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JAMES LATHROP MERIAM
1917-2000

Dr. James Lathrop Meriam, internationally known author of engi-
neering mechanics textbooks and distinguished professor of engineering,
died at his Santa Barbara home on July 18, 2000. Because of his nu-
merous and significant contributions to the engineering profession, Dr.
Meriam is regarded as one of the premier engineering educators of the
twentieth century. Dr. Meriam (known as Lath to his friends) received
three degrees from Yale University, ending with the Ph.D. in 1942. He
served in the U.S. Coast Guard during World War II. His early industrial
experience came at Pratt and Whitney Aircraft and the General Electric
Company.

Dr. Meriam was a member of the faculty of the University of Cali-
fornia—Berkeley for twenty-one years. During this period he served as
Professor of Engineering Mechanics, Assistant Dean of Graduate Stud-
ies, and Chairman of the Division of Mechanics and Design. From 1963
to 1972, he was Dean of Engineering at Duke University. In 1972 he
returned to full-time teaching at California Polytechnic State Univer-
sity—San Luis Obispo, and retired in 1980. Subsequently, he was vis-
iting professor at the University of California—Santa Barbara and
retired for a second time in 1990.

Recognition of his superb teaching abilities followed him wherever
he went. At Berkeley in 1963, he was the first recipient of the Outstand-
ing Faculty Award of Tau Beta Pi. In 1978 he received the Distinguished
Educator Award from the Mechanics Division of the American Society
for Engineering Education (ASEE). In 1992 he received the Benjamin
Garver Lamme Award from ASEE. He was a fellow member of both
ASEE and the American Society of Mechanical Engineers (ASME).

Dr. Meriam began his Engineering Mechanics textbook series in
1950. The Statics and Dynamics texts reshaped undergraduate mechan-
ics and became the definitive textbooks in the field for the next five
decades. In addition to the U.S. version, the books have appeared in SI
versions and have been translated into many foreign languages. His
books have been characterized by clear and rigorous presentation of the
theory, instructive sample problems, and numerous and realistic home-
work exercises. From the outset, a high standard of illustration has dis-
tinguished the series.

In the early 1980s, Dr. Meriam designed and hand-built, over a pe-
riod of more than three years, a 23-foot wooden sailboat named Mele
Kai, which is Hawaiian for Song of the Sea. Over the next several years,
he and his fortunate sailing companions spent many happy hours sailing
off the coast of Santa Barbara. Dr. Meriam also designed and built four
homes, including a vacation home on the island of Kauai.

In addition to his many professional accomplishments, Lath Meriam
will be long remembered for his open friendliness, gentlemanly de-
meanor, mature judgment and leadership, generosity, and absolute com-
mitment to the highest educational standards. '
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PREFACE

Engineering mechanics is both a foundation and a framework for most of the
branches of engineering. Many of the topics in such areas as civil, mechanical,
aerospace, and agricultural engineering, and of course engineering mechanics itself,
are based upon the subjects of statics and dynamics. Even in a discipline such as
electrical engineering, practitioners, in the course of considering the electrical com-
ponents of a robotic device or a manufacturing process, may find themselves first
having to deal with the mechanics involved.

Thus, the engineering mechanics sequence is critical to the engineering curric-
ulum. Not only is this sequence needed in itself, but courses in engineering me-
chanics also serve to solidify the student’s understanding of other important
subjects, including applied mathematics, physics, and graphics. In addition, these
courses serve as excellent settings in which to strengthen problem-solving abilities.

PHILOSOPHY

The primary purpose of the study of engineering mechanics is to develop the
capacity to predict the effects of force and motion while carrying out the creative
design functions of engineering. This capacity requires more than a mere knowledge
of the physical and mathematical principles of mechanics; also required is the abil-
ity to visualize physical configurations in terms of real materials, actual constraints,
and the practical limitations which govern the behavior of machines and structures.
One of the primary objectives in a mechanics course is to help the student develop
this ability to visualize, which is so vital to problem formulation. Indeed, the con-
struction of a meaningful mathematical model is often a more important experience
than its solution. Maximum progress is made when the principles and their limi-
tations are learned together within the context of engineering application.

There is a frequent tendency in the presentation of mechanics to use problems
mainly as a vehicle to illustrate theory rather than to develop theory for the purpose
of solving problems. When the first view is allowed to predominate, problems tend
to become overly idealized and unrelated to engineering with the result that the
exercise becomes dull, academic, and uninteresting. This approach deprives the
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student of valuable experience in formulating problems and thus of discovering the
need for and meaning of theory. The second view provides by far the stronger
motive for learning theory and leads to a better balance between theory and appli-
cation. The crucial role played by interest and purpose in providing the strongest
possible motive for learning cannot be overemphasized.

Furthermore, as mechanics educators, we should stress the understanding that,
at best, theory can only approximate the real world of mechanics rather than the
view that the real world approximates the theory. This difference in philosophy is
indeed basic and distinguishes the engineering of mechanics from the science of
mechanics.

Over the past several decades, several unfortunate tendencies have occurred in
engineering education. First, emphasis on the geometric and physical meanings of
prerequisite mathematics appears to have diminished. Second, there has been a
significant reduction and even elimination of instruction in graphics, which in the
past enhanced the visualization and representation of mechanics problems. Third,
in advancing the mathematical level of our treatment of mechanics, there has been
a tendency to allow the notational manipulation of vector operations to mask or
replace geometric visualization. Mechanics is inherently a subject which depends
on geometric and physical perception, and we should increase our efforts to develop
this ability.

A special note on the use of computers is in order. The experience of formu-
lating problems, where reason and judgment are developed, is vastly more impor-
tant for the student than is the manipulative exercise in carrying out the solution.
For this reason, computer usage must be carefully controlled. At present, con-
structing free-body diagrams and formulating governing equations are best done
with pencil and paper. On the other hand, there are instances in which the solution
to the governing equations can best be carried out and displayed using the com-
puter. Computer-oriented problems should be genuine in the sense that there is a
condition of design or criticality to be found, rather than ““makework’ problems in
which some parameter is varied for no apparent reason other than to force artificial
use of the computer. These thoughts have been kept in mind during the design of
the computer-oriented problems in the Fifth Edition. To conserve adequate time
for problem formulation, it is suggested that the student be assigned only a limited
number of the computer-oriented problems.

As with previous editions, this Fifth Edition of Engineering Mechanics is writ-
ten with the foregoing philosophy in mind. It is intended primarily for the first
engineering course in mechanics, generally taught in the second year of study. En-
gineering Mechanics is written in a style which is both concise and friendly. The
major emphasis is on basic principles and methods rather than on a multitude of
special cases. Strong effort has been made to show both the cohesiveness of the
relatively few fundamental ideas and the great variety of problems which these few
ideas will solve.

PEDAGOGICAL FEATURES

The basic structure of this textbook consists of an article which rigorously
treats the particular subject matter at hand, followed by one or more Sample Prob-
lems, followed by a group of Problems. There is a Chapter Review at the end of
each chapter which summarizes the main points in that chapter, followed by a
Review Problem set.
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Problems. The 80 Sample Problems appear on specially colored pages by them-
selves. The solutions to typical statics problems are presented in detail. In addition,
explanatory and cautionary notes (Helpful Hints) in blue type are number-keyed
to the main presentation.

There are 963 homework exercises, of which approximately 50 percent are new
to the Fifth Edition. The problem sets are divided into Introductory Problems and
Representative Problems. The first section consists of simple, uncomplicated prob-
lems designed to help students gain confidence with the new topic, while most of
the problems in the second section are of average difficulty and length. The prob-
lems are generally arranged in order of increasing difficulty. More difficult exercises
appear near the end of the Representative Problems and are marked with the symbol
». Computer-Oriented Problems, marked with an asterisk, appear in a special sec-
tion at the conclusion of the Review Problems at the end of each chapter. The
answers to all odd-numbered problems and to all difficult problems have been
provided.

In recognition of the need for emphasis on SI units, there are approximately
two problems in SI units for every one in U.S. customary units. This apportionment
between the two sets of units permits anywhere from a 50-50 emphasis to a 100-
percent SI treatment.

A notable feature of the Fifth Edition, as with all previous editions, is the
wealth of interesting and important problems which apply to engineering design.
Whether directly identified as such or not, virtually all of the problems deal with
principles and procedures inherent in the design and analysis of engineering struc-
tures and mechanical systems.

lustrations. In order to bring the greatest possible degree of realism and clarity
to the illustrations, this textbook series continues to be produced in full color. It is
important to note that color is used consistently for the identification of certain
quantities:

* red for forces and moments,
» green for velocity and acceleration arrows,

* orange dashes for selected trajectories of moving points.

Subdued colors are used for those parts of an illustration which are not central
to the problem at hand. Whenever possible, mechanisms or objects which commonly
have a certain color will be portrayed in that color. All of the fundamental elements
of technical illustration which have been an essential part of this Engineering Me-
chanics series of textbooks have been retained. The author wishes to restate the
conviction that a high standard of illustration is critical to any written work in the
field of mechanics.

Features New to this Edition. While retaining the hallmark features of all previous
editions, we have incorporated these improvements:

* The theory portions were rewritten for clarity and readability, with a higher
level of friendliness and a more active voice.

* Sections have been shortened and more subheads added to make information
easier to find.
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« Key Concepts areas within the theory presentation have been specially
highlighted with blue screens.

» The Chapter Reviews have been revised and highlighted, and feature
itemized summaries.

« Approximately 50 percent of the homework problems are new to this Fifth
Edition, and include new problems in the area of biomechanics.

« New Sample Problems have been added.

+ All Sample Problems are printed on specially colored pages for quick
identification.

» The text has been printed in a new, larger format for a more open look.

ORGANIZATION

In Chapter 1, the fundamental concepts necessary for the study of mechanics
are established.

In Chapter 2, the properties of forces, moments, couples, and resultants are
developed so that the student may proceed directly to the equilibrium of noncon-
current force systems in Chapter 3 without unnecessarily belaboring the relatively
trivial problem of the equilibrium of concurrent forces acting on a particle.

In both Chapters 2 and 3, analysis of two-dimensional problems is presented
in Section A before three-dimensional problems are treated in Section B. With this
arrangement, the instructor may cover all of Chapter 2 before beginning Chapter
3 on equilibrium, or the instructor may cover the two chapters in the order 24, 3A,
2B, 3B. The latter order treats force systems and equilibrium in two dimensions
and then treats these topics in three dimensions.

Application of equilibrium principles to simple trusses and to frames and ma-
chines is presented in Chapter 4 with primary attention given to two-dimensional
systems. A sufficient number of three-dimensional examples are included, however,
to enable students to exercise more general vector tools of analysis.

The concepts and categories of distributed forces are introduced at the begin-
ning of Chapter 5, with the balance of the chapter divided into two main sections.
Section A treats centroids and mass centers; detailed examples are presented to
help students master early applications of calculus to physical and geometrical prob-
lems. Section B includes the special topics of beams, flexible cables, and fluid forces,
which may be omitted without loss of continuity of basic concepts.

Chapter 6 on friction is divided into Section A on the phenomenon of dry fric-
tion and Section B on selected machine applications. Although Section B may be
omitted if time is limited, this material does provide a valuable experience for the
student in dealing with both concentrated and distributed friction forces.

Chapter 7 presents a consolidated introduction to virtual work with applica-
tions limited to single-degree-of-freedom systems. Special emphasis is placed on the
advantage of the virtual-work and energy method for interconnected systems and
stability determination. Virtual work provides an excellent opportunity to convince
the student of the power of mathematical analysis in mechanics.

Moments and products of inertia of areas are presented in Appendix A. This
topic helps to bridge the subjects of statics and solid mechanics. Appendix C con-
tains a summary review of selected topics of elementary mathematics as well as
several numerical techniques which the student should be prepared to use in com-
puter-solved problems. Useful tables of physical constants, centroids, and moments
of inertia are contained in Appendix D.
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SUPPLEMENTS

The following items have been prepared to complement this textbook:

Instructor’s Manual. Prepared by the authors, fully worked solutions to all prob-
lems in the text are available to faculty by contacting their local Wiley
representative.

Solving Mechanics Problems with. ... A series of booklets introduces the use of
computational software in the solution of mechanics problems. Developed by Brian
Harper at Ohio State University, the booklets are available for Matlab, MathCAD,
and Maple.

Wiley Website (www.wiley.com/college/meriam). Items on this site include:

* Electronic figures for most of the figures from the text are available
electronically for use in creating lectures.

* Electronic transparencies for over 100 solved problems, similar to those in the
text, are available for use in lecture or in self-study by students.

* On-line problem solving, a program called eGrade, provides over 400
problems in mechanics for students to solve, featuring step-by-step
procedures and immediate feedback. These were developed by Joe Torok at
Rochester Institute of Technology.

