > 1, the tems in the sequence

{rt+t/utj must eventually be greater than 1. Thus, there is a positive integer K such that
for&>Kwehave

-r>l or ukl>uk
Uk

This yields the inequalities

uK+1 > uK

uK+Z>UK+l>UK
uK.t>uK 2'>UK r?lr
UK+4 > UK+j:> UK

:

Since K > 0, it follows from the inequalities in (23) that rlim- &r I 0, and thus the series
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ur + u2 + . . * u* + . . diverges by part (a) of Theorem 11.4.1. The proof in the case
where p : +oo is omitted.

Proof (c). The divergent harmonic series and the convergent p-series with p : 2 both have
p : 1 (verify), so the mtio test does not distinguish between convergence and divergence

when p: 1. I

PROOF OF THE REMAINDER
ESTIMATION THEOREM

G.8 THEOREM (rneoren 11.93). If the function f canbe differentiated n + 1 times on
an intenal I containing the point x(), and iflf("+1)Q)l I M for all x in I, then

M
lR-(x)l < _la _ a^ ri,'-(r+l)!'

forallxinl.

Proo;f. We are assuming that / can be differentiated n + 1 times on an interval 1 containing
the point no and that

lf d1+1) 6)l < M

for all ,r in 1. We want to show that
M

lR,(x)l = tn a 11 
l" - *s "'

for all ;r in 1, where
, r(t), -- ,

Rntxr : .[txt- | 
J,t'o'," 

-",]t(
EJ K!

In our proof we will need the following two prcperties of Ra(x):

R,(xe) : R/110; :... : R(')(ro) : 0

Rl,'+t)(r) = /o+1)(;) for all .r in 1

(24)

(25)

(26)

(27)

(28)

These properties can be obtained by analyzing what happens if the expression for Rn("r)
in Formula (26) is differentiated j times and r0 is then substituted in that derivative. If
j < n, then the jth derivative of the summation in Formula (26) consists of a constant term

l0)(r0) plus terms involving powers of r - rs (verify). fhus, Rji)(r6) : 0 for j < a,
which proves all but the last equation in (27). For the last equation, obserye that the 7?th

derivative ofthe summation in (26) is the constant /(n)("16), so Rj')(-ro) : 0. Formula (28)

follows from the observation that the (n * l)-st derivative ofthe summation in (26) is zero
(why?).

Now to the main pafi of the proof. For simplicity we will give the proof for the case

where r 2 r0 and leave the case where r < ,r0 for the reader. It follows from (24) and (28)

that Rf;+l)(r) 
= 

M, and hence

-M<R['+t)@)<M
Thus-

[^ -r0,. [' p';-t'1r1at. [' ua,t," -t^" " J,"

Howeveq it follows ftom (27) that Rf;)(xo) : 0, so

I a;*t'rrtar- n,''trr'l : Ri'rxt
J ^a 1,.

Thus, performing the integrations in (29) we obtain the inequalities

M(x -x1). R9) Q) < U(x xo)

(2e)
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Now we will integrate again. Replacing x by I in these inequalities, integrating from x6 to
r, and using Rf; r)(-ro) : 0 yields

MM
-'lt.t - xot2. Rl'-r'txr I 11-r -xs.)22--

If we keep repeating this procass, then after r? integmtions we will obtain

M ., M
'{-{--\n)'r'< R-tx) 4 

-11 
-1-^1'+l(n+l): -1nlJ;l "

which we can rewrite as

M
lR"(x) < _(x xo)'*

(,? + l)l
This completes the proof of (25), since the absolute value signs can be omitted in that
formula when x - .{0 (which is the case we are considering). I



ANSWERS TO
ODD.NUMBERED EXERCISES

) Exercise Set for lntroduction (Page 12)

r. (u).,,4 (b) f G) if (d) #
3.,a, ' ;. !;(- ; i) 'l - (b,--(- ,+) ,c,-o rd)":(i,'::) s. r r4rb,vd.hrn,:10418

7. (a) + : 0.636363... : ff + * + # + rfu +,uu*a+ -fto +
rb) 8 

-0.24)4'4
(c) ; : 0.416666. . . - * + -- + # + nh +,oo*a +,ooo*! + 9. (a) 2.6458 (b)7.0711

> Exercise Set 1.1 lPage 221

l. (a) 1943 (b) 1960;4200 (c) no, you need the year's population (d) war, marketing

(e) oews of health risk, social pressure, antismoking campaigns, increased taxation

3. (a) 2.9, 2.0,2.35.2.9 (b) none (c)0 (d)-1.75:ir:2.15 (e)r*-:2.8atx: 2.6;1,.i,,: 2.2atx:1.2
5. (a)2,4 (b) none (c)r 

= 
2;,1 :ir (d));,rn: 1:no maximun1

7, (a) no; war, pestilence, flood, earthquakes (b) decreases for 8 hours, takes ajump upward, and repeals

9. (a) l, : r { 2000/x (b) :r > 0; r must be smaller th:rn the width of the building, which was not given.

(c) r2o (d)89.44 ll. (a)r-3.4,n- 13.8

(b) taller

(c) r" ^:3.1,/? = 160,C ^. 1.'76

> Exercise Set 1.2 (Page 33)

I. (a)-2; 10:10,25;4:27t1 2 (b)0; ,l; -4:6:2.,8; f3t):ll3tfort > l and f(3/):6r for t 5 l

3. (a)*#3 (b)r 1-rl3,r >J3 (c)( -,+-) (<l)x l0 (e),t l(zn+l)r,n -0.*1,*2,...
5. (a)x:3 (b) 2:J:2 (c)n-0 (d)allr- (e)allr 7. (a)yes (b)yes (c)no (d)no

q.r-lrl .o.Fr ll. +/, l.r. [2^ tl. r.0 15. (a)y 18 2'\rl5 2r)r

hrara r\ {ar /,rr 
la,_ r. i _:u (b) , \ ,
[, 2, tr.O rc)0.r'4

(b)q(rl: I l. 0:r<l
lz:l l, r:t

17. (i);r : 1, -2 (ii)s(x):x* l,allr 19. (a)25'F (b)2"F (c) 15"F 2l. s"F 23. D(t):1000 20/
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) Exercise Set 1.3 (Page 45)

l. (e) .1. (b), (c) s. [-3,3] x [0, s]

l-1. f-1000, 10501 x l-1500000, 100001

10000

e. l-s, l4l x f-60,401
ls. t 2,21 xl-20,201

I l. l-0.1,0.ll x [-3,3]
re. (a) /(i) : ^/16=7

(b) /(r) : -v'i- lr
(e) no

.15. 4.6455. -0.6455

- r500m0

> Exercise Set 1.4 (Page 571

l. (a) +) (h)

l. (a)

5

2

ll-

l9_

t2

21. )i

-l.5

'o',. _ Io.' 
[2.,.

0

-r:0
-r>0

.15. (a) 3

(b) 9

(c) 2

(d) 2

-t7.

-19.

45.

(a)rr+l (b)r:+4r+5 (c);r']++x+s (a)1+t @)x2 +2.xh+hl al (f)rr+l (g)r+l (h)9nr + l

2I2-2xl l,all.r;4x2+2r,all,r :ll. I r,-r 
= 

ll.,/l -.rr,.r =l 13.,f2r., *).r,-*- j,r*0,,
-r 6+l 17. (a)g(r):Jr,h(.x):r+2 (b)g(r): .rl,i?(x):-r2 -3r+5

20

M
0

ltFr
t+-\=l
-l

2

M
-2

l-1.

'm."\=Fl,'m'
to

l -i. 2 17. ro l2

=t tt 
-[l DI),r'ln-J

)1

-l l. 12 + 2r + l, all -r:

2r -,tl - I, all r;
2rr + 2,r, all,r I

2rl(-rr + l), all -r

.r:. :.,4 - r,.r 2 t;
../I t,x 2 l;
2.r-2,xal]'
2.x>l



19.

51.

53.

Answers to 0dd-Numbered Exercises 467

(a) s(x) : -,c2, tr(r) : sinx (b)ge):3lx,h(x):5+cos:r
(a)/(r)-:s3,g1j,r;-l*sinr,}(x):r2 (b) 

"f(:c) 
: 

",', C(.r) : 1 x,h(x\: f1

3 -2 I 0 1 23
.f(,x) 5 I 0 I 5

57. +2 59. 6x +3h 61. I
.r (r * fi)

3 10 I )1
f(.r) I -t 0 I 5t

63. (a) origin

(b) ; axis

(c) )-axis
(d) none

6s. (a)

67. (a) even

71. (a) )-axis

73. 2 77. (^)

(b)

(b) odd (c) odd (d) neither 69. (a) even (b) odd (c) even (d) neither (e) odd (f) even

(b) origin (c) r. axis, y axis, origin

(b) 79. yes; f(x) : x*,,q(r) = r"

) = "f(s(r))

> Exercise Set 1.5 (Page 7t)
l. (a) -], -l8r, ? 0r) y"r f. III < Il < IV < I

5. (a) The slopes are equal; the points lie on the same line.

9.

19.

25.

29.

3.1.

(b) The slopes 1,3, 1 are not equal; the points do not lie on a line. 7. (a)ta $)-]
f 11. (a)1s3. (b)45" (c)117. (d) 39" l.r. (a)60. (b)117. 15. ;r,: -21 14 r7. y:1x+7
1:-l;r+6 21. y:lla 18 2-3. (a) parallel (b) peryendicular (c) parallel (d) perpendicular (e) neirher

(a)y:Jr-3 (b)y=-J-,r 27. (a)*rils (b) 4 (.) -2.2 (d)T,
(a) l frls'? (b)!=-1r+t tc), = t ttl, f,r. (b) ,acm/s (c)ficm/s
(a) 0 mi/h (b) 48 mi/h (c) 240 mi

(a) +l -37. (a) -v : r/9
r00

y=1.2x+2 11. (a)rc= trq, -32) (b); (c) -40" (ForC) (d)37.

(a) r = 0.0125/ + 0.8 (b) 64 days

(a) ct:2x,c2:25 + (xl4) (b)x: 15 49. (a) 11 - 181

(c) The Universe would be even older.

(b) [lor if 05r<10
,=ltoo if 10<r<roo

Iooo - s, ;t roo: i : rzo

(c) 26.1I in

(d) 135 rb

39.

45.

47.

43. (a) p = 0.098' + 1 (b) 10.20 m

C
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> Exercise Set 1.6 (Page 89)

l. (a) J' = 3r +, (c)

(b))':3-t+6
3. (a)1=rri+2

(b)r, = -* t2
(c)

7. )-+:y'o-'i

t = l.5r + 2

(a) slope: I (b) i -intercept: l' I

r'= I

(c) pass through (-4. 2) (d) .r -intercept: -r : I

l = 1.5(r +'1)+ 2

r = (\+:1)+2

.\=2(-r+4)+2

r=(! l)

lt.

l-1.

t=1.5(r+4)+2
(a) VI (b) IV (c) III (d) V (e) I (f) ll

l(l 60

(c)

I

(b)'"',m,'fnl' rs(a)

(b)

2

aT-=l
l=W"1
v)=________-)

2

M
0

Fl,''ffi,''.ffi,
0

(b)

.ffi].,,l[1,

17. (a)

50
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r-L /)IH FI
30 -ro

27. ({) t : 0.000045 N.mr 29. (a) II: ,\. = l..r = - l. 2

(b) 0.000005 N (b) I: r. = 0, .\ = -2. 3

(c) t,/ rc, lV: \ = 2
0 00n0 !t

I (d) lll: r = 0..t = -2
l)00000h H

I
0 rlI'n004 fl
o uuuw: L \l\* .rr5t(J

(d) The fbrce becomes infinite:
the force tcnds to zero.

-1.5 1

21. t :0.445J4 1.5

25. (a) newton-meters (N.m)

(b)20N m

(c) V'1, nl5 0r 1.0 { j.u

f'\ r:' EU' )ui a,'. ', ,n 0 \ 1 0 U l0'
(d)

I l. Order the six trigonometric functions as sin, cos, lan. cot. sec. csc: (a) pos. pos. pos. pos. pos, pos

(b) neg. zero, undefined. zero, undefined, neg (c) pos, neg, neg. neg. ncg. pos (d) neg. pos. neg. neg. pos. neg

(e) neg, neg, pos, pos, neg, neg (f) neg, pos, neg, reg. pos, neg

-l-1. (a)usesin(n - j)=sin.r;0.588 (b) use cos(-.r) = cosr:0.924 (c)usesin(22+_y): sin_r;0.588

(d) use cos(zr - r) : -cos.ri 0.924 (e)usesin2-r:2rin.rr,/t -.in\;0.95t. (f)usecosr.r =l-srn:.r:0.654
.15. {a)-4 tb}b {c)-{ tdr t,/t -n- rer /, tf )-./ tgl l'2h,ft - b: (h.).2^ I

(i)tlb (j\-1/a (k\tlc (t) (t b)12 -1?.80,e36km

-39. Thesecondquarterrevolvestwice(720')aboutitsowncenter. Jl. (a) ,r = 3 sin(,r/2) (b),i:4cos2r
,1.1. (a)y=sin[.{+(i/2)] (b) r : 3 + 3 sin(2.t/9) (c)r:r+Zrr"[z(r-])]

(c) .i : -5 sin4x

{7. (b)A: Jfi1V,e:ran '(A)t^\

t_

Exercise Set 1.7 (Page lOOl

I

5

I

0

(c) rl) 23
t1
34

5

4

6

6

5

4

3

(a)

1234

l'12
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l5

13.

19. (a) IV
(b) rr

(c) v
(d) vr
(e) III
(f) r

): -5sint, 0<, 15. x:2, y:t L7. x:t2, ):/, -1 :t51
21. (a) (b) (c) t - o,zJj

(d)o<t <24
(e) 2

Y-Yo 27. (b) i (") i)r -)oy=-2+6t
Y-4 6t

5

33. 35. (a) , :4cos t,

):3sint
(b).{: -1 +4cos/,

y:2+3sint

37. (a) x:41}^fzt,
y:4oOJ1t-4.9t2

(b) 16,326.53 m

(c) 65,306.12 m

41. (a)

t 0 I 2 3 4 5

0 5.5 8 4.5 8 32.5

) I 1.5 3 5.5 9 13.5

31. (b)

39. (a) ellipses with fixed centet varying axes of symmetry

(b) (assume a I 0, , I 0) ellipses with varying center, fixed axes of symmetry

(c) circles ofndius 1 with centers on line ) : x 1

> Chapter I
t. 1940-1945 s. C :5a2+(64/x)

Supplementary Exercises tPage 1031

15.

9. (a) V : (6 - 2x)(5 - x)x
(b)0<.x<3
(c) 3.57 ft x 3.79 ft x 1.21 ft

17. (a) odd

(b) even

(c) neither

(d) even

11. no solution 13. 1/(2 - f) 4 -3 -2 -l 0 2 3 4

"f(") 0 l 2 1 3 ,l 4 -4

8(.r) 3 2 1 3 I 4 4 2. 0

(f.8)(, 4 -3 -2 l l 0 2

G.,D(O -1 -3 4 4 I 0 3

(b) 295.'12fr 2r. C: (2.09M,1.9132); D: (4.1888, 1.2284); B: (-2.0944, -t.9132): A: (-4.1888, -1.2284)
(a) circles ofradius I centered on the parabola y : 12 (b) parabolas that open up with vertices on the].jlre y : a/2

t9.

23,



13. (a)

1e. d : JG - l)'+ (Jr 2),;

r : 1.358094

Answers to Odd-Nurnbered Exercises A7l

-l l. 0.48 fr

(b) 3'F, 11"F, -18.R 22.F
(c) r : 35, 19.12,7 milh

0.'7245

50

a. x -:: L220'7;

(b) about l0 years

(c) 220 sheep

-35. (a)

-1.0551 = 
)":1.1902

(c) For large / the velocity approaches c.

(d) No, but it comes arbitralily close.

(e) 3.013 s

37.

39_

> Exercise set 2.1 (Page 124)

l. (a) I (b)3 (c) does not exist (d)l (e) I (f)3 -1. (a) I (b)l (c)l (d)l (e) o (f)+-
5. (a) 0 (b) 0 (c) 0 (d) 3 (e) +- (f) +- 7. (a) - (b) +6 (c) does nor exjst (d) undefined (e) 2 (f) 0

9. (a)-' (b)-@ (c) @ (d)l (e)l (f)2 ll. (a)0 (b)0 (c)0 (d)0 (e)doesnotexisr (f) does nor exisr

lf. lbr al]r0 + -4 t5. (a) At jr = 3 the one-sided limits fail to exist.

(b)At-r: 2 the two-sided limit exists but is not equal to F ( 2). (c)At:r = 3 the limitfails to exist.

tZ. (a) j (b) +6 (c) - 19. (a) 3 (b) does not exist 21. (a) r, = 2 (b) 1, : 20.086 (c) no ho zontal asymptote

sinr r-l
.2-1. {a) lim ""' rb, lim ' ' (c, lim (l , 2r,

-o a 0 -rT] o

I l+(1/r). r <0
25. (a) f(r) : {' l-l +(l/r) r:o (b) yes: f(r) : (sinr)/.t

29. (a) catastrophic subtraction when the r interval is smal1 (the size depending on the calculating utility). (c) no.

> Exercise Set 2.2 (Page 137)

l. (a) 6 (b)13 (c)-8 (d)16 (e)2 (f)-1 (g) The denominator tends to zerobutrhe numerator does not.

(h) The denominator tends to zerobutthe numerator does not. 3. (a)? (b)-3 (c)z (d)-6 (e)36 (f) - 5.0
8 9. 4 11. -i 13. : 15. 0 t7. 0 19. ./5 2t. lllG n. \5 2s. +a 27. does nor exisr7.

29.

19. (a) 2

(b) 2

(c) 2

31. +@ f3. does not exist 35. +@ 37- -e 39. -+ 41. 6 il3. +-
51. (a) 3 (b) 5-1. fa) Theorem 2.2.2fd) doe\ nor appl).

/t l\ /r-l\(b) lrr | ,l lim | |.0 \Y \ / .0 \ Y ,/

59. a/2 61. ,lim p(;r): (-l)"-and,lim-p(.y): +-
6J. For m > l?, the limits are both zero; fbr m = n, the limits are equal to the leading coellicient of p; for n > m, the limits are +@.

65. The lelt and/or right limits could be +-: or the limit could exist and equal any preassigned real number.
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) Exercise Set 2.3 {Page l45l
l. (a) r <0.1 (b) ,I-3 < 0.0025 (c)ir-4 < 0.000125

5. d=0.05 7.J=+ e.d 0.05 ll.d:+
. /t \:l. r=nrin(1.^.) :1. a=min{ I 'i \-'.

\6 l8/

.r l. (a) -

.1. (a).rr :3.8025,xr :4.2025 (b)6:0.1975

l.r. d=l ts.d=]e 17.6=1€ l9.d=(
27. 6 = e 2e. (a) .,4 0 (b) 99 (c) - r0 (d) - r0l

61.6-<

n,; n-,0,/5 n, /= .r3. I0 .1s. eee 37 -202 re. *57.s 
". +

11. : + Je. (a)l.vl <fi tu|.' - ll .,ur,r (c) I,r 3l < *j6 (d)l.rl <rrlt
.r-r. -2-- 15. --l
51.6=t/JA4 5.r. d=
61. (a) 6 : -l/M 65.

(b)3:t/M

tlM 55. d:1/(-M)'/1 57. d=< 59.6:<l
(a)N:M t 67. J =min(2. l<) 6e. d:0.0442
(b)N: M r

) Exercise Set 2.4 (Page 156)

l. (a) not continuous, -r : 2 (b) not continuous, r = 2 (c) not continuous, r = 2 (d) continuous (e) conliiuou$ (f) continuous

-1. (a) not continuous, .r = l. 3 (b) continuous (c) not continuous. .t = I (d) continuous (e) not continuous. .\ = -l

(f) continuous s. (a) 3 (b) 3

9. (a) (b) One .econd could cost you one dollxr.

(d)

ll. none l-1. none

/ is not defined at.r : +3. 19. none 21. none 2-1. (a) t : 5 (b) k : I15.

25_

/ is not de{ined at r : +4.

(a) x = ], not rernovable;

al .r = -3, removable

(b) :7. (a).r = 0, not removable

(b),r = -3. removable

(c) .r : 2, removable;

r = -2. not renrovable

(b) (2.r - l)(.r + 3)29.
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l-1.(a)/(x)=kfortlc,f(c):0;g(x):lforxlc,g(c):0.Ifk:-/,then/+Siscontinuous:orherwiseitisnor.
(b) /(:r): k forx I c, f(c): l;g(rv) = I lOforx I c. g(c): I.If kl:1, then /8 is continuous: otherwise it is not.

37. f(x): l forO <.n < l, /(r): -l for 1 : n 5 2 13.x: 1.25.x:0.'75
,15. ;r : -1.605,.r = 1.375 47. x = 2.21 49. r = 4.847 cm

> Exercise Set 2.5 (Page 163)

l. none 3. x-nn.n -0,:11,:12,... S. x:nn,n =0.+1,+2,... 7, none

r). 2nn + (r/6),2nn + (5n16),n: D.Xl,t2....
ll. (a)sin.r,.r3+7r+1 (b)l-rl,sinr (c).rr,cosrc,.:r+ 1 (d)^rt,3+r,sinir,2,l (e)sinx,sinr

l-1. 1 ls. -J112 17.3 t9. -l 2t. 0 23. ] 2s. 1 27- 2 29. O -11.

-r5.3 37.k=t -r9. (a)l (b)0 (c)1 11. -ft -13. -rc 1 x cos(502/x) 5 r
-15. lrm /i\)= lb\ rhesquee/rnglheorern. -17. 91r)= -'.n,rr- 

"
'0' \ I

r lim 
- 

: 0 by the Squeezing Theorem.

(f) 15 - 2xr + 1, cos-r

-f -l-1. does nor exisr

sl. (a) 0.17365

(b) 0. r 7453

5-3. (a) 0.08749

(b) 0.08727

s5. (b) (c) 0.739 57. (a) symmetry about the equatorial plane

> Chapter 2 Supplementary Exercises {Page 165)

l. (a) 1 (b) does not exist (c) does not exist (d) 1 (e) 3 (f) 0

s. (a) i (b) 4 7. (a) 0.405 t7. (a\ 1.449 (b) r : Q, 41.396

19. (a) ./5, does not exist, .,4b, .,,/10, does not exist, +@, does not exist

21. a/b 23. does not exist 25. 0 27.3-k 31. 2.?1828

-re. (b) (d) 1. 1.26. 1.31. 1.322.1.324. t.3246. t.324'7

(s) 0 (h) 2 (i) 
1

(b) 5, 10,0,0, 10, o, 1a
-3-r. 0.54030 -35. 0.49996

q1. 1: Jx q 2; L261168

t7. 0.0'174',7

) Exercise Set 3.1 (Page 175)

r. (a) I (d)

(b) 3

(c) *o

-t. (a) -i
(b) -1
(c) -t ltt

5. (a) 216

(b) 4

7. 6) 1/(2Ji)
(b) 

+

(d.)
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9. (a).1m/s ll. (a)h (b)0 (c) speeding up (d) slowing down

15. (a) 72"F at about4:30p.M. 17, (a) first year

(b) 4"F/h (b) 6 cm/year

l-1. straight line with slope equal to the velocity

croMh rate (cm/vear) 19. (a) 320.000 ft
40

?0

i0

5 r0 15 20

(d)

(c) 7'F/h at about 9 P.M. (c) l0 cm/year at about age 14

21. (a) 720 ftlmin (b) 192 ftlmin

(b) 8000 ttls
(c) 45 ftls
(d) 2,1,000 frls

) Exercise Set 3.2 (Page 186)

r. 2,0,-2, I 3. (b)3 s.

(c) 3

.'- : 5-r 16 9. 6x; I
I .- r.- s

2",*a1''-;'--
2ax 19. 1l2xrt2

1.

t3.

11.

: l8x 2'1

15. - I /.r']

21.8.+1

I I. 3x':;1 = 0

(a) D 25.

(b) F

(c) B

(d) c
(e) A

(f) E

(b) 27. (a) r', 3

(b) ./n, I

(c) positjve (d) $1000

-39. (a)r-r2O'F,dT/dt = -4.5"F/min (b)k= 0.1

29- 8

ll. 'l'l 'b) lr 0) 0 00. 0.00 u.uLrot 0.0000t

t,l t, ttl,l 1, Lb<oq 4t5\ .'n I l..Shq I I8h1 i 18^.

(a)1.

-[-
5

,l,N,
l

15. (a) dollars per foot (b) the price per additional fbot

]s. /(l) :0, /'(1) :5

t.

t5.

27.

-17.

,l-1.

Exercise Set 3.3 {Page 197)

28*6 3. 24x1 +2 5. 0

l8r2 ]x + 12 17. -15,v 
2

-29 29. 32t 31, 3rr1

(a) 10 (b) 19 (c) 9 (d) - I
(a) 210r. 8 + 60.x1

(b) 6.r a

(c) 6d

,ls. (a) 0

-i9. 1 : J;l 1 1'7 11. (a) 12t 10 (b) 2,1 (c) 2/rr
le. F'(x): xf"(x)+2f'(x) st. (t,:) (2, i)

(d) 700x3 96t

1.5 53.

2GmM
- f 6t). f'(t) > 01br all -{ + 0

rb) 3(7-d6 + 2)(-{7 * 21 3)'?

7. :e\6+2) 9.3dx2 +2b.x+c ll.24x e+llaE) l-1. lr a 71 3

-l4rr 3+48-1 1+32n 5 t9. 12.r(.]-lr+1) :1. -: :-r. =j- 7< a, _.. 
1)r_lr

3.1. (a) 4rr'] (b) r00z -ls. (a) T (b) 
,.4

(b) r 12

(c) 360

55.

73.

15.

It-3.

It5.

