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Preface

In 1842 the Belgian mathematician Eugène Charles Catalan asked whether 8 and 9
are the only consecutive pure powers of nonzero integers. One hundred and sixty
years after, the question was answered affirmatively by the Swiss mathematician of
Romanian origin Preda Mihăilescu. In other words, 32 � 23 D 1 is the only solution
of the equation xp � yq D 1 in integers x; y; p; q with xy ¤ 0 and p; q � 2.

Since 2002, the different steps of the proof have been presented by various
authors; see, for instance, the expository articles [9, 10, 82]. Complete proofs
appeared in monographs by Schoof [124] and Cohen [25, 26].

In this book we give a complete and (almost) self-contained exposition of
Mihăilescu’s work, which must be understandable by a curious university student
not necessarily specializing in number theory. We assume very modest background:
a standard university course of algebra, including basic Galois theory, and working
knowledge of basic algebraic number theory such as ideal decomposition, units
(including the Dirichlet unit theorem), ideal classes, and finiteness of the class
group. From the ramification theory we use only one basic fact: a prime number
is ramified in a number field if and only if it divides the discriminant. All necessary
facts from algebraic number theory are gathered (without proofs) in Appendix A.

We do not assume any knowledge about cyclotomic fields; everything needed is
defined or proved in the book.

With our minimalistic approach, some omissions were inevitable. For instance,
an experienced reader can notice that many arguments in this book have an obvious
non-Archimedean flavor. Nevertheless, we resisted the temptation of broader use
of the language of (non-Archimedean) valuations. Our main motivation was that
a matured reader will easily reveal the non-Archimedean context wherever it is
hidden, but abusing the non-Archimedean language may create problems for a less
knowledgeable reader.

Another example is restricting to commutative groups and rings in Appendices C
and D. Of course, certain results from these appendices (like the theorem
of Maschke) extend to noncommutative case as well. We, however, assume
commutativity, because this makes the arguments technically simpler and is
sufficient for our purposes.

v



vi Preface

One more notable omission is Runge’s method. We are aware, of course, that
certain proofs, especially in Chaps. 3, 8, and 9, use Runge-style arguments. We feel,
however, that Runge’s method can be correctly explained only by using the language
of algebraic curves, which is foreign in this book.

Chapters 4, 5, 7, 10, and 12 are dedicated to the general theory of cyclotomic
fields. Catalan’s problem is treated in Chaps. 2, 3, 6, 8, 9, and 11. Chapter 13 is
quite isolated and independent of the others. In it we give a concise introduction to
Baker’s method and prove the Theorem of Tijdeman, which was the top achievement
in Catalan’s problem before Mihăilescu’s work.

The book has six appendices. As we already mentioned, Appendix A is a very
brief account of basic algebraic number theory. Other appendices treat miscella-
neous topics in algebra and number theory used in the book. While Appendix A
contains almost no proofs, in the other appendices, we prove everything we need.

Our notation is mainly standard. We denote by jS j the cardinality of a finite
set S . We use bxc and dxe to denote the lower and the upper integral part of x 2 R,
respectively:

bxc D maxfn 2 Z W n � xg; dxe D minfn 2 Z W n � xg:

Unless the contrary is stated explicitly, letters p and q denote distinct odd prime
numbers; in particular, q never denotes a power of p.

On page vii we display the logical dependence of chapters and appendices.
Dashed lines indicate weak dependence.
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Chapter 1
A Historical Account

Here we give a very brief overview of the history of Catalan’s problem. For
additional historical data and further references the reader may consult the corre-
sponding sections of [117, 124].

1.1 Catalan’s Note Extraite

The Belgian mathematician Eugène Charles Catalan (1814–1894) holds a position
of “répétiteur” at the École Polytechnique when he published in 1842 the following
two lines in the section Théorèmes et problèmes on p. 520 of the first volume of the
journal Nouvelles Annales de Mathématiques1 (Fig. 1.1):

Théorème. Deux nombres entiers consécutifs, autres que 8 et 9, ne peuvent être des
puissances exactes. (Catalan).

The theorems listed on pp. 519–521 of this journal were stated without proofs,
and it is rather doubtful that Catalan had one. Indeed, 2 years later, Catalan wrote
the now famous letter [21] to August Leopold Crelle, published in his journal in
1844. Here is the text of this letter, appeared as a note extraite just above the list of
misprints detected in the previous issues of Crelle’s journal (Fig. 1.2):

Note
extraite d’une lettre adressée à l’éditeur par Mr. E. Catalan,

Répétiteur à l’école polytechnique de Paris.
Je vous prie, Monsieur, de vouloir bien énoncer, dans votre recueil, le théorème suivant,
que je crois vrai, bien que je n’aie pas encore réussi à le démontrer complètement: d’autres
seront peut-être plus heureux:

1The journal was founded in the same year by the École Polytechnique teachers Gerono and
Prouhet and was mainly addressed to the young candidates of the École Polytechnique and École
Normale Supérieure.

© Springer International Publishing Switzerland 2014
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2 1 A Historical Account

Fig. 1.1 Page 520 of the Nouvelles Annales de Mathématiques 1 (1842)

Fig. 1.2 Catalan’s note extraite [21]

Deux nombres entiers consécutifs, autres que 8 et 9, ne peuvent être des puissances
exactes ; autrement dit : l’équation xm � yn D 1, dans laquelle les inconnues sont
entières et positives, n’admèt qu’une seule solution.

Most likely, these are the first two occurrences of the general Diophantine
equation xm � yn D 1 in the mathematical literature. (Of course, some particular
instances of this equation occurred well before; see below.)

Lionnet [73], who was probably unaware about Catalan’s “note extraite,” posed
the same question in 1868, again in the Nouvelles Annales de Mathématiques.

Dickson mentioned the question in the second volume of his History of the
Theory of Numbers [28], attributing it to Catalan: E. Catalan expressed his belief
that xm � yn D 1 holds only for 32 � 23 D 1 [28, Chap. XXVI, p. 738].

However, it was not until the middle of the twentieth century (that is, more
than 100 years after Catalan’s note extraite) that referring to this question as the
problem (or the conjecture) of Catalan became common. In the meantime, that is,
roughly, from 1870 until 1950, one finds almost no mention of Catalan in the dozen
of research papers treating the equation xm � yn D 1 or its particular instances.

In his book Diophantine analysis, published in 1915, Carmichael [15, p. 116,
Problem 69] suggested to study the equations xm D yn C c, and in particular the
case c D 1, but did not mention Catalan. Neither did Obláth in his series of articles
[108–110], treating the case of even m.
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Gloden [43, 44] used the expression problème de Catalan in 1952 and 1953 in
a short note and in a survey on the history of this problem. But LeVeque [70] and
Cassels [16], who worked on the equation ax � by D 1 in the same years, were,
most probably, unaware of Catalan’s letter to Crelle. In particular, in the first section
of [16], Cassels conjectured that the equation ax � by D 1 (in four variables) could
have only finitely many (nontrivial) solutions.

However, already in Chap. 4 of his book [71], published in 1956, LeVeque dis-
cussed Catalan’s conjecture, and in 1960 Cassels [18] not only explicitly mentions
Catalan but also gives, in Sect. 1.2, a history of the conjecture and quotes most of the
articles treating (particular instances of) the Catalan equation and published before
1960.

It seems that, since 1960, the name of Catalan has been commonly attributed to
the equation xm � yn D 1 and the corresponding problem.

1.2 Particular Cases

After this short discussion, we go on with a brief survey on the main contributions
towards the resolution of Catalan’s equation. We do not always follow the chrono-
logical order, but rather put together various results according to their types.

Actually, the story began long before Catalan enunciated his conjecture. Indeed,
at least three nontrivial results solving particular cases of xm � yn D 1 have been
established well before 1842.

The first of these is nearly seven centuries old: Levi ben Gershon (1288–1344),
a medieval Jewish philosopher and astronomer, answering a question of the French
composer Philippe de Vitry, proved that 3m � 2n ¤ 1 when m � 3. The proof is
pretty simple: clearly n � 2, which implies that 3m � 1 mod 4, whence m is even.
Writing m D 2k we obtain .3k � 1/.3k C 1/ D 2n, which implies that both 3k � 1
and 3k C 1 are powers of 2. But the only powers of 2 which differ by 2 are 2 and 4.
Hence k D 1, contradicting the assumptionm � 3.

Next, the amateur French mathematician Bernard Frénicle de Bessy (1605–1675)
proved in 1657 that x2 � yn D 1 has no solution with n � 2 and y an odd prime
number, thus answering a question asked by Pierre de Fermat in his Deuxième Défi
aux Mathématiciens.

The third result is a remarkable theorem of Euler [31], who proved in 1738 that
the equation x2 � y3 D 1 has no nontrivial solutions other than 32 � 23 D 1. See
more on this in Sect. 2.5.

In 1850, just 6 years after the publication of Catalan’s note extraite, the French
mathematician Lebesgue2 [67] showed that the equation xm � y2 D 1 has no
solution. Mention that Lebesgue quoted the “Théorème” from the 1842 volume
of the Nouvelles Annales de Mathématiques [20] and not the note extraite from
Crelle’s journal [21].

2Victor Amédée Lebesgue (1791–1875), not the much more famous Henri Léon Lebesgue.
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It then turned out that x2 � yn D 1 is much more difficult to solve. There
have been partial results by the Norwegian mathematicians Nagell3 [98, 103] and
Selberg4 [126] (who solved x4 � yn D 1), the Hungarian mathematician Obláth
[108–110], and the Finnish mathematicians Inkeri5 and Hyyrö [52]. Finally, the
Chinese mathematician Ko Chao [56] showed in 1965 that this equation has no
solutions with n � 5 (the case n D 3 already being done by Euler). See Sect. 2.3.3
for more history and bibliography on this equation.

Combined with Nagell’s result [99] from 1921 asserting that xm � yn D 1 has no
solutions with mn divisible by 3 other than 32 � 23 D 1, Ko Chao’s result implies
that in any further solution of Catalan’s equation xm � yn D 1 both the exponentsm
and n are greater than or equal to 5. Consequently, by 1965 the smallest unsolved
Catalan’s equation was x5 � y7 D 1. As we shall see in the sequel, it remained
unsolved until 1990.

The theorems of Euler, Lebesgue, and Ko Chao are proved in Chap. 2 of this
book.

A number of partial results were obtained with conditions imposed upon the
variables x and/or y rather than the exponents m and n. Gerono6 [39] proved in
1857 that xm � yn D 1 has no further solution with x and y prime numbers. Later
[40,41], he got the same conclusion under the weaker assumption that either x or y
is a prime number. As Dickson indicates in his History of the Theory of Numbers,
this result was rediscovered many times.

The equations xy � yx D 1 and .x C 1/y � xyC1 D 1 were solved in 1876
by Moret-Blanc [97] and Meyl [83], respectively. (It is likely that the former
equation was solved by Catalan himself, but we found no publication confirming
this hypothesis.) Obláth [110] proved that there are no further solutions when all
the prime divisors either of x or of y are of certain special type. Hampel [45]
proved that there are no further solutions when jx � yj D 1. Alternative proofs and
generalizations of his result were suggested by Schinzel [121], Rotkiewicz [120],
and Obláth [111].

In 1952, LeVeque [70] showed that for any pair .x; y/ of integers with x � 2,
y � 2, and xy > 6, there is at most one pair .m; n/ of positive integers with
xm � yn D 1 and that this pair can be found explicitly if it exists. This is related
to the Conjecture of Pillai discussed in Chap. 13 of the present book.

3Trygve Nagell (sometimes spelled as Nagel, 1895–1988).
4Sigmund Selberg (1910–1994), the elder brother of Atle Selberg.
5Kustaa Inkeri (1908–1997).
6Recall that he was one of the founders of the Nouvelles Annales de Mathématiques.



1.4 Analysis: Logarithmic Forms 5

1.3 Cassels’ Relations

The modern history of Catalan’s equation began with the 1960 work of Cassels [18].
To explain Cassels’ discovery, notice first of all that we may assume the exponents
to be distinct prime numbers and write the equation as xp � yq D 1. Now rewriting
it as

.x � 1/
xp � 1
x � 1 D yq; (1.1)

it is easy to see (cf. Lemma 2.8) that the factors on the left may have either 1 or p as
their greatest common divisor. If the gcd is 1 then both the factors must be pure qth
powers. If the gcd is p then one of the factors is a qth power times p and the other
is a qth power divided by p .

Cassels proved that, when p; q � 3, the first case is impossible, that is, the
greatest common divisor is p . Since, for p � 3, the second factor cannot be
divisible by p2 (see again Lemma 2.8), it follows that

x � 1 D p q�1aq;
xp � 1
x � 1

D p uq; y D p av (1.2)

with some a; u; v 2 Z.
Identities (1.2), called Cassels’ relations, are instrumental in the study of

Catalan’s equation: most of the subsequent contributions rely on them. It is useful to
extend the range of variables x and y from positive integers, distinct from 1, to all
integers, distinct from 0 and ˙1. This makes the equation symmetric: if .x; y; p; q/
is a solution with odd p and q, then so is .�y;�x; q; p/. Hence, in addition to (1.2),
we have the symmetric triple of relations; in particular, not onlyp j y, but also q j x.

When one of p or q is 2, the same result (that is, p j y and q j x) was established
much earlier by Nagell [100, 103] (Theorem 2.9 in this book). Nagell’s result is
crucial in the proof of the Theorem of Ko Chao.

One curious consequence of Nagell’s and Cassels’ theorems is that three
consecutive positive integers cannot be powers. This was observed independently
by Hyyrö [47] and Ma̧kowski [76], answering a question of LeVeque [71] and
Sierpiński [128]. Indeed, assume that xp , yq , and zr are consecutive positive perfect
powers, with p, q, and r prime numbers. Then q divides x and z, and, since p; r � 2,
we find that q2 divides zr � xp D 2, a contradiction.

Cassels’ theorem is proved in Chap. 3.

1.4 Analysis: Logarithmic Forms

To solve completely Catalan’s equation may be much too difficult, and one may try
to prove that it has only finitely many solutions, that is, to confirm the conjecture
of Cassels [16]. In his famous letter to Mordell [127], Siegel indicated a proof of
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the following theorem: let f .x/ 2 ZŒx� be a polynomial with at least three simple
roots and let n � 2 be an integer; then the equation f .x/ D yn has finitely many
solutions in x; y 2 Z. (If n � 3 then two simple roots would suffice.) This theorem
implies that for any fixed exponentsm; n � 2 the equation xm � yn D 1 has finitely
many solutions. Hyyrö [48] and Evertse [30] gave explicit bounds for the number of
solutions; in particular, the latter showed that there is at most .mn/minfm;ng solutions.
Thus, to prove Cassels’ conjecture, it suffices to bound the exponents in Catalan’s
equation.

The above results were obtained by ineffective methods, that is, by methods
which do not yield explicit upper bounds for x and y. The situation changed
dramatically after Alan Baker created his theory of logarithmic forms [4]. This very
powerful tool provides explicit (albeit huge) upper bounds for solutions of many
types of Diophantine equations. For instance, Baker [6] gave an explicit upper bound
for the solutions of the equation f .x/ D yn; this bound was refined many times;
see [13] for the most recent results and further references.

An important advantage of Baker’s method is that it allows one to treat exponents
as unknowns. In 1976, Schinzel and Tijdeman [122] proved the following beautiful
theorem: given a polynomial f .x/ 2 ZŒx� with at least two distinct roots, any solu-
tion of f .x/ D yn in integers x, y (with y ¤ 0;˙1) and a positive integer n satisfies
n � n0.f /, where n0 can be expressed explicitly in terms of the polynomial f .

This has the following consequence for Catalan’s equation: if we fix one of the
four variables x, y, m, and n in xm � yn D 1, then the other three variables can
be explicitly bounded in terms of the fixed one. The same result is true for the
more general Pillai equation axm C byn D c, where a, b, and c are (fixed) nonzero
integers.

This result is already quite remarkable, but it is still very far even from Cassels’
conjecture (telling that Catalan’s equation has finitely many solutions in the four
variables x, y, m, and n.), let alone the complete solution of Catalan’s problem.
Therefore it was quite a sensation when in the very same year 1976 Tijdeman [134]
proved Cassels’ conjecture, by a very ingenious application of Baker’s method to
Catalan’s equation. Notice that Tijdeman’s argument does not apply to more general
equations; for instance, it is still unknown whether the equation xm � yn D 2 has
finitely or infinitely many solutions.

Since Tijdeman uses Baker’s method, it is not difficult to derive from his
proof an explicit (very huge) upper bound for x, y, m, and n. This was done by
Langevin [62], who showed that the greatest prime divisor of mn is less than 10107

and that

jxmj; jynj < 10101010
320

:

Thus, Tijdeman’s result (together with Langevin’s computation) implies that Cata-
lan’s problem is decidable: one can find all solutions of Catalan’s equation just
by verifying all numbers below Langevin’s bound. Of course, in practice such a
calculation is totally unrealistic, and in spite of this impressive progress Catalan’s
problem remained open.
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Application of Baker’s method to Catalan’s (and Pillai’s) equation is the subject
of Chap. 13 of this book.

1.5 Algebra: Cyclotomic Fields

In a different direction, there was a quest for algebraic criteria on the pair of prime
exponents .p; q/ such that the Diophantine equation xp � yq D 1 has no nontrivial
solution. The first result of this kind, obtained in 1964 by Inkeri [50], was of limited
use, because of the assumption that one of the exponents p or q is congruent to 3
modulo 4. In 1990, Inkeri obtained a more general criterion [51] involving the class
number hp of the pth cyclotomic field. He proved that if p and q are distinct
odd prime numbers such that the equation xp � yq D 1 has a solution in nonzero
integers x and y, then either q j hp or pq�1 � 1 modq2 (call them the class number
condition and the Wieferich condition,7 respectively).

Inkeri’s criterion implies at once that x5 � y7 D 1 has no nontrivial solutions,
since h5 D 1 and 56 � 43 mod 72. A similar verification shows that xp � yq D 1

has no nontrivial solution with 5 � p; q < 89.
Inkeri’s theorem is proved in Sect. 6.2 of this book.
Inkeri’s criteria have been extended and refined by Mignotte [86] and

Schwarz [125], who managed to relax the class number condition. In particular,
Schwarz replaced the full class number hp by the relative class number h�

p . This was
of great importance, because, unlike hp , the number h�

p is quite easy to compute.
This opened the road for using electronic computations in Catalan’s problem.

In a different direction, Bugeaud and Hanrot [14], inspired by some ideas
from [11], managed to completely remove the Wieferich condition: they proved that
a solution .x; y; p; q/ of Catalan’s equation with prime exponents satisfies either
q � p or q j h�

p . Notice that this implies a bound on q in terms of p; before [14]
such a bound could be proved only using Baker’s method.

The theorem of Bugeaud and Hanrot is proved in Sect. 8.6 of the present book.

1.6 Numerical Results

As we have already remarked, solving Catalan’s problem just by enumerating all
possible solutions below Langevin’s bound was unrealistic. However, one can apply
a cleverer strategy: verify Inkeri’s (or similar) conditions for the pair .p; q/ below
Langevin’s bound 10107. Unfortunately, given the huge value of this bound, this task
was also unrealistic, even with the most powerful computers.

7A similar condition occurred in the work of Wieferich [138] on the Fermat equation; see
Sect. 2.3.3.
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In early 1990s, spectacular improvements on estimates for logarithmic forms lead
to dramatical refinement of Langevin’s bound. For instance, Mignotte [84] replaced
10107 by 1:31 � 1018, and, independently, a slightly weaker result was obtained by
Glass et al. [42]. It was still computationally impossible to check all possible pairs
.p; q/, but it became possible to check all pairs with certain “small” values of p and
with every q below the new upper bound. On this way, Glass et al. [42] showed
that, given a solution .x; y; p; q/ of Catalan’s equation with prime exponents, we
have minfp; qg � 17 (and even minfp; qg � 37, if one excludes several explicitly
given pairs .p; q/).

There have been many subsequent improvements of this lower bound, particu-
larly in the series of articles by Mignotte and Roy [89–91]. After several months of
very heavy computations they managed to prove [91] that

minfp; qg � 105: (1.3)

However, it eventually became clear that one could not overcome the gap between
the lower and upper bounds just by brute force, that is, by refining the upper bound
and the algebraic criteria and performing heavy computations with increasingly
more powerful computers. One needed new ideas to solve Catalan’s problem.

1.7 The Final Attack

Guillaume Hanrot presented the result of [14] at the XXI Journées Arithmétiques
held at the Pontificia Universitas Lateranensis in July 1999. Preda Mihăilescu was in
the audience and that was the start of the story: he had the feeling that his knowledge
on cyclotomic fields could perhaps help to bring something new. The time showed
that he was perfectly right!

No later than in September 1999, he announced [92] a cardinal improvement of
Inkeri’s criterion, in the direction “orthogonal” to that of [14]. He finally managed
to remove the class number condition from the criterion, by proving that every
solution .x; y; p; q/ satisfies pq�1 � 1 mod q2. By symmetry, we must also have
qp�1 � 1 modp2, that is, .p; q/ is a double Wieferich pair; see Sect. 6.5.

With this new criterion, the verification of (1.3) can be done in a few hours
of computations, and with one month of computations, Mignotte and Roy man-
aged to prove that minfp; qg � 107. The double Wieferich pairs, which resisted
Mihăilescu’s test, were disposed of using the criteria from [14, 85].

Simultaneously, upper bounds were also refined, and by 2001 it was
known that 107 � minfp; qg � 7:2 � 1011 and maxfp; qg � 7:8 � 1016; see [87].
Later on, Grantham and Wheeler made extensive computations showing that
minfp; qg � 3:2 � 108; see [8]. Still, a gap between the lower and the upper bound
persisted.

And then Mihăilescu came back. In December 2001 he sent to Yuri Bilu a
manuscript with a complete proof of Catalan’s conjecture. In April 2002, after
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several months of thorough verification, Bilu confirmed the validity of Mihăilescu’s
proof and prepared his own exposition of Mihăilescu’s argument, which was sent,
together with the original text of Mihăilescu, to a number of colleagues. In May
2002 Bilu gave a talk on Mihăilescu’s work in the Erwin Schrödinger Institut
(Vienna). This was, probably, the first public announcement of the solution of
Catalan’s problem.

Mihăilescu’s original proof [9, 93] required an estimate (1.3) and thereby
depended on the theory of logarithmic forms and some (not too heavy) electronic
computations. He found subsequently an alternative approach for the part of the
proof where these results were used and was thus able to solve the Catalan equation
without logarithmic forms and electronic computation; see [10, 94] and Chap. 8 of
the present book.

A journalist report of the events around the proof of Catalan’s conjecture can be
found in [116].



Chapter 2
Even Exponents

In this chapter we consider Catalan’s equation xp � yq D 1 when one of the
exponents p and q is even. This reduces to the case when one of p and q is equal
to 2, and the other is an odd prime number.

2.1 The Equation xp D y2 C 1

Six years after Catalan’s note extraite, the French mathematician Lebesgue [67]
made the first step in the long way towards the solution of Catalan’s problem. He
proved that Catalan’s equation xp � yq D 1 has no solutions with q D 2.

Theorem 2.1 (V.A. Lebesgue). Let p � 3 be an odd number. Then the equation
xp D y2 C 1 has no solutions in nonzero integers x and y.

(One may further assume that p is prime, but this is not needed for the proof.)

Proof. If y is odd and x is even, then y2 C 1 � 2 mod 4 and xp � 0 mod 8, a
contradiction. Hence y is even and x is odd. Write

xp D .1C iy/.1 � iy/ : (2.1)

The greatest common divisor of 1C iy and 1 � iy (in the ring of Gaussian integers
ZŒi�) divides the sum .1C iy/C .1 � iy/ D 2. Since 1C y2 is odd, the numbers
1C iy and 1 � iy are coprime.

Since ZŒi� is a unique factorization ring, every factor in (2.1) is equal to a pth
power times a unit of ZŒi�; that is,

1C iy D "˛p; 1 � iy D N" N̨p;

© Springer International Publishing Switzerland 2014
Y.F. Bilu et al., The Problem of Catalan, DOI 10.1007/978-3-319-10094-4__2
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where ˛ 2 ZŒi� and " 2 ZŒi�� D f˙1;˙ig. Since p is odd, every unit of ZŒi� is a
pth power of another unit. Writing " D "

p
1 and ˇ D "1˛, we obtain

1C iy D ˇp; 1 � iy D Ňp:

Write ˇ D aC ib, where a; b 2 Z. Since p is odd, the number 2a D ˇ C Ň
divides ˇp C Ňp D 2. Hence a D ˙1. Further, 1C y2 D .a2 C b2/p D .1C b2/p

is an odd number, which implies that b is even. It follows that

1C iy D .a C ib/p � ap C ipap�1b mod 4;

and, in particular, 1 � ap mod 4, which rules out the possibility a D �1.
Thus, ˇ D 1C ib. Comparing the real parts in the equality

1C iy D .1C ib/p;

we obtain

1 D
.p�1/=2X

kD0
.�1/k

 
p

2k

!
b2k;

which can be rewritten as

�
 
p

2

!
b2 C

.p�1/=2X

kD2
.�1/k

 
p

2k

!
b2k D 0 : (2.2)

We shall use Lemma A.1 to show that (2.2) is impossible.
For 1 � k � .p � 1/=2 we have

 
p

2k

!
b2k D

 
p

2

!
b2

1

k.2k � 1/

 
p � 2
2k � 2

!
b2k�2 :

Hence

Ord2

  
p

2k

!
b2k

!
� Ord2

  
p

2

!
b2

!
� .2k � 2/Ord2b � Ord2k

� 2k � 2 � log2 k :

Since 2k � 2 > log2 k for k � 2, we have Ord2
��
p
2k

�
b2k
�
> Ord2

��
p
2

�
b2
�

for
k D 2; : : : ; .p � 1/=2. Now Lemma A.1 implies that the left-hand side of (2.2)
cannot vanish. The theorem is proved. ut
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2.2 Units of Real Quadratic Rings

This section is auxiliary. In it we recall the structure of the unit group of the ring
ZŒ

p
D�, where D is a positive integer, which is not a square (we do not assume

that D is square-free).

Theorem 2.2. The multiplicative group ZŒ
p
D��C of positive units of the ring

ZŒ
p
D� is infinite cyclic.

It follows that the group ZŒ
p
D�� of all units of ZŒ

p
D� is ˙1 times an infinite

cyclic group.
The ring ZŒ

p
D� is not, in general, the ring of integers of the quadratic field

Q.
p
D/. Hence Theorem 2.2 is not a formal consequence of the Dirichlet unit

theorem, as stated in Appendix A.2. Of course, it may be deduced from the
slightly more general Dirichlet unit theorem for maximal orders; see [12, Sect. 2.4].
However, we sketch here a short independent proof, for the reader’s convenience.

The proof uses the famous Dirichlet approximation theorem.

Theorem 2.3 (Dirichlet approximation theorem). Let ˛ be a real number and
Y > 0. Then there exist integers x; y such that 0 < y � Y and jy˛ � xj < Y �1.

Informally, this means that the rational number x=y is a “good approximation”
for ˛.

Proof. It is well known and simple: on the quotient group R=Z consider the images
of the real numbers m˛, where m runs through the integers satisfying 0 � m � Y .
We obtain bY c C 1 points on R=Z, which split R=Z into bY c C 1 disjoint intervals.
Since bY c C 1 > Y , at least one of these intervals is of length < Y �1. This
means that there exist integers m1, m2, and x such that 0 � m1 < m2 � Y and
jm2˛ �m1˛ � xj < Y �1. Putting y D m2 �m1, we complete the proof. ut

The following consequence is immediate.

Corollary 2.4. Let ˛ be a real number. Then there exist infinitely many couples
.x; y/ 2 Z

2 with y > 0 and jy˛ � xj < y�1.

We return to the proof of Theorem 2.2. We denote the group ZŒ
p
D��C of positive

units by U . We denote by ˛ 7! N̨ the nontrivial automorphism of ZŒ
p
D� (that is,

x C y
p
D D x � yp

D) and by N W ZŒpD� ! Z the norm map: N˛ D ˛ N̨ .

Proof of Theorem 2.2. First of all, we prove that U ¤ f1g. By the Dirichlet approx-
imation theorem, there exist infinitely many couples of positive integers x and y

such that
ˇ̌
ˇx � y

p
D
ˇ̌
ˇ � y�1. For any such x and y we have x � y

p
D C 1.

Hence ˛ D x C y
p
D satisfies 0 < ˛ � 2y

p
D C 1 and j N̨ j � y�1, which implies

jN˛j D j˛ N̨ j � 2
p
D C 1.

We have proved that ZŒ
p
D� contains infinitely many positive elements of norm

bounded by 2
p
D C 1. Therefore there exists a nonzero a 2 Z such that ZŒ

p
D�

contains infinitely many positive elements of norm equal to a. Since there are only
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finitely many residue classes mod a, there exist distinct positive ˛; ˇ 2 ZŒ
p
D� such

that N˛ D Nˇ D a and ˛ � ˇ mod a. Then

˛ Ň � ˇ Ň � a � 0 moda:

Put � D ˛=ˇ. Then � ¤ 1, because ˛ and ˇ are distinct. On the other hand,
� D ˛ Ň=a 2 ZŒ

p
D�, and, similarly, ��1 2 ZŒ

p
D�. We have found an element

� 2 U distinct from 1. Hence U ¤ f1g.
Next, we prove that U is an infinite cyclic group. The logarithmic map

log W U ! R defines an injective homomorphism of U into the additive group of
real numbers. Since U ¤ f1g, the image logU is a nonzero subgroup of R.

Further, if � 2 U satisfies � > 1, then � D x C y
p
D with x; y > 0, whence

� >
p
D. It follows that any positive element of logU is greater than log

p
D,

which implies that logU is a discrete subgroup of R.
Since any nonzero discrete subgroup of R is infinite cyclic, the theorem follows.

ut
The unit � > 1, generating the group ZŒ

p
D��C, is called the basic (or

fundamental) unit of the ring ZŒ
p
D�. Usually, it is not easy to find the basic

unit or to decide whether a given unit is basic. In some cases this can be done using
the following simple observation.

Proposition 2.5. Let � D aC b
p
D be the basic unit of ZŒ

p
D�, and let

� D x C y
p
D be any other unit. Then b j y.

Proof. We may assume that x; y > 0. Then � D �n, where n is a positive integer.
It follows that 2b

p
D D � � N� divides 2y

p
D D �n � N�n, whence the result. ut

The following consequence is immediate.

Corollary 2.6. Assume that D D a2 ˙ 1, where a is a positive integer (satisfying
a > 1 if D D a2 � 1). Then a C p

D is a basic unit of ZŒ
p
D�.

It is worth mentioning that Corollary 2.6 is the simplest particular case of the
famous theorem of Størmer (1897).

Theorem 2.7 (Størmer). Let aC b
p
D be a unit of ZŒ

p
D� such that a; b > 0 and

every prime divisor of b dividesD. Then it is a basic unit.

We do not prove this theorem since we do not need it. An interested reader can
find the proof in Ribenboim’s book [117, Sect. A.4].

To conclude, let us mention that the results of this section are often interpreted in
terms of the “Pell Diophantine equation” x2 �Dy2 D ˙1.
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2.3 The Equation x2 � yq D 1 with q � 5

The equation x2 � yq D 1 with an odd (prime) exponent q is much more difficult
than xp � y2 D 1. The case q D 3 was settled already by Euler, but, in spite of
some partial results, the general case remained open until 1965, when the Chinese
mathematician Ko Chao1 proved [55, 56] that, for a prime q � 5, the equation
x2 � yq D 1 has no solutions in positive integers x and y.

In 1976 Chein [23] discovered another proof, simpler than Ko Chao’s and based
on a totally different idea. Chein’s proof is reproduced below (with some changes).
Ko Chao’s proof can be found in Mordell’s book [96, Sect. 30].

Both the arguments of Ko Chao and Chein work for a prime q � 5 and do not
extend to q D 3. This case is solved in Sect. 2.5 by a totally different argument.

Most of the known proofs of the theorem of Ko Chao rely on a result of Nagell
about the arithmetical structure of the solutions of the equation x2 � yq D 1. We
prove this theorem in Sect. 2.3.1. The theorem of Ko Chao will be proved (following
Chein) in Sect. 2.3.2. In Sect. 2.3.3 we briefly describe the history of the equation.

2.3.1 Nagell’s Theorem

We start with an elementary lemma, which will be used in the next chapter as well.

Lemma 2.8. Let A and B be distinct coprime rational integers and p a prime
number.

1. If p divides one of the numbers .Ap � Bp/=.A� B/ and A� B , then it divides
the other as well.

2. Put d D gcd ..Ap � Bp/=.A� B/;A � B/. Then d 2 f1; pg.
3. If p > 2 and d D p, then Ordp ..Ap � Bp/=.A� B// D 1.

Proof. All the three statements easily follow from the identity

Ap � Bp

A � B D ..A� B/C B/p � Bp

A� B
D

pX

kD1

 
p

k

!
.A � B/k�1Bp�k : (2.3)

Rewriting it as

Ap � Bp

A� B
D

p�1X

kD1

 
p

k

!
.A� B/k�1Bp�k C .A� B/p�1;

we obtain .Ap � Bp/=.A� B/ � .A � B/p�1 modp, which proves part (1).

1Sometimes spelled as Ko Zhao.
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Rewriting (2.3) as

Ap � Bp

A� B
D pBp�1 C .A� B/

pX

kD2

 
p

k

!
.A� B/k�2Bp�k; (2.4)

we observe that d divides pBp�1. Since A andB are coprime, d andB are coprime
as well, and we conclude that d j p, which proves part (2).

Finally, if d D p then p divides A � B and does not divide B . Rewriting
(2.3) as

Ap � Bp

A� B
D pBp�1 C .A� B/

 
p�1X

kD2

 
p

k

!
.A � B/k�2Bp�k C .A� B/p�2

!
;

we obtain .Ap � Bp/=.A� B/ � pBp�1 modp2, which proves part (3). ut
Next, we establish the following preliminary result, due to Nagell [100].

Theorem 2.9 (Nagell). Let x; y be positive integers and q an odd prime number
satisfying x2 � yq D 1. Then 2 j y and q j x.

Proof. Write .x � 1/.x C 1/ D yq . The greatest common divisor of x � 1 and
x C 1 divides 2. If y is odd then they are coprime; hence both are qth powers:
x � 1 D aq and x C 1 D bq. We obtain bq � aq D 2, which is impossible. This
proves that 2 j y.

Further, write

yq C 1

y C 1
.y C 1/ D x2:

By Lemma 2.8, the greatest common divisor of the factors in the left-hand side is
either 1 or q. If x is not divisible by q then the factors are coprime, which means
that each of them is a complete square. Thus, there exist positive integers a and b
such that

y C 1 D a2;
yq C 1

y C 1
D b2; x D ab :

On the other hand, equality x2 � yq D 1 means that x C y.q�1/=2py is a unit of
the ring ZŒ

p
y�, and Corollary 2.6 implies that aC p

y is the basic unit of this ring.
Hence there exists a positive integer n such that

x C y.q�1/=2py D .a C p
y/n: (2.5)

We want to show that this is impossible.
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First of all, let us prove that n is even. Expanding .a C p
y/n by the binomial

formula, and reducing mody, we find

.aC p
y/n � an C nan�1py mody

in the ring ZŒ
p
y�. Combining this with (2.5), we obtain

nan�1 � y.q�1/=2 � 0 mody:

Since y is even and a is odd, this implies that n is even.
Next, reducing (2.5) moda and using the congruences

x D ab � 0 mod a; y D a2 � 1 � �1 moda;

we obtain

.�1/.q�1/=2py � .�1/n=2 moda;

which means that a divides one of the numbers 1˙ p
y in the ring ZŒ

p
y�. Since

a > 1, this is impossible. The theorem is proved. ut
We learned this argument from Hendrik Lenstra (private communication). It was

also independently discovered by Nesterenko and Zudilin [106]. Nagell himself
used the Theorem of Størmer (see Theorem 2.7) to show that both units aC p

y

and x C y.q�1/=2py should be basic, which is a contradiction.

2.3.2 Chein’s Proof of the Theorem of Ko Chao

Now we are ready to prove the theorem of Ko Chao.

Theorem 2.10 (Ko Chao). The equation x2 � yq D 1 has no solutions in positive
integers x; y and prime q � 5.

Proof (Chein). Theorem 2.9 implies that x is odd. Assume that x � 3 mod 4.
Equality .x � 1/.x C 1/ D yq implies that there exist positive integers a and b such
that

x C 1 D 2q�1aq; x � 1 D 2bq:

Notice that aq D .bq C 1/=2q�2 < bq , which implies a < b.
We have

�
b2 C 2a

� b2q C .2a/q

b2 C 2a
D b2q C .2a/q D

�
x � 1

2

�2
C 2.x C 1/ D

�
x C 3

2

�2
:

(2.6)
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We again invoke Theorem 2.9, this time the statement q j x. Since q > 3, this
implies that the right-hand side of (2.6) is not divisible by q. Now Lemma 2.8 yields
that the factors on the left-hand side are coprime. Hence they are complete squares.

Since b2 C 2a is a complete square, we have 2a � .b C 1/2 � b2 D 2b C 1,
which contradicts the previously established inequality a < b.

If x � 1 mod 4 then x � 1 D 2q�1aq and x C 1 D 2bq . We obtain

b2q � .2a/q D
�
x � 3

2

�2
;

and the rest of the argument is the same. ut

2.3.3 Some Historical Remarks

Here we give some historical and bibliographical remarks on the equation

x2 � yq D 1 (2.7)

with q � 5.
Before Ko Chao, the problem attracted many mathematicians. In 1921

Nagell [100] observed that a theorem of Lebesgue [66] asserting that the equation
x5 C y5 D 8z5 has no solutions implies that x2 � y5 D 1 has no solutions.

In the same article Nagell [100] presented several conditions involving the
congruence class of q modulo 16 and the arithmetic of the number field Q.

p�q/
under which the equation has no solution. In particular, he proved that there are
no solutions with q � 101, except maybe with q D 31; 59; 73; 83 or 89. In 1934,
he [103] improved upon the latter result, by showing that there is no solution if
q 6� 1 mod 8. Thus, below 101 only 73 and 89 remained untreated.

In 1932, Selberg [126] solved completely the Diophantine equation x4 � yq D 1,
answering a question posed by Nagell [98] in 1919.

In 1940, Obláth [108, 109] showed that (2.7) has no solution except, possibly,
when

2q�1 � 1 .mod q2/; 3q�1 � 1 .mod q2/: (2.8)

His starting point was the key observation that it is sufficient to solve the equation
2q�2aq � bq D ˙1, as it is clear from the proof of Theorem 2.10. Then, he
combined the results of Lubelski [75] on the Diophantine equation xq C yq D czq

with Theorem 2.9 to get (2.8).
The abovementioned work of Lubelski generalizes the famous results of

Wieferich [138] and Mirimanoff [95] on the Fermat equation xq C yq C zq D 0.
Wieferich showed that if the latter equation has a solution with q not dividing xyz
(the “first case” of the Fermat theorem), then 2q�1 � 1 modq2, and Mirimanoff
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showed that 3q�1 � 1 mod q2. Wieferich-type conditions systematically occur in
Catalan’s problem; see Sects. 6.2 and 6.5.

Obláth [110] combined his conditions with Nagell’s results to show that there is
no solution with q < 25000.

In 1961, Inkeri and Hyyrö [52] improved upon Nagell’s Theorem 2.9: they
showed that existence of a nontrivial solution of (2.7) implies that q2 j x and
q3 j .y � 1/. Using this result, they proved that there is no nontrivial solutions with
q < 100000.

Equation x2 � yq D 1 continued to attract researchers even after the work of Ko
Chao. We have already seen Chein’s contribution. In 2004 Mignotte [88] suggested
yet another proof of the theorem of Ko Chao. He adapted the classical argument of
Kummer to show that (2.7) has no solution when q � 5 is a regular2 prime.

The first irregular primes congruent to 1 modulo 8 are 233 and 257. This
gives a weaker result than Obláth’s; however, modern sharp estimates [65] for
binary logarithmic forms imply that (2.7) is impossible for q > 200. This gives an
alternative proof of Ko Chao’s theorem.

One can also apply a deep theorem of Ribet [118] on the Diophantine equation
ap C 2˛bp C cp D 0which implies that (2.7) has no nontrivial solutions. This is not
the easiest way to prove Ko Chao’s theorem, since Ribet’s work uses the advanced
machinery of Galois representations.

We are left with the equation x2 � y3 D 1. It will be solved in Sect. 2.5, after
some preparation in Sect. 2.4.

2.4 The Cubic Field Q.
3

p
2/

In this auxiliary section we determine the ring of integers OK and the group of units
UK D O�

K of the cubic field K D Q.
3
p
2/. We shall use this in Sect. 2.5.

Everywhere throughout this section we use the notation

� D 1C 3
p
2; � D 3

p
2 � 1:

Notice that � is a unit of K .
We start from a simple observation.

Proposition 2.11. The principal ideal .�/ is a prime ideal of K . It satisfies
.�/3 D .3/.

Proof. One verifies that 3 D �3�. Since � is a unit, this implies that .3/ D .�/3.
Since a rational prime number cannot split in K into more than 3 primes, the
ideal .�/ is prime. ut

2An odd prime number ` is regular if it does not divide the class number of the `th cyclotomic
field and irregular if it does.
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In the sequel, we write Ord� instead of Ord.�/.

Proposition 2.12. The ring of integers OK is ZŒ 3
p
2�.

Proof. Denote by D the discriminant ofK and put d D
h
OK WZŒ 3p2�

i
. Then Dd2 is

the discriminant of the ring ZŒ
3

p
2�. Since the conjugates of 3

p
2 are 	 3

p
2 and 	2 3

p
2,

where 	 D .�1C p�3/=2 is a primitive cubic root of unity, we have

Dd2 D
 

det

��
	k

3
p
2
�`	

0�k;`�2

!2
D �22 � 33:

It follows that d j 6. If d is even, then D is odd, which is impossible because 2
ramifies in K . Thus, d divides 3.

Since ZŒ
3

p
2� D ZŒ��, every ˛ 2 OK can be written as ˛ D a0 C a1� C a2�

2,
where a0; a1; a2 2 1

3
Z. If we show that

Ord3.ak/ � 0 .k D 0; 1; 2/; (2.9)

it would follow that ˛ 2 ZŒ��, proving the proposition.
Observe that Ord�

�
ak�

k
� � k mod 3. It follows that the numbers

Ord�
�
ak�

k
�

.k D 0; 1; 2/

are pairwise distinct. Lemma A.1 implies that

Ord�.˛/ D min
0�k�2Ord�

�
ak�

k
�
:

But Ord�.˛/ � 0, because ˛ is an algebraic integer. Hence Ord�
�
ak�

k
� � 0 for

k D 0; 1; 2, which is only possible if Ord3.ak/ � 0 for all k. This proves (2.9) and
the proposition. ut
Proposition 2.13. The unit group UK is generated by �1 and �.

Proof. The field K has a real embedding and a pair of complex conjugate embed-
dings. We identify K with its real embedding and denote the complex embeddings
by 
 and N
 , so that

j
.�/j2 D ��1 D 1C 3
p
2C 3

p
4:

The Dirichlet unit theorem (Appendix A.2) implies that the rank of the unit group
is 1. Also, since K has a real embedding, it cannot contain roots of unity other
than ˙1. Thus, UK is generated by �1 and a unit � , where we may assume that

0 < � < 1 : (2.10)
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Then � D �m, where m � 1. This implies the inequality

j
.�/j D j N
.�/j � j
.�/j D
�
1C 3

p
2C 3

p
4
�1=2

< 2 : (2.11)

Proposition 2.12 implies that � D a0 C a1
3

p
2C a2

3
p
4, where a0; a1; a2 2 Z.

We have

ak D 1

3
Tr

�
�
�

3
p
2
��k�

.k D 0; 1; 2/ ;

where Tr W K ! Q is the trace map. Using inequalities (2.10) and (2.11), we obtain
ja0j; ja1j; ja2j � 5=3. Thus, a0; a1; a2 2 f0;˙1g. Also, a0 ¤ 0, since otherwise � is
not a unit.

Among the 18 remaining possibilities, only ˙1, ˙�, and ˙��1 are units. Among
the latter, only � belongs to the interval .0; 1/. Thus, � D �. ut
Remark 2.14. The following more refined argument shows that a2 D 0 (which
means that only six possibilities are to be verified instead of 18). Assume that �
is not a fundamental unit. Then � D �m withm � 2. This implies, instead of (2.11),
the inequality

j
.�/j D j N
.�/j � j
.�/j1=2 D
�
1C 3

p
2C 3

p
4
�1=4

< 1:5:

Hence

ja2j D 1

3

ˇ̌
ˇ̌Tr

�
�
�

3
p
4
��1�ˇ̌ˇ̌ � 0:9;

that is, a2 D 0.

2.5 The Equation x2 � y3 D 1

This equation has a long history. Already Fermat stated (as usual, without a
proof) that it has no solutions in positive integers except the obvious 32 � 23 D 1.
Euler [31] was the first to prove this. This proof, quite involved, is reproduced in
Ribenboim’s book [117, Sect. A.2].

Theorem 2.15 (Euler). The only solution of the equation x2 � y3 D 1 in nonzero
integers x; y is .˙3/2 � 23 D 1.

Actually, Euler proved much more: the equation x2 � y3 D 1 has no solutions
in rational numbers x; y other than .˙1; 0/, .0;�1/ and .˙3; 2/. A reader familiar
with the notion of elliptic curve can express this as the elliptic curve x2 � y3 D 1

has rank 0 and torsion 6 over Q.
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Later Euler [32, Vol. 2, Article 247] and Legendre [68, pp. 406–409] used an
“infinite descent” argument to prove the following theorem.

Theorem 2.16 (Euler, Legendre). The equation u3 C 1 D 2v3 has no solutions in
integers u; v with v ¤ 0; 1.

Theorem 2.15 is an easy consequence of Theorem 2.16.

Proof of Theorem 2.15 (Assuming Theorem 2.16). Rewrite our equation as
.x � 1/.x C 1/ D y3. If x is even then the factors on the left are coprime. Hence
they are complete cubes, which is impossible, because two cubes cannot differ by 2.

Now assume that x is odd. Then y is even, and, replacing x by �x, we may
assume that x � 3 mod 4. Rewrite the equation as

x � 1
2

x C 1

4
D
�y
2

�3
:

The factors on the left are coprime rational integers, hence both cubes: x � 1 D 2u3

and x C 1 D 4v3, where u and v are nonzero integers. We obtain u3 C 1 D 2v3,
whence v D 0 or 1 by Theorem 2.16. It follows that x D �1 or x D 3, which proves
Theorem 2.15. ut

Here again, both Euler and Legendre proved much more: the equation
u3 C 1 D 2v3 has no nontrivial solutions in u; v 2 Q (and even in u; v 2 Q.

p
3/).

This also implies the “rational” version of Theorem 2.15 mentioned above.
In 1922, Nagell [101, Sect. 10] suggested an alternative proof of Euler’s theorem;

see also [102].
Here we give a different proof, due to McCallum [80]. McCallum’s argument is

more transparent than the proofs of Euler, Euler-Legendre, and Nagell, but it does
not extend to rational solutions.

(Recently Notari [107] suggested yet another proof, which is totally elementary
and, like McCallum’s proof, works only for integer solutions.)

Denote byK the cubic field Q.
3
p
2/. Recall that � D 3

p
2 � 1 generates the group

of positive units of K .
Notice that integers u; v satisfy u3 C 1 D 2v3 if and only if v 3

p
2 � u is a positive

unit of the field K . Hence Theorem 2.16 is equivalent to the following statement.

Theorem 2.17. The field K has no positive units of the form a0 C a1
3
p
2 (with

a0; a1 2 Z) other than 1 and �.

Theorem 2.17 is a particular case of the famous result of Delaunay [27]: given
a cube-free integer d , the ring ZŒ

3
p
d� has at most one nontrivial positive unit of

the form a0 C a1
3
p
d ; if such a unit exists, then it generates the group of positive

units. Skolem [130, pp. 114–120] gave another proof of the first part of Delaunay’s
theorem using his local method. See also [96, Theorems 23.5 and 24.5]. The proof
of McCallum, reproduced below in Sect. 2.5.2, can be viewed as a simplified version
of Skolem’s local argument for d D 2.

For the proof, we need a preparatory statement on the p-adic convergence of
binomial series.
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2.5.1 Binomial Series

In this subsection K is an arbitrary number field, not just Q. 3
p
2/.

If ˛ is a complex number with j˛j < 1 then the binomial series
P1

kD0
�
n
k

�
˛k

converges to .1C ˛/n. We need the p-adic generalization of this: if Ordp.˛/ > 0
then the series

P1
kD0

�
n
k

�
˛k “p-adically converges” to .1C ˛/n.

Thus, let p be a prime ideal of the field K , and let Op be the local ring of p:

Op D f˛ 2 K W Ordp.˛/ � 0g:

Given ˛; ˇ 2 Op, we say that ˛ � ˇ mod pN if Ordp.ˇ � ˛/ � N .

Proposition 2.18. Let n be an integer,N a nonnegative integer, and p a prime ideal
of a number field K . Then for any ˛ 2 K with Ordp.˛/ > 0 we have

NX

kD0

 
n

k

!
˛k � .1C ˛/n mod pNC1:

Proof. If n � 0 then the assertion is an obvious consequence of the binomial
formula. Now assume that n < 0, and write n D �m � 1 with m � 0. It will be
convenient to replace ˛ by �˛. Since .�1/k��m�1

k

� D �
mCk
m

�
, we have to prove that

NX

kD0

 
mC k

m

!
˛k � .1 � ˛/�m�1 mod pNC1: (2.12)

Derivingm times the identity

.1 � t/�1 �
mCNX

kD0
tk D tmCNC1.1 � t/�1;

and dividing by mŠ , we obtain the identity

.1 � t/�m�1 �
NX

kD0

 
mC k

m

!
tk D tNC1P.t/.1 � t/�m�1; (2.13)

where P.t/ is a polynomial, depending on m and N . Notice that

tNC1P.t/ D 1 � .1 � t/mC1
NX

kD0

 
mC k

m

!
tk 2 ZŒt �;
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which implies that P.t/ 2 ZŒt �. Hence

Ordp
�
˛NC1P.˛/.1 � ˛/�m�1� � .N C 1/Ordp.˛/ � N C 1;

and (2.12) follows upon substituting t D ˛ in (2.13). ut

2.5.2 Proof of Theorem 2.17

Now we are ready to prove Theorem 2.17. We again use the notation K D QŒ
3
p
2�,

� D 3
p
2 � 1, and � D 3

p
2C 1 from Sect. 2.4.

Every element of the field K can be uniquely written as a0 C a1
3
p
2C a2

3
p
4,

where a0; a1; a2 2 Q. This defines the Q-linear “coefficient functions”

a0; a1; a2 W K ! Q:

Since �3� D 3, we have �3m D 3m��m for any integer m. Hence for any positive
integer k the number �k is divisible by 3bk=3c in the ring ZŒ

3
p
2�. It follows that

Ord3
�
a`
�
�k
�� � bk=3c .` D 0; 1; 2/; (2.14)

for k � 0, which will be used throughout the proof.
Let � be a positive unit of K with a2.�/ D 0. We have to prove that � D 1 or

� D �. Proposition 2.13 implies that � D �n, where n 2 Z. We assume that n ¤ 0; 1

and obtain a contradiction.
Fix a large positive integer N , to be specified later. Since � D �2C � , we have

.�2/�n� D .1 � �=2/n. Proposition 2.18 implies that

NX

kD0

 
n

k

!�
��
2

�k � .�2/�n� mod�NC1: (2.15)

Applying the coefficient function a2 to both sides of (2.15), and using (2.14), we
obtain

NX

kD0

 
n

k

!
a2
�
�k
�

.�2/k � .�2/�na2.�/ mod 3b.NC1/=3c: (2.16)

Since a2.�/ D 0, the right-hand side of congruence (2.16) vanishes. Since
a2.1/ D a2.�/ D 0, so do the summands on the left of (2.16), corresponding to
k D 0 and k D 1. Also, for k � 2, we have

 
n

k

!
D n.n � 1/
k.k � 1/

 
n � 2

k � 2

!
:
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Hence, for k � 2, the kth summand on the left of (2.16) is equal to n.n � 1/Ak ,
where

Ak D 1

k.k � 1/.�2/k
 
n � 2
k � 2

!
a2
�
�k
�
:

Thus, (2.16) can be rewritten as

n.n � 1/ .A2 C � � � C AN / � 0 mod 3b.NC1/=3c:

Since n is distinct from 0 and 1, we may choose N so large that

b.N C 1/=3c > Ord3.n.n � 1//:

We obtain

A2 C � � � CAN � 0 mod 3: (2.17)

On the other hand, again using (2.14), we find

Ord3.Ak/ � bk=3c � Ord3.k.k � 1// � bk=3c � log3 k : (2.18)

As one can easily verify, the right-hand side of (2.18) is positive for k � 6. Hence
Ord3.Ak/ > 0 for k � 6. Also, Ord3.k.k � 1// D 0 for k D 5, which implies that
Ord3.A5/ > 0.

We have proved that Ord3.Ak/ > 0 for k � 5. Combining this with (2.17), we
obtain

A2 CA3 C A4 � 0 mod 3:

Since a2.�2/ D 1, a2.�3/ D 3, and a2.�4/ D 6, we have

A2 C A3 C A4 D 1

8
� n � 2

16
C .n� 2/.n� 3/

32
D n2 � 7nC 14

32
:

It follows that n2 � 7nC 14 � 0 mod 3, which is impossible for n 2 Z. The
theorem is proved. ut
Remark 2.19. The Diophantine equation y2 � x3 D k, where k is a nonzero inte-
ger, is usually called Mordell’s equation. Many results on it can be found in Chap. 26
of Mordell’s book [96]. Modern techniques based on logarithmic forms [11] or
forms in elliptic logarithms [33] allow one to solve Mordell’s equation completely
for small values of k, using electronic computations. For instance, this was done for
jkj � 104 in [33].



Chapter 3
Cassels’ Relations

Due to the theorems of Euler, Lebesgue, and Ko Chao, proved in the previous
chapter, we may assume that the exponents of Catalan’s equation are odd. Since
every odd number greater than 1 has an odd prime divisor, this reduces Catalan’s
problem to the following assertion.

Theorem 3.1. Equation

xp � yq D 1 (3.1)

has no solutions in nonzero integers x; y and odd primes p; q.

Proving this theorem is the main objective of the rest of this book.
Starting from this point, a solution of Catalan’s equation (or, simply, a solution)

is, by definition, a quadruple .x; y; p; q/, where x; y are nonzero integers and p; q
are (distinct) odd prime numbers, satisfying xp � yq D 1. Notice that we no longer
assume x and y positive. This allows us to symmetrize the problem: if .x; y; p; q/
is a solution, then so is .�y;�x; q; p/. This symmetry will be repeatedly used in
the sequel.

In this chapter we make the first step towards the proof of Theorem 3.1.
Following Cassels, we reduce (3.1) to several more complicated equations, which
are, however, easier to deal with. We also show, following Hyyrö [48], that Cassels’
relations imply lower bounds for jxj (and jyj) in terms of p and q.

3.1 Cassels’ Divisibility Theorem and Cassels’ Relations

Rewrite (3.1) as

.x � 1/
xp � 1

x � 1 D yq: (3.2)

© Springer International Publishing Switzerland 2014
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Lemma 2.8 implies that the greatest common divisor of the factors on the left is 1
or p. More precisely, we have the following statement.

Proposition 3.2. Let .x; y; p; q/ be a solution of Catalan’s equation. Then

gcd

�
xp � 1
x � 1

; x � 1

�
D
(
p ; if p j y;
1; otherwise.

(3.3)

Proof. If p does not divide y then it does not divide any of the numbers x � 1 and
.xp � 1/=.x � 1/. Part (2) of Lemma 2.8 implies now that

gcd

�
xp � 1

x � 1 ; x � 1

�
D 1:

If p j y then p divides one of the numbers x � 1 and .xp � 1/=.x � 1/. Part (1)
of Lemma 2.8 implies that it divides both, and part (2) yields that

gcd

�
xp � 1

x � 1 ; x � 1

�
D p:

ut
Cassels [18] showed that the second option in (3.3) is impossible.

Theorem 3.3 (Cassels). Let .x; y; p; q/ be a solution of Catalan’s equation.
Then p j y (and q j x by symmetry).

We postpone the proof of this theorem until Sect. 3.3 and formulate now the most
important consequence of Theorem 3.3, known as Cassels’ relations.