* Extension sample problems build on sample problems from the text and show
how computational tools can be used to investigate a variety of “what if”’
scenarios. Available to both students and faculty, these were developed by
Brian Harper at Ohio State University.

ACKNOWLEDGMENTS

The contribution of Professor William J. Palm, III, of the University of Rhode
Island merits special acknowledgment for his excellent and careful review of the
entire text. Professor Palm has inspected the structure of every sentence and, where
necessary, has made modifications so that the presentation is clear, direct, concise,
and friendly. He has carefully modified the heading structure in order to make the
text more easily readable, and reorganized the Chapter Review sections so that the
student can efficiently survey what has been presented. Professor Palm has worked
under a number of constraints and has done so in a friendly and timely manner.

Special recognition is again due Dr. A. L. Hale, formerly of Bell Telephone
Laboratories, for his continuing contribution in the form of invaluable suggestions
and accurate checking of the manuscript. Dr. Hale has rendered similar service for
all previous versions of this entire series of mechanics books, dating back to the
1950s. He reviews all aspects of the books, including all old and new text and
figures. Dr. Hale carries out an independent solution to each new homework ex-
ercise and provides the author with suggestions and needed corrections to the so-
lutions which appear in the Instructor’s Manual. Dr. Hale is well known for being
extremely accurate in his work, and his fine knowledge of the English language is
a great asset which aids every user of this textbook.

Professor J. Wallace Grant of VPI&SU has kindly provided several excellent
equilibrium problems in the area of biomechanics. These new problems serve to
strengthen the texthook in this important application field.
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Structures which support large forces must be designed with the principles of mechanics
foremost in mind. In this view of Sydney Harbor, one can see several examples of such
structures.




Chapter

INTRODUCTION

CHAPTER OUTLINE TO STATICS

1/1 Mechanics

1/2 Basic Concepts

1/3 Scalars and Vectors

1/4 Newton's Laws

1/5 Units

1/6 Law of Gravitation

1/7 Accuracy, Limits, and Approximations
1/8 Problem Solving in Statics

Chapter Review

1/1 MECHANICS

Mechanics is the physical science which deals with the effects of
forces on objects. No other subject plays a greater role in engineering
analysis than mechanics. Although the principles of mechanics are few,
they have wide application in engineering. The principles of mechanics
are central to research and development in the fields of vibrations, sta-
bility and strength of structures and machines, robotics, rocket and
spacecraft design, automatic control, engine performance, fluid flow,
electrical machines and apparatus, and molecular, atomic, and sub-
atomic behavior. A thorough understanding of this subject is an essential
prerequisite for work in these and many other fields.

Mechanics is the oldest of the physical sciences. The early hlstory
of this subject is synonymous with the very beginnings of engineering.
The earliest recorded writings in mechanics are those of Archimedes
(287-212 B.C.) on the principle of the lever and the principle of buoy-
ancy. Substantial progress came later with the formulation of the laws
of vector combination of forces by Stevinus (1548-1620), who also for-
mulated most of the principles of statics. The first investigation of a
dynamics problem is credited to Galileo (1564-1642) for his experiments
with falling stones. The accurate formulation of the laws of motion, as

3
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Chapter 1

Introduction to Statics

well as the law of gravitation, was made by Newton (1642-1727), who
also conceived the idea of the infinitesimal in mathematical analysis.
Substantial contributions to the development of mechanics were also
made by da Vinci, Varignon, Euler, D’Alembert, Lagrange, Laplace, and
others.

In this book we will be concerned with both the development of the
principles of mechanics and their application. The principles of mechan-
ics as a science are rigorously expressed by mathematics, and thus math-
ematics plays an important role in the application of these principles to
the solution of practical problems.

The subject of mechanics is logically divided into two parts: stafics,
which concerns the equilibrium of bodies under the action of forces, and
dynamics, which concerns the motion of bodies. Engineering Mechanics
is divided into these two parts, Vol. 1 Statics and Vol. 2 Dynamics.

1/2 BAsic CONCEPTS

The following concepts and definitions are basic to the study of me-
chanics, and they should be understood at the outset.

Space is the geometric region occupied by bodies whose positions
are described by linear and angular measurements relative to a coordi-
nate system. For three-dimensional problems, three independent coor-
dinates are needed. For two-dimensional problems, only two coordinates
are required.

Time is the measure of the succession of events and is a basic quan-
tity in dynamics. Time is not directly involved in the analysis of statics
problems.

Mass is a measure of the inertia of a body, which is its resistance
to a change of velocity. Mass can also be thought of as the quantity of
matter in a body. The mass of a body affects the gravitational attraction
force between it and other bodies. This force appears in many applica-
tions in staties.

Foree is the action of one body on another. A force tends to move
a body in the direction of its action. The action of a force is characterized
by its magnitude, by the direction of its action, and by its point of ap-
plication. Thus force is a vector quantity, and its properties are discussed
in detail in Chapter 2.

A particle is a body of negligible dimensions. In the mathematical
sense, a particle is a body whose dimensions are considered to be near
zero so that we may analyze it as a mass concentrated at a point. We
often choose a particle as a differential element of a body. We may treat
a body as a particle when its dimensions are irrelevant to the description
of its position or the action of forces applied to it.

Rigid body. A body is considered rigid when the change in distance
between any two of its points is negligible for the purpose at hand. For
instance, the calculation of the tension in the cable which supports the
boom of a mobile crane under load is essentially unaffected by the small
internal deformations in the structural members of the hoom. For the
purpose, then, of determining the external forces which act on the boom,
we may treat it as a rigid body. Statics deals primarily with the calcu-
lation of external forces which act on rigid bodies in equilibrium. Deter-
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mination of the internal deformations belongs to the study of the
mechanics of deformable bodies, which normally follows statics in the
curriculum.

1/3 ScALARS AND VECTORS

We use two kinds of quantities in mechanics—scalars and vectors.
Scalar quantities are those with which only a magnitude is associated.
Examples of scalar quantities are time, volume, density, speed, energy,
and mass. Vector quantities, on the other hand, possess direction as well
as magnitude, and must obey the parallelogram law of addition as de-
scribed later in this article. Examples of vector quantities are displace-
ment, velocity, acceleration, force, moment, and momentum. Speed is a
scalar. It is the magnitude of velocity, which is a vector. Thus velocity
is specified by a direction as well as a speed.

Vectors representing physical quantities can be classified as free,
sliding, or fixed.

A free vector is one whose action is not confined to or associated
with a unique line in space. For example, if a body moves without ro-
tation, then the movement or displacement of any point in the body may
be taken as a vector. This vector describes equally well the direction and
magnitude of the displacement of every point in the body. Thus, we may
represent the displacement of such a body by a free vector.

A sliding vector has a unique line of action in space but not a
unique point of application. For example, when an external force acts
on a rigid body, the force can be applied at any point along its line of
action without changing its effect on the body as a whole,* and thus it
is a sliding vector.

A fixed vector is one for which a unique point of application is
specified. The action of a force on a deformable or nonrigid body must
be specified by a fixed vector at the point of application of the force. In
this instance the forces and deformations within the body depend on the
point of application of the force, as well as on its magnitude and line of
action.

Conventions for Equations and Diagrams

A vector quantity V is represented by a line segment, Fig. 1/1, hav-
ing the direction of the vector and having an arrowhead to indicate the
sense. The length of the directed line segment represents to some con-
venient scale the magnitude |V| of the vector and is printed with light-
face italic type V. For example, we may choose a scale such that an arrow
one inch long represents a force of twenty pounds.

In scalar equations, and frequently on diagrams where only the
magnitude of a vector is labeled, the symbol will appear in lightface italic
type. Boldface type is used for vector quantities whenever the directional
aspect of the vector is a part of its mathematical representation. When
writing vector equations, always be certain to preserve the mathematical
distinction between vectors and scalars. In handwritten work, use a dis-

*This is the principle of transmissibility, which is discussed in Art. 2/2.

Figure 1/1
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Figure 1/3

Figure 1/2

tinguishing mark for each vector quantity, such as an underline, V, or
an arrow over the symbol, V, to take the place of boldface type in print.

Working with Vectors

The direction of the vector V may be measured by an angle 6 from
some known reference direction as shown in Fig. 1/1. The negative of
V is a vector —V having the same magnitude as V but directed in the
sense opposite to V, as shown in Fig. 1/1.

Vectors must obey the parallelogram law of combination. This law
states that two vectors V; and V,, treated as free vectors, Fig. 1/2a, may
be replaced by their equivalent vector V, which is the diagonal of the
parallelogram formed by V; and V, as its two sides, as shown in Fig.
1/2b. This combination is called the vector sum, and is represented by
the vector equation

V=V1+V2

where the plus sign, when used with the vector quantities (in boldface
type), means vector and not scalar addition. The scalar sum of the mag-
nitudes of the two vectors is written in the usual way as V; + V,. The
geometry of the parallelogram shows that V # V; + Vj,.

The two vectors V; and V,, again treated as free vectors, may also
be added head-to-tail by the triangle law, as shown in Fig. 1/2¢, to obtain
the identical vector sum V. We see from the diagram that the order of
addition of the vectors does not affect their sum, so that V; + V, =
Vy, + V.

The difference V; — V, between the two vectors is easily obtained
by adding —V, to V; as shown in Fig. 1/3, where either the triangle or
parallelogram procedure may be used. The difference V' between the
two vectors is expressed by the vector equation

V’=VL_V2

where the minus sign denotes vector subtraction.

Any two or more vectors whose sum equals a certain vector V are
said to be the components of that vector. Thus, the vectors V; and V,
in Fig. 1/4a are the components of V in the directions 1 and 2, respec-
tively. It is usually most convenient to deal with vector components
which are mutually perpendicular; these are called rectangular compo-
nents. The vectors V, and V,, in Fig. 1/4b are the x- and y-components,
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Figure 1/4

respectively, of V. Likewise, in Fig. 1/4¢, V,. and V,, are the x’- and y'-
components of V. When expressed in rectangular components, the di-
rection of the vector with respect to, say, the x-axis is clearly specified
by the angle 6, where

V.
6 =tan '~
an vV

x

A vector V may be expressed mathematically by multiplying its mag-
nitude V by a vector n whose magnitude is one and whose direction
coincides with that of V. The vector n is called a unit vector. Thus,

V=VVn

In this way both the magnitude and direction of the vector are conven-
iently contained in one mathematical expression. In many problems,
particularly three-dimensional ones, it is convenient to express the rec-
tangular components of V, Fig. 1/5, in terms of unit vectors i, j, and k,
which are vectors in the x-, y-, and z-directions, respectively, with unit
magnitudes. Because the vector V is the vector sum of the components
in the x-, y-, and z-directions, we can express V as follows:

(V= Vi +V,j + VK]

We now make use of the direction cosines [, m, and n of V, which are
defined by

[ = cos 6, m = cos 6, n = cos 0,

Thus, we may write the magnitudes of the components of V as

Vil e ey
( g )

where, from the Pythagorean theorem,

(Vz = V24 v 2« szj

Note that this relation implies that {* + m? + n? = 1.

Figure 1/5
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1/4 NEwTON's LAws

Sir Isaac Newton was the first to state correctly the basic laws gov-
erning the motion of a particle and to demonstrate their validity.*
Slightly reworded with modern terminology, these laws are:

Law I. A particle remains at rest or continues to move with wni-
form velocity (in a straight line with a constant speed) if there is no
unbalanced force acting on it.

Law ll. The acceleration of a particle is proportional to the vector
sum of forces acting on it, and is in the direction of this vector sum.

Law Ill. The forces of action and reaction between interacting bod-
ies are equal in magnitude, opposite in direction, and collinear (they lie
on the same line).

The correctness of these laws has been verified by innumerable ac-
curate physical measurements. Newton’s second law forms the basis for
most of the analysis in dynamics. As applied to a particle of mass m, it
may be stated as

where F is the vector sum of forces acting on the particle and a is the
resulting acceleration. This equation is a vector equation because the
direction of F must agree with the direction of a, and the magnitudes
of F and ma must be equal.

Newton’s first law contains the principle of the equilibrium of forces,
which is the main topic of concern in statics. This law is actually a
consequence of the second law, since there is no acceleration when the
force is zero, and the particle either is at rest or is moving with a uniform
velocity. The first law adds nothing new to the description of motion but
is included here because it was part of Newton’s classical statements.

The third law is basic to our understanding of force. It states that
forces always occur in pairs of equal and opposite forces. Thus, the down-
ward force exerted on the desk by the pencil is accompanied by an up-
ward force of equal magnitude exerted on the pencil by the desk. This
principle holds for all forces, variable or constant, regardless of their
source, and holds at every instant of time during which the forces are
applied. Lack of careful attention to this basic law is the cause of fre-
quent error by the beginner.

In the analysis of bodies under the action of forces, it is absolutely
necessary to be clear about which force of each action-reaction pair is
being considered. It is necessary first of all to isolate the body under
consideration and then to consider only the one force of the pair which
acts on the body in question.