0 57. 1 :3r1 :; 2 59. r = j 61- 2+./B 6-1. -2.r0 67-

(a)2(1i;r ')(i 3 + 7) + (2n + 1)(-n 'z)(r 
r+7)+(2r+1)(1 +r ')( 3r. 4)

nor ditTerenriable at -v = 1 77. a:6,b:,3 79. (a);r = 1 (b)r =+2
(a)n(n-1)(n-2) ..| (b)0 (c) a,,n(n - l)(n-2)...1
(b) / and all its derivatives up to /(" r)(-,r) are continuous on (a, b).
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> Exercise Set 3.4 lPaee 2O2l

l. -2sinx 3cosr -1. 
-rcosI-sinr 

5. xrcos.r+(3rt+5)sin.r 7. secr tan,r-r,Dsecr.r
x2

ll. -cscrr-cscrcor2r 1.,. -, :t:L ls, 0 rr. ----l t9. ,rcosj-2sinxI + csc,r 0 +,rtan.r)-
2-1. -4sin-rcosr 27. (a)J=r (b).y:2-t -(Tl2\+t (c) f :2x+(v/2)-t
29. (a) r : +7t/2. +3n/2 (b') x = -3n/2,r12 (c)noho zonlaltangenr tine (d)_r :!2r,!n.0
-3.1. 1.75 m/degree -15. (a)-cos.r (b)cos,

-i7. (a)alix (b) all-,r (c) x I @/2:) + ntr. n =0,il,*2,,,.

9. secl r+secr tanl,r

21. ,r: sin -r+5 cos.\

.l l. 0.087 ftldegree

(d) x lnnn:0.+1.+2,... (e, r + (7t/2) + nn, n =0,+1.+2.... (f)xlnt,n:0,+t.+2....
(g)r+(2n+ 1)z,r=0,+1,+2.... (h)x+nn/z,n =0, 11,a2,... (i)attr 39.3.?. 11.... ill. sec: r.

> Exercise Set 3.5 (Page 2081

t. 3i(x. +2x)16(3x2 +r, .r. -, (", - :)' (r', - :)
ll. 8rsec2(4.x'?) l-t. -20cosa-tsinr ls. 3*r(;!)
21. -3 [r + csc(r] + 3)]-4 [t - 3.r, csc(r3 + 3) co(x] + 3)]

27. -"*.(1) n"1t) ."'*"(i) 2e. sin(cosi)sin.r

.19.

J-1.

5.1.

5S.

.s7.

6.1.

-. 24(1 3x)
(3x2-2r+l)l 9. 3.rr cos( \ r)7. 3

4J.\J4 + 3J\
I7. 28.16 sec2(n7) tan(-d7) ,r- - 

5 sin(5';r)

2v6o-s(5-r)-

rr. l u,t slnl,rcosJr+ 1r'\tn'tr

-11. -6 cos2 (sin 2-r) sin(siu 2,r) cos 2.r

-l-l{r 5ll
(2r + 1)l

2(2-{ + 3):(5212 + 96i + 3)
(4x2 - l)e

Jl. -25rcos(5,r) - l0sin(S.r) - 2cos(2_r)

Sl. T(b - a) sin2no)

,rr( I0 - 3,r'])

12(5r + 8)r3(xr +7i)rr(3r2 + 7) + 65(ir + ?x)r'?(s-r + 8)rr 35.

5 [.r sin 2r + tan4(r7)]a [2r cos 2r + sin 2-r + 2816 ranr(,r?) sec](.r7)]

4(l -.r) I {5. I : -y .17. r': -l {9, 3cotr9csc2d

(a) t0tb/inr. - 2tb/in!/mi (b)-0.6tb/inl/s su. I to"' 0<r'a r,l. rar-]cos-L +*in.ll-cosr. -z<\'<U .r .r' .r
(a\ 2t (b) 36 65. 6 61. t/Lr 6e. ],t 73, f 'G(h(r\))s'OGDh'(r)

t.

Exercise Set 3.6 (Page 217)

-1. (a) 0.5, 1 (b) 5. 3-r:.h, 3,r2 a-t + 3.r(A.r)2 + (an)l

7. (2x 2) dx,2x L-r + (A.r)2 - 2 Ar 9. (a),l2x2 - t4x\dr
ll. (a\ _ 

-dx 

l.r. (a) /{.r) ^- I + J(r l) 15.
2J I x

(b) 17(l I r) rsl.r (b)/(l I A.t) ! l+JAr
(c) 1.06

(b) (-r sin-r + cos-r) dn

(a) l+ 1.r,0.9s, 1.05 (b)
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2s. (a) 0.0174533 (b):16 : 45" (c) 0.694765 27. 83.16

37. ;rl<0.1692 39. :r: <0.6316

0 0.06

ll. 8.9944 33. 0.1 35. 0.8573

43. 0.0048 ,15. (a) +2 ft']

(h) srde: +la/a, arca +2Ea

29.8.0625

41. 0.0225

t,', (.q.t')
,17. (a) opposite: +0.15 1 in; adj acent: 10.087 in

53. 16Va 55. t0.57o 57. 0.236 cml

0

"(:r) :r

(b) opposite: +3.0'lo;adjacent: +1.07o 19. :LlOVo

59. (a) a : L5 x l0 i/'C (b) 180.1 cm long

5l- +0 017 cm2

> Chapter 3 Supplementary Exercises (Page 219)

s. '= 1.2.-1 z. '-1, t 9. (a)ir:-2, 1, 1.3 (b)( 6, 2),( 1, t), (3,+o) (c)( 2.-l),(1,3)
11. l,=-16-r,) : 145t14 13. x :nn+(r/4),n:0,tl,*2,...
17. (a) 0.5, 1,0.5 (b)itl4,1,nl2 (c)3, 1,0 19. (a) 2000 gal/nin (b) 2500 gal/min

21. (a) berween 139.48 m and 144.55 m (b) .1dl : 0.98' 2-1. (a) 3.6 (b) -0.',7'7',77'78 25. 2.7'72589

27. 58.75 ftls 29. +0.535428

(d) 4

> Exercise Set4.1 (Page 233)

l. (a) yes -1. (a) yes 5. (a) yes

(b) no

(c) yes

(d) no

9. (b) I-2.21, l-8.81 (c)

7(' + s)/: ts. (x3 + t)lz 2t. ,87;
,(.{-r'Jtorr:0 )u. ;r^ 11 - v4-:8' ) jor r' -4

(c) No, because J(g(it)) : * lbr* > 1

but the domain of g is .rr > 0.

(b) no (b) yes

(c) no

(d) yes

(e) no

(f) no

7. (a) no

(b) no

(c) yes

I l. (a) no (b) yes (c) yes 1-3. :trl5

,, I'5 2' ..r. r ' I 2 tS. r a'- ll/r. 0<ral/2
-ll. (a) 1 : (6.214 x l0 r)r -13.

l0l(hlr: 

-\
6.214'

(c) how rnany meterc in 1 miles

rs. 
+ 

(ir + 6) t7.

2forr > 16 27.

(b)

.15. (b) symmetdc about the line )' : r 37. (b) I - (\,/3/3)

,ll. 6 :13. 3

39. l0

4e.+

l.
9.

Exercise Set 4.? (Page 243)

tal 4 lb,4 lrcl; .t. la' 2.q6qu

(a)2r+t+; (b)s 3r r ll.
(b) 0.0341 s. (a) 4

(a)l+logr+jlog(r.-3)
(b) 5 (c) 1 (d) j 7. (a) i.3655 (b) -0.3011

(b) 21n -r + 3 In sinx j ln(i'z + 1) f3. log f



I

Answers to Odd-Numbered Exercises A77

15. . i/itx + l)'z

cos t
0, ln 2 35.

17.0.01 19- ez 23. 105

l

2t. 4
ln 1/- r.

2ln5
37. 2.8',7',7',7, 0.31'74

+r"1 3t. -2
3(a) (b)

-2

41. x = 3.6541,r, - 1.2958 (d) 45. 1og+ <0,so3log j <ztogj,13. (a) no

(b) Y :2'rt
(c) r : z-'

47. 201 days 49. (a) 7.4, basic (b) 4.2, acidic (c) 6 4, acidic

51. (a) 140 dB, damage (b\ 120 dB, damage (c) 80 dB, no damage

53. !200 55. (a)-5 x 10r6J (b)-0.67 57.e2

(d) 5.9. acidic

(d) 75 dB, no damage

> Exercise Set 4.3 (Page 253)

t.;r2r 5r i. i. ^ 
=ti]l 

' 
5. ,,:15r: I ''125v 

-u.;. 2(x 2\rlr_2l
2-lr'-r' I r I 2r, lv'9 (a) 

^ 
' tot 

^- 
2r Il 

r 
13 *,+oro 15'

I -' 31,'?ran'?(r)'z + )) sec'z(-,r)'? + l) )1 1t21. 23. -! 25.
16lr x23(2rj ), + 1) tan2(ny, + l) sec,(rr, + t)

31. -rjl 35. (a) (b) +1.1547 37.

2

/l

1 15[sin(3/r)]3/2 cos(3/;r)

2x2
1 .:x)2 cos(x2)2)

2;21cos(.r212)

27. -t, +t 29. 0.1312

41. a: I,b _ I

t17

sin y
19.

2t3 + 3a2

2"t 4."t

(l + cos])3

39-

43.

53.

r: (Jah)x,r: -(J5h)x
| _- I

55. 

-

15yr+1 l0la+3y,

2 t3 y J721,

(t) I + tr) cos t
47. 

q! :
dt

3 cos3x y2 dx 49. l, i2r! dt

> Exercise Set 4.4 {Page 260)

r. 1 3, 21nr 5. sec2r 7. I t', 9. 3i2 14-'r ll.x x tan'I x(l *r,) 13 -'lr2 -3
! 13. -l srnilnrr

2xJln r r

19. 7e1' 21. x2e' (x 13)

ll. - 
) JJ, ranr , Ir 

-r()+1) 4 3r2

15. 3-rIlos.{3 2,rr )-' (ln 2)(3 2x)
.- 2r tl + logx) jrllLn l0)

(i + log.r )2
23.

(e' * e '\2

25. 1r.ecr r l lln r)p ' L 27, (l 3e' 1e 29. ' - l

41.

"it."l+.**r] .'. u';"'l',;rifr["---r-' *+ f;|] 3s' 2't,\z

',in'(rn 
r) cos,,r ,13. (r3 -L)r"* l#*-* lr"t,'-2,)] 45. (1nr)u". lH*u*',,r"u.',1

-- 1 ln25J. (a) 

- 

(b) 

-

r(rn \). r(Lnx).
19. (.a) k"ek' (b) (-1)"r'e k'

'',r.1".''-''"'oI it+t]
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-- qkt) I qt.T - Tdf5:'. ern r r rr. cr" ' 59.2T:'l 2TnT I

(d) must take the value zero in between

(e)-t:2
(a) I

(b) 1n l0

61. (b) 6

6J. (b) i0 65. (a) r ,u (b) The popLlarion rend. lo lq.

f-----V li----_l 
,c)rhe,n/p,end:,o,/e,o

11-\l t\:l
) Exercise Set 4.5 lPage 267],

r. (al) -tl2 (.b) r k:) -n/4
(d) 20lz 630 9. (a) 0 < .r

r3. (ar ! r"r 
J" t

Jl +i.r I

t. r/2,-Jz,-t1J1.2. 2lJi s.

(b)-l :r:1 (.c) nl2<x <nl2
i';' :'l,i 7. (a)rl'7 (h)o (c) 2rl'7

(d) o<*<ra lt.+
(b) domain of cot I -r is ( -. 1a),

range is (0. r);
domain of csc L r is ( z. llU ll, la).

range is [ 1rl2, 0) U (0, z/2].

(d) 0

=n
15. (a)

t7.

21.

27.

31.

I
(b) (d) \,tL 1

(a) 55.0" (b) 33.6' (c) 25.8' 19. (a); - 3.696.t rad

rar trr, - 
--) 

l.l. tal 7

J9 r ./l ,2r r lr' rJr | |

,,,J- | c re. , ,5, lll! " 2r'.in ,r
33. (b)

I

37. 39. 32' or 58"; 32" 41.29.

b)e: -'16.'7.

rb) | 25.,u, I rbr| l 'rnr o

J,: I ' -/' I ll. srn.r o

29.

35.

(3r'?+ tan t))(1 + )'?)
(t +)ler r

(a) (b)

(a); - 3.696.t rad

ll

> Exercise Set 4.6 lPaee 2741

r. (b) A:.r, off:z"f (d)12n']lmin
.lv / ^,1h ,lr \

-1. rar" =r|,-?-In:- | rbt 20-in',.Je:rersing
,lt \ dt rlt I

s. otf :+(-,# ,f) (b)-*:rad/s;decreasing 1.!!i172lmin t. j^in ll.4860zcmr/min

t3. I rtls tt. ff r,l, 17. 'll1rtls 19. (a) 500 mi, t7l6 mi (b) 1354 ni: 27.7 mi/min zt. ;;il ^i"

l25zfirlmin 25.250mi/h zt. 16@ tt/^', zs. !Itm/. 31.600v4mi/h 33. (") T Lrnits per second

(b) falling 35. 4 units per second 37 / 39.4.5cm/s; away +:. 4cm/s

> Exercise Set 4.7 (Page 284)

r. (a)1 (b): 3. l s. 1 7. 1

21, r 23. -1 25. e 3 27, e2

ls. 0 17. 2 19. 0

+'. 39. (b) 2

9. I 11.0

29. e1/" 31, 0

13. -@
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i11.0 ;lJ. r,r

25

:15. ro hodzonlal asymptote

0 102

49.

55.

59.

t000
0 l9 16

(a)0 (b)+2 (c)0 (a)-- (f)+- (S) - 51. I 53. doesnotexisr

lr L 57. {c) 1024 I .0, -r)--r..lo, trru,4f '',it ll 0.bt-1jb\/\/
k : 1. I : +2J2 61. does nor exisl

7.

15.

Chapter 4 Supplementary Exercises (Page 286)

(a)0/0.r/o (b)no 5. (a)l(r+ l)r'r (b)none (c) lln(.t - l) (d)-
(a)r'+l =2(j-l) (b)):1 9. l5-r+2 ll. (a)+- (b) ] (c)lnd
_/, _ 1! crn/s

J2
17. (a) (b) )' : z '/r sin 2r intelsects l : e'i2atr:rl4

and r.: -e '12 atx: nl4,3rl1

I {l + \ r

19. rar {l |.rr ' ' r ln, I

br1rlL r lr r\ 2\4 I

lel 
2r ' ,, , 

.f)

+r) (b) e' [r'' I + -r'' ln r.]

5t*3 ,,,rt,, trn, 21.
6r (.r + l)

- nhc'
(c) 3x' rd) -. _(l +br )l
(b)x = 3.65,1 21. ett"

> Exercise Set 5.1

1. (a)./' > 0, /" > 0

(Page 296)

(b) .f' > <0 (c) /' < o. l">o (d)J'<0,f'<0

27. (a\ ( tl2. t/2J
(b) none

(c) (0. r7/2) L
)

(d) (-rl2.0)
(e) t)

3- A: dl,ltlx < O. d2!ldx2 > 0
B: dy/tlx > t), dlyldrz <0
C: tll;lclx <0, d2\'ld.\2 <0

5..r--1.0. 1,2 7. (a)la,6l (b)ll.4l, 16,71 (c) (1.2), (3.s) (d)(2,3).(5.7) (e)-r = 2.3,5
q. (o) [], +-) (b) ( -. :] (c) ( r. +') (d) none (e) none

1r. (a) ( '. +') (b) none (c) (-2. +€) (d) (-'. -2) (e) -2
13. (a)tl.+-) (b)(-'. rl c)(--,0),(l +-) (d)(0, l) re)o.i
rs. (a)f0.+-) (b)(-'.0t tdeJlE.JlEl @\e.' JIEt.dt4.+-) (d 

"EE."EB
17. (a) (-,. +r) (b) none (c) ( z. 2) (d) ( 2. +,) (e) 2

19. (a)[ ].+o) (b)(--.-11 (c) (-2. 0). (2. +z) (d)(0.2) (e)0.2

21. (a)( o.0l (b)10,+r) (c)(-?. -l),(1.+r) (d)(-l. r) (e)-l. r

23. (a)[0.+r) (b)(-'.0] (c)(-l.l) (d)(-r, -l), (1,+?) (e)-1,1
2s. (a) ln.2nl

(b) [0, r]
(c) (n12,3n/2:)

(d) (0. n/2). (3n 12,2tt)

k) n 12.3ir/2
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29. (a) [O. tt /4]. I3n / 4. ttl
(b)ltt/4.3t/al
(c) (r/2, n)
(dJ (0, r/2\
(e) r/2

-13. (a) (a.0) -15.

(b) none

-19. points o, inflectionatr = -2.2.
concave up on ( 5. 2),(2.5):
concave down on ( 2, 2);

increasingon[ 3.5829,0.25131and[3.3316.5];

decrea$ing on [ 5, 3.5829], [0.2513,3.3316]

.17. (a) true ,19. ic) I 5.3. the eifhth day

(b) lalse

,l l. -0.175.0 43. -2.45.0.6s.2.75

.l l. (a)

.37. .r > sinr 1

5
Yl. /x/

-200

> Exercise Set 5.2 (Page 3041

l. (a) , +-' (b)

5. (b) nothing (c) I has a relative minimum at,r : l,I has no relative extremum at,r = L
7. (a).'u=-3, 1 (stationary points) (b)r: Q, {y! 1r61;onary points) 9. ta)r = + '4 (stationiry poinrs) (b) no criticol poinrs

Il. rr)r: -l (stationary point) (b)nnl3.n = 0. * I , 12. . . . ( stationary points) l.i. (a)r:2 (b)r=0 (c)x:1.3
l-5. t .r : 0, relative max; r : :E.'5. relative min (b),r:0,telative'nin 17. relativc max of 5at.r: -2
19. iativeminof 0 at -r : 

'', 
relative max ol I at t : n/2,3n/2 21. no relative extrema

2-1, )lative min of 0 at i = I , relative max of jat-r:] 25. relative rnin of 0atx = 0, relative rlax of Iat'l: I.-l
27. ielative min of 0 at x =0 29. relative min of 0 at r =0 .ll. relative min ofo at;r =0
-13. relativc min ofO at r = 2, -2. relative max of 4 at r - 0

" :::il: ;li::i 1'.::T;." 
*'" 

.m' 
" :l::il Hl: ll : 

=-1"''',, 

W,3tr/4,5t14,'7tr/4

-19. relative min of l/eatx =l/e 15 .11. relirrive min ofO a r=0t o.ri 
0

f------) rel.tivemaxorl/eratr= I fi 
^\ 

_l

t ./ I lll/ \ r"v/-l n,tv_\J,
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relative max at; - 0.255relative minima at r = -3.58,3.33;
relative max dt -r = 0.25

,17. relative nlin at,v : - L20;

relative mtrx at ir : L80

sr. (b) 5-3. /(;r) : -2nr + 3r249. (a) 54

(b) 9

s5. (a)

/(ao) is not an extreme value l(.It is a relative naiinluln /(ro) is a relative minnnum

l.
Exercise Set 5.3 (Page 319)

(i, )(ii
(a) VI
(b) r

(c) III
(d) v
(e) IV
(f) rr

l
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35.

Answers to 0dd-Numbered Exercrses

45. (a) 0; +-
(b) ) 

1""'' t" 'y

ilg. (a)

51. (a)

53. (a) 55. (a) The limit does nolexisl. (c)

(b)

61.59.

KT,l A
69. (a) 

(l + A!
I(c)/:-lnA

/\
.52,0.22
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7.

Chapter 5 Supplementary Exercises (Page 321)
(a) relative max at n : I, relative mio at i - 7, neither ali = 0
(b) relalive max at -r : r/2.3n/2:

relative min at -r :'7 ft I 6. llft I 6
(c) relative max al r : 5

.linr" /(,r) does Dot exist;

critical point at x : 0;

rclative lnin at n : 0:

point of inllection when I + 4-r2 tan(r.2 + l) = 0t

9. .lim./(r) = +-,,]im_/(n) = +-:
relative min at n : 0;

points ofinllection at -r : j, 1;

no:Nymptotes

t3. criticalpoints ati : -5,0;
relalive max at -t = 5, relative min at.r : 0:

poinrs ol i nflecdorl at .t : -1 .26. 1.14.1.20;

horizontal asymptote t = I asx +:tr

21. 
,lim_ /(,r) 

: +-;
critical point at )r = l;
relative min al ,Y : l;
no points of inflection;

venical asymptote,r : 0;

horizontal asymptote l : 0 forr -> -o

ll.

t5.

vertical asymptotes ai-t = +f/rQr + ]) 1,,r :0, 1,2,

(0, tan 1)
l

( r.42. 0.r2) (1.42, 0.12)

, [q- "f(rl : +*, 
, !m- /(-r) : 6;

crltical point at -r - 0:

no extrema;

inflection poinl atJ = 0 (/ chalrges concavity):

no asymptotes

17. .lim,l(i) = +", ,!B .lf.) = 0, 
"1rT_ 

.f 'fr) = --;
critical point at r : I /c;
relative rnin at r : 1/a;

no points ol inflection;

19. critical point at r : arl2;

relative max at r : ell2;

point olinflection at r = e5l6;

hodzontal asymptote ) :0as.rr ++!

23. cdtical points at -r : 0 2:

relal \e mtn tl , = O. -clJlivc rr,r\,rl ' = )
pornts ot rnllectron tl r\ : / + \/ 2:

horizontal asymptote )' = 0 as r. + +a;
1im /(-t) : +6

(e
)'

+) 9* ;.")

( 1.44.0.,19)

(2 + fr r.04)
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2s. (a)

27. (a')

(b) relative ma\ at.r = - +, relative min at-r = +
(c) The finer derails can be seen when graphing over

a much smaller ,r-window-

29. l,:2tt,t:3

-t0

33. (a) sinr : 1, sin;u : I

r. /rrr= #+= "+!

(b) relative maxima at x :2nt + t/2, t : e:

relative minima at-r = 2nr - 2, y = 1 / e. n : O_ II, !2,...
rt-R

lc) when sin.(

-zfi

-15. (a) relative min -0.232466 at x : 0.4501 84 (b) relarive max 0 at ,r : 0;

2 relative min -0 107587atr = *0.674841

M2
-0.5

(c) relarive m,rx 0.876839 ar.r = 0.886352;
relarive min -0.355977 ar x = 1.244155

I

[-71-"t-:4*1"
-0_4

,MI
-0 l:at,r,.N, (b)l=oatr:o;

ljm y=0
(c) relative max at I : I /al

inflection point at r : 2/a
(d) The maximum and the inflecdon

point move toward the origin.

-44

5

I,

3.

Exercise Set 6.1 (Page 337)

rclative maxima at r : 2, 6; absolute max at.r : 6: relative and absolute min at -r = 4

(c) + ''

5. maximum value lat-r:0, l; minimum value 0 at.r = j 7. maximum value 27 at,r = 4, minimum value -l at.r:0
9. maximum value 3/.n6atx = 1, minimum valr.:e -3/rA rt;r : -l
fl. maximum value I - (tt/4) at).: z/4, minimum value,ft/4) - I at x : tl4
13. maximum value lTat;r : -5, minimum value l ati = -3 15. minimum value / (]) = -f , no maximum

17. maximumvalue/(l): l,nominimum 19. no maximum or minimum 21. maximum value /(-2) = -4,nominimum

(a) 4I (b) +)



29.27.

minimum value 0 for x : tl,nornaximum 25.

to

2
0

no maximum or minimum

25

Answers to Odd-Numbered Exercises A85

maxinum value 48 atl : 8, minimum value 0 at r = 0. 20

50

,m,,
0

0

-t l. maximum value {e-l ar r = ],
minimum value 64/?3 at,r = I

0.2

rna\imum vxlue 2 at.r = 0, nrininrum vrlue J] rt , = ,r. 6

2

lf 
--=----ll

ilt
o 
(-J+
t5

-1.1. maximum value sin( l) - 0.84147.
minimum value - sin(l) = -0.84147

1

"lN-71,"Ivr
01

-15. maximum value 2, minirnum value -"1

-17. maximum value 3 J3/2 at, : (z/6) + nz, minimum value -3Ji/2 ar x : (Str/6) + ntr, tt: 0, + 1, +2. .. .

1l- f'(l):2 J5.(j.-i)irclosest,( l.-l)isfarthest i7. maximum):4atr:2.32;minimum.l,:0aLt:0.2n

> Exercise Set 6.2 (Page 348)

1.5,5 -r. (a)l (b) j s.500frx750fr 7.5inxf in g. rc'Ain xrcAir
ll. 80ft($l fencing),40 ft ($2 fencing) 15. (a)maximumN = 16l,788,minimumN:125,000 (b)40

19. #fi3 2t. base lo cm square, height 20 cm 23. ends 73V/4- units square, height l73V/4-

-19.

