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Foreword

This series of textbooks was begun in 1951 by the late Dr. James L. Meriam. At that time,
the books represented a revolutionary transformation in undergraduate mechanics education.
They became the definitive textbooks for the decades that followed as well as models for other
engineering mechanics texts that have subsequently appeared. Published under slightly differ-
ent titles prior to the 1978 First Editions, this textbook series has always been characterized by
logical organization, clear and rigorous presentation of the theory, instructive sample prob-
lems, and a rich collection of real-life problems, all with a high standard of illustration. In addi-
tion to the U.S. versions, the books have appeared in SI versions and have been translated into
many foreign languages. These texts collectively represent an international standard for un-
dergraduate texts in mechanics.

The innovations and contributions of Dr. Meriam (1917-2000) to the field of engineer-
ing mechanics cannot be overstated. He was one of the premier engineering educators of
the second half of the twentieth century. Dr. Meriam earned his B.E., M. Eng., and Ph.D.
degrees from Yale University. He had early industrial experience with Pratt and Whitney
Aircraft and the General Electric Company. During the Second World War he served in the
U.S. Coast Guard. He was a member of the faculty of the University of California—Berkeley,
Dean of Engineering at Duke University, a faculty member at the California Polytechnic
State University—San Luis Obispo, and visiting professor at the University of California—
Santa Barbara, finally retiring in 1990. Professor Meriam always placed great emphasis on
teaching, and this trait was recognized by his students wherever he taught. At Berkeley in
1963, he was the first recipient of the Outstanding Faculty Award of Tau Beta Pi, given pri-
marily for excellence in teaching. In 1978, he received the Distinguished Educator Award
for Outstanding Service to Engineering Mechanics Education from the American Society
for Engineering Education, and in 1992 was the Society’s recipient of the Benjamin Garver
Lamme Award, which is ASEE’s highest annual national award.

Dr. L. Glenn Kraige, coauthor of the Engineering Mechanics series since the early
1980s, has also made significant contributions to mechanics education. Dr. Kraige earned
his B.S., M.S., and Ph.D. degrees at the University of Virginia, principally in aerospace
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Foreword

engineering, and he currently serves as Professor of Engineering Science and Mechanics at
Virginia Polytechnic Institute and State University. During the mid 1970s, I had the singular
pleasure of chairing Professor Kraige’s graduate committee and take particular pride in the
fact that he was the first of my forty-five Ph.D. graduates. Professor Kraige was invited by
Professor Meriam to team with him and thereby ensure that the Meriam legacy of textbook
authorship excellence was carried forward to future generations. For the past three decades,
this highly successful team of authors has made an enormous and global impact on the educa-
tion of several generations of engineers.

In addition to his widely recognized research and publications in the field of spacecraft
dynamics, Professor Kraige has devoted his attention to the teaching of mechanics at both
introductory and advanced levels. His outstanding teaching has been widely recognized and
has earned him teaching awards at the departmental, college, university, state, regional, and
national levels. These include the Francis J. Maher Award for excellence in education in the
Department of Engineering Science and Mechanics, the Wine Award for excellence in uni-
versity teaching, and the Outstanding Educator Award from the State Council of Higher Ed-
ucation for the Commonwealth of Virginia. In 1996, the Mechanics Division of ASEE
bestowed upon him the Archie Higdon Distinguished Educator Award. The Carnegie Foun-
dation for the Advancement of Teaching and the Council for Advancement and Support of
Education awarded him the distinction of Virginia Professor of the Year for 1997. During
2004-2006, he held the W. S. “Pete” White Chair for Innovation in Engineering Education,
and in 2006 he teamed with Professors Scott L. Hendricks and Don H. Morris as recipients
of the XCaliber Award for Teaching with Technology. In his teaching, Professor Kraige
stresses the development of analytical capabilities along with the strengthening of physical
insight and engineering judgment. Since the early 1980s, he has worked on personal-computer
software designed to enhance the teaching/learning process in statics, dynamics, strength of
materials, and higher-level areas of dynamics and vibrations.

The Seventh Edition of Engineering Mechanics continues the same high standards set
by previous editions and adds new features of help and interest to students. It contains a
vast collection of interesting and instructive problems. The faculty and students privileged
to teach or study from Professors Meriam and Kraige’s Engineering Mechanics will benefit
from the several decades of investment by two highly accomplished educators. Following
the pattern of the previous editions, this textbook stresses the application of theory to ac-
tual engineering situations, and at this important task it remains the best.

John L. Junkins

Distinguished Professor of Aerospace Engineering

Holder of the George J. Eppright Chair Professorship in Engineering
Texas A&M University

College Station, Texas



Preface

Engineering mechanics is both a foundation and a framework for most of the branches
of engineering. Many of the topics in such areas as civil, mechanical, aerospace, and agricul-
tural engineering, and of course engineering mechanics itself, are based upon the subjects
of statics and dynamics. Even in a discipline such as electrical engineering, practitioners, in
the course of considering the electrical components of a robotic device or a manufacturing
process, may find themselves first having to deal with the mechanics involved.

Thus, the engineering mechanics sequence is critical to the engineering curriculum.
Not only is this sequence needed in itself, but courses in engineering mechanics also serve
to solidify the student’s understanding of other important subjects, including applied math-
ematics, physics, and graphics. In addition, these courses serve as excellent settings in
which to strengthen problem-solving abilities.

Philosophy

The primary purpose of the study of engineering mechanics is to develop the capacity
to predict the effects of force and motion while carrying out the creative design functions
of engineering. This capacity requires more than a mere knowledge of the physical and
mathematical principles of mechanics; also required is the ability to visualize physical config-
urations in terms of real materials, actual constraints, and the practical limitations which
govern the behavior of machines and structures. One of the primary objectives in a mechan-
ics course is to help the student develop this ability to visualize, which is so vital to problem
formulation. Indeed, the construction of a meaningful mathematical model is often a more
important experience than its solution. Maximum progress is made when the principles and
their limitations are learned together within the context of engineering application.

There is a frequent tendency in the presentation of mechanics to use problems mainly as
a vehicle to illustrate theory rather than to develop theory for the purpose of solving prob-
lems. When the first view is allowed to predominate, problems tend to become overly idealized
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and unrelated to engineering with the result that the exercise becomes dull, academic, and
uninteresting. This approach deprives the student of valuable experience in formulating
problems and thus of discovering the need for and meaning of theory. The second view pro-
vides by far the stronger motive for learning theory and leads to a better balance between
theory and application. The crucial role played by interest and purpose in providing the
strongest possible motive for learning cannot be overemphasized.

Furthermore, as mechanics educators, we should stress the understanding that, at best,
theory can only approximate the real world of mechanics rather than the view that the real
world approximates the theory. This difference in philosophy is indeed basic and distinguishes
the engineering of mechanics from the science of mechanics.

Over the past several decades, several unfortunate tendencies have occurred in engineer-
ing education. First, emphasis on the geometric and physical meanings of prerequisite mathe-
matics appears to have diminished. Second, there has been a significant reduction and even
elimination of instruction in graphics, which in the past enhanced the visualization and repre-
sentation of mechanics problems. Third, in advancing the mathematical level of our treat-
ment of mechanics, there has been a tendency to allow the notational manipulation of vector
operations to mask or replace geometric visualization. Mechanics is inherently a subject
which depends on geometric and physical perception, and we should increase our efforts to
develop this ability.

A special note on the use of computers is in order. The experience of formulating problems,
where reason and judgment are developed, is vastly more important for the student than is the
manipulative exercise in carrying out the solution. For this reason, computer usage must be
carefully controlled. At present, constructing free-body diagrams and formulating governing
equations are best done with pencil and paper. On the other hand, there are instances in which
the solution to the governing equations can best be carried out and displayed using the com-
puter. Computer-oriented problems should be genuine in the sense that there is a condition of
design or criticality to be found, rather than “makework” problems in which some parameter is
varied for no apparent reason other than to force artificial use of the computer. These thoughts
have been kept in mind during the design of the computer-oriented problems in the Seventh
Edition. To conserve adequate time for problem formulation, it is suggested that the student be
assigned only a limited number of the computer-oriented problems.

As with previous editions, this Seventh Edition of Engineering Mechanics is written with
the foregoing philosophy in mind. It is intended primarily for the first engineering course in
mechanics, generally taught in the second year of study. Engineering Mechanics is written in
a style which is both concise and friendly. The major emphasis is on basic principles and
methods rather than on a multitude of special cases. Strong effort has been made to show
both the cohesiveness of the relatively few fundamental ideas and the great variety of prob-
lems which these few ideas will solve.

Pedagogical Features

The basic structure of this textbook consists of an article which rigorously treats the par-
ticular subject matter at hand, followed by one or more Sample Problems, followed by a group
of Problems. There is a Chapter Review at the end of each chapter which summarizes the main
points in that chapter, followed by a Review Problem set.

Problems

The 124 sample problems appear on specially colored pages by themselves. The solu-
tions to typical dynamics problems are presented in detail. In addition, explanatory and
cautionary notes (Helpful Hints) in blue type are number-keyed to the main presentation.
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There are 1541 homework exercises, of which approximately 45 percent are new to the
Seventh Edition. The problem sets are divided into Introductory Problems and Representa-
tive Problems. The first section consists of simple, uncomplicated problems designed to help
students gain confidence with the new topic, while most of the problems in the second sec-
tion are of average difficulty and length. The problems are generally arranged in order of
increasing difficulty. More difficult exercises appear near the end of the Representative
Problems and are marked with the symbol ». Computer-Oriented Problems, marked with an
asterisk, appear in a special section at the conclusion of the Review Problems at the end of
each chapter. The answers to all problems have been provided in a special section at the end
of the textbook.

In recognition of the need for emphasis on SI units, there are approximately two prob-
lems in SI units for every one in U.S. customary units. This apportionment between the two
sets of units permits anywhere from a 50-50 emphasis to a 100-percent SI treatment.

A notable feature of the Seventh Edition, as with all previous editions, is the wealth of
interesting and important problems which apply to engineering design. Whether directly
identified as such or not, virtually all of the problems deal with principles and procedures
inherent in the design and analysis of engineering structures and mechanical systems.

Illustrations

In order to bring the greatest possible degree of realism and clarity to the illustrations,
this textbook series continues to be produced in full color. It is important to note that color
is used consistently for the identification of certain quantities:

¢ red for forces and moments
* green for velocity and acceleration arrows

* orange dashes for selected trajectories of moving points

Subdued colors are used for those parts of an illustration which are not central to the
problem at hand. Whenever possible, mechanisms or objects which commonly have a cer-
tain color will be portrayed in that color. All of the fundamental elements of technical illus-
tration which have been an essential part of this Engineering Mechanics series of textbooks
have been retained. The author wishes to restate the conviction that a high standard of il-
lustration is critical to any written work in the field of mechanics.

Special Features

While retaining the hallmark features of all previous editions, we have incorporated
these improvements:

* The main emphasis on the work-energy and impulse-momentum equations is now on
the time-order form, both for particles in Chapter 3 and rigid bodies in Chapter 6.

e New emphasis has been placed on three-part impulse-momentum diagrams, both for
particles and rigid bodies. These diagrams are well integrated with the time-order form
of the impulse-momentum equations.

* Within-the-chapter photographs have been added in order to provide additional
connection to actual situations in which dynamics has played a major role.

e Approximately 45 percent of the homework problems are new to this Seventh Edition.
All new problems have been independently solved in order to ensure a high degree of
accuracy.
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e New Sample Problems have been added, including ones with computer-oriented
solutions.

¢ All Sample Problems are printed on specially colored pages for quick identification.

e All theory portions have been reexamined in order to maximize rigor, clarity,
readability, and level of friendliness.

* Key Concepts areas within the theory presentation have been specially marked and
highlighted.

® The Chapter Reviews are highlighted and feature itemized summaries.

Organization

The logical division between particle dynamics (Part I) and rigid-body dynamics (Part II)
has been preserved, with each part treating the kinematics prior to the kinetics. This
arrangement promotes thorough and rapid progress in rigid-body dynamics with the prior
benefit of a comprehensive introduction to particle dynamics.

In Chapter 1, the fundamental concepts necessary for the study of dynamics are
established.

Chapter 2 treats the kinematics of particle motion in various coordinate systems, as
well as the subjects of relative and constrained motion.

Chapter 3 on particle kinetics focuses on the three basic methods: force-mass-acceleration
(Section A), work-energy (Section B), and impulse-momentum (Section C). The special
topics of impact, central-force motion, and relative motion are grouped together in a special
applications section (Section D) and serve as optional material to be assigned according to
instructor preference and available time. With this arrangement, the attention of the stu-
dent is focused more strongly on the three basic approaches to kinetics.

Chapter 4 on systems of particles is an extension of the principles of motion for a single
particle and develops the general relationships which are so basic to the modern compre-
hension of dynamics. This chapter also includes the topics of steady mass flow and variable
mass, which may be considered as optional material.

In Chapter 5 on the kinematics of rigid bodies in plane motion, where the equations of
relative velocity and relative acceleration are encountered, emphasis is placed jointly on
solution by vector geometry and solution by vector algebra. This dual approach serves to
reinforce the meaning of vector mathematics.

In Chapter 6 on the kinetics of rigid bodies, we place great emphasis on the basic
equations which govern all categories of plane motion. Special emphasis is also placed
on forming the direct equivalence between the actual applied forces and couples and
their ma and I« resultants. In this way the versatility of the moment principle is em-
phasized, and the student is encouraged to think directly in terms of resultant dynamics
effects.

Chapter 7, which may be treated as optional, provides a basic introduction to three-
dimensional dynamics which is sufficient to solve many of the more common space-motion
problems. For students who later pursue more advanced work in dynamics, Chapter 7 will
provide a solid foundation. Gyroscopic motion with steady precession is treated in two ways.
The first approach makes use of the analogy between the relation of force and linear-
momentum vectors and the relation of moment and angular-momentum vectors. With this
treatment, the student can understand the gyroscopic phenomenon of steady precession
and can handle most of the engineering problems on gyroscopes without a detailed study of
three-dimensional dynamics. The second approach employs the more general momentum
equations for three-dimensional rotation where all components of momentum are ac-
counted for.



Preface xi

Chapter 8 is devoted to the topic of vibrations. This full-chapter coverage will be espe-
cially useful for engineering students whose only exposure to vibrations is acquired in the
basic dynamics course.

Moments and products of inertia of mass are presented in Appendix B. Appendix C con-
tains a summary review of selected topics of elementary mathematics as well as several nu-
merical techniques which the student should be prepared to use in computer-solved
problems. Useful tables of physical constants, centroids, and moments of inertia are con-
tained in Appendix D.

Supplements

The following items have been prepared to complement this textbook:

Instructor’s Manual

Prepared by the authors and independently checked, fully worked solutions to all
odd-numbered problems in the text are available to faculty by contacting their local Wiley
representative.

Instructor Lecture Resources

The following resources are available online at www.wiley.com/college/meriam. There
may be additional resources not listed.

WileyPlus: A complete online learning system to help prepare and present lectures, assign
and manage homework, keep track of student progress, and customize your course content
and delivery. See the description in front of the book for more information, and the website
for a demonstration. Talk to your Wiley representative for details on setting up your Wiley-
Plus course.

Lecture software specifically designed to aid the lecturer, especially in larger classrooms.
Written by the author and incorporating figures from the textbooks, this software is based
on the Macromedia Flash® platform. Major use of animation, concise review of the theory,
and numerous sample problems make this tool extremely useful for student self-review of
the material.

All figures in the text are available in electronic format for use in creating lecture presen-
tations.

All Sample Problems are available as electronic files for display and discussion in the
classroom.
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To Dynamics
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1/1 History and Modern Applications

Dynamics is that branch of mechanics which deals with the motion
of bodies under the action of forces. The study of dynamics in engineer-
ing usually follows the study of statics, which deals with the effects of
forces on bodies at rest. Dynamics has two distinct parts: kinematics,
which is the study of motion without reference to the forces which cause
motion, and kinetics, which relates the action of forces on bodies to their
resulting motions. A thorough comprehension of dynamics will provide
one of the most useful and powerful tools for analysis in engineering.

History of Dynamics

Dynamics is a relatively recent subject compared with statics. The
beginning of a rational understanding of dynamics is credited to Galileo
(1564-1642), who made careful observations concerning bodies in free
fall, motion on an inclined plane, and motion of the pendulum. He was
largely responsible for bringing a scientific approach to the investigation
of physical problems. Galileo was continually under severe criticism for
refusing to accept the established beliefs of his day, such as the philoso-
phies of Aristotle which held, for example, that heavy bodies fall more
rapidly than light bodies. The lack of accurate means for the measure-
ment of time was a severe handicap to Galileo, and further significant
development in dynamics awaited the invention of the pendulum clock
by Huygens in 1657.

Newton (1642-1727), guided by Galileo’s work, was able to make an
accurate formulation of the laws of motion and, thus, to place dynamics
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on a sound basis. Newton’s famous work was published in the first edi-
tion of his Principia,* which is generally recognized as one of the great-
est of all recorded contributions to knowledge. In addition to stating the
laws governing the motion of a particle, Newton was the first to cor-
rectly formulate the law of universal gravitation. Although his mathe-
matical description was accurate, he felt that the concept of remote
transmission of gravitational force without a supporting medium was an
absurd notion. Following Newton’s time, important contributions to
mechanics were made by Euler, D’Alembert, Lagrange, Laplace, Poinsot,
Coriolis, Einstein, and others.

Applications of Dynamics

Only since machines and structures have operated with high speeds
and appreciable accelerations has it been necessary to make calculations
based on the principles of dynamics rather than on the principles of
statics. The rapid technological developments of the present day require
increasing application of the principles of mechanics, particularly dy-
namics. These principles are basic to the analysis and design of moving
structures, to fixed structures subject to shock loads, to robotic devices,
to automatic control systems, to rockets, missiles, and spacecraft, to
ground and air transportation vehicles, to electron ballistics of electrical
devices, and to machinery of all types such as turbines, pumps, recipro-
cating engines, hoists, machine tools, etc.

Students with interests in one or more of these and many other
activities will constantly need to apply the fundamental principles of
dynamics.

1/2 Basic Concepts

The concepts basic to mechanics were set forth in Art. 1/2 of Vol. 1
Statics. They are summarized here along with additional comments of
special relevance to the study of dynamics.

Space is the geometric region occupied by bodies. Position in space
is determined relative to some geometric reference system by means of
linear and angular measurements. The basic frame of reference for the
laws of Newtonian mechanics is the primary inertial system or astro-
nomical frame of reference, which is an imaginary set of rectangular
axes assumed to have no translation or rotation in space. Measurements
show that the laws of Newtonian mechanics are valid for this reference
system as long as any velocities involved are negligible compared with
the speed of light, which is 300 000 km/s or 186,000 mi/sec. Measure-
ments made with respect to this reference are said to be absolute, and
this reference system may be considered “fixed” in space.

A reference frame attached to the surface of the earth has a some-
what complicated motion in the primary system, and a correction to the
basic equations of mechanics must be applied for measurements made

*The original formulations of Sir Isaac Newton may be found in the translation of his
Principia (1687), revised by F. Cajori, University of California Press, 1934.
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relative to the reference frame of the earth. In the calculation of rocket
and space-flight trajectories, for example, the absolute motion of the
earth becomes an important parameter. For most engineering problems
involving machines and structures which remain on the surface of the
earth, the corrections are extremely small and may be neglected. For
these problems the laws of mechanics may be applied directly with mea-
surements made relative to the earth, and in a practical sense such mea-
surements will be considered absolute.

Time is a measure of the succession of events and is considered an
absolute quantity in Newtonian mechanics.

Mass is the quantitative measure of the inertia or resistance to
change in motion of a body. Mass may also be considered as the quantity
of matter in a body as well as the property which gives rise to gravita-
tional attraction.

Force is the vector action of one body on another. The properties of
forces have been thoroughly treated in Vol. I Statics.

A particle is a body of negligible dimensions. When the dimensions
of a body are irrelevant to the description of its motion or the action of
forces on it, the body may be treated as a particle. An airplane, for ex-
ample, may be treated as a particle for the description of its flight path.

A rigid body is a body whose changes in shape are negligible com-
pared with the overall dimensions of the body or with the changes in po-
sition of the body as a whole. As an example of the assumption of
rigidity, the small flexural movement of the wing tip of an airplane fly-
ing through turbulent air is clearly of no consequence to the description
of the motion of the airplane as a whole along its flight path. For this
purpose, then, the treatment of the airplane as a rigid body is an accept-
able approximation. On the other hand, if we need to examine the inter-
nal stresses in the wing structure due to changing dynamic loads, then
the deformation characteristics of the structure would have to be exam-
ined, and for this purpose the airplane could no longer be considered a
rigid body.

Vector and scalar quantities have been treated extensively in Vol.
1 Statics, and their distinction should be perfectly clear by now. Scalar
quantities are printed in lightface italic type, and vectors are shown in
boldface type. Thus, V denotes the scalar magnitude of the vector V. It
is important that we use an identifying mark, such as an underline V,
for all handwritten vectors to take the place of the boldface designation
in print. For two nonparallel vectors recall, for example, that V; + V,
and V; + V, have two entirely different meanings.

We assume that you are familiar with the geometry and algebra of
vectors through previous study of statics and mathematics. Students
who need to review these topics will find a brief summary of them in Ap-
pendix C along with other mathematical relations which find frequent
use in mechanics. Experience has shown that the geometry of mechan-
ics is often a source of difficulty for students. Mechanics by its very na-
ture is geometrical, and students should bear this in mind as they
review their mathematics. In addition to vector algebra, dynamics re-
quires the use of vector calculus, and the essentials of this topic will be
developed in the text as they are needed.
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Dynamics involves the frequent use of time derivatives of both vec-
tors and scalars. As a notational shorthand, a dot over a symbol will fre-
quently be used to indicate a derivative with respect to time. Thus, x
means dx/dt and X stands for d%c/dt>.

1/3 Newton’s Laws

Newton’s three laws of motion, stated in Art. 1/4 of Vol. 1 Statics,
are restated here because of their special significance to dynamics. In
modern terminology they are:

Law I. A particle remains at rest or continues to move with uniform
velocity (in a straight line with a constant speed) if there is no unbal-
anced force acting on it.

Law II. The acceleration of a particle is proportional to the resul-
tant force acting on it and is in the direction of this force.*

Law Iil. The forces of action and reaction between interacting bod-
ies are equal in magnitude, opposite in direction, and collinear.

These laws have been verified by countless physical measurements.
The first two laws hold for measurements made in an absolute frame of
reference, but are subject to some correction when the motion is mea-
sured relative to a reference system having acceleration, such as one at-
tached to the surface of the earth.

Newton’s second law forms the basis for most of the analysis in dy-
namics. For a particle of mass m subjected to a resultant force F, the
law may be stated as

F =ma (1/1)

where a is the resulting acceleration measured in a nonaccelerating
frame of reference. Newton’s first law is a consequence of the second
law since there is no acceleration when the force is zero, and so the par-
ticle is either at rest or is moving with constant velocity. The third law
constitutes the principle of action and reaction with which you should
be thoroughly familiar from your work in statics.

1/4 Units

Both the International System of metric units (SI) and the U.S. cus-
tomary system of units are defined and used in Vol. 2 Dynamics, al-
though a stronger emphasis is placed on the metric system because it is
replacing the U.S. customary system. However, numerical conversion
from one system to the other will often be needed in U.S. engineering

*To some it is preferable to interpret Newton’s second law as meaning that the resultant
force acting on a particle is proportional to the time rate of change of momentum of the
particle and that this change is in the direction of the force. Both formulations are equally
correct when applied to a particle of constant mass.
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practice for some years to come. To become familiar with each system, it
is necessary to think directly in that system. Familiarity with the new
system cannot be achieved simply by the conversion of numerical re-
sults from the old system.

Tables defining the SI units and giving numerical conversions be-
tween U.S. customary and SI units are included inside the front cover of
the book. Charts comparing selected quantities in SI and U.S. custom-
ary units are included inside the back cover of the book to facilitate con-
version and to help establish a feel for the relative size of units in both
systems.

The four fundamental quantities of mechanics, and their units and
symbols for the two systems, are summarized in the following table:

SI UNITS U.S. CUSTOMARY UNITS
DIMENSIONAL
QUANTITY SYMBOL UNIT SYMBOL UNIT SYMBOL
Mass M kilogram kg slug —
Length L Base { meter* m Base | foot ft
Time T units | second S units {second sec
Force F newton N pound Ib

*Also spelled metre.

As shown in the table, in SI the units for mass, length, and time are
taken as base units, and the units for force are derived from Newton’s
second law of motion, Eq. 1/1. In the U.S. customary system the units
for force, length, and time are base units and the units for mass are de-
rived from the second law.

The SI system is termed an absolute system because the standard
for the base unit kilogram (a platinum-iridium cylinder kept at the In-
ternational Bureau of Standards near Paris, France) is independent of
the gravitational attraction of the earth. On the other hand, the U.S.
customary system is termed a gravitational system because the stan-
dard for the base unit pound (the weight of a standard mass located at
sea level and at a latitude of 45°) requires the presence of the gravita-
tional field of the earth. This distinction is a fundamental difference be-
tween the two systems of units.

In SI units, by definition, one newton is that force which will give a
one-kilogram mass an acceleration of one meter per second squared. In
the U.S. customary system a 32.1740-pound mass (1 slug) will have an
acceleration of one foot per second squared when acted on by a force of
one pound. Thus, for each system we have from Eq. 1/1

SI UNITS U.S. CUSTOMARY UNITS

(1N) = (1 kg)(1 m/s?) (11b) = (1 slug)(1 ft/sec?)
N = kg-m/s? slug = lb-sec?/ft

The U.S. standard kilogram at the
National Bureau of Standards

Omikron/PhotoResearchers, Inc.
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In SI units, the kilogram should be used exclusively as a unit of
mass and never force. Unfortunately, in the MKS (meter, kilogram, sec-
ond) gravitational system, which has been used in some countries for
many years, the kilogram has been commonly used both as a unit of
force and as a unit of mass.

In U.S. customary units, the pound is unfortunately used both as a
unit of force (Ibf) and as a unit of mass (Ibm). The use of the unit lbm is
especially prevalent in the specification of the thermal properties of lig-
uids and gases. The lbm is the amount of mass which weighs 1 Ibf under
standard conditions (at a latitude of 45° and at sea level). In order to
avoid the confusion which would be caused by the use of two units for
mass (slug and Ibm), in this textbook we use almost exclusively the unit
slug for mass. This practice makes dynamics much simpler than if the
Ibm were used. In addition, this approach allows us to use the symbol 1b
to always mean pound force.

Additional quantities used in mechanics and their equivalent base
units will be defined as they are introduced in the chapters which follow.
However, for convenient reference these quantities are listed in one
place in the first table inside the front cover of the book.

Professional organizations have established detailed guidelines for
the consistent use of SI units, and these guidelines have been followed
throughout this book. The most essential ones are summarized inside the
front cover, and you should observe these rules carefully.

1/5 Gravitation

Newton’s law of gravitation, which governs the mutual attraction
between bodies, is

mymgy

F=G"Y

(1/2)

r

where F' = the mutual force of attraction between two particles
G = a universal constant called the constant of gravitation
mq, my = the masses of the two particles

r = the distance between the centers of the particles

The value of the gravitational constant obtained from experimental data
is G = 6.673(107 1) m?/(kg-s?). Except for some spacecraft applications,
the only gravitational force of appreciable magnitude in engineering is
the force due to the attraction of the earth. It was shown in Vol. I Stat-
ics, for example, that each of two iron spheres 100 mm in diameter is at-
tracted to the earth with a gravitational force of 37.1 N, which is called
its weight, but the force of mutual attraction between them if they are
just touching is only 0.000 000 095 1 N.

Because the gravitational attraction or weight of a body is a force, it
should always be expressed in force units, newtons (N) in SI units and
pounds force (Ib) in U.S. customary units. To avoid confusion, the word
“weight” in this book will be restricted to mean the force of gravita-
tional attraction.
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Effect of Alfitude

The force of gravitational attraction of the earth on a body depends
on the position of the body relative to the earth. If the earth were a
perfect homogeneous sphere, a body with a mass of exactly 1 kg would
be attracted to the earth by a force of 9.825 N on the surface of the
earth, 9.822 N at an altitude of 1 km, 9.523 N at an altitude of 100 km,
7.340 N at an altitude of 1000 km, and 2.456 N at an altitude equal to
the mean radius of the earth, 6371 km. Thus the variation in gravita-
tional attraction of high-altitude rockets and spacecraft becomes a major
consideration.

Every object which falls in a vacuum at a given height near the sur-
face of the earth will have the same acceleration g, regardless of its
mass. This result can be obtained by combining Eqs. 1/1 and 1/2 and
canceling the term representing the mass of the falling object. This com-
bination gives

8= R?
where m, is the mass of the earth and R is the radius of the earth.* The
mass m, and the mean radius R of the earth have been found through
experimental measurements to be 5.976(10%*) kg and 6.371(10%) m, re-
spectively. These values, together with the value of G already cited,
when substituted into the expression for g, give a mean value of g =
9.825 m/s?.

The variation of g with altitude is easily determined from the gravi-
tational law. If g, represents the absolute acceleration due to gravity at
sea level, the absolute value at an altitude 4 is

2

g:gO(R+h)2

where R is the radius of the earth.

Effect of a Rotating Earth

The acceleration due to gravity as determined from the gravita-
tional law is the acceleration which would be measured from a set of
axes whose origin is at the center of the earth but which does not ro-
tate with the earth. With respect to these “fixed” axes, then, this value
may be termed the absolute value of g. Because the earth rotates, the
acceleration of a freely falling body as measured from a position at-
tached to the surface of the earth is slightly less than the absolute
value.

Accurate values of the gravitational acceleration as measured rela-
tive to the surface of the earth account for the fact that the earth is a
rotating oblate spheroid with flattening at the poles. These values may

*It can be proved that the earth, when taken as a sphere with a symmetrical distribution of
mass about its center, may be considered a particle with its entire mass concentrated at its
center.
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be calculated to a high degree of accuracy from the 1980 International
Gravity Formula, which is

g =9.780 327(1 + 0.005 279 sin? y + 0.000 023 sin* y + --*)

where v is the latitude and g is expressed in meters per second squared.
The formula is based on an ellipsoidal model of the earth and also ac-
counts for the effect of the rotation of the earth.

The absolute acceleration due to gravity as determined for a nonro-
tating earth may be computed from the relative values to a close approxi-
mation by adding 3.382(102) cos?y m/s?, which removes the effect of the
rotation of the earth. The variation of both the absolute and the relative
values of g with latitude is shown in Fig. 1/1 for sea-level conditions.*

9.840 T [ ] - 32.28
Relative to nonrotating earth 13226
9.830 Y
—32.24
9.820 —32.22
— 32.20
— 4 3220
T 9810 -3218 3
g L/ ~
- ~32.16 =
% 9.800 // 3216 &
—32.14
9.790 A , , 32.12
Relative to rotating earth |
(International Gravity Formula) [~ 32.10
9.780 ——
—32.08
9.770 —32.06
0 30 60 90
(Equator) (Poles)

Latitude, degrees

Figure 1/1

Standard Value of g

The standard value which has been adopted internationally for the
gravitational acceleration relative to the rotating earth at sea level and
at a latitude of 45° is 9.806 65 m/s? or 32.1740 ft/sec®. This value differs
very slightly from that obtained by evaluating the International Gravity
Formula for y = 45°. The reason for the small difference is that the
earth is not exactly ellipsoidal, as assumed in the formulation of the In-
ternational Gravity Formula.

The proximity of large land masses and the variations in the density
of the crust of the earth also influence the local value of g by a small but
detectable amount. In almost all engineering applications near the sur-
face of the earth, we can neglect the difference between the absolute and
relative values of the gravitational acceleration, and the effect of local

*You will be able to derive these relations for a spherical earth after studying relative mo-
tion in Chapter 3.
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variations. The values of 9.81 m/s? in SI units and 32.2 ft/sec? in U.S.
customary units are used for the sea-level value of g.

Apparent Weight

The gravitational attraction of the earth on a body of mass m may
be calculated from the results of a simple gravitational experiment. The
body is allowed to fall freely in a vacuum, and its absolute acceleration is
measured. If the gravitational force of attraction or true weight of the
body is W, then, because the body falls with an absolute acceleration g,
Eq. 1/1 gives

W =mg (1/3)

The apparent weight of a body as determined by a spring balance,
calibrated to read the correct force and attached to the surface of the
earth, will be slightly less than its true weight. The difference is due to
the rotation of the earth. The ratio of the apparent weight to the appar-
ent or relative acceleration due to gravity still gives the correct value of
mass. The apparent weight and the relative acceleration due to gravity
are, of course, the quantities which are measured in experiments con-
ducted on the surface of the earth.

1/6 Dimensions

A given dimension such as length can be expressed in a number of
different units such as meters, millimeters, or kilometers. Thus, a di-
mension is different from a unit. The principle of dimensional homogene-
ity states that all physical relations must be dimensionally homogeneous;
that is, the dimensions of all terms in an equation must be the same. It is
customary to use the symbols L, M, T, and F to stand for length, mass,
time, and force, respectively. In SI units force is a derived quantity and
from Eq. 1/1 has the dimensions of mass times acceleration or

F = ML/T?

One important use of the dimensional homogeneity principle is to
check the dimensional correctness of some derived physical relation. We
can derive the following expression for the velocity v of a body of mass m
which is moved from rest a horizontal distance x by a force F:

_1_ 29
Fx—2mv

where the % is a dimensionless coefficient resulting from integration.
This equation is dimensionally correct because substitution of L, M, and
T gives

[MLT-2)[L] = [MI[LT 1

Dimensional homogeneity is a necessary condition for correctness of
a physical relation, but it is not sufficient, since it is possible to construct
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an equation which is dimensionally correct but does not represent a cor-
rect relation. You should perform a dimensional check on the answer to
every problem whose solution is carried out in symbolic form.

1/7 Solving Problems in Dynamics

The study of dynamics concerns the understanding and description of
the motions of bodies. This description, which is largely mathematical, en-
ables predictions of dynamical behavior to be made. A dual thought process
is necessary in formulating this description. It is necessary to think in
terms of both the physical situation and the corresponding mathematical
description. This repeated transition of thought between the physical and
the mathematical is required in the analysis of every problem.

One of the greatest difficulties encountered by students is the in-
ability to make this transition freely. You should recognize that the
mathematical formulation of a physical problem represents an ideal and
limiting description, or model, which approximates but never quite
matches the actual physical situation.

In Art. 1/8 of Vol. 1 Statics we extensively discussed the approach to
solving problems in statics. We assume therefore, that you are familiar
with this approach, which we summarize here as applied to dynamics.

Approximation in Mathematical Models

Construction of an idealized mathematical model for a given engi-
neering problem always requires approximations to be made. Some of
these approximations may be mathematical, whereas others will be
physical. For instance, it is often necessary to neglect small distances,
angles, or forces compared with large distances, angles, or forces. If the
change in velocity of a body with time is nearly uniform, then an as-
sumption of constant acceleration may be justified. An interval of mo-
tion which cannot be easily described in its entirety is often divided into
small increments, each of which can be approximated.

As another example, the retarding effect of bearing friction on the
motion of a machine may often be neglected if the friction forces are
small compared with the other applied forces. However, these same fric-
tion forces cannot be neglected if the purpose of the inquiry is to deter-
mine the decrease in efficiency of the machine due to the friction
process. Thus, the type of assumptions you make depends on what infor-
mation is desired and on the accuracy required.

You should be constantly alert to the various assumptions called for
in the formulation of real problems. The ability to understand and make
use of the appropriate assumptions when formulating and solving engi-
neering problems is certainly one of the most important characteristics
of a successful engineer.

Along with the development of the principles and analytical tools
needed for modern dynamics, one of the major aims of this book is to
provide many opportunities to develop the ability to formulate good
mathematical models. Strong emphasis is placed on a wide range of
practical problems which not only require you to apply theory but also
force you to make relevant assumptions.
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Q KEY CONCEPTS
Method of Attack

An effective method of attack is essential in the solution of dynam-
ics problems, as for all engineering problems. Development of good
habits in formulating problems and in representing their solutions will
be an invaluable asset. Each solution should proceed with a logical se-
quence of steps from hypothesis to conclusion. The following sequence
of steps is useful in the construction of problem solutions.

1. Formulate the problem:
(a) State the given data.
(b) State the desired result.
(c) State your assumptions and approximations.
2. Develop the solution:
(a) Draw any needed diagrams, and include coordinates which are
appropriate for the problem at hand.
(b) State the governing principles to be applied to your solution.
(¢) Make your calculations.

(d) Ensure that your calculations are consistent with the accuracy
justified by the data.

(e) Be sure that you have used consistent units throughout your
calculations.

(f) Ensure that your answers are reasonable in terms of magni-
tudes, directions, common sense, etc.

(g) Draw conclusions.

The arrangement of your work should be neat and orderly. This will
help your thought process and enable others to understand your work.
The discipline of doing orderly work will help you to develop skill in prob-
lem formulation and analysis. Problems which seem complicated at first
often become clear when you approach them with logic and discipline.

Application of Basic Principles

The subject of dynamics is based on a surprisingly few fundamental
concepts and principles which, however, can be extended and applied over
a wide range of conditions. The study of dynamics is valuable partly be-
cause it provides experience in reasoning from fundamentals. This experi-
ence cannot be obtained merely by memorizing the kinematic and dynamic
equations which describe various motions. It must be obtained through ex-
posure to a wide variety of problem situations which require the choice,
use, and extension of basic principles to meet the given conditions.

In describing the relations between forces and the motions they pro-
duce, it is essential to define clearly the system to which a principle is to
be applied. At times a single particle or a rigid body is the system to be
isolated, whereas at other times two or more bodies taken together con-
stitute the system.
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The definition of the system to be analyzed is made clear by con-
structing its free-body diagram. This diagram consists of a closed out-
line of the external boundary of the system. All bodies which contact
and exert forces on the system but are not a part of it are removed and
replaced by vectors representing the forces they exert on the isolated
system. In this way, we make a clear distinction between the action and
reaction of each force, and all forces on and external to the system are
accounted for. We assume that you are familiar with the technique of
drawing free-body diagrams from your prior work in statics.

Numerical versus Symbolic Solutions

In applying the laws of dynamics, we may use numerical values of
the involved quantities, or we may use algebraic symbols and leave the
answer as a formula. When numerical values are used, the magnitudes
of all quantities expressed in their particular units are evident at each
stage of the calculation. This approach is useful when we need to know
the magnitude of each term.

The symbolic solution, however, has several advantages over the
numerical solution:

1. The use of symbols helps to focus attention on the connection between
the physical situation and its related mathematical description.

2. A symbolic solution enables you to make a dimensional check at
every step, whereas dimensional homogeneity cannot be checked
when only numerical values are used.

3. We can use a symbolic solution repeatedly for obtaining answers to
the same problem with different units or different numerical values.

Thus, facility with both forms of solution is essential, and you should
practice each in the problem work.

