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This series of textbooks was begun in 1951 by the late Dr. James L. Meriam. At that time,
the books represented a revolutionary transformation in undergraduate mechanics education.
They became the definitive textbooks for the decades that followed as well as models for other
engineering mechanics texts that have subsequently appeared. Published under slightly differ-
ent titles prior to the 1978 First Editions, this textbook series has always been characterized by
logical organization, clear and rigorous presentation of the theory, instructive sample prob-
lems, and a rich collection of real-life problems, all with a high standard of illustration. In addi-
tion to the U.S. versions, the books have appeared in SI versions and have been translated into
many foreign languages. These texts collectively represent an international standard for un-
dergraduate texts in mechanics.

The innovations and contributions of Dr. Meriam (1917–2000) to the field of engineer-
ing mechanics cannot be overstated. He was one of the premier engineering educators of
the second half of the twentieth century. Dr. Meriam earned his B.E., M. Eng., and Ph.D.
degrees from Yale University. He had early industrial experience with Pratt and Whitney
Aircraft and the General Electric Company. During the Second World War he served in the
U.S. Coast Guard. He was a member of the faculty of the University of California–Berkeley,
Dean of Engineering at Duke University, a faculty member at the California Polytechnic
State University–San Luis Obispo, and visiting professor at the University of California–
Santa Barbara, finally retiring in 1990. Professor Meriam always placed great emphasis on
teaching, and this trait was recognized by his students wherever he taught. At Berkeley in
1963, he was the first recipient of the Outstanding Faculty Award of Tau Beta Pi, given pri-
marily for excellence in teaching. In 1978, he received the Distinguished Educator Award
for Outstanding Service to Engineering Mechanics Education from the American Society
for Engineering Education, and in 1992 was the Society’s recipient of the Benjamin Garver
Lamme Award, which is ASEE’s highest annual national award.

Dr. L. Glenn Kraige, coauthor of the Engineering Mechanics series since the early
1980s, has also made significant contributions to mechanics education. Dr. Kraige earned
his B.S., M.S., and Ph.D. degrees at the University of Virginia, principally in aerospace
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engineering, and he currently serves as Professor of Engineering Science and Mechanics at
Virginia Polytechnic Institute and State University. During the mid 1970s, I had the singular
pleasure of chairing Professor Kraige’s graduate committee and take particular pride in the
fact that he was the first of my forty-five Ph.D. graduates. Professor Kraige was invited by
Professor Meriam to team with him and thereby ensure that the Meriam legacy of textbook
authorship excellence was carried forward to future generations. For the past three decades,
this highly successful team of authors has made an enormous and global impact on the educa-
tion of several generations of engineers.

In addition to his widely recognized research and publications in the field of spacecraft
dynamics, Professor Kraige has devoted his attention to the teaching of mechanics at both
introductory and advanced levels. His outstanding teaching has been widely recognized and
has earned him teaching awards at the departmental, college, university, state, regional, and
national levels. These include the Francis J. Maher Award for excellence in education in the
Department of Engineering Science and Mechanics, the Wine Award for excellence in uni-
versity teaching, and the Outstanding Educator Award from the State Council of Higher Ed-
ucation for the Commonwealth of Virginia. In 1996, the Mechanics Division of ASEE
bestowed upon him the Archie Higdon Distinguished Educator Award. The Carnegie Foun-
dation for the Advancement of Teaching and the Council for Advancement and Support of
Education awarded him the distinction of Virginia Professor of the Year for 1997. During
2004–2006, he held the W. S. “Pete” White Chair for Innovation in Engineering Education,
and in 2006 he teamed with Professors Scott L. Hendricks and Don H. Morris as recipients
of the XCaliber Award for Teaching with Technology. In his teaching, Professor Kraige
stresses the development of analytical capabilities along with the strengthening of physical
insight and engineering judgment. Since the early 1980s, he has worked on personal-computer
software designed to enhance the teaching/learning process in statics, dynamics, strength of
materials, and higher-level areas of dynamics and vibrations.

The Seventh Edition of Engineering Mechanics continues the same high standards set
by previous editions and adds new features of help and interest to students. It contains a
vast collection of interesting and instructive problems. The faculty and students privileged
to teach or study from Professors Meriam and Kraige’s Engineering Mechanics will benefit
from the several decades of investment by two highly accomplished educators. Following
the pattern of the previous editions, this textbook stresses the application of theory to ac-
tual engineering situations, and at this important task it remains the best.

John L. Junkins
Distinguished Professor of Aerospace Engineering
Holder of the George J. Eppright Chair Professorship in Engineering
Texas A&M University
College Station, Texas
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Preface

Engineering mechanics is both a foundation and a framework for most of the branches
of engineering. Many of the topics in such areas as civil, mechanical, aerospace, and agricul-
tural engineering, and of course engineering mechanics itself, are based upon the subjects
of statics and dynamics. Even in a discipline such as electrical engineering, practitioners, in
the course of considering the electrical components of a robotic device or a manufacturing
process, may find themselves first having to deal with the mechanics involved.

Thus, the engineering mechanics sequence is critical to the engineering curriculum.
Not only is this sequence needed in itself, but courses in engineering mechanics also serve
to solidify the student’s understanding of other important subjects, including applied math-
ematics, physics, and graphics. In addition, these courses serve as excellent settings in
which to strengthen problem-solving abilities.

Philosophy
The primary purpose of the study of engineering mechanics is to develop the capacity

to predict the effects of force and motion while carrying out the creative design functions
of engineering. This capacity requires more than a mere knowledge of the physical and
mathematical principles of mechanics; also required is the ability to visualize physical config-
urations in terms of real materials, actual constraints, and the practical limitations which
govern the behavior of machines and structures. One of the primary objectives in a mechan-
ics course is to help the student develop this ability to visualize, which is so vital to problem
formulation. Indeed, the construction of a meaningful mathematical model is often a more
important experience than its solution. Maximum progress is made when the principles and
their limitations are learned together within the context of engineering application.

There is a frequent tendency in the presentation of mechanics to use problems mainly as
a vehicle to illustrate theory rather than to develop theory for the purpose of solving prob-
lems. When the first view is allowed to predominate, problems tend to become overly idealized
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and unrelated to engineering with the result that the exercise becomes dull, academic, and
uninteresting. This approach deprives the student of valuable experience in formulating
problems and thus of discovering the need for and meaning of theory. The second view pro-
vides by far the stronger motive for learning theory and leads to a better balance between
theory and application. The crucial role played by interest and purpose in providing the
strongest possible motive for learning cannot be overemphasized.

Furthermore, as mechanics educators, we should stress the understanding that, at best,
theory can only approximate the real world of mechanics rather than the view that the real
world approximates the theory. This difference in philosophy is indeed basic and distinguishes
the engineering of mechanics from the science of mechanics.

Over the past several decades, several unfortunate tendencies have occurred in engineer-
ing education. First, emphasis on the geometric and physical meanings of prerequisite mathe-
matics appears to have diminished. Second, there has been a significant reduction and even
elimination of instruction in graphics, which in the past enhanced the visualization and repre-
sentation of mechanics problems. Third, in advancing the mathematical level of our treat-
ment of mechanics, there has been a tendency to allow the notational manipulation of vector
operations to mask or replace geometric visualization. Mechanics is inherently a subject
which depends on geometric and physical perception, and we should increase our efforts to
develop this ability.

A special note on the use of computers is in order. The experience of formulating problems,
where reason and judgment are developed, is vastly more important for the student than is the
manipulative exercise in carrying out the solution. For this reason, computer usage must be
carefully controlled. At present, constructing free-body diagrams and formulating governing
equations are best done with pencil and paper. On the other hand, there are instances in which
the solution to the governing equations can best be carried out and displayed using the com-
puter. Computer-oriented problems should be genuine in the sense that there is a condition of
design or criticality to be found, rather than “makework” problems in which some parameter is
varied for no apparent reason other than to force artificial use of the computer. These thoughts
have been kept in mind during the design of the computer-oriented problems in the Seventh
Edition. To conserve adequate time for problem formulation, it is suggested that the student be
assigned only a limited number of the computer-oriented problems.

As with previous editions, this Seventh Edition of Engineering Mechanics is written with
the foregoing philosophy in mind. It is intended primarily for the first engineering course in
mechanics, generally taught in the second year of study. Engineering Mechanics is written in
a style which is both concise and friendly. The major emphasis is on basic principles and
methods rather than on a multitude of special cases. Strong effort has been made to show
both the cohesiveness of the relatively few fundamental ideas and the great variety of prob-
lems which these few ideas will solve.

Pedagogical Features

The basic structure of this textbook consists of an article which rigorously treats the par-
ticular subject matter at hand, followed by one or more Sample Problems, followed by a group
of Problems. There is a Chapter Review at the end of each chapter which summarizes the main
points in that chapter, followed by a Review Problem set.

Problems

The 124 sample problems appear on specially colored pages by themselves. The solu-
tions to typical dynamics problems are presented in detail. In addition, explanatory and
cautionary notes (Helpful Hints) in blue type are number-keyed to the main presentation.

viii Preface
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There are 1541 homework exercises, of which approximately 45 percent are new to the
Seventh Edition. The problem sets are divided into Introductory Problems and Representa-
tive Problems. The first section consists of simple, uncomplicated problems designed to help
students gain confidence with the new topic, while most of the problems in the second sec-
tion are of average difficulty and length. The problems are generally arranged in order of
increasing difficulty. More difficult exercises appear near the end of the Representative
Problems and are marked with the symbol �. Computer-Oriented Problems, marked with an
asterisk, appear in a special section at the conclusion of the Review Problems at the end of
each chapter. The answers to all problems have been provided in a special section at the end
of the textbook.

In recognition of the need for emphasis on SI units, there are approximately two prob-
lems in SI units for every one in U.S. customary units. This apportionment between the two
sets of units permits anywhere from a 50–50 emphasis to a 100-percent SI treatment.

A notable feature of the Seventh Edition, as with all previous editions, is the wealth of
interesting and important problems which apply to engineering design. Whether directly
identified as such or not, virtually all of the problems deal with principles and procedures
inherent in the design and analysis of engineering structures and mechanical systems.

Illustrations

In order to bring the greatest possible degree of realism and clarity to the illustrations,
this textbook series continues to be produced in full color. It is important to note that color
is used consistently for the identification of certain quantities:

• red for forces and moments

• green for velocity and acceleration arrows

• orange dashes for selected trajectories of moving points

Subdued colors are used for those parts of an illustration which are not central to the
problem at hand. Whenever possible, mechanisms or objects which commonly have a cer-
tain color will be portrayed in that color. All of the fundamental elements of technical illus-
tration which have been an essential part of this Engineering Mechanics series of textbooks
have been retained. The author wishes to restate the conviction that a high standard of il-
lustration is critical to any written work in the field of mechanics.

Special Features 

While retaining the hallmark features of all previous editions, we have incorporated
these improvements:

• The main emphasis on the work-energy and impulse-momentum equations is now on
the time-order form, both for particles in Chapter 3 and rigid bodies in Chapter 6.

• New emphasis has been placed on three-part impulse-momentum diagrams, both for
particles and rigid bodies. These diagrams are well integrated with the time-order form
of the impulse-momentum equations.

• Within-the-chapter photographs have been added in order to provide additional
connection to actual situations in which dynamics has played a major role.

• Approximately 45 percent of the homework problems are new to this Seventh Edition.
All new problems have been independently solved in order to ensure a high degree of
accuracy.

Preface ix
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• New Sample Problems have been added, including ones with computer-oriented
solutions.

• All Sample Problems are printed on specially colored pages for quick identification.

• All theory portions have been reexamined in order to maximize rigor, clarity,
readability, and level of friendliness.

• Key Concepts areas within the theory presentation have been specially marked and
highlighted.

• The Chapter Reviews are highlighted and feature itemized summaries.

Organization
The logical division between particle dynamics (Part I) and rigid-body dynamics (Part II)

has been preserved, with each part treating the kinematics prior to the kinetics. This
arrangement promotes thorough and rapid progress in rigid-body dynamics with the prior
benefit of a comprehensive introduction to particle dynamics.

In Chapter 1, the fundamental concepts necessary for the study of dynamics are 
established.

Chapter 2 treats the kinematics of particle motion in various coordinate systems, as
well as the subjects of relative and constrained motion.

Chapter 3 on particle kinetics focuses on the three basic methods: force-mass-acceleration
(Section A), work-energy (Section B), and impulse-momentum (Section C). The special 
topics of impact, central-force motion, and relative motion are grouped together in a special 
applications section (Section D) and serve as optional material to be assigned according to
instructor preference and available time. With this arrangement, the attention of the stu-
dent is focused more strongly on the three basic approaches to kinetics.

Chapter 4 on systems of particles is an extension of the principles of motion for a single
particle and develops the general relationships which are so basic to the modern compre-
hension of dynamics. This chapter also includes the topics of steady mass flow and variable
mass, which may be considered as optional material.

In Chapter 5 on the kinematics of rigid bodies in plane motion, where the equations of
relative velocity and relative acceleration are encountered, emphasis is placed jointly on
solution by vector geometry and solution by vector algebra. This dual approach serves to
reinforce the meaning of vector mathematics.

In Chapter 6 on the kinetics of rigid bodies, we place great emphasis on the basic
equations which govern all categories of plane motion. Special emphasis is also placed
on forming the direct equivalence between the actual applied forces and couples and
their and resultants. In this way the versatility of the moment principle is em-
phasized, and the student is encouraged to think directly in terms of resultant dynamics
effects.

Chapter 7, which may be treated as optional, provides a basic introduction to three-
dimensional dynamics which is sufficient to solve many of the more common space-motion
problems. For students who later pursue more advanced work in dynamics, Chapter 7 will
provide a solid foundation. Gyroscopic motion with steady precession is treated in two ways.
The first approach makes use of the analogy between the relation of force and linear-
momentum vectors and the relation of moment and angular-momentum vectors. With this
treatment, the student can understand the gyroscopic phenomenon of steady precession
and can handle most of the engineering problems on gyroscopes without a detailed study of
three-dimensional dynamics. The second approach employs the more general momentum
equations for three-dimensional rotation where all components of momentum are ac-
counted for.

I�ma
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Chapter 8 is devoted to the topic of vibrations. This full-chapter coverage will be espe-
cially useful for engineering students whose only exposure to vibrations is acquired in the
basic dynamics course.

Moments and products of inertia of mass are presented in Appendix B. Appendix C con-
tains a summary review of selected topics of elementary mathematics as well as several nu-
merical techniques which the student should be prepared to use in computer-solved
problems. Useful tables of physical constants, centroids, and moments of inertia are con-
tained in Appendix D.

Supplements
The following items have been prepared to complement this textbook:

Instructor’s Manual

Prepared by the authors and independently checked, fully worked solutions to all
odd-numbered problems in the text are available to faculty by contacting their local Wiley
representative.

Instructor Lecture Resources

The following resources are available online at www.wiley.com/college/meriam. There
may be additional resources not listed.

WileyPlus: A complete online learning system to help prepare and present lectures, assign
and manage homework, keep track of student progress, and customize your course content
and delivery. See the description in front of the book for more information, and the website
for a demonstration. Talk to your Wiley representative for details on setting up your Wiley-
Plus course.

Lecture software specifically designed to aid the lecturer, especially in larger classrooms.
Written by the author and incorporating figures from the textbooks, this software is based
on the Macromedia Flash® platform. Major use of animation, concise review of the theory,
and numerous sample problems make this tool extremely useful for student self-review of
the material.

All figures in the text are available in electronic format for use in creating lecture presen-
tations.

All Sample Problems are available as electronic files for display and discussion in the
classroom.

Acknowledgments
Special recognition is due Dr. A. L. Hale, formerly of Bell Telephone Laboratories, for

his continuing contribution in the form of invaluable suggestions and accurate checking of
the manuscript. Dr. Hale has rendered similar service for all previous versions of this entire
series of mechanics books, dating back to the 1950s. He reviews all aspects of the books, in-
cluding all old and new text and figures. Dr. Hale carries out an independent solution to
each new homework exercise and provides the author with suggestions and needed correc-
tions to the solutions which appear in the Instructor’s Manual. Dr. Hale is well known for
being extremely accurate in his work, and his fine knowledge of the English language is a
great asset which aids every user of this textbook. 

Preface xi

fpref.qxd  2/10/12  4:15 PM  Page xi



I would like to thank the faculty members of the Department of Engineering Science
and Mechanics at VPI&SU who regularly offer constructive suggestions. These include
Scott L. Hendricks, Saad A. Ragab, Norman E. Dowling, Michael W. Hyer, Michael L. Madi-
gan, and J. Wallace Grant. Jeffrey N. Bolton of Bluefield State College is recognized for his
significant contributions to this textbook series.

The following individuals (listed in alphabetical order) provided feedback on recent
editions, reviewed samples of the Seventh Edition, or otherwise contributed to the Seventh
Edition:

Michael Ales, U.S. Merchant Marine Academy
Joseph Arumala, University of Maryland Eastern Shore
Eric Austin, Clemson University
Stephen Bechtel, Ohio State University
Peter Birkemoe, University of Toronto
Achala Chatterjee, San Bernardino Valley College
Jim Shih-Jiun Chen, Temple University
Yi-chao Chen, University of Houston
Mary Cooper, Cal Poly San Luis Obispo
Mukaddes Darwish, Texas Tech University
Kurt DeGoede, Elizabethtown College
John DesJardins, Clemson University
Larry DeVries, University of Utah
Craig Downing, Southeast Missouri State University
William Drake, Missouri State University
Raghu Echempati, Kettering University
Amelito Enriquez, Canada College
Sven Esche, Stevens Institute of Technology
Wallace Franklin, U.S. Merchant Marine Academy
Christine Goble, University of Kentucky
Barry Goodno, Georgia Institute of Technology
Robert Harder, George Fox University
Javier Hasbun, University of West Georgia
Javad Hashemi, Texas Tech University
Robert Hyers, University of Massachusetts, Amherst
Matthew Ikle, Adams State College
Duane Jardine, University of New Orleans
Mariappan Jawaharlal, California Polytechnic State University, Pomona
Qing Jiang, University of California, Riverside
Jennifer Kadlowec, Rowan University
Robert Kern, Milwaukee School of Engineering
John Krohn, Arkansas Tech University
Keith Lindler, United States Naval Academy
Francisco Manzo-Robledo, Washington State University
Geraldine Milano, New Jersey Institute of Technology
Saeed Niku, Cal Poly San Luis Obispo
Wilfrid Nixon, University of Iowa
Karim Nohra, University of South Florida
Vassilis Panoskaltsis, Case Western Reserve University
Chandra Putcha, California State University, Fullerton
Blayne Roeder, Purdue University
Eileen Rossman, Cal Poly San Luis Obispo

xii Preface

fpref.qxd  2/10/12  4:15 PM  Page xii



Nestor Sanchez, University of Texas, San Antonio
Joseph Schaefer, Iowa State University
Scott Schiff, Clemson University
Sergey Smirnov, Texas Tech University
Ertugrul Taciroglu, UCLA
Constantine Tarawneh, University of Texas
John Turner, University of Wyoming
Chris Venters, Virginia Tech
Sarah Vigmostad, University of Iowa 
T. W. Wu, University of Kentucky
Mohammed Zikry, North Carolina State University

The contributions by the staff of John Wiley & Sons, Inc., including Executive Editor
Linda Ratts, Production Editor Jill Spikereit, Senior Designer Maureen Eide, and Photo-
graph Editor Lisa Gee, reflect a high degree of professional competence and are duly recog-
nized. I wish to especially acknowledge the critical production efforts of Christine Cervoni
of Camelot Editorial Services, LLC. The talented illustrators of Precision Graphics continue
to maintain a high standard of illustration excellence.

Finally, I wish to state the extremely significant contribution of my family. In addition
to providing patience and support for this project, my wife Dale has managed the prepara-
tion of the manuscript for the Seventh Edition and has been a key individual in checking all
stages of the proof. In addition, both my daughter Stephanie Kokan and my son David
Kraige have contributed problem ideas, illustrations, and solutions to a number of the prob-
lems over the past several editions.

I am extremely pleased to participate in extending the time duration of this textbook
series well past the sixty-year mark. In the interest of providing you with the best possible
educational materials over future years, I encourage and welcome all comments and sugges-
tions. Please address your comments to kraige@vt.edu.

Blacksburg, Virginia

Preface xiii

fpref.qxd  2/10/12  4:15 PM  Page xiii



xiv

PART I

DYNAMICS OF PARTICLES 1

CHAPTER 1

INTRODUCTION TO DYNAMICS 3

1/1 History and Modern Applications 3

1/2 Basic Concepts 4

1/3 Newton’s Laws 6

1/4 Units 6

1/5 Gravitation 8

1/6 Dimensions 11

1/7 Solving Problems in Dynamics 12

1/8 Chapter Review 15

CHAPTER 2

KINEMATICS OF PARTICLES 21

2/1 Introduction 21

2/2 Rectilinear Motion 22

Contents

ftoc.qxd  2/10/12  4:16 PM  Page xiv



2/3 Plane Curvilinear Motion 40

2/4 Rectangular Coordinates (x-y) 43

2/5 Normal and Tangential Coordinates (n-t ) 54

2/6 Polar Coordinates (r-u) 66

2/7 Space Curvilinear Motion 79

2/8 Relative Motion (Translating Axes) 88

2/9 Constrained Motion of Connected Particles 98

2/10 Chapter Review 106

CHAPTER 3

KINETICS OF PARTICLES 117

3/1 Introduction 117

SECTION A FORCE, MASS, AND ACCELERATION 118

3/2 Newton’s Second Law 118

3/3 Equation of Motion and Solution of Problems 122

3/4 Rectilinear Motion 124

3/5 Curvilinear Motion 138

SECTION B WORK AND ENERGY 154

3/6 Work and Kinetic Energy 154

3/7 Potential Energy 175

SECTION C IMPULSE AND MOMENTUM 191

3/8 Introduction 191

3/9 Linear Impulse and Linear Momentum 191

3/10 Angular Impulse and Angular Momentum 205

SECTION D SPECIAL APPLICATIONS 217

3/11 Introduction 217

3/12 Impact 217

3/13 Central-Force Motion 230

3/14 Relative Motion 244

3/15 Chapter Review 255

CHAPTER 4

KINETICS OF SYSTEMS OF PARTICLES 267

4/1 Introduction 267

4/2 Generalized Newton’s Second Law 268

Contents xv

ftoc.qxd  2/10/12  4:16 PM  Page xv



4/3 Work-Energy 269

4/4 Impulse-Momentum 271

4/5 Conservation of Energy and Momentum 275

4/6 Steady Mass Flow 288

4/7 Variable Mass 303

4/8 Chapter Review 315

PART II

DYNAMICS OF RIGID BODIES 323

CHAPTER 5

PLANE KINEMATICS OF RIGID BODIES 325

5/1 Introduction 325

5/2 Rotation 327

5/3 Absolute Motion 338

5/4 Relative Velocity 348

5/5 Instantaneous Center of Zero Velocity 362

5/6 Relative Acceleration 372

5/7 Motion Relative to Rotating Axes 385

5/8 Chapter Review 402

CHAPTER 6

PLANE KINETICS OF RIGID BODIES 411

6/1 Introduction 411

SECTION A FORCE, MASS, AND ACCELERATION 413

6/2 General Equations of Motion 413

6/3 Translation 420

6/4 Fixed-Axis Rotation 431

6/5 General Plane Motion 443

SECTION B WORK AND ENERGY 459

6/6 Work-Energy Relations 459

6/7 Acceleration from Work-Energy; Virtual Work 477

SECTION C IMPULSE AND MOMENTUM 486

6/8 Impulse-Momentum Equations 486

6/9 Chapter Review 503

xvi Contents

ftoc.qxd  2/10/12  4:16 PM  Page xvi



CHAPTER 7

INTRODUCTION TO THREE-DIMENSIONAL DYNAMICS OF RIGID BODIES 513

7/1 Introduction 513

SECTION A KINEMATICS 514

7/2 Translation 514

7/3 Fixed-Axis Rotation 514

7/4 Parallel-Plane Motion 515

7/5 Rotation about a Fixed Point 515

7/6 General Motion 527

SECTION B KINETICS 539

7/7 Angular Momentum 539

7/8 Kinetic Energy 542

7/9 Momentum and Energy Equations of Motion 550

7/10 Parallel-Plane Motion 552

7/11 Gyroscopic Motion: Steady Precession 558

7/12 Chapter Review 576

CHAPTER 8

VIBRATION AND TIME RESPONSE 583

8/1 Introduction 583

8/2 Free Vibration of Particles 584

8/3 Forced Vibration of Particles 600

8/4 Vibration of Rigid Bodies 614

8/5 Energy Methods 624

8/6 Chapter Review 632

APPENDICES

APPENDIX A AREA MOMENTS OF INERTIA 639

APPENDIX B MASS MOMENTS OF INERTIA 641

B/1 Mass Moments of Inertia about an Axis 641

B/2 Products of Inertia 660

APPENDIX C SELECTED TOPICS OF MATHEMATICS 671

C/1 Introduction 671

C/2 Plane Geometry 671

Contents xvii

ftoc.qxd  2/10/12  4:16 PM  Page xvii



C/3 Solid Geometry 672

C/4 Algebra 672

C/5 Analytic Geometry 673

C/6 Trigonometry 673

C/7 Vector Operations 674

C/8 Series 677

C/9 Derivatives 677

C/10 Integrals 678

C/11 Newton’s Method for Solving Intractable Equations 681

C/12 Selected Techniques for Numerical Integration 683

APPENDIX D USEFUL TABLES 687

Table D/1 Physical Properties 687

Table D/2 Solar System Constants 688

Table D/3 Properties of Plane Figures 689

Table D/4 Properties of Homogeneous Solids 691

INDEX 695

PROBLEM ANSWERS 701

xviii Contents

ftoc.qxd  2/10/12  4:16 PM  Page xviii



PART I

Dynamics of
Particles

c01.qxd  2/8/12  7:02 PM  Page 1



This astronaut is anchored to a foot restraint on the International Space Station’s Canadarm2.
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3

1/1 History and Modern Applications
Dynamics is that branch of mechanics which deals with the motion

of bodies under the action of forces. The study of dynamics in engineer-
ing usually follows the study of statics, which deals with the effects of
forces on bodies at rest. Dynamics has two distinct parts: kinematics,
which is the study of motion without reference to the forces which cause
motion, and kinetics, which relates the action of forces on bodies to their
resulting motions. A thorough comprehension of dynamics will provide
one of the most useful and powerful tools for analysis in engineering.

History of Dynamics
Dynamics is a relatively recent subject compared with statics. The

beginning of a rational understanding of dynamics is credited to Galileo
(1564–1642), who made careful observations concerning bodies in free
fall, motion on an inclined plane, and motion of the pendulum. He was
largely responsible for bringing a scientific approach to the investigation
of physical problems. Galileo was continually under severe criticism for
refusing to accept the established beliefs of his day, such as the philoso-
phies of Aristotle which held, for example, that heavy bodies fall more
rapidly than light bodies. The lack of accurate means for the measure-
ment of time was a severe handicap to Galileo, and further significant
development in dynamics awaited the invention of the pendulum clock
by Huygens in 1657.

Newton (1642–1727), guided by Galileo’s work, was able to make an
accurate formulation of the laws of motion and, thus, to place dynamics

Galileo Galilei
Portrait of Galileo Galilei (1564–1642) (oil on
canvas), Sustermans, Justus (1597–1681)
(school of)/Galleria Palatina, Florence,
Italy/Bridgeman Art Library
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on a sound basis. Newton’s famous work was published in the first edi-
tion of his Principia,* which is generally recognized as one of the great-
est of all recorded contributions to knowledge. In addition to stating the
laws governing the motion of a particle, Newton was the first to cor-
rectly formulate the law of universal gravitation. Although his mathe-
matical description was accurate, he felt that the concept of remote
transmission of gravitational force without a supporting medium was an
absurd notion. Following Newton’s time, important contributions to
mechanics were made by Euler, D’Alembert, Lagrange, Laplace, Poinsot,
Coriolis, Einstein, and others.

Applications of Dynamics
Only since machines and structures have operated with high speeds

and appreciable accelerations has it been necessary to make calculations
based on the principles of dynamics rather than on the principles of
statics. The rapid technological developments of the present day require
increasing application of the principles of mechanics, particularly dy-
namics. These principles are basic to the analysis and design of moving
structures, to fixed structures subject to shock loads, to robotic devices,
to automatic control systems, to rockets, missiles, and spacecraft, to
ground and air transportation vehicles, to electron ballistics of electrical
devices, and to machinery of all types such as turbines, pumps, recipro-
cating engines, hoists, machine tools, etc.

Students with interests in one or more of these and many other
activities will constantly need to apply the fundamental principles of
dynamics.

1/2 Basic Concepts
The concepts basic to mechanics were set forth in Art. 1/2 of Vol. 1

Statics. They are summarized here along with additional comments of
special relevance to the study of dynamics.

Space is the geometric region occupied by bodies. Position in space
is determined relative to some geometric reference system by means of
linear and angular measurements. The basic frame of reference for the
laws of Newtonian mechanics is the primary inertial system or astro-
nomical frame of reference, which is an imaginary set of rectangular
axes assumed to have no translation or rotation in space. Measurements
show that the laws of Newtonian mechanics are valid for this reference
system as long as any velocities involved are negligible compared with
the speed of light, which is 300 000 km/s or 186,000 mi/sec. Measure-
ments made with respect to this reference are said to be absolute, and
this reference system may be considered “fixed” in space.

A reference frame attached to the surface of the earth has a some-
what complicated motion in the primary system, and a correction to the
basic equations of mechanics must be applied for measurements made

4 Chapter 1 Introduction to Dynamics

Artificial hand

*The original formulations of Sir Isaac Newton may be found in the translation of his
Principia (1687), revised by F. Cajori, University of California Press, 1934.
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relative to the reference frame of the earth. In the calculation of rocket
and space-flight trajectories, for example, the absolute motion of the
earth becomes an important parameter. For most engineering problems
involving machines and structures which remain on the surface of the
earth, the corrections are extremely small and may be neglected. For
these problems the laws of mechanics may be applied directly with mea-
surements made relative to the earth, and in a practical sense such mea-
surements will be considered absolute.

Time is a measure of the succession of events and is considered an
absolute quantity in Newtonian mechanics.

Mass is the quantitative measure of the inertia or resistance to
change in motion of a body. Mass may also be considered as the quantity
of matter in a body as well as the property which gives rise to gravita-
tional attraction.

Force is the vector action of one body on another. The properties of
forces have been thoroughly treated in Vol. 1 Statics.

A particle is a body of negligible dimensions. When the dimensions
of a body are irrelevant to the description of its motion or the action of
forces on it, the body may be treated as a particle. An airplane, for ex-
ample, may be treated as a particle for the description of its flight path.

A rigid body is a body whose changes in shape are negligible com-
pared with the overall dimensions of the body or with the changes in po-
sition of the body as a whole. As an example of the assumption of
rigidity, the small flexural movement of the wing tip of an airplane fly-
ing through turbulent air is clearly of no consequence to the description
of the motion of the airplane as a whole along its flight path. For this
purpose, then, the treatment of the airplane as a rigid body is an accept-
able approximation. On the other hand, if we need to examine the inter-
nal stresses in the wing structure due to changing dynamic loads, then
the deformation characteristics of the structure would have to be exam-
ined, and for this purpose the airplane could no longer be considered a
rigid body.

Vector and scalar quantities have been treated extensively in Vol.
1 Statics, and their distinction should be perfectly clear by now. Scalar
quantities are printed in lightface italic type, and vectors are shown in
boldface type. Thus, V denotes the scalar magnitude of the vector V. It
is important that we use an identifying mark, such as an underline V,
for all handwritten vectors to take the place of the boldface designation
in print. For two nonparallel vectors recall, for example, that V1 � V2

and V1 � V2 have two entirely different meanings.
We assume that you are familiar with the geometry and algebra of

vectors through previous study of statics and mathematics. Students
who need to review these topics will find a brief summary of them in Ap-
pendix C along with other mathematical relations which find frequent
use in mechanics. Experience has shown that the geometry of mechan-
ics is often a source of difficulty for students. Mechanics by its very na-
ture is geometrical, and students should bear this in mind as they
review their mathematics. In addition to vector algebra, dynamics re-
quires the use of vector calculus, and the essentials of this topic will be
developed in the text as they are needed.

Article 1/2 Basic Concepts 5
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Dynamics involves the frequent use of time derivatives of both vec-
tors and scalars. As a notational shorthand, a dot over a symbol will fre-
quently be used to indicate a derivative with respect to time. Thus, 
means dx/dt and stands for d2x/dt2.

1/3 Newton’s Laws
Newton’s three laws of motion, stated in Art. 1/4 of Vol. 1 Statics,

are restated here because of their special significance to dynamics. In
modern terminology they are:

Law I. A particle remains at rest or continues to move with uniform
velocity (in a straight line with a constant speed) if there is no unbal-
anced force acting on it.

Law II. The acceleration of a particle is proportional to the resul-
tant force acting on it and is in the direction of this force.*

Law III. The forces of action and reaction between interacting bod-
ies are equal in magnitude, opposite in direction, and collinear.

These laws have been verified by countless physical measurements.
The first two laws hold for measurements made in an absolute frame of
reference, but are subject to some correction when the motion is mea-
sured relative to a reference system having acceleration, such as one at-
tached to the surface of the earth.

Newton’s second law forms the basis for most of the analysis in dy-
namics. For a particle of mass m subjected to a resultant force F, the
law may be stated as

(1/1)

where a is the resulting acceleration measured in a nonaccelerating
frame of reference. Newton’s first law is a consequence of the second
law since there is no acceleration when the force is zero, and so the par-
ticle is either at rest or is moving with constant velocity. The third law
constitutes the principle of action and reaction with which you should
be thoroughly familiar from your work in statics.

1/4 Units
Both the International System of metric units (SI) and the U.S. cus-

tomary system of units are defined and used in Vol. 2 Dynamics, al-
though a stronger emphasis is placed on the metric system because it is
replacing the U.S. customary system. However, numerical conversion
from one system to the other will often be needed in U.S. engineering

F � ma

ẍ
ẋ

6 Chapter 1 Introduction to Dynamics

*To some it is preferable to interpret Newton’s second law as meaning that the resultant
force acting on a particle is proportional to the time rate of change of momentum of the
particle and that this change is in the direction of the force. Both formulations are equally
correct when applied to a particle of constant mass.
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Article 1/4 Units 7

practice for some years to come. To become familiar with each system, it
is necessary to think directly in that system. Familiarity with the new
system cannot be achieved simply by the conversion of numerical re-
sults from the old system.

Tables defining the SI units and giving numerical conversions be-
tween U.S. customary and SI units are included inside the front cover of
the book. Charts comparing selected quantities in SI and U.S. custom-
ary units are included inside the back cover of the book to facilitate con-
version and to help establish a feel for the relative size of units in both
systems.

The four fundamental quantities of mechanics, and their units and
symbols for the two systems, are summarized in the following table:

The U.S. standard kilogram at the
National Bureau of Standards

*Also spelled metre.

As shown in the table, in SI the units for mass, length, and time are
taken as base units, and the units for force are derived from Newton’s
second law of motion, Eq. 1/1. In the U.S. customary system the units
for force, length, and time are base units and the units for mass are de-
rived from the second law.

The SI system is termed an absolute system because the standard
for the base unit kilogram (a platinum-iridium cylinder kept at the In-
ternational Bureau of Standards near Paris, France) is independent of
the gravitational attraction of the earth. On the other hand, the U.S.
customary system is termed a gravitational system because the stan-
dard for the base unit pound (the weight of a standard mass located at
sea level and at a latitude of 45�) requires the presence of the gravita-
tional field of the earth. This distinction is a fundamental difference be-
tween the two systems of units.

In SI units, by definition, one newton is that force which will give a
one-kilogram mass an acceleration of one meter per second squared. In
the U.S. customary system a 32.1740-pound mass (1 slug) will have an
acceleration of one foot per second squared when acted on by a force of
one pound. Thus, for each system we have from Eq. 1/1

SI UNITS

 N � kg � m/s2
 (1 N) � (1 kg)(1 m/s2)

U.S. CUSTOMARY UNITS

 slug � lb � sec2/ft
 (1 lb) � (1 slug)(1 ft/sec2)
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In SI units, the kilogram should be used exclusively as a unit of
mass and never force. Unfortunately, in the MKS (meter, kilogram, sec-
ond) gravitational system, which has been used in some countries for
many years, the kilogram has been commonly used both as a unit of
force and as a unit of mass.

In U.S. customary units, the pound is unfortunately used both as a
unit of force (lbf) and as a unit of mass (lbm). The use of the unit lbm is
especially prevalent in the specification of the thermal properties of liq-
uids and gases. The lbm is the amount of mass which weighs 1 lbf under
standard conditions (at a latitude of 45� and at sea level). In order to
avoid the confusion which would be caused by the use of two units for
mass (slug and lbm), in this textbook we use almost exclusively the unit
slug for mass. This practice makes dynamics much simpler than if the
lbm were used. In addition, this approach allows us to use the symbol lb
to always mean pound force.

Additional quantities used in mechanics and their equivalent base
units will be defined as they are introduced in the chapters which follow.
However, for convenient reference these quantities are listed in one
place in the first table inside the front cover of the book.

Professional organizations have established detailed guidelines for
the consistent use of SI units, and these guidelines have been followed
throughout this book. The most essential ones are summarized inside the
front cover, and you should observe these rules carefully.

1/5 Gravitation
Newton’s law of gravitation, which governs the mutual attraction

between bodies, is

(1/2)

where F � the mutual force of attraction between two particles

G � a universal constant called the constant of gravitation

m1, m2 � the masses of the two particles

r � the distance between the centers of the particles

The value of the gravitational constant obtained from experimental data
is . Except for some spacecraft applications,
the only gravitational force of appreciable magnitude in engineering is
the force due to the attraction of the earth. It was shown in Vol. 1 Stat-
ics, for example, that each of two iron spheres 100 mm in diameter is at-
tracted to the earth with a gravitational force of 37.1 N, which is called
its weight, but the force of mutual attraction between them if they are
just touching is only 0.000 000 095 1 N.

Because the gravitational attraction or weight of a body is a force, it
should always be expressed in force units, newtons (N) in SI units and
pounds force (lb) in U.S. customary units. To avoid confusion, the word
“weight” in this book will be restricted to mean the force of gravita-
tional attraction.

G � 6.673(10�11) m3/(kg � s2)

F � G 

m1m2

r2

8 Chapter 1 Introduction to Dynamics
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Effect of Altitude
The force of gravitational attraction of the earth on a body depends

on the position of the body relative to the earth. If the earth were a
perfect homogeneous sphere, a body with a mass of exactly 1 kg would
be attracted to the earth by a force of 9.825 N on the surface of the
earth, 9.822 N at an altitude of 1 km, 9.523 N at an altitude of 100 km,
7.340 N at an altitude of 1000 km, and 2.456 N at an altitude equal to
the mean radius of the earth, 6371 km. Thus the variation in gravita-
tional attraction of high-altitude rockets and spacecraft becomes a major
consideration.

Every object which falls in a vacuum at a given height near the sur-
face of the earth will have the same acceleration g, regardless of its
mass. This result can be obtained by combining Eqs. 1/1 and 1/2 and
canceling the term representing the mass of the falling object. This com-
bination gives

where me is the mass of the earth and R is the radius of the earth.* The
mass me and the mean radius R of the earth have been found through
experimental measurements to be 5.976(1024) kg and 6.371(106) m, re-
spectively. These values, together with the value of G already cited,
when substituted into the expression for g, give a mean value of g �

9.825 m/s2.
The variation of g with altitude is easily determined from the gravi-

tational law. If g0 represents the absolute acceleration due to gravity at
sea level, the absolute value at an altitude h is

where R is the radius of the earth.

Effect of a Rotating Earth
The acceleration due to gravity as determined from the gravita-

tional law is the acceleration which would be measured from a set of
axes whose origin is at the center of the earth but which does not ro-
tate with the earth. With respect to these “fixed” axes, then, this value
may be termed the absolute value of g. Because the earth rotates, the
acceleration of a freely falling body as measured from a position at-
tached to the surface of the earth is slightly less than the absolute
value.

Accurate values of the gravitational acceleration as measured rela-
tive to the surface of the earth account for the fact that the earth is a
rotating oblate spheroid with flattening at the poles. These values may

g � g0 R2

(R � h)2

g � 
Gme

R2

Article 1/5 Gravitation 9

*It can be proved that the earth, when taken as a sphere with a symmetrical distribution of
mass about its center, may be considered a particle with its entire mass concentrated at its
center.
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10 Chapter 1 Introduction to Dynamics

*You will be able to derive these relations for a spherical earth after studying relative mo-
tion in Chapter 3.

Standard Value of g
The standard value which has been adopted internationally for the

gravitational acceleration relative to the rotating earth at sea level and
at a latitude of 45� is 9.806 65 m/s2 or 32.1740 ft/sec2. This value differs
very slightly from that obtained by evaluating the International Gravity
Formula for � � 45�. The reason for the small difference is that the
earth is not exactly ellipsoidal, as assumed in the formulation of the In-
ternational Gravity Formula.

The proximity of large land masses and the variations in the density
of the crust of the earth also influence the local value of g by a small but
detectable amount. In almost all engineering applications near the sur-
face of the earth, we can neglect the difference between the absolute and
relative values of the gravitational acceleration, and the effect of local

Figure 1/1

be calculated to a high degree of accuracy from the 1980 International
Gravity Formula, which is

where � is the latitude and g is expressed in meters per second squared.
The formula is based on an ellipsoidal model of the earth and also ac-
counts for the effect of the rotation of the earth.

The absolute acceleration due to gravity as determined for a nonro-
tating earth may be computed from the relative values to a close approxi-
mation by adding 3.382(10�2) cos2� m/s2, which removes the effect of the
rotation of the earth. The variation of both the absolute and the relative
values of g with latitude is shown in Fig. 1/1 for sea-level conditions.*

g � 9.780 327(1 � 0.005 279 sin2 � � 0.000 023 sin4 � � …)
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variations. The values of 9.81 m/s2 in SI units and 32.2 ft/sec2 in U.S.
customary units are used for the sea-level value of g.

Apparent Weight
The gravitational attraction of the earth on a body of mass m may

be calculated from the results of a simple gravitational experiment. The
body is allowed to fall freely in a vacuum, and its absolute acceleration is
measured. If the gravitational force of attraction or true weight of the
body is W, then, because the body falls with an absolute acceleration g,
Eq. 1/1 gives

(1/3)

The apparent weight of a body as determined by a spring balance,
calibrated to read the correct force and attached to the surface of the
earth, will be slightly less than its true weight. The difference is due to
the rotation of the earth. The ratio of the apparent weight to the appar-
ent or relative acceleration due to gravity still gives the correct value of
mass. The apparent weight and the relative acceleration due to gravity
are, of course, the quantities which are measured in experiments con-
ducted on the surface of the earth.

1/6 Dimensions
A given dimension such as length can be expressed in a number of

different units such as meters, millimeters, or kilometers. Thus, a di-
mension is different from a unit. The principle of dimensional homogene-
ity states that all physical relations must be dimensionally homogeneous;
that is, the dimensions of all terms in an equation must be the same. It is
customary to use the symbols L, M, T, and F to stand for length, mass,
time, and force, respectively. In SI units force is a derived quantity and
from Eq. 1/1 has the dimensions of mass times acceleration or

One important use of the dimensional homogeneity principle is to
check the dimensional correctness of some derived physical relation. We
can derive the following expression for the velocity v of a body of mass m
which is moved from rest a horizontal distance x by a force F:

where the is a dimensionless coefficient resulting from integration.
This equation is dimensionally correct because substitution of L, M, and
T gives

Dimensional homogeneity is a necessary condition for correctness of
a physical relation, but it is not sufficient, since it is possible to construct

[MLT�2][L] � [M][LT�1]2

1
2

Fx � 12 mv2

F � ML/T2

W � mg

Article 1/6 Dimensions 11
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an equation which is dimensionally correct but does not represent a cor-
rect relation. You should perform a dimensional check on the answer to
every problem whose solution is carried out in symbolic form.

1/7 Solving Problems in Dynamics
The study of dynamics concerns the understanding and description of

the motions of bodies. This description, which is largely mathematical, en-
ables predictions of dynamical behavior to be made. A dual thought process
is necessary in formulating this description. It is necessary to think in
terms of both the physical situation and the corresponding mathematical
description. This repeated transition of thought between the physical and
the mathematical is required in the analysis of every problem.

One of the greatest difficulties encountered by students is the in-
ability to make this transition freely. You should recognize that the
mathematical formulation of a physical problem represents an ideal and
limiting description, or model, which approximates but never quite
matches the actual physical situation.

In Art. 1/8 of Vol. 1 Statics we extensively discussed the approach to
solving problems in statics. We assume therefore, that you are familiar
with this approach, which we summarize here as applied to dynamics.

Approximation in Mathematical Models
Construction of an idealized mathematical model for a given engi-

neering problem always requires approximations to be made. Some of
these approximations may be mathematical, whereas others will be
physical. For instance, it is often necessary to neglect small distances,
angles, or forces compared with large distances, angles, or forces. If the
change in velocity of a body with time is nearly uniform, then an as-
sumption of constant acceleration may be justified. An interval of mo-
tion which cannot be easily described in its entirety is often divided into
small increments, each of which can be approximated.

As another example, the retarding effect of bearing friction on the
motion of a machine may often be neglected if the friction forces are
small compared with the other applied forces. However, these same fric-
tion forces cannot be neglected if the purpose of the inquiry is to deter-
mine the decrease in efficiency of the machine due to the friction
process. Thus, the type of assumptions you make depends on what infor-
mation is desired and on the accuracy required.

You should be constantly alert to the various assumptions called for
in the formulation of real problems. The ability to understand and make
use of the appropriate assumptions when formulating and solving engi-
neering problems is certainly one of the most important characteristics
of a successful engineer.

Along with the development of the principles and analytical tools
needed for modern dynamics, one of the major aims of this book is to
provide many opportunities to develop the ability to formulate good
mathematical models. Strong emphasis is placed on a wide range of
practical problems which not only require you to apply theory but also
force you to make relevant assumptions.

12 Chapter 1 Introduction to Dynamics
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Application of Basic Principles
The subject of dynamics is based on a surprisingly few fundamental

concepts and principles which, however, can be extended and applied over
a wide range of conditions. The study of dynamics is valuable partly be-
cause it provides experience in reasoning from fundamentals. This experi-
ence cannot be obtained merely by memorizing the kinematic and dynamic
equations which describe various motions. It must be obtained through ex-
posure to a wide variety of problem situations which require the choice,
use, and extension of basic principles to meet the given conditions.

In describing the relations between forces and the motions they pro-
duce, it is essential to define clearly the system to which a principle is to
be applied. At times a single particle or a rigid body is the system to be
isolated, whereas at other times two or more bodies taken together con-
stitute the system.

Article 1/7 Solving Problems in Dynamics 13

Method of Attack
An effective method of attack is essential in the solution of dynam-

ics problems, as for all engineering problems. Development of good
habits in formulating problems and in representing their solutions will
be an invaluable asset. Each solution should proceed with a logical se-
quence of steps from hypothesis to conclusion. The following sequence
of steps is useful in the construction of problem solutions.

1. Formulate the problem:

(a) State the given data.

(b) State the desired result.

(c) State your assumptions and approximations.

2. Develop the solution:

(a) Draw any needed diagrams, and include coordinates which are
appropriate for the problem at hand.

(b) State the governing principles to be applied to your solution.

(c) Make your calculations.

(d) Ensure that your calculations are consistent with the accuracy
justified by the data.

(e) Be sure that you have used consistent units throughout your
calculations.

(f ) Ensure that your answers are reasonable in terms of magni-
tudes, directions, common sense, etc.

(g) Draw conclusions.

The arrangement of your work should be neat and orderly. This will
help your thought process and enable others to understand your work.
The discipline of doing orderly work will help you to develop skill in prob-
lem formulation and analysis. Problems which seem complicated at first
often become clear when you approach them with logic and discipline.

KEY CONCEPTS
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The definition of the system to be analyzed is made clear by con-
structing its free-body diagram. This diagram consists of a closed out-
line of the external boundary of the system. All bodies which contact
and exert forces on the system but are not a part of it are removed and
replaced by vectors representing the forces they exert on the isolated
system. In this way, we make a clear distinction between the action and
reaction of each force, and all forces on and external to the system are
accounted for. We assume that you are familiar with the technique of
drawing free-body diagrams from your prior work in statics.

Numerical versus Symbolic Solutions
In applying the laws of dynamics, we may use numerical values of

the involved quantities, or we may use algebraic symbols and leave the
answer as a formula. When numerical values are used, the magnitudes
of all quantities expressed in their particular units are evident at each
stage of the calculation. This approach is useful when we need to know
the magnitude of each term.

The symbolic solution, however, has several advantages over the
numerical solution:

1. The use of symbols helps to focus attention on the connection between
the physical situation and its related mathematical description.

2. A symbolic solution enables you to make a dimensional check at
every step, whereas dimensional homogeneity cannot be checked
when only numerical values are used.

3. We can use a symbolic solution repeatedly for obtaining answers to
the same problem with different units or different numerical values.

Thus, facility with both forms of solution is essential, and you should
practice each in the problem work.

In the case of numerical solutions, we repeat from Vol. 1 Statics our
convention for the display of results. All given data are taken to be exact,
and results are generally displayed to three significant figures, unless the
leading digit is a one, in which case four significant figures are displayed.

Solution Methods
Solutions to the various equations of dynamics can be obtained in

one of three ways.

1. Obtain a direct mathematical solution by hand calculation, using ei-
ther algebraic symbols or numerical values. We can solve the large
majority of the problems this way.

2. Obtain graphical solutions for certain problems, such as the deter-
mination of velocities and accelerations of rigid bodies in two-
dimensional relative motion.

3. Solve the problem by computer. A number of problems in Vol. 2 Dy-
namics are designated as Computer-Oriented Problems. They ap-
pear at the end of the Review Problem sets and were selected to
illustrate the type of problem for which solution by computer offers
a distinct advantage.

14 Chapter 1 Introduction to Dynamics
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The choice of the most expedient method of solution is an important
aspect of the experience to be gained from the problem work. We em-
phasize, however, that the most important experience in learning me-
chanics lies in the formulation of problems, as distinct from their
solution per se.

Article 1/8 Chapter Review 15

Virgin Galactic SpaceShip2 in gliding flight after release from its mother-
ship WhiteKnight2.
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1/8 CHAPTER REVIEW

This chapter has introduced the concepts, definitions, and units
used in dynamics, and has given an overview of the approach used to
formulate and solve problems in dynamics. Now that you have finished
this chapter, you should be able to do the following:

1. State Newton’s laws of motion.

2. Perform calculations using SI and U.S. customary units.

3. Express the law of gravitation and calculate the weight of an object.

4. Discuss the effects of altitude and the rotation of the earth on the
acceleration due to gravity.

5. Apply the principle of dimensional homogeneity to a given physical
relation.

6. Describe the methodology used to formulate and solve dynamics
problems.
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16 Chapter 1 Introduction to Dynamics

SAMPLE PROBLEM 1/1

A space-shuttle payload module weighs 100 lb when
resting on the surface of the earth at a latitude of 45� north.

(a) Determine the mass of the module in both slugs and
kilograms, and its surface-level weight in newtons.

(b) Now suppose the module is taken to an altitude of 200
miles above the surface of the earth and released there
with no velocity relative to the center of the earth.
Determine its weight under these conditions in both
pounds and newtons.

(c) Finally, suppose the module is fixed inside the cargo bay of a space shuttle.
The shuttle is in a circular orbit at an altitude of 200 miles above the surface
of the earth. Determine the weight of the module in both pounds and
newtons under these conditions.

For the surface-level value of the acceleration of gravity relative to a rotat-
ing earth, use g � 32.1740 ft/sec2 (9.80665 m/s2). For the absolute value relative
to a nonrotating earth, use g � 32.234 ft/sec2 (9.825 m/s2). Round off all answers
using the rules of this textbook.

Solution. (a) From relationship 1/3, we have

Ans.

Here we have used the acceleration of gravity relative to the rotating earth, be-
cause that is the condition of the module in part (a). Note that we are using more
significant figures in the acceleration of gravity than will normally be required in
this textbook (32.2 ft/sec2 and 9.81 m/s2 will normally suffice).

From the table of conversion factors inside the front cover of the textbook,
we see that 1 pound is equal to 4.4482 newtons. Thus, the weight of the module
in newtons is

Ans.

Finally, its mass in kilograms is

Ans.

As another route to the last result, we may convert from pounds mass to
kilograms. Again using the table inside the front cover, we have

We recall that 1 lbm is the amount of mass which under standard conditions has
a weight of 1 lb of force. We rarely refer to the U.S. mass unit lbm in this text-
book series, but rather use the slug for mass. The sole use of slug, rather than
the unnecessary use of two units for mass, will prove to be powerful and simple.

m � 100 lbm �0.45359 kg
1 lbm � � 45.4 kg

[W � mg]      m � Wg  � 445 N
9.80665 m/s2

 � 45.4 kg

W � 100 lb �4.4482 N
1 lb � � 445 N

[W � mg]      m � Wg  � 100 lb
32.1740 ft/sec2

 � 3.11 slugs

Helpful Hints

� Our calculator indicates a result of
3.108099 � � � slugs. Using the rules
of significant figure display used in
this textbook, we round the written
result to three significant figures, or
3.11 slugs. Had the numerical result
begun with the digit 1, we would
have rounded the displayed answer
to four significant figures.

� A good practice with unit conversion
is to multiply by a factor such as

, which has a value of 1,

because the numerator and the de-
nominator are equivalent. Be sure
that cancellation of the units leaves
the units desired—here the units of
lb cancel, leaving the desired units
of N.

� Note that we are using a previously
calculated result (445 N). We must
be sure that when a calculated num-
ber is needed in subsequent calcula-
tions, it is obtained in the calculator
to its full accuracy (444.82 � � �). If
necessary, numbers must be stored
in a calculator storage register and
then brought out of the register
when needed. We must not merely
punch 445 into our calculator and
proceed to divide by 9.80665—this
practice will result in loss of numeri-
cal accuracy. Some individuals like
to place a small indication of the
storage register used in the right
margin of the work paper, directly
beside the number stored.

�4.4482 N
1 lb �

�

�

�
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SAMPLE PROBLEM 1/1 (CONTINUED)

(b) We begin by calculating the absolute acceleration of gravity (relative to
the nonrotating earth) at an altitude of 200 miles.

The weight at an altitude of 200 miles is then

Ans.

We now convert Wh to units of newtons.

Ans.

As an alternative solution to part (b), we may use Newton’s universal law of
gravitation. In U.S. units,

which agrees with our earlier result. We note that the weight of the module
when at an altitude of 200 mi is about 90% of its surface-level weight—it is not
weightless. We will study the effects of this weight on the motion of the module
in Chapter 3.

(c) The weight of an object (the force of gravitational attraction) does not
depend on the motion of the object. Thus the answers for part (c) are the same as
those in part (b).

Ans.

This Sample Problem has served to eliminate certain commonly held and
persistent misconceptions. First, just because a body is raised to a typical shuttle
altitude, it does not become weightless. This is true whether the body is released
with no velocity relative to the center of the earth, is inside the orbiting shuttle,
or is in its own arbitrary trajectory. And second, the acceleration of gravity is not
zero at such altitudes. The only way to reduce both the acceleration of gravity
and the corresponding weight of a body to zero is to take the body to an infinite
distance from the earth.

Wh � 90.8 lb  or  404 N

 � 90.8 lb

 Wh � 
Gmem

(R � h)2
 � 

[3.439(10�8)][4.095(1023)][3.11]

[(3959 � 200)(5280)]2�F � 
Gm1m2

r2 �

Wh � 90.8 lb �4.4482 N
1 lb � � 404 N

Wh � mgh � 3.11(29.2) � 90.8 lb

�g � g0 R2

(R � h)2�   gh � 32.234� 39592

(3959 � 200)2� � 29.2 ft/sec2
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18 Chapter 1 Introduction to Dynamics

1/6 Two uniform aluminum spheres are positioned as
shown. Determine the gravitational force which sphere A
exerts on sphere B. The value of R is 50 mm.

Problem 1/6

1/7 At what altitude h above the north pole is the weight
of an object reduced to one-half of its earth-surface
value? Assume a spherical earth of radius R and ex-
press h in terms of R.

1/8 Determine the absolute weight and the weight rela-
tive to the rotating earth of a 90-kg man if he is stand-
ing on the surface of the earth at a latitude of 40°.

1/9 A space shuttle is in a circular orbit at an altitude of
150 mi. Calculate the absolute value of g at this alti-
tude and determine the corresponding weight of a
shuttle passenger who weighs 200 lb when standing
on the surface of the earth at a latitude of 45°. Are
the terms “zero-g” and “weightless,” which are
sometimes used to describe conditions aboard orbit-
ing spacecraft, correct in the absolute sense?

1/10 Determine the angle at which a particle in
Jupiter’s circular orbit experiences equal attractions
from the sun and from Jupiter. Use Table of
Appendix D as needed.

Problem 1/10

Not to scale

Sun

Jupiter

m

θ

D /2

�

8R

B

R

2R
A

x

y

30°

PROBLEMS

(Refer to Table D/2 in Appendix D for relevant solar-
system values.)

1/1 Determine your mass in slugs. Convert your weight 
to newtons and calculate the corresponding mass in
kilograms.

1/2 Determine the weight in newtons of a car which has 
a mass of 1500 kg. Convert the given mass of the car
to slugs and calculate the corresponding weight in
pounds.

Problem 1/2

1/3 The weight of one dozen apples is 5 lb. Determine the
average mass of one apple in both SI and U.S. units
and the average weight of one apple in SI units. In the
present case, how applicable is the “rule of thumb”
that an average apple weighs 1 N?

1/4 For the given vectors and , determine ,
, , , and . Consider the

vectors to be nondimensional.

Problem 1/4

1/5 The two 100-mm-diameter spheres constructed of dif-
ferent metals are located in deep space. Determine
the gravitational force F which the copper sphere
exerts on the titanium sphere if (a) , and 
(b) 

Problem 1/5

d

x

Copper Titanium

d � 4 m.
d � 2 m

30°

V2 = 15

V1 = 12

y

x

4

3

V1 �  V2V1 � V2V1 � V2V1 � V2

V1 � V2V2V1

m = 1500 kg
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1/11 Calculate the distance d from the center of the earth
at which a particle experiences equal attractions
from the earth and from the moon. The particle is
restricted to the line through the centers of the earth
and the moon. Justify the two solutions physically.
Refer to Table D/2 of Appendix D as needed.

Problem 1/11

1/12 Consider a woman standing on the earth with the
sun directly overhead. Determine the ratio of 
the force which the earth exerts on the woman to
the force which the sun exerts on her. Neglect the
effects of the rotation and oblateness of the earth.

1/13 Consider a woman standing on the surface of the
earth when the moon is directly overhead. Deter-
mine the ratio of the force which the earth ex-
erts on the woman to the force which the moon
exerts on her. Neglect the effects of the rotation and
oblateness of the earth. Find the same ratio if we
now move the woman to a corresponding position on
the moon.

Rem

Res

d

Moon

Not to scale

Earth

1/14 Determine the ratio of the force exerted by the
sun on the moon to that exerted by the earth on the
moon for position A of the moon. Repeat for moon
position B.

Problem 1/14

1/15 Check the following equation for dimensional homo-
geneity:

where m is mass, v is velocity, F is force, is an
angle, and t is time.

�

mv � � t2

t1

 (F cos �) dt

RA

c01.qxd  2/8/12  7:02 PM  Page 19



Even if this car maintains a constant speed along the winding road, it accelerates laterally, and this acceleration
must be considered in the design of the car, its tires, and the roadway itself.

© Daniel DempsterPhotography/Alamy
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2/1 Introduction
Kinematics is the branch of dynamics which describes the motion of

bodies without reference to the forces which either cause the motion or
are generated as a result of the motion. Kinematics is often described as
the “geometry of motion.” Some engineering applications of kinematics
include the design of cams, gears, linkages, and other machine elements
to control or produce certain desired motions, and the calculation of
flight trajectories for aircraft, rockets, and spacecraft. A thorough work-
ing knowledge of kinematics is a prerequisite to kinetics, which is the
study of the relationships between motion and the corresponding forces
which cause or accompany the motion.

Particle Motion
We begin our study of kinematics by first discussing in this chapter

the motions of points or particles. A particle is a body whose physical di-
mensions are so small compared with the radius of curvature of its path
that we may treat the motion of the particle as that of a point. For ex-
ample, the wingspan of a jet transport flying between Los Angeles and
New York is of no consequence compared with the radius of curvature of

2/1 Introduction

2/2 Rectilinear Motion

2/3 Plane Curvilinear Motion

2/4 Rectangular Coordinates (x-y)

2/5 Normal and Tangential Coordinates (n-t)

2/6 Polar Coordinates (r-�)

2/7 Space Curvilinear Motion

2/8 Relative Motion (Translating Axes)

2/9 Constrained Motion of Connected Particles

2/10 Chapter Review

CHAPTER OUTLINE

2Kinematics
of Particles
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its flight path, and thus the treatment of the airplane as a particle or
point is an acceptable approximation.

We can describe the motion of a particle in a number of ways, and
the choice of the most convenient or appropriate way depends a great
deal on experience and on how the data are given. Let us obtain an
overview of the several methods developed in this chapter by referring
to Fig. 2/1, which shows a particle P moving along some general path
in space. If the particle is confined to a specified path, as with a bead
sliding along a fixed wire, its motion is said to be constrained. If there
are no physical guides, the motion is said to be unconstrained. A small
rock tied to the end of a string and whirled in a circle undergoes con-
strained motion until the string breaks, after which instant its motion is
unconstrained.

Choice of Coordinates
The position of particle P at any time t can be described by specify-

ing its rectangular coordinates* x, y, z, its cylindrical coordinates r, �, z,
or its spherical coordinates R, �, �. The motion of P can also be de-
scribed by measurements along the tangent t and normal n to the curve.
The direction of n lies in the local plane of the curve.† These last two
measurements are called path variables.

The motion of particles (or rigid bodies) can be described by using co-
ordinates measured from fixed reference axes (absolute-motion analysis)
or by using coordinates measured from moving reference axes (relative-
motion analysis). Both descriptions will be developed and applied in the
articles which follow.

With this conceptual picture of the description of particle motion in
mind, we restrict our attention in the first part of this chapter to the
case of plane motion where all movement occurs in or can be repre-
sented as occurring in a single plane. A large proportion of the motions
of machines and structures in engineering can be represented as plane
motion. Later, in Chapter 7, an introduction to three-dimensional mo-
tion is presented. We begin our discussion of plane motion with recti-
linear motion, which is motion along a straight line, and follow it with a
description of motion along a plane curve.

2/2 Rectilinear Motion
Consider a particle P moving along a straight line, Fig. 2/2. The po-

sition of P at any instant of time t can be specified by its distance s mea-
sured from some convenient reference point O fixed on the line. At time
t � �t the particle has moved to P� and its coordinate becomes s � �s.
The change in the position coordinate during the interval �t is called
the displacement �s of the particle. The displacement would be negative
if the particle moved in the negative s-direction.

22 Chapter 2 Kinematics of Particles

BP
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Path

x

y
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x

z
n

t

z

φ

θ

A

Figure 2/1

O

s

– s + s
P

s

P ′

Δ

Figure 2/2

*Often called Cartesian coordinates, named after René Descartes (1596–1650), a French
mathematician who was one of the inventors of analytic geometry.
†This plane is called the osculating plane, which comes from the Latin word osculari mean-
ing “to kiss.” The plane which contains P and the two points A and B, one on either side of
P, becomes the osculating plane as the distances between the points approach zero.
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Velocity and Acceleration
The average velocity of the particle during the interval �t is the dis-

placement divided by the time interval or vav � �s/�t. As �t becomes
smaller and approaches zero in the limit, the average velocity approaches

the instantaneous velocity of the particle, which is v � or

(2/1)

Thus, the velocity is the time rate of change of the position coordinate s.
The velocity is positive or negative depending on whether the corre-
sponding displacement is positive or negative.

The average acceleration of the particle during the interval �t is the
change in its velocity divided by the time interval or aav � �v/�t. As �t
becomes smaller and approaches zero in the limit, the average accelera-
tion approaches the instantaneous acceleration of the particle, which is

a � or

(2/2)

The acceleration is positive or negative depending on whether the ve-
locity is increasing or decreasing. Note that the acceleration would be
positive if the particle had a negative velocity which was becoming
less negative. If the particle is slowing down, the particle is said to be
decelerating.

Velocity and acceleration are actually vector quantities, as we will
see for curvilinear motion beginning with Art. 2/3. For rectilinear mo-
tion in the present article, where the direction of the motion is that of
the given straight-line path, the sense of the vector along the path is de-
scribed by a plus or minus sign. In our treatment of curvilinear motion,
we will account for the changes in direction of the velocity and accelera-
tion vectors as well as their changes in magnitude.

By eliminating the time dt between Eq. 2/1 and the first of Eqs. 2/2,
we obtain a differential equation relating displacement, velocity, and ac-
celeration.* This equation is

(2/3)

Equations 2/1, 2/2, and 2/3 are the differential equations for the rec-
tilinear motion of a particle. Problems in rectilinear motion involving fi-
nite changes in the motion variables are solved by integration of these
basic differential relations. The position coordinate s, the velocity v, and
the acceleration a are algebraic quantities, so that their signs, positive
or negative, must be carefully observed. Note that the positive direc-
tions for v and a are the same as the positive direction for s.

v dv � a ds   or   ṡ dṡ � s̈ ds

a � dv
dt

 � v̇   or   a � d
2s

dt2
 � s̈

lim
�tl0

 �v
�t

v � ds
dt

 � ṡ

lim
�tl0

 �s
�t

This sprinter will undergo rectilinear
acceleration until he reaches his ter-
minal speed.

Article 2/2 Rectilinear Motion 23

*Differential quantities can be multiplied and divided in exactly the same way as other
algebraic quantities.
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Graphical Interpretations
Interpretation of the differential equations governing rectilinear

motion is considerably clarified by representing the relationships among
s, v, a, and t graphically. Figure 2/3a is a schematic plot of the variation
of s with t from time t1 to time t2 for some given rectilinear motion. By
constructing the tangent to the curve at any time t, we obtain the slope,
which is the velocity v � ds/dt. Thus, the velocity can be determined at
all points on the curve and plotted against the corresponding time as
shown in Fig. 2/3b. Similarly, the slope dv/dt of the v-t curve at any in-
stant gives the acceleration at that instant, and the a-t curve can there-
fore be plotted as in Fig. 2/3c.

We now see from Fig. 2/3b that the area under the v-t curve during
time dt is v dt, which from Eq. 2/1 is the displacement ds. Consequently,
the net displacement of the particle during the interval from t1 to t2 is
the corresponding area under the curve, which is

Similarly, from Fig. 2/3c we see that the area under the a-t curve during
time dt is a dt, which, from the first of Eqs. 2/2, is dv. Thus, the net
change in velocity between t1 and t2 is the corresponding area under the
curve, which is

Note two additional graphical relations. When the acceleration a is
plotted as a function of the position coordinate s, Fig. 2/4a, the area
under the curve during a displacement ds is a ds, which, from Eq. 2/3, is
v dv � d(v2/2). Thus, the net area under the curve between position co-
ordinates s1 and s2 is

When the velocity v is plotted as a function of the position coordinate s,
Fig. 2/4b, the slope of the curve at any point A is dv/ds. By constructing
the normal AB to the curve at this point, we see from the similar trian-
gles that � dv/ds. Thus, from Eq. 2/3, � v(dv/ds) � a, the accel-
eration. It is necessary that the velocity and position coordinate axes
have the same numerical scales so that the acceleration read on the po-
sition coordinate scale in meters (or feet), say, will represent the actual
acceleration in meters (or feet) per second squared.

The graphical representations described are useful not only in visu-
alizing the relationships among the several motion quantities but also in
obtaining approximate results by graphical integration or differentia-
tion. The latter case occurs when a lack of knowledge of the mathemati-
cal relationship prevents its expression as an explicit mathematical
function which can be integrated or differentiated. Experimental data
and motions which involve discontinuous relationships between the
variables are frequently analyzed graphically.

CBCB/v

�v2

v1

 v dv � � s2

s1

 a ds   or   1
2 

(v2 

2 � v1 

2) � (area under a-s curve)

�v2

v1

 dv � � t2

t1

 a dt   or   v2 � v1 � (area under a- t curve)

� s2

s1

 ds � � t2

t1

 v dt   or   s2 � s1 � (area under v- t curve)

24 Chapter 2 Kinematics of Particles
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Analytical Integration
If the position coordinate s is known for all values of the time t, then

successive mathematical or graphical differentiation with respect to t
gives the velocity v and acceleration a. In many problems, however, the
functional relationship between position coordinate and time is un-
known, and we must determine it by successive integration from the ac-
celeration. Acceleration is determined by the forces which act on moving
bodies and is computed from the equations of kinetics discussed in subse-
quent chapters. Depending on the nature of the forces, the acceleration
may be specified as a function of time, velocity, or position coordinate, or
as a combined function of these quantities. The procedure for integrating
the differential equation in each case is indicated as follows.

(a) Constant Acceleration. When a is constant, the first of Eqs. 2/2
and 2/3 can be integrated directly. For simplicity with s � s0, v � v0, and
t � 0 designated at the beginning of the interval, then for a time inter-
val t the integrated equations become

Substitution of the integrated expression for v into Eq. 2/1 and integra-
tion with respect to t give

These relations are necessarily restricted to the special case where the
acceleration is constant. The integration limits depend on the initial and
final conditions, which for a given problem may be different from those
used here. It may be more convenient, for instance, to begin the integra-
tion at some specified time t1 rather than at time t � 0.

(b) Acceleration Given as a Function of Time, a � ƒ(t). Substitu-
tion of the function into the first of Eqs. 2/2 gives ƒ(t) � dv/dt. Multiply-
ing by dt separates the variables and permits integration. Thus,

�v

v0

 dv � � t

0
 ƒ(t) dt   or   v � v0 � � t

0
 ƒ(t) dt

Caution: The foregoing equations have been integrated
for constant acceleration only. A common mistake is to
use these equations for problems involving variable ac-
celeration, where they do not apply.

� s

s0

 ds � � t

0
 (v0 � at) dt   or   s � s0 � v0 

t � 12 

at2

 �v

v0

 v dv � a � s

s0

 ds   or    v2 � v0 

2 � 2a(s � s0)

 �v

v0

 dv � a � t

0
 dt   or    v � v0 � at

KEY CONCEPTS
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From this integrated expression for v as a function of t, the position co-
ordinate s is obtained by integrating Eq. 2/1, which, in form, would be

If the indefinite integral is employed, the end conditions are used to es-
tablish the constants of integration. The results are identical with those
obtained by using the definite integral.

If desired, the displacement s can be obtained by a direct solution of
the second-order differential equation � ƒ(t) obtained by substitution
of ƒ(t) into the second of Eqs. 2/2.

(c) Acceleration Given as a Function of Velocity, a � ƒ(v). Substi-
tution of the function into the first of Eqs. 2/2 gives ƒ(v) � dv/dt, which
permits separating the variables and integrating. Thus,

This result gives t as a function of v. Then it would be necessary to solve
for v as a function of t so that Eq. 2/1 can be integrated to obtain the po-
sition coordinate s as a function of t.

Another approach is to substitute the function a � ƒ(v) into the first
of Eqs. 2/3, giving v dv � ƒ(v) ds. The variables can now be separated
and the equation integrated in the form

Note that this equation gives s in terms of v without explicit reference to t.

(d) Acceleration Given as a Function of Displacement, a � ƒ(s).
Substituting the function into Eq. 2/3 and integrating give the form

Next we solve for v to give v � g(s), a function of s. Now we can substi-
tute ds/dt for v, separate variables, and integrate in the form

which gives t as a function of s. Finally, we can rearrange to obtain s as
a function of t.

In each of the foregoing cases when the acceleration varies according
to some functional relationship, the possibility of solving the equations by
direct mathematical integration will depend on the form of the function.
In cases where the integration is excessively awkward or difficult, integra-
tion by graphical, numerical, or computer methods can be utilized.

� s

s0

 ds
g(s)

 � � t

0
 dt   or   t � � s

s0

 ds
g(s)

�v

v0

 v dv � � s

s0

 ƒ(s) ds   or   v2 � v0 

2 � 2 � s

s0

 ƒ(s) ds

�v

v0

 v dv
ƒ(v)

 � � s

s0

 ds   or   s � s0 � �v

v0

 v dv
ƒ(v)

t � � t

0
 dt � �v

v0

 dv
ƒ(v)

s̈

� s

s0

 ds � � t

0
 v dt   or   s � s0 � � t

0
 v dt

26 Chapter 2 Kinematics of Particles
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SAMPLE PROBLEM 2/1

The position coordinate of a particle which is confined to move along a
straight line is given by s � 2t3 � 24t � 6, where s is measured in meters from a
convenient origin and t is in seconds. Determine (a) the time required for the
particle to reach a velocity of 72 m/s from its initial condition at t � 0, (b) the ac-
celeration of the particle when v � 30 m/s, and (c) the net displacement of the
particle during the interval from t � 1 s to t � 4 s.

Solution. The velocity and acceleration are obtained by successive differentia-
tion of s with respect to the time. Thus,

(a) Substituting v � 72 m/s into the expression for v gives us 72 � 6t2 � 24,
from which t � �4 s. The negative root describes a mathematical solution for t
before the initiation of motion, so this root is of no physical interest. Thus, the
desired result is

Ans.

(b) Substituting v � 30 m/s into the expression for v gives 30 � 6t2 � 24, from
which the positive root is t � 3 s, and the corresponding acceleration is

Ans.

(c) The net displacement during the specified interval is

Ans.

which represents the net advancement of the particle along the s-axis from the
position it occupied at t � 1 s to its position at t � 4 s.

To help visualize the motion, the values of s, v, and a are plotted against the
time t as shown. Because the area under the v-t curve represents displacement,
we see that the net displacement from t � 1 s to t � 4 s is the positive area �s2�4

less the negative area �s1�2.

 � 54 m

 �s � [2(43) � 24(4) � 6] � [2(13) � 24(1) � 6]

 �s � s4 � s1   or

a � 12(3) � 36 m/s2

t � 4 s

 a � 12t m/s2[a � v̇]

 v � 6t2 � 24 m/s[v � ṡ]
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�

�

�

Helpful Hints

� Be alert to the proper choice of sign
when taking a square root. When
the situation calls for only one an-
swer, the positive root is not always
the one you may need.

� Note carefully the distinction be-
tween italic s for the position coordi-
nate and the vertical s for seconds.

� Note from the graphs that the val-
ues for v are the slopes of the s-t
curve and that the values for a are
the slopes of the v-t curve. Sug-
gestion: Integrate v dt for each of the
two intervals and check the answer
for �s. Show that the total distance
traveled during the interval t � 1 s
to t � 4 s is 74 m.

(v̇)

( ṡ)

s, m

t, s

t, s

t, s

a, m/s2

v, m/s

48

30

38

s2 – 4

72

36

3 4210
0

3 4210
0

6

–26

3 42
1

0
0

–24

Δ

s1 – 2Δ
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SAMPLE PROBLEM 2/2

A particle moves along the x-axis with an initial velocity vx � 50 ft/sec at the
origin when t � 0. For the first 4 seconds it has no acceleration, and thereafter it
is acted on by a retarding force which gives it a constant acceleration ax � �10
ft/sec2. Calculate the velocity and the x-coordinate of the particle for the condi-
tions of t � 8 sec and t � 12 sec and find the maximum positive x-coordinate
reached by the particle.

Solution. The velocity of the particle after t � 4 sec is computed from

and is plotted as shown. At the specified times, the velocities are

Ans.

The x-coordinate of the particle at any time greater than 4 seconds is the dis-
tance traveled during the first 4 seconds plus the distance traveled after the dis-
continuity in acceleration occurred. Thus,

For the two specified times,

Ans.

The x-coordinate for t � 12 sec is less than that for t � 8 sec since the motion is
in the negative x-direction after t � 9 sec. The maximum positive x-coordinate is,
then, the value of x for t � 9 sec which is

Ans.

These displacements are seen to be the net positive areas under the v-t graph up
to the values of t in question.

xmax � �5(92) � 90(9) � 80 � 325 ft

 t � 12 sec,    x � �5(122) � 90(12) � 80 � 280 ft

 t � 8 sec,  x � �5(82) � 90(8) � 80 � 320 ft

��  ds � �  v dt�   x � 50(4) � � t

4
 (90 � 10t) dt � �5t2 � 90t � 80 ft

 t � 12 sec,    vx � 90 � 10(12) � �30 ft/sec

 t � 8 sec,  vx � 90 � 10(8) � 10 ft/sec

��  dv � �  a dt�   �vx

50
 dvx � �10 � t

4
 dt   vx � 90 � 10t ft/sec

28 Chapter 2 Kinematics of Particles

�

�

�

Helpful Hints

� Learn to be flexible with symbols.
The position coordinate x is just as
valid as s.

� Note that we integrate to a general
time t and then substitute specific
values.

� Show that the total distance traveled
by the particle in the 12 sec is 370 ft.

1

vx, ft/sec

t, sec

–10

50

00 4 8 12

–30
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SAMPLE PROBLEM 2/3

The spring-mounted slider moves in the horizontal guide with negligible
friction and has a velocity v0 in the s-direction as it crosses the mid-position
where s � 0 and t � 0. The two springs together exert a retarding force to the
motion of the slider, which gives it an acceleration proportional to the displace-
ment but oppositely directed and equal to a � �k2s, where k is constant. (The
constant is arbitrarily squared for later convenience in the form of the expres-
sions.) Determine the expressions for the displacement s and velocity v as func-
tions of the time t.

Solution I. Since the acceleration is specified in terms of the displacement, the
differential relation v dv � a ds may be integrated. Thus,

When s � 0, v � v0, so that C1 � and the velocity becomes

The plus sign of the radical is taken when v is positive (in the plus s-direction).
This last expression may be integrated by substituting v � ds/dt. Thus,

With the requirement of t � 0 when s � 0, the constant of integration becomes
C2 � 0, and we may solve the equation for s so that

Ans.

The velocity is v � which gives

Ans.

Solution II. Since a � the given relation may be written at once as

This is an ordinary linear differential equation of second order for which the so-
lution is well known and is

where A, B, and K are constants. Substitution of this expression into the differ-
ential equation shows that it satisfies the equation, provided that K � k. The ve-
locity is v � which becomes

The initial condition v � v0 when t � 0 requires that A � v0/k, and the condition
s � 0 when t � 0 gives B � 0. Thus, the solution is

Ans.s � 
v0

k
 sin kt   and   v � v0 cos kt

v � Ak cos kt � Bk sin kt

ṡ,

s � A sin Kt � B cos Kt

s̈ � k2s � 0

s̈,

v � v0 cos kt

ṡ,

s � 
v0

k
 sin kt

�  ds
�v0 

2 � k2s2
 � �  dt � C2 a constant,  or  1

k
 sin�1 ks

v0
 � t � C2

v � ��v0 

2 � k2s2

v0 

2/2,

�  v dv � �  �k2s ds � C1 a constant,  or  v2

2
 � �k2s2

2
 � C1
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�

�

�

s

� This motion is called simple har-
monic motion and is characteristic of
all oscillations where the restoring
force, and hence the acceleration, is
proportional to the displacement but
opposite in sign.

� Again try the definite integral here
as above.

Helpful Hints

� We have used an indefinite integral
here and evaluated the constant of
integration. For practice, obtain the
same results by using the definite
integral with the appropriate limits.
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SAMPLE PROBLEM 2/4

A freighter is moving at a speed of 8 knots when its engines are suddenly
stopped. If it takes 10 minutes for the freighter to reduce its speed to 4 knots, de-
termine and plot the distance s in nautical miles moved by the ship and its speed
v in knots as functions of the time t during this interval. The deceleration of the
ship is proportional to the square of its speed, so that a � �kv2.

Solution. The speeds and the time are given, so we may substitute the expres-
sion for acceleration directly into the basic definition a � dv/dt and integrate.
Thus,

Now we substitute the end limits of v � 4 knots and t � � hour and get

Ans.

The speed is plotted against the time as shown.
The distance is obtained by substituting the expression for v into the defi-

nition v � ds/dt and integrating. Thus,

Ans.

The distance s is also plotted against the time as shown, and we see that the ship
has moved through a distance s � ln � ln 2 � 0.924 mi (nautical) dur-
ing the 10 minutes.

4
3(1 � 66)4

3

8
1 � 6t

 � ds
dt

  � t

0
 8 dt
1 � 6t

 � � s

0
 ds   s � 4

3
 ln (1 � 6t)

4 � 8
1 � 8k(1/6)

  k � 3
4

 mi�1   v � 8
1 � 6t

1
6

10
60

�
1
v

 � 1
8

 � �kt   v � 8
1 � 8kt

�kv2 � dv
dt

  dv
v2

 � �k dt   �v

8
 dv
v2

 � �k � t

0
 dt
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�

�

00

2

4

6

8

2
t, min

v,
 k

n
ot

s

4 6 8 10

0

1.0

0.8

0.6

0.4

0.2

0
2

t, min

s,
 m

i (
n

au
ti
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l)

4 6 8 10

Helpful Hints

� Recall that one knot is the speed of
one nautical mile (6076 ft) per hour.
Work directly in the units of nauti-
cal miles and hours.

� We choose to integrate to a general
value of v and its corresponding time
t so that we may obtain the variation
of v with t.
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PROBLEMS
Introductory Problems

Problems 2/1 through 2/6 treat the motion of a particle
which moves along the s-axis shown in the figure.

Problems 2/1–2/6

2/1 The velocity of a particle is given by 
50, where v is in meters per second and t is in seconds.
Plot the velocity v and acceleration a versus time for
the first 6 seconds of motion and evaluate the velocity
when a is zero.

2/2 The displacement of a particle is given by 
where s is in feet and t is in seconds.

Plot the displacement, velocity, and acceleration as
functions of time for the first 12 seconds of motion.
Determine the time at which the velocity is zero.

2/3 The velocity of a particle which moves along the s-axis
is given by where t is in seconds and v is
in meters per second. Evaluate the displacement s,
velocity v, and acceleration a when The parti-
cle is at the origin when 

2/4 The velocity of a particle along the s-axis is given by
where s is in millimeters and v is in millime-

ters per second. Determine the acceleration when s is
2 millimeters.

2/5 The position of a particle in millimeters is given by
where t is in seconds. Plot the s-t

and v-t relationships for the first 9 seconds. Deter-
mine the net displacement during that interval
and the total distance D traveled. By inspection of the
s-t relationship, what conclusion can you reach re-
garding the acceleration?

2/6 The velocity of a particle which moves along the s-axis
is given by where t is in seconds.
Calculate the displacement of the particle during
the interval from to 

2/7 Calculate the constant acceleration a in g’s which
the catapult of an aircraft carrier must provide to
produce a launch velocity of 180 mi/hr in a distance
of 300 ft. Assume that the carrier is at anchor.

2/8 A particle moves along a straight line with a velocity
in millimeters per second given by ,
where t is in seconds. Calculate the net displacement

and total distance D traveled during the first 
6 seconds of motion.
�s

v � 400 � 16t2

t � 4 s.t � 2 s
�s

 � 40 � 3t2 m /s,ṡ

�s

s � 27 � 12t � t2,

v � 5s3/2,

t � 0.s � 0
t � 4 s.

v � 2 � 5t3/2,

30t2 � 100t � 50,
s � 2t3 �

v � 20t2 � 100t �

–1 0 1 2 3
+ s, ft or m

Article 2/2 Problems 31

2/9 The acceleration of a particle is given by 
where a is in meters per second squared and t is in
seconds. Determine the velocity and displacement as
functions of time. The initial displacement at is

and the initial velocity is 

2/10 During a braking test, a car is brought to rest begin-
ning from an initial speed of 60 mi/hr in a distance of
120 ft. With the same constant deceleration, what
would be the stopping distance s from an initial
speed of 80 mi/hr?

2/11 Ball 1 is launched with an initial vertical velocity
Three seconds later, ball 2 is

launched with an initial vertical velocity Deter-
mine if the balls are to collide at an altitude of
300 ft. At the instant of collision, is ball 1 ascending
or descending?

Problem 2/11

2/12 A projectile is fired vertically with an initial velocity
of 200 m/s. Calculate the maximum altitude h
reached by the projectile and the time t after firing
for it to return to the ground. Neglect air resistance
and take the gravitational acceleration to be con-
stant at 

2/13 A ball is thrown vertically upward with an initial
speed of 80 ft/sec from the base A of a 50-ft cliff.
Determine the distance h by which the ball clears
the top of the cliff and the time t after release for the
ball to land at B. Also, calculate the impact velocity

Neglect air resistance and the small horizontal
motion of the ball.

Problem 2/13

B

h

50′

A

v0

vB.

9.81 m /s2.

v1, v2
1

2

v2

v2.
v1 � 160 ft /sec.

v0 � 3 m /s.s0 � �5 m,
t � 0

a � 4t � 30,
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2/17 The car is traveling at a constant speed 
km/h on the level portion of the road. When the
6-percent ( ) incline is encountered, the
driver does not change the throttle setting and con-
sequently the car decelerates at the constant rate

Determine the speed of the car (a) 10 sec-
onds after passing point A and (b) when 

Problem 2/16

Representative Problems

2/18 In traveling a distance of 3 km between points A and
D, a car is driven at 100 km/h from A to B for t sec-
onds and 60 km/h from C to D also for t seconds. If
the brakes are applied for 4 seconds between B and
C to give the car a uniform deceleration, calculate t
and the distance s between A and B.

Problem 2/18

2/19 During an 8-second interval, the velocity of a particle
moving in a straight line varies with time as shown.
Within reasonable limits of accuracy, determine the
amount by which the acceleration at exceeds
the average acceleration during the interval. What is
the displacement during the interval?

Problem 2/19

14

12

10

8

6

4

2

0
0 2 4

t, s

v, m/s

6 8

�s

t � 4 s�a

A B C D

s

100 km/h 60 km/h

3 km

θ
A

sv0

s � 100 m.
g sin �.

tan � � 6 /100

v0 � 100
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2/14 In the pinewood-derby event shown, the car is re-
leased from rest at the starting position A and then
rolls down the incline and on to the finish line C.
If the constant acceleration down the incline is

and the speed from B to C is essentially con-
stant, determine the time duration for the race.
The effects of the small transition area at B can be
neglected.

Problem 2/14

2/15 Starting from rest at home plate, a baseball player
runs to first base (90 ft away). He uniformly acceler-
ates over the first 10 ft to his maximum speed, which
is then maintained until he crosses first base. If the
overall run is completed in 4 seconds, determine his
maximum speed, the acceleration over the first 10 feet,
and the time duration of the acceleration.

Problem 2/15

2/16 The graph shows the displacement-time history for
the rectilinear motion of a particle during an 8-second
interval. Determine the average velocity during
the interval and, to within reasonable limits of accu-
racy, find the instantaneous velocity v when 

Problem 2/16

10

8

6

4

2

0
0 2 4

t, s

s,
 m

6 8

t � 4 s.

vav

10′ 80′

t = 0 t = 4 sec

20°
A

B C

12′

10′

tAC

9 ft /sec2
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2/20 A particle moves along the positive x-axis with an
acceleration in meters per second squared which
increases linearly with x expressed in millimeters, as
shown on the graph for an interval of its motion. If
the velocity of the particle at is 
determine the velocity at 

Problem 2/20

2/21 A girl rolls a ball up an incline and allows it to re-
turn to her. For the angle and ball involved, the
acceleration of the ball along the incline is con-
stant at 0.25g, directed down the incline. If the
ball is released with a speed of 4 m/s, determine
the distance s it moves up the incline before re-
versing its direction and the total time t required
for the ball to return to the child’s hand.

Problem 2/21

θ

s

�

ax, m/s2

0

4

2

x, mm
40 120

x � 120 mm.
0.4 m /s,x � 40 mm

ax
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2/22 A train which is traveling at 80 mi/hr applies its
brakes as it reaches point A and slows down with a
constant deceleration. Its decreased velocity is ob-
served to be 60 mi/hr as it passes a point 1/2 mi be-
yond A. A car moving at 50 mi/hr passes point B at
the same instant that the train reaches point A. In
an unwise effort to beat the train to the crossing, the
driver “steps on the gas.” Calculate the constant ac-
celeration a that the car must have in order to beat
the train to the crossing by 4 sec and find the veloc-
ity v of the car as it reaches the crossing.

Problem 2/22

2/23 Car A is traveling at a constant speed 
at a location where the speed limit is 100 km/h. The
police officer in car P observes this speed via radar.
At the moment when A passes P, the police car be-
gins to accelerate at the constant rate of until
a speed of 160 km/h is achieved, and that speed is
then maintained. Determine the distance required
for the police officer to overtake car A. Neglect any
nonrectilinear motion of P.

Problem 2/23

2/24 Repeat the previous problem, only now the driver of
car A is traveling at as it passes P,
but over the next 5 seconds, the car uniformly decel-
erates to the speed limit of 100 km/h, and after that
the speed limit is maintained. If the motion of
the police car P remains as described in the previous
problem, determine the distance required for the
police officer to overtake car A.

vA � 130 km /h

A vA

P 

6 m /s2

vA � 130 km /h

B

A

80 mi/hr

1 miTrain

Car

50
 m

i/
hr 1.

3 
m

i
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Problem 2/28

2/29 A particle starts from rest at and moves
along the x-axis with the velocity history shown. Plot
the corresponding acceleration and the displacement
histories for the 2 seconds. Find the time t when the
particle crosses the origin.

Problem 2/29

2/30 A retarding force is applied to a body moving in a
straight line so that, during an interval of its mo-
tion, its speed v decreases with increased position co-
ordinate s according to the relation , where k
is a constant. If the body has a forward speed of 
2 in./sec and its position coordinate is 9 in. at time

, determine the speed v at sec.t � 3t � 0

v2 � k/s

v, m/s

0

3

t, s
0.5 1.0 1.5

–1

2.0
0

x � �2 m

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10
t, sec

v,
 f

t/
se

c
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2/25 Repeat Prob. 2/23, only now the driver of car A sees
and reacts very unwisely to the police car P. Car A is
traveling at as it passes P, but over
the next 5 seconds, the car uniformly accelerates to
150 km/h, after which that speed is maintained. If
the motion of the police car P remains as described
in Prob. 2/23, determine the distance required for
the police officer to overtake car A.

2/26 The 14-in. spring is compressed to an 8-in. length,
where it is released from rest and accelerates block A.
The acceleration has an initial value of 
and then decreases linearly with the x-movement of
the block, reaching zero when the spring regains its
original 14-in. length. Calculate the time t for the
block to go (a) 3 in. and (b) 6 in.

Problem 2/26

2/27 A single-stage rocket is launched vertically from
rest, and its thrust is programmed to give the rocket
a constant upward acceleration of . If the fuel
is exhausted 20 s after launch, calculate the maxi-
mum velocity and the subsequent maximum alti-
tude h reached by the rocket.

2/28 An electric car is subjected to acceleration tests
along a straight and level test track. The resulting v-t
data are closely modeled over the first 10 seconds by
the function , where t is the time
in seconds and v is the velocity in feet per second.
Determine the displacement s as a function of time
over the interval sec and specify its value
at time sec.t � 10

0 � t � 10

v � 24t � t2 � 5�t

vm

6 m /s2

A x

8″

14″

400 ft /sec2

vA � 130 km /h
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2/31 The deceleration of the mass center G of a car dur-
ing a crash test is measured by an accelerometer
with the results shown, where the distance x
moved by G after impact is 0.8 m. Obtain a close
approximation to the impact velocity v from the 
data given.

Problem 2/31

2/32 A sprinter reaches his maximum speed in
2.5 seconds from rest with constant acceleration. He
then maintains that speed and finishes the 100 yards
in the overall time of 9.60 seconds. Determine his
maximum speed 

Problem 2/32

100 yd

t = 0 t = 2.5 sec t = 9.60 sec

vmax.

vmax

0

10g

8g

6g

4g

2g

0.2 0.4
x, m

D
ec

el
er

at
io

n

0.6 0.8

x

G
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2/33 If the velocity v of a particle moving along a straight
line decreases linearly with its displacement s from
20 m/s to a value approaching zero at de-
termine the acceleration a of the particle when

and show that the particle never reaches
the 30-m displacement.

Problem 2/33

2/34 A car starts from rest with an acceleration of 
which decreases linearly with time to zero in 10 sec-
onds, after which the car continues at a constant
speed. Determine the time t required for the car to
travel 400 m from the start.

2/35 Packages enter the 10-ft chute at A with a speed of 
4 ft/sec and have a 0.3g acceleration from A to B. If
the packages come to rest at C, calculate the constant
acceleration a of the packages from B to C. Also find
the time required for the packages to go from A to C.

Problem 2/35

10′

12′

B C

A

6 m /s2

0
0

20

30

v, m/s

s, m

s � 15 m

s � 30 m,
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2/39 The body falling with speed strikes and maintains
contact with the platform supported by a nest of
springs. The acceleration of the body after impact is

where c is a positive constant and y is
measured from the original platform position. If the
maximum compression of the springs is observed to
be , determine the constant c.

Problem 2/39

2/40 Particle 1 is subjected to an acceleration 
particle 2 is subjected to and particle 3 is
subjected to . All three particles start at the
origin with an initial velocity at
time and the magnitude of k is 0.1 for all three
particles (note that the units of k vary from case to
case). Plot the position, velocity, and acceleration ver-
sus time for each particle over the range 

2/41 The steel ball A of diameter D slides freely on the
horizontal rod which leads to the pole face of the
electromagnet. The force of attraction obeys an
inverse-square law, and the resulting acceleration of
the ball is , where K is a measure of
the strength of the magnetic field. If the ball is
released from rest at determine the velocity v
with which it strikes the pole face.

Problem 2/41

2/42 A certain lake is proposed as a landing area for large
jet aircraft. The touchdown speed of 100 mi/hr upon
contact with the water is to be reduced to 20 mi/hr
in a distance of 1500 ft. If the deceleration is propor-
tional to the square of the velocity of the aircraft
through the water, , find the value of the
design parameter K, which would be a measure of
the size and shape of the landing gear vanes that
plow through the water. Also find the time t elapsed
during the specified interval.

a � �Kv2

L

A

D

B

x

x � 0,

a � K/(L � x)2

0 � t � 10 s.

t � 0,
v0 � 10 m /ss � 0

a � �ks
a � �kt,

a � �kv,

v0

y

ym

a � g � cy,

v0
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2/36 In an archery test, the acceleration of the arrow de-
creases linearly with distance s from its initial value
of at A upon release to zero at B after
a travel of 24 in. Calculate the maximum velocity v
of the arrow.

Problem 2/36

2/37 The 230,000-lb space-shuttle orbiter touches down at
about 220 mi/hr. At 200 mi/hr its drag parachute
deploys. At 35 mi/hr, the chute is jettisoned from the
orbiter. If the deceleration in feet per second squared
during the time that the chute is deployed is

(speed v in feet per second), determine the
corresponding distance traveled by the orbiter. Assume
no braking from its wheel brakes.

Problem 2/37

2/38 Reconsider the rollout of the space-shuttle orbiter of
the previous problem. The drag chute is deployed at
200 mi/hr, the wheel brakes are applied at 100 mi/hr
until wheelstop, and the drag chute is jettisoned at
35 mi/hr. If the drag chute results in a deceleration
of (in feet per second squared when the
speed v is in feet per second) and the wheel brakes
cause a constant deceleration of , determine
the distance traveled from 200 mi/hr to wheelstop.

5 ft /sec2

�0.0003v2

�0.0003v2

A B

s

24″

16,000 ft /sec2
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2/43 The electronic throttle control of a model train is pro-
grammed so that the train speed varies with position
as shown in the plot. Determine the time t required
for the train to complete one lap.

Problem 2/43

2/44 A particle moving along the s-axis has a velocity
given by where t is in seconds.
When the position of the particle is given by

For the first 5 seconds of motion, deter-
mine the total distance D traveled, the net displace-
ment , and the value of s at the end of the interval.

2/45 The cone falling with a speed strikes and pene-
trates the block of packing material. The accelera-
tion of the cone after impact is where c
is a positive constant and y is the penetration dis-
tance. If the maximum penetration depth is ob-
served to be determine the constant c.

Problem 2/45

y

v0

ym,

a � g � cy2,

v0

�s

s0 � �3 ft.
t � 0,

v � 18 � 2t2 ft /sec,

1 m

2 m

1 m

s

2 + π_
2 2 +3π__

22 + π 4 + π 4 + 2π20
0

0.125

S
pe

ed
 v

, m
/s

0.250

Distance s, m
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2/46 The acceleration of the piston in a small recipro-
cating engine is given in the following table in terms
of the position x of the piston measured from the top
of its stroke. From a plot of the data, determine to
within two-significant-figure accuracy the maximum
velocity reached by the piston.

x, m x, m
0 4950 0.075
0.0075 4340 0.090
0.015 3740 0.105
0.030 2580 0.120
0.045 1490 0.135
0.060 476 0.150

Problem 2/46

2/47 The aerodynamic resistance to motion of a car is
nearly proportional to the square of its velocity. Ad-
ditional frictional resistance is constant, so that the
acceleration of the car when coasting may be written

where and are constants
which depend on the mechanical configuration of
the car. If the car has an initial velocity when the
engine is disengaged, derive an expression for the
distance D required for the car to coast to a stop.

Problem 2/47

v

v0

C2C1a � �C1 � C2v2,

x

�3150
�2910
�2510
�1960
�1265

�450
ax, m /s2ax, m /s2

vmax

ax
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2/51 A projectile is fired horizontally into a resisting
medium with a velocity and the resulting decel-
eration is equal to , where c and n are constants
and v is the velocity within the medium. Find the
expression for the velocity v of the projectile in
terms of the time t of penetration.

2/52 The horizontal motion of the plunger and shaft is ar-
rested by the resistance of the attached disk which
moves through the oil bath. If the velocity of the
plunger is in the position A where and ,
and if the deceleration is proportional to v so that

, derive expressions for the velocity v and
position coordinate x in terms of the time t. Also ex-
press v in terms of x.

Problem 2/52

2/53 On its takeoff roll, the airplane starts from rest and
accelerates according to where is the
constant acceleration resulting from the engine
thrust and is the acceleration due to aerody-
namic drag. If , and v
is in meters per second, determine the design length
of runway required for the airplane to reach the
takeoff speed of 250 km/h if the drag term is (a) ex-
cluded and (b) included.

Problem 2/53

s

v0 = 0 v = 250 km/h

a0 � 2 m /s2, k � 0.00004 m�1
�kv2

a0a � a0 �kv2,

Oil

vx
A

a � �kv

t � 0x � 0v0

cvn
v0,
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2/48 A subway train travels between two of its station
stops with the acceleration schedule shown. Deter-
mine the time interval during which the train
brakes to a stop with a deceleration of and
find the distance s between stations.

Problem 2/48

2/49 Compute the impact speed of a body released from
rest at an altitude (a) Assume a constant
gravitational acceleration and (b)
account for the variation of g with altitude (refer to 
Art. 1/5). Neglect the effects of atmospheric drag.

Problem 2/49

2/50 Compute the impact speed of body A which is re-
leased from rest at an altitude mi above the
surface of the moon. (a) First assume a constant
gravitational acceleration and 
(b) then account for the variation of with altitude
(refer to Art. 1/5).

Problem 2/50

2160 mi h

A

gm

gm0
 � 5.32 ft /sec2

h � 750

R

h

gm0
 � 32.2 ft /sec2

h � 500 mi.

2

–2

0

1

t, s

a, m/s2

8 6 10 Δt

2 m /s2
�t
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2/54 A test projectile is fired horizontally into a viscous
liquid with a velocity . The retarding force is pro-
portional to the square of the velocity, so that the
acceleration becomes . Derive expressions
for the distance D traveled in the liquid and the cor-
responding time t required to reduce the velocity to

Neglect any vertical motion.

Problem 2/54

2/55 A bumper, consisting of a nest of three springs, is
used to arrest the horizontal motion of a large mass
which is traveling at 40 ft/sec as it contacts the
bumper. The two outer springs cause a deceleration
proportional to the spring deformation. The center
spring increases the deceleration rate when the com-
pression exceeds 6 in. as shown on the graph. Deter-
mine the maximum compression x of the outer
springs.

Problem 2/55

2/56 When the effect of aerodynamic drag is included, the
y-acceleration of a baseball moving vertically upward
is , while the acceleration when the
ball is moving downward is , where k is
a positive constant and v is the speed in feet per sec-
ond. If the ball is thrown upward at 100 ft/sec from
essentially ground level, compute its maximum height
h and its speed upon impact with the ground. Take
k to be and assume that g is constant.0.002 ft�1

vƒ

ad � �g � kv2
au � �g � kv2

x, in.

Deceleration
ft/sec2

40 ft/sec

0 6 12

3000
2000
1000

0

x

vv0 

v0 /2.

a � �kv2

v0
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Problem 2/56

2/57 The vertical acceleration of a certain solid-fuel rocket
is given by where k, b, and c are
constants, v is the vertical velocity acquired, and g is
the gravitational acceleration, essentially constant for
atmospheric flight. The exponential term represents
the effect of a decaying thrust as fuel is burned, and
the term approximates the retardation due to
atmospheric resistance. Determine the expression for
the vertical velocity of the rocket t seconds after firing.

2/58 The preliminary design for a rapid-transit system
calls for the train velocity to vary with time as
shown in the plot as the train runs the two miles be-
tween stations A and B. The slopes of the cubic tran-
sition curves (which are of form )
are zero at the end points. Determine the total run
time t between the stations and the maximum accel-
eration.

a � bt � ct2 � dt3

�cv

a � ke�bt � cv � g,

h

ad = –g + kv2au = –g – kv2

y

100 ft/sec

�

�

Problem 2/58

2 mi

A

A B

B

v, mi/hr

80

0
15 15Δt

Cubic functions

t, sec
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2/3 Plane Curvilinear Motion
We now treat the motion of a particle along a curved path which lies

in a single plane. This motion is a special case of the more general three-
dimensional motion introduced in Art. 2/1 and illustrated in Fig. 2/1. If we
let the plane of motion be the x-y plane, for instance, then the coordinates
z and � of Fig. 2/1 are both zero, and R becomes the same as r. As men-
tioned previously, the vast majority of the motions of points or particles
encountered in engineering practice can be represented as plane motion.

Before pursuing the description of plane curvilinear motion in any
specific set of coordinates, we will first use vector analysis to describe
the motion, since the results will be independent of any particular coor-
dinate system. What follows in this article constitutes one of the most
basic concepts in dynamics, namely, the time derivative of a vector.
Much analysis in dynamics utilizes the time rates of change of vector
quantities. You are therefore well advised to master this topic at the
outset because you will have frequent occasion to use it.

Consider now the continuous motion of a particle along a plane curve
as represented in Fig. 2/5. At time t the particle is at position A, which is
located by the position vector r measured from some convenient fixed ori-
gin O. If both the magnitude and direction of r are known at time t, then
the position of the particle is completely specified. At time t � �t, the
particle is at A�, located by the position vector r � �r. We note, of course,
that this combination is vector addition and not scalar addition. The dis-
placement of the particle during time �t is the vector  �r which represents
the vector change of position and is clearly independent of the choice of
origin. If an origin were chosen at some different location, the position
vector r would be changed, but �r would be unchanged. The distance
actually traveled by the particle as it moves along the path from A to A�
is the scalar length �s measured along the path. Thus, we distinguish
between the vector displacement �r and the scalar distance �s.

Velocity
The average velocity of the particle between A and A� is defined as

vav � �r/�t, which is a vector whose direction is that of �r and whose
magnitude is the magnitude of �r divided by �t. The average speed of

40 Chapter 2 Kinematics of Particles

r + Δr
Δr Δs Δv

v

v

a

r

O

A

A

Path of
particle

A

v ′

v ′

A′

A′

Figure 2/5
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the particle between A and A� is the scalar quotient �s/�t. Clearly, the
magnitude of the average velocity and the speed approach one another
as the interval �t decreases and A and A� become closer together.

The instantaneous velocity v of the particle is defined as the limiting
value of the average velocity as the time interval approaches zero. Thus,

We observe that the direction of �r approaches that of the tangent to
the path as �t approaches zero and, thus, the velocity v is always a vec-
tor tangent to the path.

We now extend the basic definition of the derivative of a scalar
quantity to include a vector quantity and write

(2/4)

The derivative of a vector is itself a vector having both a magnitude and
a direction. The magnitude of v is called the speed and is the scalar

At this point we make a careful distinction between the magnitude
of the derivative and the derivative of the magnitude. The magnitude of
the derivative can be written in any one of the several ways �dr/dt� �

� � �v� � v and represents the magnitude of the velocity, or the
speed, of the particle. On the other hand, the derivative of the magni-
tude is written d�r�/dt � dr/dt � , and represents the rate at which the
length of the position vector r is changing. Thus, these two derivatives
have two entirely different meanings, and we must be extremely careful
to distinguish between them in our thinking and in our notation. For
this and other reasons, you are urged to adopt a consistent notation for
handwritten work for all vector quantities to distinguish them from
scalar quantities. For simplicity the underline v is recommended. Other
handwritten symbols such as , , and are sometimes used.

With the concept of velocity as a vector established, we return to Fig.
2/5 and denote the velocity of the particle at A by the tangent vector v and
the velocity at A� by the tangent v�. Clearly, there is a vector change in
the velocity during the time �t. The velocity v at A plus (vectorially) the
change �v must equal the velocity at A�, so we can write v� � v � �v. In-
spection of the vector diagram shows that �v depends both on the change
in magnitude (length) of v and on the change in direction of v. These two
changes are fundamental characteristics of the derivative of a vector.

Acceleration
The average acceleration of the particle between A and A� is defined

as �v/�t, which is a vector whose direction is that of �v. The magnitude
of this average acceleration is the magnitude of �v divided by �t.

v̂v~v9

ṙ

ṡ� ṙ �

v � �v � � ds
dt

 � ṡ

v � dr
dt

 � ṙ

v � lim
�tl0

 �r
�t
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The instantaneous acceleration a of the particle is defined as the
limiting value of the average acceleration as the time interval ap-
proaches zero. Thus,

By definition of the derivative, then, we write

(2/5)

As the interval �t becomes smaller and approaches zero, the direction of
the change �v approaches that of the differential change dv and, thus,
of a. The acceleration a, then, includes the effects of both the change in
magnitude of v and the change of direction of v. It is apparent, in gen-
eral, that the direction of the acceleration of a particle in curvilinear
motion is neither tangent to the path nor normal to the path. We do ob-
serve, however, that the acceleration component which is normal to the
path points toward the center of curvature of the path.

Visualization of Motion
A further approach to the visualization of acceleration is shown in

Fig. 2/6, where the position vectors to three arbitrary positions on the
path of the particle are shown for illustrative purpose. There is a velocity
vector tangent to the path corresponding to each position vector, and the
relation is v � . If these velocity vectors are now plotted from some ar-
bitrary point C, a curve, called the hodograph, is formed. The derivatives
of these velocity vectors will be the acceleration vectors a � which are
tangent to the hodograph. We see that the acceleration has the same re-
lation to the velocity as the velocity has to the position vector.

The geometric portrayal of the derivatives of the position vector r
and velocity vector v in Fig. 2/5 can be used to describe the derivative of
any vector quantity with respect to t or with respect to any other scalar
variable. Now that we have used the definitions of velocity and accelera-
tion to introduce the concept of the derivative of a vector, it is important
to establish the rules for differentiating vector quantities. These rules

v̇

ṙ

a � dv
dt

 � v̇

a � lim
�tl0

 �v
�t
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r3

v3 v2

v1

v2 = r· 2

v3 = r· 3

a3 = v· 3 a2 = v· 2

a1 = v· 1

v1 = r· 1

r2

r1

O

C

Path

Hodograph

Figure 2/6
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are the same as for the differentiation of scalar quantities, except for the
case of the cross product where the order of the terms must be pre-
served. These rules are covered in Art. C/7 of Appendix C and should be
reviewed at this point.

Three different coordinate systems are commonly used for describing
the vector relationships for curvilinear motion of a particle in a plane: rec-
tangular coordinates, normal and tangential coordinates, and polar coor-
dinates. An important lesson to be learned from the study of these
coordinate systems is the proper choice of a reference system for a given
problem. This choice is usually revealed by the manner in which the mo-
tion is generated or by the form in which the data are specified. Each of
the three coordinate systems will now be developed and illustrated.

2/4 Rectangular Coordinates (x-y)
This system of coordinates is particularly useful for describing mo-

tions where the x- and y-components of acceleration are independently
generated or determined. The resulting curvilinear motion is then ob-
tained by a vector combination of the x- and y-components of the posi-
tion vector, the velocity, and the acceleration.

Vector Representation
The particle path of Fig. 2/5 is shown again in Fig. 2/7 along with 

x- and y-axes. The position vector r, the velocity v, and the acceleration
a of the particle as developed in Art. 2/3 are represented in Fig. 2/7 to-
gether with their x- and y-components. With the aid of the unit vectors 
i and j, we can write the vectors r, v, and a in terms of their x- and 
y-components. Thus,

(2/6)

As we differentiate with respect to time, we observe that the time deriv-
atives of the unit vectors are zero because their magnitudes and direc-
tions remain constant. The scalar values of the components of v and a
are merely vx � , vy � and ax � � , ay � . (As drawn in
Fig. 2/7, ax is in the negative x-direction, so that would be a negative
number.)

As observed previously, the direction of the velocity is always tan-
gent to the path, and from the figure it is clear that

If the angle � is measured counterclockwise from the x-axis to v for the
configuration of axes shown, then we can also observe that dy/dx �

tan � � vy/vx.

a2 � ax 

2 � ay 

2   a � �ax 

2 � ay 

2

v2 � vx 

2 � vy 

2   v � �vx 

2 � vy 

2   tan � � 
vy

vx

ẍ
v̇y � ÿẍv̇xẏẋ

 a �  v̇ �  r̈ � ẍi � ÿj

 v �  ṙ � ẋi � ẏj

  r � xi � yj
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If the coordinates x and y are known independently as functions of
time, x � ƒ1(t) and y � ƒ2(t), then for any value of the time we can com-
bine them to obtain r. Similarly, we combine their first derivatives 
and to obtain v and their second derivatives and to obtain a. On
the other hand, if the acceleration components ax and ay are given as
functions of the time, we can integrate each one separately with re-
spect to time, once to obtain vx and vy and again to obtain x � ƒ1(t) and
y � ƒ2(t). Elimination of the time t between these last two parametric
equations gives the equation of the curved path y � ƒ(x).

From the foregoing discussion we can see that the rectangular-
coordinate representation of curvilinear motion is merely the superposi-
tion of the components of two simultaneous rectilinear motions in the
x- and y-directions. Therefore, everything covered in Art. 2/2 on rectilin-
ear motion can be applied separately to the x-motion and to the y-motion.

Projectile Motion
An important application of two-dimensional kinematic theory is

the problem of projectile motion. For a first treatment of the subject,
we neglect aerodynamic drag and the curvature and rotation of the
earth, and we assume that the altitude change is small enough so that
the acceleration due to gravity can be considered constant. With these
assumptions, rectangular coordinates are useful for the trajectory
analysis.

For the axes shown in Fig. 2/8, the acceleration components are

Integration of these accelerations follows the results obtained previ-
ously in Art. 2/2a for constant acceleration and yields

In all these expressions, the subscript zero denotes initial conditions,
frequently taken as those at launch where, for the case illustrated, 

vy 

2 � (vy)0 

2 � 2g(y � y0)

 x � x0 � (vx)0 t    y � y0 � (vy)0 t � 12 gt2

 vx � (vx)0  vy � (vy)0 � gt

ax � 0   ay � �g

ÿẍẏ
ẋ
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x0 � y0 � 0. Note that the quantity g is taken to be positive throughout
this text.

We can see that the x- and y-motions are independent for the simple
projectile conditions under consideration. Elimination of the time t be-
tween the x- and y-displacement equations shows the path to be parabolic
(see Sample Problem 2/6). If we were to introduce a drag force which de-
pends on the speed squared (for example), then the x- and y-motions would
be coupled (interdependent), and the trajectory would be nonparabolic.

When the projectile motion involves large velocities and high alti-
tudes, to obtain accurate results we must account for the shape of the
projectile, the variation of g with altitude, the variation of the air den-
sity with altitude, and the rotation of the earth. These factors introduce
considerable complexity into the motion equations, and numerical inte-
gration of the acceleration equations is usually necessary.

Article 2/4 Rectangular Coordinates (x-y) 45

This stroboscopic photograph of a bouncing ping-pong ball suggests not
only the parabolic nature of the path, but also the fact that the speed is
lower near the apex.
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SAMPLE PROBLEM 2/5

The curvilinear motion of a particle is defined by vx � 50 � 16t and y �

100 � 4t2, where vx is in meters per second, y is in meters, and t is in seconds.
It is also known that x � 0 when t � 0. Plot the path of the particle and deter-
mine its velocity and acceleration when the position y � 0 is reached.

Solution. The x-coordinate is obtained by integrating the expression for vx,
and the x-component of the acceleration is obtained by differentiating vx. Thus,

The y-components of velocity and acceleration are

We now calculate corresponding values of x and y for various values of t and
plot x against y to obtain the path as shown.

When y � 0, 0 � 100 � 4t2, so t � 5 s. For this value of the time, we have

The velocity and acceleration components and their resultants are shown on the
separate diagrams for point A, where y � 0. Thus, for this condition we may
write

Ans.

Ans. a � �16i � 8j m/s2

 v � �30i � 40j m/s

 a � �(�16)2 � (�8)2 � 17.89 m/s2

 v � �(�30)2 � (�40)2 � 50 m/s

 vy � �8(5) � �40 m/s

 vx � 50 � 16(5) � �30 m/s

 ay � d
dt

 (�8t)  ay � �8 m/s2[ay � v̇y]

 vy � d
dt

 (100 � 4t2)    vy � �8t m/s[vy � ẏ]

ax � d
dt

 (50 � 16t)   ax � �16 m/s2[ax � v̇x]

�x

0
 dx � � t

0
 (50 � 16t) dt   x � 50t � 8t2 m��  dx � �  vx dt�
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Helpful Hint

We observe that the velocity vector lies
along the tangent to the path as it
should, but that the acceleration vector
is not tangent to the path. Note espe-
cially that the acceleration vector has a
component that points toward the in-
side of the curved path. We concluded
from our diagram in Fig. 2/5 that it is
impossible for the acceleration to have a
component that points toward the out-
side of the curve.

100

80

60

40

20

0
0 20 40

t = 5 s

1 2

3

4

A

t = 0

y,
 m

x, m
60 80

  = 53.1°θ

vx = –30 m/s

vy = –40 m/s
 v = 50 m/s

  a = 17.89 m/s2
  ay = –8 m/s2

ax = –16 m/s2

Path Path

  A   A––

c02.qxd  2/8/12  7:11 PM  Page 46



SAMPLE PROBLEM 2/6

A team of engineering students designs a medium-size catapult
which launches 8-lb steel spheres. The launch speed is 
the launch angle is above the horizontal, and the launch posi-
tion is 6 ft above ground level. The students use an athletic field with
an adjoining slope topped by an 8-ft fence as shown. Determine:

(a) the x-y coordinates of the point of first impact

(b) the time duration of the flight

(c) the maximum height h above the horizontal field attained by the ball

(d) the velocity (expressed as a vector) with which the projectile strikes the
ground

Repeat part (a) for a launch speed of

Solution. We make the assumptions of constant gravitational acceleration
and no aerodynamic drag. With the latter assumption, the 8-lb weight of the pro-
jectile is irrelevant. Using the given x-y coordinate system, we begin by checking
the y-displacement at the horizontal position of the fence.

(a) Because the y-coordinate of the top of the fence is the
projectile clears the fence. We now find the flight time by setting 

Ans.

(b) Thus the point of first impact is . Ans.

(c) For the maximum height:

Ans.

(d) For the impact velocity:

So the impact velocity is . Ans.

If the time from launch to the fence is found by

and the corresponding value of y is

For this launch speed, we see that the projectile hits the fence, and the point 
of impact is

Ans.

For lower launch speeds, the projectile could land on the slope or even on the
level portion of the athletic field.

(x, y) � (130, 24.9) ft

[y � y0 � (vy)0   t � 12 gt2]   y � 6 � 80 sin 35�(2.12) � 12 (32.2)(2.12)2 � 24.9 ft

[x � x0 � (vx)0t]   100 � 30 � (75 cos 35�)t   t � 2.12 sec

v0 � 75 ft /sec,

v � 65.5i � 34.7j ft /sec

[vy � (vy)0 � gt]    vy � 80 sin 35� � 32.2(2.50) � �34.7 ft /sec

[vx � (vx)0]    vx � 80 cos 35� � 65.5 ft /sec

[vy
2 � (vy)0

2 � 2g(y � y0)]  02 � (80 sin 35�)2 � 2(32.2)(h � 6)  h � 38.7 ft

(x, y) � (164.0, 20) ft

[x � x0 � (vx)0t]  x � 0 � 80 cos 35�(2.50) � 164.0 ft

[y � y0 � (vy)0t � 12 gt2]  20 � 6 � 80 sin 35�(tƒ) � 12 (32.2)tƒ
2  tƒ � 2.50 s

y � 20 ft:
20 � 8 � 28 feet,

[y � y0 � (vy)0t � 12 gt2]   y � 6 � 80 sin 35�(1.984) � 12 (32.2)(1.984)2 � 33.7 ft

[x � x0 � (vx)0t]   100 � 30 � 0 � (80 cos 35�)t   t � 1.984 sec

v0 � 75 ft/sec.

tƒ

� � 35�

v0 � 80 ft /sec,
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= 35°
x

y
v0 = 80 ft/sec

100′

fence

30′

6′

8′

20′θ

Helpful Hints

� Neglecting aerodynamic drag is a
poor assumption for projectiles with
relatively high initial velocities,
large sizes, and low weights. In a
vacuum, a baseball thrown with an
initial speed of 100 ft/sec at 
above the horizontal will travel about
311 feet over a horizontal range. In
sea-level air, the baseball range is
about 200 ft, while a typical beachball
under the same conditions will travel
about 10 ft.

45�

� As an alternative approach, we could
find the time at apex where 
then use that time in the y-displacement
equation. Verify that the trajectory
apex occurs over the 100-ft horizon-
tal portion of the athletic field.

vy � 0,

�

�
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2/65 A rocket runs out of fuel in the position shown and
continues in unpowered flight above the atmosphere.
If its velocity in this position was 600 mi/hr, calcu-
late the maximum additional altitude h acquired and
the corresponding time t to reach it. The gravita-
tional acceleration during this phase of its flight is

Problem 2/65

2/66 A particle moves in the x-y plane with a y-component
of velocity in feet per second given by with t
in seconds. The acceleration of the particle in the
x-direction in feet per second squared is given by

with t in seconds. When 
and Find the equation of the path of the
particle and calculate the magnitude of the velocity
v of the particle for the instant when its x-coordinate
reaches 18 ft.

2/67 A roofer tosses a small tool to the ground. What min-
imum magnitude of horizontal velocity is required
to just miss the roof corner B? Also determine the
distance d.

Problem 2/67

v0

A

B

C

1.2 m

2.4 m

0.9 m

3 m

d

v0

vx � 0.
t � 0, y � 2 ft, x � 0,ax � 4t

vy � 8t

30°

v = 600 mi/hr

Vertical

30.8 ft /sec2.
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PROBLEMS

(In the following problems where motion as a projectile in
air is involved, neglect air resistance unless otherwise
stated and use g � 9.81 m/s2 or g � 32.2 ft/sec2.)

Introductory Problems

2/59 At time the position vector of a particle mov-
ing in the x-y plane is By time 
its position vector has become Deter-
mine the magnitude of its average velocity during
this interval and the angle made by the average
velocity with the positive x-axis.

2/60 A particle moving in the x-y plane has a velocity at
time given by and at its
velocity has become Calculate the
magnitude aav of its average acceleration during the
0.1-s interval and the angle it makes with the 
x-axis.

2/61 The velocity of a particle moving in the x-y plane is
given by at time Its aver-
age acceleration during the next 0.02 s is 
Determine the velocity v of the particle at 
and the angle between the average-acceleration
vector and the velocity vector at 

2/62 A particle which moves with curvilinear motion has
coordinates in millimeters which vary with the time t
in seconds according to and 
Determine the magnitudes of the velocity v and
acceleration a and the angles which these vectors
make with the x-axis when 

2/63 The x-coordinate of a particle in curvilinear motion
is given by where x is in feet and t is in
seconds. The y-component of acceleration in feet per
second squared is given by If the particle has
y-components and when find
the magnitudes of the velocity v and acceleration a
when Sketch the path for the first 
2 seconds of motion, and show the velocity and accel-
eration vectors for 

2/64 The y-coordinate of a particle in curvilinear motion
is given by where y is in inches and t is
in seconds. Also, the particle has an acceleration in
the x-direction given by If the ve-
locity of the particle in the x-direction is 
when calculate the magnitudes of the velocity
v and acceleration a of the particle when 
Construct v and a in your solution.

t � 1 sec.
t � 0,

4 in. /sec
ax � 12t in. /sec2.

y � 4t3 � 3t,

t � 2 sec.

t � 2 sec.

t � 0, � 4 ft /secẏy � 0
ay � 4t.

x � 2t3 � 3t,

t � 2 s.

y � 3t2 � 13t3.x � 2t2 � 4t

t � 3.67 s.
�

t � 3.67 s
4i � 6j m /s2.

t � 3.65 s.6.12i � 3.24j m /s

�

4.3i � 5.4j m /s.
t � 6.1 s4i � 5j m /s,t � 6 s

�

vav

5.1i � 0.4j m.
t � 0.02 s,r � 5i m.

t � 0,
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2/68 Prove the well-known result that, for a given launch
speed the launch angle yields the maxi-
mum horizontal range R. Determine the maximum
range. (Note that this result does not hold when
aerodynamic drag is included in the analysis.)

2/69 Calculate the minimum possible magnitude u of the
muzzle velocity which a projectile must have when
fired from point A to reach a target B on the same
horizontal plane 12 km away.

Problem 2/69

2/70 The center of mass G of a high jumper follows the
trajectory shown. Determine the component , mea-
sured in the vertical plane of the figure, of his take-
off velocity and angle if the apex of the trajectory
just clears the bar at A. (In general, must the mass
center G of the jumper clear the bar during a suc-
cessful jump?)

Problem 2/70

3.5′

3′
v0

A

G

3.5′

θ

�

v0

A

u

B

12 km

� � 45�v0,
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Representative Problems

2/71 The quarterback Q throws the football when the
receiver R is in the position shown. The receiver’s
velocity is constant at 10 yd/sec, and he catches
passes when the ball is 6 ft above the ground. If the
quarterback desires the receiver to catch the ball 
2.5 sec after the launch instant shown, determine
the initial speed and angle required.

Problem 2/71

2/72 The water nozzle ejects water at a speed 
at the angle Determine where, relative

to the wall base point B, the water lands. Neglect the
effects of the thickness of the wall.

Problem 2/72

2/73 Water is ejected from the water nozzle of Prob. 2/72
with a speed For what value of the
angle will the water land closest to the wall after
clearing the top? Neglect the effects of wall thick-
ness and air resistance. Where does the water land?

2/74 A football player attempts a 30-yd field goal. If he is
able to impart a velocity u of 100 ft/sec to the ball,
compute the minimum angle for which the ball will
clear the crossbar of the goal. (Hint: Let .)

Problem 2/74

u

30 yd

θ
10′

m � tan �
�

�

v0 � 45 ft /sec.

60′
Not to scale

1′
A 3′θ

v0

B

� � 40�.ft /sec
v0 � 45

v0

vRR
Q

θ

7′

30 yd

�v0
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2/78 The basketball player likes to release his foul shots
with an initial speed What value(s)
of the initial angle will cause the ball to pass
through the center of the rim? Neglect clearance
considerations as the ball passes over the front por-
tion of the rim.

Problem 2/78

2/79 A projectile is launched with an initial speed of 200
m/s at an angle of with respect to the horizontal.
Compute the range R as measured up the incline.

Problem 2/79

2/80 A rock is thrown horizontally from a tower at A and
hits the ground 3.5 s later at B. The line of sight
from A to B makes an angle of with the horizon-
tal. Compute the magnitude of the initial velocity u
of the rock.

Problem 2/80

A

50°

u

B

50�

R
60°

20°A

B

200 m/s

60�

7′

θ

10′

13′ 9′′

v0

�

v0 � 23.5 ft /sec.
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2/75 The pilot of an airplane carrying a package of mail to
a remote outpost wishes to release the package at
the right moment to hit the recovery location A.
What angle with the horizontal should the pilot’s
line of sight to the target make at the instant of re-
lease? The airplane is flying horizontally at an alti-
tude of 100 m with a velocity of 200 km/h.

Problem 2/75

2/76 During a baseball practice session, the cutoff man A
executes a throw to the third baseman B. If the ini-
tial speed of the baseball is what
angle is best if the ball is to arrive at third base at
essentially ground level?

Problem 2/76

2/77 If the tennis player serves the ball horizontally
calculate its velocity v if the center of the

ball clears the 36-in. net by 6 in. Also find the dis-
tance s from the net to the point where the ball hits
the court surface. Neglect air resistance and the
effect of ball spin.

Problem 2/77

39′s

36″ 

8.5′

A
θ

v

(� � 0),

v0

7′
θ B

A

150′ 

�

v0 � 130 ft /sec,

θ

200 km/h

100 m

A

�
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2/81 The muzzle velocity of a long-range rifle at A is 
Determine the two angles of elevation 

which will permit the projectile to hit the mountain
target B.

Problem 2/81

2/82 A projectile is launched with a speed 
from the floor of a 5-m-high tunnel as shown. Deter-
mine the maximum horizontal range R of the projec-
tile and the corresponding launch angle .

Problem 2/82

2/83 A projectile is launched from point A with the initial
conditions shown in the figure. Determine the slant
distance s which locates the point B of impact. Cal-
culate the time of flight t.

Problem 2/83

v0 = 120 m/s

 = 40°θ 20°

B

s
A

800 m

5 m

A
θ

v0 = 25 m/s

�

v0 � 25 m /s

B

5 km

1.5 km
2θ

1θ

u
u

A

�400 m /s.
u �
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2/84 A team of engineering students is designing a cata-
pult to launch a small ball at A so that it lands in the
box. If it is known that the initial velocity vector
makes a angle with the horizontal, determine the
range of launch speeds for which the ball will land
inside the box.

Problem 2/84

2/85 Ball bearings leave the horizontal trough with a ve-
locity of magnitude u and fall through the 70-mm-
diameter hole as shown. Calculate the permissible
range of u which will enable the balls to enter the
hole. Take the dashed positions to represent the lim-
iting conditions.

Problem 2/85

2/86 A horseshoe player releases the horseshoe at A with
an initial speed Determine the range
for the launch angle for which the shoe will strike
the 14-in. vertical stake.

Problem 2/86

v0 = 36 ft/sec

40′

A
B

θ
3

14″

�

v0 � 36 ft /sec.

120 mm
20 mm

80 mm

70 mm

u

v0

12″
30°A

8″

12′ 2′

v0

30�
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2/90 The pilot of an airplane pulls into a steep 45° climb
at 300 km/h and releases a package at position A.
Calculate the horizontal distance s and the time t
from the point of release to the point at which the
package strikes the ground.

Problem 2/90

2/91 Compare the slant range and flight time for the
depicted projectile with the range R and flight time t
for a projectile (launched with speed and inclina-
tion angle ) which flies over a horizontal surface.
Evaluate your four results for 

Problem 2/91

2/92 A projectile is launched from point A and lands on
the same level at D. Its maximum altitude is h. De-
termine and plot the fraction of the total flight
time that the projectile is above the level where

is a fraction which can vary from zero to 1. State
the value of for 

Problem 2/92

A D

C

ƒ1h

v0

α

h
B

ƒ1 � 34.ƒ2

ƒ1

ƒ1h,
ƒ2

A

B

Ri

v0

α
α

� � 30�.
�

v0

tiRi

s

A
300 km/h

500 m

45°
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2/87 A fireworks shell is launched vertically from point A
with speed sufficient to reach a maximum altitude of
500 ft. A steady horizontal wind causes a constant
horizontal acceleration of but does not af-
fect the vertical motion. Determine the deviation 
at the top of the trajectory caused by the wind.

Problem 2/87

2/88 Consider the fireworks shell of the previous problem.
What angle compensates for the wind in that the
shell peaks directly over the launch point A? All
other information remains as stated in the previous
problem, including the fact that the initial launch
velocity if vertical would result in a maximum
altitude of 500 ft. What is the maximum height h
possible in this problem?

Problem 2/88

2/89 Determine the location h of the spot toward which the
pitcher must throw if the ball is to hit the catcher’s
mitt. The ball is released with a speed of 40 m/s.

Problem 2/89

2.2 m

20 m

v0

θ

0.6 m 1 m

h

Wind

A

h

v0
α

v0

�

v0

δ

Wind

A

500′

�

0.5 ft /sec2,
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2/93 A projectile is ejected into an experimental fluid at
time The initial speed is and the angle to
the horizontal is . The drag on the projectile results
in an acceleration term where k is a con-
stant and v is the velocity of the projectile. Deter-
mine the x- and y-components of both the velocity
and displacement as functions of time. What is the
terminal velocity? Include the effects of gravitational
acceleration.

Problem 2/93

2/94 An experimental fireworks shell is launched verti-
cally from point A with an initial velocity of magni-
tude In addition to the acceleration
due to gravity, an internal thrusting mechanism
causes a constant acceleration component of 2g in
the direction shown for the first 2 seconds of
flight, after which the thruster ceases to function.
Determine the maximum height h achieved, the
total flight time, the net horizontal displacement
from point A, and plot the entire trajectory. Neglect
any acceleration due to aerodynamics.

Problem 2/94

v0

2g

60°

A

60�

v0 � 100 ft /sec.

y

x
θ

v0

aD � �kv,
�

v0t � 0.
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2/95 A projectile is launched with speed from point A.
Determine the launch angle which results in the
maximum range R up the incline of angle (where

). Evaluate your results for 
and 

Problem 2/95

2/96 A projectile is launched from point A with the initial
conditions shown in the figure. Determine the x- and
y-coordinates of the point of impact.

Problem 2/96

v0 = 225 ft/sec

1000′

30°

C

B x

y

A

500′

v0

RA

B

α
θ

45�.
� � 0, 30�,0 � � � 90�

�

�

v0� �

�

�

c02.qxd  2/8/12  7:11 PM  Page 53



2/5 Normal and Tangential Coordinates (n-t )
As we mentioned in Art. 2/1, one of the common descriptions of

curvilinear motion uses path variables, which are measurements made
along the tangent t and normal n to the path of the particle. These coor-
dinates provide a very natural description for curvilinear motion and
are frequently the most direct and convenient coordinates to use. The 
n- and t-coordinates are considered to move along the path with the par-
ticle, as seen in Fig. 2/9 where the particle advances from A to B to C.
The positive direction for n at any position is always taken toward the
center of curvature of the path. As seen from Fig. 2/9, the positive 
n-direction will shift from one side of the curve to the other side if the
curvature changes direction.

Velocity and Acceleration
We now use the coordinates n and t to describe the velocity v and

acceleration a which were introduced in Art. 2/3 for the curvilinear mo-
tion of a particle. For this purpose, we introduce unit vectors en in the
n-direction and et in the t-direction, as shown in Fig. 2/10a for the posi-
tion of the particle at point A on its path. During a differential incre-
ment of time dt, the particle moves a differential distance ds along the
curve from A to A�. With the radius of curvature of the path at this posi-
tion designated by �, we see that ds � � d�, where � is in radians. It is
unnecessary to consider the differential change in � between A and A�
because a higher-order term would be introduced which disappears in
the limit. Thus, the magnitude of the velocity can be written v � ds/dt �

� d�/dt, and we can write the velocity as the vector

(2/7)

The acceleration a of the particle was defined in Art. 2/3 as a �

dv/dt, and we observed from Fig. 2/5 that the acceleration is a vector
which reflects both the change in magnitude and the change in direc-
tion of v. We now differentiate v in Eq. 2/7 by applying the ordinary
rule for the differentiation of the product of a scalar and a vector*
and get

(2/8)

where the unit vector et now has a nonzero derivative because its direc-
tion changes.

To find we analyze the change in et during a differential incre-
ment of motion as the particle moves from A to A� in Fig. 2/10a. The
unit vector et correspondingly changes to , and the vector difference
det is shown in part b of the figure. The vector det in the limit has a
magnitude equal to the length of the arc �et� d� � d� obtained by
swinging the unit vector et through the angle d� expressed in radians.

e�t

ėt

a � dv
dt

 � 
d(vet)

dt
 � vėt � v̇et

v � vet � ��̇et

Figure 2/10
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A

B

C
n

n n

t t

t

Figure 2/9

v′

v

v

A′

A

n

C

Path
t

dvn

dv

dvt

det

et

ρ

ds =    dρ β

e′t

e t

en

a t

an

a

(a)

(c)(b)

v′

e′t

βd

d β

d β

*See Art. C/7 of Appendix C.
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The direction of det is given by en. Thus, we can write det � en d�.
Dividing by d� gives

Dividing by dt gives det/dt � (d�/dt)en, which can be written

(2/9)

With the substitution of Eq. 2/9 and from the relation v � Eq.
2/8 for the acceleration becomes

(2/10)

where an �

at �

a �

We stress that is the time rate of change of the speed v. Finally,
we note that at � � � � This relation, however, finds
little use because we seldom have reason to compute 

Geometric Interpretation
Full understanding of Eq. 2/10 comes only when we clearly see the

geometry of the physical changes it describes. Figure 2/10c shows the ve-
locity vector v when the particle is at A and v� when it is at A�. The vector
change in the velocity is dv, which establishes the direction of the accelera-
tion a. The n-component of dv is labeled dvn, and in the limit its magni-
tude equals the length of the arc generated by swinging the vector v as a
radius through the angle d�. Thus, �dvn� � v d� and the n-component of
acceleration is an � �dvn�/dt � v(d�/dt) � as before. The t-component of
dv is labeled dvt, and its magnitude is simply the change dv in the magni-
tude or  length of the velocity vector. Therefore, the t-component of accel-
eration is at � dv/dt � � as before. The acceleration vectors resulting
from the corresponding vector changes in velocity are shown in Fig. 2/10c.

It is especially important to observe that the normal component of
acceleration an is always directed toward the center of curvature C. The
tangential component of acceleration, on the other hand, will be in the
positive t-direction of motion if the speed v is increasing and in the nega-
tive t-direction if the speed is decreasing. In Fig. 2/11 are shown
schematic representations of the variation in the acceleration vector for
a particle moving from A to B with (a) increasing speed and (b) decreas-
ing speed. At an inflection point on the curve, the normal acceleration
v2/� goes to zero because � becomes infinite.

s̈v̇

v�̇

�̇.
�̇ �̇.��̈d(��̇)/dtv̇

v̇at �

�an 

2 � at 

2

v̇ � s̈

v2

�  � ��̇2 � v�̇

a � v
2

�
 en � v̇et

��̇,�̇

ėt � �̇en

det

d�
 � en
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Circular Motion
Circular motion is an important special case of plane curvilinear

motion where the radius of curvature � becomes the constant radius r of
the circle and the angle � is replaced by the angle � measured from any
convenient radial reference to OP, Fig. 2/12. The velocity and the accel-
eration components for the circular motion of the particle P become

(2/11)

We find repeated use for Eqs. 2/10 and 2/11 in dynamics, so these
relations and the principles behind them should be mastered.

at � v̇ � r �̈

 an � v2/r � r �̇ 2 � v �̇

 v � r �̇

Figure 2/12
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A
Speed

increasing
(a)

Speed
decreasing

(b)

Acceleration vectors for
particle moving from A to B

A

B B

Figure 2/11
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P

t

O
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v

An example of uniform circular motion is this car moving with constant speed
around a wet skidpad (a circular roadway with a diameter of about 200 feet).
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SAMPLE PROBLEM 2/7

To anticipate the dip and hump in the road, the driver of a car applies her
brakes to produce a uniform deceleration. Her speed is 100 km/h at the bottom A of
the dip and 50 km/h at the top C of the hump, which is 120 m along the road from
A. If the passengers experience a total acceleration of 3 m/s2 at A and if the radius of
curvature of the hump at C is 150 m, calculate (a) the radius of curvature � at A, (b)
the acceleration at the inflection point B, and (c) the total acceleration at C.

Solution. The dimensions of the car are small compared with those of the
path, so we will treat the car as a particle. The velocities are

We find the constant deceleration along the path from

(a) Condition at A. With the total acceleration given and at determined, we
can easily compute an and hence � from

Ans.

(b) Condition at B. Since the radius of curvature is infinite at the inflection
point, an � 0 and

Ans.

(c) Condition at C. The normal acceleration becomes

With unit vectors en and et in the n- and t-directions, the acceleration may be
written

where the magnitude of a is

Ans.

The acceleration vectors representing the conditions at each of the three
points are shown for clarification.

[a � �an 

2 � at 

2]    a � �(1.286)2 � (�2.41)2 � 2.73 m/s2

a � 1.286en � 2.41et m/s2

[an � v2/�]    an � (13.89)2/150 � 1.286 m/s2

a � at � �2.41 m/s2

 [an � v2/�]    � � v2/an � (27.8)2/1.785 � 432 m

 [a2 � an 

2 � at 

2]   an 

2 � 32 � (2.41)2 � 3.19   an � 1.785 m/s2

at � 1
2s

 (vC 

2 � vA 

2) � 
(13.89)2 � (27.8)2

2(120)
 � �2.41 m/s2

��v dv � �at ds�   �vC

vA

v dv � at � s

0
ds

 vC � 50 1000
3600

 � 13.89 m/s

 vA � �100 km
h �� 1 h

3600 s��1000 m
km� � 27.8 m/s

150 m

60 m
60 m

B
A

C

A

B

at = –2.41 m/s2 C

an = 1.785 m/s2

at = –2.41 m/s2

a = at = –2.41 m/s2

an = 1.286 m/s2

an = 2.73 m/s2

a = 3 m/s2

+n

+t

+t

+t

+n

�
Helpful Hint

� Actually, the radius of curvature to
the road differs by about 1 m from
that to the path followed by the cen-
ter of mass of the passengers, but we
have neglected this relatively small
difference.
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SAMPLE PROBLEM 2/8

A certain rocket maintains a horizontal attitude of its axis during the pow-
ered phase of its flight at high altitude. The thrust imparts a horizontal compo-
nent of acceleration of 20 ft/sec2, and the downward acceleration component is
the acceleration due to gravity at that altitude, which is g � 30 ft/sec2. At the in-
stant represented, the velocity of the mass center G of the rocket along the 15�

direction of its trajectory is 12,000 mi/hr. For this position determine (a) the ra-
dius of curvature of the flight trajectory, (b) the rate at which the speed v is in-
creasing, (c) the angular rate of the radial line from G to the center of
curvature C, and (d) the vector expression for the total acceleration a of the
rocket.

Solution. We observe that the radius of curvature appears in the expression
for the normal component of acceleration, so we use n- and t-coordinates to de-
scribe the motion of G. The n- and t-components of the total acceleration are ob-
tained by resolving the given horizontal and vertical accelerations into their n-
and t-components and then combining. From the figure we get

(a) We may now compute the radius of curvature from

Ans.

(b) The rate at which v is increasing is simply the t-component of acceleration.

Ans.

(c) The angular rate of line GC depends on v and � and is given by

Ans.

(d) With unit vectors en and et for the n- and t-directions, respectively, the total
acceleration becomes

Ans.a � 23.8en � 27.1et ft/sec2

�̇ � v/� � 
12,000(44/30)

13.01(106)
 � 13.53(10�4) rad/sec[v � ��̇]

�̇

v̇ � 27.1 ft/sec2[v̇ � at]

[an � v2/�]    � � v
2

an
 � 

[(12,000)(44/30)]2

23.8
 � 13.01(106) ft

 at � 30 sin 15� � 20 cos 15� � 27.1 ft/sec2

 an � 30 cos 15� � 20 sin 15� � 23.8 ft/sec2

�̇

n

G

v = 12,000 mi/hr

g = 30 ft /sec2

20 ft /sec2

Horiz.

t

15°

C

ρ

15°
x

ax = 20 ft /sec2

a
g = 30 ft /sec2

·vat =

et

en

v2
—–an = ρ

�

�

Helpful Hints

� Alternatively, we could find the re-
sultant acceleration and then re-
solve it into n- and t-components.

� To convert from mi/hr to ft/sec, multi-

ply by � which

is easily remembered, as 30 mi/hr is
the same as 44 ft/sec.

44 ft/sec
30 mi/hr

5280 ft/mi
3600 sec/hr
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2/100 The driver of the truck has an acceleration of 0.4g
as the truck passes over the top A of the hump in
the road at constant speed. The radius of curvature
of the road at the top of the hump is 98 m, and the
center of mass G of the driver (considered a parti-
cle) is 2 m above the road. Calculate the speed v of
the truck.

Problem 2/100

2/101 A bicycle is placed on a service rack with its wheels
hanging free. As part of a bearing test, the front
wheel is spun at the rate Assume
that this rate is constant and determine the speed v
and magnitude a of the acceleration of point A.

Problem 2/101

2/102 A ship which moves at a steady 20-knot speed 
(1 executes a turn to port by
changing its compass heading at a constant coun-
terclockwise rate. If it requires 60 s to alter course

calculate the magnitude of the acceleration a
of the ship during the turn.

2/103 A train enters a curved horizontal section of track
at a speed of 100 km/h and slows down with con-
stant deceleration to 50 km/h in 12 seconds. An ac-
celerometer mounted inside the train records a
horizontal acceleration of 2 when the train is 
6 seconds into the curve. Calculate the radius of
curvature of the track for this instant.�

 m /s2

90�,

knot � 1.852 km /h)

N

A

O 30°
27″

N � 45 rev /min.

2 m

A
GG

PROBLEMS
Introductory Problems

2/97 Determine the maximum speed for each car if the
normal acceleration is limited to 0.88g. The roadway
is unbanked and level.

Problem 2/97

2/98 A car is traveling around a circular track of 800-ft
radius. If the magnitude of its total acceleration is

at the instant when its speed is 45 mi/hr,
determine the rate at which the car is changing its
speed.

2/99 Six acceleration vectors are shown for the car whose
velocity vector is directed forward. For each acceler-
ation vector describe in words the instantaneous mo-
tion of the car.

Problem 2/99

v
a1

a2

a3
a4

a5

a6

10 ft /sec2

21 m

16 m

BA
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2/104 The two cars A and B enter an unbanked and level
turn. They cross line C-C simultaneously, and each
car has the speed corresponding to a maximum
normal acceleration of 0.9g in the turn. Determine
the elapsed time for each car between its two cross-
ings of line C-C. What is the relative position of the
two cars as the second car exits the turn? Assume
no speed changes throughout.

Problem 2/104

2/105 Revisit the two cars of the previous problem, only
now the track has variable banking—a concept
shown in the figure. Car A is on the unbanked por-
tion of the track and its normal acceleration re-
mains at 0.9g. Car B is on the banked portion of
the track and its normal acceleration is limited to
1.12g. If the cars approach line C-C with speeds
equal to the respective maxima in the turn, deter-
mine the time for each car to negotiate the turn as
delimited by line C-C. What is the relative position
of the two cars as the second car exits the turn?
Assume no speed changes throughout.

Problem 2/105

A
B

θ

72 m

C

b

a

b

a

C

A
B

88 m

2/106 A particle moves along the curved path shown. If
the particle has a speed of 40 ft/sec at A at time 
and a speed of 44 ft/sec at B at time , determine
the average values of the acceleration of the parti-
cle between A and B, both normal and tangent to
the path.

Problem 2/106

2/107 The speed of a car increases uniformly with time
from 50 km/h at A to 100 km/h at B during 10 sec-
onds. The radius of curvature of the hump at A is
40 m. If the magnitude of the total acceleration of
the mass center of the car is the same at B as at A,
compute the radius of curvature of the dip in the
road at B. The mass center of the car is 0.6 m from
the road.

Problem 2/107

0.6 m
A

B

40 m

Bρ

�B

tB = 3.84 sec

tA = 3.64 sec

36°

26°B

A

tB

tA
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Article 2/5 Problems 61

2/110 A satellite travels with constant speed v in a circu-
lar orbit 320 km above the earth’s surface. Calcu-
late v knowing that the acceleration of the satellite
is the gravitational acceleration at its altitude.
(Note: Review Art. 1/5 as necessary and use the
mean value of g and the mean value of the earth’s
radius. Also recognize that v is the magnitude of
the velocity of the satellite with respect to the cen-
ter of the earth.)

2/111 The car is traveling at a speed of 60 mi/hr as it ap-
proaches point A. Beginning at A, the car deceler-
ates at a constant until it gets to point B,
after which its constant rate of decrease of speed is

as it rounds the interchange ramp. Deter-
mine the magnitude of the total car acceleration
(a) just before it gets to B, (b) just after it passes B,
and (c) at point C.

Problem 2/111

2/112 Write the vector expression for the acceleration a
of the mass center G of the simple pendulum in
both n-t and x-y coordinates for the instant when

if � 2 rad/sec and � 4.025 rad/sec2.

Problem 2/112

x

y

n

t

4′ 

θ

G

�̈�̇� � 60�

200′

A B

C

300′

3 ft /sec2

7 ft /sec2

Representative Problems

2/108 The figure shows two possible paths for negotiating
an unbanked turn on a horizontal portion of a race
course. Path A-A follows the centerline of the road
and has a radius of curvature , while
path B-B uses the width of the road to good advan-
tage in increasing the radius of curvature to

. If the drivers limit their speeds in
their curves so that the lateral acceleration does
not exceed 0.8g, determine the maximum speed for
each path.

Problem 2/108

2/109 Consider the polar axis of the earth to be fixed in
space and compute the magnitudes of the velocity
and acceleration of a point P on the earth’s sur-
face at latitude 40° north. The mean diameter of
the earth is 12 742 km and its angular velocity is

.

Problem 2/109

N

S

P

40°

rad /s0.7292(10�4)

ρB = 200 m

ρA = 85 m

A B

A B

�B � 200 m

�A � 85 m
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2/113 The preliminary design for a “small” space station
to orbit the earth in a circular path consists of a
ring (torus) with a circular cross section as shown.
The living space within the torus is shown in sec-
tion A, where the “ground level” is 20 ft from the
center of the section. Calculate the angular speed N
in revolutions per minute required to simulate
standard gravity at the surface of the earth

. Recall that you would be unaware of
a gravitational field if you were in a nonrotating
spacecraft in a circular orbit around the earth.

Problem 2/113

2/114 Magnetic tape is being transferred from reel A to
reel B and passes around idler pulleys C and D. At
a certain instant, point on the tape is in contact
with pulley C and point is in contact with pulley
D. If the normal component of acceleration of is

and the tangential component of accelera-
tion of is at this instant, compute the
corresponding speed v of the tape, the magnitude of
the total acceleration of , and the magnitude of
the total acceleration of .

Problem 2/114

P1
100 mm

50 mmP2

A

C D

B

P2

P1

30 m /s2P2

40 m /s2
P1

P2

P1

Section A

"Ground level"

r

r

240′

20′

N

A

(32.17 ft /sec2)

2/115 The car C increases its speed at the constant rate of
as it rounds the curve shown. If the mag-

nitude of the total acceleration of the car is
at the point A where the radius of curva-

ture is 200 m, compute the speed v of the car at this
point.

Problem 2/115

2/116 A football player releases a ball with the initial con-
ditions shown in the figure. Determine the radius
of curvature of the trajectory (a) just after release
and (b) at the apex. For each case, compute the
time rate of change of the speed.

Problem 2/116

2/117 For the football of the previous problem, determine
the radius of curvature of the path and the time
rate of change of the speed at times sec and

sec, where is the time of release from
the quarterback’s hand.

2/118 A particle moving in the x-y plane has a position
vector given by , where r is in inches
and t is in seconds. Calculate the radius of curva-
ture of the path for the position of the particle
when sec. Sketch the velocity v and the cur-
vature of the path for this particular instant.

t � 2
�

r � 32t2i � 23t3j

t � 0t � 2
t � 1v̇

�

v0 = 80 ft/sec

 = 35°θ

A
C

2.5 m /s2

1.5 m /s2

62 Chapter 2 Kinematics of Particles

c02.qxd  2/8/12  7:11 PM  Page 62



Article 2/5 Problems 63

2/121 At a certain point in the reentry of the space shut-
tle into the earth’s atmosphere, the total accelera-
tion of the shuttle may be represented by two
components. One component is the gravitational
acceleration at this altitude. The sec-
ond component equals due to atmos-
pheric resistance and is directed opposite to the
velocity. The shuttle is at an altitude of 48.2 km
and has reduced its orbital velocity of 28 300 km/h
to 15 450 km/h in the direction . For this
instant, calculate the radius of curvature of the
path and the rate at which the speed is changing.

Problem 2/121

2/122 The particle P starts from rest at point A at time
and changes its speed thereafter at a con-

stant rate of 2g as it follows the horizontal path
shown. Determine the magnitude and direction
of its total acceleration (a) just before point B,
(b) just after point B, and (c) as it passes point C.
State your directions relative to the x-axis shown
(CCW positive).

Problem 2/122

x

A BP

C

3 m

3.5 m

t � 0

v
θ

v̇
�

� � 1.50�

12.90 m /s2
g � 9.66 m /s2

2/119 The design of a camshaft-drive system of a four-
cylinder automobile engine is shown. As the engine
is revved up, the belt speed v changes uniformly
from 3 m/s to 6 m/s over a two-second interval. Cal-
culate the magnitudes of the accelerations of points

and halfway through this time interval.

Problem 2/119

2/120 A small particle P starts from point O with a negli-
gible speed and increases its speed to a value

, where y is the vertical drop from O.
When , determine the n-component of ac-
celeration of the particle. (See Art. C/10 for the ra-
dius of curvature.)

Problem 2/120

v

Horizontal

P

O
x

y = (  )
2
 ft

y

Vertical

x––
20

x � 50 ft
v � �2gy

v

P2

P1

60 mm

Camshaft
sprocket

Crankshaft
sprocket

Intermediate
sprocket

Drive belt
tensioner

P2P1
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2/123 For the conditions of the previous problem, deter-
mine the magnitude and direction of the total ac-
celeration of the particle P at times and

.

2/124 Race car A follows path a-a while race car B follows
path b-b on the unbanked track. If each car has a
constant speed limited to that corresponding to a
lateral (normal) acceleration of 0.8g, determine the
times and for both cars to negotiate the turn
as delimited by the line C-C.

Problem 2/124

2/125 The mine skip is being hauled to the surface over
the curved track by the cable wound around the
30-in. drum, which turns at the constant clockwise
speed of 120 rev/min. The shape of the track is de-
signed so that , where x and y are in feet.
Calculate the magnitude of the total acceleration of
the skip as it reaches a level of 2 ft below the top.
Neglect the dimensions of the skip compared with
those of the path. Recall that the radius of curva-
ture is given by

Problem 2/125

x

y

30″

� � 
�1 � �dy

dx�
2�3/2

d2y

dx2

y � x2 /40

72 m

C

C

ABa
b

88 m

a

b

tBtA

t � 1.2 s
t � 0.8 s

2/126 An earth satellite which moves in the elliptical
equatorial orbit shown has a velocity v in space of
17 970 km/h when it passes the end of the semi-
minor axis at A. The earth has an absolute surface
value of g of 9.821 m/s2 and has a radius of 6371 km.
Determine the radius of curvature of the orbit at A.

Problem 2/126

2/127 A particle which moves in two-dimensional curvi-
linear motion has coordinates in millimeters which
vary with time t in seconds according to 
and . For time , determine the ra-
dius of curvature of the particle path and the mag-
nitudes of the normal and tangential accelerations.

2/128 In a handling test, a car is driven through the
slalom course shown. It is assumed that the car
path is sinusoidal and that the maximum lateral
acceleration is 0.7g. If the testers wish to design a
slalom through which the maximum speed is
80 km/h, what cone spacing L should be used?

Problem 2/128

Sinusoidal

v

L

3 m
3 m

t � 3 sy � 2t3 � 6
x � 5t2 � 4

16 000 km

13 860 km

8000
km

A

r

v

�

64 Chapter 2 Kinematics of Particles

�

c02.qxd  2/8/12  7:11 PM  Page 64



Article 2/5 Problems 65

2/129 The pin P is constrained to move in the slotted
guides which move at right angles to one another.
At the instant represented, A has a velocity to the
right of 0.2 m/s which is decreasing at the rate of
0.75 m/s each second. At the same time, B is mov-
ing down with a velocity of 0.15 m/s which is de-
creasing at the rate of 0.5 m/s each second. For this
instant determine the radius of curvature of the
path followed by P. Is it possible to also determine
the time rate of change of ?

Problem 2/129

PB

A

�

�

2/130 A particle which moves with curvilinear motion has
coordinates in meters which vary with time t in sec-
onds according to and .
Determine the coordinates of the center of curva-
ture C at time .t � 1 s

y � 5t � 2x � 2t2 � 3t � 1

��
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2/6 Polar Coordinates (r-�)
We now consider the third description of plane curvilinear motion,

namely, polar coordinates where the particle is located by the radial dis-
tance r from a fixed point and by an angular measurement � to the ra-
dial line. Polar coordinates are particularly useful when a motion is
constrained through the control of a radial distance and an angular po-
sition or when an unconstrained motion is observed by measurements of
a radial distance and an angular position.

Figure 2/13a shows the polar coordinates r and � which locate a
particle traveling on a curved path. An arbitrary fixed line, such as the
x-axis, is used as a reference for the measurement of �. Unit vectors er

and e� are established in the positive r- and �-directions, respectively.
The position vector r to the particle at A has a magnitude equal to the
radial distance r and a direction specified by the unit vector er. Thus,
we express the location of the particle at A by the vector

Time Derivatives of the Unit Vectors
To differentiate this relation with respect to time to obtain v � and

a � we need expressions for the time derivatives of both unit vectors er

and e�. We obtain and in exactly the same way we derived in the
preceding article. During time dt the coordinate directions rotate through
the angle d�, and the unit vectors also rotate through the same angle
from er and e� to and , as shown in Fig. 2/13b. We note that the vec-
tor change der is in the plus �-direction and that de� is in the minus 
r-direction. Because their magnitudes in the limit are equal to the unit
vector as radius times the angle d� in radians, we can write them as 
der � e� d� and de� � �er d�. If we divide these equations by d�, we have

If, on the other hand, we divide them by dt, we have der/dt � (d�/dt)e�

and de�/dt � �(d�/dt)er, or simply

(2/12)

Velocity
We are now ready to differentiate r � rer with respect to time. Using

the rule for differentiating the product of a scalar and a vector gives

With the substitution of from Eq. 2/12, the vector expression for the
velocity becomes

(2/13)v � ṙer � r �̇e�

ėr

v � ṙ � ṙer � rėr

 ėr � �̇e�   and   ė� � � �̇er

der

d�
 � e�   and   

de�

d�
 � �er

e��e�r

ėtė�ėr

v̇,
ṙ

r � rer

66 Chapter 2 Kinematics of Particles

Figure 2/13

e   θ

θ

θ

er

e   θ

de      θ

e′   θ

er

e′r der

r

r

x

y

(a)

(b)

A

O

– r

Path

   θ+

  θd

  θd

c02.qxd  2/8/12  7:11 PM  Page 66



where vr �

v� �

v �

The r-component of v is merely the rate at which the vector r
stretches. The �-component of v is due to the rotation of r.

Acceleration
We now differentiate the expression for v to obtain the acceleration

a � Note that the derivative of will produce three terms, since
all three factors are variable. Thus,

Substitution of and from Eq. 2/12 and collecting terms give

(2/14)

where ar �

a� �

a �

We can write the �-component alternatively as

which can be verified easily by carrying out the differentiation. This
form for a� will be useful when we treat the angular momentum of par-
ticles in the next chapter.

Geometric Interpretation
The terms in Eq. 2/14 can be best understood when the geometry of

the physical changes can be clearly seen. For this purpose, Fig. 2/14a is
developed to show the velocity vectors and their r- and �-components at
position A and at position A� after an infinitesimal movement. Each of
these components undergoes a change in magnitude and direction as
shown in Fig. 2/14b. In this figure we see the following changes:

(a) Magnitude Change of vr . This change is simply the increase in
length of vr or dvr � and the corresponding acceleration term is

� in the positive r-direction.

(b) Direction Change of vr . The magnitude of this change is seen
from the figure to be vr d� � and its contribution to the accelera-
tion becomes � which is in the positive �-direction.

(c) Magnitude Change of v�. This term is the change in length of
v� or and its contribution to the acceleration is � �

and is in the positive �-direction.
ṙ �̇r �̈d(r �̇ )/dtd(r �̇ ),

ṙ �̇ṙ d�/dt
ṙ d�,

r̈dṙ/dt
dṙ,

a� � 1
r
 d
dt

 (r2 �̇ )

�ar 

2 � a� 

2

r �̈  � 2 ṙ �̇

r̈ � r �̇ 2

a � ( r̈ � r �̇ 2)er � (r �̈  � 2 ṙ �̇)e�

ė�ėr

a � v̇ � ( r̈er � ṙ ėr) � ( ṙ �̇e� � r �̈e� � r �̇ ė�)

r �̇e�v̇.

�vr 

2 � v� 

2

r �̇

ṙ

Figure 2/14

Article 2/6 Polar Coordinates (r-�) 67

  θd
  θd

  θd  θr  
·

v    θ

v   θ vr

dvr

vr

v′

v

A

Path

A
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·
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(d) Direction Change of v�. The magnitude of this change is 
v� d� � and the corresponding acceleration term is observed to
be � in the negative r-direction.

Collecting terms gives ar � � and a� � � as obtained
previously. We see that the term is the acceleration which the particle
would have along the radius in the absence of a change in �. The term

is the normal component of acceleration if r were constant, as in
circular motion. The term is the tangential acceleration which the
particle would have if r were constant, but is only a part of the accelera-
tion due to the change in magnitude of v� when r is variable. Finally, the
term is composed of two effects. The first effect comes from that
portion of the change in magnitude of v� due to the change in r,
and the second effect comes from the change in direction of vr. The term

represents, therefore, a combination of changes and is not so easily
perceived as are the other acceleration terms.

Note the difference between the vector change dvr in vr and the
change dvr in the magnitude of vr. Similarly, the vector change dv� is
not the same as the change dv� in the magnitude of v�. When we divide
these changes by dt to obtain expressions for the derivatives, we see
clearly that the magnitude of the derivative �dvr/dt� and the derivative of
the magnitude dvr/dt are not the same. Note also that ar is not and
that a� is not 

The total acceleration a and its components are represented in Fig.
2/15. If a has a component normal to the path, we know from our analy-
sis of n- and t-components in Art. 2/5 that the sense of the n-component
must be toward the center of curvature.

Circular Motion
For motion in a circular path with r constant, the components of

Eqs. 2/13 and 2/14 become simply

This description is the same as that obtained with n- and t-components,
where the �- and t-directions coincide but the positive r-direction is in
the negative n-direction. Thus, ar � �an for circular motion centered at
the origin of the polar coordinates.

The expressions for ar and a� in scalar form can also be obtained by
direct differentiation of the coordinate relations x � r cos � and y � r sin �
to obtain ax � and ay � Each of these rectangular components of ac-
celeration can then be resolved into r- and �-components which, when
combined, will yield the expressions of Eq. 2/14.

ÿ.ẍ

 ar � �r �̇ 2    a� � r �̈

 vr � 0  v� � r �̇

v̇�.
v̇r

2 ṙ �̇

d(r �̇ )
2 ṙ �̇

r �̈

�r �̇ 2

r̈
2 ṙ �̇r �̈r �̇ 2r̈

r �̇ 2r �̇ (d�/dt)
r �̇  d�,
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Article 2/6 Polar Coordinates (r-�) 69

B
O

θ

A
r

 = 65.3°θ

r = 0.56 m

O

v = 0.479 m/s

vr = 0.24 m/s

v   = 0.414 m/sθ B

 = 65.3°θ
O

a = 0.601 m/s2 ar = –0.227 m/s2

a  = 0.557 m/s2
θ

B

�

SAMPLE PROBLEM 2/9

Rotation of the radially slotted arm is governed by � � 0.2t � 0.02t3, where
� is in radians and t is in seconds. Simultaneously, the power screw in the arm
engages the slider B and controls its distance from O according to r � 0.2 �

0.04t2, where r is in meters and t is in seconds. Calculate the magnitudes of the
velocity and acceleration of the slider for the instant when t � 3 s.

Solution. The coordinates and their time derivatives which appear in the ex-
pressions for velocity and acceleration in polar coordinates are obtained first and
evaluated for t � 3 s.

The velocity components are obtained from Eq. 2/13 and for t � 3 s are

Ans.

The velocity and its components are shown for the specified position of the arm.
The acceleration components are obtained from Eq. 2/14 and for t � 3 s are

Ans.

The acceleration and its components are also shown for the 65.3� po-
sition of the arm.

Plotted in the final figure is the path of the slider B over the time
interval 0 � t � 5 s. This plot is generated by varying t in the given ex-
pressions for r and �. Conversion from polar to rectangular coordinates
is given by

Helpful Hint

� We see that this problem is an example of constrained motion where the cen-
ter B of the slider is mechanically constrained by the rotation of the slotted
arm and by engagement with the turning screw.

x � r cos �   y � r sin �

 a � �(�0.227)2 � (0.557)2 � 0.601 m/s2[a � �ar 

2 � a� 

2]

 a� � 0.56(0.36) � 2(0.24)(0.74) � 0.557 m/s2[a� � r �̈  � 2 ṙ �̇ ]

 ar � 0.08 � 0.56(0.74)2 � �0.227 m/s2[ar � r̈ � r �̇ 2]

 v � �(0.24)2 � (0.414)2 � 0.479 m/s[v � �vr 

2 � v� 

2]

 v� � 0.56(0.74) � 0.414 m/s[v� � r �̇ ]

 vr � 0.24 m/s[vr � ṙ]

 �̈  � 0.12t  �̈ 3 � 0.12(3) � 0.36 rad/s2

 �̇  � 0.2 � 0.06t2  �̇ 3 � 0.2 � 0.06(32) � 0.74 rad/s

or �3 � 1.14(180/�) � 65.3�

 � � 0.2t � 0.02t3  �3 � 0.2(3) � 0.02(33) � 1.14 rad

 r̈ � 0.08  r̈3 � 0.08 m/s2

 ṙ � 0.08t  ṙ3 � 0.08(3)� 0.24 m/s

 r � 0.2 � 0.04t2    r3 � 0.2 � 0.04(32) � 0.56 m

–1.5 –1 –0.5 0

t = 3 s

t = 0

t = 5 s

r3 = 0.56 m r3

0.5

1

0.5

0

– 0.5

x, m

y, m   3 = 65.3°θ   3θ
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SAMPLE PROBLEM 2/10

A tracking radar lies in the vertical plane of the path of a rocket which is
coasting in unpowered flight above the atmosphere. For the instant when � �

30�, the tracking data give r � 25(104) ft, � 4000 ft/sec, and � 0.80 deg/sec.
The acceleration of the rocket is due only to gravitational attraction and for its
particular altitude is 31.4 ft/sec2 vertically down. For these conditions determine
the velocity v of the rocket and the values of and .

Solution. The components of velocity from Eq. 2/13 are

Ans.

Since the total acceleration of the rocket is g � 31.4 ft/sec2 down, we can
easily find its r- and �-components for the given position. As shown in the figure,
they are

We now equate these values to the polar-coordinate expressions for ar and a�

which contain the unknowns and Thus, from Eq. 2/14

Ans.

Ans. �̈  � �3.84(10�4) rad/sec2

 15.70 � 25(104) �̈  � 2(4000)�0.80 �
180�[a� � r �̈  � 2 ṙ �̇ ]

 r̈ � 21.5 ft/sec2

 �27.2 � r̈ � 25(104)�0.80 �
180�

2
[ar � r̈ � r �̇ 2]

�̈ .r̈

 a� � 31.4 sin 30� � 15.70 ft/sec2

 ar � �31.4 cos 30� � �27.2 ft/sec2

 v � �(4000)2 � (3490)2 � 5310 ft/sec[v � �vr 

2 � v� 

2]

 v� � 25(104)(0.80)� �
180� � 3490 ft/sec[v� � r �̇ ]

 vr � 4000 ft/sec[vr � ṙ]

�̈r̈

�̇ṙ
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θ

θ

r

+r

+

 = 30°θ

v = 5310 ft /sec

vr = 4000 ft /sec

v   = 3490 ft /secθ

 = 30°θ
a = g = 31.4 ft /sec2

ar = –27.2 ft /sec2

a  = 15.70 ft /sec2
θ

Helpful Hints

� We observe that the angle � in polar
coordinates need not always be taken
positive in a counterclockwise sense.

� Note that the r-component of accel-
eration is in the negative r-direction,
so it carries a minus sign.

� We must be careful to convert from
deg/sec to rad/sec.

�̇

�

�

�
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PROBLEMS
Introductory Problems

2/131 The position of the slider P in the rotating slotted
arm OA is controlled by a power screw as shown. At
the instant represented, � 8 rad/s and � �20
rad/s2. Also at this same instant, ,

, and . For this instant deter-
mine the r- and -components of the acceleration
of P.

Problem 2/131

2/132 A model airplane flies over an observer O with con-
stant speed in a straight line as shown. Determine
the signs (plus, minus, or zero) for r, , , , , and

for each of the positions A, B, and C.

Problem 2/132

x

y

B

O

r

AvC

θ

�̈

�̇�r̈ṙ

θ

θ

r

A

P

r

O

�

r̈ � 0ṙ � �300 mm /s
r � 200 mm

�̈�̇
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2/133 A car P travels along a straight road with a con-
stant speed . At the instant when the
angle , determine the values of in ft/sec
and in deg/sec.

Problem 2/133

2/134 The sphere P travels in a straight line with speed
. For the instant depicted, determine the

corresponding values of and as measured rela-
tive to the fixed Oxy coordinate system.

Problem 2/134

2/135 If the 10-m/s speed of the previous problem is con-
stant, determine the values of and at the in-
stant shown.

�̈r̈

x

y

P

r

O

4 m

5 m

30°

v

θ

�̇ṙ
v � 10 m /s

r

O

100′

v

x

y

P

θ

�̇

ṙ� � 60�

v � 65 mi /hr
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2/139 An internal mechanism is used to maintain a con-
stant angular rate about the z-axis
of the spacecraft as the telescopic booms are ex-
tended at a constant rate. The length l is varied
from essentially zero to 3 m. The maximum accel-
eration to which the sensitive experiment modules
P may be subjected is . Determine the
maximum allowable boom extension rate .

Problem 2/139

2/140 The radial position of a fluid particle P in a certain
centrifugal pump with radial vanes is approxi-
mated by cosh Kt, where t is time and 
is the constant angular rate at which the impeller
turns. Determine the expression for the magnitude
of the total acceleration of the particle just prior to
leaving the vane in terms of , R, and K.

Problem 2/140

Fixed
reference

axis

R

r

r0

θ

P

r0

�̇K �r � r0

l

l

z

P

P

1.2 m1.2 m

Ω

l̇
0.011 m /s2

� � 0.05 rad /s
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2/136 As the hydraulic cylinder rotates around O, the ex-
posed length l of the piston rod P is controlled by
the action of oil pressure in the cylinder. If the
cylinder rotates at the constant rate 
and l is decreasing at the constant rate of 150
mm/s, calculate the magnitudes of the velocity v
and acceleration a of end B when .

Problem 2/136

2/137 The drag racer P starts from rest at the start line S
and then accelerates along the track. When it has
traveled 100 m, its speed is 45 m/s. For that in-
stant, determine the values of and relative to
axes fixed to an observer O in the grandstand G as
shown.

Problem 2/137

2/138 In addition to the information supplied in the pre-
vious problem, it is known that the drag racer is ac-
celerating forward at when it has traveled
100 m from the start line S. Determine the corre-
sponding values of and .�̈r̈

10 m /s2

G

r

S
P

35 m

O
θ

�̇ṙ

375 mm

θ
O

l

B

l � 125 mm

� 60 deg /s�̇
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2/141 The slider P can be moved inward by means of the
string S, while the slotted arm rotates about point
O. The angular position of the arm is given by 

, where is in radians and t is in seconds. 

The slider is at when and thereafter
is drawn inward at the constant rate of 0.2 m/s.
Determine the magnitude and direction (expressed
by the angle relative to the x-axis) of the velocity
and acceleration of the slider when .

Problem 2/141

2/142 The piston of the hydraulic cylinder gives pin A a
constant velocity in the direction
shown for an interval of its motion. For the instant
when , determine , , , and where

.

Problem 2/142

6 ″θ
O

A

r

v

r � OA
�̈�̇r̈ṙ� � 60�

v � 3 ft /sec

r P

x

S

O

y

θ

t � 4 s
�

t � 0r � 1.6 m

�0.8t � t2

20

� �
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2/143 The rocket is fired vertically and tracked by the
radar station shown. When reaches 60°, other cor-
responding measurements give the values 

, , and .
Calculate the magnitudes of the velocity and accel-
eration of the rocket at this position.

Problem 2/143

2/144 A hiker pauses to watch a squirrel P run up a par-
tially downed tree trunk. If the squirrel’s speed is

when the position , determine
the corresponding values of and .

Problem 2/144

r s

P

O

A

v

θ

20 m

60°

�̇ṙ
s � 10 mv � 2 m /s

r

θ

a

v

�̇ � 0.02 rad /secr̈ � 70 ft /sec230,000 ft
r �

�
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Representative Problems

2/147 Instruments located at O are part of the ground-
traffic control system for a major airport. At a cer-
tain instant during the takeoff roll of the aircraft P,
the sensors indicate the angle and the
range rate . Determine the corre-
sponding speed v of the aircraft and the value of .

Problem 2/147

2/148 In addition to the information supplied in the pre-
vious problem, the sensors at O indicate that

. Determine the corresponding accel-
eration a of the aircraft and the value of .

2/149 The cam is designed so that the center of the roller
A which follows the contour moves on a limaçon de-
fined by , where . If the cam
does not rotate, determine the magnitude of the
total acceleration of A in terms of if the slotted
arm revolves with a constant counterclockwise
angular rate .

Problem 2/149

r

A

O

θ

� 	�̇

�

b � cr � b � c cos �

�̈

r̈ � 14 ft /sec2

20°

x

500′

O

s

r

P

S

θ

v

�̇

ṙ � 140 ft /sec
� � 50�
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2/145 A jet plane flying at a constant speed v at an alti-
tude is being tracked by radar located at
O directly below the line of flight. If the angle is
decreasing at the rate of 0.020 rad/s when ,
determine the value of at this instant and the
magnitude of the velocity v of the plane.

Problem 2/145

2/146 A projectile is launched from point A with the ini-
tial conditions shown. With the conventional defini-
tions of r- and -coordinates relative to the Oxy
coordinate system, determine r, , , , , and at
the instant just alter launch. Neglect aerodynamic
drag.

Problem 2/146

x

y

v0

O A

d α

�̈r̈�̇ṙ�

�

O

h
r

θ

v

r̈
� � 60�

�

h � 10 km
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2/150 The slotted arm OA forces the small pin to move in
the fixed spiral guide defined by . Arm OA
starts from rest at and has a constant
counterclockwise angular acceleration . De-
termine the magnitude of the acceleration of the
pin P when .

Problem 2/150

2/151 A rocket is tracked by radar from its launching
point A. When it is 10 seconds into its flight, the
following radar measurements are recorded:

, , , , 
, and . For this

instant determine the angle between the horizon-
tal and the direction of the trajectory of the rocket
and find the magnitudes of its velocity v and accel-
eration a.

Problem 2/151

θ

A

r

r

θ

β

�

� �0.0341 rad /s2�̈� 0.0788 rad /s�̇

� � 22�r̈ � 4.66 m /s2ṙ � 500 m /sr � 2200 m

r

A

P

O

θ

� � 3� /4

� ��̈

� � � /4
r � K�
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2/152 For an interval of motion the drum of radius b
turns clockwise at a constant rate in radians per
second and causes the carriage P to move to the
right as the unwound length of the connecting
cable is shortened. Use polar coordinates r and 
and derive expressions for the velocity v and accel-
eration a of P in the horizontal guide in terms of
the angle . Check your solution by a direct differ-
entiation with time of the relation .

Problem 2/152

2/153 Car A is moving with constant speed v on the
straight and level highway. The police officer in the
stationary car P attempts to measure the speed v
with radar. If the radar measures “line-of sight” ve-
locity, what velocity will the officer observe?
Evaluate your general expression for the values

, , and , and draw
any appropriate conclusions.

Problem 2/153

L

A v
D

P 

D � 20 ftL � 500 ftv � 70 mi /hr

v�

θ

ω

r

P

h

x

b

x2 � h2 � r2
�

�
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2/156 The member OA of the industrial robot telescopes
and pivots about the fixed axis at point O. At 
the instant shown, , , 

,  ,  ,  a n d  
. Determine the magnitudes of the velocity

and acceleration of joint A of the robot. Also, sketch
the velocity and acceleration of A and determine
the angles which these vectors make with the posi-
tive x-axis. The base of the robot does not revolve
about a vertical axis.

Problem 2/156

2/157 The robot arm is elevating and extending simulta-
neously. At a given instant, , 
constant, , , and .
Compute the magnitudes of the velocity v and
acceleration a of the gripped part P. In addition,
express v and a in terms of the unit vectors i and j.

Problem 2/157

l

0.75 m

y

P

θ
O x

l̈  � �0.3 m /s2l̇  � 0.2 m /sl � 0.5 m
�̇  � 10 deg /s �� � 30�

P

A

xO

y
15°

1.1 m

0.9 m

θ

�6 m /s2
OÄ �OȦ � 0.5 m/sOA � 0.9 mrad /s2
� 0.8�̈� 1.2 rad /s�̇� � 60�

76 Chapter 2 Kinematics of Particles

2/154 The hydraulic cylinder gives pin A a constant veloc-
ity along its axis for an interval of mo-
tion and, in turn, causes the slotted arm to rotate
about O. Determine the values of , , and for
the instant when . (Hint: Recognize that all
acceleration components are zero when the velocity
is constant.)

Problem 2/154

2/155 The particle P moves along the parabolic surface
shown. When , the particle speed is

. For this instant determine the corre-
sponding values of r, , , and . Both x and y are
in meters.

Problem 2/155

x

y
y = 4x2

P

r

O

θ

�̇�ṙ
v � 5 m /s

x � 0.2 m

r

v
A

300 mm

30°O

θ

� � 30�

�̈r̈ṙ

v � 2 m /s
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2/158 During a portion of a vertical loop, an airplane flies
in an arc of radius with a constant speed

. When the airplane is at A, the angle
made by v with the horizontal is , and radar
tracking gives and . Calculate ,

, , and for this instant.

Problem 2/158

2/159 The particle P starts from rest at point O at time
, and then undergoes a constant tangential ac-

celeration as it negotiates the circular slot in the
counterclockwise direction. Determine r, , , and

as functions of time over the first revolution.

Problem 2/159

x

y

r

O

P

b

θ

�̇

�ṙ
at

t � 0

r

r

A

B

v

θ

θ

β

�̈arv�

vr� � 30�r � 800 m
� � 30�

v � 400 km /h
� � 600 m
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2/160 The low-flying aircraft P is traveling at a constant
speed of 360 km/h in the holding circle of radius 
3 km. For the instant shown, determine the quanti-
ties r, , , , , and relative to the fixed x-y coor-
dinate system, which has its origin on a mountaintop
at O. Treat the system as two-dimensional.

Problem 2/160

2/161 Pin A moves in a circle of 90-mm radius as crank
AC revolves at the constant rate . The
slotted link rotates about point O as the rod at-
tached to A moves in and out of the slot. For the
position , determine , , , and .

Problem 2/161

300 mm

r r

θ

θ

β

A

90 mm

CO

�̈�̇r̈ṙ� � 30�

�̇ � 60 rad /s

θ

16 km

12 km

3 km
r

P

C

O

v
y

x

�̈�̇�r̈ṙ
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2/164 At time , the baseball player releases a ball
with the initial conditions shown in the figure.
Determine the quantities r, , , , , and , all
relative to the coordinate system shown, at
time .

Problem 2/164

6′

= 30°

v0 = 100 ft/sec

y

x

α

t � 0.5 sec
x-y

�̈�̇�r̈ṙ

t � 0
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2/162 A fireworks shell P fired in a vertical trajectory has
a y-acceleration given by , where the
latter term is due to aerodynamic drag. If the speed
of the shell is 15 m/s at the instant shown, deter-
mine the corresponding values of r, , , , , and .
The drag parameter k has a constant value of

.

Problem 2/162

2/163 An earth satellite traveling in the elliptical orbit
shown has a velocity as it passes
the end of the semiminor axis at A. The accelera-
tion of the satellite at A is due to gravitational
attraction and is 
directed from A to O. For position A calculate the
values of , , , and .

Problem 2/163

8400 mi

7275 mi

4200
mi

A

P
O

r

v

θ

�̈�̇r̈ṙ

32.23[3959 /8400]2 � 7.159 ft /sec2

v � 12,149 mi /hr

200 m

100 m

y

x

r

P

θ
O

v

0.01 m�1

�̈�̇�r̈ṙ

ay � �g � kv2
�
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2/7 Space Curvilinear Motion
The general case of three-dimensional motion of a particle along a

space curve was introduced in Art. 2/1 and illustrated in Fig. 2/1. Three
coordinate systems, rectangular (x-y-z), cylindrical (r-�-z), and spherical
(R-�-�), are commonly used to describe this motion. These systems are
indicated in Fig. 2/16, which also shows the unit vectors for the three co-
ordinate systems.*

Before describing the use of these coordinate systems, we note that
a path-variable description, using n- and t-coordinates, which we devel-
oped in Art. 2/5, can be applied in the osculating plane shown in Fig.
2/1. We defined this plane as the plane which contains the curve at the
location in question. We see that the velocity v, which is along the tan-
gent t to the curve, lies in the osculating plane. The acceleration a also
lies in the osculating plane. As in the case of plane motion, it has a com-
ponent at � tangent to the path due to the change in magnitude of
the velocity and a component an � v2/� normal to the curve due to the
change in direction of the velocity. As before, � is the radius of curva-
ture of the path at the point in question and is measured in the osculat-
ing plane. This description of motion, which is natural and direct for
many plane-motion problems, is awkward to use for space motion be-
cause the osculating plane continually shifts its orientation. We will
confine our attention, therefore, to the three fixed coordinate systems
shown in Fig. 2/16.

