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PREFACE

The present edition incorporates a number of revisions and addi-
tions which should improve its usefulness as a textbook without
changing the basic organization or the general philosophy of presen-
tation of the subject matter. The experience of the past few years
at the California Institute of Technology and other schools indicates
that the book has been useful to engineering students who wish to
prepare for more advanced studies and applications of dynamics,
and hence a new edition was felt to be justified.

Among the additions and modifications the following may be
mentioned to indicate the scope of the revision. The section on
dimensional analysis has been rewritten and a brief treatment of the
theory of models has been added. The section on impact problems
has been revised, and a more extensive treatment of variable mass
systems has been included. A more general discussion of the mo-
ment of momentum equations for systems of particles has been
added, and the general momentum and energy equations for rigid
bodies have been more completely developed. The discussion of
rotation about a fixed point and gyroscopic motion has been expanded
and somewhat more complex systems have been considered, including
problems on the stability of rolling motion. The problem of longi-
tudinal waves in an elastic bar is discussed, and a comparison is made
between wave propagation techniques and vibration methods for
such problems. The discussion of generalized coordinates and La-
grange’s equations has been revised, and a general treatment of the
problem of small oscillations of a conservative system has been
added. The sections on the Calculus of Variations and Hamilton’s
Principle have been rewritten with some expansion.

~ Over one hundred new problems have been added to increase the
total number to some four hundred. All of the new problems have

iii



v PREFACE

been thoroughly tested in classroom use. The number of illustrative
examples has been increased and many of the original examples have
been modified.

As in the first edition, the main empbhasis of the book is on particle
and rigid-body dynamics, although some other aspects of the sub-
ject have been included to show how the methods of classical me-
chanics are applied to the various branches of engineering science.
Some of these topics, such as fluid dynamics and the kinetics of gases,
have been treated in a very brief fashion. Although the student will
make a more complete analysis of these subjects in specialized courses,
it is believed that the brief discussions will help him to acquire a
broader view of the applied sciences. In all such instances care has
been taken to use methods that can be extended later for more com-
plete treatments, and the student has been informed of the limita-
tions of the analyses.

As a textbook the main emphasis has been on method and on
development of fundamental principles. The problems form an
essential part of the presentation, and important conclusions are
sometimes given in problems and illustrative examples. The student
should examine such problems and note the results, even if the de-
tails of the proofs are not carried through.

G. W. H.
D. E. H.

t

Pasadena, California
May, 1959
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| Chapter 1

THE GENERAL PRINCIPLES OF DYNAMICS

... the whole burden of philosophy seems to consist in this, from the
phenomena of motions to investigate the forces of nature, and from these
forces to demonstrate the other phenomena.—I. Newton, Principia Philo-
sophiae (1686).

The science of mechanics has as its object the study of the motions
of material bodies, and its aim is to describe the facts concerning
these motions in the simplest way. From this description of
observed facts, generalizations can be formulated which permit valid
predictions as to the behavior of other bodies.

The motions occurring in nature are the result of interactions
between the various bodies which make up the system under con-
sideration. That portion of the subject of mechanics which describes
the motion of bodies, without reference to the causes of the motion,
is called ksmematics, while that portion which studies the relationship
between the mutual influences and the resulting motions is called
kinelics. These two subjects are usually combined under the name
dynamics, and it is this general problem that is to be treated in this
book.

1.1 The Laws of Motion. The principles of dynamics are
founded upon extensive experimental investigations. The first note-
worthy experiments were performed by Galileo (1564-1642). Other
investigators followed Galileo, among them being Newton (1642
1727), who, after carrying out a large number of experiments,
formulated the statements which are now known as Newton’s Laws

of Motion:
1



2 THE GENERAL PRINCIPLES OF DYNAMICS

(1) Every body persists in a state of rest or of uniform motion
in a straight line, except in so far as it may be com- -
pelled by force to change that state.

(2) The time rate of change of momentuimn is equal to the force
producing it, and the change takes place in the direction
in which the force is acting:

d
F = — (myv); or, for constant m, F = ma

dt

(3) To every action there is an equal and opposite reaction,
or the mutual actions of any two bodies are always
equal and oppositely directed.

These statements may be regarded partly as definitions and partly
as experimental facts. As a description of the behavior of bodies of
ordinary size moving with velocities which are small compared with
the velocity of light, these statements have remained to this day the
most convenient expression of the fundamental principles of
dynamics.

1.2 Definitions. The intuitive concepts which arise concerning
such basic quantities of dynamics as force, mass, and time must be
put into a precise form before they can serve as a foundation for the
development of the subject. The following definitions prescribe the
sense in which these words will be used in this book.*

Force and Mass. The primary objective of the science of
mechanics is the study of the interactions which occur between
material bodies. These interactions are of various types and might
be, for example, impacts, electrical or gravitational attractions,
mechanical linkages, etc. Experience shows that during these inter-
actions, the velocities of the interacting bodies are changed.
We define force, by Newton’s first law, as an action which tends to
change the motion of a body. The fact that forces arise from
mutual interactions and thus occur in equal and opposite pairs forms

* A considerable difference of opinion has existed amongst various eminent
authorities as to the most logical form in which to cast the basic definitions’
and principles of classical mechanics. Controversy has continued to the
present day, and books and papers appear regularly which aim to give a final
clarification to the matter. For a critical survey of this aspect of the subject,

the classic book of E. Mach, Science of Mechanics (1893), is still of great
interest.



DEFINITIONS 3

the empirical content of Newton’s third law. The concept of force
is made quantitatively precise by the definition that a unit force
produces a unit acceleration of a specified standard body.
 The mass of a body may now be defined by Newton’s second law
as the ratio of the force acting on the body to the resulting accelera-
tion. By international agreement, the unit of mass is defined as the
mass of a particular platinum-iridium cylinder, called the inter-
national prototype kilogram, which is in the possession of the Inter--
national Committee of Weights and Measures at Sévres, France.
The force exerted upon a body by the earth’s gravitational field is
called the weight of the body. The weight of a body is thus variable,
depending upon the location of the body with respect to the earth.
The magnitude of the earth’s gravitational field is specified by the
acceleration of gravity (g) which is the acceleration of an otherwise
unrestrained body attracted to the earth. The gravitational ac-
celeration has been determined experimentally and is given at a
latitude ¢ and an elevation 4 ft by the empirical formula:

g = 32.089(1 + 0.00524 sin2 ¢)(1 — 0.000000096%) ft/sec?

At sea level the maximum variation of g with latitude is of the order
of 0.59,, while the variation from sea level to an altitude of 24,000 ft
is of the order of 0.25%,. In engineering it is customary to use a
constant value of g equal to 32.2 ft/sec2.

The mass of any body can be determined by comparing the body
with the standard kilogram. In practice the mass of a body is
usually determined by means of the ordinary balance. The unknown
mass m; is balanced with a known mass ms so that the weights W,
and W, are equal. Since m; = Wi/g and mg = Wg, it follows that
m1 = Mo.

Experiment shows that for the bodies and motions with which the
engineer is usually concerned, the mass of a body is a constant within
the limits of accuracy of measurement. Experiments in atomic
physics, however, show that at sufficiently high velocities the mass
of a particle is not a constant, but, as predicted by the theory of
relativity, is given by

me=
C VI - (v)e)?

where ¢ is the velocity of light, v the velocity of the particle, and m,
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the mass of the particle at zero velocity.* Because of the large
magnitude of ¢, it is impossible to detect the variability of mass at .
even the highest velocities encountered in engineering practice. It
is important to note that Newton’s Second Law refers to a specific
body and does not refer directly to a system which is losing or gaining
material.

A number of different standards of mass have been defined in
terms of the prototype kilogram. In the United States the pound-
mass avoirdupois has been defined legally by Congress as the 1/2.2046
part of the international prototype kilogram. The pound-force is
defined as the gravitational force exerted on a standard pound-mass
when g has the “standard” value of 32.174 ft/sec?. In engineering
the pound-force is taken as the unit of force, but the pound-mass is
not taken as the unit of mass. The engineering unit of mass is that
mass which is given an acceleration of 1 {t/sec? by a force of 1 pound-
force. This unit of mass is called a slug and is equal to 32.174 pound-
mass. Since the multiplicity of standards of force and mass sometimes
leads to confusion, a summary of definitions of a number of the
commonly encountered terms is given in Appendix II.

Time. The unit of time is the second, which is defined as the
1/86,400 part of a mean solar day. The mean solar day is the yearly
average of the time intervals between successive transits of the sun
past a meridian of the earth.

Length. The international standard of length is the standard
meter, which is defined as the distance, at zero degrees centigrade,
between two lines on a platinum-iridium bar in the possession of the
International Committee of Weights and Measures. The United
States Yard is defined legally by act of Congress as the 3600/3937 part
of the standard meter, and the foo? is defined as one-third of a yard.

1.3 Frames of Reference. In the preceding discussion of ac-
celeration, force, and mass, it has been implied that there exists a
frame of reference with respect to which measurements can be made.
In engineering, unless stated to the contrary, it is always understood
that measurements are to be made with respect to a coordinate -

* Some physicists prefer to suppose that the mass is constant and that at
high velocities a suitable transformation of the space-time coordinates must
be introduced. The resulting equations of motion will of course be the same
as those obtained on the above supposition of varying mass. (See refs. 6
and 16.)
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system which is fixed at the earth’s surface. In astronomy, distances
" may be measured with respect to certain stars. In any event it is

always necessary to perform measurements in some coordinate
~ system which is located with respect to some physical object.

The fact that the coordinate system may be located in various
ways naturally raises the question as to the effect its position might
have on the equations of motion and the solution of problems. It is
possible to select a coordinate system with respect to which it is not
permissible to write simply F = ma. An example is a coordinate
system fixed with respect to an airplane which is making a turn. It
then would be necessary to apply a force to a body in order to keep
its observed acceleration equal to zero. The equation F = ma would
not give a correct description of the motion if the acceleration were
measured with respect to an accelerating coordinate system, for it
would be necessary to add correction terms which take into account
the motion of the coordinate system. It is clearly an advantage to
locate the coordinate system so that such correction terms are not
required. It was formerly customary to define an absolute space
and to refer all measurements to a coordinate system fixed with
respect to absolute space. It is now recognized that all measure-
ments are relative, and the concepts of absolute space and time have
been discarded. The location of the coordinate system is now based
upon experience. We locate the system so that the equation F = ma
describes the motion within the required limits of accuracy.

The difficulties associated with the ideas of absolute space, absolute
time, and the location of coordinate systems might seem to be
chiefly problems of philosophy, It was just these difficulties, how-
ever, which led to the formulation of the Theory of Relativity, which
has been of such importance in the development of modern physics.

1.4 Fundamental and Derived Units. A physical quantity can
be measured by a comparison of a sample with a known amount of
the same quantity. The known amount which is taken as a refer-
ence is called a unit, and the specification of any physical quantity
requires both an indication of the units used and a numerical value
which gives the number of units contained in the sample.

For the measurement of the physical quantities with which we shall
be concerned in mechanics, it is found convenient to use three in-
dependent units. In engineering it is customary to use the unit of



6 THE GENERAL PRINCIPLES OF DYNAMICS

lemgth (foot), the unit of force (pound), and the unit of time (second),
as the three fundamental units. All other quantities can be expressed -
in terms of the three fundamental units. The unit of acceleration,
for example, is written (ft/sec?), and the unit of mass, which, from
the equation F = ma is seen to be equal to force divided by accelera-
tion, is written (Ib sec?/ft). Such units are called derived units to
indicate the fact that they are expressed by combinations of the
fundamental units. As a matter of convenience the derived units
are sometimes given special names. For example, the foregoing
derived unit of mass is called a slug. Many of the derived units have
no special names, however, velocities being referred to as so many
ft/sec, accelerations as so many ft/sec?, etc.

The system of units described in the preceding paragraph, in which
length-force-time are the fundamental units, is called the (L-F-T) or
gravitational system of units. In physics it is customary to take
length-mass-time as the fundamental units. This system is called
the (L-M-T) or absolute system of units. The words ‘‘ gravitational”’
and “absolute” are merely the names of the systems, and it should
not be inferred that there is anything absolute about a system of units.

The (L-M-T) system differs from the (L-F-T) system only in that
the unit of mass instead of the unit of force is taken as the third
fundamental unit. In the (L-M-T) system the fundamental units
are named the centimeter, the gram, and the second. The derived
unit of acceleration is cm/sec?, and the unit of force is that force
which gives a mass of one gram an acceleration of one cm/sec2.
This derived unit of force, the gram cm/sec?, is called the dyne.

1.5 Dimensions. Quantities which are measured in terms of
derived units are often called secondary gquantities, as distinguished
from primary quantities, which are measured in fundamental units.
The measured values of such secondary quantities can always be
expressed as products and quotients of certain numbers, as in the
following examples:

e e
n1 Ib (n )(16 0z)

= _ m
mass =M= ft/(ng sec)2 ~ (n2)(121n.)

-

ns--L min)2
60
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in which the constants a, b, ¢ refer to the size of the units, L, F, T,

and the constants #;, #3, #3, refer to the number of such fundamental
units contained in a particular sample of the quantity.*

- A consequence of the particular form of the secondary quantities

is the fact that the ratio of two measured values of a secondary

quantity is independent of the sizes of the fundamental units used,

for if:
- (2225
Nna b L
o - ()5 ]
N2 b L
then:

my _ mingiN,

mg — N1Ngnp
since the constants 4, b, ¢ which define the size of the fundamental
units cancel. This type of independence is of course very con-
venient for any practical system of units which is to be used to
describe physical situations.

Generalizing from the above examples, we may say that a

secondary quantity ¢ will have the form:

g = (m1a)*(nzb)?(nsc)[F°LFT7]
where [F°LPT?] is the derived unit, and the exponents «, B, y are

called the dimensions of ¢. Some common secondary quantities
and their dimensions are listed in the following tables.

Quantily (L-F-T) System  (L-M-T) System
Length L L
Time T T
Force F MLT-2
Mass FT2L-1 M
Velocity LT-1 LT~

Acceleration LT-2 LT-2

* So-called dimensional constants are sometimes encountered. For example,
the area of a rectangle could be written as 4 = clw, where A4 is the area in
acres, ! the length in feet, w the width in feet, and ¢ = 2.296 x 10-5 acres/ft2.
By a proper selection of units, the dimensional constant can always be given
a value of unity; in the above example, if the unit of area is square feet,
¢ = 1. It will be noted that secondary quantities, according to the definition
given above, involve systems of units for which ¢ = 1.
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Quantity (L-F-T) System  (L-M-T) System
Area L2 L2
Volume L3 L3
Density FT2L-4 ML-3
Momentum FT MLT-
Work, Energy, Heat FL ML2T-2
Power FLT-1 ML2T-3
Pressure, Stress FL-2 ML-1T-2
Moment FL ML2T-2
Viscosity FL-2T ML-1T-1
Angle dimensionless

The number of fundamental units is to a certain extent arbitrary.
In the field of thermodynamics a fourth fundamental unit is com-
monly added, which is usually taken as temperature §. In the field
of electricity, a fourth fundamental unit is also commonly added,
which is often taken as the electric charge Q. The dimensions of
some common thermodynamic and electrical quantities follow:

Quantity (L-F-T) System  (L-M-T) System
Temperature 0 6
Thermal Conductivity FT-14-1 MLT-3¢-1
Entropy FL§-1 ML2T-2¢-1
Gas Constant L2T-26-1 L27-24-1
Electric Charge Q Qg
Current Qr-1 Qr-1
Voltage FQ-1L MQ-1L2T-2
Resistance FQ-2LT MQ-212T-1
Inductance FQ-2LT? MQ-2L2
Capacitance F-1Q21 -1 - M-lggL-2T12

We have shown above that secondary quantities having the form
of products of powers of the primary quantities have the proper
independence of unit size. The converse statement is also true, and
it can be shown in general terms that the secondary quantity must
have this particular form. Consider, for example, two secondary
quantities:

q1 = f(nia, nab, nac)
g2 = f(Nla, sz, Nac)

and impose the condition that:

(2)
2/, etc.
oa
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The solution of these equations will give the form of the function
which will satisfy the condition of independence of size of units and
which will be found to involve products of powers as indicated above.

1.6 Dimensional Homogeneity. Every equation that de-
scribes a physical process should be dimensionally correct, that is,
the dimensions on one side of the equation should be the same as the
dimensions on the other side. In the dimensional equations that
follow, we shall indicate the fact that it is the dimensions only which
are equated by enclosing the dimensional expression in square
brackets. For example, the equation for the radial force F,, acting
upon a mass m which moves in a circle of radius » with velocity v is:

2
Fr = "m"TU—
Dimensionally,
F, = [F ]
my® (FT2L-1[LT-1]2
r [Z] = 7]

The equation is thus dimensionally correct. If the dimensions of
such an equation do not check, then we know that an error of some
kind exists.

As a second example, consider the equation describing the velocity
of a particle falling through a resisting medium:

k
v—: (1= e';')

) =
where:
= velocity [LT-1]
weight of the body [F]
= resistance factor [FTL1]
= mass of the body [FT2L-1]

= time [T]

N§=v-ge
I

The dimensions of (% t) are:

i, [T = [FTeLY)
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and the dimensions of (%) are:

[F]
[(FTL-1
Thus the equation is dimensionally correct.

In the second example it will be noted that the exponent of the
term e—&/m)t is dimensionless. In any expression of the type
log x, €%, sin %, cosh #, etc., the argument x can always be written as
a dimensionless quantity. This follows from the fact that dimen-
sional homogeneity of an equation involving transcendental func-
tions can be maintained only if the arguments are dimensionless.
This may be seen, for example, by examining the series expansion
for a typical function of this kind:

F=1+2x+ 322+ ...
Having the arguments in a dimensionless form has the advantage
that the terms are independent of the size of the particular funda-
~ mental units used.

It is always possible to write a dimensionally homogeneous equa-
tion in the form:

= [LT-1)

m = ¢(mg, 73, . . .)

where 71, 72, .. . represent dimensionless quantities and ¢ indicates
that #; can be written as a function of the other dimensionless
quantities., For example, taking the equation used in the second
example above, »

k
= -

we see that this can be put in the form:
vk _k, k
() = 1= = 4z)

where the quantities (3—5) and (—2 t) are both dimensionless.

1.7 Dimensional Analysis. A study of the dimensions of the
quantities involved in a physical problem may yield some useful
- information about the form of the solution. The brief treatment of
this subject which follows is intended to indicate the application of
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the method to mechanics problems, and it should be realized that a
rigorous development of the various theorems and a thorough
examination of the foundations and limitations of the method would
require a much more extended discussion.*

An example has been given of the way in which a dimensionally
homogeneous equation can be expressed in terms of dimensionless
parameters. We shall now indicate the principle behind this
transformation.

If the variables which enter into a particular problem are
(v1, v2 . . . ¥g), the solution of the problem may be written as:

f(‘v1,'02,...'vn) =0

We shall show that under certain conditions this equation can be
written as:

dlm, 7o, ...} =0

where the 3, 72, ... terms are dimensionless, and we shall show
how to determine the number and the composition of these =-terms.
A general requirement which we shall impose on our dimensional
system is that the function f(vi, v, . . . va) should remain unchanged
as the sizes of the fundamental units entering into the v’s are changed.
In mechanics the equations describing the basic laws are by definition
independent of the size of the fundamental units, and it thus follows
that any equations derived from the basic laws will also have this
same independence. Equations that satisfy this condition are called
. physical equations.
The variables entering the problem can be written in terms of their
dimensions as:
[v1] = [LuFAT™M]
[ve] = [L°aF#faT™]

* The classic book on the subject is P. W. Bridgman, Dimensional Analysis
(1922). It is interesting to note that this subject has led to many differences
of opinion amongst eminent scientists and engineers. A good summary of
many of these discussions is given in the book by C. M. Focken, Dimensional
Methods, and the other books mentioned in the bibliography may be consulted
for other proofs and examples.
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One of the dimensions, as for example «;, can be eliminated from the
equations by the following change of variables:*
v = v; = [LYFAT™M)

vy = vguy @ = [LOFA'T"]

g = 1)3'01-;: = [LOFﬂ,'Tv,']

The original equation in terms of these new variables becomes:

f(va, vz'm?:, va’vﬂzl-, ve) =0
Note that the new variables (vs’, v3’, . . . v,—1) have zero e-dimension,
since the transformation equations have been chosen so that the
a-dimension cancels from all terms except v;. If the function fis to
be independent of a change in size of the fundamental unit L, then
the variable v; which still contains « must have been eliminated by
the above change of variables so that the original equation becomes:

f1('U2', vg', ... 'U,',_l) =0
In this new function f; the « dimension has disappeared, and the
number of variables has been reduced by one.

By repeating the above process the 8 dimension can be eliminated
through the following change of variables:

,02// — '02' - [LoFﬁn'T’é']

’

_A
v3" = vg've” B = [LOF0T%']

in terms of which f; becomes:
By B
f]_(vz”, v3"v3'BS, va"va'B, L .. ) =0
But f; is to be independent of changes of size of the fundamental unit
F, which appears only in the wv,". The equation must then be
independent of »2” and can be written:
Sfo(v3", va", . .. Upg) =0

* This procedure follows that given in E. B. Wilson's excellent book, An

Introduction to Scientific Research.
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If this process is repeated to eliminate the third dimension y, the
terms left in the equation will be dimensionless, and the number of
such terms will be (» — 3) so that the equation becomes:
d(m, ma, . .. ma—g) = 0.

It will be seen that if in general the number of fundamental units is
N and the number of variables in the problem is #, the above pro-
cedure will reduce the number of variables to (# — N) dimension-
less terms.*

The nature of the above transformations of the variables also
indicates the general form of the dimensionless # factors. The =
factors are built up out of products of powers of the variables v.
Since these v's must be formed of products of powers of the funda-
mental units, it follows that the dimensionless = factors must have
the form of products of powers of the fundamental units.

The values of the exponents of the variables appearing in the
dimensionless factors can be found by expressing each variable in
terms of the fundamental units, and by equating to zero the sums
of the exponents for each fundamental unit. N algebraic equa-
tions will be obtained from which the ratios of the exponents for
(V + 1) terms can be computed. It is in this way possible to
determine the exponents for a » term containing not more than
(N + 1) variables. If a = term is to be unique it is necessary that
it contain a variable that does not appear in any of the other » terms
for otherwise it would be possible to express this term by combina-
tions of other terms. The first o term requires (N + 1) variables,
thus leaving # — (N + 1) variables to form the remaining #»’s. The
total number of unique = terms that can be formed is therefore
1+n—(N+1) = (n—N), in agreement with the previous
development. . o

The foregoing discussion can be summarized in the form of the
so-called = theorem,t which may be stated as follows:

* An exception to this (# — N) rule occurs, for example, if a statics problem,
in which time does not appear, were to be analyzed using an M-L-T system of
fundamental units in which force has the dimensions [MLT-2]. The number
of = terms would be found to be (# — 2), which would indicate that in this
particular problem it would have been more appropriate to use only two
fundamental units L and F.

t The basic ideas of the w-theorem are usually attributed to Buckingham,
who first carried through a systematic development of the subject. See
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A physical equation involving n variables expressed by N fundamental
units can be put into the form

d(m,me, .. .7y} = 0
where the w's are dimensionless parameters formed of the products of
powers of the variables. The number of such independent = terms will
in general be (n — N).

The application of the above principles is illustrated by the specific
examples to follow. To use the method we must first be in a position
to formulate the basic equations of motion in sufficient detail so that
all of the variables which enter into the problem are known. The
method of dimensional analysis will then give some information
about the form which the solution must take, without the necessity
of actually solving the equations. This information will, however,
never be complete, and dimensional analysis can in no sense be
looked upon as a substitute for the complete analytical formulation
and solution of problems.

ExaMpLE 1. A mass m moves in a circle of radius » with a con-
stant velocity v. What can be concluded as to the force F which
causes the motion ?

Solution. The variables which enter this problem, along with their
dimensions, are:

F = [LOF1T9)
m = [L-1F1T?]
y = [LUFOT0]
v = [LIFOT-1]

There are 4 variables and 3 fundamental units so that there is
4 — 3 = 1 dimensionless term which can be formed. This term is:*
Fmaybye = [LOF1TO){[L-1F1T2]a[ [1FOT-1]o[ L1 FOT0]c
= [L—a+b+cF1+aT2a—b]

E. Buckingham, ‘“On Physically Similar Systems; Illustrations of the Use
of Dimensional Equations”’, Physical Review Vol. 2, (1914), pp. 345.

* Note that we can either use the four exponents a, b, ¢, 4 and then solve
the algebraic equations for the ratios of these exponents, or we can assign
a value of unity to one of the exponents, and thus determine numerical values
directly. 1In this case the unity exponent should be assigned to the variable
for which the equation is to be solved. If one should happen to give this
unity exponent to a variable which should not have appeared in that particular
= term, the algebrajc equations would give the anomalous answer 1 = 0.
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For the term to be dimensionless it is required that:

l1+a=0 a= -1
2a —b=0 b= -2
—a+b+c¢c=0 c=1

The dimensionless term is therefore Fr/mv? and the equation
describing the motion is:
Fr
¢(;n_v—2) =0

Since m, v, and 7 are constant, F must also be constant and the
functional form of the equation must be:

F

=2 C=0

my
where C is a dimensionless constant (pure number). We may
therefore write

F=c™
7
If the problem were to be solved completely by using the principles
of dynamics it would be found that C = 1, but we cannot deduce
this from dimensional considerations alone.

ExaMPLE 2. The twist per unit length 6 of a circular shaft
depends upon the shearing modulus of elasticity G, the diameter 4
and the twisting moment M;. (a) Using dimensional analysis, express
0 as a function of the other variables. (b) If it is found experi-
mentally that § varies linearly with M, find from the results of the
dimensional analysis of part (a) the way in which 8 varies with the
diameter d.

Solution. (a) Since time does not appear in this problem there
are only two fundamental units, so that we would expect (4 — 2) =
2 n-factors. m can be formed by inspection; ny = 6d. mg will
involve (G, 4, M) so:

[F1L-2]e[FOLYP[F1LA]L = [0]
a+1=0;, a= -1
—2a4+b4+1=0;, b=2a—-1= -3
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Thus 72 = M,/Gd® and

R

0 = = /(M[Gds).

from which

(b) If it is known that 6 = CM;, then we know the form of the
function of part (a) to be linear, and we have f = C(M./Gd3), so:
1 C M, M,
~d " Gdd Gd?

Part (b) illustrates the way in which additional information, in this
case obtained from experiments, can be used to supplement the
results of the dimensional analysis.

ExampLE 3. A problem of considerable practical importance is
that of determining the drag force F; acting upon a body moving
through a fluid. Consider a body of specified shape whose size is
defined by some characteristic length /, moving with a constant
velocity v through a fluid of density p and viscosity u. Apply
dimensional analysis to this problem.

Solution. The solution will be of the form f(Fa, v,1, p, n) = 0.
There are five variables and three fundamental units, so we expect
two m-terms. We are particularly concerned with the force Fy so
we shall select the = terms so that Fg will appear in only one,
Choosing the viscosity p as the other unique variable, the = terms
become:

0 =C

m = Fdlapbvc; me = p.lapbvc

Determining the exponents as in the preceding examples, we obtain:

_Fa. __m
m = lzpvz’ 2 = ;'l;

and we have:
F d vlp o '
o (e) ()] = 0
Fa = zzpvzf(llﬁ)
1

This is as far as one can proceed with dimensional analysis alone.
The 2 term will be recognized as Reynolds number, which plays a

from which:
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prominent part in many fluid mechanics problems. The form of the
function f would in general have to be determined experimentally,
and the above expressions would be helpful in suggesting the way in
~ which the experiments should be carried out and in organizing the
results of the tests.

1.8 The Theory of Models. The testing of a model for the
purpose of predicting the behavior of the prototype is a useful
technique in many fields of engineering. The principles on which
such models should be designed and tested may be established by a
direct application of dimensional analysis.

As a starting point it will be necessary to know all of the variables
which are important for the particular problem. The safest way to
be sure that all of the proper variables have been included is to derive
general equations that will apply to both model and prototype, but
this cannot always be done without more knowledge of the problem
than is readily available. Using the = theorem, the variables can
be arranged in dimensionless groups so that the equation assumes
the form:

H(m,me,...) =0
As shown above, each of the dimensionless terms will contain one
unique variable which does not appear in the other terms. The
equation can then be solved for the = factor involving the variable
which is of primary importance in the particular problem:
m = O(me, w3, .. .)
This is a general relationship which will apply both to the prototype
and to the model:
myp = O(mep, 73p, .. .)
‘ mim = 0(mom, mam, .. .)
If now the model is designed and tested in such a way that:
Tem = Mep
T3m = Typ (1.1)

then
0(1T2p, T8py « « « ) = 0(772"], T3Mmy » » » )

and thus:
Tlp = Tim (1.2)
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Equations (1.1) can be thought of as the conditions which specify the
design and method of testing of the model, whereas Equation (1.2)
permits a determination of prototype behavior in terms of the model
behavior. ’

ExaMpLE 1. Show how to design and interpret tests on a model
to study the problem of the deflections of a beam under (a) its own
weight and (b) under a concentrated load, assuming that the weight
of the beam is negligible.

Solution. (a) From our knowledge of beam deflection theory we
know that the important variables are: the deflection §, the weight
per unit volume y, the modulus of elasticity E, some characteristic
length /, such as the length of the beam, various linear dimensions
(@, b, ¢, ...) to specify the point at which the deflection is desired
and the shape of the cross-section of the beam. Thus we have:

f(s:’}’,E,l,a,b,C,...)=0

or in terms of the »-factors:

Sdylabc '
¢(Z"F"Z’Z',Z"") ""O

solving for the term involving the deflection:

0y (vlabc
I);-\BTrr

From the right hand side of this equation we see that the model must
be geometrically similar in all respects to the prototype, so that:

(a (4. (B = (5. e
e~ \1),y U= \1), ¢
and in addition we must have:
(A
7).~ (5,
Then the prototype behavior may be calculated from the model:
8y (9
1), (2.

Note that it will not be possible to make a model with a scale factor
different from unity with the same material as the prototype. Fora
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given scale factor, a model material must be found which has a y and
E such that the 4I/E condition is satisfied.

If we introduce the additional information that we are to be con-
cerned only with small deflections for which there is a linear relation-
ship between deflection and load, the general equation can be written

| - et

In this case the only scale factors are the geometric conditions, and
it will no longer be necessary to limit the model material to satisfy a
yi/E requirement.

(b) If the deflections are caused by a concentrated load P instead
of by the uniformly distributed gravity load of part (a), the variables
are:

fé,P,Elabc...)=0

where the location of the load is specified by one of the linear factors
(@, b,¢c,...). Then, proceeding as in part (a):

8 P a b
¢(1E12 rr "')=0
8 P abeo
(z) 0(Ezzzz "')=0
The model must again be geometrically similar, and in addition:

(z5).. - (27,

If the model is made of the same material as the prototype, then the
load to be placed on the model would be:

Pm =‘?'Pp

~ and the deflection of the model would be:
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As in part (a), if it is known that there is a linear relationship
between & and P the problem is simplified, and the equation becomes:

_ P pabc
1) = ER\r ey )

and only the geometrical scale factors are required.

ExaMpLE 2. A sinusoidally varying force of amplitude F and
frequency w cyc/sec is applied to a beam of density p, modulus of
elasticity E, characteristic length /, and linear dimensions (a, b,
c,...) specifying location of loads, deflections, and geometrical
shape. Show how to design and use a model to study the dynamic
deflection & of the beam.

Solution. The solution can be expressed as:

f(‘sj F, E:/’zw///a/b/c/”') =0
or, in terms of the dimensionless = factors:

8§ F 1 Eabc“.)
NCER WIN ' I'T T -

I
=

Solving for the deflection term we obtain:

8\ _ o(E ._I_A/Eféf)
(Z TNER @IN ' UTT

Thus, the conditions for designing and loading the model are:

(a) Geometric similarity, so that i I , etc.
I m l)p

o (35, - (5.,

© (). = (&),

and the prototype deflection is obtained from:

l .
Sp = Zf"sm
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If the model is made of the same material as the prototype condition
(b) becomes:

and the model load is given by:

Im?
m='l?

F Fp.

If additional information is available which indicates that there is a
linear relationship between the deflection and the magnitude of the
force, the conditions become somewhat simpler, for the term (F/El?)
can then be taken out of the function § so that:

) oL s
F)] NN TTT

Besides the geometrical conditions there is now only one modeling

condition:
2d3). = @5
wiN plm \wlN p)p

and the prototype deflection is determined from:

- (E(E) e

ExampLE 3. A rigid body of a given shape moves with a uniform
velocity v through an infinite incompressible fluid medium of density
p and viscosity p. Model studies are to be made of the resisting
forces F acting on the body. Establish suitable modeling conditions
for this problem.

Solution. Takingl as some characteristic length, and {(a, b, ¢, .. .)
as various linear dimensions, we may write the solution as:

f(F,'U,P,]J-,l,a,b,C,:,,) = 0

Or, in terms of the =-factors:
F plvabdec
¢(W’T:—1,'j:r' -') =0

Y
pl2vt p Ll
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Thus the model should be scaled geometrically, and the Reynolds
number (plv/w) should be the same for the model test and for the
prototype.

If the fluid is to be the same for the model and prototype, the
Reynolds number equality becomes:

lm'Um = lp'Up
and the prototype resisting force is:
Fp = Fm.

Note that the Reynolds number equality requires that a small
model should have a larger velocity than the prototype. In aero-
dynamic model investigations this may lead to difficulties, since at
the high velocity demanded by the Reynolds number equality the
nature of the physical phenomena may change. To obtain the
correct Reynolds number without a large increase in velocity, model
tests are sometimes made in wind tunnels in which the density of the
air has been increased by pressurizing.

PROBLEMS

1.1. The secant formula gives the bending stress ¢ in an eccentrically
loaded column in terms of the area 4, the eccentricity ¢, the distance to
the extreme fiber ¢, the radius of gyration of the cross-section area about
the neutral axis #, and the axial load P as: -

P ec l/?
a—Z(l-}-ﬁsecZ E-Z-)

Check the dimensions of this physical equation.
1.2. A certain problem in dynamics leads to the equation:

T, N T

where 7 is the mass of a body, » and y are the coordinates of the displace-
ment, 6 is an angle measured in radians, ¢ is the time, and % is a stiffness
modulus measured in pounds per foot. Check the dimensions of this
equation. ‘

1.3. A body falling through a certain resisting medium with a velocity v
is subjected to a drag force that is proportional to the velocity squared,
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Fg4 = kv? If the body has a weight W and starts from rest at a time
¢ = 0, its velocity at any subsequent time is:

N (2g~/w 1)
Jk(“JM )

Check the dimensions of this equation.

1.4. The equation describing the flow of a viscous fluid through a pipe

may be put in the form:

v 10 2 10

7 TE ot Qﬂ+rw)
where v is the axial velocity, F g, is the body force per unit mass in the z
direction, p is the density, p is the pressure, p is the viscosity, # is a radial
distance, and ¢ is time. Check the dimensions of this equation.

1.5. A jet of water of cross-sectional area 4 and velocity v impinges
normally on a stationary flat plate. The mass per unit volume of the
water is p. By dimensional analysis, determine an expression for the
force F exerted by the jet against the plate.

1.6. (a) A gun shoots a projectile with an initial velocity v, which
makes an angle of § with the vertical. The projectile has a mass » and a
range R. The gravitational acceleration is g. Find the expression for R
by dimensional analysis. Assume there is no air resistance.

(b) Suppose the projectile of part (a) were subjected to an air resistance
proportional to the velocity squared; that is, the magnitude of the retard-
ing force is kv2 Ib. Apply dimensional analysis to obtain an expression
for the range.

1.7. Using the method suggested in the text, show that if the ratio of
two measured values of a secondary quantity is independent of the sizes
of the fundamental units used, the secondary quantity must have the
form of the product of powers of the primary quantities.

1.8. (a) Ocean waves have a wave length from crest to crest of / ft
and a height from trough to crest of # ft. The density of the fluid is p and
the acceleration of gravity isg. Find an expression for the velocity of the
waves by dimensional analysis.

(b) If it has been determined experimentally that the geometrical shape
of the waves is constant, that is, if //% is a constant, show how the analysis
of part (a) can be further simplified.

1.9. (a) Experiment shows that for laminar flow of a fluid through a
circular pipe the significant variables are D the diameter of the pipe, v

ap the rate of change of pressure along the

the mean velocity of the fluid, Tr
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pipe and p the coefficient of viscosity. Derive an expression for the
velocity v by means of dimensional analysis. .

(b) If the flow through the pipe of part (a) is turbulent, then experiment
shows that the density of the fluid is also a significant variable. By
dimensional analysis derive an expression for the velocity v for turbulent
flow. '

1.10. A journal bearing has a diameter 4 and a radial clearance c. The
bearing is loaded so that a mean pressure of p 1b/in.2 is set up. The
viscosity of the lubricant is u, and the speed of the rotating shaft is N rpm.
By dimensional analysis alone, what can be said about the relationship
between the coefficient of friction f of the bearing and the above variables ?

1.11. The frequency of transverse vibrations (f cycles per second) of a
stretched uniform string depends on the tension force T in the string, the
mass per unit length y, the length /, and the acceleration of gravity g.

(a) Using dimensional analysis, find an expression for the frequency f.
(Note: choose the = factors so that the unique factor in one of them is f,
and in the other 1.)

(b) If it is experimentally determined that the frequency is inversely
proportional to the length, find by using the results of (a) above, the way
in which the frequency depends on the tension T

1.12. In a certain problem in fluid mechanics it is determined that
surface tension o is an important factor. The other significant variables
in the problem are velocity v, force F, density p, and cross-sectional area 4.
By dimensional analysis derive an expression for the force F in terms of
the other quantities. The dimensionless quantity v2A4#/(o/p) which
appears in the analysis is called Weber’s number.

1.13. When a body falls through a resisting medium, such as air, its
velocity increases until the drag force counterbalances the gravity force.
The resultant force on the body is then zero, the velocity does not change,
and the body is said to have reached its terminal velocity. Consider a
spherical body of radius 7 falling through a very rarefied atmosphere. Let
the density of the body be pp, and the density of the medium pn. From
dimensional analysis what can be concluded as to the effect of the size of
the body on the terminal velocity ?

1.14. Model tests are to be made to study the stresses in a statically
loaded beam. Find the design and loading conditions which must be
satisfied and the relationship between the model and prototype stresses
when (a) concentrated loads act on the beam and (b) when the only load
is the weight of the beam.

1.15. The buckling load of a steel column is to be determined from tests.
on a 1/5 scale model made of aluminium. It is assumed that the end con-
ditions and loading conditions are the same for both model and prototype
and that the form of the force-deflection curve is the same for both. If
the model buckles at a load of 90 1b find the load at which the prototype
column would buckle, using the results of the analysis of Example 1 above.
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1.16. A study of the resisting forces acting on a ship moving on the free
surface of the water shows that the most important factor is associated
with wave resistance, which is a gravity effect. Show that for ship model
_studies an important modeling law is defined by Froude’s number, v2/lg,
and show how the force on the model is related to the prototype force.

1.17. Referring to Example 3 and to Prob. 1.16, show that if both wave
drag and viscous friction forces are important in a fluid problem, both
Froude’s number and Reynolds number must be modeled, and indicate
the practical consequences of this requirement.



Chapter 2

KINEMATICS: THE DESCRIPTION OF MOTION

The circumstances of mere motion, considered without reference to the
bodies moved, or to the forces producing the motion, or to the forces called
into action by the motion, constitute the subject of a branch of PPure Mathe-
matics, which is called Kinematics.—W. Thomson and P. G. Tait, Elements of
Natural Philosophy (1872).

For the development of dynamics a concise and consistent notation
is required for the description of the displacements, velocities, and
accelerations of a body. The vector notation for these quantities
will be presented first, and then various scalar components of these
vectors will be developed.

2.1 Displacement, Velocity, and Acceleration. The displace-
ment of a point P (Fig. 2.1) is described by the magnitude and
direction of the radius vector r which extends from the origin of a
coordinate system to the point P. At time ¢ let the displacement be
r then at time ¢ 4+ At the displacement is r + Ar where Ar is the
vector from P to P’. Between P and P’ the average change of r per
unit time is Ar/At and the wvelocity at P is obtained by taking the
limiting value of Ar/At as At approaches zero:

’ . Ar dr
= llm — = -
At—0 At at

The direction of v is tangent to the path of motion at P. At point P

the velocity is v, and at the point P’ it is ¥ + Av. The change of

velocity with time may be illustrated by a diagram in which the

velocity v is drawn as a radius vector as in Fig. 2,2. The curve

described by the endpoint of » in this figure is called the hodograph
26

(2.1)
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I \vtAv
r4+Ar

F1G. 2.1

of the motion. Let the velocity be v at time ¢ and v 4+ Av at time
¢t + At. In this interval the average change of velocity per unit
time is Av/A¢, and the acceleration at time ¢ is obtained by taking
the limiting value of Av/A¢.
. Av dv  d
a = lim =

m N~ =@ (22)

The direction of the acceleration vector @ coincides with the direction
of the tangent to the hodograph, since the velocity of the endpoint
of a vector in the hodograph plane is the time derivative of the

vector. It should be noted that the acceleration is equal to zero

Yy

Av

U+ AV

Vg

Fi1G. 2.2
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only when both the magnitude and direction of v are constant. For
example, a particle moving on a circular path can never have zero -
acceleration since the direction of v is always changing.

In vector notation the equation of motion is written:*

2
F=m %Z; = mf (2.3)
It is often convenient to resolve the displacement, velocity and
acceleration vectors into components. These components are usually
taken in the principal directions of the coordinate system which is
most appropriate for the particular
problem involved. Three commonly
used sets of components will now be dis-
cussed.

(@) Rectangular coordinates (Fig. 2.3)
are used to describe the displacement,
velocity and acceleration vectors when
they are resolved into components
parallel to the orthogonal xyz axes.
Fic. 2.3 In terms of the unit vectors i, j, k&,

which are constant:

8

r=xi+yj + 2k

f:%:;\ei-{-yj-i-z'k (2.4
PP ik
SaEp T TE T
. dx L d%x
where £ = 7= Vg, etc., X = - = 4 etc.
In rectangular coordinates the equation of motion is written:
Fo=mi; Fy=my, F,=mz (2.5)

where F4, Fy, F, are the x, y, z components of the resultant force
acting on the particle,

(b) Cylindrical coordinates z, r, ¢ are used when suited to the
geometry of the problem. In this system there are three mutually

* We shall use a dot placed above a letter to indicate the derivative with
respect to time, and two dots to indicate the second derivative. This is the
notation originally adopted by Newton.
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perpendicular components; one parallel to the z-axis, one with a
direction parallel to the radius vector in the xy plane, and the third
with the direction of increasing ¢ as shown in Fig. 2.4 (a).

 The unit vectors specifying these directions are designated by
e, e, and e;. The unit vectors e, and e, are not constant, but
change direction with time. The time derivative of a unit vector
is perpendicular to the vector since the length of the vector is
constant. As may be seen from Fig. 2.4 (b):

Ae, = (Ad)(l)e, and Aey = (Ad)(1)(—ey)

Fic. 2.4

so that the derivatives are:

ér = des; &y = —de,
The displacement of point P is:

rL = rer + ze,
The velocity is obtained by taking the derivative with respect to #:
v = 7e, + ré, + Ze, + zé,

= Fe, + rdes + e, (2.6)
The components of the velocity in the », ¢ and z directions are
respectively #, #é, and 2. The acceleration is obtained by a second
~ differentiation:
a = Fer + 76, + rdey + rde, + rdé, + ie, + ié,

= (7 — r¢%er + (1§ + 27d)e; + Ze, (2:7)
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The equation of motion is written:

Fr = m{F — rd?) .
Fy = m(rd + 27¢) (2.8)
F, = mi

where F,, F,, F, are the components of the resultant force on the
particle in the 7, ¢, z directions, and (¥ — 7¢2), (*¢ + 2¢¢) and # are
the components of acceleration. Since the expressions for the
acceleration components are not as simple as for rectangular com-
ponents, it is not desirable to use
cylindrical coordinates unless the
geometry of the problem is parti-
cularly suited to their use.

(c) Tangential and normal com-
ponents are used chiefly because
they give a simple representation
of acceleration in curvilinear
motion. Let s be the arc length
measured along the path of
motion [Fig. 2.5 (a)] and let p be
the principal radius of curvature
at the point P. The velocity is:

v = Se; (2.9

FiG. 2.5

where the unit vector has the
direction of v, that is, tangent to the path of motion. The accelera-
tion is obtained by differentiating the velocity with respect to the
time:
a = Se; + sé;

To evaluate the time derivative of the unit vector e;, note from
Fig. 2.5 (b) that since this vector changes direction but not length,
Ae; is perpendicular to e, so that:

el B Be 1A 1
P T T N T TR BT Tt

where the minus sign indicates that é, is opposite in direction to e,.
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Substituting this value of é; in the foregoing expression for a
gives: .
. §2
a = §e; — > en (2.10)

The acceleration vector @ may thus be resolved into two perpen-
dicular components, a tangential acceleration of magnitude § and a
normal acceleration of magnitude —$2/p. The minus sign indicates
that the direction of the normal acceleration is toward the center of
curvature.

The equations of motion in terms of tangential and normal
components of acceleration are:

th = ms§
o ms? (2.11)
P

Coordinate systems of other types may be found to be convenient
for certain problems. The spherical coordinate system discussed in
problems 2.3 and 2.4 below is often employed. It is often wise to
compare the possibilities of several coordinate systems for a partic-
ular problem,

ExaMpLE 1. A particle moves along the parabolic path y = ax2
in such a way that the x-component of the velocity of the particle
remains constant. Find the acceleration of the particle.

Solution. Since the conditions of the problem are stated in terms
of a rectangular coordinate system, we shall probably find rectangular
coordinates most convenient for this problem. Since £ = ¢, we have
£ =0. Also:

Yy = ax?
Y = 2axx = 2acx
§ = 2acx = 2ac?

so that the motion of the particle is:

r = xi + ax?
f = ci + 2acxf
f = 2acy

ExampLE 2. A particle P moves in a plane in such a way that its
distance from a fixed point O is # = a4 + b¢2 and the line connecting
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0 and P makes an angle ¢ = cf with a fixed line 04, as shown in
Fig. 2.6. Find the acceleration of P. :
Solution. The data for this
problem are given in such a way
that a plane polar coordinate
system is convenient for the de-
scription of the motion. The
acceleration of the point P in
plane polar coordinates is found

Fic. 2.6 4 from Equation (2.7):
| a = (7 —rédde, + (rd + 2%d)e,
In this problem:
t =a + b2 b =ct
¥ = 2bt é=c
¥ = 2b ¢ = 0

So that:
a = [2b — c%a + bi?)]e, + 2bct ey

ExAMPLE 3. A particle moves along a path composed of two
straight lines connected by a circular arc of radius 7, as shown in
Fig. 2.7. The speed along the path is given by § = af. Find the
maximum acceleration of the particle.

e —————— A

Fic. 2.7

Solution. The form of the data in this problem makes the use of
radial and tangential components of acceleration suitable. Using
Equation (2.10):

. $2
a = Seg — — ey
P
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we note that the normal component of acceleration is zero along the
2

straight portion of the path, and fr— along the curved portion. The

maximum acceleration will thus occur when § is 2 maximum on the
curved path, that is, just at the end of the curve:

a2?
Gmax = A€y — — €y
r
PROBLEMS

2.1. Derive the 7, ¢ components of acceleration in a plane polar co-
ordinate system without using unit vectors. This may be done by showing
that: ‘
ay = a;CcOS ¢ + aysin ¢
Ay = —azSin ¢ + ay cos ¢

and by finding a, and a, by differentiating the relations x = fi(#, ¢),
y = fal?, 4).

2.2. Derive the expressions for the tangential and normal components
of acceleration without using unit
vectors. First determine the nor-
mal and tangential components of
Av/At and then let Az— 0.

2.3. Referring to the figure, con-
sider the effect of increments in ¢ \0
and & upon the unit vectors, e,, €5, == —
e, of a spherical coordinate system.
e, is radial, positive out from the
pole O, e, is tangential to the circle
of latitude, and e, is tangential to (.-~ r o~
the meridian circle as shown. o g Y
Derive the expressions for é, é,,
and é,.

2.4. Using the results of Problem @

2.3, derive the 7, ¢, and & com-
ponents of velocity and acceleration
in spherical coordinates.

2.5. A body moves in a straight line parallel to and at a distance a from
the x-axis with a constant velocity v. Using Equation (2.7) evaluate
" the acceleration term by term, and show that the coefficients of e, and e,
vanish.

2.6. A mass m slides under the action of gravity inside a frictionless
tube which is bent in the shape of a helix of radius 4 and pitch angle a.

Prog. 2.3
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The geometric axis of the helix is vertical. If the mass starts from rest
at? = 0from the point 2z = 0 and ¢ = 0, find the e,, e, and e, components -
of the force exerted by the particle on the helix as a function of time.

2.7. The third derivative of displacement with respect to time, the time
rate of change of acceleration, is sometimes called the ““jerk” and is used
to evaluate the riding comfort of vehicles. Find the components of jerk
in the directions of the unit vectors in a cylindrical coordinate system.

2.8. A weight is lifted by a flexible cable wound on a cone as shown in
the figure. The diameter of the cable is 4, and the diameter of the large

2
77

Pros. 2.8

end of the coneis D. If the cone is rotated at a constant angular velocity
w, find the acceleration of the weight, neglecting the small horizontal
motion of the weight.

2.2 Angular Velocity. Consider a rigid body rotating about a
fixed axis 04, as shown in Fig. 2.8. By the definition of rotation,
this means that all points of the body are moving in circular paths
about centers on the axis of rotation. The angular velocity of the
body is described by the vector w, which has the direction of the
axis of rotation as given by the right-hand screw rule and which has
a magnitude equal to the time rate of change of the angular dis-
placement of any line in the body which is normal to the axis of
rotation. Thus in Fig. 2.8, w would have the direction of Q4 and

the magnitude:
Al

®w= lim — = §
At—0 At

There is a simple relation between the angular velocity of a rigid



ANGULAR VELOCITY 35

body rotating about a fixed axis and the linear velocity of any point
in the body. Referring to Fig. 2.8 and the definition of the angular
velocity, it will be seen that the

~ velocity v of a point P located

by the radius vector r is: A

v=wxr (212

since v is perpendicular to the . N,
plane of w and r and ~JAas AN

v = lim — = wrsina ®

It should be noted -that the
angular velocity vector is a free o
vector, in the sense that it is
not associated with a particular
line of action, as is a force
vector.

An expression involving
angular velocity which will fre-
quently be found useful is that which gives the time derivatives
of the unit vectors in a rotating coordinate system. In Fig. 2.9
the xyz coordinate system rotates with respect to a fixed XYZ

L)

Fic. 2.8

Fi1c. 2.9

system with an angular velocity w. The unit vectors in the xyz direc-
tions are #, j, k, and we are to determine the time derivatives i, j, k
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of these unit vectors. Referring to Equation (2.12) which we may
write as # = w x r, we see that we may write:

i i ok
i=wxi=wz wy Wz
1 0 0

with similar expressions for f and k. In this way the result is found
to be:
i=wxi=awj— wk
j=wxj =wk — wi (2.13)
E=wxk=wi-—wj
A summary of the algebraic properties of vector products is
given in Appendix ITI, for those who wish to review the subject.

M@

FiG. 2.10 Fic. 2.11

ExamPLE 1. A cylinder of radius » rolls without slipping on a
horizontal plane. Find the relationship between the linear velocity
of the center of the cylinder and the angular velocity of the cylinder.

Solution. Referring to Fig. 2.10 it will be seen that as the point B
rolls into contact with the plane, the center of the cylinder will move
through a horizontal distance (#*Af). 1If this motion occurs in a time
At, we have:

. (rA8) . Ab
e LR P E

S0:
V0 = tw
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ExamMpLE 2. A rigid straight bar of length / slides down a vertical
wall and along a horizontal floor as shown in Fig. 2.11. The end 4
has a constant downward vertical velocity v4. Find the angular

* velocity and the angular acceleration of the bar as a function of 4.

Solution. Let

y =1lcosb

y = —1 (sin §) ¢
but § = wand y = v4, 50 v4 = —lw sin § and the angular velocity
is w= -——Tvsiifl_é' An additional differentiation gives the angular

acceleration §:
j = —1I(sin 6)§ — I (cos 8)§2 = 0

9-_'_ w?cosf 42
- sinf  [2sin2@tanf
PROBLEMS

2.9. A small ring moves on a circular hoop of radius 7. A rod 04 passes
through the ring and rotates about the fixed point O on the circumference

A

PROB. 2.9 Pros. 2.12

of the ring with a constant angular velocity §. Find the absolute accelera-
tion of the ring.

2.10. A rigid body is rotating with an angular velocity of magnitude
500 rpm about a fixed axis which has the direction and location of the
radius vector 3i + 2j — k. Find the linear velocity of the point
i — 2j + 3k ft in the body.

2.11. Check the magnitudes and signs of the individual components of
- 4, §, k of Equations (2.13) by considering rotations of the unit vectors
separately about each axis.

2.12. A cylinder of radius 7 rolls without slipping on the inside of a
larger cylindrical surface of radius R, as shown in the figure. Find the
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relationship between the linear velocity of the center of the rolling
cylinder and its absolute angular velocity.

2.3 Motion Referred to a Moving Coordinate System. Sup-
pose that the position of a point P (Fig. 2.12) is determined with
respect to an xyz coordinate system, while at the same time this co-
ordinate system moves with a translational velocity R and an angular
velocity w with respect to a ““fixed”” XYZ coordinate system. This
is the type of coordinate system which might become necessary, for
example, in a long range ballistics problem for which the motion of
the earth would have to be taken into account. In such a problem

Y w P
x
Y
[
13
N
i’ 0
R k
O ot | X
t z
k!
VA
Fic. 2.12

the measurements would be made with respect to the earth, and the
motion of the earth relative to some coordinate system fixed with
respect to certain stars would be considered. We shall now derive
a general expression for the acceleration of a point referred to a
coordinate system which itself is moving.

In the analysis to follow, we shall always measure the vectors
R and r in the fixed XYZ system. The unit vectors i, j, k always
have the direction of the moving coordinate axes, while the unit -
vectors ', j', k' always have the direction of the fixed coordinate
axes.

By the absolute displacement r of the point P is meant the dis-
placement measured with respect to the fixed XYZ system. By
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differentiating this absolute displacement we obtain the absolufe
velocity + and the absolute acceleration ¥.

r=Xi'+Yj + Zk
#=Xi'+ Yj + ZF (2.14)
F=Xi'+ Yy + Zr

During these differentiations, the unit vectors i, j’, k' are treated as
constants, since neither their magnitudes nor their directions change
with time.

If we wish to express the absolute motion in terms of motion
measured in the moving xyz system, we have:

r=R+ p=R+ xi+yj+ 2k

where the directions of the 1, §, k unit vectors are known with respect
to the fixed system. However, the unit vectors are changing
direction with time, since they rotate with the xyz system. In taking
the derivatives # and #, therefore, the time derivatives of these unit
vectors must be included:
fF=R+p=R+ 2+l + 9 +yf + 2k + zk
The derivatives of the unit vectors are given by Equations (2.13):
i=wxi; f=wxj;, k=wxk
so that
f=R+ (% + yf + 2k) + © x (% + yj + 2k)

The quantity (# + yj + zk) represents the velocity of the point P,
measured relative to the moving coordinate system, which we shall
call the relative velocity p,. Using this notation, the expression for f
becomes:

f=R+ pr+wxp (2.15)
and it is seen that p = g, + © x p.

The acceleration of P may be found by a second differentiation:

F=R+p=R+ @&+ 55+ ik) + (% + 9] + 2k
+ & x (% + yf + zk) + w x (4 + yf + k)
+ w x (¥ + yf + zk)
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Writing (%i + 9j + 7k) = p, which we call the relative acceleration
of the point P, the expression for # can be written:
F=R+wx(wxp +odxp+p+2wxp (216
The first three terms in this expression for # represent the absolute
acceleration of a point attached to the moving coordinate system,
coincident with the point 2 at any given time. This may be seen
by noting that for a point fixed in the moving system ¢, = g, = 0.
The fourth term @, represents the acceleration of P relative to the
moving system. The last term 2w x p, is sometimes called the
acceleration of Coriolis, after G. Coriolis (1792-1843), a French
engineer who first called attention to this term.

FiG. 2.13 Fic. 2.14

The equation of motion in terms of the moving coordinate system
may thus be written:

F=mR + mw x (0 x p) +midx p+ mpy + 2mw x pr
(2.17)

Some applications of this equation will be given in the chapter on
rigid body dynamics.

ExamrpLE 1. Two concentric disks of radius » and R rotate about
the same fixed center O, as shown in Fig. 2.13. The constant angular
velocity of the large disk, measured in a fixed system, is Q. The
constant angular velocity of the small disk relative to the large disk,
measured in a coordinate system attached to the large disk, is w.
Find the acceleration of the point 4, on the circumference of the
small disk, and indicate the Coriolis acceleration term in this problem.
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Solution. We shall solve this simple problem in two ways, as a
means of gaining a thorough insight into the kinematics of relative
motion. We shall first use Equation (2.16), taking the coordinate
systems as shown in Fig. 2.14. The XY system is fixed, with the
origin at the center of rotation. The moving xy system is attached
to the large disk with its origin at the center of rotation, and hence
has an angular velocity Qk. Then we have:

Fa=R+wx(wxp) +@xp+ pr+ 2w x pr
where in this problem:
R=0 w=Qk p=7, &=0,p = —rwi,and py = —7w?

Thus we obtain:
Fa = —1Q% — ra¥ — 200rw)j = ~r(w + QY

As a second method of solution, we may note that if the angular
velocity of the small disk with respect to the large disk is w, and if
the large disk has an absolute angular velocity £, then the absolute
angular velocity of the small disk is (w + £). The absolute velocity
of the point 4 is thus 7(w + Q). Since the angular velocities are
constant, the only acceleration component is the normal »2/r com-
ponent, as given by Equation (2.10). Thus we have:

— wl = —r{w + QY

fq =
as in the first solution.

It will be evident from this solution that the Coriolis acceleration .
term — 2rwQj is just the cross-product term which is the consequence
of squaring a sum. Since the expressions for velocity do not involve
squares, no term corresponding to the Coriolis acceleration term
appears in them.

ExampLE 2. A small body of mass # slides on a rod which is the
chord of a circular wheel, as in Fig. 2.15. The wheel rotates about
its center O with a clockwise angular velocity w = 4 rad/sec, and a
clockwise angular acceleration & = 5 rad/sec2. The body m has a
constant velocity of 6 ft/sec to the right, relative to the wheel. Find
the absolute acceleration of m when p = 1.5 ftif R = 3 ft.

Solution. We shall fix the moving xyz coordinate system to the
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wheel as shown in Fig. 2.15. The angular velocity of the coordinate

system is «w = 4 rad/sec k and the angular acceleration & = 5 rad/

sec2 k. Applying Equation (2.16):
F=R+wx(wxp)+¢xp+§,+2wxér

the terms may be evaluated as follows:

R = — (3 ft)(4 rad/sec)2i

+ (3 ft)(5 rad/sec)j = —481 + 15f ft/sec?

w x (w x p) = (4 rad/sec)(4 rad/sec)(1.5 ft)f = + 244
& x p = (5 rad/sec?)(1.5 ft)i = + 7.5
pr=20
2w x pp = —2(4rad/sec)(6 ft/sec)i = —48§

—88.5¢ + 39§ ft/sec?

¥

rad/sec

FiG. 2.15 FiG. 2.16

In some problems of this type the sum of the first three terms
R+ w x (w0 x p) + ® x p) can be computed more directly by
noting that this vector sum represents the absolute acceleration of a
fixed point on the moving coordinate system which is coincident with
the moving point. In the present problem, for example, this co-
incident-point acceleration is (Fig. 2.16):

[ 57) —en () + [r) + e ()]
= [(1.5)(5) — 342 + [3)(5) + (1.5)(16)]j
= —40.5i + 395 ft/sec?
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which will be seen to be equal to the sum of the first three vectors
of the solution by the other method.
- ExampLE 3. A simplified picture of the mechanism of a heli-
copter blade is shown in Fig. 2.17. The blade oscillates about the
horizontal axis P-P’, which is carried on a rotating disk OB so that
the whole assembly rotates with a constant angular velocity w.
The blade has a mean position defined by the line BC, which makes
an angle 6 with the horizontal. At any time ¢ the blade makes an angle
¢ with the line BC, where ¢ is given by the equation ¢ = ¢ sin ¢,
p being the angular frequency of the ‘“flapping” oscillation of the

Y
Aw @, c
/,; A 0
I, /
/ ’
I, 4
,/’ 7 41
P\ /’ / in, XZ Plane
&r By

\\\\ ‘O 7 \P, x

FiG. 2.17

blade. Find the velocity and acceleration of 4, the tip of the
blade, when ¢ = 0 and the blade 1s moving upwards.

Solution. We shall first find the velocity and acceleration of 4
relative to a coordinate system which rotates with the disk OB with
an angular velocity w, and whose origin is located at B. We orient
the system so that R lies along X-axis (Fig. 2.18). Since:

45 = 950 sin Pt
then:

¢ = dopcos pt

¢ = —op?sin pt
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Thus, the magnitudes of the relative velocity and acceleration, when
¢ = 0, are:

i

pr = 71 = ridop
(e =11 =0
(Bria = 1142 = r1do2p?

Now, using Equation (2.15):

f=R+p +wxp

with the following values of the terms:

R = —Rowk
fr = —r1op sin 6 + r1dop cos 8f
W X p = —~7wcos Ok
Y
\
@
P,
3 y ..
(p,),
A
Rw (i).r)n
_____ - P=n
- R_LA7T0\S -~
e —___7BW) X
Z z
Fic. 2.18

So that we obtain:
f = (—ridop sin )i + (riop cos )j + (—Rw — riwcos Ok
To find the acceleration we use Equation (2.16):
F=R+wx(wxp) +&xp+ pr+ 2w x pr

where in this problem the terms become:

R = —Rw?
w x (wx p) = —rwicosfi
o xp=10

Br = —71$o2p2cos 0 i — rigo?p2sin 0 j
2w X pr = 2¢or1pwsin b k
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So that

F= (—Rw? — riw?cos f — rigdop2 cos 0)i + (—r1do2p? sin 0)f
: + (2¢or1pw sin O)k

PROBLEMS

2.13. A particle moves in a circular path of radius & with a constant
angular velocity «w as shown in the diagram. (a) Show that the accelera-
tion term w x (w x r) has a radial direction and a magnitude of

aw? = ﬂ

(b) The magnitude of the angular velocity of the particle varies with

e
Yv i ("

Pros. 2.13 Pros. 2.14

time according to the equation w = «f where « is a constant angular
acceleration. The acceleration of the particle is given by

a=—‘-l-(wxr)=¢b><r+wxf.

dat

Find the magnitude and direction of each of the two terms & x r and
w X 7.

2.14. A straight tube is attached to a vertical shaft at a fixed angle «
as shown in the figure. The shaft rotates with a constant angular velocity
w. A particle moves along the tube with a constant velocity v relative
to the tube. Find the magnitude of the acceleration of the particle when
it is at a distance / along the tube from the center. Do this problem in
two ways: (a) by setting up a spherical coordinate system and using the

known expressions for the components of acceleration in a spherical
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system, and (b) by setting up a moving and a fixed coordinate system and
using the known expression for the acceleration of a particle which moves
in a moving coordinate system.

2.15. A particle of water P moves outward along the impeller of a
centrifugal pump with a constant tangential velocity of 100 ft/sec relative
to the impeller. The impeller is rotating with a uniform speed of
1800 rpm in a clockwise direction. What is the acceleration of the particle
at the pomt where it leaves the impeller?

2.16. A river is flowing directly south along the surface of the earth at
a uniform speed of 5 mph relative to the earth. What is the acceleration
of a particle of water in the river when it crosses the 30° North latitude
line?

Pros. 2.15 . Pros. 2.16

2.17. Referring to the helicopter blade of Example 3 above, find the
acceleration of the blade tip 4 when the angle ¢ has one-half of its
maximum value ¢9 = 6° and is increasing. The ““coning angle” § is 7°,
the radius to the tip of the blade is #; = 15 ft, the radius of thediskis R =
1 ft, and the assembly rotates at 225 rpm. The blades flap once per re-
volution of the rotor, that is, = w.