In the case of numerical solutions, we repeat from Vol. 1 Statics our
convention for the display of results. All given data are taken to be exact,
and results are generally displayed to three significant figures, unless the
leading digit is a one, in which case four significant figures are displayed.

Solution Methods

Solutions to the various equations of dynamics can be obtained in
one of three ways.

1. Obtain a direct mathematical solution by hand calculation, using ei-
ther algebraic symbols or numerical values. We can solve the large
majority of the problems this way.

2. Obtain graphical solutions for certain problems, such as the deter-
mination of velocities and accelerations of rigid bodies in two-
dimensional relative motion.

3. Solve the problem by computer. A number of problems in Vol. 2 Dy-
namics are designated as Computer-Oriented Problems. They ap-
pear at the end of the Review Problem sets and were selected to
illustrate the type of problem for which solution by computer offers
a distinct advantage.
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The choice of the most expedient method of solution is an important
aspect of the experience to be gained from the problem work. We em-
phasize, however, that the most important experience in learning me-
chanics lies in the formulation of problems, as distinct from their
solution per se.

1/8 CHAPTER REVIEW

This chapter has introduced the concepts, definitions, and units
used in dynamics, and has given an overview of the approach used to
formulate and solve problems in dynamics. Now that you have finished
this chapter, you should be able to do the following:

. State Newton’s laws of motion.
. Perform calculations using SI and U.S. customary units.
. Express the law of gravitation and calculate the weight of an object.

. Discuss the effects of altitude and the rotation of the earth on the
acceleration due to gravity.

W N e

5. Apply the principle of dimensional homogeneity to a given physical
relation.

6. Describe the methodology used to formulate and solve dynamics
problems.

© Mark Greenberg/VirginGalactic/Zuma Press

Virgin Galactic SpaceShip2 in gliding flight after release from its mother-
ship WhiteKnight2.
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SAMPLE PROBLEM 1/1

A space-shuttle payload module weighs 100 1b when
resting on the surface of the earth at a latitude of 45° north.

(@) Determine the mass of the module in both slugs and
kilograms, and its surface-level weight in newtons.

(b) Now suppose the module is taken to an altitude of 200
miles above the surface of the earth and released there
with no velocity relative to the center of the earth.

Determine its weight under these conditions in both
pounds and newtons.

(¢) Finally, suppose the module is fixed inside the cargo bay of a space shuttle.
The shuttle is in a circular orbit at an altitude of 200 miles above the surface
of the earth. Determine the weight of the module in both pounds and
newtons under these conditions.

For the surface-level value of the acceleration of gravity relative to a rotat-
ing earth, use g = 32.1740 ft/sec? (9.80665 m/s?). For the absolute value relative
to a nonrotating earth, use g = 32.234 ft/sec? (9.825 m/s?). Round off all answers
using the rules of this textbook.

Solution. (a) From relationship 1/3, we have

_wW_ 100 1b
m=22

[W = mg] =
& 8 32.1740 ft/sec?

= 3.11 slugs Ans.

Here we have used the acceleration of gravity relative to the rotating earth, be-
cause that is the condition of the module in part (). Note that we are using more
significant figures in the acceleration of gravity than will normally be required in
this textbook (32.2 ft/sec? and 9.81 m/s? will normally suffice).

From the table of conversion factors inside the front cover of the textbook,
we see that 1 pound is equal to 4.4482 newtons. Thus, the weight of the module
in newtons is

W=1001p | £4482N1_ 445N Ans.
11b
Finally, its mass in kilograms is
[W=mg] m = W =k = 45.4 kg Ans.

€  9.80665 m/s?

As another route to the last result, we may convert from pounds mass to
kilograms. Again using the table inside the front cover, we have

0.45359 k;

= g =
m 1001bm[ o ] 45.4kg

We recall that 1 lbm is the amount of mass which under standard conditions has
a weight of 1 Ib of force. We rarely refer to the U.S. mass unit lbm in this text-
book series, but rather use the slug for mass. The sole use of slug, rather than
the unnecessary use of two units for mass, will prove to be powerful and simple.

Helpful Hints

@ Our calculator indicates a result of

3.108099 - - - slugs. Using the rules
of significant figure display used in
this textbook, we round the written
result to three significant figures, or
3.11 slugs. Had the numerical result
begun with the digit 1, we would
have rounded the displayed answer
to four significant figures.

@ A good practice with unit conversion

is to multiply by a factor such as
[4.4482 N
11b
because the numerator and the de-
nominator are equivalent. Be sure
that cancellation of the units leaves
the units desired—here the units of
Ib cancel, leaving the desired units
of N.

, which has a value of 1,

© Note that we are using a previously

calculated result (445 N). We must
be sure that when a calculated num-
ber is needed in subsequent calcula-
tions, it is obtained in the calculator
to its full accuracy (444.82 - - -). If
necessary, numbers must be stored
in a calculator storage register and
then brought out of the register
when needed. We must not merely
punch 445 into our calculator and
proceed to divide by 9.80665—this
practice will result in loss of numeri-
cal accuracy. Some individuals like
to place a small indication of the
storage register used in the right
margin of the work paper, directly
beside the number stored.
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SAMPLE PROBLEM 1/1 (CONTINUED)

(b) We begin by calculating the absolute acceleration of gravity (relative to
the nonrotating earth) at an altitude of 200 miles.

R2 39592 }
g = 32,934 — 399" | _ 999 fr/sec?
[g R+ h)2] Sl [(3959 + 200)2 see

The weight at an altitude of 200 miles is then
W, = mg;, = 3.11(29.2) = 90.8 1b Ans.
We now convert W}, to units of newtons.

W, = 90.8 Ib [%} — 404N Ans.

As an alternative solution to part (), we may use Newton’s universal law of
gravitation. In U.S. units,

[F _ Gmlmz} _ Gmgn__ [3.439(10%)][4.095(10%)][3.11]
r2 "R+ h)2 [(3959 + 200)(5280)
=90.81b

which agrees with our earlier result. We note that the weight of the module
when at an altitude of 200 mi is about 90% of its surface-level weight—it is not
weightless. We will study the effects of this weight on the motion of the module
in Chapter 3.

(¢) The weight of an object (the force of gravitational attraction) does not
depend on the motion of the object. Thus the answers for part (c) are the same as

those in part ().

W,=9081b or 404N Ans.

This Sample Problem has served to eliminate certain commonly held and
persistent misconceptions. First, just because a body is raised to a typical shuttle
altitude, it does not become weightless. This is true whether the body is released
with no velocity relative to the center of the earth, is inside the orbiting shuttle,
or is in its own arbitrary trajectory. And second, the acceleration of gravity is not
zero at such altitudes. The only way to reduce both the acceleration of gravity
and the corresponding weight of a body to zero is to take the body to an infinite
distance from the earth.
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PROBLEMS

(Refer to Table D/2 in Appendix D for relevant solar-
system values.)

1/1 Determine your mass in slugs. Convert your weight
to newtons and calculate the corresponding mass in
kilograms.

1/2 Determine the weight in newtons of a car which has
a mass of 1500 kg. Convert the given mass of the car
to slugs and calculate the corresponding weight in
pounds.

m = 1500 kg

Problem 1/2

1/3 The weight of one dozen apples is 5 lb. Determine the
average mass of one apple in both SI and U.S. units
and the average weight of one apple in SI units. In the
present case, how applicable is the “rule of thumb”
that an average apple weighs 1 N?

1/4 For the given vectors V; and V,, determine V; + V,,
V, +V, V, -V, V, XV, and V; - V,. Consider the
vectors to be nondimensional.

Problem 1/4

1/5 The two 100-mm-diameter spheres constructed of dif-
ferent metals are located in deep space. Determine
the gravitational force F which the copper sphere
exerts on the titanium sphere if (@) d = 2m, and

(b)d =4m.
Copper Titanium
@ Q-

Problem 1/5

1/6 Two uniform aluminum spheres are positioned as
shown. Determine the gravitational force which sphere A
exerts on sphere B. The value of R is 50 mm.

Problem 1/6

1/7 At what altitude h above the north pole is the weight
of an object reduced to one-half of its earth-surface
value? Assume a spherical earth of radius R and ex-
press h in terms of R.

1/8 Determine the absolute weight and the weight rela-
tive to the rotating earth of a 90-kg man if he is stand-
ing on the surface of the earth at a latitude of 40°.

1/9 A space shuttle is in a circular orbit at an altitude of
150 mi. Calculate the absolute value of g at this alti-
tude and determine the corresponding weight of a
shuttle passenger who weighs 200 1b when standing
on the surface of the earth at a latitude of 45°. Are
the terms “zero-g” and “weightless,” which are
sometimes used to describe conditions aboard orbit-
ing spacecraft, correct in the absolute sense?

1/10 Determine the angle 6 at which a particle in
Jupiter’s circular orbit experiences equal attractions
from the sun and from Jupiter. Use Table D/2 of
Appendix D as needed.

-. Jupiter

Not to scale
Problem 1/10
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1/11 Calculate the distance d from the center of the earth
at which a particle experiences equal attractions
from the earth and from the moon. The particle is
restricted to the line through the centers of the earth
and the moon. Justify the two solutions physically.
Refer to Table D/2 of Appendix D as needed.

Not to scale

Problem 1/11

1/12 Consider a woman standing on the earth with the
sun directly overhead. Determine the ratio R, of
the force which the earth exerts on the woman to
the force which the sun exerts on her. Neglect the
effects of the rotation and oblateness of the earth.

1/13 Consider a woman standing on the surface of the
earth when the moon is directly overhead. Deter-
mine the ratio R,,, of the force which the earth ex-
erts on the woman to the force which the moon
exerts on her. Neglect the effects of the rotation and
oblateness of the earth. Find the same ratio if we
now move the woman to a corresponding position on
the moon.

1/14 Determine the ratio R, of the force exerted by the
sun on the moon to that exerted by the earth on the
moon for position A of the moon. Repeat for moon
position B.

Sunlight

o @

Problem 1/14

1/15 Check the following equation for dimensional homo-
geneity:

ty
muv = (F cos 0) dt
t

where m is mass, v is velocity, F' is force, 6 is an
angle, and ¢ is time.



Even if this car maintains a constant speed along the winding road, it accelerates laterally, and this acceleration
must be considered in the design of the car, its tires, and the roadway itself.

© Daniel DempsterPhotography/Alamy
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2/1 Introduction

Kinematics is the branch of dynamics which describes the motion of
bodies without reference to the forces which either cause the motion or
are generated as a result of the motion. Kinematics is often described as
the “geometry of motion.” Some engineering applications of kinematics
include the design of cams, gears, linkages, and other machine elements
to control or produce certain desired motions, and the calculation of
flight trajectories for aircraft, rockets, and spacecraft. A thorough work-
ing knowledge of kinematics is a prerequisite to kinetics, which is the
study of the relationships between motion and the corresponding forces
which cause or accompany the motion.

Particle Motion

We begin our study of kinematics by first discussing in this chapter
the motions of points or particles. A particle is a body whose physical di-
mensions are so small compared with the radius of curvature of its path
that we may treat the motion of the particle as that of a point. For ex-
ample, the wingspan of a jet transport flying between Los Angeles and
New York is of no consequence compared with the radius of curvature of

21
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Figure 2/1

Figure 2/2

its flight path, and thus the treatment of the airplane as a particle or
point is an acceptable approximation.

We can describe the motion of a particle in a number of ways, and
the choice of the most convenient or appropriate way depends a great
deal on experience and on how the data are given. Let us obtain an
overview of the several methods developed in this chapter by referring
to Fig. 2/1, which shows a particle P moving along some general path
in space. If the particle is confined to a specified path, as with a bead
sliding along a fixed wire, its motion is said to be constrained. If there
are no physical guides, the motion is said to be unconstrained. A small
rock tied to the end of a string and whirled in a circle undergoes con-
strained motion until the string breaks, after which instant its motion is
unconstrained.

Choice of Coordinates

The position of particle P at any time ¢ can be described by specify-
ing its rectangular coordinates™ x, y, z, its cylindrical coordinates r, 0, z,
or its spherical coordinates R, 6, ¢. The motion of P can also be de-
scribed by measurements along the tangent ¢ and normal n to the curve.
The direction of n lies in the local plane of the curve.” These last two
measurements are called path variables.

The motion of particles (or rigid bodies) can be described by using co-
ordinates measured from fixed reference axes (absolute-motion analysis)
or by using coordinates measured from moving reference axes (relative-
motion analysis). Both descriptions will be developed and applied in the
articles which follow.

With this conceptual picture of the description of particle motion in
mind, we restrict our attention in the first part of this chapter to the
case of plane motion where all movement occurs in or can be repre-
sented as occurring in a single plane. A large proportion of the motions
of machines and structures in engineering can be represented as plane
motion. Later, in Chapter 7, an introduction to three-dimensional mo-
tion is presented. We begin our discussion of plane motion with recti-
linear motion, which is motion along a straight line, and follow it with a
description of motion along a plane curve.

2/2 Rectilinear Motion

Consider a particle P moving along a straight line, Fig. 2/2. The po-
sition of P at any instant of time ¢ can be specified by its distance s mea-
sured from some convenient reference point O fixed on the line. At time
t + At the particle has moved to P’ and its coordinate becomes s + As.
The change in the position coordinate during the interval A¢ is called
the displacement As of the particle. The displacement would be negative
if the particle moved in the negative s-direction.

*Often called Cartesian coordinates, named after René Descartes (1596-1650), a French
mathematician who was one of the inventors of analytic geometry.

"This plane is called the osculating plane, which comes from the Latin word osculari mean-
ing “to kiss.” The plane which contains P and the two points A and B, one on either side of
P, becomes the osculating plane as the distances between the points approach zero.



Article 2/2 Rectilinear Motion 23

Velocity and Acceleration

The average velocity of the particle during the interval A¢ is the dis-
placement divided by the time interval or v,, = As/A{. As At becomes
smaller and approaches zero in the limit, the average velocity approaches

As

the instantaneous velocity of the particle, which isv = Al}n}) e

ds _ .
v = - s (2/1)
Thus, the velocity is the time rate of change of the position coordinate s.
The velocity is positive or negative depending on whether the corre-
sponding displacement is positive or negative.

The average acceleration of the particle during the interval A¢ is the
change in its velocity divided by the time interval or a,, = Av/At. As At
becomes smaller and approaches zero in the limit, the average accelera-
tion approaches the instantaneous acceleration of the particle, which is

.. Av
a = lim — or
At—0 At

_d’s _

—@=i) a= =
dr?

a=" S (2/2)
The acceleration is positive or negative depending on whether the ve-
locity is increasing or decreasing. Note that the acceleration would be
positive if the particle had a negative velocity which was becoming
less negative. If the particle is slowing down, the particle is said to be
decelerating.

Velocity and acceleration are actually vector quantities, as we will
see for curvilinear motion beginning with Art. 2/3. For rectilinear mo-
tion in the present article, where the direction of the motion is that of
the given straight-line path, the sense of the vector along the path is de-
scribed by a plus or minus sign. In our treatment of curvilinear motion,
we will account for the changes in direction of the velocity and accelera-
tion vectors as well as their changes in magnitude.

By eliminating the time dt between Eq. 2/1 and the first of Eqgs. 2/2,
we obtain a differential equation relating displacement, velocity, and ac-
celeration.* This equation is

vdv =ads or $ds =5ds (2/3)

Equations 2/1, 2/2, and 2/3 are the differential equations for the rec-
tilinear motion of a particle. Problems in rectilinear motion involving fi-
nite changes in the motion variables are solved by integration of these
basic differential relations. The position coordinate s, the velocity v, and
the acceleration a are algebraic quantities, so that their signs, positive
or negative, must be carefully observed. Note that the positive direc-
tions for v and a are the same as the positive direction for s.

*Differential quantities can be multiplied and divided in exactly the same way as other
algebraic quantities.

This sprinter will undergo rectilinear
acceleration until he reaches his ter-
minal speed.

© Datacraft/Age FotostockAmerica, Inc.
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(@)

)

()

tr | —dt
Figure 2/3

“ //
‘ a

(b)

Figure 2/4

Graphical Interpretations

Interpretation of the differential equations governing rectilinear
motion is considerably clarified by representing the relationships among
s, v, a, and ¢ graphically. Figure 2/3a is a schematic plot of the variation
of s with ¢ from time #; to time ¢, for some given rectilinear motion. By
constructing the tangent to the curve at any time ¢, we obtain the slope,
which is the velocity v = ds/d¢. Thus, the velocity can be determined at
all points on the curve and plotted against the corresponding time as
shown in Fig. 2/3b. Similarly, the slope dv/d¢ of the v-t curve at any in-
stant gives the acceleration at that instant, and the a-¢ curve can there-
fore be plotted as in Fig. 2/3c.

We now see from Fig. 2/3b that the area under the v-¢ curve during
time dt is v dt, which from Eq. 2/1 is the displacement ds. Consequently,
the net displacement of the particle during the interval from ¢; to ¢, is
the corresponding area under the curve, which is

Sg ty
f ds = f vdt or sy — §; = (area under v-f curve)
S1 t

Similarly, from Fig. 2/3c we see that the area under the a-t curve during
time dt is a dt, which, from the first of Eqs. 2/2, is dv. Thus, the net
change in velocity between ¢; and ¢, is the corresponding area under the
curve, which is

Uy ty
f dv = f adt or vy — v; = (area under a-¢ curve)
U1 ty

Note two additional graphical relations. When the acceleration a is
plotted as a function of the position coordinate s, Fig. 2/4a, the area
under the curve during a displacement ds is a ds, which, from Eq. 2/3, is
v dv = d(v?2). Thus, the net area under the curve between position co-
ordinates s; and s, is

Uy S2
1
f vdv = f ads or 5 W% — v,?) = (area under a-s curve)
U1 S1

When the velocity v is plotted as a function of the position coordinate s,
Fig. 2/4b, the slope of the curve at any point A is dv/ds. By constructing
the normal AB to the curve at this point, we see from the similar trian-
gles that CB/v = dv/ds. Thus, from Eq. 2/3, CB = v(dv/ds) = a, the accel-
eration. It is necessary that the velocity and position coordinate axes
have the same numerical scales so that the acceleration read on the po-
sition coordinate scale in meters (or feet), say, will represent the actual
acceleration in meters (or feet) per second squared.

The graphical representations described are useful not only in visu-
alizing the relationships among the several motion quantities but also in
obtaining approximate results by graphical integration or differentia-
tion. The latter case occurs when a lack of knowledge of the mathemati-
cal relationship prevents its expression as an explicit mathematical
function which can be integrated or differentiated. Experimental data
and motions which involve discontinuous relationships between the
variables are frequently analyzed graphically.
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@ KEY CONCEPTS

Analytical Integration

If the position coordinate s is known for all values of the time ¢, then
successive mathematical or graphical differentiation with respect to ¢
gives the velocity v and acceleration a. In many problems, however, the
functional relationship between position coordinate and time is un-
known, and we must determine it by successive integration from the ac-
celeration. Acceleration is determined by the forces which act on moving
bodies and is computed from the equations of kinetics discussed in subse-
quent chapters. Depending on the nature of the forces, the acceleration
may be specified as a function of time, velocity, or position coordinate, or
as a combined function of these quantities. The procedure for integrating
the differential equation in each case is indicated as follows.

(a) Constant Acceleration. When a is constant, the first of Eqs. 2/2
and 2/3 can be integrated directly. For simplicity with s = s¢, v = v, and
t = 0 designated at the beginning of the interval, then for a time inter-
val ¢ the integrated equations become

v t

fdv=afdt or v=uv,+at
vy 0

v

J

Substitution of the integrated expression for v into Eq. 2/1 and integra-
tion with respect to ¢ give

S
vdv:af ds or v? = vy + 2als — sg)
0 So

s t
f ds = f (vg + at) dt or s =8¢+ vyt + %at2
S 0

These relations are necessarily restricted to the special case where the
acceleration is constant. The integration limits depend on the initial and
final conditions, which for a given problem may be different from those
used here. It may be more convenient, for instance, to begin the integra-
tion at some specified time #; rather than at time ¢ = 0.

Caution: The foregoing equations have been integrated
for constant acceleration only. A common mistake is to
use these equations for problems involving variable ac-
celeration, where they do not apply.

(b) Acceleration Given as a Function of Time, a = f(t). Substitu-
tion of the function into the first of Eqgs. 2/2 gives f(¢) = dv/dt. Multiply-
ing by dt separates the variables and permits integration. Thus,

f: dv =f:f(t)dt or =u0+f0tf(t) dt
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From this integrated expression for v as a function of ¢, the position co-
ordinate s is obtained by integrating Eq. 2/1, which, in form, would be

s t t
fds=fvdt or s=so+fvdt
So 0 0

If the indefinite integral is employed, the end conditions are used to es-
tablish the constants of integration. The results are identical with those
obtained by using the definite integral.

If desired, the displacement s can be obtained by a direct solution of
the second-order differential equation § = f(¢) obtained by substitution
of f(¢) into the second of Egs. 2/2.

(c) Acceleration Given as a Function of Velocity, a = f(v). Substi-
tution of the function into the first of Eqs. 2/2 gives f(v) = dv/d¢, which
permits separating the variables and integrating. Thus,

t v
- B
t_f()dt_ Uof(v)

This result gives ¢ as a function of v. Then it would be necessary to solve
for v as a function of ¢ so that Eq. 2/1 can be integrated to obtain the po-
sition coordinate s as a function of ¢.

Another approach is to substitute the function a = f(v) into the first
of Egs. 2/3, giving v dv = f(v) ds. The variables can now be separated
and the equation integrated in the form

“vdv :fs _ “vdv
uoif(v) Sods or s =55+ uoif(v)

Note that this equation gives s in terms of v without explicit reference to ¢.

(d) Acceleration Given as a Function of Displacement, a = f(s).
Substituting the function into Eq. 2/3 and integrating give the form

Uvdv: sf(s)ds or v2 =0, + 2 sf(s)ds
Jo =], J,

v

Next we solve for v to give v = g(s), a function of s. Now we can substi-
tute ds/dt for v, separate variables, and integrate in the form

* ds ft ° ds
— = dt t= —
So g(s) 0 o S g(S)

which gives ¢ as a function of s. Finally, we can rearrange to obtain s as
a function of £.

In each of the foregoing cases when the acceleration varies according
to some functional relationship, the possibility of solving the equations by
direct mathematical integration will depend on the form of the function.
In cases where the integration is excessively awkward or difficult, integra-
tion by graphical, numerical, or computer methods can be utilized.
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SAMPLE PROBLEM 2/1

The position coordinate of a particle which is confined to move along a

straight line is given by s = 2¢> — 24¢ + 6, where s is measured in meters from a
convenient origin and ¢ is in seconds. Determine (a) the time required for the
particle to reach a velocity of 72 m/s from its initial condition at ¢ = 0, (b) the ac-
celeration of the particle when v = 30 m/s, and (c¢) the net displacement of the
particle during the interval from¢ = 1sto¢ = 4s.

38

Solufion. The velocity and acceleration are obtained by successive differentia-
tion of s with respect to the time. Thus,

[v=3s] v =62 —24m/s

[a = 0] a = 12t m/s?

(a) Substituting v = 72 m/s into the expression for v gives us 72 = 6t2 — 24,
from which ¢ = =4 s. The negative root describes a mathematical solution for #

@ before the initiation of motion, so this root is of no physical interest. Thus, the
desired result is

t=4s Ans.
48
2
(b) Substituting v = 30 m/s into the expression for v gives 30 = 6¢2 — 24, from ® m/s ~———{36
which the positive root is ¢ = 3 s, and the corresponding acceleration is }
\
a = 12(3) = 36 m/s? Ans. L \ \
% 1 2 3 g bs
(c¢) The net displacement during the specified interval is Helpful Hints
As =54 — 51 or @ Be alert to the proper choice of sign
5 5 when taking a square root. When
As = [2(47) — 24(4) + 6] — [2(1°) — 24(1) + 6] the situation calls for only one an-
— 54m Ans swer, the positive root is not always

the one you may need.

@ which represents the net advancement of the particle along the s-axis from the
position it occupied at ¢ = 1 s to its position at ¢t = 4 s.
To help visualize the motion, the values of s, v, and a are plotted against the
time ¢ as shown. Because the area under the v-¢ curve represents displacement,
@ we see that the net displacement from ¢ = 1 s to ¢ = 4 s is the positive area Asy 4
less the negative area As;_,.

@ Note carefully the distinction be-
tween italic s for the position coordi-
nate and the vertical s for seconds.

© Note from the graphs that the val-
ues for v are the slopes ($) of the s-¢
curve and that the values for a are
the slopes (v) of the v-t curve. Sug-
gestion: Integrate v dt for each of the
two intervals and check the answer
for As. Show that the total distance
traveled during the interval ¢ = 1 s
tot =4sis 74 m.
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SAMPLE PROBLEM 2/2

A particle moves along the x-axis with an initial velocity v, = 50 ft/sec at the
origin when ¢ = 0. For the first 4 seconds it has no acceleration, and thereafter it
is acted on by a retarding force which gives it a constant acceleration a, = —10
ft/sec?. Calculate the velocity and the x-coordinate of the particle for the condi-
tions of ¢ = 8 sec and ¢ = 12 sec and find the maximum positive x-coordinate
reached by the particle.

Helpful Hints

@ Learn to be flexible with symbols.
The position coordinate x is just as
valid as s.

Solution. The velocity of the particle after ¢ = 4 sec is computed from
Uy t

[f dv = f adt] dv, = —IOJ’ dt v, = 90 — 10¢ ft/sec
50 4

and is plotted as shown. At the specified times, the velocities are

t = 8 sec, v, = 90 — 10(8) = 10 ft/sec

t = 12 sec, v, =90 — 10(12) = —30 ft/sec Ans.

The x-coordinate of the particle at any time greater than 4 seconds is the dis-
tance traveled during the first 4 seconds plus the distance traveled after the dis-
continuity in acceleration occurred. Thus,

t
[fds:fvdt] x:50(4)+f (90 — 10¢) dt = —5¢2 + 90t — 80 ft
4

For the two specified times,

t = 8 sec, x = —5(8%) + 90(8) — 80 = 320 ft

t = 12 sec, x = —5(122) + 90(12) — 80 = 280 ft Ans.

The x-coordinate for # = 12 sec is less than that for ¢ = 8 sec since the motion is
in the negative x-direction after ¢ = 9 sec. The maximum positive x-coordinate is,
then, the value of x for ¢ = 9 sec which is

Xmax = —5(9%) + 90(9) — 80 = 325 ft Ans.

These displacements are seen to be the net positive areas under the v-¢ graph up
to the values of ¢ in question.

@ Note that we integrate to a general
time ¢ and then substitute specific
values.

v,, ft/sec

50

\
12

-30

0 Show that the total distance traveled
by the particle in the 12 sec is 370 ft.

t, sec
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SAMPLE PROBLEM 2/3

The spring-mounted slider moves in the horizontal guide with negligible
friction and has a velocity vy in the s-direction as it crosses the mid-position
where s = 0 and ¢ = 0. The two springs together exert a retarding force to the
motion of the slider, which gives it an acceleration proportional to the displace-
ment but oppositely directed and equal to @ = —k?s, where % is constant. (The
constant is arbitrarily squared for later convenience in the form of the expres-
sions.) Determine the expressions for the displacement s and velocity v as func-
tions of the time ¢.

Solution I. Since the acceleration is specified in terms of the displacement, the
differential relation v dv = a ds may be integrated. Thus,

v? k2s?
f vdv = j —k?s ds + C; a constant, or 9= "9 + C;
When s = 0, v = vy, so that C; = v,?/2, and the velocity becomes
v = +vy2 — k%2

The plus sign of the radical is taken when v is positive (in the plus s-direction).
This last expression may be integrated by substituting v = ds/dt. Thus,

1

= J’ dt + Cy a constant, or Z sin~1%8

=t+C
120 2

f ds

foo? — 252
With the requirement of # = 0 when s = 0, the constant of integration becomes
C, = 0, and we may solve the equation for s so that

vy .
s = % sin kt Ans.

The velocity is v = §, which gives

v = v, cos kt Ans.

Solution Il. Since a = §, the given relation may be written at once as
§+k% =0

This is an ordinary linear differential equation of second order for which the so-
lution is well known and is

s = A sin Kt + B cos Kt

where A, B, and K are constants. Substitution of this expression into the differ-
ential equation shows that it satisfies the equation, provided that K = k. The ve-
locity is v = §, which becomes

v = Ak cos kt — Bk sin kt

The initial condition v = vy when ¢ = 0 requires that A = v(/k, and the condition
s = 0 when ¢ = 0 gives B = 0. Thus, the solution is

v
s = zo sin kt and v = v, cos kt Ans.

AN l RVAWWWAY

Helpful Hints

@ We have used an indefinite integral
here and evaluated the constant of
integration. For practice, obtain the
same results by using the definite
integral with the appropriate limits.

@ Again try the definite integral here
as above.

© This motion is called simple har-
monic motion and is characteristic of
all oscillations where the restoring
force, and hence the acceleration, is
proportional to the displacement but
opposite in sign.
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SAMPLE PROBLEM 2/4

A freighter is moving at a speed of 8 knots when its engines are suddenly
stopped. If it takes 10 minutes for the freighter to reduce its speed to 4 knots, de-
termine and plot the distance s in nautical miles moved by the ship and its speed
v in knots as functions of the time # during this interval. The deceleration of the
ship is proportional to the square of its speed, so that a = —kv?.

Helpful Hints

@ Recall that one knot is the speed of
one nautical mile (6076 ft) per hour.
Work directly in the units of nauti-
cal miles and hours.

Solution. The speeds and the time are given, so we may substitute the expres-
sion for acceleration directly into the basic definition ¢ = dv/d¢ and integrate.
Thus,

dv dv Y dv ft
—k2=="% < = =-kdt —— == ¢
wt=p = kdi | D=k d

A, -_ 8

P S A

Now we substitute the end limits of v = 4 knots and ¢ = % = % hour and get

8
4=—_° -9 —
1 + 8k(1/6) k 4 1+ 6t

o

|
—

oo

Ans.

The speed is plotted against the time as shown.
The distance is obtained by substituting the expression for v into the defi-
nition v = ds/dt and integrating. Thus,

8 _ds ' 8dt _f _4
1160 at 01+6t7 Ods sfgln(1+6t) Ans.

The distance s is also plotted against the time as shown, and we see that the ship
has moved through a distance s = % In(1 + %) = % In 2 = 0.924 mi (nautical) dur-
ing the 10 minutes.

@ We choose to integrate to a general
value of v and its corresponding time
t so that we may obtain the variation
of v with ¢.

0 2 4 6 8 10
t, min

1.0

0.8

0.6

0.4 /

0.2 =

mi (nautical)

S,

t, min
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PROBLEMS
Introductory Problems

Problems 2/1 through 2/6 treat the motion of a particle
which moves along the s-axis shown in the figure.

} f— — — —+s,ftorm
-1 0 1 2 3

| |
T T T A

Problems 2/1-2/6

2/1 The velocity of a particle is given by v = 20¢2 — 100t +
50, where v is in meters per second and ¢ is in seconds.
Plot the velocity v and acceleration a versus time for
the first 6 seconds of motion and evaluate the velocity
when a is zero.

2/2 The displacement of a particle is given by s = 23 —
30t2 + 100t — 50, where s is in feet and ¢ is in seconds.
Plot the displacement, velocity, and acceleration as
functions of time for the first 12 seconds of motion.
Determine the time at which the velocity is zero.

2/3 The velocity of a particle which moves along the s-axis
is given by v = 2 + 5t%2, where ¢t is in seconds and v is
in meters per second. Evaluate the displacement s,
velocity v, and acceleration ¢ when ¢ = 4 s. The parti-
cle is at the origin s = 0 when ¢ = 0.

2/4 The velocity of a particle along the s-axis is given by
v = 55?2, where s is in millimeters and v is in millime-
ters per second. Determine the acceleration when s is
2 millimeters.

2/5 The position of a particle in millimeters is given by
s = 27 — 12t + {2, where ¢ is in seconds. Plot the s-¢
and v-t relationships for the first 9 seconds. Deter-
mine the net displacement As during that interval
and the total distance D traveled. By inspection of the
s-t relationship, what conclusion can you reach re-
garding the acceleration?

2/6 The velocity of a particle which moves along the s-axis
is given by § = 40 — 3/2m/s, where ¢ is in seconds.
Calculate the displacement As of the particle during
the interval from ¢ = 2stot = 4 s.

2/7 Calculate the constant acceleration a in g’s which
the catapult of an aircraft carrier must provide to
produce a launch velocity of 180 mi/hr in a distance
of 300 ft. Assume that the carrier is at anchor.

2/8 A particle moves along a straight line with a velocity
in millimeters per second given by v = 400 — 16¢2,
where ¢ is in seconds. Calculate the net displacement
As and total distance D traveled during the first
6 seconds of motion.

2/9 The acceleration of a particle is given by a = 4¢ — 30,
where a is in meters per second squared and ¢ is in
seconds. Determine the velocity and displacement as
functions of time. The initial displacement at ¢ = 0 is
so = —5 m, and the initial velocity is vy = 3 m/s.

2/10 During a braking test, a car is brought to rest begin-
ning from an initial speed of 60 mi/hr in a distance of
120 ft. With the same constant deceleration, what
would be the stopping distance s from an initial
speed of 80 mi/hr?

2/11 Ball 1 is launched with an initial vertical velocity
v, = 160 ft/sec. Three seconds later, ball 2 is
launched with an initial vertical velocity v,. Deter-
mine v, if the balls are to collide at an altitude of
300 ft. At the instant of collision, is ball 1 ascending

or descending?
T U1, U2
1
N\

2

Problem 2/11

2/12 A projectile is fired vertically with an initial velocity
of 200 m/s. Calculate the maximum altitude h
reached by the projectile and the time ¢ after firing
for it to return to the ground. Neglect air resistance
and take the gravitational acceleration to be con-
stant at 9.81 m/s?.

2/13 A ball is thrown vertically upward with an initial
speed of 80 ft/sec from the base A of a 50-ft cliff.
Determine the distance & by which the ball clears
the top of the cliff and the time ¢ after release for the
ball to land at B. Also, calculate the impact velocity
vg. Neglect air resistance and the small horizontal

motion of the ball.
h
B PR
50"
Vo
A | -

Problem 2/13
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2/14 In the pinewood-derby event shown, the car is re-
leased from rest at the starting position A and then
rolls down the incline and on to the finish line C.
If the constant acceleration down the incline is
9 ft/sec? and the speed from B to C is essentially con-
stant, determine the time duration ¢, for the race.
The effects of the small transition area at B can be
neglected.

10
\/ 12/

Problem 2/14

2/15 Starting from rest at home plate, a baseball player
runs to first base (90 ft away). He uniformly acceler-
ates over the first 10 ft to his maximum speed, which
is then maintained until he crosses first base. If the
overall run is completed in 4 seconds, determine his
maximum speed, the acceleration over the first 10 feet,
and the time duration of the acceleration.

t=0 t =4 sec
ﬁ ﬁ [ L
[

) ] |

80/ |

Problem 2/15

2/16 The graph shows the displacement-time history for
the rectilinear motion of a particle during an 8-second
interval. Determine the average velocity v,, during
the interval and, to within reasonable limits of accu-
racy, find the instantaneous velocity v when ¢ = 4 s.

10

Problem 2/16

2/17 The car is traveling at a constant speed v, = 100
km/h on the level portion of the road. When the
6-percent (tan 6 = 6/100) incline is encountered, the
driver does not change the throttle setting and con-
sequently the car decelerates at the constant rate
g sin 0. Determine the speed of the car (a) 10 sec-
onds after passing point A and (b) when s = 100 m.

. s—1
i

Problem 2/16

Representative Problems

2/18 In traveling a distance of 3 km between points A and
D, a car is driven at 100 km/h from A to B for ¢ sec-
onds and 60 km/h from C to D also for ¢ seconds. If
the brakes are applied for 4 seconds between B and
C to give the car a uniform deceleration, calculate ¢
and the distance s between A and B.

100 km/h 60 km/h
—_— —_—
A B C D
| B || afie |

Problem 2/18

2/19 During an 8-second interval, the velocity of a particle
moving in a straight line varies with time as shown.
Within reasonable limits of accuracy, determine the
amount Aa by which the acceleration at ¢ = 4 s exceeds
the average acceleration during the interval. What is
the displacement As during the interval?

14

12

10

v, m/s

Problem 2/19
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2/20 A particle moves along the positive x-axis with an

2/21

acceleration a, in meters per second squared which
increases linearly with x expressed in millimeters, as
shown on the graph for an interval of its motion. If
the velocity of the particle at x = 40 mm is 0.4 m/s,
determine the velocity at x = 120 mm.

Problem 2/20

A girl rolls a ball up an incline and allows it to re-
turn to her. For the angle 6 and ball involved, the
acceleration of the ball along the incline is con-
stant at 0.25g, directed down the incline. If the
ball is released with a speed of 4 m/s, determine
the distance s it moves up the incline before re-
versing its direction and the total time ¢ required
for the ball to return to the child’s hand.

Problem 2/21

2/22 A train which is traveling at 80 mi/hr applies its
brakes as it reaches point A and slows down with a
constant deceleration. Its decreased velocity is ob-
served to be 60 mi/hr as it passes a point 1/2 mi be-
yond A. A car moving at 50 mi/hr passes point B at
the same instant that the train reaches point A. In
an unwise effort to beat the train to the crossing, the
driver “steps on the gas.” Calculate the constant ac-
celeration a that the car must have in order to beat
the train to the crossing by 4 sec and find the veloc-
ity v of the car as it reaches the crossing.

Problem 2/22

2/23 Car A is traveling at a constant speed v, = 130 km/h
at a location where the speed limit is 100 km/h. The
police officer in car P observes this speed via radar.
At the moment when A passes P, the police car be-
gins to accelerate at the constant rate of 6 m/s? until
a speed of 160 km/h is achieved, and that speed is
then maintained. Determine the distance required
for the police officer to overtake car A. Neglect any
nonrectilinear motion of P.

D

Nl
(& D

Problem 2/23

2/24 Repeat the previous problem, only now the driver of
car A is traveling at v, = 130km/h as it passes P,
but over the next 5 seconds, the car uniformly decel-
erates to the speed limit of 100 km/h, and after that
the speed limit is maintained. If the motion of
the police car P remains as described in the previous
problem, determine the distance required for the
police officer to overtake car A.
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2/25 Repeat Prob. 2/23, only now the driver of car A sees 160
and reacts very unwisely to the police car P. Car A is /
traveling at v, = 130km/h as it passes P, but over 140
the next 5 seconds, the car uniformly accelerates to
150 km/h, after which that speed is maintained. If 120
the motion of the police car P remains as described
in Prob. 2/23, determine the distance required for 100
the police officer to overtake car A. o /
(5]
2]
2/26 The 14-in. spring is compressed to an 8-in. length, Eﬁ 80 /
where it is released from rest and accelerates block A. R /
The acceleration has an initial value of 400 ft/sec? 60 /
and then decreases linearly with the x-movement of /
the block, reaching zero when the spring regains its 40
original 14-in. length. Calculate the time ¢ for the /
block to go (@) 3 in. and () 6 in. 20

8 0

J///////r 0 2 4t’sec6 8 10

Problem 2/28

| 14" | 2/29 A particle starts from rest at x = —2 m and moves
along the x-axis with the velocity history shown. Plot
Wf the corresponding acceleration and the displacement

histories for the 2 seconds. Find the time ¢ when the

Problem 2/26 particle crosses the origin.