17. 2 in square

a----------- r
herghr :u/rs - v6trto R.rrdiur: v/{5 v5r'l0R 29. heighr= raai,r. . Jso0r" 31. L l2byLl 12b) t 12

heighr L/Ji. radiu:: JIE L .15. radiu. . V+sfllr'. t.ief,, = Ir'o,450.,n J7. heighl = 4R. rrdru\ : '4R
tt/t ,1. 5\6rt J.r. (a) 7000 (b) yes .ls. 13,7221b tf. ttJS 51. eJr.D,eA,D s3. (/t. I )

( l/Ja,i ) st. +1t +22/3)1/2 ft 59, 30 cm from the weaker source 63. (c) 1 mile downstream from the house

> Exercise Set 6.3 (Page 359)

l (a) positive, negative, slowing down

(b) positive, positive, speeding up

(c) negative, positive, slowing down

-3. (a) left

(b) negative

(c) speeding up

(d) slowing down

9. (a) 6.7 ftlsr
(b)r:0s

ll. (a) u(r):3t2 lzt,e(t) =6t - 12

(b) s(l) : s ft, u(l) = -9 ftls,
Iu(l)l : 9 ftl", a(l) : -6 ftls2

(c) 0,4
(d) speeding up for 0 <t < 2and4 < t,

slowing down for 2 < t < 4
(e) 39 ft

'J\,h^
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13. (a) u(r) : (3n12)sin(rt/2),a(t): (3r214) cos(ftt 12)

(b) r(1) = 0 fi, n(l) : 3tr /2 ft/ s, lt(.I )) = 3tt /2 ftl s, a(.1 ) : o ftl s2 (c) 0, 2, 4

(d) speedingup fbr0 <t -, 1,2< 1< 3,and4 < r < 5;slowingdown for I <r <2and3 <I <4 (e) 15ft

15. (a) /s
0.25

(b) ."6/lo

0.2

(c) speeding up for 15 < t < \n5,
slowingdownfor0 < r < .u5and r./15 < I

(Stopped
permanently)

t = 7tl2

2-3. (a) 12ftls (b)r:2.2,s = 242

27. (a) 6.12 s 29. 113.42ft1s

(b) 183.67 m

(c) 6.l2 s

(d) 60 m/s

(Da

17. (b)iunit (c)0:r<landr>2 39. (a) 1.25 frls/lr (b) -2500fr/s,

ti^---------l fil--------l oL-

$l,:[L:;'l7--1',o .,, oui r'rj: _,,-
,/0)

17. Constant soe€d+,_.r=0 i
2

t9. Speeding Lrp 21.

/ 161820
S owing down

25. (a) 11.025m (b) lzl.7 rnls (.c:) 1.2245 s

31. 29.39 m 13. (b) 113.42 ftls -15. (a) I 5

Speeding up

(d) . :4.5175 s

S ow rg down

> Exercise Set 6.4 (Page 3661

1. 1.4r42t3562 .1. r.8 t7120593

9. 1.4526268',79 r l.
5. 1.671699882

1 .89549426',7

I

7. 1.224139550

13.4.493409458

5t5

l

19.

-0.5
0

(b) 17r ' 27. L220',741085,0.724491959 29. 5.3362Ea

.wll,'Nl 4. l\--l=
6

rs. -1.165373043

-2
23. (0.5 89754512, 0.347810385)

1

t7- 0.4'/ 4626618,1.3 95 3 3 6994 (h) 3.162217660 21- -4.0988591:r2

l.
Exercise Set 6.5 lPage 372l.

[0,41,c:3 3.c=3 5. c=tt 9. c: 1.54 l.t. I 13.: 15. !5



t7. (a)l 2,ll (b). = -1.29

. , . ,l*, 
' 
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31. f(l)=:'3-4x+5 39.(c) -1.2885843

(D M : +,01; : J;'z = -2atx : -1
(d) m : e2l4atx : 2 9. 2.356,1945

l.t

3. A: 16

I 3 4 5

A,, 28.0000 22.0000 zo.p09p 1 .0000 18.4000

9 r0

3.

7,

11.

17.

Chapter 6 Supplementary Exercises (Page 374)

(a) tlue (b) false 5. true

(a)U: i^tx:-2;m = -latx: 1

ralyes., =0 {b}no rctye... ,JFZ

(a) 0.3501 s, 0.0820 s 19.

(f) maxirnum speed - 1.05 m/s when / : 1 I0 s 23. 149.988 x

> Exercise set 7.1 (Paee 382)

t. A:1/2
,f r 2 3 , 4 s

,,{,,. 1.0000 0.7500 0.6666 0.6250 0.6000

8o
,,1 , 0 58J.' n.'-.4 

" 
<o:) i].)rrb 0 5500

d l,r., .l - 3x)

d." L'" ' 'J - 2u;r5'
d - cos(2^/x t

; Lstnr2,/r rl : -.,

7. 16

> Exercise Set 7.2 (Page 389)
rvlt.wJ-r, a,l]=/l+( lc rbr/rrrlre tlt-r,^-C

I;*a,:nG4s1c.'
l*#" (rx:stn(2!G)+c.

7. rarr\o,q'+a {br r..\ri l c rct;r'--c I. tat j.r 2 l a, {Frq',4r -u'-7uic
s. i.r- +.r.,.-r,, r lr'+c rJ. {r-l.2rr,,5 5r r^ lrr,e&i,i4ij'-'rn.+c ti.
lg.21nx+3e'+C 21. -4cosr+2sinr+C 23. tan.r + sei';i.-1C, J'J{25. ln0 - 2eE +cotl +C
29.0-cos6+C 31. tan.x-secr+C 33. (a) ,t, 1,, 9W,@:(x2/2)+5 3s.

Ir,{.'

'221t--+3r3+C
27. sec i + C

t3. r:2P/(8+3,6\qt.l..rls:, {s) y,s (b) yes

ttl Inininlqp:I:?1i,1p85, 0.3ss1 l6);
;"1'TF 

lf r1$;ll;' i,"ll i

17.3333 17.2000
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-r7. .f(x) : cos.r + | .i9. (a),r(r): i-*"t+ j (b)t(r):lnlrl+5 1c).r.1ry=].rr/r+z.rr12-l
Jl. ./(i) = fr5"2+Clr+C: ,1.1. r:r.:+-r-6 ,15. .r' : .rr - 6-r + 7 17. (b) F(0)-G(0): q

st. {a)lr) -.inrr-C rbrlrr t.in.rr-C 5.1. u '$t tn'.
J )13

J9. tanr -r +C

) Exercise Set 7.3 (Page 395)
t r'l + | llr cosr r

t. (ar=a+c {b)-? +c (c)-2cosv4+c (d)J/4rl+5+c (e)+rn(-ir-4)+c

-r. (a)-lcotrraC (b) +(l +sinr)r0+C (c)lnlln.rl+C (d)-.1e 5'+C (e)-llnl(l +cos30)l+c
,^ l.l

5. {cr'+c 7. -'' ; ' +c 9. jsinS-r+c ll. }sec4.r+c B. +QtI+12)1/2+ c 15. i143+ r+c
17. -+(4.r'?+l) r+c 19. e'in'+C !t. -le I +C 2.r. lcos(5/-r)+C 25. ]tan(.rr)+C 21. -e'-lC
zo. fisin6:r +c -tt. -*(2 sin4a)r/r+c -13. Isecr2r*C 35. 2eJi+C -19. - !- sin"-r(.r*bx\iC

h\n + l)
.ll. i(i - 3)5ir + 2(r - 3)r/r + C .l-1. 1(taD30 -3 +C 45. r+lnlil+C +r. 

/llnrc'r+lnre-')l 
.i.r: C

,19. ({) with ,, = sin ,r, I sirrr x * Cr; with a = cosx,-lcos2;t1C1 (b) because they dilTer by a constanl

sl. J'(-r) = ;(3r + Iti':+ | s:. 11--) = i1:-t + t)r/r + 11 ss. loo.+to

> Exercise set 7.4 (Page 4021

l. (a)36 (b)5s (c)40 (d)6 (e) ll (f)0 3. Ii s. It(,t+ r)
[=l t:l

:,itrra
rr. f t-trrl r-r. (a) t lr (b) t(2k - l) 1s. s050 17. 28'10 ts.

Tikal
t9 25

2s. l(,?+l) 27. 1(,l-l)'? .I. (a)I3r+': l(3ro-l) (b) I2(+' : 2rr -2:r
*=0 l=0

/r+l 5irr-lt ..r.r.=; j .ri. - ;i :2. 1aylz; O)I2rr (")I2r' ie.
.!tt ' z\ t=u I i

{-r.317-3r 15. -];; 17. (b) j 49. Borh idenriries are valid. 55. 18.?55

i, L2k e. t(-r)r+r(2ft r)
t=t t=L

l'728 21. 214,365 23. 2i - n

r"rir-u(+)'=-i('.#)
lr_6^1

tat)-sin(i) tb))-e' =' -,'
t:t t=u

) Exercise Set 7.5 (Page 414)
(c) less than ,4 (d) equal to A

-1.

7.

o

l -1.

t5.

t I - JJ t,r -- tl - 'f2 
p . - z"Dro.rr 8r

15. 6{r. l^.).s 5 

-L 

l.8c)6. ---- 1.x96. 

- 

\ 2.()52

left endpoints: A - (2+3 +2+ l)(l):8; rightendpoinls: A - (3 + 2 + I + 2)( l) = 8

0;7 18't'1 140f , 0.66817 t403, 0.692835360 l l. 0.9r9403r70. 1.07648280. r.001028825

0.3 5 122057 7, 0.420535296, 0.386502483

(a) 0.693097198. 0.666154270, 1 .0001645 I 2. 5.336963538, 0.3 86327689, l.'718167282

(b) 0.693134682, 0.666538346, 1.000041 I25. 5.334644416. 0.386302694. 1.71 8253 191

(c) 0.693144056, 0.666634573, L00001028 I , 5.333803776. 0.3862964444. 1 .7182'14669



17. (a)A:Z 0.) A:
y

1
2
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(c)-Ar+ Az: E (d)-Ar *A:: o

(b) Ar - A, : 0 by symmetry (a) 0.8

(b) 2.6

(c) - 1.8

(d) -0.3

23. -l 25. 3 27. (a) (1 + n)/2 (b) -4 29. (a) negative (b) positive 31. 25n/2
f) tr

33. rat./ 
,4rr 

I - 3r r dr tbt 
Jt) 

e (lx 35. :

J?. (a) tim f ,;o*o,o t.b 2 (b) lim f -'; ..o*,,o t),b- |
rmrAa ofr z.&t a4L_t 

^i 
! |

39. (d) : 4L I 43. 320 4s. (a) yes O) yes (c) no (d) yes

(a)A:10 (c) A, +A,: + (d1 r/2

1.

13.

31.

39.

45.

51.

53.

Exercise Set 7.6 (Page 4251
t) I I

nt Jnr2-ttdt=2 6Jt2dt 4 rctJ,rxlltdx 6 J.+ 5.i 7.e'-e s.48 tl. j

Y rs.0 t7.Jz ts. s?' r0 2r. ,' :.r. f; r:v: 27. ",t] ht2-: 2e. J

0.6658610'79; tr $. r.098242635; ln3 - 1.098612289 35. 12 37. 2

1)t.t4t.243t203 41. (a) The integral is zero. 43, (a) -xr + 1

ta ta
tct 

J "ft\t 
d\:2 

Jn f\rt d*

(a) sin v(' O)e" 47. x 
49. (a)0 (b) ^,43cost

(a).jr : 3 (b) increasing on [3, +o), decreasing on (-o, 3]

(a) (0, +@) (b)x:1 55. (a),r-=4 O)r-=e-1

@) 6l *43
(c) concave up or (-1, 7), concave down on (-@, - 1) and (7, +@)

.l
s7. 3./5 < L/,3 +2 d^ ..3.159- lo

> Exercise Set 7.7 (Page 437)

1. (a) the increase ' height in inches, during the lirst 10 years

(b) the change ir. he radius in cm, during the time interval / : 1 to r : 2 seconds

(c) the change in the speed of sound in ft/s, during an increase in temperature from t : 32'F to r : 100'F

(d) the displacement ofthe particle in cm, duing the time interval t : tr to / : t2 seconds

(a) displacement: l; distance: j (b) displacem"nt: 5; distance: ;
(a)31.3m/s (b)55.15m/s 7. (a)ta-trt3+t+1 (b)-cos2r-/-z g. (a) t2 3t+'7 (b) cost+t (ft12)

(a) displacement : 1; distance - 1 (b) displacement: --1; distance : 3

(a) displacement: ]; distance: f (b) displacement: e3 7; distan(le - e3 9 + 4lnz

3.

5.

11.

13.



A90 Answers to 0dd-Numbered Exercises

15. displacemenl: -6; distance = f
19. (a)s:214u: l, lul : I, a:0
25. (a) r5o (b)

. rl .;.i.

17. displaceheht + f;;distance: {
(b)s = 4,u- -],tu] : l,a:-: 21.:

(c) 50

23. (1/e) + e 2

27, (a) The displacement is always positive.

u(r)

ltt.
los ro,.

r(t)

Jo.
I ro, t>4

20

r"r,,r,r: {lll, ,,, *
so jr(8) : 120,r(12) -

(d)r(6.5): 131.2529. (a\ a(t) : (b) u(t) :

r

55. ia' r r(l 1' I 57. {d) -8, 5r).

{br2.,/r .l 
I ,rtrJ3t,,rr,\

..t{,
It$r

1.,

31. (a) * frls, (b) 
rr0o-! 

km/s, 33. (a) -+ ftls, (b) 
332! 

s

35. 280m 37. l00s; 10,000 ft 39. (a) -48 ftls (b)19611

41. (a)ls (b)1s a:. (a)(s+s.4:)/8s (b) 20./-ft/s
45. (a) 5 s (b) 272.5 lr1 (c) 10 s (d) 49 m/s (e) 12.46 s

(c)*s
(c) ll2 ftls

(f) 73.1 m/s 17.4.04m/s 49.6

1404n lb 61. (a) 120 gal 63.

(b) 420 gal

(c) 2076.36 gal

51.2/tt
(b) no

53. I
e-l

2A

> Exercise Set 7.8 lPaee 444]'r' | 
" ,", I [ ,,nu a) dt I v Ss*art,, i. --lt.rttJ', du tbt-tJ. ut lu .tt, .) t

s. s- (+"4) 11. 1n,,1 13. ,,?!z ts. n/8. ltl. zln 19. + ,1. | 
"" 

"

27. 2(rt Ja) 2e. 0 31. 0 33. 6h Dl3 3s. H si. rnz ,tt.8(u) i
4s. 48,233,s25,6s0 47. (a) 328.69 fi (b) yes 49. (b) 169.7V sl. (b); (q)r'14

s. r0 7.8
23. i 2s. ieI6*24)
(b): c) j
53. 2/it

l.
Exercise Set 7.9 (Page 451)

(b) (c) 3. (a) 7

(b) 5

(c) -3
(d) 6

9.

19.

1.603210678; magnitude of enor is < 0.0063 7. (a)rcr,x>0 (b);r'?,rl0 (c)-r'?,--<). <+o
(d) *, o<x<1r (e)-r3,r > 0 (f)ln-rf x,x > 0 (g)x -:/r,--.*.*- tn)L,.'0

x
(a) e"'r (b) eJrt"z 11. (a) e1 (b) e' 13i ;2 - r 15. (a) 3/rc (b) I 17. (a) 0 (b) I (c) 0

))ra^6
ar)x Jl-x rbr-l,rr-lr' +frx:+1t''7 '*- .21. rar-sin.r' 1b1 -rrn:r{ ) 

u.r ''
_ 
rr,di1 . r i!.
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LI-.2 l
'l -r 

-r)'.:-----_ 
'i rr)Jx-sin (r./ - lrsin (( l-" '9.,+L '"rr+l

27. (a) F(0) : 0, F(3) = 0, F(s) :6, F('7) :6, F (tD) 3

(b) increasing on [], 6] ana ff;, to], aecreasing on [0, ]] ana [6. f]
(c) maximr-rm f atr : 6, minimum - ? at.r : ;

2
(b) 

r - ,,.,

(d)
x<0
rc>0

29. F(;) : Itt - t'1tlz,

Ir r + ,'rl.2,

31. 1(;r): j + J-ra/3 13.

37. I is the derivative ofII.

),(r) = tan-r + cosx - (/2/2)

39. (a)t=3
(b).:t
(c)1:5
(d)/:3
(e) F is concave up on (0. j) and (2, a),

concave down on (;, 2J and (4, 5 L

;ll. (a) relativemaxinaat x - !J4k + l,k : 0, 1.... ; 43. /(n) : 3er', 4 : I ln2
reldrive minrma dr x I J4k l,L- ,,2,...

(b) x: +J2k,k - 1.2...., and at-r:0

-35. P (.,l:) : P{, +
I,^,

r'(r) dt individuals

(f) 
:
L

,15. 0.06 o,

) Chapter 7 Supplementary Exercises (Page 454)

5. sQ) : jar'? 1 r-'6r i ro, r(1) - d(r) + r0
7. (a) ; (b) -; C) -+ (d) 2 (e) not enough information (f) not enough information

I .. 9n
9. {ar2+r-'2, tbr Jrl0 l' 4 

(c),r'8 ll. J5- 128 15. (d),r ' l0rr0

t' I t l23.h)l- .1 dt abi L .,d,
J t t J,nt /! lt-t

l. po.iri\e it r l.andnegfliveit.\ L

I, positive ii I < r 5 2, and negative if 2<r< L

(c) + R(,) (d) 2285.32 kw/h 31. (a) no

21. (x213 + l)3t2 + c

27. (a) F(x) is 0 if .,r =
(b) F(r) is 0 if r :

29. (^) 31 ,'7'73.06 kw
(b) 2200.32 kw/h

33. 1.,/5T2 sin 3r + C

45. (a\k =2.013948
(b) k : 1.837992

(b)25 < r <,10

(c) 3.54ii/s

(d) r 4r .5 ft
(e) no

(f) no

17.
fa211 13ab

+C 37. C 3e. rn2 11. i + + (sin l sin j) :r3. r.007s1,1

(b) 0.7651976866 ilg. The integral is better.

(c) x : 2.404826

> Exercise Set 8.1 lPaee 467l|

1.9/2 3. 1 s. (a)32/3 (b)3213

11.3'71t2 19. 4J2 21. 1/2 23.

-13. (a) 1800 ft (b) ;r'? *a?t f, 35.

7. 49/192

91521105 2s.

a2 /6

9. 112 11. J2
el.lZ 27. (d) 413

13. 112 15.21

(b) m =2 14 31. 1.180898334
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> Exercise Set 8.2 (Page 473)

l. 8z 3. 13116 5. 32n15 7. (1 - J2l2)'r 9. 256n13 tt. 4n 13. 2048n115 ts. 3ft/5 17. Bn

19. 2n 21.'/2n/5 23, 1nab1l3 25. n 27. 648ft15 29. tl2 -ll. 40.0002113 -3-3. l/30
35. (ai)2n13 (b) 1613 (q4J3l3 37. 0.'/10l'121'/6 ,1.1. (b)left- I1 157: ghr!11.771; V *average= 1l.464cml(snn. o.h )
4J. Y I -15. r'tant? J1, 16r'/l

f:zrt:lr h' 41.2-h-4

> Exercise Set 8.3 (Page 4791

l. l5nl2 3- n/3 5. 2nl5 7. 4tt

19. (a) 77rl30 (b) easier 21.9n/14 23.

9. 2hl3 1'1. fle1 - e) 13. 2 ls. r/5 17. 2i
11-

trhT :S. I |lr'-rr'-o,''l 21.b-l

> Exercise Set 8.4 (Page 483)

t. L: Ja 3. (s5v/,5 s)/243

B. Ak"lz l) ls. tn(l + 14)

2t.4.645915301 23.3.820197788

s. +(sov{a 13./43 ) (.e3 e t)12 9. (2J2-1)13 tt. r
(b) d)/d,,r does not exist at x : 0.

(c) r : (13v{3 + 80"4I - rc)/Zt
10. (a)

27. (bra.bq (c)5.lbcrn )9, k l.8l

> Exercise Set 8.5 (Page 488)

l. 35.[",D 3. 8z 5. 4on.,E1 7. 24n
t /i-

21. 1!!! ee, t 1 2.1. ^'. I t7 vfi t 1 29.a)4

9. l6n/9 ll. 16,911n/1024

(b) lbr /(,r) constant on ld, ,l

13.22.94 15.7.05

> Exercise Set 8.6 (Page 494)

1. (a)2l0ft.lb (b) 5/6 ft.lb 3. 100ft.lb s. 160J 7.2jlblfr 9. 9002p ft.lb ll. 261.600J

13. (a) 926,640 ft Ib (b) hp ofmotor: 0.,168 ls. 75,000lr.Ib

17. (a) 2,400,000,000/ir2 lb (b) (9.6 x r0'0)/(-r + 4000)'] lb (c) 2.5344 x l0r0 fr.lb 19. ur = 100 m/s

21. (a) decrease of4.5 x 1014J (b)-0.107 (c)^" 8.24bombs

> Exercise Set8.7 (Page 499)

1. (a)F:31,200lb; P:312]lb/ft2 (b) F : 2,452,500 N; P =98.1kPa -3. ,199.2lb 5. 8.175 r 10sN

7. 1,098.720N 9. yes ll. pa3lnDtb 13. 14,9'76^r\7 lb ls. (b) 80po tb/mn1

) Exercise Set 8.8 (Page 508)

1. (a) 10.0179 (b) 3.'7622
(c) 15/17 ! 0.8824 (d) -1.4436

3. (a):
(b) ;
k) , 

"rl?(d) - *!r

sinh iro tanh no

(a) 2 2t^15 ,ls tz t/!s t/2

(b) 3/4 511 l/5 sll 4/s 4/3

(c) 1/3 s/l 4/s s/4 3/s 3/4

(e) 1.1621 (f) 0.9730



I

9. 4 coshl4r 8) 11. I cscht(ln x) '..i**(l)-*(l)
17..r':tanh,v{,sech'r\ rr*Jr ranl.-ry() tn. 

-_!- 
:1. 

- 
-f:- ,.r. -tranh 

rI
y'a-r rco\hr\,/r'-l Lrr

,. sinh r _l l. r-0 ,, ozt' 
;*i,ltr. =l-, ,.0 tl -ijt-- e sech r 'll cinh-r l' 'lJ 2rtanhrr' -C '15' ln{co\h\rr'

37.3713'75 39. lsinh-r 3i+C ,tl. -sech 
r(?')+C ,13. -csch-rl2,r +C ,t5. jlr3 tg. 16/9 51.5r7

53.: 6l. a < lrtanh \utC,lul > l:ranh r(1/r)+C 61. (a)+o (b) 6 (c)t (d) I (e)+6 (f)+6
11.405.9fl

> Chapter 8 Supplementary Exercises (Page 5lO)
rbtt7 rarl.'trx' grx'tdx I 

J, 
{E{r,- f, r,rdr-J.,t'tt sr.rttdr rbrl

13. Set a :68.'16'12,, = 0.0100333, 15. (a) sinh '(rlzJ+C

9.9a/8

Answers io 0dd-Numbered Exercises A93

ls. 2+5.os!(5")jrn!(5')

/,ltc 1 cosh215r 1

c : 693.8597, d : 299.2239
(a) 650

(b) cosh I (-{/3) + C

,",1+'""n 
(;).'

[;..,h (;)+c.

(d).,Lsinh '(+)..

(b) 1480.2798 fr
(c) 283 .6249 fL

(d) 82.
lrl. 'D t rt+xl

or ------= ln 

-l+C
_ 2'/2 /2 rl

lxl' .'/2

17.(a)W:+I
(b)5m

23. k x 0.'724611

19. (a)

(b)

(c)

25. (a

(b) 1.42 in

(c) The length oflhe centerline
is 192.026 in.

) Exercise Set 9.1 (Page 515)

l. -i(3-2r)1+C 3. +tan(x'?)+C s. ]ln(2+cos3r)+C
11. *cos67n+C 13. ln(e'+ nE;+a,)+c 15.2eF+C

t ) t )-c I21. coth , C 2-]. ln l, C 25. sin'p lC 21.2 r 4 2-e'l

7. coshe' + C 9. e""t'+ C
_2

17. 2.i.]h Jr - a 19. 
tn tJ 

/' I C

lsint:r2r+C 29. I 
+ ''*c' ln 16

) Exercise Set 9.2 (Page 521)

1. xe.-e'+C 3. x2e, -2xe'+2e, +C 5. -]xcos2r* lsin2x+C 7. 12sinr+2:rcos* 2sinJ+C
9. !x3/21nx - !x1/2 +C ll. r(ln-r)'?-2xlnx*2x*C l-3. iln(2r,+3)-,r+ ltnlZxl:;+C

f5. xsinrx+./1 -12+C 11. xtan \(2x) -lln(l +4-r,)+C t9. ]e'(sin;r cosr)+C

21, i-tasrnbt bcosb{l+C 23. (r/2)lsin(lnir) - cos(1n,r)l +C 25. rranr+lnlcos.r +C

27. lx2e" -:e"'+c 2s. (1 - 6e-5)125 3t. (2e3 +t)ls 33. 5rn5 -4 .: T ,/J + r Ji. nl8
1

45.V:2r2 47. distance= 37? 5+2 49. (a) jsin?xcosx - ]cos:r+c (b)f, :
53. (a) 1tan3r.-tanr+x+C (b) lsec"tan.x+ ]mn"+C (c) r3e' - 3-r2e' + 6xe' - 6e" +C
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> Exercise Set 9.3 (Page 529)

l. -lcosl -,,*C 3. :sinrd-r+C. dl0 5. ld jsinlOdiC 7. sind isinrp+ +sinjd+C| 2,t

9. jsinr2r $sin52r+C ll. ir -1 
sin4.,;*C l-3. lcosSr+]cosr*C 15. Jcos(3t/21 -cos(r/2)+C

fi. (5,4)ln 19.0 2l.i 2-1. lran(3r+ l)+al 25. llnlcos(e r')l+c 27. 1ln se c 2.r + ran 2-r | + c
29. {tanrr+C 31. 

nL tana 4n + d tan6 4-r + C 33. jsccTr- {sec5r+C
35. j secr rtiln-r isec-rtan.t+lln sec-r +lan-r +C 37. 6!secr2t+C 39. lanr + ltanr.t+C

Jt. -r,rr r ':,n \ \ . J.r. r:rr jr -ml t1^ -r,. 1t , ,r. - llrl
49. {csc5*+ {cscrr+C 51. ]cscz-r lnlsinx +C 55. L:1n(./2+ 1) 57. v=nl2

r:. - 
j 

tn
Jrt! + b1

'4ITF + r, cos.t D sil -,r +c 6s. (a) i (b) 3z116 (c) { {a) s"/:z

> Exercise Set 9.4 (Page 535)

t.2sin-r(.r/2)+ \xJT-?+c a. :sin r(.r/3) l-r"6 ?+c 5. +rin r(:./2)+r;+ r +c' 6(4+' )

i. .,G1 4 3sec r(r/3) +C q 
-)-61-i]r lit ,1,1 lra ./4,' 9Il qtr ll' 

J'- -'

15. ln -r l r/-r: I +C 17. -(t/"6ir t)+c 19. ]sinL1c'y+]e'^,4 n" +c 2r. rH 4. (!5- Jrl2

9$# 27. lln(.r'1+,1)+c 2e. L:'fs Jt+''2l]+ 3t. s:r2atr^v6 rnrr+J5)l

rar,.nh I'r.r' . ,0,,"(5 ].) r ,...rJi-J .co.lrr.\ r 3s. l,.n'(',t) .