*Newton's original formulations may be found in the translation of his Principia (1687)
revised by F. Cajori, University of California Press, 1934.
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1/5 Units

In mechanics we use four fundamental quantities called dimensions.
These are length, mass, force, and time. The units used to measure these
quantities cannot all be chosen independently because they must be con-
sistent with Newton's second law, Eq. 1/1. Although there are a number
of different systems of units, only the two systems most commonly used
in science and technology will be used in this text. The four fundamental
dimensions and their units and symbols in the two systems are sum-
marized in the following table.

DIMENSIONAL SI UNITS U.S. CUSTOMARY UNITS
QUANTITY SYMBOL UNIT SYMBOL UNIT SYMBOL
Mass M Bas kilogram kg slug —
Lc_ength L units meter m Base ot ft
Time T second s : second sec
units
Force F newton N pound b
Sl Units

The International System of Units, abbreviated SI (from the French,
Systeme International d’Unités), is accepted in the United States and
throughout the world, and is a modern version of the metric system. By
international agreement, SI units will in time replace other systems. As
shown in the table, in SI, the units kilogram (kg) for mass, meter (m)
for length, and second (s) for time are selected as the base units, and
the newton (N) for force is derived from the preceding three by Eq. 1/1.
Thus, force (N) = mass (kg) X acceleration (m/sg) or

N = kg-m/s?

Thus, 1 newton is the force required to give a mass of 1 kg an acceler-
ation of 1 m/s?.

Consider a body of mass m which is allowed to fall freely near the
surface of the earth. With only the force of gravitation acting on the
body, it falls with an acceleration g toward the center of the earth. This
gravitational force is the weight W of the body, and is found from Eq.
1l

W(N) = m(kg) X g(m/s?

U.S. Customary Units

The U.S. customary, or British system of units, also called the foot-
pound-second (FPS) system, has been the common system in business
and industry in English-speaking countries. Although this system will
in time be replaced by SI units, for many more years engineers must be
able to work with both SI units and FPS units, and both systems are
used freely in Engineering Mechanics.

As shown in the table, in the U.S. or FPS system, the units of feet
(ft) for length, seconds (sec) for time, and pounds (Ib) for force are se-
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lected as base units, and the slug for mass is derived from Eq. 1/1. Thus,
force (Ib) = mass (slugs) X acceleration (ft/sec?), or

_ 1b-sec?
Cft

slug

Therefore, 1 slug is the mass which is given an acceleration of 1 ft/sec?
when acted on by a force of 1 Ib. If W is the gravitational force or weight
and g is the acceleration due to gravity, Eq. 1/1 gives

m (slugs) = b
g (ft/sec?)

Note that seconds is abbreviated as s in SI units, and as sec in FPS
units.

In U.S. units the pound is also used on occasion as a unit of mass,
especially to specify thermal properties of liquids and gases. When dis-
tinction between the two units is necessary, the force unit is frequently
written as lbf and the mass unit as Ibm. In this book we use almost
exclusively the force unit, which is written simply as Ib. Other common
units of force in the U.S. system are the kilopound (kip), which equals
1000 1b, and the fon, which equals 2000 Ib.

The International System of Units (SI) is termed an absolute system
because the measurement of the base quantity mass is independent of
its environment. On the other hand, the U.S. system (FPS) is termed
a gravitational system because its base quantity force is defined as
the gravitational attraction (weight) acting on a standard mass under
specified conditions (sea level and 45° latitude). A standard pound is
also the force required to give a one-pound mass an acceleration of
32.1740 ft/sec?.

In ST units the kilogram is used exclusively as a unit of mass—never
force. In the MKS (meter, kilogram, second) gravitational system, which
has been used for many years in non-English-speaking countries, the
kilogram, like the pound, has been used both as a unit of force and as
a unit of mass.

Primary Standards

Primary standards for the measurements of mass, length, and time
have been established by international agreement and are as follows:

Mass. The kilogram is defined as the mass of a specific platinum—
iridium cylinder which is kept at the International Bureau of Weights
and Measures near Paris, France. An accurate copy of this cylinder is
kept in the United States at the National Institute of Standards and
Technology (NIST), formerly the National Bureau of Standards, and
serves as the standard of mass for the United States.

Length. The meter, originally defined as one ten-millionth of the
distance from the pole to the equator along the meridian through Paris,
was later defined as the length of a specific platinum—iridium bar kept
at the International Bureau of Weights and Measures. The difficulty of
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accessing the bar and reproducing accurate measurements prompted the
adoption of a more accurate and reproducible standard of length for the
meter, which is now defined as 1 650 763.73 wavelengths of a specific
radiation of the krypton-86 atom.

Time. The second was originally defined as the fraction 1/(86 400)
of the mean solar day. However, irregularities in the earth’s rotation led
to difficulties with this definition, and a more accurate and reproducible
standard has been adopted. The second is now defined as the duration
of 9 192 631 770 periods of the radiation of a specific state of the cesium-
133 atom.

For most engineering work, and for our purpose in studying me-
chanics, the accuracy of these standards is considerably beyond our
needs. The standard value for gravitational acceleration g is its value at
sea level and at a 45° latitude. In the two systems these values are

SI units g = 9.806 65 m/s”
U.S. units g = 32.1740 ft/sec?

The approximate values of 9.81 m/s? and 32.2 ft/sec?, respectively, are
sufficiently accurate for the vast majority of engineering calculations.

Unit Conversions

The characteristics of SI units are shown inside the front cover of
this book, along with the numerical conversions between U.S. customary
and SI units. In addition, charts giving the approximate conversions

9.81 N 1 Ibf 32.2 1bf

(143.2 N)

¢ 3 1 lbm
(0.454 kg)

1kg &

MASS  (2.20 Ibm)
1 slug or 32.2 Ibm
_ (14.61 kg)
(0.305 m)

LENGTH

(3.28 ft)

Figure 1/6
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between selected quantities in the two systems appear inside the back
cover for convenient reference. Although these charts are useful for ob-
taining a feel for the relative size of SI and U.S. units, in time engineers
will find it essential to think directly in terms of SI units without con-
verting from U.S. units. In statics we are primarily concerned with the
units of length and force, with mass needed only when we compute grav-
itational force, as explained previously.

Figure 1/6 depicts examples of force, mass, and length in the two
systems of units, to aid in visualizing their relative magnitudes.

1/6 LAw oF GRAVITATION

In statics as well as dynamics we often need to compute the weight
of a body, which is the gravitational force acting on it. This computation
depends on the law of gravitation, which was also formulated by New-
ton. The law of gravitation is expressed by the equation

(1/2)

where F' = the mutual force of attraction between two particles
G = a universal constant known as the constant of gravitation
my, mg = the masses of the two particles
r = the distance between the centers of the particles

The mutual forces F' obey the law of action and reaction, since they are
equal and opposite and are directed along the line joining the centers of
the particles, as shown in Fig. 1/7. By experiment the gravitational con-
stant is found to be G = 6.673(107 ') m?/(kg-s?).

Gravitational Attraction of the Earth

Gravitational forces exist between every pair of bodies. On the sur-
face of the earth the only gravitational force of appreciable magnitude
is the force due to the attraction of the earth. For example, each of two
iron spheres 100 mm in diameter is attracted to the earth with a grav-
itational force of 37.1 N, which is its weight. On the other hand, the
force of mutual attraction between the spheres if they are just touching
is 0.000 000 095 1 N. This force is clearly negligible compared with the
earth’s attraction of 37.1 N. Consequently the gravitational attraction
of the earth is the only gravitational force we need to consider for most
engineering applications on the earth’s surface.

, |
!

Figure 1/7
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The gravitational attraction of the earth on a body (its weight) exists
whether the body is at rest or in motion. Because this attraction is a
force, the weight of a body should be expressed in newtons (N) in SI
units and in pounds (lb) in U.S. customary units. Unfortunately in com-
mon practice the mass unit kilogram (kg) has been frequently used as
a measure of weight. This usage should disappear in time as SI units
become more widely used, because in SI units the kilogram is used ex-
clusively for mass and the newton is used for force, including weight.

For a body of mass m near the surface of the earth, the gravitational
attraction F' on the body is specified by Eq. 1/2. We usually denote the
magnitude of this gravitational force or weight with the symbol W. Be-
cause the body falls with an acceleration g, Eq. 1/1 gives

W = mg (1/3)

The weight W will be in newtons (N) when the mass m is in kilograms
(kg) and the acceleration of gravity g is in meters per second squared
(m/s?). In U.S. customary units, the weight W will be in pounds (Ib)
when m is in slugs and g is in feet per second squared. The standard
values for g of 9.81 m/s? and 32.2 ft/sec? will be sufficiently accurate
for our calculations in statics.

The true weight (gravitational attraction) and the apparent weight
(as measured by a spring scale) are slightly different. The difference,
which is due to the rotation of the earth, is quite small and will be
neglected. This effect will be discussed in Vol. 2 Dynamics.

1/7 AccurAcy, LimiTs, AND APPROXIMATIONS

The number of significant figures in an answer should be no greater
than the number of figures justified by the accuracy of the given data.
For example, suppose the 24-mm side of a square bar was measured to
the nearest millimeter, so we know the side length to two significant
figures. Squaring the side length gives an area of 576 mm?. However,
according to our rule, we should write the area as 580 mm?, using only
two significant figures.

When calculations involve small differences in large quantities,
greater accuracy in the data is required to achieve a given accuracy in
the results. Thus, for example, it is necessary to know the numbers
4.2503 and 4.2391 to an accuracy of five significant figures to express
their difference 0.0112 to three-figure accuracy. It is often difficult in
lengthy computations to know at the outset how many significant figures
are needed in the original data to ensure a certain accuracy in the an-
swer. Accuracy to three significant figures is considered satisfactory for
most engineering calculations.

In this text, answers will generally be shown to three significant
figures unless the answer begins with the digit 1, in which case the
answer will be shown to four significant figures. For purposes of calcu-
lation, consider all data given in this book to be exact.
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Differentials

The order of differential quantities frequently causes misunder-
standing in the derivation of equations. Higher-order differentials may
always be neglected compared with lower-order differentials when the
mathematical limit is approached. For example, the element of volume
AV of a right circular cone of altitude & and base radius r may be taken
to be a circular slice a distance x from the vertex and of thickness Ax.
The expression for the volume of the element is

77’"22 2,1
AV = —5 Ie? Ax + a(Aw) + 5(Ax)3]

Note that, when passing to the limit in going from AV to dV and from
Ax to dx, the terms containing (Ax)? and (Ax)? drop out, leaving merely

r

dV: ?xzdx

which gives an exact expression when integrated.

Small-Angle Approximations

When dealing with small angles, we can usually make use of sim-
plifying approximations. Consider the right triangle of Fig. 1/8 where
the angle 6, expressed in radians, is relatively small. If the hypotenuse
is unity, we see from the geometry of the figure that the arc length
1 X 6 and sin 6 are very nearly the same. Also cos @ is close to unity.
Furthermore, sin ¢ and tan # have almost the same values. Thus, for
small angles we may write

sin = tan 0 = ¢ cos =1

provided that the angles are expressed in radians. These approximations
may be obtained by retaining only the first terms in the series expan-
sions for these three functions. As an example of these approximations,
for an angle of 1°

1° = 0.017 453 rad tan 1° = 0.017 455

0.017 452 cos 17 = 0.999 848

Il

sin 1°

If a more accurate approximation is desired, the first two terms may
be retained, and they are

sinf@=6-6*6 tan6=0+ 6°/3 cosf=1— 62/2

where the angles must be expressed in radians. (To convert degrees to
radians, multiply the angle in degrees by 7/180°.) The error in replacing
the sine by the angle for 1° (0.0175 rad) is only 0.005 percent. For 5°
(0.0873 rad) the error is 0.13 percent, and for 10° (0.1745 rad), the error
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is still only 0.51 percent. As the angle 6 approaches zero, the following
relations are true in the mathematical limit:

sin df = tan df = d0 cosdf =1

where the differential angle d# must be expressed in radians.

1/8 PROBLEM SOLVING IN STATICS

We study statics to obtain a quantitative description of forces which
act on engineering structures in equilibrium. Mathematics establishes
the relations between the various quantities involved and enables us to
predict effects from these relations. We use a dual thought process in
solving statics problems: We think about both the physical situation and
the corresponding mathematical description. In the analysis of every
problem, we make a transition between the physical and the mathe-
matical. One of the most important goals for the student is to develop
the ability to make this transition freely.

Making Appropriate Assumptions

We should recognize that the mathematical formulation of a physi-
cal problem represents an ideal description, or model, which approxi-
mates but never quite matches the actual physical situation. When we
construct an idealized mathematical model for a given engineering prob-
lem, certain approximations will always be involved. Some of these ap-
proximations may be mathematical, whereas others will be physical.