2.18. A horizontal track for experimental studies of high velocity
missiles is to be designed. Because of the rotation of the earth, there
would be, for certain orientations of the track, accelerations at right angles
to the rails in a horizontal plane, and hence lateral forces between the .
missile carriage and the track would be present and might be a factor in the
design of the structure. Find this lateral acceleration for a N-S orienta-
tion and for an E-W orientation, assuming that the missile has a constant
velocity of 2000 ft/sec and that the track is located at a 30° N latitude.
Assume that the E-W track follows a circle of latitude.
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2.19. A large disk rotates with a constant angular velocity Q about a
central shaft O. A small disk is attached to the large disk by a shaft at 4,
as shown in the figure. The small disk rotates with
' a constant angular velocity w with respect to the
large disk. Find the relationship between w and Q
for which the absolute ‘acceleration vector of any
point on the circumference of the small disk passes
through the point O.

2.20. An airplane flies in a vertical arc of 1000 ft
radius with a constant speed of 300 mph. The pro-
peller, which has a 12 ft diameter, rotates at an
angular speed of 1200 rpm, clockwise viewed from Pros. 2.19
the rear. Find the absolute acceleration of the
propeller tip when both the plane and the propeller blade are horizontal.
Consider the left hand blade, looking from the rear and assume that the
plane is about to climb.

2.21. The center of mass of a single engine airplane is travelling along a
horizontal straight line with a velocity ¥ and an acceleration a. The
angle of pitching of the airplane about a horizontal axis through its center
of mass perpendicular to the flight path is ¢ = ¢¢sin p¢. The radius of
the propeller is 7o and its center is a distance 4 ahead of the center of mass.
The propeller rotates at « rad/sec clockwise as viewed from the rear.

(a) Find the velocity of the tip of the propeller blade at the time ¢ = 27"

if the blade is horizontal and is moving upwards at that time. - (b) Find
the acceleration of the tip of the propeller under the conditions of part (a).



Chapter 3

DYNAMICS OF A PARTICLE

Newton admits nothing but what he gains from experiments and accurate
observations. From this foundation, whatever is further advanced, is
deduced by strict mathematical reasoning.—William Emerson, The Principles
of Mechanics (1754)

The equation of motion as given in Chapter 1 is theoretically
sufficient for the solution of any of the solvable problems of classical
mechanics, There are several other ways, however, of presenting
the basic information contained in this equation. Each of these
has advantages for the solution of certain types of problems. Inthe
present chapter we shall first show, in some simple examples, how
the equation of motion can be integrated directly to give the solution
of certain types of problems, and we shall then discuss some other
forms in which the equation of motion can be expressed.

The problems treated in this chapter will be restricted to the
dynamics of a particle. If rotational effects can be neglected for a
particular body, then that body can be treated as though it were a
single particle with the mass of the body concentrated at one point.*
If the rotational effects need to be considered, then the problem
must be treated by the more general methods of rigid body dynamics.
It should be noted that the same body might_ih one problem behave
as a particle, while in another problem it might have to be treated
as a rigid body. For example, a cannon ball shot through the air
could be treated as a particle; the same ball rolled along the ground
would have to be considered as a rigid body of a given radius.

* See Section 6.2, Chapter 6.
48
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In general, we shall consider any body as being made up of a
number of particles, so that, once the basic laws describing the motion
of a particle have been established, the theory may be extended to
~any body without the introduction of new principles. By first
studying the behavior of a single particle, the various laws of
dynamics can be exhibited in their simplest form, unencumbered
with the purely mathematical difficulties involved in the description
of complex motions,

3.1 Integration of the Equation of Motion for Particular
Problems. In many problems the known quantities and the
information desired are such that a direct integration of the equation
F = m#, expressed in an appro-
priate coordinate system, will
give the solution. ¥

ExampLE 1. Consider a par-
ticle, of mass m, which at time
t = 0 is projected horizontally
with an initial velocity %, and is z,
subsequently acted upon by 0 TSS
gravity and by air resistance. ~
Find the position and velocity of ———()
the particle at any subsequent ~
time. N

Solution. Fig.3.1showsa free- mg N
body diagram of the particle with F1c. 3.1
all the forces acting, The drag
force produced by air resistance has been resolved into two rect-
angular components, and the gravity force is shown as a downward
force mg. To describe the motion we choose a rectangular xy co-
ordinate system with the xy plane coinciding with the plane of
motion. In this system the equation F = m# becomes:

8

Fz-':—"mf:""Dz

Fy=my =Dy, — mg

In general, the drag forces D, and D, will be functions of the velocities
" % and y, and these functions must be known before the equations
can be integrated. In a later section we shall consider the nature of
these functions and methods of integrating the resulting equations.
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For the present, as an illustration of the general method in its
simplest form, let us suppose that the motion is taking place in a
vacuum, so that Dy = D, = 0. Then:

£=0
y=-¢
Integrating once:
% = C
y= —gt + Co

The constants of integration can be determined from the initial
conditions £ = %, y = 0 when { = 0; hence:

C1 = %y
C2=0
Performing a second integration:
x = %ol + Cs
12
y = - gz—- + C4
Also, whent =0;x = 0,y = 0, so C3 = Cq = 0, and we have the
result:

x=a&0t

1
y= —Qé’tz

By eliminating ¢, the relationship between x and y is found:
1 ¢
y=s3 Yol x?
and the path of motion is found to be a parabola.

ExamPLE 2. J.V. Poncelet (1829) concluded on the basis of tests
that when a projectile of mass m is fired into earth or masonry it
experiences a retarding force Fp = — C1 — Cav?, where the constants
C1 and C; depend on the properties of the material and the shape of
the projectile. If the impact velocity of the projectile is v, find the

total penetration.
Solution. The equation of motion is:

dv

m%= —(:]_‘_(:27}2
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In this problem we wish to have a relationship between velocity and
distance, so we shall change the variable in the differential equation
~ as follows:

mti‘l_) _ mdx.dv _ vdv

#-"T T
s0:

mvd—v = — C1 — szz

dx
The variables in this differential equation can be separated to give:
mudy
i -Cm - #

which integrates directly to:

2C log( C,—-Ca?) =x+C

when x = 0, v = vg, 50 C = —C log (~ C1 — Cavp?)
2

and:
_ m 1 - C1 _ sz()2
x—Z_C—zog —C1—C2‘1)2)

At maximum penetration v = 0, so finally:

Ce
Xmax = 2C log (1 + C—vo)

ExaMPLE 3. A particle is attracted toward the origin of a
coordinate system by a radial force. Show that the angular velocity
of the particle is inversely proportional to the square of its distance
from the origin.

Solution. = A polar coordinate system will be convenient for the
solution of this problem. The equations of motion are:

Fr = m{# — r$2); Fy = m(ré + 2/¢)

Since the force is radial, we havé Fy =0, s0:

(r$ + 27¢) = - T 7295

II
o

. Thus:

IO

r2$ = constant = C, ¢
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PROBLEMS

3.1. Given a particle of mass m moving in a circular path of radius »
with a velocity of constant magnitude v. Find the force required to main-
tain this motion. Do this problem in two ways: (a) by describing the
motions in a rectangular coordinate system whose origin is at the center of
the circular path and (b) by using a plane polar coordinate system to
describe the motion. Compare the two procedures.

3.2. A block W, weighing 15 lbs and a block W g weighing 25 1bs slide
down a 30° inclined plane as shown in the
figure. The blocks are connected by a link of
negligible mass. The coefficient of sliding fric-
tion between Wy and the plane is 0.20, and
between W 4 and the plane is 0.40. Find the
force in the connecting link, and the accelera-
tion of the blocks.

: 3.3. A weight rests on the top of a friction-

Pros. 3.2 less sphere of radius ». The weight slides

down the side of the sphere in a vertical

plane under the action of gravity. Find both the point at which the
weight leaves the sphere and the velocity at that instant.

3.4. A wheel of radius r rotates with a uniform angular velocity, .
A massless connecting rod of length / is fastened to the wheel, and moves a

wl

ProsB. 3.4

piston of mass M back and forth along the x-axis as shown in the figure.
Show that the x-component of the resultant force acting upon M is:

2 3 sind
Ry = —Mrwz[cos wt + 71 cos 2wt + 7dsin ‘”t]

(F = 72 sin® wt)32

Find an approximate solution for R for the particular case in which the
ratio (E) is small compared to unity.
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3.5. The drag force exerted by the water on a ship weighing 12,000 tons
varies with speed according to the following approximate formula:

FD = —ky"

For the range of speeds to be considered in the present problem, # may
be taken as 3. If the drag force for a particular ship has been determined
to be 80 tons at a speed of 16 ft/sec, find the distance which the unpowered
ship would travel as its speed decreases from 15 ft/sec to 12 ft/sec. What
is the time required for this decrease?

3.6. The force acting on a body which weighs 150 1b and which moves
in a straight line is given at any time by the accompanying graph.
After { = 6sec, F = 0. If the velocity of the particle is 25 ft/sec when
¢ = 0, find the velocity of the particle and the distance that it has traveled
at 1 = 8sec.

F
201b

o
=
-

15 Ib.

Pros. 3.6 ' Pros. 3.7

3.7. A particle of mass m starts from rest and slides down the side of a
hemispherical surface of radius » under the action of gravity. If there is
no friction, and the particle starts from A, what force will be exerted on
the surface by the particle at the instant when it is located at B?

3.2 The Equation of Impulse and Momentum. If the force
acting upon a particle is specified as a function of time, the direct
integration of the equation of motion, as illustrated in the preceding
section, will give the solution of the problem. If a complete specifi-
cation of the forces is not available, it may still be possible to obtain
some information about the motion by obtaining a general first
integral of the equation of motion. Two such general integrals
can be obtained and we shall first derive the time integral.



54 DYNAMICS OF A PARTICLE

BReginning with the equation of motion in the form:

F = mf#

and multiplying both sides by 4¢ and integrating, we obtain:

2

tz » .
= Mry — mMry

, _
Fdt = | midt = mé
Y 15

1

“Fdt = mvs — mw (3.1)

4

¢
The term | = Fdt is called the impulse of the force F and the term
tl

(mv) is called the momentum of the particle. Equation (3.1) thus
states that the impulse is equal to the change in the momentum.

Both impulse and momentum are vector quantities and hence can
be written in terms of components in various coordinate systems.
In rectangular components, for example, the equations are:

:2 Fodl = miz — miy; etc.
1

It should be noted that the impulse-momentum equation is but
another form of the equation of motion and that it furnishes no new
information, although its use may simplify the solution of certain
problems. In some problems the impulse applied to the system may
be known whereas the forces are unknown. In such a problem the
impulse-momentum equation gives the change of velocity directly.
If no force acts upon a particle, the equation of impulse-momentum
is:

myg — mvy = 0
MV = MV,

If no impulse is acting there is no change in momentum, and the
momentum of the system may be said to be conserved.

Consider two particles of mass m, and m;, which exert a mutual
action upon each other as, for example, in a collision. From the
Third Law of Motion we know that the forces, and hence the im-
pulses experienced by #, and m, during this mutual interaction are
equal and opposite. The total impulse for the system of two particles
is thus zero, and hence the total change in momentum of the system
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must be zero. We may thus state that the total momentum is a
constant:

MaVe + MpVp = constant

If there are more than two particles involved and all the forces
acting upon the particles are due to mutual interactions, that is, there
are no external forces applied to the system, we can say:

Zmyvy = constant

This is a vector equation and in rectangular coordinates its com-
ponents are:

Zmqx; = constant, etc

This is the Principle of the Conservation of Momentum, which holds
for any system upon which no external forces are acting.

An extension of the above concept of the momentum vector leads
to the definition of the moment of momentum vector, and to the
principle of the conservation of moment of momentum. These ideas
will be discussed in detail in Chapter 6.

ExampLE 1. Rain falls steadily at the rate of 1 in./hr. If the
terminal velocity of the raindrops is 20 ft/sec, find the average force
per unit area on a horizontal surface caused by vertically falling
rain.

Solution. The average force will be equal to the average rate of
change of momentum, which can be calculated if it is assumed that
the amount of water that is splashed upwards is negligible:

(F) _ (1in./hr)(62.4 1b/{t3)(20 ft/sec)
avg B (

— —_ —4 2
y, 32.2 Tt /sec) (3600 sec/hr) (12 /i) — o0/ * 107*1b/it

ExAMPLE 2. A uniform chain is coiled in a small pile on the floor.
A man picks up one end of the chain and raises it vertically with a
uniform velocity ». Find the force acting on the man’s hand at any
height x above the floor.

Solution. Suppose that a link of mass (Am) is picked up in a time
(At); then, by the impulse-momentum equation:

Fi(At) = (Am; and Fy = (i—’:’)u
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If the mass of the chain per unit length is u, then m = pux and
%’; = pv so that F; = uv2 The total force acting on the man's

hand will be F plus the gravity force pgx, thus:
F = plgr + v

ExampLeE 3. A gun whose barrel makes an angle o« with the
horizontal fires a shell having muzzle velocity v, with respect to the
barrel. The whole gun is mounted on a frictionless horizontal track,
so that recoil takes place with no resistive forces. The total mass of
the gun is M and the mass of the shell is m. Find the recoil velocity
V of the gun, and the magnitude of the absolute velocity of the shell
as it leaves the gun.

Solution. Since there are no horizontal forces acting on the system
of the gun, shell, and explosive gases, the horizontal momentum of
the system is conserved. This horizontal momentum is initially
zero, so, neglecting the small momentum of the explosive gases, we
have:

m(vycose — V) — MV =0
from which:
V= TR :’_LM)_ Uy COS &
The components of the absolute velocity of the shell are
(vr cos @« — V) and v, sin «; thus: :

ivs] = V/(vrcos & — V)2 + (v, sin «)2

— JI _ m(m + 2M)
’ (m+ M?)

cos2 o

PROBLEMS

3.8. A ball weighing 1 Ib is thrown vertically upward; neglecting air
resistance, find: (a) the velocity at ¢ = 1 sec, if the velocity at ¢ = 0 is
30 ft/sec and (b) the velocity at ¢ = 0, given that the ball reaches its
maximum height after 2.5 sec.

3.9. A particle weighing 5 1b bounces against a surface as shown in the
diagram. If the approach velocity is 20 ft/sec and the velocity of
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departure is 15 ft/sec, find the magnitude and direction of the impulse to
which the mass is subjected.

30° 25

Pros. 3.9

3.10. A jet of water impinges againstaflat plate as shown in thediagram.
The velocity of the water is v ft/sec, the density is p 1b sec2/ft4. What is
the force exerted by the jet against the plate? Taking the weight of
water as 62.4 1b/ft3, find the force for-a jet having an area of 6 in.2 and a
velocity of 30 ft/sec.

N

7
-
.
%
.
.
.
.
.

Pros. 3.10

3.11, Two men 4 and B of equal weight hold on to the free ends of a
massless rope which passes over a frictionless pulley of negligible weight.
A climbs up the rope with a velocity v, relative to the rope, while B hangs
on without climbing. Find the absolute velocity of B.

3.12. A body weighing 10 Ibs is projected up an inclined plane which
makes an angle of 20° with the horizontal. The coefficient of sliding
friction between the body and the plane is p = 0.3. At time ¢ = 0, the
velocity up the plane is 20 ft/sec. What will be the velocity at the end of
3 sec?

3.13. A projectile weighing 100 lbs strikes the concrete wall of a fort
with an impact velocity of 1200 ft/sec. The projectile comes to rest in
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0.01 sec, having penetrated 6 ft of the 8-ft thick wall. What is the time

average force exerted on the wall by the projectile?

3.14. A machine gun fires a steady stream of bullets into a stationary
target in which the bullets come to rest. Each bullet weighs 1 oz
and on impact has a velocity of 1200 ft/sec. Find the average force

exerted on the target if the rate of fire is

| 3.15. Dry material is discharged from
/ // a bin to a belt conveyor at the rate of
B A The speed of the belt is 5 ft/sec. Find

the difference between the belt tension

800 per minute.
o 3000 Ib/min, as shown in the diagram.
= > at A and B.

.

ProE. 3.15 3.3 The Equation of Work and
Energy. The first integral of the
equation of motion with respect to time gives the equation of impulse
and momentum. We shall now derive the first integral of the equa-
tion of motion with respect to displacement.
We start with the equation of motion in the form:

F = mf
Forming the dot product of each side with the displacement dr, and

integrating, we obtain:

T
F.dr

= f-dr = f-=; dt
r 8% " 12 " vdt
1 2 d . 1 ta d
_-szhzz(rr)dt 5™ tl%(v)dt
r2
F-dr = Imve? — Lmv,2? (3.2)

L5}

The integral on the left side of this equation is called the work done
by the force F, and the term imuv? is called the kinetic energy of the
particle. Thus the equation states that the work done upon the mass
m by the force F is equal to the change in the kinetic energy of the
mass.

The vector displacement dr is tangent to the path of motion of the
particle, so that the scalar product F.dr represents the component
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of the force in the direction of the displacement multiplied by the
displacement. The total work done by the force in moving along a

B
path from 4 to B (Fig. 3.2) is given by the line integral L F.dr.

Expanding the dot product in terms of rectangular coordinates we
have:

B
Work = f (Fpdx + Fydy + F,d2)
A

The rate of work, F-dr/dt = F.v, is called the power. It should be
noted that work, kinetic energy, and power are scalar quantities, as

Fic. 3.2 F1G. 3.3

defined by.the dot-products, and are completely specified by their
magnitudes.

Since the equation of work and energy is simply a restatement of
the original law of motion, it cannot furnish any new information.
In many problems, however, the work-energy equation leads directly
to simple solutions.

ExamPLE. A mass m falls through a distance # and strikes the
end of a linear spring, as shown in Fig. 3.3. The spring constant is
k1b/in., that is, it requires a force of kx 1b to compress or extend the
spring #in. Find the maximum compression of the spring.

Solution. The forces acting on the mass are the gravity force mg
and the spring force (— kx). If § is the maximum compression of the
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spring, the total work done by the forces acting on the mass from its
initial position to the final fully compressed position is:

Work = mg(h + 8) — f kx dx
0

Since the velocity of the mass is initially zero, and is zero again at
the instant of maximum spring compression, the change in kinetic
energy is zero, and hence the work done is also zero, and we have:

mglh + 8) — }k8% = 0

3
8=%+J(%)+M

from which:

k k k

The deflection corresponding to a static force equal to the weight of
the body is (mg/k). Calling this the static deflection, 85, we have:

5 =as,[1 +A/1 +-21’]
st

PROBLEMS

3.16. Integrate the equation of motion Fi + Fyj + F,k = mii +mjjj
+ mik term by term to obtain the equation of work-energy expressed in
rectangular coordinates.

3.17. A spring which has been initially stretched into the position AB
is elongated and displaced into the position 4’B’ as shown in the diagram.

8000

t

A

BI
Pros. 3.17

Show that the total work done by the forces which elongate the spring
depends only on the change in the length of the spring and on the average
. force in the spring:

Work = (Favg)(A'B’ — AB)
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3.18. A spring of spring constant £ whose unstretched length / is fixed
at one end, while the other end is fastened to a rigid bar of length 7, as
shown in the diagram. How much work will be done by the force

_exerted by the spring on the bar as the bar is rotated about O into a
vertical position ?

L >

" Prog. 3.18 Pros. 3.19

3.19. A particle weighing 1 1b is supported as a simple pendulum by a
massless inextensible string 2 ft in length. The pendulum is released from
rest at an angle of 30° as shown in the diagram. When the string is just
vertical, it strikes a rigid support and the particle continues to swing as a
pendulum of shorter length. (a) Find the maximum value of the angle ¢.
(b) Find the force exerted on the weight by the string when ¢ = 30°.

3.20. A particle of mass m is acted upon by a force whose components
are F; = A4, Fy = Bt, F, = 0. At time ¢ = 0, the velocity of the mass
is zero. What is the work done by the force in the first T sec?

3.21. A spring whose unstretched length is / requires a force of 2z Ib to
elongate it x ft. If three such springs having spring constants %1, %2, and

Pros. 3.21

k3 are hooked together end-to-end, how much work would be done by a
. force F as it elongates the system of springs through a total distance 87
In such a system the springs are said to be in series. What is the equiva-
lent spring constant for a system of springs in series in terms of the spring
constants of the individual springs?
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3.22. The three springs of Problem 3.22 are arranged in parallel as
shown in the figure. How much work is done by the force F as the
assembly is stretched through a distance 8? The
springs are initially in an unstretched position

and the plates remain parallel. What is the

—  equivalent spring constant for a system of springs

—
in parallel in terms of the spring constants of
the individual springs?

k, ks ks 3.23. Prove that the total work done by all of

L

i,

the gravity forces acting on a system is given by
the product of the total weight and the vertical

< distance moved by the center of gravity.
3.24. A 10-ton airplane lands on the deck of a
motionless aircraft carrier at a speed of 90 mph.

‘P Upon landing it catches the center of a hori-
zontal elastic cable which is perpendicular to the
Pros. 3.22 direction of motion of the plane. The cable is 200

ft long, is fixed at the two ends, and has zero

initial tension. At contact the propeller pitch is reversed to exert a

constant braking thrust of 2000 Ib. The force in the cable is F = kx,

where x is the change in length of the cable. Find the value of % for
which the plane will be stopped in 100 ft.

3.25. The force of gravity varies inversely as the square of the distance

from the center of the earth. A projectile in space is thus acted upon by

2
a gravitational force Fy = —W ;—Z, where W is the weight of the projectile

at the earth’s surface and # is the radius of the earth. How much work

y

Ba -

-
AN

Pros. 3.25

x

must be done against the gravitational force if the projectile is to reach a
distance of (¥ — #) from the earth’s surface? Neglecting air resistance,
what initial velocity must the projectile have in order to reach that
distance? What initial velocity must the projectile have to escape from
the earth’s gravitational field? Take the radius of the earth as 4000 mi.
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3.4 Potential. The equation of work-energy for a particle of
mass m acted upon by a force F is:

B
f F.dr = ymvg? — ymv,?
4

The right side of this equation depends only upon the velocities of the
particle at the two end-points A and B. The value of the left side,
however, will depend in general upon the path of integration followed

B
between A and B. The value of the line integral f F-dr will
A

depend only upon the limits of integration and not upon the path
only if (F.dr) is an exact differential. If this is so, there exists some
function ® such that d® = F.dr and:

B B
f F-dr=‘f id = @
4 4

If the function ® exists, the force F is said to be derivable from a
potential, for:

B
= O(B) — ®(4)
A

F.dr = Fzdx + Fydy + F,dz

od o o0
From which:
od od ob
Fo= By =30 Fa= o (3-3)

This potential function ® is called a force function.

When a force is derivable from a potential, the work done by the
force is independent of the path of motion and depends only upon the
end-points of the path. Since ® is a function of the space co-
ordinates only, the magnitude and direction of the force are com-
pletely determined when its point of application is known. This will
be true if the force is a function of the displacement only. If the
force is a function of velocity, it cannot be derived from a potential,
and the line integral representing the work is not independent of the
~ path of integration.

The concept of a potential function has much wider application
than is suggested by the force potential. In fluid mechanics, for
example, it is customary to define a velocity potential whose
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derivatives give the components of velocity, and in thermo-
dynamics several potential functions are defined whose derivatives -
give certain thermodynamic variables.

3.5 Potential Energy. Suppose that a force F, which is de-
rivable from a potential, acts upon a particle that moves from point
A to point B. We define the change in the potential energy of the
force, (Vg — V), as the negative of the work done by the force as it
moves from 4 to B.

B
Ve — V= —f F-dr (3.4)
A

To specify the potential energy at a point it is necessary to select a
datum point at which the potential energy is arbitrarily set equal to
zero. Taking some point D as the datum point, we have Vp = 0
and:

D
Va4 =f F.dr (3.5)
A

The datum point D is selected at any point that is convenient for
the particular problem being considered.

From the definition it is seen that the potential energy is the
negative of the force function since F-dr = — dV. The components
of the force may thus be expressed in terms of the potential energy
in the same way in which they were expressed in terms of the force
function, and we have:

v ov : oV

Fz=~—7x', y = -—a;; Fzs-—_a;

The only difference between the potential energy V' and the force
function @, other than sign, is that the potential energy usually
involves an additive constant, since it is defined with respect to an
arbitrarily chosen datum point; ¥V = — ® 4+ C. The advantage of
using a potential as a description of a force is that it permits an
analysis of the force without bringing into the picture the mechanism
causing the force or the bodies upon which the force acts. This
advantage is particularly useful for forces which act at a distance, -
such as gravitational and electrical forces.

If a force is not derivable from a potential function, as, for example,
frictional forces or forces proportional to velocity, it is not possible
to define a potential energy.
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3.6 The Conservation of Energy. If a particle is acted upon
by a force which has a potential energy V, the equation of work-
_energy gives:

B
Vp— V= — f Fodr = — (ymog? — pmog?)
: A

or: :
Va+ dmvs2 = Vg + jmog?

This equation states that the sum of the potential and the Rinetic energy
remains constant. The energy is said to be conserved and we have:

V + imv? = constant (3.6)

This is the principle of the conservation of mechanical energy. It is
valid for any system for which a potential energy can be defined.
Any system to which the principle
of conservation of energy applies
is said to be a conservative system,
and the forces are said to be con-
servative forces. It should be
noted that the principle of the
conservation of energy is a direct
consequence of Newton’s Laws
and the definitions of the terms .
involved. It introduces no new
physical facts into the science of
mechanics.

The principle of conservation of energy is applicable only when the
forces of a system have potential energies. If this is not true, for
example, if frictional forces are acting, the system is said to be non-
conservative and the equation of work-energy must be used. The
equation of work-energy is thus more general. The use of the
principle of conservation of energy is, however, very convenient
where conservative systems are involved.

ExampLE 1. A mass m is supported on a frictionless inclined
. plane which makes an angle o with the horizontal by a linear spring
of spring constant % as shown in Fig. 3.4. Find the potential energy
of the system as a function of the displacement x of the mass along
the plane, where x is measured from the position of static equilibrium.

Fi1c. 3.4
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Assume that the potential energy is zero at the position of static
equilibrium.

Solution. The potential energy is the negative of the work done
by the forces acting on the mass as it moves from the static equili-
brium position. These forces are the component of the gravity force
parallel to the plane, and the spring force Fs. The initial force in
the spring at the static equilibrium position is (g sin «), and so the
spring force at any displacement x is:

Fy; = (mgsina + kx)
Thus we have:

V=- [(mg sin «) (%) — fz (mg sin o + kx) dx] = }kx?
0

Note that the angle « drops out of the final expression for the potential
energy. Thus if x is measured from the position of static equilib-
rium, the potential energy of the spring-mass system will always be
just $%kx2, whether the spring is horizontal, vertical, or inclined at an
angle.

ExaMpPLE 2. The mass of Fig. 3.4 is moved a distance A4 along
the plane from the position of static equilibrium and is then released
from rest. Write the equation of conservation of energy for the
system and apply this equation to a discussion of the motion of the
mass.

Solution. Since there is no friction and the gravity force and the
spring force are conservative, the principle of conservation of energy
applies:

V+T=C
As was shown in Example 1, V = {kx?, so:
1kx? + dmv? = C

In this problem, when x = 4, v = 0, so C = kA% and we have
finally: _
hx? + Imv? = LRA?

When the body is at x = 0, the kinetic energy is equal to 3242, so
that the body oscillates between x = + 4 and x = — 4. The
energy is all kinetic energy at x = 0 and all potential energy at
2 = + A. The sum of the energies is always a constant, but there
is a transfer of energy between kinetic and potential.
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PROBLEMS

3.26. Two weights W1 and Wy are connected by a cable of length ! which
- passes over a smooth shaft as shown. W3 is larger than W1. Wj starts
from rest and moves downward under the action of gravity. Assuming
no energy loss during the motion, find the velocity of W3 after it has moved
x ft. If there is a constant friction force Fp between the cable and the
shaft, what would be the velocity of Wy after it has moved x ft?

W, |
Wz—~j— — ﬁﬂ g ————————
M/ 1 T | = l T
Pros. 3.26 Pros. 3.27

3.27. A beam is found to deflect § in. under the point of application of a
static load W. It is also found that the magnitude of the defiection is
proportional to the load. If the weight W is raised a distance of % ft and
is dropped on the beam, what is the maximum defiec-
tion of the beam under the load? Neglect the mass of
the beam.

3.28. A 30 Ib weight falls 12 in. before striking two 301b
springs (1) and (2) connected in series as shown in the §
figure. (a) If spring (1) is compressed one inch and spring ~ 12in.
(2) is compressed two inches, find the values of the 4

®
®

spring constants %) and kg.

{(6) How high will the weight rebound above the un-
stretched length of the springs if it is assumed that the
weight becomes attached to the top of the spring when
contact is first made?

(c) Find the velocity of the weight on the rebound
when the springs have stretched a total of 2 in.

3.29. Two vertical cylindrical tanks of area A; and
Ag are connected by a horizontal pipe of length ! and Pros. 3.28
area Ag. The tanks are filled with a fluid to a height
h above the horizontal pipe as shown in the figure. The fluid in tank 4,
is depressed a distance #, with a corresponding rise of the fiuid in tank A4o.
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Find the potential energy of the system as a function of x, the density of
the fluid p, and the areas.

0 (o) 2
a

Pros. 3.29 Prog. 3.30

3.30. The force acting upon a particle is given by:

Fz=Ax
Fy = Bx 4+ Cy?

{(a) Calculate the work done by this force as the particle is moved from
O around the triangular path Oab0. Is this a conservative force system ?

(b) The condition that an expression of the form Mdx 4 Ndy is an
exact differential is that % = %g Applying this to the present
problem, determine whether the system is  conservative or non-
conservative.

(c) Repeat parts (a) and (b) if the force components are:

Fy =Bx 4+ Cy?

(d) What is the potential function ® for the system of part (c)?

3.7 The Solution of Problems in Dynamics. The solution of
any problem in dynamics involves, in some form or another, the
integration of the equation F = m#. For problems in which the -
forces are specified and the velocities and displacements are required
as a function of time, the direct integration of this equation may be
the most convenient method of procedure. In other problems, some
labor may be saved by using the work-energy equation or the impulse-
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momentum equation. The decision as to which of these forms to use
for a particular problem will depend upon the given data and the
_ desired result. As the first step in solving a dynamics problem it is
well to review the given data, the required result, and the various
dynamic equations from the standpoint of determining which method
will be the most suitable.

Some of the characteristics of the methods which should be con-
sidered in this connection are:

(1) The impulse-momentum equation involves the velocity
and force at specified times. Displacements do not
appear in the expression.

(2) The impulse-momentum equation is useful for problems
involving large forces of indeterminate magnitudes
acting * for short times. A consideration of time-
average values of the forces may suffice to solve such
problems.

(3) The principle of the conservation of momentum can be
used only for systems not acted upon by external forces.
This principle is most useful when it can be recognized
that by treating several bodies together as a system
certain unknown forces will occur as equal and opposite
pairs and will thus cancel.

(4) The work-energy equation involves velocity and force at
specified displacements. Time does not appear in the
expression.

(5) The principle of the conservation of energy is applicable
only to systems for which a potential energy can be
defined.

(6) Potential energy is defined only for forces which can be
derived from potential functions. Forces, such as
friction, which cause a dissipation of energy, have no
potential.

(7) The work-energy equation is more general than the
equation of the conservation of energy in that it applies
to non-conservative systems as well as conservative
systems.
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PROBLEMS

3.31. A 120-ton freight car on a level track hits a spring-type bumper
with a velocity of 4 mph. The bumper has a spring constant of 12,000 1b
per in. of compression. (a) What is the maximum compression of the
spring? (b) If the brakes on the car are operated so that a constant
braking force of 25 tons is set up, what is the maximum compression of the
bumper spring ?

3.32. A spring of unstretched length 2a and spring constant % is con-
nected to a fixed point 4 and to a point B on the edge of a wheel as shown
in the figure. Find the total work done by the force exerted on the wheel
by the spring as the wheel is rotated from B) to Bs.

Pros. 3.32 Pros. 3.36

3.33. An automobile with a total weight of 3000 Ib runs into a heavy
metal power-pole. After the accident it is observed that the pole is
undamaged but that the front bumper of the car is bent. Experiment
shows that it requires 30,000 ft-Ib of work to put such a bend in the
bumper. What was the impact velocity of the automobile ?

3.34. A particle carrying an electric charge e is fixed at the origin of a
coordinate system. A second particle of charge ¢; is placed at a distance »
from the origin. The potential of the system is:

O = — 2L
¥
Find the radial force between the particles and the x-component of the
force exerted on the second particle.

3.35. A spider is suspended from the ceiling on a thread of negligible
mass having a length /. Supposing that the thread is linearly elastic with -
spring constant %, and that / is the stretched length, calculate the total
work which the spider would have to do to climb to the ceiling. Compare
this with the work required to climb an inextensible thread of length /.

3.36. Two weights, W, = 10 1bs, and Wy = 20 lbs, are connected by an
inextensible rope as shown in the diagram. Wj; moves on a smooth
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horizontal surface. If the system starts from rest, what will be the
velocity of Wy after it has fallen 10 ft? What change of momentum has
taken place durihg this motion? What time is required for this displace-
- ment to take place?

3.37. The bar AB shown in the diagram has dimensions and elastic
properties such that it requires a force of kx Ib to elongate it x ft. A mass
m drops through a distance of % ft and strikes the end of the bar. Find
the maximum elongation of the bar and the maximum force produced in
the bar. Neglect the mass of the bar. Assume that the mass remains in
contact with the end of the bar and that no energy is lost during the
motion. If the mass is dropped from %2 = 0, compare the elongation with
that which would be produced by m acting statically.

oo
== 3
¥ b ot ——]

Pros. 3.37 Prog. 3.38

3.38. A long straight rod of uniform cross-sectional area is initially at
rest. One end of the rod is suddenly given a velocity v, by the application

of a load which sets up a uniformly distributed stress o l—ln% over the end

of the rod. At a time ¢ later, a length ¢t of the bar will be compressed,
where ¢ is the velocity of propagation of the stress wave along the rod.
It will be assumed that the stress in the rod is below the elastic limit of
the material so that Hooke’s Law can be used; hence, ¢ = Ee¢, where E is
the modulus of elasticity of the material, and e is the strain, or unit
deformation, of the rod.

By applying the principle of impulse and momentum to the strained
element of the rod, find the velocity of propagation of the elastic wave in
the rod. Find also the relationship between the velocity of the end of the
rod and the applied stress. Examine Problem 3.37 from this point of
view.

3.39. An airplane of mass m, lands horizontally with a speed v, on the
deck of an aircraft carrier. The mass of the carrier is m, and it has a
velocity v, in the same direction as the airplane. Neglecting friction at
wheels, resistance of air and water, and assuming that all of the energy
dissipation occurs in the carrier arresting gear assembly, how much energy
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is absorbed by the arresting gear? Compare the energy absorbed by the
arresting gear with the change of kinetic energy of the airplane.

3.40. Consider a system consisting of two point masses 73 and mz a
distance » apart. The gravitational attractive force between the masses
is F = G’:‘;"‘Z

» which may be described by saying that the gravitational

Gmlmg

potential of the system is ¢ = Suppose that m,, instead of

being concentrated at a point, is uniformly distributed in the form of a
thin shell and that mp = unity. The function ® can then be called the
potential of the shell. Show that: (a) The potential of a spherical shell

at any point outside the shell is _G_:_n (b} The potential of a spherical

shell at any point inside the shell is constant, and hence the gravitational
attraction force on a mass inside a shell is zero.

Pros. 3.43 PRroB. 3.45

3.41. Using the result of Problem 3.40, determine the gravitational
attractive force between a point mass m and a uniformly dense sphere of
mass M and radius R. Find this force for m outside of the sphere and for
m inside of the sphere.

3.42. A small hole is drilled diametrically through the earth. A particle
is dropped down the hole, starting with zero velocity at the surface of the
earth. With what velocity would the particle reach the center of the
earth?

3.43. A flexible rope of length ! and weight W rests on a horizontal table
with a vertical overhang a4 as shown in the figure. The coefficient of
static and kinetic friction between the rope and the table is p. (a) What
is the maximum length of overhang for which the rope can be in static
equilibrium ?

(b} Assuming that motion occurs, with what velocity will the rope leave
the table?

3.44. In Problem 3.43 assume that the friction between the rope and
the table is zero, and find the time required for the rope to slide off the
table if it starts from rest with overhang 4.
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3.45. The bar AC of length @ shown in the figure rotates counter-
clockwise about a vertical axis through A with a constant angular velocity
Q. The disk of radius r rotates counterclockwise about a vertical axis
- through C with a constant relative angular velocity « with respect to the
bar. (a) A fly starts at rest at C and crawls along a radial groove CD in

the disk, with a constant speed relative to the disk of -;ZT rw. When the fly

arrives at the point D, it stops with respect to the disk. Find the total
work done by all of the forces acting on the fly as it moves from C to D.
(b) Find the magnitude of the forces acting on the fly at the instant it
passes the midpoint of the radius of the disk.

3.46. A chain lies in a small pile at the edge of a table, except for a short
piece which hangs over the edge. The links of the chain start falling one
at a time over the edge of ‘the table, so that at any given time a total
length of chain x is off the table. (a) Show that the differential equation
of motion of the chain is ¥ + %2 = gx. (b) Making the transformation
x = zi, show that this differential equation becomes # = 2gz}. (c) Noting

that Z = 2 Z—:’, integrate the equation and find x as a function of ¢, if

x =% = 0 when { = 0.

‘UA ‘Ug

Pros. 3.47

3.47. Two identical vehicles move on a horizontal plane with velocities
v4 and vg. By means of a radio control system each vehicle is subjected
to a braking force proportional to the velocity of the other vehicle as
shown in the diagram. At time ¢ = 0 the velocities are respectively vo4
and vop. Show that if avp42 > buvgg? the vehicle B will have its velocity
reduced to zero, whereas vehicle 4 will retain some velocity, i.e., that 4
will overtake B.

This is the mechanical analog of a fundamental problem in combat
tactics. A “Blue’’ force of B elements battles a ‘““Red” force of R elements,
and in each engagement Blue destroys 6B Reds and Red destroys 7R Blues.
The Blue force must win if bBg2 > 7Rg2 This inequality is called
Lanchester’s Square Law, after F. W. Lanchester (1868-1946), a famous
British engineer.

3.48. High speed missiles are frequently ground tested by running them
under their own power on a test track. One of the problems involved is
that of decelerating the missile and bringing it safely to rest at the end
of the run. One way this is done is to extend a scoop from the bottom of
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the test carriage so that it runs into a long trough of water and turns a
jet of water of area 4 up through 90° with respect to the carriage. Find
the length of trough required to reduce the speed of the test missile from
V1 to Vs Neglect the drag forces on the scoop and missile and the
friction at the rails.



Chapter 4

APPLICATIONS OF PARTICLE DYNAMICS

An intelligent being who knew for a given instant all the forces by which
nature is animated and possessed complete information on the state of matter
of which nature consists—providing his mind were powerful enough to analyze
these data—could express in the same equation the motions of the largest
bodies of the universe and the motion of the smallest atoms. Nothing would
be uncertain for him, and he would see the future as well as the past at one
glance.—Marquis de Laplace, Théorie analytique des Probabilités (1820).

The principles of particle dynamics as developed in the preceding
chapter can be applied to the solution of a large number of interesting
and important problems. In the present chapter the solution of such
problems as the motion of a particle in a resisting medium, projectile
motion, planetary motion, impact, jet propulsion, and electron
dynamics will be given. These solutions will illustrate the applica-
tion of the general principles to particular problems. It should be
noted, however, that, although the principles involved in most
problems in mechanics are relatively simple, the differential equations
that are obtained may be of a type which cannot be integrated by
elementary methods.

4.1 The Motion of a Body Falling Through a Resisting
Medium. In the preceding chapter the equations of motion were
integrated for a body falling in a vacuum. It was also indicated at
that point that such a solution is approximate for a body falling
through a resisting medium. Experiment shows that frictional
forces exert a drag which depends upon the shape of the body, the
velocity of the body, and the density and viscosity of the medium.*

* The drag force depends upon Reynolds number; see Example 3 of
Section 1.7, Chapter 1.
75
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In general there is a certain optimum shape for which the drag is a
minimum,

We shall suppose for the present example that the drag force is
proportional to the velocity, Fp =
— kv. Experimentally it is found that
this expression is satisfactory for small
~ ke velocities. The factor %k must be

determined experimentally. Choosing
m the positive z-axis in the vertical down-

ward direction (Fig. 4.1), we have for
w a particle of mass m and weight W:

o

? W — ki = ms
Fic. 4.1 .
Letting 2 = v, the equation of motion

may be written :

3

) k
D+ —v =
m
The solution is of the form:

-k, w
Ce + —E'

v

If the velocity # is zero when ¢ = 0, C = — W/k, and:

k
Z_=v_:(1 —em)

Plotting this equation in dimensionless form in Fig. 4.2, we note that

R\ . . . .
as (;—n—) increases, the quantity ('ka z) also increases, but that it
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approaches a limiting value of (% z) = 1. When the limiting value
(% z) = 1 is reached, k2 = W, that is, the drag force has become

equal to the weight of the body. The resultant force acting upon
the body is then equal to zero; hence, there is no acceleration and
consequently no further increase in velocity. It will be seen that
whenever the drag increases with velocity, a point will be reached
at which the drag is equal to the weight and there will be no sub-
sequent increase in velocity. This limiting value of velocity is
called the terminal velocity of the body.

We have supposed, in this example, that the falling body moves
through a medium of uniform density. Since the density of the
atmosphere decreases with altitude, the drag force must also be a
function of the altitude, and this additional factor would have to be
included in the analysis if a more accurate solution were required
for a large altitude range.

PROBLEMS

4.1. A body of weight W falls through a resisting medium in which the
drag is proportional to the velocity. Find the displacement at any time,
assuming that zo = 249 = 0 when ¢ = 0.

4.2. For velocities above approximately 100 ft/sec, the drag force is
approximately described by taking it as proportional to the square of the
velocity, Fp = — kv2. Proceeding in the same way as above for drag
proportional to velocity, integrate the equation of motion and find the
velocity and displacement of a falling body at any time ¢, if 29 = 29 = 0
when ¢ = 0.

4.3. What is the terminal velocity for a falling body subjected to a drag
proportional to velocity squared ?

4.4. Determine the velocity with which a rain drop would strike the
ground falling from a height of 1 mi. if air resistance is neglected. If
measurements show that the terminal velocity of the rain drop is approxi-
mately 20 ft/sec, find the drag constant %, assuming Fp = —kv. How
far does the rain drop fall before its velocity is within 0.19 of the terminal
velocity ?

4.5 The relation § = —k($§)? is assumed to describe the motion of a
certain body in a viscous medium.

(a) If the body has an initial velocity, vg, find the highest value of # for
which it is brought to rest within a finite period of time. Find the time
required.
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(b) Find the highest value of » for which the total distance traversed
by the body before it comes to rest is finite.

(¢) Find the distance traveled by the body for n = 1.

4.6. An airplane weighing 20,000 lbs starts from rest and accelerates
along a horizontal runway. Acting on the airplane is a constant propul-
sion force of 2500 lbs, and a drag force Fy = —0.04v2 Ib where v is in
ft/sec. How long a run must the plane make if it takes off at 150 mph?

4.2 Projectile Motion. The preparation of ballistic tables
requires precise calculations of the trajectories, velocities, and times
of flight of projectiles. The chief difficulty in making such calcula-
tions arises from the fact that the drag is a complicated function of
the velocity. For purposes of illustration some simplified problems

that are amenable to a mathemati-
y cal treatment will be considered.
We shall suppose that the projectile
remains sufficiently close to the

% ,/’?“\\ earth so that g may be taken as a

7 mg \\\ constant, and we shall neglect the

"8 N rotation of the earth and any spin

Y . “—% or other motion of the projectile as
Fic. 4.3 a rigid body. AIll these factors

would have to be taken into account
in a precise calculation of the trajectory of a long-range projectile
or guided missile.

Consider first the two-dimensional motion of a projectile with
zero drag. Let the projectile have an initial velocity vp making an
angle 6 with the x-axis of the rectangular coordinate system of Fig.
4.3. The equations of motion are:

mx = 0
my = — mg
Integrating these equations and evaluating the constants in terms of
the initial conditions, we obtain:
x = (vp cos 0)¢
y = — 3gt% + (vp sin 8)¢
The equation for the trajectory is obtained by eliminating ¢ from
these equations:

2
y=—%g( ) + x tan 6

Vo cos 8
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which shows that the trajectory is a parabola. All the significant
features of the motion can be determined from these equations.

- A more practical approach to the ballistic problem must take into
account the effect of air resistance. This leads to a complex mathe-
matical problem which is usually solved by numerical integration or
by special computing machines. A few special problems can be
treated by simpler mathematical procedures, and it is one of these
which we shall treat in the following example. For an intermediate
range of velocities, of approximately 100 to 1000 ft/sec, it may be
assumed that the drag force is approximately proportional to the
square of the velocity. If we further assume that the variation in

Fic. 4.4

altitude of the projectile is small, so that variations in air density
may be neglected, we may write the equations of motion as (Fig. 4.4):

1

})2
mi = — kvicosd = — k:éz[l + (;) ]2

my = — kv2sing — mg
Y\ 2]}
= — kxy[l + (;) ]2 — mg

Since the problem of solving these equations is a complex one, we
shall simplify them by restricting the problem to a consideration of
relatively flat trajectories for which the ratio (%) is small. This is

- consistent with the assumption that the variation in altitude of the
projectile is small. It may be seen from Fig. 4.4, that small values

of (%) mean that the slope of the trajectory is small everywhere.
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5\ 271
With this assumption we have [1 + (%;) ]2 ~ 1, and the differential
equations become:
mi = — ki?
my = — kiy — mg
From these equations a relatively simple solution can be obtained

which is satisfactory over a limited range of trajectories. The first
equation can readily be solved by separating the variables:

dx k
——1:=—-]it+C1
% m
When ¢ = 0, £ = %g so that C1 = — x‘i’ thus:
(i}
i = 0
ko, g
m

Substituting this value of # into the second differential equation
gives:

kio
my+E——-—-—-y=——mg
=241
m
or:
. 1 .
y+ my=“g
t+kxo

This equation is a linear differential equation for which the principle -
of superposition is valid, that is, if two expressions are found each
of which satisfies the equation, then the sum of the two expressions
will satisfy the equation. The equation may thus be solved in two
steps. Consider first the homogeneous equation, with the right side
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equal to zero instead of — g. The variables can then be separated
and we have:

ay at

y m

t+m

log y = 1 7N 4 log €
ogy=og(t+-k—x;) + log Co

Ce
m

t+7e—x.—o

y =

This expression is not the complete solution, however, because it
gives zero instead of — g when substituted into the original differen-
tial equation. We must therefore add to this solution a term which
will give — g when substituted into the differential equation.

If, on the basis of an inspection of the differential equation, we
try an expression of the form:

. m
vt )

we obtain upon substituting this into the differential equation:

Cs + C3 = —g; C3=-—§

So that the complete solution of the equation is:

- C2 4 m
Y= ‘z(”m)

P4 —
* %
If y = yo when ¢ = 0, then:
_ Cz mg
yo = 1 - ka'o
Rzo

and:



82 APPLICATIONS OF PARTICLE DYNAMICS

So that:
Y, + ﬁg_
Yo 2k%0o mg (kxo + 1)

y = - 372
(lczc_()t+1) 2k%o \ m
m _

This expression may now be checked by substituting it into the
differential equation and verifying that the equation is satisfied.
The equations for % and 9 can be integrated to obtain expressions
for x and y.

It must be kept in mind that these equations are satisfactory only

for trajectories which satisfy the assumed condition that (z) is small.

The method of obtaining approximate solutions by dropping small
terms from a differential equation is often a convenient procedure.
The justification for it is that an analytical expression is obtained for
the solution which is approximately correct over a particular range
of interest in the variables. It might otherwise be necessary to
perform a numerical or graphical integration which would not only
be very laborious, but which would probably not exhibit the answer
in a general form. Simplifications of this type will always have a
physical interpretation which should be studied carefully, so that
the exact nature of the limitations on the solution will be known.
In the above example, the approximation is deduced by noting that
there is only a small angle between the resisting force and the
x-axis. From the differential equations in their simplified form we
can see that this is equivalent to saying that the small vertical
velocity has no effect upon the horizontal drag, but that the large
horizontal velocity does have an effect upon the vertical drag.
Such solutions must, of course, be used with caution.

PROBLEMS

4.7. Two particles are projected from the same point with the same
magnitude of velocity but with different angles of elevation, as shown in
the diagram. The second particle is fired a time At later than the first .
particle. What is the relation between v, 81, 85, and At for which the two
particles will collide? Assume zero drag.

4.8. Find the maximum range and the angle 8 for the maximum, if the
range is measured along a 45° slope, as shown in the diagram, and zero
drag is assumed.
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Pros. 4.7

4.9. In section 4.2 the equations are given for the x and ¥ components of
the velocity of a projectile which is subjected to a drag force proportional
to the square of the velocity. These components were worked out for a

a flat trajectory for which the ratio %) is small. From these expressions

find the x and y coordinates of the projectile as a function of time, under
the same assumption of a flat trajectory.

4.10. Assume that the total drag on an airplane is proportional to the
square of the velocity. With a feathered propeller, the plane is put into
a straight glide making an angle « with the horizontal. What is the
expression for the velocity of the plane? What is the expression for the
terminal velocity ?

4.11. For a relatively slow-speed projectile, the air drag force can be
assumed to be proportional to the velocity. Find the horizontal distance
which such a projectile must travel before the tangent to the trajectory
becomes horizontal.

4.12. A body weighing 300 Ib is projected with an initial speed of
120 mph up a straight track sloping 60° from the horizontal. The

Yy
/’/’——\ =
7
/
/
L/
v
9 45°
L )
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coefficient of friction between the body and the track is 0.15, and it is
subjected to an aerodynamic drag force Fg = — 0.09%2 Ib (v in ft/sec). .
How far will the body travel?

4.3 Planetary Motion. As an example of a two-dimensional
motion of a particle under the action of a central force, we shall
consider the problem of planetary motion. This problem is parti-
cularly interesting as an example of the method of deducing general
laws from experimental observations. By studying a large amount

-~
e ——— -

Fic. 4.5

of experimental data, Kepler determined the following three facts
about the motions of the planets:*

(1) The orbit of each planet is an ellipse with the sun at a focus,

(2) The radius vector drawn from the sun to the planet sweeps
over equal areas in equal times.

(3) The squares of the periods of the planets are proportional to
the cubes of the semi-major axes of the elliptical orbit.

It will be of interest to see how, from these statements of empirical
facts, Newton was able to deduce the law of gravitation.t

Using the notation of Fig. 4.5, Kepler’s three statements may be
written analytically in the form:

-2 BPYY e
(1) =T cos b where p = bv1 e = —

* J. Kepler (1571-1630). The first two statements were published in
1609, and the third in 1619.
t Certain letters of Newton indicate the methods he used.
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This is the equation of an ellipse in polar coordinates.

72 r2 do k
(3) T2/a3 = constant, where T is the period of a complete revolution.
In plane polar coordinates, the equations of motion of the planet
are:

Fy = m(276 + 7b)

F, = m(# — 702
Differentiating (2) above gives:
720 = k
A second differentiatioﬁ gives:
200 + 76 = 0

It thus appears that F, = 0, and we conclude that the force on the
planet must be radial.

The radial force can be determined by differentiating (1), pro-
ceeding as follows:

s b
1+ ecosf
;= pe sin 0

(1 + ecos )2

=N

In this expression for #, substitute 726 = % and (1 + ecosf) =
obtaining:
ek
7 =—sinf
p

Differentiating this expression again, and substituting 720 = &, we

have:
;o R e
4 —pz QS

From the equation of the orbit cos 8 = % (g - ), therefore:

k2 (p R k2
STRES

= 5
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The expression for the radial force may thus be written:

F,=m(r"——792)=m(E—ﬁ—E)

Fr‘=—‘—"—

and the magnitude of the radial force is inversely proportional to the
square of the distance.

The force is now completely determined except for the factor &2,
which may depend upon the mass of the planet and the mass of the
sun. From Kepler’s second statement, we have for one complete
period T':

k 2mab
QT = Wﬂb, k= '—T—
So that:
m  4m2a2h? a3\ m
Fr=-om—m =~ 4”2(“7“2);2'

From Kepler’s third statement, that (a3/T?) is the same for all of
the planets, it is clear that its value depends only upon the sun.
Since the force is directly proportional to the mass of the planet, we
assume it is also directly proportional to the mass of the sun. Writing

ymg = — 4mw2(a3/T2), where m; is the mass of the sun, we have:
- mims
}' r = ‘y 7'2

where m, is the mass of the planet, and y is a gravitational constant.
Newton tested this result by computing, from the motion of the
moon about the earth, the gravitational acceleration at the earth’s
surface. He then was able to check the computation against
observed values.

PROBLEMS

4.13. Compute the value of the acceleration of gravity g from the motion
of the moon about the earth, and compare this with values experimentally
determined at the earth’s surface. Take the radius of the earth as
R = 3950 miles, the radius of the moon’s orbit as 60R, and the period of
the moon revolving about the earth as 39,000 minutes. The gravitational
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2
attraction on a body is W %, where W is the weight of the body at the

surface of the earth, and « is the distance of the body from the center of
ad m
TZ7%
The value of g can be computed from the fact that these two expression
when equated should give W = mg.

4.14, How much energy is required to establish motion of a rocket ship
of mass m in a stable circular orbit of radius 7 about the earth? Take the
radius of the earth as R, and neglect air resistance. Find the velocity of
the rocket if 7 = 4500 miles.

4.15. Given that the radius of the earth is 3950 miles, the radius of the
moon is 1080 miles, the distance from the center of the earth to the center
of the moon is 240,000 miles, and that the mass of the moon is 0.0122 times
the mass of the earth. (a) Find the acceleration of gravity on the moon.
(b) Find the gravitational force on a rocket which is at a distance x from
the center of the earth on the straight line joining the centers of the earth
and the moon. (c) If the rocket of part (b} leaves the earth with a
velocity of 30,000 mph, find its speed on arrival at the moon.

4.16. A particle is attracted to a point by a central force, and it is
observed that the orbit of the particle is the spiral 7 = ¢6. Determine the
force that is acting.

4.17. A particle of mass m is attracted to a fixed point by a force /73,
where p is a constant and # is the distance from the point. The particle
starts from rest at a distance 7. Find the time required to reach the
center.

4.18. The orbit of a particle acted upon by a central force is the spiral
78 = constant. Find the force which would produce this motion.

4.19. A particle of mass m is attracted to the origin of a coordinate
system by a force which is inversely proportional to the square of the

. K
distance; Fy = ——";—2-

‘earth. This attractive force is also given by the expression 42

{(a) Show that the equation for the conservation of energy of the system
becomes:

%m(fz + 7260%) — #{ = constant = E

(b) From the fact that Fy = 0, we have 20 = k. Substituting this

into the energy expression, and making the transformation » = ;’ , show

that the differential equation of the orbit is:

@) =5 (-5)
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where:
1_K
PR
2Ek?
2 L=
L+ mK?

(c) Integrating directly the differential equation of the orbit, show that
the equation of the orbit is:
?

r=1+ec050

This is the equation of a conic having one focus at the origin. Ife < 1,
the conic is an ellipse; for ¢ = 1, the conic is a parabola; and for ¢ > 1,
the conic is a hyperbola. ‘

(d) Show that the form of the orbit, that is, the type of conic, depends
on the total energy of the system and hence on the magnitude of the initial
velocity, and not on the direction of the initial velocity.

Pros. 4.20

4.20. A particle of mass m is projected with a velocity v along a line
which is at a distance s from a fixed identical particle. There is a repul-
sive force F = Ky/r?, where r is the distance between the particles at any
instant. Find the closest approach ro between the two particles. The
velocity v is the velocity of the particle at a large distance from the fixed

. particle, i.e., the trajectory shown in the figure is really asymptotic to the
lines shown at the angle ¢. Note that the trajectory is symmetrical
about the line #4B. This problem may be considered as a type of impact
or collision, and will be discussed from this point of view in Section 4.5
of this chapter.

4.4 Impact. The problem of impact between two bodies is
characterized by the presence of forces of large magnitude and short
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time duration. Because of these forces sudden changes occur in the
velocities of the bodies, and it is these velocity changes which are
ordinarily observed and measured in impact experiments. If the
forces acting on the bodies were known, the solution of an impact
problem would require only the integration of the equation of motion.
Experimental difficulties, however, make the precise measurement of
impact forces difficult, so that a different method of solution of the
problem is usually required. The motion of the bodies during impact
must always satisfy the momentum equation, the energy equation,
and the third law of motion, that action is equal and opposite to
reaction. These are sufficient to determine all the features of the
motion except those occurring during the time of impact. Since the
impact time interval is usually very short, of the order of milli-
seconds, only small errors are introduced by assuming an instan-
taneous impact. If the time in-

terval of impact is not short, the

approximate nature of the solution

must be kept in mind. J—?@\F

As an illustration of the methods

used in solving impact problems,

consider two smooth spherical -
_bodies colliding with velocities v;

and vy as in Fig. 4.6. At im- FiG. 4.6

pact two equal and opposite forces

act normal to the surface of each sphere at the point of contact.
The location and the direction of the forces can be determined from
the geometry of the problem, and hence the locations and directions
of the impulses I; and I acting on the spheres are known. These
impulses will be equal and opposite:

L=-I=1
and the impulse-momentum relations for the two masses are:
mi(Vy — v1) =1
ma(Ve — vg) = — I

“where V,, Vs are the velocities after impact. Each of these vector
equations is equivalent to 3 scalar equations, and we thus have
6 equations available. There are, however, 7 unknowns in the
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problem: the three unknown components of the two velocities after
impact, and the magnitude of the impulse. The additional equation -
that is required can be obtained from energy considerations. 1If, for
example, the impact is perfectly elastic with no energy loss, then the
equation of the conservation of energy must also be satisfied, so that:

%mlvlz + %M2'Ug2 = %le12 + %M2V22

In this discussion rotation of the spheres was not involved, so that the
spheres were treated as particles. If rotation existed, as in the
collision of rough spheres, the angular velocities of the spheres would
be involved, and the momentum and energy equations for the angular
motions would have to be considered.

‘Whenever there is an impact between actual bodies, there is
always some loss of energy. If the impact velocity is small, this
energy loss, for many purposes, may be neglected and the equation of
conservation of energy may be used as above. If, however, the
impact forces are sufficiently large to produce permanent deforma-
tions of the bodies, the work done in producing these deformations
represents an energy loss which may be too large to be neglected.
The energy equation then becomes:

Im1v12 + dmeve?2 — E = dm V12 + ImoV 2

where E is the energy loss during impact. It was pointed out by
Newton that the information in this equation could be stated in a
more useful form by the following method. Consider an impact for
which the changes in velocities are parallel to the x-axis. Write
first the energy and momentum equations for no energy loss:

Imii? + dmeis? = ImiXa? + dmeX,?
ity + dmats = ImXy + dmaX,

Recombining the terms gives:

it

%ml(xl - Xl)(xl + Xl) = —

dmi(d — X1) = —

Mo(%Xg — Xz)(i\'fz + Xz)

F I

me(fe — Xo)
Dividing the first equation by the second gives:
14+ X1 =22 + X
or:
X1 — Xo = — (41 — #2)
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This equation states that the relative rebound velocity after impact
is equal and opposite to the relative velocity of approach. This is
equivalent to stating that there is no energy loss during the impact.
-If there is a loss of energy, the two relative velocities will not be
equal, but (X; — X») will be smaller than (£1 — £3). The energy
loss, therefore, can be determined by measuring the relative velocities,
and we may say:

(Xl - Xz) = — ¢(%1 — %)

where ¢ is a number less than unity. The quantity e, called the
coefficient of restitution, is thus a measure of the energy loss. When
e = 1, with no energy loss, the impact is said to be perfectly elastic.
If e = 0, the impact is said to be plastic, and the two colliding bodies
remain in contact after impact with zero relative rebound velocity.

10 ft /sec

Fic. 4.7

As a specific example of the above ideas, consider the problem
shown in Fig. 4.7. The center of gravity of a smooth sphere 1
which has a weight of 2 1b and a radius of 1 in. moves along a straight
line with a velocity of 10 ft/sec. The line along which the center of
gravity moves is tangent to an identical sphere which is at rest.
The coefficient of restitution for a direct central impact between the
spheres is 0.80. Find the angle between the original and the final
directions of the initially moving sphere.

Taking the coordinate system as in Fig. 4.8, we have:

" For conservation of momentum in the x-direction:

muy cos ¢ = mV1cos @ + mV,
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For conservation of momentum in the y-direction:
mvy sin ¢ = mV 1 sin 8
From the definition of the coefficient of restitution:
(Vicos — Vo) = — e(vy cos ¢)

Substituting values for ¥, and V; from the first two equations into
the third equation, we obtain:

2
tan0=(1—_—?)tanq5

From the geometry of the impact we have:
1
tan ¢ = —
* =3

So, for ¢ = 0.80 we find that:
Y =6 — 30° = 50.2°

PROBLEMS

4.21. Show that for direct central impact, that is, direction of rebound
same as direction of approach, the velocities after impact are given by the
following equations if there is no energy loss:

vy = 2maove + (M1 — mg)v1
my1 + mg

_2myuy + (ma — my)ve

Ve m1 + mo

4.22. Show that for direct central impact with coefficient of restitution
e, the velocities after impact are given by the following equations:
maove(l + &) + (m1 — ema)tn
m1 + mg

Vi=

mivi(l + ) + (m2 — emy)vs
m1 + mg

Vs =

4.23. Compute the percentage loss in kinetic energy which takes place .
in a direct central impact if m; = ms, v; = —vs, and the coefficient of
restitution is e.

4.24. In a pile driving operation, a hammer of weight W}, falls through
a height 4 and makes a plastic impact with the pile of weight W;. The
penetration of the pile is resisted by a constant force R, which is chiefly
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due to the friction between the earth and the pile. Show that if the pile

. . . Whh .
penetrates a distance x after impact then R = T % Wo)s This
expression neglects the work done by
gravity forces after impact and also W
assumes instantaneous impact. A

4.25. A golf ball dropped from rest
from a height 4 rebounds from a steel
surface to a height 0.854. What is the
coefficient of restitution?

4.26. An impact may be considered
as consisting of two stages, a first stage
during which the relative velocity be-
tween the two bodies is being reduced,
and a second stage in which the rebound
velocities are being acquired. If I; and
I, are the magnitudes of the impulses
applied to the masses m; and mg during Pros. 4.24
these two stages, show that for a direct
central impact Iy = eIy, where ¢ is the coefficient of restitution,

4.27. A particle rebounds from a flat surface. If the coefficient of
restitution is ¢ and the coefficient of sliding friction is p, find the relation-
ship between the angle of incidence and the angle of rebound.

4.28. A particle is projected against a horizontal surface with a velocity
v at an angle 8 with the vertical. The coefficient of restitution for the
impact is e, and the coefficient of friction between the particle and the
surface is u. For what angle of incidence 8 will the rebound be vertical ?

4.29. A particle strikes a horizontal flat surface at an angle § with the
normal to the surface. If the coefficient of friction between the particle
and the surface is x and the coefficient of restitution for normal impact is ¢,
find the energy AE lost during the impact. Show that for p =0,
AE = }mv,%(1 — e%), where v, is the component of the initial velocity
normal to the surface..

</ A

Prog. 4.30

4.30. The centers of mass of two identical smooth steel spheres move
along two straight parallel lines a distance 1in. apart, as shown in the figure.



94 APPLICATIONS OF PARTICLE DYNAMICS

The spheres are approaching each other with equal speeds of v = 10 ft/sec.
The radii of the spheres are 2 in., and the coefficient of restitution is 5/9.
Find the velocity of the spheres after impact.

4.31. A particle of mass » rebounds from the corner of a smooth box.

(a) What is the relation between the direction of approach and the
direction of departure if no energy is lost during the motion?

(b) Find the relation between the direction of approach and the
direction of departure taking account of the energy loss during impact,
assuming that the coefficient of restitution is the same for all surfaces.