''n,(f) *. re.rn(-y 3+v/(' 3),+i)+c 4r.2sinr(+) .1r..+rt"6 z'-c+c

*tan'uf f-,+rl+c 45. z16 49. a: sinr-r. ||"f ,t,,, = lJrin"u{ ,;nl,+sin- (sin'?-r)l +c

37.

l-

Exercise Set 9.5 {Page 542)
A B A B C A B C D,Y+E - A,+S Cr+Dl_ r 5- .1. 

-
r.r 'r Lr-lt I ' r \ r'l .r-f ('*5y

l. {r" * +c ll. ;rnl2-r r +3rn j.+,1 +c ta. 
'" '($l*a ls. I rr - 2r + 6 rn i-r + 2l +c

re. 1,,+,+rn qt$l..
17.

23.

29.

2
3r tl21n-r-2 ,,)+C
,,, 

(r - lt' * I -p 6- .2s.r+l t-l
3ranrr++ln(-r,+3)+C

2l.3ln r -ln-, ', f+C
tnl.r +t +. 

*11 - u fu*a 27. {tn1+-r I + + ln(r'? + l) * i tan L r + c

31. +r'] 3-Y + ] ln1-rr 1 l1 + c
1 /l sintl\33. lnl-l+C6 \5+sin6/

3s. y ='r(+- jrn5)

L /.r + l\ lJ7. _r!r 'l-l - c
J2 \ J2,/ rr*2r*-l 19. iln -r I ]lnr 2l +,r!ln, 3 r1!ln.y+3 +C

> Exercise Set 9.6 (Paee 551)

l. Forrnula (60): 
16r[,l,I + ]n l-1 +.l,rl ] + C

I .,4 -]l 2
7. Fo|mr lu r t0Ur In _ | aI J+_t, +2

ll. Formul.r ' tr: ,r r- r . fn ., - '/t I i a

t\
3. Furmulr(65r: i,n 

- 
*a 5. Formula(102)i ]{-.+l){ :+zr;3/'?+C

s. Forn,u.r rou) '-," ' 'j, * a2/s ' JsI

13. Fornula (95): lr!, 1+-ztn1r+"4,++l+c



15.

J7.

.19.
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rs. Fonnura (74): iJ* *f .i"-,i+c 17. Formula 17e): /3 -,r, _ Vi,"lf */Fl*.
19. Formula(38): -.! sin(5r) + jsin,r+C 21. Formula 150): *{ [4lnr ,J*al 

'r 
I

2.r. Formura(42): ft-r.rnrr,l-3cos(3tt +c 2s. Formura(62): :t{h=*ll._;+in1+_:,,,1] +c
27' Formura(68): :l;k=]""- f *. 2e. Formura(76), :l#==]'"r*.,'c= *.
.rt. Formula (81): I I uldu --r'- 5 lr]

54J J5-u' 36/5-sra+-sin 
r|'6

.t.r. Formura (26): 
/sin2oau =!h, +1 sin(2rnxr+c rs.t,,nurursrl, il*.0,:I, ,- _r)e-2., +c

.r7. n : cos3;,Form*on, - | L: -j l*".,"1ffi | ] 
*.

.r(,. , = 4r2. Fomura no,, 
tU 

I j\ - *f t" I fr-_, * | | 
* c

Jl. n =2e'.Formula rto,, 
J "E-rra,:'rc,tt-*" *j ,1" (fi) .c

a : 3r, Fonnula (44), ! 
| u 

"in 
u a r : j(sin 3r - :r cos :-ry + c

r = -^",f, Formula (5 D:2 | ue, du : -2(Ji + D" G + c

x2 a 4x _ 5 : (x + 2)2 _ 9: u: n + 2. Formuta (70,, I :\= *," l#l .,
x2 - 4x - 5 : (x - 2)2 - g, u : x - 2, Formula (771 

1 # a, = -Ji 4x _ x, +2.i", (f ) + c

":Ji -2,1A-z\5/2+!{, -211/2+c s5. ,r =,,{rll. 1lUr,, _yau:ftk'+r)s/2 
le,+t1,/,ac

u:xva, | ,i#^:2rt/2 - 3xt/3 +6xLl6-6ln(xr/6+ l)+c ,0. ,r:rr,",o | 
^;rr":o^ffi*,u:xt/6,6 

| 
!-du:2r,,. *3*r/r16'r/616In1.tr/6* l1+ C

",:."'t+l, l<, -r)du-:0+j2)r/2-(l+r:)r/2+c es.,:Jl.zlr"inuttu:2sinJi_2J,cosuEag

I :, rt,-= t+,i'.t' - | #o' =rn'ran'r/2)+ Ir+c
.rl+"r-tr+r,,

I :k : I i ^ = -l *, : - cot(o /2) + c rr., I opffi ,1 
a,. 

fttan-,tJtnn* /2).t - x + C

x x 3.523188312 7s. A,- 17.59t 19023 jj. A ! 0,054930614 :'9. V x 3.586419094 8r. y - 5.031899801
tr-roon)r.,U,r"L1,.,.,8i,Stt4.42J59945 r.t7.{a}.r(l'=2+/':0.o."r.;n'rd, =--f;sin=rc*',_fi."J,-, 1*
2_,"n_, /zmr,l*/zr+ t * "1 

(b)
J3 \ v5 '-) I

3

2

I

5t.

57.

61.

61.

('t).

7.1.

8-1.

9t.



A96 Answers to 0dd-Numbered Exercises

> Exercise Set 9.7 (Paee 562)

l. exact value: l4/3 .: 4.666666661 -1. exact value : 2 5. exactvalue:cr e r::0.318092373
(a) 4.667600663, Erl :Y 0.000933996 (a) 2.0013248:10t. EM ':0.00U248,108 (a) 0.317562837. EMI ,:0.000529536
(.b) 4.664'7956'79, Cr :0.00111709E11 (b) 1.9t352353i1. Ell = 0.0161'76462 (b) 0.319151975. Er - 0.001059602
(c) 4.666651630. Es ! 0.000015037 (c) 2.000109517. Er - 0.000109517 (c) 0.318095187, 6s ^:0.00000281.127 )7 24i

1. (a) EM a.2*'1{t/+) = 0.002812500 ib)l[r : _: I ] ,J r : O.1;grn2ronn (")lE's:]a;;(1](l-5/16):'0.000126563

't. rat Lv 
2 u\r,., 

. u0l20lq)d2 rbr L. t'00'1, nn:)8185b4 {cl L.l t80'lo, .uuull -uul.

8812ll. rarlfy _ 2400', ', 0001)'t,'65 lhJ L lt00' n0ol/525r0 ()F -180^10r,, , 0 onnoor's4o

l-1. (a)a:24 (b)n =34 (c)n:8 15. (a)r:36 (b)rr:-51 (c)n:8 17. (a)n:351 (b)r:496 (c),r:16
19. 0.7,161J24948. 0.746824I33 21.2.129861595,2.129861293 2.r. 0.805176I 52. 0.804776489

25. (a) 3.1,12,125985. EMI ry0.000833331 (b)3.139925989. ,E/l!0.001666665 (c) 3.1,11592614. Es :0.000000040

27. S; :0.693147984. Es ! 0.000000803 - 8.03 x l0 ? 29. n-11(t -1-1. l:y 3.820187623 -15. 160:l li
.17. 37.9 m] -le. 9.3 L .11. (a) niax "f"(i.) 

,:, 3.84.1880 (b) n = I8 (c) 0.904741

.15. (a)max /(1)(-r) -42.551816 (b)n:8 (c) 0.90.1524

> Exercise Set 9.8 (Page 571)

l, (a) iirproper;infinite discontinuity at.r = 3 (b) not irrproper (c) improper; infinite discontinuity at -r : 0 (d) improper: infinite

in lerval of i n tegratio n (e) improper: inlinite interval of inl egr atioi and infinile disconlinuity at -r : 1 (f ) not imp roper'

-1. I 5. ln | 7. : 9. i ll. i l-1. clivel€ent 15. 0 17. divergent 11,. divergenr 2.1. irl2

2-i. 1 25. divergenr 21. 3 29. divergent -ll. 2 -1-1. 2 37. 
+

-r9. (a) 2.726585 (b) 2.80,1364 (c)0.2193E4 (d) 0.50,1067 ,ll. -l {-} j

15. (a) v :ttl2 (b)S:/rh/2+ln(l + /2)l 11. (b)lle (c) tr is convergenr. 51.

)nNt | )5.r - (t ,r+ ) s5. {b,2.,1 . ,0 rni lb 57. rarr ,o' ; rcl 
,

8J2
5

61. (a) l.0l? 6s. 1.809

> Chapter 9 Supplementary Exercises (Paee 574)

l. (a)parts (b) substitution (c) redlctjon formula (d) substitution (e) substitution (f) substitution (g) parts

(h) sLrbsrirurion (i)u=4 ;'] 5. (a)40 (b)57 (c.)ll3 (d)108 (e)52 (.f)'71

7. (a) lsinr2rcos2t f sin2-rcos2r t i-rlC 9. 2stn16Ql2)+C ll.
(b) : cosr(-r']) sin(x']) + 16l 

cos(-r2) sin(i'?) + +,i'] + C 2 sin t(^rZ-l\A) + C

sinr(-t-1)+c

:1.

V =2tt 15. ?cosr/']r+C l?. I trLn 1rr1 -tC tr,. -:+C' lJ-l+r2
^.,G, + L. + z + z lnlv!: + rr + z + r + t)+c 2.r. -:lnl.r- ll++lni-i+2 + +ln.r-3 +c 25.4-n

l -1.

:-. rnJ' I I c :,,. - 
|

J, t I )(o') I' .tl. jsin r(.{r)+C 3-1.411-.+z)ti' (t 2)titl +C

. \ B Ct 1) f.' F
(a)r, T..lr.r :rLrr r l)r: * -\'l 4 r I L (\ I l)

! ) x ) I I l/ ^ \rbr - - 
lci -.1 ln r ,l l.2ln.\ 5 'rxni lrf, ll I rrn'i 

Ir 4 .r 5 '--l \r 1., )\, t /
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) Exercise Set l0.l {Page 589)

3. (a) first order (b) second order 7. (a) y : aa 3' (b) ) - C"t' 9. y : C, 11.

13. lnlyl I y2 /2: e' * C and y : Q 15. ]:]n(secr+C) 17. l: 
-a* _-r,

21. y:e rsin(ex)+ce x 23. y- 
= 

zs. taty:i+] 
x s

,,2,r 2 2t (b)) 
l-t

27, \'- l+4e'2/2 29. 3)' + 6 sin y : 8r.:3 + 3r2 - 8 31.72- 2y=t2+t+3
(tt)x:2y2 3s. y: #T4

y:6p-nfi*c 1

andy:0 19. y:e 2t trg" z'

33. (a) 2.5t2

"i

1.

Exercise Set 10.2 (Page 5971

9. (a)

(b)
(c)

(d)
(e)

(f)

IV
VI

II
I
TTT

11. (a) (b)1: (rf 1)*2e'

te. (D y1/D = Ji/z

15.13.

37. rr+)r 3):C

C=2

2

) - -0.5r'z

41. x2+2e r -6 43. (a)200- 175et/25oz (b) 136 oz 45.251b 49. (a)1(/) -llJ e-'/2) A, (b)IrrendsroSA.

51. (a) u : cln 
---!L 

- st (b) 3044 m/s 53. (a) , ^, 
(2 - O.OO39'i9t)2 (b) 8.4 min

55.,: !L cmls, -x - 251n(2/ + 1) cm 57.4!:-sinx+e-",y(0): t

1=-':
1.5

1

0 1 2 3 5

0 02 a4 08 l0
I 120 t.48 186 .z t5 2.98

0 o.2 0.4 0.6 0.8 1.0

124 I58 204 265

0 0.04 0.10 0.19 0.30 046

0 3 7 9 l3

0 3 5 6 7 8

0 05 2 25 4

I 150 2.11 2.84 3.68 5.12 691

n0 23
0 05 1.5

142 192 . 239 2.73

0 2 5

0 0-2 0.4 0.6 0.8 1.0

ln 1.00 1.06 0.90 0.74 0.80 1.00

> Exercise Set 10.3 {Page 6091
Ct

l. (a) 
,- = ky' , y(O) : 16(l > 0)

rlt Ib)*: r,l',t,ro) -'),6(fr > o)
d2s ds(b)''.-=2-
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s. (a) + :0.01y, )o : 1u,000 (b) ) - 10,000e'i r00 (c) 69.3I h (d) 150.41 h
dr

7. (a);: i),k^,0.1810 (b)r:5.0x 10??-0.181' (c)219,297arons (d) 12.72days 9. tg6days ll. 3.30days

13. (a)1:2s01386' (b)l:5e00r5, (c)) - 0.5995e0srr7, (d)) 
^r 

0.8706e01386, 17. (b) 70 years (c) 20 yean (d)7%

21. h .:2, L - 8, & - 0.5,193 2-1. (a)yn=J (b)L:12 (c)k:l (d)r=0.1165 (e.) f : jj.1tz--r1.y1oy:s
Jr 12'

2s. (a) L : l0 (b),t : 10 (c) ,y : 5

27. Assume that )(t) sfudents have had the flu t days after senester b|eak. Then y(0) = 20, ](5) : 35.

la) ' ly'1000 rt 1n -,20 lc) , o 2 u .t j b I e tr, 
' 

) I 4 rdl
dt

rb).,: 1000 :f =00001 15 '.v(t)'zo zz zs 28 31 35 39 4'1 +s:+ ol olll:ls:'g. ;:
I r49P aaI

50

25

dT
29. (^) 

dt 
: -i(r - 21). 1(0):9s

T -21 +'74e k'

(b) 6.22 min

(a) ) : -0.12cos 14r (c)

(b)T : nl7 5. f :t/v117

33. (a) y : 0.3 cos(r/2) (c)

(b)I:42s,/:ll( n)Hz

(d)t:z/28s
(e).:z/14s

-17. (a) Maximum speed occurs when ) : 0.

(b) M.nimum .peed occur. u hen J = *Jn.

(d).:zs
(e)t:2zs

0.1

-0.15

39. mx" (t) + kr(.) : 0, jr(o) : xo, r/(0) : 0 41. (c) y:42?r"'? (d) ), = 4? 'r"2

> Chapter 10 Supplementary Exercises (Page 612)

5. (a) linear (b) both (c) separable (d) neither 7. y:Ll2 9. r:4-tm
ll. (a)P:4(1 € '/12000) percent (b)35.95min l-1. ) r+4ln(r/1,):1 15. 1: 3 2tar2r

19. (a) no 21. (b) ) : Cf' I Cze-'
(b) I00 ek't(roo+') - 1l percent (c) I : e'

2r. (a)'t't'7yea$ (b)#:k(: fi) r,iio):re 27. (a) $1491.82 (b) $4493.29 (c) 8.7 years

> Exercise Set 11.1{Page 624)
I t lr' 2n Il. (a) (b) - (c) _

t,| l,r 2n

12315 n
5. -. -. -. -. -: converse\. limI 4 5 6 7 nt)

lnl ln2 ln3 ln4 ln5

l. (a)2,0,2.0 (b)1,-1,1.-t (c)2(1 i( 1)");2a2cos,?zrdr-jl

- 1 7. 2.2,2,2.2; converges, lim 2:2
r++r

1ln
9. 

-. 
- . coll\erses. limt 2 r 4 5 ' ".

11. 0, 2. 0, 2, 0; diverges
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r f, -^:r. H.-f;dive'ges'. : f ff,.rI, *g,.on*,*"',,,11'1.j (, r ;) (,. i) - l
cos 3. cos ]. cos 1, cos ], cos ] : converees,,,iin. cos(3/r) = I

, ,.r, .q,. .rbp,.2s? :Lu\cue\.rn,,, =0 :r. r (:)' (:) l; ) (l) ,."^"n".

# |*,' -*".r",, ,,1,:,1, ? : t t.. 
{ + '}- 

, ."^'".c",,,,ti-.. } : o

27.

19.

-1.1. (a) l. 2, 1,4, 1.6

-r7. (a) t, i. i, i lr. (a) (0.5)r"
(d) l:rh:l

I t,. ,, otld I t/t'.rbr,, i,r'. ,.'.n 't"'={t',, t.,.

.l-1. (a) ro

n odd
fd),,r,J'\er!e.: ,b'Jirer'-e.: rcr l.n.,,, 0

/r (\ell

J5. converges lo 0 17. (a) N :3
(b)N=ll
(c) N = lil01

0l+j
0

(b) lin] (2" +3')''' 3

> Exercise set 11.2 (Page 631)

l. strictly decreasing .1. strictly increasing 5. strictly decreasjng 7. strictly jncreasing 9. strictly decrcrstng

I l. strictly increasinS l-1. strictly incrcasing 15. srictly decreasing 17. strictly decreasing

I9. eventually strjctly incrersing 21. cventually strictly decreasing 2-1. eventually strictly increasrng r _
15.,arY.,:rheln'rr lie,inrhe'r.rrr:lll.l. (hr\u.hL 1..J. henLnclrmi..s l. :7. v'. /'- "[.t/: f '/: Jl

) Exercise Set 11.3 (Page 638)

r. (a)2,:.S.H l(r (-)"),,!1,,,,:l.corverges (b)l.i. l, j.-]tr-:,t.,,ri-."r,,:+a.divcrscs
ll l ll I Ik)i ; m i.i-,,--, 11"./ =-..'rn\erses -1. I 5. o 7.,,1':1.t,=i

e. ,,\T_n,: I tt. diverges r-r. + rs. + 17. # le. ffi 2-r. 70m

. d \cree. ,b)," 
I l'. ^ , ' ," f-] ,'n' , rr2

-{11:7. rarcon\crlc.,br , :\= l- 
(b\ cor|crgc. thr , ',r=, _.., tfl.un\rrge.t.rr, U:.S=. 

I

1ll1
3j. a,,: r-ttt+ n, t+ r,,2 +" + r',,llrrl 

a" = I -l5 The se.ies converges only if I <r < I

.{,,.,brA=t.B=.' ;-+-.,ri'''.,,=,'. ['-,_'], ],
> Exercise Set 11.4 (Page 645)

t. (a)] (b) ] -3. (a) 2 = l.66nve1ges (b)p=l,djverges (c)p:i,divelges (d)p= l,diverges
5, (a) diverges (b) divcrges (c) diverges (d) no infonnation 7. (a) diverges (b) converges 9. divcrgcs

ll. diverges l,l. diverges 15. diverges 17. diverges 19. converges 21. djverges 2-1. converges

:5. Lonverse,lbrp I :7. rar{ . ) { i ,fr, (/. ) tl' rcir'oo :,r, raiJi\erCe rbrdirerpe, rcico.r\.r-c.\-./ \ u./ \"/
-tl. (c)*<|nr-s1j=+ -1-i. (b)n = 5 (c)S^, 1.203 -35. (b) 13 < s1.6n6.66x < 15 (d)rr>2.69r10ar -t7. conver8es

) Exercise Set 11.5 (Page 655)

r. (a)t -y+1-rr, I r (b)l j-',.t (c) I !r.x rlz;2,I (d) 1+ l(-r 1) i(' 1),.r++('I-r)
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3. (a) l + l(x - l) - * (.r - r)' (b) 1.04s75 s. 1.80397,143

7. pn@): I, p1(r):l-x, p2().):l-x*trx2,
l^ l^ x):l-r I 1,, - 1*r*1*n, ii:.'|)*,-Pt(x') = I x + i*'- r.*", po( z 3t 4t fr kl

9. po(r)= t. p,(x):1.p2(.x):l -!:', p,t't=r-|.*,pql):t-lr.*f;.,,t 
E'rllrf *r

lr. po(x)=0.pr(x) =r. pzlx)=*-r1*'. /,,(r):.r- )r'+!r'.p"1"t=r-I^'*Ir-f'., ;!:JJ-t'^
13. p6.*t:l.p (n)= l. pz,) = I-l. rr^, -, *1. our,:r- +-t', E#-*
15. po(*)=0. pr{-r)=0. pz$t : t2, pt1l: r '. p4(x) :,, - lotnt ; J:1" ^"-, 17. (a) l+2.r -x2+.r}o ;=i (b) co +ctx +c$2 r-..+cnxn
19. p6@)=a. pt(x)=e+e(x-t),p2@):e+e(x-O+iA-D2, '.JG)=e+e(x-D+;e- ry,+f,1r- ry.,

paet) : e + e(x - tl + "r<, - t)'? + +.G - t;' + fi.6 - tyo ; f, io - rt
2t, pok) = -l; pr@) : -l - (-r + l); p2(r) : I - (, + l) - (x -l l)2; p(x) : I - (r + l) - (r + l)'? - (r + lf ;

pa(.r): -1 - (,r * l) - (.x + l)'? - (r+ l)3 - (-r+ t)4; I(-l)(n+ 1l

23. po(x) = p,t^t = t. p2(x) = pt(x) =' - + (' - j)'.
p10d =, - + (, - :)' .f (' - ;)', n# G - :)"

2s. potn = o. ptld = G- l); pr(') = (-r - l) - !.r, - r', ,aQ) = k -t, - j" - Il' + ir' - rl',I ' lr-l)r. ,,,-,*, 1(-1)*-'t,-rlptk\: (x - l) - ,(x - l)'+ 5( 4 i:i k

n. 6rl+2(x- l)-(r- l)2+(.{- l)3 (b) co + cr (.r - ,ro) + c2(x - ,{,)2 + . . . + c,(x - xo).

29. Po(r) = l, p1@) = I -2x, 4

pz7): | -2x +2xt, pt(r) = | -2x 1212 - |x3

31. n@) = t. p2Q) : -t + tG - r)2,

paQt): -1 + +@ - n)2 - !^{x - tt)a,

p6Q.): -1 + \{x - tr)2 - {(x - tt)a + fi{x - n)6

37, (a) (b)

-l
(c) l?d"' - (l + r)l < 0.01 for -0.14 < r < 0.14 (d) le'i"' - (r +" + f) f < 0.01for-0.50 < x < 0.50

0-015

-1.25

- 1.000 -0.750 -0.5m -0.250 0.0{x) 0.x0 0.500 0.750 L000

lI.r) 0.431 0.506 0.619 0.781 1.000 1.261 1.615 1.977

0.000 0.250 0.500 0.750 r.000 1.250 1.500 1.750 2.000

P2lx) 0.500 0.511 o.625 0.78r l_0m l_281 r 625 2.01I 2.500
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> Exercise Set 11.6 (Paee 661)

l. (a) converges (b) diverges 3. (a) converges (b) converges

ll. converges [-3. inconclusive 15. diverges 17. diverges

25. converges 27. converges 29. diverges 31. convelges

diverges :ll. converges J-3. converges

converges 51. (a) converges (b) diverges
r.Ts.a2k D'p=

7. converges 9. diver€es

21. converges 23. converges

35. converges -17. converges

rr. (+1 
= 1,.nnu".n."

'-r.-2k+l 2

5. converges

19. converges

-13. diverges

kl
-19.

17.

> Exercise set 11.7 (Page 6691

3. diverges 5. converges 7. converges absolutely 9. diverges ll. converges absolutely lJ. conditionally convergent

15. divergent 17. conditionally corlvergenl [9. conditionally convergent 21. divergent 2J. conditionally convergent

25. absolutely convergent 27. conditionally convergent 29. absolutely convergent 31. erorl < 0.125 -13. el.ror < 0.1

35. n :9999 -17. r :39,999 -39. lerorl < 0.0007,t;sro ;v 0.4995; S = 0.5 ll. 0.84 43. 0.41

45. (c)r:50 sl. (a) 124.58 <d < 124.'7'7 (b)1213 < s < 1421

> Exercise Set I1.8 (Paee 675)

1. 1=r = 1. 1 -j. 1 . ,... j.-l1+r '3-x
e. R:+€,( o,+6) ll. n= j,t_+.+l

19. R: +o, (-@,+6) 21. R:l,l 1,tl
.lrr. R = -e. r-rc. -o) .ll. ( /. I !) .r.1.

(b) /(0): l: /(t) : i 7. R: l. t-1. l)
15. R:l.(-l,)l 17. R=+6,( 6,+6)

2s. R: 1.( +, +) 2i. R: t,t-2,0)
37. (a) radius : R

(b) radius : R

(c) radius > rnin(R , R,)

5. (a)-2<.r <2
13. R: 1, [-r. 1]

23. R=1,( 2,01

l.

Exercise Set 11.9 {Page 684)

0.069756 3. |.648'/2 s. 0.995004 7. 0.99619 9. 0.5208 I I ,r, f ,tl' ''
3 2k_r

19. (a) R5(r)l < 9 r l0 3

0.000000005

(a) 0.785398 1633974,183096 I 56609

(b)

0 0 ,18 nr98 7t

I I 0.3 t830S8 86r8r?C06 06t

2 0.31E3098 861837906 7153776 695 . . .