For instance, it is often necessary to neglect small distances, angles,
or forces compared with large distances, angles, or forces. Suppose a
force is distributed over a small area of the body on which it acts. We
may consider it to be a concentrated force if the dimensions of the area
involved are small compared with other pertinent dimensions.

We may neglect the weight of a steel cable if the tension in the cable
is many times greater than its total weight. However, if we must cal-
culate the deflection or sag of a suspended cable under the action of its
weight, we may not ignore the cable weight.

Thus, what we may assume depends on what information is desired
and on the accuracy required. We must be constantly alert to the various
assumptions called for in the formulation of real problems. The ability
to understand and make use of the appropriate assumptions in the for-
mulation and solution of engineering problems is certainly one of the
most important characteristics of a successful engineer. One of the major
aims of this book is to provide many opportunities to develop this ability
through the formulation and analysis of many practical problems in-
volving the principles of statics.

Using Graphics

Graphics is an important analytical tool for three reasons:

1. We use graphics to represent a physical system on paper with a
sketch or diagram. Representing a problem geometrically helps us
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with its physical interpretation, especially when we must visualize
three-dimensional problems.

2. We can often obtain a graphical solution to problems more easily
than with a direct mathematical solution. Graphical solutions are
both a practical way to obtain results, and an aid in our thought
processes. Because graphics represents the physical situation and its
mathematical expression simultaneously, graphics helps us make
the transition between the two.

3. Charts or graphs are valuable aids for representing results in a form
which is easy to understand.

Formulating Problems and Obtaining Solutions

In statics, as in all engineering problems, we need to use a precise
and logical method for formulating problems and obtaining their solu-
tions. We formulate each problem and develop its solution through the
following sequence of steps.

1. Formulate the problem:
(@) State the given data.
(b) State the desired result.
(c) State your assumptions and approximations.

2. Develop the solution:
(@) Draw any diagrams you need to understand the relationships.
(b) State the governing principles to be applied to your solution.
(¢) Make your calculations.

(d) Ensure that your caleulations are consistent with the accuracy
justified by the data.

(e) Be sure that you have used consistent units throughout your
calculations.

(f) Ensure that your answers are reasonable in terms of magni-
tudes, directions, common sense, etc.

(g) Draw conclusions.

Keeping your work neat and orderly will help your thought process and
enable others to understand your work. The discipline of doing orderly
work will help you develop skill in formulation and analysis. Problems
which seem complicated at first often become clear when you approach
them with logic and discipline.

The Free-Body Diagram

The subject of statics is based on surprisingly few fundamental con-
cepts and involves mainly the application of these basic relations to a
variety of situations. In this application the method of analysis is all-
important. In solving a problem, it is essential that the laws which apply
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be carefully fixed in mind and that we apply these principles literally
and exactly. In applying the principles of mechanics to analyze forces
acting on a body, it is essential that we isolate the body in question from
all other bodies so that a complete and accurate account of all forces
acting on this body can be taken. This isolation should exist mentally
and should be represented on paper. The diagram of such an isolated
body with the representation of all external forces acting on it is called
a free-body diagram.

The free-body-diagram method is the key to the understanding of
mechanics. This is so because the isolation of a body is the tool by which
cause and effect are clearly separated, and by which our attention is
clearly focused on the literal application of a principle of mechanics. The
technique of drawing free-body diagrams is cbvered in Chapter 3, where
they are first used.

Numerical Values versus Symbols

In applying the laws of statics, we may use numerical values to rep-
resent quantities, or we may use algebraic symbols, and leave the answer
as a formula. When numerical values are used, the magnitude of each
quantity expressed in its particular units is evident at each stage of the
calculation. This is useful when we need to know the magnitude of each
term.

The symbolic solution, however, has several advantages over the
numerical solution. First, the use of symbols helps to focus our attention
on the connection between the physical situation and its related math-
ematical description. Second, we can use a symbolic solution repeatedly
for obtaining answers to the same type of problem, but having different
units or numerical values. Third, a symbolic solution enables us to make
a dimensional check at every step, which is more difficult to do when
numerical values are used. In any equation representing a physical sit-
uation, the dimensions of every term on both sides of the equation must
be the same. This property is called dimensional homogeneity.

Thus, facility with both numerical and symbolic forms of solution is
essential.

Solution Methods

Solutions to the problems of statics may be obtained in one or more
of the following ways.

1. Obtain mathematical solutions by hand, using either algebraic sym-
bols or numerical values. We can solve most problems this way.

2. Obtain graphical solutions for certain problems.

3. Solve problems by computer. This is useful when a large number of
equations must be solved, when a parameter variation must be stud-
ied, or when an intractable equation must be solved.

Many problems can be solved with two or more of these methods. The
method utilized depends partly on the engineer’s preference and partly
on the type of problem to be solved. The choice of the most expedient
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method of solution is an important aspect of the experience to be gained
from the problem work. There are a number of problems in Vol. 1 Statics
which are designated as Computer-Oriented Problems. These problems
appear at the end of the Review Problem sets and are selected to illus-
trate the type of problem for which solution by computer offers a distinct
advantage.

CHAPTER REVIEW

This chapter has introduced the concepts, definitions, and units used
in statics, and has given an overview of the procedure used to formulate
and solve problems in statics. Now that you have finished this chapter,
you should be able to do the following:

1. Express vectors in terms of unit vectors and perpendicular compo-
nents, and perform vector addition and subtraction.

2. State Newton’s laws of motion.

3. Perform calculations using SI and U.S. units, using appropriate
accuracy.

4. Express the law of gravitation and calculate the weight of an object.

5. Apply simplifications based on differential and small-angle
approximations.

6. Describe the methodology used to formulate and solve statics
problems.



Chapter Review 19

Sample Problem 1/1 m = 1400 kg

Determine the weight in newtons of a car whose mass is 1400 kg. Convert
the mass of the car to slugs and then determine its weight in pounds.

Solution. From relationship 1/3, we have
Helpful Hints

@ W = mg = 1400(9.81) = 13730 N Ans.
(D Our calculator indicates a result of

From the table of conversion factors inside the front cover of the textbook, we
see that 1 slug is equal to 14.594 kg. Thus, the mass of the car in slugs is

5 1slug |
m = 1400 kg[ 12594 kg] = 95.9 slugs Ans.
Finally, its weight in pounds is
W = mg = (95.9)(32.2) = 3090 Ib Ans.

As another route to the last result, we can convert from kg to lbm. Again using
the table inside the front cover, we have

1 lbm

m = 1400 kg[m

] = 3090 lbm

The weight in pounds associated with the mass of 3090 lbm is 3090 1b, as cal-
culated above. We recall that 1 Ibm is the amount of mass which under standard
conditions has a weight of 1 lb of force. We rarely refer to the U.S. mass unit
Ibm in this textbook series, but rather use the slug for mass. The sole use of
slug, rather than the unnecessary use of two units for mass, will prove to be
powerful and simple—especially in dynamics.

13 734 N. Using the rules of signifi-
cant-figure display used in this text-
book, we round the written result to
four significant figures, or 13 730 N.
Had the number begun with any
digit other than 1, we would have
rounded to three significant figures.

() A good practice with unit conversion

is to multiply by a factor such as
1 slug

14.594 kg
because the numerator and the de-
nominator are equivalent. Make sure
that cancellation of the units leaves
the units desired; here the units of
kg cancel, leaving the desired units
of slug.

], which has a value of 1,

() Note that we are using a previously calculated result (95.9 slugs). We must be sure that when a calculated number is
needed in subsequent calculations, it is retained in the calculator to its full accuraecy (95.929834 - - ) until it is needed.
This may require storing it in a register upon its initial calculation and recalling it later. We must not merely punch
95.9 into our calculator and proceed to multiply by 32.2—this practice will result in loss of numerical accuracy. Some
individuals like to place a small indication of the storage register used in the right margin of the work paper, directly

beside the number stored.

Sample Problem 1/2

Use Newton'’s law of universal gravitation to calculate the weight of a 70-kg
person standing on the surface of the earth. Then repeat the calculation by using
W = mg and compare your two results. Use Table D/2 as needed.

Solution. The two results are

Gm,m _ (6.673 - 10 1)(5.976 - 10**)(70) _
R 6371 . 10°F = 688 N Ans.

W = mg = 70(9.81) = 687 N Ans.

W =

The discrepancy is due to the fact that Newton’s universal gravitational law does
not take into account the rotation of the earth. On the other hand, the value
g = 9.81 m/s? used in the second equation does account for the earth’s rotation.
Note that had we used the more accurate value g = 9.80665 m/s? (which likewise
accounts for the earth’s rotation) in the second equation, the discrepancy would
have been larger (686 N would have been the result).

Helpful Hint

(D) The effective distance between the

mass centers of the two bodies in-
volved is the radius of the earth.
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Sample Problem 1/3

For the vectors V; and V, shown in the figure,

(a) determine the magnitude S of their vector sum S8 = V, + V,
(b) determine the angle a between S and the positive x-axis

(c) write S as a vector in terms of the unit vectors i and j and then write a

unit vector n along the vector sum S
(d) determine the vector difference D = V; — V,

Solution (a) We construct to scale the parallelogram shown in Fig. a for adding

V; and V. Using the law of cosines, we have
8% = 3% + 4% - 2(3)(4) cos 105°

S = 5.59 units

(1) (b) Using the law of sines for the lower triangle, we have

sin 105° _ sin(e + 30°)

5.59 4
sin(a + 30°) = 0.692
(a + 30°) = 43.8° a = 13.76°

(c) With knowledge of both S and «, we can write the vector S as

S = S[i cos a + j sin a]
= S[i cos 13.76° + j sin 13.76°] = 5.43i + 1.328j units

S 543+ 1328 ,
(2) Then n=z= =55 = 0.971i + 0.238j
(d) The vector difference D is
D =V; — V; = 4(i cos 45° + j sin 45°) — 3(i cos 30° — j sin 30°)
= 0.230i + 4.33j units

The vector D is shown in Fig. b as D = V, + (=V,).

Ans.

Ans.

Ans.

Ans.

JV
I
\
‘ V] = 4 units
\
|
J 45°
iy i
30°
V, = 3 units
Vi =4 units

Vy = 3 units

(a)

(b)

Helpful Hints

(D You will frequently use the laws of
cosines and sines in mechanics. See
Art. C/6 of Appendix C for a review
of these important geometric
principles.

@ A unit vector may always be formed
by dividing a vector by its magni-
tude. Note that a unit vector is
dimensionless.
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PROBLEMS

11

1/2

1/3

1/4

1/5

1/6

Determine the angle made by the vector V = —10i +
24j with the positive x-axis. Write the unit vector n in
the direction of V.

Ans. #, = 112.6°, n = —0.3851 + 0.923j

Determine the magnitude of the vector sum V = V,
+ Vg and the angle 8, which V makes with the positive
x-axis, Complete both graphical and algebraic
solutions.

g
I

- o |
V2= 14 units | V, =18 units

Problem 1/2

For the given vectors V, and V, of Prob. 1/2, deter-
mine the magnitude of the vector difference V' = V,
— V, and the angle 8, which V' makes with the posi-
tive x-axis. Complete both graphical and algebraic
solutions.

Ans. V' = 21.4 units, 6, = 176.f

A force is specified by the vector F = 80i — 40j + 60k
Ib. Calculate the angles made by F with the x-, y-, and
z-axes.

What is the weight in both newtons and pounds of a
75-kg beam?
Ans. W="T36 N, W = 165.4 Ib

From the gravitational law calculate the weight W
(gravitational force with respect to the earth) of an 80-
kg man in a spacecraft traveling in a circular orbit 250
km above the earth’s surface. Express W in both new-
tons and pounds.

1/7 Determine the weight in newtons of a woman whose

weight in pounds is 130. Also, find her mass in slugs

and in kilograms. Determine your own weight in
newtons.

Ans. W =578 N

m = 4.04 slugs, m = 58.9 kg

1/8 Suppose that two nondimensional quantities are given

as A = 8.69 and B = 1.427. Using the rules for signif-
icant figures as stated in this chapter, determine the
four quantities (A + B), (A — B), (AB), and (A/B).

1/9 Compute the magnitude F of the force which the earth

exerts on the moon. Perform the calculation first in
newtons and then convert your result to pounds. Refer
to Table D/2 for necessary physical quantities.

Ans. F = 1.984(10%°) N, F = 4.46(10') 1b

Problem 1/9

1/10 What is the percent error in replacing the sine of 20°

by the value of the angle in radians? Repeat for the
tangent of 20°, and explain the qualitative difference
in the two error percentages.
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Chapter Review

FORCE SYSTEMS

2/1

INTRODUCTION

In this and the following chapters, we study the effects of forces

which act on engineering structures and mechanisms. The experience
gained here will help you in the study of mechanics and in other subjects
such as stress analysis, design of structures and machines, and fluid flow.
This chapter lays the foundation for a basic understanding not only of
statics but also of the entire subject of mechanics, and you should master
this material thoroughly.