J

—\

e

Pros. 4.31 Prog. 4.32

4.32. Steel balls, each weighing 1 oz, drop from a funnel onto an
inclined plane at the rate of 12 per second. Each ball falls 10 ft before
striking the plane. If the coefficient of restitution is 0.8, find the average
force on the plane.

4.33. Four identical bodies each of mass m are set up in a straight line
on a smooth horizontal plane with distances 4 between them. A fifth
body, identical to the other four, approaches with a velocity v and makes

v
—

B B
nEEEsininis

ProB. 4.33

Z

a perfectly elastic impact with the first body. (a) Describe the motion
of the bodies. (b) If the distances d approach zero, what is the resulting
motion ?

4.34. A body A, weighing 15 lb, compresses a spring having a spring
constant & = 25 Ib/in. and is held in compressed position by two latches,
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as shown in the diagram. The total upward force on the two latches is
200 Ib. The spring is not attached to the body A. The coefficient of
restitution for impact between body 4 and body B, which weighs 25 Ib, is
-0.80. Find the maximum height above its original position attained by
B after the latches are released.

4.5 The Scattering of Particles. Another type of impact
problem which has in recent years become of great importance in
physics may be illustrated by the collision of two charged particles
that exert an inverse square repulsive force upon each other. In this
problem the nature of the “physical contact’ between the two inter-
acting bodies must be studied in considerably more detail than for

ProB. 4.34 Fic. 4.9

the impact problems previously discussed. The interaction of the
particles will be a central force problem, and the results previously
derived for planetary motion may be directly applied.

Consider a light particle of mass m and electric charge ¢, which
approaches a heavy particle of mass M and electric charge g2, as
shown in Fig. 4.9. The mass m has at a large distance from M a
velocity vo along a line which is at a distance s, the impact parameter,
from the heavy particle. It will be assumed that M is so large
compared to m that the heavy particle remains at rest during the
interaction. The angle ¢ through which the trajectory of m is
deflected is to be determined.

The electrostatic repulsive force between the two charged particles
is a radial force of magnitude:

qigz K
= =5
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The problem is thus the same as that discussed in the section in
planetary motion, except for the sign of the force, and the results
obtained in that section and in Probls. 4.19 and 4.20 can be applied.
The orbit under the action of a central inverse square force is a conic
which for the repulsion force of the present problem can be described
by the equation:

?

r=1—ecos¢9

as7-»> o0, (1 — ¢cos §) — 0, and f— % —é,

2 2
thus:
T ¢
1——ecos(§—§)—0
. 4:_1
Slni—-—e

The sum of the kinetic and potential energies of the system is a
constant E, as in Problem 4.19. Using K|, instead of mK as in
Problem 4.20, we have:

(i 4 76 + —I§ - E

Since the force is radial, 720 = constant = % and, following the
method outlined in Prob. 4.19, the eccentricity of the hyperbola can
be written as:
2Emk?

e2 =1+ —Ig:——-
For this particular problem, the constant £ = 726 can be evaluated
in terms of the known velocity vo at large », which from Kepler’s
second law is:

k=$’l)o

From the conditions at large » it is seen that E = }mue?, so that the
expression for eccentricity may be written:

. msut\?
e —-l+<KO)
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Substituting this into the above relationship between the deflection
angle and the eccentricity, we finally obtain:

2 1+ (msvo2)2
K,
or:
¢ K
tan 5 = msvg?

This equation gives the scastering angle ¢ in terms of the initial
conditions of the problem.

The impact parameter s is not a quantity that can be directly
determined experimentally, whereas the scattering angle ¢ can be
directly observed. It is therefore desirable to put the above relation-

Beam of particlesl \ y
m =

@
.

Beam of particles

(a) (b)
F1G. 4.10

ship in such a form that s does not appear. Suppose, for example,
that a large number of light particles forming a parallel beam
approach a heavy target particle as in Fig. 4.10. Fig. 4.10 (a) shows
a detailed view of the process, while the reduced scale in Fig. 4.10 (b)
indicates that the size of the region in which scattering occurs is so
small that those light particles close to M can be considered to be
scattered to the surface of a sphere of radius R with M as a center.
This supposes that R is large compared to the impact parameter s.
Referring now to Fig. 4.10 (a) it will be seen that all of the particles
which pass through the annular area of radius s to s + ds are deflected
~ through angles of ¢ to ¢ + d¢. If the number of particles passing
“through a unit area of the beam in a unit time is IV, then the number
passing through the annular area in unit time is
dN = N:2nsds
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and this is also the number of particles per unit time that are deflected
through the angles ¢ to ¢ + d¢.
From the equation derived above relating s and ¢ we obtain:

PR S

2mug? .
0" sin2

2

and hence we can write;

K 1 K 1
N = N.zw<m%2 ¢><— i ¢d¢>
tan 5

L sin2

2
¢

K COS-Z
| 4N | = Nafos )smsqb'd“

These particles are distributed over a spherical zone on the sphere of
radius R shown in Fig. 4.10 (b}, the area of the zone being:

d4 = (2nR sin $)R d¢ = 4nR?sin f cos ¢ d¢

Thus the number of particles deflected per unit time onto a unit area
of the sphere of radius R is:

¢
. Cos %
N2V 2 4y
1‘"/1102 . ¢'
sin3 =
dN 2 _ N( K )2 1

— = 55 50—=) —
a4 47 R? siniscosiS dd 2 \2mwo sin‘l(izS

This is the famous Rutherford scattering formula, which puts the
parameters of the problem in such a form that experimental verifica-
tion of system behavior may be made.

4.6 The Pressure in a Gas. As another illustration of an im-

pact problem we shall consider a simple example from the kinetic .

theory of gases. A gas at low density may be considered as a system
containing a very large number of particles, each one of which is so
far from its neighbors that it is not influenced by them. The
behavior of such gases thus becomes a problem in particle dynamics.
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Consider a rectangular box of volume V containing N molecules of
a gas. Each molecule has certain velocity components v, vy, v, as
shown in Fig. 4.11. We suppose that the gas has reached a steady-
state condition, that is, the center of mass of the system of molecules
is at rest, and the average density is the same throughout the
volume. Considering now the x-components of velocity, we shall
distinguish between the molecules which travel in the positive
x-direction and those which travel in the negative x-direction. On
the average IN/2 of the molecules will have the positive direction
and N/2 will have the negative direction. We also note that the
total momentum of the molecules moving in the (+ x) direction

Fic. 4.11

must equal the total momentum of those moving in the (— x)
direction, since the mass center of the system is at rest.

We now examine the molecules which have velocities in the
(+ x) direction. Such particles will eventually collide with the
end of the box and, after the impact, will rebound with reversed
velocities, Let us first consider all the molecules in the box which
have a specific velocity v; in the (+ x) direction. If there is a
total of n; of such molecules in the box, then on the average during a
time A¢ the number of molecules colliding with the end wall will be
" viALA

v
which are further from the wall than v;A¢ will not reach the wall in
the time A¢. The total number reaching the wall is therefore

This may be seen from Fig. 4.12, since any molecules
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multiplied by the ratio of the volume v;Af4 to the total volume V.
As each particle collides with the wall and rebounds, the velocity of
the molecule is reversed, and the change in momentum, assuming no
energy loss during impact, is (—2mwv;) per molecule, where m is the
mass of the molecule. The total change in momentum during the
time Az is:

nwiAiA 2m

Vg = — — 24 AL

- 2m 7 7

From the fact that the total impulse equals the total change in
momentum, we have: '

F 2m
S Af = 2
I 4 % nivi2AL
R >
! -
H i : A
1 ] 1
t ]
] | t
i ] !
! 1 !
A Aemmpde o
- P e
5 v, At

Fic. 4.12

If we let p; be the average force per unit area or pressure exerted by
the molecules against the end wall, we have:

b 2mnv2
(= —5 Nl
|4

A similar expression will be obtained for the molecules which have a
different velocity, say »;; summing up the ;m over all the different
velocities, we obtain:

2
Zj)g = %n 20w

where Zp¢ = p = the total pressure on the end of the box, and

Znw? is equal to % (v2%)ave, Where (vz2)ave is the average value of



THE PRESSURE IN A GAS 101

vz% taken over all - molecules which have velocity components

2
4+ vz, We may therefore write:

2m N
P = v 7 (vz?)ave

or:
PV = Nm (v:%)ave

We now note that the kinetic energy due to the + x components
of velocity is equal to:

1N
375 mM(Vz%)avg

and that the kinetic energy of translation of all the components of
velocity (+ vz, + vy, * v;) is equal to:

3

2 N m(vzz)n,vg

since in a steady state (vz%ave = (Vy2avg = (V:%)ave. We may thus
write the above expression for pV as:

pV = 3E

where E is the total kinetic energy of translation of the molecules.
It will be noted that this expression is just a statement of Boyle’s
law, which states that the product of the pressure and volume of a
gas is constant at a constant temperature. From thermodynamics
we know that the gas law for varying temperatures is:

pV = RT

where V is the volume of one mole of gas, T is the absolute tempera-
ture, and R is the universal gas constant.* We thus obtain the
following relation between temperature and the kinetic energy of a
gas:

2F = RT

* R = 8.314 x 107 ergs per degree Centigrade per mole of gas. One mole
is that volume which has a mass in grams equal to the molecular weight of the

" gas, and which contains 6.02 x 1023 molecules (Avogadro’s Number).
8.314
=16N =
R = .03 x 10-16N = iN,

where # = Boltzmann’s.Constant.
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For example, at a temperature of 100°C or 373° abs, the kinetic
energy of one mole of gas is: '

E = (2)(8.314)(10%)(373) = 4.65 x 1010 ergs = 3430 ft 1b

For oxygen molecules (32 grams per mole), the average value v2 per
molecule may be computed as follows:

3(32 grams) (v2)ayg cm2/sec? = (3)(8.314)(107)(373) ergs
(vz)avg = 2.91 X 109
vV (v%)avg = 5.4 x 104 cm/sec = 1770 ft/sec

The root-mean-square velocity is somewhat larger than the mean
velocity.

In the preceding derivation of Boyle’s law it was assumed that the
gas molecules traveled from wall to wall without mutual interference.
This assumption seems reasonable for a gas with small density, but
for a gas of high density it would be expected that there would be
many collisions between molecules. The impacts against the walls
would then he different, and if this is taken into account certain
correction terms must be included in Boyle's law. Experimental
evidence confirms the fact that Boyle’s law is not satisfactory for
high gas densities. Another factor must be considered if the gas
consists of complex molecules. If, for example, each molecule is
formed of several atoms, the molecule can have an appreciable
kinetic energy of rotation, which must be included in the analysis.
A more complete analysis of the problem, as developed in the kinetic
theory of gases, shows that in the steady-state condition the total
kinetic energy is divided equally among the degrees of freedom. If
the molecule has the form of a rigid multi-atom body it has six degrees
of freedom—three in translation and three in rotation. - In a steady
state { of the total kinetic energy would be associated with each
degree of freedom.

PROBLEMS

4.35. How many ft 1b of energy are required to give one gram of oxygen
a temperature increase of one degree centigrade ?
4.36. Show that the work that is done by a gas as it expands under a

b
variable pressure is given by f pav.
a
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4.37. Determine the vertical distribution of pressure in an isothermal
atmosphere. This is the problem of finding the pressure distribution in a
vertical column of gas under the action of gravity. It isassumed that the
. temperature is constant throughout the column, and that the pressure and
density are related by the perfect gas law. If M is the mass of one mole
of gas and ¥ is its volume, show that the pressure $ at any height 4 is:

Meh
p=poe” (_’?g?)
where g is the pressure at the base of the column.

4.38. Differences in altitude can be computed from measurements of
barometric pressure if it is assumed that the atmosphere is a perfect gas
of uniform temperature. Using the results of Prob. 4.37, calculate the
difference in altitude corresponding to a change of barometric pressure
from 28 to 26 in. of mercury.

4.7 Variable Mass Systems. There are two types of variable
mass problems which should be carefully distinguished. In the
first type, the variable mass is a consequence of the particular way
in which the system is defined. If, for example, we take as a system
a rocket, excluding the exhaust gases, then the mass of the system
changes because material is being expelled from the system. The
individual particles of the rocket and exhaust gases themselves are
of constant mass, but the number of particles being considered changes
with time. For such problems the motion of each particle is

described by the equation F; = dit (myvg) = muay, but the total mass

of the system M = Z my is changing because the number of particles
i=1
n being considered is changing.

The second type of variable mass problem involves an actual
variation in the mass of the individual particle. This is the situation
encountered in the relativistic variation of mass with velocity, which
will be considered in more detail in later sections of this chapter.
In this case, the motion of the particle is described by the equation:

= d(mv ——m@+vdm'
=g ) = g+ e

4.8 Jet Propulsion Problems. As an example of a system
whose total mass is changing because material is being ejected we

shall consider a simple problem of jet propulsion. In Chapter § a

Fy
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more general treatment will be given, and new forms of Newton's
Laws will be derived that will be particularly appropriate for such -
problems,

Consider a rocket with velocity v and mass M = Mo — ut, where
p is the rate at which mass is ejected and M is the initial mass of
the rocket. The exhaust gases have a velocity v, relative to the
rocket. 'We wish to derive the equation of motion for the rocket,
neglecting gravity and air resistance. There are two methods of
approach that may be used.

Method 1. We consider as the system to which we shall first
apply Newton’s Law the mass {Am) that is exhausted with relative
velocity v, from the rocket in a time A¢, which is shown within the

T T )
——— : A[:f]n I
I A | | (M~Am) !
| D<_Fs F > f :> [
| | M | (1)—1)) —- !
| —“>) | | ¢ v+Av ]
L) — L .

Fic. 4.13 Fic. 4.14

dashed area of Fig. 4.13. Writing the equation of impulse-momen-
tum for this element, we have:

Am
F = _A—t-ve

As At— 0, we may say that the force F on the ejected material is
given by:
F = dm )
dt
This force is equal in magnitude to the propulsive force acting on the
.rocket. Considering now the rocket itself, we may write the
equation of motion:
dm dv
V= M =
The rate at which the total amount of ejected material gains mass is
equal in magnitude to the rate at which the rocket loses mass, that is:
dmn aM

T T dt
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M dm

Since M = Mo — pt, - = Tk and praal The final equation

~ of motion thus becomes:
dv
| (Mo — pt) o5 = pve

Method 2. 1In this method the system under consideration will
include the rocket and the ejected mass, as shown in the dashed
area of Fig. 4.14.

Let p: = total momentum of the system just before the ejection
of Am, when the rocket has a velocity v.
pr+ar = total momentum of the system a time Af after ejection
of Am.

Since there are no external forces acting on the system, the total
impulse is zero and there is no change in momentum, so p: = pe+at.
The momenta are given by

pg = Mv
perat = (M — Am)(v + Av) + (Am)(v — ve)
= Mv + M(Av) —~ (Am)v,

where the second order term (Am)(Av) has been dropped. Thus
equating momenta:
My = Mv + M(Av) — (Am)v,
M(Av) = (Am)v,

Dividing by A¢, and taking the limit as A¢—0:

dv dm
ME=W1)¢

as in Method 1 above.
Other examples of variable mass problems of the same type are
given in Section 3.2, Example 2; and Probls. 3.46 and 4.43.

PROBLEMS

4.39. A rocket having a total weight of 50 Ib contains 2 1b of propellant
which is burned at a uniform rate in one second. The propellant has a
“specific impulse’” of 200 1b sec per 1b of propellant; that is, a thrust force
of 200 1b is produced by burning one pound of propellant in one second.
Assuming that the rocket moves horizontally with negligible frictional
resisting forces, find the velocity of the rocket at the end of the burning
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time. If the propellant were burned in two seconds instead of one, would
the velocity be different ?

4.40. A rocket travels with a velocity ». The exhaust gas issues from
the rocket with a velocity z, relative to the rocket. If the mass of gas
exhausted per second is ', then the thrust force is m've, and the pro-
pulsion power, which is the rate at which the thrust force does work, is
given by m'ven. The kinetic energy lost in the exhaust gas per unit time,
which represents a power loss, is $m(v — v,)2. Show that the propulsion

efficiency is given by:
v\
2(z)
eff = Ve

7z
1+ (3)
Ve

For typical propellants, v, = 4000-6000 ft/sec. What rocket velocities
must be obtained in order to have 509, efficiency ?

4.41. A small compressed air rocket runs along a horizontal wire. The
initial weight of the rocket and charge is Wy, and the final weight of the
empty rocket is Wp. The air is discharged at a uniform rate of ¢ Ib/sec,
with a relative exhaust velocity v,. The air resistance and the wire
friction can be approximated by a drag force proportional to the velocity,
Fp= —kv. (a) Find the speed of the rocket as a function of time,
assuming that the rocket starts from rest at £ = 0. (b) If Wo = 12 1b,
Wg = 21b, ¢ = 2 Ib/sec, v, = 480 ft/sec, and & = 0.01 1b sec/ft, find the
maximum velocity of the rocket.

4.42. A ram-jet missile flies at a constant altitude with a forward
velocity v. The engine operates steadily by taking in 15% pounds per
second of air from the atmosphere, and burning it with % pounds per
second of fuel which is carried on board the missile. The engine ejects
the products of combustion at a constant speed v, with respect to the
missile. If the device is Jaunched with an initial horizontal velocity vq,
an initial weight Wy, and is subject to negligible external drag forces, find
its velocity as a function of time.

4.43. A spherical raindrop falls through air saturated with water vapor.
Because of condensation, the mass of the raindrop increases at a rate pro-
portional to the surface area, that is, dm = 4nr2.kp - dt, where % is a con-
stant and 7 is the radius of the drop at any time. Assuming negligible air
resistance, show that the equation of motion can be written as:

dv
3 22 = By — 3Rs2
kr 7 =% 3kr2y
or:
d
3y) = 3
kdr(rv) r3g

Find the velocity of the drop as a function of time if # = 0 and v = 0
when ¢ = 0.
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4.9 Electron Dynamics. For our present purpose, the electron
may be considered to be a particle having a mass mo = 9.1 x 10-28
-grams and carrying a negative electric charge ¢ = —4.80 x 10-10
electrostatic units. If the electron is subjected to a known force, its
motion can be computed from Newton’s law written in the form
F = ‘% (mv). The equation of motion is written in this form since
it has been observed that when an electron is accelerated to a high
velocity the apparent mass of the electron increases according to
the equation m = mo/v/1 — v2c2, where ¢ is the velocity of light
in vacuum (299,800 km/sec) and m, is the mass of the electron when
v = 0, the rest mass. Since v must exceed 40,000 km/sec for the

Photographic plate
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mass to be increased by 19, it is only for very high velocities that
the effect becomes appreciable.

As a first example of a problem in electron dynamics we shall
consider a simplified version of one of the basic experiments which
first permitted a direct experimental verification of the variation of
mass with velocity. That the apparent mass of a charged particle
should increase with speed had been shown from theoretical con-
siderations by J. J. Thomson in 1881, and a direct experimental
confirmation was obtained in 1901 by Kaufmann. In 1909 experi-
"~ ments of Bucherer made possible the accurate determination of the
relation between mass and velocity. The experimental method used
by Bucherer is shown, in a simplified way, in Fig. 4.15. Electrons
are emitted, with all directions and speeds, from a radioactive
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source R, located between two plates. Only those electrons having
velocities along the axis of the apparatus are used in this experiment.
An electric field E, directed downward, is maintained between the
plates, and the whole apparatus is placed in a magnetic field H
directed perpendicularly out of the paper. While the electron is
between the two plates, it is subjected to a vertical upward force of
magnitude (Ee) due to the electric field. The force acting on an
electron moving with a velocity v in a magnetic field H is ev x H,
In the present experiment v is perpendicular to H, so that a vertical
downward force of magnitude (evH) acts on the electron. If the
forces due to the electric and magnetic field are just equal in magni-
tude, the resultant vertical force on the electron will be zero, and the
electron will move horizontally with a velocity given by:

E

Ee = evH; v = T

The apparatus is arranged with a small hole at A4, so that only

electrons which have this horizontal velocity v can emerge from the

box. We thus have a method of producing specified electron velo-
cities.

After leaving the electric field E, in the region between the two
plates, the electron is subjected only to the force of the magnetic
field. Since the force on the electron and hence the acceleration of
the electron are always perpendicular to the velocity, the magnitude
of the velocity does not change but the electron moves in a circular
path of radius », where:

evH = Z-nl&
y
from which:
e v
m  7H

. . . e .
From this equation an experimental value of (ﬁ) for various

velocities can be determined by measuring the radius of curvature » |
of the electron path. As far as this experiment is concerned, the

change in (%) with velocity could be attributed to changes in either

the charge or the mass, or both, with velocity. On various theoretical
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grounds, however, it is supposed that it is the mass that varies and
not the charge, and this supposition leads to a consistent theoretical
. and experimental picture. Both the Lorentz theory of electro-
magnetic mass and the theory of relativity predicted that the variation
of mass with velocity should be of the form m = 2 and
V1~ v?c?

hence, according to these theories, the results of the above experi-

ments should be
e e N
m my [

If this expression is confirmed by the experiment, the same value of

(mi) should be computed from the experimental measurements for
0

different values of v.
Some typical results of Bucherer’s experiments are given in the

following table.*
v e
(z) (m_o) (emu/gram)

0.3173 1.752 x 107
0.3787 1.761
0.4281 1.760
0.5154 1.763
0.6870 1.767

Since these values of (mi) are constant within the limits of experi-
0

mental error, it appears that the experimental results are in good
agreement with the expression for the variation in mass, which is
derived on the basis of the special theory of relativity.

4.10 The Acceleration of Electrons. A number of frequently
used instruments employ a stream of high-speed electrons, so that the
problem of producing high-velocity electrons is of practical impor-
tance. Consider the apparatus shown schematically in Fig. 4.16.
A potential difference AV is maintained between a cathode C and
a plate anode 4. By definition, the electric field E at a point is the

* Bucherer, A. H., Annalen der Physik 28, 513 (1909). Bucherer’s value for
Ze-) was (1.763 + 0.008) x 107 and the modern accepted value (1941) is
0
(1.7592 + 0.0005) x 107.
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force on a unit charge at the point, and the potential function V is
related to the electric field E as follows:
ev, oV, ov
E = —gradV— - (a—1+—@]+——a;k)
Any free electron of charge ¢ in the field will thus be accelerated
toward A by a force whose components are:

14
Fo=—e5-
oV
Fy=—8—a:"y—
oV
Fo= —e—-

If the cathode C is heated, as for example, by a resistance filament,
electrons will be “boiled” off and will then be accelerated by the
eléctric field. If a plate P with a small opening is placed in front of
the cathode as shown in the diagram, only those electrons traveling
along the x-axis will be free to move to the anode. Such electrons
will move toward the anode under the action of a force Fo If
now a hole is arranged in the anode at the x-axis, the electrons can
pass out of the electric field and continue on with the constant
velocity v which they had attained at the anode. Knowing the
potential difference between the cathode and the anode, the velocity
may be computed by using the principle of work and energy, where
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the work can be obtained by integration of the above expression for
Fg:

e(Va — Vo) = 3mo?
hence:

v = J -12;5 (VA - Vc)
We can compute the velocity for a potential difference of

1 volt = —1— esu for the electron as follows:

300
_ @) ~ 4.8 x 1010 1\1% _
v = [ 01 x 10°% (— m)] = 5.94 x 107 cm/sec

This velocity is of the order of 133,000 mph, which is sufficiently
small compared to the velocity of light so that the variability of mass
with velocity does not need to be taken into account. It is relatively
easy, however, to accelerate electrons to high velocities because the
mass of the electron is small compared to its charge.

4.11 The Cathode-Ray Oscilloscope. An electronic device
which has wide application is the cathode-ray oscilloscope, repre-
sented in simplified form in Fig. 4.17. By an arrangement of cathode

— Fluorescent screen y
fee— L,

P Al o
c | I =—=E __——— Ty
__________ - x
==

l ! d Deflection plates

AV
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~and anode as previously described, electrons are accelerated to a
suitable velocity and are focused into a narrow beam through A4
along the x-axis. Two plates are arranged parallel to the x-axis so
that an electric field E can be established over a length / of the beam.
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The whole apparatus is enclosed in an evacuated glass tube. If the
electric field E is zero, the electron stream continues along the -
¥-axis and impinges against the end of the tube at 2, where a bright
spot is formed on the fluorescent screen. If an electric field is set up,
the electrons, as they pass between the plates, will be subjected to a
force which will deflect the beam and so change the position of the
bright spot on the screen.

An enlarged view of the two plates with a single electron between
them is shown in Fig. 4.18. As a simplifying assumption, we suppose
that E is zero outside the plates and uniform between the plates.

< l
|
Y ,:‘ -

e s —a —

Vi

Fic 4.18

Then an upward force of (¢E) is exerted on the electron and the

equations of motion are:

mi =0

my = eE
subject to the conditions that x¢ = y¢ = y9 = 0 and %y = v when
t = 0. After the electron has passed through the parallel plates,
an integration of these equations shows that the velocity components
are:

X=v
 _ eIl
Y=

As the electron leaves the plates, its path makes an angle 6 with the

x-axis, where:
Y ekl
tanf = = = —
X mv
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The effect of the two plates, therefore, is to deflect an electron beam
through an angle #. After the beam leaves the plates, no force is

. exerted on the electrons, and the beam continues in a straight line
at the angle §. The luminous spot will thus be deflected from its
zero position a distance y, where:

_ BB GEl
T 2mu? T mwl

el l
= [alz +5)|E =2

The displacement of the luminous spot is thus directly proportional
to E and can be taken as a measure of the potential difference between
the plates. :

If a second pair of deflecting plates, oriented at 90° to the first
pair, is added to the cathode-ray tube of Fig. 4.17, the luminous
spot will be deflected in the z-direction with a displacement:

zZ = CzEz

L

where E, is the electric field set up between the second pair of plates.
The motion of the luminous spot on the face of the tube is thus given
by the two equations:

y = C]Ey; z = CzE;

If, for example, Ey = 4 sin «f and E; = B cos wt, the path of the
spot is the ellipse:
2 22
Cieas + gy = !
which appears on the screen as a luminous line. In general, if E,
is known, E, can be determined from the picture on the tube. The
oscilloscope can thus be used to measure any quantity which can be
converted into a potential difference.
4.12 The Equivalence of Mass and Energy. We shall now
investigate some of the consequences of the fact that the apparent
mass of a particle increases with velocity. We shall start with

Newton’s law in the form F = % (mv) and shall take m as a variable,
Mo

VT = v?ct’

m = To simplify the analysis we shall consider only
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one-dimensional motion starting from rest, with F and v always
parallel to the x-axis.

The impulse-momentum equation will be derived first. For the
particular conditions specified above, we have:

=

¢
=det=mv=
0

Solving for v in terms of the impulse /:

= C -—-=—_==
A/l m02c2

It is seen that as J — o0, v —¢, so that no matter how large the
impulse, the velocity can never exceed the velocity of light.

The equation of work and energy is obtained in the usual way
except that m is now a variable:

f Fdx = fo < (mo) dx = f:vd(mv)

Integrating by parts the right side of this expression, and writing
E 4 for the work done by F, we obtain:

v
Ey = my? —f my dv
0

Substituting the expression for m:

Mmou?2 J‘ M
e

Evaluating the integral, this becomes:

E, = —2%

E = mgc?
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which is the relativistic expression for the kinetic energy of the
particle. This expression can also be written in the form:

moc2
Ew = - m062
v
~/ -
c
= mc? — moc?

Since mp and ¢ are constants, it appears from this equation that an
increase in the work done on the particle requires a corresponding
increase in the inass of the particle. This unexpected result gave
rise to much speculation regarding our fundamental concepts of
mass and energy. The Theory of Relativity, which Einstein postu-
lated in 1905, states that what we measure as mass is equivalent to
energy, and that the term moc? represents the energy equivalent of
the particle when it is at rest. If we write E, +moc2 = mc? and
call E,, + moc? the total energy E, we have:

E = mc?

This is the famous expression for the equivalence of mass and energy.
To obtain an idea of the magnitudes involved, we shall compute the
rest energy equivalent of a mass weighing one pound.

11b
= moc® =
E = m = s tijsect (

2.998 x 1010 cm/sec
2.54 cm/in. x 121in./ft

2
) ft-1b

E = 3.0 x 1016 ft-1b

This is roughly equivalent to the energy which would be obtained
from the combustion of 1,500,000 tons of coal or 300,000,000 gallons
of gasoline.

The first approximate experimental verification of the equivalence
of mass and energy was obtained in 1932 by J. D. Cockroft and E. T.
Walton by particle bombardment of lithium. The fact that large
quantities of energy can be released by nuclear fission was demon-
strated by the atomic bomb in 1945. Measurements have shown that
the difference in mass between the fission products and the original
nucleus is just equivalent to the energy released.
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PROBLEMS

4.44. An electron is accelerated from rest through a potential drop of
100,000 volts. Compute its velocity assuming that its mass remains
constant, and compare with the velocity obtained when the variability
of mass with velocity is taken into account. This potential drop is small
compared with the several million volts used in modern particle
accelerators.

4.45. The basic elements of a cyclotron are shown in the accompanying
diagram. The device consists of two halves of a cylindrical box, placed
in a uniform magnetic field H as shown. If a particle having a charge ¢
and a velocity v in the plane of the box is introduced into the box, it is
subjected to the force of the magnetic field which
isgiven by F = ev x H. The two halvesof the
box are maintained at a potential difference AV,
so that as the particle travels from one half to
the other it experiences a velocity change corres-
ponding to AV. By means of an oscillator this
potential is varied periodically in such a way
that the particle always experiences a potential
drop. Show that the particle will move in a
circular path whose radius increases with v, and
that the time required for one-half a revolution
isindependent of v. In this way the particle can
be accelerated to a high velocity and can then
be drawn off and used as a bombarding particle.
. The foregoing analysis is based on constant

H mass. If the velocity is so high that the vari-
PRroB. 4.45 ability of mass must be considered, the time of
revolution is not independent of v and diffi-

culties are encountered in synchronizing the potential drop AV.

4.46. The electric field between the y deflecting plates of a cathode-ray
oscilloscope tube varies as shown in the diagram:

(a) If a field E, = Egsin wt is set up between the z deflecting plates,

. . 2 .
what picture would be traced out on the screen if #; = _al)’, and the time

intervals are equal?

(b) If in part (a) ¢ = 4—;-7, what picture would appear?

(c) If E, = f(t), what picture would appear on the screen during time

=0tot=#"?

4.47. Work out the steps in the derivation of the expression for the
relativistic kinetic energy of a particle, and show that for v << ¢ this
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reduces to the familiar expression for the kinetic energy of a slow-speed
particle.

4.48. Two electrons approach each other along a straight line, each
having a velocity v which is not small compared to the velocity of light.
How close together can the electrons come?

4.49. The magnitude of the energy released by the fission of uranium 235
may be estimated by assuming that the products of the fission are nuclei
with mass numbers 95 and 139, since these are known to make up the
greatest amount of the products. The fission takes place according to the
following relation, where the single neutron on the left side initiates the
fission which results in the formation of two neutrons:

U235 4 pl s> X95 4. Y189 L 21

The mass of the 235 atom is 235.124 amu (amu = atomic mass unit =
1.660 x 10-24 grams) and the mass of the neutron is 1.00897 amu. The
masses of the X and Y atoms are determined experimentally to be
94,945 amu and 138.955 amu. Calculate the amount of energy in foot-
pounds released per fission.



Chapter 5

DYNAMICS OF VIBRATING SYSTEMS

First of all one must observe that each pendulum has its own time of
vibration, so definite and determinate that it is not possible to make it move
with any other period than that which nature has given it. On the other
hand one can confer motion upon even a heavy pendulum which is at rest by
simply blowing against it. By repeating these blasts with a frequency which
is the same as that of the pendulum one can impart considerable motion.—
G. Galilei, Discorsi a Due Nuove Scienze (1638).

The analysis of mechanical vibrations is a problem in dynamics
which is often encountered by the engineer. Such problems arise
in connection with the design of almost every type of machine or
structure. The vibration of high-speed machinery, aircraft flutter,
the vibration of buildings during earthquakes, and the design of
dynamic measuring instruments are current problems which indicate
the wide scope of the subject. The same mathematical theory which
is used for the study of mechanical vibrations is also applicable to
certain problems of oscillations in electrical circuits. The similarity
between the basic equations of mechanical and electrical systems has
led to several useful methods whereby the results of analysis or
experimental investigations in one field have been applied to the
other.

In the present chapter we shall consider only the motion of systems
having one degree of freedom. Such problems are excellent examples
of the methods of particle dynamics and also indicate the theory.
behind a large number of interesting technical applications.

5.1 The Vibration Problem. We shall first investigate the

simplest possible mechanical system which contains all the significant
118
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features of a vibration problem. Consider a mass m which has one
degree of freedom, that is, its location at any time is specified by
the one coordinate . The mass is restrained by a spring %, and an
external force F(¢), whose magnitude varies with time, is applied to
the mass, as shown in Fig. 5.1 (a). Fig. 5.1 (b) shows a free-body
diagram of the mass, when it has a positive velocity and displacement
as measured from the position of static equilibrium (x = 0). The
fact that a friction force opposes the motion of the mass is indicated
by the force Fg4, which is usually some function of the velocity of the
system, depending upon the nature

of the contacting surfaces and the %

conditions of lubrication.

The forces acting upon the mass
belong to three general classes.
First thereis the exciting force F(¢),
which is the externally applied
force that causes the motion of the
system. Second, there is the re-
storing force F;, which is the force
exerted by the spring on the mass
and which tends to restore the

S

mass to its original position. N
Third, there is a damping force Fg, (b)
which is always in such a direction Fic. 5.1

that it opposes the motion of the
system, and which is thus responsible for a dissipation of energy.
The equation of motion can be written:

mi = Fy + Fg + F(t) (5.1)
Three such forces, along with the equation of motion, characterize
the vibration problem. When an analysis of a physical problem
leads to Equation (5.1), many of the essential features of the motion
can be analyzed as in the following sections.

5.2 The Characteristics of the Forces. From the definition of
the restoring force it is known that its direction is always toward
the equilibrium position of the system. If the restoring force is
produced by a spring as in Fig. 5.1, it is known that:

Fs—'_'—-—kx
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where the point ¥ = 0 is the equilibrium position and £ is the spring
constant which indicates the stiffness of the spring. This spring
force is called a linear restoring force because it is a function of x
raised to the first power. In some instances the restoring force is
not linear. To obtain the solution for non-linear restoring forces is
difficult, so that it is customary to linearize the problem, if possible,
by treating only small oscillations. For example, suppose that the
restoring force is given by some function of x which can be expanded
in a power series:

2 3
Fe= — ¢(x) = — (k1x+k2326—|+k3;c—'+ )

If x is small, the first term of this series is large compared to the sum
of the following terms. Thus if the amplitude of the vibration is
always sufficiently small, a satisfactory approximate solution can
be obtained by taking for the restoring force only the first term of the

series:
Fs = - klx

We shall treat only linear restoring forces. In recent years consider-
able work has been done on the non-linear problem, but as yet no
general solutions of a simple form have been determined.

The most important characteristic of the damping force is that its
direction is always opposed to the direction of the motion. The
work done by the damping force is thus always negative, and energy
is dissipated from the system. In many instances the damping
force is directly proportional to the velocity of the mass, so that:

Fd = —CcX

Damping which can be described by this equation is called viscous
damping, and ¢ is called the coefficient of viscous damping. Such a
damping force may arise in a number of ways. The frictional force
set up between two lubricated surfaces, under the usual conditions
of velocity and pressure, is approximately proportional to the
velocity, and air resistance at low velocities may also be assumed to
be viscous in nature. Damping forces are often intentionally
introduced into a system, and this is commonly done by means of a
dashpot filled with oil. Such a device can be designed to give
viscous damping. In some problems in which the damping is not
viscous, the concept of viscous damping may still be used, by defining
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an equivalent viscous friction, for which the coefficient of viscous friction
is determined so that the total energy dissipated per cycle is the same
as for the actual damping during a steady state of motion. In the
analysis to follow, we shall always assume viscous damping forces.
Exciting forces may arise in many different ways. They may, for
example, be transient forces such as would be caused by the impact of
some external body, or they may be repetitive forces caused by a
series of such impacts. Reciprocating or rotating machine parts
often produce unbalanced alternating forces that have a sinusoidal
variation. Consider the rotation of an unbalanced disk as shown in
Fig. 5.2. This arrangement represents
a typical vibration isolating mount for
a rotating machine. The disk of mass
m rotates about the center O with an
angular velocity w. The center of mass ol / Udle
of the disk is located at a distance » from
the center of rotation. The rotating 0
system is mounted on a larger mass 7 _
M which can move only in a vertical _J_
direction. M is supported on a spring Sk
having a spring constant %, and a
dashpot having a coefficient of viscous T
damping ¢ connects the mass to the fixed Fic. 5.2
support. If we assume that the motion
of M is small compared to 7, then the motion of m can be taken as
circular, and the acceleration of the center of mass of the disk is 7w?.
There is thus a force of magnitude mrw? acting in a radial direc-
tion upon the large mass M. The component of the force in the y
direction, that is, the component of force which causes motion of
the system is mrw? sin §. Assuming that the disk rotates with a
constant speed we have for the exciting force:

F(t) = mrw?sin wt
Since small amounts of unbalance are inevitably present in any
rotating machine, sinusoidal exciting forces play an important part
in vibration theory.* A more fundamental reason for the importance
* If the motion of M is not small, m performs two-dimensional simple

harmonic motion during a steady state and the resulting exciting force is
again sinusoidal (see Prob. 5.32).
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of the sinusoidal force is the fact that any periodic force can be
represented analytically as a series of sine and cosine terms, by a
Fourier series expansion. Thus, if the behavior of the system is
known for a sinusoidal force, the behavior of the system can be
determined for any periodic force.

5.3 The Differential Equation of the Vibration Problem.
For the basic vibration problem we shall consider a system which
consists of a linear restoring force, a viscous damping force, and a
sinusoidal exciting force:

Fg - - kx
Fd = - cX
F{t) = Fosin wt

Substituting these terms into the equation of motion gives:
mi = — kx — ¢ + Fosin wt

We shall write this equation in the standard form:

£+ 2ni + px = %sin wt (5.2)
where:

k ¢
el $% and i 2n
The term # is called the damping factor. A system described by this
equation is said to be a single degree of freedom harmonic oscillator
with viscous damping. In the following sections we shall derive the
solution of the equation, and we shall examine its physical significance.

5.4 Free Vibrations of an Undamped System. Of the three
forces mentioned above, only the restoring force is necessary for the
existence of a vibration problem. It may be that energy dissipation
is so small that the damping force may be neglected, and the motion
of the system may be started by initial displacements or velocities
rather than by exciting forces. In this section we shall consider
the solution of this simplest type of vibration problem as an illustra-
tion of method, the nomenclature to be used, and of the physical
interpretation of the results.

Setting the damping force and the exciting force equal to zero, the
differential equation becomes:

£+ =0
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The solution of this equation is:
x = Cysinpt + Cq cos pt

where C; and C2 are constants of integration which must be evaluated
from the initial conditions. That this expression is a solution of the
differential equation may be verified by direct substitution.

When ¢ = 0let the initial displacement be xgand the initial velocity
%o. From these two initial conditions the constants C; and C2 may
be found, and the solution of the differential equation becomes:

x = %’sin Pt + xp cos Pt (5.3)

Fi1G. 5.3

We shall investigate the physical significance of this solution for
20 = A and 29 = 0. This means that the mass is moved a distance
A from its position of equilibrium and is then released, at time
¢t = 0, with zero initial velocity. The displacement is then given
by:

x = A cos pt

The motion of the mass as a function of time is shown in Fig. 5.3,
where it is seen that the mass performs oscillations about the position
of equilibrium. Since there is no energy loss in this ideal system, the
oscillation continues indefinitely with the same amplitude 4. The
portion of the motion included between two points at which the mass
has the same position, as B and C in Fig. 5.3, is called one cycle of
the vibration. The time required for the completion of one cycle is
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called the period, r, of the vibration. The number of cycles which
occur in one second is called the frequency, f, of the vibration. To
find the period, consider two displacements of the mass which are one
cycle apart, as B and C in Fig. 5.3. Then:

Acospt = Acosp(t + 1)
.= 2r _ 2n
P [k
z (5.4
b 1 [F

The period can also be found by an energy method in the following
way. The potential energy of the system at any position is
V = } kx? and the kinetic energy is } m#2. Since the motion is
known to be harmonic, the displacement and velocity can be written:

x = A sin wt
X = Aw cos wi

When ¥ = A, the potential energy is equal to 442 and the kinetic
energy is zero. When x = 0, the kinetic energy is 4mA2w? and
potential energy is zero. Since energy is conserved:

ImAw? = LhA?

By

This energy method is useful for obtaining approximate frequencies
in more complicated problems when the motion can be assumed to
be approximately harmonic.

PROBLEMS

5.1. A pendulum having a mass s and a length [ is supported by a
string of negligible mass. Write the equation of motion for the pendulum,
neglecting air damping, and show that for small oscillations this equation -
is:

$+84=0

Find the period of small oscillations of the pendulum. If air resistance
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imposes a damping force proportional to the velocity, what is the dif-
ferential equation of motion for small oscillations? What force plays the
part of the restoring force in this problem?

5.2. Write the equation of the conservation of energy for the pendulum
of Problem 5.1. Obtain the differential equation of motion for small
oscillations by differentiating the energy equation with respect to 2.

5.3. Show that the natural frequency of free vibrations of an undamped
simple harmonic oscillator is given by:

3.13
f= Vo cycles per second

where §;; is the static deflection of the system, in inches. The static

Pros. 5.1 ProB, 5.5

deflection of a system is defined as the deflection caused by a force of
mg 1b.

5.4. A U-tube is partially filled with mercury and is supported in a
vertical position as shown in the diagram. When the system is in equili-
brium, the height of the mercury is the same in each arm. The liquid in
one arm is depressed a distance x thus raising the liquid a like distance in
the other arm. The system is then released. Write the equation of
motion for the liquid column, neglecting frictional damping forces and
find the frequency of the resulting oscillation.

5.5. Two parallel cylindrical rollers rotate in opposite directions as
shown in the figure. The distance between the centers of the rollers is .
A straight, uniform horizontal rod of length ! and weight W rests on top of
the rollers. The coefficient of kinetic friction between the rod and the
roller is u. Taking x as the distance from the center of the rod to the
midpoint between the rolls, write the equation of motion of the rod, sup-
posing that it has been initially displaced from the central position. Find
the frequency of the resulting vibratory motion.

5.6. A circular cylinder of diameter D and weight W is arranged so that
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it floats with its axis vertical in a fluid of density p. The cylinder is stable
against tipping. The cylinder is depressed slightly from its equilibrium
position and is then released. Find the frequency of the resulting
oscillation, neglecting the effects of the motion of the fluid.

5.7. The mass M is attached to one end of a weightless horizontal rod
of length /, and the other end of the rod is supported by a ball-and-socket
joint as shown in the figure. An inextensible vertical wire of length 4
supports the rod at a distance 4 from the joint. Find the frequency of
small oscillations of the system, neglecting friction.

T

Bal! and '
socket

tl
| l | X

Pros. 5.7 PrOB. 5.8

5.8. A piston of mass  fits in a closed cylinder of cross-sectional area 4.
When the piston is in the central position with 4 = 0, it is in equilibrium,
and the pressure on each side is . The air in the cylinder is assumed to
follow Boyle's law, that is, the pressure times the volume is equal to a
constant. The piston is moved through a distance x from the position of
equilibrium and is then released. Write the differential equation of
motion of the system, assuming that there is viscous friction between the
piston and the cylinder. Find the frequency of small oscillations of the
piston, assuming that the damping force can be neglected.

5.9. Find the frequency of small vibrations of an inverted pendulum
restrained by two springs of spring constant % as shown in the diagram.

Y
7

k k
10000 000Q

a

/4 /
ProB. 5.9 Pros. 5.10
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All the mass of the pendulum is assumed to be concentrated at a distance {
from the point of support, and the springs are sufficiently stiff so that the
pendulum is stable.

5.10. A particle of mass m slides on a smooth surface whose shape is
given by the equation y = ax2. The particle is moved along the surface
away from the position of equilibrium and is then released. Find the
equation of motion of the particle, and find the frequency of small oscilla-
tions about the position of static equilibrium.

5.11. A Helmholtz resonator consists of a rigid spherical vessel with a
cylindrical neck of length / and cross-sectional area 4. The initial
pressure of the air in the resonator (and of the surrounding air) is 2o,
the spherical volume is Vg, and the density of the air is pp = constant. A
vibrating motion is imparted to the air in the neck of the resonator and the
motion is assumed to be confined to the air in the neck, the air in the
spherical portion acting as a spring. The system can thus be considered
as a single degree of freedom system with the mass shown shaded in the
diagram. It may be assumed that during the vibration the air in the
spherical cavity obeys the adiabatic law pV* = constant, where y is the
ratio of the specific heats. Find the natural frequency of small oscillations
in cycles per second of the Helmholtz resonator in terms of pg, Vo, po, 4, ¢,
and v.

// A
o]

Pros. 5.11 ' Prosg. 5.12

5.12. A small mass m is held by two identical springs of spring constant
k. At equilibrium the springs have an initial tension 7. Suppose that
the system is horizontal, so that gravity forces will not enter the problem.
Consider motions of the mass perpendicular to the original spring direction
and treat the system as a one degree of freedom system. (a) Derive the
- exact equation of motion. (b) By assuming small displacement, linearize
the equation of motion and find the frequency of small oscillations.
Explain what is meant by “small displacements’’ in terms of a suitable
dimensionless parameter.
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5.13. A mass m is free to vibrate in the direction of two restraining
springs of spring constant % and is gnided in frictionless supports. The
assembly is attached to a disk which rotates with a uniform angular
velocity w. Find the frequency of free oscillations of the mass relative to
the disk,

A 4 ]
fe—{
AO
Pros. 5.13 Pros. 5.14

5.14. Two vertical cylindrical tanks of area A1 and A are connected by
a horizontal pipe of length  and area Ag. The tanks are filled with a fluid
to a height % above the horizontal pipe as is shown in the figure. If the
level of the fluid in one of the cylinders is changed and the system is then
left free, oscillations will occur, with the fluid flowing back and forth from
one tank into the other. Find the frequency of this oscillation, assuming
that all of the particles in any one cylinder have the same velocity at the
same time.

5.15. A spring-mounted mass, supported on a wheel, as shown in the
diagram, moves with a velocity v along a wavy surface which has a
sinusoidal form. The vertical displacement of the wheel y can be found
from the fact that:

y = Asin az

where z = vf. The vertical motion of the mass is given by the coordinate

%. A dashpot which introduces viscous damping into the system is con-

nected between the wheel and the mass. Write the equation of motion

for the vertical movement of the mass, noting that the forces which act

upon it are the elastic force, —k(x - y), and the damping force, —c(% — ).

Show that this equation reduces to the general form of the vibration

equation, with a sinusoidal exciting force.

5.16. Show that the equation x# = C; sin p¢ + Cs cos p¢ can be written
in the form x = A cos(pt + o) where A = V2 + Cg2 and o« =.



FREE VIBRATIONS OF AN UNDAMPED SYSTEM 129

2w
I a 1

Pros. 5.15

tan-1 (—g—l) 4 is called the amplitude of the vibration, and « is called
2

the phase angle. Changing the phase angle has the effect of shifting the
whole curve representing the vibration to the right or left, as shown in the
figure.

Pros. 5.16 Prog. 5.17

5.17. A mass m drops from rest through a height # and strikes the
bottom of a rod. The rod elongates x feet when acted upon by a force
of kx 1b. Assuming that the mass remains in contact with the end of the
rod after impact, find the motion of the mass after the impact. Neglect
the mass of the rod and assume that no energy is lost. If m weighs
20 Ib, £ = 100 Ib/ft, and 4 = 2 in., find the amplitude and the frequency
of vibration.
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5.5 Damped Vibrations. In an actual vibration there will
always be some damping present. Let us consider free vibrations
with viscous damping, and compare the solution of this problem
with that of the undamped oscillation. The differential equation
of the free damped vibration is obtained from the general equation
by setting the exciting force equal to zero:

4+ 2n% + p2w =0 (5.5)
The solution of this equation must be a function which has the
property that repeated differentiations do not change its form, since
the function and its first and second derivatives must be added
together to give zero. For such an equation, we take as a trial
solution x = Ce*, which, upon substitution into the differential
equation gives:

CAZert + 2CnAer + p2Cer = 0

Cancelling the factor Ce¥ we have:
A2 + 2nd + p2 =0

This equation has two solutions for A, each of which will make
% = CeM a solution of the differential equation. The general
solution of the equation may thus be written as the sum of the
two*

x = Ciemt + Coeket, (5.6)
It should be noted that the superposition of solutions is valid only for
linear differential equations, that is, equations which are linear in
the dependent variable and its derivatives.

Solving the algebraic equation we obtain the two values:

M= —nt VAT 2
do= —n— VAT p2
Hence the solution is:
X = Cle(—n+\/n_2—7)t + Cz'g(-ﬂ-—‘/;{';?)t
The physical significance of this solution depends upon the relative
magnitudes of #2 and p2, which determine whether the exponents are

real or complex quantities.
Suppose first that #2 > p2 so that the exponent is a real quantity.

* Since the differential equation is of the second order in its derivatives, the
solution with two constants of integration is the complete solution,
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Physically this means a relatively large damping, since # is a measure
of the damping in the system. The solution is then:

x = Cieat + Coemoat (5.7)
where «; and «z are real quantities. The motion of the mass, in this
event, is not oscillatory, but is an exponential subsidence. Suppose,
for example, that the motion is started by giving the mass an initial
displacement 4 and then releasing it from rest. The displacement-
time curve is then as shown in Fig. 5.4. Because of the relatively
large damping, the mass released from rest never passes the static

Fi1G. 5.4

equilibrium position. So much energy is dissipated by the damping
force that there is not sufficient kinetic energy left to carry the mass
past the equilibrium position. Such a system is said to be over-
damped.

If the damping is small, so that #2 < 2, then the term (12 — $2)
is negative, and we can write:

x = Ciel-nHVo—ud)t 4 (Cget-n~tVp"n)
= g—m[Clet‘\/p"—n’t + ng—t‘\/p"’—n"’t]
Using the trigonometric relation e = cos § + ¢ sin 6, the displace-
ment may be written:

x = e=n[(Cy + Ca) cos VP2 — n2 + §(Cy — Cg) sin VP2 — nif]
Since the constants C; and C; are arbitrary and are to be determined
. by the initial conditions, we may simplify the expression by intro-
ducing new constants, Cy’ =7(Cy — C3) and C2’ = Ci + Cs;
dropping the primes:

x = ¢~nt[Cysin VP2 — n¥ + Cacos VP2 — n?] (5.8)
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This equation may be checked by setting #» = 0, thus reducing it to:
Zneo = Ci1sin pt + Cq cos pt

which was previously derived for the undamped free vibrations.

Comparing the two solutions we see that the effect of the damping
is to increase the period of the vibration and to decrease the
magnitudes of successive peaks
z of the vibration, since the ampli-
tude of the vibration decreases
exponentially with time. The
motion of a typical underdamped

oscillator is shown in Fig. 5.5.
t As a convenient measure of
the damping we may compute
the ratio of the amplitudes of
successive cycles of the vibra-

tion.
%1 e-niy 2
Fic. 5.5 pol e TSt
x -
2 n(tﬁ-‘/__)

The amount of damping is often specified by giving the logarithmic
decrement 8, where:

2 2mn

8 = log — = log e Viow = \/pz (5.9)

- n2

For systems having small damping, a simple way of determining the
logarithmic decrement from the free vibration curve is as follows:

8=log(x +xAx) =log(1 +—A—’f) _ A %( )2 + %(SA_x)b’_*_.”

X X

for (—A-xf) small, the higher order terms may be dropped, and:

S~ Ax (5.10)
%
Thus the logarithmic decrement is approximately equal to the
fractional decrease in amplitude during one cycle of the vibration.
Another‘important quantity in damped vibration analysis is the
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energy lost per cycle due to the damping force. The total energy of

the system when it is in one of its extreme positions with zero velocity
is: e
The energy one cycle later is:
W = 3k(x — Ax)2
Therefore the energy loss per cycle is:
AW = Wy — Wa = pha? — 3ea? + ka(Ax) — }(A%)2

Expressing this energy loss as a fraction of the total energy of the
system gives:
o ofs) - (o
w % %

If the damping is small the square term can be dropped, and we have:

AW Ax
S 2(7) ~ 25 (5.11)

Thus for small damping the fraction of energylost per cycle is approxi-
mately equal to twice the logarithmic decrement.

PROBLEMS

5.18. At time ¢ = 0, the initial displacement of a damped harmonic
oscillator is xo, and the initial velocity is #9. Show that the free vibra-
tions of the system are described by the equation:

%= e—"‘[xo cos Vp? — n% + \/———— sin vVp2 — nzt]

5.19. Critical damping is defined as that damping for which # = p.
(a) If the damping is less than critical, show that the logarithmic decre-

ment can be written:
2 (" )
———tt

Ji- G

where #, = p = damping factor for critical damping.
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(b) Show that for small damping the logarithmic decrement can be
written:

5 zw(ﬁ) (5.12)
#e

5.20. A single degree of freedom oscillator having an amount of viscous
damping just equal to the critical damping value is initially at rest. At
time £ = 0 a velocity Vy is given to the mass. Find the maximum
deflection of the mass in the direction of the initial velocity.

5.21. Solve the differential equation of motion for the critically damped
oscillator, # = p. Evaluate the constants of integration and determine
whether the displacement can change sign during a free vibration.

5.22. A simple pendulum of length / and concentrated mass m is con-
nected to a dashpot with a viscous damping coefficient ¢ at a distance a
below the point of support as shown in the figure. Find the logarithmic
decrement for small oscillations of the system in terms of the given
parameters.

ProB. 5.22 Prog. 5.23

5.23. A mass is constrained to move in a straight line on a horizontal
frictionless surface by a spring and viscous dashpot connected in series, as
shown in the figure. Find the equation of motion for the mass.

5.24. A mass weighing 10 Ib is restrained by a spring which has
k = 15 Ib/ft and is acted upon by a viscous damping force. It is observed
that at the end of four cycles of motion the amplitude is reduced by one-
half. Find the damping factor # and the period of the vibration.

5.25. A drop hammer is found to transmit an objectionable shock to
the surrounding ground. To eliminate this, the machine is mounted on
springs, as shown in the diagram. To prevent undue vibration of the
system after impact, damping is introduced as shown by the dashpot.
The constants of the systems are:

Wy = 2000 1b
W, = 30,000 Ib
h =81t

k (for all springs) = 250,000 Ib/ft
n = 0.8 sec!
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The weight W, falls through a distance # and makes a plastic (no rebound)
impact with W3. The resulting motion of the system is a free vibration
with damping. Find the maximum displace-
ment of Wy, and the displacement three com-

plete cycles after the maximum displacement

occurs,
5.6 Forced Vibrations. Vibrations b

which are maintained by an exciting force y

are said to be jforced vibrations. We shall
now develop the complete solution for the W,
motion of a damped, simple harmonic oscil-
lator acted upon by the sinuscidal exciting
force Fy sin wt. The differential equation
of the motion (Equation 5.2) is:

Pros. 5.25

Fo
£+ 2nx + p2 =7n—°sm wt

The solution of this equation may be written as the sum of two
terms:

x = ¢~#[Cysin V2 — n2 + Cgcos V2 — n] + f(t)

for we have found from the preceding section that the first term,
when substituted into the differential equation, gives zero. There-
fore, a function f(#) must be added of such a form that it will yield

%0 sin wt when substituted in the equation. This second term is

called the particular solution. Since two arbitrary constants
already appear in the first term, no further arbitrary constants need
be included.

The particular solution in the present problem may be found by
taking a trial solution:

x = A sin wf + B cos wt

where the values of 4 and B are to be determined from the condition
that the differential equation must be satisfied. Substituting into
the equation the expressions:

%2 = Aw cos wt — Bw sin wt
{ = — Aw?sin w/ — Bw?cos w!
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gives:
— Aw?sin wt — Bw?cos wt + 2nAw cos wt — 2nBw sin wt
. Fo .
+ p24 sin wt + p2B cos wi = ﬁosm w!t
or:
(- Aw? — 2nwB + p24) sin wt
+ {(— Bw? + 2ndAw + $2B) cos wt = %Sin wt
This equation must be identically satisfied, which means that the
coefficient of the sin wt on the left side of the equation must equal
the coefficient of the sin wt term on the right side of the equation,
and the coefficient of the cosine term must equal zero. Hence:
F
(p? - w2)d + - 2nw)B = ﬁ"
(2nw)A + (p? — w?)B =0

These two algebraic equations determine the proper values of

A and B:
Fo
(W) (= 2no) Fo .,
4= 0 (pg_wz) 3 ;;(P —w)
ST =D (= 2na)] | (BT - wHE & dnted
(2nw) (p% - w?)
W Fo
@ - (5) R
B L (2w 0| _ “m

(p? — w?)? + 4ntw? - (p% — w?)? + nlw?
Writing the solution x = A4 sin wf + B cos wt in the form

x = VA% + Btsin (wt — ¢)

we have:
Fo
m .
X = Ve — w7t 1 intat sin (wt — ¢) (5.13)
“where:
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The complete solution of the differential equation is thus:

x = ¢™™[Cy sin Vp? — n2 + Cacos VP2 — nif)

Fy
m
+ \/(Pz - w?)? 4 4n2u2

sin (wf — ¢) (5.15)
Equation (5.15) represents a superposition of two motions. One has
a frequency EIT—T\/ $? — n? and an exponentially decreasing amplitude,

and the other has a constant amplitude and the frequency El;w.

Fi1G. 5.6

This motion is shown in Fig. 5.6 for p > w. Because of (e~ the
first term of the expression decreases with time, and after a sufficient
time it can be considered to be damped out, leaving the motion
described by the second term. - For this reason the first is called the
transient term, and the second the steady-state term. The character
of the transient term depends upon the initial conditions of the
motion, whereas the steady state vibrations are independent of the
initial conditions and depend only upon the forcing function and the
parameters of the system.

The most important item in forced vibration problems usually is
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the amplitude of the steady forced vibration. Calling this amplitude
A (Fig. 5.6), we have:

Fy

m
V(9?2 — w?)? + 4n2u?

Dividing numerator and denominator by $2, and remembering

A =

that p2? = %, we obtain:

Fy
3

22 7\ {w) ]2
=G+ GG
*/ [ ? pI\P
It is customary to express the damping as a fraction of critical

damping, where critical damping #, is defined by #, = p (see Problem
5.19). We write:

5 T OT R

It will be noted that the term (59) is the deflection which the system

A=

(5.16)

&
would have under the action of a static load Fy: that is, it is the
deflection of the system under a forcing function with zero frequency.
The expression on the right side of the equation thus represents a
dynamic amplification or magnification factor and gives the ratio
between the dynamic and static deflections. The variation of this
magnification factor with frequency ratio and damping ratio is
shown in Fig. 5.7. The most significant feature of Fig. 5.7 is the
w
?

can become very large if the damping ratio is small. The infinite

value indicated at (-’1

fact that, near the frequency ratio ( ) = 1, the magnification factor

n) = 0 would, of course, not exist in practice,
C,

since it is impossible to reduce the damping to zero, and since it
would require an infinite time to reach the infinite amplitude even
if the damping were zero. The occurrence of large displacements near
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(%) = 1 is called resonance, and the frequency for which w = p is
called the resonant frequency.

If the damping is small, the maximum amplitudes occur very near

(f—;) = 1, so that the maximum amplitude may be approximated
very closely by setting (%) = 1. Thus we have:
Fo

Ares == k ) (5017)

2(3
Ne,

As an example, we might note that the damping ratio (;?) for an

(4
aircraft structure, such as a wing, has a magnitude of approximately

~ 0.03; thus theresonant amplitude would be approximately 16 times the
static deflection. Thisillustrates the danger of resonant conditions in
structuresand machines. However, if resonant vibrations of excessive
amplitudes occur, it is possible to improve conditions by changing
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the frequency ratio or by increasing the damping in the system.
The steady forced vibration is

x = 4 sin (vt — ¢)

The angle ¢ gives the phase relation between the motion and the
exciting force, The phase angle is given by:

) 26 [RG)
¢—tan1(P27iw2)—-tan1i-———_(§T—tanl f-—(--_i—)-z—

If (—E) << 1, that is, if the forcing frequency is relatively low, then ¢

is small, and the motion is nearly in phase with the exciting force.
W

If (;) >> 1, that is, if the forcing frequency is high, ¢ is nearly 180°,

showing that the motion is oppositely directed to the exciting force.

At resonance (f—;) = 1 and ¢ = 90° for all values of the damping so

that the exciting force is in the direction of the velocity.

PROBLEMS

5.26. (a) Show that the energy input per cycle, Wy, of the exciting force
is equal to: .

Wi = [F dx = [Fidt = [(Fosin wf)[Aw cos (wf — ¢)] df = mFod sin ¢

(b) Show that the energy dissipated by the viscous damping force per
cycle is:
Wq = cnd?w

(¢c) By equating the energy input and the energy dissipation, show that
the steady state amplitude of a resonant vibration is:

Ares = —
and that this reduces to the same expression as was previously derived for
Ares. Plot, on a graph of energy per cycle versus amplitude, the energy
input and the energy dissipated at resonance and indicate the steady state
amplitude. :
5.27. A mass m restrained by a spring with a constant % is initially at

rest. At timef = 0, it is acted upon by an exciting force F(f) = Fg cos wf. .
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w
2
weighs 10 1b, £ = 20 lb/ft, Fo = 100 Ib, find (a) the amplitude of the forced
vibrations, and (b} the amplitude of the free vibrations.

5.28. An undamped spring-mass system, which under gravity has a
static deflection of 1 in., is acted upon by a sinusoidal exciting force which
has a frequency of 4 cycles per second. What damping factor #» is
required to reduce the amplitude of the steady-state forced vibrations to
one-half the amplitude of the undamped forced vibrations?

5.29. A support S has a motion y = ygsin w? and is attached to a
spring and dashpot as is shown in the figure. (a) Find the amplitude of
steady forced oscillations of the system. (b) How is this amplitude
changed if the dashpot is connected across the spring instead of to ground ?

Assuming no damping, and given that = 10 cycles per second, m

Y=Y, sin wt

%

Pros. 5.29 Prog. 5.31

5.30. {a) Find the frequency ratio (w/p) for which the maximum ampli-
tude of a simple harmonic oscillator with viscous damping and a sinusoidal
exciting force is obtained. (b) Show that for small damping this fre-
quency ratio is approximately 1 — (n/n¢)2. (c) Find the minimum value
of the damping ratio for which the dynamic amplification in the system
is never greater than unity.

5.31. A mass m rests on a horizontal lubricated surface which may be
considered as having viscous friction with a damping constant ¢. A
sinusoidally varying horizontal force Fy sin wf is applied to the mass as
shown. Find the amplitude of the steady state sinusoidal component of
the resultant motion.

5.32. An unbalanced rotating mass is supported by a spring of constant
%k across which a dashpot giving a viscous damping force c% is connected.
The mass rotates with an angular velocity w, and the center of mass of the
rotating body is at a distance ¢ from the axis of rotation. Find the

amplitude A of steady-state forced vibrations and plot a curve of (2)

?
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versus (é) for several values of the damping ratio (;:i) The system is
(4

constrained so that the motion x is rectilinear. Note: The effect of the
unbalanced mass is equivalent to a smaller mnass m’ at a larger distance 7
from the center of rotation. By assuming that the vibratory amplitude
is small compared to 7, the motion of the small mass ' can be taken as

circular.

7
% /K__

7 Eanz 'T—‘ A

L} |ar

) Z ' K

) ( frequency
Prog. 5.32 ProB 5.34

5.33. A single degree of freedom linear oscillator with viscous damping
is acted upon by a harmonic force Fg sin wf. Determine the energy dis-
sipated per unit time, and find under what conditions an increase in
damping produces a decrease in the energy dissipated per unit time.
How would this be accounted for physically ?

5.34. Show that for small amounts of damping the width of the reson-
ance curve Af at a point where the amplitude is 1/4/2 times the resonant
amplitude is given by the relationship:

af =Y
w

where 8 is the logarithmic decrement, f is the resonant frequency of the
system.