3 . 0.3 r 83098 E6r337906 7 1 53716 1 52(';5A2 34. . .'
, r 0..ta.noaRo Rr'n0L t5l-7o -5zo-lsr. 8

(b) 0.2231

15. (a) 0.4635,0.3218

(b) 3.1412

(c) no

17. (a) (-0.569,0.569)

0 0001

21.

o7

(a)I( 1)iir

rbr I - 1- i,-r/ 'l-!---rrj',1 t2 1r't, r

.- ,(,t+1){k+l) ,.(c) ) ( l) n^

k=t)
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> Exercise set 11.10 (Page 593)

!. (a)I--r+r':-. +(-l)rrr+. ;R:I
(b) 1+-r'?+ir4+ +,r2r+...; R:l
(c)1+2n+4i']+ +2rr*+.. ; R: j

I I t- l,d'., .r,r I r: 2,rr' :R 2

:. (a)2r 
|, r.'-7.r - : R

t1

{b, | 'r+', -:r'+ :R--,
I

-tl
tcl l-fr-r,r" ,,.r'' r.. : R_ r

fd)r lr' y',\" h,' + R -i,

(a)'r f-"*i" #'t* (b)l2rr-6r.6+,1'e-3rr2+...
(a) l - (r - l) + (ir - l)'? ...+( 1)r(r l)t+ (b)(0,2)

. -t' r r 1' 7lrarr-, . .rr rbr r ]a-2t r92o' -
(a)t+ jr':+fr'+$16+.. (b) -r -.r2+ ];rr - {x5+ 19.2 4x .|2x1 4-r3+2r1 +..

' tn ! if rr otlrlra,f ' rb) f ,0' 5. I {0,-U rc'r'r0,-r', -{" :""' l-. rarl rbr-' :t. u.,lUJ
lrr rl/, even

I I l.l r.r.5
'r' ra)12- rl =i r ' 2.:.2i' 2..r! 'l

(b)Ll ,rr ' f- 2' , l' -4' +

7. (a) -,r'? 3rr+9-rr-27-15+ rR:l
- ) 2 r^rbr2' - r' .r'' I ro ...: R lit! 5t 7\

-l -1 . l
(c) r r I r I -, T ;R=l2 X lfl

IL

1.r.

15.

15.

-r l. 0.200 \ ,... {bi-r t, 1, 
1 t 5-l!l-.J-, r.R. r

:-1 2' / l/lt I lr

(c) 0.99987900731j 19. (a) r - 2.00709 (b) 7 -j 2.008044621 (c) 2.00804564,1

| (d) ahour 0.17'. le\r,

11"

-11.

> Chapter 11 Supplementary Exercises {Page 696)

9. (a) true (b) sometimes lalse (c) sometimes I'alsc (d) true (e) sometimes false (f) sometimes lalse (g) lalse

(h) sonetimes false (i) true (i) truc (k) sometirnes false (l) sometines false I l. (a) converges (b) converges (c) diverges

I-1. (a) convcrges (b) diverges (c) converges 15. t;
17. (a) Zo(x) : 1. 21(-r) = 1-7r,p2Q):I 7i + 5,r2. pr(-t) : I 7x+5x'?4-rr.pa(r):1-7n+5-t2-4-t3
21. (a) converges (b) diverges 2-1. (a)u16= _L (b)0 (c)2 25. (a)er- 1 (b)0 (c)coss (d)+

27. 22.O1ak -lt. (a) jt + Itr + {tr { '.,1-rr1 /l :3 (b) xr + ]ri ]rr + {r'!: R:1D

"*:
1.000

"^,

3h2

R.-

(a) -r'(r )

(a) 1j :

!,:r

)t(0.

3*

I(l

2h

n

.15. (a)

i_ to 1,

,,rs I l

-Llt2

+

,,1)k I

.r

zll

4h

R

io,

)t2

.

> Exercise set 12.1 (Page 7101

1. r/2 -1. (a) (3\,/3.3)

(b) (,712.1.!512)
(c) (3/3, 3)

(d) ((). 0)

(q e7J312.112)
(f ) (,5,0)

5. (a) botb (5, 7r)

(b) (4. 117t /6), (1, -n l6)
(c) (2,3n l2) . (2. -n l2)
(d) (8!t, 5/r/4), 6rt.4n14)
(d) both (6, 2nl3)

(d) both (v4, ,'/,1)

7. (a) (5,0.6435)

(b) (.i49, 5.0929)

(c) (l.2716. 0.6658)
(3, +r

(6, 
')' :,t. \-t, 1t.r..a,

u. lti -,1- )../ : ",' )'-
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9. (a) circle

(b) line
(c) circle

(d) line

t3.

(a)r=3sin2a, (b)r=3+2sin, (c)r.r:gcos26

ll. (a)rcosd:7
(b)r = 3

(c)r:6\inp
(d) r2 s:n2e :912

17. (a)r-5
(b),-:6cosd
(c)r: I cosd

19.

21. "+o
/t==\I t)T1 K
\)

IOG
I

:l

r-;---f---.\-.l
,l r--6 )ll\--p-, ,/1L \r-----J

3

3t.

53.

"+.,oCirc e

Sp ra

57. 4ft <e
,/2

+ t(cnsd + \in P I

+sinA

-cos0

? (cos fl + srn d)

11.

+ "tD'

55. Ir-lt€Ht
t Y-.al

(a) r
(b) r
(c) '
(d) r'

71.

61.

-l
65. (312,r13) oz. (c).,r1: 6,6= Lets (d)A:l

t.

I1.

Exercise Set 12.2 {Page 718)

(a) L/1.I/a 3. positive when . - 1, negative whcn r : I

(a)1 :-p"t,12"' 13. (a)r :r/2+nrforn:0,+1,
(b) 1 = /r/tfbra : 0. tI....

s. 4..r i. 21J3. -i lGJ3)

15. r' : 2r, )' :21 19.

I

1-./3
1

t+ - vit'
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- txn2 1 r. -2 21. t,0, I-" )rrni+l -''

31. (0, q, (rt|4,lrlq. dtl4,3n 14) 33.

29. hojizonral (3a/2, n/3). (0. n), (.3a/2,5.''13)a

vertical: (2a, 0), (a12,211/3), (a12,4r/3)
35. n/2 37. n/z

39. L = 2na

47. (h) ,z 2.42

Aa = tl6, t 12,5tr/6

11. L :8a 13. L = J1Ok6 - ll3 ,15.

0n

dt, 3 sin t
(a)

tft I Icos/
(b) 6 : -0.43,14

(ct,Sotor

. L .2.p )tt:222748' 2,14461 2.10100 20?50r ,2 05,8t6 t.04656. t 1l,38]] 20lt!9 202721

' ; rz, i: -, -i;-- r;- -ti : i' i8 l, i' 'z 
or+ir l znlirn :"rioilolooz :.ros7 r.L 2.AB46:2.02046 

a 
2.41802. 2.01600

ss. (a)r=26f10
(b) 75.7 mm

,re. s=T(r7"4t-r)

51. S = r/22

) Exercise Set 12.3.lPaee724l

, ,",L I I co'd, rd ,a, [^'' la ,te

,oii.:''ro..". ro" *ij','''rr -.in6,,dF

*, 
.1 , "r,^ rr o, t t I 

tr,r 
+ co5 re, dd

13. rorl3 4J1 rs. 81/3+/3 17.9J1/2 r tr). (1t+3./E\11 2t.

€G
3. (a) ra2

(b) ra2
(c) ta2

5. 6tr 7. 4n r). n 3J312 tt. nl2 i

1o0cos1(3/5) 48

35. nlr6 I

_)n
2-r. (b)dr (ci2J3 ;

I'=l
1' 9 -'

5. (a)

x2

4

,t j'
g- 4

l.

3.

Exercise Set 12.4 (Page 739)

(a) r : y'? (b) 31 = .v'? (c)

(a) (b)

1 (d) n
(b)

(e)]']-.r:':= 1 (f)

.(., :)

.( 1.,

7. (a) 9. (a)
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il. (a)

1r - fr,:l

13. (a)

v

(1,6)

ls. (a)

19. (a) v,ft)
)- I =ict+ l)

'(r*$.1

(1,1)

1)

t<

31.

35.

37.

(l +f7,3)

y-t!-!r<r*t>

17. (a)

21. (e') y2 = 12J"

(b) y'z = -28r (b) (.r - 1)': = 12(y - 1)

43. 
16r 

fr 45. (a) P.: (rcosr,bsinr);

C:(dcost,asint);
R : (a cos t, rsint)

y,:-s(,-f) 2i. (dtrx2+ir,=t 6ji+,flil=t zs. (a)\x2+|r,:r o) !x2+|y2:t
(a) $r'z+$y'?= 1 (b)(r- 1)'?+ j()-3f = I 33' (a) ir'z- jv'z= I (b) x2 - iv2 =r
1a1 Sx2 - |f = t, {f - )-t6x2 : 1 (b) +rz - +x2 : t

(a)!5f('-6f - iO-q,:1 39. (a)16ft (b) 8/3ft
(b)|(r-zr'l-ik-i)'=r

4s. +(x-4)'+*(y-s)'=1 51.96 61. 1-pJ1ap,r=lpo t.(-+' +)+),(.+,

r-rifs, rl

f 
y 

^ 
r-+=lr,-zt

y-4=-i(j-2)'\

y=-i,t.

)+3=3(,{+2)

,+3=4(r-l)

pD

D

71. (b) 1430465,24,33.695 3 5 itl

73. (a)(.r-l)'?-5(yll)2=5,hyperbola (b)t'z-3()'+lf =0,.r=+1/J()+l),twolines
(c) 4(r + 2)2 + 8(y + l)2 :4, eripse (d)3(r+2)'?+(y+l)2=0'thepoint(-2,-l)(degeneratecase)

(e\ (x + 4)2 +2t = 2, parabola (f)5(t+4)2+21 = -14, parabola
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) Exercise Set 12.5 (Page 750)

l. (a)€:1,./: ) {l"ln:;,a:Z (cye:l,a:\
T/2

(b) ellipse,

directrix above the pole

5

(c) hyperbola,
directrix bclow the pole

(d) ellipse,
directrix to ihe right ofthe pole

2
a5)/ = _l+2cosd

thtt: I

I - ..)\ r.l

20

24
7. lz\t = 5-5cosl)

2(b) r = 1 sin 0

I

9. (a) d :6. *irr+ *(l+2)2:1
(b)d:1.:(jr-l)':+:1,:r

11.

13.

17. (d)
50

30

21.

(d)e=l,d:l

','m"DK.-@}
321(c) r- _- _ (cJr -.'+f .irr ) r.nt?

1o; a = ?. -z-,2 + ro (-', j)':r (b)d: +, fi(r+2y2 -e1,= r

12 61 16 120latr= {bt/ (c,/ rdrr =2-.o., 2r- 5,i'rd 5 Jco.d 5-r.in0
(a) Z - 248 yr (d)

(b) fo = ,1,,1,19,675,000 km

rr I 7.400,325,000 kn
37.05

(c) / .: AU
1 + 0.249 cos,

563 kln,4286 knl

19. (a) a * 178.26 AU

(b) ro = 0.8735 AU, ,"r t 355.6,1 AU

1.',74
^ (c)r:: _Atl

+ 0.9951 cos d

5.

7.

Chapter 12 Supplementary Exercises (Page 752l

(a) circle (b) rose (c) line (d) limaqon (e) limagon (f) none (g) none (h) spiral

(d)(a) n/2 (b) (e) n/2

N'
11.

4'/0 ^(a)I:-,r' (b)a-4336.3I1 ls. A:

n/2 (c) ., /2

{l

(a)(a) parabola

(b) hyperbola

(c) line
(d)circle

e. (a) |r'?+ jr-'?: I
(b);r = 161

(c)t 4:1

-10
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F/2 j
t7. tatL= 1", iIt e2d0:0.s451 rb)Thearclengrhisinfinire.

-L2tg. {a,Y 'a"r,b' 2o',Jo +b +'1oa, tbtv -'"rn 23. (a) -1/4,2
b) 4Ja/4.3Ja/4

27. (b),r:cost+cos2t,
f:sinl+sin2t

(c) yes

3r. (a) 1/60 (b) 91,450,000 mi (c) 584,295,6525 
'ni

33. (a) 119.3ftls (b) 114.2ft (c) 44'7.9 tt

3. (4,2,1\, (4, 1,1),(4, 1, -2), (-6,2,1), (-6,2, -2), (-6, r. -2) 
1.

(-6' 1':2)

(4,1,1)

14, t. -2)

5. radius /74, center (2, 1, -4) 7. (b) (2, 1, 6) (c) area 49

9. (a) (' 1)'?+]'?+({+lf :16 (b)(-r+l)2+(y 3)2 +(z 2)2:14
11. (x-2)2+(y+1)2+(z+312:12; (a)r'?:9 (b)r'?: I k)12:4

, t"G
15. sphere; center (], :, ;), radlus ; 17. no graph 19. (a)

21. (a)

(,6,2,1)

(-6.2,-2)

1c; (x + ])'?+ 0 2)2 +(.2-42:1
13. sphere, center (-5, -2, -1), radius 7

> Exercise Set 13.l (Page 764)

1. (a) (0, 0, 0), (3, 0, 0), (3, s, 0), (0, 5, 0), (0, 0,4), (3, 0,4), (3, s,4), (0,5,4)

(b) (0, 1, 0), (4, 1, 0), (4, 6, 0), (0, 6, 0), (0, 1, -2), (4, r. -2), (4,6, -2), (0,6, -2)

27.

,k'

d-.

(b) (c)

(^)-2r+z=0
(b) 2,rir:0
(c)(r-1)'?+(y-1)'?-l
(d) (r - 1)'?+ (< 1)': 1

33.

37. largest distance 3 * ^,6, smallest 3 ^"6

39. all points outside the clcula.r cylinder ( y + 3)2 + (z 2)2 : 16 4t.r:Q-JtR
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> Exercise Set 13.2lPaee774l

(d-f)l. (a-c)

s. (a) (3. -4)

-1. (a, b)

7. (a) ( l. 3)

(b) ( 7.2)

(c) ( 3,6. t)

e. (a) (4, -4)
(b) (8. 1. 3)

ll. (a) -i+,1j-2k (b) 18i+ l2j-6k (c) i-5j-2k (d)40i-4j-4k (e) 2i 16j l8k

r.3. (a) r4 (b) 5..4 (c) ^/t1 (d) va?
15. (a)2rl3 (b)"4?+"t k)2\44 + 2,4 @) 2J- @Ol\6)i+(l/"6)j - (21"G)k ff)1
t1. (a)( r/!\1i+$l\m)j (b)(-3i+2i - k)/./4? (c) (4i+ j,k)/(3."O) re. (a)( 1,2)

2t. (al lJl l..rvf 2 (bl 0. 1 rc) 5 ,.5J] ) td) l.u

r. (rt !A)12. (1 +.,,4)12) 25. (a) (-2.s) (b) (3, -rJ) ).i. \ 1.1)

(f) i+l3j-2k

I
(b) 

G 
(7. 0, -6)

2e. u: ;i + ]j + ;t , n = ii +j +k I. ./5.3 -t-r. (a) +: (b) 3

35. (a) {r/^"44, 3/\,{a), ( l/vaa, 3/vil0) @)\11\,5.-1lJt),1,11\A,rtrt) rc)+:(s. rr
J2o

-17. (a) the circle ofradius I about the origin (b) the solid diskofradius I about the origin

(c) all poinrs outside the solid disk ol radius I about thc origin

-39. (a) the (ho]]ow) sphere of radius I about the odgin (b) the solid ball of radius 1 aboul the oigin
(c) allpoi0ts outside the solid ball ofradius laboultheorigin

,ll. magnirude : 30.,,/-5 ]b, d - 26.57" l-1. magnjtude ! 207.06 N. r, : 45' .15. magnirude ^: 94.995 N, d :: 28.28"

,17. magnitude - 9.165lb,angle:: 70.890' 19. !183.02lb,22,1.13lb 51. (a)cr:2,cr: 1 (b)nosolutlon

> Exercise set 13.3 (Page 783)

1. (a) l0;coso : -ll./6 (b) -3r cosd : 3/J58 (c) 0; cosd :0 (d) 20;cosd : 201$J:/|.)

3. (a) obtuse (b) acure (c) obruse (d) orrhogonal 5. !512,0, ,,e12. 1. Al2.0.Al2
7. (a) vertex -B

(b) 82", 60". 38"

9. (b)u, : 
-i+ -utj 

i y6j u' ur lJ. ra r ti 15. (a)rr : p 
^: 55', / ! 125"

(b) 36

(c) 24J s

(d) 21v5



te.6.1"41"60 21. (a) projbv = (*. n!),

v - projbv : (,l!, - nff )

(b) projbv = (- !. !),
v - projov: (1. !)

Answers to Odd Numbered Exercises Al09

(c)proj$v= ( f :),
v - projov: (1. -{)

2-1. (a)v:(-1.-l)+(3. 3) (b)v=(+.0.-i) +(-i.1.-i) :s.t
27. force 49J7 N against the ramp, force 49.,/2 N to prevent the block f'rom sliding down the ramp

2s.450Jt+t50.t6tb.300+300J3tb .]l. w- l2fi.lb -1.3. r/:375ri.lb -r5.7t. t-r. (a)40' (b).r - -0.682328

) Exercise Set 13.4 (Page 793)

l. (a) j+k (b)k- j 3. (?, 10,9) s. (-4,-6,-3)
7. (a) l-zo. -6'7. -s) (b)( 7s,52.-26) (c)(0, 56. -3e2) (d)(0,56,3e2) ,. ], 1.0 rr. +l(2, r,r),/) J: J6

l-r- .,/59 t5. \ry412 17. 80 t9. -3 21. 16 2.1. (a) yes (b) yes (c) no

2s. (a)e (b) "422 lc;.in '(fi) 2i. (d2Jt4lD b)6/JS 2e. 3 jt. e =r/4
-r-i. (a) lovt lb fi. direction ofrotation about P is counterclockwise looking along Ff x F = -loi + lok toward its initial point

(b) 10 lb.ft. direction oi rotetion about P is counterclockwise looking along 10i toward its initialpoint (c) 0 lb.lt, no rotarion about P

-r5. -36.19 N.m .r9. -8i 20j + 2k, -8i - 8k

> Exercise Set 13.5 (Page 799)

l. (a) lr:,(:1,):r (b) L r : ,r = I , t, : I , . : r -1. (a),r =3+2r,I: -2 + 3l; line segment: 0 S l 
= 

I

Irrr:r,'f =l Lr:,r=t,t,=l,l:l (b)-r =5 3r,1:-2+6t...: I + t; line segment: 0 S . : I

L1:r =t.r'=l.- -t
5. (a) r : 2 + r, r' = -3 - 4I (b),r =r.r': -t..-l+t 7. (a) P(2. 1),v=4i-j (b)P( 1,2.4),v=5i+7j 8k

e. (a)(-3.4) +r{1.5): -3i+4j+r(i+5j) (b) (2. 3.0) +r(-1.5. l):2i-3j+r(-i+-5j+k)
lt- x: 5+2t,)-:2-3t l-1. .y:3+4r,): 4+31 15.,r: l +3t,!=2-4t,.:4+t
17. .r:-2+2t.t= -t..:5+2t 19. (a).r =7 (b)-r': I Cl-: l*@,, = 

"#21. (a)(-2, 10.0) (b)( 2,0. -5) (c) The line does not intersect the Jrz-plane. 2.1. (0, 4, -2). (4, 0, 6)

29. The ljnes are parailel. 31. The points do not lie on the same ljne. .15. the line segmentjoining the points (1, 0) and (-3, 6)

37. 2J5 -19. distance : .,4516-

.ll.(a)-r:.\b+(.rr-16)r.,r:16*(11--1.0)r,:::0+(:r-ao)t (b)x:xr*at,): t-t+bt-.:zt+ct
l-3. (b)(r,r'.:) :(l+2/, 3+4r.5+/) J5. (b) 84' (c)r:7+r,J': l,:=-2+r {7. ir:r,}=2+t,z:l t

.19. (a) VjJ cm (b) ro @) \E412 cn

> Exercise Set 13.6 (Page 8061

l. r r r'=zl.:=5 -r.,+4rT2.::8
l-1. (a) parallel (b) perpendicuiar (c) neilher Li. (a) parallel (b) neither'

9. )+r:1
(c) perpendicular

It. 2.', - z = |
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17, (a)pointofintenectionis(1,l,l) (b) no intersection 19, 35"

25, x*y-32:6 tt.x)-5y-l3z=-6 29. tt+2y+42=T
35. 7x+y+92:25 37, x=-\ -ZZt,y= ++t,z=-7t
4s. (x - 2)2 + 6/ - lf + (z + 3f : # 47. slJr2 49. 2lJs

21. 4x -2yi1z=0 23. 4x -13y*2lz= -14
31., : 5 - 2t,, = 5t, z = -2 + llt

Je. : 4t. slJ $. 25/\M

) Exercise Set 13.7 (Page 8l7l
l, (a) elliptic parabolotd, a = 2, b = 3 @) hyperbolic parzboloid, a : I,D=5 (c) hyperboloid of one sheet,a: b: c:4

(d) circular cone, a = D: I (e) elliptic paraboloid, a =2,b = I (f) hyperboloid oftwo sheets,4 =b= c =l
3. (a) - z = x2 + !2 , circular paraboloid opening (b) a = 'x2 -1- y2, circular paraboloid, no change

down ths negative z-axis
z

(e) x : yz + 22, citcularpamboloid
opening along the positive .r-axis

z

(c) z = -r2 + ,2, circular paraboloid, no change

(rI) z : 12 + y2, circular paraboloid, no change

(f ) ) :,r2 + 22, circularpamboloid
opening along the positive y-axis

5. (a) hyp€rboloid ofone sheet, axis is )-axis
(b) hlperboloid of two sheets separated by ),z-plane

(c) elliptic paraboloid opening along the
positive r-axis

(d) elliptic cone with.r-axis as axis

(e) hypeftolic pamboloid straddliog r- and z-axes

(f) paraboloid opening along the negative y-axis

y'_1
t64
x2 z2

t-i
t2 

',29'16

-,2 -2

254
1+l=l:
94

12 rr2

925

(a).t:0:

):0:

z:Ol

(b).r:0: z

y=0:z
z=0:x

= 4!2.,

-2.

z

)

(c)x:0r

)=0:

z=O:

9, (a) 4x2 + z2 = 3; ellipse

(b\ ,' + z' = 3; circle

(c) y2 +22 = zo:cncle
(d) 9.t2 - y2 = 20; hyperbola

(e)z:9r2+16;parabola

$)9xz + 4y2 : 4; ellipse

Hyperbo oid
of two sheets

__2

Hyperboloid
oi one sheet

Ellipsoid

El ipt c cone



-1

'"@Q,".K".-ds,

Hyperbolic parabo o d

27. + ,r 2q. ? Jl. t

SEW
Hyperbo ic
parabo o d

{al 1+-=I
94

(b) 6,4

@ e"B,o, 
"A)

(d) The focal axis is parallel to the i-axis.

Answers to Odd-Numbered Exercises Alll

( 2,3,-9)
Circu ar parabo oid

19. larI :l
44

(b) (0, +2,4)
(c) (0. +24,4)
(d) The focal axis is parallel to the )-axis.

41.(a)114:y2
(b) (2, 0, -4)
(c) (2, o, -f;)
(d) The focal axis is parallel to the {-axis.

45, J :4(x2 + z2) 47. z- G2 + y2) l4 (circular paraboloid)

43. circle ofradius v4 in the plane z : 2, centered at (0, 0, 2)

Ellipsoid

l

9.

Exercise Set 13.8 (Page 824)

(a) (8, tr/6, -4)
b) 64.3n/4.6)
(c) (2, tr/2,0)
(d) (8, 5rl3, 6)

6) QJ5, n/6, rl6)
b) (Jl, nla,3nla)
(c) (2,3n/4, tt/2)
(d) (4J3, r.2n13)

3. (a) (2\/5,2,3\

@) e4Jt.4Jt. -2)
(c) (s, 0, a)

(d) (-7,0, -9)
tr. (a) 6.f,3/2,1t/4, -slz)

(b) (0,1n/6, -t)
(c) (0, 0, 3)

@) $, n/6,0)

s. (d QJ1, n/3,3r14)
(b\ (2,'1n/4, r/4)
(c) (6, n/2, tt/3)
(d) (10,5n/6, r/2)

7. (d 6J614,sJl/4,sJalz)
(b) (7,0,0)
(c) (0, 0, 1)

(d) (0, -2,0)
17. .
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19. 21.

,2+y1+22=9

31. (a)x:l 33. (a)a:]yz
(b)p:3secd (b)p:jcscdcoto

35. (a) r :2
(b) p =2cscQ

37. (a) 12 +22:9 (b)p:Z 39. (a)2/cos0 +3/sind+42:1 (b) 2p sin d cos 6 + 3p sin d sin 6 + 4p cos d : 1

41. (^) 12 cos2 e : 16 - z2 (b) p2(1 sin'? d sin'?o) : 16

43. all points on or above the paraboloid r : r.2 + )2 that are also on or below the plane r : 4

45. all poinrs on or belween concenric sphere\ ol radir I and J 47. 
"pherical 

r4000. n /b. n/br. recrangular r i000J3. 1000. 2000v4'

49. (a)(10,tl2,1) (b) (0, 10, 1) (d (J101,r/2,tan-1 tO) st.,-292'7km

Chapter 13 Supplementary Exercises (Page 825)

(b\ -r12. +J112 @) ffie
(b) (), i, r), (.t, z, y), (2, l, r) (c) circle ofradius 5 in plane z : 1 with center at (0, 0, 1) (rectangular coordinates)

(d) the two halfJines z : +r: (, : 0) in the rr-plane

7. @) !e.6/2 (D ,ryih s. (u) -i O) + k) $8 +2sJ1\l1t (d) c : 1

11. (a) the plane through the origin and perpendicular to ro (b) the plane through the tip ofro and perpendicular to ro

15. (a) false (b) false (c) rrue 19' (a):r - t,y-Z t,z: l+t (b) ft13 21' (512, -512, -5J2/2J
23. (a) hyperboloid ofone sheet (b) sphere (c) circular cone

25. (a) t2 : 2. p : cot O csc O (b) 72 - 12 cos20 ; cos20 : cotz O

3.