2/2 FORCE

Before dealing with a group or system of forces, it is necessary to
examine the properties of a single force in some detail. A force has been
defined in Chapter 1 as an action of one body on another. In dynamics
we will see that a force is defined as an action which tends to cause
acceleration of a body. A force is a vector quantity, because its effect
depends on the direction as well as on the magnitude of the action. Thus,

23
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(b)

Figure 2/1

Cable tension
P

Figure 2/2

forces may be combined according to the parallelogram law of vector
addition.

The action of the cable tension on the bracket in Fig. 2/1a is rep-
resented in the side view, Fig. 2/1b, by the force vector P of magnitude
P. The effect of this action on the bracket depends on P, the angle #,
and the location of the point of application A. Changing any one of these
three specifications will alter the effect on the bracket, such as the force
in one of the bolts which secure the bracket to the base, or the irternal
force and deformation in the material of the bracket at any point. Thus,
the complete specification of the action of a force must include its mag-
nitude, direction, and point of application, and therefore we must treat
it as a fixed vector.

External and Internal Effects

We can separate the action of a force on a body into two effects,
external and internal. For the bracket of Fig. 2/1 the effects of P external
to the bracket are the reactive forces (not shown) exerted on the bracket
by the foundation and bolts because of the action of P. Forces external
to a body can be either applied forces or reactive forces. The effects of
P internal to the bracket are the resulting internal forces and defor-
mations distributed throughout the material of the bracket. The relation
between internal forces and internal deformations depends on the ma-
terial properties of the body and is studied in strength of materials,
elasticity, and plasticity.

Principle of Transmissibility

When dealing with the mechanics of a rigid body, we ignore de-
formations in the body and concern ourselves with only the net external
effects of external forces. In such cases, experience shows us that it is
not necessary to restrict the action of an applied force to a given point.
For example, the force P acting on the rigid plate in Fig. 2/2 may be
applied at A or at B or at any other point on its line of action, and the
net external effects of P on the bracket will not change. The external
effects are the force exerted on the plate by the bearing support at O
and the force exerted on the plate by the roller support at C.

This conclusion is summarized by the principle of transmissibility,
which states that a force may be applied at any point on its given line of
action without altering the resultant effects of the force external to the
rigid body on which it acts. Thus, whenever we are interested in only the
resultant external effects of a force, the force may be treated as a sliding
vector, and we need specify only the magnitude, direction, and line of action
of the force, and not its point of application. Because this book deals essen-
tially with the mechanics of rigid bodies, we will treat almost all forces as
sliding vectors for the rigid body on which they act.

Force Classification

Forces are classified as either contact or body forces. A contact force
is produced by direct physical contact; an example is the force exerted
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on a body by a supporting surface. On the other hand, a body force is
generated by virtue of the position of a body within a force field such as
a gravitational, electric, or magnetic field. An example of a body force is
your weight.

Forces may be further classified as either concentrated or distrib-
uted. Every contact force is actually applied over a finite area and is
therefore really a distributed force. However, when the dimensions of
the area are very small compared with the other dimensions of the body,
we may consider the force to be concentrated at a point with negligible
loss of accuracy. Force can be distributed over an area, as in the case of
mechanical contact, over a volume when a body force such as weight is
acting, or over a line, as in the case of the weight of a suspended cable.

The weight of a body is the force of gravitational attraction distrib-
uted over its volume and may be taken as a concentrated force acting
through the center of gravity. The position of the center of gravity is
frequently obvious if the body is symmetric. If the position is not obvi-
ous, then a separate calculation, explained in Chapter 5, will be neces-
sary to locate the center of gravity.

We can measure a force either by comparison with other known
forces, using a mechanical balance, or by the calibrated movement of an
elastic element. All such comparisons or calibrations have as their basis
a primary standard. The standard unit of force in SI units is the newton
(N) and in the U.S. customary system is the pound (Ib), as defined in
Art. 1/5.

Action and Reaction

According to Newton’s third law, the action of a force is always
accompanied by an equal and opposite reaction. It is essential to distin-
guish between the action and the reaction in a pair of forces. To do so,
we first isolate the body in question and then identify the force exerted
on that body (not the force exerted by the body). It is very easy to mis-
takenly use the wrong force of the pair unless we distinguish carefully
between action and reaction.

Concurrent Forces

Two or more forces are said to be concurrent at a point if their lines
of action intersect at that point. The forces F; and F, shown in Fig.
2/3a have a common point of application and are concurrent at the point
A. Thus, they can be added using the parallelogram law in their common
plane to obtain their sum or resultant R, as shown in Fig. 2/3a. The
resultant lies in the same plane as F; and F,,.

Suppose the two concurrent forces lie in the same plane but are
applied at two different points as in Fig. 2/3b. By the principle of trans-
missibility, we may move them along their lines of action and complete
their vector sum R at the point of concurrency A, as shown in Fig. 2/3b.
We can replace F; and Fy with the resultant R without altering the
external effects on the body upon which they act.

Fy

Figure 2/3
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Figure 2/4

We can also use the triangle law to obtain R, but we need to move
the line of action of one of the forces, as shown in Fig. 2/3c. If we add
the same two forces, as shown in Fig. 2/3d, we correctly preserve the
magnitude and direction of R, but we lose the correct line of action,
because R obtained in this way does not pass through A. Therefore this
type of combination should be avoided.

We can express the sum of the two forces mathematically by the
vector equation

R=F +F,

Vector Components

In addition to combining forces to obtain their resultant, we often
need to replace a force by its vector components in directions which are
convenient for a given application. The vector sum of the components
must equal the original vector. Thus, the force R in Fig. 2/3a may be
replaced by, or resolved into, two vector components F; and F,, with the
specified directions by completing the parallelogram as shown to obtain
the magnitudes of F; and F,,.

The relationship between a force and its vector components along
given axes must not be confused with the relationship between a force
and its perpendicular* projections onto the same axes. Figure 2/3e
shows the perpendicular projections F,, and F, of the given force R onto
axes a and b, which are parallel to the vector components F; and F, of
Fig. 2/3a. Figure 2/3e shows that the components of a vector are not
necessarily equal to the projections of the vector onto the same axes.
Furthermore, the vector sum of the projections F, and F, is not the
vector R, because the parallelogram law of vector addition must be used
to form the sum. The components and projections of R are equal only
when the axes a and b are perpendicular.

A Special Case of Vector Addition

To obtain the resultant when the two forces F; and F, are parallel
as in Fig. 2/4, we use a special case of addition. The two vectors are
combined by first adding two equal, opposite, and collinear forces F and
—F of convenient magnitude, which taken together produce no external
effect on the body. Adding F; and F to produce R,, and combining with
the sum Ry of Fy and —F yield the resultant R, which is correct in
magnitude, direction, and line of action. This procedure is also useful
for graphically combining two forces which have a remote and incon-
venient point of concurrency because they are almost parallel.

It is usually helpful to master the analysis of force systems in two
dimensions before undertaking three-dimensional analysis. Thus the re-
mainder of Chapter 2 is subdivided into these two categories.

*Perpendicular projections are also called orthogonal projections.
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SECTION A. TWO-DIMENSIONAL FORCE SYSTEMS

2/3 RECTANGULAR COMPONENTS

The most common two-dimensional resolution of a force vector is
into rectangular components. It follows from the parallelogram rule that
the vector F of Fig. 2/5 may be written as

F=F, +F, 2/1)

where F, and F, are vector components of F in the x- and y-directions.
Each of the two vector components may be written as a scalar times the x
appropriate unit vector. In terms of the unit vectors i and j of Fig. 2/5, :
; 3 . Figure 2/5
F, = F,i and F, = F,j, and thus we may write

F = Fi+ F,j (2/2)

where the scalars F, and F,, are the x and y scalar components of the
vector F.

The scalar components can be positive or negative, depending on
the quadrant into which F points. For the force vector of Fig. 2/5, the
x and y scalar components are both positive and are related to the mag-
nitude and direction of F by

F,=Fcos6 F=JF?+F}2?
F (2/3)

i . = Sy
Fy—FsmB 6 = tan 7
x

Conventions for Describing Vector Components

We express the magnitude of a vector with lightface italic type in
print; that is, [F| is indicated by F, a quantity which is always nonneg-
ative. However, the scalar components, also denoted by lightface italic
type, will include sign information. See Sample Problems 2/1 and 2/3
for numerical examples which involve both positive and negative scalar
components.

When both a force and its vector components appear in a diagram,
it is desirable to show the vector components of the force with dashed
lines, as in Fig. 2/5, and show the force with a solid line, or vice versa.
With either of these conventions it will always be clear that a force and
its components are being represented, and not three separate forces, as
would be implied by three solid-line vectors.

Actual problems do not come with reference axes, so their assign-
ment is a matter of arbitrary convenience, and the choice is frequently
up to the student. The logical choice is usually indicated by the way in
which the geometry of the problem is specified. When the principal di-
mensions of a body are given in the horizontal and vertical directions,
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F . =-Fcos j
Fv=—Fsin/3'

F =Fsin(z-f)
F =-Fcos(r-f)

Yy
|
I
I
|
|
|
|
|

i T

F . =Fcos(f-a)
Fy:Fsin(ﬂ— a)

Figure 2/6

for example, you would typically assign reference axes in these
directions.

Determining the Components of a Force

Dimensions are not always given in horizontal and vertical direc-
tions, angles need not be measured counterclockwise from the x-axis,
and the origin of coordinates need not be on the line of action of a force.
Therefore, it is essential that we be able to determine the correct com-
ponents of a force no matter how the axes are oriented or how the angles
are measured. Figure 2/6 suggests a few typical examples of vector res-
olution in two dimensions.

Memorization of Eqs. 2/3 is not a substitute for understanding the
parallelogram law and for correctly projecting a vector onto a reference
axis. A neatly drawn sketch always helps to clarify the geometry and
avoid error.

Rectangular components are convenient for finding the sum or re-
sultant R of two forces which are concurrent. Consider two forces F,
and Fy which are originally concurrent at a point O. Figure 2/7 shows
the line of action of F shifted from O to the tip of F, according to the
triangle rule of Fig. 2/3. In adding the force vectors F; and F,, we may
write

R=F; +F,=Fi+Fj)+ Fi+Fpj
or

Ri+RJ= (le + Fg )i + (Fly + sz)j
from which we conclude that

R,=F, + F, = SF,

(2/4)
Ry = Fl_.,, + Fzy = sz
The term 2F, means ‘‘the algebraic sum of the x scalar components”.
For the example shown in Fig. 2/7, note that the scalar component
F3 would be negative.

e b

" R, -t
——————————— _————x
0

Figure 2/7
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Sample Problem 2/1

The forces F,, Fy, and F3, all of which act on point A of the bracket, are
specified in three different ways. Determine the x and y scalar components of
each of the three forces.

Solution. The scalar components of Fy, from Fig. a, are

Il

Fy, = 600 cos 35° = 491 N Ans.

600 sin 35° = 344 N Ans.

Il
Il

Fly

The scalar components of Fy, from Fig. b, are

Fy = —500(3) = —400 N Ans.

5002) = 300 N Ans.

Fzy

Note that the angle which orients F, to the x-axis is never calculated. The cosine
and sine of the angle are available by inspection of the 3-4-5 triangle. Also note
that the x scalar component of F, is negative by inspection.

The scalar components of F3 can be obtained by first computing the angle
a of Fig. c.

2
a = tan~ ! [%Z] = 26.6°

@ Then F3 = Fgsin @ = 800 sin 26.6° = 358 N Ans.

Fy

¥

—Fg cos @ = —800 cos 26.6° = —T16 N Ans.

Alternatively, the scalar components of F3 can be obtained by writing Fg as
a magnitude times a unit vector n,p in the direction of the line segment AB.

s, Helpful Hints
@) R i vt g AB — 800 [ 0.2i — 04j :| (1) You should carefully examine the
S 7 i) 8 4B [(0.2)2 + (—0.4)2 geometry of each component-deter-

) ! mination problem and not rely on
800[0.447i — 0.894j] the blind use of such formulas as F,
= 358i — 716j N = F cos fland F,, = F sin 6.

I

(2) A unit vector can be formed by divid-

The required scalar components are then i
ing any vector, such as the geometric

F, = 358 N A s position vector AB, by its length or
magnitude. Here we use the overar-
Fy = =116 N Ans. row to denote the vector which runs

; : . from A to B and the overbar to de-
which agree with our previous results. note the distance between A and B.
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Sample Problem 2/2

Combine the two forces P and T, which act on the fixed structure at B, into
a single equivalent force R.