2/27 A single-stage rocket is launched vertically from 0,0/
rest, and its thrust is programmed to give the rocket
a constant upward acceleration of 6 m/s2. If the fuel
is exhausted 20 s after launch, calculate the maxi-
mum velocity v,, and the subsequent maximum alti-
tude & reached by the rocket.

2/28 An electric car is subjected to acceleration tests
along a straight and level test track. The resulting v-¢

data are closely modeled over the first 10 seconds by ] ] ) o
the function v = 24¢ — ¢2 + 5%, where ¢ is the time 2/30 A retarding force is applied to a body moving in a
straight line so that, during an interval of its mo-

tion, its speed v decreases with increased position co-
ordinate s according to the relation v? = k/s, where k&
is a constant. If the body has a forward speed of
2 in./sec and its position coordinate is 9 in. at time
t = 0, determine the speed v at ¢t = 3 sec.

Problem 2/29

in seconds and v is the velocity in feet per second.
Determine the displacement s as a function of time
over the interval 0 = ¢ =< 10 sec and specify its value
at time ¢ = 10 sec.
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2/31 The deceleration of the mass center G of a car dur-
ing a crash test is measured by an accelerometer
with the results shown, where the distance x
moved by G after impact is 0.8 m. Obtain a close
approximation to the impact velocity v from the
data given.

x—
10g
[
g &
-3 | T
=
g 48
o}
A 2

0 0.2 0.4 0.6 0.8

X, m
Problem 2/31

2/32 A sprinter reaches his maximum speed v, in
2.5 seconds from rest with constant acceleration. He
then maintains that speed and finishes the 100 yards
in the overall time of 9.60 seconds. Determine his
maximum speed v,,..

| 100 yd |
t=0 t=2.5sec t =9.60 sec

Bl

Problem 2/32

2/33 If the velocity v of a particle moving along a straight
line decreases linearly with its displacement s from
20 m/s to a value approaching zero at s = 30 m, de-
termine the acceleration a of the particle when
s = 15 m and show that the particle never reaches
the 30-m displacement.

20

v, m/s

s, m
Problem 2/33

2/34 A car starts from rest with an acceleration of 6 m/s?
which decreases linearly with time to zero in 10 sec-
onds, after which the car continues at a constant
speed. Determine the time ¢ required for the car to
travel 400 m from the start.

2/35 Packages enter the 10-ft chute at A with a speed of
4 ft/sec and have a 0.3g acceleration from A to B. If
the packages come to rest at C, calculate the constant
acceleration a of the packages from B to C. Also find
the time required for the packages to go from A to C.

Problem 2/35
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2/36 In an archery test, the acceleration of the arrow de-
creases linearly with distance s from its initial value
of 16,000 ft/sec? at A upon release to zero at B after
a travel of 24 in. Calculate the maximum velocity v
of the arrow.

Problem 2/36

2/37 The 230,000-1b space-shuttle orbiter touches down at

about 220 mi/hr. At 200 mi/hr its drag parachute
deploys. At 35 mi/hr, the chute is jettisoned from the
orbiter. If the deceleration in feet per second squared
during the time that the chute is deployed is
—0.0003v? (speed v in feet per second), determine the
corresponding distance traveled by the orbiter. Assume
no braking from its wheel brakes.

Problem 2/37

2/38 Reconsider the rollout of the space-shuttle orbiter of

the previous problem. The drag chute is deployed at
200 mi/hr, the wheel brakes are applied at 100 mi/hr
until wheelstop, and the drag chute is jettisoned at
35 mi/hr. If the drag chute results in a deceleration
of —0.0003v? (in feet per second squared when the
speed v is in feet per second) and the wheel brakes
cause a constant deceleration of 5 ft/sec?, determine
the distance traveled from 200 mi/hr to wheelstop.

2/39 The body falling with speed v, strikes and maintains

contact with the platform supported by a nest of
springs. The acceleration of the body after impact is
a =g — ¢y, where c is a positive constant and y is
measured from the original platform position. If the
maximum compression of the springs is observed to
be y,,, determine the constant c.

)
£

Problem 2/39

v

2/40 Particle 1 is subjected to an acceleration a = —kv,

2/4

particle 2 is subjected to a = —k¢, and particle 3 is
subjected to @ = —ks. All three particles start at the
origin s = 0 with an initial velocity v, = 10 m/s at
time ¢ = 0, and the magnitude of % is 0.1 for all three
particles (note that the units of 2 vary from case to
case). Plot the position, velocity, and acceleration ver-
sus time for each particle over the range 0 = ¢ = 10 s.

The steel ball A of diameter D slides freely on the
horizontal rod which leads to the pole face of the
electromagnet. The force of attraction obeys an
inverse-square law, and the resulting acceleration of
the ball is @ = K/(L — x)?, where K is a measure of
the strength of the magnetic field. If the ball is
released from rest at x = 0, determine the velocity v
with which it strikes the pole face.

L |

—
/f\ D
N

B

Problem 2/41

2/42 A certain lake is proposed as a landing area for large

jet aircraft. The touchdown speed of 100 mi/hr upon
contact with the water is to be reduced to 20 mi/hr
in a distance of 1500 ft. If the deceleration is propor-
tional to the square of the velocity of the aircraft
through the water, a = —Kv?, find the value of the
design parameter K, which would be a measure of
the size and shape of the landing gear vanes that
plow through the water. Also find the time ¢ elapsed
during the specified interval.
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2/43 The electronic throttle control of a model train is pro-

Speed v, m/s

grammed so that the train speed varies with position
as shown in the plot. Determine the time ¢ required
for the train to complete one lap.

0.250 -
! ! ! !
0.125+\/fﬁ\/r
! ! ! !
0 | 1 | | 1 |
0 2 2+4% 24m  dum 24%7E 4+2m

Distance s, m

Problem 2/43

2/44 A particle moving along the s-axis has a velocity

given by v = 18 — 2¢2 ft/sec, where ¢ is in seconds.
When ¢ = 0, the position of the particle is given by
so = —3 ft. For the first 5 seconds of motion, deter-
mine the total distance D traveled, the net displace-
ment As, and the value of s at the end of the interval.

2/45 The cone falling with a speed v, strikes and pene-

trates the block of packing material. The accelera-
tion of the cone after impact is @ = g — cy?, where ¢
is a positive constant and y is the penetration dis-
tance. If the maximum penetration depth is ob-
served to be y,,, determine the constant c.

-y

1l

Problem 2/45

2/46 The acceleration a, of the piston in a small recipro-
cating engine is given in the following table in terms
of the position x of the piston measured from the top
of its stroke. From a plot of the data, determine to
within two-significant-figure accuracy the maximum
velocity v, reached by the piston.

x, m a,, m/s? x, m a,, m/s?
0 4950 0.075 —450
0.0075 4340 0.090 —1265
0.015 3740 0.105 —1960
0.030 2580 0.120 —2510
0.045 1490 0.135 —2910
0.060 476 0.150 —3150

Problem 2/46

2/47 The aerodynamic resistance to motion of a car is
nearly proportional to the square of its velocity. Ad-
ditional frictional resistance is constant, so that the
acceleration of the car when coasting may be written
a=—C; — Ce? where C; and C, are constants
which depend on the mechanical configuration of
the car. If the car has an initial velocity v, when the
engine is disengaged, derive an expression for the
distance D required for the car to coast to a stop.

Problem 2/47
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2/48 A subway train travels between two of its station
stops with the acceleration schedule shown. Deter-
mine the time interval A¢ during which the train
brakes to a stop with a deceleration of 2 m/s? and
find the distance s between stations.

a, m/s?

)

Problem 2/48

2/49 Compute the impact speed of a body released from
rest at an altitude 2 = 500 mi. (¢) Assume a constant
gravitational acceleration 8m, = 32.2 ft/sec? and (b)
account for the variation of g with altitude (refer to
Art. 1/5). Neglect the effects of atmospheric drag.

Problem 2/49

2/50 Compute the impact speed of body A which is re-
leased from rest at an altitude 2 = 750 mi above the
surface of the moon. (a) First assume a constant
gravitational —acceleration g, = 5.32 ft/sec? and
(b) then account for the variation of g,, with altitude
(refer to Art. 1/5).

2160 mi

Problem 2/50

2/51 A projectile is fired horizontally into a resisting
medium with a velocity v,, and the resulting decel-
eration is equal to cv”, where ¢ and n are constants
and v is the velocity within the medium. Find the
expression for the velocity v of the projectile in
terms of the time ¢ of penetration.

2/52 The horizontal motion of the plunger and shaft is ar-
rested by the resistance of the attached disk which
moves through the oil bath. If the velocity of the
plunger is v, in the position A wherex = 0 and ¢ = 0,
and if the deceleration is proportional to v so that
a = —kv, derive expressions for the velocity v and
position coordinate x in terms of the time ¢. Also ex-
press v in terms of x.

X
}—){ v
—

A —
L LT

Problem 2/52

2/53 On its takeoff roll, the airplane starts from rest and
accelerates according to a = a, —kv?, where a,, is the
constant acceleration resulting from the engine
thrust and —kv? is the acceleration due to aerody-
namic drag. If @, = 2m/s? & = 0.00004 m~!, and v
is in meters per second, determine the design length
of runway required for the airplane to reach the
takeoff speed of 250 km/h if the drag term is (a) ex-

cluded and (b) included.
vy=0 v =250 km/h
—_—
gag_m

Problem 2/53
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2/54 A test projectile is fired horizontally into a viscous

liquid with a velocity vy. The retarding force is pro-
portional to the square of the velocity, so that the
acceleration becomes a = —kv?. Derive expressions
for the distance D traveled in the liquid and the cor-
responding time ¢ required to reduce the velocity to
vo/2. Neglect any vertical motion.

e
= [E—
—_—
—_— v
Vo

Problem 2/54

2/55 A bumper, consisting of a nest of three springs, is

used to arrest the horizontal motion of a large mass
which is traveling at 40 ft/sec as it contacts the
bumper. The two outer springs cause a deceleration
proportional to the spring deformation. The center
spring increases the deceleration rate when the com-
pression exceeds 6 in. as shown on the graph. Deter-
mine the maximum compression x of the outer
springs.

Deceleration
ft/sec?

3000
2000
1000

Problem 2/55

2/56 When the effect of aerodynamic drag is included, the

y-acceleration of a baseball moving vertically upward
is a, = —g — kv%, while the acceleration when the
ball is moving downward is a; = —g + kv?, where & is
a positive constant and v is the speed in feet per sec-
ond. If the ball is thrown upward at 100 ft/sec from
essentially ground level, compute its maximum height
h and its speed v; upon impact with the ground. Take
k to be 0.002 ft ! and assume that g is constant.

a,=—g— kv2l lad =—g + kv?

100 ft/sec T
Q

y
\
\
[

Problem 2/56

»2/57 The vertical acceleration of a certain solid-fuel rocket

is given by a@ = ke — cv — g, where k, b, and ¢ are

constants, v is the vertical velocity acquired, and g is
the gravitational acceleration, essentially constant for
atmospheric flight. The exponential term represents
the effect of a decaying thrust as fuel is burned, and
the term —cv approximates the retardation due to
atmospheric resistance. Determine the expression for
the vertical velocity of the rocket ¢ seconds after firing.

»2/58 The preliminary design for a rapid-transit system

calls for the train velocity to vary with time as
shown in the plot as the train runs the two miles be-
tween stations A and B. The slopes of the cubic tran-
sition curves (which are of form a + bt + ct? + dt2)
are zero at the end points. Determine the total run
time ¢ between the stations and the maximum accel-

eration.

Y ety

80

Cubic functions

1

15—

At

o]

t, sec

Problem 2/58
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2/3 Plane Curvilinear Motion

We now treat the motion of a particle along a curved path which lies
in a single plane. This motion is a special case of the more general three-
dimensional motion introduced in Art. 2/1 and illustrated in Fig. 2/1. If we
let the plane of motion be the x-y plane, for instance, then the coordinates
z and ¢ of Fig. 2/1 are both zero, and R becomes the same as r. As men-
tioned previously, the vast majority of the motions of points or particles
encountered in engineering practice can be represented as plane motion.

Before pursuing the description of plane curvilinear motion in any
specific set of coordinates, we will first use vector analysis to describe
the motion, since the results will be independent of any particular coor-
dinate system. What follows in this article constitutes one of the most
basic concepts in dynamics, namely, the #ime derivative of a vector.
Much analysis in dynamics utilizes the time rates of change of vector
quantities. You are therefore well advised to master this topic at the
outset because you will have frequent occasion to use it.

Consider now the continuous motion of a particle along a plane curve
as represented in Fig. 2/5. At time ¢ the particle is at position A, which is
located by the position vector r measured from some convenient fixed ori-
gin O. If both the magnitude and direction of r are known at time ¢, then
the position of the particle is completely specified. At time ¢ + A#, the
particle is at A’, located by the position vector r + Ar. We note, of course,
that this combination is vector addition and not scalar addition. The dis-
placement of the particle during time At is the vector Ar which represents
the vector change of position and is clearly independent of the choice of
origin. If an origin were chosen at some different location, the position
vector r would be changed, but Ar would be unchanged. The distance
actually traveled by the particle as it moves along the path from A to A’
is the scalar length As measured along the path. Thus, we distinguish
between the vector displacement Ar and the scalar distance As.

Velocity

The average velocity of the particle between A and A’ is defined as
v,y = Ar/A¢, which is a vector whose direction is that of Ar and whose
magnitude is the magnitude of Ar divided by A¢. The average speed of

Path of
particle

Figure 2/5
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the particle between A and A’ is the scalar quotient As/A¢. Clearly, the
magnitude of the average velocity and the speed approach one another
as the interval A¢ decreases and A and A’ become closer together.

The instantaneous velocity v of the particle is defined as the limiting
value of the average velocity as the time interval approaches zero. Thus,

v = lim Ar
At—0 At

We observe that the direction of Ar approaches that of the tangent to
the path as At approaches zero and, thus, the velocity v is always a vec-
tor tangent to the path.

We now extend the basic definition of the derivative of a scalar
quantity to include a vector quantity and write

_dr _

V= (2/4)

The derivative of a vector is itself a vector having both a magnitude and
a direction. The magnitude of v is called the speed and is the scalar

v=|v|= ds _;
dt

At this point we make a careful distinction between the magnitude
of the derivative and the derivative of the magnitude. The magnitude of
the derivative can be written in any one of the several ways |dr/dt| =
|r| = § = |v] = v and represents the magnitude of the velocity, or the
speed, of the particle. On the other hand, the derivative of the magni-
tude is written d|r|/dt = dr/dt = i, and represents the rate at which the
length of the position vector r is changing. Thus, these two derivatives
have two entirely different meanings, and we must be extremely careful
to distinguish between them in our thinking and in our notation. For
this and other reasons, you are urged to adopt a consistent notation for
handwritten work for all vector quantities to distinguish them from
scalar quantities. For simplicity the underline v is recommended. Other
handwritten symbols such as v, v, and 0 are sometimes used.

With the concept of velocity as a vector established, we return to Fig.
2/5 and denote the velocity of the particle at A by the tangent vector v and
the velocity at A’ by the tangent v'. Clearly, there is a vector change in
the velocity during the time A¢. The velocity v at A plus (vectorially) the
change Av must equal the velocity at A’, so we can write v — v = Av. In-
spection of the vector diagram shows that Av depends both on the change
in magnitude (length) of v and on the change in direction of v. These two
changes are fundamental characteristics of the derivative of a vector.

Acceleration

The average acceleration of the particle between A and A’ is defined
as Av/At, which is a vector whose direction is that of Av. The magnitude
of this average acceleration is the magnitude of Av divided by At.
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The instantaneous acceleration a of the particle is defined as the
limiting value of the average acceleration as the time interval ap-
proaches zero. Thus,

By definition of the derivative, then, we write

_dv _

a= . = v (2/5)

As the interval A¢ becomes smaller and approaches zero, the direction of
the change Av approaches that of the differential change dv and, thus,
of a. The acceleration a, then, includes the effects of both the change in
magnitude of v and the change of direction of v. It is apparent, in gen-
eral, that the direction of the acceleration of a particle in curvilinear
motion is neither tangent to the path nor normal to the path. We do ob-
serve, however, that the acceleration component which is normal to the
path points toward the center of curvature of the path.

Visualization of Motion

A further approach to the visualization of acceleration is shown in
Fig. 2/6, where the position vectors to three arbitrary positions on the
path of the particle are shown for illustrative purpose. There is a velocity
vector tangent to the path corresponding to each position vector, and the
relation is v = r. If these velocity vectors are now plotted from some ar-
bitrary point C, a curve, called the hodograph, is formed. The derivatives
of these velocity vectors will be the acceleration vectors a = v which are
tangent to the hodograph. We see that the acceleration has the same re-
lation to the velocity as the velocity has to the position vector.

The geometric portrayal of the derivatives of the position vector r
and velocity vector v in Fig. 2/5 can be used to describe the derivative of
any vector quantity with respect to ¢ or with respect to any other scalar
variable. Now that we have used the definitions of velocity and accelera-
tion to introduce the concept of the derivative of a vector, it is important
to establish the rules for differentiating vector quantities. These rules

Figure 2/6
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are the same as for the differentiation of scalar quantities, except for the
case of the cross product where the order of the terms must be pre-
served. These rules are covered in Art. C/7 of Appendix C and should be
reviewed at this point.

Three different coordinate systems are commonly used for describing
the vector relationships for curvilinear motion of a particle in a plane: rec-
tangular coordinates, normal and tangential coordinates, and polar coor-
dinates. An important lesson to be learned from the study of these
coordinate systems is the proper choice of a reference system for a given
problem. This choice is usually revealed by the manner in which the mo-
tion is generated or by the form in which the data are specified. Each of
the three coordinate systems will now be developed and illustrated.

2/4 Rectangular Coordinates (x-y)

This system of coordinates is particularly useful for describing mo-
tions where the x- and y-components of acceleration are independently
generated or determined. The resulting curvilinear motion is then ob-
tained by a vector combination of the x- and y-components of the posi-
tion vector, the velocity, and the acceleration.

Vector Representation

The particle path of Fig. 2/5 is shown again in Fig. 2/7 along with
x- and y-axes. The position vector r, the velocity v, and the acceleration
a of the particle as developed in Art. 2/3 are represented in Fig. 2/7 to-
gether with their x- and y-components. With the aid of the unit vectors
i and j, we can write the vectors r, v, and a in terms of their x- and
y-components. Thus,

r=xi-+yj
vV="r=xi+yj (2/6)

a=v=i=Fi+jj

As we differentiate with respect to time, we observe that the time deriv-
atives of the unit vectors are zero because their magnitudes and direc-
tions remain constant. The scalar values of the components of v and a
are merely v, = %, v, = y and a, = U, = X, @, = U, = ). (As drawn in
Fig. 2/7, a, is in the negative x-direction, so that ¥ would be a negative
number.)

As observed previously, the direction of the velocity is always tan-
gent to the path, and from the figure it is clear that

v
y
v?=0v2+02 v=Jv?+uv? tan § = —
vx

a®?=a?+ ay2 a= a2+ ay2
If the angle 6 is measured counterclockwise from the x-axis to v for the

configuration of axes shown, then we can also observe that dy/dx =
tan 6 = v,/v,.

Figure 2/7
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If the coordinates x and y are known independently as functions of
time, x = f;(#) and y = f5(#), then for any value of the time we can com-
bine them to obtain r. Similarly, we combine their first derivatives x
and y to obtain v and their second derivatives ¥ and ¥ to obtain a. On
the other hand, if the acceleration components a, and a, are given as
functions of the time, we can integrate each one separately with re-
spect to time, once to obtain v, and v, and again to obtain x = f;(#) and
y = fo(t). Elimination of the time ¢ between these last two parametric
equations gives the equation of the curved path y = f(x).

From the foregoing discussion we can see that the rectangular-
coordinate representation of curvilinear motion is merely the superposi-
tion of the components of two simultaneous rectilinear motions in the
x- and y-directions. Therefore, everything covered in Art. 2/2 on rectilin-
ear motion can be applied separately to the x-motion and to the y-motion.

Projectile Motion

An important application of two-dimensional kinematic theory is
the problem of projectile motion. For a first treatment of the subject,
we neglect aerodynamic drag and the curvature and rotation of the
earth, and we assume that the altitude change is small enough so that
the acceleration due to gravity can be considered constant. With these
assumptions, rectangular coordinates are useful for the trajectory
analysis.

For the axes shown in Fig. 2/8, the acceleration components are

a, =0 a, = —&
Integration of these accelerations follows the results obtained previ-
ously in Art. 2/2a for constant acceleration and yields

Uy = (vx)O Uy = (Uy)O - gt
=2+ Wt ¥ =Yg+ Ut — 8t
Uy2 = (Uy)02 - 2g(y - yO)

In all these expressions, the subscript zero denotes initial conditions,
frequently taken as those at launch where, for the case illustrated,

(v,)g =vgcos 6

Figure 2/8
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x9 = yo = 0. Note that the quantity g is taken to be positive throughout
this text.

We can see that the x- and y-motions are independent for the simple
projectile conditions under consideration. Elimination of the time ¢ be-
tween the x- and y-displacement equations shows the path to be parabolic
(see Sample Problem 2/6). If we were to introduce a drag force which de-
pends on the speed squared (for example), then the x- and y-motions would
be coupled (interdependent), and the trajectory would be nonparabolic.

When the projectile motion involves large velocities and high alti-
tudes, to obtain accurate results we must account for the shape of the
projectile, the variation of g with altitude, the variation of the air den-
sity with altitude, and the rotation of the earth. These factors introduce
considerable complexity into the motion equations, and numerical inte-
gration of the acceleration equations is usually necessary.

Andrew Davidhazy

This stroboscopic photograph of a bouncing ping-pong ball suggests not
only the parabolic nature of the path, but also the fact that the speed is
lower near the apex.
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SAMPLE PROBLEM 2/5

The curvilinear motion of a particle is defined by v, = 50 — 16f and y =
100 — 4¢2, where v, is in meters per second, y is in meters, and ¢ is in seconds.
It is also known that x = 0 when ¢ = 0. Plot the path of the particle and deter-
mine its velocity and acceleration when the position y = 0 is reached.

Solution. The x-coordinate is obtained by integrating the expression for v,,
and the x-component of the acceleration is obtained by differentiating v,. Thus,

3 t
[fdx=jvxdt} j dx:f (50 — 16¢) dt x =50t — 82 m
0 0

l[a, = 0,] a, = % (50 — 16¢) a, = —16 m/s?

The y-components of velocity and acceleration are

d

[, =51 vy =5, (100 —4%) v, = ~8tmjs
=70 -4 (g = —8 m/s?
la, = 0,] ay = (=8¢ a, = —8m/s

We now calculate corresponding values of x and y for various values of ¢ and
plot x against y to obtain the path as shown.
Wheny = 0,0 = 100 — 4¢2, so t = 5 s. For this value of the time, we have

v, = 50 — 16(5) = —30 m/s
By = —8(5) = —40 m/s
v =/(-30)2 + (—40)? = 50 m/s

a=J(—16)? + (—8)% = 17.89 m/s?

The velocity and acceleration components and their resultants are shown on the
separate diagrams for point A, where y = 0. Thus, for this condition we may
write

v = —30i — 40j m/s Ans.

a = —16i — 8j m/s? Ans.

100

80

N2
. \
y
y

g
=
40
20 /
0 t :‘5 S /
0 20 40 A 60 80
x, m
Path Path
«=—-30m/s a, =-16 m/szl

Helpful Hint

We observe that the velocity vector lies
along the tangent to the path as it
should, but that the acceleration vector
is not tangent to the path. Note espe-
cially that the acceleration vector has a
component that points toward the in-
side of the curved path. We concluded
from our diagram in Fig. 2/5 that it is
impossible for the acceleration to have a
component that points toward the out-
side of the curve.
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SAMPLE PROBLEM 2/6

A team of engineering students designs a medium-size catapult
which launches 8-1b steel spheres. The launch speed is v, = 80 ft/sec,
the launch angle is # = 35° above the horizontal, and the launch posi-

3‘} Vg = 80 ft/sec fence
| | )
—
|4 6=35° 20
i :

tion is 6 ft above ground level. The students use an athletic field with 1\
an adjoining slope topped by an 8-ft fence as shown. Determine:

100 30—

(a) the x-y coordinates of the point of first impact
(b) the time duration ¢; of the flight
(¢) the maximum height & above the horizontal field attained by the ball

(d) the velocity (expressed as a vector) with which the projectile strikes the
ground
Repeat part (a) for a launch speed of v, = 75 ft/sec.

Solution. We make the assumptions of constant gravitational acceleration
and no aerodynamic drag. With the latter assumption, the 8-1b weight of the pro-
jectile is irrelevant. Using the given x-y coordinate system, we begin by checking
the y-displacement at the horizontal position of the fence.

[x =%y + V)] 100 + 30 = 0 + (80 cos 35°)¢ t = 1.984 sec

ly =30+ @)t — 3821y =6 + 80 sin 35°(1.984) — 1 (32.2)(1.984)2 = 33.7ft

(a) Because the y-coordinate of the top of the fence is 20 + 8 = 28 feet, the
projectile clears the fence. We now find the flight time by setting y = 20 ft:

[y =30+ )t — 38621 20 =6 + 80sin 35°(¢,) — 5(32.2)t2 ¢;=250s Ans.

[x = 2o + ()of] % = 0 + 80 cos 35°(2.50) = 164.0 ft

(b) Thus the point of first impact is (x, y) = (164.0, 20) ft. Ans.
(¢) For the maximum height:

[0,2 = (0))g? — 280y — yo)]

(d) For the impact velocity:

0% = (80 sin 35°)2 — 2(32.2)(h — 6) h = 38.7 ft Ans.

[v, = (Yol v, = 80 cos 35° = 65.5 ft/sec

[v, = ) — gtl v, = 80 sin 35° — 32.2(2.50) = —34.7 ft/sec

So the impact velocity is v = 65.51 — 34.7j ft/sec. Ans.
If vy = 75 ft/sec, the time from launch to the fence is found by

[x =xg + (V)et] 100 + 30 = (75 cos 35°)¢ t = 2.12 sec
and the corresponding value of y is

[y =30+ ot — 2821 y =6+ 80sin 35°2.12) — 5 (32.2)(2.12)2 = 24.9 ft

For this launch speed, we see that the projectile hits the fence, and the point
of impact is

(x, y) = (130, 24.9) ft Ans.

For lower launch speeds, the projectile could land on the slope or even on the
level portion of the athletic field.

Helpful Hints

@ Neglecting aerodynamic drag is a

poor assumption for projectiles with
relatively high initial velocities,
large sizes, and low weights. In a
vacuum, a baseball thrown with an
initial speed of 100 ft/sec at 45°
above the horizontal will travel about
311 feet over a horizontal range. In
sea-level air, the baseball range is
about 200 ft, while a typical beachball
under the same conditions will travel
about 10 ft.

@ As an alternative approach, we could

find the time at apex where v, = 0,
then use that time in the y-displacement
equation. Verify that the trajectory
apex occurs over the 100-ft horizon-

tal portion of the athletic field.
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PROBLEMS

(In the following problems where motion as a projectile in
air is involved, neglect air resistance unless otherwise
stated and use g = 9.81 m/s? or g = 32.2 ft/sec?.)

Introductory Problems

2/59 At time ¢ = 0, the position vector of a particle mov-
ing in the x-y plane is r = 5i m. By time ¢ = 0.02 s,
its position vector has become 5.1i + 0.4j m. Deter-
mine the magnitude v,, of its average velocity during
this interval and the angle § made by the average
velocity with the positive x-axis.

2/60 A particle moving in the x-y plane has a velocity at
time ¢ = 6 s given by 4i + 5j m/s, and at ¢t = 6.1 s its
velocity has become 4.3i + 5.4j m/s. Calculate the
magnitude a,, of its average acceleration during the
0.1-s interval and the angle 6 it makes with the
x-axis.

2/61 The velocity of a particle moving in the x-y plane is
given by 6.12i + 3.24j m/s at time ¢ = 3.65 s. Its aver-
age acceleration during the next 0.02 s is 4i + 6j m/s2.
Determine the velocity v of the particle at ¢ = 3.67 s
and the angle 6 between the average-acceleration
vector and the velocity vector at ¢ = 3.67 s.

2/62 A particle which moves with curvilinear motion has
coordinates in millimeters which vary with the time ¢
in seconds according tox = 2t> — 4¢ and y = 3¢2 — %tS.
Determine the magnitudes of the velocity v and
acceleration a and the angles which these vectors
make with the x-axis when ¢ = 2 s.

2/63 The x-coordinate of a particle in curvilinear motion
is given by x = 2t3 — 3¢, where x is in feet and ¢ is in
seconds. The y-component of acceleration in feet per
second squared is given by a, = 4¢. If the particle has
y-components y = 0 and y = 4 ft/sec when ¢ = 0, find
the magnitudes of the velocity v and acceleration a
when ¢ = 2sec. Sketch the path for the first
2 seconds of motion, and show the velocity and accel-
eration vectors for ¢ = 2 sec.

2/64 The y-coordinate of a particle in curvilinear motion
is given by y = 4¢3 — 3¢, where y is in inches and # is
in seconds. Also, the particle has an acceleration in
the x-direction given by a, = 12¢ in./sec?. If the ve-
locity of the particle in the x-direction is 4 in./sec
when ¢ = 0, calculate the magnitudes of the velocity
v and acceleration a of the particle when ¢ = 1 sec.
Construct v and a in your solution.

2/65 A rocket runs out of fuel in the position shown and
continues in unpowered flight above the atmosphere.
If its velocity in this position was 600 mi/hr, calcu-
late the maximum additional altitude & acquired and
the corresponding time ¢ to reach it. The gravita-
tional acceleration during this phase of its flight is
30.8 ft/sec?.

v =600 mi/hr

Vertical
\

\
\
\
\
F302

Problem 2/65

2/66 A particle moves in the x-y plane with a y-component
of velocity in feet per second given by v, = 8¢ with ¢
in seconds. The acceleration of the particle in the
x-direction in feet per second squared is given by
a, = 4t with ¢ in seconds. When¢ =0,y = 2 ft,x = 0,
and v, = 0. Find the equation of the path of the
particle and calculate the magnitude of the velocity
v of the particle for the instant when its x-coordinate
reaches 18 ft.

2/67 A roofer tosses a small tool to the ground. What min-
imum magnitude v, of horizontal velocity is required
to just miss the roof corner B? Also determine the

distance d.
r—2.4 m-—
A
A
12m
Y
A
0.9 m
i | m— B
[
[ [m_—
e
— 0| —
1 =]
i
|
o [ [ | J‘_=',= 3m
-
_| ]
1 =
—i
=
<—d—=|C

Problem 2/67
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2/68 Prove the well-known result that, for a given launch
speed v, the launch angle 6 = 45° yields the maxi-
mum horizontal range R. Determine the maximum
range. (Note that this result does not hold when
aerodynamic drag is included in the analysis.)

2/69 Calculate the minimum possible magnitude u of the
muzzle velocity which a projectile must have when
fired from point A to reach a target B on the same
horizontal plane 12 km away.

u

A/ B

| 121m |

Problem 2/69

2/70 The center of mass G of a high jumper follows the
trajectory shown. Determine the component v, mea-
sured in the vertical plane of the figure, of his take-
off velocity and angle 6 if the apex of the trajectory
just clears the bar at A. (In general, must the mass
center G of the jumper clear the bar during a suc-
cessful jump?)

Problem 2/70

Representative Problems

2/71 The quarterback @ throws the football when the
receiver R is in the position shown. The receiver’s
velocity is constant at 10 yd/sec, and he catches
passes when the ball is 6 ft above the ground. If the
quarterback desires the receiver to catch the ball
2.5 sec after the launch instant shown, determine
the initial speed v, and angle 6 required.

e i —

30 yd

Problem 2/71

2/72 The water nozzle ejects water at a speed v, = 45
ft/sec at the angle # = 40°. Determine where, relative
to the wall base point B, the water lands. Neglect the
effects of the thickness of the wall.

vo H T
A6 3
IE !

B

| 60 |

Not. to scale

Problem 2/72

2/73 Water is ejected from the water nozzle of Prob. 2/72
with a speed v, = 45 ft/sec. For what value of the
angle 6 will the water land closest to the wall after
clearing the top? Neglect the effects of wall thick-
ness and air resistance. Where does the water land?

2/74 A football player attempts a 30-yd field goal. If he is
able to impart a velocity u of 100 ft/sec to the ball,
compute the minimum angle 6 for which the ball will
clear the crossbar of the goal. (Hint: Let m = tan 6.)

Ty W, ﬁ

| 30 yd

Problem 2/74
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2/75 The pilot of an airplane carrying a package of mail to
a remote outpost wishes to release the package at
the right moment to hit the recovery location A.
What angle 0 with the horizontal should the pilot’s
line of sight to the target make at the instant of re-
lease? The airplane is flying horizontally at an alti-
tude of 100 m with a velocity of 200 km/h.

200 km/h
—_—
N I _—
AN
0
AN
AN 100 m
AN
AN
AN
ey N

Problem 2/75

2/76 During a baseball practice session, the cutoff man A
executes a throw to the third baseman B. If the ini-
tial speed of the baseball is v, = 130 ft/sec, what
angle 6 is best if the ball is to arrive at third base at
essentially ground level?

A B
: P
|

150’

Problem 2/76

2/77 If the tennis player serves the ball horizontally
(6 = 0), calculate its velocity v if the center of the
ball clears the 36-in. net by 6 in. Also find the dis-
tance s from the net to the point where the ball hits
the court surface. Neglect air resistance and the
effect of ball spin.

_/ 4
P

1 |
| Is6” }

f S ! 39’ !

Problem 2/77

2/78 The basketball player likes to release his foul shots
with an initial speed v, = 23.5 ft/sec. What value(s)
of the initial angle # will cause the ball to pass
through the center of the rim? Neglect clearance
considerations as the ball passes over the front por-
tion of the rim.

Vo %‘ S
/o

| 13'9”

Problem 2/78

2/79 A projectile is launched with an initial speed of 200
m/s at an angle of 60° with respect to the horizontal.
Compute the range R as measured up the incline.

B

Problem 2/79

2/80 A rock is thrown horizontally from a tower at A and
hits the ground 3.5 s later at B. The line of sight
from A to B makes an angle of 50° with the horizon-
tal. Compute the magnitude of the initial velocity u
of the rock.

A u

—_—

50°

Problem 2/80
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2/81 The muzzle velocity of a long-range rifle at A is u =
400 m/s. Determine the two angles of elevation 6
which will permit the projectile to hit the mountain
target B.

Problem 2/81
2/82 A projectile is launched with a speed vy, =25 m/s
from the floor of a 5-m-high tunnel as shown. Deter-

mine the maximum horizontal range R of the projec-
tile and the corresponding launch angle 6.

vo =25 m/s
5m
[
A

Problem 2/82
2/83 A projectile is launched from point A with the initial
conditions shown in the figure. Determine the slant
distance s which locates the point B of impact. Cal-

culate the time of flight .

vy =120 m/s

A 0=40° 20°

800 m

Problem 2/83

2/84 A team of engineering students is designing a cata-
pult to launch a small ball at A so that it lands in the
box. If it is known that the initial velocity vector
makes a 30° angle with the horizontal, determine the
range of launch speeds v, for which the ball will land
inside the box.

1%

12”7 %

I

|
[

e |

Problem 2/84

2/85 Ball bearings leave the horizontal trough with a ve-
locity of magnitude u and fall through the 70-mm-
diameter hole as shown. Calculate the permissible
range of u which will enable the balls to enter the
hole. Take the dashed positions to represent the lim-
iting conditions.

] [ 20mm |
O . j T
|

<120 mm —

Problem 2/85

2/86 A horseshoe player releases the horseshoe at A with
an initial speed v, = 36 ft/sec. Determine the range
for the launch angle 0 for which the shoe will strike
the 14-in. vertical stake.

vo = 36 ft/sec
A5 147
ﬁrﬁ —

40 |

Problem 2/86
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2/87 A fireworks shell is launched vertically from point A
with speed sufficient to reach a maximum altitude of
500 ft. A steady horizontal wind causes a constant
horizontal acceleration of 0.5 ft/sec2, but does not af-
fect the vertical motion. Determine the deviation 6
at the top of the trajectory caused by the wind.

Wind
500"

Problem 2/87

2/88 Consider the fireworks shell of the previous problem.
What angle a compensates for the wind in that the
shell peaks directly over the launch point A? All
other information remains as stated in the previous
problem, including the fact that the initial launch
velocity v, if vertical would result in a maximum
altitude of 500 ft. What is the maximum height &
possible in this problem?

Wind
h

\
\
\
\
\
\
\
\
2] ‘
—_—
~a
\
\

A

Problem 2/88

2/89 Determine the location £ of the spot toward which the
pitcher must throw if the ball is to hit the catcher’s
mitt. The ball is released with a speed of 40 m/s.

20 m

8
1m

Problem 2/89

2/90 The pilot of an airplane pulls into a steep 45° climb
at 300 km/h and releases a package at position A.
Calculate the horizontal distance s and the time ¢
from the point of release to the point at which the
package strikes the ground.

7

300 knvh /" /}“f"
S

500 m

Problem 2/90

2/91 Compare the slant range R; and flight time ¢; for the
depicted projectile with the range R and flight time ¢
for a projectile (launched with speed v, and inclina-
tion angle a) which flies over a horizontal surface.
Evaluate your four results for a« = 30°.

B

Problem 2/91

2/92 A projectile is launched from point A and lands on
the same level at D. Its maximum altitude is 4. De-
termine and plot the fraction f, of the total flight
time that the projectile is above the level f;i, where
fiis a fraction which can vary from zero to 1. State
the value of f, for f; = %.

Problem 2/92
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»2/93 A projectile is ejected into an experimental fluid at
time ¢ = 0. The initial speed is v, and the angle to
the horizontal is 6. The drag on the projectile results
in an acceleration term ap = —kv, where % is a con-
stant and v is the velocity of the projectile. Deter-
mine the x- and y-components of both the velocity
and displacement as functions of time. What is the
terminal velocity? Include the effects of gravitational
acceleration.

1

Vo

<
7

— — —x

Problem 2/93

»2/94 An experimental fireworks shell is launched verti-
cally from point A with an initial velocity of magni-
tude v, = 100 ft/sec. In addition to the acceleration
due to gravity, an internal thrusting mechanism
causes a constant acceleration component of 2g in
the 60° direction shown for the first 2 seconds of
flight, after which the thruster ceases to function.
Determine the maximum height A achieved, the
total flight time, the net horizontal displacement
from point A, and plot the entire trajectory. Neglect
any acceleration due to aerodynamics.