Rectangular Coordinates (x-y-z)
The extension from two to three dimensions offers no particular dif-

ficulty. We merely add the z-coordinate and its two time derivatives to
the two-dimensional expressions of Eqs. 2/6 so that the position vector
R, the velocity v, and the acceleration a become

(2/15)

Note that in three dimensions we are using R in place of r for the posi-
tion vector.

Cylindrical Coordinates (r-�-z)
If we understand the polar-coordinate description of plane motion,

then there should be no difficulty with cylindrical coordinates because
all that is required is the addition of the z-coordinate and its two time
derivatives. The position vector R to the particle for cylindrical coordi-
nates is simply

R � rer � zk

 a � v̇ � R̈ � ẍi � ÿj � z̈k

 v � Ṙ � ẋi � ẏj � żk

 R � xi � yj � zk

v̇
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Figure 2/16

*In a variation of spherical coordinates commonly used, angle � is replaced by its
complement.

z

zR

P

k

i

j

er

eR

O r

x

y

R

θ

θ

φ

eφ

eθ

eθφ
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In place of Eq. 2/13 for plane motion, we can write the velocity as

(2/16)

where vr �

v� �

vz �

v �

Similarly, the acceleration is written by adding the z-component to Eq.
2/14, which gives us

(2/17)

where ar �

a� �

az �

a �

Whereas the unit vectors er and e� have nonzero time derivatives due
to the changes in their directions, we note that the unit vector k in
the z-direction remains fixed in direction and therefore has a zero
time derivative.

Spherical Coordinates (R-�-�)
Spherical coordinates R, �, � are utilized when a radial distance and

two angles are utilized to specify the position of a particle, as in the case
of radar measurements, for example. Derivation of the expression for
the velocity v is easily obtained, but the expression for the acceleration
a is more complex because of the added geometry. Consequently, only
the results will be cited here.* First we designate unit vectors eR, e�, e�

as shown in Fig. 2/16. Note that the unit vector eR is in the direction in
which the particle P would move if R increases but � and � are held con-
stant. The unit vector e� is in the direction in which P would move if �
increases while R and � are held constant. Finally, the unit vector e� is
in the direction in which P would move if � increases while R and � are
held constant. The resulting expressions for v and a are

(2/18)

where vR �

v� �

v� � R�̇

R �̇  cos �

Ṙ

v � vReR � v�e� � v�e�

�ar 

2 � a� 

2 � az 

2

z̈

r �̈  � 2 ṙ �̇  � 1
r
 d
dt

 (r2 �̇ )

r̈ � r �̇ 2

a � ( r̈ � r �̇ 2)er � (r �̈  � 2 ṙ �̇)e� � z̈k

�vr 

2 � v� 

2 � vz 

2

ż

r �̇

ṙ

v � ṙer � r �̇e� � żk
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*For a complete derivation of v and a in spherical coordinates, see the first author’s book
Dynamics, 2nd edition, 1971, or SI Version, 1975 (John Wiley & Sons, Inc.).
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and

(2/19)

where aR �

a� �

a� �

Linear algebraic transformations between any two of the three
coordinate-system expressions for velocity or acceleration can be devel-
oped. These transformations make it possible to express the motion
component in rectangular coordinates, for example, if the components
are known in spherical coordinates, or vice versa.* These transforma-
tions are easily handled with the aid of matrix algebra and a simple
computer program.

1
R

 d
dt

 (R2�̇) � R �̇ 2 sin � cos �

cos �
R

 d
dt

 (R2 �̇ ) � 2R �̇ �̇ sin � 

R̈ � R�̇2 � R �̇ 2 cos2 �

a � aReR � a�e� � a�e�
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*These coordinate transformations are developed and illustrated in the first author’s book
Dynamics, 2nd edition, 1971, or SI Version, 1975 (John Wiley & Sons, Inc.).

A portion of the track of this amusement-park ride is in the shape of a
helix whose axis is horizontal.

©
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SAMPLE PROBLEM 2/11

The power screw starts from rest and is given a rotational speed which in-
creases uniformly with time t according to � kt, where k is a constant. Deter-
mine the expressions for the velocity v and acceleration a of the center of ball A
when the screw has turned through one complete revolution from rest. The lead
of the screw (advancement per revolution) is L.

Solution. The center of ball A moves in a helix on the cylindrical surface of ra-
dius b, and the cylindrical coordinates r, �, z are clearly indicated.

Integrating the given relation for gives � � �� � For one
revolution from rest we have

giving

Thus, the angular rate at one revolution is

The helix angle 
 of the path followed by the center of the ball governs the
relation between the �- and z-components of velocity and is given by tan 
 �

L/(2�b). Now from the figure we see that v� � v cos 
. Substituting v� � �

from Eq. 2/16 gives v � v�/cos 
 � With cos 
 obtained from tan 
 and
with � we have for the one-revolution position

Ans.

The acceleration components from Eq. 2/17 become

Now we combine the components to give the magnitude of the total acceler-
ation, which becomes

Ans.

 � (b tan 
) �̈  � b L
2�b

 k � kL
2�

 az � d
dt

 (vz) � d
dt

 (v� tan 
) � d
dt

 (b �̇  tan 
)[az � z̈  � v̇z]

 a� � bk � 2(0)(2��k) � bk[a� � r �̈  � 2 ṙ �̇ ]

 ar � 0 � b(2��k)2 � �4b�k[ar � r̈ � r �̇ 2]

2��k,�̇

b �̇ /cos 
.
b �̇r �̇

�̇  � kt � k(2��/k) � 2��k

t � 2��/k

2� � 12 

kt2

�  �̇  dt � 12 

kt2.�̇

�̇

�̇
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z

b

r
A

2r0

θ
·

r Aar

az

θ

aθ

γ

z

v

�

�

�

Helpful Hints

� We must be careful to divide the
lead L by the circumference 2�b and
not the diameter 2b to obtain tan 
.
If in doubt, unwrap one turn of the
helix traced by the center of the ball.

� Sketch a right triangle and recall
that for tan � � a/b the cosine of �

becomes 

� The negative sign for ar is consistent
with our previous knowledge that
the normal component of accelera-
tion is directed toward the center of
curvature.

b/�a2 � b2.
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SAMPLE PROBLEM 2/12

An aircraft P takes off at A with a velocity v0 of 250 km/h and
climbs in the vertical y�-z� plane at the constant 15� angle with an
acceleration along its flight path of 0.8 m/s2. Flight progress is
monitored by radar at point O. (a) Resolve the velocity of P into
cylindrical-coordinate components 60 seconds after takeoff and find

and for that instant. (b) Resolve the velocity of the aircraft
P into spherical-coordinate components 60 seconds after takeoff
and find and for that instant.

Solution. (a) The accompanying figure shows the velocity and ac-
celeration vectors in the y�-z� plane. The takeoff speed is

and the speed after 60 seconds is

The distance s traveled after takeoff is

The y-coordinate and associated angle � are

From the figure (b) of x-y projections, we have

Ans.

So Ans.

Finally Ans.

(b) Refer to the accompanying figure (c), which shows the x-y plane
and various velocity components projected into the vertical plane con-
taining r and R. Note that

From the figure,

Ans.

Ans.

Ans.�̇ � 6.95
6360

 � 1.093(10�3) rad/s

v� � R�̇ � 30.4 cos 13.19� � 99.2 sin 13.19� � 6.95 m/s

�̇  � 8.88(10�3) rad/s, as in part (a)

vR � Ṙ � 99.2 cos 13.19� � 30.4 sin 13.19� � 103.6 m/s

R � �r2 � z2 � �61902 � 14512 � 6360 m

� � tan�1 z
r
 � tan�1 1451

6190
 � 13.19�

z � y tan 15� � 5420 tan 15� � 1451 m

ż  � vz � v sin 15� � 117.4 sin 15� � 30.4 m/s

�̇  � 55.0
6190

 � 8.88(10�3) rad/s

v� � r �̇  � vxy cos � � 113.4 cos 61.0� � 55.0 m/s

vr � ṙ � vxy sin � � 113.4 sin 61.0� � 99.2 m/s

vxy � v cos 15� � 117.4 cos 15� � 113.4 m/s

r � �30002 � 54202 � 6190 m

 � � tan�1 5420
3000

 � 61.0�

 y � 5610 cos 15� � 5420 m

s � s0 � v0 

t � 1
2

 at2 � 0 � 69.4(60) � 1
2

 (0.8)(60)2 � 5610 m

v � v0 � at � 69.4 � 0.8(60) � 117.4 m/s

v0 � 250
3.6

 � 69.4 m/s

�̇�̇ ,Ṙ,

ż�̇ ,ṙ,
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15°
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(a)
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y = 5420 m

R

z

y

O x

r 
= 

61
90
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r 
= 

61
90

 m

3000 m

z =1451 m

99.2 m/s

99.2 m/s

55.0 m/s

 = 61.0°

vxy = 113.4 m/s

vR = R
·

vz

 = R
·

v 
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2/168 The radar antenna at P tracks the jet aircraft A,
which is flying horizontally at a speed u and an alti-
tude h above the level of P. Determine the expres-
sions for the components of the velocity in the
spherical coordinates of the antenna motion.

Problem 2/168

2/169 The rotating element in a mixing chamber is given
a periodic axial movement while it
is rotating at the constant angular velocity .
Determine the expression for the maximum magni-
tude of the acceleration of a point A on the rim of
radius r. The frequency n of vertical oscillation is
constant.

Problem 2/169

ω

A

r

z

z = z0 sin 2   ntπ

�̇  � 	

z � z0 sin 2�nt

z

hy

x

b

u

A

P

θ

φ
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PROBLEMS
Introductory Problems

2/165 The velocity and acceleration of a particle are given
for a certain instant by and

. Determine the angle be-
tween v and a, , and the radius of curvature in
the osculating plane.

2/166 A projectile is launched from point O with an initial
speed directed as shown in the fig-
ure. Compute the x-, y-, and z-components of posi-
tion, velocity, and acceleration 20 seconds after
launch. Neglect aerodynamic drag.

Problem 2/166

2/167 An amusement ride called the “corkscrew” takes
the passengers through the upside-down curve of a
horizontal cylindrical helix. The velocity of the cars
as they pass position A is 15 m/s, and the compo-
nent of their acceleration measured along the tan-
gent to the path is g cos at this point. The effective
radius of the cylindrical helix is 5 m, and the helix
angle is . Compute the magnitude of the ac-
celeration of the passengers as they pass position A.

Problem 2/167

= 40°

5 m

Vert.

AHoriz. Horiz.

γ


 � 40�




60°

20°

v0

z

y

x

O

v0 � 500 ft /sec

�v̇
�a � 3i � j � 5k m /s2

v � 6i � 3j � 2k m /s
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Representative Problems

2/170 The vertical shaft of the industrial robot rotates at
the constant rate . The length h of the vertical
shaft has a known time history, and this is true
of its time derivatives and as well. Likewise,
the values of l, , and are known. Determine
the magnitudes of the velocity and acceleration of
point P. The lengths and are fixed.

Problem 2/170

2/171 The car A is ascending a parking-garage ramp in
the form of a cylindrical helix of 24-ft radius rising
10 ft for each half turn. At the position shown the
car has a speed of 15 mi/hr, which is decreasing at
the rate of 2 mi/hr per second. Determine the r-, -,
and z-components of the acceleration of the car.

Problem 2/171

z

A

10′
24′

24′

r

θ

�

ω

h

z

h0

P

l0
l

l0h0

l̈l̇
ḧḣ
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2/172 An aircraft takes off at A and climbs at a steady
angle with a slope of 1 to 2 in the vertical y-z plane
at a constant speed . The aircraft is
tracked by radar at O. For the position B, deter-
mine the values of , , and .

Problem 2/172

2/173 For the conditions of Prob. 2/172, find the values of
, , and for the radar tracking coordinates as

the aircraft passes point B. Use the results cited for
Prob. 2/172.

2/174 The rotating nozzle sprays a large circular area and
turns with the constant angular rate . Parti-
cles of water move along the tube at the constant
rate relative to the tube. Write expressions
for the magnitudes of the velocity and acceleration
of a water particle P for a given position l in the
rotating tube.

Problem 2/174

z

l

Pβ

θ = Kθ·

l̇ � c

�̇  � K

�̈�̈R̈

300 m

1
2

500 m

z

A

R

vB

y

x

O

φ

·θ

�̇�̇Ṙ

v � 400 km /h
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2/177 The base structure of the firetruck ladder rotates
about a vertical axis through O with a constant an-
gular velocity . At the same time, the
ladder unit OB elevates at a constant rate 
7 , and section AB of the ladder extends from
within section OA at the constant rate of 0.5 m/s.
At the instant under consideration, ,

, and . Determine the magni-
tudes of the velocity and acceleration of the end B
of the ladder.

Problem 2/177

2/178 The member OA of the industrial robot telescopes.
At the instant represented, , ,

, , , and
. The base of the robot is revolving at

the constant rate . Calculate the mag-
nitudes of the velocity and acceleration of joint A.

Problem 2/178

P

A

xO

z
15°

1.1 m

0.9 m

φ

ω

	 � 1.4 rad /s
OÄ � �6 m /s2

OȦ � 0.5 m/sOA � 0.9 m�̈ � 0.8 rad /s2
1.2 rad /s�̇ �� � 60�

C

O

C

Ω

φ

A

B

θ

AB � 6 mOA � 9 m
� � 30�

deg /s
�̇ �

� � 10 deg /s
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2/175 The small block P travels with constant speed v in
the circular path of radius r on the inclined surface.
If at time , determine the x-, y-, and 
z-components of velocity and acceleration as func-
tions of time.

Problem 2/175

2/176 An aircraft is flying in a horizontal circle of radius b
with a constant speed u at an altitude h. A radar
tracking unit is located at C. Write expressions for
the components of the velocity of the aircraft in the
spherical coordinates of the radar station for a
given position .

Problem 2/176

C

h

z

y

x

u

O

R

b

r

φ

θ

β

�

z

x

n

r

P

30°

v

y

t � 0� � 0
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2/179 Consider the industrial robot of the previous prob-
lem. The telescoping member OA is now fixed in
length at 0.9 m. The other conditions remain at

, , , ,
, and angle OAP is locked at 105°. Determine

the magnitudes of the velocity and acceleration of
the end point P.

2/180 In a design test of the actuating mechanism for a
telescoping antenna on a spacecraft, the supporting
shaft rotates about the fixed z-axis with an angular
rate . Determine the R-, -, and -components of
the acceleration a of the end of the antenna at the
instant when and if the rates

rad/s, , and are con-
stant during the motion.

Problem 2/180

L

R

y

x

z

θ

θ

β

φ θ

·

L̇ � 0.9 m /s�̇ � 32 rad /s�̇  � 2
� � 45�L � 1.2 m

���̇

	̇ � 0
	 � 1.4 rad/s�̈ � 0.8 rad /s2�̇ � 1.2 rad /s� � 60�
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2/181 In the design of an amusement-park ride, the cars
are attached to arms of length R which are hinged
to a central rotating collar which drives the assem-
bly about the vertical axis with a constant angular
rate . The cars rise and fall with the track ac-
cording to the relation . Find
the R-, -, and -components of the velocity v of
each car as it passes the position .

Problem 2/181

2/182 The particle P moves down the spiral path which is
wrapped around the surface of a right circular cone
of base radius b and altitude h. The angle be-
tween the tangent to the curve at any point and a
horizontal tangent to the cone at this point is con-
stant. Also the motion of the particle is controlled
so that is constant. Determine the expression for
the radial acceleration of the particle for any
value of .

Problem 2/182

x
y

z

r

P

h

b

�

ar

�̇




� � � /4 rad
��

z � (h/2)(1 � cos 2�)
	 � �̇

y v

ω

h R z
φ

θ
x

h 

�

�
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2/8 Relative Motion (Translating Axes)
In the previous articles of this chapter, we have described particle

motion using coordinates referred to fixed reference axes. The dis-
placements, velocities, and accelerations so determined are termed ab-
solute. It is not always possible or convenient, however, to use a fixed
set of axes to describe or to measure motion. In addition, there are
many engineering problems for which the analysis of motion is simpli-
fied by using measurements made with respect to a moving reference
system. These measurements, when combined with the absolute mo-
tion of the moving coordinate system, enable us to determine the ab-
solute motion in question. This approach is called a relative-motion
analysis.

Choice of Coordinate System
The motion of the moving coordinate system is specified with re-

spect to a fixed coordinate system. Strictly speaking, in Newtonian me-
chanics, this fixed system is the primary inertial system, which is
assumed to have no motion in space. For engineering purposes, the fixed
system may be taken as any system whose absolute motion is negligible
for the problem at hand. For most earthbound engineering problems, it
is sufficiently precise to take for the fixed reference system a set of axes
attached to the earth, in which case we neglect the motion of the earth.
For the motion of satellites around the earth, a nonrotating coordinate
system is chosen with its origin on the axis of rotation of the earth. For
interplanetary travel, a nonrotating coordinate system fixed to the sun
would be used. Thus, the choice of the fixed system depends on the type
of problem involved.

We will confine our attention in this article to moving reference
systems which translate but do not rotate. Motion measured in rotating
systems will be discussed in Art. 5/7 of Chapter 5 on rigid-body kine-
matics, where this approach finds special but important application. We
will also confine our attention here to relative-motion analysis for plane
motion.

Vector Representation
Now consider two particles A and B which may have separate

curvilinear motions in a given plane or in parallel planes, Fig. 2/17. We
will arbitrarily attach the origin of a set of translating (nonrotating)
axes x-y to particle B and observe the motion of A from our moving po-
sition on B. The position vector of A as measured relative to the frame
x-y is rA/B � xi � yj, where the subscript notation “A/B” means “A rel-
ative to B” or “A with respect to B.” The unit vectors along the x- and
y-axes are i and j, and x and y are the coordinates of A measured in the
x-y frame. The absolute position of B is defined by the vector rB mea-
sured from the origin of the fixed axes X-Y. The absolute position of A
is seen, therefore, to be determined by the vector

rA � rB � rA/BFigure 2/17

88 Chapter 2 Kinematics of Particles
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Article 2/8 Relative Motion (Translating Axes) 89

We now differentiate this vector equation once with respect to time
to obtain velocities and twice to obtain accelerations. Thus,

(2/20)

(2/21)

In Eq. 2/20 the velocity which we observe A to have from our position
at B attached to the moving axes x-y is � vA/B � � This
term is the velocity of A with respect to B. Similarly, in Eq. 2/21 the
acceleration which we observe A to have from our nonrotating posi-
tion on B is � � � This term is the acceleration of A
with respect to B. We note that the unit vectors i and j have zero de-
rivatives because their directions as well as their magnitudes remain
unchanged. (Later when we discuss rotating reference axes, we must
account for the derivatives of the unit vectors when they change di-
rection.)

Equation 2/20 (or 2/21) states that the absolute velocity (or acceler-
ation) of A equals the absolute velocity (or acceleration) of B plus, vecto-
rially, the velocity (or acceleration) of A relative to B. The relative term
is the velocity (or acceleration) measurement which an observer at-
tached to the moving coordinate system x-y would make. We can express
the relative-motion terms in whatever coordinate system is convenient—
rectangular, normal and tangential, or polar—and the formulations in
the preceding articles can be used for this purpose. The appropriate
fixed system of the previous articles becomes the moving system in the
present article.

Additional Considerations
The selection of the moving point B for attachment of the reference

coordinate system is arbitrary. As shown in Fig. 2/18, point A could be
used just as well for the attachment of the moving system, in which case
the three corresponding relative-motion equations for position, velocity,
and acceleration are

It is seen, therefore, that rB/A � �rA/B, vB/A � �vA/B, and aB/A � �aA/B.
In relative-motion analysis, it is important to realize that the ac-

celeration of a particle as observed in a translating system x-y is the
same as that observed in a fixed system X-Y if the moving system has a
constant velocity. This conclusion broadens the application of New-
ton’s second law of motion (Chapter 3). We conclude, consequently,
that a set of axes which has a constant absolute velocity may be used
in place of a “fixed” system for the determination of accelerations. A
translating reference system which has no acceleration is called an in-
ertial system.

rB � rA � rB/A   vB � vA � vB/A   aB � aA � aB/A

ÿj.ẍiv̇A/Br̈A/B

ẏj.ẋiṙA/B

 r̈A � r̈B � r̈A/B  or  aA � aB � aA/B

 ṙA � ṙB � ṙA/B    or    vA � vB � vA/B

y

A

B

O

rA

rB

rB/A

Y

X

x

Figure 2/18
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SAMPLE PROBLEM 2/13

Passengers in the jet transport A flying east at a speed of 800 km/h observe
a second jet plane B that passes under the transport in horizontal flight. Al-
though the nose of B is pointed in the 45� northeast direction, plane B appears to
the passengers in A to be moving away from the transport at the 60� angle as
shown. Determine the true velocity of B.

Solution. The moving reference axes x-y are attached to A, from which the
relative observations are made. We write, therefore,

Next we identify the knowns and unknowns. The velocity vA is given in both mag-
nitude and direction. The 60� direction of vB/A, the velocity which B appears to
have to the moving observers in A, is known, and the true velocity of B is in the
45� direction in which it is heading. The two remaining unknowns are the magni-
tudes of vB and vB/A. We may solve the vector equation in any one of three ways.

(I) Graphical. We start the vector sum at some point P by drawing vA to a
convenient scale and then construct a line through the tip of vA with the known
direction of vB/A. The known direction of vB is then drawn through P, and the in-
tersection C yields the unique solution enabling us to complete the vector trian-
gle and scale off the unknown magnitudes, which are found to be

Ans.

(II) Trigonometric. A sketch of the vector triangle is made to reveal the
trigonometry, which gives

Ans.

(III) Vector Algebra. Using unit vectors i and j, we express the velocities in
vector form as

Substituting these relations into the relative-velocity equation and solving sepa-
rately for the i and j terms give

Solving simultaneously yields the unknown velocity magnitudes

Ans.

It is worth noting the solution of this problem from the viewpoint of an observer
in B. With reference axes attached to B, we would write vA � vB � vA/B. The ap-
parent velocity of A as observed by B is then vA/B, which is the negative of vB/A.

vB/A � 586 km/h   and   vB � 717 km/h

 (j-terms)  vB sin 45� � vB/A sin 60�

 (i-terms)    vB cos 45� � 800 � vB/A cos 60�

vB/A � (vB/A cos 60�)(�i) � (vB/A sin 60�)j

vA � 800i km/h   vB � (vB cos 45�)i � (vB sin 45�)j

vB

sin 60�
 � 

vA

sin 75�
  vB � 800 sin 60�

sin 75�
 � 717 km/h

vB/A � 586 km/h   and   vB � 717 km/h

vB � vA � vB/A

90 Chapter 2 Kinematics of Particles

B

A
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y

60°

45°
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60°45°
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60°

P

P

C

Dir. of vB/A

Dir. of vB

vB vB/A

vA

vA = 800 km/h

vA

�

�

�

�

�

Helpful Hints

� We treat each airplane as a particle.

� We assume no side slip due to cross
wind.

� Students should become familiar
with all three solutions.

� We must be prepared to recognize
the appropriate trigonometric rela-
tion, which here is the law of sines.

� We can see that the graphical or
trigonometric solution is shorter
than the vector algebra solution in
this particular problem.
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Article 2/8 Relative Motion (Translating Axes) 91

SAMPLE PROBLEM 2/14

Car A is accelerating in the direction of its motion at the rate of 3 ft/sec2.
Car B is rounding a curve of 440-ft radius at a constant speed of 30 mi/hr. Deter-
mine the velocity and acceleration which car B appears to have to an observer in
car A if car A has reached a speed of 45 mi/hr for the positions represented.

Solution. We choose nonrotating reference axes attached to car A since the
motion of B with respect to A is desired.

Velocity. The relative-velocity equation is

and the velocities of A and B for the position considered have the magnitudes

The triangle of velocity vectors is drawn in the sequence required by the equa-
tion, and application of the law of cosines and the law of sines gives

Ans.

Acceleration. The relative-acceleration equation is

The acceleration of A is given, and the acceleration of B is normal to the curve in
the n-direction and has the magnitude

The triangle of acceleration vectors is drawn in the sequence required by the
equation as illustrated. Solving for the x- and y-components of aB/A gives us

Ans.

The direction of aB/A may be specified by the angle � which, by the law of sines,
becomes

Ans.4.4
sin �

 � 2.34
sin 30�

  � � sin�1 � 4.4
2.34

 0.5� � 110.2�

from which aB/A � �(0.810)2 � (2.2)2 � 2.34 ft/sec2

 (aB/A)y � 4.4 sin 30� � 2.2 ft/sec2

 (aB/A)x � 4.4 cos 30� � 3 � 0.810 ft/sec2

aB � (44)2/440 � 4.4 ft/sec2[an � v2/�]

aB � aA � aB/A

vB/A � 58.2 ft/sec   � � 40.9�

vA � 45 5280
602

 � 45 44
30

 � 66 ft/sec   vB � 30 44
30

 � 44 ft/sec

vB � vA � vB/A

�

�

y

A

B

n

30°

440′

x

60°

30°

vB/A

aB/A

vB = 44 ft /sec

aB = 4.4 ft /sec2

aA = 3 ft /sec2

vA = 66 ft /sec

θ

β

Helpful Hints

� Alternatively, we could use either 
a graphical or a vector algebraic
solution.

� Be careful to choose between the two
values 69.8� and 180 � 69.8 � 110.2�.

Suggestion: To gain familiarity with the
manipulation of vector equations, it is
suggested that the student rewrite the
relative-motion equations in the form
vB/A � vB � vA and aB/A � aB � aA and
redraw the vector polygons to conform
with these alternative relations.

Caution: So far we are only prepared to
handle motion relative to nonrotating
axes. If we had attached the reference
axes rigidly to car B, they would rotate
with the car, and we would find that the
velocity and acceleration terms relative
to the rotating axes are not the negative
of those measured from the nonrotating
axes moving with A. Rotating axes are
treated in Art. 5/7.
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PROBLEMS
Introductory Problems

2/183 Car A rounds a curve of 150-m radius at a constant
speed of 54 km/h. At the instant represented, car B
is moving at 81 km/h but is slowing down at the
rate of . Determine the velocity and accelera-
tion of car A as observed from car B.

Problem 2/183

2/184 For the instant represented, car A is rounding the
circular curve at a constant speed of 30 mi/hr, while
car B is slowing down at the rate of 5 mi/hr per sec-
ond. Determine the magnitude of the acceleration
that car A appears to have to an observer in car B.

Problem 2/184

B

A

500′

30°

x

y

x

B

A
y

150 m

3 m /s2

2/185 The passenger aircraft B is flying east with a veloc-
ity . A military jet traveling south
with a velocity passes under B at a
slightly lower altitude. What velocity does A appear
to have to a passenger in B, and what is the direc-
tion of that apparent velocity?

Problem 2/185

2/186 A marathon participant R is running north at a
speed . A wind is blowing in the di-
rection shown at a speed . (a) Deter-
mine the velocity of the wind relative to the
runner. (b) Repeat for the case when the runner is
moving directly to the south at the same speed. Ex-
press all answers both in terms of the unit vectors 
i and j and as magnitudes and compass directions.

Problem 2/186

N

35°

x

Ry

vR

vW

vW � 15 mi /hr
vR � 10 mi /hr

x

y A

B
vA

vB

N

vA � 1200 km /h
vB � 800 km /h
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Representative Problems

2/189 A small ship capable of making a speed of 6 knots
through still water maintains a heading due east
while being set to the south by an ocean current.
The actual course of the boat is from A to B, a dis-
tance of 10 nautical miles that requires exactly
2 hours. Determine the speed of the current and
its direction measured clockwise from the north.

Problem 2/189

2/190 Hockey player A carries the puck on his stick and
moves in the direction shown with a speed

. In passing the puck to his stationary
teammate B, by what angle should the direction
of his shot trail the line of sight if he launches the
puck with a speed of 7 m/s relative to himself?

Problem 2/190

45°

vA

B

A

α

�

vA � 4 m /s

N(0°)

A

E(90°)
10°

B

vC

2/187 A small aircraft A is about to land with an airspeed
of 80 mi/hr. If the aircraft is encountering a steady
side wind of speed as shown, at what
angle should the pilot direct the aircraft so that
the absolute velocity is parallel to the runway?
What is the speed at touchdown?

Problem 2/187

2/188 The car A has a forward speed of 18 km/h and is ac-
celerating at . Determine the velocity and ac-
celeration of the car relative to observer B, who
rides in a nonrotating chair on the Ferris wheel.
The angular rate of the Ferris wheel
is constant.

Problem 2/188

Ω = 3 rev/min

R = 9 m

B

A

45°

y

x

� � 3 rev /min

3 m /s2

N

αA

vW

�

vW � 10 mi /hr
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2/191 A ferry is moving due east and encounters a south-
west wind of speed as shown. The ex-
perienced ferry captain wishes to minimize the
effects of the wind on the passengers who are
on the outdoor decks. At what speed should he
proceed?

Problem 2/191

2/192 A drop of water falls with no initial speed from
point A of a highway overpass. After dropping 6 m,
it strikes the windshield at point B of a car which is
traveling at a speed of 100 km/h on the horizontal
road. If the windshield is inclined 50° from the ver-
tical as shown, determine the angle relative to the
normal n to the windshield at which the water drop
strikes.

Problem 2/192

100 km / h

50°

6 m

n

A

B

t

�

vW

vB
B

N

40°

vB

vW � 10 m /s
2/193 While scrambling directly toward the sideline at a

speed 20 ft/sec, the football quarterback Q
throws a pass toward the stationary receiver R. At
what angle should the quarterback release the ball?
The speed of the ball relative to the quarterback is
60 ft/sec. Treat the problem as two-dimensional.

Problem 2/193

2/194 The speedboat B is cruising to the north at 75 mi/hr
when it encounters an eastward current of speed

but does not change its heading
(relative to the water). Determine the subsequent
velocity of the boat relative to the wind and express
your result as a magnitude and compass direction.
The current affects the motion of the boat; the
southwesterly wind of speed does not.

Problem 2/194

vC
vW

N

B

30°

vW � 20 mi /hr

vC � 10 mi /hr

20 yd

5 yd

Q

RvQ

v

α

�

 vQ � 
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Article 2/8 Problems 95

2/198 The spacecraft S approaches the planet Mars along
a trajectory b-b in the orbital plane of Mars with an
absolute velocity of 19 km/s. Mars has a velocity of
24.1 km/s along its trajectory a-a. Determine the
angle between the line of sight S-M and the tra-
jectory b-b when Mars appears from the spacecraft
to be approaching it head on.

Problem 2/198

2/199 Two ships A and B are moving with constant
speeds and , respectively, along straight inter-
secting courses. The navigator of ship B notes the
time rates of change of the separation distance r
between the ships and the bearing angle . Show
that and .

Problem 2/199

θ
r

B

A

vA

vB

r̈ � r�̇2�̈  � �2 ṙ �̇/r
�

vBvA

a
b

15°
a

b

M

S

19 km /s

24.1 km /s

β

�

2/195 Starting from the relative position shown, aircraft
B is to rendezvous with the refueling tanker A. If B
is to arrive in close proximity to A in a two-minute
time interval, what absolute velocity vector should
B acquire and maintain? The velocity of the tanker
A is 300 mi/hr along the constant-altitude path
shown.

Problem 2/195

2/196 Airplane A is flying horizontally with a constant
speed of 200 km/h and is towing the glider B, which
is gaining altitude. If the tow cable has a length

and is increasing at the constant rate of
5 degrees per second, determine the magnitudes of
the velocity v and acceleration a of the glider for
the instant when .

Problem 2/196

2/197 If the airplane in Prob. 2/196 is increasing its speed
in level flight at the rate of 5 km/h each second and
is unreeling the glider tow cable at the constant
rate while remains constant, determine
the magnitude of the acceleration of the glider B.

�ṙ � 2 m /s

B

A

r

vAθ

� � 15�

�r � 60 m

y

x

10,000′

2000′
A

B
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2/200 Airplane A is flying north with a constant horizon-
tal velocity of 500 km/h. Airplane B is flying south-
west at the same altitude with a velocity of 500 km/h.
From the frame of reference of A, determine the
magnitude of the apparent or relative velocity of
B. Also find the magnitude of the apparent velocity

with which B appears to be moving sideways or
normal to its centerline. Would the results be dif-
ferent if the two airplanes were flying at different
but constant altitudes?

Problem 2/200

2/201 In Prob. 2/200 if aircraft A is accelerating in its
northward direction at the rate of 3 km/h each sec-
ond while aircraft B is slowing down at the rate of
4 km/h each second in its southwesterly direction,
determine the acceleration in which B appears
to have to an observer in A and specify its direction
( ) measured clockwise from the north.�

m /s2

45°

A

B

vA

vB

N

vn

vr

2/202 The shuttle orbiter A is in a circular orbit of alti-
tude 200 mi, while spacecraft B is in a geosynchro-
nous circular orbit of altitude 22,300 mi. Determine
the acceleration of B relative to a nonrotating
observer in the shuttle A. Use 
for the surface-level gravitational acceleration and

mi for the radius of the earth.

Problem 2/202

2/203 After starting from the position marked with the
“x”, a football receiver B runs the slant-in pattern
shown, making a cut at P and thereafter running
with a constant speed in the direction
shown. The quarterback releases the ball with a
horizontal velocity of 100 ft/sec at the instant the
receiver passes point P. Determine the angle at
which the quarterback must throw the ball,
and the velocity of the ball relative to the receiver
when the ball is caught. Neglect any vertical mo-
tion of the ball.

Problem 2/203

15 yd

15 yd
30°

B

Q

A

P

x

y

vB
vA

α

�

vB � 7 yd /sec

y

B

A

22,300 mi

200 mi

x

R � 3959

g0 � 32.23 ft /sec2
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2/206 A batter hits the baseball A with an initial velocity
of directly toward fielder B at an
angle of 30° to the horizontal; the initial position of
the ball is 3 ft above ground level. Fielder B re-
quires sec to judge where the ball should be
caught and begins moving to that position with
constant speed. Because of great experience, fielder
B chooses his running speed so that he arrives at
the “catch position” simultaneously with the base-
ball. The catch position is the field location at
which the ball altitude is 7 ft. Determine the veloc-
ity of the ball relative to the fielder at the instant
the catch is made.

Problem 2/206

220′

B

y

x

3′

v0

A

30°

1
4

v0 � 100 ft /sec
2/204 The aircraft A with radar detection equipment is

flying horizontally at an altitude of 12 km and is in-
creasing its speed at the rate of 1.2 m/s each sec-
ond. Its radar locks onto an aircraft B flying in the
same direction and in the same vertical plane at an
altitude of 18 km. If A has a speed of 1000 km/h at
the instant when , determine the values of 
and at this same instant if B has a constant
speed of 1500 km/h.

Problem 2/204

2/205 At a certain instant after jumping from the air-
plane A, a skydiver B is in the position shown
and has reached a terminal (constant) speed

. The airplane has the same constant
speed , and after a period of level flight
is just beginning to follow the circular path shown
of radius . (a) Determine the velocity
and acceleration of the airplane relative to the sky-
diver. (b) Determine the time rate of change of the
speed of the airplane and the radius of curvature

of its path, both as observed by the nonrotating
skydiver.

Problem 2/205

A

B

r

A = 2000 mρ

vA

vB

y

x

500 m

350 m

�r

vr

�A � 2000 m

vA � 50 m /s
vB � 50 m /s

θ

18 km

A

B

12 km

r

�̈

r̈� � 30�

��

�
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98 Chapter 2 Kinematics of Particles

2/9 Constrained Motion of Connected Particles
Sometimes the motions of particles are interrelated because of the

constraints imposed by interconnecting members. In such cases it is
necessary to account for these constraints in order to determine the re-
spective motions of the particles.

One Degree of Freedom
Consider first the very simple system of two interconnected parti-

cles A and B shown in Fig. 2/19. It should be quite evident by inspec-
tion that the horizontal motion of A is twice the vertical motion of B.
Nevertheless we will use this example to illustrate the method of analy-
sis which applies to more complex situations where the results cannot
be easily obtained by inspection. The motion of B is clearly the same as
that of the center of its pulley, so we establish position coordinates y
and x measured from a convenient fixed datum. The total length of the
cable is

With L, r2, r1, and b all constant, the first and second time derivatives of
the equation give

The velocity and acceleration constraint equations indicate that, for
the coordinates selected, the velocity of A must have a sign which is op-
posite to that of the velocity of B, and similarly for the accelerations.
The constraint equations are valid for the motion of the system in either
direction. We emphasize that vA � is positive to the left and that vB �

is positive down.
Because the results do not depend on the lengths or pulley radii, we

should be able to analyze the motion without considering them. In the
lower-left portion of Fig. 2/19 is shown an enlarged view of the horizon-
tal diameter A�B�C� of the lower pulley at an instant of time. Clearly,
A� and A have the same motion magnitudes, as do B and B�. During an
infinitesimal motion of A�, it is easy to see from the triangle that B�
moves half as far as A� because point C as a point on the fixed portion
of the cable momentarily has no motion. Thus, with differentiation by
time in mind, we can obtain the velocity and acceleration magnitude re-
lationships by inspection. The pulley, in effect, is a wheel which rolls on
the fixed vertical cable. (The kinematics of a rolling wheel will be
treated more extensively in Chapter 5 on rigid-body motion.) The sys-
tem of Fig. 2/19 is said to have one degree of freedom since only one
variable, either x or y, is needed to specify the positions of all parts of
the system.

ẏẋ

 0 � ẍ � 2ÿ   or    0 � aA � 2aB

 0 � ẋ � 2ẏ   or    0 � vA � 2vB

L � x � 
�r2

2
 � 2y � �r1 � b

b

y

x

A

A′ CB′

B

r1

r2

Figure 2/19
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Article 2/9 Constrained Motion of Connected Particles 99

Two Degrees of Freedom
The system with two degrees of freedom is shown in Fig. 2/20. Here

the positions of the lower cylinder and pulley C depend on the separate
specifications of the two coordinates yA and yB. The lengths of the cables
attached to cylinders A and B can be written, respectively, as

and their time derivatives are

Eliminating the terms in and gives

It is clearly impossible for the signs of all three terms to be positive si-
multaneously. So, for example, if both A and B have downward (posi-
tive) velocities, then C will have an upward (negative) velocity.

These results can also be found by inspection of the motions of the
two pulleys at C and D. For an increment dyA (with yB held fixed), the
center of D moves up an amount dyA/2, which causes an upward move-
ment dyA/4 of the center of C. For an increment dyB (with yA held fixed),
the center of C moves up a distance dyB/2. A combination of the two
movements gives an upward movement

so that �vC � vA/4 � vB/2 as before. Visualization of the actual geometry
of the motion is an important ability.

A second type of constraint where the direction of the connecting
member changes with the motion is illustrated in the second of the two
sample problems which follow.

�dyC � 
dyA

4
 � 

dyB

2

 ÿA � 2ÿB � 4ÿC � 0  or  aA � 2aB � 4aC � 0

 ẏA � 2ẏB � 4ẏC � 0    or    vA � 2vB � 4vC � 0

ÿDẏD

 0 � ÿA � 2ÿD  and  0 � ÿB � 2ÿC � ÿD

 0 � ẏA � 2ẏD    and    0 � ẏB � 2ẏC � ẏD

 LB � yB � yC � (yC � yD) � constant

 LA � yA � 2yD � constant

Figure 2/20

A
B

C

D

yAyB

yC

yD
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SAMPLE PROBLEM 2/15

In the pulley configuration shown, cylinder A has a downward velocity of 0.3
m/s. Determine the velocity of B. Solve in two ways.

Solution (I). The centers of the pulleys at A and B are located by the coordi-
nates yA and yB measured from fixed positions. The total constant length of cable
in the pulley system is

where the constants account for the fixed lengths of cable in contact with the cir-
cumferences of the pulleys and the constant vertical separation between the two
upper left-hand pulleys. Differentiation with time gives

Substitution of vA � � 0.3 m/s and vB � gives

Ans.

Solution (II). An enlarged diagram of the pulleys at A, B, and C is shown.
During a differential movement dsA of the center of pulley A, the left end of its
horizontal diameter has no motion since it is attached to the fixed part of the
cable. Therefore, the right-hand end has a movement of 2dsA as shown. This
movement is transmitted to the left-hand end of the horizontal diameter of the
pulley at B. Further, from pulley C with its fixed center, we see that the displace-
ments on each side are equal and opposite. Thus, for pulley B, the right-hand
end of the diameter has a downward displacement equal to the upward displace-
ment dsB of its center. By inspection of the geometry, we conclude that

Dividing by dt gives

Ans.

SAMPLE PROBLEM 2/16

The tractor A is used to hoist the bale B with the pulley arrangement
shown. If A has a forward velocity vA, determine an expression for the upward
velocity vB of the bale in terms of x.

Solution. We designate the position of the tractor by the coordinate x and the
position of the bale by the coordinate y, both measured from a fixed reference.
The total constant length of the cable is

Differentiation with time yields

Substituting vA � and vB � gives

Ans.vB � 1
2

 
xvA

�h2 � x2

ẏẋ

0 � �2ẏ � xẋ
�h2 � x2

L � 2(h � y) � l � 2(h � y) � �h2 � x2

�vB � � 23 

vA � 23 

(0.3) � 0.2 m/s (upward)

2dsA � 3dsB   or   dsB � 23dsA

0 � 3(vB) � 2(0.3)   or   vB � �0.2 m/s

ẏBẏA

0 � 3ẏB � 2ẏA

L � 3yB � 2yA � constants

100 Chapter 2 Kinematics of Particles

C

B

yA

yB

A

dsA 2dsA

2dsA

dsB

(c)

(a)

(b)

dsB

dsB

dsB

h

y
B

l

A

x

�

�

�

Helpful Hints

� We neglect the small angularity of
the cables between B and C.

� The negative sign indicates that the
velocity of B is upward.

Helpful Hint

� Differentiation of the relation for a
right triangle occurs frequently in
mechanics.
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2/209 Cylinder B has a downward velocity in feet per sec-
ond given by , where t is in seconds.
Calculate the acceleration of A when sec.

Problem 2/209

2/210 Determine the constraint equation which relates
the accelerations of bodies A and B. Assume that
the upper surface of A remains horizontal.

Problem 2/210

A
B

B

A

t � 2
vB � t2 /2 � t3 /6

PROBLEMS
Introductory Problems

2/207 If block B has a leftward velocity of 1.2 m/s, deter-
mine the velocity of cylinder A.

Problem 2/207

2/208 At a certain instant, the velocity of cylinder B is 
1.2 m/s down and its acceleration is up.
Determine the corresponding velocity and accelera-
tion of block A.

Problem 2/208

B

A

2 m /s2

B

A
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2/211 Determine the vertical rise h of the load W during
5 seconds if the hoisting drum wraps cable around
it at the constant rate of 320 mm/s.

Problem 2/211

2/212 A truck equipped with a power winch on its front
end pulls itself up a steep incline with the cable and
pulley arrangement shown. If the cable is wound
up on the drum at the constant rate of 40 mm/s,
how long does it take for the truck to move 4 m up
the incline?

Problem 2/212

W

2/213 For the pulley system shown, each of the cables at
A and B is given a velocity of 2 m/s in the direction
of the arrow. Determine the upward velocity v of
the load m.

Problem 2/213

Representative Problems

2/214 Determine the relationship which governs the
velocities of the two cylinders A and B. Express all
velocities as positive down. How many degrees of
freedom are present?

Problem 2/214

B

A

B A

m
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Article 2/9 Problems 103

2/217 Determine an expression for the velocity of the
cart A down the incline in terms of the upward
velocity of cylinder B.

Problem 2/217

2/218 Under the action of force P, the constant accelera-
tion of block B is up the incline. For the in-
stant when the velocity of B is 3 ft/sec up the
incline, determine the velocity of B relative to A,
the acceleration of B relative to A, and the absolute
velocity of point C of the cable.

Problem 2/218

A

20°

B

C

P

6 ft /sec2

B

A

C

h

x

vB

vA2/215 The pulley system of the previous problem is modi-
fied as shown with the addition of a fourth pulley
and a third cylinder C. Determine the relationship
which governs the velocities of the three cylinders,
and state the number of degrees of freedom.
Express all velocities as positive down.

Problem 2/215

2/216 Neglect the diameters of the small pulleys and
establish the relationship between the velocity of A
and the velocity of B for a given value of y.

Problem 2/216

A
B

b b

y

B

A

C
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2/219 The small sliders A and B are connected by the
rigid slender rod. If the velocity of slider B is 2 m/s
to the right and is constant over a certain interval
of time, determine the speed of slider A when the
system is in the position shown.

Problem 2/219

2/220 The power winches on the industrial scaffold en-
able it to be raised or lowered. For rotation in the
senses indicated, the scaffold is being raised. If each
drum has a diameter of 200 mm and turns at the
rate of 40 rev/min. determine the upward velocity v
of the scaffold.

Problem 2/220

vB

R

A

B

2R

60°

2/221 Collars A and B slide along the fixed right-angle
rods and are connected by a cord of length L.
Determine the acceleration of collar B as a
function of y if collar A is given a constant upward
velocity .

Problem 2/221

2/222 Collars A and B slide along the fixed rods and are
connected by a cord of length L. If collar A has a
velocity to the right, express the velocity

of B in terms of , , and s.

Problem 2/222

s

B

A
L

45°

x

vAxvB � � ṡ
vA � ẋ

y

A

B

L

x

y

vA

ax
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2/225 With all conditions of Prob. remaining the
same, determine the acceleration of slider B at the
instant when .

2/226 Neglect the diameter of the small pulley attached
to body A and determine the magnitude of the total
velocity of B in terms of the velocity which body
A has to the right. Assume that the cable between
B and the pulley remains vertical and solve for a
given value of x.

Problem 2/226

h

x

A

B

vA

sA � 425 mm

2 /2242/223 The particle A is mounted on a light rod pivoted at
O and therefore is constrained to move in a circular
arc of radius r. Determine the velocity of A in terms
of the downward velocity of the counterweight
for any angle .

Problem 2/223

2/224 The rod of the fixed hydraulic cylinder is moving to
the left with a constant speed .
Determine the corresponding velocity of slider B
when . The length of the cord is 
1050 mm, and the effects of the radius of the small
pulley A may be neglected.

Problem 2/224

vA

C

B

A

sA

250 mm

sA � 425 mm

vA � 25 mm /s

O

r

Ar

θ x

y

B

�

vB

�

�
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2/10 Chapter Review
In Chapter 2 we have developed and illustrated the basic methods

for describing particle motion. The concepts developed in this chapter
form the basis for much of dynamics, and it is important to review and
master this material before proceeding to the following chapters.

By far the most important concept in Chapter 2 is the time deriva-
tive of a vector. The time derivative of a vector depends on direction
change as well as magnitude change. As we proceed in our study of dy-
namics, we will need to examine the time derivatives of vectors other
than position and velocity vectors, and the principles and procedures de-
veloped in Chapter 2 will be useful for this purpose.

Categories of Motion
The following categories of motion have been examined in this

chapter:

1. Rectilinear motion (one coordinate)

2. Plane curvilinear motion (two coordinates)

3. Space curvilinear motion (three coordinates)

In general, the geometry of a given problem enables us to identify the
category readily. One exception to this categorization is encountered
when only the magnitudes of the motion quantities measured along the
path are of interest. In this event, we can use the single distance coordi-
nate measured along the curved path, together with its scalar time de-
rivatives giving the speed and the tangential acceleration 

Plane motion is easier to generate and control, particularly in ma-
chinery, than space motion, and thus a large fraction of our motion
problems come under the plane curvilinear or rectilinear categories.

Use of Fixed Axes
We commonly describe motion or make motion measurements with

respect to fixed reference axes (absolute motion) and moving axes (rela-
tive motion). The acceptable choice of the fixed axes depends on the
problem. Axes attached to the surface of the earth are sufficiently “fixed”
for most engineering problems, although important exceptions include
earth–satellite and interplanetary motion, accurate projectile trajecto-
ries, navigation, and other problems. The equations of relative motion
discussed in Chapter 2 are restricted to translating reference axes.

Choice of Coordinates
The choice of coordinates is of prime importance. We have devel-

oped the description of motion using the following coordinates:

1. Rectangular (Cartesian) coordinates (x-y) and (x-y-z)

2. Normal and tangential coordinates (n-t)

3. Polar coordinates (r-�)

s̈.� ṡ �
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4. Cylindrical coordinates (r-�-z)

5. Spherical coordinates (R-�-�)

When the coordinates are not specified, the appropriate choice usually
depends on how the motion is generated or measured. Thus, for a parti-
cle which slides radially along a rotating rod, polar coordinates are the
natural ones to use. Radar tracking calls for polar or spherical coordi-
nates. When measurements are made along a curved path, normal and
tangential coordinates are indicated. An x-y plotter clearly involves rec-
tangular coordinates.

Figure 2/21 is a composite representation of the x-y, n-t, and r-� co-
ordinate descriptions of the velocity v and acceleration a for curvilinear
motion in a plane. It is frequently essential to transpose motion descrip-
tion from one set of coordinates to another, and Fig. 2/21 contains the
information necessary for that transition.

Approximations
Making appropriate approximations is one of the most important

abilities you can acquire. The assumption of constant acceleration is
valid when the forces which cause the acceleration do not vary apprecia-
bly. When motion data are acquired experimentally, we must utilize the
nonexact data to acquire the best possible description, often with the aid
of graphical or numerical approximations.

Choice of Mathematical Method
We frequently have a choice of solution using scalar algebra, vector

algebra, trigonometric geometry, or graphical geometry. All of these
methods have been illustrated, and all are important to learn. The choice
of method will depend on the geometry of the problem, how the motion
data are given, and the accuracy desired. Mechanics by its very nature is
geometric, so you are encouraged to develop facility in sketching vector
relationships, both as an aid to the disclosure of appropriate geometric
and trigonometric relations and as a means of solving vector equations
graphically. Geometric portrayal is the most direct representation of the
vast majority of mechanics problems.

Path

t

r

r

x
ax = x··

an = v2/
ar = r·· – r   2

x

y

y

n

ay
a

at

ar

ax

an

θ

θ

ρ

aθ

t

rn
vy

vr

vx

vθ

vθ

Path

r

x

x

y

y

θ

θ
·

ay = y··

at = v·

a   = r   + 2r·θ
··

θ
·

θ

vx = x·

vn = 0
vr = r·

vy = y·

vt = v
v    = rθ

·
θ

(a) Velocity components

(b) Acceleration components

Figure 2/21
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REVIEW PROBLEMS

2/227 The position s of a particle along a straight line is
given by , where s is in meters
and t is the time in seconds. Determine the velocity
v when the acceleration is .

2/228 While scrambling directly toward the sideline, the
football quarterback Q throws a pass toward
the stationary receiver R. At what speed should
the quarterback run if the direction of the velocity
of the ball relative to the quarterback is to be di-
rectly down the field as indicated? The speed of the
ball relative to the quarterback is 60 ft/sec. What is
the absolute speed of the ball? Treat the problem as
two-dimensional.

Problem 2/228

2/229 A golfer is out of bounds and in a gulley. For the
initial conditions shown, determine the coordinates
of the point of first impact of the golf ball. The cam-
era platform B is in the plane of the trajectory.

Problem 2/229

60′

40′

10′ 20′

20′

210′

A
B

105 ft /sec

40°
x

y

20 yd

5 yd

Q

RvQ

v

vQ

3 m /s2

s � 8e�0.4t � 6t � t2

2/230 At time a small ball is projected from point A
with a velocity of 200 ft/sec at the angle. Ne-
glect atmospheric resistance and determine the two
times and when the velocity of the ball makes
an angle of with the horizontal x-axis.

Problem 2/230

2/231 The third stage of a rocket is injected by its booster
with a velocity u of 15 000 km/h at A into an un-
powered coasting flight to B. At B its rocket motor
is ignited when the trajectory makes an angle of 
with the horizontal. Operation is effectively above
the atmosphere, and the gravitational acceleration
during this interval may be taken as , con-
stant in magnitude and direction. Determine the
time t to go from A to B. (This quantity is needed in
the design of the ignition control system.) Also de-
termine the corresponding increase h in altitude.

Problem 2/231

Horiz.

Horiz.
20°

x

y

A

B

u
45°

9 m /s2

20�

60°

u = 200 ft/sec

A
x

45�

t2t1

60�

t � 0

108 Chapter 2 Kinematics of Particles

c02.qxd  2/8/12  7:11 PM  Page 108



Article 2/10 Review Problems 109

2/234 In case (a), the baseball player stands relatively
stationary and throws the ball with the initial con-
ditions shown. In case (b), he runs with speed

as he launches the ball with the same
conditions relative to himself. What is the addi-
tional range of the ball in case (b)? Compare the
two flight times.

Problem 2/234

2/235 A small projectile is fired from point O with an ini-
tial velocity at the angle of from
the horizontal as shown. Neglect atmospheric resis-
tance and any change in g and compute the radius
of curvature of the path of the projectile 30 sec-
onds after the firing.

Problem 2/235

O

u = 500 m/s

    = 60°θ

�

60�u � 500 m /s

v

v0 = 100 ft/sec

(a)

 = 20°

6′

θ

(b)

v � 15 ft /sec

2/232 The small cylinder is made to move along the ro-
tating rod with a motion between and 

given by , where t is the

time counted from the instant the cylinder passes
the position and is the period of the oscilla-
tion (time for one complete oscillation). Simultane-
ously, the rod rotates about the vertical at the
constant angular rate . Determine the value of r
for which the radial (r-direction) acceleration is
zero.

Problem 2/232

2/233 Rotation of the arm PO is controlled by the hori-
zontal motion of the vertical slotted link. If 

and when in., determine
and for this instant.

Problem 2/233

x

4″

P

O

A

θ

�̈�̇

x � 2ẍ � 30 ft /sec2ft /sec
ẋ � 4

b

r0
r

b

·

�̇

�r � r0

r � r0 � b sin 2�t
�r � r0 � b

r � r0 � b
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2/236 The motion of pin P is controlled by the two mov-
ing slots A and B in which the pin slides. If B has a
velocity to the right while A has an
upward velocity , determine the mag-
nitude of the velocity of the pin.

Problem 2/236

2/237 The angular displacement of the centrifuge is given
by rad, where t is in sec-
onds and is the startup time. If the person
loses consciousness at an acceleration level of 10g,
determine the time t at which this would occur.
Verify that the tangential acceleration is negligible
as the normal acceleration approaches 10g.

Problem 2/237

30′

O
θ

t � 0
� � 4[t � 30e�0.03t � 30]

60°

vA

B

A

P

vB

vP

vA � 2 m /s
vB � 3 m /s

2/238 For the instant represented the particle P has a
velocity in the direction shown and
has acceleration components and

. Determine , , , , and the ra-
dius of curvature of the path for this position.
(Hint: Draw the related acceleration components of
the total acceleration of the particle and take ad-
vantage of the simplified geometry for your calcula-
tions.)

Problem 2/238

2/239 As part of a training exercise, the pilot of aircraft A
adjusts her airspeed (speed relative to the wind) to
220 km/h while in the level portion of the approach
path and thereafter holds her absolute speed con-
stant as she negotiates the glide path. The ab-
solute speed of the aircraft carrier is 30 km/h and
that of the wind is 48 km/h. What will be the angle

of the glide path with respect to the horizontal as
seen by an observer on the ship?

Problem 2/239

�

10�

θ

θ   = 30°

y

x

P

r

t

30°

v

   =
 3′

r

�

anatayara� � �15 ft /sec2
ax � 15 ft /sec2

v � 6 ft /sec
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10°
30 km/h

48 km/h
A C
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Article 2/10 Review Problems 111

2/242 Particle P moves along the curved path shown. At
the instant represented, , , and the
velocity v makes an angle with the horizon-
tal x-axis and has a magnitude of 3.2 m/s. If the 
y- and r-components of the acceleration of P are

and , respectively, at this posi-
tion, determine the corresponding radius of curva-
ture of the path and the x-component of the
acceleration of the particle. Solve graphically or an-
alytically.

Problem 2/242

2/243 At the instant depicted, assume that the particle P,
which moves on a curved path, is 80 m from the
pole O and has the velocity v and acceleration a as
indicated. Determine the instantaneous values of ,

, , , the n- and t-components of acceleration,
and the radius of curvature .

Problem 2/243

r

P

O

r =
 80 m

30°
30°

60°

a = 8 m/s2

v = 30 m/s

θ

θ

�

�̈�̇r̈
ṙ

β

θ

v

P

r

y

x

�

�1.83 m /s25 m /s2

� � 60�

� � 30�r � 2 m
2/240 A small aircraft is moving in a horizontal circle

with a constant speed of 130 ft/sec. At the instant
represented, a small package A is ejected from the
right side of the aircraft with a horizontal velocity
of 20 ft/sec relative to the aircraft. Neglect aerody-
namic effects and calculate the coordinates of the
point of impact on the ground.

Problem 2/240

2/241 Car A negotiates a curve of 60-m radius at a con-
stant speed of 50 km/h. When A passes the position
shown, car B is 30 m from the intersection and is
accelerating south toward the intersection at the
rate of . Determine the acceleration which
A appears to have when observed by an occupant of
B at this instant.

Problem 2/241

30 m

30°

N

B

A

60 m

1.5 m /s2

1000′

1500′

z

y
x

A

O
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2/244 The radar tracking antenna oscillates about its
vertical axis according to , where is
the constant circular frequency and is the dou-
ble amplitude of oscillation. Simultaneously, the
angle of elevation is increasing at the constant
rate . Determine the expression for the mag-
nitude a of the acceleration of the signal horn (a) as
it passes position A and (b) as it passes the top posi-
tion B, assuming that at this instant.

Problem 2/244

2/245 The rod of the fixed hydraulic cylinder is moving to
the left with a constant speed .
Determine the corresponding velocity of slider 
B when . The length of the cord is
1600 mm, and the effects of the radius of the small
pulley at A may be neglected.

Problem 2/245

vA

C

B

A

sA

250 mm

sA � 425 mm

vA � 25  mm /s

θ

θ

B

A

z

b

2 0

φ

� � 0

�̇ � K
�

2�0

	� � �0 cos 	t *Computer-Oriented Problems

2/246 With all conditions of Prob. 2/245 remaining the
same, determine the acceleration of slider B at the
instant when .

2/247 Two particles A and B start from rest at and
move along parallel paths according to 

and , where and are in 

meters and t is in seconds counted from the start.
Determine the time t (where ) when both par-
ticles have the same displacement and calculate
this displacement x.

2/248 A baseball is dropped from an altitude 
and is found to be traveling at 85 ft/sec when it
strikes the ground. In addition to gravitational
acceleration, which may be assumed constant, air
resistance causes a deceleration component of mag-
nitude , where v is the speed and k is a constant.
Determine the value of the coefficient k. Plot the
speed of the baseball as a function of altitude y. If
the baseball were dropped from a high altitude, but
one at which g may still be assumed constant, what
would be the terminal velocity ? (The terminal ve-
locity is that speed at which the acceleration of
gravity and that due to air resistance are equal and
opposite, so that the baseball drops at a constant
speed.) If the baseball were dropped from

at what speed would it strike the
ground if air resistance were neglected?

v�h � 200 ft,

vt

kv2

h � 200 ft

t � 0

xBxAxB � 0.08t0.16 sin �t
2

xA �
x � 0

sA � 425 mm

112 Chapter 2 Kinematics of Particles

*

*

*

�

c02.qxd  2/8/12  7:11 PM  Page 112



Article 2/10 Review Problems 113

2/251 A low-flying cropduster A is moving with a con-
stant speed of 40 m/s in the horizontal circle of ra-
dius 300 m. As it passes the twelve-o’clock position
shown at time , car B starts from rest from the
position shown and accelerates along the straight
road at the constant rate of until it reaches
a speed of 30 m/s, after which it maintains that
constant speed. Determine the velocity and acceler-
ation of A with respect to B and plot the magni-
tudes of both these quantities over the time period

s as functions of both time and displace-
ment of the car. Determine the maximum and
minimum values of both quantities and state the
values of the time t and the displacement at
which they occur.

Problem 2/251

2/252 A projectile is launched from point A with speed
. Determine the value of the launch

angle which maximizes the range R indicated in
the figure. Determine the corresponding value R.

Problem 2/252

A

B

α

v0 = 30 m/s

50 m
R

10 m

�

v0 � 30 m /s

1000 m

350 m

300 m

x

y

sB

B

A

sB

sB

0 � t � 50

3 m /s2

t � 0

2/249 The slotted arm is fixed and the four-lobe cam
rotates counterclockwise at the constant speed of 
2 revolutions per second. The distance 
12 , where r is millimeters and is in radians.
Plot the radial velocity and the radial accelera-
tion of pin P versus from to .
State the acceleration of pin P for (a) , 
(b) , and (c) .

Problem 2/249

2/250 At time , the 1.8-lb particle P is given an ini-
tial velocity at the position and
subsequently slides along the circular path of ra-
dius . Because of the viscous fluid and the
effect of gravitational acceleration, the tangential 

acceleration is , where the con-

stant is a drag parameter. Deter-
mine and plot both and as functions of the time
t over the range . Determine the maxi-
mum values of and and the corresponding val-
ues of t. Also determine the first time at which

.

Problem 2/250

r
P

O

� � 90�

�̇�

0 � t � 5 sec
�̇�

k � 0.2 lb-sec /ft

at � g cos � � k
m v

r � 1.5 ft

� � 0v0 � 1  ft /sec
t � 0

r

P

O

θ

� � � /4� � � /8
� � 0

� � � /2� � 0�ar

vr

�cos 4�

r � 80 �

* *

*

*
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2/253 By means of the control unit M, the pendulum OA
is given an oscillatory motion about the vertical 

given by , where is the maximum 

angular displacement in radians, g is the accelera-
tion of gravity, l is the pendulum length, and t is
the time in seconds measured from an instant
when OA is vertical. Determine and plot the magni-
tude a of the acceleration of A as a function of time
and as a function of over the first quarter cycle of
motion. Determine the minimum and maximum
values of a and the corresponding values of t and .
Use the values radians, , and

. (Note: The prescribed motion is not
precisely that of a freely swinging pendulum for
large amplitudes.)

Problem 2/253

θ

A

O

l

M

g � 9.81 m /s2
l � 0.8 m�0 � � /3

�

�

�0� � �0 sin �
g

l
 t

2/254 The guide with the vertical slot is given a horizon-
tal oscillatory motion according to ,
where x is in inches and t is in seconds. The oscilla-
tion causes the pin P to move in the fixed parabolic
slot whose shape is given by , with y also
in inches. Plot the magnitude v of the velocity of
the pin as a function of time during the interval
required for pin P to go from the center to the
extremity in. Find and locate the maximum
value of v and verify your results analytically.

Problem 2/254

y

x

x

P

x � 4

y � x2 /4

x � 4 sin 2t
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The designers of amusement-park rides such as this roller coaster must not rely upon the principles of equilib-
rium alone as they develop specifications for the cars and the supporting structure. The particle kinetics of each
car must be considered in estimating the involved forces so that a safe system can be designed.

Jupiterimages/GettyImages
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3/1 Introduction
According to Newton’s second law, a particle will accelerate when it is

subjected to unbalanced forces. Kinetics is the study of the relations
between unbalanced forces and the resulting changes in motion. In
Chapter 3 we will study the kinetics of particles. This topic requires that
we combine our knowledge of the properties of forces, which we developed
in statics, and the kinematics of particle motion just covered in Chapter 2.
With the aid of Newton’s second law, we can combine these two topics
and solve engineering problems involving force, mass, and motion.

The three general approaches to the solution of kinetics problems
are: (A) direct application of Newton’s second law (called the force-
mass-acceleration method), (B) use of work and energy principles, and

3/1 Introduction

Section A Force, Mass, and Acceleration

3/2 Newton’s Second Law

3/3 Equation of Motion and Solution of Problems

3/4 Rectilinear Motion

3/5 Curvilinear Motion

Section B Work and Energy

3/6 Work and Kinetic Energy

3/7 Potential Energy

Section C Impulse and Momentum

3/8 Introduction

3/9 Linear Impulse and Linear Momentum

3/10 Angular Impulse and Angular Momentum

Section D Special Applications

3/11 Introduction

3/12 Impact

3/13 Central-Force Motion

3/14 Relative Motion

3/15 Chapter Review

CHAPTER OUTLINE

3Kinetics of
Particles
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(C) solution by impulse and momentum methods. Each approach has its
special characteristics and advantages, and Chapter 3 is subdivided into
Sections A, B, and C, according to these three methods of solution. In
addition, a fourth section, Section D, treats special applications and
combinations of the three basic approaches. Before proceeding, you
should review carefully the definitions and concepts of Chapter 1, be-
cause they are fundamental to the developments which follow.

SECTION A FORCE, MASS, AND ACCELERATION

118 Chapter 3 Kinetics of Particles

3/2 Newton’s Second Law
The basic relation between force and acceleration is found in New-

ton’s second law, Eq. 1/1, the verification of which is entirely experi-
mental. We now describe the fundamental meaning of this law by
considering an ideal experiment in which force and acceleration are as-
sumed to be measured without error. We subject a mass particle to the
action of a single force F1, and we measure the acceleration a1 of the
particle in the primary inertial system.* The ratio F1/a1 of the magni-
tudes of the force and the acceleration will be some number C1 whose
value depends on the units used for measurement of force and accelera-
tion. We then repeat the experiment by subjecting the same particle to
a different force F2 and measuring the corresponding acceleration a2.
The ratio F2/a2 of the magnitudes will again produce a number C2. The
experiment is repeated as many times as desired.

We draw two important conclusions from the results of these exper-
iments. First, the ratios of applied force to corresponding acceleration
all equal the same number, provided the units used for measurement
are not changed in the experiments. Thus,

We conclude that the constant C is a measure of some invariable
property of the particle. This property is the inertia of the particle,
which is its resistance to rate of change of velocity. For a particle of high
inertia (large C), the acceleration will be small for a given force F. On
the other hand, if the inertia is small, the acceleration will be large. The
mass m is used as a quantitative measure of inertia, and therefore, we
may write the expression C � km, where k is a constant introduced to
account for the units used. Thus, we may express the relation obtained
from the experiments as

(3/1)F � kma

F1

a1
 � 

F2

a2
 � � � �  � F

a
 � C,   a constant

*The primary inertial system or astronomical frame of reference is an imaginary set of ref-
erence axes which are assumed to have no translation or rotation in space. See Art. 1/2,
Chapter 1.
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where F is the magnitude of the resultant force acting on the particle
of mass m, and a is the magnitude of the resulting acceleration of the
particle.

The second conclusion we draw from this ideal experiment is that
the acceleration is always in the direction of the applied force. Thus, 
Eq. 3/1 becomes a vector relation and may be written

(3/2)

Although an actual experiment cannot be performed in the ideal
manner described, the same conclusions have been drawn from countless
accurately performed experiments. One of the most accurate checks is
given by the precise prediction of the motions of planets based on Eq. 3/2.

Inertial System
Although the results of the ideal experiment are obtained for mea-

surements made relative to the “fixed” primary inertial system, they are
equally valid for measurements made with respect to any nonrotating
reference system which translates with a constant velocity with respect
to the primary system. From our study of relative motion in Art. 2/8, we
know that the acceleration measured in a system translating with no ac-
celeration is the same as that measured in the primary system. Thus,
Newton’s second law holds equally well in a nonaccelerating system, so
that we may define an inertial system as any system in which Eq. 3/2 is
valid.

If the ideal experiment described were performed on the surface of
the earth and all measurements were made relative to a reference sys-
tem attached to the earth, the measured results would show a slight dis-
crepancy from those predicted by Eq. 3/2, because the measured
acceleration would not be the correct absolute acceleration. The discrep-
ancy would disappear when we introduced the correction due to the ac-
celeration components of the earth. These corrections are negligible for
most engineering problems which involve the motions of structures and
machines on the surface of the earth. In such cases, the accelerations
measured with respect to reference axes attached to the surface of the
earth may be treated as “absolute,” and Eq. 3/2 may be applied with
negligible error to experiments made on the surface of the earth.*

An increasing number of problems occur, particularly in the fields
of rocket and spacecraft design, where the acceleration components of
the earth are of primary concern. For this work it is essential that the

F � kma

Article 3/2 Newton’s Second Law 119

*As an example of the magnitude of the error introduced by neglect of the motion of the
earth, consider a particle which is allowed to fall from rest (relative to earth) at a height h
above the ground. We can show that the rotation of the earth gives rise to an eastward ac-
celeration (Coriolis acceleration) relative to the earth and, neglecting air resistance, that
the particle falls to the ground a distance

east of the point on the ground directly under that from which it was dropped. The angular
velocity of the earth is � � 0.729(10�4) rad/s, and the latitude, north or south, is �. At a lat-
itude of 45� and from a height of 200 m, this eastward deflection would be x � 43.9 mm.

x �
2
3

��2h3

g
 cos �
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fundamental basis of Newton’s second law be thoroughly understood and
that the appropriate absolute acceleration components be employed.

Before 1905 the laws of Newtonian mechanics had been verified by
innumerable physical experiments and were considered the final de-
scription of the motion of bodies. The concept of time, considered an ab-
solute quantity in the Newtonian theory, received a basically different
interpretation in the theory of relativity announced by Einstein in 1905.
The new concept called for a complete reformulation of the accepted
laws of mechanics. The theory of relativity was subjected to early
ridicule, but has been verified by experiment and is now universally ac-
cepted by scientists. Although the difference between the mechanics of
Newton and that of Einstein is basic, there is a practical difference in
the results given by the two theories only when velocities of the order of
the speed of light (300 � 106 m/s) are encountered.* Important prob-
lems dealing with atomic and nuclear particles, for example, require cal-
culations based on the theory of relativity.

Systems of Units
It is customary to take k equal to unity in Eq. 3/2, thus putting the

relation in the usual form of Newton’s second law

[1/1]

A system of units for which k is unity is known as a kinetic system.
Thus, for a kinetic system the units of force, mass, and acceleration are
not independent. In SI units, as explained in Art. 1/4, the units of force
(newtons, N) are derived by Newton’s second law from the base units of
mass (kilograms, kg) times acceleration (meters per second squared,
m/s2). Thus, N � This system is known as an absolute system
since the unit for force is dependent on the absolute value of mass.

In U.S. customary units, on the other hand, the units of mass
(slugs) are derived from the units of force (pounds force, lb) divided by
acceleration (feet per second squared, ft/sec2). Thus, the mass units are
slugs � lb-sec2/ft. This system is known as a gravitational system since
mass is derived from force as determined from gravitational attraction.

For measurements made relative to the rotating earth, the relative
value of g should be used. The internationally accepted value of g rela-
tive to the earth at sea level and at a latitude of 45� is 9.806 65 m/s2. Ex-
cept where greater precision is required, the value of 9.81 m/s2 will be
used for g. For measurements relative to a nonrotating earth, the ab-
solute value of g should be used. At a latitude of 45� and at sea level, the
absolute value is 9.8236 m/s2. The sea-level variation in both the absolute
and relative values of g with latitude is shown in Fig. 1/1 of Art. 1/5.

kg � m/s2.

F � ma

120 Chapter 3 Kinetics of Particles

*The theory of relativity demonstrates that there is no such thing as a preferred primary
inertial system and that measurements of time made in two coordinate systems which have
a velocity relative to one another are different. On this basis, for example, the principles of
relativity show that a clock carried by the pilot of a spacecraft traveling around the earth in
a circular polar orbit of 644 km altitude at a velocity of 27 080 km/h would be slow com-
pared with a clock at the pole by 0.000 001 85 s for each orbit.
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In the U.S. customary system, the standard value of g relative to
the rotating earth at sea level and at a latitude of 45� is 32.1740 ft/sec2.
The corresponding value relative to a nonrotating earth is 32.2230
ft/sec2.

Force and Mass Units
We need to use both SI units and U.S. customary units, so we must

have a clear understanding of the correct force and mass units in each
system. These units were explained in Art. 1/4, but it will be helpful to
illustrate them here using simple numbers before applying Newton’s
second law. Consider, first, the free-fall experiment as depicted in Fig.
3/1a where we release an object from rest near the surface of the earth.
We allow it to fall freely under the influence of the force of gravitational
attraction W on the body. We call this force the weight of the body. In SI
units for a mass m � 1 kg, the weight is W � 9.81 N, and the corre-
sponding downward acceleration a is g � 9.81 m/s2. In U.S. customary
units for a mass m � 1 lbm (1/32.2 slug), the weight is W � 1 lbf and the
resulting gravitational acceleration is g � 32.2 ft/sec2. For a mass m � 1
slug (32.2 lbm), the weight is W � 32.2 lbf and the acceleration, of
course, is also g � 32.2 ft/sec2.

In Fig. 3/1b we illustrate the proper units with the simplest example
where we accelerate an object of mass m along the horizontal with a
force F. In SI units (an absolute system), a force F � 1 N causes a mass 
m � 1 kg to accelerate at the rate a � 1 m/s2. Thus, 1 N � 1 In
the U.S. customary system (a gravitational system), a force F � 1 lbf

kg � m/s2.

Article 3/2 Newton’s Second Law 121

1——
32.2

W = 9.81 N

m = 1 kg
m = 1 lbm

slug( )
m = 1 slug
(32.2 lbm)

a = g = 9.81 m/s2

a = 1 m/s2

F = 1 N

(a) Gravitational Free-Fall

(b) Newton’s Second Law

a = g = 32.2 ft /sec2

W = 1 lbf W = 32.2 lbf

m = 1 kg

a = 32.2 ft /sec2

SI___ U.S. Customary________________

SI___ U.S. Customary________________

F = 1 lbf
m=1lbm

a = 1 ft /sec2

F = 1 lbf
m = 1 slug

1——
32.2 slug( ) (32.2 lbm)

Figure 3/1
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causes a mass m � 1 lbm (1/32.2 slug) to accelerate at the rate a � 32.2
ft/sec2, whereas a force F � 1 lbf causes a mass m � 1 slug (32.2 lbm) to
accelerate at the rate a � 1 ft/sec2.

We note that in SI units where the mass is expressed in kilograms
(kg), the weight W of the body in newtons (N) is given by W � mg,
where g � 9.81 m/s2. In U.S. customary units, the weight W of a body is
expressed in pounds force (lbf), and the mass in slugs (lbf-sec2/ft) is
given by m � W/g, where g � 32.2 ft/sec2.

In U.S. customary units, we frequently speak of the weight of a
body when we really mean mass. It is entirely proper to specify the mass
of a body in pounds (lbm) which must be converted to mass in slugs be-
fore substituting into Newton’s second law. Unless otherwise stated, the
pound (lb) is normally used as the unit of force (lbf).

3/3 Equation of Motion 
and Solution of Problems

When a particle of mass m is subjected to the action of concurrent
forces F1, F2, F3, . . . whose vector sum is ΣF, Eq. 1/1 becomes

(3/3)

When applying Eq. 3/3 to solve problems, we usually express it in scalar
component form with the use of one of the coordinate systems developed
in Chapter 2. The choice of an appropriate coordinate system depends on
the type of motion involved and is a vital step in the formulation of any
problem. Equation 3/3, or any one of the component forms of the force-
mass-acceleration equation, is usually called the equation of motion. The
equation of motion gives the instantaneous value of the acceleration cor-
responding to the instantaneous values of the forces which are acting.

Two Types of Dynamics Problems
We encounter two types of problems when applying Eq. 3/3. In the

first type, the acceleration of the particle is either specified or can be de-
termined directly from known kinematic conditions. We then determine
the corresponding forces which act on the particle by direct substitution
into Eq. 3/3. This problem is generally quite straightforward.

In the second type of problem, the forces acting on the particle are
specified and we must determine the resulting motion. If the forces are
constant, the acceleration is also constant and is easily found from Eq.
3/3. When the forces are functions of time, position, or velocity, Eq. 3/3
becomes a differential equation which must be integrated to determine
the velocity and displacement.

Problems of this second type are often more formidable, as the inte-
gration may be difficult to carry out, particularly when the force is a
mixed function of two or more motion variables. In practice, it is fre-
quently necessary to resort to approximate integration techniques, ei-
ther numerical or graphical, particularly when experimental data are
involved. The procedures for a mathematical integration of the accelera-
tion when it is a function of the motion variables were developed in Art.

ΣF � ma

122 Chapter 3 Kinetics of Particles
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2/2, and these same procedures apply when the force is a specified func-
tion of these same parameters, since force and acceleration differ only
by the constant factor of the mass.

Constrained and Unconstrained Motion
There are two physically distinct types of motion, both described by

Eq. 3/3. The first type is unconstrained motion where the particle is free
of mechanical guides and follows a path determined by its initial motion
and by the forces which are applied to it from external sources. An air-
plane or rocket in flight and an electron moving in a charged field are
examples of unconstrained motion.

The second type is constrained motion where the path of the parti-
cle is partially or totally determined by restraining guides. An ice-
hockey puck is partially constrained to move in the horizontal plane by
the surface of the ice. A train moving along its track and a collar sliding
along a fixed shaft are examples of more fully constrained motion. Some
of the forces acting on a particle during constrained motion may be ap-
plied from outside sources, and others may be the reactions on the parti-
cle from the constraining guides. All forces, both applied and reactive,
which act on the particle must be accounted for in applying Eq. 3/3.

The choice of an appropriate coordinate system is frequently indi-
cated by the number and geometry of the constraints. Thus, if a particle
is free to move in space, as is the center of mass of the airplane or rocket
in free flight, the particle is said to have three degrees of freedom since
three independent coordinates are required to specify the position of the
particle at any instant. All three of the scalar components of the equa-
tion of motion would have to be integrated to obtain the space coordi-
nates as a function of time.

If a particle is constrained to move along a surface, as is the hockey
puck or a marble sliding on the curved surface of a bowl, only two coor-
dinates are needed to specify its position, and in this case it is said to
have two degrees of freedom. If a particle is constrained to move along a
fixed linear path, as is the collar sliding along a fixed shaft, its position
may be specified by the coordinate measured along the shaft. In this
case, the particle would have only one degree of freedom.
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Free-Body Diagram
When applying any of the force-mass-acceleration equations of mo-

tion, you must account correctly for all forces acting on the particle. The
only forces which we may neglect are those whose magnitudes are negli-
gible compared with other forces acting, such as the forces of mutual at-
traction between two particles compared with their attraction to a
celestial body such as the earth. The vector sum ΣF of Eq. 3/3 means the
vector sum of all forces acting on the particle in question. Likewise, the
corresponding scalar force summation in any one of the component di-
rections means the sum of the components of all forces acting on the
particle in that particular direction.

KEY CONCEPTS
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The only reliable way to account accurately and consistently for
every force is to isolate the particle under consideration from all con-
tacting and influencing bodies and replace the bodies removed by the
forces they exert on the particle isolated. The resulting free-body dia-
gram is the means by which every force, known and unknown, which
acts on the particle is represented and thus accounted for. Only after
this vital step has been completed should you write the appropriate
equation or equations of motion.

The free-body diagram serves the same key purpose in dynamics as
it does in statics. This purpose is simply to establish a thoroughly reli-
able method for the correct evaluation of the resultant of all actual
forces acting on the particle or body in question. In statics this resultant
equals zero, whereas in dynamics it is equated to the product of mass
and acceleration. When you use the vector form of the equation of mo-
tion, remember that it represents several scalar equations and that
every equation must be satisfied.

Careful and consistent use of the free-body method is the most im-
portant single lesson to be learned in the study of engineering mechan-
ics. When drawing a free-body diagram, clearly indicate the coordinate
axes and their positive directions. When you write the equations of mo-
tion, make sure all force summations are consistent with the choice of
these positive directions. As an aid to the identification of external
forces which act on the body in question, these forces are shown as
heavy red vectors in the illustrations in this book. Sample Problems 3/1
through 3/5 in the next article contain five examples of free-body dia-
grams. You should study these to see how the diagrams are constructed.

In solving problems, you may wonder how to get started and what
sequence of steps to follow in arriving at the solution. This difficulty
may be minimized by forming the habit of first recognizing some rela-
tionship between the desired unknown quantity in the problem and
other quantities, known and unknown. Then determine additional rela-
tionships between these unknowns and other quantities, known and un-
known. Finally, establish the dependence on the original data and
develop the procedure for the analysis and computation. A few minutes
spent organizing the plan of attack through recognition of the depen-
dence of one quantity on another will be time well spent and will usually
prevent groping for the answer with irrelevant calculations.

3/4 Rectilinear Motion
We now apply the concepts discussed in Arts. 3/2 and 3/3 to prob-

lems in particle motion, starting with rectilinear motion in this article
and treating curvilinear motion in Art. 3/5. In both articles, we will ana-
lyze the motions of bodies which can be treated as particles. This simpli-
fication is possible as long as we are interested only in the motion of the
mass center of the body. In this case we may treat the forces as concur-
rent through the mass center. We will account for the action of noncon-
current forces on the motions of bodies when we discuss the kinetics of
rigid bodies in Chapter 6.
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If we choose the x-direction, for example, as the direction of the rec-
tilinear motion of a particle of mass m, the acceleration in the y- and 
z-directions will be zero and the scalar components of Eq. 3/3 become

(3/4)

For cases where we are not free to choose a coordinate direction
along the motion, we would have in the general case all three compo-
nent equations

(3/5)

where the acceleration and resultant force are given by

 �ΣF � � �(ΣFx)2 � (ΣFy)2 � (ΣFz)2

 ΣF � ΣFxi � ΣFy j � ΣFzk

 a � �ax 

2 � ay 

2 � az 

2

 a � axi � ay j � azk

 ΣFz � maz

 ΣFy � may

 ΣFx � max

 ΣFz � 0

 ΣFy � 0

 ΣFx � max
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This view of a car-collision test suggests that very large accelerations and
accompanying large forces occur throughout the system of the two cars.
The crash dummies are also subjected to large forces, primarily by the
shoulder-harness/seat-belt restraints.

©
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126 Chapter 3 Kinetics of Particles

SAMPLE PROBLEM 3/1

A 75-kg man stands on a spring scale in an elevator. During the first 3 sec-
onds of motion from rest, the tension T in the hoisting cable is 8300 N. Find the
reading R of the scale in newtons during this interval and the upward velocity v
of the elevator at the end of the 3 seconds. The total mass of the elevator, man,
and scale is 750 kg.

Solution. The force registered by the scale and the velocity both depend on
the acceleration of the elevator, which is constant during the interval for which
the forces are constant. From the free-body diagram of the elevator, scale, and
man taken together, the acceleration is found to be

The scale reads the downward force exerted on it by the man’s feet. The equal
and opposite reaction R to this action is shown on the free-body diagram of the
man alone together with his weight, and the equation of motion for him gives

Ans.

The velocity reached at the end of the 3 seconds is

Ans.

SAMPLE PROBLEM 3/2

A small inspection car with a mass of 200 kg runs along the fixed overhead
cable and is controlled by the attached cable at A. Determine the acceleration of
the car when the control cable is horizontal and under a tension T � 2.4 kN.
Also find the total force P exerted by the supporting cable on the wheels.

Solution. The free-body diagram of the car and wheels taken together and
treated as a particle discloses the 2.4-kN tension T, the weight W � mg �

200(9.81) � 1962 N, and the force P exerted on the wheel assembly by the cable.
The car is in equilibrium in the y-direction since there is no acceleration in

this direction. Thus,

Ans.

In the x-direction the equation of motion gives

Ans.[ΣFx � max]    2400(12
13 ) � 1962( 5

13 ) � 200a   a � 7.30 m/s2

[ΣFy � 0]     P � 2.4( 5
13 ) � 1.962(12

13 ) � 0   P � 2.73 kN

[�v � �  a dt]     v � 0 � �3

0
 1.257 dt   v � 3.77 m/s

[ΣFy � may]     R � 736 � 75(1.257)   R � 830 N

[ΣFy � may]    8300 � 7360 � 750ay   ay � 1.257 m/s2

T = 8300 N

y

750(9.81) = 7360 N

75(9.81) = 736 N

y

R

ay
ay

5
12

T
A

T = 2.4 kN

W = mg = 1962 N

x
a

y

P

5

5

12

12

G

Helpful Hint

� If the scale were calibrated in kilo-
grams, it would read 830/9.81 �

84.6 kg which, of course, is not his
true mass since the measurement
was made in a noninertial (accelerat-
ing) system. Suggestion: Rework this
problem in U.S. customary units.

Helpful Hint

� By choosing our coordinate axes along and normal to the direction of the acceleration, we are able to solve the two equa-
tions independently. Would this be so if x and y were chosen as horizontal and vertical?

�

�
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SAMPLE PROBLEM 3/3

The 250-lb concrete block A is released from rest in the position shown and
pulls the 400-lb log up the 30� ramp. If the coefficient of kinetic friction between
the log and the ramp is 0.5, determine the velocity of the block as it hits the
ground at B.

Solution. The motions of the log and the block A are clearly dependent. Al-
though by now it should be evident that the acceleration of the log up the incline
is half the downward acceleration of A, we may prove it formally. The constant
total length of the cable is L � 2sC � sA � constant, where the constant accounts
for the cable portions wrapped around the pulleys. Differentiating twice with re-
spect to time gives 0 � � or

We assume here that the masses of the pulleys are negligible and that they
turn with negligible friction. With these assumptions the free-body diagram of
the pulley C discloses force and moment equilibrium. Thus, the tension in the
cable attached to the log is twice that applied to the block. Note that the acceler-
ations of the log and the center of pulley C are identical.

The free-body diagram of the log shows the friction force �k N for motion up
the plane. Equilibrium of the log in the y-direction gives

and its equation of motion in the x-direction gives

For the block in the positive downward direction, we have

Solving the three equations in aC, aA, and T gives us

For the 20-ft drop with constant acceleration, the block acquires a velocity

Ans.vA � �2(5.83)(20) � 15.27 ft/sec[v2 � 2ax]

aA � 5.83 ft/sec2   aC � �2.92 ft/sec2   T � 205 lb

250 � T � 250
32.2

 aA[� b ΣF � ma]

0.5(346) � 2T � 400 sin 30� � 400
32.2

 aC[ΣFx � max]

N � 400 cos 30� � 0   N � 346 lb[ΣFy � 0]

0 � 2aC � aA

s̈A,2 s̈C

20′
250 lb

B

A

C

400 lb

30°
k = 0.5μ

C

sC

250 lb

T

T

2T

2T

T
C

+

400 lb

0.5N

N

y

x

A

sA

Helpful Hints

� The coordinates used in expressing
the final kinematic constraint rela-
tionship must be consistent with
those used for the kinetic equations
of motion.

� We can verify that the log will in-
deed move up the ramp by calculat-
ing the force in the cable necessary
to initiate motion from the equilib-
rium condition. This force is 2T �

0.5N � 400 sin 30� � 373 lb or T �

186.5 lb, which is less than the 250-
lb weight of block A. Hence, the log
will move up.

� Note the serious error in assuming
that T � 250 lb, in which case, block
A would not accelerate.

� Because the forces on this system re-
main constant, the resulting acceler-
ations also remain constant.

�

�

�

�
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SAMPLE PROBLEM 3/4

The design model for a new ship has a mass of 10 kg and is tested in an exper-
imental towing tank to determine its resistance to motion through the water at
various speeds. The test results are plotted on the accompanying graph, and the
resistance R may be closely approximated by the dashed parabolic curve shown. If
the model is released when it has a speed of 2 m/s, determine the time t required
for it to reduce its speed to 1 m/s and the corresponding travel distance x.

Solution. We approximate the resistance-velocity relation by R � kv2 and
find k by substituting R � 8 N and v � 2 m/s into the equation, which gives 
k � 8/22 � 2 Thus, R � 2v2.

The only horizontal force on the model is R, so that

We separate the variables and integrate to obtain

Thus, when v � v0/2 � 1 m/s, the time is t � � 2.5 s. Ans.

The distance traveled during the 2.5 seconds is obtained by integrating v �

dx/dt. Thus, v � 10/(5 � 2t) so that

Ans.

SAMPLE PROBLEM 3/5

The collar of mass m slides up the vertical shaft under the action of a force
F of constant magnitude but variable direction. If � � kt where k is a constant
and if the collar starts from rest with � � 0, determine the magnitude F of the
force which will result in the collar coming to rest as � reaches �/2. The coeffi-
cient of kinetic friction between the collar and shaft is �k.

Solution. After drawing the free-body diagram, we apply the equation of mo-
tion in the y-direction to get

where equilibrium in the horizontal direction requires N � F sin �. Substituting
� � kt and integrating first between general limits give

which becomes

For � � �/2 the time becomes t � �/2k, and v � 0 so that

Ans.F
k

 [1 � �k(0 � 1)] � 
mg�

2k
 � 0   and   F � 

mg�

2(1 � �k)

F
k

 [sin kt � �k(cos kt � 1)] � mgt � mv

� t

0
 (F cos kt � �k F sin kt � mg) dt � m �v

0
 dv

F cos � � �k N � mg � m dv
dt

[ΣFy � may]

�x

0
 dx � �2.5

0
 10
5 � 2t

 dt   x � 10
2

 ln (5 � 2t) �2.5

0
 � 3.47 m

5(1
1 � 12  )

� t

0
 dt � �5 �v

2
 dv
v2

  t � 5�1
v

 � 1
2� s

�R � max   or   �2v2 � 10 dv
dt

[ΣFx � max]

N � s2/m2.

1 2
0

2

4

6

8

0

v, m/s

R
, N

R

v0 = 2 m/s v

x

B = W

W

m

μk

Fθ

N

θ
F

mg

μk N

Helpful Hints

� Be careful to observe the minus sign
for R.

� Suggestion: Express the distance x
after release in terms of the velocity
v and see if you agree with the re-
sulting relation x � 5 ln (v0/v).

Helpful Hints

� If � were expressed as a function of
the vertical displacement y instead
of the time t, the acceleration would
become a function of the displace-
ment and we would use v dv � a dy.

� We see that the results do not de-
pend on k, the rate at which the
force changes direction.
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PROBLEMS
Introductory Problems

3/1 The 50-kg crate is projected along the floor with an
initial speed of 7 m/s at . The coefficient of ki-
netic friction is 0.40. Calculate the time required for
the crate to come to rest and the corresponding dis-
tance x traveled.

Problem 3/1

3/2 The 50-kg crate of Prob. 3/1 is now projected down an
incline as shown with an initial speed of 7 m/s. Inves-
tigate the time t required for the crate to come to rest
and the corresponding distance x traveled if (a) 
and (b) .

Problem 3/2

3/3 The 100-lb crate is carefully placed with zero velocity
on the incline. Describe what happens if (a) 
and (b) 

Problem 3/3

100 lbμs = 0.30

μk = 0.25

μ

μ

θ

� � 20�

� � 15�

50 kg

v0 = 7 m/s

x

k  = 0.40
μ

θ

� � 30�

� � 15�

50 kg

v0 = 7 m/s

xk = 0.40μ

x � 0

3/4 A 60-kg woman holds a 9-kg package as she stands
within an elevator which briefly accelerates upward at
a rate of g/4. Determine the force R which the elevator
floor exerts on her feet and the lifting force L which
she exerts on the package during the acceleration in-
terval. If the elevator support cables suddenly and
completely fail, what values would R and L acquire?

Problem 3/4

3/5 During a brake test, the rear-engine car is stopped
from an initial speed of 100 km/h in a distance of
50 m. If it is known that all four wheels contribute
equally to the braking force, determine the braking
force F at each wheel. Assume a constant decelera-
tion for the 1500-kg car.

Problem 3/5

50 m
v1 = 100 km/h v2 = 0

9 kg

60 kg

g
––
4
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3/9 A man pulls himself up the incline by the method
shown. If the combined mass of the man and cart is
100 kg, determine the acceleration of the cart if the
man exerts a pull of 250 N on the rope. Neglect all
friction and the mass of the rope, pulleys, and wheels.

Problem 3/9

3/10 A car is climbing the hill of slope at a constant
speed v. If the slope decreases abruptly to at point
A, determine the acceleration a of the car just after
passing point A if the driver does not change the
throttle setting or shift into a different gear.

Problem 3/10

3/11 Calculate the vertical acceleration a of the 100-lb
cylinder for each of the two cases illustrated. Ne-
glect friction and the mass of the pulleys.

Problem 3/11

100 lb
150 lb

(a)

100 lb
150 lb

(b)

A

a

v = const.

1θ

2θ

�2

�1

15°

15�3/6 What fraction n of the weight of the jet airplane is
the net thrust (nozzle thrust T minus air resistance
R) required for the airplane to climb at an angle 
with the horizontal with an acceleration a in the di-
rection of flight?

Problem 3/6

3/7 The 300-Mg jet airliner has three engines, each of
which produces a nearly constant thrust of 240 kN dur-
ing the takeoff roll. Determine the length s of runway
required if the takeoff speed is 220 km/h. Compute s
first for an uphill takeoff direction from A to B and sec-
ond for a downhill takeoff from B to A on the slightly
inclined runway. Neglect air and rolling resistance.

Problem 3/7

3/8 The 180-lb man in the bosun’s chair exerts a pull of 
50 lb on the rope for a short interval. Find his acceler-
ation. Neglect the mass of the chair, rope, and pulleys.

Problem 3/8

Horizontal

0.5°

A
B

T

R

θ

�
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3/12 A driver finds that her car will descend the slope
at a certain constant speed with no brakes or

throttle required. The slope decreases fairly
abruptly to at point A. If the driver takes no ac-
tion but continues to coast, determine the accelera-
tion a of the car just after it passes point A for the
conditions (a) and (b) .

Problem 3/12

3/13 By itself, the 2500-kg pickup truck executes a 0–100
km/h acceleration run in 10 s along a level road.
What would be the corresponding time when pulling
the 500-kg trailer? Assume constant acceleration
and neglect all retarding forces.

Problem 3/13

3/14 Reconsider the pickup-truck/trailer combination of
the previous problem. If the unit uniformly acceler-
ates from rest to a speed of 25 m/s in a distance of
150 m, determine the tension T in the towing
tongue OA. Neglect all effects of the tongue
angle, i.e., assume that OA is horizontal.

Representative Problems

3/15 A train consists of a 400,000-lb locomotive and one
hundred 200,000-lb hopper cars. If the locomotive
exerts a friction force of 40,000 lb on the rails in
starting the train from rest, compute the forces in
couplers 1 and 100. Assume no slack in the couplers
and neglect friction associated with the hopper cars.

Problem 3/15

100 99 98 3 2 1

5�

2500 kg
500 kg

5°

AO

v = constant

Aθ1

θ2

�2 � 0�2 � 1.5�

�2

�1 � 3�

3/16 The collar A is free to slide along the smooth shaft B
mounted in the frame. The plane of the frame is
vertical. Determine the horizontal acceleration a of
the frame necessary to maintain the collar in a fixed
position on the shaft.

Problem 3/16

3/17 The 5-oz pinewood-derby car is released from rest at
the starting line A and crosses the finish line C 2.75
sec later. The transition at B is small and smooth.
Assume that the net retarding force is constant
throughout the run and find this force.

Problem 3/17

3/18 The beam and attached hoisting mechanism together
weigh 2400 lb with center of gravity at G. If the ini-
tial acceleration a of point P on the hoisting cable is
20 ft/sec2, calculate the corresponding reaction at
the support A.

Problem 3/18

1000 lb

a
P

G

A

B

8′

10′

8′

12″

20°
A

B C

15′

10′

A
B

30°

a
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3/23 Small objects are delivered to the 72-in. inclined
chute by a conveyor belt A which moves at a speed

ft/sec. If the conveyor belt B has a speed
ft/sec and the objects are delivered to this

belt with no slipping, calculate the coefficient of fric-
tion between the objects and the chute.

Problem 3/23

3/24 If the coefficients of static and kinetic friction be-
tween the 20-kg block A and the 100-kg cart B are
both essentially the same value of 0.50, determine
the acceleration of each part for (a) N and
(b) N.

Problem 3/24

3/25 A simple pendulum is pivoted at O and is free to
swing in the vertical plane of the plate. If the plate
is given a constant acceleration a up the incline ,
write an expression for the steady angle assumed
by the pendulum after all initial start-up oscilla-
tions have ceased. Neglect the mass of the slender
supporting rod.

Problem 3/25

a

O

β

θ

�

�

P
A 20 kg

B 100 kg

P � 40
P � 60

72″

v1

v2

A 30°

B

�k

v2 � 3.0
v1 � 1.2

3/19 The 10-kg steel sphere is suspended from the 15-kg
frame which slides down the incline. If the coef-
ficient of kinetic friction between the frame and in-
cline is 0.15, compute the tension in each of the
supporting wires A and B.

Problem 3/19

3/20 The block shown is observed to have a velocity 
20 ft/sec as it passes point A and a velocity

ft/sec as it passes point B on the incline.
Calculate the coefficient of kinetic friction be-
tween the block and the incline if ft and

.

Problem 3/20

3/21 Determine the initial acceleration of the 15-kg block
if (a) N and (b) N. The system is ini-
tially at rest with no slack in the cable, and the
mass and friction of the pulleys are negligible.

Problem 3/21

3/22 The system of the previous problem starts from rest
with no slack in the cable. What value of the tension
T will result in an initial block acceleration of 0.8
m/s2 to the right?

μ
μ

30°

T

15 kg

s = 0.50
k = 0.40 

T � 26T � 23

v1

v2

x

A

B

θ

� � 15�

x � 30
�k

v2 � 10
v1 �

45°

45°A

B

20°

k = 0.15
μ

20�
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3/26 The tractor-trailer unit is moving down the incline
with a speed of 5 mi/hr when the driver brakes the
tractor to a stop in a distance of 4 ft. Estimate the
percent increase n in the hitch-force component
which is parallel to the incline, compared with the
force present at steady speed. The cart and its load
combined weigh 500 lb. State any assumptions.

Problem 3/26

3/27 The device shown is used as an accelerometer and
consists of a 4-oz plunger A which deflects the
spring as the housing of the unit is given an upward
acceleration a. Specify the necessary spring stiffness
k which will permit the plunger to deflect 1/4 in. be-
yond the equilibrium position and touch the electri-
cal contact when the steadily but slowly increasing
upward acceleration reaches 5g. Friction may be
neglected.

Problem 3/27

″1—
4

A
a

12

4

A

3/28 The acceleration of the 50-kg carriage A in its
smooth vertical guides is controlled by the tension T
exerted on the control cable which passes around the
two circular pegs fixed to the carriage. Determine
the value of T required to limit the downward accel-
eration of the carriage to 1.2 m/s2 if the coefficient of
friction between the cable and the pegs is 0.20. (Re-
call the relation between the tensions in a flexible
cable which is slipping on a fixed peg: )

Problem 3/28

3/29 The system is released from rest with the cable taut.
For the friction coefficients and ,
calculate the acceleration of each body and the ten-
sion T in the cable. Neglect the small mass and fric-
tion of the pulleys.

Problem 3/29

B

20 kg
30°

A

60 kg
μs μk,

�k � 0.20�s � 0.25

A

T

T2

T1

β

T2 � T1e��.
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3/32 The sliders A and B are connected by a light rigid
bar of length m and move with negligible
friction in the slots, both of which lie in a horizontal
plane. For the position where m, the veloc-
ity of A is m/s to the right. Determine the
acceleration of each slider and the force in the bar
at this instant.

Problem 3/32

3/33 The sliders A and B are connected by a light rigid
bar and move with negligible friction in the slots,
both of which lie in a horizontal plane. For the posi-
tion shown, the hydraulic cylinder imparts a veloc-
ity and acceleration to slider A of 0.4 m/s and 2 m/s2,
respectively, both to the right. Determine the accel-
eration of slider B and the force in the bar at this
instant.

Problem 3/33

A

B

0.5 m

60° 30°

3 kg

2 kg

P = 40 N

2 kg

0.5 m

3 kg

B

A

xA

vA � 0.9
xA � 0.4

l � 0.5
3/30 A jet airplane with a mass of 5 Mg has a touchdown

speed of 300 km/h, at which instant the braking
parachute is deployed and the power shut off. If the
total drag on the aircraft varies with velocity as
shown in the accompanying graph, calculate the dis-
tance x along the runway required to reduce the
speed to 150 km/h. Approximate the variation of the
drag by an equation of the form , where k is
a constant.

Problem 3/30

3/31 A heavy chain with a mass per unit length is
pulled by the constant force P along a horizontal
surface consisting of a smooth section and a rough
section. The chain is initially at rest on the rough
surface with . If the coefficient of kinetic fric-
tion between the chain and the rough surface is ,
determine the velocity v of the chain when .
The force P is greater than in order to initi-
ate motion.

Problem 3/31

L

SmoothRough   k 

P
x

μ

�k�gL
x � L

�k

x � 0

�

300200100
0

20

40

60

80

100

120

0
Velocity v, km/h

v

D
ra

g 
D

, k
N

D � kv2
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3/34 The 4-lb collar is released from rest against the light
elastic spring, which has a stiffness of 10 lb/in. and
has been compressed a distance of 6 in. Determine
the acceleration a of the collar as a function of the
vertical displacement x of the collar measured in
feet from the point of release. Find the velocity v of
the collar when ft. Friction is negligible.

Problem 3/34

3/35 The nonlinear spring has a tensile force-deflection
relationship given by , where x is
in meters and Fs is in newtons. Determine the accel-
eration of the 6-kg block if it is released from rest at
(a) mm and (b) mm.

Problem 3/35

Undeformed spring
position

6 kg

x

s = 0.30μ

k = 0.25μ

x � 100x � 50

Fs � 150x � 400x2

x

x � 0.5

3/36 Two configurations for raising an elevator are shown.
Elevator A with attached hoisting motor and drum
has a total mass of 900 kg. Elevator B without
motor and drum also has a mass of 900 kg. If the
motor supplies a constant torque of 600 to its
250-mm-diameter drum for 2 s in each case, select
the configuration which results in the greater up-
ward acceleration and determine the corresponding
velocity v of the elevator 1.2 s after it starts from
rest. The mass of the motorized drum is small, thus
permitting it to be analyzed as though it were in
equilibrium. Neglect the mass of cables and pulleys
and all friction.

Problem 3/36

3/37 Compute the acceleration of block A for the instant
depicted. Neglect the masses of the pulleys.

Problem 3/37

μ
40 kg

30°

T = 100 N

A

s = 0.50

μk = 0.40

⎫
⎬
⎭

250 mm

(a) (b)

A B

250 mm

N � m
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3/40 A shock absorber is a mechanical device which pro-
vides resistance to compression or extension given
by , where c is a constant and v is the time
rate of change of the length of the absorber. An ab-
sorber of constant N s/m is shown being
tested with a 100-kg cylinder suspended from it.
The system is released with the cable taut at 
and allowed to extend. Determine (a) the steady-
state velocity vs of the lower end of the absorber and
(b) the time t and displacement y of the lower end
when the cylinder has reached 90 percent of its
steady-state speed. Neglect the mass of the piston
and attached rod.

Problem 3/40

3/41 The design of a lunar mission calls for a 1200-kg
spacecraft to lift off from the surface of the moon
and travel in a straight line from point A and pass
point B. If the spacecraft motor has a constant
thrust of 2500 N, determine the speed of the space-
craft as it passes point B. Use Table D/2 and the
gravitational law from Chapter 1 as needed.

Problem 3/41

R R

BAO

m = 100 kg

y

c = 3000 N•s
m

y � 0

�c � 3000

R � cv

3/38 The inclined block A is given a constant rightward
acceleration a. Determine the range of values of 
for which block B will not slip relative to block A,
regardless of how large the acceleration a is. The co-
efficient of static friction between the blocks is .

Problem 3/38

3/39 A spring-loaded device imparts an initial vertical ve-
locity of 50 m/s to a 0.15-kg ball. The drag force on
the ball is , where FD is in newtons
when the speed v is in meters per second. Determine
the maximum altitude h attained by the ball (a) with
drag considered and (b) with drag neglected.

Problem 3/39

0.15 kg

v0 = 50 m/s

FD � 0.002v2

A
a

B

θ

sμ

�s

�
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3/42 For what value(s) of the angle will the acceleration
of the 80-lb block be 26 ft/sec2 to the right?

Problem 3/42

3/43 With the blocks initially at rest, the force P is in-
creased slowly from zero to 60 lb. Plot the accelera-
tions of both masses as functions of P.

Problem 3/43

3/44 An object projected vertically up from the surface of
the earth with a sufficiently high velocity v0 can es-
cape from the earth’s gravitational field. Calculate
this velocity on the basis of the absence of an atmos-
phere to offer resistance due to air friction. To elim-
inate the effect of the earth’s rotation on the
velocity measurement, consider the launch to be
from the north or south pole. Use the mean radius
of the earth and the absolute value of g as cited in
Art. 1/5 and compare your answer with the value
cited in Table D/2.

P

A

B

s = 0.20μ
k = 0.15μ

s = 0.15μ
k = 0.10μ

80 lb

100 lb

θ

μ

80 lb

P = 100 lb

s = 0.6, μk = 0.5

� 3/45 The system is released from rest in the position
shown. Calculate the tension T in the cord and the
acceleration a of the 30-kg block. The small pulley
attached to the block has negligible mass and fric-
tion. (Suggestion: First establish the kinematic rela-
tionship between the accelerations of the two
bodies.)

Problem 3/45

3/46 The rod of the fixed hydraulic cylinder is moving to
the left with a speed of 100 mm/s and this speed is
momentarily increasing at a rate of 400 mm/s each sec-
ond at the instant when Determine the
tension in the cord at that instant. The mass of
slider B is 0.5 kg, the length of the cord is 1050 mm,
and the effects of the radius and friction of the small
pulley at A are negligible. Find results for cases 
(a) negligible friction at slider B and (b) at
slider B. The action is in a vertical plane.

Problem 3/46

250 mm
C

B

A

0.5 kg

sA

�k � 0.40

sA � 425 mm.

15 kg

30 kg

s =   k =    = 0.25μ μ μ

4

3
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3/5 Curvilinear Motion
We turn our attention now to the kinetics of particles which move

along plane curvilinear paths. In applying Newton’s second law, Eq. 3/3,
we will make use of the three coordinate descriptions of acceleration in
curvilinear motion which we developed in Arts. 2/4, 2/5, and 2/6.

The choice of an appropriate coordinate system depends on the con-
ditions of the problem and is one of the basic decisions to be made in
solving curvilinear-motion problems. We now rewrite Eq. 3/3 in three
ways, the choice of which depends on which coordinate system is most
appropriate.

Rectangular coordinates (Art. 2/4, Fig. 2/7)

(3/6)

where

Normal and tangential coordinates (Art. 2/5, Fig. 2/10)

(3/7)

where

Polar coordinates (Art. 2/6, Fig. 2/15)

(3/8)

where

In applying these motion equations to a body treated as a particle,
you should follow the general procedure established in the previous ar-
ticle on rectilinear motion. After you identify the motion and choose
the coordinate system, draw the free-body diagram of the body. Then
obtain the appropriate force summations from this diagram in the
usual way. The free-body diagram should be complete to avoid incor-
rect force summations.

Once you assign reference axes, you must use the expressions for
both the forces and the acceleration which are consistent with that as-
signment. In the first of Eqs. 3/7, for example, the positive sense of the
n-axis is toward the center of curvature, and so the positive sense of our
force summation ΣFn must also be toward the center of curvature to
agree with the positive sense of the acceleration an � v2/�.

ar � r̈ � r �̇ 2   and   a� � r �̈  � 2 ṙ �̇

 ΣF� � ma�

 ΣFr � mar

an � ��̇2 � v2/� � v�̇,   at � v̇,   and   v � ��̇

 ΣFt � mat

 ΣFn � man

ax � ẍ   and   ay � ÿ

 ΣFy � may

 ΣFx � max
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Because of the banking in the turn of
this track, the normal reaction force
provides most of the normal acceler-
ation of the bobsled.
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At the highest point of the swing,
this child experiences tangential 
acceleration. An instant later, when
she has acquired velocity, she will
experience normal acceleration as
well.

©
 D

a
vi

d
 W

a
ll/

A
la

m
y

c03.qxd  2/9/12  7:39 PM  Page 138



SAMPLE PROBLEM 3/6

Determine the maximum speed v which the sliding block may have as it
passes point A without losing contact with the surface.

Solution. The condition for loss of contact is that the normal force N which
the surface exerts on the block goes to zero. Summing forces in the normal direc-
tion gives

Ans.

If the speed at A were less than , then an upward normal force exerted by the
surface on the block would exist. In order for the block to have a speed at A
which is greater than , some type of constraint, such as a second curved sur-
face above the block, would have to be introduced to provide additional down-
ward force.

SAMPLE PROBLEM 3/7

Small objects are released from rest at A and slide down the smooth circular
surface of radius R to a conveyor B. Determine the expression for the normal
contact force N between the guide and each object in terms of � and specify the
correct angular velocity � of the conveyor pulley of radius r to prevent any slid-
ing on the belt as the objects transfer to the conveyor.

Solution. The free-body diagram of the object is shown together with the co-
ordinate directions n and t. The normal force N depends on the n-component of
the acceleration which, in turn, depends on the velocity. The velocity will be cu-
mulative according to the tangential acceleration at. Hence, we will find at first
for any general position.

Now we can find the velocity by integrating

We obtain the normal force by summing forces in the positive n-direction, which
is the direction of the n-component of acceleration.

Ans.

The conveyor pulley must turn at the rate v � r� for � � �/2, so that

Ans.� � �2gR/r

N � mg sin � � m v 

2

R
  N � 3mg sin �[ΣFn � man]

�v

0
  v dv � ��

0
 g cos � d(R�)   v2 � 2gR sin �[v dv � at ds]

mg cos � � mat   at � g cos �[ΣFt � mat]

�g�

�g�

mg � m v
2

�
  v � �g�[ΣFn � man]

Helpful Hint

� It is essential here that we recognize
the need to express the tangential ac-
celeration as a function of position so
that v may be found by integrating
the kinematical relation v dv � at ds,
in which all quantities are measured
along the path.

�
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SAMPLE PROBLEM 3/8

A 1500-kg car enters a section of curved road in the horizontal plane and
slows down at a uniform rate from a speed of 100 km/h at A to a speed of 50
km/h as it passes C. The radius of curvature � of the road at A is 400 m and at C
is 80 m. Determine the total horizontal force exerted by the road on the tires at
positions A, B, and C. Point B is the inflection point where the curvature
changes direction.

Solution. The car will be treated as a particle so that the effect of all forces ex-
erted by the road on the tires will be treated as a single force. Since the motion is
described along the direction of the road, normal and tangential coordinates will
be used to specify the acceleration of the car. We will then determine the forces
from the accelerations.

The constant tangential acceleration is in the negative t-direction, and its
magnitude is given by

The normal components of acceleration at A, B, and C are

Application of Newton’s second law in both the n- and t-directions to the
free-body diagrams of the car gives

Thus, the total horizontal force acting on the tires becomes

Ans.

Ans.

Ans.At C,    F � �Fn 

2 � Ft 

2 � �(3620)2 � (2170)2 � 4220 N

At B,    F � Ft � 2170 N

At A,    F � �Fn 

2 � Ft 

2 � �(2890)2 � (2170)2 � 3620 N

 At C,   Fn � 1500(2.41) � 3620 N

 At B,   Fn � 0

 At A,   Fn � 1500(1.929) � 2890 N[ΣFn � man]

 Ft � 1500(1.447) � 2170 N[ΣFt � mat]

At C,    an � 
(50/3.6)2

80
 � 2.41 m/s2

At B,    an � 0

At A,    an � 
(100/3.6)2

400
 � 1.929 m/s2[an � v2/�]

[vC 

2 � vA 

2 � 2at �s]   at � � (50/3.6)2 � (100/3.6)2

2(200)
� � 1.447 m/s2

� The angle made by a and F with the
direction of the path can be com-
puted if desired.

� Note that the direction of Fn must
agree with that of an.

Helpful Hints

� Recognize the numerical value of
the conversion factor from km/h to
m/s as 1000/3600 or 1/3.6.

� Note that an is always directed to-
ward the center of curvature.
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SAMPLE PROBLEM 3/9

Compute the magnitude v of the velocity required for the spacecraft S to
maintain a circular orbit of altitude 200 mi above the surface of the earth.

Solution. The only external force acting on the spacecraft is the force of gravi-
tational attraction to the earth (i.e., its weight), as shown in the free-body dia-
gram. Summing forces in the normal direction yields

where the substitution gR2 � Gme has been made. Substitution of numbers gives

Ans.

SAMPLE PROBLEM 3/10

Tube A rotates about the vertical O-axis with a constant angular rate � �

and contains a small cylindrical plug B of mass m whose radial position is con-
trolled by the cord which passes freely through the tube and shaft and is wound
around the drum of radius b. Determine the tension T in the cord and the hori-
zontal component F� of force exerted by the tube on the plug if the constant an-
gular rate of rotation of the drum is �0 first in the direction for case (a) and
second in the direction for case (b). Neglect friction.

Solution. With r a variable, we use the polar-coordinate form of the equations
of motion, Eqs. 3/8. The free-body diagram of B is shown in the horizontal plane
and discloses only T and F�. The equations of motion are

Case (a). With and , the forces become

Ans.

Case (b). With and , the forces become

Ans.T � mr�2   F� � �2mb�0�

�̈  � 0ṙ � �b�0, r̈ � 0,

T � mr�2   F� � 2mb�0�

�̈  � 0ṙ � �b�0, r̈ � 0,

 F� � m(r �̈  � 2 ṙ �̇ )[ΣF� � ma�]

 �T � m( r̈ � r �̇ 2)[ΣFr � mar]

�̇

Helpful Hint

� Note that, for observations made within an inertial frame of reference, there is no such quantity as “centrifugal force” act-
ing in the minus n-direction. Note also that neither the spacecraft nor its occupants are “weightless,” because the weight
in each case is given by Newton’s law of gravitation. For this altitude, the weights are only about 10 percent less than the
earth-surface values. Finally, the term “zero-g” is also misleading. It is only when we make our observations with respect
to a coordinate system which has an acceleration equal to the gravitational acceleration (such as in an orbiting spacecraft)
that we appear to be in a “zero-g” environment. The quantity which does go to zero aboard orbiting spacecraft is the fa-
miliar normal force associated with, for example, an object in contact with a horizontal surface within the spacecraft.

Helpful Hint

� The minus sign shows that F� is in
the direction opposite to that shown
on the free-body diagram.
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[ΣFn � man] G
mme

(R � h)2
� m v2

(R � h)
, v � � Gme

(R � h)
� R � g

(R � h)

v � (3959)(5280) � 32.234
(3959 � 200)(5280)

� 25,326 ft/sec

�

�
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3/49 The 0.1-kg particle has a speed m/s as it
passes the position shown. The coefficient of ki-
netic friction between the particle and the vertical-
plane track is . Determine the magnitude
of the total force exerted by the track on the parti-
cle. What is the deceleration of the particle?

Problem 3/49

3/50 The 4-oz slider has a speed ft/sec as it passes
point A of the smooth guide, which lies in a horizontal
plane. Determine the magnitude R of the force which
the guide exerts on the slider (a) just before it passes
point A of the guide and (b) as it passes point B.

Problem 3/50

A

B

8″

v

v � 3

 = 5 m

v

30°

ρ

�k � 0.20

30�

v � 10PROBLEMS
Introductory Problems

3/47 The small 0.6-kg block slides with a small amount of
friction on the circular path of radius 3 m in the ver-
tical plane. If the speed of the block is 5 m/s as it
passes point A and 4 m/s as it passes point B, deter-
mine the normal force exerted on the block by the
surface at each of these two locations.

Problem 3/47

3/48 A 2-lb slider is propelled upward at A along the fixed
curved bar which lies in a vertical plane. If the
slider is observed to have a speed of 10 ft/sec as it
passes position B, determine (a) the magnitude N of
the force exerted by the fixed rod on the slider and
(b) the rate at which the speed of the slider is de-
creasing. Assume that friction is negligible.

Problem 3/48

30°2′

A

B

3 m

v

30°

B

A
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3/51 Determine the proper bank angle for the airplane
flying at 400 mi/hr and making a turn of 2-mile ra-
dius. Note that the force exerted by the air is nor-
mal to the supporting wing surface.

Problem 3/51

3/52 The slotted arm rotates about its center in a hori-
zontal plane at the constant angular rate 
rad/sec and carries a 3.22-lb spring-mounted slider
which oscillates freely in the slot. If the slider has a
speed of 24 in./sec relative to the slot as it crosses
the center, calculate the horizontal side thrust P ex-
erted by the slotted arm on the slider at this in-
stant. Determine which side, A or B, of the slot is in
contact with the slider.

Problem 3/52

24 in./sec

A

= 10 rad/secθ
.

B

�̇  � 10

� 3/53 The hollow tube is pivoted about a horizontal axis
through point O and is made to rotate in the verti-
cal plane with a constant counterclockwise angular
velocity rad/sec. If a 0.2-lb particle is sliding
in the tube toward O with a velocity of 4 ft/sec rela-
tive to the tube when the position is passed, 
calculate the magnitude N of the normal force exerted
by the wall of the tube on the particle at this instant.

Problem 3/53

3/54 The member OA rotates about a horizontal axis
through O with a constant counterclockwise angu-
lar velocity rad/sec. As it passes the position

, a small block of mass m is placed on it at a
radial distance in. If the block is observed to
slip at , determine the coefficient of static
friction between the block and the member.

Problem 3/54

3/55 In the design of a space station to operate outside
the earth’s gravitational field, it is desired to give
the structure a rotational speed N which will simu-
late the effect of the earth’s gravity for members of
the crew. If the centers of the crew’s quarters are to
be located 12 m from the axis of rotation, calculate
the necessary rotational speed N of the space sta-
tion in revolutions per minute.

Problem 3/55

12 m

N

�s

� � 50�

r � 18
� � 0

� � 3

� � 30�

�̇  � 3
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3/58 In order to simulate a condition of apparent “weight-
lessness” experienced by astronauts in an orbiting
spacecraft, a jet transport can change its direction
at the top of its flight path by dropping its flight-
path direction at a prescribed rate for a short in-
terval of time. Specify if the aircraft has a speed

km/h.

Problem 3/58

3/59 The standard test to determine the maximum lat-
eral acceleration of a car is to drive it around a 
200-ft-diameter circle painted on a level asphalt sur-
face. The driver slowly increases the vehicle speed
until he is no longer able to keep both wheel pairs
straddling the line. If this maximum speed is
35 mi/hr for a 3000-lb car, determine its lateral ac-
celeration capability an in g’s and compute the mag-
nitude F of the total friction force exerted by the
pavement on the car tires.

Problem 3/59

v

100 ft

θ
.

600 km/h

v � 600
�̇

�̇

3/56 A “swing ride” is shown in the figure. Calculate the
necessary angular velocity for the swings to as-
sume an angle with the vertical. Neglect the
mass of the cables and treat the chair and person as
one particle.

Problem 3/56

3/57 A Formula-1 car encounters a hump which has a
circular shape with smooth transitions at either
end. (a) What speed vB will cause the car to lose con-
tact with the road at the topmost point B? (b) For a
speed km/h, what is the normal force ex-
erted by the road on the 640-kg car as it passes
point A?

Problem 3/57

ρ = 300 m10°

A
B

vA � 190

3.2 m

θ

ω

5 m

� � 35�

�
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3/60 The car of Prob. 3/59 is traveling at 25 mi/hr when
the driver applies the brakes, and the car continues
to move along the circular path. What is the maxi-
mum deceleration possible if the tires are limited to
a total horizontal friction force of 2400 lb?

Representative Problems

3/61 The concept of variable banking for racetrack turns
is shown in the figure. If the two radii of curvature
are ft and ft for cars A and B, re-
spectively, determine the maximum speed for each
car. The coefficient of static friction is for
both cars.

Problem 3/61

3/62 The small ball of mass m and its supporting wire be-
come a simple pendulum when the horizontal cord
is severed. Determine the ratio k of the tension T in
the supporting wire immediately after the cord is
cut to that in the wire before the cord is cut.

Problem 3/62

Wire

m

Cord

θ

A

B

27°

22°

�s � 0.90

�B � 320�A � 300

3/63 A small object is given an initial horizontal velocity
v0 at the bottom of a smooth slope. The angle 
made by the slope with the horizontal varies accord-
ing to sin , where k is a constant and s is the
distance measured along the slope from the bottom.
Determine the maximum distance s which the ob-
ject slides up the slope.

3/64 A 3220-lb car enters an S-curve at A with a speed of
60 mi/hr with brakes applied to reduce the speed to
45 mi/hr at a uniform rate in a distance of 300 ft
measured along the curve from A to B. The radius
of curvature of the path of the car at B is 600 ft. Cal-
culate the total friction force exerted by the road on
the tires at B. The road at B lies in a horizontal
plane.

Problem 3/64

3/65 A pilot flies an airplane at a constant speed of 600
km/h in the vertical circle of radius 1000 m. Calcu-
late the force exerted by the seat on the 90-kg pilot
at point A and at point B.

Problem 3/65

300′

600′

A

B

� � ks

�
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3/68 A flatbed truck going 100 km/h rounds a horizontal
curve of 300-m radius inwardly banked at . The
coefficient of static friction between the truck bed
and the 200-kg crate it carries is 0.70. Calculate the
friction force F acting on the crate.

Problem 3/68

3/69 Explain how to utilize the graduated pendulum to
measure the speed of a vehicle traveling in a hori-
zontal circular arc of known radius r.

Problem 3/69

O

m

l

θ

10°

ρ

10�
3/66 The 30-Mg aircraft is climbing at the angle 

under a jet thrust T of 180 kN. At the instant repre-
sented, its speed is 300 km/h and is increasing at the
rate of 1.96 m/s2. Also is decreasing as the aircraft
begins to level off. If the radius of curvature of the
path at this instant is 20 km, compute the lift L and
drag D. (Lift L and drag D are the aerodynamic
forces normal to and opposite to the flight direction,
respectively.)

Problem 3/66

3/67 The hollow tube assembly rotates about a vertical
axis with angular velocity rad/s and

rad/s2. A small 0.2-kg slider P moves in-
side the horizontal tube portion under the control of
the string which passes out the bottom of the assem-
bly. If m, m/s, and m/s2, deter-
mine the tension T in the string and the horizontal
force exerted on the slider by the tube.

Problem 3/67

ω

P

r

T

F�

r̈ � 4ṙ � �2r �0.8

�̇  � �̈  � �2
� � �̇  � 4

T

θ

�

� � 15�
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3/70 The bowl-shaped device rotates about a vertical axis
with a constant angular velocity . If the particle is
observed to approach a steady-state position 
in the presence of a very small amount of friction,
determine . The value of r is 0.2 m.

Problem 3/70

3/71 The 2-kg slider fits loosely in the smooth slot of the
disk, which rotates about a vertical axis through
point O. The slider is free to move slightly along the
slot before one of the wires becomes taut. If the disk
starts from rest at time and has a constant
clockwise angular acceleration of 0.5 rad/s2, plot the
tensions in wires 1 and 2 and the magnitude N of
the force normal to the slot as functions of time t for
the interval .

Problem 3/71

45° 
1

2

100 mm

O

··θ

0 � t � 5 s

t � 0

ω

r

m
θr

�

� � 40�

�

3/72 A 2-kg sphere S is being moved in a vertical plane
by a robotic arm. When the angle is , the angu-
lar velocity of the arm about a horizontal axis
through O is 50 deg/s clockwise and its angular ac-
celeration is 200 deg/s2 counterclockwise. In addi-
tion, the hydraulic element is being shortened at the
constant rate of 500 mm/s. Determine the necessary
minimum gripping force P if the coefficient of static
friction between the sphere and the gripping sur-
faces is 0.50. Compare P with the minimum gripping
force Ps required to hold the sphere in static equilib-
rium in the position.

Problem 3/72

30�

30��
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3/75 A stretch of highway includes a succession of evenly
spaced dips and humps, the contour of which may
be represented by the relation .
What is the maximum speed at which the car A can
go over a hump and still maintain contact with the
road? If the car maintains this critical speed, what is
the total reaction N under its wheels at the bottom
of a dip? The mass of the car is m.

Problem 3/75

3/76 Determine the speed v at which the race car will
have no tendency to slip sideways on the banked
track, that is, the speed at which there is no reliance
on friction. In addition, determine the minimum
and maximum speeds, using the coefficient of static
friction . State any assumptions.

Problem 3/76

�s � 0.90

y

x

b
A

L

y � b sin (2�x/L)

3/73 The rocket moves in a vertical plane and is being
propelled by a thrust T of 32 kN. It is also subjected
to an atmospheric resistance R of 9.6 kN. If the
rocket has a velocity of 3 km/s and if the gravita-
tional acceleration is 6 m/s2 at the altitude of the
rocket, calculate the radius of curvature of its path
for the position described and the time-rate-of-
change of the magnitude v of the velocity of the
rocket. The mass of the rocket at the instant consid-
ered is 2000 kg.

Problem 3/73

3/74 The robot arm is elevating and extending simulta-
neously. At a given instant, , deg/s,

deg/s2, m, m/s, and 
m/s2. Compute the radial and transverse forces Fr

and that the arm must exert on the gripped part
P, which has a mass of 1.2 kg. Compare with the case
of static equilibrium in the same position.

Problem 3/74

F�

l̈  � �0.3l̇  � 0.4l � 0.5�̈  � 120
�̇  � 40� � 30�

T

R

Vertical

30° 

�
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3/77 Small steel balls, each with a mass of 65 g, enter the
semicircular trough in the vertical plane with a hori-
zontal velocity of 4.1 m/s at A. Find the force R ex-
erted by the trough on each ball in terms of and
the velocity vB of the balls at B. Friction is negligible.

Problem 3/77

3/78 The flat circular disk rotates about a vertical axis
through O with a slowly increasing angular velocity

. Prior to rotation, each of the 0.5-kg sliding blocks
has the position mm with no force in its at-
tached spring. Each spring has a stiffness of 400
N/m. Determine the value of x for each spring for a
steady speed of 240 rev/min. Also calculate the nor-
mal force N exerted by the side of the slot on the
block. Neglect any friction between the blocks and
the slots, and neglect the mass of the springs. (Hint:
Sum forces along and normal to the slot.)

Problem 3/78

80
mm

80
mm

x O

A

A

ω

x

x � 25
�

vA = 4.1 m/s

vB

320 mm

A

B

θ

�

3/79 The spring-mounted 0.8-kg collar A oscillates along
the horizontal rod, which is rotating at the constant
angular rate rad/s. At a certain instant, r is
increasing at the rate of 800 mm/s. If the coefficient
of kinetic friction between the collar and the rod is
0.40, calculate the friction force F exerted by the rod
on the collar at this instant.

Problem 3/79

3/80 The slotted arm revolves in the horizontal plane
about the fixed vertical axis through point O. The 
3-lb slider C is drawn toward O at the constant rate
of 2 in./sec by pulling the cord S. At the instant for
which in., the arm has a counterclockwise an-
gular velocity rad/sec and is slowing down
at the rate of 2 rad/sec2. For this instant, determine
the tension T in the cord and the magnitude N of
the force exerted on the slider by the sides of the
smooth radial slot. Indicate which side, A or B, of
the slot contacts the slider.

Problem 3/80

� � 6
r � 9

Vertical

A

θr
.

�̇  � 6
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3/84 At the instant when , the horizontal guide is
given a constant upward velocity m/s. For this
instant calculate the force N exerted by the fixed
circular slot and the force P exerted by the horizon-
tal slot on the 0.5-kg pin A. The width of the slots is
slightly greater than the diameter of the pin, and
friction is negligible.

Problem 3/84

3/85 The particle P is released at time from the po-
sition inside the smooth tube with no velocity
relative to the tube, which is driven at the constant
angular velocity about a vertical axis. Determine
the radial velocity vr, the radial position r, and the
transverse velocity as functions of time t. Explain
why the radial velocity increases with time in the
absence of radial forces. Plot the absolute path of
the particle during the time it is inside the tube for

m, m, and rad/s.

Problem 3/85

�0 � 1l � 1r0 � 0.1

v�

�0

r � r0

t � 0

A B

v0

θ

250 mm

v0 � 2
� � 30�3/81 A small coin is placed on the horizontal surface of

the rotating disk. If the disk starts from rest and is
given a constant angular acceleration , deter-
mine an expression for the number of revolutions N
through which the disk turns before the coin slips.
The coefficient of static friction between the coin
and the disk is .

Problem 3/81

3/82 The rotating drum of a clothes dryer is shown in the
figure. Determine the angular velocity of the drum
which results in loss of contact between the clothes
and the drum at . Assume that the small
vanes prevent slipping until loss of contact.

Problem 3/82

3/83 A body at rest relative to the surface of the earth ro-
tates with the earth and therefore moves in a circu-
lar path about the polar axis of the earth considered
fixed. Derive an expression for the ratio k of the ap-
parent weight of such a body as measured by a
spring scale at the equator (calibrated to read the
actual force applied) to the true weight of the body,
which is the absolute gravitational attraction to the
earth. The absolute acceleration due to gravity at
the equator is m/s2. The radius of the
earth at the equator is km, and the angu-
lar velocity of the earth is rad/s. If
the true weight is 100 N, what is the apparent mea-
sured weight ?W�

� � 0.729(10�4)
R � 6378

g � 9.815

� � 50�

�

Vertical

θ
..

r

�s

�̈  � 	
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3/86 The small 5-oz slider A moves without appreciable
friction in the hollow tube, which rotates in a hori-
zontal plane with a constant angular speed 
rad/sec. The slider is launched with an initial speed

ft/sec relative to the tube at the inertial co-
ordinates in. and . Determine the magni-
tude P of the horizontal force exerted on the slider
by the tube just before the slider exits the tube.

Problem 3/86

3/87 The two 0.2-kg sliders A and B move without fric-
tion in the horizontal-plane circular slot. Determine
the acceleration of each slider and the normal reac-
tion force exerted on each when the system starts
from rest in the position shown and is acted upon by
the 4-N force P. Also find the tension in the inexten-
sible connecting cord AB.

Problem 3/87

0.8 m

A

B

O

P = 4 N

v

y � 0x � 6
ṙ0 � 60

� � 7

3/88 Repeat the questions of the previous problem for the
revised system configuration shown in the figure.

Problem 3/88

3/89 The 3000-lb car is traveling at 60 mi/hr on the
straight portion of the road, and then its speed is re-
duced uniformly from A to C, at which point it
comes to rest. Compute the magnitude F of the total
friction force exerted by the road on the car (a) just
before it passes point B, (b) just after it passes point
B, and (c) just before it stops at point C.

Problem 3/89

0.8 m

A

B

O

P = 4 N

45°
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3/92 The small pendulum of mass m is suspended from a
trolley which runs on a horizontal rail. The trolley
and pendulum are initially at rest with . If the
trolley is given a constant acceleration , deter-
mine the maximum angle through which the
pendulum swings. Also find the tension T in the
cord in terms of .

Problem 3/92

3/93 A small object is released from rest at A and slides
with friction down the circular path. If the coeffi-
cient of friction is 0.20, determine the velocity of the
object as it passes B. (Hint: Write the equations of
motion in the n- and t-directions, eliminate N, and
substitute . The resulting equation is a
linear nonhomogeneous differential equation of the
form , the solution of which is
well known.)

Problem 3/93

3 m

m

θ

   k = 0.20μ

A

B

dy/dx � ƒ(x)y � g(x)

v dv � atr d�

θ

m

l

a

�

�max

a � g
� � 0

3/90 The spacecraft P is in the elliptical orbit shown. At
the instant represented, its speed is ft/sec.
Determine the corresponding values of , , , and

. Use ft/sec2 as the acceleration of grav-
ity on the surface of the earth and mi as
the radius of the earth.

Problem 3/90

3/91 The slotted arm OA rotates about a horizontal axis
through point O. The 0.2-kg slider P moves with
negligible friction in the slot and is controlled by
the inextensible cable BP. For the instant under
consideration, , rad/s, , and

m. Determine the corresponding values of
the tension in cable BP and the force reaction R
perpendicular to the slot. Which side of the slot
contacts the slider?

Problem 3/91

θ

ω

0.3 m

A

P

BO

r = 0.6 m

r � 0.6
�̈  � 0� � �̇  � 4� � 30�

v

R � 3959
g � 32.23�̈

r̈�̇ṙ
v � 13,244
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3/94 The slotted arm OB rotates in a horizontal plane
about point O of the fixed circular cam with constant
angular velocity rad/s. The spring has a stiff-
ness of 5 kN/m and is uncompressed when .
The smooth roller A has a mass of 0.5 kg. Determine
the normal force N which the cam exerts on A and
also the force R exerted on A by the sides of the slot
when . All surfaces are smooth. Neglect the
small diameter of the roller.

Problem 3/94

3/95 A small collar of mass m is given an initial velocity
of magnitude v0 on the horizontal circular track fab-
ricated from a slender rod. If the coefficient of ki-
netic friction is , determine the distance traveled
before the collar comes to rest. (Hint: Recognize
that the friction force depends on the net normal
force.)

Problem 3/95

v0

�k

0.1
m

0.1
m

B

A

O

θ

� � 45�

� � 0
�̇  � 15

3/96 The small cart is nudged with negligible velocity
from its horizontal position at A onto the parabolic
path, which lies in a vertical plane. Neglect friction
and show that the cart maintains contact with the
path for all values of k.

Problem 3/96

x

y

y = kx2

A
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SECTION B WORK AND ENERGY

3/6 Work and Kinetic Energy
In the previous two articles, we applied Newton’s second law F � ma

to various problems of particle motion to establish the instantaneous re-
lationship between the net force acting on a particle and the resulting ac-
celeration of the particle. When we needed to determine the change in
velocity or the corresponding displacement of the particle, we integrated
the computed acceleration by using the appropriate kinematic equations.

There are two general classes of problems in which the cumulative
effects of unbalanced forces acting on a particle are of interest to us.
These cases involve (1) integration of the forces with respect to the dis-
placement of the particle and (2) integration of the forces with respect to
the time they are applied. We may incorporate the results of these inte-
grations directly into the governing equations of motion so that it be-
comes unnecessary to solve directly for the acceleration. Integration with
respect to displacement leads to the equations of work and energy, which
are the subject of this article. Integration with respect to time leads to
the equations of impulse and momentum, discussed in Section C.

Definition of Work
We now develop the quantitative meaning of the term “work.”* Fig-

ure 3/2a shows a force F acting on a particle at A which moves along the
path shown. The position vector r measured from some convenient ori-
gin O locates the particle as it passes point A, and dr is the differential
displacement associated with an infinitesimal movement from A to A�.
The work done by the force F during the displacement dr is defined as

The magnitude of this dot product is dU � F ds cos 	, where 	 is the
angle between F and dr and where ds is the magnitude of dr. This ex-
pression may be interpreted as the displacement multiplied by the force
component Ft � F cos 	 in the direction of the displacement, as repre-
sented by the dashed lines in Fig. 3/2b. Alternatively, the work dU may
be interpreted as the force multiplied by the displacement component
ds cos 	 in the direction of the force, as represented by the full lines in
Fig. 3/2b.

With this definition of work, it should be noted that the component
Fn � F sin 	 normal to the displacement does no work. Thus, the work
dU may be written as

Work is positive if the working component Ft is in the direction of the
displacement and negative if it is in the opposite direction. Forces which

dU � Ft ds

dU � F � dr

154 Chapter 3 Kinetics of Particles

*The concept of work was also developed in the study of virtual work in Chapter 7 of Vol. 1
Statics.

O

A
A′

F

r r + dr

dr
α

α

(a)

(b)

α
Ft =

 F cos 

ds = |dr|

αds cos 

F

Fn
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do work are termed active forces. Constraint forces which do no work
are termed reactive forces.

Units of Work
The SI units of work are those of force (N) times displacement (m)

or This unit is given the special name joule (J), which is defined as
the work done by a force of 1 N acting through a distance of 1 m in the
direction of the force. Consistent use of the joule for work (and energy)
rather than the units will avoid possible ambiguity with the units
of moment of a force or torque, which are also written 

In the U.S. customary system, work has the units of ft-lb. Dimen-
sionally, work and moment are the same. In order to distinguish be-
tween the two quantities, it is recommended that work be expressed as
foot pounds (ft-lb) and moment as pound feet (lb-ft). It should be noted
that work is a scalar as given by the dot product and involves the prod-
uct of a force and a distance, both measured along the same line. Mo-
ment, on the other hand, is a vector as given by the cross product and
involves the product of force and distance measured at right angles to
the force.

Calculation of Work
During a finite movement of the point of application of a force, the

force does an amount of work equal to

or

In order to carry out this integration, it is necessary to know the rela-
tions between the force components and their respective coordinates or
the relation between Ft and s. If the functional relationship is not known
as a mathematical expression which can be integrated but is specified in
the form of approximate or experimental data, then we can compute the
work by carrying out a numerical or graphical integration as represented
by the area under the curve of Ft versus s, as shown in Fig. 3/3.

Examples of Work
When work must be calculated, we may always begin with the defin-

ition of work, U � insert appropriate vector expressions for the

force F and the differential displacement vector dr, and carry out the re-
quired integration. With some experience, simple work calculations,
such as those associated with constant forces, may be performed by in-
spection. We now formally compute the work associated with three fre-
quently occurring forces: constant forces, spring forces, and weights.

�  F � dr,

U � � s2

s1

 Ft ds

U � �2

1
 F � dr � �2

1
 (Fx dx � Fy dy � Fz dz)

N � m.
N � m

N � m.
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s

Ft

s1 s2

dU = Ft ds
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(1) Work Associated with a Constant External Force. Consider
the constant force P applied to the body as it moves from position 1 to
position 2, Fig. 3/4. With the force P and the differential displacement
dr written as vectors, the work done on the body by the force is

(3/9)

As previously discussed, this work expression may be interpreted as the
force component P cos 	 times the distance L traveled. Should 	 be be-
tween 90� and 270�, the work would be negative. The force component 
P sin 	 normal to the displacement does no work.

(2) Work Associated with a Spring Force. We consider here the
common linear spring of stiffness k where the force required to stretch
or compress the spring is proportional to the deformation x, as shown in
Fig. 3/5a. We wish to determine the work done on the body by the spring
force as the body undergoes an arbitrary displacement from an initial
position x1 to a final position x2. The force exerted by the spring on the
body is F � �kxi, as shown in Fig. 3/5b. From the definition of work, we
have

(3/10)

If the initial position is the position of zero spring deformation so
that x1 � 0, then the work is negative for any final position x2 � 0. This
is verified by recognizing that if the body begins at the undeformed
spring position and then moves to the right, the spring force is to the
left; if the body begins at x1 � 0 and moves to the left, the spring force is
to the right. On the other hand, if we move from an arbitrary initial po-
sition x1 � 0 to the undeformed final position x2 � 0, we see that the
work is positive. In any movement toward the undeformed spring posi-
tion, the spring force and the displacement are in the same direction.

In the general case, of course, neither x1 nor x2 is zero. The magni-
tude of the work is equal to the shaded trapezoidal area of Fig. 3/5a. In
calculating the work done on a body by a spring force, care must be

U1-2 � �2

1
 F � dr � �2

1
(�kxi) � dx i � ��x2

x1

 kx dx � 1
2

 k(x1 

2 � x2 

2)

 � �x2

x1

 P cos 	 dx � P cos 	(x2 � x1) � PL cos 	

 U1-2 � �2

1
 F � dr � �2

1
 [(P cos 	)i � (P sin 	)j] � dx i
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Article 3/6 Work and Kinetic Energy 157

taken to ensure that the units of k and x are consistent. If x is in meters
(or feet), k must be in N/m (or lb/ft). In addition, be sure to recognize
that the variable x represents a deformation from the unstretched
spring length and not the total length of the spring.

The expression F � kx is actually a static relationship which is true
only when elements of the spring have no acceleration. The dynamic be-
havior of a spring when its mass is accounted for is a fairly complex
problem which will not be treated here. We shall assume that the mass
of the spring is small compared with the masses of other accelerating
parts of the system, in which case the linear static relationship will not
involve appreciable error.

(3) Work Associated with Weight. Case (a) g � constant. If the al-
titude variation is sufficiently small so that the acceleration of gravity g
may be considered constant, the work done by the weight mg of the
body shown in Fig. 3/6a as the body is displaced from an arbitrary alti-
tude y1 to a final altitude y2 is

(3/11) � �mg �y2

y1

 dy � �mg( y2 � y1)

 U1-2 � �2

1
F � dr � �2

1
(�mgj) � (dxi � dyj)

x

x1 x2
x

F = kx

kx

Undeformed
position

dr

Force F required to
stretch or compress spring

(a)

(b)

Figure 3/5
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We see that horizontal movement does not contribute to this work. We
also note that if the body rises (perhaps due to other forces not shown),
then ( y2 � y1) � 0 and this work is negative. If the body falls, ( y2 � y1) � 0
and the work is positive.

Case (b) g � constant. If large changes in altitude occur, then the
weight (gravitational force) is no longer constant. We must therefore
use the gravitational law (Eq. 1/2) and express the weight as a variable

force of magnitude F � as indicated in Fig. 3/6b. Using the radial

coordinate shown in the figure allows the work to be expressed as

(3/12)

where the equivalence Gme � gR2 was established in Art. 1/5, with g
representing the acceleration of gravity at the earth’s surface and R rep-
resenting the radius of the earth. The student should verify that if a
body rises to a higher altitude (r2 � r1), this work is negative, as it was
in case (a). If the body falls to a lower altitude (r2 � r1), the work is posi-
tive. Be sure to realize that r represents a radial distance from the cen-
ter of the earth and not an altitude h � r � R above the surface of the
earth. As in case (a), had we considered a transverse displacement in ad-
dition to the radial displacement shown in Fig. 3/6b, we would have con-
cluded that the transverse displacement, because it is perpendicular to
the weight, does not contribute to the work.

 � Gmem� 1
r2

 � 1
r1
� � mgR2� 1

r2
 � 1

r1
�

 U1-2 � �2

1
 F � dr � �2

1
 
�Gmem

r2
 er � drer � �Gmem � r2

r1

 dr
r2

Gmem

r 

2
,
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Article 3/6 Work and Kinetic Energy 159

Work and Curvilinear Motion
We now consider the work done on a particle of mass m, Fig. 3/7,

moving along a curved path under the action of the force F, which
stands for the resultant ΣF of all forces acting on the particle. The posi-
tion of m is specified by the position vector r, and its displacement along
its path during the time dt is represented by the change dr in its posi-
tion vector. The work done by F during a finite movement of the parti-
cle from point 1 to point 2 is

where the limits specify the initial and final end points of the motion.
When we substitute Newton’s second law F � ma, the expression

for the work of all forces becomes

But � at ds, where at is the tangential component of the accelera-
tion of m. In terms of the velocity v of the particle, Eq. 2/3 gives at ds �

v dv. Thus, the expression for the work of F becomes

(3/13)

where the integration is carried out between points 1 and 2 along the
curve, at which points the velocities have the magnitudes v1 and v2,
respectively.

Principle of Work and Kinetic Energy
The kinetic energy T of the particle is defined as

(3/14)

and is the total work which must be done on the particle to bring it from
a state of rest to a velocity v. Kinetic energy T is a scalar quantity with
the units of or joules (J) in SI units and ft-lb in U.S. customary
units. Kinetic energy is always positive, regardless of the direction of
the velocity.

Equation 3/13 may be restated as

(3/15)

which is the work-energy equation for a particle. The equation states
that the total work done by all forces acting on a particle as it moves
from point 1 to point 2 equals the corresponding change in kinetic en-
ergy of the particle. Although T is always positive, the change �T may

U1-2 � T2 � T1 � �T

N � m

T � 12 mv2

U1-2 � �2

1
 F � dr � �v2

v1

 mv dv � 12 m(v2 

2 � v1 

2)

a � dr

U1-2 � �2

1
 F � dr � �2

1
 ma � dr

U1-2 � �2

1
 F � dr � � s2

s1

 Ft ds

Ft

Fn

F = ΣF

Path
1

2

x

s1

s2

z

t

n

m

dr

r

α

y

O
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be positive, negative, or zero. When written in this concise form, Eq.
3/15 tells us that the work always results in a change of kinetic energy.

Alternatively, the work-energy relation may be expressed as the ini-
tial kinetic energy T1 plus the work done U1-2 equals the final kinetic en-
ergy T2, or

(3/15a)

When written in this form, the terms correspond to the natural se-
quence of events. Clearly, the two forms 3/15 and 3/15a are equivalent.

Advantages of the Work-Energy Method
We now see from Eq. 3/15 that a major advantage of the method of

work and energy is that it avoids the necessity of computing the acceler-
ation and leads directly to the velocity changes as functions of the forces
which do work. Further, the work-energy equation involves only those
forces which do work and thus give rise to changes in the magnitude of
the velocities.

We consider now a system of two particles joined together by a con-
nection which is frictionless and incapable of any deformation. The
forces in the connection are equal and opposite, and their points of ap-
plication necessarily have identical displacement components in the di-
rection of the forces. Therefore, the net work done by these internal
forces is zero during any movement of the system. Thus, Eq. 3/15 is ap-
plicable to the entire system, where U1-2 is the total or net work done on
the system by forces external to it and �T is the change, T2 � T1, in the
total kinetic energy of the system. The total kinetic energy is the sum of
the kinetic energies of both elements of the system. We thus see that
another advantage of the work-energy method is that it enables us to
analyze a system of particles joined in the manner described without
dismembering the system.

Application of the work-energy method requires isolation of the par-
ticle or system under consideration. For a single particle you should
draw a free-body diagram showing all externally applied forces. For a
system of particles rigidly connected without springs, draw an active-
force diagram showing only those external forces which do work (active
forces) on the entire system.*

Power
The capacity of a machine is measured by the time rate at which it

can do work or deliver energy. The total work or energy output is not a
measure of this capacity since a motor, no matter how small, can deliver
a large amount of energy if given sufficient time. On the other hand, a
large and powerful machine is required to deliver a large amount of en-
ergy in a short period of time. Thus, the capacity of a machine is rated
by its power, which is defined as the time rate of doing work.

T1 � U1-2 � T2

160 Chapter 3 Kinetics of Particles

*The active-force diagram was introduced in the method of virtual work in statics. See
Chapter 7 of Vol. 1 Statics.
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Accordingly, the power P developed by a force F which does an
amount of work U is P � dU/dt � Because dr/dt is the velocity v
of the point of application of the force, we have

(3/16)

Power is clearly a scalar quantity, and in SI it has the units of � J/s.
The special unit for power is the watt (W), which equals one joule per sec-
ond (J/s). In U.S. customary units, the unit for mechanical power is the
horsepower (hp). These units and their numerical equivalences are

Efficiency
The ratio of the work done by a machine to the work done on the

machine during the same time interval is called the mechanical effi-
ciency em of the machine. This definition assumes that the machine op-
erates uniformly so that there is no accumulation or depletion of energy
within it. Efficiency is always less than unity since every device operates
with some loss of energy and since energy cannot be created within the
machine. In mechanical devices which involve moving parts, there will
always be some loss of energy due to the negative work of kinetic fric-
tion forces. This work is converted to heat energy which, in turn, is dis-
sipated to the surroundings. The mechanical efficiency at any instant of
time may be expressed in terms of mechanical power P by

(3/17)

In addition to energy loss by mechanical friction, there may also be
electrical and thermal energy loss, in which case, the electrical efficiency
ee and thermal efficiency et are also involved. The overall efficiency e in
such instances is

e � emeeet

em � 
Poutput

Pinput

 1 hp � 746 W � 0.746 kW

 1 hp � 550 ft- lb/sec � 33,000 ft- lb/min

1 W � 1 J/s

N � m/s

P � F � v

F � dr/dt.

The power which must be produced
by a bike rider depends on the bicy-
cle speed and the propulsive force
which is exerted by the supporting
surface on the rear wheel. The dri-
ving force depends on the slope
being negotiated.

M
e

d
ia

 B
a

ke
ry
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SAMPLE PROBLEM 3/11

Calculate the velocity v of the 50-kg crate when it reaches the bottom of the
chute at B if it is given an initial velocity of 4 m/s down the chute at A. The coef-
ficient of kinetic friction is 0.30.

Solution. The free-body diagram of the crate is drawn and includes the nor-
mal force R and the kinetic friction force F calculated in the usual manner. The
work done by the weight is positive, whereas that done by the friction force is
negative. The total work done on the crate during the motion is

The work-energy equation gives

Ans.

Since the net work done is negative, we obtain a decrease in the kinetic energy.

SAMPLE PROBLEM 3/12

The flatbed truck, which carries an 80-kg crate, starts from rest and attains
a speed of 72 km/h in a distance of 75 m on a level road with constant accelera-
tion. Calculate the work done by the friction force acting on the crate during this
interval if the static and kinetic coefficients of friction between the crate and the
truck bed are (a) 0.30 and 0.28, respectively, or (b) 0.25 and 0.20, respectively.

Solution. If the crate does not slip on the bed, its acceleration will be that of
the truck, which is

Case (a). This acceleration requires a friction force on the block of

which is less than the maximum possible value of �sN � 0.30(80)(9.81) = 235 N.
Therefore, the crate does not slip and the work done by the actual static friction
force of 213 N is

Ans.

Case (b). For �s � 0.25, the maximum possible friction force is 0.25(80)(9.81) �
196.2 N, which is slightly less than the value of 213 N required for no slipping.
Therefore, we conclude that the crate slips, and the friction force is governed by the
kinetic coefficient and is F � 0.20(80)(9.81) = 157.0 N. The acceleration becomes

The distances traveled by the crate and the truck are in proportion to their ac-
celerations. Thus, the crate has a displacement of (1.962/2.67)75 = 55.2 m, and
the work done by kinetic friction is

Ans.U1-2 � 157.0(55.2) � 8660 J   or   8.66 kJ[U � Fs]

a � F/m � 157.0/80 � 1.962 m/s2[F � ma]

U1-2 � 213(75) � 16 000 J   or   16 kJ[U � Fs]

F � 80(2.67) � 213 N[F � ma]

a � v
2

2s
 � 

(72/3.6)2

2(75)
 � 2.67 m/s2[v2 � 2as]

 v2 � 3.15 m/s

 12 (50)(4)2 � 151.9 � 12 (50)v2 

2

 12 mv1 

2 � U1-2 � 12 mv2 

2[T1 � U1-2 � T2]

U1-2 � 50(9.81)(10 sin 15�) � 142.1(10) � �151.9 J[U � Fs]

15°

50 kg

B

A10 m

50(9.81) N

R = 474 N

kR = 142.1 Nμ

80(9.81) N

a
F

80(9.81) N

Helpful Hint

� The work due to the weight depends
only on the vertical distance traveled.

Helpful Hints

� We note that static friction forces do
no work when the contacting sur-
faces are both at rest. When they are
in motion, however, as in this prob-
lem, the static friction force acting
on the crate does positive work and
that acting on the truck bed does
negative work.

� This problem shows that a kinetic
friction force can do positive work
when the surface which supports the
object and generates the friction
force is in motion. If the supporting
surface is at rest, then the kinetic
friction force acting on the moving
part always does negative work.

�

�

�
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SAMPLE PROBLEM 3/13

The 50-kg block at A is mounted on rollers so that it moves along the fixed
horizontal rail with negligible friction under the action of the constant 300-N
force in the cable. The block is released from rest at A, with the spring to which
it is attached extended an initial amount x1 � 0.233 m. The spring has a stiffness
k � 80 N/m. Calculate the velocity v of the block as it reaches position B.

Solution. It will be assumed initially that the stiffness of the spring is small
enough to allow the block to reach position B. The active-force diagram for the
system composed of both block and cable is shown for a general position. The
spring force 80x and the 300-N tension are the only forces external to this sys-
tem which do work on the system. The force exerted on the block by the rail, the
weight of the block, and the reaction of the small pulley on the cable do no work
on the system and are not included on the active-force diagram.

As the block moves from x1 � 0.233 m to x2 � 0.233 � 1.2 � 1.433 m, the
work done by the spring force acting on the block is

The work done on the system by the constant 300-N force in the cable is the
force times the net horizontal movement of the cable over pulley C, which is

� 0.9 � 0.6 m. Thus, the work done is 300(0.6) � 180 J. We now
apply the work-energy equation to the system and get

Ans.

We take special note of the advantage to our choice of system. If the block
alone had constituted the system, the horizontal component of the 300-N cable
tension on the block would have to be integrated over the 1.2-m displacement.
This step would require considerably more effort than was needed in the solu-
tion as presented. If there had been appreciable friction between the block and
its guiding rail, we would have found it necessary to isolate the block alone in
order to compute the variable normal force and, hence, the variable friction
force. Integration of the friction force over the displacement would then be re-
quired to evaluate the negative work which it would do.

0 � 80.0 � 180 � 12 (50)v2   v � 2.00 m/s[T1 � U1-2 � T2]

�(1.2)2 � (0.9)2

 � �80.0 J

 U1-2 � 12 

80[0.2332 � (0.233 � 1.2)2][U1-2 � 12 

k(x1 

2 � x2 

2)]

0.9 m

300 N

B

C

A

1.2 mx1

300 N

80x

System

x

Helpful Hint

� Recall that this general formula is
valid for any initial and final spring
deflections x1 and x2, positive (spring
in tension) or negative (spring in
compression). In deriving the spring-
work formula, we assumed the spring
to be linear, which is the case here.

�
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SAMPLE PROBLEM 3/14

The power winch A hoists the 800-lb log up the 30� incline at a constant speed
of 4 ft/sec. If the power output of the winch is 6 hp, compute the coefficient of ki-
netic friction �k between the log and the incline. If the power is suddenly increased
to 8 hp, what is the corresponding instantaneous acceleration a of the log?

Solution. From the free-body diagram of the log, we get N � 800 cos 30� �

693 lb, and the kinetic friction force becomes 693�k. For constant speed, the
forces are in equilibrium so that

The power output of the winch gives the tension in the cable

Substituting T gives

Ans.

When the power is increased, the tension momentarily becomes

and the corresponding acceleration is given by

Ans.

SAMPLE PROBLEM 3/15

A satellite of mass m is put into an elliptical orbit around the earth. At point
A, its distance from the earth is h1 � 500 km and it has a velocity v1 � 30 000
km/h. Determine the velocity v2 of the satellite as it reaches point B, a distance
h2 � 1200 km from the earth.

Solution. The satellite is moving outside of the earth’s atmosphere so that the
only force acting on it is the gravitational attraction of the earth. For the large
change in altitude of this problem, we cannot assume that the acceleration due
to gravity is constant. Rather, we must use the work expression, derived in this
article, which accounts for variation in the gravitational acceleration with alti-
tude. Put another way, the work expression accounts for the variation of the

weight F � with altitude. This work expression is

The work-energy equation T1 � U1-2 � T2 gives

Substituting the numerical values gives

Ans.v2 � 7663 m/s   or   v2 � 7663(3.6) � 27 590 km/h

 � 69.44(106) � 10.72(106) � 58.73(106) (m/s)2

v2 

2 � �30 000
3.6 �2

 � 2(9.81)[(6371)(103)]2
 � 10�3

6371 � 1200
 � 10�3

6371 � 500�

1
2 mv1 

2 � mgR2
 � 1

r2
 � 1

r1
� � 12 mv2 

2   v2 

2 � v1 

2 � 2gR2
 � 1

r2
 � 1

r1
�

U1-2 � mgR2� 1
r2

 � 1
r1
�

Gmme

r2

a � 11.07 ft/sec2

1100 � 693(0.613) � 800 sin 30� � 800
32.2

 a[ΣFx � max]

T � P/v � 8(550)/4 � 1100 lb[P � Tv]

825 � 693�k � 400   �k � 0.613

T � P/v � 6(550)/4 � 825 lb[P � Tv]

T � 693�k � 800 sin 30� � 0   T � 693�k � 400[ΣFx � 0]

A

4 ft /se
c

30°

T800 lb

30°

k Nμ

N

x

A

B

h1

v1

v2

h2

O
R

A

B
r

O

Fr2

r1

Helpful Hints

� Note the conversion from horse-
power to ft-lb/sec.

� As the speed increases, the accelera-
tion will drop until the speed stabi-
lizes at a value higher than 4 ft/sec.

Helpful Hints

� Note that the result is independent
of the mass m of the satellite.

� Consult Table D/2, Appendix D, to
find the radius R of the earth.
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PROBLEMS
Introductory Problems

3/97 The spring is unstretched when . If the body
moves from the initial position to the
final position , (a) determine the work
done by the spring on the body and (b) determine
the work done on the body by its weight.

Problem 3/97

3/98 The small body has a speed at point A.
Neglecting friction, determine its speed at point
B after it has risen 0.8 m. Is knowledge of the shape
of the track necessary?

Problem 3/98

3/99 The 64.4-lb crate slides down the curved path in the
vertical plane. If the crate has a velocity of 3 ft/sec
down the incline at A and a velocity of 25 ft/sec at B,
compute the work Uƒ done on the crate by friction
during the motion from A to B.

Problem 3/99

20′

3 ft/sec

A

B 25 ft/sec

30′


B


A � 5 m/s

x

7 kg

4 kN/m

20° 

x2 � 200 mm
x1 � 100 mm

x � 0

3/100 The 1.5-lb collar slides with negligible friction on
the fixed rod in the vertical plane. If the collar
starts from rest at A under the action of the con-
stant 2-lb horizontal force, calculate its velocity v
as it hits the stop at B.

Problem 3/100

3/101 In the design of a spring bumper for a 3500-lb car,
it is desired to bring the car to a stop from a speed
of 5 mi/hr in a distance equal to 6 in. of spring de-
formation. Specify the required stiffness k for each
of the two springs behind the bumper. The springs
are undeformed at the start of impact.

Problem 3/101

3/102 A two-engine jet transport has a loaded weight of
90,000 lb and a forward thrust of 9800 lb per engine
during takeoff. If the transport requires 4800 ft of
level runway starting from rest to become airborne
at a speed of 140 knots , de-
termine the average resistance R to motion over the
runway length due to drag (air resistance) and me-
chanical retardation by the landing gear.

(1 knot � 1.151 mi/hr)

5 mi/hr

2 lb

30″

15″

A

B
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3/105 The two small 0.2-kg sliders are connected by a
light rigid bar and are constrained to move with-
out friction in the circular slot. The force 
is constant in magnitude and direction and is ap-
plied to the moving slider A. The system starts
from rest in the position shown. Determine the
speed of slider A as it passes the initial position of
slider B if (a) the circular track lies in a horizontal
plane and if (b) the circular track lies in a vertical
plane. The value of R is 0.8 m.

Problem 3/105

3/106 The man and his bicycle together weigh 200 lb.
What power P is the man developing in riding up a
5-percent grade at a constant speed of 15 mi/hr?

Problem 3/106

5
100

15 mi/hr

30°

R

A

B

O

P

P � 12 N

3/103 The small collar of mass m is released from rest at
A and slides down the curved rod in the vertical
plane with negligible friction. Express the velocity
v of the collar as it strikes the base at B in terms of
the given conditions.

Problem 3/103

3/104 For the sliding collar of Prob. 3/103, if ,
, and , and if the velocity of the

collar as it strikes the base B is 4.70 m/s after re-
lease of the collar from rest at A, calculate the
work Q of friction. What happens to the energy
which is lost?

h � 1.5 mb � 0.8 m
m � 0.5 kg

A

b

h

B
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3/107 The system is released from rest with no slack in
the cable and with the spring unstretched. Deter-
mine the distanced s traveled by the 10-kg cart be-
fore it comes to rest (a) if m approaches zero and 
(b) if . Assume no mechanical interference.

Problem 3/107

3/108 The system is released from rest with no slack in
the cable and with the spring stretched 200 mm.
Determine the distance s traveled by the 10-kg
cart before it comes to rest (a) if m approaches
zero and (b) if . Assume no mechanical
interference.

Problem 3/108

m

k = 125 N/m

25°
10 kg

m � 2 kg

m

k = 125 N/m

25°
10 kg

m � 2 kg

3/109 The 2-kg collar is released from rest at A and slides
down the inclined fixed rod in the vertical plane.
The coefficient of kinetic friction is 0.40. Calculate
(a) the velocity v of the collar as it strikes the
spring and (b) the maximum deflection x of the
spring.

Problem 3/109

3/110 Each of the two systems is released from rest. Cal-
culate the velocity v of each 50-lb cylinder after the
40-lb cylinder has dropped 6 ft. The 20-lb cylinder
of case (a) is replaced by a 20-lb force in case (b).

Problem 3/110

50
lb

40
lb

20
lb

50
lb

40
lb

20 lb

(b)(a)

0.5 m

2 kg

A

k = 1.6 kN/m

= 0.40kμ

60°
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Representative Problems

3/113 An escalator handles a steady load of 30 people per
minute in elevating them from the first to the sec-
ond floor through a vertical rise of 24 ft. The aver-
age person weighs 140 lb. If the motor which
drives the unit delivers 4 hp, calculate the mechan-
ical efficiency e of the system.

Problem 3/113

3/114 A 1200-kg car enters an 8-percent downhill grade
at a speed of 100 km/h. The driver applies her
brakes to bring the car to a speed of 25 km/h in a
distance of 0.5 km measured along the road. Calcu-
late the energy loss Q dissipated from the brakes
in the form of heat. Neglect any friction losses
from other causes such as air resistance.

3/115 The 15-lb cylindrical collar is released from rest in
the position shown and drops onto the spring. Cal-
culate the velocity v of the cylinder when the
spring has been compressed 2 in.

Problem 3/115

18″

15 lbA

B

k = 80 lb/in.

3/111 The 120-lb woman jogs up the flight of stairs in 
5 seconds. Determine her average power output.
Convert all given information to SI units and re-
peat your calculation.

Problem 3/111

3/112 The 4-kg ball and the attached light rod rotate in
the vertical plane about the fixed axis at O. If the
assembly is released from rest at and moves
under the action of the 60-N force, which is main-
tained normal to the rod, determine the velocity v
of the ball as approaches . Treat the ball as a
particle.

Problem 3/112

O
A

4 kg

60 N

θ
200
mm

300
mm

90��

� � 0

9′
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3/116 Determine the constant force P required to cause
the 0.5-kg slider to have a speed at po-
sition 2. The slider starts from rest at position 1
and the unstretched length of the spring of modu-
lus is 200 mm. Neglect friction.

Problem 3/116

3/117 In a design test of penetration resistance, a 12-g
bullet is fired through a 400-mm stack of fibrous
plates with an entering velocity of 600 m/s. If the
bullet emerges with a velocity of 300 m/s, calculate
the average resistance R to penetration. What is
the loss of energy and where does it go?

Problem 3/117

300 m/s600 m/s

400 mm

�Q

P

k
m

250
mm 250 mm

200
mm

1
2 200

mm

15°

k � 250 N/m

v2 � 0.8 m/s
3/118 The motor unit A is used to elevate the 300-kg

cylinder at a constant rate of 2 m/s. If the power
meter B registers an electrical input of 2.20 kW,
calculate the combined electrical and mechanical
efficiency e of the system.

Problem 3/118

3/119 A 1700-kg car starts from rest at position A and ac-
celerates uniformly up the incline, reaching a
speed of 100 km/h at position B. Determine the
power required just before the car reaches position
B and also the power required when the car is
halfway between positions A and B. Calculate the
net tractive force F required.

Problem 3/119

A
B

100
6

110 m vB = 100 km/h
vA = 0

B A

100 kg
300 kg

2 m/s

Article 3/6 Problems 169

c03.qxd  2/9/12  7:39 PM  Page 169



3/122 A projectile is launched from the north pole with
an initial vertical velocity . What value of will
result in a maximum altitude of R/2? Neglect aero-
dynamic drag and use as the surface-
level acceleration due to gravity.

Problem 3/122

3/123 The spring is compressed an amount 
and the system is released from rest. Determine
the power supplied by the spring to the 4-kg cart
(a) just after release, (b) as the cart passes the po-
sition for which the spring is compressed an
amount /2, and (c) as the cart passes the equilib-
rium position.

Problem 3/123

k = 3.5 kN/m

Unstretched position

δ

4 kg

�

� � 80 mm

R

v0

g � 9.825 m/s2

v0v0

3/120 Two 425,000-lb locomotives pull 50 200,000-lb coal
hoppers. The train starts from rest and accelerates
uniformly to a speed of 40 mi/hr over a distance of
8000 ft on a level track. The constant rolling resis-
tance of each car is 0.005 times its weight. Neglect
all other retarding forces and assume that each lo-
comotive contributes equally to the tractive force.
Determine (a) the tractive force exerted by each lo-
comotive at 20 mi/hr, (b) the power required from
each locomotive at 20 mi/hr, (c) the power required
from each locomotive as the train speed ap-
proaches 40 mi/hr, and (d) the power required
from each locomotive if the train cruises at a
steady 40 mi/hr.

Problem 3/120

3/121 The 0.6-lb slider moves freely along the fixed
curved rod from A to B in the vertical plane under
the action of the constant 1.3-lb tension in the
cord. If the slider is released from rest at A, calcu-
late its velocity v as it reaches B.

Problem 3/121

6″

1.3 lbA

10″

24″

B

50 coal hoppers
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3/124 In a test to determine the crushing characteristics
of a packing material, a steel cone of mass m is re-
leased, falls a distance h, and then penetrates the
material. The radius of the cone is proportional to
the square of the distance from its tip. The resis-
tance R of the material to penetration depends on
the cross-sectional area of the penetrating object
and thus is proportional to the fourth power of the
cone penetration distance x, or . If the cone
comes to rest at a distance , determine the
constant k in terms of the test conditions and re-
sults. Utilize a single application of the work-
energy equation.

Problem 3/124

3/125 The small slider of mass m is released from rest
while in position A and then slides along the verti-
cal-plane track. The track is smooth from A to D
and rough (coefficient of kinetic friction ) from
point D on. Determine (a) the normal force NB ex-
erted by the track on the slider just after it passes
point B, (b) the normal force NC exerted by the
track on the slider as it passes the bottom point C,
and (c) the distance s traveled along the incline
past point D before the slider stops.

Problem 3/125

2R

30°

A

B

s

C

D

m

R

kμ

�k

h

x

x � d
R � kx4

3/126 The 0.5-kg collar slides with negligible friction
along the fixed spiral rod, which lies in the vertical
plane. The rod has the shape of the spiral ,
where r is in meters and is in radians. The collar
is released from rest at A and slides to B under the
action of a constant radial force . Calcu-
late the velocity v of the slider as it reaches B.

Problem 3/126

3/127 The 300-lb carriage has an initial velocity of 9 ft/sec
down the incline at A, when a constant force of 110
lb is applied to the hoisting cable as shown. Calcu-
late the velocity of the carriage when it reaches B.
Show that in the absence of friction this velocity is
independent of whether the initial velocity of the
carriage at A was up or down the incline.

Problem 3/127

10′
300 lb

vA =
 9 ft/s

ec

A

12

110 lb

B

5

y

x
T

T
T

A

B
r

θ

T � 10 N

�

r � 0.3�
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3/130 The two 0.2-kg sliders A and B are connected by a
light rigid bar of length . If the system is
released from rest while in the position shown
with the spring undeformed, determine the maxi-
mum compression of the spring. Note the pres-
ence of a constant 0.14-MPa air pressure acting on
one 500-mm2 side of slider A. Neglect friction. The
motion occurs in a vertical plane.

Problem 3/130

3/131 Once under way at a steady speed, the 1000-kg ele-
vator A rises at the rate of 1 story (3 m) per sec-
ond. Determine the power input Pin into the motor
unit M if the combined mechanical and electrical
efficiency of the system is .

Problem 3/131

A

M

e � 0.8

B

A

60° 30°
k = 1.2 kN/m

L

�

L � 0.5 m
3/128 Each of the sliders A and B has a mass of 2 kg and

moves with negligible friction in its respective
guide, with y being in the vertical direction. A 20-N
horizontal force is applied to the midpoint of the
connecting link of negligible mass, and the assem-
bly is released from rest with . Calculate the
velocity with which A strikes the horizontal
guide when .

Problem 3/128

3/129 The ball is released from position A with a velocity
of 3 m/s and swings in a vertical plane. At the bot-
tom position, the cord strikes the fixed bar at B,
and the ball continues to swing in the dashed arc.
Calculate the velocity of the ball as it passes po-
sition C.

Problem 3/129

60°

B
C

A

1.2 m

3 m/s

0.8 m

vC

0.2 m

0.2 m

20 N

A

Bx

y

θ

� � 90�

vA

� � 0
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3/132 The 7-kg collar A slides with negligible friction on
the fixed vertical shaft. When the collar is released
from rest at the bottom position shown, it moves
up the shaft under the action of the constant force

applied to the cable. Calculate the stiff-
ness k which the spring must have if its maximum
compression is to be limited to 75 mm. The posi-
tion of the small pulley at B is fixed.

Problem 3/132

3/133 Calculate the horizontal velocity v with which the
48-lb carriage must strike the spring in order to
compress it a maximum of 4 in. The spring is
known as a “hardening” spring, since its stiffness
increases with deflection as shown in the accompa-
nying graph.

Problem 3/133

x

48 lb

F, lb

60x

3x2

x, in.
x 40

0

225
mm

75 mm

450 mm

A

B

F

k

F � 200 N

3/134 The spring attached to the 10-kg mass is nonlin-
ear, having the force–deflection relationship shown
in the figure, and is unstretched when . If the
mass is moved to the position and re-
leased from rest, determine its velocity v when

. Determine the corresponding velocity if
the spring were linear according to , where
x is in meters and the force F is in kilonewtons.

Problem 3/134

3/135 The 6-kg cylinder is released from rest in the posi-
tion shown and falls on the spring, which has been
initially precompressed 50 mm by the light strap
and restraining wires. If the stiffness of the spring
is 4 kN/m, compute the additional deflection of
the spring produced by the falling cylinder before
it rebounds.

Problem 3/135

100 mm

6 kg

δ

�

10 kg

s = 0.25μ k = 0.20μ

x

Force F, kN

Deflection x, m

Linear, F = 4x

Nonlinear, F = 4x – 120x3

F � 4x
v�x � 0

x � 100 mm
x � 0
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3/138 The 50-lb slider in the position shown has an ini-
tial velocity on the inclined rail and
slides under the influence of gravity and friction.
The coefficient of kinetic friction between the
slider and the rail is 0.50. Calculate the velocity of
the slider as it passes the position for which the
spring is compressed a distance . The
spring offers a compressive resistance C and is
known as a “hardening” spring, since its stiffness
increases with deflection as shown in the accompa-
nying graph.

Problem 3/138

3′

v0 = 2 ft/sec

x

50
 lb

k = 0.50

60°

C, lb

9x2

100x

x, in.
x

μ

x � 4 in

v0 � 2 ft/sec
3/136 Extensive testing of an experimental 2000-lb auto-

mobile reveals the aerodynamic drag force FD and
the total nonaerodynamic rolling-resistance force
FR to be as shown in the plot. Determine (a) the
power required for steady speeds of 30 and 60 mi/hr
on a level road, (b) the power required for a steady
speed of 60 mi/hr both up and down a 6-percent in-
cline, and (c) the steady speed at which no power is
required going down the 6-percent incline.

Problem 3/136

3/137 The three springs of equal moduli are unstretched
when the cart is released from rest in the position

. If and , determine
(a) the speed v of the cart when , (b) the
maximum displacement xmax of the cart, and (c) the
steady-state displacement xss that would exist after
all oscillations cease.

Problem 3/137

xk

m

20°
k

k

x � 50 mm
m � 10 kgk � 120 N/mx � 0

0

20

40

60

80

0 20 40 60 80

Speed v, mi/hr

Force, lb

FR (constant)

FD (parabolic)
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3/7 Potential Energy
In the previous article on work and kinetic energy, we isolated a

particle or a combination of joined particles and determined the work
done by gravity forces, spring forces, and other externally applied forces
acting on the particle or system. We did this to evaluate U in the work-
energy equation. In the present article we will introduce the concept of
potential energy to treat the work done by gravity forces and by spring
forces. This concept will simplify the analysis of many problems.

Gravitational Potential Energy
We consider first the motion of a particle of mass m in close proxim-

ity to the surface of the earth, where the gravitational attraction
(weight) mg is essentially constant, Fig. 3/8a. The gravitational poten-
tial energy Vg of the particle is defined as the work mgh done against the
gravitational field to elevate the particle a distance h above some arbi-
trary reference plane (called a datum), where Vg is taken to be zero.
Thus, we write the potential energy as

(3/18)

This work is called potential energy because it may be converted
into energy if the particle is allowed to do work on a supporting body
while it returns to its lower original datum plane. In going from one
level at h � h1 to a higher level at h � h2, the change in potential energy
becomes

The corresponding work done by the gravitational force on the particle
is �mg�h. Thus, the work done by the gravitational force is the nega-
tive of the change in potential energy.

When large changes in altitude in the field of the earth are encoun-
tered, Fig. 3/8b, the gravitational force Gmme/r2 � mgR2/r2 is no longer
constant. The work done against this force to change the radial position
of the particle from r1 to r2 is the change (Vg)2 � (Vg)1 in gravitational
potential energy, which is

It is customary to take (Vg)2 � 0 when r2 � �, so that with this
datum we have

(3/19)

In going from r1 to r2, the corresponding change in potential energy is

�Vg � mgR2 � 1
r1

 � 1
r2
�

Vg � �
mgR2

r

� r2

r1

 mgR2 dr
r2

 � mgR2 � 1
r1

 � 1
r2
� � (Vg)2 � (Vg)1

�Vg � mg(h2 � h1) � mg�h

Vg � mgh

Earth
me

r

m

R

(a)

(b)

Vg = 0

Vg = mgh

mg
h

Vg = –
mgR2
—–—

r

mgR2
—–—

r2

Figure 3/8
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which, again, is the negative of the work done by the gravitational force.
We note that the potential energy of a given particle depends only on its
position, h or r, and not on the particular path it followed in reaching
that position.

Elastic Potential Energy
The second example of potential energy occurs in the deformation of

an elastic body, such as a spring. The work which is done on the spring to
deform it is stored in the spring and is called its elastic potential energy Ve.
This energy is recoverable in the form of work done by the spring on the
body attached to its movable end during the release of the deformation of
the spring. For the one-dimensional linear spring of stiffness k, which we
discussed in Art. 3/6 and illustrated in Fig. 3/5, the force supported by the
spring at any deformation x, tensile or compressive, from its undeformed
position is F � kx. Thus, we define the elastic potential energy of the
spring as the work done on it to deform it an amount x, and we have

(3/20)

If the deformation, either tensile or compressive, of a spring in-
creases from x1 to x2 during the motion, then the change in potential en-
ergy of the spring is its final value minus its initial value or

which is positive. Conversely, if the deformation of a spring decreases
during the motion interval, then the change in potential energy of the
spring becomes negative. The magnitude of these changes is repre-
sented by the shaded trapezoidal area in the F-x diagram of Fig. 3/5a.

Because the force exerted on the spring by the moving body is equal
and opposite to the force F exerted by the spring on the body, it follows
that the work done on the spring is the negative of the work done on the
body. Therefore, we may replace the work U done by the spring on the
body by ��Ve, the negative of the potential energy change for the spring,
provided the spring is now included within the system.

Work-Energy Equation
With the elastic member included in the system, we now modify the

work-energy equation to account for the potential-energy terms. If 
stands for the work of all external forces other than gravitational forces
and spring forces, we may write Eq. 3/15 as � (��Vg) � (��Ve) �
�T or

(3/21)

where �V is the change in total potential energy, gravitational plus elastic.
This alternative form of the work-energy equation is often far more

convenient to use than Eq. 3/15, since the work of both gravity and spring
forces is accounted for by focusing attention on the end-point positions of

U�1-2 � �T ��V

U�1-2

U�1-2

�Ve � 12 

k(x2 

2 � x1 

2)

Ve � �x

0
 kx dx � 12 

kx2
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the particle and on the end-point lengths of the elastic spring. The path
followed between these end-point positions is of no consequence in the
evaluation of �Vg and �Ve.

Note that Eq. 3/21 may be rewritten in the equivalent form

(3/21a)

To help clarify the difference between the use of Eqs. 3/15 and 3/21,
Fig. 3/9 shows schematically a particle of mass m constrained to move
along a fixed path under the action of forces F1 and F2, the gravitational
force W � mg, the spring force F, and the normal reaction N. In Fig.
3/9b, the particle is isolated with its free-body diagram. The work done
by each of the forces F1, F2, W, and the spring force F � kx is evaluated,
say, from A to B, and equated to the change �T in kinetic energy using
Eq. 3/15. The constraint reaction N, if normal to the path, will do no
work. The alternative approach is shown in Fig. 3/9c, where the spring
is included as a part of the isolated system. The work done during the
interval by F1 and F2 is the -term of Eq. 3/21 with the changes in
elastic and gravitational potential energies included on the energy side
of the equation.

We note with the first approach that the work done by F � kx
could require a somewhat awkward integration to account for the
changes in magnitude and direction of F as the particle moves from A

U�1-2

T1 � V1 � U�1-2 � T2 � V2

Article 3/7 Potential Energy 177

System

(a)

(c)

h

N

F = kx
W = mg

U1-2 = ΔT

U′1-2 = ΔT + ΔV

A

B
F1

F2

F1

F2

(b)

F1

F2

Vg = 0

Vg = mgh

Figure 3/9
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to B. With the second approach, however, only the initial and final
lengths of the spring are required to evaluate �Ve. This greatly simpli-
fies the calculation.

For problems where the only forces are gravitational, elastic, and
nonworking constraint forces, the U�-term of Eq. 3/21a is zero, and the
energy equation becomes

(3/22)

where E � T � V is the total mechanical energy of the particle and its
attached spring. When E is constant, we see that transfers of energy be-
tween kinetic and potential may take place as long as the total mechani-
cal energy T � V does not change. Equation 3/22 expresses the law of
conservation of dynamical energy.

Conservative Force Fields*
We have observed that the work done against a gravitational or an

elastic force depends only on the net change of position and not on the
particular path followed in reaching the new position. Forces with this
characteristic are associated with conservative force fields, which possess
an important mathematical property.