5.35. An automobile, without shock absorbers, may be represented
approximately as a concentrated mass m supported by a spring having a
constant k. The automobile runs with a velocity v over a hollow in the
road which can be represented by the cosine curve

= a] ngf)
y"”ﬂ T8

Neglecting damping, find the vertical acceleration of i when x = /.
5.36. In the arrangement shown in the figure, a scotch-yoke mechanism
drives a piston with a frequency w and an amplitude yo. There is
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Pros. 5.35

viscous friction with a ccefficient ¢ between the piston and a cylinder of
mass m, which is constrained to move in a straight line, and which is
supported by a spring of spring constant . Find the amplitude of steady
state forced oscillations of the mass, and sketch a typical resonance curve
for the motion of the mass. The effects of any compressed air in the
cylinder may be neglected.

w
-
C7ZT— —— D
F@
[
" )
F
4
k 0 t
%
I’ros. 5.36 Pron, 5.37

5.37. A step function as shown in the diagram is applied to an undamped
harmonic oscillator; that is, when-¢ = 0, a constant force of magnitude F
is suddenly applied to the system. If the velocity and displacement of the
oscillator are zero at time ¢ = 0, find the subsequent motion.

5.38. Attime? = 0, a step function of the type described in Problem 5.37
is applied to an undamped, simple harmonic oscillator. After a time T
the constant force F is suddenly removed, resulting in a forcing function
of the type shown in the figure. The velocity and displacement of the
mass are zero when ¢ = 0. :
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{a) Show that the displacement of the oscillator subsequent to the time
T is given by:

X = 25;: sin (222) sin (pt — ¢)

{b) The total impulse acting upon the system in this problemis I = FT.
If I remains constant while T approaches zero, what is the amplitude of
the resulting motion? Note that for T sufficiently small:

‘%?: X sin (?Z_T)

Check this answer by treating the problem as a free vibration, with an
initial velocity given by the impulse-momentum equation.

F(¢)

fg——— ']

Pros. 5.38

5.39. A sinusoidal alternating force is applied to a single degree of
freedom harmonic oscillator having viscous friction. When ¢ = 0, the
displacement and the velocity of the oscillator are zero. If the frequency
of the alternating force is just equal to the undamped natural frequency
of the system, show that for small amounts of damping the time required
to attain an amplitude of vibration equal to 909 of the resonant amplitude
is:

(¥4

2.
-
where:
t = time to reach 909, of resonant amplitude
8 = logarithmic decrement

f = resonant frequency

How many cycles of the vibration occur in the time ¢?

5.40. A single degree of freedom vibrating system consists of a mass m
supported on a horizontal surface and restrained by a horizontal linear
spring of spring constant k. A constant coulomb friction force of magni-
tude F exists between m and the horizontal surface. A sinusoidal exciting
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force Fg sin wt acts on the mass, which may be assumed to be vibrating
with a steady state amplitude 4. (a) Find the energy dissipated per cycle
by the coulomb damping force. (b) Equate this energy dissipation to the
energy loss that would occur if the damping force were viscous, with a
damping coefficient ¢, and thus solve for the ‘‘equivalent viscous damping
constant.” (c) Substituting the equivalent dampmg factor ¢ into the
known equation for the resonance curve with viscous friction, solve for the
value of the steady state amplitude of vibration of the system containing
coulomb friction. This will, of course, be only an approximate solution,
but a more detailed analysis shows that the accuracy is satisfactory for
many engineering applications.

5.7 Vibration Isolation. One of the useful applications of
vibration theory is to the vibration isolation of instruments and
machinery. As a first example, we shall consider the problem of
mounting an instrument so as to mini-
mize the transmission of vibration from

) . ¥Y=Y,sinwt
the supporting structure to the instru-
ment. In many applications delicate ¢ ,_’ e
instruments must be used in structures k
which have appreciable amplitudes of m
vibration. Unless the instrument can :,
be isolated from its support it may be ¢
impossible to make accurate measure- FiG. 5.8

ments. Suppose that the support S
in Figure 5.8 has a motion ygq sin «wf. The mass of the instrument
is m, and it is attached to the support by a spring 2. The damping
in the system is represented by a dashpot having a viscous damp-
ing constant ¢. Letting x be the amplitude of motion of the instru-
ment m, we have as the differential equation of motion:
mi+c(x—9) +kx—-y =0
mx + ci + kx = ky + ¢y = kyosin w! + cyow cos wt

£+ 2n% + p%x = )—;;: (k sin wt + cw cos wt)

Writing the right side of the equation as:

}:ﬂ(ksmwt-ruucoswt) _yo k% + (cw)?sin (wf — B)

we see that its effect is the same as a sinusoidal exciting force, so that
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this is an equation of the same type as Equation (5.2), and the same
solution can be used. Putting Fo = yo VA2 + (cw)? in Equation
(5.16), we have for the amplitude of the steady-state forced vibration:
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. TEEr e
T ET e

Thus the effectiveness of the mounting in reducing the amplitude is
measured by the expression on the right side of Equation (5.18).

The appearance of this function for various values of (%) and (}:—)
(

is shown in Fig. 5.9, where it will be noted that at any frequency
ratio greater than 4/2 the amplitude of the mass will be less than the
amplitude of the support. The main difference between this

resonance curve and that given in Fig. 5.7 is that for (—;—’) >1/2
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the damped curves are above the undamped curves. This means
that the presence of damping decreases somewhat the effectiveness of
the mounting. A certain amount of damping, however, is essential
in order to maintain stability under transient conditions and to
prevent excessive amplitudes should the vibration pass through
resonance during the starting or stopping of the motion of the support.
A second type of vibration isolation problem is illustrated in
Fig. 5.10. Suppose that a machine, as a
result of unbalanced rotating masses, exerts
an alternating force of m'rw? sin w? upon its
foundation where the mass of the rotating 4o
unbalance is 7' and the effective radius ». If m
the machine is rigidly fastened to the founda- @
tion, the force will be transmitted directly to m
the foundation and may cause objectionable ]
vibrations. It is desirable to isolate the l
machine from the foundation in such a way 2k ¢
that the transmitted force will be reduced.
Letting x be the displacement of the total % %
mass m of the machine, we have, from the Fic. 5.10
analysis previously made (Prob. 5.32):

N\

N

.

m'yw?
R .
x = sin (wf — @)

272 7\ fw) 12
)T GG
4/ [ (1’ Ne, P)
The only force which can be applied to the floor is the spring force kx

and the damping force c%; hence, the total force acting on the founda-
tion during the steady state forced vibration is:

mrw?

F=rFky+ci= . sin (w? — )
J- T+ ERET
om'rw?
+ k = w COS (wt — f)
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The amplitude of the resulting transmitted force is:
cw\?
,\/ 1+ (T)
272 MYINE
)] PRIG
J[ (P ne/ \p/1
Since m'rw? is the amplitude of the force which would be transmitted

if the springs were infinitely rigid, we have as a measure of the
effectiveness of the isolation mounting the expression:

p o JOFREN
TG R

This is called the transmissibility of the system. It is exactly the
same as Equation (5.18) obtained for the vibration isolated instru-
ment, and Fig. 5.9 also represents the solution of the present problem.
The frequency ratio and the damping have the same influence on
the transmissibility as they had on the vibration isolation.

rw?

PROBLEMS

5.41. The amplitude of vibration in an airplane at the point at which it
is desired to mount instruments is 0.015 in. and the frequency of the
vibration is 1800 cycles per minute. The amplitude of the instruments is
to be limited to 0.002 in. The instruments, along with the panel and
mounting bracket, weigh 50 Ib. Four rubber shock mounts are to be
used, spaced in such a way that they are all equally loaded. Find the
spring constant required for the rubber mount, assuming that damping
can be neglected.

5.42. An instrument panel is mounted on a suspension system having a
static deflection under gravity of 1/4 in. It is subjected to vibrations
whose frequency corresponds to one-half of the speed of an engine which
runs at 2000 rpm. What percentage reduction in amplitude of vibration
is to be expected from this suspension system? Neglect the effects of
damping.

5.43. An automobile body weighing 3000 Ib is mounted on four equal
springs which sag 9 in. under the weight of the body. Each of the four
shock absorbers exerts a damping force of 7 1b for a velocity of 1 in./sec.
The car is placed with all four wheels on a test platform which is moved
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up and down sinusoidally at resonant speed with an amplitude of 1 in.
Find the amplitude of the car body on its suspension system, assuming
that the center of gravity is at the center of the wheel base so that the
system can be treated as one degree of freedom for vertical motion.

5.44. The characteristics of a railway passenger car and its helical
spring suspension system -are such that the total static deflection of the
system is 10 in. The train travels over tracks that are slightly wavy, with
a wavelength of 33 ft. Assuming that the rail waviness can be approxi-
mated by a sine wave, what percent of the rail amplitude would be trans-
mitted to the car at speeds of 25 mph and of 90 mph? Discuss the
importance of damping in the system for this problem.,

5.45. A refrigerating unit consisting of a 1725 rpm electric motor
driving a reciprocating compressor at 575 rpm is to be mounted on four
equally loaded springs for purposes of vibration isolation. The whole
assembly weighs 100 1b. If the principal vibrations occur at a frequency
corresponding to the compressor speed and if it is assumed that only
vertical forces and motions need be considered, find: (a) The required
static deflection of the spring system, in order that only 19, of the com-
pressor shaking force be transmitted to the supporting structure if damping
in the system is assumed to be negligible; (b) the spring constant in Ib/in.
for each spring for the conditions of part (a); (c) the percent of motor
unbalance force which would be transmitted to the supporting structure
for the springs of part (a).

5.46. A machine having a total weight of 20,000 1b has an unbalance
such that it is subjected to a force of amplitude 5000 1b at a frequency of
600 cycles per minute. What should be the spring constant for the sup-
porting springs if the maximum force transmitted into the foundation due
to the unbalanceis to be 5001b? Assume that damping may be neglected.

5.47. An instrument whose total weight is 20 Ib is to be spring-
mounted on a vibrating surface which has a sinusoidal motion of amplitude
1/64 in., and frequency 60 cycles per second. If the instrument is mounted
rigidly on the surface, what is the maximum force to which it is subjected ?
Find the spring constant for the support system which will limit the
maximum acceleration of the instrument to one-half the acceleration of
gravity. Assume that negligible damping forces have caused the tran-
sient vibrations to die out.

5.48. Show that a vibration isolation system is effective only if

(w/p) > V2.

5.8 The Design of Vibration Measuring Instruments. Sup-

- pose that the structure S in Fig. 5.11 is vibrating harmonically with

an unknown amplitude y¢ and an unknown frequency w. To
measure ¥ and w we may attach to the structure an instrument
which consists of a mass m, a spring %, and viscous damping c.
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The output of the instrument will depend upon the relative motion

between the mass and the structure, since it is this relative motion

which is detected and amplified by

. mechanical, optical, or electrical means.

[ ¥=Yesinat Taking x as the absolute displacement

7 r‘-" of the instrument mass, the output of

the instrument will be proportional to

m z = (x — ). The equation of motion
of the instrument mass is:

mi+cx—9) +R(x—-9y)=0
Fic. 5.11 Subtracting (my) from each side of the
equation gives:

L
—e

mi + ¢ + kz = — mj = myow?sin wt

This equation is the same as Equation (5.2), so that the solution for
steady forced vibrations is:

= (%) 2 Yo sin (wt — ¢)
JE- T RGN

z = Qyosin (w! — ¢) (5.20

or

The instrument will read the displacement of the structure directly
n

ifQ = 1and ¢ = 0. The variation of Q with (%) and (n) is shown

C,
in Fig. 5.12. It is seen that if (%) is large, ( is approximately equal
to 1, and ¢ is approximately equal to 180°; we conclude, therefore,
that, to design a displacement pickup, (-‘;) should be large, which

means that the natural frequency of the instrument itself should
be low compared to the frequency to be measured.
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We next consider the region of the diagram where (%) is small.

¢ is then approximately equal to zero, and the quantity
1
272 2
T PRIG)
Ji-G)7T+ PG b

is approximately equal to 1. The expression z = Qyp sin (w? — ¢)
then becomes:

1
2 = — Yow? sin wi
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Fi1G. 5.12

Since yow? sin wt is the acceleration of the structure, the instrument
output is proportional to the acceleration. We thus conclude that,

to design an accelerometer, (%) should bé small, which means that

the natural frequency of the instrument itself should be high com-
pared to the frequency to be measured.

 Instruments designed according to the foregoing criteria will have
characteristics which are independent of frequency. Such instru-
ments can be used outside of the specified range if the exact curves
of Fig. 5.12 are used.
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PROBLEMS

5.49. It is desired to design an instrument to measure the vertical
oscillations of the Golden Gate Suspension Bridge. The bridge has a
vertical frequency of approximately 1/7 cycles per second and the ampli-
tude may at times reach 4 to 5 ft. An instrument of the type shown in

Recording Drumi L_l____—__

ProsB. 5.49

the diagram has been suggested. Would it be better to design this instru-
ment as an accelerometer or as a displacement meter? What would be a
satisfactory frequency for the spring-mass system in the instrument ?
5.50. A simple instrument for determining the frequency of vibration
is constructed on the principle indicated in the diagram. A flat strip of
metal is mounted as a cantilever beam of length /. The free vibrations of

the strip are given by x = A sin pt where 2 = L and where £ is a constant
P y 7

depending upon the proportions and material of the strip. The instru-
ment is constructed so that the length can be varied. If the instrument

Pros. 5.50

is mounted upon a vibrating body whose frequency is w, the amplitude will

depend upon the ratio of the forced frequency and the natural frequency. -

At resonance this amplitude will be large, so that by varying ! until the
amplitude is a maximum the forcing frequency can be determined.
Write the expression which gives the frequency of the vibrating body as a
function of the length of the strip.

5.51. For measuring the vertical vibrations of a machine foundation,
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an instrument of the type shown in Fig. 5.11 is used. The spring-mass
system of the instrument has been designed so that the static deflection is
3/4in. The frequency of the vibration
- corresponds to an engine speed of 1500
rpm. The amplitude of the relative
motion between the instrument mass
and the foundation is determined, from 7§ T
a dial gage reading, to be 0.008in. Find 1in
the amplitude of the foundation. The <*7. L
damping in the instrument has a magni- |
- tude of 709, of critical damping. ¥
5.52. The seismic element of a vibra-
tion measuring instrument consists of a
concentrated mass weighing 1/40 1b
attached at the midpoint of a wire Pros. 5.52
whichis2in.long. The wireis stretched
by a tension force T which can be assumed to be constant for small trans-
verse oscillations of the mass. Find T to give a transverse natural
frequency of 30 cycles/sec. Neglect the mass of the wire and gravity
forces, and assume negligible damping in the system.

5.9 Vibrations with Non-periodic Forces. The analysis of the
preceding sections is sufficient to treat vibrations with sinusoidal ex-
citing forces. Since any periodic forcing function can be represented
by a trigonometric series, the analysis can be extended, by using
the principle of superposition, to include the solution for a general
periodic forcing function. For non-periodic exciting forces, however,
it is desirable to develop a different method of approach. We shall
limit the following analysis to undamped systems, although it is pos-
sible to extend the same method to damped systems (see Prob. 5.60).

We shall consider first the motion of an undamped spring-mass
system to which a single impulse is applied. Referring to Fig. 5.13,
an impulse (FoAt) will produce an initial velocity %o which can be
determined by the equation of impulse and momentum:

FoAt = miyg
) FoAt
Xo =
m

The displacement x of an undamped system performing free vibrations
is given by Equation (5.3):
x = x—;sinpt + %0 cos Pt
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Fic. 5.13

FoAt . . .
We have %o = -;;— and xo = 0 if we measure time from the point of

zero deflection, so that:
‘= FoAt
mp
Having found the motion under the action of one impulse, we may
now, by the principle of superposition, find the motion under the
action of any arbitrary forcing function. It is only necessary to let
the arbitrary function be represented by an infinite number of
impulses. Suppose that the curve of Fig. 5.14 represents an exciting
force, which is applied when ¢ = 0, and that it is desired to determine
the displacement at time 7. Consider the force to be divided into a
large number of impulses, of which one, F(¢) d¢, is shown in the
diagram. The displacement x at the time 7" due to this impulse can

sin pt (5.21)

F

F(t)

r€<———-1

Y
A
T

Fic. 5.14
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be determined from Equation (5.21). In Equation (5.21), ¢ represents
the time which elapses between the application of the impulse and
the measurement of the displacement. Thus at T, which is (" — ¢)
after the impulse is applied, we have:

dx = F(;)P‘” sin p(T — 1)

We use the notation dx because this represents only the contribution
of one impulse to the displacement x. To find the total displacement,
the effects of all of the impulses from O to T must be added, which
means that the expression for dx must be integrated, giving:

1 (T .
1=z fo F(t) sin p(T — t) dt (5.22)

With this equation, the motion can be computed for any undamped
system which has zero initial velocity and displacement. If F(¢)
is given as a graph or as numerical data, instead of in analytical
form, the integration can be carried out by graphical or numerical
methods, and one of the advantages of the equation is its adaptability
to solutions of this type.

A more formal derivation of the equation can be obtained in the
following way. The differential equation of motion for an undamped
system with an exciting force F(¢) is:

i+ plx = %F(t)

Multiplying through by the integrating factor sin p(T" — ¢) and
integrating, this becomes:

fT #sin p(T — ¢) dt + prZx sin p(T — ¢) dt
0 0 | pr .
= fo E(t) sin p(T — t) dt
Integrating the first term twice by parts reduces this to:

#sin p(T — 1)

T
0

T T
+j>xcosp(T——t)| =—1—f FE(t)ysin p(T — t) dt

0 m Jo

. Substituting the limits of integration and solving for x gives:

—IJTF(t sinp(T — #) dt + 2 sin pT + xo cos pT (5.23)
v =5 ), F)sinp 5 sin pT + x0 cos p :
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If we take as the initial conditions %y = %¢ = 0 when T = 0, this
expression becomes:

x = ’—n%f:m) sin p(T — t) dt

which is the solution derived by the superposition of impulses.
ExaMpLE. To illustrate the application of the method we shall
solve a problem which we have already solved by other methods.
Suppose that a sinusoidal exciting force Fy sin wi is applied; then
% is given by:
' x = ﬂfTsinwtsinp(T—t)dt
mﬁ 0

Making use of the trigonometric relation
sin 4 sin B = }[cos (A — B) — cos (A + B}]
the displacement may be written:

Fo (T
x = 2mp Jo {cos[(w + p)t — pT] — cos [(w — p)t + pT1} dt
Carrying out the integration, we obtain:
x = Fo L (sin wl — %sin pT)

This solution represents the superposition of a free vibration of
frequency p/27 and a forced vibration of frequency w/2n, so that it
contains both the transient and the steady-state terms. The
amplitude of the steady forced vibration is:

A Fo L _Fer_ 1
e
? ?
This is the same as Equation (5.16) with the damping set equal to
zero.

PROBLEMS

5.583. Carry out the integrations indicated in the preceding example for
a sinusoidal exciting force and check the result:

o 1 (sin ol —

w

3 sin pT)
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5.54. Show that the solution for damped forced vibrations

x = e~™[Cy sin V2 — n2 + Cz cos VT = n?t)
Fy
m

V(P2 = w?)? + dn2w?

¢ = tan—1 (pzzﬁwwz)

+

sin (wt — ¢)

reduces to the expression found in Prob. 5.53 when damping is put equal
to zero.

5.55. Anundamped vibrating system is at rest until time ¢ = 0, when a
step function Fy is applied, as shown in the diagram. Find the resulting
motion by the integral method of the preceding section and show that the
maximum displacement is twice the static deflection of the system.
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Pros. 5.55 Pros. 5.56

5.56. Suppose that a sinusoidal exciting force Fp sin ¢ having the same
frequency as the natural frequency of the undamped oscillator is applied
at time { = 0. Show that the displacement is given by:

.. Fo (sin pT

T Imp\" P

Thus the resonant amplitude of the system builds up with a linearly
increasing term. Use the integral method for this problem.

5.57. The motion of a single degree of freedom undamped system under
the action of a rectangular pulse as shown in Figure (a) was discussed in
Prob. 5.38.

(a) Solve the corresponding problem for ¢ > = for the linearly decreasing
exciting force shown in Figure (b) under the condition that the total
impulse in both cases remains the same. (b) Assuming that 7 is small
compared with the period of free vibrations of the system, simplify the

— T cos pT)
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results of part (a) for the two types of exciting pulses and compare the
answers.

(a) (b)
Pros. 5.57

5.58. An undamped spring mass system is acted upon by a transient
force having the form of a single triangular pulse, as shown in the figure.
The force increases linearly to a value Fy at a time 7, and then drops to
zero. Find the displacement of the mass at any time, if it has no initial
displacement or velocity.

Fit)

ProOE. 5.58

5.59. A flexible cable of cross-sectional area 4 and modulus of elasticity
E supports an elevator which is being lowered with a constant velocity V.
At the time ¢/ = 0, when the length of the cable is /, the top of the cable is
stopped with a constant deceleration 4. Find the displacement % of the
elevator, measured from its position at ¢ = 0, as a function of time during
the deceleration period. The length of the cable may be considered as
constant at / during the deceleration period.

5.60. Show that for a system having viscous damping, the integral
solution is:

1 T —
¥ = ey P -0 sin VI T — g ar
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5.61. The integral form of the solution for the motion of a spring-mass
system can also be derived from the differential equation by use of
Lagrange’s method of the “variation of parameters.” Carry through the
- solution of the equation m% + kx = F(f) by this method, and show that
Equation (5.22) is obtained.

5.62. Show by integrating by parts that the integral solution for the
undamped oscillator may be written:

(‘—’k: - x) = mL;‘)Z J:)T (%) cos p(T — t) dt

F
dF
A
T‘
0 t
< t)—’—<—~(T—t y——>
< T >

Pros. 5.62

where xp = %o = 0 and F(¢) = 0 when ¢ = 0. Show that this method of
solution is equivalent to cutting F into horizontal slices as shown in the
figure, and summing the effect of the successive incremental step functions.

5.10 Oscillations in Electric Gircuits. Oscillation problems
of the type treated in this chapter are also of frequent occurrence in
electrical circuit analysis. Consider
an electrical circuit consisting of
an inductance L, a capacitance
C, and a resistance R as shown in
Fig. 5.15. These elements are
connected in series with a source [ Eosinwt
of alternating voltage with an &

I C R

amplitude Ey and a frequency -2% FiG. 5.15

The equation describing the behavior of the system is obtained by
equating the applied voltage to the sum of the voltage drops across
the three elements. If the current in the circuit is 7, then the voltage
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di
drop across the inductance is L — 7

o fz dt, and that across the resistance is RZ. The equation thus is:

that across the capacitance is

Eosin wt = L;—;'+ Ri + -é—fidt
If Q represents the electric charge, then:
Y
at
and the equation may be written:
120, %, Q Eo sin wt (5.24)

dt2 r7
It will be seen that this equatlon has exactly the same form as
Equation (5.2), which describes the motion of a mechanical vibrating
system, with the following analogous quantities:

Electrical System Mechanical System
Inductance, L Mass, m
Resistance, R Coefficient of viscous damping, ¢
Reciprocal of Capacitance, Cl Spring constant, %
Exciting voltage, E Exciting force, F
Electrical charge, Q Displacement, »
Current, Velocity, »

The results of the analysis for the mechanical system can therefore
be applied to the electrical system, and the solution of the differential
equation is:

_ .Jl R\? A/1 R\2
Q—eZL[Cls;n L—C-—(Q—L-)t+Czcos L_C_(Ef,) t]

+ Asin (wt — ¢) (5.25)

where:
Eq
T
4=—= z  R?
A/[fé - wz] + — w?
and:
Rw
¢ = tan—! 1 L
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Just as in mechanical systems, the solution consists of a transient
term and a steady-state term. Because of the resistance in the circuit
the electrical transient vibrations die out in time, leaving the forced
steady-state oscillations.
To find the steady-state current 7 in the circuit, we write:

. odQ Eow/L
1 = oo = —
dt 1 AR
[L_C—w} T

The amplitude of the steady-state current is:

cos (wt — ¢)

T ——
J (w_c - wL) + Re (5.26)

iy =

2
The quantity «/ (;—% - wL) + R?is called the electrical impedance

of the circuit, (-—C) is called the capacitive reactance of the circuit,
w

and (wl) is called the inductive reactance. It will be seen that

wC

resonant current is limited only by the resistance in the circuit.

Because of the analogy between electrical and mechanical problems,
it is often possible to transfer solutions from one field directly to the
other, thus saving duplication of work. Such analogies are also
often used for experimental solutions. It is usually much easier to
build an electrical circuit and to make measurements on it than it is
to construct and test the analogous mechanical system. Electrical
Analog Computers, which operate on this principle have been con-
structed so that many different combinations of electrical elements
can be set up, and in this way complex electrical, mechanical, and
thermal problems have been solved.*

resonance occurs when (—1——) = {wL) and that the magnitude of the

) * See, for example, H. E. Criner, G. D. McCann, and C. E. Warren, ‘A New
Device for the Solution of Transient Vibration Problems by the Method of
Electrical-Mechanical Analog.” Journal of Applied Mechanics Vol. 12 (1945),
p. 135, or the book by W. W. Soroka, Analog Methods in Computation and
Simulation, New York: McGraw-Hill Book Company, Inc., 1954.
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PROBLEMS

5.63. At time ¢ = 0, the switch S in the electrical circuit shown in the
diagram is closed, applying a voltage I to the series inductance and
capacitance. Find the way in which the current in the circuit varies with
time, assuming that the resistance in the circuit is negligible. What
would be the effect of resistance in the circuit ?

L R
L CI——‘ Q000 VWA

1] |1 s

Pros. 5.63 Pros. 5.64

5.64. At time ¢ = 0, a switch is closed applying a voltage E to an
inductance and a resistance which are in series. Find the relation
between the current and time. Show that the time required for the

current to reach (1 — é) times its final value is equal to L/R. Thisis

called the time constant of the circuit.

5.65. Show that the single degree of freedom mechanical oscillator can
be represented by a direct electric analog using a parallel or nodal type
circuit, in which the force in the mechanical system is analogous to the
current in the electrical circuit. Draw up a tabular comparison of the
analogous quantities in the mechanical system, the force voltage loop

Pros, 5.66
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system of the text, and this force-current system. Include in the table
masses, viscous damping element, velocity, spring constant, and
displacement.
5.66. Construct force-voltage loop electric analog circuits of the type
shown above in the text for the mechanical systems shown in the figure.
5.67. Construct force-current nodal electric analog circuits of the type
discussed in Prob. 5.65 for the mechanical systems of Prob. 5.66.



Chapter 6

PRINCIPLES OF DYNAMICS FOR SYSTEMS
OF PARTICLES

... the same law takes place in a system consisting of many bodies as in a
single body. For the progressive motion, whether of one single body, or of a
whole system of bodies, is always to be estimated from the motion of the center
of gravity.—I. Newton, Principia Philosophiae (1686).

In most dynamics problems it is not possible to approximate the
system by a single particle, but it must be treated as a collection of
particles. The system itself may be a solid body, a fluid, or a gas, but
in any event it may be thought of as a collection of particles, each of
which may be treated by the methods of particle dynamics. The
type of interaction between the individual particles will depend upon
the system being investigated, but certain general relations may be
developed which apply no matter what these interactions may be.
In the present chapter these general relations are developed, and in
subsequent chapters the consequences of the special characteristics
of the systems are treated.

6.1 The Equation of Motion for a System of Particles. The
equation of motion for a typical particle of a system is:

myfy = Fy + fi (6.1)

The subscript indicates that the equation applies to the ¢~th particle.
The resultant force acting upon the particle is written as the sum of -
an external force F and an internal force f. The external force
originates outside of the system, and represents the action of some

body or agency upon the system. The internal force originates
164
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within the system in the mutual actions and reactions between the
particles. - The reason for distinguishing between these two types of
. forces is that when the system as a whole is under consideration, the
sum of all the internal forces is equal to zero. This follows from the
fact that internal forces always occur in equal, opposite, and collinear
pairs and will thus cancel.* An equation of motion for the entire
system is obtained by adding the equations for the individual particles
and setting Xf; = 0:

Zm;i‘, = ZF(
Using the notation XF; = F, this becomes:‘
me =F ' (62)

6.2 The Motion of the Center of Mass. The center of mass of
a system of particles is defined as a point located by the vector r.
where :
_ me
ng

We may introduce this quantity into the equation of motion of the
system by writing Equation (6.2) in the form:
a2 a2

F = (me) == dtz

7 (reZmy)

Settmg Zmy equal to M, the total mass of the system of particles,
this becomes:
F = M#. (6.3)

Thus we may conclude that the motion of the center of mass is the
same as the motion of a particle, having a mass equal to the total
mass of the system, acted upon by the resultant external force.
The motion of the mass center is therefore a problem in particle
dynamics. This is the justification for having treated finite bodies
as particles in the preceding chapters.

The equation of motion of the mass center may be integrated with

* Collinearity of the internal forces is not always to be assumed. For
example, electromagnetic forces between moving particles are not collinear.
It will be found that collinearity is not required for the linear momentum

relationships, although it is required for the moment of momentum relation-
ships. See ref. 27, p. 9, 136-140.
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respect to time and with respect to displacement, to give the impulse-
momentum and the work-energy equations for the motion of the
center of mass. These are:

2
f Fdt = Mi. (6.4)
1

2
1

2
f * Pedro = (M7 (6.5)
1

1

It should be noted that these equations give only information as to
the motion of the center of mass of the system. The term M#. has
the magnitude and direction of the total momentum of the system,
but the location of the line of action of the total momentum vector
is not determined by this expression, for it does not necessarily pass
through the center of mass. The term }M#.2 does not represent the
total kinetic energy of the system, since the motion of the parts of
the system with respect to the center of mass will contribute
additional kinetic energy.

6.3 The Total Kinetic Energy of a System of Particles. The
total kinetic energy, T, of a system of particles is the sum of the
kinetic energies of the individual particles:

T = E%m;v;z

This expression may be put into another form, which is useful for
many problems, by referring the motion of each particle to the center
of mass of the system. As shown in Fig. 6.1, the vector p; represents

c.m.

Fic. 6.1
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the displacement of the z-th particle with respect to the center of
mass. For each particle, r; = r. + p¢, therefore:

(Fo) o(f5) = (Fo + po) =(Fc + 1)
= 7 + 2fcepy + pi2

'l)g2

and the kinetic energy may be written:

" o d r
T = Zimic? + fo- E(thm) + Z3mype?
Since p; is measured from the mass-center, we have Zm;p; = 0 and
the second term drops out. The first term may be written:

Z—%'mn’cz = 1’022%m¢ = %M?’cz

where M is the total mass of the system. Thus the kinetic energy

becomes:
T = }M7#e? + Zmype® (6.6)

The total kinetic energy may thus be said to be the sum of the energy
which would be obtained if all the mass were located at the mass-center
plus the kinetic energy of the system corresponding to the motion relative
to the mass-center.

The work-energy equation for a system of particles may be put
into a convenient form by using the same transformation. The total
work done by all the forces of the system is:

2 2
5 fl (Fy + f)-drs = fl S(Fs + £)-(dre + dpy)

2 2 2
= f1 F.dr, + fl Zfiedre + fl Z(Fe + fo)-dps

The sum of the internal forces is zero, %f; = 0; hence the second
term drops out. Equating the total work done to the change in
total kinetic energy, we have:

2 2
+ Zimaped
1 1

2 2
fl Fedr, + fl S(Fy + fi) -dpe = L1M7 2

We have already shown that the first term on the left is equal to
the first term on the right, so that the second term on the left must
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equal the second term on the right. We may thus write the two
independent equations: :
2

(6.7)

2
f Fedre = 1M7?
1 1

\ _
J; L(Fy + fi)rdpe = Zymips® (6.8)

The first of these equations describes the motion of the center of mass of
the system, while the second describes the motion of the system with
respect to the center of mass. The fact that these two equations can
be written independently of each other simplifies the solution of
problems by the energy method.

PROBLEMS

6.1. (a) Two particles of mass m, connected by a rigid weightless rod,
are acted upon by a force F; = constant. At time ¢ = 0, the system is
at rest as shown. Find the displacement of the mass center as a function
of time.

(b} Derive the motion of the mass center by setting up the equations of
motion for each particle separately and integrating.

- 1

A
o

y _—
| m
l ! E— r
e & T
0 %
PROB. 6.1 Pros. 6.4

6.2. Two barges of weight W and 2W are connected by a cable. The
cable is shortened to one-half of its original length / by turning a windlass
on one of the barges. Neglecting any frictional resistances, find the
distance moved by the heavier barge

6.3. A shell moving through the air is split mto two fragments of mass
m) and mg by its explosive charge, which adds an energy E to the frag-
ments. Find the relative velocity between the two fragments after the
explosion.

6.4. A cart of mass M, initially at rest, can move horizontally along a
frictionless track. When ¢ = 0, a force F is applied to the cart as shown,
During the acceleration of M by the force F, a small mass m slides along
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the cart from the front to the rear. The coefficient of friction between m
and M is p, and it is assumed that the acceleration of M is sufficient to
cause sliding.

(a) Write two equations of motion, one for m and one for M, and show
that they can be combined to give the equation of motion of the mass
center of the system of two bodies.

(b) Find the displacement of M at the time when 7 has moved a
distance / along the cart.

6.5. Three particles of mass, m, 2m, and 3m, are moving with constant
velocities in the directions shown. The motion takes place in the xy plane.

{a) Find the magnitude and the direction of the total momentum of the
system of three particles.

(b} Find the total kinetic energy of the system and compare with the

Pros. 6.5 Pros. 6.6

energy which the system would have if all of its mass were concentrated
at the mass center.

(c) If at time ¢ = 0, the particles are all located on the x-axis in the
positions indicated, what is the subsequent path of motion of the mass-
center ?

6.6. Two smooth prisms of similar right-triangular sections are arranged
on a smooth horizontal plane as shown in the diagram. The upper prism
weighs W b, and the lower prism weighs #W 1b. The prisms are held in
an initial position as shown, and are then released, so that the upper prism
slides down the lower prism until it just touches the horizontal plane.
Find the distance moved by the lower prism during this process.

6.7. A man of mass m stands at the rear of a boat of mass M as shown.
The distance of the man from the pier is S ft. What is the distance of the
man from the pier after he has walked forward in the boat a distance I?
Neglect friction between the boat and the water.
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Pros. 6.7 Pros. 6.8

6.8. Two particles each having a mass m are connected by a rigid bar
of length / whose mass is negligible. The system is initially at rest in the
position shown. At time ¢ = 0, a force F, of constant magnitude, acts
normal to the bar as shown. Write the work-energy equation for the

system with respect to the mass center, and show that: ¢ = % and
Fi2
* = 2ml

Note that these results are obtained without considering the motion of
the mass center.

6.9. Suppose that the system of Prob. 6.8 has an angular velocity
é = constant, the center of mass of the system is initially at rest, and at
time ¢ = 0 the system is released to fall under the action of gravity. What
is the total kinetic energy of the system at a subsequent time?

6.10. The system of Prob. 6.8 moves with angular velocity ¢ and the
linear velocity of the center of mass is v, vertically downward. When the
bar is in a horizontal position it makes an elastic impact as shown. Find
the subsequent motion of the system, assuming that no energy is lost
during the impact and assuming no gravitational force acting. Show that
there is an interchange of translational and rotational kinetic energy.

< ! >
I |
? AN °
m
7 v
? m P

Pros. 6.10 Pros. 6.12
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6.11. The system of Prob. 6.8 is initially at rest when an impulse FA¢,
normal to the bar, acts upon one of the masses. If Atis an infinitesimal,
~ find the total energy imparted to the system and describe the subsequent
motion. Assume that no gravitational force is acting.

6.12. A mass m moving with a velocity v in a direction perpendicular to
the bar strikes one of the masses in the system of Prob. 6.8. Describe the
subsequent motion of the mass-center of the bar, and find its angular
velocity at any time, assuming that there is no energy lost durmg the
impact and assuming no gravitational force acting.

6.4 Moment of Momentum. Consider a particle of mass 7 and
momentum m#, as shown in Fig. 6.2. The moment of momentum*
of the particle about the fixed point O is defined as the moment of the

mr

m

FiG. 6.2

momentum vector about the point O. Calling the moment of
momentum vector H, we have:

H = r x mf
The total moment of momentum of a system of particles is the sum
of the moments of momentum of all the individual particles:
H = En X myf; (6.9)
The concept of the moment of momentum can be used to put the
equation of motion into a new form, which is particularly convenient

for the treatment of systems of particles. To do this, we differentiate
H with respect to time, and find:

H = Xfy X Mg + DT X mfy

* The quantity moment of momentum is also called the angular momentum.
Since no angular motion or rotation need be present in order that the moment
_of momentum should exist, the term moment of momentum is preferred.
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Since f; x #; = 0 the first term drops out, giving:
H = Zn X m,’r’,

Taking the cross product of each side of the equation of motion
mify = Fi + fi by r; and summing, we obtain:

ry x mfy = Zry x (Fy +ft)

The left side of this equation is H and the right side represents the
moment of all the forces about the fixed point 0. Since the internal
forces occur in equal, opposite, and collinear pairs, their moments
cancel and the right side of the equation is just the sum of the
moments of the external forces. Writing this moment sum as M,

we have:
H=M (6.10)

H, the time rate of change of the moment of momentum of the system
about the fixed point O, 1s equal to M, the resultant moment of the external
forces about the same point O. This is called the equation of the
moment of momentum. It is a restatement of the equation of
motion in a form which, as we shall see in the next chapter, is
particularly convenient for application to problems of rigid body
dynamics.

When there is no external moment acting on the system, the
equation of the moment of momentum takes the form:

H=0 or H = constant (6.11)

This is the principle of the conservation of moment of momentum, which
states that, if there is no external moment of force about the fixed
point, the moment of momentum about that point must remain
constant. If there is no moment about the x-axis, H; is conserved
even if H, and H, are not conserved.

In the preceding paragraphs the moment of momentum was taken
with respect to an arbitrary, fixed point. It is often convenient to
choose a point which is not fixed. We shall now show that an
equation of the form of Equation (6.10) will be valid for any point
whose velocity is parallel to the velocity of the center of mass of the
system.

In Fig. 6.3 the point O is a fixed point and P is the moving point
about which the moment of momentum equationsare to be expressed: -
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)

FiG. 6.3

The vector s;locates a typical mass m; of the system, and the moment

of momentum of the system about P will be:
Hp = ZS¢ x m;i';

The time derivative of H, is:

Hp = X8§ X myfs + X x Mty
Since §¢ = ry — r;, the second term of this expression becomes:
Z.ﬂ X m;i'; = Z(ﬂ - 1",,) X m;i'; = — Zi’p X m;i’;

rc + @4, so that this last term becomes:

We may also put 1,
bl Zi’p X m‘i" = - Zi’p X m{(i'c + é{)
- f'p X f.,Zm; - f'p X Zm;@;

since p¢ is measured from the center of mass, Zm¢ps = 0, and we
have:
Hp = ZS; X m;i"; - i'p X i'cZ"u

Also:
Mp = 2§ % (F¢ +_f¢) = ZS¢ X Mty

We thus see that if #, x £, = 0, that is if the velocity of the point P
is parallel to the velocity of the center of mass, we obtain:
H = Mp
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If the point P is the center of mass of the system, then the expression
Hc = Mc (6.12)
is always correct.

The equation of moment of momentum in the form H = M can thus
be referred to an arbitrary fixed point, to the moving center of mass of
the system, or to any moving point whose velocity is parallel to the velocity
of the center of mass. '

The equation of moment of momentum is often written in terms
of rectangular coordinates as:

H1=Mg;; Hy=My; Hz-:Mz
For example, for a single particle acted upon by a force F:
H=rxmyv and M=rx F
Writing r, v, and F in terms of their rectangular components gives:
H =(xi + yj + zk) x m(%i + yj + 2k)
M = (xi + yj + zk) x (Fai + Fyj + F.k)
Carrying out the multiplications, remembering that i x i = 0.
i x j = k, etc., gives:
H = m(yz — 29)i + m(zx — x28)j + m(xy ~ y2)k
M = (yF, — zFy)i + (2F; — xF,)j + (xFy — yFa)k
The three component equations therefore are:

mdit(yz' —2y) = yF, — zF,

m‘% (22 — x2) = 2F; — «F, (6.13)

d
m“i‘t(xﬁ" — yi) = xFy — yF,

These equations can also be obtained by taking moments about the
%-, ¥-, and z-axes respectively. If a system of particles is involved,
these equations can be summed over all the particles.

6.5 Summary. It should be emphasized that the principles
derived in this chapter are general in application, and that the system
of particles need have no special properties. These principles are
thus available for use in the analysis of rigid and deformable solid .
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bodies, liquids, and gases. The general conclusions can be sum-

marized in the following statements.

(1) The center of mass of any system of particles moves as

though it were a particle, having a mass equal to the
total mass of the system, acted upon by the resultant
of the external forces applied to the system. All the
methods of particle dynamics may thus be applied to
the motion of the mass center.

(2) The magnitude and direction of the total momentum of a

system of particles are given by the product of the
total mass of the system and the velocity of the mass
center. The total impulse of all the external forces
acting upon the system is equal to the change of the
total momentum.

(3) The work-energy principle for a system of particles may

be written in the form of two independent equations.
One equation describes the motion of the center of
mass of the system, and the other equation describes
the motion of the particles of the system with respect

to the center of mass.

(4) The equation of moment of momentum may be written
with respect to: (1) an arbitrary fixed point, (2) the
moving center of mass of the system, or (3) any moving
point whose velocity is parallel to the velocity of the

center of mass.

PROBLEMS

6.13. A particle of mass m is acted upon by a force parallel to the x-axis

as shown. The particle has a velocity
parallel to the x-axis. Write the equation
for the moment of momentum of the system,
and show that this equation may be reduced
to the equation of motion in the form
Fp= mi.

6.14. A system of four particles of equal
~ mass m rotates with an angular velocity w.
The particles are at equal distances from the
center of rotation, and they are spaced at

0 x
ProB. 6.13

equal angles as shown. Find the magnitude and direction of the vector
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representing the moment of momentum of the system about the point of
rotation. .
6.15. A particle of mass m is restrained by the string abc to move in a
circle of radius 7 on a horizontal frictionless plane. The particle moves
with a constant angular velocity w. If the radius of the circle is reduced
to 71 by pulling on the string at ¢, what will be the velocity of the particle?

So——

F

ProB. 6.14 Pros. 6.15

6.16. Two particles of mass m; and mp are attached together by an
inextensible string of negligible weight and of length /. The two particles
and the string move in a vertical plane under the action of gravity only,
in such a way that the string is always subjected to a tension force. Show
that the angular velocity  of the string is a constant, and find the tension
in the string as a function of m,, ms, /, and w.

6.17. A particle is acted upon'by a force which is always directed toward
a fixed point. Show that the particle moves in a plane.

6.18. Using the equation of moment of momentum, show that the area
swept out per unit time by the radius vector drawn from the sun to a
planet is a constant.

6.19. A particle of mass m fastened to a massless string of length /
rotates in a circular path of radius 7 as a conical pendulum. The force F
is gradually increased, thus shortening the length of the pendulum so that

%. Find the velocity of the

finally the particle moves in a circle of radius
mass after the string has been shortened.

6.20. A flexible chain of mass per unit length p and length / hangs at
rest in a vertical position with the lower end just touching the floor. The
chain is released from rest, and falls to the floor. Find the force exerted -
on the floor by the chain, assuming that the chain always strikes the same
point on the floor. Do this problem by considering the motion of the
center of the mass of the chain.

6.21. A particle of mass m rests on a smooth table, and is attached to a
string which passes through a small hole in the table and supports a mass
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M in a vertical position as shown in the diagram. The mass m is given a
velocity v perpendicular to the horizontal portion of the string when the
mass is at a distance a from the hole, and the system is then released. At

" some later time it will be found that there is a new position of m, at a
distance x from the hole, when the velocity of m is again perpendicular to
the string. Find x.

Pros. 6.19 ProB. 6.21

6.22. A car weighing W Ib carries a missile of weight w, and travels with
a uniform velocity V' to the right along a horizontal track. At time
¢t = 0 the missile is projected from the car with a velocity vy and angle 8
with the horizontal, in a direction opposite to the direction of travel of
the car. Neglecting any frictional resistances for either the car or the
missile, and assuming that the dimensions of the car are very small com-
pared to the flight distances involved, find the distance between the car
and the missile when the missile reaches the ground.



Chapter 7

THE DYNAMICS OF RIGID BODIES

It has been long understood that approximate solutions of problems in the
ordinary branches of Natural Philosophy may be obtained by a species of
abstractions, or rather limitations of the data, such as enables us easily to
solve the modified form of the question, while we are well assured that the
circumstances (so modified) affect the result only in a superficial manner—
W. Thomson and P. G. Tait, Treatise on Natural Philosophy (1872).

When applying the principles of dynamics to solid bodies it is
usually assumed that the motion of the body is not influenced by
the small deformations caused by the applied forces. This is equiva-
lent to the assumption of a rigid body, and so far as the motion of the
body is concerned this assumption introduces only negligible errors
for the great majority of such problems encountered in engineering
practice. The equations of motion for a rigid body may be developed
by treating the body as a collection of particles and applying the
general principles of dynamics as formulated in the preceding chapter.
The condition for a rigid body, that the distances between the
particles remain fixed, is then used to simplify the general equations.
As the first step in deriving the required equations of motion, it will
be necessary to investigate the motion of each point in a rigid body.

7.1 Kinematics of Rigid Body Motion. To describe the
motion of a rigid body it is necessary to specify in some way the
motion of every point in the body. This may be done analytically
by applying the general kinematic equations of Chapter 2.

Consider two points 4 and B fixed in a rigid body, as in Fig. 7.1.

Let the vector r,4 describe the position of point 4 in a fixed (X, Y, 2)
178
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Y

e

Fi16. 7.1

coordinate system, and let 4 be the origin of a moving (x, y, z) co-
ordinate system which is attached to the rigid body. From
Chapter 2, the general kinematic equations are (Fig. 2.12):
f=R+ wxp+ pr
F=R+wx(wxp)+odxp+pr+ 2w x p
For the present problem the vector pg, which locates the point B in
the moving (x, v, z) system, is a constant, and the above equations
become:
g = rq4 + PB
fg =f4+ W X PE (7.1)
fp =74+ w X (0 X pg) + @ x pp
where w is the angular velocity of the body. From these equations
the motion of any point in a rigid body can be determined in terms
of the motion of one point in the body and the angular velocity of the
body. These equations are thus the analytical expression of the fact
that the motion of a rigid body can be described as the sum of a
translation and a rotation.* »
Equations (7.1) are often written in the form:
fp = T4 + TBa
Yp = Va4 + VYpa (7.2)
Qg = 44 + 4By

* This is known as the Theorem of Chasle, after M. Chasle (1793-1880), a
French mathematician,
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where v and a designate velocity and acceleration, and:

Tpa = @B
VB4 = W X PB
s = W %X (W X pp) + W X 3
as may be seen by comparing Equations (7.2) with Equations (7.1).

The quantity rp, is often referred to as the displacement of the
point B with respect to the point 4. Similarly, vp4 and ap4 are
referred to as the velocity and acceleration of the point B with respect
to the point 4. It should be noted, however, that displacements,
velocities, and accelerations must be defined with respect to co-
ordinate systems, and hence the above phrase ‘‘the point B with
respect to the point 4 really refers to the motion of B with respect

to a translating coordinate system

y © whose origin coincides with 4. In

G Ys this way, by the use of the general

¢ P kinematic relationships, the con-

cept of relative motion can be made
precise.

ExampLE 1. A rigid body per-
forms plane motion, that is, all
Y X points of the body move parallel
to a plane. When the body is in
the position shown in Fig. 7.2, the
velocities of two points 4 and B are known. Find the angular
velocity of the body.

Solution. Erect perpendiculars to v4 and vp through the points
4 and B and find the point of intersection C, located by the radius
vector r.. Then from Equations (7.1) we have

oY
28

Fic. 7.2

vy =1f:+ ® X py
vp =fc + w X pp
But v, and @ x p4 have the same direction, so #. cannot have a

direction different from w4, and neither can it have a direction
different from vg. £, is therefore zero, and we have: '

The point located by r. has an instantaneous velocity equal to zero.
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Fic. 7.3

This point is called the instantaneous center of rotation. At any
particular instant the velocity of every point in the body is the same
as if the body were rotating about the instantaneous center.
ExaMPLE 2. A four-bar linkage is shown in Fig. 7.3. Link lis
5 ft long and link 4 is 3 ft long. Link 1 has an angular velocity

of 2 revolutions per sec and an
angular acceleration of 3 revolu-
tions per sec?, both clockwise.
Determine the velocities and
accelerations of links 2 and 3.

Solution. Since eachlinkisa
rigid body, the motion of the
point A can be expressed in
terms of Equations (7.1) or (7.2).
The motion of 4 as determined
from the two links 1 and 2 must
be the same as that determined
from the two links 4 and 3.
Thus we may write

ra=11+ p2= 14+ 3

fa = F1 + Wz X P2

= f1 + w3 X p3

fa = f1 + w2 X p2 + Wy
x (w2 x p2)

= f4 + W3 X p3 + w3
x (w3 X p3)

]

|

mzx(“)zx Pz) '
Fic. 7.4

Each of these vector equations is equivalent to two scalar equations
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and determines two unknowns. From the first equation the lengths
of the links 2 and 3 can be found. From the second equation wzand
w3 can be determined, and from the third equation the angular
accelerations &2 and s can be found. The actual solutions can be
carried out graphically or analytically. Fig. 7.4 shows graphical
solutions in which the dotted lines indicate vectors whose directions
are known but whose lengths are originally unknown.

PROBLEMS

7.1. The end A of a straight bar moves with a constant tangential
velocity v along a semi-cylindrical trough as shown in the diagram. Find
the velocity of the point B, at the point of contact of the bar and the edge
of the trough, as a function of the angle ¢ between the bar and the hori-
zontal. The bar moves in a plane normal to the axis of the trough.

Pros. 7.1 ' Prog. 7.2

7.2. A circular cylinder of radius R rolls without sliding along a hori-
zontal plane. The horizontal velocity of the center of the cylinder is %o,
and %9 = 0. Find the velocities of
' d2 | the points A, B, C, and D on the
periphery of the cylinder.
7.3. A pair of wheels of diameter dy
with a rigidly attached concentric axle
of diameter d; rolls without sliding
along a horizontal plane. A rope
wound around the axle is pulled with
a constant horizontal velocity v as
shown. Find the velocity of the center
of the axle. '
Pros. 7.3 7.4. A circular cylinder of radius R
is supported between two horizontal
planks as shown in the diagram. The planks have horizontal velocities %;
and %2 as shown. Find the velocity of the center of the cylinder.
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t } at' 71

P

L H&z

ProB. 7.4

7.5. A test facility for studying the launching of torpedoes into water at
various entry angles consists of a large truss structure which supports a
compressed air launching tube and is mounted as shown in the figure.
The left end of the truss can be moved up or down a track mounted on the

Pros. 7.5

30° slope of a hill, while the other end moves horizontally on a barge
floating on the water. The length of the truss is 300 ft. The truss moves
in a plane normal to the hill. Find the maximum velocity and accelera-
tion of the barge for a uniform velocity v along the track.

7.6. The mechanism of many useful machines can be reduced in its
essentials to that of the four-bar linkage shown. In the particular example

N Harizontal
N -
\ 2 / -
\\ // N
1 \ 7
\ I 3
30° 4 45°
/, 7 / 7 //

ProB. 7.6
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shown link 1 is 3 ft long, and link 4 is 6 ft long. Link 1 has a counter-
clockwise angular velocity of 100 rpm, and a clockwise angular acceleration
of 50 rpm per minute. At the instant when link 2 is horizontal, find the
angular velocities and accelerations of links 2 and 3.

7.7. A circular disk of 1-ft radius rolls without slipping up a 30° inclined
plane. The uniform velocity of the center of the disk is 25 ft/sec parallel

Pros. 7.7

to the plane. Find the velocity and acceleration of the point 4 on the
periphery of the disk, where A4 is the upper end of a vertical diameter of
the disk.

7.8. A crank and connecting rod mechanism of the type commonly used
in reciprocating engines is shown in the diagram, where 7 is the radius of
the crank, and / is the length of the connecting rod. The piston P is

Pros. 7.8

constrained by the cylinder to move along the straight line 40. The
center of gravity of the connecting rod is located a distance ¢ from the
crank pin as shown. For a particular enginer = 4in.,/ = §in.,¢ = 3in,,
and the crank rotates clockwise with a constant angular velocity of 1000
rpm. _
(a) Find the instantaneous center of rotation of the connecting rod at
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the instant when 6 = 60°. Using this instantaneous center, find the
velocity of the center of gravity of the connecting rod. Find the required
distances in this problem by laying out the diagram to scale and measuring
_the distances graphically.
(b) Determine the acceleration of the center of gravity of the connecting
rod.
7.9. A small disk of radius 7 rolls without slipping inside a larger fixed
circular ring of radius R as shown. The small disk has an angular velocity

Pros. 7.9

6 and an angular acceleration §. Find the acceleration of the point on the
small disk coinciding with the point of contact 4. Find also the velocity
and acceleration of the center of the small disk.

7.10. A rectangular object having the dimensions shown in the diagram
moves in a plane with one edge following a vertical wall and another edge

2

Z

Prog. 7.10
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following a horizontal floor. The angle ¢ between the long edge of the
rectangle and the horizontal varies according to the relationship ¢ = % +
| — {2 radians, where ¢ is in seconds. Find the velocity and acceleration
of the point P at the time ¢ = 1.5 sec.

7.2 The Moment of Momentum of a Rigid Body. For the
analysis of the motion of a rigid body the equation of motion of the
mass center can always be written:

F=mi:c

This equation describes only the translation of the mass center and

Y

av

Q

Fig. 7.5

in addition we require equations describing the rotations of the body
These can be derived by applying the equation of moment of
momentum:

M=H

It has been shown in Chapter 6 that this equation can be written
with respect either to a fixed point, or to the center of mass of the
system. We shall first derive an expression for the moment of
momentum H, of a rigid body about its center of mass.

In Fig. 7.5, O is the origin of a fixed (X, Y, Z) coordinate system,
and C is the origin of a moving (x, ¥, 2) coordinate system which is
attached to a rigid body and is located at the center of mass of the
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body. The density of the body is p, dV is a typical volume element

located by the radius vector r. drawn from the center of mass, and

the angular velocity of the body is w. The absolute velocity of the
" volume element dV is v. We may then write:

He = [p(re x v) dV
But also, v = R; + w x . so we obtain:

= Ip[fc x (Re + w x r)]dV
= J'p(rc x Rg) dV + fp[fc x (w x rg)]dV

ot

av

<

Fi6. 7.6

In the first term R, is a constant for all elements of the body, so:
J‘P re X R dV Ipfc dV X R
and this is equal to zero since r. is measured from the center of

mass of the body. _
We thus obtain the result:

= [olre x (@ x 1] dV (7.3)

Having obtained the moment of momentum about the center of
* mass, the moment of momentum with respect to any other point
may be derived as follows.

In Fig. 7.6, O is the origin of a fixed coordinate system; C is the
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center of mass of a moving rigid body; 4 is any point in the body, and
r4 is the vector locating the volume element 4V with respect to 4.
The absolute velocity of dV is v. We thus have for the moment of
momentum of the rigid body about the point A4:

Hy = [p(ra x v)dV
since v = R4 + w x ry4, this becomes:

HA = fp[fA X (RA + W X fA)] av
= fp(ra x Ra)dV + [plra x (w x 14)]dV

We may then make the substitution r4 = r4¢ + r¢, which leads to:
HA = IP[(TAC + fc) X RA] av
+ IP{(TAC + 1) x [ X (rac + re)]}dV
Expanding these expressions, and noting that:
fp AV = m, fpfc av =0
we obtain:

H, = (fAc X RA)m + [TAC X (w X fAc)]m + H,
since v. = R4 + w x fac, this becomes finally:
HA = Hc + mrAC X vC (7.4)

Equation (7.4) may be thought of as a general transfer theorem for
the moment of momentum of a rigid body. Note that 4 in Fig. 7.6
can be any point, fixed in space or moving with the body.

7.3 Moments and Products of Inertia. In the preceding
section it has been shown that the expression for the moment of
momentum of a rigid body has the form:

H = [p[r x (w x r)]dV
Writing r = xi + yj + zkand @ = wsi + wyj + w:k we have:
WX = (zwy — Y )i + (xw; — zwg)j + (Yyws — xwy)k
So that:

rx (W x 1) = [way? + 22) — wyxy — wxzli
+ [— wyx + wy(2? + 2% — wyy2]f
+ [~ wz2x — w2y + w(x2 + y2)k
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The rectangular components of the moment of momentum may thus
be written:

H; = walp(y? + 28 dV — wy_[pxy av — wz_[pxz av
H, = -—wz_[pyx av + wa-P(zz + x2) dV - wz_[pyz av (7.5)
H, = — wz_[pzx av - wy_[pzy AV + wg|p(x2 + y2) dV

I

Introducing the following notation for the integrals which appear
in these expressions:

Jp(y? + 23 AV = Ipe
foxy dV = Iy, etc.,

the equations become:

H; = + 1wz — Izywy — Izw,
Hy = ’—Iyzwz + Iyywy - Iyzwz (7.6)
Hz = —Izzwz bt Izywy + Izzwz

The terms Izz, I4y, and I, are called the moments of inertia, and
the terms Iy, etc., are called products of inertia. I, is often written
as I, etc., and it will be noted from the symmetry of the integrals
that I,y = Iy, etc.

The inertia integrals are defined with respect to the xyz axes. If
the coordinate axes have fixed directions in space, then as the body
rotates the numerical values of the inertia integrals will change with
time. On the other hand, if the coordinate axes are fixed in the
body so that they rotate with it, then the inertia integrals are con-
stants but the components H,, Hy, and H; are measured along
rotating coordinate axes. Either type of coordinate system may be
used, but in most problems the second type is more convenient. In
the following sections we shall use a coordinate system that is fixed
in the body and rotates with it, unless it is specifically stated to the
contrary.

Before treating the general equations of motion of a rigid body we
shall consider the problem of determining the inertia integrals.

7.4 The Calculaticn of Moments and Products of Inertia.
Although the computation of moments and products of inertia
requires only the evaluation of simple definite integrals it is found
that unless the body has a very simple shape and orientation the
limits of integration are such as to require an excessive amount of
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labor. The problem is very much simplified by the following three
observations: ‘

(1) If the moments and products of inertia are known for a
particular set of axes, they can be found for any parallel
set of axes by a transformation of coordinates.

(2) If the moments and products of inertia are known for a
particular set of axes, they can be found for a rotated
set of axes by a transformation of coordinates.

(3) The moments and products of inertia of a body of com-
plicated shape can be found by subdividing the body
into a number of simpler parts, evaluating the integrals
for each of these, and then summing them.

The method of calculation is thus to subdivide the body into simple
parts, choosing for each part coordinate axes which will make the
integration easy. By transformation of coordinates the moments
and products of inertia with respect to the desired axes can then be
found. It should be noted that this and the following sections deal
only with methods of calculation which shorten the labor of
evaluating inertia integrals.

Before proceeding with the calculation of inertia integrals, we
introduce some commonly used notation. Consider, in Fig. 7.7, any
rigid body having a mass per unit volume p. Then by definition of
the moments of inertia, we have:

I: = [p(y? + 28 AV = [pas? dV
Iy = [p(a? + 22) dV = [pa,2dV (7.7)
I = [p(x? + y2) AV = [pas? dV

Note that a,, ay, a. are the perpendicular distances from the respec-
tive axes to the volume element and are not the components of the
radius vector to the element, These expressions are sometimes
written as I, = mr,2 I, = mr,? and I, = mr,2, where m is the
total mass of the body, and the quantity 7; is called the radius of

gyration of the body about the x-axis, etc. The radius of gyration

is thus given by:
y = Ji
m
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The product of inertia integrals have the form:
Ipy = Ipxy av

Since x and y can be either positive or negative, the product of inertia
can be either positive or negative. In particular, if the yz plane is
a plane of symmetry for the body, there is a negative pxy dV for
each positive pxy dV and the product of inertia is zero. As will be
shown later, the product of inertia may be zero also when there is no
plane of symmetry in the body.
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7.5 Translation of Coordinate Axes. Suppose that the
moments and products of inertia are known with respect to one set
of axes, and we wish to determine the moments and products of
inertia with respect to a parallel set of axes. In Fig. 7.8, the «’,
¥, 2’ system has its origin located at the center of mass of the body.
The moments of inertia with respect to this centroidal system are
Iz, I, and I, and the products of inertia are I,'y", 122", Iy’2'. In
the parallel xyz system the center of mass is located at the point
Xe, Yo, Zc.  We have then:

I = [p(x? 4+ ¥R dV = [pl(xe + %) + (ye + ¥)2] AV
= fp(xe? + 2xex’ + 22 + y* + 290 + '3 dV
= [p(*x2 + ¥'2) AV + (22 + yA)[p dV + 2xcfpx’ AV + 2y.[py’'dV
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Since the origin of the x'y’z’ system is at the center of mass, the
integrals _[ px’ dV and _[ py’ dV are equal to zero; also: :

[p(x'2 + y2) dV = I/
(xcz + yc"") = aq
[pdV =m
SO:
I, =1, + mal, (7.8)

Thus if the moments of inertia are known with respect to centroidal
axes, the moments of inertia with respect to any parallel axes can be
obtained.

The transformation of products of inertia for translation of co-
ordinate axes may be derived in the same way. Referring again to
Fig. 7.8, we have:

Loy = [pry dV = [p(xc + &)(ye + y') dV
= [px'y' AV + xey;[pdV + xc[py’ AV + ye[px' AV
and the transformation equation is
Izy = I’y + mxeye (7.9)

7.6 Rotation of Coordinate Axes. Suppose that the moments
and products of inertia of a body are known with respect to an x'y’z’
set of axes. Let us determine the moments and products of inertia

Fi1c. 79
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of the body with respect to an xyz set of axes which has been rotated

Pa oyt ot

with respect to the x’y'z’ axes. In Fig. 7.9, the two coordinate
_systems are shown, and an element of volume dV of the body is
located by the radius vector R. Considering first the transformation
of a typical moment of inertia, we have:

Tz = J.Pazz av

We shall now express the integral in terms of %', ¥, and z’. First:
a2 = R? — x2 = 22 4 y'2 4 22 _ x2
R=uxi+yj+zk=2x21+y5+2F
Also:
¥ =1.R = i.(x'1 +.y’j’ + 2'R) = x'(id) + y'(§) + ([ R)
We next note that the term (i.i’) is equal to the cosine of the angle

between the x-axis and the x’-axis. Denoting the direction cosines
by I/, we have:

zzl = i'i'; lyz' = j'il; etC.
so that:
%= xlzs + y’lzy' + 2’1z
With this notation the moment of inertia becomes:
Iy = J'P[(x'z + 92 4 2% — (K'lzp + Ylzy + 2152 av
Since 12, + 124y + 122’ = 1, we may write:
Lox = [pl(a + 5% + 29 (%0 + oy’ + I222)
— (e’ + Y'ilzy + 2z)%) AV
Multiplying out these expressions, and combining terms gives:
Izz = lzu'fp(y’z + 2’3 dV + lzxy'fp(xlz + 2’ dV
+ lzzz'fp(x'z + y'2)dV — ZIzz'lzy'fpxy' av
- ZZzz'lzz'fpx’z' av - ZZzy'lzz'fpgl’z’ av
or:
dgy = Ry lyy + Bayly'y + 227170 — 2ppley'lsy’
— 2prla Iy — 2yl Dy (710)

Corresponding expressions are obtained for I, and I...
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The products of inertia can be transformed in the same manner,
giving:
~Jay = lag'lya'Ta's' + laylyyly'y' + loa'lye'ls"s
— (az'lyy + laylyz) 2y — (l;y'lyz' + lazlyy My’
— (zzlyz + Lealy ) o' (7.11)

The large number of terms and subscripts involved in these expres-
sions makes desirable a systematic method of writing the transfor-
mations. Let us arrange the moments and products of inertia in
rows and columns as:

’ ’

x ¥ z
2|+ Ipe = Igy — Iy

I3

I'=9"\ = Iyz +1yy —1Iyv
2| =1y - Iz'y' + Iy

Note the similarity between this group of terms and the terms
appearing in Equation (7.6). Such a systematic grouping of rows
and columns is called an array, and the purpose of the array is to
present a large number of terms in an orderly and easily remembered
system. The letters on the outside of the array are usually omitted,
it being understood that the terms are arranged in that order. With
respect to an xyz coordinate system the array is written:

+IZZ _I.’.MI _IZZ
I = - Iy._p + Iyy - Iyz (7.12)

_"IZZ —IZ!I +IZZ

Note that the array is symmetrical about the main diagonal with all
products of inertia terms being negative and all moments of inertia
being positive.