2g

60°
)

Vo

Problem 2/94

»2/95 A projectile is launched with speed v, from point A.
Determine the launch angle 6 which results in the
maximum range R up the incline of angle « (where
0 = a =90°. Evaluate your results for a = 0, 30°,
and 45°.

Problem 2/95

»>2/96 A projectile is launched from point A with the initial
conditions shown in the figure. Determine the x- and
y-coordinates of the point of impact.

y
} vo = 225 ft/sec

AL 50 B

! 1000 \

Problem 2/96
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2/5 Normal and Tangential Coordinates (n-t)

As we mentioned in Art. 2/1, one of the common descriptions of
curvilinear motion uses path variables, which are measurements made
along the tangent ¢ and normal n to the path of the particle. These coor-
dinates provide a very natural description for curvilinear motion and
are frequently the most direct and convenient coordinates to use. The
n- and ¢-coordinates are considered to move along the path with the par-
ticle, as seen in Fig. 2/9 where the particle advances from A to B to C.
The positive direction for n at any position is always taken toward the
center of curvature of the path. As seen from Fig. 2/9, the positive
n-direction will shift from one side of the curve to the other side if the
curvature changes direction.

Velocity and Acceleration

We now use the coordinates n and ¢ to describe the velocity v and
acceleration a which were introduced in Art. 2/3 for the curvilinear mo-
tion of a particle. For this purpose, we introduce unit vectors e, in the
n-direction and e, in the ¢-direction, as shown in Fig. 2/10a for the posi-
tion of the particle at point A on its path. During a differential incre-
ment of time d¢, the particle moves a differential distance ds along the
curve from A to A’. With the radius of curvature of the path at this posi-
tion designated by p, we see that ds = p dB, where B is in radians. It is
unnecessary to consider the differential change in p between A and A’
because a higher-order term would be introduced which disappears in
the limit. Thus, the magnitude of the velocity can be written v = ds/dt =
p dB/dt, and we can write the velocity as the vector

v =ve, = pBet 2/7)

The acceleration a of the particle was defined in Art. 2/3 as a =
dv/dt, and we observed from Fig. 2/5 that the acceleration is a vector
which reflects both the change in magnitude and the change in direc-
tion of v. We now differentiate v in Eq. 2/7 by applying the ordinary
rule for the differentiation of the product of a scalar and a vector*
and get

_dv _ dve)
dt dt

=ve, + Ve, (2/8)

where the unit vector e, now has a nonzero derivative because its direc-
tion changes.

To find é, we analyze the change in e, during a differential incre-
ment of motion as the particle moves from A to A’ in Fig. 2/10a. The
unit vector e, correspondingly changes to e, and the vector difference
de, is shown in part b of the figure. The vector de,; in the limit has a
magnitude equal to the length of the arc |e)] dB = dB obtained by
swinging the unit vector e, through the angle dB expressed in radians.

*See Art. C/7 of Appendix C.
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The direction of de, is given by e,. Thus, we can write de, = e, df.
Dividing by df gives

de,
dp "

Dividing by dt gives de,/dt = (dB/dt)e,, which can be written
é, = e, (2/9)

With the substitution of Eq. 2/9 and B from the relation v = p,é, Eq.
2/8 for the acceleration becomes

v2

a= n e, + ve, (2/10)
2 . .
where an:F=p2=vB
a; = 1’) = -§
a=a,2+a?

We stress that a, = v is the time rate of change of the speed v. Finally,
we note that a, = v = d(pB)/dt = pB + pB. This relation, however, finds
little use because we seldom have reason to compute p.

Geometric Interpretation

Full understanding of Eq. 2/10 comes only when we clearly see the
geometry of the physical changes it describes. Figure 2/10c shows the ve-
locity vector v when the particle is at A and v’ when it is at A’. The vector
change in the velocity is dv, which establishes the direction of the accelera-
tion a. The n-component of dv is labeled dv,, and in the limit its magni-
tude equals the length of the arc generated by swinging the vector v as a
radius through the angle dg. Thus, |dv,)| = v dp and the n-component of
acceleration is a,, = |dv,|/dt = v(dB/dt) = v as before. The ¢-component of
dv is labeled dv,, and its magnitude is simply the change dv in the magni-
tude or length of the velocity vector. Therefore, the #-component of accel-
eration is a; = dv/dt = v = § as before. The acceleration vectors resulting
from the corresponding vector changes in velocity are shown in Fig. 2/10c.

It is especially important to observe that the normal component of
acceleration a,, is always directed toward the center of curvature C. The
tangential component of acceleration, on the other hand, will be in the
positive ¢-direction of motion if the speed v is increasing and in the nega-
tive ¢-direction if the speed is decreasing. In Fig. 2/11 are shown
schematic representations of the variation in the acceleration vector for
a particle moving from A to B with (a) increasing speed and (b) decreas-
ing speed. At an inflection point on the curve, the normal acceleration
v?/p goes to zero because p becomes infinite.



56 Chapter2 Kinematics of Particles

Figure 2/12

e AN

A A
Speed Speed

increasing decreasing

(a) (b)

Acceleration vectors for
particle moving from A to B

Figure 2/11

Circular Motion

Circular motion is an important special case of plane curvilinear
motion where the radius of curvature p becomes the constant radius r of
the circle and the angle S is replaced by the angle 6§ measured from any
convenient radial reference to OP, Fig. 2/12. The velocity and the accel-
eration components for the circular motion of the particle P become

v=r6
a,=v¥r=r62=100 (2/11)
a,=0=rb

We find repeated use for Egs. 2/10 and 2/11 in dynamics, so these
relations and the principles behind them should be mastered.

GaryTramontina/Bloomberg viaGetty Images

An example of uniform circular motion is this car moving with constant speed
around a wet skidpad (a circular roadway with a diameter of about 200 feet).
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SAMPLE PROBLEM 2/7

To anticipate the dip and hump in the road, the driver of a car applies her
brakes to produce a uniform deceleration. Her speed is 100 km/h at the bottom A of
the dip and 50 km/h at the top C of the hump, which is 120 m along the road from
A. If the passengers experience a total acceleration of 3 m/s? at A and if the radius of
curvature of the hump at C is 150 m, calculate (a) the radius of curvature p at A, (b)
the acceleration at the inflection point B, and (c) the total acceleration at C.

gom C
60 m

B 150 m

Solution. The dimensions of the car are small compared with those of the
path, so we will treat the car as a particle. The velocities are

- km)( 1h m ) _
UA_<100 X ><3600 S)(moo km) 27.8 m/s

_ £ 1000 _
ve = 50 3600 13.89 m/s

We find the constant deceleration along the path from

[J’vdv=fatds] fcvdv=atJ-ds
0

Va

_ 1 9 o (13.89)2 — (27.8)2 _ 9
a =5 W — va%) o120 2.41 m/s

(a) Condition at A. With the total acceleration given and a; determined, we
can easily compute a,, and hence p from

[a? = a,? + a,°] a,?=3%—-(241)%?=3.19 a, = 1.785 m/s?

la, = v%/p] p =v%a, = (27.8)%/1.785 = 432 m Ans.

(b) Condition at B. Since the radius of curvature is infinite at the inflection
point, @, = 0 and

a=a, = —2.41 m/s? Ans.

(c) Condition at C. The normal acceleration becomes
la, = v2/p] a, = (13.89)2/150 = 1.286 m/s?

With unit vectors e, and e, in the n- and ¢-directions, the acceleration may be
written

a = 1.286e, — 2.41e, m/s?
where the magnitude of a is

la = Ja,2 + a2 a = J(1.286)% + (—2.41)2 = 2.73 m/s? Ans.

The acceleration vectors representing the conditions at each of the three
points are shown for clarification.

Helpful Hint

@ Actually, the radius of curvature to
the road differs by about 1 m from
that to the path followed by the cen-
ter of mass of the passengers, but we
have neglected this relatively small

difference.
+n
|
a=3m/sZ |
a, = 1.785 m/s?
4 -7 +t
a, =-2.41 m/s?
B _
a=a,=-2.41 m/s>
a,=-241m/s? C
R +t

a, = 1.286 m/s?
a, = 2.73 m/s? }

|
+n
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SAMPLE PROBLEM 2/8

A certain rocket maintains a horizontal attitude of its axis during the pow- G 20 ft/sec?
ered phase of its flight at high altitude. The thrust imparts a horizontal compo- Horiz @91\57&* — 12.000 mi/hr

nent of acceleration of 20 ft/sec?, and the downward acceleration component is /
the acceleration due to gravity at that altitude, which is g = 30 ft/sec?. At the in- /

\

\

‘ =t
\j/g = 30 ft/sec?

stant represented, the velocity of the mass center G of the rocket along the 15° /n
direction of its trajectory is 12,000 mi/hr. For this position determine (a) the ra-

dius of curvature of the flight trajectory, (b) the rate at which the speed v is in- p
creasing, (c¢) the angular rate B of the radial line from G to the center of >/
curvature C, and (d) the vector expression for the total acceleration a of the C

rocket.

Solution. We observe that the radius of curvature appears in the expression

for the normal component of acceleration, so we use n- and ¢-coordinates to de-

scribe the motion of G. The n- and ¢-components of the total acceleration are ob-

@ tained by resolving the given horizontal and vertical accelerations into their n- @ Alternatively, we could find the re-

and ¢-components and then combining. From the figure we get sultant acceleration and then re-
solve it into n- and ¢-components.

Helpful Hints

a, = 30 cos 15° — 20 sin 15° = 23.8 ft/sec?

a, = 30 sin 15° + 20 cos 15° = 27.1 ft/sec?

(a) We may now compute the radius of curvature from

2 [(12,000)(44/30)]*
O la, = v¥p] P UEAPUDIEEOIT 13.01(108) ft Ans. @ To convert from mi/hr to ft/sec, multi-

o 238 5280 ft/mi _ 44 ftjsec .
3600 sec/hr 30 mi/fhr |
is easily remembered, as 30 mi/hr is
the same as 44 ft/sec.

ply by

(b) The rate at which v is increasing is simply the ¢-component of acceleration.

[V =a,l v = 27.1 ft/sec? Ans.

(c¢) The angular rate B of line GC depends on v and p and is given by

2
. . 12,000(44/30) a, = 20 ft/sec

= =vlp=""—"" = 13.53(10 %) rad, Ans. —x
[v = pp] B =ulp 15010109 (10~4) rad/sec ns

(d) With unit vectors e, and e, for the n- and ¢-directions, respectively, the total
acceleration becomes

g =30 ft/sec?

a = 23.8e, + 27.1e, ft/sec? Ans.
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PROBLEMS

Introductory Problems
2/97 Determine the maximum speed for each car if the

normal acceleration is limited to 0.88g. The roadway
is unbanked and level.

21m

Problem 2/97

2/98 A car is traveling around a circular track of 800-ft
radius. If the magnitude of its total acceleration is
10 ft/sec? at the instant when its speed is 45 mi/hr,
determine the rate at which the car is changing its
speed.

2/99 Six acceleration vectors are shown for the car whose
velocity vector is directed forward. For each acceler-
ation vector describe in words the instantaneous mo-
tion of the car.

Q4

as /

%@

Problem 2/99

2/100 The driver of the truck has an acceleration of 0.4g
as the truck passes over the top A of the hump in
the road at constant speed. The radius of curvature
of the road at the top of the hump is 98 m, and the
center of mass G of the driver (considered a parti-
cle) is 2 m above the road. Calculate the speed v of
the truck.

Problem 2/100

2/101 A bicycle is placed on a service rack with its wheels
hanging free. As part of a bearing test, the front
wheel is spun at the rate N = 45 rev/min. Assume
that this rate is constant and determine the speed v
and magnitude a of the acceleration of point A.

Problem 2/101

2/102 A ship which moves at a steady 20-knot speed
(1 knot = 1.852 km/h) executes a turn to port by
changing its compass heading at a constant coun-
terclockwise rate. If it requires 60 s to alter course
90°, calculate the magnitude of the acceleration a
of the ship during the turn.

2/103 A train enters a curved horizontal section of track
at a speed of 100 km/h and slows down with con-
stant deceleration to 50 km/h in 12 seconds. An ac-
celerometer mounted inside the train records a
horizontal acceleration of 2 m/s2 when the train is
6 seconds into the curve. Calculate the radius of
curvature p of the track for this instant.
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2/104 The two cars A and B enter an unbanked and level
turn. They cross line C-C simultaneously, and each
car has the speed corresponding to a maximum
normal acceleration of 0.9g in the turn. Determine
the elapsed time for each car between its two cross-
ings of line C-C. What is the relative position of the
two cars as the second car exits the turn? Assume
no speed changes throughout.

C

88 m

%Hm

b —~— Al
a Bl

C

Problem 2/104

2/105 Revisit the two cars of the previous problem, only
now the track has variable banking—a concept
shown in the figure. Car A is on the unbanked por-
tion of the track and its normal acceleration re-
mains at 0.9g. Car B is on the banked portion of
the track and its normal acceleration is limited to
1.12g. If the cars approach line C-C with speeds
equal to the respective maxima in the turn, deter-
mine the time for each car to negotiate the turn as
delimited by line C-C. What is the relative position
of the two cars as the second car exits the turn?
Assume no speed changes throughout.

Problem 2/105

2/106 A particle moves along the curved path shown. If
the particle has a speed of 40 ft/sec at A at time #4
and a speed of 44 ft/sec at B at time ¢p, determine
the average values of the acceleration of the parti-
cle between A and B, both normal and tangent to

the path.
-
~
(/
B///26°
e
_ " tg=3.84sec
ya o
a7 %
tA 3.64 sec

Problem 2/106

2/107 The speed of a car increases uniformly with time
from 50 km/h at A to 100 km/h at B during 10 sec-
onds. The radius of curvature of the hump at A is
40 m. If the magnitude of the total acceleration of
the mass center of the car is the same at B as at A,
compute the radius of curvature pg of the dip in the
road at B. The mass center of the car is 0.6 m from

the road.
0 6 m %

Problem 2/107
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Representative Problems

2/108 The figure shows two possible paths for negotiating

an unbanked turn on a horizontal portion of a race
course. Path A-A follows the centerline of the road
and has a radius of curvature p, = 85 m, while
path B-B uses the width of the road to good advan-
tage in increasing the radius of curvature to
pg = 200 m. If the drivers limit their speeds in
their curves so that the lateral acceleration does
not exceed 0.8g, determine the maximum speed for
each path.

Problem 2/108

2/109 Consider the polar axis of the earth to be fixed in

space and compute the magnitudes of the velocity
and acceleration of a point P on the earth’s sur-
face at latitude 40° north. The mean diameter of
the earth is 12 742 km and its angular velocity is
0.7292(10™*) rad/s.

Problem 2/109

2/110 A satellite travels with constant speed v in a circu-

2/111

lar orbit 320 km above the earth’s surface. Calcu-
late v knowing that the acceleration of the satellite
is the gravitational acceleration at its altitude.
(Note: Review Art. 1/5 as necessary and use the
mean value of g and the mean value of the earth’s
radius. Also recognize that v is the magnitude of
the velocity of the satellite with respect to the cen-
ter of the earth.)

The car is traveling at a speed of 60 mi/hr as it ap-
proaches point A. Beginning at A, the car deceler-
ates at a constant 7 ft/sec? until it gets to point B,
after which its constant rate of decrease of speed is
3 ft/sec? as it rounds the interchange ramp. Deter-
mine the magnitude of the total car acceleration
(a) just before it gets to B, (b) just after it passes B,
and (c) at point C.

300

Problem 2/111

2/112 Write the vector expression for the acceleration a

of the mass center G of the simple pendulum in
both n-¢t and x-y coordinates for the instant when
6 = 60°if 6 = 2 rad/sec and 6 = 4.025 rad/sec?.

Problem 2/112
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2/113 The preliminary design for a “small” space station
to orbit the earth in a circular path consists of a
ring (torus) with a circular cross section as shown.
The living space within the torus is shown in sec-
tion A, where the “ground level” is 20 ft from the
center of the section. Calculate the angular speed N
in revolutions per minute required to simulate
standard gravity at the surface of the earth
(32.17 ft/sec?). Recall that you would be unaware of
a gravitational field if you were in a nonrotating
spacecraft in a circular orbit around the earth.

Section A

Problem 2/113

2/114 Magnetic tape is being transferred from reel A to
reel B and passes around idler pulleys C and D. At
a certain instant, point P; on the tape is in contact
with pulley C and point P, is in contact with pulley
D. If the normal component of acceleration of P, is
40 m/s? and the tangential component of accelera-
tion of P, is 30 m/s? at this instant, compute the
corresponding speed v of the tape, the magnitude of
the total acceleration of P;, and the magnitude of
the total acceleration of P,

P, 50 mm

Problem 2/114

2/115 The car C increases its speed at the constant rate of
1.5 m/s? as it rounds the curve shown. If the mag-
nitude of the total acceleration of the car is
2.5 m/s? at the point A where the radius of curva-
ture is 200 m, compute the speed v of the car at this
point.

Problem 2/115

2/116 A football player releases a ball with the initial con-
ditions shown in the figure. Determine the radius
of curvature of the trajectory (a) just after release
and (b) at the apex. For each case, compute the
time rate of change of the speed.

v, = 80 ft/sec

Problem 2/116

2/117 For the football of the previous problem, determine
the radius of curvature p of the path and the time
rate of change ¥ of the speed at times ¢ = 1 sec and
t = 2 sec, where t = 0 is the time of release from
the quarterback’s hand.

2/118 A particle moving in the x-y plane has a position
vector given by r = %t2i + §t3', where r is in inches
and ¢ is in seconds. Calculate the radius of curva-
ture p of the path for the position of the particle
when ¢ = 2 sec. Sketch the velocity v and the cur-
vature of the path for this particular instant.
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2/119 The design of a camshaft-drive system of a four-
cylinder automobile engine is shown. As the engine
is revved up, the belt speed v changes uniformly
from 3 m/s to 6 m/s over a two-second interval. Cal-
culate the magnitudes of the accelerations of points
P, and P, halfway through this time interval.

Camshaft
sprocket

Drive belt
tensioner

Intermediate

Crankshaft sprocket

sprocket

Problem 2/119

2/120 A small particle P starts from point O with a negli-
gible speed and increases its speed to a value
v= @, where y is the vertical drop from O.
When x = 50 ft, determine the n-component of ac-
celeration of the particle. (See Art. C/10 for the ra-
dius of curvature.)

0 Horizontal

|
|
|
Vertical
|

I
I
I
y

Problem 2/120

2/121 At a certain point in the reentry of the space shut-
tle into the earth’s atmosphere, the total accelera-
tion of the shuttle may be represented by two
components. One component is the gravitational
acceleration g = 9.66 m/s? at this altitude. The sec-
ond component equals 12.90 m/s? due to atmos-
pheric resistance and is directed opposite to the
velocity. The shuttle is at an altitude of 48.2 km
and has reduced its orbital velocity of 28 300 km/h
to 15 450 km/h in the direction 6§ = 1.50°. For this
instant, calculate the radius of curvature p of the
path and the rate ¢ at which the speed is changing.

Problem 2/121

2/122 The particle P starts from rest at point A at time
t = 0 and changes its speed thereafter at a con-
stant rate of 2g as it follows the horizontal path
shown. Determine the magnitude and direction
of its total acceleration (a) just before point B,
(b) just after point B, and (c¢) as it passes point C.
State your directions relative to the x-axis shown
(CCW positive).

A

P
@)

- m

————x

Problem 2/122
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2/123 For the conditions of the previous problem, deter-

mine the magnitude and direction of the total ac-
celeration of the particle P at times ¢ = 0.8 s and
t=12s.

2/124 Race car A follows path a-a while race car B follows

path b-b on the unbanked track. If each car has a
constant speed limited to that corresponding to a
lateral (normal) acceleration of 0.8g, determine the
times ¢, and ¢p for both cars to negotiate the turn
as delimited by the line C-C.

Problem 2/124

2/125 The mine skip is being hauled to the surface over

the curved track by the cable wound around the
30-in. drum, which turns at the constant clockwise
speed of 120 rev/min. The shape of the track is de-
signed so that y = x?/40, where x and y are in feet.
Calculate the magnitude of the total acceleration of
the skip as it reaches a level of 2 ft below the top.
Neglect the dimensions of the skip compared with
those of the path. Recall that the radius of curva-

ture is given by
dv\2 32
|1+ (2]
dx

-y
dx?

Problem 2/125

2/126 An earth satellite which moves in the elliptical
equatorial orbit shown has a velocity v in space of
17 970 km/h when it passes the end of the semi-
minor axis at A. The earth has an absolute surface
value of g of 9.821 m/s? and has a radius of 6371 km.
Determine the radius of curvature p of the orbit at A.

%16 000 km —
; A
T A

13 860 km

8000
km

Problem 2/126

2/127 A particle which moves in two-dimensional curvi-
linear motion has coordinates in millimeters which
vary with time # in seconds according to x = 5¢2 + 4
andy = 2t3 + 6. For time ¢ = 3 s, determine the ra-
dius of curvature of the particle path and the mag-
nitudes of the normal and tangential accelerations.

»2/128 In a handling test, a car is driven through the
slalom course shown. It is assumed that the car
path is sinusoidal and that the maximum lateral
acceleration is 0.7g. If the testers wish to design a
slalom through which the maximum speed is
80 km/h, what cone spacing L should be used?

"* L ﬂ Sinusoidal )
3
—B—— X ”

)
J

3m

v -

Problem 2/128
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» 2/129 The pin P is constrained to move in the slotted
guides which move at right angles to one another.
At the instant represented, A has a velocity to the
right of 0.2 m/s which is decreasing at the rate of
0.75 m/s each second. At the same time, B is mov-
ing down with a velocity of 0.15 m/s which is de-
creasing at the rate of 0.5 m/s each second. For this
instant determine the radius of curvature p of the
path followed by P. Is it possible to also determine
the time rate of change of p?

Problem 2/129

»2/130 A particle which moves with curvilinear motion has
coordinates in meters which vary with time ¢ in sec-
onds according to x = 2t2+ 3t — 1 and y = 5¢ — 2.
Determine the coordinates of the center of curva-
ture C at time ¢ = 1 s.
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(b)

Figure 2/13

Path

2/6 Polar Coordinates (r-6)

We now consider the third description of plane curvilinear motion,
namely, polar coordinates where the particle is located by the radial dis-
tance r from a fixed point and by an angular measurement 6 to the ra-
dial line. Polar coordinates are particularly useful when a motion is
constrained through the control of a radial distance and an angular po-
sition or when an unconstrained motion is observed by measurements of
a radial distance and an angular position.

Figure 2/13a shows the polar coordinates r and 6 which locate a
particle traveling on a curved path. An arbitrary fixed line, such as the
x-axis, is used as a reference for the measurement of 6. Unit vectors e,
and e, are established in the positive - and 6-directions, respectively.
The position vector r to the particle at A has a magnitude equal to the
radial distance r and a direction specified by the unit vector e,. Thus,
we express the location of the particle at A by the vector

r=re,

Time Derivatives of the Unit Vectors

To differentiate this relation with respect to time to obtain v = r and
a = v, we need expressions for the time derivatives of both unit vectors e,
and e,. We obtain €, and €, in exactly the same way we derived &, in the
preceding article. During time d¢ the coordinate directions rotate through
the angle d6, and the unit vectors also rotate through the same angle
from e, and e, to e, and e, as shown in Fig. 2/13b. We note that the vec-
tor change de, is in the plus 6-direction and that de, is in the minus
r-direction. Because their magnitudes in the limit are equal to the unit
vector as radius times the angle df in radians, we can write them as
de, = e;df and dey = —e, db. If we divide these equations by d6, we have

de,
db

de,
e

=e and

If, on the other hand, we divide them by d¢, we have de,/dt = (d6/dt)e,
and dey/dt = —(d6/dt)e,, or simply

é.=0e, and &,=—de, (2/12)

Velocity

We are now ready to differentiate r = re, with respect to time. Using
the rule for differentiating the product of a scalar and a vector gives

V=" =re,+re,

With the substitution of €, from Eq. 2/12, the vector expression for the
velocity becomes

v =re, +rbe, (2/13)
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where v, =T
vg=r6

Ju,2 + v,2

The r-component of v is merely the rate at which the vector r
stretches. The 6-component of v is due to the rotation of r.

v

Acceleration

We now differentiate the expression for v to obtain the acceleration
a = v. Note that the derivative of r0e, will produce three terms, since
all three factors are variable. Thus,
a=v= (‘e +re)+ (Fhe, +rie, + roe,

Substitution of €, and €, from Eq. 2/12 and collecting terms give

a=(F—rée. + (r6 + 270)e, (2/14)

where a, =7 —ro?
ae—ré +2T."é

a = /ar2 + a92 Path

We can write the #-component alternatively as

=1d (25
e rdt(r 2

which can be verified easily by carrying out the differentiation. This
form for a, will be useful when we treat the angular momentum of par-
ticles in the next chapter.

Geometric Interpretation A
The terms in Eq. 2/14 can be best understood when the geometry of /

the physical changes can be clearly seen. For this purpose, Fig. 2/14a is

developed to show the velocity vectors and their r- and 6-components at @

position A and at position A’ after an infinitesimal movement. Each of
these components undergoes a change in magnitude and direction as
shown in Fig. 2/14b. In this figure we see the following changes:

(a) Magnitude Change of v,. This change is simply the increase in
length of v, or dv, = dr, and the corresponding acceleration term is
dr/dt = 7 in the positive r-direction.

(b) Direction Change of v,. The magnitude of this change is seen
from the figure to be v, d6 = 7 df, and its contribution to the accelera-
tion becomes r df/dt = 76 which is in the positive §-direction.

do

(c) Magnitude Change of vy. This term is the change in length of ®

v, or d(r6), and its contribution to the acceleration is d(r6)/dt = ré + 0 Figure 2/14
and is in the positive 6-direction.
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Figure 2/15

Path

(d) Direction Change of v, The magnitude of this change is
vg df = ro do, and the corresponding acceleration term is observed to
be 6 (d6/dt) = r0? in the negative r-direction.

Collecting terms givesa, = 7 — r62and ay = ré + 276 as obtained
previously. We see that the term 7 is the acceleration which the particle
would have along the radius in the absence of a change in 6. The term
—r62 is the normal component of acceleration if r were constant, as in
circular motion. The term r is the tangential acceleration which the
particle would have if r were constant, but is only a part of the accelera-
tion due to the change in magnitude of v, when r is variable. Finally, the
term 2760 is composed of two effects. The first effect comes from that
portion of the change in magnitude d(r6) of v, due to the change in r,
and the second effect comes from the change in direction of v,. The term
276 represents, therefore, a combination of changes and is not so easily
perceived as are the other acceleration terms.

Note the difference between the vector change dv, in v, and the
change dv, in the magnitude of v,. Similarly, the vector change dv, is
not the same as the change dv, in the magnitude of v,. When we divide
these changes by dt to obtain expressions for the derivatives, we see
clearly that the magnitude of the derivative |dv,/d¢| and the derivative of
the magnitude dv,/dt are not the same. Note also that a, is not v, and
that a4 is not 0,

The total acceleration a and its components are represented in Fig.
2/15. If a has a component normal to the path, we know from our analy-
sis of n- and #-components in Art. 2/5 that the sense of the n-component
must be toward the center of curvature.

Circular Motion

For motion in a circular path with r constant, the components of
Eqs. 2/13 and 2/14 become simply

v, =0 v(,=ré

a, = —r? a,=r6
This description is the same as that obtained with n- and ¢-components,
where the 0- and ¢-directions coincide but the positive r-direction is in
the negative n-direction. Thus, a, = —a,, for circular motion centered at
the origin of the polar coordinates.

The expressions for a, and a, in scalar form can also be obtained by
direct differentiation of the coordinate relations x = r cos § and y = r sin 0
to obtain a, = X and a, = y. Each of these rectangular components of ac-
celeration can then be resolved into r- and 6-components which, when
combined, will yield the expressions of Eq. 2/14.



Article 2/6 Polar Coordinates (r-6)

69

SAMPLE PROBLEM 2/9

Rotation of the radially slotted arm is governed by 6 = 0.2¢ + 0.02¢%, where
0 is in radians and ¢ is in seconds. Simultaneously, the power screw in the arm
engages the slider B and controls its distance from O according to r = 0.2 +
0.04#2, where r is in meters and ¢ is in seconds. Calculate the magnitudes of the
velocity and acceleration of the slider for the instant when ¢ = 3 s.

Solutfion. The coordinates and their time derivatives which appear in the ex-
pressions for velocity and acceleration in polar coordinates are obtained first and
evaluated for ¢ = 3 s.

r=0.2 + 0.04¢2 rs = 0.2 + 0.04(32) = 0.56 m

= 0.08t 73 = 0.08(3)= 0.24 m/s
7 =0.08 75 = 0.08 m/s?
0 =02t +0.023 05 =0.2(3) + 0.02(3% = 1.14 rad

or 0, = 1.14(180/m) = 65.3°
6=02+0.062 65=0.2+ 0.06(32) = 0.74 rad/s

6 =0.12t 64 = 0.12(3) = 0.36 rad/s?

The velocity components are obtained from Eq. 2/13 and for ¢ = 3 s are

[v, = F] v, = 0.24 m/s

v, = ré] v, = 0.56(0.74) = 0.414 m/s

[v = Ju,2 + v, v = J(0.24)? + (0.414)? = 0.479 m/s

The velocity and its components are shown for the specified position of the arm.
The acceleration components are obtained from Eq. 2/14 and for ¢ = 3 s are

Ans.

la, = 7 — r62] a, = 0.08 — 0.56(0.74)2 = —0.227 m/s?

lag=rf +2/61 a,=0.56(0.36) + 2(0.24)(0.74) = 0.557 m/s?

@\\\\\\\\\\\\\‘

- j\
a =0.601 m/s2 ~

v=0.479 m/s
~
/ S

v, =0.24 m/s

vg=0.414 m/s ‘B

r=0.56m

ag = 0.557 m/s?

b S

~

a, =—0.227 m/s?

1

la = Ja,? + a,?] a = J(—0.227)2 + (0.557)% = 0.601 m/s2 Ans.
] (=3s
The acceleration and its components are also shown for the 65.3° po- / \/
sition of the arm. 0.5 / re
Plotted in the final figure is the path of the slider B over the time r3=0.56 m
interval 0 = ¢ = 5 s. This plot is generated by varying ¢ in the given ex- 7™ / 04/= 65.3° 05
pressions for r and 6. Conversion from polar to rectangular coordinates 0 y
is given by /
t=0
x =rcos 6 y =rsin 0
_05L1=58
-1.5 -1 -0.5 0 0.5
X, m

Helpful Hint

@ We see that this problem is an example of constrained motion where the cen-
ter B of the slider is mechanically constrained by the rotation of the slotted
arm and by engagement with the turning screw.
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SAMPLE PROBLEM 2/10

A tracking radar lies in the vertical plane of the path of a rocket which is
coasting in unpowered flight above the atmosphere. For the instant when 6 =
30°, the tracking data give r = 25(10%) ft, 7 = 4000 ft/sec, and 6 = 0.80 deg/sec.
The acceleration of the rocket is due only to gravitational attraction and for its
particular altitude is 31.4 ft/sec? vertically down. For these conditions determine
the velocity v of the rocket and the values of # and 6.

Solution. The components of velocity from Eq. 2/13 are
[v, =] v, = 4000 ft/sec

[vy = r6] )y = 25(104)(0.80)<W7T0> = 3490 ft/sec

[v = Vu,2 + v, v = /(4000)% + (3490)2 = 5310 ft/sec Ans.

Since the total acceleration of the rocket is g = 31.4 ft/sec? down, we can
easily find its 7- and 6-components for the given position. As shown in the figure,
they are

a, = —31.4 cos 30° = —27.2 ft/sec?

a, = 81.4 sin 30° = 15.70 ft/sec?

We now equate these values to the polar-coordinate expressions for a, and a,
which contain the unknowns 7 and 6. Thus, from Eq. 2/14

2
_ s 2 _ o 4 ™
la,=7r —r6°] 27.2 =1 — 25(10 )(O.SO 180)

7 = 21.5 ft/sec? Ans.

la,=rf +276]1  15.70 = 25(104)6 + 2(4000)(0.80 %0)

6 = —3.84(10~%) rad/sec? Ans.

Su= 5310 ft/sec

/ vy = 3490 ft /sec

ag = 15.70 ft /sec?

Helpful Hints

@ We observe that the angle 6 in polar
coordinates need not always be taken
positive in a counterclockwise sense.

@ Note that the r-component of accel-
eration is in the negative r-direction,
so it carries a minus sign.

©® We must be careful to convert 6 from
deg/sec to rad/sec.
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PROBLEMS

Introductory Problems

2/131 The position of the slider P in the rotating slotted
arm OA is controlled by a power screw as shown. At
the instant represented, § = 8 rad/s and § = —20
rad/s®>. Also at this same instant, r = 200 mm,

7 = —300 mm/s, and # = 0. For this instant deter-
mine the r- and #-components of the acceleration
of P.

Problem 2/131

2/132 A model airplane flies over an observer O with con-
stant speed in a straight line as shown. Determine
the signs (plus, minus, or zero) for r, 7, 7, 6, 6, and
6 for each of the positions A, B, and C.

Problem 2/132

2/133 A car P travels along a straight road with a con-
stant speed v = 65 mi/hr. At the instant when the
angle 0 = 60°, determine the values of i in ft/sec
and 6 in deg/sec.

Problem 2/133

2/134 The sphere P travels in a straight line with speed
v = 10 m/s. For the instant depicted, determine the
corresponding values of 7 and 6 as measured rela-
tive to the fixed Oxy coordinate system.

5m

y
I
|
I
\
\
\
\
\
\
\
\
\
\
\
\
\

Problem 2/134

2/135 If the 10-m/s speed of the previous problem is con-
stant, determine the values of 7 and 6 at the in-
stant shown.
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2/136 As the hydraulic cylinder rotates around O, the ex-
posed length [ of the piston rod P is controlled by
the action of oil pressure in the cylinder. If the
cylinder rotates at the constant rate § = 60 deg/s
and [ is decreasing at the constant rate of 150
mmy/s, calculate the magnitudes of the velocity v
and acceleration a of end B when / = 125 mm.

Problem 2/136

2/137 The drag racer P starts from rest at the start line S
and then accelerates along the track. When it has
traveled 100 m, its speed is 45 m/s. For that in-
stant, determine the values of 7 and 6 relative to
axes fixed to an observer O in the grandstand G as
shown.

Problem 2/137

2/138 In addition to the information supplied in the pre-
vious problem, it is known that the drag racer is ac-
celerating forward at 10 m/s? when it has traveled
100 m from the start line S. Determine the corre-
sponding values of #* and 6.

2/139 An internal mechanism is used to maintain a con-
stant angular rate () = 0.05 rad/s about the z-axis
of the spacecraft as the telescopic booms are ex-
tended at a constant rate. The length [ is varied
from essentially zero to 3 m. The maximum accel-
eration to which the sensitive experiment modules
P may be subjected is 0.011 m/s2. Determine the
maximum allowable boom extension rate .

Problem 2/139

2/140 The radial position of a fluid particle P in a certain
centrifugal pump with radial vanes is approxi-
mated by r = r, cosh Kt, where ¢ is time and K = 0
is the constant angular rate at which the impeller
turns. Determine the expression for the magnitude
of the total acceleration of the particle just prior to
leaving the vane in terms of r, R, and K.

Fixed
reference
axis

Problem 2/140
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2/141 The slider P can be moved inward by means of the
string S, while the slotted arm rotates about point
O. The angular position of the arm is given by 6 =

2

0.8t — where 6 is in radians and ¢ is in seconds.

t
20’
The slider is at 7 = 1.6 m when ¢ = 0 and thereafter
is drawn inward at the constant rate of 0.2 m/s.
Determine the magnitude and direction (expressed
by the angle « relative to the x-axis) of the velocity
and acceleration of the slider when ¢ = 4 s.

Problem 2/141

2/142 The piston of the hydraulic cylinder gives pin A a
constant velocity v = 3 ft/sec in the direction
shown for an interval of its motion. For the instant
when 6 = 60°, determine 7, ¥, 6, and 6 where
r = OA.

Problem 2/142

2/143 The rocket is fired vertically and tracked by the
radar station shown. When 6 reaches 60°, other cor-
responding measurements give the values r =
30,000 ft, 7 =170 ft/sec’, and 6 =0.02 rad/sec.
Calculate the magnitudes of the velocity and accel-
eration of the rocket at this position.

Ta
Tv

Problem 2/143

2/144 A hiker pauses to watch a squirrel P run up a par-
tially downed tree trunk. If the squirrel’s speed is
v = 2m/s when the position s = 10 m, determine
the corresponding values of 7 and 6.

Problem 2/144
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2/145 A jet plane flying at a constant speed v at an alti-
tude 2 = 10 km is being tracked by radar located at
O directly below the line of flight. If the angle 6 is
decreasing at the rate of 0.020 rad/s when 6 = 60°,
determine the value of 7 at this instant and the
magnitude of the velocity v of the plane.

%—‘—2 3
—
/

Problem 2/145

2/146 A projectile is launched from point A with the ini-
tial conditions shown. With the conventional defini-
tions of r- and #-coordinates relative to the Oxy
coordinate system, determine r, 6, 7, 6, 7, and 6 at
the instant just alter launch. Neglect aerodynamic
drag.

Vo

o
> ———x

A

Q¢ —————=
S

Problem 2/146

Representative Problems

2/147 Instruments located at O are part of the ground-
traffic control system for a major airport. At a cer-
tain instant during the takeoff roll of the aircraft P,
the sensors indicate the angle 6 = 50° and the
range rate 7 = 140 ft/sec. Determine the corre-
sponding speed v of the aircraft and the value of 6.

Problem 2/147

2/148 In addition to the information supplied in the pre-
vious problem, the sensors at O indicate that
# = 14 ft/sec®. Determine the corresponding accel-
eration a of the aircraft and the value of 6.

2/149 The cam is designed so that the center of the roller
A which follows the contour moves on a limacon de-
fined by r =b — ¢ cos 6, where b > c. If the cam
does not rotate, determine the magnitude of the
total acceleration of A in terms of 0 if the slotted
arm revolves with a constant counterclockwise
angular rate 6 = .

Problem 2/149
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2/150 The slotted arm OA forces the small pin to move in

the fixed spiral guide defined by r = K. Arm OA
starts from rest at # = 7/4 and has a constant
counterclockwise angular acceleration 6§ = a. De-
termine the magnitude of the acceleration of the
pin P when 0 = 37/4.

Problem 2/150

2/151 A rocket is tracked by radar from its launching

point A. When it is 10 seconds into its flight, the
following radar measurements are recorded:
r=2200m, 7 =500m/s, ¥ =4.66m/s%, 6 = 22°,
6 = 0.0788 rad/s, and 6 = —0.0341 rad/s%. For this
instant determine the angle 8 between the horizon-
tal and the direction of the trajectory of the rocket
and find the magnitudes of its velocity v and accel-
eration a.