Consider a force field where the force F is a function of the coordi-
nates, Fig. 3/10. The work done by F during a displacement dr of its
point of application is dU � . The total work done along its path
from 1 to 2 is

The integral is a line integral which depends, in general, on the

particular path followed between any two points 1 and 2 in space. If,
however, is an exact differential† �dV of some scalar function V of
the coordinates, then

(3/23)

which depends only on the end points of the motion and which is thus
independent of the path followed. The minus sign before dV is arbitrary
but is chosen to agree with the customary designation of the sign of po-
tential energy change in the gravity field of the earth.

If V exists, the differential change in V becomes

dV � �V
�x  dx � �V

�y  dy � �V
�z  dz

U1-2 � �V2

V1

 �dV � �(V2 � V1)

F � dr

�F � dr

U � �F � dr � �(Fx dx � Fy dy � Fz dz)

F � dr

T1 � V1 � T2 � V2   or   E1 � E2
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*Optional.
†Recall that a function d
 � P dx � Q dy � R dz is an exact differential in the coordinates
x-y-z if

�P
�y

 � 
�Q
�x

  �P
�z

 � �R
�x

  
�Q
�z

 � �R
�y

1

2y

x

dr

r

F

z

Figure 3/10
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Comparison with �dV � = Fx dx � Fy dy � Fz dz gives us

The force may also be written as the vector

(3/24)

where the symbol � stands for the vector operator “del”, which is

The quantity V is known as the potential function, and the expression
�V is known as the gradient of the potential function.

When force components are derivable from a potential as described,
the force is said to be conservative, and the work done by F between any
two points is independent of the path followed.

� � i �
�x � j �

�y � k �
�z

F � ��V

Fx � ��V
�x   Fy � ��V

�y   Fz � ��V
�z

F � dr
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SAMPLE PROBLEM 3/16

The 6-lb slider is released from rest at position 1 and slides with negligible
friction in a vertical plane along the circular rod. The attached spring has a stiff-
ness of 2 lb/in. and has an unstretched length of 24 in. Determine the velocity of
the slider as it passes position 2.

Solution. The work done by the weight and the spring force on the slider will
be treated using potential-energy methods. The reaction of the rod on the slider
is normal to the motion and does no work. Hence, � 0. We define the datum
to be at the level of position 1, so that the gravitational potential energies are

The initial and final elastic (spring) potential energies are

Substitution into the alternative work-energy equation yields

Ans.

SAMPLE PROBLEM 3/17

The 10-kg slider moves with negligible friction up the inclined guide. The
attached spring has a stiffness of 60 N/m and is stretched 0.6 m in position A,
where the slider is released from rest. The 250-N force is constant and the pulley
offers negligible resistance to the motion of the cord. Calculate the velocity vC of
the slider as it passes point C.

Solution. The slider and inextensible cord together with the attached spring
will be analyzed as a system, which permits the use of Eq. 3/21a. The only non-
potential force doing work on this system is the 250-N tension applied to the
cord. While the slider moves from A to C, the point of application of the 250-N
force moves a distance of or 1.5 � 0.9 � 0.6 m.

We define a datum at position A so that the initial and final gravitational poten-
tial energies are

The initial and final elastic potential energies are

Substitution into the alternative work-energy equation 3/21a gives

Ans.vC � 0.974 m/s

[TA � VA � U�A-C � TC � VC]   0 � 0 � 10.8 � 150 � 12 (10)vC 

2 � 58.9 � 97.2

 VC � 12 kxB 

2 � 12 

60(0.6 � 1.2)2 � 97.2 J

 VA � 12 

kxA 

2 � 12 

(60)(0.6)2 � 10.8 J

VA � 0   VC � mgh � 10(9.81)(1.2 sin 30�) � 58.9 J

U�A-C � 250(0.6) � 150 J

AB � BC

 v2 � 23.6 ft/sec

[T1 � V1 � U�1-2 � T2 � V2]    0 � 48 � 0 � 1
2

 � 6
32.2� v2 

2 � 12 � 8.24

 V2 � 12 kx2 

2 � 12 (2)(12)�24�2
12

 � 24
12�

2
 � 8.24 ft- lb

 V1 � 12 kx1 

2 � 12 (2)(12)�24
12�

2
 � 48 ft- lb

 V2 � �mgh � �6 �24
12� � �12 ft- lb

 V1 � 0

U�1-2

24″

k = 2 lb/in.

6 lb

1

2 v2

24″

250 N

vC

0.9 m
B

30°

A

C

1.2 m

Helpful Hints

� Do not hesitate to use subscripts tai-
lored to the problem at hand. Here
we use A and C rather than 1 and 2.

� The reactions of the guides on the
slider are normal to the direction of
motion and do no work.

Helpful Hint

� Note that if we evaluated the work
done by the spring force acting on
the slider by means of the integral

, it would necessitate a lengthy
computation to account for the
change in the magnitude of the force,
along with the change in the angle
between the force and the tangent to
the path. Note further that v2 de-
pends only on the end conditions of
the motion and does not require
knowledge of the shape of the path.

�F � dr

180 Chapter 3 Kinetics of Particles

�

�

�

c03.qxd  2/9/12  7:39 PM  Page 180



SAMPLE PROBLEM 3/18

The system shown is released from rest with the lightweight slender bar OA in
the vertical position shown. The torsional spring at O is undeflected in the initial
position and exerts a restoring moment of magnitude k�� on the bar, where � is the
counterclockwise angular deflection of the bar. The string S is attached to point C
of the bar and slips without friction through a vertical hole in the support surface.
For the values mA � 2 kg, mB � 4 kg, L � 0.5 m, and k� � 13 :

(a) Determine the speed vA of particle A when � reaches 90�.

(b) Plot vA as a function of � over the range 0 � � � 90�. Identify the maximum
value of vA and the value of � at which this maximum occurs.

Solution (a). We begin by establishing a general relationship for the potential
energy associated with the deflection of a torsional spring. Recalling that the
change in potential energy is the work done on the spring to deform it, we write

We also need to establish the relationship between vA and vB when � � 90�. Not-
ing that the speed of point C is always vA/2, and further noting that the speed of
cylinder B is one-half the speed of point C at � � 90�, we conclude that at � � 90�,

Establishing datums at the initial altitudes of bodies A and B, and with state 1 at
� � 0 and state 2 at � � 90�, we write

With numbers:

Solving, Ans.

(b). We leave our definition of the initial state 1 as is, but now redefine state 2
to be associated with an arbitrary value of �. From the accompanying diagram
constructed for an arbitrary value of �, we see that the speed of cylinder B can be
written as

Finally, because vA � L , 

Upon substitution of the given quantities, we vary � to produce the plot of vA

versus �. The maximum value of vA is seen to be

Ans.(vA)max � 1.400 m/s at � � 56.4�

� mB 

g �1
2��L�2

2
 � 2 

L
2

 sin �90� � �
2 �� � 1

2
 k��2

0 � 0 � 0 � 1
2

 mAvA 

2 � 1
2

 mB �vA

4
 cos �90� � �

2 ��2
�mA 

gL(1 � cos �)

[T1 � V1 � U�1-2 � T2 � V2]

vB � 
vA

4
 cos �90� � �

2 ��̇

 � 1
2�L ��

�̇

2� cos �90� � �
2 � � � 

L �̇

4
 cos �90� � �

2 �

 vB � 1
2� d

dt
 (C�C �) � � 1

2� d
dt

 �2 

L
2

 sin �90� � �
2 �� �

vA � 0.794 m/s

0 � 1
2

 (2)vA 

2 � 1
2

 (4)�vA

4 �
2
 � 2(9.81)(0.5) � 4(9.81)�0.5�2

4 � � 1
2

 (13)��
2�

2

0 � 0 � 0 � 1
2

 mAvA 

2 � 1
2

 mBvB 

2 � mA 

gL � mB 

g �L�2
4 � � 1

2
 k� ��

2�
2

[T1 � V1 � U�1-2 � T2 � V2]   

vB � 1
4

 vA

Ve � ��

0
 k�� d� � 1

2
 k��2

N � m/rad

B

O

S k

C

mB

A
mA

θ

θ

L––
2

L––
2

OC″
(top of hole)

C′

C

θ

θ90° –
    —–—–

    2

θ90° –
    —–—–

    2

L––
2L––

2

L––
2

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80 90

, deg

v A
, m

/s

θ

(vA)max = 1.400 m/s
at    = 56.4°θ

Helpful Hints

� Note that mass B will move down-
ward by one-half of the length of
string initially above the supporting
surface. This downward distance is 

.

� The absolute-value signs reflect the
fact that vB is known to be positive.

1
2

 �L
2
�2� � 

L�2
4
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3/141 The 1.2-kg slider is released from rest in position A
and slides without friction along the vertical-plane
guide shown. Determine (a) the speed of the
slider as it passes position B and (b) the maximum
deflection of the spring.

Problem 3/141

3/142 The 1.2-kg slider of the system of Prob. 3/141 is
released from rest in position A and slides without
friction along the vertical-plane guide. Determine
the normal force exerted by the guide on the slider
(a) just before it passes point C, (b) just after it
passes point C, and (c) just before it passes point E.

3/143 Point P on the 2-kg cylinder has an initial velocity
as it passes position A. Neglect the

mass of the pulleys and cable and determine the
distance y of point P below A when the 3-kg cylin-
der has acquired an upward velocity of 0.6 m/s.

Problem 3/143

3 kg

2 kg

A

P

v0

v0 � 0.8 m/s

3 m

1.2 kg

k = 24 kN/m

E

DC

B

A

1.5 m
30°

30°

�

vB

PROBLEMS
Introductory Problems

3/139 The 2-lb collar is released from rest at A and slides
freely up the inclined rod, striking the stop at B
with a velocity v. The spring of stiffness 
lb/ft has an unstretched length of 15 in. Calculate v.

Problem 3/139

3/140 The 4-kg slider is released from rest at A and slides
with negligible friction down the circular rod in
the vertical plane. Determine (a) the velocity v of
the slider as it reaches the bottom at B and (b) the
maximum deformation x of the spring.

Problem 3/140

0.6 m 4 kg

k = 20 kN/m

A

B

O

A

B

k 
= 

1.
60

 lb
/ft

20″

10″

18″

k � 1.60
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3/144 The spring of constant k is unstretched when the
slider of mass m passes position B. If the slider is
released from rest in position A, determine its
speeds as it passes points B and C. What is the nor-
mal force exerted by the guide on the slider at posi-
tion C? Neglect friction between the mass and the
circular guide, which lies in a vertical plane.

Problem 3/144

3/145 It is desired that the 100-lb container, when released
from rest in the position shown, have no velocity
after dropping 7 ft to the platform below. Specify
the proper weight W of the counterbalancing
cylinder.

Problem 3/145

24′

W

5′

7′

100 lb

A

B

m
k

C

R

R

3/146 The system is released from rest with the spring
initially stretched 3 in. Calculate the velocity v of
the cylinder after it has dropped 0.5 in. The spring
has a stiffness of 6 lb/in. Neglect the mass of the
small pulley.

Problem 3/146

3/147 The projectile of Prob. 3/122 is repeated here. By
the method of this article, determine the vertical
launch velocity which will result in a maximum
altitude of R/2. The launch is from the north pole
and aerodynamic drag can be neglected. Use

as the surface-level acceleration
due to gravity.

Problem 3/147

R

v0

g � 9.825 m/s2

v0

k = 6 lb/in.

100 lb
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Representative Problems

3/150 The 0.8-kg particle is attached to the system of two
light rigid bars, all of which move in a vertical
plane. The spring is compressed an amount b/2
when , and the length . The system
is released from rest in a position slightly above
that for . (a) If the maximum value of is ob-
served to be , determine the spring constant k.
(b) For , determine the speed of the
particle when . Also find the corresponding
value of .

Problem 3/150

3/151 The two springs, each of stiffness ,
are of equal length and undeformed when . If
the mechanism is released from rest in the position

, determine its angular velocity when
. The mass m of each sphere is 3 kg. Treat the

spheres as particles and neglect the masses of the
light rods and springs.

Problem 3/151

O

k k

m

m

m

θ

0.25 m

� � 0
�̇� � 20�

� � 0
k � 1.2 kN/m

CO

B

A

k
b

b

b

m

θ

�̇

� � 25�

vk � 400 N/m
50�

�� � 0

b � 0.30 m� � 0

3/148 The 1.5-kg slider C moves along the fixed rod
under the action of the spring whose unstretched
length is 0.3 m. If the velocity of the slider is 2 m/s
at point A and 3 m/s at point B, calculate the work
Uƒ done by friction between these two points. Also,
determine the average friction force acting on the
slider between A and B if the length of the path is
0.70 m. The x-y plane is horizontal.

Problem 3/148

3/149 The light rod is pivoted at O and carries the 5- and
10-lb particles. If the rod is released from rest at

and swings in the vertical plane, calculate
(a) the velocity v of the 5-lb particle just before it
hits the spring in the dashed position and (b) the
maximum compression x of the spring. Assume
that x is small so that the position of the rod when
the spring is compressed is essentially horizontal.

Problem 3/149

O

10 lb

5 lb

12″
k = 200 lb/in.

θ

18″

� � 60�

0.4 m

0.4 m0.3 m

B

x

y

z

C

A

v

k = 800 N/m
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3/152 If the system is released from rest, determine the
speeds of both masses after B has moved 1 m. Ne-
glect friction and the masses of the pulleys.

Problem 3/152

3/153 The 3-lb ball is given an initial velocity 
in the vertical plane at position A, where the two
horizontal attached springs are unstretched. The
ball follows the dashed path shown and crosses
point B, which is 5 in. directly below A. Calculate
the velocity of the ball at B. Each spring has a
stiffness of 10 lb/in.

Problem 3/153

12″12″

vA

vB

A

B

5″

vB

vA � 8 ft/sec

20°

40 kg

8 kg

A

B

3/154 The 0.75-kg particle is attached to the light slender
rod OA which pivots freely about a horizontal axis
through point O. The system is released from rest
while in the position where the spring is un-
stretched. If the particle is observed to stop mo-
mentarily in the position , determine the
spring constant k. For your computed value of k,
what is the particle speed v at the position ?

Problem 3/154

3/155 The spring has an unstretched length of 25 in. If
the system is released from rest in the position
shown, determine the speed v of the ball (a) when
it has dropped a vertical distance of 10 in. and 
(b) when the rod has rotated .

Problem 3/155

9 lb

1.2 lb/in.

O

10″

24″

26″

35�

O

0.75 kg

A

B

k
0.6 m

0.6 m

θ

� � 25�

� � 50�

� � 0

Article 3/7 Problems 185

c03.qxd  2/9/12  7:39 PM  Page 185



3/158 The collar has a mass of 2 kg and is attached to the
light spring, which has a stiffness of 30 N/m and an
unstretched length of 1.5 m. The collar is released
from rest at A and slides up the smooth rod under
the action of the constant 50-N force. Calculate the
velocity v of the collar as it passes position B.

Problem 3/158

3/159 The shank of the 5-lb vertical plunger occupies the
dashed position when resting in equilibrium
against the spring of stiffness . The
upper end of the spring is welded to the plunger,
and the lower end is welded to the base plate. If
the plunger is lifted in. above its equilibrium po-
sition and released from rest, calculate its velocity
v as it strikes the button A. Friction is negligible.

Problem 3/159

k = 10 lb/in.

W = 5 lb

1–
21   ″ 1–

4     ″

A

11
2

k � 10 lb/in

A

B

2 m

k = 30 N/m

50 N

30°
1.5 m

3/156 The two 1.5-kg spheres are released from rest and
gently nudged outward from the position 
and then rotate in a vertical plane about the fixed
centers of their attached gears, thus maintaining
the same angle for both rods. Determine the ve-
locity v of each sphere as the rods pass the position

. The spring is unstretched when , and
the masses of the two identical rods and the two
gear wheels may be neglected.

Problem 3/156

3/157 A rocket launches an unpowered space capsule at
point A with an absolute velocity 
at an altitude of 25 mi. After the capsule has trav-
eled a distance of 250 mi measured along its ab-
solute space trajectory, its velocity at B is 7600
mi/hr and its altitude is 50 mi. Determine the aver-
age resistance P to motion in the rarified atmos-
phere. The earth weight of the capsule is 48 lb, and
the mean radius of the earth is 3959 mi. Consider
the center of the earth fixed in space.

Problem 3/157

B

A

vB

vA

50 mi

25 mi

vA � 8000 mi/hr

80
mm

1.5 kg

θ

1.5 kg

k = 60 N/m240 mm

240 mm

θ

� � 0� � 30�

�

� � 0
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3/160 Upon its return voyage from a space mission, the
spacecraft has a velocity of 24 000 km/h at point A,
which is 7000 km from the center of the earth. De-
termine the velocity of the spacecraft when it
reaches point B, which is 6500 km from the center of
the earth. The trajectory between these two points is
outside the effect of the earth’s atmosphere.

Problem 3/160

3/161 The 5-kg cylinder is released from rest in the posi-
tion shown and compresses the spring of stiffness

. Determine the maximum compres-
sion xmax of the spring and the maximum velocity

of the cylinder along with the corresponding
deflection x of the spring.

Problem 3/161

5 kg

100 mm

x

k = 1.8 kN/m

vmax

k � 1.8 kN/m

A

B
O

3/162 A 175-lb pole vaulter carrying a uniform 16-ft, 10-lb
pole approaches the jump with a velocity v and
manages to barely clear the bar set at a height of
18 ft. As he clears the bar, his velocity and that of
the pole are essentially zero. Calculate the mini-
mum possible value of required for him to make
the jump. Both the horizontal pole and the center
of gravity of the vaulter are 42 in. above the
ground during the approach.

Problem 3/162

3/163 The cylinder of mass m is attached to the collar
bracket at A by a spring of stiffness k. The collar
fits loosely on the vertical shaft, which is lowering
both the collar and the suspended cylinder with a
constant velocity v. When the collar strikes the
base B, it stops abruptly with essentially no re-
bound. Determine the maximum additional deflec-
tion of the spring after the impact.

Problem 3/163

m

A

B

k

v

v

�
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3/166 Calculate the maximum velocity of slider B if the
system is released from rest with . Motion is
in the vertical plane. Assume that friction is negli-
gible. The sliders have equal masses, and the mo-
tion is restricted to .

Problem 3/166

3/167 The mechanism is released from rest with 
where the uncompressed spring of stiffness

is just touching the underside of the
4-kg collar. Determine the angle corresponding
to the maximum compression of the spring. Mo-
tion is in the vertical plane, and the mass of the
links may be neglected.

Problem 3/167

θ

4 kg

Vertical

k

3 kg

200 m
m

20
0 

m
m

30
0 

m
m

3 kg

�

k � 900 N/m

� � 180�,

0.9 m

A

B

y

x

y 	 0

x � y
3/164 The cars of an amusement-park ride have a speed

at the lowest part of the track. Deter-
mine their speed at the highest part of the track.
Neglect energy loss due to friction. (Caution: Give
careful thought to the change in potential energy
of the system of cars.)

Problem 3/164

3/165 The two right-angle rods with attached spheres are
released from rest in the position . If the sys-
tem is observed to momentarily come to rest when

, determine the spring constant k. The
spring is unstretched when . Treat the
spheres as particles and neglect friction.

Problem 3/165

60mm

180 mm

2 kg2 kg
k

θ θ

� � 0
� � 45�

� � 0

v2

v1

90°
15 m

90°
15 m

v2

v1 � 90 km/h
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3/168 A particle of mass m is attached to one end of a
light slender rod which pivots about a horizontal
axis through point O. The spring constant

and the distance . If the
system is released from rest in the horizontal
position shown where the spring is unstretched,
the bar is observed to deflect a maximum of 
clockwise. Determine (a) the particle mass m and
(b) the particle speed v after a displacement of 
from the position shown. Neglect friction.

Problem 3/168

3/169 The 3-kg sphere is carried by the parallelogram
linkage where the spring is unstretched when

. If the mechanism is released from rest at
, calculate the velocity v of the sphere when

the position is passed. The links are in
the vertical plane, and their mass is small and may
be neglected.

Problem 3/169

θ θ

3 kg

500 mm

50
0 

m
m

50
0 

m
m

k = 100 N/m

� � 135�

� � 90�

� � 90�

b––
2

b

O A

m

C

B

k

b

15�

30�

b � 200 mmk � 200 N/m

3/170 The system is at rest with the spring unstretched
when . The 3-kg particle is then given a slight
nudge to the right. (a) If the system comes to mo-
mentary rest at , determine the spring con-
stant k. (b) For the value , find the
speed of the particle when . Use the value

m throughout and neglect friction.

Problem 3/170

k

C

B

m
A

b

O

1.25b

θ

b � 0.40
� � 25�

k � 100 N/m
� � 40�

� � 0
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3/172 The flexible bicycle-type chain of length and
mass per unit length is released from rest with

in the smooth circular channel and falls
through the hole in the supporting surface. Deter-
mine the velocity v of the chain as the last link
leaves the slot.

Problem 3/172

r
θ

� � 0
�

�r/23/171 The system is released from rest with the angle
. Determine when reaches . Use the

values , , and m.
Neglect friction and the mass of bar OB, and treat
the body B as a particle.

Problem 3/171

O
C

m2

m1

B

A

2b

b

2b

θ

b � 0.40m2 � 1.25 kgm1 � 1 kg
60���̇� � 90�
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SECTION C IMPULSE AND MOMENTUM

3/8 Introduction
In the previous two articles, we focused attention on the equations of

work and energy, which are obtained by integrating the equation of mo-
tion F � ma with respect to the displacement of the particle. We found
that the velocity changes could be expressed directly in terms of the work
done or in terms of the overall changes in energy. In the next two arti-
cles, we will integrate the equation of motion with respect to time rather
than displacement. This approach leads to the equations of impulse and
momentum. These equations greatly facilitate the solution of many prob-
lems in which the applied forces act during extremely short periods of
time (as in impact problems) or over specified intervals of time.

3/9 Linear Impulse and Linear Momentum
Consider again the general curvilinear motion in space of a particle

of mass m, Fig. 3/11, where the particle is located by its position vector r
measured from a fixed origin O. The velocity of the particle is v � and
is tangent to its path (shown as a dashed line). The resultant ΣF of all
forces on m is in the direction of its acceleration . We may now write
the basic equation of motion for the particle, Eq. 3/3, as

(3/25)

where the product of the mass and velocity is defined as the linear mo-
mentum G � mv of the particle. Equation 3/25 states that the resultant
of all forces acting on a particle equals its time rate of change of linear
momentum. In SI the units of linear momentum mv are seen to be

, which also equals . In U.S. customary units, the units of 
linear momentum mv are [lb/(ft/sec2)][ft/sec] � lb-sec.

Because Eq. 3/25 is a vector equation, we recognize that, in addition to
the equality of the magnitudes of ΣF and , the direction of the resultant
force coincides with the direction of the rate of change in linear momen-
tum, which is the direction of the rate of change in velocity. Equation 3/25
is one of the most useful and important relationships in dynamics, and it
is valid as long as the mass m of the particle is not changing with time.
The case where m changes with time is discussed in Art. 4/7 of Chapter 4.

We now write the three scalar components of Eq. 3/25 as

(3/26)

These equations may be applied independently of one another.

The Linear Impulse-Momentum Principle
All that we have done so far in this article is to rewrite Newton’s

second law in an alternative form in terms of momentum. But we are
now able to describe the effect of the resultant force ΣF on the linear

ΣFx � Ġx   ΣFy � Ġy   ΣFz � Ġz

Ġ

N � skg � m/s

ΣF � mv̇ � d
dt

 (mv)   or   ΣF � Ġ

v̇

ṙ
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ΣF

r2

r1

v1 t1

v2

r
y

m

O

x

v = r·

G = mv

G
·

v·

z

t2
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momentum of the particle over a finite period of time simply by inte-
grating Eq. 3/25 with respect to the time t. Multiplying the equation by
dt gives ΣF dt � dG, which we integrate from time t1 to time t2 to obtain

(3/27)

Here the linear momentum at time t2 is G2 � mv2 and the linear momen-
tum at time t1 is G1 � mv1. The product of force and time is defined as
the linear impulse of the force, and Eq. 3/27 states that the total linear
impulse on m equals the corresponding change in linear momentum of m.

Alternatively, we may write Eq. 3/27 as

(3/27a)

which says that the initial linear momentum of the body plus the linear
impulse applied to it equals its final linear momentum.

The impulse integral is a vector which, in general, may involve
changes in both magnitude and direction during the time interval.
Under these conditions, it will be necessary to express ΣF and G in com-
ponent form and then combine the integrated components. The compo-
nents of Eq. 3/27a are the scalar equations

(3/27b)

These three scalar impulse-momentum equations are completely
independent.

Whereas Eq. 3/27 clearly stresses that the external linear impulse
causes a change in the linear momentum, the order of the terms in Eqs.
3/27a and 3/27b corresponds to the natural sequence of events. While
the form of Eq. 3/27 may be best for the experienced dynamicist, the
form of Eqs. 3/27a and 3/27b is very effective for the beginner.

We now introduce the concept of the impulse-momentum diagram.
Once the body to be analyzed has been clearly identified and isolated, we
construct three drawings of the body as shown in Fig. 3/12. In the first
drawing, we show the initial momentum mv1, or components thereof. In

m(v1)z � � t2

t1

 ΣFz dt � m(v2)z

m(v1)y � � t2

t1

 ΣFy dt � m(v2)y

m(v1)x � � t2

t1

 ΣFx dt � m(v2)x

G1 � � t2

t1

 ΣF dt � G2

� t2

t1

 ΣF dt � G2 � G1 � �G
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t2

G1 = mv1

G2 = mv2

+ =
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the second or middle drawing, we show all the external linear impulses
(or components thereof). In the final drawing, we show the final linear
momentum mv2 (or its components). The writing of the impulse-momen-
tum equations 3/27b then follows directly from these drawings, with a
clear one-to-one correspondence between diagrams and equation terms.

We note that the center diagram is very much like a free-body dia-
gram, except that the impulses of the forces appear rather than the
forces themselves. As with the free-body diagram, it is necessary to in-
clude the effects of all forces acting on the body, except those forces
whose magnitudes are negligible.

In some cases, certain forces are very large and of short duration. Such
forces are called impulsive forces. An example is a force of sharp impact.
We frequently assume that impulsive forces are constant over their time of
duration, so that they can be brought outside the linear-impulse integral.
In addition, we frequently assume that nonimpulsive forces can be ne-
glected in comparison with impulsive forces. An example of a nonimpulsive
force is the weight of a baseball during its collision with a bat—the weight
of the ball (about 5 oz) is small compared with the force (which could be
several hundred pounds in magnitude) exerted on the ball by the bat.

There are cases where a force acting on a particle varies with the
time in a manner determined by experimental measurements or by
other approximate means. In this case a graphical or numerical integra-
tion must be performed. If, for example, a force F acting on a particle in
a given direction varies with the time t as indicated in Fig. 3/13, then

the impulse, F dt, of this force from t1 to t2 is the shaded area under

the curve.

Conservation of Linear Momentum
If the resultant force on a particle is zero during an interval of time,

we see that Eq. 3/25 requires that its linear momentum G remain con-
stant. In this case, the linear momentum of the particle is said to be con-
served. Linear momentum may be conserved in one coordinate direction,
such as x, but not necessarily in the y- or z-direction. A careful examina-
tion of the impulse-momentum diagram of the particle will disclose
whether the total linear impulse on the particle in a particular direction
is zero. If it is, the corresponding linear momentum is unchanged (con-
served) in that direction.

Consider now the motion of two particles a and b which interact
during an interval of time. If the interactive forces F and �F between
them are the only unbalanced forces acting on the particles during the
interval, it follows that the linear impulse on particle a is the negative of
the linear impulse on particle b. Therefore, from Eq. 3/27, the change 
in linear momentum �Ga of particle a is the negative of the change 
�Gb in linear momentum of particle b. So we have �Ga � ��Gb or 
�(Ga � Gb) � 0. Thus, the total linear momentum G � Ga � Gb for the
system of the two particles remains constant during the interval, and we
write

(3/28)

Equation 3/28 expresses the principle of conservation of linear momentum.

�G � 0   or   G1 � G2

� t2

t1
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Time, t

F2

t1 t2

F1

Force, F

Figure 3/13

The impact force exerted by the rac-
quet on this tennis ball will usually
be much larger than the weight of
the tennis ball.
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SAMPLE PROBLEM 3/19

A tennis player strikes the tennis ball with her racket when the ball is at the
uppermost point of its trajectory as shown. The horizontal velocity of the ball
just before impact with the racket is v1 � 50 ft/sec, and just after impact its ve-
locity is v2 � 70 ft/sec directed at the 15� angle as shown. If the 2-oz ball is in
contact with the racket for 0.02 sec, determine the magnitude of the average
force R exerted by the racket on the ball. Also determine the angle � made by R
with the horizontal.

Solution. We construct the impulse-momentum diagrams for the ball as follows:

We can now solve for the impact forces as

We note that the impact force Ry � 3.64 lb is considerably larger than the
0.125-lb weight of the ball. Thus, the weight mg, a nonimpulsive force, could
have been neglected as small in comparison with Ry. Had we neglected the
weight, the computed value of Ry would have been 3.52 lb.

We now determine the magnitude and direction of R as

Ans.

Ans.� � tan�1 
Ry

Rx
 � tan�1 3.64

22.8
 � 9.06�

R � �Rx
2 � Ry

2 � �22.82 � 3.642 � 23.1 lb

 Ry � 3.64 lb

 Rx � 22.8 lb

2/16
32.2

 (0) � Ry(0.02) � (2/16)(0.02) � 
2/16
32.2

 (70 sin 15�)

[m(vy 

)1 � � t2

t1

ΣFy 

dt � m(vy 

)2]

[m(vx 

)1 � � t2

t1

ΣFx 

dt � m(vx 

)2]   � 

2/16
32.2

 (50) � Rx(0.02) � 
2/16
32.2

 (70 cos 15� )

x

y

15°

Rx dt

mv2
mv1 + =

mg dt

Ry dt

t1

t2

t1

t2

t1

t2

15°
v1

v2

� For the linear impulse Rx dt, the

average impact force Rx is a constant,
so that it can be brought outside the

integral sign, resulting in Rx dt �

Rx(t2 � t1) � Rx�t. The linear impulse
in the y-direction has been similarly
treated.

� t2

t1

� t2

t1

Helpful Hints

� Recall that for the impulse-momentum
diagrams, initial linear momentum
goes in the first diagram, all exter-
nal linear impulses go in the second
diagram, and final linear momen-
tum goes in the third diagram.
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–2k lb

F

Up

z

y

F1

F1

F2

F2

10 m/s

y

x

0

2

4
F, N

321
t, s

0

t = 1 s

t = 2 s

t = 3 s

8

8j m/s

– 6i m/s

6

4

2

0
0 2

x, m

y, m

4 6

v2 = 10 m/s

x = 126.9°θ

Helpful Hint

� Don’t forget that ΣF includes all ex-
ternal forces acting on the particle,
including the weight.

SAMPLE PROBLEM 3/20

A 2-lb particle moves in the vertical y-z plane (z up, y horizontal) under the
action of its weight and a force F which varies with time. The linear momentum
of the particle in pound-seconds is given by the expression G � (t2 � 3)j �

(t3 � 4)k, where t is the time in seconds. Determine F and its magnitude for the 

instant when t � 2 sec.

Solution. The weight expressed as a vector is �2k lb. Thus, the force-momen-
tum equation becomes

For t � 2 sec, Ans.

Thus, Ans.

SAMPLE PROBLEM 3/21

A particle with a mass of 0.5 kg has a velocity of 10 m/s in the x-direction at
time t � 0. Forces F1 and F2 act on the particle, and their magnitudes change
with time according to the graphical schedule shown. Determine the velocity v2

of the particle at the end of the 3-s interval. The motion occurs in the horizontal
x-y plane.

Solution. First, we construct the impulse-momentum diagrams as shown.

Then the impulse-momentum equations follow as

Thus,

Ans.

Although not called for, the path of the particle for the first 3 seconds is plot-
ted in the figure. The velocity at t � 3 s is shown together with its components.

�x � tan�1 8
�6

 � 126.9�

v2 � �6i � 8j m/s   and   v2 � �62 � 82 � 10 m/s

 (v2)y � 8 m/s

 0.5(0) � [1(2) � 2(3 � 2)] � 0.5(v2)y[m(v1)y � � t2

t1

ΣFy dt � m(v2)y]

 (v2)x � �6 m/s

 0.5(10) � [4(1) � 2(3 � 1)] � 0.5(v2)x[m(v1)x � � t2

t1

ΣFx dt � m(v2)x]

m(v1)y = 0

m(v2)x

m(v2)y

m(v1)x =
0.5 (10) kg·m/s

+ =
F1 dt

F2 dt

t1

t2

t1

t2

 F � �62 � 62 � 6�2 lb

 F � 2k � 3(2)j � 2(22)k � 6j � 6k lb

 � 3tj � 2t2k

 F � 2k � d
dt

 [32 (t2 � 3)j � 23 (t3 � 4)k][ΣF � Ġ]

2
3

3
2
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Helpful Hint

� The impulse in each direction is the
corresponding area under the force-
time graph. Note that F1 is in the
negative x-direction, so its impulse is
negative.

�

�
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SAMPLE PROBLEM 3/22

The loaded 150-kg skip is rolling down the incline at 4 m/s when a force P is
applied to the cable as shown at time t � 0. The force P is increased uniformly
with the time until it reaches 600 N at t � 4 s, after which time it remains con-
stant at this value. Calculate (a) the time at which the skip reverses its direc-
tion and (b) the velocity v of the skip at t � 8 s. Treat the skip as a particle.

Solution. The stated variation of P with the time is plotted, and the impulse-
momentum diagrams of the skip are drawn.

Part (a). The skip reverses direction when its velocity becomes zero. We will
assume that this condition occurs at t � 4 � �t s. The impulse-momentum equa-
tion applied consistently in the positive x-direction gives

Ans.

Part (b). Applying the momentum equation to the entire 8-s interval gives

Ans.

The same result is obtained by analyzing the interval from to 8 s.

SAMPLE PROBLEM 3/23

The 50-g bullet traveling at 600 m/s strikes the 4-kg block centrally and is
embedded within it. If the block slides on a smooth horizontal plane with a veloc-
ity of 12 m/s in the direction shown prior to impact, determine the velocity v2 of
the block and embedded bullet immediately after impact.

Solution. Since the force of impact is internal to the system composed of the
block and bullet and since there are no other external forces acting on the sys-
tem in the plane of motion, it follows that the linear momentum of the system is
conserved. Thus,

Ans.

The final velocity and its direction are given by

Ans.

Ans.tan � � 13.33
10.26

 � 1.299   � � 52.4�[tan � � vy /vx]

v2 � �(10.26)2 � (13.33)2 � 16.83 m/s[v � �vx 

2 � vy 

2]

v2 � 10.26i � 13.33j m/s

0.050(600j) � 4(12)(cos 30�i � sin 30�j) � (4 � 0.050)v2[G1 � G2]

t�

(v2)x � 4.76 m/s

150(�4) � 12 (4)(2)(600) � 4(2)(600) � 150(9.81) sin 30�(8) � 150(v2)x

m(v1 

)x � �  ΣFx dt � m(v2 

)x

�t � 2.46 s   t� � 4 � 2.46 � 6.46 s

150(�4) � 12 

(4)(2)(600) � 2(600)�t � 150(9.81) sin 30�(4 � �t) � 150(0)

m(v1 

)x � �  ΣFx dt � m(v2 

)x

150(4) kg·m/s
30° 30° 30°

150(9.81) dt
x

150v2

+ =
2P dt

N1 dt
N2 dt

t�

v1 =
 4 m

/s

P

30°

P, N

t, s

600

00 4 8t′

Δt

30°
x

y

12 m/s
4 kg

600 m/s0.050 kg

x

16.83 m/s

θ   = 52.4°

Helpful Hint

� Working with the vector form of the
principle of conservation of linear
momentum is clearly equivalent to
working with the component form.

Helpful Hint

� The impulse-momentum diagram
keeps us from making the error of
using the impulse of P rather than
2P or of forgetting the impulse of the
component of the weight. The first
term in the linear impulse is the tri-
angular area of the P-t relation for the
first 4 s, doubled for the force of 2P.
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PROBLEMS
Introductory Problems

3/173 The rubber mallet is used to drive a cylindrical
plug into the wood member. If the impact force
varies with time as shown in the plot, determine
the magnitude of the linear impulse delivered by
the mallet to the plug.

Problem 3/173

3/174 The 1500-kg car has a velocity of 30 km/h up the
10-percent grade when the driver applies more
power for 8 s to bring the car up to a speed of 
60 km/h. Calculate the time average F of the total
force tangent to the road exerted on the tires dur-
ing the 8 s. Treat the car as a particle and neglect
air resistance.

Problem 3/174

3/175 A 0.2-kg particle is moving with a velocity
m/s at time If the single

force F (5 3t)i (2 t2)j 3k N acts on the
particle, determine its velocity at time .t2 � 4 sv2

�����

t1 � 1 s.v1 � i � j � 2k

v

10
1

0

200

0 0.002 0.010
0.009t, s

F
, N

F

3/176 A 75-g projectile traveling at 600 m/s strikes and
becomes embedded in the 50-kg block, which is ini-
tially stationary. Compute the energy lost during
the impact. Express your answer as an absolute
value and as a percentage n of the original
system energy E.

Problem 3/176

3/177 A jet-propelled airplane with a mass of 10 Mg is
flying horizontally at a constant speed of 1000 km/h
under the action of the engine thrust T and the
equal and opposite air resistance R. The pilot ig-
nites two rocket-assist units, each of which devel-
ops a forward thrust T0 of 8 kN for 9 s. If the
velocity of the airplane in its horizontal flight is
1050 km/h at the end of the 9 s, calculate the time-
average increase in air resistance. The mass of
the rocket fuel used is negligible compared with
that of the airplane.

Problem 3/177

3/178 A 60-g bullet is fired horizontally with a velocity
into the 3-kg block of soft wood 

initially at rest on the horizontal surface. The 
bullet emerges from the block with the velocity

, and the block is observed to slide a
distance of 2.70 m before coming to rest. Deter-
mine the coefficient of kinetic friction between
the block and the supporting surface.

Problem 3/178

2.70 m

400 m/s 600 m/s
3 kg

60 g

�k

v2 � 400 m /s

v1 � 600 m /s

R T

2T0

�R

75 g
50 kg

600 m/s

��E �
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3/182 The 90-kg man dives from the 40-kg canoe. The
velocity indicated in the figure is that of the man rel-
ative to the canoe just after loss of contact. If the
man, woman, and canoe are initially at rest, deter-
mine the horizontal component of the absolute
velocity of the canoe just after separation. Neglect
drag on the canoe, and assume that the 60-kg
woman remains motionless relative to the canoe.

Problem 3/182

3/183 An experimental rocket sled weighs 5200 lb and is
propelled by six rocket motors each with an im-
pulse rating of 8600 lb-sec. The rockets are fired at
1-sec intervals, and the duration of each rocket fir-
ing is 2 sec. If the velocity of the sled 10 sec from
the start is 200 mi/hr, determine the time average
R of the total aerodynamic and mechanical resis-
tance to motion. Neglect the loss of mass due to ex-
hausted fuel compared with the mass of the sled.

Problem 3/183

3/184 The 200-kg lunar lander is descending onto the
moon’s surface with a velocity of 6 m/s when its
retro-engine is fired. If the engine produces a
thrust T for 4 s which varies with time as shown
and then cuts off, calculate the velocity of the lan-
der when assuming that it has not yet
landed. Gravitational acceleration at the moon’s
surface is 

Problem 3/184

T

6 m/s

800

2 40
0

T, N

t, s

1.62 m/s2.

t � 5 s,

Rocket
thrust R

3 m/s

40 kg

60 kg 90 kg
30°

3/179 At time , the velocity of cylinder A is 0.3 m/s
down. By the methods of this article, determine
the velocity of cylinder B at time Assume
no mechanical interference and neglect all friction.

Problem 3/179

3/180 The resistance to motion of a certain racing tobog-
gan is 2 percent of the normal force on its runners.
Calculate the time t required for the toboggan to
reach a speed of 100 km/h down the slope if it
starts from rest.

Problem 3/180

3/181 Freight car A with a gross weight of 150,000 lb is
moving along the horizontal track in a switching yard
at 2 mi/hr. Freight car B with a gross weight of
120,000 lb and moving at 3 mi/hr overtakes car A and
is coupled to it. Determine (a) the common velocity v
of the two cars as they move together after being cou-
pled and (b) the loss of energy due to the impact.

Problem 3/181

3 mi/hr

B A

2 mi/hr

��E �

5

12 v

5 kg 4 kg

A
B

t � 2 s.

t � 0
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3/185 The slider of mass m1 is released from rest in the
position shown and then slides down the right side
of the contoured body of mass m2. For the condi-
tions m1 0.50 kg, m2 3 kg, and r 0.25 m, de-
termine the absolute velocities of both masses at
the instant of separation. Neglect friction.

Problem 3/185

3/186 A supertanker with a total displacement (weight) of
140(103) long tons (one long ton equals 2240 lb) is
moving forward at a speed of 2 knots when the en-
gines are reversed to produce a rearward propeller
thrust of 90,000 lb. How long would it take the
tanker to acquire a speed of 2 knots in the reverse
direction? Can you justify neglecting the impulse 
of water resistance of the hull? (Recall 1 knot 
1.151 mi/hr.)

3/187 The 20-lb block is moving to the right with a veloc-
ity of 2 ft/sec on a horizontal surface when a force
P is applied to it at time t 0. Calculate the veloc-
ity v of the block when t 0.4 sec. The coefficient
of kinetic friction is 0.30.

Problem 3/187

P
20 lb

v0 = 2 ft/sec

   k = 0.30

P, lb

t, sec
0.40.20

16

8

0

μ

��k

�

�

�

r

r

m1

m2

���

Representative Problems

3/188 The initially stationary 12-kg block is subjected to
the time-varying force whose magnitude P is
shown in the plot. The angle remains constant.
Determine the block speed at (a) t 1 s and 
(b) t 4 s.

Problem 3/188

3/189 The tow truck with attached 1200-kg car acceler-
ates uniformly from 30 km/h to 70 km/h over a 15-s
interval. The average rolling resistance for the car
over this speed interval is 500 N. Assume that the
60 angle shown represents the time average con-
figuration and determine the average tension in
the tow cable.

Problem 3/189

3/190 The 140-g projectile is fired with a velocity of 600
m/s and picks up three washers, each with a mass
of 100 g. Find the common velocity v of the projec-
tile and washers. Determine also the loss of
energy during the interaction.

Problem 3/190

600 m/s

��E �

60°

�

12 kg

μs = 0.50
μk = 0.40

P

30°

5
0

100

0
t, s

P
, N

�

�

30�
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3/194 The initially stationary 100-lb block is subjected to
the time-varying force whose magnitude P is
shown in the plot. Determine the speed v of the
block at times t 1, 3, 5, and 7 sec. Note that the
force P is zero after t 6 sec.

Problem 3/194

3/195 The 900-kg motorized unit A is designed to raise
and lower the 600-kg bucket B of concrete. Deter-
mine the average force R which supports unit A
during the 6 seconds required to slow the descent
of the bucket from 3 m/s to 0.5 m/s. Analyze the
entire system as a unit without finding the tension
in the cable.

Problem 3/195

B
v

A

100 lb

μs = 0.60, μk = 0.40

P

4 6
0

80

20

0
t, sec

P
, l

b

�

�

3/191 The spring of modulus k 200 N/m is compressed
a distance of 300 mm and suddenly released with
the system at rest. Determine the absolute veloci-
ties of both masses when the spring is unstretched.
Neglect friction.

Problem 3/191

3/192 The 4-kg cart, at rest at time t 0, is acted on by a
horizontal force which varies with time t as shown.
Neglect friction and determine the velocity of the
cart at t 1 s and at t 3 s.

Problem 3/192

3/193 The space shuttle launches an 800-kg satellite by
ejecting it from the cargo bay as shown. The ejec-
tion mechanism is activated and is in contact with
the satellite for 4 s to give it a velocity of 0.3 m/s 
in the z-direction relative to the shuttle. The mass
of the shuttle is 90 Mg. Determine the component
of velocity vƒ of the shuttle in the minus z-direction
resulting from the ejection. Also find the time aver-
age Fav of the ejection force.

Problem 3/193

y

x

z

v

F4 kg

F
or

ce
 F

, N

0

20

0 2 4

Parabolic

Linear

Time t, s

30

��

�

k = 200 N/m

7 kg3 kg

�
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3/196 The cart of mass m is subjected to the exponentially
decreasing force F, which represents a shock or blast
loading. If the cart is stationary at time t 0, deter-
mine its velocity v and displacement s as functions of
time. What is the value of v for large values of t?

Problem 3/196

3/197 Determine the time required by a diesel-electric
locomotive, which produces a constant drawbar
pull of 60,000 lb, to increase the speed of an 1800-
ton freight train from 20 mi/hr to 30 mi/hr up a 
1-percent grade. Train resistance is 10 lb per ton.

3/198 The 450-kg ram of a pile driver falls 1.4 m from
rest and strikes the top of a 240-kg pile embedded
0.9 m in the ground. Upon impact the ram is seen
to move with the pile with no noticeable rebound.
Determine the velocity v of the pile and ram imme-
diately after impact. Can you justify using the
principle of conservation of momentum even though
the weights act during the impact?

Problem 3/198

1.4 m

0.9 m

F
m

F0

0
Time t

F
or

ce
 F

0

F0e–bt

�

3/199 The cart is moving down the incline with a velocity
v0 20 m/s at t 0, at which time the force P
begins to act as shown. After 5 seconds the force
continues at the 50-N level. Determine the velocity
of the cart at time t 8 s and calculate the time t
at which the cart velocity is zero.

Problem 3/199

3/200 Car B is initially stationary and is struck by car A
moving with initial speed v1 20 mi/hr. The cars
become entangled and move together with speed 
after the collision. If the time duration of the colli-
sion is 0.1 sec, determine (a) the common final
speed , (b) the average acceleration of each car
during the collision, and (c) the magnitude R of the
average force exerted by each car on the other car
during the impact. All brakes are released during
the collision.

Problem 3/200

3/201 The 12-Mg truck drives onto the 350-Mg barge
from the dock at 20 km/h and brakes to a stop on
the deck. The barge is free to move in the water,
which offers negligible resistance to motion at low
speeds. Calculate the speed of the barge after the
truck has come to rest on it.

Problem 3/201

v

20 km/h

12 Mg350 Mg

20 mi/hr

4000 lb 2000 lb

A B

v�

v�
�

P, N

0

50

0 5

Parabolic

P

t, s

v0 = 20 m/s

6 kg

15°

�

��
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3/204 A 16.1-lb body is traveling in a horizontal straight
line with a velocity of 12 ft/sec when a horizontal
force P is applied to it at right angles to the initial
direction of motion. If P varies according to the ac-
companying graph, remains constant in direction,
and is the only force acting on the body in its plane
of motion, find the magnitude of the velocity of the
body when t 2 sec and the angle which the
velocity makes with the direction of P.

Problem 3/204

3/205 The force P, which is applied to the 10-kg block ini-
tially at rest, varies linearly with time as indicated.
If the coefficients of static and kinetic friction
between the block and the horizontal surface are
0.60 and 0.40, respectively, determine the velocity
of the block when t 4 s.

Problem 3/205

P
10 kg

P, N

t, s

100

40
0

s = 0.60,   k = 0.40μμ

�

1 1.5 20
0

2

4

P, lb

t, sec

��

3/202 An 8-Mg truck is resting on the deck of a barge
which displaces 240 Mg and is at rest in still water.
If the truck starts and drives toward the bow at a
speed relative to the barge vrel 6 km/h, calculate
the speed v of the barge. The resistance to the mo-
tion of the barge through the water is negligible at
low speeds.

Problem 3/202

3/203 Car B weighing 3200 lb and traveling west at 
30 mi/hr collides with car A weighing 3400 lb and
traveling north at 20 mi/hr as shown. If the two
cars become entangled and move together as a unit
after the crash, compute the magnitude v of their
common velocity immediately after the impact and
the angle made by the velocity vector with the
north direction.

Problem 3/203

30 mi/hr

20 mi/hr A

B

N

W

�

8 Mg
vrel = 6 km/h

240 Mg

v

�
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3/206 The 10-kg block is at rest on the rough incline at
time t 0 and then it is subjected to the force of
constant direction and time-varying magnitude P
given in the plot. Determine the velocity of the
block at times t 1, 3, 5, and 7 s. Note that the
force P is zero after t 6 s.

Problem 3/206

3/207 The 1.62-oz golf ball is struck by the five-iron and
acquires the velocity shown in a time period of
0.001 sec. Determine the magnitude R of the aver-
age force exerted by the club on the ball. What ac-
celeration magnitude a does this force cause, and
what is the distance d over which the launch veloc-
ity is achieved, assuming constant acceleration?

Problem 3/207

3/208 The 580-ton tug is towing the 1200-ton coal barge
at a steady speed of 6 knots. For a short period of
time, the stern winch takes in the towing cable at
the rate of 2 ft/sec. Calculate the reduced speed v of
the tug during this interval. Assume the tow cable
to be horizontal. (Recall 1 knot 1.688 ft/sec)

Problem 3/208

�

v = 150 ft/sec

25°

10 kg µs = 0.50
µk = 0.40

P
20°

64
0

100

0
t, s

P
, N

15°

�

�

�

3/209 The cylindrical plug A of mass mA is released from
rest at B and slides down the smooth circular
guide. The plug strikes the block C and becomes
embedded in it. Write the expression for the dis-
tance s which the block and plug slide before com-
ing to rest. The coefficient of kinetic friction
between the block and the horizontal surface is .

Problem 3/209

3/210 The baseball is traveling with a horizontal velocity
of 85 mi/hr just before impact with the bat. Just
after the impact, the velocity of the -oz ball is 
130 mi/hr directed at to the horizontal as
shown. Determine the x- and y-components of the
average force R exerted by the bat on the baseball
during the 0.005-sec impact. Comment on the treat-
ment of the weight of the baseball (a) during the im-
pact and (b) over the first few seconds after impact.

Problem 3/210

35°

85 mi/hr

130 mi/hr

35�

51
8

r

mA

mC

A

B

C
s

    kμ 

�k
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3/213 The simple pendulum A of mass mA and length l is
suspended from the trolley B of mass mB. If the
system is released from rest at 0, determine
the velocity vB of the trolley when Friction
is negligible.

Problem 3/213

3/214 Two barges, each with a displacement (mass) of
500 Mg, are loosely moored in calm water. A stunt
driver starts his 1500-kg car from rest at A, drives
along the deck, and leaves the end of the ramp
at a speed of 50 km/h relative to the barge and
ramp. The driver successfully jumps the gap and
brings his car to rest relative to barge 2 at B. Cal-
culate the velocity v2 imparted to barge 2 just after
the car has come to rest on the barge. Neglect the
resistance of the water to motion at the low veloci-
ties involved.

Problem 3/214

A B
21 15°

15�

θ

A

B

l

� � 90�.
��

3/211 A tennis player strikes the tennis ball with her racket
while the ball is still rising. The ball speed before im-
pact with the racket is v1 15 m/s and after impact
its speed is v2 22 m/s, with directions as shown in
the figure. If the 60-g ball is in contact with the
racket for 0.05 s, determine the magnitude of the av-
erage force R exerted by the racket on the ball. Find
the angle β made by R with the horizontal. Comment
on the treatment of the ball weight during impact.

Problem 3/211

3/212 The 400-kg ram of a pile driver is designed to fall
1.5 m from rest and strike the top of a 300-kg pile
partially embedded in the ground. The deeper the
penetration, the greater is the tendency for the ram
to rebound as a result of the impact. Calculate the
velocity v of the pile immediately after impact for
the following three conditions: (a) initial resistance
to penetration is small at the outset, and the ram is
observed to move with the pile immediately after
impact; (b) resistance to penetration has increased,
and the ram is seen to have zero velocity immedi-
ately after impact; (c) resistance to penetration is
high, and the ram is seen to rebound to a height of
100 mm above the point of impact. Why is it per-
missible to neglect the impulse of the weight of the
ram during impact?

Problem 3/212

1.5 m

20°

v1

v2

10°

�

�
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3/10 Angular Impulse and Angular Momentum
In addition to the equations of linear impulse and linear momentum,

there exists a parallel set of equations for angular impulse and angular
momentum. First, we define the term angular momentum. Figure 3/14a
shows a particle P of mass m moving along a curve in space. The particle
is located by its position vector r with respect to a convenient origin O of
fixed coordinates x-y-z. The velocity of the particle is v � , and its linear
momentum is G � mv. The moment of the linear momentum vector mv
about the origin O is defined as the angular momentum HO of P about O
and is given by the cross-product relation for the moment of a vector

(3/29)

The angular momentum then is a vector perpendicular to the plane A
defined by r and v. The sense of HO is clearly defined by the right-hand
rule for cross products.

The scalar components of angular momentum may be obtained
from the expansion

(3/30)

so that

Each of these expressions for angular momentum may be checked easily
from Fig. 3/15, which shows the three linear-momentum components,
by taking the moments of these components about the respective axes.

To help visualize angular momentum, we show in Fig. 3/14b a two-
dimensional representation in plane A of the vectors shown in part a of
the figure. The motion is viewed in plane A defined by r and v. The mag-
nitude of the moment of mv about O is simply the linear momentum mv
times the moment arm r sin � or mvr sin �, which is the magnitude of
the cross product HO � r � mv.

Angular momentum is the moment of linear momentum and must not
be confused with linear momentum. In SI units, angular momentum has
the units . In the U.S. customary system, 
angular momentum has the units [lb/(ft/sec2)][ft/sec][ft] � lb-ft-sec.

Rate of Change of Angular Momentum
We are now ready to relate the moment of the forces acting on the

particle P to its angular momentum. If ΣF represents the resultant of
all forces acting on the particle P of Fig. 3/14, the moment MO about the
origin O is the vector cross product

ΣMO � r � ΣF � r � mv̇

kg � (m/s) � m � kg � m2/s � N � m � s

Hx � m(vz 

y � vy 

z)   Hy � m(vx 

z � vz 

x)   Hz � m(vy 

x � vx 

y)

HO � r � mv � m(vz 

y � vy 

z)i � m(vx 

z � vz 

x)j � m(vy 

x � vx 

y)k

HO � r � mv

ṙ

 mvy 

 mvx 

 mvz 

 m

 z

 z  y

O  y

 x

 x

 r

Figure 3/15

A

H O = r    mv P
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r

r

O

z

y

x

θ

θ

θ

 mv 

 View in plane A

 (a)

 (b)

  HO = mvr sinθ

r sinθ

mv

Figure 3/14

HO � m� ix
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j
y
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k
z
vz

�
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where Newton’s second law ΣF � m has been substituted. We now dif-
ferentiate Eq. 3/29 with time, using the rule for the differentiation of a
cross product (see item 9, Art. C/7, Appendix C) and obtain

The term v � mv is zero since the cross product of parallel vectors is
identically zero. Substitution into the expression for ΣMO gives

(3/31)

Equation 3/31 states that the moment about the fixed point O of all
forces acting on m equals the time rate of change of angular momentum
of m about O. This relation, particularly when extended to a system of
particles, rigid or nonrigid, provides one of the most powerful tools of
analysis in dynamics.

Equation 3/31 is a vector equation with scalar components

(3/32)

The Angular Impulse-Momentum Principle
Equation 3/31 gives the instantaneous relation between the mo-

ment and the time rate of change of angular momentum. To obtain the
effect of the moment ΣMO on the angular momentum of the particle
over a finite period of time, we integrate Eq. 3/31 from time t1 to time t2.
Multiplying the equation by dt gives ΣMO dt � dHO, which we integrate
to obtain

(3/33)

where (HO)2 � r2 � mv2 and (HO)1 � r1 � mv1. The product of moment
and time is defined as angular impulse, and Eq. 3/33 states that the
total angular impulse on m about the fixed point O equals the corre-
sponding change in angular momentum of m about O.

Alternatively, we may write Eq. 3/33 as

(3/33a)

which states that the initial angular momentum of the particle plus
the angular impulse applied to it equals its final angular momentum.
The units of angular impulse are clearly those of angular momentum,
which are or in SI units and lb-ft-sec in U.S. custom-
ary units.

As in the case of linear impulse and linear momentum, the equation
of angular impulse and angular momentum is a vector equation where
changes in direction as well as magnitude may occur during the interval
of integration. Under these conditions, it is necessary to express ΣMO

kg � m2/sN � m � s

(HO)1 � � t2

t1

 ΣMO dt � (HO)2

� t2

t1

 ΣMO dt � (HO)2 � (HO)1 � �HO

ΣMOx
 � ḢOx

  ΣMOy
 � ḢOy

  ΣMOz
 � ḢOz

ΣMO � ḢO

ḢO � ṙ � mv � r � mv̇ � v � mv � r � mv̇

v̇
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and HO in component form and then combine the integrated compo-
nents. The x-component of Eq. 3/33a is

or (3/33b)

where the subscripts 1 and 2 refer to the values of the respective quantities
at times t1 and t2. Similar expressions exist for the y- and z-components of
the angular impulse-momentum equation.

Plane-Motion Applications
The foregoing angular-impulse and angular-momentum relations have

been developed in their general three-dimensional forms. Most of the ap-
plications of interest to us, however, can be analyzed as plane-motion prob-
lems where moments are taken about a single axis normal to the plane of
motion. In this case, the angular momentum may change magnitude and
sense, but the direction of the vector remains unaltered.

Thus, for a particle of mass m moving along a curved path in the x-y
plane, Fig. 3/16, the angular momenta about O at points 1 and 2 have the
magnitudes � mv1d1 and � �r2 � mv2� �

mv2d2, respectively. In the illustration both and are repre-
sented in the counterclockwise sense in accord with the direction of the
moment of the linear momentum. The scalar form of Eq. 3/33a applied to
the motion between points 1 and 2 during the time interval t1 to t2 becomes

(HO)2(HO)1

(HO)2(HO)1 � �r1 � mv1 �

m(vz 

y � vy 

z)1 � � t2

t1

 ΣMOx
 dt � m(vz 

y � vy 

z)2

(HOx
)1 � � t2

t1

 ΣMOx
 dt � (HOx

)2
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This example should help clarify the relation between the scalar and
vector forms of the angular impulse-momentum relations.

Whereas Eq. 3/33 clearly stresses that the external angular impulse
causes a change in the angular momentum, the order of the terms in
Eqs. 3/33a and 3/33b corresponds to the natural sequence of events.
Equation 3/33a is analogous to Eq. 3/27a, just as Eq. 3/31 is analogous
to Eq. 3/25.

As was the case for linear-momentum problems, we encounter im-
pulsive (large magnitude, short duration) and nonimpulsive forces in
angular-momentum problems. The treatment of these forces was dis-
cussed in Art. 3/9.

Equations 3/25 and 3/31 add no new basic information since they
are merely alternative forms of Newton’s second law. We will discover
in subsequent chapters, however, that the motion equations expressed
in terms of the time rate of change of momentum are applicable to the
motion of rigid and nonrigid bodies and provide a very general and pow-
erful approach to many problems. The full generality of Eq. 3/31 is usu-
ally not required to describe the motion of a single particle or the plane
motion of rigid bodies, but it does have important use in the analysis of
the space motion of rigid bodies introduced in Chapter 7.

Conservation of Angular Momentum
If the resultant moment about a fixed point O of all forces acting on

a particle is zero during an interval of time, Eq. 3/31 requires that its
angular momentum HO about that point remain constant. In this case,
the angular momentum of the particle is said to be conserved. Angular
momentum may be conserved about one axis but not about another
axis. A careful examination of the free-body diagram of the particle will
disclose whether the moment of the resultant force on the particle about
a fixed point is zero, in which case, the angular momentum about that
point is unchanged (conserved).

Consider now the motion of two particles a and b which interact
during an interval of time. If the interactive forces F and �F between
them are the only unbalanced forces acting on the particles during the
interval, it follows that the moments of the equal and opposite forces
about any fixed point O not on their line of action are equal and oppo-
site. If we apply Eq. 3/33 to particle a and then to particle b and add the
two equations, we obtain �Ha � �Hb � 0 (where all angular momenta
are referred to point O). Thus, the total angular momentum for the sys-
tem of the two particles remains constant during the interval, and we
write

(3/34)

which expresses the principle of conservation of angular momentum.

�HO � 0  or  (HO)1 � (HO)2
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SAMPLE PROBLEM 3/24

A small sphere has the position and velocity indicated in the
figure and is acted upon by the force F. Determine the angular mo-
mentum HO about point O and the time derivative .

Solution. We begin with the definition of angular momentum
and write

Ans.

From Eq. 3/31,

Ans.

As with moments of forces, the position vector must run from the reference
point (O in this case) to the line of action of the linear momentum mv. Here r
runs directly to the particle.

SAMPLE PROBLEM 3/25

A comet is in the highly eccentric orbit shown in the figure. Its
speed at the most distant point A, which is at the outer edge of the
solar system, is vA � 740 m/s. Determine its speed at the point B of
closest approach to the sun.

Solution. Because the only significant force acting on the comet,
the gravitational force exerted on it by the sun, is central (points to
the sun center O), angular momentum about O is conserved.

Ans. vB � 59 200 m/s

 vB � 
rAvA

rB
 � 

6000(106
 )740

75(106
 )

 mrAvA � mrBvB

 (HO)A � (HO)B

 � 60i � 30j N � m

 � (3i � 6j � 4k) � 10k

 � r � F

 Ḣ
 O � M

 O

 � �40i � 30k N � m/s

 � (3i � 6j � 4k) � 2(5j)

 HO � r � mv

ḢO
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O

3 m

4 m

2 kg

6 m

F = 10 N

v = 5 m/s

B
O

A

6000(106) km

75(106) km (Not to scale)
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SAMPLE PROBLEM 3/26

The assembly of the light rod and two end masses is at rest
when it is struck by the falling wad of putty traveling with speed v1

as shown. The putty adheres to and travels with the right-hand end
mass. Determine the angular velocity of the assembly just after
impact. The pivot at O is frictionless, and all three masses may be
assumed to be particles.

Solution. If we ignore the angular impulses associated with the weights dur-
ing the collision process, then system angular momentum about O is conserved
during the impact.

Ans.

Note that each angular-momentum term is written in the form mvd, and the
final transverse velocities are expressed as radial distances times the common
final angular velocity 

SAMPLE PROBLEM 3/27

A small mass particle is given an initial velocity v0 tangent to the horizontal
rim of a smooth hemispherical bowl at a radius r0 from the vertical centerline, as
shown at point A. As the particle slides past point B, a distance h below A and a
distance r from the vertical centerline, its velocity v makes an angle � with the
horizontal tangent to the bowl through B. Determine �.

Solution. The forces on the particle are its weight and the normal reaction ex-
erted by the smooth surface of the bowl. Neither force exerts a moment about
the axis O-O, so that angular momentum is conserved about that axis. Thus,

Also, energy is conserved so that E1 � E2. Thus

Eliminating v and substituting r2 � � h2 give

Ans.

 v0 r0 � �v0 

2 � 2gh�r0 

2 � h2 cos �

r0 

2

 v � �v0 

2 � 2gh

 12 mv0 

2 � mgh � 12 mv2 � 0[T1 � V1 � T2 � V2]

[(HO)1 � (HO)2]   mv0 r0 � mvr cos �

�̇ 2.

�̇ 2 � 
v1

19l
  CW

mv1l � (m � 2m)(l �̇ 2 

)l � 4m(2l �̇ 2 

)2l

(HO 

)1 � (HO 

)2

�̇ 2

210 Chapter 3 Kinetics of Particles

2m

2l

O

m

l

4m

v1

A

O

O

B

h
r

r0

v0

v θ

Helpful Hint

� The angle � is measured in the plane
tangent to the hemispherical surface
at B.

 � � cos�1 1

�1 �
2gh

v0 

2 �1 � h2

r0 

2

�
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PROBLEMS
Introductory Problems

3/215 Determine the magnitude HO of the angular mo-
mentum of the 2-kg sphere about point O (a) by
using the vector definition of angular momentum
and (b) by using an equivalent scalar approach.
The center of the sphere lies in the x-y plane.

Problem 3/215

3/216 The 3-kg sphere moves in the x-y plane and has the
indicated velocity at a particular instant. Deter-
mine its (a) linear momentum, (b) angular momen-
tum about point O, and (c) kinetic energy.

Problem 3/216

3/217 A particle with a mass of 4 kg has a position vector
in meters given by r 3t2i 2tj 3tk, where t is
the time in seconds. For t 3 s determine the mag-
nitude of the angular momentum of the particle
and the magnitude of the moment of all forces on
the particle, both about the origin of coordinates.

3/218 A 0.4-kg particle is located at the position r1 2i
3j k m and has the velocity v1 i j 2k m/s
at time t 0. If the particle is acted upon by a sin-
gle force which has the moment MO (4 2t)i

j 5k about the origin O of the 

coordinate system in use, determine the angular
momentum about O of the particle when t 4 s.�

N � m��3 � 12t2�
���

�

����

��

�

���

4 m /s

3 kg

60°

45°

2 
m

O

y

x

45°

12 m

5 m

2 kg

7 m/s

xO

y

3/219 At a certain instant, the particle of mass m has the
position and velocity shown in the figure, and it is
acted upon by the force F. Determine its angular
momentum about point O and the time rate of
change of this angular momentum.

Problem 3/219

3/220 The small spheres, which have the masses and ini-
tial velocities shown in the figure, strike and be-
come attached to the spiked ends of the rod, which
is freely pivoted at O and is initially at rest. Deter-
mine the angular velocity of the assembly after
impact. Neglect the mass of the rod.

Problem 3/220

O

m

2m

L

L v

3v

�

z

x

yc

b

O

a

F

m
v
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3/223 The assembly starts from rest and reaches an an-
gular speed of 150 rev/min under the action of a
20-N force T applied to the string for t seconds. De-
termine t. Neglect friction and all masses except
those of the four 3-kg spheres, which may be
treated as particles.

Problem 3/223

Representative Problems

3/224 Just after launch from the earth, the space-shuttle
orbiter is in the 37 137–mi orbit shown. At the
apogee point A, its speed is 17,290 mi/hr. If nothing
were done to modify the orbit, what would its speed
be at the perigee P? Neglect aerodynamic drag.
(Note that the normal practice is to add speed at A,
which raises the perigee altitude to a value that is
well above the bulk of the atmosphere.)

Problem 3/224

17,290 mi/hr

A
O

P

37 mi
137 mi

�

T

100 mm

400 mm

3 kg

3/221 The particle of mass m is gently nudged from the
equilibrium position A and subsequently slides
along the smooth circular path which lies in a ver-
tical plane. Determine the magnitude of its angu-
lar momentum about point O as it passes (a) point
B and (b) point C. In each case, determine the time
rate of change of HO.

Problem 3/221

3/222 A wad of clay of mass m1 with an initial horizontal
velocity v1 hits and adheres to the massless rigid
bar which supports the body of mass m2, which can
be assumed to be a particle. The pendulum assem-
bly is freely pivoted at O and is initially stationary.
Determine the angular velocity of the combined
body just after impact. Why is linear momentum of
the system not conserved?

Problem 3/222

L/2

L/2

m1

m2

O

v1

�̇

B
O

m

r

A

C
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3/225 A small 4-oz particle is projected with a horizontal
velocity of 6 ft/sec into the top A of the smooth cir-
cular guide fixed in the vertical plane. Calculate
the time rate of change B of angular momentum
about point B when the particle passes the bottom
of the guide at C.

Problem 3/225

3/226 The small particle of mass m and its restraining
cord are spinning with an angular velocity on
the horizontal surface of a smooth disk, shown in
section. As the force F is slightly relaxed, r in-
creases and changes. Determine the rate of
change of with respect to r and show that the
work done by F during a movement dr equals the
change in kinetic energy of the particle. 

Problem 3/226

r

m

F

ω

�

�

�

10″

B

A

C

x

y

6 ft /sec

Ḣ

3/227 The 6-kg sphere and 4-kg block (shown in section)
are secured to the arm of negligible mass which ro-
tates in the vertical plane about a horizontal axis
at O. The 2-kg plug is released from rest at A and
falls into the recess in the block when the arm has
reached the horizontal position. An instant before
engagement, the arm has an angular velocity

rad/s. Determine the angular velocity of
the arm immediately after the plug has wedged
itself in the block.

Problem 3/227

3/228 The two spheres of equal mass m are able to slide
along the horizontal rotating rod. If they are ini-
tially latched in position a distance r from the ro-
tating axis with the assembly rotating freely with
an angular velocity , determine the new angular
velocity after the spheres are released and finally
assume positions at the ends of the rod at a radial
distance of 2r. Also find the fraction n of the initial
kinetic energy of the system which is lost. Neglect
the small mass of the rod and shaft.

Problem 3/228

2r
r

m
m

r

2r

0ω

�

�0

600 mm

2 kg

300 mm

500 mm
4 kg

6 kg

O

A

ω    0

��0 � 2
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3/231 Determine the magnitude HO of the angular mo-
mentum about the launch point O of the projectile
of mass m, which is launched with speed v0 at the
angle as shown (a) at the instant of launch and
(b) at the instant of impact. Qualitatively account
for the two results. Neglect atmospheric resistance.

Problem 3/231

3/232 The particle of mass m is launched from point O
with a horizontal velocity u at time t 0. Deter-
mine its angular momentum HO relative to point O
as a function of time.

Problem 3/232

3/233 A particle of mass m is released from rest in posi-
tion A and then slides down the smooth vertical-
plane track. Determine its angular momentum
about both points A and D (a) as it passes position
B and (b) as it passes position C.

Problem 3/233

A

B
C

ρ
ρ

D

m

30°

x

m u

O

y

�

O Aθ

v0

�

3/229 The speed of Mercury at its point A of maximum
distance from the sun is 38 860 m/s. Determine its
speeds at points B and P.

Problem 3/229

3/230 A small 0.1-kg particle is given a velocity of 2 m/s
on the horizontal x-y plane and is guided by the
fixed curved rail. Friction is negligible. As the par-
ticle crosses the y-axis at A, its velocity is in the 
x-direction, and as it crosses the x-axis at B, its
velocity makes a 60 angle with the x-axis. The ra-
dius of curvature of the path at B is 500 mm. De-
termine the time rate of change of the angular
momentum of the particle about the z-axis
through O at both A and B.

Problem 3/230

HO

�

vA = 38 860 m/s

O

B

P A

69.82(106) km46(106) km

56.70(106) km

Mercury
Sun
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3/234 At the point A of closest approach to the sun, a
comet has a velocity vA 188,500 ft/sec. Deter-
mine the radial and transverse components of its
velocity vB at point B, where the radial distance
from the sun is 75(106) mi.

Problem 3/234

3/235 A pendulum consists of two 3.2-kg concentrated
masses positioned as shown on a light but rigid bar.
The pendulum is swinging through the vertical po-
sition with a clockwise angular velocity 6 rad/s
when a 50-g bullet traveling with velocity 300
m/s in the direction shown strikes the lower mass
and becomes embedded in it. Calculate the angular
velocity which the pendulum has immediately
after impact and find the maximum angular deflec-
tion of the pendulum.

Problem 3/235

400 mm

200 mm

20°

O

v

θ

ω

�

��

v � 
� � 

A

v

vr

B

50 (106)
mi

75 (106) mi

vθ

SS

�

3/236 The 1.5-lb sphere moves in a horizontal plane and
is controlled by a cord which is reeled in and out
below the table in such a way that the center of the
sphere is confined to the path given by 

where x and y are in feet. If the speed
of the sphere is vA 8 ft/sec as it passes point A,
determine the tension TB in the cord as the sphere
passes point B. Friction is negligible.

Problem 3/236

z
y

B

A x

O

T

vA

�
(y2 /16) � 1

(x2 /25) �
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3/238 The assembly of two 5-kg spheres is rotating freely
about the vertical axis at 40 rev/min with .
If the force F which maintains the given position is
increased to raise the base collar and reduce to

, determine the new angular velocity . Also de-
termine the work U done by F in changing the con-
figuration of the system. Assume that the mass of
the arms and collars is negligible.

Problem 3/238

100 mm

30
0 m

m

5 kg 5 kgF

ω
θ

300m
m

300m
m

�60�

�

� � 90�

3/237 A particle is launched with a horizontal velocity v0

0.55 m/s from the position shown and then slides
without friction along the funnel-like surface. Deter-
mine the angle which its velocity vector makes
with the horizontal as the particle passes level O-O.
The value of r is 0.9 m.

Problem 3/237

r

m
m

O O

30°

v0

0.15r

�

30�

�
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SECTION D SPECIAL APPLICATIONS

3/11 Introduction
The basic principles and methods of particle kinetics were devel-

oped and illustrated in the first three sections of this chapter. This
treatment included the direct use of Newton’s second law, the equations
of work and energy, and the equations of impulse and momentum. We
paid special attention to the kind of problem for which each of the ap-
proaches was most appropriate.

Several topics of specialized interest in particle kinetics will be
briefly treated in Section D:

1. Impact

2. Central-force motion

3. Relative motion

These topics involve further extension and application of the fundamen-
tal principles of dynamics, and their study will help to broaden your
background in mechanics.

3/12 Impact
The principles of impulse and momentum have important use in de-

scribing the behavior of colliding bodies. Impact refers to the collision
between two bodies and is characterized by the generation of relatively
large contact forces which act over a very short interval of time. It is im-
portant to realize that an impact is a very complex event involving ma-
terial deformation and recovery and the generation of heat and sound.
Small changes in the impact conditions may cause large changes in the
impact process and thus in the conditions immediately following the im-
pact. Therefore, we must be careful not to rely heavily on the results of
impact calculations.

Direct Central Impact
As an introduction to impact, we consider the collinear motion of

two spheres of masses m1 and m2, Fig. 3/17a, traveling with velocities v1

and v2. If v1 is greater than v2, collision occurs with the contact forces di-
rected along the line of centers. This condition is called direct central
impact.

Following initial contact, a short period of increasing deformation
takes place until the contact area between the spheres ceases to in-
crease. At this instant, both spheres, Fig. 3/17b, are moving with the
same velocity v0. During the remainder of contact, a period of restora-
tion occurs during which the contact area decreases to zero. In the final
condition shown in part c of the figure, the spheres now have new veloc-
ities and where must be less than All velocities are arbi-
trarily assumed positive to the right, so that with this scalar notation a
velocity to the left would carry a negative sign. If the impact is not

v2 �.v1 �v2 �,v1 �
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overly severe and if the spheres are highly elastic, they will regain their
original shape following the restoration. With a more severe impact and
with less elastic bodies, a permanent deformation may result.

Because the contact forces are equal and opposite during impact,
the linear momentum of the system remains unchanged, as discussed in
Art. 3/9. Thus, we apply the law of conservation of linear momentum
and write

(3/35)

We assume that any forces acting on the spheres during impact, other
than the large internal forces of contact, are relatively small and pro-
duce negligible impulses compared with the impulse associated with
each internal impact force. In addition, we assume that no appreciable
change in the positions of the mass centers occurs during the short du-
ration of the impact.

Coefficient of Restitution
For given masses and initial conditions, the momentum equation

contains two unknowns, and Clearly, we need an additional rela-
tionship to find the final velocities. This relationship must reflect the ca-
pacity of the contacting bodies to recover from the impact and can be
expressed by the ratio e of the magnitude of the restoration impulse to
the magnitude of the deformation impulse. This ratio is called the coeffi-
cient of restitution.

Let Fr and Fd represent the magnitudes of the contact forces dur-
ing the restoration and deformation periods, respectively, as shown in
Fig. 3/18. For particle 1 the definition of e together with the impulse-
momentum equation give us

Similarly, for particle 2 we have

We are careful in these equations to express the change of momentum
(and therefore �v) in the same direction as the impulse (and thus the
force). The time for the deformation is taken as t0 and the total time of
contact is t. Eliminating v0 between the two expressions for e gives us

(3/36)e � 
v2 � � v1 �

v1 � v2
 � 

�relative velocity of separation �
�relative velocity of approach �

e � 
� t

t0

 Fr dt

� t0

0
 Fd dt

 � 
m2(v2 � � v0 

)
m2(v0 � v2 

)
 � 

v2 � � v0

v0 � v2

e � 
� t

t0

 Fr dt

� t0

0
 Fd dt

 � 
m1[�v1 � � (�v0 

)]
m1[�v0 � (�v1 

)]
 � 

v0 � v1 �

v1 � v0

v2 �.v1 �

m1v1 � m2v2 � m1v1 � � m2v2 �
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If the two initial velocities v1 and v2 and the coefficient of restitution
e are known, then Eqs. 3/35 and 3/36 give us two equations in the two
unknown final velocities and 

Energy Loss During Impact
Impact phenomena are almost always accompanied by energy loss,

which may be calculated by subtracting the kinetic energy of the system
just after impact from that just before impact. Energy is lost through
the generation of heat during the localized inelastic deformation of the
material, through the generation and dissipation of elastic stress waves
within the bodies, and through the generation of sound energy.

According to this classical theory of impact, the value e � 1 means
that the capacity of the two particles to recover equals their tendency to
deform. This condition is one of elastic impact with no energy loss. The
value e � 0, on the other hand, describes inelastic or plastic impact where
the particles cling together after collision and the loss of energy is a maxi-
mum. All impact conditions lie somewhere between these two extremes.

Also, it should be noted that a coefficient of restitution must be as-
sociated with a pair of contacting bodies. The coefficient of restitution is
frequently considered a constant for given geometries and a given com-
bination of contacting materials. Actually, it depends on the impact ve-
locity and approaches unity as the impact velocity approaches zero as
shown schematically in Fig. 3/19. A handbook value for e is generally
unreliable.

Oblique Central Impact
We now extend the relationships developed for direct central impact

to the case where the initial and final velocities are not parallel, Fig.
3/20. Here spherical particles of mass m1 and m2 have initial velocities
v1 and v2 in the same plane and approach each other on a collision
course, as shown in part a of the figure. The directions of the velocity
vectors are measured from the direction tangent to the contacting
surfaces, Fig. 3/20b. Thus, the initial velocity components along the 
t- and n-axes are (v1)n � �v1 sin �1, (v1)t � v1 cos �1, (v2)n � v2 sin �2, 

v2 �.v1 �
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F
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t
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and (v2)t � v2 cos �2. Note that (v1)n is a negative quantity for the partic-
ular coordinate system and initial velocities shown.

The final rebound conditions are shown in part c of the figure. The
impact forces are F and �F, as seen in part d of the figure. They vary
from zero to their peak value during the deformation portion of the im-
pact and back again to zero during the restoration period, as indicated
in part e of the figure where t is the duration of the impact interval.

For given initial conditions of m1, m2, (v1)n, (v1)t, (v2)n, and (v2)t,
there will be four unknowns, namely, and The
four needed equations are obtained as follows:

(1) Momentum of the system is conserved in the n-direction. This
gives

(2) and (3) The momentum for each particle is conserved in the 
t-direction since there is no impulse on either particle in the t-direction.
Thus,

(4) The coefficient of restitution, as in the case of direct central im-
pact, is the positive ratio of the recovery impulse to the deformation im-
pulse. Equation 3/36 applies, then, to the velocity components in the
n-direction. For the notation adopted with Fig. 3/20, we have

Once the four final velocity components are found, the angles 
and of Fig. 3/20 may be easily determined.�2 �

�1 �

e � 
(v2 �)n � (v1 �)n

(v1 

)n � (v2 

)n

 m2(v2 

)t � m2(v2 �)t

 m1(v1 

)t � m1(v1 �)t

m1(v1 

)n � m2(v2 

)n � m1(v1 �)n � m2(v2 �)n

(v2 �)t .(v2 �)n,(v1 �)t ,(v1 �)n,

Pool balls about to undergo impact.
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SAMPLE PROBLEM 3/28

The ram of a pile driver has a mass of 800 kg and is released from rest 2 m
above the top of the 2400-kg pile. If the ram rebounds to a height of 0.1 m after
impact with the pile, calculate (a) the velocity of the pile immediately after
impact, (b) the coefficient of restitution e, and (c) the percentage loss of energy
due to the impact.

Solution. Conservation of energy during free fall gives the initial and final ve-
locities of the ram from v � Thus,

(a) Conservation of momentum (G1 � G2) for the system of the ram and pile gives

Ans.

(b) The coefficient of restitution yields

Ans.

(c) The kinetic energy of the system just before impact is the same as the poten-
tial energy of the ram above the pile and is

The kinetic energy T� just after impact is

The percentage loss of energy is, therefore,

Ans.

SAMPLE PROBLEM 3/29

A ball is projected onto the heavy plate with a velocity of 50 ft/sec at the 30�

angle shown. If the effective coefficient of restitution is 0.5, compute the rebound
velocity v� and its angle ��.

Solution. Let the ball be denoted body 1 and the plate body 2. The mass of the
heavy plate may be considered infinite and its corresponding velocity zero after
impact. The coefficient of restitution is applied to the velocity components nor-
mal to the plate in the direction of the impact force and gives

Momentum of the ball in the t-direction is unchanged since, with assumed
smooth surfaces, there is no force acting on the ball in that direction. Thus,

The rebound velocity v� and its angle �� are then

Ans.

Ans.�� � tan�1 �(v1 �)n

(v1 �)t
� � tan�1 �12.5

43.3� � 16.10�

v� � �(v1 �)n 

2 � (v1 �)t 

2 � �12.52 � 43.32 � 45.1 ft/sec

m(v1 

)t � m(v1 �)t   (v1 �)t � (v1)t � 50 cos 30� � 43.3 ft/sec

e � 
(v2 �)n � (v1 �)n

(v1 

)n � (v2 

)n
  0.5 � 

0 � (v1 �)n

�50 sin 30� � 0
  (v1 �)n � 12.5 ft/sec

15 700 � 8620
15 700

 (100) � 45.1%

T� � 12 

(800)(1.401)2 � 12 

(2400)(2.55)2 � 8620 J

T � Vg � mgh � 800(9.81)(2) � 15 700 J

e � 
�rel. vel. separation �
�rel. vel. approach �

  e � 2.55 � 1.401
6.26 � 0

 � 0.631

800(6.26) � 0 � 800(�1.401) � 2400vp �   vp � � 2.55 m/s

vr � �2(9.81)(2) � 6.26 m/s   vr � � �2(9.81)(0.1) � 1.401 m/s

�2gh.

vp � 2 m drop

0.1 m
rebound

Before
impact

ram

pile

y

Immediately
after

impact

vr

vp = 0

vr′ 

vp′ 

Fimpact

W << Fimpact

Helpful Hint

� The impulses of the weights of the
ram and pile are very small com-
pared with the impulses of the im-
pact forces and thus are neglected
during the impact.

Helpful Hint

� We observe here that for infinite
mass there is no way of applying the
principle of conservation of momen-
tum for the system in the n-direc-
tion. From the free-body diagram of
the ball during impact, we note that
the impulse of the weight W is ne-
glected since W is very small com-
pared with the impact force.
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SAMPLE PROBLEM 3/30

Spherical particle 1 has a velocity v1 � 6 m/s in the direction shown and col-
lides with spherical particle 2 of equal mass and diameter and initially at rest. If
the coefficient of restitution for these conditions is e � 0.6, determine the result-
ing motion of each particle following impact. Also calculate the percentage loss of
energy due to the impact.

Solution. The geometry at impact indicates that the normal n to the contact-
ing surfaces makes an angle � � 30� with the direction of v1, as indicated in the
figure. Thus, the initial velocity components are (v1)n � v1 cos 30� � 6 cos 30� �

5.20 m/s, (v1)t � v1 sin 30� � 6 sin 30� � 3 m/s, and (v2)n � (v2)t � 0.
Momentum conservation for the two-particle system in the n-direction gives

or, with m1 � m2,

(a)

The coefficient-of-restitution relationship is

(b)

Simultaneous solution of Eqs. a and b yields

Conservation of momentum for each particle holds in the t-direction because,
with assumed smooth surfaces, there is no force in the t-direction. Thus for par-
ticles 1 and 2, we have

The final speeds of the particles are

Ans.

Ans.

The angle �� which makes with the t-direction is

Ans.

The kinetic energies just before and just after impact, with m � m1 � m2, are

The percentage energy loss is then

Ans.
��E �

E
 (100) � T � T�

T
 (100) � 18m � 13.68m

18m
 (100) � 24.0%

T� � 12 

m1v1 �2 � 12 

m2v2 �2 � 12 

m(3.17)2 � 12 

m(4.16)2 � 13.68m

T � 12 

m1v1 

2 � 12 

m2v2 

2 � 12 

m(6)2 � 0 � 18m

�� � tan�1 �(v1 �)n

(v1 �)t
� � tan�1 �1.039

3 � � 19.11�

v1 �

 v2 � � �(v2 �)n 

2 � (v2 �)t 

2 � �(4.16)2 � 02 � 4.16 m/s

 v1 � � �(v1 �)n 

2 � (v1 �)t 

2 � �(1.039)2 � 32 � 3.17 m/s

 m2(v2 

)t � m2(v2 �)t    (v2 �)t � (v2 

)t � 0

 m1(v1 

)t � m1(v1 �)t    (v1 �)t � (v1 

)t � 3 m/s

(v1 �)n � 1.039 m/s   (v2 �)n � 4.16 m/s

e � 
(v2 �)n � (v1 �)n

(v1 

)n � (v2 

)n
  0.6 � 

(v2 �)n � (v1 �)n

5.20 � 0

5.20 � 0 � (v1 �)n � (v2 �)n

m1(v1 

)n � m2(v2 

)n � m1(v1 �)n � m2(v2 �)n

1

2

v1

n

r

v1

2r
θ

n

30°

1

2

2′
1′

t

v1

v2′

v1′ θ1′

n

1

2 t
F

F

Helpful Hints

� Be sure to set up n- and t-coordinates
which are, respectively, normal to
and tangent to the contacting sur-
faces. Calculation of the 30� angle is
critical to all that follows.

� Note that, even though there are
four equations in four unknowns for
the standard problem of oblique cen-
tral impact, only one pair of the
equations is coupled.

� We note that particle 2 has no initial
or final velocity component in the 
t-direction. Hence, its final velocity

is restricted to the n-direction.v2 �
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PROBLEMS
Introductory Problems

3/239 Tennis balls are usually rejected if they fail to re-
bound to waist level when dropped from shoulder
level. If a ball just passes the test as indicated in
the figure, determine the coefficient of restitution e
and the percentage n of the original energy lost
during the impact.

Problem 3/239

3/240 If the tennis ball of Prob. 3/239 has a coefficient of
restitution e 0.8 during impact with the court
surface, determine the velocity v0 with which the
ball must be thrown downward from the 1600-mm
shoulder level if it is return to the same level after
bouncing once on the court surface.

3/241 Compute the final velocities and after collision
of the two cylinders which slide on the smooth hori-
zontal shaft. The coefficient of restitution is e 0.6.

Problem 3/241

v1 = 7 m/s

m1 = 2 kg

v2 = 5 m/s

m2 = 3 kg

�

v2�v1�

�

1100
mm

1600
mm

3/242 The two bodies have the masses and initial veloci-
ties shown in the figure. The coefficient of restitu-
tion for the collision is e 0.3, and friction is
negligible. If the time duration of the collision is
0.025 s, determine the average impact force which
is exerted on the 3-kg body.

Problem 3/242

3/243 The sphere of mass m1 travels with an initial ve-
locity v1 directed as shown and strikes the sphere
of mass m2. For a given coefficient of restitution e,
determine the mass ratio m1/m2 which results in
m1 being motionless after the impact.

Problem 3/243

3/244 Three identical steel cylinders are free to slide on
the fixed horizontal shaft. Cylinders 2 and 3 are at
rest and are approached by cylinder 1 at a speed u.
Express the final speed v of cylinder 3 in terms of u
and the coefficient of restitution e.

Problem 3/244

u

1 2 3

v1

m2m1

3 kg 4 kg

0.5 m/s
0.7 m/s

�
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3/248 If the center of the ping-pong ball is to clear the
net as shown, at what height h should the ball be
horizontally served? Also determine h2. The coeffi-
cient of restitution for the impacts between ball
and table is e 0.9, and the radius of the ball is 
r 0.75 in.

Problem 3/248

3/249 In the selection of the ram of a pile driver, it is de-
sired that the ram lose all of its kinetic energy at
each blow. Hence, the velocity of the ram is zero
immediately after impact. The mass of each pile to
be driven is 300 kg, and experience has shown that
a coefficient of restitution of 0.3 can be expected.
What should be the mass m of the ram? Compute
the velocity v of the pile immediately after impact
if the ram is dropped from a height of 4 m onto the
pile. Also compute the energy loss due to im-
pact at each blow.

Problem 3/249

4 m

m

300 kg

3 m

�E

v0

h
9″ h2

�

�

3/245 Cylinder A is moving to the right with speed v
when it impacts the initially stationary cylinder B.
Both cylinders have mass m, and the coefficient of
restitution for the collision is e. Determine the
maximum deflection of the spring of modulus k.
Neglect friction.

Problem 3/245

3/246 Car B is initially stationary and is struck by car A,
which is moving with speed v. The mass of car B is
pm, where m is the mass of car A and p is a positive
constant. If the coefficient or restitution is e 0.1,
express the speeds and of the two cars at the
end of the impact in terms of p and v. Evaluate
your expressions for p 0.5.

Problem 3/246

3/247 Determine the coefficient of restitution e for a steel
ball dropped from rest at a height h above a heavy
horizontal steel plate if the height of the second re-
bound is h2.

Problem 3/247

h

h2

A B

m pm

v

�

vB�vA�
�

v
k

BA
m m

�
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3/250 Freight car A of mass mA is rolling to the right
when it collides with freight car B of mass mB ini-
tially at rest. If the two cars are coupled together
at impact, show that the fractional loss of energy
equals mB/(mA mB).

Problem 3/250

Representative Problems

3/251 Pool ball B is to be shot into the side pocket D by
banking it off the cushion at C. Specify the location
x of the cushion impact for coefficients of restitu-
tion (a) e 1 and (b) e 0.8.

Problem 3/251

x

v

d

B

D

C

d/2

d/2A

��

A B

�

3/252 Determine the value of the coefficient of restitu-
tion e which results in the final velocity being
perpendicular to the initial velocity v.

Problem 3/252

3/253 Determine the value of the coefficient of restitu-
tion e for which the outgoing angle is one-half of
the incoming angle as shown. Evaluate your gen-
eral expression for 

Problem 3/253

v
v′

θ θ––
2

� � 40�.
�

v

v′

60°

v�
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3/257 A basketball traveling with the velocity shown in
the figure strikes the backboard at A. If the coeffi-
cient of restitution for this impact is e 0.84, de-
termine the required distance h above the hoop if
the ball is to arrive at the center B of the hoop.
Carry out two solutions: (a) an approximate solu-
tion obtained by neglecting the effects of gravity
from A to B and (b) a solution which accounts for
gravity from A to B. Neglect the diameter of the
ball compared with h.

Problem 3/257

24 ft/sec
40°

15″

B

A

h

�

3/254 The figure shows n spheres of equal mass m sus-
pended in a line by wires of equal length so that
the spheres are almost touching each other. If
sphere 1 is released from the dashed position and
strikes sphere 2 with a velocity v1, write an expres-
sion for the velocity vn of the nth sphere immedi-
ately after being struck by the one adjacent to it.
The common coefficient of restitution is e.

Problem 3/254

3/255 The ball is released from position A and drops 
0.75 m to the incline. If the coefficient of restitu-
tion in the impact is e 0.85, determine the slant
range R.

Problem 3/255

3/256 A projectile is launched from point A and has a
horizontal range L1 as shown. If the coefficient of
restitution at B is e, determine the distance L2.

Problem 3/256

L1

A B

L2

0.75 m

R C

20°

A

�

vnv1

1 2 3 n
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3/258 The two cars collide at right angles in the intersec-
tion of two icy roads. Car A has a mass of 1200 kg
and car B has a mass of 1600 kg. The cars become
entangled and move off together with a common
velocity in the direction indicated. If car A was
traveling 50 km/h at the instant of impact, com-
pute the corresponding velocity of car B just before
impact.

Problem 3/258

3/259 The two identical steel balls moving with initial ve-
locities vA and vB collide as shown. If the coefficient
of restitution is determine the velocity of
each ball just after impact and the percentage loss
n of system kinetic energy.

Problem 3/259

y

x

A

B

vB = 8 ft /sec

vA = 6 ft /sec
30°

e � 0.7,

y

x

30°

v′
vB

vA = 50 km/h

B

A

v�

3/260 A 0.1-kg meteor and a 1000-kg spacecraft have the
indicated absolute velocities just before colliding.
The meteor punches a hole entirely through the
spacecraft. Instruments indicate that the velocity
of the meteor relative to the spacecraft just after
the collision is vm/s 1880i 6898j m/s. Deter-
mine the direction of the absolute velocity of the
spacecraft after the collision.

Problem 3/260

3/261 Two identical hockey pucks moving with initial ve-
locities vA and vB collide as shown. If the coefficient
of restitution is , determine the velocity
(magnitude and direction with respect to the posi-
tive x-axis) of each puck just after impact. Also
calculate the percentage loss n of system kinetic
energy.

Problem 3/261

vA = 6 m/s

vB = 10 m/s

30°

A

y

x
B

�

e � 0.75

�

����

Article 3/12 Problems 227

z

x

y

vm = 7000 m/s

vs = 2000 m/s

vs′ 

θ

c03.qxd  2/9/12  7:39 PM  Page 227



3/264 During a pregame warmup period, two basketballs
collide above the hoop when in the positions
shown. Just before impact, ball 1 has a velocity v1

which makes a 30 angle with the horizontal. If the
velocity v2 of ball 2 just before impact has the same
magnitude as v1, determine the two possible values
of the angle , measured from the horizontal,
which will cause ball 1 to go directly through the
center of the basket. The coefficient of restitution
is e 0.8.

Problem 3/264

30°

2

1
v2

v1

v1′

θ

�

�

�

3/262 Sphere A collides with sphere B as shown in the
figure. If the coefficient of restitution is e 0.5, de-
termine the x- and y-components of the velocity of
each sphere immediately after impact. Motion is
confined to the x-y plane.

Problem 3/262

3/263 Determine the coefficient of restitution e which
will allow the ball to bounce down the steps as
shown. The tread and riser dimensions, d and h,
respectively, are the same for every step, and the
ball bounces the same distance above each step.
What horizontal velocity vx is required so that the
ball lands in the center of each tread?

Problem 3/263

d

h

h′

h�

y

x

vA = 3 m/s

vB = 12 m/s

B

A

30°

20°

45°

10 kg
2 kg

�
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3/265 The 0.5-kg cylinder A is released from rest from the
position shown and drops the distance h1 0.6 m.
It then collides with the 0.4-kg block B; the coeffi-
cient of restitution is e 0.8. Determine the maxi-
mum downward displacement h2 of block B.
Neglect all friction and assume that block B is ini-
tially held in place by a hidden mechanism until
the collision begins. The two springs of modulus 
k 500 N/m are initially unstretched, and the dis-
tance d 0.8 m.

Problem 3/265

kk B
mB

A

mA

d

h2

d

h1

�

�

�

�

3/266 A child throws a ball from point A with a speed of
50 ft/sec. It strikes the wall at point B and then re-
turns exactly to point A. Determine the necessary
angle if the coefficient of restitution in the wall
impact is e 0.5.

Problem 3/266

A

B

α

10′

�
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3/13 Central-Force Motion
When a particle moves under the influence of a force directed to-

ward a fixed center of attraction, the motion is called central-force mo-
tion. The most common example of central-force motion is the orbital
movement of planets and satellites. The laws which govern this motion
were deduced from observation of the motions of the planets by J. Kepler
(1571–1630). An understanding of central-force motion is required to
design high-altitude rockets, earth satellites, and space vehicles.

Motion of a Single Body
Consider a particle of mass m, Fig. 3/21, moving under the action of

the central gravitational attraction

where m0 is the mass of the attracting body, which is assumed to be
fixed, G is the universal gravitational constant, and r is the distance be-
tween the centers of the masses. The particle of mass m could represent
the earth moving about the sun, the moon moving about the earth, or a
satellite in its orbital motion about the earth above the atmosphere.

The most convenient coordinate system to use is polar coordinates
in the plane of motion since F will always be in the negative r-direction
and there is no force in the �-direction.

Equations 3/8 may be applied directly for the r- and �-directions to
give

(3/37)

The second of the two equations when multiplied by r/m is seen to be
the same as d(r2 )/dt � 0, which is integrated to give

(3/38)

The physical significance of Eq. 3/38 is made clear when we note
that the angular momentum r � mv of m about m0 has the magnitude
mr2 . Thus, Eq. 3/38 merely states that the angular momentum of m
about m0 remains constant (is conserved). This statement is easily de-
duced from Eq. 3/31, which shows that the angular momentum HO re-
mains constant (is conserved) if there is no moment acting on the
particle about a fixed point O.

We observe that during time dt, the radius vector sweeps out an
area, shaded in Fig. 3/21, equal to dA � (r d�). Therefore, the rate at 

which area is swept by the radius vector is , which is constant ac-
cording to Eq. 3/38. This conclusion is expressed in Kepler’s second law of
planetary motion, which states that the areas swept through in equal
times are equal.

Ȧ � 12 

r2 �̇

(12 

r)

�̇

r2 �̇  � h,   a constant

�̇

 0 � m(r �̈  � 2 ṙ �̇ )

 �G 

mm0

r2
 � m( r̈ � r �̇ 2)

F � G 

mm0

r2
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The shape of the path followed by m may be obtained by solving the
first of Eqs. 3/37, with the time t eliminated through combination with
Eq. 3/38. To this end the mathematical substitution r � 1/u is useful.
Thus, � �(1/u2) , which from Eq. 3/38 becomes � �h( ) or �

�h(du/d�). The second time derivative is � �h(d2u/d�2) , which by
combining with Eq. 3/38, becomes � �h2u2(d2u/d�2). Substitution into
the first of Eqs. 3/37 now gives

or

(3/39)

which is a nonhomogeneous linear differential equation.
The solution of this familiar second-order equation may be verified

by direct substitution and is

where C and � are the two integration constants. The phase angle � may
be eliminated by choosing the x-axis so that r is a minimum when � � 0.
Thus,

(3/40)

Conic Sections
The interpretation of Eq. 3/40 requires a knowledge of the equa-

tions for conic sections. We recall that a conic section is formed by the
locus of a point which moves so that the ratio e of its distance from 
a point (focus) to a line (directrix) is constant. Thus, from Fig. 3/21, 
e � r/(d � r cos �), which may be rewritten as

(3/41)

which is the same form as Eq. 3/40. Thus, we see that the motion of m is
along a conic section with d � 1/C and ed � h2/(Gm0), or

(3/42)

The three cases to be investigated correspond to e � 1 (ellipse), e �

1 (parabola), and e � 1 (hyperbola). The trajectory for each of these
cases is shown in Fig. 3/22.

e � h
2 C

Gm0

1
r
 � 1

d
 cos � � 1

ed

1
r
 � C cos � � 

Gm0

h2

u � 1
r
 � C cos (� � �) � 

Gm0

h2

d2 u
d�2

 � u � 
Gm0

h2

�Gm0u2 � �h2 u2 d
2 u

d�2
 � 1

u
 h2u4

r̈
�̇r̈

ṙu̇/ �̇ṙu̇ṙ
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Ellipse e < 1

Parabola e = 1

Hyperbola e > 1

Apogee
2b

2a

Perigee

e = 0
r

m
v

m0

a(1 – e)a(1 + e)

θ
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Case 1: ellipse (e � 1). From Eq. 3/41 we deduce that r is a mini-
mum when � � 0 and is a maximum when � � �. Thus,

With the distance d expressed in terms of a, Eq. 3/41 and the maximum
and minimum values of r may be written as

(3/43)

In addition, the relation b � a , which comes from the geometry
of the ellipse, gives the expression for the semiminor axis. We see that
the ellipse becomes a circle with r � a when e � 0. Equation 3/43 is an
expression of Kepler’s first law, which says that the planets move in el-
liptical orbits around the sun as a focus.

The period � for the elliptical orbit is the total area A of the ellipse
divided by the constant rate at which the area is swept through.
Thus,  from Eq. 3/38,

We can eliminate reference to or h in the expression for � by substi-
tuting Eq. 3/42, the identity d � 1/C, the geometric relationships 
a � ed/(1 � e2) and b � a for the ellipse, and the equivalence 
Gm0 � gR2. The result after simplification is

(3/44)

In this equation note that R is the mean radius of the central attracting
body and g is the absolute value of the acceleration due to gravity at the
surface of the attracting body.

Equation 3/44 expresses Kepler’s third law of planetary motion
which states that the square of the period of motion is proportional to
the cube of the semimajor axis of the orbit.

Case 2: parabola (e � 1). Equations 3/41 and 3/42 become

The radius vector becomes infinite as � approaches �, so the dimension
a is infinite.

Case 3: hyperbola (e � 1). From Eq. 3/41 we see that the radial
distance r becomes infinite for the two values of the polar angle �1 and

1
r
 � 1

d
 (1 � cos �)   and   h2C � Gm0

� � 2� a3/2

R�g

�1 � e2

�̇

� � A
Ȧ

 � �ab
1
2 

r2 �̇
  or   � � 2�ab

h

Ȧ

�1 � e2

rmin � a(1 � e)   rmax � a(1 � e)

1
r
 � 1 � e cos �

a(1 � e2)

2a � rmin � rmax � ed
1 � e

 � ed
1 � e

  or   a � ed
1 � e2
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Artist conception of the Mars Recon-
naissance Orbiter, which arrived at
Mars in March 2006.
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��1 defined by cos �1 � �1/e. Only branch I corresponding to ��1 � � � �1,
Fig. 3/23, represents a physically possible motion. Branch II corresponds
to angles in the remaining sector (with r negative). For this branch, pos-
itive r’s may be used if � is replaced by � � � and �r by r. Thus, Eq. 3/41
becomes

But this expression contradicts the form of Eq. 3/40 where Gm0/h2 is neces-
sarily positive. Thus branch II does not exist (except for repulsive forces).

Energy Analysis
Now consider the energies of particle m. The system is conservative,

and the constant energy E of m is the sum of its kinetic energy T and
potential energy V. The kinetic energy is T � mv2 �

and the potential energy from Eq. 3/19 is V � �mgR2/r.
Recall that g is the absolute acceleration due to gravity measured at

the surface of the attracting body, R is the radius of the attracting body,
and Gm0 � gR2. Thus,

This constant value of E can be determined from its value at � � 0,
where � 0, 1/r � C � gR2/h2 from Eq. 3/40, and � h/r from Eq.
3/38. Substituting this into the expression for E and simplifying yield

Now C is eliminated by substitution of Eq. 3/42, which may be written
as h2C � egR2, to obtain

(3/45)

The plus value of the radical is mandatory since by definition e is posi-
tive. We now see that for the

These conclusions, of course, depend on the arbitrary selection of the
datum condition for zero potential energy (V � 0 when r � �).

The expression for the velocity v of m may be found from the energy
equation, which is

1
2 

mv2 � 
mgR2

r
 � E

 hyperbolic orbit  e � 1,  E is positive

 parabolic orbit  e � 1,  E is zero

 elliptical orbit  e � 1,  E is negative

2E
m

 � h2C2 � 
g2R4

h2

r �̇ṙ

E � 12 m( ṙ2 � r2 �̇ 2) � 
mgR2

r

1
2 m( ṙ2 � r2 �̇ 2)1

2 

1
�r

 � 1
d

 cos (� � �) � 1
ed

  or   1
r
 � � 1

ed
 � cos �

d
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The total energy E is obtained from Eq. 3/45 by combining Eq. 3/42 and
1/C � d � a(1 � e2)/e to give for the elliptical orbit

(3/46)

Substitution into the energy equation yields

(3/47)

from which the magnitude of the velocity may be computed for a partic-
ular orbit in terms of the radial distance r.

Next, combining the expressions for rmin and rmax corresponding to
perigee and apogee, Eq. 3/43, with Eq. 3/47 results in a pair of expres-
sions for the respective velocities at these two positions for the elliptical
orbit:

(3/48)

Selected numerical data pertaining to the solar system are included
in Appendix D and are useful in applying the foregoing relationships to
problems in planetary motion.

Summary of Assumptions
The foregoing analysis is based on three assumptions:

1. The two bodies possess spherical mass symmetry so that they may
be treated as if their masses were concentrated at their centers, that
is, as if they were particles.

2. There are no forces present except the gravitational force which
each mass exerts on the other.

3. Mass m0 is fixed in space.

Assumption (1) is excellent for bodies which are distant from the cen-
tral attracting body, which is the case for most heavenly bodies. A sig-
nificant class of problems for which assumption (1) is poor is that of
artificial satellites in the very near vicinity of oblate planets. As a
comment on assumption (2), we note that aerodynamic drag on a low-
altitude earth satellite is a force which usually cannot be ignored in
the orbital analysis. For an artificial satellite in earth orbit, the error
of assumption (3) is negligible because the ratio of the mass of the
satellite to that of the earth is very small. On the other hand, for the
earth–moon system, a small but significant error is introduced if as-
sumption (3) is invoked—note that the lunar mass is about 1/81 times
that of the earth.

v2 � 2gR2 �1
r
 � 1

2a�

E � �
gR2m

2a
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 vA � R�g
a �1 � e

1 � e
� R �g

a �rmin

rmax

 vP � R�g
a �1 � e

1 � e
� R �g

a �rmax

rmin
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Perturbed Two-Body Problem
We now account for the motion of both masses and allow the pres-

ence of other forces in addition to those of mutual attraction by consid-
ering the perturbed two-body problem. Figure 3/24 depicts the major
mass m0, the minor mass m, their respective position vectors r1 and r2

measured relative to an inertial frame, the gravitation forces F and �F,
and a non-two-body force P which is exerted on mass m. The force P
may be due to aerodynamic drag, solar pressure, the presence of a third
body, on-board thrusting activities, a nonspherical gravitational field, or
a combination of these and other sources.

Application of Newton’s second law to each mass results in

Dividing the first equation by m0, the second equation by m, and sub-
tracting the first equation from the second give

or

(3/49)

Equation 3/49 is a second-order differential equation which, when
solved, yields the relative position vector r as a function of time. Numer-
ical techniques are usually required for the integration of the scalar dif-
ferential equations which are equivalent to the vector equation 3/49,
especially if P is nonzero.

Restricted Two-Body Problem
If m0 �� m and P � 0, we have the restricted two-body problem,

the equation of motion of which is

(3/49a)

With r and expressed in polar coordinates, Eq. 3/49a becomes

When we equate coefficients of like unit vectors, we recover Eqs. 3/37.
Comparison of Eq. 3/49 (with P � 0) and Eq. 3/49a enables us to

relax the assumption that mass m0 is fixed in space. If we replace m0 by
(m0 � m) in the expressions derived with the assumption of m0 fixed,
then we obtain expressions which account for the motion of m0. For ex-
ample, the corrected expression for the period of elliptical motion of m
about m0 is, from Eq. 3/44,

(3/49b)

where the equality R2g � Gm0 has been used.

� � 2� a3/2

�G(m0 � m)

( r̈ � r �̇ 2)er � (r �̈  � 2 ṙ �̇ )e� � G 
m0

r3
 (rer) � 0

r̈

r̈ � G 
m0

r3
 r � 0

r̈ � G 
(m0 � m)

r3
 r � P

m

�G 
(m0 � m)

r3
 r � P

m
 � r̈2 � r̈1 � r̈

G 
mm0

r3
 r � m0r̈1   and   �G 

mm0

r3
 r � P � mr̈2
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SAMPLE PROBLEM 3/31

An artificial satellite is launched from point B on the equator by its carrier
rocket and inserted into an elliptical orbit with a perigee altitude of 2000 km. If
the apogee altitude is to be 4000 km, compute (a) the necessary perigee velocity
vP and the corresponding apogee velocity vA, (b) the velocity at point C where the
altitude of the satellite is 2500 km, and (c) the period � for a complete orbit.

Solution. (a) The perigee and apogee velocities for specified altitudes are given
by Eqs. 3/48, where

Thus,

Ans.

Ans.

(b) For an altitude of 2500 km the radial distance from the center of the earth is
r � 6371 � 2500 � 8871 km. From Eq. 3/47 the velocity at point C becomes

Ans.

(c) The period of the orbit is given by Eq. 3/44, which becomes

Ans.or   � � 2.507 h

 � � 2� a3/2

R�g
 � 2� 

[(9371)(103)]3/2

(6371)(103)�9.825
 � 9026 s

 vC � 6881 m/s   or   24 773 km/h

 � 47.353(106)(m/s)2

 vC 

2 � 2gR2�1
r
 � 1

2a� � 2(9.825)[(6371)(103)]2 � 1
8871

 � 1
18 742� 1

103

 � 5861 m/s   or   21 099 km/h

 � 7261 m/s   or   26 140 km/h

 a � (rmin � rmax 

)/2 � 9371 km

 rmin � 6371 � 2000 � 8371 km

 rmax � 6371 � 4000 � 10 371 km

A P

vP

vA

C

B

12 742 km
4000
km

2000 km

2a

2500 km

θ
O

R

Helpful Hints

� The mean radius of 12 742/2 � 6371
km from Table D/2 in Appendix D is
used. Also the absolute acceleration
due to gravity g � 9.825 m/s2 from
Art. 1/5 will be used.
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� We must be careful with units. It is
often safer to work in base units,
meters in this case, and convert
later.

� We should observe here that the
time interval between successive
overhead transits of the satellite as
recorded by an observer on the
equator is longer than the period
calculated here since the observer
will have moved in space due to the
counterclockwise rotation of the
earth, as seen looking down on the
north pole.

vP � R�g

a �rmax

rmin

� 6371(103) � 9.825
9371(103) �10 371

8371

 vA � R�g

a �rmin

rmax
� 6371(103) � 9.825

9371(103) � 8371
10 371

�

�

�
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PROBLEMS
(Unless otherwise indicated, the velocities mentioned in
the problems which follow are measured from a nonrotat-
ing reference frame moving with the center of the attract-
ing body. Also, aerodynamic drag is to be neglected unless
stated otherwise. Use g 9.825 m/s2 (32.23 ft/sec2) for the
absolute gravitational acceleration at the surface of the
earth and treat the earth as a sphere of radius R 6371 km
(3959 mi).)

Introductory Problems

3/267 Determine the speed v of the earth in its orbit
about the sun. Assume a circular orbit of radius
93(106) miles.

3/268 What velocity v must the space shuttle have in
order to release the Hubble space telescope in a cir-
cular earth orbit 590 km above the surface of the
earth?

Problem 3/268

3/269 Show that the path of the moon is concave toward
the sun at the position shown. Assume that the
sun, earth, and moon are in the same line.

Problem 3/269

Earth

Moon

Sunlight

590 km

�

�

3/270 A spacecraft is orbiting the earth in a circular orbit
of altitude H. If its rocket engine is activated to
produce a sudden burst of speed, determine the in-
crease necessary to allow the spacecraft to es-
cape from the earth’s gravity field. Calculate if
H 200 mi.

3/271 Determine the apparent velocity vrel of a satellite
moving in a circular equatorial orbit 200 mi above
the earth as measured by an observer on the equa-
tor (a) for a west-to-east orbit and (b) for an east-
to-west orbit. Why is the west-to-east orbit more
easily achieved?

3/272 A spacecraft is in an initial circular orbit with an
altitude of 350 km. As it passes point P, onboard
thrusters give it a velocity boost of 25 m/s. Deter-
mine the resulting altitude gain at point A.

Problem 3/272

3/273 If the perigee altitude of an earth satellite is 240
km and the apogee altitude is 400 km, compute the
eccentricity e of the orbit and the period of one
complete orbit in space.

3/274 In one of the orbits of the Apollo spacecraft about
the moon, its distance from the lunar surface var-
ied from 60 mi to 180 mi. Compute the maximum
velocity of the spacecraft in this orbit.

�

Δh

A P

350 km

�h

�

�v
�v
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3/277 Determine the speed v required of an earth satellite
at point A for (a) a circular orbit, (b) an elliptical
orbit of eccentricity e 0.1, (c) an elliptical orbit of
eccentricity e 0.9, and (d) a parabolic orbit. In
cases (b), (c), and (d), A is the orbit perigee.

Problem 3/277

Representative Problems

3/278 Initially in the 240-km circular orbit, the space-
craft S receives a velocity boost at P which will
take it to with no speed at that point. Deter-
mine the required velocity increment v at point P
and also determine the speed when r 2rP. At
what value of does r become 2rP?

Problem 3/278

P

r

O

S

240 km

θ

�

�

�

r l �

R

A

v

0.1R

�

�

3/275 A satellite is in a circular earth orbit of radius 2R,
where R is the radius of the earth. What is the
minimum velocity boost necessary to reach
point B, which is a distance 3R from the center of
the earth? At what point in the original circular
orbit should the velocity increment be added?

Problem 3/275

3/276 The Mars orbiter for the Viking mission was de-
signed to make one complete trip around the
planet in exactly the same time that it takes Mars
to revolve once about its own axis. This time is 24 h,
37 min, 23 s. In this way, it is possible for the or-
biter to pass over the landing site of the lander
capsule at the same time in each Martian day at
the orbiter’s minimum (periapsis) altitude. For the
Viking I mission, the periapsis altitude of the or-
biter was 1508 km. Make use of the data in Table
D/2 in Appendix D and compute the maximum
(apoapsis) altitude ha for the orbiter in its elliptical
path.

Problem 3/276

ha
hp = 1508 km 

R

 B

2R
3R

�v
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3/279 Satellite A moving in the circular orbit and satel-
lite B moving in the elliptical orbit collide and be-
come entangled at point C. If the masses of the
satellites are equal, determine the maximum alti-
tude hmax of the resulting orbit.

Problem 3/279

3/280 If the earth were suddenly deprived of its orbital
velocity around the sun, find the time t which it
would take for the earth to “fall” to the location of
the center of the sun. (Hint: The time would be
one-half the period of a degenerate elliptical orbit
around the sun with the semiminor axis approach-
ing zero.) Refer to Table D/2 for the exact period of
the earth around the sun.

3/281 Just after launch from the earth, the space-shuttle
orbiter is in the 37 137-mi orbit shown. The first
time that the orbiter passes the apogee A, its two
orbital-maneuvering-system (OMS) engines are
fired to circularize the orbit. If the weight of the
orbiter is 175,000 lb and the OMS engines have a
thrust of 6000 lb each, determine the required
time duration t of the burn.

Problem 3/281

A
O

P

37 mi
137 mi

�

�

 B

 A

C

800 mi 800 mi 200 mi

3/282 After launch from the earth, the 85 000-kg space-
shuttle orbiter is in the elliptical orbit shown. If
the orbit is to be circularized at the apogee altitude
of 320 km, determine the necessary time duration

during which its two orbital-maneuvering-
system (OMS) engines, each of which has a thrust
of 30 kN, must be fired when the apogee position C
is reached.

Problem 3/282

3/283 Just before separation of the lunar module, the
Apollo 17 command module was in the lunar orbit
shown in the figure. Determine the spacecraft
speeds at points P and A, which are called perilune
and apolune, respectively. Later in the mission,
with the lunar module on the surface of the moon,
the orbit of the command module was to be circu-
larized. Determine the speed increment re-
quired if circularization is to be performed at A.

Problem 3/283

P A

28 km
109 km

�v

320 km240 km

B C

�t
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3/286 Determine the angle made by the velocity vector
v with respect to the -direction for an earth satel-
lite traveling in an elliptical orbit of eccentricity e.
Express in terms of the angle measured from
perigee.

Problem 3/286

3/287 Two satellites B and C are in the same circular
orbit of altitude 500 miles. Satellite B is 1000 mi
ahead of satellite C as indicated. Show that C can
catch up to B by “putting on the brakes.” Specifi-
cally, by what amount should the circular-orbit
velocity of C be reduced so that it will rendezvous
with B after one period in its new elliptical orbit?
Check to see that C does not strike the earth in the
elliptical orbit.

Problem 3/287

3/288 Determine the necessary amount by which the
circular-orbit velocity of satellite C should be re-
duced if the catch-up maneuver of Prob. 3/287 is to
be accomplished with not one but two periods in a
new elliptical orbit.

�v

1000 mi

B

R

C

500 mi

�v

v r

m

Perigee

β

θ

θ

��

�

�3/284 Determine the required velocity vB in the direction
indicated so that the spacecraft path will be tan-
gent to the circular orbit at point C. What must be
the distance b so that this path is possible?

Problem 3/284

3/285 An earth satellite A is in a circular west-to-east
equatorial orbit a distance 300 km above the sur-
face of the earth as indicated. An observer B on the
equator who sees the satellite directly overhead
will see it directly overhead in the next orbit at po-
sition because of the rotation of the earth. The
radial line to the satellite will have rotated
through the angle and the observer will
measure the apparent period as a value slightly
greater than the true period . Calculate and

Problem 3/285

Equator θ

ω

A

N

O

B

A′
B′

�� � �.
���

��
2� � �,

B�

 C

B
b

16,000 mi

3959 mi

4000 mi

vB
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3/289 The spacecraft S is to be injected into a circular
orbit of altitude 400 km. Because of equipment
malfunction, the injection speed v is correct for the
circular orbit, but the initial velocity v makes an
angle with the intended direction. What is the
maximum permissible error in order that the
spacecraft not strike the earth? Neglect atmos-
pheric resistance.

Problem 3/289

3/290 The 175,000-lb space-shuttle orbiter is in a circu-
lar orbit of altitude 200 miles. The two orbital-
maneuvering-system (OMS) engines, each of which
has a thrust of 6000 lb, are fired in retrothrust for
150 seconds. Determine the angle which locates
the intersection of the shuttle trajectory with the
earth’s surface. Assume that the shuttle position B
corresponds to the completion of the OMS burn
and that no loss of altitude occurs during the burn.

Problem 3/290

3/291 Compare the orbital period of the moon calculated
with the assumption of a fixed earth with the pe-
riod calculated without this assumption.

B

C

200 mi

β

�

400 km

S
v α

	

	

3/292 A satellite is placed in a circular polar orbit a dis-
tance H above the earth. As the satellite goes over
the north pole at A, its retro-rocket is activated to
produce a burst of negative thrust which reduces
its velocity to a value which will ensure an equato-
rial landing. Derive the expression for the required
reduction of velocity at A. Note that A is the
apogee of the elliptical path.

Problem 3/292

3/293 A spacecraft moving in a west-to-east equatorial
orbit is observed by a tracking station located on
the equator. If the spacecraft has a perigee altitude
H 150 km and velocity v when directly over the
station and an apogee altitude of 1500 km, determine 
an expression for the angular rate p (relative to
the earth) at which the antenna dish must be ro-
tated when the spacecraft is directly overhead.
Compute p. The angular velocity of the earth is 

0.7292( ) rad/s.

Problem 3/293

v

H

East

West

pω
N

R

10�4��

�

B

A

N

R

HS

�vA
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3/296 In 1995 a spacecraft called the Solar and Helio-
spheric Observatory (SOHO) was placed into a cir-
cular orbit about the sun and inside that of the
earth as shown. Determine the distance h so that
the period of the spacecraft orbit will match that of
the earth, with the result that the spacecraft will
remain between the earth and the sun in a “halo”
orbit.

Problem 3/296

Sun

Earth

h

S

3/294 Sometime after launch from the earth, a spacecraft
S is in the orbital path of the earth at some dis-
tance from the earth at position P. What velocity
boost at P is required so that the spacecraft ar-
rives at the orbit of Mars at A as shown?

Problem 3/294

3/295 A spacecraft with a mass of 800 kg is traveling in a
circular orbit 6000 km above the earth. It is de-
sired to change the orbit to an elliptical one with a
perigee altitude of 3000 km as shown. The transi-
tion is made by firing the retro-engine at A with a
reverse thrust of 2000 N. Calculate the required
time t for the engine to be activated.

Problem 3/295

A
6000
km

3000
km

A P

Sun

S

Mars

Earth

�v
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3/297 A space vehicle moving in a circular orbit of radius
r1 transfers to a larger circular orbit of radius r2 by
means of an elliptical path between A and B. (This
transfer path is known as the Hohmann transfer
ellipse.) The transfer is accomplished by a burst of
speed at A and a second burst of speed at
B. Write expressions for and in terms of
the radii shown and the value of g of the accelera-
tion due to gravity at the earth’s surface. If each

is positive, how can the velocity for path 2 be
less than the velocity for path 1? Compute each 
if r1 (6371 500) km and r2 (6371 35 800)
km. Note that r2 has been chosen as the radius of a
geosynchronous orbit.

Problem 3/297

AB

r2
r1

1

2

����

�v
�v

�vB�vA

�vB�vA

3/298 At the instant represented in the figure, a small
experimental satellite A is ejected from the shuttle
orbiter with a velocity vr 100 m/s relative to the
shuttle, directed toward the center of the earth.
The shuttle is in a circular orbit of altitude h 200
km. For the resulting elliptical orbit of the satellite,
determine the semimajor axis a and its orientation,
the period , eccentricity e, apogee speed , perigee
speed vp, rmax, and rmin. Sketch the satellite orbit.

Problem 3/298

vr
h

A

x

y

va�

�

�
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3/14 Relative Motion
Up to this point in our development of the kinetics of particle mo-

tion, we have applied Newton’s second law and the equations of work-
energy and impulse-momentum to problems where all measurements of
motion were made with respect to a reference system which was consid-
ered fixed. The nearest we can come to a “fixed” reference system is the
primary inertial system or astronomical frame of reference, which is an
imaginary set of axes attached to the fixed stars. All other reference sys-
tems then are considered to have motion in space, including any refer-
ence system attached to the moving earth.

The acceleration of points attached to the earth as measured in the
primary system are quite small, however, and we normally neglect them
for most earth-surface measurements. For example, the acceleration of
the center of the earth in its near-circular orbit around the sun consid-
ered fixed is 0.00593 m/s2 (or 0.01946 ft/sec2), and the acceleration of a
point on the equator at sea level with respect to the center of the earth
considered fixed is 0.0339 m/s2 (or 0.1113 ft/sec2). Clearly, these acceler-
ations are small compared with g and with most other significant accel-
erations in engineering work. Thus, we make only a small error when
we assume that our earth-attached reference axes are equivalent to a
fixed reference system.

Relative-Motion Equation
We now consider a particle A of mass m, Fig. 3/25, whose motion is

observed from a set of axes x-y-z which translate with respect to a fixed
reference frame X-Y-Z. Thus, the x-y-z directions always remain parallel
to the X-Y-Z directions. We postpone discussion of motion relative to a
rotating reference system until Arts. 5/7 and 7/7. The acceleration of the
origin B of x-y-z is aB. The acceleration of A as observed from or relative
to x-y-z is arel � aA/B � A/B, and by the relative-motion principle of Art.
2/8, the absolute acceleration of A is

Thus, Newton’s second law ΣF � maA becomes

(3/50)

We can identify the force sum ΣF, as always, by a complete free-body
diagram. This diagram will appear the same to an observer in x-y-z or to
one in X-Y-Z as long as only the real forces acting on the particle are rep-
resented. We can conclude immediately that Newton’s second law does
not hold with respect to an accelerating system since ΣF � marel.

D’Alembert’s Principle
The particle acceleration we measure from a fixed set of axes X-Y-Z,

Fig. 3/26a, is its absolute acceleration a. In this case the familiar rela-
tion ΣF � ma applies. When we observe the particle from a moving

ΣF � m(aB � arel)

aA � aB � arel

r̈
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rB BO

Figure 3/25

y

x

Y

X
ΣF

a

m

(a) (b)

m

– ma

Y

X
ΣF

a

Figure 3/26

c03.qxd  2/9/12  7:40 PM  Page 244



system x-y-z attached to the particle, Fig. 3/26b, the particle necessar-
ily appears to be at rest or in equilibrium in x-y-z. Thus, the observer
who is accelerating with x-y-z concludes that a force �ma acts on the
particle to balance ΣF. This point of view, which allows the treatment
of a dynamics problem by the methods of statics, was an outgrowth of
the work of D’Alembert contained in his Traité de Dynamique pub-
lished in 1743.

This approach merely amounts to rewriting the equation of motion
as ΣF � ma � 0, which assumes the form of a zero force summation if
�ma is treated as a force. This fictitious force is known as the inertia
force, and the artificial state of equilibrium created is known as dynamic
equilibrium. The apparent transformation of a problem in dynamics to
one in statics has become known as D’Alembert’s principle.

Opinion differs concerning the original interpretation of D’Alem-
bert’s principle, but the principle in the form in which it is generally
known is regarded in this book as being mainly of historical interest. It
evolved when understanding and experience with dynamics were ex-
tremely limited and was a means of explaining dynamics in terms of the
principles of statics, which were more fully understood. This excuse for
using an artificial situation to describe a real one is no longer justified,
as today a wealth of knowledge and experience with dynamics strongly
supports the direct approach of thinking in terms of dynamics rather
than statics. It is somewhat difficult to understand the long persistence
in the acceptance of statics as a way of understanding dynamics, partic-
ularly in view of the continued search for the understanding and de-
scription of physical phenomena in their most direct form.

We cite only one simple example of the method known as D’Alem-
bert’s principle. The conical pendulum of mass m, Fig. 3/27a, is swinging
in a horizontal circle, with its radial line r having an angular velocity �. In
the straightforward application of the equation of motion ΣF � man in
the direction n of the acceleration, the free-body diagram in part b of the
figure shows that T sin � � mr�2. When we apply the equilibrium require-
ment in the y-direction, T cos � � mg � 0, we can find the unknowns T
and �. But if the reference axes are attached to the particle, the particle
will appear to be in equilibrium relative to these axes. Accordingly, the in-
ertia force �ma must be added, which amounts to visualizing the applica-
tion of mr�2 in the direction opposite to the acceleration, as shown in part
c of the figure. With this pseudo free-body diagram, a zero force summa-
tion in the n-direction gives T sin � � mr�2 � 0 which, of course, gives us
the same result as before.

We may conclude that no advantage results from this alternative
formulation. The authors recommend against using it since it intro-
duces no simplification and adds a nonexistent force to the diagram. In
the case of a particle moving in a circular path, this hypothetical inertia
force is known as the centrifugal force since it is directed away from the
center and is opposite to the direction of the acceleration. You are
urged to recognize that there is no actual centrifugal force acting on
the particle. The only actual force which may properly be called cen-
trifugal is the horizontal component of the tension T exerted by the
particle on the cord.
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Constant-Velocity, Nonrotating Systems
In discussing particle motion relative to moving reference systems,

we should note the special case where the reference system has a con-
stant velocity and no rotation. If the x-y-z axes of Fig. 3/25 have a con-
stant velocity, then aB � 0 and the acceleration of the particle is aA �

arel. Therefore, we may write Eq. 3/50 as

(3/51)

which tells us that Newton’s second law holds for measurements made
in a system moving with a constant velocity. Such a system is known as
an inertial system or as a Newtonian frame of reference. Observers in
the moving system and in the fixed system will also agree on the desig-
nation of the resultant force acting on the particle from their identical
free-body diagrams, provided they avoid the use of any so-called “inertia
forces.”

We will now examine the parallel question concerning the validity of
the work-energy equation and the impulse-momentum equation relative to
a constant-velocity, nonrotating system. Again, we take the x-y-z axes of
Fig. 3/25 to be moving with a constant velocity vB � relative to the fixed
axes X-Y-Z. The path of the particle A relative to x-y-z is governed by rrel

and is represented schematically in Fig. 3/28. The work done by ΣF rela-
tive to x-y-z is dUrel � . But ΣF � maA � marel since aB � 0. Also 

for the same reason that at ds � v dv in Art. 2/5 on
curvilinear motion. Thus, we have

We define the kinetic energy relative to x-y-z as Trel � so
that we now have

(3/52)

which shows that the work-energy equation holds for measurements
made relative to a constant-velocity, nonrotating system.

Relative to x-y-z, the impulse on the particle during time dt is 
ΣF dt � maA dt � marel dt. But marel dt � m dvrel � d(mvrel) so

We define the linear momentum of the particle relative to x-y-z as Grel �

mvrel, which gives us ΣF dt � dGrel. Dividing by dt and integrating give

(3/53)

Thus, the impulse-momentum equations for a fixed reference system
also hold for measurements made relative to a constant-velocity, nonro-
tating system.

Finally, we define the relative angular momentum of the parti-
cle about a point in x-y-z, such as the origin B, as the moment of the

ΣF � Ġrel   and   �  ΣF dt � �Grel

ΣF dt � d(mvrel)

dUrel � dTrel   or   Urel � �Trel

1
2 

mvrel 

2

dUrel � marel � drrel � mvrel dvrel � d(12 mvrel 

2)

arel � drrel � vrel � dvrel

ΣF � drrel

ṙB

ΣF � marel
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relative linear momentum. Thus, . The time derivative 
gives . The first term is nothing more
than vrel � mvrel � 0, and the second term becomes rrel � ΣF � ΣMB, the
sum of the moments about B of all forces on m. Thus, we have

(3/54)

which shows that the moment-angular momentum relation holds with
respect to a constant-velocity, nonrotating system.

Although the work-energy and impulse-momentum equations hold
relative to a system translating with a constant velocity, the individual
expressions for work, kinetic energy, and momentum differ between the
fixed and the moving systems. Thus,

Equations 3/51 through 3/54 are formal proof of the validity of the
Newtonian equations of kinetics in any constant-velocity, nonrotating
system. We might have surmised these conclusions from the fact that
ΣF � ma depends on acceleration and not velocity. We are also ready to
conclude that there is no experiment which can be conducted in and rel-
ative to a constant-velocity, nonrotating system (Newtonian frame of
reference) which discloses its absolute velocity. Any mechanical experi-
ment will achieve the same results in any Newtonian system.

 (G � mvA) � (Grel � mvrel)

 (T � 12 mvA 

2) � (Trel � 12 mvrel 

2)

 (dU � ΣF � drA) � (dUrel � ΣF � drrel)

ΣMB � (ḢB)rel

(ḢB)rel � ṙrel � Grel � rrel � Ġrel

(HB)rel � rrel � Grel
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Relative motion is a critical issue during aircraft-carrier landings.
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SAMPLE PROBLEM 3/32

A simple pendulum of mass m and length r is mounted on the flatcar, which
has a constant horizontal acceleration a0 as shown. If the pendulum is released
from rest relative to the flatcar at the position � � 0, determine the expression
for the tension T in the supporting light rod for any value of �. Also find T for 
� � �/2 and � � �.

Solution. We attach our moving x-y coordinate system to the translating car
with origin at O for convenience. Relative to this system, n- and t-coordinates are
the natural ones to use since the motion is circular within x-y. The acceleration
of m is given by the relative-acceleration equation

where arel is the acceleration which would be measured by an observer riding
with the car. He would measure an n-component equal to and a t-component
equal to . The three components of the absolute acceleration of m are shown
in the separate view.

First, we apply Newton’s second law to the t-direction and get

Integrating to obtain as a function of � yields

We now apply Newton’s second law to the n-direction, noting that the 
n-component of the absolute acceleration is � a0 cos �.

Ans.

For � � �/2 and � � �, we have

Ans.

Ans. T� � m[3g(0) � a0(2 � 3[�1])] � 5ma0

 T�/2 � m[3g(1) � a0(2 � 0)] � m(3g � 2a0)

 T � m[3g sin � � a0(2 � 3 cos �)]

 � m[2g sin � � 2a0(1 � cos �) � a0 cos �]

 [ΣFn � man]   T � mg sin � � m(r �̇ 2 � a0 cos �)

r �̇ 2

 �̇
2

2
 � 1

r
 [g sin � � a0(1 � cos �)]

 [ �̇  d �̇  � �̈  d�]   � �̇

0
 �̇  d �̇  � ��

0
 1
r
 ( g cos � � a0 sin �) d�

�̇

 r �̈  � g cos � � a0 sin �

 mg cos � � m(r �̈  � a0 sin �)[ΣFt � mat]

r �̈

r �̇ 2

a � a0 � arel

O

r
m

a0

θ

y

O x

a0

t

T

mg

Free-body
diagram

Acceleration
components

θ

θ

n r  2
·θ

r
··θ

Helpful Hints

� We choose the t-direction first since
the n-direction equation, which con-
tains the unknown T, will involve ,
which, in turn, is obtained from an
integration of .�̈

�̇ 2

� Be sure to recognize that 
may be obtained from v dv �

at ds by dividing by r2.
�̈  d�

�̇  d �̇  �
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SAMPLE PROBLEM 3/33

The flatcar moves with a constant speed v0 and carries a winch which pro-
duces a constant tension P in the cable attached to the small carriage. The car-
riage has a mass m and rolls freely on the horizontal surface starting from rest
relative to the flatcar at x � 0, at which instant X � x0 � b. Apply the work-
energy equation to the carriage, first, as an observer moving with the frame of
reference of the car and, second, as an observer on the ground. Show the compat-
ibility of the two expressions.

Solution. To the observer on the flatcar, the work done by P is

The change in kinetic energy relative to the car is

The work-energy equation for the moving observer becomes

To the observer on the ground, the work done by P is

The change in kinetic energy for the ground measurement is

The work-energy equation for the fixed observer gives

To reconcile this equation with that for the moving observer, we can make
the following substitutions:

Thus,

and

The work-energy equation for the fixed observer now becomes

which is merely Px � , as concluded by the moving observer. We see, there-
fore, that the difference between the two work-energy expressions is

U � Urel � T � Trel � mv0ẋ

1
2 mẋ2

Px � mv0ẋ � 12 mẋ2 � mv0ẋ

Ẋ 

2 � v0 

2 � (v0 

2 � ẋ2 � 2v0ẋ � v0 

2) � ẋ2 � 2v0ẋ

 � Px � mẍv0t � Px � mv0ẋ

 P(X � b) � Px � P(x0 � b) � Px � mẍ(x0 � b)

X � x0 � x,   Ẋ � v0 � ẋ,   Ẍ � ẍ

P(X � b) � 12 m(Ẋ2 � v0 

2)[U � �T]

�T � 12 m(Ẋ2 � v0 

2)

U � �X

b
 P dX � P(X � b)

Px � 12 mẋ2[Urel � �Trel]

�Trel � 12 m(ẋ2 � 0)

Urel � �x

0
 P dx � Px   for constant P

v0

m
P

x0 x
X

x0 x

x = 0

X

b

Helpful Hints

� The only coordinate which the mov-
ing observer can measure is x.

Article 3/14 Relative Motion 249

� To the ground observer, the initial
velocity of the carriage is v0, so its
initial kinetic energy is .1

2 

mv0 

2

� The symbol t stands for the time of
motion from x � 0 to x � x. The
displacement x0 � b of the carriage
is its velocity v0 times the time t or
x0 � b � v0t. Also, since the constant
acceleration times the time equals
the velocity change, .ẍt � ẋ

�

�

�
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3/301 The cart with attached x-y axes moves with an ab-
solute speed v � 2 m/s to the right. Simultaneously,
the light arm of length l � 0.5 m rotates about
point B of the cart with angular velocity � 2
rad/s. The mass of the sphere is m � 3 kg. Deter-
mine the following quantities for the sphere when 
� � 0: G, Grel, T, Trel, HO, where the sub-
script “rel” indicates measurement relative to the 
x-y axes. Point O is an inertially fixed point coinci-
dent with point B at the instant under consideration.

Problem 3/301

3/302 The aircraft carrier is moving at a constant speed
and launches a jet plane with a mass of 3 Mg in a
distance of 75 m along the deck by means of a
steam-driven catapult. If the plane leaves the deck
with a velocity of 240 km/h relative to the carrier
and if the jet thrust is constant at 22 kN during
takeoff, compute the constant force P exerted by
the catapult on the airplane during the 75-m travel
of the launch carriage.

Problem 3/302

75 m

v

θ

O, B
l

m

x

y

(HB)rel

�̇

PROBLEMS
Introductory Problems

3/299 If the spring of constant k is compressed a distance
� as indicated, calculate the acceleration arel of the
block of mass m1 relative to the frame of mass m2

upon release of the spring. The system is initially
stationary.

Problem 3/299

3/300 The flatbed truck is traveling at the constant speed
of 60 km/h up the 15-percent grade when the 100-
kg crate which it carries is given a shove which im-
parts to it an initial relative velocity � 3 m/s
toward the rear of the truck. If the crate slides a
distance x � 2 m measured on the truck bed before
coming to rest on the bed, compute the coefficient
of kinetic friction �k between the crate and the
truck bed.

Problem 3/300

60 km/h

15

100

x

ẋ

δk

m2 

m1 
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3/303 The 4000-lb van is driven from position A to posi-
tion B on the barge, which is towed at a constant
speed v0 � 10 mi/hr. The van starts from rest rela-
tive to the barge at A, accelerates to v � 15 mi/hr
relative to the barge over a distance of 80 ft, and
then stops with a deceleration of the same magni-
tude. Determine the magnitude of the net force F
between the tires of the van and the barge during
this maneuver.

Problem 3/303

Representative Problems

3/304 The launch catapult of the aircraft carrier gives the
7-Mg jet airplane a constant acceleration and
launches the airplane in a distance of 100 m mea-
sured along the angled takeoff ramp. The carrier is
moving at a steady speed vC � 16 m/s. If an ab-
solute aircraft speed of 90 m/s is desired for takeoff,
determine the net force F supplied by the catapult
and the aircraft engines.

Problem 3/304

3/305 The coefficients of friction between the flatbed of
the truck and crate are �s � 0.80 and �k � 0.70.
The coefficient of kinetic friction between the truck
tires and the road surface is 0.90. If the truck stops
from an initial speed of 15 m/s with maximum
braking (wheels skidding), determine where on the
bed the crate finally comes to rest or the velocity
vrel relative to the truck with which the crate
strikes the wall at the forward edge of the bed.

v0 = 10 mi/hr

v = 15 mi/hr
80′

A B

80′

vC

15°

Problem 3/305

3/306 A boy of mass m is standing initially at rest relative
to the moving walkway, which has a constant hori-
zontal speed u. He decides to accelerate his progress
and starts to walk from point A with a steadily in-
creasing speed and reaches point B with a speed 

� v relative to the walkway. During his accelera-
tion he generates an average horizontal force F
between his shoes and the walkway. Write the
work-energy equations for his absolute and relative
motions and explain the meaning of the term muv.

Problem 3/306

3/307 The block of mass m is attached to the frame by the
spring of stiffness k and moves horizontally with
negligible friction within the frame. The frame and
block are initially at rest with x � x0, the uncom-
pressed length of the spring. If the frame is given a
constant acceleration a0, determine the maximum
velocity � (vrel)max of the block relative to the
frame.

Problem 3/307

x

k
m

a0

ẋmax

ẋ

3.2 m

s

x

xA
A B

u
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3/310 Consider the system of Prob. 3/309 where the mass of
the ball is m � 10 kg and the length of the light rod is
l � 0.8 m. The ball–rod assembly is free to rotate
about a vertical axis through O. The carriage, rod,
and ball are initially at rest with � � 0 when the car-
riage is given a constant acceleration aO � 3 m/s2.
Write an expression for the tension T in the rod as a
function of � and calculate T for the position � � �/2.

3/311 A simple pendulum is placed on an elevator, which
accelerates upward as shown. If the pendulum is
displaced an amount �0 and released from rest rela-
tive to the elevator, find the tension T0 in the sup-
porting light rod when � � 0. Evaluate your result
for �0 � �/2.

Problem 3/311

3/312 A boy of mass m is standing initially at rest relative
to the moving walkway inclined at the angle � and
moving with a constant speed u. He decides to accel-
erate his progress and starts to walk from point A
with a steadily increasing speed and reaches point B
with a speed vr relative to the walkway. During his
acceleration he generates a constant average force F
tangent to the walkway between his shoes and the
walkway surface. Write the work-energy equations
for the motion between A and B for his absolute mo-
tion and his relative motion and explain the mean-
ing of the term muvr. If the boy weighs 150 lb and if
u � 2 ft/sec, s � 30 ft, and � � 10�, calculate the
power Prel developed by the boy as he reaches the
speed of 2.5 ft/sec relative to the walkway.

Problem 3/312

s

x
B

A

x0
u

uθ

O

θ l

m

a0

3/308 The slider A has a mass of 2 kg and moves with
negligible friction in the 30� slot in the vertical slid-
ing plate. What horizontal acceleration a0 should
be given to the plate so that the absolute accelera-
tion of the slider will be vertically down? What is
the value of the corresponding force R exerted on
the slider by the slot?

Problem 3/308

3/309 The ball A of mass 10 kg is attached to the light rod
of length l � 0.8 m. The mass of the carriage alone
is 250 kg, and it moves with an acceleration aO as
shown. If � 3 rad/s when � � 90�, find the kinetic
energy T of the system if the carriage has a velocity
of 0.8 m/s (a) in the direction of aO and (b) in the di-
rection opposite to aO. Treat the ball as a particle.

Problem 3/309

A
O

aO

θ

l

�̇

a0

A

30°
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3/313 A ball is released from rest relative to the elevator
at a distance h1 above the floor. The speed of the el-
evator at the time of ball release is v0. Determine
the bounce height h2 of the ball (a) if v0 is constant
and (b) if an upward elevator acceleration a � g/4
begins at the instant the ball is released. The coeffi-
cient of restitution for the impact is e.

Problem 3/313

3/314 The small slider A moves with negligible friction
down the tapered block, which moves to the right
with constant speed v � v0. Use the principle of
work-energy to determine the magnitude vA of the
absolute velocity of the slider as it passes point C if
it is released at point B with no velocity relative to
the block. Apply the equation, both as an observer
fixed to the block and as an observer fixed to the
ground, and reconcile the two relations.

h2

h1 v0

a =
g
–
4

Problem 3/314

3/315 When a particle is dropped from rest relative to the
surface of the earth at a latitude �, the initial ap-
parent acceleration is the relative acceleration due
to gravity grel. The absolute acceleration due to
gravity g is directed toward the center of the earth.
Derive an expression for grel in terms of g, R, �,
and �, where R is the radius of the earth treated as
a sphere and � is the constant angular velocity of
the earth about the polar axis considered fixed. (Al-
though axes x-y-z are attached to the earth and
hence rotate, we may use Eq. 3/50 as long as the
particle has no velocity relative to x-y-z). (Hint: Use
the first two terms of the binomial expansion for
the approximation.)

Problem 3/315

N

B

θ

y
x

ω

O R

aB

g

grelγ

l
B

A

C
θ

v
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Problem 3/316

θ

O

O

S

S
r

r

r

x

x

θt, 

θ , t

r

y

(a)

(b)

y

S

S

t

t

Elliptical
Orbit

Circular
Orbit

P
F

F

θ

m

m

x

x

3/316 The figure represents the space shuttle S, which is
(a) in a circular orbit about the earth and (b) in an
elliptical orbit where P is its perigee position. The
exploded views on the right represent the cabin
space with its x-axis oriented in the direction of the
orbit. The astronauts conduct an experiment by ap-
plying a known force F in the x-direction to a small
mass m. Explain why F � does or does not hold
in each case, where x is measured within the space-
craft. Assume that the shuttle is between perigee
and apogee in the elliptical orbit so that the orbital
speed is changing with time. Note that the t- and 
x-axes are tangent to the path, and the �-axis is
normal to the radial r-direction.

mẍ
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3/15 CHAPTER REVIEW

In Chapter 3 we have developed the three basic methods of solution to
problems in particle kinetics. This experience is central to the study of dy-
namics and lays the foundation for the subsequent study of rigid-body and
nonrigid-body dynamics. These three methods are summarized as follows:

1. Direct Application of Newton’s Second Law
First, we applied Newton’s second law ΣF � ma to determine the

instantaneous relation between forces and the acceleration they pro-
duce. With the background of Chapter 2 for identifying the kind of mo-
tion and with the aid of our familiar free-body diagram to be certain
that all forces are accounted for, we were able to solve a large variety of
problems using x-y, n-t, and r-� coordinates for plane-motion problems
and x-y-z, r-�-z, and R-�-
 coordinates for space problems.

2. Work-Energy Equations
Next, we integrated the basic equation of motion ΣF � ma with re-

spect to displacement and derived the scalar equations for work and en-
ergy. These equations enable us to relate the initial and final velocities to
the work done during an interval by forces external to our defined system.
We expanded this approach to include potential energy, both elastic and
gravitational. With these tools we discovered that the energy approach is
especially valuable for conservative systems, that is, systems wherein the
loss of energy due to friction or other forms of dissipation is negligible.

3. Impulse-Momentum Equations
Finally, we rewrote Newton’s second law in the form of force equals

time rate of change of linear momentum and moment equals time rate
of change of angular momentum. Then we integrated these relations
with respect to time and derived the impulse and momentum equations.
These equations were then applied to motion intervals where the forces
were functions of time. We also investigated the interactions between
particles under conditions where the linear momentum is conserved and
where the angular momentum is conserved.

In the final section of Chapter 3, we employed these three basic
methods in specific application areas as follows:

1. We noted that the impulse-momentum method is convenient in de-
veloping the relations governing particle impacts.

2. We observed that the direct application of Newton’s second law en-
ables us to determine the trajectory properties of a particle under
central-force attraction.

3. Finally, we saw that all three basic methods may be applied to parti-
cle motion relative to a translating frame of reference.

Successful solution of problems in particle kinetics depends on
knowledge of the prerequisite particle kinematics. Furthermore, the
principles of particle kinetics are required to analyze particle systems
and rigid bodies, which are covered in the remainder of Dynamics.
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3/320 Collar A is free to slide with negligible friction on
the circular guide mounted in the vertical frame.
Determine the angle assumed by the collar if the
frame is given a constant horizontal acceleration a
to the right.

Problem 3/320

3/321 The position of the small 0.5-kg blocks in the
smooth radial slots in the disk which rotates about
a vertical axis at O is used to activate a speed-
control mechanism. If each block moves from r
150 mm to r 175 mm while the speed of the disk
changes slowly from 300 rev/min to 400 rev/min,
design the spring by calculating the spring con-
stant k of each spring. The springs are attached to
the inner ends of the slots and to the blocks.

Problem 3/321

k
k

r

r

= θω

O

�

�

A

a

r θ

�

REVIEW PROBLEMS

3/317 The 4-kg slider is released from rest in position A
and slides down the vertical-plane guide. If the
maximum compression of the spring is observed to
be 40 mm, determine the work Uƒ done by friction.

Problem 3/317

3/318 The crate is at rest at point A when it is nudged
down the incline. If the coefficient of kinetic fric-
tion between the crate and the incline is 0.30 from
A to B and 0.22 from B to C, determine its speeds
at points B and C.

Problem 3/318

3/319 An 88-kg sprinter starts from rest and reaches his
maximum speed of 11 m/s in 2.5 s with uniform ac-
celeration. What is his power output when his
speed is 5 m/s? Comment on the conditions stated
in this problem.

A

C
B

7 m

7 m

s = 0.28μ

k = 0.22μ

s = 0.40μ

k = 0.30μ

20°

10°

0.6 m 4 kg

k = 20 kN/m

A
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3/322 The simple 2-kg pendulum is released from rest in
the horizontal position. As it reaches the bottom
position, the cord wraps around the smooth fixed
pin at B and continues in the smaller arc in the
vertical plane. Calculate the magnitude of the
force R supported by the pin at B when the pendu-
lum passes the position 30 .

Problem 3/322

3/323 For the elliptical orbit of a spacecraft around the
earth, determine the speed vA at point A which re-
sults in a perigee altitude at B of 200 km. What is
the eccentricity e of the orbit?

Problem 3/323

A

B

vA

600 km

200 km

θ

800
mm

400
mm

2 kg

A

B

90°

���

3/324 The spring of stiffness k is compressed and sud-
denly released, sending the particle of mass m slid-
ing along the track. Determine the minimum
spring compression for which the particle will
not lose contact with the loop-the-loop track. The
sliding surface is smooth except for the rough por-
tion of length s equal to R, where the coefficient of
kinetic friction is µk.

Problem 3/324

3/325 The last two appearances of Comet Halley were in
1910 and 1986. The distance of its closest approach
to the sun averages about one-half of the distance
between the earth and the sun. Determine its max-
imum distance from the sun. Neglect the gravita-
tional effects of the planets.

3/326 A small sphere of mass m is connected by a string
to a swivel at O and moves in a circle of radius r on
the smooth plane inclined at an angle with the
horizontal. If the sphere has a velocity u at the top
position A, determine the tension in the string as
the sphere passes the 90 position B and the bot-
tom position C.

Problem 3/326

θ

r m

u

A

C

O

B

�

�

m
k

δ

R

s = R

B

A

Rough area 
kμ

�
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3/329 A 3600-lb car is traveling with a speed of 60 mi/hr
as it approaches point A. Beginning at A, it decel-
erates uniformly to a speed of 25 mi/hr as it passes
point C of the horizontal and unbanked ramp.
Determine the total horizontal force F exerted by
the road on the car just after it passes point B.

Problem 3/329

3/330 After release from rest at B, the 2-lb cylindrical
plug A slides down the smooth path and embeds it-
self in the 4-lb block C. Determine the velocity v of
the block and embedded plug immediately after
engagement and find the maximum deflection x of
the spring. Neglect any friction under block C.
What fraction n of the original energy of the sys-
tem is lost?

Problem 3/330

B

A

C k = 80 lb/ft

6′

200′

A B

C

300′

3/327 The quarter-circular hollow tube of circular cross
section starts from rest at time t 0 and rotates
about point O in a horizontal plane with a con-
stant counterclockwise angular acceleration 2
rad/s2. At what time t will the 0.5-kg particle P slip
relative to the tube? The coefficient of static fric-
tion between the particle and the tube is µs 0.80.

Problem 3/327

3/328 A person rolls a small ball with speed u along the
floor from point A. If x 3R, determine the re-
quired speed u so that the ball returns to A after
rolling on the circular surface in the vertical plane
from B to C and becoming a projectile at C. What
is the minimum value of x for which the game
could be played if contact must be maintained to
point C? Neglect friction.

Problem 3/328

R

C

u

xA B

�

0.75 m

O

P

60°

··θ

�

��̈

�
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3/331 The pickup truck is used to hoist the 40-kg bale of
hay as shown. If the truck has reached a constant
velocity v 5 m/s when x 12 m, compute the
corresponding tension T in the rope.

Problem 3/331

3/332 A slider C has a speed of 3 m/s as it passes point A
of the guide, which lies in a horizontal plane. The
coefficient of kinetic friction between the slider
and the guide is Compute the tangential
deceleration at of the slider just after it passes
point A if (a) the slider hole and guide cross section
are both circular and (b) the slider hole and guide
cross section are both square. In case (b), the sides
of the square are vertical and horizontal. Assume a
slight clearance between the slider and the guide.

Problem 3/332

0.6 m

A C

(a) (b)

�k � 0.60.

16 m

x

v

��

3/333 The frame of mass 6m is initially at rest. A particle
of mass m is attached to the end of the light rod,
which pivots freely at A. If the rod is released from
rest in the horizontal position shown, determine
the velocity vrel of the particle with respect to the
frame when the rod is vertical.

Problem 3/333

3/334 The object of the pinball-type game is to project the
particle so that it enters the hole at E. When 
the spring is compressed and suddenly released,
the particle is projected along the track, which is
smooth except for the rough portion between
points B and C, where the coefficient of kinetic
friction is The particle becomes a projectile at
point D. Determine the correct spring compression

so that the particle enters the hole at E. State
any necessary conditions relating the lengths d
and .�

�

�k.

6m

mlA
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3/337 The 3-kg block A is released from rest in the 
position shown and subsequently strikes the 1-kg
cart B. If the coefficient of restitution for the colli-
sion is e 0.7, determine the maximum displace-
ment s of cart B beyond point C. Neglect friction.

Problem 3/337

3/338 One of the functions of the space shuttle is to re-
lease communications satellites at low altitude. A
booster rocket is fired at B, placing the satellite in
an elliptical transfer orbit, the apogee of which is at
the altitude necessary for a geosynchronous orbit.
(A geosynchronous orbit is an equatorial-plane cir-
cular orbit whose period is equal to the absolute ro-
tational period of the earth. A satellite in such an
orbit appears to remain stationary to an earth-fixed
observer.) A second booster rocket is then fired at
C, and the final circular orbit is achieved. On one of
the early space-shuttle missions, a 1500-lb satellite
was released from the shuttle at B, where h1 170
miles. The booster rocket was to fire for t 90 sec-
onds, forming a transfer orbit with h2 22,300
miles. The rocket failed during its burn. Radar ob-
servations determined the apogee altitude of the
transfer orbit to be only 700 miles. Determine the
actual time which the rocket motor operated be-
fore failure. Assume negligible mass change during
the booster rocket firing.

Problem 3/338

t�

�

�

�

0.6 m

1.8 m

3 kg

1 kg

60°
30°

A

B
C

s

�

60�3/335 The 2-lb piece of putty is dropped 6 ft onto the 
18-lb block initially at rest on the two springs, each
with a stiffness k 3 lb/in. Calculate the addi-
tional deflection of the springs due to the impact
of the putty, which adheres to the block upon 
contact.

Problem 3/335

3/336 A baseball pitcher delivers a fastball with a near-
horizontal velocity of 90 mi/hr. The batter hits a
home run over the center-field fence. The 5-oz 
ball travels a horizontal distance of 350 ft, with an
initial velocity in the 45 direction shown. Deter-
mine the magnitude Fav of the average force ex-
erted by the bat on the ball during the 0.005
seconds of contact between the bat and the ball.
Neglect air resistance during the flight of the ball.

Problem 3/336

45°

90 mi/hr

v

x

Bat

y

�

6′

18 lb

k = 3 lb/in.

2 lb

k k

δ

�

�
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3/339 The system is released from rest while in the posi-
tion shown. If m1 0.5 kg, m2 4 kg, d 0.5 m,
and , determine the speeds of both bodies
just after the block leaves the incline (before strik-
ing the horizontal surface). Neglect all friction.

Problem 3/339

3/340 The retarding forces which act on the race car are
the drag force FD and a nonaerodynamic force FR.
The drag force is where CD is the
drag coefficient, is the air density, v is the car
speed, and S 30 ft2 is the projected frontal area of
the car. The nonaerodynamic force FR is constant at
200 lb. With its sheet metal in good condition, the
race car has a drag coefficient CD 0.3 and it has a
corresponding top speed v 200 mi/hr. After a
minor collision, the damaged front-end sheet metal
causes the drag coefficient to be CD 0.4. What is
the corresponding top speed of the race car?

Problem 3/340

v�
��

�

�

�

�

FD � CD(1
2 �v2)S,

θ

m1 d

m2

� � 20�

���

3/341 Extensive wind-tunnel and coast-down studies of a
2000-lb automobile reveal the aerodynamic drag
force FD and the total nonaerodynamic rolling re-
sistance force FR to vary with speed as shown in
the plot. Determine (a) the power P required for
steady speeds of 30 mi/hr and 60 mi/hr and (b) the
time t and the distance s required for the car to
coast down to a speed of 5 mi/hr from an initial
speed of 60 mi/hr. Assume a straight, level road
and no wind.

Problem 3/341

3/342 The hollow tube rotates with a constant angular
velocity about a horizontal axis through end O.
At time t 0 the tube passes the vertical position 

0, at which instant the small ball of mass m is
released with r essentially zero. Determine r as a
function of .

Problem 3/342

θ
m

r

O

0ω

�

��

�

�0

60 

40 

20 

0
0 20 40 60 80

F
or

ce
, l

b

Speed v, mi/hr

FR (linear)

FD (parabolic)
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3/345 The system of Prob. 3/130 is repeated here. The
two 0.2-kg sliders are connected by a light rigid bar
of length L 0.5 m. If the system is released from
rest in the position shown with the spring un-
stretched, plot the speeds of A and B as functions
of the displacement of B (with zero being the ini-
tial position). The 0.14-MPa air pressure acting on
one 500-mm2 side of slider A is constant. The mo-
tion occurs in a vertical plane. Neglect friction.
State the maximum values of vA and vB and the 
position of B at which each occurs.

Problem 3/345

3/346 The square plate is at rest in position A at time t 0
and subsequently translates in a vertical circle 
according to kt2, where k 1 rad/s2, the dis-
placement is in radians, and time t is in seconds.
A small 0.4-kg instrument P is temporarily fixed to
the plate with adhesive. Plot the required shear
force F vs. time t for . If the adhesive
fails when the shear force F reaches 30 N, deter-
mine the time t and angular position when fail-
ure occurs.

Problem 3/346

P

A

r = 1.5 m

O

θ

�

0 � t � 5 s

�

���

�

B

A

60° 30°
k = 1.2 kN/m

L

�

*Computer-Oriented Problems

3/343 The bowl-shaped device from Prob. 3/70 rotates
about a vertical axis with a constant angular veloc-
ity 6 rad/s. The value of r is 0.2 m. Determine
the range of the position angle for which a sta-
tionary value is possible if the coefficient of static
friction between the particle and the surface is 

0.20.

Problem 3/343

3/344 If the vertical frame starts from rest with a con-
stant acceleration a and the smooth sliding collar
A is initially at rest in the bottom position 0,
plot as a function of θ and find the maximum po-
sition angle max reached by the collar. Use the val-
ues a g/2 and r 0.3 m.

Problem 3/344

A

a

r θ

��

�

�̇

��

ω

r
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��s
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3/347 The system of Prob. 3/171 is repeated here. The
system is released from rest with . Deter-
mine and plot as a function of . Determine the
maximum magnitude of in the ensuing motion
and the value of at which it occurs. Also find the
minimum value of . Use the values m1 1 kg, m2

1.25 kg, and b 0.4 m. Neglect friction and the
mass of bar OB, and treat the body B as a particle.

Problem 3/347

3/348 The 26-in. drum rotates about a horizontal axis
with a constant angular velocity 7.5 rad/sec.
The small block A has no motion relative to the
drum surface as it passes the bottom position 0.
Determine the coefficient of static friction 
which would result in block slippage at an angular
position ; plot your expression for 
Determine the minimum required coefficient value

min which would allow the block to remain fixed
relative to the drum throughout a full revolution.
For a friction coefficient slightly less than min, at
what angular position would slippage occur?

Problem 3/348

θ

O
A

r = 13″

Ω = 7.5 rad/sec
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��
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��̇

� 90��
3/349 A 20-lb sphere A is held at the 60 angle shown and

released. It strikes the 10-lb sphere B. The coeffi-
cient of restitution for this collision is e 0.75.
Sphere B is attached to the end of a light rod that
pivots freely about point O. If the spring of con-
stant k 100 lb/ft is initially unstretched, deter-
mine the maximum rotation angle of the light
rod after impact.

Problem 3/349

3/350 A particle of mass m is introduced with zero veloc-
ity at r 0 when 0. It slides outward through
the smooth hollow tube, which is driven at the con-
stant angular velocity 0 about a horizontal axis
through point O. If the length l of the tube is 1 m
and 0 0.5 rad/s, determine the time t after re-
lease and the angular displacement for which the
particle exits the tube.

Problem 3/350

θ
m

r

O

0ω

�

��

�

���
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3/353 The simple pendulum of length l 0.5 m has an
angular velocity 0.2 rad/s at time t 0 when 

0. Derive an integral expression for the time t
required to reach an arbitrary angle . Plot t vs. 
for and state the value of t for 

Problem 3/353

3/354 A 1.8-lb particle P is given an initial velocity v0

1 ft/sec at the position 0 and subsequently
slides along the circular path of radius r 1.5 ft. 
A drag force of magnitude kv acts in the direction
opposite to the velocity. If the drag parameter k 
0.2 lb-sec/ft, determine and plot the particle speed
v and the normal force N exerted on the particle by
the surface as functions of over the range

. Determine the maximum values of v
and N and the values of at which these maxima
occur. Neglect friction between the particle and
the circular surface.

Problem 3/354

θ
r

P

O

�

0 � � � 90�

�

�

�

��

�

θ

l

θ0 = 0.2 rad/s
·θ

� � �2.0 � � � �2

��

��

���̇0

�3/351 The tennis player practices by hitting the ball
against the wall at A. The ball bounces off the
court surface at B and then up to its maximum
height at C. For the conditions shown in the figure,
plot the location of point C for values of the coeffi-
cient of restitution in the range 0.5 e 0.9. (The
value of e is common to both A and B.) For what
value of e is x 0 at point C, and what is the corre-
sponding value of y?

Problem 3/351

3/352 The system of Prob. 3/154 is repeated here. If the
0.75-kg particle is released from rest when in the
position 0, where the spring is unstretched, de-
termine and plot its speed v as a function of over
the range where max is the value of 
at which the system momentarily comes to rest.
The value of the spring modulus k is 100 N/m, and
friction can be neglected. State the maximum
speed and the angle at which it occurs.

Problem 3/352
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The forces of interaction between the rotating blades of this Harrier jumpjet engine and the air which
passes over them is a subject which is introduced in this chapter.
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4/1 Introduction
In the previous two chapters, we have applied the principles of dy-

namics to the motion of a particle. Although we focused primarily on the
kinetics of a single particle in Chapter 3, we mentioned the motion of
two particles, considered together as a system, when we discussed work-
energy and impulse-momentum.

Our next major step in the development of dynamics is to extend
these principles, which we applied to a single particle, to describe the
motion of a general system of particles. This extension will unify the re-
maining topics of dynamics and enable us to treat the motion of both
rigid bodies and nonrigid systems.

Recall that a rigid body is a solid system of particles wherein the
distances between particles remain essentially unchanged. The overall
motions found with machines, land and air vehicles, rockets and space-
craft, and many moving structures provide examples of rigid-body prob-
lems. On the other hand, we may need to study the time-dependent
changes in the shape of a nonrigid, but solid, body due to elastic or in-
elastic deformations. Another example of a nonrigid body is a defined
mass of liquid or gaseous particles flowing at a specified rate. Examples
are the air and fuel flowing through the turbine of an aircraft engine,
the burned gases issuing from the nozzle of a rocket motor, or the water
passing through a rotary pump.

4/1 Introduction

4/2 Generalized Newton’s Second Law

4/3 Work-Energy

4/4 Impulse-Momentum

4/5 Conservation of Energy and Momentum

4/6 Steady Mass Flow

4/7 Variable Mass

4/8 Chapter Review

CHAPTER OUTLINE

4Kinetics of Systems 
of Particles
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Although we can extend the equations for single-particle motion to
a general system of particles without much difficulty, it is difficult to un-
derstand the generality and significance of these extended principles
without considerable problem experience. For this reason, you should
frequently review the general results obtained in the following articles
during the remainder of your study of dynamics. In this way, you will
understand how these broader principles unify dynamics.

mi

F1

f1

F2

f2

F3

f3

mi

ρi

ri

O

G

System boundary

r–

Figure 4/1

4/2 Generalized Newton’s Second Law
We now extend Newton’s second law of motion to cover a general

mass system which we model by considering n mass particles bounded
by a closed surface in space, Fig. 4/1. This bounding envelope, for exam-
ple, may be the exterior surface of a given rigid body, the bounding sur-
face of an arbitrary portion of the body, the exterior surface of a rocket
containing both rigid and flowing particles, or a particular volume of
fluid particles. In each case, the system to be considered is the mass
within the envelope, and that mass must be clearly defined and isolated.

Figure 4/1 shows a representative particle of mass mi of the system
isolated with forces F1, F2, F3, . . . acting on mi from sources external to
the envelope, and forces f1, f2, f3, . . . acting on mi from sources internal
to the system boundary. The external forces are due to contact with ex-
ternal bodies or to external gravitational, electric, or magnetic effects.
The internal forces are forces of reaction with other mass particles
within the boundary. The particle of mass mi is located by its position
vector ri measured from the nonaccelerating origin O of a Newtonian
set of reference axes.* The center of mass G of the isolated system of
particles is located by the position vector which, from the definition of
the mass center as covered in statics, is given by

where the total system mass is m � Σmi. The summation sign Σ repre-
sents the summation over all n particles.

Newton’s second law, Eq. 3/3, when applied to mi gives

where is the acceleration of mi. A similar equation may be written for
each of the particles of the system. If these equations written for all par-
ticles of the system are added together, the result is

The term ΣF then becomes the vector sum of all forces acting on all
particles of the isolated system from sources external to the system, and

ΣF � Σf � Σmir̈i

r̈i

F1 � F2 � F3 � � � �  � f1 � f2 � f3 � � � �  � mir̈i

Σn
i�1

mr � Σmiri

r

KEY CONCEPTS

*It was shown in Art. 3/14 that any nonrotating and nonaccelerating set of axes constitutes
a Newtonian reference system in which the principles of Newtonian mechanics are valid.
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Article 4/3 Work-Energy 269

*If m is a function of time, a more complex situation develops; this situation is discussed in
Art. 4/7 on variable mass.

Σf becomes the vector sum of all forces on all particles produced by the
internal actions and reactions between particles. This last sum is identi-
cally zero since all internal forces occur in pairs of equal and opposite
actions and reactions. By differentiating the equation defining twice
with time, we have � where m has a zero time derivative as
long as mass is not entering or leaving the system.* Substitution into
the summation of the equations of motion gives

or (4/1)

where is the acceleration of the center of mass of the system.
Equation 4/1 is the generalized Newton’s second law of motion for a

mass system and is called the equation of motion of m. The equation
states that the resultant of the external forces on any system of masses
equals the total mass of the system times the acceleration of the center
of mass. This law expresses the so-called principle of motion of the mass
center.

Observe that is the acceleration of the mathematical point which
represents instantaneously the position of the mass center for the given
n particles. For a nonrigid body, this acceleration need not represent the
acceleration of any particular particle. Note also that Eq. 4/1 holds for
each instant of time and is therefore an instantaneous relationship.
Equation 4/1 for the mass system had to be proved, as it cannot be in-
ferred directly from Eq. 3/3 for a single particle.

Equation 4/1 may be expressed in component form using x-y-z coor-
dinates or whatever coordinate system is most convenient for the prob-
lem at hand. Thus,

(4/1a)

Although Eq. 4/1, as a vector equation, requires that the accelera-
tion vector have the same direction as the resultant external force ΣF,
it does not follow that ΣF necessarily passes through G. In general, in
fact, ΣF does not pass through G, as will be shown later.

4/3 Work-Energy
In Art. 3/6 we developed the work-energy relation for a single parti-

cle, and we noted that it applies to a system of two joined particles.
Now consider the general system of Fig. 4/1, where the work-energy re-
lation for the representative particle of mass mi is (U1-2)i � �Ti. Here
(U1-2)i is the work done on mi during an interval of motion by all forces
F1 � F2 � F3 � applied from sources external to the system and by
all forces f1 � f2 � f3 � applied from sources internal to the system.
The kinetic energy of mi is Ti � , where vi is the magnitude of the
particle velocity vi � .ṙi

1
2 

mivi 

2
� � �

� � �

a

ΣFx � max   ΣFy � may   ΣFz � maz

a

r̈a

F � maΣF � mr̈

r̈iΣmimr̈
r
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Work-Energy Relation
For the entire system, the sum of the work-energy equations writ-

ten for all particles is Σ(U1-2)i � Σ�Ti, which may be represented by the
same expressions as Eqs. 3/15 and 3/15a of Art. 3/6, namely,

(4/2)

where U1-2 � Σ(U1-2)i, the work done by all forces, external and internal,
on all particles, and �T is the change in the total kinetic energy T � ΣTi

of the system.
For a rigid body or a system of rigid bodies joined by ideal friction-

less connections, no net work is done by the internal interacting forces
or moments in the connections. We see that the work done by all pairs
of internal forces, labeled here as fi and �fi, at a typical connection, Fig.
4/2, in the system is zero since their points of application have identical
displacement components while the forces are equal but opposite. For
this situation U1-2 becomes the work done on the system by the external
forces only.

For a nonrigid mechanical system which includes elastic members
capable of storing energy, a part of the work done by the external forces
goes into changing the internal elastic potential energy Ve. Also, if the
work done by the gravity forces is excluded from the work term and is
accounted for instead by the changes in gravitational potential energy
Vg, then we may equate the work done on the system during an in-
terval of motion to the change �E in the total mechanical energy of the
system. Thus, � �E or

(4/3)

or

(4/3a)

which are the same as Eqs. 3/21 and 3/21a. Here, as in Chapter 3, V �

Vg � Ve represents the total potential energy.

Kinetic Energy Expression
We now examine the expression T � for the kinetic energy

of the mass system in more detail. By our principle of relative motion
discussed in Art. 2/8, we may write the velocity of the representative
particle as

where is the velocity of the mass center G and is the velocity of mi

with respect to a translating reference frame moving with the mass
�̇ iv

vi � v � �̇ i

Σ 

1
2 mivi 

2

T1 � V1 � U�1-2 � T2 � V2

U�1-2 � �T � �V

U�1-2

U�1-2

U1-2 � �T   or   T1 � U1-2 � T2

270 Chapter 4 Kinetics of Systems of Particles

fi

–fi

Figure 4/2
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center G. We recall the identity and write the kinetic energy
of the system as

Because �i is measured from the mass center, Σmi�i � 0 and the third

term is Σ(mi�i) � 0. Also � � .

Therefore, the total kinetic energy becomes

(4/4)

This equation expresses the fact that the total kinetic energy of a mass
system equals the kinetic energy of mass-center translation of the sys-
tem as a whole plus the kinetic energy due to motion of all particles rel-
ative to the mass center.

4/4 Impulse-Momentum
We now develop the concepts of momentum and impulse as applied

to a system of particles.

Linear Momentum
From our definition in Art. 3/8, the linear momentum of the repre-

sentative particle of the system depicted in Fig. 4/1 is Gi � mivi where
the velocity of mi is vi � .

The linear momentum of the system is defined as the vector sum of
the linear momenta of all of its particles, or G � Σmivi. By substituting
the relative-velocity relation vi � and noting again that Σmi�i �

m � 0, we obtain

or

(4/5)

Thus, the linear momentum of any system of constant mass is the prod-
uct of the mass and the velocity of its center of mass.

The time derivative of G is � , which by Eq. 4/1 is the resul-
tant external force acting on the system. Thus, we have

(4/6)ΣF � Ġ

 mamv̇

G � mv

 � v Σmi � d
dt

 (0)

 G � Σmi(v � �̇ i) � Σmiv � d
dt

 Σmi �i

�
v � �̇ i

ṙi

T � 12 mv 

2 � Σ 

1
2 mi� �̇ i �2

 12 

mv 

21
2 v 

2 ΣmiΣ 

1
2 miv 

2v � Σmi �̇ i � v �
d
dt

 � Σ 

1
2 miv 

2 � Σ 

1
2 mi� �̇ i �2 � Σmiv � �̇ i

 T � Σ 

1
2 mivi � vi � Σ 

1
2 mi(v � �̇ i) � (v � �̇ i)

vi 

2 � vi � vi
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which has the same form as Eq. 3/25 for a single particle. Equation 4/6
states that the resultant of the external forces on any mass system
equals the time rate of change of the linear momentum of the system. It
is an alternative form of the generalized second law of motion, Eq. 4/1.
As was noted at the end of the last article, ΣF, in general, does not pass
through the mass center G. In deriving Eq. 4/6, we differentiated with
respect to time and assumed that the total mass is constant. Thus, the
equation does not apply to systems whose mass changes with time.

Angular Momentum
We now determine the angular momentum of our general mass

system about the fixed point O, about the mass center G, and about an
arbitrary point P, shown in Fig. 4/3, which may have an acceleration
aP � .

About a Fixed Point O. The angular momentum of the mass system
about the point O, fixed in the Newtonian reference system, is defined
as the vector sum of the moments of the linear momenta about O of all
particles of the system and is

The time derivative of the vector product is � �

. The first summation vanishes since the cross product of two
parallel vectors and mivi is zero. The second summation is Σ(ri � miai) �
Σ(ri � Fi), which is the vector sum of the moments about O of all forces
acting on all particles of the system. This moment sum ΣMO represents
only the moments of forces external to the system, since the internal
forces cancel one another and their moments add up to zero. Thus, the
moment sum is

(4/7)

which has the same form as Eq. 3/31 for a single particle.

ΣMO � ḢO

ṙi

Σ(ri � miv̇i)
Σ(ṙi � mivi)ḢO

HO � Σ(ri � mivi)

r̈P
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Equation 4/7 states that the resultant vector moment about any
fixed point of all external forces on any system of mass equals the time
rate of change of angular momentum of the system about the fixed
point. As in the linear-momentum case, Eq. 4/7 does not apply if the
total mass of the system is changing with time.

About the Mass Center G. The angular momentum of the mass
system about the mass center G is the sum of the moments of the linear
momenta about G of all particles and is

(4/8)

We may write the absolute velocity as � so that HG becomes

The first term on the right side of this equation may be rewritten as
, which is zero because Σmi�i � 0 by definition of the mass

center. Thus, we have

(4/8a)

The expression of Eq. 4/8 is called the absolute angular momentum
because the absolute velocity is used. The expression of Eq. 4/8a is
called the relative angular momentum because the relative velocity is
used. With the mass center G as a reference, the absolute and relative
angular momenta are seen to be identical. We will see that this identity
does not hold for an arbitrary reference point P; there is no distinction
for a fixed reference point O.

Differentiating Eq. 4/8 with respect to time gives

The first summation is expanded as . The first

term may be rewritten as , which is zero

from the definition of the mass center. The second term is zero because
the cross product of parallel vectors is zero. With Fi representing the
sum of all external forces acting on mi and fi the sum of all internal
forces acting on mi, the second summation by Newton’s second law be-
comes Σ�i � (Fi � fi) � Σ�i � Fi � ΣMG, the sum of all external mo-
ments about point G. Recall that the sum of all internal moments Σ�i � fi

is zero. Thus, we are left with

(4/9)

where we may use either the absolute or the relative angular momentum.
Equations 4/7 and 4/9 are among the most powerful of the govern-

ing equations in dynamics and apply to any defined system of constant
mass—rigid or nonrigid.

ΣMG � ḢG

� d
dt

 Σmi�i� �ṙ� Σmi �̇ i�ṙ

� mi �̇ i� Σ �̇ i� miṙΣ �̇ i

� Σ�i � mir̈i � �̇ i)mi(ṙḢG � Σ �̇ i �

�̇ i

ṙi

HG � Σ�i � mi �̇ i

� Σmi �i�ṙ

 � Σ�i � mi �̇ i � �̇ i) � Σ�i � miṙHG � Σ�i � mi(ṙ

�̇ i)(ṙṙi

HG � Σ�i � miṙi
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About an Arbitrary Point P. The angular momentum about an ar-
bitrary point P (which may have an acceleration ) will now be ex-
pressed with the notation of Fig. 4/3. Thus,

The first term may be written as . The
second term is Σ�i � � HG. Thus, rearranging gives

(4/10)

Equation 4/10 states that the absolute angular momentum about any
point P equals the angular momentum about G plus the moment about P
of the linear momentum of the system considered concentrated at G.

We now make use of the principle of moments developed in our
study of statics where we represented a force system by a resultant force
through any point, such as G, and a corresponding couple. Figure 4/4
represents the resultants of the external forces acting on the system ex-
pressed in terms of the resultant force ΣF through G and the corre-
sponding couple ΣMG. We see that the sum of the moments about P of
all forces external to the system must equal the moment of their resul-
tants. Therefore, we may write

which, by Eqs. 4/9 and 4/6, becomes

(4/11)

Equation 4/11 enables us to write the moment equation about any con-
venient moment center P and is easily visualized with the aid of Fig. 4/4.
This equation forms a rigorous basis for much of our treatment of pla-
nar rigid-body kinetics in Chapter 6.

We may also develop similar momentum relationships by using the
momentum relative to P. Thus, from Fig. 4/3

where is the velocity of mi relative to P. With the substitution
and we may write

The first summation is . The second summation is 

and the third summation is where both are zero by defini-
tion of the mass center. The fourth summation is (HG)rel. Rearranging
gives us

(4/12)(HP)rel � (HG)rel � � � mvrel

� Σmi �i��̇

� � d
dt

 Σmi �i� � mvrel

� Σ�i � mi �̇ i� Σ� � mi �̇ i � Σ�i � mi�̇(HP)rel � Σ� � mi�̇

� �̇ i�̇�̇ �i  ���i  � � � �i

�̇ �i

(HP)rel � Σ��i  � mi �̇ �i

ΣMP � ḢG � � � ma

ΣMP � ΣMG � � � ΣF

mv

HP � HG � � � mv

miṙi

� � Σmiṙi � � � Σmivi � � � mv

HP � Σ��i  � miṙi � Σ(� � �i) � miṙi

r̈P
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G

P

ΣF = ma–

–ρ

ΣMG =     G
·

H

Figure 4/4
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where (HG)rel is the same as HG (see Eqs. 4/8 and 4/8a). Note the simi-
larity of Eqs. 4/12 and 4/10.

The moment equation about P may now be expressed in terms of
the angular momentum relative to P. We differentiate the definition
(HP)rel � with time and make the substitution �

to obtain

The first summation is identically zero, and the second summation is the
sum ΣMP of the moments of all external forces about P. The third summa-
tion becomes . Sub-
stituting and rearranging terms give

(4/13)

The form of Eq. 4/13 is convenient when a point P whose acceleration is
known is used as a moment center. The equation reduces to the simpler
form

4/5 Conservation of Energy and Momentum
Under certain common conditions, there is no net change in the

total mechanical energy of a system during an interval of motion. Under
other conditions, there is no net change in the momentum of a system.
These conditions are treated separately as follows.

Conservation of Energy
A mass system is said to be conservative if it does not lose energy by

virtue of internal friction forces which do negative work or by virtue of in-
elastic members which dissipate energy upon cycling. If no work is done
on a conservative system during an interval of motion by external forces
(other than gravity or other potential forces), then none of the energy of
the system is lost. For this case, and we may write Eq. 4/3 as

(4/14)

or

(4/14a)

which expresses the law of conservation of dynamical energy. The total
energy E � T � V is a constant, so that E1 � E2. This law holds only in
the ideal case where internal kinetic friction is sufficiently small to be
neglected.