Theorem 3.4 (Cassels). Let .x; y; p; q/ be a solution of Catalan’s equation. Then
there exist a nonzero integer a and a positive integer u such that

x � 1 D pq�1aq;
xp � 1

x � 1 D puq; y D pau: (3.4)

Symmetrically, there exist a nonzero integer b and a positive integer v such that

y C 1 D qp�1bp;
yq C 1

y C 1
D qvp; x D qvb: (3.5)

Proof (Assuming Theorem 3.3). Since p j y, Proposition 3.2 implies that

gcd

�
x � 1; x

p � 1
x � 1

�
D p:
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In view of (3.2), there exist rational integers a and u such that x � 1 D p˛aq

and .xp � 1/=.x � 1/ D pˇuq, one of the exponents ˛; ˇ being 1 and the other
q � 1. Notice also that u is positive, because so is .xp � 1/=.x � 1/, and that p − u;
otherwise we would contradict part (3) of Lemma 2.8.

Part (3) of Lemma 2.8 implies that ˇ D 1, and thereby ˛ D q � 1. This
proves the first two relations in (3.4). The third one follows from them at once.
Relations (3.5) follow by symmetry. The theorem is proved. ut

Another proof of Cassels’ divisibility theorem was suggested by Hyyrö [49].

3.2 Binomial Power Series

In this section we establish some basic properties of the power series

.1C t/� D
1X

kD0

 
�

k

!
tk; (3.6)

to be used in the proof of Theorem 3.3, as well as in other parts of the book. Recall
that for any real � the coefficient

�
�
k

�
is defined by

 
�

k

!
D �.� � 1/ � � � .� � k C 1/

kŠ
:

First, we study the arithmetic of the coefficients when the exponent � is a rational
number. We show that the only primes appearing in the denominator of

�
�
k

�
are those

dividing the denominator of �. We also calculate the exact order of every such prime
in the denominator of

�
�
k

�
.

Recall that for any prime number p and any nonnegative integer k

Ordp.kŠ/ D


k

p

�
C


k

p2

�
C � � � < k

p
C k

p2
C � � � D k

p � 1 : (3.7)

Lemma 3.5. Let � be a rational number with denominator b.

1. For any nonnegative integer k, there exists a positive integer N such that
bN
�
�
k

� 2 Z.
2. If q is a prime divisor of b, then for any nonnegative integer k

Ordq

 
�

k

!
D �kOrdqb � Ordq.kŠ/ > �kOrdqb � k

q � 1 : (3.8)
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In particular, the sequence
˚
Ordq

�
�
k

��
kD0;1;::: is strictly decreasing:

0 D Ordq

 
�

0

!
> Ordq

 
�

1

!
> Ordq

 
�

2

!
> � � � : (3.9)

Proof. Write � D a=b. Then

 
�

k

!
D a.a � b/ � � � .a � .k � 1/b/

bkkŠ
: (3.10)

For any prime number p not dividing b we have

Ordp
�
a.a � b/ � � � .a � .k � 1/b/

� �


k

p

�
C


k

p2

�
C � � � D Ordp.kŠ/;

via (3.7). Hence the only prime factors of the denominator of
�
�
k

�
are the prime

divisors of b. This proves part (1).
For part (2) observe that if q divides b then it does not divide a. Hence it does

not divide the numerator in (3.10), which implies (3.8).
Finally, (3.9) is an immediate consequence of (3.8). ut
We also need an estimate for the remainder term of the binomial power series.

Lemma 3.6. Let � be a real number and m a nonnegative integer. Then for any
real t satisfying jt j < 1 we have

ˇ̌
ˇ̌
ˇ.1C t/� �

mX

kD0

 
�

k

!
tk

ˇ̌
ˇ̌
ˇ � max

˚
1; .1C t/��m�1�

ˇ̌
ˇ̌
ˇ

 
�

mC 1

!ˇ̌
ˇ̌
ˇ jt j

mC1: (3.11)

In particular, form D 0, we have

j.1C t/� � 1j � max
˚
1; .1C t/��1� j�t j: (3.12)

Proof. By the Taylor formula with the Lagrange error term, we have

ˇ̌
ˇ̌
ˇ.1C t/� �

mX

kD0

 
�

k

!
tk

ˇ̌
ˇ̌
ˇ � sup

0���1

ˇ̌
ˇ̌
ˇ

 
dmC1.1C T /�

dT mC1

ˇ̌
ˇ̌
ˇ
TD� t

!ˇ̌
ˇ̌
ˇ

jt jmC1

.mC 1/Š

D max
˚
1; .1C t/��m�1�

ˇ̌
ˇ̌
ˇ

 
�

mC 1

!ˇ̌
ˇ̌
ˇ jt j

mC1;

as wanted. ut
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As an immediate application to Catalan’s equation, we estimate the differenceˇ̌
y � xp=q

ˇ̌
. (Notice that, since q is odd, xp=q is a well-defined real number.)

Lemma 3.7. Let .x; y; p; q/ be a solution of Catalan’s equation. Then

ˇ̌
y � xp=q

ˇ̌ � 1:1

q
jxjp=q�p: (3.13)

Proof. Applying (3.12) with � D 1=q and t D x�p , we obtain

y D xp=q .1C x�p/1=q D xp=q.1C r/

with jr j � .1 � jxj�p/1=q�1q�1jxj�p . One verifies by inspection that jxjp > 16.
Hence .1 � jxj�p/1=q�1 � 1:1, and the result follows. ut

3.3 Proof of the Divisibility Theorem

In this section we prove Theorem 3.3. The argument splits into two cases: p < q
and p > q. Proofs in both cases are similar, but the latter is technically much more
complicated than the former.

We start with the simpler case p < q. Thus, we are going to prove the following.

Proposition 3.8. Let .x; y; p; q/ be a solution of Catalan’s equation with p < q.
Then p j y.

Proof. Assume that p does not divide y. Proposition 3.2 implies that the numbers
.xp � 1/=.x � 1/ and x � 1 are coprime. In view of (3.2), each of them is a
complete qth power.

Write x � 1 D aq , where a is a nonzero integer. If jaj D 1 then jxj D 2, and
jyj � .jxjp C 1/1=q < 2, because p < q. We obtain jyj D 1, a contradiction. This
proves that jaj � 2.

Equality .1C aq/p D yq C 1 suggests that y should be close to ap . Indeed,
using (3.12), we obtain

xp=q D ap .1C a�q/p=q D ap.1C r/;

where

jr j � .1 � jaj�q/p=q�1 p
q

jaj�q � 1:1jaj�q:

Thus,
ˇ̌
xp=q � ap ˇ̌ � 1:1jajp�q < 1=3. Further

ˇ̌
y � xp=q

ˇ̌ � 0:1, as easily follows
from (3.13). Combining the last two inequalities, we obtain jy � apj < 1. Hence
y D ap , because both are rational integers.
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We obtain xp � upq D 1, which is impossible (two pth powers cannot differ
by 1). The proposition is proved. ut

We are left with the more difficult case p > q. First of all, we have to establish a
lower bound for x. The following statement is, essentially, due to Hyyrö [48].

Proposition 3.9 (Hyyrö). Let .x; y; p; q/ be a solution of Catalan’s equation with
p > q. Then jxj � qp�1 C q.

Proof. Since q < p, Proposition 3.8 applies to the solution .�y;�x; q; p/.
Hence q j x, and we have the second series (3.5) of Cassels’ relations. Rewriting
the relation .yq C 1/=.y C 1/ D qvp as

�
.�y/q�1 � 1

�C �
.�y/q�2 � 1

�C � � � C .�y � 1/ D q .vp � 1/ ;

we deduce that y C 1 divides q .vp � 1/. Now the relation y C 1 D qp�1bp implies
that vp � 1 modqp�2.

Now we again use the assumption p > q, this time to observe that p does not
divide the order qp�3.q � 1/ of the multiplicative group mod qp�2. This implies
that v � 1 modqp�2.

Since jyj � 2 and .y; q/ ¤ .2; 3/, an easy estimate shows that

yq C 1

y C 1
> q:

It follows that v > 1. Together with the previously established congruence
v � 1 mod qp�2, this implies v � qp�2 C 1. Since x D qvb, we have

jxj � qv � qp�1 C q;

as wanted. ut
Now we are ready to consider the case p > q.

Proposition 3.10. Let .x; y; p; q/ be a solution of Catalan’s equation with p > q.
Then p j y.

Proof. In the proof of Proposition 3.8 we used (3.12) to approximate xp=q by the
integer ap . Due to (3.13), this shows that y is close to ap . Since both are integers,
they are equal, which leads to a contradiction.

In this proof, we again approximate xp=q . However, (3.12) is no longer sufficient
to get a good approximation, and we use the general inequality (3.11) to approxi-
mate xp=q (and thereby y) by a certain rational number A=B . We shall see that the
approximation is good enough to conclude that y D A=B . On the other hand, we
shall show that A=B is not an integer, a contradiction.

Now let us proceed. As in the proof of Proposition 3.8, we find out
that x � 1 D aq , where a 2 Z. The estimate jxj � qp�1 C q, obtained in
Proposition 3.9, implies that
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jajq > qp�1: (3.14)

Applying (3.11) with � D p=q and m D dp=qe, we obtain

xp=q D ap .1C a�q/� D ap

 
mX

kD0

 
�

k

!
a�qk C r

!
;

where

jr j � .1 � jaj�q/��m�1
ˇ̌
ˇ̌
ˇ

 
�

mC 1

!ˇ̌
ˇ̌
ˇ jaj�q.mC1/:

Using (3.14), we estimate

.1 � jaj�q/��m�1 � �
1 � q�.p�1/��2 � 1:1:

Also,

ˇ̌
ˇ̌
ˇ

 
�

mC 1

!ˇ̌
ˇ̌
ˇ D �

m

� � 1

m � 1 � � � � �mC 1

1

j� �mj
mC 1

� 1

mC 1
:

Hence jr j � 0:5jaj�q.mC1/. It follows that

ˇ̌
ˇ̌
ˇx
p=q �

mX

kD0

 
�

k

!
ap�qk

ˇ̌
ˇ̌
ˇ � jajpjr j � 0:5jajp�.mC1/q: (3.15)

Now write

mX

kD0

 
�

k

!
ap�qk D A

B
;

whereA andB are coprime integers. By part (2) of Lemma 3.5, the greatest common
denominator of the binomial coefficients is qmCOrdq.mŠ/. HenceB divides the number
qmCOrdq.mŠ/amq�p . Since Ordq.mŠ/ < m=.q � 1/, this implies the inequality

jBj � qmCOrdq .mŠ/jajmq�p < qmq=.q�1/jajmq�p: (3.16)

On the other hand, (3.9) implies that

Ordq

  
�

m

!
ap�qm

!
< Ordq

  
�

k

!
ap�qk

!
.k D 0; 1; : : : ; m � 1/:
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Hence Ordq.A=B/ D Ordq
��
�
m

�
ap�qm� < 0, and, in particular, A=B is not an

integer.
Now we are going to replace xp=q by y. We have trivially

jxjp�p=q � jxj10=3 > .jxj C 1/2 � jaj2q � jaj.mC1/q�p:

Hence, using (3.15) and (3.13), we obtain

ˇ̌
ˇ̌y � A

B

ˇ̌
ˇ̌ � 1:1

q
jxjp=q�p C 0:5jajp�.mC1/q < jajp�.mC1/q: (3.17)

It is easy to see that the right-hand side of (3.17) is strictly less than jBj�1.
Indeed,

p � 1 � p C q

q � 1
� qm

q � 1
:

Hence we may use (3.14) to obtain jajq > qp�1 � qqm=.q�1/. Using (3.16), we find
that

jajp�.mC1/q D jaj�qjajp�mq < q�mq=.q�1/jajp�mq � jBj�1:

Thus, jy �A=Bj < jBj�1. Hence y D A=B , which is impossible since A=B is not
an integer.

This contradiction proves Proposition 3.10, completing thereby the proof of
Cassels’ divisibility theorem. ut

One may view Cassels’ divisibility theorem as the extension of Nagell’s The-
orem 2.9 to the case of odd exponent p. The proof of Nagell’s theorem, however,
does not seem to extend to odd p. On the other hand, Cassels’ argument does extend
to p D 2. It might be a good exercise for the reader to work out the details of the
proof of Nagell’s theorem, using Cassels’ method.

3.4 Hyyrö’s Lower Bounds

Cassels’ relations (3.4) and (3.5) imply lower bounds for the variables x and y in
terms of the exponents p and q. For instance, the relation x � 1 D p q�1aq implies
the inequality jxj � p q�1 � 1.

Hyyrö [48, Hilfssatz 2] obtained two less obvious lower bounds. One of them
has already been reproduced in this book as Proposition 3.9. Now we can formulate
Hyyrö’s result in its complete form.
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Theorem 3.11. Let .x; y; p; q/ be a solution of Catalan’s equation. Then

jxj � max
˚
qp�1 C q; p q�1.q � 1/q C 1

�
(3.18)

(and, symmetrically, jyj � max
˚
p q�1 C p; qp�1.p � 1/p C 1

�
).

Hyyrö’s actual estimate is slightly sharper, but (3.18) is easier to prove and sufficient
for our purposes.

Proof. We start with the inequality jxj � p q�1.q � 1/q C 1. We shall use the
following obvious fact: the four numbers x; y; a; b in Theorem 3.4 are either
altogether positive (the positive case) or altogether negative (the negative case).

Since q j x, we have

p q�1aq D x � 1 � �1 modq:

Since pq�1 � 1 modq, this implies aq � �1 mod q, which is equivalent to
a � �1 modq. Similarly, b � 1 modp.

Now, in the positive case, we have a � q � 1 and x � p q�1.q � 1/q C 1. In the
negative case we have either a � �q � 1, which implies that

jxj � p q�1.q C 1/q � 1 > p q�1.q � 1/q C 1;

or a D �1.
It remains to show that the last option is impossible. Thus, assume that a D �1,

which implies 1 � x D 1C jxj D p q�1. Since we are in the negative case, we have
b � 1 � p, and

jyj D .jxjp C 1/1=q � .1C jxj/p=q < p p < 2p�1.p � 1/p

<qp�1jbjp D j1C yj < jyj;

a contradiction. This proves the inequality jxj � p q�1.q � 1/q C 1.
We are left with the inequality jxj � qp�1 C p. In the case p > q it has already

been established in Proposition 3.9. In the case p < q, we have

jxj � p q�1.q � 1/q C 1 > 2.q � 1/q > 2p q > 2qp > qp�1 C q:

The theorem is proved. ut
Hyyrö’s lower bounds will be widely used in this book.



Chapter 4
Cyclotomic Fields

Let m be a positive integer, and let �m be a primitive mth root of unity. The
number field Km D Q.�m/ is called the mth cyclotomic field. We cannot give a
comprehensive treatment of the theory of cyclotomic fields in this book; for this
purpose, we refer to the famous monographs of Lang [60] and Washington [136].
Here we develop only a few fragments of this beautiful theory, required for Catalan’s
problem.

In particular, except a few sporadic points, we use only the special case m D p,
an odd prime number, which is technically simpler than the general case.

Thus, in this chapter (except Sect. 4.7), we fix an odd prime numberp, a primitive
pth root of unity �p , and denote byKp D Q.�p/ the corresponding cyclotomic field.
Since p is fixed, we shall write (when this does not confuse) � instead of �p and K
instead of Kp.

4.1 Degree and Galois Group

Any conjugate of � over Q is again a primitive pth root of unity. It follows that
ŒKWQ� � p � 1, which is the number of primitive pth roots.

It is not difficult to show that the degree is equal to p � 1. The quickest way is to
observe that the cyclotomic polynomial ˚p.t/ D tp�1 C � � � C t C 1 is irreducible,
applying the Eisenstein criterion with the prime number p to the polynomial

˚p.t C 1/ D .t C 1/p � 1
t

:

It is more instructive, however, to obtain the equality ŒKWQ� D p � 1 as part of the
following assertion.
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Proposition 4.1. Denote by p the principal ideal .1 � �/.

1. For any integers k and ` not divisible by p, the number .1 � �k/=.1 � �`/ is a
unit of the field K . In particular, for any k 6� 0 modp, we have the equality of
ideals .1� �k/ D p.

2. The ideal p is a prime ideal of the field K . It satisfies pp�1 D p. In particular, p
totally ramifies in K .

3. We have ŒKWQ� D p � 1. In particular, all primitive pth roots of unity are
conjugate over Q.

Proof. Since ` is not divisible by p , there exists an integer m such that
`m � k modp . It follows that

1 � �k
1 � �`

D 1 � �`m
1 � �`

D 1C �` C � � � C �`.m�1/

is an algebraic integer. By symmetry, so is .1 � �`/=.1 � �k/. This proves part (1).
Further, substituting t D 1 into the identity

tp�1 C � � � C t C 1 D .t � �/.t � �2/ � � � .t � �p�1/ ;

we obtain .p/ D .1 � �/.1� �2/ � � � .1� �p�1/ D pp�1. Since p cannot split in K
into more than ŒKWQ� prime factors, and ŒKWQ� � p � 1, this is possible only if
ŒKWQ� D p � 1 and p is a prime ideal. This proves parts (2) and (3). ut

The following immediate consequence of part (1) will be often used.

Corollary 4.2. Let q be a prime ideal of Kp other than p. Then distinct pth roots
of unity cannot be equal mod q. (That is, if �; � 0 are pth roots of unity satisfying
� � � 0 mod q then � D � 0.)

Since K contains all the conjugates of �, it is a Galois extension of Q. Denote
by G its Galois group. Part (3) implies that for any integer a, not divisible by p,
there exists a unique 
a 2 G such that 
a.�/ D �a. Obviously, 
ab D 
a ı 
b . Also,

a D 
a0 if and only if a � a0 modp, which implies that

G D f
1; 
2; : : : ; 
p�1g:

Mention also that 
p�1 is the complex conjugation. We shall usually denote it by �,
so that

� ı 
a D 
a ı � D 
p�a:

Sometimes, to simplify notation, we shall write N
 instead of � ı 
 .
For a 2 Z denote by a� 2 Z=p Z the residue class of a modulo p. Since 
a

depends only on its class modulo p, we have the well-defined map
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.Z=p Z/� ! G (4.1)

a� 7! 
a:

The following statement is obvious.

Proposition 4.3. The map (4.1) defines an isomorphism .Z=p Z/� ' G. In partic-
ular, G is a cyclic group.

4.2 Integral Basis and Discriminant

As in the previous section, � stands for a primitive pth root of unity and K D Q.�/

is the pth cyclotomic field.
Our next purpose is to determine the ring of integers OK and to calculate

the discriminant DK . First of all, notice that OK � ZŒ��. Hence DK divides the
discriminant of 1; �; : : : ; �p�2, defined by

D.1; �; : : : ; �p�2/ D
�

det



j .�

k�1/
�
1�j;k�p�1

�2
: (4.2)

After expanding the Vandermonde determinant in the right-hand side, we obtain ˙1
times a product of .p � 1/.p � 2/ terms of the type �m � �s (with m 6� s modp).
Hence we have the equality of ideals

.D0/ D p.p�1/.p�2/ D �
pp�2� ;

where we denote by D0 the right-hand side of (4.2). Since D0 is a rational integer,
we obtain D0 D ˙pp�2. This has the following consequence.

Proposition 4.4. 1. The discriminantDK is ˙1 times a power of p . The only prime
number ramified in K is p.

2. For distinct odd primes p and q, the fields Kp and Kq are disjoint (that is,
Kp \Kq D Q). Also, the fieldsKp and Q.i/ are disjoint.

3. The fieldKp2 is a proper extension of Kp . In fact, ŒKp2 W Kp� D p.
4. The group of roots of unity of the field Kp is generated by ��.
Proof. Part (1) follows from the already mentioned fact that DK j D0.

To prove part (2), observe that, since p is totally ramified in Kp , it is ramified
in any subfield of Kp distinct from Q. On the other hand, p is unramified in Kq by
part (1). Hence the only common subfield ofKp andKq is Q. Similarly, since (2) is
the only prime ramified in Q.i/, this field is disjoint with Kp.



40 4 Cyclotomic Fields

Next, the congruence

.1 � �p2 /p � 1 � �p
p2

� 1 � �p modp

implies that }p D p, where } is the principal ideal .1 � �p2/. It follows that p
ramifies in Kp2 , and the ramification index is at least p . On the other hand, it is
obvious that the degree ofKp2 overKp is at most p . Hence both the degree and the
ramification index are equal to p . This proves part (3).

Parts (2) and (3) yield thatKp cannot contain roots of unity other than the powers
of ��. This proves part (4). ut

Here is a trivial but frequently used consequence of part (4).

Corollary 4.5. Assume that p and q are distinct odd prime numbers. Then every
root of unity from Kp is a qth power in Kp.

Part (1) of Proposition 4.4 can be refined as follows.

Theorem 4.6. We have OK D ZŒ��. In particular, jDK j D pp�2.

(One can show that DK D .�1/.p�1/=2p p�2 (see [136, Proposition 2.1]), but the
sign of DK will not be used in the present book.)

Proof. Fix ˛ 2 OK and write

˛ D a0 C a1
C � � � C ap�2
p�2;

where 
 D 1 � � and a0; : : : ; ap�2 2 Q. Since ZŒ�� D ZŒ
�, we have to prove that
a0; : : : ; ap�2 2 Z.

Since the index

OK WZŒ
�� D 
OK WZŒ��� D D0=DK is a power of p, the denom-

inators of the rational numbers a0; : : : ; ap�2 are powers of p. Now notice that
for k D 0; 1; : : : ; p � 2 we have Ordp

�
ak


k
� � k mod .p � 1/. It follows that the

p � 1 numbers

Ordp
�
ak


k
�

.k D 0; 1; : : : ; p � 2/

are pairwise distinct. Lemma A.1 implies that

Ordp.˛/ D min
0�k�p�2Ordp

�
ak


k
�
:

Since ˛ is an algebraic integer, we have Ordp.˛/ � 0. Hence Ordp
�
ak


k
� � 0 for

all k, which is only possible if Ordp.ak/ � 0 for all k.
Thus, a0; : : : ; ap�2 2 Z, as wanted. The theorem is proved. ut

Corollary 4.7. For any 
 2 G and any ˛ 2 OK we have ˛ � 
.˛/ mod p.

(In other words, the inertia group of p over Q is G.)
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Proof. Since OK D ZŒ��, it suffices to verify the statement for ˛ D �, in which case
it is obvious. ut

4.3 Decomposition of Primes

Let q be a prime number. We are interested in its decomposition in the pth
cyclotomic fieldK . So far, this has been done only for q D p, in Proposition 4.1(2).

Proposition 4.8. Let q be a prime number distinct from p, the case q D 2 being
included. Then q is unramified in K . Further, let f be the order of q in the
multiplicative group .Z=pZ/� and s D .p � 1/=f . Then q D q1 � � � qs , the degree
of each of the prime ideals qi being f .

In particular, q splits completely in K if and only if q � 1 modp.

Proof. As we have already seen in Proposition 4.4:1, the prime q is unramified
inK . Further, let q be a prime ideal above q and ' D 'q 2 Gal.K=Q/ its Frobenius
element (see Appendix A.7). Then the degree of q is equal to the order of '.

By the definition of the Frobenius element, '.˛/ � ˛q mod q for any ˛ 2 OK .
In particular,

'.�/ � �q mod q: (4.3)

However, '.�/ is also a pth root of unity. If '.�/ ¤ �q then .'.�/� �q/ D p,
and (4.3) is impossible. Hence '.�/ D �q and ' D 
q . Since 
mq D 
qm , the order
of 
q is equal to the order of q in Z=pZ, that is, to f . The proposition is proved. ut

4.4 Units

We continue to denote by � a primitive pth root of unity, and we let K D Q.�/ be
the pth cyclotomic field. We denote by O D OK its ring of integers.

The Dirichlet unit theorem implies that the group U D UK D O�
K of units of K

is the direct product of the torsion subgroup ˝ D ˝K (which is generated by ��
by Proposition 4.4(4)) and a free abelian group of rank r D .p � 3/=2. It is quite
remarkable that the latter can be chosen canonically.

Theorem 4.9. The group U of units of K is the direct product of the group ˝ of
roots of unity and the group UC of positive real units of K .

In other words, each unit can be uniquely presented as the product of a root of unity
and a positive unit.

Another equivalent statement: if we view a unit as a complex number, then its
argument is a multiple of �=p.
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First of all, we show that the argument cannot be equal to ˙�=2. More precisely,
we prove the following.

Lemma 4.10. If � 2 O is purely imaginary, then � 2 p (and, in particular, � is not
a unit).

Proof. We have N� D �� by the assumption and N� � � mod p by Corollary 4.7.
It follows that 2� � 0 mod p, which completes the proof, since p is coprime with 2.

ut
We shall also need the following lemma.

Lemma 4.11. Let � be a unit of the cyclotomic fieldK . Then �= N� is a root of unity.

Proof. Put 	 D �= N�. Since the automorphisms of K commute with the complex
conjugation, we have 
.	/ D 
.�/=
.�/ for any 
 2 G. Hence j
.	/j D 1 for any

 2 G, and Kronecker’s theorem (see Appendix A.1) implies that 	 is a root of
unity. ut
Proof of Theorem 4.9. It suffices to show that any unit is a product of a root of unity
and a real unit. Fix � 2 U . Lemma 4.11 implies that 	 D �= N� is a root of unity. Write
	 D ˙�k , where we may assume that k is even (replacing it, if necessary, by k C p).
Put � D ��k=2�. If 	 D ��k then �= N� D �1, which is impossible by Lemma 4.10.
Hence 	 D �k and �= N� D 1, which completes the proof. ut

4.5 The Real Cyclotomic Field and the Class Group

The pth cyclotomic field K D Q.�/ has a totally real subfield

KC D K \ R D Q.� C ��1/;

called the pth real cyclotomic field. Obviously,

ŒK W KC� D 2; ŒKC W Q� D p � 1
2

:

One expects the arithmetic of KC to have very much in common with that of K .
Indeed, p is the only prime number ramified in KC; moreover, since it totally
ramifies in K , it totally ramifies in KC as well: we have .p/ D }.p�1/=2, where
} D �

.� � ��1/2
�
. In K , we have } D p2.

As for the other primes, we have the following analogue of Proposition 4.8.

Proposition 4.12. Let q be a prime number distinct from p, the case q D 2 being
included. Let f be the order of q in the multiplicative group .Z=pZ/�. Put
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f C D
(
f if f is odd;

f =2 if f is even:

Then q decomposes in KC into a product of .p � 1/=.2f C/ prime ideals, each of
degree f C.

Proof. We use the notation

G D Gal.K=Q/; GC D Gal.KC=Q/:

Since Gal.K=KC/ D h�i (where �, as usual, denotes the complex conjugation), we
have GC D G=h�i.

Fix a prime ideal q of K above q, and let qC be the prime ideal of KC
below q. Further, let ' 2 G and 'C 2 GC be the Frobenius elements of q and of qC,
respectively. As we have seen in the proof of Proposition 4.8, the order of ' is f .
Hence the order of 'C is f=2 if � 2 h'i, and the order of 'C is f if � … h'i.

However, � is the only element ofG of order 2. It follows that � 2 h'i if and only
if f is even. Thus, the order of 'C is f C, whence the result. ut

The discriminant and the regulator ofKC are closely related to the corresponding
quantities of K .

Proposition 4.13. The discriminant of KC is ˙p.p�3/=2.

Proof. We haveK D KC.�/, and

f .x/ D x2 � .� C ��1/x C 1

is a minimal polynomial of � over KC. It follows that the different dK=KC divides
f 0.�/ D � � ��1. Since .� � ��1/ D p, there are two options: dK=KC D .1/ or
dK=KC D p. But p is ramified overKC, which means that dK=KC D p.

Thus, dK=Q D pdKC=Q. Taking the norm, we obtain jDK j D p jDKC j2. Since
jDK j D pp�2, this implies that jDKC j D p.p�3/=2. ut
Proposition 4.14. The regulator of KC is 2�.p�3/=2 times the regulator of K .

Proof. Let �1; : : : ; �r (where r D .p � 3/=2) be a system of fundamental units
of KC and 
1; : : : ; 
rC1 be the embeddings of KC. Since KC is totally real, its

regulator is RC D
ˇ̌
ˇdet



log j
i .�j /j

�
1�i;j�r

ˇ̌
ˇ.

Theorem 4.9 implies that �1; : : : ; �r is a system of fundamental units of K as
well. Since K is totally imaginary, its regulator is

R D
ˇ̌
ˇdet



2 log j
i .�j /j

�
1�i;j�r

ˇ̌
ˇ D 2rRC:

This proves the proposition. ut
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Much more interesting and nontrivial is the relation between the class numbers
and class groups of the two fields. Denote by H and HC the class groups of K
and KC, respectively. Since every ideal of KC defines an ideal of K , we have a
natural map HC ! H.

Theorem 4.15. The natural map HC ! H is injective. That is, if a is an ideal
of KC which becomes principal in K , then it is principal already in KC.

We need the following generalization of Lemma 4.10.

Lemma 4.16. Let ˇ 2 K be purely imaginary. Then Ordp.ˇ/ is odd.

Proof. Assume that ˇ is a purely imaginary element of K of even p-adic order.
Multiplying ˇ by a suitable rational integer,1 we may assume that ˇ 2 O and, in
particular, Ordp.ˇ/ � 0.

Write Ordp.ˇ/ D 2m with a nonnegative integerm. Since p2 is generated by the
real number � D .� � ��1/2, the algebraic number � D ˇ��m is a purely imaginary
element of O n p, which contradicts Lemma 4.10. ut
Proof of Theorem 4.15. The proof is analogous to that of Theorem 4.9. Let a be an
ideal of KC which becomes principal in K . Let ˛ be its generator in K . Since a
comes from KC, we have Na D a. Hence N̨ generates the same ideal. It follows that
˛= N̨ is a unit, and, as in the proof of Theorem 4.9, we find that it is a root of unity.

Write ˛= N̨ D ˙�k with an even k and put ˇ D ��k=2˛. Then a D .ˇ/. Notice
that Ordpˇ D Ordpa is even, because a comes from KC. Now, if ˛= N̨ D ��k then
ˇ= Ň D �1, which is impossible by Lemma 4.16. Hence ˛= N̨ D �k and ˇ 2 KC,
which completes the proof. ut

We identifyHC with its image inH and putH� D H=HC. One usually callsHC
the real class group, and H� the relative class group. Their cardinalities are called
the real class number, and the relative class number, and are denoted, respectively,
by hC and h� (or hC

p and h�
p , if we want to indicate the dependence in p).

There is also the “norm homomorphism”H ! HC, defined by a 7! aNa. One can
show that this homomorphism is surjective. We do not use it in the present book.

4.6 Cyclotomic Extensions of Number Fields

We wish to extend some of the results of the previous sections to cyclotomic
extensions of number fields. Thus, in this section L is a number field, and we study
the cyclotomic extension L.�/, where � D �p is a primitive pth root of unity.

Of course, in general one cannot have the equality ŒL.�/WL� D p � 1. However,
this equality does hold if p is unramified in L.

1Since the p-adic order of a rational integer is divisible by p � 1, multiplication by a rational
integer does not change the parity of the p-adic order.
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Proposition 4.17. Assume that p is unramified in L, and let } be a prime ideal
of L above p. Further, let P be the ideal of L.�/ defined by P D .}; 1 � �/. Then
Pp�1 D }, the ideal P is prime, and ŒL.�/WL� D p � 1.

Proof. Since .1 � �/p�1 D .p/, we have

Pp�1 ˇ̌�}p�1; .1 � �/p�1� D �
}p�1; p

�
:

Since p is unramified in L, we have
�
}p�1; p

� D }. Thus, Pp�1 j }. However,
ŒL.�/WL� � p � 1, and } cannot decompose in L.�/ into more than ŒL.�/WL� prime
ideals. Hence Pp�1 D }, the ideal P is prime, and ŒL.�/WL� D p � 1. ut

(The assumption “p is unramified in L” can be relaxed: it suffices to have }
unramified over Q.)

As in Sect. 4.1, we find the Galois group of L.�/=L.

Corollary 4.18. Assume that p is unramified in L. Then

Gal.L.�/=L/ D f
1; : : : ; 
p�1g;

where 
a is defined by 
a.�/ D �a.

We also show that the inertia group of P is the whole Galois group (an extension
of Corollary 4.7).

Proposition 4.19. In the setup of Proposition 4.17 denote byOP the local ring of P
in L.�/. Then for any ˛ 2 OP and 
 2 Gal.L.�/=L/ we have 
.˛/ � ˛ modP.

Proof. Denote by O} the local ring of } in L. Arguing as in the proof
of Theorem 4.6, we show that OP D O}.�/. Hence it suffices to show that

.�/ � � modP, which is obvious. ut

Finally, we determine the prime decomposition of p in L.�/. The following is a
straightforward consequence of Proposition 4.17.

Proposition 4.20. Assume that p is unramified in L, and write the prime
decomposition of p in L as .p/ D }1 � � �}s. Then p decomposes in L.�/ as
.p/ D P

p�1
1 � � �Pp�1

s , where Pi D .}i ; 1 � �/.

4.7 General Cyclotomic Fields

In this section we extend some of the previous results to the general cyclotomic field
Km D Q.�m/, where m is a positive integer and �m is a primitive mth root of unity.
The results of this section will be used only at a few isolated points.

Contrary to the rest of the chapter, in this section, p stands for any prime number,
including p D 2, not just for an odd prime.



46 4 Cyclotomic Fields

4.7.1 Ramified Primes

To begin with, we determine the ramified primes of the mth cyclotomic field.

Theorem 4.21. Let m be a positive integer, and let Km D Q.�m/ be the mth
cyclotomic field. Then an odd prime number p is ramified in Km if and only if p
dividesm, and 2 is ramified in Km if and only if 4 j m.

Proof. The “if” statement is obvious. If an odd p dividesm, thenKm containsKp ,
where p is ramified. Hence p is ramified inKm. Similarly, if 4 j m thenKm contains
K4 D Q.i/, where 2 is ramified.

For the “only if” statement we need a simple lemma.

Lemma 4.22. Let � and � 0 be two distinct mth roots of unity (not necessarily
primitive). Then � � � 0 dividesm.

Proof. It suffices to show the following: if � ¤ 1 is an mth root of unity then 1 � �

dividesm. Substituting t D 1 into the identity

1C t C � � � C tm�1 D .t � �m/.t � �2m/ � � � .t � �m�1
m /;

we obtain

m D .1 � �m/.1 � �2m/ � � � .1 � �m�1
m /:

Since 1 � � is one of the factors on the right, the lemma follows. ut
We return to the proof of Theorem 4.21. We argue as in the beginning of Sect. 4.2.

Since OKm � ZŒ�m�, the discriminant of Km divides the discriminant of the ring
ZŒ�m�. The latter discriminant is the product of several terms of the form � � � 0,
where � and � 0 are distinct mth roots of unity. By Lemma 4.22, the discriminant of
ZŒ�m� divides a power of m. Hence the discriminant of Km divides a power of m as
well. It follows that every prime ramified in Km divides m. This proves the “only
if” statement for odd primes.

We are left with p D 2. We have already proved that 2 is unramified in Km

when m is odd. But we have to show that 2 is ramified only when 4 j m. Thus,
assume that 2 divides m, but 4 does not. Then m D 2n, where n is odd. Then
�m D ��n, and Km D Kn. Since n is odd, the prime 2 is unramified in Kn. The
theorem is proved. ut

One can show that OKm D ZŒ�m� and calculate the discriminant ofKm: see [136,
Theorem 2.6 and Proposition 2.7].
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4.7.2 Degree and Galois Group

Next, we determine the degree and the Galois group of Km over Q. Since all con-
jugates of �m lie among the primitive mth roots of unity, we have ŒKmWQ� � '.m/,
the Euler’s function of m. We shall show that in fact ŒKmWQ� D '.m/.

We start with the prime power case.

Proposition 4.23. Let p be a prime number and k a positive integer. Then the
principal ideal pk D .1 � �pk / satisfies

p
pk�1.p�1/
k D .p/: (4.4)

Proof. We use induction in k. For k D 1 and odd p equality (4.4) is established in
Proposition 4.1(2), and for k D 1 and p D 2 it is obvious. Now assume that k > 1.
Since �p

pk
D �pk�1 , we have

�
1 � �pk

�p � 1 � �pk�1 modp ;

which implies p
p

k D pk�1. But p
pk�2.p�1/
k�1 D .p/ by induction. This proves the

proposition. ut
(The case k D 2 has already been done before; see Proposition 4.4(3).)
Since

ŒKpk WQ� � '.pk/ D pk�1.p � 1/

and since p cannot decompose in Kpk into more than ŒKpk WQ� prime ideals,
Proposition 4.23 implies that ŒKpk WQ� D '.pk/ and that pk is a prime ideal in Kpk .

Arguing as in the proof of Proposition 4.17, we obtain even more.

Proposition 4.24. Let L be a number field, p a prime number unramified in L,
and k a positive integer. Further, let } be a prime ideal of L above p, and let P be
the ideal ofL.�pk / defined by P D .}; 1� �pk /. Then Ppk�1.p�1/ D }, the ideal P
is prime, and ŒL.�pk /WL� D pk�1.p � 1/.

Now we are ready to establish the equality ŒKmWQ� D '.m/.

Theorem 4.25. Let m be a positive integer. Then ŒKmWQ� D '.m/.

Proof. We use induction in m. For m D 1 the statement is obvious. If m > 1 then
we can writem D npk , where p does not divide n and k > 0. Since n < mwe have
ŒKnWQ� D '.n/ by induction. By Theorem 4.21, the prime p is unramified in Kn.
Applying Proposition 4.24, we find ŒKn.�pk /WKn� D '.pk/. Since Kn.�pk / D Km,
we obtain

ŒKmWQ� D ŒKmWKn� � ŒKnWQ� D '.pk/ � '.n/ D '.m/;

as wanted. ut
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Thus, all primitive mth roots of unity are conjugate over Q. It follows that for
every integer a, coprime with m, there exists a unique 
a 2 Gal.Km=Q/ such that

a.�m/ D �am. Also, the map

.Z=mZ/� ! Gal.Km=Q/

a� 7! 
a;

(where a� is the image of a in Z=mZ) is well defined and gives an isomorphism
between the groups .Z=mZ/� and Gal.Km=Q/.

We shall also use the following statement. Its proof, which is a straightforward
application of the Chinese Remainder Theorem, is left to the reader.

Proposition 4.26. Let m and n be coprime integers. Then for any a, coprime
with m, and any b, coprime with n, there exists a morphism 
 2 Gal.Kmn=Q/ such
that 
.�m/ D �am and 
.�n/ D �bn .

4.7.3 Decomposition of Primes

Proposition 4.27. Let q be a prime number not dividing m, and let f be the order
of q in the multiplicative group .Z=mZ/�. Then q splits in Km into '.m/=f prime
ideals, each of degree f .

In particular, q splits completely in Km if and only if q � 1 modm.

Proof. Exactly as of Proposition 4.8. We leave the details to the reader. ut

4.7.4 Units, Class Groups, etc.

Most of the properties of prime cyclotomic fields established in Sects. 4.4 and 4.5
have analogues in the general case. For instance, Theorem 4.15 completely
extends to the general case, with almost the same proof: see [136, Theorem 4.14].
In particular, we can decompose the class number as a product hC

mh
�
m of the real and

the relative part.
On the other hand, the extension of Theorem 4.9 is not straightforward: see [136,

Theorem 4.12 and Corollary 4.13]. We refer to Chaps. 3 and 4 of Washington’s
book [136] for more details on the general cyclotomic fields.



Chapter 5
Dirichlet L-Series and Class Number Formulas

In this chapter we use analytic tools (the Dirichlet L-series and Dedekind �-
function) to obtain one of the most beautiful results of the nineteenth-century
number theory: explicit formulas for the real and the relative class numbers of a
cyclotomic field.

It must be pointed out that one does not need the full strength of these results for
the solution of Catalan’s problem. However, the class number formulas naturally
come out in our context, and there is no reason to leave them out once all the
necessary machinery is here.

We develop only the very minimum of the �- and L-functions theory; in
particular, we do not use complex variables.

As in the previous chapter, we study in detail only the prime case. In the final
section we indicate the changes to be made to extend the results to the composite
case.

Since we use characters of finite abelian groups, the reader is advised to look
through Appendix D.2 before studying this chapter.

There is one source of confusion in this chapter. The same letter � is used to
denote the �-function and the primitive pth root of unity. Fortunately, �-functions
appear only in Sects. 5.1 and 5.2, while � as a root of unity occurs starting from
Sect. 5.3.

In this chapter p is an odd prime number.

5.1 Dirichlet Characters and L-Series

Let �� be a C-character of the multiplicative group .Z=pZ/�, that is, a homo-
morphism �� W .Z=pZ/� ! C

�. Recall that �� is called trivial if ��.x/ D 1 for
all x 2 .Z=pZ/� and nontrivial otherwise. We associate to �� a complex function
on Z, denoted by � and defined as follows. If a 2 Z is not divisible by p then we
put �.a/ WD ��.a�/, where a� is the image of a in Z=pZ. If a is a multiple of p

© Springer International Publishing Switzerland 2014
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then it is common to put �.a/ D 0. However, following Washington [136], we put,
for a divisible by p,

�.a/ D
(
0 if �� is nontrivial,

1 if �� is trivial.
(5.1)

The function �, defined this way, is called a Dirichlet character modp . The trivial
Dirichlet character is the one corresponding to the trivial character of .Z=pZ/�.
With convention (5.1) the trivial character is identically 1 on Z. It will be denoted
by 1 (when this does not confuse).

A good example of a nontrivial Dirichlet character is the Legendre symbol
�
x
p

�
.

For every p there is exactly p � 1 Dirichlet characters modp, one trivial and p � 2
nontrivial characters.

It follows immediately from the definition that a Dirichlet character is totally
multiplicative: for any x; y 2 Z we have �.xy/ D �.x/�.y/.

Now we give the basic definition of this chapter. The L-series, associated to a
Dirichlet character �, is

L.s; �/ D
1X

nD1
�.n/n�s : (5.2)

It converges absolutely for s > 1. For the trivial character the sum of the associated
L-series is nothing but Riemann’s �-function:

L.s; 1/ D �.s/:

Multiplicativity of Dirichlet characters implies for the L-series Euler product
expansions similar to that for the Riemann �-function.

Theorem 5.1. Let � be a Dirichlet character. Then for any s > 1 we have

L.s; �/ D
Y

q

.1 � �.q/q�s/�1;

where the product extends to all prime numbers q.

Proof. For a positive integer N we put

SN D
NX

nD1
�.n/n�s ; TN D

Y

q�N
.1 � �.q/q�s/�1;

and denote by MN the set of all positive integers composed from primes not
exceedingN . Since � is multiplicative, we have
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TN D
Y

q�N

1X

kD1
�.qk/q�ks D

X

n2MN

�.n/n�s ;

the multiplication being justified since the convergence is absolute. Since
MN � f1; : : : ; N g, this implies the inequality

jTN � SN j �
1X

nDNC1
n�s : (5.3)

Since the series
P1

nD1 n�s converges for s > 1, the right-hand side of (5.3) tends
to 0 as N tends to infinity. Hence TN � SN ! 0 as N ! 1. But SN ! L.s; �/,
whence the result. ut

It is important that for a nontrivial character, the corresponding L-series con-
verges also for 0 < s � 1.

Theorem 5.2. Let � be a nontrivial Dirichlet character. Then the L-series (5.2)
converges for s > 0 to an infinitely differentiable function (called the L-function).

Of course, a much stronger statement is true: the L-series converges for all
complex s with Re s > 0 to a function, holomorphic on the right half-plane, which
extends to a function holomorphic on the entire complex plane C (see any manual
of analytic number theory). However, Theorem 5.2 is more than sufficient for
our purposes: what we need is the mere fact that the L-function is defined and
continuous at 1.

Proof of Theorem 5.2. It suffices to prove that for every k � 0 the seriesP1
nD1 �.n/.� log n/kn�s converges to a continuous function on .0;C1/. This

is a standard application of the Abel summation formula: if .an/n�1, .bn/n�1 are two
sequences and An D a1 C � � � C an then for m > n > 1

mX

jDn
aj bj D �An�1bn C Ambm C

m�1X

jDn
Aj .bj � bjC1/:

In particular, if for n � n0 the terms bn are nonnegative and nonincreasing, and
jAnj � A for all n, then form > n > n0

ˇ̌
ˇ̌
ˇ̌
mX

jDn
aj bj

ˇ̌
ˇ̌
ˇ̌ � 2Abn:

We apply this with an D �.n/ and bn D bn.s/ D .logn/kn�s . Since � is a nontrivial
character, we have �.1/C � � � C �.p/ D 0. Since � is p-periodic, we obtain
jAnj � p for all n.
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Further, fix s0 > 0. Then there exists n0 such that for every s � s0 we have
bn0.s/ � bn.s/ when n0 � n � n0. It follows that for s � s0 andm > n > n0

ˇ̌
ˇ̌
ˇ̌
mX

jDn
aj bj .s/

ˇ̌
ˇ̌
ˇ̌ � 2pn�s.logn/k � 2pn�s0 .logn/k:

By the Cauchy criterion, the series

1X

nD1
anbn.s/ D

1X

nD1
�.n/.log n/kn�s

converges uniformly on the interval Œs0;C1/, whence the result. ut

5.2 Dedekind �-Function of the Cyclotomic Field

The significance of L-functions for the cyclotomic theory stems from the fact that
their product is the Dedekind �-function1 of the cyclotomic field.

Theorem 5.3. Let K be the pth cyclotomic field. Then for s > 1 we have

�K.s/ D
Y

�

L.s; �/; (5.4)

where the product is over all the Dirichlet characters modp.

The proof of this theorem relies on a simple but useful lemma.

Lemma 5.4. Let G be a finite abelian group and OG its dual group. Further, let g
be an element of G of orderm. Then we have the polynomial identity

Y

�2 OG
.1 � �.g/T / D .1 � T m/jGj=m: (5.5)

Proof. Since g is of orderm, every �.g/ is anmth root of unity, and allmth roots of
unity occur as �.g/ equally often, that is, jGj=m times. It follows that the left-hand

side of (5.5) is
Qm�1
kD0

�
1 � 	kT

�jGj=m
, where 	 is a primitivemth root of unity. Since

1The reader may consult Appendix A.9 for the definition and basic properties of the Dedekind
�-function of a number field.
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m�1Y

kD0

�
1 � 	kT

� D 1 � T m;

the lemma follows. ut
Proof of Theorem 5.3. We compare the Euler product expansions for both parts
of (5.4). Rewrite the Euler product (A.7), grouping together the prime ideals above
the same prime:

�K.s/ D
Y

q

Y

qjq
.1 � N .q/�s/�1 .s > 1/:

Also,

Y

�

L.s; �/ D
Y

q

Y

�

.1 � �.q/q�s/�1:

Hence it suffices to prove that for any prime number q

Y

qjq
.1 � N .q/�s/ D

Y

�

.1 � �.q/q�s/: (5.6)

The case q D p is trivial: both sides of (5.6) are equal to 1 � p�s . Assume now that
q ¤ p , and denote by f the order of q in the multiplicative group .Z=pZ/�. By
Proposition 4.8 there exist exactly .p � 1/=f prime ideals of K above q, the norm
of each of them being qf . Hence the left-hand side of (5.6) is .1 � q�f s/.p�1/=f .
Applying Lemma 5.4 with G D .Z=p Z/�, we find that this is equal to the right-
hand side of (5.6). The theorem is proved. ut

We want to adapt the residue formula (A.8) to our situation. For the pth
cyclotomic field we have

t1 D 0; t2 D .p � 1/=2; ! D 2p; jDK j D pp�2:

(see Proposition 4.4(4) and Theorem 4.6). We obtain

lim
s#1
.s � 1/�K.s/ D .2�/.p�1/=2

2p p=2
Rh;

where R and h are the regulator and the class number of K .
On the other hand, recall that L.s; 1/ D �.s/, which, by (A.6), implies that

lim
s#1
.s � 1/L.s; 1/ D 1:
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Since for � ¤ 1 the function s 7! L.s; �/ is defined and continuous at s D 1, we
have

lim
s#1
.s � 1/�K.s/ D

Y

�¤1
L.1; �/:

We obtain the fundamental identity

Rh D 2.3�p/=2�.1�p/=2p p=2
Y

�¤1
L.1; �/: (5.7)

An immediate consequence is the following important result of Dirichlet.

Corollary 5.5 (Dirichlet). For � ¤ 1 we have L.1; �/ ¤ 0.

This result, established by Dirichlet in the course of proof of his classical theorem
about primes in arithmetical progression (see Sect. 5.2.2), plays crucial role in the
theory of cyclotomic fields. In particular, it is the main ingredient in the proofs of
fundamental Theorems 7.18 and 10.4.

5.2.1 The Real Cyclotomic Field

To get a closer look at identity (5.7), we need an analogue of Theorem 5.3 for the
real cyclotomic field KC. For this purpose, we make one more definition. For any
Dirichlet character � we have either �.�1/ D 1 or �.�1/ D �1. We say that � is
even in the former case and � is odd in the latter case.

Theorem 5.6. Let K be the pth cyclotomic field and KC its maximal real subfield.
Then for s > 1 we have

�KC.s/ D
Y

�.�1/D1
L.s; �/;

where the product is over all even Dirichlet characters modp.

Proof. Similar to the proof of Theorem 5.3, Proposition 4.8 being replaced
by Proposition 4.12, and Lemma 5.4 being used with the quotient group
.Z=p Z/�=f˙1g rather than with .Z=p Z/� itself. We leave the details to the
reader. ut

For the real cyclotomic field KC the number t1 of real embeddings is equal to
.p � 1/=2, the number t2 of pairs of complex embeddings is 0, the number ! of
roots of unity is 2, and the discriminant DKC is ˙p.p�3/=2 (see Proposition 4.13).
Applying the residue formula (A.8) and arguing as above, we obtain the identity
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hCRC D 2.3�p/=2p.p�3/=4 Y

�.�1/D1
�¤1

L.1; �/; (5.8)

where RC and hC are the regulator and the class number of KC.
Now recall that R=RC D 2.p�3/=2 (see Proposition 4.14). Dividing (5.7)

by (5.8), we obtain the following formula for the relative class number h� D h=hC:

h� D 2.3�p/=2�.1�p/=2p.pC3/=4 Y

�.�1/D�1
L.1; �/: (5.9)

Thus, we have split identity (5.7) into two subtler identities: (5.8) for the real
class number and (5.9) for the relative class number. To make them more explicit,
we have to determine L.1; �/ for the nontrivial characters �. This will be done in
the next section.

5.2.2 Addendum: The Theorem of Dirichlet2

In this subsection we show how the inequality L.1; �/ ¤ 0 implies the classical
theorem of Dirichlet about primes in arithmetical progressions.

Theorem 5.7 (Dirichlet). Let m be a positive integer and let a be an integer
coprime with m. Then there exist infinitely many prime numbers q satisfying
q � a modm. Moreover, these primes form a regular set of Dirichlet density
1='.m/. (See Appendix A.10 for the definition of Dirichlet density.)

Since we defined Dirichlet characters andL-functions only in the special case of
prime modulusm D p , we shall sketch the proof of Theorem 5.7 only for this case.
The general proof requires only cosmetic changes; see Sect. 5.5.

Using the Euler product and the residue formula for the Riemann �-function, one
finds that for s > 1

X

q

q�s D log
1

s � 1 CO.1/;

where the sum runs over all the prime numbers q (see Appendix A.10 for the
details). In a similar way, if � is a nontrivial Dirichlet character modp , then for
s > 1 we have

X

q

�.q/q�s D logL.s; �/CO.1/ D O.1/;

because L.1; �/ ¤ 0.

2This subsection will not be used in the sequel.



56 5 Dirichlet L-Series and Class Number Formulas

Summing up over all Dirichlet characters � modulo p, and using the identity

X

�

�.x/ D
(
p � 1; if x � 1 modp;

0; otherwise

we obtain

.p � 1/
X

q�1 modp

q�s D log
1

s � 1
CO.1/

for s > 1. Hence the set of prime numbers q satisfying q � 1 modp is regular, of
Dirichlet density 1=.p � 1/.

For primes q � a modp the argument is the same, but instead of the sumP
� logL.s; �/ one uses

P
� �.a/ logL.s; �/.

Let q be a prime ideal above q. Since the Frobenius element of q depends only
on the residue class of q modulo p (see Sect. 4.3), the theorem of Dirichlet is a very
special case of Chebotarev’s density theorem (see Appendix A.7).

5.3 Calculating L.1; �/ for � ¤ 1

In this section log and arg stand for the principal branches of the complex
logarithm and argument. That is, for any nonzero complex z, we have

�� < arg z D Im log z � �:

5.3.1 The Space of p-Periodic Functions

We start from afar. The set V of p -periodic functions f WZ ! C (that is, functions
satisfying f .x C p/ D f .x/ for all x 2 Z) is a p-dimensional C-vector space.
Further, there is a natural inner product on V , defined by

.f; g/ D 1

p

p�1X

kD0
f .k/g.k/: (5.10)

Fix a primitive complex pth root of unity �, and define  WZ ! C by  .x/ D �x .
One immediately verifies that for a; b 2 Z

. a;  b/ D
(
0 if a 6� b modp;

1 if a � b modp:
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In particular, the functions 1;  ; : : : ;  p�1 form an orthogonal basis of V . It follows
that for every f 2 V we have

f D .f; 1/C .f;  / C � � � C .f;  p�1/ p�1:

For a nontrivial Dirichlet character � we have �.0/ D 0. Hence

.�; 1/ D �.1/C � � � C �.p � 1/ D 0:

It follows that

� D .�;  / C � � � C .�;  p�1/ p�1: (5.11)

5.3.2 The General Formula for L.1; �/

We wish to calculate the infinite sum

L.1; �/ D
1X

nD1

�.n/

n
: (5.12)

Using (5.11), one can reduce this task to calculating the sums
P1

nD1  .n/a=n for
a D 1; : : : ; p � 1.

The latter sums can be determined easily. Indeed, for z 2 C satisfying jzj � 1 and
z ¤ 1, we have

1X

nD1

zn

n
D � log.1 � z/;

(recall that log stands for the principal branch of the complex logarithm). Hence
for a not divisible by p we have

1X

nD1

 .n/a

n
D

1X

nD1

�an

n
D � log.1 � �a/:

Combining this with (5.11), we obtain the identity

L.1; �/ D �
p�1X

aD1
.�;  a/ log.1 � �a/: (5.13)
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Thus, we found a finite expression for the infinite sum (5.12). Still, iden-
tity (5.13), as it stands, is not very informative. Below we obtain much more explicit
formulas for the absolute values jL.1; �/j, which will be sufficient for our purposes.

Remark 5.8. In the argument above, one must justify the change of order of
summation in

L.1; �/ D
1X

nD1

1

n

p�1X

aD1
.�;  a/ .n/a D

p�1X

aD1
.�;  a/

1X

nD1

 .n/a

n
;

because convergence here is not absolute. Probably, the easiest way to do this is by
observing that for s > 1 we have

L.s; �/ D
1X

nD1

1

ns

p�1X

aD1
.�;  a/ .n/a D

p�1X

aD1
.�;  a/

1X

nD1

 .n/a

ns

(now the convergence is absolute!) and taking limits3 as s # 1 on both sides.

5.3.3 The Fourier Coefficients

First of all, we have to understand the “Fourier coefficients” .�;  a/. For them we
have the following statement.

Proposition 5.9. Let � be a nontrivial Dirichlet character and a an integer not
divisible by p. Then .�;  a/ D �.a/.�;  / and j.�;  a/j D p�1=2.

Proof. In the definition (5.10) of the inner product we can replace the set
f0; 1; : : : ; p � 1g by any complete system T of residues modp :

.f; g/ D 1

p

X

k2T
f .k/g.k/:

In particular, since a is not a multiple of p, we may take

T D f0; a; 2a; : : : ; .p � 1/ag:

3The series

1X

nD1

 .n/a

ns
.a D 1; : : : ; p � 1/

converge for s > 0 to continuous (and even infinitely differentiable) functions: this can be proved
in exactly the same way as Theorem 5.2.
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We obtain

.�;  / D 1

p

p�1X

kD0
�.ak/ .ak/ D 1

p
�.a/

p�1X

kD0
�.k/ .k/a D �.a/.�;  a/:

Hence

.�;  a/ D �.a/�1.�;  / D �.a/.�;  /:

In particular, j.�;  a/j D j.�;  /j for every a not divisible by p . It follows that

.�; �/ D
p�1X

aD1
j.�;  a/j2 D .p � 1/j.�;  /j2:

Since .�; �/ D .p � 1/=p, this shows that j.�;  /j D p�1=2. The proposition is
proved. ut
Remark 5.10. The expression

�p .�; N / D �
p�1X

kD0
�.k/ .k/

is called Gauss sum. Gauss sums play fundamental role in arithmetic; they will be
studied in detail in Chap. 7.