The procedure for expressing any of the moments or products of
inertia of I in terms of the moments and products of inertia I’ is as -
follows. Let I,z represent any one of the terms in the I array
where both « and 8 may assume the values z, y, z, depending upon
the term under consideration. Similarly, let I,’s’ represent any
term in the I” array. The direction cosines which relate the directions
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of the two coordinate systems will be written /,,.  With this notation
we observe that each term in the preceding transformation has the
~ form J,g0g.1,’s*, and the transformation between the two coordinate
systems may be written:

Ig = Z Z A (7.13)
&

To illustrate the meaning of this notation, we shall evaluate the
term I,y which we can then check with the previously determined
expression. We note first that if & # B, the term I, equals — Iy,
—1Iy,, etc., whereas, if « = 8 the term I,z = +1zs +1yy, etc
From the preceding equation we have therefore:

— Iy = Z Zrlxﬂ'lya'la'ﬂ'
o g

Summing first with respect to 8’:
— Iy = Z oalye' L'z’ + boylya'le'y’ + loz'lya'la's’)
Then summing with respect to o’ we have the nine terms:
— Iy =+ lxx'lyx'la:'x' - l:uy'lyz']a:'y' — la:z'lyz'lz'z'
= laalyy'ly's’ + lay'lyyIy'y’ — laa'lyy' Ty’
— lzalyzle — lzy'lyz'lz'y' + lzz'lyz'lz'z'
This is the same as Equation (7.11).
With this transformation, the moments and products of inertia of
any rigid body can be computed for any rotated coordinate axes,

once the inertia integrals are known for one set of axes in the body.
The array

+ Iz —Izy — Ig
— Iy + 1y — 1y

— I — Iy + I

where it is understood that the terms are defined as above, is called
the tensor of inertia, and one may speak of transforming a tensor by
means of the tensor transformation:

I = Z Zlas'lfm'la'a'
a g
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In general, if under a transformation of coordinates an expression
transforms according to this equation, it is called a tensor of the
second rank.

The above transformations for the rotated coordinate system can
also be derived in a more compact form by a vector method, as
follows. Let e, and e; be unit vectors in the « = x,%,z and
B = x,¥,z directions. Then, since 72 = x2 + y2 + 22, and since
e, e; =1 for « = B and e,-e; = 0 for « ¢ B, a general expression
defining all of the products and moments of inertia is:

Lg = [p(rre.-es — of) AV (7.14)
A typical transformation equation such as has been written above in
the form x = l;2'%" + lzy'y’ + l22'2’ becomes in the new notation:

@ = LB
-
Similarly, the transformation equation for the unit vectors becomes:

e, = zlaﬁ'eﬁ'
g

Substituting these expressions for « and e, into Equation (7.14) we
obtain:

Is = jp[rz Zz,ﬂfeﬁ'.zzﬁa'e,,' - zzaﬁ'ﬁ' zl,ga'a']dV
B’ 'Y -4 a’

which becomes:

I = Z Z laﬂllalﬂfp[rze“’.eﬂ' — /B AV
%

or:
Lg = Z Z Lagla'sl s’
a B
Note that with the notation of equation (7.14) the signs are auto-
matically included in the expressions in the correct way.

7.7 Principal Axes. In the preceding transformations there
were three products of inertia and three moments of inertia, so that
the transformation formulas involved a correspondingly large’
number of terms. If, however, the initial set of axes is chosen in a
special way, there is a substantial reduction in the number of terms.
This is illustrated by the following considerations.

If the unit vectors in the two coordinate systems are £, j, & and
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i’, j', k' respectively, then the direction cosines are given by
Iz’ = i+i’, etc. Thus:
i = la;z'i, + la;y'j, + la:z'k,
J=lyai’ + Ly’ + LR
k = lzz'i, + lzy'j, + lzz'k,
We have i.i = 1, etc,, and i.j = 0, etc.; carrying out these dot

products, using the above expressions for i, j, and k, we obtain the
following six relations between the direction cosines:

B+ B2+ 8 =1, laglys + laylyy’ + o'ty = 0
B+ B+ B =1, lpglee + loylay + laz'lee =0
By + lfu‘ + 82, =1; lygla + lyyley + byl =0

Since there are nine direction cosines with these six relations between
them which must always be satisfied, there remain three independent
relations which are required to specify the orientation of the x'y’z’
axes with respect to the xyz axes. We may take as these three
additional relations the conditions that the three products of inertia
with respect to the x’y’z’ axes are to be equal to zero. In this way
it is possible to find a coordinate system with respect to which the
three products of inertia disappear, so that the inertia tensor becomes:

Iz 0 0
0 I, 0
0 0 I

The coordinate axes which satisfy. this condition are called principal
axes. It is customary to use principal axes whenever possible
because of the simplifications which they introduce. Since the pro-
ducts of inertia are all zero, the moments and products of inertia
can be transformed to any other set of axes which is rotated with
respect to the principal axes, by the simplified equations:

Iow =12150 + li,,'[y'y' + B, 1,y

Iyy =B Iy + By 1yy + B Ly

Io =B Iy + lﬁ,,’fy'y’ + B0y

Iy = — (lezlyz’ls's + beylyyIy'y' + lozlyz'122)

Iy = — (yalealas’ + byy'lay'ly'y’ + lya'lea’ls's)

Iy = — (lzz'lzzllz'a:' + lzy'la:y'Iy'y' + lzz'lzz'Iz'z')

(7.15)
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where Iz, I,y and I,’;’ are the moments of inertia about the
principal axes, the principal moments of inertia.

Let us suppose that for a particular body the principal axes have
been defined so that I;'z* > I, > I,;’. Then the moment of
inertia of the body about some other axis, the x-axis, is:

Iz = liz'la:'a:' + l;zw'ly'y' + liz'lz'z'
Using the relation 2" + 2 + I2,' = 1, this becomes:
Lo = Belws + (1= By = B)lyy + Blow

= (s —= 1y 5] = vy = 122081 + [Iy'y]
Each of the terms inside of the brackets is positive so that the

maximum value of I;; must occur when /2.’ has its largest value of
1, and when /2" has its smallest value of 0, so that

Uzz)maz = Iz’ — Ly'y + Iy'y' = Iy

Thus it is proved that the largest principal moment of inertia is also
the largest moment of inertia that can be obtained by any orientation
of the axes. In the same way it can be shown that the smallest
principal moment of inertia is the smallest moment of inertia which
can be obtained by any orientation of the axes. We thus see that the
principal axes have not only the property that the products of inertia
about these axes vanish, but in addition the principal moments of
inertia correspond to the maximum and minimum moments of
inertia for any orientation of the axes. As has been shown above,
the moment of inertia of a body may be obtained by adding a term
to the moment of inertia about a parallel axis through the center of
mass. Therefore, the minimum principal moment of inertia with
respect to a coordinate system passing through the center of mass of
the body is the minimum moment of inertia for any possible axis.

If a body has two perpendicular planes of symmetry, a set of
principal axes can be determined by inspection, since it is only
necessary to make two of the coordinate planes coincide with the
planes of symmetry in order that the products of inertia become
equal to zero. If the body does not have such planes of symmetry,
the orientation of the principal axes must be determined from the
expressions for the products of inertia, by setting the products of
inertia equal to zero.
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PROBLEMS

7.11. Show that the transfer equation for the moment of momentum of
a rigid body, Equation (7.4), gives the correct expression if 4 is a fixed
point.

7.12. (a) Show that in general the triple vector cross-product can be
written as:

A x (B x C) =B(A.C) — G(A.B)

(b) Using the results of (a), show that the expression for the moment
of momentum of a rigid body, H = [p[r x (w x r)] dV, leads to the
component form of Equation (7.6).

7.13. Show that the vector Equation (7.14) defines the moments and
products of inertia in the same way as Equations (7.5).

7.14. Calculate I, for a homogeneous right circular cylinder of radius R
and total mass m. The z axis coincides with the axis of symmetry of the
figure.

7.15. A rectangular plate of total mass m has a length 4, width b, and
thickness c¢. The z-axis is normal to the plane of @ and b and passes
through the midpoint of the face of the plate. (a) Find [, for the plate.
(b) Find the moment of inertia of the plate about an axis through the
corner of the plate parallel to the z-axis.

7.16. Calculate the moment of inertia of a homogeneous circular disk of
radius R and thickness / about a diametral axis passing through the center
of mass of the disk.

7.17. Determine the moment of inertia of a uniform sphere about a line
tangent to the surface of the sphere. Derive any expressions needed for
this determination from the basic definition of the moment of inertia.

7.18. Calculate the moment of inertia of a slender rod about a normal
axis passing through the midpoint of the rod. The rod has a uniform
cross section and a uniform density.

7.19. Calculate the moments of inertia 7, and I, of the z-shaped body
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shown. The z-axis passes through the center of mass of the body and is
parallel to the faces of the body. The body is homogeneous and is made -
of aluminum. & = 3%in.;c = }in.;h = 6}in.;! = 10in,

7.20. A solid right circular cone has a height k4, a base of radius 7, and
a total mass m. (a) Calculate the moment of inertia of the body about
the axis of symmetry. (b) Calculate the moment of inertia about a
diameter of the base.

Q '\‘\/-
= / > -
Z I-<v4 in.i-l

Pros. 7.21

—<5 irl-;"’

7.21. A steel angle has the dimensions shown. Find the moment of
inertia of the body about the z-axis. Give a numerical answer in units of
Ib ft sec2.

Prog. 7.22

7.22. A homogeneous circular cylinder of radius R and length [ has a
total mass m. The z-axis lies along the surface of the cylinder parallel to
its axis. (a) The xy plane passes through the center of the cylinder.
Find Izy, Iy, and I, for the cylinder. (b) The %'y’ plane coincides
with the end of the cylinder. Find I,y Iy;, and I, .



MOMENTS AND PRODUCTS OF INERTIA 201

7.23. Show geometrically that i2,- + /2 + 12/ = 1.
7.24. Derive the transformation for Iy by the first method used in the

text to derive /.

7.25. By using the transformation formula:

g = ZZ loglga'Log
&

’
x

derive the expression for Iz which is given in Equation (7.10).

7.26. Write Equations (7.6) for the moment of momentum components
in a summation form similar to that of Equation (7.13).

7.27. Compute I,y for a slender rod
of length ! and mass m. The rod
lies in the xy plane and makes an angle
o with the z-axis. For what values of
awill Iy = 0? Therod is homogeneous
and of uniform cross section.

7.28. A circular cylinder of radius R, .

length /, and total mass m is oriented
asshown. The 2’2’ plane coincides with
the »z plane. Find 7,

7.29. Find the moment of inertia of
a homogeneous solid right circular cone
about an element of the cone (the axis
0-0 in the diagram). The radius of
the base circle is R, the altitude is 4,

)
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Pros. 7.27

and the total mass is M. Do not derive any expressions that can be taken

directly from the book.

Pros. 7.28

/

Pros. 7.29

7.30. A solid homogeneous right circular cylinder of radius R and length
! is oriented so that the axis of the cylinder, which lies in the x-y plane,
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makes an angle ¢ with the x-axis as shown. The origin of the coordinate
system is 1/4 of the length of the cylinder from the base. Find Iy and I,.-

Prog. 7.30

7.31. Compute I.,- and I, for the cylinder of Prob. 7.28.
7.32. Compute the moment of inertia of a cube about a body diagonal
axis passing through two opposite corners.
7.33. Find the products of inertia for a homogeneous cube so oriented
that both of the y- and z-axes are face
4 diagonals passing through corners of the
cube.
7.34. A thin circular disk of radius R and
. mass # rotates about the x-axis which passes
S z  through the center of mass of the disk. The
g \"4 disk is skewed on the shaft so that the
normal to the disk makes an angle « with the
axis of rotation. Find Iy for the disk.

7.8 The General Equations of
Motion for a Rigid Body. The general
equation for the rotational motion of a rigid body is:

M=H

Pros. 7.34

or.

M= L+ B+ B

where:
H; = + Izwp — Ipywy — Iz,
Hy = — Iyzw; + Iyywy — Iyow,
Hz = - Izzwz - Izywy + Izzwz
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The xyz axes are fixed in the body with the origin at the center of
mass and are rotating with it so that I, Iy, etc., are constants.
_ The unit vectors i, j, k rotate with the body so that i, j, £ are not
zero. The equation of motion is, therefore:

M == Hg;i + Hzi + Hyj + Hyj + sz + sz
The derivatives of the unit vectors are:

i=wxi=(wzi+wyj+wzk)Xi=wzj"‘"wyk

'=wzk_wzi; k=wyi—wzj
Substituting and collecting terms.

M = (Hz — wHy + wyH)i + (Hy — wyH, +.wsz)j
+ (Hz - wax + wzHy)k

This is the general vector equation of motion. The three scalar
equations of motion are:

A’wx = Hz - wzHy + waz
lMy = Hy - wsz + (Usz (7.16)
Alz = Hz —_ (Uny + way

The appropriate expressions for H;, Hy and H; must be substituted
in the equations. The resulting expressions are greatly simplified
by locating the coordinate axes so that they coincide with the
principal axes of the body. The products of inertia are then zero
and Hg = I;z0,, Hy = Iyywy, H; = I;w,. The equations then
become:

Mz = Inpise + (L — Iyy)wyw,

M!I = Iyyd’y + (I:t:t - Izz)wzwz (7.17)

M, = I, + (Iyy - sz)wzwy

These are called Euler's equations of motion of a vigid body. It should
be noted that in Euler’s equations the xyz axes are the principal axes
of the body, with origin at the center of mass of the body.

An impulse-momentum equation may be obtained to describe the
rotation of a rigid body by a direct integration of M = H with
respect to time:

2
f Mdt = H, — H, (7.18)
1
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This equation states that the moment of impulse is equal to the
change in the moment of momentum.

To obtain the work-energy equation for the rigid body we shall
first derive a general expression for the total kinetic energy of a rigid
body. Referring to Fig. 7.5, the kinetic energy of the element 4V
is 1/2(p dV)v?, and hence for the whole body::

T = §[p(v-v)aV

For a rigid body, v = v + w x f., so that the expression for T
becomes :

T =} pl(ve + @ X 1o)+(ve + w0 x 15)]dV
= }[plve? + 2vee(w x 1) + (0 x 7o) (w x 15)]dV

The first term in this expression can be written as:
}[pve2 AV = joet [pdV = jmuc
The second term becomes:
[plvee(w x 1)) AV = vpe(w x [predV) = 0

since r. is measured from the center of mass. By an interchange of
the dot and the cross vector multiplication the third term becomes:

%J‘p[(w X fo)r(w X r;)]dV = %w-_[p[rc X (w X rg)]dV = fwH,

Thus the complete expression for the total kinetic energy of the rigid
body becomes:

T = imve? + jwH, . (719

where m is the total mass of the body, v, is the velocity of the center
of the mass, and H, is the moment of momentum of the body with
respect to the center of mass. The first term represents the kinetic
energy of translation, and corresponds to the first term of the general
Equation (6.6). The second term represents the kinetic energy of
rotation about the mass center, and corresponds to the second term
of the general Equation (6.6).

Expanding the dot product, the kinetic energy of rotation can be
written as:

‘L‘w‘Hc = ‘L‘(Izwzz + Iywyz + Izwzz b leywzwy
- Zlyzwywz - zlzzwzwz) (7.20)

where the moments and products of inertia are defined with respect
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to a coordinate system whose origin is at the center of mass of the

body.

~ The forces acting on the body are equivalent to a resultant force
F acting at the center of mass, plus a resultant moment M, about

the center of mass. The rate at which work is done is

F'vc + w'Mc

The work done is the integral of this with respect to time and thus:

2 2
f F * v‘: dt = %mvcz
1 1

2 2
f w-M,dt = }w-H, (7.21)
J1 1

For a rigid body this equation takes the place of Equation (6.8) and
can be used to supplement Equation (6.5), which describes the work
energy principle as applied to the motion of the center of mass of
any system under the action of external forces.

ExampLE 1. The center of mass of a rigid body of mass 50 Ib
sec?/ft has a velocity of magnitude 40 ft/sec. At a given instant the
moment of momentum of the body about the center of mass is

H. = 1500i + 1000j + 1200k 1b ft sec. The inertia integrals about
the same coordinate axes are:

50 0 0
I=]0 40 —20] Ib ft sec?

0 -20 30

Find the angular velocity and the kinetic energy of the body at the
given instant.

Solution. Substituting in the equations for the rectangular com-
ponents of H,, Equation (7.6):

1500 = 50w
1000 = 40wy — 20w,
1200 = —20wy + 30w,

from which:
w = 30i + 67.5f + 85k rad/sec
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Then:
T = {Mve? + }w-H,
= £(50)(40)2 + }(30i + 67.55 + 85k)-(1500f + 1000f
+ 1200k) ft 1b

T = 147,250 ft 1b

ExampLE 2. In Fig. 7.10, 04 B and OAD represent two identical
right circular cones of mass M, altitude % and half angle «. The
vertical cone OAD is fixed, and OA4B rolls around the vertical cone
without slipping. The axis OF of the moving cone revolves about

Fic. 7.10 Fic. 7.11

the fixed vertical axis OF with an angular velocity wo. Find the
moment of momentum of the moving cone about the vertex O, and
find the total kinetic energy of the moving cone.

Solution. Take x,y, z as principal axes with the origin at the center
of mass of the moving cone as in Fig. 7.11. Let Q be the angular
velocity of rolling of the moving cone about the common element
04.

Then:
wo(h sin 2a) = Q(hsina); Q = 2wocosa
and:
wz = L cos o = 2w cos? &
wy = Qsina = wgsin 2«
w; =0
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Also:

3 3
= — 2 = — 2
I, 10MR 1OMh tan2 «
I =Iz=iM(4R2+h2) =—§—Mh2(4tan2a+ 1)
v 80 80

Then from Equation (7.6), noting that all of the products of inertia
are zero, H, is found to be:

H, = (1—3(—) Mh? tan? a)(Zwo cos2a) = % Mh2wg sin? «
H, = §36 Mh2(4 tan2 « + 1)wy sin 2«

= % Mh2w¢ sin 2a(4 tan2 « + 1)

Knowing H,, the moment of momentum about O can be found from
Equation (7.4):
Hy = H, + Mry, x Ve
roc x Ve = (34)(3h sin 2a- wo)f

So:
HOz = ch
3 . 9 .
Hyy = 30 Mh2wq sin 2a(4 tan2 o + 1) + 16 Mh2wg sin 2«
= Mh2wq sin Za[—i 4tan2e + 1) + 2]
80 16
And:

Hy = é—]\/[hzwo[?) sin?¢i + (§ tan2 e + 3) sin 2e §]

To find the kinetic energy, we write:
T = }Mv2? + jw-H, = }M(3h sin 2a)2wo? + $wzHee + wyHey)
from which:

T = 4_30 Mh2wq? sin? 2o(tan? a + 6)

7.9 Equations of Motion for a Translating Body. The
simplest type of rigid body motion is that of translation. A body
having translatory motion moves in such a way that any line in the
body always remains parallel to its original position, that is, the
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angular velocity of the body is always zero. The moment of
momentum equation written about the mass center is: ‘

M. = H,

and since the angular velocity is zero, H, = 0, and therefore:
M.=0

The equation of motion of the mass center is:

F=mi;c

F

\J«—%—ﬂf—%—j
|

mgl—_ _“

Fic. 7.12

Writing these equations in rectangular coordinates, where x., y., 2.
are the coordinates of the center of mass, we obtain:

Fz = mﬂ?c Mcz = 0
Fz = mzc Mcz = 0

The force equations describe the motion of the mass center and the
moment equations describe the reactive forces which prevent rotation
of the body.

ExAMPLE. A body of total mass m moves along a horizontal
plane under the action of a force F as shown in Fig. 7.12. The
coefficient of kinetic friction between the body and the surface is u.
Find the acceleration of the body as a function of the force F, and
determine the reactions exerted by the surface on the body at 4
and B.

Solution. We choose the x-axis in the direction of the motion of
the body. The complete free-body diagram is then drawn. The
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fundamental equations F = m#, and M, = H. for this problem
become:
Fz — u(N4 + Np) = m#,
NA+NB—mg-—Fy=0
Fy(%) ~ Faa + Na(%) - NA(%) —~u(Ns+ Np)h =0
Eliminating (N4 + Npg) between the first two equations gives the
equation of motion of the body:

mk‘c = Fg; - ‘L(mg + Fy)

| mg
N\
PPN
aN, gNy 4
N, Ny

Fic. 7.13

The reactions N4 and Np are found from the second and third
equations:

Ny

a uh 1 uh

_a uh 1 p.__h
NB—7F1+——Z—Fy+mg(§+ l)

PROBLEMS

7.35. A uniform, straight bar weighing 50 Ib is fastened with a smooth
pin at one end and rests at the other end against a smooth vertical surface.
The bar is 5 ft long, and the centerline makes an angle of 30° with the
horizontal. ' The whole arrangement is given an acceleration of 10 ft/sec?
‘horizontally to the right by a force F acting on the support, as shown in
the diagram. Find all of the forces acting on the bar.

7.36. A thin uniform hemispherical shell has a weight W and a radius 7.
The shell is pulled along a horizontal surface by a constant horizontal force
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F. The coefficient of sliding friction between the shell and the surface is
which may be assumed to be constant. Find the distance above the plane
that the force F should be applied, so that there is no tipping of the shell.
What is the acceleration of the shell under these conditions?

A /\ 10 ft/sec?
L ]

S5

ProB. 7.35 Pros. 7.36

7.37. A homogeneous block having the dimensions shown in the figure
weighs 100 1b and rests on a car which can move along a horizontal plane.
A 20 Ib weight is connected to the block by means of a cable and a friction-
less pulley as shown in the diagram. The coefficient of static friction
between the block and the caris u = 0.25. If the car is given an accelera-
tion to the right which starts from zero and gradually increases, will
slipping or tipping of the block occur first? At what value of acceleration
will this occur?

' l<—— 3ft—|

30°

7 % %

Pros. 7.37 Pros. 7.38

7.38. A body weighing W pounds rests on a 30° inclined plane as shown.
The coefficient of static friction between the body and the plane is pu.
What is the maximum horizontal acceleration which the whole system can
have without causing the body to move on the plane?

7.39. The side-crank connecting rod of a locomotive drive system has
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the dimensions shown. Assuming that the side-crank is a straight uni-
form bar weighing 500 Ib and that it is fastened by smooth pins at the ends,
find the forces acting on the rod when the locomotive is running at 60 mph
- when the rod is in the position shown.

< 6 ft |
n gt ,'. 60°
& On= ) :
& @Q "\

3y

VA 1

Pros. 7.39

7.40. A uniform straight bar of length / and weight W is suspended on
a smooth pin which is mounted on a carriage as shown in the figure. The
bar is also connected to the carriage by two equal springs of spring constant
k, attached at a distance & below the point of suspension. When the
carriage is at rest, the bar hangs vertically with the springs in an un-
stretched position. Find the angle between the bar and the vertical
when the carriage has a small steady horizontal acceleration of magnitude
a. It may be assumed that the angle is sufficiently small so that the spring
forces are always horizontal.

TN

Pros. 7.40 Pros. 7.41

7.41. A homogeneous circular cylinder of radius » weighing W b rests
on a 30° inclined plane as shown. The coefficient of kinetic friction
between the cylinder and the plane is . Where should a force F, parallel
to the plane be applied, if the cylinder is to slide up the plane without
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rotation? Find the reaction of the plane on the cylinder under this
condition.

7.42. A car moves with a uniform acceleration along a horizontal sur-
face. An instrument is required which will measure the magnitude of this
acceleration. It is proposed that a small bar be mounted on a bearing
attached to the car, and that the angle made by the bar with the vertical
be measured as an indication of the acceleration of the car. Find the
relationship between % and ¢, assuming that the bar is uniform and homo-
geneous. Would it be better to use a concentrated mass at the end of a
light rod?

7.10 The Rotation of a Rigid Body about a Fixed Axis.
Take the z-axis as the axis of rota-
tion, and let the x and y axes be
attached to the body and rotate
with it as in Fig. 7.14. Since the
origin of this coordinate system is
fixed in space, we may write the
equation:

______ M=H

taking the origin as the moment
center. In Equations (7.6) for the
components of H we may put
wz = wy = 0, since the rotation is
Fic. 7.14 about the z-axis, and hence Equa-
tions (7.16) become:

Mz = dt(— Izzwz) - wz(— Iyzwz)
d

M, = ;i‘t‘('— Iyzwz) + wz(— Iz.w,)
d

Mz =d—t(Izzwz)

Performing the differentiations, the three moment equations become:
Mz = Iyzwz2 - Izzd’z
My = — Tgws? — Iy, (7.23)
M; = I;;0,
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In addition, the equations for the motion of the center of mass are
available:

Fz = mﬁc
Fy = mj"c
Fz = 0

The rotation of the body about the fixed axis is described by the
third moment equation, while the constraining forces which hold the
axis stationary may be found from the first two moment equations
and the equations of motion of the mass center.

The impulse-momentum equation and the work-energy equation
for a rotating body may be derived directly from the third moment
equation, M, = [,

2 2
f M, dt = Lo, (7.24)
1 1

The integral of M, d¢ is the angular impulse or moment of impulse
about the axis of rotation, and the term I,w, is the moment of
momentum about the axis of rotation, as may be checked from the
general Equation (7.6). Similarly, for the energy equation:

f Mzd0 = f Izg—‘dt = i.[zwz

(7.25)

The integral of M, d0 represents the
work done by M, during the rota-
tion, and the term (1/2)],w.2 is the
kinetic energy of rotation. Thismay
be checked from the general energy
Equation (7.19) since Trot = 3 w-H
where H = I,w,k, and therefore
Trot = %‘Izwzz-

ExampLE 1. A flywheel of radius O\ =
7, having a moment of inertia I about
the axis of rotation, has an angular I"‘P
velocity w rad/sec. At time ¢ = 0,

a brake is applied with a normal Fic. 7.15
braking force P, as shown in the
figure. The brake coefficient of frictionis x. Find the time required
to reduce the angular velocity of the flywheel to w; rad/sec, and
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find the number of revolutions of the flywheel occurring during
this time. ‘

Solution. 1f the normal braking force is P, the tangential frictional
force will be uP, and the retarding moment will be ruP. Applying
Equation (7.24) expressing the impulse-momentum relationship:

Pt = Tw — Tw
SO:
IHw — w))
ruP

The number of revolutions occurring in time ¢ can be found from the
work-energy relation of Equation (7.25):

TuPl = w2 — Ltlw?

! =

SO:
w? — w)?)

(
= 1
0= 4= p

ExaMPLE 2. A homogeneous disk of radius R and of uniform
thickness is supported by a thin

rod or wire as shown in Fig. 7.16.

B The rod is rigidly attached to the
disk and to the support. If the
disk is rotated from its equilibrium
position through an angle 6, the
rod exerts a restoring torque on
the disk which is proportional to
the displacement and oppositely

R o directed. The disk is rotated
through an angle 6o and is then
Fic. 7.16 released from rest. Describe the

subsequent motion of the system.

Solution. The disk will rotate about the axis of the rod under the
action of a torque — %8, where % is the torsional spring constant in
Ib ft/rad. Writing the equation of motion about the fixed axis of
rotation, we have, with I as the moment of inertia of the disk about
the axis of the rod:

I = —£6
k

0+70=O
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This is the differential equation of simple harmonic motion, the
solution of which is:

. [k 2
0=ClsmN/jt+CzcosN[7t

=0, §=0; so Ci=0
If=0, 0=00; SO C2=00

When:

Fic. 7.17

and the complete solution is:

E
0 = Bocostt

Thus the disk performs torsional oscillations with an amplitude 8o,

and a frequency % J ; cycles per second. Such an oscillator is called

a torsion pendulum. Torsional oscillation problems are in every way
similar to the linear oscillation problems treated in the chapter on
vibrations and the same methods may be used. Many practical
examples of such problems in engineering can be found, such as the
torsional oscillations of engine crankshafts and of propeller shafts.

ExampLE 3. Investigate the dynamic bearing reactions caused
by the rotation of an unbalanced rotor.

Solution. Consider a rotor of total weight W supported hori-
zontally on two bearings a distance / apart as shown in Fig. 7.17.
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The z-axis is taken as the fixed axis of rotation, and the xy axes are

attached to the rotating body. During the rotation there will be .
dynamic reactions at the supports of the rotor. We shall determine

these dynamic reactions X1, Y1, X3, Y32 in the rotating xyz system

and it is to be understood that, if the total bearing reactions at any

instant are required, the dynamic reactions, located in the correct

direction at that instant, must be added to the static reactions

caused by the weight of the rotor. The equations of motion of the

mass center give us directly:

XFz = mie; X1+ Xo= — mxcw? — mycd
ZFy =mye; Y1+ Yo = mxcd — mycw?

The moment of momentum equations give:

- Yzl = Iyzwz - Izzd’
X2l = - Izzwz - Iyz(b

Knowing m, w, &, %¢, ¥¢, 12z and I,;, we can find the four unknown
dynamic reaction components from these four equations.

If the products of inertia are zero, and if the center of mass lies
on the axis of rotation so that x, = y, = 0, then it will be seen that
there are no dynamic reactions. The rotating body is then said to
be dynamically balanced. If the center of mass lies on the axis of
rotation so that the system is statically balanced, there is no gravity
torque for any position of the body, but there may still be some
dynamic unbalance because of the presence of product of inertia
terms. Since for static balance the mass center has zero acceleration:

X1 = - X
Yi= — Y,

The dynamic reactions hence exert a couple on the rotor.

It is thus seen that static balancing of a rotor is not in general
sufficient to remove the dynamic reactions, since a rotating dynamic
couple may still be present. Complete dynamic balance is achieved
by adding to the system two balance weights, so located that the
dynamic reactions set up by the balance weights are equal and .
opposite to the dynamic reactions resulting from the original
unbalanced rotor. This is equivalent to making the products of
inertia of the rotating system zero, by the addition of the extra
balancing weights.
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PROBLEMS

7.43. A rigid body rotates about a fixed axis with an angular velocity w.

- Starting with an element of volume 4V of the body, show by integration

over the volume of the body that the kinetic energy is 4/? and that the
moment of momentum about the axis of rotation is Jw.

7.44. A rigid body rotates about a fixed axis. When? = 0, the angular
displacement of the body measured from a fixed position is 6o, and the
angular velocity is p. A torque M, about the axis of rotation is applied
when ¢t = 0. If M, = A + Bt — Ct2, find the angular displacement of
the body at any time.

7.45. A flywheel with a moment of inertia / starts from rest under the
action of a constant torque M. What is the angular velocity of the fly-
wheel after it has rotated through N revolutions? Do this problem in two
ways, first using the equation of motion of the flywheel in terms of angular
accelerations, and then using the work-energy principle.

7.46. A homogeneous circular disk of radius R and of mass m is fixed on
a shaft which coincides with the geometrical axis of the disk. Acting on
the shaft is a torque caused by bearing friction which is proportional to the
velocity of the disk, Mp = — k. At the time ¢ = 0, the disk has an initial
angular velocity wg. Find the time required for the disk to come to rest,
and find the number of revolutions of the disk occurring in this time.

7.47. A wheel having a moment of inertia I about its axis of rotation is
acted upon by a constant torque M. If the motion is resisted by a torque
Mg = — k8 due to bearing friction and air resistance, find the maximum
speed which will be attained by the wheel.

7.48. A rotor with a moment of inertia I is driven at a constant angular
velocity wy. It is brought into contact with
a second rotor I, which is initially at rest.
There is a constant normal force of P Ib
between the rotors, and the coefficient of
friction is u. At first there is slipping
between the rotors until the second rotor has

attained the angular velocity ws = w3 —:—1
2

How much time is required for the second

rotor to reach this velocity? (Assume that

the coefficient of friction is independent of Pro.. 7.48

velocity.) If the first rotor is free to de-

celerate after initial contact, how much time is required to overcome
. slipping? What will be the final angular velocities of the two disks under

these conditions ?

7.49. A torsion pendulum is mounted as shown. The point of suspen-
sion 4 can be rotated by means of a lever. Suppose that the pendulum
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Is initially at rest, and that starting at time ¢ = 0 the point of suspension
is given a rotation
6 = 6 sin wt

Find the resulting forced vibration of the pendulum. Neglect damping in
the system.

7.50. A flywheel having a moment of inertia about its axis of rotation of
5000 Ib ft sec? is driven by an electric motor which does work at the rate
of 1/4 horsepower. If the wheel starts from rest, what will be its kinetic
energy at the end of one hour? If the flywheel is to be brought to rest in
30 sec from the speed attained at the end of one hour, what constant
retarding frictional torque is required ?

ProsB. 7.49 Prog. 7.51 ProB. 7.52

7.51. A body free to oscillate about a fixed axis under the action of
gravity is called a compound pendulum. Considering the compound
pendulum shown, the total weight of which is W, find the period of small
vibrations of the pendulum about the horizontal z-axis. The distance
from the point of support to the center of mass is R. Find the length of
a simple pendulum with a mass concentrated at one point which would
have the same period as the compound pendulum.

7.52. A thin homogeneous circular disk of radius », mass m, and of
uniform thickness, is suspended as a pendulum in a vertical plane from a
point a distance a above the center, as shown in the figure. Find a for
the maximum frequency of vibration for small oscillations about the
vertical equilibrium position in the plane of the disk. Find this maxi-
mum frequency.

7.53. For an analysis of the dynamic forces in an engine, the moment
of inertia of the connecting rods about an axis through the center of mass
must be known. It is proposed that this moment of inertia be experi-
mentally determined in the following way. The connecting rod is sup-
ported on a small horizontal knife edge passed through the wrist pin
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bushing as shown in (a), and the rod is permitted to oscillate as a pendulum

through small angles in the vertical plane. It is found that 60 complete

oscillations occur in 100 seconds. The distance # between the point of

. suspension and the center of mass of the rod is found by supporting the

wrist pin end as shown in (b), while placing the crank end of the rod on a
%

C—1

]

Scales

—— 1
(b)

Pros. 7.53

platform scale. The rod is held horizontal and the scale reads 921b. The
distance between bearing centers is 33 in. and the weight of the rod is
145 Ib. The radius of the wrist pin bearing is 1} in.

Find the moment of inertia I, of the connecting rod about an axis
passing through the center of gravity in a direction parallel to the wrist
pin bearing.

7.54. A rigid body can rotate about a fixed point O as shownin the figure.
The moment of inertia of the body about the point O is Ig and the distance
between O and the center of mass of the body is R. A force F is applied

y wmmm
(_\ z o S—
0 1
R
a
!
P Center
of mass
F m M
\___} YD e T —
a— ~c.m,
v
ProB. 7.54 ’ ProB. 7.55

to the body perpendicular to the line joining O and the center of mass, ata
distance a from O. Find the distance a for which there will be no reaction
at the point O in the direction of F. Neglect gravity forces. The point P,
located by a, is called the center of percussion of the body. Show that if
the body rotates about P, O becomes the center of percussion.
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7.55. A ballistic pendulum of mass M has a moment of inertia J about
its axis of rotation. A bullet of mass m is fired into the pendulum as
shown in the figure. It is observed that the pendulum then undergoes an
angular displacement 8. Find the velocity of the bullet.

7.56. A wheel of radius R and moment of inertia I about the axis of
rotation has a rope wound around it which supports a weight W. Write
the equation of conservation of energy for this system, and differentiate to
find the equation of motion in terms of acceleration. Check the answer
obtained by drawing separate free-body diagrams for the wheel and for the
weight, writing the equations of motion for each body, and solving the
equations simultaneously. Assume that the mass of the rope is negligible,
and that there is no energy loss during the motion.

I

|
|
|
I
|
[
!
|

I

|

!

I

!
|
o
!

e

¢ {in horizontat

= - plane)
= f’—’l T

Pros. 7.56 - Pros. 7.57

7.57. A horizontal uniform slender bar of length / and mass m is
suspended by two massless vertical strings of length L attached at each
end as shown in the diagram. The bar is rotated about a vertical axis
through its center, and is then released. Find the frequency of small
rotational oscillations.

7.58. A solid, homogeneous disc initially rotates with constant angular
velocity wg about its own axis (4-4). If this disc is suddenly caught along
an element (C~C) parallel to (4-4), find: (a) the angular velocity of the
disc about C-C axis immediately afterwards; (b) the impulse exerted by
the disc on the axis C-C, letting the mass and radius of the disc be M and .
R and noting that energy need not be conserved; and (c) the loss of kinetic
energy during the impact.

7.59. A thin, homogeneous, rectangular plate of uniform thickness is
free to oscillate under the action of gravity about an inclined axis as shown
in the figure. Write the equation of conservation of energy for this
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system and differentiate to find the equation of motion in terms of
accelerations, Find the period of undamped oscillations of the system,
and show how changes in the angle of inclination « change this period.

7.60. A torsional pendulumn is arranged as shown in the figure, so that.
various weights can be placed on the pendulum disk and can be oscillated
about the axis of the pendulum. It is observed that with a mass M of
known moment of inertia I;, a torsional frequency of oscillation f; is
measured. If a body of unknown moment of inertia /5 is substituted for
the known mass, the frequency is observed to be fo. The frequency of the
pendulum alone, with no added weight, is fo. Find the moment of inertia
I3 in terms of the known quantities.

7.61. A rigid wall of height 4 and width (ak) rests upon a horizontal
surface. It is subjected to a uniform, constant, blast pressure which acts

ah

-

ARERRERE

.|

Pros. 7.60 Prosg. 7.61



222 THE DYNAMICS OF RIGID BODIES

for a short time Af.  With Af given, what value of p 1b/ft? will cause the
wall to overturn about point A4, assuming that there is no sliding? The
wall has a weight of W Ib/ft of length. The time Af is so small that it
may be assumed that there is no motion of the wall during A¢, the action
of p being only to impart an initial angular velocity to the wall.

7.62. A rectangular door of mass s is free to swing on two hinges. It
is initially at rest when it is subjected to a uniform blast pressure from a
bomb. The blast pressure acts for only a small fraction of a second but
reaches a high maximum value of p lb/ft2. What is the maximum
dynamic hinge reaction? A 500-1b bomb detonating at a distance of
100 ft would produce a maximum blast pressure of 8 1b/in.2 If the door is
2.5 ft by 7 ft, what is the maximum dynamic hinge reaction ?

7.63. A homogeneous circular disk of mass M and radius » is mounted
on a vertical shaft which is carried on frictionless bearings. The shaft
coincides with the geometrical axis of the disk. An insect of mass m lands
vertically on the periphery of the disk and crawls around the circum-
ference with a uniform speed v relative to the disk. Find the motion of
the disk.

7.64. A homogeneous uniform circular cylinder rests on the edge of a
horizontal step as shown in the figure. The cylinder rolls off the step
with a negligible initial velocity without sliding. Find the angle through
which the cylinder rotates before leaving the step, and the angular
velocity of the cylinder after it has rolled off. Assume that any effects of
air resistance or of rolling friction may be neglected.

7.65. A straight uniform homogeneous bar of mass # and length / is
placed on a horizontal table top with its center of mass a distance 4 from

’ |

ProB. 7.64 Pros. 7.65
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the perpendicular edge as shown in the figure. The bar is released from
rest from a horizontal position and begins to rotate about the edge of the
table. If the coefficient of static friction for impending motion between

" the bar and the table edge is u, find the angle with the horizontal that the
bar attains before slipping begins.

7.66. Two bodies of moment of inertia I, and 5 about the axis of rota-
tion are connected by a shaft as shown. If equal and opposite moments
are applied to the bodies, the ends of the shaft will be twisted through a
relative angular displacement 4, where § = A—kl If the moments are
suddenly released, the two bodies will then perform torsional vibrations.
Apply the principle of the conservation of moment of momentum to the
system to show that the two bodies always rotate in opposite directions.
From this it may be concluded that there is a certain cross section of the
shaft which does not rotate during the oscillatory motion. The location
of this cross section may be found by noting that, if the system is divided
into two simple torsional pendulums of length a and b, the frequency of

oscillation of the two must be equal. In this way show that a = i+ T, I_*z_l T
and that the frequency of vibration is:

1 [R(Iy 4+ o)
/=% s
7.67. Two equal particles of mass m are fastened to the ends of a straight
rod of length 2! and of negligible weight. The rod is attached to the
center of a vertical shaft of length L as shown. If the vertical shaft

a
——
L o
2
< l > 1
7 a e b l
L m
R -
I, ¥
a
I, Bearings __Y__—_T—W
—-— 4

Prog. 7.66 Pros. 7.67
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rotates at a constant angular velocity o, find the dynamic reactions at the
bearings. The system is to be dynamically balanced by the addition of
two concentrated weights of mass ;. These weights are to be located in
planes at a distance a from the bearings. Show where these weights
should be attached and find the radius at which they should be located.

7.68. Show that if a rotating body is in static balance but not dynamic
balance, and if the rotational speed is constant, the dynamic bearing
reactions have the magnitude:

R—-Z-\/I_Z—-k_lf
<\°‘7/
-

L
" 2 [

N~

Pros. 7.69

7.69. A thin circular disk of radius » is skewed a small angle « with
respect to the axis of rotation, as shown. If the angular velocity of the
system is a constant, find the dynamic reactions at the bearings. The
total mass of the disk is 7 and the center of mass of the disk is on the axis
of rotation. If the shaft is horizontal, find the total bearing reactions in
the posmon shown in the diagram.

7.70. If in the preceding problem the rotatmg body is a solid cylinder
of radius R and length %, find the
dynamic bearing reactions. The
center of mass of the cylinder is
located on the axis of rotation, and
the axis of the cylinder is inclined at
an angle o with the axis of rotation.
If the center of mass of the cylinder
is located at a distance ¢ from the
axis of rotation, at the center of the
shaft, in addition to the skew of

Pros. 7.71 the axis, what are the dynamic bear-
ing reactions?

7.71. A thin rectangular plate of mass 7 rotates about an axis coinciding
with a diagonal of the plate. If the bearings are located at two corners of
the plate as shown in the figure, find the dynamic bearing reactions.
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7.72. The diagram represents the two flywheels of a gas engine. The
flywheels are 3 ft apart, and the center of the crank pin is located at a

distance of 1 ft 4 in. from the left flywheel.

The off center crank pin and

- crank arms are equivalent to a concentrated weight of 80 Ib at a distance

)/_Crank pin [ ]

- he

P

Bearings

Pros. 7.72

of 8 in. from the bearing centerline. The system is to be balanced by two
weights in the planes of the flywheels. - If these weights are to be located
at a radial distance of 1 ft from the center of the flywheel, find their

M7

magnitudes.

7.73. A slender uniform rod of
mass m and length a is attached at
right angles to a rotating shaft of
length 3/ at a distance / from a bear-
ing asshown in the figure. Lacking
a dynamic balancing machine, a
machine shop statically balances the
shaft by attaching a concentrated
mass m at a distance % from the
axis, in the plane of the rod and
shaft. Find the magnitude of the

a

! y

42T

i

Prog. 7.73

dynamic bearing reactions for a rotational speed w and acceleration .
7.74. A certain unbalanced rotor may be idealized as two similar

1 . .
2in. thick:

8in.

l

/1 in, dia shaft

N =

8in.

Pros. 7.74

W4



226 THE DYNAMICS OF RIGID BODIES

triangular flat steel plates lying in the same plane attached to a horizontal
shaft as shown in the figure. The shaft rotates at a constant speed of
300 rpm.

Find the magnitude of the dynamic bearing reactions, and compare with
the magnitude of the static reactions.

Pros. 7.75

7.75. A homogeneous circular cylinder of mass M, radius R, and height
2R is rotated with a constant angular velocity w about an axis passing
through the center of mass and the edge of each circular face. The
distance between the bearings is /. Find the magnitudes of the bearing
reactions.

7.76. A uniform rectangular block of height 3 ft, width 2 ft and depth

3 ft travels along a frictionless
horizontal surface with a velocity
Fe—2ft—] v.  The block strikes a small pro-
jection on the surface which stops
the block, but does not prevent
the block from rotating freely
about the striking edge, which re-
mains in contact with the pro-
jection during the - subsequent
motion. Find the smallest value
of approach velocity v for which
Pros. 7.76 the block will tip over and fall on

the right side of 4.

7.77. A 12 ft long uniform horizontal beam weighing 25 Ib/ft carries
loads as shown in the figure. A uniformly distributed mass weighing
50 1b/ft extends over 7 ft of the length, and a concentrated load of 500 1b
acts 2 ft from the other end of the beam. If the support at Rp is
suddenly removed, find the reaction R4, at the instant the beam is still
horizontal.
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500 Ib
50 Ib/tt

THHTHIni

7it ‘l 3t <2 ft—>

Pros. 7.77

7.78. A slender uniform straight bar of length 24 is originally at rest in
a vertical position on a rough horizontal plane. The bar falls in a vertical
plane under the action of gravity. Find the coefficient of static friction p
between the bar and the plane if the bar starts to slip when it reaches a
slope 8 = 20°.

ProB. 7.78 Pros. 7.79

7.79. A homogeneous solid right circular cone of mass M, radius of base
R, and altitude 4, is free to rotate about its vertical geometric axis on
frictionless bearings. A particle of mass m starts at the apex of the cone
and slides down a frictionless groove in the surface of the cone and
emerges horizontally tangent to the base circle as shown. If the cone and
the particle are initially at rest, find the angular velocity of the cone after
the particle has left the cone.

7.11 Plane Motion of a Rigid Body. If every element of a body
" moves parallel to a fixed plane, the body is said to have plane motion.
If the xy plane is taken as the plane of motion, the angular velocity
of the body is w.k and the velocity of the mass center is £ + yej.
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Let the xyz coordinate axes be fixed in the body with the origin at
the center of mass. The general equation of motion M = H, then
has the components:

M:v = Iyzwzz - I:vz‘bz
My = —Iz;wzz bl Iyzu.)z (7.26)
Mz = Izd’z

In addition there are the independent equations for the motion of the
mass center:

Fz = mic',,-
Fy = myc
Fz = 0

It will be noted that these six equations are identical with those

Y

8

fng

f

N
Fic. 7.18 " Fic. 7.19

obtained for the rotation of a body about a fixed axis. The origin
of the coordinate system, however, is located at the center of mass
for plane motion, whereas for rotation it is located on the fixed axis
of rotation.

ExampiE 1. A circular cylinder of radius R and mass m is
pushed along a horizontal plane by a horizontal force F at a distance
h above the plane, as shown in Fig. 7.18. The coefficient of kinetic
friction between the cylinder and the surface is p. Describe the .
motion of the cylinder.

Solution. A free-body diagram of the cylinder is first drawn, as
shown in Fig. 7.19. The coordinate x. describes the linear position
of the center of the cylinder, measured from a fixed point, and the
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coordinate # describes the angular position. For the motion of the
center of mass in the x-direction, we have the equation:

ze=mﬁ?c=F—f

Taking moments about the z-axis, which passes through the center
of mass, we obtain:

M,=10=-F(h —R) — fR

This gives two equations relating the three unknowns x., 6, and f.
The additional equation to be used will depend upon whether or not
there is slipping between the cylinder and the plane. If there is no
slipping, we may write R§ = — i, which, together with the first two
equations, gives:

FhR
T I, mR?

hRm
f=F(1_Iz+mR2)

If the value of the friction force f computed in this way exceeds the
value pW, then slipping will occur, and R§ # #. Then the third
equation to be used is f = pW and the solution is:

Xe

xc:F—-p,W
m
+~ F(h — R) + uWR
b =
I,

ExampLE 2. A cylinder of mass m, radius R, and moment of
inertia I about its geometric axis
rolls without slipping down a hill
under the action of gravity (Fig.
7.20). If the velocity of the center
of mass of the cylinder is initially
vg, find the velocity after the
cylinder has dropped through a
vertical distance 4.
~ Solution. Since there is no

energy loss during the motion of
the cylinder, we may write the
equation of the conservation of Fic. 7.20
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energy, which will lead at once to the desired result. Taking the
final position of the cylinder as the point of zero potential energy,.
we have:

1 1 [vo\? 1 1 [op\?2

Z 2 ~7(e . — 2 iy 4 4

5 Mo +21(R) + mgh 5 MUn +21(R)
from which:

Uh: v02+.—2_7n_g£1_—-
P

ExamMpPLE 3. Two uniform, homogeneous, circular disks of radius

"
Y

- T
/( ~a N2
Top View —— 2 x
l ,mgl' @
Mg a

kY

End View —>- z
J.Vl
Z Z, ZA 2
Fic. 7.21 FiG. 7.22

R and mass m are connected by a uniform straight bar of length
(Fig. 7.21). The mass of the straight bar is M. The assembly rolls
without slipping along a horizontal plane, the center of the disk
having a constant velocity v parallel to the plane. Find the forces
exerted on the disks by the plane when the straight bar is parallel
to the plane.

Solution. We consider an xyz coordinate system which is attached
to the body and whose origin is located at the center of mass. The
free-body diagram is shown in Fig. 7.22, where the frictional forces,
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/1 and f», and the normal forces, N1 and N: are indicated. The
equations of motion for the system become:
ZFz=mﬁc=O= _fl'—"fz
3Fy=myo=0=Ni+ No — mg — mg — Mg

2
M, = Iyw? = mga — Nia — mga + Nea = Iyz(l%)

My

i

— Ipw,® = foa — fra = — Iu(%)z
M, = I, = 0= — (iR + f2R)
Evaluating the products of inertia gives:
I, =0
12

Iy, = —sinacosa

12

From the first or fifth equation, f1 + f2 = 0, and from the fourth

equation:
1242

Mizp2
S1— fe = [, sinecosea

Thus:
Mizp2 |
fi=—f2= ThagE Sin e cos @
Since:
\2 . R
— 2V - Rre. =2
a~A/(2) R?; sin e« 21
2 I\?2
= - — — 2
cos ZA/(2) R
we have:
M2
h=-r=%x

From the second equation:

Ni+ No=2mg + Mg

From the third equation:
Ny~ Ng=0
hence:
Mg

N1=Nz=7ng+—7
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PROBLEMS

7.80. A uniform circular cylinder of weight W and radius R starts from
rest and rolls without slipping under the action of gravity down a plane
which makes an angle « with the horizontal. Find the acceleration of the
cylinder. If the coefficient of friction between the cylinder and the plane
is p, find the maximum angle of inclination of the plane for which the
cylinder will roll without slipping.

7.81. A uniform circular cylinder of weight W and radius R has a rope
wrapped around it, one end of which is fixed as shown. The system is
released from rest with the rope in a vertical posmon Describe the sub-
sequent motion of the system and find the force in the rope. The rope
is in the plane of the mass center.

7

Pros. 7.81 Pros. 7.82

7.82. At what point should a billiard ball be struck with a horizontal
impact in order that it will roll without sliding on a frictionless table
surface ?

7.83. A wheel of weight W is unbalanced so that its center of mass lies
at a distance kR from the center of the wheel. The wheel rolls without
slipping with a constant velocity v. Determine the normal force exerted
by the wheel against the ground.

A
Y :
a\_j 4

Pros. 7.83 ProB. 7.84
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7.84. A sphere of radius » and mass m rolls on a circular surface of
radius R under the action of gravity. Find the differential equation
describing small oscillations of the systems about the position of equili-
- brium and show how this problem differs from that of the particle of mass
m which slides on the surface.

7.85. A body of mass m and moment of inertia I, about the center of
mass is initially at rest when it is given an impulse FA¢ as shown. The
body moves in a horizontal plane, and the force F is horizontal. Find the
distance / from the center of mass to the point O, whose instantaneous
acceleration % is zero at timeZ = 0. Since the point O has a zero accelera-
tion at ¢ = 0, this point could be mounted on an axis of rotation without
involving any reaction during the impact. The point P is called the
center of percussion corresponding to 0. Show that the point O is the
center of percussion corresponding to P. Show that the period of vibra-

low?

Pros. 7.85 Pros. 7.86

tion of the body as a compound pendulum acted upon by gravity is the
same whether O or P is the axis of rotation. Such a compound pendulum
is called Kater’s Reversible Pendulum.

7.86. A circular cylinder having a radius of 1 ft and a weight of 100 1b
rolls without slipping along a horizontal surface. A rope wound around
the cylinder passes over a frictionless pulley and supports a weight of
200 Ib which moves vertically as shown in the figure. If the 200 Ib weight
is released from rest, find the velocity of the system at the end of 3 sec.
Do this first by drawing a separate free-body diagram for each mass, in this
way determining the acceleration of the system. Check the answer by
. applying energy principles to the whole system.

7.87. A fixed pulley, a moving pulley, and a weight which can move
vertically are assembled as shown. The sections of rope between the
pulleys are vertical, and the frictional forces in the pulleys are assumed to
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be negligible. Find the equation of motion of W3 in terms of accelerations
by differentiating the energy equation for the system. .

7.88. Two identical solid spheres of mass m and radius r are free to
move on a horizontal surface. If one sphere is at rest and the other sphere
makes an impact with it at a velocity », describe the resulting motion of
the system. Assume that no slipping occurs between the spheres and the
surface, and assume that no energy is lost during the process. The impact
is a direct central impact, the direction of rebound being the same as the
direction of approach.

7.89. In Example 3, Section 7.11, suppose that the system has rotated
through 90°, so that the inclined bar lies in a plane which is perpendicular
to the plane on which the disks roll. Solve for the forces on the disks.

7.90. In Example 3, Section 7.11, suppose that the centers of the disks
have an acceleration % parallel to the plane as well as a velocity . Find
the forces on the disks.

Pros. 7.87 Prog. 7.91

7.91. A crank and connecting rod mechanism has the dimensions
shown in the diagram. The piston weighs 20 Ib, the connecting rod 15 b,
and the center of mass of the connecting rod is located 3 in. from the
crank-pin. The moment of inertia of the connecting rod about its center
of mass is 0.2 Ib ft sec2. The crank is rotating at a constant speed of
1200 rpm. Find all the forces acting on the connecting rod at the instant
when the crank angle § = 30°. Neglect friction and gravity.

7.92. Two identical straight uniform slender bars of length / and mass m
are rigidly joined as shown in the figure. The system is initially at rest
on a smooth horizontal table. An impulse of magnitude I is applied
perpendicular to one of the bars as shown. Find the kinetic energy of the.
system after the impulse has been applied.

7.93. Two homogeneous circular cylinders of equal weight W = 100 1b
and equal diameter D = 2 ft are connected by means of a massless spring
of constant £ = 20 Ib/in. which is fastened to two ropes wrapped around
the cylinders as shown in the diagram. The cylinders roll without slipping
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on the horizontal plane, and the ropes do not slip on the cylinders. The
two cylinders are rotated in opposite directions until the spring is stretched
to a force of 100 b, and the cylinders are then released from rest. Find
the maximum velocity of the center of mass of the cylinders.

7.94. A slender uniform bar of mass m and length / is at rest in a vertical
position on a frictionless horizontal plane. The bar falls in a vertical
plane under the action of gravity. Find the velocity of the center of mass
of the bar at the instant the bar becomes horizontal.

7.95. A 30° triangular prism ABC of weight W is placed on a smooth
horizontal plane. A solid homogeneous
circular, cylinder of equal weight W and
of radius R rolls down the face 4B
without slipping. Find the accelera-
tion of the prism.

7.96. A uniformsolid circular cylinder
of mass M and radius R spinning about
its own horizontal axis with an angular

ProB. 7.95 velocity w, is placed on a horizontal

table. If the coefficient of sliding fric-

tion between the cylinder and the table is u, determine the subsequent

motion of the cylinder. Find the fraction of the original kinetic energy
which is dissipated during the motion.

7.12 Rotation About a Fixed Point. The motion of a body
rotating about a fixed point is somewhat more complex than the
motions hitherto considered. The spinning top and the gyroscope
are examples of such motion, in which a rigid body rotates about an
axis which is itself rotating. We shall first give an analytical treat-
ment which will be suitable for problems of any degree of generality,

“and we will show by means of examples how vector methods can be
used to simplify certain special types of problems.

We first require a convenient coordinate system for the description
of the three-dimensional motions involved. Consider the spinning
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top of Fig. 7.23, which rotates about its geometric axis Oz at the same
time that the geometric axis itself rotates about the vertical axis 0Z. .
Three coordinates will be required to describe the position of the top.
Perhaps the most natural coordinates will be the angle ¢, which
describes the rotation of the top about its geometric axis Oz, the
angle @ which describes the inclination of this geometric axis from
the vertical OZ axis, and the angle 4, which is the angle in the hori-
zontal plane that locates the vertical plane containing the geometric
axis.

In practice, the analysis can be most easily carried out in a

Z

7

Fic. 7.23

coordinate system which is equivalent to this ¢, 8, ¢ system. This
may be explained by the introduction of a new x, y, z coordinate
system as shown in Fig. 7.24. XYZ is the same fixed coordinate
system as in Fig. 7.23, and the origin O is the fixed point about which
motion occurs. The z-axis is the spin axis of the body, and coincides
with the geometric axis of the top of Fig. 7.23. The x-axis lies along
the intersection of a plane perpendicular to the spin axis Oz and the
horizontal XY plane, and hence is always in a horizontal plane.
The y-axis is orthogonal to the x, z axes. Note that the xyz system .
is neither fixed in space nor attached to the body. The body itself
can be defined by the x'y’2" system which is attached to the body.
2z’ coincides with z, but the %’ and y’ are rotated about the z-axis by
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the angle ¢. The three angles defining the position of the body can
thus be given as 6, ¢, and i, where i describes the position of the
horizontal x-axis as measured from the fixed OX axis. Comparing
“Figs. 7.23 and 7.24 it will be noted that the angles 8, ¢, and ¢ are
exactly the same in the two coordinate systems. The angles 6, ¢,
and ¢ are called Euler’'s Angles and their use, together with the
%, ¥, z coordinate system as defined above, is especially convenient
for the discussion of the more complex problems of rotation about
a fixed point.

We shall now write the general equations of motion in terms of

Fi1G. 7.24

Euler’s Angles. Taking 4, , and k as unit vectors in the x, y, z direc-
tions, and wg, wy, and w; as the angular velocity components of the
%, ¥, z coordinate system, we have for the angular velocity w of the
%, ¥, z coordinate system:

W = wid + wyf + wk = 0i + ysinbf + i cos bk

Since the body has an angular velocity of spin ¢ with respect to the
%, 9, z system, the total angular velocity of the body is:

Wy = wil + wyf + (w; + Pk

The equations of motion are obtained in the usual manner by
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writing the equation of moment of momentum, M = H, about the
fixed point 0. As has been shown, this equation, in the rotating
%, ¥, z system is:

M, =H, — Hyw, + Hywy

My=Hy, — Hyw; + Hyo,

M, =H, — Hywy + Hyw,

The wz, wy, w, in these equations are the angular velocity components
of the coordinate system, as defined above. H,, H,, and H; must
be expressed in terms of the angular velocity components of the
body, so:

Hy = + Lows — Iyywy — Lo(w: + §)

Hy = — Ioywz + Iywy — Iy{w; + ¢) (7.27)

H, = — I, w; — Iyzwy + Iz(wz + ¢)

The general equations of motion which are obtained by substituting
H., H,, H, into the above moment equations are rather complex.
We shall not investigate these general equations further, since the
special applications which we shall now consider will permit con-
siderable simplification.

7.13 The Symmetrical Top and the Gyroscope. Consider a
body symmetrical about the z-axis and mounted so that it is free
to move about a fixed point O as shown in Fig. 7.25. Because of
symmetry Izy = I, = Iy, = 0, and I, = I, = I, where I is con-
stant even though the body is rotating with respect to the x, v, z axes.

The components of H are:

sz.lwz; Hy=Iwy; Hz=Iz(wz+¢)

Substituting these components into the general moment equations
gives:
M, = I(a')z — wywz) + Izwy(wz + ¢)
M?/ = (d’y + wxwz) - Izwx(wz + ¢) (728)
Mz = Iz(d)z + (}S)
Substituting the expressions for the angular velocity components in
terms of Euler's Angles, we obtain:

Mz = I — J2sin 6 cos8) + Iifsin8(Jcos b + )

My = I{sing + 246 cos ) — I0(fcosd + ¢) (7.29)
M, = I($ + Jicos§ — 8 sin 6)



THE SYMMETRICAL TOP AND THE GYROSCOPE 239

The solution of this set of differential equations subject to the initia]
conditions will give a complete description of the motion of the
system. Unfortunately, even for the above symmetrical case,
general solutions of the non-linear differential equations cannot be
obtained, although this is a classical problem which has been
intensively studied. It is thus necessary to consider special types
of problems which represent still further simplifications. One type
of problem that can be solved is the determination of the applied
moments that would correspond to certain steady motions of the
system, as will be illustrated in the examples to follow. It is also

zZ

Fia. 7.25

possible to make an analytical study of the stability of such assumed
steady motions, and hence to justify the assumptions.

An examination of Equations (7.28) shows first the usual terms
involving the angular velocities and the angular accelerations that
would be present even if the body were not spinning about its
geometric axis. In addition, we find the terms (I.w,¢$) and
(— I, wz¢) which are consequences of the spin of the body about its
axis. The moments associated with these spin terms are called
gyroscopic moments, and devices in which such terms play a prominent
role are called gyroscopes. Note that the gyroscopic moment about
the x-axis is associated with an angular velocity about the y-axis,
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and vice-versa. The fact that an angular velocity is produced at
right angles to the external moment which causes it is the character- -
istic peculiarity of the gyroscope. This motion of the spin axis in a
direction perpendicular to the applied moment is called precession.
A gyroscope is often mounted in gimbals so that all rotation is

Fic. 7.26

about the center of mass (Fig. 7.26). Since the equation H = M
may be written with respect to the center of mass, we see that the
preceding equations are applicable to a gyroscope mounted in
gimbals even though the center of mass is moving.

ExampPLE 1. A circular disk of moment of inertia / about its
geometrical axis rotates about that axis with an angular velocity
with respect to the axis. At the same time the axis itself rotates in

rwp

—~
L x

Fic. 7.27 Fic. 7.28

-~

a horizontal plane with a precessional angular velocity w,. A gravity -
moment of magnitude Wi acts on the system as shown in Fig. 7.27.
Find the precessional velocity w, compatible with this steady motion
of the system.

Solution—Method 1. Using the analytical method we may go
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directly to Equations (7.29) and the coordinate system of Fig. 7.28.
We have, in the notation of Equations (7.29):
§=90° 0=0=0;, Jy=uwp; =0
Mz ='Wl; My=Mz=0; Iz=I
so, from the first equation: -
Wl = prQ
or:

wi
70 (counterclockwise viewed from top).

Method 2. The simplicity of this particular problem makes
possible a very simple vector solution, as shown in Fig. 7.29. Since

wy =

Z
W,
,———7\“p~~\\
/// o~
Ay H O\
\ , Y
\\iﬂ:Wl > AH
- H=1Q
X
F1G. 7.29

M = H, there must be a AH in the direction of M. If H = IQ =
constant, this AH can only come about by a rotation of the whole
axis as shown, in a direction such that AH has the same direction as
M. If the axis moves through an angle Ay in the horizontal XY
plane in a time Af, we have:

AH = HAY = IQAY

so:
AH A¢ .
-—A—t- = IQ —‘A‘—t‘, or H = Ipr
wi . .
Thus, Wi = IQw;p, and wp = 70 28 before. Note that in this

particular problem the moment of momentum component associated
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with the precession is always perpendicular to the spin axis and hence

does not enter into the moment equation. This would not in general
be true, and is only a consequence of the fact that in this particular

problem 8 = 90°,

ExaMpLE 2. The geometrical axis of a right circular cone of half-
angle « and height # makes a
constant angle 8 with the verti-
N L o —1 cal, and rotates about the
vertical axis through the vertex
\ of the cone with a uniform
angular velocity wjp. At the
\ same time, the cone spins about
> - its geometric axis with a con-

>\ stant angularvelocity w,relative

v to the moving axis, as shown in
Fig. 7.30. For given constant
values of § and w, determine
the precessional angular velo-
city wp.