Graphical solution. The parallelogram for the vector addition of forces T and

(1) P is constructed as shown in Fig. a. The scale used here is 1 in. = 800 lb; a scale
of 1 in. = 200 lb would be more suitable for regular-size paper and would give
greater accuracy. Note that the angle @ must be determined prior to construction
of the parallelogram. From the given figure

BD _ 6B sin 60°

tma:ﬁ—m=0.866 a = 40.9

Measurement of the length R and direction 6 of the resultant force R yields the
approximate results

R =5251b 6 = 49° Ans.

Geometric solufion. The triangle for the vector addition of T and P is shown
(2) in Fig. b. The angle a is calculated as above. The law of cosines gives

R% = (600)> + (800)®> — 2(600)(800) cos 40.9° = 274,300
R =5241b Ans.

From the law of sines, we may determine the angle § which orients R. Thus,

600 524

Ei-l’-;._é = m sin f = 0.750 f = 48.6 Ans.

Algebraic solution. By using the x-y coordinate system on the given figure,
we may write

R, = ZF, = 800 — 600 cos 40.9° = 346 1b

R, = ZF, = —600 sin 40.9° = —393 Ib

The magnitude and direction of the resultant force R as shown in Fig. ¢ are then

R=JR2 +R2= (3462 + (—393)2 = 524 1b Ans.
x )

-1@— t: —1@

6=t =
T e endE

= 48.6° Ans.

The resultant R may also be written in vector notation as

R =Ri + R,j = 346i — 393j Ib Ans.

Helpful Hints

(1) Note the repositioning of P to permit
parallelogram addition at B.

800 lb
\\8 o/
1% 600 Ib
L
T
()

(2) Note the repositioning of T so as to
preserve the correct line of action of
the resultant R.

v
|

:Rx=3461b
B 9—-)-7v——.t

R,=-3931b

My
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Sample Problem 2/3

The 500-N force F is applied to the vertical pole as shown. (1) Write F in .iT
terms of the unit vectors i and j and identify both its vector and scalar compo- |
nents. (2) Determine the scalar components of the force vector F along the x'- m i -y
and y'-axes. (3) Determine the scalar components of F along the x- and y'-axes. A 7300

Solution. Part (1). From Fig. a we may write F as 30°

(F cos )i — (F sin 0)j i'\\
(500 cos 60°)i — (500 sin 60°)j

F

I

Il

= (250i — 433j) N Ans.

The scalar components are F, = 250 N and F,, = —433 N. The vector compo- | g
nents are F,, = 250i N and F, = —433j N. A

Part (2). From Fig. b we may write F as F = 500i’ N, so that the required ! P
scalar components are Fy* F

F, =50N F,=0 Ans. N

Part (3). The components of F in the x- and y'-directions are nonrectan- \
gular and are obtained by completing the parallelogram as shown in Fig. ¢. The (a) b)) x
magnitudes of the components may be calculated by the law of sines. Thus,

IF.,| 500

A LS R, = 1000 o o
SnoC  smae N p 2790\ /
Yy - 9Q°
Fy| 500 47300 60°

BN B0 am L Tyk T BEEN

The required scalar components are then
Helpful Hint

(D Obtain F, and F, graphically and
compare your results with the cal-
culated values.

F.=1000N F, = —866N Ans.

Sample Problem 2/4

Forces F, and F; act on the bracket as shown. Determine the projection Fj
of their resultant R onto the b-axis.

Solution. The parallelogram addition of F, and Fy is shown in the figure. Using

the law of cosines gives us
R? = (80)® + (100)® — 2(80)(100) cos 130° R = 1634 N

The figure also shows the orthogonal projection F,, of R onto the b-axis. Its length
is

Fy, = 80 + 100 cos 50° = 144.3 N Ans,

Note that the components of a vector are in general not equal to the pro-
jections of the vector onto the same axes. If the a-axis had been perpendicular
to the b-axis, then the projections and components of R would have been equal.
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PROBLEMS

Introductory Problems

2/1 The force F has a magnitude of 500 N. Express F as
a vector in terms of the unit vectors i and j. Identify
the x and y scalar components of F.
Ans. F = 383i — 321j N, F, = 383 N, E\, = —-321 N

Y
I
\
!
\
|

|
|
|
| F = 500N
|

Problem 2/1

2/2 The magnitude of the force F is 400 lb. Express F as
a vector in terms of the unit vectors i and j. Identify
both the scalar and vector components of F.

F = 4001b

Problem 2/2

2/3 The slope of the 5.2-kN force F is specified as shown
in the figure. Express F as a vector in terms of the
unit vectors i and j.

Ans. F = —4.8i — 2j kN
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Problem 2/3

2/4 The line of action of the 3000-1b force runs through
the points A and B as shown in the figure. Determine
the x and y scalar components of F.
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Problem 2/4

2/5 The 1800-N force F is applied to the end of the I-beam.
Express F as a vector using the unit vectors i and j.
Ans. F = —1080i — 1440j N

Problem 2/5

2/6 The two structural members, one of which is in ten-
sion and the other in compression, exert the indicated
forces on joint O. Determine the magnitude of the re-
sultant R of the two forces and the angle # which R
makes with the positive x-axis.

4 kN

Problem 2/6
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2/7 The y-component of the force F which a person exerts
on the handle of the box wrench is known to be 70 1b.
Determine the x-component and the magnitude of F.

Ans. F, = 29.21b, F = 758 1b

F

Problem 2/7

2/8 Determine the resultant R of the two forces shown by
(a) applying the parallelogram rule for vector addition
and (b) summing scalar components.

600 N

Problem 2/8

2/9 To satisfy design limitations it is necessary to deter-
mine the effect of the 2-kN tension in the cable on the
shear, tension, and bending of the fixed I-beam. For
this purpose replace this force by its equivalent of two
forces at A, F, parallel and F, perpendicular to the
beam. Determine F, and F,.

Ans. F, = 1.286 kN, F,, = 1.5632 kN

Problem 2/9

Representative Problems

2/10 Determine the magnitude F, of the tensile spring
force in order that the resultant of F, and F is a
vertical force. Determine the magnitude R of this ver-
tical resultant force.

F=1201b

Problem 2/10

2/11 In the design of a control mechanism, it is deter-
mined that rod AB transmits a 260-N force P to the

crank BC. Determine the x and y scalar components

BER: Ans. P, = —240 N
P, = -100N

Problem 2/11

2/12 For the mechanism of Prob. 2/11, determine the sca-
lar components P, and P, of P which are tangent and
normal, respectively, to crank BC.
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2/13 If the equal tensions T in the pulley cable are 400 N,
express in vector notation the force R exerted on the
pulley by the two tensions. Determine the magnitude

of R. Ans. R = 600i + 346 N, R = 693 N

Problem 2/13

2/14 While steadily pushing the machine up an incline, a
person exerts a 180-N force P as shown. Determine
the components of P which are parallel and perpen-
dicular to the incline.

Problem 2/14

2/15 The normal reaction force N and the tangential fric-
tion force F act on the tire of a front-wheel-drive car
as shown. Express the resultant R of these two forces
in terms of the unit vectors (a) i and j along the x-y
axes and (b) e, and e, along the n-t axes shown.

Ans. (@) R = 153.4i + 973j 1b
(b) R = 400e, + 900e, 1b

N=9001b

Problem 2/15

2/16 Determine the resultant R of the two forces applied
to the bracket. Write R in terms of unit vectors along
the x- and y-axes shown.

y!

|

|
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Problem 2/16

2/17 The ratio of the lift force L to the drag force D for
the simple airfoil is L/D = 10. If the lift force on a
short section of the airfoil is 50 1b, compute the mag-
nitude of the resultant force R and the angle # which
it makes with the horizontal.

Ans. R = 50.21b, # = 84.3°

Problem 2/17
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2/18 Determine the components of the 2-kN force along
the oblique axes a and b. Determine the projections
of F onto the a- and b-axes.

Problem 2/18

2/19 Determine the components of the 800-Ib force F
along the oblique axes a and b. Also, determine the
projections of F onto the a- and b-axes.

Ans. Components: F, = 1093 lb, F, = 980 1b
Projections: F, = 400 1lb, ¥, = 207 Ib
F = 8001b
b
b
P
=
e
/\/
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Problem 2/19

2/20 The 600-N force applied to the bracket at A is to be
replaced by two forces, F, in the a-¢ direction and F},
in the b-b direction, which together produce the same
effect on the bracket as that of the 600-N force.
Determine F, and Fy,

b
600 N \
\

Problem 2/20

2/21 1t is desired to remove the spike from the timber by
applying force along its horizontal axis. An obstruc-
tion A prevents direct access, so that two forces, one
400 lb and the other P, are applied by cables as
shown. Compute the magnitude of P necessary to
ensure a resultant T directed along the spike. Also

find T Ans. P = 5371b
T = 800 1b

400 1b

Problem 2/21

2/22 At what angle # must the 800-lb force be applied in
order that the resultant R of the two forces has a
magnitude of 2000 1b? For this condition, determine
the angle B between R and the vertical.

1400 1b

Problem 2/22
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2/23 The cable AB prevents bar OA from rotating clock- | 2/25 The guy cables AB and AC are attached to the top of
wise about the pivot O. If the cable tension is 750 N, the transmission tower. The tension in cable AC is 8
determine the n- and {-components of this force act- kN. Determine the required tension T in cable AB
ing on point A of the bar. such that the net effect of the two cable tensions is

Ans. T, = 333N, T, = —-672N a downward force at point A. Determine the magni-

tude R of this downward force.
Ans. T = 568 kN, R = 10.21 kN

A
I
40 m
B
12m > 20 m
| c
Problem 2/23
2/24 In the design of the robot to insert the small cylin- 50 m I 40m I
drical part into a close-fitting circular hole, the robot
arm must exert a 90-N force P on the part parallel Problem 2/25

to the axis of the hole as shown. Determine the com-
ponents of the force which the part exerts on the ro-
bot along axes (a) parallel and perpendicular to the
arm AB, and (b) parallel and perpendicular to the
arm BC.

2/26 The gusset plate is subjected to the two forces shown.
Replace them by two equivalent forces, F, in the x-
direction and F, in the a-direction. Determine the
magnitudes of F, and F,. Solve geometrically or
graphically.

Problem 2/24

Problem 2/26
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2/4 MOMENT

In addition to the tendency to move a body in the direction of its
application, a force can also tend to rotate a body about an axis. The
axis may be any line which neither intersects nor is parallel to the line
of action of the force. This rotational tendency is known as the moment
M of the force. Moment is also referred to as torque.

As a familiar example of the concept of moment, consider the pipe
wrench of Fig. 2/8a. One effect of the force applied perpendicular to the
handle of the wrench is the tendency to rotate the pipe about its vertical
axis. The magnitude of this tendency depends on both the magnitude F
of the force and the effective length d of the wrench handle. Common
experience shows that a pull which is not perpendicular to the wrench
handle is less effective than the right-angle pull shown.

Moment about a Point

Figure 2/8b shows a two-dimensional body acted on by a force F in
its plane. The magnitude of the moment or tendency of the force to
rotate the body about the axis O-O perpendicular to the plane of the
body is proportional both to the magnitude of the force and to the mo-
ment arm d, which is the perpendicular distance from the axis to the
line of action of the force. Therefore, the magnitude of the moment is
defined as

M = Fd (2/5)

The moment is a vector M perpendicular to the plane of the body. The
sense of M depends on the direction in which F tends to rotate the body.
The right-hand rule, Fig. 2/8¢, is used to identify this sense. We repre-
sent the moment of F about O-O as a vector pointing in the direction of
the thumb, with the fingers curled in the direction of the rotational
tendency.

The moment M obeys all the rules of vector combination and may
be considered a sliding vector with a line of action coinciding with the
moment axis. The basic units of moment in SI units are newton-meters
(N-m), and in the U.S. customary system are pound-feet (Ib-ft).

When dealing with forces which all act in a given plane, we custom-
arily speak of the moment about a point. By this we mean the moment
with respect to an axis normal to the plane and passing through the
point. Thus, the moment of force F about point A in Fig. 2/8d has the
magnitude M = Fd and is counterclockwise.

Moment directions may be accounted for by using a stated sign con-
vention, such as a plus sign (+) for counterclockwise moments and a
minus sign (—) for clockwise moments, or vice versa. Sign consistency
within a given problem is essential. For the sign convention of Fig. 2/8d,
the moment of F about point A (or about the z-axis passing through
point A) is positive. The curved arrow of the figure is a convenient way
to represent moments in two-dimensional analysis.