5.3.4 Explicit Formulas for jL.1; �/j

We are ready to establish the main result of this section.

Theorem 5.11. Let � be a nontrivial Dirichlet character. Then

jL.1; �/j D p�1=2
ˇ̌
ˇ̌
ˇ

p�1X

aD1
�.a/ log j1 � �aj

ˇ̌
ˇ̌
ˇ (5.14)

if � is even, and

jL.1; �/j D �p�3=2
ˇ̌
ˇ̌
ˇ

p�1X

aD1
a�.a/

ˇ̌
ˇ̌
ˇ (5.15)

if � is odd.
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Recall that the character � is even if �.�1/ D 1 and odd if �.�1/ D �1.

Proof. By Proposition 5.9 .�;  a/ D �.a/.�;  /. Hence

L.1; �/ D �
p�1X

aD1
.�;  a/ log.1 � �a/

D �.�;  /
p�1X

aD1
�.a/log.1 � �a/

D �.�;  /
p�1X

aD1
�.a/ log j1� �aj C i.�;  /

p�1X

aD1
�.a/ arg.1 � �a/:

(5.16)

Now observe that for any a we have 1 � �p�a D 1 � �a. Therefore

j1 � �p�aj D j1 � �aj; arg.1 � �p�a/ D � arg.1 � �a/:

Also, �.a/ D �.p � a/ for an even character �, and �.a/ D ��.p � a/ for an
odd �.

It follows that, for an even character �, the second sum in (5.16) vanishes:

p�1X

aD1
�.a/ arg.1 � �a/ D

.p�1/=2X

aD1
.�.a/ � �.p � a// arg.1 � �a/ D 0:

Since j.�;  /j D p�1=2, this proves (5.14).
Similarly, for an odd �, the first sum in (5.16) vanishes, and we obtain

jL.1; �/j D p�1=2
ˇ̌
ˇ̌
ˇ

p�1X

aD1
�.a/ arg.1 � �a/

ˇ̌
ˇ̌
ˇ

D p�1=2
ˇ̌
ˇ̌
ˇ̌
.p�1/=2X

aD1
2�.a/ arg.1 � �a/

ˇ̌
ˇ̌
ˇ̌ : (5.17)

Now specify � D e2� i=p . Observe that arg.1C z/ D 1
2

arg z for any z 2 C with
jzj D 1 and z ¤ �1. Hence for 1 � a � .p � 1/=2 we have

arg.1 � �a/ D 1

2
arg.��a/ D ��

2
C �a

p
D �

2p

�
a � .p � a/

�
:
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It follows that

2�.a/ arg.1 � �a/ D �

p

�
a�.a/C .p � a/�.p � a/

�

for 1 � a � .p � 1/=2. Substituting this into (5.17), we obtain (5.15). ut
Corollary 5.12. For an even character � we have

Pp�1
aD1 �.a/ log j1� �aj ¤ 0. For

an odd character � we have
Pp�1

aD1 a�.a/ ¤ 0.

Proof. For the nontrivial characters this is a direct consequence of Theorem 5.11
and Corollary 5.5. For the trivial character we have

p�1X

aD1
�.a/ log j1 � �aj D

p�1X

aD1
log j1 � �aj D log

ˇ̌
ˇ̌
ˇ

p�1Y

aD1
.1 � �a/

ˇ̌
ˇ̌
ˇ D logp ¤ 0:

ut
Mention that, though the statement of Corollary 5.12 contains no reference to

L-functions, its only known proof is by deducing it from Theorem 5.11.
The following trivial observation (already used in the proof of Theorem 5.11) is

a useful complement to Corollary 5.12.

Proposition 5.13. We have
Pp�1

aD1 �.a/ log j1� �aj D 0 for an odd character� andPp�1
aD1 a�.a/ D 0 for a nontrivial even character �.

5.4 Class Number Formulas

We are ready to give the promised formulas for the real and relative class numbers.

Theorem 5.14 (Kummer). Let p be an odd prime number, and let hC
p and h�

p be
the pth real and relative class numbers. Also, let RC

p be the regulator of the pth
real cyclotomic field. Then

hC
p RC

p D 2.3�p/=2
Y

�.�1/D1
�¤1

p�1X

aD1
�.a/ log j1 � �aj; (5.18)

h�
p D .2p/.3�p/=2

Y

�.�1/D�1

p�1X

aD1
a�.a/; (5.19)

where the product in (5.18) extends to nontrivial even Dirichlet characters modp
and the product in (5.19) extends to odd Dirichlet characters modp.
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Table 5.1 The relative class
number h�

p for p � 41
p h�

p p h�

p p h�

p p h�

p

3 1 11 1 19 1 31 9

5 1 13 1 23 3 37 37

7 1 17 1 29 8 41 121

Proof. Combining Theorem 5.11 with identities (5.8) and (5.9), we obtain

hC
p RC

p D 2.3�p/=2

ˇ̌
ˇ̌
ˇ̌
ˇ

Y

�.�1/D1
�¤1

p�1X

aD1
�.a/ log j1 � �aj

ˇ̌
ˇ̌
ˇ̌
ˇ
;

h�
p D .2p/.3�p/=2

ˇ̌
ˇ̌
ˇ̌
Y

�.�1/D�1

p�1X

aD1
a�.a/

ˇ̌
ˇ̌
ˇ̌ :

On the right-hand sides of (5.18) and (5.19) every character appears together with
its complex conjugate. It follows that both products are nonnegative real numbers,
and the absolute value delimiters can be omitted. The theorem is proved. ut

Equality (5.19) can be used for computing the relative class numbers. Kummer
himself determined the pth relative class number h�

p for p < 100. Table 5.1 gives
the values of h�

p for p � 41, which is sufficient for the present book. See [136,
pp. 412–420] for extensive tables of relative class numbers and further references.

Unfortunately, identity (5.18) cannot be used to determine the real class number,
because of the RC

p -factor. In fact, computing hC
p is a rather difficult task. At present,

the following is known.

Theorem 5.15. For all primes p � 67 we have hC
p D 1, and, thereby, hp D h�

p .
In particular, in Table 5.1 one may replace h�

p by hp .

This result is due to Masley [77]. The proof is rather involved and heavily
relies on Odlyzko’s famous lower bounds for discriminants [112, 113]. Van der
Linden [72] extended Masley work; see [136, p. 421] for comments and further
bibliography.

The proof of Catalan’s conjecture does not use Theorem 5.15.

5.5 Composite Moduli

In this section we briefly explain how the results of this chapter extend to arbitrary
cyclotomic fields. The material of this section will not be used in the sequel.
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Let m be a positive integer. As in the prime case, we start from a character �� of
the multiplicative group .Z=mZ/� and define the corresponding Dirichlet character
� W Z ! C. For an integer a coprime withmwe put �.a/ D ��.a�/, where a� is the
image of a in .Z=mZ/�. However, it is not clear how one should define �.a/ when a
is not coprime with m. The “naive” definition “�.a/ D 0 when gcd.a;m/ > 1 ” is
not very convenient.

Let n be a divisor of m. The natural homomorphism .Z=mZ/� ! .Z=nZ/�
implies that every character of .Z=nZ/� lifts to a character of .Z=mZ/�. A character
of the multiplicative group .Z=mZ/� is called primitive if it is not a lifting of a
character of .Z=nZ/�, where n j m and n ¤ m.

In general, for every character of .Z=mZ/�, there exists the smallest integer n,
dividingm, such that our character is a lifting of a character of .Z=nZ/� (which is,
obviously, a primitive character of .Z=nZ/�). This n is called the conductor of our
character. The conductor of a primitive character is m; the conductor of the trivial
character is 1.

Now let �� be a character of .Z=mZ/�. If �� is primitive then we define a func-
tion � on Z by �.a/ D ��.a�/ if gcd.a;m/ D 1 and �.a/ D 0 if gcd.a;m/ > 1.
The function �, defined in this way, is called a primitive Dirichlet character of
conductorm (associated to ��).

In general, let n be the conductor of ��. Then �� is the lifting of certain primitive
character of .Z=nZ/�, and we let � be the corresponding primitive Dirichlet
character of conductor n. With this definition of � we have �.a/ D ��.a�/ for a
coprime with m.

A primitive Dirichlet character of conductor dividing m is called a primitive
Dirichlet character modm. Thus, we described above a one-to-one correspondence
between the characters of .Z=mZ/� and the primitive Dirichlet characters modm.
In particular, there exist exactly '.m/ primitive Dirichlet characters modm.

To every Dirichlet character � we associate the L-series as in (5.2). Using
Proposition 4.27, it is not difficult to show that

�Km.s/ D
Y

�

L.s; �/; �
K

C

m
.s/ D

Y

�.�1/D1
L.s; �/;

where Km is the mth cyclotomic field, KC
m is its maximal totally real subfield, and

� runs through the primitive Dirichlet characters modm in the first product and
through the even primitive Dirichlet characters modm in the second product. As
in the prime case, we obtain the nonvanishing property L.1; �/ ¤ 0 for � ¤ 1 and
deduce from it the theorem of Dirichlet modulom (see Sect. 5.2.2).

Now, arguing as in Sects. 5.3 and 5.4, we obtain formulas for the real and relative
class numbers hC

m and h�
m similar to (5.18) and (5.19). See Chap. 4 of [136] for the

details.



Chapter 6
Higher Divisibility Theorems

Starting from this chapter, we shall systematically apply the theory of cyclotomic
fields to Catalan’s problem.

In this chapter we drastically refine Cassels’ divisibility theorem: we show that
p2 j y (and q2 j x by symmetry). First we do this under an additional restriction
(Theorem 6.2) and then unconditionally (Theorem 6.14).

6.1 The Most Important Lemma

Let .x; y; p; q/ be a solution of Catalan’s equation (as defined in the beginning of
Chap. 3). As above, we denote by � a primitive pth root of unity and putK D Q.�/.

The theory of cyclotomic fields applies to Catalan’s equation through the
following statement.

Lemma 6.1 (The “most important lemma”). The number


 D x � �

1 � �

is an algebraic integer, and the principal ideal .
/ is a qth power of an ideal of the
cyclotomic field K .

Proof. Recall (see Proposition 4.1) that p D .1 � �/ is a prime ideal of K and that
.p/ D pp�1. Since p j .x � 1/ by (3.4), the prime ideal p divides x � �, but p2

does not. Hence 
 is an algebraic integer, not divisible by p. The same is true for

k D .x � �k/=.1 � �k/, where k D 1; : : : ; p � 1. The identity

.1 � �k/
k � .1 � �m/
m D �m � �k

© Springer International Publishing Switzerland 2014
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implies that, for distinct k;m 2 f1; : : : ; p � 1g, the greatest common divisor of 
k
and 
m divides .�k � �m/ D p. Hence the numbers 
1; : : : ; 
p�1 are pairwise
coprime.

Now let

˚p.X/ D Xp � 1

X � 1 D .X � �/.X � �2/ � � � .X � �p�1/

be the pth cyclotomic polynomial. Then


1 � � �
p�1 D ˚p.x/

˚p.1/
D xp � 1

x � 1 � 1
p
:

The second relation in (3.4) implies now 
1 � � �
p�1 D uq. Since the factors are
pairwise coprime, each principal ideal .
k/ is a qth power of an ideal. ut

Numerous arguments in this book have this lemma as a starting point. The first
application of Lemma 6.1, called Inkeri’s divisibility theorem, will be given already
in the next section.

6.2 Inkeri’s Divisibility Theorem

If .x; y; p; q/ is a solution of Catalan’s equation, then q j x and p j y, by Cassels’
divisibility theorem. Inkeri [50, 51] used the “most important” Lemma 6.1 to refine
Cassels’ theorem under certain assumptions.

Theorem 6.2 (Inkeri’s divisibility theorem). Let .x; y; p; q/ be a solution of
Catalan’s equation. Assume that q does not divide the class number hp of the
cyclotomic field Kp. Then q2 j x.

The significance of this result is explained by the following simple observation.

Proposition 6.3. Let .x; y; p; q/ be a solution of Catalan’s equation. Then q2 j x
if and only if p q�1 � 1 mod q2.

The congruence p q�1 � 1 mod q2 is often called Wieferich’s condition (this
term originates to the work of Wieferich [138] and Mirimanoff [95] on the Fermat
equation; see Sect. 2.3.3).

Proof. Since q j x, the first equality in (3.4) implies that p q�1aq � �1 mod q.
Since p q�1 � 1 modq, we have aq � �1 mod q.

Now recall the following elementary fact1: if rational integers A;B and a
prime number q satisfy Aq � Bq mod q, then Aq � Bq mod q2. It follows that
aq � �1 mod q2.

1This is an easy consequence of Lemma 2.8: if q divides .Aq �Bq/, then it divides
.Aq � Bq/=.A� B/ as well; see also Lemma 6.7 below.



6.2 Inkeri’s Divisibility Theorem 67

Thus, p q�1 � 1 modq2 is equivalent to p q�1aq � �1 mod q2, which, again
by (3.4), is equivalent to q2 j x. The proposition is proved. ut

Thus, Inkeri’s theorem gives an efficient necessary condition for the existence of
a solution .x; y; p; q/ with given p and q.

Corollary 6.4. Let .x; y; p; q/ be a solution of Catalan’s equation. Then either
q j hp or p q�1 � 1 mod q2.

Inkeri himself, Mignotte [86], Schwarz [125], and others suggested various
versions and refinements of Corollary 6.4. For instance, Schwarz showed that
the full class number hp can be replaced by the relative class number h�

p ; see
Remark 6.6.

Mignotte and Roy [90] used (a refined version of) Corollary 6.4 together
with extensive electronic computations to show that Catalan’s equation has no
solutions with minfp; qg < 105 (with a few exceptions later treated by Bugeaud
and Hanrot [14]).

Inkeri’s divisibility theorem has been drastically refined by Mihăilescu, who
proved that q2 j x and p2 j y unconditionally (see Theorem 6.14 in Sect. 6.5).
Another partial refinement, due to Bugeaud and Hanrot [14], will be proved in
Sect. 8.6.

Thus, Inkeri’s theorem is formally obsolete in this book. Nevertheless, we include
a proof, which is simple, beautiful, and very instructive.

First of all, we apply the “most important” Lemma 6.1 to establish the following
statement.

Proposition 6.5. Let .x; y; p; q/ be a solution of Catalan’s equation such that q
does not divide hp . Then

� D 1 � �px

1 � �px
2 Kp

is a qth power in Kp .

Proof. We write � D �p , K D Kp , etc. Put 
 D .x � �/=.1� �/. Lemma 6.1
implies that .
/ D aq , where a is an ideal of the field K . Let H be the class group
of K , and let cl.a/ 2 H be the class of a. Since aq is a principal ideal, the order of
cl.a/ divides q.

But, by the assumption, h D jH j is coprime with q. It follows that cl.a/ is trivial,
that is, a is a principal ideal. Write a D .˛/, where ˛ 2 K. Then 
 D ˛q�, where �
is a unit ofK .

Theorem 4.9 implies that � is a real unit times a root of unity, the latter being
a qth power in K (Corollary 4.5). Hence, redefining ˛, we may assume that � 2 R.
It follows that 
= N
 D .˛= N̨ /q is a qth power in K . Hence

� D �

N� � 1 � N�
1 � �

N




D �� �
N




(6.1)

is a qth power as well. The proposition is proved. ut
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Remark 6.6. In this proposition one may replace hp by the relative class numberh�
p ,

which would imply the corresponding refinement of Theorem 6.2 and Corollary 6.4.
(This was observed by Schwarz [125].)

Indeed, assume that q does not divide h�
p D ŒH WHC�, where HC stands for

the class group of the real cyclotomic field KC. It follows that cl.a/ 2 HC. Thus,
a D ˛b, where ˛ 2 K� and b is an ideal ofKC. Write the principal ideal bq as .ˇ/,
where ˇ 2 KC. Then 
 is equal to ˛qˇ times a unit of K .

Theorem 4.9 implies that every unit of K is a real unit times a root of unity, the
latter being a qth power in K . Hence, redefining ˛ and ˇ, we obtain 
 D ˛qˇ with
˛ 2 K� and ˇ 2 KC. It follows that 
= N
 D .˛= N̨ /q is a qth power in K , and we
finish the argument as in the proof of Proposition 6.5.

Further improvements are possible as well. We do not go into this, because in
Sect. 6.5 we obtain a refinement of Theorem 6.2 which does not refer to class
numbers at all.

We also need two simple algebraic facts. In the next two lemmas K is a number
field and q is a prime ideal ofK . Recall that the local ring Oq is defined by

Oq D ˚
˛ 2 K W Ordq.˛/ � 0

�
:

Recall also that for ˛; ˇ 2 Oq, we write ˛ � ˇ mod qN if Ordq.˛ � ˇ/ � N .
First of all, we generalize the “elementary fact” used in the proof of

Proposition 6.3.

Lemma 6.7. Let q be the prime number below q. Then for any ˛; ˇ 2 Oq satisfying
˛q � ˇq mod q , we have ˛q � ˇq mod q2.

Proof. We have .˛ � ˇ/q � ˛q � ˇq � 0 mod q . Since q is a prime ideal, this
implies ˛ � ˇ mod q. Write ˛ D ˇ C � with � 2 q. Then

˛q D ˇq C �

q�1X

kD1

 
q

k

!
�k�1 C �q:

Since q divides the binomial coefficients
�
q
1

�
;
�
q
2

�
; : : : ;

�
q
q�1
�
, and since q divides � ,

this implies ˛q � ˇq mod q2. ut
Our second lemma is a particular case of Proposition 2.18.

Lemma 6.8. For any n 2 Z and any ˛ 2 K satisfying Ordq.˛/ > 0 we have

.1C ˛/n � 1C n˛ mod q2:

Now we are ready to finish the proof of Theorem 6.2.

Proof of Theorem 6.2. We use the notation � D �p,K D Kp, O D OK , etc. Since q
is unramified in K (see Proposition 4.4), it suffices to show that q2 j x for some
prime ideal q above q.
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Thus, let q be a prime ideal of K dividing q and Oq its local ring. Since q j x,
the number �, defined in Proposition 6.5, satisfies � � 1 mod q. Since � is a qth
power, Lemma 6.7 implies that � � 1 mod q2.

On the other hand, Lemma 6.8 implies that .1 � N�x/�1 � 1C N�x mod q2.
Hence � � 1C . N� � �/x mod q2, which yields 1C . N� � �/x � 1 mod q2. Since
Ordq. N� � �/ D 0, this means that Ordq.x/ � 2. The theorem is proved. ut

6.3 A Deviation: Catalan’s Problem with Exponent 3

The equation x3 � yq D 1 has been solved in 1921 by Nagell [99], who proved that
it has no solution in nonzero integers x; y and odd prime q.

Since Cassels’ Divisibility Theorem was not available at that time, Nagell had
to solve both the equations x2 C x C 1 D uq and x2 C x C 1 D 3uq.

By Cassels’ divisibility theorem, the former equation has no solutions, so only
the latter is to be treated. Inkeri [51] noticed that the argument he used to prove
Theorem 6.2 in the special case p D 3 implies a quick proof that x2 C x C 1 D 3zq

has no nontrivial solution. We reproduce it below.
The results of this section will not be used in the sequel. Later, we shall obtain

much stronger results than Theorem 6.10 below using different methods.
Inkeri’s argument relies on the following curious fact: with very few exceptions,

an odd power of a quadratic integer cannot have trace ˙1. More precisely, we have
the following.

Lemma 6.9. Let K be a quadratic extension of Q and ˛ 2 OK . Assume that
for some odd n > 1, we have TrK=Q.˛n/ D ˙1. Then K D Q.

p�3/ and

˛ D
�
˙1˙ p�3

�
=2.

Proof. Let N̨ be the conjugate of ˛, so that Tr .˛n/ D ˛n C N̨n. Ifm is a divisor of n,
then Tr .˛m/ D ˛m C N̨m divides Tr .˛n/ D ˙1, which implies that Tr .˛m/ D ˙1
for any suchm. In particular, Tr˛ D ˙1 and Tr .˛q/ D 1, where q is a prime divisor
of n (such a q always exists, because n > 1).

It follows that the difference .˛ C N̨ /q � ˛q � N̨ q is equal to 0 or to ˙2. Since
.˛ C N̨ /q � ˛q C N̨ q modq, the difference is 0 (recall that q is an odd prime
number).

Now consider the polynomial

F.X; Y / D .X C Y /q �Xq � Y q

qXY
2 ZŒX; Y �:

As we have just seen, F.˛; N̨ / D 0. Further, in the ring ZŒX; Y �, we have the
congruences

F.X; Y / � Xq�2 C Y q�2 modXY

� .X C Y /q�2 modXY I
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that is, F.X; Y / D .X C Y /q�2 CXYG.X; Y / with G.X; Y / 2 ZŒX; Y �. Substi-
tuting X D ˛ and Y D N̨ , we obtain 0 D ˙1C ˛ N̨G.˛; N̨ /.

Thus, the norm N˛ D ˛ N̨ divides ˙1, which means that N˛ D ˙1. Since also
Tr˛ D ˙1, our ˛ is a root of one of the polynomials T 2 ˙ T ˙ 1. In other words,

either ˛ D
�
˙1˙ p�3

�
=2 or ˛ D

�
˙1˙ p

5
�
=2. In the former case we are

done. In the latter case

jTr .˛n/j �
 
1C p

5

2

!n
�
 

�1C p
5

2

!n
>
1C p

5

2
� �1C p

5

2
D 1;

a contradiction. This proves the lemma. ut
Theorem 6.10 (Nagell). Let q � 5 be a prime number. Then the only solutions
in x; u 2 Z of the equation x2 C x C 1 D 3uq are x D u D 1. Also, the equation
x3 � yq D 1 has no solutions in nonzero integers x and y.

Proof (Inkeri). The cyclotomic field K3 is the imaginary quadratic field
K D Q.

p�3/. In particular, its unit group consists of roots of unity and is generated

by �j, where j D �3 D
�
1C p�3

�
=2. Also, its class number is 1.

Now let q � 5 be a prime number. Arguing as in the proof of Proposition 6.5,
we show that .x � j/=.1 � j/ is a qth power times a unit. Dividing by j, we find that
.x � j/=.j � Nj/ is a qth power times a unit as well. But all units in K are qth powers
(they are 6th roots of unity, and q is coprime with 6). Hence .x � j/=.j � Nj/ is a pure
qth power in K:

x � j

j � Nj D ˛q;

where ˛ 2 K . Taking the trace, we find

Tr .˛q/ D x � j

j � Nj C x � Nj
Nj � j

D �1;

and Lemma 6.9 implies that ˛ is a root of unity. Then .x � j/=.1 � j/ is a root
of unity as well, which implies that x D 1. This proves the first statement on the
equation x2 C x C 1 D 3uq. The second statement is an immediate consequence of
the first one and of Cassels’ relations. ut

6.4 The Group Ring

If a group G acts on an abelian group A, the group A (together with this action) is
called aG-module. LetK be a Galois extension of Q with Galois groupG. Then we
have variousG-modules (called in this case Galois modules): the additive groupK ,
the multiplicative group K�, the group of units UK , the class group HK , and so on.
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Every G-module is a module (in the usual sense) over the group ring ZŒG�. It is
very useful to replace the group by the group ring, which is a much more flexible
and rich object.

In this book we mainly study multiplicative Galois modules K�, UK , HK , and
others. Hence it will be natural to make the following convention: starting from this
point, the Galois action will be written exponentially. Say, if ˛ 2 K and 
 2 G, then
the 
-image of ˛ is written as2 ˛
 .

Similarly, we shall write exponentially the action of the group ring ZŒG� on our
multiplicative Galois modules. Say, if ˛ 2 K� and� D P


2G a

 2 ZŒG�, then

˛� D
Y


2G
.˛
 /a
 :

Now return to Catalan’s equation. We want to refine Inkeri’s divisibility theorem,
by relaxing or suppressing the assumption q j hp . Recall that this assumption
implies that the ideal a from the “most important” lemma is principal.

In general, this is not guaranteed. One idea to overcome this difficulty is to find
� 2 ZŒG� such that the ideal a� is principal and then deal with the number 
�

instead of 
.
In the sequel .x; y; p; q/ is a solution of Catalan’s equation, � is a primitive pth

root of unity, K D Q.�/ is the pth cyclotomic field, H D HK is its class group,
and G D Gal.K=Q/ is its Galois group. Recall that � 2 G stands for the complex
conjugation.

Proposition 6.11. Assume that � 2 ZŒG� annihilates the class group H (that is,
for any ideal a of K , the ideal a� is principal). Then .1 � �x/.1��/� is a qth power
in K .

Proof. The proof copies that of Proposition 6.5. We again have .
/ D aq, where

 D .x � �/=.1� �/ and a is an ideal of K . By the assumption, a� is a principal
ideal; write a� D .˛/. Then 
� D �˛q , where � is a unit ofK , and we may assume
that � is real. It follows that .
= N
/� D .˛= N̨ /q is a qth power in K . Hence

.1 � �x/.1��/� D
�
1 � �x
1 � N�x

��
D
 
�

N� � 1 � N�
1 � �

!�  N




!�
D .��/�

� N̨
˛

�q

is a qth power as well. The proposition is proved. ut
Proposition 6.12. Assume that there exists � 2 ZŒG� such that .1 � �x/� is a qth
power and� is not divisible by q (in the ring ZŒG�). Then q2 j x.

2In general, one should be careful here, because the usual writing ˛ 7! 
.˛/ corresponds to the
left action, while the exponential writing ˛ 7! ˛
 corresponds to the right action. However, this
warning is relevant only for Chap. 12, the only chapter where non-abelian Galois groups occur.
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Proof. As in the proof of Theorem 6.2, it suffices to show that q2 j x for some prime
ideal q, dividing q.

Thus, let q be a prime ideal above q, to be specified later. Since q j x, we
have .1� �x/� � 1 mod q. But the number .1 � �x/� is, by the assumption, a qth
power. Hence Lemma 6.7 implies that

.1 � �x/� � 1 mod q2: (6.2)

Now let us specify q. Write � D P

2G a

 . Then at least one of the coeffi-

cients a
 is not divisible by q. Since f�
 W 
 2 Gg is an integral basis of the ring
of integers O (Theorem 4.6), this implies that q does not divide ˛ D P


2G a
�

in O. Since q is unramified in K , there exists a prime ideal of K dividing q and not
dividing ˛. In the sequel, we assume that q is this prime ideal.

Lemma 6.8 implies that for any 
 2 G and a 2 Z we have

.1 � �
x/a � 1 � a�
x mod q2:

Hence

.1 � �x/� D
Y


2G
.1 � �
x/a
 � 1 � x

X


2G
a
�


 mod q2;

that is, .1 � �x/� � 1 � ˛x mod q2. Together with (6.2) this implies that
Ordq.˛x/ � 2. But Ordq.˛/ D 0 by our choice of q. Hence Ordq.x/ � 2. The
proposition is proved. ut

6.5 Stickelberger, Mihăilescu, and Wieferich

To make use of Propositions 6.11 and 6.12, one should find � 2 ZŒG� with the
following two properties:

• � annihilates the class group ofK , and
• .1 � �/� is not divisible by q.

It is easy to find a nonzero � with the first property. For instance, � D N will do,
where N D P


2G 
 is called the norm element of ZŒG� (or, simply, the norm).
However, .1 � �/N D 0, so the second property is not satisfied.

An element � with both properties is provided by the classical theorem of
Stickelberger [131]. Recall that G D ˚


1; : : : ; 
p�1
�
, where 
k is defined by

� 7! �k .

Theorem 6.13 (Stickelberger). The element �S D Pp�1
aD1 a
�1

a 2 ZŒG� annihi-
lates the class group of K .
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It is easy to verify that .1 � �/�S is not divisible by q. Indeed,

.1 � �/�S D
p�1X

aD1
.2a � p/
�1

a :

In particular, the coefficient of 
.pC1/=2 is 1. Hence q does not divide .1 � �/�S .
Theorem 6.13 will be proved in Chap. 7.
Now we shall use Theorem 6.13 to obtain the promised unconditional refinement

of Inkeri’s divisibility theorem, due to Mihăilescu [92].

Theorem 6.14 (Mihăilescu). Let .x; y; p; q/ be a solution of Catalan’s equation.
Then q 2 j x (and p 2 j y, by symmetry).

Proof. Applying Proposition 6.11 with � D �S , we find that .1 � �x/.1��/�S is a
qth power in K . Applying Proposition 6.12 with � D .1 � �/�S , we obtain the
result. ut

Together with Proposition 6.3 this has the following consequence.

Corollary 6.15. Let .x; y; p; q/ be a solution of Catalan’s equation. Then
p q�1 � 1 mod q2 (and qp�1 � 1 modp 2, by symmetry).

This is a very strong result. To appreciate it, mention that one currently knows
[1, 29, 54] only seven pairs of prime numbers .p; q/ such that

p q�1 � 1 modq2; qp�1 � 1 modp 2

(called double Wieferich pairs). They are

.2; 1093/; .3; 1006003/; .5; 1645333507/; .5; 188748146801/;

.83; 4871/; .911; 318917/; .2903; 18787/:

that no other double Wieferich pair with minfp; qg � 3:2 	 108 exist. However, it
is unknown whether the set of double Wieferich pairs is finite or infinite.

The results of the last two sections suggest that the elements� 2 ZŒG� such that
.1 � �x/� is a qth power in K play an important role in the theory of Catalan’s
equation. In Chap. 8 we shall study them in detail.



Chapter 7
Gauss Sums and Stickelberger’s Theorem

In Sect. 6.5 we already used (but did not prove) Stickelberger’s theorem, which
provides a nontrivial annihilator for the class group. In this chapter we prove this
theorem, in a stronger form: we define an ideal of the group ring ZŒG� (called
Stickelberger’s ideal) and show that all its elements annihilate the class group.

All known proofs of Stickelberger’s theorem rely on properties of Gauss sums,
an arithmetical object interesting by itself. We develop the theory of Gauss sums to
the extent needed for the proof of Stickelberger’s theorem.

In the final sections we provide deeper insight into the structure of Stickelberger’s
ideal. We determine its Z-rank, find a free Z-basis, study its real and relative parts,
and prove Iwasawa’s class number formula.

7.1 Stickelberger’s Ideal and Stickelberger’s Theorem

Let p be an odd prime number, Kp D Q.�p/ the pth cyclotomic field, and
G D Gal.Kp=Q/ its Galois group. In Sect. 6.5 we stated the theorem of Stickel-
berger: the element

Pp�1
aD1 a
�1

a of the group ring ZŒG� annihilates the class group
of Kp. In this chapter we shall prove it, in a stronger form.

Stickelberger’s element is defined by

� D 1

p

p�1X

aD1
a
�1

a 2 QŒG�:
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Stickelberger’s ideal is

IS D �ZŒG� \ ZŒG�:

The main result of this chapter is the following theorem, which refines
Theorem 6.13.

Theorem 7.1. Every � 2 IS annihilates the class group of Kp .

The proof of this theorem relies on the careful study of an important arithmetical
object called Gauss sums. The theorem will be proved in Sect. 7.5, after we establish
necessary properties of Gauss sums in Sects. 7.2–7.4.

To conclude this section, we determine a convenient system of Z-generators
of IS . As indicated in Appendix D, in the group ring ZŒG�, we identify 1 and 
1,
which is the neutral element of G. In particular, Z is a subring of ZŒG�.

Given b 2 Z not divisible by p, we put

�b D .b � 
b/�:

Since 
pC1 D 
1 D 1, we have

�1 D 0; �pC1 D p� D
p�1X

aD1
a
�1

a :

It turns out that the elements �b belong to ZŒG� and generate IS . More precisely,
we have the following.

Proposition 7.2.

1. For any b 2 Z not divisible by p we have

�b D
p�1X

aD1



ba

p

�

�1
a : (7.1)

In particular,�b 2 IS for all such b.
2. Stickelberger’s ideal IS is generated over Z by the elements �1; : : : ; �p�1 and
�pC1 D p� .

Proof. Let a and b be integers not divisible by p, and let c be such that

b


�1
a D 
�1

c . Then a � bc modp. In particular, if 0 < a < p then

a D bc � p



bc

p

�
:
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It follows that


b� D
p�1X

cD1

�
bc

p
�


bc

p

��

�1
c :

Hence

�b D b� � 
b� D
p�1X

aD1

ba

p

�1
a �

p�1X

cD1

�
bc

p
�


bc

p

��

�1
c D

p�1X

aD1



ba

p

�

�1
a ;

which proves (7.1).
Identity (7.1) implies that �b 2 ZŒG�. Since �b 2 �ZŒG� as well, this implies

that �b 2 IS . Part (1) is proved.
Now let � be an element of IS . To prove part (2), we have to express � as a

Z-linear combination of �1; : : : ; �p�1 and p� .
Since � 2 �ZŒG� and� 2 ZŒG�, we may write

� D �

p�1X

aD1
xa
a D

p�1X

aD1
ya
a ;

where all xa and ya are integers. We find from here

y1 D 1

p

p�1X

aD1
axa;

which implies

� D �

p�1X

aD1
xa.
a � a/C �

p�1X

aD1
axa D �

p�1X

aD1
xa�a C y1p�:

This proves part (2). ut
A natural question is whether �1; : : : ; �p�1 and p� form a free Z-basis of IS .

The answer is obviously “no” because �1 D 0. Less obviously, the answer is
also negative1 for �2; : : : ; �p�1 and p� : we shall see in Proposition 7.20 that
�a C�p�a D �b C�p�b for any a and b. However, all this is not relevant for the
proof of Stickelberger’s theorem, where even the weaker statement “IS is generated
by the elements �b as an ideal” is sufficient. Nevertheless, a free basis will be
needed in Chap. 8, and in Sect. 7.6 we shall determine the Z-rank and a free Z-basis
of IS .

1Except when p D 3
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7.2 Gauss Sums

In this section by a character of a finite abelian group G we mean a C-character,
that is, a homomorphismG ! C

�.
Let ` be a prime number, and let F D Z=`Z be the field of ` elements. We

consider two types of characters on F. An additive character is a character of the
additive group of F. A multiplicative character is a character of the multiplicative
group F

�. An additive (respectively, multiplicative) character is called trivial if it is
identically 1 on F (respectively, on F

�), and nontrivial otherwise. A multiplicative
character � is defined only on F

�, but we extend it to the entire F by setting2

�.0/ D 0. The order of a nontrivial additive character is `. The order of a
multiplicative character is a divisor of ` � 1.

According to Proposition D.4, a nontrivial additive character  and a nontrivial
multiplicative character � satisfy

X

x2F
 .x/ D 0;

X

x2F�

�.x/ D 0;

which can be also written as

X

x2F�

 .x/ D �1;
X

x2F�

x¤1

�.x/ D �1: (7.2)

Now, for a nontrivial additive character  and for a (trivial or nontrivial)
multiplicative character �, we define the Gauss sum as

g. ; �/ D �
X

x2F
 .x/�.x/:

Gauss sums belong to the most important arithmetical objects; they are indis-
pensable in analytic number theory, algebraic number theory, arithmetic geometry,
cryptography, etc. But for us Gauss sums are nothing more than a tool for proving
Stickelberger’s theorem. Therefore, we establish here only the basic properties
needed for this purpose.

In particular, we do not discuss here the historical and methodological reasons
for putting the “�” sign before the sum. For our present purposes this is absolutely
irrelevant, but we follow the tradition.

Gauss sums already implicitly appeared in this book, in Sect. 5.3. However, our
notation here is very different, and we prefer to re-prove in this section several
statements already made therein.

2Whenever � is trivial or nontrivial, which is somewhat inconsistent with the conventions made in
Chap. 5
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The Gauss sum g. ; �/ is a function of two variables, a nontrivial additive
character  and a multiplicative character �. It turns out that the behavior of g as
a function of  is quite simple. Indeed, if  is a fixed nontrivial additive character,
then the complete list of nontrivial additive characters is  ; 2; : : : ;  `�1, and we
have the following statement.

Proposition 7.3. Let  be a nontrivial additive character, � a multiplicative
character, and b an integer non-divisible by `. Then3 g. b; �/ D N�.b/g. ; �/.

Here and below we denote by N� the complex conjugate of the character�, defined
by N�.x/ D �.x/ for x 2 F. Notice that for x ¤ 0 we have

N�.x/ D �.x/�1 D �.x�1/:

Proof. Since b is not divisible by `, the product bx runs through F when x runs
through F. It follows that

g. ; �/ D �
X

x2F
 .bx/�.bx/ D ��.b/

X

x2F
 .x/b�.x/ D �.b/g. b; �/:

Since N�.b/ D �.b/�1, the proposition follows. ut
In particular, viewing the Gauss sum as an algebraic integer in some number field,

the principal ideal it defines is independent of the choice of the additive character .
The behavior of g as a function of � is much more interesting, and this is

what we are going to study in detail. Thus, from now on, we fix a nontrivial
additive character  and write g.�/ instead of g. ; �/. Also, in the sequel the
word character will mean a multiplicative character, unless the contrary is stated
explicitly.

The only case of a “simple” relation between Gauss sums for two distinct
characters is when they are complex conjugate.

Proposition 7.4. Let � be a (multiplicative) character and N� its complex conjugate.
Then g. N�/ D �.�1/g.�/.
Proof. We have

g. N�/ D �
X

x2F
 .x/ N�.x/ D �

X

x2F
 .�x/�.x/ D �

X

x2F
 .x/�.�x/ D �.�1/g.�/ :

Since �.�1/ 2 f˙1g,we have �.�1/ D �.�1/, and the proposition follows. ut

3As it is commonly done, for b 2 Z we write �.b/ instead of �.b�/, where b� is the image of b in
Z=`Z.
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The first identity in (7.2) implies that g.�/ D 1 for the trivial character �. For
the nontrivial characters, computing the precise value of the Gauss sum is rather
difficult. Much easier is to determine the absolute value of the Gauss sum.

Theorem 7.5. Let � be a nontrivial multiplicative character. Then

g.�/g.�/ D `: (7.3)

In particular, g.�/g. N�/ D �.�1/`.
Proof. Since  .x/ D  .�x/ and �.x/ D �.x�1/, we have

g.�/g.�/ D
X

x2F�

 .x/�.x/
X

y2F�

 .�y/�.y�1/

D
X

x;y2F�

 .x � y/�.xy�1/

D
X

z;y2F�

 .zy � y/�.z/ (we put z D xy�1)

D
X

y2F�

 .0/�.1/C
X

z2F�

z¤1

�.z/
X

y2F�

 .y.z � 1//:

The first sum here is ` � 1. Further, when z ¤ 1 and y runs through F
�, the product

y.z � 1/ runs through F
� as well. It follows that

X

y2F�

 .y.z � 1// D �1;

and we obtain

g.�/g.�/ D ` � 1 �
X

z2F�

z¤1

�.z/ D `:

Proposition 7.4 now implies that g.�/g. N�/ D �.�1/`. The theorem is proved. ut
Another proof is indicated in Sect. 5.3.3. Let V be the space of complex functions

on F. It is a C-vector space of dimension `. Also, we have a natural inner product
on V defined by

.u; v/ D `�1X

x2F
u.x/v.x/:
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A straightforward verification shows that the functions 1;  ; : : : ;  `�1 form an
orthonormal basis of V . Since .�; 1/ D 0, we have

� D
`�1X

kD1
.�;  k/ k:

Proposition 7.3 implies that .�;  k/ D `�1 N�.�k/g.�/. In particular,

j.�;  k/j D `�1jg.�/j .k D 1; : : : ; ` � 1/:

We obtain

` � 1
`

D .�; �/ D
`�1X

kD1
j.�;  k/j2 D .` � 1/

jg.�/j2
`2

;

whence jg.�/j D p
`.

7.3 Multiplicative Combinations of Gauss Sums

The values of the additive character  lie in the cyclotomic field K` D Q.�`/, and
the multiplicative character � has values in the field K`�1 D Q.�`�1/, or, more
precisely, in Km D Q.�m/, where m is the order of �. It follows that the Gauss
sum g.�/ belongs to the “large” cyclotomic fieldKm` D Q.�m; �`/, and, in general,
one cannot say anything better.

It is quite remarkable that a simple multiplicative combination of several Gauss
sums lies in a much smaller field.

Theorem 7.6. For any multiplicative characters �1 and �2 the quotient
g.�1/g.�2/=g.�1�2/ is an algebraic integer from the field Km, where m is the
least common multiple of the orders of �1 and �2.

Before proving the theorem, let us state two important consequences. The
following assertion is proved by a simple induction in a.

Corollary 7.7. Let � be a multiplicative character of order m. Then for any
nonnegative integer a the quotient g.�/a=g.�a/ is an algebraic integer from Km.

Now let m be a divisor of ` � 1, and for an integer a coprime with m let 
a be
the morphism of the cyclotomic field Km` defined by �m 7! �am and �` 7! �` (see
Proposition 4.26).

Corollary 7.8. Let � be a multiplicative character of order m . Then for any a
coprime with m the number g.�/a�
a is an algebraic integer from the field Km. In
particular, g.�/m 2 Km.
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Proof. Since for any x 2 F the number �.x/ is an mth root of unity, we have
�.x/
a D �.x/a. Also, since 
a is identical on the `th roots of unity, we have
 
a D  . It follows that g.�/
a D g.�a/. Applying Corollary 7.8, we prove
that g.�/a�
a is an integer fromKm. Putting a D mC 1, we obtain g.�/m 2 Km.

ut
For the proof of Theorem 7.6 we introduce an auxiliary quantity called Jacobi

sum. Let �1 and �2 be two multiplicative characters. The Jacobi sum is

J.�1; �2/ D
X

x2F
�1.x/�2.1 � x/:

Obviously, J.�1; �2/ 2 Q.�m/, where m is the least common multiple of the orders
of �1 and �2.

Proposition 7.9. Let �1 and �2 be multiplicative characters such that �1 ¤ �2.
Then J.�1; �2/ D g.�1/g.�2/=g.�1�2/.

Proof. We have

g.�1/g.�2/ D
X

x;y2F
�1.x/�2.y/ .x C y/

D
X

x;z2F
�1.x/�2.z � x/ .z/

D
X

x;z2F

z¤0

�1.x/�2.z � x/ .z/C
X

x2F
�1.x/�2.�x/:

Since �1 ¤ N�2, the character �1�2 is nontrivial. It follows that

X

x2F
�1.x/�2.�x/ D �2.�1/

X

x2F
.�1�2/.x/ D 0:

Hence

g.�1/g.�2/ D
X

x;z2F

z¤0

�1.x/�2.z � x/ .z/

D
X

t2F

z2F�

�1.tz/�2.z � tz/ .z/

D
X

t2F
�1.t/�2.1 � t/

X

z2F�

.�1�2/.z/ .z/

D J.�1; �2/g.�1�2/;

as wanted. ut
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Proof of Theorem 7.6. In the case �1 ¤ N�2 the theorem is a direct consequence
of Proposition 7.9. If �1 D N�2 then �1�2 is a trivial character and g.�1�2/ D 1.
Now, if �1 itself is nontrivial, then we have g.�1/g.�2/=g.�1�2/ D �.�1/` 2 Z

by Theorem 7.5. If �1 is trivial, we have g.�1/g.�2/=g.�1�2/ D 1. The theorem is
proved. ut

7.4 Prime Decomposition of a Gauss Sum

In this section we determine the prime decomposition of a Gauss sum g.�/. We
shall restrict to the case when � is a character of an odd prime order p , but with
purely cosmetic changes (see Remark 7.16) our argument extends to a general �.

The order of a multiplicative character must divide ` � 1. Thus, let p be an odd
prime number dividing ` � 1. Since the group of multiplicative characters is cyclic,
there exist precisely p � 1 characters of (exact) order p . On the other hand, since
` � 1 modp , the cyclotomic field Kp has precisely p � 1 prime ideals above `,
each of degree 1 (see Proposition 4.8). We wish to establish a natural one-to-one
correspondence between the two sets.

Proposition 7.10. There is a one-to-one correspondence between the characters of
order p and the prime ideals of Kp above ` such that, if � is a character and l the
corresponding ideal, then

�.x/ � x
`�1
p mod l .x 2 Z/: (7.4)

Proof. Let l be a prime ideal of Kp above `. Since l is of degree 1, every residue
class mod l contains a rational integer. In particular, there exists r 2 Z such that
�p � r mod l. Taking pth power, we obtain rp � 1 mod l. Since both sides of the
last congruence are rational integers, this implies that rp � 1 mod `. Hence there

exists a generator s of the multiplicative group F
� such that r � s

`�1
p mod `.

Since s generates F
�, there exists a (unique) character � with �.s/ D �p . It is

straightforward that it satisfies (7.4).
Thus, to every prime ideal l above `, we associate a character � satisfying (7.4).

Such � is unique. Indeed, let � and �0 be two characters of order p satisfying (7.4).
Then �.x/ � �0.x/ mod l for all x 2 Z, and, in particular, �.s/ � �0.s/ mod l,
where s is a primitive root modulo `. Corollary 4.2 implies that �.s/ D �0.s/ and
thereby � D �0.

Since a character of order p has values in Kp , the Galois group Gal.Kp=Q/

acts on the set of these characters in the natural way. Moreover, if � is the character
associated to l and 
 2 Gal.Kp=Q/, then �
 is associated to l
 : congruence (7.4)
implies that

�
 .x/ � x
`�1
p mod l
 .x 2 Z/;
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and the character associated to l
 is unique, as we have seen in the previous
paragraph. In particular, to distinct prime divisors of `, we associate distinct
characters.

We have defined an injective map from the set of prime divisors of ` into the
set of characters of order p . Since both these sets have p � 1 elements, this map is
actually bijective. This proves the proposition. ut

Now fix a character � of order p . We are going to define a special numbering of
all prime ideals of Kp above `. For a 2 f1; 2; : : : ; p � 1g we denote by la the ideal
corresponding (as in Proposition 7.10) to N�b , where b is the inverse of a modulo p
(that is, ab � 1 modp). This choice of numbering looks somewhat artificial, but it
will be justified later.

The prime ideal l1, corresponding to the character N�, will be denoted simply by l.
Thus, we have

N�.x/ � x
`�1
p mod l .x 2 Z/: (7.5)

Recall that Gal.Kp=Q/ D f
1; : : : ; 
p�1g, where 
a is defined by �p 7! �ap . With
our numbering we have

l
aa D l .a D 1; : : : ; p � 1/;

or, equivalently, la D l

�1
a .

Unfortunately, we cannot stay in the field Kp , because the Gauss sum g.�/

lives in the wider field Kp` D Q.�p; �`/. According to Proposition 4.17, every la
totally ramifies in Kp`. If La is the prime ideal of Kp` above la, then la D L`�1a . In
particular, ` splits in Kp` as

.`/ D L`�11 � � �L`�1p�1: (7.6)

We also denote the ideal L1 by L, so that l D L`�1. If 
a 2 Gal.Kp`=Q/ is
defined by �p 7! �ap and �` 7! �`, then

L
aa D L .a D 1; : : : ; p � 1/;

or, equivalently, La D L

�1
a .

We are ready to formulate the main result of this section.

Theorem 7.11 (Kummer). Let � be a multiplicative character of order p, and
let L1; : : : ;Lp�1 be the prime ideals of Kp` defined above. Then the principal
ideal .g.�// of the fieldKp` decomposes as

.g.�// D
�
L1L

2
2 : : :L

p�1
p�1

� `�1
p
: (7.7)

The proof relies on two simple lemmas.
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Lemma 7.12. We have OrdL.1 � �`/ D 1. Also, for every nonnegative integer b,
we have

�b` � 1
�` � 1 � b modL:

Proof. Since .`/ D .1 � �`/`�1, equality (7.6) implies that

.1 � �`/ D L1 � � �Lp�1:

In particular, OrdL.1� �`/ D 1.
Further, �` � 1 modL implies that �k` � 1 modL for k D 0; 1; 2; : : :. It follows

that

�b` � 1
�` � 1

D 1C � C � � � C �b�1 � b modL;

as wanted. ut
Our second lemma is just a reformulation of Proposition 7.3. For every b 2 Z

not divisible by ` we define the automorphism �b 2 Gal.Kp`=Q/ by �` 7! �b` and
�p 7! �p . Now Proposition 7.3 can be restated as follows.

Lemma 7.13. For an integer b not divisible by ` we have g.�/�b D N�.b/g.�/.
Proof of Theorem 7.11. Theorem 7.5 implies that g.�/ j `. Hence the only prime
ideals that can occur in the decomposition of g.�/ are L1; : : : ;Lp�1, and their
multiplicities do not exceed ` � 1:

.g.�// D Ls11 � � �Lsp�1

p�1 ;

where

0 � sa � ` � 1 .a D 1; : : : ; p � 1/:

Since L
aa D L and �
a D �a, we have

sa D OrdLa .g.�// D OrdL.g.�
a//:

It follows that the algebraic number

ˇ D .1 � �`/sa
g.�a/

is an L-adic unit; that is, OrdL.ˇ/ D 0.



86 7 Gauss Sums and Stickelberger’s Theorem

Now we apply the beautiful argument of Kummer to determine sa. Let b be an
integer non-divisible by `. Using Lemmas 7.12 and 7.13, we obtain

ˇ�b D .1 � �b` /sa
N�.b/ag.�a/ D 1

N�.b/a
 
1 � �b`
1 � �`

!sa
ˇ � bsa

N�.b/a ˇ modL:

On the other hand, Proposition 4.19 implies that ˇ�b � ˇ modL. It follows that the
congruence N�.b/a � bsa modL holds for every b. Comparing this with (7.5), we
obtain

b
a `�1p � bsa modL (7.8)

for all integers b. Hence the same congruence holds mod ` as well, which implies
that

sa � a
` � 1

p
mod .` � 1/:

But we have seen in the very beginning that 0 � sa � ` � 1. Hence sa D a `�1
p

. The
theorem is proved. ut

7.5 Proof of Stickelberger’s Theorem

We are ready now to prove Theorem 7.1. We begin with the following general
statement.

Proposition 7.14. Let K be a number field. Then every ideal class of K contains a
prime ideal (and even infinitely many prime ideals) of degree 1 (over Q).

Proof. Fix an ideal class C 2 HK . Let L be the Hilbert Class Field of K (see
Appendix A.11), and let 
 2 Gal.L=K/ be the element of the Galois group
corresponding, via the Artin map, to the fixed class C . Then for an ideal a of K
we have

a 2 C ”
�

a

L=K

	
D 
:

By the Chebotarev density theorem, there exists infinitely many prime ideals l ofK

of degree 1 such that
h

l
L=K

i
D 
 . This proves the proposition. ut

Since Stickelberger’s ideal is generated by the elements�b (see Proposition 7.2),
Stickelberger’s theorem is a consequence of Proposition 7.14 and the following
assertion.
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Proposition 7.15. Let l be a prime ideal of Kp of degree 1. Then for every positive
integer b the ideal l�b is principal.

Proof. Denote by ` the prime below l. Since l is a prime ideal of degree 1, we
have ` � 1 modp (see Proposition 4.8), and we can use the setup and the results of
Sect. 7.4.

Thus, let � be the character satisfying (7.5), and let l1 D l; : : : ; lp�1 and
L1 D L; : : : ;Lp�1 have the same meaning as in Sect. 7.4. Since

la D l

�1
a ; La D L


�1
a .a D 1; : : : ; p � 1/;

the prime decomposition (7.7) can be rewritten as

.g.�// D L
`�1
p

�

�1
1 C2
�1

2 C���C.p�1/
�1
p�1

�

:

In other words, we have

L.`�1/� D .g.�//: (7.9)

Since �b D .b � 
b/� , this implies

L.`�1/�b D �
g.�/b�
b � : (7.10)

Now, while in (7.9) we had ideals of the field Kp`, in (7.10) we already deal with
ideals of Kp . Indeed, the ideal on the left of (7.10) is l�b , and on the right we
have a principal ideal of Kp , as follows from Theorem 7.6. Thus, l�b is a principal
ideal of the field Kp . The proposition is proved, and this completes the proof of
Stickelberger’s theorem. ut
Remark 7.16. As a careful reader might have noticed, the present proof of Stick-
elberger’s theorem did not make much use of the primality of p. Indeed, one can
formulate and prove, using the same argument, Stickelberger’s theorem for general
cyclotomic fieldsKm; one just has to replace everywhere in this chapter p bym and
the set f1; : : : ; p � 1g by the set

fa W 0 < a < m; .a;m/ D 1g:

(By the way, we already did it in Sect. 7.3.) We leave the details to the reader.

7.6 Kummer’s Basis

In Proposition 7.2 we found a system of Z-generators of Stickelberger’s ideal. In
this section we determine its Z-rank and find a free Z-basis.
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If � is a character ofG, then �.�/ can be equal to 1 or �1. (Recall that � stands for
the complex conjugation.) A character of G will be called even (respectively, odd)
if �.�/ D 1 (respectively, �.�/ D �1).

We start from the following statement.

Proposition 7.17. Let � be a character of G. Then �.�/ D 0 if and only if � is a
nontrivial even character. Moreover,

Y

�.�/D�1
�.�/ D 2.p�3/=2p�1h�

p ; (7.11)

where the product extends to the odd characters of G and h�
p is the relative pth

class number.

In this section we need only the first statement. Identity (7.11) is to be used in
Sect. 7.8.

Proof. Let � be a nontrivial character. Then the map Z ! C defined by

a 7!
(
�.
a/ if a is coprime with p;

0 if a is divisible by p
(7.12)

is a nontrivial Dirichlet character modp , as defined in Sect. 5.1. Moreover, if � is
an even (respectively, odd) character ofG then the Dirichlet character (7.12) is even
(respectively, odd) as well. Since

�.�/ D 1

p

p�1X

aD1
a N�.
a/ D 1

p

p�1X

aD1
a�.
a/; (7.13)

Corollary 5.12 implies that �.�/ ¤ 0 for an odd �, and Proposition 5.13 implies that
�.�/ D 0 for a nontrivial even �. It remains to notice that �.�/ D .p � 1/=2 ¤ 0

for the trivial character �.
Finally, identity (7.11) is a direct consequence of the class number

formula (5.19). ut
Theorem 7.18. The Z-rank of Stickelberger’s ideal is .p C 1/=2.

Proof. Observe that �QŒG� is the ideal of the group ring QŒG� generated
by IS . It follows that the Z-rank of IS is equal to the Q-dimension of �QŒG�.
Proposition D.13 implies that the latter dimension is the number of characters of G
satisfying �.�/ ¤ 0.

As we have seen in Proposition 7.17, exactly .p C 1/=2 characters of G do not
vanish at � (all the odd characters and the trivial even character). This proves the
theorem. ut
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Remark 7.19. Theorem 7.18 can be viewed as an “algebraic reformulation” of
Dirichlet’s nonvanishing relationL.1; �/ ¤ 0 (Corollary 5.5) for the odd characters.
The similar statement for the even characters will be obtained in Chap. 10, see
Theorem 10.4.

Recall that for b non-divisible by p we put �b D .b � 
b/� . In Proposition 7.2
we showed that every �b belongs to IS and that �1; : : : ; �p�1 and p� D �pC1
generate IS .

Now for any b 6� 0;�1 modp we put

�b D �bC1 ��b:

Also, we consider the norm element (see Appendix D.1)

N D
X


2G

 D 
1 C � � � C 
p�1:

One verifies that

N D .1C �/�;

which implies that N 2 IS .
We need some simple properties of the elements �b and �b .

Proposition 7.20. For any b non-divisible by p we have

�b C�p�b D p� � N : (7.14)

For any b 6� 0;�1 modp we have

�b D �p�1�b : (7.15)

Proof. Since 
p�b D � 
b we have

�b C�p�b D .p � 
b � � 
b/� D p� � 
bN :

This proves (7.14) because 
bN D N . Equality (7.15) is an immediate consequence
of (7.14). ut
Theorem 7.21 (Kummer). The elements

�1; : : : ; �.p�1/=2 ; N (7.16)

form a free Z-basis of IS .

Proof. Since the Z-rank of IS is .p C 1/=2, we only have to prove that ele-
ments (7.16) generate IS over Z. Let M be the Z-module generated by (7.16).
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By Proposition 7.2 it suffices to show that each of �1; : : : ; �p�1 and p� belongs
to M.

Equality (7.15) implies that �1; : : : ; �p�2 2 M. Further, �1 D 0 2 M, and by
the definition of �b we have

�b D �1 C : : :C �b�1 2 M .b D 2; : : : ; p � 1/:

Finally, (7.14) implies that p� D �1 C�p�1 C N 2 M. The theorem is proved.
ut

In Chap. 8 we shall deal mainly with the ideal .1 � �/IS rather than IS . In the
next proposition we determine the rank and a free basis of this ideal.