Problem 2/151

2/152 For an interval of motion the drum of radius b
turns clockwise at a constant rate w in radians per
second and causes the carriage P to move to the
right as the unwound length of the connecting
cable is shortened. Use polar coordinates r and 6
and derive expressions for the velocity v and accel-
eration a of P in the horizontal guide in terms of
the angle 6. Check your solution by a direct differ-
entiation with time of the relation x2 + A2 = r2,

.

R A/ —

X

Problem 2/152

2/153 Car A is moving with constant speed v on the
straight and level highway. The police officer in the
stationary car P attempts to measure the speed v
with radar. If the radar measures “line-of sight” ve-
locity, what velocity v’ will the officer observe?
Evaluate your general expression for the values
v =70 mi/hr, L = 500 ft, and D = 20 ft, and draw
any appropriate conclusions.

[
Ji= 0=

. |

Problem 2/153
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2/154 The hydraulic cylinder gives pin A a constant veloc-
ity v = 2 m/s along its axis for an interval of mo-
tion and, in turn, causes the slotted arm to rotate
about O. Determine the values of 7, ¥, and 6 for
the instant when 6 = 30°. (Hint: Recognize that all
acceleration components are zero when the velocity
is constant.)

Problem 2/154

2/155 The particle P moves along the parabolic surface
shown. When x = 0.2m, the particle speed is
v =5m/s. For this instant determine the corre-
sponding values of r, 7, 6, and 6. Both x and y are
in meters.

y
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Problem 2/155

2/156 The member OA of the industrial robot telescopes
and pivots about the fixed axis at point O. At
the instant shown, 6 = 60°, 6 =1.2 rad/s, (3;0.8
rad/s?, OA=09m, OA=05m/s, and OA =
—6 m/s?. Determine the magnitudes of the velocity
and acceleration of joint A of the robot. Also, sketch
the velocity and acceleration of A and determine
the angles which these vectors make with the posi-
tive x-axis. The base of the robot does not revolve

about a vertical axis.

Problem 2/156

2/157 The robot arm is elevating and extending simulta-
neously. At a given instant, § = 30°, § = 10 deg/s =
constant, 7 = 0.5m, [ =0.2m/s, and [ = —0.3 m/s2
Compute the magnitudes of the velocity v and
acceleration a of the gripped part P. In addition,
express v and a in terms of the unit vectors i and j.

Problem 2/157
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2/158 During a portion of a vertical loop, an airplane flies
in an arc of radius p = 600 m with a constant speed
v = 400 km/h. When the airplane is at A, the angle
made by v with the horizontal is 8 = 30°, and radar
tracking gives r = 800 m and 6 = 30°. Calculate v,,

vy, @,, and 6 for this instant.

Problem 2/158

2/159 The particle P starts from rest at point O at time
t = 0, and then undergoes a constant tangential ac-
celeration qa, as it negotiates the circular slot in the
counterclockwise direction. Determine r, 7, 6, and
6 as functions of time over the first revolution.

Problem 2/159

2/160 The low-flying aircraft P is traveling at a constant
speed of 360 km/h in the holding circle of radius
3 km. For the instant shown, determine the quanti-
tiesr, 7, 7, 0, 6, and 6 relative to the fixed x-y coor-
dinate system, which has its origin on a mountaintop
at O. Treat the system as two-dimensional.

Problem 2/160

2/161 Pin A moves in a circle of 90-mm radius as crank
AC revolves at the constant rate B =60 rad/s. The
slotted link rotates about point O as the rod at-
tached to A moves in and out of the slot. For the
position B8 = 30°, determine r, 7, é, and 6.

} 300 mm }

Problem 2/161
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2/162 A fireworks shell P fired in a vertical trajectory has »2/164 At time ¢ = 0, the baseball player releases a ball

a y-acceleration given by a, = —g — kv?, where the with the initial conditions shown in the figure.
latter term is due to aerodynamic drag. If the speed Determine the quantities r, 7, 7, 6, 6, and 6, all
of the shell is 15 m/s at the instant shown, deter- relative to the x-y coordinate system shown, at
mine the corresponding values of r, 7, 7, 6, 6, and 0. time ¢ = 0.5 sec.
The drag parameter 2 has a constant value of
0.01m™ L 3|’
| vo = 100 ft/sec
I
|
| o =30°
o
/!
|
Y
Y
_ A |
N L
Problem 2/164
Problem 2/162 /

2/163 An earth satellite traveling in the elliptical orbit
shown has a velocity v = 12,149 mi/hr as it passes
the end of the semiminor axis at A. The accelera-
tion of the satellite at A is due to gravitational
attraction and is 32.23[3959/84001% = 7.159 ft/sec?
directed from A to O. For position A calculate the
values of 7, 7, 0,and 6.

r«; 8400 mi —

Problem 2/163




Aricle 2/7 Space Curvilinear Motion 79

2/7 Space Curvilinear Motion

The general case of three-dimensional motion of a particle along a
space curve was introduced in Art. 2/1 and illustrated in Fig. 2/1. Three
coordinate systems, rectangular (x-y-z), cylindrical (r-6-z), and spherical
(R-0-¢), are commonly used to describe this motion. These systems are
indicated in Fig. 2/16, which also shows the unit vectors for the three co-
ordinate systems.*

Before describing the use of these coordinate systems, we note that
a path-variable description, using n- and ¢-coordinates, which we devel-
oped in Art. 2/5, can be applied in the osculating plane shown in Fig.
2/1. We defined this plane as the plane which contains the curve at the
location in question. We see that the velocity v, which is along the tan-
gent ¢ to the curve, lies in the osculating plane. The acceleration a also
lies in the osculating plane. As in the case of plane motion, it has a com-

~
ponent a, = ¥ tangent to the path due to the change in magnitude of <
the velocity and a component a,, = v%/p normal to the curve due to the 1\~ -
change in direction of the velocity. As before, p is the radius of curva- Sx
ture of the path at the point in question and is measured in the osculat- .
ing plane. This description of motion, which is natural and direct for Figure 2/16

many plane-motion problems, is awkward to use for space motion be-
cause the osculating plane continually shifts its orientation. We will
confine our attention, therefore, to the three fixed coordinate systems
shown in Fig. 2/16.

Rectangular Coordinates (x-y-z)

The extension from two to three dimensions offers no particular dif-
ficulty. We merely add the z-coordinate and its two time derivatives to
the two-dimensional expressions of Eqs. 2/6 so that the position vector
R, the velocity v, and the acceleration a become

R=xi+y +zk
v=R=xi+yj+sk (2/15)

a=v=R=ii+j+zk

Note that in three dimensions we are using R in place of r for the posi-
tion vector.

Cylindrical Coordinates (r-6-z)

If we understand the polar-coordinate description of plane motion,
then there should be no difficulty with cylindrical coordinates because
all that is required is the addition of the z-coordinate and its two time
derivatives. The position vector R to the particle for cylindrical coordi-
nates is simply

R=re, +:zk

*In a variation of spherical coordinates commonly used, angle ¢ is replaced by its
complement.
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In place of Eq. 2/13 for plane motion, we can write the velocity as

v =re +rle, + sk (2/16)
where v, =1

Vg = 7'0.

v, = 2

v =2 +v,2+0v,2

Similarly, the acceleration is written by adding the z-component to Eq.
2/14, which gives us

a=(F—r6de, + (ro + 2r0)e, + 2k (2/17)
where a, =i —ré?
. .- 1d .
=r60 +2r0 == (r?
ag=rf +2r0 =~ (r0)
a, =2

Ja,?2 + a2 + a?

Whereas the unit vectors e, and e, have nonzero time derivatives due
to the changes in their directions, we note that the unit vector k in
the z-direction remains fixed in direction and therefore has a zero
time derivative.

a

Spherical Coordinates (R-6-¢)

Spherical coordinates R, 0, ¢ are utilized when a radial distance and
two angles are utilized to specify the position of a particle, as in the case
of radar measurements, for example. Derivation of the expression for
the velocity v is easily obtained, but the expression for the acceleration
a is more complex because of the added geometry. Consequently, only
the results will be cited here.* First we designate unit vectors ez, e, e,
as shown in Fig. 2/16. Note that the unit vector ep is in the direction in
which the particle P would move if R increases but 6 and ¢ are held con-
stant. The unit vector e, is in the direction in which P would move if 6
increases while R and ¢ are held constant. Finally, the unit vector e is
in the direction in which P would move if ¢ increases while R and 6 are
held constant. The resulting expressions for v and a are

V = Ugep t vg€y + v4€, (2/18)
where Up = R
vy = RO cos ¢
Uy = R(i)

*For a complete derivation of v and a in spherical coordinates, see the first author’s book
Dynamics, 2nd edition, 1971, or SI Version, 1975 (John Wiley & Sons, Inc.).
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and
a = agep + qze, + aze, (2/19)
where ap=R — R$% — R62 cos? ¢
_cos¢ ¢

_ d pogy L.
ay R dt(R 0) — 2R0 ¢ sin ¢

=li 24 32 o
ag Rdt(R ¢) + RO? sin ¢ cos ¢

Linear algebraic transformations between any two of the three
coordinate-system expressions for velocity or acceleration can be devel-
oped. These transformations make it possible to express the motion
component in rectangular coordinates, for example, if the components
are known in spherical coordinates, or vice versa.* These transforma-
tions are easily handled with the aid of matrix algebra and a simple
computer program.

© Howard Sayer/Alamy

A portion of the track of this amusement-park ride is in the shape of a
helix whose axis is horizontal.

*These coordinate transformations are developed and illustrated in the first author’s book
Dynamics, 2nd edition, 1971, or SI Version, 1975 (John Wiley & Sons, Inc.).
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SAMPLE PROBLEM 2/11

The power screw starts from rest and is given a rotational speed 6 which in-
creases uniformly with time ¢ according to 6 = kt, where & is a constant. Deter-
mine the expressions for the velocity v and acceleration a of the center of ball A
when the screw has turned through one complete revolution from rest. The lead
of the screw (advancement per revolution) is L.

Solution. The center of ball A moves in a helix on the cylindrical surface of ra-
dius b, and the cylindrical coordinates r, 0, z are clearly indicated.

Integrating the given relation for 6 gives 6 = Ag = f 6 dt = %ktz. For one
revolution from rest we have

_ 1.0
277'—2kt

giving
t=2Jmlk

Thus, the angular rate at one revolution is
0 =kt = k(2J/m/k) = 27k

The helix angle y of the path followed by the center of the ball governs the
relation between the - and z-components of velocity and is given by tan y =
L/(27b). Now from the figure we see that vy = v cos y. Substituting v, = ro =b6
from Eq. 2/16 gives v = vy/cos y = b/cos y. With cos y obtained from tan y and
with 6 = 2./7k, we have for the one-revolution position

2+ 21,2
B = 5 /Wk?;?b:\/%\/m Ans.
T

The acceleration components from Eq. 2/17 become

la, = 7 — r62] a, =0 — b2/mk)? = —4bmk
la, =r6 + 276 ] a, = bk + 2(0)(2/7k) = bk
. _ @ _d -2 46
[a,=2=0,] o= o (v,) a (vy tan y) e (b6 tan vy)
_ j—p L _ kL
= (btany)0 =b 9b k o

Now we combine the components to give the magnitude of the total acceler-
ation, which becomes

o \/ (—dbrk)? + (BE)? + <k—L>2
21

= b/ + 1672 + L2/(47%b?) Ans.

Helpful Hints

@ We must be careful to divide the
lead L by the circumference 2776 and
not the diameter 2b to obtain tan v.
If in doubt, unwrap one turn of the
helix traced by the center of the ball.

@ Sketch a right triangle and recall
that for tan B = a/b the cosine of B
becomes b/,/a® + b2

© The negative sign for a, is consistent
with our previous knowledge that
the normal component of accelera-
tion is directed toward the center of
curvature.
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SAMPLE PROBLEM 2/12 ]
An aircraft P takes off at A with a velocity vy of 250 km/h and }
climbs in the vertical y'-z' plane at the constant 15° angle with an \
acceleration along its flight path of 0.8 m/s?. Flight progress is | 4 R “:"(
monitored by radar at point O. (a) Resolve the velocity of P into 05% - 1)
cylindrical-coordinate components 60 seconds after takeoff and find
7, 6, and Z for that instant. (b) Resolve the velocity of the aircraft
P into spherical-coordinate components 60 seconds after takeoff AN

and find R, 6, and ¢ for that instant. AT

Solution. (a) The accompanying figure shows the velocity and ac- x

celeration vectors in the y'-z’ plane. The takeoff speed is

Vg = % = 69.4 m/s

and the speed after 60 seconds is
v =1y, t+at=694+ 0.8(60) = 117.4 m/s
The distance s traveled after takeoff is

s =8y + vyt + %at2 =0 + 69.4(60) + % (0.8)(60)? = 5610 m
The y-coordinate and associated angle 0 are
y = 5610 cos 15° = 5420 m

— tan-12420 _ o1 00
0 = tan 3000 61.0

From the figure (b) of x-y projections, we have
r = /3000 + 5420% = 6190 m
Uyy = U cos 15° = 117.4 cos 15° = 113.4 m/s
v, =T =v,,sin 6 = 113.4 sin 61.0° = 99.2 m/s Ans.

vy =16 = U,y cos 6 = 113.4 cos 61.0° = 55.0 m/s

Ao 550 — =3
So 0 = 6190 8.88(107°) rad/s Ans.
Finally z =v, =vsin 15° = 117.4 sin 15° = 30.4 m/s Ans.

(b) Refer to the accompanying figure (c), which shows the x-y plane
and various velocity components projected into the vertical plane con-
taining r and R. Note that

z =y tan 15° = 5420 tan 15° = 1451 m

¢ =tan 1% =tan! Lo

- 6190 13.19

R=Jr +22= /61902 + 14512 = 6360 m
From the figure,
vg = R = 99.2 cos 13.19° + 30.4 sin 13.19° = 103.6 m/s  Ans.

6 = 8.88(1073) rad/s, as in part (a) Ans.
Vg = R(;i) = 30.4 cos 13.19° — 99.2 sin 13.19° = 6.95 m/s
b =595 _ 1 0931079) radss Ans.

~ 6360




84 Chapter2 Kinematics of Particles

PROBLEMS

Introductory Problems

2/165 The velocity and acceleration of a particle are given
for a certain instant by v = 6i — 3j + 2k m/s and
a=3i —j — 5km/s2. Determine the angle 6 be-
tween v and a, v, and the radius of curvature p in
the osculating plane.

2/166 A projectile is launched from point O with an initial
speed v, = 500 ft/sec directed as shown in the fig-
ure. Compute the x-, y-, and z-components of posi-
tion, velocity, and acceleration 20 seconds after
launch. Neglect aerodynamic drag.
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Problem 2/166

2/167 An amusement ride called the “corkscrew” takes
the passengers through the upside-down curve of a
horizontal cylindrical helix. The velocity of the cars
as they pass position A is 15 m/s, and the compo-
nent of their acceleration measured along the tan-
gent to the path is g cos vy at this point. The effective
radius of the cylindrical helix is 5 m, and the helix
angle is y = 40°. Compute the magnitude of the ac-
celeration of the passengers as they pass position A.

Problem 2/167

2/168 The radar antenna at P tracks the jet aircraft A,
which is flying horizontally at a speed « and an alti-
tude & above the level of P. Determine the expres-
sions for the components of the velocity in the
spherical coordinates of the antenna motion.

y
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Problem 2/168

2/169 The rotating element in a mixing chamber is given
a periodic axial movement z = z, sin 27nt while it
is rotating at the constant angular velocity 6 = w.
Determine the expression for the maximum magni-
tude of the acceleration of a point A on the rim of
radius r. The frequency n of vertical oscillation is
constant.

|
|
wd)i z=2zgsin 2w nt

Problem 2/169
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Representative Problems

2/170 The vertical shaft of the industrial robot rotates at

the constant rate w. The length & of the vertical
shaft has a known time history, and this is true
of its time derivatives h and h as well. Likewise,
the values of [, [, and [ are known. Determine
the magnitudes of the velocity and acceleration of
point P. The lengths & and [, are fixed.

Problem 2/170

2/171 The car A is ascending a parking-garage ramp in

the form of a cylindrical helix of 24-ft radius rising
10 ft for each half turn. At the position shown the
car has a speed of 15 mi/hr, which is decreasing at
the rate of 2 mi/hr per second. Determine the r-, 6-,
and z-components of the acceleration of the car.

Problem 2/171

2/172 An aircraft takes off at A and climbs at a steady
angle with a slope of 1 to 2 in the vertical y-z plane
at a constant speed v = 400 km/h. The aircraft is
tracked by radar at O. For the position B, deter-
mine the values of R, é, and ¢

Problem 2/172

2/173 For the conditions of Prob. 2/172, find the values of
R, 5, and qS for the radar tracking coordinates as
the aircraft passes point B. Use the results cited for
Prob. 2/172.

2/174 The rotating nozzle sprays a large circular area and
turns with the constant angular rate 6 = K. Parti-
cles of water move along the tube at the constant
rate [ = c relative to the tube. Write expressions
for the magnitudes of the velocity and acceleration
of a water particle P for a given position / in the
rotating tube.

Problem 2/174
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2/175 The small block P travels with constant speed v in
the circular path of radius r on the inclined surface.
If # =0 at time ¢ = 0, determine the x-, y-, and
z-components of velocity and acceleration as func-
tions of time.

Problem 2/175

2/176 An aircraft is flying in a horizontal circle of radius b
with a constant speed u at an altitude k. A radar
tracking unit is located at C. Write expressions for
the components of the velocity of the aircraft in the
spherical coordinates of the radar station for a
given position .

Problem 2/176

2/177 The base structure of the firetruck ladder rotates
about a vertical axis through O with a constant an-
gular velocity () = 10 deg/s. At the same time, the
ladder unit OB elevates at a constant rate ¢ =
7 deg/s, and section AB of the ladder extends from
within section OA at the constant rate of 0.5 m/s.
At the instant under consideration, ¢ = 30°,
OA =9m, and AB = 6 m. Determine the magni-
tudes of the velocity and acceleration of the end B
of the ladder.

Problem 2/177

2/178 The member OA of the industrial robot telescopes.
At the instant represented, ¢ = 60°, qS = 1.2 rad/s,
d)7= 0.8rad/s?2, OA=09m, OA=05m/s, and
OA = —6 m/s?. The base of the robot is revolving at
the constant rate w = 1.4 rad/s. Calculate the mag-

nitudes of the velocity and acceleration of joint A.

Problem 2/178
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2/179 Consider the industrial robot of the previous prob-

lem. The telescoping member OA is now fixed in
length at 0.9 m. The other conditions remain at
¢ = 60° ¢ = 1.2rad/s, = 0.8 rad/s?, w = 1.4 rad/s,
® = 0, and angle OAP is locked at 105°. Determine
the magnitudes of the velocity and acceleration of
the end point P.

2/180 In a design test of the actuating mechanism for a

telescoping antenna on a spacecraft, the supporting
shaft rotates about the fixed z-axis with an angular
rate §. Determine the R-, 6-, and ¢-components of
the acceleration a of the end of the antenna at the
instant when L = 1.2 m and B = 45° if the rates
6 =2radls, p = %rad/s, and L = 0.9 m/s are con-
stant during the motion.

Problem 2/180

»2/181 In the design of an amusement-park ride, the cars
are attached to arms of length R which are hinged
to a central rotating collar which drives the assem-
bly about the vertical axis with a constant angular
rate w = 0. The cars rise and fall with the track ac-

cording to the relation z = (h/2)(1 — cos 26). Find
the R-, 0-, and ¢-components of the velocity v of
each car as it passes the position § = 7/4 rad.

Problem 2/181

»2/182 The particle P moves down the spiral path which is
wrapped around the surface of a right circular cone
of base radius b and altitude h. The angle y be-
tween the tangent to the curve at any point and a
horizontal tangent to the cone at this point is con-
stant. Also the motion of the particle is controlled
so that @ is constant. Determine the expression for
the radial acceleration a, of the particle for any
value of 6.

Problem 2/182
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Relative motion is a critical issue in
the midair refueling of aircraft.

Figure 2/17

2/8 Relative Motion (Translating Axes)

In the previous articles of this chapter, we have described particle
motion using coordinates referred to fixed reference axes. The dis-
placements, velocities, and accelerations so determined are termed ab-
solute. It is not always possible or convenient, however, to use a fixed
set of axes to describe or to measure motion. In addition, there are
many engineering problems for which the analysis of motion is simpli-
fied by using measurements made with respect to a moving reference
system. These measurements, when combined with the absolute mo-
tion of the moving coordinate system, enable us to determine the ab-
solute motion in question. This approach is called a relative-motion
analysis.

Choice of Coordinate System

The motion of the moving coordinate system is specified with re-
spect to a fixed coordinate system. Strictly speaking, in Newtonian me-
chanics, this fixed system is the primary inertial system, which is
assumed to have no motion in space. For engineering purposes, the fixed
system may be taken as any system whose absolute motion is negligible
for the problem at hand. For most earthbound engineering problems, it
is sufficiently precise to take for the fixed reference system a set of axes
attached to the earth, in which case we neglect the motion of the earth.
For the motion of satellites around the earth, a nonrotating coordinate
system is chosen with its origin on the axis of rotation of the earth. For
interplanetary travel, a nonrotating coordinate system fixed to the sun
would be used. Thus, the choice of the fixed system depends on the type
of problem involved.

We will confine our attention in this article to moving reference
systems which translate but do not rotate. Motion measured in rotating
systems will be discussed in Art. 5/7 of Chapter 5 on rigid-body kine-
matics, where this approach finds special but important application. We
will also confine our attention here to relative-motion analysis for plane
motion.

Vector Representation

Now consider two particles A and B which may have separate
curvilinear motions in a given plane or in parallel planes, Fig. 2/17. We
will arbitrarily attach the origin of a set of translating (nonrotating)
axes x-y to particle B and observe the motion of A from our moving po-
sition on B. The position vector of A as measured relative to the frame
x-y is rpp = xi + yj, where the subscript notation “A/B” means “A rel-
ative to B” or “A with respect to B.” The unit vectors along the x- and
y-axes are i and j, and x and y are the coordinates of A measured in the
x-y frame. The absolute position of B is defined by the vector rgz mea-
sured from the origin of the fixed axes X-Y. The absolute position of A
is seen, therefore, to be determined by the vector

I'A = rB + rA/B
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We now differentiate this vector equation once with respect to time
to obtain velocities and twice to obtain accelerations. Thus,

I..A = I.'B + I.'A/B or VA = VB A VA/B (2/20)

i“A = i“B + i:A/B or a, = ag AF aA/B (2/21)

In Eq. 2/20 the velocity which we observe A to have from our position
at B attached to the moving axes x-y is 143 = vap = %i + yj. This
term is the velocity of A with respect to B. Similarly, in Eq. 2/21 the
acceleration which we observe A to have from our nonrotating posi-
tion on B is ¥y = vy = ¥i + yj. This term is the acceleration of A
with respect to B. We note that the unit vectors i and j have zero de-
rivatives because their directions as well as their magnitudes remain
unchanged. (Later when we discuss rotating reference axes, we must
account for the derivatives of the unit vectors when they change di-
rection.)

Equation 2/20 (or 2/21) states that the absolute velocity (or acceler-
ation) of A equals the absolute velocity (or acceleration) of B plus, vecto-
rially, the velocity (or acceleration) of A relative to B. The relative term
is the velocity (or acceleration) measurement which an observer at-
tached to the moving coordinate system x-y would make. We can express
the relative-motion terms in whatever coordinate system is convenient—
rectangular, normal and tangential, or polar—and the formulations in
the preceding articles can be used for this purpose. The appropriate
fixed system of the previous articles becomes the moving system in the
present article.

Additional Considerations

The selection of the moving point B for attachment of the reference
coordinate system is arbitrary. As shown in Fig. 2/18, point A could be
used just as well for the attachment of the moving system, in which case
the three corresponding relative-motion equations for position, velocity,
and acceleration are

rp =Ty + Tpj VB =Va 1 Vg ap=a, T ag,

It is seen, therefore, that Ypa = —YAB, VBA = —VA/B, and ap/A = —aup-

In relative-motion analysis, it is important to realize that the ac-
celeration of a particle as observed in a translating system x-y is the
same as that observed in a fixed system X-Y if the moving system has a
constant velocity. This conclusion broadens the application of New-
ton’s second law of motion (Chapter 3). We conclude, consequently,
that a set of axes which has a constant absolute velocity may be used
in place of a “fixed” system for the determination of accelerations. A
translating reference system which has no acceleration is called an in-
ertial system.

Figure 2/18
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SAMPLE PROBLEM 2/13

Passengers in the jet transport A flying east at a speed of 800 km/h observe \
a second jet plane B that passes under the transport in horizontal flight. Al- <T”’.%
though the nose of B is pointed in the 45° northeast direction, plane B appears to ) N
the passengers in A to be moving away from the transport at the 60° angle as AV \ /

shown. Determine the true velocity of B.

Solufion. The moving reference axes x-y are attached to A, from which the
relative observations are made. We write, therefore,

VB = Va1t Vi

Next we identify the knowns and unknowns. The velocity v, is given in both mag-
nitude and direction. The 60° direction of vg/, the velocity which B appears to
have to the moving observers in A, is known, and the true velocity of B is in the
45° direction in which it is heading. The two remaining unknowns are the magni-
tudes of v and v 4. We may solve the vector equation in any one of three ways.

Helpful Hints

. . . We treat each airplane as a particle.
() Graphical. We start the vector sum at some point P by drawing v, to a o 2 4
convenient scale and then construct a line through the tip of v, with the known @ We assume no side slip due to cross
direction of vg/4. The known direction of vz is then drawn through P, and the in- wind.

tersection C yields the unique solution enabling us to complete the vector trian-

Students should b famili
gle and scale off the unknown magnitudes, which are found to be OF ceome Tammar

with all three solutions.

Upa = 586 km/h and vg = 717 km/h Ans.
\
\
\ Dir. of v
\ Dir. of v,
(ll) Trigonomefric. A sketch of the vector triangle is made to reveal the \
trigonometry, which gives 60:\
P
Up VA sin 60° vy =800 km/h
=—— = 800 =717k Ans. A
sin 60°  sin 75° vB sin 75° y e
A4
xC
7\
Dir. of vg ~ \
(lll) Vector Algebra. Using unit vectors i and j, we express the velocities in . 4 \
vector form as P :/ 45° 60°\:
v, =800ikm/h vy = (vgcos 45°)i + (v sin 45°)j va

Vg = (Ups cos 60°)(—1) + (vp), sin 60°)j

Substituting these relations into the relative-velocity equation and solving sepa-
rately for the i and j terms give

(i-terms) vp cos 45° = 800 — vg, cos 60°

va

(j-terms) vp sin 45° = vp), sin 60°
@ We must be prepared to recognize
the appropriate trigonometric rela-

Upa = 586 km/h and vg = 717 km/h /A6, tion, which here is the law of sines.
© We can see that the graphical or
trigonometric solution is shorter

than the vector algebra solution in
this particular problem.

Solving simultaneously yields the unknown velocity magnitudes

It is worth noting the solution of this problem from the viewpoint of an observer
in B. With reference axes attached to B, we would write v4 = v + v4/5. The ap-
parent velocity of A as observed by B is then v4/, which is the negative of vgs.



Article 2/8 Relative Motion (Translating Axes) 91

SAMPLE PROBLEM 2/14

Car A is accelerating in the direction of its motion at the rate of 3 ft/sec?.
Car B is rounding a curve of 440-ft radius at a constant speed of 30 mi/hr. Deter-
mine the velocity and acceleration which car B appears to have to an observer in
car A if car A has reached a speed of 45 mi/hr for the positions represented.

Solution. We choose nonrotating reference axes attached to car A since the
motion of B with respect to A is desired.

Velocity. The relative-velocity equation is
Vp = Vst Vpyu
and the velocities of A and B for the position considered have the magnitudes

5280
602

44

30" 44 ft/sec

UA:45

—4544 _ -
=45 30 66 ft/sec vg = 30

The triangle of velocity vectors is drawn in the sequence required by the equa-
tion, and application of the law of cosines and the law of sines gives

Upa = 58.2 ft/sec 0 = 40.9° Ans.

Acceleratfion. The relative-acceleration equation is
ag = a, +ag,

The acceleration of A is given, and the acceleration of B is normal to the curve in
the n-direction and has the magnitude

[a, = v¥p] ap = (44)%/440 = 4.4 ft/sec?

The triangle of acceleration vectors is drawn in the sequence required by the
equation as illustrated. Solving for the x- and y-components of ag4 gives us

(apa)y = 4.4 cos 30° — 3 = 0.810 ft/sec?
(apa)y = 4.4 sin 30° = 2.2 ft/sec?

from which ag, = /(0.810)? + (2.2)% = 2.34 ft/sec? Ans.

The direction of ag, may be specified by the angle 8 which, by the law of sines,
becomes

44 _ 234 g g (—4'4 0.5) ~110.2°

sinB  sin 30° 2.34 Ans.

vy = 66 ft/sec
N 60°

vp = 44 ft/sec

ag = 4.4 ft/sec?

ay = 3 ft/sec?

Helpful Hints

@ Alternatively, we could use either
a graphical or a vector algebraic
solution.

@ Be careful to choose between the two
values 69.8° and 180 — 69.8 = 110.2°.

Suggestion: To gain familiarity with the
manipulation of vector equations, it is
suggested that the student rewrite the
relative-motion equations in the form
Vpa = Vg — V4 and agy = ag — ay and
redraw the vector polygons to conform
with these alternative relations.

Caution: So far we are only prepared to
handle motion relative to nonrotating
axes. If we had attached the reference
axes rigidly to car B, they would rotate
with the car, and we would find that the
velocity and acceleration terms relative
to the rotating axes are not the negative
of those measured from the nonrotating
axes moving with A. Rotating axes are
treated in Art. 5/7.
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PROBLEMS

Introductory Problems

2/183 Car A rounds a curve of 150-m radius at a constant
speed of 54 km/h. At the instant represented, car B
is moving at 81 km/h but is slowing down at the
rate of 3 m/s?. Determine the velocity and accelera-
tion of car A as observed from car B.

|
y———fﬁ ~— @3

Tl

Problem 2/183

2/184 For the instant represented, car A is rounding the
circular curve at a constant speed of 30 mi/hr, while
car B is slowing down at the rate of 5 mi/hr per sec-
ond. Determine the magnitude of the acceleration
that car A appears to have to an observer in car B.

Problem 2/184

2/185 The passenger aircraft B is flying east with a veloc-
ity vg = 800 km/h. A military jet traveling south
with a velocity v, = 1200 km/h passes under B at a
slightly lower altitude. What velocity does A appear
to have to a passenger in B, and what is the direc-
tion of that apparent velocity?

Problem 2/185

2/186 A marathon participant R is running north at a
speed vy = 10 mi/hr. A wind is blowing in the di-
rection shown at a speed vy = 15 mi/hr. (a) Deter-
mine the velocity of the wind relative to the
runner. (b) Repeat for the case when the runner is
moving directly to the south at the same speed. Ex-
press all answers both in terms of the unit vectors
i and j and as magnitudes and compass directions.

§ W
1E
||

o

Problem 2/186
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2/187 A small aircraft A is about to land with an airspeed

of 80 mi/hr. If the aircraft is encountering a steady
side wind of speed vy, = 10 mi/hr as shown, at what
angle « should the pilot direct the aircraft so that
the absolute velocity is parallel to the runway?
What is the speed at touchdown?

A o
—=

$ o

Problem 2/187

2/188 The car A has a forward speed of 18 km/h and is ac-
celerating at 3 m/s2. Determine the velocity and ac-
celeration of the car relative to observer B, who
rides in a nonrotating chair on the Ferris wheel.
The angular rate () = 3 rev/min of the Ferris wheel
is constant.

Problem 2/188

Representative Problems

2/189 A small ship capable of making a speed of 6 knots

o>

through still water maintains a heading due east
while being set to the south by an ocean current.
The actual course of the boat is from A to B, a dis-
tance of 10 nautical miles that requires exactly
2 hours. Determine the speed v of the current and
its direction measured clockwise from the north.

Problem 2/189

2/190 Hockey player A carries the puck on his stick and

moves in the direction shown with a speed
vy = 4 m/s. In passing the puck to his stationary
teammate B, by what angle « should the direction
of his shot trail the line of sight if he launches the
puck with a speed of 7 m/s relative to himself?

_@B

o
@3\ a
A va

Problem 2/190
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2/191 A ferry is moving due east and encounters a south-

west wind of speed vy = 10 m/s as shown. The ex-
perienced ferry captain wishes to minimize the
effects of the wind on the passengers who are
on the outdoor decks. At what speed vp should he
proceed?

Problem 2/191

2/192 A drop of water falls with no initial speed from

point A of a highway overpass. After dropping 6 m,
it strikes the windshield at point B of a car which is
traveling at a speed of 100 km/h on the horizontal
road. If the windshield is inclined 50° from the ver-
tical as shown, determine the angle 6 relative to the
normal n to the windshield at which the water drop
strikes.

Problem 2/192

2/193 While scrambling directly toward the sideline at a
speed vg = 20 ft/sec, the football quarterback @
throws a pass toward the stationary receiver R. At
what angle « should the quarterback release the ball?
The speed of the ball relative to the quarterback is
60 ft/sec. Treat the problem as two-dimensional.

g T
N 20

20 yd !

Problem 2/193

2/194 The speedboat B is cruising to the north at 75 mi/hr
when it encounters an eastward current of speed
e = 10 mi/hr but does not change its heading
(relative to the water). Determine the subsequent
velocity of the boat relative to the wind and express
your result as a magnitude and compass direction.
The current affects the motion of the boat; the
southwesterly wind of speed vy, = 20 mi/hr does not.

— U¢

Problem 2/194
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2/195 Starting from the relative position shown, aircraft
B is to rendezvous with the refueling tanker A. If B
is to arrive in close proximity to A in a two-minute
time interval, what absolute velocity vector should
B acquire and maintain? The velocity of the tanker
A is 300 mi/hr along the constant-altitude path

shown.
10,000” 4)‘
5‘!%_
| A
2000’ ¥
\
—L&;:D L e

Problem 2/195

2/196 Airplane A is flying horizontally with a constant
speed of 200 km/h and is towing the glider B, which
is gaining altitude. If the tow cable has a length
r = 60 m and 6 is increasing at the constant rate of
5 degrees per second, determine the magnitudes of
the velocity v and acceleration a of the glider for
the instant when 6 = 15°.

B

Problem 2/196

2/197 If the airplane in Prob. 2/196 is increasing its speed
in level flight at the rate of 5 km/h each second and
is unreeling the glider tow cable at the constant
rate 7 = 2 m/s while 6 remains constant, determine
the magnitude of the acceleration of the glider B.

2/198 The spacecraft S approaches the planet Mars along
a trajectory b-b in the orbital plane of Mars with an
absolute velocity of 19 km/s. Mars has a velocity of
24.1 km/s along its trajectory a-a. Determine the
angle B between the line of sight S-M and the tra-
jectory b-b when Mars appears from the spacecraft
to be approaching it head on.

Q o~

24.1km/ M
g
15° p
19km/s\ %/\ﬁ
S b

Problem 2/198

2/199 Two ships A and B are moving with constant
speeds v, and v, respectively, along straight inter-
secting courses. The navigator of ship B notes the
time rates of change of the separation distance r
between the ships and the bearing angle 6. Show
that 6 = —276/r and 7 = r62.

Problem 2/199



96 Chapter2 Kinematics of Particles

2/200 Airplane A is flying north with a constant horizon-

tal velocity of 500 km/h. Airplane B is flying south-
west at the same altitude with a velocity of 500 km/h.
From the frame of reference of A, determine the
magnitude v, of the apparent or relative velocity of
B. Also find the magnitude of the apparent velocity
v,, with which B appears to be moving sideways or
normal to its centerline. Would the results be dif-
ferent if the two airplanes were flying at different
but constant altitudes?

I
N

Problem 2/200

2/201 In Prob. 2/200 if aircraft A is accelerating in its

northward direction at the rate of 3 km/h each sec-
ond while aircraft B is slowing down at the rate of
4 km/h each second in its southwesterly direction,
determine the acceleration in m/s? which B appears
to have to an observer in A and specify its direction
(B) measured clockwise from the north.

2/202 The shuttle orbiter A is in a circular orbit of alti-
tude 200 mi, while spacecraft B is in a geosynchro-
nous circular orbit of altitude 22,300 mi. Determine
the acceleration of B relative to a nonrotating
observer in the shuttle A. Use g, = 32.23 ft/sec?
for the surface-level gravitational acceleration and
R = 3959 mi for the radius of the earth.

y
\
\
\
\
\
L]

Be————| (st |——— — —— x
200 mi-"

22,300 mi

/

Problem 2/202

2/203 After starting from the position marked with the
“x”, a football receiver B runs the slant-in pattern
shown, making a cut at P and thereafter running
with a constant speed vz = 7 yd/sec in the direction
shown. The quarterback releases the ball with a
horizontal velocity of 100 ft/sec at the instant the
receiver passes point P. Determine the angle «a at
which the quarterback must throw the ball,
and the velocity of the ball relative to the receiver
when the ball is caught. Neglect any vertical mo-
tion of the ball.

15 yd

|
|
|
|
|
15 yd :
| g
|

Problem 2/203
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»2/204 The aircraft A with radar detection equipment is
flying horizontally at an altitude of 12 km and is in-
creasing its speed at the rate of 1.2 m/s each sec-
ond. Its radar locks onto an aircraft B flying in the
same direction and in the same vertical plane at an
altitude of 18 km. If A has a speed of 1000 km/h at
the instant when 6 = 30°, determine the values of 7
and 6 at this same instant if B has a constant

speed of 1500 km/h.
18 km wﬁ
r
N s 0 12 km

Problem 2/204

»2/205 At a certain instant after jumping from the air-
plane A, a skydiver B is in the position shown
and has reached a terminal (constant) speed
vp = 50 m/s. The airplane has the same constant
speed v, = 50 m/s, and after a period of level flight
is just beginning to follow the circular path shown
of radius p4 = 2000 m. (@) Determine the velocity
and acceleration of the airplane relative to the sky-
diver. (b) Determine the time rate of change of the
speed v, of the airplane and the radius of curvature
p, of its path, both as observed by the nonrotating

skydiver.
! \
} pa =2000 m
| 500 m n \
;5 VA
350 m r

1
f—ﬁﬁw Lffx

Problem 2/205

»2/206 A batter hits the baseball A with an initial velocity
of vy, = 100 ft/sec directly toward fielder B at an
angle of 30° to the horizontal; the initial position of
the ball is 3 ft above ground level. Fielder B re-
quires % sec to judge where the ball should be
caught and begins moving to that position with
constant speed. Because of great experience, fielder
B chooses his running speed so that he arrives at
the “catch position” simultaneously with the base-
ball. The catch position is the field location at
which the ball altitude is 7 ft. Determine the veloc-
ity of the ball relative to the fielder at the instant
the catch is made.