Solution—Method 1. We shall first solve the problem by a direct
application of Equations (7.29). Referring to Fig. 7.30 we note that
for this particular problem we have:

6=6=0; q§=w; ¢t=wp

Thus the M, equation becomes:

Fic. 7.30

My = — Twp?sin 8 cos § + I,wp sin 8{wp cos § + w)
Also, M, = ($hW sin ), so we have:
$Whsinf = —Iwp?sinfcos b + I,wp?sinfcos b + J,wwpsind

Lo ~ 3Wh _
I, - Dcos®“? 4T, - IDcosb

wpz +

from which:

wn = — Izw i //I: Izw 2 + 3Wh
P = T3, —Dcos t A BT = Deost| T HL = TDcosh

For the cone I > I, so we write:

» = 3T —T)cosd * N |20 =TI, cos 0] I =TI.)cosd
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Note that this expression gives two positive real values for the pre-
cessional angular velocity wj. There are thus two precessional
speeds that will satisfy the conditions of the problem. These are
called the slow and the fast precessional motions. It is the slow
precession which is observed in most simple experiments, and it
would require an analysis of the stability of the assumed motions to
complete the discussion of such problems.

If it is assumed that the angular velocity of precession is small
compared to the spin velocity, a simplified solution to the problem
can be obtained. The moment equation obtained above can be
re-written in the form:

3 Wh = I, — I)(ﬂ)zcose + Iz(—w—p)
w w

4 w?
. Wop Wy 2 .
if (—— << 1, the {—) term can be dropped, and we obtain:
w w

() o e

w 41260

Note that as the spin velocity increases the precessional velocity
decreases. Since most gyroscopes have a very high spin velocity, the
assumption that wp << w is usually a good one.

To compare the result of the approximate analysis with the exact
solution, expand the square root term in the exact answer for w, by
the bionomial theorem:

Iz(l)

2l — I,)cosé

. Lw 1__1_ 3Wh ]2(1—12)c0502+“.
— 2 — I,)cos 8 214(I — I,)cos @ Liw

taking the negative sign and dropping higher order terms in the
expansion, we obtain:

Wy =

3Wh

= T as above.

Wp

The approximate solution thus gives the lower precessional speed.
Method 2. The same results can also be obtained by a direct appli-
cation of the equation M = H using the moment of momentum
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Y
12 T
X
(a)
z
2
\:” ‘\\\
4
\\~‘—J__”/ Y
/z Sl ~
SN —
Hy=Iw,sin
H=1I,(w+w,cos §) b Y
z
X
(b)
FiG. 7.31

vector, as in Example 1, Method 2 above. In Fig. 7.31 (a) the pre-
cessional angular velocity wp has been resolved into components
along the ¥ and z axes, and in Fig. 7.31 (b) the components of the
moment of momentum of the cone along the ¥ and z axes are shown.
As the cone precesses, these H components rotate as shown, and have
increment changes in the x-direction. Then from M = H we obtain:
My = [I(w + wpcos )] sin § wy — (Iwp sin ) cos fwp = §Wh sin 6
or:

Lw 3Wh _
I — T cos8“? " &I, ~I)cos 6
which is the same equation that was derived above by Method 1.
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7.14 The Gyroscopic Compass. Consider a gyroscope that is
mounted at the earth’s surface in such a way that it is free to turn
_in any direction (Fig. 7.26). If no moment is applied, the axis of
the gyroscope will maintain a fixed direction in space so that as the
earth rotates about its axis the gyroscope axis will rotate relative to
the earth. This is illustrated in Fig. 7.32 (a), in which we are looking
due south at a gyroscope which is mounted on the equator. The
direction of spin of the gyro rotor is indicated by the vector. If now
a small weight is attached to the spin axis below the center of mass,
a moment is impressed upon the gyroscope by gravity as indicated
in Fig. 7.32 (b). This torque, whose vector direction is paralle] to

the earth’s axis, causes the spin axis to rotate toward the earth’s axis.
A device of this type will, therefore, point to true north and can be
used as a compass. The preceding discussion gives a qualitative
indication of the behavior of the gyrocompass, and we shall now show
in more detail how the performance can be predicted from the
equations of motion. :

The effect of the pendulous mass is to constrain the spin axis of the
gyroscope to move in a horizontal plane. We therefore take the xz
-plane, Fig. 7.32 (c), as the horizontal plane containing the spin axis,
and the z-axis as the direction of spin of the rotating gyro disk. The
location of the spin axis with respect to a meridian is given by the
angle B, and y is the latitude of the gyroscope, measured from the
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equator. The angular velocity of the earth is wg. The angular
velocity of the xyz axes is then:

wgz = — wg Cos y sin B
wy = wgsiny + B
wz = wEg COS ¥y cos B

To determine the motion of the spin axis in the horizontal plane with
respect to the meridian, we use the general equation for the motion
about the y-axis (Equation 7.28):

My = Iéy + Iwzw, — Lws(w, + ¢)

putting (w, + ¢) = Q, which we may think of as the total spin
velocity of the gyroscope, the equation becomes:

O = IB — Iwg?cos?ysin B cos B + I,Qwg cosy sin B

Since the angular velocity of the earth wy is very small compared to
the spin velocity Q, the term containing wg? may be neglected, and
the equation of motion may be written:

B+ (-ITEQwECOS'y)Sin,B= 0

For small oscillations of the spin axis about the meridian we may put
sin B & B and the equation becomes:

B+ (II—zQchosy)B= 0

This is the equation of simple harmonic motion, from which it may
be concluded that the spin axis oscillates about the meridian with a
period

—ZJ 1
T = 4T\ T.QwE cos y

In practical applications of the gyrocompass, sufficient damping is
introduced so that the oscillations are damped out with the spin axis
finally lined up with the meridian.

The preceding discussion of gyroscopic motion illustrates a
common procedure in the solution of dynamics problems. A com-
pletely general solution of such problems, which, starting from the
general equations would consider all possible motions of the system,
often leads to very complex analysis. Since for particular practical
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problems we are concerned with very special conditions, such as
large spin velocities, we make use of these special conditions to
simplify the equations of motion at the outset. It must always be
realized, however, that such analyses are approximate and are
applicable only when their conditions are satisfied.

PROBLEMS

7.97. The figure shows an airplane landing gear assembly. After the
airplane takes off, each landing gear is retracted into the wing by rotation
about the axis 4-4. If the wheel continues to spin as it is being retracted,
show that the gyroscopic effect causes a torque in the landing gear strut

A%

+

W R
7, 90°

N

wt g/

c + c /+
21t
- Z;

ProB. 7.97

hS
FH,__
I.‘:>

A-B. Indicate clearly by means of a sketch the direction of twist of the
landing gear strut caused by this gyroscopic effect. If the weight of the
wheel is 100 1b, the radius is 2 ft, the radius of gyration about the axis
C-C is 1.5 ft, the take-off speed is 120 mph, and the maximum speed of
retraction w is 3 radians per second, compute the torque in the strut 4-B
due to the gyroscopic effect of the spinning wheel.

7.98. A “turboprop’’ plane has a gas turbine and compressor unit with
16 stages. Each turbine or compressor stage can be treated as a solid
disk with a 24 in. diameter and weighing 30 Ib. The speed of rotation
is 12,000 rpm, clockwise viewed from the rear. The propeller has a speed
of rotation of 1200 rpm and a moment of inertia of 150 Ib ft sec2. The
plane makes a 2g turn to the left at a constant speed of 500 mph. What
is the difference in the torque that must be applied to the plane in order
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to maintain horizontal flight if the propeller rotates in the same direction
as the turbine or counter to the turbine? - .

7.99. A 5000 rpm turbine is mounted in a ship with its axis fore-and-aft
as shown in the diagram. The ship pitches about a horizontal axis normal
to the-fore-and-aft axis with the motion ¢ = ¢o sin wt where the ampli-
tude of the motion is 10° and the period is 10 sec. The rotor of the turbine

—
/—_/J—/

_T“‘p h\ﬁﬁ

Pros. 7.99

weighs 500 1b and may be considered as equivalent to a homogeneous
cylinder 2 ft in diameter. The distance between the bearings is 4 ft.
Find the maximum magnitude of the bearing reactions due to gyroscopic
action.
7.100. The rotor of an electric motor is mounted in an electric locomo-
tive as shown in the diagram. The locomotive travels with a velocity »
around a curve of radius R. Find the
gyroscopic forces exerted on the bear-

7 N\ ings of the rotor shaft.
1 7.101. When an automobile is
"_ _.' rounding a curve at high speed, does
— 52 the gyroscopic effect of the wheels tend

IE:E to stabilize the car or overturn it?

7.102. The gyroscope in an inertial

guidance system has an angular

momentum of 108 cgs units. In order

that the guidance system should hold

%  course within 1 mile in 10 hours of

Pros. 7.100 operating time, the drift rate of the

gyroscope must be kept below 0.0015

degrees per hour. Find the maximum permissible gimbal bearing friction
torque in foot-pounds.

7.15 General Motion in Space. Rolling of a Disk. In the
preceding sections we have shown that for certain motions of a
restricted type, such as plane motion, or motion about a fixed point,
the general equations of motion can be reduced to relatively simple
forms. In the present section we shall illustrate, by means of the

1

]
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particular example of a disk rolling on a horizontal plane, the solution
of more complex systems by application of the general equations of
motion,

A thin uniform circular disk of radius 2 and mass m rolls without
slipping on a horizontal plane. We are to write the equations of
motion required to give a complete description of all possible motions
of the disk.

We can describe the location and configuration of the system by
giving the two coordinates of the point of contact of the disk and
the plane, and the angles 8, ¢,
and ¢ as shown in Fig. 7.33. Also z
shown in the diagram are the _Win -
forces acting on tge disk, which horont! plare %—Hmmm‘

! reference
consist of the gravity force myg /g x line
and the three components Rj, y ’ .
Ry, R, of the reaction of the plane
on the disk. We shall select an \ jA
xyz coordinate system whose R.
origin is at the center of mass of I
the disk, and whose y-axis passes
through the point of contact of Y A\
the disk and the plane. . P9 %

The conditions that the disk

roll without slipping on the plane
can be expressed analytically as: Horizontal mg

Xe = —ad — aj cos @ /
. R, R,

ye=0

z

2. = af
The angular velocity of the disk is:
Wy = 9
wy = Ysin g

w; = ¢ + Pcos b

The angular velocity of the x, y, z coordinate system, however, is
not the same as the angular velocity of the disk, since the coordinate
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system is not attached to the disk. If the angular velocity of the
coordinate system is Q,, Q,, Q., we have:

Qx = 9
Qy = ll’ Sin 0
Q, = icos b

To find the acceleration of the center of mass of the body, we write:

a; = a (el + Yof + 2ck) = %ci + %l + Yof + yof + Zck + 2R
where:
i=Q xi=Q;j— Qb
j=Q xj=Qk - Qi
E=9 x k=Qui — Q,f
Substituting and collecting terms, we find:
Gez = — A — Y €08 8 + 2ayf sin 9
Gy = — ady cos 8 — aj? cos 8 — ab?
Gz = ab + ady sin 8 + ay’ sin 6 cos §
The three force equations can thus be written:

Ry = — ma($ —204 sin 6 + ¥coss)
Ry — mgsin @ = — ma(02 + ¢y cos 0 +¥%cos's) (i)
R: — mgcos § = ma( + $y sin 0 +¥'sinecoss)

For the moment equations we can make use of Equations (7.29),
previously derived for the motion of a body of revolution about a
fixed point. Since the origin of the coordinate system is the center
of mass of the system, the same equations will be valid, and since the
angles used to describe the position of the disk are the same Euler’s
angles used for Equations (7.29) we may substitute directly and
obtain:

Mgy= —aR, = I8 + (I, — I)Y2sin B cos 6 + I, sin 6
My=0=1Ijsin6 + (21 — L) cosd — 1,40 (i)
M, = aR, = I,¢ + Ifcosf — I sin @

The six equations of (i) and (ii) constitute the complete set of
equations of motion for the problem.

7.16 Stability of Rigid Body Motion. The Rolling Disk. As
an example of the use of the equations of the preceding section, we



STABILITY OF THE ROLLING DISK 251

shall find the conditions under which stable rolling of the disk in a
straight line is possible. This will also serve as an illustration of one
type of stability investigation. In general, the conditions of stability
“of a given state of motion are determined by introducing a small per-
turbation of some kind into the motion. If in this perturbed state a
restoring force is set up which tends to return the system to its original
condition, the motion is said to be stable, In addition to this
restoring force it may also be required that there be damping forces
so that any oscillatory motions would decay.
Let us suppose that the disk of Fig. 7.33 is rolling along in a straight

Iine with 'l,L:‘lf.:%k:O and 6:90°Jé=é=o,
From the (4 & last of eqaa.i-:q"n.s () & (o), we obtain

sz —-ma(p
aRy = Ie¥ .

S0 (szma.")?r-o ; ::F: OJ amnel CP:MS'/’QM‘{': ﬁOa’
We Lri,ues'lsf'ga+e the Sf:a,’oili,tu of +his motion Lﬂg
uitroducing small perturbations into this reference
condition, 50 thal @ = ¢ +a 6=90%+p , =7,
where «, B Y are small quomdtities.

Wrcbing equations @ & &) for shus perturbed
Cond’,délon, r‘e‘('a,;m'ng onf,lj the |5f order (Jz'ermsl and.

noting +hat cos(Gotp)= -, sinGotp =l we
ob‘rar:?\ : P P . P=5 ”
Rx = —Ma« Qe

l?«;-—mq = O . @v)
Kz+mg[b= m,a,f{-fmaoz.‘f‘ )

o = I¥ ——Izo'cf& wee)
a'ﬁx fmd Izo‘a @l:l.,t:)

From (ii) & (weil), =0, 50 x = conslamt = X,
Elimminating Ky befween () & @) : )
—-mqa.f%, + ma'p + male, T +I{"§ +1qa,Y=0
. . T, ' - . . ¢y
From @), T = ik-“oP which Lnf‘e%m}e il:o
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Keplacing v in ) by ), we olo+a,in,

(I+ma;")f5' +):(I£+ma~‘) :—Eﬁ (, — mgmlr, o0 )
Lf the Squa.re bracket in &) 1s negatwe_ {3 will
grow exponentially | (.e. the motion is umstable.
The condction for stabclcfs-j 15 thus :

(Tztma*) Fre," > mga
The waow(ar\ ue{ac&.étd o'F the dls[( 15 C? ‘P'FOCD g
So ’F{Mllg the cwuld:ton, .‘:\0,. S‘fzJop‘ 'I'\d becames:
Imga

I(I, + ma?)

For a uniform disk, I, = §ma?, I = }ma?, and v = awg, where v is
the velocity of the center of the disk. The stable velocity of rolling
in a straight line is thus given by:

ga
0> &
PROBLEMS

7.103. A homogeneous right circular cone of half-angle « and height 4
rolls without slipping on a rough horizontal plane. The angular velocity
of the axis of the cone about the vertical line through the vertex is Q.

!

Q

wgq? >

Pros. 7.103 Proe. 7.104

The resultant of the reaction forces of the plane on the cone is R, located
at a distance 4 from the vertex. Find a as a function of Q, and determine
the limiting value of Q for which such a rolling motion is possible.

~ 7.104. A thin homogeneous circular disk of radius a rests on a rough
horizontal plane and spins about a vertical axis with its plane always
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vertical. Using the general theory developed for the rolling disk, find the
value of Q for which such a stable spinning motion will be possible.

7.17 D’Alembert’s Principle. It was pointed out by D’Alem-
bert that Newton’s Second Law of Motion could be considered from
a slightly different viewpoint by writing it in the form:

F 4+ (—mi) =0

and treating the term (—m#) as if it were a force. When this is done
the terms ( —mf#) are called tnertia forces, and it should be particularly
noted that inertia forces are not actual forces in the sense that the
word “‘force’’ has been used in the preceding portion of this book.
The concept of the inertia force makes it possible to apply the
general methods of statics to the solution of dynamics problems, since
Newton’s Law may be written as ZF = 0 if it is understood that
inertia forces are to be included in the summation.

This viewpoint can be extended to systems of particles and to
rigid bodies. For any system of particles we have

TF, + T(—mgfy) = 0

For a rigid body performing plane motion, the equations of motion

are:
ZF = mi:c

M, =16
These may be written:
F + (—mi) = 0
IM, + (=I8) =0

where #; is the acceleration of the center of mass of the body, and I
is the moment of inertia of the body about the center of mass. If
we imply that the inertia force (—m#;) and the inertia torque (— I9)
are included in the summation, we have the equations in the same
form as the equations of statics: .

ZF =0
M =0
It should be noted that in this moment equation, the moments can

be taken about any axis, as in statics, since the inertia torque has
already been included with the appropriate moment of inertia about
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the mass center. It is this feature which may sometimes lead to a
simplification in writing the equations of motion for a system.
Since any point can be taken as a moment center it is sometimes
possible to select a point through which several unknown forces pass,
thus eliminating such unknown forces from the equations. The
equations of motion as formulated in the previous sections of the
present chapter, on the other hand, usually require that some
particular point such as the mass center or a fixed point should be
used as the moment center. ~

The introduction of the concept of an inertia force and an inertia
torque does not, of course, represent any new information. For
some problems, however, this method of writing the equation of
motion leads to a convenient way of visualizing the dynamics of a
situation, as will be illustrated in the following examples.. D’Alem-
bert’s principle is also often used for non-rigid systems, as in
Prob. 7.107. By applying the appropriate inertia force to each
element of the system in such cases, a complete description of the
dynamics of the system is obtained. It is important to note that
D’Alembert’s method should be considered as an alternative to the
method employed previously in this chapter, and that mixing the
two methods in one solution can lead to considerable confusion. In
such a case it is quite possible that the same term will be included
twice—once in the guise of an inertia force, and once as an accelera-
tion term.

The concept of an inertia force can be combined with the principle
of virtual displacements to give Lagrange’s form of D’Alembert’s
principle. For example, the equation of motion for a particle is:

mif — F =0

If, according to D’Alembert’s notion, we consider this to be an
equation of static equilibrium, the principle of virtual displacements
states that: _

(mi — F).8r = 0

where 8r is a virtual displacement. The general statement of
D’Alembert’s principle for a system of particles is:

Z[(mx, — Fm-)Sxi -+ (my; — Fyi)8y£ + ('méi - in)szi] =0
(7.30)



D’ALEMBERT’S PRINCIPLE 255

This is the equation from which Lagrange developed analytical
mechanics. It introduces into dynamics the same advantage that

the principle of virtual displacements introduces into statics—the
~ conditions of equilibrium or of motion may be studied without intro-
ducing the constraining forces which may be acting. A further
development of this method of formulation of the dynamics problem
will be discussed in Chapter 9.

ExaMpLE 1. Solve the problem of the example of Section 7.9
using the concept of the inertia force.

Solution., We draw a free-body diagram indicating the forces as
solid vectors and the inertia forces as dotted vectors (Fig. 7.34). The

e~
ol

!
h
¢
A

FiG. 7.34

inertia force (—m#c) is shown at the center of mass of the system.
Since the body is translating, there is no inertia torque acting on the
system. The problem has now been reduced to a problem in statics,
and the equations may be written:

YF; =0=F; — uN4 — uNp — m%,

ZF:.,=0= ——Fy+NA+NB~mg

IM4=0= —Fgya +'h) — mg(é) + INg + hmi,

These equations lead directly to the solution given in the example
" of Section 7.9. Note that we have taken advantage of the fact that
any point can be selected as the moment center, and have picked the
point A, which eliminates several unknown forces from the equations.
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ExampLE 2. A pulley of radius R and moment of inertia I sup-
ports two masses m; and m; fastened together by a rope as shown in
Fig. 7.35. Find the equation of motion of the system.

Solution. We shall describe the motion of this single-degree of

Fic. 7.35

freedom ‘system by the coordinate x,
as shown in the free-body diagram.
The inertia forces (—m1%) and (—m2d)
are shown as dotted vectors, and the
inertia torque (—1I6) is also indicated.
The equation of motion can now be
written:

Mo = miR + % + iR + migR
— megR =0
From which:
P (me — ml)gI
m1 + mg + -Rgé

ExampPLE 3. A thin hoop of radius
R rotates about an axis through the
center perpendicular to the plane of
the hoop with a constant angular
velocity w. Find the circumferential
tension force in the hoop.

Solution. We first draw a free-body
diagram of one-half of the hoop (Fig.
7.36). Each element of mass of the
hoop is acted upon by an inertia force
directed as shown in the diagram,
Consider an element of mass included
by the angle d¢ and let p be the mass

per unit length of the hoop; then the inertia force is p(Rw? Rd¢
directed radially outward. We may now write: :

SF, =0 = f"R2w2p sin ¢dg — 2F
0

From which

F = R2w?
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FiG. 7.36

ExaMPLE 4. A type of governor mechanism used for the control
of the speed of rotating shafts is shown in Fig. 7.37. A simple
pendulum having a concentrated mass m and a length / is mounted
on the rim of a wheel of radius R which rotates with an angular
velocity w. The pendulum is constrained by two springs which are
also attached to the rim of the wheel. For small displacements
%, of the pendulum, the restoring force of
the springs can be taken as Fy = —kx.
When the wheel is rotating with a con-
stant angular velocity, the pendulum re-
mains in a radial position, but if the wheel
accelerates or decelerates the pendulum
moves to one side or the other of its neutral
position. By allowing the pendulum dis-
placement to control the power input to the
system, the angular velocity can be regulated. Fic. 7.37
Find the differential equation of motion of
the pendulum with respect to the flywheel, in terms of angular
velocity and acceleration of the flywheel.

Solution. Since we wish to express the absolute acceleration of m
in terms of the relative motion, we use Equation (2.16):

F=R+wx(wxp +&xp+ pr+ 20 X% pr

By D’Alembert’s method the equation of equilibrium is:

F—mR - mo x (wx p) —md x p— mpy — 2mw x pr =0
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Letting the xy axes be fixed on the wheel (Fig. 7.38), each term of the
equation is as follows: '

F = —klsingi
—mR = —mRai — mRw¥
—mw x (w x p) = miw?e,

—mw X p = maley
—mpy = mld2e, — mide,
—2mw % f = —2mowlde,

A free-body diagram with all of the inertia forces is shown in Fig. 7.39.
The force in the pendulum rod now can be determined by statics and

o] z
0] ° e ¢ :
e
“Ilsing _mRw
L4 !
“ \%
e 5 y
/ ¢ 8 %

o

-

W \ Y : -
e 2,
P \G’z.

FiG. 7.38 Fia. 7.39

the equation of motion can be derived by writing the moment
equation XM, = 0. :
—l(—mlo + mld) — I cos p(klsin ¢ + mRw) + I(sin $)mRw? = 0
For small oscillations we may set cos ¢ ~ 1, sin ¢ = ¢ and obtain:
v k  Rw? I — R\ .
F (- ()

This equation has the same form as the equation describing the
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vibration of a pendulum about a fixed point. If the spring constant

2
is large so that % > F—la—)-, the pendulum will oscillate about its

equilibrium position under the action of the term (l

~ R)a'), which
acts like an exciting force.

For the complete analysis of a control system of the above type,
one would have to take account of the fact that the mechanisms con-
nected to the pendulum and operated by it have dynamic character-
istics which affect the behavior of the system. Considerable work
has been done in recent years on control systems of all types, and
much of this work is summarized in books on the theory of servo-
mechanisms.

PROBLEMS

7.105. The side-crank connecting rod of a locomotive drive system has
a length / and is connected to the wheels at a point a distance 7 from the
center. The wheels have a diameter 4, and the velocity of the locomotive
horizontally is v. Assuming that the connecting rod is a uniform straight
bar of weight W, find the maximum bending moment in the bar.

= |<—=~—>-|

Prog. 7.105 Pros. 7.106

7.106. A compound pendulum of moment of inertia I about the point
of support is attached to an elevator which moves either up or down with
an acceleration a. The distance from the point of support of the pendulum
to the center of gravity is 4. Find the way in which the frequency of
vibration of the pendulum is influenced by the elevator acceleration.

7.107. A slender steel rod of length / and radius 7 rotates about an axis
- through one end perpendicular to the bar with a constant angular velocity
. Find the maximum tension force in the rod using the inertia force
method. Find the numerical value of this force if / = 3 ft, » = } in,,
and w = 500 rpm.
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7.108. A steel beam of length / and weight w Ib/{t is simply supported
at each end. It is observed that the beam vibrates with a motion

y = A sin ("T) sin pf. Find the expression for the maximum dynamic
reaction which occurs at a sup-
port, using the concept of an

inertia force. Find the numerical

y value of this force when ! = 20 ft,
I e ww w = 20 lb/ft, 4 = } in., and the
[ TS ~ frequency of the vibration is 10
= - T
_______________ = cycles per second.
7 7. 7.109. Solve Prob. 7.35 using
l the concept of inertia force.
Pros. 7.108 7.110. Solve Prob. 7.37 using

the concept of inertia force.
7.111. Five weights are attached to a rigid horizontal shaft as shown in
the figure. The weights, radii, and angles locating the weights are given
in the accompanying table. The system is to be balanced by the addition

No. | W () | 7 (in) 9
Wy 10 2 30°
Ws 5 3 90°
W 8 1 135°
W, 8 2 225°
Ws 15 1 300°

of two weights, one in the plane of W; and the other in the plane of Ws.
Each balance weight has a radius of 2 in. Find the magnitudes and the
angular positions of the balance weights. Show that the products of
inertia are zero for the balanced system.

W W,

0, 5 in.——h[
i o % o ow s V%
/@Ws -4 in] l—s i""éw, éWs 77

/A
Pros. 7.111
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Prog. 7.112 Pros. 7.113

7.112. A pulley having a moment of inertia I about its axis of rotation
supports a rope which carries a mass » at one end, while the other end is
connected to a spring of spring constant % as shown in the diagram. Find
the period of oscillation of the system. Assume that the rope does not
slip on the pulley.

7.113. A governor is constructed as is shown
in the diagram. The assembly of four linked
bars of equal length / rotates with an angular
velocity w about a vertical axis. The mass
slides on the vertical axis and is restrained by a
spring force (—kx). Find the displacement x of
the mass m; in terms of the constant angular
velocity o of the system.

7.114. A governor is mounted on a rotating
wheel as is shown in the figure. When operating
in a steady-state condition (w = constant) the
angle between the spring and the pendulum is Pros. 7.114
90°. The total mass of the pendulum is m, and
the moment of inertia of the pendulum about its suspension axis is /.
Find the equation of motion of the pendulum for small displacements
from the steady-state position.




Chapter 8

NON-RIGID SYSTEMS OF PARTICLES

But I consider philosophy rather than the arts and write not concerning
manual but natural powers, and consider chiefly those things which relate to
gravity, levity, elastic forces, the resistance of fluids, and the like forces,
whether attractive or impulsive.—I. Newton, Principia Philosophiae (1686).

The analysis of the dynamics of systems of particles is greatly
influenced by the characteristics of the particular system being
studied. For example, solid bodies, fluids, and gases are all systems
of particles and as such can be treated by the general methods of
dynamics which have already been discussed. The physical
characteristics of these various systems differ so greatly, however,
that the analysis must be handled in a distinctive fashion for the
various materials. The analysis is, of course, always based upon
the equations of motion, but it is developed in different ways in
order to take advantage of the particular characteristics of a given
system.

In the following sections some of the methods which can be
applied to non-rigid systems of particles, such as elastic bodies,
fluids, and gases will be briefly discussed. The non-rigid system
which is most closely related to the rigid body of the preceding
chapter is the elastic body, in which small motions of the particles
with respect to each other may occur. These small motions may be
the only motions involved in the problem, or they may be super- -
imposed on a “rigid-body” motion of the whole system.

8.1 Longitudinal Waves in an Elastic Bar. As one example

of a type of dynamics problem in which the motions are associated
262
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with the non-rigidity of the system, we shall consider the propagation
of elastic strain waves in a long, slender bar.

Fig. 8.1 (a) shows a portion of a long, slender bar of uniform
cross section area A4, and of density p. It is supposed that loads are
applied in such a way that only longitudinal strains are set up, and
translational motions of the bar as a rigid body will not be con-
sidered. It will be assumed that plane sections normal to the axis
of the bar remain plane, i.e., the axial stresses and strains are
uniformly distributed across the area of the bar.

Referring to Fig. 8.1 (a), consider a section of the bar located at a
distance x from a reference point. During the strain of the bar, this
section is displaced a distance # from its original position, while
another section, originally at a distance x + dx is displaced by # + du.
The total elongation of the element of length dx is thus du, and the

A -
\1 ) EA(au 7;5'1’)

C z
|<————-:c——->-] |<———da: —»Id:c

@ (b
FiG. 8.1

strain is %—g, which we write as a partial derivative since the displace-

ments # will be functions of both x and 2.
If it is assumed that the material of the bar obeys Hooke’s law, the

uniformly distributed stress across the bar will be ¢ = E éﬁ, and the

ox
total force on the section will be E4 %: Writing the equation of
motion F = ma for the free-body diagram of Fig. 8.1 (b)

au - 0%y 0%u
__EA + EA( Tt dx) (pA dx) — 7

~we obtain the basic partial differential equation describing the
motions:
0w _E 0%

E " 5 (8.1)
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The solution of this partial differential equation, subject to
prescribed initial and boundary conditions, leads to a complete -
description of all motions permitted by the basic assumptions. It
will next be shown that the solution to Equation (8.1) can be
obtained in two different forms, which must, of course, be physically
equivalent, but which lead to two different points of view for
problems of this kind.

8.2 The Traveling Wave Solution. Consider a function of the
form

u = f(x ~ cf) (8.2)

where f indicates any function and ¢ = A/ E It will be seen that
P

this is a solution of Equation (8.1), for*:

w=f(x — ct); —z—:=f’(x—ct); 5’-6—5=f”(x—ct)

c2f"(x — ct) =

which is always satisfied if ¢2 =

We now investigate the physical interpretation of a solution in the
form of Equation (8.2). Fig. 8.2 (a) shows a representation of the
function # = f(x — ct) whent = 0. In Fig. 8.2 (b) the more general
case # = f(x -~ ct), t > 0 is plotted in an x, u¢ coordinate system
which has been transformed by the translation along the x-axis
x = x9 + c¢t. It will be noted that this transformation has the effect
of moving the #-axis to the right by an amount c¢z. In this new

* Note that writing (¥ — ¢f) = z; oflz) _ oflx) 2z = f’; and similarly

ox oz dx
of(z) _9fdz _ ,
o a9
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coordinate system we have uo = f(xo + ¢t — ¢f) = f(x¢) and hence
in the translated coordinate system the same shape of function f(x)
. is obtained that was originally plotted for ¢ = 0. It is thus evident
that as time increases, and hence the distance c¢f increases, the
original curve f(x) can be thought of as moving along the x-axis to
the right with a constant velocity c.

It will thus be seen that a solution of the form f(x — cf) represents

physically a wave traveling along the bar with a velocity ¢ = J E
P

For this reason Equation (8.1) is often called the one-dimensional
wave equation. The wave equation in more general terms is:

2:d : (62(13 20 62(13)

27 - 2ved = g2 — 4+ 22
atvid = ¢q ax2+6y2+3zz

o2

the solutions of which describe waves that can be propagated in

S Slzy)
/~ \‘\
t=0 ! N t>0
\
> 7,2

{hed )
et
(a) z

Fic. 8.2

certain three-dimensional systems, as, for example, sound waves
in air.

By repeating the steps which lead to the solution # = f(x — cf) it
can be shown that the solution # = f(x + ¢f) also satisfies the wave
equation, and that it represents a wave traveling to the left with the
velocity ¢. The solution # = f(x + cf) thus represents two waves
traveling in opposite directions with equal constant velocities c.
Since Equation (8.1) is linear, a general solution can be built up from
. the two wave solutions by superposition, thus giving:

u(x, 1) = filx — ct) + fa(x + cb)

The forms of the functions f1 and f2 can be determined from the
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prescribed initial conditions. If, for example, the initial displace-

s " 0
ments are uo({x) and the initial velocities are (-ai:) » we would have:
0

uo(x) = f1(x) + f2(x)
(F), = st = o

where fi1(x) and f2(x) are the shapes of the two oppositely moving
waves,

A superposition of waves may also be used to satisfy the boundary
conditions at the ends of the bar. Consider two identical waves as

in Fig. 8.3 (a). In this figure we will plot ¢ = E(%) instead of «,

so that the waves are stress waves, and we show the positions of the
waves at three successive intervals of time.

Fic. 8.3

If the two waves are of equal sign and are mirror-images, then
point 4 midway between the waves will at all times be in equilibrium,
and will hence remain at rest. The point 4, therefore, can represent
a fixed point of the bar, as at a built-in end. We thus conclude that
a wave is “reflected”” from a fixed end of the bar as a mirror image
of the same sign as the original wave, i.e., a tension wave reflects from
a fixed end as a similar tension wave.

If we now imagine that the two approaching waves have the same
form but are of opposite sign, as in Fig. 8.4 (a), we note that at the
midpoint 4 the stresses cancel but the displacements add. Point 4 -
thus in this case corresponds to a free end of a bar, and we conclude
that a wave is reflected from a free end with a change in si’gn, ie.,
a tension wave reflects from a free end as a similar compression wave.

In connection with the above discussion of wave propagation, it
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will be useful to refer back to Prob. 3.38, where it is indicated how the
velocity of propagation of elastic waves can be calculated from
~ impulse-momentum principles.

FiG. 8.4

ExaMPLE. A longitudinal stress wave of the shape shown in
Fig. 8.5 starts at the free end of a bar of length / and travels down
the bar toward a built-in end. What time will elapse before the bar
will again be in its original configuration ?

Solution. Since the wave reflects from a fixed end with the same
sign, and from the free end with a reversed sign, it will require four
complete traverses of the bar to get the wave back to its original
configuration, as shown in Fig. 8.6 which indicates the sequence of

b

(

x
[
<

= S

l

A

FiG. 8.5 FiG. 8.6

‘events. FEach traverse takes a time ¢ = é so the total time 1is

g= 4] A/ Zﬁf The resultant motion of the bar, which involves a
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longitudinal to-and-fro motion of the individual particles, may be
thought of as a vibration of the bar. The time calculated above -
may thus be regarded as the fundamental period of longitudinal
vibration of the bar.

In the next section this vibration problem will be studied from
another point of view.

8.3 The Longitudinal Vibrations of a Bar. We shall now
return to Equation (8.1) and show that a different form of solution
can be obtained.

The differential equation is:

0% 9 0%u

o = ot
Try as a solution a function of the form:
u(x, 8) = u1(t) -ua(x)

where #1(¢) is a function of ¢ alone, and u(x) is a function of x alone.
Substituting this trial solution into the differential equation gives:

uzd_z'lﬁl = c2 1?_21‘_2

age ax?

or:

1 d2u, _ 1 d2u,

)
The left side of this equation is a function of ¢ alone, and the right
is a function of x alone; these two sides can be equal only if they
equal the same constant. If we call this constant (—p2), we have:

1 d2u1 2 1 d2u2

— . ——f = _AH2
uy die ¢ uy dx? p
which leads to the two equations:
d2u1
-272— + PZ“I =0 (83)
d2u2 PZ .

By the use of the product solution technique the single partial
differential equation has been replaced by two ordinary differential
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equations. This method is often useful in the solution of partial
differential equations.

Equation (8.3) will be seen to be the simple vibration equation as
discussed in Chapter 5, the solution of which is:

u1(t) = A sin pt + B cos pt

where p is the frequency of the vibrations.

Equation (8.4) is an equation of similar form, and will have the
solution:

?

us(x) = C sm—c-

x +Dcos;-f-x

And thus a solution of the differential"equation is:
u(x, ) = (4 sin p¢ + B cos pi) (C sin?cix + D cosé x) (8.5)

We shall show how a complete solution of the differential equation
can be formed from solutions of the above type by considering a
specific example. Suppose that we are to determine the natural
frequencies of longitudinal vibrations of a uniform slender bar of
length /, area A, material of density p, that is free at one end and
built in at the other end. The boundary conditions are:

(1) at the free end (x = 0) the strain is zero, therefore (a—aux—z) =0
z=0
(2) at the fixed end (x = /) the displacement is zero.

Substituting in the equation for #s, we obtain:

) 222 Loty pPan?

sm x
ox

0=C§; so C=0
and:
(2) 0_=Dcos€—l

For a non-trivial solution D # 0, so we have as a requirement for
satisfying the boundary conditions:

0052—"— = (8.6)

There are an infinite number of values p, which satisfy this equation,
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corresponding to the fundamental frequency and the higher
harmonics. ’

The situation represented by Equation (8.6), in which a differential
equation and its boundary conditions are satisfied only for a par-
ticular set of values of some parameter, often occurs in problems in
applied mathematics. These are called the ‘characteristic values”’
or “eigenvalues” for the problem.

In this particular case, the natural frequencies of vibration of the
bar are given by the solution of Equation (8.6):

m7c¢ 3mc Smec

=3y 27 3T

It will be recalled that in Chapter 5 vibrating systems having one
degree of freedom and hence one natural frequency of vibration were
discussed. The elastic body is a system having an infinite number
of degrees of freedom and hence, as we would expect, there are an
infinite number of natural frequencies.

The fundamental frequency of longitudinal vibrations is the
lowest of the above values:

SN

The fundamental period of the vibration is:

.y
P TE E
21
Note that this agrees with the answer obtained by wave propagation
techniques in the example of the preceding section.

The fact that there are an infinite number of frequency parameters
P that will satisfy an equation of the type of Equation (8.5) for a
given set of boundary conditions enables us to form a complete solu-
tion to the problem. Since the original differential equation is linear,
solutions of the type of Equation (8.5) can be superimposed to give
a complete solution which will satisfy the initial conditions of dis- -
placement and velocity as well as the boundary conditions. This
general solution will thus be of the form:

u(x, t) = z (A sin pat + Br cos pal) (Cn sin Pn x + Dy cos Pn x)
n=1

c c



THE LONGITUDINAL VIBRATIONS OF A BAR 271

It will often be found that many problems can be analyzed either
as a wave propagation or as the superposition of harmonic solutions.
. Depending on the type of loading, the initial and boundary con-
ditions, and on the information desired, one or the other of the
methods may be preferable.

PROBLEMS

8.1. A straight uniform bar of length /, cross-section area 4, and material
of density p is free at both ends. A longitudinal stress pulse is applied to
one end of the bar as shown in the :
diagram.

(a) By wave propagation tech- a
niques find the time that would elapse
before the bar has again its original !
configuration.

(b) Compare the time of part (a) Pros. 8.1
with the fundamental natural period
of vibration as calculated from the differential equation of motion of the
bar.

(c) Repeat (a) and (b) for the case in which the bar is built in at both
ends.

8.2. A straight shaft has a uniform circular cross section having a polar
moment of inertia /5, and an area 4. The material of the shaft has a
density p. The angle of twist of the shaft is ¢, where ¢ is a function of the
distance x along the shaft and of the time. Derive the partial differential
equation describing the twist of the shaft. Show that torsional waves can
be transmitted along the shaft and determine the velocity of these waves.

8.3. The partial differential equation describing the transverse bending
vibrations of a uniform beam is:

64}1 m aZy
itz =0
where p is the mass per unit length, E is the modulus of elasticity, and /
is the moment of inertia of the cross-sectional area about the neutral axis.
(a) Show that a simple traveling wave type solution y(x, {) = f(x — ci)
does not apply to the beam equation.
(b) Show that a solution of the type:

Yz, ) = 4 sin w(t - f—,)

satisfies the equation, and that this solution represents the propagation
of a sinusoidal bending wave of frequency w with a velocity V. Find the
relationship between V and w. Systems for which wave propagation
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velocities are not constant, but depend upon the frequencies of the
disturbances, are called * dispersive’’ systems.

8.4. A uniform flexible string of length / and mass per unit length p is
fastened at each end to rigid supports. The string is stretched by a large
tension force F, which may be assumed to be constant for small transverse
motions of the string. '

(a) By writing the partial differential equation describing small trans-
verse motions of the string, find the velocity of propagation of transverse
waves along the string.

(b) Find the lowest natural frequency of vibration for small transverse
motions of the string.

8.4 The Equations of Motion of a Non-viscous Fluid. In the
analysis of fluid motion it is possible to introduce certain simplifi-
cations because of the special properties of fluids. First, it is not
necessary to treat the fluid as being composed of discrete particles.
Instead, we consider it to be composed of elements of volume dV,
an element having a mass pdV, where p is the density of the fluid.
Second, we make use of the fact that the pressure at a point in a fluid
is the same in all directions:

Po=py=p:s=p
The equation of motion for an element of fluid is:

dv

(paV) =

= ZF (8.7)
‘where v is the velocity of the element and£f is the resultant force
acting upon the element. In rectangular coordinates the equations
of motion are:

(pdx dy dz)i = XLF, etc.

Fig. 8.7 (a) shows a free-body diagram of a fluid element. If we
assume a perfect or non-viscous fluid, there are no viscous shearing
forces on the sides of the element, so that the only forces are the
normal forces acting on the faces, and the gravity force acting at the
center of the element. In Fig. 8.7 (b) are shown the pressures
exerted on two faces of the element. The pressure at the center of
the element is taken to be p. Then on the right face of the element,

. d : 2pd
at a distance .%‘ from the center, the pressure is (p-i-syg %)}
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le
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/7 dx
d;
z Y (b))
Fic. 8.7

whereas on the left face the pressure is (p - gs d?.y) Since the

force in the y-direction is given by the pressure multiplied by the
area on which it acts:

ap dy Y,
ZF, = (p ~5§’ %)dxdz-—(p+a—§ %»")dxdz
3F, = —g—gdxdydz

The minus sign occurs because for op positive the resultant force

oy
~ acts in the negative y.direction. The y.component of the equa-
tion of motion now may be written:

(o dy d2) = ~3E dc dy o



274 NON-RIGID SYSTEMS OF PARTICLES

or:
l‘_ _ QB
PY==3y
In the Xand z directions the equations are found in the same way
to be: :

" 9 ) 9
pi=~ b5 = - (L +u
or, in vector notation:

ob = — [2’;: + %1 + (g’;’ + pg)k] (8.8)
With this equation it is possible to determine the motion when the
pressure distribution is known, or to determine the pressure distri-
bution when the motion is known.

There is an obvious difficulty in the practical application of this
equation, since, in general, neither the motion nor the pressure in the
fluid will be known. The only facts that are usually known are
certain boundary values, such as the pressures at free surfaces or the
directions of the velocity at a boundary, etc. The problem is to find
the motion that will satisfy both the differential equation of motion
and the particular boundary conditions. In general, this is a
difficult problem, and many special techniques have been developed
to analyze such fluid dynamics problems. - These methods are
treated in texts on hydrodynamics and aerodynamics. In the
following paragraphs, we shall discuss only two of such special
methods—that of the energy equation, and that of the momentum
equation.

8.5 The Energy Equation. The equation of motion for an
element of the fluid can be integrated directly to obtain the work-
energy equation. Assuming an incompressible fluid, that is p =
constant, forming the dot product with dr and integrating, we

obtain:
f1 [3f1+-6§]+ (ap-i-pg)k}-dr

2
f pvedr
1

2 - *lot % P
fl pyedy = — fl [—a;dx + ydy + = dz +pgdz]

i

2
1pv2? — bou? = — f1 ap ~ f1 pgdz = — (p2 — p1) — pg(22 — 21)
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Collecting terms, this equation may be written:

pv12 + Pp1 + pgz1 = 3pve? + po + pgae

This states that the sum of the three terms is the same at all points,
or: :
$pv2 + p + pgz = constant (8.9)

This equation applies to an element of fluid no matter what type of
fluid motion is involved. In fluid-mechanics problems, however, it
is not in general possible to follow the motion of one particular
element, and the usefulness of the above equation lies in the fact that,
subject to certain restrictions, the equation can be applied from
point to point in a fluid. The nature of these restrictions may be
shown in the following way. A streamline in a fluid is defined as a
line which has at every point the direction of the velocity of the fluid
at that point. If we assume steady flow of the fluid, that is, no
change with time, then at any point along a stream-line, successive
fluid elements will have identical characteristics. The above
equation can thus be applied between any two points on a stream-
line in a steady flow. Equation 8.9 is the well-known Bernoulli’s
Equation.

8.6 Bernoulli’s Equation by Euler’s Method. In the pre-
ceding discussion of fluid motion we selected a particular element of
fluid and studied the forces on and the motion of that element: This
is, of course, the procedure that we have used for all of the problems
hitherto taken up in this book. This was the general method used
by Lagrange in studying fluid mechanics, and hence this procedure
in such problems is usually called the Lagrangian method. It is also
possible to adopt a somewhat different point of view, by considering
a fixed point in space and observing the motion of the fluid as it
passes that point. The aim of the equations will then be to describe
what happens to a particle at the instant that it arrives at a particular
fixed point, rather than to describe the path of the particle through-
out its motion. This was the method used by Euler, and for many
fluid mechanics problems it has advantages over the Lagrangian
- formulation. We shall now derive Bernoulli’s equation from this
Eulerian point of view as a comparison with the derivation of the
preceding section. An advantage of the Eulerian method for this
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particular problem will be the fact that the non-steady problem can
also be considered in the derivation if desired.

Consider a volume element in the form of a section of a tube along

a stream-line, as in Fig. 8.8. The

cross-section area of the stream-

\ tube is da and the length of the

\ element is ds. We shall suppose

ds / 4 that this elementary volume is

fixed in space, and we shall con-

sider the fluid flowing through it.

The equation of motion for the

mass which occupies the volume at

'\ a given instant will now be written.

FiG. 8.8 We observe that the acceleration

of this mass will consist of two

parts; first, the velocity of the fluid in the element may vary along

the length of the element (the velocity is assumed to be constant

across the area), and second, at a given point the velocity may vary

with time. Thus, we have:

Yia

pgdads

o o
v = f(s, ), dv= a—sds + a—tdt
sO:
dv v + o
7 IR
The term v %1; may be thought of as the acceleration associated with

the particle moving from one point to another point where the

velocity is different. The term _é;z_; is the acceleration associated with
the change of flow with time at any one point.
The equation F = ma can now be written, summing the force

components along a stream-line:

pda - (P +%€ds)da+pgdadscos<x=pdads( g + Bv)

e T A
. 0z ..
Noting that cosa = — % this becomes:
op 0z ov  Ov

—as‘f’ga—s”(”?s*a)
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Writing v % = —a% (3v?), and limiting the problem, as in the previous
derivation to steady flow, for which % = 0, we obtain:

op 9,
~ s T P83 =Py (307
Integrating this equation along the stream-line we obtain Bernoulli’s
equation:
$pv2 + p + pgz = constant,

ExampLE. There is a steady flow of fluid from a reservoir through
a pipe as shown in Fig. 8.9. Assuming no energy loss in the system,
find the velocity vp with which the fluid issues from the pipe.

A "

= 3

z —_——

1 —‘_ b

Fic. 8.9

Solution. Applying the energy equation to the two points 4 and
B gives:
3pva® + Pa + pg2a = 3pvB® + PB + pgzp

At point A4 the velocity of the fluid is very small so that to a good
approximation v4 = 0. The pressure at 4 is atmospheric pressure,
and we can assume with good accuracy that the pressure at B is also
atmospheric. Thus:

3pvs® = pglza — 28) = pgh

vg = V2gh
PROBLEMS

8.5. A solid body is placed in a fluid which flows uniformly with an
undisturbed velocity vg. The fluid divides to flow around the body, and
at one point S the fluid comes to rest. If p, is the “stagnation pressure”’



278 NON-RIGID SYSTEMS OF PARTICLES

at the stagnation point S, and pg is the pressure at the same depth in the
undisturbed fluid, find p; in terms of g, ve, and the density of the fluid p.

S
— "
— p A, P
Pros. 8.5 Pros. 8.6

8.6. The velocity of fluid flow is often measured by a device called a
Venturi meter, which consists of a section of pipe of a gradually reduced
area, as shown in the figure. Find the velocity of flow v in terms of the
known areas A; and A, and the measured pressures p, and ps. In the
actual instrument a correction coefficient must be applied to account for
non-uniform flow conditions and for friction losses.

8.7. Fluid flows over a weir as shown in the diagram. By applying the
energy equation to elements in the top surface of the fluid, express the
velocity at any point in the surface as a function of z.

vy

Pros. 8.7

8.8. A pressure vessel is partly filled with liquid and partly with gas
under a pressure p;. Find the discharge velocity v.

8.9. Using the Eulerian method, carry out the steps for the derivation
of Bernoulli’s Equation for non-steady flow, and show that the equation
becomes:

ov

§
P2 + p + pez +p fo T ds = constant.
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Pros. 8.8

8.10. A horizontal pipe of length ! and cross-section area A4 is con-
nected to the bottom of a large tank as shown in the figure. The free
surface of the fluid in the tank is a distance % above the pipe. A valve at

N
h - =
1 ol
-]
Pros. 8.10

the end of the pipe is suddenly opened to the atmosphere, and fluid begins
to flow from the pipe. Find the way in which the outflow velocity
increases with time, and find the time required to reach the steady value.
Assume that the velocities of all the fluid particles in the pipe are equal,
and that the velocity of all of the fluid in the tank is zero.

8.7 The Momentum Equation. For some types of fluid
problems, the equations of motion are found to be in their most
convenient form when expressed in terms of a momentum principle.
To derive a general momentum equation in a form suitable for fluid
applications, we shall use the Eulerian approach, as described in the
‘preceding section.

As in Fig. 8.8 above, let us consider the fluid flowing through a
particular volume dV = da ds which is fixed in space. If F is the
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resultant force acting on the fluid within the volume dV, then we
have:
av

Also, as shown above:
av ov ov
P
so we obtain:
F = P av (_32 4+ v ﬂ)
ot os

4

We next refer to Fig. 8.10, in which a total volume V fixed in space

e -

Fic. 8.10

is considered. We imagine that this volume is made up of stream-
tubes, of which a typical one is shown dotted. The preceding
equation, which applies to the typical dotted stream-tube, can now
be integrated over the total volume V to give:

SF = fp_dV+fpvfl’dads
v 0s

where ZF is the resultant force acting on all of the fluid within the
volume V. We shall now transform these integrals into forms which
are readily evaluated.
Using the formula for the derivative of a product, we have:
ov 0 0
Pz =7 PV~ a’:
and

ov 0 0
—a;da = % (pvv da) — Y% (ov da)



THE MOMENTUM EQUATION 281

Substituting these expressions into the above integrals gives:

SF = f {-:z (W)Y + = (puv da)ds — v[ av + 2= (po da)ds]}

It can be shown that the term in square brackets vanishes by virtue
of the conservation of mass. Consider an element of volume dV =
da ds as shown in Fig. 8.11. The rate at which mass is accumulating

in this element, because of changing p, 1s dV This must be equal

\/a,e (pvda)+ b_b; (pvda)ds
pvdae

Fic. 8.11

to the difference between the rate of inflow of mass and the rate of
outflow:

0 0
% 4y = puda - [(pv da) + 5 (po da)ds]
which gives

op .., 0 _
= av + % (pv da)ds = 0.

This expression is usually called the continuity equation, which is

often written in a vector form as

op
E+dw( pv) = 0.

The expression for the resultant force acting on the fluid within V
thus reduces to:

o : 0
3F = fy % (pv)dV + fy % {(pvv da)ds
The first integral may be written as:
0 0 oM
fyit (pr)aV = 6tf vav = <

where M is the resultant momentum of the fluid within V.
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The second integral may be integrated along the length s of the
stream-tube to give: :

f 2 (pvv da)ds = [ (pvv da)
v 0s J4

82

8y

" indicates that this term is to be evaluated
5

at the two end points olf the stream-tube; that is, at the points where
the stream tube intersects the boundary of the volume. The result-
ing area integral is to be evaluated, therefore, over the areas of the
ends of the stream-tubes lying on the surface of the volume. We
note that the direction of a stream-tube as it intersects the boundary
is in general inclined at some angle to the normal to the boundary
surface. If the vector dA, normal to the surface and directed out
of the volume, describes the increment of surface area, then on the
surface v da = v-dA, and the area integral may be written as:

L py(v.dA)

Since pv+dA represents the mass flow per unit time out through dA,
the term pv(v.dA) represents the rate at which momentum is flowing
out through dA. The tniegral thus represents the net rate of outflow
of momentum through the surface of V.

We thus obtain finally the following expression for the resultant
force acting upon the fluid within the volume V:

sp= 2%, L py(v-dA) (8.10)

The notation (pvv da)

ot
The first term represents the time rate of change of the total
momentum of the fluid within the element at a particular time, and
the second term represents the total momentum per unit time passing
through the area of the element. Note particularly that this form
of Newton’s law does not apply to a particular mass element, but
rather considers a fixed volume element within which the mass may
be changing. The above analysis places no restrictions upon the
compressibility or viscosity of the fluid.

The foregoing analysis can be repeated, beginning with the equa-
tion of moment of momentum of the fluid within the fixed element of
volume dV:

rx(;;dVi%):er
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and the following result will be obtained:
/)
M, = —g + f r x pv(v-dA) (8.11)
4

where ZM; is the resultant moment acting on the fluid within the
volume V about some fixed point 0, and H is the total moment of
momentum of the fluid within the volume about the point O.

The essence of the momentum flow method is that instead of
observing a particular mass element of fluid during its motion,
attention is focused on a region of space. By noting the inflow and
outflow of momentum and the change of momentum within the
region it is possible to deduce the resultant force acting on the fluid
within the region.

o \\ aE
v
 —g
ovid
Fic. 8.12 (a)
= % p

|

Fic. 8.12 (b)

ExampLE 1. A pipe of uniform cross-sectional area 4 has a
horizontal offset / as showR in Fig. 8.12 (a). Fluid flows through the
pipe with a uniform velocity ». Find the moment exerted on the
pipe by the fluid.

Solution. Considering the flow of momentum through the volume
of the pipe indicated in the figures, and evaluating the integral
_[pv(v-dA) we obtain the two vectors of magnitude pv24 shown in

Fig. 8.12 (a). Note that the directions are such that both these
vectors are pointing out of the volume. There is thus a counter-
clockwise moment of magnitude pv24/ exerted upon the fluid within
the volume. This moment is the resultant of the moment due to the
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pressure forces, and the moment M, which is applied to the fluid by
the pipe (Fig. 8.12b). Thus:

pv2Al = — pAl + M,

The moment exerted on the pipe by the fluid is equal and opposite
to My, and is hence a clockwise moment of magnitude (pv2 + p)AL

ExampLe 2. Fluid flows with a
uniform velocity v through a pipe of
uniform cross-sectional area in a hori-
zontal plane as shown in Fig. 8.13.
Find the external force which must be
applied to the pipe to maintain the

Fic. 8.13 system in equilibrium.

Solution. TFig. 8.14 shows the
momentum flow vectors _[pv(v-dA) and the pressure forces acting
upon the volume of fluid. The resultant momentum-flow vector
is equal to the force acting upon the fluid within the pipe as shown
in (b). This resultant force is the sum of the two pressure forces,
and the force F;, exerted by the pipe on the fluid. This force Fy can

(c)
Fic. 8.14

thus be found as shown in (c). The fluid exerts a force on the pipe
which is equal and opposite to F,, and hence the external force
which must be applied to the pipe in order to maintain it in equili-
brium is Fp, directed as shown in (c).
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PROBLEMS

8.11. Fluid is discharged from a tank with velocity v through an outlet
'of area 4. Show that in order to maintain equilibrium of the system an
external force F = 2(pp — p4)4 must act as shown in the figure, where
P4 is the atmospheric pressure, and pp is the pressure within the tank at
the same elevation as the outlet, at a point where the fluid velocity is zero.

Pros. 8.11 Prosg. 8.12

8.12. A stream of fluid impinges on a stationary surface as shown in the
diagram. Find the force exerted by the fluid on the surface, by the
method of the preceding section.

8.13. An incompressible fluid flows through a pipe which has a change
in cross-section as shown. Both ends of the pipe are at the same elevation.

I Ve

UL
|
|
s
|
i
1{-

Pkoﬁ. 8.13

Assuming that the velocity is uniform across the area of both sections,
'find the force exerted on the pipe by the fluid.
8.14. Three pipes each of uniform cross-section lie in a horizontal plane
and converge at a point as shown in the figure. Fluid flows through 4,
with a velocity v1, and out of A5 and A3 with velocities v and vs. The
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dimensions of the system are such that Asvs = $4,1v;. Find the resultant
force required to hold the joint in equilibrium, assuming that the velocities
are uniform across the sections of the pipe, and that the pressure in the
fluid is negligible.

V1

Pros. 8.14

8.15. Carry through the steps indicated in the text leading to Equa-
tion (8.11) above, and thus derive the expression for the moment of
momentum relationship in fluid flow.

8.16. A frictionless compressible fluid flows through a straight pipe.
An object Bis held in a fixed position in the stream. Assuming that there
is steady flow, find the relation between the force exerted by the fluid on B,
and the velocities, densities, and pressures of the fluid at the two ends of
the pipe.

A 4

=L

v, V2

Pros. 8.16

8.17. When the area of a pipe in which fluid is flowing increases, the
velocity of the fluid decreases and hence the pressure increases. Compare
this increase of pressure in the two cases shown in the diagram. In (a) the -
pipe increases suddenly in area from A to A, while in (b) the transition
is made gradually. Note that in (a) there will be a mixing region of
irregular flow, but that after a certain distance the fiow will be again
approximately uniform with an averge velocity ve. The pressure change
in case (a) may be determined, without a consideration of the details in
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TR

*
2’ vz' p2

Pros. 8.17

the mixing region, by applying the momentum equation to the dashed
volume shown in (a).

8.8 The Momentum Equation for an Accelerating Volume.
In the preceding section we considered the problem of flow of a fluid
through a stationary volume. We shall now consider the more
general problem in which the volume itself is accelerating. This is,
for example, the type of problem involved in an analysis of the
dynamics of rocket flight.

Let the absolute velocity of a point in the fluid be v and consider
a coordinate system fixed in the moving volume. If v, is the velocity
of a point in the fluid relative to the moving coordinate system and «
is the absolute velocity of the corresponding point in the coordinate
system, then v = v, + #. Let s be measured along a stream-line
in the moving coordinate system. By a stream-line in the moving
coordinate system we mean a line which has everywhere the direction
of v,. We may now write:

dv ov ov ds v ov

Z-atma"a %

The resultant external force acting upon the mass contained within

the volume is:
ov ov
>F = J\P(W + Uy Eg)dV

This integral may be transformed in the same way as the corre-
~sponding integral obtained for the fixed volume of the preceding
section, with the result:

XF = a—m + pv(vredA) (8.12)
ot A
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where 9 is the total momentum of the mass within the volume at
any instant, and the integral represents the net rate of outflow of
momentum from the volume. Note that the terin p(v,.dA) is the
mass per unit time which passes through the surface dA, and hence
physically is the same thing as the p(v:dA) term obtained for the
fixed volume.

From the moment of momentum relationship the following
equation can be derived:

M, = %E + f r x pv(v,-dA) (8.13)
i 4

H represents the total moment of momentum of the mass within the
volume under consideration, and XM, is the resultant external
torque acting upon the material within the volume. H and XM,
may be measured either with respect

u to a fixed point or with respect to the

r ________ 7} moving center of mass of the system.

v, | If H and XM, are measured with re-
(—% > : spect to the moving center of mass,
———————— ~ however, the velocity v appearing in
Fic. 8.15 Equation (8.13) is no longer the abso-

lute velocity as used in the preceding
analysis, but is the velocity of the element with respect to the center
of mass.

ExaMpLE 1. Arocket travelsin straight horizontal flight. Theex-
haust velocity of the jet relative to the rocket is v.and the gage pressure
in the jet of area A is p. The mass of fuel burned per unit time is
pveA and the total mass of the rocket at any timeis m = mo — pveAt.
Assuming that gravity forces and drag forces are negligible, derive
the differential equation of motion of the rocket, and find the
velocity of the rocket as a function of time.

Solution. As the volume to which momentum flow considerations
are to be applied let us take the complete rocket, including shell and
propellant, as in Fig. 8.15. This volume is attached to the rocket,"
and hence moves with the same velocity u as the rocket, The only
external force acting on the material within the volume is pA4, since
gravity and drag forces are assumed negligible, and hence Equa-
tion (8.12) gives directly:
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dat

v, is the velocity of the center of mass of the material within the
volume, which to a very good approximation may be taken as u, the
velocity of the rocket. The equation thus becomes:

SF = 2 tmy + L p(tt — v))(v,-dA) = pA

mu + u% + p(u — vo)v.Ad = pA
am .
but =" pueA, so we obtain:

mi = pv.2A + pA

My

/.

This equation may be integrated by putting it into the form:

dt
(mo — pueAt)

from which, assuming that the rocket starts from rest, we obtain:

)
U = ve(l + e log, prys——F

This general treatment of the rocket problem by momentum flow
principles should be compared with the special rocket problems dis-
cussed previously in Chapter 3.

ExaMPLE 2. A lawn sprinkler consists of two sections of curved
pipe rotating about a vertical axis as shown in Fig. 8.16. The
sprinkler rotates with an angular velocity w, and the effective dis-
charge area is A, so that the water is discharged at a rate Q = 2v,4,

F1G. 8.16

du = (pve2d + pA)
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where v, is the velocity of the water relative to the rotating pipe. A
constant friction torque M/ resists the motion of the sprinkler. Find
an expression for the speed of the sprinkler in terms of the significant
variables.

Solution. We apply the momentum flow principle in the form of
the moment of momentum relationship for a moving volume, taking
a volume which coincides with the sprinkler pipe:

_oH

M, = = + 1 x pv(v,-dA)
at A

If we consider only steady motion %I;—I = 0, the only external force

acting is the friction torque My, and we obtain, taking vertical-
upward as the negative direction:

— M; = 2R x pv(v,d)
The absolute velocity is given by:

v=1v,4+w xR
—~ M; = 2R x p(v+ + w X R)v.4

— M; = — 2RpAv,2sin e + 2R%pAv,w
1 .
- 2 ]
w = SR% v, (2RpAv,2sin @ — My)
from which
_ursine My
‘R QpR2
PROBLEMS

8.18. Show that the jet thrust force acting upon an accelerating rocket
is equal to the thrust force acting on the same rocket when it is held
stationary in a test stand. The exhaust velocities and exhaust pressures
are assumed to be the same in each case.

8.19. A ramjet missile is traveling in a straight horizontal path with a
velocity »;. Air is taken in at the inlet with a relative velocity v;, a
pressure py, and a density p;. After an internal combustion process the
exhaust gases are discharged with a relative velocity v,, at a pressure p,,
and density p,. The intake and exhaust areas are A; and 4,. Using
momentum flow principles, find the propulsive force acting on the ramjet.
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Pros. 8.19

8.20. A fluid jet of area 4 and velocity v from a fixed nozzle strikes the
vertical face of a block of mass m. After striking the block the fluid
leaves with a velocity parallel to the face of the block.

{a) If the block slides on a frictionless horizontal plane, find the velocity
u of the block as a function of time, if # = 0 when ¢ = 0.

(b) If the coefficient of sliding friction between the block and the
horizontal plane is g, independent of velocity, find the terminal velocity
of the block.

8.21. Water enters a turbine

wheel with an absolute velocity L J

1 at an angle oy with the tangent i = "

to the wheel at a radius 7, asshown %,
in the diagram. The water leaves

the wheel with an absolute velo- Pros. 8.20

city vp at an angle «p with the

tangent at a radius r,. The mass of water flowing through the turbine
per unit time is m’. Show that the torque M, exerted on the wheel
by the water is given by:

M, = m’'(v171 cos a1 — vars COS ag)

This expression is often called Euler’s turbine relation.
8.22. The ““lawn sprinkler”’ turbine of Example 2 above is to be used

Pros. 8.21 Pros. 8.22
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as a pump, as indicated in the diagram. A pumping torque M, applied

1

PrOE. 8.23

Tﬂ}

to the turbine gives an angular velocity to
the device. Find the quantity of water dis-
charged per unit time. Note that, if the
torque and speed are specified, the pressure-
elevation relations would be determined by
energy considerations (Bernoulli’'s Equa-
tion).

8.23. The turbine of Prob. 8.22 discharges
water under a head 4. If the turbine is held
stationary, what quantity of water is dis-
charged per unit time? If the turbine is
free to rotate with no friction, what is the
discharge rate? Assume steady flow with

~ the - turbine running at constant speed.