Proposition 7.22. The Z-rank of .1 � �/IS is .p � 1/=2. The elements

.1� �/�b .b D 1; : : : ; .p � 1/=2/ (7.17)

form a free Z-basis of .1 � �/IS .

Proof. As in the proof of Theorem 7.18, the rank is equal to the number of
characters � with �..1 � �/�/ ¤ 0. If �.�/ D 1 then, obviously, �..1 � �/�/ D 0.
If �.�/ D �1 then �..1 � �/�/ D 2�.�/ ¤ 0 by Proposition 7.17. Thus, there are
exactly .p � 1/=2 characters with the required property, which proves that the rank
is .p � 1/=2.

Further, elements (7.17) generate .1 � �/IS , because elements (7.16) generate IS
and .1 � �/N D 0. Since the number of elements (7.17) is equal to the rank of
.1 � �/IS , they form a free basis. ut

7.7 The Real and the Relative Part of Stickelberger’s Ideal4

The real part, or plus-part, of the ring R D ZŒG� is the ideal RC WD .1C �/R; the
relative part, or minus-part, is the ideal R� WD .1 � �/R.

Equivalently: � 2 RC (respectively, � 2 R�) if �� D � (respectively, if
�� D ��). One more equivalent definition: � D ˛1
1 C � � � C ˛p�1
p�1 belongs
to RC (respectively, to R�) if ˛k D ˛p�k (respectively, ˛k D �˛p�k) for
k D 1; : : : ; p � 1.

The real and relative parts of an ideal I of R are defined by IC D I \ RC and
I� D I \R�. Obviously,

IC � .1C �/I; Iaug � I� � .1 � �/I:

(Recall that Iaug consists of elements of I of weight 0.)

4The results of this (and the next) section will not be used in the rest of the book.
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In this (and the next) section we study in detail the real part IC
S and, mainly,

the relative part I�
S of Stickelberger’s ideal. In particular, we prove the remarkable

relation ŒR�WI�
S � D h�, known as Iwasawa’s class number formula. This result is

not used in the proof of Catalan’s conjecture, but we have everything needed for its
proof, and it would be unwise to miss such an opportunity.

We start from the real part. Its theory is very simple.

Proposition 7.23. We have IC
S D .1C �/IS D NZ. In particular, the Z-rank

of IC
S is 1.

Proof. Since .1C �/� D N , we have IC
S � .1C �/IS � NZ, and we have to

show that IC
S 
 NZ. Moreover, it suffices to verify that IC

S 
 NQ, because
NZ D NQ \ R.

For any � 2 RC, we have �� D �, which implies .1C �/� D 2�. We obtain

2IC
S D .1C �/IC

S 
 .1C �/IS 
 .1C �/�R D NR D NZ:

(Recall that NR D NZ by Proposition D.2.) Thus, IC
S 
 NQ, as wanted. ut

Much more substantial is the theory of the relative part I�
S . We have

R� � I�
S � .1 � �/IS ;

and since the rank of both R� and .1 � �/IS is .p � 1/=2, so is the rank of I�
S .

In particular, both indices


R�WI�

S

�
and


I�
S W.1 � �/IS

�
are finite. We are going

to determine them. We follow the beautiful exposition of Chapman [22] with
insignificant changes.

The basic object that we work with in this (and the next) section is the ideal

J WD f˚ 2 R W �˚ 2 Rg (7.18)

so that

IS D �J :

In particular, for any� 2 .1� �/IS , there exists ˚ 2 J such that

� D .1 � �/�˚:

Of course, this ˚ is not well defined, but, as we are going to show, the parity of its
weight is well defined.

Proposition 7.24. Let ˚1;˚2 2 J be such that .1 � �/�˚1 D .1 � �/�˚2. Then
w.˚1/ � w.˚2/ mod 2.
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Proof. It suffices to show that

.1 � �/�˚ D 0 (7.19)

implies 2jw.˚/. Equality (7.19) means that �˚ 2 IC
S . Hence �˚ 2 NZ. Since

w.N / D p � 1, this implies that .p � 1/ j w.�˚/. Since w.�/ D .p � 1/=2, the
weight of ˚ must be even. ut

An element � D .1 � �/�˚ 2 .1 � �/IS will be called even5 (respectively, odd)
if w.˚/ is even (respectively, odd). Even elements form a subgroup of index 1 or 2
in .1 � �/IS . Since odd elements do exist (for instance, .1 � �/p� is odd), we obtain
the following statement.

Proposition 7.25. Even elements form an index 2 subgroup of .1 � �/IS .

After this preparation we are ready to determine the index

I�
S W.1 � �/IS

�
.

Actually, we prove slightly more.

Proposition 7.26. We have Iaug
S D I�

S and

I�
S W.1 � �/IS

� D 2.p�3/=2.

Proof. For any� 2 R� we have �� D ��, which implies .1� �/� D 2�. Hence,
for any ideal I of R, we have 2I� D .1 � �/I�. In particular,

2I�
S D .1 � �/I�

S 
 .1 � �/IS :

Since the rank of I�
S is .p � 1/=2, we have ŒI�

S W2I�
S � D 2.p�1/=2. The proposition

would follow if we show that 2I�
S D 2Iaug

S and Œ.1 � �/IS W2I�
S � D 2. In view of

Proposition 7.25, it suffices to prove that

2I�
S D 2Iaug

S D fthe even elements of .1 � �/IS g : (7.20)

Obviously, 2I�
S 
 Iaug

S . It remains to prove that 2Iaug
S 
 I0 and I0 
 2I�

S , where
we denote by I0 the ideal of even elements.

Fix � 2 Iaug
S and write � D �˚ with ˚ 2 J . Since w.�/ D 0 and w.�/ ¤ 0,

we have w.˚/ D 0. It follows that

2� D 2�˚ D .1 � �/�˚ C .1C �/�˚

D .1 � �/�˚ C N˚
D .1 � �/�˚ C w.˚/N
D .1 � �/�˚:

5This notion of parity will be used only in this section. It has nothing to do with the parity of the
characters of G.
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(Recall that˚N D w.˚/N by Proposition D.2.) Thus, 2� is an even element. This
proves the inclusion 2Iaug

S 
 I0.
Further, let � D .1� �/�˚ be an even element, and write w.˚/ D 2m. Then

� C 2mN D .1 � �/�˚ C N˚ D .1 � �/�˚ C .1C �/�˚ D 2�˚;

which implies that� C 2mN belongs to 2IS . Hence� itself belongs to 2IS . Since
� 2 R�, we obtain � 2 2I�

S . This proves the inclusion I0 
 2I�
S . ut

The index ŒR�WI�
S � was determined by Iwasawa [53].

Theorem 7.27 (Iwasawa). The index


R�WI�

S

�
is equal to h�

p , the relative class
number.

This beautiful result, known as Iwasawa’s class number formula, is proved in
Sect. 7.8.

7.8 Proof of Iwasawa’s Class Number Formula

To begin with, we establish an “invariant characterization” of the ideal J , defined
in (7.18). Since 
a
b D 
ab , the map 
a 7! a defines a ring homomorphism
u W R ! Z=pZ.

Proposition 7.28. We have J D ker u and J � D .1 � �/J . Also,

ŒRWJ � D ŒR�W.1 � �/J � D p : (7.21)

Proof. As follows from Proposition 7.2, the ideal J is generated by the elements
of the form b � 
b . Hence J D ker u. Also, J � D R� \ ker u, that is, J � is the
kernel of the restriction u jR� . Since u is surjective on both R and R�, we obtain
R=J Š R�=J � Š Z=pZ. In particular,

ŒRWJ � D ŒR�WJ �� D p :

Further, if � 2 J � then � D .1 � �/˚ , where ˚ 2 R. Since u.�/ D 0 and
u.1� �/ D 2 ¤ 0, we have u.˚/ D 0, that is, ˚ 2 J . Thus, J � D .1 � �/J . This
completes the proof of the proposition. ut

For the proof of Theorem 7.27 we shall need a notion of index more general
than commonly used. Let V be a Q-vector space of finite dimension n. A lattice
in V is a free abelian subgroup of V of rank n. Any two lattices A and B in V
are “commeasurable” in the sense that the intersection A\ B is of finite index in
both A and B . Now we define the index ŒAWB� by

ŒAWB� WD ŒAWA\ B�

ŒBWA\ B�
:
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Thus, the index is a positive rational number, which is equal to the usual index when
B 
 A. It has the standard properties of the usual index, collected in the following
proposition.

Proposition 7.29. 1. The index is multiplicative: if A, B , and C are lattices in V ,
then ŒAWC � D ŒAWB� � ŒBWC �. In particular, ŒBWA� D ŒAWB��1.

2. If f W V ! V is a non-singular linear transformation, then for any lattice A we
have ŒAWf .A/� D j detf j.

Proof. In part (1), put D D A\ B \ C . Then

ŒAWB� D ŒAWA \ B� � ŒA \ BWD�
ŒBWA \ B� � ŒA \ BWD� D ŒAWD�

ŒBWD� ;

and, similarly,

ŒBWC � D ŒBWD�
ŒC WD� ; ŒAWC � D ŒAWD�

ŒC WD� :

We obtain

ŒAWB� � ŒBWC � D ŒAWD�
ŒBWD� � ŒBWD�

ŒC WD� D ŒAWD�
ŒC WD� D ŒAWC � ;

which proves part (1).
The statement of part (2) is obvious if f .A/ 
 A. In the general case, there exists

a positive integer 
 such that 
f .A/ 
 A. Put g D 
f . Since g.A/ 
 A, we have
ŒAWg.A/� D j detgj D 
nj detf j. Now, using part (1), we obtain

ŒAWf .A/� D ŒAWg.A/�
Œf .A/Wg.A/� D 
nj detf j


n
D j detf j;

as wanted. ut
Proof of Theorem 7.27. We shall apply the previously given definition of index
with V D QŒG��. We wish to compute the index Œ.1 � �/J W.1 � �/IS �. Since
.1 � �/IS D .1� �/�J , the index is equal to j detf j, where f is the multiplication
by � .

To compute the determinant of a linear map we may extend the base field as
we please and choose the most convenient basis. Thus, let us extend the base field
to C. The ideal CŒG�� of the group ring CŒG� is the common kernel of the even
characters (that is, the characters satisfying �.�/ D 1). According to Appendix D.5,
the ideal CŒG�� has a C-basis consisting of idempotents "�, where � runs over the
odd characters (those with �.�/ D �1). Proposition D.15 implies that

f ."�/ D �"� D �.�/"�:
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Hence

j detf j D
Y

�.�/D�1
�.�/ D 2.p�3/=2p�1h�

p

by Proposition 7.17.
We have proved that

Œ.1 � �/J W.1 � �/IS � D 2.p�3/=2p�1h�
p :

Earlier, in Propositions 7.26 and 7.28, we showed that


I�
S W.1 � �/IS

� D 2.p�3/=2; ŒR�W.1 � �/J � D p:

Putting all this together, we find

ŒR�WI�
S � D ŒR�W.1 � �/J � � Œ.1 � �/J W.1 � �/IS �
I�

S W.1 � �/IS
� D h�

p ;

as wanted. ut
We learned this argument from Chapman [22]. A very similar proof can be found

in Lemmermeyer’s book [69] ; see Theorem 11.25. Chapter 11 of [69] contains,
among other things, a very good historical account of Stickelberger’s theory and
many useful references.

Theorem 7.27 suggests a natural question: does equality


R�WI�

S

� D h�
p extend

to an isomorphism of abelian groupsR�=I�
S andH�, the relative class group? The

answer is “no”; see [136, end of Sect. 6.4] and [69, pages 382–383].
Note in conclusion that Iwasawa’s class number formula extends, with the same

proof, to the cyclotomic field Kpk . For the general field Km the situation is more
complicated; see Kučera [57] and Sinnott [129].



Chapter 8
Mihăilescu’s Ideal

Let .x; y; p; q/ be a solution of Catalan’s equation. Arguments from Sects. 6.4
and 6.5 illustrate the important role of the elements � 2 ZŒG� such that .x � �/�
(or, equivalently, .1 � �x/�) is a qth power in K .

Elements � with this property form an ideal of the group ring ZŒG�, called
Mihăilescu’s ideal. It is convenient to study Mihăilescu’s ideal on its own, without
any reference to Catalan’s equation.

Thus, in this chapter, we fix, once and for all, distinct odd prime numbers p and q
and a nonzero integer x. We stress that, unless the contrary is stated explicitly, we
do not assume that our x, p, and q come from a solution of Catalan’s equation.

Besides this, we employ in this chapter our standard notation: � is a primitive
p th root of unity,K D Q.�/ is the p th cyclotomic field, and G D Gal.K=Q/ is its
Galois group. We also fix, once and for all, an embedding K ,! C and view the
elements of K as complex algebraic numbers.

In this chapter we use the notion of the height of an algebraic number. The reader
is advised to look through Appendix B before reading the chapter.

And the final convention: in this chapter log and arg stand for the principal
branches of the complex logarithm and argument. That is, for any nonzero
complex z, we have

�� < arg z D Im log z � � :

8.1 Definitions and Main Theorems

We start from the basic definition.

Definition 8.1. Mihăilescu’s ideal IM is the ideal of the group ring ZŒG� consisting
of � 2 ZŒG� such that .x � �/� 2 .K�/q .

© Springer International Publishing Switzerland 2014
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98 8 Mihăilescu’s Ideal

To formulate the main result, we also need some definitions concerning the group
ring ZŒG�. Recall (see Appendix D) that the weight homomorphism w W ZŒG� ! Z

is defined by

w

 
X


2G
a



!
D
X


2G
a
 :

Its kernel, consisting of elements of weight 0, is called the augmentation ideal of
the group ring ZŒG�. Given an ideal I of ZŒG�, we define the augmented part of I
as the intersection of I with the augmentation ideal:

Iaug D f� 2 I W w.�/ D 0g :

In addition to the weight function, we define the size function k � k by

�����
X


2G
a



����� D
X


2G
ja
 j:

One immediately verifies the inequalities

k�1�2k � k�1k � k�2k; k�1 C�2k � k�1k C k�2k:

Let I be an ideal of the ring ZŒG� and r a positive real number. We define the
r-ball of I by

I.r/ WD f� 2 I W k�k � rg:

Now we are ready to state the first main theorem of this chapter, which is due
to Mihăilescu [94] (see also [10]). Roughly speaking, it asserts that, for sufficiently
large jxj, Mihăilescu’s ideal cannot have many elements of zero weight and small
size.

Theorem 8.2 (Mihăilescu). Let " be a real number satisfying 0 < " � 1, and
assume that

jxj � max

(�
20 � 2p�1

.p � 1/2

�1="
;
4

�

q

p � 1
C 1

)
: (8.1)

Put r D .2� "/q=.p � 1/. Then
ˇ̌Iaug
M .r/

ˇ̌ � q.

Obviously, I.r/ D I.brc/ for any I and r . Since



2q

p � 1
�

� 2q � 2

p � 1
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(except the case p D 3), we obtain, specifying " D 2=q, the following consequence:
for p � 5 and

x �
�
20 � 2p�1

.p � 1/2

�q=2
(8.2)

Mihăilescu’s ideal has at most q elements of weight 0 and of size not exceed-
ing 2q=.p � 1/. Similarly, specifying " D 1=q, we deduce that for p D 3 and
jxj � 20q, Mihăilescu’s ideal has at most q elements of weight 0 and of size not
exceeding q � 1.

Condition (8.2) is too strong for applications to Catalan’s problem. Fortunately,
the following consequence, obtained by taking " D 1, is sufficient for us.

Theorem 8.3. Assume that jxj � max
˚
2pC2; q

�
. Put r D q=.p � 1/. Thenˇ̌Iaug

M .r/
ˇ̌ � q.

To deduce it from Theorem 8.2, just observe that 20 � 2p�1=.p � 1/2 � 2pC2 and
.4=�/q=.p � 1/C 1 � q.

When p � .1 � "=2/q C 1 and (8.1) is satisfied, Theorem 8.2 implies that
jIaug
M .2/j � q; that is, IM has at most q � 1 elements of weight 0 and size 2. This

can be refined when (8.1) is replaced by a slightly stronger assumption.

Theorem 8.4. Let " be a real number satisfying 0 < " � 1, and assume that
p � .2 � "/q C 1. Assume further that

jxj � max

(�
20 � 2p�1

.p � 1/2

�1="
; 8qq

)
; (8.3)

Then Iaug
M .2/ D f0g.

Thus, when (8.3) is satisfied, Mihăilescu’s ideal cannot have elements of weight 0
and size 2.

Again, it is useful to state separately the particular case of Theorem 8.4
corresponding to " D 1.

Theorem 8.5. Assume that p < q and that jxj � 8qq . Then Iaug
M .2/ D f0g.

To deduce Theorem 8.5 from Theorem 8.4, observe that q > 2 and
16 > 20=.p � 1/2. Hence 8qq > 16 � 2q�1 > 20 � 2p�1=.p � 1/2 whenever q > p.

Theorems 8.2 and 8.4 will be proved in Sects. 8.4 and 8.5, respectively, after
some preparation in Sects. 8.2 and 8.3.
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8.2 The Algebraic Number .x � �/�

In this section, we investigate the number .x � �/�. First of all, we estimate its
height.

Obviously, .x � �/� is a product of k�k factors of type .x � �
 /˙1. We have
h.�
/ D 0, because �
 is a root of unity, and h.x/ D log jxj by Proposition B.2(5).
Hence, using Proposition B.2(7), we obtain

h.x � �
 / � log jxj C log 2 D log j2xj

and h
�
.x � �/�

� � k�k log j2xj. With slightly more effort one can show that
h.x � �
 / � log.jxj C 1/ and thereby h

�
.x � �/�

� � k�k log.jxj C 1/.
This is already a reasonable estimate, but one can drastically improve on it in the

case w.�/ D 0 using Proposition B.2(6).

Proposition 8.6. Let � 2 ZŒG� satisfy w.�/ D 0. Then

h
�
.x � �/�

� � 1

2
k�k log.jxj C 1/ :

Before proving the proposition, we make a simple remark. We say that
� D P


2G a

 is nonnegative (notation: � � 0) if a
 � 0 for all 
 2 G. For
such � we have w.�/ D k�k.

Any � can be presented as a difference �C ���, where �C; �� � 0 and
k�k D k�Ck C k��k. Indeed, write � D P


2G a

 and put

�C D
X




max fa
 ; 0g 
; �� D �
X




min fa
 ; 0g 
:

Proof of Proposition 8.6. Write � D �C ��� as above. Since w.�/ D 0, we
have w.�C/ D w.��/. Since �C; �� � 0, this means that k�Ck D k��k. We
denote this number by m:

m D k�Ck D k��k D 1

2
k�k :

We have .x � �/� D ˛=ˇ, where ˛ D .x � �/�C and ˇ D .x � �/�� are alge-
braic integers. Since ˛ is a product of m terms of the type x � �
 , we have
j˛j � .jxj C 1/m. More generally, for any 
 2 G we have j˛
 j � .jxj C 1/m, and,
similarly, jˇ
 j � .jxj C 1/m.
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Since ˛ and ˇ are algebraic integers, we may use (B.5). We obtain

h
�
.x � �/�

� � 1

ŒKWQ�
X


2G
log max fj˛
 j ; jˇ
 jg

� 1

ŒKWQ�
X


2G
m log.jxj C 1/

D m log.jxj C 1/;

as wanted. ut
Next, we observe that, for large x, the algebraic number .x � �/� is “very close”

to 1 if w.�/ D 0.

Proposition 8.7. If jxj > 1 and w.�/ D 0 then

ˇ̌
log.x � �/� ˇ̌ � k�k

jxj � 1 :

(Recall that log stands for the principal branch of the complex logarithm.)

Proof. For any complex z satisfying jzj < 1 we have

j log.1C z/j � jzj
1 � jzj :

In particular,

ˇ̌
ˇ̌log

�
1 � �


x

�ˇ̌
ˇ̌ � 1

jxj � 1 :

Since .x � �/� D .1 � �=x/� when w.�/ D 0, the result follows. ut
Finally, we show that .x � �/� is distinct from 1 for jxj � 3.

Proposition 8.8. Assume that jxj � 3. Then, for a nonzero � 2 ZŒG�, we have
.x � �/� ¤ 1.

Proof. Let p be the prime ideal of K lying over p. Then pp�1 D .p/ and
p D .�
 � ��/ for any distinct 
; � 2 G. In particular, for distinct 
 and � we have

.x � �
 ; x � �� /j p: (8.4)

If x � � has no prime divisors other than p, then .x � �/ D pk. In this case
.x � �
 / D pk for any 
 2 G, because p is stable under the Galois action. Now (8.4)
implies that k � 1. It follows that the norm of x � � is either ˙1 or ˙p.
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On the other hand, the assumption jxj � 3 implies that

jN .x � �/j D
Y


2G
jx � �
 j � 2p�1 > p :

This shows that x � � has a prime divisor Qp distinct from p.
Put ` D OrdQp.x � �/. Then (8.4) implies that

OrdQp
 .x � �� / D
�
`; if 
 D �;

0; if 
 ¤ �:

Therefore, writing� D P

2G a

 , we obtain

OrdQp

�
.x � �/�

� D `a
 .
 2 G/:

Now, if .x � �/� D 1 then `a
 D 0 for all 
 2 G. Since ` ¤ 0, we conclude that
a
 D 0 for all 
 . Hence� D 0. ut

8.3 The qth Root of .x � �/�

By the definition of Mihăilescu’s ideal, for every � 2 IM , the algebraic number
.x � �/� has a qth root in K . Actually, this root is unique and has some nice
properties.

Proposition 8.9. 1. For any � 2 IM there exists a unique ˛.�/ 2 K� such that
˛.�/q D .x � �/�.

2. For any �1;�2 2 IM we have

˛.�1 C�2/ D ˛.�1/˛.�2/: (8.5)

In other words, the map ˛ W IM ! K� is a group homomorphism.
3. For 
 2 G and� 2 IM we have ˛.�
/ D ˛.�/
 .
4. If jxj � 3 then for a nonzero � 2 IM we have ˛.�/ ¤ 1. In other words, the

homomorphism ˛ W IM ! K� is injective.
5. For any � 2 Iaug

M we have

h.˛.�// � 1

2q
k�k log.jxj C 1/: (8.6)

Proof. In part (1), only uniqueness is to be proved. Thus, let ˛1; ˛2 2 K satisfy
˛
q
1 D ˛

q
2 D .x � �/�. Then ˛1=˛2 2 K is a qth root of unity. Since K does not

contain qth roots of unity other than 1 (Proposition 4.4(4)), we obtain ˛1 D ˛2.
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To prove part (2), observe that both parts of (8.5) belong to K , and their qth
powers are equal to .x � �/�1C�2 . By the uniqueness, they should be equal.

Similarly one proves part (3): the qth powers of ˛.�/
 and of ˛.
�/ are both
equal to .x � �/
�. By the uniqueness, ˛.�/
 D ˛.
�/.

Part (4) follows from Proposition 8.8, and part (5) is a consequence of Proposi-
tion 8.6 and (B.9). ut

In the sequel, we shall exploit the notion of the nearest qth root of unity. Let z
be a nonzero complex number. Then there exists a unique qth root of unity 	 (called
the nearest qth root of unity for z) such that

��=q < arg
�
z	�1� � �=q :

Some simple properties of the nearest qth root of unity are collected in the following
proposition. The proofs are left to the reader.

Proposition 8.10. 1. Let z be a nonzero complex number and 	 its nearest qth root
of unity. Then

log
�
z	�1� D 1

q
log .zq/ :

2. Let z be a nonzero complex number and 	 its nearest qth root of unity. Assume
that jarg .zq/j < � (that is, zq is not a negative real number). Then 	�1 is the
nearest qth root of unity of z�1.

3. Let z1, z2 be nonzero complex numbers and 	1, 	2 their nearest qth roots of unity,
respectively. Assume that

ˇ̌
arg zq1

ˇ̌
;
ˇ̌
arg zq2

ˇ̌
< �=2. Then 	1	2 is the nearest qth

root of unity of z1z2.

Now we define a new map 	 W IM ! �q , where �q stands for the group of qth
roots of unity. For� 2 IM we let 	.�/ be the nearest qth root of unity for ˛.�/. As
we have seen in Proposition 8.7, when w.�/ D 0, the number ˛.�/q is “very close”
to 1 for large x. Hence ˛.�/ should, under the same assumptions, be “very close”
to 	.�/. Since ˛ W IM ! K� is a group homomorphism, we may expect from the
map 	 W Iaug

M ! �q certain “homomorphism-like” behavior. All this is realized in
the following proposition.

Proposition 8.11. 1. For any� 2 Iaug
M we have

ˇ̌
log

�
˛.�/	.�/�1

�ˇ̌ � 1

q

k�k
jxj � 1 : (8.7)

2. If � 2 Iaug
M satisfies k�k < �.jxj � 1/ then 	.��/ D 	.�/�1.
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3. If �1;�2 2 Iaug
M satisfy

k�1k ; k�2k < �

2
.jxj � 1/ ;

then

	.�1 C�2/ D 	.�1/	.�2/ :

Proof. Apply Propositions 8.7 and 8.10. ut
Let A and B be two groups and S a subset of A. We say that a map f W S ! B

is a quasi-homomorphism if for any x; y 2 S we have

f .x�1/ D f .x/�1; f .xy/ D f .x/f .y/ :

In these terms, parts (2) and (3) of Proposition 8.11 can be reformulated as follows:
for any r < �

2
.jxj � 1/ the map 	 W Iaug

M .r/ ! �q is a quasi-homomorphism.

8.4 Proof of Theorem 8.2

After all this preparation, we are ready to prove Theorem 8.2. Recall that we fix a
positive " � 1 and define

r D .2 � "/
q

p � 1 :

Let us rewrite (8.1) in the form we are going to use in the proof. First of all,

jxj �
�
20 � 2p�1

.p � 1/2

�1="
: (8.8)

Second, we have jxj � .4=�/q=.p � 1/C 1, which implies

r <
�

2
.jxj � 1/ : (8.9)

Theorem 8.2 is an easy consequence of the following statement.

Proposition 8.12. Assume (8.8) and (8.9), and let � 2 Iaug
M .2r/ satisfy 	.�/ D 1.

Then � D 0.
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Indeed, assume that Proposition 8.12 is true. Let �1;�2 2 Iaug
M .r/ satisfy

	.�1/ D 	.�2/. Inequality (8.9) implies that

k�1k; k�2k < �

2
.jxj � 1/ :

Then 	.�1 ��2/ D 1 by Proposition 8.11, and Proposition 8.12 implies that
�1 ��2 D 0. We have shown that the map 	 W Iaug

M .r/ ! �q is injective, which
proves Theorem 8.2.

For the proof of Proposition 8.12, we need a simple lemma.

Lemma 8.13. Let a be a positive real number. Then for any complex w, satisfying
jwj � a, we have

jew � 1j � ea � 1

a
jwj :

Proof. For jzj � 1 we have

jeaz � 1j D
ˇ̌
ˇ̌az C .az/2

2Š
C .az/3

3Š
C : : :

ˇ̌
ˇ̌ � a C a2

2Š
C a3

3Š
C : : : D ea � 1:

Hence the complex function f .z/ D .eaz � 1/=.ea � 1/ satisfies f .0/ D 0 and
jf .z/j � 1 for jzj � 1. By the Schwarz lemma, jf .z/j � jzj for jzj � 1. Putting
z D w=a, we obtain the result. ut
Proof of Proposition 8.12. Fix a nonzero � 2 Iaug

M .2r/ with 	.�/ D 1 and put
˛ D ˛.�/. Inequality (8.7) becomes

jlog˛j � 1

q

k�k
jxj � 1 : (8.10)

We shall obtain an upper estimate for j˛ � 1j, using (8.10), and a lower estimate,
using “Liouville’s inequality” (Proposition B.3). Then we shall see that the two
estimates are contradictory when (8.8) holds.

Throughout the proof we shall use the lower bound jxj � 20, which follows
from (8.8).

We start with the upper estimate. Since k�k � 2r < 4q=.p � 1/ by the assump-
tion, we have

j log˛j � 4

.p � 1/.jxj � 1/
� 2

19
;

because p � 3 and jxj � 20. Using Lemma 8.13, we obtain

j˛ � 1j � e2=19 � 1
2=19

j log˛j � 1:06

q

k�k
jxj � 1

: (8.11)
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On the other hand, ˛ ¤ 1 by Proposition 8.9(4). Hence we may estimate j˛ � 1j
from below, using “Liouville’s inequality” (B.13) (with ˛ � 1 instead of ˛):

j˛ � 1j2 � e�ŒKWQ�h.˛�1/ D e�.p�1/h.˛�1/: (8.12)

To make use of this, we have to estimate h.˛ � 1/. From (8.6) and (B.6) we obtain

h.˛ � 1/ � 1

2q
k�k log.jxj C 1/C log 2 : (8.13)

Now, combining the upper estimate (8.11) with the lower estimate (8.12), and taking
into account (8.13), we obtain

2

�
log.jxj � 1/� log

1:06k�k
q

�
� .p � 1/

�k�k
2q

log.jxj C 1/C log 2

�
:

Since

k�k � 2r D 2.2� "/
q

p � 1 ;

the inequality remains valid when we replace k�k by 2.2 � "/q=.p � 1/ in the
right-hand side and by 4q=.p � 1/ in the left-hand side. We obtain

2 log.jxj � 1/� 2 log
4:24

p � 1
� .2 � "/ log.jxj C 1/C .p � 1/ log 2;

which can be rewritten as

" log.jxj C 1/ � 2 log 4:24C 2 log
jxj C 1

jxj � 1 C log
2p�1

.p � 1/2
:

Using again the inequality jxj � 20, we obtain

" log.jxj C 1/ � 2 log 4:24C 2 log
21

19
C log

2p�1

.p � 1/2
< log

20 � 2p�1

.p � 1/2 ;

which contradicts (8.8). This proves Proposition 8.12 and Theorem 8.2. ut

8.5 Proof of Theorem 8.4

In this section, we prove Theorem 8.4. We start with a simple lemma, which gives
a quantitative version of the following obvious fact: if a complex number is “close”
to a qth root of unity, distinct from 1, then it cannot be close to 1.
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Lemma 8.14. Let ˛ be a nonzero complex number and 	 a qth root of unity, distinct
from 1. Assume that

ˇ̌
log.˛	�1/

ˇ̌ � 0:1=q. Then j˛ � 1j � 5=q.

Proof. Since 	 ¤ 1, we have 	 D e2�ik=q , where k 2 f1; 2; : : : ; q � 1g. Hence
j	 � 1j D 2 jsin.�k=q/j � 2 sin.�=q/. Since the function x 7! .sinx/=x decreases
on Œ0; �=2�, we have

sin.�=q/

�=q
� sin.�=3/

�=3
;

which implies

j	 � 1j � 2 sin.�=q/ � 2 � sin.�=3/

�=3
� �
q

� 5:19

q
:

Further, we use Lemma 8.13 to obtain

j˛ � 	j D ˇ̌
˛	�1 � 1

ˇ̌ � e0:1 � 1

0:1
� 0:1
q

� 0:11

q
:

Combining the two estimates, we obtain j˛ � 1j � 5:19=q � 0:11=q > 5=q, as
wanted. ut
Proof of Theorem 8.4. First of all, recall our assumptions:

p � .2 � "/q C 1; (8.14)

jxj �
�
20 � 2p�1

.p � 1/2

�1="
; (8.15)

x � 8qq: (8.16)

Inequality (8.16) implies that r D .2 � "/q=.p � 1/ satisfies

r � �

2
.jxj � 1/:

Together with (8.15) this implies that the assumptions of Proposition 8.12 are
satisfied.

Assume that Iaug
M 3 � with k�k D 2, and put ˛ D ˛.�/. We are going to

estimate from below j˛ � 1jv for all valuations v 2 MK . (For Archimedean v this
is equivalent to estimating j˛
 � 1j for all 
 2 G, which will be done using
Proposition 8.12 and Lemma 8.14.) Lower estimates for j˛ � 1jv would imply
an upper estimate for the height h

�
.˛ � 1/�1�, which is equal to h.˛ � 1/. This,

in turn, would imply an upper estimate for log jxj D h.x/, contradicting the
assumption (8.16).
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Now to the proof. Inequality (8.14) can be rewritten as 2r � 2. Hence,
Proposition 8.12 applies to � and we obtain 	 D 	.�/ ¤ 1. On the other hand,
inequality (8.16) implies that jxj � 8 � 33 D 216. Together with (8.7) this yieldsˇ̌
log

�
˛	�1�ˇ̌ < 0:1=q (we are very generous!), and Lemma 8.14 implies that

j˛ � 1j � 5=q.
We may apply the same argument for 
�, where 
 2 G. Since ˛.
�/ D ˛
 , we

obtain j˛
 � 1j > 5=q for any 
 2 G. Hence, denoting by M1
K the subset of MK

consisting of the Archimedean valuations, we obtain

1

ŒKWQ�
X

v2M1

K

log max
˚
1;
ˇ̌
.˛ � 1/�1ˇ̌

v

�

D 1

ŒKWQ�
X


2G
log max

n
1;
ˇ̌
ˇ.˛
 � 1/�1

ˇ̌
ˇ
o

� log
q

5
: (8.17)

Now write � D 
1 � 
2, where 
1 and 
2 are distinct elements of G,
and put �i D �
i . Assume that j˛ � 1jv < 1 for a non-Archimedean v. Then
j˛q � 1jv � j˛ � 1jv < 1. However,

˛q � 1 D .x � �/� � 1 D �2 � �1
x � �2

: (8.18)

It follows that, for a non-Archimedean v, we have

j˛ � 1jv � j�2 � �1jv D
(
p�1 if v j p;
1 otherwise:

Hence, denoting by Mf
K the subset of MK consisting of the non-Archimedean

valuations, and recalling that ŒKWQ� D p � 1, we obtain

1

ŒKWQ�
X

v2Mf
K

log max
˚
1;
ˇ̌
.˛ � 1/�1

ˇ̌
v

� � logp

p � 1
� log 3

2
:

Together with (8.17) this implies the estimate

h.˛ � 1/ D h
�
.˛ � 1/�1

� � log q � log
5p
3
< log q � log 2:

This and (B.6) imply that

h.˛/ � h.˛ � 1/C log 2 < log q:
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Now, rewriting (8.18) as

x D �2 � �1

˛q � 1 C �2;

and repeatedly using (B.6) and (B.9), we obtain

log jxj D h.x/ D h

�
�2 � �1
˛q � 1

C �2

�
� qh.˛/C 3 log 2 < q log q C log 8;

which contradicts (8.16). The theorem is proved. ut
Remark 8.15. With a slight additional effort 8qq can be replaced by 3qq and even
by qq for q � 5.

8.6 Application to Catalan’s Problem I: Divisibility
of the Class Number

In this section we apply Theorem 8.5 to Catalan’s equation. The following result is
due to Bugeaud and Hanrot [14].

Theorem 8.16. Let .x; y; p; q/ be a solution of Catalan’s equation with q > p.
Then q divides the class number hp .

Proof. Since p � 3 and q � 5, Hyyrö’s bound (3.18) implies that

jxj � pq�1.q � 1/q D q � 1

q

�
p.q � 1/

q

�q�1
qq � 4

5

�
12

5

�4
qq > 8qq:

Hence Theorem 8.5 applies in our case.
On the other hand, Proposition 6.5 can be formulated as follows: if q does not

divide hp then for any 
 2 G we have 
 � N
 2 IM . But 
 � N
 cannot belong to IM
by Theorem 8.5. Hence q j hp . ut

A fundamental consequence of this theorem is that for every p there exist only
finitely many possible q. (Indeed, if p is given, then any possible q should satisfy
either q < p or q j hp .) Originally, this was proved by Schinzel and Tijdeman [122]
using Baker’s method. See Theorem 13.18 for a more general result.

One more estimate for q in terms of p will be given in Theorem 8.19.
Besides this, Theorem 8.16 allows one to exclude many pairs of exponents p

and q. For this purpose, it is more practical to use the following refinement of
Theorem 8.16, also from [14].

Theorem 8.17. Let .x; y; p; q/ be a solution of Catalan’s equation with q > p.
Then q divides the relative class number h�

p .
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The proof is the same as for Theorem 8.16, but Proposition 6.5 should be replaced
by the refinement indicated in Remark 6.6.

Corollary 8.18. Let .x; y; p; q/ be a solution of Catalan’s equation. Then
p; q � 43.

Proof. We may assume that q > p. Theorem 8.17 implies that q j h�
p . However,

according to Table 5.1, forp � 41 the prime divisors of the relative class number h�
p

do not exceed p. This proves the corollary. ut
Using Corollary 6.15, one can go further. For instance, since h�

43 D 211, we have
q D 211 for p D 43. However,

21142 6� 1 mod 432;

which contradicts Corollary 6.15. It follows that p � 47 and so on.
Let us mention that Mihăilescu [94] showed, by a curious p-adic argument, that

Theorem 8.17 holds without the assumption q > p. We do not use this result in the
present book.

8.7 Application to Catalan’s Problem II: Mihăilescu’s
Ideal vs Stickelberger’s Ideal

In this section we apply Theorem 8.2 to Catalan’s problem. Roughly speaking,
this theorem tells us that Mihăilescu’s ideal contains “few” elements of small
size and weight 0. On the other hand, Stickelberger’s Theorem 7.1, together with
Proposition 6.11, implies that

IM � .1 � �/IS (8.19)

whenever .x; y; p; q/ is a solution of Catalan’s equation. From this one can deduce
that Mihăilescu’s ideal contains “many” small elements of weight 0. Elaborating
this idea, we prove the following theorem.

Theorem 8.19 (Mihăilescu). Let .x; y; p; q/ be a solution of Catalan’s equation.
Then q < 3.p � 1/2.

This theorem and Mihăilescu’s “double Wieferich” criterion (Corollary 6.15)
have the following consequence, which will be crucial in Chap. 11.

Corollary 8.20. Let .x; y; p; q/ be a solution of Catalan’s equation. Then
q 6� 1 modp (and, by symmetry, p 6� 1 modq).

Proof. Assume that q � 1 modp. In addition to this, we have qp�1 � 1 modp2,
by Corollary 6.15. The two congruences together imply that q � 1 modp2.
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Now observe that equalities q D 1C p2 and 1C 3p2 are impossible because
bothp and q are odd. Also, q D 1C 2p2 is impossible, because 1C 2p2 is divisible
by 3 when p > 3. (We can dismiss the case p D 3 by Corollary 8.18.) Thus,
q � 1C 4p2, which contradicts Theorem 8.19. ut

The proof of Theorem 8.19 requires a lower bound for the cardinality of the r-
ball of the ideal .1 � �/IS . First of all, let us estimate the size of the elements of the
basis (7.17). We use the notation

I� D .1 � �/IS ; ��
b D .1 � �/�b :

Proposition 8.21. For b D 1; : : : ; p � 2 we have �b � 0. Also,

k�bk D w.�b/ D p � 1
2

; k��
b k � p � 1:

Proof. Using (7.1), we obtain

�b D
p�1X

aD1

�

.b C 1/a

p

�
�


ba

p

��

�1
a � 0:

Further, a straightforward calculation shows that w.�/ D .p � 1/=2. It follows that

w.�b/ D w.b � 
b/w.�/ D .b � 1/
p � 1
2

:

Since �b � 0, we obtain

k�bk D w.�b/ D w.�bC1/� w.�b/ D p � 1

2
:

Finally,

k��
b k � k1 � �k � k�bk D p � 1: (8.20)

The proposition is proved. ut
Next, we estimate the number of integral solutions of the inequality

jx1j C � � � C jxnj � r: (8.21)

Let n be a positive integer and r a positive real number. Denote by S.n; r/ the
number of points .x1; : : : ; xn/ 2 Z

n satisfying (8.21).
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Proposition 8.22. 1. Let n and m be positive integers. Then

S.n;m/ D
minfm;ngX

kD0
2k

 
n

k

! 
m

k

!
: (8.22)

2. Let n be an integer satisfying n � 15 and r a real number satisfying r � 3. Then

S.n; r/ > 4n2r: (8.23)

Proof. Part (1) is a standard exercise in combinatorics. There are exactly
�
m
k

�

solutions of the inequality y1 C � � � C yk � m in positive integers y1; : : : ; yk .
Indeed, the map

.y1; : : : ; yk/ 7! fy1; y1 C y2; : : : ; y1 C y2 C � � � C ykg

is a one-to-one correspondence between the solutions of this inequality and the
subsets of f1; 2; : : : ; mg.

It follows that y1 C � � � C yn � m has exactly
�
n
k

��
m
k

�
solutions in nonnegative

integers y1; : : : ; yn among which exactly k are positive. Hence there are exactly
2k
�
n
k

��
m
k

�
solutions of (8.21) (with r D m) in integers x1; : : : ; xn among which

exactly k are nonzero. Summing up, we obtain (8.22).
To prove part (2), put m D brc. Since n � 15 andm � 3, we have

S.n; r/ D S.n;m/ � 8

 
n

3

! 
m

3

!

D 2

9
n.n � 1/.n� 2/m.m� 1/.m � 2/

� 2

9
� 14
15

� n2 � 13 � 3
4

� .mC 1/ � 2 � 1

D 182

45
n2.mC 1/ > 4n2r;

as wanted. ut
In part (2), the assumption n � 15 is not really important and can be easily

relaxed. However, the assumption r � 3 is substantial. Indeed, for 2 � r < 3 we
have S.n; r/ D 2n2 C 2nC 1, and (8.23) cannot hold.

It is curious that (8.22) implies the equality S.n;m/ D S.m; n/. It would be
interesting to find a geometric interpretation of this identity.

Now we are ready to state and prove the promised lower estimate for jI�.r/j.
Proposition 8.23. Assume that p � 31 and r � 3.p � 1/. Then

jI�.r/j > .p � 1/r:
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Proof. Put n D .p � 1/=2 and � D r=.p � 1/. Let .x1; : : : ; xn/ be an integral
vector such that jx1j C � � � C jxnj � �. Inequality (8.20) implies that

x1�
�
1 C � � � C xn�

�
n 2 I�.r/:

It follows that jI�.r/j � S .n; �/.
By the assumption, n � 15 and � � 3. Hence we may use Proposition 8.22(2).

We obtain

jI�.r/j > 4n2� D .p � 1/r;

as wanted. ut
It is not difficult to show that jI�.r/j � c.p/r.p�1/=2 when r ! 1. (Here

c.p/ > 0 depends only on p .) Hence for large r Proposition 8.23 can be substan-
tially refined. However, the estimate from Proposition 8.23 is sufficient for us.

Proof of Theorem 8.19. As indicated in the beginning of this section, Stickel-
berger’s Theorem 7.1 and Proposition 6.11 jointly imply that I� D .1 � �/IS is
contained in Mihăilescu’s ideal IM . Moreover, since all the elements of I� are of
weight 0, we obtain Iaug

M � I�.
Put r D q=.p � 1/. Hyyrö’s inequality (3.18) implies that the hypothesis

jxj � max
˚
2pC2; q

�
of Theorem 8.3 is satisfied. This theorem tells us that

ˇ̌Iaug
M .r/

ˇ̌ � q: (8.24)

Now suppose that q � 3.p � 1/2. Then r � 3.p � 1/. Also, we may assume that
p � 31 by Corollary 8.18. The hypothesis of Proposition 8.23 being satisfied, we
have

ˇ̌Iaug
M .r/

ˇ̌ � jI�.r/j > .p � 1/r D q;

which contradicts (8.24). The theorem is proved. ut

8.8 On the Real Part of Mihăilescu’s Ideal

Recall (see Sect. 7.7) that the real part of the ring R D ZŒG� is the ideal
RC WD .1C �/R and the relative part is the ideal R� WD .1 � �/R. The real and
relative parts of an ideal I of R are defined by IC D I \RC and I� D I \ R�.

As we have seen before, when x is large enough, Mihăilescu’s ideal has at
most q elements of weight 0 and size not exceeding 2q=.p � 1/ and no elements of
weight 0 and size 2. In this section we obtain a stronger assertion for the real part of
Mihăilescu’s ideal.
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Theorem 8.24. Assume that 0 < " � 1 and jxj � 221=". Then IC
M has no nonzero

elements of weight 0 and size not exceeding .2 � "/q.

The weight of elements ofRC being even, the inequality k�k < 2q is equivalent
to k�k � 2q � 2. Hence, specifying " D 2=q, we obtain the following statement:
if jxj � 5q then IC

M has no nonzero elements� with w.�/ D 0 and k�k < 2q.
Theorem 8.24 is formally obsolete, because in Chap. 9 we shall obtain a much

stronger statement: for large x the real part of Mihăilescu’s ideal has no nontrivial1

elements of weight 0. However, we include the proof here, to illustrate the principles
used in the “real case,” and let the reader appreciate the more powerful method of
Chap. 9 as compared with the method of this section.

The proof of Theorem 8.24 relies on the following simple but absolutely crucial
property. We use the notation of Sect. 8.3.

Proposition 8.25. Let � belong to the real part of Mihăilescu’s ideal. Then ˛.�/
is a positive real number. In particular, 	.�/ D 1.

Proof. Observe first of all that for � 2 RC the number .x � �/� is real and
positive and, in particular, belongs to the real cyclotomic field KC. Indeed, writing
� D .1C �/�0, we obtain .x � �/� D .x � �/�

0

.x � �/�
0

> 0.
Now assume that � 2 IC

M . Since .x � �/� 2 KC, the complex conjugate ˛.�/
is a qth root of .x � �/�. Since K contains only one qth root of .x � �/� , we have
˛.�/ D ˛.�/. Hence ˛.�/ 2 R. Since .x � �/� is positive, so is ˛.�/. ut
Proof of Theorem 8.24. Let � 2 IC

M satisfy w.�/ D 0 and k�k � .2 � "/q. By
Proposition 8.25, the nearest root of unity for ˛.�/ is 1. Moreover, applying
this proposition with �
 instead of �, we see that the same is true for all
conjugates ˛.�/
 . In the sequel we write ˛ instead of ˛.�/.

Now we argue as in the proof of Proposition 8.12. The only difference is that this
time not only ˛ is close to 1, but all its conjugates are as well. We are going to profit
from this.

As in the proof of Proposition 8.12, we start with the inequality

jlog˛
 j � 1

q

k�k
jxj � 1 ;

which holds for every 
 2 G. Since k�k � 2q and jxj � 22, this implies
jlog˛
 j � 2=21. Using Lemma 8.13, we obtain

j˛
 � 1j � e2=21 � 1

2=21
jlog˛
 j � 1:05

q

k�k
jxj � 1

1that is, non-divisible by q
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for all 
 2 G. In other words,

j˛ � 1jv �
�
1:05

q

k�k
jxj � 1

�2
(8.25)

for every Archimedean valuation v of the field K .
Using Liouville’s inequality (B.12) with S D M1

K , the set of all Archimedean
valuations of K , we obtain

Y

v2M1

K

j˛ � 1jv � e�.p�1/h.˛�1/:

Together with (8.13) and (8.25), this implies

�
1:05

q

k�k
jxj � 1

�p�1
< exp

�
�.p � 1/

�k�k
2q

log.jxj C 1/C log 2

��
;

that is

log.jxj � 1/� log
1:05k�k

q
� k�k

2q
log.jxj C 1/C log 2:

Replacing k�k by .2 � "/q in the right-hand side and by 2q in the left-hand side,
we obtain

log.jxj � 1/� log 2:1 �
�
1 � "

2

�
log.jxj C 1/C log 2;

which easily transforms into

" log.jxj C 1/ < 2 log
jxj C 1

jxj � 1
C 2 log 4:2 :

Since x � 22, this implies

" log.jxj C 1/ < 2 log
23

21
C 2 log 4:2 < log 22;

which contradicts the assumption jxj � 221=". ut



Chapter 9
The Real Part of Mihăilescu’s Ideal

In this chapter we continue our study of Mihăilescu’s ideal. As follows from
the definition of this ideal, given in Chap. 8, it contains the ideal qZŒG� of
the elements divisible by q. A basic question is whether Mihăilescu’s ideal has
nontrivial (that is, not divisible by q) elements. In Chap. 8 we showed that, when x
is large, Mihăilescu’s ideal contains at most q elements � with w.�/ D 0 and
k�k < 2q=.p � 1/. Moreover, in Sect. 8.8 we showed that, when x is large, the real
part IC

M of Mihăilescu’s ideal contains no � ¤ 0 with w.�/ D 0 and k�k < 2q.
In this chapter we go further and prove that (for large x) the real part IC

M contains
no nontrivial elements of weight 0 and even of any weight divisible by q.

On the other hand, in Chap. 11 we shall see that a solution to Catalan’s equation
implies a nontrivial element of IC

M of weight divisible by q. This contradiction
would prove Catalan’s conjecture.

As usual, p and q are distinct odd primes1, � is a primitive p th root of unity,
K D Q.�/ is the pth cyclotomic Field, and G D Gal.K=Q/ is its Galois group
over Q.

9.1 The Main Theorem

As in Chap. 8, we fix a nonzero integer x and define Mihăilescu’s ideal IM as the
set of all elements � of the group ring R D ZŒG� such that .x � �/� is a qth power
in K . Let IC

M D IM \ RC be the real part of Mihăilescu’s ideal. An element of
Mihăilescu’s ideal is called trivial if it is divisible by q in the ring R.

In this chapter we prove the following theorem.

Theorem 9.1 (Mihăilescu). Assume that jxj � .8q/.p�1/=2. Then IC
M has no non-

trivial elements of weight 0.

1Like in Chap. 8, we do not assume that p and q come out of a solution of Catalan’s equation.

© Springer International Publishing Switzerland 2014
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In other words, for large x we have IC
M \Raug 
 qRaug, where Raug is the

augmentation ideal of R.
If .x; y; p; q/ is a solution of Catalan’s equation, then q � 43 by Corol-

lary 8.18, and Hyyrö’s bound (3.18) implies that jxj � qp�1 � .43q/.p�1/=2. Hence
Theorem 9.1 applies in this case.

To give an idea of the proof, recall that in the proof of Theorem 8.24, we
approximated the qth root ˛, together with all its conjugates, by 1. When the size
of� is not too large, this approximation is so good that it implies an equality, which
is impossible.

Unfortunately, this argument fails if the size of � exceeds (or is equal to) 2q.
This resembles the situation with the proof of Cassels’ divisibility theorem in
Sect. 3.3: the simple approximationy 
 ap was sufficient for the “easy” case p < q
but insufficient when p > q.

In the proof of Theorem 9.1 we argue as in the “difficult” case of Cassels’
theorem. We approximate the qth root by a partial sum of a certain power series.
Next, we show that the approximation is so good that it implies the equality of the
corresponding quantities. However, the equality is impossible, because one of the
numbers is an algebraic integer, but the other is not.

In brief, Theorem 9.1 relates to Theorem 8.24 in the same way as the “dif-
ficult” case of Cassels’ theorem (Proposition 3.10) relates to the “easy” case
(Proposition 3.8).

We conclude this section with a few technical comments concerning the proof of
Theorem 9.1. First of all, it is more convenient to prove (and to use) the following
equivalent statement.

Theorem 9.2. Assume that jxj � .8q/.p�1/=2. Then IC
M has no nontrivial elements

of weight divisible by q.

Again, as we have seen above, Theorem 9.2 applies in the case when .x; y; p; q/
is a solution of Catalan’s equation.

Though Theorem 9.2 looks formally stronger than Theorem 9.1, the two are, in
fact, equivalent. Indeed, let � be a nontrivial element of IC

M of weight mq, where
m 2 Z. Since � 2 RC, the weight of � is even. Hence m is even; write m D 2n.
Then� � nq.1C �/ is a nontrivial element of IC

M of weight 0.
Further, we may assume � nonnegative2 and of bounded size. Indeed, write

� D P

2G a

 , and for each 
 2 G let a0


 be the remainder of the Euclidean
division of a
 by q; that is,

0 � a0

 � q � 1; a0


 � a
 mod q: (9.1)

Put �0 D P

2G a0



 . Then �0 is a nontrivial element of IC
M if and only if � is.

Thus, we shall not restrict generality if we assume in Theorem 9.2 that � � 0 and
that w.�/ � .q � 1/.p � 1/. In fact, we can do even better.

2Recall that � D P

2G a

 is called nonnegative (notation: � � 0) if a
 � 0 for all 
 2 G.
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Proposition 9.3. For every � 2 R there exists a nonnegative�0 2 R satisfying

k�0k D w.�0/ � q.p � 1/

2

and congruent either to � or to �� modulo qR. Also, if � 2 RC then�0 2 RC as
well. In particular,�0 is a nontrivial element of IC

M if and only if � is.

Proof. We again write � D P

2G a

 and define a0


 as in (9.1). Put

�0
1 D

X


2G
a0


; �0

2 D
X


2G
.q � a0


 /
 D qN ��0
1:

Obviously, both�0
1 and �0

2 are nonnegative and satisfy

�0
1 � � mod qR; �0

2 � �� modqR:

Also, both �0
1 and �0

2 belong to RC if � does.
Finally, since �0

1 C�0
2 D qN , we have w.�0

1/C w.�0
2/ D q.p � 1/. Hence at

least one of the two weights does not exceed q.p � 1/=2. ut
Thus, in the proof of Theorem 9.2 we may assume that � � 0 and that

w.�/ � q.p � 1/=2.

9.2 Products of Binomial Power Series

The proof of Theorem 3.3 relied on simple arithmetical and analytic properties of
the binomial power series .1C T /� . For the proof of Theorem 9.2 we need similar
properties of more general power series. In this section we extend Lemma 3.6 to
series of the form

.1C 	1T /
�1 � � � .1C 	rT /

�r :

In the sequel, the capital letter T will stand for an independent variable, and
small t will be a complex number. If A.T / D a0 C a1T C a2T

2 C � � � is a formal
power series with complex coefficients, then we denote by A.t/ its sum at T D t

(of course, provided the numerical series a0 C a1t C a2t
2 C � � � converges).

For a complex number 	 and a real number � we consider the binomial power
series

.1C 	T /� D
1X

kD0

 
�

k

!
	kT k:
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Now fix complex numbers 	1; : : : ; 	r and real numbers �1; : : : ; �r and consider the
power series

F.T / D .1C 	1T /
�1 � � � .1C 	rT /

�r D f0 C f1T C f2T
2 C � � � ;

which is obtained by formal multiplication of the corresponding binomial series; in
particular,

f0 D 1; f1 D �1	1 C � � � C �r	r ;

and so on.
For every nonnegative integerm we define the mth partial sum by

Fm.T / D f0 C f1T C � � � C fmT
m:

We want to estimate the difference F.t/ � Fm.t/. We may assume that

max fj	1j; : : : ; j	r jg � 1; (9.2)

because the general case reduces to (9.2) by an obvious change of variables.

Proposition 9.4. Assume that (9.2) holds. Then for any complex t satisfying jt j < 1
we have

jF.t/ � Fm.t/j � .1 � jt j/���m�1
ˇ̌
ˇ̌
ˇ

 
�Cm

mC 1

!ˇ̌
ˇ̌
ˇ jt j

mC1; (9.3)

where � D j�1j C � � � C j�r j.
The proof requires the notion of dominance of power series. Let A.t/ DP1
kD0 akT k be a series with complex coefficients, and let QA.t/ D P1

kD0 QakT k be
a series with nonnegative real coefficients. We say that A.T / is dominated by QA.t/
(notation: A.T / � QA.T /) if jakj � Qak for k D 0; 1; 2 : : :. The following properties
are immediate.

Proposition 9.5. 1. The relation of dominance is preserved by addition and mul-
tiplication of power series; that is, if A.T / � QA.T / and B.T / � QB.T /, then
A.T /C B.T / � QA.T /C QB.T / and A.T /B.T / � QA.T / QB.T /.

2. If A.T / � QA.T / and t is a complex number such that QA.T / converges at
T D jt j, then A.T / converges at T D t , and jA.t/j � QA.jt j/. Moreover, for any
nonnegative integerm, we have

jA.t/ � Am.t/j � ˇ̌ QA.jt j/� QAm.jt j/
ˇ̌
;

where Am.T / and QAm.T / are the mth partial sums of the corresponding series.

Proof of Proposition 9.4. For any real number � and any nonnegative integer k we
have
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ˇ̌
ˇ̌
ˇ

 
�

k

!ˇ̌
ˇ̌
ˇ � j�j.j�j C 1/ � � � .j�j C jk � 1j/

kŠ
D .�1/k

 
�j�j
k

!
:

It follows that the series .1C 	T /� is dominated by .1 � j	jT /�j�j, and, when
j	j � 1, it is dominated by .1 � T /�j�j. Hence our series F.T / is dominated by
QF .T / D .1 � T /��, where � D j�1j C � � � C j�r j.