T1 � V1 � T2 � V2

�T � �V � 0

U�1-2 � 0

ΣMP � (ḢP)rel � � � maP

Σ��i  � miaP � �aP � Σmi��i  � �aP � m� � � � maP

(Ḣp)rel � Σ �̇ �i  � mi �̇ �i  � Σ��i  � mir̈i � Σ��i  � mir̈P

� �̈ �ir̈Pr̈iΣ��i  � mi �̇ �i

Article 4/5 Conservation of Energy and Momentum 275

c04.qxd  2/8/12  7:33 PM  Page 275



Conservation of Momentum
If, for a certain interval of time, the resultant external force ΣF act-

ing on a conservative or nonconservative mass system is zero, Eq. 4/6 re-
quires that , so that during this interval

(4/15)

which expresses the principle of conservation of linear momentum.
Thus, in the absence of an external impulse, the linear momentum of a
system remains unchanged.

Similarly, if the resultant moment about a fixed point O or about
the mass center G of all external forces on any mass system is zero, Eq.
4/7 or 4/9 requires, respectively, that

(4/16)

These relations express the principle of conservation of angular momen-
tum for a general mass system in the absence of an angular impulse.
Thus, if there is no angular impulse about a fixed point (or about the
mass center), the angular momentum of the system about the fixed
point (or about the mass center) remains unchanged. Either equation
may hold without the other.

We proved in Art. 3/14 that the basic laws of Newtonian mechanics
hold for measurements made relative to a set of axes which translate
with a constant velocity. Thus, Eqs. 4/1 through 4/16 are valid provided
all quantities are expressed relative to the translating axes.

Equations 4/1 through 4/16 are among the most important of the basic
derived laws of mechanics. In this chapter we have derived these laws for
the most general system of constant mass to establish the generality of
these laws. Common applications of these laws are specific mass systems
such as rigid and nonrigid solids and certain fluid systems, which are dis-
cussed in the following articles. Study these laws carefully and compare
them with their more restricted forms encountered earlier in Chapter 3.

(HO)1 � (HO)2   or   (HG)1 � (HG)2

G1 � G2

Ġ � 0

276 Chapter 4 Kinetics of Systems of Particles

The principles of particle-system kinetics form the foundation
for the study of the forces associated with the water-spraying
equipment of these firefighting boats at the site of the Deep-
water Horizon fire in the Gulf of Mexico.
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�

�

�
� Using Eq. 4/10 with P replaced by O

is more expedient than using Eq. 4/8
or 4/8a. The m in Eq. 4/10 is the
total mass, which is 10m in this ex-
ample. The quantity in Eq. 4/10,
with P replaced by O, is 

� We again recognize that here
and that the mass of this system is
10m.

r� � 

r.
�

� Because of the simple geometry, 
the cross products are performed by
inspection.

Helpful Hints

� All summation signs are from i = 1
to 4, and all are performed in order
of the mass numbers in the given
figure.
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SAMPLE PROBLEM 4/1

The system of four particles has the indicated particle
masses, positions, velocities, and external forces. Determine , ,

, T, G, , , , and .

Solution. The position of the mass center of the system is

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

For we use Eq. 4/10:

Ans.

For we could use Eq. 4/9 or Eq. 4/11 with P replaced by O. Using the latter,
we have 

Ans.� Fd(0.2i � 0.8j � 1.4k)

10m� F
10m�(i � j)H

.
G � Fd(j � 2k) � d(�0.4i � 0.2j � 0.2k) �

[H
.

G � �MO � � � ma]

H
.

G,

10mv(0.3i � 0.3j � 0.3k) � mvd(�2i � 4.2j � 2.2k)

HG � mvd(�2i � 6j � 4k) � d(�0.4i � 0.2j � 0.2k) �

[HG � HO � � � mv ]

HG,

H
.

O � �MO � �2dFk � Fdj � Fd( j � 2k)

� mvd(�2i � 6j � 4k)

HO � �ri � mi 

 r.i � 0 � 2mvdi � 3mv(2d)j � 4mvdk

G � (�mi)r
.
 �  10m(v)(0.3i � 0.3j � 0.3k) � mv(3i � 3j �3k)

T � � 12 mivi
2 � 1

2
 [m(�2v)2 � 2mv2 � 3mv2 � 4mv2] � 11

2
mv2

r̈ � �F
�mi

 � 
Fi � Fj

10m
 � F

10m
 (i � j)

� v(0.3i � 0.3j � 0.3k)

� 
m(�vi � vj) � 2m(vj) � 3m(vk) � 4m(vi)

10m
r 

.
 � 

�miṙi

�mi

� d(�0.4i � 0.2j � 0.2k)

m(2di � 2dj) � 2m(dk) � 3m(�2di) � 4m(dj)
m � 2m � 3m � 4m

r  � 
�miri

�mi
 � 

ḢGHGḢOHOr̈
ṙr

z

x

y

O
F

F

1
4

3
2

v

v

v

d

d
2d

2d

4m

3m2m

2v
2d

m

�
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SAMPLE PROBLEM 4/2

Each of the three balls has a mass m and is welded to the rigid equiangular
frame of negligible mass. The assembly rests on a smooth horizontal surface. If a
force F is suddenly applied to one bar as shown, determine (a) the acceleration of
point O and (b) the angular acceleration of the frame.

Solution. (a) Point O is the mass center of the system of the three balls, so
that its acceleration is given by Eq. 4/1.

Ans.

(b) We determine from the moment principle, Eq. 4/9. To find HG we note
that the velocity of each ball relative to the mass center O as measured in the
nonrotating axes x-y is , where is the common angular velocity of the
spokes. The angular momentum of the system about O is the sum of the mo-
ments of the relative linear momenta as shown by Eq. 4/8, so it is expressed by

Equation 4/9 now gives

Ans.

SAMPLE PROBLEM 4/3

Consider the same conditions as for Sample Problem 4/2, except that the
spokes are freely hinged at O and so do not constitute a rigid system. Explain the
difference between the two problems.

Solution. The generalized Newton’s second law holds for any mass system, so
that the acceleration of the mass center G is the same as with Sample Problem
4/1, namely,

Ans.

Although G coincides with O at the instant represented, the motion of the hinge
O is not the same as the motion of G since O will not remain the center of mass
as the angles between the spokes change.

Both ΣMG and have the same values for the two problems at the instant
represented. However, the angular motions of the spokes in this problem are all
different and are not easily determined.

ḢG

a � F
3m

 i

a

Fb � d
dt

(3mr2 �̇ ) � 3mr2 �̈   so   �̈  � Fb
3mr2

[ΣMG � ḢG]

HO � HG � 3(mr �̇ )r � 3mr2 �̇

�̇r �̇

�̈

Fi � 3ma   a � aO � F
3m

 i[ΣF � ma ]

�̈ F

y

x

rr

r

m m

m

120°

120°
b

O

Weld

Grel

O

·θ

·θ

·θ

F

y

x

rr

r

m m

m

120°

120°
b

O

Hinge

�

�

�

Helpful Hint

� This present system could be dismem-
bered and the motion equations writ-
ten for each of the parts, with the
unknowns eliminated one by one. Or
a more sophisticated method using
the equations of Lagrange could be
employed. (See the first author’s Dy-
namics, 2nd Edition SI Version, 1975,
for a discussion of this approach.)

� Although is initially zero, we need
the expression for HO � HG in order
to get . We observe also that is
independent of the motion of O.

�̈ḢG

�̇

Helpful Hints

� We note that the result depends only
on the magnitude and direction of F
and not on b, which locates the line
of action of F.
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SAMPLE PROBLEM 4/4

A shell with a mass of 20 kg is fired from point O, with a velocity u � 300
m/s in the vertical x-z plane at the inclination shown. When it reaches the top
of its trajectory at P, it explodes into three fragments A, B, and C. Immedi-
ately after the explosion, fragment A is observed to rise vertically a distance
of 500 m above P, and fragment B is seen to have a horizontal velocity vB and
eventually lands at point Q. When recovered, the masses of the fragments A,
B, and C are found to be 5, 9, and 6 kg, respectively. Calculate the velocity
which fragment C has immediately after the explosion. Neglect atmospheric
resistance.

Solution. From our knowledge of projectile motion, the time required for
the shell to reach P and its vertical rise are

The velocity of A has the magnitude

With no z-component of velocity initially, fragment B requires 24.5 s to return to
the ground. Thus, its horizontal velocity, which remains constant, is

Since the force of the explosion is internal to the system of the shell and its
three fragments, the linear momentum of the system remains unchanged during
the explosion. Thus,

Ans. vC � �(427)2 � (173.4)2 � (82.5)2 � 468 m/s

 vC � 427i � 173.4j � 82.5k m/s

 6vC � 2560i � 1040j � 495k

 20(300)(35)i � 5(99.0k) � 9(163.5)(i cos 45� � j sin 45�) � 6vC

 mv � mAvA � mBvB � mCvC[G1 � G2]

vB � s/t � 4000/24.5 � 163.5 m/s

vA � �2ghA � �2(9.81)(500) � 99.0 m/s

 h � 
uz 

2

2g
 � 

[(300)(4/5)]2

2(9.81)
 � 2940 m

 t � uz /g � 300(4/5)/9.81 � 24.5 s

z

y

x

h

45°
4000 m

Q

O

3

4u 
= 

30
0 

m
/s

C

B
A

vB

vC

vA

P

�

�

Helpful Hints

� The velocity v of the shell at the top
of its trajectory is, of course, the con-
stant horizontal component of its ini-
tial velocity u, which becomes u(3/5).

� We note that the mass center of the
three fragments while still in flight
continues to follow the same trajec-
tory which the shell would have fol-
lowed if it had not exploded.
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SAMPLE PROBLEM 4/5

The 32.2-lb carriage A moves horizontally in its guide with a speed of 4
ft/sec and carries two assemblies of balls and light rods which rotate about a
shaft at O in the carriage. Each of the four balls weighs 3.22 lb. The assembly on
the front face rotates counterclockwise at a speed of 80 rev/min, and the assem-
bly on the back side rotates clockwise at a speed of 100 rev/min. For the entire
system, calculate (a) the kinetic energy T, (b) the magnitude G of the linear mo-
mentum, and (c) the magnitude HO of the angular momentum about point O.

Solution. (a) Kinetic energy. The velocities of the balls with respect to O are

The kinetic energy of the system is given by Eq. 4/4. The translational part is

The rotational part of the kinetic energy depends on the squares of the relative
velocities and is

The total kinetic energy is

Ans.

(b) Linear momentum. The linear momentum of the system by Eq. 4/5 is
the total mass times vO, the velocity of the center of mass. Thus,

Ans.

(c) Angular momentum about O. The angular momentum about O is
due to the moments of the linear momenta of the balls. Taking counterclockwise
as positive, we have

Ans. � 3.77 � 2.09 � 1.676 ft- lb-sec

 HO � �2�3.22
32.2��18

12�(12.57)�
(1,2)

 � �2�3.22
32.2��12

12�(10.47)�
(3,4)

 HO � Σ�ri � mivi �

G � �32.2
32.2

 � 4 

3.22
32.2� (4) � 5.6 lb-sec[G � mv]

T � 12 mv 

2 � Σ 

1
2 mi� �̇ i �2 � 11.20 � 26.8 � 38.0 ft- lb

 � 15.80 � 10.96 � 26.8 ft- lb

 Σ 

1
2 mi� �̇ i �2 � 2�1

2
 3.22
32.2

 (12.57)2�
(1,2)

 � 2�1
2

 3.22
32.2

 (10.47)2�
(3,4)

1
2 mv 

2 � 1
2

 �32.2
32.2

 � 4 3.22
32.2�(42) � 11.20 ft- lb

 (vrel)3,4 � 12
12

 
100(2�)

60
 � 10.47 ft/sec

(vrel)1,2 � 18
12

 
80(2�)

60
 � 12.57 ft/sec [� �̇ i � � vrel � r �̇ ]

4 ft/sec
18″

18″

1

2

4

3

12″

12″
A

O

100 rev/min

80 rev/min

�

�

�

�
� Contrary to the case of kinetic en-

ergy where the direction of rotation
was immaterial, angular momentum
is a vector quantity and the direction
of rotation must be accounted for.

� There is a temptation to overlook
the contribution of the balls since
their linear momenta relative to O
in each pair are in opposite direc-
tions and cancel. However, each ball
also has a velocity component and
hence a momentum component .miv

v

� Note that the direction of rotation,
clockwise or counterclockwise, makes
no difference in the calculation of ki-
netic energy, which depends on the
square of the velocity.

Helpful Hints

� Note that the mass m is the total
mass, carriage plus the four balls, and
that is the velocity of the mass cen-
ter O, which is the carriage velocity.

v
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Article 4/5 Problems 281

4/5 The two 2-kg balls are initially at rest on the horizon-
tal surface when a vertical force F � 60 N is applied
to the junction of the attached wires as shown. Com-
pute the vertical component ay of the initial accelera-
tion of each ball by considering the system as a whole.

Problem 4/5

4/6 Three monkeys A, B, and C weighing 20, 25, and 15 lb,
respectively, are climbing up and down the rope
suspended from D. At the instant represented, A is
descending the rope with an acceleration of 5 ft/sec2,
and C is pulling himself up with an acceleration of 
3 ft/sec2. Monkey B is climbing up with a constant
speed of 2 ft/sec. Treat the rope and monkeys as a
complete system and calculate the tension T in the
rope at D.

Problem 4/6

A

B

C

D

F

y

2 kg2 kg

θθ

PROBLEMS
Introductory Problems

4/1 The system of three particles has the indicated parti-
cle masses, velocities, and external forces. Determine
, , , T, , and for this two-dimensional system.

Problem 4/1

4/2 For the particle system of Prob. 4/1, determine 
and .

4/3 The system of three particles has the indicated parti-
cle masses, velocities, and external forces. Determine

, T, HO, and for this three–dimensional
system.

Problem 4/3

4/4 For the particle system of Prob. 4/3, determine HG

and .ḢG

F

v

2v

3v

1.5d

2d

d

4m

2m

m

O

z

y
x

ḢOr̈ṙ ,r, 

H
.

G

HG

y

O
x

F
2v

v

2d (stationary)

4m

m

2m

d

ḢOHOr̈ṙr
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F F F F

Hinge
Hinge

Weld
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4/7 The three small spheres are connected by the cords
and spring and are supported by a smooth horizontal
surface. If a force F � 6.4 N is applied to one of the
cords, find the acceleration of the mass center of the
spheres for the instant depicted.

Problem 4/7

4/8 The two spheres, each of mass m, are connected by
the spring and hinged bars of negligible mass. The
spheres are free to slide in the smooth guides up the
incline �. Determine the acceleration aC of the center
C of the spring.

Problem 4/8

4/9 Calculate the acceleration of the center of mass of the
system of the four 10-kg cylinders. Neglect friction
and the mass of the pulleys and cables.

Problem 4/9

10
kg

10
kg

500 N 250 N

10
kg

10
kg

C
m

m

L

F

b

θ

F

0.5 kg

0.8 kg

0.3 kg

a

4/10 The four systems slide on a smooth horizontal sur-
face and have the same mass m. The configurations
of mass in the two pairs are identical. What can be
said about the acceleration of the mass center for
each system? Explain any difference in the accelera-
tions of the members.

Problem 4/10

4/11 The total linear momentum of a system of five parti-
cles at time t � 2.2 s is given by G2.2 � 3.4i � 2.6j �

4.6k . At time t � 2.4 s, the linear momentum
has changed to G2.4 � 3.7i � 2.2j � 4.9k .
Calculate the magnitude F of the time average of the
resultant of the external forces acting on the system
during the interval.

4/12 The two small spheres, each of mass m, are rigidly
connected by a rod of negligible mass and are released
from rest in the position shown and slide down the
smooth circular guide in the vertical plane. Determine
their common velocity v as they reach the horizontal
dashed position. Also find the force R between sphere
1 and the supporting surface an instant before the
sphere reaches the bottom position A.

Problem 4/12

45°

2 1

2

1

y

x

m

m

r

A

kg � m/s
kg � m/s
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Representative Problems

4/13 The two small spheres, each of mass m, and their
connecting rod of negligible mass are rotating about
their mass center G with an angular velocity . At
the same instant the mass center has a velocity v in
the x-direction. Determine the angular momentum

of the assembly at the instant when G has coor-
dinates x and y.

Problem 4/13

4/14 Each of the five connected particles has a mass of
0.6 kg, with G as the center of mass of the system.
At a certain instant the angular momentum of the
system about G is 1.20k , and the x- and 
y-components of the velocity of G are 3 m/s and 
4 m/s, respectively. Calculate the angular momen-
tum HO of the system about O for this instant.

Problem 4/14

4/15 The three identical bars, each weighing 8 lb, are con-
nected by the two freely pinned links of negligible
weight and are resting on a smooth horizontal sur-
face. Calculate the initial acceleration a of the center
of the middle bar when the 10-lb force is applied to
the connecting link as shown.

y

x
O

G

0.4 m

0.3 m

kg � m2/s

ω

y

O
x

m

m

r

r
G

v

HO

�
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Problem 4/15

4/16 A centrifuge consists of four cylindrical containers,
each of mass m, at a radial distance r from the rota-
tion axis. Determine the time t required to bring the
centrifuge to an angular velocity � from rest under a
constant torque M applied to the shaft. The diame-
ter of each container is small compared with r, and
the mass of the shaft and supporting arms is small
compared with m.

Problem 4/16

4/17 The three small spheres are welded to the light
rigid frame which is rotating in a horizontal plane
about a vertical axis through O with an angular
velocity � 20 rad/s. If a couple MO � 30 is
applied to the frame for 5 seconds, compute the
new angular velocity .

Problem 4/17

0.4 m

0.5 m

0.6 m

3 kg

3 kg

4 kg O

MO = 30 N·m

θ·

�̇ �

N � m�̇

m

M

r

10 lb
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4/20 The 300-kg and 400-kg mine cars are rolling in oppo-
site directions along the horizontal track with the
respective speeds of 0.6 m/s and 0.3 m/s. Upon im-
pact the cars become coupled together. Just prior to
impact, a 100-kg boulder leaves the delivery chute
with a velocity of 1.2 m/s in the direction shown and
lands in the 300-kg car. Calculate the velocity v of
the system after the boulder has come to rest rela-
tive to the car. Would the final velocity be the same
if the cars were coupled before the boulder dropped?

Problem 4/20

4/21 The three freight cars are rolling along the horizon-
tal track with the velocities shown. After the impacts
occur, the three cars become coupled together and
move with a common velocity v. The weights of the
loaded cars A, B, and C are 130,000, 100,000, and
150,000 lb, respectively. Determine v and calculate
the percentage loss n of energy of the system due to
coupling.

Problem 4/21

4/22 The man of mass m1 and the woman of mass m2 are
standing on opposite ends of the platform of mass m0

which moves with negligible friction and is initially
at rest with s � 0. The man and woman begin to ap-
proach each other. Derive an expression for the dis-
placement s of the platform when the two meet in
terms of the displacement x1 of the man relative to
the platform.

2 mi/hr

A B C

1 mi/hr 1.5 mi/hr

30°

100 kg

1.2 m/s

0.6 m/s 0.3 m/s

300 kg 400 kg

284 Chapter 4 Kinetics of Systems of Particles

4/18 The four 3-kg balls are rigidly mounted to the rotat-
ing frame and shaft, which are initially rotating
freely about the vertical z-axis at the angular rate of
20 rad/s clockwise when viewed from above. If a con-
stant torque M � 30 is applied to the shaft, cal-
culate the time t to reverse the direction of rotation
and reach an angular velocity � 20 rad/s in the
same sense as M.

Problem 4/18

4/19 Billiard ball A is moving in the y-direction with a ve-
locity of 2 m/s when it strikes ball B of identical size
and mass initially at rest. Following the impact, the
balls are observed to move in the directions shown.
Calculate the velocities vA and vB which the balls
have immediately after the impact. Treat the balls
as particles and neglect any friction forces acting on
the balls compared with the force of impact.

Problem 4/19

vA

vB
y

B

2 m/s

A

30°

50°

M

z

3 kg

3 kg 0.3 m
0.3 m

0.5 m

0.5 m

3 kg

3 kg

θ·

�̇

N � m
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Problem 4/22

4/23 The woman A, the captain B, and the sailor C weigh
120, 180, and 160 lb, respectively, and are sitting in
the 300-lb skiff which is gliding through the water
with a speed of 1 knot. If the three people change
their positions as shown in the second figure, find
the distance x from the skiff to the position where it
would have been if the people had not moved. Ne-
glect any resistance to motion afforded by the water.
Does the sequence or timing of the change in posi-
tions affect the final result?

Problem 4/23

4/24 The two spheres are rigidly connected to the rod
of negligible mass and are initially at rest on the
smooth horizontal surface. A force F is suddenly ap-
plied to one sphere in the y-direction and imparts an
impulse of 10 during a negligibly short period of
time. As the spheres pass the dashed position, calcu-
late the velocity of each one.

Problem 4/24

1.5 kg

1.5 kg
600 mm

F
x

ω

vy

y

N � s

1 knot
A B C

ACB

6′ 8′
2′

4′ 6′
x

4′

A

s

l

x2

m0

m1m2

x1
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4/25 The three small spheres, each of mass m, are se-
cured to the light rods to form a rigid unit supported
in the vertical plane by the smooth circular surface.
The force of constant magnitude P is applied perpen-
dicular to one rod at its midpoint. If the unit starts
from rest at � � 0, determine (a) the minimum force
Pmin which will bring the unit to rest at � � 60� and
(b) the common velocity v of spheres 1 and 2 when 
� � 60� if P � 2Pmin.

Problem 4/25

4/26 The three small steel balls, each of mass 2.75 kg, are
connected by the hinged links of negligible mass and
equal length. They are released from rest in the posi-
tions shown and slide down the quarter-circular
guide in the vertical plane. When the upper sphere
reaches the bottom position, the spheres have a hori-
zontal velocity of 1.560 m/s. Calculate the energy
loss �Q due to friction and the total impulse Ix on
the system of three spheres during this interval.

Problem 4/26

x

360
mm

60°

2

1

P
60°r/2

r/2
θ
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4/29 The cars of a roller-coaster ride have a speed of 30
km/h as they pass over the top of the circular track.
Neglect any friction and calculate their speed v when
they reach the horizontal bottom position. At the top
position, the radius of the circular path of their mass
centers is 18 m, and all six cars have the same mass.

Problem 4/29

4/30 The two small spheres, each of mass m, are connected
by a cord of length 2b (measured to the centers of the
spheres) and are initially at rest on a smooth horizon-
tal surface. A projectile of mass m0 with a velocity v0

perpendicular to the cord hits it in the middle, caus-
ing the deflection shown in part b of the figure. Deter-
mine the velocity v of m0 as the two spheres near
contact, with � approaching 90� as indicated in part c
of the figure. Also find for this condition.

Problem 4/30

m

m0 m0

v0

v

m

b b

b

b

θ

θ
bb

(a) (b) (c)

m

m

m

m

�̇

30 km/h

v
18 m

18 m
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4/27 Two steel balls, each of mass m, are welded to a light
rod of length L and negligible mass and are initially
at rest on a smooth horizontal surface. A horizontal
force of magnitude F is suddenly applied to the rod
as shown. Determine (a) the instantaneous accelera-
tion of the mass center G and (b) the correspond-
ing rate at which the angular velocity of the
assembly about G is changing with time.

Problem 4/27

4/28 The small car, which has a mass of 20 kg, rolls freely
on the horizontal track and carries the 5-kg sphere
mounted on the light rotating rod with r � 0.4 m. A
geared motor drive maintains a constant angular
speed � 4 rad/s of the rod. If the car has a velocity
v � 0.6 m/s when � � 0, calculate v when � � 60�.
Neglect the mass of the wheels and any friction.

Problem 4/28

O

v

θ

θ

r

�̇

b

F

x

m

m
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2

L––
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4/31 The carriage of mass 2m is free to roll along the hor-
izontal rails and carries the two spheres, each of
mass m, mounted on rods of length l and negligible
mass. The shaft to which the rods are secured is
mounted in the carriage and is free to rotate. If the
system is released from rest with the rods in the ver-
tical position where � � 0, determine the velocity vx

of the carriage and the angular velocity of the rods
for the instant when � � 180�. Treat the carriage
and the spheres as particles and neglect any friction.

Problem 4/31

4/32 The 50,000-lb flatcar supports a 15,000-lb vehicle on
a 5� ramp built on the flatcar. If the vehicle is re-
leased from rest with the flatcar also at rest, deter-
mine the velocity v of the flatcar when the vehicle
has rolled s � 40 ft down the ramp just before hit-
ting the stop at B. Neglect all friction and treat the
vehicle and the flatcar as particles.

Problem 4/32

s

A

B 5°

x

l 

l 

m

2m

m

θ

θ

�̇
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4/33 A flexible nonextensible rope of mass � per unit
length and length equal to 1/4 of the circumference
of the fixed drum of radius r is released from rest in
the horizontal dashed position, with end B secured
to the top of the drum. When the rope finally comes
to rest with end A at C, determine the loss of energy
�Q of the system. What becomes of the lost energy?

Problem 4/33

4/34 A horizontal bar of mass and small diameter is
suspended by two wires of length l from a carriage of
mass which is free to roll along the horizontal
rails. If the bar and carriage are released from rest
with the wires making an angle with the vertical,
determine the velocity of the bar relative to the
carriage and the velocity of the carriage at the in-
stant when . Neglect all friction and treat the
carriage and the bar as particles in the vertical plane
of motion.

Problem 4/34

θ

m1

m2

l

� � 0
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vb/c

�

m2

m1

A

C

B
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�

�
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4/6 Steady Mass Flow
The momentum relation developed in Art. 4/4 for a general system

of mass provides us with a direct means of analyzing the action of mass
flow where a change of momentum occurs. The dynamics of mass flow is
of great importance in the description of fluid machinery of all types in-
cluding turbines, pumps, nozzles, air-breathing jet engines, and rockets.
The treatment of mass flow in this article is not intended to take the
place of a study of fluid mechanics, but merely to present the basic prin-
ciples and equations of momentum which find important use in fluid
mechanics and in the general flow of mass whether the form be liquid,
gaseous, or granular.

One of the most important cases of mass flow occurs during steady-
flow conditions where the rate at which mass enters a given volume
equals the rate at which mass leaves the same volume. The volume in
question may be enclosed by a rigid container, fixed or moving, such as
the nozzle of a jet aircraft or rocket, the space between blades in a gas
turbine, the volume within the casing of a centrifugal pump, or the vol-
ume within the bend of a pipe through which a fluid is flowing at a
steady rate. The design of such fluid machines depends on the analysis
of the forces and moments associated with the corresponding momen-
tum changes of the flowing mass.

Analysis of Flow Through a Rigid Container
Consider a rigid container, shown in section in Fig. 4/5a, into which

mass flows in a steady stream at the rate m� through the entrance sec-
tion of area A1. Mass leaves the container through the exit section of
area A2 at the same rate, so that there is no accumulation or depletion
of the total mass within the container during the period of observation.
The velocity of the entering stream is v1 normal to A1 and that of the
leaving stream is v2 normal to A2. If �1 and �2 are the respective densi-
ties of the two streams, conservation of mass requires that

(4/17)

To describe the forces which act, we isolate either the mass of fluid
within the container or the entire container and the fluid within it. We
would use the first approach if the forces between the container and the
fluid were to be described, and we would adopt the second approach
when the forces external to the container are desired.

The latter situation is our primary interest, in which case, the sys-
tem isolated consists of the fixed structure of the container and the fluid
within it at a particular instant of time. This isolation is described by a
free-body diagram of the mass within a closed volume defined by the ex-
terior surface of the container and the entrance and exit surfaces. We
must account for all forces applied externally to this system, and in Fig.
4/5a the vector sum of this external force system is denoted by ΣF. In-
cluded in ΣF are

1. the forces exerted on the container at points of its attachment to
other structures, including attachments at A1 and A2, if present,

�1A1v1 � �2 A2v2 � m�
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d2

d1
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A1

A2
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ΣF
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(b)

Δm
Time t

ΣF Δm

Time t + Δt

Figure 4/5
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2. the forces acting on the fluid within the container at A1 and A2 due to
any static pressure which may exist in the fluid at these positions, and

3. the weight of the fluid and structure if appreciable.

The resultant ΣF of all of these external forces must equal , the time
rate of change of the linear momentum of the isolated system. This
statement follows from Eq. 4/6, which was developed in Art. 4/4 for any
systems of constant mass, rigid or nonrigid.

Incremental Analysis
The expression for may be obtained by an incremental analysis.

Figure 4/5b illustrates the system at time t when the system mass is
that of the container, the mass within it, and an increment �m about to
enter during time �t. At time t � �t the same total mass is that of the
container, the mass within it, and an equal increment �m which leaves
the container in time �t. The linear momentum of the container and
mass within it between the two sections A1 and A2 remains unchanged
during �t so that the change in momentum of the system in time �t is

Division by �t and passage to the limit yield � m��v, where

Thus, by Eq. 4/6

(4/18)

Equation 4/18 establishes the relation between the resultant force on a
steady-flow system and the corresponding mass flow rate and vector ve-
locity increment.*

Alternatively, we may note that the time rate of change of linear
momentum is the vector difference between the rate at which linear mo-
mentum leaves the system and the rate at which linear momentum en-
ters the system. Thus, we may write � m�v2 � m�v1 � m��v, which
agrees with the foregoing result.

We can now see one of the powerful applications of our general
force-momentum equation which we derived for any mass system. Our
system here includes a body which is rigid (the structural container for
the mass stream) and particles which are in motion (the flow of mass).
By defining the boundary of the system, the mass within which is con-
stant for steady-flow conditions, we are able to utilize the generality of
Eq. 4/6. However, we must be very careful to account for all external

Ġ

ΣF � m��v

m� � lim
�tl0

 ��m
�t � � dm

dt

Ġ

�G � (�m)v2 � (�m)v1 � �m(v2 � v1)

Ġ

Ġ

*We must be careful not to interpret dm/dt as the time derivative of the mass of the isolated
system. That derivative is zero since the system mass is constant for a steady-flow process.
To help avoid confusion, the symbol m� rather than dm/dt is used to represent the steady
mass flow rate.

The jet exhaust of this VTOL aircraft
can be vectored downward for verti-
cal takeoffs and landings.
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forces acting on the system, and they become clear if our free-body dia-
gram is correct.

Angular Momentum in Steady-Flow Systems
A similar formulation is obtained for the case of angular momentum

in steady-flow systems. The resultant moment of all external forces
about some fixed point O on or off the system, Fig. 4/5a, equals the time
rate of change of angular momentum of the system about O. This fact
was established in Eq. 4/7 which, for the case of steady flow in a single
plane, becomes

(4/19)

When the velocities of the incoming and outgoing flows are not in the
same plane, the equation may be written in vector form as

(4/19a)

where d1 and d2 are the position vectors to the centers of A1 and A2

from the fixed reference O. In both relations, the mass center G may be
used alternatively as a moment center by virtue of Eq. 4/9.

Equations 4/18 and 4/19a are very simple relations which find im-
portant use in describing relatively complex fluid actions. Note that
these equations relate external forces to the resultant changes in mo-
mentum and are independent of the flow path and momentum changes
internal to the system.

The foregoing analysis may also be applied to systems which move
with constant velocity by noting that the basic relations ΣF � and
ΣMO � or ΣMG � apply to systems moving with constant veloc-
ity as discussed in Arts. 3/12 and 4/4. The only restriction is that the
mass within the system remain constant with respect to time.

Three examples of the analysis of steady mass flow are given in the
following sample problems, which illustrate the application of the prin-
ciples embodied in Eqs. 4/18 and 4/19a.

ḢGḢO

Ġ

ΣMO � m�(d2 � v2 � d1 � v1)

ΣMO � m�(v2 d2 � v1d1)
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The principles of steady mass flow are critical to
the design of this hovercraft.
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SAMPLE PROBLEM 4/6

The smooth vane shown diverts the open stream of fluid of cross-sectional
area A, mass density �, and velocity v. (a) Determine the force components R and
F required to hold the vane in a fixed position. (b) Find the forces when the vane
is given a constant velocity u less than v and in the direction of v.

Solution. Part (a). The free-body diagram of the vane together with the fluid
portion undergoing the momentum change is shown. The momentum equation
may be applied to the isolated system for the change in motion in both the x- and
y-directions. With the vane stationary, the magnitude of the exit velocity v�
equals that of the entering velocity v with fluid friction neglected. The changes
in the velocity components are then

and

The mass rate of flow is m� � �Av, and substitution into Eq. 4/18 gives

Ans.

Ans.

Part (b). In the case of the moving vane, the final velocity v� of the fluid upon
exit is the vector sum of the velocity u of the vane plus the velocity of the fluid
relative to the vane v � u. This combination is shown in the velocity diagram to
the right of the figure for the exit conditions. The x-component of v� is the sum of
the components of its two parts, so � (v � u) cos � � u. The change in x-velocity
of the stream is

The y-component of v� is (v � u) sin �, so that the change in the y-velocity of the
stream is �vy � (v � u) sin �.

The mass rate of flow m� is the mass undergoing momentum change per
unit of time. This rate is the mass flowing over the vane per unit time and not
the rate of issuance from the nozzle. Thus,

The impulse-momentum principle of Eq. 4/18 applied in the positive coordi-
nate directions gives

Ans.

Ans.   R � �A(v � u)2 sin �[ΣFy � m��vy]

 F � �A(v � u)2(1 � cos �)

 �F � �A(v � u)[�(v � u)( 1 � cos �)][ΣFx � m��vx]

m� � �A(v � u)

�vx � (v � u) cos � � (u � v) � �(v � u)(1 � cos �)

v�x

 R � �Av2 sin �

 R � �Av[v sin �][ΣFy � m��vy]

 F � �Av2(1 � cos �)

 �F � �Av[�v(1 � cos �)][ΣFx � m��vx]

�vy � v� sin � � 0 � v sin �

�vx � v� cos � � v � �v(1 � cos �)

v

θ

y

x
F

R

Fixed vane

v′

v

θ

y

F x
u

R

Moving vane

θ
v – uv – u

u

v′

�

�

Helpful Hints

� Be careful with algebraic signs when
using Eq. 4/18. The change in vx is
the final value minus the initial
value measured in the positive x-
direction. Also we must be careful to
write �F for ΣFx.

� Observe that for given values of u
and v, the angle for maximum force
F is � � 180�.
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SAMPLE PROBLEM 4/7

For the moving vane of Sample Problem 4/6, determine the optimum speed
u of the vane for the generation of maximum power by the action of the fluid on
the vane.

Solution. The force R shown with the figure for Sample Problem 4/6 is normal
to the velocity of the vane so it does no work. The work done by the force F
shown is negative, but the power developed by the force (reaction to F) exerted
by the fluid on the moving vane is

The velocity of the vane for maximum power for the one blade in the stream is
specified by

Ans.

The second solution u � v gives a minimum condition of zero power. An angle
� � 180� completely reverses the flow and clearly produces both maximum
force and maximum power for any value of u.

SAMPLE PROBLEM 4/8

The offset nozzle has a discharge area A at B and an inlet area A0 at C. A
liquid enters the nozzle at a static gage pressure p through the fixed pipe and is-
sues from the nozzle with a velocity v in the direction shown. If the constant
density of the liquid is �, write expressions for the tension T, shear Q, and bend-
ing moment M in the pipe at C.

Solution. The free-body diagram of the nozzle and the fluid within it shows
the tension T, shear Q, and bending moment M acting on the flange of the nozzle
where it attaches to the fixed pipe. The force pA0 on the fluid within the nozzle
due to the static pressure is an additional external force.

Continuity of flow with constant density requires that

where v0 is the velocity of the fluid at the entrance to the nozzle. The momentum
principle of Eq. 4/18 applied to the system in the two coordinate directions gives

Ans.

Ans.

The moment principle of Eq. 4/19 applied in the clockwise sense gives

Ans. M � �Av2(a cos � � b sin �)

 M � �Av(va cos � � vb sin � � 0)[ΣMO � m�(v2 d2 � v1d1)]

 Q � �Av2 sin �

 �Q � �Av(�v sin � � 0)[ΣFy � m��vy]

 T � pA0 � �Av2 � A
A0

 � cos ��
 pA0 � T � �Av(v cos � � v0)[ΣFx � m��vx]

Av � A0v0

(v � 3u)(v � u) � 0   u � v
3

�A(1 � cos �)(v2 � 4uv � 3u2) � 0�dP
du

 � 0�

P � �A(v � u)2u(1 � cos �)[P � Fu]
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a

θ
v
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b

O x
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Q

T

M

pA0

�

�

�

Helpful Hints

� Again, be careful to observe the cor-
rect algebraic signs of the terms on
both sides of Eqs. 4/18 and 4/19.

� The forces and moment acting on
the pipe are equal and opposite to
those shown acting on the nozzle.

Helpful Hint

� The result here applies to a single
vane only. In the case of multiple
vanes, such as the blades on a tur-
bine disk, the rate at which fluid is-
sues from the nozzles is the same
rate at which fluid is undergoing
momentum change. Thus, m� � �Av
rather than �A(v � u). With this
change, the optimum value of u
turns out to be u � v/2.
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SAMPLE PROBLEM 4/9

An air-breathing jet aircraft of total mass m flying with a constant speed v
consumes air at the mass rate and exhausts burned gas at the mass rate 
with a velocity u relative to the aircraft. Fuel is consumed at the constant rate .
The total aerodynamic forces acting on the aircraft are the lift L, normal to the di-
rection of flight, and the drag D, opposite to the direction of flight. Any force due to
the static pressure across the inlet and exhaust surfaces is assumed to be included
in D. Write the equation for the motion of the aircraft and identify the thrust T.

Solution. The free-body diagram of the aircraft together with the air, fuel,
and exhaust gas within it is given and shows only the weight, lift, and drag
forces as defined. We attach axes x-y to the aircraft and apply our momentum
equation relative to the moving system.

The fuel will be treated as a steady stream entering the aircraft with no ve-
locity relative to the system and leaving with a relative velocity u in the exhaust
stream. We now apply Eq. 4/18 relative to the reference axes and treat the air and
fuel flows separately. For the air flow, the change in velocity in the x-direction
relative to the moving system is

and for the fuel flow the x-change in velocity relative to x-y is

Thus, we have

where the substitution has been made. Changing signs gives

which is the equation of motion of the system.
If we modify the boundaries of our system to expose the interior surfaces on

which the air and gas act, we will have the simulated model shown, where the air
exerts a force on the interior of the turbine and the exhaust gas reacts
against the interior surfaces with the force .

The commonly used model is shown in the final diagram, where the net ef-
fect of air and exhaust momentum changes is replaced by a simulated thrust

Ans.

applied to the aircraft from a presumed external source.
Inasmuch as is generally only 2 percent or less of , we can use the ap-

proximation and express the thrust as

Ans.

We have analyzed the case of constant velocity. Although our Newtonian
principles do not generally hold relative to accelerating axes, it can be shown
that we may use the F � ma equation for the simulated model and write T �

mg sin � � D � m with virtually no error.v̇

T � m�g(u � v)

m�g � m�a

m�am�ƒ

T � m�gu � m�av

m�gu
m�av

m�gu � m�av � mg sin � � D

m�g � m�a � m�ƒ

 � �m�gu � m�av

 �mg sin � � D � �m�a(u � v) � m�ƒu[ΣFx � m��vx]

�vƒ � �u � (0) � �u

�va � �u � (�v) � �(u � v)

m�ƒ

m�gm�a

�

�

�

�

x

y

v

D

L

θ

mg

T

x

y

mg

m′gu

m′av

L

L

mg

D

D

Helpful Hints

� Note that the boundary of the sys-
tem cuts across the air stream at the
entrance to the air scoop and across
the exhaust stream at the nozzle.

� We are permitted to use moving
axes which translate with constant
velocity. See Arts. 3/14 and 4/2.

� Riding with the aircraft, we ob-
serve the air entering our system
with a velocity �v measured in the
plus x-direction and leaving the
system with an x-velocity of �u.
The final value minus the initial
one gives the expression cited,
namely, �u � (�v) � �(u � v).

� We now see that the “thrust” is, in
reality, not a force external to the
entire airplane shown in the first fig-
ure but can be modeled as an exter-
nal force.
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PROBLEMS
Introductory Problems

4/35 The jet aircraft has a mass of 4.6 Mg and a drag (air
resistance) of 32 kN at a speed of 1000 km/h at a
particular altitude. The aircraft consumes air at the
rate of 106 kg/s through its intake scoop and uses
fuel at the rate of 4 kg/s. If the exhaust has a rear-
ward velocity of 680 m/s relative to the exhaust noz-
zle, determine the maximum angle of elevation � at
which the jet can fly with a constant speed of 1000
km/h at the particular altitude in question.

Problem 4/35

4/36 A jet of air issues from the nozzle with a velocity of
300 ft/sec at the rate of 6.50 ft3/sec and is deflected
by the right-angle vane. Calculate the force F re-
quired to hold the vane in a fixed position. The spe-
cific weight of the air is 0.0753 lb/ft3.

Problem 4/36

y

xF
v

α

4/37 Fresh water issues from the nozzle with a velocity of
30 m/s at the rate of 0.05 m3/s and is split into two
equal streams by the fixed vane and deflected
through 60� as shown. Calculate the force F required
to hold the vane in place. The density of water is
1000 kg/m3.

Problem 4/37

4/38 The jet water ski has reached its maximum velocity
of 70 km/h when operating in salt water. The water
intake is in the horizontal tunnel in the bottom of
the hull, so the water enters the intake at the veloc-
ity of 70 km/h relative to the ski. The motorized
pump discharges water from the horizontal exhaust
nozzle of 50-mm diameter at the rate of 0.082 m3/s.
Calculate the resistance R of the water to the hull at
the operating speed.

Problem 4/38

F

A

60°

60°
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Article 4/6 Problems 295

4/42 The 90� vane moves to the left with a constant veloc-
ity of 10 m/s against a stream of fresh water issuing
with a velocity of 20 m/s from the 25-mm-diameter
nozzle. Calculate the forces Fx and Fy on the vane
required to support the motion.

Problem 4/42

Representative Problems

4/43 A jet of fluid with cross-sectional area A and mass
density issues from the nozzle with a velocity v and
impinges on the inclined trough shown in section.
Some of the fluid is diverted in each of the two direc-
tions. If the trough is smooth, the velocity of both di-
verted streams remains v, and the only force which
can be exerted on the trough is normal to the bottom
surface. Hence, the trough will be held in position by
forces whose resultant is F normal to the trough. By
writing impulse-momentum equations for the direc-
tions along and normal to the trough, determine the
force F required to support the trough. Also find the
volume rates of flow and for the two streams.

Problem 4/43

θ

F

v

2

1

Q2Q1

�

Fx

Fy

20 m/s

10 m/s

y

x 

4/39 The fire tug discharges a stream of salt water (den-
sity 1030 kg/m3) with a nozzle velocity of 40 m/s at
the rate of 0.080 m3/s. Calculate the propeller thrust
T which must be developed by the tug to maintain a
fixed position while pumping.

Problem 4/39

4/40 The figure shows the top view of an experimental
rocket sled which is traveling at a speed of 1000 ft/sec
when its forward scoop enters a water channel to act
as a brake. The water is diverted at right angles rela-
tive to the motion of the sled. If the frontal flow area
of the scoop is 15 in.2, calculate the initial braking
force. The specific weight of water is 62.4 lb/ft3.

Problem 4/40

4/41 A jet-engine noise suppressor consists of a movable
duct which is secured directly behind the jet exhaust
by cable A and deflects the blast directly upward.
During a ground test, the engine sucks in air at the
rate of 43 kg/s and burns fuel at the rate of 0.8 kg/s.
The exhaust velocity is 720 m/s. Determine the ten-
sion T in the cable.

Problem 4/41

A
15°

vRails

Scoop

Water channel

30°
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4/44 The 8-oz ball is supported by the vertical stream of
fresh water which issues from the 1/2-in.-diameter
nozzle with a velocity of 35 ft/sec. Calculate the
height h of the ball above the nozzle. Assume that
the stream remains intact and there is no energy
lost in the jet stream.

Problem 4/44

4/45 A jet-engine thrust reverser to reduce an aircraft
speed of 200 km/h after landing employs folding
vanes which deflect the exhaust gases in the direc-
tion indicated. If the engine is consuming 50 kg of
air and 0.65 kg of fuel per second, calculate the brak-
ing thrust as a fraction n of the engine thrust with-
out the deflector vanes. The exhaust gases have a
velocity of 650 m/s relative to the nozzle.

Problem 4/45

200 km/h

30°

30°

h

lb
1—
2

4/46 Salt water is being discharged into the atmosphere
from the two 30° outlets at the total rate of

Each of the discharge nozzles has a flow
diameter of 100 mm, and the inside diameter of the
pipe at the connecting section A is 250 mm. The
pressure of the water at section A-A is 550 kPa. If
each of the six bolts at the flange A-A is tightened to
a tension of 10 kN, calculate the average pressure p
on the flange gasket, which has an area of

. The pipe above the flange and the
water within it have a mass of 60 kg.

Problem 4/46

4/47 The axial-flow fan C pumps air through the duct of
circular cross section and exhausts it with a velocity v
at B. The air densities at A and B are �A and �B,
respectively, and the corresponding pressures are pA

and pB. The fixed deflecting blades at D restore axial
flow to the air after it passes through the propeller
blades C. Write an expression for the resultant hori-
zontal force R exerted on the fan unit by the flange
and bolts at A.

Problem 4/47

A B

C D

Dia.
= d

Dia.
= d

E

AA

30°30°

24(103) mm2

30 m3 /min.
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4/50 The sump pump has a net mass of 310 kg and
pumps fresh water against a 6-m head at the rate of
0.125 m3/s. Determine the vertical force R between
the supporting base and the pump flange at A during
operation. The mass of water in the pump may be
taken as the equivalent of a 200-mm-diameter col-
umn 6 m in height.

Problem 4/50

4/51 In a test of the operation of a “cherry-picker” fire
truck, the equipment is free to roll with its brakes
released. For the position shown, the truck is ob-
served to deflect the spring of stiffness k � 15 kN/m
a distance of 150 mm because of the action of the
horizontal stream of water issuing from the nozzle
when the pump is activated. If the exit diameter of
the nozzle is 30 mm, calculate the velocity v of the
stream as it leaves the nozzle. Also determine the
added moment M which the joint at A must resist
when the pump is in operation with the nozzle in the
position shown.

Problem 4/51

v

75°

90°

15 m

A

4.8 m

6 m

45°

200 mm

100 mm

A

250
mm

4/48 Air is pumped through the stationary duct A with a
velocity of 50 ft/sec and exhausted through an exper-
imental nozzle section BC. The average static pres-
sure across section B is 150 lb/in.2 gage, and the
specific weight of air at this pressure and at the tem-
perature prevailing is 0.840 lb/ft3. The average static
pressure across the exit section C is measured to be
2 lb/in.2 gage, and the corresponding specific weight
of air is 0.0760 lb/ft3. Calculate the force T exerted
on the nozzle flange at B by the bolts and the gasket
to hold the nozzle in place.

Problem 4/48

4/49 One of the most advanced methods for cutting metal
plates uses a high-velocity water jet which carries an
abrasive garnet powder. The jet issues from the
0.01-in.-diameter nozzle at A and follows the path
shown through the thickness t of the plate. As the
plate is slowly moved to the right, the jet makes a nar-
row precision slot in the plate. The water-abrasive
mixture is used at the low rate of 1/2 gal/min and
has a specific weight of 68 lb/ft3. Water issues from
the bottom of the plate with a velocity which is 60
percent of the impinging nozzle velocity. Calculate
the horizontal force F required to hold the plate
against the jet. (There are 231 in.3 in 1 gal.)

Problem 4/49

F

A

t

45°

30°
Nozzle

8″ 4″

A
B

C

50

ft/sec
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4/52 The experimental ground-effect machine has a total
weight of 4200 lb. It hovers 1 or 2 ft off the ground by
pumping air at atmospheric pressure through the cir-
cular intake duct at B and discharging it horizontally
under the periphery of the skirt C. For an intake
velocity v of 150 ft/sec, calculate the average air pres-
sure p under the 18-ft-diameter machine at ground
level. The specific weight of the air is 0.076 lb/ft3.

Problem 4/52

4/53 A commercial aircraft flying horizontally at 500 mi/hr
encounters a heavy downpour of rain falling vertically
at the rate of 20 ft/sec with an intensity equivalent to
an accumulation of 1 in./hr on the ground. The upper
surface area of the aircraft projected onto the horizon-
tal plane is 2960 ft2. Calculate the negligible down-
ward force F of the rain on the aircraft.

Problem 4/53

4/54 The ducted fan unit of mass m is supported in the
vertical position on its flange at A. The unit draws in
air with a density � and a velocity u through section
A and discharges it through section B with a velocity v.
Both inlet and outlet pressures are atmospheric.
Write an expression for the force R applied to the
flange of the fan unit by the supporting slab.

500 mi/hr

3′

C

B

v

9′
Problem 4/54

4/55 The 180� return pipe discharges salt water (specific
weight 64.4 lb/ft3) into the atmosphere at a constant
rate of 1.6 ft3/sec. The static pressure in the water at
section A is 10 lb/in.2 above atmospheric pressure.
The flow area of the pipe at A is 20 in.2 and that at
each of the two outlets is 3.2 in.2 If each of the six
flange bolts is tightened with a torque wrench so
that it is under a tension of 150 lb, determine the av-
erage pressure p on the gasket between the two
flanges. The flange area in contact with the gasket is
16 in.2 Also determine the bending moment M in the
pipe at section A if the left-hand discharge is blocked
off and the flow rate is cut in half. Neglect the
weight of the pipe and the water within it.

Problem 4/55

8″

A

d
u

v v

B B

A

θ θ
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4/58 The industrial blower sucks in air through the axial
opening A with a velocity v1 and discharges it at
atmospheric pressure and temperature through
the 150-mm-diameter duct B with a velocity v2. The
blower handles 16 m3 of air per minute with the
motor and fan running at 3450 rev/min. If the motor
requires 0.32 kW of power under no load (both ducts
closed), calculate the power P consumed while air is
being pumped.

Problem 4/58

4/59 The feasibility of a one-passenger VTOL (vertical
takeoff and landing) craft is under review. The pre-
liminary design calls for a small engine with a high
power-to-weight ratio driving an air pump that draws
in air through the 70� ducts with an inlet velocity 
v � 40 m/s at a static gage pressure of �1.8 kPa
across the inlet areas totaling 0.1320 m2. The air is
exhausted vertically down with a velocity u � 420 m/s.
For a 90-kg passenger, calculate the maximum net
mass m of the machine for which it can take off and
hover. (See Table D/1 for air density.)

Problem 4/59

70° 70°

u

v v

A

B

200 mm
v1

v2

4/56 The fire hydrant is tested under a high standpipe
pressure. The total flow of 10 ft3/sec is divided
equally between the two outlets, each of which has a
cross-sectional area of 0.040 ft2. The inlet cross-
sectional area at the base is 0.75 ft2. Neglect the
weight of the hydrant and water within it and com-
pute the tension T, the shear V, and the bending mo-
ment M in the base of the standpipe at B. The specific
weight of water is 62.4 lb/ft3. The static pressure of
the water as it enters the base at B is 120 lb/in.2

Problem 4/56

4/57 A rotary snow plow mounted on a large truck eats
its way through a snow drift on a level road at a con-
stant speed of 20 km/h. The plow discharges 60 Mg
of snow per minute from its 45� chute with a velocity
of 12 m/s relative to the plow. Calculate the tractive
force P on the tires in the direction of motion neces-
sary to move the plow and find the corresponding
lateral force R between the tires and the road.

Problem 4/57

45°

z

y

x

30°

24″

20″

30″

B

y

x
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4/60 The military jet aircraft has a gross weight of 24,000
lb and is poised for takeoff with brakes set while the
engine is revved up to maximum power. At this con-
dition, air with a specific weight of 0.0753 lb/ft3 is
sucked into the intake ducts at the rate of 106 lb/sec
with a static pressure of �0.30 lb/in.2 (gage) across
the duct entrance. The total cross-sectional area of
both intake ducts (one on each side) is 1800 in.2 The
air–fuel ratio is 18, and the exhaust velocity u is
3100 ft/sec with zero back pressure (gage) across the
exhaust nozzle. Compute the initial acceleration a of
the aircraft upon release of the brakes.

Problem 4/60

4/61 The helicopter shown has a mass m and hovers in
position by imparting downward momentum to a
column of air defined by the slipstream boundary
shown. Find the downward velocity v given to the air
by the rotor at a section in the stream below the
rotor, where the pressure is atmospheric and the
stream radius is r. Also find the power P required of
the engine. Neglect the rotational energy of the air,
any temperature rise due to air friction, and any
change in air density �.

Problem 4/61

r
v

v0
u

4/62 The VTOL (vertical takeoff and landing) military
aircraft is capable of rising vertically under the ac-
tion of its jet exhaust, which can be “vectored” from
� � 0 for takeoff and hovering to � � 90� for forward
flight. The loaded aircraft has a mass of 8600 kg. At
full takeoff power, its turbo-fan engine consumes air
at the rate of 90 kg/s and has an air–fuel ratio of 18.
Exhaust-gas velocity is 1020 m/s with essentially at-
mospheric pressure across the exhaust nozzles. Air
with a density of 1.206 kg/m3 is sucked into the in-
take scoops at a pressure of �2 kPa (gage) over the
total inlet area of 1.10 m2. Determine the angle � for
vertical takeoff and the corresponding vertical accel-
eration ay of the aircraft.

Problem 4/62

4/63 A marine terminal for unloading bulk wheat from a
ship is equipped with a vertical pipe with a nozzle at A
which sucks wheat up the pipe and transfers it to the
storage building. Calculate the x- and y-components of
the force R required to change the momentum of the
flowing mass in rounding the bend. Identify all forces
applied externally to the bend and mass within it. Air
flows through the 14-in.-diameter pipe at the rate of
18 tons per hour under a vacuum of 9 in. of mercury
( p � �4.42 lb/in.2) and carries with it 150 tons of
wheat per hour at a speed of 124 ft/sec.

Problem 4/63
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4/66 An axial section of the suction nozzle A for a bulk
wheat unloader is shown here. The outer pipe is se-
cured to the inner pipe by several longitudinal webs
which do not restrict the flow of air. A vacuum of 
9 in. of mercury ( p � �4.42 lb/in.2 gage) is main-
tained in the inner pipe, and the pressure across the
bottom of the outer pipe is atmospheric ( p � 0). Air
at 0.075 lb/ft3 is drawn in through the space between
the pipes at a rate of 18 tons/hr at atmospheric pres-
sure and draws with it 150 tons of wheat per hour
up the pipe at a velocity of 124 ft/sec. If the nozzle
unit below section A-A weighs 60 lb, calculate the
compression C in the connection at A-A.

Problem 4/66

16.5″

15″

14″

Air Air

A A

4/64 The sprinkler is made to rotate at the constant an-
gular velocity � and distributes water at the volume
rate Q. Each of the four nozzles has an exit area A.
Write an expression for the torque M on the shaft of
the sprinkler necessary to maintain the given mo-
tion. For a given pressure and, thus, flow rate Q, at
what speed �0 will the sprinkler operate with no
applied torque? Let � be the density of the water.

Problem 4/64

4/65 A high-speed jet of air issues from the 40-mm-diameter
nozzle A with a velocity v of 240 m/s and impinges
on the vane OB, shown in its edge view. The vane
and its right-angle extension have negligible mass
compared with the attached 6-kg cylinder and are
freely pivoted about a horizontal axis through O.
Calculate the angle � assumed by the vane with the
horizontal. The air density under the prevailing con-
ditions is 1.206 kg/m3. State any assumptions.

Problem 4/65
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4/67 In the figure is shown an impulse-turbine wheel for
a hydroelectric power plant which is to operate with
a static head of water of 300 m at each of its six noz-
zles and is to rotate at the speed of .
Each wheel and generator unit is to develop an out-
put power of . The efficiency of the gener-
ator may be taken to be 0.90, and an efficiency of
0.85 for the conversion of the kinetic energy of the
water jets to energy delivered by the turbine may be
expected. The mean peripheral speed of such a wheel
for greatest efficiency will be about 0.47 times the jet
velocity. If each of the buckets is to have the shape
shown, determine the necessary jet diameter d and
wheel diameter D. Assume that the water acts on
the bucket which is at the tangent point of each jet
stream.

Problem 4/67

D

10° 10°

u

v

Bucket detail

22 000 kW

270 rev /min

4/68 A test vehicle designed for impact studies has a mass
m � 1.4 Mg and is accelerated from rest by the
impingement of a high-velocity water jet upon its
curved deflector attached to the rear of the vehicle.
The jet of fresh water is produced by the air-operated
piston and issues from the 140-mm-diameter nozzle
with a velocity v � 150 m/s. Frictional resistance of
the vehicle, treated as a particle, amounts to 10 per-
cent of its weight. Determine the velocity u of the
vehicle 3 seconds after release from rest. (Hint:
Adapt the results of Sample Problem 4/6.)

Problem 4/68

60°

u

m

v

To air supply
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4/7 Variable Mass
In Art. 4/4 we extended the equations for the motion of a particle to

include a system of particles. This extension led to the very general ex-
pressions ΣF � ΣMO � and ΣMG � which are Eqs. 4/6, 4/7,
and 4/9, respectively. In their derivation, the summations were taken
over a fixed collection of particles, so that the mass of the system to be
analyzed was constant.

In Art. 4/6 these momentum principles were extended in Eqs. 4/18
and 4/19a to describe the action of forces on a system defined by a geo-
metric volume through which passes a steady flow of mass. Therefore,
the amount of mass within this volume was constant with respect to
time and thus we were able to use Eqs. 4/6, 4/7, and 4/9. When the mass
within the boundary of a system under consideration is not constant,
the foregoing relationships are no longer valid.*

Equation of Motion
We will now develop the equation for the linear motion of a system

whose mass varies with time. Consider first a body which gains mass by
overtaking and swallowing a stream of matter, Fig. 4/6a. The mass of
the body and its velocity at any instant are m and v, respectively. The
stream of matter is assumed to be moving in the same direction as m
with a constant velocity v0 less than v. By virtue of Eq. 4/18, the force
exerted by m on the particles of the stream to accelerate them from a ve-
locity v0 to a greater velocity v is R � m�(v � v0) � where the time
rate of increase of m is m� � and where u is the magnitude of the rel-
ative velocity with which the particles approach m. In addition to R, all
other forces acting on m in the direction of its motion are denoted by

ṁ
ṁu,

ḢG,ḢO,Ġ,

*In relativistic mechanics the mass is found to be a function of velocity, and its time deriva-
tive has a meaning different from that in Newtonian mechanics.

Figure 4/6

R
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ΣF
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ΣF

v0
v

v0
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m

m m expels mass (v > v0)

m
m0

m swallows mass (v > v0)

m expels mass (v > v0)
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(b)

(c)

v

v
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ΣF. The equation of motion of m from Newton’s second law is, there-
fore, ΣF � R � or

(4/20)

Similarly, if the body loses mass by expelling it rearward so that its
velocity v0 is less than v, Fig. 4/6b, the force R required to decelerate the
particles from a velocity v to a lesser velocity v0 is R � m�(�v0 � [�v]) �
m�(v � v0). But m� � since m is decreasing. Also, the relative veloc-
ity with which the particles leave m is u � v � v0. Thus, the force R be-
comes R � If ΣF denotes the resultant of all other forces acting
on m in the direction of its motion, Newton’s second law requires that
ΣF � R � or

which is the same relationship as in the case where m is gaining mass.
We may use Eq. 4/20, therefore, as the equation of motion of m, whether
it is gaining or losing mass.

A frequent error in the use of the force-momentum equation is to
express the partial force sum �F as

From this expansion we see that the direct differentiation of the linear
momentum gives the correct force ΣF only when the body picks up mass
initially at rest or when it expels mass which is left with zero absolute
velocity. In both instances, v0 � 0 and u � v.

Alternative Approach
We may also obtain Eq. 4/20 by a direct differentiation of the mo-

mentum from the basic relation ΣF � provided a proper system of
constant total mass is chosen. To illustrate this approach, we take the
case where m is losing mass and use Fig. 4/6c, which shows the system
of m and an arbitrary portion m0 of the stream of ejected mass. The
mass of this system is m � m0 and is constant.

The ejected stream of mass is assumed to move undisturbed once
separated from m, and the only force external to the entire system is ΣF
which is applied directly to m as before. The reaction R � is inter-
nal to the system and is not disclosed as an external force on the system.
With constant total mass, the momentum principle ΣF � is applicable
and we have

ΣF � d
dt

 (mv � m0v0) � mv̇ � ṁv � ṁ0v0 � m0v̇0

Ġ

�ṁu

Ġ,

ΣF � d
dt

 (mv) � mv̇ � ṁv

ΣF � mv̇ � ṁu

mv̇

�ṁu.

�ṁ

ΣF � mv̇ � ṁu

mv̇

The Super Scooper is a firefighting
airplane which can quickly ingest water
from a lake by skimming across the
surface with just a bottom-mounted
scoop entering the water. The mass
within the aircraft boundary varies during
the scooping operation as well as during
the dumping operation shown.
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Article 4/7 Variable Mass 305

Clearly, � and the velocity of the ejected mass with respect
to m is u � v � v0. Also � 0 since m0 moves undisturbed with no ac-
celeration once free of m. Thus, the relation becomes

which is identical to the result of the previous formulation, Eq. 4/20.

Application to Rocket Propulsion
The case of m losing mass is clearly descriptive of rocket propulsion.

Figure 4/7a shows a vertically ascending rocket, the system for which is
the mass within the volume defined by the exterior surface of the rocket
and the exit plane across the nozzle. External to this system, the free-
body diagram discloses the instantaneous values of gravitational attrac-
tion mg, aerodynamic resistance R, and the force pA due to the average
static pressure p across the nozzle exit plane of area A. The rate of mass
flow is m� � Thus, we may write the equation of motion of the
rocket, ΣF � � as pA � mg � R � � or

(4/21)

Equation 4/21 is of the form “ΣF � ma” where the first term in
“ΣF” is the thrust T � m�u. Thus, the rocket may be simulated as a
body to which an external thrust T is applied, Fig. 4/7b, and the problem
may then be analyzed like any other F � ma problem, except that m is a
function of time.

Observe that, during the initial stages of motion when the magni-
tude of the velocity v of the rocket is less than the relative exhaust veloc-
ity u, the absolute velocity v0 of the exhaust gases will be directed
rearward. On the other hand, when the rocket reaches a velocity v whose
magnitude is greater than u, the absolute velocity v0 of the exhaust gases
will be directed forward. For a given mass rate of flow, the rocket thrust
T depends only on the relative exhaust velocity u and not on the magni-
tude or on the direction of the absolute velocity v0 of the exhaust gases.

In the foregoing treatment of bodies whose mass changes with time,
we have assumed that all elements of the mass m of the body were mov-
ing with the same velocity v at any instant of time and that the particles
of mass added to or expelled from the body underwent an abrupt transi-
tion of velocity upon entering or leaving the body. Thus, this velocity
change has been modeled as a mathematical discontinuity. In reality,
this change in velocity cannot be discontinuous even though the transi-
tion may be rapid. In the case of a rocket, for example, the velocity
change occurs continuously in the space between the combustion zone
and the exit plane of the exhaust nozzle. A more general analysis* of
variable-mass dynamics removes this restriction of discontinuous veloc-
ity change and introduces a slight correction to Eq. 4/20.

m�u � pA � mg � R � mv̇

ṁu,mv̇ṁu,mv̇
�ṁ.

ΣF � mv̇ � ṁu

v̇0

�ṁ,ṁ0

*For a development of the equations which describe the general motion of a time-dependent
system of mass, see Art. 53 of the first author’s Dynamics, 2nd Edition, SI Version, 1975,
John Wiley & Sons, Inc.

Figure 4/7
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SAMPLE PROBLEM 4/10

The end of a chain of length L and mass � per unit length which is piled on a
platform is lifted vertically with a constant velocity v by a variable force P. Find
P as a function of the height x of the end above the platform. Also find the en-
ergy lost during the lifting of the chain.

Solution I (Variable-Mass Approach). Equation 4/20 will be used and
applied to the moving part of the chain of length x which is gaining mass. The
force summation ΣF includes all forces acting on the moving part except the
force exerted by the particles which are being attached. From the diagram we
have

The velocity is constant so that � 0. The rate of increase of mass is � �v,
and the relative velocity with which the attaching particles approach the moving
part is u � v � 0 � v. Thus, Eq. 4/20 becomes

Ans.

We now see that the force P consists of the two parts, �gx, which is the weight of
the moving part of the chain, and �v2, which is the added force required to
change the momentum of the links on the platform from a condition at rest to a
velocity v.

Solution II (Constant-Mass Approach). The principle of impulse and
momentum for a system of particles expressed by Eq. 4/6 will be applied to the
entire chain considered as the system of constant mass. The free-body diagram
of the system shows the unknown force P, the total weight of all links �gL, and
the force �g(L � x) exerted by the platform on those links which are at rest on it.
The momentum of the system at any position is Gx � �xv and the momentum
equation gives

Ans.

Again the force P is seen to be equal to the weight of the portion of the
chain which is off the platform plus the added term which accounts for the time
rate of increase of momentum of the chain.

Energy Loss. Each link on the platform acquires its velocity abruptly through
an impact with the link above it, which lifts it off the platform. The succession of
impacts gives rise to an energy loss �E (negative work ��E) so that the work-

energy equation becomes � P dx � �E � �T � �Vg, where

Substituting into the work-energy equation gives

Ans.1
2 �gL2 � �v2L � �E � 12 �Lv2 � 12 �gL2   �E � 12 �Lv2

 �T � 12 

�Lv2   �Vg � �gL L
2

 � 12 

�gL2

 	  P dx � 	L

0
 ( �gx � �v2) dx � 12 �gL2 � �v2L

	U�1-2

�ΣFx � 
dGx

dt �   P � �g(L � x) � �gL � d
dt

 (� xv)   P � �(gx � v2)

[ΣF � mv̇ � ṁu]   P � �gx � 0 � �v(v)   P � �(gx � v2)

ṁv̇

ΣFx � P � �gx

�

�

�

P

x

g(L – x)

P P

Solution
I

Solution
II

gLgxρ ρ

ρ

Helpful Hints

� The model of Fig. 4/6a shows the
mass being added to the leading end
of the moving part. With the chain
the mass is added to the trailing
end, but the effect is the same.

� We must be very careful not to use
ΣF � for a system whose mass is
changing. Thus, we have taken the
total chain as the system since its
mass is constant.

Ġ

� Note that includes work done
by internal nonelastic forces, such as
the link-to-link impact forces, where
this work is converted into heat and
acoustical energy loss �E.

U�1-2
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SAMPLE PROBLEM 4/11

Replace the open-link chain of Sample Problem 4/10 by a flexible but inex-
tensible rope or bicycle-type chain of length L and mass � per unit length. Deter-
mine the force P required to elevate the end of the rope with a constant velocity
v and determine the corresponding reaction R between the coil and the platform.

Solution. The free-body diagram of the coil and moving portion of the rope is
shown in the left-hand figure. Because of some resistance to bending and some
lateral motion, the transition from rest to vertical velocity v will occur over an
appreciable segment of the rope. Nevertheless, assume first that all moving ele-
ments have the same velocity so that Eq. 4/6 for the system gives

We assume further that all elements of the coil of rope are at rest on the plat-
form and transmit no force to the platform other than their weight, so that R �

�g(L � x). Substitution into the foregoing relation gives

which is the same result as that for the chain in Sample Problem 4/10.
The total work done on the rope by P becomes

Substitution into the work-energy equation gives

which is twice the kinetic energy of vertical motion. Thus, an equal
amount of kinetic energy is unaccounted for. This conclusion largely negates our
assumption of one-dimensional x-motion.

In order to produce a one-dimensional model which retains the inextensibility
property assigned to the rope, it is necessary to impose a physical constraint at the
base to guide the rope into vertical motion and at the same time preserve a smooth
transition from rest to upward velocity v without energy loss. Such a guide is in-
cluded in the free-body diagram of the entire rope in the middle figure and is rep-
resented schematically in the middle free-body diagram of the right-hand figure.

For a conservative system, the work-energy equation gives

Substitution into the impulse-momentum equation ΣFx � gives

Although this force, which exceeds the weight by is unrealistic experimen-
tally, it would be present in the idealized model.

Equilibrium of the vertical section requires

Because it requires a force of �v2 to change the momentum of the rope elements,
the restraining guide must supply the balance F � which, in turn, is trans-
mitted to the platform.

1
2 

�v2

T0 � P � �gx � 12 

�v2 � �gx � �gx � 12 

�v2

1
2 

�v2,

1
2 �v2 � �gx � R � �gL � �v2   R � 12 �v2 � �g(L � x)

Ġx

 P � 12 

�v2 � �gx

[dU� � dT � dVg]    P dx � d(12� xv2) � d��gx x
2�

1
2 � xv2

[U�1-2 � �T � �Vg]   �v2x � 12 �gx2 � �T � �gx x
2

  �T � � xv2

U�1-2 � 	  P dx � 	x

0
 ( �v2 � �gx) dx � �v2x � 12 �gx2

P � �g(L � x) � �v2 � �gL   or   P � �v2 � �gx

�ΣFx � 
dGx

dt �   P � R � �gL � d
dt

 (� xv)   P � R � �v2 � �gL

�

�

�

�

�

P

R

gLρ ρ ρ

ρ

P

R

gL

P

gx
vx

T0

T0

F

R

g(L – x)

r

= v/rω 

Helpful Hints

� Perfect flexibility would not permit
any resistance to bending.

� Remember that v is constant and
equals Also note that this same
relation applies to the chain of Sam-
ple Problem 4/10.

� This added term of unaccounted-for
kinetic energy exactly equals the en-
ergy lost by the chain during the im-
pact of its links.

� This restraining guide may be visu-
alized as a canister of negligible
mass rotating within the coil with
an angular velocity v/r and con-
nected to the platform through its
shaft. As it turns, it feeds the rope
from a rest position to an upward
velocity v, as indicated in the accom-
panying figure.

� Note that the mass center of the sec-
tion of length x is a distance x/2 above
the base.

ẋ.
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SAMPLE PROBLEM 4/12

A rocket of initial total mass m0 is fired vertically up from the north pole
and accelerates until the fuel, which burns at a constant rate, is exhausted. The
relative nozzle velocity of the exhaust gas has a constant value u, and the nozzle
exhausts at atmospheric pressure throughout the flight. If the residual mass of
the rocket structure and machinery is mb when burnout occurs, determine the
expression for the maximum velocity reached by the rocket. Neglect atmospheric
resistance and the variation of gravity with altitude.

Solution I (F � ma Solution). We adopt the approach illustrated with Fig.
4/7b and treat the thrust as an external force on the rocket. With the neglect of
the back pressure p across the nozzle and the atmospheric resistance R, Eq. 4/21
or Newton’s second law gives

But the thrust is T � m�u � so that the equation of motion becomes

Multiplication by dt, division by m, and rearrangement give

which is now in a form which can be integrated. The velocity v corresponding to
the time t is given by the integration

or

Since the fuel is burned at the constant rate m� � the mass at any time
t is m � m0 � If we let mb stand for the mass of the rocket when burnout oc-
curs, then the time at burnout becomes tb � (mb � m0)/ � (m0 � mb)/
This time gives the condition for maximum velocity, which is

Ans.

The quantity is a negative number since the mass decreases with time.

Solution II (Variable-Mass Solution). If we use Eq. 4/20, then �F � �mg
and the equation becomes

But � �m�u � �T so that the equation of motion becomes

which is the same as formulated with Solution I.

T � mg � mv̇

ṁu

�mg � mv̇ � ṁu[ΣF � mv̇ � ṁu]

ṁ

vmax � u ln 
m0

mb
 � 

g
ṁ

 (m0 � mb)

(�ṁ).ṁ
ṁt.

�ṁ,

v � u ln 
m0

m
 � gt

	v

0
 dv � �u 	m

m0

 dm
m

 � g 	 t

0
 dt

dv � �u dm
m

 � g dt

�ṁu � mg � mv̇

�ṁu

T � mg � mv̇

308 Chapter 4 Kinetics of Systems of Particles

T

mg

v

�

�

� Vertical launch from the north pole
is taken only to eliminate any com-
plication due to the earth’s rotation
in figuring the absolute trajectory of
the rocket.

Helpful Hints

� The neglect of atmospheric resis-
tance is not a bad assumption for a
first approximation inasmuch as the
velocity of the ascending rocket is
smallest in the dense part of the at-
mosphere and greatest in the rar-
efied region. Also for an altitude of
320 km, the acceleration due to
gravity is 91 percent of the value at
the surface of the earth.
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4/71 The space shuttle, together with its central fuel tank
and two booster rockets, has a total mass of 2.04(106)
kg at liftoff. Each of the two booster rockets pro-
duces a thrust of 11.80(106) N, and each of the three
main engines of the shuttle produces a thrust of
2.00(106) N. The specific impulse (ratio of exhaust
velocity to gravitational acceleration) for each of the
three main engines of the shuttle is 455 s. Calculate
the initial vertical acceleration a of the assembly
with all five engines operating and find the rate at
which fuel is being consumed by each of the shuttle’s
three engines.

Problem 4/71

4/72 A tank truck for washing down streets has a total
weight of 20,000 lb when its tank is full. With the
spray turned on, 80 lb of water per second issue from
the nozzle with a velocity of 60 ft/sec relative to the
truck at the 30� angle shown. If the truck is to accel-
erate at the rate of 2 ft/sec2 when starting on a level
road, determine the required tractive force P be-
tween the tires and the road when (a) the spray is
turned on and (b) the spray is turned off.

Problem 4/72

a

30°

PROBLEMS
Introductory Problems

4/69 At the instant of vertical launch the rocket expels
exhaust at the rate of 220 kg/s with an exhaust ve-
locity of 820 m/s. If the initial vertical acceleration is
6.80 m/s2, calculate the total mass of the rocket and
fuel at launch.

Problem 4/69

4/70 When the rocket reaches the position in its trajec-
tory shown, it has a mass of 3 Mg and is beyond the
effect of the earth’s atmosphere. Gravitational accel-
eration is 9.60 m/s2. Fuel is being consumed at the rate
of 130 kg/s, and the exhaust velocity relative to the
nozzle is 600 m/s. Compute the n- and t-components of
acceleration of the rocket.

Problem 4/70

Vert.

Horiz.

30°

t

n

a = 6.8 m/s2 
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4/73 A tank, which has a mass of 50 kg when empty, is
propelled to the left by a force P and scoops up fresh
water from a stream flowing in the opposite direc-
tion with a velocity of 1.5 m/s. The entrance area of
the scoop is 2000 mm2, and water enters the scoop at
a rate equal to the velocity of the scoop relative to
the stream. Determine the force P at a certain in-
stant for which 80 kg of water have been ingested
and the velocity and acceleration of the tank are 
2 m/s and 0.4 m/s2, respectively. Neglect the small
impact pressure at the scoop necessary to elevate the
water in the tank.

Problem 4/73

4/74 A small rocket of initial mass m0 is fired vertically
upward near the surface of the earth ( g constant). If
air resistance is neglected, determine the manner in
which the mass m of the rocket must vary as a func-
tion of the time t after launching in order that the
rocket may have a constant vertical acceleration a,
with a constant relative velocity u of the escaping
gases with respect to the nozzle.

4/75 The magnetometer boom for a spacecraft consists of
a large number of triangular-shaped units which
spring into their deployed configuration upon re-
lease from the canister in which they were folded
and packed prior to release. Write an expression for
the force F which the base of the canister must exert
on the boom during its deployment in terms of the
increasing length x and its time derivatives. The
mass of the boom per unit of deployed length is �.
Treat the supporting base on the spacecraft as a
fixed platform and assume that the deployment
takes place outside of any gravitational field. Neglect
the dimension b compared with x.

1.5 m/s

a
P

v

Problem 4/75

4/76 Fresh water issues from the two 30-mm-diameter
holes in the bucket with a velocity of 2.5 m/s in the
directions shown. Calculate the force P required to
give the bucket an upward acceleration of 0.5 m/s2

from rest if it contains 20 kg of water at that time.
The empty bucket has a mass of 0.6 kg.

Problem 4/76

P

20° 20°

x

b
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Article 4/7 Problems 311

4/79 A railroad coal car weighs 54,600 lb empty and car-
ries a total load of 180,000 lb of coal. The bins are
equipped with bottom doors which permit discharg-
ing coal through an opening between the rails. If the
car dumps coal at the rate of 20,000 lb/sec in a down-
ward direction relative to the car, and if frictional
resistance to motion is 4 lb per ton of total remain-
ing weight, determine the coupler force P required
to give the car an acceleration of 0.15 ft/sec2 in the
direction of P at the instant when half the coal has
been dumped.

Problem 4/79

4/80 The figure represents an idealized one-dimensional
structure of uniform mass � per unit length moving
horizontally with a velocity v0 when its front end col-
lides with an immovable barrier and crushes. The
force F required to initiate and maintain an accor-
dionlike deformation is constant. Neglect the length
b of the collapsed portion of the structure compared
with the movement of s of the undeformed portion
following the impact. The undeformed part may be
viewed as a body of decreasing mass. Derive the dif-
ferential equation which relates F to s, and by
using Eq. 4/20 carefully. Check your expression by
applying Eq. 4/6 to both parts together as a system
of constant mass.

Problem 4/80

L

F

L – s

s

b

v0

s̈ṡ,

P

Representative Problems

4/77 The upper end of the open-link chain of length L and
mass � per unit length is lowered at a constant speed
v by the force P. Determine the reading R of the
platform scale in terms of x.

Problem 4/77

4/78 At a bulk loading station, gravel leaves the hopper at
the rate of 220 lb/sec with a velocity of 10 ft/sec in
the direction shown and is deposited on the moving
flatbed truck. The tractive force between the driving
wheels and the road is 380 lb, which overcomes the
200 lb of frictional road resistance. Determine the
acceleration a of the truck 4 seconds after the hop-
per is opened over the truck bed, at which instant
the truck has a forward speed of 1.5 mi/hr. The
empty weight of the truck is 12,000 lb.

Problem 4/78

v60°

10 ft/sec

x

L

P

v
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4/81 A coil of heavy flexible cable with a total length of
100 m and a mass of 1.2 kg/m is to be laid along a
straight horizontal line. The end is secured to a post
at A, and the cable peels off the coil and emerges
through the horizontal opening in the cart as shown.
The cart and drum together have a mass of 40 kg.
If the cart is moving to the right with a velocity of 
2 m/s when 30 m of cable remain in the drum and
the tension in the rope at the post is 2.4 N, deter-
mine the force P required to give the cart and drum
an acceleration of 0.3 m/s2. Neglect all friction.

Problem 4/81

4/82 By lowering a scoop as it skims the surface of a body
of water, the aircraft (nicknamed the “Super Scooper”)
is able to ingest 4.5 m3 of fresh water during a 12-
second run. The plane then flies to a fire area and
makes a massive water drop with the ability to re-
peat the procedure as many times as necessary. The
plane approaches its run with a velocity of 280 km/h
and an initial mass of 16.4 Mg. As the scoop enters
the water, the pilot advances the throttle to provide
an additional 300 hp (223.8 kW) needed to prevent
undue deceleration. Determine the initial decelera-
tion when the scooping action starts. (Neglect the
difference between the average and the initial rates
of water intake.)

Problem 4/82

v

Scoop

P

x

A

4/83 An open-link chain of length L � 8 m with a mass of
48 kg is resting on a smooth horizontal surface when
end A is doubled back on itself by a force P applied to
end A. (a) Calculate the required value of P to give A
a constant velocity of 1.5 m/s. (b) Calculate the accel-
eration a of end A if P � 20 N and if v � 1.5 m/s
when x � 4 m.

Problem 4/83

4/84 A small rocket-propelled vehicle weighs 125 lb, in-
cluding 20 lb of fuel. Fuel is burned at the constant
rate of 2 lb/sec with an exhaust velocity relative to
the nozzle of 400 ft/sec. Upon ignition the vehicle is
released from rest on the 10� incline. Calculate the
maximum velocity v reached by the vehicle. Neglect
all friction.

Problem 4/84

10°

L

x
x–
2

P
A

v
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4/87 The cart carries a pile of open-link chain of mass �

per unit length. The chain passes freely through the
hole in the cart and is brought to rest, link by link,
by the tension T in the portion of the chain resting
on the ground and secured at its end A. The cart and
the chain on it move under the action of the con-
stant force P and have a velocity v0 and mass m0

when x � 0. Determine expressions for the accelera-
tion a and velocity v of the cart in terms of x if all
friction is neglected. Also find T. Observe that the
transition link 2 is decelerated from the velocity v to
zero velocity by the tension T transmitted by the last
horizontal link 1. Also note that link 2 exerts no
force on the following link 3 during the transition.
Explain why the term is absent if Eq. 4/20 is ap-
plied to this problem.

Problem 4/87

4/88 The open-link chain of length L and mass � per unit
length is released from rest in the position shown,
where the bottom link is almost touching the platform
and the horizontal section is supported on a smooth
surface. Friction at the corner guide is negligible. De-
termine (a) the velocity v1 of end A as it reaches the
corner and (b) its velocity v2 as it strikes the platform.
(c) Also specify the total loss Q of energy.

Problem 4/88

h

L – h

A

ṁu

4/85 Determine the force P required to give the open-link
chain of total length L a constant velocity v � The
chain has a mass � per unit length. Also, by applying
the impulse-momentum equation to the left-hand
portion of the system, verify that the force R sup-
porting the pile of chain equals the weight of the
pile. Neglect the small size and mass of the pulley
and any friction in the pulley.

Problem 4/85

4/86 A coal car with an empty mass of 25 Mg is moving
freely with a speed of 1.2 m/s under a hopper which
opens and releases coal into the moving car at the
constant rate of 4 Mg per second. Determine the dis-
tance x moved by the car during the time that 32 Mg
of coal are deposited in the car. Neglect any frictional
resistance to rolling along the horizontal track.

Problem 4/86

v0

y

h P

ẏ.

x

A
P

v

1 2 3
Transition link 2
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4/89 In the figure is shown a system used to arrest the
motion of an airplane landing on a field of restricted
length. The plane of mass m rolling freely with a ve-
locity v0 engages a hook which pulls the ends of two
heavy chains, each of length L and mass � per unit
length, in the manner shown. A conservative calcu-
lation of the effectiveness of the device neglects the
retardation of chain friction on the ground and any
other resistance to the motion of the airplane. With
these assumptions, compute the velocity v of the air-
plane at the instant when the last link of each chain
is put in motion. Also determine the relation be-
tween the displacement x and the time t after con-
tact with the chain. Assume each link of the chain
acquires its velocity v suddenly upon contact with
the moving links.

Problem 4/89

4/90 The free end of the open-link chain of total length L
and mass � per unit length is released from rest at 
x � 0. Determine the force R on the fixed end and
the tension T1 in the chain at the lower end of the
nonmoving part in terms of x. Also find the total loss
Q of energy when x � L.

Problem 4/90

x

x

x –
2

L

v0

v

4/91 Replace the chain of Prob. 4/90 by a flexible rope or
bicycle chain of mass � per unit length and total
length L. The free end is released from rest at x � 0
and falls under the influence of gravity. Determine
the acceleration a of the free end, the force R at the
fixed end, and the tension T1 in the rope at the loop,
all in terms of x. (Note that a is greater than g. What
happens to the energy of the system when x � L?)

4/92 One end of the pile of chain falls through a hole in
its support and pulls the remaining links after it in
a steady flow. If the links which are initially at rest
acquire the velocity of the chain suddenly and with-
out frictional resistance or interference from the
support or from adjacent links, find the velocity v
of the chain as a function of x if v � 0 when x � 0.
Also find the acceleration a of the falling chain and
the energy Q lost from the system as the last link
leaves the platform. (Hint: Apply Eq. 4/20 and treat
the product xv as the variable when solving the dif-
ferential equation. Also note at the appropriate
step that dx � v dt.) The total length of the chain is
L, and its mass per unit length is �.

Problem 4/92

x
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4/8 CHAPTER REVIEW

In this chapter we have extended the principles of dynamics for the
motion of a single mass particle to the motion of a general system of
particles. Such a system can form a rigid body, a nonrigid (elastic) solid
body, or a group of separate and unconnected particles, such as those in
a defined mass of liquid or gaseous particles. The following summarizes
the principal results of Chapter 4.

1. We derived the generalized form of Newton’s second law, which is
expressed as the principle of motion of the mass center, Eq. 4/1 in
Art. 4/2. This principle states that the vector sum of the external
forces acting on any system of mass particles equals the total sys-
tem mass times the acceleration of the center of mass.

2. In Art. 4/3, we established a work-energy principle for a system of
particles, Eq. 4/3a, and showed that the total kinetic energy of the
system equals the energy of the mass-center translation plus the en-
ergy due to motion of the particles relative to the mass center.

3. The resultant of the external forces acting on any system equals the
time rate of change of the linear momentum of the system, Eq. 4/6
in Art. 4/4.

4. For a fixed point O and the mass center G, the resultant vector mo-
ment of all external forces about the point equals the time rate of
change of angular momentum about the point, Eq. 4/7 and Eq. 4/9
in Art. 4/4. The principle for an arbitrary point P, Eqs. 4/11 and
4/13, has an additional term and thus does not follow the form of
the equations for O and G.

5. In Art. 4/5 we developed the law of conservation of dynamical en-
ergy, which applies to a system in which the internal kinetic friction
is negligible.

6. Conservation of linear momentum applies to a system in the absence
of an external linear impulse. Similarly, conservation of angular mo-
mentum applies when there is no external angular impulse.

7. For applications involving steady mass flow, we developed a rela-
tion, Eq. 4/18 in Art. 4/6, between the resultant force on a system,
the corresponding mass flow rate, and the change in fluid velocity
from entrance to exit.

8. Analysis of angular momentum in steady mass flow resulted in Eq.
4/19a in Art. 4/6, which is a relation between the resultant moment
of all external forces about a fixed point O on or off the system, the
mass flow rate, and the incoming and outgoing velocities.

9. Finally, in Art. 4/7 we developed the equation of linear motion for
variable-mass systems, Eq. 4/20. Common examples of such systems
are rockets and flexible chains and ropes.

The principles developed in this chapter enable us to treat the mo-
tion of both rigid and nonrigid bodies in a unified manner. In addition,
the developments in Arts. 4/2–4/5 will serve to place on a rigorous basis
the treatment of rigid-body kinetics in Chapters 6 and 7.

Article 4/8 Chapter Review 315
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4/95 In an operational design test of the equipment of the
fire truck, the water cannon is delivering fresh water
through its 2-in.-diameter nozzle at the rate of 1400
gal/min at the 20� angle. Calculate the total friction
force F exerted by the pavement on the tires of the
truck, which remains in a fixed position with its
brakes locked. (There are 231 in.3 in 1 gal.)

Problem 4/95

4/96 A small rocket of initial mass m0 is fired vertically up
near the surface of the earth ( g constant), and the
mass rate of exhaust m� and the relative exhaust
velocity u are constant. Determine the velocity v as a
function of the time t of flight if the air resistance is
neglected and if the mass of the rocket case and ma-
chinery is negligible compared with the mass of the
fuel carried.

4/97 The two balls are attached to the light rigid rod,
which is suspended by a cord from the support above
it. If the balls and rod, initially at rest, are struck
with the force F � 12 lb, calculate the corresponding
acceleration of the mass center and the rate at
which the angular velocity of the bar is changing.

Problem 4/97

2 lb

4 lb

F

7″

3″

6″

10″

�̈a

20°

v
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REVIEW PROBLEMS

4/93 Each of the identical steel balls weighs 4 lb and is
fastened to the other two by connecting bars of neg-
ligible weight and unequal length. In the absence of
friction at the supporting horizontal surface, deter-
mine the initial acceleration of the mass center of
the assembly when it is subjected to the horizontal
force F � 20 lb applied to the supporting ball. The
assembly is initially at rest in the vertical plane. Can
you show that is initially horizontal?

Problem 4/93

4/94 A 2-oz bullet is fired horizontally with a velocity 
v � 1000 ft/sec into the slender bar of a 3-lb pendu-
lum initially at rest. If the bullet embeds itself in the
bar, compute the resulting angular velocity of the pen-
dulum immediately after the impact. Treat the sphere
as a particle and neglect the mass of the rod. Why is
the linear momentum of the system not conserved?

Problem 4/94
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4/98 The rocket shown is designed to test the operation of
a new guidance system. When it has reached a cer-
tain altitude beyond the effective influence of the
earth’s atmosphere, its mass has decreased to 2.80 Mg,
and its trajectory is 30� from the vertical. Rocket fuel
is being consumed at the rate of 120 kg/s with an
exhaust velocity of 640 m/s relative to the nozzle.
Gravitational acceleration is 9.34 m/s2 at its altitude.
Calculate the n- and t-components of the accelera-
tion of the rocket.

Problem 4/98

4/99 A two-stage rocket is fired vertically up and is above
the atmosphere when the first stage burns out and
the second stage separates and ignites. The second
stage carries 1200 kg of fuel and has an empty mass
of 200 kg. Upon ignition the second stage burns fuel
at the rate of 5.2 kg/s and has a constant exhaust
velocity of 3000 m/s relative to its nozzle. Determine
the acceleration of the second stage 60 seconds after
ignition and find the maximum acceleration and
the time t after ignition at which it occurs. Neglect
the variation of g and take it to be 8.70 m/s2 for the
range of altitude averaging about 400 km.

Horiz.

Vert.

n

t
30°
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4/100 The three identical spheres, each of mass m, are
supported in the vertical plane on the 30� incline.
The spheres are welded to the two connecting rods
of negligible mass. The upper rod, also of negligible
mass, is pivoted freely to the upper sphere and to
the bracket at A. If the stop at B is suddenly re-
moved, determine the velocity v with which the
upper sphere hits the incline. (Note that the corre-
sponding velocity of the middle sphere is v/2.) Ex-
plain the loss of energy which has occurred after all
motion has ceased.

Problem 4/100

4/101 A jet of fresh water under pressure issues from
the 3/4-in.-diameter fixed nozzle with a velocity 
v � 120 ft/sec and is diverted into the two equal
streams. Neglect any energy loss in the streams
and compute the force F required to hold the
vane in place.

Problem 4/101
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Problem 4/103

4/104 The upper end of the open-link chain of length L
and mass � per unit length is released from rest
with the lower end just touching the platform of
the scale. Determine the expression for the force F
read on the scale as a function of the distance x
through which the upper end has fallen. (Comment:
The chain acquires a free-fall velocity of be-
cause the links on the scale exert no force on those
above, which are still falling freely. Work the prob-
lem in two ways: first, by evaluating the time rate
of change of momentum for the entire chain and
second, by considering the force F to be composed
of the weight of the links at rest on the scale plus
the force necessary to divert an equivalent stream
of fluid.)

Problem 4/104

x

L

�2gx

A B

T
60°60°

C

318 Chapter 4 Kinetics of Systems of Particles

4/102 An ideal rope or bicycle-type chain of length L and
mass � per unit length is resting on a smooth hori-
zontal surface when end A is doubled back on itself
by a force P applied to end A. End B of the rope is
secured to a fixed support. Determine the force P
required to give A a constant velocity v. (Hint: The
action of the loop can be modeled by inserting a cir-
cular disk of negligible mass as shown in the sepa-
rate sketch and then taking the disk radius as zero.
It is easily shown that the tensions in the rope at C,
D, and B are all equal to P under the ideal condi-
tions imposed and with constant velocity.)

Problem 4/102

4/103 In the static test of a jet engine and exhaust nozzle
assembly, air is sucked into the engine at the rate
of 30 kg/s and fuel is burned at the rate of 1.6 kg/s.
The flow area, static pressure, and axial-flow veloc-
ity for the three sections shown are as follows:

Sec. A Sec. B Sec. C

Flow area, m2 0.15 0.16 0.06
Static pressure, kPa �14 140 14
Axial-flow velocity, m/s 120 315 600

Determine the tension T in the diagonal member of
the supporting test stand and calculate the force F
exerted on the nozzle flange at B by the bolts and
gasket to hold the nozzle to the engine housing.

L

B

x
x–
2

P

C

D

A

r
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4/105 The open-link chain of total length L and of mass �
per unit length is released from rest at x � 0 at the
same instant that the platform starts from rest at 
y � 0 and moves vertically up with a constant ac-
celeration a. Determine the expression for the total
force R exerted on the platform by the chain t sec-
onds after the motion starts.

Problem 4/105

4/106 The three identical 2-kg spheres are welded to the
connecting rods of negligible mass and are hanging
by a cord from point A. The spheres are initially at
rest when a horizontal force F � 16 N is applied to
the upper sphere. Calculate the initial acceleration

of the mass center of the spheres, the rate at
which the angular velocity is increasing, and the
initial acceleration a of the top sphere.

Problem 4/106
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4/107 The diverter section of pipe between A and B is de-
signed to allow the parallel pipes to clear an ob-
struction. The flange of the diverter is secured at C
by a heavy bolt. The pipe carries fresh water at the
steady rate of 5000 gal/min under a static pressure
of 130 lb/in.2 entering the diverter. The inside di-
ameter of the pipe at A and at B is 4 in. The ten-
sions in the pipe at A and B are balanced by the
pressure in the pipe acting over the flow area.
There is no shear or bending of the pipes at A or B.
Calculate the moment M supported by the bolt at
C. (Recall that 1 gallon contains 231 in.3)

Problem 4/107

4/108 The chain of length L and mass � per unit length is
released from rest on the smooth horizontal sur-
face with a negligibly small overhang x to initiate
motion. Determine (a) the acceleration a as a func-
tion of x, (b) the tension T in the chain at the
smooth corner as a function of x, and (c) the veloc-
ity v of the last link A as it reaches the corner.

Problem 4/108
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Problem 4/110

4/111 Replace the pile of chain in Prob. 4/92 by a coil of
rope of mass � per unit length and total length L as
shown and determine the velocity of the falling sec-
tion in terms of x if it starts from rest at x � 0.
Show that the acceleration is constant at g/2. The
rope is considered to be perfectly flexible in bend-
ing but inextensible and constitutes a conservative
system (no energy loss). Rope elements acquire
their velocity in a continuous manner from zero
to v in a small transition section of the rope at the
top of the coil. For comparison with the chain of
Prob. 4/92, this transition section may be consid-
ered to have negligible length without violating the
requirement that there be no energy loss in the
present problem. Also determine the force R exerted
by the platform on the coil in terms of x and
explain why R becomes zero when x � 2L/3. Neglect
the dimensions of the coil compared with x.

Problem 4/111

x

v

C

A

B

D

150 
mm

150 
mm

200 mm
75 mm

320 Chapter 4 Kinetics of Systems of Particles

4/109 A rope or hinged-link bicycle-type chain of length L
and mass � per unit length is released from rest
with x � 0. Determine the expression for the total
force R exerted on the fixed platform by the chain
as a function of x. Note that the hinged-link chain
is a conservative system during all but the last in-
crement of motion. Compare the result with that of
Prob. 4/105 if the upward motion of the platform in
that problem is taken to be zero.

Problem 4/109

4/110 The centrifugal pump handles 20 m3 of fresh water
per minute with inlet and outlet velocities of 18 m/s.
The impeller is turned clockwise through the shaft
at O by a motor which delivers 40 kW at a pump
speed of 900 rev/min. With the pump filled but not
turning, the vertical reactions at C and D are each
250 N. Calculate the forces exerted by the founda-
tion on the pump at C and D while the pump is
running. The tensions in the connecting pipes at A
and B are exactly balanced by the respective forces
due to the static pressure in the water. (Sugges-
tion: Isolate the entire pump and water within it
between sections A and B and apply the momen-
tum principle to the entire system.)

x

L

�

�

�
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4/112 The chain of mass � per unit length passes over the
small freely turning pulley and is released from
rest with only a small imbalance h to initiate mo-
tion. Determine the acceleration a and velocity v of
the chain and the force R supported by the hook at
A, all in terms of h as it varies from essentially zero
to H. Neglect the weight of the pulley and its sup-
porting frame and the weight of the small amount
of chain in contact with the pulley. (Hint: The force
R does not equal two times the equal tensions T in
the chain tangent to the pulley.)
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Problem 4/112
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PART I I

Dynamics of
Rigid Bodies

c05.qxd  2/10/12  10:07 AM  Page 323



Rigid-body kinematics describes the relationships between the linear and angular motions of bodies without re-
gard to the forces and moments associated with such motions. The designs of gears, cams, connecting links, and
many other moving machine parts are largely kinematic problems.

R. Ian Lloyd/Masterile
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5/1 Introduction
In Chapter 2 on particle kinematics, we developed the relationships

governing the displacement, velocity, and acceleration of points as they
moved along straight or curved paths. In rigid-body kinematics we use
these same relationships but must also account for the rotational mo-
tion of the body. Thus rigid-body kinematics involves both linear and
angular displacements, velocities, and accelerations.

We need to describe the motion of rigid bodies for two important
reasons. First, we frequently need to generate, transmit, or control cer-
tain motions by the use of cams, gears, and linkages of various types.
Here we must analyze the displacement, velocity, and acceleration of
the motion to determine the design geometry of the mechanical parts.
Furthermore, as a result of the motion generated, forces may be devel-
oped which must be accounted for in the design of the parts.

Second, we must often determine the motion of a rigid body caused
by the forces applied to it. Calculation of the motion of a rocket under
the influence of its thrust and gravitational attraction is an example of
such a problem.

We need to apply the principles of rigid-body kinematics in both sit-
uations. This chapter covers the kinematics of rigid-body motion which
may be analyzed as occurring in a single plane. In Chapter 7 we will pre-
sent an introduction to the kinematics of motion in three dimensions.

5/1 Introduction

5/2 Rotation

5/3 Absolute Motion

5/4 Relative Velocity

5/5 Instantaneous Center of Zero Velocity

5/6 Relative Acceleration

5/7 Motion Relative to Rotating Axes

5/8 Chapter Review

CHAPTER OUTLINE

5Plane Kinematics
of Rigid Bodies
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Rigid-Body Assumption
In the previous chapter we defined a rigid body as a system of parti-

cles for which the distances between the particles remain unchanged.
Thus, if each particle of such a body is located by a position vector from
reference axes attached to and rotating with the body, there will be no
change in any position vector as measured from these axes. This is, of
course, an ideal case since all solid materials change shape to some ex-
tent when forces are applied to them.

Nevertheless, if the movements associated with the changes in
shape are very small compared with the movements of the body as a
whole, then the assumption of rigidity is usually acceptable. The dis-
placements due to the flutter of an aircraft wing, for instance, do not af-
fect the description of the flight path of the aircraft as a whole, and thus
the rigid-body assumption is clearly acceptable. On the other hand, if
the problem is one of describing, as a function of time, the internal wing
stress due to wing flutter, then the relative motions of portions of the
wing cannot be neglected, and the wing may not be considered a rigid
body. In this and the next two chapters, almost all of the material is
based on the assumption of rigidity.

Plane Motion
A rigid body executes plane motion when all parts of the body move

in parallel planes. For convenience, we generally consider the plane of
motion to be the plane which contains the mass center, and we treat the
body as a thin slab whose motion is confined to the plane of the slab.
This idealization adequately describes a very large category of rigid-
body motions encountered in engineering.

The plane motion of a rigid body may be divided into several cate-
gories, as represented in Fig. 5/1.

Translation is defined as any motion in which every line in the
body remains parallel to its original position at all times. In translation
there is no rotation of any line in the body. In rectilinear translation,
part a of Fig. 5/1, all points in the body move in parallel straight lines.
In curvilinear translation, part b, all points move on congruent curves.
We note that in each of the two cases of translation, the motion of the
body is completely specified by the motion of any point in the body, since
all points have the same motion. Thus, our earlier study of the motion of
a point (particle) in Chapter 2 enables us to describe completely the
translation of a rigid body.

Rotation about a fixed axis, part c of Fig. 5/1, is the angular motion
about the axis. It follows that all particles in a rigid body move in circu-
lar paths about the axis of rotation, and all lines in the body which are
perpendicular to the axis of rotation (including those which do not pass
through the axis) rotate through the same angle in the same time.
Again, our discussion in Chapter 2 on the circular motion of a point en-
ables us to describe the motion of a rotating rigid body, which is treated
in the next article.

General plane motion of a rigid body, part d of Fig. 5/1, is a com-
bination of translation and rotation. We will utilize the principles of rel-
ative motion covered in Art. 2/8 to describe general plane motion.

326 Chapter 5 Plane Kinematics of Rigid Bodies

These nickel microgears are only 150
microns (150(10�6) m) thick and have
potential application in microscopic
robots.
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Note that in each of the examples cited, the actual paths of all parti-
cles in the body are projected onto the single plane of motion as repre-
sented in each figure.

Analysis of the plane motion of rigid bodies is accomplished either
by directly calculating the absolute displacements and their time deriva-
tives from the geometry involved or by utilizing the principles of relative
motion. Each method is important and useful and will be covered in
turn in the articles which follow.

5/2 Rotation
The rotation of a rigid body is described by its angular motion.

Figure 5/2 shows a rigid body which is rotating as it undergoes plane
motion in the plane of the figure. The angular positions of any two
lines 1 and 2 attached to the body are specified by �1 and �2 measured
from any convenient fixed reference direction. Because the angle � is
invariant, the relation �2 � �1 � � upon differentiation with respect
to time gives � and � or, during a finite interval, ��2 � ��1.
Thus, all lines on a rigid body in its plane of motion have the same an-
gular displacement, the same angular velocity, and the same angular
acceleration.

�̈ 1�̈ 2�̇ 1�̇ 2
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Note that the angular motion of a line depends only on its angular
position with respect to any arbitrary fixed reference and on the time
derivatives of the displacement. Angular motion does not require the
presence of a fixed axis, normal to the plane of motion, about which the
line and the body rotate.

328 Chapter 5 Plane Kinematics of Rigid Bodies

Angular-Motion Relations
The angular velocity � and angular acceleration � of a rigid body in

plane rotation are, respectively, the first and second time derivatives of
the angular position coordinate � of any line in the plane of motion of
the body. These definitions give

(5/1)

The third relation is obtained by eliminating dt from the first two. In
each of these relations, the positive direction for � and �, clockwise or
counterclockwise, is the same as that chosen for �. Equations 5/1 should
be recognized as analogous to the defining equations for the rectilinear
motion of a particle, expressed by Eqs. 2/1, 2/2, and 2/3. In fact, all rela-
tions which were described for rectilinear motion in Art. 2/2 apply to the
case of rotation in a plane if the linear quantities s, v, and a are replaced
by their respective equivalent angular quantities �, �, and �. As we pro-
ceed further with rigid-body dynamics, we will find that the analogies
between the relationships for linear and angular motion are almost
complete throughout kinematics and kinetics. These relations are im-
portant to recognize, as they help to demonstrate the symmetry and
unity found throughout mechanics.

For rotation with constant angular acceleration, the integrals of
Eqs. 5/1 becomes

Here �0 and �0 are the values of the angular position coordinate and an-
gular velocity, respectively, at t � 0, and t is the duration of the motion
considered. You should be able to carry out these integrations easily, as
they are completely analogous to the corresponding equations for recti-
linear motion with constant acceleration covered in Art. 2/2.

The graphical relationships described for s, v, a, and t in Figs. 2/3
and 2/4 may be used for �, �, and � merely by substituting the corre-
sponding symbols. You should sketch these graphical relations for plane

 � � �0 � �0t � 12 

�t2

 �2 � �0 

2 � 2�(� � �0)

 � � �0 � �t

 � d� � � d�   or   �̇  d �̇  � �̈  d�

 � � d�
dt

 � �̇   or   � � d
2�

dt2
 � �̈

� � d�
dt

 � �̇

KEY CONCEPTS
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rotation. The mathematical procedures for obtaining rectilinear velocity
and displacement from rectilinear acceleration may be applied to rota-
tion by merely replacing the linear quantities by their corresponding an-
gular quantities.

Rotation about a Fixed Axis
When a rigid body rotates about a fixed axis, all points other than

those on the axis move in concentric circles about the fixed axis. Thus,
for the rigid body in Fig. 5/3 rotating about a fixed axis normal to the
plane of the figure through O, any point such as A moves in a circle of
radius r. From the previous discussion in Art. 2/5, you should already be
familiar with the relationships between the linear motion of A and the
angular motion of the line normal to its path, which is also the angular
motion of the rigid body. With the notation � � and � � � for the
angular velocity and angular acceleration, respectively, of the body we
have Eqs. 2/11, rewritten as

(5/2)

These quantities may be expressed alternatively using the cross-prod-
uct relationship of vector notation. The vector formulation is especially
important in the analysis of three-dimensional motion. The angular veloc-
ity of the rotating body may be expressed by the vector � normal to the
plane of rotation and having a sense governed by the right-hand rule, as
shown in Fig. 5/4a. From the definition of the vector cross product, we see
that the vector v is obtained by crossing � into r. This cross product gives
the correct magnitude and direction for v and we write

The order of the vectors to be crossed must be retained. The reverse
order gives r � � � �v.

v � ṙ � � � r

 at � r�

 an � r�2 � v2/r � v�

 v � r�

�̈�̇�̇

A

O

v
ω

r

·
θ

(a)

AO

v =     ×  r
ω

ωα

(b)

·=

×    r)
× (

an = ωω ω 
×  rat = α   α  

ω 

Figure 5/4
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α
ω

t

v = rω

at = rα

2ωan = r
n

r

Figure 5/3
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The acceleration of point A is obtained by differentiating the cross-
product expression for v, which gives

Here � � stands for the angular acceleration of the body. Thus, the
vector equivalents to Eqs. 5/2 are

(5/3)

and are shown in Fig. 5/4b.
For three-dimensional motion of a rigid body, the angular-velocity

vector � may change direction as well as magnitude, and in this case,
the angular acceleration, which is the time derivative of angular veloc-
ity, � � will no longer be in the same direction as �.�̇,

 at � � � r

 an � � � (� � r)

 v � � � r

�̇

 � � � v � � � r

 � � � (� � r) � �̇ � r

 a � v̇ � � � ṙ � �̇ � r
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This pulley-cable system is part of
an elevator mechanism.

These pulleys and cables are part of the San Francisco cable-car system.

©
 S

te
ve

n
 H

a
g

g
a

rd
/A

la
m

y

©
 N

o
m

a
d

/S
U

P
ER

ST
O

C
K

c05.qxd  2/10/12  10:07 AM  Page 330



SAMPLE PROBLEM 5/1

A flywheel rotating freely at 1800 rev/min clockwise is subjected to a vari-
able counterclockwise torque which is first applied at time t � 0. The torque pro-
duces a counterclockwise angular acceleration � � 4t rad/s2, where t is the time
in seconds during which the torque is applied. Determine (a) the time required
for the flywheel to reduce its clockwise angular speed to 900 rev/min, (b) the time
required for the flywheel to reverse its direction of rotation, and (c) the total
number of revolutions, clockwise plus counterclockwise, turned by the flywheel
during the first 14 seconds of torque application.

Solution. The counterclockwise direction will be taken arbitrarily as positive.

(a) Since � is a known function of the time, we may integrate it to obtain angular
velocity. With the initial angular velocity of �1800(2�)/60 � �60� rad/s, we have

Substituting the clockwise angular speed of 900 rev/min or � � �900(2�)/60 �
�30� rad/s gives

Ans.

(b) The flywheel changes direction when its angular velocity is momentarily
zero. Thus,

Ans.

(c) The total number of revolutions through which the flywheel turns during
14 seconds is the number of clockwise turns N1 during the first 9.71 seconds,
plus the number of counterclockwise turns N2 during the remainder of the inter-
val. Integrating the expression for � in terms of t gives us the angular displace-
ment in radians. Thus, for the first interval

or N1 � 1220/2� � 194.2 revolutions clockwise.
For the second interval

or N2 � 410/2� � 65.3 revolutions counterclockwise. Thus, the total number of
revolutions turned during the 14 seconds is

Ans.

We have plotted � versus t and we see that �1 is represented by the negative
area and �2 by the positive area. If we had integrated over the entire interval in
one step, we would have obtained ��2� � ��1�.

N � N1 � N2 � 194.2 � 65.3 � 259 rev

 �2 � [�60�t � 23 t3]14
9.71

 � 410 rad

 ��2

0
 d� � �14

9.71
 (�60� � 2t2) dt

 �1 � [�60�t � 23 t3]9.71
0

 � �1220 rad

 ��1

0
 d� � �9.71

0
 (�60� � 2t2) dt[d� � � dt]

0 � �60� � 2t2   t2 � 30�   t � 9.71 s

�30� � �60� � 2t2   t2 � 15�   t � 6.86 s

[d� � � dt]    ��

�60�
 d� � � t

0
 4t dt   � � �60� � 2t2
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�

�

Angular
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  , rad/s
CCW

ω

–60π

64.8π

0
0

142 10 126 84

6.86 9.71

–30π
θ1

θ2

Time t, s

� We could have converted the origi-
nal expression for � into the units
of rev/s2, in which case our inte-
grals would have come out directly
in revolutions.

� Again note that the minus sign sig-
nifies clockwise in this problem.

Helpful Hints

� We must be very careful to be consis-
tent with our algebraic signs. The
lower limit is the negative (clockwise)
value of the initial angular velocity.
Also we must convert revolutions to
radians since � is in radian units.
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SAMPLE PROBLEM 5/2

The pinion A of the hoist motor drives gear B, which is attached to the
hoisting drum. The load L is lifted from its rest position and acquires an upward
velocity of 3 ft/sec in a vertical rise of 4 ft with constant acceleration. As the load
passes this position, compute (a) the acceleration of point C on the cable in con-
tact with the drum and (b) the angular velocity and angular acceleration of the
pinion A.

Solution. (a) If the cable does not slip on the drum, the vertical velocity and
acceleration of the load L are, of necessity, the same as the tangential velocity v
and tangential acceleration at of point C. For the rectilinear motion of L with
constant acceleration, the n- and t-components of the acceleration of C become

Ans.

(b) The angular motion of gear A is determined from the angular motion of
gear B by the velocity v1 and tangential acceleration a1 of their common point of
contact. First, the angular motion of gear B is determined from the motion of
point C on the attached drum. Thus,

Then from v1 � rA�A � rB�B and a1 � rA�A � rB�B, we have

Ans.

Ans.

SAMPLE PROBLEM 5/3

The right-angle bar rotates clockwise with an angular velocity which is de-
creasing at the rate of 4 rad/s2. Write the vector expressions for the velocity and
acceleration of point A when � � 2 rad/s.

Solution. Using the right-hand rule gives

The velocity and acceleration of A become

Ans.

Ans.

The magnitudes of v and a are

v � �0.62 � 0.82 � 1 m/s   and   a � �2.82 � 0.42 � 2.83 m/s2

 a � �2.8i � 0.4j m/s2[a � an � at]

 at � 4k � (0.4i � 0.3j) � �1.2i � 1.6j m/s2[at � � � r]

 an � �2k � (0.6i � 0.8j) � �1.6i � 1.2j m/s2[an � � � (� � r)]

v � �2k � (0.4i � 0.3j) � 0.6i � 0.8j m/s[v � � � r]

� � �2k rad/s   and   � � �4k rad/s2

 �A � 
rB

rA
 �B � 

18/12
6/12

 0.562 � 1.688 rad/sec2 CW

 �A � 
rB

rA
 �B � 

18/12
6/12

 1.5 � 4.5 rad/sec CW

 �B � at /r � 1.125/(24/12) � 0.562 rad/sec2[at � r�]

 �B � v/r � 3/(24/12) � 1.5 rad/sec[v � r�]

 aC � �(4.5)2 � (1.125)2 � 4.64 ft/sec2[a � �an 

2 � at 

2]

 an � 32/(24/12) � 4.5 ft/sec2[an � v2/r]

 a � at � v2/2s � 32/[2(4)] � 1.125 ft/sec2[v2 � 2as]
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C

B

A

12″

36″ 48″

L

4′

3 ft /sec

x

y

A

0.4 m

0.3 m

ω

C

B

A
6″

18″

v = 3 ft /sec

a = 1.125 ft /sec2

at = 1.125 ft /sec2

Aα

Bα

A
v1

a1

aC

ω

Bω an = 4.5 ft /sec2

�

Helpful Hint

� Recognize that a point on the cable
changes the direction of its velocity
after it contacts the drum and acquires
a normal component of acceleration.
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PROBLEMS
Introductory Problems

5/1 The circular disk of radius rotates about a
fixed axis through point O with the angular properties

rad/s and rad/s2 with directions as shown
in the figure. Determine the instantaneous values of
the velocity and acceleration of point A.

Problem 5/1

5/2 The triangular plate rotates about a fixed axis
through point O with the angular properties indi-
cated. Determine the instantaneous velocity and
acceleration of point A. Take all given variables to be
positive.

Problem 5/2

ω
α

h

b

O

x

y

A

ω α

A

r
O

x

y

r––
4

� � 3� � 2

r � 0.16 m
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5/3 The body is formed of slender rod and rotates about
a fixed axis through point O with the indicated angu-
lar properties. If rad/s and rad/s2, deter-
mine the instantaneous velocity and acceleration of
point A.

Problem 5/3

5/4 A torque applied to a flywheel causes it to accelerate
uniformly from a speed of 200 rev/min to a speed of
800 rev/min in 4 seconds. Determine the number of
revolutions N through which the wheel turns during
this interval. (Suggestion: Use revolutions and min-
utes for units in your calculations.)

5/5 The drive mechanism imparts to the semicircular plate
simple harmonic motion of the form ,
where is the amplitude of the oscillation and is its
circular frequency. Determine the amplitudes of the
angular velocity and angular acceleration and state
where in the motion cycle these maxima occur. Note
that this motion is not that of a freely pivoted and 
undriven body undergoing arbitrarily large-amplitude
angular motion.

Problem 5/5

θ

O

�0�0

�0t� � �0 sin

0.2 m

0.5 m

ω

20°

O

x

y

A

α

� � 7� � 4
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5/10 The bent flat bar rotates about a fixed axis through
point O. At the instant depicted, its angular proper-
ties are rad/s and with directions
as indicated in the figure. Determine the instanta-
neous velocity and acceleration of point A.

Problem 5/10

Representative Problems

5/11 The angular acceleration of a body which is rotating
about a fixed axis is given by , where the
constant (no units). Determine the angular
displacement and time elapsed when the angular ve-
locity has been reduced to one-third its initial value

rad/s.

5/12 The angular position of a radial line in a rotating
disk is given by the clockwise angle 
where is in radians and t is in seconds. Calculate
the angular displacement of the disk during the
interval in which its angular acceleration increases
from 42 rad/s2 to 66 rad/s2.

5/13 In order to test an intentionally weak adhesive, the
bottom of the small 0.3-kg block is coated with adhe-
sive and then the block is pressed onto the turntable
with a known force. The turntable starts from rest
at time and uniformly accelerates with

. If the adhesive fails at exactly 
determine the ultimate shear force which the adhe-
sive supports. What is the angular displacement of
the turntable at the time of failure?

t � 3 s,� � 2 rad/s2
t � 0

��

�

� � 2t3 � 3t2 � 4,

�0 � 12

k � 0.1
� � �k�2

0.3 m

0.5 m

O

A

x

y

ω

30°

105°

α

� � 8 rad/s2� � 5
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5/6 The mass center G of the car has a velocity of 40
mi/hr at position A and 1.52 seconds later at B has a
velocity of 50 mi/hr. The radius of curvature of the
road at B is 180 ft. Calculate the angular velocity of
the car at B and the average angular velocity of
the car between A and B.

Problem 5/6

5/7 The rectangular plate is rotating about its corner axis
through O with a constant angular velocity 
rad/s. Determine the magnitudes of the velocity v and
acceleration a of the corner A by (a) using the scalar
relations and (b) using the vector relations.

Problem 5/7

5/8 If the rectangular plate of Prob. 5/7 starts from rest
and point B has an initial acceleration of 5.5 m/s2,
determine the distance b if the plate reaches an angu-
lar speed of 300 rev/min in 2 seconds with a constant
angular acceleration.

5/9 A shaft is accelerated from rest at a constant rate to a
speed of 3600 rev/min and then is immediately decel-
erated to rest at a constant rate within a total time of
10 seconds. How many revolutions N has the shaft
turned during this interval?

z
y

x

b

300 mm400 mm

O

B

A

ω

� � 10

30°

18″
A

B

G

G

�av

�
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Problem 5/13

5/14 The plate OAB forms an equilateral triangle which
rotates counterclockwise with increasing speed
about point O. If the normal and tangential compo-
nents of acceleration of the centroid C at a certain
instant are 80 m/s2 and 30 m/s2, respectively, deter-
mine the values of and at this same instant. The
angle is the angle between line AB and the fixed
horizontal axis.

Problem 5/14

A

B

C

Oθ
150 mm

150 m
m

15
0 m

m

�

�̈�̇

0.4 m

O

P

ω
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5/15 Experimental data for a rotating control element
reveal the plotted relation between angular velocity
and the angular coordinate as shown. Approximate
the angular acceleration of the element when

Problem 5/15

5/16 The rotating arm starts from rest and acquires a
rotational speed rev/min in 2 seconds with
constant angular acceleration. Find the time t after
starting before the acceleration vector of end P
makes an angle of with the arm OP.

Problem 5/16

P

N

O

6″

45�

N � 600

0
0

2

4

6

8

10

2 4 6 8 10
, radθ

, r
ad

/s
ω

� � 6 rad.
�

�
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Problem 5/19

5/20 Point A of the circular disk is at the angular position
at time The disk has angular velocity

at and subsequently experiences
a constant angular acceleration Deter-
mine the velocity and acceleration of point A in
terms of fixed i and j unit vectors at time 

Problem 5/20

5/21 Repeat Prob. 5/20, except now the angular accelera-
tion of the disk is given by where t is in sec-
onds and is in radians per second squared.
Determine the velocity and acceleration of point A in
terms of fixed i and j unit vectors at time s.

5/22 Repeat Prob. 5/20, except now the angular accelera-
tion of the disk is given by , where is in ra-
dians per second and is in radians per second
squared. Determine the velocity and acceleration of
point A in terms of fixed i and j unit vectors at time

s.

5/23 The disk of Prob. 5/20 is at the angular position 
at time . Its angular velocity at is 
rad/s, and then it experiences an angular acceleration
given by , where is in radians and is in
radians per second squared. Determine the angular
position of point A at time s.t � 2

��� � 2�

�0 � 0.1t � 0t � 0
� � 0

t � 1

�

�� � 2�

t � 2

�

� � 2t,

α

θ

A
O

200 mm

x

y

t � 1 s.

� � 2 rad/s2.
t � 0�0 � 0.1 rad/s

t � 0.� � 0

A

B

C

O

y

x

4″

45°
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5/17 The belt-driven pulley and attached disk are rotat-
ing with increasing angular velocity. At a certain in-
stant the speed v of the belt is 1.5 m/s, and the total
acceleration of point A is 75 m/s2. For this instant
determine (a) the angular acceleration of the pul-
ley and disk, (b) the total acceleration of point B, and
(c) the acceleration of point C on the belt.

Problem 5/17

5/18 Magnetic tape is being fed over and around the light
pulleys mounted in a computer. If the speed v of the
tape is constant and if the magnitude of the accelera-
tion of point A on the tape is 4/3 times that of point B,
calculate the radius r of the smaller pulley.

Problem 5/18

5/19 The circular disk rotates about its center O. For the
instant represented, the velocity of A is 
in./sec and the tangential acceleration of B is

in./sec2. Write the vector expressions for
the angular velocity and angular acceleration of
the disk. Use these results to write the vector ex-
pression for the acceleration of point C.

��

(aB)t � 6i

vA � 8j

v

v

A

B

4″

r

150 mm

150 mm

A
C

v

v

B

�
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5/24 During its final spin cycle, a front-loading washing
machine has a spin rate of 1200 rev/min. Once power
is removed, the drum is observed to uniformly decel-
erate to rest in 25 s. Determine the number of revolu-
tions made during this period as well as the number
of revolutions made during the first half of it.

Problem 5/24

5/25 The solid cylinder rotates about its z-axis. At the
instant represented, point P on the rim has a veloc-
ity whose x-component is ft/sec, and .
Determine the angular velocity � of line AB on the
face of the cylinder. Does the element line BC have
an angular velocity?

Problem 5/25

5/26 The two V-belt pulleys form an integral unit and ro-
tate about the fixed axis at O. At a certain instant,
point A on the belt of the smaller pulley has a veloc-
ity , and point B on the belt of the larger
pulley has an acceleration as shown.
For this instant determine the magnitude of the
acceleration of point C and sketch the vector in
your solution.

aC

aB � 45 m/s2
vA � 1.5 m/s

C

y

z

x
P

B

A

6″
θ

� � 20��4.2

ω

O
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Problem 5/26

5/27 A clockwise variable torque is applied to a flywheel
at time causing its clockwise angular accelera-
tion to decrease linearly with angular displacement 

during 20 revolutions of the wheel as shown. If the
clockwise speed of the flywheel was 300 rev/min at

, determine its speed N after turning the 20
revolutions. (Suggestion: Use units of revolutions
instead of radians.)

Problem 5/27

5/28 The design characteristics of a gear-reduction unit
are under review. Gear B is rotating clockwise with
a speed of 300 rev/min when a torque is applied to
gear A at time s to give gear A a counterclock-
wise acceleration which varies with time for a
duration of 4 seconds as shown. Determine the speed

of gear B when 

Problem 5/28

t � 6 s.NB

�

t � 2

, rev/s2α

, revθ
0

0

0.6

1.8

20

t � 0

�

t � 0

800
mm

360
mm

B

aB

AC

vA

150 mm

O

2 6
t, s

0
0

4

8

A, CCW
rad
——
s2α

2bb

A

B
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5/3 Absolute Motion
We now develop the approach of absolute-motion analysis to de-

scribe the plane kinematics of rigid bodies. In this approach, we make
use of the geometric relations which define the configuration of the body
involved and then proceed to take the time derivatives of the defining
geometric relations to obtain velocities and accelerations.

In Art. 2/9 of Chapter 2 on particle kinematics, we introduced the
application of absolute-motion analysis for the constrained motion of
connected particles. For the pulley configurations treated, the relevant
velocities and accelerations were determined by successive differentia-
tion of the lengths of the connecting cables. In this earlier treatment,
the geometric relations were quite simple, and no angular quantities
had to be considered. Now that we will be dealing with rigid-body mo-
tion, however, we find that our defining geometric relations include both
linear and angular variables and, therefore, the time derivatives of these
quantities will involve both linear and angular velocities and linear and
angular accelerations.

In absolute-motion analysis, it is essential that we be consistent
with the mathematics of the description. For example, if the angular po-
sition of a moving line in the plane of motion is specified by its counter-
clockwise angle � measured from some convenient fixed reference axis,
then the positive sense for both angular velocity and angular acceler-
ation will also be counterclockwise. A negative sign for either quantity
will, of course, indicate a clockwise angular motion. The defining rela-
tions for linear motion, Eqs. 2/1, 2/2, and 2/3, and the relations involving
angular motion, Eqs. 5/1 and 5/2 or 5/3, will find repeated use in the mo-
tion analysis and should be mastered.

The absolute-motion approach to rigid-body kinematics is quite
straightforward, provided the configuration lends itself to a geometric
description which is not overly complex. If the geometric configuration is
awkward or complex, analysis by the principles of relative motion may be
preferable. Relative-motion analysis is treated in this chapter beginning
with Art. 5/4. The choice between absolute- and relative-motion analyses
is best made after experience has been gained with both approaches.

The next three sample problems illustrate the application of absolute-
motion analysis to three commonly encountered situations. The kine-
matics of a rolling wheel, treated in Sample Problem 5/4, is especially
important and will be useful in much of the problem work because the
rolling wheel in various forms is such a common element in mechanical
systems.

�̈

�̇
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SAMPLE PROBLEM 5/4

A wheel of radius r rolls on a flat surface without slipping. Determine the
angular motion of the wheel in terms of the linear motion of its center O. Also
determine the acceleration of a point on the rim of the wheel as the point comes
into contact with the surface on which the wheel rolls.

Solution. The figure shows the wheel rolling to the right from the dashed to
the full position without slipping. The linear displacement of the center O is s,
which is also the arc length C�A along the rim on which the wheel rolls. The ra-
dial line CO rotates to the new position C�O� through the angle �, where � is
measured from the vertical direction. If the wheel does not slip, the arc C�A must
equal the distance s. Thus, the displacement relationship and its two time deriv-
atives give

Ans.

where vO � aO � � � � and � � � The angle �, of course, must
be in radians. The acceleration aO will be directed in the sense opposite to that of
vO if the wheel is slowing down. In this event, the angular acceleration � will
have the sense opposite to that of �.

The origin of fixed coordinates is taken arbitrarily but conveniently at the
point of contact between C on the rim of the wheel and the ground. When point
C has moved along its cycloidal path to C�, its new coordinates and their time de-
rivatives become

For the desired instant of contact, � � 0 and

Ans.

Thus, the acceleration of the point C on the rim at the instant of contact with
the ground depends only on r and � and is directed toward the center of the
wheel. If desired, the velocity and acceleration of C at any position � may be ob-
tained by writing the expressions v � � and a � �

Application of the kinematic relationships for a wheel which rolls without
slipping should be recognized for various configurations of rolling wheels such as
those illustrated on the right. If a wheel slips as it rolls, the foregoing relations
are no longer valid.

ÿj.ẍiẏjẋi

ẍ � 0   and   ÿ � r�2

 � aO(1 � cos �) � r�2 sin �  � aO sin � � r�2 cos �

 ẍ � v̇O(1 � cos �) � vO �̇  sin �  ÿ � v̇O sin � � vO �̇  cos �

 ẋ � r �̇ (1 � cos �) � vO(1 � cos �)    ẏ � r �̇  sin � � vO sin �

 x � s � r sin � � r(� � sin �)  y � r � r cos � � r(1 � cos �)

�̈ .�̇�̇ ,s̈,v̇Oṡ,

 aO � r�

 vO � r�

 s � r�
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Helpful Hints

� These three relations are not entirely
unfamiliar at this point, and their ap-
plication to the rolling wheel should
be mastered thoroughly.

� Clearly, when � � 0, the point of
contact has zero velocity so that �

� 0. The acceleration of the con-
tact point on the wheel will also be
obtained by the principles of relative
motion in Art. 5/6.

ẏ
ẋ
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SAMPLE PROBLEM 5/5

The load L is being hoisted by the pulley and cable arrangement shown.
Each cable is wrapped securely around its respective pulley so it does not slip.
The two pulleys to which L is attached are fastened together to form a single
rigid body. Calculate the velocity and acceleration of the load L and the corre-
sponding angular velocity � and angular acceleration � of the double pulley
under the following conditions:

Case (a) Pulley 1: �1 � � 0 (pulley at rest)
Pulley 2: �2 � 2 rad/sec, �2 � � �3 rad/sec2

Case (b) Pulley 1: �1 � 1 rad/sec, �1 � � 4 rad/sec2

Pulley 2: �2 � 2 rad/sec, �2 � � �2 rad/sec2

Solution. The tangential displacement, velocity, and acceleration of a point on
the rim of pulley 1 or 2 equal the corresponding vertical motions of point A or B
since the cables are assumed to be inextensible.

Case (a). With A momentarily at rest, line AB rotates to AB� through the angle
d� during time dt. From the diagram we see that the displacements and their
time derivatives give

With vD � r2�2 � 4(2) � 8 in./sec and aD � r2�2 � 4(�3) � �12 in./sec2, we have
for the angular motion of the double pulley

Ans.

Ans.

The corresponding motion of O and the load L is

Ans.

Ans.

Case (b). With point C, and hence point A, in motion, line AB moves to A�B�
during time dt. From the diagram for this case, we see that the displacements
and their time derivatives give

we have for the angular motion of the double pulley

Ans.

Ans.

The corresponding motion of O and the load L is

Ans.

Ans. aO � (aA)t � AO� � aC � AO� � 16 � 4(�2) � 8 in./sec2

 vO � vA � AO� � vC � AO� � 4 � 4(1/3) � 16/3 in./sec

 � � 
(aB)t � (aA)t

AB
 � 

aD � aC

AB
 � �8 � 16

12
 � �2 rad/sec2 (CW)

 � � 
vB � vA

AB
 � 

vD � vC

AB
 � 8 � 4

12
 � 1/3 rad/sec (CCW)

 aC � r1�1 � 4(4) � 16 in./sec2    aD � r2�2 � 4(�2) � �8 in./sec2

 vC � r1�1 � 4(1) � 4 in./sec  vD � r2�2 � 4(2) � 8 in./secWith

 dsO � dsA � AO d�   vO � vA � AO�     aO � (aA)t � AO�

 dsB � dsA � AB d�   vB � vA � AB�   (aB)t � (aA)t � AB�

 aO � AO� � 4(�1) � �4 in./sec2

 vO � AO� � 4(2/3) � 8/3 in./sec

 � � (aB)t /AB � aD /AB � �12/12 � �1 rad/sec2 (CW)

 � � vB /AB � vD /AB � 8/12 � 2/3 rad/sec (CCW)

 dsO � AO d�  vO � AO�  aO � AO�

 dsB � AB d�    vB � AB�    (aB)t � AB�

�̇2

�̇1

�̇2

�̇1
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dsO

dsB vO

aO

(aB)t

vB

B′

dθ

A O B

Case (b)

dsA

dsO
dsB

dθ vA

vO

vB

aO

(aB)t

(aA)t

A′
B′

Helpful Hints

� Recognize that the inner pulley is a
wheel rolling along the fixed line of
the left-hand cable. Thus, the expres-
sions of Sample Problem 5/4 hold.

� Since B moves along a curved path, in
addition to its tangential component
of acceleration (aB)t, it will also have a
normal component of acceleration to-
ward O which does not affect the an-
gular acceleration of the pulley.

� The diagrams show these quantities
and the simplicity of their linear re-
lationships. The visual picture of the
motion of O and B as AB rotates
through the angle d� should clarify
the analysis.

� Again, as in case (a), the differential
rotation of line AB as seen from the
figure establishes the relation be-
tween the angular velocity of the pul-
ley and the linear velocities of points
A, O, and B. The negative sign for
(aB)t � aD produces the acceleration
diagram shown but does not destroy
the linearity of the relationships.

�

�

�

�
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SAMPLE PROBLEM 5/6

Motion of the equilateral triangular plate ABC in its plane is controlled by
the hydraulic cylinder D. If the piston rod in the cylinder is moving upward at the
constant rate of 0.3 m/s during an interval of its motion, calculate for the instant
when � � 30� the velocity and acceleration of the center of the roller B in the hor-
izontal guide and the angular velocity and angular acceleration of edge CB.

Solution. With the x-y coordinates chosen as shown, the given motion of A is
vA � � 0.3 m/s and aA � � 0. The accompanying motion of B is given by x and
its time derivatives, which may be obtained from x2 � y2 � b2. Differentiating gives

With y � b sin �, x � b cos �, and � 0, the expressions become

Substituting the numerical values vA � 0.3 m/s and � � 30� gives

Ans.

Ans.

The negative signs indicate that the velocity and acceleration of B are both to
the right since x and its derivatives are positive to the left.

The angular motion of CB is the same as that of every line on the plate, in-
cluding AB. Differentiating y � b sin � gives

The angular acceleration is

Substitution of the numerical values gives

Ans.

Ans.

Both � and � are counterclockwise since their signs are positive in the sense of
the positive measurement of �.

 � � 
(0.3)2

(0.2)2
 � 2

�3�
2
 1
�3

 � 1.732 rad/s2

 � � 0.3
0.2

 2
�3

 � 1.732 rad/s

� � �̇ � 
vA

b
 �̇  sec � tan � � 

vA 

2

b2
 sec2 � tan �

ẏ � b �̇  cos �   � � �̇  � 
vA

b
 sec �

 aB � �
(0.3)2(2/�3)3

0.2
 � �0.693 m/s2

 vB � �0.3� 1
�3� � �0.1732 m/s

 aB � ẍ � �
vA 

2

b
 sec3 �

 vB � ẋ � �vA tan �

ÿ

 xẍ � ẋ2 � yÿ � ẏ2 � 0  ẍ � �
ẋ2 � ẏ2

x
 � 

y
x
 ÿ

 xẋ � yẏ � 0    ẋ � �
y
x
 ẏ

ÿẏ
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x

y

B

C

A

b

b

b = 0.2 m

D
x

y
θ

� Helpful Hint

� Observe that it is simpler to differ-
entiate a product than a quotient.
Thus, differentiate � � 0
rather than � �yẏ/x.ẋ

yẏxẋ
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5/32 The small vehicle rides on rails and is driven by the
400-mm-diameter friction wheel turned by an
electric motor. Determine the speed v of the vehicle
if the friction-drive wheel is rotating at a speed of
300 rev/min and if no slipping occurs.

Problem 5/32

5/33 The Scotch-yoke mechanism converts rotational mo-
tion of the disk to oscillatory translation of the shaft.
For given values of , and d, determine the
velocity and acceleration of point P of the shaft.

Problem 5/33

5/34 Slider A moves in the horizontal slot with a constant
speed v for a short interval of motion. Determine the
angular velocity of bar AB in terms of the displace-
ment 

Problem 5/34

xA

B

A
v

L

60°

xA.
�

α

ω

θ P

A

r

O

d

�, �, �, r

v800
mm

N

400
mm
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PROBLEMS
Introductory Problems

5/29 The fixed hydraulic cylinder C imparts a constant
upward velocity v to the collar B, which slips freely
on rod OA. Determine the resulting angular velocity

in terms of v, the displacement s of point B, and
the fixed distance d.

Problem 5/29

5/30 Point A is given a constant acceleration a to the right
starting from rest with x essentially zero. Determine
the angular velocity of link AB in terms of x and a.

Problem 5/30

5/31 The telephone-cable reel is rolled down the incline by
the cable leading from the upper drum and wrapped
around the inner hub of the reel. If the upper drum is
turned at the constant rate calculate
the time required for the center of the reel to move
100 ft along the incline. No slipping occurs.

Problem 5/31

1ω

48″

16″
24″

�1 � 2 rad/sec,

a

x
A

C

B

b b

�

O

B A

C

d

s
v

θ

�OA
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5/35 The cables at A and B are wrapped securely around
the rims and the hub of the integral pulley as shown.
If the cables at A and B are given upward velocities
of 3 ft/sec and 4 ft/sec, respectively, calculate the ve-
locity of the center O and the angular velocity of the
pulley.

Problem 5/35

5/36 The wheel of radius r rolls without slipping, and its
center O has a constant velocity to the right. De-
termine expressions for the magnitudes of the veloc-
ity v and acceleration a of point A on the rim by
differentiating its x- and y-coordinates. Represent
your results graphically as vectors on your sketch
and show that v is the vector sum of two vectors,
each of which has a magnitude 

Problem 5/36

y

x

A

r

Oθ
vO

xO

vO.

vO

3 ft /sec 4 ft /sec

4″

6″

AA BB

O

B
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5/37 Determine the acceleration of the shaft B for 
if the crank OA has an angular acceleration

and an angular velocity at
this position. The spring maintains contact between
the roller and the surface of the plunger.

Problem 5/37

5/38 The collar C moves to the left on the fixed guide with
speed v. Determine the angular velocity as a
function of v, the collar position s, and the height h.

Problem 5/38

v
s

h
O

A

B

C

θ

�OA

θ ω
O

B

20 mm

80 mm

A

�̇  � 4 rad/s�̈  � 8 rad/s2

� � 60�
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Representative Problems

5/42 Calculate the angular velocity of the slender bar
AB as a function of the distance x and the constant
angular velocity of the drum.

Problem 5/42

5/43 The circular cam is mounted eccentrically about its
fixed bearing at O and turns counterclockwise at the
constant angular velocity The cam causes the fork
A and attached control rod to oscillate in the hori-
zontal x-direction. Write expressions for the velocity

and acceleration of the control rod in terms of
the angle measured from the vertical. The contact
surfaces of the fork are vertical.

Problem 5/43

5/44 Rotation of the lever OA is controlled by the motion
of the contacting circular disk whose center is given
a horizontal velocity v. Determine the expression for
the angular velocity of the lever OA in terms of x.

Problem 5/44

v B

A

x

r

O

�

�

axvx

�.

B

A
h

x

r

0ω

�0

�
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5/39 The linear actuator is designed for rapid horizontal
velocity v of jaw C for a slow change in the distance
between A and B. If the hydraulic cylinder decreases
this distance at the rate u, determine the horizontal
velocity of jaw C in terms of the angle 

Problem 5/39

5/40 The telephone-cable reel rolls without slipping on
the horizontal surface. If point A on the cable has a
velocity to the right, compute the veloc-
ity of the center O and the angular velocity of the
reel. (Be careful not to make the mistake of assum-
ing that the reel rolls to the left.)

Problem 5/40

5/41 As end A of the slender bar is pulled to the right
with the velocity v, the bar slides on the surface of the
fixed half-cylinder. Determine the angular velocity

of the bar in terms of x.

Problem 5/41

A
r

x

v

B

θ

� � �̇

1.8 m

0.6 m vA

A

O

�

vA � 0.8 m/s

A

B

C
L—
2

L—
2

L—
2

L—
2

θ

�.

A
Ob

x

θ

ω
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5/45 Motion of the sliders B and C in the horizontal guide
is controlled by the vertical motion of the slider A.
If A is given an upward velocity determine as a
function of the magnitude v of the equal and oppo-
site velocities which B and C have as they move
toward one another.

Problem 5/45

5/46 Derive an expression for the upward velocity v of
the car hoist in terms of . The piston rod of the
hydraulic cylinder is extending at the rate .

Problem 5/46

5/47 The cable from drum A turns the double wheel B,
which rolls on its hubs without slipping. Determine
the angular velocity and angular acceleration of
drum C for the instant when the angular velocity
and angular acceleration of A are and

respectively, both in the counterclockwise
direction.
3 rad/sec2,

4 rad/sec

��

θθ

L

b2b
b

ṡ
�

2b 2b

b b

bb

B C

A

vA 

θ θ

�

vA,
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Problem 5/47

5/48 The flywheel turns clockwise with a constant speed
of The connecting link AB slides
through the pivoted collar at C. Calculate the angu-
lar velocity of AB for the instant when 

Problem 5/48

5/49 For the instant represented when the
piston rod of the hydraulic cylinder C imparts a ver-
tical motion to the pin B consisting of 
and For this instant determine the
angular velocity and the angular acceleration of
link OA. Members OA and AB make equal angles
with the horizontal at this instant.

Problem 5/49

y

O

B

C

A

200 mm

300 mm

��

ÿ � �100 mm/s2.
ẏ � 400 mm/s

y � 160 mm,

16″

8″

A

θ

B

C

O

� �  60�.�

600 rev/min.

10″

6″

4″

A

C

B

4″
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Problem 5/52

5/53 Angular oscillation of the slotted link is achieved by
the crank OA, which rotates clockwise at the steady
speed Determine an expression for
the angular velocity of the slotted link in terms of .

Problem 5/53

5/54 Link OA revolves counterclockwise with an angular
velocity of Link AB slides through the piv-
oted collar at C. Determine the angular velocity of
AB when 

Problem 5/54

� � 40�.
�

3 rad/sec.

A

B

O

N
2.5″

9″

θβ

��̇

N � 120 rev/min.

v

s

r

ω
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5/50 Link OA has an angular velocity as it
passes the position shown. Determine the corre-
sponding angular velocity of the slotted link CB.
Solve by considering the relation between the infini-
tesimal displacements involved.

Problem 5/50

5/51 Show that the expressions and hold
for the motion of the center O of the wheel which
rolls on the concave or convex circular arc, where 
and are the absolute angular velocity and accelera-
tion, respectively, of the wheel. (Hint: Follow the ex-
ample of Sample Problem 5/4 and allow the wheel to
roll a small distance. Be very careful to identify the
correct absolute angle through which the wheel
turns in each case in determining its angular veloc-
ity and angular acceleration.)

Problem 5/51

5/52 Film passes through the guide rollers shown and is
being wound onto the reel, which is turned at a con-
stant angular velocity . Determine the acceleration

of the film as it enters the rollers. The thick-
ness of the film is t, and s is sufficiently large so that
the change in the angle made by the film with the
horizontal is negligible.

a � v̇
�

�

�

at � r�v � r�

O

C A

B

320 mm
120 mm

80
mm

OAω

�CB

�OA � 8 rad/s 

tR

R

O

r

t
O

r

4″

8″

A

O
C

B

θ
3 rad/sec
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5/55 The piston rod of the hydraulic cylinder gives point
B a velocity as shown. Determine the magnitude

of the velocity of point C in terms of .

Problem 5/55

5/56 The Geneva wheel is a mechanism for producing
intermittent rotation. Pin P in the integral unit of
wheel A and locking plate B engages the radial slots
in wheel C, thus turning wheel C one-fourth of a rev-
olution for each revolution of the pin. At the engage-
ment position shown, For a constant
clockwise angular velocity of wheel A,
determine the corresponding counterclockwise angu-
lar velocity of wheel C for (Note that the
motion during engagement is governed by the geom-
etry of triangle with changing .)

Problem 5/56

200 mm

P

A

C
B

O1 O2

200/  2
mm

200/  2
mm

θ
1ω 2ω

�O1O2P

� � 20�.�2

�1 � 2 rad/s
� � 45�.
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θ b

b

b

O

A

B

C

�vC
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5/57 One of the most common mechanisms is the slider-
crank. Express the angular velocity and angular
acceleration of the connecting rod AB in terms
of the crank angle for a given constant crank speed

Take and to be positive counterclock-
wise.

Problem 5/57

5/58 The rod AB slides through the pivoted collar as end
A moves along the slot. If A starts from rest at 
and moves to the right with a constant acceleration
of , calculate the angular acceleration of
AB at the instant when 

Problem 5/58

x
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B

C
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�4 in./sec2

x � 0
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5/4 Relative Velocity
The second approach to rigid-body kinematics is to use the principles

of relative motion. In Art. 2/8 we developed these principles for motion
relative to translating axes and applied the relative-velocity equation

[2/20]

to the motions of two particles A and B.

Relative Velocity Due to Rotation
We now choose two points on the same rigid body for our two parti-

cles. The consequence of this choice is that the motion of one point as
seen by an observer translating with the other point must be circular
since the radial distance to the observed point from the reference point
does not change. This observation is the key to the successful under-
standing of a large majority of problems in the plane motion of rigid
bodies.

This concept is illustrated in Fig. 5/5a, which shows a rigid body
moving in the plane of the figure from position AB to A�B� during time
�t. This movement may be visualized as occurring in two parts. First,
the body translates to the parallel position A�B� with the displacement
�rB. Second, the body rotates about B� through the angle ��. From the
nonrotating reference axes x�-y� attached to the reference point B�, you
can see that this remaining motion of the body is one of simple rotation
about B�, giving rise to the displacement �rA/B of A with respect to B. To
the nonrotating observer attached to B, the body appears to undergo
fixed-axis rotation about B with A executing circular motion as empha-
sized in Fig. 5/5b. Therefore, the relationships developed for circular
motion in Arts. 2/5 and 5/2 and cited as Eqs. 2/11 and 5/2 (or 5/3) de-
scribe the relative portion of the motion of point A.

Point B was arbitrarily chosen as the reference point for attachment
of our nonrotating reference axes x-y. Point A could have been used just
as well, in which case we would observe B to have circular motion about
A considered fixed as shown in Fig. 5/5c. We see that the sense of the

vA � vB � vA/B
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rotation, counterclockwise in this example, is the same whether we
choose A or B as the reference, and we see that �rB/A � ��rA/B.

With B as the reference point, we see from Fig. 5/5a that the total
displacement of A is

where �rA/B has the magnitude r�� as �� approaches zero. We note that
the relative linear motion �rA/B is accompanied by the absolute angular
motion ��, as seen from the translating axes x�-y�. Dividing the expres-
sion for �rA by the corresponding time interval �t and passing to the
limit, we obtain the relative-velocity equation

(5/4)

This expression is the same as Eq. 2/20, with the one restriction that the
distance r between A and B remains constant. The magnitude of the rel-
ative velocity is thus seen to be vA/B � (��rA/B�/�t) �

which, with � � becomes

(5/5)

Using r to represent the vector rA/B from the first of Eqs. 5/3, we may
write the relative velocity as the vector

(5/6)

where � is the angular-velocity vector normal to the plane of the motion
in the sense determined by the right-hand rule. A critical observation
seen from Figs. 5/5b and c is that the relative linear velocity is always
perpendicular to the line joining the two points in question.

Interpretation of the Relative-Velocity Equation
We can better understand the application of Eq. 5/4 by visualizing

the separate translation and rotation components of the equation.
These components are emphasized in Fig. 5/6, which shows a rigid body

vA/B � � � r

vA/B � r�

�̇ ,
lim

�tl0
 (r��/�t)lim

�tl0

vA � vB � vA/B

�rA � �rB � �rA/B
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in plane motion. With B chosen as the reference point, the velocity of A
is the vector sum of the translational portion vB, plus the rotational por-
tion vA/B � � � r, which has the magnitude vA/B � r�, where ��� �

the absolute angular velocity of AB. The fact that the relative linear ve-
locity is always perpendicular to the line joining the two points in ques-
tion is an important key to the solution of many problems. To reinforce
your understanding of this concept, you should draw the equivalent dia-
gram where point A is used as the reference point rather than B.

Equation 5/4 may also be used to analyze constrained sliding con-
tact between two links in a mechanism. In this case, we choose points A
and B as coincident points, one on each link, for the instant under con-
sideration. In contrast to the previous example, in this case, the two
points are on different bodies so they are not a fixed distance apart. This
second use of the relative-velocity equation is illustrated in Sample
Problem 5/10.

Solution of the Relative-Velocity Equation
Solution of the relative-velocity equation may be carried out by

scalar or vector algebra, or a graphical analysis may be employed. A
sketch of the vector polygon which represents the vector equation
should always be made to reveal the physical relationships involved.
From this sketch, you can write scalar component equations by project-
ing the vectors along convenient directions. You can usually avoid solv-
ing simultaneous equations by a careful choice of the projections.
Alternatively, each term in the relative-motion equation may be written
in terms of its i- and j-components, from which you will obtain two
scalar equations when the equality is applied, separately, to the coeffi-
cients of the i- and j-terms.

Many problems lend themselves to a graphical solution, particularly
when the given geometry results in an awkward mathematical expres-
sion. In this case, we first construct the known vectors in their correct
positions using a convenient scale. Then we construct the unknown vec-
tors which complete the polygon and satisfy the vector equation. Fi-
nally, we measure the unknown vectors directly from the drawing.

The choice of method to be used depends on the particular problem
at hand, the accuracy required, and individual preference and experi-
ence. All three approaches are illustrated in the sample problems which
follow.

Regardless of which method of solution we employ, we note that the
single vector equation in two dimensions is equivalent to two scalar
equations, so that at most two scalar unknowns can be determined. The
unknowns, for instance, might be the magnitude of one vector and the
direction of another. We should make a systematic identification of the
knowns and unknowns before attempting a solution.

�̇ ,
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SAMPLE PROBLEM 5/7

The wheel of radius r � 300 mm rolls to the right without slipping and has a
velocity vO � 3 m/s of its center O. Calculate the velocity of point A on the wheel
for the instant represented.

Solution I (Scalar-Geometric). The center O is chosen as the reference point
for the relative-velocity equation since its motion is given. We therefore write

where the relative-velocity term is observed from the translating axes x-y at-
tached to O. The angular velocity of AO is the same as that of the wheel which,
from Sample Problem 5/4, is � � vO/r � 3/0.3 � 10 rad/s. Thus, from Eq. 5/5 we
have

which is normal to AO as shown. The vector sum vA is shown on the diagram
and may be calculated from the law of cosines. Thus,

Ans.

The contact point C momentarily has zero velocity and can be used alterna-
tively as the reference point, in which case, the relative-velocity equation be-
comes vA � vC � vA/C � vA/C where

The distance � 436 mm is calculated separately. We see that vA is normal to
AC since A is momentarily rotating about point C.

Solution II (Vector). We will now use Eq. 5/6 and write

where

We now solve the vector equation

Ans.

The magnitude vA � � � 4.36 m/s and direction agree with
the previous solution.

�19�42 � (1.732)2

 � 4i � 1.732j m/s

 vO � 3i m/s

 r0 � 0.2(�i cos 30� � j sin 30�) � �0.1732i � 0.1j m

 � � �10k rad/s

vA � vO � vA/O � vO � � � r0

AC

vA/C � AC� � AC
 OC 

 vO � 0.436
0.300

 (3) � 4.36 m/s   vA � vA/C � 4.36 m/s

vA 

2 � 32 � 22 � 2(3)(2) cos 60� � 19 (m/s)2   vA � 4.36 m/s

vA/O � 0.2(10) � 2 m/s[vA/O � r0 �̇ ]

vA � vO � vA/O
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Helpful Hints

� Be sure to visualize vA/O as the veloc-
ity which A appears to have in its
circular motion relative to O.

� The vectors may also be laid off to
scale graphically and the magnitude
and direction of vA measured di-
rectly from the diagram.

� The velocity of any point on the
wheel is easily determined by using
the contact point C as the reference
point. You should construct the ve-
locity vectors for a number of points
on the wheel for practice.

� The vector � is directed into the
paper by the right-hand rule,
whereas the positive z-direction is
out from the paper; hence, the
minus sign.

�

�

�

�
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SAMPLE PROBLEM 5/8

Crank CB oscillates about C through a limited arc, causing crank OA to os-
cillate about O. When the linkage passes the position shown with CB horizontal
and OA vertical, the angular velocity of CB is 2 rad/s counterclockwise. For this
instant, determine the angular velocities of OA and AB.

Solution I (Vector). The relative-velocity equation vA � vB � vA/B is rewritten
as

where

Substitution gives

Matching coefficients of the respective i- and j-terms gives

the solutions of which are

Ans.

Solution II (Scalar-Geometric). Solution by the scalar geometry of the vec-
tor triangle is particularly simple here since vA and vB are at right angles for this
special position of the linkages. First, we compute vB, which is

and represent it in its correct direction as shown. The vector vA/B must be per-
pendicular to AB, and the angle � between vA/B and vB is also the angle made by
AB with the horizontal direction. This angle is given by

The horizontal vector vA completes the triangle for which we have

The angular velocities become

Ans.

Ans. �OA � 
vA

 OA 
 � 0.30

7
 1
0.100

 � 3/7 rad/s CW[� � v/r]

 � 6/7 rad/s CW

 �AB � 
vA/B

AB
 � 0.150

cos �
 cos �
0.250 � 0.075

[� � v/r]

 vA � vB tan � � 0.150(2/7) � 0.30/7 m/s

 vA/B � vB/cos � � 0.150/cos �

tan � � 100 � 50
250 � 75

 � 2
7

vB � 0.075(2) � 0.150 m/s[v � r�]

�AB � �6/7 rad/s   and   �OA � �3/7 rad/s

�100�OA � 50�AB � 0   25(6 � 7�AB) � 0

 �100�OAi � �150j � 175�AB j � 50�ABi

 �OAk � 100j � 2k � (�75i) � �ABk � (�175i � 50j)

 rA � 100j mm    rB � �75i mm    rA/B � �175i � 50j mm

 �OA � �OAk  �CB � 2k rad/s  �AB � �ABk

�OA � rA � �CB � rB � �AB � rA/B
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vB = 150 mm/s
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θ
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Helpful Hints

� We are using here the first of Eqs.
5/3 and Eq. 5/6.

� The minus signs in the answers indi-
cate that the vectors �AB and �OA

are in the negative k-direction.
Hence, the angular velocities are
clockwise.

� Always make certain that the se-
quence of vectors in the vector
polygon agrees with the equality of
vectors specified by the vector
equation.
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SAMPLE PROBLEM 5/9

The common configuration of a reciprocating engine is that of the slider-
crank mechanism shown. If the crank OB has a clockwise rotational speed of
1500 rev/min, determine for the position where � � 60� the velocity of the piston
A, the velocity of point G on the connecting rod, and the angular velocity of the
connecting rod.

Solution. The velocity of the crank pin B as a point on AB is easily found, so
that B will be used as the reference point for determining the velocity of A. The
relative-velocity equation may now be written

The crank-pin velocity is

and is normal to OB. The direction of vA is, of course, along the horizontal cylin-
der axis. The direction of vA/B must be perpendicular to the line AB as explained
in the present article and as indicated in the lower diagram, where the reference
point B is shown as fixed. We obtain this direction by computing angle � from
the law of sines, which gives

We now complete the sketch of the velocity triangle, where the angle between vA/B

and vA is 90� � 18.02� � 72.0� and the third angle is 180� � 30� � 72.0� � 78.0�.
Vectors vA and vA/B are shown with their proper sense such that the head-to-tail
sum of vB and vA/B equals vA. The magnitudes of the unknowns are now calculated
from the trigonometry of the vector triangle or are scaled from the diagram if a
graphical solution is used. Solving for vA and vA/B by the law of sines gives

Ans.

The angular velocity of AB is counterclockwise, as revealed by the sense of
vA/B, and is

Ans.

We now determine the velocity of G by writing

As seen from the diagram, vG/B has the same direction as vA/B. The vector sum is
shown on the last diagram. We can calculate vG with some geometric labor or
simply measure its magnitude and direction from the velocity diagram drawn to
scale. For simplicity we adopt the latter procedure here and obtain

Ans.

As seen, the diagram may be superposed directly on the first velocity diagram.

vG � 64.1 ft/sec

vG/B � GB�AB � GB
 AB 

 vA/B � 4
14

 (34.4) � 9.83 ft/secwhere

vG � vB � vG/B

�AB � 
vA/B

 AB 
 � 34.4

14/12
 � 29.5 rad/sec[� � v/r]

 
vA/B

sin 30�
 � 65.4

sin 72.0�
   vA/B � 34.4 ft/sec

 
vA

sin 78.0�
 � 65.4

sin 72.0�
  vA � 67.3 ft/sec

5
sin �

 � 14
sin 60�

  � � sin�1 0.309 � 18.02�

vB � 5
12

 
1500 (2�)

60
 � 65.4 ft/sec[v � r�]

vA � vB � vA/B
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Helpful Hints

� Remember always to convert � to
radians per unit time when using 
v � r�.

30°

= 60°θ

ω

vA/B

vA

v B
 = 65.4 ft/

sec

78.0°

18.02°
r = 5″

A O

B
vB

vA

72.0°

14″

10″
4″

A
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ω

B

vA/B

vG/B

vG/B

v B
 = 65.4 ft/

sec

vG

AB

� A graphical solution to this problem
is the quickest to achieve, although
its accuracy is limited. Solution by
vector algebra can, of course, be
used but would involve somewhat
more labor in this problem.

c05.qxd  2/10/12  10:07 AM  Page 353



SAMPLE PROBLEM 5/10

The power screw turns at a speed which gives the threaded collar C a veloc-
ity of 0.8 ft/sec vertically down. Determine the angular velocity of the slotted
arm when � � 30�.

Solution. The angular velocity of the arm can be found if the velocity of a
point on the arm is known. We choose a point A on the arm coincident with the
pin B of the collar for this purpose. If we use B as our reference point and write
vA � vB � vA/B, we see from the diagram, which shows the arm and points A and
B an instant before and an instant after coincidence, that vA/B has a direction
along the slot away from O.

The magnitudes of vA and vA/B are the only unknowns in the vector equa-
tion, so that it may now be solved. We draw the known vector vB and then obtain
the intersection P of the known directions of vA/B and vA. The solution gives

Ans.

We note the difference between this problem of constrained sliding contact be-
tween two links and the three preceding sample problems of relative velocity,
where no sliding contact occurred and where the points A and B were located on
the same rigid body in each case.

 � 0.400 rad/sec CCW

 � � 
vA

OA
 � 0.693

(18
12 )/cos 30�

[� � v/r]

vA � vB cos � � 0.8 cos 30� � 0.693 ft/sec

354 Chapter 5 Plane Kinematics of Rigid Bodies

18″

O

C

B

= 30°θ

�

�

Helpful Hints

� Physically, of course, this point does
not exist, but we can imagine such a
point in the middle of the slot and
attached to the arm.

A
B

A

O

B

ω

P

vA vB = 0.8 ft/sec 30°

vA/B

� Always identify the knowns and un-
knowns before attempting the solu-
tion of a vector equation.
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PROBLEMS
Introductory Problems

5/59 Bar AB moves on the horizontal surface. Its mass
center has a velocity directed parallel to
the y-axis and the bar has a counterclockwise (as
seen from above) angular velocity De-
termine the velocity of point B.

Problem 5/59

5/60 The cart has a velocity of 4 ft/sec to the right. Deter-
mine the angular speed N of the wheel so that point
A on the top of the rim has a velocity (a) equal to
4 ft/sec to the left, (b) equal to zero, and (c) equal to
8 ft/sec to the right.

Problem 5/60

10″
A

BO

C C = 4 ft /secv

vG 30°

0.4 m0.4 m

A
G

B

x y

z

ω

� � 4 rad/s.

vG � 2 m/s

Article 5/4 Problems 355

5/61 The speed of the center of the earth as it orbits the
sun is and the absolute angular
velocity of the earth about its north-south spin axis
is Use the value 
for the radius of the earth and determine the veloci-
ties of points A, B, C, and D, all of which are on the
equator. The inclination of the axis of the earth is
neglected.

Problem 5/61

5/62 A control element in a special-purpose mechanism un-
dergoes motion in the plane of the figure. If the
velocity of B with respect to A has a magnitude of
0.926 m/s at a certain instant, what is the correspond-
ing magnitude of the velocity of C with respect to D?

Problem 5/62

80 mm

70 mm

50 mm

A

B

C

D

x

A

v

B

Sunlight

C

D

y

N

ω

R � 6371 km� � 7.292(10�5) rad/s.

v � 107 257 km/h,
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5/66 Determine the angular velocity of the telescoping
link AB for the position shown where the driving
links have the angular velocities indicated.

Problem 5/66

5/67 The ends of bar AB are confined to the circular slot.
By the method of this article, determine the angular
velocity of the bar if the velocity of end A is

as shown.

Problem 5/67

0.8 m

45°

0.3 m/s

A

B

O

0.3 m/s 
�

165

Dimensions 
in millimeters

60

150

45
2 rad/s

2 rad/s
A

B

C

O
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5/63 End A of the 24-in. link has a velocity of 10 ft/sec in
the direction shown. At the same instant end B has a
velocity whose magnitude is 12 ft/sec as indicated.
Find the angular velocity of the link in two ways.

Problem 5/63

5/64 The circular disk of radius 0.2 m is released very
near the horizontal surface with a velocity of its cen-
ter to the right and a clockwise angular
velocity Determine the velocities of
points A and P of the disk. Describe the motion upon
contact with the ground.

Problem 5/64

5/65 For the instant represented the curved link has a
counterclockwise angular velocity of 4 rad/s, and the
roller at B has a velocity of 40 mm/s along the con-
straining surface as shown. Determine the magni-
tude of the velocity of A.

Problem 5/65

vB

20 mm

45°

A

B

vA

ω

A

P

O
0.2 m

y

x

vO

� � 2 rad/s.
vO � 0.7 m/s

30°

24″

B

A

β

vA = 10 ft/sec

vB = 12 ft/sec

�
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5/68 The two pulleys are riveted together to form a single
rigid unit, and each of the two cables is securely
wrapped around its respective pulley. If point A on
the hoisting cable has a velocity deter-
mine the magnitudes of the velocity of point O and
the velocity of point B on the larger pulley for the
position shown.

Problem 5/68

5/69 The right-angle link AB has a clockwise angular
velocity of at the instant when 
Express the velocity of A with respect to B in vector
notation for this instant.

Problem 5/69

θ

12″
A

B

5″

3 rad/sec

y

x

� � 60�.3 rad/sec

A
B

O

v

180
mm

  90
mm

L

v � 0.9 m/s,

Article 5/4 Problems 357

5/70 The magnitude of the absolute velocity of point A on
the automobile tire is when A is in the posi-
tion shown. What are the corresponding velocity 
of the car and the angular velocity of the wheel?
(The wheel rolls without slipping.)

Problem 5/70

5/71 For the instant represented point B crosses the hori-
zontal axis through point O with a downward veloc-
ity Determine the corresponding value
of the angular velocity of link OA.

Problem 5/71

5/72 The circular disk rolls without slipping with a clock-
wise angular velocity For the instant
represented, write the vector expressions for the ve-
locity of A with respect to B and for the velocity of P.

Problem 5/72

B

A

C

OP
300 mm

200
mm

 = 4 rad/sω

y

x

� � 4 rad/s.

v

180 mm

130 mm
90 mm

O

A

B

�OA

v � 0.6 m/s.

v0650 mm
A

O

�

vO

12 m/s
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5/76 Determine the angular velocity of link AB and
the velocity of collar B for the instant repre-
sented. Assume the quantities and r to be known.

Problem 5/76

5/77 Determine the angular velocity of link AB and
the velocity of collar B for the instant represented.
Assume the quantities and r to be known.

Problem 5/77

5/78 Motion of the threaded collars A and B is controlled
by the rotation of their respective lead screws. If A
has a velocity to the right of and B has a
velocity to the left of when in., deter-
mine the angular velocity of ACD at this instant.

Problem 5/78

�

x � 62 in./sec
3 in./sec

r

2r

ω

B

O

A

45°

30°

0

�0

vB

�AB

r 2r

ω

BO

A

45°

0

�0

vB

�AB
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Representative Problems

5/73 At the instant represented, the velocity of point A of
the 1.2-m bar is to the right. Determine the
speed of point B and the angular velocity of the
bar. The diameter of the small end wheels may be
neglected.

Problem 5/73

5/74 For an interval of its motion the piston rod of the
hydraulic cylinder has a velocity as
shown. At a certain instant For this in-
stant determine the angular velocity of link BC.

Problem 5/74

5/75 Each of the sliding bars A and B engages its respec-
tive rim of the two riveted wheels without slipping.
Determine the magnitude of the velocity of point P
for the position shown.

Problem 5/75

100
mm

160 mm
O

P

A vA = 0.8 m/s

vB = 0.6 m/s

B

10″

20″

A

D

B

C

vA

θ

β

�BC

� � � � 60�.
vA � 4 ft/sec

1.2 m

A

B

60°0.5 m

vA

�vB

3 m/s 

6″

3″

4″

C

D

BA x
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5/79 At the instant represented the triangular plate ABD
has a clockwise angular velocity of For this
instant determine the angular velocity of link BC.

Problem 5/79

5/80 For the instant represented, crank OB has a clock-
wise angular velocity and is passing
the horizontal position. Determine the correspond-
ing velocity of the guide roller A in the 20° slot and
the velocity of point C midway between A and B.

Problem 5/80

C

O

20″

20°

10″

ω

B

A

� � 0.8 rad/sec

3″

7″

3″

5″

5″

5″
O

D

A
C

B

�BC

3 rad/sec.
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5/81 The ends of the 0.4-m slender bar remain in contact
with their respective support surfaces. If end B has a
velocity in the direction shown, deter-
mine the angular velocity of the bar and the velocity
of end A.

Problem 5/81

5/82 End A of the link has a downward velocity of
during an interval of its motion. For the posi-

tion where determine the angular velocity 
of AB and the velocity of the midpoint G of the
link. Solve the relative-velocity equations, first,
using the geometry of the vector polygon and, sec-
ond, using vector algebra.

Problem 5/82

x

y

B

G

A

vA

θ

200 mm

vG

�� �  30�

2 m/s
vA

A

B

105°

30°

0.4 m

vB = 0.5 m/s

vB � 0.5 m/s
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5/86 The elements of a switching device are shown. If the
vertical control rod has a downward velocity v of

when and if roller A is in continuous
contact with the horizontal surface, determine the
magnitude of the velocity of C for this instant.

Problem 5/86

5/87 The Geneva mechanism of Prob. 5/56 is shown again
here. By relative-motion principles determine the an-
gular velocity of wheel C for Wheel A has
a constant clockwise angular velocity 

Problem 5/87

200 mm

P

A

C
B

O1 O2

200/  2
mm

200/  2
mm

θ
1ω 2ω

�1 � 2 rad/s.
� � 20�.�2

3″
3″ B

C

θ
A

v

� � 60�3 ft/sec
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5/83 Horizontal motion of the piston rod of the hydraulic
cylinder controls the rotation of link OB about O.
For the instant represented, and OB is
horizontal. Determine the angular velocity of OB
for this instant.

Problem 5/83

5/84 The flywheel turns clockwise with a constant speed
of and the connecting rod AB slides
through the pivoted collar at C. For the position

determine the angular velocity of AB
by using the relative-velocity relations. (Suggestion:
Choose a point D on AB coincident with C as a refer-
ence point whose direction of velocity is known.)

Problem 5/84

5/85 Determine the velocity of point D which will produce a
counterclockwise angular velocity of for link
AB in the position shown for the four-bar linkage.

Problem 5/85

75 mm

A
OC

B

D

150 mm

100 mm 100 mm

ABω

40 rad/s

8″

16″

θ

A

C

B
O

�AB� � 45�,

600 rev/min,

160 mm

120 mm

180 mm

A

B O

vA = 2 m/s

θ

�

vA � 2 m/s
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5/88 A four-bar linkage is shown in the figure (the ground
“link” OC is considered the fourth bar). If the drive
link OA has a counterclockwise angular velocity

determine the angular velocities of
links AB and BC.

Problem 5/88

5/89 The elements of the mechanism for deployment of a
spacecraft magnetometer boom are shown. Deter-
mine the angular velocity of the boom when the
driving link OB crosses the y-axis with an angular
velocity if at this instant.

Problem 5/89

120 mm

120 mm

200 mm θ

A

C

B

O

y

x

ωOBω

tan � � 4/3�OB � 0.5 rad/s

15°

60°
200
mm

80 mm

A

B

O

C

240 mm

ω 0

�0 � 10 rad/s,
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5/90 Ends A and C of the connected links are controlled
by the vertical motion of the piston rods of the hy-
draulic cylinders. For a short interval of motion, A
has an upward velocity of and C has a down-
ward velocity of Determine the velocity of B
for the instant when 

Problem 5/90

y

C

B

A

200 mm

250 mm

250 mm

y � 150 mm.
2 m/s.

3 m/s,

�
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362 Chapter 5 Plane Kinematics of Rigid Bodies

5/5 Instantaneous Center of Zero Velocity
In the previous article, we determined the velocity of a point on a

rigid body in plane motion by adding the relative velocity due to rotation
about a convenient reference point to the velocity of the reference point.
We now solve the problem by choosing a unique reference point which
momentarily has zero velocity. As far as velocities are concerned, the
body may be considered to be in pure rotation about an axis, normal to
the plane of motion, passing through this point. This axis is called the
instantaneous axis of zero velocity, and the intersection of this axis with
the plane of motion is known as the instantaneous center of zero velocity.
This approach provides us with a valuable means for visualizing and an-
alyzing velocities in plane motion.

Locating the Instantaneous Center
The existence of the instantaneous center is easily shown. For the

body in Fig. 5/7, assume that the directions of the absolute velocities of
any two points A and B on the body are known and are not parallel. If
there is a point about which A has absolute circular motion at the in-
stant considered, this point must lie on the normal to vA through A.
Similar reasoning applies to B, and the intersection of the two perpen-
diculars fulfills the requirement for an absolute center of rotation at the
instant considered. Point C is the instantaneous center of zero velocity
and may lie on or off the body. If it lies off the body, it may be visualized
as lying on an imaginary extension of the body. The instantaneous cen-
ter need not be a fixed point in the body or a fixed point in the plane.

If we also know the magnitude of the velocity of one of the points,
say, vA, we may easily obtain the angular velocity � of the body and the
linear velocity of every point in the body. Thus, the angular velocity of
the body, Fig. 5/7a, is

which, of course, is also the angular velocity of every line in the body.
Therefore, the velocity of B is vB � rB� � (rB/rA)vA. Once the instanta-
neous center is located, the direction of the instantaneous velocity of

� � 
vA

rA

C

C

C

A
A A

B
B

B

rA

vA
vA

vA

vB

vB

vB

rB

(a) (b) (c)

Figure 5/7
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Article 5/5 Instantaneous Center of Zero Velocity 363

every point in the body is readily found since it must be perpendicular to
the radial line joining the point in question with C.

If the velocities of two points in a body having plane motion are par-
allel, Fig. 5/7b or 5/7c, and the line joining the points is perpendicular to
the direction of the velocities, the instantaneous center is located by di-
rect proportion as shown. We can readily see from Fig. 5/7b that as the
parallel velocities become equal in magnitude, the instantaneous center
moves farther away from the body and approaches infinity in the limit
as the body stops rotating and translates only.

Motion of the Instantaneous Center
As the body changes its position, the instantaneous center C also

changes its position both in space and on the body. The locus of the in-
stantaneous centers in space is known as the space centrode, and the
locus of the positions of the instantaneous centers on the body is known
as the body centrode. At the instant considered, the two curves are tan-
gent at the position of point C. It can be shown that the body-centrode
curve rolls on the space-centrode curve during the motion of the body,
as indicated schematically in Fig. 5/8.

Although the instantaneous center of zero velocity is momentarily
at rest, its acceleration generally is not zero. Thus, this point may not be
used as an instantaneous center of zero acceleration in a manner analo-
gous to its use for finding velocity. An instantaneous center of zero ac-
celeration does exist for bodies in general plane motion, but its location
and use represent a specialized topic in mechanism kinematics and will
not be treated here.

C

Body centrode

Space centrode

Figure 5/8

This valve gear of a steam locomotive provides an interesting (albeit not
cutting-edge) study in rigid-body kinematics.
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364 Chapter 5 Plane Kinematics of Rigid Bodies

SAMPLE PROBLEM 5/11

The wheel of Sample Problem 5/7, shown again here, rolls to the right with-
out slipping, with its center O having a velocity vO � 3 m/s. Locate the instanta-
neous center of zero velocity and use it to find the velocity of point A for the
position indicated.

Solution. The point on the rim of the wheel in contact with the ground has no
velocity if the wheel is not slipping; it is, therefore, the instantaneous center C of
zero velocity. The angular velocity of the wheel becomes

The distance from A to C is

The velocity of A becomes

Ans.

The direction of vA is perpendicular to AC as shown.

SAMPLE PROBLEM 5/12

Arm OB of the linkage has a clockwise angular velocity of 10 rad/sec in the
position shown where � � 45�. Determine the velocity of A, the velocity of D, and
the angular velocity of link AB for the position shown.

Solution. The directions of the velocities of A and B are tangent to their circu-
lar paths about the fixed centers O� and O as shown. The intersection of the two
perpendiculars to the velocities from A and B locates the instantaneous center C
for the link AB. The distances and shown on the diagram are com-
puted or scaled from the drawing. The angular velocity of BC, considered a line
on the body extended, is equal to the angular velocity of AC, DC, and AB and is

Ans.

Thus, the velocities of A and D are

Ans.

Ans.

in the directions shown.

 vD � 15.23
12

 (4.29) � 5.44 ft/sec

 vA � 14
12

 (4.29) � 5.00 ft/sec[v � r�]

 � 4.29 rad/sec CCW

 �BC � 
vB

 BC 
 � 

OB�OB

BC
 � 

6�2(10)

14�2
[� � v/r]

DCBC,AC,

vA � AC� � 0.436(10) � 4.36 m/s[v � r�]

AC � �(0.300)2 � (0.200)2 � 2(0.300)(0.200) cos 120� � 0.436 m

� � vO / OC � 3/0.300 � 10 rad/s[� � v/r]

= 30°

r = 300 mm

r0 = 200 mm
vO = 3 m/sθ

A

O

O
0.200 m

0.300 m

vA

A

C

120°

θ = 45°

A D

O

B6″

6″

8″

2 ″6

O′

Body extended

C

A

O′ O

D B

14″
15.23″

2″14

vA
vD

vB

 45°

�

�

�

Helpful Hints

� Be sure to recognize that the cosine
of 120� is itself negative.

� From the results of this problem,
you should be able to visualize and
sketch the velocities of all points on
the wheel.

Helpful Hint

� For the instant depicted, we should
visualize link AB and its body ex-
tended to be rotating as a single unit
about point C.
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5/94 The circular disk of Prob. 5/64 is repeated here. If
the disk is released very near the horizontal surface
with and locate the instan-
taneous center of rotation and determine the veloci-
ties of points A and P of the disk.

Problem 5/94

5/95 For the instant represented, when crank OA passes
the horizontal position, determine the velocity of the
center G of link AB by the method of this article.

Problem 5/95

5/96 The bar AB has a clockwise angular velocity of
Construct and determine the vector velocity

of each end if the instantaneous center of zero veloc-
ity is (a) at and (b) at .

Problem 5/96

8″

4″
3″

B

C1

C2

A

y

x

5 rad/s

C2C1

5 rad/sec.

G

A O
8 rad/s

B

90 mm

90 mm

60
mm 90

mm

ω

A

P

O
0.2 m

y

x

vO

� � 2 rad/s,vO � 0.7 m/s

PROBLEMS
Introductory Problems

5/91 The slender bar is moving in general plane motion
with the indicated linear and angular properties.
Locate the instantaneous center of zero velocity and
determine the velocities of points A and B.

Problem 5/91

5/92 The slender bar is moving in general plane motion
with the indicated linear and angular properties.
Locate the instantaneous center of zero velocity and
determine the velocities of points A and B.

Problem 5/92

5/93 The figure for Prob. 5/83 is repeated here. Solve for
the angular velocity of OB by the method of this
article.

Problem 5/93

160 mm

120 mm

180 mm

A

B O

vA = 2 m/s

θ

B

A

G

0.3 m

0.3 m

2 m/s

20°

4 rad/s

BA
G0.3 m 0.3 m

2 m/s4 rad/s
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5/97 The bar of Prob. 5/81 is repeated here. By the method
of this article, determine the velocity of end A. Both
ends remain in contact with their respective support
surfaces.

Problem 5/97

5/98 A car mechanic “walks” two wheel/tire units across a
horizontal floor as shown. He walks with constant
speed v and keeps the tires in the configuration
shown with the same position relative to his body.
If there is no slipping at any interface, determine 
(a) the angular velocity of the lower tire, (b) the an-
gular velocity of the upper tire, and (c) the velocities
of points A, B, C, and D. The radius of both tires is r.

Problem 5/98

v

A

B

C

r

P

D

r

A

B

105°

30°

0.4 m

vB = 0.5 m/s

5/99 The linkage of Prob. 5/80 is repeated here. At the
instant represented, crank OB has a clockwise
angular velocity and is passing the
horizontal position. By the method of this article,
determine the corresponding velocity of the guide
roller A in the 20° slot and the velocity of point C
midway between A and B.

Problem 5/99

5/100 Motion of the bar is controlled by the constrained
paths of A and B. If the angular velocity of the bar
is counterclockwise as the position 
is passed, determine the speeds of points A and P.

Problem 5/100

B

P

A

500 m
m

500 m
m

θ

2 rad/s

� � 45�2 rad/s

C

O

20″

20°

10″

ω

B

A

� � 0.8 rad/sec
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Representative Problems

5/103 The mechanism of Prob. 5/74 is repeated here. For
an interval of its motion the piston rod of the
hydraulic cylinder has a velocity as
shown. At a certain instant By the
method of this article, determine the angular veloc-
ity of link BC.

Problem 5/103

5/104 The mechanism of Prob. 5/76 is repeated here. By the
method of this article, determine the angular velocity
of link AB and the velocity of collar B for the instant
shown. Assume the quantities and r to be known.

Problem 5/104

r 2r

ω

BO

A

45°

0

�0

10″

20″

A

D

B

C

vA

θ

β

�BC

� � � � 60�.
vA � 4 ft/sec

5/101 Motion of the rectangular plate P is controlled by
the two links which cross without touching. For the
instant represented where the links are perpendic-
ular to each other, the plate has a counterclockwise
angular velocity Determine the corre-
sponding angular velocities of the two links.

Problem 5/101

5/102 The mechanism of Prob. 5/34 is repeated here. At
the instant when the velocity of the
slider at A is to the right. Determine the
corresponding velocity of slider B and the angular
velocity of bar AB if 

Problem 5/102

xA

B

A
v

L

60°

L � 0.8 m.�

v � 2 m/s
xA � 0.85L,

y

x

BD

O

A

P

0.2 m

0.2 m

P = 2 rad/sω

A
—

O
–

 = 0.6 m
B
—

D
–
 = 0.5 m

�P � 2 rad/s.
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5/105 The mechanism of Prob. 5/77 is repeated here. By
the method of this article, determine the angular
velocity of link AB and the velocity of collar B for
the instant depicted. Assume the quantities and
r to be known.

Problem 5/105

5/106 The rectangular body B is pivoted to the crank OA
at A and is supported by the wheel at D. If OA has
a counterclockwise angular velocity of de-
termine the velocity of point E and the angular ve-
locity of body B when the crank OA passes the
vertical position shown.

Problem 5/106

120 mm

40 mm40 mm

80 mm
A

B

O

D

E

320 mm

2 rad/s,

r

2r

ω

B

O

A

45°

30°

0

�0

5/107 The sliding rails A and B engage the rims of the
double wheel without slipping. For the specified ve-
locities of A and B, determine the angular velocity

of the wheel and the magnitude of the velocity of
point P.

Problem 5/107

5/108 Horizontal oscillation of the spring-loaded plunger
E is controlled by varying the air pressure in the
horizontal pneumatic cylinder F. If the plunger has
a velocity of to the right when deter-
mine the downward velocity of roller D in the
vertical guide and find the angular velocity of
ABD for this position.

Problem 5/108

θ

100mm

200mm

A

B

E

F

D

�

vD

� � 30�,2 m/s

O

P

B

A

80
mm

120
mm

vB = 1.8 m/s

vA = 1.2 m/s

�
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Article 5/5 Problems 369

5/111 The mechanism of Prob. 5/55 is repeated here. By
the method of this article determine the expression
for the magnitude of the velocity of point C in
terms of the velocity of the piston rod and the
angle .

Problem 5/111

5/112 Link OA has a counterclockwise angular velocity 
during an interval of its motion.

Determine the angular velocity of link AB and of
sector BD for at which instant AB is hori-
zontal and BD is vertical.

Problem 5/112

5/113 The mechanism of Prob. 5/84 is repeated here. The
flywheel turns clockwise with a constant speed of

and the connecting rod AB slides
through the pivoted collar at C. For the position

determine the angular velocity of AB
by the method of this article.

Problem 5/113

8″

16″

θ

A

C

B
O

�AB� � 45�,

600 rev/min,

D

B
A

O

6″
16″

8″

θ

B

�  � 45�

� 4 rad/sec�̇

vB
θ b

b

b

O

A

B

C

�

vB

5/109 The rear driving wheel of a car has a diameter of
26 in. and has an angular speed N of 
on an icy road. If the instantaneous center of zero
velocity is 4 in. above the point of contact of the tire
with the road, determine the velocity v of the car
and the slipping velocity of the tire on the ice.