Determine the speed of the turbine and dis-
cuss the physical meaning of the relation-
ships found for flow rate and speed.



Chapter 9

ADVANCED METHODS IN DYNAMICS

““When one obtains a simple result by means of complicated calculations,
there must exist a more direct method of obtaining the result; the simplifi-
cations which occur and the terms which disappear during the course of the
calculations are certain indications that a method exists for which these
simplifications have already been made and in which these terms do not
appear.”’—M. Lamé, Théorie de I’ Elasticité (1866).

As the problems in dynamics become more complex it naturally
becomes increasingly difficult to work out the solutions. This
difficulty is associated not only with the solution of the equations of
motion, but with their formulation as well. In fact, the derivation
of the basic differential equations of motion in a form suitable for a
particular complicated problem may well be the most difficult part
of the investigation. A number of methods, more powerful than
those hitherto considered in this book, have been developed for
deriving the equations for these more involved situations. Perhaps
the most generally useful of these more advanced methods for
engineering problems is that of Lagrange, who has put the basic
equations of motion in such a form that the simplifying features of a
particular problem can be utilized most advantageously. In the
present chapter we shall derive Lagrange’s equations, and we shall
indicate their application by a number of examples.

9.1 Generalized Coordinates. One of the principal advantages
of Lagrange’s method is that one uses for each problem that co-
ordinate system which most conveniently describes the motion.
We have already seen that the position of a particle can be described

in a large number of different ways, and we have found in the
293



294 ADVANCED METHODS IN DYNAMICS

problems already discussed that the choice of a proper coordinate
system may introduce a considerable simplification into the solution -
of a problem. In general, the requirement for a system of co-
ordinates is that the specification of the coordinates must locate
completely the position of each part of the system. This means that
there must be one coordinate associated with each degree of freedom
of the system.* We shall restrict the following treatment to systems
whose coordinates are independent, in the sense that a change can
be given to any one of the coordinates without changing any of the
other coordinates.t By the generalized coordinates (q1, qa, . . . qn)
we shall mean a set of independent coordinates, equal in number to
the degrees of freedom of the system. We use the word “general-
ized”’ to emphasize the fact that such coordinates are not necessarily
of the type of the simple (x, y, z) or (v, 6, ¢) systems which we have
already used, and to indicate that they are not necessarily lengths or
angles, but may be any quantity appropriate to the description of
the position of the system.

The (x, y, 2) coordinates of a point are expressible in terms of the
generalized coordinates (g1, g2, ¢3) by functional relations}:

x = $1{q1, g2, 93)
y = ¢2(q1, g2, 93) (9.1)
z = ¢a(q1, g2, ¢3)
For example, if (1, g2, ¢3) are the cylindrical coordinates (7, 6, z)
the foregoing equations become:

x=rcos@ y=rsind 2=z

The equations of motion in generalized coordinates for any parti-
cular system could always be obtained by writing the equations

* Morc exactly, there must be at least one coordinate associated with each
degree of freedom. So called non-holonomic systems exist, for which, because
of the particular geometrical constraints involved, more coordinates are
required than there are degrees of freedom. Such systems are not often
encountered and will not be considered here. See Appendix I, references 32
and 33.

t In some problems it may be more convenient to use coordinates which are
not all independent. See Appendix I, references 2, 7, 32, and 33.

1 We have supposed that the relation between the coordinate systems does
not involve time. In the more general treatment in which » = $(g1, g2, . . - 9z, ¢)
the analysis can proceed along essentially the same lines. See Appendix I,
reference 2.
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first in an (x,y,z) system, and then transforming to the ¢’s by
Equations (9.1). This procedure usually leads to involved algebraic
manipulations, and it is better to make the transformation in general
terms and to write the equations of motion directly in generalized
coordinates.

9.2 Lagrange’s Equations for a Particle. We shall first show
how the transformation to generalized coordinates may be made
for one particle. The extension to systems of particles will be a
direct one involving only a summation of the result over all of the
particles of the system.

The equations of motion of the particle will first be written in the
form:

F, = mi F, =my F, = mi
Multiply through the first equation by 8x, the second equation by
8y, and the third equation by 8z, and add the resulting equations:

Fidx + Fydy + F8z = m&dx + miidy + midz (9.2)

The quantities 8x, 8y and 8z are small displacements, and they have
been written as deltas to emphasize that they may have arbitrary
values, consistent with the physical restraints, and hence are not
differentials.* The quantities 8x, 8y and ézare virtual displacements,
in the sense that this term is used in statics, and Equation (9.2)
is equivalent to Equation (7.30) previously obtained by a combination
of D’Alembert’s Principle and the Principle of Virtual Displacements.
We now transform the coordinates in Equation (9.2) from the
(%, y, 2) coordinates to the (g1, g2, ga) system, using the general trans-
formation Equations (9.1) above. From Equation (9.1) the dis-
placements 8x, 8y, and 8z can be written in terms of the ¢’s as:

ox ox ox
ox = — & — 6 — 8
X 3(11 q1 + 8qz gz + 8qa q3
9y oy oy
&y = =38q; + =& -8 9.3
Y = 5 001t g, 002t 5o 003 (9.3)

oz

0 /) 0
—28q1+——z—8qz+—28q3
oq1 ag2

q q oqs3

* If, for example, in a particular situation ¥ = ax2, then dy = 2axdx, and
dy and dx are related. The symbol 4 rather than § would be used in such a
case to indicate that dy is not arbitrary but depends upon the value of dx.
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In order to introduce a simplification into the algebra of the deriva-
tion, we shall now suppose that 8g; 0 while 82 = g3 = 0. -
This is permissible since we have defined the generalized coordinates
above as independent coordinates. Equations (9.3) thus become:

ox 0z
3x=—a—q—15ql, 8y-——-8q1, 82——&;8(11
Substituting these values into Equation (9.2), we obtain:

o dy o . Oy ___)
(F;aql+Fy—a—q—l+F q)Sql—(mx%+myaq + mi 20: 3q
(9.4)

The left side of Equation (9.4) has a simple physical meaning:
it is the work done by the external forces of the system during the
displacement 8q;. We shall equate this work to the expression
(Q18¢1) and thus define the generalized force Q) as:

ox oy oz
01 = an_th + F”EZ]—; + Fz-é(—]—l
This definition of the generalized force Q indicates the way in which
Q can be determined in specific problems. To find Q;, the total
work done by all of the external forces during a small displacement
8¢ of one of the coordinates is calculated, and Q; is then obtained by
dividing this total work by 8¢g;. It should be noted that the general-
ized force does not necessarily have the dimensions of a force; for
example, if ¢; is an angle, 8¢; is dimensionless, and @; would have the
dimensions [F1L1T9]. In this particular case, Q; would be a moment.
Similarly if the generalized coordinate is a volume, then the dimen-
sions of the generalized force would be [F1L-2T9].

We next transform the right side of Equation (9.4). From the

formula for the differentiation of a product we have:

(9.5)

L 0x  df, ox . d[ox
o il )~ ala) o9
From Equations (9.1) we may write:
X = @f = _(')_x + 0% + __ai 7
A LI o L P L
so that: o —af; etc.
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£ - o(b) - e
dt 6(11 —6q1 dt _-éq_l’ec
With these substitutions, Equation (9.6) becomes:
. 0% d(.-ax) , 0% d[a %2 0 (%2
F— =5t =) - 24— = 55| =5 — =&
6q1 dt 6q1 6q1 dt 3q1(2)] 3q1(2)

Substituting this into the right hand side of Equation (9.4) along with
similar expressions for ¥ and z, we obtain:

_(df a2 g2 22 o (£2 92 32
oo =migla(z+ 2+ 5)| - alz + 2+ )P

We may also put:

But the kinetic energy 7 of the particle is:

T = ym(22 + 92 + 22)

So we have:
d[éT oT
esva = [alz) — oo
from which:
d(eT oT
alen) ~ = @ O

This is Lagrange’s equation in the form in which it is most useful for
engineering problems.

If in the above derivation we had put 3¢z # 0 while 8q; = 8¢3 = 0,
we would have obtained the same Equation (9.7) in terms of g2
instead of ¢1, and in a similar way an equation in terms of g3 could be
obtained. The above procedure thus leads to three independent
Lagrangian equations of motion corresponding to the three degrees
of freedom of the single particle, which we can write as:

%(%) - g—;; =Q: (1=123 (9.8)
If the forces acting on the system are conservative forces, so that
~ they can be derived from a potential energy ¥V we may say by
definition that:

ov

Qt=—7q—‘

(9.9)



298 ADVANCED METHODS IN DYNAMICS

Thus for conservative systems Lagrange’s equations can be written
in the form:
dfeT or oV
iy [l BRI AR 9.10
dt(aqi) 091 0qy 510

The potential energy V is a function of the generalized coordinates

¢g: but does not involve the velocities ¢;, thus —% = 0, and Equation
(9.10) may be written in the form:

LIS

dt\ o4y g

where L = (T — V). The quantity L, the difference between the

kinetic and the potential energy, is called the Lagrangian Function,

or the Kinetic Potential of the system.

=0 (9.11)

z It should be noted that Lagrange’s
F equations in the form of Equations
Pt iy BN (9.10) or (9.11) apply to conservative
e LA E systems only, whereas Equation (9.8)
| T 7”< applies to non-conservative systems as
: | F well.
: g ExaMpLE 1. Derive the equations
i 1 ! of motion for a particle in cylindrical
'(”' ol 1™~ v coordinates, using Lagrange’s equa-
Sl N7 tions.
¢-)\ Solution. In this problem we have:
z n=r
Fic. 9.1 2= ¢
s =2

The kinetic energy T of the particle is:
T = Im(7? + r2¢2 + 22)
Thus, Lagrange’s equation for the 7-coordinate becomes:
LI -2
i\ o7 or ’
Q:8r = F.8r; Qr = F,
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and the differential equation of motion is:

m(F — rd?) = F,
- For the ¢-coordinate:

d(ory oT _ 0

d_t(—al) op !
dfer d ; ¥
) i -t s
oT
—a-$ = 0; Q¢8¢ = F¢78¢: Q¢ = F¢7’

and the differential equation of motion is:

m(rg + 27¢) = F,
For the z-coordinate:
d(eT oT

alz) — % = o

d£~£m2)—m"' 3T_0
a\z) = gmi) =mi o=

stz = FZSZ, Qz = Fz
and the differential equation of motion is:

‘mZ=F;

299

It will be noted that these are the same expressions obtained in

Chapter 2, Equations (2.8).

ExaMpPLE 2. A simple pendulum con- g
sisting of a concentrated mass m and a
weightless string of length / is mounted on
a massless support which is elastically re-
strained horizontally by means of a spring
having a spring constant %, as shown in
Fig. 9.2. Write the equations of motion
for the system, using Lagrange’s equations,

and find the frequency of small oscillations FIG. 9.2

of the pendulum.

Solution. We shall use as generalized coordinates for this problem
the angle ¢ of the pendulum with the vertical, and the horizontal
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displacement x of the point of support. The velocity of the mass m
in terms of these coordinates can be found by combining the two -
velocity components % and I¢ by the cosine law, the angle between
these velocity component vectors being ¢. The Kkinetic energy of
the mass is thus given by: ‘

T = mv? = m(£2 + 1242 + 24l cos ¢)

Since this is a conservative system, the forces can be determined from
the potential energy, or they can be determined directly from the
basic definition of the generalized force. Lagrange’s equations can
thus be used either in the form of Equation (9.8) or of Equation
(9.10). We shall use in this example both methods for purposes of
comparison.

The potential energy of the system may be computed, from its
basic definition, as the negative of the work done by the forces of the
system as the coordinates are increased from zero to general positive
values.

For the spring:

V, = — f (= brdx') = et
0

For the pendulum, taking % as a vertical displacement:

I(1 — cos ¢)

Vp = — j (— mg) dh = mgl(1 — cos ¢)

0

thus the total potential energy is:
V = }kx? + mgl(l — cos ¢)

To find the generalized force Q, imagine that the springisstretched
a positive amount x, and consider the work done by all of the forces
of the system during an additional displacement 8x. The gravity
force on the pendulum, mg, does no work, and the spring force does
the work (— kx)8x. Equating the total work to Q;8x we obtain:

0% = — kxdx, Qz = — kx

Similarly, to find Q,, start the pendulum at some positive angle ¢
and increase this angle by an amount 8¢. During this increase the
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spring force does no work, bﬁt the gravity force mg is raised by an
amount Ak, as shown in Fig. 9.3.

Therefore:
Q400 = — mgAh
but: : S0
.. = [(8¢) sin ¢ : Ab
‘ ¢
Qs0¢ = — mgl sin $o¢ r _l_
and: I f
Qs = — mglsin ¢
We may check these expressions for the general- mg
ized forces by deriving them from the potential
energy: ¥1G6. 9.3
ov 0
T e — I o — 2 —_ [ —
Qz o r [3kx2 + mgl(1 — cos ¢)] kx
oV .
Qs = — 7 = ~ % [%kx2 + mgl(1 — cos ¢)] = — mglsin ¢

Now, using Lagrange’s equations (Equations (9.8) or (9.10)) we
obtain, for the x-coordinate:

d(eT d _ 2
Zz'i(ﬁ) 7 (m% + mld cos ¢) = mi + ml § cos ¢ — mid? sin ¢

oT oV
ox =0 QI_F_@?=—k

so the differential equation becomes:
mi + mlgcos — ml $2sing + kx = 0

For the ¢-coordinate:

415) - S o = i i

%_—mlx¢sin¢; Qs = -—7=—mglsin¢

so the differential equation becomes:

ml2$ + mlicos ¢ + mglsing = 0
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A general solution of these two simultaneous non-linear differential
equations would be difficult, if not impossible, to obtain. In practice,
solutions would be calculated by numerical techniques. If we limit
ourselves to small oscillations of the system, however, the equations
become linear, and a solution can easily be obtained. Setting
sing =~ ¢, cos$ = 1 and neglecting terms of higher than second
order in displacements or velocities, the two differential equations
become: i

mi + mip + kx =0
mi + mld + mgp = 0

Subtracting these two equations, we obtain:
kx = mgé,

Eliminating the % from the second equation by means of this expres-
sion gives:

Thus the pendulum executes small sinusoidal oscillations of

frequency:
w= J ;
ne
[+ A

If the point of support of the pendulum is fixed, # = co and the
frequency reduces to the known value for a simple pendulum,

PROBLEMS

9.1. By means of Lagrange’s equations, derive the differential equations
of motion for a particle in spherical coordinates 7, 8, ¢.

9.2 A spherical pendulum consists of a particle of mass m supported by
a massless string of length /. Using the angles 6 and ¢ as generalized
coordinates, derive the two differential equations of motion by means of
Lagrange's equations. Show that these equations reduce to previously
known results when # and ¢ are successively held constant.

9.3. A particle moves in a plane and is attracted toward the origin of a
coordinate system by a force which is inversely proportional to the square
of the distance from the origin. Find, using Lagrange’s equations, the
differential equations of motion of the system in plane polar coordinates.
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9.4, A particle of mass m rests on a smooth horizontal table whose
surface lies in the x, ¥y plane. The particle is connected by a massless
string of length / to a point which moves along the x-axis according to the
law x = f(¢), starting from a position in which the string is parallel to the
y-axis as shown in the figure. (a) Using the coordinates x, ¢ as shown, de-
rive by the use of Lagrange’s equations the differential equations of motion
of the particle. (b) If x = f(f) = v¢, solve the equations of part (a),
determining the motion of the particle and the tension in the string.

Y
m
,/”_‘i_ ~ T w!
/ \
— T |
s L/ ] !
N ‘} '
7 x
g —
Pros. 9.2 Pros. 9.4

9.5. A particle of mass m is supported by a frictionless horizontal disk
which rotates about a vertical axis through its center with a constant
angular velocity w. The particle is connected by a massless string of
length I to a point located a distance a from the center of the disk. Show
that the motion of the particle with respect to the disk is similar to that
of a simple pendulum, and find the frequency of small oscillations of the
system. Set up the equations in this problem by means of Lagrange’s
equations.

9.3 Lagrange’s Equations for a System of Particles. The
methods of the preceding section, which lead to Lagrange’s equations
for a single particle, can be extended directly to a system of particles.
There will be (g1, g2, . . . g») independent coordinates required, where
# is the number of degrees of freedom of the system. The derivation
follows the same lines as for the single particle, except that the
equations must now be summed over all of the particles of the
system. Thus, equation (9.4) becomes:

/)
. Z (Fz' aq F?/; ayq Fz; a;i)8q1

i=1
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the total kinetic energy of the system becomes:

T =} D mili? + yit + &) (9.13)
i=1
and as in the preceding section, we obtain the result:
d(eT oT .
—l==) - == = = . 14
H3) - g - 0i=123. (014

and the number of equations obtained will just be equal to the
number of degrees of freedom of the system.

The total kinetic energy T can be computed by any means appro-
priate to the type of system involved. For rigid bodies, Equation
(9.13) has already been evaluated in terms of the moments and
products of inertia of the body, as in Equations (7.19) and (7.20) of
Chapter 7, and can be introduced into Lagrange’s equations in that
form.

The following advantages of Lagrange’s equations as compared
with some of the methods used in preceding chapters may be noted:

(1) The equations of motion are derived in the same way for
any set of coordinates. For each problem the most
suitable set of coordinates can thus be selected, with-
out altering the basic methods used.

(2) Since the kinetic energy involves velocities only, accelera-
tions do not have to be determined. This considerably
simplifies the kinematics part of many problems.
Since the velocities occur in squared terms, some
possible difficulties with algebraic signs are avoided.

(3) The required number of equations of motion are auto-
matically obtained.

Some of these advantages are simply the basic advantages of the
energy method, and Lagrange’'s equations may be thought of as
perhaps the most general and the most useful expression of the energy
principle. ‘

ExampLE 1. A rigid body rotates about a fixed axis under the
action of a torque M,. Find the equation of motion of the body by
means of Lagrange’s equations.

Solution. The position of the rotating body can be completely
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specified by one angle ¢, which we shall take as the coordinate for
this one degree of freedom system. The kinetic energy of the body
is T = }I42 where I is the moment of inertia of the body about the
axis of rotation. The work done by the torque M, as the coordinate
is changed by an amount 8¢ is M 3¢, therefore the generalized force -
Qs = M,. Then:

a(eT oT d

al3g) — T =M ZUhH -0=m
or

I = M,

which checks the results of the analysis made in Chapter 7, Equation
(7.23). '

ExaMpLE 2. A pulley of moment of
inertia I about its horizontal axis of rota-
tion is restrained by a spring of spring
constant &; as shown in Fig. 9.4. From
the other side of the pulley a spring of
spring constant %k, and a concentrated
mass m are suspended, as shown. Find
by the use of Lagrange’s equations the
equations of motion of the system.

Solution. We choose as the two co-
ordinates for this two degree of freedom
system the clockwise angle of rotation
of the pulley ¢, and the downward dis-
placement x of the mass, measured from
the position of static equilibrium. There is no energy loss in the
system, and the potential energy of the system may be written as:

Vo= jki(rd)? + § ha(x — 79)?

Note that since we are measuring the coordinates from the position
of static equilibrium there are initial forces mg in the springs, which
lead to terms in the potential energy expressions for the springs which
. cancel the potential energy change of the mass due to the gravity
force (See Examiple 1, Section 3.6.) The kinetic energy of the
system is:

T

L2 + yms?
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Substituting these expressions directly into Lagrange’s equations,
we obtain:
mi + kox = kord

I(f) + (k1 + kz)?’ztf) = korx

A method of finding the solution of such simultaneous differential
equations will be discussed in the next section.

PROBLEMS

9.6. A rigid body oscillates about a horizontal axis as a compound
pendulum. The moment of inertia of the body about its axis of rotation
is I, and the distance from the axis to the center of mass of the body is a.
Derive the differential equation of motion of the system by Lagrange’s
equations, and find the period of small oscillations.

9.7. A double pendulum consists of two equal masses and two strings
of equal length and of negligible mass. Using as coordinates the angles
between the strings and the vertical, as shown in the figure, find the
differential equations of motion for the system, by means of Lagrange’s
equations. Show also the simplified form assumed by these equations for
small oscillations.

1
@ ]

TS

Z

Prog. 9.7 Pros. 9.8

9.8. A rigid straight uniform bar of length / and mass m is pinned at one
end and is supported at distance a from the pinned end by a spring having
a spring constant 2. Find by the use of Lagrange’s equations the dif-
ferential equation of motion describing small oscillations of the bar about
the position of static equilibrium, and find the frequency of the motion.
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9.9. A solid homogeneous disk of radius R and mass » is constrained to
roll, without slipping, in its own plane. Two massless springs, each of
spring constant £, are attached to the disk in such a way that the position
* of static equilibrium, with the springs in an unstretched position, is as

Ilml '/W

% _
T, my

Pros. 9.9 Pros. 9.10

shown in the figure. Derive the equations of motion of the system, using
Lagrange’s equations, and find the natural period of the motion.

9.10. A rope of negligible mass passes over a fixed pulley of moment of
inertia /1, mass m;, and radius 7;, and supports a movable pulley of moment
of inertia /p, mass ms, and radius s as shown in the diagram. A con-
centrated mass is attached to one end of the
rope, and the other end is fixed, with the rope
sections vertical as shown. Assuming no slip-
ping of the rope on the pulleys, find by means
of Lagrange’s equations the differential equation
describing the motion of the mass m3, as the
system moves under the action of gravity.

9.11. The string of a simple pendulum is
assumed to be elastic with a spring constant £,
as indicated in the diagram. Taking as general-
ized coordinates of the mass a displacement x in
the direction of the spring, and the angle ¢
between the spring and the vertical, find the
differential equations describing small oscilla-
tions of the system.

9.12. A block of mass M has a cylindrical Pros. 9.11
‘groove of radius R, as shown in the diagram. A
small cylinder of radius 7 and mass % rolls without slipping in the groove

under the action of gravity. The contact between M and the supporting
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horizontal surface is frictionless. Find, using Lagrange’s equations, the
two differential equations of motion of the system. :

Pros. 9.12 Pros. 9.13

9.13. A circular gear of radius #, mass m, and moment of inertia about
the geometric axis /, rolls around the inside of a fixed circular gear of
radius R. The plane of the gear is horizontal. A straight uniform bar
of mass M connects the axis of small gear with a fixed point 0. A torque
M; is applied to the system as shown in the diagram. Find, by the use
of Lagrange’s equations, the equation of motion of the system in terms

of the angle 8. The connecting bar 04 may be
assumed to be of length (R — 7).

l 9.14. A circular cylinder of radius » and mass
mr | m rolls without slipping in a semi-circular groove
/T\R of radius R cut in a block of mass M which is

‘ constrained to move without friction in a vertical

@ M guide. The block is supported by a spring of

spring constant £, as shown in the figure. Taking

o as coordinates the vertical displacement of the
=k block %, and the angular position of the cylinder
¢, both measured from the position of static
equilibrium, find, by means of Lagrange’s equa-
tions, the equations of motion of the system.

Pros. 9.14 Write also the simplified equations of motion for

small oscillations of the system.

9.15. A car of mass M moves along a frictionless horizontal plane. The
car carries a simple pendulum of length / and concentrated mass m as
shown in the diagram. Two equal springs of spring constant k% attach the
pendulum, at a distance a from the axis of rotation O, to fixed walls.
Find, using Lagrange’s equations, the differential equations of motion
describing small oscillations of the system.

AN\

9.4 Oscillations of Two Degree of Freedom Systems. Con-
sider a conservative system consisting of two equal masses m and
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k —‘al k
VW M

M m

Pros. 9.15

three equal springs of spring constant % connected as shown in Fig.
9.5. This is the simplest type of system which illustrates the new
features which appear in a vibration problem when more than one
degree of freedom is present. Taking x; and xs, the displacements
of the two masses from the equilibrium position, as the coordinates,
we have:

T = %m(:é]_z + 7322)

V = $kx12 + JR(x1 — x2)2 + Lhxg?

= kx12 + kx22 — kx1%xe

FiG. 9.5

Substituting these expressions into Lagrange’s equations, we obtain
the two simultaneous differential equations of motion:

%1 + Zﬁxl —-ﬁxg =0
m m
A L PP
m m
~ Each of these equations involves both x; and x2. Since a displace-

ment of x; changes the force applied to the x3 mass, such coordinates
are said to be statically coupled.
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From the form of the equations, and from the nature of the
physical problem, we expect the oscillations of the system to be
harmonic, i.e., a solution of the form sin w¢ or cos wt should be
suitable. We shall thus take as trial solution:

%1 = A sin w?

¥2 = Agsin wit
and we shall see, by direct substitution in the equations of motion,
whether we can make this form, involving two constants and a
common frequency, satisfy all of the conditions of the problem.

Substituting these assumed solutions into the differential equation
and cancelling common factors, we obtain:

(22 - wt)ar- 2400
m m

"'-]iAl + (2—@ - wz)Az =0
m m

Each of these equations gives a value for the ratio 41/42; equating
these ratios gives:

| =~
—

[\®]
R

|

g

[
N ——

(=22 - @) -0

This is the frequency equation which determines the proper values of
w. The equation is quadratic in w2 and has two roots giving the
frequencies:

k

2 =

wil m
o =3 F
m

The frequency equation can also be obtained by noting that since
the two simultaneous algebraic equations in 4; and A2 are homo-
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geneous, they can have a solution other than zero only if the deter-
minant formed from the coefficients of the A’s disappears:

This, of course, gives the same frequency equation.
To find the configuration of the system corresponding to the two
natural frequencies of vibration found above, we solve for the ratio

%—1 from either of the algebraic equations; for example:
2 .

L2
ﬂ_ m
43 zf_wz
m

eran k .
Substituting w;2 = o we obtain:

A1
21 _ .
(Az)l +

hence, the two masses move in phase with equal amplitudes. Sub-

stituting ws2 = 3 _:Z we obtain:

Al) _
(Azz_ 1

and the two masses move with equal amplitudes but in opposite
directions, that is, with a 180° phase difference.

The physical significance of these two motions can easily be seen.
If 4; = As the two masses move together with equal amplitudes
and the center spring connecting them is neither extended nor
compressed; hence it cannot affect the motion. The frequency of
vibration should thus be the same as for one of the masses restrained

by only one of the springs, that is, w2 = % For the motion in which

the two masses always move in opposite directions, we note that the
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displacements are symmetrical and that the center point of the center
spring can be considered as fixed. We can thus represent the
system as shown in Fig. 9.6, which is a single degree of freedom
system having a spring constant of £ + 2% = 3k and hence a fre-
quency :

The above analysis started with the assumption that the solution
was of the form x = 4 sin wt. We could just as well have started

Fic. 9.6

with a solution of the form ¥ = A cos wt, in which case the same
algebraic equations for the A’s would have been obtained. Since
both sine and cosine terms will satisfy the original equations, and
since superposition of solutions will be valid for the linear differential
equations involved, the general solution can be made up of a sum of
sines and cosines as:

x1 = A1 sin w1t + A1® sin wet + B1W cos wit + B1'® cos wat

x2 = AoV sin wit + A2 sin wat + Bal) cos wit + B(? cos wat

where the subscripts on the A’s and B’s refer to the coordinates, and
the superscripts refer to the frequencies. We have already seen that
the A’s and hence the B’s, which must satisfy the same equations
as the A4’s, are not arbitrary, but must satisfy the conditions:

A1) B 1
Lo - Bm - T
A1 By@ 1

A2@ T By®@
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so the general solution becomes:
21 = A1 sin w1t + A1® sin wat + B1M cos wit + B1® cos wat
x3 = A1 sin wit — A1¢? sin wgt + BtV cos wif — B1® cos wot

We thus have four arbitrary constants 4;M, 4:(®, Byt and B,®
which will suffice to specify the two initial displacements and the two
initial velocities for the two masses. The most general motion of the
system can thus be thought of as a superposition of the motions
corresponding to the two natural frequencies.

9.5 Principal Modes of Vibration. The two configurations in
the preceding section which correspond to motions having the two
natural frequencies of vibration of the system, are called the two
natural modes of vibration. In general, by the word “mode” we
refer to a motion of the system that can be described by a single
frequency. We have seen that the solution of the preceding problem
is a superposition of two modes of vibration, each having its charac-
teristic frequency. There is often a decided advantage in choosing
for the system that set of coordinates for which each coordinate has
only one frequency. In the present problem this can be done by
introducing the new coordinates ¢; and ¢3, defined as:

x1 + X2
b=
X1 — X2
bo==7—

If we write the general solution for x; and xs, as obtained in the
preceding section, in terms of these new coordinates, we obtain:

fl = A1 sin wit + BV cos wit
fz = A, sin wat + B1(2) cos wat

and each coordinate involves only one frequency and one mode of
vibration. Coordinates which have this property are called normal
coordinates, and the modes of vibration corresponding to them are
called the principal modes, or the normal modes of the system.

Once the normal coordinates of a system have been determined,
the problem has been essentially reduced to a study of a set of inde-
pendent single degree of freedom systems. This can be illustrated
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by the system of Fig. 9.5 with a force F = F sin wt applied to the
left mass, as shown in Fig. 9.7. Since we have already seen that the -
coordinates &, ¢2 describe the principal modes of the system, we shall
use these normal coordinates as the generalized coordinates for the
forced oscillation problem. Substituting x; = &1 + §2; %2 = €1 — &2

—p
F=F,sinwt Z
Fi1c. 9.7

in the equation for kinetic and potential energy of the preceding
section, we obtain:

T = m(é:® + &)
V = k(1% + 329

To find the generalized force Q associated with the applied external
force F, we note that the work done by F during the displacement
8x1 = 861 + 8¢ is:

Féx; = FSfl + Fsz = lefl + Qszz

from which we see that:
Q1=F, Qs =F

Lagrange’s equations are now used in the form:

d(aT) _ao L,

] = —_— + —_—
dat\ gy 0q1 o
Note that some of the forces acting on the masses have been included
in the potential energy, while some have been left as generalized -
forces. This is often a convenient procedure in problems in which
the forces fall naturally into two different categories as in the above

example. It is necessary, however, to-be careful that all of the forces
are included, and that no forces are included twice.
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Substituting the expressions for 7, ¥V and Q into Lagrange’s
equations, we obtain:

mér + ké) = 52-‘3 sin w?

mgz + 3k = I—;gsin wl

These are two independent equations, each involving only one
unknown, which describe the forced oscillations of the system.
They are equations of the same type as those discussed in Chapter 5,
so that the conclusions reached in that chapter as to the behavior
of a single degree of freedom system can be applied directly to the
motion of the present two degree of freedom system. It should be
noted that any coordinate system for which the expressions for the
kinetic and potential energies are sums of squares and do not involve
cross-product terms will lead directly to a set of independent
equations of motion. One of the ways in which the normal co-
ordinates of a system can be found is to determine the transformation
of coordinates required to make the cross-prodyct terms in the kinetic
and potential energies disappear simultaneously. In the above
example we were able to determine the normal coordinates by inspec-
tion, because of the simplicity of the system and the symmetry
involved. In most problems this is not possible, and the normal
coordinates must be determined from the natural mode shapes, as
calculated for the free vibration problem.

In the next section we shall show how the theory of the above
section can be extended to include a wide class of vibration problems
of any number of degrees of freedom. The fact that linear vibration
problems of any complexity can be considered as a number of super-
imposed single degree of freedom systems makes it possible to apply
the theory of Chapter 5 directly to the more complex systems, and
provides an additional justification for a detailed study of the single
degree of freedom system.
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PROBLEMS

9.16. Derive the differential equations of motion for the system of
Fig. 9.5 by a direct application of Newton’s second law in the form F' = ma.

9.17. Find the natural frequencies of vibration of the two-mass system
shown in the figure. '

_!L_‘m o

Pros. 9.17 Pros. 9.18

9.18. Two simple pendulums having equal lengths { and equal con-
centrated masses m are connected by a spring of spring constant % as
shown in the figure. Find the frequencies of vibration for small oscil-
lations, and the principal modes of vibration of the system. What initial
conditions would be necessary to obtain free oscillations of the system in
the first mode without exciting the second mode, and vice versa?

9.19. For the purpose of studying

torsional oscillations, a particular

m,I mI engine-pump system is idealized as two

2 ? 3 equal disks of mass 7 and moment of
k2] K

. inertia I about the geometric axis,

equally spaced on a shaft one end of
B g which is built in. The torsional spring
E constant &, Ib ft/rad of the two portions
of theshaftareequal. Findthenatural
Pros. 9.19 frequencies and mode shapes of tor-

sional oscillations of the system.

9.20. Find the natural frequencies of small oscillations of the double
pendulum of Prob. 9.7, and determine the shapes of the corresponding
modes of vibration.

9.21. In the expressions given above for the general solution x; and xz .
for the two degree of freedom system, determine the four constants A4,
A1@, Bi1) and B1® in terms of the initial displacements %19, %29 and the
initial velocities %19, %20.

9.22. (a) Starting with the expressions given above for the general
solution x1 and x» for the two degree of freedom system in terms of the
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four constants A;M, A;®, B and B;® show that if when ¢ = 0,
%1 = %2 = 0 and %1 = %10, #2 = %o, the displacement x, is given by:

x1 = Cysin wit + Cgsin wst

(b) Using the result of part (a), show that if w; is nearly the same as
wg so that (w1 — ws) = Aw, x; varies between the values (C; + Cg) and
(C1 — C») with a frequency Aw, as shown in the figure. This modulation

), 2r

AR
JY

i

of the amplitude of a sinusoidal motion resulting from the superposition of
two sinusoidal motions of different frequencies is called the phenomenon
of beats, and the frequency Aw = (w1 — wpy) is called the beat frequency.
Note that if C; = Ca, %1 passes through zero at periodic times corre-
sponding to the beat frequency.

9.23. A double pendulum consists of two equal masses suspended from
massless strings of equal length /. The masses are connected to a wall by
equal springs of spring constant % as shown in the figure. Initially the

Aw

Prog. 9.22 Prog. 9.23

2

l

m m
L 4 ®
| |
| l

Pros. 9.24

system has a vertical position with the springs in an unstretched condition.
Find the natural frequencies of small oscillation about the position of
equilibrium, and determine the corresponding mode shapes.

9.24. Two equal masses are attached to a stretched string of length 3!
as shown in the diagram. The tensile force in the string is F and can be
assumed to be constant during small transverse oscillations of the masses.
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Neglecting gravity forces and the mass of the string, find the principal
modes for small transverse vibrations of the system and their frequencies.

9.25. Show that if the coordinates of a system are selected so that the
kinetic and potential energies can be written as the sums of squares with
no cross-product terms in the form:

T = }(argr® + azézz + )
V = }(b1912 + bage® + - -+)

the equations of motion will each involve only one unknown and hence
can be solved directly. Note that ¢1, g9, . .. in this case would be the
normal coordinates for the system.

9.26. A rigid machine of mass m, and moment of inertia I about an axis
through the center of mass normal to the plane of the figure, is supported

ProsB. 9.26 Pros. 9.27

on springs as shown in the diagram. The supports are equivalent to a
spring of spring constant 2k located at a distance of @ from the center of
mass, and a spring having a spring constant of % located a distance of 2a
from the center of mass and 3a from the first spring as shown. Consider-
ing only plane oscillations of the system it will be seen that the machine
can vibrate vertically and can also perform rotational oscillations about
an axis through the center of mass. Find the natural frequencies of small
oscillations of the machine about the position of static equilibrium.

9.27. A uniform disk of mass m; and radius 7 is free to roll without
slipping on a horizontal surface. At the center of the disk is attached a
weightless string of length / which carries a concentrated mass mg at its
lower end. (a) Find the natural frequencies of vibration of the system
for motion in the plane of the disk for small oscillations of the pendulum.

(b) Describe the motions of the system corresponding to each of the
frequencies found in part (a).

9.28. A solid homogeneous cylinder of mass 2m and radius R rolls with-
out slipping on a car of mass » which slides without friction on a smooth
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horizontal plane. The car is attached to a wall by a horizontal spring of
spring constant %, and an identical spring attaches the center of the
cylinder to the car as shown in the figure. Taking as coordinates the
" absolute displacements of the car x;, and of the center of the cylinder x2,

Prosg. 9.28

find the frequencies of vibration of the system and the corresponding
mode shapes.

9.29. A horizontal uniform beam rests on two similar circular cylinders
which can rotate freely without friction about their geometric axes. The
beam rolls freely on the cylinders without slipping. The mass of each
cylinder is am and the mass of the beam is 2m. A pendulum having a

om’ am

ProB. 9.29

length / and a concentrated mass m is attached to the center of the beam
which is initially midway between the cylinders. (a) Write the dif-
ferential equations of motion for the system. Do not assume small
motions. (b) Assuming small displacements and velocities, determine
the natural frequencies of the system.

9.6 Small Oscillations of a Conservative System. In the pre-
ceding sections and in Chapter 5 a number of vibration problems of
various kinds have been discussed, and many common features have
been noted in the behavior of systems that were physically quite
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dissimilar. We shall now show that a more general approach to the
vibration problem can be made, and that many of the characteristics
of vibrating systems can be derived in general terms that can be
applied to a large variety of physical situations.

We shall limit the present discussion to systems in which there are
no energy dissipations, and for which the forces can be derived from
a potential energy function. It will further be supposed that the
displacements and velocities of the system are small, so that higher
order terms in these quantities can be dropped. This assumption
of small oscillations will usually result in a set of linear differential
equations, for which solutions can readily be obtained. We will
consider an # degree of freedom system having the generalized
coordinates (g1, ¢z, . . . ¢s), which are defined in such a way that they
all have zero values at a position of stable equilibrium of the system.

9.7 The Potential Energy Function. The potential energy V
will be a function of the generalized coordinates (g1, g2, . . . ¢n)
Expanding this function in a Taylor series about the position of
static equilibrium we obtain:

ov ov

Vign go - q0) =Vo + (2L) a1 + (&
(g1, g2 gn) 0o+ (3ql)oql (3q2)0q2 +

BV ey
+5W0q1 +§%§092 + -

+ (J’ZL) + (ﬂ) +
0q10q> oqlq2 0q20qs3 Oqu:a
+ higher order terms

where the derivatives are all evaluated at the origin. If we define
the potential energy of the system as zero at the origin, V¢ = 0.
Since the system is in static equilibrium at the origin, the sum of the
forces on the system vanishes at the origin, thus:

(), ()= (2o

oq1)0 \ogq2)0 “ \ogn)o

Also, by virtue of the assumption of small oscillations, terms of
higher order than the second can be dropped, as being small
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compared to the second order terms. The expression for V thus
becomes:

oy oy oV
V= 1{ZL) g,2 2 2 ¥ ...
“[(3qlz)oq1 * (37 >q2 oo (371372>0q1q2 * ]

. oV 1%
Since —— the term involving the mixed derivative can
21095 0g509¢
be written:

sz = ()70 * ()
091092 0q1q2 0q10q 7192 0g20q1 oqqu

All the terms in the expression for ¥ will thus have the same form,
and a summation convention can be used as follows:

| 4
V= %z z (%T%)oq‘q’

fe=] j=

The derivatives in this expression, since they are all evaluated at the
origin, are constants, which we may write in the form:

o2V
ki! = (m)o’ k” = kjt = constant

and we have finally for the potential energy:

-1 z kugeds (9.15)

i=]1j=

The terms %y may be called the generalized spring constants for
the system. In some simple systems these &’s will be the same as
the familiar spring constants of a spring element, but more generally
they are combinations of such spring constants, and may relate to
torsional restoring forces, gravitational restoring forces, etc.

9.8 The Kinetic Energy Function. The total kinetic energy of
a system can be expressed in terms of the orthogonal coordinates
(%4, ¥4, 2¢) of each particle as:

= 2 — ;.2 92 1 5.2
T %me; %‘Zlm;(x; + yi2 + %3
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We shall now express T in terms of the generalized coordinates. We
have

%= $1(q1, 92, * * * ¢n)

ye = ¢2(q1, g2, - <+ gn)

2= $a(q1, 92, * * * qn)

and thus:
dxy oxy oxy . oxg .
i=ﬁ=5ﬁql+%§q2+“'+ﬁq"
yt—[?;t %91+§3—:9+ +‘§3}—;9n
dzy 0z 024 0%y
t=—d7=-aq—191+a—q292+ -+E9n

3x¢ 3x¢ . 2 3yz 3y¢ 2
T =} >my| [ . == =
szz[(aql o og2 7 * ) * (391 1 o2 * )
+ (32¢ 3Z¢q, " 2
og " Oge

Collecting terms, this becomes:
() (@) ()
T =31>m it 2t et 2
2,-22, i{[(aql * (391 e/ )|
3x1; 2 3y¢)2 (8zi)2] . o
" [(342) i (342 e T

3x¢ 3x¢ 3y¢ 3yz 321 321 ..
* 2z + 2 (o) + 2() (o) Jote + -
[ 091/ \ 92 * 091/ \ 092 * 091/ \ 0q2 Nge +

using the summation convention as above:

T = %Z Z misgigs

i=1j=1
where, for example:

mem (@) (@) G

Ox3) 2 %)2 022\
+ mz[(%) * (341 * (391) ] *
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In general, the coefficients my; are not constants, but are functions of
the coordinates. If a typical m; be expanded in a Taylor series about

_ the origin, we obtain:
3111/11)
+ (52) g2 +
(392 ol

32m¢j) 9
— 4+ .
+3% ( P OQ1

We shall now make use of one of our basic assumptions that the
velocities (41, g2, . . . §») remain small. If any of the terms in the
above series expansion for my; beyond the constant term (m4)o
were to be retained, the expression for T would have third order
terms in it, since the m;; is multiplied by (4:g;). We thus see that
for small oscillation problems the my; terms are constant, and we
have finally for the kinetic energy expression:

om
my(q1, g2, « - . qn) = (Myg)0 + ( - ‘tj) 0
q1 /0

T = %z zmtjq'tq'j; My = wy = constant (9.16)

i=1 j=1

The constants my; are called the inertia constants of the system.
For simple systems they may be simple masses or moments of inertia,
but more commonly they are combinations of such quantities
depending on the coordinate system used.

It will be noted that both the potential energy and the kinetic
energy are similar quadratic forms. This fact has made it possible
to apply directly to small oscillation problems many of the mathe-
matical techniques which have been developed for the study of
quadratic forms.

9.9 The General Equations of Free Oscillations. Since the
kinetic energy expression, Equation (9.16), does not involve the ¢’s

directly, but only the ¢’s, the term T in Lagrange’s equations will

3q¢
vanish, and we have: .
dfeT 1%
E(a‘q;) ey (9.17)

where :
T = imuga® + dmaage® + - - - + misgage + - -+
V = $k11q1? + }koege® + -+ - + Rizqige + - - -
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The terms involving the &y cross-products are referred to as the
static coupling terms, and those containing the 4 cross-products as -
dynamic coupling terms. Note that the word ' coupling” refers to
the coordinates and not to the systems, so that the kinds of coupling
present depend upon the coordinates chosen rather than upon the
characteristics of the system itself. It can be shown in general that
it is always possible to choose the generalized coordinates in such a
way that all the static coupling terms, or all the dynamic coupling
terms, or all the static and dynamic coupling terms together, will be
zero.

We shall suppose, in the following sections, that the coordinates
have been selected in such a way that all of the dynamic coupling
terms are zero. This simplification is for convenience only, and does
not represent any limitation of the basic theory.

The expression for the kinetic and potential energies for this
statically coupled system are:

T = Imigr2 + moge® + - -+
V = 3k11q1% + Lhoage? + - - + Riaqugs + - - -
where we no longer need a double subscript for the #,; terms, since
there are no cross-product terms. Substituting these expressions
for T and V into Lagrange’s equations, Equation (9.17) above, we
obtain:
mig1 + Rugr + Rizgz + -+ - + Ringn = 0
mafe + k21q1 + kozqe + ¢ - - + Ropgn = 0

(9.18)

MaGn + klel + knng + .-+ kann =0

Since there is no damping, the solution of this set of equations will
be of the form: ’

gt = Aysin wt + By cos wt
since the sine and cosine terms will lead to the same equations, we
shall take as the solution, following the same method as in the two
degree of freedom example of Section 9.4, ‘

gi = Aq¢sin wt (9.19)

where Ay is the amplitude of the harmonic solution of frequency w.
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Substituting Equation (9.19) into Equations (9.18), we obtain the
following set of algebraic equations:

(k11 — miw? Ay + kigds + -+ - + R1pAn =0
ko141 + (k22 — mow?)As + -+ + kopdp =0

(9.20)

knlAl + anAZ + -+ (knn - anZ)An =0

This set of homogeneous simultaneous equations will have a non-
trivial solution only if the determinant of the coefficients vanishes:

(ku - mlwz) k12 < Rin
k21 ) (kzz — M2w2) c e kzn
: =0 (9.21)
knl P (knn — anz)

This determinant is the frequency equation, from which the natural
frequencies of free vibration, w,, can be determined if the &’s and
m’s for the system are known. This frequency equation will give »
values of w? from which the n positive real values, (w1, ws, ...
wr, . . . wy) can be determined.

Corresponding to each natural frequency w, will be a set of A
values (41, A2, As®, ... A,") which will describe the con-
figuration of the system as it vibrates harmonically with the fre-
quency wy. Such a set of 4®’s defines the shape of a principal mode
of oscillation of the system. Note that the values of the A’s are
not determined; it is only the ratios between the A’s, that is, the
‘““shape”” of the mode, that can be determined from the set of homo-
geneous Equations (9.20). Physically this means that while the
shape of the harmonic mode is fixed, its absolute amplitude can have
any value, so long as it remains small. The notation that is used for
the A’s should be carefully considered ; note that the subscript refers
to the coordinate, while the superscript in parentheses refers to
the mode of vibration. On the other hand, for the frequency o,
which involves the mode only, and not the individual coordinates, it
is more convenient to use the single subscript referring to the mode,
as wy.
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The general solution of the set of simultaneous differential
equations of motion Equation (9.18) can be obtained by a super- °
position of the solutions corresponding to the principal modes:

%=memmt (9.22)

r=1

A similar expression involving a cos w, instead of the sin w,f could
be added if necessary to satisfy the initial conditions of a particular
problem.

9.10 Orthogonality of the Principal Modes. In the present
section a basic property of the principal modes of vibration will be
developed which will be of considerable use for the calculation of
natural frequencies and mode shapes, as well as for further extensions
of the theory.

Consider two particular principal oscillations having different fre-
quencies w; and w;. From Equations (9.20) we may write:

RinA10 + RppAo® + -+ +hpdn® = myw 240
ktlA 1(3) + kiZAZ(s) + . v + kinAn(s) = mtwszAt(S)

where each equation is of the form:

> iy A0 = mgwe?d O (9.23)
j=1

Multiply the first equation by A;®, and the second equation by
A, obtaining:

A i10A® 4+ kipds® A 4 oo £ hinAa®A;® = muwe2A 040
hird1©OA0 & Bpda®AfD £ oo+ Bpda®A;0 = myw2d 04,0

each of these equations is a set of (¢ = 1,2,3,...#n) equations;
adding this system of equations term by term on each side, we obtain:

” ” ”
z z kyA A = w2 z mid N A
i=1

i=1 j=1

” ” H

Z z Budi4;0 = wg? Z A0 A )
i=1 j=1 =1

In the left side of the second equation the subscript ¢ may be written
as j and the subscript ; may be written as ; without affecting the
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value of the term, since &y = kj; and in each case we are only
summing from 1 to # on the subscripts. We thus see that the left
sides of the two equations are identical and hence if the second is
subtracted from the first there results:

(ws? = we?) > mAMA® =0
2
Since we have picked w, # ws, we have, finally:
> md 40 =0 (9.24)
i=1

This equation is called the orthogonality relation. The reason for
this name may be seen by considering two vectors a@ and b which are
perpendicular, or orthogonal, to each other. The analytical con-
dition for this orthogonality is a-b = 0, or:

azbz +ayby + azbz = 0
3

Z a;b; =0
=1
Thus, Equation (9.24) may be thought of as the condition that two
n-dimensional vectors m#4 ® and m¥4 " are orthogonal.
9.11 Example: The Calculation of Natural Frequencies and
Mode Shapes. As an illustration of the above general theory, we
shall work out a particular example. Three equal masses slide

y |—->x1 I-»:vz xs
lcll m illl m Mln

Z

Fic. 9.8

without friction on a horizontal plane. They are connected together
by three equal springs of spring constant % as shown in Fig. 9.8.
Find the natural frequencies and mode shapes for this system.
Solution. Take as coordinates the three absolute displacements

of the masses, %1, ¥2, and x3. Then, in terms of these coordinates:

T = im(%12 + %22 + 43?)

V = ka2 + 3h(x1 — x2)2 + 3k(x2 — %3)2

= 1(2R) %12 + 3(2R)x2% + hxs® — kxixa — Exoxs



328 ADVANCED METHODS IN DYNAMICS

Thus, in this particular problem, we have a statically coupled set of
coordinates, with:
my = Mg = Mgz = M

ki1 = kas = 2k

Ras = R .

Rig = koy = kag = k3o = — k
kig = ka1 =0

Substituting these values into Equation (9.20) we obtain:
(2k — mw?)A1 — kA3 = 0
— kA1 4+ (2 — mw¥As — kA3 =0
—kA2 + (F — mw?As =0

2
or, putting m}:u_ =f
(2—-/)d1— A42=0
— A1+ (2—-flde —A3=10
—Az+ (1 —-f)ds3=0
The frequency determinant, Equation (9.21), becomes:
@-5 -1 0
-1 2-5 -1 (=0
0 -1 (1=
Expanding the determinant, we obtain the following polynomial

equation for f: _
fE=35f24+6f-1=0
from which:

fi=0.198; fy=1.555; f3 = 3.247

Thus, the three natural frequencies of vibration are:

w) = 0.445A/£
m
ws = 1.25A/—k—
m

w3 = 1.80A/—k-
m

We find the mode shapes from the three algebraic equations
for A1, As, Asin terms of the f. Since it is only the ratios between
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the A’s that can be determined, we can arbitrarily set 4; = 1 for
each of the modes, so that we can work with numbers; then:

A1 = 1; As® = (2 — f); A3® = (2 - f)

(1-5
For the first mode, for which f; = 0.198
1.802
(1) == N (1) = —-— == N (1) B e
A, 1; A, 2 — 0.198 1.802; Aj; 0,800 2.245
For the second mode, fz = 1.555
0.445
(2) = N (2) = — = M (2) =
Aq 1; As 2 — 1.555 0.445; As — 0555
= — 0.802
A
% Equilibrium position
Z Z Z Z Z4
] <1 ' 2245
B First mode
Secord mode
1247 j 0555
Third mode
7
Fi1c. 9.9
For the third mode, /3 = 3.247
— 1.247
3) = N 3) = —_ = - . N 3) = = N
Aqt 1; A, 2 — 3.247 1.247; A4, — T 0.555

Thus, in the lowest mode of vibration the three masses always
move in the same direction, with 73 having 2.245 times the ampli-
tude of m;, and m2 having 1.802 times the amplitude of #,. In the
second mode, m; and me move in the same direction, while mg
moves in the opposite direction, and in the third mode m; and mq
‘move in the same direction while 72 moves in the opposite direction.
The configuration of the system as it vibrates in each of the principal
modes of vibration can be indicated diagrammatically as in Figure 9.9.
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We may use the orthogonality relationships of Equation (9.24) to
check the values of the 4’s: :

"
> mAA® =0
i=1 :

So:
A1DAL® 4 A4, + 430433 = 0
(1)(1) + (1.802)(0.445) + (2.245)(— 0.802) = 0
1 +0.802 - 1802=0
similarly:

A1DAL® 4 A,WA,0 4 4304368 = 0
A1DA160) + A, A0 4+ A3 433 = 0

Note that in this particular problem the m’s drop out of the ortho-
gonality relation, since all of the masses are equal.

PROBLEMS

9.30. In the expression for the kinetic energy T, Equation (9.16), write
the general term my; in the form of a summation, and show that my = my;.

9.31. Refer to Example 2, Section 9.2 above, and show that for small
oscillations the equations for kinetic and potential energy derived there
in terms of the coordinates x and ¢ reduce to the form of Equations (9.15)
and (9.16). Find the my's and the ky's for this particular example.
What kind of coupling exists between the (x, ¢) coordinates?

9.32. Referring to the two masses on a stretched string of Prob. 9.24
above, write the kinetic and potential energies in terms of suitable
coordinates, and determine the ky's and the my’s for the problem. Cal-
culate the natural frequencies of vibration of the system by a direct sub-
stitution of the k&’s and m's into the frequency determinant Equation (9.21).

9.33. The figure shows three different coordinate systems suitable for
the description of small oscillations of a douhle pendulum consisting of
two equal masses and two massless strings of equal length. Write expres-
sions for the kinetic and potential energy of the system in each of the three
coordinate systems, and state whether static coupling or dynamic coupling
is present in each. .

9.34. Three equal simple pendulums of length / and concentrated mass
m are coupled by two equal springs of spring constant % located a distance
a from the point of support as shown in the figure. (a) Using as co-
ordinates the three angles ¢1, ¢, ¢3 and considering small oscillations only,
write the expressions for the potential and kinetic energy of the system,
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and find the values of the &gy’s and the my’s for this problem. (b) Find
the natural frequencies of vibration of the system. (c) Find the mode

~shapes for the system.
9.35. An approximate dynamic model of a three story steel-frame

@ (b) ©
ProB. 9.33
building can be formed from three concentrated masses and three massless
springs as shown in the figure. During lateral vibrations of the building,

as for example, during an earthquake, it is assumed that the floors move
parallel to each other, so that the action is primarily that of shear. The

%

1
a m
k B
00000 Q0000 —*—
1 l | k m
-4 =% % 2%
2m
|
| m ! m \ m
3k
Z 2
Pros. 9.34 ' ProB. 9.35

masses of the three floors and the shearing spring constants are as shown
in the figure. Show that the frequency equation for small lateral
oscillations is:

mw?

2f3 — 13f2 + 20f - 6 = 0; f=T



332 ADVANCED METHODS IN DYNAMICS

9.12 Forced Oscillations. We shall now suppose that the
statically coupled conservative system which has been considered -
above is acted upon by a system of periodic exciting forces F; sin w!
so that the basic equations of motion become:

%(%) % = Fysin wt (9.25)

Following the same procedure that was successful for the single
degree of freedom system of Chapter 5, we shall assume that the
steady state solution will be harmonic and of the same frequency as
the exciting force. In what follows we shall consider steady state
motion only. We suppose that there is a small amount of damping
present which after a time will eliminate the transient terms, but
which is not large enough to change appreciably the steady state
forced amplitudes.

It cannot be expected that the solution will involve only a single
mode of vibration, since all of the modes may be excited simul-
taneously. We accordingly write a trial solution in the form:

n

= > ¢ sin wt 9.26)
g Zl (
where the coefficients ¢, are the steady state amplitudes of the
forced oscillations of the various modes. We do not need to include
a phase angle in this expression, since for the undamped system the
phase shift will be either zero or 180°.

Substituting the general expressions for kinetic and potential
energies into Equation (9.25) we obtain:

MGy + Rixg1 + Reeqe + - - - + Ringn = F;sin wi
Putting Equation (9.26) into this equation, and cancelling the

common sin wt term leads to:

? ? ?

— Myw? Zci"’ + ki Z 1" + Ry Z co® + ... = Fy

r=1 r=1 r=1
or:
" n ”
— Myw? Z e + Z ki Z ¢ = F, (9.27)
j=1 1

r=1 r=
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The next step will consist of expressing the coefficients ¢, in
terms of the mode shape numbers 4" that have been defined above
in connection with the free oscillation problem. We define a new
coefficient, a® as:

¢y = g4, (9_28)

The physical significance of Equation (9.28) is that we suppose each
mode excited by the external forces to have the same shape as the
free oscillation mode, with an amplitude a® that remains to be
determined.

Substituting Equation (9.28) into Equation (9.27), we find that
the second term becomes:

ky(aWA;0 4 a@4;@ 4 ..
1

”
=

n ”
= a z Ryd/D 4+ a® > kyd @ 4 ...
=1 =

J

”

”
= z a® z kyd ;0
=1

r=1\ j

We now refer back to Equation (9.23), which states that:

n
kA0 = myw 2440
=1

7

Introducing this into the last expression above, we can write Equation
(9.27) as:

n Lid
— My z A PLO S z aMmiw2440 = Fy

r=1 r=1

z aOmA O (w2 — w?) = F, (9.29)

r=1
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Note that for the single degree of freedom case Equation (9.29)
reduces to the form: '

am(we? — w?) =F

Fim Flme,? Flk

R,
Wy wr

which checks the conclusions reached in Chapter 5 for the steady state
amplitude of the single degree of freedom system with no damping.

For the multiple degree of freedom system this calculation is not so
simple, because the amplitude coefficients a® occur in Equation
(9.29) as the coefficients in a series. These constants can be deter-
mined, however, by expanding the exciting forces F; into a series of
the same normal functions 4" that appear with the amplitude
coefficients. We will thus write the exciting force as:

a =

F; = z FOmd 0 (9.30)
r=1

where we use j instead of ¢ to indicate that such an expansion could
be applied in general to any one of the forces. This process of
expanding the function F; into a series is similar in principle to the
expansion of a function in a Fourier series, but instead of sines and
cosines we use the functions 4, because of their appropriateness to
the particular problem involved. The method of determining the
unknown coefficients is analogous to that used for the Fourier
coefficients.
Writing several terms of Equations (9.30) gives:

Fy = fOmA;0) 4 f@myd,2) + ...
Multiply both sides of this equation by A4,®, and thus obtain:
FiA;0 = fOm ;A0 + f@md, 04,0 + ...
Summing over both sides of this set of # equations gives:

” ” #n—1 n
ZF,A,M = f® Z my[A,0]2 + Z Zf(s)m,A,(nA,(s)
j=1 j=1 =1

s=1 j=
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where 7 # s. The second term on the right becomes:

n—1 ”n
Zf(s) Z myA 04,0
s=1 i=1

but by the orthogonality relation of Equation (9.24):

”
m,A,(”A,(” =0
Jj=1

and hence the only term left on the right is the single term involving
S0, and we find:

> Fyds
fo = (9.31)

Z m,A,(”z
i=1

Substituting Equations (9.31) and (9.30) into Equation (9.29) will
then give the amplitude coefficients a®:

” n
Z aOMA O (w0 — w?) = Zf(r)m,A,m
r=1

r=1
)
fo 1 ZF’A’ '
2t = - i=1 (9.32)

(ot = @) ~ (@ = of) &

m,A,(ﬂz
j=1

The final solution for the steady state vibrations is then given by
Equation (9.28) and (9.26):

" FjAj(’)
9e = 2 — w?)

i 5 - (w
r=1 Z mjAj(r)z
j=1

" As a specific example illustrating the use of Equation (9.33) consider
the system of three masses of Figure 9.8. Suppose that a force
F sin wt acts on the middle mass ms, and that we are to determine

sin wt (9.33)
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the steady state motion of the first mass m;,. Using Equation (9.33)
we first substitute ¢ = 1, since we wish the motion of the first mass; -

”

2 FjAj(r)
= 4,0 .
X1 = E 3 5 Sin w?
(wr? — w?)

r=1 z mjAj(r)z

j=1

We then expand the r-summation, and obtain the three terms:

F;A,;0 Fi A4,
; 3413 4,0 z 34y A4,®

" (w1 — wz) (we? — w?)
z myd D2 z myA 2

X1 =

We next expand the j-summations, noting that F; = F3 =0,
Fy = F; thus, for example:

> Fyd;
Fa FA,W

n = m[A102 4+ A2 4 4312]
Z myd 2
j=1

Thus we have:

%1 = —{ AW A,W ‘
m|[A102 + A2 Az (2 — w?)
A 21442
T @2 ¥ 4,00 £ 4302 (ag? — o)

A1 ®A,® t
T 107 T 4,02 ¥ A309(0g? — o) sm_w
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The values of the A’s have already been determined in the example
of Section 9.11 above, where we obtained:
4,0 =1 A1 = 1 A1® = 1
A, = 1.802 A2 = 0445  A,® = — 1.247
As® = 2245 - A3® = — 0802 A3®= (0.555

which gives directly the final answer:
ot = f[ 0.194 0241  0.435
T (w12 — w?)  (w2? — w?) (ws? — w?

where w12 = 0.198 E; ws? = 1,555 Ze_; w3? = 3.247 —]f- as determined
m m m

] sin wi

in the example of Section 9.11.

PROBLEMS

9.36. In the example of the three masses and the three springs worked
out above, suppose that the force F sin wi acts on the right hand mass,
and determine the steady state motion of the left hand mass.

9.37. Refer to the triple pendulum system of Prob. 9.34, and apply a
sinusoidal horizontal force F sin wi
to the left hand pendulum. Calcu-
late the steady state motion of the
middle pendulum.

9.38. Suppose that during an
earthquake the ground supporting
a shear-type building moves with a
horizontal acceleration a(Z).
{(a) Show that if x;, x» and x3 are
the lateral displacements of the
floors relative to the moving ground,
the equations of forced oscillations
of the building are the same as if ProB. 9.38
the ground were fixed and external
exciting forces as shown in diagram (b) were applied.

(b) If @ = ap sin wt, find the displacement of the first story relative to
the ground, in terms of the applied motions, the natural frequencies, the
masses, and the mode shape numbers 4;).

(b)

9.13 The Calculus of Variations. Many problems of classical
mechanics are most naturally formulated in terms of maximum or
minimum statements. Consider, for example, the famous problem
of the Brachistochrone, as formulated by John Bernoulli in 1696.
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““ A particle, under the action of gravity, slides along a smooth curve
which lies in a vertical plane. Find the form of the curve for which
the time required for the particle to move between two given points
on the curve is a minimum.” As a second example, consider the
statics problem of the determination of the equilibrium form of a
flexible chain, supported at its ends and hanging in a vertical plane.
This problem can be solved by finding the shape of the chain which
makes the potential energy of the system a minimum.

Such problems have aroused the interest of some of the greatest
investigators. The Brachistochrone problem was first solved
independently by John Bernoulli, Newton,
and Leibnitz and the development of the basic
theory of such problems was carried out by
Euler and Lagrange. An idea of the funda-
mental mathematical problem may be obtained
from the analytical statement of the Brachi-
stochrone problem. In Fig. 9.10, the particle
of mass m slides down the vertical curve AB
Y under the action of the gravity force mg, and

Fic. 9.10 we wish to determine the shape of the curve
¥ = f(x) such that the time from 4 to B is a
minimum. The time required by the particle to travel an arc length
ds is ds/v, and thus the total time from A to B is:
Bds

= —

A4 v

From the energy principle, the velocity of the particle will depend
upon the vertical distance traveled:

v=V2gy

214
we also have ds = [1 + (Z—%) ] dx and hence the final expression

for the time becomes:

B dy2§
t=J [1+(E§)}dx
4 28y

We thus see that the problem requires the minimization of a definite
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integral by means of a change in the form of the integrand function.
We may now compare this problem with the type of minimum and
maximum problem with which we are already familiar.

In ordinary maximum and minimum problems, we are generally
given a function of several variables in the form:

yzf(xlvxZ"")

and we wish to find the values of the x’s for which the function has an
extreme value. The necessary conditions for the solution of this
problem are given by the equations:

%y S
5)_6—1:0’ _5;—2_0)

In the calculus of variations we also have the problem of finding an
extremum, but now the expression to be investigated no longer
depends upon a finite number of independent variables, but depends
instead upon the behavior of one or more dependent variables. The
particular expression of this type with which we shall be concerned
has the form:

3 d
I = f; f (x, ¥; d—i) dx, where y = ¢(x) (9.34)

Given the function f we are to determine the function ¢ which will
give I a stationary value. It will be observed that the analytical
expression for the Brachistochrone problem is a special case of
Equation (9.34).

The solution of this mathematical problem will not only enable us
to solve many specific ptoblems, but will also permit us to put the
basic equations of motion into several new forms, which have been
of great importance in the development of advanced dynamics.