Now, using Taylor’s formula as in the proof of Lemma 3.6, we obtain

jF.t/ � Fm.t/j � ˇ̌ QF .jt j/ � QFm.jt j/
ˇ̌

� sup
0���1

ˇ̌
ˇ̌
ˇ̌

0

@dmC1.1 � T /��
dT mC1

ˇ̌
ˇ̌
ˇ
TD� jt j

1

A

ˇ̌
ˇ̌
ˇ̌

jt jmC1

.mC 1/Š

D .1 � jt j/���m�1
ˇ̌
ˇ̌
ˇ

 
��
mC 1

!ˇ̌
ˇ̌
ˇ jt j

mC1:

Since
ˇ̌
ˇ̌
ˇ

 
��
mC 1

!ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ

 
�Cm

mC 1

!ˇ̌
ˇ̌
ˇ ;

the proposition follows. ut

9.3 Mihăilescu’s Series .1 C �T /�=q

In this section we fix

� D
X


2G
a

 2 ZŒG�;

and investigate the power series .1C �T /�=q , which is defined by

.1C �T /�=q D
Y


2G
.1C �
T /a
 =q: (9.4)

Write

.1C �T /�=q D f0.�/C f1.�/T C f2.�/T
2 C � � � ;

so that
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f0.�/ D 1; f1.�/ D 1

q

X


2G
a
�


 ;

and so on.
First of all, we state few simple properties of Mihăilescu’s series that follow

immediately from the definition. Observe that the Galois group G D Gal.K=Q/
acts on the ringKŒŒT �� of formal power series coefficient wise: if

A.T / D a0 C a1T C a2T
2 C : : :

is a formal power series with coefficients in K , then we put

A
.T / WD a
0 C a
1 T C a
2 T
2 C : : :

An obvious verification shows that this action is compatible with the arithmetic
operations on power series: we have .A.T /C B.T //
 D A
.T /C B
.T / and
.A.T /B.T //
 D A
.T /B
.T /.

The series .1C �T /�=q converges at T D t when t is a complex number with
jt j < 1, and we denote the sum by .1C �t/�=q.

Proposition 9.6. 1. For any � 2 R and 
 2 G we have

�
.1C �T /�=q

�
 D .1C �T /�
=q

In other words,

fk.�/

 D fk.�
/ .k D 0; 1; 2; : : :/:

2. If � 2 RC then Mihăilescu’s series .1C �T /�=q has real coefficients. In partic-
ular, for any real t with jt j < 1, we have .1C �t/�=q 2 R.

Proof. Put F.T / D �
.1C �T /�=q

�

and G.T / D .1C �T /�
=q . Then

F.T /q D G.T /q D .1C �T /�
 :

It follows that F.T / D 	G.T /, where 	 is a qth root of unity. Since

F.0/ D G.0/ D 1

we have 	 D 1. This proves part (1).
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Now assume that � 2 RC, and write � D �0.1C �/. Then, using part (1), we
obtain

.1C �T /�=q D .1C �T /�
0=q.1C �T /�

0�=q

D .1C �T /�
0=q
�
.1C �T /�

0=q
��

D .1C �T /�
0=q.1C �T /�

0=q:

Hence .1C �T /�=q has real coefficients as a product of two complex conjugate
series. This proves part (2). ut

We want to study the arithmetic of the coefficients fk.�/, as we did in
Lemma 3.5 for the usual binomial power series. Sometimes we shall write fk instead
of fk.�/ when this does not lead to a confusion. In the sequel the number

�.�/ D
X


2G
a
�


 D qf1.�/

will play the central role.

Theorem 9.7. 1. The number qkCOrdq .kŠ/fk.�/ is an algebraic integer.
2. Let q be a prime ideal of the cyclotomic field K , dividing q but not dividing the

number �.�/ defined above. Then

Ordq.fk/ D �k � Ordq.kŠ/ .k D 0; 1; 2; : : :/:

In particular, for such q we have

0 D Ordq.f0/ > Ordq.f1/ > Ordq.f2/ > : : :

Put �k D �k.�/ D kŠqkfk.�/, so that

.1C �qT /�=q D
1X

kD0

�k.�/

kŠ
T k:

Theorem 9.7 is an easy consequence of the following statement.

Proposition 9.8. The numbers �k.�/ are algebraic integers satisfying the
congruence

�k.�/ � �.�/k mod q

for k D 0; 1; 2; : : :
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Proof of Theorem 9.7 (assuming Proposition 9.8). Let a be an integer. Lemma 3.5
implies that for every k the binomial coefficient

�
a=q
k

�
is an integer divided by a

power of q. Hence every of the coefficients fk.�/ is an algebraic integer divided by
a power of q; in other words, for each k there exists an integerN such that qNfk.�/
is an algebraic integer.

On the other hands, Proposition 9.8 implies that qkkŠfk.�/ is an algebraic
integer. Hence qkCOrdq.kŠ/fk.�/ is an algebraic integer. This proves part (1).

Next, let q be a prime ideal dividing q but not dividing �.�/. Since
�k.�/ � �.�/k mod q, we have Ordq.�k/ D 0. Hence

Ordq.fk/ D Ordq

�
�k

qkkŠ

�
D �e.k C Ordq.kŠ//;

where e D Ordq.q/. Since q is unramified in K (Proposition 4.8), we have e D 1.
This proves part (2). ut

The proof of Proposition 9.8 relies on the following purely algebraic lemma.

Lemma 9.9. Let R be an integral domain of characteristic 0, let A.T /, B.T /, and
C.T / D A.T /B.T / be formal power series over its field of quotients, and let a be
an ideal of R. Write

A.T / D
1X

kD0

˛k

kŠ
T k; B.T / D

1X

kD0

ˇk

kŠ
T k; C.T / D

1X

kD0

�k

kŠ
T k

and assume that all the coefficients ˛k and ˇk belong to R. Further, assume that
there exist ˛; ˇ 2 R such that

˛k � ˛k mod a; ˇk � ˇk mod a .k D 0; 1; 2; : : :/:

Then the coefficients �k also belong to R and satisfy

�k � .˛ C ˇ/k mod a .k D 0; 1; 2; : : :/:

Proof. We have �k D Pk
jD0

�
k

j

�
˛j ˇk�j . Hence �k 2 R and

�k �
kX

jD0

 
k

j

!
˛j ˇk�j � .˛ C ˇ/k mod a;

as wanted. ut
Proof of Proposition 9.8. Lemma 9.9 implies that the statement of the proposition
is additive in�. That is, if�1;�2 2 ZŒG� are such that for all k the numbers�k.�1/
and �k.�2/ are algebraic integers satisfying

�k.�1/ � �.�1/
k modq; �k.�2/ � �.�2/

k mod q;
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then the numbers �k.�1 C�2/ are algebraic integers satisfying

�k.�1 C�2/ � �.�1 C�2/
k mod q:

Thus, it remains to verify the statement of the proposition for � D ˙
 . For
� D 
 we have

fk.
/ D
 
1=q

k

!
.�
/k D 1 � .1 � q/ � � � .1 � .k � 1/q/

qkkŠ
.�
 /k:

Hence �k.
/ D 1 � .1� q/ � � � .1 � .k � 1/q/.�
/k � .�
 /k modq. Similarly, one
shows that �k.�
/ � .��
 /k modq. The proposition is proved. ut

Finally, we wish to adapt Proposition 9.4 to Mihăilescu’s series. Recall that we
denote by .1C �t/�=q the sum of .1C �T /�=q at T D t .

Proposition 9.10. Let m be a nonnegative integer and t a complex number with
jt j < 1. Then

ˇ̌
ˇ̌
ˇ.1C �t/�=q �

mX

kD0
fk.�/t

k

ˇ̌
ˇ̌
ˇ � .1 � jt j/���m�1

ˇ̌
ˇ̌
ˇ

 
�Cm

mC 1

!ˇ̌
ˇ̌
ˇ jt j

mC1;

where � D k�k
q

.

Proof. This is a direct application of Proposition 9.4. ut

9.4 Proof of Theorem 9.2

Let� be a nontrivial element of the real part IC
M of Stickelberger’s ideal, and assume

that the weight of � is divisible by q. As follows from Proposition 9.3, we may
assume that � � 0 and that

k�k D w.�/ � q.p � 1/
2

:

We shall use this later in the proof. Also, the assumption jxj � .8q/.p�1/=2 implies
that x � 40, which will be used in the proof as well.

Denote by ˛ D ˛.�/ the qth root of .x � �/� belonging to K . As indicated in
the introduction, we wish to approximate ˛ by a partial sum of a certain power
series. To do this, we have to express ˛ as the sum of a certain power series. In the
proof of Cassels’ theorem we used binomial power series; this time we need more
complicated Mihăilescu series.
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Write w.�/ D �q, where, by the assumption, � 2 Z. Moreover, since � is
nonnegative and nonzero,� is a positive integer. Analytically, a qth root of .x � �/�
can be given by x�.1 � �=x/�=q , where .1 � �=x/�=q is the sum of Mihăilescu’s
series .1C �T /�=q at T D �1=x. A priori, there is no reason for ˛ to be equal to
this quantity; all we can assert, without an additional assumption about�, is that ˛
is equal to x�.1 � �=x/�=q times a qth root of unity.

It is crucial that, in our special case � 2 IC
M , we do have the equality

˛ D x�.1 � �=x/�=q: (9.5)

Indeed, both parts of (9.5) are real numbers: ˛ 2 R by Proposition 8.25 and
.1 � �=x/�=q 2 R by Proposition 9.6. Thus, both parts of (9.5) are equal to the real
qth root of .x � �/�.

It follows that ˛ can be approximated by x�Fm.�1=x/, where

Fm.T / D f0.�/C f1.�/T C � � � C fm.�/T
m

is themth partial sum of Mihăilescu’s series .1C �T /�=q . More precisely, Proposi-
tion 9.10 implies that

ˇ̌
ˇ̌˛ � x�Fm

�
� 1
x

�ˇ̌
ˇ̌ �

�
1 � 1

jxj
����m�1  

�Cm

mC 1

!
jxj��m�1:

Since x � 40 and3
�
�Cm
mC1

� � 2mC��1, we have

ˇ̌
ˇ̌˛ � x�Fm

�
� 1
x

�ˇ̌
ˇ̌ � 2:1mC�jxj��m�1:

From now on we put m D �. It will be convenient to multiply the difference
˛ � x�F�.�1=x/ by q�COrdq .�Š/, to get an algebraic integer (see Theorem 9.7).
Thus, put

ˇ D ˇ.�/ D q�COrdq.�Š/
�
˛.�/ � x�F�

�
� 1
x

��

D q�COrdq.�Š/

 
˛.�/ �

�X

kD0
.�1/kfk.�/x��k

!
:

3It is easy to see that, for integers a > 0 and b 2 f0; : : : ; ag, the binomial coefficient
�
a
b

�
satisfies�

a
b

� � 2a�1 . Indeed, the cases b D 0 and b D a are obvious, and for 0 < b < a we have�
a
b

� D �
a�1
b�1

�C �
a�1
b

� � Pa�1
kD0

�
a�1
k

� D 2a�1 .
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Then ˇ is an algebraic integer, satisfying

jˇj � q�COrdq.�Š/ � 2:12�jxj�1:

Since Ordq.�Š/ � �=.q � 1/, we have qOrdq.�Š/ � �
q1=.q�1/�� �

�p
3
��

, which

implies

jˇj �
�
2:12 � p

3q
�� jxj�1 < .8q/�jxj�1:

Now recall that w.�/ � q.p � 1/=2, which means that � � .p � 1/=2. Using our
assumption jxj � .8q/.p�1/=2, we obtain jˇj < 1.

If ˇ were a rational integer, this would have been sufficient to conclude that
ˇ D 0. However, it is merely an algebraic integer, so we have to estimate all
its conjugates to make a similar conclusion. Recall that, for 
 2 G, we have
˛.�/
 D ˛.�
/ (Proposition 8.9(3)) and fk.�/
 D fk.�
/ (Proposition 9.6(1)).
It follows that ˇ.�/
 D ˇ.�
/. Hence, applying the previous estimates with �

instead of �, we obtain jˇ
 j < 1 for every 
 2 G.

Thus, ˇ is algebraic integer with all conjugates strictly smaller than 1 in absolute
value. Hence ˇ D 0, that is, ˛ D x�F�.�1=x/. We are going to show that this
equality is impossible.

Since � � 0, the number .x � �/� is an algebraic integer. Hence so is ˛.�/.
We shall see that the number x�F�.�1=x/ is not an algebraic integer. By the
assumption, � is not divisible by q. That is, if we write � D P


2G a

 , then at
least one of the coefficients a
 is not a multiple of q. Hence the algebraic number
�.�/ D P


2G a
�
 is not divisible by q either4. Let q be a prime ideal above q
which does not divide �.�/. Theorem 9.7:2 implies that

0 D Ordq.f0/ > Ordq.f1x�1/ > : : : > Ordq.f�x��/

(we write fk instead of fk.�/). Hence Ordq
�
F�.�1=x/

� D Ordq
�
f�x

���.
It follows that

Ordq
�
x�F�.�1=x/

� D Ordq
�
f�
�
< 0:

This proves that x�F�.�1=x/ is not an algebraic integer. In particular,
˛ ¤ x�Fm.�1=x/. The theorem is proved.

We conclude this section with a general remark. In the course of our argument
we have implicitly proved (and used) the following statement: let � belong to the
real part of Mihăilescu’s ideal, and let F.T / D .1C �T /�=q be the corresponding
Mihăilescu series; then F 
.�1=x/ D F.�1=x/
 for any 
 2 G. That is, when we
apply 
 to the coefficients of the power series F.T /, then the sum at T D �1=x of
the new series is the 
-conjugate of the original sum.

4Because OK D ZŒ��, see Theorem 4.6.
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It is important that a similar general statement is not true. Indeed, let

A.T / D a0 C a1T C a2T
2 C � � �

be a formal power series with coefficients in some number field. Also, let t be
a rational number; assume that the series A.T / converges at T D t and that the
sum A.t/ is an algebraic number as well.

Let 
 be an automorphism of a number field containing the coefficients
a0; a1; a2; : : : and the sum A.t/. Then it is not true, in general, that the series
A
.T / D a
0 C a
1 T C a
2 T

2 C � � � converges at T D t . Moreover, even if it does
converge, it is not true, in general, that A
.t/ D A.t/
 .

Example 9.11. 1. The series
P1

kD0.1 � p
2/kT k converges at T D 1, but the seriesP1

kD0.1C p
2/kT k does not.

2. The series

A.T / D p
3.1C T /1=2 D

1X

kD0

p
3

 
1=2

k

!
T k:

converges at T D 1=3, and A.1=3/ D p
3.1C 1=3/1=2 D 2. Let 
 be the non-

trivial automorphism of Q.
p
3/. Then A
.T / D �A.T / also converges at

T D 1=3, but A
.1=3/ D �2 ¤ A.1=3/
 .

The reason for this unfortunate fact is simple: Galois automorphisms are, in
general, not continuous in the complex topology (the only exception is the complex
conjugation). Therefore one always has to be careful applying Galois action to
convergent power series.



Chapter 10
Cyclotomic Units

In this short chapter we give a brief introduction to the beautiful theory of
cyclotomic units, which can be viewed as a “real analogue” of Stickelberger’s ideal.
In particular, we prove the real class number formula (10.6).

10.1 The Circulant Determinant

This section is preparatory. We calculate a special determinant needed for the theory
of cyclotomic units. We closely follow Lang [60, Sect. 3.6].

The famous “circulant determinant” identity is

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

x1 x2 : : : xm

xm x1 : : : xm�1
:::
:::
: : :

:::

x2 x3 : : : x1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D P.1/P.	/ � � �P.	m�1/

where 	 is a primitivemth root of unity and

P.T / D x1 C x2T C � � � C xmT
m�1:

In this section we prove a generalized version of this identity.
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130 10 Cyclotomic Units

LetG be a finite abelian group, and let f W G ! C be a complex-valued function
on G. We want to calculate the jGj 	 jGj-determinant1

detŒf .a�1b/�a;b2G:

When G is a cyclic group, this is the usual circulant determinant displayed above.
Let OG be the group of C-characters of G. The following result is credited to

Dedekind, see [46].

Theorem 10.1. We have

detŒf .a�1b/�a;b2G D
Y

�2 OG

X

a2G
f .a/�.a/: (10.1)

Proof. Let V be the space of complex functions on G. It is a jGj-dimensional C-
vector space. It has two natural bases. The first one is the “ı-basis” fıa W a 2 Gg,
where the function ıa is defined by ıa.a/ D 1 and ıa.x/ D 0 for x ¤ a. The second
one is the “�-basis” OG, consisting of the characters of G.

For a 2 G let Ta W V ! V be the “translation by a” map, defined by
Tag.x/ D g.a�1x/ for g 2 V . Then Ta.ıb/ D ıab and Ta.�/ D �.a�1/� for a
� 2 OG. In particular, every � is an eigenvector of Ta.

Now let T W V ! V be the linear operator defined by

T D
X

a2G
f .a�1/Ta:

Then

T ıb D
X

a2G
f .a�1/ıab D

X

a2G
f .ba�1/ıa;

which means that the matrix of T in the ı-basis is exactly Œf .ba�1/�a;b2G . Clearly,
this matrix has the same determinant as Œf .a�1b/�a;b2G .

On the other hand,

T� D
 
X

a2G
f .a�1/�.a�1/

!
� D

 
X

a2G
f .a/�.a/

!
�

1To be precise, we fixed an ordering G D fa1; : : : ; amg, and consider the determinant
det



f .a�1

i aj /
�
1�i;j�m

. Obviously, the value of the determinant does not depend on the fixed
ordering.
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which means that the matrix of T in the �-basis is diagonal, with the elementsP
a2G f .a/�.a/. Equating the determinants of the two matrices, we obtain (10.1).

The theorem is proved. ut
Actually, we need a variation of this result.

Corollary 10.2. Let G be a finite abelian group, and let f be a complex function
on G. Then

detŒf .ab/�a;b2G D ˙
Y

�2 OG

X

a2G
f .a/�.a/; (10.2)

detŒf .ab/ � f .a/� a;b2G
a;b¤1

D ˙
Y

�2 OG
�¤1

X

a2G
f .a/�.a/; (10.3)

where the product in (10.3) extends to the nontrivial characters of G.

Proof. The matrix Œf .ab/� can be obtained from Œf .a�1b/� by a permutation of
lines, which proves (10.2). (The reader can verify that ˙ can be specified as
.�1/jGj�jGŒ2�j , where GŒ2� is the 2-torsion subgroup of G.)

Now write G D fa1 D 1; a2; : : : ; amg. Then the determinant in (10.2) is

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

f .a1/ f .a1a2/ : : : f .a1am/

f .a2/ f .a2a2/ : : : f .a2am/
:::

:::
: : :

:::

f .am/ f .ama2/ : : : f .amam/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

:

If we add all the rows to the first row, the elements of the new first row will all
become equal to

P
a2G f .a/. It follows that

detŒf .ab/�a;b2G D
 
X

a2G
f .a/

!
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 1 : : : 1

f .a2/ f .a2a2/ : : : f .a2am/
:::

:::
: : :

:::

f .am/ f .ama2/ : : : f .amam/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

:

Subtracting now the first column from every other, we obtain

detŒf .ab/�a;b2G D
 
X

a2G
f .a/

!
detŒf .ab/ � f .a/� a;b2G

a;b¤1
;

which proves (10.3) for all f satisfying
P

a2G f .a/ ¤ 0.
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To complete the proof, observe that for every f there is a sequence ffkg1
kD0

converging to f and such that
P

a2G fk.a/ ¤ 0 for all k. As we have just
proved, (10.3) holds with f replaced by fk . Taking the limit as k ! 1, we
obtain (10.3) with f itself. ut

10.2 Cyclotomic Units

As usual, p is an odd prime number, � D �p is a primitive pth root of unity,
K D Q.�/ is the pth cyclotomic field, and G is the Galois group of K over Q.

As we have seen in Proposition 4.1, the numbers

1 � �k
1 � �` .k; ` 6� 0 modp/

are units of the cyclotomic field K . It follows that for any integers a1; : : : ; ap�1
satisfying a1 C � � � C ap�1 D 0 the number

.1 � �/a1
�
1 � �2�a2 � � � �1 � �p�1�ap�1

is a unit ofK as well. In other words, for any� from the augmentation idealRaug of
the group ringR D ZŒG�, the number .1 � �/� is a unit ofK . These units are called
cyclotomic, or circular, units; they form a multiplicative group, which is denoted
by CK or simply by C if there is no risk of confusion.

To begin with, we determine a system of generators for C. Obviously, the group C
is generated by the units

�k D 1 � �k

1 � �
.k D 2; 3; : : : ; p � 1/:

Since �p�1 D �� and �p�k D ���k�k , we obtain the following statement.

Proposition 10.3. The group C of cyclotomic units is generated by �� and by the
units �2; : : : ; �.p�1/=2. ut

The group C is a subgroup of the full unit group U , which, by Dirichlet’s unit
theorem, is a finitely generated abelian group of rank r D .p � 3/=2. It follows
that C is a finitely generated abelian group of rank not exceeding r . It is fundamental
that the rank of C is equal to r (and, consequently, the index ŒU W C� is finite).

Theorem 10.4. The cyclotomic units �2; : : : ; �.p�1/=2 are multiplicatively indepen-
dent. In particular, the rank of the group of cyclotomic units is .p � 3/=2.

The proof of this theorem requires some preparation. Recall that Theorem 7.18
was an “algebraic reformulation” of Dirichlet’s nonvanishing relation L.1; �/ ¤ 0
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for the odd characters (see Remark 7.19). Theorem 10.4 is the corresponding
statement for the (non-trivial) even characters. In particular, its proof is quite
analogous to the proof of Theorem 7.18.

Let us translate into a more suitable language the part of Corollary 5.12 related
to the even Dirichlet’s characters. Let f W G ! R be the function defined by
f .
/ D log j1 � �
 j. Then the “even” part of Corollary 5.12 can be restated as
follows: for any even2 character � of G, we have

P

2G �.
/f .
/ ¤ 0. Also, the

class number formula (5.18) can be rewritten as

hCRC D 2.3�p/=2
Y

�.�/D1
�¤1

X


2G
�.
/f .
/;

where hC and RC are the class number and the regulator of the real cyclotomic
field KC, and the product runs over all nontrivial even characters of G.

Obviously, f .
/ D f .
�/ for any 
 2 G. It follows that f defines a function
on the group GC D G=f1; �g (which is the Galois group of KC over Q). This
function on GC will be denoted by f as well. Also, there is a one-to-one
correspondence between the even characters of G and the characters of GC. With
this correspondence in mind, we have the relation

X


2G
�.
/f .
/ D 2

X


2GC

�.
/f .
/;

where the � on the left is an even character of G and the � on the right is the
corresponding character of GC.

We have proved the following statement.

Proposition 10.5. For any character � of GC we have
P


2GC �.
/f .
/ ¤ 0.
Moreover,

hCRC D
Y

�¤1

X


2GC

�.
/f .
/; (10.4)

where the product extends to the nontrivial characters of GC.

Proof of Theorem 10.4. Put m D .p � 1/=2 D r C 1. Assume that the units
�2; : : : ; �m satisfy a nontrivial multiplicative relation �

a2
2 � � � �amm D 1. Then for

any 
 2 G the conjugates �
2 ; : : : ; �


m satisfy the same relation. Hence the rows

of the r 	 r matrix A D 

log j�
ba j�

2�a;b�m (where 
b is the automorphism of K

defined by 
b.�/ D �b) are linearly dependent; in particular, the determinant of this
matrix is 0.

2That is, satisfying �.�/ D 1, where � is the complex conjugation
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On the other hand, a quick reflection shows that matrix A coincides (up
to a row/column permutation) with the matrix Œf .
�/ � f .�/� 
;�2GC


;�¤1

, where

f W GC ! R is the function defined above. By Corollary 10.2,

detA D ˙
Y

�¤1

X


2GC

�.
/f .
/; (10.5)

which is nonzero by Proposition 10.5. The theorem is proved. ut
For the proof of Theorem 10.4, we needed only the “qualitative” part (that is, the

nonvanishing statement) of Proposition 10.5. Using the “quantitative” part (that is,
equality (10.4), we can go further and determine the index ŒU W C�. Below we sketch
the proof of the beautiful relation

ŒU W C� D hC: (10.6)

(This result will not be used in the sequel.)
As we have seen in Sect. 4.4, the full unit group U is the direct product˝ 	 UC,

where ˝ D h��i is the torsion subgroup of U and UC is the group of positive
real units, which is a free abelian group of rank r . Since �� 2 C, the group C
contains ˝ , which means that C D ˝ 	 CC, where CC D C \ UC is the group of
real positive cyclotomic units (again a free abelian group of rank r). This shows that
ŒU W C� D ŒUC W CC�.

Now consider the map 
 W U ! R
r , which associates to each � 2 U the vector

.log j�
2 j; : : : ; log j�
m j/. The kernel of 
 is˝K and the image 
.U/ is a lattice in R
r

of fundamental volume RC. Also, 
.C/ is the lattice generated by 
.�2/; : : : ; 
.�m/,
and its fundamental volume is jdetAj, which is equal to hCRC by (10.4) and (10.5).
Since 
 is injective on UC, we have

ŒU W C� D ŒUC W CC� D Œ
.U/ W 
.C/� D hCRC

RC D hC;

which proves (10.6).

Remark 10.6. Equality (10.6) is a “real analogue” of Iwasawa’s class number
formula (see Theorem 7.27). As in that case, it is believed that the equality of
orders does not correspond, in general, to isomorphism of the groups U=C and HC.
See Sect. 8.1 in Washington’s book [136] for a discussion on this, as well as for
extending the results of this section to general cyclotomic fields.



Chapter 11
Selmer Group and Proof of Catalan’s
Conjecture

As follows from Theorem 9.2, Catalan’s problem would be solved if we show
that a solution of Catalan’s equation implies a nontrivial element in the real part
of Mihăilescu’s ideal. It is natural to look for such elements in the annihilator
of the class group. (More precisely, we want to annihilate a related group, called
here the qth Selmer group.) Unfortunately, Stickelberger’s theorem is not suitable
for this purpose, because the real part of Stickelberger’s ideal is uninteresting
(see Sect. 7.7). In 1988 Thaine [132] discovered a partial “real” analogue of
Stickelberger’s theorem, and Mihăilescu showed that Thaine’s theorem is sufficient
for solving Catalan’s problem.

11.1 Selmer Group

In this section we define the notion of qth Selmer group and reduce Catalan’s
problem to a certain property of this group.

Let K be any number field (not just the cyclotomic field) and let q be any prime
number. Consider the subgroup Q̇ of the multiplicative group K� consisting of the
elements ˛ 2 K� such that the principal ideal .˛/ is a qth power of an ideal. In other
words,

Q̇ D f˛ 2 K� W q divides Ordl.˛/ for any prime ideal l of Kg:

It contains the group .K�/q of qth powers, and it is easy to show that the quotient
˙ D Q̇ =.K�/q is finite.

Indeed, let H be the class group ofK , and consider the homomorphism Q̇ ! H
which maps ˛ 2 Q̇ to the class of the ideal a satisfying aq D .˛/. The kernel of this
homomorphism is U.K�/q , where U is the unit group of K . This homomorphism
induces a homomorphism˙ ! H, whose kernel U.K�/q=.K�/q D U=Uq is finite

© Springer International Publishing Switzerland 2014
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136 11 Selmer Group and Proof of Catalan’s Conjecture

(because U is of finite rank). Since H is finite as well, the finiteness of ˙ follows.
One can add to this that ˙ is a q-torsion group; that is, the order of each element
of ˙ is q or 1.

If K is a Galois extension of Q, then the Galois group G acts on both Q̇
and .K�/q; in other words, both these groups are G-modules. Hence so is the
quotient group ˙ . Moreover, since ˙ is a q-torsion group, it is annihilated by
qZŒG�. It follows that ˙ has a natural structure of ZŒG�=qZŒG� D FqŒG�-module,
where Fq D Z=qZ is the field of q elements.

Remark 11.1. The ring FqŒG� has an important advantage compared to ZŒG�: it is
semi-simple when q does not divide jGj; see Theorem D.11. In particular, FqŒG� is
semi-simple if K is the pth cyclotomic field and q does not divide p � 1. We shall
repeatedly use this property in this chapter.

The significance of this construction for Catalan’s problem stems from the fol-
lowing observation. Let .x; y; p; q/ be a solution of Catalan’s equation, � a primitive
pth root of unity,K D Q.�/ the pth cyclotomic field, and G D Gal.K=Q/.

Proposition 11.2. In the above setup, for any � 2 ZŒG� of weight divisible by q,
we have .x � �/� 2 Q̇ .

Proof. By the “most important” Lemma 6.1 the principal ideal .x � �/ is equal to
paq, where p D .1 � �/ is the prime ideal above p and a is an ideal of K . Since
p
 D p for any 
 2 G, we have p� D pw.�/ for any � 2 ZŒG�. Hence if q j w.�/
then, writing w.�/ D mq, we find that the principal ideal

�
.x � �/�

�
is
�
pma�

�q
, a

qth power of an ideal. ut
We continue to assume thatK is the pth cyclotomic field andG its Galois group.

As we did for ZŒG�, we consider the real part, or the plus-part FqŒG�C, and the
relative part, or the minus part FqŒG��, the former being the ideal .1C �/ and the
latter being the ideal .1 � �/ (where �, as usual, is the complex conjugation).

Assume that, in the setup of Proposition 11.2, the group ˙ has a nonzero
annihilator � 2 FqŒG�

C with w.�/ D 0. Then, lifting � to ZŒG�, it is easy to
produce (see the end of this section) a nontrivial element of the real part of
Mihăilescu’s ideal, of weight divisible by q, contradicting Theorem 9.2.

Thus, Catalan’s problem will be resolved if we find in the plus- part of FqŒG�
a nonzero annihilator of ˙ of weight 0. Unfortunately, the theory of cyclotomic
fields in its present state does not guarantee the existence of such an annihilator.
Mention that we cannot use Stickelberger’s ideal to produce it, because the real part
of Stickelberger’s ideal is very small and uninteresting (see Proposition 7.23).

Mihăilescu’s bright idea was to replace ˙ by a smaller group, for which a
required annihilator exists (under suitable assumptions). As it was for ˙ , the
definition applies to any number field K and any prime q. Thus, we return to the
general case: nowK is any number field.
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Let ˛ 2 O D OK be coprime with q. We say that ˛ is q-primary if ˛ is congruent
to a qth power modulo q2:

˛ � ˇq modq2

for some ˇ 2 O.
More generally, let ˛ be a nonzero element of K . We say that ˛ is q-primary

if ˛ D ˛1˛
�1
2 �

q , where ˛1; ˛2 2 O are coprime with q and q-primary as defined
above and � 2 K�.

Remark 11.3. Assume that q is an odd prime number unramified in K (which is
the case whenK is the pth cyclotomic field and q ¤ p). A reader familiar with the
notion of q-adic completion can easily verify that in this case ˛ 2 K� is q-primary
if and only if it is a “q-adic qth power” (that is, a q-adic qth power for any prime
ideal q j q). Perhaps, it would have been more “conceptual” to take this property as
the definition of q-primary numbers. However, our definition is more convenient to
use and more suitable for an unsophisticated reader.

The q-primary elements of K form a multiplicative group, containing the
group .K�/q of qth powers. Now let QS be the subgroup of Q̇ , consisting of q-
primary elements, and put S D QS=.K�/q . Since S is a subgroup of ˙ , it is also a
finite q-torsion group. We call it the qth Selmer group, or (when q is fixed) simply
the Selmer group of the field K , because its definition is inspired by the definition
of the Selmer group in the theory of elliptic curves.1

IfK is a Galois extension of Q andG D Gal.K=Q/ then the multiplicative group
of q-primary numbers is aG-module. It follows that QS is aG-submodule of Q̇ and S
is an FqŒG�-submodule of ˙ .

Mihăilescu’s divisibility theorem (Theorem 6.14) implies that in Proposi-
tion 11.2 one can replace Q̇ by QS.

Proposition 11.4. In the setup of Proposition 11.2, we have .x � �/� 2 QS .

Proof. It suffices to show that x � � is q-primary, which is true because �� is a qth
power and x is divisible by q2 by Theorem 6.14. ut

Now we are ready to state the main result of this chapter. Let p and q be distinct
odd prime numbers, let K be the pth cyclotomic field, let G be the Galois group of
K=Q and let S be the qth Selmer group ofK .

Theorem 11.5. Assume that p > q and that p 6� 1 mod q. Then there exists a
nonzero� 2 FqŒG�

C with w.�/ D 0 which annihilates S.

This theorem, together with the previously established results, solves Catalan’s
problem.

1We do not assume from our reader any knowledge of the theory of elliptic curves.
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Proof of Theorem 3.1 (assuming Theorem 11.5). Let .x; y; p; q/ be a solution of
Catalan’s equation. By symmetry, we can assume that p > q, and Corollary 8.20
implies that p 6� 1 mod q.

Let �,K , andG be as above. Since q does not divide jGj D p � 1, the ring FqŒG�
is semi-simple (see Remark 11.1).

Applying Theorem 11.5, we find � 2 FqŒG�
C with w.�/ D 0 which annihi-

lates S. Write � D .1C �/�0, and let Q�0 2 ZŒG� be an arbitrary lifting of �0
to ZŒG�. Then the element Q� WD .1C �/ Q�0 2 ZŒG�C is a lifting of �. It has the
following properties:

• for any ˛ 2 QS we have ˛ Q� 2 .K�/q ;
• the weight of Q� is divisible by q (because w.�/ D 0);
• the element Q�2 is not divisible by q (indeed, if q j Q�2 then �2 D 0 which is

impossible because� ¤ 0 and FqŒG� is semi-simple).

Since q j w. Q�/, Proposition 11.4 implies that .x � �/ Q� 2 QS. Hence

.x � �/ Q�2 2 .K�/q:

Thus, Q�2 2 ZŒG�C is a nontrivial element of Mihăilescu’s ideal of weight divisible
by q. This contradicts Theorem 9.2. ut

Now we can forget about Catalan’s problem and concentrate on the proof of
Theorem 11.5.

11.2 Selmer Group as Galois Module

In this section we reduce Theorem 11.5, which is a statement on the somewhat
“mysterious” Selmer group, to a statement on more “familiar” objects: units and
ideal classes.

As usual, let p and q be distinct odd prime numbers; letK be the pth cyclotomic
field, G its Galois group, and O D OK its ring of integers. Further, let U be the
unit group and H the class group of K . Finally, we denote by Uq the subgroup of U
consisting of the q-primary units.

Proposition 11.6. Assume that q does not divide p � 1. Then the Selmer group S
is FqŒG�-isomorphic to a submodule of Uq=Uq ˚ H=Hq .

Proof. Recall the homomorphism Q̇ ! H already used in the beginning of
Sect. 11.1: to each ˛ 2 Q̇ we associate the class of the ideal a such that aq D .˛/.
We restrict this homomorphism to QS . The kernel of this restriction is

U.K�/q \ QS D Uq.K�/q:
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Further, since aq D .˛/ is the principal ideal, the image of our homomorphism is
contained in the q-torsion subgroup2 HŒq�. Also, all groups above are G-modules
and our homomorphism is a G-homomorphism.

Factoring by .K�/q , we obtain an FqŒG�-homomorphism S f! HŒq� with

kerf D Uq.K�/q=.K�/q D Uq=Uq:

Since the ring FqŒG� is semi-simple (see Remark 11.1), the Selmer group S
is FqŒG�-isomorphic to kerf ˚ f .S/ (see Remark C.8). It follows that S is
isomorphic to a submodule of Uq=Uq ˚ HŒq�. Finally, Theorem E.1 implies the
FqŒG�-isomorphism HŒq� Š H=Hq. This proves the proposition. ut

Thus, Theorem 11.5 will be proved if we produce a nonzero � 2 FqŒG�C, of
weight 0, annihilating both Uq=Uq and H=Hq . To find such an annihilator, we
should investigate the group Uq=Uq . First of all, we determine the Galois module
structure of U=Uq .

11.3 Units as Galois Module

In this section p is, as usual, an odd prime number and K is the pth cyclotomic
field. We denote by O D OK its ring of integers, by U its unit group, and by
G D Gal.K=Q/ its Galois group.

The principal goal of this section is to study the Galois module structure of the
group U=Uq , where q is another odd prime number. However, we begin with the
unit group itself, more precisely, with its free part, that is, the quotient QU D U=˝,
where˝ D ˝K stands for the torsion subgroup of K�.

Since both U and˝ areG-modules, so is QU . We want to calculate its annihilator.
In other words, we want to determine all � 2 ZŒG� such that �� is a root of unity
for any � 2 U .

Obviously, the norm element N D P

2G 
 belongs to the annihilator. Also, for

any unit � the quotient �= N� is a root of unity; see Lemma 4.11. Hence 1 � � (where �
is the complex conjugation) is in the annihilator as well. Thus, the annihilator
contains the ideal .N ; 1 � �/. In fact, it is slightly bigger.

Theorem 11.7. The annihilator of QU is the ideal I of ZŒG� consisting of all� such
that 2� 2 .N ; 1 � �/.

For the proof we need a lemma, which is, essentially, due to Dirichlet. Recall
that G D f
1; : : : ; 
p�1g, where 
k is defined by � 7! �k. Also, let r D .p � 3/=2
be the rank of the unit group.

2Recall that the q-torsion subgroup of a multiplicatively written abelian group A is
AŒq� D fx 2 A W xq D 1g.
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Lemma 11.8. Let a1; : : : ; ar 2 Z be such that � D a1
1 C � � � C ar
r annihi-
lates QU . Then a1 D � � � D ar D 0.

Proof. Consider the map 
 W U ! R
r , which associates to each � 2 U the vector

.log j�
1 j; : : : ; log j�
r j/. The kernel of 
 is˝ and the image 
.U/ is a lattice in R
r .

If � annihilates QU then

a1 log j�
1 j C � � � C ar log j�
r j D 0

for any � 2 U . If a1; : : : ; ar were not all zero then the image 
.U/ would have
belonged to a proper subspace of Rr . This, however, is impossible because 
.U/ is
a lattice. The lemma is proved. ut
Proof of Theorem 11.7. As we have already seen, .N ; 1 � �/ 
 ann. QU/. Moreover,
ifm� 2 ann. QU/ for a nonzero integerm, then� 2 ann. QU/ (if �m� is a root of unity,
then so is ��). Thus, I � ann. QU/.

To complete the proof, we have to show that ann. QU/ 
 I. Put

N 0 D 
1 C � � � C 
.p�1/=2;

Since 
p�k D �
k , we have 
k � 
p�k D 
k.1 � �/. This implies that

2N 0 D N � N 0.1 � �/ 2 .N ; 1 � �/;

which means that N 0 2 I.
Now let � annihilate QU . Again using the relation 
p�k D �
k , we may write

� D �0 C ��00, where both �0 and �00 are linear combinations of 
1; : : : ; 
m with
m D .p � 1/=2. Say,

�0 D a0
1
1 C � � � C a0

m
m; �00 D a00
1 
1 C � � � C a00

m
m:

Now

� C .1 � �/�00 � �
a0
m C a00

m

�N 0

is a linear combination of 
1; : : : ; 
m�1, annihilating QU . By Lemma 11.8, it must
vanish. Thus,

� D �.1 � �/�00 C �
a0
m C a00

m

�N 0;

which implies that � 2 I. The theorem is proved. ut
Now we fix an odd prime number q and study the FqŒG�-module structure of the

quotient group U=Uq .
Theorem 11.9. Assume that q does not divide p � 1. Then U=Uq is a cyclic FqŒG�-
module. Its annihilator is .N /˚ .1 � �/.
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Proof. The kernel of the naturalG-epimorphism

U ! QU ! QU= QUq

is ˝Uq . Since all elements of ˝ are qth powers, the kernel is Uq , which means
that U=Uq and QU= QUq are isomorphic as G-modules. Hence they are isomorphic as
FqŒG�-modules as well. Therefore it suffices to show that QU= QUq is a cyclic FqŒG�-
module and determine its annihilator.

For the annihilator we shall apply Theorem C.5. Since q does not divide p � 1,
the ring FqŒG� is semi-simple, and, in particular, it has no nilpotents. Hence qZŒG�
is a radical ideal of the ring ZŒG� (as defined in Appendix C.2). Moreover, since
any quotient of FqŒG� is semi-simple as well, any ideal of ZŒG� containing qZŒG� is
a radical ideal. In particular, so is the ideal qZŒG�C annZŒG�. QU/. Now Theorem C.5
implies that the FqŒG�-annihilator of QU= QUq is the image of annZŒG�. QU/. Hence, by
Theorem 11.7, the ideal annFq.G/. QU= QUq/ consists of the elements � 2 FqŒG� such
that 2� 2 .N ; 1 � �/, where, from now on, N stands for the norm element of the
ring FqŒG� (and not of ZŒG�). But 2 is invertible in FqŒG�, which implies that

annFq.G/. QU= QUq/ D .N ; 1 � �/:

Further, we have w.N / D p � 1 ¤ 0 in Fq (here we again use the assumption
p 6� 1 modq). But, by Proposition D.2, the principal ideal .N / is equal to FqN ,
and, in particular, the nonzero elements of .N / have nonzero weight. It follows that
the ideals .N / and .1 � �/ have nonzero intersection, and we have

annFq.G/. QU= QUq/ D .N /˚ .1 � �/:

In the sequel we denote annFq.G/. QU= QUq/ by I.
It remains to show that QU= QUq is a cyclic FqŒG�-module. By Corollary C.16, it

suffices to prove that j QU= QUqj D ˇ̌
FqŒG�=I

ˇ̌
. Since QU is a free abelian group of rank

.p � 3/=2, we have j QU= QUqj D q.p�3/=2.
Now let us determine the cardinality of FqŒG�=I . First of all, let us find the

dimension of I as an Fq-vector space. Since .N / D FqN , the Fq-dimension of the
principal ideal .N / is 1. Further, the principal ideal .1 � �/ is exactly the minus part
FqŒG�

�, and its Fq-dimension is3 .p � 1/=2. It follows that dimFq I D .p C 1/=2.
Thus, jIj D q.pC1/=2 and, consequently,

jFqŒG�=Ij D q.p�3/=2 D j QU= QUq j:

The theorem is proved. ut

3Alternatively, one could determine both dimensions using Proposition D.13.
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Next, we decompose U=Uq into a direct sum of smaller modules, using the
theory of cyclotomic units (see Chap. 10). But before this, we establish an important
property of these units.

11.4 q-Primary Cyclotomic Units

For the proof of Theorem 11.5, it is crucial that not all cyclotomic units are q-
primary (see Sect. 11.1 for the definition of q-primary numbers). More precisely,
we have the following statement.

Theorem 11.10 (Mihăilescu). Let p and q be odd prime numbers, and assume that
p > q. Then not all cyclotomic units of the pth cyclotomic field are q-primary.

Proof. To begin with, introduce the polynomial

f .T / D .1C T /q � 1 � T q
q

2 ZŒT �: (11.1)

It is a nonzero monic polynomial of degree q � 1.
Now assume that all cyclotomic units of the pth cyclotomic field K are q-

primary. In particular, so is 1C �q D .1 � �2q/=.1 � �q/. Thus, there exists ˇ 2 OK

such that 1C �q � ˇq modq2. Then .1C �/q � 1C �q � ˇq modq. Lemma 6.7
implies that .1C �/q � ˇq mod q2 for any prime ideal q j q. Since q is unramified
in K , this yields the congruence .1C �/q � ˇq mod q2

Thus, .1C �/q � 1C �q modq2. This can be rewritten as f .�/ � 0 mod q,
where f .T / is the polynomial defined in (11.1).

Applying the Galois conjugation, we obtain f .�
 / � 0 mod q for any 
 2 G.
If now q is a prime ideal above q, then we have the p � 1 congruences

f .�
 / � 0 mod q .
 2 G/: (11.2)

Since �
 6� �� mod q for distinct 
; � 2 G, congruences (11.2) imply that

p � 1 � degf D q � 1;

which contradicts our assumption p > q. The theorem is proved. ut
It is an interesting question whether the assumptionp > q is relevant here. To the

best of our knowledge, the answer is unknown.
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11.5 Proof of Theorem 11.5

The preparation is over. We arrived at the culmination point of this chapter and,
probably, of the whole book.

As usual, in this section p and q are distinct odd prime numbers, K is the pth
cyclotomic field, and G its Galois group, U its group of units, and Uq the subgroup
of q-primary units. We shall assume throughout this section that q does not divide
p � 1. In particular, the ring FqŒG� is semi-simple. In this section we denote this
ring by R.

First of all, we deliver the promised decomposition ofU=Uq into a sum of smaller
R-modules. We denote by C the group of cyclotomic units and by Cq the subgroup
of q-primary cyclotomic units.

Proposition 11.11. The group U=Uq is R-isomorphic to

U=CUq ˚ Cq=.C \ Uq/˚ C=Cq:

The group Uq=Uq is R-isomorphic to a submodule of U=CUq ˚ Cq=.C \ Uq/.
Proof. Since R is semi-simple, we have the R-isomorphisms (see Remark C.8)

U=Uq Š U=CUq ˚ CUq=Uq Š U=CUq ˚ CUq=CqUq ˚ CqUq=Uq:

Further,

CqUq=Uq Š Cq=.Cq \ Uq/ D Cq=.C \ Uq/;
CUq=CqUq D CCqUq=CqUq Š C=.C \ CqUq/ D C=Cq;

which proves the first statement.
Similarly, Uq=Uq is R-isomorphic to Uq=CqUq ˚ CqUq=Uq . As we have seen

above, the second term here is Cq=.C \ Uq/. Further, the kernel of the natural
homomorphism

Uq ,! U ! U=CUq

is CqUq , which means that Uq=CqUq is a submodule of U=CUq . This proves the
second statement. ut

As we have seen in Sect. 11.2, Theorem 11.5 will be proved if we find a nonzero
� 2 RC, of weight 0, annihilating both Uq=Uq and H=Hq . Proposition 11.11,
together with Theorem 11.10, solves half of this problem.

Corollary 11.12. Assume that p > q. Then there exists a nonzero � 2 RC, of
weight 0, annihilating both U=CUq and Cq=.C \ Uq/; in particular, it annihilates
Uq=Uq .
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Proof. In Proposition 11.11 we established the R-isomorphism

U=Uq Š M ˚ C=Cq;

where M D U=CUq ˚ Cq=.C \ Uq/. From Theorem 11.10 we know that the group
C=Cq is nontrivial, which means that M is isomorphic to a proper submodule of
U=Uq .

Recall now (see Theorem 11.9) that U=Uq is a cyclic R-module with annihilator
I D .N /˚ .1 � �/. Since U=Uq is cyclic, and M is its proper submodule, the
annihilator of M is strictly greater than I. It follows that the annihilator of M has
a nonzero intersection with the direct complement I?; see Proposition C.14. Using
this proposition, we find that

I? D .N /?.1 � �/? D RaugRC;

where Raug is the augmentation ideal. Thus, M is annihilated by a nonzero element
of RaugRC. This proves the corollary. ut

Still, this is insufficient: we have to annihilate H=Hq as well. This is
accomplished by the fundamental theorem due to the Brazilian mathematician
Thaine [132].

Theorem 11.13 (Thaine). Assume that q does not divide p � 1. Then any
� 2 RC, annihilating U=CUq , annihilates H=Hq as well.

Using this theorem, we complete the proof of Theorem 11.5 at once: any� from
Corollary 11.12 annihilates both Uq=Uq and H=Hq; hence it annihilates the Selmer
group C by Proposition 11.6.

We congratulate the reader who arrived to this point. Now you know how
Catalan’s problem was finally solved!

The theorem of Thaine will be proved in Chap. 12.



Chapter 12
The Theorem of Thaine

In this chapter we prove the theorem of Thaine, which was used in Sect. 11.5.

12.1 Introduction

In this section we employ our traditional notation: unless the contrary is stated
explicitly, p and q are distinct odd prime numbers, K D Q.�p/ is the p th
cyclotomic field, O D OK is its ring of integers, and G D Gal.K=Q/ is the Galois
group. We also denote by U the group of Dirichlet units of the field K , by C the
group of cyclotomic units, and by H the class group ofK .

Stickelberger’s theorem provided a nontrivial annihilator for the class group of
the cyclotomic field K . However, as it has already been mentioned, Stickelberger’s
theorem is, essentially, a “relative” or “minus” result. Indeed, the plus-part of
Stickelberger’s ideal is NZ (see Proposition 7.23), and N is an obvious annihilator
of the class group; this means that Stickelberger’s theorem does not tell us anything
interesting about the plus-partRC of the group ring R D ZŒG�.

For a multiplicatively written abelian group A denote by ŒA�q the group A=Aq .
Thaine [132] proved the following theorem.

Theorem 12.1 (Thaine). Let q be a prime number not dividing p � 1. Then any
� 2 RC, annihilating ŒU=C�q , annihilates ŒH�q as well.

Since RC trivially annihilates the relative class group H�, Theorem 12.1 is
equivalent to the following formally weaker statement: any � 2 RC, annihilating
ŒU=C�q , annihilates ŒHC�q .

In fact, Thaine proved even more: under the same assumption q − .p � 1/
any � 2 RC, annihilating the q-Sylow subgroup of U=C, annihilates the q-Sylow
subgroup of HC as well. We do not prove this more precise statement.
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As we have already mentioned in Remark 10.6, while groups U=C and HC have
the same cardinality, it is widely believed that they need not be isomorphic. To the
best of our knowledge, no example of non-isomorphism of these groups is currently
known. What is known for sure is that they may differ as Galois modules: see [136,
Remark after Theorem 8.2]. Thaine’s theorem tells us that still, theG-modules U=C
and HC cannot be “too independent.”

The structure of the proof of Thaine’s theorem is quite analogous to that of
Stickelberger’s theorem, though the details are different and more involved. To
prove Stickelberger’s theorem, we showed that, for any prime ideal l of degree 1
(which means exactly that the prime ` below it is 1 modp) and for any � from
Stickelberger’s ideal, the ideal l� is principal. In this argument Gauss sums played a
key role. Next, we used the Chebotarev density theorem and the Class Field Theory
to show that every ideal class contains a prime ideal of degree 1.

For Thaine’s theorem, we argue similarly. We fix a “suitable” (this will be made
precise) prime number ` and show that for any prime ideal l of the cyclotomic
fieldK , lying above `, the ideal l� is a qth power of another ideal as soon as� 2 R
annihilates ŒU=C�q . For the proof, we shall use a certain “substitute” for the Gauss
sums, which will be obtained from the so-called Hilbert’s “Theorem 90.” Next, we
use the Chebotarev density theorem and the Class Field Theory to show that every
ideal class from HC has a prime ideal above a “suitable” `.

Now let us be more specific. Call a prime number ` suitable if it satisfies
the following condition: if a unit � 2 U is a qth power modulo1 `, then � 2 U q .
Alternatively, ` is suitable if the natural map ŒU �q ! Œ.O=`O/��q is injective.

Theorem 12.1 is an immediate consequence of the following two statements.

Theorem 12.2. Assume that q − .p � 1/. Let ` be a suitable prime number satis-
fying ` � 1 modp q, and let l be a prime ideal of K above `. Assume that � 2 R
annihilates ŒU=C�q . Then l� is equivalent to a qth power of an ideal of K .

Theorem 12.3. Assume that q − .p � 1/. Then any ideal class of the field K

contains a prime ideal such that the underlying prime number is suitable and is
1 modp q.

These two theorems will be proved in the subsequent sections.

12.2 Preparations

In this section we collect miscellaneous facts, to be used in the proof of
Theorems 12.2 and 12.3.

1That is, � � ˛q mod ` for some ˛ 2 OK .
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12.2.1 A Property of Cyclotomic Units

We begin with the following simple lemma.

Lemma 12.4. Let p and ` be odd prime numbers. Put K D Q.�p/ and
L D Q.�p; �`/. Assume that ` � 1 modp . Then NL=K.�` � �p/ D 1.

Proof. Proposition 4.17 (with K as L and ` as p) implies that ŒL W K� D ` � 1 and
that the full system of conjugates of �` overK is �`; : : : ; �`�1` . Hence

NL=K.�` � �p/ D
`�1Y

kD1

�
�k` � �p

� D �`p � 1

�p � 1
:

Since ` � 1 modp , we have �`p D �p . Whence the result. ut

(More generally, for any k not divisible by p , we have NL=K

�
�` � �kp

�
D 1.)

Lemma 12.4 looks quite innocent, but it has a consequence which is absolutely
crucial for the proof of Thaine’s theorem.

Corollary 12.5. Let � be a cyclotomic unit of the fieldK . Then there exists a unit "
of the field L such that NL=K" D 1 and " � � mod .�` � 1/.

Proof. For � D 1��kp
1��mp take " D �`��kp

�`��mp . For an arbitrary cyclotomic unit take the

suitable product. ut

12.2.2 The “Theorem 90”

Another crucial lemma is the already mentioned Hilbert’s “Theorem 90.” If L=K
is a finite Galois extension of fields, then for any ˛ 2 L� and any � 2 Gal.L=K/,
the element " D ˛=˛� satisfies NL=K."/ D 1. The “Theorem 90” tells us that for the
cyclic extensions2 the converse is true.

Lemma 12.6 (Hilbert’s “Theorem 90”). Let L=K be a finite cyclic extension
of fields, and let � be a generator of its Galois group. Then for any " 2 L with
NL=K."/ D 1 there exists ˛ 2 K� such that " D ˛=˛� .

Proof. We follow Lang [58, Sect. 6.8]. Let m be the order of � . Then the
automorphisms id; �; : : : ; �m�1 are pairwise distinct. Proposition D.5 implies that
they are linearly independent over L. In particular, the linear combination

id C "� C "1C� �2 C � � � C "1C�C���C�m�2

�m�1

2A finite Galois extension of fields is called cyclic if its Galois group is cyclic.
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defines a map which is not identically 0 on L. Hence there exists ˇ 2 L such that

˛ D ˇ C "ˇ� C "1C�ˇ�2 C � � � C "1C�C���C�m�2

ˇ�
m�1

is nonzero.
We have

"˛� D "ˇ� C "1C�ˇ�2 C � � � C "1C�C���C�m�2

ˇ�
m�1 C "1C�C���C�m�1

ˇ�
m

: (12.1)

Since m is the order of � , we have ˇ�
m D ˇ. Also, since � generates the Galois

group,

"1C�C���C�m�1 D NL=K."/ D 1:

It follows that the last term in (12.1) is ˇ, and the right-hand side is, consequently,
equal to ˛. This proves the lemma. ut

12.2.3 Reduction mod `

Next, we establish some very simple properties of the residues modulo a prime
number.

In this section K is a number field, O its ring of integers, and ` an odd prime
number, unramified in K . We denote by � the residue ring O=`O. Since ` is
unramified, we have

� D
Y

lj`
O=l;

where the product is over all prime ideals above `. In particular,� is a semi-simple
ring.

IfK is a Galois extension of Q, then the Galois group acts on�. It turns out that
the multiplicative group�� is a cyclic Galois module.

Proposition 12.7. Assume that K is a Galois extension of Q. Then there exists
˛ 2 O such that the multiplicative group �� is generated by (the �-images of)
the Galois conjugates of ˛. In other words, ˛ generates�� as a Galois module.

Proof. Fix a prime ideal l above `. The multiplicative group .O=l/� is cyclic. By the
Chinese Remainder Theorem, there exists ˛ 2 O such that the image of ˛ in O=l
generates .O=l/� and the image of ˛ in O=l0 is 1 for any prime ideal l0 j ` distinct
from the fixed l. Then (the image of) ˛ generates the subgroup .O=l/� of��. More
generally, for any 
 2 G the element ˛
 generates the subgroup .O=l
 /�.
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Since the group G D Gal.K=Q/ acts transitively on the set of prime ideals
above `, the set f˛
 W 
 2 Gg generates �� as an abelian group. Hence ˛ gener-
ates �� as a G-module. ut

It follows that, given another prime number q, the group Œ���q D ��=.��/q is
a cyclicG-module, or, equivalently, a cyclic FqŒG�-module (generated by the image
of ˛). Under some additional assumptions it becomes a free cyclic module.

Proposition 12.8. In the setup of Proposition 12.7, assume that ` completely splits
in K . Also, let q be a prime number dividing ` � 1. Then Œ���q is a free cyclic
FqŒG�-module, where G is the Galois group of K=Q.

The proposition applies, in particular, when K is the p th cyclotomic field and
` � 1 modp q.