Problem 5/109

5/110 The elements of the mechanism for deployment of
a spacecraft magnetometer boom are repeated here
from Prob. 5/89. By the method of this article,
determine the angular velocity of the boom when
the driving link OB crosses the y-axis with an an-
gular velocity if at this instant

Problem 5/110

120 mm

120 mm

200 mm θ

A

C

B

O

y

x

ωOBω

tan � � 4/3.
�OB � 0.5 rad/s

26″

N

vs

200 rev/min
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5/114 The hydraulic cylinder produces a limited horizon-
tal motion of point A. If when 
determine the magnitude of the velocity of D and
the angular velocity of ABD for this position.

Problem 5/114

5/115 The flexible band F is attached at E to the rotating
sector and leads over the guide pulley. Determine
the angular velocities of AD and BD for the posi-
tion shown if the band has a velocity of 

Problem 5/115

5/116 Motion of the roller A against its restraining spring
is controlled by the downward motion of the
plunger E. For an interval of motion the velocity of
E is Determine the velocity of A when

becomes 90°.�

v � 0.2 m/s.

4 m/s

O A

D

B

E

F
200
mm

75
mm

125
mm

250
mm

100
mm

4 m/s.

A

D

B

O

vA

θ

400

mm

200

mm

250 m
m

�

� � 45�,vA � 4 m/s

Problem 5/116

5/117 In the design of this mechanism, upward motion of
the plunger G controls the motion of a control rod
attached at A. Point B of link AH is confined to
move with the sliding collar on the fixed vertical
shaft ED. If G has a velocity for a short
interval, determine the velocity of A for the posi-
tion .

Problem 5/117

vG

24
0 m

m

80
 m

m

A

B

D

H

G

F

E

θ

200 mm

160 mm

� � 45�

vG � 2 m/s

A
O

B

v

D

E

θ

90
 m

m

120 m
m

60 m
m
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Problem 5/119

5/120 The shaft at O drives the arm OA at a clockwise
speed of about the fixed bearing at O.
Use the method of the instantaneous center of zero
velocity to determine the rotational speed of gear B
(gear teeth not shown) if (a) ring gear D is fixed
and (b) ring gear D rotates counterclockwise about
O with an angular speed of 

Problem 5/120

A

B

D

O

a

a

80 rev/min.

90 rev/min

100 mm

200 m
m

250 m
mO

5/118 Determine the angular velocity of the ram head
AE of the rock crusher in the position for which

. The crank OB has an angular speed of
When B is at the bottom of its circle, D

and E are on a horizontal line through F, and lines BD
and AE are vertical. The dimensions are ,

and Carefully
construct the configuration graphically, and use the
method of this article.

Problem 5/118

5/119 The large roller bearing rolls to the left on its outer
race with a velocity of its center O of At
the same time the central shaft and inner race
rotate counterclockwise with an angular speed of

Determine the angular velocity of
each of the rollers.

�240 rev/min.

0.9 m/s.

θ

A

B

D
E

F

O

AE � ED � DF � 15 in.BD � 30 in.,
OB � 4 in.

60 rev/min.
� � 60�

�

�

�

�
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372 Chapter 5 Plane Kinematics of Rigid Bodies

5/6 Relative Acceleration
Consider the equation vA � vB � vA/B, which describes the relative

velocities of two points A and B in plane motion in terms of nonrotating
reference axes. By differentiating the equation with respect to time, we
may obtain the relative-acceleration equation, which is or

(5/7)

In words, Eq. 5/7 states that the acceleration of point A equals the vec-
tor sum of the acceleration of point B and the acceleration which A ap-
pears to have to a nonrotating observer moving with B.

Relative Acceleration Due to Rotation
If points A and B are located on the same rigid body and in the

plane of motion, the distance r between them remains constant so that
the observer moving with B perceives A to have circular motion about B,
as we saw in Art. 5/4 with the relative-velocity relationship. Because the
relative motion is circular, it follows that the relative-acceleration term
will have both a normal component directed from A toward B due to the
change of direction of vA/B and a tangential component perpendicular to
AB due to the change in magnitude of vA/B. These acceleration compo-
nents for circular motion, cited in Eqs. 5/2, were covered earlier in Art.
2/5 and should be thoroughly familiar by now.

Thus we may write

(5/8)

where the magnitudes of the relative-acceleration components are

(5/9)

In vector notation the acceleration components are

(5/9a)

In these relationships, � is the angular velocity and � is the angular ac-
celeration of the body. The vector locating A from B is r. It is important
to observe that the relative acceleration terms depend on the respective
absolute angular velocity and absolute angular acceleration.

Interpretation of the Relative-Acceleration Equation
The meaning of Eqs. 5/8 and 5/9 is illustrated in Fig. 5/9, which

shows a rigid body in plane motion with points A and B moving along
separate curved paths with absolute accelerations aA and aB. Con-
trary to the case with velocities, the accelerations aA and aB are, in
general, not tangent to the paths described by A and B when these

 (aA/B)t � � � r

 (aA/B)n � � � (� � r)

 (aA/B)t � v̇A/B � r�

 (aA/B)n � vA/B 

2/r � r�2

aA � aB � (aA/B)n � (aA/B)t

aA � aB � aA/B

v̇A � v̇B � v̇A/B

A

A A

B

Path
of A

Path
of B

=

+

r

aA

aB

B B
aB

aB
aA/B

aA/B

aA

aB

(aA/B)t

(aA/B)n

(aA/B)n

(aA/B)t

t

nω

α

Figure 5/9
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Article 5/6 Relative Acceleration 373

paths are curvilinear. The figure shows the acceleration of A to be
composed of two parts: the acceleration of B and the acceleration of A
with respect to B. A sketch showing the reference point as fixed is
useful in disclosing the correct sense of each of the two components of
the relative-acceleration term.

Alternatively, we may express the acceleration of B in terms of the
acceleration of A, which puts the nonrotating reference axes on A rather
than B. This order gives

Here aB/A and its n- and t-components are the negatives of aA/B and its
n- and t-components. To understand this analysis better, you should
make a sketch corresponding to Fig. 5/9 for this choice of terms.

Solution of the Relative-Acceleration Equation
As in the case of the relative-velocity equation, we can handle the

solution to Eq. 5/8 in three different ways, namely, by scalar algebra and
geometry, by vector algebra, or by graphical construction. It is helpful to
be familiar with all three techniques. You should make a sketch of the
vector polygon representing the vector equation and pay close attention
to the head-to-tail combination of vectors so that it agrees with the
equation. Known vectors should be added first, and the unknown vec-
tors will become the closing legs of the vector polygon. It is vital that
you visualize the vectors in their geometrical sense, as only then can you
understand the full significance of the acceleration equation.

Before attempting a solution, identify the knowns and unknowns,
keeping in mind that a solution to a vector equation in two dimensions
can be carried out when the unknowns have been reduced to two scalar
quantities. These quantities may be the magnitude or direction of any of
the terms of the equation. When both points move on curved paths,
there will, in general, be six scalar quantities to account for in Eq. 5/8.

Because the normal acceleration components depend on velocities, it is
generally necessary to solve for the velocities before the acceleration calcu-
lations can be made. Choose the reference point in the relative-acceleration
equation as some point on the body in question whose acceleration is ei-
ther known or can be easily found. Be careful not to use the instantaneous
center of zero velocity as the reference point unless its acceleration is
known and accounted for.

An instantaneous center of zero acceleration exists for a rigid body
in general plane motion, but will not be discussed here since its use is
somewhat specialized.

aB � aA � aB/A
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374 Chapter 5 Plane Kinematics of Rigid Bodies

SAMPLE PROBLEM 5/13

The wheel of radius r rolls to the left without slipping and, at the instant con-
sidered, the center O has a velocity vO and an acceleration aO to the left. Deter-
mine the acceleration of points A and C on the wheel for the instant considered.

Solution. From our previous analysis of Sample Problem 5/4, we know that
the angular velocity and angular acceleration of the wheel are

The acceleration of A is written in terms of the given acceleration of O. Thus,

The relative-acceleration terms are viewed as though O were fixed, and for this
relative circular motion they have the magnitudes

and the directions shown.
Adding the vectors head-to-tail gives aA as shown. In a numerical problem,

we may obtain the combination algebraically or graphically. The algebraic ex-
pression for the magnitude of aA is found from the square root of the sum of the
squares of its components. If we use n- and t-directions, we have

Ans.

The direction of aA can be computed if desired.
The acceleration of the instantaneous center C of zero velocity, considered a

point on the wheel, is obtained from the expression

where the components of the relative-acceleration term are (aC/O)n � r�2 di-
rected from C to O and (aC/O)t � r� directed to the right because of the counter-
clockwise angular acceleration of line CO about O. The terms are added together
in the lower diagram and it is seen that

Ans.aC � r�2

aC � aO � aC/O

 � �(r� cos � � r0�2)2 � (r� sin � � r0�)2

 � �[aO cos � � (aA/O)n]2 � [aO sin � � (aA/O)t]
2

 aA � �(aA)n 

2 � (aA)t 

2

 (aA/O)t � r0� � r0 �aO

r �

 (aA/O)n � r0�2 � r0 �vO

r �
2

aA � aO � aA/O � aO � (aA/O)n � (aA/O)t

� � vO/r   and   � � aO/r

O

C

A

θ

r 

r0vO aO 

ω
α

O

O

C

A

t

t
n

n

n

t

θ

θ

(aA/O)t = r0

(aA/O)t

aA

   α

α(aC/O)t = r

α(aC/O)t = r

αaO = r

(aA/O)n

aO

ω   2

(aC/O)n = rω   2

(aC/O)n = rω   2 aC = rω   2

(aA/O)n = r0

�

�

�

Helpful Hints

� The counterclockwise angular accel-
eration � of OA determines the posi-
tive direction of (aA/O)t. The normal
component (aA/O)n is, of course, di-
rected toward the reference center O.

� If the wheel were rolling to the right
with the same velocity vO but still
had an acceleration aO to the left,
note that the solution for aA would
be unchanged.

� We note that the acceleration of the
instantaneous center of zero veloc-
ity is independent of � and is di-
rected toward the center of the
wheel. This conclusion is a useful re-
sult to remember.
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Article 5/6 Relative Acceleration 375

SAMPLE PROBLEM 5/14

The linkage of Sample Problem 5/8 is repeated here. Crank CB has a con-
stant counterclockwise angular velocity of 2 rad/s in the position shown during a
short interval of its motion. Determine the angular acceleration of links AB and
OA for this position. Solve by using vector algebra.

Solution. We first solve for the velocities which were obtained in Sample
Problem 5/8. They are

where the counterclockwise direction (�k-direction) is taken as positive. The ac-
celeration equation is

where, from Eqs. 5/3 and 5/9a, we may write

We now substitute these results into the relative-acceleration equation and
equate separately the coefficients of the i-terms and the coefficients of the 
j-terms to give

The solutions are

Ans.

Since the unit vector k points out from the paper in the positive z-direction, we
see that the angular accelerations of AB and OA are both clockwise (negative).

It is recommended that the student sketch each of the acceleration vectors
in its proper geometric relationship according to the relative-acceleration equa-
tion to help clarify the meaning of the solution.

�AB � �0.1050 rad/s2   and   �OA � �4.34 rad/s2

 �18.37 � �36.7 � 175�AB

 �100�OA � 429 � 50�AB

 � �50�ABi � 175�AB 

j mm/s2

 � �ABk � (�175i � 50j)

 (aA/B)t � �AB � rA/B

 � (67)
2
(175i � 50j) mm/s2

 � �6
7 

k � [(�6
7 

k) � (�175i � 50j)]

 (aA/B)n � �AB � (�AB � rA/B)

 � 300i mm/s2

 � 0 � 2k � (2k � [�75i])

 aB � �CB � rB � �CB � (�CB � rB)

 � �100�OAi � 100(37)
2
j mm/s2

 � �OAk � 100j � (�3
7 

k) � (�3
7 

k � 100j)

 aA � �OA � rA � �OA � (�OA � rA)

aA � aB � (aA/B)n � (aA/B)t

�AB � �6/7 rad/s   and   �OA � �3/7 rad/s

250 mm

50 mm

75 mm

B

x

rA

rA/B

rB

CB

O

A

C

y

100 mm

ω 

�

�

Helpful Hints

� Remember to preserve the order of
the factors in the cross products.

� In expressing the term aA/B be cer-
tain that rA/B is written as the vector
from B to A and not the reverse.
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SAMPLE PROBLEM 5/15

The slider-crank mechanism of Sample Problem 5/9 is repeated here. The
crank OB has a constant clockwise angular speed of 1500 rev/min. For the in-
stant when the crank angle � is 60�, determine the acceleration of the piston A
and the angular acceleration of the connecting rod AB.

Solution. The acceleration of A may be expressed in terms of the acceleration
of the crank pin B. Thus,

Point B moves in a circle of 5-in. radius with a constant speed so that it has only
a normal component of acceleration directed from B to O.

The relative-acceleration terms are visualized with A rotating in a circle rel-
ative to B, which is considered fixed, as shown. From Sample Problem 5/9, the
angular velocity of AB for these same conditions is �AB � 29.5 rad/sec so that

directed from A to B. The tangential component (aA/B)t is known in direction
only since its magnitude depends on the unknown angular acceleration of AB.
We also know the direction of aA since the piston is confined to move along the
horizontal axis of the cylinder. There are now only two scalar unknowns left in
the equation, namely, the magnitudes of aA and (aA/B)t, so the solution can be
carried out.

If we adopt an algebraic solution using the geometry of the acceleration
polygon, we first compute the angle between AB and the horizontal. With the
law of sines, this angle becomes 18.02�. Equating separately the horizontal com-
ponents and the vertical components of the terms in the acceleration equation,
as seen from the acceleration polygon, gives

The solution to these equations gives the magnitudes

Ans.

With the sense of (aA/B)t also determined from the diagram, the angular accelera-
tion of AB is seen from the figure representing rotation relative to B to be

Ans.

If we adopt a graphical solution, we begin with the known vectors aB and
(aA/B)n and add them head-to-tail using a convenient scale. Next we construct the
direction of (aA/B)t through the head of the last vector. The solution of the equa-
tion is obtained by the intersection P of this last line with a horizontal line
through the starting point representing the known direction of the vector sum
aA. Scaling the magnitudes from the diagram gives values which agree with the
calculated results.

Ans.aA � 3310 ft/sec2   and   (aA/B)t � 9030 ft/sec2

�AB � 9030/(14/12) � 7740 rad/sec2 clockwise[� � at /r]

(aA/B)t � 9030 ft/sec2   and   aA � 3310 ft/sec2

 0 � 10,280 sin 60� � 1015 sin 18.02� � (aA/B)t cos 18.02�

 aA � 10,280 cos 60� � 1015 cos 18.02� � (aA/B)t sin 18.02�

(aA/B)n � 14
12

 (29.5)2 � 1015 ft/sec2[an � r�2]

aB � 5
12�1500[2�]

60 �2
 � 10,280 ft/sec2[an � r�2]

aA � aB � (aA/B)n � (aA/B)t

A

O

B

θ ω

G
r = 5″4″

10″

t

n

A

PaA

(aA/B)t

(aA/B)n

ABα(aA/B)t

(aA/B)n = 1015 ft/sec2

B

18.02°

18.02°

60°

aB = 10,280
ft/sec2

ABω       = 29.5
rad/sec

� Except where extreme accuracy is
required, do not hesitate to use a
graphical solution, as it is quick and
reveals the physical relationships
among the vectors. The known vec-
tors, of course, may be added in any
order as long as the governing equa-
tion is satisfied.

Helpful Hints

� If the crank OB had an angular ac-
celeration, aB would also have a tan-
gential component of acceleration.

� Alternatively, the relation an � v2/r
may be used for calculating (aA/B)n,
provided the relative velocity vA/B is
used for v. The equivalence is easily
seen when it is recalled that vA/B � r�.

�

�

�
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Problem 5/123

5/124 Refer to the rotor blades and sliding bearing block
of Prob. 5/123 where . If 
and when , find the acceleration of
point A for this instant.

5/125 The wheel of radius R rolls without slipping, and
its center O has an acceleration . A point P on
the wheel is a distance r from O. For given values
of , R, and r, determine the angle and the veloc-
ity of the wheel for which P has no acceleration
in this position.

Problem 5/125

5/126 The circular disk rolls to the left without slipping.
If , determine the velocity and
acceleration of the center O of the disk.

Problem 5/126

B

A

150 mm

200 mm
150
mm

O

y

x

aA/B � �2.7j m/s2

P

O
R

r
θ

aO vO

vO

�aO

aO

� � 0�̇  � 0
�̈  � 5 rad/s2aO � 3 m/s2

θ

800
mm A

y

aO

O

x

PROBLEMS
Introductory Problems

5/121 The center O of the wheel is mounted on the sliding
block, which has an acceleration to the
right. At the instant when , and

. For this instant determine the magni-
tudes of the accelerations of points A and B.

Problem 5/121

5/122 The 9-ft steel beam is being hoisted from its hori-
zontal position by the two cables attached at A
and B. If the initial angular accelerations are

and , determine
the initial values of (a) the angular acceleration
of the beam, (b) the acceleration of point C, and (c)
the distance d from A to the point on the center-
line of the beam which has zero acceleration.

Problem 5/122

5/123 The two rotor blades of 800-mm radius rotate
counterclockwise with a constant angular velocity

about the shaft at O mounted in
the sliding block. The acceleration of the block is

. Determine the magnitude of the ac-
celeration of the tip A of the blade when (a) 
(b) , and (c) . Does the velocity of O
or the sense of enter into the calculation?�

� � 180�� � 90�

� � 0,
aO � 3  m/s2

� � �̇  � 2 rad/s

3′ 3′ 3′

CA B

15″15″

α2α1

�2 � 0.6 rad/sec2�1 � 0.2 rad/sec2

θ

A

B

aOO

400
mm

�̈  � �8 rad/s2
�̇  � 3 rad/s� � 45�

aO � 8  m/s2
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5/127 The bar of Prob. 5/81 is repeated here. The ends of
the 0.4-m bar remain in contact with their respec-
tive support surfaces. End B has a velocity of

and an acceleration of in the direc-
tions shown. Determine the angular acceleration of
the bar and the acceleration of end A.

Problem 5/127

5/128 Determine the acceleration of point B on the equa-
tor of the earth, repeated here from Prob. 5/61. Use
the data given with that problem and assume that
the earth’s orbital path is circular, consulting
Table D/2 as necessary. Consider the center of the
sun fixed and neglect the tilt of the axis of the
earth.

Problem 5/128

x

A

v

B

Sunlight

C

D

y

N

ω

A

B
105°

30°

0.4 m

vB = 0.5 m/s

aB = 0.3 m/s2

0.3 m/s20.5 m/s

5/129 A car with tires of 600-mm diameter accelerates at
a constant rate from rest to a velocity of 60 km/h in
a distance of 40 m. Determine the magnitude of the
acceleration of a point A on the top of the wheel as
the car reaches a speed of 10 km/h.

5/130 A car has a forward acceleration 
without slipping its 24-in.-diameter tires. Deter-
mine the velocity v of the car when a point P on the
tire in the position shown will have zero horizontal
component of acceleration.

Problem 5/130

5/131 Determine the angular acceleration of AB for
the position shown if link OB has a constant angu-
lar velocity 

Problem 5/131

r

r

A
O

B

ω

2r

�.

�AB

24″
a v

P

O

45°

a � 12 ft/sec2
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5/134 The load L is lowered by the two pulleys which are
fastened together and rotate as a single unit. For
the instant represented, drum A has a counter-
clockwise angular velocity of which is de-
creasing by each second. Simultaneously,
drum B has a clockwise angular velocity of

which is increasing by each sec-
ond. Calculate the accelerations of points C and D
and the load L.

Problem 5/134

5/135 The mechanism of Prob. 5/76 is repeated here. The
angular velocity of the disk is constant. For the
instant represented, determine the angular acceler-
ation of link AB and the acceleration of col-
lar B. Assume the quantities and r to be known.

Problem 5/135

r 2r

ω

BO

A

45°

0

�0

aB�AB

�0

y

x

6″ 6″

B A

D

C
O

20″

10″

L

2 rad/sec6 rad/sec,

4 rad/sec
4 rad/sec,

5/132 Determine the angular acceleration of link AB and
the linear acceleration of A for if and

at that position. Carry out your solu-
tion using vector notation.

Problem 5/132

Representative Problems

5/133 The end rollers of bar AB are constrained to the
slot shown. If roller A has a downward velocity of
1.2 m/s and this speed is constant over a small mo-
tion interval, determine the tangential acceleration
of roller B as it passes the topmost position. The
value of R is 0.5 m.

Problem 5/133

vA

R1.5
R

A

B

y

x

θ

O

B

A

500 mm

400 mm

400 mm

�̈  � 3 rad/s2
�̇  � 0� � 90�

c05.qxd  2/10/12  10:08 AM  Page 379



5/136 Crank OA oscillates between the dashed positions
shown and causes small angular motion of crank
BC through the connecting link AB. When OA
crosses the horizontal position with AB horizontal
and BC vertical, it has an angular velocity and
zero angular acceleration. Determine the angular
acceleration of BC for this position.

Problem 5/136

5/137 The shaft of the wheel unit rolls without slipping
on the fixed horizontal surface. If the velocity and
acceleration of point O are to the right and

to the left, respectively, determine the
accelerations of points A and D.

Problem 5/137

5/138 The hydraulic cylinder imparts motion to point B
which causes link OA to rotate. For the instant
shown where OA is vertical and AB is horizontal,
the velocity of pin B is and is increasing at
the rate of For this position determine the
angular acceleration of OA.

20 m/s2.
4 m/svB

y

x
10″ 2″ vO =

3 ft /sec

O

A

D
C

B

aO =
4 ft /sec2

4 ft/sec2
3 ft/sec

O
l

l

r

A B

C

ω

�

Problem 5/138

5/139 The velocity of roller A is to the right
as shown, and this velocity is momentarily decreas-
ing at a rate of Determine the correspond-
ing value of the angular acceleration of bar AB as
well as the tangential acceleration of roller B along
the circular guide. The value of R is 0.6 m.

Problem 5/139

5/140 The bar AB from Prob. 5/73 is repeated here. If the
velocity of point A is to the right and is constant
for an interval including the position shown, deter-
mine the tangential acceleration of point B along its
path and the angular acceleration of the bar.

Problem 5/140

1.2 m

A

B

60°0.5 m

vA

3 m/s

15°

B

vA

R

2R
A

R/2

�

2 m/s2.

vA � 0.5 m/s

240 mm
AB

O

120 mm

45°

vB
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Article 5/6 Problems 381

Problem 5/143

5/144 The sliding collar moves up and down the shaft,
causing an oscillation of crank OB. If the velocity of
A is not changing as it passes the null position where
AB is horizontal and OB is vertical, determine the
angular acceleration of OB in that position.

Problem 5/144

5/145 For the linkage shown, if and is con-
stant when the two links become perpendicular to
one another, determine the angular acceleration of
CB for this position.

Problem 5/145

B

A

C

vA

7″

5″

5″

vA � 20 in./sec

O

Bl

A
vA

r

10″

20″

A

D

B

C

vA

θ

β

5/141 The center O of the wooden spool is moving verti-
cally downward with a speed and this
speed is increasing at the rate of Determine
the accelerations of points A, P, and B.

Problem 5/141

5/142 Link OA has a constant counterclockwise angular
velocity during a short interval of its motion. For
the position shown determine the angular accelera-
tions of AB and BC.

Problem 5/142

5/143 The linkage of Prob. 5/74 is shown again here. For
the instant when the hydraulic cylin-
der gives A a velocity which is increas-
ing by each second. For this instant
determine the angular acceleration of link BC.

3 ft/sec
vA � 4 ft/sec

� � � � 60�,

O

A

B

rr
ω

r
r  2

C

�

vO

O BA P

0.48 m

0.8 m

x

y

5 m/s2.
vO � 2 m/s,
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5/146 The mechanism of Prob. 5/75 is repeated here.
Each of the sliding bars A and B engages its respec-
tive rim of the two riveted wheels without slipping.
If, in addition to the information shown, bar A has
an acceleration of to the right and there is
no acceleration of bar B, calculate the magnitude of
the acceleration of P for the instant depicted.

Problem 5/146

5/147 The four-bar linkage of Prob. 5/88 is repeated here.
If the angular velocity and angular acceleration of
drive link OA are and respectively,
both counterclockwise, determine the angular
accelerations of bars AB and BC for the instant
represented.

Problem 5/147

5/148 The elements of a simplified clam-shell bucket for a
dredge are shown. With the block at O considered
fixed and with the constant velocity of the control
cable at C equal to determine the angular
acceleration of the right-hand bucket jaw when

as the bucket jaws are closing.� � 45�

�

0.5 m/s,
v

15°

60°,
200
mm

80 mm

A

B

O

C

240 mm

ω 0 α 0

5 rad/s2,10 rad/s

O P

100
mm

160
mm

A

B

vB = 0.6 m/s

vA = 0.8 m/s

2 m/s2

Problem 5/148

5/149 The revolving crank ED and connecting link CD
cause the rigid frame ABO to oscillate about O. For
the instant represented ED and CD are both per-
pendicular to FO, and the crank ED has an angular
velocity of and an angular acceleration
of both counterclockwise. For this in-
stant determine the acceleration of point A with re-
spect to point B.

Problem 5/149

ED

A

C

O

BF

12″

3′

4′ 6′

4′

3′

0.06 rad/sec2,
0.4 rad/sec

θ

500 mm

600 mm

B

C

A

v

O

90°
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Article 5/6 Problems 383

5/152 For a short interval of motion, link OA has a con-
stant angular velocity Determine the
angular acceleration of link AB for the in-
stant when OA is parallel to the horizontal axis
through B.

Problem 5/152

5/153 The elements of a power hacksaw are shown in the
figure. The saw blade is mounted in a frame which
slides along the horizontal guide. If the motor turns
the flywheel at a constant counterclockwise speed of

determine the acceleration of the blade
for the position where and find the corre-
sponding angular acceleration of the link AB.

Problem 5/153

θ

B

O

A

450 mm

100 mm

100 mm

� � 90�,
60 rev/min,

200 m
m

O

B

A

ω

60 mm

120 mm

�AB

� � 4 rad/s.
5/150 If link AB of the four-bar linkage has a constant

counterclockwise angular velocity of dur-
ing an interval which includes the instant repre-
sented, determine the angular acceleration of AO
and the acceleration of point D. Express your re-
sults in vector notation.

Problem 5/150

5/151 The crank OA of the offset slider-crank mechanism
rotates with a constant clockwise angular velocity

Determine the angular acceleration
of link AB and the acceleration of B for the
depicted position.

Problem 5/151

O

B

60° 45°
A

15°

ω 0

OA = 75 mm
AB = 225 mm

�0 � 10 rad/s.

75 mm

A
OC

B

D

150 mm

100 mm 100 mm

ABω

y

x

40 rad/s
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5/154 The mechanism of Prob. 5/115 is repeated here
where the flexible band F attached to the sector at
E is given a constant velocity of as shown.
For the instant when BD is perpendicular to OA,
determine the angular acceleration of BD.

Problem 5/154

5/155 An oil pumping rig is shown in the figure. The flexi-
ble pump rod D is fastened to the sector at E and is
always vertical as it enters the fitting below D. The
link AB causes the beam BCE to oscillate as the
weighted crank OA revolves. If OA has a constant
clockwise speed of 1 rev every 3 s, determine the
acceleration of the pump rod D when the beam and
the crank OA are both in the horizontal position
shown.

4 m/s

O A

D

B

E

F
200
mm

75
mm

125
mm

250
mm

100
mm

4 m/s

Problem 5/155

5/156 A mechanism for pushing small boxes from an as-
sembly line onto a conveyor belt is shown with arm
OD and crank CB in their vertical positions. For
the configuration shown, crank CB has a constant
clockwise angular velocity of Determine
the acceleration of E.

Problem 5/156

� rad/s.

3.3 m

3 m

0.9 m

1.95 m

0.6 m

A
O

B

C

D

E
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D
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5/7 Motion Relative to Rotating Axes
In our discussion of the relative motion of particles in Art. 2/8 and

in our use of the relative-motion equations for the plane motion of rigid
bodies in this present chapter, we have used nonrotating reference axes
to describe relative velocity and relative acceleration. Use of rotating
reference axes greatly facilitates the solution of many problems in kine-
matics where motion is generated within a system or observed from a
system which itself is rotating. An example of such a motion is the
movement of a fluid particle along the curved vane of a centrifugal
pump, where the path relative to the vanes of the impeller becomes an
important design consideration.

We begin the description of motion using rotating axes by consider-
ing the plane motion of two particles A and B in the fixed X-Y plane, Fig.
5/10a. For the time being, we will consider A and B to be moving inde-
pendently of one another for the sake of generality. We observe the mo-
tion of A from a moving reference frame x-y which has its origin
attached to B and which rotates with an angular velocity � � . We
may write this angular velocity as the vector � = �k � k, where the
vector is normal to the plane of motion and where its positive sense is in
the positive z-direction (out from the paper), as established by the right-
hand rule. The absolute position vector of A is given by

(5/10)

where i and j are unit vectors attached to the x-y frame and r � xi � yj
stands for rA/B, the position vector of A with respect to B.

Time Derivatives of Unit Vectors
To obtain the velocity and acceleration equations we must succes-

sively differentiate the position-vector equation with respect to time. In
contrast to the case of translating axes treated in Art. 2/8, the unit vec-
tors i and j are now rotating with the x-y axes and, therefore, have time
derivatives which must be evaluated. These derivatives may be seen
from Fig. 5/10b, which shows the infinitesimal change in each unit vec-
tor during time dt as the reference axes rotate through an angle d� �

� dt. The differential change in i is di, and it has the direction of j and a
magnitude equal to the angle d� times the length of the vector i, which
is unity. Thus, di � d� j.

Similarly, the unit vector j has an infinitesimal change dj which
points in the negative x-direction, so that dj � �d� i. Dividing by dt and
replacing di/dt by , dj/dt by , and d�/dt by � � result in

By using the cross product, we can see from Fig. 5/10c that � � i = �j
and � � j � ��i. Thus, the time derivatives of the unit vectors may be
written as

(5/11)i̇  � � � i   and   j̇  � � � j

i̇  � �j   and   j̇  � ��i

�̇j̇i̇

rA � rB � r � rB � (xi � yj)

�̇

�̇
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r = rA/B

rA

rB

Y

X
O

B

A

x

y

y

j

i

i

k

× jω

× iω

j

x

θ
·θω =

x

y

z

dθ

dθ

θdi = d  j

θdj = –d  i

ω

(a)

(b)

(c)

Figure 5/10
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Relative Velocity
We now use the expressions of Eqs. 5/11 when taking the time de-

rivative of the position-vector equation for A and B to obtain the rela-
tive-velocity relation. Differentiation of Eq. 5/10 gives

But � � � r. Also, since the
observer in x-y measures velocity components and , we see that

� vrel, which is the velocity relative to the x-y frame of refer-
ence. Thus, the relative-velocity equation becomes

(5/12)

Comparison of Eq. 5/12 with Eq. 2/20 for nonrotating reference axes
shows that vA/B � � � r � vrel, from which we conclude that the term 
� � r is the difference between the relative velocities as measured from
nonrotating and rotating axes.

To illustrate further the meaning of the last two terms in Eq. 5/12,
the motion of particle A relative to the rotating x-y plane is shown in
Fig. 5/11 as taking place in a curved slot in a plate which represents the
rotating x-y reference system. The velocity of A as measured relative to
the plate, vrel, would be tangent to the path fixed in the x-y plate and
would have a magnitude , where s is measured along the path. This rel-
ative velocity may also be viewed as the velocity vA/P relative to a point P
attached to the plate and coincident with A at the instant under consid-
eration. The term � � r has a magnitude and a direction normal to r
and is the velocity relative to B of point P as seen from nonrotating axes
attached to B.

The following comparison will help establish the equivalence of, and
clarify the differences between, the relative-velocity equations written
for rotating and nonrotating reference axes:

(5/12a)

In the second equation, the term vP/B is measured from a nonrotating
position—otherwise, it would be zero. The term vA/P is the same as vrel

and is the velocity of A as measured in the x-y frame. In the third equa-
tion, vP is the absolute velocity of P and represents the effect of the
moving coordinate system, both translational and rotational. The fourth
equation is the same as that developed for nonrotating axes, Eq. 2/20,
and it is seen that vA/B � vP/B + vA/P = � � r � vrel.

r �̇

ṡ

vA � vB � � � r � vrel

ẋi � ẏj
ẏẋ

x i̇  � y j̇  � � � xi � � � yj � � � (xi � yj)

 � ṙB � (x i̇  � y j̇ ) � (ẋi � ẏj)

 ṙA � ṙB � d
dt

 (xi � yj)
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Transformation of a Time Derivative
Equation 5/12 represents a transformation of the time derivative of

the position vector between rotating and nonrotating axes. We may eas-
ily generalize this result to apply to the time derivative of any vector
quantity V � Vxi � Vy j. Accordingly, the total time derivative with re-
spect to the X-Y system is

The first two terms in the expression represent that part of the total de-
rivative of V which is measured relative to the x-y reference system, and
the second two terms represent that part of the derivative due to the ro-
tation of the reference system.

With the expressions for and from Eqs. 5/11, we may now write

(5/13)

Here � � V represents the difference between the time derivative of the
vector as measured in a fixed reference system and its time derivative as
measured in the rotating reference system. As we will see in Art. 7/2,
where three-dimensional motion is introduced, Eq. 5/13 is valid in three
dimensions, as well as in two dimensions.

The physical significance of Eq. 5/13 is illustrated in Fig. 5/12,
which shows the vector V at time t as observed both in the fixed axes 
X-Y and in the rotating axes x-y. Because we are dealing with the effects
of rotation only, we may draw the vector through the coordinate origin
without loss of generality. During time dt, the vector swings to position
V�, and the observer in x-y measures the two components (a) dV due to
its change in magnitude and (b) V d� due to its rotation d� relative to
x-y. To the rotating observer, then, the derivative (dV/dt)xy which the
observer measures has the components dV/dt and V d�/dt � . The re-
maining part of the total time derivative not measured by the rotating
observer has the magnitude V d�/dt and, expressed as a vector, is � � V.
Thus, we see from the diagram that

which is Eq. 5/13.

Relative Acceleration
The relative-acceleration equation may be obtained by differentiat-

ing the relative-velocity relation, Eq. 5/12. Thus,

aA � aB � �̇ � r � � � ṙ � v̇rel

(V̇)XY � (V̇)xy � � � V

V�̇

�dV
dt �XY

 � �dV
dt �xy

 �  � � V

j̇i̇

�dV
dt �XY

 � (V̇xi � V̇y 

j) � (Vx i̇  � Vy  j̇)

Article 5/7 Motion Relative to Rotating Axes 387

Y

X

x

y

(dV)XY

(dV)xy

d⏐V⏐ = dV

dγ

V′

V

Vdβ
Vdθ

β

θγ

·θω =

Figure 5/12
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In the derivation of Eq. 5/12 we saw that

Therefore, the third term on the right side of the acceleration equation
becomes

With the aid of Eqs. 5/11, the last term on the right side of the equation
for aA becomes

Substituting this into the expression for aA and collecting terms, we obtain

(5/14)

Equation 5/14 is the general vector expression for the absolute accel-
eration of a particle A in terms of its acceleration arel measured relative
to a moving coordinate system which rotates with an angular velocity �
and an angular acceleration . The terms and � � (� � r) are
shown in Fig. 5/13. They represent, respectively, the tangential and nor-
mal components of the acceleration aP/B of the coincident point P in its
circular motion with respect to B. This motion would be observed from a
set of nonrotating axes moving with B. The magnitude of is and
its direction is tangent to the circle. The magnitude of � � (� � r) is r�2

and its direction is from P to B along the normal to the circle.
The acceleration of A relative to the plate along the path, arel, may

be expressed in rectangular, normal and tangential, or polar coordinates
in the rotating system. Frequently, n- and t-components are used, and
these components are depicted in Fig. 5/13. The tangential component
has the magnitude (arel)t � , where s is the distance measured along
the path to A. The normal component has the magnitude (arel)n � ,
where � is the radius of curvature of the path as measured in x-y. The
sense of this vector is always toward the center of curvature.

Coriolis Acceleration
The term 2� � vrel, shown in Fig. 5/13, is called the Coriolis acceler-

ation.* It represents the difference between the acceleration of A rela-
tive to P as measured from nonrotating axes and from rotating axes.

vrel 

2/�
s̈

r �̈�̇ � r

�̇ � r�̇

aA � aB � �̇ � r � � � (� � r) � 2� � vrel � arel

 � � � vrel � arel

 � � � (ẋi � ẏj) � (ẍi � ÿj)

v̇rel � d
dt

 (ẋi � ẏj) � (ẋ i̇  � ẏ j̇ ) � (ẍi � ÿj)

� � ṙ � � � (� � r � vrel) � � � (� � r) � � � vrel

 � � � r � vrel

 ṙ � d
dt

 (xi � yj) � (x i̇  � y j̇ ) � (ẋi � ẏj)
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*Named after the French military engineer G. Coriolis (1792–1843), who was the first to
call attention to this term.
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The direction is always normal to the vector vrel, and the sense is estab-
lished by the right-hand rule for the cross product.

The Coriolis acceleration aCor � 2� � vrel is difficult to visualize be-
cause it is composed of two separate physical effects. To help with this
visualization, we will consider the simplest possible motion in which
this term appears. In Fig. 5/14a we have a rotating disk with a radial
slot in which a small particle A is confined to slide. Let the disk turn
with a constant angular velocity � � and let the particle move along
the slot with a constant speed vrel � relative to the slot. The velocity of
A has the two components (a) due to motion along the slot and (b) x�

due to the rotation of the slot. The changes in these two velocity compo-
nents due to the rotation of the disk are shown in part b of the figure for
the interval dt, during which the x-y axes rotate with the disk through
the angle d� to x�-y�.

The velocity increment due to the change in direction of vrel is d�

and that due to the change in magnitude of x� is � dx, both being in the
y-direction normal to the slot. Dividing each increment by dt and adding
give the sum , which is the magnitude of the Coriolis ac-
celeration 2� � vrel.

Dividing the remaining velocity increment x� d� due to the change
in direction of x� by dt gives x� or x�2, which is the acceleration of a
point P fixed to the slot and momentarily coincident with the particle A.

We now see how Eq. 5/14 fits these results. With the origin B in that
equation taken at the fixed center O, aB � 0. With constant angular ve-
locity, . With vrel constant in magnitude and no curvature to
the slot, arel � 0. We are left with

Replacing r by xi, � by �k, and vrel by gives

which checks our analysis from Fig. 5/14.
We also note that this same result is contained in our polar-coordinate

analysis of plane curvilinear motion in Eq. 2/14 when we let � 0 and
� 0 and replace r by x and by �. If the slot in the disk of Fig. 5/14

had been curved, we would have had a normal component of accelera-
tion relative to the slot so that arel would not be zero.

Rotating versus Nonrotating Systems
The following comparison will help to establish the equivalence of,

and clarify the differences between, the relative-acceleration equations
written for rotating and nonrotating reference axes:

(5/14a)

�̇�̈

r̈

aA � �x�2i � 2ẋ�j

ẋi

aA � � � (� � r) � 2� � vrel

�̇ � r � 0

�̇

�ẋ � ẋ� � 2ẋ�

ẋ

ẋ
ẋ

�̇
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The equivalence of aP/B and � r � � � (� � r), as shown in the sec-
ond equation, has already been described. From the third equation
where aB � aP/B has been combined to give aP, it is seen that the rela-
tive-acceleration term aA/P, unlike the corresponding relative-velocity
term, is not equal to the relative acceleration arel measured from the ro-
tating x-y frame of reference.

The Coriolis term is, therefore, the difference between the accelera-
tion aA/P of A relative to P as measured in a nonrotating system and the
acceleration arel of A relative to P as measured in a rotating system.
From the fourth equation, it is seen that the acceleration aA/B of A with
respect to B as measured in a nonrotating system, Eq. 2/21, is a combina-
tion of the last four terms in the first equation for the rotating system.

The results expressed by Eq. 5/14 may be visualized somewhat more
simply by writing the acceleration of A in terms of the acceleration of the
coincident point P. Because the acceleration of P is aP � aB � � r �

� � (� � r), we may rewrite Eq. 5/14 as

(5/14b)

When the equation is written in this form, point P may not be picked at
random because it is the one point attached to the rotating reference
frame coincident with A at the instant of analysis. Again, reference to
Fig. 5/13 should be made to clarify the meaning of each of the terms in
Eq. 5/14 and its equivalent, Eq. 5/14b.

aA � aP � 2� � vrel � arel

�̇

�̇
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In summary, once we have chosen our rotating reference system,
we must recognize the following quantities in Eqs. 5/12 and 5/14:

 arel � acceleration of A measured relative to the rotating axes

 vrel � velocity of A measured relative to the rotating axes

 �̇ � angular acceleration of the rotating axes

 � � angular velocity of the rotating axes

 r � position vector of the coincident point P measured from B

 aB � absolute acceleration of the origin B of the rotating axes

 vB � absolute velocity of the origin B of the rotating axes

KEY CONCEPTS

Also, keep in mind that our vector analysis depends on the consis-
tent use of a right-handed set of coordinate axes. Finally, note that Eqs.
5/12 and 5/14, developed here for plane motion, hold equally well for
space motion. The extension to space motion will be covered in Art. 7/6.
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SAMPLE PROBLEM 5/16

At the instant represented, the disk with the radial slot is rotating about O
with a counterclockwise angular velocity of 4 rad/sec which is decreasing at the
rate of 10 rad/sec2. The motion of slider A is separately controlled, and at this in-
stant, r � 6 in., � 5 in./sec, and � 81 in./sec2. Determine the absolute veloc-
ity and acceleration of A for this position.

Solution. We have motion relative to a rotating path, so that a rotating coor-
dinate system with origin at O is indicated. We attach x-y axes to the disk and
use the unit vectors i and j.

Velocity. With the origin at O, the term vB of Eq. 5/12 disappears and we have

The angular velocity as a vector is � � 4k rad/sec, where k is the unit vector nor-
mal to the x-y plane in the �z-direction. Our relative-velocity equation becomes

Ans.

in the direction indicated and has the magnitude

Ans.

Acceleration. Equation 5/14 written for zero acceleration of the origin of the
rotating coordinate system is

The terms become

The total acceleration is, therefore,

Ans.

in the direction indicated and has the magnitude

Ans.

Vector notation is certainly not essential to the solution of this problem.
The student should be able to work out the steps with scalar notation just as eas-
ily. The correct direction of the Coriolis-acceleration term can always be found
by the direction in which the head of the vrel vector would move if rotated about
its tail in the sense of � as shown.

aA � �(15)2 � (20)2 � 25 in./sec2

aA � (81 �96)i � (40 � 60)j � �15i � 20j in./sec2

 arel � 81i in./sec2

 2� � vrel � 2(4k) � 5i � 40j in./sec2

 �̇ � r � �10k � 6i � �60j in./sec2

 � � (� � r) � 4k � (4k � 6i) � 4k � 24j � �96i in./sec2

aA � � � (� � r) � �̇ � r � 2� � vrel � arel

vA � �(24)2 � (5)2 � 24.5 in./sec

vA � 4k � 6i � 5i � 24j � 5i in./sec

vA � � � r � vrel

r̈ṙ
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rO
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 = 4 rad/secω

·  = 10 rad/sec2ω

y

x

j

vA

vrel

i

O
 ë rv

A

y

x

aA

arel

O

A

 ë vrel2v

· ë rv

 ë (   ë r)v v

vrel

aCor

v

�

�

�

Helpful Hints

� This equation is the same as vA �

vP � vA/P, where P is a point at-
tached to the disk coincident with A
at this instant.

� Note that the x-y-z axes chosen con-
stitute a right-handed system.

� Be sure to recognize that � � (� � r)
and represent the normal and
tangential components of accelera-
tion of a point P on the disk coinci-
dent with A. This description becomes
that of Eq. 5/14b.

�̇ � r
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SAMPLE PROBLEM 5/17

The pin A of the hinged link AC is confined to move in the rotating slot of
link OD. The angular velocity of OD is � � 2 rad/s clockwise and is constant for
the interval of motion concerned. For the position where � � 45� with AC hori-
zontal, determine the velocity of pin A and the velocity of A relative to the rotat-
ing slot in OD.

Solution. Motion of a point (pin A) along a rotating path (the slot) suggests
the use of rotating coordinate axes x-y attached to arm OD. With the origin at the
fixed point O, the term vB of Eq. 5/12 vanishes, and we have vA � � � r � vrel.

The velocity of A in its circular motion about C is

where the angular velocity �CA is arbitrarily assigned in a clockwise sense in the
positive z-direction (�k).

The angular velocity � of the rotating axes is that of the arm OD and, by the
right-hand rule, is � � �k � 2k rad/s. The vector from the origin to the point P on
OD coincident with A is r � mm. Thus,

Finally, the relative-velocity term vrel is the velocity measured by an ob-
server attached to the rotating reference frame and is vrel � . Substitution into
the relative-velocity equation gives

Equating separately the coefficients of the i and j terms yields

giving

Ans.

With a negative value for �CA, the actual angular velocity of CA is counterclock-
wise, so the velocity of A is up with a magnitude of

Ans.

Geometric clarification of the terms is helpful and is easily shown. Using
the equivalence between the third and the first of Eqs. 5/12a with vB � 0 enables
us to write vA � vP � vA/P, where P is the point on the rotating arm OD coinci-
dent with A. Clearly, vP � � � 225 (2) = mm/s and its direction is
normal to OD. The relative velocity vA/P, which is the same as vrel, is seen from the
figure to be along the slot toward O. This conclusion becomes clear when it is ob-
served that A is approaching P along the slot from below before coincidence and is
receding from P upward along the slot following coincidence. The velocity of A is
tangent to its circular arc about C. The vector equation can now be satisfied since
there are only two remaining scalar unknowns, namely, the magnitude of vA/P and
the magnitude of vA. For the 45� position, the figure requires vA/P � mm/s
and vA � 900 mm/s, each in its direction shown. The angular velocity of AC is

�AC � vA  / AC � 900/225 � 4 rad/s counterclockwise[� � v/r]

450�2

450�2�2OP

vA � 225(4) � 900 mm/s

�CA � �4 rad/s   and   ẋ � vrel � �450�2 mm/s

(225/�2)�CA � ẋ   and   �(225/�2)�CA � 450�2

(225/�2)�CA (i � j) � 450�2j � ẋi

ẋi

� � r � 2k � 225�2i � 450�2j mm/s

OPi � �(450 � 225)2 � (225)2 i � 225�2i

vA � �CA � rCA � �CAk � (225/�2)(�i � j) � (225/�2)�CA (i � j)
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A direct conversion between the two
reference systems is obtained from the
geometry of the unit circle and gives

and    j � I sin � � J cos �
 i � I cos � � J sin �

450 mm

O

C
A

D

y

x

225 mm

225 mm

 = 45°θ

 = 2 rad/sω

C

O

A

A
A

45°

P P
P

vA

vA/P
 =

 v re
l

vP =  ë rv

Y
y

x

O

i

j

I

J

θ

θ

θX

�

�

Helpful Hints

� It is clear enough physically that CA
will have a counterclockwise angular
velocity for the conditions specified, so
we anticipate a negative value for �CA.

� Solution of the problem is not re-
stricted to the reference axes used. Al-
ternatively, the origin of the x-y axes,
still attached to OD, could be chosen
at the coincident point P on OD. This
choice would merely replace the � � r
term by its equal, vP. As a further se-
lection, all vector quantities could be
expressed in terms of X-Y compo-
nents using unit vectors I and J.
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SAMPLE PROBLEM 5/18

For the conditions of Sample Problem 5/17, determine the angular accelera-
tion of AC and the acceleration of A relative to the rotating slot in arm OD.

Solution. We attach the rotating coordinate system x-y to arm OD and use Eq.
5/14. With the origin at the fixed point O, the term aB becomes zero so that

From the solution to Sample Problem 5/17, we make use of the values � � 2k
rad/s, �CA � �4k rad/s, and vrel � �450 i mm/s and write

Substitution into the relative-acceleration equation yields

Equating separately the i and j terms gives

and

Solving for the two unknowns gives

Ans.

If desired, the acceleration of A may also be written as

We make use here of the geometric representation of the relative-acceleration
equation to further clarify the problem. The geometric approach may be used as
an alternative solution. Again, we introduce point P on OD coincident with A.
The equivalent scalar terms are

We start with the known vectors and add them head-to-tail for each side of the
equation beginning at R and ending at S, where the intersection of the known
directions of (aA)t and arel establishes the solution. Closure of the polygon deter-
mines the sense of each of the two unknown vectors, and their magnitudes are
easily calculated from the figure geometry.

 arel � ẍ along OD, sense unknown

 �2� � vrel � � 2�vrel directed as shown

 (aP)t � ��̇ � r � � r�̇ � 0 since � � constant

 (aP)n � �� � (� � r) � � OP�2 from P to O

 (aA)n � ��CA � (�CA � rCA) � � r�CA 

2 from A to C

 (aA)t � ��̇CA � rCA � � r�̇CA � r�CA normal to CA, sense unknown

aA � (225/�2)(32)(i � j) � (3600/�2)(i � j) � 7640i � 2550j mm/s2

�̇CA � 32 rad/s2   and   ẍ � arel � 8910 mm/s2

(�225�̇CA � 3600)/�2 � �1800�2

(225�̇CA � 3600)/�2 � �900�2 � ẍ

1
�2

 (225�̇CA � 3600)i � 1
�2

 (�225�̇CA � 3600)j � �900�2i � 1800�2j � ẍi

 arel � ẍi

 2� � vrel � 2(2k) � (�450�2i) � �1800�2j mm/s2

 � � (� � r) � 2k � (2k � 225�2i) � �900�2i mm/s2

 �̇ � r � 0 since � � constant

 � �̇CAk � 225
�2

 (�i � j) � 4k � ��4k � 225
�2

 [�i � j]�
 aA � �̇CA � rCA � �CA � (�CA � rCA)

�2

aA � �̇ � r � � � (� � r) � 2� � vrel � arel
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450 mm

O

C
A

D

y

x

225 mm

225 mm

 = 45°θ

 = 2 rad/sω

R

S

aA

(aA)n

(aA)t

(aP)n

arel

2  ë vrelv

2  ë vrelv
ωvrel

�

�

Helpful Hints

� If the slot had been curved with a
radius of curvature �, the term arel

would have had a component vrel
2/�

normal to the slot and directed to-
ward the center of curvature in addi-
tion to its component along the slot.

� It is always possible to avoid a si-
multaneous solution by projecting
the vectors onto the perpendicular
to one of the unknowns.
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SAMPLE PROBLEM 5/19

Aircraft B has a constant speed of 150 m/s as it passes the bottom of a circu-
lar loop of 400-m radius. Aircraft A flying horizontally in the plane of the loop
passes 100 m directly below B at a constant speed of 100 m/s. (a) Determine the
instantaneous velocity and acceleration which A appears to have to the pilot of
B, who is fixed to his rotating aircraft. (b) Compare your results for part (a) with
the case of erroneously treating the pilot of aircraft B as nonrotating.

Solution (a). We begin by clearly defining the rotating coordinate system x-y-z
which best helps us to answer the questions. With x-y-z attached to aircraft B as
shown, the terms vrel and arel in Eqs. 5/12 and 5/14 will be the desired results.
The terms in Eq. 5/12 are

Ans.

The terms in Eq. 5/14, in addition to those listed above, are

Ans.

(b) For motion relative to translating frames, we use Eqs. 2/20 and 2/21 of
Chapter 2:

Again, we see that vrel � vA/B and arel � aA/B. The rotation of pilot B makes a dif-
ference in what he observes!

The scalar result can be obtained by considering a complete circular

motion of aircraft B, during which it rotates 2� radians in a time t � :

Because the speed of aircraft B is constant, there is no tangential acceleration
and thus the angular acceleration � � of this aircraft is zero.�̇

� � 2�

2��/vB
 � 

vB

�

2��
vB

� � 
vB
�

 aA/B  � aA � aB � 0 � 56.2j � �56.2j m/s2

 vA/B � vA � vB � 100i � 150i � �50i m/s

arel � �4.69k m/s2Solving for arel gives

 � 2[0.375k � (�87.5i)] � arel

 0 � 56.2j � 0 � (�100j) � 0.375k � [0.375k � (�100j)]

aA � aB � �̇ � r � � � (� � r) � 2� � vrel � arelEq. 5/14:

�̇ � 0

aB � 
vB

2

�  j � 1502

400
 j � 56.2j m/s2

aA � 0

vrel � �87.5i m/sSolving for vrel gives

100i � 150i � 0.375k � (�100j) � vrel

vA � vB � � � r � vrelEq. 5/12:

r � rA/B � �100j m

� � 
vB
�  k � 150

400
  k � 0.375k rad/s

vB � 150i m/s

vA � 100i m/s
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100 m

B

A

y

z

x

 = 400 mρ

100 m

(z out)

x

y

B

r

A

vB

aB

vA

�

Helpful Hint

� Because we choose the rotating frame
x-y-z to be fixed to aircraft B, the an-
gular velocity of the aircraft and the
term � in Eqs. 5/12 and 5/14 are
identical.
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PROBLEMS
Introductory Problems

5/157 The disk rotates with angular speed 
The small ball A is moving along the radial slot
with speed relative to the disk. De-
termine the absolute velocity of the ball and state
the angle between this velocity vector and the
positive x-axis.

Problem 5/157

5/158 In addition to the conditions stated in the previous
problem, the ball speed u (relative to the disk) is in-
creasing at the rate of and the angular
rate of the disk is decreasing at the rate of

Determine the Coriolis acceleration rela-
tive to the disk-fixed Bxy coordinate system. Also
determine the absolute acceleration of ball A and
the angle between this acceleration vector and
the positive x-axis.

5/159 The disk rotates about a fixed axis through O with
angular velocity and angular acceler-
ation at the instant represented, in
the directions shown. The slider A moves in the
straight slot. Determine the absolute velocity and
acceleration of A for the same instant, when 
in., and ÿ � 30 in./sec2.ẏ � �24 in./sec,

y � 8

� � 3 rad/sec2
� � 5 rad/sec

�

0.8 rad/s2.

150 mm/s2

y

B
A

u x

ω
125 mm

�

u � 100 mm/s

� � 2 rad/s.
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Problem 5/159

5/160 The disk rotates about a fixed axis through O
with angular velocity and angular
acceleration in the directions
shown at a certain instant. The small sphere A
moves in the circular slot, and at the same instant,

and Deter-
mine the absolute velocity and acceleration of A at
this instant.

Problem 5/160

y

x

15″
O

A

α

ω

β

�̈ � �4 rad/sec2.� � 30�, �̇� 2 rad/sec,
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� � 5 rad/sec

y

x
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O

A
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Problem 5/163

5/164 A stationary pole A is viewed by an observer P who
is sitting on a small merry-go-round which rotates
about a fixed vertical axis at B with a constant an-
gular velocity as shown. Determine the apparent
velocity of A as seen by the observer P. Does this
velocity depend on the location of the observer on
the merry-go-round?

Problem 5/164

y

Ω

B

P

A
x
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�

S

y
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B
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θ
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5/161 The slotted wheel rolls to the right without slip-
ping, with a constant speed of its center
O. Simultaneously, motion of the sliding block A is
controlled by a mechanism not shown so that

with Determine the magnitude
of the acceleration of A for the instant when

and .

Problem 5/161

5/162 The disk rolls without slipping on the horizontal
surface, and at the instant represented, the center
O has the velocity and acceleration shown in the
figure. For this instant, the particle A has the indi-
cated speed u and time rate of change of speed ,
both relative to the disk. Determine the absolute
velocity and acceleration of particle A.

Problem 5/162

5/163 An experimental vehicle A travels with constant
speed v relative to the earth along a north–south
track. Determine the Coriolis acceleration as a
function of the latitude . Assume an earth-fixed
rotating frame Bxyz and a spherical earth. If the
vehicle speed is , determine the mag-
nitude of the Coriolis acceleration at (a) the equa-
tor and (b) the north pole.

v � 500  km/h

�

aCor

y

x

0.24 mvO = 3 m/s

aO = 5 m/s2

u·  = 7 m/s2 u = 2 m/s

O

A

0.30 m

u̇

v

8″

O

A
θ

x

� � 30�x � 6 in.

ẍ � 0.ẋ � 1.5 ft/sec

v � 2 ft/sec
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5/165 The small collar A is sliding on the bent bar with
speed u relative to the bar as shown. Simultane-
ously, the bar is rotating with angular velocity 
about the fixed pivot B. Take the x-y axes to be
fixed to the bar and determine the Coriolis acceler-
ation of the slider for the instant represented. In-
terpret your result.

Problem 5/165

Representative Problems

5/166 The fire truck is moving forward at a speed of 35
mi/hr and is decelerating at the rate of 
Simultaneously, the ladder is being raised and ex-
tended. At the instant considered the angle is 
and is increasing at the constant rate of 10 deg/sec.
Also at this instant the extension b of the ladder is
5 ft, with and For this
instant determine the acceleration of the end A of
the ladder (a) with respect to the truck and (b) with
respect to the ground.

Problem 5/166

B

20�

b
A

θ

b̈ � �1 ft/sec2.ḃ  � 2 ft/sec

30��

10 ft/sec2.

y

L

x
d

A

B

u

ω

�

Article 5/7 Problems 397

5/167 For an alternative solution to Prob. assign 
r- coordinates with origin at B as shown. Then
make use of the polar-coordinate relations for the
acceleration of A relative to B. The r- and com-
ponents of the absolute acceleration should coin-
cide with the components along and normal to the
ladder which would be found in Prob. 5/166.

Problem 5/167

5/168 Aircraft B has a constant speed of at the
bottom of a circular loop of 400-m radius. Aircraft
A flying horizontally in the plane of the loop passes
100 m directly under B at a constant speed of

. With coordinate axes attached to B as
shown, determine the acceleration which A appears
to have to the pilot of B for this instant.

Problem 5/168

100 m

x
B

A

z

y

 = 400 mρ

360 km/h

540 km/h

 = 30°θ

20′θ
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A
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5/166
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5/171 Under the action of its stern and starboard bow
thrusters, the cruise ship has the velocity

of its mass center B and angular velocity
about a vertical axis. The velocity of B

is constant, but the angular rate is decreasing at
Person A is stationary on the dock. What

velocity and acceleration of A are observed by a
passenger fixed to and rotating with the ship?
Treat the problem as two-dimensional.

Problem 5/171

5/172 All conditions of the previous problem remain,
except now person A is running to the right with a
constant speed (with his instanta-
neous location still as indicated in the figure).
Determine the velocity and acceleration which A
appears to have relative to a passenger fixed to and
rotating with the ship.

5/173 Two boys A and B are sitting on opposite sides of a
horizontal turntable which rotates at a constant
counterclockwise angular velocity as seen from
above. Boy A throws a ball toward B by giving it a
horizontal velocity u relative to the turntable to-
ward B. Assume that the ball has no horizontal
acceleration once released and write an expression
for the magnitude of the acceleration which B
would observe the ball to have in the plane of the
turntable just after it is thrown. Sketch the path of
the ball on the turntable as observed by B.

Problem 5/173

OA u B

r

ω

arel

�

vA � 1.6 m/s

y

x

10°

100 m

15°

B

A

ω
vB

0.5 deg/s2.
�

� � 1 deg/s
vB � 1 m/s
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5/169 Bar OA has a counterclockwise angular velocity
Rod BC slides freely through the piv-

oted collar attached to OA. Determine the angular
velocity of rod BC and the velocity of collar A
relative to rod BC.

Problem 5/169

5/170 A smooth bowling alley is oriented north–south as
shown. A ball A is released with speed v along the
lane as shown. Because of the Coriolis effect, it will
deflect a distance as shown. Develop a general ex-
pression for . The bowling alley is located at a lati-
tude in the northern hemisphere. Evaluate your
expression for the conditions 
and Should bowlers prefer east–west alleys?
State any assumptions.

Problem 5/170

Not to scale

L

A

δ

v

N

� � 40�.
L � 60 ft, v � 15 ft/sec,

�

	

	

45° 60°

25
0 m

m

A

C

BO

ω 0

�BC

�0 � 2 rad/s.
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5/174 Car B turns onto the circular off-ramp with a speed v.
Car A, traveling with the same speed v, continues
in a straight line. Prove that the velocity which A
appears to have to an observer riding in and turn-
ing with car B is zero when car A passes the posi-
tion shown regardless of the angle 

Problem 5/174

5/175 For the conditions and conclusion of Prob. 5/174,
show that the acceleration which car A appears to
have to an observer in and turning with car B is
equal to in the direction normal to the true
velocity of A.

5/176 For the instant represented, link CB is rotating
counterclockwise at a constant rate and
its pin A causes a clockwise rotation of the slotted
member ODE. Determine the angular velocity and
angular acceleration of ODE for this instant.

Problem 5/176

A

D

B

O

C

N
E

120
mm

120
mm

45°

�

�

N � 4 rad/s,

v2/R

θ

v

v

R
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B

�.

Article 5/7 Problems 399

5/177 Cars A and B are both traveling on the curved inter-
secting roads with equal constant speeds of 30
mi/hr. For the positions shown, obtain the vector
expressions for the velocity and acceleration which
A appears to have to an observer in B who rotates
with the car. The x-y axes are attached to car B.

Problem 5/177

5/178 The disk rotates about a fixed axis through point O
with a clockwise angular velocity and a
counterclockwise angular acceleration 
at the instant under consideration. The value of r is
200 mm. Pin A is fixed to the disk but slides freely
within the slotted member BC. Determine the veloc-
ity and acceleration of A relative to slotted member
BC and the angular velocity and angular acceleration
of BC.

Problem 5/178

3r

ω

OB

A

C

r

60°

0

�0 � 5 rad/s2
�0 � 20 rad/s

180′

A B

45°
180′

20′

45°

y

x
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5/181 The figure shows the vanes of a centrifugal-pump
impeller which turns with a constant clockwise
speed of . The fluid particles are ob-
served to have an absolute velocity whose compo-
nent in the r-direction is at discharge
from the vane. Furthermore, the magnitude of the
velocity of the particles measured relative to the
vane is increasing at the rate of just be-
fore they leave the vane. Determine the magnitude
of the total acceleration of a fluid particle an in-
stant before it leaves the impeller. The radius of
curvature of the vane at its end is 8 in.

Problem 5/181

5/182 The crank OA revolves clockwise with a constant
angular velocity of 10 rad/s within a limited arc of
its motion. For the position determine the
angular velocity of the slotted link CB and the accel-
eration of A as measured relative to the slot in CB.

Problem 5/182

θ

200 mm

θ2

AB

O C 

� � 30�

45°
+r

ω

6″ ρ = 8″

�

80 ft/sec2

10 ft/sec 

200 rev/min
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5/179 All conditions of the previous problem remain the
same, except now, rather than rotating about a
fixed center, the disk rolls without slipping on the
horizontal surface. If the disk has a clockwise angu-
lar velocity of and a counterclockwise
angular acceleration of determine the ve-
locity and acceleration of pin A relative to the slot-
ted member BC and the angular velocity and
angular acceleration of BC. The value of r is 200
mm. Neglect the distance from the center of pin A
to the edge of the disk.

Problem 5/179

5/180 Two satellites are in circular equatorial orbits of
different altitudes. Satellite A is in a geosynchro-
nous orbit (one with the same period as the earth’s
rotation so that it “hovers” over the same spot on
the equator). Satellite B has an orbit of radius

Calculate the velocity which A ap-
pears to have to an observer fixed in B when the
elevation angle is (a) 0 and (b) The x-y axes
are attached to B, whose antenna always points
toward the center of the earth ( -direction).
Consult and Appendix D for the neces-
sary orbital information.

Problem 5/180

A

θ

B

NrB

rA

y
x

Art. 3/13 
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90�.�

rB � 30 000 km.

3r

ω
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B
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r
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5/183 The Geneva wheel of Prob. 5/56 is shown again
here. Determine the angular acceleration of
wheel C for the instant when Wheel A has
a constant clockwise angular velocity of 2 rad/s.

Problem 5/183

200 mm

P

A

C
B

O1 O2

200/  2
mm

200/  2
mm

θ
1ω 2ω

�  �  20�.
�2

5/184 The space shuttle A is in an equatorial circular orbit
of 240-km altitude and is moving from west to east.
Determine the velocity and acceleration which it ap-
pears to have to an observer B fixed to and rotating
with the earth at the equator as the shuttle passes
overhead. Use for the radius of the
earth. Also use Fig. 1/1 for the appropriate value of g
and carry out your calculations to 4-figure accuracy.

Problem 5/184

y

x
B

A

240 km

R � 6378 km

�
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5/8 Chapter Review

In Chapter 5 we have applied our knowledge of basic kinematics
from Chapter 2 to the plane motion of rigid bodies. We approached the
problem in two ways.

1. Absolute-Motion Analysis
First, we wrote an equation which describes the general geometric

configuration of a given problem in terms of knowns and unknowns.
Then we differentiated this equation with respect to time to obtain ve-
locities and accelerations, both linear and angular.

2. Relative-Motion Analysis
We applied the principles of relative motion to rigid bodies and

found that this approach enables us to solve many problems which are
too awkward to handle by mathematical differentiation. The relative-
velocity equation, the instantaneous center of zero velocity, and the
relative-acceleration equation all require that we visualize clearly and
analyze correctly the case of circular motion of one point around an-
other point, as viewed from nonrotating axes.

Solution of the Velocity and Acceleration Equations
The relative-velocity and relative-acceleration relationships are vec-

tor equations which we may solve in any one of three ways:

1. by a scalar-geometric analysis of the vector polygon,

2. by vector algebra, or

3. by a graphical construction of the vector polygon.

Rotating Coordinate Systems
Finally, in Chapter 5 we introduced rotating coordinate systems

which enable us to solve problems where the motion is observed relative
to a rotating frame of reference. Whenever a point moves along a path
which itself is turning, analysis by rotating axes is indicated if a relative-
motion approach is used. In deriving Eq. 5/12 for velocity and Eq. 5/14
for acceleration, where the relative terms are measured from a rotating
reference system, it was necessary for us to account for the time deriva-
tives of the unit vectors i and j fixed to the rotating frame. Equations
5/12 and 5/14 also apply to spatial motion, as will be shown in Chapter 7.

An important result of the analysis of rotating coordinate systems is
the identification of the Coriolis acceleration. This acceleration repre-
sents the fact that the absolute velocity vector may have changes in both
direction and magnitude due to rotation of the relative-velocity vector
and change in position of the particle along the rotating path.

In Chapter 6 we will study the kinetics of rigid bodies in plane mo-
tion. There we will find that the ability to analyze the linear and angular
accelerations of rigid bodies is necessary in order to apply the force and
moment equations which relate the applied forces to the associated mo-
tions. Thus, the material of Chapter 5 is essential to that in Chapter 6.
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5/188 The flywheel is rotating with an angular velocity 
at time when a torque is applied to increase
its angular velocity. If the torque is controlled so
that the angle between the total acceleration of
point A on the rim and the radial line to A remains
constant, determine the angular velocity and the
angular acceleration as functions of the time t.

Problem 5/188

5/189 The equilateral triangular plate is guided by the
two vertex rollers A and B, which are confined to
move in the perpendicular slots. The control rod
gives A a constant velocity to the left for an in-
terval of its motion. Determine the value of for
which the horizontal component of the velocity of C
is zero.

Problem 5/189

Av

A

B

C

b

b

b
θ

�

vA

r

A

ω

α

�

�

�

t � 0
�0REVIEW PROBLEMS

5/185 The frictional resistance to the rotation of a fly-
wheel consists of a retardation due to air friction
which varies as the square of the angular velocity
and a constant frictional retardation in the bear-
ing. As a result the angular acceleration of the fly-
wheel while it is allowed to coast is given by

, where K and k are constants. De-
termine an expression for the time required for the
flywheel to come to rest from an initial angular
velocity 

5/186 The wheel slips as it rolls. If and if the
velocity of A with respect to B is locate
the instantaneous center C of zero velocity and find
the velocity of point P.

Problem 5/186

5/187 The bar of is repeated here. If the
velocity and tangential acceleration of end A are as
indicated in the figure, determine the angular acceler-
ation of the bar.

Problem 5/187

vA = 0.3 m/s

(aA)t = 0.6 m/s2

0.8 m

45°
A

B

O

Prob. 5/67 

ω

3″

P
OA

B

D

6″
vO

3�2 ft/sec,
vO � 4 ft/sec

�0.

� � �K � k�2
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5/190 Roller B of the linkage has a velocity of to
the right as the angle passes and bar AB also
makes an angle of with the horizontal. Locate
the instantaneous center of zero velocity for bar AB
and determine its angular velocity 

Problem 5/190

5/191 The pin A in the bell crank AOD is guided by the
flanges of the collar B, which slides with a constant
velocity of along the fixed shaft for an
interval of motion. For the position deter-
mine the acceleration of the plunger CE, whose
upper end is positioned by the radial slot in the bell
crank.

Problem 5/191

6″
6″

90°

θ

9″

A

E

C

O

B
vB D

� � 30�

3 ft/secvB

θ

A

B

O

540 mm

360 mm

0.75 m/s

�AB.

60�

60��

0.75 m/s 5/192 The helicopter is flying in the horizontal x-direction
with a velocity and the plane of rota-
tion of the 26-ft-diameter rotor is tilted from the
horizontal x-y plane. The rotor blades rotate with
an angular velocity For the in-
stant represented write the vector expressions for
the absolute velocities of rotor tip A and rotor tip B.

Problem 5/192

5/193 The wheel rolls without slipping, and its position is
controlled by the motion of the slider B. If B has a
constant velocity of to the left, determine
the angular velocity of AB and the velocity of the
center O of the wheel when 

Problem 5/193

5/194 If the center O of the wheel of Prob. 5/193 has a
constant velocity of to the left, calculate the
acceleration of the slider B for the position � � 0.

6 in./sec

O

A

θ
6″

4″

16″

B

� � 0.

10 in./sec

x

v

x′

y, y′

C

A
B

z z′

10°

Ω
10°

� � 800 rev/min.

10�

v � 120 mi/hr,
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5/197 The hydraulic cylinder C imparts a velocity v to pin
B in the direction shown. The collar slips freely on
rod OA. Determine the resulting angular velocity of
rod OA in terms of v, the displacement s of pin B,
and the fixed distance d, for the angle 

Problem 5/197

5/198 The figure illustrates a commonly used quick-
return mechanism which produces a slow cutting
stroke of the tool (attached to D) and a rapid return
stroke. If the driving crank OA is turning at the
constant rate determine the magnitude
of the velocity of point B for the instant when

Problem 5/198

500 mm

300 mm

D B

A
100 mm
O

C

θ

� � 30�.

�̇  � 3 rad/s,

β

O

AB

C

d

s
v

θ

� � 15�.

5/195 In the linkage shown OC has a constant clockwise
angular velocity during an interval of
motion, while the hydraulic cylinder gives pin A a
constant velocity of to the right. For the po-
sition shown where OC is vertical and BC is hori-
zontal, calculate the angular velocity of BC. Solve
by drawing the necessary velocity polygon.

Problem 5/195

5/196 To speed up the unrolling of a telephone cable the
trailer with the reel of cable starts from rest and is
given an initial acceleration of Simultane-
ously, the tow truck pulls the free end of the cable
horizontally in the opposite direction with an ini-
tial acceleration of If both vehicles start
from rest at the same instant, determine the mag-
nitude of the total acceleration of point A on the
forward end of the horizontal reel diameter (a) just
as the motion starts and (b) one second after the
start of the motion.

Problem 5/196

2 ft /sec2 A

3 ft /sec2

2 ft/sec2.

3 ft/sec2.

500 mm

400 mm

OA

B C

300 mm

ω

vA

1.2 m/s

� � 2 rad/s
�
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5/199 The hydraulic cylinder moves pin A to the right
with a constant velocity v. Use the fact that the dis-
tance from A to B is invariant, where B is the point
on AC momentarily in contact with the gear, and
write expressions for the angular velocity of the
gear and the angular velocity of the rack AC.

Problem 5/199

5/200 For the position shown where point A on
the sliding collar has a constant velocity 
with corresponding lengthening of the hydraulic
cylinder AC. For this same position BD is horizon-
tal and DE is vertical. Determine the angular accel-
eration of DE at this instant.

Problem 5/200

200 mm

C

B

v
A

θ

D

90 mm

E

200 mm

�DE

v � 0.3 m/s
� � 30�,

θ

ω

v

D
B

A

rC

�

5/201 The tilting device maintains a sloshing water bath
for washing vegetable produce. If the crank OA os-
cillates about the vertical and has a clockwise angu-
lar velocity of when OA is vertical, determine
the angular velocity of the basket in the position
shown where 

Problem 5/201

5/202 Determine the angular acceleration of the basket
of the vegetable washer of for the posi-
tion where OA is vertical. In this position OA has
an angular velocity of and no angular
acceleration.

5/203 A radar station B situated at the equator observes
a satellite A in a circular equatorial orbit of 
altitude and moving from west to east. For the in-
stant when the satellite is above the horizon,
determine the difference between the velocity of
the satellite relative to the radar station, as mea-
sured from a nonrotating frame of reference, and
the velocity as measured relative to the reference
frame of the radar system.

Problem 5/203

30° x

y

200 km
B

A

30�

200-km

4� rad/s 

Prob. 5/201

θ

100 mm

80 mm

240 mm

360 mm

A
B

D O

� � 30�.

4� rad/s
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Problem 5/206

*5/207 The crank OA of the four-bar linkage is driven at
a constant counterclockwise angular velocity

Determine and plot as functions of
the crank angle the angular velocities of bars AB
and BC over the range State the
maximum absolute value of each angular velocity
and the value of at which it occurs.

Problem 5/207

*5/208 If all conditions in the previous problem remain
the same, determine and plot as functions of the
crank angle the angular accelerations of bars AB
and BC over the range State the
maximum absolute value of each angular accelera-
tion and the value of at which it occurs.�

0 � � � 360�.
�

200
mm

70 mm

OA = 80 mm

A

B

O

C

240 mm

ω 0
θ

190 mm

�

0 � � � 360�.
�

�0 � 10 rad/s.

r

B

O

A
r

θ

ω

2r

5/204 The crank OB revolves clockwise at the constant
rate of For the instant when de-
termine the angular acceleration of the rod BD,
which slides through the pivoted collar at C.

Problem 5/204

*Computer-Oriented Problems

*5/205 The disk rotates about a fixed axis with a constant
angular velocity Pin A is fixed to the
disk. Determine and plot the magnitudes of the ve-
locity and acceleration of pin A relative to the slot-
ted member BC as functions of the disk angle 
over the range State the maximum
and minimum values and also the values of at
which they occur. The value of r is 200 mm.

Problem 5/205

*5/206 Link OA is given a constant counterclockwise
angular velocity Determine the angular velocity

of link AB as a function of Compute and
plot the ratio for the range 
Indicate the value of for which the angular
velocity of AB is half that of OA.

�

0 � � � 90�.�AB/�
�.�AB

�.

3r

θ
ω

O
B

A C

r
0

�

0 � � � 360�.
�

�0 � 10 rad/s.

θ
ω0

250 mm

600 mm

D

C

B

O

�

� � 90�5 rad/s.�0

�

c05.qxd  2/10/12  10:08 AM  Page 407



408 Chapter 5 Plane Kinematics of Rigid Bodies

*5/209 All conditions of Prob. 5/207 remain the same,
except the counterclockwise angular velocity of
crank OA is when and the constant
counterclockwise angular acceleration of the
crank is Determine and plot as func-
tions of the crank angle the angular velocities of
bars AB and BC over the range 
State the maximum absolute value of each angu-
lar velocity and the value of at which it occurs.

*5/210 For the Geneva wheel of Prob. 5/56, shown again
here, write the expression for the angular velocity

of the slotted wheel C during engagement of
pin P and plot for the range 
The driving wheel A has a constant angular veloc-
ity 

Problem 5/210

*5/211 The double crank is pivoted at O and permits
complete rotation without interference with the
pivoted rod CB as it slides through the collar A. If
the crank has a constant angular velocity de-
termine and plot the ratio as a function of 
between and By inspection deter-
mine the angle for which 

Problem 5/211

�̇ � 0.�

� � 180�.� � 0
��̇/ �̇

�̇,

200 mm

P

A

C
B

O1 O2

200/  2
mm

200/  2
mm

θ
1ω 2ω

�1 � 2 rad/s.

�45� � � � 45�.�2

�2

�

0 � � � 360�.
�

20 rad/s2.

� � 010 rad/s

*5/212 For the slider-crank configuration shown, derive
the expression for the velocity of the piston
(taken positive to the right) as a function of Sub-
stitute the numerical data of Sample Problem 5/15
and calculate as a function of for 
Plot versus and find its maximum magnitude
and the corresponding value of . (By symmetry
anticipate the results for 

Problem 5/212

*5/213 For the slider-crank of derive the
expression for the acceleration of the piston
(taken positive to the right) as a function of for

constant. Substitute the numerical data
of Sample Problem and calculate as a
function of for Plot versus 
and find the value of for which (By sym-
metry anticipate the results for 180� � � � 360�).

aA � 0.�

�aA0 � � � 180�.�

aA5/15
� � �̇  �

�

aA

Prob. 5/212,

θ ω

vA

x

l

y

r

B

O

A

180� � � � 360�).
�

�vA

0 � � � 180�.�vA

�.
vA

2r

r

C O O

B
B

O

A

θβ

A
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By changing between a fully outstretched and a tucked or pike position, a diver can cause large changes in her
angular speed about an axis perpendicular to the plane of the trajectory. Conservation of angular momentum is
the key issue here. The rigid-body principles of this chapter apply here, even though the human body is of course
not rigid.

© Belinda Images/SUPERSTOCK
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6/1 Introduction
The kinetics of rigid bodies treats the relationships between the ex-

ternal forces acting on a body and the corresponding translational and
rotational motions of the body. In Chapter 5 we developed the kinematic
relationships for the plane motion of rigid bodies, and we will use these
relationships extensively in this present chapter, where the effects of
forces on the two-dimensional motion of rigid bodies are examined.

For our purpose in this chapter, a body which can be approximated
as a thin slab with its motion confined to the plane of the slab will be
considered to be in plane motion. The plane of motion will contain the
mass center, and all forces which act on the body will be projected onto
the plane of motion. A body which has appreciable dimensions normal to
the plane of motion but is symmetrical about that plane of motion
through the mass center may be treated as having plane motion. These
idealizations clearly fit a very large category of rigid-body motions.

6/1 Introduction

Section A Force, Mass, and Acceleration

6/2 General Equations of Motion

6/3 Translation

6/4 Fixed-Axis Rotation

6/5 General Plane Motion

Section B Work and Energy

6/6 Work-Energy Relations

6/7 Acceleration from Work-Energy; Virtual Work

Section C Impulse and Momentum

6/8 Impulse-Momentum Equations

6/9 Chapter Review

CHAPTER OUTLINE

6Plane Kinetics
of Rigid Bodies
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Background for the Study of Kinetics
In Chapter 3 we found that two force equations of motion were re-

quired to define the motion of a particle whose motion is confined to a
plane. For the plane motion of a rigid body, an additional equation is
needed to specify the state of rotation of the body. Thus, two force equa-
tions and one moment equation or their equivalent are required to de-
termine the state of rigid-body plane motion.

The kinetic relationships which form the basis for most of the
analysis of rigid-body motion were developed in Chapter 4 for a general
system of particles. Frequent reference will be made to these equations
as they are further developed in Chapter 6 and applied specifically to the
plane motion of rigid bodies. You should refer to Chapter 4 frequently as
you study Chapter 6. Also, before proceeding make sure that you have a
firm grasp of the calculation of velocities and accelerations as developed
in Chapter 5 for rigid-body plane motion. Unless you can determine ac-
celerations correctly from the principles of kinematics, you frequently
will be unable to apply the force and moment principles of kinetics. Con-
sequently, you should master the necessary kinematics, including the
calculation of relative accelerations, before proceeding.

Successful application of kinetics requires that you isolate the body
or system to be analyzed. The isolation technique was illustrated and
used in Chapter 3 for particle kinetics and will be employed consis-
tently in the present chapter. For problems involving the instanta-
neous relationships among force, mass, and acceleration, the body or
system should be explicitly defined by isolating it with its free-body dia-
gram. When the principles of work and energy are employed, an active-
force diagram which shows only those external forces which do work on
the system may be used in lieu of the free-body diagram. The impulse-
momentum diagram should be constructed when impulse-momentum
methods are used. No solution of a problem should be attempted with-
out first defining the complete external boundary of the body or system
and identifying all external forces which act on it.

In the kinetics of rigid bodies which have angular motion, we must
introduce a property of the body which accounts for the radial distribu-
tion of its mass with respect to a particular axis of rotation normal to
the plane of motion. This property is known as the mass moment of iner-
tia of the body, and it is essential that we be able to calculate this prop-
erty in order to solve rotational problems. We assume that you are
familiar with the calculation of mass moments of inertia. Appendix B
treats this topic for those who need instruction or review.

Organization of the Chapter
Chapter 6 is organized in the same three sections in which we

treated the kinetics of particles in Chapter 3. Section A relates the
forces and moments to the instantaneous linear and angular accelera-
tions. Section B treats the solution of problems by the method of work
and energy. Section C covers the methods of impulse and momentum.

Virtually all of the basic concepts and approaches covered in these
three sections were treated in Chapter 3 on particle kinetics. This repe-
tition will help you with the topics of Chapter 6, provided you understand

412 Chapter 6 Plane Kinetics of Rigid Bodies
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the kinematics of rigid-body plane motion. In each of the three sections,
we will treat three types of motion: translation, fixed-axis rotation, and
general plane motion.

Article 6/2 General Equations of Motion 413

6/2 General Equations of Motion
In Arts. 4/2 and 4/4 we derived the force and moment vector equa-

tions of motion for a general system of mass. We now apply these results
by starting, first, with a general rigid body in three dimensions. The
force equation, Eq. 4/1, 

[4/1]

tells us that the resultant ΣF of the external forces acting on the body
equals the mass m of the body times the acceleration of its mass cen-
ter G. The moment equation taken about the mass center, Eq. 4/9,

[4/9]

shows that the resultant moment about the mass center of the external
forces on the body equals the time rate of change of the angular momen-
tum of the body about the mass center.

Recall from our study of statics that a general system of forces act-
ing on a rigid body may be replaced by a resultant force applied at a cho-
sen point and a corresponding couple. By replacing the external forces
by their equivalent force-couple system in which the resultant force acts
through the mass center, we may visualize the action of the forces and
the corresponding dynamic response of the body with the aid of Fig. 6/1.

ΣMG � ḢG

a

ΣF � ma

SECTION A FORCE, MASS, AND ACCELERATION

Equivalent Force-
Couple System

(b)

≡ ≡

Free-Body Diagram

(a)

Kinetic Diagram

(c)

ma–

F1

F2

F3

F4

ΣF

ΣMG H
· 

G

GGG

Figure 6/1
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Part a of the figure shows the relevant free-body diagram. Part b of the
figure shows the equivalent force-couple system with the resultant force
applied through G. Part c of the figure is a kinetic diagram, which repre-
sents the resulting dynamic effects as specified by Eqs. 4/1 and 4/9. The
equivalence between the free-body diagram and the kinetic diagram en-
ables us to clearly visualize and easily remember the separate transla-
tional and rotational effects of the forces applied to a rigid body. We will
express this equivalence mathematically as we apply these results to the
treatment of rigid-body plane motion.

Plane-Motion Equations
We now apply the foregoing relationships to the case of plane mo-

tion. Figure 6/2 represents a rigid body moving with plane motion in
the x-y plane. The mass center G has an acceleration and the body
has an angular velocity � � �k and an angular acceleration � � �k,
both taken positive in the z-direction. Because the z-direction of both
� and � remains perpendicular to the plane of motion, we may use
scalar notation � and � � to represent the angular velocity and an-
gular acceleration.

The angular momentum about the mass center for the general sys-
tem was expressed in Eq. 4/8a as HG � Σ�i � where �i is the posi-
tion vector relative to G of the representative particle of mass mi. For
our rigid body, the velocity of mi relative to G is � � � �i, which has a
magnitude �i� and lies in the plane of motion normal to �i. The product
�i � is then a vector normal to the x-y plane in the sense of �, and its
magnitude is Thus, the magnitude of HG becomes HG � �

The summation, which may also be written as � �2 dm, is de-
fined as the mass moment of inertia of the body about the z-axis
through G. (See Appendix B for a discussion of the calculation of mass
moments of inertia.)

We may now write

where is a constant property of the body. This property is a measure of
the rotational inertia, which is the resistance to change in rotational ve-
locity due to the radial distribution of mass around the z-axis through
G. With this substitution, our moment equation, Eq. 4/9, becomes

where � � is the angular acceleration of the body.
We may now express the moment equation and the vector form of

the generalized Newton’s second law of motion, Eq. 4/1, as

(6/1)

Equations 6/1 are the general equations of motion for a rigid body in
plane motion. In applying Eqs. 6/1, we express the vector force equation

 ΣMG � I�

 ΣF � ma

�̇

ΣMG � ḢG � I�̇ � I�

I

HG � I�

I
�Σ�i 

2mi.
Σ�i 

2mi��i 

2�.
�̇ i

�̇ i

mi �̇ i

�̇

a,
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y

x

mi

G

a–

F4

F3

F2

F1

β

α

ω

iρ

Figure 6/2
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in terms of its two scalar components using x-y, n-t, or r-� coordinates,
whichever is most convenient for the problem at hand.

Alternative Derivation
It is instructive to use an alternative approach to derive the mo-

ment equation by referring directly to the forces which act on the repre-
sentative particle of mass mi, as shown in Fig. 6/3. The acceleration of
mi equals the vector sum of and the relative terms �i�

2 and �i�, where
the mass center G is used as the reference point. It follows that the re-
sultant of all forces on mi has the components mi�i�

2, and mi�i� in
the directions shown. The sum of the moments of these force compo-
nents about G in the sense of � becomes

Similar moment expressions exist for all particles in the body, and
the sum of these moments about G for the resultant forces acting on all
particles may be written as

But the origin of coordinates is taken at the mass center, so that Σmixi
� � 0 and Σmi yi � � 0. Thus, the moment sum becomes

as before. The contribution to ΣMG of the forces internal to the body is,
of course, zero since they occur in pairs of equal and opposite forces of
action and reaction between interacting particles. Thus, ΣMG, as before,
represents the sum of moments about the mass center G of only the ex-
ternal forces acting on the body, as disclosed by the free-body diagram.

We note that the force component mi�i�
2 has no moment about G

and conclude, therefore, that the angular velocity � has no influence on
the moment equation about the mass center.

The results embodied in our basic equations of motion for a rigid body
in plane motion, Eqs. 6/1, are represented diagrammatically in Fig. 6/4,

ΣMG � Σmi �i 

2� � I�

mymx

ΣMG � Σmi �i 

2� � a sin � Σmi xi � a cos � Σmi yi

MGi
 � mi �i 

2� � (mi a sin �)xi � (mi a cos �)yi

mi a,

a
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y

x

mi

mia
–

xi

G

or
β

αω

ω mi iρ α

mi
2

iρ ω
yi

Figure 6/3

a–

G

ma–

G

α

≡
F1

F2

F3

I
–
α

Free-Body Diagram Kinetic Diagram

Figure 6/4
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which is the two-dimensional counterpart of parts a and c of Fig. 6/1 for a
general three-dimensional body. The free-body diagram discloses the forces
and moments appearing on the left-hand side of our equations of motion.
The kinetic diagram discloses the resulting dynamic response in terms of
the translational term and the rotational term which appear on the
right-hand side of Eqs. 6/1.

As previously mentioned, the translational term will be ex-
pressed by its x-y, n-t, or r-� components once the appropriate inertial
reference system is designated. The equivalence depicted in Fig. 6/4 is
basic to our understanding of the kinetics of plane motion and will be
employed frequently in the solution of problems.

Representation of the resultants and will help ensure that
the force and moment sums determined from the free-body diagram are
equated to their proper resultants.

Alternative Moment Equations
In Art. 4/4 of Chapter 4 on systems of particles, we developed a gen-

eral equation for moments about an arbitrary point P, Eq. 4/11, which is

[4/11]

where is the vector from P to the mass center G and is the mass-cen-
ter acceleration. As we have shown earlier in this article, for a rigid body
in plane motion becomes Also, the cross product � is sim-
ply the moment of magnitude of about P. Therefore, for the
two-dimensional body illustrated in Fig. 6/5 with its free-body diagram
and kinetic diagram, we may rewrite Eq. 4/11 simply as

(6/2)

Clearly, all three terms are positive in the counterclockwise sense for the
example shown, and the choice of P eliminates reference to F1 and F3.

If we had wished to eliminate reference to F2 and F3, for example,
by choosing their intersection as the reference point, then P would lie
on the opposite side of the vector, and the clockwise moment of mama

ΣMP � I� � mad

mamad
ma�I�.ḢG

a�

ΣMP � ḢG � � � ma

I�ma

ma

I�ma
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about P would be a negative term in the equation. Equation 6/2 is easily
remembered as it is merely an expression of the familiar principle of mo-
ments, where the sum of the moments about P equals the combined mo-
ment about P of their sum, expressed by the resultant couple ΣMG �

and the resultant force ΣF �

In Art. 4/4 we also developed an alternative moment equation about
P, Eq. 4/13, which is

[4/13]

For rigid-body plane motion, if P is chosen as a point fixed to the body,
then in scalar form becomes IP�, where IP is the mass moment of
inertia about an axis through P and � is the angular acceleration of the
body. So we may write the equation as

(6/3)

where the acceleration of P is aP and the position vector from P to G is 
When � 0, point P becomes the mass center G, and Eq. 6/3 re-

duces to the scalar form ΣMG � previously derived. When point P
becomes a point O fixed in an inertial reference system and attached to
the body (or body extended), then aP � 0, and Eq. 6/3 in scalar form re-
duces to

(6/4)

Equation 6/4 then applies to the rotation of a rigid body about a nonac-
celerating point O fixed to the body and is the two-dimensional simplifi-
cation of Eq. 4/7.

Unconstrained and Constrained Motion
The motion of a rigid body may be unconstrained or constrained.

The rocket moving in a vertical plane, Fig. 6/6a, is an example of uncon-
strained motion as there are no physical confinements to its motion.

ΣMO � IO�

I�,
�

�.

ΣMP � IP � � � � maP

(ḢP)rel

ΣMP � (ḢP)rel � � � maP

ma.
I�
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The two components and of the mass-center acceleration and the
angular acceleration � may be determined independently of one another
by direct application of Eqs. 6/1.

The bar in Fig. 6/6b, on the other hand, undergoes a constrained
motion, where the vertical and horizontal guides for the ends of the
bar impose a kinematic relationship between the acceleration com-
ponents of the mass center and the angular acceleration of the bar.
Thus, it is necessary to determine this kinematic relationship from
the principles established in Chapter 5 and to combine it with the
force and moment equations of motion before a solution can be car-
ried out.

In general, dynamics problems which involve physical constraints to
motion require a kinematic analysis relating linear to angular accelera-
tion before the force and moment equations of motion can be solved. It
is for this reason that an understanding of the principles and methods of
Chapter 5 is so vital to the work of Chapter 6.

Systems of Interconnected Bodies
Upon occasion, in problems dealing with two or more connected

rigid bodies whose motions are related kinematically, it is convenient to
analyze the bodies as an entire system.

Figure 6/7 illustrates two rigid bodies hinged at A and subjected to
the external forces shown. The forces in the connection at A are internal
to the system and are not disclosed. The resultant of all external forces
must equal the vector sum of the two resultants and and the
sum of the moments about some arbitrary point such as P of all external
forces must equal the moment of the resultants, � � �

Thus, we may state

(6/5)
 ΣMP � ΣI� � Σmad

 ΣF � Σma

m2a2d2.
m1a1d1I2�2I1�1

m2a2,m1a1

ayax
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where the summations on the right-hand side of the equations repre-
sent as many terms as there are separate bodies.

If there are more than three remaining unknowns in a system, how-
ever, the three independent scalar equations of motion, when applied to
the system, are not sufficient to solve the problem. In this case, more ad-
vanced methods such as virtual work (Art. 6/7) or Lagrange’s equations
(not discussed in this book*) could be employed, or else the system could
be dismembered and each part analyzed separately with the resulting
equations solved simultaneously.

Article 6/2 General Equations of Motion 419

*When an interconnected system has more than one degree of freedom, that is, requires
more than one coordinate to specify completely the configuration of the system, the more
advanced equations of Lagrange are generally used. See the first author’s Dynamics, 2nd
Edition, SI Version, 1975, John Wiley & Sons, for a treatment of Lagrange’s equations.

Analysis Procedure
In the solution of force-mass-acceleration problems for the plane

motion of rigid bodies, the following steps should be taken once you un-
derstand the conditions and requirements of the problem:

1. Kinematics. First, identify the class of motion and then solve
for any needed linear and angular accelerations which can be deter-
mined solely from given kinematic information. In the case of con-
strained plane motion, it is usually necessary to establish the relation
between the linear acceleration of the mass center and the angular ac-
celeration of the body by first solving the appropriate relative-velocity
and relative-acceleration equations. Again, we emphasize that success in
working force-mass-acceleration problems in this chapter is contingent
on the ability to describe the necessary kinematics, so that frequent re-
view of Chapter 5 is recommended.

2. Diagrams. Always draw the complete free-body diagram of the
body to be analyzed. Assign a convenient inertial coordinate system and
label all known and unknown quantities. The kinetic diagram should
also be constructed so as to clarify the equivalence between the applied
forces and the resulting dynamic response.

3. Equations of Motion. Apply the three equations of motion
from Eqs. 6/1, being consistent with the algebraic signs in relation to
the choice of reference axes. Equation 6/2 or 6/3 may be employed as
an alternative to the second of Eqs. 6/1. Combine these relations with
the results from any needed kinematic analysis. Count the number of
unknowns and be certain that there are an equal number of indepen-
dent equations available. For a solvable rigid-body problem in plane
motion, there can be no more than the five scalar unknowns which can
be determined from the three scalar equations of motion, obtained
from Eqs. 6/1, and the two scalar component relations which come
from the relative-acceleration equation.

KEY CONCEPTS
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In the following three articles the foregoing developments will be
applied to three cases of motion in a plane: translation, fixed-axis rota-
tion, and general plane motion.

6/3 Translation
Rigid-body translation in plane motion was described in Art. 5/1 and

illustrated in Figs. 5/1a and 5/1b, where we saw that every line in a trans-
lating body remains parallel to its original position at all times. In recti-
linear translation all points move in straight lines, whereas in curvilinear
translation all points move on congruent curved paths. In either case,
there is no angular motion of the translating body, so that both � and �
are zero. Therefore, from the moment relation of Eqs. 6/1, we see that all
reference to the moment of inertia is eliminated for a translating body.
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For a translating body, then, our general equations for plane mo-
tion, Eqs. 6/1, may be written

(6/6)

For rectilinear translation, illustrated in Fig. 6/8a, if the x-axis is chosen
in the direction of the acceleration, then the two scalar force equations
become ΣFx � and ΣFy � � 0. For curvilinear translation, Fig.
6/8b, if we use n-t coordinates, the two scalar force equations become
ΣFn � and ΣFt � In both cases, ΣMG � 0.

We may also employ the alternative moment equation, Eq. 6/2,
with the aid of the kinetic diagram. For rectilinear translation we see
that ΣMP � and ΣMA � 0. For curvilinear translation the kinetic
diagram permits us to write ΣMA � in the clockwise sense and
ΣMB � in the counterclockwise sense. Thus, we have complete
freedom to choose a convenient moment center.

mat dB

mandA

mad

mat.man

maymax

 ΣMG � I� � 0

 ΣF � ma
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The methods of this article apply to this motorcycle if its roll (lean) angle
is constant for an interval of time.
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SAMPLE PROBLEM 6/1

The pickup truck weighs 3220 lb and reaches a speed of 30 mi/hr from rest
in a distance of 200 ft up the 10-percent incline with constant acceleration. Cal-
culate the normal force under each pair of wheels and the friction force under
the rear driving wheels. The effective coefficient of friction between the tires and
the road is known to be at least 0.8.

Solution. We will assume that the mass of the wheels is negligible compared
with the total mass of the truck. The truck may now be simulated by a single
rigid body in rectilinear translation with an acceleration of 

The free-body diagram of the complete truck shows the normal forces N1

and N2, the friction force F in the direction to oppose the slipping of the dri-
ving wheels, and the weight W represented by its two components. With � �

tan�1 1/10 � 5.71�, these components are W cos � � 3220 cos 5.71� � 3200 lb
and W sin � � 3220 sin 5.71� � 320 lb. The kinetic diagram shows the resul-
tant, which passes through the mass center and is in the direction of its accel-
eration. Its magnitude is

Applying the three equations of motion, Eqs. 6/1, for the three unknowns
gives

Ans.

(a)

(b)

Solving (a) and (b) simultaneously gives

Ans.

In order to support a friction force of 804 lb, a coefficient of friction of at
least F/N2 � 804/1763 � 0.46 is required. Since our coefficient of friction is at
least 0.8, the surfaces are rough enough to support the calculated value of F so
that our result is correct.

Alternative Solution. From the kinetic diagram we see that N1 and N2 can
be obtained independently of one another by writing separate moment equations
about A and B.

Ans.

Ans. N1 � 1441 lb

 3200(60) � 320(24) � 120N1 � 484(24)[ΣMB � mad]

 N2 � 1763 lb

 120N2 � 60(3200) � 24(320) � 484(24)[ΣMA � mad]

N1 � 1441 lb   N2 � 1763 lb

[ΣMG � I� � 0]    60N1 � 804(24) � N2(60) � 0

[ΣFy � may � 0]     N1 � N2 � 3200 � 0

[ΣFx � max]     F � 320 � 484   F � 804 lb

ma � 3220
32.2

 (4.84) � 484 lb

a � 
(44)2

2(200)
 � 4.84 ft/sec2[v2 � 2as]
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60″
10

1

24″

60″

G

A

θ

B

A

F

N2

θW sin 

θW cos N1

y

x

B

10
1

ma≡

Helpful Hints

� Without this assumption, we would
be obliged to account for the rela-
tively small additional forces which
produce moments to give the wheels
their angular acceleration.

� Recall that 30 mi/hr is 44 ft/sec.

� We must be careful not to use the
friction equation F � �N here since
we do not have a case of slipping or
impending slipping. If the given co-
efficient of friction were less than
0.46, the friction force would be
�N2, and the car would be unable 
to attain the acceleration of 4.84
ft/sec2. In this case, the unknowns
would be N1, N2, and a.

� The left-hand side of the equation is
evaluated from the free-body dia-
gram, and the right-hand side from
the kinetic diagram. The positive
sense for the moment sum is arbi-
trary but must be the same for both
sides of the equation. In this prob-
lem, we have taken the clockwise
sense as positive for the moment of
the resultant force about B.

�

�

�

�
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SAMPLE PROBLEM 6/2

The vertical bar AB has a mass of 150 kg with center of mass G midway be-
tween the ends. The bar is elevated from rest at � � 0 by means of the parallel
links of negligible mass, with a constant couple M � 5 applied to the lower
link at C. Determine the angular acceleration � of the links as a function of �

and find the force B in the link DB at the instant when �� 30�.

Solution. The motion of the bar is seen to be curvilinear translation since the
bar itself does not rotate during the motion. With the circular motion of the
mass center G, we choose n- and t-coordinates as the most convenient descrip-
tion. With negligible mass of the links, the tangential component At of the force
at A is obtained from the free-body diagram of AC, where ΣMC � 0 and At �

� 5/1.5 � 3.33 kN. The force at B is along the link. All applied forces are
shown on the free-body diagram of the bar, and the kinetic diagram is also indi-
cated, where the resultant is shown in terms of its two components.

The sequence of solution is established by noting that An and B depend on
the n-summation of forces and, hence, on at � � 30�. The value of � depends
on the variation of � � with �. This dependency is established from a force
summation in the t-direction for a general value of �, where � �

Thus, we begin with

Ans.

With � a known function of �, the angular velocity � of the links is obtained from

Substitution of � � 30� gives

and

The force B may be obtained by a moment summation about A, which elimi-
nates An and At and the weight. Or a moment summation may be taken about
the intersection of An and the line of action of which eliminates An and

Using A as a moment center gives

Ans.

The component An could be obtained from a force summation in the n-direction
or from a moment summation about G or about the intersection of B and the
line of action of mr�.

 B � 2.14 kN

 1.8 cos 30� B � 2.02(1.2) cos 30� � 2.06(0.6)[ΣMA � mad]

mr�.
mr�,

 mr� � 0.15(1.5)(9.15) � 2.06 kN

 mr�2 � 0.15(1.5)(8.97) � 2.02 kN

(�2)30� � 8.97 (rad/s)2   �30� � 9.15 rad/s2

 �2 � 29.6� � 13.08 sin �

��

0
 � d� � ��

0
 (14.81 � 6.54 cos �) d�[� d� � � d�]

� � 14.81 � 6.54 cos � rad/s2

3.33 � 0.15(9.81) cos � � 0.15(1.5a)[ΣFt � mat]

AC�.(at)Aat

�̈

mr�2

ma

M/AC

kN � m
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0.6 m

1.8 m

1.5 m

1.5 m

GD

C
A

θ

B

M

n

t
θ

G ≡
mr–α

mr– 2ω

0.15(9.81) kN

r–  = 1.5 m

B

An

An

At

At

Ct

Cn

t

n

G

M

�

� Helpful Hints

� Generally speaking, the best choice
of reference axes is to make them co-
incide with the directions in which
the components of the mass-center
acceleration are expressed. Examine
the consequences of choosing hori-
zontal and vertical axes.

� The force and moment equations for
a body of negligible mass become the
same as the equations of equilib-
rium. Link BD, therefore, acts as a
two-force member in equilibrium.

c06.qxd  2/10/12  2:13 PM  Page 423



6/4 The uniform slender bar of mass m is freely pivoted at
point O of the frame of mass M. Determine the force
P required to maintain the bar perpendicular to the
incline of angle as the system accelerates in transla-
tion down the incline. The coefficient of kinetic fric-
tion between the frame and the incline is 

Problem 6/4

6/5 What acceleration a of the collar along the horizontal
guide will result in a steady-state deflection of
the pendulum from the vertical? The slender rod of
length l and the particle each have mass m. Friction
at the pivot P is negligible.

Problem 6/5

l

m

15°

P

a

m

15�

M

O

m P

kμ

θ

�k.

�
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PROBLEMS
Introductory Problems

6/1 For what acceleration a of the frame will the uniform
slender rod maintain the orientation shown in the fig-
ure? Neglect the friction and mass of the small rollers
at A and B.

Problem 6/1

6/2 The right-angle bar with equal legs weighs 6 lb and is
freely hinged to the vertical plate at C. The bar is pre-
vented from rotating by the two pegs A and B fixed to
the plate. Determine the acceleration a of the plate
for which no force is exerted on the bar by either peg
A or B.

Problem 6/2

6/3 In Prob. if the plate is given a horizontal accelera-
tion calculate the force exerted on the bar by
either peg A or B.

a � 2g,
6/2,

a

C

BA

8″

8″

30°

a

A

B
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6/6 The uniform box of mass m slides down the rough in-
cline. Determine the location d of the effective normal
force N. The effective normal force is located at the
centroid of the nonuniform pressure distribution
which the incline exerts on the bottom surface of the
block.

Problem 6/6

6/7 The homogeneous create of mass m is mounted on
small wheels as shown. Determine the maximum
force P which can be applied without overturning the
crate about its lower front edge with and 

its lower back edge with 

Problem 6/7

6/8 Determine the value of P which will cause the homo-
geneous cylinder to begin to roll up out of its rectan-
gular recess. The mass of the cylinder is m and that of
the cart is M. The cart wheels have negligible mass
and friction.

Problem 6/8

P

m

M

G
r/2

r/2

P

h
b

c

B A

h � 0.(b)
h � b(a)

bv

h

N

d

m G

kμ

θ
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6/9 Determine the acceleration of the initially stationary
20-kg body when the 50-N force P is applied as shown.
The small wheels at B are ideal, and the feet at A are
small.

Problem 6/9

6/10 Repeat the previous problem for the case when the
wheels and feet have been reversed as shown in
the figure for this problem. Compare your answer to
the stated result for the previous problem.

Problem 6/10

6/11 The uniform 30-kg bar OB is secured to the acceler-
ating frame in the position from the horizontal
by the hinge at O and roller at A. If the horizontal
acceleration of the frame is compute the
force on the roller and the x- and y-components
of the force supported by the pin at O.

Problem 6/11

30°

3000
mm

1000
mm

B

y

x

A
a

O

FA

a � 20 m /s2,

30�

P = 50 N

G

A B

20 kg

μs = 0.40

μk = 0.30

μ

μ

0.4 m

0.8 m

P = 50 N

G

A B

20 kg

μs = 0.40

μk = 0.30

μ

μ

0.4 m

0.8 m
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Problem 6/14

6/15 Repeat the questions of the previous problem for the
3200-lb front-engine car shown, and compare your
answers with those listed for the previous problem.

Problem 6/15

Representative Problems

6/16 The uniform 4-m boom has a mass of 60 kg and is
pivoted to the back of a truck at A and secured by a
cable at C. Calculate the magnitude of the total force
supported by the connection at A if the truck starts
from rest with an acceleration of 

Problem 6/16

A

B

a

C60°

4 m

2 m

5 m /s2.

v

G
24″

A B

66″44″

24″

v

A B

66″ 44″

G
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6/12 The rear-wheel-drive lawn mower, when placed into
gear while at rest, is observed to momentarily spin its
rear tires as it accelerates. If the coefficients of friction
between the rear tires and the ground are 
and determine the forward acceleration a
of the mower. The mass of the mower and attached
bag is 50 kg with center of mass at G. Assume that the
operator does not push on the handle, so that 

Problem 6/12

6/13 The 6-kg frame AC and 4-kg uniform slender bar AB
of length l slide with negligible friction along the
fixed horizontal rod under the action of the 80-N
force. Calculate the tension T in wire BC and the 
x- and y-components of the force exerted on the bar
by the pin at A. The x-y plane is vertical.

Problem 6/13

6/14 The mass center of the rear-engine 3200-lb car is at
G. Determine the normal forces and exerted
by the road on the front and rear pairs of tires for
the conditions of (a) being stationary and (b) braking
from a forward velocity v with all wheels locked. The
coefficient of kinetic friction is 0.90 at all tire/road
interfaces. Express all answers in terms of pounds
and as percentages of the vehicle weight.

NBNA

80 N

60° 60°
CA

B

l
x

y

900
mm

1000
mm

200
mm

500
mm

215 mm

P A

G

CB

P � 0.

�k � 0.50,
�s � 0.70
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6/17 The loaded trailer has a mass of 900 kg with center
of mass at G and is attached at A to a rear-bumper
hitch. If the car and trailer reach a velocity of

on a level road in a distance of from
rest with constant acceleration, compute the vertical
component of the force supported by the hitch at A.
Neglect the small friction force exerted on the rela-
tively light wheels.

Problem 6/17

6/18 Arm AB of a classifying accelerometer has a weight
of 0.25 lb with mass center at G and is pivoted freely
to the frame F at A. The torsional spring at A is set
to preload the arm with an applied clockwise moment
of 2 lb-in. Determine the downward acceleration a of
the frame at which the contact at B will separate
and break the electrical circuit.

Problem 6/18

6/19 The uniform 60-lb log is supported by the two cables
and used as a battering ram. If the log is released
from rest in the position shown, calculate the initial
tension induced in each cable immediately after re-
lease and the corresponding angular acceleration 
of the cables.

�

2″

A
G

a

B

F

1.5″

1.2 m

0.9 m
0.5 m

A

G
x

y

30 m60 km /h
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Problem 6/19

6/20 Determine the magnitude P and direction of the
force required to impart a rearward acceleration

to the loaded wheelbarrow with no ro-
tation from the position shown. The combined
weight of the wheelbarrow and its load is 500 lb with
center of gravity at G. Compare the normal force at
B under acceleration with that for static equilibrium
in the position shown. Neglect the friction and mass
of the wheel.

Problem 6/20

6/21 Solid homogeneous cylinders 400 mm high and 
250 mm in diameter are supported by a flat conveyor
belt which moves horizontally. If the speed of the
belt increases according to 
where t is the time in seconds measured from the
instant the increase begins, calculate the value of t
for which the cylinders begin to tip over. Cleats on
the belt prevent the cylinders from slipping.

Problem 6/21

v � 1.2 � 0.9t2 m/s,

24′′

A

a

B

G

P

40′′
8′′

20′′

θ

a � 5 ft /sec2

�

2′

A

B C

2′

2′ 1′60°60°

60 lb
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6/24 The riding power mower has a mass of 140 kg with
center of mass at The operator has a mass of 
90 kg with center of mass at Calculate the mini-
mum effective coefficient of friction which will per-
mit the front wheels of the mower to lift off the
ground as the mower starts to move forward.

Problem 6/24

6/25 The 25-kg bar BD is attached to the two light links
AB and CD and moves in the vertical plane. The
lower link is subjected to a clockwise torque

applied through its shaft at A. If each
link has an angular velocity as it passes
the horizontal position, calculate the force which the
upper link exerts on the bar at D at this instant.
Also find the angular acceleration of the links at this
position.

Problem 6/25

300
mm

500
mm

600
mm

C

A

M

B

D

G

ω

� � 5 rad/s
M � 200 N � m

G1

G2

450
mm

100
mm 750

mm

300
mm

900
mm

AB

�

G2.
G1.
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6/22 The block A and attached rod have a combined mass
of 60 kg and are confined to move along the 
guide under the action of the 800-N applied force.
The uniform horizontal rod has a mass of 20 kg and
is welded to the block at B. Friction in the guide is
negligible. Compute the bending moment M exerted
by the weld on the rod at B.

Problem 6/22

6/23 The parallelogram linkage shown moves in the verti-
cal plane with the uniform 8-kg bar EF attached to
the plate at E by a pin which is welded both to the
plate and to the bar. A torque (not shown) is applied
to link AB through its lower pin to drive the links in
a clockwise direction. When reaches the links
have an angular acceleration and an angular velocity
of and respectively. For this instant
calculate the magnitudes of the force F and torque
M supported by the pin at E.

Problem 6/23

Horizontal
DB

E F

θθ

A

800
mm

800
mm

1200 mmWelded
pin

C

3 rad/s,6 rad/s2

60�,�

800 N

1.4 m

60

A

B

60�
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6/26 A jet transport with a landing speed of re-
duces its speed to with a negative thrust R
from its jet thrust reversers in a distance of 425 m
along the runway with constant deceleration. The
total mass of the aircraft is 140 Mg with mass center
at G. Compute the reaction N under the nose wheel
B toward the end of the braking interval and prior to
the application of mechanical braking. At the lower
speed, aerodynamic forces on the aircraft are small
and may be neglected.

Problem 6/26

6/27 The uniform L-shaped bar pivots freely at point P of
the slider, which moves along the horizontal rod.
Determine the steady-state value of the angle if 
(a) and (b) For what value of a would
the steady-state value of be zero?

Problem 6/27

6/28 The van seen from the rear is traveling at a speed v
around a turn of mean radius r banked inward at an
angle . The effective coefficient of friction between
the tires and the road is . Determine (a) the proper
bank angle for a given v to eliminate any tendency to
slip or tip, and (b) the maximum speed v before the
van tips or slips for a given . Note that the forces
and the acceleration lie in the plane of the figure so
that the problem may be treated as one of plane mo-
tion even though the velocity is normal to this plane.

�

�

�

θ

P

a

l

2l

�

a � g/2.a � 0
�

v

15 m

2.4 m

R
A

G

B
1.8 m3 m

60 km/h
200 km/h
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Problem 6/28

6/29 The parallelogram linkage is used to transfer crates
from platform A to platform B and is hydraulically
operated. The oil pressure in the cylinder is pro-
grammed to provide a smooth transition of motion
from to rad given by 

where t is in seconds. Determine the 

force at D on the pin (a) just after the start of the
motion with and t essentially zero and (b) when

The crate and platform have a combined
mass of 200 kg with mass center at G. The mass of
each link is small and may be neglected.

Problem 6/29

600
mm

1200mm

A

B

D

C E

F

θ

θ0

G

480 mm

t � 1 s.
�

�
6

 �1 � cos �t
2 �

� �� � �0 � �/3� � 0

h

b/2
b/2

r

G

θ
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Problem 6/31

6/32 The uniform 200-kg bar AB is raised in the vertical
plane by the application of a constant couple

applied to the link at C. The mass of
the links is small and may be neglected. If the bar
starts from rest at determine the magnitude
of the force supported by the pin at A as the position

is passed.

Problem 6/32

1.5 m

1.5 m

D
C

M

1.75
m

0.5
m

0.75
m

BA

θθ

� � 60�

� � 0,

M � 3 kN � m

v

0.6 m
1.0 m 0.8 m

0.4 m
B

A

O

G

0.6 m

0.4 m

θ θ
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6/30 The 1800-kg rear-wheel-drive car accelerates forward
at a rate of If the modulus of each of the rear
and front springs is estimate the resulting
momentary nose-up pitch angle . (This upward
pitch angle during acceleration is called squat, while
the downward pitch during braking is called dive!)
Neglect the unsprung mass of the wheels and tires.
(Hint: Begin by assuming a rigid vehicle.)

Problem 6/30

6/31 The two wheels of the vehicle are connected by a
20-kg link AB with center of mass at G. The link is
pinned to the wheel at B, and the pin at A fits into a
smooth horizontal slot in the link. If the vehicle has a
constant speed of determine the magnitude of
the force supported by the pin at B for the position
� � 30�.

4 m/s,

A
1500
mm

1500
mm

B

a

G
600 mm

�

35 kN/m,
g/2.

�
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6/4 Fixed-Axis Rotation
Rotation of a rigid body about a fixed axis O was described in Art.

5/2 and illustrated in Fig. 5/1c. For this motion, we saw that all points in
the body describe circles about the rotation axis, and all lines of the
body in the plane of motion have the same angular velocity � and angu-
lar acceleration �.

The acceleration components of the mass center for circular mo-
tion are most easily expressed in n-t coordinates, so we have an �

and at � as shown in Fig. 6/9a for rotation of the rigid body about
the fixed axis through O. Part b of the figure represents the free-body
diagram, and the equivalent kinetic diagram in part c of the figure
shows the force resultant in terms of its n- and t-components and
the resultant couple 

Our general equations for plane motion, Eqs. 6/1, are directly ap-
plicable and are repeated here.

[6/1]

Thus, the two scalar components of the force equation become ΣFn �

and ΣFt � In applying the moment equation about G, we must ac-
count for the moment of the force applied to the body at O, so this force
must not be omitted from the free-body diagram.

For fixed-axis rotation, it is generally useful to apply a moment
equation directly about the rotation axis O. We derived this equation
previously as Eq. 6/4, which is repeated here.

[6/4]

From the kinetic diagram in Fig. 6/9c, we may obtain Eq. 6/4 very easily
by evaluating the moment of the resultants about O, which becomes
ΣMO � � Application of the parallel-axis theorem for mass mo-
ments of inertia, IO � � gives ΣMO � (IO � � � IO�.

For the common case of rotation of a rigid body about a fixed axis
through its mass center G, clearly, � 0, and therefore ΣF � 0. The re-
sultant of the applied forces then is the couple 

We may combine the resultant-force component and resultant
couple by moving to a parallel position through point Q on line
OG, Fig. 6/10, located by � � Using the parallel-axis
theorem and IO � gives q �

Point Q is called the center of percussion and has the unique prop-
erty that the resultant of all forces applied to the body must pass
through it. It follows that the sum of the moments of all forces about the
center of percussion is always zero, ΣMQ � 0.

kO 

2/ r.kO 

2m
mr�(r).I�mr�q

matI�

mat

I�.
a

mr 

2�mr 

2)�mr 

2,I
matr.I�

ΣMO � IO�

mr�.
mr�2

 ΣMG � I�

 ΣF � ma

I�.
ma

r�,
r�2
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G

O

G

O
r–

ma–n

ma– t

I
–
α

≡

Free-Body Diagram
(b)

G

n
t

or

αω

ω

O

Fixed-Axis Rotation
(a)

Kinetic Diagram
(c)

a–n = r– 2ω
a– t = r–α

Figure 6/9

G

Q

O
r–

mr– 2ω
mr–α

kO
2

——–
r–

q =

α

Figure 6/10
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SAMPLE PROBLEM 6/3

The concrete block weighing 644 lb is elevated by the hoisting mechanism
shown, where the cables are securely wrapped around the respective drums. The
drums, which are fastened together and turn as a single unit about their mass cen-
ter at O, have a combined weight of 322 lb and a radius of gyration about O of 18 in.
If a constant tension P of 400 lb is maintained by the power unit at A, determine
the vertical acceleration of the block and the resultant force on the bearing at O.

Solution I. The free-body and kinetic diagrams of the drums and concrete
block are drawn showing all forces which act, including the components Ox and
Oy of the bearing reaction. The resultant of the force system on the drums for
centroidal rotation is the couple � IO�, where

Taking moments about the mass center O for the pulley in the sense of the
angular acceleration � gives

(a)

The acceleration of the block is described by

(b)

From at � r�, we have a � (12/12)�. With this substitution, Eqs. (a) and (b) are
combined to give

Ans.

The bearing reaction is computed from its components. Since � 0, we use
the equilibrium equations

Ans.

Solution II. We may use a more condensed approach by drawing the free-body
diagram of the entire system, thus eliminating reference to T, which becomes in-
ternal to the new system. From the kinetic diagram for this system, we see that
the moment sum about O must equal the resultant couple for the drums, plus
the moment of the resultant ma for the block. Thus, from the principle of Eq. 6/5
we have

With a � (12/12)�, the solution gives, as before, a � 3.67 ft/sec2.
We may equate the force sums on the entire system to the sums of the resul-

tants. Thus,

 Ox � 400 cos 45� � 0   Ox � 283 lb[ΣFx � Σmax]

 Oy � 1322 lb

 Oy � 322 � 644 � 400 sin 45� � 322
32.2

 (0) � 644
32.2

 (3.67)[ΣFy � Σmay]

[ΣMO � I� � mad]   400 �24
12� � 644 �12

12� � 22.5� � 644
32.2

 a�12
12�

I�

 O � �(283)2 � (1322)2 � 1352 lb

 Oy � 322 � 717 � 400 sin 45� � 0   Oy � 1322 lb[ΣFy � 0]

 Ox � 400 cos 45� � 0   Ox � 283 lb[ΣFx � 0]

a

T � 717 lb   � � 3.67 rad/sec2   a � 3.67 ft/sec2

T � 644 � 644
32.2

 a[ΣFy � may]

400 �24
12� � T �12

12� � 22.5�[ΣMG � I�]

I � IO � �18
12�

2
 322
32.2

 � 22.5 lb-ft-sec2[I � k2m]

I�
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45°

24″ 12″

A

O

P = 400 lb

 W = 322 lb
kO = 18″

644 lb

T
ma

Ox

Oy

O

α

O

x

a

y

45°

322 lb

644 lb

400 lb

I
_
α

≡

≡

ma

Ox

Oy

O

α

O

x

a

y

45°

322 lb

644 lb

400 lb

I
_
α≡

�

�

Helpful Hints

� Be alert to the fact that the tension
T is not 644 lb. If it were, the block
would not accelerate.

� Do not overlook the need to express
kO in feet when using g in ft/sec2.
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SAMPLE PROBLEM 6/4

The pendulum has a mass of 7.5 kg with center of mass at G and has a ra-
dius of gyration about the pivot O of 295 mm. If the pendulum is released from
rest at � � 0, determine the total force supported by the bearing at the instant
when � � 60�. Friction in the bearing is negligible.

Solution. The free-body diagram of the pendulum in a general position is
shown along with the corresponding kinetic diagram, where the components of
the resultant force have been drawn through G.

The normal component On is found from a force equation in the n-direction,
which involves the normal acceleration Since the angular velocity � of the
pendulum is found from the integral of the angular acceleration and since Ot de-
pends on the tangential acceleration it follows that � should be obtained first.
To this end with IO � the moment equation about O gives

and for � � 60�

The remaining two equations of motion applied to the 60� position yield

Ans.

The proper sense for Ot may be observed at the outset by applying the moment
equation ΣMG � where the moment about G due to Ot must be clockwise to
agree with �. The force Ot may also be obtained initially by a moment equation
about the center of percussion Q, shown in the lower figure, which avoids the ne-
cessity of computing �. First, we must obtain the distance q, which is

Ans.Ot � 10.37 N

Ot(0.348) � 7.5(9.81)(cos 60�)(0.348 � 0.250) � 0[ΣMQ � 0]

q � 
(0.295)2

0.250
  � 0.348 m[q � kO 

2/ r ]

I�,

 O � �(155.2)2 � (10.37)2 � 155.6 N

 Ot � 10.37 N

 �Ot � 7.5(9.81) cos 60� � 7.5(0.25)(28.2) cos 60�[ΣFt � mr�]

 On � 155.2 N

 On � 7.5(9.81) sin 60� � 7.5(0.25)(48.8)[ΣFn � mr�2]

 �2 � 48.8 (rad/s)2

 ��

0
 � d� � ��/3

0
 28.2 cos � d�[� d� � � d�]

 � � 28.2 cos � rad/s2

 7.5(9.81)(0.25) cos � � (0.295)2(7.5)�[ΣMO � IO�]

kO 

2m,
r�,

r�2.
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θ

r _
 = 250 m

m

O

G

n

αω

t

7.5(9.81) N

G

Ot

O

G

On

I
_
α

mr
_

       α

mr
_

       ω               2

≡

O

q

G

Q

mr
_

       α

mr
_

       ω               2

Helpful Hints

� The acceleration components of G
are, of course, � and � r�.atr�2an

� Review the theory again and satisfy
yourself that ΣMO � IO� � �

�

� Note especially here that the force
summations are taken in the posi-
tive direction of the acceleration
components of the mass center G.

mr�q.mr 

2�

I�

�

�

�
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Problem 6/35

6/36 The automotive dynamometer is able to simulate
road conditions for an acceleration of 0.5g for the
loaded pickup truck with a gross weight of 5200 lb.
Calculate the required moment of inertia of the dy-
namometer drum about its center O assuming that
the drum turns freely during the acceleration phase
of the test.

Problem 6/36

A

36′′

15′′

O

3 m

3 m

1 m

P

C

B

A

θ
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PROBLEMS
Introductory Problems

6/33 The uniform 20-kg slender bar is pivoted at O and
swings freely in the vertical plane. If the bar is re-
leased from rest in the horizontal position, calculate
the initial value of the force R exerted by the bearing
on the bar an instant after release.

Problem 6/33

6/34 The 20-kg uniform steel plate is freely hinged about
the z-axis as shown. Calculate the force supported by
each of the bearings at A and B an instant after the
plate is released from rest in the horizontal y-z
plane.

Problem 6/34

6/35 The uniform 100-kg beam is freely hinged about its
upper end A and is initially at rest in the vertical
position with Determine the initial angular
acceleration of the beam and the magnitude of
the force supported by the pin at A due to the appli-
cation of a force on the attached cable.P � 300 N

FA�

� � 0.

80 mm

250 mm

80 mm
A

B

z

y

x

400

mm

O
1.6 m
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6/37 A momentum wheel for dynamics-class demonstra-
tions is shown. It is basically a bicycle wheel modi-
fied with rim band-weighting, handles, and a pulley
for cord startup. The heavy rim band causes the
radius of gyration of the 7-lb wheel to be 11 in. If a
steady 10-lb pull T is applied to the cord, determine
the angular acceleration of the wheel. Neglect bear-
ing friction.

Problem 6/37

6/38 Determine the angular acceleration and the force on
the bearing at O for (a) the narrow ring of mass m
and (b) the flat circular disk of mass m immediately
after each is released from rest in the vertical plane
with OC horizontal.

Problem 6/38

6/39 The 30-in. slender bar weighs 20 lb and is mounted
on a vertical shaft at O. If a torque lb-in. is
applied to the bar through its shaft, calculate the
horizontal force R on the bearing as the bar starts to
rotate.

M � 100

O
C

r

(a)

O
C

r

(b)

24″ T = 10 lb

30°

4″
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Problem 6/39

6/40 The uniform slender bar AB has a mass of 8 kg and
swings in a vertical plane about the pivot at A. If

when compute the force sup-
ported by the pin at A at that instant.

Problem 6/40

6/41 The uniform quarter-circular sector of mass m is re-
leased from rest with one straight edge vertical as
shown. Determine the initial angular acceleration
and the horizontal and vertical components of the
reaction at the ideal pivot at O.

Problem 6/41

O

b

m

Vertical

Horizontal

900 mm

θA

B

� � 30�,�̇  � 2 rad/s

M

O
18″

12″
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Problem 6/44

6/45 If the slender-bar assembly is released from rest
while in the horizontal position shown, determine its
angular acceleration. The mass per unit length of
the bar is . Neglect friction at the bearing O.

Problem 6/45

6/46 An air table is used to study the elastic motion of
flexible spacecraft models. Pressurized air escaping
from numerous small holes in the horizontal surface
provides a supporting air cushion which largely
eliminates friction. The model shown consists of a
cylindrical hub of radius r and four appendages of
length l and small thickness t. The hub and the four
appendages all have the same depth d and are con-
structed of the same material of density . Assume
that the spacecraft is rigid and determine the mo-
ment M which must be applied to the hub to spin the
model from rest to an angular velocity in a time
period of seconds. (Note that for a spacecraft with
highly flexible appendages, the moment must be
judiciously applied to the rigid hub to avoid undesir-
able large elastic deflections of the appendages.)

Problem 6/46

	

�

�

2b 3b

b
bO

�

2r 3r

m

r

O
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6/42 The circular sector of uniform thickness and mass m
is released from rest when one of its straight edges is
vertical as shown. Determine the initial angular ac-
celeration about the ideal pivot at O. Evaluate your
general expression for and Compare
your results to the stated answer for the previous
problem.

Problem 6/42

6/43 The square frame is composed of four equal lengths
of uniform slender rod, and the ball attachment at O
is suspended in a socket (not shown). Beginning from
the position shown, the assembly is rotated about
axis A-A and released. Determine the initial angular
acceleration of the frame. Repeat for a rotation
about axis B-B. Neglect the small mass, offset, and
friction of the ball.

Problem 6/43

6/44 If the system is released from rest while in the hori-
zontal position shown, determine the angular accel-
eration of the lightweight right-angle shaft. The
sphere of radius r has mass m. Neglect friction at the
bearing O.

A

A

B

B O

b

b

b/2
b/2

b

45�

45�

O

b

mβ

Vertical

� � �.� � �/2

z
r

M
t

l

d
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6/47 The narrow ring of mass m is free to rotate in the
vertical plane about O. If the ring is released from
rest at determine expressions for the n- and
t-components of the force at O in terms of .

Problem 6/47

Representative Problems

6/48 Determine the angular acceleration of the uniform
disk if (a) the rotational inertia of the disk is ignored
and (b) the inertia of the disk is considered. The
system is released from rest, the cord does not slip on
the disk, and bearing friction at O may be neglected.

Problem 6/48

6/49 The solid homogeneous cylinder weighs 300 lb and is
free to rotate about the horizontal axis O-O. If the
cylinder, initially at rest, is acted upon by the 100-lb
force shown, calculate the horizontal component R
of the force supported by each of the two symmetri-
cally placed bearings when the 100-lb force is first
applied.

4 kg

6 kg

5 kg 0.25 m

A

B

O

O

C

n

t

r
θ

�

� � 0,
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Problem 6/49

6/50 The solid cylindrical rotor B has a mass of 43 kg and
is mounted on its central axis C-C. The frame A ro-
tates about the fixed vertical axis O-O under the ap-
plied torque The rotor may be unlocked
from the frame by withdrawing the locking pin P.
Calculate the angular acceleration of the frame A
if the locking pin is (a) in place and (b) withdrawn.
Neglect all friction and the mass of the frame.

Problem 6/50

O

O

M

A

P

B
200 mm

250 mm

C

C

�

M � 30 N � m.

12″

100 lb

O

O

4″

6″
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6/53 The bar A of mass m is formed into a circular arc
of radius r and is attached to the hub by the light rods.
The curved bar oscillates about the vertical axis under
the action of a torsional spring B. At the instant under
consideration, the angular velocity is and the angu-
lar acceleration is . Write expressions for the moment
M exerted by the spring on the hub and the horizontal
force R exerted by the shaft on the hub.

Problem 6/53

6/54 The uniform slender bar is released from rest in the
horizontal position shown. Determine the value of x
for which the angular acceleration is a maximum,
and determine the corresponding angular accelera-
tion .

Problem 6/54

l

x
G

O

�

ω α

90°

r

r

A

B

O

O

�

�

90�
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6/51 The uniform 40-lb bar is released from rest in the
horizontal position shown and strikes the fixed cor-
ner B at the center of percussion of the bar. Deter-
mine the t-component of the force exerted by the
bearing O on the bar just prior to impact, during im-
pact, and just after impact.

Problem 6/51

6/52 Each of the two grinding wheels has a diameter of 
6 in., a thickness of in., and a specific weight of

When switched on, the machine acceler-
ates from rest to its operating speed of 3450 rev/min
in 5 sec. When switched off, it comes to rest in 35 sec.
Determine the motor torque and frictional moment,
assuming that each is constant. Neglect the effects
of the inertia of the rotating motor armature.

Problem 6/52

ω

425 lb/ft3.
3 /4

30°

6′

t

n

O A

B
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6/55 The uniform rectangular slab is released from rest in
the position shown. Determine the value of x for which
the angular acceleration is a maximum, and determine
the corresponding angular acceleration. Compare your
answers with those listed for Prob. 6/54.

Problem 6/55

6/56 The spring is uncompressed when the uniform slen-
der bar is in the vertical position shown. Determine
the initial angular acceleration of the bar when it
is released from rest in a position where the bar
has been rotated clockwise from the position
shown. Neglect any sag of the spring, whose mass is
negligible.

Problem 6/56

6/57 A gimbal pedestal supports a payload in the space
shuttle and deploys it when the doors of the cargo
bay are opened in orbit. The payload is modeled as a
homogeneous rectangular block with a mass of 6000 kg.
The torque on the gimbal axis O-O is 30 sup-
plied by a d-c brushless motor. With the shuttle or-
biting in a “weightless” condition, determine the
time t required to bring the payload from its stowed
position at to its deployed position at if
the torque is applied for the first of travel and
then reversed for the remaining to bring the pay-
load to a stop ( �̇  � 0).

45�

45�

� � 90�� � 0

N � m

l

k

A

G

O

B

m

l—
4

l—
4

l—
4

l—
4

30�

�

x

G

b

O

b—
2
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Problem 6/57

6/58 A uniform slender bar of mass m and length 2b is
mounted in a right-angle frame of negligible mass.
The bar and frame rotate in the vertical plane about
a fixed axis at O. If the bar is released from rest in
the vertical position derive an expression for
the magnitude of the force exerted by the bearing at
O on the frame as a function of .

Problem 6/58

45°

45°
O

G

b

b

bθ

�

(� � 0),

2.5 m

0.8 m

1.5 m

1.5 m

θ

O

O
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6/61 The 12-kg cylinder supported by the bearing brack-
ets at A and B has a moment of inertia about the
vertical through its mass center G equal to

The disk and brackets have a moment
of inertia about the vertical z-axis of rotation equal
to If a torque is applied to
the disk through its shaft with the disk initially at
rest, calculate the horizontal x-components of force
supported by the bearings at A and B.

Problem 6/61

6/62 The 24-kg uniform slender bar AB is mounted on end
rollers of negligible mass and rotates about the fixed
point O as it follows the circular path in the vertical
plane. The bar is released from a position which gives
it an angular velocity as it passes the
position Calculate the forces and ex-
erted by the guide on the rollers for this instant.

Problem 6/62

A

O

G

B

300 mm

300 mm

600 mm

60
0 

m
m

θ

FBFA� � 45�.
� � 2 rad/s

100
mm

100
mm

100
mm

A
B

M

G

x

y

z z0

M � 16 N � m0.60 kg � m2.

0.080 kg � m2.
z0-axis
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6/59 The uniform semicircular bar of mass m and radius r
is hinged freely about a horizontal axis through A. If
the bar is released from rest in the position shown,
where AB is horizontal, determine the initial angu-
lar acceleration of the bar and the expression for
the force exerted on the bar by the pin at A. (Note
carefully that the initial tangential acceleration of
the mass center is not vertical.)

Problem 6/59

6/60 A device for impact testing consists of a 34-kg pendu-
lum with mass center at G and with radius of gyration
about O of 620 mm. The distance b for the pendulum
is selected so that the force on the bearing at O has the
least possible value during impact with the specimen
at the bottom of the swing. Determine b and calculate
the magnitude of the total force R on the bearing O an
instant after release from rest at 

Problem 6/60

600 mm

Specimen

b

O

G

θ

� � 60�.

A
B

r

�
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6/63 The mass of gear A is 20 kg and its centroidal radius
of gyration is 150 mm. The mass of gear B is 10 kg
and its centroidal radius of gyration is 100 mm. Cal-
culate the angular acceleration of gear B when a
torque of 12 is applied to the shaft of gear A.
Neglect friction.

Problem 6/63

6/64 Prior to deployment of its two instrument arms AB,
the spacecraft shown in the upper view is spinning at
the constant rate of 1 revolution per second. Each
instrument arm, shown in the lower view, has a mass
of 10 kg with mass center at G. Calculate the tension
T in the deployment cable prior to release. Also find
the magnitude of the force on the pin at A. Neglect
any acceleration of the center O of the spacecraft.

Problem 6/64

500
mm

400
mm

100 mm

A

A B

B A

T

O

G
B

ω

O ω

A

B

M

rB

rA

rA = 240 mm
rB = 180 mm

N � m

Article 6/4 Problems 441

6/65 Disk B weighs 50 lb and has a centroidal radius of
gyration of 8 in. The power unit C consists of a
motor M and a disk A, which is driven at a constant
angular speed of 1600 rev/min. The coefficients of
static and kinetic friction between the two disks are

and respectively. Disk B is ini-
tially stationary when contact with disk A is estab-
lished by application of the constant force 
Determine the angular acceleration of B and the
time t required for B to reach its steady-state speed.

Problem 6/65

6/66 Two slender bars AB, each of mass m and length l,
are pivoted at A to the plate. The plate rotates in the
horizontal plane about a fixed vertical axis through
its center O and is given a constant angular accelera-
tion . (a) Determine the force F exerted on each of
the two rollers as the assembly starts to rotate.
(b) Find the total force on the pin at A and show that
it remains constant as long as (c) Determine
the angular velocity at which contact with the
rollers ceases.

Problem 6/66

l—
2

l—
2

l—
2

l—
2

A

B

B

A

O

α

�

F � 0.

�

30°
B

A

Aω

M
P

C

rB

rA

rA = 8 in.
rB = 10 in.

�

P � 3 lb.

�k � 0.60,�s � 0.80

c06.qxd  2/10/12  2:13 PM  Page 441



6/69 The uniform slender bar of mass m and length l is
released from rest in the vertical position and pivots
on its square end about the corner at O. (a) If the
bar is observed to slip when find the coeffi-
cient of static friction between the bar and the
corner. (b) If the end of the bar is notched so that it
cannot slip, find the angle at which contact be-
tween the bar and the corner ceases.

Problem 6/69

6/70 The uniform rectangular block is released from rest
with essentially zero and pivots in the vertical
plane about the center A of its lower face on the
fixed corner. (a) If the block is observed to slip when

find the coefficient of static friction between
the block and the corner. (b) If the bottom face of the
block is notched so that it cannot slip, find the angle

at which contact between the block and the corner
ceases.

Problem 6/70

A

θ

20″

12″

α

�

� � 30�,

�

θ

O

l

�

�s

� � 30�,
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6/67 The robotic device consists of the stationary pedestal
OA, arm AB pivoted at A, and arm BC pivoted at B.
The rotation axes are normal to the plane of the fig-
ure. Estimate (a) the moment applied to arm AB
required to rotate it about joint A at counter-
clockwise from the position shown with joint B
locked and (b) the moment applied to arm BC
required to rotate it about joint B at the same rate
with joint A locked. The mass of arm AB is 25 kg and
that of BC is 4 kg, with the stationary portion of joint
A excluded entirely and the mass of joint B divided
equally between the two arms. Assume that the cen-
ters of mass and are in the geometric centers
of the arms and model the arms as slender rods.

Problem 6/67

6/68 Each of the two uniform slender bars OA and BC
has a mass of 8 kg. The bars are welded at A to form
a T-shaped member and are rotating freely about a
horizontal axis through O. If the bars have an angu-
lar velocity of 4 rad/s as OA passes the horizontal
position shown, calculate the total force R supported
by the bearing at O.

Problem 6/68

0.5 m

0.25 m

0.25 m

A

B

C

O

�

A

G1
G2

45°

70
0

m
m

350m
m

90°

B

C

O

G2G1

MB

4 rad/s2
MA

�
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KEY CONCEPTS

6/5 General Plane Motion
The dynamics of a rigid body in general plane motion combines

translation and rotation. In Art. 6/2 we represented such a body in Fig.
6/4 with its free-body diagram and its kinetic diagram, which discloses
the dynamic resultants of the applied forces. Figure 6/4 and Eqs. 6/1,
which apply to general plane motion, are repeated here for convenient
reference.

[6/1]

Direct application of these equations expresses the equivalence between
the externally applied forces, as disclosed by the free-body diagram, and
their force and moment resultants, as represented by the kinetic diagram.

 ΣMG � I�

 ΣF � ma

a–

G

ma–

G

α

≡
F1

F2

F3

I
–
α

Free-Body Diagram Kinetic Diagram

Figure 6/4, repeated

Solving Plane-Motion Problems
Keep in mind the following considerations when solving plane-

motion problems.

Choice of Coordinate System. The force equation of Eq. 6/1 should
be expressed in whatever coordinate system most readily describes the
acceleration of the mass center. You should consider rectangular,
normal-tangential, and polar coordinates.

Choice of Moment Equation. In Art. 6/2 we also showed, with the
aid of Fig. 6/5, the application of the alternative relation for moments
about any point P, Eq. 6/2. This figure and this equation are also re-
peated here for easy reference.

[6/2]

In some instances, it may be more convenient to use the alternative mo-
ment relation of Eq. 6/3 when moments are taken about a point P whose
acceleration is known. Note also that the equation for moments about a

ΣMP � I� � mad
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nonaccelerating point O on the body, Eq. 6/4, constitutes still another
alternative moment relation and at times may be used to advantage.

Constrained versus Unconstrained Motion. In working a problem
in general plane motion, we first observe whether the motion is uncon-
strained or constrained, as illustrated in the examples of Fig. 6/6. If the
motion is constrained, we must account for the kinematic relationship
between the linear and the angular accelerations and incorporate it into
our force and moment equations of motion. If the motion is uncon-
strained, the accelerations can be determined independently of one an-
other by direct application of the three motion equations, Eqs. 6/1.

Number of Unknowns. In order for a rigid-body problem to be
solvable, the number of unknowns cannot exceed the number of inde-
pendent equations available to describe them, and a check on the suffi-
ciency of the relationships should always be made. At the most, for
plane motion we have three scalar equations of motion and two scalar
components of the vector relative-acceleration equation for constrained
motion. Thus, we can handle as many as five unknowns for each rigid
body.

Identification of the Body or System. We emphasize the impor-
tance of clearly choosing the body to be isolated and representing this
isolation by a correct free-body diagram. Only after this vital step has
been completed can we properly evaluate the equivalence between the
external forces and their resultants.

Kinematics. Of equal importance in the analysis of plane motion
is a clear understanding of the kinematics involved. Very often, the diffi-
culties experienced at this point have to do with kinematics, and a thor-
ough review of the relative-acceleration relations for plane motion will
be most helpful.

Consistency of Assumptions. In formulating the solution to a
problem, we recognize that the directions of certain forces or accelera-
tions may not be known at the outset, so that it may be necessary to
make initial assumptions whose validity will be proved or disproved
when the solution is carried out. It is essential, however, that all as-
sumptions made be consistent with the principle of action and reaction

444 Chapter 6 Plane Kinetics of Rigid Bodies

a–

G

P

d

ma–
P

G

α

I
–
α

–ρ

≡

F1

F2

F3

Free-Body Diagram Kinetic Diagram

Figure 6/5, repeated
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and with any kinematic requirements, which are also called conditions
of constraint.

Thus, for example, if a wheel is rolling on a horizontal surface, its cen-
ter is constrained to move on a horizontal line. Furthermore, if the un-
known linear acceleration a of the center of the wheel is assumed positive
to the right, then the unknown angular acceleration � will be positive in a
clockwise sense in order that a � �r�, if we assume the wheel does not
slip. Also, we note that, for a wheel which rolls without slipping, the static
friction force between the wheel and its supporting surface is generally less
than its maximum value, so that F � �sN. But if the wheel slips as it rolls,
a � r�, and a kinetic friction force is generated which is given by F � �kN.
It may be necessary to test the validity of either assumption, slipping or no
slipping, in a given problem. The difference between the coefficients of sta-
tic and kinetic friction, �s and �k, is sometimes ignored, in which case, � is
used for either or both coefficients.

Look ahead to Prob. 6/103 to see a special-case problem involving a crash-
test dummy such as the one shown here.

M
e

d
ia

 B
a

ke
ry

c06.qxd  2/10/12  2:13 PM  Page 445



446 Chapter 6 Plane Kinetics of Rigid Bodies

SAMPLE PROBLEM 6/5

A metal hoop with a radius r � 6 in. is released from rest on the 20� incline.
If the coefficients of static and kinetic friction are �s � 0.15 and �k � 0.12, deter-
mine the angular acceleration � of the hoop and the time t for the hoop to move a
distance of 10 ft down the incline.

Solution. The free-body diagram shows the unspecified weight mg, the normal
force N, and the friction force F acting on the hoop at the contact point C with the
incline. The kinetic diagram shows the resultant force through G in the direc-
tion of its acceleration and the couple The counterclockwise angular accelera-
tion requires a counterclockwise moment about G, so F must be up the incline.

Assume that the hoop rolls without slipping, so that � r�. Application of
the components of Eqs. 6/1 with x- and y-axes assigned gives

Elimination of F between the first and third equations and substitution of the
kinematic assumption � r� give

Alternatively, with our assumption of � r� for pure rolling, a moment
sum about C by Eq. 6/2 gives directly. Thus,

To check our assumption of no slipping, we calculate F and N and compare
F with its limiting value. From the above equations,

But the maximum possible friction force is

Because our calculated value of 0.1710mg exceeds the limiting value of 0.1410mg,
we conclude that our assumption of pure rolling was wrong. Therefore, the hoop
slips as it rolls and � r�. The friction force then becomes the kinetic value

The motion equations now give

Ans.

The time required for the center G of the hoop to move 10 ft from rest with con-
stant acceleration is

Ans.[x � 12 

at2]

� � 
0.1128(32.2)

6/12
 � 7.26 rad/sec2

0.1128mg(r) � mr2�[ΣMG � I�]

a � 0.229(32.2) � 7.38 ft/sec2

mg sin 20� � 0.1128mg � ma[ΣFx � max]

F � 0.12(0.940mg) � 0.1128mg[F � �kN]

a

Fmax � 0.15(0.940mg) � 0.1410mg[Fmax � �sN]

 N � mg cos 20� � 0.940mg

 F � mg sin 20� � m 
g
2

 sin 20� � 0.1710mg

[ΣMC � I� � mad]   mgr sin 20� � mr2 a
r
 � mar   a � 

g
2

 sin 20�

a
a

a � 
g
2

 sin 20� � 32.2
2

 (0.342) � 5.51 ft/sec2

a

 Fr � mr2�[ΣMG � I�]

 N � mg cos 20� � 0[ΣFy � may � 0]

 mg sin 20� � F � ma[ΣFx � max]

a

I�.
ma

20°

6″
G

  s = 0.15μ
  k = 0.12μ

20°
F

a
_

x

G

mg

y

r = 6″

N

C

G

C

I
_
α

ma
_

α

≡

�

�

�

Helpful Hints

� Because all of the mass of a hoop is a
distance r from its center G, its mo-
ment of inertia about G must be mr2.

� Note that is independent of both m
and r.

a

� Note that � is independent of m but
dependent on r.
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SAMPLE PROBLEM 6/6

The drum A is given a constant angular acceleration �0 of 3 rad/s2 and
causes the 70-kg spool B to roll on the horizontal surface by means of the con-
necting cable, which wraps around the inner hub of the spool. The radius of
gyration of the spool about its mass center G is 250 mm, and the coefficient
of static friction between the spool and the horizontal surface is 0.25. Deter-
mine the tension T in the cable and the friction force F exerted by the hori-
zontal surface on the spool.

Solution. The free-body diagram and the kinetic diagram of the spool are
drawn as shown. The correct direction of the friction force may be assigned in
this problem by observing from both diagrams that with counterclockwise angu-
lar acceleration, a moment sum about point G (and also about point D) must be
counterclockwise. A point on the connecting cable has an acceleration at � r� �

0.25(3) � 0.75 m/s2, which is also the horizontal component of the acceleration of
point D on the spool. It will be assumed initially that the spool rolls without
slipping, in which case it has a counterclockwise angular acceleration � �

� 0.75/0.30 � 2.5 rad/s2. The acceleration of the mass center G is,
therefore, � r� � 0.45(2.5) � 1.125 m/s2.

With the kinematics determined, we now apply the three equations of mo-
tion, Eqs. 6/1,

(a)

(b)

Solving (a) and (b) simultaneously gives

Ans.

To establish the validity of our assumption of no slipping, we see that the sur-
faces are capable of supporting a maximum friction force Fmax � �sN �

0.25(687) � 171.7 N. Since only 75.8 N of friction force is required, we conclude
that our assumption of rolling without slipping is valid.

If the coefficient of static friction had been 0.1, for example, then the fric-
tion force would have been limited to 0.1(687) � 68.7 N, which is less than 75.8
N, and the spool would slip. In this event, the kinematic relation � r� would
no longer hold. With (aD)x known, the angular acceleration would be � � �

Using this relation along with F � �kN � 68.7 N, we would then re-
solve the three equations of motion for the unknowns T, and �.

Alternatively, with point C as a moment center in the case of pure rolling,
we may use Eq. 6/2 and obtain T directly. Thus,

Ans.

where the previous kinematic results for no slipping have been incorporated. We
could also write a moment equation about point D to obtain F directly.

 T � 154.6 N

 0.3T � 70(0.25)2(2.5) � 70(1.125)(0.45)[ΣMC � I� � mar]

a,
(aD)x]/GD.

[a
a

F � 75.8 N   and   T � 154.6 N

F(0.450) � T(0.150) � 70(0.250)2(2.5)[ΣMG � I�]

N � 70(9.81) � 0   N � 687 N[ΣFy � may]

F � T � 70(�1.125)[ΣFx � max]

a
(aD)x/DC

k
250
mm

150
mm

450 mm

G

B

A

0α  

70(9.81) N

k
_
 = 250 mm

I
_
α

ma
_

GG x

F

T D

C C

y

N

≡

α 

a
_

�

�

�

�

Helpful Hints

� The relation between and � is the
kinematic constraint which accom-
panies the assumption that the spool
rolls without slipping.

� Be careful not to make the mistake
of using for of the spool,
which is not a uniform circular disk.

I1
2 

mr2

a

� Our principles of relative accelera-
tion are a necessity here. Hence, the
relation (aG/D)t � should be
recognized.

GD�

� The flexibility in the choice of mo-
ment centers provided by the kinetic
diagram can usually be employed to
simplify the analysis.
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SAMPLE PROBLEM 6/7

The slender bar AB weighs 60 lb and moves in the vertical plane, with its
ends constrained to follow the smooth horizontal and vertical guides. If the 30-lb
force is applied at A with the bar initially at rest in the position for which � � 30�,
calculate the resulting angular acceleration of the bar and the forces on the
small end rollers at A and B.

Solution. The bar undergoes constrained motion, so that we must establish
the relationship between the mass-center acceleration and the angular accelera-
tion. The relative-acceleration equation aA � aB � aA/B must be solved first, and
then the equation � aG � aB � aG/B is next solved to obtain expressions relat-
ing and �. With � assigned in its clockwise physical sense, the acceleration
polygons which represent these equations are shown, and their solution gives

Next we construct the free-body diagram and the kinetic diagram as shown.
With and now known in terms of �, the remaining unknowns are � and the
forces A and B. We now apply Eqs. 6/1, which give

Solving the three equations simultaneously gives us the results

Ans.

As an alternative solution, we can use Eq. 6/2 with point C as the moment
center and avoid the necessity of solving three equations simultaneously. This
choice eliminates reference to forces A and B and gives � directly. Thus,

Ans.

With � determined, we can now apply the force equations independently
and get

Ans.

Ans. 30 � B � 60
32.2

 (1.732)(4.42)    B � 15.74 lb[ΣFx � max]

 A � 60 � 60
32.2

 (1.0)(4.42)  A � 68.2 lb[ΣFy � may]

43.9 � 9.94�   � � 4.42 rad/sec2

� 60
32.2

 (1.732�)(2 cos 30�) � 60
32.2

 (1.0�)(2 sin 30�)

30(4 cos 30�) � 60(2 sin 30�) � 1
12

 60
32.2

 (42)�

[ΣMC � I� � Σmad]

A � 68.2 lb   B � 15.74 lb   � � 4.42 rad/sec2

 A � 60 � 60
32.2

 (1.0�)[ΣFy � may]

 30 � B � 60
32.2

 (1.732�)[ΣFx � max]

30(2 cos 30�) � A(2 sin 30�) � B(2 cos 30�) � 1
12

 60
32.2

 (42)�

[ΣMG � I�]

ayax

 ay � a sin 30� � 2� sin 30� � 1.0� ft/sec2

 ax � a cos 30� � 2� cos 30� � 1.732� ft/sec2

a
a

�

�

�

y
G

B

A

30 lb

2′

2′ x

θ

   = 30°θ 30°

aA/B = 4              α (aG /B)t = 2                  α

a
_

a
_

xaA

aB aB a
_

y

30°

30 lb

60 lb

A

B C C

G G

≡
I
_
α

ma
_

y

ma
_

x

dx

dy

Helpful Hints

� If the application of the relative-ac-
celeration equations is not perfectly
clear at this point, then review Art.
5/6. Note that the relative normal ac-
celeration term is absent since there
is no angular velocity of the bar.

� Recall that the moment of inertia of a
slender rod about its center is 1

12 ml2.

� From the kinetic diagram, �

� Since both terms of
the sum are clockwise, in the same
sense as they are positive.I�,

maydx.maxdy

Σmad
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SAMPLE PROBLEM 6/8

A car door is inadvertently left slightly open when the brakes are applied to
give the car a constant rearward acceleration a. Derive expressions for the angu-
lar velocity of the door as it swings past the 90� position and the components of
the hinge reactions for any value of �. The mass of the door is m, its mass center
is a distance from the hinge axis O, and the radius of gyration about O is kO.

Solution. Because the angular velocity � increases with �, we need to find how
the angular acceleration � varies with � so that we may integrate it over the in-
terval to obtain �. We obtain � from a moment equation about O. First, we draw
the free-body diagram of the door in the horizontal plane for a general position �.
The only forces in this plane are the components of the hinge reaction shown
here in the x- and y-directions. On the kinetic diagram, in addition to the resul-
tant couple shown in the sense of �, we represent the resultant force in
terms of its components by using an equation of relative acceleration with re-
spect to O. This equation becomes the kinematic equation of constraint and is

The magnitudes of the components are then

where � � and � �

For a given angle �, the three unknowns are �, Ox, and Oy. We can eliminate
Ox and Oy by a moment equation about O, which gives

Now we integrate � first to a general position and get

Ans.

To find Ox and Oy for any given value of �, the force equations give

Ans.

Ans. � mar 

2

kO 

2
 (3 cos � � 2) sin �

 � mr ar
kO 

2
 sin � cos � � mr 2ar

kO 

2
 (1 � cos �) sin �

 Oy � mr� cos � � mr�2 sin �[ΣFy � may]

 � ma�1 � r2

kO 

2
 (1 � 2 cos � � 3 cos2�)	

 � m�a � 2ar 

2

kO 

2
 (1 � cos �) cos � � ar 

2

kO 

2
 sin2 �	

 Ox � ma � mr�2 cos � � mr� sin �[ΣFx � max]

 � � 1
kO

 �2arFor � ��/2,

 �2 � 2ar
kO 

2
 (1 � cos �)

 ��

0
 � d� � ��

0
 ar
kO 

2
 sin � d�[� d� � � d�]

Solving for � gives    � � ar
kO 

2
 sin  �

[ΣMO � I� � Σmad]   0 � m(kO 

2 � r2)� � mr�(r) � ma(r sin �)

�̈ .�̇

maO � ma   m(aG/O)n � mr�2   m(aG/O)t � mr�

ma

a � aG � aO � (aG/O)n � (aG/O)t

maI�

r

a

θ

ω

O

–r

Ox

Oy

θ
G

x

y

–
Iα

   –mrα

– mr  2ω
G ≡

O
mao =

ma

Helpful Hints

� Point O is chosen because it is the
only point on the door whose accel-
eration is known.

� Be careful to place in the sense
of positive � with respect to rotation
about O.

� The free-body diagram shows that
there is zero moment about O. We
use the transfer-of-axis theorem
here and substitute � � If
this relation is not totally familiar,
review Art. B/1 in Appendix B.

� We may also use Eq. 6/3 with O as a
moment center

where the scalar values of the terms
are IO� � and � maO be-
comes sin �.

� The kinetic diagram shows clearly the
terms which make up and may.max

�rma
�mkO 

2�

ΣMO � IO� � � � maO

r 

2.k2kO 

2

mr�

�

�

�

�

�
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PROBLEMS
Introductory Problems

6/71 The uniform square plate of mass m is lying motion-
less on the horizontal surface when the force P is
applied at A as shown. Determine the resulting initial
acceleration of point B. Friction is negligible.

Problem 6/71

6/72 The L-shaped bar of mass m is lying motionless on
the horizontal surface when the force P is applied 
at A as shown. Determine the initial acceleration 
of point A. Neglect friction and the thickness of 
the bar.

Problem 6/72

6/73 The body consists of a uniform slender bar and a
uniform disk, each of mass It rests on a smooth
surface. Determine the angular acceleration and
the acceleration of the mass center of the body when
the force is applied as shown. The value
of the mass m of the entire body is 1.2 kg.

P � 6 N

�

m/2.

y

x

P A

B

l

l

y

xP A

B

b
b

Problem 6/73

6/74 Repeat Prob. 6/73, except now the location of force P
has been changed. The value of the mass m of the
entire body is 1.2 kg.

Problem 6/74

6/75 Above the earth’s atmosphere at an altitude of 400
km where the acceleration due to gravity is 
a certain rocket has a total remaining mass of 300 kg
and is directed 30 from the vertical. If the thrust T
from the rocket motor is 4 kN and if the rocket noz-
zle is tilted through an angle of as shown, calcu-
late the angular acceleration of the rocket and the
x- and y-components of the acceleration of its mass
center G. The rocket has a centroidal radius of gyra-
tion of 1.5 m.

Problem 6/75

G 3 m

1° T

x

y
30°

�

1�

�

8.69 m/s2,

P = 6 N

y

x

m/2

m/2

500 mm

200 mm

y

x

m/2

m/2

P = 6 N

500 mm

200 mm
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6/80 The uniform disk of mass pivots freely on
the cart of mass Determine the acceleration
of the assembly and the angular acceleration of the
disk under the action of the force applied to a
cord wrapped securely around the disk.

Problem 6/80

6/81 The fairing which covers the spacecraft package in
the nose of the booster rocket is jettisoned when the
rocket is in space where gravitational attraction is
negligible. A mechanical actuator moves the two
halves slowly from the closed position I to position II
at which point the fairings are released to rotate
freely about their hinges at O under the influence of
the constant acceleration a of the rocket. When posi-
tion III is reached, the hinge at O is released and the
fairings drift away from the rocket. Determine the
angular velocity of the fairing at the position.
The mass of each fairing is m with center of mass at
G and radius of gyration about O.

Problem 6/81

90°

I
II

III
G

a

O

G

r

ω

kO

90��

P = 75 N

0.2 m

m2

m1

20°

O

P � 75 N

m1 � 5 kg.
m2 � 8 kg6/76 The 10-kg wheel with a radius of gyration of 180 mm

about its center O is released from rest on the in-
cline and slips as it rolls. If the coefficient of kinetic
friction is calculate the acceleration 
of the center O of the wheel and its angular accel-
eration .

Problem 6/76

6/77 How large would the coefficient of static friction 
have to be in order that the wheel of Prob. 6/76 not
slip as it rolls?

6/78 The solid homogeneous cylinder is released from rest
on the ramp. If and de-
termine the acceleration of the mass center G and the
friction force exerted by the ramp on the cylinder.

Problem 6/78

6/79 Repeat Prob. 6/78, except let and
�k � 0.10.

�s � 0.15,� � 30�,

μs

μk

W = 8 lb

G

6″

θ

�k � 0.20,�s � 0.30,� � 40�,

�s

60°

μk = 0.30

200 mm

O

�

aO�k � 0.30,

60�
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6/82 Determine the angular acceleration of each of the
two wheels as they roll without slipping down the in-
clines. For wheel A investigate the case where the
mass of the rim and spokes is negligible and the
mass of the bar is concentrated along its centerline.
For wheel B assume that the thickness of the rim is
negligible compared with its radius so that all of the
mass is concentrated in the rim. Also specify the
minimum coefficient of static friction required to
prevent each wheel from slipping.

Problem 6/82

Representative Problems

6/83 A uniform slender rod of length l and mass m is
secured to a circular hoop of radius l as shown. The
mass of the hoop is negligible. If the rod and hoop
are released from rest on a horizontal surface in the
position illustrated, determine the initial values of
the friction force F and normal force N under the
hoop if friction is sufficient to prevent slipping.

θ

θ

B

A

r

r

�s

Problem 6/83

6/84 The uniform 12-kg square panel is suspended from
point C by the two wires at A and B. If the wire at B
suddenly breaks, calculate the tension T in the wire
at A an instant after the break occurs.

Problem 6/84

6/85 The uniform steel beam of mass m and length l is
suspended by the two cables at A and B. If the cable
at B suddenly breaks, determine the tension T in the
cable at A immediately after the break occurs. Treat
the beam as a slender rod and show that the result is
independent of the length of the beam.

Problem 6/85

A B

l
60° 60°

A B

C

b

b

45° 45°

l
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Article 6/5 Problems 453

Problem 6/88

6/89 Repeat Prob. 6/88, except let and 

6/90 The uniform rectangular panel of mass m is moving
to the right when wheel B drops off the horizontal
support rail. Determine the resulting angular accel-
eration and the force in the strap at A immedi-
ately after wheel B rolls off the rail. Neglect friction
and the mass of the small straps and wheels.

Problem 6/90

6/91 The uniform slender bar AB has a mass of 0.8 kg and
is driven by crank OA and constrained by link CB
of negligible mass. If OA has an angular acceleration

and an angular velocity 
when both OA and CB are normal to AB, calculate
the force in CB for this instant. (Suggestion: Con-
sider the use of Eq. 6/3 with A as a moment center.)

Problem 6/91

w0

100
mm

200
mm

300 mm

ω
w0α

O

C

BA

�0 � 2 rad/s�0 � 4 rad/s2

h m

A B

v

b––
6

b––
6

2b––
3

TA

� � 30�.T � 50 N

μs = 0.10
μk = 0.08

T
200 mm

75
mm

G

m = 25 kg 
k = 175 mm

θ

μ
μ

6/86 The circular disk of mass m and radius r is rolling
through the bottom of the circular path of radius R.
If the disk has an angular velocity , determine the
force N exerted by the path on the disk.

Problem 6/86

6/87 The system is released from rest with the cable taut,
and the homogeneous cylinder does not slip on the
rough incline. Determine the angular acceleration of
the cylinder and the minimum coefficient of fric-
tion for which the cylinder will not slip.

Problem 6/87

6/88 The circular disk of 200-mm radius has a mass of
25 kg with centroidal radius of gyration 
mm and has a concentric circular groove of 75-mm
radius cut into it. A steady force T is applied at an
angle to a cord wrapped around the groove as
shown. If and 
determine the angular acceleration of the disk, the
acceleration a of its mass center G, and the friction
force F which the surface exerts on the disk.

�

�k � 0.08,�s � 0.10,� � 0,T � 30 N,
�

k � 175

7 kg

10 kg

0.15 m

20°

O

�s

Rω

r

�
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6/92 The crank OA rotates in the vertical plane with a
constant clockwise angular velocity of 
For the position where OA is horizontal, calculate
the force under the light roller B of the 10-kg slender
bar AB.

Problem 6/92

6/93 Each of the two solid disk wheels weighs 20 lb, and
the inner solid cylinder weighs 16 lb. The disk
wheels and the inner disk are mounted on the small
central shaft O-O and can rotate independently of
each other. Friction in the shaft bearings is negligi-
ble, whereas friction between the incline and the
large disk wheels is sufficient to prevent slippage of
the wheels. Determine the acceleration of the center
O after the assembly is released on the incline.
The cord wrapped securely around the inner cylin-
der is fastened to point A.

Problem 6/93

O

O O A

10°

12″

6″

10�

1.0 m

0.4 m

0.8 m

B

AO

   0ω

4.5 rad/s.�0

6/94 The robotic device of Prob. 6/67 is repeated here.
Member AB is rotating about joint A with a counter-
clockwise angular velocity of and this rate is
increasing at Determine the moment 
exerted by arm AB on arm BC if joint B is held in a
locked condition. The mass of arm BC is 4 kg, and
the arm may be treated as a uniform slender rod.

Problem 6/94

6/95 The uniform slender rod of mass m and length L is
released from rest in the inverted vertical position
shown. Neglect friction and the mass of the small
end roller and find the initial acceleration of A.
Evaluate your result for 

Problem 6/95

L

m

A

θ

� � 30�.

A

G1
G2

45°

70
0

m
m

350m
m

90°

B

C

O

MB4 rad/s2.
2 rad/s,
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6/98 The assembly consisting of a uniform slender bar
(mass m/5) and a rigidly attached uniform disk
(mass 4m/5) is freely pinned to point O on the collar
that in turn slides on the fixed horizontal guide. The
assembly is at rest when the collar is given a sudden
acceleration a to the left as shown. Determine the
initial angular acceleration of the assembly.

Problem 6/98

6/99 The uniform 12-ft pole is hinged to the truck bed
and released from the vertical position as the truck
starts from rest with an acceleration of If
the acceleration remains constant during the motion
of the pole, calculate the angular velocity of the
pole as it reaches the horizontal position.

Problem 6/99

a12′

Oω
90°

�

3 ft/sec2.

P

O

a

L/2m
5

L/4

4m
5

L/4

6/96 In an investigation of whiplash resulting from rear-
end collision, sudden rotation of the head is modeled
by using a homogeneous solid sphere of mass m and
radius r pivoted about a tangent axis (at the neck) to
represent the head. If the axis at O is given a con-
stant acceleration a with the head initially at rest,
determine expressions for the initial angular acceler-
ation of the head and its angular velocity as a
function of the angle of rotation. Assume that the
neck is relaxed so that no moment is applied to the
head at O.

Problem 6/96

6/97 The uniform 15-kg bar is supported on the horizon-
tal surface at A by a small roller of negligible mass.
If the coefficient of kinetic friction between end B
and the vertical surface is 0.30, calculate the initial
acceleration of end A as the bar is released from rest
in the position shown.

Problem 6/97

2.4 m

40°

= 0.30

A
x

y

B
wkμ

Vertical

G

O

r

G

OaO = a

�

��
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6/100 The T-shaped body of mass m is composed of two
identical slender bars welded together. If the body is
released from rest in the vertical plane in the position
shown, determine the initial acceleration of point A.
Neglect the small mass and friction of the roller.

Problem 6/100

6/101 A bowling ball with a circumference of 27 in. weighs
14 lb and has a radius of gyration of 3.28 in. If the
ball is released with a velocity of but with
no angular velocity as it touches the alley floor,
compute the distance traveled by the ball before it
begins to roll without slipping. The coefficient of
friction between the ball and the floor is 0.20.

Problem 6/101

6/102 The compound pendulum of mass m and radius of
gyration about O is freely hinged to the trolley,
which is given a constant horizontal acceleration a
from rest with the pendulum initially at rest with

Determine an expression for the angular ac-
celeration and the n- and t-components of the
force at O as functions of . Calculate the maxi-
mum value reached by if 

Problem 6/102

θ

a

G

O

n
r

t

a � 0.5g.�

�

�̈

� � 0.

kO

v0

s

= 0
v

vω ω= r

20 ft/sec

30°

A

l
l––
2

l––
2

6/103 In a study of head injury against the instrument
panel of a car during sudden or crash stops where
lap belts without shoulder straps or airbags are
used, the segmented human model shown in the
figure is analyzed. The hip joint O is assumed to
remain fixed relative to the car, and the torso above
the hip is treated as a rigid body of mass m freely
pivoted at O. The center of mass of the torso is at G
with the initial position of OG taken as vertical.
The radius of gyration of the torso about O is If
the car is brought to a sudden stop with a constant
deceleration a, determine the velocity v relative to
the car with which the model’s head strikes the in-
strument panel. Substitute the values 

and and compute v.

Problem 6/103

6/104 The uniform slender bar of mass m and length L
with small end rollers is released from rest in the
position shown with the lower roller in contact
with the horizontal plane. Determine the normal
force N under the lower roller and the angular
acceleration of the bar immediately after release.

Problem 6/104

L

θ

�

θ

r

r
G

O

a � 10g
� � 45�,kO � 550 mm,r � 800 mm,r � 450 mm,

m � 50 kg,

kO.
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Problem 6/106

6/107 The small rollers at the ends of the uniform slender
bar are confined to the circular slot in the vertical
surface. If the bar is released from rest in the posi-
tion shown, determine the initial angular accelera-
tion . Neglect the mass and friction of the rollers.

Problem 6/107

30°

B

l

A

�

M

m

s

O

40°

30°

r

μ

6/105 The connecting rod AB of a certain internal-
combustion engine weighs 1.2 lb with mass center
at G and has a radius of gyration about G of 1.12 in.
The piston and piston pin A together weigh 1.80 lb.
The engine is running at a constant speed of 3000

so that the angular velocity of the crank is
Neglect the weights of

the components and the force exerted by the gas in
the cylinder compared with the dynamic forces
generated and calculate the magnitude of the force
on the piston pin A for the crank angle 
(Suggestion: Use the alternative moment relation,
Eq. 6/3, with B as the moment center.)

Problem 6/105

6/106 A particle of mass m is embedded at the periphery
of the otherwise uniform disk of mass M and radius
r as shown. The disk starts from rest and does not
slip on the rough incline. (a) For the position
shown, what condition on m will cause the disk to
begin to roll up the incline? (b) If deter-
mine the initial angular acceleration of the disk
and the minimum value of the coefficient of static
friction required for the no-slip condition.

m � 4M,

θ

ω

O

B

A

G

1.7′′

1.3′′

3′′

� � 90�.

3000(2�)/60 � 100� rad/sec.
rev/min,

�
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6/108 The small end rollers of the 8-lb uniform slender
bar are constrained to move in the slots, which
lie in a vertical plane. At the instant when ,
the angular velocity of the bar is counter-
clockwise. Determine the angular acceleration of
the bar, the reactions at A and B, and the accelera-
tions of points A and B under the action of the 6-lb
force P. Neglect the friction and mass of the small
rollers.

2 rad/sec
� � 30�

Problem 6/108

105°

B P = 6 lb

l = 4 ft

A

θ

�
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SECTION B WORK AND ENERGY

6/6 Work-Energy Relations
In our study of the kinetics of particles in Arts. 3/6 and 3/7, we de-

veloped the principles of work and energy and applied them to the mo-
tion of a particle and to selected cases of connected particles. We found
that these principles were especially useful in describing motion which
resulted from the cumulative effect of forces acting through distances.
Furthermore, when the forces were conservative, we were able to deter-
mine velocity changes by analyzing the energy conditions at the begin-
ning and end of the motion interval. For finite displacements, the
work-energy method eliminates the necessity for determining the accel-
eration and integrating it over the interval to obtain the velocity
change. These same advantages are realized when we extend the work-
energy principles to describe rigid-body motion.

Before carrying out this extension, you should review the defini-
tions and concepts of work, kinetic energy, gravitational and elastic
potential energy, conservative forces, and power treated in Arts. 3/6
and 3/7 because we will apply them to rigid-body problems. You
should also review Arts. 4/3 and 4/4 on the kinetics of systems of par-
ticles, in which we extended the principles of Arts. 3/6 and 3/7 to en-
compass any general system of mass particles, which includes rigid
bodies.

Work of Forces and Couples
The work done by a force F has been treated in detail in Art. 3/6

and is given by

where dr is the infinitesimal vector displacement of the point of applica-
tion of F, as shown in Fig. 3/2a. In the equivalent scalar form of the in-
tegral, � is the angle between F and the direction of the displacement,
and ds is the magnitude of the vector displacement dr.

We frequently need to evaluate the work done by a couple M which
acts on a rigid body during its motion. Figure 6/11 shows a couple M � Fb
acting on a rigid body which moves in the plane of the couple. During
time dt the body rotates through an angle d�, and line AB moves to
A�B�. We may consider this motion in two parts, first a translation to
A�B� and then a rotation d� about A�. We see immediately that during
the translation the work done by one of the forces cancels that done
by the other force, so that the net work done is dU � F(b d�) � M d�

due to the rotational part of the motion. If the couple acts in the sense
opposite to the rotation, the work done is negative. During a finite rota-
tion, the work done by a couple M whose plane is parallel to the plane of
motion is, therefore,

U � �  M d�

U � �  F � dr   or   U � �  (F cos �) ds
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Kinetic Energy
We now use the familiar expression for the kinetic energy of a parti-

cle to develop expressions for the kinetic energy of a rigid body for each
of the three classes of rigid-body plane motion illustrated in Fig. 6/12.

(a) Translation. The translating rigid body of Fig. 6/12a has a
mass m and all of its particles have a common velocity v. The kinetic en-
ergy of any particle of mass mi of the body is Ti � so for the en-
tire body T � � or

(6/7)

This expression holds for both rectilinear and curvilinear translation.

(b) Fixed-axis rotation. The rigid body in Fig. 6/12b rotates
with an angular velocity � about the fixed axis through O. The kinetic
energy of a representative particle of mass mi is Ti � Thus,
for the entire body T � But the moment of inertia of the body
about O is IO � so

(6/8)

Note the similarity in the forms of the kinetic energy expressions for
translation and rotation. You should verify that the dimensions of the
two expressions are identical.

(c) General plane motion. The rigid body in Fig. 6/12c exe-
cutes plane motion where, at the instant considered, the velocity of
its mass center G is and its angular velocity is �. The velocity vi of a
representative particle of mass mi may be expressed in terms of the
mass-center velocity and the velocity �i� relative to the mass center
as shown. With the aid of the law of cosines, we write the kinetic en-
ergy of the body as the sum ΣTi of the kinetic energies of all its parti-
cles. Thus,

Because � and are common to all terms in the third summation, we may
factor them out. Thus, the third term in the expression for T becomes

since Σmi yi � � 0. The kinetic energy of the body is then T �

� or

(6/9)

where is the moment of inertia of the body about its mass center. This
expression for kinetic energy clearly shows the separate contributions to
the total kinetic energy resulting from the translational velocity of the
mass center and the rotational velocity � about the mass center.

v

I

T � 12 mv 

2 � 12 I�2

1
2 � 

2Σmi�i 

21
2 v 

2Σmi

my

� v Σmi�i cos � � � v Σmi yi � 0

v

T � Σ 

1
2 mivi 

2 � Σ 

1
2 mi(v 

2 � �i 

2�2 � 2v�i� cos �)

v

v

T � 12 IO �2

Σmiri 

2,

1
2 �2Σmiri 

2.

1
2 mi(ri�)2.

T � 12 mv2

1
2 v2ΣmiΣ 

1
2 miv2

1
2 miv2,
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(a) Translation

mi v i = v 

v

(c) General Plane
Motion
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yi
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 –v

 –v

(b) Fixed-Axis
Rotation
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v i = ri ω

i ωρ

ω

i ρ

θ
θ
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O ω
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The kinetic energy of plane motion may also be expressed in terms of
the rotational velocity about the instantaneous center C of zero velocity.
Because C momentarily has zero velocity, the proof leading to Eq. 6/8 for
the fixed point O holds equally well for point C, so that, alternatively, we
may write the kinetic energy of a rigid body in plane motion as

(6/10)

In Art. 4/3 we derived Eq. 4/4 for the kinetic energy of any system
of mass. We now see that this expression is equivalent to Eq. 6/9
when the mass system is rigid. For a rigid body, the quantity in Eq.
4/4 is the velocity of the representative particle relative to the mass
center and is the vector � � �i, which has the magnitude �i�. The
summation term in Eq. 4/4 becomes � �

which brings Eq. 4/4 into agreement with Eq. 6/9.

Potential Energy and the Work-Energy Equation
Gravitational potential energy Vg and elastic potential energy Ve

were covered in detail in Art. 3/7. Recall that the symbol U� (rather than
U) is used to denote the work done by all forces except the weight and
elastic forces, which are accounted for in the potential-energy terms.

The work-energy relation, Eq. 3/15a, was introduced in Art. 3/6 for
particle motion and was generalized in Art. 4/3 to include the motion of
a general system of particles. This equation

[4/2]

applies to any mechanical system. For application to the motion of a sin-
gle rigid body, the terms T1 and T2 must include the effects of transla-
ton and rotation as given by Eqs. 6/7, 6/8, 6/9, or 6/10, and U1-2 is the
work done by all external forces. On the other hand, if we choose to ex-
press the effects of weight and springs by means of potential energy
rather than work, we may rewrite the above equation as

[4/3a]

where the prime denotes the work done by all forces other than weight
and spring forces.

When applied to an interconnected system of rigid bodies, Eq. 4/3a
includes the effect of stored elastic energy in the connections, as well as
that of gravitational potential energy for the various members. The
term includes the work of all forces external to the system (other
than gravitational forces), as well as the negative work of internal fric-
tion forces, if any. The terms T1 and T2 are the initial and final kinetic
energies of all moving parts over the interval of motion in question.

When the work-energy principle is applied to a single rigid body, ei-
ther a free-body diagram or an active-force diagram should be used. In
the case of an interconnected system of rigid bodies, an active-force dia-
gram of the entire system should be drawn in order to isolate the system
and disclose all forces which do work on the system. Diagrams should

U�1-2

T1 � V1 � U�1-2 � T2 � V2

T1 � U1-2 � T2

1
2 I� 

2,1
2 �2

 Σmi �i 

2Σ 

1
2 mi(�i�)2

�̇i

T � 12 IC �2
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also be drawn to disclose the initial and final positions of the system for
the given interval of motion.

The work-energy equation provides a direct relationship between
the forces which do work and the corresponding changes in the motion
of a mechanical system. However, if there is appreciable internal me-
chanical friction, then the system must be dismembered in order to dis-
close the kinetic-friction forces and account for the negative work which
they do. When the system is dismembered, however, one of the primary
advantages of the work-energy approach is automatically lost. The
work-energy method is most useful for analyzing conservative systems
of interconnected bodies, where energy loss due to the negative work of
friction forces is negligible.

Power
The concept of power was discussed in Art. 3/6, which treated work-

energy for particle motion. Recall that power is the time rate at which
work is performed. For a force F acting on a rigid body in plane motion,
the power developed by that force at a given instant is given by Eq. 3/16
and is the rate at which the force is doing work. The power is given by 

where dr and v are, respectively, the differential displacement and the
velocity of the point of application of the force.

Similarly, for a couple M acting on the body, the power developed by
the couple at a given instant is the rate at which it is doing work, and is
given by

where d� and � are, respectively, the differential angular displacement
and the angular velocity of the body. If the senses of M and � are the
same, the power is positive and energy is supplied to the body. Con-
versely, if M and � have opposite senses, the power is negative and en-
ergy is removed from the body. If the force F and the couple M act
simultaneously, the total instantaneous power is

We may also express power by evaluating the rate at which the total me-
chanical energy of a rigid body or a system of rigid bodies is changing.
The work-energy relation, Eq. 4/3, for an infinitesimal displacement is

where dU� is the work of the active forces and couples applied to the
body or to the system of bodies. Excluded from dU� are the work of

dU� � dT � dV

P � F � v � M�

P � dU
dt

 � M d�
dt

 � M�

P � dU
dt

 � F � dr
dt

 � F � v
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gravitational forces and that of spring forces, which are accounted for in
the dV term. Dividing by dt gives the total power of the active forces and
couples as

Thus, we see that the power developed by the active forces and couples
equals the rate of change of the total mechanical energy of the body or
system of bodies.

We note from Eq. 6/9 that, for a given body, the first term may be
written

where R is the resultant of all forces acting on the body and is the re-
sultant moment about the mass center G of all forces. The dot product
accounts for the case of curvilinear motion of the mass center, where 
and are not in the same direction.v

a

M

 � ma � v � I�(�) � R � v � M�

 � 1
2

 m(a � v � v � a) � I��̇

 Ṫ � dT
dt

 � d
dt

 �1
2

 mv � v � 1
2

 I�2�

P � dU�
dt

 � Ṫ � V̇ � d
dt

 (T � V)
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Power-generating wind turbines near Mojave, California.
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SAMPLE PROBLEM 6/9

The wheel rolls up the incline on its hubs without slipping and is pulled by
the 100-N force applied to the cord wrapped around its outer rim. If the wheel
starts from rest, compute its angular velocity � after its center has moved a dis-
tance of 3 m up the incline. The wheel has a mass of 40 kg with center of mass at
O and has a centroidal radius of gyration of 150 mm. Determine the power input
from the 100-N force at the end of the 3-m motion interval.