Qo
3
‘ |

| 220' 1

Problem 2/206
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Figure 2/19

2/9 Constrained Motion of Connected Particles

Sometimes the motions of particles are interrelated because of the
constraints imposed by interconnecting members. In such cases it is
necessary to account for these constraints in order to determine the re-
spective motions of the particles.

One Degree of Freedom

Consider first the very simple system of two interconnected parti-
cles A and B shown in Fig. 2/19. It should be quite evident by inspec-
tion that the horizontal motion of A is twice the vertical motion of B.
Nevertheless we will use this example to illustrate the method of analy-
sis which applies to more complex situations where the results cannot
be easily obtained by inspection. The motion of B is clearly the same as
that of the center of its pulley, so we establish position coordinates y
and x measured from a convenient fixed datum. The total length of the
cable is —

L=x+7+2y+77r1+b

With L, ry, r1, and b all constant, the first and second time derivatives of
the equation give

0:x+2y or O:UA+2UB

0=x+ 2y or 0=ay + 2ap

The velocity and acceleration constraint equations indicate that, for
the coordinates selected, the velocity of A must have a sign which is op-
posite to that of the velocity of B, and similarly for the accelerations.
The constraint equations are valid for the motion of the system in either
direction. We emphasize that v, = x is positive to the left and that vg = y
is positive down.

Because the results do not depend on the lengths or pulley radii, we
should be able to analyze the motion without considering them. In the
lower-left portion of Fig. 2/19 is shown an enlarged view of the horizon-
tal diameter A’B’'C’ of the lower pulley at an instant of time. Clearly,
A’ and A have the same motion magnitudes, as do B and B’. During an
infinitesimal motion of A’, it is easy to see from the triangle that B’
moves half as far as A’ because point C as a point on the fixed portion
of the cable momentarily has no motion. Thus, with differentiation by
time in mind, we can obtain the velocity and acceleration magnitude re-
lationships by inspection. The pulley, in effect, is a wheel which rolls on
the fixed vertical cable. (The kinematics of a rolling wheel will be
treated more extensively in Chapter 5 on rigid-body motion.) The sys-
tem of Fig. 2/19 is said to have one degree of freedom since only one
variable, either x or y, is needed to specify the positions of all parts of
the system.
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Two Degrees of Freedom

The system with two degrees of freedom is shown in Fig. 2/20. Here
the positions of the lower cylinder and pulley C depend on the separate T N 8 ) ————
specifications of the two coordinates y, and yg. The lengths of the cables VB N7\
attached to cylinders A and B can be written, respectively, as L -+t v
L, =y, + 2yp + constant e B
D |
Ly =y +yc+ o — yp) + constant N
. .. R G
and their time derivatives are N,
0=y4+2yp and 0=yp+2yc—J¥p
0=ys+2yp and 0=yp+2yc—Jp
Eliminating the terms in y, and ¥, gives Figure 2/20

yat+2yp+4y.=0 or vy + 205 + 40, =0

Yat+2yp+4y.=0 or ay + 2ag +4a0=0

It is clearly impossible for the signs of all three terms to be positive si-
multaneously. So, for example, if both A and B have downward (posi-
tive) velocities, then C will have an upward (negative) velocity.

These results can also be found by inspection of the motions of the
two pulleys at C and D. For an increment dy, (with yg held fixed), the
center of D moves up an amount dy,/2, which causes an upward move-
ment dy,/4 of the center of C. For an increment dyg (with y, held fixed),
the center of C moves up a distance dyg/2. A combination of the two
movements gives an upward movement

dya , dy
o=ty

so that —ve = v4/4 + vp/2 as before. Visualization of the actual geometry
of the motion is an important ability.

A second type of constraint where the direction of the connecting
member changes with the motion is illustrated in the second of the two
sample problems which follow.
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SAMPLE PROBLEM 2/15

In the pulley configuration shown, cylinder A has a downward velocity of 0.3
m/s. Determine the velocity of B. Solve in two ways.

Solution (I). The centers of the pulleys at A and B are located by the coordi-
nates y, and yp measured from fixed positions. The total constant length of cable
in the pulley system is

L = 3yp + 2y, + constants

where the constants account for the fixed lengths of cable in contact with the cir-
cumferences of the pulleys and the constant vertical separation between the two
upper left-hand pulleys. Differentiation with time gives

0=3yg+ 2y,
Substitution of vy = ¥4 = 0.3 m/s and v = yp gives

0 = 3(vp) + 2(0.3) or vg = —0.2m/s Ans.

Solution (II). An enlarged diagram of the pulleys at A, B, and C is shown.
During a differential movement ds, of the center of pulley A, the left end of its
horizontal diameter has no motion since it is attached to the fixed part of the
cable. Therefore, the right-hand end has a movement of 2ds, as shown. This
movement is transmitted to the left-hand end of the horizontal diameter of the
pulley at B. Further, from pulley C with its fixed center, we see that the displace-
ments on each side are equal and opposite. Thus, for pulley B, the right-hand
end of the diameter has a downward displacement equal to the upward displace-
ment dsp of its center. By inspection of the geometry, we conclude that

2ds, = 3dsp or dsg = %dsA
Dividing by d¢ gives

lvg| = %UA = %(0.3) = 0.2 m/s (upward) Ans.

2ds A

Helpful Hints

@ We neglect the small angularity of
the cables between B and C.

@ The negative sign indicates that the
velocity of B is upward.

SAMPLE PROBLEM 2/16

The tractor A is used to hoist the bale B with the pulley arrangement
shown. If A has a forward velocity v,, determine an expression for the upward
velocity vpg of the bale in terms of x.

Solution. We designate the position of the tractor by the coordinate x and the
position of the bale by the coordinate y, both measured from a fixed reference.
The total constant length of the cable is

L=2h—-y) +1=20h—y) + Jh% + o2

Differentiation with time yields
0=—-2y +
Substituting vy, = x and vg = y gives

Ans.

I .

Helpful Hint

@ Differentiation of the relation for a
right triangle occurs frequently in
mechanics.
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PROBLEMS
Introductory Problems

2/207 If block B has a leftward velocity of 1.2 m/s, deter-
mine the velocity of cylinder A.

‘%

Problem 2/207

2/208 At a certain instant, the velocity of cylinder B is
1.2 m/s down and its acceleration is 2m/s? up.
Determine the corresponding velocity and accelera-
tion of block A.

Problem 2/208

2/209 Cylinder B has a downward velocity in feet per sec-
ond given by vy = #2/2 + #3/6, where ¢ is in seconds.
Calculate the acceleration of A when ¢ = 2 sec.

A
N

&
S

Problem 2/209

2/210 Determine the constraint equation which relates
the accelerations of bodies A and B. Assume that
the upper surface of A remains horizontal.

Problem 2/210
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2/211 Determine the vertical rise & of the load W during
5 seconds if the hoisting drum wraps cable around
it at the constant rate of 320 mm/s.

Problem 2/211

2/212 A truck equipped with a power winch on its front
end pulls itself up a steep incline with the cable and
pulley arrangement shown. If the cable is wound
up on the drum at the constant rate of 40 mm/s,
how long does it take for the truck to move 4 m up
the incline?

Problem 2/212

2/213 For the pulley system shown, each of the cables at
A and B is given a velocity of 2 m/s in the direction
of the arrow. Determine the upward velocity v of
the load m.

B

~

Problem 2/213

Representative Problems

2/214 Determine the relationship which governs the
velocities of the two cylinders A and B. Express all
velocities as positive down. How many degrees of
freedom are present?

Problem 2/214
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2/215 The pulley system of the previous problem is modi-
fied as shown with the addition of a fourth pulley
and a third cylinder C. Determine the relationship
which governs the velocities of the three cylinders,
and state the number of degrees of freedom.
Express all velocities as positive down.

Problem 2/215

2/216 Neglect the diameters of the small pulleys and
establish the relationship between the velocity of A
and the velocity of B for a given value of y.

Problem 2/216

2/217 Determine an expression for the velocity v, of the
cart A down the incline in terms of the upward
velocity vy of cylinder B.

Problem 2/217

2/218 Under the action of force P, the constant accelera-
tion of block B is 6 ft/sec up the incline. For the in-
stant when the velocity of B is 3 ft/sec up the
incline, determine the velocity of B relative to A,
the acceleration of B relative to A, and the absolute
velocity of point C of the cable.

Problem 2/218
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2/219 The small sliders A and B are connected by the
rigid slender rod. If the velocity of slider B is 2 m/s
to the right and is constant over a certain interval
of time, determine the speed of slider A when the
system is in the position shown.

2R
UB

Problem 2/219

2/220 The power winches on the industrial scaffold en-
able it to be raised or lowered. For rotation in the
senses indicated, the scaffold is being raised. If each
drum has a diameter of 200 mm and turns at the
rate of 40 rev/min. determine the upward velocity v
of the scaffold.

g g

Problem 2/220

2/221 Collars A and B slide along the fixed right-angle
rods and are connected by a cord of length L.
Determine the acceleration a, of collar B as a
function of y if collar A is given a constant upward
velocity v,.

y
\
\
[

Problem 2/221

2/222 Collars A and B slide along the fixed rods and are
connected by a cord of length L. If collar A has a
velocity vy = & to the right, express the velocity
vg = —$ of Bin terms of x, vy, and s.

Problem 2/222
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2/223 The particle A is mounted on a light rod pivoted at »2/225 With all conditions of Prob. 2/224 remaining the

O and therefore is constrained to move in a circular same, determine the acceleration of slider B at the
arc of radius . Determine the velocity of A in terms instant when s, = 425 mm.

of the downward velocity vg of the counterweight

for any angle 6. »2/226 Neglect the diameter of the small pulley attached

to body A and determine the magnitude of the total
velocity of B in terms of the velocity v, which body
A has to the right. Assume that the cable between
B and the pulley remains vertical and solve for a
given value of x.

| Py

N E— !

Problem 2/226
Problem 2/223

2/224 The rod of the fixed hydraulic cylinder is moving to
the left with a constant speed v, = 25 mm/s.
Determine the corresponding velocity of slider B
when s, = 425 mm. The length of the cord is
1050 mm, and the effects of the radius of the small
pulley A may be neglected.

Problem 2/224
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2/10 Chapter Review

In Chapter 2 we have developed and illustrated the basic methods
for describing particle motion. The concepts developed in this chapter
form the basis for much of dynamics, and it is important to review and
master this material before proceeding to the following chapters.

By far the most important concept in Chapter 2 is the time deriva-
tive of a vector. The time derivative of a vector depends on direction
change as well as magnitude change. As we proceed in our study of dy-
namics, we will need to examine the time derivatives of vectors other
than position and velocity vectors, and the principles and procedures de-
veloped in Chapter 2 will be useful for this purpose.

Categories of Motion

The following categories of motion have been examined in this
chapter:

1. Rectilinear motion (one coordinate)
2. Plane curvilinear motion (two coordinates)

3. Space curvilinear motion (three coordinates)

In general, the geometry of a given problem enables us to identify the
category readily. One exception to this categorization is encountered
when only the magnitudes of the motion quantities measured along the
path are of interest. In this event, we can use the single distance coordi-
nate measured along the curved path, together with its scalar time de-
rivatives giving the speed |$ | and the tangential acceleration §.

Plane motion is easier to generate and control, particularly in ma-
chinery, than space motion, and thus a large fraction of our motion
problems come under the plane curvilinear or rectilinear categories.

Use of Fixed Axes

We commonly describe motion or make motion measurements with
respect to fixed reference axes (absolute motion) and moving axes (rela-
tive motion). The acceptable choice of the fixed axes depends on the
problem. Axes attached to the surface of the earth are sufficiently “fixed”
for most engineering problems, although important exceptions include
earth—satellite and interplanetary motion, accurate projectile trajecto-
ries, navigation, and other problems. The equations of relative motion
discussed in Chapter 2 are restricted to translating reference axes.

Choice of Coordinates

The choice of coordinates is of prime importance. We have devel-
oped the description of motion using the following coordinates:

1. Rectangular (Cartesian) coordinates (x-y) and (x-y-z)
2. Normal and tangential coordinates (n-¢)

3. Polar coordinates (r-0)
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4. Cylindrical coordinates (r-6-z)
5. Spherical coordinates (R-6-¢)

When the coordinates are not specified, the appropriate choice usually
depends on how the motion is generated or measured. Thus, for a parti-
cle which slides radially along a rotating rod, polar coordinates are the
natural ones to use. Radar tracking calls for polar or spherical coordi-
nates. When measurements are made along a curved path, normal and
tangential coordinates are indicated. An x-y plotter clearly involves rec-
tangular coordinates.

Figure 2/21 is a composite representation of the x-y, n-t, and r-6 co-
ordinate descriptions of the velocity v and acceleration a for curvilinear
motion in a plane. It is frequently essential to transpose motion descrip-
tion from one set of coordinates to another, and Fig. 2/21 contains the
information necessary for that transition.

Approximations

Making appropriate approximations is one of the most important
abilities you can acquire. The assumption of constant acceleration is
valid when the forces which cause the acceleration do not vary apprecia-
bly. When motion data are acquired experimentally, we must utilize the
nonexact data to acquire the best possible description, often with the aid
of graphical or numerical approximations.

Choice of Mathematical Method

We frequently have a choice of solution using scalar algebra, vector
algebra, trigonometric geometry, or graphical geometry. All of these
methods have been illustrated, and all are important to learn. The choice
of method will depend on the geometry of the problem, how the motion
data are given, and the accuracy desired. Mechanics by its very nature is
geometric, so you are encouraged to develop facility in sketching vector
relationships, both as an aid to the disclosure of appropriate geometric
and trigonometric relations and as a means of solving vector equations
graphically. Geometric portrayal is the most direct representation of the
vast majority of mechanics problems.

=v’p a=0, .
a,=1 —r6> ag =160+ 210

(b) Acceleration components

Figure 2/21
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REVIEW PROBLEMS

2/227 The position s of a particle along a straight line is
given by s = 8¢ 04 — 6¢ + ¢2, where s is in meters
and ¢ is the time in seconds. Determine the velocity
v when the acceleration is 3 m/s?.

2/228 While scrambling directly toward the sideline, the
football quarterback @ throws a pass toward
the stationary receiver R. At what speed v should
the quarterback run if the direction of the velocity
of the ball relative to the quarterback is to be di-
rectly down the field as indicated? The speed of the
ball relative to the quarterback is 60 ft/sec. What is
the absolute speed of the ball? Treat the problem as
two-dimensional.

o
l\ 5I;d
”Q =

20 yd \

Problem 2/228

2/229 A golfer is out of bounds and in a gulley. For the
initial conditions shown, determine the coordinates
of the point of first impact of the golf ball. The cam-
era platform B is in the plane of the trajectory.

3‘/ 105 ft/sec
\
|
40°
x
0

\ 60’

"10" 200 " 210’

Problem 2/229

2/230 At time ¢ = 0 a small ball is projected from point A
with a velocity of 200 ft/sec at the 60° angle. Ne-
glect atmospheric resistance and determine the two
times ¢; and ¢, when the velocity of the ball makes
an angle of 45° with the horizontal x-axis.

u = 200 ft/sec

A /60°

Problem 2/230

2/231 The third stage of a rocket is injected by its booster
with a velocity u of 15 000 km/h at A into an un-
powered coasting flight to B. At B its rocket motor
is ignited when the trajectory makes an angle of 20°
with the horizontal. Operation is effectively above
the atmosphere, and the gravitational acceleration
during this interval may be taken as 9 m/s% con-
stant in magnitude and direction. Determine the
time ¢ to go from A to B. (This quantity is needed in
the design of the ignition control system.) Also de-
termine the corresponding increase 4 in altitude.

=
B “790°.

y % Horiz.
| ;
\
\
\
\
\

\

Problem 2/231
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2/232 The small cylinder is made to move along the ro-
tating rod with a motion between r =ry, + b and
r=ry—bgivenbyr=ry+5b sin@, where ¢ is the
time counted from the instant the cylinder passes
the position r = ry and 7 is the period of the oscilla-
tion (time for one complete oscillation). Simultane-
ously, the rod rotates about the vertical at the
constant angular rate 6. Determine the value of r

for which the radial (r-direction) acceleration is
zero.

Gdj 7‘0/7‘ /‘/r
e 2
e
\ b <

‘/

Problem 2/232

2/233 Rotation of the arm PO is controlled by the hori-
zontal motion of the vertical slotted link. If x = 4
ft/sec and X = 30 ft/sec? when x = 2 in., determine
6 and  for this instant.

Problem 2/233

2/234 In case (a), the baseball player stands relatively
stationary and throws the ball with the initial con-
ditions shown. In case (b), he runs with speed
v = 15 ft/sec as he launches the ball with the same
conditions relative to himself. What is the addi-
tional range of the ball in case (b)? Compare the
two flight times.

v, = 100 ft/sec

Problem 2/234

2/235 A small projectile is fired from point O with an ini-
tial velocity ¥ = 500 m/s at the angle of 60° from
the horizontal as shown. Neglect atmospheric resis-
tance and any change in g and compute the radius
of curvature p of the path of the projectile 30 sec-
onds after the firing.

u =500 m/s
0/ 6 =60°

Problem 2/235
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2/236 The motion of pin P is controlled by the two mov-
ing slots A and B in which the pin slides. If B has a
velocity vz = 3 m/s to the right while A has an
upward velocity vy = 2m/s, determine the mag-
nitude vp of the velocity of the pin.

/ B
60°
L -
L | / '_
¢ D
A

e

A\
A\

~
]

—_—
Up

Problem 2/236

2/237 The angular displacement of the centrifuge is given
by 6 = 4[¢ + 30903 — 30] rad, where ¢ is in sec-
onds and ¢ = 0 is the startup time. If the person
loses consciousness at an acceleration level of 10g,
determine the time ¢ at which this would occur.
Verify that the tangential acceleration is negligible
as the normal acceleration approaches 10g.

Problem 2/237

2/238 For the instant represented the particle P has a
velocity v = 6 ft/sec in the direction shown and
has acceleration components a, = 15 ft/sec? and
a, = —15 ft/sec?. Determine a,, a,, a;, a,, and the ra-
dius of curvature p of the path for this position.
(Hint: Draw the related acceleration components of
the total acceleration of the particle and take ad-
vantage of the simplified geometry for your calcula-
tions.)

Problem 2/238

2/239 As part of a training exercise, the pilot of aircraft A
adjusts her airspeed (speed relative to the wind) to
220 km/h while in the level portion of the approach
path and thereafter holds her absolute speed con-
stant as she negotiates the 10° glide path. The ab-
solute speed of the aircraft carrier is 30 km/h and
that of the wind is 48 km/h. What will be the angle
B of the glide path with respect to the horizontal as
seen by an observer on the ship?

-

30 km/h

—_~
. 10° _— = 48km/h

A e ¢ ——

Problem 2/239
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2/240 A small aircraft is moving in a horizontal circle
with a constant speed of 130 ft/sec. At the instant
represented, a small package A is ejected from the
right side of the aircraft with a horizontal velocity
of 20 ft/sec relative to the aircraft. Neglect aerody-
namic effects and calculate the coordinates of the
point of impact on the ground.

SKA

1500”

Problem 2/240

2/241 Car A negotiates a curve of 60-m radius at a con-
stant speed of 50 km/h. When A passes the position
shown, car B is 30 m from the intersection and is
accelerating south toward the intersection at the
rate of 1.5 m/s2. Determine the acceleration which
A appears to have when observed by an occupant of
B at this instant.

N
' o
i

—$ A

Problem 2/241

2/242 Particle P moves along the curved path shown. At
the instant represented, r = 2 m, 6 = 30°, and the
velocity v makes an angle 8 = 60° with the horizon-
tal x-axis and has a magnitude of 3.2 m/s. If the
y- and r-components of the acceleration of P are
5m/s? and —1.83 m/s?, respectively, at this posi-
tion, determine the corresponding radius of curva-
ture p of the path and the x-component of the
acceleration of the particle. Solve graphically or an-

alytically.
y
\
| v
\
\
| Z’l o
\ P
\ s
| s
rs
| v
s
‘ ~
| <
(I 7 0
S x

Problem 2/242

2/243 At the instant depicted, assume that the particle P,
which moves on a curved path, is 80 m from the
pole O and has the velocity v and acceleration a as
indicated. Determine the instantaneous values of 7,
#, 6, 0, the n- and t-components of acceleration,
and the radius of curvature p.

9\ v=30m/s

Problem 2/243
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»2/244 The radar tracking antenna oscillates about its

vertical axis according to 6 = 6, cos wt, where w is
the constant circular frequency and 26, is the dou-
ble amplitude of oscillation. Simultaneously, the
angle of elevation ¢ is increasing at the constant
rate d) = K. Determine the expression for the mag-
nitude a of the acceleration of the signal horn (a) as
it passes position A and (b) as it passes the top posi-
tion B, assuming that 6 = 0 at this instant.

Problem 2/244

2/245 The rod of the fixed hydraulic cylinder is moving to

the left with a constant speed v, = 25 mm/s.
Determine the corresponding velocity of slider
B when s, = 425 mm. The length of the cord is
1600 mm, and the effects of the radius of the small
pulley at A may be neglected.

Problem 2/245

I:_j *Computer-Oriented Problems

*2/246 With all conditions of Prob. 2/245 remaining the
same, determine the acceleration of slider B at the
instant when s, = 425 mm.

*2/247 Two particles A and B start from rest at x = 0 and
move along parallel paths according to x4 =

0.16 sin %t and xz = 0.08¢, where x, and xz are in

meters and ¢ is in seconds counted from the start.
Determine the time ¢ (where ¢ > 0) when both par-
ticles have the same displacement and calculate
this displacement x.

*2/248 A baseball is dropped from an altitude h = 200 ft
and is found to be traveling at 85 ft/sec when it
strikes the ground. In addition to gravitational
acceleration, which may be assumed constant, air
resistance causes a deceleration component of mag-
nitude kv?, where v is the speed and % is a constant.
Determine the value of the coefficient k. Plot the
speed of the baseball as a function of altitude y. If
the baseball were dropped from a high altitude, but
one at which g may still be assumed constant, what
would be the terminal velocity v,? (The terminal ve-
locity is that speed at which the acceleration of
gravity and that due to air resistance are equal and
opposite, so that the baseball drops at a constant
speed.) If the baseball were dropped from
h = 200 ft, at what speed v’ would it strike the
ground if air resistance were neglected?
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*2/249 The slotted arm is fixed and the four-lobe cam

rotates counterclockwise at the constant speed of
2 revolutions per second. The distance r = 80 +
12 cos 460, where r is millimeters and 0 is in radians.
Plot the radial velocity v, and the radial accelera-
tion a, of pin P versus 6 from 6 =0 to 60 = 7/2.
State the acceleration of pin P for (a) 6 =0,
(b) 6 = /8, and (c) 0 = 7/4.

Problem 2/249

*2/250 At time ¢ = 0, the 1.8-1b particle P is given an ini-

tial velocity vy = 1 ft/sec at the position # = 0 and
subsequently slides along the circular path of ra-
dius r = 1.5 ft. Because of the viscous fluid and the
effect of gravitational acceleration, the tangential

L k
acceleration is @, = g cos 6 — ;- v, where the con-

stant £ = 0.2 Ib-sec/ft is a drag parameter. Deter-
mine and plot both 6 and 6 as functions of the time
t over the range 0 = ¢ = 5 sec. Determine the maxi-
mum values of 6 and § and the corresponding val-
ues of ¢. Also determine the first time at which
0 = 90°.

Problem 2/250

*2/251 A low-flying cropduster A is moving with a con-

stant speed of 40 m/s in the horizontal circle of ra-
dius 300 m. As it passes the twelve-o’clock position
shown at time ¢ = 0, car B starts from rest from the
position shown and accelerates along the straight
road at the constant rate of 3 m/s? until it reaches
a speed of 30 m/s, after which it maintains that
constant speed. Determine the velocity and acceler-
ation of A with respect to B and plot the magni-
tudes of both these quantities over the time period
0 = ¢ = 50 s as functions of both time and displace-
ment sg of the car. Determine the maximum and
minimum values of both quantities and state the
values of the time ¢ and the displacement sp at
which they occur.

Its
300 m
y
\
\
I 350 m
B L
‘ 1000 m
S

Problem 2/251

*2/252 A projectile is launched from point A with speed

vy = 30 m/s. Determine the value of the launch
angle a which maximizes the range R indicated in
the figure. Determine the corresponding value R.

Vg = 30 m/s

A

o

10 m

50 m

R

Problem 2/252
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*2/253 By means of the control unit M, the pendulum OA

is given an oscillatory motion about the vertical
. .8 . .
given by 6 = 6, sin \/; t, where 6, is the maximum

angular displacement in radians, g is the accelera-
tion of gravity, [ is the pendulum length, and ¢ is
the time in seconds measured from an instant
when OA is vertical. Determine and plot the magni-
tude a of the acceleration of A as a function of time
and as a function of 6 over the first quarter cycle of
motion. Determine the minimum and maximum
values of @ and the corresponding values of ¢ and 6.
Use the values 6, = /3 radians, / = 0.8 m, and
g = 9.81 m/s?. (Note: The prescribed motion is not
precisely that of a freely swinging pendulum for
large amplitudes.)

Problem 2/253

*2/254 The guide with the vertical slot is given a horizon-

tal oscillatory motion according to x = 4 sin 2¢,
where x is in inches and ¢ is in seconds. The oscilla-
tion causes the pin P to move in the fixed parabolic
slot whose shape is given by y = x2/4, with y also
in inches. Plot the magnitude v of the velocity of
the pin as a function of time during the interval
required for pin P to go from the center to the
extremity x = 4 in. Find and locate the maximum
value of v and verify your results analytically.

Yy
\
1

|
I
I
I
I
I
I
[

Problem 2/254
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The designers of amuéement-park rides such as this roller coaster must not rely upon the principl‘es of equilib-
rium alone as they develop specifications for the cars and the supporting structure. The particle kinetics of each
car must be considered in estimating the involved forces so that a safe system can be designed.
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3/1 Introduction

According to Newton’s second law, a particle will accelerate when it is
subjected to unbalanced forces. Kinetics is the study of the relations
between unbalanced forces and the resulting changes in motion. In
Chapter 3 we will study the kinetics of particles. This topic requires that
we combine our knowledge of the properties of forces, which we developed
in statics, and the kinematics of particle motion just covered in Chapter 2.
With the aid of Newton’s second law, we can combine these two topics
and solve engineering problems involving force, mass, and motion.

The three general approaches to the solution of kinetics problems
are: (A) direct application of Newton’s second law (called the force-
mass-acceleration method), (B) use of work and energy principles, and
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(C) solution by impulse and momentum methods. Each approach has its
special characteristics and advantages, and Chapter 3 is subdivided into
Sections A, B, and C, according to these three methods of solution. In
addition, a fourth section, Section D, treats special applications and
combinations of the three basic approaches. Before proceeding, you
should review carefully the definitions and concepts of Chapter 1, be-
cause they are fundamental to the developments which follow.

SECTION A FORCE, MASS, AND ACCELERATION

3/2 Newton’s Second Law

The basic relation between force and acceleration is found in New-
ton’s second law, Eq. 1/1, the verification of which is entirely experi-
mental. We now describe the fundamental meaning of this law by
considering an ideal experiment in which force and acceleration are as-
sumed to be measured without error. We subject a mass particle to the
action of a single force F;, and we measure the acceleration a; of the
particle in the primary inertial system.* The ratio F';/a; of the magni-
tudes of the force and the acceleration will be some number C; whose
value depends on the units used for measurement of force and accelera-
tion. We then repeat the experiment by subjecting the same particle to
a different force Fy and measuring the corresponding acceleration a,.
The ratio Fy/a, of the magnitudes will again produce a number C,. The
experiment is repeated as many times as desired.

We draw two important conclusions from the results of these exper-
iments. First, the ratios of applied force to corresponding acceleration
all equal the same number, provided the units used for measurement
are not changed in the experiments. Thus,

F, F,
a;  Qy

=C, a constant

We conclude that the constant C is a measure of some invariable
property of the particle. This property is the inertia of the particle,
which is its resistance to rate of change of velocity. For a particle of high
inertia (large C), the acceleration will be small for a given force F. On
the other hand, if the inertia is small, the acceleration will be large. The
mass m is used as a quantitative measure of inertia, and therefore, we
may write the expression C = km, where k is a constant introduced to
account for the units used. Thus, we may express the relation obtained
from the experiments as

F =kma 3/1)
*The primary inertial system or astronomical frame of reference is an imaginary set of ref-

erence axes which are assumed to have no translation or rotation in space. See Art. 1/2,
Chapter 1.
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where F is the magnitude of the resultant force acting on the particle
of mass m, and a is the magnitude of the resulting acceleration of the
particle.

The second conclusion we draw from this ideal experiment is that
the acceleration is always in the direction of the applied force. Thus,
Eq. 3/1 becomes a vector relation and may be written

F =kma 3/2)

Although an actual experiment cannot be performed in the ideal
manner described, the same conclusions have been drawn from countless
accurately performed experiments. One of the most accurate checks is
given by the precise prediction of the motions of planets based on Eq. 3/2.

Inertial System

Although the results of the ideal experiment are obtained for mea-
surements made relative to the “fixed” primary inertial system, they are
equally valid for measurements made with respect to any nonrotating
reference system which translates with a constant velocity with respect
to the primary system. From our study of relative motion in Art. 2/8, we
know that the acceleration measured in a system translating with no ac-
celeration is the same as that measured in the primary system. Thus,
Newton’s second law holds equally well in a nonaccelerating system, so
that we may define an inertial system as any system in which Eq. 3/2 is
valid.

If the ideal experiment described were performed on the surface of
the earth and all measurements were made relative to a reference sys-
tem attached to the earth, the measured results would show a slight dis-
crepancy from those predicted by Eq. 3/2, because the measured
acceleration would not be the correct absolute acceleration. The discrep-
ancy would disappear when we introduced the correction due to the ac-
celeration components of the earth. These corrections are negligible for
most engineering problems which involve the motions of structures and
machines on the surface of the earth. In such cases, the accelerations
measured with respect to reference axes attached to the surface of the
earth may be treated as “absolute,” and Eq. 3/2 may be applied with
negligible error to experiments made on the surface of the earth.*

An increasing number of problems occur, particularly in the fields
of rocket and spacecraft design, where the acceleration components of
the earth are of primary concern. For this work it is essential that the

*As an example of the magnitude of the error introduced by neglect of the motion of the
earth, consider a particle which is allowed to fall from rest (relative to earth) at a height &
above the ground. We can show that the rotation of the earth gives rise to an eastward ac-
celeration (Coriolis acceleration) relative to the earth and, neglecting air resistance, that
the particle falls to the ground a distance

x:gw thcos
3 V g Y

east of the point on the ground directly under that from which it was dropped. The angular
velocity of the earth is w = 0.729(10™%) rad/s, and the latitude, north or south, is y. At a lat-
itude of 45° and from a height of 200 m, this eastward deflection would be x = 43.9 mm.
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fundamental basis of Newton’s second law be thoroughly understood and
that the appropriate absolute acceleration components be employed.

Before 1905 the laws of Newtonian mechanics had been verified by
innumerable physical experiments and were considered the final de-
scription of the motion of bodies. The concept of time, considered an ab-
solute quantity in the Newtonian theory, received a basically different
interpretation in the theory of relativity announced by Einstein in 1905.
The new concept called for a complete reformulation of the accepted
laws of mechanics. The theory of relativity was subjected to early
ridicule, but has been verified by experiment and is now universally ac-
cepted by scientists. Although the difference between the mechanics of
Newton and that of Einstein is basic, there is a practical difference in
the results given by the two theories only when velocities of the order of
the speed of light (300 X 10® m/s) are encountered.* Important prob-
lems dealing with atomic and nuclear particles, for example, require cal-
culations based on the theory of relativity.

Systems of Units

It is customary to take k& equal to unity in Eq. 3/2, thus putting the
relation in the usual form of Newton’s second law

F = ma [1/1]

A system of units for which % is unity is known as a kinetic system.
Thus, for a kinetic system the units of force, mass, and acceleration are
not independent. In SI units, as explained in Art. 1/4, the units of force
(newtons, N) are derived by Newton’s second law from the base units of
mass (kilograms, kg) times acceleration (meters per second squared,
m/s?). Thus, N = kg-m/s2. This system is known as an absolute system
since the unit for force is dependent on the absolute value of mass.

In U.S. customary units, on the other hand, the units of mass
(slugs) are derived from the units of force (pounds force, 1b) divided by
acceleration (feet per second squared, ft/sec?). Thus, the mass units are
slugs = Ib-sec?/ft. This system is known as a gravitational system since
mass is derived from force as determined from gravitational attraction.

For measurements made relative to the rotating earth, the relative
value of g should be used. The internationally accepted value of g rela-
tive to the earth at sea level and at a latitude of 45° is 9.806 65 m/s%. Ex-
cept where greater precision is required, the value of 9.81 m/s? will be
used for g. For measurements relative to a nonrotating earth, the ab-
solute value of g should be used. At a latitude of 45° and at sea level, the
absolute value is 9.8236 m/s?. The sea-level variation in both the absolute
and relative values of g with latitude is shown in Fig. 1/1 of Art. 1/5.

*The theory of relativity demonstrates that there is no such thing as a preferred primary
inertial system and that measurements of time made in two coordinate systems which have
a velocity relative to one another are different. On this basis, for example, the principles of
relativity show that a clock carried by the pilot of a spacecraft traveling around the earth in
a circular polar orbit of 644 km altitude at a velocity of 27 080 km/h would be slow com-
pared with a clock at the pole by 0.000 001 85 s for each orbit.
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In the U.S. customary system, the standard value of g relative to
the rotating earth at sea level and at a latitude of 45° is 32.1740 ft/sec?.
The corresponding value relative to a nonrotating earth is 32.2230
ft/sec?.

Force and Mass Units

We need to use both SI units and U.S. customary units, so we must
have a clear understanding of the correct force and mass units in each
system. These units were explained in Art. 1/4, but it will be helpful to
illustrate them here using simple numbers before applying Newton’s
second law. Consider, first, the free-fall experiment as depicted in Fig.
3/1a where we release an object from rest near the surface of the earth.
We allow it to fall freely under the influence of the force of gravitational
attraction W on the body. We call this force the weight of the body. In SI
units for a mass m = 1 kg, the weight is W = 9.81 N, and the corre-
sponding downward acceleration a is g = 9.81 m/s%. In U.S. customary
units for a mass m = 1 Ibm (1/32.2 slug), the weight is W = 1 Ibf and the
resulting gravitational acceleration is g = 32.2 ft/sec?. For amass m = 1
slug (32.2 lbm), the weight is W = 32.2 Ibf and the acceleration, of
course, is also g = 32.2 ft/sec?.

In Fig. 3/16 we illustrate the proper units with the simplest example
where we accelerate an object of mass m along the horizontal with a
force F. In SI units (an absolute system), a force F' = 1 N causes a mass
m = 1 kg to accelerate at the rate @ = 1 m/s%. Thus, 1 N = 1 kg-m/s2. In
the U.S. customary system (a gravitational system), a force F = 1 Ibf

ST U.S. Customary
m 1 lbm m =1 slug
=1kg 32 5 slug (32.2 1Ibm)
W= 981N W= llbf W= 3221bf
* * *
a=g=9.81m/s? a=g =322 ft/sec?

(a) Gravitational Free-Fall

ST U.S. Customary
a=1m/s? a = 32.2 ft/sec? a=1 ft/s;mZ
_—— - —_
F=1N F =11bf F=11bf
—> m=1kg —> . _1lbm —> m =1slug
(32.2 Ibm)

e
(523 slug)
(b) Newton’s Second Law

Figure 3/1
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causes a mass m = 1 lbm (1/32.2 slug) to accelerate at the rate a = 32.2
ft/sec?, whereas a force F' = 1 Ibf causes a mass m = 1 slug (32.2 Ibm) to
accelerate at the rate @ = 1 ft/sec?.

We note that in SI units where the mass is expressed in kilograms
(kg), the weight W of the body in newtons (N) is given by W = mg,
where g = 9.81 m/s?. In U.S. customary units, the weight W of a body is
expressed in pounds force (Ibf), and the mass in slugs (Ibf-sec?/ft) is
given by m = W/g, where g = 32.2 ft/sec?.

In U.S. customary units, we frequently speak of the weight of a
body when we really mean mass. It is entirely proper to specify the mass
of a body in pounds (Ibm) which must be converted to mass in slugs be-
fore substituting into Newton’s second law. Unless otherwise stated, the
pound (Ib) is normally used as the unit of force (Ibf).

3/3 Equation of Motion
and Solution of Problems

When a particle of mass m is subjected to the action of concurrent
forces Fq, Fy, F3, . . . whose vector sum is XF, Eq. 1/1 becomes

>F = ma 3/3)

When applying Eq. 3/3 to solve problems, we usually express it in scalar
component form with the use of one of the coordinate systems developed
in Chapter 2. The choice of an appropriate coordinate system depends on
the type of motion involved and is a vital step in the formulation of any
problem. Equation 3/3, or any one of the component forms of the force-
mass-acceleration equation, is usually called the equation of motion. The
equation of motion gives the instantaneous value of the acceleration cor-
responding to the instantaneous values of the forces which are acting.

Two Types of Dynamics Problems

We encounter two types of problems when applying Eq. 3/3. In the
first type, the acceleration of the particle is either specified or can be de-
termined directly from known kinematic conditions. We then determine
the corresponding forces which act on the particle by direct substitution
into Eq. 3/3. This problem is generally quite straightforward.

In the second type of problem, the forces acting on the particle are
specified and we must determine the resulting motion. If the forces are
constant, the acceleration is also constant and is easily found from Eq.
3/3. When the forces are functions of time, position, or velocity, Eq. 3/3
becomes a differential equation which must be integrated to determine
the velocity and displacement.

Problems of this second type are often more formidable, as the inte-
gration may be difficult to carry out, particularly when the force is a
mixed function of two or more motion variables. In practice, it is fre-
quently necessary to resort to approximate integration techniques, ei-
ther numerical or graphical, particularly when experimental data are
involved. The procedures for a mathematical integration of the accelera-
tion when it is a function of the motion variables were developed in Art.
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2/2, and these same procedures apply when the force is a specified func-
tion of these same parameters, since force and acceleration differ only
by the constant factor of the mass.

Constrained and Unconstrained Motion

There are two physically distinct types of motion, both described by
Eq. 3/3. The first type is unconstrained motion where the particle is free
of mechanical guides and follows a path determined by its initial motion
and by the forces which are applied to it from external sources. An air-
plane or rocket in flight and an electron moving in a charged field are
examples of unconstrained motion.