Proof. Since we already know that Œ���q is a cyclic FqŒG�-module, it suffices to
show that

ˇ̌
Œ���q

ˇ̌ D ˇ̌
FqŒG�

ˇ̌
. Fix a prime ideal l j `. Since ` splits completely, we

have

� D
Y


2G
O=l
 ; �� D

Y


2G
.O=l
 /� ;

and each .O=l
 /� is isomorphic to .Z=`Z/�. Since q j .` � 1/, every


.O=l
 /��

q
is

the q-element cyclic group. Hence

ˇ̌
Œ���q

ˇ̌ D
ˇ̌
ˇ̌
ˇ
Y


2G



.O=l
 /��

q

ˇ̌
ˇ̌
ˇ D qjGj D ˇ̌

FqŒG�
ˇ̌
;

as wanted. ut
Remark 12.9. A careful reader could have noticed that we defined the notion of
cyclic module only for commutative rings. Hence the notion of cyclic G-module
is defined in this book only for a commutative group G, so, formally, one should
assume in Propositions 12.7 and 12.8 that K is an abelian extension of Q (which is,
of course, sufficient for our purposes). However, both propositions are valid, with
obvious definitions, for any Galois extensions, the word “G-module” being replaced
by the “rightG-module.”

12.2.4 Galois-Invariant Prime Ideals

We shall also need a simple property of Galois extensions of number fields. If L=K
is a Galois extension, then every element of L, invariant under the action of the
Galois group, belongs to K (sometimes this is called the “main theorem of the
Galois theory”). This property does not extend to ideals. For instance, if P is a prime
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ideal of L totally ramified overK , then P is invariant under the Galois action, but is
not an ideal ofK . Still, a slightly corrected “ideal analogue” of the “main theorem”
does hold; the proof is a simple exercise, left to the reader.

Proposition 12.10. Let L=K be a Galois extension of number fields, and let A be
an ideal of L invariant under the action of Gal.L=K/. Then A D ab, where a is an
ideal of K and b is a product of prime ideals of L ramified overK .

12.2.5 Decomposition of Prime Numbers
in Cyclotomic Fields

Finally, we recall the decomposition of the prime number ` in the fieldsK D Q.�p/

andL D Q.�p; �`/, under the assumption ` � 1 modp . By this assumption, ` splits
completely in K . Hence, if we fix a K-ideal l above `, then

.`/ D
Y


2G
l
 ;

where G D Gal.K=Q/.
Further, by Proposition 4.17, the prime ideal l totally ramifies in L, the

ramification index being ` � 1, and the same is true for every l
 . If L is the prime
ideal ofL above l, then l D L`�1. Further, if we extend 
 toL by putting 
.�`/ D �`
(see Proposition 4.26), then L
 is the prime ideal above l
 , and l
 D .L
 /`�1. Thus,
in the field L the prime number ` factorizes as

.`/ D
 
Y


2G
L


!`�1
:

12.3 Proof of Theorem 12.2

We use the setup of Sect. 12.1. Let � 2 ZŒG� annihilate ŒU=C�q . We have to show
that l� is equivalent to a qth power of an ideal of K .

The proof consists of several steps. First of all, we use Lemma 12.4 (more
precisely Corollary 12.5), and Hilbert’s “Theorem 90”, to produce a nontrivial
annihilator � for the class of l in ŒH�q . Next, we apply Kummer’s argument, as
in the proof of Theorem 7.11, to derive a congruence involving the coefficients � ,
similar to congruence (7.8). Next, this congruence is rewritten as an identity in
the multiplicative group Œ.O=`O/��q , involving both � and �. This latter relation
would allow us to conclude that � annihilates the class of l as well.
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12.3.1 A Nontrivial Annihilator

The assumption “� annihilates ŒU=C�q” means that for any unit � 2 U there exists
a cyclotomic unit � 2 C such that �� 2 �Uq . Let us specify � 2 U to be such a unit
that its image in ŒU �q generates ŒU �q as a G-module. (This is possible because ŒU �q
is a cyclic G-module; see Theorem 11.9.)

Let � be a cyclotomic unit as in the previous paragraph: �� 2 �Uq . Corol-
lary 12.5 implies that there is a unit " of the field L D K.�`/ such that NL=K."/ D 1

and

" � � mod .�` � 1/: (12.2)

The Galois group of the extensionL=K is .Z=`Z/�; in particular, it is cyclic. Hence
we may apply Hilbert’s “Theorem 90” (Lemma 12.6): fix a generator � of Gal.L=K/
and find ˛ 2 L such that " D ˛�=˛ (we apply the “Theorem 90” to ��1 rather than
to � itself). As we shall see, the number ˛ will play in the proof the same role as the
Gauss sum played in the proof of Stickelberger’s theorem. In particular, the relation
˛� D "˛ is analogous to the relation g.�/�b D N�.b/g.�/ (see Lemma 7.13), which
was crucial in Sect. 7.4.

The proof of Stickelberger’s theorem relied on the prime factorization of the
Gauss sum (Theorem 7.11). To prove Thaine’s theorem, we shall factorize ˛. Since
˛� D "˛, the principal ideal .˛/ is �-invariant. Hence .˛/ is invariant with respect to
Gal.L=K/ (recall that � generates this group). The only prime ideals of L ramified
over K are the ideals above `; that is, they are the ideals L
 , defined at the end of
Sect. 12.2. Hence, according to Proposition 12.10,

.˛/ D a
Y


2G
.L
 /s
 ;

where a is an ideal of K and all s
 are integers. Taking the norm, we obtain

�NL=K.˛/
� D a`�1

Y


2G
.l
 /s
 D a`�1l� ;

where � D P

2G s

 . Since, by the assumption, q j .` � 1/, we have proved that

ideal l� is equivalent to a qth power of an ideal of K .

12.3.2 Kummer’s Argument

To identify the coefficients s
 , we use Kummer’s argument, in a similar fashion as
we did in the proof of Theorem 7.11.
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Let b 2 Z be such that ��` D �b` . Since � generates Gal.L=K/, the image of b
in Z=`Z generates the multiplicative group .Z=`Z/�. This observation is irrelevant
now, but will be important at the final stage of the proof.

The algebraic number

ˇ D .1 � �`/
s


˛

is an L
 -adic unit, because OrdL
 .1 � �`/ D 1 by Lemma 7.12. Using this lemma
with L replaced by L
 , and the relation ˛� D "˛, we obtain

ˇ� D .1 � �b` /
s


"˛
D ˇ

"

 
1 � �b`
1 � �`

!s

� ˇ

bs


"
modL
 :

On the other hand, Proposition 4.19 implies that ˇ� � ˇ modL
 . We obtain
the congruence bs
 � " modL
 . Combining this with (12.2), we obtain
bs
 � � modL
 .

In this latter congruence both sides belong to the fieldK . Hence the ideal L
 can
be replaced by the underlying ideal l
 . We obtain, for every 
 2 G, the congruence

bs
 � � mod l
 : (12.3)

The field L and the unit " played their role, and we do not need them anymore.
From now on, we work entirely in the field K .

12.3.3 Projecting All This to Œ.O=` O/��q

Now we project congruences (12.3) to the residue ring � D O=`O and yet further,
to the quotient multiplicative group Œ���q D ��=.��/q .

Recall that ` splits inK as .`/ D Q

2G l
 , where l is a fixed prime ideal above `

(see end of Sect. 12.2). It follows that� D Q

2G O=l
 . By the Chinese Remainder

Theorem, there exists ˛ 2 O such that

˛ � b mod l; ˛ � 1 mod l
 .
 ¤ 1/:

Then ˛� � bs



mod l
 . Hence (12.3) can be rewritten as � � ˛� mod `, which can
be viewed as an identity in �. Combining this with the initial condition �� 2 �Uq ,
we obtain the congruence

�� � ˛��q mod `

with some � 2 U .
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Since both sides of the latter congruence are invertible mod `, we can project
this to the quotient multiplicative group Œ���q . We obtain

N�� D N̨� ; (12.4)

where N̨ and N� are the images of ˛ and � in Œ���q .

12.3.4 Conclusion

We are almost done. In this final stage of the proof it will be more convenient to
work mod q. Thus, let N� and N� are the images of � and � in FqŒG�. We know
that N� annihilates the class of l in ŒH�q and want to prove the same for N�.

Proposition 12.8 implies that Œ���q is a free cyclic FqŒG�-module. (Here we use
the condition ` � 1 modp q.) Furthermore, as we have seen in Sect. 12.3.2, the
image of b generates the multiplicative group .Z=`Z/�. Hence, arguing as in the
proof of Proposition 12.7, we conclude that ˛ generates �� as a G-module. It
follows that N̨ generates Œ���q as an FqŒG�-module. Therefore there is an FqŒG�-
isomorphism Œ���q Š FqŒG� such that N̨ 2 Œ���q corresponds to 1 2 FqŒG�. Let
� 2 FqŒG� correspond to N� 2 Œ���q under this isomorphism. Then (12.4) can be
rewritten as

N� D N��: (12.5)

If � were an invertible element of FqŒG�, we could have written N� D � �1 N� ,
completing the proof. Unfortunately, we cannot directly argue this way because �
has no reasons to be invertible (and it is not, in fact). However, a more delicate
argument of this sort would work, as we shall see in a while.

Since ` is a suitable prime, the natural map ŒU �q ! Œ���q is injective. Recall
also that � was chosen as a generator of the cyclic module ŒU �q . It follows that �
generates a submodule of FqŒG� isomorphic to ŒU �q . According to Theorem 11.9,
the annihilator of this submodule is .N /˚ .1 � �/, where N , as usual, is the norm
element. Since FqŒG� is a semi-simple ring, this implies that

1 2 .� /˚ .N /˚ .1 � �/:

(This can be expressed as “the element N� is invertible modulo the ideal
.N /˚ .1 � �/”.)

Multiplying by N� and using (12.5), we obtain

N� 2 . N�/C .N /C ..1 � �/ N�/:
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Now recall that � 2 ZŒG�C (it is only here where we use this assumption), which
implies that .1 � �/ N� D 0, and we finally obtain N� 2 . N�/C .N /. Since both N�
and N annihilate the class of l in ŒH�q , so does N�. The theorem is proved.

12.4 Reduction of a Multiplicative Group Modulo
a Prime Ideal

Let q be an odd prime number. In this section we prove the following theorem.

Theorem 12.11. Let K be a number field and ˇ 2 K� not a qth power in K .
Assume that q is unramified in K . Then every ideal class of K contains infinitely
many prime ideals l, of degree 1 (over Q), such that the underlying prime is 1 mod q
and such that ˇ is not a qth power modulo l.

This theorem is not formally needed here. However, its proof is very similar to
the proof of Theorem 12.3, but technically simpler. Therefore it can provide a good
motivation for the proof of Theorem 12.3, which otherwise looks somewhat messy.

In this and the subsequent sections we systematically use the notions of q-radical
extension and Kummer’s pairing; see Appendix F.2 for the definitions. Let K be
a field (of characteristic distinct from q) containing the group �q of qth roots of
unity, L D K.

q
p
B/ a q-radical extension of K with Galois group � D Gal.L=K/,

and B 	 � f! �q Kummer’s pairing. We say that ˇ 2 B and � 2 � are Kummer-
orthogonal if f .ˇ; �/ D 1. We say that ˇ is Kummer-orthogonal to a subset S 
 �

if it is Kummer-orthogonal to every element of S .
Our starting point is the following general observation.

Proposition 12.12. LetK be a number field containing the qth roots of unity, let B
be a subgroup of K�, and let L and � be as above. Then for any prime ideal l
of K , unramified in L, an element ˇ 2 B is a qth power mod l if and only if ˇ is
Kummer-orthogonal to 'l 2 � , the Frobenius element of l.

Proof. It is a direct consequence of the definitions of the Frobenius element and
Kummer’s pairing. ut

To warm up, we first establish two “weaker” versions of Theorem 12.11.
Everywhere below K is a number field and ˇ 2 K� is not a qth power in K . A
prime ideal l of K such that ˇ is not a qth power modulo l will be called suitable.

We start from the “extra-light” version, where we do not require l to belong to
the given ideal class and assume in addition that �q 2 K.

Proposition 12.13. Assume that K contains the qth roots of unity. Then there exist
infinitely many suitable prime ideals of K , of degree 1 (over Q), such that the
underlying prime is 1 mod q.
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Proof. We apply Proposition 12.12 with B D hˇi. Since ˇ is not a qth power, the
Galois group � is cyclic of order q, and the only element of � , Kummer-orthogonal
to ˇ, is 1. Thus, if l is such that 'l ¤ 1, then ˇ is not a qth power modulo l. By
the Chebotarev density theorem, there exist infinitely many prime ideals l with this
property and of degree 1. Finally, since l is of degree 1 and �q 2 K, the underlying
prime is 1 modq. ut

Next, the “simply light” version: we drop the assumption �q 2 K, but still do not
require our prime ideals to belong to the given class.

Proposition 12.14. There exist infinitely many suitable prime ideals of K , of
degree 1, such that the underlying prime is 1 mod q.

Proof. Put L D K.�q; ˇ
1=q/, so that we have a tower of fieldsK 
 K.�q/ 
 L, the

subgroup Gal.L=K.�q// of the group Gal.L=K/ being cyclic. By the Chebotarev
density theorem, there are infinitely many prime ideals l of K of degree 1 such that

the Artin symbol
h

l
L=K

i
is contained in Gal.L=K.�q// and generates this group.

Fix one such l. Since
h

l
L=K

i
� Gal.L=K.�q//, the ideal l totally splits in K.�q/.

Let l D L1 � � �Ls be the decomposition of l in K.�q/. Then

�
l

L=K

	
D f'L1 ; : : : ; 'Ls g ;

where 'Li is the Frobenius of Li in Gal.L=K.�q//.
Now assume that ˇ is a qth power mod l. Then it is a qth power modulo everyLi .

It follows that ˇ is Kummer-orthogonal to the set
h

l
L=K

i
and, consequently, to the

group � , generated by this set. Thus, ˇ is a qth power in K.�q/. Corollary F.2 now
implies that it is a qth power inK , contradicting the assumption. Hence l is suitable.

Finally, since l is of degree 1 and totally splits in K.�q/, every Li is of degree 1,
whence the underlying prime is 1 modq. The proposition is proved. ut

Notice that neither Proposition 12.13 nor even Proposition 12.14 is formally
weaker than Theorem 12.11, because in them we do not assume that q is unramified
in K . This additional assumption is needed only in the “full” version of Theo-
rem 12.11, to ensure that the prime ideals l can be selected in a given ideal class.

Proof of Theorem 12.11. As in Proposition 12.14 we set L D K.�q; ˇ
1=q/, and we

let E be the Hilbert Class Field of K (see Appendix A.11). We view both L and E
as subfields of a fixed algebraic closure ofK , so that the intersection L \E and the
composite LE are well defined.

We claim that L \ E D K. Indeed, the field K 0 D L \ E is both abelian and
unramified overK . Since q is unramified in K , the qth root of unity �q is not in K .
Theorem F.7 implies that K 0 
 K.�q/. But every prime ideal of K above q totally
ramifies in K.�q/ (Proposition 4.17). Since K 0 is unramified over K , we must have
K 0 D K. Thus, L \ E D K and, consequently,

Gal.LE=K/ D Gal.E=K/	 Gal.L=K/:
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The Galois group Gal.E=K/ can be identified, via the Artin map, with the
class group H D HK . Hence Gal.LE=K/ may be identified with the product
H 	 Gal.L=K/. If l is a prime ideal of K , unramified in L, then

�
l

LE=K

	
D fcl.l/g 	

�
l

L=K

	
;

where cl.l/ is the ideal class of l in K .
Applying the Chebotarev density theorem to the extension LE=K , we find,

for every ideal class C 2 H, infinitely many prime ideals l of degree 1, such

that cl.l/ D C and
h

l
L=K

i
is as in the proof of Proposition 12.14 (that is, is

contained in Gal.L=K.�q// and generates this group). Arguing as in the proof of
Proposition 12.14, we show that any such l is suitable, and its underlying prime is
1 mod q. The theorem is proved. ut

12.5 Reduction of a Multiplicative Group Modulo a Prime
Number and Proof of Theorem 12.3

Informally, the results of Sect. 12.4 can be stated as follows: if ˇ is not a qth
power then the group Œhˇi�q faithfully reduces modulo certain prime ideals. Next,
instead of a cyclic subgroup hˇi we consider an arbitrary finitely generated subgroup
B � K� and ask for conditions on when the reduction of the group ŒB�q is faithful.
The analogue of the condition “ˇ is not a qth power in K ” is

B \ .K�/q D Bq: (12.6)

Of course, even when (12.6) is satisfied, we cannot expect that ŒB�q faithfully
reduces modulo prime ideals, because the group ŒB�q is usually not cyclic, and the
multiplicative group modulo a prime ideal is cyclic. However, under certain Galois
conditions upon B , the reduction modulo many rational prime numbers is faithful.

As in the previous section, let q be an odd prime number. In this section prove
the following theorem.

Theorem 12.15. Let K be a finite abelian extension of Q with Galois group G
and let B be a G-invariant finitely generated subgroup of K�, satisfying (12.6).
Assume that q is unramified in K and does not divide the degree ŒK W Q�. Assume
also that ŒB�q is a cyclic G-module. Then, for any ideal class C of K , there exist
infinitely many prime numbers ` with the following properties:

• ` totally splits in K;
• ` � 1 modq;
• the reduction homomorphism ŒB�q ! Œ.OK=`OK/

��q is injective;
• the class C contains a prime ideal above `.

Theorem 12.3 is a particular case of Theorem 12.15.
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Proof of Theorem 12.3 (assuming Theorem 12.15). If p is an odd prime number
distinct from q and such that q − .p � 1/, then q is unramified in the field
K D Q.�p/ and does not divide the degree ŒK W Q�. Recall also that ŒU �q (where U
is the group of Dirichlet units of K) is a cyclic Galois module (Theorem 11.9).
Applying Theorem 12.15 with B D U , we find, for every ideal class C of K ,
infinitely many prime numbers ` with the properties listed therein. Since ` totally
splits in K , we have ` � 1 modp as well. This proves Theorem 12.3. ut

As in Sect. 12.4, we first prove a “light” version, without requiring that there is a
prime ideal above ` in the given class.

In the sequel K is a finite abelian extension of Q with Galois group G and B
is a G-invariant finitely generated subgroup of K�, satisfying (12.6). Call a prime
number ` suitable if the reduction homomorphism ŒB�q ! Œ.O=`O/��q is injective.

Proposition 12.16. Assume that q does not divide ŒK W Q� and that

K \ Q.�q/ D Q: (12.7)

Assume also that ŒB�q is a cyclicG-module. Then there exist infinitely many suitable
prime numbers, congruent to 1 modq and which totally split in K .

Proof. The proof is similar to that of Proposition 12.14. We put L D K.
q
p
B/,

where

q
p
B D ˚

ˇ 2 NK� W ˇq 2 B� ;

in particular �q 2 q
p
B . Then we have a tower of fields K 
 K.�q/ 
 L, and the

subgroup � D Gal.L=K.�q// of the group Gal.L=K/ is isomorphic, by Propo-
sition F.6, to B=B \ .K�/q , which is ŒB�q because of (12.6). Moreover, the two
groups are isomorphic asG-modules; see Appendix F.4 (here the assumption (12.7)
is used). Since ŒB�q is a cyclic G-module by the assumption, so is � .

By the Chebotarev density theorem, there is infinitely many prime ideals l of K

of degree 1 such that the Artin symbol
h

l
L=K

i
is contained in � and contains a

generator of � as aG-module. Fix one such l, and denote by ` its underlying rational
prime. Let ˇ 2 B be a qth power mod `. Then it is a qth power mod l
 for any


 2 G. It follows that ˇ is Kummer-orthogonal to the set
h

l


L=K

i
for any 
 2 G.

A straightforward argument shows that
h

l


L=K

i
D
h

l
L=K

i

. Hence ˇ is Kummer-

orthogonal to the set

[


2G

�
l

L=K

	

: (12.8)
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Since the set
h

l
L=K

i
generates � as G-module, the set (12.8) generates it as an

abelian group. Hence ˇ is Kummer-orthogonal to � , which means that it is a qth
power in K.�q/ and even in K , by Corollary F.2.

We have just proved that the kernel of the reduction homomorphism
B ! Œ.OK=`OK/

��q is B \ .K�/q , which is Bq by (12.6). Hence ` is suitable.
Finally, since l is of degree 1 and totally splits in K.�q/, the prime ` totally splits

in K.�q/, whence ` � 1 modq. The proposition is proved. ut
Notice that the condition “ŒB�q is a cyclic G-module” is not only sufficient, but

also necessary. Indeed, since q − ŒK W Q� D jGj, the ring FqŒG� is semi-simple;
hence it is a principal ideal ring. On the other hand, the group .OK=`OK/

� is a
cyclic FqŒG�-module (Proposition 12.7), and so are its submodules. In particular, so
should be ŒB�q .

Notice also that Proposition 12.16 is not formally weaker than Theorem 12.15,
because the hypothesis “q is unramified in K ” is replaced by a formally weaker
hypothesis (12.7).

Now we are well prepared to prove Theorem 12.15.

Proof of Theorem 12.15. It combines the proofs of Theorem 12.11 and Propo-
sition 12.16. We set L D K.�q;

q
p
B/. Since q is unramified in K , we have

ŒK.�q/ W K� D q � 1, which implies (12.7). Hence, as in the proof of Proposi-
tion 12.16, the group � D Gal.L=K.�q// is G-isomorphic to ŒB�q and, conse-
quently, is a cyclic G-module.

Denote by E be the Hilbert Class Field of K . As in the proof of Theorem 12.11,
we show that L \E D K (here we again use the hypothesis that q is unramified
in K) and, consequently,

Gal.LE=K/ D Gal.E=K/	 Gal.L=K/:

We again identify Gal.E=K/ with the class group H D HK and Gal.LE=K/ with
the direct product H 	 Gal.L=K/.

Applying the Chebotarev density theorem to the extension LE=K , we find

infinitely many prime ideals l of degree 1, such that cl.l/ D C and
h

l
L=K

i
is as in

the proof of Proposition 12.16 (that is, is contained in Gal.L=K.�q// and generates
this group as a G-module). Arguing as in the proof of Proposition 12.16, we show
that any such l is suitable, and its underlying prime is 1 modq. ut

This proves the Theorem of Thaine.



Chapter 13
Baker’s Method and Tijdeman’s Argument

This chapter is somewhat isolated and can be read (almost) independently of the
others. We only assume some (very modest) knowledge of the algebraic number
theory (Sects. A.1–A.8 of Appendix A) and basics about the heights (Appendix B).
In this chapter we discuss the application of Baker’s method to Diophantine
equations of Catalan type. We give a brief introduction to this method, show how
it applies to classical Diophantine equations, and reproduce the beautiful argument
of Tijdeman, who proved that Catalan’s equation has only finitely many solutions.
Moreover, the solutions are bounded by an absolute effective constant (that is, a
constant that can, in principle, be explicitly determined), which reduces the problem
to a finite computation. Before the work of Mihăilescu this was the top achievement
on Catalan’s problem.

We also consider the more general equation of Pillai and show that it has finitely
many solutions when one of the four variables is fixed.

To make this chapter self-contained and independent of the rest of the book
(except Appendices A and B), we sometimes re-prove statements already proved
elsewhere in the previous chapters.

Convention. As it is routinely done in this book, we fix an embedding NQ ,! C and
view all the algebraic numbers occurring in this section as complex numbers.

13.1 Introduction: Thue, Gelfond, and Baker

In this section we briefly recall the prehistory and history of Baker’s theory.

13.1.1 The Theorem of Thue

It is classically known that equation ax2 C bxy C cy2 D 1 with a; b; c 2 Q
� may

have infinitely many solutions in x; y 2 Z. In 1909 the Norwegian mathematician
Thue [133] proved the following theorem.
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Theorem 13.1 (Thue). Let

f .x; y/ D any
n C an�1yn�1x C � � � C a0x

n 2 ZŒx; y�

be a Q-irreducible homogeneous polynomial of degree n � 3, and A 2 Z a nonzero
integer. Then the equation

f .x; y/ D A (13.1)

has only finitely many solutions in x; y 2 Z.

Thue proved his theorem by reduction to Diophantine approximation. Decom-
pose the polynomial f .x; y/ into linear factors over C:

f .x; y/ D an.y � �1x/ � � � .y � �nx/ (13.2)

Then, if .x; y/ is a solution of our equation, we have

j�1 � y=xj � � � j�n � y=xj D jAjjxj�n:
If now � is the nearest to y=x among the roots �1; : : : ; �n, then, by the triangle
inequality,

j�i � y=xj � 1

2
j� � �i j

for �i ¤ � , which implies the inequality

j� � y=xj � cjxj�n; (13.3)

where c is a constant depending on f and A.
Now, to prove Thue’s theorem, it suffices to show that the latter inequality is

impossible for large x and y. Liouville’s inequality (see Remark B.4) implies that
j� � y=xj � c1jxj�n with another constant c1, but this is, obviously, insufficient.

Thue proved that for any (real) algebraic number of degree n > 1 and any " > 0
the inequality

j� � y=xj � jxj�n=2�1�" (13.4)

holds for sufficiently large integers x and y. For n D 2 this is weaker than
Liouville’s inequality, but for n � 3 it is stronger than it, and for large x it
contradicts (13.3). This proves the finiteness.

Thue’s work had a profound impact on the subsequent development of the
Diophantine analysis. Many basic results in this discipline generalize his work or
rely on his ideas. Among many of the improvements of Thue’s inequality (13.4)
mention the celebrated theorem of Roth [119], asserting that in the same setup the
stronger inequality j� � y=xj � jxj�2�" takes place.
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Unfortunately, Thue’s proof of (13.4) has a serious defect, inherited by all of
the subsequent generalizations. What he actually proves is the existence of a big
number X D X.�/ with the following property: if (13.4) has a solution .x0; y0/
with jx0j > X , then any other solution of (13.4) is bounded in terms of this .x0; y0/.

Of course, this implies finiteness for the number of solutions of (13.4), but this
argument gives no method to bound the size of these solutions, because a priori we
are not given a solution .x0; y0/ with jx0j > X . One says that Thue’s argument is
ineffective, and the same is true for its subsequent generalizations.

13.1.2 Logarithmic Forms

Now let us turn to a seemingly unrelated subject. Let �1; : : : ; �n be nonzero complex
algebraic numbers. Given b D .b1; : : : ; bn/ 2 Z

n, put

� D �.b/ D �
b1
1 � � ��bnn :

Assume that � ¤ 1 and ask the following question: how close can � be to 1? The
simplest lower estimate for j� � 1j follows again from Liouville’s inequality: using
Propositions B.3 and B.2, it is easy to show that

j� � 1j � e�ckbk; (13.5)

where kbk D jb1j C � � � C jbnj is the `1-norm of the vector b and c is a positive
constant depending on �1; : : : ; �n (which can be easily made explicit).

Bounding from below j� � 1j is, essentially, equivalent to bounding from
below the quantity� D �.b/ D log � D b1 log �1 C � � � C bn log �n, with a suitable
choice of the complex logarithms log �1; : : : ; log �n. This is why the theory of
Gelfond–Baker is also called the theory of logarithmic forms.

Estimate (13.5) is too weak to have any interesting consequences. We call it
trivial. In his book [37] (see also [38]) Gelfond showed that any nontrivial estimate,
that is, an estimate of the shape j� � 1j � e�o.kbk/, would imply the theorem of
Thue. In particular, any explicit nontrivial lower bound for logarithmic forms would
imply an effective proof for the theorem of Thue.

Gelfond himself obtained a nontrivial lower bound for a logarithmic form in
n D 2 variables, as a by-product of his work in transcendence theory. In 1934
Gelfond [34, 35] and, independently, Schneider [123] solved Hilbert’s seventh
problem: if � and ˇ are complex algebraic numbers, with � ¤ 0; 1 and ˇ … Q

then �ˇ is transcendent. Later, Gelfond [36] gave a quantitative version of this
theorem, by estimating from below the difference ˇ log �1 � log �2, where �1, �2
and ˇ are algebraic numbers, �i ¤ 0; 1 and ˇ … Q.

Gelfond’s crucial observation was that the latter estimate remains true even
when ˇ 2 Q, of course, provided ˇ log �1 � log �2 ¤ 0. Writing the rational ˇ
as �b1=b2, one obtains a nontrivial lower estimate for the logarithmic form
� D b1 log �1 C b2 log �2. Gelfond’s original estimate [36] was of the shape
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j�j � e�c.log kbk/4C"
, where the constant c depends on the numbers �i and on

" > 0. Later it was improved by many authors. The currently best known estimate
for a binary logarithmic form is due to Laurent et al.; see [63–65], where further
bibliography can be found. The result of [65] was extensively used for the numerical
solution of various cases of Catalan’s equation (see [89–91]).

Gelfond also observed in [37] that Diophantine approximation results of Thue
type imply a nontrivial lower bound for linear forms in n � 3 logarithms. However,
this bound inherits the non-effectiveness of Thue’s method and cannot be used for
the effective analysis of Diophantine equations.

In 1966 Baker [4] finally obtained a nontrivial effective lower bound for linear
forms in n � 3 logarithms. In its qualitative form, Baker’s result can be stated as
follows.

Theorem 13.2 (Baker). Let �1; : : : ; �n be nonzero complex algebraic numbers.
For every " > 0 there exists a positive real number B D B.�1; : : : ; �n; "/, which
can be explicitly expressed in terms of �1; : : : ; �n and ", such that for b 2 Z

n with
0 < j�.b/� 1j � e�"kbk we have kbk � B .

Informally speaking, either �.b/ D 1 or j�.b/� 1j � e�o.kbk/.
This result belongs to the top arithmetical achievements of the twentieth century.

Baker derived from his bound effective proofs of several Diophantine finiteness
results, including the theorem of Thue [5]. In Sect. 13.4 we show some of the
Diophantine applications of Baker’s effective theorems.

In 1970 Baker was awarded a Fields medal for his work in Diophantine analysis
and transcendence.

For applications one often needs a more explicit version of Theorem 13.2, with
an explicit form for the exponent o.kbk/. Baker [4] proved for

� D �.b/ D b1 log �1 C � � � C bn log �n

the estimate j�j � e�c.log kbk/nC1C"
, where the constant c depends on the numbers �i

and on " > 0. Since then, this was refined many times by many authors. The modern
estimate [7, 79, 135] is as follows.

Theorem 13.3 (Baker, Wüstholz, Waldschmidt, Matveev, . . . ). In the above
setup, we have either � D 0 or

j�j � e�c.n/dnC2h0.�1/:���h0.�n/ log kbk: (13.6)

Here d D ŒQ.�1; : : : ; �n/ W Q� and h0.�i / D max
˚
h.�i /; d�1�, where h.�/ is the

height function (see Appendix B). Also, c.n/ is a constant depending on n.

The articles quoted above provide various explicit expressions for c.n/.
Using the Dirichlet approximation theorem (like Theorem VI in [17, Chap. 1]),

one can find a nonzero vector b D .b1; : : : ; bn/ 2 Z
n, such that j�.b/j � kbk�n=2

(and even j�.b/j � kbk�n if all the logarithms are real). Hence log kbk cannot
be replaced in (13.6) by a smaller function of kbk. On the other hand, one
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can, probably, improve on the dependence in the algebraic numbers �i ; for
instance, the product h0.�1/ � � � h0.�n/ can, probably, be replaced by the sum
h0.�1/C � � � C h0.�n/, which would have many important consequences. However,
such an improvement would require substantially new ideas and seems to be beyond
our present knowledge.

The present effort is concentrated on the refinement of the constant c.n/. The best
result in this direction is due to Matveev [79], who proved that one may take
c.n/ D cn with an absolute constant c.

Unfortunately, within the frames of this book, we cannot even give an idea of the
proof of Theorem 13.2, let alone Theorem 13.3. For this we address the reader to
Waldschmidt’s and Nesterenko’s contributions in the Cetraro volume [78]. See also
the Baker Festschrift volume [139] for the history of the subject and the present state
of the art.

13.2 Heights in Finitely Generated Groups

Many arguments in the subsequent sections rely on a simple property, which links
kbk D jb1j C � � � C jbnj and the height of the multiplicative combination

� D �.b/ D �
b1
1 � � ��bnn :

Basic properties of heights (see Appendix B1) imply that h.�/ � ckbk, where the
constant c depends on the numbers �i ; for instance,

c D maxfh.�1/; : : : ; h.�n/g
would do. It turns out that, when the numbers �i are multiplicatively independent,
the opposite inequality holds as well.

Theorem 13.4. Let �1; : : : ; �n be multiplicatively independent nonzero algebraic
numbers. Then there exists a positive constant c (depending on the numbers �i )
such that for any b 2 Z

n we have kbk � c h
�
�.b/

�
.

Proof. The proof goes back to Dirichlet. Let K be the number field generated
by the numbers �i , and let S be the set of all valuations v 2 MK such that

j�i jv ¤ 1 for some i . We put s D jS j and consider the map K� L! R
s defined by

˛ 7! .log j˛jv/v2S .
Let � be the multiplicative group generated by �1; : : : ; �n. By the assumption, �

is a free abelian group of rank n. For � 2 � we have

kL.�/k D 2dh.�/; (13.7)

1Attention: notation k � k has a different meaning in Appendix B.
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where d D ŒK W Q� and k � k is the `1-norm on R
s . Indeed, by the very definition

of S , we have j� jv D 1 for � 2 � and v … S . It follows that

dh.�/ D
X

v2S
log max f1; j� jvg :

Hence, for � 2 � , we have

kL.�/k D
X

v2S

ˇ̌
log j� jv

ˇ̌ D
X

v2S

�
log max

˚
1; j� jv

�C log max
˚
1; j��1jv

��

D d
�
h.�/C h.��1/

� D 2dh.�/;

as wanted.
Kronecker’s theorems [Proposition B.2, items (2) and (3)] imply that the map L

is injective on � and that L.� / is a discrete subgroup of Rs . Indeed, if L.�/ D 0,
then h.�/ D 0, which implies that � is a root of unity by Kronecker’s first theorem.
Since � is a free abelian group, this is possible only if � D 1. This proves that Lj�
is injective.

Similarly, Kronecker’s second theorem implies that there is " > 0 such that
h.�/ � " if � 2 � and � ¤ 1. Hence for 
 2 L.� / and 
 ¤ 0 we have k
k � 2d",
which proves that L.� / is a discrete subgroup.

We have proved that L.� / is a discrete subgroup of R
s of rank n. Hence it

generates a vector space V of dimension n. Now we are ready to finish the proof.
The isomorphism Z

n ! � , defined by b 7! �.b/, continues to an isomorphism

Z
n
 ! L.� /, and the latter extends by linearity to an R-isomorphism R

n
 ! V .

Since  is a non-singular linear map, there exists � > 0 such that k .b/k � �kbk
for b 2 R

n. In particular, kbk � ��1 ��L��.b/��� for b 2 Z
n. In view of (13.7) this

proves the theorem with c D 2d��1. ut
With the help of Theorem 13.4, Baker’s Theorem 13.2 can be restated as follows.

Theorem 13.5. Let � be a finitely generated multiplicative group of complex
algebraic numbers. Then for any " > 0 there exists a positive real h0 D h0."; � /

such that for any � 2 � with j� � 1j � e�"h.�/ we have h.�/ � h0.

Proof. Since � is finitely generated, its torsion subgroup is finite and cyclic
(because a finite group of roots of unity is cyclic), of order, say,m. It follows that �
has a basis of the form 	; �1; : : : ; �n, where 	 is a root of unity and �1; : : : ; �n are
multiplicatively independent. Then every element of � has a unique presentation as
	a�.b/, where 0 � a < m and b 2 Z

n. Since multiplication by a root of unity does
not affect the height of an algebraic number, we have

c1kbk � h.�.b// D h.	a�.b// � c2kbk;
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with some positive c1 and c2 depending on �1; : : : ; �n. Here the inequality on the
right follows from the basic properties of heights (as indicated in the beginning of
this section), and the inequality on the left is Theorem 13.4.

Now if � D 1 then the result is obvious, and if 0 < j� � 1j � e�"h.�/ then we
complete the proof applying Theorem 13.2. ut

13.3 Almost nth Powers

This is another preparatory section. We recall one simple algebraic principle that is
widely used in the Diophantine analysis from the time of Diophantus.

In its simplest form, the principle tells the following: if the product xy of coprime
positive integers x and y is a square in Z, then each of x and y is itself a square.
Of course, this is well known and obvious.

More generally, if xy is “almost a square” (that is, a square times a given
integer c), and if x, y are “almost coprime” (that is, gcd.x; y/ divides a given
integer d ), then both x and y are “almost squares.” This means that there exists
a finite setM � Z (depending on c and d ) such that x D aX2 and b D bY 2, where
a; b 2 M and X; Y 2 Z.

Of course, the same statement is true not only for squares but for nth powers
with an arbitrary n. Arguments of this sort appeared in the book several times, in
particular, in Chap. 2, in the proof of Cassels’ relations, and in the “most important”
Lemma 6.1.

In the following proposition we extend this property to number fields. It would
also be convenient not to restrict to (algebraic) integers, but to allow our x and y to
have a bounded denominator. In other words, we select them in a given fractional
ideal of a number field.

Recall the definition of divisibility of fractional ideals. Given fractional ideals a
and b of some number field, we say that a j b if there exists an integral ideal q such
that b D aq. Equivalently, a j b if b 
 a.

Lemma 13.6. Let K be a number field and c a nonzero fractional ideal of K .
Let also d be a nonzero integral ideal and n a positive integer:

1. There exists a finite set M of fractional ideals of K , depending on c and d,
but independent of n, such that the following holds. If x; y 2 c are such that
xy 2 .K�/n and2 gcd.x; y/ j d, then there exist a; b 2 M such that .x/ is a times
an nth power of an integral ideal and .y/ is b times an nth power of an integral
ideal.

2. There exists a finite set Mn � K�, depending on c, d and n such that the
following holds. If x; y 2 c are such that xy 2 .K�/n and gcd.x; y/ j d, then
there exist ˛; ˇ 2 Mn and X; Y 2 OK such that x D ˛Xn and y D ˇY n.

2By gcd.x; y/ we mean the fractional ideal generated by x and y.
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Proof. If p is a prime ideal of K and x, y are as in the hypothesis, then

Ordpc � minfOrdpx;Ordpyg � Ordpd;

Ordpx C Ordpy � 0 modn:

It follows that there exists a finite set of integers Ap (not depending on n) such that
the smallest of the numbers Ordpx or Ordpy belongs to Ap, and the other one is
congruent modulo n to some element of Ap. Moreover, for all but finitely many p,
we have

Ordpc D Ordpd D 0;

and for all such p we have Ap D f0g. Hence the set M , consisting of the ideals a
satisfying Ordpa 2 Ap for every p, is finite and, obviously, has the required property.
This proves Part 1.

Now fix an integral representative in every ideal class of K , and fix a generator
for every principal ideal of the form ah�n, where a runs overM and h runs over the
set of the fixed representatives. The setM 0

n of the fixed generators has the following
property: for any x, y as in the hypothesis, there exist ˛; ˇ 2 M 0

n such that each of
.x˛�1/ and .yˇ�1/ is an nth power of a principal integral ideal: .x/ D .˛Xn/ and
.y/ D .ˇY n/ for some X; Y 2 OK .

To complete the proof, we invoke the Dirichlet unit theorem. It implies that the
groupUK=UnK is finite. We fix a representative for every class of UK moduloUnK , and
we define Mn to be the set of all ˛�, where ˛ 2 M 0

n and � runs over the set of the
fixed representatives. Obviously, the setMn is as wanted. The lemma is proved. ut

We shall use this lemma in the following context: if a is a simple root of
a polynomial f and f .x/ is an nth power for some integer x, then x � a is
an “almost” nth power for this x. Precisely speaking, we have the following
consequence.

Corollary 13.7. Let K be a number field, f .x/ 2 KŒx� a nonzero polynomial,
a 2 K a simple root of f , and n a positive integer:

1. There exists a finite set M of fractional ideals of K , depending on f , but inde-
pendent of n, such that the following holds. If x 2 OK is such that f .x/ 2 .K�/n
then there exists a 2 M such that .x � a/ is a times an nth power of an integral
ideal.

2. There exists a finite setMn � K�, depending on f and n such that the following
holds. If x 2 OK is such that f .x/ 2 .K�/n then there exist ˛ 2 Mn and
X 2 OK such that x � a D ˛Xn.

Proof. Define polynomials g.x/; h.x/ 2 KŒx� from f .x/ D .x � a/g.x/, and
g.x/ � g.a/ D .x � a/h.x/. Recall that g.a/ ¤ 0 by the assumption.

Clearly, there exists a fractional ideal c, depending only on f such that both
x � a and g.x/ are in c for any x 2 OK . Also, since g.a/ ¤ 0, the relation

g.x/ � .x � a/h.x/ D g.a/
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implies that there exists a nonzero integral ideal d such that for any x 2 OK we
have gcd.x � a; g.x// j d. Now applying Lemma 13.6 with x � a as x and with
g.x/ as y, we obtain the result. ut
Remark 13.8. More generally, if a is a root of order r , then, defining

n0 D n= gcd.n; r/;

one shows that .x � a/ is a times an n0th power of an integral ideal, where again a is
selected in a finite set depending only on f . Indeed, writing f .x/ D .x � a/rg.x/

and arguing as above, one proves that the principal ideal ..x � a/r / is “almost” an
nth power, whence .x � a/ is “almost” an n0th power. Similarly, x � a D ˛Xn0

,
where X 2 OK and ˛ is selected in a finite set, depending on f and n.

Part 1 of Lemma 13.6 holds even when n D 0. Moreover, in this case, the gcd
assumption is obsolete, and we have the following statement.

Lemma 13.9. Let K be a number field, c a nonzero fractional ideal of K , and a a
nonzero element of K . Then there exists a finite set M (depending on c and a) of
principal ideals ofK such that the following holds. If x; y 2 c are such that xy D a

then the principal ideals .x/ and .y/ belong to M .

The proof is very simple and left as an exercise.
A fargoing generalization of Lemma 13.6 is known as the Chevalley-Weil

Theorem (see [59, Sect. 2.8]).

13.4 Effective Analysis of Classical Diophantine Equations

In this section we use Baker’s inequality (13.6) to give effective proofs of the
theorem of Thue and of the theorem of Siegel on the “superelliptic equations.”

In this and the subsequent sections the following conventions will apply, unless
the contrary is stated explicitly:

• By a solution of the equations we deal with we always mean a solution .x; y/
in Z

2 or in Z 	 Q.
• By constants we mean positive real numbers that may depend on the equation

(and can be explicitly expressed in terms of the equation) but which are
independent of the solution we consider. This convention extends to the constants
implied by the O.�/ notation. Even in the course of the same argument the
same letter (say, c) may denote different constants, when this does not lead to
a confusion. All these constants are effective, that is, explicitly computable in
terms of the equation.
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13.4.1 The Thue Equation

First of all, we prove an effective version of Theorem 13.1.

Theorem 13.10 (Thue, Baker). Let f .x; y/ 2 ZŒx; y� be a Q-irreducible homo-
geneous polynomial of degree n � 3, and A 2 Z a nonzero integer. Then the
equation

f .x; y/ D A

has only finitely many solutions in x; y 2 Z, and the size of these solutions can be
bounded by an explicitly computable constant (depending on f and A).

This effective version of Thue’s theorem was proved by Baker [5].

Proof. As in Sect. 13.1.1, we write

f .x; y/ D an.y � �1x/ � � � .y � �nx/
and show that, given a solution .x; y/ with x ¤ 0, there exists a root � among
�1; : : : ; �n such that y=x is “very close” to � ; precisely speaking,

j� � y=xj � cjxj�n;
with some constant c. It is not relevant for the proof, but can be remarked that the
root � may be assumed to be real; for any non-real theta there is an obvious lower
bound for the difference j� � y=xj: we have j� � y=xj � jIm � j.

In the sequel we shall assume (as we may, without loss of generality) that � D �1.
Now consider the quotient

y � �2x

y � �3x
D y=x � �2

y=x � �3

(here we use the assumption n � 3). It is “very close” to .�1 � �2/=.�1 � �3/.
In other words, the quantity

� D �1 � �3
�1 � �2 � y � �2x

y � �3x

is “very close” to 1:

j� � 1j � cjxj�n; (13.8)

with another constant c.
We want now to express the height of � in terms of our solution .x; y/. Writing

� D �1 � �3

�1 � �2
� y=x � �2

y=x � �3
;
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and using the properties of heights from Appendix B (most significantly, Part 9 of
Proposition B.2), we find that

h.�/ D h.y=x/CO.1/ D maxflog jx=d j; log jy=d jg CO.1/;

where d D gcd.x; y/. Since d divides f .x; y/ D A, we obtain

h.�/ D maxflog jxj; log jyjg CO.1/: (13.9)

Finally, since y=x is “close” to �1, we have log jyj D log jxj CO.1/. We obtain

h.�/ D log jxj CO.1/: (13.10)

Now let K be the number field generated by the roots �1; �2; �3. Lemma 13.9
implies that there is a finite set M � K� such that for any solution .x; y/, each
of the numbers y � �ix can be presented as product of an element of M and
a Dirichlet unit. Hence every y � �ix belongs to the multiplicative group � 0,
generated by the setM and the units ofK . It follows that, for any solution .x; y/, the
quantity � defined above belongs to the group � , generated by � 0 and the quotient
.�1 � �2/=.�1 � �3/.

Now it is the time to apply Theorem 13.5. Fix " > 0, to be specified later.
Theorem 13.5 combined with estimate (13.10) implies that either jxj is bounded or

j� � 1j � e�" log jxjCO.1/:

When " is chosen to be strictly smaller than n (say, " D n=2 would do), this
contradicts (13.8) for large jxj. The theorem is proved. ut

13.4.2 The Superelliptic Equation

Another classical Diophantine equation studied by Baker is the superelliptic
equation yn D f .x/.

Theorem 13.11 (Siegel, Baker). Let f .x/ 2 QŒx� be a polynomial with at least 2
simple roots (over C). Then for any integer n � 3 the equation yn D f .x/ has only
finitely many solutions in x 2 Z and y 2 Q, and the size of these solutions can be
bounded by an explicitly computable constant (depending on f and n). If f has at
least three simple roots, then the same is true for the solutions of y2 D f .x/.

A noneffective version of this theorem is due to Siegel [127], and Baker [6]
proved an effective version.

To illustrate the idea of the proof, assume that f .x/ belongs to ZŒx� and has two
simple roots in Z; call them a and b. Corollary 13.7 implies that for any solution
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.x; y/ of our equation we have x � a D ˛un, where ˛ is selected in some finite set
and u 2 Z. Similarly, x � b D ˇvn, where ˇ belongs to a finite set and v 2 Z.

Thus, we reduced our equation to finitely many Thue equations of the form

˛un � ˇvn D b � a; (13.11)

which proves the theorem in the special case. In the general case, one reduces
the superelliptic equation to equations of the same shape as (13.11), but now the
coefficients ˛ and ˇ belong to some number field K , and one looks for solutions
in the ring of integers OK . One can analyze this “generalized Thue equation” in,
basically, the same way as one does with the classical Thue equation over Q.
However, it is more practical (and more instructive) to reduce the superelliptic
equation directly to Baker’s inequality, without passing through the Thue equation.

To understand how this should be done, let us return to the case when f .x/ has
distinct simple roots a; b 2 Z. As we have seen, in this case, the original equation
reduces to several Thue equations of the form (13.11). Let us analyze one such
equation using the method of Sect. 13.4.1. We write

˛un � ˇvn D ˛.u � �1v/ � � � .u � �nv/;

where

�k D �k�1 n
p
ˇ=˛ .k D 1; : : : ; n/

with � D �n a primitive nth root of unity. If .u; v/ is a “big solution,” then the
quotient u=v is “very close” to one of the roots �1; : : : ; �n, say, to �1.

Now as in the proof of Theorem 13.10, we introduce the quantity � :

� D �1 � �3
�1 � �2 � u � �2v

u � �3v :

Expressing � in terms of the variables x and y of the original equation yn D f .x/,
we find

� D 1 � �2
1 � �

�
n
p
x � a � � n

p
x � b

n
p
x � a � �2

n
p
x � b

(13.12)

for some determination of the roots n
p
x � a and n

p
x � b.

Notice that � can be defined, using (13.12), without any additional assumption on
the roots a and b. This suggests the following strategy for proving Theorem 13.11:
define � as in (13.12) (one should only be careful here with the correct determination
of the roots), and then show that � belongs to some finitely generated group
(independent of x) and is close to 1, so that one can apply Baker’s inequality.
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We can proceed now with the formal proof.

Proof of Theorem 13.11. Let a 2 NQ be a simple root of f . If .x; y/ 2 Z 	 Q is
a solution of yn D f .x/, then Corollary 13.7 implies x � a D ˛un, where ˛ is
selected in some finite set A and u 2 Q.a/. It follows that for any solution .x; y/ all
the roots n

p
x � a belong to the number field Q.a;

n
p
A/, generated over Q.a/ by the

nth roots of the elements of A and by the nth roots of unity.
Similarly, if b is another simple root of f then there exists a finite set B � Q.b/

such that for any solution .x; y/ all the roots n
p
x � b belong to the number field

Q.b;
n
p
B/.

Denote by K the number field Q.a; b;
n
p
A;

n
p
B/ and fix a primitive nth root of

unity � D �n. Lemma 13.9 and the identity

n�1Y

kD0

�
n
p
x � a � �k

n
p
x � b

�
D b � a

imply the following: there exists a finite set of principal ideals of the field K , not
depending on the solution .x; y/, such that for k 2 f0; : : : ; n � 1g the principal

ideals
�

n
p
x � a � �k n

p
x � b

�
belong to this set. It follows that there exists a finitely

generated subgroup � 0 of K� (not depending on the solution) such that

n
p
x � a � �k

n
p
x � b 2 � 0 .k D 0; : : : ; n � 1/: (13.13)

Now it is the time to define the roots n
p
x � a and n

p
x � b as complex

numbers. We may restrict ourselves to solutions .x; y/ with x > 0; for solutions
with x < 0 just consider the equation yn D f .�x/. Further, we may assume that
x > maxfjaj; jbjg and define the roots n

p
1 � a=x and n

p
1 � b=x as the sums of the

corresponding binomial series:

n

r
1� a

x
D

1X

kD0

 
1=n

k

!��a
x

�k
;

and similarly for n
p
1 � b=x. With this definition we have

n

r
1 � a

x
D 1CO

�
1

x

�
;

n

r
1 � b

x
D 1CO

�
1

x

�
: (13.14)

Next, we define n
p
x � a D n

p
x n
p
1 � a=x, where n

p
x is the only positive nth root

of x, and similarly for n
p
x � b.

Now assume that n � 3. Relations (13.14) imply that the quantity

� D �.x/ D 1 � �2

1 � � �
n
p
x � a � �

n
p
x � b

n
p
x � a � �2 n

p
x � b
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satisfies

j� � 1j � Cx�1 (13.15)

with some constant C . Writing

� D n

r
x � b

x � a
; � D 1 � �2

1 � � � 1 � ��
1 � �2�

and using Proposition B.2 (Part 9 and others), we find

h.�n/ D h.x/CO.1/; h.�/ D h.�/CO.1/;

whence

h.�/ D 1

n
h.x/CO.1/ D 1

n
logx CO.1/: (13.16)

Now we complete the proof using Theorem 13.5. Clearly, � 2 � , the group
generated by � 0 and .1 � �2/=.1 � �/. Theorem 13.5 applied with suitably chosen "
and combined with estimate (13.16) implies that either x is bounded or

j� � 1j � e�.1=2/ log xCO.1/;

contradicting (13.15) for large x. The case n � 3 is proved.
If n D 2 and f has three simple roots a; b; c, the proof is very similar. This time

we put

� D
p
x � a C p

x � bp
x � a C p

x � c :

We again have

j� � 1j � Cx�1: (13.17)

As for the height, we cannot now have an asymptotical estimate like (13.16), but
we can estimate the height in terms of x from above and from below, which would
suffice.

The upper estimate is a straightforward application of Proposition B.2:

h.�/ � 2 logx CO.1/: (13.18)

To estimate the height from below, write

� D
r
x � b

x � a
; � D 1C �

1Cp

�2 C �

;
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where


 D a � c
a � b ; � D c � b

a � b
:

Resolving this in �, we find

� D � � 1˙ �
p
.
 � �/�2 � 2
� C 
C �:

Using repeatedly various parts of Proposition B.2, we obtain the estimates
h.�/ � .5=2/h.�/CO.1/ and logx D h.x/ D 2h.�/CO.1/, resulting in

logx � 5h.�/CO.1/: (13.19)

Applying Theorem 13.5 with suitably chosen " and combining it with (13.18)
and (13.19), we deduce that either x is bounded or

j� � 1j � e�.1=2/ log xCO.1/;

contradicting (13.17) for large x. The theorem is proved in the case n D 2 as well.
ut

13.5 The Theorem of Schinzel and Tijdeman
and the Equation of Pillai

Schinzel and Tijdeman [122] considered the superelliptic equation with the “vary-
ing” exponent n and proved the following remarkable theorem.

Theorem 13.12 (Schinzel, Tijdeman). Let f .x/ 2 QŒx� be a polynomial with at
least two distinct roots (over C). Then there exists a positive effectively computable
constant n0 D n0.f / such that for any integer n � n0.f / the equation yn D f .x/

has no solutions in x 2 Z and y 2 Q with y ¤ 0;˙1.

The proof of this theorem again relies on Baker’s inequality, but Theorem 13.5
is no longer sufficient. In fact, now we have to deal not with elements of a finitely
generated group � , but of the group .K�/n� , generated by � and all nth powers in
the fieldK . For elements of this group we have the following Baker-type statement.

Theorem 13.13. Let K be a number field, � a finitely generated subgroup of K�,
and n � 2 an integer. Then for any � 2 .K�/n� we have either � D 1 or

j� � 1j � e�c1 logn
n h.�/�c2 ; (13.20)

where the positive constants c1 and c2 depend on K and on � , but not on n.
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Notice that this theorem is of interest only for large n; for small n an appar-
ently better estimate j� � 1j � e�d.h.�/Clog 2/, where d D ŒK W Q�, follows from
“Liouville’s inequality” (Proposition B.3).

Proof. Fix a system �1; : : : ; �r of generators of � . Then any � 2 .K�/n� can be
written as � D �n0 �

b1
1 � � ��brr with �0 2 K� and 0 � bi < n. For the height of �0 we

have the estimate

h.�0/ � 1

n

�
h.�/C b1h.�1/C � � � C brh.�r/

� � h.�/

n
CO.1/;

the implicit constant depending on � . Hence, h0.�0/ � h.�/=nCO.1/. Applying
Theorem 13.3, we obtain � D 1 or

j� � 1j � e�c.K;� /h0.�0/ log n � e�c1 logn
n h.�/�c2 ;

as wanted. ut
Remark 13.14. It is useful to express the constants c1 and c2 explicitly in terms of
a system �1; : : : ; �r of generators of � . The proof implies that one may take

c1 D c.r; d /h0.�1/ � � � h0.�r /; c2 D c1 .h.�1/C � � � C h.�r/C 1/ ;

where, as above, d D ŒK W Q�. This will be used in Sect. 13.6.

Proof of Theorem 13.12. To simplify the notation, we shall give a detailed proof
in the special case when the polynomial f has two distinct simple roots (which is
sufficient for the subsequent applications). At the end, we indicate the few changes
to be made to adapt the proof to the general case.

Notice first of all that n is bounded in terms of x. Indeed, if f .x/ ¤ 0;˙1 then
the set of n such that f .x/ is a pure nth power is finite. And if f .x/ 2 f0;˙1g then
from yn D f .x/ we find that either n D 0 or y 2 f0;˙1g, which is excluded.

Thus, in the sequel, we may assume jxj as big as we please. In particular, we may
assume that x ¤ 0.

Now let a and b be two distinct simple roots of f , and put K D Q.a; b/.
All constants in the proof, either implied by the O.�/-notation or denoted by
c; c1; c2. . . , may depend on f but not on n.

Corollary 13.7 implies that the principal ideal .x � a/ is aun, where u is an
integral ideal of the fieldK and a belongs to a finite set of (fractional) ideals, which
depends on f but is independent of x and n.