5.

z

J

(c)

'

,=.,F;7
x2+(! 2)2=4

(1,0,0)

tz +!2 +(z 2)2 = 4

(r l)2+)2=l

27. lq (b) 7 rcl

(2,0,0)

]

29. (a)



31. \b) )'2 + z2 - e' 35. -11N m

Answers to Odd-Numbered Exercises All3

37. (a)F:-6i+3j-6k
(b) 6i + 18j + 15k

) Exercise Set l4"l (Page 8341

l. (-co,{o);r(z): i 31ti 3. [2,+o);r(3):-i ]n3j+k 5. r:3costi+(t+sinr)j
7. r:2ti+zsln3tj+5cos3/k 9- x:3t2,y:-2,2:0 11. x:2t l,y: 3.v4, z: sin3t

13. the line in 2-space through the point (2, 0) and parallel to the vector -3i - 4j

15. the line in 3-space through the point (0, -3, 1) and parallel to the vector 2i + 3k

17. an ellipse in the plane z = l,centerat(0,0, 1), major axis of length 6 parallel to :r-a.ris, minor axis of length 4 pamllel to ) axis

19. (a)slope 1 21. (a) ,^.,tr (b) +).... 23. r:(1 r)(3i+4j),0=/ 
= 

1

(b) (;,0,;)

J5. x=l,ltr:I.Z:21" 37. t : ti+ t2: + )6JEl - 9F Vk 43. c :3/(2zr)

@
(a) III, since the curve is a subset of the plane ) : -jr
(b) IY since only r is periodic in , and ), z increase without bound

(c) II, since all three components are periodic in I
(d) I, since the prcjection onto the x-plane is a circle and the cwve inqeases without bound in the r-direction
(a) -r : 3cosr, y : 3sint, z : 9cos2 t

(b)

47.

49.
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l-
Exercise Set 14.2 (Page 841)

3. r'(t) :5i + (1 2t)j 7. r'(2) : \t,4l

ll. t'lnl2): 2k 13.9i+6j rs. (j,0) t7.2i-3j+4k

19. (a) continuous (b) not continuous 21. (a)i-j+k (b)-i+k (c)0 23.

25. x:t-J1nt,y:J1+nt,z:t+3t 27. r - (-i + 2j) + t (2i + li) 2e.

31. 3.i+2/2j+C 33. ( /cosr+sinr)i+rj+C 35. (/3/3)i - lj + ln lrlk + C

1r. Ti+4j 43. y(/) = (1rr + r)i + (r'+ l)j 4s. y(,): (+t')+2)i+@'-))i

s. 11r; : ]i+sec2 tj+2e1'k

12.

x = I *2t,y:2 t,z:0
r: (4i + j) + r(-4i + j +4k)

49. intercepts at I - 0,n,2r;
extrema at t = n I 4, 3trl 4. 5n I 4,'/ n / 4;
r and r'are never perpendicular

3

51. (a) (-2,4,6) and (1. 1, -3)
(b) 0 x'/6",'/1"

53. 6 ry 68" 55. 716; 18r5i - 10r{j

r'(0) = i

{ (i) = -2k

-r7. (0, 3) 3e. (s.!E Dl3

> Exercise Set 14.3 (Page 851)

3. smooth 5. not smooth, r'(1) : 0 7. L:tr 9. L:e e I ll. L:28 13. L:2rJ1O
ls. r'(r) : 4i + 8(4r + l)j 17. r'(t):2te'1i-8re'1: 19. (a)r:*,r:* (b).r -t,:r- |

\l /. \!t v_)
.2r)r."

21. (a)x= 1+J,):3- 1.2:t+1 
(b)(+. +.T) 2J. r:J+cosr,f :2+sinr,0=s=2n

25. i: jt(3s+1)'1/3- tlt'?,y: jt(3r+1)t3 11,s20
r f rs 'l /s , I /\ \'l,' ,=(J-r)co,,Lrn(", , ,)l ,-l,a- ,).'"1'"(,'+r)1.0: s _Ji'e''-t,

I s. l|I I srSa-rr
31. , = 2a cor-' I t - - | - )a I I I' ll 2ll I ll.v- .0 \-8a

' 1o' L ' aa'l L \ 4," I' 8a

:r:. (a)| (b\9 - 2.tB 3s. (a)v5(1 e '?) @4J5 37. (a)g(r):v7 (b)s(r):,r(1 -r)
19. znJ|zg alt}/tf -unt 41. (a)2t +(.llt) (b)2t +(1/t) (c)8+ln3
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f\#.
l.

rt1.2
J. T(l) = +i+ . .i, Nttr: -+i - -. 

.iJ5 \/5 \,/5 J5

"(i): -f'*):.r'(l) :-l'-f,',,(;)=-ftr* j-x,*(i):-:
,.trot: j'*.li*;lu.ntor =-jt.j: 13.,r=,',t,:r 15.B:!cosri-{sinrj-lk r?.8:-k

ro.r(f) :ft-i*:r,"(f) --Srt*:t."(i) :krectiryins:,r+]:J7;oscurating:z:r;normar:-r+,v=0

23. N:-sinli-costj

Exercise Set 14.4 (Page 857)

".,:*,,:*
l.

15.

31.

Exercise Set 14.5 (Page 8641

/.\2 -t. ---i-I 14 + 9t:)v:

*:i 19. | ,t.+

_ l2e1'
5, ----------------

(g"tu + ?-:t)"'
4tl _ )<

5 \,/5

.l
7. + e. -., tt. r: i.p: i" 2 cosh' r

!r ,, L ,ol
'" 5Jlo J2
33. (a) I is the curvature ofIL

(b) I is the curvature of II.

35. (a)

(b)

0

ll2x'. - 4l

11 + (4r] fr)']f/'z

0

31. (a) r : (b)

?l

(c)

4t.

55.

3

zJ2

(b\p='D

161p: j tOr, :gnndp = j when.r I I

49. (3.0).( J.0) 51. p.," = tlrt. p,..,,:2

I 2 
oo' t =---!)59' ,, 67 r=lr\u r.T,,r-
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> Exercise set 14.6 (Page 876)

l. v(,) = -3sin/i+3cosrj 3.

a(,) : 3 cos ri 3 sin tj

Lv(t) I - 3

v(t):e'i e'j
a(t)=e'i+e 'i
la(t)l - Je2t +e 2'

5. v:i+.i+k, vJ :./3,s:.1 a2k

)

ll. (a)

rti+.,fzj+u, lvl:15,a: .,a'i .,f2j ll. minimum speed 3.u4 when r : 24i * 8j

(b) maximum specd = 6, minimum speed : 3

(d) The maximum speed fir'st occurs when I : z/6.

2ET
15. v(t)=(1 -sinr)i+(cosr t)j; r(r): (t+cos/ l)i+(sinl-1+ l)j
17. v(.)=(l cost)i+sinrj+?'k; r(t): (. sin. l)i+(l cos.)j+a'k

19. The motion is along a straight line and has constant speed. 21. 15' 23. (a)0.1i+2.'7i 3.4k (b)ro: 0.7i-2.9j+4.8k

25. Ar:8i+ +j. r = (13vil3 s"5)/3 27. Lr-2i- ii+./ztn:t: r=l
-31. (a) a7 : 0,4r : A b\arT:O,aNN=i+j (QtlJ2
ll. (a) ar :2.,t5, at = 2Ja Gt atT :2i + 4j, .rrN = ,li - 2j (c)ZIJS

-/ro
-r5. (a) ar = 22/J:4. uy : J38l'/ (b)arT: +i+?j+fk, a"N= +i 9j+?k ("r #
-37. (a)ar:0,a.:3 (b)arT:0,.r1N: li ic.1 i -1r). a,: l,a":2,T: j,N:i
4r. n1 -{,a, -,/5913,T= j{zi+z;+t),N-(i sj+ 14k)/(3\49)

1-r. ] 15. -r/J2 ;17. d,\,:8.41 r l0r0krn/s2 :19. aN: l8/(l +4r'?)r ': 51. a1 =Q 5.r. =18.73rnls
55. (a):r: 160r,]'= 160\,6/ - r6t2 (b) r200lr (c) 1600\,5 fr (d)320fr/s s7. 40v5fr s9. 800 frls
(r1. 15" or75' 63. (c)15Ir 65. (a):0.00566m (b)f m 67. (b) R is maximum when a : 45'. maximum value ro2lg

(,9. (a)2.62s (b)181.5ft 71. (a)uo -83ft/s.a - 8" (b)268.76ft

) Exercise Set 14.7 (Page 885)

7 , '7 .'7 5 klills 9. 10.88 kn/s I l. (a) minimum distance : 220,680 mi, maximuln distance : 246.960 ni (b) 27.5 days

l-3. (a) 17.22,1mi/h (b) e - 0.07094, apogee altitude: 818 mi

> Chapter 14 Supplementary Exercises (Page 886)

7. (a) r(') : l'-, (+) d,i+ 
J"' 

, (+) ,t,: (c),r(s)--' +,

It. (a) (b),r = r. _r : t, , z : +J4 ftr 13) (tl 16)
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r -l 12 2t g+)'
15. r(r) j-i- j i I k

17. (-1000, -100,500), ( #, -!p, #)
le. (a) r(r) : (!ta + t)i+ (lt'? + 2t): - (i coszt + t 1)L Ol:+rs

> Exercise Set 15.1 (Page 898)

r. (a) 5 (b) 3 (c) 1 (d) -2 (e) 9a3 + I
7. (a) t2 + 3tt0 (b) 0 (c) 3076 9. (a) 19

11. () + 1)elo+r).'? 13. (a) 80./6
(b) n(n + r)/2

(f7 a3b2 - a2b3 + 1 3. (a) r'? - y'? 13
(b) 9 (c)3 (d)a6+3 (e) 18+3

17.

(b) 3r3l,a + 3 5. r3er3(3t+r)

(f) (a + b)(a - b)2b3 + 3

19. (a) all points above or on the line ] - 2 (b) all points on or within the sphere:r'? + y2 + z2 :25 (c) all points in 3-space

21.

41. colcentric spheres, common center at (2, 0, 0)

43. concenffic cylinde$, conlmon &\is the y-axis 45. (a) x2 2x3 +3xy :0
47. (^)x2+t2-z =5 (b)12+)2 z:2 (c)x2 +!2 -z:O

(b) the path ry : 4 51. (a) 1 - r'? - y'z

ttr/^ +y
(c) jr, + ),2

49. (^) +]

(b) xz zt3 +3xy : o

s3. (a) A

(b) B

(c) increase

(d) decrease

(e) increase

(f) decrease

(c) 12 -zx3 +3xy : -18

T=2
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'm"m'
-3 .l

(b) s7. (a)

59. (a) The graph of I is the graph of / shifted one unit in the positive r-direction.

(b) The graph of 8 is the $aph of / shifted one unit up the ..-axis.

(c) The graph of g is the graph of / shifted one unit down the )-axis and then inverted with respected to the plane z - 0.

1.

Exercise Set 15.2 (Page 908)

all of 3-space 11.

limit does not exist

all points not on the cylinder

29. ! 31. o 33. o

*'+2":7 13.35

35. limit does not exist

15. 8 17. 0 21. I

37. (a) no (d) no; yes

23. 0 25. 0

41. -r/2 43. no

) Exercise Set 15.3 (Page 916)

t. (a) 9x2yz (b) 6'') (c) 9y' (d) 9*'? (e) 6) (f) 6:13 (g) 36 (h) 12

3. {a) orL.lcos} ftr u[.o,' ,", ;'u; ,al-fr s. rar N tbr; 7. {ar-4cos7 {br2cos7

9,62/6x: 4; Dzl6y:), tl,8ty3e"r',12'2r2"xzt3 13. x3l1yt/s +r)+3r'?1n(1 +al;?,-::^!l!'t:':)" 
. /*\

15. )('-, t'f i] fi. f,r.t.yt= r]/2rr2)r5.r- -7ri].i)v -7r'yr-r ' ls. v,, ,.-*-.r'-ran- l: lr1 -y2)2- (r2-v2i2 
f,.(r,y)-(r/2lrr(l,r)-7tr3x'y 1^Jyt t' ' +'r 'rz+x'z 2' \)/

21.

39.

-\),2 sec2 x(!2 tanx)-1/t, -ly tan 4!2 tal x) 1/3 23. -6, -21 25. llJ17,ilNrn

f,y: fr,: -32y1 29. f4:fr,:-e'sir v 31. f"!::ft':zol@x 5v)2 35. (a) +"/G/4 37. xlz'-vlz
2x 1 yz2 cosxyz x32 cos:ryz

rl,{ cos ry{ + sin -r}z ' :rye cos xyz + sin.r1z

41. z : /(r, )) has II as its graph, ,{ has I as its graph and 6 has III as its graph

43. (a)30.x)4 -4 (b) 60"y3 (c) 60.r3t2 45. (a)-30 (b)-125 (c)150
arf a"t a'f a4f

47. \a) 
"^', (b, 

-'^ 
tct 

-: 
- (d) -----j-

d^ dy-o^ ,:t r- cty: 1YrBx
49. (a)2xyaz\ -ly (b)/.j"zrtrz*' (c)3a2;az2 +22 (d)2yat +y (e)32a3 +1 (f)438

5l.2zlx,zly,ll(x2ycos..)-ztanz 53, -!223/(l+x2y4a61,-2xyz3l0lx2yazc). 3xy2z2l(1 + t2yar6)

55. ,zez cosxz, ez siaxz,)ez(slnxz + tcosxz) sl. tl1Glay47z,y/Jrl +y4,2/FT7 lV
59. (a) e (b) 2e (c) e 63, -xlw, ylw,-zlw 6s. -f:'"::1i- - 

x<u cos xvz 
. - 

xvu cos xvl
2u - sn xyz 2.u sinr)4 2ir.,-sinrYz

67. (a) 75x2),a z1 +2y (b)35;r3ya<6+3yz (c) 2lx2y5 <6 (d)42x3y5<5 (e) 140:131,326 *6y
(f) 30xyar7 (g) 705x2yaz6 (h) 210.ryaz6

69. e", -er' jt. i stn(at+2x2+...+nr^) 79. 2 81. (a)DVl3r:2ttrh (b)AVlAh:nr2 (c) 482 (d) 642
I lb 25 in' cos(.r y) coslr y) cos:1x-z,)rintr yr I co\2{r -/lsinlxTz)

"-' -' 
5 in2.K 8 lbr cos(J I a, co\(r + zl coslr.r I zj

37. (a)a (b)8 89. 11, 8 91. (b) does not exist where y : ls,a76
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) Exercise Set 15.4 (Page 9281

t. 42rt3 -1. 3r-2 sin( l/r) 5.
2sin u 2 cos,l cos rlt). -:----, - ---:---:---- ll.
JSlnu 3sln-u

13, 3r? sind cos2 d - 4r3 sin3 6 cos d.
.rr + vl r: - 3xl

15. --__:__1. :- 17. _n
4rr)'r 4xJo

25. -39 mi/h 27. - lu^,4 r.ddls

-3-1. (a) 4 (b) 5 ,ls. (a) 2 (b) I

l-3. (d) j(- cos(x + r) + cos(i - r))

&l/3et41o/. 1. 24u2u2 _ l6u.L)i - 2u + 3, l6u3 | 24u2u2 _2u_3

e" .0

2r3 sin2 g cos 6 + ra sina d + 13 cos3, - 3r4 sin2 d cos2 0

t,r. JJc,r.{2-4v6)ef :t. - ---})' :-t. -J,r')" - srn )
29 . l6,2}Oir ini I year -1 I . (a) ry-plane (b) ;v I 0

(c)l (dt-4 .r?. (a) g 
-dzou.3z - 

d:ou- -'ax du At' il) du 01

terr+ye) +el

> Exercise Set 15.5 (Page 935)

l. langent plane: 48r - l4y - ; : 64; normal line: x = I + 48r, _r : -2-l4t,z: 12-t
3. tangent plane:.{ - ) -. = 0;normal line: r = I +1,-! : -t,z: I -t
5. tangentplane: 3) -a : -l;normalline'. x : r/6. ! = 3t,z = I - t

7. tangenl plane: 3.( - 4r = -25;nonnal llne: x: -3 -l (3r/4), ) = 0,.:4 - /

9. (a) all points on the ,-axis or ) axis (b) (0, -2, -4)
t r. (+, -2, - j) r.r. .// : 0.8, 

^f 
: o.B'72 rs. l

17. dz=3x2f2dxl2x3ydy, L,z: 1x 1 Ax)3(y + ay)2 -.1312 19. tlz=7dx-2ttl
zt. a;= - 

--L 
tlx + .-! *dy 25. x92.94" 27. 0.20232., aqorat yahre.! o.2o2334 29. 0.t0 . . 0.03I +.tr f2 I +rir2

3-1. 0-088 cm .15. 87c li. rS. -.9. 2qo .ll. 0.004 radians J3. O.3Vo

15. (a)(r+r)7o (b)(r*s)7o (c)(2r +3s)sa OlQr+'))*
17. (^) (-2,l. 5), (0. 3, 9)

(b) At (-2, I , 5) the cosine of the acute angle is 4/(3.,/ l4); at (0, 3, 9) the cosine of the actte an+le is 4/ JDL

) Exercise Set 15.6 (Page 943)

t. IIt .r.4i -8j 5.+ i. u

'{-+J 
t -36t- 12J

17. -84 D. al4 2t. tl2 + Jals 2i. 2rt 2s.

9.4i+4: 13. -3/\406a
)1

t5. 0

29.

-3-1.

-19.

17.

u:(3i-2i)/Jr3, llvf(-I, l)ll :4/13 31. u:(4i-3j)/s. llv/(4. -3)ll :l

'r= -(i + 3j)/\,4 0, -llv/(- 1, -3)ll : -2140 .rs. u: (3i- j)//0, -llvf (n/6.t/+)ll - -J5
-3e12 11. +(-4i+ i\/./ryi l-r. (a)5 (b) 10 (c) -5l5 Js. 8/.ros

@\-t/A $\ 4r

37. t /J5

53, (a) 2e 't2i
5

,19. all points on the ellipse 9.I2 + .y2 : 9 51. 36/Ji
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5rr. r(/) : " 
8'. 

) (r) :4" t' t't.

61. (a) (c) V/ : [2r 2-r(-r'?131.']y]s-(" rr')i + [6]' - 2]..(r':+ 3121]e r"+,'r1

(d) -r : y': g6rr:0. r. : al orx: :ll, ):0

l.

9.

15.

19.

25.

31.

-15.

37.

-.19.

49.

51.

53.

55.

59.

Exercise Set 15.7 (Page 953)

165ti1 3. -2,cos(r2) 5. 3264 1. Vf(2. l,l):320i-256j+38,1k
v/(x,1,;) -vf( 1.2,4): -+i+ +j+,,1k,D,/ :-# tt. 12lJt4 l-1. *
u:(i-j)ltD,l vf(1, 1.-1) =3v5 n.i:( i+ j)/.,tr, vf(1,2.-2) =1lA
u-(i-1rj+12k)l\,0.66,-lvt 5.'7,6) : \/566 2t. 31J11 23. -+i+:j++k
(a))i+)+2.:6 (b)ir(r):2+t,JQ\=2+t,zQ)=l+2t (c),Y35.26" 27. +*(i j l9k)

(t,:,:),( r,-;,-{) :.r. 
'1ry =1+8,,}(r) = r+st,z(.t) =2+6t

a(r) : 3 +ztr, r,(r) = -3 - 4t..(r) : 4 3t

11111 -l12yl7dr l2x3Jzdy + x3f2 dz. Aur : (r + A.J.)3(r + A),)2(. + Az) - -rrrzz

8dr-3tt', Adr -lt. 
-', 

,1^ ,.r', d'+-1,,/. J.l.0.oo .15. 2.J5cm' .17. Jalr| | r-J'a' | | \ _Y.' | | t-r':-
3//0u=8ru.,3xa15,0/fDu-12t2ulray5,\fl3x:16r.,2or;rry5,df/d!=2ox2ut"+rt
a;flau1 :2t1rl1rl 1ril,af la,)r: 2qlOl+ri),af lar',: 2r'r(ri u1)lO?,+nil),aflara:2ua(ui-r];/irl+rj;'?
(a)0 (b)0 (c)0 (d)0 (e)2(ttl)+l)er'"sin.cosr (f)2r.t,()u+2)€r''sin:cosz

2r cosl e f (r2 cos2 a + l),-2r']sindcosd/(r:cos2d t l) 57.2p(4sin'?d+cos'?d),6p2sindcosd,0
;)tt) A1L 3u 0u

rar60in'/s lb)irn/s r'5. :sindcosdt +sindsind al +cosd-
Au 0w Au du
- : pcosdcosd; + pcosdsind ar psind 

iJ?

au Au 0u
a0: ,r sin d sind'{ + P sin d cos d

Az 2r + \z dz. tz 322
67. ilx 6r' r1 al 6rr - rr''i
7s. (^) duldt = 

'Qu 

lax)ktxi ldt)
i=1

0z Iz' aa
69- At 15 cos37 + 3' al 15 cos 3.. + 3

4

(b) au la1) r : L(iu laxt)(.A\ lauT ) fol j : 1, 2. 3

> Exercise Set 15.8 {Page 963)

l. (a) minimum at (2, - 1), no maxima (b) maximum at (0. 0), no minima (c) no maxima or minirna

3. minimumat(3, 2),nomaxima 5. relative minimum at (0,0)

7. relative minimum at (0,0): saddle points at (+2. I) 9. saddle poinl at (1, 2)

11. rclative minimum at (2, 1)

lJ. relative minima at (-1, -l) and (1, l) 15. saddle point at (0, 0)
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19. relative maximum at ( 1.0) 21. saddle point at (0, 0);

relative minima at (1. 1) and ( 1, l)

2.1. (b) relative minimum at (0.0) 27. absolute n'laxinun 0, absolute minimum 12

29, absolute maximum 3, absolute minimum 1 -ll. absolute maximum f . absolute minimum -J -l-3. 16, 16, 16

35. maximum at (1. 2, 2) 31.2a/J1.2alJ1,2alJ1 19. lengrh and widrh 2ft, heighr4fr

41. (a)jr:0: ninimum 3.maximum0: (b)):.r:rninimum0,maxlmum3: I:1 x: maximum 4, minimum 3

,r : l: minimum 3, maximum 13/31 (c) minimlrm 3. maximum 13/3

_\' : 0: minimum 0, maxinum 4;

) - 1: minimum -3, maximum 3

,13. length and widrh X*.n ;ent lzv /z a7. y, = j-t
88,13 575l.fa)r:-+-t (b)' 140 200

17, no critical points

2'/98 1',l 1

5-1. aal P: + T7l l5o

*,,! 49. t-0.5r+08
2S09(c)t=

it

(c) T 'x 212.7096'C

0( 1930)

(b) reo

30
0

I

> Exercise Set 15.9 {Paee 973)

l. (a) 4 3. maximurn.uEat (- A. - l ^nd 
(rt, 1), minimum -14 at ( ^,D, 1) and (.,4, -1)

5. n'raxin.run r,4at (1/.,4,01, minimum -.,4 at( llrt.q 7. maximum 6 at ({. ], -{), minimun 6"t( i, -:, i)
e. maximumis tlGJr OlJl,tlJl.t/J1).(rl./1.-111tr.-11"/t,e1/13,11J1, t/\/3),^td(-tlJ3.-1lJa,rl"5i

nininrum is *l/(3v6) at(r/16, 1115,-11"5,(r1"5.-11r5,),1$).(. 11"/Z.tlJa,r/Ji),and(-tl'6,-t/,/a, t/.!5)
lI.(rr, :) tr.(* ,6) ls. (3, 6) is closesr and (-3, -6) is farrhesr

17. 5(i + j + k)//3 19. (a) 15 (c) nuximum $ , minimurn -5 21. 9,9,9

23. (+./5,0.0)

29.(a)d=fJ=y
25. length and width 2 ft, hcight 4 fi

= n/3, maxirnum (3.,./3)/8 (b)
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ll.
2t.

27.

Chapter 15 Supplementary Exercises (Page 974)

5. lb) 11.{, }. rl -: xr )l 7. (a.)-\) (b.) e'+' Ln rj

.=\,ft;T <=r2*t2

(a) 12N/(m'? min) (b) 240N/(n'?.min) 15. limit: 1, continuous 11. TlJS le. r0,0,2),(l,l,l),t-1,-l,l)
(-j,-i 4 23. dv = -0.0666'/ m3;AV - 0.07267 m3 25. saddle points al (+6, 3): maximum at (0, 0)

(a) (b) :

3

2

I

0

29. (a) 102,033,960.1 : 2a 2b 2r:

(b) r : r2o,ooo, K = 8o.ooo "' '3" '3" u3

,F,,Fr 2F, F.l
F?

012

-r5. 67.7',6l.l'

j,1 5

37. increasing

5

l
2

I

) Exercise Set 16.1 (Page 983)

t.'7 3.2 5.2 7.3 13. o 15. ]

2i. 1 ? tu. -31. 0 621 1310829l.l. (a) I .
(1, n.4)

(b)

9. 1-ln2 I-ln2
I l. _

2

I

19. 19

11'
T

35. first integral equals ], second equals - ]; no

> Exercise Set 16.2 (Page 991)

t.r, .r. q s.i 7.t 'r. - ll. ra) o {b'.18 lJ.57b 
',.t'1-l 

lr.0
rr I 1i . 1 I r? {' 29. 12 .\1. )7- .l-r. I70)s. t2 .rt. 2" .r-r. I70 -,, '1' .r7. ,0.0 .," ,

r' t t l n l e 't J" J tty r\d)d) ., J, l, 1u.ytr,r, -,, /. Jo i't.ttd:d; ''tt ' ;
5r. t ;o" sJ. (a)0 (b)ranl 5s.0 st. I nz se.0.676089

re.+

18 1

19. _
3

> Exercise Set 16.3 (Page 998)
-lnr.; 3. in' s.u 7. )

1t

16
ll.;+2J3 64rt

l-1. _7r
3

21r
r7.

l6
5n

15.
32



19. (l - e 1)7t

(3tr - 4)a2c
n

lt2l- -ln5
8

T

8
!: ttl.-2

(b); -1e.