Solution. Of the four forces shown on the free-body diagram of the wheel,
only the 100-N pull and the weight of 40(9.81) � 392 N do work. The friction
force does no work as long as the wheel does not slip. By use of the concept of the
instantaneous center C of zero velocity, we see that a point A on the cord to
which the 100-N force is applied has a velocity vA � [(200 � 100)/100]v. Hence,
point A on the cord moves a distance of (200 � 100)/100 � 3 times as far as the
center O. Thus, with the effect of the weight included in the U-term, the work
done on the wheel becomes

The wheel has general plane motion, so that the initial and final kinetic en-
ergies are

The work-energy equation gives

Alternatively, the kinetic energy of the wheel may be written

The power input from the 100-N force when � � 30.3 rad/s is

Ans.[P � F � v]   P100 � 100(0.3)(30.3) � 908 W

[T � 12 IC�2]   T � 12 40[(0.15)2 � (0.10)2]�2 � 0.650�2

[T1 � U1-2 � T2]   0 � 595 � 0.650�2   � � 30.3 rad/s

 � 0.650�2

[T � 12 mv 

2 � 12 I�2]   T1 � 0   T2 � 12 40(0.10�)2 � 12 40(0.15)2�2

U1-2 � 100 200 � 100
100

 (3) � (392 sin 15�)(3) � 595 J
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15°

100 mm200 mm

100 N

O

15°

3 m

392 N

100 mm

200
m

m

100 N

O

A

C
F

N

ω

v

v

vA

�

�

�

�

�

Helpful Hints

� Since the velocity of the instanta-
neous center C on the wheel is zero,
it follows that the rate at which the
friction force does work is continu-
ously zero. Hence, F does no work as
long as the wheel does not slip. If
the wheel were rolling on a moving
platform, however, the friction force
would do work, even if the wheel
were not slipping.

� Note that the component of the
weight down the plane does negative
work.

� Be careful to use the correct radius
in the expression v � r� for the ve-
locity of the center of the wheel.

� Recall that IC � � where 
� IO �

� The velocity here is that of the appli-
cation point of the 100-N force.

mkO 

2.I
mOC2,I
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SAMPLE PROBLEM 6/10

The 4-ft slender bar weighs 40 lb with mass center at B and is released from
rest in the position for which � is essentially zero. Point B is confined to move in
the smooth vertical guide, while end A moves in the smooth horizontal guide and
compresses the spring as the bar falls. Determine (a) the angular velocity of the
bar as the position � � 30� is passed and (b) the velocity with which B strikes the
horizontal surface if the stiffness of the spring is 30 lb/in.

Solution. With the friction and mass of the small rollers at A and B neglected,
the system may be treated as being conservative.

Part (a). For the first interval of motion from � � 0 (state 1) to � � 30� (state 2),
the spring is not engaged, so that there is no Ve term in the energy equation. If
we adopt the alternative of treating the work of the weight in the Vg term, then
there are no other forces which do work, and � 0.

Since we have a constrained plane motion, there is a kinematic relation be-
tween the velocity vB of the center of mass and the angular velocity � of the bar.
This relation is easily obtained by using the instantaneous center C of zero veloc-
ity and noting that vB � Thus, the kinetic energy of the bar in the 30� posi-
tion becomes

With a datum established at the initial position of the mass center B, our initial
and final gravitational potential energies are

We now substitute into the energy equation and obtain

Ans.

Part (b). We define state 3 as that for which � � 90�. The initial and final
spring potential energies are

In the final horizontal position, point A has no velocity, so that the bar is, in
effect, rotating about A. Hence, its final kinetic energy is

The final gravitational potential energy is

Substituting into the energy equation gives

Ans.

Alternatively, if the bar alone constitutes the system, the active-force dia-
gram shows the weight, which does positive work, and the spring force kx, which
does negative work. We would then write

which is identical with the previous result.

80 � 45 � 0.828vB 

2[T1 � U1-3 � T3]

 vB � 6.50 ft/sec

 0 � 0 � 0 � 0.828vB 

2 � 45 � 80[T1 � V1 � U�1-3 � T3 � V3]

V3 � 40(�2) � �80 ft- lb[Vg � Wh]

T3 � 1
2

 �1
3

 40
32.2

 42�� vB

24/12�
2
 � 0.828vB 

2[T � 12 IA�2]

V1 � 0   V3 � 1
2

 (30)(24 � 18)2 1
12

 � 45 ft- lb[Ve � 12 kx2]

 � � 2.72 rad/sec

 0 � 0 � 0 � 1.449�2 � 10.72[T1 � V1 � U�1-2 � T2 � V2]

V2 � 40(2 cos 30� � 2) � �10.72 ft- lbV1 � 0

T � 1
2

 40
32.2

 �12
12

 ��2
 � 1

2
 � 1

12
 40
32.2

 42��2 � 1.449�2[T � 12 mv2 � 12 I�2]

CB�.

U�1-2
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D

A

24
″

24
″

θ

18″
k

B

BC

A

24
 ″

12″ ω

D

vA

vB

30°

40 lb

(Alternative Active-Force
Diagram)

kx

�

�

Helpful Hints

� We recognize that the forces acting
on the bar at A and B are normal to
the respective directions of motion
and, hence, do no work.

� If we convert k to lb/ft, we have

Always check the consistency of your
units.

 � 45 ft- lb

 Ve � 1
2

 �30 lb
in.��12 in.

ft ��24 � 18
12

 ft�2
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SAMPLE PROBLEM 6/11

In the mechanism shown, each of the two wheels has a mass of 30 kg and a
centroidal radius of gyration of 100 mm. Each link OB has a mass of 10 kg and
may be treated as a slender bar. The 7-kg collar at B slides on the fixed vertical
shaft with negligible friction. The spring has a stiffness k � 30 kN/m and is con-
tacted by the bottom of the collar when the links reach the horizontal position. If
the collar is released from rest at the position � � 45� and if friction is sufficient
to prevent the wheels from slipping, determine (a) the velocity vB of the collar as
it first strikes the spring and (b) the maximum deformation x of the spring.

Solution. The mechanism executes plane motion and is conservative with the
neglect of kinetic friction losses. We define states 1, 2, and 3 to be at � � 45�, � �

0, and maximum spring deflection, respectively. The datum for zero gravita-
tional potential energy Vg is conveniently taken through O as shown.

(a) For the interval from � � 45� to � � 0, we note that the initial and final ki-
netic energies of the wheels are zero since each wheel starts from rest and mo-
mentarily comes to rest at � � 0. Also, at position 2, each link is merely rotating
about its point O so that

The collar at B drops a distance � 0.265 m so that

Also, � 0. Hence,

Ans.

(b) At the condition of maximum deformation x of the spring, all parts are mo-
mentarily at rest, which makes T3 � 0. Thus,

Solution for the positive value of x gives

Ans.

It should be noted that the results of parts (a) and (b) involve a very simple
net energy change despite the fact that the mechanism has undergone a fairly
complex sequence of motions. Solution of this and similar problems by other
than a work-energy approach is not an inviting prospect.

x � 60.1 mm

� 0 � 2(10)(9.81)�x
2� � 7(9.81)x � 12 (30)(103)x2

[T1 � V1 � U�1-3 � T3 � V3]   0 � 2(10)(9.81) 0.265
2

 � 7(9.81)(0.265) � 0

 vB � 2.54 m/s
[T1 � V1 � U�1-2 � T2 � V2]   0 � 44.2 � 0 � 6.83vB 

2 � 0

U�1-2

V1 � 2(10)(9.81) 0.265
2

 � 7(9.81)(0.265) � 44.2 J   V2 � 0

0.375/�2

 � 1
3

 10(0.375)2
 � vB

0.375�
2
 � 1

2
 7vB 

2 � 6.83vB 

2

 T2 � [2( 

1
2 IO�2

 )]
links

 � [ 

1
2 mv2]

collar
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OO

A

B

A

Vg=0

k

vB

v = vO

375 mm375 m
m

θθ

150
mm

150
mm

�
Helpful Hint

� With the work of the weight of the
collar B included in the potential-
energy terms, there are no other
forces external to the system which
do work. The friction force acting
under each wheel does no work since
the wheel does not slip, and, of
course, the normal force does no
work here. Hence, � 0.U�1-2
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PROBLEMS
(In the following problems neglect any energy loss due to
kinetic friction unless otherwise instructed.)

Introductory Problems

6/109 The uniform slender bar of mass m and length L is
released from rest when in the horizontal position
shown. Determine its angular velocity and mass-
center speed as it passes the vertical position.

Problem 6/109

6/110 The slender rod (mass m, length L) has a particle
(mass 2m) attached to one end. If the body is
nudged away from the vertical equilibrium position
shown, determine its angular speed after it has
rotated 180 .

Problem 6/110

6/111 The 32.2-lb wheel is released from rest and rolls on
its hubs without slipping. Calculate the velocity v
of the center O of the wheel after it has moved a
distance ft down the incline. The radius of
gyration of the wheel about O is 5 in.

x � 10

L––
2

L––
2

O

m

2m

�

O

m

L––
4

3L––
4
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Problem 6/111

6/112 The uniform quarter-circular sector is released from
rest with one edge vertical as shown. Determine its
subsequent maximum angular velocity.

Problem 6/112

6/113 The velocity of the 8-kg cylinder is 0.3 m/s at a
certain instant. What is its speed v after dropping
an additional 1.5 m? The mass of the grooved
drum is 12 kg, its centroidal radius of gyration is

and the radius of its groove is 
The frictional moment at O is a constant

3 .

Problem 6/113

O

= 210 mm
m = 12 kg

ri = 200 mm

ro = 300 mm

k

8 kg

N � m
200 mm.

ri �k � 210 mm,

O

b

m

Vertical

8″
2″

x

O

10
1
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Problem 6/116

6/117 The 15-kg slender bar OA is released from rest in
the vertical position and compresses the spring of
stiffness as the horizontal position is
passed. Determine the proper setting of the spring,
by specifying the distance h, which will result in
the bar having an angular velocity as it
crosses the horizontal position. What is the effect of
x on the dynamics of the problem?

Problem 6/117

h

A

O

x = 400 mm

600 mm

ω

� � 4 rad/s

k � 20 kN/m

θ

θ

B

A

r

r
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6/114 The log is suspended by the two parallel 5-m cables
and used as a battering ram. At what angle should
the log be released from rest in order to strike the
object to be smashed with a velocity of 4 m/s?

Problem 6/114

6/115 The T-shaped body of total mass m is constructed of
uniform rod. If it is released from rest while in the
position shown, determine the vertical force reac-
tion at O as it passes the vertical position (120 after
release).

Problem 6/115

6/116 The two wheels of Prob. 6/82, shown again here,
represent two extreme conditions of distribution of
mass. For case A all of the mass m is assumed to be
concentrated in the center of the hoop in the axial
bar of negligible diameter. For case B all of the
mass m is assumed to be concentrated in the rim.
Determine the velocity of the center of each hoop
after it has traveled a distance x down the incline
from rest. The hoops roll without slipping.

b––
4

b––
4

b

O

30°

�

v = 4 m/s

5 m5 m
θ θ

�
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6/118 The wheel is composed of a 10-kg hoop stiffened by
four thin spokes, each with a mass of 2 kg. A hori-
zontal force of 40 N is applied to the wheel initially
at rest. Calculate the angular velocity of the wheel
after its center has moved 3 m. Friction is sufficient
to prevent slipping.

Problem 6/118

6/119 A steady 5-lb force is applied normal to the handle
of the hand-operated grinder. The gear inside the
housing with its shaft and attached handle together
weigh 3.94 lb and have a radius of gyration about
their axis of 2.85 in. The grinding wheel with its at-
tached shaft and pinion (inside housing) together
weigh 1.22 lb and have a radius of gyration of 2.14 in.
If the gear ratio between gear and pinion is 4:1, cal-
culate the speed N of the grinding wheel after 6 com-
plete revolutions of the handle starting from rest.

Problem 6/119

6″5 lb

N

O

O

300 mm40 N

Article 6/6 Problems 469

Representative Problems

6/120 The 1.2-kg uniform slender bar rotates freely about
a horizontal axis through O. The system is released
from rest when it is in the horizontal position 
where the spring is unstretched. If the bar is ob-
served to momentarily stop in the position 
determine the spring constant k. For your com-
puted value of k, what is the angular velocity of the
bar when 

Problem 6/120

6/121 Specify the unstretched length l0 of the spring of
stiffness which will result in a
velocity of for the contact at A if the toggle
is given a slight nudge from its null position at

The toggle has a mass of 1.5 kg and a radius
of gyration about O of 55 mm. Motion occurs in the
horizontal plane.

Problem 6/121

l

50 mm

50 mm

O

A

θ = 30°

60 mm

� � 0.

0.25 m/s
k � 1400 N/m

O

1.2 kg
A

B

k
0.6 m

0.6 m

0.2 m

θ

� � 25�?

� � 50�,

� � 0
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6/124 The two identical links, each of length b and mass
m, may be treated as uniform slender bars. If they
are released from rest in the position shown with
end A constrained by the smooth vertical guide,
determine the velocity v with which A reaches O
with essentially zero.

Problem 6/124

6/125 The torsional spring has a stiffness of 30 m/rad
and is undeflected when the 6-kg uniform slender
bar is in the upright position. If the bar is released
from rest in the horizontal position shown, deter-
mine its angular velocity as it passes the vertical
position. Friction is negligible.

Problem 6/125

O

K

0.8 m

ω

�

N �

A

B

O

b

b

θ

�
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6/122 The 50-kg flywheel has a radius of gyration 
about its shaft axis and is subjected to the torque

where is in radians. If the
flywheel is at rest when determine its angu-
lar velocity after 5 revolutions.

Problem 6/122

6/123 The 12-lb lever OA with 10-in. radius of gyration
about O is initially at rest in the vertical position

where the attached spring of stiffness
is unstretched. Calculate the constant

moment M applied to the lever through its shaft at
O which will give the lever an angular velocity

as the lever reaches the horizontal
position 

Problem 6/123

15″

15″
8″

θ

G

A

M

k = 3 lb/in.

O

� � 0.
� � 4 rad/sec

k � 3 lb/in.
(� � 90�),

M

� � 0,
�M � 2(1 � e�0.1�) N � m,

k � 0.4 m
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6/126 The wheel consists of a 4-kg rim of 250-mm radius
with hub and spokes of negligible mass. The wheel
is mounted on the 3-kg yoke OA with mass center
at G and with a radius of gyration about O of 350 mm.
If the assembly is released from rest in the horizon-
tal position shown and if the wheel rolls on the cir-
cular surface without slipping, compute the velocity
of point A when it reaches .

Problem 6/126

6/127 The uniform slender bar ABC weighs 6 lb and is
initially at rest with end A bearing against the stop
in the horizontal guide. When a constant couple

-in. is applied to end C, the bar rotates
causing end A to strike the side of the vertical
guide with a velocity of 10 ft/sec. Calculate the loss
of energy E due to friction in the guides and
rollers. The mass of the rollers may be neglected.

Problem 6/127

B

A

C

M

45°

8″

8″

�

M � 72 lb

A′

300 mm

250 mm

OA G

500 mm

A�
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6/128 The center of the 200-lb wheel with centroidal
radius of gyration of 4 in. has a velocity of 2 ft/sec
down the incline in the position shown. Calculate
the normal reaction N under the wheel as it rolls
past position A. Assume that no slipping occurs.

Problem 6/128

6/129 The uniform slender bar of mass m pivots freely
about a horizontal axis through O. If the bar is
released from rest in the horizontal position shown
where the spring is unstretched, it is observed to
rotate a maximum of 30 clockwise. The spring con-
stant and the distance 
Determine (a) the mass m of the bar and (b) the
angular velocity of the bar when the angular
displacement is 15 clockwise from the release
position.

Problem 6/129

b––
4

3b––
4

b––
4

O Am

C

B

k

�

�

b � 200 mm.k � 200 N/m
�

A

30°

24″

12″

6″
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6/132 The electric motor shown is delivering 4 kW at
1725 rev/min to a pump which it drives. Calculate
the angle through which the motor deflects under
load if the stiffness of each of its four spring
mounts is 15 kN/m. In what direction does the
motor shaft turn?

Problem 6/132

6/133 The two uniform right-angle bars are
released from rest when in the position at
which the spring of modulus is un-
stretched. The bars then rotate in a vertical plane
about the fixed centers of the attached light gears,
thus maintaining the same angle for both bars.
Determine the angular speed of the bars as the
position is passed.

Problem 6/133

θ

60 mm

180 mm

120 mm

40 mm

θ

k = 450 N/m

� � 20�

�

k � 450 N/m
� � 0,

4.2-kg

200 mm

δ
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6/130 The system is released from rest when the angle
Determine the angular velocity of the uni-

form slender bar when equals 60 . Use the values

Problem 6/130

6/131 The two identical steel frames with the dimensions
shown are fabricated from the same bar stock and
are hinged at the midpoints A and B of their sides.
If the frame is resting in the position shown on a
horizontal surface with negligible friction, deter-
mine the velocity v with which each of the upper
ends of the frame hits the horizontal surface if the
cord at C is cut.

Problem 6/131

θb

b

b

b

c

c

B

A

C

O

C

m2

m1

B

A

2b

b

2b

θ

m1 � 1 kg, m2 � 1.25 kg, and b � 0.4 m.
��

� � 90�.
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6/134 A lid-support mechanism is being designed for a
storage chest to limit the angular velocity of the
10-lb uniform lid to 1.5 rad/sec for when it is
released from rest with essentially equal to 90 .
Two identical mechanisms are included as indi-
cated on the pictorial sketch. Specify the necessary
stiffness k of each of the two springs, which are
compressed 2 in. upon closure. Neglect the weight
of the links and any friction in the sliding collars C.
Also, the thickness of the lid is small compared
with its other dimensions.

Problem 6/134

6/135 Each of the two links has a mass of 2 kg and a cen-
troidal radius of gyration of 60 mm. The slider at B
has a mass of 3 kg and moves freely in the vertical
guide. The spring has a stiffness of 6 kN/m. If a
constant torque is applied to link OA
through its shaft at O starting from the rest posi-
tion at determine the angular velocity of
OA when � � 0.

�� � 45�,

M � 20 N � m

2″
C

A

O2″
θ

10″

14″

6″
B

A

A

BB

O

C C

��

� � 0
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Problem 6/135

6/136 The system is at rest with the spring unstretched
when The 5-kg uniform slender bar is then
given a slight clockwise nudge. The value of b is
0.4 m. (a) If the bar comes to momentary rest when

determine the spring constant k. (b) For
the value find the angular velocity of
the bar when 

Problem 6/136

k

A

b

O

1.25b

θ

� � 25�.
k � 90 N/m,

� � 40�,

� � 0.

θ

400
mm

200
mm

200
mm

50
mm

A

B

M

O
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6/139 The 8-kg crank OA, with mass center at G and ra-
dius of gyration about O of 0.22 m, is connected to
the 12-kg uniform slender bar AB. If the linkage is
released from rest in the position shown, compute
the velocity v of end B as OA swings through the
vertical.

Problem 6/139

6/140 The figure shows the cross section of a uniform
200-lb ventilator door hinged about its upper hori-
zontal edge at O. The door is controlled by the
spring-loaded cable which passes over the small
pulley at A. The spring has a stiffness of 15 lb per
foot of stretch and is undeformed when If
the door is released from rest in the horizontal po-
sition, determine the maximum angular velocity 
reached by the door and the corresponding angle .

Problem 6/140

60°

k

A Oθ

�

�

� � 0.

1.0 m

0.4 m

0.18 m

0.8 m

B

A OG
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6/137 The body shown is constructed of uniform slender
rod and consists of a ring of radius r attached to a
straight section of length 2r. The body pivots freely
about a ball-and-socket joint at O. If the body is at
rest in the vertical position shown and is given a
slight nudge, compute its angular velocity after a
90 rotation about (a) axis A-A and (b) axis B-B.

Problem 6/137

6/138 A facility for testing the performance of motorized
golf carts consists of an endless belt where the
angle can be adjusted. The cart of mass m is
slowly brought up to its rated ground speed v with
the braking torque M on the upper pulley con-
stantly adjusted so that the cart remains in a fixed
position A on the test stand. With no cart on the
belt, a torque is required on the pulley to over-
come friction and turn the pulleys regardless of
speed. Friction is sufficient to prevent the wheels
from slipping on the belt. Determine an expression
for the power P absorbed by the braking torque M.
Do the static friction forces between the wheels and
the belt do work?

Problem 6/138

r
v

v

A

M

θ

M0

�

A

2r

A

O

B

B

r

�

�
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6/141 Motive power for the experimental 10-Mg bus comes
from the energy stored in a rotating flywheel which
it carries. The flywheel has a mass of 1500 kg and a
radius of gyration of 500 mm and is brought up to a
maximum speed of 4000 rev/min. If the bus starts
from rest and acquires a speed of 72 km/h at the top
of a hill 20 m above the starting position, compute
the reduced speed N of the flywheel. Assume that
10 percent of the energy taken from the flywheel is
lost. Neglect the rotational energy of the wheels of
the bus. The 10-Mg mass includes the flywheel.

Problem 6/141

6/142 The two identical uniform bars are released from
rest from the position shown in the vertical plane.
Determine the angular velocity of AB when the
bars become collinear.

Problem 6/142

6/143 The figure shows the cross section of a garage door
which is a uniform rectangular panel 8 by 8 ft and
weighing 200 lb. The door carries two spring as-
semblies, one on each side of the door, like the one
shown. Each spring has a stiffness of 50 lb/ft and is
unstretched when the door is in the open position
shown. If the door is released from rest in this posi-
tion, calculate the velocity of the edge at A as it
strikes the garage floor.

AB

C

b

b

45°

45°

45°

�
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Problem 6/143

6/144 The uniform slender rod of length l is released from
rest in the dashed vertical position. With what
speed does end A strike the 30 incline? Neglect
the small mass and friction of the end rollers.

Problem 6/144

l

l

A

B 30°

x

�vA

10′

8′

8′
A

B
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6/146 Motion of the 600-mm slender bar of mass 4 kg is
controlled by the constrained movement of its small
rollers A and B of negligible mass and friction. The
bar starts from rest in the horizontal position with

and moves in the vertical plane under the ac-
tion of the constant force applied normal
to the bar at end C. Calculate the velocity v with
which roller A strikes the wall of the vertical guide
at 

Problem 6/146

C

B

A

P
300 mm

300 mm

θ

� � 90�.

P � 50 N
� � 0
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6/145 The 10-kg double wheel with radius of gyration
of 125 mm about O is connected to the spring of
stiffness by a cord which is wrapped
securely around the inner hub. If the wheel is re-
leased from rest on the incline with the spring
stretched 225 mm, calculate the maximum velocity
v of its center O during the ensuing motion. The
wheel rolls without slipping.

Problem 6/145

5
1

75 mm

200 mm

O

k

k � 600 N/m
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6/7 Acceleration from Work-Energy; 
Virtual Work

In addition to using the work-energy equation to determine the veloc-
ities due to the action of forces acting over finite displacements, we may
also use the equation to establish the instantaneous accelerations of the
members of a system of interconnected bodies as a result of the active
forces applied. We may also modify the equation to determine the configu-
ration of such a system when it undergoes a constant acceleration.

Work-Energy Equation for Differential Motions
For an infinitesimal interval of motion, Eq. 4/3 becomes

The term dU� represents the total work done by all active nonpotential
forces acting on the system under consideration during the infinitesimal
displacement of the system. The work of potential forces is included in
the dV-term. If we use the subscript i to denote a representative body of
the interconnected system, the differential change in kinetic energy T
for the entire system becomes

where d and d�i are the respective changes in the magnitudes of the
velocities and where the summation is taken over all bodies of the sys-
tem. But for each body, � d and �

where represents the infinitesimal linear displacement of the center
of mass and where d�i represents the infinitesimal angular displacement
of the body in the plane of motion. We note that d is identical to

d where is the component of along the tangent to the curve
described by the mass center of the body in question. Also �i represents

the angular acceleration of the representative body. Consequently,
for the entire system

d

This change may also be written as

d

where Ri and are the resultant force and resultant couple acting on
body i and where d�i � d�ik. These last two equations merely show us
that the differential change in kinetic energy equals the differential
work done on the system by the resultant forces and resultant couples
acting on all the bodies of the system.

The term dV represents the differential change in the total gravita-
tional potential energy Vg and the total elastic potential energy Ve and
has the form

dV � d(Σmighi � Σ 

1
2 kj xj 

2) � Σmig dhi � Σkj xj dxj

MGi

si � ΣMGi
� d�idT � ΣRi �

si � ΣIi�i d�idT � Σmiai �

�̈ i,

ai(ai)tsi,(ai)t

siai �

d si

Ii�i d�i,Ii�i d�isimiai �mivi dvi

vi

dT � d(Σ 

1
2mivi 

2 � Σ 

1
2 Ii�i 

2) � Σmivi dvi � ΣIi�i d�i

dU� � dT � dV
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where hi represents the vertical distance of the center of mass of the
representative body of mass mi above any convenient datum plane and
where xj stands for the deformation, tensile or compressive, of a repre-
sentative elastic member of the system (spring) whose stiffness is kj.

The complete expression for dU� may now be written as

d (6/11)

When Eq. 6/11 is applied to a system of one degree of freedom, the terms
d and will be positive if the accelerations are in the same

direction as the respective displacements and negative if they are in the
opposite direction. Equation 6/11 has the advantage of relating the accel-
erations to the active forces directly, which eliminates the need for dis-
membering the system and then eliminating the internal forces and
reactive forces by simultaneous solution of the force-mass-acceleration
equations for each member.

Virtual Work
In Eq. 6/11 the differential motions are differential changes in the

real or actual displacements which occur. For a mechanical system
which assumes a steady-state configuration during constant accelera-
tion, we often find it convenient to introduce the concept of virtual
work. The concepts of virtual work and virtual displacement were intro-
duced and used to establish equilibrium configurations for static sys-
tems of interconnected bodies (see Chapter 7 of Vol. 1 Statics).

A virtual displacement is any assumed and arbitrary displacement,
linear or angular, away from the natural or actual position. For a sys-
tem of connected bodies, the virtual displacements must be consistent
with the constraints of the system. For example, when one end of a link
is hinged about a fixed pivot, the virtual displacement of the other end
must be normal to the line joining the two ends. Such requirements for
displacements consistent with the constraints are purely kinematic and
provide what are known as the equations of constraint.

If a set of virtual displacements satisfying the equations of con-
straint and therefore consistent with the constraints is assumed for a
mechanical system, the proper relationship between the coordinates
which specify the configuration of the system will be determined by ap-
plying the work-energy relationship of Eq. 6/11, expressed in terms of
virtual changes. Thus,

(6/11a)

It is customary to use the differential symbol d to refer to differential
changes in the real displacements, whereas the symbol 
 is used to sig-
nify virtual changes, that is, differential changes which are assumed
rather than real.


U� � Σmiai � 
si � ΣIi�i 
�i � Σmi g 
hi � Σkj xj 
xj

Ii�i d�isimiai �

si � ΣIi�i d�i � Σmi g dhi � Σkj xj dxjdU� � Σmiai �
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SAMPLE PROBLEM 6/12

The movable rack A has a mass of 3 kg, and rack B is fixed. The gear has a
mass of 2 kg and a radius of gyration of 60 mm. In the position shown, the
spring, which has a stiffness of 1.2 kN/m, is stretched a distance of 40 mm. For
the instant represented, determine the acceleration a of rack A under the action
of the 80-N force. The plane of the figure is vertical.

Solution. The given figure represents the active-force diagram for the entire
system, which is conservative.

During an infinitesimal upward displacement dx of rack A, the work dU�
done on the system is 80 dx, where x is in meters, and this work equals the sum
of the corresponding changes in the total energy of the system. These changes,
which appear in Eq. 6/11, are as follows:

The change in potential energies of the system, from Eq. 6/11, becomes

Substitution into Eq. 6/11 gives us

Canceling dx and solving for a give

Ans.

We see that using the work-energy method for an infinitesimal displace-
ment has given us the direct relation between the applied force and the resulting
acceleration. It was unnecessary to dismember the system, draw two free-body
diagrams, apply ΣF � twice, apply ΣMG � and F � kx, eliminate un-
wanted terms, and finally solve for a.

I�ma

a � 16.76/3.78 � 4.43 m/s2

80 dx � 3a dx � 0.781a dx � 29.4 dx � 9.81 dx � 24 dx

 dVspring � kj xj dxj � 1200(0.04) dx/2 � 24 dx

 dVgear � 2g(dx/2) � g dx � 9.81 dx

 dVrack � 3g dx � 3(9.81) dx � 29.4 dx

[dV � Σmi g dhi � Σkj xj dxj]

 dTgear � 2 a
2

 dx
2

 � 2(0.06)2 
a/2
0.08

 
dx/2
0.08

 � 0.781a dx

 dTrack � 3a dx

[dT � Σmiai � dsi � ΣIi�i d�i]
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80 N

80
mm

A
B

�

�

�

Helpful Hints

� Note that none of the remaining
forces external to the system do any
work. The work done by the weight
and by the spring is accounted for in
the potential-energy terms.

� Note that for the gear is its mass-
center acceleration, which is half
that for the rack A. Also, its displace-
ment is dx/2. For the rolling gear,
the angular acceleration from a � r�

becomes �i � (a/2)/0.08, and the an-
gular displacement from ds � r d�

becomes d�i � (dx/2)/0.08.

� Note here that the displacement of
the spring is one-half that of the
rack. Hence, xi � x/2.

ai
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SAMPLE PROBLEM 6/13

A constant force P is applied to end A of the two identical and uniform links
and causes them to move to the right in their vertical plane with a horizontal ac-
celeration a. Determine the steady-state angle � made by the bars with one an-
other.

Solution. The figure constitutes the active-force diagram for the system. To
find the steady-state configuration, consider a virtual displacement of each bar
from the natural position assumed during the acceleration. Measurement of the
displacement with respect to end A eliminates any work done by force P during
the virtual displacement. Thus,

The terms involving acceleration in Eq. 6/11a reduce to

We choose the horizontal line through A as the datum for zero potential en-
ergy. Thus, the potential energy of the links is

and the virtual change in potential energy becomes

Substitution into the work-energy equation for virtual changes, Eq. 6/11a, gives

from which

Ans.

Again, in this problem we see that the work-energy approach obviated the
necessity for dismembering the system, drawing separate free-body diagrams,
applying motion equations, eliminating unwanted terms, and solving for �.

� � 2 tan�1 2a
g

0 � �mal cos �
2

 
� � 
mgl

2
 sin �

2
 
�


Vg � 
 ��2mg l
2

 cos �
2� � 

mgl
2

 sin �
2

 
�

Vg � 2mg ��
l
2

 cos �
2�

 � �ma �l cos 
�

2
 
��

 � �ma �
 � l
2

 sin 
�

2� � 
 �3l
2

 sin 
�

2�	
 ma � 
s � ma(�
s1) � ma(�
s2)


U� � 0
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s2

Vg = 0

s1 A
P

a
l/2l/2

l/2l/2
θ

�

�

�

Helpful Hints

� Note that we use the symbol 
 to refer
to an assumed or virtual differential
change rather than the symbol d,
which refers to an infinitesimal
change in the real displacement.

� Here we are evaluating the work
done by the resultant forces and
couples in the virtual displacement.
Note that � � 0 for both bars.

� We have chosen to use the angle � to
describe the configuration of the
links, although we could have used
the distance between the two ends of
the links just as well.

� The last two terms in Eq. 6/11a ex-
press the virtual changes in gravita-
tional and elastic potential energy.

�
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PROBLEMS
Introductory Problems

6/147 The position of the horizontal platform of mass 
is controlled by the parallel slender links of masses
m and 2m. Determine the initial angular accelera-
tion of the links as they start from their supported
position shown under the action of a force P applied
normal to AB at its end.

Problem 6/147

6/148 The uniform slender bar of mass m is shown in its
equilibrium position in the vertical plane before the
couple M is applied to the end of the bar. Determine
the initial angular acceleration of the bar upon
application of M. The mass of each guide roller is
negligible.

Problem 6/148

6/149 The two uniform slender bars are hinged at O and
supported on the horizontal surface by their end
rollers of negligible mass. If the bars are released
from rest in the position shown, determine their
initial angular acceleration � as they collapse in the
vertical plane. (Suggestion: Make use of the instan-
taneous center of zero velocity in writing the ex-
pression for dT.)

b

b
M

k θ

�

A

P

B O

C D

E

m0

mbb

b 2m

θ θ

�

m0
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Problem 6/149

6/150 Links A and B each weigh 8 lb, and bar C weighs
12 lb. Calculate the angle � assumed by the links
if the body to which they are pinned is given a
steady horizontal acceleration a of 4 ft/sec2.

Problem 6/150

6/151 The mechanism shown moves in the vertical plane.
The vertical bar AB weighs 10 lb, and each of the
two links weighs 6 lb with mass center at G and
with a radius of gyration of 10 in. about its bearing
(O or C). The spring has a stiffness of 15 lb/ft and
an unstretched length of 18 in. If the support at D
is suddenly withdrawn, determine the initial angu-
lar acceleration � of the links.

Problem 6/151

18″

18″

18″

G

G

O

A

C

B

D

60°

60°

OG = CG = 8″
—– —–

A

a

C

B18″ 18″
θ θ

θ θ

A

O

B

bb
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6/154 The box and load of the dump truck have a mass m
with mass center at G and a moment of inertia IA

about the pivot at A. Determine the angular accel-
eration of the box when it is started from rest in
the position shown under the application of the
couple M to link CD. Neglect the mass of the links.
The figure ABDC is a parallelogram.

Problem 6/154

6/155 Each of the uniform bars OA and OB has a mass of
2 kg and is freely hinged at O to the vertical shaft,
which is given an upward acceleration a � g/2. The
links which connect the light collar C to the bars
have negligible mass, and the collar slides freely on
the shaft. The spring has a stiffness k � 130 N/m
and is uncompressed for the position equivalent to
� � 0. Calculate the angle � assumed by the bars
under conditions of steady acceleration.

Problem 6/155

θθ
200

CB A

a

O

200

200

200
200 200

Dimensions in millimeters

θ
A

B

C

D
M

G

ab

�
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Representative Problems

6/152 The load of mass m is given an upward acceleration a
from its supported rest position by the application of
the forces P. Neglect the mass of the links compared
with m and determine the initial acceleration a.

Problem 6/152

6/153 The cargo box of the food-delivery truck for aircraft
servicing has a loaded mass m and is elevated by
the application of a couple M on the lower end of
the link which is hinged to the truck frame. The
horizontal slots allow the linkage to unfold as the
cargo box is elevated. Determine the upward accel-
eration of the box in terms of h for a given value of
M. Neglect the mass of the links.

Problem 6/153

b

bb

b h
M

m

θ θ

θ θ

b b

b b

a

P P

m
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6/156 The linkage consists of the two slender bars and
moves in the horizontal plane under the influence
of force P. Link OC has a mass m and link AC has a
mass 2m. The sliding block at B has negligible
mass. Without dismembering the system, determine
the initial angular acceleration � of the links as P is
applied at A with the links initially at rest. (Sugges-
tion: Replace P by its equivalent force-couple system.)

Problem 6/156

6/157 The portable work platform is elevated by means of
the two hydraulic cylinders articulated at points C.
The pressure in each cylinder produces a force F. The
platform, man, and load have a combined mass m,
and the mass of the linkage is small and may be ne-
glected. Determine the upward acceleration a of the
platform and show that it is independent of both b
and �.

Problem 6/157

bb

BB

CC

b/2b/2

b/2b/2

θθ

P

A

B

b b

b

C

O

θ θ
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6/158 Each of the three identical uniform panels of a seg-
mented industrial door has mass m and is guided in
the tracks (one shown dashed). Determine the hori-
zontal acceleration a of the upper panel under the
action of the force P. Neglect any friction in the
guide rollers.

Problem 6/158

6/159 The mechanical tachometer measures the rota-
tional speed N of the shaft by the horizontal mo-
tion of the collar B along the rotating shaft. This
movement is caused by the centrifugal action of the
two 12-oz weights A, which rotate with the shaft.
Collar C is fixed to the shaft. Determine the rota-
tional speed N of the shaft for a reading � � 15 .
The stiffness of the spring is 5 lb/in., and it is un-
compressed when � � 0 and � � 0. Neglect the
weights of the links.

Problem 6/159

�

45°

Vertical

Horizontal

P

CB

θθ
5/8″ 1.5″1.5″

y

A

A

N

β

1/4″
1/4″
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6/162 The aerial tower shown is designed to elevate a
workman in a vertical direction. An internal mech-
anism at B maintains the angle between AB and
BC at twice the angle � between BC and the
ground. If the combined mass of the man and the
cab is 200 kg and if all other masses are neglected,
determine the torque M applied to BC at C and the
torque MB in the joint at B required to give the cab
an initial vertical acceleration of 1.2 m/s2 when it is
started from rest in the position � � 30�.

Problem 6/162

6/163 The uniform arm OA has a mass of 4 kg, and the
gear D has a mass of 5 kg with a radius of gyration
about its center of 64 mm. The large gear B is fixed
and cannot rotate. If the arm and small gear are re-
leased from rest in the position shown in the verti-
cal plane, calculate the initial angular acceleration
� of OA.

Problem 6/163

B

O A

D

200
mm

100
mm

θ

θ

A

B

C

M

2

6 m

6 m
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6/160 A planetary gear system is shown, where the gear
teeth are omitted from the figure. Each of the three
identical planet gears A, B, and C has a mass of
0.8 kg, a radius r � 50 mm, and a radius of gyra-
tion of 30 mm about its center. The spider E has a
mass of 1.2 kg and a radius of gyration about O of
60 mm. The ring gear D has a radius R � 150 mm
and is fixed. If a torque M � 5 is applied to
the shaft of the spider at O, determine the initial
angular acceleration � of the spider.

Problem 6/160

6/161 The sector and attached wheels are released from
rest in the position shown in the vertical plane.
Each wheel is a solid circular disk weighing 12 lb
and rolls on the fixed circular path without slip-
ping. The sector weighs 18 lb and is closely approxi-
mated by one-fourth of a solid circular disk of 16-in.
radius. Determine the initial angular acceleration �
of the sector.

Problem 6/161

O
16″

8″

8″

M

E

A
D

C

r

R

B

O

N � m
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6/164 The vehicle is used to transport supplies to and
from the bottom of the 25-percent grade. Each pair
of wheels, one at A and the other at B, has a mass
of 140 kg with a radius of gyration of 150 mm. The
drum C has a mass of 40 kg and a radius of gyra-
tion of 100 mm. The total mass of the vehicle is 520
kg. The vehicle is released from rest with a re-
straining force T of 500 N in the control cable
which passes around the drum and is secured at D.
Determine the initial acceleration a of the vehicle.
The wheels roll without slipping.

Article 6/7 Problems 485

Problem 6/164

150 mm
C

B D

T

A

400
mm

25

100
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6/8 Impulse-Momentum Equations
The principles of impulse and momentum were developed and used

in Articles 3/9 and 3/10 for the description of particle motion. In that
treatment, we observed that those principles were of particular impor-
tance when the applied forces were expressible as functions of the time
and when interactions between particles occurred during short periods
of time, such as with impact. Similar advantages result when the im-
pulse-momentum principles are applied to the motion of rigid bodies.

In Art. 4/2 the impulse-momentum principles were extended to
cover any defined system of mass particles without restriction as to the
connections between the particles of the system. These extended rela-
tions all apply to the motion of a rigid body, which is merely a special
case of a general system of mass. We will now apply these equations di-
rectly to rigid-body motion in two dimensions.

Linear Momentum
In Art. 4/4 we defined the linear momentum of a mass system as the

vector sum of the linear momenta of all its particles and wrote G �

Σmivi. With ri representing the position vector to mi, we have vi �

and G � which, for a system whose total mass is constant, may be
written as G � d(Σmiri)/dt. When we substitute the principle of mo-
ments � Σmiri to locate the mass center, the momentum becomes 
G � � , where is the velocity of the mass center. There-
fore, as before, we find that the linear momentum of any mass system,
rigid or nonrigid, is

[4/5]

In the derivation of Eq. 4/5, we note that it was unnecessary to
employ the kinematic condition for a rigid body, Fig. 6/13, which is 
vi � � � � �i. In that case, we obtain the same result by writing G �

� � � �i). The first sum is � and the second sum be-
comes � � Σmi�i � � � � 0 since �i is measured from the mass
center, making zero.

Next in Art. 4/4 we rewrote Newton’s generalized second law as Eq.
4/6. This equation and its integrated form are

(6/12)

Equation 6/12 may be written in its scalar-component form, which, for
plane motion in the x-y plane, gives

(6/12a)
ΣFx � Ġx

ΣFy � Ġy

  and   
(Gx)1 � � t2

t1

 ΣFx dt � (Gx)2

(Gy)1 � � t2

t1

 ΣFy dt � (Gy)2

ΣF � Ġ   and   G1 � � t2

t1

 ΣF dt � G2

�
m�

mv,vΣmiΣmi(v
v

G � mv

vṙmṙd(mr)/dt
mr

Σmiṙi

ṙi
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vi = ri
·

 –     –v = r
·

G

–v

–r

ri

iρ

O

ω

i =    ×    iρωρ·

mi

Figure 6/13
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In words, the first of Eqs. 6/12 and 6/12a states that the resultant force
equals the time rate of change of momentum. The integrated form of
Eqs. 6/12 and 6/12a states that the initial linear momentum plus the lin-
ear impulse acting on the body equals the final linear momentum.

As in the force-mass-acceleration formulation, the force summa-
tions in Eqs. 6/12 and 6/12a must include all forces acting externally on
the body considered. We emphasize again, therefore, that in the use of
the impulse-momentum equations, it is essential to construct the com-
plete impulse-momentum diagrams so as to disclose all external im-
pulses. In contrast to the method of work and energy, all forces exert
impulses, whether they do work or not.

Angular Momentum
Angular momentum is defined as the moment of linear momentum.

In Art. 4/4 we expressed the angular momentum about the mass center
of any prescribed system of mass as HG � Σ�i � mivi, which is merely
the vector sum of the moments about G of the linear momenta of all
particles. We showed in Art. 4/4 that this vector sum could also be writ-
ten as HG � Σ�i � where is the velocity of mi with respect to G.

Although we have simplified this expression in Art. 6/2 in the course
of deriving the moment equation of motion, we will pursue this same ex-
pression again for sake of emphasis by using the rigid body in plane mo-
tion represented in Fig. 6/13. The relative velocity becomes � � � �i,
where the angular velocity of the body is � � �k. The unit vector k is di-
rected into the paper for the sense of � shown. Because �i, and � are
at right angles to one another, the magnitude of is �i�, and the mag-
nitude of �i � is Thus, we may write HG � �

where � is the mass moment of inertia of the body about its
mass center.

Because the angular-momentum vector is always normal to the
plane of motion, vector notation is generally unnecessary, and we may
write the angular momentum about the mass center as the scalar

(6/13)

This angular momentum appears in the moment-angular-momentum
relation, Eq. 4/9, which in scalar notation for plane motion, along with
its integrated form, is

(6/14)

In words, the first of Eqs. 6/14 states that the sum of the moments
about the mass center of all forces acting on the body equals the time
rate of change of angular momentum about the mass center. The inte-
grated form of Eq. 6/14 states that the initial angular momentum about
the mass center G plus the external angular impulse about G equals the
final angular momentum about G.

The sense for positive rotation must be clearly established, and
the algebraic signs of ΣMG, and must be consistent with(HG)2(HG)1,

ΣMG � ḢG   and   (HG)1 � � t2

t1

 ΣMG dt � (HG)2

HG � I�

Σmi�i 

2I
I�k,Σ�i 

2mi�k�i 

2�mi.mi �̇i

�̇i

�̇i,

�̇i

�̇imi �̇i,

This ice skater can effect a large in-
crease in angular speed about a ver-
tical axis by drawing her arms closer
to the center of her body.
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this choice. The impulse-momentum diagram (see Art. 3/9) is again
essential. See the Sample Problems which accompany this article for
examples of these diagrams.

With the moments about G of the linear momenta of all particles ac-
counted for by HG � it follows that we may represent the linear mo-
mentum G � as a vector through the mass center G, as shown in
Fig. 6/14a. Thus, G and HG have vector properties analogous to those of
the resultant force and couple.

With the establishment of the linear- and angular-momentum re-
sultants in Fig. 6/14a, which represents the momentum diagram, the
angular momentum HO about any point O is easily written as

(6/15)

This expression holds at any particular instant of time about O, which
may be a fixed or moving point on or off the body.

When a body rotates about a fixed point O on the body or body ex-
tended, as shown in Fig. 6/14b, the relations � and d � may be
substituted into the expression for HO, giving HO � But

� IO so that

(6/16)

In Art. 4/2 we derived Eq. 4/7, which is the moment-angular-
momentum equation about a fixed point O. This equation, written in
scalar notation for plane motion along with its integrated form, is

(6/17)

Note that you should not add linear momentum and angular momentum
for the same reason that force and moment cannot be added directly.

Interconnected Rigid Bodies
The equations of impulse and momentum may also be used for a

system of interconnected rigid bodies since the momentum principles
are applicable to any general system of constant mass. Figure 6/15
shows the combined free-body diagram and momentum diagram for two
interconnected bodies a and b. Equations 4/6 and 4/7, which are ΣF �

and ΣMO � O where O is a fixed reference point, may be written for
each member of the system and added. The sums are

(6/18)

In integrated form for a finite time interval, these expressions become

(6/19)� t2

t1

 ΣF dt � (�G)system   � t2

t1

 ΣMO dt � (�HO)system

 ΣMO � (ḢO)a� (ḢO)b � …

 ΣF � Ġa � Ġb � …

Ḣ
Ġ

ΣMO � ḢO   and   (HO)1 � � t2

t1

 ΣMO dt � (HO)2

HO � IO�

I � mr 

2
(I� � mr 

2�).
rr�v

HO � I� � mvd

mv
I�,
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We note that the equal and opposite actions and reactions in the connec-
tions are internal to the system and cancel one another so they are not
involved in the force and moment summations. Also, point O is one fixed
reference point for the entire system.

Conservation of Momentum
In Art. 4/5, we expressed the principles of conservation of momen-

tum for a general mass system by Eqs. 4/15 and 4/16. These principles
are applicable to either a single rigid body or a system of interconnected
rigid bodies. Thus, if ΣF � 0 for a given interval of time, then

[4/15]

which says that the linear-momentum vector undergoes no change in the
absence of a resultant linear impulse. For the system of interconnected
rigid bodies, there may be linear-momentum changes of individual parts of
the system during the interval, but there will be no resultant momentum
change for the system as a whole if there is no resultant linear impulse.

Similarly, if the resultant moment about a given fixed point O or
about the mass center is zero during a particular interval of time for a
single rigid body or for a system of interconnected rigid bodies, then

[4/16]

which says that the angular momentum either about the fixed point or
about the mass center undergoes no change in the absence of a corre-
sponding resultant angular impulse. Again, in the case of the intercon-
nected system, there may be angular-momentum changes of individual
components during the interval, but there will be no resultant angular-
momentum change for the system as a whole if there is no resultant an-
gular impulse about the fixed point or the mass center. Either of Eqs.
4/16 may hold without the other.

In the case of an interconnected system, the system center of mass
is generally inconvenient to use.

As was illustrated previously in Articles 3/9 and 3/10 in the chapter
on particle motion, the use of momentum principles greatly facilitates

(HO)1 � (HO)2   or   (HG)1 � (HG)2

G1 � G2
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F1

Ga
Gb

F6

F4

F5

F3

Ga = mav
_

a Gb = mbv
_

b

F2

a
b

(HG)a = I
_
a aω (HG)b = I

_
b bω

O

Figure 6/15
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the analysis of situations where forces and couples act for very short pe-
riods of time.

Impact of Rigid Bodies
Impact phenomena involve a fairly complex interrelationship of en-

ergy and momentum transfer, energy dissipation, elastic and plastic de-
formation, relative impact velocity, and body geometry. In Art. 3/12 we
treated the impact of bodies modeled as particles and considered only
the case of central impact, where the contact forces of impact passed
through the mass centers of the bodies, as would always happen with
colliding smooth spheres, for example. To relate the conditions after im-
pact to those before impact required the introduction of the so-called co-
efficient of restitution e or impact coefficient, which compares the
relative separation velocity with the relative approach velocity mea-
sured along the direction of the contact forces. Although in the classical
theory of impact, e was considered a constant for given materials, more
modern investigations show that e is highly dependent on geometry and
impact velocity as well as on materials. At best, even for spheres and
rods under direct central and longitudinal impact, the coefficient of
restitution is a complex and variable factor of limited use.

Any attempt to extend this simplified theory of impact utilizing a
coefficient of restitution for the noncentral impact of rigid bodies of
varying shape is a gross oversimplification which has little practical
value. For this reason, we do not include such an exercise in this book,
even though such a theory is easily developed and appears in certain ref-
erences. We can and do, however, make full use of the principles of con-
servation of linear and angular momentum when they are applicable in
discussing impact and other interactions of rigid bodies.
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There are small reaction wheels inside the Hubble Space Telescope that
make precision attitude control possible. The principles of angular momen-
tum are fundamental to the design and operation of such a control system.

N
A

SA
, 2

00
2

c06.qxd  2/10/12  2:14 PM  Page 490



SAMPLE PROBLEM 6/14

The force P, which is applied to the cable wrapped around the central hub of
the symmetrical wheel, is increased slowly according to P � 1.5t, where P is in
pounds and t is the time in seconds after P is first applied. Determine the angular
velocity �2 of the wheel 10 seconds after P is applied if the wheel is rolling to the
left with a velocity of its center of 3 ft/sec at time t � 0. The wheel weighs 120 lb
with a radius of gyration about its center of 10 in. and rolls without slipping.

Solution. The impulse-momentum diagram of the wheel discloses the initial
linear and angular momenta at time t1 � 0, all external impulses, and the final
linear and angular momenta at time t2 � 10 sec. The correct direction of the fric-
tion force F is that to oppose the slipping which would occur without friction.

Application of the linear impulse-momentum equation and the angular
impulse-momentum equation over the entire interval gives

Since the force F is variable, it must remain under the integral sign. We
eliminate F between the two equations by multiplying the second one by and
adding to the first one. Integrating and solving for �2 give

Ans.

Alternative Solution. We could avoid the necessity of a simultaneous solution by
applying the second of Eqs. 6/17 about a fixed point O on the horizontal surface. The
moments of the 120-lb weight and the equal and opposite force N cancel one an-
other, and F is eliminated since its moment about O is zero. Thus, the angular mo-
mentum about O becomes HO � � � � mr2� � where 

is the centroidal radius of gyration and r is the 18-in. rolling radius. Thus, we see
that HO � HC since � r2 � and HC � IC� � Equation 6/17 now gives

Solution of this one equation is equivalent to the simultaneous solution of the
two previous equations.

� 120
32.2

 ��10
12�

2
 � �18

12�
2	��2	

120
32.2

 ��10
12�

2
 � �18

12�
2	�� 

3
18/12	 � �10

0
 1.5t�18 � 9

12 � dt

�(HO)1 � � t2

t1

 ΣMO dt � (HO)2	
mkC 

2�.kC 

2k2
k

m(k2 � r2)�,mk2�mvrI�

�2 � 3.13 rad/sec clockwise

12
18

 120
32.2

 �10
12�

2�� 

3
18/12� � �10

0
�18

12
 F � 9

12
 (1.5t)	 dt � 120

32.2
 �10

12�
2��2	

�(HG)1 � � t2

t1

 ΣMG dt � (HG)2	
�(Gx)1 � � t2

t1

 ΣFx dt � (Gx)2	   120
32.2

 (�3) � �10

0
 (1.5t � F) dt � 120

32.2
 �18

12
 �2	
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G P

v
_

1 = 3 ft/sec 9″
18″

mg dt

N dt
F dt

P dt

+ =
G

CO

ωI
_

1 ωI
_

2

mv
_

1

t1 = 0 t2 = 10 sec

mv
_

2

y

x

+

G

18″
9″

G

�

�

�

Helpful Hints

� Also, we note the clockwise imbal-
ance of moments about C, which
causes a clockwise angular accelera-
tion as the wheel rolls without slip-
ping. Since the moment sum about
G must also be in the clockwise
sense of �, the friction force must
act to the left to provide it.

� Note carefully the signs of the mo-
mentum terms. The final linear ve-
locity is assumed in the positive
x-direction, so is positive. The
initial linear velocity is negative, so

is negative.

� Since the wheel rolls without slip-
ping, a positive x-velocity requires a
clockwise angular velocity, and vice
versa.

(Gx)1

(Gx)2
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SAMPLE PROBLEM 6/15

The sheave E of the hoisting rig shown has a mass of 30 kg and a centroidal
radius of gyration of 250 mm. The 40-kg load D which is carried by the sheave
has an initial downward velocity v1 � 1.2 m/s at the instant when a clockwise
torque is applied to the hoisting drum A to maintain essentially a constant force
F � 380 N in the cable at B. Compute the angular velocity �2 of the sheave 5 sec-
onds after the torque is applied to the drum and find the tension T in the cable
at O during the interval. Neglect all friction.

Solution. The load and the sheave taken together constitute the system, and
its impulse-momentum diagram is shown. The tension T in the cable at O and the
final angular velocity �2 of the sheave are the two unknowns. We eliminate T ini-
tially by applying the moment-angular-momentum equation about the fixed point
O, taking counterclockwise as positive.

Substituting into the momentum equation gives

Ans.

The linear-impulse-momentum equation is now applied to the system to de-
termine T. With the positive direction up, we have

Ans.

If we had taken our moment equation around the center C of the sheave in-
stead of point O, it would contain both unknowns T and �, and we would be
obliged to solve it simultaneously with the foregoing force equation, which would
also contain the same two unknowns.

5T � 1841   T � 368 N

70(�1.2) � �5

0
 [T � 380 � 70(9.81)] dt � 70[0.375(8.53)]

�G1 � � t2

t1

 ΣF dt � G2	

�2 � 8.53 rad/s counterclockwise

�37.5 � 137.4 � 11.72�2

 � 11.72�2

 � �(30 � 40)(0.375�2)(0.375) � 30(0.250)2�2

 (HO)2 � (mE �mD)v2d � I�2

 � �37.5 N � m � s

 � �(30 � 40)(1.2)(0.375) � 30(0.250)2
 � 1.2

0.375�
 (HO)1 � �(mE � mD)v1d � I�1

 � 137.4 N � m � s

 � t2

t1

 ΣMO dt � �5

0
 [380(0.750) � (30 � 40)(9.81)(0.375)] dt

�(HO)1 � � t2

t1

 ΣMO dt � (HO)2	

492 Chapter 6 Plane Kinetics of Rigid Bodies

�

O

A

B

E 375 mm

v1 = 1.2 m/s

C

D

O

C

F dt

T dt

mtot g dt

+ =

mtotv1

mtotv2

375 mm

C C

ωI
_

1 ωI
_

2

Helpful Hint

� The units of angular momentum,
which are those of angular impulse,
may also be written as kg � m2/s.
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SAMPLE PROBLEM 6/16

The uniform rectangular block of dimensions shown is sliding to the left on
the horizontal surface with a velocity v1 when it strikes the small step at O. As-
sume negligible rebound at the step and compute the minimum value of v1 which
will permit the block to pivot freely about O and just reach the standing position
A with no velocity. Compute the percentage energy loss n for b � c.

Solution. We break the overall process into two subevents: the collision (I)
and the subsequent rotation (II).

I. Collision. With the assumption that the weight mg is nonimpulsive, angu-
lar momentum about O is conserved. The initial angular momentum of the block
about O just before impact is the moment about O of its linear momentum and is

� mv1(b/2). The angular momentum about O just after impact when the
block is starting its rotation about O is

Conservation of angular momentum gives

II. Rotation about O. With the assumptions that the rotation is like that
about a fixed frictionless pivot and that the location of the effective pivot O is at
ground level, mechanical energy is conserved during the rotation according to

Ans.

The percentage loss of energy during the impact is

Ans.� 1 � 3

4�1 � c
2

b2�
    n � 62.5% for b � c

n � 

�E 


E
 � 

1
2 mv1 

2 � 12 IO�2 

2

1
2mv1 

2
 � 1 � 

kO 

2�2 

2

v1 

2
 � 1 � �b2 � c2

3 �� 3b
2(b2 � c2)	

2

[(HO)1 � (HO)2]    mv1 b
2

 � m
3

 (b2 � c2)�2   �2 � 
3v1b

2(b2 � c2)

 � m
3

 (b2 � c2)�2

[HO � IO�]

(HO)1
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O

A

b

c
v1

Ox dt

mv1 

mg dt

Oy dt

+ =G
O

_
r

c

bG

O

mv2 

G

O

IO   2ω

�

�

�

�

Helpful Hints

� If the corner of the block struck a
spring instead of the rigid step, then
the time of the interaction during
compression of the spring could be-
come appreciable, and the angular
impulse about the fixed point at the
end of the spring due to the moment
of the weight would have to be ac-
counted for.

� Notice the abrupt change in direc-
tion and magnitude of the velocity of
G during the impact.

� Be sure to use the transfer theorem
IO � � correctly here.

� The datum is taken at the initial al-
titude of the mass center G. State 3
is taken to be the standing position
A, at which the diagonal of the block
is vertical.

mr 

2I
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6/167 The 75-kg flywheel has a radius of gyration about
its shaft axis of and is subjected to the
torque where t is in seconds.
If the flywheel is at rest at time determine its
angular velocity at 

Problem 6/167

6/168 The constant tensions of 200 N and 160 N are ap-
plied to the hoisting cable as shown. If the velocity
v of the load is 2 m/s down and the angular velocity

of the pulley is 8 rad/s counterclockwise at time
determine v and after the cable tensions

have been applied for 5 s. Note the independence of
the results.

Problem 6/168

15 kg
k = 250 mm

300 mm

200 N 160 N

20 kg

�t � 0,
�

M

t � 3 s.�

t � 0,
M � 10(1 � e�t) N � m,

k � 0.50 m
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PROBLEMS
Introductory Problems

6/165 The mass center G of the slender bar of mass 0.8 kg
and length 0.4 m is falling vertically with a velocity

at the instant depicted. Calculate the an-
gular momentum of the bar about point O if the
angular velocity of the bar is (a) 
clockwise and (b) counterclockwise.

Problem 6/165

6/166 The grooved drums in the two systems shown are
identical. In both cases, (a) and (b), the system is at
rest at time Determine the angular velocity
of each grooved drum at time Neglect fric-
tion at the pivot O.

Problem 6/166

m

m = 14 kg, k = 225 mm
ro = 325 mm, ri = 215 mm

_

10 kg

ri

ro

m

10(9.81) N

ri

ro
O

(a) (b)

t � 4 s.
t � 0.

θ
ω

O

G

v

0.4 m

a

ωb

0.3 m

�b � 10 rad/s
�a � 10 rad/s

HO

v � 2 m/s
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6/169 Determine the angular momentum of the earth
about the center of the sun. Assume a homoge-
neous earth and a circular earth orbit of radius
149.6 consult Table D/2 for other needed
information. Comment on the relative contribu-
tions of the terms and 

Problem 6/169

6/170 The constant 9-lb force is applied to the 80-lb
stepped cylinder as shown. The centroidal radius of
gyration of the cylinder is and it rolls on
the incline without slipping. If the cylinder is at rest
when the force is first applied, determine its angu-
lar velocity eight seconds later.

Problem 6/170

6/171 The frictional moment acting on a rotating tur-
bine disk and its shaft is given by where

is the angular velocity of the turbine. If the
source of power is cut off while the turbine is run-
ning with an angular velocity determine the
time t for the speed of the turbine to drop to half of
its initial value. The moment of inertia of the tur-
bine disk and shaft is I.

�0,

�

Mƒ � k�2
Mƒ

6″
10″

10°

9 lb

�

k � 8 in.,

z x

y

N

ω

Sunlight

mv  d.I�

(106) km;
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6/172 The man is walking with speed to the
right when he trips over a small floor discontinuity.
Estimate his angular velocity just after the im-
pact. His mass is 76 kg with center-of-mass height

and his mass moment of inertia about
the ankle joint O is 66 kg where all are proper-
ties of the portion of his body above O; i.e., both the
mass and moment of inertia do not include the foot.

Problem 6/172

6/173 Repeat the previous problem, only now the man
carries a 10-kg backpack as shown. Develop a gen-
eral expression for the angular velocity of the man
just after impact with the small step. Evaluate your
expression for the backpack center-of-mass positions
(a) and and (b) 
Case (b) is the condition of a beltpack. The mass
conditions for the man remain unchanged from the
previous problem. State any assumptions and com-
pare your results with those from the previous
problem.

Problem 6/173

v1

h

d

hB

O

G

d � hB � 0.hB � 0.3 md � 0.2 m

v1

h

G

O

� m2,
h � 0.87 m,

�

v1 � 1.2 m/s

c06.qxd  2/10/12  2:14 PM  Page 495



6/177 The wad of clay of mass m is initially moving with a
horizontal velocity when it strikes and sticks to
the initially stationary uniform slender bar of mass
M and length L. Determine the final angular veloc-
ity of the combined body and the x-component of
the linear impulse applied to the body by the pivot
O during the impact.

Problem 6/177

Representative Problems

6/178 The uniform rectangular panel is falling vertically
with speed when its small peg A engages in the
receptacle. Determine the angular velocity of the
body as well as the x- and y-components of its mass-
center velocity just after the impact.

Problem 6/178

b––
2

7b–––
8

b––
8

G

A v1

x

y

v1

x

y

O

v1

M

m

L––
3

L––
3

L––
3

v1
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6/174 A uniform slender bar of mass M and length L is
translating on the smooth horizontal x-y plane with
a velocity when a particle of mass m traveling
with a velocity as shown strikes and becomes
embedded in the bar. Determine the final linear
and angular velocities of the bar with its embedded
particle.

Problem 6/174

6/175 The initially stationary uniform disk of mass 
and radius b is allowed to drop onto the moving
belt from a very small elevation. Determine the
time t required for the disk to acquire its steady-
state angular speed. The belt drive pulley rotates
with a constant counterclockwise velocity .

Problem 6/175

6/176 Repeat the previous problem if the belt drive pulley
rotates clockwise with a constant angular velocity .�

3b

ω

O A

r

m2

b

k

m1

μ

�

m1

vm

vM

M

x

y

3L
—
4

L
—
4

m

vm

vM
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6/179 Just after leaving the platform, the diver’s fully ex-
tended 80-kg body has a rotational speed of 0.3 rev/s
about an axis normal to the plane of the trajectory.
Estimate the angular velocity N later in the dive
when the diver has assumed the tuck position.
Make reasonable assumptions concerning the mass
moment of inertia of the body in each configuration.

Problem 6/179

6/180 The slender rod of mass and length L has a
movable slider of mass which can be tightened
at any location x along the rod. The assembly is
initially falling in translation with speed A small
peg on the left end of the rod becomes engaged in
the receptacle. Determine the angular velocity 
of the body just after impact. For the condition

determine the maximum value of 
and the corresponding value of x. Plot versus x/L
for this mass condition.

Problem 6/180

6/181 A cylindrical shell of 400-mm diameter and mass m
is rotating about its central horizontal axis with an
angular velocity when it is released
onto a horizontal surface with no velocity of its cen-
ter If slipping between the shell and the
surface occurs for 1.5 s, calculate the coefficient of
kinetic friction and the maximum velocity v
reached by the center of the shell.

�k

(v0 � 0).

�0 � 30 rad/s

A

v1

x

m1

m2

�2

�2m2 � m1 /2,

�2

v1.

m2

m1

0.7 m
0.3 rev/s

2 m N
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Problem 6/181

6/182 Two small variable-thrust jets are actuated to keep
the spacecraft angular velocity about the z-axis con-
stant at as the two telescoping
booms are extended from 
at a constant rate over a 2-min period. Determine
the necessary thrust T for each jet as a function of
time where is the time when the telescoping
action is begun. The small 10-kg experiment mod-
ules at the ends of the booms may be treated as par-
ticles, and the mass of the rigid booms is negligible.

Problem 6/182

t � 0

r1 � 1.2 m to r2 � 4.5 m
�0 � 1.25 rad/s

400 mm

v0

ω0

G

T

r

r

T

z

10 kg

10 kg

1.1 m

1.1 m

ω0
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6/185 The base B has a mass of 5 kg and a radius of
gyration of 80 mm about the central vertical axis
shown. Each plate P has a mass of 3 kg. If the sys-
tem is freely rotating about the vertical axis with
an angular speed with the plates
in the vertical position, estimate the angular speed

when the plates have moved to the horizontal
positions indicated. Neglect friction.

Problem 6/185

6/186 In the initial position shown, the disk of axial mass
moment of inertia rotates freely with angular
velocity relative to the lightweight frame. The
turntable of axial mass moment of inertia rotates
freely with angular velocity Then the axis of
the disk is turned through an angular displacement

What is the resulting angular velocity 
of the turntable? Assume that the thickness of the
disk is sufficiently small so that its axial moment of
inertia can be approximated by twice its transverse
moment of inertia.

�2� � 90�.

�1.
It

�

Id

N2

N1 � 10 rev/min
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6/183 With the gears initially at rest and the couple M
equal to zero, the forces exerted by the frame on the
shafts of the gears at A and B are 30 and 16 lb, re-
spectively, both upward to support the weights of
the two gears. A couple is now ap-
plied to the larger gear through its shaft at A. After
4 sec the larger gear has a clockwise angular mo-
mentum of 12 ft-lb-sec, and the smaller gear has a
counterclockwise angular momentum of 4 ft-lb-sec.
Calculate the new values of the forces and ex-
erted by the frame on the shafts during the 4-sec in-
terval. Isolate the two gears together as the system.

Problem 6/183

6/184 The phenomenon of vehicle “tripping” is investi-
gated here. The sport-utility vehicle is sliding side-
ways with speed and no angular velocity when it
strikes a small curb. Assume no rebound of the
right-side tires and estimate the minimum speed 
which will cause the vehicle to roll completely over
to its right side. The mass of the SUV is 2300 kg
and its mass moment of inertia about a longitudi-
nal axis through the mass center G is 

Problem 6/184

v1

760 mm

G

880 mm880 mm

900 kg � m2.

v1

v1

A B 10″16″

M

RBRA

M � 60 lb-in.

P

B

N

300 mm

100
mm

100
mm

120
mm 120

mm

P
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Problem 6/186

6/187 The system is initially rotating freely with angular
velocity rad/s when the inner rod A is cen-
tered lengthwise within the hollow cylinder B as
shown in the figure. Determine the angular
velocity of the system (a) if the inner rod A has
moved so that a length b/2 is protruding from the
cylinder, (b) just before the rod leaves the cylinder,
and (c) just after the rod leaves the cylinder. Ne-
glect the moment of inertia of the vertical support
shafts and friction in the two bearings. Both bodies
are constructed of the same uniform material. Use
the values and and refer
to the results of Prob. B/37 as needed.

Problem 6/187

B

2r

r
A

b––
4

b––
4

b––
4

b––
4

ω

r � 20 mm,b � 400 mm

�1 � 10

Ω

θ

ω
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6/188 The homogeneous sphere of mass m and radius r is
projected along the incline of angle with an initial
speed and no angular velocity If the co-
efficient of kinetic friction is determine the time
duration t of the period of slipping. In addition,
state the velocity v of the mass center G and the an-
gular velocity at the end of the period of slipping.

Problem 6/188

6/189 The homogeneous sphere of Prob. 6/188 is placed
on the incline with a clockwise angular velocity 
but no linear velocity of its center Deter-
mine the time duration t of the period of slipping.
In addition, state the velocity v and angular veloc-
ity at the end of the period of slipping.

6/190 The 165-lb ice skater with arms extended horizon-
tally spins about a vertical axis with a rotational
speed of 1 rev/sec. Estimate his rotational speed N if
he fully retracts his arms, bringing his hands very
close to the centerline of his body. As a reasonable
approximation, model the extended arms as uni-
form slender rods, each of which is 27 in. long and
weighs 15 lb. Model the torso as a solid 135-lb cylin-
der 13 in. in diameter. Treat the man with arms re-
tracted as a solid 165-lb cylinder of 13-in. diameter.
Neglect friction at the skate–ice interface.

Problem 6/190

27′′

1 rev/sec

13′′

�

(v0 � 0).
�0

θ

ω0

G

v0

m

r
μk

�

�k,
(�0 � 0).v0

�
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Problem 6/192

6/193 A 55-kg dynamics instructor is demonstrating the
principles of angular momentum to her class. She
stands on a freely rotating platform with her body
aligned with the vertical platform axis. With the
platform not rotating, she holds a modified bicycle
wheel so that its axis is vertical. She then turns
the wheel axis to a horizontal orientation without
changing the 600-mm distance from the centerline
of her body to the wheel center, and her students
observe a platform rotation rate of 30 rev/min. If
the rim-weighted wheel has a mass of 10 kg and a
centroidal radius of gyration and is
spinning at a fairly constant rate of 250 rev/min,
estimate the mass moment of inertia I of the in-
structor (in the posture shown) about the vertical
platform axis.

Problem 6/193

Ω

600
mm

k � 300 mm,
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6/191 The elements of a spacecraft with axial mass sym-
metry and a reaction-wheel control system are
shown in the figure. When the motor exerts a torque
on the reaction wheel, an equal and opposite torque
is exerted on the spacecraft, thereby changing its
angular momentum in the z-direction. If all system
elements start from rest and the motor exerts a con-
stant torque M for a time period t, determine the
final angular velocity of (a) the spacecraft and (b) the
wheel relative to the spacecraft. The mass moment
of inertia about the z-axis of the entire spacecraft,
including the wheel, is I and that of the wheel alone
is The spin axis of the wheel is coincident with
the z-axis of symmetry of the spacecraft.

Problem 6/191

6/192 The body of the spacecraft weighs 322 lb on earth
and has a radius of gyration about its z-axis of 1.5 ft.
Each of the two solar panels may be treated as a
uniform flat plate weighing 16.1 lb. If the spacecraft
is rotating about its z-axis at the angular rate of
1.0 rad/sec with determine the angular rate 

after the panels are rotated to the position 
by an internal mechanism. Neglect the small

momentum change of the body about the y-axis.
� � � /2
�

� � 0,

I

Iw M

z

Reaction
wheel

Motor

Iw. 8′

8′

6′
2′

6′2′

2′

2′

z

x
y

θ

ω
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6/194 If the dynamics instructor of Prob. 6/193 reorients
the wheel axis by 180 with respect to its initial ver-
tical position, what rotational speed N will her stu-
dents observe? All the given information and the
result of Prob. 6/193 may be utilized.

6/195 The slotted circular disk whose mass is 6 kg has a
radius of gyration about O of 175 mm. The disk car-
ries the four steel balls, each of mass 0.15 kg and lo-
cated as shown, and rotates freely about a vertical
axis through O with an angular speed of 120
rev/min. Each of the small balls is held in place by a
latching device not shown. If the balls are released
while the disk is rotating and come to rest relative to
the disk at the outer ends of the slots, compute the
new angular velocity of the disk. Also find the
magnitude of the energy loss due to the impact
of the balls with the ends of the slots. Neglect the di-
ameter of the balls and discuss this approximation.

Problem 6/195

6/196 A uniform pole of length L, inclined at an angle 
with the vertical, is dropped and both ends have a
velocity v as end A hits the ground. If end A pivots
about its contact point during the remainder of the
motion, determine the velocity with which end B
hits the ground.

Problem 6/196

L

A

B

θ

v

v

v′ 

v�

�

O

120 rev/min

100 m
m

200 mm


�E 

�

I � 3.45 kg � m2

�
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6/197 The 17.5-Mg lunar landing module with center of
mass at G has a radius of gyration of 1.8 m about
G. The module is designed to contact the lunar sur-
face with a vertical free-fall velocity of 8 km/h. If
one of the four legs hits the lunar surface on a
small incline and suffers no rebound, compute the
angular velocity of the module immediately after
impact as it pivots about the contact point. The 9-m
dimension is the distance across the diagonal of the
square formed by the four feet as corners.

Problem 6/197

6/198 A uniform circular disk which rolls with a velocity v
without slipping encounters an abrupt change in
the direction of its motion as it rolls onto the
incline . Determine the new velocity of the center
of the disk as it starts up the incline, and find the
fraction n of the initial energy which is lost because
of impact with the incline if 

Problem 6/198

r

G v

θ

� � 10�.

v��

8 km/h

9 m

G
3 m

�
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6/200 A frozen-juice can rests on the horizontal rack of a
freezer door as shown. With what maximum angu-
lar velocity can the door be “slammed” shut
against its seal and not dislodge the can? Assume
that the can rolls without slipping on the corner of
the rack, and neglect the dimension d compared
with the 500-mm distance.

Problem 6/200

35 mm

7 mm

Ω

d

500 mm

�
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6/199 Determine the minimum velocity v which the wheel
must have to just roll over the obstruction. The
centroidal radius of gyration of the wheel is k, and
it is assumed that the wheel does not slip.

Problem 6/199

r h
v
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6/9 Chapter Review
In Chapter 6 we have made use of essentially all the elements of dy-

namics studied so far. We noted that a knowledge of kinematics, using
both absolute- and relative-motion analysis, is an essential part of the so-
lution to problems in rigid-body kinetics. Our approach in Chapter 6 par-
alleled Chapter 3, where we developed the kinetics of particles using
force-mass-acceleration, work-energy, and impulse-momentum methods.

The following is a summary of the important considerations in the
solution of rigid-body kinetics problems in plane motion:

1. Identification of the body or system. It is essential to make an
unambiguous decision as to which body or system of bodies is to be
analyzed and then isolate the selected body or system by drawing
the free-body and kinetic diagrams, the active-force diagram, or the
impulse-momentum diagram, whichever is appropriate.

2. Type of motion. Next identify the category of motion as rectilin-
ear translation, curvilinear translation, fixed-axis rotation, or gen-
eral plane motion. Always make sure that the kinematics of the
problem is properly described before attempting to solve the kinetic
equations.

3. Coordinate system. Choose an appropriate coordinate system.
The geometry of the particular motion involved is usually the decid-
ing factor. Designate the positive sense for moment and force sum-
mations and be consistent with the choice.

4. Principle and method. If the instantaneous relationship between
the applied forces and the acceleration is desired, then the equiva-
lence between the forces and their and resultants, as dis-
closed by the free-body and kinetic diagrams, will indicate the most
direct approach to a solution.

When motion occurs over an interval of displacement, the work-
energy approach is indicated, and we relate initial to final velocities
without calculating the acceleration. We have seen the advantage of
this approach for interconnected mechanical systems with negligi-
ble internal friction.

If the interval of motion is specified in terms of time rather
than displacement, the impulse-momentum approach is indicated.
When the angular motion of a rigid body is suddenly changed, the
principle of conservation of angular momentum may apply.

5. Assumptions and approximations. By now you should have ac-
quired a feel for the practical significance of certain assumptions
and approximations, such as treating a rod as an ideal slender bar
and neglecting friction when it is minimal. These and other ideal-
izations are important to the process of obtaining solutions to real
problems.

I�ma
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Problem 6/203

6/204 Each of the solid circular disk wheels has a mass of
2 kg, and the inner solid cylinder has a mass of 3 kg.
The disks and cylinder are mounted on the small
central shaft so that each can rotate independently
of the other with negligible friction in the bearings.
Calculate the acceleration of the center of the wheels
when the 20-N force is applied as shown. The coeffi-
cients of friction between the wheels and the hori-
zontal surface are 

Problem 6/204

75 mm

150 mm

20 N

20 N

�k � 0.30 and �s � 0.40.

A
O

N

B

B′

110
mm

160
mm
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REVIEW PROBLEMS

6/201 The force P is applied to the homogeneous crate of
mass m. If the coefficient of kinetic friction between
the crate and the horizontal platform is deter-
mine the limiting values of h so that the crate will
slide without tipping about either the front edge or
the rear edge.

Problem 6/201

6/202 A person who walks through the revolving door ex-
erts a 90-N horizontal force on one of the four door
panels. If each panel is modeled by a 60-kg uniform
rectangular plate which is 1.2 m in length as viewed
from above, determine the angular acceleration of
the door unit. Neglect friction.

Problem 6/202

6/203 The preliminary design of a unit for automatically
reducing the speed of a freely rotating assembly is
shown. Initially the unit is rotating freely about a
vertical axis through O at a speed of 600 rev/min
with the arms secured in the positions shown by
AB. When the arms are released, they swing out-
ward and become latched in the dashed positions
shown. The disk has a mass of 30 kg with a radius
of gyration of 90 mm about O. Each arm has a
length of 160 mm and a mass of 0.84 kg and may be
treated as a uniform slender rod. Determine the
new speed N of rotation and calculate the loss 
of energy of the system. Would the results be
affected by either the direction of rotation or the
sequence of release of the rods?


�E 


O

0.4 m
0.8

 m

15°

90 N

c

b

h

k

P

μ

�k,
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6/205 A slender rod of mass and length l is welded at
its midpoint A to the rim of the solid circular disk
of mass m and radius r. The center of the disk,
which rolls without slipping, has a velocity v at the
instant when A is at the top of the disk with the rod
parallel to the ground. For this instant determine
the angular momentum of the combined body
about O.

Problem 6/205

6/206 The uniform slender rod of mass m and length l is
freely hinged about a horizontal axis through its
end O and is given an initial angular velocity as
it crosses the vertical position where If the
rod swings through a maximum angle de-
rive an expression in integral form for the time t
from release at is reached. (Ex-
press in terms of )

Problem 6/206

r

θ β

ω0

ω = 

ω = 0 

l 

O

·θ

�.�0

� � 0 until � � �

� � 90�,
� � 0.

�0

r

A

O

l

v

m0
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6/207 The uniform rectangular block with the given di-
mensions is dropped from rest from the position
shown. Corner A strikes the ledge at B and becomes
latched to it. Determine the angular velocity of
the block immediately after it becomes attached to
B. Also find the percentage n of energy loss during
the corner attachment for the case 

Problem 6/207

6/208 Four identical slender rods each of mass m are
welded at their ends to form a square, and the cor-
ners are then welded to a light metal hoop of radius r.
If the rigid assembly of rods and hoop is allowed to
roll down the incline, determine the minimum
value of the coefficient of static friction which will
prevent slipping.

Problem 6/208

r

θ

h

c

b

B

A

b � c.

�
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6/211 The small block of mass m slides along the radial
slot of the disk while the disk rotates in the hori-
zontal plane about its center O. The block is re-
leased from rest relative to the disk and moves
outward with an increasing velocity along the
slot as the disk turns. Determine the expression in
terms of r and for the torque M that must be ap-
plied to the disk to maintain a constant angular ve-
locity of the disk.

Problem 6/211

6/212 The forklift truck with center of mass at has a
weight of 3200 lb including the vertical mast. The
fork and load have a combined weight of 1800 lb
with center of mass at The roller guide at B
is capable of supporting horizontal force only,
whereas the connection at C, in addition to sup-
porting horizontal force, also transmits the vertical
elevating force. If the fork is given an upward accel-
eration which is sufficient to reduce the force under
the rear wheels at A to zero, calculate the corre-
sponding reaction at B.

Problem 6/212

2′4′4′

A

C

B

G2

G1

a 3′

2′

G2.

G1

O
r

M

m

ω

�

ṙ

ṙ
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6/209 A couple is applied at C to the spring-
toggle mechanism, which is released from rest in
the position In this position the spring,
which has a stiffness of 140 N/m, is stretched
150 mm. Bar AB has a mass of 3 kg and BC a mass
of 6 kg. Calculate the angular velocity of BC as it
crosses the position Motion is in the vertical
plane, and friction is negligible.

Problem 6/209

6/210 The link OA and pivoted circular disk are released
from rest in the position shown and swing in the
vertical plane about the fixed bearing at O. The 6-kg
link OA has a radius of gyration about O of 375 mm.
The disk has a mass of 8 kg. The two bearings are
assumed to be frictionless. Find the force exerted
at O on the link (a) just after release and (b) as OA
swings through the vertical position 

Problem 6/210

250
mm

G
A

O

A′

600
mm

300 mm

OA�.

FO

θ

A

B

C M

250 mm

250 mm

250 mm

� � 0.
�

� � 45�.

M � 12 N � m
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6/213 A space telescope is shown in the figure. One of the
reaction wheels of its attitude-control system is
spinning as shown at 10 rad/s, and at this speed the
friction in the wheel bearing causes an internal mo-
ment of Both the wheel speed and the
friction moment may be considered constant over a
time span of several hours. If the mass moment of
inertia of the entire spacecraft about the x-axis is

determine how much time passes
before the line of sight of the initially stationary
spacecraft drifts by 1 arc-second, which is 1/3600
degree. All other elements are fixed relative to the
spacecraft, and no torquing of the reaction wheel
shown is performed to correct the attitude drift.
Neglect external torques.

Problem 6/213

6/214 Each of the solid square blocks is allowed to fall by
rotating clockwise from the rest positions shown.
The support at in case is a hinge and in case

is a small roller. Determine the angular velocity
of each block as edge becomes horizontal just

before striking the supporting surface.

Problem 6/214

A

O O

25
0 m

m
250 m

m

45° 45°Hinge Roller

C A

25
0 m

m
250 m

m

C

(a) (b)

OC�

(b)
(a)O

x

G

150(103) kg � m2,

10�6 N � m.
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6/215 The mechanical flyball governor operates with a
vertical shaft As the shaft speed is in-
creased, the rotational radius of the two balls
tends to increase, and the weight A is lifted
up by the collar Determine the steady-state
value of for a rotational speed of 150 rev/min.
Neglect the mass of the arms and collar.

Problem 6/215

6/216 In an acrobatic stunt, man of mass drops
from a raised platform onto the end of the light but
strong beam with a velocity The boy of mass 
is propelled upward with a velocity For a given
ratio determine in terms of to maxi-
mize the upward velocity of the boy. Assume that
both man and boy act as rigid bodies.

Problem 6/216
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6/219 Before it hits the ground a falling chimney, such as
the one shown, will usually crack at the point
where the bending moment is greatest. Show that
the position of maximum moment occurs at the
center of percussion relative to the upper end for a
slender chimney of constant cross section. Neglect
any restraining moment at the base.

Problem 6/219

6/220 The two slender bars, each having a mass of 4 kg,
are hinged at and pivoted at If a horizontal im-
pulse is applied to the end of the
lower bar during an interval of during which
the bars are still essentially in their vertical rest
positions, compute the angular velocity of the
upper bar immediately after the impulse.

Problem 6/220

C

B

AF

1.2 m

1.2 m

�2

0.1 s
A�F dt � 14 N � s

C.B
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6/217 The small block of mass slides in the smooth
radial slot of the disk, which turns freely in its bear-
ing. If the block is displaced slightly from the center
position when the angular velocity of the disk is 
determine its radical velocity as a function of the
radical distance The mass moment of inertia of
the disk about its axis of rotation is 

Problem 6/217

6/218 The pendulum with mass center at is piv-
oted at A to the fixed support It has a radius of
gyration of 17 in. about and swings through
an amplitude For the instant when the
pendulum is in the extreme position, calculate the
moments applied by the base sup-
port to the column at 

Problem 6/218
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*Computer-Oriented Problems

*6/221 The system of Prob. 6/120 is repeated here. If the
uniform slender bar is released from rest

in the position where the spring is un-
stretched, determine and plot its angular velocity
as a function of over the range 
where is the value of at which the bar mo-
mentarily comes to rest. The value of the spring
constant k is 100 N/m, and friction can be ne-
glected. State the maximum angular speed and
the value of at which it occurs.

Problem 6/221

*6/222 The crate slides down the incline with velocity 
and its corner strikes a small obstacle at Deter-
mine the minimum required velocity if the crate
is to rotate about A so that it travels on the con-
veyor belt on its side as indicated in the figure.
Plot the variation of with for 

Problem 6/222

*6/223 The uniform 4-ft slender bar with light end rollers
is released from rest in the vertical plane with 
essentially zero. Determine and graph the velocity
of A as a function of and find the maximum ve-
locity of A and the corresponding angle �.

�

�

2′

2′

α

v1

A

0 � � � 45�.�v1

v1

A.
v1

O

1.2 kg
A

B

k
0.6 m

0.6 m

0.2 m

θ

�

��max

0 � � � �max,�

� � 0
1.2-kg
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Problem 6/223

*6/224 The cart moves to the right with acceleration
If and 
determine the steady-state angular de-

flection of the uniform slender rod of mass 
Treat the small end sphere of mass as a particle.
The spring, which exerts a moment of magnitude

on the rod, is undeformed when the rod is
vertical.

Problem 6/224

l

a
B
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m

3m

θ

M � K�

m
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N � m /rad,
K � 75m � 0.5 kg, l � 0.6 m,a � 2g.
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B
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*6/227 The uniform slender bar has a par-
ticle attached to its end. The spring constant is

and the distance If the
bar is released from rest in the horizontal position
shown where the spring is unstretched, determine
the maximum angular deflection of the bar.
Also determine the value of the angular velocity at

Neglect friction.

Problem 6/227

*6/228 The uniform 100-kg beam is hanging initially
at rest with when the constant force 
is applied to the cable. Determine (a) the maximum
angular velocity reached by the beam with the cor-
responding angle and the maximum angle

reached by the beam.

Problem 6/228

3 m

P
C

A

B

θ
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� � �max/2.
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b � 200 mm.k � 300 N/m

0.6-kg1.2-kg
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*6/225 The steel I-beam is to be transported by the over-
head trolley to which it is hinged at If the trol-
ley starts from rest with and is given a
constant horizontal acceleration find
the maximum values of and The magnitude
of the initial swing would constitute a shop safety
consideration.

Problem 6/225

*6/226 The uniform power pole of mass and length is
hoisted into a vertical position with its lower end
supported by a fixed pivot at The guy wires sup-
porting the pole are accidentally released, and the
pole falls to the ground. Plot the x- and y-compo-
nents of the force exerted on the pole at in terms
of from Can you explain why increases
again after going to zero?

Problem 6/226
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*6/229 The 30-kg slender bar has an initial angular ve-
locity in the vertical position, where
the spring is unstretched. Determine the mini-
mum angular velocity reached by the bar
and the corresponding angle Also find the
angular velocity of the bar as it strikes the hori-
zontal surface.

Problem 6/229

1.2 m

k = 3 kN/m

1.2
m

1.2
m
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O

ω
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*6/230 The 60-ft telephone pole of essentially uniform
diameter is being hoisted into the vertical position
by two cables attached at as shown. The end 
rests on a fixed support and cannot slip. When the
pole is nearly vertical, the fitting at suddenly
breaks, releasing both cables. When the angle 
reaches the speed of the upper end A of the
pole is 4.5 ft/sec. From this point, calculate the
time which the workman would have to get out
of the way before the pole hits the ground. With
what speed does end A hit the ground?

Problem 6/230
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By proper management of the hydraulic cylinders which support and move this flight simulator, a variety of three-
dimensional translational and rotational accelerations can be produced.

Angelo Giampiccolo/PhotoResearchers, Inc.
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7/1 Introduction
Although a large percentage of dynamics problems in engineering

can be solved by the principles of plane motion, modern developments
have focused increasing attention on problems which call for the analy-
sis of motion in three dimensions. Inclusion of the third dimension adds
considerable complexity to the kinematic and kinetic relationships. Not
only does the added dimension introduce a third component to vectors
which represent force, linear velocity, linear acceleration, and linear
momentum, but the introduction of the third dimension also adds the
possibility of two additional components for vectors representing angu-
lar quantities including moments of forces, angular velocity, angular ac-
celeration, and angular momentum. It is in three-dimensional motion
that the full power of vector analysis is utilized.

A good background in the dynamics of plane motion is extremely
useful in the study of three-dimensional dynamics, where the approach
to problems and many of the terms are the same as or analogous to those
in two dimensions. If the study of three-dimensional dynamics is under-
taken without the benefit of prior study of plane-motion dynamics, more

7/1 Introduction

Section A Kinematics

7/2 Translation

7/3 Fixed-Axis Rotation

7/4 Parallel-Plane Motion

7/5 Rotation about a Fixed Point

7/6 General Motion

Section B Kinetics

7/7 Angular Momentum

7/8 Kinetic Energy

7/9 Momentum and Energy Equations of Motion

7/10 Parallel-Plane Motion

7/11 Gyroscopic Motion: Steady Precession

7/12 Chapter Review
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time will be required to master the principles and to become familiar
with the approach to problems.

The treatment presented in Chapter 7 is not intended as a complete
development of the three-dimensional motion of rigid bodies but merely
as a basic introduction to the subject. This introduction should, how-
ever, be sufficient to solve many of the more common problems in three-
dimensional motion and also to lay the foundation for more advanced
study. We will proceed as we did for particle motion and for rigid-body
plane motion by first examining the necessary kinematics and then pro-
ceeding to the kinetics.

514 Chapter 7 Introduction to Three-Dimensional Dynamics of Rigid Bodies

SECTION A KINEMATICS

7/2 Translation
Figure 7/1 shows a rigid body translating in three-dimensional

space. Any two points in the body, such as A and B, will move along par-
allel straight lines if the motion is one of rectilinear translation or will
move along congruent curves if the motion is one of curvilinear transla-
tion. In either case, every line in the body, such as AB, remains parallel
to its original position.

The position vectors and their first and second time derivatives are

where rA/B remains constant, and therefore its time derivative is zero.
Thus, all points in the body have the same velocity and the same accel-
eration. The kinematics of translation presents no special difficulty, and
further elaboration is unnecessary.

7/3 Fixed-Axis Rotation
Consider now the rotation of a rigid body about a fixed axis n-n in

space with an angular velocity �, as shown in Fig. 7/2. The angular ve-
locity is a vector in the direction of the rotation axis with a sense estab-
lished by the familiar right-hand rule. For fixed-axis rotation, � does not
change its direction since it lies along the axis. We choose the origin O of
the fixed coordinate system on the rotation axis for convenience. Any
point such as A which is not on the axis moves in a circular arc in a
plane normal to the axis and has a velocity

(7/1)

which may be seen by replacing r by h � b and noting that � � h � 0.
The acceleration of A is given by the time derivative of Eq. 7/1.

Thus,

(7/2)a � �̇ � r � � � (� � r)

v � � � r

rA � rB � rA/B   vA � vB   aA � aB

z

y

x

B

A

rA

rB

rA /B
vA

vB

Figure 7/1
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where has been replaced by its equal, v � � � r. The normal and tan-
gential components of a for the circular motion have the familiar magni-
tudes an � �� � (� � r)� � b�2 and at � � b�, where � �

Inasmuch as both v and a are perpendicular to � and it follows that
� 0, � 0, � 0, and � 0 for fixed-axis rotation.

7/4 Parallel-Plane Motion
When all points in a rigid body move in planes which are parallel to

a fixed plane P, Fig. 7/3, we have a general form of plane motion. The
reference plane is customarily taken through the mass center G and is
called the plane of motion. Because each point in the body, such as A�,
has a motion identical with the motion of the corresponding point (A) in
plane P, it follows that the kinematics of plane motion covered in Chap-
ter 5 provides a complete description of the motion when applied to the
reference plane.

7/5 Rotation about a Fixed Point
When a body rotates about a fixed point, the angular-velocity vector

no longer remains fixed in direction, and this change calls for a more
general concept of rotation.

Rotation and Proper Vectors
We must first examine the conditions under which rotation vectors

obey the parallelogram law of addition and may, therefore, be treated as
proper vectors. Consider a solid sphere, Fig. 7/4, which is cut from a
rigid body confined to rotate about the fixed point O.

The x-y-z axes here are taken as fixed in space and do not rotate
with the body. In part a of the figure, two successive 90� rotations of the
sphere about, first, the x-axis and, second, the y-axis result in the mo-
tion of a point which is initially on the y-axis in position 1, to positions 2

a � �̇a � �v � �̇v � �
�̇,

�̇.��̇ � r �

ṙ
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and 3, successively. On the other hand, if the order of the rotations is re-
versed, the point undergoes no motion during the y-rotation but moves
to point 3 during the 90� rotation about the x-axis. Thus, the two cases
do not produce the same final position, and it is evident from this one
special example that finite rotations do not generally obey the parallelo-
gram law of vector addition and are not commutative. Thus, finite rota-
tions may not be treated as proper vectors.

Infinitesimal rotations, however, do obey the parallelogram law of
vector addition. This fact is shown in Fig. 7/5, which represents the
combined effect of two infinitesimal rotations d�1 and d�2 of a rigid body
about the respective axes through the fixed point O. As a result of d�1,
point A has a displacement d�1 � r, and likewise d�2 causes a displace-
ment d�2 � r of point A. Either order of addition of these infinitesimal
displacements clearly produces the same resultant displacement, which
is d�1 � r � d�2 � r � (d�1 � d�2) � r. Thus, the two rotations are
equivalent to the single rotation d� � d�1 � d�2. It follows that the an-
gular velocities �1 � 1 and �2 � 2 may be added vectorially to give
� � � �1 � �2. We conclude, therefore, that at any instant of time a
body with one fixed point is rotating instantaneously about a particular
axis passing through the fixed point.

Instantaneous Axis of Rotation
To aid in visualizing the concept of the instantaneous axis of rota-

tion, we will cite a specific example. Figure 7/6 represents a solid cylin-
drical rotor made of clear plastic containing many black particles
embedded in the plastic. The rotor is spinning about its shaft axis at the
steady rate �1, and its shaft, in turn, is rotating about the fixed vertical
axis at the steady rate �2, with rotations in the directions indicated. If
the rotor is photographed at a certain instant during its motion, the re-
sulting picture would show one line of black dots sharply defined, indi-
cating that, momentarily, their velocity was zero. This line of points
with no velocity establishes the instantaneous position of the axis of ro-
tation O-n. Any dot on this line, such as A, would have equal and oppo-
site velocity components, v1 due to �1 and v2 due to �2. All other dots,

�̇
�̇�̇
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such as the one at P, would appear blurred, and their movements would
show as short streaks in the form of small circular arcs in planes normal
to the axis O-n. Thus, all particles of the body, except those on line O-n,
are momentarily rotating in circular arcs about the instantaneous axis
of rotation.

If a succession of photographs were taken, we would observe in each
photograph that the rotation axis would be defined by a new series of
sharply-defined dots and that the axis would change position both in
space and relative to the body. For rotation of a rigid body about a fixed
point, then, it is seen that the rotation axis is, in general, not a line fixed
in the body.

Body and Space Cones
Relative to the plastic cylinder of Fig. 7/6, the instantaneous axis of

rotation O-A-n generates a right-circular cone about the cylinder axis
called the body cone. As the two rotations continue and the cylinder
swings around the vertical axis, the instantaneous axis of rotation also
generates a right-circular cone about the vertical axis called the space
cone. These cones are shown in Fig. 7/7 for this particular example.

We see that the body cone rolls on the space cone and that the angu-
lar velocity � of the body is a vector which lies along the common ele-
ment of the two cones. For a more general case where the rotations are
not steady, the space and body cones are not right-circular cones, Fig.
7/8, but the body cone still rolls on the space cone.

Angular Acceleration
The angular acceleration � of a rigid body in three-dimensional mo-

tion is the time derivative of its angular velocity, � � In contrast to
the case of rotation in a single plane where the scalar � measures only
the change in magnitude of the angular velocity, in three-dimensional
motion the vector � reflects the change in direction of � as well as its
change in magnitude. Thus in Fig. 7/8 where the tip of the angular ve-
locity vector � follows the space curve p and changes in both magnitude
and direction, the angular acceleration � becomes a vector tangent to
this curve in the direction of the change in �.

When the magnitude of � remains constant, the angular accelera-
tion � is normal to �. For this case, if we let � stand for the angular ve-
locity with which the vector � itself rotates (precesses) as it forms the
space cone, the angular acceleration may be written

(7/3)

This relation is easily seen from Fig. 7/9. The upper part of the figure re-
lates the velocity of a point A on a rigid body to its position vector from
O and the angular velocity of the body. The vectors �, �, and � in the
lower figure bear exactly the same relationship to each other as do the
vectors v, r, and � in the upper figure.

If we use Fig. 7/2 to represent a rigid body rotating about a fixed
point O with the instantaneous axis of rotation n-n, we see that the

� � � � �

�̇.
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velocity v and acceleration a � of any point A in the body are given
by the same expressions as apply to the case in which the axis is fixed,
namely,

[7/1]

[7/2]

The one difference between the case of rotation about a fixed axis
and rotation about a fixed point lies in the fact that for rotation about a
fixed point, the angular acceleration � � will have a component nor-
mal to � due to the change in direction of �, as well as a component in
the direction of � to reflect any change in the magnitude of �. Although
any point on the rotation axis n-n momentarily will have zero velocity, it
will not have zero acceleration as long as � is changing its direction. On
the other hand, for rotation about a fixed axis, � � has only the one
component along the fixed axis to reflect the change in the magnitude of
�. Furthermore, points which lie on the fixed rotation axis clearly have
no velocity or acceleration.

Although the development in this article is for the case of rotation
about a fixed point, we observe that rotation is a function solely of angu-
lar change, so that the expressions for � and � do not depend on the fix-
ity of the point around which rotation occurs. Thus, rotation may take
place independently of the linear motion of the rotation point. This con-
clusion is the three-dimensional counterpart of the concept of rotation
of a rigid body in plane motion described in Art. 5/2 and used through-
out Chapters 5 and 6.

�̇

�̇

 a � �̇ � r � � � (� � r)

 v � � � r

v̇
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The engine/propeller units at the wingtips of this aircraft can tilt from a
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SAMPLE PROBLEM 7/1

The 0.8-m arm OA for a remote-control mechanism is pivoted about the hori-
zontal x-axis of the clevis, and the entire assembly rotates about the z-axis with a
constant speed N � 60 rev/min. Simultaneously, the arm is being raised at the
constant rate � 4 rad/s. For the position where � � 30�, determine (a) the an-
gular velocity of OA, (b) the angular acceleration of OA, (c) the velocity of point A,
and (d) the acceleration of point A. If, in addition to the motion described, the ver-
tical shaft and point O had a linear motion, say, in the z-direction, would that mo-
tion change the angular velocity or angular acceleration of OA?

Solution. (a) Since the arm OA is rotating about both the x- and the z-axes, it
has the components �x � � 4 rad/s and �z � 2�N/60 � 2�(60)/60 � 6.28 rad/s.
The angular velocity is

Ans.

(b) The angular acceleration of OA is

Since �z is not changing in magnitude or direction, � 0. But �x is changing di-
rection and thus has a derivative which, from Eq. 7/3, is

Therefore,

Ans.

(c) With the position vector of A given by r � 0.693j � 0.4k m, the velocity of A
from Eq. 7/1 becomes

Ans.

(d) The acceleration of A from Eq. 7/2 is

Ans.

The angular motion of OA depends only on the angular changes N and so any
linear motion of O does not affect � and �.

�̇,

 � 20.1i � 38.4j � 6.40k m/s2

 � (10.05i) � (10.05i � 38.4j � 6.40k)

 � � � r � � � v

 a � �̇ � r � � � (� � r)

 � � 25.1j � 0 � 25.1j rad/s2

�̇x � �z � �x � 6.28k � 4i � 25.1j rad/s2

�̇z

� � �̇ � �̇x � �̇z

� � �x � �z � 4i � 6.28k rad/s

�̇

�̇
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�

�

Helpful Hints

� Alternatively, consider axes x-y-z to
be attached to the vertical shaft and
clevis so that they rotate. The deriv-
ative of �x becomes � But
from Eq. 5/11, we have � �z � i �

6.28k � i � 6.28j. Thus, � � �

4(6.28)j � 25.1j rad/s2 as before.
�̇x

i̇
4i̇ .�̇x

� To compare methods, it is suggested
that these results for v and a be ob-
tained by applying Eqs. 2/18 and
2/19 for particle motion in spherical
coordinates, changing symbols as
necessary.
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SAMPLE PROBLEM 7/2

The electric motor with an attached disk is running at a constant low speed
of 120 rev/min in the direction shown. Its housing and mounting base are ini-
tially at rest. The entire assembly is next set in rotation about the vertical Z-axis
at the constant rate N � 60 rev/min with a fixed angle � of 30�. Determine (a)
the angular velocity and angular acceleration of the disk, (b) the space and body
cones, and (c) the velocity and acceleration of point A at the top of the disk for
the instant shown.

Solution. The axes x-y-z with unit vectors i, j, k are attached to the motor
frame, with the z-axis coinciding with the rotor axis and the x-axis coinciding
with the horizontal axis through O about which the motor tilts. The Z-axis is
vertical and carries the unit vector K � j cos � � k sin �.

(a) The rotor and disk have two components of angular velocity: �0 �

120(2�)/60 � 4� rad/sec about the z-axis and � � 60(2�)/60 � 2� rad/sec
about the Z-axis. Thus, the angular velocity becomes

Ans.

The angular acceleration of the disk from Eq. 7/3 is

Ans.

(b) The angular velocity vector � is the common element of the space and body
cones which may now be constructed as shown.

(c) The position vector of point A for the instant considered is

From Eq. 7/1 the velocity of A is

Ans.

From Eq. 7/2 the acceleration of point A is

Ans. � �1063j � 473k in./sec2

 � 68.4i � (5j � 10k) � �(�3j � 5k) � (�7.68�i)

 a � �̇ � r � � � (� � r) � � � r � � � v

r � 5j � 10k in.

 � (��0 cos �)i � i(2�)(4�) cos 30� � 68.4i rad/sec2

 � �(�0 cos � � � sin � cos �)i � (�2 sin � cos �)i

 � �(j cos � � k sin �) � [(� cos �)j � (�0 � � sin �)k]

 � � �̇ � � � �

 � (2� cos 30�)j � (4� � 2� sin 30�)k � �(�3j � 5.0k) rad/sec

 � �0k � �(j cos � � k sin �) � (� cos �)j � (�0 � � sin �)k

 � � �0 � � � �0k � �K

520 Chapter 7 Introduction to Three-Dimensional Dynamics of Rigid Bodies

�

�

�

x

z
y

Z

A

C

O

N

ω   0

OC = 10″
CA = 5″

 ——
——

γ

   = 30°γ

ω

ω

                    π    = 2
rad/sec

ω                  π   z = 5   rad /secω                       π   y =    3 
 rad /sec ω                  π   0 = 4   rad /sec

Z

y z

z

O

O

Z

Ω

Space
cone

Body cone

Helpful Hints

� Note that �0 � � � � � �y � �z as
shown on the vector diagram.

� Remember that Eq. 7/3 gives the
complete expression for � only for
steady precession where ��� is con-
stant, which applies to this problem.

� Since the magnitude of � is con-
stant, � must be tangent to the base
circle of the space cone, which puts
it in the plus x-direction in agree-
ment with our calculated conclusion.
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PROBLEMS
Introductory Problems

7/1 Place your textbook on your desk, with fixed axes ori-
ented as shown. Rotate the book about the x-axis
through a 90� angle and then from this new position
rotate it 90� about the y-axis. Sketch the final position
of the book. Repeat the process but reverse the order
of rotation. From your results, state your conclusion
concerning the vector addition of finite rotations. Rec-
oncile your observations with Fig. 7/4.

Problem 7/1

7/2 Repeat the experiment of Prob. 7/1 but use a small
angle of rotation, say, . Note the near-equal final po-
sitions for the two different rotation sequences. What
does this observation lead you to conclude for the
combination of infinitesimal rotations and for the
time derivatives of angular quantities? Reconcile your
observations with Fig. 7/5.

7/3 The solid cylinder is rotating about the fixed axis OA
with a constant speed rev/min in the direc-
tion shown. If the x- and y-components of the velocity
of point P are 12 ft/sec and ft/sec, determine its 
z-component of velocity and the radial distance R from
P to the rotation axis. Also find the magnitude of the
acceleration of P.

�6

N � 600

5�

z
y

x
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Problem 7/3

7/4 A timing mechanism consists of the rotating distribu-
tor arm AB and the fixed contact C. If the arm rotates
about the fixed axis OA with a constant angular veloc-
ity � � 30(3i � 2j � 6k) rad/s, and if the coordinates
of the contact C expressed in millimeters are (20, 30,
80), determine the magnitude of the acceleration of
the tip B of the distributor arm as it passes point C.

Problem 7/4
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7/7 The rotor B spins about its inclined axis OA at the
speed rev/min, where . Simultane-
ously, the assembly rotates about the vertical z-axis at
the rate . If the total angular velocity of the rotor
has a magnitude of 40 rad/s, determine .

Problem 7/7

7/8 A slender rod bent into the shape shown rotates about
the fixed line CD at a constant angular rate . Deter-
mine the velocity and acceleration of point A.

Problem 7/8

x

z D

O
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C
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y
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O
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N2
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N2

� � 30�N1 � 200
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7/5 The rotor and shaft are mounted in a clevis which can
rotate about the z-axis with an angular velocity �.
With � � 0 and � constant, the rotor has an angular
velocity �0 � �4j � 3k rad/s. Find the velocity vA of
point A on the rim if its position vector at this instant
is r � 0.5i � 1.2j � 1.1k m. What is the rim speed vB

of any point B?

Problem 7/5

7/6 The disk rotates with a spin velocity of 15 rad/s about
its horizontal z-axis first in the direction (a) and sec-
ond in the direction (b). The assembly rotates with
the velocity N � 10 rad/s about the vertical axis. Con-
struct the space and body cones for each case.

Problem 7/6

N

(b)

(a)

z
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7/9 The rod is hinged about the axis O-O of the clevis,
which is attached to the end of the vertical shaft. The
shaft rotates with a constant angular �0 as shown. If �
is decreasing at the constant rate � p, write ex-
pressions for the angular velocity � and angular accel-
eration � of the rod.

Problem 7/9

7/10 The panel assembly and attached x-y-z axes rotate
with a constant angular velocity � � 0.6 rad/sec
about the vertical z-axis. Simultaneously, the panels
rotate about the y-axis as shown with a constant rate
�0 � 2 rad/sec. Determine the angular acceleration �
of panel A and find the acceleration of point P for
the instant when � � 90�.

Problem 7/10
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Representative Problems

7/11 The motor of Sample Problem 7/2 is shown again
here. If the motor pivots about the x-axis at the con-
stant rate � 3� rad/sec with no rotation about the
Z-axis (N � 0), determine the angular acceleration �
of the rotor and disk as the position � � 30 is passed.
The constant speed of the motor is 120 rev/min. Also
find the velocity and acceleration of point A, which is
on the top of the disk for this position.

Problem 7/11

7/12 If the motor of Sample Problem 7/2, repeated in Prob.
7/11, reaches a speed of 3000 rev/min in 2 seconds from
rest with constant acceleration, determine the total an-
gular acceleration of the rotor and disk second after it
is turned on if the turntable is rotating at a constant
rate N � 30 rev/min. The angle � � 30� is constant.

7/13 The spool A rotates about its axis with an angular
velocity of 20 rad/s, first in the sense of �a and sec-
ond in the sense of �b. Simultaneously, the assembly
rotates about the vertical axis with an angular veloc-
ity �1 � 10 rad/s. Determine the magnitude � of the
total angular velocity of the spool and construct the
body and space cones for the spool for each case.

Problem 7/13
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Problem 7/16

7/17 For the robot of Prob. 7/16, determine the angular
velocity � and angular acceleration � of the jaws A if
� � 60� and � �30�, both constant, and if �1 � 2 rad/s,
�2 � �3 � �4 � 0, and �5 � 0.8 rad/s, all constant.

7/18 The wheel rolls without slipping in a circular arc of
radius R and makes one complete turn about the
vertical y-axis with constant speed in time �. Deter-
mine the vector expression for the angular accelera-
tion � of the wheel and construct the space and body
cones.

Problem 7/18
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7/14 In manipulating the dumbbell, the jaws of the robotic
device have an angular velocity �p � 2 rad/s about
the axis OG with � fixed at 60 . The entire assembly
rotates about the vertical Z-axis at the constant rate
� � 0.8 rad/s. Determine the angular velocity � and
angular acceleration � of the dumbbell. Express the
results in terms of the given orientation of axes x-y-z,
where the y-axis is parallel to the Y-axis.

Problem 7/14

7/15 Determine the angular acceleration � of the dumb-
bell of Prob. 7/14 for the conditions stated, except
that � is increasing at the rate of 3 rad/s2 for the in-
stant under consideration.

7/16 The robot shown has five degrees of rotational free-
dom. The x-y-z axes are attached to the base ring,
which rotates about the z-axis at the rate �1. The
arm O1O2 rotates about the x-axis at the rate �2 �

The control arm O2A rotates about axis O1-O2 at the
rate �3 and about a perpendicular axis through O2

which is momentarily parallel to the x-axis at the
rate �4 � Finally, the jaws rotate about axis O2-A
at the rate �5. The magnitudes of all angular rates are
constant. For the configuration shown, determine the
magnitude � of the total angular velocity of the jaws
for � � 60 and � � 45 if �1 � 2 rad/s, � 1.5 rad/s,
and �3 � �4 � �5 � 0. Also express the angular accel-
eration � of arm O1O2 as a vector.

�̇��

�̇.

�̇ .

mz

aG
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7/19 Determine expressions for the velocity v and acceler-
ation a of point A on the wheel of Prob. 7/18 for the
position shown, where A crosses the horizontal line
through the center of the wheel.

7/20 The circular disk of 120-mm radius rotates about the
z-axis at the constant rate �z � 20 rad/s, and the en-
tire assembly rotates about the fixed x-axis at the
constant rate �x � 10 rad/s. Calculate the magni-
tudes of the velocity v and acceleration a of point B
for the instant when � � 30�.

Problem 7/20

7/21 The crane has a boom of length � 24 m and is
revolving about the vertical axis at the constant
rate of 2 rev/min in the direction shown. Simultane-
ously, the boom is being lowered at the constant
rate � 0.10 rad/s. Calculate the magnitudes of the
velocity and acceleration of the end P of the boom
for the instant when it passes the position � � 30�.

Problem 7/21
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7/22 The design of the rotating arm OA of a control
mechanism requires that it rotate about the vertical
Z-axis at the constant rate rad/s. Simul-
taneously, OA oscillates according to sin ,
where radians and t is in seconds measured
from the time when . Determine the angular
velocity � and the angular acceleration � of OA for
the instant (a) when s and (b) when s.
The x-y reference axes rotate in the X-Y plane with
the angular velocity .

Problem 7/22

7/23 For the rotating and oscillating control arm OA of
Prob. 7/22, determine the velocity v and acceleration
a of the ball tip A for the condition when .
Distance and sin  
as defined in Prob. 7/22 with rad/s and

rad.

7/24 If the angular velocity � rad/s of the
rotor in Prob. 7/5 is constant in magnitude, deter-
mine the angular acceleration of the rotor for 
(a) and rad/s (both constant) and 
(b) and rad/s (both constant).
Find the magnitude of the acceleration of point A in
each case, where A has the position vector

1.1k m at the instant represented.r � 0.5i � 1.2j �

� � 2� � tan�1(34)
�̇  � 2� � 0

�

0 � �4j � 3k

�0 � �/6
� � �

4�t� � �0s � 100 mm,b � 120 mm,
t � 1/2 s

Ω β

y
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s
b
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θ

β
β

z

= 
·

Z

�

t � 1/8t � 1/2

� � 0
�0 � �/6
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� � �̇ � �
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7/27 The pendulum oscillates about the x-axis according 

to � � sin 3�t radians, where t is the time in seconds. 

Simultaneously, the shaft OA revolves about the ver-
tical z-axis at the constant rate �z � 2� rad/sec.
Determine the velocity v and acceleration a of the
center B of the pendulum as well as its angular ac-
celeration � for the instant when t � 0.

Problem 7/27

7/28 The solid right-circular cone of base radius r and
height h rolls on a flat surface without slipping.
The center B of the circular base moves in a circu-
lar path around the z-axis with a constant speed v.
Determine the angular velocity � and the angular
acceleration of the solid cone.

Problem 7/28
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7/25 The vertical shaft and attached clevis rotate about
the z-axis at the constant rate � � 4 rad/s. Simulta-
neously, the shaft B revolves about its axis OA at the
constant rate �0 � 3 rad/s, and the angle � is decreas-
ing at the constant rate of �/4 rad/s. Determine the
angular velocity � and the magnitude of the angular
acceleration � of shaft B when � � 30�. The x-y-z axes
are attached to the clevis and rotate with it.

Problem 7/25

7/26 The right-circular cone A rolls on the fixed right-
circular cone B at a constant rate and makes one
complete trip around B every 4 seconds. Compute
the magnitude of the angular acceleration � of cone
A during its motion.

Problem 7/26
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7/6 General Motion
The kinematic analysis of a rigid body which has general three-

dimensional motion is best accomplished with the aid of our principles
of relative motion. We have applied these principles to problems in
plane motion and now extend them to space motion. We will make use
of both translating axes and rotating reference axes.

Translating Reference Axes
Figure 7/10 shows a rigid body which has an angular velocity �. We

may choose any convenient point B as the origin of a translating refer-
ence system x-y-z. The velocity v and acceleration a of any other point A
in the body are given by the relative-velocity and relative-acceleration
expressions

[5/4]

[5/7]

which were developed in Arts. 5/4 and 5/6 for the plane motion of rigid
bodies. These expressions also hold in three dimensions, where the
three vectors for each of the equations are also coplanar.

In applying these relations to rigid-body motion in space, we note
from Fig. 7/10 that the distance remains constant. Thus, from an ob-
server’s position on x-y-z, the body appears to rotate about the point B
and point A appears to lie on a spherical surface with B as the center.
Consequently, we may view the general motion as a translation of the
body with the motion of B plus a rotation of the body about B.

The relative-motion terms represent the effect of the rotation about
B and are identical to the velocity and acceleration expressions dis-
cussed in the previous article for rotation of a rigid body about a fixed
point. Therefore, the relative-velocity and relative-acceleration equa-
tions may be written

(7/4)

where � and are the instantaneous angular velocity and angular accel-
eration of the body, respectively.

The selection of the reference point B is quite arbitrary in theory. In
practice, point B is chosen for convenience as some point in the body
whose motion is known in whole or in part. If point A is chosen as the
reference point, the relative-motion equations become

where rB/A � �rA/B. It should be clear that � and, thus, are the same
vectors for either formulation since the absolute angular motion of the
body is independent of the choice of reference point. When we come to

�̇

 aB � aA � �̇ � rB/A � � � (� � rB/A)

 vB � vA � � � rB/A

�̇

 aA � aB � �̇ � rA/B � � � (� � rA/B)

 vA � vB � � � rA/B

AB

 aA � aB � aA/B

 vA � vB � vA/B

Z

ω

rA

rB

rA/B

z

Y

A

B

O y

x

X

Figure 7/10

This time-lapse photo of a VTOL air-
craft shows a three-dimensional com-
bination of translation and rotation.
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Z

rA

rB

rA/B Y

A

B

O

X

ω

Ω (Axes)

  (Body)z

y

x

Figure 7/11

the kinetic equations for general motion, we will see that the mass cen-
ter of a body is frequently the most convenient reference point to
choose.

If points A and B in Fig. 7/10 represent the ends of a rigid control
link in a spatial mechanism where the end connections act as ball-and-
socket joints (as in Sample Problem 7/3), it is necessary to impose cer-
tain kinematic requirements. Clearly, any rotation of the link about its
own axis AB does not affect the action of the link. Thus, the angular ve-
locity �n whose vector is normal to the link describes its action. It is nec-
essary, therefore, that �n and rA/B be at right angles, and this condition
is satisfied if � 0.

Similarly, it is only the component �n* of the angular acceleration of
the link normal to AB which affects its action, so that � 0 must
also hold.

Rotating Reference Axes
A more general formulation of the motion of a rigid body in space

calls for the use of reference axes which rotate as well as translate. The
description of Fig. 7/10 is modified in Fig. 7/11 to show reference axes
whose origin is attached to the reference point B as before, but which
rotate with an absolute angular velocity � which may be different from
the absolute angular velocity � of the body.

We now make use of Eqs. 5/11, 5/12, 5/13, and 5/14 developed in Art.
5/7 for describing the plane motion of a rigid body with the use of rotat-
ing axes. The extension of these relations from two to three dimensions
is easily accomplished by merely including the z-component of the vec-
tors, and this step is left to the student to carry out. Replacing � in these
equations by the angular velocity � of our rotating x-y-z axes gives us

(7/5)

for the time derivatives of the rotating unit vectors attached to x-y-z.
The expression for the velocity and acceleration of point A become

(7/6)

where vrel � � � and arel � � � are, respectively, the
velocity and acceleration of point A measured relative to x-y-z by an ob-
server attached to x-y-z.

We again note that � is the angular velocity of the axes and may be
different from the angular velocity � of the body. Also we note that rA/B re-
mains constant in magnitude for points A and B fixed to a rigid body, but it
will change direction with respect to x-y-z when the angular velocity � of
the axes is different from the angular velocity � of the body. We observe

z̈kÿjẍiżkẏjẋi

 aA � aB � �̇ � rA/B � � � (� � rA/B) � 2� � vrel � arel

 vA � vB � � � rA/B � vrel

i̇  � � � i   j̇  � � � j   k̇ � � � k

�n � rA/B

�n � rA/B

*It may be shown that �n � if the angular velocity of the link about its own axis is not
changing. See the first author’s Dynamics, 2nd Edition, SI Version, 1975, John Wiley &
Sons, Art. 37.

�̇n
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further that, if x-y-z are rigidly attached to the body, � � � and vrel and
arel are both zero, which makes the equations identical to Eqs. 7/4.

In Art. 5/7 we also developed the relationship (Eq. 5/13) between
the time derivative of a vector V as measured in the fixed X-Y system
and the time derivative of V as measured relative to the rotating x-y sys-
tem. For our three-dimensional case, this relation becomes

(7/7)

When we apply this transformation to the relative-position vector rA/B �

rA � rB for our rigid body of Fig. 7/11, we obtain

or

which gives us the first of Eqs. 7/6.
Equations 7/6 are particularly useful when the reference axes are

attached to a moving body within which relative motion occurs.
Equation 7/7 may be recast as the vector operator

(7/7a)

where [ ] stands for any vector V expressible both in X-Y-Z and in x-y-
z. If we apply the operator to itself, we obtain the second time deriva-
tive, which becomes

(7/7b)

This exercise is left to the student. Note that the form of Eq. 7/7b is the
same as that of the second of Eqs. 7/6 expressed for aA/B � aA � aB.

 � 2� � �d[  ]
dt �

xyz

�d2[  ]
dt2 �

XYZ
 � �d2[  ]

dt2 �
xyz

 � �̇ � [  ] � � � (� � [  ])

�d[  ]
dt �

XYZ
 � �d[  ]

dt �
xyz

 � � � [  ]

vA � vB � vrel � � � rA/B

�drA

dt �XYZ
 � �drB

dt �XYZ
 � �drA/B

dt �
xyz

 � � � rA/B

�dV
dt �XYZ

 � �dV
dt �xyz

 � � � V

Robots welding automobile unit-
bodies.
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SAMPLE PROBLEM 7/3

Crank CB rotates about the horizontal axis with an angular velocity �1 � 6
rad/s which is constant for a short interval of motion which includes the position
shown. The link AB has a ball-and-socket fitting on each end and connects crank
DA with CB. For the instant shown, determine the angular velocity �2 of crank
DA and the angular velocity �n of link AB.

Solution. The relative-velocity relation, Eq. 7/4, will be solved first using
translating reference axes attached to B. The equation is

where �n is the angular velocity of link AB taken normal to AB. The velocities of
A and B are

Also rA/B � 50i � 100j � 100k mm. Substitution into the velocity relation gives

Expanding the determinant and equating the coefficients of the i, j, k terms give

These equations may be solved for �2, which becomes

Ans.

As they stand, the three equations incorporate the fact that �n is normal to vA/B,
but they cannot be solved until the requirement that �n be normal to rA/B is in-
cluded. Thus,

Combination with two of the three previous equations yields the solutions

Thus,

with

Ans.�n � 23�22 � 42 � 52 � 2�5 rad/s

�n � 23 

(�2i � 4j � 5k) rad/s

�nx
 � �4

3 rad/s   �ny
 � �8

3 rad/s   �nz
 � 10

3  rad/s

50�nx
 � 100�ny

 � 100�nz
 � 0[�n � rA/B � 0]

�2 � 6 rad/s

 0 �   2�nx
� �ny

 

 �2 � �2�nx
   � �nz

 �6 �     � �ny
 � �nz

vA � 50�2 j   vB � 100(6)i � 600i mm/s[v � r�]

vA � vB � �n � rA/B

D

A
z

x
y

C

ω    1

ω    2

50 mm

100 mm

100 mm

vA

vB

100 mm

B

�

�

�

Helpful Hints

� We select B as the reference point
since its motion can easily be deter-
mined from the given angular veloc-
ity �1 of CB.

� The angular velocity � of AB is
taken as a vector �n normal to AB
since any rotation of the link about
its own axis AB has no influence on
the behavior of the linkage.

� The relative-velocity equation may
be written as vA � vB � vA/B �

�n � rA/B, which requires that vA/B

be perpendicular to both �n and
rA/B. This equation alone does not
incorporate the additional require-
ment that �n be perpendicular to
rA/B. Thus, we must also satisfy

� 0.�n � rA/B
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SAMPLE PROBLEM 7/4

Determine the angular acceleration of crank AD in Sample Problem 7/3
for the conditions cited. Also find the angular acceleration of link AB.

Solution. The accelerations of the links may be found from the second of Eqs.
7/4, which may be written

where �n, as in Sample Problem 7/3, is the angular velocity of AB taken normal
to AB. The angular acceleration of AB is written as 

In terms of their normal and tangential components, the accelerations of A
and B are

Also

Substitution into the relative-acceleration equation and equating respective coef-
ficients of i, j, k give

Solution of these equations for gives

Ans.

The vector is normal to rA/B but is not normal to vA/B, as was the case
with �n.

which, when combined with the preceding relations for these same quantities,
gives

Thus,

Ans.

and

Ans.��̇n � � 4�22 � 42 � 32 � 4�29 rad/s2

�̇n � 4(�2i � 4j � 3k) rad/s2

�̇nx
 � �8 rad/s2   �̇ny

 � 16 rad/s2   �̇nz
 � �12 rad/s2

2�̇nx
 � 4�̇ny

 � 4�̇nz
 � 0[�̇n � rA/B � 0]

�̇n

�̇2 � �36 rad/s2

�̇2

 �32 �   2�̇nx
 � �̇ny

 �̇2 � 40 � �2�̇nx
   � �̇nz

 28 �    �̇ny
 � �̇nz

 � (50�̇nz
 � 100�̇nx

)j � (100�̇nx
 � 50�̇ny

)k

 �̇n � rA/B � (100�̇ny
 � 100�̇nz

)i

 �n � (�n � rA/B) � ��n 

2rA/B � �20(50i � 100j � 100k) mm/s2

 aB � 100�1 

2k � (0)i � 3600k mm/s2

 aA � 50�2 

2i � 50�̇2 j � 1800i � 50�̇2 j mm/s2

�̇n.

aA � aB � �̇n � rA/B � �n � (�n � rA/B)

�̇n

�̇2

�

� � The component of which is not
normal to vA/B gives rise to the
change in direction of vA/B.

�̇n

Helpful Hints

� If the link AB had an angular veloc-
ity component along AB, then a
change in both magnitude and direc-
tion of this component could occur
which would contribute to the actual
angular acceleration of the link as a
rigid body. However, since any rota-
tion about its own axis AB has no in-
fluence on the motion of the cranks
at C and D, we will concern our-
selves only with �̇n.
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532 Chapter 7 Introduction to Three-Dimensional Dynamics of Rigid Bodies

SAMPLE PROBLEM 7/5

The motor housing and its bracket rotate about the Z-axis at the constant
rate � � 3 rad/s. The motor shaft and disk have a constant angular velocity of
spin p � 8 rad/s with respect to the motor housing in the direction shown. If � is
constant at 30�, determine the velocity and acceleration of point A at the top of
the disk and the angular acceleration � of the disk.

Solution. The rotating reference axes x-y-z are attached to the motor housing,
and the rotating base for the motor has the momentary orientation shown with
respect to the fixed axes X-Y-Z. We will use both X-Y-Z components with unit
vectors I, J, K and x-y-z components with unit vectors i, j, k. The angular veloc-
ity of the x-y-z axes becomes � � �K � 3K rad/s.

Velocity. The velocity of A is given by the first of Eqs. 7/6

where

Thus,

Ans.

Acceleration. The acceleration of A is given by the second of Eqs. 7/6

where

Substituting into the expression for aA and collecting terms give us

and Ans.

Angular Acceleration. Since the precession is steady, we may use Eq. 7/3
to give us

Ans. � 0 � (�24 cos 30�)i � �20.8i rad/s2

 � � �̇ � � � � � 3K � (3K � 8j)

 aA � �(0.703)2 � (8.09)2 � 8.12 m/s2

aA � 0.703j � 8.09k m/s2

 � �7.68k m/s2

 arel � p � (p � rA/B) � 8j � [8j � (0.300j � 0.120k)]

 � 5.76(j cos 30� � k sin 30�) � 4.99j � 2.88k m/s2

 2� � vrel � 2(3K) � 0.960i � 5.76J

 � 3K � (�0.599i) � �1.557j � 0.899k m/s2

 � � (� � rA/B) � 3K � [3K � (0.300j � 0.120k)]

 �̇ � 0

 � 3.15(�j cos 30� � k sin 30�) � �2.73j � 1.575k m/s2

 aB � � � (� � rB) � 3K � (3K � 0.350J) � �3.15J

aA � aB � �̇ � rA/B � � � (� � rA/B) � 2� � vrel � arel

vA � �1.05i � 0.599i � 0.960i � �0.689i m/s

 vrel � p � rA/B � 8j � (0.300j � 0.120k) � 0.960i m/s

 � (�0.9 cos 30�)i � (0.36 sin 30�)i � �0.599i m/s

 � � rA/B � 3K � (0.300j � 0.120k)

 vB � � � rB � 3K � 0.350J � �1.05I � �1.05i m/s

vA � vB � � � rA/B � vrel

A

B

Z

X x

y

z

150
mm

120 mm

Ω

350mm

300
mm

Y

γp

�

�

�

� Note that K � i � J � j cos � �

k sin �, K � j � �i cos �, and 
K � k � i sin �.

Helpful Hints

� This choice for the reference axes
provides a simple description for the
motion of the disk relative to these
axes.
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Problem 7/31

7/32 If the angular rate p of the disk in Prob. 7/31 is in-
creasing at the rate of 6 rad/s per second and if � re-
mains constant at 4 rad/s, determine the angular
acceleration � of the disk at the instant when p
reaches 10 rad/s.

7/33 For the conditions of Prob. 7/31, determine the ve-
locity vA and acceleration aA of point A on the disk
as it passes the position shown. Reference axes x-y-z
are attached to the collar at O and its shaft OC.

7/34 An unmanned radar-radio controlled aircraft with
tilt-rotor propulsion is being designed for reconnais-
sance purposes. Vertical rise begins with � � 0 and is
followed by horizontal flight as � approaches 90�. If
the rotors turn at a constant speed N of 360 rev/min,
determine the angular acceleration � of rotor A for 
� � 30� if is constant at 0.2 rad/s.

Problem 7/34

θ

θ

x

z
y

A

N

N

�̇

Ω = 4 rad/s

 p = 10 rad/s

400
mm

300
mm

A

C

O

x
x0

z

y
PROBLEMS
Introductory Problems

7/29 The solid cylinder has a body cone with a semi-
vertex angle of 20�. Momentarily the angular veloc-
ity � has a magnitude of 30 rad/s and lies in the y-z
plane. Determine the rate p at which the cylinder is
spinning about its z-axis and write the vector expres-
sion for the velocity of B with respect to A.

Problem 7/29

7/30 The helicopter is nosing over at the constant rate 
q rad/s. If the rotor blades revolve at the constant
speed p rad/s, write the expression for the angular
acceleration � of the rotor. Take the y-axis to be
attached to the fuselage and pointing forward per-
pendicular to the rotor axis.

Problem 7/30

7/31 The collar at O and attached shaft OC rotate about
the fixed x0-axis at the constant rate � � 4 rad/s.
Simultaneously, the circular disk rotates about OC
at the constant rate p � 10 rad/s. Determine the
magnitude of the total angular velocity � of the disk
and find its angular acceleration �.

y

z

p

q

z

y

x

20°

0.4 m

ω

A

B
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7/35 End A of the rigid link is confined to move in the
�x-direction while end B is confined to move along
the z-axis. Determine the component �n normal to
AB of the angular velocity of the link as it passes the
position shown with vA � 3 ft/sec.

Problem 7/35

Representative Problems

7/36 The small motor M is pivoted about the x-axis through
O and gives its shaft OA a constant speed p rad/s in
the direction shown relative to its housing. The entire
unit is then set into rotation about the vertical Z-axis
at the constant angular velocity � rad/s. Simultane-
ously, the motor pivots about the x-axis at the con-
stant rate for an interval of motion. Determine the
angular acceleration � of the shaft OA in terms of �.
Express your result in terms of the unit vectors for the
rotating x-y-z axes.

�̇

3′

7′

2′

B

O

Ax

z

yvA

Problem 7/36

7/37 The flight simulator is mounted on six hydraulic ac-
tuators connected in pairs to their attachment points
on the underside of the simulator. By programming
the actions of the actuators, a variety of flight condi-
tions can be simulated with translational and rota-
tional displacements through a limited range of
motion. Axes x-y-z are attached to the simulator with
origin B at the center of the volume. For the instant
represented, B has a velocity and an acceleration in
the horizontal y-direction of 3.2 ft/sec and 4 ft/sec2,
respectively. Simultaneously, the angular velocities
and their time rates of change are �x � 1.4 rad/sec,

� 2 rad/sec2, �y � 1.2 rad/sec, � 3 rad/sec2, 
�z � � 0. For this instant determine the magni-
tudes of the velocity and acceleration of point A.

Problem 7/37

60″

B

z

y

ω y

ω x

xA

�̇z

�̇y�̇x

Ω β

y

A

R

M

Z

O

b
p

x

z
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Problem 7/39

7/40 The spacecraft is revolving about its z-axis, which
has a fixed space orientation, at the constant rate
p � rad/s. Simultaneously, its solar panels are
unfolding at the rate which is programmed to
vary with � as shown in the graph. Determine the
angular acceleration � of panel A an instant (a) be-
fore and an instant (b) after it reaches the position
� � 18�.

Problem 7/40

β

β

β

x

y

z

A

p

0
0

2

18
( ° )

( °/s)

90

β
·

�̇

1
10

x

Z

Y

y

vB

A

L

B

z

X

Y

0.6 m

X

7/38 The robot of Prob. 7/16 is shown again here, where
the coordinate system x-y-z with origin at O2 ro-
tates about the X-axis at the rate Nonrotating
axes X-Y-Z oriented as shown have their origin at
O1. If �2 � � 3 rad/s constant, �3 � 1.5 rad/s con-
stant, �1 � �5 � 0, � 1.2 m, and � 0.6 m,
determine the velocity of the center A of the jaws
for the instant when � � 60�. The angle � lies in the
y-z plane and is constant at 45�.

Problem 7/38

7/39 For the instant represented collar B is moving
along the fixed shaft in the X-direction with a con-
stant velocity vB � 4 m/s. Also at this instant X �

0.3 m and Y � 0.2 m. Calculate the velocity of collar A,
which moves along the fixed shaft parallel to the
Y-axis. Solve, first, by differentiating the relation
X 2 � Y 2 � Z2 � L2 with respect to time and, sec-
ond, by using the first of Eqs. 7/4 with translating
axes attached to B. Each clevis is free to rotate
about the axis of the rod.

θ

β

z

X

x

Y

Z

y

A
O2

O1

ω1

ω2

ω 3

ω 5

ω4

O2 AO1O2

�̇

�̇.
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7/41 The disk has a constant angular velocity p about its
z-axis, and the yoke A has a constant angular veloc-
ity �2 about its shaft as shown. Simultaneously, the
entire assembly revolves about the fixed X-axis with
a constant angular velocity �1. Determine the ex-
pression for the angular acceleration of the disk as
the yoke brings it into the vertical plane in the
position shown. Solve by picturing the vector
changes in the angular-velocity components.

Problem 7/41

7/42 The collar and clevis A are given a constant upward
velocity of 8 in./sec for an interval of motion and
cause the ball end of the bar to slide in the radial slot
in the rotating disk. Determine the angular accelera-
tion of the bar when the bar passes the position for
which z � 3 in. The disk turns at the constant rate
of 2 rad/sec.

Problem 7/42

z

z

y

x
Ω = 2 rad/sec

A

B

l = 5′′

p

z

Z

x

Y

X

A
y

ω2

ω1

7/43 The circular disk of 100-mm radius rotates about its
z-axis at the constant speed p � 240 rev/min, and
arm OCB rotates about the Y-axis at the constant
speed N � 30 rev/min. Determine the velocity v and
acceleration a of point A on the disk as it passes the
position shown. Use reference axes x-y-z attached to
the arm OCB.

Problem 7/43

7/44 Solve Prob. 7/43 by attaching the reference axes x-y-z
to the rotating disk.

7/45 For the conditions described in Prob. 7/36, deter-
mine the velocity v and acceleration a of the center
A of the ball tool in terms of �.

7/46 The circular disk is spinning about its own axis 
( y-axis) at the constant rate p � 10� rad/s. Simulta-
neously, the frame is rotating about the Z-axis at the
constant rate � � 4� rad/s. Calculate the angular
acceleration � of the disk and the acceleration of
point A at the top of the disk. Axes x-y-z are attached
to the frame, which has the momentary orientation
shown with respect to the fixed axes X-Y-Z.

Problem 7/46
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Problem 7/48

7/49 For the conditions specified with Sample Problem
7/2, except that � is increasing at the steady rate of
3� rad/sec, determine the angular velocity � and the
angular acceleration � of the rotor when the position
� � 30� is passed. (Suggestion: Apply Eq. 7/7 to the
vector � to find �. Note that � in Sample Problem
7/2 is no longer the complete angular velocity of the
axes.)

7/50 The wheel of radius r is free to rotate about the bent
axle CO which turns about the vertical axis at the
constant rate p rad/s. If the wheel rolls without slip-
ping on the horizontal circle of radius R, determine
the expressions for the angular velocity � and angu-
lar acceleration � of the wheel. The x-axis is always
horizontal.

Problem 7/50

Y

y

A

x X

z

Z p
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b

2ω

1ω

7/47 The center O of the spacecraft is moving through
space with a constant velocity. During the period of
motion prior to stabilization, the spacecraft has a
constant rotational rate � � rad/sec about its 
z-axis. The x-y-z axes are attached to the body of the
craft, and the solar panels rotate about the y-axis at
the constant rate � rad/sec with respect to the
spacecraft. If � is the absolute angular velocity of
the solar panels, determine Also find the accelera-
tion of point A when � � 30�.

Problem 7/47

7/48 The thin circular disk of mass m and radius r is ro-
tating about its z-axis with a constant angular veloc-
ity p, and the yoke in which it is mounted rotates
about the X-axis through OB with a constant angu-
lar velocity �1. Simultaneously, the entire assembly
rotates about the fixed Y-axis through O with a con-
stant angular velocity �2. Determine the velocity v
and acceleration a of point A on the rim of the disk
as it passes the position shown where the x-y plane
of the disk coincides with the X-Y plane. The x-y-z
axes are attached to the yoke.
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7/51 The gyro rotor shown is spinning at the constant
rate of 100 rev/min relative to the x-y-z axes in the
direction indicated. If the angle � between the gim-
bal ring and the horizontal X-Y plane is made to in-
crease at the constant rate of 4 rad/s and if the unit
is forced to precess about the vertical at the constant
rate N � 20 rev/min, calculate the magnitude of the
angular acceleration � of the rotor when � � 30�.
Solve by using Eq. 7/7 applied to the angular velocity
of the rotor.

Problem 7/51

7/52 For a short interval of motion, collar A moves
along its fixed shaft with a velocity vA � 2 m/s in the
Y-direction. Collar B, in turn, slides along its fixed
vertical shaft. Link AB is 700 mm in length and
can turn within the clevis at A to allow for the an-
gular change between the clevises. For the instant
when A passes the position where y � 200 mm, de-
termine the velocity of collar B using nonrotating
axes attached to B and find the component �n, nor-
mal to AB, of the angular velocity of the link. Also
solve for vB by differentiating the appropriate rela-
tion x2 � y2 � z2 � l2.
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X

y
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Problem 7/52
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7/7 Angular Momentum
The force equation for a mass system, rigid or nonrigid, Eq. 4/1 or

4/6, is the generalization of Newton’s second law for the motion of a par-
ticle and should require no further explanation. The moment equation
for three-dimensional motion, however, is not nearly as simple as the
third of Eqs. 6/1 for plane motion since the change of angular momen-
tum has a number of additional components which are absent in plane
motion.

We now consider a rigid body moving with any general motion in
space, Fig. 7/12a. Axes x-y-z are attached to the body with origin at the
mass center G. Thus, the angular velocity � of the body becomes the an-
gular velocity of the x-y-z axes as observed from the fixed reference axes
X-Y-Z. The absolute angular momentum HG of the body about its mass
center G is the sum of the moments about G of the linear momenta of all
elements of the body and was expressed in Art. 4/4 as HG � Σ(�i � mivi),
where vi is the absolute velocity of the mass element mi.

But for the rigid body, vi � � � � �i, where � � �i is the relative
velocity of mi with respect to G as seen from nonrotating axes. Thus, we
may write

where we have factored out from the first summation terms by revers-
ing the order of the cross product and changing the sign. With the origin
at the mass center G, the first term in HG is zero since Σmi �i � � 0.
The second term with the substitution of dm for mi and � for �i gives

(7/8)

Before expanding the integrand of Eq. 7/8, we consider also the case
of a rigid body rotating about a fixed point O, Fig. 7/12b. The x-y-z axes
are attached to the body, and both body and axes have an angular veloc-
ity �. The angular momentum about O was expressed in Art. 4/4 and is
HO � Σ(ri � mivi), where, for the rigid body, vi � � � ri. Thus, with the
substitution of dm for mi and r for ri, the angular momentum is

(7/9)

Moments and Products of Inertia
We observe now that for the two cases of Figs. 7/12a and 7/12b, the

position vectors �i and ri are given by the same expression xi � yj � zk.
Thus, Eqs. 7/8 and 7/9 are identical in form, and the symbol H will be
used here for either case. We now carry out the expansion of the inte-
grand in the two expressions for angular momentum, recognizing that
the components of � are invariant with respect to the integrals over the
body and thus become constant multipliers of the integrals. The cross-product

HO � �  [r � (� � r)] dm

HG � �  [� � (� � �)] dm

m�

v

HG � �v � Σmi �i � Σ[ �i � mi(� � �i)]

v

SECTION B KINETICS

x

G

Y

X

Z

y

v–

mi

z

  iρ 

ω

x

y
mi

z

ω

ri

Y

X

O

Z

(a)

(b)

Figure 7/12

c07.qxd  2/10/12  2:29 PM  Page 539



expansion applied to the triple vector product gives, upon collection of
terms,

Now let

(7/10)

The quantities Ixx, Iyy, Izz are called the moments of inertia of the
body about the respective axes, and Ixy, Ixz, Iyz are the products of inertia
with respect to the coordinate axes. These quantities describe the man-
ner in which the mass of a rigid body is distributed with respect to the
chosen axes. The calculation of moments and products of inertia is ex-
plained fully in Appendix B. The double subscripts for the moments and
products of inertia preserve a symmetry of notation which has special
meaning in their description by tensor notation.*

Observe that Ixy � Iyx, Ixz � Izx, and Iyz � Izy. With the substitutions
of Eqs. 7/10, the expression for H becomes

(7/11)

and the components of H are clearly

(7/12)

Equation 7/11 is the general expression for the angular momentum ei-
ther about the mass center G or about a fixed point O for a rigid body
rotating with an instantaneous angular velocity �.

Remember that in each of the two cases represented, the reference
axes x-y-z are attached to the rigid body. This attachment makes the

 Hz � �Izx�x  � Izy�y  � Izz�z

 Hy � �Iyx�x  � Iyy�y  � Iyz�z

 Hx �  Ixx�x  � Ixy�y  � Ixz�z

 �(�Izx�x � Izy�y � Izz�z)k

 �(�Iyx�x � Iyy�y � Iyz�z)j

 H �  (  Ixx�x � Ixy�y � Ixz�z)i

 Izz � �  (x2 � y2) dm  Iyz � �  yz dm

 Iyy � �  (z2 � x2) dm    Ixz � �  xz dm

 Ixx � �  (y2 � z2) dm  Ixy � �  xy dm

 �k[  �zx�x    �zy�y � (x2 � y2)�z] dm

 �j[  �yx�x � (z2 � x2)�y    �yz�z] dm

 dH � i[(y2 � z2)�x    �xy�y    �xz�z] dm

540 Chapter 7 Introduction to Three-Dimensional Dynamics of Rigid Bodies

*See, for example, the first author’s Dynamics, 2nd Edition, SI Version, 1975, John Wiley &
Sons, Art. 41.
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moment-of-inertia integrals and the product-of-inertia integrals of Eqs.
7/10 invariant with time. If the x-y-z axes were to rotate with respect to
an irregular body, then these inertia integrals would be functions of the
time, which would introduce an undesirable complexity into the angular-
momentum relations. An important exception occurs when a rigid body
is spinning about an axis of symmetry, in which case, the inertia inte-
grals are not affected by the angular position of the body about its spin
axis. Thus, for a body rotating about an axis of symmetry, it is frequently
convenient to choose one axis of the reference system to coincide with
the axis of rotation and allow the other two axes not to turn with the
body. In addition to the momentum components due to the angular ve-
locity � of the reference axes, then, an added angular-momentum com-
ponent along the spin axis due to the relative spin about the axis would
have to be accounted for.

Principal Axes
The array of moments and products of inertia

which appear in Eq. 7/12 is called the inertia matrix or inertia tensor. As
we change the orientation of the axes relative to the body, the moments
and products of inertia will also change in value. It can be shown* that
there is one unique orientation of axes x-y-z for a given origin for which
the products of inertia vanish and the moments of inertia Ixx, Iyy, Izz take
on stationary values. For this orientation, the inertia matrix takes the
form

and is said to be diagonalized. The axes x-y-z for which the products of
inertia vanish are called the principal axes of inertia, and Ixx, Iyy, and Izz

are called the principal moments of inertia. The principal moments of
inertia for a given origin represent the maximum, the minimum, and an
intermediate value of the moments of inertia.

If the coordinate axes coincide with the principal axes of inertia, Eq.
7/11 for the angular momentum about the mass center or about a fixed
point becomes

(7/13)

It is always possible to locate the principal axes of inertia for a gen-
eral three-dimensional rigid body. Thus, we can express its angular mo-
mentum by Eq. 7/13, although it may not always be convenient to do so

H � Ixx�xi � Iyy�y j � Izz�zk

*See, for example, the first author’s Dynamics, 2nd Edition, SI Version, 1975, John Wiley &
Sons, Art. 41.

c07.qxd  2/10/12  2:29 PM  Page 541



for geometric reasons. Except when the body rotates about one of the
principal axes of inertia or when Ixx � Iyy � Izz, the vectors H and � have
different directions.

Transfer Principle for Angular Momentum
The momentum properties of a rigid body may be represented by

the resultant linear-momentum vector G � through the mass center
and the resultant angular-momentum vector HG about the mass center,
as shown in Fig. 7/13. Although HG has the properties of a free vector,
we represent it through G for convenience.

These vectors have properties analogous to those of a force and a
couple. Thus, the angular momentum about any point P equals the free
vector HG plus the moment of the linear-momentum vector G about P.
Therefore, we may write

(7/14)

This relation, which was derived previously in Chapter 4 as Eq. 4/10,
also applies to a fixed point O on the body or body extended, where O
merely replaces P. Equation 7/14 constitutes a transfer theorem for an-
gular momentum.

7/8 Kinetic Energy
In Art. 4/3 on the dynamics of systems of particles, we developed the

expression for the kinetic energy T of any general system of mass, rigid
or nonrigid, and obtained the result

[4/4]

where is the velocity of the mass center and �i is the position vector of
a representative element of mass mi with respect to the mass center. We
identified the first term as the kinetic energy due to the translation of
the system and the second term as the kinetic energy associated with
the motion relative to the mass center. The translational term may be
written alternatively as

where is the velocity of the mass center and G is the linear momen-
tum of the body.

For a rigid body, the relative term becomes the kinetic energy due
to rotation about the mass center. Because is the velocity of the rep-
resentative particle with respect to the mass center, then for the rigid
body we may write it as � � � �i, where � is the angular velocity of
the body. With this substitution, the relative term in the kinetic energy
expression becomes

Σ 

1
2 mi��̇ i�2 � Σ 

1
2 mi(� � �i) � (� � �i)

�̇ i

�̇ i

vṙ

1
2 mv 

2 � 12 mṙ � ṙ � 12 v � G

v

T � 12 mv 

2 � Σ 

1
2 mi��̇ i�2

HP � HG � r � G

mv
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If we use the fact that the dot and the cross may be interchanged in
the triple scalar product, that is, P � � R, we may write

Because � is the same factor in all terms of the summation, it may be
factored out to give

where HG is the same as the integral expressed by Eq. 7/8. Thus, the
general expression for the kinetic energy of a rigid body moving with
mass-center velocity and angular velocity � is

(7/15)

Expansion of this vector equation by substitution of the expression
for HG written from Eq. 7/11 yields

(7/16)

If the axes coincide with the principal axes of inertia, the kinetic energy
is merely

(7/17)

When a rigid body is pivoted about a fixed point O or when there is
a point O in the body which momentarily has zero velocity, the kinetic
energy is T � This expression reduces to

(7/18)

where HO is the angular momentum about O, as may be seen by replac-
ing �i in the previous derivation by ri, the position vector from O. Equa-
tions 7/15 and 7/18 are the three-dimensional counterparts of Eqs. 6/9
and 6/8 for plane motion.

T � 12 � � HO

Σ 

1
2miṙi � ṙi.

T � 12 

mv 

2 � 12 

(Ixx�x 

2 � Iyy�y 

2 � Izz�z 

2)

 �(Ixy�x�y � Ixz�x�z � Iyz�y�z)

 T � 12 mv 

2 � 12 (Ixx�x 

2 � Iyy�y 

2 � Izz�z 

2)

T � 12 v � G � 12 � � HG

v

Σ 

1
2 mi��̇ i�2 � 12 � � Σ�i � mi(� � �i) � 12 � � HG

(� � �i) � (� � �i) � � � �i � (� � �i)

Q � R � P � Q

Portions of the landing gear for 
a large aircraft undergo three-
dimensional motion during retraction
and deployment.
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SAMPLE PROBLEM 7/6

The bent plate has a mass of 70 kg per square meter of surface area and re-
volves about the z-axis at the rate � � 30 rad/s. Determine (a) the angular mo-
mentum H of the plate about point O and (b) the kinetic energy T of the plate.
Neglect the mass of the hub and the thickness of the plate compared with its sur-
face dimensions.

Solution. The moments and products of inertia are written with the aid of
Eqs. B/3 and B/9 in Appendix B by transfer from the parallel centroidal axes for
each part. First, the masses of the parts are mA � (0.100)(0.125)(70) � 0.875 kg
and mB � (0.075)(0.150)(70) � 0.788 kg.

Part A

Part B

The sum of the respective inertia terms gives for the two plates together

(a) The angular momentum of the body is given by Eq. 7/11, where �z � 30
rad/s and �x and �y are zero. Thus,

Ans.

(b) The kinetic energy from Eq. 7/18 becomes

Ans. � 8.25 J

 T � 12 � � HO � 12(30k) � 30(�0.002 21i � 0.010 12j � 0.018 34k)

HO � 30(�0.002 21i � 0.010 12j � 0.018 34k) N � m � s

 Izz � 0.018 34 kg � m2    Iyz � 0.010 12 kg � m2

 Iyy � 0.010 30 kg � m2  Ixz � 0.002 21 kg � m2

 Ixx � 0.0257 kg � m2  Ixy � 0.003 69 kg � m2

 Iyz � 0 � 0.788(0.125)(0.075) � 0.007 38 kg � m2[Iyz � Iyz � mdydz]

 Ixz � 0 � 0.788(0.0375)(0.075) � 0.002 21 kg � m2[Ixz � Ixz � mdxdz]

 Ixy � 0 � 0.788(0.0375)(0.125) � 0.003 69 kg � m2[Ixy � Ixy � mdxdy]

 � 0.013 78 kg � m2

 Izz � 0.788
12

 (0.075)2 � 0.788[(0.125)2 � (0.0375)2][Izz � Izz � md2]

 � 0.788[(0.0375)2 � (0.075)2] � 0.007 38 kg � m2

 Iyy � 0.788
12

 [(0.075)2 � (0.150)2][Iyy � Iyy � md2]

 � 0.018 21 kg � m2

 Ixx � 0.788
12

 (0.150)2 � 0.788[(0.125)2 � (0.075)2][Ixx � Ixx � md2]

[Iyz � Iyz � mdydz]   Iyz � 0 � 0.875(0.0625)(0.050) � 0.002 73 kg � m2

�Ixy � �  xy dm,   Ixz � �  xz dm�   Ixy � 0   Ixz � 0

 Izz � 0.875
3

 (0.125)2 � 0.004 56 kg � m2[Izz � 13ml2]

 Iyy � 0.875
3

 (0.100)2 � 0.002 92 kg � m2[Iyy � 13ml2]

 � 0.875[(0.050)2 � (0.0625)2] � 0.007 47 kg � m2

 Ixx � 0.875
12

 [(0.100)2 � (0.125)2][Ixx � Ixx � md2]
125 mm

150 mm

75 mm
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Helpful Hints

� The parallel-axis theorems for trans-
ferring moments and products of in-
ertia from centroidal axes to parallel
axes are explained in Appendix B and
are most useful relations.

� Recall that the units of angular mo-
mentum may also be written in the
base units as kg � m2/s.
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7/55 The aircraft landing gear viewed from the front is
being retracted immediately after takeoff, and the
wheel is spinning at the rate corresponding to the
takeoff speed of 200 km/h. The 45-kg wheel has a ra-
dius of gyration about its z-axis of 370 mm. Neglect
the thickness of the wheel and calculate the angular
momentum of the wheel about G and about A for the
position where � is increasing at the rate of 30� per
second.

Problem 7/55

7/56 The bent rod has a mass 	 per unit length and ro-
tates about the z-axis with an angular velocity �.
Determine the angular momentum HO of the rod
about the fixed origin O of the axes, which are at-
tached to the rod. Also find the kinetic energy T of
the rod.

Problem 7/56

b
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920
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x

z

A

G θ

PROBLEMS
Introductory Problems

7/53 The three small spheres, each of mass m, are rigidly
mounted to the horizontal shaft which rotates with
the angular velocity as shown. Neglect the radius
of each sphere compared with the other dimensions
and write expressions for the magnitudes of their
linear momentum G and their angular momentum

about the origin O of the coordinates.

Problem 7/53

7/54 The spheres of Prob. 7/53 are replaced by three rods,
each of mass m and length l, mounted at their cen-
ters to the shaft, which rotates with the angular
velocity as shown. The axes of the rods are, respec-
tively, in the x-, y-, and z-directions, and their diame-
ters are negligible compared with the other
dimensions. Determine the angular momentum 
of the three rods with respect to the coordinate
origin O.

Problem 7/54
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7/57 Use the results of Prob. 7/56 and determine the an-
gular momentum HG of the bent rod of that problem
about its mass center G using the given reference
axes.

7/58 The slender rod of mass m and length l rotates
about the y-axis as the element of a right-circular
cone. If the angular velocity about the y-axis is �,
determine the expression for the angular momen-
tum of the rod with respect to the x-y-z axes for the
particular position shown.

Problem 7/58

Representative Problems

7/59 The solid half-circular cylinder of mass m revolves
about the z-axis with an angular velocity � as shown.
Determine its angular momentum H with respect to
the x-y-z axes.

Problem 7/59

7/60 The solid circular cylinder of mass m, radius r, and
length b revolves about its geometric axis at an an-
gular rate p rad/s. Simultaneously, the bracket and
attached shaft revolve about the x-axis at the rate 

rad/s. Write the expression for the angular mo-
mentun of the cylinder about O with reference
axes as shown.

HO

�

ω

O

yz

x

b

c

r

ωθ

y

z

l

O

x

Problem 7/60

7/61 The elements of a reaction-wheel attitude-control
system for a spacecraft are shown in the figure.
Point G is the center of mass for the system of the
spacecraft and wheels, and x, y, z are principal axes
for the system. Each wheel has a mass m and a mo-
ment of inertia I about its own axis and spins with a
relative angular velocity p in the direction indicated.
The center of each wheel, which may be treated as a
thin disk, is a distance b from G. If the spacecraft
has angular velocity components �x, �y, and �z,
determine the angular momentum HG of the three
wheels as a unit.

Problem 7/61
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7/64 The rectangular plate, with a mass of 3 kg and a uni-
form small thickness, is welded at the 45� angle to
the vertical shaft, which rotates with the angular
velocity of 20� rad/s. Determine the angular mo-
mentum H of the plate about O and find the kinetic
energy of the plate.

Problem 7/64

7/65 The circular disk of mass m and radius r is mounted
on the vertical shaft with an angle � between its
plane and the plane of rotation of the shaft. Deter-
mine an expression for the angular momentum H of
the disk about O. Find the angle � which the angular
momentum H makes with the shaft if � � 10�.

Problem 7/65
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7/62 The gyro rotor is spinning at the constant rate p �

100 rev/min relative to the x-y-z axes in the direction
indicated. If the angle � between the gimbal ring and
horizontal X-Y plane is made to increase at the rate of
4 rad/sec and if the unit is forced to precess about the
vertical at the constant rate N � 20 rev/min, calculate
the angular momentum HO of the rotor when � � 30�.
The axial and transverse moments of inertia are Izz �

5(10�3) lb-ft-sec2 and Ixx � Iyy � 2.5(10�3) lb-ft-sec2.

Problem 7/62

7/63 The slender steel rod AB weighs 6.20 lb and is secured
to the rotating shaft by the rod OG and its fittings at
O and G. The angle � remains constant at 30�, and
the entire rigid assembly rotates about the z-axis at
the steady rate N � 600 rev/min. Calculate the angu-
lar momentum HO of AB and its kinetic energy T.

Problem 7/63
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7/66 The right-circular cone of height h and base radius r
spins about its axis of symmetry with an angular
rate p. Simultaneously, the entire cone revolves
about the x-axis with angular rate �. Determine the
angular momentum HO of the cone about the origin
O of the x-y-z axes and the kinetic energy T for the
position shown. The mass of the cone is m.

Problem 7/66

7/67 Each of the slender rods of length l and mass m is
welded to the circular disk which rotates about the
vertical z-axis with an angular velocity �. Each rod
makes an angle � with the vertical and lies in a
plane parallel to the y-z plane. Determine an expres-
sion for the angular momentum HO of the two rods
about the origin O of the axes.

Problem 7/66

b

b

l

l

O

y
x

z

β

β

ω

z

h

x y

p

O

r

Ω

7/68 The spacecraft shown has a mass m with mass center
G. Its radius of gyration about its z-axis of rotational
symmetry is k and that about either the x- or y-axis is
k�. In space, the spacecraft spins within its x-y-z
reference frame at the rate p � Simultaneously, a
point C on the z-axis moves in a circle about the z0-axis
with a frequency ƒ (rotations per unit time). The 
z0-axis has a constant direction in space. Determine
the angular momentum HG of the spacecraft relative
to the axes designated. Note that the x-axis always
lies in the z-z0 plane and that the y-axis is therefore
normal to z0.

Problem 7/68

7/69 The uniform circular disk of Prob. 7/48 with the
three components of angular velocity is shown again
here. Determine the kinetic energy T and the angu-
lar momentum HO with respect to O of the disk for
the instant represented, when the x-y plane coin-
cides with the X-Y plane. The mass of the disk is m.

Problem 7/69

Y

y

A

x X
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Problem 7/71

7/72 In a test of the solar panels for a spacecraft, the
model shown is rotated about the vertical axis at the
angular rate �. If the mass per unit area of panel is
	, write the expression for the angular momentum
HO of the assembly about the axes shown in terms of �.
Also determine the maximum, minimum, and inter-
mediate values of the moment of inertia about the
axes through O.

Problem 7/72

θ

θ
ω

x

a a b

b

O

y

b

b

z

c

c

b

b

c

m

yx

m O

z

c

β
ωω

r

7/70 The 4-in.-radius wheel weighs 6 lb and turns about
its y�-axis with an angular velocity p � 40� rad/sec
in the direction shown. Simultaneously, the fork ro-
tates about its x-axis shaft with an angular velocity
� � 10� rad/sec as indicated. Calculate the angular
momentum of the wheel about its center O�. Also
compute the kinetic energy of the wheel.

Problem 7/70

7/71 The assembly, consisting of the solid sphere of mass
m and the uniform rod of length 2c and equal mass
m, revolves about the vertical z-axis with an angular
velocity �. The rod of length 2c has a diameter which
is small compared with its length and is perpendicu-
lar to the horizontal rod to which it is welded with
the inclination � shown. Determine the combined an-
gular momentum HO of the sphere and inclined rod.

O

O′

y

y ′

z′

z

x

x ′

10″

4″

p = 40    rad/secπ

 = 10    rad/secπω
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7/9 Momentum and Energy Equations of Motion
With the description of angular momentum, inertial properties, and

kinetic energy of a rigid body established in the previous two articles,
we are ready to apply the general momentum and energy equations of
motion.

Momentum Equations
In Art. 4/4 of Chapter 4, we established the general linear- and

angular-momentum equations for a system of constant mass. These
equations are

[4/6]

[4/7] or [4/9]

The general moment relation, Eq. 4/7 or 4/9, is expressed here by the
single equation ΣM � where the terms are taken either about a fixed
point O or about the mass center G. In the derivation of the moment
principle, the derivative of H was taken with respect to an absolute co-
ordinate system. When H is expressed in terms of components measured
relative to a moving coordinate system x-y-z which has an angular veloc-
ity �, then by Eq. 7/7 the moment relation becomes

The terms in parentheses represent that part of due to the change in
magnitude of the components of H, and the cross-product term repre-
sents that part due to the changes in direction of the components of H.
Expansion of the cross product and rearrangement of terms give

(7/19)

Equation 7/19 is the most general form of the moment equation
about a fixed point O or about the mass center G. The �’s are the angu-
lar velocity components of rotation of the reference axes, and the H-
components in the case of a rigid body are as defined in Eq. 7/12, where
the �’s are the components of the angular velocity of the body.

We now apply Eq. 7/19 to a rigid body where the coordinate axes are
attached to the body. Under these conditions, when expressed in the x-y-z
coordinates, the moments and products of inertia are invariant with time,

 � (Ḣz � Hx�y � Hy�x)k

 � (Ḣy � Hz�x � Hx�z)j

 ΣM � (Ḣx � Hy�z � Hz�y)i

Ḣ

 � (Ḣxi � Ḣy j � Ḣzk) � � � H

 ΣM � �dH
dt �xyz

 � � � H

Ḣ,

 ΣM � Ḣ

 ΣF � Ġ

c07.qxd  2/10/12  6:36 PM  Page 550



Article 7/9 Momentum and Energy Equations of Motion 551

and � � �. Thus, for axes attached to the body, the three scalar compo-
nents of Eq. 7/19 become

(7/20)

Equations 7/20 are the general moment equations for rigid-body motion
with axes attached to the body. They hold with respect to axes through a
fixed point O or through the mass center G.

 ΣMz � Ḣz � Hx�y � Hy�x

 ΣMy � Ḣy � Hz�x � Hx�z

 ΣMx � Ḣx � Hy�z � Hz�y

*Named after Leonhard Euler (1707–1783), a Swiss mathematician.

KEY CONCEPTS
In Art. 7/7 it was mentioned that, in general, for any origin fixed to

a rigid body, there are three principal axes of inertia with respect to
which the products of inertia vanish. If the reference axes coincide with
the principal axes of inertia with origin at the mass center G or at a
point O fixed to the body and fixed in space, the factors Ixy, Iyz, Ixz will be
zero, and Eqs. 7/20 become

(7/21)

These relations, known as Euler’s equations,* are extremely useful in
the study of rigid-body motion.

Energy Equations
The resultant of all external forces acting on a rigid body may be re-

placed by the resultant force ΣF acting through the mass center and a
resultant couple ΣMG acting about the mass center. Work is done by the
resultant force and the resultant couple at the respective rates 
and where is the linear velocity of the mass center and � is
the angular velocity of the body. Integration over the time from condi-
tion 1 to condition 2 gives the total work done during the time interval.
Equating the works done to the respective changes in kinetic energy as
expressed in Eq. 7/15 gives

(7/22)

These equations express the change in translational kinetic energy and
the change in rotational kinetic energy, respectively, for the interval
during which ΣF or ΣMG acts, and the sum of the two expressions
equals �T.

vΣMG � �,
ΣF � v

 ΣMz � Izz�̇z � (Ixx � Iyy)�x�y

 ΣMy � Iyy�̇y � (Izz � Ixx)�z�x

 ΣMx � Ixx�̇x � (Iyy � Izz)�y�z
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552 Chapter 7 Introduction to Three-Dimensional Dynamics of Rigid Bodies

The work-energy relationship, developed in Chapter 4 for a general
system of particles and given by

[4/3]

was used in Chapter 6 for rigid bodies in plane motion. The equation
is equally applicable to rigid-body motion in three dimensions. As we
have seen previously, the work-energy approach is of great advantage
when we analyze the initial and final end-point conditions of motion.
Here the work done during the interval by all active forces exter-
nal to the body or system is equated to the sum of the corresponding
changes in kinetic energy �T and potential energy �V. The potential-
energy change is determined in the usual way, as described previously
in Art. 3/7.

We will limit our application of the equations developed in this arti-
cle to two problems of special interest, parallel-plane motion and gyro-
scopic motion, discussed in the next two articles.

7/10 Parallel-Plane Motion
When all particles of a rigid body move in planes which are parallel

to a fixed plane, the body has a general form of plane motion, as de-
scribed in Art. 7/4 and pictured in Fig. 7/3. Every line in such a body
which is normal to the fixed plane remains parallel to itself at all times.
We take the mass center G as the origin of coordinates x-y-z which are
attached to the body, with the x-y plane coinciding with the plane of mo-
tion P. The components of the angular velocity of both the body and the
attached axes become �x � �y � 0, �z � 0. For this case, the angular-
momentum components from Eq. 7/12 become

and the moment relations of Eqs. 7/20 reduce to

(7/23)

We see that the third moment equation is equivalent to the second of
Eqs. 6/1, where the z-axis passes through the mass center, or to Eq. 6/4
if the z-axis passes through a fixed point O.

Equations 7/23 hold for an origin of coordinates at the mass center,
as shown in Fig. 7/3, or for any origin on a fixed axis of rotation. The
three independent force equations of motion which also apply to parallel-
plane motion are clearly

Equations 7/23 find special use in describing the effect of dynamic
imbalance in rotating machinery and in rolling bodies.

ΣFx � max   ΣFy � may   ΣFz � 0

ΣMz � Izz�̇z

 ΣMy � �Iyz�̇z � Ixz�z 

2

ΣMx � �Ixz�̇z � Iyz�z 

2

Hx � �Ixz�z   Hy � �Iyz�z   Hz � Izz�z

U�1-2

U�1-2 � �T � �V
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SAMPLE PROBLEM 7/7

The two circular disks, each of mass m1, are connected by the curved bar
bent into quarter-circular arcs and welded to the disks. The bar has a mass m2.
The total mass of the assembly is m � 2m1 � m2. If the disks roll without slip-
ping on a horizontal plane with a constant velocity v of the disk centers, deter-
mine the value of the friction force under each disk at the instant represented
when the plane of the curved bar is horizontal.

Solution. The motion is identified as parallel-plane motion since the planes of
motion of all parts of the system are parallel. The free-body diagram shows the
normal forces and friction forces at A and B and the total weight mg acting
through the mass center G, which we take as the origin of coordinates which ro-
tate with the body.

We now apply Eqs. 7/23, where Iyz � 0 and � 0. The moment equation
about the y-axis requires determination of Ixz. From the diagram showing the
geometry of the curved rod and with 	 standing for the mass of the rod per unit
length, we have

Evaluating the integrals gives

The second of Eqs. 7/23 with �z � v/r and � 0 gives

But with � v constant, � 0 so that

Thus,

Ans.

We also note for the given position that with Iyz � 0 and � 0, the moment
equation about the x-axis gives

�NAr � NBr � 0   NA � NB � mg/2[ΣMx � 0]

�̇z

FA � FB � 
m2v2

2�r

FA � FB � 0   FA � FB[ΣFx � 0]

axv

 FA � FB � 
m2v2

�r

 FAr � FBr � ��� 

m2r2

� � v
2

r2
[ΣMy � �Ixz�z 

2]

�̇z

Ixz � �	r3/2 � 	r3/2 � �	r3 � � 

m2r2

�

 � ��/2

0
 (�r sin �)(r � r cos �)	r d�

 Ixz � ��/2

0
 (r sin �)(�r � r cos �)	r d��Ixy � �  xz dm�

�̇z

�

�

B

r

v

y

G

x

z
r

A

r

r

θ

θ

r

x

z

dm

G

r

y

B

NB FA NA

FB

z

Amg

G

x

Helpful Hints

� We must be very careful to observe
the correct sign for each of the coor-
dinates of the mass element dm
which make up the product xz.

� When the plane of the curved bar is
not horizontal, the normal forces
under the disks are no longer equal.
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7/75 The uniform slender bar of length l and mass m is
welded to the shaft, which rotates in bearings A and
B with a constant angular velocity �. Determine the
expression for the force supported by the bearing at
B as a function of �. Consider only the force due to
the dynamic imbalance and assume that the bear-
ings can support radial forces only.

Problem 7/75

7/76 If a torque M � Mk is applied to the shaft in Prob.
7/75, determine the x- and y-components of the force
supported by the bearing B as the bar and shaft
start from rest in the position shown. Neglect the
mass of the shaft and consider dynamic forces only.

7/77 The paint stirrer shown in the figure is made from a
rod of length 7b and mass per unit length. Before
immersion in the paint, the stirrer is rotating freely
at a constant high angular velocity about its z-axis.
Determine the bending moment M in the rod at the
base O of the chuck.

Problem 7/77

b

bb

b

b

y

ω

z

x
O

�

	

c

A

O
B

θ

ω

b

l

y

x

z

PROBLEMS
Introductory Problems

7/73 Each of the two rods of mass m is welded to the face
of the disk, which rotates about the vertical axis
with a constant angular velocity �. Determine the
bending moment M acting on each rod at its base.

Problem 7/73

7/74 The slender shaft carries two offset particles, each of
mass m, and rotates about the z-axis with the con-
stant angular rate � as indicated. Determine the 
x- and y-components of the bearing reactions at A
and B due to the dynamic imbalance of the shaft for
the position shown.

Problem 7/74

RR m
m

B

ω

L—
3

L—
3

L—
3 z

x

A

y

O

ω

l

l

b
b
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7/78 The 6-kg circular disk and attached shaft rotate at a
constant speed � � 10 000 rev/min. If the center of
mass of the disk is 0.05 mm off center, determine the
magnitudes of the horizontal forces A and B sup-
ported by the bearings because of the rotational im-
balance.

Problem 7/78

Representative Problems

7/79 Determine the bending moment M at the tangency
point A in the semicircular rod of radius r and mass
m as it rotates about the tangent axis with a con-
stant and large angular velocity �. Neglect the mo-
ment mgr produced by the weight of the rod.

Problem 7/79

7/80 If the semicircular rod of Prob. 7/79 starts from rest
under the action of a torque MO applied through the
collar about its z-axis of rotation, determine the ini-
tial bending moment M in the rod at A.

ω

x

z

y

A
r

ω

A

B

150 mm

200 mm

7/81 The large satellite-tracking antenna has a moment
of inertia I about its z-axis of symmetry and a mo-
ment of inertia IO about each of the x- and y-axes.
Determine the angular acceleration � of the antenna
about the vertical Z-axis caused by a torque M ap-
plied about Z by the drive mechanism for a given ori-
entation �.

Problem 7/81

7/82 The plate has a mass of 3 kg and is welded to the
fixed vertical shaft, which rotates at the constant
speed of 20� rad/s. Compute the moment M applied
to the shaft by the plate due to dynamic imbalance.

Problem 7/82

x

z

y

O

45°

20
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m
m

20
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m
m

100
mm

100
mm

ω π= 20   rad/s
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M
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y
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7/86 The circular disk of mass m and radius r is mounted
on the vertical shaft with a small angle between its
plane and the plane of rotation of the shaft. Deter-
mine the expression for the bending moment M act-
ing on the shaft due to the wobble of the disk at a
shaft speed of rad/s.

Problem 7/86

7/87 The thin circular disk of mass m and radius R is
hinged about its horizontal tangent axis to the end of
a shaft rotating about its vertical axis with an angu-
lar velocity �. Determine the steady-state angle � as-
sumed by the plane of the disk with the vertical axis.
Observe any limitation on � to ensure that � � 0.

Problem 7/87

7/88 Determine the normal forces under the two disks of
Sample Problem 7/7 for the position where the plane
of the curved bar is vertical. Take the curved bar to
be at the top of disk A and at the bottom of disk B.

β β

z z

Detail of hinge at A

x

A

R
G

ω

x

ω

α
x

x ′

z

y

O

r

�

�

7/83 Each of the two semicircular disks has a mass of
1.20 kg and is welded to the shaft supported in bear-
ings A and B as shown. Calculate the forces applied
to the shaft by the bearings for a constant angular
speed N � 1200 rev/min. Neglect the forces of static
equilibrium.

Problem 7/83

7/84 Solve Prob. 7/83 for the case where the assembly
starts from rest with an initial angular acceleration
� � 900 rad/s2 as a result of a starting torque (cou-
ple) M applied to the shaft in the same sense as N.
Neglect the moment of inertia of the shaft about its
z-axis and calculate M.

7/85 The uniform slender bar of mass per unit length is
freely pivoted about the y-axis at the clevis, which
rotates about the fixed vertical z-axis with a constant
angular velocity . Determine the steady-state angle

assumed by the bar. Length b is greater than
length c.

Problem 7/85

b

z

y

x

c

θ

ω

�
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7/89 The uniform square plate of mass m is welded at O
to the end of the shaft, which rotates about the verti-
cal z-axis with a constant angular velocity . Deter-
mine the moment applied to the plate by the weld
due only to the rotation.

Problem 7/89

7/90 For the plate of mass m in Prob. 7/89, determine the
y- and z-components of the moment applied to the
plate by the weld at O necessary to give the plate an
angular acceleration starting from rest. Ne-
glect the moment due to the weight.

7/91 The uniform slender rod of length l is welded to the
bracket at A on the underside of the disk B. The disk
rotates about a vertical axis with a constant angular
velocity �. Determine the value of � which will re-
sult in a zero moment supported by the weld at A for
the position � � 60� with b � l/4.

Problem 7/91

θ

l

ω

A
B

b

� � �̇

b

y x

z

b/2O

b/2

β

ω

�

7/92 The half-cylindrical shell of radius r, length 2b, and
mass m revolves about the vertical z-axis with a con-
stant angular velocity as indicated. Determine the
magnitude M of the bending moment in the shaft at
A due to both the weight and the rotational motion
of the shell.

Problem 7/92

7/93 The homogeneous thin triangular plate of mass m is
welded to the horizontal shaft, which rotates freely
in the bearings at A and B. If the plate is released
from rest in the horizontal position shown, deter-
mine the magnitude of the bearing reaction at A for
the instant just after release.

Problem 7/93

7/94 If the homogeneous triangular plate of Prob. 7/93 is
released from rest in the position shown, determine
the magnitude of the bearing reaction at A after the
plate has rotated 90�.

b
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7/11 Gyroscopic Motion: Steady Precession
One of the most interesting of all problems in dynamics is that of

gyroscopic motion. This motion occurs whenever the axis about which a
body is spinning is itself rotating about another axis. Although the com-
plete description of this motion involves considerable complexity, the
most common and useful examples of gyroscopic motion occur when the
axis of a rotor spinning at constant speed turns (precesses) about an-
other axis at a steady rate. Our discussion in this article will focus on
this special case.

The gyroscope has important engineering applications. With a
mounting in gimbal rings (see Fig. 7/19b), the gyro is free from external
moments, and its axis will retain a fixed direction in space regardless of
the rotation of the structure to which it is attached. In this way, the
gyro is used for inertial guidance systems and other directional control
devices. With the addition of a pendulous mass to the inner gimbal ring,
the earth’s rotation causes the gyro to precess so that the spin axis will
always point north, and this action forms the basis of the gyro compass.
The gyroscope has also found important use as a stabilizing device. The
controlled precession of a large gyro mounted in a ship is used to pro-
duce a gyroscopic moment to counteract the rolling of a ship at sea. The
gyroscopic effect is also an extremely important consideration in the de-
sign of bearings for the shafts of rotors which are subjected to forced
precessions.

We will first describe gyroscopic action with a simple physical ap-
proach which relies on our previous experience with the vector changes
encountered in particle kinetics. This approach will help us gain a direct
physical insight into gyroscopic action. Next, we will make use of the
general momentum relation, Eq. 7/19, for a more complete description.

Simplified Approach
Figure 7/14 shows a symmetrical rotor spinning about the z-axis

with a large angular velocity p, known as the spin velocity. If we apply
two forces F to the rotor axle to form a couple M whose vector is di-
rected along the x-axis, we will find that the rotor shaft rotates in the x-
z plane about the y-axis in the sense indicated, with a relatively slow
angular velocity � � known as the precession velocity. Thus, we iden-
tify the spin axis (p), the torque axis (M), and the precession axis (�),
where the usual right-hand rule identifies the sense of the rotation vec-
tors. The rotor shaft does not turn about the x-axis in the sense of M,
as it would if the rotor were not spinning. To aid understanding of this
phenomenon, a direct analogy may be made between the rotation vec-
tors and the familiar vectors which describe the curvilinear motion of a
particle.

Figure 7/15a shows a particle of mass m moving in the x-z plane with
constant speed �v� � v. The application of a force F normal to its linear
momentum G � mv causes a change dG � d(mv) in its momentum. We
see that dG, and thus dv, is a vector in the direction of the normal force
F according to Newton’s second law F � which may be written as Ġ,

�̇

Spin
axis

Precession
axis

Torque
axis

y

F

F

M

p
z

x

Ω ψ

ψ

= ·⏐    ⏐

Figure 7/14
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F dt � dG. From Fig. 7/15b we see that, in the limit, tan d� � d� � F dt/mv
or F � In vector notation with � � the force becomes

which is the vector equivalent of our familiar scalar relation Fn � man

for the normal force on the particle, as treated extensively in Chapter 3.
With these relations in mind, we now turn to our problem of rota-

tion. Recall now the analogous equation M � which we developed for
any prescribed mass system, rigid or nonrigid, referred to its mass cen-
ter (Eq. 4/9) or to a fixed point O (Eq. 4/7). We now apply this relation to
our symmetrical rotor, as shown in Fig. 7/15c. For a high rate of spin p
and a low precession rate � about the y-axis, the angular momentum is
represented by the vector H � Ip, where I � Izz is the moment of inertia
of the rotor about the spin axis.

Initially, we neglect the small component of angular momentum
about the y-axis which accompanies the slow precession. The application
of the couple M normal to H causes a change dH � d(Ip) in the angular
momentum. We see that dH, and thus dp, is a vector in the direction of
the couple M since M � which may also be written M dt � dH. Just
as the change in the linear-momentum vector of the particle is in the di-
rection of the applied force, so is the change in the angular-momentum
vector of the gyro in the direction of the couple. Thus, we see that the
vectors M, H, and dH are analogous to the vectors F, G, and dG. With
this insight, it is no longer strange to see the rotation vector undergo a
change which is in the direction of M, thereby causing the axis of the
rotor to precess about the y-axis.

In Fig. 7/15d we see that during time dt the angular-momentum
vector Ip has swung through the angle d�, so that in the limit with
tan d� � d�, we have

Substituting � � d�/dt for the magnitude of the precession velocity
gives us

(7/24)

We note that M, �, and p as vectors are mutually perpendicular, and
that their vector relationship may be represented by writing the equa-
tion in the cross-product form

(7/24a)

which is completely analogous to the foregoing relation F � m� � v for
the curvilinear motion of a particle as developed from Figs. 7/15a and b.

M � I� � p

M � I�p

d� � M dt
Ip

  or   M � I 
d�

dt
 p

Ḣ,

Ḣ

F � m� � v

�̇ j,mv �̇ . F

(F = G)
x

y

z dG = d(mv)
G = mv

(a)

=   j

x

y

z

F dt = d(mv)mv

(b)

M

dθ

ω

x

y

z
M dt = d(Ip)Ip

(d)

(c)

dψ

(M = H)

y

H = Ip

dH = d(Ip)
z

x

Ω ψ= · j

·

·θ

·

Figure 7/15
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Equations 7/24 and 7/24a apply to moments taken about the mass cen-
ter or about a fixed point on the axis of rotation.

The correct spatial relationship among the three vectors may be re-
membered from the fact that dH, and thus dp, is in the direction of M,
which establishes the correct sense for the precession �. Therefore, the
spin vector p always tends to rotate toward the torque vector M. Figure
7/16 represents three orientations of the three vectors which are consis-
tent with their correct order. Unless we establish this order correctly in
a given problem, we are likely to arrive at a conclusion directly opposite
to the correct one. Remember that Eq. 7/24, like F � ma and M � I�, is
an equation of motion, so that the couple M represents the couple due to
all forces acting on the rotor, as disclosed by a correct free-body diagram
of the rotor. Also note that, when a rotor is forced to precess, as occurs
with the turbine in a ship which is executing a turn, the motion will
generate a gyroscopic couple M which obeys Eq. 7/24a in both magni-
tude and sense.

In the foregoing discussion of gyroscopic motion, it was assumed
that the spin was large and the precession was small. Although we can
see from Eq. 7/24 that for given values of I and M, the precession �

must be small if p is large, let us now examine the influence of � on the
momentum relations. Again, we restrict our attention to steady preces-
sion, where � has a constant magnitude.