Now let h D hK be the class number3 of the field K . Then the ideals ah and uh

are principal. It follows that .x � a/h D ˛�un, where ˛ belongs to a finite set
(independent of x and n), u is an algebraic integer, and � is a unit of the field K .
Hence .x � a/h belongs to .K�/n� , where � is a finitely generated multiplicative

3We hope that no confusion occurs between the height function h.�/ and the class number h.
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group, which does not depend on x and n. Similarly, .x � b/h 2 .K�/n� 0 with
some finitely generated � 0, and we may assume that � 0 D � . Hence,

� D
�x � a

x � b

�h 2 .K�/n�;

and Theorem 13.13 applies here. To use it, we need to express the height of �
in terms of x. Using items (8) and (9) of Proposition B.2 and recalling that
h.x/ D log jxj (because x ¤ 0), we obtain h.�/ D h log jxj CO.1/. Substituting
this to (13.20), we obtain that either � D 1 or

j� � 1j � e�c1h logn
n log jxj�c2 : (13.21)

On the other hand, � D 1CO.jxj�1/ and � ¤ 1 when jxj � 2maxfjaj; jbjg.
Combining this with (13.21), we obtain that either n � c3 or jxj � c4. Since n is
bounded in terms of x, this completes the proof in the case when the roots a and b
are simple.

Now assume that a and b are distinct roots of f .x/ of multiplicities r

and s, respectively. Using Remark 13.8 instead of Corollary 13.7, we obtain that
.x � a/h 2 .K�/n= gcd.n;r/� and .x � b/h 2 .K�/n= gcd.n;s/� with some finitely
generated group � . Hence � 2 .K�/n0

� , where

n0 D n

lcm
�
gcd.n; r/; gcd.n; s/

� :

Now, arguing as above, we bound n0, which implies a bound on n. The theorem is
proved. ut
Remark 13.15. Alternatively, one can define

� D
�

yn

d.x � a/m

�h
; h D hQ.a/;

where m is the degree and d is the leading coefficient of the polynomial f .
Since .x � a/h is an “almost” nth power in Q.a/, so is � , and since
yn D f .x/ D dxm CO.jxjm�1/, we have � D 1CO.jxj�1/. Finally, since a

is not the single root of f , we have � ¤ 1 for big x.
This approach might be useful in some cases, because it permits to deal with the

field Q.a/ instead of Q.a; b/. We shall see how to profit from this in Sect. 13.6.

Combining Theorems 13.11 and 13.12, we obtain the following.

Theorem 13.16. Let f .x/ 2 QŒx� be a polynomial with at least two simple roots.
Then the equation yn D f .x/ has only finitely many solutions in x 2 Z, y 2 Q,
and n 2 Z with n � 3 and y ¤ 0˙ 1; moreover, the size of these solutions can be
explicitly bounded. If f has at least three simple roots, then the assumption n � 3

may be replaced by n � 2.
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We apply this to the Diophantine equation of Pillai. The Indian mathematician
Pillai studied in [114, 115] the Diophantine equation xm � yn D c with a fixed
nonzero integer c. He conjectured that this equation has only finitely many nontrivial
solutions in positive integers x; y;m; n with m; n > 1. This conjecture is proved
now only for c D ˙1.

One may state a more general conjecture.

Conjecture 13.17. Let a; b; c be nonzero integers. Then the equation

axm C byn D c (13.22)

has finitely many solutions in integers x; y and positive integersm; n such that

x; y ¤ 0;˙1; m; n > 1; .m; n/ ¤ .2; 2/: (13.23)

(One has to exclude the case m D n D 2 because equation ax2 C by2 D c may
have infinitely many solutions.)

This conjecture is usually called generalized Pillai’s conjecture, and Eq. (13.22)
is called generalized Pillai’s equation. Solutions satisfying (13.23) will be called
nontrivial.

No instance of Pillai’s conjecture with jabcj > 1 is currently proved.
Theorem 13.16 implies that this equation may have only finitely many nontrivial

solutions with one of the four variables fixed.

Theorem 13.18. Let a; b; c be nonzero integers. Fix integers x0 ¤ 0;˙1 and
m0 > 1. Then Eq. (13.22) has at most finitely many nontrivial solutions .x; y;m; n/
with x D x0 and at most finitely many nontrivial solutions with m D m0.

Proof. When m D m0 is fixed, we write our equation as yn D f .x/ with
f .x/ D �.axm0 � c/=b and apply Theorem 13.16.

Now fix x D x0 and write m D 3�C �, where � 2 f0; 1; 2g. Then (13.22) can
be rewritten as yn D f .X/ with f .X/ D �.AX3 � c/=b, where A D ax

�
0 and

X D x
�
0 . For every � this equation has finitely many solutions by Theorem 13.16.

Whence the result. ut

13.6 Tijdeman’s Argument

We conclude this chapter with the remarkable result of Tijdeman [134], who proved
in 1976 that Catalan’s problem reduces to a finite calculation.

Theorem 13.19 (Tijdeman). There exists an absolute effective constant C such
that any nontrivial solution .x; y; p; q/ of Catalan’s equation xp � yq D 1 satisfies

maxfjxj; jyj; p; qg � C:

By a nontrivial solution we mean here a solution in integers x; y ¤ 0 and primes
p; q.
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Before the work of Mihăilescu this was the best result on Catalan’s problem.
See Sect. 1.4 (p. 5) and Sect. 1.6 (p. 7) of the Historical Account, where Tijdeman’s
work is put into the historical context.

Notice first of all that if one of the exponents p; q is 2 then the result follows
from Theorem 13.18. Hence, we may assume that p, q are odd prime numbers.
This allows us to use the symmetry: if .x; y; p; q/ is a solution, then so is
.�y;�x; q; p/.

Also, again by Theorem 13.18, we may assume that

jxj; jyj � 10: (13.24)

13.6.1 Preparations

To prove Tijdeman’s theorem, we write Catalan’s equation as

yq D xp � 1; (13.25)

and we may apply Theorem 13.12 to bound q in terms of p. We want to make this
explicit. If we imitate the proof of Theorem 13.12 in this special case, we will have
to deal with the quantity

�x � a

x � b
�hp

;

where hp is the class number of the cyclotomic field Kp D Q.�p/ and a; b are two
distinct pth roots of unity (in particular, one of them can be 1). This quantity must
be an “almost” qth power in Kp.

It is more efficient, however, to do as suggested in Remark 13.15 and take

� D yq

.x � 1/p : (13.26)

This would allow us to work over the field Q rather that the pth cyclotomic field.
Another important advantage is that we have the following very precise version of
Corollary 13.7. We denote by ˚p.x/ the pth cyclotomic polynomial:

˚p.x/ D xp � 1

x � 1 D xp�1 C � � � C x C 1:

Proposition 13.20. Let .x; y; p; q/ be a solution of Catalan’s equation (that is,
x; y are nonzero integers and p; q are (distinct) odd prime numbers, satisfying
xp � yq D 1). Then either

gcd.x � 1;˚p.x// D 1;
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in which case x � 1;˚p.x/ 2 .Q�/q , or

gcd.x � 1;˚p.x// D p ;

in which case x � 1 2 p�1.Q�/q and ˚p.x/ 2 p .Q�/q . In addition, in the
second case, Ordp˚p.x/ D 1. Symmetrically, we have either y C 1 2 .Q�/p or
y C 1 2 q�1.Q�/p .

Proof. We may quote here certain statements from Chap. 2 or 3, but we give a quick
independent proof for the reader’s convenience. It will be more practical to deal
with the polynomial g.t/ D ˚p.t C 1/. Since g.0/ D ˚p.1/ D p, we have clearly
gcd.t; g.t// 2 f1; pg for t 2 Z. Moreover, writing

g.t/ D .t C 1/p � 1

t
D p C

p�1X

kD2

 
p

k

!
tk�1 C tp�1

we see that g.t/ � tp�1 modp , which means that, for t 2 Z, either both t and g.t/
are not divisible by p (in which case they are coprime) or both are divisible by p
(in which case their gcd is p). In this second case we have g.t/ � p modp2, in
particular Ordpg.t/ D 1.

Now let .x; y; p; q/ be a solution of Catalan’s equation. Setting t D x � 1, we
rewrite the equation as tg.t/ D yq . Thus, if gcd.t; g.t// D 1 then both t and g.t/
are pure qth powers, and if gcd.t; g.t// D p then one of the numbers t and g.t/
is puq and the other is pq�1vq , where u; v 2 Z and p − u. Since Ordpg.t/ D 1, it
cannot be pq�1vq . Thus, g.t/ D puq 2 p .Q�/q and t D pq�1vq 2 p�1.Q�/q . This
completes the proof. ut
Remark 13.21. According to Cassels’ Theorem 3.3 from Chap. 3, we actually have
gcd.x � 1;˚p.x// D p . This result (which is quite involved; see Sect. 3.3) is
crucial for the work of Mihăilescu, but we do not need it to prove Theorem 13.19.
Therefore we prefer to ignore this additional knowledge at this time.

Corollary 13.22. We have jxj � 2q � 1 and jyj � 2p � 1.

Proof. If x � 1 2 .Q�/q then either x � 1 2 f0;˙1g, which is impossible
by the assumption (13.24), or jx � 1j � 2q , which implies that jxj � 2q � 1.
If x � 1 2 p�1.Q�/q then jx � 1j � pq�1, and a quick inspection shows that
pq�1 > 2q for any distinct odd primes p and q. This proves that jxj � 2q � 1, and
jyj � 2p � 1 follows by symmetry. ut

Again, much sharper results are available (see Sect. 3.4), but the estimates from
Corollary 13.22 are sufficient here.

We also need some estimates concerning � .

Proposition 13.23. The rational number � defined in (13.26) is distinct from ˙1.
If p < q then � satisfies

� D 1CO.p=x/; h.�/ D .p � 1/ log jxj CO.logp/; (13.27)

the implied constants being absolute.
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Proof. Since

� D xp � 1

.x � 1/p
; (13.28)

we clearly have � ¤ ˙1. Further, since jxj � 2q � 1 � 2p � 1 by Corollary 13.22,
we have � D 1CO.p=x/.

To estimate the height of � , we write further

� D xp�1 C � � � C x C 1

.x � 1/p�1 :

Proposition 13.20 implies that the greatest common divisor of the denominator and
the numerator is 1 or p. Hence, using Proposition B.2(5), we obtain

h.�/ D log max
˚jxp�1 C � � � C x C 1j; j.x � 1/p�1j�CO.logp/: (13.29)

Again using jxj � 2p � 1, we find that the right-hand side of (13.29) is
.p � 1/ log jxj CO.logp/. This completes the proof. ut

13.6.2 Proof of Theorem 13.19

We now start the proof of Theorem 13.19. By Theorem 13.18 it suffices to bound
one of the exponents p or q. We will do even better, bounding both of them.

We assume that q > p . The proof consists of two steps: first we bound q in terms
of p, and after we bound p in terms of q; the combination of both bounds would
imply an absolute bound for p and q. Unless the contrary is stated explicitly, all
constants denoted by c or implied by the O.�/ notation are absolute.

Bounding q in Terms of p

Our first objective will be the inequality

q � cp.logp/2 (13.30)

with some absolute constant c. The exact form of the inequality is of little
importance; we only need to know that q cannot be “too large” compared with p.

As indicated above, this will be a reenactment of the proof of Theorem 13.12, but
with � defined as in (13.26), and with Proposition 13.20 replacing Corollary 13.7.

Proposition 13.20 implies that � 2 �p.Q�/q , where �p is the subgroup of Q�
generated by p . Since � ¤ 1 (Proposition 13.23), Theorem 13.13 implies that

j� � 1j � e�K1 log q
q h.�/�K2;
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where quantities K1 and K2 depend on �p , that is, on p . Moreover, as follows
from Remark 13.14, one hasK1 D O.logp/ andK2 D O

�
.logp/2

�
(recall that the

constants implied by theO.�/-notation are absolute). Using also the height estimate
from (13.27), we obtain

j� � 1j � e�c .p�1/ logp log q
q log jxj�c.logp/2 (13.31)

with some absolute constant c.
On the other hand, the first estimate from (13.27) can be rewritten as

0 < j� � 1j � e� log jxjCO.logp/:

Comparing this with (13.31), we obtain

log jxj � c
p logp log q

q
log jxj C c.logp/2

with a different c. Using the inequality jxj � 2q � 1, we deduce from this that

q � cp logp log q C c
q

log.2q � 1/
.logp/2;

which implies that q � cp.logp/2 with yet another constant c. This proves
estimate (13.30).

Bounding p in Terms of q

Thus, we have

p � q � cp.logp/2: (13.32)

Now we want to bound p in terms of q. We may write the equation as xp D yq C 1

and try the quantity

xp

.y C 1/q
;

but this would imply something like p � cq.log q/2, quite uninteresting.
Tijdeman’s bright idea was to use

ˇ D .x � 1/p
.y C 1/q

:
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The crucial point is that ˇ is an “almost p qth power”; precisely, Proposition 13.20
implies that ˇ 2 �p;q.Q�/pq , where �p;q is the multiplicative group generated by p
and q. As we will see in a while, applying Theorem 13.13 to ˇ would result in a
very sharp upper bound for p in terms of q.

In what follows we treat ˇ very similarly to our treatment of � above. First of all,
we have for ˇ analogues of estimates (13.27):

1 ¤ ˇ D 1CO.q=y/; h.ˇ/ D q log jyj CO.q=y/: (13.33)

It is clear that ˇ ¤ 1: observe, for instance, that the denominator and the numerator
in the definition of ˇ are coprime, because x � 1 divides yq . To prove that
ˇ D 1CO.q=y/, write

ˇ D .x � 1/p

xp � 1

�
y

y C 1

�q

Using Corollary 13.22 and (13.32), we find

ˇ D .1CO.p=x//.1CO.q=y//:

Finally, since q > p, we have jyj < jxj, which implies that ˇ D 1CO.q=y/.
In a similar fashion one estimates the height of ˇ. Since the denominator and the

numerator in the definition of ˇ are coprime, we have

h.ˇ/ D max fp log jx � 1j; q log jy C 1jg ;

and, using, as above, Corollary 13.22 and (13.32), we find

h.ˇ/ D max fp log jxj; q log jyjg CO.q=y/:

Finally, since

p log jxj D log jyq C 1j D q log jyj CO.y�q/;

we obtain h.ˇ/ D q log jyj CO.q=y/.
Now we are ready to apply Theorem 13.13, which, together with Remark 13.14,

gives the lower bound

jˇ � 1j � e�K1 log.pq/
pq h.ˇ/�K2; K1 D O

�
.log q/2

�
; K2 D O

�
.log q/3

�
:

Combining this with the height estimate from (13.33), we obtain

jˇ � 1j � e�c .log q/3

p log jyj�c.log q/3 (13.34)

with some absolute constant c.
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Rewriting the first estimate from (13.33) as

0 < jˇ � 1j � e� log jyjCO.log q/

and comparing this with (13.34), we obtain

log jyj � c
.log q/3

p
log jyj C c.log q/3

with a different c; in other words,

p � c.log q/3 C c
p

log jyj.log q/3: (13.35)

By Corollary 13.22 we have jyj � 2p � 1. Hence the right-hand side of (13.35) is
O
�
.log q/3

�
. Thus,

p � c.log q/3

with yet another c.
This is the promised bound for p in terms of q. Combining it with (13.32)

we bound both p and q by an absolute constant, completing the proof of
Theorem 13.19. ut



Appendix A
Number Fields

This is a brief synopsis of the algebraic number theory used in the present book.
It cannot serve as introduction to algebraic number theory: its only purpose is to
refresh the terminology and recall the basic facts. We give almost no proofs and
almost no references, assuming that every reader will find the proofs of all (or, at
least, most) of the statements from this appendix in his favorite algebraic number
theory textbook(s).

A.1 Embeddings, Integral Bases, and Discriminant

An algebraic number field or, shorter, a number field is a finite extension of
the field Q of rational numbers. Let K be a number field of degree n D ŒKWQ�.
Then there exist exactly n distinct embeddings 
1; : : : ; 
n W K ,! C. An embed-
ding 
 is called real if 
.K/ � R and complex otherwise. Complex embeddings
enter the list 
1; : : : ; 
n in pairs: if 
 is a complex embedding, then its complex
conjugate N
 is another complex embedding of K . In particular, the number of
complex embeddings is always even.

A field with only real embeddings is called totally real, and a field with no real
embeddings is called totally imaginary.

Denote by OK the ring of algebraic integers from the number field K . The addi-
tive group of OK is a free abelian group of rank n. Let w1; : : : ;wn be a Z-basis
of OK (such a basis is usually called an integral basis of K). The quantity

DK D
�

det



i .wj /

�
1�i;j�n

�2

is independent of the choice of the integral basis w1; : : : ;wn and is called the
discriminant of K . It is a nonzero rational integer.
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Recall also Kronecker’s theorem: if ˛ 2 OK satisfies j
.˛/j � 1 for any embed-
ding 
 of K , then either ˛ D 0 or ˛ is a root of unity. [It is proved in Appendix B;
see Proposition B.2(2).]

A.2 Units, Regulator

The invertible elements of the ring OK are called the units (or Dirichlet units)
of K . The multiplicative group UK D O�

K of units is a finitely generated abelian
group. More precisely, let t1 and 2t2 be the number of real and complex embeddings
of K , respectively. Let ˝K be the group of roots of unity from K (it is a finite
cyclic group). The fundamental Dirichlet unit theorem asserts that UK=˝K is a free
abelian group of rank r D t1 C t2 � 1. (The inequality r � t1 C t2 � 1 is relatively
easy to establish; the nontrivial part is r � t1 C t2 � 1.)

Let 
1; : : : ; 
rC1 be a selection of embeddings of K , containing all real embed-
dings and one from each pair of complex embeddings (r C 1 D t1 C t2), and
let �1; : : : ; �r be a basis of the infinite part of UK (usually called a system of
fundamental units). Put ei D 1 if 
i is real and ei D 2 if 
i is complex, and consider
the map UK ! R

r which associates to every � 2 UK the vector

.e1 log j
1.�/j ; : : : ; er log j
r .�/j/ :
The kernel of this map is ˝K , and its image is a lattice in R

r . The fundamental
volume of this lattice, that is, the quantity

ˇ̌
ˇdet



ei log

ˇ̌

i .�j /

ˇ̌�
1�i;j�r

ˇ̌
ˇ

(which is independent of the choice of the basic units �1; : : : ; �r and of our selection
of the embeddings 
1; : : : ; 
rC1), is called the regulator ofK and is denoted by RK .

A.3 Ideals, Factorization

The ring OK is a Dedekind ring; that is, it is Noetherian and integrally closed, and all
its nonzero prime ideals are maximal. Hence it has the unique factorization property
for ideals: every nonzero ideal of OK has a unique (up to the order) presentation
as a product of prime ideals. In other words, the nonzero ideals of OK form a free
multiplicative semigroup, the (nonzero) prime ideals being its free generators.

A fractional ideal is a finitely generated OK -submodule of K . (Equivalently,
an OK-module a � K is a fractional ideal if there exists a nonzero ˛ 2 K such
that ˛a � OK .) For every nonzero fractional ideal a there exists a unique fractional
ideal a�1 such that aa�1 D .1/. It follows that nonzero fractional ideals form a free
abelian group, with prime ideals as free generators.
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One often abuses the language, calling the fractional ideals as the ideals of K .
Ideals of OK are then referred to as integral ideals of K , and nonzero prime ideals
of OK are called the prime ideals of K (or just the primes of K). We follow this
tradition in the present book.

If a is an ideal of a number field K , and L a finite extension of K , then aOL

is an ideal of L, which is usually denoted by a as well. (In case of confusion, one
can specify which field is in mind, but this is seldom needed.) For instance, a prime
ideal p of K often becomes composite in L, and we can speak about the prime
decomposition of p in L.

A.4 Norm of an Ideal

Let a be a nonzero ideal of OK . The norm of a, denoted by Na, is, by definition, the
cardinality of the residue ring OK=a. The norm of the zero ideal is, by definition, 0.

The norm is multiplicative: N .ab/ D NaNb. By multiplicativity, the norm
function extends to all fractional ideals, defining a homomorphism from the group
of (nonzero) fractional ideals to Q

�. This function is compatible with the usual norm
map K ! Q: the norm of the principal ideal .˛/ is equal to the absolute value of
the norm of ˛.

If K is a Galois extension of Q with Galois group G, then for any ideal a we
have

Q

2G a
 D .Na/. (We write the Galois action by G exponentially.)

The norm defined above is called sometimes the absolute norm. More generally,
let K be a number field, L a finite extension of K , and a an ideal of L. Then one
can define the L=K-norm (called also relative norm) NL=Ka, which will be an ideal
of K . The L=K-norm is multiplicative, and one also has the “transitivity relation”:
if K � L � M is a tower of number fields and a is an ideal of M , then

NL=K

�NM=La
� D NM=Ka: (A.1)

If L is a Galois extension of K with Galois group G and a an ideal of L, thenQ

2G a
 D NL=Ka.
If a is an ideal of the number fieldK , then one can define the absolute norm Na,

which is a nonnegative rational number, and the K=Q-norm NK=Qa, which is an
ideal of Q. The two definitions agree in the sense that NK=Qa is the ideal generated
by Na.

A.5 Ideal Classes, the Class Group

The multiplicative group of fractional ideals has a subgroup consisting of principal
ideals (it is isomorphic to K�=O�

K). The corresponding quotient group is called
the group of classes of ideals or, shorter, the class group of K . The class group is
denoted by HK ; its elements are called classes of ideals, or ideal classes, or simply
classes.
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It is fundamental and nontrivial that the class group is finite. Its cardinality is
called the class number ofK; it is denoted by hK . Together with the discriminantDK

and regulator RK , the class number belongs to the most important numerical
invariants of the field K .

A.6 Prime Ideals, Ramification

Any prime ideal of K contains exactly one prime number, called the underlying
prime of this prime ideal. Let p be a prime ideal and p its underlying prime. Then
OK=p is the finite field Fpf , where the integer f satisfies f � n D ŒKWQ� and is
called the residue field degree of p (over Q).

Further, the positive integer e such that pe divides p, but peC1 does not, is called
the ramification index of p (over Q). The ideal p is ramified (over Q) if e > 1
and unramified otherwise. The product ef is called the local degree, or simply the
degree of p (over Q).

Conversely, let p be a prime number. Then only finitely many (actually, no more
than n) prime ideals ofK lie abovep. Let p1; : : : ; ps be these prime ideals, e1; : : : ; es
their ramification indices, and f1; : : : ; fs their residue field degrees, respectively.
Then we have the factorization .p/ D pe11 � � � pess . Comparing the absolute norms of
both parts, we obtain the basic identity e1f1 C � � � C esfs D n (“global degree is the
sum of local degrees”).

We say that p splits completely in K if p decomposes in K into a product
of n distinct prime ideals; equivalently, p splits completely if all prime ideals of K
above p are of local degree 1.

We say that the prime p is ramified in K if at least one of the ideals p1; : : : ; ps
is ramified over Q , that is, if at least one of the numbers e1; : : : ; es is greater than 1.
Otherwise, the prime p is unramified in K . The prime p is totally ramified in K if
s D 1; e1 D n; f1 D 1, that is, if .p/ D pn for some prime ideal p. In this case, p is
also totally ramified in any subfield of K (distinct from Q).

One proves the existence of an integral ideal dK , called the different of K , with
the following properties: N .dK/ D jDK j, and a prime ideal p is ramified if and
only if p j dK . Consequently, a prime number p is ramified in K if and only if
it divides the discriminant DK . In particular, there are only finitely many ramified
primes.

Minkowski’s theorem asserts that jDK j > 1 for K ¤ Q. Equivalently, if K ¤ Q

then at least one prime number is ramified in K .
More generally, let K be a number field, L a finite extension of K , and P a

prime ideal of L. Then p D P \ OK is a prime ideal of K , called the underlying
prime ideal of P in K . One can define now the ramification index and the residue
field degree of P over K , the relative different dL=K , the relative discriminant
DL=K D NL=K.dL=K/, and so on. We shall use the following properties of the
different:
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• Differents are multiplicative in towers; that is, if K 
 L 
 M is a tower of
number fields, then dM=K D dM=LdL=K .

• If ˛ 2 OL is such that L D K.˛/ and f .x/ 2 OKŒx� is the minimal polynomial
of ˛ overK then dL=K divides f 0.˛/.

A.7 Galois Extensions

LetK be a finite Galois extension of Qwith the Galois groupG D Gal.K=Q/. Letp
be a prime number and p a prime ideal ofK above p . Then for any 
 2 G the prime
ideal p
 again lies above p . Thus,G acts in the obvious way on the set fp1; : : : ; psg
of the prime ideals of K above p. It is important that this action is transitive, which
implies that the ramification indices e1; : : : ; es are all equal, and the same is true
for the residue field degrees f1; : : : ; fs . One calls the number e D e1 D � � � D es
the ramification index of p in K; similarly, f D f1 D � � � D fs is called the residue
field degree of p in K .

Again, let p be a prime ideal of K and p the underlying prime number. The
decomposition group of p is the subgroup of G stabilizing p:

Gp D f
 2 G W p
 D pg:

The inertia group is the subgroup of Gp defined by

Ip D f
 2 Gp W ˛
 � ˛ mod p for all ˛ 2 OKg:

We have jGpj D ef and jIpj D e. The inertia group is a normal subgroup of the
decomposition group, the quotient Gp=Ip being canonically isomorphic to the
Galois group of the residue field OK=p over Z=pZ. In particular, it is a cyclic group
of f elements.

If p is unramified then Ip is trivial and Gp is itself a cyclic group of f elements.
Moreover, it has a canonical generator ' D 'p 2 Gp, called the Frobenius element.
The latter is defined as the unique element of Gp such that ˛' � ˛p mod p for all
˛ 2 OK . Thus, to every unramified prime ideal p of K , we associate its Frobenius
element 'p.

One has similar terminology and statements in the relative case, for the Galois
extensions L=K . We shall be very brief. Let P be a prime ideal of L and p the
underlying prime ideal of K . The subgroupGP=p of G D Gal.L=K/ preserving P
is called the decomposition group of P overK . If P is unramified overK thenGP=p

is a cyclic group generated by the Frobenius element ' D 'P=p, which is the unique
element of GP=p satisfying ˛' � ˛Np modP for all ˛ 2 OL.



188 A Number Fields

A.8 Valuations

Let K be a field (not just a number field). A valuation v on K is a real-valued
function x 7! jxjv on K with the following properties:

1. We have j˛jv � 0 for all ˛ 2 K; also, j˛jv D 0 if and only if ˛ D 0.
2. For any ˛; ˇ 2 K we have j˛ˇjv D j˛jvjˇjv.
3. There exists a constant cv > 0 such that for any ˛; ˇ 2 K we have

j˛ C ˇjv � cv max fj˛jv; jˇjvg : (A.2)

The valuation, defined by j0jv D 0 and j˛jv D 1 for any ˛ ¤ 0, is called trivial.
In the sequel, trivial valuations are excluded from consideration; thus, from now on,
when we say valuation, we mean nontrivial valuation.

If v is a valuation and a a positive real number then the function x 7! jxjav is
again a valuation (with the constant cav instead of cv). Two valuations v and v0 are
called equivalent if there exists a > 0 such that jxjv0 D jxjav for any x 2 K.

A valuation v is called non-Archimedean if (A.2) holds with cv D 1 and
Archimedean otherwise. If v is (non-)Archimedean, then all equivalent valuations
are (non-)Archimedean as well.

One usually denotes by MK the set of all classes of equivalent valuations of
the field K (these classes are called places). It is practical, however, to choose a
representative in each class (“normalize the valuations”) and to denote by MK the
set of chosen representatives.

In general, there is no “canonical” way to normalize the valuations of a
number field, and, except the case K D Q, there is even no commonly accepted
normalization: different normalizations are used in different sources. Below we
describe the normalizations adopted in this book.

First of all, recall the commonly used normalization for K D Q. We have

MQ D fthe prime numbersg [ f1g;

where the symbol 1 corresponds to the usual absolute value: j˛j1 D j˛j for
˛ 2 Q, and each prime number p corresponds to the standard p-adic valuation,
defined as follows. Let ˛ be a nonzero rational number. We define the p-
adic order Ordp ˛ as the unique integer m such that ˛ D pma=b with a; b 2 Z

satisfying gcd.p ; ab/ D 1. Next, we define j˛jp D p�Ordp.˛/. By definition, one
puts Ordp 0 D C1 and j0jp D 0. With this normalization, for any nonzero ˛ 2 Q,
one has the product formula

Q
v2MQ

j˛jv D 1.
Now let K be an arbitrary number field. Then

MK Dfthe prime ideals of Kg [ fthe real embeddings of Kg[
fthe pairs of complex conjugate embeddings of Kg:
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If v 2 MK is a real embedding 
 , then, for ˛ 2 K, we define j˛jv D j
.˛/j. If v is a
pair of complex conjugate embeddings 
; N
 , then we define j˛jv D j
.˛/j2. Finally,
if v is a prime ideal p then j˛jv D .Np/�Ordp.˛/ (the p-adic valuation). Here Ordp.˛/
is the p-adic order of ˛, defined by .˛/ D pOrdp.˛/ab�1, where a; b are integral ideals
ofK coprime with p (with the convention Ordp.0/ D C1). With this normalization
we again have the product formula

Y

v2MK

j˛jv D 1 .˛ 2 K�/ :

The valuations (and places) corresponding to the embeddings of K are called
infinite; they are Archimedean. The p-adic valuations are called finite; they are non-
Archimedean.

Let K be a number field and L a finite extension of K . We say that w 2 ML lies
above v 2 MK and v lies below w (notation: w j v) if the restriction of w to K is
equivalent to v. There are only finitely many w 2 ML above a given v 2 MK . With
our normalization, for any ˛ 2 L, we have the identity

ˇ̌NL=K˛
ˇ̌
v

D
Y

wjv
j˛jw:

In particular, if ˛ 2 K then

Y

wjv
j˛jw D j˛jŒLWK�

v : (A.3)

Now let � W K ! K 0 be an isomorphism of number fields. Then � induces a
natural map �� W MK ! MK0 . Indeed, for a v 2 MK , we define a valuation ��v ofK 0
by jˇj��v D j��1.ˇ/jv. A priori, ��v is merely equivalent to a valuation from MK0 ;
however, it is easy to show that it is “correctly” normalized and thereby belongs
to MK0 .

Indeed, if v is p-adic, then ��v is p0-adic, where p0 D �.p/. It remains to notice
that prime ideals p of K and p0 of K 0 have the same norm. If v is infinite and
corresponds to the embedding 
 of K , then ��v corresponds to the embedding

 ı � of K 0, and if 
 is real (respectively, complex), then 
 ı � is real (respectively,
complex) as well.

Recall in conclusion the following simple property of non-Archimedean valua-
tions, which is widely exploited in the present book. It will be more convenient to
use the notion of p-adic order rather than valuation.

Lemma A.1. Let K be a number field, ˛0; : : : ; ˛m 2 K, and p a prime ideal of K .
Assume that ˛0 ¤ 0 and that Ordp.˛0/ < Ordp.˛k/ for k D 1; : : : ; m. Then

Ordp.˛0 C � � � C ˛m/ D Ordp.˛0/ :

In particular, ˛0 C � � � C ˛m ¤ 0.
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A.9 Dedekind �-Function

The Riemann �-function is defined, for s > 1, by

�.s/ D
1X

nD1
n�s : (A.4)

The arithmetical significance of this function comes from Euler’s observation that it
decomposes into the following infinite product:

�.s/ D
Y

p

.1 � p�s/�1 ; (A.5)

where p runs over all prime numbers (the Euler product formula).
Since the series

P1
nD1 n�1 diverges to infinity, we have �.s/ ! C1 as s tends

to 1 from the right. Using the obvious inequality

.nC 1/�s �
Z nC1

n

x�sdx � n�s;

we obtain
Z C1

1

x�sdx � �.s/ � 1C
Z C1

1

x�sdx:

Since
R C1
1

x�sdx D .s � 1/�1, we find the exact asymptotic behavior of �.s/ as s
approaches 1 from the right:

�.s/ D .s � 1/�1 CO.1/:

In particular,

lim
s#1
.s � 1/�.s/ D 1: (A.6)

The Dedekind �-function is a proper generalization of the Riemann �-function
for the needs of algebraic number theory. Given a number field K , we define the
Dedekind �-function �K.s/ by

�K.s/ D
X

a

N .a/�s;

the sum being over all nonzero integral ideals ofK . Obviously, �Q.s/ D �.s/. Again,
the series converges for s > 1, and we have the Euler product formula

�K.s/ D
Y

p

.1 � N .p/�s/�1 ; (A.7)
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the product being over the prime ideals of K . One also has an analogue for the
“residue formula” (A.6):

lim
s#1
.s � 1/�K.s/ D 2t1.2�/t2RKhK

!
pjDK j ; (A.8)

where t1 and 2t2 are the numbers of real and of complex embeddings and ! is the
number of roots of unity inK . The proof again relies on approximating certain sums
by integrals, but it is much more involved.

The series (A.4) converges not only for real s > 1 but also for complex s with
Re s > 1, and the sum is analytic on the half-plane Re s > 1. Riemann showed that it
satisfies a functional equation, which allows one to continue �.s/ to a meromorphic
function on C with a single pole at s D 1. The same is true for the Dedekind �-
function �K.s/. The complex analytic theory of the �-function is deep and important,
but we do not use it in this book.

A.10 Chebotarev Density Theorem

One uses the �-function to establish various “density theorems” about prime
numbers and prime ideals. The most important of them is the Chebotarev density
theorem.

First of all, we define the notion of Dirichlet density. Combining the Euler
product formula (A.5) and the residue formula (A.6), we obtain

X

p

� log.1 � p�s/ D log
1

s � 1
CO.1/ (A.9)

for s > 1. Using that � log.1 � z/ D z CO.jzj2/ for jzj � 1=2, we may write the
left-hand side of (A.9) as

X

p

p�s CO

 
X

p

p�2s
!
:

The O.�/-term is obviously bounded for s > 1, and we obtain

X

p

p�s D log
1

s � 1 CO.1/: (A.10)
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Now let A be a set of prime numbers. We say that the set A is regular if there
exists a real number a such that

X

p2A
p�s D a log

1

s � 1
CO.1/

for s > 1. The number a is called the Dirichlet density of the set A.
Now we are ready to state the theorem of Chebotarev. Let K be a finite Galois

extension of Q and letG be its Galois group. Recall that to every prime ideal p ofK ,
unramified over Q, we associated its Frobenius element 'p (see Sect. A.7). Now, in
the opposite direction, to every prime number p, unramified in K , we associate the
subset of G, consisting of the Frobenius elements of all prime ideals above p. This
subset is a full conjugacy class1 ofG; it is called the Artin symbol of p (with respect
to K) and is denoted by



p

K

�
.

Chebotarev proved that conversely, every element fromG serves as the Frobenius
element for infinitely many prime ideals of K , and, consequently, each conjugacy
class serves as the Artin symbol for infinitely many prime numbers. In particular,
the Artin map

fprime numbers unramified in Kg ! fconjugacy classes of Gg
p 7!

h p
K

i

is surjective. In fact, Chebotarev proved much more than this: given a conjugacy
class S of G, the set of prime numbers with Artin symbol S is regular and has
the “correct” Dirichlet density jS j

jGj .
In the case whenK is a cyclotomic field, Chebotarev’s theorem becomes the clas-

sical theorem of Dirichlet about primes in arithmetical progressions (see Sect. 5.2.2).
A similar statement holds in the relative case. Let K be a number field. Euler’s

product (A.7) together with the residue formula (A.8) implies that

X

p

N .p/�s D log
1

s � 1 CO.1/;

where the sum extends to all the prime ideals of K . We say that a set A of prime
ideals is regular of Dirichlet density a if

X

p2A
N .p/�s D a log

1

s � 1
CO.1/

for s > 1.

1Indeed, if p is an ideal above p, then the full set of ideals above p is fp
 W 
 2 Gg, and a
straightforward verification shows that 'p
 D 
�1'p
 .
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One simple remark would be relevant here: the set of prime ideals of degree 1
(over Q) is regular and of Dirichlet density 1. Indeed, since there is at most
n D ŒK W Q� prime ideals over every rational prime, we have, for s > 1,

X

fp�2
N .p/�s D

X

p

X

pjp
fp�2

p�fps � n
X

p

p�2s D O.1/:

Hence, the prime ideals of degree at least 2 form a regular set of Dirichlet density 0,
and those of degree 1 form a regular set of density 1.

Now let L=K be a finite Galois extension with Galois group G, and let p be a
prime ideal of K unramified in L. Then the Artin symbol of p (with respect to the
extension L=K) is

�
p

L=K

	
D f'P=p W PjpgI

it is a full conjugacy class of G. The Chebotarev density theorem asserts that the set
of prime ideals whose Artin symbol is a given conjugacy class S is regular and of
Dirichlet density jS j

jGj . In particular, the Artin map

fprime ideals of K unramified in Lg ! fconjugacy classes of Gg

p 7!
�

p

L=K

	 (A.11)

is surjective.
Since the prime ideals of degree 1 have Dirichlet density 1, every conjugacy

class of G serves as the Artin symbol for infinitely many prime ideals of K of
degree 1.

A.11 Hilbert Class Field

According to the theorem of Minkowski, mentioned in Sect. A.6, for every nontrivial
extension of Q, there exists a prime number ramified in this extension. This theorem,
however, does not extend to arbitrary number fields: a number field K may have, in
general, nontrivial extensions where no prime ideal of K ramifies. For example, so
is the extension Q.

p�5;p�1/ of the field Q.
p�5/. Such extensions are called

unramified at finite places, because prime ideals correspond to the finite places of
the field K (see Sect. A.8). We want to extend this to infinite places as well.

There are two types of infinite places: those corresponding to real embeddings
of K (real infinite places) and those corresponding to pairs of complex conjugate
embeddings (complex infinite places).
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Let L=K be a finite extension of number fields. We say that an infinite place w
of L is ramified over K if w is a complex place, but the underlying place v of K
is real. If both v and w are real, or both are complex, we say that w is unramified
over K . An infinite place v of K is unramified in L if all the places above v are
unramified overK . This happens if either v is complex or v is real and so are all the
places above.

We say that L is unramified over K at infinity if every infinite place of K
is unramified in L. Equivalently, L is unramified over K at infinity if every real
embedding of K extends only to real embeddings of L. In particular, if K is totally
real then only totally real extensionsK are unramified at infinity, and if K is totally
imaginary, then any extension of K is unramified at infinity.

Finally, we say that L is unramified over K if it is unramified at all places, both
finite and infinite. For example, the already mentioned field Q.

p�5;p�1/ is an
unramified extension of Q.

p�5/.
Now let L be a finite abelian extension of a number field K . This means that

L=K is a Galois extension and the Galois groupG D Gal.K=Q/ is abelian.
Let p be a prime ideal of K unramified in L. In Sect. A.10 we associated to it

the Artin symbol
h

p
L=K

i
, which is a conjugate class of G. Since G is abelian, this

class consists of a single element. Thus, for the abelian extensions, the Artin map
has values in G itself rather than in the set of conjugacy classes.

If, in addition, we assume that the abelian extension L=K is unramified at all
finite places, then we have the map

fprime ideals of Kg ! G:

Extending it by linearity, we obtain a group homomorphism I ! G, where I is the
group of all ideals of the fieldK . It is called the Artin homomorphism of the abelian
extension L=K . Chebotarev density theorem implies that the Artin homomorphism
is surjective. Describing its kernel is the central problem of the Class Field Theory.
The principal result (usually referred to as Artin’s reciprocity law) states: if the
abelian extension L=K is unramified (everywhere, at all finite and infinite places),
then the kernel of the Artin map contains the group of principal ideals.2 This
defines a surjective homomorphism HK ! G (also called the Artin map or Artin
homomorphism), where HK is the ideal class group of K .

Conversely, let K be a number field, and fix a surjective homomorphism
HK ! G of the class group of K onto a finite abelian group G. Then there exists
a unique (in the given algebraic closure) unramified abelian extension L=K with
Galois groupG and such that the fixed homomorphism is the Artin homomorphism

2It is not sufficient to assume that only the finite places of K are unramified in L. Under this
weaker assumption, one can merely show that the kernel contains the principal ideals, generated
by the elements ˛ 2 K with the property 
.˛/ > 0 for any real embedding 
 .
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of L=K . In particular, there exists a unique unramified abelian extension of K
with Galois group canonically isomorphic to HK , the isomorphism being given
by the Artin map. It is called the Hilbert class field of K .

Certain analogues of the results described above hold for ramified abelian
extensions as well. A very good account (without proofs) of the Class Field Theory
can be found in an appendix to Washington’s book [136]. Among the complete
(with all proofs) expositions of the Class Field Theory, the most systematic one is,
probably, due to Neukirch [104, 105]. The recent book of Childress [24] is a good
introductory text for an unsophisticated reader. One may also consult the famous
books of Artin and Tate [2], Cassels and Frölich [19], Weil [137] , and Lang [61].





Appendix B
Heights

In this appendix we introduce the height function on the field of algebraic num-
bers NQ. We start with an informal discussion, which should motivate the definition.

Intuitively, the height should measure the “size” of an algebraic number.
We expect our height function to have the following properties:

• The height of an algebraic number is a nonnegative real number.
• The height should “behave well” with respect to algebraic operations. (That is,

one should have easy and efficient upper estimates for the heights of ˛ C ˇ and
˛ˇ in terms of the heights (and, perhaps, degrees) of ˛ and ˇ.)

• For a given C > 0, there should exist only finitely many algebraic numbers of
degree and height bounded by C .

Of course, one can imagine many functions with these properties. Our purpose is to
define the one which is the most convenient to use.

On integers, the usual absolute value is an adequate measure of size. Thus, we
define the height of a nonzero ˛ 2 Z by H.˛/ D j˛j and H.0/ D 1, the latter
exception being made just for compatibility with the more general definition below.

On rational numbers, the absolute value is no longer adequate: there exist
infinitely many rational numbers of bounded absolute value. To obtain finiteness,
one should bound both the numerator and the denominator. Thus, for ˛ D a=b 2 Q,
where a; b 2 Z and gcd.a; b/ D 1, we define H.˛/ D maxfjaj; jbjg.

Next, we wish to extend this definition to all algebraic numbers. One idea
is to observe that bX � a is the minimal polynomial of the rational number
a=b over Q. Hence, for ˛ 2 NQ, we may put H.˛/ D max fja0j; : : : ; janjg, where
anX

n C � � � C a0 is the minimal polynomial of ˛ over Z. Indeed, one extensively
used this definition of height in the past. However, it is rather inconvenient from
many points of view, and it was eventually abandoned in favor of a different
definition, due to A. Weil.

The definition of Weil’s height is motivated by the following observation: the
height of a rational number ˛ D a=b, originally defined as maxfjaj; jbjg, satisfies
the identity

197
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H.˛/ D
Y

v2MQ

maxf1; j˛jvg: (B.1)

(The proof is an easy exercise.) Weil’s height is the logarithm1 of the right-hand side
of this identity, properly generalized to number fields.

Now we are ready to give a formal definition of the height. Let K be a number
field. Define the logarithmic K-height (or, simply, the K-height) hK W K ! R by

hK.˛/ D
X

v2MK

log maxf1; j˛jvg:

In the sequel, we use the notation2

k˛kv D maxf1; j˛jvg ;

so that

hK.˛/ D
X

v2MK

log k˛kv :

Proposition B.1. If K and L are two number fields, then for any ˛ 2 K \L
we have

hK.˛/

ŒKWQ� D hL.˛/

ŒLWQ� : (B.2)

Proof. Assume first that K � L. As follows from (A.3), for any ˛ 2 K and
v 2 MK , we have

ŒLWK� log k˛kv D
X

wjv
log k˛kw ;

where the sum extends to all w 2 ML lying above this v. Hence for any ˛ 2 K
we have

hL.˛/

ŒLWQ� D 1

ŒLWQ�
X

w2ML

log k˛kw D 1

ŒLWQ�
X

v2MK

X

wjv
log k˛kw

D ŒLWK�
ŒLWQ�

X

v2MK

log k˛kv D hK.˛/

ŒKWQ� ;

1One prefers the logarithm due to many reasons; for instance, because it is easier to add than to
multiply.
2This notation is used only in this appendix. In the rest of the book k � k has a different meaning.
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which proves (B.2) in the case K � L. In the general case, let M be a number field
containing bothK and L. Then for any ˛ 2 K \ L

hK.˛/

ŒKWQ� D hM.˛/

ŒM WQ� D hL.˛/

ŒLWQ� ;

which proves (B.2) in the general case. ut
Now let ˛ be an algebraic number. We define the absolute logarithmic height

(or, simply, height) of ˛ by

h.˛/ D hK.˛/

ŒKWQ� ; (B.3)

where K is any number field containing ˛. By Proposition B.1, the right-hand side
of (B.3) depends only on ˛ and is independent of the particular choice of the fieldK .

We have defined a function h W NQ ! R. Its properties are summarized in the
following proposition.

Proposition B.2. 1. For any ˛ 2 NQ we have h.˛/ � 0.
2. (Kronecker’s first theorem) We have h.˛/ D 0 if and only if ˛ D 0 or ˛ is a

root of unity.
3. (Kronecker’s second theorem) For every positive integer d , there exists
".d/ > 0 with the following property. Let ˛ be an algebraic number of degree
not exceeding d . Then either h.˛/ D 0 (in which case ˛ is zero or a root of
unity) or h.˛/ � ".d/.

4. (Galois action) If ˛ and ˇ are conjugate over Q then h.˛/ D h.ˇ/.
5. (Height of a rational number) Assume that ˛ D a=b 2 Q, where a; b 2 Z and

gcd.a; b/ D 1. Then

h.˛/ D log maxfjaj; jbjg :
In particular, if ˛ is a nonzero rational integer then h.˛/ D log j˛j.

6. (Height of a quotient) More generally, let K be a number field, ˛; ˇ 2 K, and
ˇ ¤ 0. Then

h.˛=ˇ/ D 1

ŒKWQ�
X

v2MK

log maxfj˛jv; jˇjvg: (B.4)

Also, if ˛ and ˇ are both algebraic integers, then

h.˛=ˇ/ � 1

ŒKWQ�
X


 WK!C

log maxfj
.˛/j; j
.ˇ/jg; (B.5)

the sum being extended to all embeddings 
 WK ! C.
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7. (Heights of sums and products) For any ˛; ˇ 2 NQ we have

h.˛ˇ/ � h.˛/C h.ˇ/; h.˛ C ˇ/ � h.˛/C h.ˇ/C log 2: (B.6)

More generally, for ˛1; : : : ; ˛n 2 NQ, we have

h.˛1 � � �˛n/ � h.˛/C � � � C h.˛n/; (B.7)

h.˛1 C � � � C ˛n/ � h.˛1/C � � � C h.˛n/C logn: (B.8)

8. (Height of a power) For any ˛ 2 NQ and n 2 Z (with ˛ ¤ 0 if n < 0) we have

h.˛n/ D jnjh.˛/ : (B.9)

9. (Height of a linear fraction) Let

�
a b

c d

	
be a nondegenerate matrix with

algebraic entries. Then for any algebraic number x ¤ �d=c

h

�
ax C b

cx C d

�
D h.x/CO.1/;

where the constant implied by O.1/ may depend on a; b; c; d (but not on x).
10. (Northcott’s finiteness theorem) For any C > 0 there exist only finitely many

algebraic numbers ˛ of degree and height bounded by C .

Proof. Part 1 is obvious. To prove Part 4, put K D Q.˛/, L D Q.ˇ/ and let
� W K ! L be the isomorphism defined by �.˛/ D ˇ. As we have seen in Sect. A.8,
the isomorphism � induces a bijection �� W MK ! ML, and, by the definition of ��,
we have j˛jv D jˇj��v for any v 2 MK . It follows that

hL.ˇ/ D
X

v2ML

log kˇkv D
X

v2MK

log kˇk��v D
X

v2MK

log k˛kv D hK.˛/ :

Since ŒKWQ� D ŒLWQ�, this implies h.˛/ D h.ˇ/.
For Part 6, observe that k˛=ˇkv D jˇj�1v max fj˛jv; jˇjvg. Hence

hK.˛=ˇ/ D
X

v2MK

log maxfj˛jv; jˇjvg � log
Y

v2MK

jˇjv;

and the second term vanishes by the product formula. This proves (B.4).
If ˛ and ˇ are algebraic integers, then log maxfj˛jv; jˇjvg � 0 for any finite v.

Hence, (B.4) implies that

h.˛=ˇ/ � 1

ŒKWQ�
X

v2MK
vj1

log maxfj˛jv; jˇjvg ; (B.10)
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where the sum extends to infinite valuations ofK . It remains to notice that the right-
hand side of (B.10) is equal to the right-hand side of (B.5).

Part 5 [which is a reformulation of identity (B.1)] is a particular case of (B.4).
To prove Part 7, fix a number field K containing ˛1; : : : ; ˛n and observe that for

any v 2 MK

k˛1 � � �˛nkv � k˛1kv � � � k˛nkv ;

k˛1 C � � � C ˛nkv � knkv max fk˛1kv; : : : ; k˛nkvg � knkvk˛1kv � � � k˛nkv :

Taking the logarithm and summing up over v 2 MK , we obtain

hK.˛1 � � �˛n/ � hK.˛/C � � � C hK.˛n/;

hK.˛1 C � � � C ˛n/ � hK.˛1/C � � � C hK.˛n/C hK.n/:

It remains to divide by ŒKWQ� and to observe that h.n/ D logn.
Part 8 for n > 0 is obvious, because k˛nkv D k˛knv . To extend (B.9) to nega-

tive n, it suffices to observe that h.1=˛/ D h.˛/ by (B.4).
In Part 9 put

y D ax C b

cx C d
:

If c D 0 then the statement is immediate from Part 7. If c ¤ 0 then

y D a

c
C bc � ad

cx C d
� 1
c
;

and, using Parts 7 and 8, we find h.y/ � h.x/CO.1/. Writing

x D �dy C b

cy � a
;

we prove similarly that h.x/ � h.y/CO.1/, and Part 9 follows.
To prove Part 10, fix an algebraic number ˛ of degree and height bounded

by C . Let xn C an�1xn�1 C � � � C a0 be the minimal polynomial of ˛ over Q.
Using Parts 4 and 7, we may estimate the heights of the coefficients a0; : : : ; an�1 in
terms of C . By Part 5, the numerators and denominators of the rational numbers
a0; : : : ; an�1 are bounded in terms of C . Hence we have only finitely many
possibilities for a0; : : : ; an�1. This proves Northcott’s theorem.

We are left with Parts 2 and 3 (Kronecker’s theorems). Obviously, the height
of 0 is 0, as well as the height of any root of unity. Conversely, let ˛ be an
algebraic number of height 0. Then its powers 1; ˛; ˛2; : : : are of height 0 as well.
Northcott’s theorem implies that among the numbers 1; ˛; ˛2; : : : ; only finitely
many are distinct. Hence there exist distinct integers ` and m such that ˛` D ˛m.
This implies that ˛ D 0 or ˛ is a root of unity, proving Kronecker’s first theorem.
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Kronecker’s second theorem is proved similarly. Let N D N.d/ be the number
of algebraic numbers of degree bounded by d and height bounded by 1. If h.˛/ ¤ 0

then all the powers 1; ˛; ˛2; : : : are pairwise distinct, which implies that h.˛N / > 1.
Hence Kronecker’s second theorem holds with ".d/ D N.d/�1. ut

The following statement is almost trivial, but it plays an important role in
Diophantine analysis and, in particular, in the solution of Catalan’s problem.

Proposition B.3 (Liouville’s inequality). Let K be a number field and ˛ 2 K�.
Then for any v 2 MK we have

j˛jv � e�ŒKWQ�h.˛/: (B.11)

More generally, for any S 
 MK , we have

Y

v2S
j˛jv � e�ŒKWQ�h.˛/: (B.12)

In particular, assume that K is a subfield of C. Then

j˛jd � e�ŒKWQ�h.˛/; (B.13)

where d D 1 if K � R and d D 2 otherwise.

Proof. We have

 
Y

v2S
j˛jv

!�1
D
Y

v2S

ˇ̌
˛�1 ˇ̌

v
�
Y

v2S

��˛�1��
v

�
Y

v2MK

��˛�1��
v

D eŒKWQ�h.˛�1/:

Since h.˛�1/ D h.˛/, this proves (B.12) and, a fortiori, (B.11). For (B.13), let
v 2 MK be the infinite valuation corresponding to the identical embeddingK ,! C.
Then j˛jv D j˛j if the embedding is real (that is,K � R) and j˛jv D j˛j2 otherwise.
Applying (B.11) with this v, we obtain (B.13). ut
Remark B.4. Liouville’s inequality goes back to the celebrated work of Liou-
ville [74] (published the same year as Catalan’s note extraite). Liouville proved
that algebraic numbers cannot be well approximated by rationals. Precisely, if ˛ is
a real algebraic number of degree n > 1 and p=q is a rational number, then

j˛ � p=qj � cjqj�n; (B.14)

where c is a positive constant depending on ˛. One may deduce (B.14) from
Proposition B.3 by applying (B.13) with ˛ � p=q instead of ˛ and estimating
h.˛ � p=q/ using Proposition B.2.



Appendix C
Commutative Rings, Modules,
and Semi-simplicity

In this appendix, we recall several basic facts about rings and modules over them.
In particular, we give a very brief treatise of semi-simplicity. The notion of semi-
simplicity is central in the theory of noncommutative rings. In this outline we
assume that the rings in question are commutative. This is irrelevant in some
cases: for instance, the contents of Sect. C.3 extend without changes to the (left)
modules over noncommutative base rings. On the other hand, the structure theory
of semi-simple commutative rings (see Theorem C.11) is drastically simpler than its
noncommutative counterpart.

All rings in this appendix are commutative and with 1. We assume that the reader
is familiar with the definitions and basic facts about modules over a (commutative)
ring, which can be found in any reasonable textbook of algebra.

One piece of notation: if S is a subset of an R-module, then the annihilator of S
is, by definition, the set of all a 2 R such that aS D 0. It is an ideal of R, which
will be denoted by annR.S/ or simply by ann.S/. AnR-moduleM is called exact if
ann.M/ D 0. EveryR-moduleM admits a natural structure of an exactR=ann.M/-
module and, more generally, of R=a-module, where a is any ideal annihilating M .
If M 0 is another R-module annihilated by a then M is R-isomorphic to M 0 if and
only if M is R=a-isomorphic to M 0.
Warning. In this appendix the abelian group law on modules is written additively,
and the ring action is written multiplicatively. This is different from the rest of the
book, where we normally use the multiplicative notation for the abelian group law
and the exponential notation for the ring action.

C.1 Cyclic Modules

Let R be a (commutative) ring. An R-module M is called cyclic if it is generated
over R by a single element. That is, there exists g 2 M such that M D Rg.
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If M D Rg is a cyclic module, then ann.M/ D ann.g/, and M is isomorphic,
as an R-module, to the quotient ring R=ann.M/. In particular, the annihilator of a
cyclic module defines it up to an isomorphism.

Since the submodules of R=ann.M/ are the ideals of the ring R=ann.M/,
we have a one-to-one correspondence between the submodules of M and the
ideals of R=ann.M/, or the ideals of R containing ann.M/. Explicitly, the latter
correspondence can be described as follows: if a is an ideal ofR containing ann.M/

then the corresponding submodule ofM is ag; conversely, if N is submodule ofM
then the corresponding ideal a consists of all a 2 R such that ag 2 N .

If N is a submodule of a cyclic module M D Rg then the quotient M=N is a
cyclic module generated by the image of g. Also, if R is a principal ideal ring then
so is R=ann.M/. We obtain the following statement.

Proposition C.1. A quotient of a cyclic R-module is cyclic as well. If R is a
principal ideal ring, then every submodule of a cyclic R-module is cyclic.

Maximal ideals of R=ann.M/ correspond to maximal (proper) submodules
of M . Since every ring has a maximal ideal, we obtain the following assertion,
which will be used in Sect. C.3.

Proposition C.2. Every cyclic module has a proper maximal submodule.

This statement does not extend to arbitrary modules; for instance, the additive
group Q, viewed as a Z-module, does not have a proper maximal submodule.

C.2 Finitely Generated Modules

Let R be a commutative ring. If M is a cyclic R-module and a an ideal of R,
then the following property is immediate: a 2 R satisfies aM � aM if and only if
a 2 a C ann.M/. We want to extend this to finitely generated modules.

Theorem C.3. Let M be a finitely generated R-module and let a be an ideal of R.
Further, let a 2 R satisfy aM 
 aM . Then am 2 a C ann.M/ for some positive
integerm.

(It will follow from the proof that m does not exceed the minimal number of
generators of M . In particular, for the cyclic modules, we recover the statement
above.)

For the proof, we need a lemma.