(, #) 2e.

2trkll (R + l)e-Rl

Answers to 0dd-Numbered Exercises A123

IrvS t, -l t. la'4'

li !)./t )-" 1 '-'" " 17.

> Exercise Set 16.4 (Page 1009)

.3. (a)r:r,.,':u,r: ] i )u 2Lt

(b)x=a,y:n.a:u1

5. (a)x = 5cosn, 1:5sinr,;:r; 0:r:2n,0au:l (b)-r:2cosr.l,:u,r:2sint'l;0-u::2n.la:U=3
I

1. x:u,\:sinrcosr.l:sin sinr 9. n : ,- cos B , J - r- sin 0. : : 
I +r_t

ll. j : r'cosp, l : r'sind. : : 2r2cosd sind l-3. r -,. cosd, l - r-sin6, a : JS rt:, 
= "8llvS

15. \ )pco'd. \ )p\.re.. = )/) 17. =\--r:JorJnc
19. (xl3)')+(yl2)2:lt2=.a4;palrof an ellipric cylinder 2L (xl3)1 + (.r l4)'? : ;2; 0 1 I : l;parrofanellipriccone

2-j. (a) rc : r cosd. -v = r sin6, z : r: x : r.r. J : x, z : J u2 + D2 : 0 a a 
= 

2

25. (a)0:al3,0iu:7r (b)0::u=4, n/2=u att/2 21. (^)o=Q:.nl2,a: ri 
= 

27r (b)0=A1r,0::e=n
v5 (: \,/ 5 I)nli. 6n 17- l9 

-66
(\'7 

"fit'| - 5\6)n
,l l.
55.

.- ( l0,/10 l);t
18

ellipsoid 57. hyperboloid of two sheets

.15. 81 17. hra2 1g, tanE + h2 51. Ln'ab 5-t. 9.099

> Exercise Set 16.5 (Page 1018)

r. 8 j.'1 s. + 7. # e. t(r 3)12

"r ..1^/,),, ",+r!.)l I I rt:tttdr :.r. (a,.t..t..t"

15. I 2i. \at I I I' Jo Jo J"
rn /-

t,t,t,,
IItttt

JI JI JO

2,'. v : :,tabc
c2 1

31. (a) 0 (b) 
2

. 1 17.+ ,.0l"' I"n l"| o,oro,15. ,1

(b) (c)

tlx tlz d 
-'-

"t' ..\t \llt .!Ll .\/, ,/rr
t::dtdt, I I I

Jn Ja Ja

.! .!rr rr rL,\t lt .1,)

t1\'J. d:.. I I I

/h ,.r \ /.r .rr \//. : .)
Jx tlt J;.. I I I.t..t.t^

I-

Exercise Set 16.6 {Page lo27l

The fulcium should be placed ] fl to lhe righl ofr?i. 3. (i i) ,(,,#)
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11. M: ;, center of gravity (-@, fi) 13- M : aa 18. center of gravity (8dl15,8rl/15)

19. (j.0,?) 2t. (3a18.3a18,3a18) 23. M = aal2, center of gravtty (al3,al2,al2)

27. ra,(i.;) rbr(-.r) le. {1.17-406.0.{5J554.0.7J155') ..r. f ''8 
l:8 \''- \ ros, ru:, /

rs. (;, j, +) '?. 
(j, i, i)

25. M - ;. cenler ol gravitl t0. ,i. j)

37.2n2abk 39. (a13, b/3)

) Exercise Set 16.7 (Page 1037)
n n 8l:r 8r IOJS -9)n 64n llna' naot_ f- i_ .1. _ t). _ ._ t-t. _416233348
4nn' 27n

tn. + tt. + 23. rkaa ,s. (0.0 r6v., 14 ) l. rs"la.z"/s,2"/s)

t, [1 t,-
-r. ''"-- ''" J3. (0,0,+) ls. (0,0,2al5) 37. 1n0-et)6oR1 39.:6na4h

I

3212J2 I )7r
15-

15

ro r/l ^ -l! \

11. t5r@1- al)h

t.

11_

r< 1!-

Exercise Set 16.8 (Page 1049)

-t1 -3. cos(, ,) 5. I : ]u + fr', y : -ja + Ju; j
I
- 13.

- .ltr n t6-,/.:\:-.l,:-; J2 J2

17.:1113 19. l Isin2

I
1tr]7 -iF
21. 96r

9.5

II
l-1. - fl - cos 1)

14

(-1. 0)

27. I1i1

(1. u)

lr:9. lln(V2 + 1) - -2L 1) 31. ,*! f,3. 2 ln 3 .r7. ] tn Z -tq. -'r - pr .lt, {br I

,0)

(2,0)

Chapter l6 Supplementary Exercises (Page 10511

"-r,",lloo,o,lll,tv ,Il/f iI t;1* i.

1

Jz"

I'l,*f-r' ,u,ro,o,

17. 1(1 cos 64) 19.

9. (a)a:2,b:l,c: l.d:2
(b) 3

o2 21. 32n

2t. ,- l"' J. lo o' ,tn' o,lo,ro,1e tt, f, l"' l,' t 'ttdt d0

25. - 21. !:: 29. 
8t,.], 

.r - r1 Jr. 2J | 4) ? - ) .rJ.-..2.,.q-''1''''
-39. (b),v 4.451 (c) - 0.3590 41. (a) ellipsoid (b),Y 111.5457699

,,fi,n , -G"1qt - |,/r: ':^')
r"r / I 

- 

I rx2 1 y2t,17d1,1x
J -J1'12 J it\11'l/4\-,') J/Lr+'r J]

(3,0) 3s. (0,0,,r/4)

> Exercise Set 17.1{Page 1062)

l. (a) III -3. (a) true 5.

(b) IV (b) true

(c) true
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11. (a)allr,y (b)allx,1 13. div F : 2x + ), cu;l F = ;i
15. divF:0,curlF: (,t0-{,21 -12r1,3)i+(14yrr*31a)i-1l6rz5+211rr,1k 17. divF:-.=. L,curtF=0

,/r: + r, +.t
19.4x 21.0 23. (1 +))i+rj 33. V.(kF):tV'F, V.(F+c):V.F+V.c, 43. (b)r2+tr:n.

v.(dF):dv.F+vd.F, v'(v x F) -0
dv Il< --a--.,-rn-rt-'" lr-r"- ^

> Exercise Set 17.2 (Page 10751

l. (a)l (b)0 3. (a) - ro8!-./4b - ,ur 
tn(/to :) ,a (b)0

9.8 tt. l-n li.3 15. -1 -(n/4) li. I e3

2e.6J3 .rt. 5(ran rJ J.r. ; 35. i -t7. tb Je.

(c) 4n 15. L: 12

(c) -l 5. (a) J

21. (a) -1 (b) 2

. 1lJ t] rt4t44

(b) 3

23.

,13.

7. 2

27. 1-p-l

(c) 3 (d) 3

tbts: / zu rrlr

> Exercise Set 17.3 (Paee 10861
12 rll. con:ervalive. O I I K .1. not conserralire 5.'22

tl. 9e2 13. 32 15. W: I 17. W : I e \ t9.

tt tl
)q. G)w: (b)W:- _r rc)W 0

Jt4 J6 Jt4 
"/6

conservative, d : :r cos ) + ) sin r + tr 7. (b)13 9. 6

1n2-1 21. - 0.307 23. no 27. h(x):Ce'

> Exercise Set 17.4 (Page f092)
1.0 3.0 5.0 7.8n 9. 4

3na2

31.69

13. 0 15. (a) 
^, -3.550999378 (b) - 0.269616482

/ L-\25.('. .',) 27. {0.:) l'r. rhecircter'-)/ - I\ lrr,/

11. -l

-3ta2

) Exercise Set 17.5 (Page f099)
15 7' 'D a1 

"a 
ro f r'

t.;1J) r.; s.-; 7.e e.: tt.rar ",- 
/ / rlrr2-2r-t\td\dx

io r' t ) 41' ^ )q r.r/,

'bt+ J" J" ,,'12-J, -Attcivttt ,",""'- I J -t:',tz 21 4t,drd.

B. 
I,^ J'r J4r +t,:t,t,:!J"" I yz,t- 4\r,.t. tt. t"',f t+ 

rQ. lrdo

.2.r. M - d,S 25. r0. 0. 149. o51 ', 
oJ re-'' rm

n
1

31. 57.895751

B. 18J29
5

2r. iQ1 J31 - t)

> Exercise Set 17.6 (Page 1107)

l. (a) zero (b) zero (c) positive (d) negative (e) zero (f) zero

(e) positive (f) zero 5. (a) n : - cos rri sin uj (b) inward

rs. ; 17. (a)8 (b) 2a (c)0 t9. -n 2r. (b) + 23.

-j. (a) positive (b) zcro

14tr
7. 2n 9. _ 11.

3
(a) 4ttak+3 O) r : -3

(c) positive (d) zero

0 13. 182
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) Exercise Set 17.7 (Page 1116)
4n 192n 2 4608l.3 .1. 5. 12 7.3tra'/ 9. 180/t 11. - 1-1. - 15. 

- 
25. (a)'0 tb)<035235 '7t

27. no sources or sinks 29. sources atall points except the origin, no sinks .,t.?

> Exercise Set 17.8 (Page ll23l
l. (a) The curl is zero. (b) The curiis nonzero and points in thepositjve r-direction. 3, ; 5. 0 7,2tt 9, 167r

rr.0 13. rt rs. (a)] 1rl) 1 Cl-{.; -}r t7. curlE- IJ)" J2 at

> Chapter l7 Supplementary Exercises (Page 1124)

t l dt )-- t'
.t. rur / l/r.rri), ifr)r1 l gtrtr).rti)r"./ dt ht I y'r',,.1t,,,frui 1id'J" L' dt .tt ) 1.,

ll. 
llf'^'u.tt..\,n.tt.ztu.utlr.nr 

dtttlv 15. rb) - l5q7 l0oJ :1. rb) fhefieidiscon.er\atr\c.

z:. yl, 25. 8n 27. (a) h(x): Cx rt1 (b) s(r) = C/tr 29. (a) conservative, @(x,,r, z) : rr2 - e-r
(b) not conseNative

(c) integer, ratio0al (g) rational G) 1#
(d) rational (h) integer, rational (d) #

9. (a),(d),(f) ll. (a) all values (b) none 13. (a) yes (b)no

15. (a) {,r : ir is a positive odd integer} (b) {x : ,r is an even integer l (c) {x r.risirrationall (d) {r : r is an integer and 7 5n:101
17. (a) false (b) true (c) true (d) false (e) true (f) true (g) t e

(b) 

- 

(c) - r.*.-<+
311

) Exercise Set A (Page A8)

l. (a) rational (e) integer, rational 3. (a) r,:{ 5. (a) f 7,

(b) inrege! rational (f) irational (b) + (b) worse

19. (a)

Line234 516 1

3,4 2,1.5 1. 2 3.4

,l l. (-8, 0) u (4, +o) {r.<_=}+
804

(d) ----+- - (e) -_.-+ (f) ---{
,1 i 33 33

2t. (a) | 2,2) (b) (-@, 2) u (2, +o) 23. (--, +) l0
2

;7. ( l, ll ---{F-------1+ )r). ( e,3) u (4, fo) 
-:----o+ 

31. ( 1,2)'J4
ti 12

13. (-o. -21 u (2, +,) ..<____{+ 35. (-@, -3) U (3. +e) 
-> 

c+',2233
37. (-@, -2) \-) (4. +6) 39. t4, sl

24
4.1. (2, +() ,ls. (-cc. 3) u 12, +o) 11. 71 

= 
F 

= 
Io4 ss. ( 6, j)

> Exercise Set B (Page A15)

l. (a)7 (b) vO (c)t': (d)l' 3.i:3 5. allrealr 7. x>0or-r: I 9.;rl 5

13. (a)2 (b)l (c) 1,r (d)3+^/a (e)7 (f)5 ts. (a) 9 (b)7 (c) t2 17.-:,; 19.i,;
2t. ,!,t 23. 1,+ 2s. (-e.-3) r? [ ],:l rq. r-r,-r)u(-1.+-) 3t. ( -,jl u[:,+-)
3-r. ( -, ,) u (:, +-) 3s. [*, ]) u (i, ll 37. ' e (-o.2lu t3, +-) 3e. 3, e
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Exercise Set 26C (Page 426)
(-4.7\ 

i-+, zr fv (b,7) 3. (a)

E IT
rr=

3

\
7. 19. TTT<TT<TV<TI 21. (^) 14

(b) l

t3. (a) j
o) -1
(c) o

(d) not defined

(b) yes

(c) no

(d) yes

(e) yes

(f) yes

(g) no

3

23. 29

3

2s. +15. (a) yes

(b) no

29. (a)

31. (a)

35.

45.

51.

(a)y:!"x 3 (b)y:-]x 37. y:-2x14 39. y:la11 1t.
y : |x + 2 47. y : 1 49. (a) parallel (b) perpendicular (c) parallel

(b) i
(") 

,!

(d) -f
(e) -4

y: j;+6 43. y:r11 18

(d) perpendicular (e) neither

tu) i 53. the urfon ofthe graphs ofr ):0and;v*):0 55. t" s9. ? 61. (a) yes

(a) (b) (c) (d) G)

Slope 3 1/4 3/s 0

] intercept 2 3 8ls 1 b



4128 Answers to Odd'Numbered Exercises

) Exercise Set D (Page A36)

l. in rhe proofofTheorem D.l l. (a)10 (b)(4,5) s.(a)^/29 (b)(-:.-s) ll.0 l.l. ).: 3x+4
ts. ( ?, ?) 17.3 2t. 1 23. (a)(0.0);s (b)(1,4);,1 (c)(-1.-3); "6 (a)(0, z); r

25. (x-3)'?+()+2)'?: 16 27. (.x t4)2 +(l-8)'?=64 29. (J. + 3)'] + (.i +,l)'? : 25 31. (r-1)'?+(l -1)r=2
3-1. circle;center(1,2),radius4 -15. circie;center ( 1, 1).radius/2 17. thepoint(-1,-1) 39. circle: center (0.0), radius 1

,11. no graph ,13. circlercenter ( i, j),radius: as. (a)l --^n6 r] (b)t:2+ltr=zt-l
17. (a) (b) 

5

(a) equation: 2x'? + 2)2 l2r + 8) + I : 0 (b) center (3, -2), radiLrs 5/1/2

a9. ]: -i'++ sl. (a) inside s3. (l/3, +.,/8/3)
(b) largest 3/5, smallest r/5

6t. r' - (2, 9)57. 59.

71. (a)x =.ur3-y
(b)r: I ./r+ I

73. (a) 7s. (a) 77. (a)):150-1.r
(b)A=150.r-]-rr
(c) 3750 ft'?

79. (a) ( s Jzz)/q . r < (-5 + .,Ei)14 (b) o<*<fo 81. (a) 30 ft (b) 2.6 s (c) 2.1 s

(1.4)

) Exercise Set E (Page A49)

t. ({ }tr 3. (a) 12'

(b)f;z (b) (2'/ol1t)'

(") ;" (c) 288'

(d) +z (d) 540'

g. tlioe = Ji/2,csce :51..4i

5. sina cosd lan rJ csc0 sec0 cotd 7. sind:3/Jl0,cosa: llJl\
ufl'. r s.2 )t .)

'b 3t4 ,-4 r{\fl lj qq l.
gl 3/.fio_ l/.,m 3 ,.fio/l Jlo t!3

lr' 18 tt q lllt l*9 t rT0 j!!1 1".9 -lq
(a) 22s' -|l\t -1/\E l -\e -./t l
(b) 210. |2 ^{1tz rt^{i 2 2/16 \6
(c) snt3 .f:l: 1t2 ' ,{a 2/16 z VrE

o' to(et) -3112 .
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15. sin A tan 0 cot 0

(a) 4t5 3ts 4/3 5/4 5t3 3t4
(b) 4t5 3t5 4t3 -5/4 s/3 314

G) v2 -4ztz -rlr/: L tr..E r/:
(d) -1t2 4ztz -1l{3 zr.ll -{:
(e) tt^Jz r t'lz I .D "lz I

(f) tt..,6 -rt.'lz -l ^lz {z I

a 0. I r/3 J 2nn(a)

t7. (a) 1.2679 (b) 3.5'7s3

sin 0 cos 0 tan d csc d cot d

G) a/3 ^7silz "l\6 -3 3/a 3l^ls o2

(b)
"l^E *25 sl''l7 + 2s al5 ^E +xls 5/a

(c) \Fil" ./"'1 - i- 'l\lj., 1t"17-

19.

2t.

23.

25.

27.

29.

31.

43.

61.

tbtn/) L)nnarid5n/3-)n=,n = 0, 1,2,...
(a) n/6 + m, n:0.1,2, ... (b)4113+Znltu1d5n/3l2nn,n=0,1,2,...
(a) 3ft I 4 t nn, n : 0, 1,2,... (b) r/6 * nn, n : 0, 1, 2, ...
(a)r/3+2tx7rand2n/3t2ntt,n:0, 1,2,... (b)nl6t2nrandlltt/6+zntr,n:0,1,2,...
sind - 2/5, cos 0 - Jn I s, t*e : -2/ Ji, csc 0 : 5 /2,sec e : -5 / r/ij, cotl : Ji tz.

(a) 0 : Inr, n : O, l, 2, ... (b) 6 = ft /2 J: n\t, n : O, 1.2.... (c) 0 : +nn, n : 0. 1, 2, ...
@)A - tntt, n :0,1,2, . . . (e) 0 : n/2 + nr, n: 0, 1,2, ... (f )0:+nr,l-0,1.2,...
ra,2nljcm {b, tOr/lcm J5. . -\1. tut2-)-e R ,b, {4":- e'R 

Jq. ;"4 4t. a.2tr

h:d(ta P tanc") 45. (q4J5/9 (D-r. 47. sin 3d : 3 sin 6 cos2 o sin3d,cos36:cos3d 3sin26cosd

(a) cos d (b) - sin I (c) - cosd (d) sin 6

> Exercise Set F (Page A56l

l. (a)r2+4r+2, tlx+6 3. (a)3x'?+6xf 8, 15 5.

(b) 2r2 + 4,9 (b) rr - 5x'] + 20n 100,504
0 -3 '7

1(0 -4,3 t0l 5001
(c) x3 - x2 a2x -2.2x 1l (c)'I4 +rr +12 +r + 1,0

9. (a)+r,+2,+3,+4,+6,+8,+t2,+24 (b)+1,+2,+5,+10,+1,+3,+;,++ (c)+1,+17 I
13. (r+3)3(r+ 1) 15. (x13)(;+2)(x+ 1)'(r -3) 17.3 19. -2, 1 21. -),2,3

7. (a) r.'? + 6:v + 13, 20

(b) rf2 + 3ir - 2, -4

l. (.r* 1)(;r t)(r -2)
23. 2,5 25.'7 cm
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Abel, Nieh Henrk,363

Absoluteconveryence,665 666

Absolute divergence, 665

Absolule eror, 154,596

Absolule extrema, 310 317, 957

Absolulc maxima and minituN (extrema).310 317,

956 957,963

Absolute valueG), All Al5
Absnur \'a!ue frnction.27 28

Acceleration, 66 67, 354-355, 867 869

gravity, due to. 164,158 359.,130

interpreling rhe sign o1355
nomal and tangcndal conponents, 870 873

langential scalar component ol E7l

ta.genlial veclor componenl ol, 871

unilorm,428 :130

Addition formulas. for sine and cosirc, A4GA47
Agnesi, Maia,289
CI rc slan. ,lreP rl
Algeb.aic funclion(t, 82, 5l,t-5i 5

ofcrcss product, 787 788

of dol producl, ?77

oflogdithms,239

Alternating curcnt.445
Alternating scries. 662-665

Altemating series test, 662 663,668
ADrplitude. 86, 209, ,1.15

AnEle(s), A39-A4l

linding, from trigonometric iunctions. A4E

polar 700

in slandlrd posnion, A.+2

herween vectors.777

ADgular frequency,209

Angultu velocity, I125
Annual compounding. 367, 614

An!iderivative(t, 382-383, 838

see atu, Indehnite integral(s)

Antidenvaile method (for finding deas),379.

380-382
AnLidifferentiaiion, 38l. scc dtu, htegratjon

Aphelion, l:18. 755, 885

Apogee,275,748

ol !re! under a curve.405 407
left, .ighr, .nd midpoiDt,,106 407
lo.alquadralic.6:17 649

principle, 155

RienranD sum,553-554
usine Tallor series, 680-683

apezoidal,55.1 556

Archimedean spiral, 705,709. 711

Archimedes, 1,4.6, 378

Archinredes principle, 105

Arc length,.180 482, 570-571 , 8,11 851.A39 A40
of cunes denned parametrically, 4E2 -,183

as ! line inregr.l. 1069

parametrization, 845 8,16

finding. 848 850

prope ies of, E50 851

ofa pola. curve.717 718

signed, 83

u$ng ! cAS,48l

antide.ivatile method iorfindine, 380 382

uder a cuNe.:105 407
defrning.178 379.404-407
nnding, using G.eent Theorem. 1090

an ove iew ol, 6 7, 378-382
nel signed.401 -109

in pola. coordinaLes, 720 724

problem, 112. 378- 462

rectangle method lor nnding, 179 38i)

of sudacc ol revoludon.,+85 488
betscen Alo curves, 462 466

ArithmeLic nean (or aveEge). 435. 746

Arithmetic operations

on fundions,47 .+8

Afiihcial satellites, 885

Aspect mtio dislortion. :12

Astroidal sphere. 1053

Ar//onrat, Nr!a. 880

Astronomy,748 750.755-758

ofa hyperbola, 727, 733

oblique.120
lenical vs. horizonral. 82

Auionomors ditrercntial eqlations, 594

Arerage. arithmetic, 415, 746

Average rale of change. 173-174

Avenge (meaD) uhe, 421.435 416,427 ,140, 984,

992.10i9
ofacon ruous iunction,435 436

Average velocity. 65, l7lLl7l, 436'117

ol !n cllipse,727,730
ola hlperbola,727

polar.700

Badel. Hannskar!.511

Ballhti.s.:157
Bargmphs, 16

Barow, lsaa., 10, 11, 329

Bell, Alexander Guham, 2:12

Bcmoulli, 19, 99-100. 278, 638. 759

Bernouui\ principlc, 99

Bc$cl, Fdedrich wilhein. 675

Bessel furction(t, 413, ,157- 675

Biibliu'n.725
Brnoni!l coemcienl, 685

Bino ialseries.683 684

Binornalvectors in 3-space. E56 857

Bipa irecnbic(s).46.254
Bjertncs, Vilhelm, 3

Bolz!no. Bernbard, l8l
Boundar) poinL 90l
Bonnded functions,411
Bounded set,902

Bolle s larv, 80

Brachislochronc problen, 99

Branches. of a hyperbola,727

British Engineedng sysrem (BE), 490

Carbon dating,603 60'+

Cardioids, 704. 708

Carrying caprcity,6110

Callcsian coordinale system. 760, Al6
CAS. sd. Compurer algebta system(s)

Canstrophic subtraclion. 127

Catenary, 502

Cauchy-Rjenann equations. 919

polarform oi 929

Caralied, Bonavenlura- :175

Cavalicri s principle,,lT5

ofa hyperbola,727
Cenrerofg.avity. l0l9

aid cenboid ola solid. 102.Li025
ofa lamina. l02l 1023



l-2 lndex

CenrrlaDelc (ofr lvedge). l0l0
Certnl tuN. $81)-8131

CcDtral lorce lickl. lt8{l
C.nrripctal rcc.l.Nrnnt. 88?