(a)

(b)

(d)

Figure 2/8
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The Cross Product

In some two-dimensional and many of the three-dimensional prob-
lems to follow, it is convenient to use a vector approach for moment
calculations. The moment of F about point A of Fig. 2/8b may be rep-
resented by the cross-product expression

where r is a position vector which runs from the moment reference point
A to any point on the line of action of F. The magnitude of this expres-
sion is given by*

M = Frsina = Fd (2/7)

which agrees with the moment magnitude as given by Eq. 2/5. Note
that the moment arm d = r sin « does not depend on the particular
point on the line of action of F to which the vector r is directed. We
establish the direction and sense of M by applying the right-hand rule
to the sequence r X F. If the fingers of the right hand are curled in the
direction of rotation from the positive sense of r to the positive sense of
F, then the thumb points in the positive sense of M.

We must maintain the sequence r X F, because the sequence F x r
would produce a vector with a sense opposite to that of the correct mo-
ment. As was the case with the scalar approach, the moment M may be
thought of as the moment about point A or as the moment about the
line O-0 which passes through point A and is perpendicular to the plane
containing the vectors r and F. When we evaluate the moment of a force
about a given point, the choice between using the vector cross product
or the scalar expression depends on how the geometry of the problem is
specified. If we know or can easily determine the perpendicular distance
between the line of action of the force and the moment center, then the
scalar approach is generally simpler. If, however, F and r are not per-
pendicular and are easily expressible in vector notation, then the cross-
product expression is often preferable.

In Section B of this chapter, we will see how the vector formulation
of the moment of a force is especially useful for determining the moment
of a force about a point in three-dimensional situations.

Varignon’s Theorem

One of the most useful principles of mechanics is Varignon’s theo-
rem, which states that the moment of a force about any point is equal
to the sum of the moments of the components of the force about the
same point.

*See item 7 in Art. C/7 of Appendix C for additional information concerning the cross
product.
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To prove this theorem, consider the force R acting in the plane of
the body shown in Fig. 2/9a. The forces P and Q represent any two
nonrectangular components of R. The moment of R about point O is

My, =r xR
Because R = P + Q, we may write
rxR=rx (P + Q)
Using the distributive law for cross products, we have
Mp=rxR=rxP+rxQ (2/8)

which says that the moment of R about O equals the sum of the mo-
ments about O of its components P and Q. This proves the theorem.

Varignon’s theorem need not be restricted to the case of two com-
ponents, but it applies equally well to three or more. Thus we could have
used any number of concurrent components of R in the foregoing proof.*

Figure 2/9b illustrates the usefulness of Varignon’s theorem. The
moment of R about point O is Rd. However, if d is more difficult to
determine than p and g, we can resolve R into the components P and
Q, and compute the moment as

MO:Rd: —pP+qQ
where we take the clockwise moment sense to be positive.

Sample Problem 2/5 shows how Varignon’s theorem can help us to
calculate moments.

(a) (b)

Figure 2/9

*As originally stated, Varignon’s theorem was limited to the case of two concurrent com-
ponents of a given force. See The Science of Mechanics, by Ernst Mach, originally published
in 1883.
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Sample Problem 2/5

Calculate the magnitude of the moment about the base point O of the 600-N
force in five different ways.

Solution. (I) The moment arm to the 600-N force is
d = 4 cos 40° + 2sin 40° = 4.35 m

(1) By M = Fd the moment is clockwise and has the magnitude

Mg = 600(4.35) = 2610 N-m Ans.
(II) Replace the force by its rectangular components at A
F; = 600 cos 40° = 460 N, F; = 600 sin 40° = 386 N
By Varignon’s theorem, the moment becomes
@ M, = 460(4) + 386(2) = 2610 N-m Ans.

(III) By the principle of transmissibility, move the 600-N force along its
line of action to point B, which eliminates the moment of the component F,. The
moment arm of F'; becomes

d; =4 + 2tan 40° = 568 m
and the moment is
My = 460(5.68) = 2610 N-m Ans.

® (IV) Moving the force to point C eliminates the moment of the component
F,. The moment arm of Fy becomes

dy = 2 + 4cot 40° = 6.77 m
and the moment is
My = 386(6.77) = 2610 N-m Ans.

(V) By the vector expression for a moment, and by using the coordinate
system indicated on the figure together with the procedures for evaluating cross
products, we have

@ My =r x F = (2i + 4j) x 6003 cos 40° — j sin 40°)
= —~2610k N-m

The minus sign indicates that the vector is in the negative z-direction. The mag-
nitude of the vector expression is

Mg = 2610 N-m Ans.

2m

Helpful Hints

(1) The required geometry here and in
similar problems should not cause dif-
ficulty if the sketch is carefully drawn.

(2 This procedure is frequently the
shortest approach.

(@) The fact that points B and C are not
on the body proper should not cause
concern, as the mathematical calcula-
tion of the moment of a force does not
require that the force be on the body.

(@) Alternative choices for the position
vector r are r = d;j = 5.68j m and
r = doi = 6.77i m.
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PROBLEMS

Introductory Problems

2/27 The 4-kN force F is applied at point A. Compute the
moment of F about point O, expressing it both as a
scalar and as a vector quantity. Determine the coor-
dinates of the points on the x- and y-axes about which
the moment of F is zero.

Ans. My = 2.68 kN-m CCW, M, = 2.68k kN-m
(x,y) = (=1.3, 0) and (0, 0.78) m

ity

]
E A(12,15)
I
|

Problem 2/27

2/28 The rectangular plate is made up of 1-ft squares as
shown. A 75-1b force is applied at point A in the di-
rection shown. Determine the moment of this force
about point B and about point C.

75 1b
1ft A B

1ft i y
.\ |

\ |

L__
\\ &
C X
\

Problem 2/28

2/29 The throttle-control sector pivots freely at O. If an
internal torsional spring exerts a return moment

M = 2 N-m on the sector when in the position
shown, for design purposes determine the necessary
throttle-cable tension T so that the net moment
about O is zero. Note that when T is zero, the sector

rests against the idle-control adjustment screw at R.

Ans. T = 40 N

T

Problem 2/29

2/30 The entire branch OA has a mass of 180 kg with mass
center at G. Determine the moment of the weight of
this branch about point O.

v

Problem 2/30
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2/31 A force F of magnitude 40 N is applied to the gear.
Determine the moment of F about point O.
Ans. Mg = 5.64 N-m CW

Problem 2/31

2/32 Calculate the moment of the 250-N force on the han-
dle of the monkey wrench about the center of the
bolt.

Problem 2/33

Representative Problems

2/34 A portion of a mechanical coin sorter works as fol-
lows: Pennies and dimes roll down the 20° incline,
the last triangular portion of which pivots freely
about a horizontal axis through O. Dimes are light
enough (2.28 grams each) so that the triangular por-
tion remains stationary, and the dimes roll into the
right collection column. Pennies, on the other hand,
are heavy enough (3.06 grams each) so that the tri-
angular portion pivots clockwise, and the pennies roll
into the left collection column. Determine the mo-
ment about O of the weight of the penny in terms of
the slant distance s in millimeters.

Problem 2/32

2/33 A prybar is used to remove a nail as shown. Deter-
mine the moment of the 60-1b force about the point
O of contact between the prybar and the small sup-
port block. Ans. Mg = 70.0 Ib-ft CW

9.5 mm

pennies dimes

Problem 2/34
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2/35 Elements of the lower arm are shown in the figure.
The weight of the forearm is 5 lb with mass center
at G. Determine the combined moment about the el-
bow pivot O of the weights of the forearm and the
sphere. What must the biceps tension force be so that
the overall moment about O is zero?

Ans. Mg = 128.6 Ib-in. CW, T = 64.3 1b

13" {
Problem 2/35

2/36 The 30-N force P is applied perpendicular to the por-
tion BC of the bent bar. Determine the moment of P
about point B and about point A.

Problem 2/36

2/37 In order to raise the flagpole OC, a light frame OAB
is attached to the pole and a tension of 780 1b is de-
veloped in the hoisting cable by the power winch D.
Calculate the moment M, of this tension about the
hinge point O.

Ans. My = 5010 Ib-ft CCW

Problem 2/37

2/38 Compute the moment of the 0.4-1b force about the
pivot O of the wall-switch toggle.

F=041b

Problem 2/38

2/39 A force of 200 N is applied to the end of the wrench
to tighten a flange bolt which holds the wheel to the
axle. Determine the moment M produced by this
force about the center O of the wheel for the position

of the wrench shown. Ans. M = 78.3 N-m CW

200N

450 mm

650 mm

Problem 2/39
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2/40 The lower lumbar region A of the spine is the part of
the spinal column most susceptible to abuse while
resisting excessive bending caused by the moment
about A of a force F. For given values of F, b, and A,
determine the angle # which causes the most severe
bending strain.

Problem 2/40

2/41 Determine the combined moment about O due to the
weight of the mailbox and the cross member AB. The
mailbox weighs 4 1b and the uniform cross member
weighs 10 Ib. Both weights act at the geometric cen-
ters of the respective items.

Ans. My = 130 lb-in. CCW

1
7

19" 3”I

7

9”

199

5”

N
=

38"

0]

Problem 2/41

2/42 The force exerted by the plunger of cylinder AB on
the door is 40 N directed along the line AB, and this
force tends to keep the door closed. Compute the mo-
ment of this force about the hinge O. What force F
normal to the plane of the door must the door stop
at C exert on the door so that the combined moment
about O of the two forces is zero?

Dimensions in millimeters

Problem 2/42

2/43 (a) Calculate the moment of the 90-N force about
point O for the condition # = 15° Also, determine
the value of # for which the moment about O is (b)
zero and (¢) a maximum.
Ans. (@) Mg = 33.5 N-m CCW
(b) 8 = 36.9° (or 217°)
(c) 8 = 126.9° (or 307°)

F=90N
800 mm : |
|
0,
I
|
R b

R B A
le— g0 mm=—s]

Problem 2/43
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2/44 Determine the angle ¢ which will maximize the mo-

ment M, of the 50-1b force about the shaft axis at O.
Also compute M.

501b

Problem 2/44

2/45 The spring-loaded follower A bears against the cir-

cular portion of the cam until the lobe of the cam
lifts the plunger. The force required to lift the
plunger is proportional to its vertical movement A
from its lowest position. For design purposes deter-
mine the angle ¢ for which the moment of the contact
force on the cam about the bearing O is a maximum.
In the enlarged view of the contact, neglect the small
distance between the actual contact point B and the
end C of the lobe.

Ans. 0 = 57.5°

Problem 2/45

2/46 The small crane is mounted along the side of a pickup
bed and facilitates the handling of heavy loads. When
the boom elevation angle is 6 = 40°, the force in the
hydraulic cylinder BC is 4.5 kN, and this force ap-
plied at point C is in the direction from B to C (the
cylinder is in compression). Determine the moment
of this 4.5-kN force about the boom pivot point O.

Problem 2/46

2/47 Design criteria require that the robot exert the 90-N
force on the part as shown while inserting a cylin-
drical part into the circular hole. Determine the mo-
ment about points A, B, and C of the force which the
part exerts on the robot.

Ans. M, = 688 N-m, My = 338 N-m
My = 13.50 N-m (all CCW)

Problem 2/a7
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2/48 As the result of a wind blowing normal to the plane 2/50 The rocker arm BD of an automobile engine is sup-
of the rectangular sign, a uniform pressure of 3.5 ported by a nonrotating shaft at C. If the design value
1b/ft? is exerted in the direction shown in the figure. of the force exerted by the pushrod AB on the rocker
Determine the moment of the resulting force about arm is 80 lb, determine the force which the valve
point O. Express your result as a vector using the stem DE must exert at D in order for the combined
coordinates shown. moment about point C to be zero. Compute the re-

sultant of these two forces exerted on the rocker arm.
Note that the points B, C, and D lie on a horizontal

line and that both the pushrod and valve stem exert
forces along their axes.

\ 175"

40”

Problem 2/48
) Problem 2/50
2/49 The masthead fitting supports the two forces shown.

Determine the magnitude of T which will cause no
bending of the mast (zero moment) at point O.
Ans. T = 4.04 kN

Problem 2/49
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2/51 The 120-N force is applied as shown to one end of ‘ 2/52 The piston, connecting rod, and crankshaft of a diesel

the curved wrench. If &« = 30°, calculate the moment | engine are shown in the figure. The crank throw OA
of F' about the center O of the bolt. Determine the ‘ is half the stroke of 8 in., and the length AB of the
value of @ which would maximize the moment about rod is 14 in. For the position indicated, the rod is
O, state the value of this maximum moment. 1 under a compression along AB of 3550 Ib. Determine
Ans. Mp = 415 N-m CW | the moment M of this force about the crankshaft

a = 33.2°, Mg)pax = 41.6 N-m CW | axis 0.

F=120N

Problem 2/51

Problem 2/52
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2/5 COUPLE

The moment produced by two equal, opposite, and noncollinear
forces is called a couple. Couples have certain unique properties and have
important applications in mechanics.