Figure 7/17 shows our same rotor again. Because it has a moment of
inertia about the y-axis and an angular velocity of precession about this
axis, there will be an additional component of angular momentum about
the y-axis. Thus, we have the two components Hz � Ip and Hy � I0�,
where I0 stands for Iyy and, again, I stands for Izz. The total angular mo-
mentum is H as shown. The change in H remains dH � M dt as previ-
ously, and the precession during time dt is the angle d� � M dt/Hz �

M dt/(Ip) as before. Thus, Eq. 7/24 is still valid and for steady precession
is an exact description of the motion as long as the spin axis is perpen-
dicular to the axis around which precession occurs.

Consider now the steady precession of a symmetrical top, Fig.
7/18, spinning about its axis with a high angular velocity p and sup-
ported at its point O. Here the spin axis makes an angle � with the
vertical Z-axis around which precession occurs. Again, we will neglect
the small angular-momentum component due to the precession and
consider H equal to Ip, the angular momentum about the axis of the
top associated with the spin only. The moment about O is due to the
weight and is sin �, where is the distance from O to the mass
center G. From the diagram, we see that the angular-momentum vec-
tor HO has a change dHO � MO dt in the direction of MO during time dt
and that � is unchanged. The increment in precessional angle around
the Z-axis is

Substituting the values MO � sin � and � � d�/dt gives

mgr sin � � I�p sin �   or   mgr � I�p

mgr

d� � 
MO dt

Ip sin �

rmgr

560 Chapter 7 Introduction to Three-Dimensional Dynamics of Rigid Bodies

Ω

Ω

Ω

p
M

Figure 7/16

Ω

Ω

M

Ω p

Ω

p

M

Ω

Ω

y

dH
H Hy

H′

Hz

M dt = dH 

z

x

dψ

Ω ψ= · j

Figure 7/17

dHO = MO  dt

HO ≈ Ip

θ

θ

z Z

x

X

MO

mg
O

G
y

Y

dψ

r
_

Figure 7/18

c07.qxd  2/10/12  2:29 PM  Page 560



Article 7/11 Gyroscopic Motion: Steady Precession 561

which is independent of �. Introducing the radius of gyration so that I �

mk2 and solving for the precessional velocity give

(7/25)

Unlike Eq. 7/24, which is an exact description for the rotor of Fig.
7/17 with precession confined to the x-z plane, Eq. 7/25 is an approxima-
tion based on the assumption that the angular momentum associated
with � is negligible compared with that associated with p. We will see
the amount of the error associated with this approximation when we re-
consider steady-state precession later in this article. On the basis of our
analysis, the top will have a steady precession at the constant angle �

only if it is set in motion with a value of � which satisfies Eq. 7/25.
When these conditions are not met, the precession becomes unsteady,
and � may oscillate with an amplitude which increases as the spin veloc-
ity decreases. The corresponding rise and fall of the rotation axis is
called nutation.

More Detailed Analysis
We now make direct use of Eq. 7/19, which is the general angular-

momentum equation for a rigid body, by applying it to a body spinning
about its axis of rotational symmetry. This equation is valid for rotation
about a fixed point or for rotation about the mass center. A spinning
top, the rotor of a gyroscope, and a spacecraft are examples of bodies
whose motions can be described by the equations for rotation about a
point. The general moment equations for this class of problems are
fairly complex, and their complete solutions involve the use of elliptic in-
tegrals and somewhat lengthy computations. However, a large fraction
of engineering problems where the motion is one of rotation about a
point involves the steady precession of bodies of revolution which are
spinning about their axes of symmetry. These conditions greatly sim-
plify the equations and thus facilitate their solution.

Consider a body with axial symmetry, Fig. 7/19a, rotating about a
fixed point O on its axis, which is taken to be the z-direction. With O as
origin, the x- and y-axes automatically become principal axes of inertia
along with the z-axis. This same description may be used for the rota-
tion of a similar symmetrical body about its center of mass G, which is
taken as the origin of coordinates as shown with the gimbaled gyroscope
rotor of Fig. 7/19b. Again, the x- and y-axes are principal axes of inertia
for point G. The same description may also be used to represent the ro-
tation about the mass center of an axially symmetric body in space, such
as the spacecraft in Fig. 7/19c. In each case, we note that, regardless of
the rotation of the axes or of the body relative to the axes (spin about
the z-axis), the moments of inertia about the x- and y-axes remain con-
stant with time. The principal moments of inertia are again designated
Izz � I and Ixx � Iyy � I0. The products of inertia are, of course, zero.

Before applying Eq. 7/19, we introduce a set of coordinates which
provide a natural description for our problem. These coordinates are

� � 
gr
k2p

G

x

y

z

z

y

x

(a)

(b)

(c)

O

θ

z

y

x
G
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shown in Fig. 7/20 for the example of rotation about a fixed point O. The
axes X-Y-Z are fixed in space, and plane A contains the X-Y axes and the
fixed point O on the rotor axis. Plane B contains point O and is always
normal to the rotor axis. Angle � measures the inclination of the rotor
axis from the vertical Z-axis and is also a measure of the angle between
planes A and B. The intersection of the two planes is the x-axis, which is
located by the angle � from the X-axis. The y-axis lies in plane B, and
the z-axis coincides with the rotor axis. The angles � and � completely
specify the position of the rotor axis. The angular displacement of the
rotor with respect to axes x-y-z is specified by the angle 
 measured
from the x-axis to the x�-axis, which is attached to the rotor. The spin
velocity becomes p � 
̇.
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·
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Figure 7/20

The components of the angular velocity � of the rotor and the angu-
lar velocity � of the axes x-y-z from Fig. 7/20 become

It is important to note that the axes and the body have identical x- and
y-components of angular velocity, but that the z-components differ by
the relative angular velocity p.

The angular-momentum components from Eq. 7/12 become

 Hz � Izz�z � I(�̇ cos � � p)

 Hy � Iyy�y � I0�̇ sin �

 Hx � Ixx�x � I0 �̇

 �z � �̇ cos �  �z � �̇ cos � � p

 �y � �̇ sin �    �y � �̇ sin �

 �x � �̇   �x � �̇
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Substitution of the angular-velocity and angular-momentum com-
ponents into Eq. 7/19 yields

(7/26)

Equations 7/26 are the general equations of rotation of a symmetrical
body about either a fixed point O or the mass center G. In a given prob-
lem, the solution to the equations will depend on the moment sums ap-
plied to the body about the three coordinate axes. We will confine our
use of these equations to two particular cases of rotation about a point
which are described in the following sections.

Steady-State Precession
We now examine the conditions under which the rotor precesses at a

steady rate at a constant angle � and with constant spin velocity p. Thus,

and Eqs. 7/26 become

(7/27)

From these results, we see that the required moment acting on the
rotor about O (or about G) must be in the x-direction since the y- and
z-components are zero. Furthermore, with the constant values of �, 
and p, the moment is constant in magnitude. It is also important to note
that the moment axis is perpendicular to the plane defined by the pre-
cession axis (Z-axis) and the spin axis (z-axis).

We may also obtain Eqs. 7/27 by recognizing that the components of
H remain constant as observed in x-y-z so that � 0. Because in
general ΣM � � � � H, we have for the case of steady precession

(7/28)

which reduces to Eqs. 7/27 upon substitution of the values of � and H.
By far the most common engineering examples of gyroscopic motion

occur when precession takes place about an axis which is normal to the
rotor axis, as in Fig. 7/14. Thus with the substitution � � �/2, �z � p, 

� �, and ΣMx � M, we have from Eqs. 7/27

[7/24]M � I�p

�̇

ΣM � � � H

(Ḣ)xyz

(Ḣ)xyz

�̇,

 ΣMz � 0

 ΣMy � 0

 ΣMx � �̇ sin �[I(�̇ cos � � p) � I0�̇ cos �]

 p � constant,  ṗ � 0

 � � constant,  �̇  � �̈  � 0

 �̇ � constant,    �̈ � 0

�̇

 ΣMz � I d
dt

 (�̇ cos � � p)

 ΣMy � I0(�̈ sin � � 2�̇ �̇  cos �) � I �̇ (�̇ cos � � p)

 ΣMx � I0( �̈  � �̇2 sin � cos �) � I�̇(�̇ cos � � p) sin �
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which we derived initially in this article from a direct analysis of this
special case.

Now let us examine the steady precession of the rotor (symmetrical
top) of Fig. 7/20 for any constant value of � other than �/2. The moment
ΣMx about the x-axis is due to the weight of the rotor and is sin �.
Substitution into Eqs. 7/27 and rearrangement of terms give us

We see that is small when p is large, so that the second term on
the right-hand side of the equation becomes very small compared with

If we neglect this smaller term, we have � which, upon
use of the previous substitution � � and mk2 � I, becomes

[7/25]

We derived this same relation earlier by assuming that the angular mo-
mentum was entirely along the spin axis.

Steady Precession with Zero Moment
Consider now the motion of a symmetrical rotor with no external

moment about its mass center. Such motion is encountered with space-
craft and projectiles which both spin and precess during flight.

Figure 7/21 represents such a body. Here the Z-axis, which has a fixed
direction in space, is chosen to coincide with the direction of the angular
momentum HG, which is constant since ΣMG � 0. The x-y-z axes are at-
tached in the manner described in Fig. 7/20. From Fig. 7/21 the three com-
ponents of momentum are � 0, � HG sin �, � HG cos �.
From the defining relations, Eqs. 7/12, with the notation of this article,
these components are also given by � I0�x, � I0�y, � I�z.
Thus, �x � �x � 0 so that � is constant. This result means that the mo-
tion is one of steady precession about the constant HG vector.

With no x-component, the angular velocity � of the rotor lies in the
y-z plane along with the Z-axis and makes an angle � with the z-axis.
The relationship between � and � is obtained from tan � � �

I0�y/(I�z), which is

(7/29)

Thus, the angular velocity � makes a constant angle � with the spin axis.
The rate of precession is easily obtained from Eq. 7/27 with M � 0,

which gives

(7/30)

It is clear from this relation that the direction of the precession depends
on the relative magnitudes of the two moments of inertia.

�̇ � 
Ip

(I0 � I) cos �

tan � � 
I0

I
 tan �

HGy
 /HGz

HGz
HGy

HGx

HGz
HGy

HGx

� � 
gr
k2p

�̇

mgr/(Ip)�̇I�̇p.

�̇

mgr � I�̇p � (I0 � I)�̇2 cos �

mgr
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If I0 � I, then � � �, as indicated in Fig. 7/22a, and the precession is
said to be direct. Here the body cone rolls on the outside of the space
cone.

If I � I0, then � � �, as indicated in Fig. 7/22b, and the precession is
said to be retrograde. In this instance, the space cone is internal to the
body cone, and and p have opposite signs.

If I � I0, then � � � from Eq. 7/29, and Fig. 7/22 shows that both
angles must be zero to be equal. For this case, the body has no preces-
sion and merely rotates with an angular velocity p. This condition oc-
curs for a body with point symmetry, such as with a homogeneous
sphere.

�̇

θ
β

ω

θ
βp

z

G

Z

Body
cone

Space cone

ψ  ⋅

ψ  ⋅

z

G

p

Z

Space cone

Body cone

ω

Direct precession I0 > I

(a)

Retrograde precession I0 < I

(b)

Figure 7/22

Toy gyroscopes are useful in demon-
strating the principles of this article.
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SAMPLE PROBLEM 7/8

The turbine rotor in a ship’s power plant has a mass of 1000 kg, with center
of mass at G and a radius of gyration of 200 mm. The rotor shaft is mounted in
bearings A and B with its axis in the horizontal fore-and-aft direction and turns
counterclockwise at a speed of 500 rev/min when viewed from the stern. Deter-
mine the vertical components of the bearing reactions at A and B if the ship is
making a turn to port (left) of 400-m radius at a speed of 25 knots (1 knot �

0.514 m/s). Does the bow of the ship tend to rise or fall because of the gyroscopic
action?

Solution. The vertical component of the bearing reactions will equal the static
reactions R1 and R2 due to the weight of the rotor, plus or minus the increment
�R due to the gyroscopic effect. The moment principle from statics easily gives
R1 � 5890 N and R2 � 3920 N. The given directions of the spin velocity p and
the precession velocity � are shown with the free-body diagram of the rotor. Be-
cause the spin axis always tends to rotate toward the torque axis, we see that the
torque axis M points in the starboard direction as shown. The sense of the �R’s
is, therefore, up at B and down at A to produce the couple M. Thus, the bearing
reactions at A and B are

The precession velocity � is the speed of the ship divided by the radius of
its turn.

Equation 7/24 is now applied around the mass center G of the rotor to give

The required bearing reactions become

Ans.

We now observe that the forces just computed are those exerted on the rotor
shaft by the structure of the ship. Consequently, from the principle of action and
reaction, the equal and opposite forces are applied to the ship by the rotor shaft,
as shown in the bottom sketch. Therefore, the effect of the gyroscopic couple is
to generate the increments �R shown, and the bow will tend to fall and the stern
to rise (but only slightly).

RA � 5890 � 449 � 5440 N   and   RB � 3920 � 449 � 4370 N

 �R � 449 N

 1.500(�R) � 1000(0.200)2(0.0321)�5000(2�)
60 �[M � I�p]

� � 
25(0.514)

400
 � 0.0321 rad/s[v � 	�]

RA � R1 � �R   and   RB � R2 � �R

�

�

600 

mm

900 

mm

Port
(left)

p

A

RA

RB

B

G

Starboard
(right)

Forward

Ω

M

M

p

y

z

x

B

A

1000(9.81) N

R1

R1

ΔR

ΔR

R2

R2

ΔR

ΔR

G

Helpful Hints

� If the ship is making a left turn,
the rotation is counterclockwise as
viewed from above, and the preces-
sion vector � is up by the right-
hand rule.

� After figuring the correct sense of
M on the rotor, the common mis-
take is to apply it to the ship in the
same sense, forgetting the action-
and-reaction principle. Clearly, the
results are then reversed. (Be cer-
tain not to make this mistake when
operating a vertical gyro stabilizer
in your yacht to counteract its roll!)
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SAMPLE PROBLEM 7/9

A proposed space station is closely approximated by four uniform spherical
shells, each of mass m and radius r. The mass of the connecting structure and in-
ternal equipment may be neglected as a first approximation. If the station is de-
signed to rotate about its z-axis at the rate of one revolution every 4 seconds,
determine (a) the number n of complete cycles of precession for each revolution
about the z-axis if the plane of rotation deviates only slightly from a fixed orien-
tation, and (b) find the period � of precession if the spin axis z makes an angle of
20� with respect to the axis of fixed orientation about which precession occurs.
Draw the space and body cones for this latter condition.

Solution. (a) The number of precession cycles or wobbles for each revolution
of the station about the z-axis would be the ratio of the precessional velocity to
the spin velocity p, which, from Eq. 7/30, is

The moments of inertia are

With � very small, cos � 	 1, and the ratio of angular rates becomes

Ans.

The minus sign indicates retrograde precession where, in the present case, 
and p are essentially of opposite sense. Thus, the station will make seven wob-
bles for every three revolutions.

(b) For � � 20� and p � 2�/4 rad/s, the period of precession or wobble is � �

so that from Eq. 7/30

Ans.

The precession is retrograde, and the body cone is external to the space cone
as shown in the illustration where the body-cone angle, from Eq. 7/29, is

tan � � I
I0

 tan � � 
56/3
32/3

 (0.364) � 0.637   � � 32.5�

2�/��̇�,

�̇

n � 
�̇

p
 � 

56
3

32
3  � 56

3

 � � 

7
3

 Ixx � I0 � 2(23)mr2 � 2[23 

mr2 � m(2r)2] � 32
3  

mr2

 Izz � I � 4[23 

mr2 � m(2r)2] � 56
3  

mr2

�̇

p
 � I

(I0 � I) cos �

�̇

�

O

z
x

r
2r

O

z

= 20°θ

= 32.5°β

p

ψ·

Helpful Hint

� Our theory is based on the assump-
tion that Ixx � Iyy � the moment of
inertia about any axis through G
perpendicular to the z-axis. Such is
the case here, and you should prove
it to your own satisfaction.
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PROBLEMS
Introductory Problems

7/95 A dynamics instructor demonstrates gyroscopic prin-
ciples to his students. He suspends a rapidly spinning
wheel with a string attached to one end of its horizon-
tal axle. Describe the precession motion of the wheel.

Problem 7/95

7/96 The student has volunteered to assist in a classroom
demonstration involving a momentum wheel which is
rapidly spinning with angular speed p as shown. The
instructor has asked her to hold the axle of the wheel
in the horizontal position shown and then attempt to
tilt the axis upward in a vertical plane. What motion
tendency of the wheel assembly will the student sense?

Problem 7/96

7/97 A car makes a turn to the right on a level road. De-
termine whether the normal reaction under the right
rear wheel is increased or decreased as a result of the
gyroscopic effect of the precessing wheels.

p

y

z

p

7/98 The 50-kg wheel is a solid circular disk which rolls
on the horizontal plane in a circle of 600-mm radius.
The wheel shaft is pivoted about the axis O-O and is
driven by the vertical shaft at the constant rate

rev/min about the Z-axis. Determine the
normal force R between the wheel and the horizon-
tal surface. Neglect the weight of the horizontal shaft.

Problem 7/98

7/99 The special-purpose fan is mounted as shown. The
motor armature, shaft, and blades have a combined
mass of 2.2 kg with radius of gyration of 60 mm. The
axial position b of the 0.8-kg block A can be adjusted.
With the fan turned off, the unit is balanced about
the x-axis when b � 180 mm. The motor and fan oper-
ate at 1725 rev/min in the direction shown. Deter-
mine the value of b which will produce a steady
precession of 0.2 rad/s about the positive y-axis.

Problem 7/99

x

z

y

b

A

O

350
mm

600
mm

N
O

O

Z

G

N � 48
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Representative Problems

7/103 A small air compressor for an aircraft cabin consists
of the 3.50-kg turbine A which drives the 2.40-kg
blower B at a speed of 20 000 rev/min. The shaft of
the assembly is mounted transversely to the direc-
tion of flight and is viewed from the rear of the air-
craft in the figure. The radii of gyration of A and B
are 79.0 and 71.0 mm, respectively. Calculate the ra-
dial forces exerted on the shaft by the bearings at C
and D if the aircraft executes a clockwise roll (rota-
tion about the longitudinal flight axis) of 2 rad/s
viewed from the rear of the aircraft. Neglect the
small moments caused by the weights of the rotors.
Draw a free-body diagram of the shaft as viewed
from above and indicate the shape of its deflected
centerline.

Problem 7/103

7/104 The two solid cones with the same base and equal
altitudes are spinning in space about their common
axis at the rate p. For what ratio h/r will precession
of their spin axis be impossible?

Problem 7/104

p

h

h

r

150 mm

A B

C D

7/100 An airplane has just cleared the runway with a
takeoff speed v. Each of its freely spinning wheels
has a mass m, with a radius of gyration k about its
axle. As seen from the front of the airplane, the
wheel precesses at the angular rate � as the land-
ing strut is folded into the wing about its pivot O.
As a result of the gyroscopic action, the supporting
member A exerts a torsional moment M on B to
prevent the tubular member from rotating in the
sleeve at B. Determine M and identify whether it is
in the sense of M1 or M2.

Problem 7/100

7/101 An experimental antipollution bus is powered by
the kinetic energy stored in a large flywheel which
spins at a high speed p in the direction indicated.
As the bus encounters a short upward ramp, the
front wheels rise, thus causing the flywheel to pre-
cess. What changes occur to the forces between the
tires and the road during this sudden change?

Problem 7/101

7/102 The 210-kg rotor of a turbojet aircraft engine has a
radius of gyration of 220 mm and rotates counter-
clockwise at 18 000 rev/min as viewed from the
front. If the aircraft is traveling at 1200 km/h and
starts to execute an inside vertical loop of 3800-m
radius, compute the gyroscopic moment M trans-
mitted to the airframe. What correction to the con-
trols does the pilot have to make in order to remain
in the vertical plane?

Ω

r b

A

B

B

M1
M2

O
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7/105 The blades and hub of the helicopter rotor weigh
140 lb and have a radius of gyration of 10 ft about
the z-axis of rotation. With the rotor turning at
500 rev/min during a short interval following ver-
tical liftoff, the helicopter tilts forward at the rate

� 10 deg/sec in order to acquire forward veloc-
ity. Determine the gyroscopic moment M transmit-
ted to the body of the helicopter by its rotor and
indicate whether the helicopter tends to deflect
clockwise or counterclockwise, as viewed by a pas-
senger facing forward.

Problem 7/105

7/106 The 4-oz top with radius of gyration about its
spin axis of 0.62 in. is spinning at the rate p �

3600 rev/min in the sense shown, with its spin
axis making an angle � � 20� with the vertical.
The distance from its tip O to its mass center G is

� 2.5 in. Determine the precession � of the top
and explain why � gradually decreases as long as
the spin rate remains large. An enlarged view of
the contact of the tip is shown.

r

x

z Vertical

θ

p

�̇

Problem 7/106

7/107 The figure shows a gyro mounted with a vertical
axis and used to stabilize a hospital ship against
rolling. The motor A turns the pinion which pre-
cesses the gyro by rotating the large precession gear
B and attached rotor assembly about a horizontal
transverse axis in the ship. The rotor turns inside
the housing at a clockwise speed of 960 rev/min as
viewed from the top and has a mass of 80 Mg with
radius of gyration of 1.45 m. Calculate the moment
exerted on the hull structure by the gyro if the
motor turns the precession gear B at the rate of
0.320 rad/s. In which of the two directions, (a) or
(b), should the motor turn in order to counteract a
roll of the ship to port?

Problem 7/107

A

B

Vertical

(a)
(b)

Forward

Port
(left)

Starboard
(right)

z

p

G

r–

O Enlarged view
of tip contact

θ
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Problem 7/110

7/111 The primary structure of a proposed space station
consists of five spherical shells connected by tubu-
lar spokes. The moment of inertia of the structure
about its geometric axis A-A is twice as much as
that about any axis through O normal to A-A. The
station is designed to rotate about its geometric
axis at the constant rate of 3 rev/min. If the spin
axis A-A precesses about the Z-axis of fixed orienta-
tion and makes a very small angle with it, calculate
the rate at which the station wobbles. The mass
center O has negligible acceleration.

Problem 7/111

A

A

Z

O

�̇

5″

33″

A B

View of wheels and axle

Side view of carriage

v

4′ 8   ″
1–
2

7/108 Each of the identical wheels has a mass of 4 kg and a
radius of gyration kz � 120 mm and is mounted on a
horizontal shaft AB secured to the vertical shaft at O.
In case (a), the horizontal shaft is fixed to a collar at
O which is free to rotate about the vertical y-axis. In
case (b), the shaft is secured by a yoke hinged about
the x-axis to the collar. If the wheel has a large angu-
lar velocity p � 3600 rev/min about its z-axis in the
position shown, determine any precession which oc-
curs and the bending moment MA in the shaft at A
for each case. Neglect the small mass of the shaft
and fitting at O.

Problem 7/108

7/109 If the wheel in case (a) of Prob. 7/108 is forced to
precess about the vertical by a mechanical drive at
the steady rate � � 2j rad/s, determine the bend-
ing moment in the horizontal shaft at A. In the ab-
sence of friction, what torque MO is applied to the
collar at O to sustain this motion?

7/110 The figure shows the side view of the wheel carriage
(truck) of a railway passenger car where the vertical
load is transmitted to the frame in which the jour-
nal wheel bearings are located. The lower view
shows only one pair of wheels and their axle which
rotates with the wheels. Each of the 33-in.-diameter
wheels weighs 560 lb, and the axle weighs 300 lb
with a diameter of 5 in. Both wheels and axle are
made of steel with a specific weight of 489 lb/ft3. If
the train is traveling at 80 mi/hr while rounding an
8� curve to the right (radius of curvature 717 ft),
calculate the change �R in the vertical force sup-
ported by each wheel due only to the gyroscopic ac-
tion. As a close approximation, treat each wheel as a
uniform circular disk and the axle as a uniform
solid cylinder. Also assume that both rails are in the
same horizontal plane.

A
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B
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7/112 The uniform 640-mm rod has a mass of 3 kg and is
welded centrally to the uniform 160-mm-radius cir-
cular disk which has a mass of 8 kg. The unit is
given a spin velocity p � 60 rad/s in the direction
shown. The axis of the rod is seen to wobble through
a total angle of 30�. Calculate the angular velocity 
of precession and determine whether it is or 

Problem 7/112

7/113 The electric motor has a total weight of 20 lb and is
supported by the mounting brackets A and B at-
tached to the rotating disk. The armature of the
motor has a weight of 5 lb and a radius of gyration
of 1.5 in. and turns counterclockwise at a speed of
1725 rev/min as viewed from A to B. The turntable
revolves about its vertical axis at the constant rate
of 48 rev/min in the direction shown. Determine
the vertical components of the forces supported by
the mounting brackets at A and B.

Problem 7/113
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B
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·

·
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7/114 The spacecraft shown is symmetrical about its z-axis
and has a radius of gyration of 720 mm about this
axis. The radii of gyration about the x- and y-axes
through the mass center are both equal to 540 mm.
When moving in space, the z-axis is observed to gen-
erate a cone with a total vertex angle of 4� as it pre-
cesses about the axis of total angular momentum. If
the spacecraft has a spin velocity about its z-axis
of 1.5 rad/s, compute the period � of each full pre-
cession. Is the spin vector in the positive or nega-
tive z-direction?

Problem 7/114

7/115 The 8-lb rotor with radius of gyration of 3 in. rotates
on ball bearings at a speed of 3000 rev/min about its
shaft OG. The shaft is free to pivot about the X-axis,
as well as to rotate about the Z-axis. Calculate the
vector � for precession about the Z-axis. Neglect the
mass of shaft OG and compute the gyroscopic couple
M exerted by the shaft on the rotor at G.

Problem 7/115
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7/118 A boy throws a thin circular disk (like a Frisbee)
with a spin rate of 300 rev/min. The plane of the
disk is seen to wobble through a total angle of 10�.
Calculate the period � of the wobble and indicate
whether the precession is direct or retrograde.

Problem 7/118

7/119 The figure shows a football in three common in-
flight configurations. Case (a) is a perfectly thrown
spiral pass with a spin rate of 120 rev/min. Case (b)
is a wobbly spiral pass again with a spin rate of
120 rev/min about its own axis, but with the axis
wobbling through a total angle of 20�. Case (c) is
an end-over-end place kick with a rotational rate
of 120 rev/min. For each case, specify the values of
p, �, �, and as defined in this article. The mo-
ment of inertia about the long axis of the ball is 0.3
of that about the transverse axis of symmetry.

Problem 7/119

20°

�̇

10°

7/116 The housing of the electric motor is freely pivoted
about the horizontal x-axis, which passes through
the mass center G of the rotor. If the motor is turn-
ing at the constant rate � p, determine the angu-
lar acceleration which will result from the
application of the moment M about the vertical
shaft if � � 0. The mass of the frame and hous-
ing is considered negligible compared with the mass
m of the rotor. The radius of gyration of the rotor
about the z-axis is kz and that about the x-axis is kx.

Problem 7/116

7/117 The thin ring is projected into the air with a spin
velocity of 300 rev/min. If its geometric axis is
observed to have a very slight precessional wobble,
determine the frequency ƒ of the wobble.

Problem 7/117

300 rev/min
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7/120 The rectangular bar is spinning in space about its
longitudinal axis at the rate p � 200 rev/min. If its
axis wobbles through a total angle of 20� as shown,
calculate the period � of the wobble.

Problem 7/120

7/121 The 5-kg disk and hub A have a radius of gyration
of 85 mm about the -axis and spin at the rate

rev/min. Simultaneously, the assembly
rotates about the vertical z-axis at the rate 
rev/min. Calculate the gyroscopic moment M ex-
erted on the shaft at C by the disk and the bending
moment in the shaft at O. Neglect the mass of
the shaft but otherwise account for all forces acting
on it.

Problem 7/121
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7/122 The uniform slender bar of mass m and length l is
centrally mounted on the shaft A-A, about which it
rotates with a constant speed . Simultane-
ously, the yoke is forced to rotate about the x-axis
with a constant speed . As a function of , deter-
mine the magnitude of the torque M required to
maintain the constant speed . (Hint: Apply Eq.
7/19 to obtain the x-component of M.)

Problem 7/122

7/123 The solid circular disk of mass m and small thick-
ness is spinning freely on its shaft at the rate p. If
the assembly is released in the vertical position at 
� � 0 with � 0, determine the horizontal compo-
nents of the forces A and B exerted by the respec-
tive bearings on the horizontal shaft as the position
� � �/2 is passed. Neglect the mass of the two
shafts compared with m and neglect all friction.
Solve by using the appropriate moment equations.

Problem 7/123
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Problem 7/125

7/126 The solid cylindrical rotor weighs 64.4 lb and is
mounted in bearings A and B of the frame which
rotates about the vertical Z-axis. If the rotor spins
at the constant rate p � 50 rad/sec relative to the
frame and if the frame itself rotates at the constant
rate � � 30 rad/sec, compute the bending moment
M in the shaft at C which the lower portion of the
shaft exerts on the upper portion. Also compute the
kinetic energy T of the rotor. Neglect the mass of
the frame.

Problem 7/126
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p7/124 The earth-scanning satellite is in a circular orbit of
period �. The angular velocity of the satellite about
its y- or pitch-axis is � � 2�/�, and the angular
rates about the x- and z-axes are zero. Thus, the 
x-axis of the satellite always points to the center of
the earth. The satellite has a reaction-wheel
attitude-control system consisting of the three
wheels shown, each of which may be variably
torqued by its individual motor. The angular rate
�z of the z-wheel relative to the satellite is �0 at
time t � 0, and the x- and y-wheels are at rest rela-
tive to the satellite at t � 0. Determine the axial
torques Mx, My, and Mz which must be exerted by
the motors on the shafts of their respective wheels
in order that the angular velocity � of the satellite
will remain constant. The moment of inertia of
each reaction wheel about its axis is I. The x and z
reaction-wheel speeds are harmonic functions of
the time with a period equal to that of the orbit.
Plot the variations of the torques and the relative
wheel speeds �x, �y, and �z as functions of the time
during one orbit period. (Hint: The torque to accel-
erate the x-wheel equals the reaction of the gyro-
scopic moment on the z-wheel, and vice versa.)

Problem 7/124

7/125 The two solid homogeneous right-circular cones,
each of mass m, are fastened together at their ver-
tices to form a rigid unit and are spinning about their
axis of radial symmetry at the rate p � 200 rev/min.
(a) Determine the ratio h/r for which the rotation
axis will not precess. (b) Sketch the space and body
cones for the case where h/r is less than the critical
ratio. (c) Sketch the space and body cones when h � r
and the precessional velocity is � 18 rad/s.�̇
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7/12 Chapter Review

In Chapter 7 we have studied the three-dimensional dynamics of
rigid bodies. Motion in three dimensions adds considerable complexity
to the kinematic and kinetic relationships. Compared with plane mo-
tion, there is now the possibility of two additional components of the
vectors describing angular quantities such as moment, angular veloc-
ity, angular momentum, and angular acceleration. For this reason, the
full power of vector analysis becomes apparent in the study of three-
dimensional dynamics.

We divided our study of three-dimensional dynamics into kinemat-
ics, which is covered in Section A of the chapter, and kinetics, which is
treated in Section B.

Kinematics
We arranged our coverage of three-dimensional kinematics in order

of increasing complexity of the type of motion. These types are:

1. Translation. As in plane motion, covered in Chapter 5 (Plane
Kinematics of Rigid Bodies), any two points on a rigid body have the
same velocity and acceleration.

2. Fixed-Axis Rotation. In this case the angular-velocity vector does
not change orientation, and the expressions for the velocity and ac-
celeration of a point are easily obtained as Eqs. 7/1 and 7/2, which
are identical in form to the corresponding plane-motion equations
in Chapter 5.

3. Parallel-Plane Motion. This case occurs when all points in a
rigid body move in planes which are parallel to a fixed plane. Thus,
in each plane, the results of Chapter 5 hold.

4. Rotation about a Fixed Point. In this case, both the magnitude
and the direction of the angular-velocity vector may vary. Once the
angular acceleration is established by careful differentiation of the
angular-velocity vector, Eqs. 7/1 and 7/2 may be used to determine
the velocity and acceleration of a point.

5. General Motion. The principles of relative motion are useful in
analyzing this type of motion. Relative velocity and relative acceler-
ation are expressed in terms of translating reference axes by Eqs.
7/4. When rotating reference axes are used, the unit vectors of the
reference system have nonzero time derivatives. Equations 7/6 ex-
press the velocity and acceleration in terms of quantities referred to
rotating axes; these equations are identical in form to the corre-
sponding results for plane motion, Eqs. 5/12 and 5/14. Equations
7/7a and 7/7b are the expressions relating the time derivatives of a
vector as measured in a fixed system and as measured relative to a
rotating system. These expressions are useful in the analysis of gen-
eral motion.
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Kinetics

We applied momentum and energy principles to analyze three-
dimensional kinetics, as follows.

1. Angular Momentum. In three dimensions the vector expression
for angular momentum has numerous additional components which
are absent in plane motion. The components of angular momentum
are expressed by Eqs. 7/12 and depend on both moments and prod-
ucts of inertia. There is a unique set of axes, called principal axes,
for which the products of inertia are zero and the moments of iner-
tia have stationary values. These values are called the principal mo-
ments of inertia.

2. Kinetic Energy. The kinetic energy of three-dimensional motion
can be expressed either in terms of the motion of and about the
mass center (Eq. 7/15) or in terms of the motion about a fixed point
(Eq. 7/18).

3. Momentum Equations of Motion. By using the principal axes
we may simplify the momentum equations of motion to obtain
Euler’s equations, Eqs. 7/21.

4. Energy Equations. The work-energy principle for three-dimen-
sional motion is identical to that for plane motion.

Applications

In Chapter 7 we studied two applications of special interest, namely,
parallel-plane motion and gyroscopic motion.

1. Parallel-Plane Motion. In such motion all points in a rigid body
move in planes which are parallel to a fixed plane. The equations of
motion are Eqs. 7/23. These equations are useful for analyzing the
effects of dynamic imbalance in rotating machinery and in bodies
which roll along straight paths.

2. Gyroscopic Motion. This type of motion occurs whenever the axis
about which the body is spinning is itself rotating about another
axis. Common applications include inertial guidance systems, stabi-
lizing devices, spacecraft attitude motion, and any situation in
which a rapidly spinning rotor (such as that of an aircraft engine) is
being reoriented. In the case where an external torque is present, a
basic analysis can be based upon the equation M � For the case
of torque-free motion of a body spinning about its axis of symmetry,
the axis of symmetry is found to execute a coning motion about the
fixed angular-momentum vector.

Ḣ.
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parallel to the rear axle of the car. The center of
mass of the car is a distance h above the road, and
the car is rounding an unbanked level turn at a
speed v. At what speed p should the rotor turn and
in what direction to counteract completely the ten-
dency of the car to overturn for either a right or a
left turn? The combined mass of car and rotor is m.

7/130 The wheels of the jet plane are spinning at their angu-
lar rate corresponding to a takeoff speed of 150 km/h.
The retracting mechanism operates with � increasing
at the rate of 30� per second. Calculate the angular ac-
celeration � of the wheels for these conditions.

Problem 7/130

7/131 The motor turns the disk at the constant speed
rad/sec. The motor is also swiveling about the

horizontal axis B-O (y-axis) at the constant speed
rad/sec. Simultaneously, the entire assembly is

rotating about the vertical axis C-C at the constant
rate rad/sec. For the instant when ,
determine the angular acceleration of the disk and
the acceleration a of point A at the bottom of the
disk. Axes x-y-z are attached to the motor housing,
and plane O- is horizontal.

Problem 7/131
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REVIEW PROBLEMS
7/127 The cylindrical shell is rotating in space about its

geometric axis. If the axis has a slight wobble, for
what ratios of l/r will the motion be direct or retro-
grade precession?

Problem 7/127

7/128 The solid cube of mass m and side a revolves about
an axis M-M through a diagonal with an angular
velocity . Write the expression for the angular
momentum H of the cube with respect to the axes
indicated.

Problem 7/128

7/129 An experimental car is equipped with a gyro stabi-
lizer to counteract completely the tendency of the
car to tip when rounding a curve (no change in nor-
mal force between tires and road). The rotor of the
gyro has a mass m0 and a radius of gyration k, and
is mounted in fixed bearings on a shaft which is
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7/132 The collars at the ends of the telescoping link AB
slide along the fixed shafts shown. During an inter-
val of motion, vA � 5 in./sec and vB � 2 in./sec.
Determine the vector expression for the angular
velocity �n of the centerline of the link for the posi-
tion where yA � 4 in. and yB � 2 in.

Problem 7/132

7/133 The solid cone of mass m, base radius r, and alti-
tude h is spinning at a high rate p about its own
axis and is released with its vertex O supported by
a horizontal surface. Friction is sufficient to pre-
vent the vertex from slipping in the x-y plane. De-
termine the direction of the precession � and the
period � of one complete rotation about the vertical
z-axis.

Problem 7/133
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7/134 The rectangular steel plate of mass 12 kg is welded
to the shaft with its plane tilted from the plane
(x-y) normal to the shaft axis. The shaft and plate
are rotating about the fixed z-axis at the rate 
rev/min. Determine the angular momentum of
the plate about the given axes and find its kinetic
energy T.

Problem 7/134

7/135 The circular disk of radius r is mounted on its shaft
which is pivoted at O so that it may rotate about
the vertical z0-axis. If the disk rolls at constant
speed without slipping and makes one complete
turn around the circle of radius R in time �, deter-
mine the expression for the absolute angular veloc-
ity � of the disk. Use axes x-y-z which rotate
around the z0-axis. (Hint: The absolute angular ve-
locity of the disk equals the angular velocity of the
axes plus (vectorially) the angular velocity relative
to the axes as seen by holding x-y-z fixed and rotat-
ing the circular disk of radius R at the rate of 2�/�.)

Problem 7/135
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Problem 7/140

7/141 Rework Prob. 7/140 if �, instead of being constant at
20�, is increasing at the steady rate of 120 rev/min.
Find the angular momentum HO of the disk for the
instant when � � 20�. Also compute the kinetic
energy T of the disk. Is T dependent on �?

7/142 The dynamic imbalance of a certain crankshaft is
approximated by the physical model shown, where
the shaft carries three small 1.5-lb spheres at-
tached by rods of negligible mass. If the shaft ro-
tates at the constant speed of 1200 rev/min,
calculate the forces RA and RB acting on the bear-
ings. Neglect the gravitational forces.

Problem 7/142

8′′

8′′

8′′

8′′

x

y

z

A

B

1

1

2

2

3

3

120°

End view

120°

120°

6′′

10″

y

z

O

p

C
y′

x

N

4″

β
z′

7/136 Determine the angular acceleration � for the rolling
circular disk of Prob. 7/135. Use the results cited in
the answer for that problem.

7/137 Determine the velocity v of point A on the disk of
Prob. 7/135 for the position shown.

7/138 Determine the acceleration a of point A on the disk
of Prob. 7/135 for the position shown.

7/139 A top consists of a ring of mass m � 0.52 kg and
mean radius r � 60 mm mounted on its central
pointed shaft with spokes of negligible mass. The
top is given a spin velocity of 10 000 rev/min and
released on the horizontal surface with the point O
remaining in a fixed position. The axis of the top is
seen to make an angle of 15� with the vertical as it
precesses. Determine the number N of precession
cycles per minute. Also identify the direction of the
precession and sketch the body and space cones.

Problem 7/139

7/140 The uniform circular disk of 4-in. radius and small
thickness weighs 8 lb and is spinning about its y�-
axis at the rate N � 300 rev/min with its plane of
rotation tilted at a constant angle � � 20� from the
vertical x-z plane. Simultaneously, the assembly
rotates about the fixed z-axis at the rate p � 60
rev/min. Calculate the angular momentum HO of the
disk alone about the origin O of the x-y-z coordi-
nates. Also calculate the kinetic energy T of the disk.
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15°

60
mm
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7/143 Each of the two right-angle bent rods weighs 2.80 lb
and is parallel to the horizontal x-y plane. The
rods are welded to the vertical shaft, which ro-
tates about the z-axis with a constant angular
speed N � 1200 rev/min. Calculate the bending
moment M in the shaft at its base O.

Problem 7/143

7/144 Each of the quarter-circular plates has a mass of
2 kg and is secured to the vertical shaft mounted
in the fixed bearing at O. Calculate the magni-
tude M of the bending moment in the shaft at O
for a constant rotational speed N � 300 rev/min.
Treat the plates as exact quarter-circular shapes.
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6″6″

6″

6″

Ν

Problem 7/144

7/145 Calculate the bending moment M in the shaft at O
for the rotating assembly of Prob. 7/144 as it starts
from rest with an initial angular acceleration of
200 rad/s2.

7/146 The half-cylindrical shell of mass m, radius r, and
length b revolves about one edge along the z-axis
with a constant rate as shown. Determine the angu-
lar momentum H of the shell with respect to the x-y-z
axes.

Problem 7/146
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This illustration shows the elements of the left-front suspension on an all-wheel-drive automobile. The spring and
shock absorber are coaxial in this McPherson-strut type of suspension.

Courtesy of David R. Kraige
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8/1 Introduction
An important and special class of problems in dynamics concerns

the linear and angular motions of bodies which oscillate or otherwise re-
spond to applied disturbances in the presence of restoring forces. A few
examples of this class of dynamics problems are the response of an engi-
neering structure to earthquakes, the vibration of an unbalanced rotat-
ing machine, the time response of the plucked string of a musical
instrument, the wind-induced vibration of power lines, and the flutter of
aircraft wings. In many cases, excessive vibration levels must be re-
duced to accommodate material limitations or human factors.

In the analysis of every engineering problem, we must represent the
system under scrutiny by a physical model. We may often represent a
continuous or distributed-parameter system (one in which the mass and
spring elements are continuously spread over space) by a discrete or
lumped-parameter model (one in which the mass and spring elements
are separate and concentrated). The resulting simplified model is espe-
cially accurate when some portions of a continuous system are relatively
massive in comparison with other portions. For example, the physical
model of a ship propeller shaft is often assumed to be a massless but
twistable rod with a disk rigidly attached to each end—one disk repre-
senting the turbine and the other representing the propeller. As a sec-
ond example, we observe that the mass of springs may often be
neglected in comparison with that of attached bodies.

Not every system is reducible to a discrete model. For example, the
transverse vibration of a diving board after the departure of the diver is

8/1 Introduction

8/2 Free Vibration of Particles

8/3 Forced Vibration of Particles

8/4 Vibration of Rigid Bodies

8/5 Energy Methods

8/6 Chapter Review

CHAPTER OUTLINE

8Vibration and
Time Response
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a somewhat difficult problem of distributed-parameter vibration. In this
chapter, we will begin the study of discrete systems, limiting our discus-
sion to those whose configurations may be described with one displace-
ment variable. Such systems are said to possess one degree of freedom.
For a more detailed study which includes the treatment of two or more
degrees of freedom and continuous systems, you should consult one of
the many textbooks devoted solely to the subject of vibrations.

The remainder of Chapter 8 is divided into four sections: Article
8/2 treats the free vibration of particles and Art. 8/3 introduces the
forced vibration of particles. Each of these two articles is subdivided
into undamped- and damped-motion categories. In Art. 8/4 we discuss
the vibration of rigid bodies. Finally, an energy approach to the solu-
tion of vibration problems is presented in Art. 8/5.

The topic of vibrations is a direct application of the principles of ki-
netics as developed in Chapters 3 and 6. In particular, construction of a
complete free-body diagram drawn for an arbitrary positive value of the
displacement variable, followed by application of the appropriate gov-
erning equations of dynamics, will yield the equation of motion. From
this equation of motion, which is a second-order ordinary differential
equation, you can obtain all information of interest, such as the motion
frequency, period, or the motion itself as a function of time.

8/2 Free Vibration of Particles
When a spring-mounted body is disturbed from its equilibrium posi-

tion, its ensuing motion in the absence of any imposed external forces is
termed free vibration. In every actual case of free vibration, there exists
some retarding or damping force which tends to diminish the motion.
Common damping forces are those due to mechanical and fluid friction.
In this article we first consider the ideal case where the damping forces
are small enough to be neglected. Then we treat the case where the
damping is appreciable and must be accounted for.

Equation of Motion for Undamped Free Vibration
We begin by considering the horizontal vibration of the simple

frictionless spring-mass system of Fig. 8/1a. Note that the variable x
denotes the displacement of the mass from the equilibrium position,
which, for this system, is also the position of zero spring deflection.
Figure 8/1b shows a plot of the force Fs necessary to deflect the spring
versus the corresponding spring deflection for three types of springs.
Although nonlinear hard and soft springs are useful in some applica-
tions, we will restrict our attention to the linear spring. Such a spring
exerts a restoring force �kx on the mass—that is, when the mass is
displaced to the right, the spring force is to the left, and vice versa.
We must be careful to distinguish between the forces of magnitude Fs

which must be applied to both ends of the massless spring to cause
tension or compression and the force F � �kx of equal magnitude
which the spring exerts on the mass. The constant of proportionality
k is called the spring constant, modulus, or stiffness and has the units
N/m or lb/ft.
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The equation of motion for the body of Fig. 8/1a is obtained by first
drawing its free-body diagram. Applying Newton’s second law in the
form ΣFx � gives

(8/1)

The oscillation of a mass subjected to a linear restoring force as de-
scribed by this equation is called simple harmonic motion and is charac-
terized by acceleration which is proportional to the displacement but of
opposite sign. Equation 8/1 is normally written as

(8/2)

where

(8/3)

is a convenient substitution whose physical significance will be clarified
shortly.

Solution for Undamped Free Vibration
Because we anticipate an oscillatory motion, we look for a solution

which gives x as a periodic function of time. Thus, a logical choice is

(8/4)

or, alternatively,

(8/5)

Direct substitution of these expressions into Eq. 8/2 verifies that each
expression is a valid solution to the equation of motion. We determine
the constants A and B, or C and �, from knowledge of the initial dis-
placement x0 and initial velocity of the mass. For example, if we work
with the solution form of Eq. 8/4 and evaluate x and at time t � 0, we
obtain

Substitution of these values of A and B into Eq. 8/4 yields

(8/6)

The constants C and � of Eq. 8/5 can be determined in terms of
given initial conditions in a similar manner. Evaluation of Eq. 8/5 and
its first time derivative at t � 0 gives

x0 � C sin �   and   ẋ0 � C�n cos �

x � x0 cos �nt � 
ẋ0

�n
 sin �nt

x0 � A   and   ẋ0 � B�n

ẋ
ẋ0

x � C sin (�nt � �)

x � A cos �nt � B sin �nt

�n � �k/m

 ẍ � �n 

2x � 0

�kx � mẍ   or   mẍ � kx � 0

mẍ
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Solving for C and � yields

Substitution of these values into Eq. 8/5 gives

(8/7)

Equations 8/6 and 8/7 represent two different mathematical expressions
for the same time-dependent motion. We observe that C �

and � � tan�1(A/B).

Graphical Representation of Motion
The motion may be represented graphically, Fig. 8/2, where x is

seen to be the projection onto a vertical axis of the rotating vector of
length C. The vector rotates at the constant angular velocity �n �

which is called the natural circular frequency and has the units radians
per second. The number of complete cycles per unit time is the natural
frequency ƒn � �n/2� and is expressed in hertz (1 hertz (Hz) � 1 cycle
per second). The time required for one complete motion cycle (one rota-
tion of the reference vector) is the period of the motion and is given by 
� � 1/ƒn � 2�/�n.

�k/m,

�A2 � B2

x � �x0 

2 � (ẋ0/�n)2 sin [�nt � tan�1(x0�n/ẋ0)]

C � �x0 

2 � (ẋ0/�n)2   � � tan�1(x0�n/ẋ0)
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We also see from the figure that x is the sum of the projections onto
the vertical axis of two perpendicular vectors whose magnitudes are A
and B and whose vector sum C is the amplitude. Vectors A, B, and C ro-
tate together with the constant angular velocity �n. Thus, as we have al-
ready seen, C � and � � tan�1(A/B).

Equilibrium Position as Reference
As a further note on the free undamped vibration of particles, we

see that, if the system of Fig. 8/1a is rotated 90� clockwise to obtain the
system of Fig. 8/3 where the motion is vertical rather than horizontal,

�A2 � B2

ψ

ωnt

ωnt

τ

C

A
B

x

t

+x

−x

−C

C
x

0
0

x0

2  
—–
    n

  �
  ω

=

Figure 8/2
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the equation of motion (and therefore all system properties) is un-
changed if we continue to define x as the displacement from the equilib-
rium position. The equilibrium position now involves a nonzero spring
deflection �st. From the free-body diagram of Fig. 8/3, Newton’s second
law gives

At the equilibrium position x � 0, the force sum must be zero, so that

Thus, we see that the pair of forces �k�st and mg on the left side of the
motion equation cancel, giving

which is identical to Eq. 8/1.
The lesson here is that by defining the displacement variable to

be zero at equilibrium rather than at the position of zero spring de-
flection, we may ignore the equal and opposite forces associated with
equilibrium.*

Equation of Motion for Damped Free Vibration
Every mechanical system possesses some inherent degree of fric-

tion, which dissipates mechanical energy. Precise mathematical models
of the dissipative friction forces are usually complex. The dashpot or vis-
cous damper is a device intentionally added to systems for the purpose
of limiting or retarding vibration. It consists of a cylinder filled with a
viscous fluid and a piston with holes or other passages by which the fluid
can flow from one side of the piston to the other. Simple dashpots
arranged as shown schematically in Fig. 8/4a exert a force Fd whose
magnitude is proportional to the velocity of the mass, as depicted in Fig.
8/4b. The constant of proportionality c is called the viscous damping co-
efficient and has units of or lb-sec/ft. The direction of the damp-
ing force as applied to the mass is opposite that of the velocity Thus,
the force on the mass is �

Complex dashpots with internal flow-rate-dependent one-way
valves can produce different damping coefficients in extension and in
compression; nonlinear characteristics are also possible. We will restrict
our attention to the simple linear dashpot.

The equation of motion for the body with damping is determined
from the free-body diagram as shown in Fig. 8/4a. Newton’s second law
gives

(8/8)�kx � cẋ � mẍ   or   mẍ � cẋ � kx � 0

cẋ.
ẋ.

N � s/m

mẍ � kx � 0

�k�st � mg � 0

�k(�st � x) � mg � mẍ
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*For nonlinear systems, all forces, including the static forces associated with equilibrium,
should be included in the analysis.

m
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In addition to the substitution �n � it is convenient, for reasons
which will shortly become evident, to introduce the combination of
constants

The quantity � (zeta) is called the viscous damping factor or damping
ratio and is a measure of the severity of the damping. You should verify
that � is nondimensional. Equation 8/8 may now be written as

(8/9)

Solution for Damped Free Vibration
In order to solve the equation of motion, Eq. 8/9, we assume solu-

tions of the form

Substitution into Eq. 8/9 yields

which is called the characteristic equation. Its roots are

Linear systems have the property of superposition, which means that
the general solution is the sum of the individual solutions each of which
corresponds to one root of the characteristic equation. Thus, the general
solution is

(8/10)

Categories of Damped Motion
Because 0 � � � �, the radicand (�2 � 1) may be positive, negative,

or even zero, giving rise to the following three categories of damped
motion:

I. � � 1 (overdamped). The roots �1 and �2 are distinct, real, and
negative numbers. The motion as given by Eq. 8/10 decays so
that x approaches zero for large values of time t. There is no os-
cillation and therefore no period associated with the motion.

II. � � 1 (critically damped). The roots �1 and �2 are equal, real,
and negative numbers (�1 � �2 � ��n). The solution to the dif-
ferential equation for the special case of equal roots is given by

x � (A1 � A2t)e��nt

 � A1e(�����2�1)�nt � A2e(�����2�1)�nt

 x � A1e�1t � A2e�2t

�1 � �n(�� � ��2 � 1)   �2 � �n(�� � ��2 �1)

�2 � 2��n� � �n 

2 � 0

x � Ae�t

ẍ � 2��nẋ � �n 

2x � 0

� � c/(2m�n)

�k/m,
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Again, the motion decays with x approaching zero for large time,
and the motion is nonperiodic. A critically damped system, when
excited with an initial velocity or displacement (or both), will ap-
proach equilibrium faster than will an overdamped system. Fig-
ure 8/5 depicts actual responses for both an overdamped and a
critically damped system to an initial displacement x0 and no ini-
tial velocity ( � 0).

III. � � 1 (underdamped). Noting that the radicand (�2 � 1) is
negative and recalling that � eaeb, we may rewrite Eq.
8/10 as

where i � It is convenient to let a new variable �d repre-
sent the combination Thus,

Use of the Euler formula e�ix � cos x � i sin x allows the previ-
ous equation to be written as

(8/11)

where A3 � (A1 � A2) and A4 � i(A1 � A2). We have shown with
Eqs. 8/4 and 8/5 that the sum of two equal-frequency harmon-
ics, such as those in the braces of Eq. 8/11, can be replaced by a
single trigonometric function which involves a phase angle.
Thus, Eq. 8/11 can be written as

or

(8/12)x � Ce���nt sin (�dt � �)

x � {C sin (�dt � �)}e���nt

 � {A3 cos �dt � A4 sin �dt}e���nt

 � {(A1 � A2) cos �dt � i(A1 � A2) sin �dt}e���nt

 x � {A1(cos �dt � i sin �dt) � A2(cos �dt � i sin �dt)}e���nt

x � {A1ei�dt � A2e�i�dt}e���nt

�n�1 � �2.
��1.

x � {A1ei�1��2�nt � A2e�i�1��2�nt}e���nt

e(a�b)

ẋ0
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c = 15 N·s/m (   = 2.5), overdamped

c = 6 N·s/m (   = 1), critically damped

Conditions: m = 1 kg, k = 9 N/m
x0 = 30 mm, x0 = 0

x, mm

t, s
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0
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·
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Equation 8/12 represents an exponentially decreasing harmonic
function, as shown in Fig. 8/6 for specific numerical values. The
frequency

is called the damped natural frequency. The damped period is 
given by �d � 2�/�d �

It is important to note that the expressions developed for the con-
stants C and � in terms of initial conditions for the case of no damping
are not valid for the case of damping. To find C and � if damping is pres-
ent, you must begin anew, setting the general displacement expression
of Eq. 8/12 and its first time derivative, both evaluated at time t � 0,
equal to the initial displacement x0 and initial velocity respectively.

Determination of Damping by Experiment
We often need to experimentally determine the value of the damp-

ing ratio � for an underdamped system. The usual reason is that the
value of the viscous damping coefficient c is not otherwise well known.
To determine the damping, we may excite the system by initial condi-
tions and obtain a plot of the displacement x versus time t, such as that
shown schematically in Fig. 8/7. We then measure two successive ampli-
tudes x1 and x2 a full cycle apart and compute their ratio

The logarithmic decrement � is defined as

From this equation, we may solve for � and obtain

For a small damping ratio, x1 � x2 and � �� 1, so that � � �/2�. If x1

and x2 are so close in value that experimental distinction between them
is impractical, the above analysis may be modified by using two ob-
served amplitudes which are n cycles apart.

� � �

�(2�)2 � �2

� � ln �x1

x2
� � ��n�d � ��n 2�

�n�1 � �2
 � 

2��

�1 � �2

x1

x2
 � Ce���nt1

Ce���n(t1��d)
 � e��n�d

ẋ0,

2�/(�n�1 � �2).

�d � �n�1 � �2
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Conditions: m = 1 kg, k = 36 N/m

x, mm

t, s

c = 1 N·s /m (   = 0.0833)
x0 = 30 mm, x0 = 0
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SAMPLE PROBLEM 8/1

A body weighing 25 lb is suspended from a spring of constant k � 160 lb/ft.
At time t � 0, it has a downward velocity of 2 ft/sec as it passes through the posi-
tion of static equilibrium. Determine

(a) the static spring deflection �st

(b) the natural frequency of the system in both rad/sec (�n) and
cycles/sec (ƒn)

(c) the system period �

(d) the displacement x as a function of time, where x is measured from the
position of static equilibrium

(e) the maximum velocity vmax attained by the mass

(ƒ) the maximum acceleration amax attained by the mass.

Solution. (a) From the spring relationship Fs � kx, we see that at equilibrium

Ans.

(b) Ans.

Ans.

(c) Ans.

(d) From Eq. 8/6:

Ans.

As an exercise, let us determine x from the alternative Eq. 8/7:

(e) The velocity is � 14.36(0.1393) cos 14.36t � 2 cos 14.36t. Because the
cosine function cannot be greater than 1 or less than �1, the maximum velocity
vmax is 2 ft/sec, which, in this case, is the initial velocity. Ans.

(ƒ) The acceleration is

The maximum acceleration amax is 28.7 ft/sec2. Ans.

ẍ � �14.36(2) sin 14.36t � �28.7 sin 14.36t

ẋ

 � 0.1393 sin 14.36t

 � (0) cos 14.36t � 2
14.36

 sin 14.36t

 x � x0 cos �nt � 
ẋ0

�n
 sin �nt

� � 1
ƒn

 � 1
2.28

 � 0.438 sec

mg � k�st   �st � 
mg
k

 � 25
160

 � 0.1562 ft or 1.875 in.
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�

�

k = 160 lb /ft

W = 25 lb

Equilibrium
position

mg

mg

kx

≡

x

stδ

δ
δ

Fs = k  st

k(  st + x)

Helpful Hints

� You should always exercise extreme
caution in the matter of units. In the
subject of vibrations, it is quite easy
to commit errors due to mixing of
feet and inches, cycles and radians,
and other pairs which frequently
enter the calculations.

� Recall that when we refer the mo-
tion to the position of static equilib-
rium, the equation of motion, and
therefore its solution, for the pres-
ent system is identical to that for
the horizontally vibrating system.
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SAMPLE PROBLEM 8/2

The 8-kg body is moved 0.2 m to the right of the equilibrium position and
released from rest at time t � 0. Determine its displacement at time t � 2 s. The
viscous damping coefficient c is 20 and the spring stiffness k is 32 N/m.

Solution. We must first determine whether the system is underdamped, criti-
cally damped, or overdamped. For that purpose, we compute the damping ratio �.

Since � � 1, the system is underdamped. The damped natural frequency is 
�d � � � 1.561 rad/s. The motion is given by Eq. 8/12
and is

The velocity is then

Evaluating the displacement and velocity at time t � 0 gives

Solving the two equations for C and � yields C � 0.256 m and � � 0.896 rad.
Therefore, the displacement in meters is

Evaluation for time t � 2 s gives x2 � �0.01616 m. Ans.

SAMPLE PROBLEM 8/3

The two fixed counterrotating pulleys are driven at the same angular speed
�0. A round bar is placed off center on the pulleys as shown. Determine the nat-
ural frequency of the resulting bar motion. The coefficient of kinetic friction be-
tween the bar and pulleys is �k.

Solution. The free-body diagram of the bar is constructed for an arbitrary dis-
placement x from the central position as shown. The governing equations are

Eliminating NA and NB from the first equation yields

We recognize the form of this equation as that of Eq. 8/2, so that the natural fre-
quency in radians per second is �n � and the natural frequency in cy-
cles per second is

Ans.ƒn � 1
2�

 �2�k g/a

�2�k g/a

ẍ � 
2�k g

a  x � 0

 aNB� �a
2

 � x�mg � 0[ΣMA � 0]

 NA � NB � mg � 0[ΣFy � 0]

 �k NA � �k NB � mẍ[ΣFx � mẍ]

x � 0.256e�1.25t sin (1.561t � 0.896)

x0 � C sin � � 0.2   ẋ0 � �1.25C sin � � 1.561C cos � � 0

ẋ � �1.25Ce�1.25t sin (1.561t � �) � 1.561Ce�1.25t cos (1.561t � �)

x � Ce���nt sin (�dt � �) � Ce�1.25t sin (1.561t � �)

2�1 � (0.625)2�n�1 � �2

�n � �k/m � �32/8 � 2 rad/s   � � c
2m�n

 � 20
2(8)(2)

 � 0.625

N � s/m,
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k

x
c

8 kg

x

Equilibrium
position

mg

N

cx = 20x··

kx = 32x

a0ω 0ω

Central
position

y

a––
2

a––
2x

A BG

NA NBmg

k NAμ k NBμ

�

�

�

Helpful Hint

� We note that the exponential factor
e�1.25t is 0.0821 at t � 2 s. Thus, 
� � 0.625 represents severe damp-
ing, although the motion is still 
oscillatory.

Helpful Hints

� Because the bar is slender and does
not rotate, the use of a moment
equilibrium equation is justified.

� We note that the angular speed �0

does not enter the equation of mo-
tion. The reason for this is our as-
sumption that the kinetic friction
force does not depend on the relative
velocity at the contacting surface.
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PROBLEMS
(Unless otherwise indicated, all motion variables are re-
ferred to the equilibrium position.)

Undamped, Free Vibrations

8/1 When a 3-kg collar is placed upon the pan which is
attached to the spring of unknown constant, the addi-
tional static deflection of the pan is observed to be
40 mm. Determine the spring constant k in N/m, lb/in.,
and lb/ft.

Problem 8/1

8/2 Determine the natural frequency of the spring-mass
system in both rad/sec and cycles/sec (Hz).

Problem 8/2

8/3 For the system of Prob. determine the displace-
ment x of the mass as a function of time if the mass is
released from rest at time from a position 2 in.
to the right of the equilibrium position.

8/4 For the system of Prob. determine the displace-
ment x of the mass as a function of time if the mass is
released at time from a position 2 in. to the left
of the equilibrium position with an initial velocity of

to the right. Determine the amplitude C of
the motion.
7 in./sec

t � 0

8/2,

t � 0

8/2,

x

64.4 lb
k = 24 lb/in.

k

3 kg
40 mm

Article 8/2 Problems 593

8/5 For the spring-mass system shown, determine the
static defection the system period and the maxi-
mum velocity which result if the cylinder is dis-
placed 0.1 m downward from its equilibrium position
and released.

Problem 8/5

8/6 The cylinder of the system of Prob. is displaced
0.1 m downward from its equilibrium position and is
released at time Determine the displacement y
and the velocity when What is the maximum
acceleration?

8/7 The vertical plunger has a mass of 2.5 kg and is sup-
ported by the two springs, which are always in com-
pression. Calculate the natural frequency of
vibration of the plunger if it is deflected from the
equilibrium position and released from rest. Friction
in the guide is negligible.

Problem 8/7

Fixed

2.5 kg

k1 = 3.6 kN/m

k2 = 1.8 kN/m

ƒn

t � 3 s.v
t � 0.

8/5

Equilibrium
position

y

m = 4 kg

k = 144 N/m

vmax

�,�st,
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Problem 8/10

8/11 A conventional spring scale registers the normal
force which it exerts on the feet of the person being
weighed. In the orbital environment aboard the space-
shuttle orbiter, such normal forces do not exist. Use
your knowledge of vibration and explain how an as-
tronaut might “weigh” himself or herself.

8/12 During the design of the spring-support system for
the weighing platform, it is decided that the
frequency of free vertical vibration in the unloaded
condition shall not exceed 3 cycles per second. 
(a) Determine the maximum acceptable spring con-
stant k for each of the three identical springs. (b) For
this spring constant, what would be the natural fre-
quency of vertical vibration of the platform loaded
by the truck?

Problem 8/12

8/13 Replace the springs in each of the two cases shown
by a single spring of stiffness k (equivalent spring
stiffness) which will cause each mass to vibrate with
its original frequency.

Problem 8/13

(a) (b)

k1

k1

k2
k2

4000 kg

k k k

40-Mg
ƒn

4000-kg

Electromagnet
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8/8 If the 100-kg mass has a downward velocity of 
as it passes through its equilibrium position, calculate
the magnitude of its maximum acceleration.
Each of the two springs has a stiffness 

Problem 8/8

8/9 Calculate the natural frequency of vertical oscilla-
tion of the spring-loaded cylinder when it is set into
motion. Both springs are in tension at all times.

Problem 8/9

8/10 An old car being moved by a magnetic crane pickup
is dropped from a short distance above the ground.
Neglect any damping effects of its worn-out shock
absorbers and calculate the natural frequency in
cycles per second of the vertical vibration which
occurs after impact with the ground. Each of the
four springs on the car has a constant of

Because the center of mass is located
midway between the axles and the car is level when
dropped, there is no rotational motion. State any
assumptions.

17.5 kN/m.
1000-kg

(Hz)
ƒn

10 kg

k = 3000 N/m

k = 3000 N/m

ƒn

k k

100 kg

k � 180 kN/m.
amax

0.5 m/s
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8/14 With the assumption of no slipping, determine the
mass m of the block which must be placed on the top
of the cart in order that the system period be

What is the minimum coefficient of static
friction for which the block will not slip relative to
the cart if the cart is displaced 50 mm from the equi-
librium position and released?

Problem 8/14

8/15 An energy-absorbing car bumper with its springs ini-
tially undeformed has an equivalent spring constant of

If the car approaches a massive
wall with a speed of determine (a) the velocity

of the car as a function of time during contact with
the wall, where is the beginning of the impact,
and (b) the maximum deflection of the bumper.

Problem 8/15

8/16 A woman stands in the center of an end-
supported board and causes a midspan deflection of
0.9 in. If she flexes her kness slightly in order to
cause a vertical vibration, what is the frequency 
of the motion? Assume elastic response of the board
and neglect its relatively small mass.

Problem 8/16

0.9″

ƒn

120-lb

5 mi/hr

xmax

t � 0
v

5 mi/hr,
2500-lb3000 lb/in.

600 N/m
6 kg

m sμ

	s0.75 s.
6-kg
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8/17 A small particle of mass m is attached to two highly
tensioned wires as shown. Determine the system
natural frequency for small vertical oscillations if
the tension T in both wires is assumed to be con-
stant. Is the calculation of the small static deflection
of the particle necessary?

Problem 8/17

8/18 The cylindrical buoy floats in salt water (density
) and has a mass of 800 kg with a low cen-

ter of mass to keep it stable in the upright position.
Determine the frequency of vertical oscillation of
the buoy. Assume that the water level remains undis-
turbed adjacent to the buoy.

Problem 8/18

8/19 Shown in the figure is a model of a one-story build-
ing. The bar of mass m is supported by two light elas-
tic upright columns whose upper and lower ends are
fixed against rotation. For each column, if a force P
and corresponding moment M were applied as shown
in the right-hand part of the figure, the deflection 
would be given by where L is the effec-
tive column length, E is Young’s modulus, and I is
the area moment of inertia of the column cross sec-
tion with respect to its neutral axis. Determine the
natural frequency of horizontal oscillation of the bar
when the columns bend as shown in the figure.

Problem 8/19

Mm

Ground level

k k

P

δ

L

� � PL3/12EI,
�

0.6 m

ƒn

1030 kg/m3

m

ll

�n
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Problem 8/22

8/23 Calculate the natural circular frequency of the
system shown in the figure. The mass and friction of
the pulleys are negligible.

Problem 8/23

8/24 Derive the differential equation of motion for the
system shown in terms of the variable The mass
of the linkage is negligible. State the natural fre-
quency in rad/s for the case and

Assume small oscillations throughout.

Problem 8/24

x1

k1

m1

x2

k2

m2

a

b

B

A

O

m1 � m2 � m.
k1 � k2 � k�n�

x1.

k

θ

m

m

�n

k

m

b c b c
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8/20 A piece of putty is dropped 2 m onto the initially
stationary block, which is supported by four
springs, each of which has a constant 
Determine the displacement x as a function of time
during the resulting vibration, where x is measured
from the initial position of the block as shown.

Problem 8/20

8/21 Calculate the frequency of vertical oscillation of
the block when it is set in motion. Each spring
has a stiffness of Neglect the mass of the
pulleys.

Problem 8/21

8/22 The weighing platform has a mass m and is con-
nected to the spring of stiffness k by the system of
levers shown. Derive the differential equation for
small vertical oscillations of the platform and find
the period Designate as the platform displace-
ment from the equilibrium position and neglect the
mass of the levers.

y�.

k k

50 lb

6 lb/in.
50-lb

ƒn

28 kg

3 kg

x

k k

2 m

k � 800 N/m.
28-kg

3-kg
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Damped, Free Vibrations

8/25 Determine the value of the damping ratio for the
simple spring-mass-dashpot system shown.

Problem 8/25

8/26 The period of damped linear oscillation for a cer-
tain mass is 0.3 s. If the stiffness of the sup-
porting linear spring is calculate the
damping coefficient 

8/27 Viscous damping is added to an initially undamped
spring-mass system. For what value of the damping
ratio will the damped natural frequency be
equal to 90 percent of the natural frequency of the
original undamped system?

8/28 The addition of damping to an undamped spring-
mass system causes its period to increase by 25 per-
cent. Determine the damping ratio 

8/29 Determine the value of the viscous damping coeffi-
cient c for which the system shown is critically
damped.

Problem 8/29

c

80 lb

200 lb/in.

�.

�d�

c.
800 N/m,

1-kg
�d

x

k = 392 N/m

c = 42 N·s/m

2 kg

�
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8/30 The spring-supported cylinder is set into free
vertical vibration and is observed to have a period of
0.75 s in part (a) of the figure. The system is then
completely immersed in an oil bath in part (b) of the
figure, and the cylinder is displaced from its equilib-
rium position and released. Viscous damping ensues,
and the ratio of two successive positive-displacement
amplitudes is 4. Calculate the viscous damping ratio

the viscous damping constant c, and the equiva-
lent spring constant k.

Problem 8/30

8/31 The figure represents the measured displacement-
time relationship for a vibration with small damping
where it is impractical to achieve accurate results by
measuring the nearly equal amplitudes of two suc-
cessive cycles. Modify the expression for the viscous
damping factor based on the measured amplitudes

and which are N cycles apart.

Problem 8/31

x

t

x0

t0 t1 t2 tN tN+1

xN

xNx0

�

2.5
kg

2.5
kg

Oil

(a) (b)

�,

2.5-kg
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8/36 The system shown is released from rest from an initial
position Determine the overshoot displacement 
Assume translational motion in the x-direction.

Problem 8/36

8/37 The mass of a given critically damped system is re-
leased at time from the position with a
negative initial velocity. Determine the critical value

of the initial velocity below which the mass will
pass through the equilibrium position.

8/38 The mass of the system shown is released from rest at
in. when Determine the displacement x at

if (a) and (b)

Problem 8/38

8/39 The cannon fires a cannonball with an absolute
velocity of at to the horizontal. The
combined weight of the cannon and its cart is 1610 lb.
If the recoil mechanism consists of the spring of con-
stant and the damper with viscous
coefficient determine the maximum
recoil deflection of the cannon unit.

Problem 8/39

k

c

m

20°

800 ft/sec

xmax

c � 600 lb-sec/ft,
k � 150 lb/in.

20�800 ft/sec
10-lb

x
c

W = 96.6 lb

k = 1 lb/in.

c � 18 lb-sec/ft.c � 12 lb-sec/ftt � 0.5 sec
t � 0.x0 � 6

(ẋ0)c

x0 � 0t � 0

0

x0

x

x1

t
0

c = 18 N·s/m

m = 3 kg

k = 108 N/m

x

x1.x0.
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8/32 The mass of Prob. is released from rest at
a distance to the right of the equilibrium position.
Determine the displacement x as a function of time t,
where is the time of release.

8/33 A damped spring-mass system is released from rest
from a positive initial displacement If the suc-
ceeding maximum positive displacement is de-
termine the damping ratio of the system.

Problem 8/33

8/34 Determine the values of the viscous damping coeffi-
cient for which the system has a damping ratio of
(a) 0.5 and (b) 1.5.

Problem 8/34

8/35 Further design refinement for the weighing platform
of Prob. 8/12 is shown here where two viscous
dampers are to be added to limit the ratio of succes-
sive positive amplitudes of vertical vibration in the
unloaded condition to 4. Determine the necessary
viscous damping coefficient c for each of the dampers.

Problem 8/35

4000 kg

k

c c

k k

c

c
15 lb/in.

40 lb

20°

c

t

x

0
0

x0

x0/2

�

x0/2,
x0.

t � 0

x0

8/252-kg
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8/40 The owner of a pickup truck tests the action
of his rear-wheel shock absorbers by applying a
steady force to the rear bumper and measur-
ing a static deflection of 3 in. Upon sudden release of
the force, the bumper rises and then falls to a maxi-
mum of in. below the unloaded equilibrium posi-
tion of the bumper on the first rebound. Treat the
action as a one-dimensional problem with an equiva-
lent mass of half the truck mass. Find the viscous
damping factor for the rear end and the viscous
damping coefficient for each shock absorber assum-
ing its action to be vertical.

Problem 8/40

8/41 Determine the damping ratio of the system depicted
in the figure. The mass and friction of the pulleys are
negligible, and the cable remains taut at all times.

Problem 8/41

8/42 Derive the differential equation of motion for the
system shown in its equilibrium position. Neglect
the mass of link AB and assume small oscillations.

c

m2 θ

m1

k

�

Equil.
position

100 lb

3″

⎫
⎬
⎭

c
�

1
2

100-lb

3400-lb
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Problem 8/42

8/43 Develop the equation of motion in terms of the vari-
able x for the system shown. Determine an expres-
sion for the damping ratio in terms of the given
system properties. Neglect the mass of the crank AB
and assume small oscillations about the equilibrium
position shown.

Problem 8/43

8/44 Investigate the case of Coulomb damping for the
block shown, where the coefficient of kinetic friction 
is and each spring has a stiffness The block 
is displaced a distance from the neutral position
and released. Determine and solve the differential
equation of motion. Plot the resulting vibration and
indicate the rate r of decay of the amplitude with time.

Problem 8/44

k/2 k/2
m

y

x

kμ

x0

k/2.	k

k

m

c

O

a

b

B

A

x

�

x

k

m1m2

c

O

a
A B

b

�
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8/3 Forced Vibration of Particles
Although there are many significant applications of free vibrations,

the most important class of vibration problems is that where the motion
is continuously excited by a disturbing force. The force may be exter-
nally applied or may be generated within the system by such means as
unbalanced rotating parts. Forced vibrations may also be excited by the
motion of the system foundation.

Harmonic Excitation
Various forms of forcing functions F � F(t) and foundation displace-

ments xB � xB(t) are depicted in Fig. 8/8. The harmonic force shown in
part a of the figure occurs frequently in engineering practice, and the
understanding of the analysis associated with harmonic forces is a nec-
essary first step in the study of more complex forms. For this reason, we
will focus our attention on harmonic excitation.

We first consider the system of Fig. 8/9a, where the body is subjected
to the external harmonic force F � F0 sin �t, in which F0 is the force am-
plitude and � is the driving frequency (in radians per second). Be sure to
distinguish between �n � which is a property of the system, and �,
which is a property of the force applied to the system. We also note that
for a force F � F0 cos �t, one merely substitutes cos �t for sin �t in the re-
sults about to be developed.

�k/m,
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F(t) or xB(t)

(a) Harmonic

(b) Periodic Nonharmonic

(c) Nonperiodic
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F(t) or xB(t)
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GeneralHalf sine

Step Ramp Cycloidal Impulse Random
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Figure 8/8

An automobile undergoing vibration
testing of its suspension system.
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From the free-body diagram of Fig. 8/9a, we may apply Newton’s
second law to obtain

In standard form, with the same variable substitutions made in Art. 8/2,
the equation of motion becomes

(8/13)

Base Excitation
In many cases, the excitation of the mass is due not to a directly ap-

plied force but to the movement of the base or foundation to which the
mass is connected by springs or other compliant mountings. Examples
of such applications are seismographs, vehicle suspensions, and struc-
tures shaken by earthquakes.

Harmonic movement of the base is equivalent to the direct applica-
tion of a harmonic force. To show this, consider the system of Fig. 8/9b
where the spring is attached to the movable base. The free-body dia-
gram shows the mass displaced a distance x from the neutral or equilib-
rium position it would have if the base were in its neutral position. The
base, in turn, is assumed to have a harmonic movement xB � b sin �t.
Note that the spring deflection is the difference between the inertial dis-
placements of the mass and the base. From the free-body diagram, New-
ton’s second law gives

or (8/14)

We see immediately that Eq. 8/14 is exactly the same as our basic equa-
tion of motion, Eq. 8/13, in that F0 is replaced by kb. Consequently, all
the results about to be developed apply to either Eq. 8/13 or 8/14.

Undamped Forced Vibration
First, we treat the case where damping is negligible (c � 0). Our

basic equation of motion, Eq. 8/13, becomes

(8/15)

The complete solution to Eq. 8/15 is the sum of the complementary
solution xc, which is the general solution of Eq. 8/15 with the right side
set to zero, and the particular solution xp, which is any solution to the
complete equation. Thus, x � xc � xp. We developed the complementary
solution in Art. 8/2. A particular solution is investigated by assuming

ẍ � �n 

2x � 
F0

m
 sin �t

ẍ � 2��nẋ � �n 

2x � kb sin �t
m

�k(x � xB) � cẋ � mẍ

ẍ � 2��nẋ � �n 

2x � 
F0 sin �t

m

�kx � cẋ � F0 sin �t � mẍ
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x

kc
m

F = F0 sin    tω

F0 sin    tω

(a)

(b)

m kxcx·

x

k
B

Neutral
position

xB = b sin    tω

c
m

m k(x – xB)cx·

Figure 8/9
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that the form of the response to the force should resemble that of the
force term. To that end, we assume

(8/16)

where X is the amplitude (in units of length) of the particular solution.
Substituting this expression into Eq. 8/15 and solving for X yield

(8/17)

Thus, the particular solution becomes

(8/18)

The complementary solution, known as the transient solution, is of
no special interest here since, with time, it dies out with the small
amount of damping which is always unavoidably present. The particular
solution xp describes the continuing motion and is called the steady-state
solution. Its period is � � 2�/�, the same as that of the forcing function.

Of primary interest is the amplitude X of the motion. If we let �st

stand for the magnitude of the static deflection of the mass under a sta-
tic load F0, then �st � F0 /k, and we may form the ratio

(8/19)

The ratio M is called the amplitude ratio or magnification factor and is a
measure of the severity of the vibration. We especially note that M ap-
proaches infinity as � approaches �n. Consequently, if the system pos-
sesses no damping and is excited by a harmonic force whose frequency �
approaches the natural frequency �n of the system, then M, and thus X,
increase without limit. Physically, this means that the motion ampli-
tude would reach the limits of the attached spring, which is a condition
to be avoided.

The value �n is called the resonant or critical frequency of the sys-
tem, and the condition of � being close in value to �n with the resulting
large displacement amplitude X is called resonance. For � � �n, the
magnification factor M is positive, and the vibration is in phase with the
force F. For � � �n, the magnification factor is negative, and the vibra-
tion is 180� out of phase with F. Figure 8/10 shows a plot of the absolute
value of M as a function of the driving-frequency ratio �/�n.

Damped Forced Vibration
We now reintroduce damping in our expressions for forced vibra-

tion. Our basic differential equation of motion is

[8/13]

Again, the complete solution is the sum of the complementary solution
xc, which is the general solution of Eq. 8/13 with the right side equal to

ẍ � 2��nẋ � �n 

2x � 
F0 sin �t

m

M � X
�st

 � 1
1 � (�/�n)2

xp � 
F0 /k

1 � (�/�n)2
 sin �t

X � 
F0 /k

1 � (�/�n)2

xp � X sin �t
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zero, and the particular solution xp, which is any solution to the com-
plete equation. We have already developed the complementary solution
xc in Art. 8/2. When damping is present, we find that a single sine or co-
sine term, such as we were able to use for the undamped case, is not suf-
ficiently general for the particular solution. So we try

Substitute the latter expression into Eq. 8/13, match coefficients of sin �t
and cos �t, and solve the resulting two equations to obtain

(8/20)

(8/21)

The complete solution is now known, and for underdamped systems it
can be written as

(8/22)

Because the first term on the right side diminishes with time, it is
known as the transient solution. The particular solution xp is the steady-
state solution and is the part of the solution in which we are primarily
interested. All quantities on the right side of Eq. 8/22 are properties of
the system and the applied force, except for C and � (which are deter-
minable from initial conditions) and the running time variable t.

x � Ce���nt sin (�d 

t � �) � X sin (�t � 
)

 
 � tan�1 � 2��/�n

1 � (�/�n)2�

 X � 
F0 /k

{[1 � (�/�n)2]2 � [2��/�n]2}1/2

xp � X1 cos �t � X2 sin �t   or   xp � X sin (�t � 
)
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KEY CONCEPTS
Magnification Factor and Phase Angle

Near resonance the magnitude X of the steady-state solution is a
strong function of the damping ratio � and the nondimensional fre-
quency ratio �/�n. It is again convenient to form the nondimensional ratio 
M � X/(F0/k), which is called the amplitude ratio or magnification factor

(8/23)

An accurate plot of the magnification factor M versus the frequency
ratio �/�n for various values of the damping ratio � is shown in Fig. 8/11.
This figure reveals the most essential information pertinent to the forced
vibration of a single-degree-of-freedom system under harmonic excitation.
It is clear from the graph that, if a motion amplitude is excessive, two possi-
ble remedies would be to (a) increase the damping (to obtain a larger value
of �) or (b) alter the driving frequency so that � is farther from the resonant
frequency �n. The addition of damping is most effective near resonance.
Figure 8/11 also shows that, except for � � 0, the magnification-factor
curves do not actually peak at �/�n � 1. The peak for any given value of �
can be calculated by finding the maximum value of M from Eq. 8/23.

M � 1
{[1 � (�/�n)2]2 � [2��/�n]2}1/2
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The phase angle 
, given by Eq. 8/21, can vary from 0 to � and rep-
resents the part of a cycle (and thus the time) by which the response xp

lags the forcing function F. Figure 8/12 shows how the phase angle 


varies with the frequency ratio for various values of the damping ratio �.
Note that the value of 
 when �/�n � 1 is 90� for all values of �. To fur-
ther illustrate the phase difference between the response and the forc-
ing function, we show in Fig. 8/13 two examples of the variation of F
and xp with �t. In the first example, � � �n and 
 is taken to be �/4. In
the second example, � � �n and 
 is taken to be 3�/4.
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Applications
Vibration-measuring instruments such as seismometers and ac-

celerometers are frequently encountered applications of harmonic exci-
tation. The elements of this class of instruments are shown in Fig.
8/14a. We note that the entire system is subjected to the motion xB of
the frame. Letting x denote the position of the mass relative to the
frame, we may apply Newton’s second law and obtain

where (x � xB) is the inertial displacement of the mass. If xB � b sin �t,
then our equation of motion with the usual notation is

which is the same as Eq. 8/13 if b�2 is substituted for F0/m.
Again, we are interested only in the steady-state solution xp. Thus,

from Eq. 8/20, we have

If X represents the amplitude of the relative response xp, then the
nondimensional ratio X/b is

where M is the magnification ratio of Eq. 8/23. A plot of X/b as a func-
tion of the driving-frequency ratio �/�n is shown in Fig. 8/14b. The simi-
larities and differences between the magnification ratios of Figs. 8/14b
and 8/11 should be noted.

X/b � (�/�n)2M

xp � 
b(�/�n)2

{[1 � (�/�n)2]2 � [2��/�n]2}1/2
 sin (�t � 
)

ẍ � 2��nẋ � �n 

2x � b�2 sin �t

�cẋ � kx � m d2

dt2
 (x � xB)   or   ẍ � c

m ẋ � k
m x � �ẍB
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If the frequency ratio �/�n is large, then X/b � 1 for all values of the
damping ratio �. Under these conditions, the displacement of the mass
relative to the frame is approximately the same as the absolute displace-
ment of the frame, and the instrument acts as a displacement meter. To
obtain a high value of �/�n, we need a small value of �n � which
means a soft spring and a large mass. With such a combination, the
mass will tend to stay inertially fixed. Displacement meters generally
have very light damping.

On the other hand, if the frequency ratio �/�n is small, then M ap-
proaches unity (see Fig. 8/11) and X/b � (�/�n)2 or X � b(�/�n)2. But b�2

is the maximum acceleration of the frame. Thus, X is proportional to the
maximum acceleration of the frame, and the instrument may be used as
an accelerometer. The damping ratio is generally selected so that M ap-
proximates unity over the widest possible range of �/�n. From Fig. 8/11,
we see that a damping factor somewhere between � � 0.5 and � � 1
would meet this criterion.

Electric Circuit Analogy
An important analogy exists between electric circuits and mechani-

cal spring-mass systems. Figure 8/15 shows a series circuit consisting of
a voltage E which is a function of time, an inductance L, a capacitance
C, and a resistance R. If we denote the charge by the symbol q, the equa-
tion which governs the charge is

(8/24)

This equation has the same form as the equation for the mechanical sys-
tem. Thus, by a simple interchange of symbols, the behavior of the elec-
trical circuit may be used to predict the behavior of the mechanical
system, or vice versa. The mechanical and electrical equivalents in the
following table are worth noting:

Lq̈ � Rq̇ � 1
C

 q � E

�k/m,
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MECHANICAL-ELECTRICAL EQUIVALENTS
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SAMPLE PROBLEM 8/4

A 50-kg instrument is supported by four springs, each of stiffness 7500 N/m.
If the instrument foundation undergoes harmonic motion given in meters by
xB � 0.002 cos 50t, determine the amplitude of the steady-state motion of the in-
strument. Damping is negligible.

Solution. For harmonic oscillation of the base, we substitute kb for F0 in our par-
ticular-solution results, so that, from Eq. 8/17, the steady-state amplitude becomes

The resonant frequency is �n � � � 24.5 rad/s, and the im-
pressed frequency � � 50 rad/s is given. Thus,

Ans.

Note that the frequency ratio �/�n is approximately 2, so that the condition of
resonance is avoided.

SAMPLE PROBLEM 8/5

The spring attachment point B is given a horizontal motion xB � b cos �t.
Determine the critical driving frequency �c for which the oscillations of the mass
m tend to become excessively large. Neglect the friction and mass associated
with the pulleys. The two springs have the same stiffness k.

Solution. The free-body diagram is drawn for arbitrary positive displacements
x and xB. The motion variable x is measured downward from the position of sta-
tic equilibrium defined as that which exists when xB � 0. The additional stretch
in the upper spring, beyond that which exists at static equilibrium, is 2x � xB.
Therefore, the dynamic spring force in the upper spring, and hence the dynamic
tension T in the cable, is k(2x � xB). Summing forces in the x-direction gives

which becomes

The natural frequency of the system is �n � Thus,

Ans.�c� �n � �5k/m

�5k/m.

 ẍ � 5k
m

 x � 2kb cos �t
m

�2k(2x � xB) � kx � mẍ[ΣFx � mẍ]

X � 0.002
1 � (50/24.5)2

 � �6.32(10�4) m   or   �0.632 mm

�4(7500)/50�k/m

X � b
1 � (�/�n)2
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xB = b cos tω

k

k

B

T T

Equilibrium
position

Neutral position

x m

kx
(Dynamic forces only)

�

�

�

�

Helpful Hints

� Note that either sin 50 t or cos 50 t
can be used for the forcing function
with this same result.

� The minus sign indicates that the
motion is 180� out of phase with the
applied excitation.

Helpful Hints

� If a review of the kinematics of con-
strained motion is necessary, see
Art. 2/9.

� We learned from the discussion in
Art. 8/2 that the equal and opposite
forces associated with the position of
static equilibrium may be omitted
from the analysis. Our use of the
terms dynamic spring force and dy-
namic tension stresses that only the
force increments in addition to the
static values need be considered.
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SAMPLE PROBLEM 8/6

The 100-lb piston is supported by a spring of modulus k � 200 lb/in. A dash-
pot of damping coefficient c � 85 lb-sec/ft acts in parallel with the spring. A fluc-
tuating pressure p � 0.625 sin 30t in lb/in.2 acts on the piston, whose top surface
area is 80 in.2 Determine the steady-state displacement as a function of time and
the maximum force transmitted to the base.

Solution. We begin by computing the system natural frequency and damping
ratio:

The steady-state amplitude, from Eq. 8/20, is

The phase angle, from Eq. 8/21, is

The steady-state motion is then given by the second term on the right side of
Eq. 8/22:

Ans.

The force Ftr transmitted to the base is the sum of the spring and damper
forces, or

The maximum value of Ftr is

Ans. � 67.9 lb

 � 0.01938�[(200)(12)]2 � (85)2(30)2

 (Ftr)max � �(kX)2 � (c�X)2 � X�k2 � c2�2

Ftr � kxp � cẋp � kX sin (�t � 
) � c�X cos (�t � 
)

xp � X sin (�t � 
) � 0.01938 sin (30t � 1.724) ft

 � 1.724 rad

 � tan�1 �2(0.492)(30/27.8)
1 � (30/27.8)2 �

 
 � tan�1 � 2��/�n

1 � (�/�n)2�

 � 0.01938 ft

 � 
(0.625)(80)/[(200)(12)]

{[1 � (30/27.8)2]2 � [2(0.492)(30/27.8)]2}1/2

 X � 
F0 /k

{[1 � (�/�n)2]2 � [2��/�n]2}1/2

 � � c
2m�n

 � 85

2�100
32.2�(27.8)

 � 0.492 (underdamped)
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k

W

p = p0 sin ωt

c

Equilibrium
position

kx

x

(Dynamic forces only)
cx·

F = pA sin tω

�

�

�

Helpful Hints

� You are encouraged to repeat these
calculations with the damping coeffi-
cient c set to zero so as to observe
the influence of the relatively large
amount of damping present.

� Note that the argument of the in-
verse tangent expression for 
 has a
positive numerator and a negative
denominator for the case at hand,
thus placing 
 in the second quad-
rant. Recall that the defined range
of 
 is 0 � 
 � �.
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PROBLEMS
(Unless otherwise instructed, assume that the damping is
light to moderate so that the amplitude of the forced re-
sponse is a maximum at )

Introductory Problems

8/45 Determine the amplitude X of the steady-state motion
of the mass if (a) and (b)

Problem 8/45

8/46 A viscously damped spring-mass system is excited by
a harmonic force of constant amplitude but vary-
ing frequency If the amplitude of the steady-state
motion is observed to decrease by a factor of 8 as the
frequency ratio is varied from 1 to 2, determine
the damping ratio of the system.

8/47 The cart is acted upon by the harmonic force
shown in the figure. If determine the range of
the driving frequency for which the magnitude of
the steady-state response is less than 3 in.

Problem 8/47

8/48 If the viscous damping coefficient of the damper in
the system of Prob. 8/47 is deter-
mine the range of the driving frequency for which
the magnitude of the steady-state response is less
than 3 in.

8/49 If the driving frequency for the system of Prob. 
is determine the required value of the
damping coefficient if the steady-state amplitude is
not to exceed 3 in.

c
� � 6 rad/sec,

8/47

�

c � 2.4 lb-sec/ft,

c

k = 6 lb/in.

F = 5 cos t lbω64.4 lb

�

c � 0,
64.4-lb

�

�/�n

�.
F0

m = 10 kg

k = 100 kN/m

F = 1000 cos 120t N

c

c � 0.c � 500 N � s/m10-kg

�/�n � 1.
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8/50 The block of weight is suspended by two
springs each of stiffness and is acted
upon by the force where t is the
time in seconds. Determine the amplitude X of the
steady-state motion if the viscous damping coeffi-
cient c is (a) 0 and (b) Compare these
amplitudes to the static spring deflection 

Problem 8/50

8/51 An external force sin is applied to the
cylinder as shown. What value of the driving fre-
quency would cause excessively large oscillations of
the system?

Problem 8/51

8/52 A viscously damped spring-mass system is forced
harmonically at the undamped natural frequency

If the damping ratio is doubled from 0.1
to 0.2, compute the percentage reduction in the
steady-state amplitude. Compare with the result 
of a similar calculation for the condition 
Verify your results by inspecting Fig. 8/11.

�/�n � 2.
R2

R1

�(�/�n � 1).

F

m

k

2m

�c

�tF � F0

F

k c k

W

�st.
60 lb-sec/ft.

F � 75 cos 15t lb
k � 200 lb/ft

W � 100 lb
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8/57 The variable-speed motorized unit is re-
strained in the horizontal direction by two springs,
each of which has a stiffness of Each of
the two dashpots has a viscous damping coefficient

In what ranges of speeds N can the
motor be run for which the magnification factor 
will not exceed 2?

Problem 8/57

8/58 When the person stands in the center of the floor
system shown, he causes a static deflection of the
floor under his feet. If he walks (or runs quickly!) in
the same area, how many steps per second would
cause the floor to vibrate with the greatest vertical
amplitude?

Problem 8/58

�st

k k

c c

N

M
c � 58 N � s/m.

2.1 kN/m.

20-kg
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Representative Problems

8/53 A linear spring-mass oscillator has a viscous damp-
ing factor and an undamped natural fre-
quency By referring to Fig. estimate
the range of frequencies ƒ of the periodic applied
force for which the amplitude of the oscillator will
not exceed twice the static deflection which would be
caused by applying a static force equal in magnitude
to that of the periodic force. Check your estimate by
applying Eq. 

8/54 It was noted in the text that the maxima of the
curves for the magnification factor M are not located
at Determine an expression in terms of the
damping ratio for the frequency ratio at which the
maxima occur.

8/55 Each ball is attached to the end of the light
elastic rod and deflects 4 mm when a force is
statically applied to the ball. If the central collar is
given a vertical harmonic movement with a fre-
quency of 4 Hz and an amplitude of 3 mm, find the
amplitude of vertical vibration of each ball.

Problem 8/55

8/56 The motion of the outer frame B is given by 
b sin For what range of the driving frequency is
the amplitude of the motion of the mass m relative
to the frame less than 2b?

Problem 8/56

m

B

k/2k/2

xB = b sin tω

��t.
xB �

0.5 kg 0.5 kg

y0

2-N
0.5-kg

�

�/�n � 1.

8/23.

8/11,ƒn � 6 Hz.
� � 0.2
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8/59 The instrument shown has a mass of 43 kg and is
spring-mounted to the horizontal base. If the ampli-
tude of vertical vibration of the base is 0.10 mm, cal-
culate the range of frequencies of the base
vibration which must be prohibited if the amplitude
of vertical vibration of the instrument is not to ex-
ceed 0.15 mm. Each of the four identical springs has
a stiffness of 

Problem 8/59

8/60 Attachment B is given a horizontal motion 
Derive the equation of motion for the mass

m and state the critical frequency for which the
oscillations of the mass become excessively large.

Problem 8/60

8/61 Attachment B is given a horizontal motion 
Derive the equation of motion for the mass

m and state the critical frequency for which the
oscillations of the mass become excessively large.
What is the damping ratio for the system?

Problem 8/61

k

c1
c2

m

x

B

xB = b cos tω

�

�c

b cos �t.
xB �

c

k1

k2

m

x

B

xB = b cos tω

�c

b cos �t.
xB �

xB

7.2 kN/m.

ƒn
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8/62 Derive an expression for the transmission ratio for
the system of the figure. This ratio is defined as the
maximum force transmitted to the base divided by
the amplitude of the forcing function. Express
your answer in terms of and the magnifica-
tion factor M.

Problem 8/62

8/63 A device to produce vibrations consists of the two
counter-rotating wheels, each carrying an eccentric
mass with a center of mass at a distance

from its axis of rotation. The wheels are
synchronized so that the vertical positions of the un-
balanced masses are always identical. The total mass
of the device is 10 kg. Determine the two possible
values of the equivalent spring constant for the
mounting which will permit the amplitude of the pe-
riodic force transmitted to the fixed mounting to be
1500 N due to the imbalance of the rotors at a speed
of Neglect damping.

Problem 8/63

θ θ

ω ω

e e
m0 m0

1800 rev/min.

k

e � 12 mm
m0 � 1 kg

c k

F = F0 sin tω

m

Base

�n,�,�,
F0

T
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Problem 8/67

8/68 The seismic instrument is mounted on a structure
which has a vertical vibration with a frequency of 
5 Hz and a double amplitude of 18 mm. The sensing
element has a mass and the spring stiff-
ness is The motion of the mass rela-
tive to the instrument base is recorded on a revolving
drum and shows a double amplitude of 24 mm during
the steady-state condition. Calculate the viscous
damping constant c.

Problem 8/68

Structure

24 mm

D

c

2 kg

k =
1.5 kN/m

k � 1.5 kN/m.
m � 2 kg,

C

O

a

m

x

c

k2

k1

b

A

xB = b0 cos t ω
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8/64 The seismic instrument shown is attached to a struc-
ture which has a horizontal harmonic vibration at 
3 Hz. The instrument has a mass a spring
stiffness and a viscous damping coeffi-
cient If the maximum recorded value of
x in its steady-state motion is determine
the amplitude b of the horizontal movement of
the structure.

Problem 8/64

8/65 A device similar to that shown in Prob. is to be
used to measure the horizontal acceleration of the
structure which is vibrating with a frequency of 5 Hz.
The mass is the spring constant is

and the damping factor is If
the amplitude of x is 4.0 mm, approximate the maxi-
mum acceleration of the structure.

8/66 Derive and solve the equation of motion for the mass
which is subjected to the suddenly applied force F
that remains constant after application. The dis-
placement and velocity of the mass are both zero at
time Plot versus for several motion cycles.

Problem 8/66

8/67 Derive and solve the equation of motion for the mass
m in terms of the variable x for the system shown.
Neglect the mass of the lever AOC and assume small
oscillations.

txt � 0.

amax

� � 0.75.k � 150 N/m,
m � 0.008 kg,

8/64

x xB

kc

Structure

m

xB

X � 2 mm,
c � 3 N � s/m.

k � 20 N/m,
m � 0.5 kg,

Force F

k
F

m

Time, t
0

0

F0
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8/69 Determine the amplitude of vertical vibration of the
spring-mounted trailer as it travels at a velocity of

over the corduroy road whose contour may
be expressed by a sine or cosine term. The mass of
the trailer is 500 kg and that of the wheels alone
may be neglected. During the loading, each 75 kg
added to the load caused the trailer to sag 3 mm on
its springs. Assume that the wheels are in contact
with the road at all times and neglect damping. At
what critical speed is the vibration of the trailer
greatest?

Problem 8/69

1.2 m

50 mm

vc

25 km/h
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8/70 Derive the expression for the power loss P averaged
over a complete steady-state cycle due to the fric-
tional dissipation of energy in a viscously damped
linear oscillator. The forcing function is 
and the displacement-time relation for steady-state
motion is where the amplitude X
is given by Eq. (Hint: The frictional energy loss
during a displacement is where is the vis-
cous damping coefficient. Integrate this expression
over a complete cycle and divide by the period of the
cycle.)

ccẋ dx,dx
8/20.

xP � X sin (�t � 
)

F0 sin �t,

� �
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8/4 Vibration of Rigid Bodies
The subject of planar rigid-body vibrations is entirely analogous to

that of particle vibrations. In particle vibrations, the variable of interest is
one of translation (x), while in rigid-body vibrations, the variable of pri-
mary concern may be one of rotation (�). Thus, the principles of rotational
dynamics play a central role in the development of the equation of motion.

We will see that the equation of motion for rotational vibration of
rigid bodies has a mathematical form identical to that developed in Arts.
8/2 and 8/3 for translational vibration of particles. As was the case with
particles, it is convenient to draw the free-body diagram for an arbitrary
positive value of the displacement variable, because a negative displace-
ment value easily leads to sign errors in the equation of motion. The
practice of measuring the displacement from the position of static equi-
librium rather than from the position of zero spring deflection continues
to simplify the formulation for linear systems because the equal and op-
posite forces and moments associated with the static equilibrium posi-
tion cancel from the analysis.

Rather than individually treating the cases of (a) free vibration, un-
damped and damped, and (b) forced vibrations, undamped and damped,
as was done with particles in Arts. 8/2 and 8/3, we will go directly to the
damped, forced problem.

Rotational Vibration of a Bar
As an illustrative example, consider the rotational vibration of the

uniform slender bar of Fig. 8/16a. Figure 8/16b depicts the free-body dia-
gram associated with the horizontal position of static equilibrium.
Equating to zero the moment sum about O yields

where P is the magnitude of the static spring force.
Figure 8/16c depicts the free-body diagram associated with an arbi-

trary positive angular displacement �. Using the equation of rotational
motion ΣMO � as developed in Chapter 6, we write

where IO � � md2 � ml2/12 � m(l/6)2 � ml2/9 is obtained from the
parallel-axis theorem for mass moments of inertia.

For small angular deflections, the approximations sin � � � and 
cos � � 1 may be used. With P � mg/4, the equation of motion, upon re-
arrangement and simplification, becomes

(8/25)�̈  � c
m

 �̇  � 4 k
m

 � � 
(F0 l/3) cos �t

ml2/9

I

 � (F0 cos �t)� l
3

 cos �� � 1
9

 ml2 �̈

 (mg)� l
6

 cos �� � �cl
3

 �̇  cos ��� l
3

 cos �� � �P � k 2l
3

 sin ���2l
3

 cos ��

IO �̈

�P� l
2

 � l
6� � mg� l

6� � 0   P � 
mg
4
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O′y

O′x = 0

Oy

O

mg

mgP

(c)

(b)

(a)

Ox

F0 cos tω

θ

P + k sin2l—
3

θ
c ) =( cosd—

dt
l—
3

cl—
3

θsin θ ·θ

F0 cos tω

l—
3

l—
3

l—
3

l—
2

l–
6

k c
m

O

Figure 8/16
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The right side has been left unsimplified in the form M0(cos �t)/IO,
where M0 � F0l/3 is the magnitude of the moment about point O of the
externally applied force. Note that the two equal and opposite mo-
ments associated with static equilibrium forces canceled on the left
side of the equation of motion. Thus, it is not necessary to include the
static-equilibrium forces and moments in the analysis.

Rotational Counterparts of Translational Vibration
At this point, we observe that Eq. 8/25 is identical in form to Eq.

8/13 for the translational case, so we may write

(8/26)

Thus, we may use all of the relations developed in Arts. 8/2 and 8/3
merely by replacing the translational quantities with their rotational
counterparts. The following table shows the results of this procedure as
applied to the rotating bar of Fig. 8/16:

�̈  � 2��n �̇  � �n 

2� � 
M0 cos �t

IO
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In the preceding table, the variable k� in the expression for � represents
the equivalent torsional spring constant of the system of Fig. 8/16 and is
determined by writing the restoring moment of the spring. For a small
angle �, this moment about O is

Thus, k� � Note that M0/k� is the static angular deflection which
would be produced by a constant external moment M0.

We conclude that an exact analogy exists between particle vibra-
tion and the small angular vibration of rigid bodies. Furthermore, the
utilization of this analogy can save the labor of complete rederivation of
the governing relationships for a given problem of general rigid-body
vibration.

4
9 

kl2.

Mk � �[k(2l/3) sin �][(2l/3) cos �] � �(49kl2)�
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SAMPLE PROBLEM 8/7

A simplified version of a pendulum used in impact tests is shown in the figure.
Derive the equation of motion and determine the period for small oscillations
about the pivot. The mass center G is located a distance � 0.9 m from O, and the
radius of gyration about O is kO � 0.95 m. The friction of the bearing is negligible.

Solution. We draw the free-body diagram for an arbitrary, positive value of the
angular-displacement variable �, which is measured counterclockwise for the coor-
dinate system chosen. Next we apply the governing equation of motion to obtain

or Ans.

Note that the governing equation is independent of the mass. When � is small,
sin � � �, and our equation of motion may be written as

The frequency in cycles per second and the period in seconds are

Ans.

For the given properties: Ans.

SAMPLE PROBLEM 8/8

The uniform bar of mass m and length l is pivoted at its center. The spring
of constant k at the left end is attached to a stationary surface, but the right-end
spring, also of constant k, is attached to a support which undergoes a harmonic
motion given by yB � b sin �t. Determine the driving frequency �c which causes
resonance.

Solution. We use the moment equation of motion about the fixed point O to
obtain

Assuming small deflections and simplifying give us

The natural frequency should be recognized from the now-familiar form of the
equation to be

Thus, �c � �n � will result in resonance (as well as violation of our small-
angle assumption!). Ans.

�6k/m

�n � �6k/m

�̈  � 6k
m

 � � 6kb
ml

 sin �t

��k l
2

 sin �� l
2

 cos � � k� l
2

 sin � � yB� l
2

 cos � � 1
12

 ml2 �̈

�̈  � 
gr

kO 

2
 � � 0

�̈  � 
gr

kO 

2
 sin � � 0

�mgr sin � � mkO 

2 �̈[ΣMO � IO �̈ ]

r
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G

O

Oy

Ox

θ

r–

mg

θ

r–

yB = b sin ωt

O

B

m
k

l—
2

l—
2

k

Oy

mg

Ox
θ

k )( l—
2

sin θ
k – y

B)( l—
2

sin θ

Helpful Hints

� With our choice of point O as the
moment center, the bearing reac-
tions Ox and Oy never enter the
equation of motion.

� For large angles of oscillation, deter-
mining the period for the pendulum
requires the evaluation of an elliptic
integral.

Helpful Hints

� As previously, we consider only the
changes in the forces due to a move-
ment away from the equilibrium
position.

� The standard form here is � �

where M0 � and IO �

The natural frequency �n of a
system does not depend on the exter-
nal disturbance.

1
12 

ml2.

klb
2

M0 sin �t
IO

,

�n 

2��̈

�

�

�

�
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SAMPLE PROBLEM 8/9

Derive the equation of motion for the homogeneous circular cylinder, which
rolls without slipping. If the cylinder mass is 50 kg, the cylinder radius 0.5 m,
the spring constant 75 N/m, and the damping coefficient 10 determine

(a) the undamped natural frequency

(b) the damping ratio

(c) the damped natural frequency

(d) the period of the damped system.

In addition, determine x as a function of time if the cylinder is released from rest
at the position x � �0.2 m when t � 0.

Solution. We have a choice of motion variables in that either x or the angular
displacement � of the cylinder may be used. Since the problem statement in-
volves x, we draw the free-body diagram for an arbitrary, positive value of x and
write the two motion equations for the cylinder as

The condition of rolling with no slip is � Substitution of this condition
into the moment equation gives F � Inserting this expression for the
friction force into the force equation for the x-direction yields

Comparing the above equation with that for the standard damped oscillator, 
Eq. 8/9, allows us to state directly

(a) Ans.

(b) Ans.

Hence, the damped natural frequency and the damped period are

(c) Ans.

(d) Ans.

From Eq. 8/12, the underdamped solution to the equation of motion is

At time t � 0, x and become

The solution to the two equations in C and � gives

Thus, the motion is given by

Ans.x � �0.200e�0.0667t sin (0.998t � 1.504) m

C � �0.200 m   � � 1.504 rad

 ẋ0 � �0.0667C sin � � 0.998C cos � � 0

 x0 � C sin � � �0.2

ẋ

 � 0.998Ce�0.0667t cos (0.998t � �)

 ẋ � �0.0667Ce�0.0667t sin (0.998t � �)The velocity is

x � Ce���nt sin (�dt � �) � Ce�(0.0667)(1)t sin (0.998t � �)

 �d � 2�/�d � 2�/0.998 � 6.30 s

 �d � �n�1 � �2 � (1)�1 � (0.0667)2 � 0.998 rad/s

 2��n � 2
3

 c
m

  � � 1
3

 c
m�n

 � 10
3(50)(1)

 � 0.0667

 �n 

2 � 2
3

 k
m

�cẋ � kx � 1
2

 mẍ � mẍ   or   ẍ � 2
3

 c
m

 ẋ � 2
3

 k
m

 x � 0

�
1
2 

mẍ.
r �̈ .ẍ

 �Fr � 12 

mr2 �̈[ΣMG � I �̈ ]

 �cẋ � kx � F � mẍ[ΣFx � mẍ]

N � s/m,
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�

�

x

m
k cr

F

O

N

mg

Equilibrium
position

kx cx·

x
+θ

Helpful Hints

� The angle � is taken positive clock-
wise to be kinematically consistent
with x.

� The friction force F may be as-
sumed in either direction. We will
find that the actual direction is to
the right for x � 0 and to the left
for x � 0; F � 0 when x � 0.
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Problem 8/73

8/74 Determine the natural frequency for small oscilla-
tions in the vertical plane about the bearing O for
the semicircular disk of radius r.

Problem 8/74

8/75 The thin square plate is suspended from a socket
(not shown) which fits the small ball attachment at
O. If the plate is made to swing about axis A-A, de-
termine the period for small oscillations. Neglect the
small offset, mass, and friction of the ball.

Problem 8/75

A

A

B

B
O

b

b

b

b/2
b/2

O
r

ƒn

b

O

a
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PROBLEMS
Introductory Problems

8/71 The light rod and attached sphere of mass m are at
rest in the horizontal position shown. Determine the
period for small oscillations in the vertical plane
about the pivot O.

Problem 8/71

8/72 Derive the differential equation for small oscillations
of the spring-loaded pendulum and find the period 
The equilibrium position is vertical as shown. The
mass of the rod is negligible.

Problem 8/72

8/73 A uniform rectangular plate pivots about a horizon-
tal axis through one of its corners as shown. Deter-
mine the natural frequency of small oscillations.�n

m

O

b
k k

l

�.

m
O

b

k

k

b b

�
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8/76 If the square plate of Prob. is made to oscillate
about axis determine the period of small oscil-
lations.

8/77 The rectangular frame is formed of a uniform slen-
der rod and is suspended from a socket (not shown)
which fits the small ball attachment at O. If the rec-
tangle is made to swing about axis determine
the natural frequency for small oscillations. Neglect
the small offset, mass, and friction of the ball.

Problem 8/77

8/78 If the rectangular frame of Prob. is made to
oscillate about axis determine the natural fre-
quency of small oscillations and compare it with the
answer for Prob. 

8/79 The flywheel is suspended from its center by a wire
from a fixed support, and a period is measured for
torsional oscillation of the flywheel about the verti-
cal axis. Two small weights, each of mass m, are next
attached to the flywheel in opposite positions at a
distance r from the center. This additional mass re-
sults in a slightly longer period Write an expres-
sion for the moment of inertia I of the flywheel in
terms of the measured quantities.

Problem 8/79

r r

�2.

�1

8/77.

B-B,
8/77

A

A

B

B
Ob

b

b

b

2b

A-A,

B-B,
8/75
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Representative Problems

8/80 The circular ring of radius r is suspended from a
socket (not shown) which fits the small ball attach-
ment at O. Determine the ratio R of the period of
small oscillations about axis to that about axis

Neglect the small offset, mass, and friction of
the ball.

Problem 8/80

8/81 A spring-loaded homogeneous plate of mass m pivots
freely about a vertical axis through point O. Deter-
mine the natural frequency of small oscillations
about the equilibrium position shown.

Problem 8/81

O

l

l/3 2l/3

k

k

ƒn

A

A

r

B

B

O

A-A.
B-B
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8/85 When the motor is slowly brought up to speed, a
rather large vibratory oscillation of the entire motor
about occurs at a speed of which
shows that this speed corresponds to the natural fre-
quency of free oscillation of the motor. If the motor
has a mass of 43 kg and radius of gyration of 100 mm
about determine the stiffness k of each of the
four identical spring mounts.

Problem 8/85

8/86 The center of mass G of the ship may be assumed to
be at the center of the equivalent square sec-
tion. The metacentric height h, determined by the
intersection M of the ship’s centerline with the line
of action of the total buoyancy force acting through
the center of buoyancy B, is 3 ft. Determine the pe-
riod of one complete roll of the ship if the ampli-
tude is small and the resistance of the water is
neglected. Neglect also the change in cross section of
the ship at the bow and stern, and treat the loaded
ship as a uniform solid block of square cross section.

Problem 8/86

M

G
B

W

W

h

50′

50′

�

50-ft

O

200 mm

200 mm O

O-O,

360 rev/min,O-O
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8/82 The mass of the uniform slender rod is 3 kg. Deter-
mine the position x for the slider such that
the system period is 1 s. Assume small oscillations
about the horizontal equilibrium position shown.

Problem 8/82

8/83 Determine the expression for the natural frequency
of small oscillations of the weighted arm about O.

The stiffness of the spring is k, and its length is ad-
justed so that the arm is in equilibrium in the hori-
zontal position shown. Neglect the mass of the spring
and arm compared with m.

Problem 8/83

8/84 The uniform rod of mass m is freely pivoted about
point O. Assume small oscillations and determine an
expression for the damping ratio For what value

of the damping coefficient c will the system be
critically damped?

Problem 8/84

O

a
b

c k

ccr

�.

k

m

O

l

b

ƒn

0.4 m

3 kgO
1.2 kg

250 N/m

x

0.8 m

1.2-kg
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8/87 The system of Prob. 8/42 is repeated here. If the link
AB now has mass and radius of gyration about
point O, determine the equation of motion in terms
of the variable x. Assume small oscillations. The
damping coefficient for the dashpot is c.

Problem 8/87

8/88 Determine the period of small oscillations of the
semicylinder of mass m and radius r as it rolls without
slipping on the horizontal surface.

Problem 8/88

O

θ
Gr

r–

�

x

k

m1

m3

m2

c

O

a
A B

b

kOm3
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8/89 The circular sector of mass m is cut from steel plate
of uniform thickness and mounted in a bearing at its
center O so that it can swing freely in the vertical
plane. If the sector is released from rest with 
derive its differential equation of motion assuming
negligible damping Determine the period for small 

oscillations about the position 

Problem 8/89

8/90 Two identical uniform bars are welded together at a
right angle and are pivoted about a horizontal axis
through point O as shown. Determine the critical
driving frequency of the block B which will result
in excessively large oscillations of the assembly. The
mass of the welded assembly is m.

Problem 8/90

k

l

l/2 l/2

k

B

O

xB = b sin    tω

�c

θ

β β

G

O
r

� � �
2

.

�

� � 0,
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8/93 The cart B is given the harmonic displacement
Determine the steady-state amplitude

of the periodic oscillation of the uniform slender
bar which is pinned to the cart at P. Assume small
angles and neglect friction at the pivot. The torsional
spring is undeformed when 

Problem 8/93

8/94 The circular disk of mass m and moment of inertia I
about its central axis is welded to the steel shaft
which, in turn, is welded to the fixed block. The disk
is given an angular displacement and then re-
leased, causing a torsional vibration of the disk with

changing between The shaft resists
the twist with a moment where J is the
polar moment of inertia of the cross section of the
shaft about the rotation axis, G is the shear modulus
of elasticity of the shaft (resistance to shear stress),

is the angle of twist in radians, and L is the length
of the twisted shaft. Derive the expression for the
natural frequency of the torsional vibration.

Problem 8/94

L

θ

ƒn

�

M � JG�/L,
��0 and ��0.�

�0

K

B
P

m

l

θ

xB = b sin   tω

� � 0.

�

xB � b sin  �t.
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8/91 The uniform solid cylinder of mass m and radius r
rolls without slipping during its oscillation on the
circular surface of radius R. If the motion is confined
to small amplitudes determine the period of
the oscillations. Also determine the angular velocity

of the cylinder as it crosses the vertical centerline.
(Caution: Do not confuse with or with as
used in the defining equations. Note also that is
not the angular displacement of the cylinder.)

Problem 8/91

8/92 The homogeneous solid cylindrical pulley has mass
and radius r. If the attachment at B undergoes

the indicated harmonic displacement, determine
the equation of motion of the system in terms of the
variable x. The cord which connects mass to the
upper spring does not slip on the pulley.

Problem 8/92

k2

m2

m1 B

xB = b cos    tω

k1

x

O r

m2

m1

R

O

G

r

θ

�

�n�̇�

�

�� � �0,
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8/95 The segmented “dummy” of Prob. is repeated
here. The hip joint O is assumed to remain fixed to
the car, and the torso above the hip is treated as a
rigid body of mass m. The center of mass of the torso
is at G and the radius of gyration of the torso about

is Assume that muscular response acts as an
internal torsional spring which exerts a moment

on the upper torso, where K is the torsional
spring constant and is the angular deflection from
the initial vertical position. If the car is brought to a
sudden stop with a constant deceleration a, derive
the differential equation for the motion of the torso
prior to its impact with the dashboard.

Problem 8/95

G

O

r

θ

�

M � K�

kO.O

6/103
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8/96 The elements of the “swing-axle” type of indepen-
dent rear suspension for automobiles are depicted in
the figure. The differential D is rigidly attached to
the car frame. The half-axles are pivoted at their in-
board ends (point O for the half-axle shown) and are
rigidly attached to the wheels. Suspension elements
not shown constrain the wheel motion to the plane
of the figure. The weight of the wheel–tire assembly
is and its mass moment of inertia about
a diametral axis passing through its mass center G is

The weight of the half-axle is negligible.
The spring rate and shock-absorber damping coeffi-
cient are and , respec-
tively. If a static tire imbalance is present, as
represented by the additional concentrated weight

as shown, determine the angular velocity
which results in the suspension system being dri-

ven at its undamped natural frequency. What would
be the corresponding vehicle speed Determine the
damping ratio Assume small angular deflections
and neglect gyroscopic effects and any car frame vi-
bration. In order to avoid the complications associ-
ated with the varying normal force exerted by the
road on the tire, treat the vehicle as being on a lift
with the wheels hanging free.

Problem 8/96

l2 = 36″

l1 = 27″

r = 14″

W

O

k

c

D

w

G

�.
v?

�

w � 0.5 lb

c � 200 lb-sec/ftk � 50 lb/in.

1 lb-ft-sec2.

W � 100 lb,

�
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8/5 Energy Methods
In Arts. 8/2 through 8/4 we derived and solved the equations of mo-

tion for vibrating bodies by isolating the body with a free-body diagram
and applying Newton’s second law of motion. With this approach, we
were able to account for the actions of all forces acting on the body, in-
cluding frictional damping forces. There are many problems where the
effect of damping is small and may be neglected, so that the total energy
of the system is essentially conserved. For such systems, we find that the
principle of conservation of energy may frequently be applied with con-
siderable advantage in establishing the equation of motion and, when the
motion is simple harmonic, in determining the frequency of vibration.

Determining the Equation of Motion
To illustrate this alternative approach, consider first the simple case

of the body of mass m attached to the spring of stiffness k and vibrating
in the vertical direction without damping, Fig. 8/17. As previously, we
find it convenient to measure the motion variable x from the equilib-
rium position. With this datum, the total potential energy of the system,
elastic plus gravitational, becomes

where �st � mg/k is the initial static displacement. Substituting k�st �

mg and simplifying give

Thus, the total energy of the system becomes

Because T � V is constant for a conservative system, its time deriv-
ative is zero. Consequently,

Canceling gives us our basic differential equation of motion

which is identical to Eq. 8/1 derived in Art. 8/2 for the same system of
Fig. 8/3.

Determining the Frequency of Vibration
Conservation of energy may also be used to determine the period or

frequency of vibration for a linear conservative system, without having to
derive and solve the equation of motion. For a system which oscillates with
simple harmonic motion about the equilibrium position, from which the

mẍ � kx � 0

ẋ

d
dt

 (T � V) � mẋẍ � kxẋ � 0

T � V � 12 

mẋ2 � 12 

kx2

V � 12kx2

V � Ve � Vg � 12 k(x � �st)2 � 12 k�st 

2 � mgx
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m

m

k

x
Equilibrium

position

stδ

Figure 8/17
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displacement x is measured, the energy changes from maximum kinetic
and zero potential at the equilibrium position x � 0 to zero kinetic and
maximum potential at the position of maximum displacement x � xmax.
Thus, we may write

The maximum kinetic energy is and the maximum potential
energy is 

For the harmonic oscillator of Fig. 8/17, we know that the displace-
ment may be written as x � xmax sin (�nt � �), so that the maximum ve-
locity is � �nxmax. Thus, we may write

where xmax is the maximum displacement, at which the potential energy
is a maximum. From this energy balance, we easily obtain

This method of directly determining the frequency may be used for any
linear undamped vibration.

The main advantage of the energy approach for the free vibration of
conservative systems is that it becomes unnecessary to dismember the
system and account for all of the forces which act on each member. In
Art. 3/7 of Chapter 3 and in Arts. 6/6 and 6/7 of Chapter 6, we learned
for a system of interconnected bodies that an active-force diagram of the
complete system enabled us to evaluate the work U� of the external ac-
tive forces and to equate it to the change in the total mechanical energy
T � V of the system.

Thus, for a conservative mechanical system of interconnected parts
with a single degree of freedom where U� � 0, we may obtain its equa-
tion of motion simply by setting the time derivative of its constant total
mechanical energy to zero, giving

Here V � Ve � Vg is the sum of the elastic and gravitational potential
energies of the system.

Also, for an interconnected mechanical system, as for a single body,
the natural frequency of vibration is obtained by equating the expres-
sion for its maximum total kinetic energy to the expression for its maxi-
mum potential energy, where the potential energy is taken to be zero at
the equilibrium position. This approach to the determination of natural
frequency is valid only if it can be determined that the system vibrates
with simple harmonic motion.

d
dt

 (T � V) � 0

�n � �k/m

1
2 m(�nxmax)2 � 12 k(xmax)2

ẋmax

1
2 k(xmax)2.

1
2 m(ẋmax)2,

Tmax � Vmax
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SAMPLE PROBLEM 8/10

The small sphere of mass m is mounted on the light rod pivoted at O and
supported at end A by the vertical spring of stiffness k. End A is displaced a
small distance y0 below the horizontal equilibrium position and released. By the
energy method, derive the differential equation of motion for small oscillations
of the rod and determine the expression for its natural frequency �n of vibration.
Damping is negligible.

Solution. With the displacement y of the end of the bar measured from the
equilibrium position, the potential energy in the displaced position for small val-
ues of y becomes

where �st is the static deflection of the spring at equilibrium. But the force in
the spring in the equilibrium position, from a zero moment sum about O, is
(b/l)mg � k�st. Substituting this value in the expression for V and simplifying yield

The kinetic energy in the displaced position is

where we see that the vertical displacement of m is (b/l)y. Thus, with the energy
sum constant, its time derivative is zero, and we have

which yields

Ans.

when is canceled. By analogy with Eq. 8/2, we may write the motion frequency
directly as

Ans.

Alternatively, we can obtain the frequency by equating the maximum ki-
netic energy, which occurs at y � 0, to the maximum potential energy, which oc-
curs at y � y0 � ymax, where the deflection is a maximum. Thus,

Knowing that we have a harmonic oscillation, which can be expressed as y �

ymax sin �nt, we have � ymax�n. Substituting this relation into our energy
balance gives us

Ans.

as before.

1
2

 m�b
l
 ymax�n�2

 � 1
2

 kymax 

2   so that   �n � l
b
 �k/m

ẏmax

Tmax � Vmax   gives   1
2

 m�b
l
 ẏmax�2

 � 1
2

 kymax 

2

�n � l
b
 �k/m

ẏ

ÿ � l
2

b2
 k
m

 y � 0

d
dt

 (T � V) � d
dt

 �1
2

 m�b
l
 ẏ�2

 � 1
2

 ky2� � 0

T � 1
2

 m�b
l
 ẏ�2

V � 1
2

 ky2

V � Ve � Vg � 1
2

 k(y � �st)2 � 1
2

 k�st 

2 � mg�b
l
 y�
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�

�

m
O

A

kb

l

m

O

A

k

y

Equilibrium
position

stδ
yb—

l

Helpful Hints

� For large values of y, the circular
motion of the end of the bar would
cause our expression for the deflec-
tion of the spring to be in error.

� Here again, we note the simplicity of
the expression for potential energy
when the displacement is measured
from the equilibrium position.
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SAMPLE PROBLEM 8/11

Determine the natural frequency �n of vertical vibration of the 3-kg collar
to which are attached the two uniform 1.2-kg links, which may be treated as
slender bars. The stiffness of the spring, which is attached to both the collar and
the foundation, is k � 1.5 kN/m, and the bars are both horizontal in the equilib-
rium position. A small roller on end B of each link permits end A to move with
the collar. Frictional retardation is negligible.

Solution. In the equilibrium position, the compression P in the spring equals
the weight of the 3-kg collar, plus half the weight of each link or P � 3(9.81) �

� 41.2 N. The corresponding static deflection of the spring is �st �

P/k � 41.2/1.5(103) � 27.5(10�3) m. With the displacement variable y measured
downward from the equilibrium position, which becomes the position of zero po-
tential energy, the potential energy for each member in the displaced position is

The total potential energy of the system then becomes

The maximum kinetic energy occurs at the equilibrium position, where the
velocity of the collar has its maximum value. In that position, in which links
AB are horizontal, end B is the instantaneous center of zero velocity for each
link, and each link rotates with an angular velocity Thus, the kinetic en-
ergy of each part is

Thus, the kinetic energy of the collar and both links is

With the harmonic motion expressed by y � ymax sin �nt, we have � ymax�n,
so that the energy balance Tmax � Vmax with � becomes

Ans.1.9(ymax�n)2 � 750ymax 

2   or   �n � �750/1.9 � 19.87 Hz

ẏmaxẏ
ẏmax

T � 3
2

 ẏ2 � 2(0.2ẏ2) � 1.9ẏ2

    � 1
6

 (1.2)ẏ2 � 0.2ẏ2

 (Each link)  T � 1
2

 IB�2 � 1
2

 �1
3

 mll2�(ẏ/l)2 � 1
6

 mlẏ2

 (Collar)  T � 1
2

 mc ẏ2 � 3
2

 ẏ2 J

ẏ/0.3.

ẏ

V � 750y2 � 41.2y � 29.4y � 2(5.89)y � 750y2 J

 (Each link)  Vg � �ml g 
y
2

 � �1.2(9.81) 
y
2

 � �5.89y J

 (Collar)  Vg � �mc gy � �3(9.81)y � �29.4y J

 � 750y2 � 41.2y J

 � 1
2

 (1.5)(103)y2 � 1.5(103)(27.5)(10�3)y

 (Spring)  Ve � 1
2

 k(y � �st)2 � 1
2

 k�st 

2 � 1
2

 ky2 � k�st y

2(12)(1.2)(9.81)
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�

�

�

�

�

B
A

y

1.2 kg

300
mm

1.2 kg

k = 1.5 kN/m

A
B

300
mm

3 kg

Helpful Hints

� Note that the mass center of each
link moves down only half as far as
the collar.

� We note again that measurement
of the motion variable y from the
equilibrium position results in the
total potential energy being simply
V �

� Our knowledge of rigid-body kine-
matics is essential at this point.

� To appreciate the advantage of the
work-energy method for this and
similar problems of interconnected
systems, you are encouraged to ex-
plore the steps required for solution
by the force and moment equations
of motion of the separate parts.

� If the oscillations were large, we
would find that the angular velocity
of each link in its general position
would equal which
would cause a nonlinear response no
longer described by y � ymax sin �t.

ẏ/�0.09 � y2,

1
2 

ky2.
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8/100 A uniform rod of mass m and length l is welded at
one end to the rim of a light circular hoop of radius
l. The other end lies at the center of the hoop. De-
termine the period for small oscillations about the
vertical position of the bar if the hoop rolls on the
horizontal surface without slipping.

Problem 8/100

8/101 The length of the spring is adjusted so that the equi-
librium position of the arm is horizontal as shown.
Neglect the mass of the spring and the arm and cal-
culate the natural frequency for small oscillations.

Problem 8/101

Representative Problems

8/102 Calculate the frequency of vertical oscillation of
the system shown. The pulley has a radius of
gyration about its center O of 200 mm.

Problem 8/102

k = 2 kN/m

kO = 200 mm
O
300 mm

30 kg

40 kg

40-kg
ƒn

k

m

O

l

b

ƒn

l

�
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PROBLEMS
(Solve the following problems by the energy method of 
Art. )

Introductory Problems

8/97 The potential energy V of a linear spring-mass sys-
tem is given in inch-pounds by where x is the
displacement in inches measured from the neutral
equilibrium position. The kinetic energy T of the sys-
tem in inch-pounds is given by . Determine the
differential equation of motion for the system and
find the period of its oscillation. Neglect energy loss.

8/98 Derive the equation of motion for the pendulum
which consists of the slender uniform rod of mass m
and the bob of mass M. Assume small oscillations,
and neglect the radius of the bob.

Problem 8/98

8/99 The spoked wheel of radius r, mass m, and cen-
troidal radius of gyration rolls without slipping
on the incline. Determine the natural frequency of
oscillation and explore the limiting cases of 
and 

Problem 8/99

θ

m

rk

k � r.
k � 0

k

O

M

m

l

θ

�

8ẋ2

64x2,

8/5.
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8/103 By the method of this article, determine the pe-
riod of vertical oscillation. Each spring has a stiff-
ness of and the mass of the pulleys may be
neglected.

Problem 8/103

8/104 The homogeneous circular cylinder of Prob. re-
peated here, rolls without slipping on the track of ra-
dius R. Determine the period for small oscillations.

Problem 8/104

8/105 The uniform slender rod of length l and mass is
secured to the uniform disk of radius and mass

If the system is shown in its equilibrium posi-
tion, determine the natural frequency and the
maximum angular velocity for small oscillations
of amplitude about the pivot O.

Problem 8/105

2l/5l/5 l/5l/5

k
O

m1

m2

�0

�

�n

m1.
l/5

m2

R

O

G

r

θ

�

8/91,

k k

50 lb

6 lb/in.,
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8/106 The ends of the uniform slender bar of mass m and
length L move freely in the vertical and horizontal
slots under the action of the two precompressed
springs each of stiffness k as shown. If the bar is in
static equilibrium when determine the nat-
ural frequency of small oscillations.

Problem 8/106

8/107 Develop an expression for the natural circular fre-
quency of the system of Prob. repeated
here. The mass and friction of the pulleys are
negligible.

Problem 8/107

k

θ

m

m

8/23,�n

L

k k

θ

�n

� � 0,
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Problem 8/110

8/111 The thin homogeneous panel of mass m is hinged
to swing freely about a fixed axis which makes an
angle with the vertical. Determine the period of
small oscillations.

Problem 8/111

8/112 The block is supported by the two links
with two torsion springs, each of constant 

m/rad, arranged as shown. The springs are suffi-
ciently stiff so that stable equilibrium is established in
the position shown. Determine the natural frequency

for small oscillations about this equilibrium position.

Problem 8/112

K

5 kg 5 kg

12 kg

K

0.8 m

ƒn

N �

K � 500
5-kg12-kg

c

m

a

b

�

45°

A

300 mm 300 mm45°

Vertical

k = 
1050 N/m

630 Chapter 8 Vibration and Time Response

8/108 Determine the period of vertical oscillations for
the system composed of the frame and two

pulleys, each of which has a radius of gyra-
tion The flexible wires do not slip on
the pulleys.

Problem 8/108

8/109 Derive the natural frequency of the system com-
posed of two homogeneous circular cylinders, each
of mass M, and the connecting link AB of mass m.
Assume small oscillations.

Problem 8/109

8/110 Each of the two uniform slender bars is
hinged freely at A with its small upper-end guide
roller free to move in the horizontal guide. The
bars are supported in their equilibrium posi-
tions by the vertical spring of stiffness If
point A is given a very small vertical displacement
and then released, calculate the natural frequency
of the resulting motion.

1050 N/m.
45�

1.5-kg

M M

m

r

r0 r0

O

B
A

O
r

θ θ

ƒn

k = 4 kN/m

kO = 400 mmkO = 400 mm

600 mm600 mm

80 kg

140 kg

80 kg

O O

kO � 400 mm.
80-kg

140-kg
�
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8/113 The semicylinder of mass m and radius r rolls with-
out slipping on the horizontal surface. By the
method of this article, determine the period of
small oscillations.

Problem 8/113

8/114 The front-end suspension of an automobile is
shown. Each of the coil springs has a stiffness of

If the weight of the front-end frame and
equivalent portion of the body attached to the front
end is determine the natural frequency 
of vertical oscillation of the frame and body in the
absence of shock absorbers. (Hint: To relate the
spring deflection to the deflection of the frame and
body, consider the frame fixed and let the ground
and wheels move vertically.)

Problem 8/114

8/115 If the spring-loaded frame is given a slight vertical
disturbance from its equilibrium position shown,
determine its natural frequency of vibration.
The mass of the upper member is 24 kg, and that of
the lower members is negligible. Each spring has a
stiffness of 

Problem 8/115

24 kg

150
mm

100 mm 100 mm

150
mm

9 kN/m.

ƒn

18″
12″

ƒn1800 lb,

270 lb/in.

O

r

r
_

G
θ

�
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8/116 The uniform slender rod of length 2b is supported
in the horizontal plane by a bifilar suspension. The
rod is set into small angular oscillation about the
vertical axis through its center O. Derive the ex-
pression for the period of oscillation. (Hint: From
the auxiliary sketch note that the rod rises a dis-
tance h corresponding to an angular twist Also
note that for small angles and that cos 
may be replaced by the first two terms of its series
expansion. A simple harmonic solution of the form

may be used for small angles.)

Problem 8/116

8/117 The semicircular cylindrical shell of radius r with
small but uniform wall thickness is set into small
rocking oscillation on the horizontal surface. If no
slipping occurs, determine the expression for the
period of each complete oscillation.

Problem 8/117

8/118 A hole of radius is drilled through a cylinder of
radius R to form a body of mass as shown. If the
body rolls on the horizontal surface without slip-
ping, determine the period for small oscillations.

Problem 8/118

R/4
O

R/4

R/2

�

m
R/4

r

�

A

B

b

b O
O

B

A

l

b

l

l

θ

bθ

β

lβ

h = l(1 – cos   )β

� � �0 sin �nt


l
 � b�

�.

�

�
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8/6 Chapter Review
In studying the vibrations of particles and rigid bodies in Chapter 8,

we have observed that the subject is simply a direct application of the
fundamental principles of dynamics as presented in Chapters 3 and 6.
However, in these previous chapters, we determined the dynamic behav-
ior of a body only at a particular instant of time or found the changes in
motion resulting from only finite intervals of displacement or time.
Chapter 8, on the other hand, has treated the solution of the defining
differential equations of motion, so that the linear or angular displace-
ment can be fully expressed as a function of time.

Particle Vibration
We divided our study of the time response of particles into the two

categories of free and forced motion, with the further subdivisions of
negligible and significant damping. We saw that the damping ratio � is a
convenient parameter for determining the nature of unforced but vis-
cously damped vibrations.

The prime lesson associated with harmonic forcing is that driving a
lightly damped system with a force whose frequency is near the natural
frequency can cause motion of excessively large amplitude—a condition
called resonance, which usually must be carefully avoided.

Rigid-Body Vibration
In our study of rigid-body vibrations, we observed that the equation

of small angular motion has a form identical to that for particle vibra-
tions. Whereas particle vibrations may be described completely by the
equations governing translational motion, rigid-body vibrations usually
require the equations of rotational dynamics.

Energy Methods
In the final article of Chapter 8, we saw how the energy method can

facilitate the determination of the natural frequency �n in free vibration
problems where damping may be neglected. Here the total mechanical
energy of the system is assumed to be constant. Setting its first time de-
rivative to zero leads directly to the differential equation of motion for
the system. The energy approach permits the analysis of a conservative
system of interconnected parts without dismembering the system.

Degrees of Freedom
Throughout the chapter, we have restricted our attention to systems

having one degree of freedom, where the position of the system can be
specified by a single variable. If a system possesses n degrees of freedom,
it has n natural frequencies. Thus, if a harmonic force is applied to such
a system which is lightly damped, there are n driving frequencies which
can cause motion of large amplitude. By a process called modal analysis,
a complex system with n degrees of freedom can be reduced to n single-
degree-of-freedom systems. For this reason, the thorough understanding
of the material of this chapter is vital for the further study of vibrations.
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REVIEW PROBLEMS

8/119 Determine the value of the damping coefficient c
for which the system is critically damped if 
kN/m and 

Problem 8/119

8/120 A I-beam is being hoisted by the cable arrange-
ment shown. Determine the period of small oscil-
lations about the junction O, which is assumed to
remain fixed and about which the cables pivot
freely. Treat the beam as a slender rod.

Problem 8/120

8/121 The uniform circular disk is suspended by a socket
(not shown) which fits over the small ball attach-
ment at O. Determine the period of small motion if
the disk swings freely about (a) axis A-A and (b)
axis B-B. Neglect the small offset, mass, and fric-
tion of the ball.

O

45° 45°

20 m

�

20-m

c c

kk k

m

m � 100 kg.
k � 70
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Problem 8/121

8/122 The block of mass M is suspended by the two uni-
form slender rods each of mass m. Determine the
natural frequency of small oscillations for the
system shown.

Problem 8/122

8/123 The triangular frame is constructed of uniform
slender rod and pivots about a horizontal axis
through point O. Determine the critical driving fre-
quency of the block B which will result in exces-
sively large oscillations of the assembly. The total
mass of the frame is m.

Problem 8/123

k

Bd

O

d

d

k

sB = b sin tω

�c

l
m

G

M

b

m

b––
2

b––
2

a––
2

a––
2

�n

B

BA

A

r

O
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8/127 Calculate the damping ratio of the system shown
if the weight and radius of gyration of the stepped
cylinder are and the spring
constant is and the damping coeffi-
cient of the hydraulic cylinder is 
The cylinder rolls without slipping on the radius

and the spring can support tension as well
as compression.

Problem 8/127

8/128 The cylinder A of radius r, mass m, and radius of
gyration is driven by a cable-spring system at-
tached to the drive cylinder B, which oscillates as
indicated. If the cables do not slip on the cylinders,
and if both springs are stretched to the degree that
they do not go slack during a motion cycle, deter-
mine an expression for the amplitude of the
steady-state oscillation of cylinder A.

Problem 8/128

8/129 With collar A held in position, a static horizontal
force of 3 lb applied to the sphere B gives it a
deflection of 0.60 in. against the elastic resistance
of the slender rod of negligible mass to which it is
attached. If the collar A is given a horizontal har-
monic oscillation with a frequency of 2 cycles per
second and an amplitude of 0.30 in., calculate the
amplitude X of the horizontal vibration of the
sphere. Assume negligible damping.

5-lb

k =   0 cos wtω

r
r0

k

A
B

φφ

�max

k

k

r

c

W

r � 6 in.

c � 2 lb-sec/ft.
k � 15 lb/in.,

k � 5.5 in.,W � 20 lb

�
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8/124 Determine the period for small oscillations of the
assembly composed of two light bars and two parti-
cles, each of mass m. Investigate your expression as
the angle approaches values of 0 and 

Problem 8/124

8/125 A slender rod is shaped into the semicircle of radius
r as shown. Determine the natural frequency for
small oscillations of the rod when it is pivoted on
the horizontal knife edge at the middle of its
length.

Problem 8/125

8/126 Determine the largest amplitude for which the
uniform circular disk will roll without slipping on
the horizontal surface.

Problem 8/126

r

x

m
k/2 k/2

s,   kμ μ

x0

r

ƒn

α

m m

l

O

l

180�.�

�
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Problem 8/129

8/130 The seismic instrument shown is secured to a
ship’s deck near the stern where propeller-induced
vibration is most pronounced. The ship has a single
three-bladed propeller which turns at 180 rev/min
and operates partly out of water, thus causing a
shock as each blade breaks the surface. The damp-
ing ratio of the instrument is and its un-
damped natural frequency is 3 Hz. If the measured
amplitude of A relative to its frame is 0.75 mm,
compute the amplitude of the vertical vibration
of the deck.

Problem 8/130

8/131 An experimental engine weighing 480 lb is
mounted on a test stand with spring mounts at A
and B, each with a stiffness of The radius
of gyration of the engine about its mass center G is
4.60 in. With the motor not running, calculate the
natural frequency of vertical vibration and

of rotation about G. If vertical motion is sup-
pressed and a light rotational imbalance occurs, at
what speed N should the engine not be run?

(ƒn)�

(ƒn)y

600 lb/in.

A

�0

� � 0.5,

A

B
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Problem 8/131

8/132 The uniform bar of mass M and length l has a small
roller of mass m with negligible bearing friction at
each end. Determine the period of the system for
small oscillations on the curved track.

Problem 8/132

m
ml

R

M

�

10″

A B

G

y

10″
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*8/135 Plot the response x of the body over the
time interval second. Determine the
maximum and minimum values of x and their re-
spective times. The initial conditions are 
and 

Problem 8/135

*8/136 Shown in the figure are the elements of a displace-
ment meter used to study the motion 
of the base. The motion of the mass relative to
the frame is recorded on the rotating drum. If

,
and determine the range

of the spring constant k over which the magnitude
of the recorded relative displacement is less than
1.5b. It is assumed that the ratio must re-
main greater than unity.

Problem 8/136

Neutral
position

yB = b sin tω

W

k

cO

l1

l2

l3

�/�n

� � 10 rad/sec,lb-sec/ft,
c � 0.1W � 2 lb,l3 � 2 ft,l2 � 1.6 ftl1 � 1.2 ft,

yB � b sin �t

100 lb/in. 18 lb-sec/ft
50 lb

F = (160 cos 60t) lb
x

ẋ0 � 6 ft/sec.
x0 � 0

0 � t � 1
50-lb
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*Computer-Oriented Problems

*8/133 The mass of the system shown is released with the
initial conditions and at

Plot the response of the system and deter-
mine the time(s) (if any) at which the displace-
ment

Problem 8/133

*8/134 The oscillator contains an unbalanced motor
whose speed N in revolutions per minute can be
varied. The oscillator is restrained in its horizontal
motion by a spring of stiffness and
by a viscous damper whose piston is resisted by a
force of 30 N when moving at a speed of 
Determine the viscous damping factor and plot
the magnification factor M for motor speeds from
zero to 300 revolutions per minute. Determine the
maximum value of M and the corresponding motor
speed.

Problem 8/134

10 kg

c
k

�

0.5 m/s.

k � 1080 N/m

10-kg

100 N/m

x

50 N·s/m

2 kg

x � �0.05 m.

t � 0.
ẋ0 � �5 m/sx0 � 0.1 m
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*8/137 The cylinder is attached to a viscous damper
and to the spring of stiffness If the
cylinder is released from rest at time from
the position where it is displaced a distance

from its equilibrium position, plot
the displacement y as a function of time for the
first second for the two cases where the viscous
damping coefficient is (a) and (b)

Problem 8/137

*8/138 Determine and plot the response as a function of
time for the undamped linear oscillator subjected
to the force F which varies linearly with time for
the first second as shown. The mass is initially
at rest with at time 

Problem 8/138

x

F, N

t, s

k = 90 N/m

F

0.75 kg

3/4

6.25

0
0

t � 0.x � 0

3
4

x

c

4 kg

k = 800 N /m
y

Equilibrium
position

c � 80 N � s/m.
c � 124 N � s/m

y � 100 mm

t � 0
k � 800 N/m.

4-kg
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*8/139 The damped linear oscillator of mass 
spring constant and viscous damp-
ing factor is initially at rest in a neutral
position when it is subjected to a sudden impulsive
loading F over a very short period of time as
shown. If the impulse deter-
mine the resulting displacement as a function of
time and plot it for the first two seconds following
the impulse.

Problem 8/139

c
m

Fx

k

F

t

x
I � �F dt � 8 N � s,

� � 0.1
k � 200 N/m,

m � 4 kg,
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See Appendix A of Vol. 1 Statics for a treatment of the theory and
calculation of area moments of inertia. Because this quantity plays an
important role in the design of structures, especially those dealt with in
statics, we present only a brief definition in this Dynamics volume so
that the student can appreciate the basic differences between area and
mass moments of inertia.

The moments of inertia of a plane area A about the x- and y-axes in
its plane and about the z-axis normal to its plane, Fig. A/1, are defined by

where dA is the differential element of area and r2 � x2 � y2. Clearly,
the polar moment of inertia Iz equals the sum Ix � Iy of the rectangular
moments of inertia. For thin flat plates, the area moment of inertia is
useful in the calculation of the mass moment of inertia, as explained in
Appendix B.

The area moment of inertia is a measure of the distribution of area
about the axis in question and, for that axis, is a constant property of the
area. The dimensions of area moment of inertia are (distance)4 expressed
in m4 or mm4 in SI units and ft4 or in.4 in U.S. customary units. In con-
trast, mass moment of inertia is a measure of the distribution of mass
about the axis in question, and its dimensions are (mass)(distance)2,
which are expressed in in SI units and in lb-ft-sec2 or lb-in.-sec2 in
U.S. customary units.

kg � m2

Ix � �  y2 dA   Iy � �  x2 dA   Iz � �  r2 dA

y

x

A

dA

O

x

r y

Figure A/1

AArea Moments
of Inertia
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641

B/1 Mass Moments of Inertia about an Axis
The equation of rotational motion about an axis normal to the plane

of motion for a rigid body in plane motion contains an integral which de-
pends on the distribution of mass with respect to the moment axis. This
integral occurs whenever a rigid body has an angular acceleration about
its axis of rotation. Thus, to study the dynamics of rotation, you should
be thoroughly familiar with the calculation of mass moments of inertia
for rigid bodies.

Consider a body of mass m, Fig. B/1, rotating about an axis O-O
with an angular acceleration �. All particles of the body move in parallel
planes which are normal to the rotation axis O-O. We may choose any
one of the planes as the plane of motion, although the one containing
the center of mass is usually the one so designated. An element of mass
dm has a component of acceleration tangent to its circular path equal to
r�, and by Newton’s second law of motion the resultant tangential force
on this element equals r� dm. The moment of this force about the axis
O-O is r2� dm, and the sum of the moments of these forces for all ele-
ments is �r2� dm.

For a rigid body, � is the same for all radial lines in the body and we
may take it outside the integral sign. The remaining integral is called
the mass moment of inertia I of the body about the axis O-O and is

(B/1)

This integral represents an important property of a body and is involved
in the analysis of any body which has rotational acceleration about a

I � �  r2 dm

O

O

m

dmr

α

r   dmα

Figure B/1

BMass Moments
of Inertia

B/1 Mass Moments of Inertia about an Axis

B/2 Products of Inertia

APPENDIX OUTLINE
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given axis. Just as the mass m of a body is a measure of the resistance to
translational acceleration, the moment of inertia I is a measure of resis-
tance to rotational acceleration of the body.

The moment-of-inertia integral may be expressed alternatively as

(B/1a)

where ri is the radial distance from the inertia axis to the representative
particle of mass mi and where the summation is taken over all particles
of the body.

If the density � is constant throughout the body, the moment of in-
ertia becomes

where dV is the element of volume. In this case, the integral by itself de-
fines a purely geometrical property of the body. When the density is not
constant but is expressed as a function of the coordinates of the body, it
must be left within the integral sign and its effect accounted for in the
integration process.

In general, the coordinates which best fit the boundaries of the body
should be used in the integration. It is particularly important that we
make a good choice of the element of volume dV. To simplify the inte-
gration, an element of lowest possible order should be chosen, and the
correct expression for the moment of inertia of the element about the
axis involved should be used. For example, in finding the moment of in-
ertia of a solid right-circular cone about its central axis, we may choose
an element in the form of a circular slice of infinitesimal thickness, Fig.
B/2a. The differential moment of inertia for this element is the expres-
sion for the moment of inertia of a circular cylinder of infinitesimal alti-
tude about its central axis. (This expression will be obtained in Sample
Problem B/1.)

Alternatively, we could choose an element in the form of a cylindri-
cal shell of infinitesimal thickness as shown in Fig. B/2b. Because all of
the mass of the element is at the same distance r from the inertia axis,
the differential moment of inertia for this element is merely r2 dm
where dm is the differential mass of the elemental shell.

From the definition of mass moment of inertia, its dimensions are
(mass)(distance)2 and are expressed in the units in SI units and
lb-ft-sec2 in U.S. customary units.

kg � m2

I � � �  r2 dV

I � Σ ri 

2mi

642 Appendix B Mass Moments of Inertia

r

(a) (b)

Figure B/2
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Radius of Gyration
The radius of gyration k of a mass m about an axis for which the

moment of inertia is I is defined as

(B/2)

Thus, k is a measure of the distribution of mass of a given body about
the axis in question, and its definition is analogous to the definition of
the radius of gyration for area moments of inertia. If all the mass m of a
body could be concentrated at a distance k from the axis, the moment of
inertia would be unchanged.

The moment of inertia of a body about a particular axis is fre-
quently indicated by specifying the mass of the body and the radius of
gyration of the body about the axis. The moment of inertia is then calcu-
lated from Eq. B/2.

Transfer of Axes
If the moment of inertia of a body is known about an axis passing

through the mass center, it may be determined easily about any parallel
axis. To prove this statement, consider the two parallel axes in Fig. B/3,
one being an axis through the mass center G and the other a parallel
axis through some other point C. The radial distances from the two axes
to any element of mass dm are r0 and r, and the separation of the axes is
d. Substituting the law of cosines r2 � � d2 � 2r0d cos � into the def-
inition for the moment of inertia about the axis through C gives

The first integral is the moment of inertia about the mass-center axis,
the second term is md2, and the third integral equals zero, since the u-
coordinate of the mass center with respect to the axis through G is zero.
Thus, the parallel-axis theorem is

(B/3)

Remember that the transfer cannot be made unless one axis passes
through the center of mass and unless the axes are parallel.

When the expressions for the radii of gyration are substituted in Eq.
B/3, there results

(B/3a)

Equation B/3a is the parallel-axis theorem for obtaining the radius of
gyration k about an axis which is a distance d from a parallel axis
through the mass center, for which the radius of gyration is k.

k2 � k2 � d2

I � I � md2

I

 � �  r0 

2 dm � d2 �  dm � 2d �  u dm

 I � �  r2 dm � �  (r0 

2 � d2 � 2r0 d cos �) dm

r0 

2
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dm
m

r r0

u
u

d OC

G
θ

Figure B/3
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ry

rx

z

z

O y

y
dm

x

x

rz

Figure B/5

For plane-motion problems where rotation occurs about an axis
normal to the plane of motion, a single subscript for I is sufficient to
designate the inertia axis. Thus, if the plate of Fig. B/4 has plane motion
in the x-y plane, the moment of inertia of the plate about the z-axis
through O is designated IO. For three-dimensional motion, however,
where components of rotation may occur about more than one axis, we
use a double subscript to preserve notational symmetry with product-of-
inertia terms, which are described in Art. B/2. Thus, the moments of in-
ertia about the x-, y-, and z-axes are labeled Ixx, Iyy, and Izz, respectively,
and from Fig. B/5 we see that they become

(B/4)

These integrals are cited in Eqs. 7/10 of Art. 7/7 on angular momentum
in three-dimensional rotation.

The defining expressions for mass moments of inertia and area mo-
ments of inertia are similar. An exact relationship between the two mo-
ment-of-inertia expressions exists in the case of flat plates. Consider the
flat plate of uniform thickness in Fig. B/4. If the constant thickness is t
and the density is �, the mass moment of inertia Izz of the plate about
the z-axis normal to the plate is

(B/5)

Thus, the mass moment of inertia about the z-axis equals the mass per
unit area �t times the polar moment of inertia Iz of the plate area about
the z-axis. If t is small compared with the dimensions of the plate in its

Izz � �  r2 dm � �t �  r2 dA � �tIz

 Izz � �  rz 

2 dm � �  (x2 � y2) dm

 Iyy � �  ry 

2 dm � �  (z2 � x2) dm

 Ixx � �  rx 

2 dm � �  (y2 � z2) dm

x
xt

O

dm

z

y

yr

Figure B/4
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plane, the mass moments of inertia Ixx and Iyy of the plate about the x- and
y-axes are closely approximated by

(B/6)

Thus, the mass moments of inertia equal the mass per unit area �t times
the corresponding area moments of inertia. The double subscripts for
mass moments of inertia distinguish these quantities from area mo-
ments of inertia.

Inasmuch as Iz � Ix � Iy for area moments of inertia, we have

(B/7)

which holds only for a thin flat plate. This restriction is observed from
Eqs. B/6, which do not hold true unless the thickness t or the z-coordinate
of the element is negligible compared with the distance of the element
from the corresponding x- or y-axis. Equation B/7 is very useful when
dealing with a differential mass element taken as a flat slice of differential
thickness, say, dz. In this case, Eq. B/7 holds exactly and becomes

(B/7a)

for axes x and y in the plane of the plate.

Composite Bodies
As in the case of area moments of inertia, the mass moment of iner-

tia of a composite body is the sum of the moments of inertia of the indi-
vidual parts about the same axis. It is often convenient to treat a
composite body as defined by positive volumes and negative volumes.
The moment of inertia of a negative element, such as the material re-
moved to form a hole, must be considered a negative quantity.

A summary of some of the more useful formulas for mass moments
of inertia of various masses of common shape is given in Table D/4,
Appendix D.

The problems which follow the sample problems are divided into
the categories Integration Exercises and Composite and Parallel-Axis
Exercises. The parallel-axis theorem will also be useful in some of the
problems in the first category. 

dIzz � dIxx � dIyy

Izz � Ixx � Iyy

 Iyy � �  x2 dm � �t �  x2 dA � �tIy

 Ixx � �  y2 dm � �t �  y2 dA � �tIx
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SAMPLE PROBLEM B/1

Determine the moment of inertia and radius of gyration of a homogeneous
right-circular cylinder of mass m and radius r about its central axis O-O.

Solution. An element of mass in cylindrical coordinates is dm � � dV �

�tr0 dr0 d�, where � is the density of the cylinder. The moment of inertia about
the axis of the cylinder is

Ans.

The radius of gyration is

Ans.

SAMPLE PROBLEM B/2

Determine the moment of inertia and radius of gyration of a homogeneous
solid sphere of mass m and radius r about a diameter.

Solution. A circular slice of radius y and thickness dx is chosen as the volume
element. From the results of Sample Problem B/1, the moment of inertia about
the x-axis of the elemental cylinder is

where � is the constant density of the sphere. The total moment of inertia about
the x-axis is

Ans.

The radius of gyration about the x-axis is

Ans.

Ixx � 
��

2
 � r

�r
 (r2 � x2)2 dx � 8

15 

��r5 � 25 

mr2

dIxx � 12 

(dm)y2 � 12 

(��y2 dx)y2 � 
��

2
 (r2 � x2)2 dx

I � �  r0 

2 dm � �t �2�

0
 � r

0
 r0 

3 dr0 d� � �t �r4

2
 � 12 mr2
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t

O

O

dr0

r0

r

dθ

y

r

x

x dx

y

�

�

�

Helpful Hints

� If we had started with a cylindrical
shell of radius r0 and axial length t
as our mass element dm, then dI �

dm directly. You should evaluate
the integral.

� The result I � applies only to a
solid homogeneous circular cylinder
and cannot be used for any other
wheel of circular periphery.

1
2 

mr2

r0 

2

Helpful Hint

� Here is an example where we utilize
a previous result to express the mo-
ment of inertia of the chosen ele-
ment, which in this case is a right-
circular cylinder of differential axial
length dx. It would be foolish to
start with a third-order element,
such as � dx dy dz, when we can eas-
ily solve the problem with a first-
order element.
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SAMPLE PROBLEM B/3

Determine the moments of inertia of the homogeneous rectangular paral-
lelepiped of mass m about the centroidal x0- and z-axes and about the x-axis
through one end.

Solution. A transverse slice of thickness dz is selected as the element of vol-
ume. The moment of inertia of this slice of infinitesimal thickness equals the mo-
ment of inertia of the area of the section times the mass per unit area � dz. Thus,
the moment of inertia of the transverse slice about the y�-axis is

and that about the x�-axis is

As long as the element is a plate of differential thickness, the principle given by
Eq. B/7a may be applied to give

These expressions may now be integrated to obtain the desired results.
The moment of inertia about the z-axis is

Ans.

where m is the mass of the block. By interchange of symbols, the moment of in-
ertia about the x0-axis is

Ans.

The moment of inertia about the x-axis may be found by the parallel-axis theo-
rem, Eq. B/3. Thus,

Ans.

This last result may be obtained by expressing the moment of inertia of the ele-
mental slice about the x-axis and integrating the expression over the length of
the bar. Again, by the parallel-axis theorem

Integrating gives the result obtained previously:

The expression for Ixx may be simplified for a long prismatic bar or slender
rod whose transverse dimensions are small compared with the length. In this
case, a2 may be neglected compared with 4l2, and the moment of inertia of such a
slender bar about an axis through one end normal to the bar becomes I �

By the same approximation, the moment of inertia about a centroidal axis nor-
mal to the bar is I �

1
12 

ml2.

1
3 

ml2.

Ixx � �ab � l

0
 �a2

12
 � z2� dz � 

�abl
3

 �l2 � a
2

4 � � 1
12 

m(a2 � 4l2)

dIxx � dIx�x� � z2 dm � (� dz)( 1
12 

a3b) � z2�ab dz � �ab�a2

12
 � z2� dz

Ixx � Ix0 x0
 � m� l

2�
2
 � 1

12 m(a2 � 4l2)

Ix0 x0
 � 1

12 m(a2 � l2)

Izz � �  dIzz � 
�ab
12

 (a2 � b2) � l

0
 dz � 1

12 m(a2 � b2)

dIzz � dIx�x� � dIy�y� � (� dz) ab
12

 (a2 � b2)

dIx�x� � (� dz)( 1
12 

a3b)

dIy�y� � (� dz)( 1
12 

ab3)
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l/2
z

dz
x0

y0

x′ 
x

y

y′ z

a

b

G

l/2

�
Helpful Hint

� Refer to Eqs. B/6 and recall the ex-
pression for the area moment of in-
ertia of a rectangle about an axis
through its center parallel to its
base.
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648 Appendix B Mass Moments of Inertia

SAMPLE PROBLEM B/4

The upper edge of the thin homogeneous plate of mass m is parabolic with a
vertical slope at the origin O. Determine its mass moments of inertia about the

and z-axes.

Solution. We begin by clearly establishing the function associated with the upper
boundary. From evaluated at we find that so

that We choose a transverse slice of thickness for the integrations 

leading to and The mass of this slice is

and the total mass of the plate is

The moment of inertia of the slice about the x-axis is

For the entire plate, we have

In terms of the mass m:

Ans.

The moment of inertia of the element about the y-axis is

For the entire plate,

Ans.

For thin plates which lie in the plane,

Ans.Izz � m�h2

5
 � 3b2

7 �
Izz � Ixx � Iyy � 15mh2 � 37mb2 

x-y

Iyy � �dIyy � �b

0
 �t � h

�b
�x�3

 dx � 27�thb3 � m
2
3�thb� � 37mb2

dIyy � dm y2 � (�ty dx)y2 � �ty3 dx

Ixx � 2
15�th3b � m

2
3�thb� � 15mh2

Ixx � �dIxx � �b

0
 13�t � h

�b
 �x�3

 dx � 2
15�th3b

dIxx � 13 dm y2 � 13(�ty dx)y2 � 13�ty3 dx

m � �dm � ��ty dx � �b

0
�t 

h
�b

�x  dx � 23 

�thb

dm � �ty dx

Iyy.Ixx

dxy � h
�b

�x.

k � h/�b(x, y) � (b, h),y � k�x

x- , y- ,

Helpful Hints

� If we have saying that “y gets
large faster than x” helps establish
that the parabola opens upward.
Here, we have which says
that “x gets large faster than y”,
helping establish that the parabola
opens rightward.

� For a full b by h rectangular plate of
thickness t, the mass would be 
(density times volume). So the factor
of for the parabolic plate makes
sense.

� Recall that for a slender rod of mass
m and length l, the moment of iner-
tia about an axis perpendicular to
the rod and passing through one end
is

� Note that is independent of the
width b.

� Note that is independent of the
height h.

Iyy

Ixx

1
3ml2.

2
3

�thb

y2 � k2x,

y � kx2,

�

�

�

�

�

O b

dx
x

x

h

Parabolic

z

y

y

t

bapp02.qxd  2/10/12  2:47 PM  Page 648



Article B/1 Mass Moments of Inertia about an Axis 649

SAMPLE PROBLEM B/5

The radius of the homogeneous solid of revolution is proportional to the
square of its x-coordinate. If the mass of the body is m, determine its mass mo-
ments of inertia about the x- and y-axes.

Solution. We begin by writing the boundary in the plane as The
constant k is determined by evaluating this equation at the point 

which gives so that 

As is usually convenient for bodies with axial symmetry, we choose a disk-
shaped slice as our differential element, as shown in the given figure. The mass
of this element is

where represents the density of the body. The moment of inertia of the ele-
ment about the x-axis is

The mass of the entire body is

and the moment of inertia of the entire body is

All that remains is to express more conventionally in terms of its mass. We do
so by writing

Ans.

By the parallel-axis theorem, the moment of inertia of the disk-shaped
element about the y-axis is

For the entire body, we have

Finally, we multiply by the same unit expression as above to obtain a result in
terms of the body mass m.

Ans.Iyy � ��r2h� r2

36
 � h

2

7 � � m
1
5 ��r2h� � 5m� r2

36
 � h

2

7 �

 � ��r2h� r2

36
 � h

2

7 �

 Iyy � �dIyy � �h

0
�� r

2

h4
 �1

4
 r

2

h4
 x8 � x6� dx � �� r

2

h4
 �1

4
 r

2

h4
 x

9

9
 � x

7

7 � �
h

0

 � �� � r
h2

 x2�2
 �1

4
 r

2

h4
 x4 � x2� dx � �� r

2

h4
 �1

4
 r

2

h4
 x8 � x6� dx

 � dm�1
4 � r

h2
 x2�2

 � x2� � ��y2 dx �1
4

 r
2

h4
 x4 � x2�

 dIyy � dIy�y� � x2 dm � 14 dm y2 � x2 dm

Ixx � 1
18��r4h � m

1
5��r2h

� � 5
18mr2

Ixx

Ixx � �dIxx � �h

0
 12��y4 dx � �h

0
 12�� � r

h2
 x2�4

 dx � 1
18��r4h

m � �dm  � �h

0
��y2 dx  ��h

0
 �� � r

h2
 x2�2 

dx � �� r
2

h4
 x

5

5
 �h

0 
� 15��r2h

dIxx � 12 dm y2 � 12(��y2 dx) y2 � 12��y4 dx

�

dm � ��y2 dx

y � r
h2

 x2.k � r/h2,(h, r): r � kh2,

(x, y) �
y � kx2.x-y

HHeellppffuull  HHiinnttss

� The volume of a disk is the area of
its face times its thickness. Then
density times volume gives mass.

� From Sample Problem the mass
moment of inertia of a uniform
cylinder (or disk) about its longitudi-
nal axis is 

� Remember to regard an integral op-
eration as an infinite summation.

� The parenthetical expression here is
unity, because its numerator and
denominator are equal.

� We note that is independent of h.
So the body could be compressed to

or elongated to a large value of
h with no resulting change in 
This is true because no particle of
the body would be changing its dis-
tance from the x-axis.

Ixx.
h � 0

Ixx

1
2 mr2.

B/1,

�

�

�

�
�

y

y′

z
x

dx

r

h

O

x

y
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Problem B/3

B/4 Determine the mass moment of inertia of the uniform
thin triangular plate of mass m about the x-axis. Also
determine the radius of gyration about the x-axis. By
analogy state . Then determine 

Problem B/4

B/5 Calculate the moment of inertia of the tapered steel
rod of circular cross section about an axis normal to
the rod through O. Note that the rod diameter is
small compared with its length.

Problem B/5

100 mm

10 mm

5 mm
O

x

z

y

b

h

m

Izz and kz.Iyy and ky

y

m

x
L—
2

L—
2

β
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PROBLEMS
Integration Exercises

B/1 Use the mass element where is the mass
per unit length, and determine the mass moments of
inertia and of the homogeneous slender rod of
mass and length l.

Problem B/1

B/2 In order to better appreciate the greater ease of inte-
gration with lower-order elements, determine the
mass moment of inertia of the homogeneous thin
plate by using the square element (a) and then by
using the rectangular element (b). The mass of the
plate is m. Then by inspection state and finally,
determine 

Problem B/2

B/3 Determine the mass moments of inertia about the x-,
axes of the slender rod of length L and mass

m which makes an angle with the axis as shown.x-�

y- , and z-

y

(a)

(b)
x

z

b—
2

a—
2

a—
2

b—
2

t

dx

dx

dy

Izz.
Iyy,

Ixx

y

x

dx

dm
l/2

x

l/2

y′

m
Iy�y�Iyy

�dm � � dx,
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B/6 Determine the mass moment of inertia of the uniform
thin equilateral triangular plate of mass m about the
x-axis. Also determine the corresponding radius of
gyration.

Problem B/6

B/7 Determine the mass moment of inertia about the 
y-axis for the equilateral triangular plate of the previ-
ous problem. Also determine its radius of gyration
about the y-axis.

B/8 Determine the mass moments of inertia of the thin
parabolic plate of mass m about the and axes.

Problem B/8

B/9 Determine the mass moment of inertia of the uniform
thin parabolic plate of mass m about the axis. State
the corresponding radius of gyration.

x-

y

x
z b

h

y = kx2

z-x- , y- ,

x

z

y

b

b

b––
2

b––
2
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Problem B/9

B/10 Determine the mass of inertia about the axis for
the parabolic plate of the previous problem. State
the radius of gyration about the axis.

B/11 Calculate the moment of the homogeneous right-
circular cone of mass m, base radius r, and altitude h
about the cone axis x and about the axis through
its vertex.

Problem B/11

y

x

r

h

y-

y-

y-

x

z

y

m

b––
2

b––
2

Parabolic

h
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Problem B/15

B/16 Determine the radius of gyration about the z-axis of
the paraboloid of revolution shown. The mass of the
homogenous body is m.

Problem B/16

B/17 Determine the moment of inertia about the axis
for the paraboloid of revolution of Prob. B/16.

B/18 Determine the mass moment of inertia about the 
axis of the solid spherical segment of mass m.

Problem B/18

x

y
R—
2

R—
2

x-

y-

r

z

x

y

h

π   x––a

a

b

m

x

y

z

y = b sin
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B/12 Determine the mass moment of inertia of the uni-
form thin elliptical plate (mass m) about the axis.
Then, by analogy, state the expression for 
Finally, determine 

Problem B/12

B/13 Determine the mass moment of inertia of the
homogeneous solid of revolution of mass m about
the axis.

Problem B/13

B/14 Determine the mass moment of inertia of the homo-
geneous solid of revolution of the previous problem
about the and axes.

B/15 Determine the mass moment of inertia about the 
axis for the uniform thin plate of mass m shown.x-

z-y-

y

z
x

r

h

m

y = kx1.5

x-

a

b
m

x

y

z

Elliptical

Izz.
Iyy.

x-
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B/19 Determine the moment of inertia about the axis of
the homogeneous solid semiellipsoid of revolution
having mass m.

Problem B/19

B/20 A homogeneous solid of mass m is formed by revolv-
ing the right triangle about the axis. Determine
the radius of gyration of the solid about the axis.

Problem B/20

B/21 Determine by integration the moment of inertia of
the half-cylindrical shell of mass m about the axis

The thickness of the shell is small compared
with r.

Problem B/21

B/22 Determine the moment of inertia about the generat-
ing axis of a complete ring (torus) of mass m having
a circular section with the dimensions shown in the
sectional view.

r

a

a
l/2

l/2

a-a.

r
a

a

a

z

z-
z-45�

y

z

x

b

a

x-
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Problem B/22

B/23 The plane area shown in the top portion of the figure
is rotated about the axis to form the body of
revolution of mass m shown in the lower portion
of the figure. Determine the mass moment of inertia of
the body about the axis.

Problem B/23

2b
b

b

m

2b

y

x

L––
2

L––
2

L––
2

L––
2

Parabolic

y

x

x-

x-180�

a

R
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Problem B/28

B/29 Determine the moment of inertia of the one-quarter-
cylindrical shell of mass m about the axis. The
thickness of the shell is small compared with r.

Problem B/29

B/30 A shell of mass m is obtained by revolving the
quarter-circular section about the axis. If the
thickness of the shell is small compared with a and if 

a/3, determine the radius of gyration of the shell
about the axis.

Problem B/30

r

a

z

z-
r � 

z-

r

x

x

b–
2

b–
2

x-x

x

z

y

r
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B/24 Determine for the homogen eous body of revolu-
tion of the previous problem.

B/25 The thickness of the homogeneous triangular plate of
mass m varies linearly with the distance from the ver-
tex toward the base. The thickness a at the base is
small compared with the other dimensions. Determine
the moment of inertia of the plate about the axis
along the centerline of the base.

Problem B/25

B/26 Determine the moment of inertia of the triangular
plate described in Prob. B/25 about the axis.

B/27 Determine the moment of inertia, about the generat-
ing axis, of the hollow circular tube of mass m ob-
tained by revolving the thin ring shown in the
sectional view completely around the generating axis.

Problem B/27

B/28 Determine the moments of inertia of the half-spherical
shell with respect to the and axes. The mass of
the shell is m, and its thickness is negligible com-
pared with the radius r.

z-x-

a

R

z-

a

zx

y

h

b—
2

b—
2

y-

Iyy

�
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Composite and Parallel-Axis Exercises

B/31 The two small spheres of mass m each are connected
by the light rigid rod which lies in the plane. De-
termine the mass moments of inertia of the assembly
about the and axes.

Problem B/31

B/32 State without calculation the moment of inertia about
the axis of the thin conical shell of mass m and ra-
dius r from the results of Sample Problem applied
to a circular disk. Observe the radial distribution of
mass by viewing the cone along the z-axis.

Problem B/32

B/33 The moment of inertia of a solid homogeneous cylin-
der of radius r about an axis parallel to the central
axis of the cylinder may be obtained approximately by
multiplying the mass of the cylinder by the square of
the distance d between the two axes. What percentage
error e results if (a) and (b) ?d � 2rd � 10r

h

z

O

r

B/1
z-

m

m

y

z

L L

x

L

L

z-x- , y- ,

x-z

Article B/1 Problems 655

Problem B/33

B/34 Every “slender” rod has a finite radius r. Refer to
Table and derive an expression for the percentage
error e which results if one neglects the radius r of a
homogeneous solid cylindrical rod of length l when
calculating its moment of inertia . Evaluate your
expression for the ratios 

Problem B/34

B/35 Calculate the mass moment of inertia about the axis
O-O for the uniform 10-in. block of steel with cross-
section dimensions of 6 and 8 in.

Problem B/35

O

O

3″

3″
8″

6″

10″

r

zl—
2

l—
2

r/l � 0.01, 0.1, and 0.5.
Izz

D/4

d

r
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B/39 Determine the moment of inertia of the half-ring of
mass m about its diametral axis a-a and about axis 
b-b through the midpoint of the arc normal to the
plane of the ring. The radius of the circular cross
section is small compared with r.

Problem B/39

B/40 The semicircular disk weighs 5 lb, and its small
thickness may be neglected compared with its 10-in.
radius. Compute the moments of inertia of the disk
about the and axes.

Problem B/40

B/41 A 6-in. steel cube is cut along its diagonal plane. Cal-
culate the moment of inertia of the resulting prism
about the edge .

Problem B/41

x

6″ 6″

6″
x

x-x

10 ″
x

yz
y′

z-x- , y- , y�- ,

b

r

b

a

a

m
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B/36 Determine for the cylinder with a centered circu-
lar hole. The mass of the body is m.

Problem B/36

B/37 Determine the mass moment of inertia about the 
axis for the right-circular cylinder with a central

longitudinal hole.

Problem B/37

B/38 Determine the moment of inertia of the mallet about
the axis. The density of the wooden handle is

and that of the soft-metal head is
The longitudinal axis of the cylindrical

head is normal to the axis. State any assumptions.

Problem B/38

300
mm

40
mm

30 mm

50
mm
50

mm

x

x-
9000 kg/m3.
800 kg/m3

x-

m
2r

r

L––
2

L––
2

z

z-

r1

r2

x

Ixx

bapp02.qxd  2/10/12  2:47 PM  Page 656



B/42 Determine the length L of each of the slender rods of
mass which must be centrally attached to the
faces of the thin homogeneous disk of mass m in
order to make the mass moments of inertia of the
unit about the and axes equal.

Problem B/42

B/43 A badminton racket is constructed of uniform slen-
der rods bent into the shape shown. Neglect the
strings and the built-up wooden grip and estimate
the mass moment of inertia about the axis through
O, which is the location of the player’s hand. The
mass per unit length of the rod material is 

Problem B/43

L—
4

L—
4

L—
8

y

O

L

�.

y-

L

m—
2

m—
2 L

x

m r

z

z-x-

m/2
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B/44 As a sorting-machine part, the steel half-cylinder is
subject to rapid angular acceleration and decelera-
tion about the y-axis, and its moment of inertia about
this axis is required in the design of the machine.
Calculate Use Tables and as needed.

Problem B/44

B/45 Calculate the moment of inertia of the steel control
wheel, shown in section, about its central axis.
There are eight spokes, each of which has a constant
cross-sectional area of 200 . What percent n of
the total moment of inertia is contributed by the
outer rim?

Problem B/45

Dimensions in millimeters

50 100 300 400

120

200 mm2

75

mm2

y
90 mm

40
mm

80
mm

x

z

D/4D/1Iyy.
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B/48 The clock pendulum consists of the slender rod of
length l and mass m and the bob of mass 7m. Neglect
the effects of the radius of the bob and determine 
in terms of the bob position x. Calculate the ratio R of

evaluated for to evaluated for .

Problem B/48

B/49 Determine the moment of inertia about the axis of
the portion of the homogeneous sphere shown. The
mass of the sphere portion is m.

Problem B/49

B/50 A square plate with a quarter-circular sector re-
moved has a net mass m. Determine its moment of
inertia about axis normal to the plane of the
plate.

Problem B/50

A

A

O

a

x

y

z

a

a

A-A

x

y
R—
2

R—
2

x-

x

O

l

7m

m

x � lIOx � 34lIO

IO
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B/46 The uniform rod of length 4b and mass m is bent
into the shape shown. The diameter of the rod is
small compared with its length. Determine the mo-
ments of inertia of the rod about the three coordi-
nate axes.

Problem B/46

B/47 Calculate the moment of inertia of the solid steel
semicylinder about the axis and about the paral-
lel axis. (See Table for the density of steel.)

Problem B/47

x0

60 mm

100 mm

60
mm

x0

x

x

D/1x0-x0

x-x

z

b

x

O

y

b

b

b
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B/51 Determine the moments of inertia about the tangent
axis for the full ring of mass and the half-ring

of mass 

Problem B/51

B/52 The slender metal rods are welded together in the
configuration shown. Each 6-in. segment weighs 
0.30 Compute the moment of inertia of the as-
sembly about the axis.

Problem B/52

B/53 The welded assembly shown is made from a steel rod
which weighs 0.667 per foot of length. Calculate the
moment of inertia of the assembly about the axis.

Problem B/53

x

x

8″

8″8″

8″

8″

x-x
lb

6″

6″

6″ 6″

z

6″

x

y

y-
lb.

m2.
m1x-x
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B/54 The machine element is made of steel and is designed
to rotate about axis O-O. Calculate its radius of gy-
ration about this axis.

Problem B/54

B/55 Determine for the cone frustum, which has base
radii and and mass m.

Problem B/55

B/56 By direct integration, determine the moment of iner-
tia about the axis of the thin semicircular disk of
mass m and radius R inclined at an angle from the

plane.

Problem B/56

R z

Xx

Z
y

X-y
�

Z-

x

h

r1

r2

y–

G

r2r1

Ixx

O

O

30 80

Dimensions in millimeters

80

40

kO

�

r

x

x
r

x

m1

x m2
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B/2 Products of Inertia
For problems in the rotation of three-dimensional rigid bodies, the

expression for angular momentum contains, in addition to the moment-
of-inertia terms, product-of-inertia terms defined as

(B/8)

These expressions were cited in Eqs. 7/10 in the expansion of the ex-
pression for angular momentum, Eq. 7/9.

The calculation of products of inertia involves the same basic proce-
dure which we have followed in calculating moments of inertia and in
evaluating other volume integrals as far as the choice of element and
the limits of integration are concerned. The only special precaution we
need to observe is to be doubly watchful of the algebraic signs in the ex-
pressions. Whereas moments of inertia are always positive, products of
inertia may be either positive or negative. The units of products of iner-
tia are the same as those of moments of inertia.

We have seen that the calculation of moments of inertia is often
simplified by using the parallel-axis theorem. A similar theorem exists
for transferring products of inertia, and we prove it easily as follows. In
Fig. B/6 is shown the x-y view of a rigid body with parallel axes x0-y0

passing through the mass center G and located from the x-y axes by the
distances dx and dy. The product of inertia about the x-y axes by defini-
tion is

The last two integrals vanish since the first moments of mass about the
mass center are necessarily zero.

Similar relations exist for the remaining two product-of-inertia
terms. Dropping the zero subscripts and using the bar to designate the
mass-center quantity, we obtain

(B/9)

 Iyz � Iyz � mdydz

 Ixz � Ixz � mdxdz

 Ixy � Ixy � mdxdy

 � Ix0  y0
 � mdx dy

 � �  x0  y0 dm � dx dy �  dm � dx �  y0 dm � dy �  x0 dm

 Ixy � �  xy dm � �  (x0 � dx)(y0 � dy) dm

 Iyz � Izy � �  yz dm

 Ixz � Izx � �  xz dm

 Ixy � Iyx � �  xy dm
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dx

dm

y

G

O
x

x0

x0

y0

y0

dy

Figure B/6
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These transfer-of-axis relations are valid only for transfer to or from
parallel axes through the mass center.

With the aid of the product-of-inertia terms, we can calculate the
moment of inertia of a rigid body about any prescribed axis through the
coordinate origin. For the rigid body of Fig. B/7, suppose we must deter-
mine the moment of inertia about axis O-M. The direction cosines of
O-M are l, m, n, and a unit vector � along O-M may be written � � li �

mj � nk. The moment of inertia about O-M is

where �r � �� � r sin � � h. The cross product is

and, after we collect terms, the dot-product expansion gives

Thus, with the substitution of the expressions of Eqs. B/4 and B/8, we
have

(B/10)

This expression gives the moment of inertia about any axis O-M in
terms of the direction cosines of the axis and the moments and products
of inertia about the coordinate axes.

Principal Axes of Inertia
As noted in Art. 7/7, the array

whose elements appear in the expansion of the angular-momentum ex-
pression, Eq. 7/11, for a rigid body with attached axes, is called the iner-
tia matrix or inertia tensor. If we examine the moment- and
product-of-inertia terms for all possible orientations of the axes with re-
spect to the body for a given origin, we will find in the general case an
orientation of the x-y-z axes for which the product-of-inertia terms van-
ish and the array takes the diagonalized form

IM � Ixxl2 � Iyym2 � Izzn2 � 2Ixylm � 2Ixzln � 2Iyzmn

 � 2 xylm � 2 xzln � 2 yzmn

(r � �) � (r � �) � h2 � (y2 � z2)l2 � (x2 � z2)m2 � (x2 � y2)n2

(r � �) � (yn � zm)i � (zl � xn)j � (xm � yl)k

IM � �  h2 dm � �  (r � �) � (r � �) dm
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�
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z
θ

Figure B/7
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Such axes x-y-z are called the principal axes of inertia, and Ixx, Iyy, and Izz

are called the principal moments of inertia and represent the maximum,
minimum, and intermediate values of the moments of inertia for the
particular origin chosen.