The second type is constrained motion where the path of the parti-
cle is partially or totally determined by restraining guides. An ice-
hockey puck is partially constrained to move in the horizontal plane by
the surface of the ice. A train moving along its track and a collar sliding
along a fixed shaft are examples of more fully constrained motion. Some
of the forces acting on a particle during constrained motion may be ap-
plied from outside sources, and others may be the reactions on the parti-
cle from the constraining guides. All forces, both applied and reactive,
which act on the particle must be accounted for in applying Eq. 3/3.

The choice of an appropriate coordinate system is frequently indi-
cated by the number and geometry of the constraints. Thus, if a particle
is free to move in space, as is the center of mass of the airplane or rocket
in free flight, the particle is said to have three degrees of freedom since
three independent coordinates are required to specify the position of the
particle at any instant. All three of the scalar components of the equa-
tion of motion would have to be integrated to obtain the space coordi-
nates as a function of time.

If a particle is constrained to move along a surface, as is the hockey
puck or a marble sliding on the curved surface of a bowl, only two coor-
dinates are needed to specify its position, and in this case it is said to
have two degrees of freedom. If a particle is constrained to move along a
fixed linear path, as is the collar sliding along a fixed shaft, its position
may be specified by the coordinate measured along the shaft. In this
case, the particle would have only one degree of freedom.

Q KEY CONCEPTS

Free-Body Diagram

When applying any of the force-mass-acceleration equations of mo-
tion, you must account correctly for all forces acting on the particle. The
only forces which we may neglect are those whose magnitudes are negli-
gible compared with other forces acting, such as the forces of mutual at-
traction between two particles compared with their attraction to a
celestial body such as the earth. The vector sum XF of Eq. 3/3 means the
vector sum of all forces acting on the particle in question. Likewise, the
corresponding scalar force summation in any one of the component di-
rections means the sum of the components of all forces acting on the
particle in that particular direction.
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The only reliable way to account accurately and consistently for
every force is to isolate the particle under consideration from all con-
tacting and influencing bodies and replace the bodies removed by the
forces they exert on the particle isolated. The resulting free-body dia-
gram is the means by which every force, known and unknown, which
acts on the particle is represented and thus accounted for. Only after
this vital step has been completed should you write the appropriate
equation or equations of motion.

The free-body diagram serves the same key purpose in dynamics as
it does in statics. This purpose is simply to establish a thoroughly reli-
able method for the correct evaluation of the resultant of all actual
forces acting on the particle or body in question. In statics this resultant
equals zero, whereas in dynamics it is equated to the product of mass
and acceleration. When you use the vector form of the equation of mo-
tion, remember that it represents several scalar equations and that
every equation must be satisfied.

Careful and consistent use of the free-body method is the most im-
portant single lesson to be learned in the study of engineering mechan-
ics. When drawing a free-body diagram, clearly indicate the coordinate
axes and their positive directions. When you write the equations of mo-
tion, make sure all force summations are consistent with the choice of
these positive directions. As an aid to the identification of external
forces which act on the body in question, these forces are shown as
heavy red vectors in the illustrations in this book. Sample Problems 3/1
through 3/5 in the next article contain five examples of free-body dia-
grams. You should study these to see how the diagrams are constructed.

In solving problems, you may wonder how to get started and what
sequence of steps to follow in arriving at the solution. This difficulty
may be minimized by forming the habit of first recognizing some rela-
tionship between the desired unknown quantity in the problem and
other quantities, known and unknown. Then determine additional rela-
tionships between these unknowns and other quantities, known and un-
known. Finally, establish the dependence on the original data and
develop the procedure for the analysis and computation. A few minutes
spent organizing the plan of attack through recognition of the depen-
dence of one quantity on another will be time well spent and will usually
prevent groping for the answer with irrelevant calculations.

3/4 Rectilinear Motion

We now apply the concepts discussed in Arts. 3/2 and 3/3 to prob-
lems in particle motion, starting with rectilinear motion in this article
and treating curvilinear motion in Art. 3/5. In both articles, we will ana-
lyze the motions of bodies which can be treated as particles. This simpli-
fication is possible as long as we are interested only in the motion of the
mass center of the body. In this case we may treat the forces as concur-
rent through the mass center. We will account for the action of noncon-
current forces on the motions of bodies when we discuss the kinetics of
rigid bodies in Chapter 6.




Article 3/4

Rectilinear Motion

125

If we choose the x-direction, for example, as the direction of the rec-
tilinear motion of a particle of mass m, the acceleration in the y- and
z-directions will be zero and the scalar components of Eq. 3/3 become

XF, = ma,
IF, =0 (3/4)
XF,=0

For cases where we are not free to choose a coordinate direction
along the motion, we would have in the general case all three compo-
nent equations

XF, = ma,
XF, = ma, (3/5)
XF, = ma,

where the acceleration and resultant force are given by

a=ai+ajtak
XF = 5F,i + 3F,j + SF k
|ZF| = J(ZF,)? + (3F,)? + (IF,)?

This view of a car-collision test suggests that very large accelerations and
accompanying large forces occur throughout the system of the two cars.
The crash dummies are also subjected to large forces, primarily by the
shoulder-harness/seat-belt restraints.

© CTK/Alamy
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SAMPLE PROBLEM 3/1

A 75-kg man stands on a spring scale in an elevator. During the first 3 sec-
onds of motion from rest, the tension 7 in the hoisting cable is 8300 N. Find the
reading R of the scale in newtons during this interval and the upward velocity v
of the elevator at the end of the 3 seconds. The total mass of the elevator, man,
and scale is 750 kg.

Solution. The force registered by the scale and the velocity both depend on
the acceleration of the elevator, which is constant during the interval for which
the forces are constant. From the free-body diagram of the elevator, scale, and
man taken together, the acceleration is found to be

[ZFy = may] 8300 — 7360 = 750ay a, = 1.257 m/s?

The scale reads the downward force exerted on it by the man’s feet. The equal
and opposite reaction R to this action is shown on the free-body diagram of the
man alone together with his weight, and the equation of motion for him gives

[XF, = ma,] R — 736 = 75(1.257) R =830N Ans.

The velocity reached at the end of the 3 seconds is

3
[Av = f a dt] v—0= f 1.257 dt v=3.77Tm/s Ans.
0

75(9.81) = 736 N

750(9.81) = 7360 N Rk

Helpful Hint

@ If the scale were calibrated in kilo-
grams, it would read 830/9.81 =
84.6 kg which, of course, is not his
true mass since the measurement
was made in a noninertial (accelerat-
ing) system. Suggestion: Rework this
problem in U.S. customary units.

SAMPLE PROBLEM 3/2

A small inspection car with a mass of 200 kg runs along the fixed overhead
cable and is controlled by the attached cable at A. Determine the acceleration of
the car when the control cable is horizontal and under a tension 7' = 2.4 kN.
Also find the total force P exerted by the supporting cable on the wheels.

Solution. The free-body diagram of the car and wheels taken together and
treated as a particle discloses the 2.4-kN tension T, the weight W = mg =
200(9.81) = 1962 N, and the force P exerted on the wheel assembly by the cable.

The car is in equilibrium in the y-direction since there is no acceleration in
this direction. Thus,

[ZF, = 0] P-24(F) -1962(2) =0 P=273kN Ans.
In the x-direction the equation of motion gives

[XF, = ma,] 2400(32) - 1962(3%) = 200c  a = 7.30 m/s? Ans.

Helpful Hint

W =mg = 1962 N

@ By choosing our coordinate axes along and normal to the direction of the acceleration, we are able to solve the two equa-
tions independently. Would this be so if x and y were chosen as horizontal and vertical?



Article 3/4 Rectilinear Motion 127

SAMPLE PROBLEM 3/3

The 250-1b concrete block A is released from rest in the position shown and
pulls the 400-1b log up the 30° ramp. If the coefficient of kinetic friction between
the log and the ramp is 0.5, determine the velocity of the block as it hits the
ground at B.

Solution. The motions of the log and the block A are clearly dependent. Al-
though by now it should be evident that the acceleration of the log up the incline
is half the downward acceleration of A, we may prove it formally. The constant
total length of the cable is L = 2s¢ + s4 + constant, where the constant accounts
for the cable portions wrapped around the pulleys. Differentiating twice with re-
spect to time gives 0 = 25, + §4, or

0=2ac+aA

We assume here that the masses of the pulleys are negligible and that they
turn with negligible friction. With these assumptions the free-body diagram of
the pulley C discloses force and moment equilibrium. Thus, the tension in the
cable attached to the log is twice that applied to the block. Note that the acceler-
ations of the log and the center of pulley C are identical.

The free-body diagram of the log shows the friction force w; N for motion up
the plane. Equilibrium of the log in the y-direction gives

[ZF, = 0] N — 400 cos 30° =0 N =346 1b
and its equation of motion in the x-direction gives

[SF, = ma,] 0.5(346) — 2T + 400 sin 30° = %ac
For the block in the positive downward direction, we have

_ 250

[+¢ZF:ma] 250*T—@&A

Solving the three equations in a¢, au, and T gives us
a, = 5.83 ft/sec? ap = —2.92 ft/sec? T = 205 1b
For the 20-ft drop with constant acceleration, the block acquires a velocity

[v2 = 2ax] vy = V2(5.83)(20) = 15.27 ft/sec Ans.

\
\
2501b |+

Helpful Hints

@ The coordinates used in expressing
the final kinematic constraint rela-
tionship must be consistent with
those used for the kinetic equations
of motion.

@ We can verify that the log will in-
deed move up the ramp by calculat-
ing the force in the cable necessary
to initiate motion from the equilib-
rium condition. This force is 27T =
0.5N + 400 sin 30° = 373 lbor T' =
186.5 lb, which is less than the 250-
Ib weight of block A. Hence, the log
will move up.

© Note the serious error in assuming
that T' = 250 Ib, in which case, block
A would not accelerate.

@ Because the forces on this system re-
main constant, the resulting acceler-
ations also remain constant.
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SAMPLE PROBLEM 3/4

The design model for a new ship has a mass of 10 kg and is tested in an exper-
imental towing tank to determine its resistance to motion through the water at
various speeds. The test results are plotted on the accompanying graph, and the
resistance R may be closely approximated by the dashed parabolic curve shown. If
the model is released when it has a speed of 2 m/s, determine the time ¢ required
for it to reduce its speed to 1 m/s and the corresponding travel distance x.

Solution. We approximate the resistance-velocity relation by R = kv? and
find % by substituting R = 8 N and v = 2 m/s into the equation, which gives
k = 8/2* = 2 N-s?/m?. Thus, R = 2v%.

The only horizontal force on the model is R, so that

dv

[ZF, = ma,] —R = ma, or —202 =10 it

We separate the variables and integrate to obtain

t v
- 5[ av —51_1
fo dt = -5 ) o2 t 5<v 2>s

Thus, when v = vy/2 = 1 m/s, the time is ¢ :5(% - %) =25s. Ans.

The distance traveled during the 2.5 seconds is obtained by integrating v =
dx/dt. Thus, v = 10/(5 + 2¢) so that

5
=347m Ans.

x 2.5
10 10
= =— +
fo dx o Bta dt x 9 In (5 + 2¢)

2.
0

8
/
6 7
[
Z oy hd
55 e
2 -t
47
_ =3
|
OO 1 2
v, m/s

Helpful Hints

@ Be careful to observe the minus sign
for R.

@ Suggestion: Express the distance x
after release in terms of the velocity
v and see if you agree with the re-
sulting relation x = 5 In (vy/v).

SAMPLE PROBLEM 3/5

The collar of mass m slides up the vertical shaft under the action of a force
F of constant magnitude but variable direction. If § = k¢ where % is a constant
and if the collar starts from rest with § = 0, determine the magnitude F' of the
force which will result in the collar coming to rest as 0 reaches 7/2. The coeffi-
cient of kinetic friction between the collar and shaft is u;.

Solution. After drawing the free-body diagram, we apply the equation of mo-
tion in the y-direction to get

[ZF, = ma,] Fcos@—ukN—mg=m%

where equilibrium in the horizontal direction requires N = F sin 0. Substituting
0 = kt and integrating first between general limits give
t v
f (F cos kt — u, F sin kt — mg) dt = mJ’ dv
0 0
which becomes

%[sin kt + p(cos kt — 1)] — mgt = mv

For 6 = 7/2 the time becomes ¢ = 7/2k, and v = 0 so that

%[l+uk(0—1)]fmi”:0 el mem

% F = 72(1 - Ans.

ueN| g

mg

Helpful Hints

@ If 6 were expressed as a function of
the vertical displacement y instead
of the time ¢, the acceleration would
become a function of the displace-
ment and we would use v dv = a dy.

@ We see that the results do not de-
pend on k, the rate at which the
force changes direction.
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PROBLEMS

Introductory Problems

3/1 The 50-kg crate is projected along the floor with an
initial speed of 7 m/s at x = 0. The coefficient of ki-
netic friction is 0.40. Calculate the time required for
the crate to come to rest and the corresponding dis-
tance x traveled.

11 = 0.40

Problem 3/1

3/2 The 50-kg crate of Prob. 3/1 is now projected down an
incline as shown with an initial speed of 7 m/s. Inves-
tigate the time ¢ required for the crate to come to rest
and the corresponding distance x traveled if (a) 6 = 15°
and (b) 6 = 30°.

Problem 3/2

3/3 The 100-1b crate is carefully placed with zero velocity
on the incline. Describe what happens if (@) 0 = 15°
and (b) 6 = 20°

Problem 3/3

3/4 A 60-kg woman holds a 9-kg package as she stands
within an elevator which briefly accelerates upward at
a rate of g/4. Determine the force R which the elevator
floor exerts on her feet and the lifting force L which
she exerts on the package during the acceleration in-
terval. If the elevator support cables suddenly and
completely fail, what values would R and L acquire?

—
i |og

Problem 3/4

3/5 During a brake test, the rear-engine car is stopped
from an initial speed of 100 km/h in a distance of
50 m. If it is known that all four wheels contribute
equally to the braking force, determine the braking
force F' at each wheel. Assume a constant decelera-
tion for the 1500-kg car.

\ 50 m
vy =100 km/h vy =0

Problem 3/5
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3/6 What fraction n of the weight of the jet airplane is
the net thrust (nozzle thrust 7' minus air resistance
R) required for the airplane to climb at an angle 6
with the horizontal with an acceleration a in the di-
rection of flight?

-~
R

.
/i T

Problem 3/6

3/7 The 300-Mg jet airliner has three engines, each of
which produces a nearly constant thrust of 240 kN dur-
ing the takeoff roll. Determine the length s of runway
required if the takeoff speed is 220 km/h. Compute s
first for an uphill takeoff direction from A to B and sec-
ond for a downbhill takeoff from B to A on the slightly
inclined runway. Neglect air and rolling resistance.

0.5°

B

f Horizontal
Problem 3/7
3/8 The 180-1b man in the bosun’s chair exerts a pull of

50 1b on the rope for a short interval. Find his acceler-
ation. Neglect the mass of the chair, rope, and pulleys.

Problem 3/8

3/9 A man pulls himself up the 15° incline by the method
shown. If the combined mass of the man and cart is
100 kg, determine the acceleration of the cart if the
man exerts a pull of 250 N on the rope. Neglect all
friction and the mass of the rope, pulleys, and wheels.

Problem 3/9

3/10 A car is climbing the hill of slope 6; at a constant
speed v. If the slope decreases abruptly to 6, at point
A, determine the acceleration a of the car just after
passing point A if the driver does not change the
throttle setting or shift into a different gear.

Problem 3/10

3/11 Calculate the vertical acceleration a of the 100-1b
cylinder for each of the two cases illustrated. Ne-
glect friction and the mass of the pulleys.

100 100
150 150 Ib

(a) (b)

Problem 3/11
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3/12 A driver finds that her car will descend the slope
0, = 3° at a certain constant speed with no brakes or
throttle required. The slope decreases fairly
abruptly to 6, at point A. If the driver takes no ac-
tion but continues to coast, determine the accelera-
tion a of the car just after it passes point A for the
conditions (a) 6, = 1.5° and (b) 6, = 0.

v = constant

6y

Problem 3/12

3/13 By itself, the 2500-kg pickup truck executes a 0-100
km/h acceleration run in 10 s along a level road.
What would be the corresponding time when pulling
the 500-kg trailer? Assume constant acceleration
and neglect all retarding forces.

2500 kg

Problem 3/13

3/14 Reconsider the pickup-truck/trailer combination of
the previous problem. If the unit uniformly acceler-
ates from rest to a speed of 25 m/s in a distance of
150 m, determine the tension 7 in the towing
tongue OA. Neglect all effects of the 5° tongue
angle, i.e., assume that OA is horizontal.

Representative Problems

3/15 A train consists of a 400,000-1b locomotive and one
hundred 200,000-1b hopper cars. If the locomotive
exerts a friction force of 40,000 Ib on the rails in
starting the train from rest, compute the forces in
couplers 1 and 100. Assume no slack in the couplers
and neglect friction associated with the hopper cars.

Problem 3/15

3/16 The collar A is free to slide along the smooth shaft B
mounted in the frame. The plane of the frame is
vertical. Determine the horizontal acceleration a of
the frame necessary to maintain the collar in a fixed
position on the shaft.

Problem 3/16

3/17 The 5-o0z pinewood-derby car is released from rest at
the starting line A and crosses the finish line C 2.75
sec later. The transition at B is small and smooth.
Assume that the net retarding force is constant
throughout the run and find this force.

Problem 3/17

3/18 The beam and attached hoisting mechanism together
weigh 2400 lb with center of gravity at G. If the ini-
tial acceleration a of point P on the hoisting cable is
20 ft/sec?, calculate the corresponding reaction at
the support A.

g ‘ 8

10

1000 Ib

Problem 3/18
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3/19 The 10-kg steel sphere is suspended from the 15-kg
frame which slides down the 20° incline. If the coef-
ficient of kinetic friction between the frame and in-
cline is 0.15, compute the tension in each of the
supporting wires A and B.

/lé < 015

20°

Problem 3/19

3/20 The block shown is observed to have a velocity
v, = 20 ft/sec as it passes point A and a velocity
vy = 10 ft/sec as it passes point B on the incline.
Calculate the coefficient of kinetic friction w, be-
tween the block and the incline if x = 30 ft and
0 = 15°.

Problem 3/20

3/21 Determine the initial acceleration of the 15-kg block
if (@) T = 23 N and (b) T = 26 N. The system is ini-
tially at rest with no slack in the cable, and the
mass and friction of the pulleys are negligible.

el

15 kg 30°

T

Hy = 0-50} Vv )

1 = 0.40

Problem 3/21

3/22 The system of the previous problem starts from rest
with no slack in the cable. What value of the tension
T will result in an initial block acceleration of 0.8
m/s? to the right?

3/23 Small objects are delivered to the 72-in. inclined
chute by a conveyor belt A which moves at a speed
v, = 1.2 ft/sec. If the conveyor belt B has a speed
vy = 3.0 ft/sec and the objects are delivered to this
belt with no slipping, calculate the coefficient of fric-
tion u; between the objects and the chute.

e

—_—

( \U—

B
Problem 3/23

3/24 1If the coefficients of static and kinetic friction be-
tween the 20-kg block A and the 100-kg cart B are
both essentially the same value of 0.50, determine
the acceleration of each part for (@) P = 60 N and

(b)P =40N.
P
A 20 kg ——
B 100 kg

Problem 3/24

3/25 A simple pendulum is pivoted at O and is free to
swing in the vertical plane of the plate. If the plate
is given a constant acceleration a up the incline 6,
write an expression for the steady angle 8 assumed
by the pendulum after all initial start-up oscilla-
tions have ceased. Neglect the mass of the slender
supporting rod.

Problem 3/25
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3/26

The tractor-trailer unit is moving down the incline
with a speed of 5 mi/hr when the driver brakes the
tractor to a stop in a distance of 4 ft. Estimate the
percent increase n in the hitch-force component
which is parallel to the incline, compared with the
force present at steady speed. The cart and its load
combined weigh 500 lb. State any assumptions.

3/27

Problem 3/26

The device shown is used as an accelerometer and
consists of a 4-oz plunger A which deflects the
spring as the housing of the unit is given an upward
acceleration a. Specify the necessary spring stiffness
k which will permit the plunger to deflect 1/4 in. be-
yond the equilibrium position and touch the electri-
cal contact when the steadily but slowly increasing
upward acceleration reaches 5g. Friction may be
neglected.

Problem 3/27

3/28

3/29

The acceleration of the 50-kg carriage A in its
smooth vertical guides is controlled by the tension T
exerted on the control cable which passes around the
two circular pegs fixed to the carriage. Determine
the value of T required to limit the downward accel-
eration of the carriage to 1.2 m/s? if the coefficient of
friction between the cable and the pegs is 0.20. (Re-
call the relation between the tensions in a flexible
cable which is slipping on a fixed peg: Ty = Te*f.)

—— TZ
Tl

ariel| |

T\B}

T
Problem 3/28

The system is released from rest with the cable taut.
For the friction coefficients u, = 0.25 and u;, = 0.20,
calculate the acceleration of each body and the ten-
sion T in the cable. Neglect the small mass and fric-
tion of the pulleys.

Problem 3/29
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3/30 A jet airplane with a mass of 5 Mg has a touchdown

speed of 300 km/h, at which instant the braking
parachute is deployed and the power shut off. If the
total drag on the aircraft varies with velocity as
shown in the accompanying graph, calculate the dis-
tance x along the runway required to reduce the
speed to 150 km/h. Approximate the variation of the
drag by an equation of the form D = kv?, where £ is
a constant.

120
100

80 /
60

40

Drag D, kN

20

| 1

0 100 200 300
Velocity v, km/h

Problem 3/30

3/31 A heavy chain with a mass p per unit length is

pulled by the constant force P along a horizontal
surface consisting of a smooth section and a rough
section. The chain is initially at rest on the rough
surface with x = 0. If the coefficient of kinetic fric-
tion between the chain and the rough surface is y,,
determine the velocity v of the chain when x = L.
The force P is greater than u,pgL in order to initi-
ate motion.

Problem 3/31

3/32 The sliders A and B are connected by a light rigid

bar of length / = 0.5 m and move with negligible
friction in the slots, both of which lie in a horizontal
plane. For the position where x, = 0.4 m, the veloc-
ity of A is v, = 0.9 m/s to the right. Determine the
acceleration of each slider and the force in the bar
at this instant.

é}E 3kg

0.5m
2kg

m —> p-10N

XA 1

Problem 3/32

3/33 The sliders A and B are connected by a light rigid

bar and move with negligible friction in the slots,
both of which lie in a horizontal plane. For the posi-
tion shown, the hydraulic cylinder imparts a veloc-
ity and acceleration to slider A of 0.4 m/s and 2 m/s?,
respectively, both to the right. Determine the accel-
eration of slider B and the force in the bar at this
instant.

Problem 3/33
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3/34 The 4-1b collar is released from rest against the light
elastic spring, which has a stiffness of 10 Ib/in. and
has been compressed a distance of 6 in. Determine
the acceleration a of the collar as a function of the
vertical displacement x of the collar measured in
feet from the point of release. Find the velocity v of
the collar when x = 0.5 ft. Friction is negligible.

.

K

}7

JUuuy

Qrunnnn

D

Problem 3/34

3/35 The nonlinear spring has a tensile force-deflection
relationship given by F, = 150x + 400x2, where x is
in meters and Fy is in newtons. Determine the accel-
eration of the 6-kg block if it is released from rest at
(@) x = 50 mm and (b) x = 100 mm.

Undeformed spring
position

=

11 = 0.30

6 kg /{ﬂk=0-25

Problem 3/35

3/36 Two configurations for raising an elevator are shown.
Elevator A with attached hoisting motor and drum
has a total mass of 900 kg. Elevator B without
motor and drum also has a mass of 900 kg. If the
motor supplies a constant torque of 600 N-m to its
250-mm-diameter drum for 2 s in each case, select
the configuration which results in the greater up-
ward acceleration and determine the corresponding
velocity v of the elevator 1.2 s after it starts from
rest. The mass of the motorized drum is small, thus
permitting it to be analyzed as though it were in
equilibrium. Neglect the mass of cables and pulleys
and all friction.

250 mm
¢ < H
A B
¢ ¢ H
— 250 mm

(@) (b) Q*
Problem 3/36

3/37 Compute the acceleration of block A for the instant
depicted. Neglect the masses of the pulleys.

T=100N
11 = 0.50

11, = 0.40

Problem 3/37
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3/38 The inclined block A is given a constant rightward

acceleration a. Determine the range of values of 6
for which block B will not slip relative to block A,
regardless of how large the acceleration « is. The co-
efficient of static friction between the blocks is u,.

Ly

— A

Problem 3/38

3/39 A spring-loaded device imparts an initial vertical ve-

locity of 50 m/s to a 0.15-kg ball. The drag force on
the ball is Fj, = 0.002v%, where Fj, is in newtons
when the speed v is in meters per second. Determine
the maximum altitude A attained by the ball (a) with
drag considered and (b) with drag neglected.

v = 50 m/s

° 0.15 kg

=

Problem 3/39

3/40 A shock absorber is a mechanical device which pro-

vides resistance to compression or extension given
by R = cv, where c is a constant and v is the time
rate of change of the length of the absorber. An ab-
sorber of constant ¢ = 3000 N-s/m is shown being
tested with a 100-kg cylinder suspended from it.
The system is released with the cable taut at y = 0
and allowed to extend. Determine (a) the steady-
state velocity v, of the lower end of the absorber and
(b) the time ¢ and displacement y of the lower end
when the cylinder has reached 90 percent of its
steady-state speed. Neglect the mass of the piston
and attached rod.

]

===
| ——

pp——

¢ =3000 N8
m

oo

r
T

[

m =100 kg

Problem 3/40

3/41 The design of a lunar mission calls for a 1200-kg

spacecraft to lift off from the surface of the moon
and travel in a straight line from point A and pass
point B. If the spacecraft motor has a constant
thrust of 2500 N, determine the speed of the space-
craft as it passes point B. Use Table D/2 and the
gravitational law from Chapter 1 as needed.

Problem 3/41
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3/42 For what value(s) of the angle 0 will the acceleration
of the 80-1b block be 26 ft/sec? to the right?

P=1001b
80 1b

ue=0.6,u,=05
Problem 3/42

»3/43 With the blocks initially at rest, the force P is in-
creased slowly from zero to 60 lb. Plot the accelera-
tions of both masses as functions of P.

i, = 0.20
B
u,=0.15
uZ:O.lO }\ 100 1b > P

Problem 3/43

»3/44 An object projected vertically up from the surface of
the earth with a sufficiently high velocity v, can es-
cape from the earth’s gravitational field. Calculate
this velocity on the basis of the absence of an atmos-
phere to offer resistance due to air friction. To elim-
inate the effect of the earth’s rotation on the
velocity measurement, consider the launch to be
from the north or south pole. Use the mean radius
of the earth and the absolute value of g as cited in
Art. 1/5 and compare your answer with the value
cited in Table D/2.

»>3/45 The system is released from rest in the position

shown. Calculate the tension T in the cord and the
acceleration a of the 30-kg block. The small pulley
attached to the block has negligible mass and fric-
tion. (Suggestion: First establish the kinematic rela-
tionship between the accelerations of the two
bodies.)

4

N3

% 30 kg

Ms =My =p=0.25

I 15 kg

Problem 3/45

»3/46 The rod of the fixed hydraulic cylinder is moving to

the left with a speed of 100 mm/s and this speed is
momentarily increasing at a rate of 400 mm/s each sec-
ond at the instant when s, = 425 mm. Determine the
tension in the cord at that instant. The mass of
slider B is 0.5 kg, the length of the cord is 1050 mm,
and the effects of the radius and friction of the small
pulley at A are negligible. Find results for cases
(@) negligible friction at slider B and (b) u;, = 0.40 at
slider B. The action is in a vertical plane.

Problem 3/46
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Because of the banking in the turn of
this track, the normal reaction force
provides most of the normal acceler-
ation of the bobsled.

At the highest point of the swing,

this child experiences tangential
acceleration. An instant later, when
she has acquired velocity, she will
experience normal acceleration as
well.

3/5 Curvilinear Motion

We turn our attention now to the kinetics of particles which move
along plane curvilinear paths. In applying Newton’s second law, Eq. 3/3,
we will make use of the three coordinate descriptions of acceleration in
curvilinear motion which we developed in Arts. 2/4, 2/5, and 2/6.

The choice of an appropriate coordinate system depends on the con-
ditions of the problem and is one of the basic decisions to be made in
solving curvilinear-motion problems. We now rewrite Eq. 3/3 in three
ways, the choice of which depends on which coordinate system is most
appropriate.

Rectangular coordinates (Art. 2/4, Fig. 2/7)

XF, = ma,
(3/6)
2F, = ma,
where a, =% and a, =y
Normal and tangential coordinates (Art. 2/5, Fig. 2/10)
XF, = ma,
3/7)
XF, = ma,
where a, = pB% = v2p = vp, a, =0, and v=pB
Polar coordinates (Art. 2/6, Fig. 2/15)
YF. = ma
' ' (3/8)
XFy = may
where a, =i —ro2 and a,=r6 +2r6

In applying these motion equations to a body treated as a particle,
you should follow the general procedure established in the previous ar-
ticle on rectilinear motion. After you identify the motion and choose
the coordinate system, draw the free-body diagram of the body. Then
obtain the appropriate force summations from this diagram in the
usual way. The free-body diagram should be complete to avoid incor-
rect force summations.

Once you assign reference axes, you must use the expressions for
both the forces and the acceleration which are consistent with that as-
signment. In the first of Eqs. 3/7, for example, the positive sense of the
n-axis is toward the center of curvature, and so the positive sense of our
force summation XF, must also be toward the center of curvature to
agree with the positive sense of the acceleration a,, = v%/p.
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SAMPLE PROBLEM 3/6

Determine the maximum speed v which the sliding block may have as it
passes point A without losing contact with the surface. AT

&——T

Solution. The condition for loss of contact is that the normal force N which

the surface exerts on the block goes to zero. Summing forces in the normal direc- mg
tion gives ll
e ———t
[XF, = ma,] mg=m n v =gp Ans.
N=0

If the speed at A were less than /gp, then an upward normal force exerted by the
surface on the block would exist. In order for the block to have a speed at A |
which is greater than \/g7 , some type of constraint, such as a second curved sur- n
face above the block, would have to be introduced to provide additional down-

ward force.

SAMPLE PROBLEM 3/7

Small objects are released from rest at A and slide down the smooth circular
surface of radius R to a conveyor B. Determine the expression for the normal
contact force N between the guide and each object in terms of 6 and specify the
correct angular velocity w of the conveyor pulley of radius r to prevent any slid-
ing on the belt as the objects transfer to the conveyor.

Solution. The free-body diagram of the object is shown together with the co-

mg T
ordinate directions n and #. The normal force N depends on the n-component of R /9/ g
the acceleration which, in turn, depends on the velocity. The velocity will be cu- l e
mulative according to the tangential acceleration a;. Hence, we will find a; first sn
for any general position. /\> \
\
N \
[ZF, = ma,] mg cos 6 = ma, a, = g cos 6 t
Now we can find the velocity by integrating
) , Helpful Hint
[vdv = a, ds] Jo vdv = fo g cos 6 d(R6) v? = 2gR sin 6 @ 1t is essential here that we recognize
the need to express the tangential ac-
We obtain the normal force by summing forces in the positive n-direction, which celeration as a function Of_pOSitior{ o
is the direction of the n-component of acceleration. that v may be found by integrating

the kinematical relation v dv = a, ds,
in which all quantities are measured

2
[SF, = ma,] N-mgsino=m“  N=3mgsin6 Ans. along the path.

R

The conveyor pulley must turn at the rate v = rw for 6 = 7/2, so that

w = J2gR/r Ans.
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SAMPLE PROBLEM 3/8

A 1500-kg car enters a section of curved road in the horizontal plane and
slows down at a uniform rate from a speed of 100 km/h at A to a speed of 50
km/h as it passes C. The radius of curvature p of the road at A is 400 m and at C
is 80 m. Determine the total horizontal force exerted by the road on the tires at
positions A, B, and C. Point B is the inflection point where the curvature

changes direction.

Solution. The car will be treated as a particle so that the effect of all forces ex-
erted by the road on the tires will be treated as a single force. Since the motion is /
described along the direction of the road, normal and tangential coordinates will Y
be used to specify the acceleration of the car. We will then determine the forces I

from the accelerations. S | /@n a -t % o)
The constant tangential acceleration is in the negative ¢-direction, and its N - @\ N
a a,

~ B
magnitude is given by @ B t
/
(50/3.6)% — (100/3.6)2 /

[ve? = vu? + 2a, As] a, = 2200) = 1.447 m/s? "
The normal components of acceleration at A, B, and C are Helpful Hints

(100/3.6)2 @ Recognize the numerical value of
la, = v¥p] At A, =00 1.929 m/s? the conversion factor from km/h to

m/s as 1000/3600 or 1/3.6.
AtB, a,=0

Note that a, is always directed to-
_ (50/3.6)? e o

At C, a, 80 2.41 m/s? ward the center of curvature.
Application of Newton’s second law in both the n- and ¢-directions to the /! F,
free-body diagrams of the car gives A // . F, _—t (© F
- _ - F, ‘. FF®
[SF, = ma,] F, = 1500(1.447) = 2170 N ~. AR DR y
t
[5F, = ma,] AtA,  F,=1500(1.929) = 2890 N H "
At B, F,=0
At C, F, = 1500(2.41) = 3620 N © Note that the direction of F, must
agree with that of a,,.
Thus, the total horizontal force acting on the tires becomes
AtA, F=JF2+F2= /(2890)% + (2170)% = 3620 N Ans.
At B, F=F,=2170N Ans.
At C, F= \/Fnz FF2= J(3620)2 + (2170)2 = 4220 N Ans. @ The angle made by a and F with the

direction of the path can be com-
puted if desired.
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SAMPLE PROBLEM 3/9

t\
\
Compute the magnitude v of the velocity required for the spacecraft S to \ g
maintain a circular orbit of altitude 200 mi above the surface of the earth. /Q
h ~
\}ﬁ_.—\\\ n//F—G MM
Solufion. The only external force acting on the spacecraft is the force of gravi- ///}\Q \QS (R +h)?
@ tational attraction to the earth (i.e., its weight), as shown in the free-body dia- / t R \/'6“ \
gram. Summing forces in the normal direction yields { |
/
mm, 2 Gm \ /
8 \ /
SF = G e — U , — e _ R \/
B, =me) G =" "k U NET R ® + h) N -

where the substitution gR? = Gm, has been made. Substitution of numbers gives

32.234
(3959 + 200)(5280)

v = (3959)(5280) \/ = 25,326 ft/sec Ans.

Helpful Hint

@ Note that, for observations made within an inertial frame of reference, there is no such quantity as “centrifugal force” act-
ing in the minus n-direction. Note also that neither the spacecraft nor its occupants are “weightless,” because the weight
in each case is given by Newton’s law of gravitation. For this altitude, the weights are only about 10 percent less than the
earth-surface values. Finally, the term “zero-g” is also misleading. It is only when we make our observations with respect
to a coordinate system which has an acceleration equal to the gravitational acceleration (such as in an orbiting spacecraft)
that we appear to be in a “zero-g” environment. The quantity which does go to zero aboard orbiting spacecraft is the fa-
miliar normal force associated with, for example, an object in contact with a horizontal surface within the spacecraft.

SAMPLE PROBLEM 3/10

Tube A rotates about the vertical O-axis with a constant angular rate 6 = o
and contains a small cylindrical plug B of mass m whose radial position is con-
trolled by the cord which passes freely through the tube and shaft and is wound
around the drum of radius b. Determine the tension 7' in the cord and the hori-
zontal component Fy of force exerted by the tube on the plug if the constant an-
gular rate of rotation of the drum is w, first in the direction for case (¢) and
second in the direction for case (b). Neglect friction.

b
Solufion. With r a variable, we use the polar-coordinate form of the equations (‘B
of motion, Egs. 3/8. The free-body diagram of B is shown in the horizontal plane (O +0
and discloses only T and F,. The equations of motion are case (a) |
, I |
[SF, = ma,] ~T = m(+ — r6? T B
. . r
[2F, = may,] F,=m@ré + 2i6) 0
. Fy
Case (a). With 7 = +bw, 7 = 0, and 6 = 0, the forces become
T = mro? Fy = 2mbwyw Ans.
Helpful Hint
@ case (b). With i = —bw,, # = 0, and 6 = 0, the forces become @ The minus sign shows that F, is in
the direction opposite to that shown
T = mro? Fy = —2mbwyw Ans. on the free-body diagram.
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PROBLEMS 3/49 The 0.1-kg particle has a speed v = 10 m/s as it
passes the 30° position shown. The coefficient of ki-
Introductory Problems netic friction between the particle and the vertical-
) ) plane track is w;, = 0.20. Determine the magnitude
3/47 The §mall O.6-k§?r block slides with a small .amount of of the total force exerted by the track on the parti-
friction on the circular path of radius 3 m in the ver- cle. What is the deceleration of the particle?
tical plane. If the speed of the block is 5 m/s as it
passes point A and 4 m/s as it passes point B, deter-
mine the normal force exerted on the block by the U/’
surface at each of these two locations. ‘ \
i p=56m
30°
Problem 3/49
3/50 The 4-oz slider has a speed v = 3 ft/sec as it passes
point A of the smooth guide, which lies in a horizontal
plane. Determine the magnitude R of the force which
Problem 3/47 the guide exerts on the slider (a) just before it passes
. . point A of the guide and (b) as it passes point B.
3/48 A 2-1b slider is propelled upward at A along the fixed

curved bar which lies in a vertical plane. If the
slider is observed to have a speed of 10 ft/sec as it
passes position B, determine (a) the magnitude N of
the force exerted by the fixed rod on the slider and
(b) the rate at which the speed of the slider is de-
creasing. Assume that friction is negligible.

Problem 3/48

Problem 3/50
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3/51 Determine the proper bank angle 6 for the airplane
flying at 400 mi/hr and making a turn of 2-mile ra-
dius. Note that the force exerted by the air is nor-
mal to the supporting wing surface.

Problem 3/51

3/52 The slotted arm rotates about its center in a hori-
zontal plane at the constant angular rate 6 = 10
rad/sec and carries a 3.22-lb spring-mounted slider
which oscillates freely in the slot. If the slider has a
speed of 24 in./sec relative to the slot as it crosses
the center, calculate the horizontal side thrust P ex-
erted by the slotted arm on the slider at this in-
stant. Determine which side, A or B, of the slot is in
contact with the slider.

' © = 10 rad/sec

A
24 in/sec ==

Problem 3/52

3/53 The hollow tube is pivoted about a horizontal axis
through point O and is made to rotate in the verti-
cal plane with a constant counterclockwise angular
velocity 6 = 3 rad/sec. If a 0.2-Ib particle is sliding
in the tube toward O with a velocity of 4 ft/sec rela-
tive to the tube when the position # = 30° is passed,
calculate the magnitude N of the normal force exerted
by the wall of the tube on the particle at this instant.