Cerbiperal lirlc.8ij?
Ccnlrord(s). l0ll l0l.l

olN r.gior ,4. l0l+
olasolld.0:.{-1025

CGS systenr..+90

Chri. ru lc(s ). l0.l-108. 923-917- 95 i 951
prool ol. r\59-.\60
.atcs olchrntc usiD!. l7F:7-r
Ior \c.lor (hlcd lirnclions,817

Changr in po\ilior. Jll. 765

Change ol p,rd'crcr. tl.l.l-851. 81613.17

Chrolic !cnlricu ur libilhlror. l

as n conic sc(Liorr. r:6

d.gcn.ur€.r\d\ ol: Al: All
.qu,rnDr oi Al l-A]l

ufir.83
Cir.uldr.onc. 8ll). 8ll

Circnlai p boloid.810
Circ!lrtn,n. llll-11:l

Ck)sed rarnr- ol $ltn.l{)l .l0l

ihdtrrc c\rrcnr. or lirir..lll lli
conrnuit! or. 153- 15.{

Closed prr nlc(rie crrte. l08l

Closed sldice\. I 109

Cldhoid. t5,1

Cobb Douslxs t \lucriur rrdel,975
Cob$eb dingfun1. 109

ol fdcriolr. lli6. 109

of lincirerpr.sn!t. ll8
ol(idine llicti( .109
o' rolunre e\frnsion. ll8

Colundi{nrs.:03
Co els. r.r9. 75 I , 755-?58
Th? Cor tunnllanl lllitn\ ,\lds.16
Conmon loerLitJlnli, :17
Compariso rcsr. 656-658. 66tl

Complcte eUiplic inr.grrloithc hr$ kiDd- 576.693
Cooplere linc r lick)riz ion (of /,).:103
Complcr.ncss A\io . 630-6.1I

Complcrine thc squrre. A-ll
Comple\ rumhr\. r\ l- l
Co'nponems.331.8:6

ComposirnD(s)..19-5:
coi(inuily ol. l5l 153

deiv!ri!es ol. :0.1-:05
Compoltjon ol lrncrjor\..{9*il

$irh viN ing $ iMo$a.Il--rl
Conrpul.r al8eh,t \\nen'rsl (C,\S).1 5. 15 -15

di0ircntirture using. 2{l? 108
inregrarion (sin!. 195. 519-5i I

limit.riors of. 550-551
osbg ro eralu tc rnfamililr inlcgnls.5l:1

oi linctions. 292-2r:1
!nd Braphingralionrl llncrions. 312 ll.1

Con.hoid\ ol Niconedes. 103.753
Q)ncurcnt forces, 172
Condido.!l conr.€ence. 666-667
Conic secrions. T:G7:7

upplic.tions ol- 7:18

hus-dnecti\ characlcrizrtion ot 7ri ?l,l
in polrrcoordinrtes. 7.13 750
reflecdon p.on nics ol:717-?.18

lfunslaled. 7 15-737
Co jugrrc axis, ofrhypc xih. T2l
Connccted sers. 1081, 108:
Conserlation ot Encrgy Plincipl.. 1085 1086

Conserlative vccror lield(s), 1058-1059
prrh independen.e !nd. 1080

resr lbr. lOEl 1085

d.Ivali\e ol 189 lq)
deri!ari!e or Ji,nction tirrcs, l9(L19l

oliDteg.urion, 183. 419
sPrinS. :192, 6t)6

Constant lcccle.!tion. :128. .+30

Constanl Difference Theorcnr. 17 l

Con(anr lbrce- worl donc hy...l89 J9l
Consmnr linctions. 75-76. 290. 19l
Consrrnr ofpoporttun lnl.67. ?9-80- 90

Connant rurlires. 810-El I

Con(ant x curve. lff)0. 10.11

Cons.nr L curle. 1000. 10.11

Connrnl rclocity. 66. 67

Corsrnined absolutc nrrxir))Ll r/rninimum, 968
Consrunred exlrenun principlc, 969
Con\nairls, cxtEmum Irrublems sith, 967
Con nued lnction- 108

Conrjntrny. I l9 ll0. l.l8-159. 901-910
in aptlicarions. 150

on . closed inte.vrl. l5:1

ol.onrpos'lions- l5l-153
dirercnti.bility vs.. l8l I8.{
cquarion, for inconrprcssilrlc fluid!. I ll5
olinrcrse lunctions. 231
iiom leii and ,ight, I5l

clltionship bclween diflerenriubiliry and, I 83-l 8.1,

922
of trisonometnc lunctiors. 159- 160

Conl inuous .ompourdnrs- 6l.l

Continuous luncrion(s)
alerrgc lalue of r..115-.{16
definire inregral oi a. .{07{09
properlies ol 151,.^58-459

Conlinuouslv tu rirg langcrt vcclor, E:l4

Cotrtour plot (r rnrp). 576-5711. 893 894, 898
using lechnology, 895

Control angles. rc? Rohotics
Conyergence. 629. 61.1

condniodal- 660-667
i re^nlof.672{?.1
inruiLne lics ot 619
.f seque.ccs. 619-611. 629-630

radjus/irEn'al o'. lbr power scrics.6Tl-671

ol Ta,rlo. senes- 67e678
Conrcrycme resLs, 6.y0 6.{5. 656-660

conrparison lesr. 65G658
irregr!l Lcsr,643 645

linrir corrprrison test. 658-659

$'nnnary ot,661 668

Conlcning coordinatcs. E2l 8?l
Cooling

modcling. 127-ll8
NcMon\ Lxw oL 6l I

CoordinrrcG). 43, At6 Al7
pol.rr. v,. Polar coordinrtcs

radinl,700
Coordinate nxcs. Al6
Coordinale linc(t, Al
Coordinare planes, i60

Carresidn.760

cllindnc.l.7i9
lefi -hundcd Ecnngrlar 760
.ecrangulur, 760 762. AI6
d gh!-handed rectangular, 760

Cin nu, Mrrie Alfred,75.+
Comu spiral,154
Co cl.Ltior .oeffcient, 125-316

hypcrboljc.501
Cosinc(t,8.1 85- Arll

Ionnulrs- U?llis.5l0

inleg.rrine polve(oi 5ll-5:.{. 527-528
inlcgrlting producc ofsircs a d.5:,1-525
I w oi 169,77:1. A.16-A.1E

nr.rrginrl.1.17

hlperbolic. 501

Coulomb \ l.q.91..195. 1058. Il0)
Cou le clock$is. \onex flo$: I127
CRC Slandld lttathe'nadcal 'lirblcs nnd F{trmuh..

5.ll
Criricrl poin(s). 100. 958. A6{FA6l
Cross producl(t,785 795. l06l

rlg€bruic propclties of. 187-7811

di11!rcn(irtjng. 8.11

geonreric propefties ol, 7E8-?89

Cr0ssproduct rem.137
C()rs sccrion,468 J69
Cuhic pol)nomiah. 81. 107
Cu . 1059

vic*ed as circularioD. I l12
Curvnru re. 292, 858 867

dcii irion oi,858 859

tb nulas ftD, 861L862

i tem.er^rion of, in 2 space, E6l
diur of. 862

CurlelsJ
..eu ber$e.D rso-:162 1168

.rc uMer.4{)5--107

inrcgrrl, 387, 581



lenSdr of. .{80 483, rJ.r4-815

lerel.89:i-1i95
liuits alon8,902-90.1

It'gisric gnNth. 118 ll9
.ricfrrliod ol 81(1. ll l8
onhogonal- l5:l
pr mciric.9+- 713-715
picccsisc smooLh. 1071

polu.70?-?10.715 718

position lcftls tinrc,6i-66. 352 353. 355-158

lenriry lersrs rinrc.67- rll--115
Curved lanin!. I098

Cunc [dng. ]O l l. ll-r
Clrlvjlinear asymplolcs. 501

Cusps.Il:l
Clclc.l.l5
Cycloid(s)- 98 100

Cylindc6, righl..169
Cylindrical coordinlrcs. 8 l9-82,1

Cytrndncal elcrncnts of volDnre. l0lO
Cylilrdrical shclls. 4?5 479
C)lindrical \urlee\. 761 76{
C)lindrical wedges, 1029

da Pi\a. konrrdo Fibonm.i.- 108.6:5
Dau

dis.rere vs. continuous. :l
linding fu crions iro'\ l:1128
prircd. l6

Dcc y

.on(anl\.6(lI -60:

.\Jxlnenti!|.601 6{H

Decihek (dal. l tl

repeltjng \s. nonrepenrir8. ll. Al
renninatin8. 619. Al

DeconlDosinr vectors, ?80 781

De.onp.silioo. panirl tircli()n. 517

llecrcl\ing l-unctions. l!)1L29 I

Decrcr\in! s.quen.cs- 6:6
Decrcr\ing $ithour tt(rnd- l:0
Dentrne inlcgr l(s). ,{04--11 6

rnd lrca undcr a cune..l0{-{{}7
cvrlLrarins, hy subsrnurion. {l -1,r?

intc8mlion by part\ oi 519 510

paflill. srrh r.sFcr t0r .trd r.9E(r
propenics ol, +1 l-+13
relarionship bclsccn indelinire rnd..1l9 -r:0
Riennnn,ntcgr l- {1.) .110

Degeneral. conic sccln)ns, ?16. Al:-All
Degrcc (of r pol,vnontirl). 8l
Dcgrcc mc!surc. A:19

Dcpendent !ftiable. l,l
Den\!ti|e(s). 169. l7? l16.lEl.816 8.17

rnlidcd!.(ive vs.. 313l

tlpplicarion\ ofth.. -r29 176

ol compoinions. l{U 205

oir cornrnr. 189- 190

!nd dilfe,cnliabilily, I 8l-l 82

ofdot and c.oss producls- 8.ll

dualintcrp.clrlions ( 

'1, 
179

ar endpoinri ofan intc rl. 186

eenerilized l'o.muhs,br 205 :07
highcl. 196- l!7
,nd in.rmenl\ ll{Ll! I

ol iilcrre luncrions.252 251

ofiralioncl po$cF ol r.:5lt
lron rhe lefi rnd ri8hr. I86
norrri,,n! li)r 18.1 186

and power rulc Ior inrcger expi,nenrs, 195-196

of a producl. l9l-191
ofn quodenr. l9l l9.l
of rltional powcs ol.!, 250-:51
ol r.{ipu-!|. 195

ol $xns/diicrcnce\, l9l l9:
and r! lenr linr. 177 l7E

of r loa Frscr Iq)

dc S,r,\r Allon\ A .1-16

Descrncs. Reni. 15.35:. 168.196. Al
DeiernrimnK.7E5 786

Difitrcntiabilir). l8l l8:. I8-1. 9:0 910

conlinuity vs. 181 184

ol fuerions dctincd implicitl). l5O
oflLr ctions oi Lwo vrdxbles.920 92:

SeoDcrric siEnilicance ol 9-1:

of in\crsc lirnclions. :l:-2ll
rclari(m\hip hrNeen difierertirb'lig ind

corlinuiry, l8l 18.1.922

imnr rhe righr and leli. 186

rufti.icnr con{litn)ns lir 92:

Difie..nri$lc c\rqshcrd. l8l
Dilterenriirl crlculus. 1 I 2, 177

Diifercnliul caullil'n(\)

direcrion/slop( licld tor. 591 591

nst ordcr 581 589

initi!l-!alue ptublem\.rd. 581 582

inre!fulcu6e !nd.5El
inrcShlion lioni viewpoirt oi. :188

oodcling wilh.598 {{Il

$l ions of 5,iiL58l
Differcnlirl todn. :12
Differcnlirl(s), 2lL!21 6, 38:l

implicn. ?.16-15l
as inlcNc p(,ccs of irregratior. 424-125
log rirhntic.:57 25E

ofpower serics. 686 689

tcchnklues ol. 189 19?

using !CAS. l(17 208

Dilliacri{)n of liShl wa!c\.450
Diophantu\- l:1.153
l)irecd,',rl deri!rrivcs. 937 939

Dirsrnr !ngle(. 779 781)

l)ntclior cosnrcs.779

Di..ction lields.188 3{39. 591 59{
lnd l'irle. s Mctlrcd.595

Directun oi nrcrcx\ine plraneter. 94. 830

Dir.ctrrr. 717. 7.r.1

Disconrirtril!( ics).78. Il9. 149, 150. Al9

jump. lll} l20
limirs ur ponns ol 90?-908

r.mo\ hle ll0. li7

lndex 1.3

Discrele !\. conlinuous ddla, 2t
Discase, sprcad of. 599

Di\placcDcnt- 25. 29 12. 66. 869L670

rlnJi)t.lrJrn \(L,rrr! \dsu. r.nrc.ur\J. -lJ lrr
in recdlined nodon. .l:l:

Displacemcnt vecror, 765, 766. 782

b.t*cen puallcl planes. E0+805
bctwccn point rnd planc.804
ttcteecn skeu hncs- 80.1-EO5

rnvclcd in rccrilincar norion .ll l
Distance lorNula. T6l- A ll. A29 430
Dircrgencc. 6l-1- ll)59

of improper irregr.l. 56G569

of ! seqlcnce. 6195?0
Tltcoon. l l09-l l l2

Dilcryencc Theorcn, 1055, I 109 I I l4
G,Dr\'s lnw and l l 15

Divergence tesr, 6.1l. 668

DoDr.inls). 15. :9-1t2. 89{). I08l
in applicd problcms, 32-31
clltcl ol rlgebraic op€rarions on. lllll
rnd ranSc of in\cnc functi{,ns. :17-228
ol inleNe Iu..Li.ns. 227-?28

restriclinr, lo naliefunclions jnvcdjble. :31 212

Dor pr.xiucl.77G778

rnd dnectiooal derilalile. 919

Double anSlc fonnulas. A47

Dotrble inlc8ral(s,.978 9E{. q79

rrca calcL'hted rs a. 989 991

chlngc oi urilblts in. Iittl l()47

conlenrnE- ironr rectangular ro polar coordinates,

dclinilion o1979-gEO
ovcr nonrcctangulrr reglors. 985 993

r !.995 99?

in pola. coordinale\. 993- l(XX)

io rccl^ngular c(xdinrtts. 995

scrting ut hmirs olinregr lion n'relaluntilg,
985 989

Doubling trmc.602-60l
Dowrslnl c!r!.lure. 292 vz,zl, Concavc doqn
DrnE iorcc. 588

DLrmmy vrrirbles, 420--,121

Dymmicrl s) slcnrs. 106-l l0
D)rcs (dln r. .190

. 1lt7 2:lli t-tlt
Eulh

and Mer(!ror p8iccLions, 5 2 8

\pherical cmrdinnres on. 8ll-82,1
Erl1b weiShl, ,192, 607, 695

Ecccnrricir!. 741

Eclipric, 38l
Ecolo8y. 108-109

basic principle ol. 347

Einnci'- Alh.n- 6 l.,tl0. 698

Elecrric inrensiry lecror. 915

Electrostaric neld- I lOl



F4 lndex

Element!ry f uncrions. 448

Elemcn$, olr ser. A3 ,A4

Elc\,alion angle.458
Ellipsc(s)

as r conic secdon. 726

definiln)n oi 727

e.ce.Lricily oi 74.+

equrtions ol, in st.nddd position. 730-ll I
eflecrbn propcrty ot ?38

skething. 7l l-732

Ellipsoids, 810. 8ll
Elliptic cones. 810, 8l l

Elliptic intcgrAl ollhe firstkind.coNplctc. 576

Ellipric paraholoids. 810,8l I

End hehaliff. 122

End ellec(r..P. Robotics

EndpaFr Inlcgrnl Trblc. 541 5.18

Endpoinrs. dcrilalnes al. 186

Enerr!:489
.onservrlin oi: 1085 1086

kinetic.,lit9,493 494.698

Enrico Fcnni Lrbomto.y, 87E

Equahy ol mixed paniah.923
Equrl lecrors. 766.768

grrths 01; LB

\oLUng, invol!ing exponentials and logirnhms.
210-211

s.e 4k, PArAmetnc equations

EquianEul rspirals,755
Equilareral hyperboln. 78. 735

Eqoilibrirnr. I02l
position, lnd spritrg vibntio .606

Equipotcnti l curles, 899

Ery,,190

Enor(s), l5:l

roundofL 6S0

Errer esli rles.559-562
Errcr furctio! erl(r), 4,19

ErorpropAgation. 215-216
Eno^ oionission.301
Es..rpc spced.883

Euclid.9. lll0

Eulcr. Leorh:ud. 19. I I I, 237.363.968. 1040

Fnlcis Merltod 59L596

Eventually held propenies. ol seq!cnccs, 628-629
Erislence rhcorcms. 331

Explicit functions. 216

Exponenlial dccay modcl, 601. 601

Exponentisl funcl ion(s). 236 21?

apprcxinrtin!, with Maclau.in series.680-681

derivalives ol. 258 259

family o1 236-237
lo$rithmic luncrions !s.. 2:19

soh,in! equalbns 
'nvolying 

lqirilhms rnd.
2.l0-:.ll

Erponentinl growth. 2,12 243

Exponential gtosth model, 601. 603

Exponential n)odels, 109, 326.600-601

solving cquations in\,olvine logarirhms and.

2{l2l I

Exponents. inational, 215-236
Ertrcma,956 957

lbsolute, J?. Absolule cxlrcnrr
linding, on closed,rnd bourrded sets, 961 963

problems with connriinn. 967
relativc.]gg 305

Extremc Value Theorenl 3l L ll9. 368. 4l 3- ,122. 957.
961

E)irrusion. 761

lirclori! , 622
Frcroring. A53-A5,1
FrcrorTheorem. A53-A5,1

Falsd linc scgmcnts. :14

ofcardioidi and limtqons, ?08

ol lunctions, T5-89
oflines and rays.706

Ferm l. Piere de. 225. 352-35 3. .196

F:crmaas lasr theorem. 353
Ftrmnfs pri.ciple.35l
Fihotrtrcci \equenL!. IOE. 615
Ficld(s)

conseNati!e, 1058 1059

curl, 1059

direcrion, 592 594
divergencc. i059
nou,, 1056. I l0l
Brndienr, 1058

invdBe squarc. 105?-1058
Fin8clPritrt comprcssion. 2

Fi ile closcd nttenah. 3ll
hrdin! .bsol!1e exrrcnrr or, 331 :133

problerls involving. 339-341

Iiniru solid. l0l2
FiNt'degree {linear) cqunrions.6l 62, A25
Filsr derivati\c lcsl. 299-:t05

Prool oi 301

FirsFoder djllerential cqrrriorrs. 582 589
nee-tull nrotion and, 587-589
geomel.y in,586
mixinB problems ard. 58G587. 591 59.1

scparoble.5S?-583
Firn{rder innial eluc problems.58l 582
Fiar'ordc nodeh. 69:i

l.irn-order parrial deiliuivcs. 914
Floq lleld, 1056, il0l
flow linc, 1061

ol ! veclor freld. 106:l

Flucnt. 1055

Fl! idr s ), 496-499

densil)r.197

oD vcrlical suface, 49 8-499

pr€ssu.c, 6uid. 496-499

Fluid floe; 1056. 1059

Flux. llo3-1107
defincd, I tol
iilcgrals, I104 I 105

of I across d. ll0l
usins Divergencu Theorcm ro find. lll2-ll14

diler-qcnce vie$cd as, I ll.r
outsard. Facross G, ll l:l

Ilux integnls. I 104-1105

Focat rxis. oftr hypcrbola,727

ota hypcrboh. 727

Focur iirccrr'ix prcpcfly.741 7,1,1

nnnt oJ De w1ct,211.125
FooGpoLrids (lt lb), :190

fluid.:199

\arirble. 49 I -492

work perfonned by. 1073

FoNa.d kinemaric cquations, re. Roborics
I-bnr cusped hypocyc loid, 60. 48.1- 851

FouFFral rose.urvc. ?03
Fncrals. I to. t84
Free-tall notio . :t58 -159, 430 41 I . 5ll7-589
FreneL Jean-Frid6ric. 856
Frenet frrhe (or TNB-frunre). 856
Frenet-Sener lbrlnulas. 866
Frequency, 86,209,415

argular.:09
Fresnel. Algrstin. :150

Fresnel siru and cosine lunctions,450
Friction. c(*llicicnt ot (iding. 209
Funcrion(s). 15. l8-19, 890-892

lbsolute erlrcn rn of, 130

ibsolute uluc.2?-28
aLgebnic. 8:
anl'derivadve ol r, 182

arithmclic oncrorions or,47 48

compositbn ol .19-52

concrli() o1.292-?91
consraDl. 75-76. :90. 29 I

conrinuous, I 19. 149.906-907. 
'ec 

dh, Conrinuous

critjcil poinN oi 100
trcm data. 32:l-328
d€composhg. 5 I -52
delined explicilly.nd implic'Ily. 246-241
dchned piecewisc, 28-29
dclinile iniegrrl ol., 978

dcnsily, 102,1

dcdvrtive ola,38l

domin ol.15.2.)-32

end behaliorol ll2

even and odd.5l-54
erprcsscd ns a conrposilion.5l 52

exPresscd par{m€rrically. 96

Fresnel sine/cosine. :150

Gamnr.575
and gmphical lnalysis. l6-22
graphs ol 25-26. 15--15. 892-893

using tech'rology, 891. 897-898

honrogeneous. ol dcercc,. 929



hlpetuolic. 500 50E,.."h, Ilwe,holic innctn)n\
incrcasing/decreasing. 290-292
irllcction loinls oL l93-296. :102 :l{ll
integ.als. delined by, ,1,13 -150

integnls \riIh. .s linits ol inrce,rLn)n.450 -15l

inlene. rcr lnlerse tunclron(,

Ii ear. r?. Linearlunctions
logdr'lthmic.23E 2.10

natual dornain of. 29-30. 89 I

nrturul exporentirl, 218

ncr lrorn old.:11-60

pie.ewise detucd.lE ?9

posiiim. 111 ll2.152
potcnrirl. 1058-1059

pos'cr scrics, dcfircd b]. 6l+675
propd rarional. 5:17

ptute,Lies oL 24 15

ranse o1 25, ll -12

rltional.8l 8?

rcflections ol, 56 5l
rclative m.xinx/nrininr ol. 299-:100

scrle ud unic triLh, ll
second dcrnrrnc resl $ilh. 102, l0:l

stf ctch jng/com|'cssiDe, 4E--49

synrnreLry in.5?-53
L'rnslrtnins ol 51-55
t .. r.r r..\l b4. a., \.ln\1.rr inr.r /l

lunclion(s )i Trjgononcl, ic luiction(\ )

lcnicrlltue re\r $irh.26 2?

ii viewing windows, !c. Vicwirg window(t
Fundrmenral Theo.em ol C.larlus, Jl7, +l6 -+21.

.1.12,5r0.3:r8, 850. 1079, t08l
ard dummy vrrirblcs. '12G.121
ard Mean valuc lheorern iorlnlegrxls.42L .1ll

Prn t\!o..+23 42,1. :150

and relarioi\hip hehleen delinilc Nnd jndcllnile

inlegi!ls..ll9 -120

Fuida.rentrl Theorem of\\brk l cgrals. 1079. 1080

CabrieL s Hom.5?2. l00l
Gdlileo. 100,875

Gau*. Krrl Fricdrich. :6.1. 178, 410, l 1 l0
Ga $ s Lr( ii ElecLic Fields. l l l6
Caus\'s Law lor InrcNc Squurc Fields. I I l5
Gauss s ThcoNm. I109

ol r lire,61 62-,\25 ,^16

Cenerlli/ed deivalve tbmuils- 105 201

Gcncrll solutior. oldiiierentirl equ.lio.s, 5ll0 5nl
Ge.er.ll rem, 616, 6:11

Gcomctrc prope,ries olcross producls.788 790

Geo erric serie\. 615 6ll

Geosl!.hronous orbir. 885

Cmlien(s)
and dircctional dcrirative\. 9.141 9,17

ol I (vl).939
nomrl Io lelelcurves,941 9.12

.onnal ro lcvcl surhces- 9.1? 9:18

propenics ol,9.10 9.11

u\inE Lo nnd rrng€nL lines k) inreAecriors oi'

u\inS ro llnd rrnEenl tl!nes.9.18

Grtl,(r.761 sjll, Al7 Al9
!irLysisoltun.rlors and Ihe[ ]89 32S

olconLcs. in pol0rcoordiDrtcs. T0l. ?.15 7,1?

cu^c lnlnrg $ ilh. 20 li

deremrini'rg shrpcs o1.4l -+5

di{ontinuLt! in. Al9
ofeqtrrtions. lE.1.17

of lunctions. ?5 ?6

denn.d b! inlcgrrls. +50

of two Ya,irblcs.8t)2 893

ol irlegirLcur\es, lEt
lirc,scctions olpolai lzl ll.1
oi irleae lidrLn!\.2:10 211.2l:l
olpirinf r|i. eqnrtiors. 93

ol p.llnomirls.109 ll I

as |()blc r\oL\ lng rools- 2 !-22
p,occdurc li)r url)7ing, l{)6 l0?

.lr qu furi. e.lu.rion i ! rnd r.716
ol r rlionrl nurcln I.ll1 114

rclccrions ol.5ar 57

scxlc rod uniLs iilh.ll

ol scqrcnccs.618 619

slrcrchcs 0nd conrtne\sions oi..18 .19

jn Ihrcc dnncnsonul sprce. 761 702

oi leclor \.lucd iunctior\- 832 8:3
tr^.sldtion 01.51 55

using tcchnolog). 891. 89r ii9lt
01 lcclor liekls. 1056 ll)57

Ciaphin! uLiliLirs. S5 :16.4-145

rtprclimrring trxxs by zoomin-q virh. 155 156

eroa ol o'ni$ion qith.4:1

ile.e.rrirg f rRmerfic.uNes 8ith. 96

!cne,ding polrr Nacs with.li)9 7l{)
graphing jnverse llnoio.s wilh. 2:ll
nopcs olnngent lin.s eslim.Ied b! zoonring with.

178-.119

lsiig {ilh fnrtions ol t$o Mriablcs. 897 E9E

-ri. ..,,'....E4- .. vr/ir,j.. ,." ,

GturlIrtionxl licld {oi l.),lh). I050

c,arrry, rcceleiaLio duc ro, l 6:1. 158 159..+10

Grcarc( inlcgcr llncri. . 6{l

Grcr(c( kNe. bound.6l0

Grccn s Thcorcn. 105i. l0S8

hndLng ucas usjng- l1l9l-l!91
linding troil u\rnE. l0!0
tu nr ul(ipl) connecred re-qions, I 09 I - I 092
.cllrionship be(r.cr Stokcs .id. 1l.lI 1l12

Grcgort, of St. vinccnt..l+6
Cro!dr

e\0o enrirlllosardnnic.2+2 241.601 601

poptrhlion. i98 600

,ehri!e r!rc ol. 601 602

inrcTieLing.60l 602

CrLdin. Prul. 1026

Guldid s Tbcorcm. l0?6

Llalc B.tp comel 751

Hrli-rigle Lnnnhs. A.17

lndex l-5

Hrli:liit.601 601

Hdlfop.n/.losed inIeNal. A,1

Hallel. Ednurd. I I

Hrmoric !rotio.. siDple. 601

HLehcrd.rivrlive\. 196 197

HighcForder prnirl de$rliles. 9ll 9l-l
HLf pi$6 of l\'lerrf ontL'nr. Al
Ho'nog.neil). 1068. 1(198

Hoinoecncons flrids.,+97

' 
krkc. Robcn.68..+91

rlook.i hv. 68..192- 606
Hoi irorral Nrmprote. 82. lzl

.nd liDlIs rI inlirity lzl-lll
Ho zortrl liie tesr. 129 211)

Hoizof trl rdee. 159. 379
Hou( 0l drllighl. 168

Hu [r.rnno bnl]..1i? -160

Humaon. NlllIoD L..75
Huric.fc!. nrodclins. 126 ll:r0
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