It may be shown* that for any given orientation of axes x-y-z the so-
lution of the determinant equation

(B/11)

for I yields three roots I1, I2, and I3 of the resulting cubic equation which
are the three principal moments of inertia. Also, the direction cosines l,
m, and n of a principal inertia axis are given by

(B/12)

These equations along with l2 � m2 � n2 � 1 will enable a solution for
the direction cosines to be made for each of the three I’s.

To assist with the visualization of these conclusions, consider the
rectangular block, Fig. B/8, having an arbitrary orientation with respect
to the x-y-z axes. For simplicity, the mass center G is located at the ori-
gin of the coordinates. If the moments and products of inertia for the
block about the x-y-z axes are known, then solution of Eq. B/11 would
give the three roots, I1, I2, and I3, which are the principal moments of in-
ertia. Solution of Eq. B/12 using each of the three I’s, in turn, along with
l2 � m2 � n2 � 1, would give the direction cosines l, m, and n for each of
the respective principal axes, which are always mutually perpendicular.
From the proportions of the block as drawn, we see that I1 is the maxi-
mum moment of inertia, I2 is the intermediate value, and I3 is the mini-
mum value.

 �Izxl � Izym � (Izz � I)n � 0

 �Iyxl � (Iyy � I)m � Iyzn � 0

 (Ixx � I)l � Ixym � Ixzn � 0

662 Appendix B Mass Moments of Inertia

*See, for example, the first author’s Dynamics, SI Version, 1975, John Wiley & Sons, Art. 41.

31

2

3 1

2G

z

y

x

Figure B/8
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SAMPLE PROBLEM B/6

The bent plate has a uniform thickness t which is negligible compared with
its other dimensions. The density of the plate material is �. Determine the prod-
ucts of inertia of the plate with respect to the axes as chosen.

Solution. Each of the two parts is analyzed separately.

Rectangular part. In the separate view of this part, we introduce parallel
axes x0-y0 through the mass center G and use the transfer-of-axis theorem. By
symmetry, we see that � � 0 so that

Because the z-coordinate of all elements of the plate is zero, it follows that
Ixz � Iyz � 0.

Triangular part. In the separate view of this part, we locate the mass center
G and construct x0-, y0-, and z0-axes through G. Since the x0-coordinate of all ele-
ments is zero, it follows that � � 0 and � � 0. The transfer-of-
axis theorems then give us

We obtain Iyz by direct integration, noting that the distance a of the plane of
the triangle from the y-z plane in no way affects the y- and z-coordinates. With
the mass element dm � �t dy dz, we have

Adding the expressions for the two parts gives

Ans.

Ans.

Ans. Iyz �  0  �1
8 

�tb2c2 � �1
8 

�tb2c2

 Ixz �  0  � 

1
6 �tabc2 � � 

1
6 �tabc2

 Ixy � � 

1
4 �ta2b2  � 

1
3 �tab2c � � 

1
12 �tab2(3a � 4c)

 � 
�tc2

2b2
 �b

0
 y3 dy � 1

8
 �tb2c2

 Iyz � �t �b

0
 � cy/b

0
 yz dz dy � �t �b

0
 y
z2

2�
cy/b

0
 dy
Iyz � �  yz dm�

 Ixz � 0 � �t b
2

 c(�a)�c
3� � � 

1
6

 �tabc2[Ixz � Ixz � mdxdz]

 Ixy � 0 � �t b
2

 c(�a)�2b
3 � � � 

1
3

 �tab2c[Ixy � Ixy � mdxdy]

Ix0 z0
IxzIx0  y0

Ixy

[Ixy � Ixy � mdxdy]   Ixy � 0 � �tab��
a
2��b

2� � � 

1
4

 �ta2b2

Ix0  y0
Ixy
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c

a b

y

x

z

�

�

2c/3

c/3

b/3

2b/3 z

a

G

y0

x0

y

x

G

y0

z0

dm

x0 y

x

Helpful Hints

� We must be careful to preserve the
same sense of the coordinates. Thus,
plus x0 and y0 must agree with plus
x and y.

� We choose to integrate with respect
to z first, where the upper limit is the
variable height z � cy/b. If we were
to integrate first with respect to y,
the limits of the first integral would
be from the variable y � bz/c to b.
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SAMPLE PROBLEM B/7

The angle bracket is made from aluminum plate with a mass of 13.45 kg per
square meter. Calculate the principal moments of inertia about the origin O and
the direction cosines of the principal axes of inertia. The thickness of the plate is
small compared with the other dimensions.

Solution. The masses of the three parts are

Part 1

Part 2

 Ixz � Ixz � mdxdz � 0 �0.0518(0.16)(0.05) � �4.14(10�4) kg � m2

 Ixy � 0   Iyz � 0

 � �13.41(10�4) kg � m2

 Izz � 14 mr2 � mdx 

2 � �0.0518
(0.035)2

4
 � (0.16)2�

 � �14.86(10�4) kg � m2

 � �0.0518
(0.035)2

2
 � (0.16)2 � (0.05)2�

 Iyy � 12 mr2 � m(dx 

2 � dz 

2)

 � �1.453(10�4) kg � m2

 Ixx � 14 mr2 � mdz 

2 � �0.0518
(0.035)2

4
 � (0.050)2�

 � 0 � m a
2

 b
2

 � 0.282(0.105)(0.05) � 14.83(10�4) kg � m2

 Ixz � Ixz � mdx dz

 Ixy � 0   Iyz � 0

 Izz � 13 ma2 � 13 

(0.282)(0.21)2 � 41.5(10�4) kg � m2

 Iyy � 13 m(a2 � b2) � 13 

(0.282)[(0.21)2 � (0.1)2] � 50.9(10�4) kg � m2

 Ixx � 13 mb2 � 13 

(0.282)(0.1)2 � 9.42(10�4) kg � m2

 m3 � 13.45(0.12)(0.11) � 0.1775 kg

 m2 � �13.45�(0.035)2 � �0.0518 kg

 m1 � 13.45(0.21)(0.1) � 0.282 kg
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z

O

x
y

160

110
120

50

50

70
50

Dimensions in millimeters

z

x

O

y

z

O

x
y

2

1

3

r = 35

b = 100

a = 210

c = 110

dz = 50

dx = 160

d = 120

�

Helpful Hints

� Note that the mass of the hole is
treated as a negative number.

� You can easily derive this formula.
Also check Table D/4.

�
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SAMPLE PROBLEM B/7 (Continued)

Part 3

Totals

Substitution into Eq. B/11, expansion of the determinant, and simplification
yield

Solution of this cubic equation yields the following roots, which are the principal
moments of inertia

Ans.

The direction cosines of each principal axis are obtained by substituting
each root, in turn, into Eq. B/12 and using l2 � m2 � n2 � 1. The results are

Ans.

The bottom figure shows a pictorial view of the bracket and the orientation of its
principal axes of inertia.

 n1 � �0.839    n2 � 0.312  n3 � 0.445

 m1 � 0.410  m2 � �0.1742    m3 � 0.895

 l1 � 0.357  l2 � 0.934  l3 � 0.01830

 I3 � 43.4(10�4) kg � m2

 I2 � 11.82(10�4) kg � m2

 I1 � 48.3(10�4) kg � m2

I3 � 103.5(10�4)I2 � 3180(10�8)I � 24 800(10�12) � 0

 Izz � 43.8(10�4) kg � m2  Ixz � 10.69(10�4) kg � m2

 Iyy � 43.2(10�4) kg � m2  Iyz � 0

 Ixx � 16.48(10�4) kg � m2    Ixy � �5.86(10�4) kg � m2

 Iyz � 0   Ixz � 0

 � 0 � m c
2

 ��d
2 � � 0.1775(0.055)(�0.06) � �5.86(10�4) kg � m2

 Ixy � Ixy � mdx dy

 � 15.68 (10�4) kg � m2

 Izz � 13 m(c2 � d2) � 13 (0.1775)[(0.11)2 � (0.12)2]

 Iyy � 13 mc2 � 13 

(0.1775)(0.11)2 � 7.16(10�4) kg � m2

 Ixx � 13 md2 � 13 (0.1775)(0.12)2 � 8.52(10�4) kg � m2

Article B/2 Products of Inertia 665

z

x

O

y

z

O

x
y

2

1

3

r = 35

b = 100

a = 210

c = 110

dz = 50

dx = 160

d = 120

z3

1

y

x

O

2

� A computer program for the solution
of a cubic equation may be used, or
an algebraic solution using the for-
mula cited in item 4 of Art. C/4, Ap-
pendix C, may be employed.

�
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B/59 Determine the products of inertia of the uniform
slender rod of mass m about the coordinate axes
shown.

Problem B/59

B/60 Determine the products of inertia about the coordi-
nate axes for the thin plate of mass m which has the
shape of a circular sector of radius a and angle � as
shown.

Problem B/60

B/61 Determine the products of inertia about the coordi-
nate axes for the thin square plate with two circular
holes. The mass of the plate material per unit area is �.

Problem B/61

b–
4

b–
4

b–
4

b–
4

b–
8

b–
4

y

x

b–
8

b–
4
b–
4
b–
4

m

a

y

z
x

β

z

yx

a

m

h

b
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PROBLEMS
Introductory Problems

B/57 Determine the products of inertia about the coordi-
nate axes for the unit which consists of three small
spheres, each of mass m, connected by the light but
rigid slender rods.

Problem B/57

B/58 Determine the products of inertia about the coordi-
nate axes for the unit which consists of four small
particles, each of mass m, connected by the light but
rigid slender rods.

Problem B/58

xz

y

m

m

m

m

l

l

l
l

l
l

l

l

l

l

l

l

l

m

l

yx

m

m

z
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B/62 The slender rod of mass m is formed into a quarter-
circular arc of radius r. Determine the products of
inertia of the rod with respect to the given axes.

Problem B/62

B/63 The uniform rectangular block weighs 50 lb. Calcu-
late its products of inertia about the coordinate axes
shown.

Problem B/63

B/64 Determine the product of inertia Ixy for the slender
rod of mass m.

Problem B/64

y

x
l/2

l/2

θ

x

y

z

8″ 6″

4″

x

z

r
y

45°
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B/65 The semicircular disk of mass m and radius R, in-
clined at an angle � from the X-y plane, of Prob. B/56
is repeated here. By the methods of this article, de-
termine the moment of inertia about the Z-axis.

Problem B/65

B/66 Determine the products of inertia for the rod of
Prob. B/46, repeated here.

Problem B/66

z

b

x

O

y

b

b

b

R
z

Xx

Z
y
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B/70 Determine the moment of inertia of the solid cube of
mass m about the diagonal axis A-A through oppo-
site corners.

Problem B/70

B/71 The steel plate with two right-angle bends and a
central hole has a thickness of 15 mm. Calculate its
moment of inertia about the diagonal axis through
the corners A and B.

Problem B/71

B/72 Prove that the moment of inertia of the rigid assem-
bly of three identical balls, each of mass m and ra-
dius r, has the same value for all axes through O.
Neglect the mass of the connecting rods.

Problem B/72

m

z

y

x

b

b

b

m

O

m

150

500

Dimensions in millimeters

500

A

B

300 300

A

A

a

a
a
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Representative Problems

B/67 The S-shaped piece is formed from a rod of diameter
d and bent into the two semicircular shapes. Deter-
mine the products of inertia for the rod, for which d
is small compared with r.

Problem B/67

B/68 Determine the three products of inertia with respect
to the given axes for the uniform rectangular plate
of mass m.

Problem B/68

B/69 For the slender rod of mass m bent into the configu-
ration shown, determine its products of inertia Ixy,
Ixz, and Iyz.

Problem B/69

b

b

b
b

y

x

z

45°

45°

y

x

z

b

h

θ

r

d

y

x

z

r
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*Computer-Oriented Problems

*B/73 Each sphere of mass m has a diameter which is
small compared with the dimension b. Neglect the
mass of the connecting struts and determine the
principal moments of inertia of the assembly with
respect to the coordinates shown. Determine also
the direction cosines of the axis of maximum mo-
ment of inertia.

Problem B/73

*B/74 Determine the moment of inertia I about axis O-M
for the uniform slender rod bent into the shape
shown. Plot I versus � from � � 0 to � � 90� and de-
termine the minimum value of I and the angle �

which its axis makes with the x-direction. (Note:
Because the analysis does not involve the z-coordi-
nate, the expressions developed for area moments
of inertia, Eqs. A/9, A/10, and A/11 in Appendix A of
Vol. 1 Statics, may be utilized for this problem in
place of the three-dimensional relations of Appen-
dix B.) The rod has a mass � per unit length.

Problem B/74

x

y

O

r

r
M

θ

b

b

b

O

m

m

y

x

z

m

b

b
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*B/75 The assembly of three small spheres connected by
light rigid bars of Prob. B/57 is repeated here. De-
termine the principal moments of inertia and the
direction cosines associated with the axis of maxi-
mum moment of inertia.

Problem B/75

*B/76 The bent rod of Probs. B/46 and B/66 is repeated
here. Its mass is m, and its diameter is small com-
pared with its length. Determine the principal mo-
ments of inertia of the rod about the origin O. Also
find the direction cosines for the axis of minimum
moment of inertia.

Problem B/76

z

b

x

O

y

b

b

b

l

l

l

l

l

m

l

yx

m

m

z
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*B/78 The slender rod has a mass � per unit length and is
formed into the shape shown. Determine the prin-
cipal moments of inertia about axes through O and
calculate the direction cosines of the axis of mini-
mum moment of inertia.

Problem B/78

z

x

y

O

b

b
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*B/77 The thin plate has a mass � per unit area and is
formed into the shape shown. Determine the prin-
cipal moments of inertia of the plate about axes
through O.

Problem B/77

2b

b

z

y

x

b b

O
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671

C/1 Introduction
Appendix C contains an abbreviated summary and reminder of se-

lected topics in basic mathematics which find frequent use in mechanics.
The relationships are cited without proof. The student of mechanics will
have frequent occasion to use many of these relations, and he or she will be
handicapped if they are not well in hand. Other topics not listed will also
be needed from time to time.

As the reader reviews and applies mathematics, he or she should
bear in mind that mechanics is an applied science descriptive of real
bodies and actual motions. Therefore, the geometric and physical inter-
pretation of the applicable mathematics should be kept clearly in mind
during the development of theory and the formulation and solution of
problems.

C/2 Plane Geometry

1. When two intersect-
ing lines are, respec-
tively, perpendicular 
to two other lines, 
the angles formed by 
the two pairs are equal.

2. Similar triangles

3. Any triangle

Area � 12 

bh

x
b
 � 

h � y
h

4. Circle

5. Every triangle inscribed 
within a semicircle is 
a right triangle.

6. Angles of a triangle

�4 � �1 � �2

�1 � �2 � �3 � 180�

Sector area � 12r2�

Arc length s � r�

Area � �r2
Circumference � 2�r

1 =θ 2θ

1θ

2θ

x y

h

b

h

b

r
sθ

1θ 2θ

1 + =   /2θ 2θ π

1θ 3θ 4θ

2θ

CSelected Topics 
of Mathematics
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C/3 Solid Geometry

672 Appendix C Selected Topics of Mathematics

1. Sphere

2. Spherical wedge

Volume � 23r3�

Surface area � 4�r2

Volume � 43�r3

3. Right-circular cone

4. Any pyramid or cone

where B � area of base

Volume � 13Bh

L � �r2 � h2
Lateral area � �rL

Volume � 13�r2h
r

r
θ

r

hL

B

h

C/4 Algebra

1. Quadratic equation

2. Logarithms

Natural logarithms

3. Determinants
2nd order

3rd order

log10x � 0.4343 ln x
log 1 � 0
log an � n log a
log (1/n) � �log n
log (a/b) � log a � log b
log (ab) � log a � log b

 ex � y, x �  log e y � ln  y
 b � e � 2.718 282

bx � y, x �  log b y

x � 
�b � �b2 � 4ac

2a
, b2 � 4ac for real roots

ax2 � bx � c � 0

4. Cubic equation

For general cubic equation

Substitute x � x0 � a/3 and get � Ax0 � B.
Then proceed as above to find values of x0 from
which x � x0 � a/3.

x0 

3

x3 � ax2 � bx � c � 0

x1 � 2q1/3, x2 � x3 � �q1/3

  roots equal)
 Case III:  q2 � p3 � 0 (three roots real, two

x1 � (q � �q2 � p3)1/3 � (q � �q2 � p3)1/3

  roots imaginary)
 Case II:  q2 � p3 positive (one root real, two

 x3 � 2�p cos (u/3 � 240�)

 x2 � 2�p cos (u/3 � 120�)

 x1 � 2�p cos (u/3)

 cos u � q/(p �p), 0 � u � 180�

 distinct)
 Case I:  q2 � p3 negative (three roots real and

Let p � A/3, q � B/2.

x3 � Ax � B
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C/5 Analytic Geometry

1. Straight line

2. Circle

x

x

yy

r r

b

ax2 + y2 = r2

(x – a)2 + (y – b)2 = r2

m

x x

y y

1a

a

b

y = a + mx
x–
a

y–
b

+ = 1
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3. Parabola

4. Ellipse

5. Hyperbola

x

y

a

b

x2
—
a2

y2
—
b2

+ = 1

b

b

a
a

y

x

x

y

x2
—
a2

y = b
y2
—
b2

x = a

a
a a

y

x x
b

x2
—
a2

y2
—
b2

– = 1

y

xy = a2

C/6 Trigonometry

1. Definitions

2. Signs in the four quadrants

θ

(+)

(+)

I
θ

(+)

(–)

II
θ

(–)

(–)III

θ
(+)

(–) IV

 tan � � a/b   cot � � b/a
 cos � � b/c   sec � � c/b
 sin � � a/c   csc � � c/a a

c

b

θ
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3. Miscellaneous relations

cos (a � b) � cos a cos b � sin a sin b
sin (a � b) � sin a cos b � cos a sin b
cos 2� � cos2 � � sin2 �
sin 2� � 2 sin � cos �

1 � cot2 � � csc2 �
1 � tan2 � � sec2 �
sin2 � � cos2 � � 1

674 Appendix C Selected Topics of Mathematics

4. Law of sines

5. Law of cosines

c2 � a2 � b2 � 2ab cos D
c2 � a2 � b2 � 2ab cos C

a
b

 � sin A
sin B

A C D

B

c

b

a

C/7 Vector Operations

1. Notation. Vector quantities are printed in boldface type, and
scalar quantities appear in lightface italic type. Thus, the vector
quantity V has a scalar magnitude V. In longhand work vector
quantities should always be consistently indicated by a symbol such
as to distinguish them from scalar quantities.

2. Addition

3. Subtraction

4. Unit vectors i, j, k

where

5. Direction cosines l, m, n are the cosines of the angles between V
and the x-, y-, z-axes. Thus,

so that

and l2 � m2 � n2 � 1

V � V(li � mj � nk)

l � Vx/V    m � Vy /V   n � Vz/V

 �V � � V � �Vx 

2 � Vy 

2 � Vz 

2

 V � Vxi � Vy j � Vzk

P � Q � P � (�Q)

Associative law  P � (Q � R) � (P � Q) � R
Commutative law  P � Q � Q � P
Parallelogram addition  P � Q � R
Triangle addition  P � Q � R

V or V
l

P

P

P

P

Q

–QP – Q

R

R

Q

Q

V

k

i

j

z

x

y

kVz

iVx

jVy
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6. Dot or scalar product

This product may be viewed as the magnitude of P multiplied by
the component Q cos � of Q in the direction of P, or as the magni-
tude of Q multiplied by the component P cos � of P in the direction
of Q.

From the definition of the dot product

It follows from the definition of the dot product that two vec-
tors P and Q are perpendicular when their dot product vanishes,

.
The angle � between two vectors P1 and P2 may be found from

their dot product expression , which gives

where l, m, n stand for the respective direction cosines of the vec-
tors. It is also observed that two vectors are perpendicular to each
other when their direction cosines obey the relation l1l2 � m1m2 �

n1n2 � 0.

7. Cross or vector product. The cross product P Q of the two
vectors P and Q is defined as a vector with a magnitude

and a direction specified by the right-hand rule as shown. Reversing
the vector order and using the right-hand rule give Q P �

�P Q.

Distributive law P (Q � R) � P Q � P R

From the definition of the cross product, using a right-handed
coordinate system, we get

i j � k j k � i k i � j

j i � �k k j � �i i k � �j

i i � j j � k k � 0���

���

���

���

�
�

Q � � PQ sin ���P

�

Distributive law  P � (Q � R) � P � Q � P � R

cos � � 
P1 � P2

P1P2
 � 

P1x
P2x

 � P1y
P2y

 � P1z
P2z

P1P2
 � l1l2 � m1m2 � n1n2

P1 � P2 � P1P2 cos �

P � Q � 0

 P � P � Px 

2 � Py 

2 � Pz 

2

 � PxQx � PyQy � PzQz

 P � Q � (Pxi � Pyj � Pzk) � (Qxi � Qyj � Qzk)

 i � j � j � i � i � k � k � i � j � k � k � j � 0

 i � i � j � j � k � k � 1

Commutative law   P � Q � Q � P

P � Q � PQ cos �
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P

P P

θ

θθ θ

Q

Q cos θP cos
Q Q

θ

θ

Q

Q

P

P

P × Q

Q × P = –P × Q
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With the aid of these identities and the distributive law, the vector
product may be written

The cross product may also be expressed by the determinant

8. Additional relations

Triple scalar product . The dot and cross
may be interchanged as long as the order of the vectors is main-
tained. Parentheses are unnecessary since is meaning-
less because a vector P cannot be crossed into a scalar . Thus,
the expression may be written

The triple scalar product has the determinant expansion

Triple vector product (P Q) R � �R (P Q) � R
(Q P). Here we note that the parentheses must be used since an
expression P Q R would be ambiguous because it would not
identify the vector to be crossed. It may be shown that the triple
vector product is equivalent to

or

The first term in the first expression, for example, is the dot prod-
uct , a scalar, multiplied by the vector Q.

9. Derivatives of vectors obey the same rules as they do for scalars.

 
d(P � Q)

dt
 � P � Q̇ � Ṗ � Q

 
d(P � Q)

dt
 � P � Q̇ � Ṗ � Q

 
d(Pu)

dt
 � Pu̇ � Ṗu

 dP
dt

 � Ṗ � Ṗxi � Ṗyj � Ṗzk

R � P

 P � (Q � R) � P � RQ � P � QR

 (P � Q) � R � R � PQ � R � QP

��
�

�����

P � Q � R � P � Q � R

Q � R
P � (Q � R)

(P � Q) � R � R � (P � Q)

 � (PyQz � PzQy)i � (PzQx � PxQz)j � (PxQy � PyQx)k

 P � Q � (Pxi � Pyj � Pzk) � (Qxi � Qyj � Qzk)
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10. Integration of vectors. If V is a function of x, y, and z and an el-
ement of volume is d� � dx dy dz, the integral of V over the volume
may be written as the vector sum of the three integrals of its com-
ponents. Thus,

�  V d� � i �  Vx d� � j �  Vy d� � k �  Vz d�

Article C/9 Derivatives 677

C/8 Series
(Expression in brackets following series indicates range of

convergence.)

[Fourier expansion for �l � x � l]

where an � 1
l
 � l

�l
 ƒ(x) cos n�x

l
 dx,  bn � 1

l
 � l

�l
 ƒ(x) sin n�x

l
 dx

ƒ(x) � 
a0

2
 � �

�

n�1
 an cos n�x

l
 � �

�

n�1
 bn sin n�x

l

cosh x � e
x � e�x

2
 � 1 � x

2

2!
 � x

4

4!
 � x

6

6!
� � � �  [x2 � �]

sinh x � e
x � e�x

2
 � x � x

3

3!
 � x

5

5!
 � x

7

7!
� � � �  [x2 � �]

cos x � 1 � x
2

2!
 � x

4

4!
 � x

6

6!
� � � �  [x2 � �]

sin x � x � x
3

3!
 � x

5

5!
 � x

7

7!
 � � � �  [x2 � �]

(1 � x)n � 1 � nx � 
n(n � 1)

2!
 x2 � 

n(n � 1)(n � 2)
3!

 x3 � � � �   [x2 � 1]

C/9 Derivatives

,

d sinh x
dx

 � cosh x,   d cosh x
dx

 � sinh x,   d tanh x
dx

 � sech2 x

d sin x
dx

 � cos x,   d cos x
dx

 � �sin x,   d tan x
dx

 � sec2 x

lim
�xl0

 cos �x � cos dx  � 1

lim
�xl0

 sin �x � sin dx � tan dx � dx

d�u
v�

dx
 � 

v du
dx

 � u dv
dx

v2
dxn

dx
 � nxn�1, 

d(uv)
dx

 � u dv
dx

 � v du
dx
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C/10 Integrals
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C/11 Newton’s Method for Solving 
Intractable Equations

Article C/11 Newton’s Method for Solving Intractable Equations 681

Frequently, the application of the fundamental principles of me-
chanics leads to an algebraic or transcendental equation which is not
solvable (or easily solvable) in closed form. In such cases, an iterative
technique, such as Newton’s method, can be a powerful tool for obtain-
ing a good estimate to the root or roots of the equation.

Let us place the equation to be solved in the form ƒ(x) � 0. Part a of
the accompanying figure depicts an arbitrary function ƒ(x) for values of
x in the vicinity of the desired root xr. Note that xr is merely the value 

of x at which the function crosses the x-axis. Suppose that we have avail-
able (perhaps via a hand-drawn plot) a rough estimate x1 of this root.
Provided that x1 does not closely correspond to a maximum or minimum
value of the function ƒ(x), we may obtain a better estimate of the root xr

by extending the tangent to ƒ(x) at x1 so that it intersects the x-axis at
x2. From the geometry of the figure, we may write

where ƒ�(x1) denotes the derivative of ƒ(x) with respect to x evaluated at
x � x1. Solving the above equation for x2 results in

The term �ƒ(x1)/ƒ�(x1) is the correction to the initial root estimate x1.
Once x2 is calculated, we may repeat the process to obtain x3, and so
forth.

Thus, we generalize the above equation to

xk�1 � xk � 
ƒ(xk)

ƒ�(xk)

x2 � x1 � 
ƒ(x1)

ƒ�(x1)

tan � � ƒ�(x1) � 
ƒ(x1)

x1 � x2

x3

ƒ(x)

ƒ(x)

x

ƒ(x)

x
x2 x1 x1 x2 x1x2

xr2
xr1

xr xr

Tangent to
ƒ(x) at x = x1

ƒ(x)

x

(c)(b)(a)
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where

This equation is repeatedly applied until ƒ(xk�1) is sufficiently close to
zero and xk�1 � xk. The student should verify that the equation is valid
for all possible sign combinations of xk, ƒ(xk), and ƒ�(xk).

Several cautionary notes are in order:

1. Clearly, ƒ�(xk) must not be zero or close to zero. This would mean,
as restricted above, that xk exactly or approximately corresponds to
a minimum or maximum of ƒ(x). If the slope ƒ�(xk) is zero, then the
tangent to the curve never intersects the x-axis. If the slope ƒ�(xk) is
small, then the correction to xk may be so large that xk�1 is a worse
root estimate than xk. For this reason, experienced engineers usu-
ally limit the size of the correction term; that is, if the absolute
value of ƒ(xk)/ƒ�(xk) is larger than a preselected maximum value,
that maximum value is used.

2. If there are several roots of the equation ƒ(x) � 0, we must be in the
vicinity of the desired root xr in order that the algorithm actually
converges to that root. Part b of the figure depicts the condition
when the initial estimate x1 will result in convergence to rather
than .

3. Oscillation from one side of the root to the other can occur if, for
example, the function is antisymmetric about a root which is an
inflection point. The use of one-half of the correction will usually
prevent this behavior, which is depicted in part c of the accompa-
nying figure.

Example: Beginning with an initial estimate of x1 � 5, estimate the sin-
gle root of the equation ex � 10 cos x � 100 � 0.

The table below summarizes the application of Newton’s method to
the given equation. The iterative process was terminated when the ab-
solute value of the correction �ƒ(xk)/ƒ�(xk) became less than 10�6.

k xk ƒ(xk) ƒ�(xk)

1 5.000 000 45.576 537 138.823 916 �0.328 305
2 4.671 695 7.285 610 96.887 065 �0.075 197
3 4.596 498 0.292 886 89.203 650 �0.003 283
4 4.593 215 0.000 527 88.882 536 �0.000 006
5 4.593 209 �2(10�8) 88.881 956 2.25(10�10)

xk�1 � xk � �
ƒ(xk)

ƒ�(xk)

xr1

xr2

 ƒ�(xk) � the function derivative evaluated at x � xk

  ƒ(xk) � the function ƒ(x) evaluated at x � xk

 xk � the kth estimate of the desired root xr

 xk�1 � the (k � 1)th estimate of the desired root xr

682 Appendix C Selected Topics of Mathematics
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C/12 Selected Techniques for 
Numerical Integration

1. Area determination. Consider the problem of determining the
shaded area under the curve y � ƒ(x) from x � a to x � b, as depicted in
part a of the figure, and suppose that analytical integration is not feasi-
ble. The function may be known in tabular form from experimental
measurements or it may be known in analytical form. The function is
taken to be continuous within the interval a � x � b. We may divide the
area into n vertical strips, each of width �x � (b � a)/n, and then add
the areas of all strips to obtain A � 	 y dx. A representative strip of area
Ai is shown with darker shading in the figure. Three useful numerical
approximations are cited. In each case the greater the number of strips,
the more accurate becomes the approximation geometrically. As a gen-
eral rule, one can begin with a relatively small number of strips and
increase the number until the resulting changes in the area approxima-
tion no longer improve the accuracy obtained.

Article C/12 Selected Techniques for Numerical Integration 683

I. Rectangular [Figure (b)] The areas of the strips are taken to be
rectangles, as shown by the representative strip whose height ym is cho-
sen visually so that the small cross-hatched areas are as nearly equal as
possible. Thus, we form the sum Σym of the effective heights and multi-
ply by �x. For a function known in analytical form, a value for ym equal
to that of the function at the midpoint xi � �x/2 may be calculated and
used in the summation.

II. Trapezoidal [Figure (c)] The areas of the strips are taken to be
trapezoids, as shown by the representative strip. The area Ai is the average

yi + 1

x0 x1 x2 x3 xi
xxi + 1

y = ƒ(x)

= a
xn

ym

= b

y

y0 y1

yi

y2 y3

yn

yi

yi + 1

yn – 1Ai

(a)

(b)

Rectangular

Ai
Ai = ym x

A =   y dx       ym x

x

x
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height (yi � yi � 1)/2 times �x. Adding the areas gives the area approxima-
tion as tabulated. For the example with the curvature shown, clearly the
approximation will be on the low side. For the reverse curvature, the ap-
proximation will be on the high side.

684 Appendix C Selected Topics of Mathematics

III. Parabolic [Figure (d)] The area between the chord and the
curve (neglected in the trapezoidal solution) may be accounted for by
approximating the function by a parabola passing through the points
defined by three successive values of y. This area may be calculated from
the geometry of the parabola and added to the trapezoidal area of the
pair of strips to give the area �A of the pair as cited. Adding all of the
�A’s produces the tabulation shown, which is known as Simpson’s rule.
To use Simpson’s rule, the number n of strips must be even.

Example: Determine the area under the curve from x � 0
to x � 2. (An integrable function is chosen here so that the three
approximations can be compared with the exact value, which is

� � � 1) � 3.393 447).

NUMBER OF
AREA APPROXIMATIONS

SUBINTERVALS RECTANGULAR TRAPEZOIDAL PARABOLIC

4 3.361 704 3.456 731 3.392 214
10 3.388 399 3.403 536 3.393 420
50 3.393 245 3.393 850 3.393 447

100 3.393 396 3.393 547 3.393 447
1000 3.393 446 3.393 448 3.393 447
2500 3.393 447 3.393 447 3.393 447

1
3(5�51

3(1 � x2)3/2�2
0A � 	2

0  x �1 � x2 dx

y � x �1 � x2

yi + 1yi

(c)

Parabolic

Trapezoidal
 yi + yi + 1 –——–––

2
Ai = x

y0 — + y1 + y2 + … + yn – 1 + 2
 yn—
 2 

A =   y dx ( ) x

x

A

x

yi

(d)

yi + 1 yi + 2

1––
3

A = x( yi + 4yi + 1 + yi + 2)

A =   y dx ≅ 1––
3

(y0 + 4y1 + 2y2 + 4y3 + 2y4

+ … + 2yn – 2 + 4yn – 1 + yn) x

xΔ

Δ

Δ

ΔΔ

Δ Δ

Δ

ΔΔ

Ai
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Note that the worst approximation error is less than 2 percent, even
with only four strips.

2. Integration of first-order ordinary differential equations.
The application of the fundamental principles of mechanics frequently
results in differential relationships. Let us consider the first-order form
dy/dt � ƒ(t), where the function ƒ(t) may not be readily integrable or
may be known only in tabular form. We may numerically integrate by
means of a simple slope-projection technique, known as Euler integra-
tion, which is illustrated in the figure.

Article C/12 Selected Techniques for Numerical Integration 685

Beginning at t1, at which the value y1 is known, we project the slope
over a horizontal subinterval or step (t2 � t1) and see that y2 � y1 �

ƒ(t1)(t2 � t1). At t2, the process may be repeated beginning at y2, and so
forth until the desired value of t is reached. Hence, the general expres-
sion is

If y versus t were linear, i.e., if ƒ(t) were constant, the method would
be exact, and there would be no need for a numerical approach in that
case. Changes in the slope over the subinterval introduce error. For the
case shown in the figure, the estimate y2 is clearly less than the true
value of the function y(t) at t2. More accurate integration techniques
(such as Runge-Kutta methods) take into account changes in the slope
over the subinterval and thus provide better results.

As with the area-determination techniques, experience is helpful in
the selection of a subinterval or step size when dealing with analytical
functions. As a rough rule, one begins with a relatively large step size
and then steadily decreases the step size until the corresponding
changes in the integrated result are much smaller than the desired ac-
curacy. A step size which is too small, however, can result in increased
error due to a very large number of computer operations. This type of
error is generally known as “round-off error,” while the error which re-
sults from a large step size is known as algorithm error.

yk�1 � yk � ƒ(tk)(tk�1 � tk)

t1

y1
y2

y3

y4

t
t2 t3 t4

y(t)
y(t)

Accumulated
algorithmic
error

etc.

Slope = ƒ(t3)

Slope = ƒ(t2)

Slope = ƒ(t1)

dy
––
dt

Slope       =  ƒ(t)
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Example: For the differential equation dy/dt � 5t with the initial condi-
tion y � 2 when t � 0, determine the value of y for t � 4.

Application of the Euler integration technique yields the following
results:

NUMBER OF
SUBINTERVALS STEP SIZE y at t � 4 PERCENT ERROR

10 0.4 38 9.5
100 0.04 41.6 0.95
500 0.008 41.92 0.19

1000 0.004 41.96 0.10

This simple example may be integrated analytically. The result is y � 42
(exactly).
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687

TABLE D/1 PHYSICAL PROPERTIES

Density (kg/m3) and specific weight (lb/ft3)

kg/m3 lb/ft3 kg/m3 lb/ft3

Air* 1.2062 0.07530 Lead 11 370 710
Aluminum 2 690 168 Mercury 13 570 847
Concrete (av.) 2 400 150 Oil (av.) 900 56
Copper 8 910 556 Steel 7 830 489
Earth (wet, av.) 1 760 110 Titanium 3 080 192

(dry, av.) 1 280 80 Water (fresh) 1 000 62.4
Glass 2 590 162 (salt) 1 030 64
Gold 19 300 1205 Wood (soft pine) 480 30
Ice 900 56 (hard oak) 800 50
Iron (cast) 7 210 450

* At 20�C (68�F) and atmospheric pressure

Coefficients of friction

(The coefficients in the following table represent typical values under normal
working conditions. Actual coefficients for a given situation will depend on the
exact nature of the contacting surfaces. A variation of 25 to 100 percent or more
from these values could be expected in an actual application, depending on prevail-
ing conditions of cleanliness, surface finish, pressure, lubrication, and velocity.)

TYPICAL VALUES
OF COEFFICIENT

OF FRICTION

CONTACTING SURFACE STATIC, �s KINETIC, �k

Steel on steel (dry) 0.6 0.4
Steel on steel (greasy) 0.1 0.05
Teflon on steel 0.04 0.04
Steel on babbitt (dry) 0.4 0.3
Steel on babbitt (greasy) 0.1 0.07
Brass on steel (dry) 0.5 0.4
Brake lining on cast iron 0.4 0.3
Rubber tires on smooth pavement (dry) 0.9 0.8
Wire rope on iron pulley (dry) 0.2 0.15
Hemp rope on metal 0.3 0.2
Metal on ice 0.02

DUseful Tables

bapp04.qxd  2/11/12  2:08 AM  Page 687



TABLE D/2 SOLAR SYSTEM CONSTANTS

Universal gravitational constant G � 6.673(10�11) m3/
� 3.439(10�8) ft4/(lbf-s4)

Mass of Earth me � 5.976(1024) kg
� 4.095(1023) lbf-s2/ft

Period of Earth’s rotation (1 sidereal day) � 23 h 56 min 4 s
� 23.9344 h

Angular velocity of Earth � � 0.7292(10�4) rad/s
Mean angular velocity of Earth–Sun line �� � 0.1991(10�6) rad/s
Mean velocity of Earth’s center about Sun � 107 200 km/h

� 66,610 mi/h

(kg � s2)

688 Appendix D Useful Tables

1 Mean distance to Earth (center-to-center)
2 Diameter of sphere of equal volume, based on a spheroidal Earth with a polar diameter of 12 714 km (7900 mi) and an

equatorial diameter of 12 756 km (7926 mi)
3 For nonrotating spherical Earth, equivalent to absolute value at sea level and latitude 37.5�
4 Note that Jupiter is not a solid body.

BODY

MEAN
DISTANCE

TO SUN 
km (mi)

ECCENTRICITY
OF ORBIT

e

PERIOD 
OF ORBIT
solar days

MEAN
DIAMETER

km (mi)

MASS
RELATIVE
TO EARTH

SURFACE
GRAVITATIONAL
ACCELERATION

m/s2 (ft/s2)

ESCAPE
VELOCITY
km/s (mi/s)

Sun

Moon

Mercury

Venus

Earth

Mars

Jupiter4

—

384 3981

(238 854)1

57.3 � 106

(35.6 � 106)
108 � 106

(67.2 � 106)
149.6 � 106

(92.96 � 106)
227.9 � 106

(141.6 � 106)
778 � 106

(483 � 106)

—

0.055

0.206

0.0068

0.0167

0.093

0.0489

—

27.32

87.97

224.70

365.26

686.98

4333

1 392 000
(865 000)

3 476
(2 160)
5 000

(3 100)
12 400
(7 700)
12 7422

(7 918)2

6 788
(4 218)

139 822
(86 884)

333 000

0.0123

0.054

0.815

1.000

0.107

317.8

274
(898)

1.62
(5.32)
3.47

(11.4)
8.44

(27.7)
9.8213

(32.22)3

3.73
(12.3)
24.79

(81.3)

616
(383)

2.37
(1.47)
4.17

(2.59)
10.24
(6.36)
11.18
(6.95)
5.03

(3.13)
59.5

(36.8)
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TABLE D/3 PROPERTIES OF PLANE FIGURES

Arc Segment

Circular Area

Semicircular
Area

Quarter-Circular
Area

Quarter and Semicircular Arcs

—

—

—

–r

–y

C

CC

r

r

r

α
α

–r  = r sin   ––––––α

–y  =  2r ––
�

–y  =  4r ––
3�

–y  =–x  =  4r ––
3�

Ix  =  Iy  =
    r4
 –––

4
�

α

Area of Circular
Sector

–x

r
α
α

C

r

r

–y

y

y

C
x

x

    r4
 –––

2
�Iz  =

    r4
 –––

4
�Iz  =

Ix  =  Iy  =
    r4
 –––

8
�

–y

–x

x

x
C

y

y

C

        –  –
8

–
    Ix  = ( )�    8    ––

9�
  r4

    r4
 –––

8
�Iz  =

Ix  =  Iy  =
    r4
 –––
16
�

—
16

–
    

Ix  =  Iy  = ( )�   4    ––
9�

r4

α
–x  = r sin   ––––––α2–

3

1–
2

1–
2

1–
2

r4
––
4

Ix  = (    –     sin 2   )α

r4
––
4

Iy  = (    +     sin 2   )α

Iz  = α

α

α

r4

FIGURE CENTROID AREA MOMENTS
OF INERTIA

––
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690 Appendix D Useful Tables

TABLE D/3 PROPERTIES OF PLANE FIGURES Continued

Rectangular Area

Triangular Area

Area of Elliptical
Quadrant

Subparabolic Area

–x  =

–x  =  4a ––
3�

–y  =  4b ––
3�

–x  =  3a ––
 8

–y  =  3b ––
  5

–x  =  3a ––
 4

–y  =  3b ––
  10

y

x

 bh3
 –––
 3

 a + b ––––
 3

–y  =  h ––
 3

 bh3
 –––
 12

Ix  =

x

x

x1

x

y

x0

y0

y

–
    Ix  =

FIGURE CENTROID AREA MOMENTS
OF INERTIA

h

h

C

C

b

b

a

—

 bh ––
 12

–
    Iz  = (b2 + h2)

    ab3
  ––––,

 16
�     ––

16
–( )�   4    ––

9�

    ––
16

–( )�   4    ––
9�

ab3Ix  =
–

    Ix  =

a3b    a3b  ––––,
 16

�Iy  =
–

    Iy  =

Iz  =
   ab –––
 16
� (a2 + b2)

    ab3
  –––
  21

Ix  =

    a3b  –––
  5

Iy  =

  a3     –– +
5( )    b2    ––

  21
Iz  =  ab

  2ab3
  ––––

  7
Ix  =

   2a3b  ––––
  15

Iy  =

  a2      –– +
15( )    b2    ––

  7
Iz  =  2ab

 bh3
 –––
 12

 bh3
 –––
 36

Ix  =

 bh3
 –––
 4

Ix1  =

–
    Ix  =–y

–x

Cb

a

b

a

–y

–x

–y

–x C

y = kx2 = x2b
—
a2

ab––
3

Area A =

Parabolic Area

x

y

b

a

–y

–x C

y = kx2 = x2b
—
a2

2ab–––
3

Area A =

bapp04.qxd  2/11/12  2:08 AM  Page 690



Useful Tables 691

TABLE D/4 PROPERTIES OF HOMOGENEOUS SOLIDS
(m � mass of body shown)

MASS MASS MOMENTS
BODY CENTER OF INERTIA

Circular
Cylindrical —

Shell

Half
Cylindrical 

Shell

Circular
Cylinder

—

Semicylinder

Rectangular
Parallelepiped

—

 Iy2 y2
 � 13 m(b2 � l2)

 Iy1 y1
 � 1

12 mb2 � 13 ml2

 Izz � 1
12 m(a2 � b2)

 Iyy � 1
12 m(b2 � l2)

 Ixx � 1
12 m(a2 � l2)

 Izz � �1
2

 � 16
9�2� mr2

 Izz � 12 mr2

 � 14 mr2 � 13 ml2x � 4r
3�

 Ix1x1
 � Iy1y1

 � 14 mr2 � 1
12 ml2

 Ixx � Iyy

 Izz � 12 mr2

 Ix1x1
 � 14 mr2 � 13 ml2

 Ixx � 14 mr2 � 1
12 ml2

 Izz � �1 � 4
�2� mr2

 Izz � mr2

 � 12 mr2 � 13 ml2x � 2r
�

 Ix1x1
 � Iy1 y1

 � 12 mr2 � 1
12 ml2

 Ixx � Iyy

 Izz � mr2

 Ix1x1
 � 12 mr2 � 13 ml2

 Ixx � 12 mr2 � 1
12 ml2

–
    

–
    

x1

z

x

y

G

l–
2

l–
2

r

x1

z

x

y

G

l–
2

l–
2

r

y1

x1

z

x

G

l–
2

l–
2

r

x1

z

x

y

G

l–
2

l–
2

r

y1

z

x

y

y2

y1

G

l–
2

l–
2

b

a
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TABLE D/4 PROPERTIES OF HOMOGENEOUS SOLIDS Continued
(m � mass of body shown)

MASS MASS MOMENTS
BODY CENTER OF INERTIA

Spherical —
Shell

Hemispherical
Shell

Sphere —

Hemisphere

Uniform
Slender Rod

—
 Iy1 y1

 � 13 ml2

 Iyy � 1
12 ml2

Iyy � Izz � 83
320mr2

x � 3r
8

Ixx � Iyy � Izz � 25mr2

Izz � 25mr2

Iyy � Izz � 5
12mr2

x � r
2

 Ixx � Iyy � Izz � 23mr2

Izz � 23mr2

–
    

–
    

–
    

–
    

r

G

z

z

x

G

r

y

r

G

z

z

x

G

r

y

y
G

l–
2

l–
2

y1
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TABLE D/4 PROPERTIES OF HOMOGENEOUS SOLIDS Continued
(m � mass of body shown)

Useful Tables 693

MASS MASS MOMENTS
BODY CENTER OF INERTIA

Quarter-
Circular Rod

Elliptical
Cylinder

—

Conical
Shell

Half
Conical

Shell

Right-
Circular

Cone

 Iyy � 3
20 mr2 � 3

80 mh2

 Izz � 3
10 mr2

 Iy1y1
 � 3

20 mr2 � 1
10 mh2

z � 3h
4

 Iyy � 3
20 mr2 � 35 mh2

 Izz � �1
2

 � 16
9�2� mr2

 Izz � 12 mr2z � 2h
3

 � 14 mr2 � 16 mh2

 Ix1x1
 � Iy1y1

x � 4r
3�

 � 14 mr2 � 12 mh2

 Ixx � Iyy

 Iyy � 14mr2 � 1
18mh2

Izz � 12mr2

Iy1y1
 � 14mr2 � 16mh2

z � 2h
3

Iyy � 14mr2 � 12mh2

Iy1y1
 � 14mb2 � 13ml2

Izz � 14m(a2 � b2)

Iyy � 14mb2 � 1
12ml2

Ixx � 14ma2 � 1
12ml2

Izz � mr2 � 2r
�

Ixx � Iyy � 12mr2
 x � y

–
    

–
    

–
    

y

_
y

_
x

z

x

r

G

z

x

G

l–
2

l–
2

y1 y

b

a

z

y1

y

G

h

r

y1

yh

z

x

r
x1

G

z

y1

y

G

h

r
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TABLE D/4 PROPERTIES OF HOMOGENEOUS SOLIDS Continued
(m � mass of body shown)

694 Appendix D Useful Tables

MASS MASS MOMENTS
BODY CENTER OF INERTIA

Half Cone

Semiellipsoid

Elliptic
Paraboloid

Rectangular
Tetrahedron

Half Torus
Izz � mR2 � 34ma2

Ixx � Iyy � 12mR2 � 58ma2

x � a
2 � 4R2

2�R

Izz � 3
80m(a2 � b2)

Iyy � 3
80m(a2 � c2)

z � c
4

Ixx � 3
80m(b2 � c2)

y � b
4

Izz � 1
10m(a2 � b2)

x � a
4

Iyy � 1
10m(a2 � c2)

Ixx � 1
10m(b2 � c2)

Iyy � 16m(a2 � 13c2)

Ixx � 16m(b2 � 13c2)

Izz � 16m(a2 � b2)z � 2c
3

Iyy � 16ma2 � 12mc2

Ixx � 16mb2 � 12mc2

Iyy � 15m(a2 � 19
64c2)

Ixx � 15m(b2 � 19
64c2)

Izz � 15m(a2 � b2)z � 3c
8

Iyy � 15m(a2 � c2)

Ixx � 15m(b2 � c2)

 Izz � � 3
10

 � 1
�2� mr2

 Izz � 3
10 mr2

 � 3
20 mr2 � 1

10 mh2

z � 3h
4

 Ix1x1
 � Iy1y1

x � r
�

 � 3
20 mr2 � 35 mh2

 Ixx � Iyy

–
    

–
    

–
    

–
    

–
    

–
    

–
    

–
    

y1

yh

z

x

r
x1

G

y

zG

x

a

b

c

x2
—
a2

y2
—
b2

+
z2
—
c2

+ = 1

x

z

G

y

b

a

c

x2
—
a2

y2
—
b2

+
z
–
c

=

x

y

b

a

c

z

G

y

z
x

G

R
Ra
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Absolute measurements, 5, 119
Absolute motion, 22, 88, 338, 349, 372
Absolute system of units, 7, 120
Acceleration:

absolute, 89, 119, 372, 388
angular, 328, 330, 517
average, 23, 41
constant, 25, 328
Coriolis, 119, 388
cylindrical components of, 79
function of displacement, 26
function of time, 25
function of velocity, 26
graphical determination of, 24
due to gravity, 9, 10, 120
instantaneous, 23, 42
normal components of, 55
polar components of, 67
rectangular components of, 43, 79
relative to rotating axes, 387, 528
relative to translating axes, 89, 244, 

372, 527
spherical components of, 80
tangential component of, 55
vector representation of, 42
from work-energy principle, 477

Acceleration-displacement diagram, 24
Acceleration-time diagram, 24
Accelerometer, 606
Action and reaction, principle of, 6
Active-force diagram, 160, 412, 461
Addition of vectors, 5, 674
Amplitude ratio, 602, 603
Amplitude of vibration, 586
Angular acceleration, 328, 330, 517
Angular displacement, 327
Angular impulse, 206, 487

Angular momentum:
applied to fluid streams, 290
conservation of, 208, 230, 276, 489
of a particle, 205, 246
relative, 246, 274
of a rigid body, 413, 487, 539
of a system, 272
units of, 205
vector representation of, 205

Angular motion:
of a line, 327
vector representation of, 329, 514

Angular velocity, 327, 328, 514, 517
absolute, 542, 372
of the earth, 119, 688
vector representation of, 329, 516, 517

Apogee velocity, 234
Area moments of inertia, 639
Associative law, 674
Astronomical frame of reference, 4, 118, 244
Axes:

rotating, 385, 528
translating, 88, 244, 348, 527

Balancing in rotation, 552
Base units, 7, 120
Bodies, interconnected, 270, 418, 477, 488
Body, rigid, 5, 267, 326, 411, 514
Body centrode, 363
Body cone, 517, 565

Cajori, F., 4
Center:

of curvature, 55
of mass, motion of, 269
of percussion, 431

Central-force motion, 230

Index
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Centrifugal force, 245
Centrode, body and space, 363
Centroids, table of, 689
Circular frequency, natural, 586
Circular motion, 56, 68
Coefficient:

of friction, 687
of restitution, 218, 490
of viscous damping, 587

Commutative law, 674, 675
Complementary solution, 601
Computer-oriented problems, 14, 112, 262, 407, 509, 636, 669
Cone, body and space, 517, 565
Conservation: 

of energy, 178, 275, 625
of momentum, 193, 208, 218, 230, 276, 489, 564

Conservative force, 178
Conservative system, 275, 462, 625
Constant of gravitation, 8, 688
Constrained motion, 22, 98, 123, 417, 444
Constraint, equations of, 98, 478
Coordinates: 

cartesian, 22
choice of, 22, 43, 88, 106, 122, 123, 642
cylindrical, 79
normal and tangential, 54
polar, 66
rectangular, 43, 79
rotating, 385, 528
spherical, 80
transformation of, 81, 107
translating, 88, 244, 348, 527

Coriolis, G., 4, 388
Coriolis acceleration, 119, 388
Couple: 

gyroscopic, 560
resultant, 477, 551
work of, 459

Critical frequency, 602
Cross or vector product, 205, 329, 385, 675
Curvature: 

center of, 55
radius of, 54, 680

Curvilinear motion: 
in cylindrical coordinates, 79
in normal and tangential coordinates, 54, 138
of a particle, 40, 79, 138
in polar coordinates, 66, 138
in rectangular coordinates, 43, 79, 138
in spherical coordinates, 80

Curvilinear translation, 326, 421, 514

D’Alembert, J., 4, 245
D’Alembert’s principle, 244
Damped forced vibration, 602
Damped free vibration, 587
Damping: 

coefficient, 587
critical, 588
ratio, 588
viscous or fluid, 587

Dashpot, 587
Degrees of freedom, 98, 123, 584
Densities, table of, 687
Derivative: 

table of, 677
transformation of, 387, 529
of a vector, 41, 676
Descartes, R., 22

Diagram: 
acceleration-displacement, 24
acceleration-time, 24
active-force, 160, 412, 461
displacement-time, 24
force-displacement, 155, 157
force-time, 193
free-body, 14, 123, 413, 461, 584
impulse-momentum, 192, 487
kinetic, 413, 414, 415, 416, 421, 431, 443
velocity-displacement, 24
velocity-time, 24

Dimensions, homogeneity of, 11
Direction cosines, 674
Discrete or lumped-parameter model, 583
Displacement: 

angular, 327
in curvilinear motion, 40
graphical determination of, 24
linear, 22
virtual, 478

Displacement meter, 606
Displacement-time diagram, 24
Distance, 40
Distributed-parameter system, 583
Distributive law, 675
Dot or scalar product, 154, 155, 159, 675
Dynamical energy, conservation of, 178, 275
Dynamic balance in rotation, 552
Dynamic equilibrium, 245
Dynamics, 3

Earth, angular velocity of, 119, 688
Earth satellites, equations of motion for, 230
Efficiency, 161
Einstein, A., 4, 120
Elastic impact, 219
Elastic potential energy, 176, 461
Electric circuit analogy, 606
Energy: 

conservation of, 178, 275, 625
kinetic, 159, 269, 460, 542
potential, 175, 461, 624
in satellite motion, 233
in vibration, 624

Equations of constraint, 98, 478
Equations of motion: 

for fixed-axis rotation, 431
for particles, 125, 138
for plane motion, 414, 443
in polar coordinates, 138
for rectilinear and curvilinear translation, 421
for a rigid body, 413, 550

696 Index
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for rotation about a point, 515
for a system of particles, 269

Equilibrium, dynamic, 245
Euler, L., 4, 551
Euler’s equations, 551

Fluid damping, 587
Fluid streams, momentum equations for, 289, 290
Foot, 7
Force: 

centrifugal, 245
concept of, 5
conservative, 178
external, 269
inertia, 245
internal, 268
gravitational, 8, 11, 121
resultant, 6, 124, 159, 191, 269, 413, 477, 551
units of, 7
work of, 154, 459

Force-displacement diagram, 155, 157
Forced vibration, 600, 614

damped, 602
equation for, 601
frequency ratio for, 602
magnification factor for, 602, 603
resonant frequency of, 602
steady-state, 602, 603
undamped, 601

Force field, conservative, 178
Force-time diagram, 193
Forcing functions, 600
Formulation of problems, 12
Frame of reference, 6, 88, 244, 246, 385, 527, 528
Free-body diagram, 14, 123, 413, 461, 584
Freedom, degrees of, 98, 123, 584
Free vibration: 

damped, 587
energy solution for, 624
equations for, 584, 587
undamped, 584
vector representation of, 586

Frequency: 
critical, 602
damped, 590
natural and circular, 586

Frequency ratio, 602
Friction: 

coefficients of, 687
work of, 462

Galileo, 3
Gradient, 179
Graphical representation, 14, 24, 155, 328, 350, 

373, 586
Gravitation: 

constant of, 8, 688
law of, 8

Gravitational force, 8, 11, 121
Gravitational potential energy, 175, 461
Gravitational system of units, 7, 120

Gravity: 
acceleration due to, 9, 10, 120
International Formula for, 10

Gyration, radius of, 643
Gyroscope, 558
Gyroscopic couple, 560
Gyroscopic motion, equation of, 559

Harmonic motion, simple, 29, 585
Hertz (unit), 586
Hodograph, 42
Horsepower, 161
Huygens, C., 3

Imbalance, rotational, 552
Impact, 217, 490

classical theory of, 219
direct central, 217
elastic, 219
energy loss in, 219
inelastic or plastic, 219
oblique, 219

Impulse: 
angular, 206, 487
linear, 192, 486

Impulse-momentum diagram, 192, 487
Impulse-momentum equation, 192, 206, 246
Inertia, 5, 118

area moments of, see Moments of inertia of area
mass moments of, see Moments of inertia of mass
principal axes of, 541, 661
products of, 540, 660

Inertia force, 245
Inertial system, 4, 88, 89, 118, 119
Inertia tensor or matrix, 541, 661
Instantaneous axis of rotation, 362, 516
Instantaneous center of zero velocity, 362
Integrals, table of selected, 678
Integration, numerical techniques for, 683, 685

of vectors, 677
Interconnected bodies, 270, 418, 477, 488
International Gravity Formula, 10
International System of units, 6

Joule (unit), 155

Kepler, J., 230
Kepler’s laws of motion, 230, 232
Kilogram, 7, 120
Kinematics, 3, 21, 325, 514

of angular motion, 328, 514
of curvilinear motion, 40
of rectilinear motion, 22
of relative motion, 22, 88, 244, 348, 372, 385, 527
of rigid bodies, 325, 514

Kinetic diagram, 413, 414, 415, 416, 421, 431, 443
Kinetic energy: 

of a particle, 159
of plane motion, 460
of rotation, 460, 542
of space motion, 543
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Kinetic energy: (continued)
of a system of particles, 270, 542
of translation, 460
units of, 159

Kinetic friction, coefficient of, 687
Kinetics, 3, 21, 117, 267, 411, 539

of particles, 117
of rigid bodies, in plane motion, 411, 552

in rotation, 431, 539
in space motion, 539

Kinetic system of units, 120

Lagrange, J. L., 4
Lagrange’s equations, 419
Laplace, P., 4
Law: 

associative, 674
commutative, 674, 675
of conservation of dynamical energy, 178, 275, 625
distributive, 675
of gravitation, 8

Laws of motion: 
Kepler’s, 230, 232
Newton’s, 6, 117, 244, 268, 486

Light, speed of, 4, 120
Line, angular motion of, 327
Linear displacement, 22
Linear impulse, 192, 486
Linear momentum: 

applied to fluid streams, 289
conservation of, 193, 218, 276, 489
moment of, 205
of a particle, 191
relative, 246
of a rigid body, 486
of a system, 271

Logarithmic decrement, 590
Lumped-parameter or discrete model, 583

Magnification factor, 602, 603
Mass, 5, 117

steady flow of, 288
unit of, 7, 120
variable, 303

Mass center, motion of, 269
Mass flow, equations of motion for, 289, 290
Mass moments of inertia, see Moments of inertia of mass
Mathematical model, 12
Mathematics, selected topics in, 671
Matrix, inertia, 541, 661
Measurements: 

absolute, 5, 119
relative, 88, 244, 246, 348, 372, 385, 527

Mechanics, 3
Meter, 7
Metric units, 6, 120
Moment center, choice of, 416, 421, 443
Moment equation of motion, 206, 272, 273, 274, 275, 414, 416,

417, 550
Moment of linear momentum, 205
Moments of inertia of area, 639, 644, 689

Moments of inertia of mass, 414, 539, 641
choice of element of integration for, 642
for composite bodies, 645
about any prescribed axis, 661
principal axes for, 541, 661
radius of gyration for, 643
table of, 691
transfer of axes for, 643

Momentum: 
angular, 205, 246, 272, 290, 487, 539
conservation of, 193, 208, 218, 230, 276, 489, 564
equations for mass flow, 289, 290
linear, 191, 271, 486
moment of, 205
rate of change of, 6, 191, 206, 271, 272, 273, 274, 275, 486,

487, 488, 550
vector representation of, 191, 205, 486, 487, 542

Motion: 
absolute, 22, 88, 338, 349, 372
angular, 327, 329, 514, 515, 517, 518
central-force, 230
circular, 56, 68
constrained, 22, 98, 123, 417, 444
curvilinear, 40, 79, 138
in cylindrical coordinates, 79
general space, 527
graphical representation of, 14, 24, 155, 328, 350, 373, 586
gyroscopic, 558
of mass center, 269
Newton’s laws of, 6, 117, 244, 268, 486
in normal and tangential coordinates, 54
parallel-plane, 515, 552
plane, 22, 40, 326, 411, 443
planetary and satellite, 230
in polar coordinates, 66
in rectangular coordinates, 43, 79
rectilinear, 22, 124
relative, 22, 88, 244, 348, 372, 385, 527
rotational, 327, 431, 514, 515
simple harmonic, 29, 585
in spherical coordinates, 80
of a system of particles, 267
unconstrained, 22, 123, 444

Natural frequency, 586
Newton, Isaac, 3, 4
Newton (unit), 7
Newtonian frame of reference, 246, 268, 272
Newtonian mechanics, 120, 268
Newton’s laws, 6, 117, 244, 268, 486
Newton’s method, 681
Notation for vectors, 5, 41, 674
Numerical integration, 683, 685
Nutation, 561

Oblique central impact, 219
Orbit, elliptical, 232
Osculating plane, 22

Parallel-axis theorems, for mass moments of inertia, 643
Parallel-plane motion, 515, 552
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Particles, 5, 21
curvilinear motion of, 40, 79, 138
equations of motion of, 125, 138
kinematics of, 21
kinetics of, 117
motion of system of, 267

Particle vibration, 584
Particular solution, 601, 603
Path variables, 22, 55
Percussion, center of, 431
Perigee velocity, 234
Period: 

of orbital motion, 232, 235
of vibration, 586, 590

Phase angle, 603
Plane motion, 22, 40, 326, 411, 443

curvilinear, 40
equations of motion for, 414, 443
general, 326, 443
kinematics of, 40, 88, 326
kinetic energy of, 460
kinetics of, 411, 552

Planetary motion: 
Kepler’s laws of, 230, 232
period of, 232

Poinsot, L., 4
Polar moment of inertia, 644
Position vector, 41
Potential energy, 175, 461, 624
Potential function, 178
Pound force, 7, 120, 122
Pound mass, 8, 121, 122
Power, 160, 462
Precession: 

defined, 517, 558
direct and retrograde, 565
steady, 558, 560, 563
velocity of, 558
with zero moment, 564

Primary inertial system, 4, 88, 118
Principal axes of inertia, 541, 661
Principia, 4
Principle: 

of action and reaction, 6
of conservation of momentum, 193, 208, 218, 230, 276, 489,

564
D’Alembert’s, 245
of motion of mass center, 269

Products of inertia, 540, 660
Products of vectors, 154, 205, 675
Projectile motion, 44
Propulsion, rocket, 305

Radius: 
of curvature, 54, 680
of gyration, 643

Rectilinear motion of a particle, 22, 124
Rectilinear translation, 326, 420, 514
Reference frame, 6, 88, 244, 246, 385, 527, 528
Relative acceleration, rotating axes, 387, 528

translating axes, 89, 244, 372, 527

Relative angular momentum, 246, 274
Relative linear momentum, 246
Relative motion, 22, 88, 244, 348, 372, 385, 527
Relative velocity: 

rotating axes, 386, 528
translating axes, 89, 348, 527

Relativity, theory of, 120
Resonance, 602
Restitution, coefficient of, 218, 490
Resultant: 

couple, 477, 551
force, 6, 124, 159, 191, 269, 413, 477, 551

Right-hand rule, 205, 675
Rigid bodies: 

kinematics of, 325, 514
kinetics of, 411, 552

Rigid body, 5, 267, 326, 411, 514
Rigid-body motion, general moment equations for, 413, 416, 417
Rigid-body vibration, 614
Rocket propulsion, 305
Rotating axes, 385, 528
Rotation:

equations of motion for, 417, 431
finite, 515
fixed-axis, 326, 329, 431, 514
fixed-point, 515
infinitesimal, 516
instantaneous axis of, 362, 516
kinematics of, 327, 329, 517
kinetic energy of, 460, 542
of a line, 327
of a rigid body, 326, 431, 514, 515

Rotational imbalance, 552

Satellite, motion of, 230
Scalar, 5
Scalar or dot product, 154, 155, 159, 675
Second, 7
Series, selected expansions, 677
Simple harmonic motion, 29, 585
SI units, 6, 7
Slug, 7, 120, 121
Solar system constants, 688
Solution, method of, 12
Space, 4
Space centrode, 363
Space cone, 517, 565
Space motion, general, 527
Speed, 41
Spin axis, 558
Spin velocity, 558
Spring: 

constant or stiffness of, 156, 584, 625
potential energy of, 176
work done by, 156

Standard conditions, 10, 120
Static friction, coefficient of, 687
Steady mass flow, force and moment equations for, 289, 

290
Steady-state vibration, 602, 603
Subtraction of vectors, 674
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System: 
conservative, 275, 462, 625
of interconnected bodies, 270, 418, 477, 488
of particles: 

angular momentum of, 272
equation of motion for, 269
kinetic energy of, 270, 542
linear momentum of, 271

of units, 6, 8, 120

Table: 
of area moments of inertia, 689
of centroids, 689
of coefficients of friction, 687
of densities, 687
of derivatives, 677
of integrals, 678
of mass centers, 691
of mass moments of inertia, 691
of mathematical relations, 671
of solar-system constants, 688
of units, 7

Tensor, inertia, 541, 661
Theory of relativity, 120
Thrust, rocket, 305
Time, 5, 7, 120
Time derivative, transformation of, 387, 529
Transfer of axes: 

for moments of inertia, 643
for products of inertia, 660

Transformation of derivative, 387, 529
Transient solution, 602, 603
Translating axes, 88, 244, 348, 527
Translation, rectilinear and curvilinear, 326, 420, 514
Triple scalar product, 543, 676
Triple vector product, 676
Two-body problem: 

perturbed, 235
restricted, 235

Unconstrained motion, 22, 123, 444
Units, 6, 8, 120

kinetic system of, 120
Unit vectors, 43, 54, 66

derivative of, 54, 66, 385, 528
U.S. customary units, 6, 8, 120

Variable mass, force equation of, 304
Vectors, 5, 674

addition of, 5, 674
cross or vector product of, 205, 329, 385, 675
derivative of, 41, 676
dot or scalar product of, 154, 155, 159, 675
integration of, 677
notation for, 5, 41, 674

subtraction of, 674
triple scalar product of, 676
triple vector product of, 676
unit, 43, 54, 66, 79, 674

Velocity: 
absolute, 88
angular, 327, 328, 514, 517
average, 23, 40
cylindrical components of, 80
defined, 23, 41
graphical determination of, 24
instantaneous, 23, 41
instantaneous axis or center of, 362
in planetary motion, 234
polar components of, 66
rectangular components of, 43, 79
relative to rotating axes, 386, 527
relative to translating axes, 89, 348
spherical components of, 80
tangential component of, 54
vector representation of, 41

Velocity-displacement diagram, 24
Velocity-time diagram, 24
Vibration: 

amplitude of, 586
damped, 587
energy in, 624
forced, 600, 614
free, 584
frequency of, 586, 589
over- and underdamped, 588, 589
period of, 586, 590
reduction of, 603
simple harmonic, 585
steady-state, 602, 603
transient, 602, 603
work-energy solution for, 624

Virtual displacement, 478
Virtual work, 154, 478
Viscous damping coefficient, 587

Watt, 161
Weight, 7, 8, 11, 121
Work, 154, 459

of a constant force, 156
of a couple, 459
an exact differential, 178
examples of, 155
of a force, 154, 459
of friction, 462
graphical representation of, 155
of a spring force, 156
units of, 155
virtual, 154, 478
of weight, 157

Work-energy equation, 160, 177, 246, 270, 461, 552

700 Index
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Problem Answers

Chapter 1

1/1

1/2
1/3
1/4
1/5 (a) 

(b) 
1/6
1/7

1/8
1/9
1/10
1/11 022 or 432 348 km
1/12
1/13 On earth: 

On moon: 
1/14
1/15 [MLT�1] � [MLT�1]

RB � 2.21RA � 2.19,
Rem � 0.001677
Rem � 286 000

Res � 1656
d � 346
� � 1.770�

Wh � 186.0 lbgh � 29.9 ft/sec2,
Wrel � 882.2 NWabs � 883.9 N,

h � 0.414R
F � �(5.73i � 3.31j)10�9 N

�3.14(10�11)i N
�1.255(10�10)i N

27, 1.392i � 18j, 19.39i � 6j, 178.7k, �21.5
m � 0.01294 slugs � 0.1888 kg, W � 1.853 N
W � 14 720 N � 3310 lb, m � 102.8 slugs
W � 801 N
180-lb person: m � 5.59 slugs � 81.6 kg

Chapter 2

2/1
2/2 7.89 sec
2/3
2/4
2/5
2/6
2/7
2/8
2/9

2/10
2/11
2/12

2/13
2/14
2/15
2/16
2/17 (a) (b) 
2/18
2/19
2/20
2/21
2/22
2/23
2/24
2/25
2/26 (a) (b) t � 0.0555 sect � 0.0370 sec,

s � 2250 m
s � 330 m
s � 713 m

v � 99.8 mi/hra � 1.168 ft/sec2,
t � 3.26 ss � 3.26 m,

v � 0.8 m/s
�s � 64 m�a � 0.5 m/s2,

s � 1.819 kmt � 65.5 s,
v � 25.6 m/sv � 21.9 m/s,

v � �1.25 m/svav � �0.75 m/s,
tacc � 0.8 seca � 31.2 ft /sec2,v � 25 ft /sec,

tAC � 2.39 sec
vB � 56.4 ft/sec downt � 4.24 sec,h � 49.4 ft,

t � 40.8 sh � 2040 m,
v2 � 139.0 ft/sec
s � 213 ft

s � �5 � 3t � 15t2 � 2
3

 t3 m

v � 3 – 30t � 2t2 m/s
D � 1.419 m�s � 1.248 m,

a � 3.61g
�s � 24 m

a � constantD � 45 mm,�s � �27 mm,
a � 150 mm/s2

a � 15 m/s2v � 42 m/s,s � 72 m,
t � 2.11 sec,
v � 75 m/s

(When a problem asks for both a general and a specific result, only the specific result might be listed below.)
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2/27
2/28
2/29
2/30
2/31
2/32
2/33
2/34
2/35
2/36
2/37
2/38

2/39

2/40 Particle 1: 

Particle 2: 

Particle 3: 

2/41

2/42
2/43
2/44

2/45

2/46

2/47

2/48
2/49 (a) (b) 
2/50 (a) (b) 
2/51

2/52

2/53 (a) (b) 

2/54

2/55
2/56

2/57

2/58
2/59
2/60
2/61
2/62

2/63
2/64

2/65
2/66
2/67

2/68

2/69
2/70
2/71
2/72 2.57 ft above B
2/73 right of B
2/74
2/75
2/76
2/77
2/78
2/79
2/80
2/81
2/82
2/83
2/84
2/85
2/86
2/87
2/88
2/89
2/90

2/91

2/92

2/93

2/94

2/95

2/96
2/97
2/98
2/100
2/101
2/102
2/103
2/104
2/105
2/106 an � 36.7 ft/sec2, at � 20 ft/sec2

tA � 8.97 s, tB � 8.89 s, 2.50 m
tA � 8.97 s, tB � 9.92 s, 23.9 m
� � 266 m
a � 0.269 m/s2
v � 5.30 ft/sec, an � 25.0 ft/sec2
v � 71.3 km/h
at � �8.39 ft/sec2
vA � 11.75 m/s, vB � 13.46 m/s
x � 1242 ft, y � 62.7 ft

� � 90� � �
2

, � � 45�, 60�, 67.5�

h � 583 ft, tƒ � 12.59 sec, d � 746 ft

vx l 0, vy l �
g

k

(v0 sin � � 
g

k
)(1 � e�kt) � 

g

k
 ty � 1

k

vy � �v0 sin � � 
g

k
 �e�kt � 

g

k

x � 
v0 cos �

k
(1 � e�kt)vx � (v0 cos �)e�kt, 

ƒ2 � �1�ƒ1, ƒ2 � 1
2

Ri � 0.667
v0

2

g , ti � 1.155
v0
g

s � 1.046 km, t � 17.75 s
h � 1.227 m
� � 0.445�, h � 500 ft
� � 7.76 ft
31.0� � � � 34.3� or 53.1� � � � 54.7�

umax � 1.135 m/s, umin � 0.744 m/s
20.6 � v0 � 22.4 ft/sec
s � 455 m, t � 13.35 s
R � 46.4 m, � � 23.3�

�1 � 26.1�, �2 � 80.6�

u � 14.41 m/s
R � 2970 m
� � 48.7� or � � 53.6�

v � 70.0 ft/sec, s � 11.85 ft
� � 5.57�

� � 21.7�

� � 14.91�

� � 50.6�, 2.50 ft

v0 � 77.1 ft/sec, � � 31.1�

v0 � 16.33 ft/sec, � � 66.8�

u � 343 m/s

Rmax � 
v0

2

g

v0 � 3.67 m/s, d � 1.340 m
(y � 2)3 � 144x2, v � 30 ft/sec
t � 24.7 sec, h � 1.786 mi

v � 13.45 in./sec, a � 26.8 in./sec2
v � 24.2 ft/sec, a � 25.3 ft/sec2

�x � 26.6�a � 4.47 mm/s2,
v � 8.94 mm/s, �x � 63.4�

v � 6.20i � 3.36j m/s, � � 27.9�

aav � 5 m/s2, � � 53.1�

vav � 20.6 m/s, � � 76.0�

t � 105 sec, amax � 11.73 ft/sec2

v � 
g
c(e�ct �1) � k

c � b
(e�bt� e�ct)

vƒ � 78.5 ft/sech � 120.8 ft,
x � 0.831 ft

D � 0.693/k, t � 1
kv0

s � 1268 ms � 1206 m,

v � v0 � kxx � 
v0

k
(1�e�kt),v � v0e�kt,

v � [v0
1�n � c(n�1)t]1/(1�n)

v � 4990 ft/secv � 6490 ft/sec,
v � 12,290 ft/secv � 13,040 ft/sec,

s � 416 m�t � 10 s,

D � 1
2C2

 ln �1 � 
C2

C1
v0

2�
vmax � 18 m/s

c � 
3v0

2 � 6gym

2ym
3

D � 65.3 ft, �s � 6.67 ft, s5 � 3.67 ft
t � 50.8 s
K � 1.073(10�3) ft�1, t � 25.4 sec

v � 2�K(L � D/2)
LD

s � 
v0

k
 sin (�kt), v � ��v 2

0  � ks2

s � v0t � 1
6

kt3, v � v0 � 1
2

kt2

s � 
v0

k
(1 � e�kt), v � v0e�kt

c � 
v0

2 � 2gym

ym
2

D � 3710 ft
s � 5810 ft
v � 178.9 ft/sec

t � 2.74 seca � �8.72 ft/sec2,
t � 16.67 s
a � �6.67 m/s2, t l �
vmax � 35.9 ft/sec
v � 38.9 km/h
v � 1.587 in./sec
t � 0.917 s
s � 972 ft

h � 1.934 kmvm � 120 m/s,

�

�

�

�

�

�
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2/107
2/108
2/109
2/110
2/111 (a) (b) 

(c) 
2/112
2/113
2/114

2/115
2/116 (a) 

(b) 
2/117 (a) 

(b) 
2/118
2/119
2/120
2/121 , 
2/122 (a) 

(b) 
(c) 

2/123

2/124
2/125
2/126
2/127
2/128
2/129
2/130
2/131

2/133
2/134
2/135
2/136
2/137
2/138
2/139
2/140
2/141

2/142
, 

2/143
2/144
2/145

2/146

2/147 v � 161.7 ft/sec, �̈  � �0.0808 rad/sec

� � 0, �̇  � 
v0 sin �

d
, �̈  � �1

d
 �2v0

2

d
 cos � sin � � g�

r � d, ṙ  � v0 cos �, r̈  � 
v0

2 sin2 �
d

r̈ � 4.62 m/s2, v � 960 km/h
ṙ � 1.512 m/s, �̇  � 0.0495 rad/s
v � 1200 ft/sec, a � 67.0 ft/sec2

�̈  � 23.4 rad/sec2r̈ � 11.69 ft/sec2
ṙ � �1.5 ft/sec, �̇  � 4.50 rad/sec

� � 19.44�a � 0.272 m/s2 at
v � 0.377 m/s at � � 260�

a � 2K2�R2 � r0
2

l̇  � 32.8 mm/s
r̈ � 11.52 m/s2, �̈  � 0.0813 rad/s2
ṙ � 42.5 m/s, �̇  � �0.1403 rad/s
v � 545 mm/s, a � 632 mm/s2
r̈ � 2.07 m/s2, �̈  � �1.653 rad/s2
ṙ � �9.31 m/s, �̇  � �0.568 rad/s
ṙ � 47.7 ft/sec, �̇  � �41.0 deg/sec

ar � �12.80 m/s2, a� � �8.80 m/s2
xC � 22.5 m, yC � �22.9 m
� � 1.25 m
L � 46.1 m
� � 437 mm, an � 8.74 mm/s2, at � 36.3 mm/s2
� � 18 480 km
a � 9.39 ft/sec2
tA � 10.52 s, tB � 10.86 s
t � 1.2 s: a � 19.62 m/s2, �x � 180�

t � 0.8 s: a � 73.1 m/s2, �x � �128.1�

a � 97.3 m/s2, �x � �168.4�

a � 38.9 m/s2, �x � �59.7�

a � 2g right, �x � 0
v̇ � �12.65 m /s2� � 1907 km

an � 1.838 ft/sec2
aP1

 � 338 m/s2, aP2
 � 1.5 m/s2

� � 41.7 in.
� � 149.7 ft, at � 8.75 ft/sec2
� � 142.2 ft, at � �6.58 ft/sec2
� � 133.4 ft, v̇ � 0
� � 243 ft, v̇ � �18.47 ft/sec2

v � 72 km/h
a2 � 85.4 m/s2P2: an � 80 m/s2,

P1: v � 2 m/s, a1 � 50 m/s2
N � 3.36 rev/min
a � 16en � 16.10et ft /sec2

a � 8.82 ft/sec2
a � 17.97 ft/sec2a � 7 ft/sec2,

v � 27.8(103) km/h
a � 0.0260 m/s2v � 356 m /s,

vA � 25.8 m/s, vB � 39.6 m/s
�B � 163.0 m 2/148

2/149
2/150
2/151

2/152

2/153
2/154

2/155

2/156
, 

2/157

2/158

2/159

2/160

2/161

2/162

2/163

2/164

2/165
2/166

2/167
2/168

2/169

2/170

2/171

2/172

2/173
�̈ � �0.0238 rad/s2
R̈ � 20.1 m/s2, �̈  � 0
�̇ � 0.0731 rad/s
Ṙ � 92.0 km/h, �̇  � 0.1988 rad/s
az � �0.386 ft/sec2
ar � �19.82 ft/sec2, a� � �2.91 ft/sec2
aP � �( l̈ � (l0 � l)�2)2 � 4l̇2�2� ḧ2

vP � �l̇2 � (l0 � l)2�2 � ḣ2

amax � �r2�4 � 16n4�4z0
2

v� � �u cos � sin �
v� � �u sin �, vR � u cos � cos �
a � 27.5 m/s2

az � �32.2 ft/sec2ax � ay � 0,
vy � 85.5 ft/sec, vz � �211 ft/secvx � 235 ft/sec,

z � 2220 ftx � 4700 ft, y � 1710 ft,
� � 74.6�, v̇ � 1.571 m/s2, � � 8.59 m
�̈  � 0.660 rad/sec2

�̇  � �0.334 rad/sec� � 31.9�,
r̈ � �11.35 ft/sec2r � 51.0 ft, ṙ � 91.4 ft/sec,

�̈  � �1.398(10�7) rad/sec2

�̇  � 3.48(10�4) rad/sec
ṙ � 8910 ft/sec, r̈ � �1.790 ft/sec2

� � 26.6�, �̇  � 0.06 rad/s, �̈  � �0.0518 rad/s2

r � 224 m, ṙ � 6.71 m/s, r̈ � �4.59 m/s2
�̈  � �1510 rad/s2r̈ � 315 m/s2,

ṙ � 3.58 m/s, �̇  � 17.86 rad/s
�̈  � �9.01(10�5) rad/s2

�̇  � 0.00312 rad/s� � 43.2�,
r � 21 900 m, ṙ � �73.0 m/s, r̈ � �2.07 m/s2

�̇  � 
att
2b

� � 
att2

4b
,

r � 2b sin �att2

4b �, ṙ � att cos �att2

4b �
�̈  � �0.0390 rad/s2
vr � 96.2 m/s, v� � 55.6 m/s, ar � 10.29 m/s2
� 0.289j m/s, a � �0.328i � 0.1086j m/s2

v � 0.064iv � 0.296 m/s, a � 0.345 m/s2,
�x � 225�aA � 7.54 m/s2

vA � 1.190 m/s, �x � 125.2�

�̇  � 6.46 rad/s
r � 0.256 m, ṙ � 4.72 m/s, � � 38.7�

�̈  � �38.5 rad/s2
ṙ � 1.732 m/s, r̈ � 3.33 m/s2
v� � 69.9 mi/hr

v � b�

sin �
, a � b

2�2

h
 cot3 �

v � 529 m/s, 	 � 48.9�, a � 9.76 m/s2
a � 10.75K�

a � �2�4c2 � 4bc cos � � b2
a � 8.62 ft/sec2, �̈  � 0.01832 rad/sec2

�

�

�

�

�
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2/174

2/175

2/176

2/177
2/178
2/179
2/180

2/181

2/182
where 

2/183
2/184
2/185 west of south
2/186

2/187
2/188

2/189
2/190
2/191
2/192
2/193
2/194

2/195
2/196
2/197
2/198
2/199
2/200
2/201
2/202
2/203
2/204
2/205 (a) 

(b) 
2/206
2/207
2/208 vA � 1.8 m/s up, aA � 3 m/s2 down

vA � 0.4 m/s down
vA/B � 71.5i � 47.4j ft/sec

v̇r � 0.884 m/s2, �r � 5660 m
vA/B � 50i � 50j m/s, aA/B � 1.25j m/s2

r̈ � �0.637 m/s2, �̈  � 1.660(10�4) rad/s2
� � 33.3�, vA/B � 73.1i � 73.1j ft/sec
aB/A � 0.733i � 29.2j ft/sec2
aB/A � 0.787 m/s2, � � 93.5�

vr � 924 km/h, vn � 354 km/h
r̈ � r �̇ 2, �̈  � �2 ṙ �̇ /r
� � 55.6�

aB � 1.389 m/s2
vB � 206 km/h, aB � 0.457 m/s2
vB � 523i � 16.67j ft/sec

17.82� east of north)(89.3 mi/hr,
vB/W � 27.3i � 85j mi/hr
� � 18.87�

� � 28.7� below normal
vB � 6.43 m/s
� � 23.8�

vC � 1.383 knots, � � 231�

� 0.628j m/s2aA/B � 3.63i
vA/B � 3.00i � 1.999j m/s
� � 7.18�, vA � 79.4 mi/hr

6.48� north of west)(12.37 mi/hr,
vW/R � �12.29i � 1.396j mi/hr

west of south)(22.3 mi/hr, 33.4�

vW/R � �12.29i � 18.60j mi/hr
vA/B � 1442 km/h, � � 33.7�

aA/B � 10.86 ft/sec2
vA/B � 15i � 22.5j m/s, aA/B � 4.5j m/s2

� � tan�1(b/h)
ar � b �̇ 2(tan2�  sin2 � � 1)e�� tan� sin �
v� � h� /�1 � (h/2R)2
vR � 0, v� � R��1 � (h/2R)2 

aR � �5.10 m/s2, a� � 7.64 m/s2, a� � �0.3 m/s2
vP � 2.85 m/s, aP � 5.80 m/s2
vA � 1.347 m/s, aA � 8.41 m/s2
v � 2.96 m/s, a � 0.672 m/s2

v� � 
�hu cos 

�

2

�4b2 sin2
 �
2

 

� h2

�

2
vR � 

bu sin �

�4b2sin2
 �
2

 

� h2

, v� � u sin

x � 
�3
2

r cos vt
r , y � r sin vt

r , z � �1
2

r cos vt
r

v � �c2 � K2l2 sin2 �, a � K sin ��K2l2 � 4c2 2/209
2/210
2/211
2/212
2/213
2/214
2/215

2/216

2/217

2/218
2/219
2/220

2/221

2/222

2/223

2/224
2/225

2/226

2/227
2/228
2/229
2/230
2/231

2/232

2/233
2/234
2/235
2/236
2/237
2/238

2/239
2/240
2/241
2/242
2/243

2/244 (a) 
(b) 

2/245 vB � 46.8 mm/s up
a � bK�K2 � 4�2�0

2
a � b�K4 � �4�0

2
 cos2�

at � 4 m/s2, � � 129.9 m
�̈  � �0.0352 rad/s2, an � 6.93 m/s2

�̇� 0.325 rad/sṙ � 15 m/s, r̈ � 4.44 m/s2,
� � 1.499 m, ax � �5 m/s2
aA/B � 4.58 m/s2, � � 20.6� west of north
(�1255, 1193, 0) ft
� � 12.09�

an � 10�3 ft/sec2, � � 
6�3

5
 ft

ar � 5�3 ft/sec2, ay � �5�3 ft/sec2, at � 0
t � 53.5 sec
vP � 2.72 m/s
� � 9.53 km
34.3 ft
�̇  � 13.86 rad/sec, �̈  � 215 rad/sec2

r � r0
1

1 � �	 �̇

2
�
2

t � 208 s, h � 418 km
t1 � 2.27 sec, t2 � 8.48 sec
(311, 20) ft
v� � 15 ft/sec, vB � 61.8 ft/sec
v � �7.27 m/s

vB � vA�2x2 � h2

x2 � h2

aB � 11.93 mm/s2 up
vB � 62.9 mm/s up

vA � 
�2vB

cos 
�

2
 � sin 

�

2

vB � 
s � �2x

x � �2s
 vA

ax � �
L2v 2

A

(L2 � y2)3/2

v � 83.8 mm/s
vA � 2.76 m/s
vB/A � 1 ft/sec, aB/A � 2 ft/sec2, vC � 4 ft/sec

vA � 
2�x2 � h2

x vB

vB � �
3yvA

2�y2 � b2

vA � 4vB � 2vC � 0, two
vA � 4vB � 0, one
v � 1.5 m/s up
t � 200 s
h � 400 mm
7aA � aB � 0
aA � 2 ft/sec2 up

�

�

�

�

�

�

�

�
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2/246
2/247
2/248
2/249 (a) 

(b) 
(c) 

2/250

� � 90� at t � 0.526 sec
at t � 0.324 sec�̇ max � 3.79 rad/s

�max � 110.4� at t � 0.802 sec
a � 30.3 m/s2
a � 0
a � �30.3 m/s2

v� � 113.5 ft/seck � 0.00323 ft�1, vt � 99.8 ft/sec,
t � 1.473 s, x � 0.1178 m
aB � 7.86 mm/s2 up

3/1
3/2 (a) 

(b) Crate does not stop
3/3 (a) no motion, (b) down incline
3/4
3/5
3/6

3/7
3/8 up
3/9 up incline
3/10
3/11 (a) , (b) 
3/12 (a) (b) 
3/13
3/14
3/15
3/16
3/17
3/18 up
3/19
3/20
3/21 (a) (b) right
3/22 Not possible
3/23
3/24 (a) 

(b) 

3/25

3/26
3/27
3/28
3/29 down incline 

up, 
3/30

3/31

3/32 right 
down, 

3/33 down, T � 8.21 NaB � 2.37 m/s2
T � 46.6 NaB � 9.32 m/s2

aA � 1.364 m/s2

v � �2P
�

 
� �kgL

x � 201 m
T � 105.4 NaB � 0.725 m/s2

aA � 1.450 m/s2
T � 171.3 N
k � 5 lb/in.
n � 66.0%

	 �  tan�1�a � g sin �
g cos � �

aA � aB � 0.667 m/s2
aA � 1.095 m/s2, aB � 0.981 m/s2

�k � 0.555

a � 1.390 m/s2 a � 0,
�k � 0.429
TA � 75.0 N, TB � 55.4 N
FA � 4080 lb
F � 0.0206 lb
a � 5.66 m/s2
T1 � 39,200 lb, T100 � 392 lb
T � 1042 N
12 s

a � �0.513 m/s2 a � �0.257 m/s2,
a � 16.10 ft/sec2 a � 6.44 ft/sec2

a � g(sin �1 � sin �2)
a � 4.96 m/s2
a � 3.58 ft/sec2
su � 807 m, sd � 751 m

n � sin � � ag

F � 2890 N
R � 846 N, L � 110.4 N; R, L l 0

 a � 3.45 ft/sec2

t � 5.59 s, x � 19.58 m
t � 1.784 s, x � 6.24 m 3/34

3/35 (a) (b) left
3/36 Case (a), 
3/37

3/38

3/39 (a) (b) 
3/40 (a) 

(b) 
3/41
3/42
3/43 No motion 

3/44
3/45
3/46 (a) (b) 
3/47
3/48 (a) (b) 
3/49
3/50 (a) (b) 
3/51
3/52
3/53
3/54
3/55
3/56
3/57 (a) (b) 
3/58
3/59
3/60
3/61
3/62
3/63
3/64
3/65
3/66
3/67
3/68 F � 165.9 N

T � 1.76 N, F� � �3.52 N
D � 45.0 kN, L � 274 kN
NA � 3380 N, NB � 1617 N
F � 920 lb
s � v0 /�kg
k �  cos2 �
vA � 140.7 ft/sec, vB � 163.8 ft/sec
at � �22.0 ft/sec2
an � 0.818g, F � 2460 lb
�̇  � 3.37 deg/s

NA � 241 NvB � 54.2 m/s,
� � 1.064 rad/s
N � 8.63 rev/min
�s � 0.540
N � 0.0241 lb
P � 4 lb (side A)
� � 45.3�

R � 0.271 lbR � 0.25 lb,
R � 1.173 N, at � �7.21 m/s2

v̇ � �16.10 ft/sec2N � 1.374 lb,
NA � 10.89 N, NB � 8.30 N

T � 16.14 NT � 8.52 N,
T � 138.0 N, a � 0.766 m/s2
v0 � 11.19 km/s

P � 9.66aB � 0.322
aA � 4.83 ft/sec2P � 54 lb:

aA � aB � 0.1789P � 3.2227 � P � 54 lb:
0 � P � 27 lb:
� � 5.88�, 47.2�

v � 2100 m/s
t � 0.0768 s, y � 0.01529 m
vs � 0.327 m/s

h � 127.4 mh � 55.5 m,

tan�1� 1
�s� � � � �

2

a � 1.406 m/s2
v � 7.43 m/s

a � 0.714 m/s2a � 0,
ax � 32.2(14 – 30x), v � 14.47 ft/sec

*
*
*
*

*

*

Chapter 3

�

�

�

�

2/251

2/252
2/253

2/254 vmax � 10 in./sec at t � 0.330 sec, x � 2.45 in.
amax � 10.76 m/s2 at � � 0 and t � 0
amin � 9.03 m/s2 at � � 44.3� and t � 0.237 s
� � 42.2�, R � 101.3 m
sB � 150 m

t � 10 s and� 2.52 m/s2 atsB � 0, (aA/B)min

sB � 557 m, (aA/B)max � 6.12 m/s2 at t � 0 and
sB � 1264 m, (vA/B)min � 10 m/s at t � 23.6 s and
(vA/B)max � 70 m/s at t � 47.1 s and 
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3/69
3/70

3/71

3/72
3/73
3/74 Dynamic: 

Static: 

3/75

3/76
3/77
3/78
3/79
3/80

3/81

3/82

3/83

3/84

3/85

3/86
3/87
3/88
3/89 (a) (b) 

(c) 
3/90

3/91

3/92

3/93
3/94

3/95

3/96

3/97 (a) (b) 
3/98
3/99
3/100
3/101
3/102
3/103
3/104
3/105 (a) and (b) 

3/106
3/107 (a) (b) 
3/108 (a) (b) 
3/109 (a) (b) 
3/110 (a) (b) 
3/111
3/112
3/113
3/114
3/115
3/116
3/117
3/118
3/119 At Halfway: 

3/120 (a) (b) 
(c) (d) 

3/121
3/122
3/123 (a) (b) (c) 

3/124

3/125 (a) (b) , (c) 
3/126
3/127
3/128
3/129
3/130
3/131
3/132
3/133
3/134
3/135
3/136 (a) 

(b) 

3/137 (a) (b) 
(c) 

3/138
3/139
3/140
3/141 (a) (b) 
3/142 (a) (b) 

(c) down
3/143

3/144

3/145 W � 88.1 lb

N � m�5g � kR
m  (3 – 2�2)�

vC � �4gR �
 kR2

m
 
(3 – 2�2)

vB � �2gR � kR2

m
 
(3 – 2�2)

y � 0.224 m
NE � 35.3 N

NC � 10.19 NNC � 77.7 N,
� � 54.2 mmvB � 9.40 m/s,

v � 3.43 m/s, x � 48.5 mm
v � 3.65 ft/sec
v � 5.46 ft/sec

xss � 93.2 mm
xmax � 186.4 mmv � 0.496 m/s,

v � 70.9 mi/hr
Pup � 35.2 hp, Pdown � �3.17 hp
P30 � 5 hp, P60 � 16 hp

� � 29.4 mm
v � 1.734 m/s, v� � 1.889 m/s
v � 7.80 ft/sec
k � 8.79 kN/m
Pin � 36.8 kW
� � 0.1445 m
vC � 3.59 m/s
vA � 3.44 m/s
v � 17.48 ft/sec
v � 5.30 m/s

s � 4R
1 � �k�3

NC � 7mgNB � 4mg,

k � 
5mg(h � d)

d5

P � 0P � 287 W,P � 0,
v0 � 6460 m/s
v � 13.37 ft/sec

P � 2670 hpP � 6530 hp,
P � 3270 hpF � 61,200 lb,

F � 6960 N
P � 136.7 kWB: P � 193.4 kW,

e � 0.892
�Q � 1620 JR � 4.05 kN,

R � 4.05 kN, P � 52.2 N
v � 7.08 ft/sec
Q � 903 kJ
e � 0.764
v � 1.881 m/s
P � 0.393 hp, P � 293 W

v � 6.55 ft/secv � 5.93 ft/sec,
x � 98.9 mmv � 2.56 m/s,
s � 1.226 ms � 1.853 m,
s � 0.349 ms � 0.663 m,

P � 0.400 hp

v � 8.10 m/s
Q � �1.835 J
v � �2gh
R � 3340 lb
k � 974 lb/in.
v � 17.18 ft/sec
Uƒ � �672 ft- lb
vB � 3.05 m/s

U1–2 � 2.35 JU1–2 � �60 J,

N � 
mg

(1 � 4k2x2)3/2
 � 0

s � r
2�k

 ln �v0
2 � �v0

4 � r2g2 
rg �

N � 81.6 N, R � 38.7 N
v � 5.52 m/s

�max � �
2

, T � mg(3 sin � � 3 cos � � 2)

T � 2.53 N, R � 1.028 N (lower side)
r̈ � �1.153 ft/sec2, �̈  � �2.72(10�8) rad/sec2
ṙ � 9620 ft/sec, �̇  � 1.133(10�4) rad/sec

F � 1562 lb
F � 2260 lbF � 1562 lb,

at � 10 m/s2, NA � NB � 4.83 N, T � 5.23 N
at � 10 m/s2, NA � NB � 2 N, T � 2.83 N
P � 8.62 lb
v� � r0�0 cosh �0t

vr � 
r0�0

2
 (e�0t � e��0t), r � 

r0

2
 (e��0t � e�0t)

P � 2.21 N, N � 14.22 N

k � 1 � R�2

g , W� � 99.655 N

� � 4.77 rad/s

N � 1
4����sg

r� �
2 

� 1

T � 2.52 lb, N � 0.326 lb (side B)
F � 4.39 N
x � 118.8 mm, N � 25.3 N
R � 2.14 � 1.913  cos � N, vB � 2.06 m/s
v � 149.4 ft/sec, vmin � 0, vmax � 345 ft/sec

v � L
2��

g
b

, N � 2mg

Fr � 5.89 N, F� � 10.19 N
Fr � 4.79 N, F� � 14.00 N

� � 3000 km, v̇ � 6.00 m/s2
P � 27.0 N, Ps � 19.62 N

1.414 � t � 5 s �T1 � �0.0707 � 0.0354t2

N � 0.0707 � 0.0354t2 

0 � t � 1.414 s �T2 � 0.0707 � 0.0354t2

N � 0.0707 � 0.0354t2 

� � 5.01 rad/s
v � �gr tan �

�

�

�

�

�

�
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3/146
3/147
3/148
3/149 (a) (b) 
3/150
3/151
3/152
3/153
3/154
3/155 (a) (b) 
3/156
3/157
3/158
3/159
3/160
3/161
3/162
3/163
3/164
3/165
3/166
3/167
3/168 (a) (b) 
3/169
3/170 (a) (b) 
3/171

3/172

3/173
3/174
3/175
3/176
3/177
3/178
3/179 down
3/180
3/181 (a) (b) 
3/182 left
3/183
3/184
3/185 left
3/186
3/187
3/188 (a) (b) right
3/189
3/190
3/191 right
3/192
3/193
3/194
3/195

3/196

3/197
3/198
3/199
3/200 (a) 

(b) 
(c) 

3/201
3/202
3/203
3/204
3/205
3/206
3/207
3/208 knots

3/209

3/210
3/211
3/212 (a) (b) 

(c) 

3/213

3/214
3/215
3/216 (a) 

(b) 
(c) 

3/217
3/218
3/219

3/220

3/221 (a) 
(b) 

3/222

3/223
3/224
3/225

3/226

3/227
3/228
3/229
3/230

3/231 (a) (b) 

3/232 HO � �1
2mgut2k

HO � 
2mv0

3
 sin2 � cos �

gHO � 0,

A: (ḢO)z � 0, B: (ḢO)z � �0.120 kg � m2/s2
vB � 47 850 m/s, vP � 58 980 m/s
� � �0/4, n � 3/4
� � 0.1721 rad/s CW

d�

dr
 � �2�

r

ḢB � 1.113k lb-ft
vP � 17,723 mi/hr
t � 15.08 s

�̇  � � 2m1

m1 � 4m2
� 

v1

L

HO � 2mr�gr, ḢO � 0
HO � mr�2gr, ḢO � mgr

� � 5v
3L

HO � mv(�ci � ak), ḢO � F(bi � aj)

(HO)2 � 34i � 0.1333j � 19.6k kg � m2/s
	H 	 � 389 N � m � s, 	M 	 � 260 N � m

T � 24 J
HO � �23.2k kg � m2/s
G � 8.49i � 8.49j kg � m/s

HO � 69.3 kg � m2/s
v2 � 40.0 mm/s

vB � 
mA
mB� 2gl

1 � mA/mB

v � 9.10 m/s
v � 7.23 m/sv � 3.10 m/s,

R � 43.0 N, 	 � 8.68�

Rx � 559 lb, Ry � 218 lb

s � r
�k

 � mA
mA � mC�

2
v � 5.20
R � 472 lb, a � 4660g, d � 0.900 in.
v1 � 0, v3 � 0.468 m/s, v5 � 5.30 m/s, v7 � 0
v � 6.61 m/s
v � 15.62 ft/sec, � � 50.2�

v � 17.82 mi/hr, � � 54.7�

v � 0.1935 km/h
v � 0.663 km/h

R � 12,150 lb
aB � 195.6 ft/sec2aA � �97.8 ft/sec2,

v� � 13.33 mi/hr
v2 � 1.423 m/s down incline, t � 8.25 s
v � 3.42 m/s
t � 4 min 33 sec

v � 
F0

mb
 �1 � e�bt�, s � 

F0

mb
 �t � 1

b
 (e�bt � 1)�

R � 14.96 kN
v1 � 0, v3 � 2.42 ft/sec, v5 � 6.44 ft/sec, v7 � 0
vƒ � 0.00264 m/s, Fav � 59.5 N
v1 � 0.417 m/s, v3 � 8.96 m/s
ẋ1 � 2.05 m/s left, ẋ2 � 0.878 m/s
v � 190.9 m/s, 	�E 	 � 17.18(103) J
T � 2780 N

v4 � 2.69 m/sv1 � 0,
v � 5.86 ft/sec
t � 12.18 min
ẋ1 � 2.90 m/s right, ẋ2 � 0.483 m/s
v � 2.10 m/s
R � 423 lb
vC � 1.231 m/s

	�E 	 � 2230 ft- lbv � 2.44 mi/hr,
t � 7.73 s
vB � 1.652 m/s
�k � 0.302
�R � 568 N
	�E 	 � 13 480 J, n � 99.9%
v2 � 188.5i � 74j � 47k m/s
F � 3.03 kN
1.7 N � s

v � �gr ��
2

 
�

 4
��

�̇  � �1.045 rad/s
v � 0.522 m/sk � 111.9 N/m,

v � 1.143 m/s
v � 1.005 m/sm � 0.528 kg,

� � 43.8�

(vB)max � 0.962 m/s
k � 155.1 N/m
v2 � 35.1 km/h
� � v�m/k
v � 20.4 mi/hr
xmax � 105.9 mm, vmax � 1.493 m/s, x � 27.2 mm
vB � 26 300 km/h
v � 3.43 ft/sec
v � 4.93 m/s
P � 2.86 lb
v � 0.331 m/s

v � 1.641 ft/secv � 3.06 ft/sec,
k � 86.8 N/m, v � 1.371 m/s
vB � 8.54 ft/sec
vA � 0.616 m/s, vB � 0.924 m/s
�̇  � 4.22 rad/s
k � 393 N/m, v � 1.370 m/s, �̇  � 2.28 rad/s

x � 0.510 in.v � 3.84 ft/sec,
Uƒ � �2.36 J, Fav � 3.38 N
v0 � 6460 m/s
v � 1.248 ft/sec

�

�

�
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3/233

3/234
3/235
3/236
3/237
3/238
3/239
3/240
3/241 right
3/242 left

3/243

3/244

3/245

3/246

3/247

3/248
3/249

3/251 (a) (b) 

3/252
3/253

3/254

3/255
3/256
3/257 (a) (b) 
3/258
3/259 at 

at 
3/260
3/261 at 

at 
3/262

3/263

3/264
3/265
3/266
3/267
3/268
3/269
3/270
3/271 (a) 

(b) 
3/272 �h � 88.0 km

vrel � 18,306 mi/hr
vrel � 16,227 mi/hr

�v � 1.987 mi/sec
See Prob. 1/14 and its answer
v � 7569 m/s
v � 18.51 mi/sec
� � 11.37�, 78.6�

h2 � 0.385 m
� � 82.3�, �22.3�

e � � h�
h� � h

, vx � 
�

g
2 d

�h� � �h� � h

(vB�)x � 6.99 m/s, (vB�)y � �3.84 m/s
(vA�)x � �1.672 m/s, (vA�)y � 1.649 m/s

�B � 50.2�, n � 34.6%vB� � 6.51 m/s
�A � 180�vA� � 6.83 m/s

� � 2.92(10�4)�
�B � 270�, n � 44.4%vB� � 3.22 ft/sec
�A � 63.5�vA� � 6.73 ft/sec

vB � 21.7 km/h
h � 16.25 in.h � 14.98 in.,

L2 � eL1

R � 1.613 m

vn � �1 � e
2 �

n�1
v1

e � 0.434
e � 0.333

x � 0.286dx � d
3

,

m � 90 kg, v � 2.66 m/s, �E � 2470 J
h � 10.94 in., h2 � 7.43 in.

e � �h2

h �
1/4

vA� � 0.633v, vB� � 0.733v

� � �1 � e
2 �v�

m
k

v � u
4

 (1 � e)2

m1
m2

 � e

F � 107.0 N
v1� � 4.52 m/s left, v2� � 2.68 m/s
v0 � 4.20 m/s
e � 0.829, n � 31.2%
� � 3.00 rad/s, U � 5.34 J
� � 52.9�

TB � 0.745 lb
�� � 2.77 rad/s CCW, � � 52.1�

vr � 88,870 ft/sec, v� � 125,700 ft/sec
C: HA � 0.714m�g�3 CCW, HD � 1.126m�g�3 CCW
B: HA � 0, HD � m�g�3 CCW

�

�

�

�

3/273
3/274
3/275
3/276
3/277 (a) (b) 

(c) , (d) 
3/278 , 
3/279
3/280
3/281
3/282
3/283
3/284
3/285

3/286

3/287
3/288
3/289
3/290
3/291

3/292

3/293
3/294
3/295
3/296
3/297
3/298

3/299

3/300
3/301

3/302
3/303
3/304
3/305
3/307
3/308
3/309 (a) and (b) 
3/310
3/311
3/312
3/313 (a) and (b) 
3/314
3/315 grel � 9.825 – 0.03382 cos 

2
 m/s2
vA � [v0

2 � 2gl sin � � 2v0 cos ��2gl sin �]1/2
h2 � e2h1

Prel � 0.1206 hp
T0 � m(g � a0)(3 – 2 cos �0)
T � 3ma0 sin �, T�/2 � 90 N

T � 112 J
a0 � 16.99 m/s2, R � 0
(vrel)max � a0�m/k
xC/T � 2.83 m, vrel � 2.46 m/s
F � 194.0 kN
F � 376 lb
P � 66.9 kN
(HB)rel � �1.5k kg � m2/s
HO � �4.5k kg � m2/s
T � 13.5 J, Trel � 1.5 J
G � 9i kg � m/s, Grel � 3i kg � m/s
�k � 0.382

arel � k�� 1
m1

 � 1
m2�

rmin � 6.49(106) mrmax � 6.66(106) m,
vp � 7890 m/sva � 7690 m/s,

� � 5301 s, e � 0.01284
a � 6572 km (parallel to the x-axis)
�vA � 2370 m/s, �vB � 1447 m/s
h � 922,000 mi
t � 162.5 s
�v � 2940 m/s
p � 0.0514 rad/s

�vA � R�
g

R � H
 �1 � � R

R � H�
�ƒ � 658.69 h, �nƒ � 654.68 h
	 � 153.3�

� � �3.39�

�v � 148 ft/sec
�v � 302 ft/sec

 tan 	 � 
e sin �

1 � e cos �

�� � 1 h 36 min 25 s, �� � � � 6 min 4 s
vB � 10,551 ft/sec, b � 17,833 mi
vP � 1683 m/s, vA � 1609 m/s, �v � 18.35 m/s
�t � 32.9 s
�t � 71.6 sec
t � 64.6 days
hmax � 899 mi

� � 90��v � 3217 m/s, v � 7767 m/s
v � 10 668 m/sv � 10 398 m/s

v � 7912 m/sv � 7544 m/s,
ha � 32 600 km
�v � 534 m/s
vP � 3745 mi/hr
e � 0.01196, � � 1 h 30 min 46 s

*
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3/317
3/318
3/319

3/320

3/321
3/322
3/323

3/324

3/325

3/326

3/327
3/328
3/329
3/330
3/331
3/332 (a) (b) 

3/333 left

3/334 � � �
mg

k �d2

2�

 
� 2�(1 � �k), d � 2�2�

vrel � �7
3

 

gl

at � �14.89 m/s2at � �10.75 m/s2,
T � 424 N
v � 6.55 ft/sec, x � 0.316 ft, n � 0.667
F � 2650 lb
u � 52�gR, xmin � 2R
t � 2.02 s

TB � m�u2

r  � 2g sin ��, TC � m�u2

r  � 5g sin ��
rmax � 5.29(109) km

� � �mgR(5 � 2�k)

k

vA � 7451 m/s, e � 0.0295
R � 46.7 N
k � 3.18 kN/m

� �  tan�1�a
g�

P � 1.936 kW
vB � 2.87 m/s, vC � 1.533 m/s
Uƒ � �7.54 J

4/1

4/2

4/3

4/4

4/5
4/6
4/7

4/8

4/9
4/10 Mass-center accelerations are identical
4/11
4/12
4/13
4/14

4/15

4/16

4/17
4/18
4/19
4/20
4/21

4/22

4/23
4/24 (both spheres)

4/25 (a) (b) 

4/26

4/27 (a) , (b)

4/28
4/29

4/30

4/31

4/32
4/33 �Q � 0.571�gr2

v � 3.92 ft/sec

vx � �2gl, �̇  � 2�2g
l

v � 
m0

m0 � 2m
 v0, �̇  � 

v0

b�
m0

m0 � 2m

v � 72.7 km/h
v � 0.877 m/s

�̈  � 2Fb
mL2a � F

2m

�Q � 2.52 J, Ix � 12.87 N � s

v � �3gr/2Pmin � 
9mg

� ,

v � 4.71 m/s
x � 0.316 ft, no

s � 
(m1 � m2)x1 � m2l

m0 � m1 � m2

v � 0.355 mi/hr, n � 95.0%
v � 0.205 m/s
vA � 1.015 m/s, vB � 1.556 m/s
t � 2.72 s
��̇ � 80.7 rad/s

t � 4mr2�

M

a � 13.42 ft/sec2

HO � 3.3k kg � m2/s
HO � 2m(r2� � vy)k
v � 1.137gr, R � 2.29mg
F � 2.92 N

a � 15.19 m/s2

aC � F
2m

 � g sin �

a � 4 m/s2
T � 58.3 lb
ay � 5.19 m/s2

ḢG � �2Fd
7

(2i � 3j)

HG � mvd
7

(72i � 24j � 28k)

ḢO � �Fdj

r̈  � Fk
7m

, T � 13mv2, HO � mvd(12i � 6j � 2k)

 ṙ  � v
7

(4i � 2j � 6k)r � d
7

(i � 4j � 6k),

HG � 12
7

 mvdk,  ḢG � �Fd
7

k

r̈  � Fi
7m

, T � 6mv2, HO � 4mvdk, ḢO � �Fdk

ṙ  � v
7

(4i � 4j)r � d
7

(10i � 6j),

Chapter 4

�

�

�

�

�

*
*
*

*
*

*
*
*
*
*
*

3/335
3/336
3/337
3/338
3/339
3/340
3/341

3/342

3/343
3/344
3/345

3/346
3/347
3/348
3/349
3/350
3/351
3/352
3/353
3/354

Nmax � 2.75 lb at � � 66.2�

vmax � 5.69 ft/sec at � � 50.8�

t � 0.408 s
vmax � 1.283 m/s at � � 17.40�

e � 0.610, y � 1.396 ft
t � 1.069 s, � � 30.6�

� � 21.7�

�min � 0.622 at � � 121.9�

�min � 40.8�	 �̇ max 	 � 1.072 rad/s at � � 65.6�,
t � 3.40 s, � � 663�

	vB 	max � 3.25 m/s at sB � sB0
 � 0.0635 m

	vA 	max � 3.86 m/s at sB � sB0
 � 0.0767 m

�̇  � 8.09�0.5 sin � �  cos � � 1 rad/s, �max � 53.1�

38.7� � � � 65.8�

r � 
g

2�0
2 (cosh � � cos �)

P30 � 3 hp, P60 � 16 hp, t � 205 sec, s � 5900 ft
v� � 182.9 mi/hr
v1 � 1.741 m/s, v2 � 0.201 m/s
t� � 8.50 sec
s � 2.28 m
Fav � 428 lb
� � 2.55 in.
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4/34

4/35
4/36
4/37
4/38
4/39
4/40
4/41
4/42

4/43

4/44
4/45
4/46

4/47

4/48
4/49
4/50
4/51
4/52
4/53

4/54

4/55
4/56
4/57
4/58
4/59
4/60

4/61

4/62
4/63

4/64

4/65
4/66
4/67
4/68
4/69
4/70
4/71
4/72 (a) (b) 
4/73

4/74
4/75
4/76
4/77
4/78
4/79
4/80
4/81
4/82
4/83 (a) (b) 
4/84
4/85
4/86

4/87

4/88 (a) 

(b) 

(c) 

4/89

4/90

4/91

4/92

4/93
4/94
4/95

4/96

4/97
4/98
4/99

4/100
4/101

4/102

4/103
4/104
4/105
4/106
4/107 M � 1837 lb-ft

a � 2.67 m/s2, �̈  � 15.40 rad/s2, a � 5.33 m/s2

R � 32�(a � g)2t2
F � 3�gx
T � 21.1 kN, F � 12.55 kN

P � 1
4

�v2

F � 159.8 lb
v � 13.90 ft/sec
at t � 231 sec
a � 5.64 m/s2 at t � 60 s, amax � 69.3 m/s2
an � 4.67 m/s2, at � 19.34 m/s2
a � 64.4 ft/sec2, �̈  � 325 rad/sec2

v � u ln � m0

m0 � m�t� � gt

F � 812 lb
� � 12.37 rad/sec
a � 53.7 ft/sec2

v � �2gx
3

, a � 
g
3

, Q � 
�gL2

6

T1 � 1
2

 �g 
x(L � x/2)

L � x
� 

x(L � x/2)
L � x �,

a � g�1 � 
x(L � x/2)
(L � x)2 �, R � 1

2
 �g�(L � x)

R � 1
2

�g(L � 3x), T1 � �gx, Q � 1
4

�gL2

v � 
v0

1 � 2�L/m
, x � m� ��1 �

 2v0t�
m  � 1�

Q � �gh�L � h
2�

v2 � �2gh[1 � ln (L/h)]

v1 � �2gh ln (L/h)

a � P
m0��x, v � �v0

2 � 
2p
�

 
ln

 m0
m0 � �x, T � �v2

x � 6.18 m
P � �v2 � �g(h � y), R � �g(L � h � y)
v � 13.83 ft/sec

a � 1.104 m/s2P � 6.75 N,
a � �1.603 m/s2
P � 20.4 N
F � � ṡ2 � �(L � s) s̈
P � 963 lb
a � 0.498 ft/sec2
R � �gx � �v2
P � 209 N
F � �(xẍ � ẋ2)
m � m0e�

�a � g
u �t

P � 76.5 N
P � 1242 lbP � 1113 lb,

a � 4.70 m/s2, m� � 448 kg/s
an � 8.31 m/s2, at � 21.2 m/s2
m � 10.86 Mg
u � 131.0 m/s
d � 165.3 mm, D � 2.55 m
C � 100.3 lb
� � 38.2�

M � �Q�Qr
4A

 � �r2 � b2���, � � 
Qr

4A(r2 � b2)

Rx � 311 lb right, Ry � 539 lb down
� � 2.31�, ay � 1.448 m/s2

v � 1r�
mg
�� , P � 

mg
2r �

mg
��

a � 14.68 ft/sec2
m � 184.3 kg
P � 0.671 kW
P � 5.56 kN, R � 8.49 kN
T � 12,610 lb, V � 162.3 lb, M � 1939 lb-ft
p � 34.2 lb/in.2, M � 461 lb-in.

R � mg � ��d2

4
u(u � v cos �)

F � 2.66 lb
p � 0.1556 lb/in.2
v � 56.4 m/s, M � 29.8 kN � m
R � 5980 lb
F � 4.44 lb
T � 6530 lb

R � �d2

4 ��B �1 � 
�B
�A�v2 � (pB � pA)�

p � 840 kPa
n � 0.638
h � 18.57 ft

Q2 � 
Q
2

(1� cos �)

F � �Av2
 sin �, Q1 � 

Q
2

 (1 � cos �)

Fx � Fy � 442 N
T � 32.6 kN
F � 202,000 lb
T � 2.85 kN
R � 1885 N
F � 750 N
F � 4.56 lb
� � 17.22�

vc � � 2gl(1� cos �)
(m2/m1)(1 � m2/m1)

vb/c � �(1 � m1/m2)2gl(1� cos �)

�

�

�

�

�

�

�
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Chapter 5

5/1

5/2

5/3

5/4
5/5

5/6
5/7
5/8
5/9
5/10

5/11
5/12
5/13
5/14
5/15
5/16
5/17 (a) (b) 

(c) 
5/18

5/19

5/20

5/21

5/22

5/23
5/24
5/25
5/26
5/27
5/28

5/29

5/30

5/31
5/32
5/33

5/34

5/35
5/36
5/37

5/38

5/39

5/40

5/41

5/42

5/43

5/44

5/45

5/46

5/47

5/48
5/49
5/50

5/52

5/53

5/54

5/55

5/56 �2 � 1.923 rad/s

vC � 
vB

2
 �8 � sec2

 �
2

� � 0.825 rad/sec CW

	̇ � 6.28� cos � � 0.278
1.939 � cos �� rad/sec

a � tv2

2�r2

�CB � 6.30 rad/s
� � 1.056 rad/s CW, � � �0.500 rad/s2 CCW
� � 17.95 rad/sec CW

� � 4
3

 rad/sec CCW, � � 1 rad/sec2 CCW

v � 
2 ṡ�b2 � L2 � 2bL cos �

L tan �

v � 12 vA tan �

� � v
x�(x/r)2 � 1

ax � �e�2
 sin �

� � 
rh�0

x2 � h2

� � �

x r

�x2 � r2

vO � 1.2 m/s, � � 1.333 rad/s CCW

v � 72u cot 
�

2

�OA � � hv
h2 � s2

aB � 789 mm/s2 down
v � vO�2(1 �  sin �), a � vO

2/r toward O
� � 1.2 rad/sec, vO � 3.4 ft/sec

� � 
�3v

2L�1 �
 3xA

2

4L2

v � �r� sin �, a � �r� sin � � r�2
 cos �

v � 6.28 m/s
t � 66.7 sec

� � 
�2ax

�4b2 � x2

�OA � vd
s2 � d2

NB � 415 rev/min
N � 513 rev/min
aC � 149.6 m/s2
� � 24.6k rad/sec
� � �0 � 250 rev, � � �0 � 187.5 rev
� � 0.596 rad
a � �0.1965i � 0.246j m/s2
v � �0.0464i � 0.1403j m/s
a � 3.02i � 1.683j m/s2
v � �0.223i � 0.789j m/s

� 0.605j m/s2a � �0.757i
v � �0.374i � 0.1905j m/s
aC � �2(�11i � 5j) in./sec2

� � 2k rad/sec, � � �3
2
k rad/sec2

r � 3 in.
aC � 22.5 m/s2

aB � 37.5 m/s2� � 300 rad/s2,
t � 0.1784 sec
� � 3.95 rad /s2
�̇  � 30.4 rad/s, �̈  � 346 rad/s2
� � 9 rad
�� � 244 rad
� � �0 � 10.99 rad, t � 1.667 s

� 4.57j m/s2aA � 16.34i
vA � �1.777i � 2.70j m/s
N � 300 rev
b � 180.6 mm
v � 5 m/s, a � 50 m/s2
� � 0.411 rad/sec, �av � 0.344 rad/sec

� �max	�̈	max � �0�0
2 at � � �0

	 �̇	 max � �0�0 at � � 0
N � 33.3 rev

� 9.16j m/s2aA � �6.42i
vA � 1.332i � 2.19j m/s

� (h�2 � b�)jaA � �(b�2 � h�)i
vA � �(hi � bj)

� 0.76j m/s2aA � 0.32i
vA � �0.32i � 0.08j m/s2

�

4/108 (a) 

4/109

4/110

4/111

4/112
R � 2�g[H � (2h2/H)]
a � (h/H)g, v � h�g/H

v � �gx, R � �g�L � 3
2

 x�

C � 4340 N up, D � 3840 N down

R � �gx 4L � 3x
2(L � x)

a � gx
L

, (b) T � �gx�1 � x
L�, (c) v � �gL

�

�

�

�
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5/57

5/58
5/59
5/60 (a) 

(b) 
(c) 

5/61

5/62
5/63
5/64
5/65
5/66
5/67
5/68
5/69
5/70
5/71
5/72
5/73
5/74
5/75
5/76
5/77
5/78
5/79
5/80
5/81
5/82
5/83
5/84
5/85
5/86
5/87
5/88
5/89
5/90
5/91
5/92
5/93
5/94
5/95
5/96 (a) 

(b) 

5/97

5/98 (a) (b) 

(c) 

5/99
5/100
5/101
5/102
5/103
5/104
5/105
5/106
5/107
5/108
5/109
5/110

5/111

5/112
5/113
5/114
5/115
5/116
5/117
5/118
5/119
5/120 (a) (b) 
5/121
5/122 (a) 

(b) (c) 
5/123 (a) (b) 

(c) 
5/124

5/125

5/126
5/127
5/128
5/129
5/130
5/131
5/132
5/133
5/134

5/135
5/136
5/137

5/138 �OA � 396 rad/s2 CCW
� 73.6j ft/sec2aD � �265i

aA � �24i � 270j ft/sec2
� � 2l�2/r CW
�AB � 3.64�0

2 CCW, aB � 6.82r�0
2 up

� 0.733j ft/sec2, aL � j ft/sec2aD � �2i
aC � �0.267i � 3j ft/sec2
(aB)t � 2.46 m/s2 left
�AB � �4k rad/s2, aA � 1.6i m/s2
�AB � �2
v � 3.67 mi/hr
aA � 26.6 m/s2
aB � 0.0279i m/s2
� � 0.286 rad/s2 CCW, aA � 0.653 m/s2 down
vO � �0.6i m/s, aO � �1.8i m/s2

� �  sin�1 r
R

, vO � �R
r

 
aO �4 R2 � r2

aA � 5 m/s2
aA � 6.2 m/s2

aA � 4.39 m/s2aA � 0.2 m/s2,
d � 1.5 ftaC � 0.625 ft/sec2 up,

� � 0.0833 rad/sec2 CCW
aA � 9.58 m/s2, aB � 9.09 m/s2

�B � 600 rev/min�B � 360 rev/min,
� � 10.73 rad/s CW
� � 1.10 rad/sec CW
vA � 5.95 m/s
vA � 0.278 m/s
�AD � 12.5 rad/s CCW, �BD � 7.5 rad/s CCW
vD � 4.50 m/s, � � 7.47 rad/s CCW
�AB � 19.38 rad/sec CW
�AB � 1.414 rad/sec CCW, �BD � 3.77 rad/sec CW

vC � 
vB

2 �sec2
 �
2

 
� 8

�CA � 0.429k rad/s
v � 10.71 mi/hr, vs � 6.98 ft/sec
vD � 2.31 m/s, � � 13.33 rad/s CW
� � 15 rad/s CW, vP � 1.897 m/s
vE � 0.1386 m/s, �B � 0.289 rad/s CW

60��AB � 0.966� CCW, vB � 1.414r�

�AB � � CW, vB � 2.58r� down
�BC � 2.77 rad/sec CCW
vB � 0.884 m/s, � � 3.20 rad/s CCW
�BD � 1.2 rad/s CCW, �AD � 1.333 rad/s CCW
vA � 0.707 m/s, vP � 1.581 m/s
vA � 9.04 in./sec, vC � 6.99 in./sec

vD � vP � 0
vB � 2v, vC � v (all right)vA � v,

�u � vr CCW�l � 
v
r  CW,

vA � 0.408 m/s down

vA � 15j in./sec, vB � 75j in./sec
vA � �20j in./sec, vB � 40j in./sec

vG � 277 mm/s
0.15 m below P, vP � 0.3 m/s, vA � 0.806 m/s
�OB � 8.59 rad/s CCW
0.5 m below G, vA � 1.949 m/s, vB � 2.66 m/s
0.5 m above G, vA � vB � 2.33 m/s
vB � 3.97 m/s
�CA � 0.429k rad/s
�AB � 1.725 rad/s CCW, �BC � 4 rad/s CCW
�2 � 1.923 rad/s CCW
vC � 6.24 ft/sec
vD � 9 m/s
�AB � 19.38 rad/sec CW
� � 8.59 rad/s CCW
� � 11.55 rad/s CW, vG � 1.155 m/s
� � 1.394 rad/s CCW, vA � 0.408 m/s down
vA � 9.04 in./sec, vC � 6.99 in./sec
�BC � 3 rad/sec CW
�AC � 0.295 rad/sec CCW

60��AB � 0.966�0 CCW, vB � �2r�0

�AB � �0 CW, vB � 2.58r�0 down
vP � 0.900 m/s
�BC � 2.77 rad/sec CCW
vB � 4.38 m/s, � � 3.23 rad/s CCW
vA/B � 1.2(i � j) m/s, vP � 1.2i � 0.8j m/s
�OA � �3.33k rad/s
vO � 8.49 m/s right, � � 26.1 rad/s CW
vA/B � 23.7i � 31.0j in./sec
vO � 0.6 m/s, vB � 0.849 m/s
� � 0.375 rad/s CCW
�AB � 0.96 rad/s CCW
vA � 58.9 mm/s
vA � 0.7i � 0.4j m/s, vP � 0.3i m/s
� � 6.65 rad/sec CW
vC/D � 0.579 m/s
vC � 1672i � 107 257j km/h
vB � 105 585j km/h, vD � 108 929j km/h
vA � �1672i � 107 257j km/h

N � 45.8 rev/min CW
N � 45.8 rev/min CCW
N � 91.7 rev/min CCW

vB � �1.386i � 1.2j m/s
� � 0.1408 rad/sec2 CCW

r2

l2 � 1

�1 � r
2

l2  sin2 ��3/2
�AB � 

r�0
2

l
 sin �

�AB � 
r�0

l
 

 cos �

�1 �
 r2

l2

 

sin2 �

 

�

�

�

�

�

�
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5/139
5/140
5/141

5/142
5/143

5/144

5/145
5/146
5/147
5/148
5/149
5/150
5/151
5/152
5/153
5/154
5/155
5/156
5/157
5/158

5/159

5/160

5/161
5/162
5/163 (a) (b) 
5/164
5/165
5/166 (a) 

(b) 
5/167
5/168
5/169
5/170
5/171

5/172

5/173
5/176
5/177

5/178

5/179

5/180 (a) 
(b) 

5/181
5/182
5/183
5/184

5/185

5/186
5/187

5/188

5/189
5/190
5/191
5/192

5/193
5/194
5/195
5/196 (a) (b) 

5/197

5/198

5/199

5/200
5/201
5/202
5/203
5/204
5/205

at 
5/206
5/207

5/208

5/209

5/210

5/211

5/212

5/213 � � 72.3�

(vA)max � 69.6 ft/sec at � � 72.3�

vA � r� sin ��1 � 
 cos �

�(l/r)2 � sin 

2�
�

	̇/ �̇  � 
2 cos � � 1
5 – 4 cos �

�2 � 
2 cos (� � 	)

�2 cos 	 � cos (� � 	)

	�BC 	max � 11.83 rad/s at � � 216�

	�AB 	max � 10.15 rad/s at � � 203�

	�BC 	max � 112.2 rad/s2 at � � 182.1�

	�AB 	max � 88.6 rad/s2 at � � 234�

� 7.47 rad/s at � � 215�	�BC 	max

	�AB 	max � 6.54 rad/s at � � 202�

� � 46.1�

� � 251�

(vrel)min � �2 m/s at � � 109.5�, (vrel)max � 2 m/s
� � 6.25 rad/s2 CW
�vrel � �50.3i � 87.1j km/h
�DB � 41.2 rad/s2 CW
�DB � 3.24 rad/s CW
�DE � 2.45 rad/s2 CCW

� � 
v cos �

r , �AC � 
v sin 

2�

D � r cos �

vB � 288 mm/s

�OA � 0.966vd
s2 � d2 � 0.518sd

aA � 17.44 ft/sec2aA � 8.08 ft/sec2,
�BC � 2 rad/s CW
aB � 5.25 in./sec2 left
�AB � 0.354 rad/sec CW, vO � 7.88 in./sec

� 1089j ft/secvB � 176i
vA � 1249i �189.1k ft/sec
aC � 83.1 ft/sec2 up
�AB � 1.203 rad/s CCW
� � 60�

� � 
�0

1 � �0t tan �
, � � � �0

1 � �0t tan ��
2
tan �

� � 0.75 rad/s2 CCW
vP � 4.27 ft/sec

��0�k
K�t � 1

�Kk
 tan�1

vrel � �26 220i km/h, arel � �8.02j m/s2
�2 � 16.53 rad/s2 CCW
� � 5 rad/s CW, arel � �8660i mm/s2
a � 156.5 ft/sec2

vrel � 7380i km/h
vrel � 5250i � 5190j km/h

� 119.0 rad/s2 CW�BC � 1.046 rad/s CW, �BC

19.11�vrel � 7.71 m/s and arel � 15.66 m/s2
�BC � 170.0 rad/s2 CW
�BC � 1.429 rad/s CCW

19.11�vrel � 3.93 m/s and arel � 15.22 m/s2
� 27.0j ft/sec2arel � �16.06i

vrel � �22.3i � 65.7j ft/sec
� � 4 rad/s CW, � � 64.0 rad/s2 CCW
arel � ��r2�2 � 4u2

� 0.00918j m/s2arel � 0.854i
vrel � �1.136i � 0.537j m/s

� 0.0642j m/s2arel � 0.864i
vrel � �2.71i � 0.259j m/s
� � 0.1350 in.

120��BC � 0.634 rad/s CCW, vrel � 0.483 m/s
arel � �4.69k m/s2
aA � �10.42er � 5.70e� ft/sec2

aA � �10.42i � 5.70j ft/sec2
aA/B � �1.76i � 0.70j ft/sec2

aCor � �2�ui
vrel � ��dj, no

aCor � 0.0203 m/s2aCor � 0,
vA � �3.4i m/s, aA � 2i � 0.667j m/s2
aA � 10.06 ft/sec2

� 38.2j ft/sec2aA � 48.7i
vA � 4.38i � 7.58j ft/sec

� 12.67j ft/sec2aA � 34.5i
vA � �3.33i � 4.5j ft/sec

 � 139.4�

aCor � 0.4j m/s2, aA � �0.35i � 0.3j m/s2
vA � 0.1i � 0.25j m/s, 	 � 68.2�

aE � 0.285 m/s2 right
aD � 0.568 m/s2 down
�BD � 46.9 rad/s2 CW
aA � 4.89 m/s2 right, �AB � 0.467 rad/s2 CCW
�AB � 1.688 rad/s2 CCW

345��AB � 36.6 rad/s2 CCW, aB � 1.984 m/s2
�OA � 0, aD � �480i � 360j m/s2
aA/B � 0.711j ft/sec2
� � 0.0986 rad/s2 CW
�AB � 16.02 rad/s2 CW, �BC � 13.31 rad/s2 CCW
aP � 3.62 m/s2
�CB � 5.76 rad /sec2 CW

�OB � 
v 2
A

rl

�BC � 2.08 rad/sec2 CCW
�AB � 2�2, �BC � 0
aB � �13.89i � 3.33j m/s2
aA � 8.33i � 10j m/s2, aP � �8.33i m/s2
(aB)t � �23.9 m/s2, � � 36.2 rad/s2 CW

105�� � 8.00 rad/s2 CW, (aB)t � 8.90 m/s2

�

�

�

*

*
*

*

*

*

*

*

*

�

�

bansw.qxd  2/10/12  8:53 PM  Page 713



714 Problem Answers

Chapter 6

�

6/1
6/2
6/3
6/4
6/5
6/6

6/7 (a) and (b) 

6/8
6/9
6/10
6/11
6/12
6/13
6/14 (a) 

(b) 
6/15 (a) 

(b) 
6/16
6/17
6/18
6/19
6/20

6/21
6/22
6/23
6/24
6/25
6/26

6/27 (a) (b) 

6/28 (a) 

(b) Slips first if 

Tips first if 

6/29 (a) (b) 
6/30
6/31
6/32
6/33

6/34
6/35
6/36
6/37

6/38 (a) 

(b) 

6/39
6/40

6/41

6/42

6/43

6/44

6/45

6/46

6/47

6/48 (a) 
(b) 

6/49
6/50 (a) 

(b) 
6/51
6/52

6/53

6/54

6/55

6/56

6/57

6/58

6/59

6/60
6/61
6/62 FA � 108.3 N, FB � 141.6 N

A � 22.1 N, B � 11.03 N
b � 40.7 mm, R � 167.8 N

� � 
g
2r

 CCW, A � 0.593mg

O � 1
4

mg�cos2 � � 100 sin2 �

t � 78.6 s

� � 6
7

 
g
l
 � 12

7
 k
m (�5 ��3) CW

x � b/�6, � � �3
2

 
g
b

 CW

x � l
2�3

, � � 
g�3

l
 CW

M � mr2�, R � 
2�2mr

� ��2 � �4

Mƒ � 0.1045 lb-ft, Mmot � 0.836 lb-ft
Ot � 8.66 lb at all times

� � 11.16 rad/s2 CCW
� � 8.46 rad/s2 CCW

R � 18 lb
� � 6.28 rad/s2 CCW
� � 7.85 rad/s2 CCW

On � 2mg sin �, Ot � �
mg
2

 cos �

M � 
��d

�  �1
2

�r4 � 4lt �1
3

l2 � rl � r2��
� � 0.389 

g
b

 CW

� � 15
47

 
g
r CW

A�A: � � 
3�2g

5b
; B�B: � � 

3�2g
7b

	 � �/2: � � 
8g

3b�
 CW; 	 � �: � � 

8g
3b�

 CW

Oy � �1 � 32
9�2�mg up

� � 
8g

3�b
 CW, Ox � 

32mg
9�2  left

A � 56.3 N
R � 3.57 lb

� � 
2g
3r

 CW, O � mg/3

� � 
g
2r

 CW, O � mg/2

� � 9.12 rad/sec2 CW
IO � 1453 lb-ft-sec2
� � 1.193 rad/s2 CCW, FA � 769 N
FA � FB � 24.5 N

R � 49.0 N
A � 2.02 kN
B � 188.3 N
� � 0.964� (nose up)

D � 2178 ND � 1714 N,

v2 � gr 

b
2h

 �  tan �

1 � b
2h

 tan �

� � b
2h

  and tan 	 � b
2h

v2 � gr 
� �  tan �

1 � � tan �

� � b
2h

  and � �  tan 	

� � tan�1 v
2

gr

� � 24.8�, a � 5
4

g� � 51.3�,

N � 257 kN
D � 234 N, � � 5.87 rad/s2 CW
� � 0.598
F � 78.3 N, M � 28.7 N � m
M � 196.0 N � m CCW
t � 3.41 s
B � 410 lb, Bst � 417 lb
P � 118.7 lb, � � 49.2�

TA � 12.99 lb, TB � 39.0 lb, � � 8.05 rad/sec2
a � 161 ft/sec2
Ay � 1389 N down
A � 1192 N

NA � 2550 lb (79.6%), NB � 652 lb (20.4%)
NA � 1920 lb (60%), NB � 1280 lb (40%)
NA � 1908 lb (59.6%), NB � 1292 lb (40.4%)
NA � 1280 lb (40%), NB � 1920 lb (60%)

T � 27.3 N, Ax � 18.34 N right, Ay � 15.57 N up
a � 4.14 m/s2
FA � 1110 N, Ox � 45 N right, Oy � 667 N down
a � 0.706 m/s2 right
a � 1.306 m/s2 right
P � �3(M � m)g

P � mg 

c
b

d � �kh/2
a � 0.268g
P � �k(M � m)g cos �

B � 1.5 lb
a � 3g
a � g�3
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Problem Answers 715

6/63
6/64
6/65

6/66 (a) (b) 

(c) 
6/67 (a) 

(b) 
6/68
6/69 (a) (b) 
6/70 (a) (b) 

6/71

6/72

6/73
6/74
6/75
6/76
6/77
6/78
6/79
6/80

6/81

6/82

6/83
6/84

6/85

6/86

6/87
6/88

6/89

6/90

6/91
6/92
6/93
6/94
6/95

6/96

6/97

6/98

6/99

6/100

6/101

6/102

6/103

6/104

6/105

6/106 (a) (b) 

6/107

6/108
, 

6/109

6/110

6/111

6/112

6/113
6/114
6/115
6/116
6/117
6/118
6/119
6/120
6/121
6/122
6/123

6/124

6/125
6/126
6/127
6/128 N � 346 lb

�E � 0.435 ft- lb
vA � 2.45 m/s
� � 4.59 rad/s

v � �6gb sin
 �
2

M � 28.4 lb-in. CW
� � 3.31 rad/s
l0 � 90.0 mm
k � 92.6 N/m, � � 2.42 rad/s CW
N � 3240 rev/min
� � 13.19 rad/s
h � 54.5 mm
A: vA � �2gx sin �, B: vB � �gx sin �

O � 91
27 mg up

� � 33.2�

v � 3.01 m/s

� � 0.839 
g
b

 CW

v � 2.97 ft/sec

� � �48g
7L

� � �24g
7L

 CW, vG � � 3
14

 
gL

aB � 56.9 ft/sec2 down incline
aA � 65.0 ft/sec2 down255�RB � 0.359 lb

� � 18.18 rad/sec2 CCW, RA � 1.128 lb right

� � 
3g
2l

 CW

(�s)min � 0.589

� � 0.00581 
g
r CCWm � 3.50M,

A � 347 lb

N � 
mg

1 � 3 sin2 �
, � � 

6g sin �
L(1 � 3 sin2 �)

 CW

v � 11.73 m/s
�max � 53.1�

On � m��g cos � � a sin ���1 � 2r2

kO
2� � 2g r2

kO
2�

Ot � m(g sin � � a cos �)�1 � r 

2

kO
2�

�̈  � r
kO

2
 (a cos � � g sin �)

s � 18.66 ft

aA � 14
109

 g down incline

� � 2.97 rad/sec CCW

� � 84
65

a
L

 CCW

aA � 5.93 m/s2 left

� � 5a
7r

 CW, � � �10
7r

 �g(1 � cos �) � a sin �

aA � 1.143g down incline
MB � 3.55 N � m CCW
aO � 3.73 m/s2 down incline
B � 36.4 N
BC � 4.03 N (tension)

� � 
12bg

7b2 � 3h2 CW, TA � 
3mg(b2 � h2)

7b2 � 3h2  up

F � 17.62 N
� � 0.295 rad/s2 CCW, a � 1.027 m/s2 right
F � 19.38 N
� � 2.12 rad/s2 CW, a � 0.425 m/s2 right
� � 22.8 rad/s2 CW, �s � 0.275

N � m�g � r2�2

R � r�
T � 

2�3
13

mg

T � 20.8 N
F � 38mg, N � 13

16mg

B: �B � 
g
2r

 sin �, �s � 12 tan �

A: �A � 
g
r sin �, �s � 0

� � 1
kO

�2ar

aO � 2.41 m/s2 up incline, � � 93.8 rad/s2 CW
a � 13.31 ft/sec2, F � 0.693 lb
a � 13.80 ft/sec2, F � 1.714 lb
(�s)min � 0.775
aO � 7.02 m/s2, � � 9.08 rad/s2 CCW
� � 0.310 rad/s2, ax � 6.87 m/s2, ay � 2.74 m/s2
� � 8.61 rad/s2 CCW, aG � 5j m/s2
� � 48.8 rad/s2 CW, aG � 5j m/s2

aA � P
10m

 (37i � 9j)

aB � P
2m

 (�3i � j)

� � 54.6��s � 0.229,
� � 53.1��s � 0.1880,

R � 101.3 N
MB � 5.51 N � m CCW
MA � 109.8 N � m CCW
� � �� /3

A � 
�10
6

 ml�F � ml� /6,

� � 3.84 rad/sec2 CW, t � 34.9 sec
T � 987 N, A � 1.007 kN
�B � 25.5 rad/s2 CCW

�

�

�
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716 Problem Answers

6/129 (a) (b) 
6/130

6/131

6/132
6/133
6/134
6/135
6/136 (a) (b) 

6/137 (a) 

(b) 

6/138
6/139
6/140
6/141

6/142

6/143
6/144
6/145
6/146

6/147

6/148

6/149

6/150
6/151

6/152

6/153

6/154
6/155

6/156

6/157

6/158

6/159
6/160

6/161
6/162
6/163
6/164
6/165 (a) 

(b) 
6/166 (a) CW

(b) 
6/167
6/168
6/169
6/170

6/171

6/172
6/173 (a) CW

(b) 

6/174

6/175

6/176

6/177

6/178

6/179

6/180

6/181
6/182
6/183
6/184
6/185

6/186

6/187 (a) (b) and 
(c) 

6/188

� � 
5v0�k/r

7�k � 2 tan �

t � 
2v0

g(7�k cos � � 2 sin �)
, v � 

5v0�k

7�k � 2 tan �

�3 � 1.757 rad/s
�2 � 6.57 rad/s,

�2 � 
2[(It � Id)�1 � Id�]

2It � Id

N2 � 2.59 rev/min
v1 � 4.88 m/s
RA � 27.2 lb, RB � 18.77 lb, both up
T � 0.750 � 0.01719t N
�k � 0.204, v � 3 m/s

(�2)max � 1.718 
v1

L
 CW, x � 0.291L

N2 � 2.04 rev/s

(vG)y � 27
59

 v1 down

�2 � 72
59

 
v1

b
 CW, (vG)x � 18

59
 v1 right

�2 � 
3mv1

(M � m)L
 CW, Ox�t � M

2(M � m)
 mv1 right

t � 
m1

2m1 � m2
 � r�

�kg�

t � 
m1

2m1 � m2
 � r�

�kg�

� � 
12vm

L
 � m

4M � 7m� CCW

vx � M
M � m

 vM, vy � m
M � m

 vm

�2 � 1.220 rad/sec CW
�2 � 1.166 rad/sec

� � 1.202 rad/sec CW

t � I
�0k

� � 23.4 rad/sec CW
H � 2.66(1040) kg � m2/s
v � 0.379 m/s up, � � 56.0 rad/s CW
� � 1.093 rad/s

� � 72 rad/s CCW
� � 119.0 rad/s
HO � 0.373 kg � m2/s CW
HO � 0.587 kg � m2/s CW

a � 0.341 m/s2 down incline
� � 27.3 rad/s2 CW
M � 0, MB � 11.44 kN � m CW
� � 10.54 rad/sec2 CCW

� � 135.3 rad/s2 CCW
N � 133.0 rev/min

a � 3
8

 �P
m � 

3g
2 �

a � F
2m

 � g

� � 
P(2 cos2 � � 1)

mb(8 cos2 � � 1)
 CW

� � 64.3�

� � [M � mg(b cos � � a sin �)] /IA CCW

a � M
2mb�1 � (h/2b)2

 � g

a � 2P
5m

 tan 
�

2
 � g

� � 33.7 rad/sec2 CW
� � 7.08�

� � 
3g cos �

2b

� � M

mb2�cos2 � � 1
3�

 CW

cos �; otherwise � � 0if P � �m
2

 � m0�
 

g

� � 
P � �m

2
 � m0�g cos �

b(m � m0)
 CCW

v � 5.95 m/s
vmax � 1.325 m/s
vA � �3gl
v � 8.02 ft/sec

� � �3g
2b

 
(2�2

 
� 1)

N � 3720 rev/min
� � 3.11 rad/sec
v � 2.29 m/s
P � (mg sin � � M0 /r)v

� � � 3 � 9�
2 � 15�

 g
r

� � 2� 3 � 9�
8 � 57�

 g
r

� � 1.484 rad/s CWk � 93.3 N/m,
� � 9.51 rad/s
k � 24.0 lb/in.
� � 2.36 rad/s
� � 2.11�, motor shaft turns CW

v � �12gb
 c � 2b
3c � 4b

 
cos

 �
2

� � 2.23 rad/s CW
� � 4.36 rad/s CWm � 1.196 kg,
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Problem Answers 717

6/189

6/190

6/191 (a) 

6/192
6/193
6/194
6/195

6/196

6/197

6/198

6/199

6/200

6/201

6/202

6/203
6/204

6/205

6/206

6/207

6/208
6/209
6/210 (a) (b) 
6/211
6/212
6/213
6/214 (a) CW

(b) 
6/215

6/216

6/217

6/218

6/219
6/220
6/221
6/222
6/223
6/224
6/225

6/226

6/227
6/228 , 
6/229

6/230 t � 2.85 sec, vA � 75.7 ft/sec
� � 1.586 rad/s at � � 90�

�min � 0.910 rad/s at � � 74.0�

�max � 45.9��max � 0.680 rad/s at � � 22.4�

�max � 39.9�, � � 4.50 rad/s CW

Oy � 
mg
4

 (3 cos � � 1)2

Ox � 
3mg

4
 sin � (3 cos � � 2)

�max � 23.0�, �̇max � 0.389 rad/s
� � 12.17�

(vA)max � 7.57 ft/sec at � � 48.2�

v1 � 15.58�1 � cos (45� � �) ft/sec
�max � 2.35 rad/s CW at � � 18.88�

�2 � 2.50 rad/s CW
x � l/3
Mz � �18.41 lb-in.
Mx � �46.0 lb-in., My � 16.11 lb-in.

ṙ � r�0� IO

IO � mr2

b � L
1 � �n

	 � 19.26�

� � 6.25 rad/s CW
� � 4.94 rad/s

t � 1206 s
B � 2130 lb
M � 2mrṙ�

FO � 76.6 lbFO � 6.68 lb,
� � 4.15 rad/s CCW
�s � 25 tan �

� � 
3b�2gh

2(b2 � c2)
, n � 62.5%

t � � l
3g

 
	

0

d�

�cos � � cos 	

HO � vr �m
2

 � m0 �2 � l2

12r2�� CW

a � 2.22 m/s2 right
N � 504 rev/min, 	�E 	 � 98.1 J

� � 0.604 rad/s2 CCW

hmax � 1
2

 �b � 
mg
P

 (c � �b)�

hmin � 1
2

 �b � 
mg
P

 (c � �b)�
� � 1.135 rad/s

v � r
k2 � r2 � rh

�2gh(k2 � r2)

v� � v
3

 (1 � 2 cos �), n � 0.0202

� � 0.308 rad/s CCW

v� � �9v2

4

 
sin2 � � 3gL cos �

� � 109.6 rev/min, 	�E 	 � 1.298 J
N � 63.8 rev/min
I � 3.45 kg � m2
� � 0.974 rad/sec

�s � � Mt
(I � Iw)

, �w/s � I
Iw

 Mt
(I � Iw)

N � 4.78 rev/sec

� � 
2�0(sin � � �k cos �)
(2 sin � � 7�k cos �)

v � 
2r�0(sin � � �k cos �)
(2 sin � � 7�k cos �)

t � 
2r�0

g(2 sin � � 7�k cos �)

�

�

*
*
*
*
*

*

*
*
*

*

Chapter 7

7/1 Finite rotations cannot be added as proper
vectors

7/2 Infinitesimal rotations add as proper vectors
7/3

7/4
7/5

7/7
7/8

7/9
7/10
7/11

, 

7/12

7/13 (a) (b) 
7/14
7/15
7/16
7/17

� � �1.386i rad/s2
� � 0.693j � 2.40k rad/s
� � 2.5 rad/s, � � 3j rad/s2
� � �1.5i � 0.8j � 2.60k rad/s2
� � �0.4i � 2.69k rad/s, � � 0.8j rad/s2

� � 17.32 rad/s� � 26.5 rad/s,

� � 50� � �

2�3
 i � k� rad/sec2

a � �5�2(25j � 18k) in./sec2� 3k) in./sec
� � 12�2 j rad/sec2, v � 5�(�4i � 6j
� � �1.2i rad/sec2, aP � 35.8j � 80k in./sec2
� � pj � �0k, � � �p�0 i

 � (h sin2 � � d cos � sin �)k]
a � �2[(h sin � cos � � d cos2 �)i � lj
v � �[�l cos � i � (d cos � � h sin �)j � l sin � k]
N2 � 440 rev/min
vB � 2.62 m/s
vA � �0.8i � 1.5j � 2k m/s
aB � 1285 m/s2
aP � 11,080 in. /sec2
vz � �6 ft/sec, R � 2.81 in.
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718 Problem Answers

7/18

7/19

7/20
7/21

7/22 (a) 

(b) 

7/23

7/24 (a) 
(b) 

7/25

7/26
7/27

7/28

7/29
7/30
7/31
7/32
7/33

7/34

7/35

7/36
7/37
7/38
7/39
7/40 (a) 

(b) 
7/41
7/42
7/43

7/44

7/45

7/46

7/47

7/48

7/49

7/50 , 

7/51

7/52

7/53

7/54

7/55

7/56

7/57

7/58

7/59

7/60

7/61

7/62
7/63

7/64

7/65

7/66

7/67

7/68

7/69

T � mr2

8 ��1
2 � �1 � 4b2

r2 ��2
2 � 2p2�

HO � 1
4

mr2 ���1i � �1 � 4b2

r2 ��2 

j � 2pk�
HG � 2�mƒ(�k�2 sin �i � k2 cos � k) � mk2pk

HO � 2m�1
3

 l2 sin2 	 � b2��k

T � 3
10

mr2��1
4

 � h
2

r2��2 � 1
2

 p2�

HO � 3
10

mr2��1
2

 � 6h2

r2 ��i � pk�
	 � 4.96�

H � 1
4

mr2��(�sin � cos �)i � (sin2 � � 2 cos2 �)k�
H � �(�0.4j � 0.6k) N � m � s, T � 59.2 J
T � 805 ft- lb
HO � 2.38j � 25.6k lb-ft-sec
HO � �0.01i � 0.0045j � 0.0576k lb-ft-sec
where � � �xi � �y j � �zk
HG � Ip(i � j � k) � 2(I � mb2)�

HO � �b2

3
 � r

2

4
 � h2� m�i � 1

2
mr2pj

H � mr���
2(2c � b)

3�
 j � r

2
 k�

H � 1
3

ml2� sin �(j sin � � k cos �)

HG � 1
4

 �b3�(�i � j � 2k)

T � 4
3

�b3�2

HO � �b3���
1
2

 i � 3
2

 j � 8
3
k�

HA � �2.70j � 744k kg � m2/s
HG � �1.613j � 744k kg � m2/s

HO � mb2� �i � 2j � �1
6

 l
2

b2 � 2�k�
G � mb��2, HO � 3mb�2

�n � 10
49

 �40
3

i � 2j � 6k� rad/s

vB � �2
3

 k m/s

� � 42.8 rad/s2

� � �Rp2

r  cos ��i� � p�j cos � � k�sin � � Rr��
� � �2(4�3i � 9j � 3�3k) rad/sec2
� � �(�3i � �3j � 5k) rad/sec
a � ��2(b�2 � 2r�1)i � r(�1

2 � p2)j � 2rp�2k
v � �rpi � (r�1 � b�2)k

aA � 0.313i � 2.43j � 0.1083k ft/sec2
�̇ � 1

8
i   rad/sec2

aA � 2�2(�2.4i � 4j � 5k) m/s2
� � �40�2i rad/s2

 � b	̇2
 sin 	]j � b	̇2

 cos 	k
aA � �2b�	̇  cos 	i � [�2(R � b sin 	)
vA � ��(R � b sin 	)i � b	̇  cos 	j � b	̇  sin 	k
a � ��2(6.32i � 0.1k) m/s2
v � �(0.1i � 0.8j � 0.08k) m/s
a � ��2(6.32i � 0.1k) m/s2
v � �(0.1i � 0.8j � 0.08k) m/s
� � �3i � 4j rad/sec2
� � p�2i � p�1j � �1�2k

� � �3.49(10�3)j rad/s2
� � �(3.88i � 3.49j)10�3 rad/s2

vA � �6j m/s
vA � �0.636i � 4.87j � 1.273k m/s
vA � 6.8 ft/sec, aA � 20.8 ft/sec2
� � ��p sin 	 i � 	̇(p cos 	 � �)j � p	̇  sin 	 k

�n � 1
49

(�3i � 20j � 9k) rad/sec

� � �1.2�(�3i � k) rad/s2
aA � �34.8j � 6.4k m/s2
vA � �3i � 1.6j � 1.2k m/s
� � �40j � 6k rad/s2
� � 10.77 rad/s, � � �40j rad/s2
� � pqj
p � 28.2 rad/s, vB/A � 4.10i m/s

� � 
� 1
r2

 
�

 1
h2 i, � � �
2

h2 �r
h

 � hr�j

� � �31.0j rad/sec2
v � �14.35j in./sec, a � 338i � 194.8k in./sec2
� � 6.32 rad/s2
� � 11.44 rad/s2
� � �0.785i � 2.60j � 2.5k rad/s

� � 8i rad/s2, aA � 10.67 m/s2
� � 6j � 8k rad/s2, aA � 21.2 m/s2

a � �11.70i m/s2
v � 0.691j � 1.448k m/s

� � �k, � � 8�3

3
 j

� � ���
2�
3

 j � k�, � � 2�3

3
 i

v � 3.48 m/s, a � 1.104 m/s2
v � 3.95 m/s, a � 72.2 m/s2

a � ��2�
� �2 

R��R
r  � r

R� i � k�

v � 2�R
�  �i � j � r

R
 k�

� � ��2�
� �2

 Rr  i

�

�

�

�

�

�
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7/70

7/71

7/72

7/73

7/74

7/75

7/76

7/77
7/78

7/79

7/80

7/81

7/82
7/83
7/84

7/85

7/86

7/87

7/88

7/89

7/90

7/91

7/92

7/93

7/94

7/95 CCW as viewed from above

7/96 Tendency to rotate to student’s right
7/97 Decreased
7/98
7/99
7/100

7/101 Right-side normal forces are increased
7/102 left rudder
7/103
7/104
7/105 CCW
7/106
7/107
7/108 (a) No precession, 

(b) 
7/109
7/110
7/111 (retrograde precession)
7/112 (direct precession)
7/113
7/114 negative 
7/115

7/116

7/117
7/118 retrograde precession
7/119 (a) 

(b) 

(c) 
7/120
7/121
7/122

7/123

7/124

7/125 (a) 
7/126

7/127 Direct precession, 

Retrograde precession, 

7/128

7/129

7/130 � � 77.9i rad/s2

p � mvh
m0k2

, opposite to car wheels

H � ma2�

6�3 �i � j � k�
l
r � �6

l
r � �6

M � 97.9i lb-ft, T � 73.8 ft- lb
h � r/2

Mz � �I��0 sin �t

My � 0

Mx � �I��0 cos �t

where �̇  � 2 � 2gl
r2 � 4l2

Bz � 
m�̇

2 �r2

2b
 p � l�̇ �

Az � �
m�̇

2 �r2

2b
 p � l�̇ �

M � 1
12ml2p�0 sin 2�

M � �196.3i N � m, MO � 319 N � m
� � 0.443 sec

p � 0, � � 	 � 90�, �̇ � 4� rad/s
�̇ � 5.47 rad/s
p � 4� rad/s, � � 10�, 	 � 3.03�

p � 4� rad/s, � � 	 � 0, �̇ � 0
� � 0.0996 s,
ƒ � 10 Hz

�̈ � 
M/m

kx
2

 cos2 
 � kz
2

 sin2 


� � �1.230K rad/sec, M � 67.7i lb-in.
z-direction� � 1.831 s,

RA � 7.80 lb, RB � 12.20 lb
�̇ � �̇1 � 124.2 rad/s
�̇ � �6 rev/min
�R � 98.1 lb
MA � 30.9 N � m, MO � 0

� � 0.723 rad/s, MA � 3.14 N � m
MA � 12.56 N � m

M � 5410 kN � m, (b)
� � 6.67k rad/sec

h/r � �3/2
C � D � 948 N
M � 1681 N � m,

M � M1 � mk2� vr

b � 216 mm
R � 712 N

A � 
mg
3 �7a � 2b

2a � b �
A � mg/6

M � 2mr
� (g � 2r�2)

� � 2��3g
l

Mz � 1
12mb2�(1 � 4 sin2 	)

My � �1
6mb2� sin 2	

Mx � 16mb2�2
 sin2 2	

NB � 
mg
2

 � 
m2v2

2�r

NA � 
mg
2

 � 
m2v2

2�r

Otherwise 	 � 0

	 �  cos�1 
4g

5R�2 if �2 � 
4g
5R

M � �1
8mr2�2

 sin 2��j

� �  sin�1 � 3g
2�2 b

2 � c2

b3 � c3�
FA � �91.7j N, FB � 91.7j N, M � 10.8 N � m
FA � 1608i N, FB � �1608i N
M � �79.0i N � m

� � M
IO cos2 � � I sin2 �

M � �
4MO

3�

M � 2� mr2�2

A � 576 N, B � 247 N
M � �2�b3�2

Bx � 3Mb
2lc

 sin �, By � �3Mb
2lc

 cos �

B � mbl�2

2c
(i sin � � j cos �)

Ax � Bx � 0, Ay � �mR�2

3
, By � mR�2

3

M � 12 mbl�2

� a2 � ac�k� m��c2

3
 � b

2

3
 cos2 �

HO � m
6

b2� sin 2�i

� 2b2�k�� �2
5 r2 � 13 c2

 cos2 	

HO � m��1
6 c2

 sin 2	j

T � 148.1 ft- lb
HO� � 0.1626(i � 8j) lb-ft-sec

�

�

�

�

�

�
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720 Problem Answers

Chapter 8

8/1

8/2

8/3
8/4

8/5

8/6

8/7
8/8
8/9
8/10
8/12 (a) (b) 

8/13 (a) (b) 

8/14
8/15 (a) 
8/16

8/17

8/18

8/19

8/20

8/21

8/22

8/23

8/24

8/25
8/26
8/27
8/28
8/29
8/30

8/31

8/32
8/33
8/34 (a) (b) 
8/35
8/36
8/37
8/38 (a) (b) 
8/39
8/40

8/41

8/42

8/43 ẍ � b
2

a2 c
mẋ � k

mx � 0, � �  cb2

2a2�km

�m1 � a
2

b2 m2�ẍ � a
2

b2 cẋ � kx � 0

� � c
4�k(m1 � 4m2)

� � 0.274, c � 39.9 lb-sec/ft
xmax � 0.286 ft

x � 4.72 in.x � 4.42 in.,
(ẋ0)c � ��nx0

x1 � �0.1630x0

c � 16.24(103) N � s/m
c � 22.4 lb-sec/ftc � 7.48 lb-sec/ft,

� � 0.1097
x � x0 (cos 9.26t � 1.134 sin 9.26t)e�10.5t

� � 
�N

�(2�N)2 � � 2
N

, where �N � ln �x0
xN�

� � 0.215, k � 175.5 N/m, c � 9.02 N � s/m
c � 154.4 lb-sec/ft
� � 0.6
� � 0.436
c � 38.0 N � s/m
� � 0.75

��n � � k
m

�m1 � b
2

a2 m2�ẍ1 � �k1 � b
2

a2 k2�x1 � 0

�n � � k
5m

ÿ � k
m�c

b�
4
y � 0, � � 2��b

c�2

�
m
k

ƒn � 3.07 Hz
� 59.7(10�3) sin 10.16t m
x � 9.20(10�3)(1 � cos 10.16t)

�n � 2�6EI
mL3

ƒn � 0.301 Hz

�n � �2T
ml

ƒn � 3.30 Hz
v � 88.0 cos 21.5t in./sec, (b) xmax � 4.09 in.

m � 2.55 kg, �s � 0.358

1
k

 � 1
k1

 � 1
k2

k � k1 � k2,

ƒn � 0.905 Hzk � 474 kN/m,
ƒn � 1.332 Hz
ƒn � 3.90 Hz
amax � 30 m/s2
ƒn � 7.40 Hz
amax � 3.6 m/s2
y � 0.0660 m, v � 0.451 m/s, both down

�st � 0.273 m, � � �
3

 s, vmax � 0.6 m/s

x � 2.08 sin (12t � 1.287) in., C � 2.08 in.
x � 2 cos 12t in.

�n � 12 rad/sec, ƒn � 6� Hz

k � 736 N/m, 4.20 lb/in., 50.4 lb/ft

7/131

7/132
7/133
7/134 , 

7/135

7/136

7/137

7/138

7/139
7/140

7/141

7/142
7/143
7/144
7/145

7/146 H � mr��b
2
i � b�j � 2rk�

M � 2.70 N � m
M � 13.33 N � m
M � 271 lb-ft
	RA 	 � 	RB 	 � 159.3 lb
T � 11.85 ft- lb, no
HO � 0.0867i � 0.421j � 1.281k lb-ft-sec
T � 11.30 ft- lb
HO � 0.421j � 1.281k lb-ft-sec
N � 1.988 cycles/min

� 2r3

R2�k�� �3r � R
2

r  

aA � �2�
� �2��R2 � r2 �2r2

R2   � 3�j

vA � �4�
� �R � r

2

R� i

� � �2�
� �2

 
�R2 � r2

r  i

� � 2�
� ���

R
r  � r

R�j � 
�R2 � r2

R
k�
T � 69.9 JHO � �0.707j � 4.45k kg � m2/s

� � �k, � � 4�r2p/(5gh)

�n � 9
49(2i � k) rad/sec

� � 8�3i � 120�3j � 52k rad/sec2
a � �2090i � 369j � 4810k in./sec2

�
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8/44

8/45 (a) (b) 
8/46
8/47
8/48
8/49
8/50 (a) (b) 

8/51

8/52
8/53

8/54

8/55

8/56

8/57

8/58

8/59
8/60

8/61

8/62

8/63
8/64
8/65

8/66

8/67

8/68
8/69
8/70

8/71

8/72

8/73

8/74

8/75

8/76

8/77

8/78

8/79

8/80

8/81

8/82

8/83

8/84

8/85
8/86

8/87

8/88

8/89

8/90

8/91

8/92

8/93

8/94

8/95
8/96

8/97

8/98

8/99

8/100 � � 2��2l
3g

�n � �
k

m�1 �
 k2

r2�

�̈  � �3g(m � 2M)
2l(m � 3M)�� � 0

ẍ � 8x � 0, � � 2.22 sec
� � 1.707
�n � 10.24 rad/sec, v � 11.95 ft/sec
mkO

2 �̈  � K� � mr(g sin � � a cos �) � 0

ƒn � 1
2��JG

IL

	 � 
�

3
2

 b
l
�2

�n
2 � �2, where �n � � 3�

ml2

 
�

 3g
2l

(m2 � 1
2

 m1)ẍ � (k1 � k2)x � k1b cos �t

� � 2��3(R � r)
2g

, � � 
�0
r �2g(R � r)/3

�c � �6
5

 

�2k
m

 
�

 g
l�

� � �� 3r	

g sin 	

� � 7.78�
r
g

�m1 � a
2

b2 m2 � 
kO

2

b2  m3�ẍ � �a2

b2 c�ẋ � kx � 0

� � 13.05 sec
k � 3820 N/m

� � 1
2

 a
2

b2 c� 3
km

, ccr � 2b2

a2 �km
3

ƒn � b
2�l� k

m

x � 0.558 m

ƒn � 1
4��13k

m

R � 2/�3

I � 2mr2

(�2/�1)2 � 1

�n � �
g
2b

�n � 3
2�

g
2b

� � 2��5b
6g

� � 2��2b
3g

ƒn � 1�� 2g
3�r

�n � 
�3g

2

�4 a2 � b2

�̈  � �g
l
 � 2kb2

ml2 �� � 0, � � 2�

�
g
l

 
�

 2kb2

ml2

� � 6��
m
5k

P � cX2�2/2
X � 14.75 mm, vc � 15.23 km/h
c � 44.6 N � s/m

mẍ � cẋ � �k1 � k2
b2

a2� x � k2 ba b0 cos �t

x � 
F0

k
(1� cos �nt)

amax � 75.0 m/s2
b � 1.886 mm
k � 227 kN/m or 823 kN/m

T � M�1 � �2�
�
�n�

2

�c � � k
m, � � 

c1 � c2

2�km

mẍ � (c1 � c2)ẋ � kx � �c2b� sin �t

�c � �k1 � k2
m

mẍ � cẋ � (k1 � k2)x � k2b cos �t
2.38 � ƒn � 5.32 Hz

ƒ � 1
2�

 �
g

�st

N � 108.1 rev/min or N � 153.5 rev/min

�
�n

 � �2
3

  and  �
�n

 � �2

y0 � 8.15 mm

�
�n

 � �1 – 2�2

ƒ � 4.68 Hz and ƒ � 6.66 Hz
R1 � 50%, R2 � 2.52%

�c � � k
6m

�st � 0.25 ftX � 0.0791 ft,X � 0.251 ft,
c � 3.33 lb-sec/ft
� � 5.32 rad/sec and � � 6.50 rad/sec
� � 5.10 rad/sec and � � 6.78 rad/sec
� � 0.1936

X � 2.27(10�2) mX � 1.344(10�2) m,

r � 
2�kg

� �
m
k�

�

�

�
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8/101

8/102
8/103

8/104

8/105 ,

8/106

8/107

8/108

8/109

8/110

8/111

8/112
8/113
8/114
8/115

8/116

8/117

8/118

8/119
8/120

8/121 (a) (b) 

8/122

8/123

8/124

8/125

8/126

8/127

8/128

8/129
8/130
8/131

8/132

8/133
8/134 , 
8/135

8/136
8/137 (a) 

(b) 
8/138
8/139 x � 0.284e�0.707t � sin 7.04t

x � 0.0926(t � 0.0913 sin 10.95t) m
y � 0.1414e�10t

 sin (10t � 0.785) m
y � 0.1722e�9.16t � 0.0722e�21.8t m

0 � k � 1.895 lb/ft
xmin � �0.0792 ft at t � 0.1923 sec
xmax � 0.1955 ft at t � 0.0462 sec

� � 0.289Mmax � 1.809 at N � 90.6 rev/min
t � 0.0544 s or 0.442 s

� � 2��2mR2 � MR2 �
 
1
6 Ml2

g�4R2 � l2

 

�m �

 

M
2 �

N � 645 rev/min
(ƒn)y � 4.95 Hz, (ƒn)� � 10.75 Hz
�0 � 0.712 mm
X � 0.507 in.

�max � �0 
r0/r

1 � � �
�n�

2
, where �n � r

k�2k
m

� � 0.0697

x0 � 
3�smg

k

ƒn � 1
2��

g
2r

� � 2�� l
g cos (�/2)

�c � � 2g

�3d

 
�

 
4k
m

�n � �
g
l
 � M � m

M � 2m
3
�

�n � �2g
3r

�n � 2�
g
5r

,

� � 7.33 s
c � 4580 N � s/m

� � 41.4�R
g

� � 2��(� � 2)r
g

� � 2�� l
3g

ƒn � 2.62 Hz
ƒn � 1.142 Hz
� � 7.78�r/g
ƒn � 1.496 Hz

� � 2�� 2b
3g sin �

ƒn � 3.65 Hz

ƒn � 1
2�� mgr0

3Mr2 � m(r � r0)2�
1/2

� � 0.957 s

�n � � k
5m

�n � �6k
m

 
�

 3g
2l

� � 3�0� 6k
3m1 � 26m2

�n � 3� 6k
3m1 � 26m2

� � ��6(R � r)
g

� � 0.326 sec
ƒn � 1.519 Hz

ƒn � 1
2�

 b
l� k

m

Appendix B

B/1

B/2

B/3

B/4

B/5

B/6

B/7

B/8

B/9

B/10

B/11

B/12 Ixx � 14mb2, Iyy � 14ma2, Izz � 14m(a2 � b2)

Ixx � 3
10mr2, Iyy � 35m�r2

4
 � h2�

Iyy � 1
20mb2, ky � 0.224b

Ixx � 37mh2, kx � 0.655h

Izz � m�3b2

5
 � h

2

7 �
Ixx � 17mh2, Iyy � 35mb2

Ixx � 18mb2, kx � 0.354b

Ixx � 18mb2, kx � 0.354b

IO � 158.9 kg � mm2

Izz � 16m(h2 � b2), kz � 0.408�h2 � b2

Iyy � 16mb2, ky � b/�6

Ixx � 16mh2, kx � h/�6

Izz � 1
12mL2

Ixx � 1
12mL2 sin2 	, Iyy � 1

12mL2 cos2 	

Ixx � 1
12ma2, Iyy � 1

12mb2, Izz � 1
12m(a2 � b2)

Iyy � 1
12ml2, Iy�y� � 13ml2

*
*
*

*
*

*
*

�
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B/13

B/14

B/15
B/16

B/17

B/18

B/19

B/20

B/21

B/22

B/23

B/24

B/25

B/26

B/27

B/28

B/29

B/30
B/31
B/32
B/33 (a) (b) 

B/34

B/35

B/36

B/37

B/38

B/39

B/40

B/41
B/42

B/43

B/44
B/45
B/46
B/47
B/48
B/49
B/50

B/51

B/52
B/53
B/54

B/55

B/56
B/57
B/58
B/59

B/60

B/61

B/62

B/63

B/64

B/65

B/66

B/67
B/68

B/69

B/70
B/71
B/73

B/74
B/75

B/76

B/77
B/78

l � 0, m � 0.550, n � 0.835
I1 � 1.448�b3, I2 � 0.360�b3, I3 � 1.142�b3
I1 � 3.78�b4, I2 � 0.612�b4, I3 � 3.61�b4
l1 � 0.1903, m1 � �0.963, n1 � 0.1903
I1 � 0.750mb2, I2 � 0.799mb2, I3 � 0.1173mb2
l1 � 0.816, m1 � 0.408, n1 � 0.408
I1 � 9ml2, I2 � 7.37ml2, I3 � 1.628ml2
Imin � 0.1870�r3 at � � 38.6�

l1 � 0.521, m1 � �0.756, n1 � 0.397
I1 � 7.53mb2, I2 � 6.63mb2, I3 � 1.844mb2
IAB � 2.58 kg � m2
IAA � 16ma2

Ixy � mb2

4�2
, Ixz � � 1

12mb2, Iyz � �mb2

4�2

Iyz � 14mbh sin �

Ixy � 16mb2
 sin 2�, Ixz � 14mbh cos �

Ixy � 2mr2/�, Ixz �  Iyz � 0

Ixy � �1
8mb2, Ixz � 0, Iyz � �1

8mb2

IZZ � 14mR2 (1 �  cos2 �)

Ixy � � 1
24ml2

 sin 2�

Ixz � �1.035 lb-in.-sec2
Iyz � 0.776 lb-in.-sec2
Ixy � �1.553 lb-in.-sec2

Ixy � 14mr2, Ixz � Iyz � 1
��2

 mr2

Ixy � �
��b4

512
, Ixz � Iyz � 0

Ixz � Iyz � 0, Ixy � 
ma2

 sin2 	
4	

Ixy � �mab, Iyz � �1
2mbh, Ixz � 12mah

Ixy � �2ml2, Ixz � �4ml2, Iyz � 0
Ixy � 0, Ixz � Iyz � �2ml2
IZZ � 14mR2 (1 �  cos2 �)

Ixx � 3
10m 

r2
5 � r1

5

r2
3 � r1

3

kO � 97.5 mm

Ixx � 0.410 lb-in.-sec2
Iyy � 0.01398 lb-ft-sec2

Ixx � 32m1r2, Ixx � m2r2�3
2

 � 4��
IA � 0.1701ma2
Ixx � 14mR2

IO � m(7x2 � 13l2), R � 0.582

Ix0x0
 � 0.1010 kg � m2

Ixx � Izz � 34mb2, Iyy � 16mb2

I � 1.031 kg � m2, n � 97.8%
Iyy � 0.0250 kg � m2

Iyy � � 43
192 � 83

128���L3

L � r�3/2
Ixx � 1.898 lb-in.-sec2
Iy�y� � 0.0433 lb-ft-sec2, Izz � 0.0539 lb-ft-sec2
Ixx � Iyy � 0.0270 lb-ft-sec2

Iaa � 12mr2, Ibb � 2mr2�1 � 2��
Ixx � 0.1220 kg � m2

Izz � m
12

 �15r2 � L2�
Ixx � 12m�r2

2 � r1
2�

IOO � 1.767 lb-ft-sec2

e � �100

1 � 
1/3

(r/l)2

 (in percent)

	e 	 � 11.11%	e 	 � 0.498%,

Izz � 12mr2

Ixx � 2mL2, Iyy � 4mL2, Izz � 2mL2
kz � 0.890a

Ixx � 12m�r2 � b
2

6 �
Ixx � Izz � 23mr2

I � 12m�2R2 � 3a2�
Izz � 1

10m�b2

2
 � h2�

Iyy � 1
10mh2

Iyy � m� 83
147 b2 � 23

196 L2�
Ixx � 166

147mb2

I � m�R2 � 34 a2�
Iaa � m

2 �r2 � l
2

6�
k � a

2�39
5

Ixx � 15m(a2 � b2)

Ixx � 53
200mR2

Iyy � 12m�h2 � r
2

3 �
kz � r/�3

Ixx � 29mb2

Iyy � Izz � m�r2

7
 � 2h2

3 �
Ixx � 27mr2

�

�

*

*
*

*

*
*
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Conversion Factors
U.S. Customary Units to SI Units

To convert from To Multiply by

(Acceleration)
foot/second2 (ft/sec2) meter/second2 (m/s2) 3.048 � 10�1*
inch/second2 (in./sec2) meter/second2 (m/s2) 2.54 � 10�2*

(Area)
foot2 (ft2) meter2 (m2) 9.2903 � 10�2

inch2 (in.2) meter2 (m2) 6.4516 � 10�4*
(Density)

pound mass/inch3 (lbm/in.3) kilogram/meter3 (kg/m3) 2.7680 � 104

pound mass/foot3 (lbm/ft3) kilogram/meter3 (kg/m3) 1.6018 � 10
(Force)

kip (1000 lb) newton (N) 4.4482 � 103

pound force (lb) newton (N) 4.4482
(Length)

foot (ft) meter (m) 3.048 � 10�1*
inch (in.) meter (m) 2.54 � 10�2*
mile (mi), (U.S. statute) meter (m) 1.6093 � 103

mile (mi), (international nautical) meter (m) 1.852 � 103*
(Mass)

pound mass (lbm) kilogram (kg) 4.5359 � 10�1

slug (lb-sec2/ft) kilogram (kg) 1.4594 � 10
ton (2000 lbm) kilogram (kg) 9.0718 � 102

(Moment of force)
pound-foot (lb-ft) newton-meter (N � m) 1.3558
pound-inch (lb-in.) newton-meter (N � m) 0.1129 8

(Moment of inertia, area)
inch4 meter4 (m4) 41.623 � 10�8

(Moment of inertia, mass)
pound-foot-second2 (lb-ft-sec2) kilogram-meter2 (kg � m2) 1.3558

(Momentum, linear)
pound-second (lb-sec) kilogram-meter/second (kg � m/s) 4.4482

(Momentum, angular)
pound-foot-second (lb-ft-sec) newton-meter-second (kg � m2/s) 1.3558

(Power)
foot-pound/minute (ft-lb/min) watt (W) 2.2597 � 10�2

horsepower (550 ft-lb/sec) watt (W) 7.4570 � 102

(Pressure, stress)
atmosphere (std)(14.7 lb/in.2) newton/meter2 (N/m2 or Pa) 1.0133 � 105

pound/foot2 (lb/ft2) newton/meter2 (N/m2 or Pa) 4.7880 � 10
pound/inch2 (lb/in.2 or psi) newton/meter2 (N/m2 or Pa) 6.8948 � 103

(Spring constant)
pound/inch (lb/in.) newton/meter (N/m) 1.7513 � 102

(Velocity)
foot/second (ft/sec) meter/second (m/s) 3.048 � 10�1*
knot (nautical mi/hr) meter/second (m/s) 5.1444 � 10�1

mile/hour (mi/hr) meter/second (m/s) 4.4704 � 10�1*
mile/hour (mi/hr) kilometer/hour (km/h) 1.6093

(Volume)
foot3 (ft3) meter3 (m3) 2.8317 � 10�2

inch3 (in.3) meter3 (m3) 1.6387 � 10�5

(Work, Energy)
British thermal unit (BTU) joule (J) 1.0551 � 103

foot-pound force (ft-lb) joule (J) 1.3558
kilowatt-hour (kw-h) joule (J) 3.60 � 106*

*Exact value
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SI Units Used in Mechanics

Quantity Unit SI Symbol

(Base Units)
Length meter* m
Mass kilogram kg
Time second s

(Derived Units)
Acceleration, linear meter/second2 m/s2

Acceleration, angular radian/second2 rad/s2

Area meter2 m2

Density kilogram/meter3 kg/m3

Force newton N (� kg � m/s2)
Frequency hertz Hz (� 1/s)
Impulse, linear newton-second N � s
Impulse, angular newton-meter-second N � m � s
Moment of force newton-meter N � m
Moment of inertia, area meter4 m4

Moment of inertia, mass kilogram-meter2 kg � m2

Momentum, linear kilogram-meter/second kg � m/s (� N � s)
Momentum, angular kilogram-meter2/second kg � m2/s (� N � m � s)
Power watt W (� J/s � N � m/s)
Pressure, stress pascal Pa (� N/m2)
Product of inertia, area meter4 m4

Product of inertia, mass kilogram-meter2 kg � m2

Spring constant newton/meter N/m
Velocity, linear meter/second m/s
Velocity, angular radian/second rad/s
Volume meter3 m3

Work, energy joule J (� N � m)
(Supplementary and Other Acceptable Units)

Distance (navigation) nautical mile (� 1.852 km)
Mass ton (metric) t (� 1000 kg)
Plane angle degrees (decimal) �
Plane angle radian —
Speed knot (1.852 km/h)
Time day d
Time hour h
Time minute min

*Also spelled metre.

SI Unit Prefixes

Multiplication Factor Prefix Symbol
1 000 000 000 000 � 1012 tera T

1 000 000 000 � 109 giga G
1 000 000 � 106 mega M

1 000 � 103 kilo k
100 � 102 hecto h

10 � 10 deka da
0.1 � 10�1 deci d

0.01 � 10�2 centi c
0.001 � 10�3 milli m

0.000 001 � 10�6 micro �
0.000 000 001 � 10�9 nano n

0.000 000 000 001 � 10�12 pico p

Selected Rules for Writing Metric Quantities
1. (a) Use prefixes to keep numerical values generally between 0.1 and 1000.

(b) Use of the prefixes hecto, deka, deci, and centi should generally be avoided
except for certain areas or volumes where the numbers would be awkward
otherwise.

(c) Use prefixes only in the numerator of unit combinations. The one exception 
is the base unit kilogram. (Example: write kN/m not N/mm; J/kg not mJ/g)

(d) Avoid double prefixes. (Example: write GN not kMN)
2. Unit designations

(a) Use a dot for multiplication of units. (Example: write N � m not Nm)
(b) Avoid ambiguous double solidus. (Example: write N/m2 not N/m/m)
(c) Exponents refer to entire unit. (Example: mm2 means (mm)2)

3. Number grouping
Use a space rather than a comma to separate numbers in groups of three,
counting from the decimal point in both directions. (Example: 4 607 321.048 72)
Space may be omitted for numbers of four digits. (Example: 4296 or 0.0476)
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