Problem 3/53

3/54 The member OA rotates about a horizontal axis
through O with a constant counterclockwise angu-
lar velocity w = 3 rad/sec. As it passes the position
0 = 0, a small block of mass m is placed on it at a
radial distance r = 18 in. If the block is observed to
slip at 6 = 50°, determine the coefficient of static
friction u, between the block and the member.

Problem 3/54

3/55 In the design of a space station to operate outside
the earth’s gravitational field, it is desired to give
the structure a rotational speed N which will simu-
late the effect of the earth’s gravity for members of
the crew. If the centers of the crew’s quarters are to
be located 12 m from the axis of rotation, calculate
the necessary rotational speed N of the space sta-
tion in revolutions per minute.

Problem 3/55



144 Chapter3 Kinetics of Particles

3/56 A “swing ride” is shown in the figure. Calculate the
necessary angular velocity o for the swings to as-
sume an angle 6 = 35° with the vertical. Neglect the
mass of the cables and treat the chair and person as
one particle.

Problem 3/56

3/57 A Formula-1 car encounters a hump which has a

circular shape with smooth transitions at either
end. (a) What speed vg will cause the car to lose con-
tact with the road at the topmost point B? (b) For a
speed v,y = 190 km/h, what is the normal force ex-
erted by the road on the 640-kg car as it passes
point A?

A B

\4/10°’—%' p= 3/00 m

Problem 3/57

3/58

3/59

In order to simulate a condition of apparent “weight-
lessness” experienced by astronauts in an orbiting
spacecraft, a jet transport can change its direction
at the top of its flight path by dropping its flight-
path direction at a prescribed rate 6 for a short in-
terval of time. Specify 6 if the aircraft has a speed
v = 600 km/h.

.hl“
A=

Problem 3/58

The standard test to determine the maximum lat-
eral acceleration of a car is to drive it around a
200-ft-diameter circle painted on a level asphalt sur-
face. The driver slowly increases the vehicle speed
until he is no longer able to keep both wheel pairs
straddling the line. If this maximum speed is
35 mi/hr for a 3000-1b car, determine its lateral ac-
celeration capability @, in g’s and compute the mag-
nitude F of the total friction force exerted by the
pavement on the car tires.

N

100 ft

Problem 3/59
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3/60 The car of Prob. 3/59 is traveling at 25 mi/hr when
the driver applies the brakes, and the car continues
to move along the circular path. What is the maxi-
mum deceleration possible if the tires are limited to
a total horizontal friction force of 2400 1b?

Representative Problems

3/61 The concept of variable banking for racetrack turns
is shown in the figure. If the two radii of curvature
are p, = 300 ft and pp = 320 ft for cars A and B, re-
spectively, determine the maximum speed for each
car. The coefficient of static friction is u, = 0.90 for
both cars.

Problem 3/61

3/62 The small ball of mass m and its supporting wire be-
come a simple pendulum when the horizontal cord
is severed. Determine the ratio % of the tension 7' in
the supporting wire immediately after the cord is
cut to that in the wire before the cord is cut.

m

Problem 3/62

3/63 A small object is given an initial horizontal velocity
v at the bottom of a smooth slope. The angle 6
made by the slope with the horizontal varies accord-
ing to sin @ = ks, where k is a constant and s is the
distance measured along the slope from the bottom.
Determine the maximum distance s which the ob-
ject slides up the slope.

3/64 A 3220-1b car enters an S-curve at A with a speed of
60 mi/hr with brakes applied to reduce the speed to
45 mi/hr at a uniform rate in a distance of 300 ft
measured along the curve from A to B. The radius
of curvature of the path of the car at B is 600 ft. Cal-
culate the total friction force exerted by the road on
the tires at B. The road at B lies in a horizontal
plane.

Problem 3/64

3/65 A pilot flies an airplane at a constant speed of 600
km/h in the vertical circle of radius 1000 m. Calcu-
late the force exerted by the seat on the 90-kg pilot
at point A and at point B.

600 km/h

Problem 3/65
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3/66 The 30-Mg aircraft is climbing at the angle 6 = 15°

3/67

under a jet thrust T of 180 kN. At the instant repre-
sented, its speed is 300 km/h and is increasing at the
rate of 1.96 m/s%. Also 6 is decreasing as the aircraft
begins to level off. If the radius of curvature of the
path at this instant is 20 km, compute the lift L and
drag D. (Lift L and drag D are the aerodynamic
forces normal to and opposite to the flight direction,
respectively.)

Problem 3/66

The hollow tube assembly rotates about a vertical
axis with angular velocity @ = § =4 rad/s and
@ = 6 = —2rad/s®. A small 0.2-kg slider P moves in-
side the horizontal tube portion under the control of
the string which passes out the bottom of the assem-
bly. If  =0.8 m, 7 = —2 m/s, and # = 4 m/s?, deter-
mine the tension T in the string and the horizontal
force F, exerted on the slider by the tube.

g)
]

(—q

Problem 3/67

3/68 A flatbed truck going 100 km/h rounds a horizontal
curve of 300-m radius inwardly banked at 10°. The
coefficient of static friction between the truck bed
and the 200-kg crate it carries is 0.70. Calculate the
friction force F acting on the crate.

Problem 3/68

3/69 Explain how to utilize the graduated pendulum to

measure the speed of a vehicle traveling in a hori-
zontal circular arc of known radius r.

Problem 3/69
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3/70 The bowl-shaped device rotates about a vertical axis

-y

3/71

with a constant angular velocity w. If the particle is
observed to approach a steady-state position § = 40°
in the presence of a very small amount of friction,
determine w. The value of r is 0.2 m.

—r

Problem 3/70

The 2-kg slider fits loosely in the smooth slot of the
disk, which rotates about a vertical axis through
point O. The slider is free to move slightly along the
slot before one of the wires becomes taut. If the disk
starts from rest at time # = 0 and has a constant
clockwise angular acceleration of 0.5 rad/s?, plot the
tensions in wires 1 and 2 and the magnitude N of
the force normal to the slot as functions of time ¢ for
the interval 0 = ¢t = 5s.

100 mm

Problem 3/71

3/72 A 2-kg sphere S is being moved in a vertical plane

by a robotic arm. When the angle 6 is 30°, the angu-
lar velocity of the arm about a horizontal axis
through O is 50 deg/s clockwise and its angular ac-
celeration is 200 deg/s? counterclockwise. In addi-
tion, the hydraulic element is being shortened at the
constant rate of 500 mm/s. Determine the necessary
minimum gripping force P if the coefficient of static
friction between the sphere and the gripping sur-
faces is 0.50. Compare P with the minimum gripping
force P, required to hold the sphere in static equilib-
rium in the 30° position.

Problem 3/72
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3/73 The rocket moves in a vertical plane and is being

propelled by a thrust T of 32 kN. It is also subjected
to an atmospheric resistance R of 9.6 kN. If the
rocket has a velocity of 3 km/s and if the gravita-
tional acceleration is 6 m/s? at the altitude of the
rocket, calculate the radius of curvature p of its path
for the position described and the time-rate-of-
change of the magnitude v of the velocity of the
rocket. The mass of the rocket at the instant consid-
ered is 2000 kg.

Vertical

Problem 3/73

3/74 The robot arm is elevating and extending simulta-

neously. At a given instant, 6 = 30°, 6 =40 deg/s,
§ =120 deg/s% ! =05m, [ =0.4m/s,and | = —0.3
m/s?. Compute the radial and transverse forces F,
and F, that the arm must exert on the gripped part
P, which has a mass of 1.2 kg. Compare with the case
of static equilibrium in the same position.

Problem 3/74

3/75 A stretch of highway includes a succession of evenly

spaced dips and humps, the contour of which may
be represented by the relation y = b sin (27x/L).
What is the maximum speed at which the car A can
go over a hump and still maintain contact with the
road? If the car maintains this critical speed, what is
the total reaction N under its wheels at the bottom
of a dip? The mass of the car is m.

[ —

Problem 3/75

3/76 Determine the speed v at which the race car will

have no tendency to slip sideways on the banked
track, that is, the speed at which there is no reliance
on friction. In addition, determine the minimum
and maximum speeds, using the coefficient of static
friction p, = 0.90. State any assumptions.

Problem 3/76
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3/77 Small steel balls, each with a mass of 65 g, enter the

semicircular trough in the vertical plane with a hori-
zontal velocity of 4.1 m/s at A. Find the force R ex-
erted by the trough on each ball in terms of # and
the velocity vy of the balls at B. Friction is negligible.

Problem 3/77

3/78 The flat circular disk rotates about a vertical axis

through O with a slowly increasing angular velocity
w. Prior to rotation, each of the 0.5-kg sliding blocks
has the position x = 25 mm with no force in its at-
tached spring. Each spring has a stiffness of 400
N/m. Determine the value of x for each spring for a
steady speed of 240 rev/min. Also calculate the nor-
mal force N exerted by the side of the slot on the
block. Neglect any friction between the blocks and
the slots, and neglect the mass of the springs. (Hint:
Sum forces along and normal to the slot.)

Problem 3/78

3/79

3/80

The spring-mounted 0.8-kg collar A oscillates along
the horizontal rod, which is rotating at the constant
angular rate § = 6 rad/s. At a certain instant, r is
increasing at the rate of 800 mm/s. If the coefficient
of kinetic friction between the collar and the rod is
0.40, calculate the friction force F exerted by the rod
on the collar at this instant.

Vertical

rﬂgﬁé

Problem 3/79

The slotted arm revolves in the horizontal plane
about the fixed vertical axis through point O. The
3-1b slider C is drawn toward O at the constant rate
of 2 in./sec by pulling the cord S. At the instant for
which r = 9 in., the arm has a counterclockwise an-
gular velocity w = 6 rad/sec and is slowing down
at the rate of 2 rad/sec?. For this instant, determine
the tension T in the cord and the magnitude N of
the force exerted on the slider by the sides of the
smooth radial slot. Indicate which side, A or B, of
the slot contacts the slider.

Problem 3/80
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3/81

3/82

3/83

A small coin is placed on the horizontal surface of
the rotating disk. If the disk starts from rest and is
given a constant angular acceleration 6 = «, deter-
mine an expression for the number of revolutions N
through which the disk turns before the coin slips.
The coefficient of static friction between the coin
and the disk is u,.

Vertical

b — \

Problem 3/81

The rotating drum of a clothes dryer is shown in the
figure. Determine the angular velocity () of the drum
which results in loss of contact between the clothes
and the drum at 6 = 50°. Assume that the small
vanes prevent slipping until loss of contact.

Problem 3/82

A body at rest relative to the surface of the earth ro-
tates with the earth and therefore moves in a circu-
lar path about the polar axis of the earth considered
fixed. Derive an expression for the ratio & of the ap-
parent weight of such a body as measured by a
spring scale at the equator (calibrated to read the
actual force applied) to the true weight of the body,
which is the absolute gravitational attraction to the
earth. The absolute acceleration due to gravity at
the equator is g = 9.815 m/s?. The radius of the
earth at the equator is R = 6378 km, and the angu-
lar velocity of the earth is w = 0.729(107%) rad/s. If
the true weight is 100 N, what is the apparent mea-
sured weight W'?

3/84 At the instant when 6 = 30°, the horizontal guide is

given a constant upward velocity v, = 2 m/s. For this
instant calculate the force N exerted by the fixed
circular slot and the force P exerted by the horizon-
tal slot on the 0.5-kg pin A. The width of the slots is
slightly greater than the diameter of the pin, and
friction is negligible.

Problem 3/84

3/85 The particle P is released at time ¢ = 0 from the po-

sition r = r( inside the smooth tube with no velocity
relative to the tube, which is driven at the constant
angular velocity w, about a vertical axis. Determine
the radial velocity v,, the radial position r, and the
transverse velocity v, as functions of time ¢. Explain
why the radial velocity increases with time in the
absence of radial forces. Plot the absolute path of
the particle during the time it is inside the tube for
ro=0.1m,/ =1m, and w, = 1 rad/s.

a

(@)
/ ]
0

\

Problem 3/85
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3/86 The small 5-0z slider A moves without appreciable
friction in the hollow tube, which rotates in a hori-
zontal plane with a constant angular speed ) = 7
rad/sec. The slider is launched with an initial speed
7o = 60 ft/sec relative to the tube at the inertial co-
ordinates x = 6 in. and y = 0. Determine the magni-
tude P of the horizontal force exerted on the slider
by the tube just before the slider exits the tube.

e
N

3
r

o]

Problem 3/86

3/87 The two 0.2-kg sliders A and B move without fric-
tion in the horizontal-plane circular slot. Determine
the acceleration of each slider and the normal reac-
tion force exerted on each when the system starts
from rest in the position shown and is acted upon by
the 4-N force P. Also find the tension in the inexten-
sible connecting cord AB.

Problem 3/87

3/88 Repeat the questions of the previous problem for the
revised system configuration shown in the figure.

Problem 3/88

3/89 The 3000-1b car is traveling at 60 mi/hr on the
straight portion of the road, and then its speed is re-
duced uniformly from A to C, at which point it
comes to rest. Compute the magnitude F of the total
friction force exerted by the road on the car (a) just
before it passes point B, (b) just after it passes point
B, and (c) just before it stops at point C.

100’

Problem 3/89
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3/90 The spacecraft P is in the elliptical orbit shown. At
the instant represented, its speed is v = 13,244 ft/sec.
Determine the corresponding values of 7, 6, #, and
6. Use g = 32.23 ft/sec? as the acceleration of grav-
ity on the surface of the earth and R = 3959 mi as
the radius of the earth.

|

10,450 mi

22,300 mi 200 mi

Problem 3/90

»>3/91 The slotted arm OA rotates about a horizontal axis
through point O. The 0.2-kg slider P moves with
negligible friction in the slot and is controlled by
the inextensible cable BP. For the instant under
consideration, 0 = 30°, w = 6 = 4 rad/s, 6 = 0, and
r = 0.6 m. Determine the corresponding values of
the tension in cable BP and the force reaction R
perpendicular to the slot. Which side of the slot
contacts the slider?

0.3 m

Problem 3/91

»3/92 The small pendulum of mass m is suspended from a
trolley which runs on a horizontal rail. The trolley
and pendulum are initially at rest with 6 = 0. If the
trolley is given a constant acceleration a = g, deter-
mine the maximum angle 6,,,, through which the
pendulum swings. Also find the tension T in the
cord in terms of 6.

Problem 3/92

»>3/93 A small object is released from rest at A and slides
with friction down the circular path. If the coeffi-
cient of friction is 0.20, determine the velocity of the
object as it passes B. (Hint: Write the equations of
motion in the n- and ¢-directions, eliminate N, and
substitute v dv = a,;~ d6. The resulting equation is a
linear nonhomogeneous differential equation of the
form dy/dx + f(x)y = g(x), the solution of which is
well known.)

Problem 3/93
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»>3/94 The slotted arm OB rotates in a horizontal plane

about point O of the fixed circular cam with constant
angular velocity § = 15 rad/s. The spring has a stiff-
ness of 5 kN/m and is uncompressed when 6 = 0.
The smooth roller A has a mass of 0.5 kg. Determine
the normal force N which the cam exerts on A and
also the force R exerted on A by the sides of the slot
when 0 = 45°. All surfaces are smooth. Neglect the
small diameter of the roller.

/

(0]
0.1 0.1
m m

Problem 3/94

»>3/95 A small collar of mass m is given an initial velocity

of magnitude v, on the horizontal circular track fab-
ricated from a slender rod. If the coefficient of ki-
netic friction is u;, determine the distance traveled
before the collar comes to rest. (Hint: Recognize
that the friction force depends on the net normal
force.)

Problem 3/95

»3/96 The small cart is nudged with negligible velocity

from its horizontal position at A onto the parabolic
path, which lies in a vertical plane. Neglect friction
and show that the cart maintains contact with the
path for all values of %.

Problem 3/96
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Figure 3/2

SECTION B WORK AND ENERGY

3/6 Work and Kinetic Energy

In the previous two articles, we applied Newton’s second law F = ma
to various problems of particle motion to establish the instantaneous re-
lationship between the net force acting on a particle and the resulting ac-
celeration of the particle. When we needed to determine the change in
velocity or the corresponding displacement of the particle, we integrated
the computed acceleration by using the appropriate kinematic equations.

There are two general classes of problems in which the cumulative
effects of unbalanced forces acting on a particle are of interest to us.
These cases involve (1) integration of the forces with respect to the dis-
placement of the particle and (2) integration of the forces with respect to
the time they are applied. We may incorporate the results of these inte-
grations directly into the governing equations of motion so that it be-
comes unnecessary to solve directly for the acceleration. Integration with
respect to displacement leads to the equations of work and energy, which
are the subject of this article. Integration with respect to time leads to
the equations of impulse and momentum, discussed in Section C.

Definition of Work

We now develop the quantitative meaning of the term “work.”* Fig-
ure 3/2a shows a force F acting on a particle at A which moves along the
path shown. The position vector r measured from some convenient ori-
gin O locates the particle as it passes point A, and dr is the differential
displacement associated with an infinitesimal movement from A to A’.
The work done by the force F during the displacement dr is defined as

9%

dU =F-dr

The magnitude of this dot product is dU = F ds cos «, where « is the
angle between F and dr and where ds is the magnitude of dr. This ex-
pression may be interpreted as the displacement multiplied by the force
component F; = F cos « in the direction of the displacement, as repre-
sented by the dashed lines in Fig. 3/2b. Alternatively, the work dU may
be interpreted as the force multiplied by the displacement component
ds cos « in the direction of the force, as represented by the full lines in
Fig. 3/2b.

With this definition of work, it should be noted that the component
F, = F sin « normal to the displacement does no work. Thus, the work
dU may be written as

dU = F,ds

Work is positive if the working component F; is in the direction of the
displacement and negative if it is in the opposite direction. Forces which

*The concept of work was also developed in the study of virtual work in Chapter 7 of Vol. 1
Statics.



Article 3/6 Work and Kinetic Energy

155

do work are termed active forces. Constraint forces which do no work
are termed reactive forces.

Units of Work

The SI units of work are those of force (N) times displacement (m)
or N-m. This unit is given the special name joule (J), which is defined as
the work done by a force of 1 N acting through a distance of 1 m in the
direction of the force. Consistent use of the joule for work (and energy)
rather than the units N-m will avoid possible ambiguity with the units
of moment of a force or torque, which are also written N-m.

In the U.S. customary system, work has the units of ft-lb. Dimen-
sionally, work and moment are the same. In order to distinguish be-
tween the two quantities, it is recommended that work be expressed as
foot pounds (ft-Ib) and moment as pound feet (Ib-ft). It should be noted
that work is a scalar as given by the dot product and involves the prod-
uct of a force and a distance, both measured along the same line. Mo-
ment, on the other hand, is a vector as given by the cross product and
involves the product of force and distance measured at right angles to
the force.

Calculation of Work

During a finite movement of the point of application of a force, the
force does an amount of work equal to

2 2
U:f F-dr:f (F,dx + F,dy + F,dz)
1 1
or
U=f F,ds

In order to carry out this integration, it is necessary to know the rela-
tions between the force components and their respective coordinates or
the relation between F; and s. If the functional relationship is not known
as a mathematical expression which can be integrated but is specified in
the form of approximate or experimental data, then we can compute the
work by carrying out a numerical or graphical integration as represented
by the area under the curve of F, versus s, as shown in Fig. 3/3.

Examples of Work
When work must be calculated, we may always begin with the defin-

ition of work, U = f F-dr, insert appropriate vector expressions for the

force F and the differential displacement vector dr, and carry out the re-
quired integration. With some experience, simple work calculations,
such as those associated with constant forces, may be performed by in-
spection. We now formally compute the work associated with three fre-
quently occurring forces: constant forces, spring forces, and weights.

\
\
\
dU=F,
\
\
\
|

ds

S2

Figure 3/3
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(1) Work Associated with a Constant External Force. Consider
the constant force P applied to the body as it moves from position 1 to
position 2, Fig. 3/4. With the force P and the differential displacement
dr written as vectors, the work done on the body by the force is

2 2
U,y = f F-dr = J [(P cos a)i + (P sin a)j]l-dxi
1 1
= f P cos a dx = P cos alxy — x;) = PL cos a (3/9)

As previously discussed, this work expression may be interpreted as the
force component P cos « times the distance L traveled. Should « be be-
tween 90° and 270°, the work would be negative. The force component
P sin a normal to the displacement does no work.

(2) Work Associated with a Spring Force. We consider here the
common linear spring of stiffness £ where the force required to stretch
or compress the spring is proportional to the deformation x, as shown in
Fig. 3/5a. We wish to determine the work done on the body by the spring
force as the body undergoes an arbitrary displacement from an initial
position x; to a final position x,. The force exerted by the spring on the
body is F = —kxi, as shown in Fig. 3/5b. From the definition of work, we
have

2 2 Xy
Uy, = f F-dr = f (—hai)-dxi = —f kx dx = %k(xlz —x,2)  (3/10)
1 1 xq

If the initial position is the position of zero spring deformation so
that x; = 0, then the work is negative for any final position x5 # 0. This
is verified by recognizing that if the body begins at the undeformed
spring position and then moves to the right, the spring force is to the
left; if the body begins at x; = 0 and moves to the left, the spring force is
to the right. On the other hand, if we move from an arbitrary initial po-
sition x; # 0 to the undeformed final position x5 = 0, we see that the
work is positive. In any movement toward the undeformed spring posi-
tion, the spring force and the displacement are in the same direction.

In the general case, of course, neither x; nor x, is zero. The magni-
tude of the work is equal to the shaded trapezoidal area of Fig. 3/5a. In
calculating the work done on a body by a spring force, care must be
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Force F required to
stretch or compress spring

kx

——dr

Undeformed
position |
—x——
\

—— W —

®)
Figure 3/5

taken to ensure that the units of £ and x are consistent. If x is in meters
(or feet), £ must be in N/m (or lb/ft). In addition, be sure to recognize
that the variable x represents a deformation from the unstretched
spring length and not the total length of the spring.

The expression F' = kx is actually a static relationship which is true
only when elements of the spring have no acceleration. The dynamic be-
havior of a spring when its mass is accounted for is a fairly complex
problem which will not be treated here. We shall assume that the mass
of the spring is small compared with the masses of other accelerating
parts of the system, in which case the linear static relationship will not
involve appreciable error.

(3) Work Associated with Weight. Case (a) g = constant. If the al-
titude variation is sufficiently small so that the acceleration of gravity g
may be considered constant, the work done by the weight mg of the
body shown in Fig. 3/6a as the body is displaced from an arbitrary alti-
tude y, to a final altitude y, is

2 2
U1-2:f F‘dl'=f (—mgj)- (dxi + dyj)
1 1

Y2
=-mg | dy=-mg(y, —yy) (8/11)
Y1
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Earth
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Figure 3/6

We see that horizontal movement does not contribute to this work. We
also note that if the body rises (perhaps due to other forces not shown),
then (y, — ;) > 0 and this work is negative. If the body falls, (ys — y;) <0
and the work is positive.

Case (b) g # constant. If large changes in altitude occur, then the
weight (gravitational force) is no longer constant. We must therefore
use the gravitational law (Eq. 1/2) and express the weight as a variable
m,m

G
force of magnitude F' = —

, as indicated in Fig. 3/6b. Using the radial
r

coordinate shown in the figure allows the work to be expressed as

2 2 -G ry
U, = f F-dr = f #er-diﬂer = —Gm,m d—zr
1 1 r T
- Gmem<1 - 1) - ng2<1 - 1) (3/12)
rg N re N

where the equivalence Gm, = gR? was established in Art. 1/5, with g
representing the acceleration of gravity at the earth’s surface and R rep-
resenting the radius of the earth. The student should verify that if a
body rises to a higher altitude (ry > r;), this work is negative, as it was
in case (a). If the body falls to a lower altitude (ry < r;), the work is posi-
tive. Be sure to realize that r represents a radial distance from the cen-
ter of the earth and not an altitude 2 = r — R above the surface of the
earth. As in case (a), had we considered a transverse displacement in ad-
dition to the radial displacement shown in Fig. 3/6b, we would have con-
cluded that the transverse displacement, because it is perpendicular to
the weight, does not contribute to the work.
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Work and Curvilinear Motion

We now consider the work done on a particle of mass m, Fig. 3/7, z
moving along a curved path under the action of the force F, which
stands for the resultant XF of all forces acting on the particle. The posi-
tion of m is specified by the position vector r, and its displacement along
its path during the time d¢ is represented by the change dr in its posi-
tion vector. The work done by F during a finite movement of the parti-
cle from point 1 to point 2 is

2 Sy
UI_Q:J F-dr:J F,ds
1 N

where the limits specify the initial and final end points of the motion.
When we substitute Newton’s second law F = ma, the expression
for the work of all forces becomes Figure 3/7

2 2
U1_2:f F-dr:f ma-dr
1 1

But a-dr = a,ds, where q, is the tangential component of the accelera-
tion of m. In terms of the velocity v of the particle, Eq. 2/3 gives a, ds =
v dv. Thus, the expression for the work of F becomes

2 Uy
U, = J F-dr = J mv dv = 3 m(v,® — v,?) (3/13)
1 vy

where the integration is carried out between points 1 and 2 along the
curve, at which points the velocities have the magnitudes v; and v,
respectively.

Principle of Work and Kinetic Energy
The kinetic energy T of the particle is defined as

T = 5 mv? (3/14)

DO

and is the total work which must be done on the particle to bring it from
a state of rest to a velocity v. Kinetic energy T is a scalar quantity with
the units of N-m or joules (J) in SI units and ft-Ib in U.S. customary
units. Kinetic energy is always positive, regardless of the direction of
the velocity.

Equation 3/13 may be restated as

Upy=T,— T, = AT (3/15)

which is the work-energy equation for a particle. The equation states
that the total work done by all forces acting on a particle as it moves
from point 1 to point 2 equals the corresponding change in kinetic en-
ergy of the particle. Although T is always positive, the change AT may
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be positive, negative, or zero. When written in this concise form, Eq.
3/15 tells us that the work always results in a change of kinetic energy.

Alternatively, the work-energy relation may be expressed as the ini-
tial kinetic energy T'; plus the work done U;_5 equals the final kinetic en-
ergy T, or

T+ U, =T, (3/15a)

When written in this form, the terms correspond to the natural se-
quence of events. Clearly, the two forms 3/15 and 3/15a are equivalent.

Advantages of the Work-Energy Method

We now see from Eq. 3/15 that a major advantage of the method of
work and energy is that it avoids the necessity of computing the acceler-
ation and leads directly to the velocity changes as functions of the forces
which do work. Further, the work-energy equation involves only those
forces which do work and thus give rise to changes in the magnitude of
the velocities.

We consider now a system of two particles joined together by a con-
nection which is frictionless and incapable of any deformation. The
forces in the connection are equal and opposite, and their points of ap-
plication necessarily have identical displacement components in the di-
rection of the forces. Therefore, the net work done by these internal
forces is zero during any movement of the system. Thus, Eq. 3/15 is ap-
plicable to the entire system, where U, is the total or net work done on
the system by forces external to it and AT is the change, Ty — T4, in the
total kinetic energy of the system. The total kinetic energy is the sum of
the kinetic energies of both elements of the system. We thus see that
another advantage of the work-energy method is that it enables us to
analyze a system of particles joined in the manner described without
dismembering the system.

Application of the work-energy method requires isolation of the par-
ticle or system under consideration. For a single particle you should
draw a free-body diagram showing all externally applied forces. For a
system of particles rigidly connected without springs, draw an active-
force diagram showing only those external forces which do work (active
forces) on the entire system.*

Power

The capacity of a machine is measured by the time rate at which it
can do work or deliver energy. The total work or energy output is not a
measure of this capacity since a motor, no matter how small, can deliver
a large amount of energy if given sufficient time. On the other hand, a
large and powerful machine is required to deliver a large amount of en-
ergy in a short period of time. Thus, the capacity of a machine is rated
by its power, which is defined as the time rate of doing work.

*The active-force diagram was introduced in the method of virtual work in statics. See
Chapter 7 of Vol. 1 Statics.
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Accordingly, the power P developed by a force F which does an
amount of work U is P = dU/dt = F-dr/dt. Because dr/d¢ is the velocity v
of the point of application of the force, we have

P=F-v (3/16)

Power is clearly a scalar quantity, and in SI it has the units of N-m/s = J/s.
The special unit for power is the watt (W), which equals one joule per sec-
ond (J/s). In U.S. customary units, the unit for mechanical power is the
horsepower (hp). These units and their numerical equivalences are

1W=1J/s
1 hp = 550 ft-1b/sec = 33,000 ft-1b/min
1hp = 746 W = 0.746 kW

Efficiency

The ratio of the work done by a machine to the work done on the
machine during the same time interval is called the mechanical effi-
ciency e, of the machine. This definition assumes that the machine op-
erates uniformly so that there is no accumulation or depletion of energy
within it. Efficiency is always less than unity since every device operates
with some loss of energy and since energy cannot be created within the
machine. In mechanical devices which involve moving parts, there will
always be some loss of energy due to the negative work of kinetic fric-
tion forces. This work is converted to heat energy which, in turn, is dis-
sipated to the surroundings. The mechanical efficiency at any instant of
time may be expressed in terms of mechanical power P by

_ P output
e, = P.

input

(3/17)

In addition to energy loss by mechanical friction, there may also be
electrical and thermal energy loss, in which case, the electrical efficiency
e, and thermal efficiency e, are also involved. The overall efficiency e in
such instances is

e = e,

The power which must be produced
by a bike rider depends on the bicy-
cle speed and the propulsive force
which is exerted by the supporting
surface on the rear wheel. The dri-
ving force depends on the slope
being negotiated.

Media Bakery
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SAMPLE PROBLEM 3/11

Calculate the velocity v of the 50-kg crate when it reaches the bottom of the
chute at B if it is given an initial velocity of 4 m/s down the chute at A. The coef-
ficient of kinetic friction is 0.30.

Solufion. The free-body diagram of the crate is drawn and includes the nor-
mal force R and the kinetic friction force F' calculated in the usual manner. The
work done by the weight is positive, whereas that done by the friction force is
negative. The total work done on the crate during the motion is

[U = Fs] U, =50(9.81)(10 sin 15°) — 142.1(10) = —151.9J
The work-energy equation gives

[T, + Uypy = T, Tmuy? + Upy = Lmoy?
1 1
1(50)@)?2 - 151.9 = £ (50)v,?
vy, = 3.15 m/s Ans.

Since the net work done is negative, we obtain a decrease in the kinetic energy.

50(9.81) N

R=1421N—"7
R=474N

Helpful Hint
@ The work due to the weight depends

only on the vertical distance traveled.

SAMPLE PROBLEM 3/12

The flatbed truck, which carries an 80-kg crate, starts from rest and attains
a speed of 72 km/h in a distance of 75 m on a level road with constant accelera-
tion. Calculate the work done by the friction force acting on the crate during this
interval if the static and kinetic coefficients of friction between the crate and the
truck bed are (a) 0.30 and 0.28, respectively, or (b) 0.25 and 0.20, respectively.

Solution. If the crate does not slip on the bed, its acceleration will be that of
the truck, which is
v2 _ (72/3.6)2

[v? = 2as] a=-—=

SUSTOY — 2
25~ 2015 _ 287mbs

Case (a). This acceleration requires a friction force on the block of

[F = ma] F =80(2.67) = 213N

which is less than the maximum possible value of u,N = 0.30(80)(9.81) = 235 N.
Therefore, the crate does not slip and the work done by the actual static friction
force of 213 N is

[U = Fs] U,, = 213(75) = 16 000 J or 16 kJ Ans.
Case (b). For p, = 0.25, the maximum possible friction force is 0.25(80)(9.81) =
196.2 N, which is slightly less than the value of 213 N required for no slipping.
Therefore, we conclude that the crate slips, and the friction force is governed by the
kinetic coefficient and is F' = 0.20(80)(9.81) = 157.0 N. The acceleration becomes

[F = ma] a = F/m = 157.0/80 = 1.962 m/s?

The distances traveled by the crate and the truck are in proportion to their ac-
celerations. Thus, the crate has a displacement of (1.962/2.67)75 = 55.2 m, and
the work done by kinetic friction is

U, = 157.0(55.2) = 8660 J or 8.66 kJ Ans.

80(9.81) N

—a
F —

80(9.81) N

Helpful Hints

@ We note that static friction forces do

no work when the contacting sur-
faces are both at rest. When they are
in motion, however, as in this prob-
lem, the static friction force acting
on the crate does positive work and
that acting on the truck bed does
negative work.

This problem shows that a kinetic
friction force can do positive work
when the surface which supports the
object and generates the friction
force is in motion. If the supporting
surface is at rest, then the kinetic
friction force acting on the moving
part always does negative work.
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SAMPLE PROBLEM 3/13

The 50-kg block at A is mounted on rollers so that it moves along the fixed
horizontal rail with negligible friction under the action of the constant 300-N
force in the cable. The block is released from rest at A, with the spring to which
it is attached extended an initial amount x; = 0.233 m. The spring has a stiffness
k = 80 N/m. Calculate the velocity v of the block as it reaches position B.

Solution. 1t will be assumed initially that the stiffness of the spring is small
enough to allow the block to reach position B. The active-force diagram for the
system composed of both block and cable is shown for a general position. The
spring force 80x and the 300-N tension are the only forces external to this sys-
tem which do work on the system. The force exerted on the block by the rail, the
weight of the block, and the reaction of the small pulley on the cable do no work
on the system and are not included on the active-force diagram.

As the block moves from x; = 0.233 m to x9 = 0.233 + 1.2 = 1.433 m, the
work done by the spring force acting on the block is

[Uys = 5k(,% — 2] Uy, = 580[0.2332 — (0.233 + 1.2)2]
= -80.0J

The work done on the system by the constant 300-N force in the cable is the
force times the net horizontal movement of the cable over pulley C, which is
J(1.2)%2 + (0.9)2 — 0.9 = 0.6 m. Thus, the work done is 300(0.6) = 180 J. We now
apply the work-energy equation to the system and get

[Ty + Uy =Ty 0-—80.0+180=2(5002 v =200m/s Ans.

We take special note of the advantage to our choice of system. If the block
alone had constituted the system, the horizontal component of the 300-N cable
tension on the block would have to be integrated over the 1.2-m displacement.
This step would require considerably more effort than was needed in the solu-
tion as presented. If there had been appreciable friction between the block and
its guiding rail, we would have found it necessary to isolate the block alone in
order to compute the variable normal force and, hence, the variable friction
force. Integration of the friction force over the displacement would then be re-
quired to evaluate the negative work which it would do.

C 300 N
7 5|
(_% ol o) ) ‘

Fxq 12m

Helpful Hint

@ Recall that this general formula is
valid for any initial and final spring
deflections x; and xy, positive (spring
in tension) or negative (spring in
compression). In deriving the spring-
work formula, we assumed the spring
to be linear, which is the case here.
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SAMPLE PROBLEM 3/14

The power winch A hoists the 800-1b log up the 30° incline at a constant speed
of 4 ft/sec. If the power output of the winch is 6 hp, compute the coefficient of ki-
netic friction u; between the log and the incline. If the power is suddenly increased
to 8 hp, what is the corresponding instantaneous acceleration a of the log?

Solution. From the free-body diagram of the log, we get N = 800 cos 30° =
693 lb, and the kinetic friction force becomes 693u;. For constant speed, the
forces are in equilibrium so that

[ZF, = 0] T — 693w, — 800 sin 30° = 0 T = 693w, + 400 _x
The power output of the winch gives the tension in the cable 800 Ib r-"
[P = Tv] T = P/v = 6(550)/4 = 825 Ib
Substituting 7' gives % N
825 = 693y, + 400 = 0.613 Ans. _ 7 30°

When the power is increased, the tension momentarily becomes N
[P = Tv] T = Plo = 8(550)/4 = 1100 I Helpful Hints
and the corresponding acceleration is given by o Eoovzzr tileft_(f}?/r;‘;?gon from horse-
[ZF, = ma,] 1100 — 693(0.613) — 800 sin 30° = %a @ As the speed increases, the accelera-

tion will drop until the speed stabi-
a = 11.07 ft/sec? Ans. lizes at a value higher than 4 ft/sec.

SAMPLE PROBLEM 3/15

P
B
A satellite of mass m is put into an elliptical orbit around the earth. At point \\
A, its distance from the earth is £; = 500 km and it has a velocity v; = 30 000 By
km/h. Determine the velocity vy of the satellite as it reaches point B, a distance U1
hy = 1200 km from the earth. A
h

Solution. The satellite is moving outside of the earth’s atmosphere so that the o ¢ !

only force acting on it is the gravitational attraction of the earth. For the large /
change in altitude of this problem, we cannot assume that the acceleration due -

to gravity is constant. Rather, we must use the work expression, derived in this

article, which accounts for variation in the gravitational acceleration with alti- B /r
tude. Put another way, the work expression accounts for the variation of the * /
i Gmm, ) . . ! /
weight F' = > with altitude. This work expression is \
4 \
\
1 1 T2 F
U,,=m R2<— = —) i
2 & rg T \ VA
V7 7
The work-energy equation T + U;5 = T gives \ // _ oy
b
1 2 of1 1) _1 2 2 _ ., 2 of1 1 (0]
5mv,® + mgR ("2 ’”1) 5 MUy Uy =v;° + 28R ("2 ’”1)
Substituting the numerical values gives Helpful Hints
2 _ (30000)* 3112 103 1073 L
U ( 36 2(9.81)[(6371)(10°)] 6371 + 1200 _ 6371 + 500 @ Note that the result is independent

of the mass m of the satellite.
= 69.44(10%) — 10.72(106) = 58.73(10%) (m/s)?

©® Consult Table D/2, Appendix D, to
vy = 7663 m/s or vy = 7663(3.6) = 27 590 km/h Ans. Fimdl e ke B o ihe eamih,
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PROBLEMS
Introductory Problems

3/97 The spring is unstretched when x = 0. If the body
moves from the initial position x; = 100 mm to the
final position x5 = 200 mm, (@) determine the work
done by the spring on the body and (b) determine
the work done on the body by its weight.

20°

Problem 3/97

3/98 The small body has a speed v4 = 5 m/s at point A.
Neglecting friction, determine its speed vy at point
B after it has risen 0.8 m. Is knowledge of the shape
of the track necessary?

0.8m 5 m/s B

Problem 3/98

3/99 The 64.4-1b crate slides down the curved path in the
vertical plane. If the crate has a velocity of 3 ft/sec
down the incline at A and a velocity of 25 ft/sec at B,
compute the work Uy done on the crate by friction
during the motion from A to B.

3 ft/sec

N

B 25 fi/sec

30° |

Problem 3/99

3/100 The 1.5-1b collar slides with negligible friction on
the fixed rod in the vertical plane. If the collar
starts from rest at A under the action of the con-
stant 2-1b horizontal force, calculate its velocity v
as it hits the stop at B.

i 30”

15”

Problem 3/100

3/101 In the design of a spring bumper for a 3500-1b car,
it is desired to bring the car to a stop from a speed
of 5 mi/hr in a distance equal to 6 in. of spring de-
formation. Specify the required stiffness & for each
of the two springs