9.14 Euler's Differential Equation. The basic solution of the
problem defined in Equation (9.34) is given by Euler’s Differential
Equation, which we shall derive by a method similar to that employed

B
by Lagrange. Given the definite integral I = f fly, ¥, x) dx, where
4

y =¢{x),and y’ = Z—ii find y = #(x) so that I has a stationary value.
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Referring to Fig. 9.11, we note that if the curve shown there as a
solid line is actually the correct ¢(x) to give the minimum valueto 7,
then the integral evaluated over some slightly different curve, such
as the dotted curve, will have a slightly larger value. This slightly
different curve, which has the same end points 4 and B as the exact
curve, is called the varied path. If we imagine that at a particular
value of the independent variable x we move to the varied curve, the
ordinate of the varied curve at that point will be ¥ + &y which can
be written as:

y + 8y = ¢(x) + €f(x) (9.35)
where 8y is called the variation in y
and the small quantity e indicates
that the varied path is slightly
different from the minimum path.
We use the variation symbol & to
distinguish 8y from the differential
dy. Notethat dy is the infinitesimal

Fic. 9.11 change in the given function ¢{(x)

caused by an infinitesimal change dx

in the independent variable x, whereas 8y is a small arbitrary change
in y equal to f(x).

As the path in Fig. 9.11 is changed from the original to the varied
path, the value of the integral I will change by a small amount
81, called the variation of the integral. If F(y,y’, x) is the modified
integrand corresponding to the varied path, we have:

B B B
o =5 1.y 0 dx = [ Flyyindx = [ 11y e

- f CIF O,y 1) — fly, 5 %)) dx = f oy, y, 9 dx (9.36)
A A

and we see that the processes of variation and integration can be
interchanged.

We next consider the way in which f{y, ¥’, x) varies as we go from
the original to the varied path. At one particular value of x, y
will change to y + &y, and the slope will change from y’ to ¥’ + &',
thus: ‘

5f = _%’ 5y + % 5y’ (9.37)
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The slope of the varied curve is
a , 4
o) =y + (%)

and thus &y’ = ¥y’ + Zid; ®y) —y' = ;—x (8y), which indicates that the

processes of variation and differentiation can be interchanged. Equa-
tion (9.37) can now be written as:

8f = fb‘ + ;j; (8y)

which, when introduced into equation (9.36) gives:

of of d
ST = L [ 5t h (Sy)] dx (9.38)

Integrating by parts the second term in this integral, we obtain:
B of d o B B g ( of )
f (8y)dx-—a-5,-,8yA—J‘Adx 2y 8y dx

A 6y dx
Since the varied curve coincides with the exact curve at the end-
points 4 and B, 8y = 0 at 4 and B and the term

of B
"
Thus Equation (9.38) becomes:

w4 ()] e

For a stationary value of I, 87 = 0. Since 8y is arbitrary and can
be taken as different from zero, 81 can be zero only if the expression
in the square brackets is zero:

% (;yff) _ 2—1; -0 9.39)

This is Euler's Differential Equation, and the function y = ¢(x)
which satisfies this equation is the desired function which will give
the integral I a stationary value.
There are two special cases in which the solution to Euler’s
Differential Equation can be obtained with relative ease.

=0
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B
Case 1. If the function does not contain y, so that I = f f(y',x)dx
4

then % = 0, and Equation (9.39) becomes:
d(of\ _qo Y _
pp (3_37) = 0; _3}7 = constant

and we have obtained a general first integral of Euler’s equation for
this special case.
Case 2. If the function f does not contain x, so that

B
I= f f(v,%5',) d= Equation (9.39) may be written as:
4
y f o . _ Y _
3y6y Y Ty =0
multiply through this equation by »’, and add and subtract the term

” af [ .
y a—y-,obtammg.

o Y e B LYY

27 . -

the first three terms in this expression are equal to —— ( y 63{ ) and the

last two terms are equal to (—- 3—{;) so we have:

s0m)-a-o-mlls) ]

this is a perfect differential, and can be integrated directly to give:
i _
y P f = constant
thus giving a general first integral of Euler’s equation for this special
case. :
ExampLE 1. Find the form of the plane curve y = ¢(x) joining
two points AB with the shortest length.

274
Solution. The element of length is ds = [1 + (Z—i) ] dx and the
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total length of a plane curve between 4 and B will be:
B
L= f (1 + y'2)tdx
A

The function f in the integrand is of the form f(y’) and hence we can
use the integrated form of Euler’s equation described in Case 1
above:

i = constant
oy
of y' A/ €12
= ’2)¢ _— = = =
f (1 +y ) ’ ayl (1 +y/2)i C]_, y 1 — 612 62
thus: '
,_ay

Y=g = y=oxto

and the curve is a straight line.
ExampLE 2. We have shown previously that the solution of the
Brachistochrone problem involves the minimization of the integral

B 274
t = f [1 *Y ] dx
al 2y
In this problem f = f(y, ¥') and since x is not involved the integrated
form of Euler’s equation discussed in Case 2 above may be used:

y’% -f=c
R L A R
f_( 2gy ) 3y’“% (2g)} &)
SO:
y'2 _ Myt -1
(1 + y"2)H(2gy)t (Zgy)* (1 + y'2)4(2gy)}
from which:

dy  [1 — 2%y
dx 2c%gy

This may be shown to be the equation of a cycloid—the curve traced
by a point on the circumference of a circle as the circle rolls along a
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straight line. In the coordinate system of Fig. 9.12, the coordinates

of the point P which traces out the cycloid are: :
x = 7(f — sin §)

y = #{l — cos )

. . a
Substituting these expressions into the above equation for L—i%, we

obtain:

sin 8 1 — 2c2gr(1 — cos 0)]*
2c2gr(1 — cos 6)

1 —cos@

8

FiG. 9.12

Squaring both sides and putting
sin2f = (1 — cos?6) = (1 — cos §)(1 + cos 8)

this becomes:

1 4+ cos§ 1 — 2c%r + 2c%gr cos §
1 —cosf  2c%r(1 — cosb)

If we put 2¢2¢7 = %, this equation is identically satisfied, so that the
Brachistochrone is a cycloid of radius » = 1/4¢2g.

It should be noted that in some problems a simplification can be
introduced by an interchange of the independent and dependent
variables. In the above example of the Brachistochrone, suppose
that we take y as the independent variable and x as the dependent
variable so that the integral becomes:

Bl 4+ x'z]*
t = d
L [ 2gy Y
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and Euler’s Differential Equation becomes:

7 () ==

This corresponds to choosing a varied path as shown in Fig. 9.13.

Y _ g

In this form, the problem falls into special Case 1 above, since o

and we have:
of 0 1+x’2)*
w7 w2y
x

W:c; x'2 = (1 + x'2)(2gy)]

dy 1 — 2c%gy
x 2c2gy

In this problem, the use of y as the independent variable leads to a
simpler solution.

'

from which: as before.

Fic. 9.13 Pros. 9.40

PROBLEMS

9.39. A flexible cable of length / hangs under its own weight from two
supports on the same level a distance 4 apart. The shape which the cable
assumes is such that the potential energy is a minimum. Set up an
integral expression for the potential energy of the system, and minimize
this integral to find the equation for the cable.

9.40. A particle moves in the x—y plane from a point 4 to a point B.
The velocity v of the particle is variable, but is a function of y only.
Show that for the path which makes the time from 4 to B a minimum, the
. angle between the tangent to the curve and the y-axis obeys the law:

sin ¢
v

= constant

Note that this problem is the mechanical version of the optical problem
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of determining the path of a ray of light through a medium which has an
index of refraction which varies in one direction. In the optical case the
above expression is called Snell's Law.

9.41, A container of height % has a circular top and bottom, each of
radius R. The sides are formed of an axially symmetrical surface of
revolution. What should be the shape of the sides to give a minimum
surface area ?

9.42. In studying the resistance of bodies of revolution in a flowing
fluid, Newton made assumptions equivalent to supposing that the pressure

Pros. 9.41 ProB. 9.42

at each point on the surface would be proportional to the square of the
component of velocity normal to the surface. It is desired, under this
assumption, to find the shape of the solid of revolution which would have
the minimum total drag.

(a) Show that this problem involves the minimization of the integral

X
1——2)1—2 dx
+(Z)

(b) Show that the shape of the curve which minimizes the integral of
part (a) must satisfy the equation ‘

“(2)
=C

[~@T
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{(c) Show that the equation of the surface of minimum drag in para-
metric form is:

C1

= {1+
y=C(p? + 3p* —logp) + C2
where
d
P=%=V

Note that the basic assumption described above applies to only a few
very special cases, and that for ordinary flow conditions the results are
not even a rough approximation.

9.15 Hamilton’s Principle. It will be observed that Euler’s
Differential equation (9.39) which is the condition for minimizing
a certain integral, has the same form as Lagrange’s equations of
motion. Writing Lagrange’s equations for a conservative system
in the form:

dfo 0
we see from Equation (9.39) that an equivalent statement is:
2
sf’(T V)@ =0 (9.40)
b

Equation (9.40) is an analytical statement of Hamilton’s Principle,
which says that the actual path followed by a dynamical process is
such as to make the integral of the function (" — ¥) a minimum.
For most problems of the type hitherto considered in this book,
Hamilton’s Principle does not lead to any particular advantage in the
setting up of the equations of motion, since it is equivalent in such
applications to the use of Lagrange’s equations, as is shown in
Example 1 below. Hamilton’s Principle does have important
engineering applications, however, in the setting up of the partial
differential equations of motion describing infinite degree of freedom
systems. In such problems as the vibrations of beams, Hamilton’s
- Principle plays the same role in establishing the equations of motion
that was played by Lagrange’s equations for the finite degree of
freedom systems. Typical examples of this use of Hamilton’s
Principle are given below in Example 2 and in the problems.
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ExampLE 1. Find by Hamilton’s Principle the equation of
motion for a single degree of freedom undamped harmonic oscillator.
Solution. For such a system, T = jma2and V = }kx? thus:

5 ﬁ  (gmit — pha?) dt = 0

Applying Euler’s differential equation to minimize the integral,
we have:

[ = imxt — Lkx?
thus:

4, .
a(mx) + kx =0

mx + kx =0

For problems of this kind it will be noted that Hamilton’s Principle
leads to exactly the same steps as the use of Lagrange’s equations.

Fic. 9.14

ExXAMPLE 2. A straight uniform beam having a length /, a mass
per unit length p, a cross-sectional moment of inertia I, and a
modulus of elasticity E is pinned at each end as shown in Fig. 9.14.
The beam performs small transverse bending oscillations in the
horizontal x, y plane. Using Hamilton’s Principle, find the differen-
tial equation of motion of the system.

Solution. From the theory of strength of materials we know that
the potential energy of bending of the beam is:

vy My %flEly”de
o EI 0

: 2
where M is the bending moment in the beam, and M = EJ 2732’
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!
= EIy”". The kinetic energy of the beam is T =.} f uy? dx.
0

“Hamilton’s Principle in the form of Equation (9.40) then becomes:
5 f [ f (duy? — 3EI y"z)dx] dt =0

Instead of applying Euler’s differential equation to this problem, we
shall go through the steps which lead to Euler’s equation. In many
problems this procedure will be more suitable than a direct substitu-
tion into Euler’s equation.

Performing the variation as indicated, we obtain:

t [
f ’ f (w989 — EIy"sy") dxdt = 0

2
writing &y = -é—t (Sy) and 8y" = 8 (By) we have:

ft f [py 5 (&) — Ely" o (Sy)] dx dt
Integrate the first term by parts, as follows:
ta L ta
f By (Sy) at = pydy | — f py Oy dt
ot ty 121

Since by the definition of the varied path, 8y = 0 at the two end-
points #; and #3, the first part disappears.

We next integrate the second term in the integral by parts twice,
as follows:

IEI”aZSd EI”aSl IEI”'an
[[En e ax = B1y £ 0| - [ EDy 5 G9) s

= Ely" — (Sy)

!
— EIy"éy| +
0

!
f EIyv 8y dx
0

In this expression, the first term is zero, since at both 0 and / the

bending moment in the beam, which is proportional to y”, is zero,

because the beam is supported by frictionless pins at the ends.

The second term is zero since 8y is zero at the two ends of the beam.
Thus, the variational equation becomes:

¢ I
f”f (= pj — EIyV) sy dxdt = 0
t, Jo
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Since 8y is arbitrary, and can be taken as different from zero, the
condition that the integral should vanish requires that the term in
the parentheses should be zero. This gives the required partial
differential equation of vibration of the beam:

oy 0%
EI 5+ p =0

Note that the above variational procedure not only developed the
differential equation, but that the boundary conditions as well
were automatically involved.

PROBLEMS

9.43. A uniform flexible string of mass per unit length u is fastened at
each end to rigid supports a distance / apart. The string is subjected to a
tension force F which may be assumed to be constant for small lateral
motions of the string.

(a) By considering the change of length of the string as it is deflected,
show that the potential energy of the system is:

F [t foy\2
V=3[ (3) «

where v is the deflection perpendicular to the length.

(b) Applying Hamilton’s Principle as in Example (2), above, show that
the partial differential equation describing small transverse motion of the
string is:

Q)
~

Py _ &
ax: F 0o

{c) Find the velocity of propagation of waves along the string.

m\

9.44. A straight shaft of length / has a uniform circular cross section of
polar moment of inertia 7, and area 4. The material of the shaft hasa
density p and a modulus of elasticity in shear of G. The angle of twist ¢
of the shaft is a function of the position x along the shaft, and of the time ¢,

(a).Given that the total angle of twist of the shaft under a twisting

_ M

moment M, is show that the potential energy of the shaft is:
=Gl T, p 8y

_Gly (! a¢)2

(b) Find by Hamilton’s Principle the partial differential equation
describing the motion of the shaft. Assuming that both ends of the shaft
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are free, indicate the way in which these boundary conditions appear in
the derivation.

() What is the speed of propagation of a torsional wave along the
- shaft?

9.45. In. connection with the design of an oil pipe-line, the question of
the effect of a fluid flowing through the pipe on the natural frequencies of
transverse vibrations should be considered.* It will be assumed that a
section of the pipe between two supports can be treated as a pin-ended
beam. The following nomenclature will be used:

v = fluid velocity relative to the pipe, assumed constant.
= mass per unit length of pipe plus fluid.
= mass per unit length of fluid.
moment of inertia of pipe cross section about the neutral axis.
coordinate along length of pipe.
= coordinate transverse to pipe.
= distance between supports.
= modulus of elasticity of pipe.

oy S~ R~ R
il

ProB. 9.45

(a) Assuming small displacements of the pipe, show that the x-com-
ponent of the fluid velocity is v, and that the y-component is %2; +v z—z

(b) Show that the kinetic energy of the system is:

e i) o (oY

{(c) Show that the potential energy of the system (strain energy of

bending in the pipe) is:
7
V= J' VEI ( - ﬁ) d

{(d) Using Hamilton’s Principle, as in Example 2 above, derive the partial
differential equation describing the transverse vibrations of the pipe.

* G. W. Housner, '‘Bending Vibrations of a Pipe Line Containing Flowing
Fluid”, Journal of Applied Mechanics, Vol. 19 (June 1952), p. 205.
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9.16 Hamilton’s Canonical Equations of Motion. For
engineering applications of dynamics, Lagrange’s equations in the
form of Equation (9.14) or Hamilton’s Principle in the form of
Equation (9.40) are usually the most convenient formulation of the
basic laws of motion. For certain applications in physics, however,
other forms of these basic principles are often used. We shall
briefly indicate the way in which some of these alternative state-
ments are made.

We start with Lagrange’s equations for a conservative system in
the form: [Equation (9.11).]

d(oL\ oL _
dt 8q'¢ 8q¢ -
e oL .
Introduce the definition p; = P genervalized momentum.  (9.41)
1
In terms of p;, Equation (9.11) becomes:
: oL
P = I (9.42)

A new function H, the Hamiltonian Function, is now defined as:

H = Z;bﬁ'; - L (9.43)

In general, the Lagrangian function L is a function of ¢4, ¢4, and ¢;
L(gy, gi, ¢). The ¢, enters through the kinetic energy as a quadratic
term, and thus Equation (9.41) above will give p; as a linear function
of gs. This set of linear equations involving $; and ¢; could in theory
be solved giving ¢, in terms of p4, and hence the ¢;’s could in principle
always be eliminated from Equation (9.43). We may thus say that
H can always be expressed as a function of ¢, ¢;, and ¢,

H = H(pz, qi, t) (944)
We shall now express the differential of H in two ways, first by
differentiating Equation (9.43), and then by differentiating Equation

(9.44).
From equation (9.43):

dH = Z;ﬁidq'¢+ Zq‘,dpi - Zj—idqi - Z%dqi ~ %—Ltdt
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By virtue of Equation (9.41), the first and the fourth terms in this
expression cancel, so:

- oL oL
M:wa—.%@~ﬁﬂ (9.45)
From Equation (9.44):
oH oH oH
dH = z 25 W+ D, 5 s+ (9.46)

Equations (9.45) and (9.46) must be equal for all values of the
variables, so the coefficients of the corresponding differentials can
be equated, thus:

oH . oL _oH oL _°H (9.47)

M= g g a - o
. oL . .
By Equation (9.42) £ = $4, SO we can write:
i
oH . oH
%= 25 P 5, (9.48)

Equations (9.48) are called Hamzlton’s Canonical Equations of Motion.

PROBLEMS

9.46. Show that for a conservative system the expression for Hamilton’s
Principle can be written as:

¢
8| @T —E)dt=0
1
where E is the total energy. Show that in this form Hamilton’s Principle
is equivalent to finding the extreme value of the integral:

ta
A=2| Tadt
4
This integral is called the action integral, and the above statements express
what is often called the principle of least action.
9.47. Show that if the Lagrangian function L is not a function of time,
the Hamiltonian function H is constant.
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9.48. (a) Starting with the following expression for the kinetic energy
of a particle: .

3951; 951 ., O \P

3
1 1
= = m(%2 + 92 4 32) = = E
T 2m(:n: + 92 + 22) 5 M ( 3o

i=1
where:
x = ¢1(q1, 92, gs)
y = ¢2(q1, g2, g3)
z = $3(q1, 92, 93)
show that the kinetic energy can be written as:

3
1 or
T=35) 24
2 1 %
It may be noted that since T is a homogeneous quadratic function of the
¢’s, this result also follows directly from Euler’s theorem for homogeneous
functions.

(b) Combining Equations (9.41) and (9.43) above, one obtains
H= —27111 g: — L. With this expfession and the results of part

T gt

(a) above show that for a conservative system, the Hamiltonian function
H is equal to the total energy of the system.
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Appendix 11
UNITS OF MASS AND FORCE

In principle a single unit of mass with its corresponding unit of force
is sufficient for all purposes. In practice, however, a number of different
units may be encountered. Since units are often used without a specific
statement as to their definition, misunderstandings may result.

Perhaps the greatest source of difficulty is associated with the fact
that the same name “pound” is given both to a unit of force and to a
unit of mass. It is customary among engineers to use the name “pound,”
without qualification, for a force. On the other hand, the only legal
definitions existing in the United States define the pound as the unit of
mass. The engineer should thus understand that any “standard weight”
calibrated by the U. S. Bureau of Standards will be essentially a standard
of mass, and that any measurement of the weight of a body, which is
made by means of a balance or spring which has been calibrated by such
a “standard weight”’ will be actually a measure of the mass of the body.
The possible error due to a confusion of the two units might seem to be
negllglble, since the variation of the acceleration of gravity is small. It
is conceivable, however, that this error might be of concern in the
calibration of high-precision testing machines or in the weighing of very
expensive materials. It should be understood that the statement that
one pound-mass has a weight of one pound-force is only approximate,
and the fact that the error involved is small should not be permitted to
obscure the fundamental difference between the concepts of force and
mass.

The following definitions will indicate the precise meanings which are
to be attached to the various common terms.

Units of Mass

Standard Kilogram (kg)—The international standard of mass. The
mass of a particular body in the possession of the International
Committee of Weights and Measures in France.

Gram (g)—One one-thousandth part of the standard kilogram.

Pound, or Pound-Mass (U. S. Avoirdupois) (Ib, Ib-m.)—Legally de-
fined as 7 2%)46 part of the standard kilogram. The U. S. Bureau
of Standards at present uses a more accurate definition which states
that the pound is equal to 453.5924277 g.
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British Imperial Pound—The mass of a platinum cylinder kept in the
Standard’s Office, England. The legal equivalent is 453.59243 g.-
Hence it may be considered as practically equivalent to the U. S.
Standard Avoirdupois Pound.

Slug, or Geepound—A unit of mass having a magnitude such that a
force of 1 1b applied to a body having a mass of 1 slug would result
in an acceleration of 1 ft/sec.?

Units of Force

Pound, Pound-Force, Pound-Weight (lb, Ib-f, 1b-wt)—The force re-
quired to give a mass of 1 lb an acceleration of 32.174 ft/sec.?
Poundal—The force required to give a mass of 1 1b an acceleration of
1 ft/sec.
Dyne—The force required to give a mass of 1 g an acceleration of
"1 cm/sec.?
Gram-Weight—The force required to give a mass of 1 g an acceleration
of 980.665 cm/sec.? (32.174 ft/sec.?)

The names of the following quantities are frequently used incorrectly.
The definitions given are believed to represent the most commonly ac-
cepted engineering practice.

Specific Weight—The weight per unit volume of a material.

Specific Mass—The mass per unit volume of a material.

Density—Same as Specific Mass.

Specific Gravity—The ratio of the specific mass of a material to the
specific mass of some standard material. Unless otherwise stated
the standard material is taken to be water at 4° C.
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YECTOR PRODUCTS

Two different vector products are defined and used in mechanics.
The scalar or dot product of two vectors is defined as the scalar quantity
having a magnitude equal to the product of the magnitudes of the two
vectors multiplied by the cosine of the angle between the two vectors,

a-b=abcosh
Scalar multiplication is both commutative and distributive, that is:
a-b=>b.a
a-b+c)=a-b+a-c
Written in terms of the unit vectors i, j, k along an orthogonal coordinate
system:

a=a,i-|—a,,j-|-ﬂzk
b=25i+ 0,5+ bk
a-b=ab.+ ab, + atb.
since
1-—_1 1=k k=1
1 j=ji=i-k=k-i=j k=Fk-j=0

The vector or cross product of two vectors is defined as a vector whose
magnitude is given by the product of the magnitudes of the two vectors

8

%

multiplied by the sine of the angle between the two vectors. The vector
product is perpendicular to the plane containing the two vectors and has
359
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the direction of advance of a right-handed screw turned from the ﬁrst
vector to the second vector.

a x b = absin e,

Vector multiplication is distributive:

ax(b+c)=axb+axc
but is not commutative:
axb=—bxa
Written in terms of the unit vectors i, j, B, we have:
ax b= (ab — ab)i+ (a:b: —~ a:b,)j + (a:by — ab)k
since
ixXi=jxj=kxk=0
ixj=—jxi=kFk
ixk=—kxi=-—j
Ixk=—kxj=1i
This may also be written as:
i j k
G: Gy a,

b: by b

axb=




Appendix 114
PROPERTIES OF PLANE SECTIONS

The following symbols will be used:

A = Area
#e, . = Coordinates of centroid of section in xy coordinate system.
I.,1, = Moment of inertia about an axis through the centroid parallel to the
Xy axes.
7z, 1y, = Radius of gyration of the section with respect to the centroidal axes
parallel to the xy axes,
Iy, = Product of inertia with respect to the centroidal axes parallel to the
Xy axes.
I, I, = Moment of inertia with respect to the xy axes shown.
7z, 1y = Radius of gyration of the section with respect to the xy axes shown.
Iy = Product of inertia with respect to the xy axes shown.
Ip = Polar moment of inertia about an axis passing through the centroid.
rp = Radius of gyration of the section about the polar axis passing through
the centroid.
G marks the centroid.
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PROPERTIES OF HOMOGENEOUS BODIES

The following symbols will be used:

p = Mass density
M = Mass
%, %, = Coordinates of centroid in xyz coordinate system.
L, I,, I., = Moment of inertia about an axis through the centroid parallel

to the xyz axes shown.
7z, Ty, 7:, = Radius of gyration of the body with respect to the centroidal
axes parallel to the xyz axes shown.
I:y,1zz,, cte. = Product of inertia with respect to the centroidal axes parallel
to the xyz axes shown.
I, I, I. = Moment of inertia with respect to the xyz axes shown.
7z 7y, - = Radius of gyration of the body with respect to the xyz axes
shown.
Iy, I, etc. = Product of inertia with respect to the xy2 axes shown.

T4, 744 = Moments of inertia and radii of gyration with respect to special
axes shown.
G marks the centroid
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1.16. Fp = Pyl

1.13. v = Vg ¢(”" ptm

1 ‘. 1.17. Cannot satisfy Froudes’ num-

4. (a) If: ber and Reynolds’ number sim-

(512) _ (512) ) ultaneously with same gravity
m P

P P field for model and prototype.
CHAPTER 2
23. é, = fey + ¢sinbdey _(mg® ., 2 \z
é¢=—¢cosf)eo—¢sin0e,- 26. Fy= —;—sm « cos? a |t
¢ = —ber + ¢ cos Bey Fy = —mgsin acos a

2.4. v =7 =re, + rfey + résin e,

a =¥ = (i —r6% — r¢2sin? e, Fp = —mgcosa
+ (208 + v .
— rd?sin fcos fle, 27- 4 = (F— 372 — 3réd)er
+ (294 sin @ + v sin @ + (r§ + 374 + 374 — r%ey
+ 2rdé cos f)ey + Ze,
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2.8.

2.9,

2.10.

2.12,

2.13.

2.14.

2.15,
2.16.

3.1,

3.2,
3.3.

3.4.

3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12,
3.13.
3.14.
3.15.

3.18.
3.19.

3.20.

3.21.

ANSWERS TO PROBLEMS
, - Dda? 2.17. a = — 8730i — 443§
4ok + 264k ft/sec?
a = —4rf’e, 2.18. N-S: a = 0.146 ft/sec2;
v = 561 — 1407 — 112k ft/sec E-W:a = 0303 ft/sec?
UV =rw !
(b) aae;; —awzen 219, w = —2Q
T T0Ne 2.20. a = 6641 + 1945
—_ 2 <1
a = lw?sin aJl + (ZE) — 94,800k ft/sec?
a = 51,100 ft/sec? 221, ¥ = vi + {rpw + dopd)f
a = 534 x 10-%e, # = (a — dgg2p? — 2¢prow)i
— 0.084e, — 0.049¢, ft/sec? + rpwk
CHAPTER 3
F = _m_y_’ﬂe, 3.22. K = D ky
1]
F = 1.621b; a = 8.43 ft/sec? 3.24. £ = 1525 Ib/ft
$ =cos1}; 0= V%3 3.25. 36,900 ft/sec
Ry x —Mrwz(cos wt 3.26. J 2gx(W2ujl "+/1W2 D)
[ 4
+ g oos 2‘”’) 3.27. 3[1 /1 + 28}‘]
14
for (7) small 3.28. k) = 3001b/in; kg = 150 1b/in
317 ft; 23.7 sec k= 24in; v = 4.24 ft/sec
23.9 ft/sec; 212.8 ft. 3 41 o
g 3.29. V = ;egAl(l + Az)x

{a) —2.2 ft/sec; {b) 80.5 ft/sec
2.61 1b sec; 102° 50’
F = pA4v2; 726 1b

330. & = 1Ax2 + Bxy + 3Cy3
3.31. 16.1in; 12.4 in
3.32. 0.472 ka?

vp = z;r/2

3.86 ft/sec 3.33. 17.3 mph

373,000 1b . .

31.0 Ib 334, F, = X2 F, = 1°2

7.76 b 72 r3
b

—5 (VLT 472 —1p2 3.35. (Whext./(Wh)next, = 1 — 1 78

42°57:1.13 b
T4

(A2 + B2)
8rm 3.37. xmax = xst[l + J 1+ 2”]

B

St 3.38 G—J]‘~v—
1k - PY \/I?p

3.36. 20.7 ft/sec; 14.4 1b sec; 0.965 sec




3.39.

3.41.

3.42.

3.43.

4.1,

4.2,

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

ANSWERS TO PROBLEMS 375

Ecar. = ¥mava® + Imeve? T 1
—3 (mava + mc'Uc)2 3.44. 1= */E cosh~t ;
(mgq + mc)
AEgir., = $mava® 3.45. Wk = jmr¥(w + Q)2
(mava + McVe)? N
—imgq (g + Mo Ff = mf{ [aQZ + _74_2,((” + Q)2
MmG .
Fout = ‘—‘7;‘ 2\/ 2
¥ row(w + Q)
£ MmGr V3
in = —73§ 2V?2
__R3 + [ rwlw + Q)
v = VRg _
! V2 2\4
Amax = 1—%—; & 7(w + Q)Z] }
. [? (1 + w2 - a?) 346. x = g#%/6
t m v
— 2pg(l — 3.48. | = — log %
pg( a)] oA log P
CHAPTER 4
w L ¢
7= —k_[t - %(1 - e‘m')] 49. x = %log (%)t + 1)
_ kg o, me
log coshJ ¢ y = k:éo(yo + 2k:é0) X
/W log (-lﬂ)t + 1)
w
T ) _ mg [k
584 ftfsec; k = 0 b sec/ft; TR t(frzt + 1)
73.5 ft Py P50
- 4.10. # = J € 51 2 tanh Jg Ly
411, x %030
(b)y » < 2 Al Fy=0 = %
f(1+%e)
(€) Spew = ”_: mg
4.12. 124 ft
11,600 it
_ 4.14, ng(l - ——) 24,300 it/sec
sin (———01 5 62)/cos (———01 ; 02-)
A 4.15. gpr = 5.25 ft/sec?
= g—— 2
o
0 = 67%°; 3 r_n_b!( REg )2]
) mp\d — %
R = 2v2 o2 cos? B(tan 8§ — 1) E
4 = 17,800 mph
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ANSWERS TO PROBLEMS

e 4.31. Direction of approach = direc-
4.16. Fy = —-C »3 (C = constant) tion of departure for both (a)
— and (b)
417, ¢ = 12 J’ﬁ 4.32. Fyyo = 0.924 b
# 4.34. 23.5 in,
m 4.35. 0.29 it Ib
4.18. F, = —Cﬁ (C = constant, dif- 4.38. 1980 ft
ferent from C in. Prob. 4.16) 30 263 ftfsec .
Ve wo =%
441. v = — |1 —
420, rg = —20 x 'S T [ (wo - d) ]
"o ——— = 745 ft/sec
mevg 2
(1+"/1+ k2 S) 4-42-1’:%%
4.23. ATZ = (1 — €2 _ 16v, — 1500\ [ Wo — w!)15
15 Wo
4.25. ¢ = 0.922 443, v = jat
427. ctan b, = tan §; — (1 + &)p 4.44. 1.88 x 1010 cm/sec classical
(8 measured from normal to 1.64 x 1010 cm/sec relativistic
surface) - o2 1
4.48.

4.28.
4.29.

6 = tan-l p(1 + &)

AE = }mu2[1 — cos? §{e?
+ [tan 0 — (1 + )13}
|V| = 5.95 ft/sec

. 4.30. 4.49.

"°=2moc2[ T 1]
p2
T

Ji

2.36 x 10~ ft Ib/fission

CHAPTER 5
5.0 - = 2,,/.‘ 5.2, mi + 2L %
4 a A/1 x\2
54. p2 = 2g/length of liquid column e
5.5. p2 = 2ug/a 1
5.6. p% = xD2og2/4W + 2k (1 ~ ) = 0
5.7. p% = ag/hl 2 / 1+ (g)
Vod2x
5.8. i : _PVod®x
mi + ¢ + 2 Vo? = A% p% = 2T/a
fo L AT 5.13. p2 = (Z’i - wz)
27 mVo m
2 A
59, po 24 g e1+ %)
miz 1 5.14. p2 = 2
5.10. (1 + 4a2x2)i + 4a2x32 },(] + il) + f_ll
+ 2agx = 0 Ae Ao
P2 = 2ag 5.17. 3.92 in.; 2.02 cycles per second
5.11. p2 = P4 5.20 rmax = 20



ANSWERS TO PROBLEMS

5.21. x = [xp + (%o + pxp)tle—Pt

ncal
. [g ca? \2
ml ~/ (2m12)

mx+—x+kx—-0

5.22. 5 =

5.23.

5.24.
5.25.
5.27.
5.28.
5.29.

n = 0.191 sec-1; r = 0.905 sec
0.0825 ft; 0.032 ft
0.083 ft
n = 8.42 sec~!
(3.) A =
Yo

=T+ LRI

]
J=GT G

Jo-GIT BRI

cwlFy2/2
(B — mw?)? + (wc)?

o (=6
-

2ak w202

EE ~ dmn 2«;2(05"«/—_1)

5.33. W, =

5.35.

e
T CT FEeT

5.40. (a) W4 = 4FA

541. &k =
5.42.
5.43.
5.44.
5.45.

135 1b/in

83.7%

2.08 in

At 90 mph, 6.559%, transmitted
() 10.8 in

(b) 2.31 Ib/in

() = 0.1%

18,500 Ib/in

115 1b.; 588 Ib/in
0.008 in

1.15 b

Max. amp. after pulse

5.46.
5.47.
5.51.
5.52.
5.57.

21
= i [(pr)?
+ 2(1 — cospr — prsinpr)]t

where I = impulse

5.58. t < 7; x———-(pt—smpt)

t> T,

£ = g% fsin plt = 7)

+ prcosp(t — 1) — sin pt]
Wwadl

fAEg
X = Eé’; (1 - COS —Wl)

— 3de2 + Vi

5.59.
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5.66.

6.1.

6.2.
6.3.

6.4.
6.5.

ANSWERS TO PROBLEMS
5.65.
Mechanical| Series, or | Parallel, or
System Loop Nodal
Civcuit Civcuit
m L C
1
c R ﬁ
v i E
1 1
k o i
x Q [E dt
F E 1
5.67.
G
G L, R
2 o C
R 2
R L
Iy
(a) {b)
L, L, {a)
01£ ICa lcz
LE L 4
Lo e
Rl RZ
(c) (c)
CHAPTER 6
_ F,t? (a — b)
xc*”’oc‘f‘m 6.6. 1
gt?
Ye = Yoc — 5
2 _ Ml
1/6 6.7. (S m + M)
o = N/ZE(ml + mo)
r - _— .
myms 1\2 9
(F — wmg)l 69 m[(7) + e
[F — plm + M)g]
8muj; 6.5mv2; 5.33mv2; 1
" y ’f”’ 6.-10. w = —’l’—; v = ¢.(§)
Ve = -j- vy .i




6.11.

6.12.
6.14.

6.15.

7.1.
7.2.

7.3.

7.4.
7.5.

7.6.

7.7.

7.8.

7.9.

7.10.

7.14.
7.15.
- 7.16.
7.17.
7.18.
7.19.

ANSWERS TO PROBLEMS 379
1F2 F(At) mymal
= = — 2. = e— = e—— 2
E 3 (A)2; ¢ - 6.16. F, T+ i) ©
F(A?) 6.19. v = 2
= Tm 6.20. F = 3ugs, where s = distance
s 4 v through which top of chain falls
Vg = 3V, ¢ = =
l mv2 8Mga
H = 4ml2w 6-2l-x=m[1+ 1+ mvz]
2 2
v =22 6.22. “Csin 20
71 g
CHAPTER 7
vg = vsin ¢ 7.20. Ssmr2; Jom(3r2 + 2h2)
vp = Zo(i — Jj) 7.21. 0.0518 Ib ft sec?
v 7.22. Izy = tmR2 = Iy,
[ - @) STy
-\ V2
(142 Tow = = g mRl=Iyx
2 % 7.27. Fmi? sin 2
Vmax = 1.15v; 7.28. &m(3R2 4 4i2) sin2 «
amax = 1.27 x 10-302 ft/sec? + 3mR2 cos? «
(v in ft/sec) 3 MR?
[P 2 2
wg = 22.6 rad/sec; 7.29. 20 (RZ + R?) (642 + RZ)
w3 = 10.5 rad/sec 7.30. .., = 12 . 12R2 .
@ = 746 rad/sec?; 30. zs}z neéW(7 12R?) sin 2¢;
e 2 , =
@y = 945 rad/sf/cs 731, Iy = $M(R2 — $A2) sin 2q;
V4 = 25(1 + "'_‘) -+ 12.5j Iy’z’ =0
2 ft/sec  7.32. }Ma?
v4 = —6255 ft/sec? 7.33. 0
= 430 in/sec; 7.34. &mR2 sin 2«
= 29,500 in/sec? 7.35. Fq4 = 51i 1b;
’ 0 % Ry e F = —35.5{ + 505 Ib
AT ' -7 736a=1(1—“—u—/)
Ve = 708; A 2 F »
. r242 (F — uW)
vV, = — e, e g, = o #7)
R R ]
vp = 3.5 ft/sec; 7.37. sli 2.
.37. slips at 1.34 ft/sec?;
ap = 19.5 ft/sec? tips at 8.05 ft/sec?
3mR2
Em(a + b2); dm(a? + b2) 7.38. (m/ 3F ) p
THm(3R? + I2) V3t
2mR2
iﬁﬁz 7.39. 9610 Ib at each pin
12
I, = 0.526 1b in sec? 7.40 Wal

I, = 0.114 1b in sec?

¢ = ZWI + 4k
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741. d =

7.42.
7.44.

7.45.

7.46,

7.47.

7.48.

7.49.

7.50.

7.51.

7.52.

7.53.
7.54.

7.55.

7.56.

7.57.
7.58.

7.59.

7.60.

ANSWERS TO PROBLEMS

1_#WV3
2F
reaction force

= _‘_/_? W + 2
# =gta.n4>
I9 = A2 + 3}B3 —
+ Ioot + I8y

J41rNM
w =

t = o0, ---9- revolutions

2nk

_M
wmax-—k

-—-C 14

wyrily
uPro?’

_ wlr 1 ( 1
’LP 722 7_12_)
ot T

0o sin pt

7?-(%)2 -

495,000 ft 1b; 2350 ft Ib

[ 1 I
‘T=21I‘ R——,l=ﬁ

a=ﬁ, 2o Ye

2 r

I, = 45.0 Ib in sec?
Io

&= MR

20m + M) + miPg
m2l

=

g sin wt

2 =

(1 ~ cos 8p)
(I + -ui]j-)o = RW
4
w? = 3g/L
w = }wp; Imp. =
AT = %mRZwoz

b+ (Ksm a)a_ 0

twoRRM

21

(folf2)2 — 1
Ts= 1 [(fo/m2 = 1]

7.61.

7.62.
7.63. w

7.64.

7.65.

767, r =

7.69.

7.70.

7.71.
7.72.
7.73.
7.74.
7.75.

7.76.
7.77.
7.78.

7.79.

7.80.

7.81.
7.82.

7.83. W

7.84.

7.85.

p_ZWx

[u+amvrfﬁ—n&
3gh ]

2520 b

_ my

T M + m)yr
a4 . _ %

cos 17, w? =

ul?

({2 + 36a2)

mi® sin 2a

mi(L ~ 2a)

1 my2 2

g8 I

w?

—l_- (R2 —~ }A?) sin 2«

tan-1

F = sin 2«

ool—

+ me w?
- 2

mwlab(al — b2)
12(a2 + 2)3/2
left, 29.6 1b; right, 23.7 1b

i BVom
6
Fpyy., = 9.311b; Fgr, = 4.941b
MR22
24!

6.10 ft/sec
R4 = —50 b (downwards)
u = 0.253

Fpyn. =

= 200mgh
, 3MR2(3M + 10)
m
RW sin «
(I + MR2y’

o F =W
iR

i = ;tan o = 3

O

+/\Illl

1+ i COS —= Y t
gR R

Sg _
& =70~ °
Ie
md

§

l=



7.86.

7.87.

7.88.

7.89.

7.90.
7.91.

7.92.

7.93.
7.94.
7.95.
7.96.

7.97.
7.98.

8.1.

8.2.

8.3.

8.4.

8.5,

ANSWERS TO PROBLEMS 381
ve = 40.6 ft/sec; 7.99. 111 1b
vy = 81.2 ft/sec vIQ)
) W — 2Ws 7.100. F = -
2 —1
4y I 7.101. Overturn
(”‘2 +dms + RZZ) 7.102. 5.36 x 10-10 it b
Before impact, #; = v, %3 = 0 _ k202
After impact, 4 = 0, #5 = 7.103. a = }hcos a + ctn «
1
Mg M2 N
N=mg+Tgi—-6; 2k cos o <
I My? Vghsin o(1 + 3 sinZ q)
f= 2qe * where
2R = 6R ME2 = I, sin? « + I, cos?
At plston = Lz SIN° a + [, CcOS% o
At crankpm I + ma?
= 61301 — 3101 1b Wi 4r2
10 12 7.105. Mpay = -8_(1 + Ed‘z)
28 m 7.106. p2 = (W £ Malk
2.11 ft/sec Iy
__ 7.107. 255 Ib
3V3gl 7.108. 162 Ib
0.193¢ 7111 Wy’ = 12.3 b, 8y’ = 243°
) for 1 Ws' = 7.951b, 8’5 = 77.3°
o wattor <3—"g— 7.112. 7 = 2.( L R2\E
. Rap Rwg AE 2 "4 T = MR
X = —fort D —— =
3 3ug’ E 3 7113, 5 = 2me? — 2m + m)g
1840 ft 1b 0. ¥ = T mwd
Same direction, 2470 ft Ib L -
Opposite direction, 831 ft b~ -114- ¢ + ( w )” 0
CHAPTER 8
2(p2 — p1)
2 - =M P
tz%/} 8.6. 2= YRE
E - (2]
_ Ag
24 _ G2 G R
atj =~ 2. velocity = J; 87, v = V12— 280z — k)
2 —
ya - Ele 88. v = Jz(ﬁ—P—ﬂ’) + 2gh
“

velocity of waves = ﬁ.

“
_"JF

Ps = po + $pvp?

8.10. v — 27k tanh (517 \/Zﬁ)t

) 8/ S
V'2gh &

8.12. F = pv24
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ANSWERS TO PROBLEMS

8.13. F = PI(AI —_ Az) 820. w = vf1 ~ 1 ~ .
— o2y |3 (A2 4 A2) 14 222
w?dils 7o+ 4 p”
A umg
= o2 A1 -y [ETE
8.14. F = p») Al[(SA 1)! w =v A
Vi, A1> .] ARw
+t\w—5 11 =
( 8 A 443 J 8.22. Q e
8.16. Fg = [(p1 — p2) 14+ Jl 2Mpsm «
+ (mv12 — pav2?))4 TAR%w?
8.17. (pa* — p2) = dp(v1 — v2)? Vi
8.19. F = — (pe + pie®) Ay 8.23. 0 = 24v/7gh; = 24V 2k
+ (Pe + pved)Ae Q gh: 9 cos a
CHAPTER 9
9.2 J—sin¢cos¢02=—€sin¢ 9.11 $+£¢=0'i+£x=ixo
o l o %o ’ m m

d

2 12 sin2 =

dt(l sin2¢ 8) =0
k

9.3. m(# — »§2) = 7
vl + 290 =0
9.4. (a) mi — mid cos ¢
+ mig2sin ¢ = Fsin ¢
ml2¢ — mi# cos ¢ =
(F = force in string)

v my?
(b)$=7.F=—l"
. 2 2
9.5. ¢+‘—l-i;—sin¢=0;p2=a_‘.;_
9.6. I8+ Wasin0=0;p2=¥
9.7. 20’+$=—2-f-’9
i f = &
b+d=-2
2
9.8. 0’+§f—k0=0
mi2
3k
2 - 2F
9.9. p2 ==
(7 )
-5 — Ws
9.10. 23 _

(¥o = length of spring under
gravity at ¢ = 0)
3% + (R — ") cos ¢
— (R — »)¢2sin ¢ = 0
HR — 7 + #cos ¢
+ gsing =0

9.12.

M 11,
9.13. (R — ')Z[T +om o+ ﬁ]e =M

¢

9.14.

(M + m)# + m(R —#)¢ sin ¢

+ m(R —r)$2cos ¢ + kx =0
2R — v)¢ + #sin ¢
+gsing =0
9.15. (M + m)# + 2kx + mig
+ 2kag = 0
mli + 2kax + ml2%
+ (mgl + 2ka?)¢p =0
9.17. o? = 1[(’2_1’?.2 + EE)
2 m mg
+A/ it By Re\? dhikg
- m my mymg
ka?  ka?
2 8 2 Fa
9.18. w i + 3 + oy
3 ky J 3k \2 4k
2 - 2% 2R\ _ IR
9.19. o 5T + 3 (1> 3
9.20. o = §-’ 2+ V2)



9.21.

9.23.

9.24,
9.26.

9.27.

9.28.

9.29.

9.30.

9.31.

9.38.

9.39.
9.41.

9.45.

ANSWERS TO PROBLEMS 383

A, = %10 + %20, 9.33. (a) Dynamic coupling only
207 (b) Static and dynamic coup-
A = x.lO — %20 hng
1 T 2y (c) Static coupling only
¥10 + %20,
Bl(l) = ——2——- N 9.34. (a-) mi] = Mmog = Mzgz = mlz;
_ myy =0, i#j
Bl(2) = m2_x20 ki1 = kag = mgl + ka?
A kzz = mgl + 2ka?
W =24 2+vYE Rig = ko1 = kog = hgp =
m !
— ka?
a,2=_1i(2+1) k13 = k31 = 0
mi - 2 g
w? = 3k/m (B) wr® =7
wp? = 6kal/l . ot — & N ka?
w2 = 0; w22=(1 +§_@)§ PTIT
m] 2
e k. 2 _1F wp? = lg 3 kiz
wl® = E, wos = gﬁ !
G+ o (€) A1) = A0 = 430 = q
w? = g A1® = 1; 4,0 = 0;
(2”+ a) Az® = — 1
_ oxg\ [ Ox A9 = 1; A® = — 2;
o= 2 (%) %) 43® = 1
+ (2E\(2k F[ 0242
AT 9.36. »; = — [__.__
e /8 m | (w12 — w?)
+ 2\ %k
= 0.435 0.194 .
i/ \ 995 - 3 7 5 5 ] sin wt
myy = m (o = ) " (ag? = oB)
mog = mi2
myo = mo = mi 9.37. ¢3 = lf_ [1*
ki = k I3ml | (02 — w?)
k22 = mgl __ 1 . :
k12 - k21 - ———(w32 . wz) SNl w
w1 = g [ m1A1D + mads® + mgdgh) A,V
1= 90| oA O2 + g dg0 + g dsM3) (ag® — o)
(m1A1® + mpAda@ 4 m3A3(®) A,@
(m1 412 + mad,@2 4 m3A3(?2) (wy2 — w?)
(m1A1<3) + m2A2<_3) + m3A3(3)) Al(a) sin wf
(114192 + maAs@2 + mgAz@2) (wg? — w?) @

2y
oxot

a2y

t Mo

=0



INDEX

Absolute motion, 38
units, 6
Acceleration, absolute, 39
cylindrical coordinates, 29
definition, 27
jerk, 34 _
normal component, 30, 33
of Coriolis, 40
of electrons, 109
rectangular coordinates, 28
relative, 40
tangential component, 30, 33
Accelerometer, 151
Action integral, 353
Amplitude of vibration, 129
- resonant, 144
— steady state, 138
Angle, Euler’s, 237
phase, 129
Angular momentum, 171
velocity, 34
Apparent mass of electron, 107
Atmospheric pressure, 103
Avogadro’s number, 101

Balance, dynamic, 216
static, 216

Ballistic pendulum, 220

Barometric pressure, 103

Beam vibration, 348
deflection, 18

Bearing reactions, dynamic, 216

Beat frequency, 317

Bernoulli, J. J., 337

- Bernoulli’s equation, 275
Boltzman’s constant, 101
Boyle's law, 101

Brachistochrone, 337, 343
Bridgman, P. W., 11
Bucherer, A. H., 109
Buckingham, E., 14

Cable, flexible, 345
Calculus of variations, 337
Capacitive reactance, 161
Cathode ray oscilloscope, 111, 116
Center of curvature, 31
of mass, 165
of percussion, 219
Central impact, 91
Centroidal axes, 192
Charge on electron, 107
Characteristic value, 270
Chasle, theorem of, 179
Cockroft, J. D., 115
Cofficient of restitution, 91, 93
of viscous damping, 120
Coincident point, 42
Compass, gyroscopic, 245
Compound pendulum, 218, 233
Conic orbit, 88
Coning angle, 46
Connecting rod, motion, 52
Conservation of energy, 65
moment of momentum, 172
Conservative force, 65, 68
system, 65
Continuity equation, 281
Coordinate systems, 28
— moving, 38
Coordinates, cylindrical, 28
generalized, 293
independent, 294
normal, 314, 318



386

Coordinates, cylindrical (Cont.)

polar, 33
rectangular, 28
spherical, 33
Coriolis acceleration, 40
Coupled pendulums, 316
Coupling, dynamic, 324
static, 324
Critical damping, 133
Cycloid, 314
Cyclotron, 116
Cylindrical coordinates, 28

D’Alembert’s principle, 253

Damped vibrations, 130
forced vibrations, 133, 158
free vibrations, 130
overdamped vibrations, 131

Damping coefficient, 120
critical, 133
equivalent viscous, 121
factor, 122
force, 120
viscous, 120

Dashpot, 120

Deflection, static, 60, 125

Degree of freedem, 118

Dimensional analysis, 10

—- Bridgman, 11

— Buckingham, 14

— column formula, 22

— derived units, 5

— dimensional constants, 7

— dimensional homogeneity, 9

—- drag force, 16

— Focken, C. M., 11

— Froude’s number, 25

— geometric similarity, 18, 20

— models, 17

— physical equation, 11
— pipe flow, 23

— z-terms, 11

— =-theorem, 14

— primary quantities, 6
— Reynolds number, 24
—scale factor, 18

— secondary quantities, 6
— Weber’s number, 24
— Wilson, E. B,, 12

INDEX

Dimensional homogeneity, 9
Dimensions of quantities, 6
Direction cosines, properties, 193,
197
Disk, rolling, 248
Displacement, 26
absolute, 38
pick up, 150
Double pendulum, 306
Drag, velocity squared, 77
viscous, 75
Drag force, 76
— ship, 53
Drop hammer, 134
Dynamic balance, 224
balancing, 216
coupling, 324
Dyne, 6

Earthquake vibrations, 331, 337

Efhiciency, rocket propulsion, 106
Einstein, A., 115
Eigenvalue, 270
Elastic impact, 91
Electric charges, potential, 70
circuit, 159
field, 110
analog, 159, 161
Electrical impedance, 61
Electrical-mechanical analog, 160
Electron acceleration, 109, 116
apparent mass, 107
charge, 107
dynamics, 107
mass, 107
Emerson, W., 48
Energy, conservation of, 65
definition, 58
Energy equation, 65
— of fluid, 274
— of rigid body, 205
— systems of particles, 188
Energy, input per cycle, 140
kinetic, 58
loss in impact, 91
loss per cycle, 133
mass equivalence, 113
of fission, 117
potential, 64
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Energy, input per cycle {Cont.)
quadratic form, 318
of vibration, 141
Equivalent viscous damping, 121
" Escape velocity, 62
Euler’s angles, 237
differential equation, 339, 341
equations of motion, 203

Fission energy, 117
Fluid drag, 16
Fluid motion, 272
-~ conservation of mass, 281
—- continuity equation, 281
— energy equation, 274
— equation of motion, 274
Fluid flow, Eul=rian method, 275
Lagrangian method, 275
momentum equation, 279
momentum flow, 282
ramjet, 290
rocket equations, 289
stream-line, 275
stream-tube, 276
turbine, 289
Focken, C. M., 11
Force, 2
conservative, 65, 68
damping, 119
definition, 2
electric field, 108
exciting, 119
function, 63, 64, 68
generalized, 296
inverse square, 84, 87, 88
inertia, 253
magnetic field, 188
restoring, 119
Forced vibration, 135
— differential equation, 122
—-solution, 137, 158
Forced vibration, damped, 135
— differential equation, 122
— damped solution, 137, 158
Four bar linkage, 181
Frequency, beat, 317
equation, 325
gyro-compass, 246
of vibration, 124, 125

Frequency, beat (Cont.)
resonant, 139
tarsional, 215, 223

Froude’s number, 25

Fundamental units, 5

Galileo, G., 118

Gas constant, 101
dynamics, 98
kinetic energy, 101
pressure, 98

Generalized coordinates, 293
force, 296
momentum, 352
spring constant, 321

‘Gimbals, 240

Golden Gate Bridge, 152
Governor, 257, 261
Gravitational constant, 86

potential, 72
Gravitation, law of, 86
Geravity, acceleration of, 3

variation of, 3
Gyroscope, 238

compass, 245

moment of momentum, 238

precession, 240, 243
Gyroscopic compass, 245

moments, 239

Hamilton’s equations, 352
principle, 347
Hamiltonian function, 352
Helicopter blade, 43, 46
Helmbholtz resonator, 127
Hodograph, 26
Holonomic system, 294
Hooke’s law, 71

Impact, 88
central, 92
elastic, 91
energy loss, 91
formulas, 92
plastic, 91
spheres, 234

Impedance, 161

Impeller, pump, 46
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Impulse, 53

specific, 105
Impulse-momentum, 54
Impulse-moment of momentum, 138
— rigid bodies, 203
— rotating bodies, 213
Inductive reactance, 161
Inertia array, 194

force, 253

moment of, 188

principal axes, 196

product of, 188

tensor, 194, 195

torque, 253
Instantaneous center, 181
Inverse square force, 84, 87, 88
Inverted pendulum, 126
Isolation, vibration, 145

Jerk, 34
Jet propulsion, 103, 287

Kater’s reversible pendulum, 233
Kaufmann, W., 107

Kepler, J., 84

Kepler’s laws, 84

Kilogram, prototype, 3
Kinematics of a point, 26

—- absolute motion, 38

-— acceleration, 27

— angular velocity, 34

— Coriolis acceleration, 40

— cylindrical coordinates, 28
— displacement, 26

— hodograph, 26

— moving coordinate system, 38
— rectangular coordinates, 28
~— relative motion, 39

— spherical coordinates, 33

— velocity, 26

Kinematics of a rigid body, 178
— acceleration, 179

— angular velocity, 34

— Chasle’s theorem, 179

— connecting rod, 52, 184

— displacement, 179

— Euler’s angles, 237

— four-bar linkage, 181

— instantaneous center, 181

INDEX

Kinematics of a rigid body (Cont.)
— velocity, 179

— wheel within wheel, 185
Kinetic energy, 58

— of gas, 101

— mass-center, 167

~— quadratic form, 318

— rigid body, 204

-— rotation, 213

— system of particles, 166
Kinetic potential, 298

Lagrange’s equations, 295, 304

Lagrangian function, 298

Lamé, M., 293

Lanchester’s square law, 73

Laplace, S., 75

Linkage, four-bar, 181

Logarithmic decrement, 132, 133,
142, 144

Mach, E., 355
Magnetic field, force, 108
Magnification factor, 138
Mass center, 165
Mass, definition, 2
of electron, 107
rest, 107
variable, 107, 113
variation of, 3
systems of variable, 103
Mass-energy equivalence, 113
Mechanical-electrical analogs, 160
Meter, standard, 4
Missile deceleration, 73
track, 46
Models, theory of, 17
Mode, natural, 313
normal, 314
principal, 313
Mole, 101
Moment, gyroscope, 239
Moment of momentum, 171
— gyroscope, 238
— rigid body, 186
Moments and products of inertia,
188
— calculation of, 189
— direction cosines, relations, 197
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Moments and products of inertia
{Cont.)
—— inertia array, 194
- —inertia tensor, 195
— principal axes, 196
— radius of gyration, 190
— rotation of axes, 192
— translation of coordinates, 191
—- transformation of coordinates,
191, 192
Momentum, 53
angular, 171
conservation of, 55
flow, 282
generalized, 352
mass-center, 166
moment of, 171
Momentum equation, fluid, 279
Moon, gravity, 86, 87
rocket, 87
Motion, absolute, 38
Motion in resisting medium, 75
of mass center, 165
relative, 39
rigid body, 178, 202

Natural modes, 314

Newton, 1., 164, 262

Newton’s laws, 2

Non-holonomic system, 294

Normal acceleration, 31
coordinates, 314, 318
modes, 314

Ocean waves, velocity, 23
Orbit, central force, 87
inverse square force, 87, 88, 96
satellite, 87
Orthogonal modes, 326
Orthogonality relation, 327
Oscillation, electric circuit, 159
flapping, 43
torsional, 214
Oscilloscope, cathode ray, 111
Overdamped vibrations, 131

Parallel axis theorem, 192
Particle dynamics, 48

— conservation of energy, 65

— conservation of momentum, 55

389

Particle dynamics (Cont.)
— conservative system, 65
— equivalence of mass and energy,
113
— impulse and momentum, 53
— integration of equation of
motions, 49
— kinetic energy, 58
— potential energy, 64
— power, 59
— work and energy, 58
Particle dynamics, applications, 75
— automobile impact, 70
—- cathode ray oscilloscope, 111
— cyclotron, 116
— drag force on ship, 25
— drag, viscous, 75
— drag, velocity squared, 77
— electron acceleration, 109
— electron dynamics, 107
— escape velocity of projectile, 62
— impact, 88
— measurement of variation of
mass, 109
— motion in a resisting medium, 75
— motion of a rocket, 105, 288
— pile driver, 92
—- planetary motion, 84
— projectile motion, 78
— stable orbit of satellite, 87
-~ stress propagation in bar, 71, 262
— vibrating systems, 308, 319
Particle scattering, 95
Particles, systems of, 164
Pendulum, ballistic, 220
compound, 218, 233
coupled, 316
double, 306
inverted, 126
Kater's, 223
simple, 124
torsion, 214, 223
vibration, 124
Penetration of projectile, 50
Percussion, center of, 219
Period of vibration, 124
Phase angle, 129, 140
Physical equations, 11
Pile-driver, 92
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Pipeflow, equation of, 23
Piston vibrations, 126
m-theorem, 14
Plane motion, rigid body, 227
Planetary motion, 84
Plastic impact, 91
Poncelet, J. V., 50
Potential, 63
electric, 110
electric charge, 70
Potential energy, 64
— datum, 64
~— quadratic form, 318
— function, 320
Potential, gravitational, 72
kinetic, 298
sphere, 72
spherical shell, 72
Potential function, 68
Pound-force, 4
Pound-mass, 4
Power, 59
Precession, 240, 243
fast, 243
slow, 243
Pressure, barometric, 103
gas, 98
Primary quantities, 6
Principal axes, 196
modes, 313, 325

Principle of conservation of energy,

65
— of momentum, 55
— of least action, 353
Product of inertia, 188
Projectile, gravitational force, 62
Projectile motion, 50, 78
penetration, 50
trajectory, 78
Propulsion efficiency, 106
Prototype kilogram, 4
Pump, centrifugal, 46
impeller, 46

Radius of gyration, 190
Raindrop, equation of, 106
Ramjet, 106, 290

Rebound velocity, 91
Rectangular coordinates, 28

INDEX

Relative motion, 38

— absolute acceleration, 39

— absolute displacement, 38

— absolute velocity, 39

— Coriolis acceleration, 40

— moving coordinate system, 38

‘— relative acceleration, 40

— relative displacement, 39

— relative velocity, 39

Resonance, 139

Resonant amplitude, 140, 144
frequency, 139

Reynolds number, 16, 22

Rigid body dynamics, 228

~— D’Alembert’s principle, 253

— equations of motion, 202

— Euler’s equations of motion, 203

— gyroscope, 238

— impulse-momentum, general, 203

— kinematics, 179

— kinetic energy, general, 204

— moment of inertia, 188

— moment of momentum, 186

— plane motion, 227

— products of inertia, 188

— rotation about fixed axis, 212

- rotation about fixed point, 235

—— translation, 207

— work-energy, general, 205

Rocket motion equation, 105, 288
orbit, 87
propulsion efficiency, 106
specific impulse, 105

Rolling disk, 248

— stability, 250

Rotation, about fixed axis, 212
about fixed point, 235
instantaneous center, 181
of axes, 192

Rotating body, impulse-momentum,

213

work-energy, 213

Rotor, unbalanced, 215

Rutherford scattering formula, 98

Satellite orbit, 87
Scattering angle, 97
Second, +



.Secondary quantities, 6
Servo-mechanism, 259
Simple harmonic motion, 123
Slug, definition, 4
Snell’s law, 346
Specific impulse, 105
. Spherical coordinates, 33
pendulum, 302
Spinning top, 238
Springs in parallel, 62
in series, 61 ‘
Stability of rolling disk, 250
Static balancing, 216
coupling, 309, 324
deflection, 60, 124
Stationary value, 339
Steady state vibrations, 137
Step function, 143
Stream-line, 275
Stream-tube, 276
Stress propagation, 71, 262
Systems of particles, 164
— angular momentum, 171
— equation of motion, 165
— impulse-momentum, 166
— kinetic energy, 166
— momentum, 165
— moment of momentum, 171
— motion of mass center, 165
work-energy equation of mass
center, 166

Tait, P. G,, 26, 178
Temperature-kinetic energy, 101
Tensor of inertia, 195

Tensor transformation, 195
Terminal velocity, 77
Thompson, W., 26, 178
Thomson, J. J., 107

Top, spinning, 238

Torsion pendulum, 214, 223
T'rajectory of projectile, 78
Transient vibrations, 137
Transmissibility, 148
Transport of momentum, 282
Turbine, 291
Two-degree-of-freedom systems,

308
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Underdamped vibrations, 132
Units, absolute system, 6
definition, 5
derived, 6
fundamental, 7
gravitational system, 6
Unit vectors, 29
— derivation of, 29
U-tube, oscillations, 125

Variable mass systems, 103
Variations, calculus of, 337
Vector product, triple, 199
Velocity, 26
absolute, 39
angular, 34
cylindrical coordinates, 28
definition, 26
elastic wave, 264
hodograph, 26
normal component, 30, 33
of light, 107
of ocean waves, 23
of precession, 240, 242
of propagation, 71
rebound, 91
relative, 39
tangential component, 30, 33
terminal, 77
Vibrating systems, 118
Vibrations, 118
— amplitude, 129, 138
— compound pendulum, 218
-~ conservative system, 319
~— critical damping, 133
~— cycle of vibration, 123
— damping coefficient, 120
factor, 122
force, 119, 120
— dashpot, 121
— differential equation, 122
— dynamic coupling, 324
— earthquake, 331, 337
— electric circuit, 159
— equivalent viscous damping, 121
— exciting force, 119
— forced vibrations, 135, 153
— free damped vibrations, 130, 133
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Vibrations (Cont.)
— free undamped vibrations, 122,

133

— frequency of vibrations, 124, 125

— Helmbholtz resonator, 127

—— isolation of vibrations, 145

— linearized restoring force, 120
~ non-periodic exciting force, 153
— period of vibration, 124

— phase angle, 140

— restoring force, 119

— static deflection, 60, 125

— transmissibility, 148

— vibration measuring instrument,

149, 152
— viscous damping, 120
Vibrations, forced, 135
~— amplitude, 138, 140
-~ complete solution, 137
— differential equation, 122
— displacement, damped, 137
~— energy input per cycle, 140
~— loss per cycle, 140
— exciting force, 121
— frequency, 124
— integral form, 155
~— magnification factor, 138
— non-periodic exciting force, 153
— phase angle, 140
— resonance, 139
~— resonant amplitude, 157
frequency, 139
~— sinusoidal exciting force, 133
~— steady state term, 137
— step function, 143
— transient term, 137
— transmissibility, 148
Vibrations, free damped, 130
— complete solution, 131
— critical damping, 133
— damping coefficient, 120
factor, 122
torce, 119, 120

Vibrations, free damped (Cont.)
— dashpot, 120

— differential equation, 122

— drop hammer, 134

— energy loss per cycle, 133

—- equation of displacement, 131

-~ — logarithmic decrement, 130

— overdamped oscillator, 131
— viscous damping, 120
Vibrations, free undamped, 122
—- amplitude, 123
—-cycle of vibration, 123
— differential equation, 122
— frequency of vibration, 124
— pendulum ballistic, 220

compound, 218

inverted, 126

simple, 124
— period of vibration, 124

by energy method, 124
— static deflection, 60, 125
— U-tube, 125
Viscous damping, 120

Walton, E. T, 115
Wave equation, 265
propagation, 265

reflection, 266
velocity, 26+
elastic, 71, 262
ocean, 23
sound, 265
torsional, 350
traveling, 264
Weber’s number, 24
Weight, 3
Wilson, E. B., 12
Work, definition, 58
Work-energy equation, 58, 168
— of rigid body, 205

Yard, 4