Lemma C.4. Let M be an R-module generated by its elements g1; : : : ; gm and let
A D Œ˛ij �1�i;j�m be an m 	m-matrix over R. Assume that

mX

jD1
˛ij gj D 0 .i D 1; : : : ; m/: (C.1)

Then detA 2 ann.M/.
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Proof. Rewrite (C.1) asAG D 0, whereG is the column Œg1; : : : ; gm�, and multiply
this from the left by the adjoint matrix1 of A. We obtain the equality .detA/G D 0,
that is, .detA/g1 D � � � D .detA/gm D 0. Hence detA annihilatesM . ut
Proof of Theorem C.3. Let g1; : : : ; gm be a system of R-generators of M . Since
every element ofM is anR-linear combination of g1; : : : ; gm, every element of aM
is an a-linear combination of g1; : : : ; gm. In particular, if aM 
 aM then there
exists a matrix A D Œ˛ij �1�i;j�m with entries in a such that

agi D
mX

jD1
˛ij gj .i D 1; : : : ; m/:

Applying Lemma C.4, we find that det.aI �A/ 2 ann.M/. On the other hand,
since the entries of A belong to a, we have det.aI �A/ � am mod a. This implies
that am 2 a C ann.M/. ut

If M is an R-module, and a is an ideal of R, then NM D M=aM has the
natural structure of a module over the quotient ring NR D R=a. Obviously, if a 2 R
annihilates M , then its image in NR annihilates NM . It is natural to ask whether the
converse is true, that is, whether every Na 2 NR, annihilating NM , is an image of some
a 2 R annihilating M . In other words, we ask whether ann NR. NM/ is the NR-image
of annR.M/. Of course, this is not true in general, but Theorem C.3 provides a
sufficient condition for this.

Recall that a is a radical ideal ofR if for any a 2 R and for any positive integerm
we have am 2 a ) a 2 a. Equivalently, a is a radical ideal if the quotient ring R=a
has no nilpotent elements.

Corollary C.5. LetM be a finitely generatedR-module, and let a be an ideal ofR.
Put, as above, NR D R=a and NM D M=aM . Assume that a C annR.M/ is a radical
ideal of R. Then ann NR. NM/ is the NR-image of annR.M/.

Proof. As we have seen above, the image of annR.M/ is contained in ann NR. NM/.
Conversely, let Na 2 NR annihilate NM , and let a 2 R be a pullback of N̨ . Then
aM � aM , and Theorem C.3 implies that am 2 a C annR.M/ for some positive
integer m. Since a C annR.M/ is a radical ideal, we obtain a 2 a C annR.M/.
Write a D ˛ C ˇ with ˛ 2 a and ˇ 2 annR.M/. Then the image of ˇ in NR is Na. ut

1Recall that the adjoint matrix is A0 D ŒAij �1�i;j�m , where Aij is .�1/iCj times the
.m� 1/� .m� 1/-determinant, obtained from A by removing its j th line and i th column. We
have A0A D AA0 D .detA/I , where I is the unity matrix.
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C.3 Semi-simple Modules

In this section we closely follow Lang [58, Sect. 17.2].
Let R be a (commutative) ring. A nonzeroR-module is called simple if it has no

submodules except 0 and itself.
For example, if R is a field then the simple modules are exactly the vector spaces

of dimension 1. Also, simple Z-modules are cyclic groups of prime order.
Simple modules are rather “rigid” objects. For instance, a morphism of a simple

module (into another module) is either injective or a zero map. (Indeed, its kernel is
a submodule of our simple module; hence it is either 0 or the module itself.) This
property is usually called “Schur’s lemma.”

Another evidence for this “rigidness” is the fact that a sum of simple modules
can always be made direct.2 More precisely, we have the following property.

Proposition C.6. Let
P


2�M
 be a sum of simple submodules of a certain
R-module. Then there is a subset �0 
 � such that

P

2� M
 D L


02�0 M
0 .

Proof. Let �0 be a maximal subset of � such that the sum
P


02�0 M
0 is direct.
We have to show that everyM
 is contained inM WD L


02�0 M
0 . We cannot have
M
 \M D 0 because otherwise we can add 
 to the set �0 and still have a direct
sum, contradicting the maximal choice of�0. Thus,M
 \M ¤ 0, and, sinceM
 is
simple, we have M
 \M D M
, that is, M
 � M . ut

Now we are ready to define semi-simple modules.

Proposition C.7. Let R be a commutative ring and M a module over R. Then the
following three properties are equivalent:

1. The moduleM is a sum of its simple submodules.
2. The moduleM is a direct sum of its simple submodules.
3. Each submodule of M has a direct complement. (That is, if N is a submodule

of M then there exists another submodule N 0 such that M D N ˚N 0.)

An R-module with these properties is called semi-simple.

Proof. Implication (1))(2) is Proposition C.6. To deduce implication (2))(3),
write M D L


2�M
, where each M
 is simple, and let N be a submodule of M .
Let �0 be a maximal subset of � such that the sum N CL


02�0 M
0 is direct.
Arguing as in the proof of Proposition C.6, we show that M D N ˚L


02�0 M
0 .
We are left with the implication (3))(1). First of all, let us show that Property 3

implies the following: every nonzero submodule of M has a simple submodule.
Thus, letN be a nonzero submodule ofM . Since every nonzero module contains

a cyclic submodule, we may assume that N is cyclic. By Proposition C.2, it has
a maximal submodule S . By Property 3, the module S has a direct complement

2Recall that the sum
P


2�M
 is called direct and is denoted by
L


2�M
 if for any � 2 � we
have M� \P


2�

¤�

M
 D 0.
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in M ; that is, M D S ˚ S 0, where S 0 is yet another submodule of M . It follows
that N D S ˚ P , where P D N \ S 0. The module P , which is isomorphic to the
quotientN=S , is simple, because S is a maximal submodule of N .

Now we are ready to deduce the implication (3))(1). Let M 0 be the sum
of all simple submodules of M . If M 0 ¤ M then, by Property 3, we have
M D M 0 ˚M 00, whereM 00 is a nonzero submodule. But, as we have just seen,M 00
has a simple submodule, which contradicts our definition of M 0 as the sum of all
simple submodules. Thus, M 0 D M . ut
Remark C.8. Property 3 of semi-simple modules can also be restated as follows:
if M is a semi-simple module and N is a submodule of M thenM Š N ˚M=N .

Semi-simplicity is inherited by sub- and quotient modules.

Proposition C.9. Submodules and quotient modules of a semi-simple module are
semi-simple.

Proof. Let M be a semi-simple module and N its submodule. Further, let S be a
submodule of N . Since M is semi-simple, S has a direct complement in M ; that
is, M D S ˚ S 0. It follows that N D S ˚ .S 0 \N/. We have shown that every
submodule of N has a direct complement in N . Hence N is semi-simple.

Further, write M D N ˚N 0. Then M=N Š N 0. Since N 0 is semi-simple (as a
submodule of M ), so is M=N . ut

C.4 Semi-simple Rings

A ring is called semi-simple if it is semi-simple as a module over itself. Since
a submodule of R is an ideal of R, and a simple submodule of R is a minimal
(nonzero) ideal, the following conditions are equivalent by Proposition C.7:

• R is semi-simple;
• R is a sum of its minimal ideals;
• R is a direct sum of its minimal ideals;
• Every ideal a of R has a direct complement (that is, there is an ideal a0 such that
R D a ˚ a0).

For instance, a field is a semi-simple ring. Further, a direct product of finitely many
semi-simple rings is again a semi-simple ring.

Indeed, it suffices to verify that a direct product of two semi-simple rings is
semi-simple. Thus, let R1 and R2 be semi-simple rings, and let a be an ideal of
R D R1 	R2. Denote by a1 and a2 the projections of a on R1 and R2, respectively,
and let a0

1, respectively, a0
2 be a direct complement of a1 in R1, and, respectively,

of a2 in R2. Then a straightforward verification shows that R D a ˚ a0, where
a0 D a0

1 	 a0
2. Hence R is semi-simple.
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In particular, a direct product of finitely many fields is a semi-simple ring.
On the other hand, Z is not a semi-simple ring: the submodule 2Z has no direct

complement.

Proposition C.10. Any module over a semi-simple ring is semi-simple.

Proof. If R is a semi-simple ring then any free R-module is semi-simple, because
it is a direct sum of modules isomorphic to R. Since any R-module is a quotient of
a free R-module, it is semi-simple by Proposition C.9. ut

It is remarkable that semi-simple commutative rings admit a very explicit
classification.

Theorem C.11. A (commutative) ring is semi-simple if and only if it is isomorphic
to a direct product of finitely many fields.

Proof. The “if” part is already proved in the beginning of the section. Now assume
that R is a semi-simple ring and prove that it is isomorphic to a direct product of
fields.

Write R D L

2� a
, where every a
 is a minimal nonzero ideal of R. It follows

that every x 2 R can be (uniquely) presented as x D P

2� x
, where x
 2 a
, and

for all but finitely many 
 we have x
 D 0.
In particular, write 1 D P


2� 1
 and let �0 be the finite subset of � consisting
of 
-s such that 1
 ¤ 0. Then 1 D P


2�0 1
, and, in particular, 1 belongs to the
ideal

L

2�0 a
. However, 1 cannot belong to a proper ideal. Hence

L

2�0 a
 D R,

that is, �0 D �. Thus, we have proved that the set � is finite.
Further, since the sum is direct, we have a
 \ a� D 0 for any distinct 
;� 2 �.

Hence a
a� D 0 for 
 ¤ �. In particular, if x 2 a
 then 1�x D 0 for any � ¤ 
.
It follows that for x 2 a
,

1
x D 1
x C
X

�2�
�¤


1�x D 1x D x:

Thus, every a
 is a ring, with 1
 serving as its unity, and R is isomorphic to the
direct product of the rings a
.

Moreover, let b be an ideal of the ring a
, so that a
b 
 b. Then

Rb D a
b C
X

�2�
�¤


a�b D a
b 
 bI

that is, b is an ideal of R as well. Since a
 is a minimal ideal of R, we have b D a

or b D 0.

Thus, a
 is a ring without nontrivial ideals. Hence a
 is a field. The proof is
complete. ut
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It is easy to describe the ideals of a semi-simple ring. Let R be a semi-simple
ring, and write it as a direct product of finitely many fields: R D K1 	 � � � 	Ks .
Put � D f1; : : : ; sg. For 
 2 � we denote by 1
 the element .x1; : : : ; xs/ such that
x
 D 1 and x� D 0 for � ¤ 
 (so that

11 D .1; 0; : : : ; 0/; 12 D .0; 1; 0; : : : ; 0/; (C.2)

etc.).
We leave to the reader the proof of the following proposition.

Proposition C.12. 1. For �0 � � let a�0 consist of x D .x1; : : : ; xs/ 2 R such
that x
 D 0 for all 
 … �0. Then a�0 is an ideal of R. Conversely, any ideal
of R is equal to a�0 for some �0 
 �.

2. The ideal a�0 principal; it is generated by the element 1�0 D P

2�0 1
. More

generally, a�0 is generated by any x D .x1; : : : ; xs/ such that x
 ¤ 0 for all

 2 �0 (and x
 D 0 for all 
 … �0).

3. In addition to this, a�0 is itself a (semi-simple) ring, with the unity 1�0 .
4. If �0 and�00 are subsets of � then

a�0a�00 D a�0\�00 ; a�0 C a�00 D a�0[�00 :

Corollary C.13. A semi-simple ring is a principal ideal ring without nilpotent
elements. It has only finitely many ideals. Every prime ideal of a semi-simple ring is
maximal. Any quotient of a semi-simple ring is again a semi-simple ring. Any ideals
a; b of a semi-simple ring satisfy ab D a \ b.

Another consequence of Proposition C.12 is that the direct complement of an
ideal is defined uniquely.

Proposition C.14. 1. Let R be a semi-simple ring and a an ideal of R. Then there
is a uniquely defined ideal a? such that a ˚ a? D R.

2. For any ideals a; b of R, one has

.ab/? D a? C b?; .a C b/? D a?b?: (C.3)

Also, ab D 0 if and only if b 
 a?.

The ideal a? will be called the complementary ideal, or, simply, the complement
of a.

Proof. Write a as a�0 and define a? as a�X�0 . Then all the statements of this
proposition are immediate consequences of Proposition C.12(4). ut

It is equally easy to characterize R-modules. Let R D K1 	 � � � 	Ks be a semi-
simple ring, and fix vector spaces V1 over K1,. . . , Vs over Ks. Then the direct
product M D V1 	 � � � 	 Vs is an R-module, the R-action being defined
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componentwise: if a D .a1; : : : ; as/ 2 R and v D .v1; : : : ; vs/ 2 M , then
av D .a1v1; : : : ; asvs/. It is easy to show that any R-module is of this type: for
free modules this is obvious, and an arbitrary module is quotient of a free module.

Below we state several simple properties of modules over semi-simple rings. The
proofs are left to the reader.

Proposition C.15. Let R D K1 	 � � � 	Ks be a semi-simple ring and let
M D V1 	 � � � 	 Vs be an R-module. We put � D f1; : : : ; sg:

1. The moduleM is finitely generated if and only if all the vector spaces V1; : : : ; Vs
are finite dimensional.

2. The moduleM is cyclic if and only if dimK
 V
 � 1 for all 
 2 �.
3. The annihilator of M is a�0 , where the set �0 consists of all 
 2 � with

dimK
 V
 D 0.

We have the following consequence for finite semi-simple rings.

Corollary C.16. Let R be a finite semi-simple ring and let M be a finitely
generated R-module. Then jM j � jR=ann.M/j, with equality if and only if M is
cyclic.

Proof. Write R D K1 	 � � � 	Ks and M D V1 	 � � � 	 Vs , and let d
 be the dimen-
sion of the K
-vector space V
. Then

jM j D
X


2�
d
jK
j; jR=ann.M/j D

X


2�
d
>0

jK
j:

It is clear that the second sum does not exceed the first sum, and the two are equal
only if d
 � 1 for all 
. ut

C.5 The “Dual” Module

Let R be a commutative ring, S its subring, M an R-module, and N

an S -module. Denote by HomS .M;N / the set of S -morphisms M ! N .
Obviously, HomS.M;N / has a natural S -module structure. But one can say
more: HomS .M;N / has an R-module structure, defined as follows: given
f 2 HomS .M;N / and a 2 R, the morphism af 2 HomS .M;N / is defined by
.af /.x/ D f .ax/ for x 2 M . (Precisely speaking, if M is a left R-module,
then HomS.M;N / becomes a right R-module. However, since the ring R is
commutative, we need not distinguish between left and right.)

Now assume that the ringR has a fieldK as a subring. Then every R-moduleM
is a K-vector space, and the “dual space” M � D HomK.M;K/ has a natural R-
module structure, obtained by applying the previous paragraph with S D N D K.
If our ring R is of finite K-dimension, and M is a finitely generated R-module,
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then M and the “dual module” M � are finite-dimensional K-vector spaces of the
same dimension; in particular, they are K-isomorphic. We shall see that when R is
semi-simple, they are R-isomorphic as well.

Theorem C.17. Let R be a semi-simple (commutative) ring, containing a field K
as a subring. Assume that R is of finite dimension over K , and let M be a finitely
generated R-module. ThenM � D HomK.M;K/ is R-isomorphic to M .

Proof. Write R as a direct product of finitely many fields: R D L1 	 � � � 	Ls .
Each field L
 contains a subfield isomorphic to K , given by K1
 (see (C.2) for the
definition of 1
). Since R is finite dimensional overK , each L
 is a finite extension
of K .

Now write M D V1 	 � � � 	 Vs , where each V
 is a finite-dimensional L
-vector
space. Each V �


 D HomK.V
;K/ has anL
-module structure and is L
-isomorphic
to V
, as follows by counting dimensions:

dimL
 V
�

 D dimK V

�



ŒL
 W K� D dimK V


ŒL
 W K� D dimL
 V
:

Hence V �
1 	 � � � 	 V �

s is R-isomorphic to M D V1 	 � � � 	 Vs . Finally, the map

M � ! V �
1 	 � � � 	 V �

S

f 7! .f jV1 ; : : : ; f jVs /

is an R-isomorphism. The theorem is proved. ut





Appendix D
Group Rings and Characters

In this appendix we collect basic facts about group rings and characters of finite
commutative groups.

Let A be a commutative ring and G a finite group. The group ring AŒG� is, by
definition, the set of formal linear combinations

P
g2G agg, where ag 2 A, with the

operations defined in the obvious way:
X

g2G
agg C

X

g2G
bgg D

X

g2G
.ag C bg/g ;

0

@
X

g2G
agg

1

A

0

@
X

g2G
bgg

1

A D
X

g2G

0

B@
X

h;k2G
hkDg

ahbk

1

CAg :

The unity of the group ring AŒG� is e, the neutral element of the group G.
This suggests the following convention: in the group ring, we identify e and 1.
Precisely speaking, we may write a typical element of the group ring AŒG� in both
ways

P
g2G agg or ae CP

g2G
g¤e

agg, and we choose the writing most fit for the

circumstances. In particular, we assume that A is a subring of AŒG�.
In this book the groupG is usually abelian, and A is either the ring of integers Z

or a field (except Appendix E, where A D Z=p s
Z occurs).

D.1 The Weight Function and the Norm Element

In this section we recall the most basic notions about the group rings. We define the
weight function w W AŒG� ! A by

w

0

@
X

g2G
agg

1

A D
X

g2G
ag:

213
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One immediately verifies that the weight function is additive and multiplicative:

Proposition D.1. For any x; y 2 AŒG�

w.x C y/ D w.x/C w.x/; w.xy/ D w.x/w.y/:

Thus, the weight function is a ring homomorphism. Its kernel, consisting of
elements of weight 0, is called the augmentation ideal of the group ring AŒG�.

The norm element of AŒG� is

N D
X

g2G
g:

It is obvious that xN D Nx D N for any x 2 G. Extending this by linearity, we
obtain the following property.

Proposition D.2. For any x 2 AŒG� we have xN D Nx D w.x/N . In particular,
AŒG�N D NAŒG� D AN .

The ideal AN is called the norm ideal of the group ring AŒG�. If the cardi-
nality jGj is an invertible element of A (which is, in particular, the case if A
is a field of characteristic not dividing jGj) then, writing each x 2 AŒG� as
.x � w.x/jGj�1N /C w.x/jGj�1N , we obtain the following.

Proposition D.3. Assume that jGj is an invertible element of A. Then AŒG� is the
direct sum of its augmentation ideal and its norm ideal.

The terms norm element and norm ideal are not common, but they are most suited
for the purposes of this book.

D.2 Characters of a Finite Abelian Group

Let G be a (finite or infinite, commutative or not) group, and let K be a field.
Denote by NK the algebraic closure of K . A K-character1 of G is a group
homomorphism � W G ! NK�. The character � is called trivial if �.g/ D 1 for any
g 2 G. Characters form a multiplicative group, with the trivial character as the unity.

If G is finite, then the values of a nontrivial character sum to 0.

Proposition D.4. Let � be a nontrivial character of a finite group G. ThenP
x2G �.x/ D 0.

1For noncommutative groups the word “character” has a wider meaning, and what we define here
is usually called “linear character.” Since we deal mainly with abelian groups, we use the word
“character.”
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Proof. Since � is nontrivial, there exists g 2 G such that �.g/ ¤ 1. We obtain

0 D
X

x2G
�.x/ �

X

x2G
�.gx/ D .1 � �.g//

X

x2G
�.x/:

Since 1 � �.g/ ¤ 0 by the choice of g, the result follows. ut
Denote by NKG the NK-vector space of NK-valued functions on G. It is well known

that the characters of G form a linearly independent subset of NKG . This statement
is usually attributed to Artin (see [58, Sect. 7.4]).

Proposition D.5 (Artin). TheK-characters ofG are linearly independent over NK.
That is, given pairwise distinct K-characters �1; : : : ; �m, and ˛1; : : : ; ˛m 2 NK, not
all zero, the linear combination ˛1�1 C � � � C ˛m�m is not identically zero on G.

Proof. Assume that some nonzero linear combination ˛1�1 C � � � C ˛m�m identi-
cally vanishes on G:

˛1�1.x/C � � � C ˛m�m.x/ D 0 (D.1)

for any x 2 G. We may assume that m is minimal; in particular, ˛1 ¤ 0. Also,
m � 2, and, in particular, �1 ¤ �m, because the characters are pairwise distinct.
Thus, there exists g 2 G such that �1.g/ ¤ �m.g/. Rewriting (D.1) with gx instead
of x, we obtain

˛1�1.g/�1.x/C � � � C ˛m�m.g/�m.x/ D 0: (D.2)

Multiplying (D.1) by �m.g/ and subtracting the resulting identity from (D.2), we
obtain

ˇ1�1.x/C � � � C ˇm�1�m�1.x/ D 0 (D.3)

for any x 2 G. Here ˇk D ˛k.�k.g/ � �m.g//, and, in particular,

ˇ1 D ˛1.�1.g/ � �m.g// ¤ 0:

Identity (D.3) contradicts the minimal choice of m. The proposition is proved.
ut

In the sequel, unless the contrary is stated explicitly, the groupG will be abelian
and finite, and we shall assume that the characteristic of K does not divide jGj.
Under these assumptions, the group of characters is usually called the dual group
of G and is denoted by OG. The structure of this group is well known.

Theorem D.6. Let G be a finite abelian group and K a field of characteristic not
dividing jGj. Then the group of characters OG is isomorphic toG. In particular, there
are exactly jGj distinct characters.



216 D Group Rings and Characters

Proof. We use induction on jGj. Assume first that G D hgi is a cyclic group of
finite order m. Then the map � 7! �.g/ is an isomorphism of OG and the group of
mth roots of unity in NK. Since charK does not divide m, the latter group is again
cyclic of orderm. This shows that OG Š G.

Now let G be not cyclic. Then it is a direct sum of two nontrivial
subgroups: G D G1 ˚G2. Consider the homomorphism OG ! OG1 	 OG2 defined
by � 7! .� jG1 ; � jG2 /, and the homomorphism OG1 	 OG2 ! OG, which to each
pair .�1; �2/ associates the character � 2 OG defined by �.x1x2/ D �1.x1/�2.x2/.
A routine verification shows that the two homomorphisms are inverse one to the
other. Hence OG Š OG1 	 OG2. Since, by induction, OG1 Š G1 and OG2 Š G2, we obtain
OG Š G. ut

Theorem D.6 implies that the characters form a basis of the space NKG of NK-
valued functions on G: indeed, the characters are linearly independent, and their
number is equal to the dimension jGj of this space. We obtain the following
statement.

Proposition D.7. LetG be a finite abelian group andK a field of characteristic not
dividing jGj. Then the K-characters of the group G form a NK-basis of the vector
space NKG . In particular, the jGj 	 jGj matrix Œ�.g/� �2 OG

g2G

is nondegenerate.

In the case K 
 C one can say more: the characters form an orthogonal basis of
the space NKG , with respect to the natural inner product

.f1; f2/ D 1

jGj
X

x2G
f1.x/f2.x/:

Proposition D.8. Assume that K 
 C. Then for any two characters �1 and �2 we
have .�1; �2/ D 1 if �1 D �2 and .�1; �2/ D 0 if �1 ¤ �2.

Proof. Since the values of any character � are roots of unity, we have N� D ��1.
Hence �1 N�2 is a trivial character if and only if �1 D �2. Applying Proposition D.4
to the character �1 N�2, we obtain the result. ut

D.3 Conjugate Characters

For a character � 2 OG we denote by K� the extension of K generated by the
values of �. It is the d th cyclotomic extension of K , where d is the order of �.
In particular, K� is a Galois extension of K . If 
 2 Gal.K�=K/, then 
 ı � is also
a K-character of G.

Let us say that two characters �; �0 2 OG are conjugate (over K) if K� D K�0

and there exists 
 2 Gal.K�=K/ such that �0 D 
 ı �. The conjugacy relation is an
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equivalence on OG, the class of every � 2 OG containing exactly ŒK�WK� elements.
Thus, if we pick a representative in every conjugacy class of characters, and denote
by M the set of chosen representatives, then we obtain the equality

X

�2M
ŒK�WK� D jGj: (D.4)

Remark D.9. Let us mention several simple facts, which are relevant here, but are
not used in the book:

1. If � and �0 are conjugate characters, then they are of the same order; moreover,
�0 D �a, where a is an integer coprime with the order.

2. The converse of the last statement is, in general, not true: for instance, if K is
algebraically closed then the only character conjugate to � is � itself.

3. However, the converse is true if K D Q; that is, if � is a Q-character of order m
then for every a 2 Z, coprime with m, the character �a is conjugate to �.

4. In particular, two Q-characters of a finite cyclic group are conjugate if and only
if they are of the same order.

The proofs are left to the reader.

D.4 Semi-simplicity of the Group Ring

In this section G is a finite abelian group and K is a field of characteristic not
dividing jGj. The K-characters of G extend by linearity to the group ring KŒG�:
given � 2 OG, we define the mapKŒG� ! K� by

X

g2G
agg 7!

X

g2G
ag�.g/:

As one immediately verifies, this is a ring homomorphism. We denote it also by �,
and we call it a character of the group ringKŒG�. The set of all characters ofKŒG�
will again be denoted by OG.

Non-degeneracy of the matrix Œ�.g/� �2 OG
g2G

(Proposition D.7) implies that the

common kernel of all characters is trivial.

Proposition D.10. If x 2 KŒG� satisfies �.x/ D 0 for every character � 2 OG, then
x D 0.

Using this property, we show that the group ringKŒG� is semi-simple, as defined
in Appendix C.4.
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Theorem D.11 (the “abelian Maschke theorem”). Let G be a finite abelian
group and K a field of characteristic not dividing jGj. Choose a system M of
representatives of conjugacy classes of characters. Then the ring homomorphism

KŒG� !
Y

�2M
K�

x 7! .�.x//�2M :
(D.5)

is an isomorphism. In particular, the ring KŒG� is semi-simple.

Proof. Let x be in the kernel of the map (D.5), that is, �.x/ D 0 for any
character � 2 M . Since conjugate characters vanish simultaneously at x, we obtain
�.x/ D 0 for any � 2 OG. Proposition D.10 implies that x D 0. Hence (D.5) is a
monomorphism and, by (D.4), the K-dimensions of both parts of (D.5) are equal.
Therefore we have an isomorphism. ut
Remark D.12. In the case “G is a cyclic group of order m and K D Q”
Theorem D.11 implies the isomorphism QŒG� Š Q

d jmQ.�d /. We do not use
this in the present book.

As Proposition C.12 suggests, the ideals of KŒG� can be characterized as
common kernels of characters from the set M : for a subset S of M let IS be the
common kernel of the characters from the complementM n S . Then IS is an ideal
of KŒG�, and any ideal of KŒG� is equal to IS for some S 
 M .

The ideal IS is isomorphic, as a KŒG�-module, to
Q
�2S K�. It follows that it is

a K-vector space, and

dimK IS D
X

�2S
ŒK� W K�:

If � 2 KŒG� then the principal ideal .�/ is equal to IS , where S consists of
characters � 2 M with �.�/ ¤ 0. Hence

dimK.�/ D
X

�.�/¤0
ŒK� W K�: (D.6)

Since conjugate characters vanish at � simultaneously, and since for every � there
are exactly ŒK� W K� characters, conjugate to �, the sum in (D.6) is equal to the
number of � 2 OG with �.�/ ¤ 0. We have proved the following statement.

Proposition D.13. Let � be an element of KŒG�. Then the K-dimension of the
principal ideal .�/ is equal to the number of characters � 2 OG nonvanishing at � .

Finally, we state one more consequence of Theorem D.11, to be used in
Appendix F.4. Let N be a module over the group ring KŒG�. Then N is a K-vector
space, and the “dual space” N � D HomK.N;K/ has a natural G-module structure
(see Appendix C.5). The following result is a direct application of Theorems C.17
and D.11.
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Corollary D.14. LetG be a finite abelian group andK a field of characteristic not
dividing jGj. Let N be a finitely generated KŒG�-module. Then the “dual module”
N � D HomK.N;K/ is KŒG�-isomorphic to N .

D.5 Idempotents

We retain the setup of the previous section. It is useful to have an explicit basis of
the ideal IS as aK-vector space and an explicit generator of IS as a principal ideal.
In this section we produce both, under the additional assumption

K contains the jGjth roots of unity, (D.7)

which is sufficient for our purposes. The reader is invited to examine the general
case.

Assumption (D.7) implies that K� D K for all characters �, or, equivalently,
every character is conjugate only to itself. It follows that in Theorem D.11 we have
M D OG, and the map (D.5) becomes the isomorphism

 W KŒG� ! K
OG;

whereK OG is the ring of K-functions on OG.
For every character �, we define the element "� 2 KŒG� as follows:

"� D 1

jGj
X

g2G
�.g/g�1:

These elements have many remarkable properties; here are some of them.

Proposition D.15. 1. For any characters � and �0 we have

�0."�/ D
(
1 if � D �0;
0 if � ¤ �0:

2. For any x 2 KŒG� we have x"� D �.x/"�.
3. For any � we have "2� D "�.

Proof. Applying Proposition D.4 to the character �.�0/�1, we find

�0."�/ D 1

jGj
X

g2G
�.g/�0.g/�1 D

(
1 if � D �0;
0 if � ¤ �0:
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This proves Part 1. Part 2 is trivially true for any x 2 G. By linearity, it extends to
x 2 KŒG�. Part 3 is an immediate consequence of the previous parts. ut

The element "� is called the idempotent of �. Notice that the idempotent of the
trivial character is jGj�1N .

Since x"� 2 K"� for any x 2 KŒG�, the set K"� is an ideal of KŒG�. We have
decomposedKŒG� into a direct sum of one-dimensional ideals:

KŒG� D
M

�2 OG
K"� :

The ideal IS decomposes as

IS D
M

�2S
K"� ;

which, in particular, implies that f"� W � 2 Sg is a K-basis of IS .
Also, it is easy to see that

IS D KŒG�
X

�2S
"�;

which gives an explicit generator of the principal ideal IS . Since we do not use this
result, its proof is left to the reader.



Appendix E
Reduction and Torsion of Finite G -Modules

In this appendix we study the reduction of G-modules modulo a prime number.
Like in Appendix C (and unlike in the rest of the book) here we write the abelian
group law on modules additively and the ring action multiplicatively.

Let M be a finite Z-module (written additively), and let p be a prime num-
ber. It is easy to see that M=pM is isomorphic to the p-torsion submodule
MŒp � D fa 2 M W p a D 1g. In this appendix we show that this automorphism
extends, under a mild assumption, to finite G-modules.

Theorem E.1. Let G be a finite abelian group and let M be a finite G-module.
Further, let p be a prime number not dividing jGj. Then M=pM and MŒp � are
G-isomorphic.

It is easy to see (see end of Sect. E.4) that M can be replaced by its p-Sylow
submodule and the group ring ZŒG� can be replaced by the finite ring Z=p s

ZŒG�

with sufficiently large s. We introduce a very special class of rings (called here
telescopic rings) and describe, in terms of these rings, the structure of the group ring
Z=p s

ZŒG� and of the finitely generated Z=p s
ZŒG�-modules. After this preparation

Theorem E.1 becomes immediate.
When writing this appendix we profited from very useful discussions with Jean

Fresnel. Many arguments below are due to him or based on his ideas.

E.1 Telescopic Rings

Call a (commutative) ring R telescopic if R has an ideal m such that any other ideal
is a power of m. A basic example of a telescopic ring is Z=p s

Z, where p is a prime
number: in this ring every ideal is a power of the principal ideal .p/.

Obviously,R is a local ring with the maximal ideal m. Also, since the zero ideal
is a power of m, the latter is nilpotent:ms D 0 for some s. If we choose the minimal s
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with this property (called the index of nilpotency of m) then mk ¤ mkC1 for k < s:
indeed, if mk D mkC1 then, multiplying by ms�k�1, we obtain ms�1 D ms D 0,
contradicting the minimal choice of s. It follows that

R D m0 © m © : : : © ms D 0 (E.1)

is the complete list of ideals of the telescopic ringR. Thus, we may regard telescopic
rings as a “nilpotent analogue” of discrete valuation rings.

It is important that the maximal ideal of a telescopic ring is principal (and hence
so are all its ideals). Indeed, if s D 1 then m D 0 (in which case R is a field), and if
s > 1 then m © m2, and we may choose an element � 2 m which does not belong
to m2. Then m � �R © m2, which shows that m D �R.

Conversely, telescopic rings can be characterized as rings having a principal and
nilpotent maximal ideal.

Proposition E.2. A commutative ring with a principal and nilpotent maximal ideal
is telescopic.

Proof. Let m be a principal and nilpotent maximal ideal of a ring R. Since m is
nilpotent, it is contained in any other maximal ideal of R, which means that m is
the only maximal ideal of R. Thus, R is a local ring; in particular, every element
outside m is invertible.

It remains to show that every proper ideal of R is a power of m. Thus, let a be
a nonzero proper ideal of R, and let k be the maximal integer with the property
a 
 mk (since m is nilpotent, the set of integers with this property is finite). We are
going to show that a D mk .

By the maximal choice of k we have a 6
 mkC1. Let ˛ be an element of a not
contained in mkC1. Recall that m is a principal ideal, and let � be its generator.
Since ˛ belongs to mk , but not to mkC1, we have ˛ D �k", where " … m. Since R
is a local ring, the element " is invertible. Thus, �k 2 a, which proves that a D mk .

ut
Remark E.3. It is not sufficient to assume only that the maximal ideal is nilpotent
(without assuming it principal), as shows the following example, kindly communi-
cated to us by Jean Fresnel. Let K be a field, and put R D KŒx; y�=.x2; y2; xy/.
Then m D xR C yR is a maximal ideal of R satisfying m2 D 0, but R is not a
telescopic ring, because the ideal xR is not a power of m.

E.2 Products of Telescopic Rings

Let R be a direct product of finitely many telescopic rings: R D R1 	 � � � 	 Rn,
where every Rj is telescopic. Let mj D �jRj be the maximal ideal of Rj and
Kj D Rj =mj be the residue field. Then � D .�1; : : : ; �n/ is a nilpotent element
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of R, and R=�R is isomorphic to K1 	 � � � 	Kn. In particular, R=�R is a semi-
simple ring (see Appendix C.4).

It turns out that this property characterizes products of telescopic rings.

Theorem E.4. Let R be a (commutative) ring, having a nilpotent element � such
that the quotient ring R=�R is semi-simple. Then R is a direct product of finitely
many telescopic rings.

As a consequence, we obtain the structure of the group ring Z=p s
ZŒG�.

Corollary E.5. Let R be a telescopic ring with residue field K , and let G be a
finite abelian group. Assume that the characteristic of K does not divide G. Then
the group ring RŒG� is a direct product of finitely many telescopic rings.

In particular, if G is a finite abelian group and p is a prime number not
dividing jGj, then for any positive integer s the ring Z=p s

ZŒG� is a direct product
of telescopic rings.

Proof. Let � generate the maximal ideal of the telescopic ring R. Then
RŒG�=�RŒG� is isomorphic toKŒG�, which is a semi-simple ring by Theorem D.11.
Whence the result. ut

For the proof of Theorem E.4 we need a lemma (a familiar reader will quickly
recognize in it a version of “Hensel’s lemma”).

Lemma E.6. Let � be a nilpotent element of a ring R and let ˛0; ˇ0 be coprime
elements of R satisfying ˛0ˇ0 � 0 mod� . Then there exists coprime ˛; ˇ 2 R such
that ˛ � ˛0 mod� , ˇ � ˇ0 mod� , and ˛ˇ D 0.

Proof. Write ˛0ˇ0 D �
. Since ˛0 and ˇ0 are coprime, there exist u; v 2 R
such that u˛0 C vˇ0 D 1. Put ˛1 D ˛0 � v
� and ˇ1 D ˇ0 � u
� . Then
˛1ˇ1 � 0 mod�2. Also, ˛1 and ˇ1 are coprime. Indeed, u˛1 C vˇ1 � 1 mod� ,
and an element congruent to 1 modulo � is invertible1.

Iterating the process, we find, for every k, coprime elements ˛k; ˇk 2 R such that
˛k � ˛0 mod� , ˇk � ˇ0 mod� , and ˛kˇk � 0 mod�2

k
. Since � is nilpotent, we

shall eventually obtain ˛kˇk D 0. ut
We shall also use the “Chinese remainder theorem”: if a and b are coprime ideals

of a ring R, then the natural homomorphism R ! R=a 	 R=b is surjective and
defines an isomorphism R=ab Š R=a 	 R=b. See, for instance, [58, Sect. 2.2] or
[3, Proposition 1.10].2

1Write it as 1� �t . Then its inverse is 1C �t C � � � C .�t/s�1 , where s is the nilpotency index
of � .
2In both these references R=.a \ b/ appears instead of R=ab. However, for coprime ideals a and
b, we have a \ b D ab. Indeed, since a and b are coprime, there exist ˛ 2 a and ˇ 2 b such that
˛ C ˇ D 1. Now if � 2 a \ b then �˛; �ˇ 2 ab, and hence � D �.˛ C ˇ/ 2 ab, which proves
that a \ b D ab.
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Proof of Theorem E.4. We write R=�R D K1 	 � � � 	Kn, where K1; : : : ; Kn are
fields and, arguing by induction on n, we shall prove that R is a product of n
telescopic rings. The case n D 1 is exactly Proposition E.2.

Now assume that n > 1. There exist coprime ˛; ˇ 2 R such that ˛ˇ D 0,
the image of ˛ in K1 	 � � � 	Kn is e1 D .1; 0; : : : ; 0/ and the image of ˇ is
1 � e1 D .0; 1; : : : ; 1/. To find such ˛ and ˇ, fix an arbitrary ˛0 2 R with image e1,
put ˇ0 D 1 � ˛0, and apply Lemma E.6.

By the Chinese remainder theorem, the ring R is isomorphic to R0 	 R00, where
R0 D R=˛R and R00 D R=ˇR. Let � 0, respectively � 00, be the image of � in R0,
respectivelyR00. Then

R0=� 0R0 D R=.˛RC �R/ D K2 	 � � � 	Kn;

and by induction we conclude that R0 is a direct product of n � 1 telescopic rings.
Similarly,R00=� 00R00 D K1, whenceR00 is a telescopic ring. The theorem is proved.

ut

E.3 Elementary Divisors and Finitely Generated Modules

Like principal ideal domains, telescopic rings admit the “theory of elementary
divisors,” and a finitely generated module over a telescopic ring is a direct sum
of its cyclic submodules.

Theorem E.7. Let n � 1 be an integer, R a telescopic ring with the maximal
idealm, andH a submodule of the free moduleRn. Then there exist a1; : : : ; an 2 Rn
such that

Rn D Ra1 ˚ � � � ˚Ran; H D mr1a1 ˚ � � � ˚ mrnan; (E.2)

where r1; : : : ; rn are nonnegative integers.

Proof. Let pk W Rn ! R be the projection on the kth coordinate. Then
pk.H/ D mtk , where t1; : : : ; tk are nonnegative integers. We put

r1 D minft1; : : : ; tng

and we may assume that r1 D t1, so that p1.H/ D mr1 and pk.H/ 
 mr1 for
k D 2; : : : ; n.

Let � be a generator ofm. ThenH has an element b such that p1.b/ D �r1 . Write
b D .�r1 ; �r1x2; : : : ; �

r1xn/ D �r1a1, where a1 D .1; x1; : : : ; xn/. Obviously,
Rn D Ra1 ˚ kerp1, and an easy verification shows that H D Rb ˚H 0, where
H 0 D kerp1 \H . Since Rb D mr1a1, we obtain

Rn D Ra1 ˚ kerp1; H D mr1a1 ˚H 0:
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By induction, there exist a2; : : : ; an 2 kerp1 such that

kerp1 D Ra2 ˚ � � � ˚Ran; H 0 D mr2a2 ˚ � � � ˚ mrnan:

This proves the theorem. ut
Corollary E.8. A finitely generated module over a telescopic ring is a direct sum
of its cyclic submodules.

Proof. Let M be a finitely generated module over a telescopic ring R. Then for
some n there is a surjective homomorphism Rn ! M . Let H be its kernel,
so that M Š Rn=H , and let a1; : : : ; an 2 Rn be such that (E.2) holds. Then
M D R˛1 ˚ � � � ˚R˛n, where ˛1; : : : ; ˛n 2 M are the images of a1; : : : ; an,
respectively. ut

E.4 Reduction and Torsion

Let R be a ring, let M be an R-module, and let a be an ideal of R. Put
MŒa� D fx 2 M W ax D 0g, and call it the a-torsion submodule of M .

Proposition E.9. Let M be a finitely generated module over a telescopic ring R,
and let a be an ideal of R. Then M=aM is R-isomorphic to MŒa�.

Proof. If M D Ln
iD1 Mi is a direct sum of its submodules, then

MŒa� Š
nM

iD1
Mi Œa�; M=aM Š

nM

iD1
Mi=aMi:

By Corollary E.8 this reduces Proposition E.9 to the case when M is a cyclic
module. Replacing R by the ring R=annR.M/ (and a by its image in this ring),
we may assume that annR.M/ D 0 and therebyM Š R.

Let m D �R be the maximal ideal of R, and write a D mk D �kR.
Then M=aM D R=�kR and MŒa� D �s�kR, where s is the nilpotency index
of � . The map R ! R defined by x 7! �s�kx has �s�kR as its image and �kR as
its kernel. Hence R=�kR Š �s�kR, as wanted. ut

Proposition E.9 extends to direct products of telescopic rings.

Proposition E.10. Let R be a direct product of finitely many telescopic rings,
and let M be a finitely generated R-module. Then for any ideal a of R we have
M=aM Š MŒa�.

Proof. Write R D R1 	 � � � 	 Rn, where each Rk is a telescopic ring. Put

e1 D .1; 0; : : : ; 0/; e2 D .0; 1; 0; : : : ; 0/;



226 E Reduction and Torsion of Finite G-Modules

and so on, so that 1 D e1 C � � � C en. Then an R-moduleM splits into a direct sum
asM D Ln

iD1 Mi , whereMi D eiM . As in the proof of Proposition E.9, it suffices
to verify the required property for everyMi .

Since Mi is annihilated by 1 � ei it can be viewed as a module over the
ring R=.1 � ei /R, which is isomorphic to the telescopic ring Ri . We reduced
Propositions E.10–E.9, hereby completing the proof. ut

Now we are ready to prove Theorem E.1.

Proof of Theorem E.1. Let Mp be the p-Sylow subgroup of M . Then Mp is
a G-submodule of M , and the embedding Mp ,! M induces G-isomorphisms
MŒp � Š MpŒp � and M=pM Š Mp=pMp. Hence we may assume that M is a
p-group; in particular, M has a natural structure of a Z=p s

ZŒG�-module for a
suitable s.

By the assumption, p does not divide jGj. Hence Z=p s
ZŒG� is a direct product

of finitely many telescopic rings (Corollary E.5), and our theorem becomes a direct
consequence of Proposition E.10. ut



Appendix F
Radical Extensions

In this appendix we give an account of the theory of the q-radical extensions, that
is, the extensions generated by qth roots of elements of the field. Everywhere in this
appendixK is a field and q a prime number, distinct from the characteristic of K .

F.1 Field Generated by a Single Root

Fix ˇ 2 K and a qth root ˇ1=q . Then all conjugates of ˇ1=q overK are contained in
the set

˚
ˇ1=q	 W 	 2 �q

�
; (F.1)

where �q D
n
1; �q; : : : ; �

q�1
q

o
is the group of the qth roots of unity.

Proposition F.1. If ˇ is not a qth power in K , then ŒK.ˇ1=q/ W K� D q for any
choice of the root ˇ1=q .

In other words, the polynomial xq � ˇ either has a root in K or is irreducible
overK (in which case (F.1) is the full set of conjugates of ˇ1=q).

Proof. Assume that ŒK.ˇ1=q/ W K� D r < q for some choice of the root ˇ1=q . We
have NK.ˇ1=q/=K.ˇ

1=q/ D ˇr=q	 with 	 2 �q . Since q is prime, there exist integers a

and b such that ar C bq D 1. Then
�
.ˇr=q	/aˇb

�q D ˇ; that is, ˇ is a qth power
in K . ut

Since ŒK.�q/ W K� � q � 1, we obtain the following consequence, which will be
systematically used in the sequel.

Corollary F.2. If ˇ 2 K is not a qth power inK , then it is not a qth power inK.�q/
either.
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F.2 Kummer’s Theory

We wish to study the Galois group (over K) of the field K.�q; ˇ1=q/ (the field,
generated by all the qth roots of ˇ). Actually, we consider a more general situation.
We fix a subgroup B of the multiplicative group K�, and consider the field
L D K.

q
p
B/, generated overK by the set

q
p
B D ˚

� 2 NK� W �q 2 B� :

It is a Galois extension of K (the composite of splitting fields of all polynomials
xq � ˇ, where ˇ 2 B). The structure of the Galois group � D Gal.L=K/ depends
on whether or not �q belongs to K .

In this section we assume that

�q 2 K: (F.2)

In this case the theory of q-radical extensions is called Kummer’s theory. Fix ˇ 2 B
and a qth root ˇ1=q . Then all conjugates of ˇ1=q over K are contained in the set˚
ˇ1=q	 W 	 2 �q

�
, where

�q D
n
1; �q; : : : ; �

q�1
q

o

is the group of the qth roots of unity. In other words, for any � 2 � , we have
.ˇ1=q/�=ˇ1=q 2 �q . The quotient .ˇ1=q/�=ˇ1=q depends only on ˇ and � , but not
on the particular choice of the qth root ˇ1=q ; indeed, if we replace ˇ1=q by ˇ1=q	
with 	 2 �q , the quotient is not changed because �q � K by the assumption (F.2).

To continue, recall the notion of pairing. Given groups V andW , and an abelian
group A, an A-pairing of V and W is a map f W V 	W ! A such that for any
y 2 W the map x 7! f .x; y/ is a group homomorphismV ! A, and for any x 2 V
the map y 7! f .x; y/ is a group homomorphism W ! A. The pairing induces
group homomorphisms V ! Hom.W;A/ and W ! Hom.V; A/. The kernels of
these homomorphisms are called left and right kernels of our pairing. The pairing is
left (respectively, right) faithful if its left (right) kernel is 1 and faithful if it is both
left and right faithful.

In our case we have Kummer’s pairing B 	 � ! �q defined by

.ˇ; �/ 7!
�
ˇ1=q

��

ˇ1=q
:

It is obviously right faithful, which implies that � is isomorphic to a subgroup of
Hom.B; �q/. It follows that � is a q-torsion abelian group; in particular, it has a
natural structure of an Fq-vector space.



F.2 Kummer’s Theory 229

However, Kummer’s pairing is not left faithful in general, its right kernel being
B \ .K�/q . Putting NB D B=B \ .K�/q , we obtain a faithful pairing NB 	 � ! �q ,
and the following holds.

Theorem F.3. If the group B is finitely generated, then � is isomorphic to NB .

This is a special case of a general statement in linear algebra. Let F be a field
and V and W vector spaces over F . A pairing V 	W ! F is F -bilinear if both
the induced maps V ! Hom.W; F / and W ! Hom.V; F / are F -linear.

Proposition F.4. Assume that one of the spaces V and W is of finite F -dimension
and that there exists a faithful F -bilinear pairing V 	W ! F ; then V andW are
isomorphic vector spaces.

Proof. Assume, for instance, that V is finite dimensional. Then the dual space
V � D Hom.V; F / is of the same dimension as V . Since our pairing is right faithful,
we have a linear monomorphismW ,! V �. Hence, W is finite dimensional, and

dimW � dimV � D dimV:

Similarly, dimV � dimW . Hence dimV D dimW , as wanted. ut
Proof of Theorem F.3. Both groups NB and � have a natural structure of an Fq-
vector space. Identifying �q with the additive group of Fq , we obtain a faithful
Fq-bilinear pairing NB 	 � ! Fq . Since B is finitely generated, NB is a finite-
dimensional Fq-space. Now apply Proposition F.4. ut

If B 0 is a subgroup of B.K�/q then the field L0 D K.
q
p
B 0/ is a subfield of L.

In the case when B is finitely generated, any subfield of L, containingK , is of this
form. More precisely, we have the following statement (which will not be used in
the sequel).

Proposition F.5. Assume that B is finitely generated. Then there is a one-to-one
correspondence between the group towers .K�/q � B 0 � B.K�/q and the field
towers K 
 L0 
 L, given by L0 D K.

q
p
B 0/.

Proof. If there is a faithful F -bilinear pairing V 	W f! F of finite-dimensional
vector spaces, then the subspaces V 0 of V and W 0 of W stay in the one-to-
one correspondence given by1 W 0 D .V 0/?. In our case we obtain a one-to-one
correspondence between the subgroups of NB and of � . Since the former correspond
to the group towers .K�/q � B 0 � B.K�/q and the latter to the field towers
K 
 L0 
 L, we obtain a one-to-one correspondence between the two types of tow-
ers. A straightforward inspection shows that L0 D K.

q
p
B 0/ for the corresponding

towers. ut

1Where .V 0/? D fw 2 W W f .v;w/ D 0 for all v 2 V 0g.
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Without assuming that B is finitely generated, the following statement
still holds: there is a one-to-one correspondence between the group towers
.K�/q � B 0 � B.K�/q and the field towers K 
 L0 
 L such that both the index
ŒB.K�/q W B 0� and the degree ŒL W L0� are finite, and the correspondence is again
given by L0 D K.

q
p
B 0/. We leave the proof to the reader.

F.3 General Radical Extensions

We no longer assume that �q 2 K. Since 1 2 B , we have �q 2 q
p
B , which means

that we have a tower of fields

K � K.�q/ � L;

where �q is a primitive qth root of unity and L D K.
q
p
B/.

Proposition F.6. Assume that the group B is finitely generated. Then the group
� D Gal.L=K.�q// is isomorphic to NB D B=B \ .K�/q .

Proof. Corollary F.2 implies that B \ .K�/q D B \ .K.�q/
�/q . Now apply

Theorem F.3 with K.�q/ instead of K . ut
Putting � D Gal.L=K/ and H D Gal.K.�q/=K/, we obtain the exact sequence

1 ! � ! � ! H ! 1: (F.3)

Both extensionsK.�q/=K and L=K.�q/ are abelian, but, as we shall see in a while,
when �q … K, the extension L=K is badly non-abelian.

Theorem F.7. Assume that �q … K. Let L0 be an abelian extension ofK contained
in L. Then L0 � K.�q/.

The proof relies on a simple group-theoretic lemma. To state it, we need some
preparation. Recall, first of all, the notion of group extension. Let

1 ! A ! E ! Q ! 1 (F.4)

be an exact sequence of groups, the group A being abelian. The group E acts
on its normal subgroup A by conjugation (we write this action exponentially,
a 7! ae D e�1ae). Since A is abelian, it acts on itself trivially. This induces a
natural right action of Q D E=A on A (again written exponentially).

Now assume that we are given an abelian group A, a group Q, and a right Q-
action on A. Then any exact sequence (F.4) inducing the given Q-action on A is
called an extension of Q by A (with respect to the given action).
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Now let F be a field and A an F -vector space. It will be convenient for us to
write the group structure on Amultiplicatively and the F -action on A exponentially
(that is, instead of the familiar 
x C �y, we write x
y�).

Lemma F.8. Let Q be a subgroup of the multiplicative group F �, and let
1 ! A ! E ! Q ! 1 be an extension of Q by A with respect to the standard
action ofQ onA. Assume thatQ ¤ 1. Then2 A D ŒE;E�, the commutator subgroup
of E .

In other words, ifE 0 is a normal subgroup ofE with abelian quotientE=E 0, then
E 0 � A.

The assumption Q ¤ 1 is essential: if Q D 1 then E D A is an abelian group
and ŒE;E� D 1.

Proof. Since the quotient E=A is abelian, we have ŒE;E� � A, so it suffices to
prove that A � ŒE;E�.

Recall that we write the group law on A multiplicatively and the F -action
on A exponentially. Fix an element x ¤ 1 of Q. Then, when a runs over A, the
expression ax�1 runs overA as well. If for every x 2 Q we fix a lifting Qx 2 E , then
ax D Qx�1a Qx. It follows that

ax�1 D a�1Cx D a�1 Qx�1a Qx D 

a; Qx �:

Thus, every element of A can be presented as a commutator


a; Qx �. Hence

A � ŒE;E�. ut
Proof of Theorem F.7. Consider the exact sequence (F.3). The group � is an Fq-
vector space (see Sect. F.2), andH can be viewed as a subgroup of .Z=qZ/� D F

�
q ,

the action of H on � being exactly the (restricted to H ) Fq-vector space action.
Since �q 6� K , we have H ¤ 1 and Lemma F.8 applies. By the lemma, every
subgroup of � with abelian quotient contains � . By the Galois theory, this means
that every subfield of L, abelian overK , is contained in the subfield fixed by � , that
is, in K.�q/. The theorem is proved. ut

F.4 Equivariant Kummer’s Theory

Now assume that K is a Galois extension of some field K0, with Galois group
G D Gal.K=K0/, and that B is a G-invariant subgroup of K . Then L D K.

q
p
B/

is a Galois extension of K0 (the composite of splitting fields of polynomials

2We identify A with its image in E .
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Q

2G.x � ˇ
/, where ˇ 2 B). It follows that G acts naturally on the group

� D Gal.L=K/, and the subgroup � D Gal.L=K.�q// is invariant under this
action.3

Thus, bothB and � areG-modules, and so is NB D B=B \ .K�/q . Recall that �
and NB are isomorphic as abelian groups when B is finitely generated. It is natural
to ask whether they are isomorphic as G-modules. In general, this is not true.
For instance, assume that �q … K0, K D K0.�q/ and B � K0. Then B is a trivial
G-module, but � is a nontrivial G-module.

Similar examples show that to have G-isomorphism we must assume that

K \K0.�q/ D K0: (F.5)

Adding to these some technical hypotheses, we indeed prove that NB and � are
G-isomorphic.

Theorem F.9. In the above setup, assume that the group B is finitely generated
and that (F.5) holds. Assume, in addition, that the group G is finite and abelian and
that q does not divide jGj. Then NB and � are G-isomorphic.

First of all, we establish an equivariant version of Proposition F.4. Let V and W
be G-modules, where G is a group, and let A be an abelian group. A pairing

V 	W f! A is calledG-equivariant if for any x 2 V , y 2 W , and 
 2 G, we have
f .x
 ; y
 / D f .x; y/.

Proposition F.10. Let F be a field, G a finite abelian group, V , W two finitely
generated F ŒG�-modules, and V 	W ! F a G-equivariant faithful bilinear
pairing. Assume that the characteristic of F does not divide jGj. Then V and W
are isomorphic as F ŒG�-modules.

Proof. According to Proposition F.4, the natural map W ! V � is an isomorphism
of vector spaces. Moreover, G-equivariance of the pairing implies that this map
is a G-morphism. Thus, W is F ŒG�-isomorphic to the dual space V �. Finally,
Corollary D.14 implies that V � is G-isomorphic to V . ut
Proof of Theorem F.9. Assume first that �q 2 K0. Then we also have �q 2 K, and
Kummer’s theory (Sect. F.2) applies. In particular, we have Kummer’s pairing

B 	 � f! �q , and it is easy to verify that Kummer’s pairing is G-equivariant.
Indeed, for � 2 � and 
 2 G, we have �
 D Q
�1� Q
 , where Q
 is a lifting of 
 to

Gal.L=K0/. Further, if ˇ1=q is a qth root of ˇ 2 B , then
�
ˇ1=q

�Q

is a qth root of ˇ
 .

It follows that

f .ˇ
 ; �
 / D
�
ˇ1=q

�Q
�


�
ˇ1=q

�Q
 D
�
ˇ1=q

�� Q

�
ˇ1=q

�Q
 D f .ˇ; �/Q
 :

3In fact, � is invariant under any automorphism of �, because � is the only q-Sylow subgroup
of �.
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But f .ˇ; �/ 2 �q � K0 (recall that �q 2 K0), whence f .ˇ; �/Q
 D f .ˇ; �/.
Thus, we have proved that f .ˇ
 ; �
 / D f .ˇ; �/ for any ˇ 2 B , � 2 � , and 
 2 G.
Hence Kummer’s pairing is G-equivariant.

It follows that the faithful pairing NB 	 � ! Fq , defined in the proof of
Theorem F.3, is G-equivariant as well. Proposition F.10 implies that NB is FqŒG�-
isomorphic to � . This proves the theorem in the special case �q 2 K0.

In the general case, assumption (F.5) implies that

Gal
�
K.�q/=K0.�q/

� D G:

Hence we may replace K0 by K0.�q/ and K by K.�q/, reducing the general case to
the case �q 2 K0, already proved. ut
Remark F.11. The results of this section remain true without assuming the groupG
abelian. The proofs are, basically, the same, but one should use the full (non-abelian)
version of the Maschke theorem (Theorem D.11).
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