Consider the action of two equal and opposite forces F and —F a
distance d apart, as shown in Fig. 2/10a. These two forces cannot be
combined into a single force because their sum in every direction is zero.
Their only effect is to produce a tendency of rotation. The combined
moment of the two forces about an axis normal to their plane and pass-
ing through any point such as O in their plane is the couple M. This
(a) couple has a magnitude

M = F@ +d) - Fa
or
M = Fd

Its direction is counterclockwise when viewed from above for the case
illustrated. Note especially that the magnitude of the couple is indepen-
dent of the distance a which locates the forces with respect to the mo-
ment center O. It follows that the moment of a couple has the same

%) value for all moment centers.
Vector Algebra Method
‘ (i) M We may also express the moment of a couple by using vector algebra.

With the cross-product notation of Eq. 2/6, the combined moment about
point O of the forces forming the couple of Fig. 2/105 is

M=ryxF+rgx(-F) =@y —rg) xF

where r, and rp are position vectors which run from point O to arbitrary
points A and B on the lines of action of F and —F, respectively. Because
r, — rg = r, we can express M as

(c)

M=rxF

@ @ Here again, the moment expression contains no reference to the moment
center O and, therefore, is the same for all moment centers. Thus, we
may represent M by a free vector, as shown in Fig. 2/10¢, where the
direction of M is normal to the plane of the couple and the sense of M
is established by the right-hand rule.
Because the couple vector M is always perpendicular to the plane of
the forces which constitute the couple, in two-dimensional analysis we

Counterdbciovisa Blodlewise can represent the sense of a couple vector as clockwise or counterclock-
couple couple wise by one of the conventions shown in Fig. 2/10d. Later, when we deal
i with couple vectors in three-dimensional problems, we will make full
use of vector notation to represent them, and the mathematics will au-
Figure 2/10 tomatically account for their sense.

Equivalent Couples

Changing the values of F and d does not change a given couple as
long as the product Fd remains the same. Likewise, a couple is not af-
fected if the forces act in a different but parallel plane. Figure 2/11
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Figure 2/11

shows four different configurations of the same couple M. In each of the
four cases, the couples are equivalent and are described by the same free
vector which represents the identical tendencies to rotate the bodies.

Force-Couple Systems

The effect of a force acting on a body is the tendency to push or pull
the body in the direction of the force, and to rotate the body about any
fixed axis which does not intersect the line of the force. We can represent
this dual effect more easily by replacing the given force by an equal
parallel force and a couple to compensate for the change in the moment
of the force.

The replacement of a force by a force and a couple is illustrated in
Fig. 2/12, where the given force F acting at point A is replaced by an
equal force F at some point B and the counterclockwise couple M = Fd.
The transfer is seen in the middle figure, where the equal and opposite
forces F and —F are added at point B without introducing any net ex-
ternal effects on the body. We now see that the original force at A and
the equal and opposite one at B constitute the couple M = Fd, which is
counterclockwise for the sample chosen, as shown in the right-hand part
of the figure. Thus, we have replaced the original force at A by the same
force acting at a different point B and a couple, without altering the
external effects of the original force on the body. The combination of the
force and couple in the right-hand part of Fig. 2/12 is referred to as a
force—couple system.

By reversing this process, we can combine a given couple and a force
which lies in the plane of the couple (normal to the couple vector) to
produce a single, equivalent force. Replacement of a force by an equiv-
alent force-couple system, and the reverse procedure, have many appli-
cations in mechanics and should be mastered.

Figure 2/12
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Sample Problem 2/6

The rigid structural member is subjected to a couple consisting of the two
100-N forces. Replace this couple by an equivalent couple consisting of the two
forces P and —P, each of which has a magnitude of 400 N, Determine the proper
angle 6.

Solution. The original couple is counterclockwise when the plane of the forces
is viewed from above, and its magnitude is

[M = Fd] M = 100(0.1) = 10 N-m
The forces P and —P produce a counterclockwise couple
M = 400(0.040) cos 6

Equating the two expressions gives

100 N

10 = 400(0.040) cos 6
10 Dimensions in millimeters
6 = cos! e 51.3° Ans.
P=400 N
Helpful Hint ~ L T
/1

() Since the two equal couples are parallel free vectors, the only dimensions A g 40 mm

which are relevant are those which give the perpendicular distances between 7N J],

the forces of the couples. y

P=400N

Sample Problem 2/7 —"

Replace the horizontal 80-1b force acting on the lever by an equivalent sys-
tem consisting of a force at O and a couple.

Solution. We apply two equal and opposite 80-lb forces at O and identify the
counterclockwise couple

[M = Fd] M = 80(9 sin 60°) = 624 Ib-in. Ans.

Thus, the original force is equivalent to the 80-Ib force at O and the 624-lb-in.
couple as shown in the third of the three equivalent figures.

Helpful Hint

(1) The reverse of this problem is often encountered, namely, the replacement of
a force and a couple by a single force. Proceeding in reverse is the same as
replacing the couple by two forces, one of which is equal and opposite to the
80-lb force at O. The moment arm to the second force would be M/F =
624/80 = 7.79 in., which is 9 sin 60°, thus determining the line of action of
the single resultant force of 80 lb.

80 1b

80 Ib

801b 780 1b

801b

624 1b-in.
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PROBLEMS

Introductory Problems

2/53 Compute the combined moment of the two 180-N
forces about (@) point O and (b) point A.

Ans. (a) Mg = 108 N-m CCW

(b) My = 108 N-m CCW

vl
o 180 N
} |
240 mm |
‘A
240 mm :
NS O "
120mm |0

Problem 2/53

2/54 Replace the 800-1b force acting at point A by a force—
couple system at (a) point O and (b) point B.

Problem 2/54

2/55 The indicated force-couple system is applied to a
small shaft at the center of the rectangular plate. Re-
place this system by a single force and specify the
coordinate of the point on the y-axis through which
the line of action of this resultant force passes.

Ans.y = —75 mm

200 mm

300 mm

Problem 2/55

2/56 The top view of a revolving entrance door is shown.
Two persons simultaneously approach the door and
exert forces of equal magnitudes as shown. If the re-
sulting moment about the door pivot axis at O is 25
N-m, determine the force magnitude F.

Problem 2/56



52 chapter2 Force Systems

2/57 When making a left turn, a driver exerts two 1.5-1b
forces on a steering wheel as shown. Determine the
moment associated with these forces. Discuss the ef-

fects of varying the steering-wheel diameter d.
Ans. M = 24 lb-in. CCW

1.51b

Problem 2/57

2/58 During a ground test with both main and tail rotors
in steady operation, a 400-N aerodynamic force is ex-
erted on the tail rotor at P as shown. Determine the
equivalent force—couple system at point O.

Problem 2/58

2/59 As part of a test, the two aircraft engines are revved
up and the propeller pitches are adjusted so as to
result in the fore and aft thrusts shown. What force
F must be exerted by the ground on each of the main
braked wheels at A and B to counteract the turning
effect of the two propeller thrusts? Neglect any ef-
fects of the nose wheel C, which is turned 90° and

unbraked. Ans. F = 875 1b

8 14

Problem 2/59

2/60 Each propeller of the twin-screw ship develops a full-
speed thrust of 300 kN. In maneuvering the ship, one
propeller is turning full speed ahead and the other
full speed in reverse. What thrust P must each tug
exert on the ship to counteract the turning effect of
the ship’s propellers?

Problem 2/60
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Representative Problems

2/61 In the design of the lifting hook the action of the ap-
plied force F at the critical section of the hook is a
direct pull at B and a couple. If the magnitude of the
couple is 4000 lb-ft, determine the magnitude of F.

Ans. F = 12,000 Ib

Problem 2/61

2/62 The system consisting of the bar OA, two identical
pulleys, and a section of thin tape is subjected to the
two 180-N tensile forces shown in the figure. Deter-
mine the equivalent force-couple system at point O.

180N

Problem 2/62

2/63 A lug wrench is used to tighten a square-head bolt.
If 50-1b forces are applied to the wrench as shown,
determine the magnitude F' of the equal forces ex-
erted on the four contact points on the 1-in. bolt head
so that their external effect on the bolt is equivalent
to that of the two 50-1b forces. Assume that the forces
are perpendicular to the flats of the bolt head.

Ans. F = 700 1b

17—
|

View C Detail
(clearances exaggerated)

Problem 2/63

2/64 The inspection door shown is constructed of sheet
steel which isé in. thick. Determine the force-couple
system located at the hinge center O which is
equivalent to the weight of the door. State any
assumptions.

Problem 2/64
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2/65 A 400-N force is applied to the welded slender bar at
an angle # = 20°. Determine the equivalent force—
couple system acting on the weld at (a) point A and
(b) point O. For what value of 6 would the results of
parts (a) and (b) be identical?

Ans. (@) F = 400 N, M4, = 131.6 N-m CW
(b) F = 400 N, My = 214 N-m CW
6 = 0 or 180°

Problem 2/65

2/66 Replace the couple and force shown by a single force
F applied at a point D. Locate D by determining the
distance b.

Problem 2/66

2/67 The wrench is subjected to the 200-N force and the
force P as shown. If the equivalent of the two forces
is a force R at O and a couple expressed as the vector
M = 20k N-m, determine the vector expressions for

P and R. Ans. P = 40§ N
R - —160j N

Problem 2/67

2/68 Calculate the moment of the 1200-N force about pin
A of the bracket. Begin by replacing the 1200-N force
by a force-couple system at point C.

600
mm

——]

Problem 2/68

2/69 A force F of magnitude 50 N is exerted on the auto-
mobile parking-brake lever at the position x = 250
mm. Replace the force by an equivalent force-couple
system at the pivot point O. Ans. R = 50 N

My = 17.29 N-m CCW

Problem 2/69
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2/70 The figure represents two integral gears subjected to
the tooth—contact forces shown. Replace the two
forces by an equivalent single force R at the rotation ‘
axis O and a corresponding couple M. Specify the
magnitudes of R and M. If the gears were to start
from rest under the action of the tooth loads shown,
in what direction would rotation take place?

|
Problem 2/71
|
|

2/72 The weld at O can support a maximum of 550 1b of
force along each of the n- and /-directions and a max-
imum of 1000 Ib-ft of moment. Determine the allow-
able range for the direction # of the 600-1b force
applied at A. The angle 6 is restricted to 0 = 6 = 90°,

Problem 2/70 n

600 Ib
2/71 The combined drive wheels of a front-wheel-drive au-

tomobile are acted on by a 7000-N normal reaction Problem 2/72
force and a friction force F, both of which are exerted
by the road surface. If it is known that the resul-
tant of these two forces makes a 15° angle with the
vertical, determine the equivalent force-couple sys-
tem at the car mass center G. Treat this as a two-
dimensional problem. Ans. R = 7250 N

Mg = 7940 N-m CW
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(a)

(b)

Figure 2/13

2/6 RESULTANTS

The properties of force, moment, and couple were developed in the
previous four articles. Now we are ready to describe the resultant action
of a group or system of forces. Most problems in mechanics deal with a sys-
tem of forces, and it is usually necessary to reduce the system toitssimplest
form to describe its action. The resultant of a system of forces is the sim-
plest force combination which can replace the original forces without al-
tering the external effect on the rigid body to which the forces are applied.

Equilibrium of a body is the condition in which the resultant of all
forces acting on the body is zero. This condition is studied in statics. When
the resultant of all forces on a body is not zero, the acceleration of the
body is obtained by equating the force resultant to the product of the mass
and acceleration of the body. This condition is studied in dynamics. Thus,
the determination of resultants is basic to both statics and dynamics.

The most common type of force system occurs when the forces all
act in a single plane, say, the x-y plane, as illustrated by the system of
three forces Fy, F, and F5 in Fig. 2/13a. We obtain the magnitude and
direction of the resultant force R by forming the force polygon shown in
part b of the figure, where the forces are added head-to-tail in any se-
quence. Thus, for any system of coplanar forces we may write

R=F; +F, + F3+--- = 5F
R, =2F, R,=3F, R=J@EF)?+ GF)’| (2/9)
R 2F.
5 =1 Pyl e
R AR e e S5

Graphically, the correct line of action of R may be obtained by pre-
serving the correct lines of action of the forces and adding them by the
parallelogram law. We see this in part a of the figure for the case of
three forces where the sum R, of Fy, and F is added to F, to obtain R.
The principle of transmissibility has been used in this process.

Algebraic Method

We can use algebra to obtain the resultant force and its line of action
as follows:

1. Choose a convenient reference point and move all forces to that
point. This process is depicted for a three-force system in Figs. 2/14a
and b, where M, M,, and M; are the couples resulting from the
transfer of forces Fy, Fy, and Fj from their respective original lines
of action to lines of action through point O.

2. Add all forces at O to form the resultant force R, and add all couples
to form the resultant couple M. We now have the single force—
couple system, as shown in Fig. 2/14c.

3. In Fig. 2/14d, find the line of action of R by requiring R to have a
moment of M about point O. Note that the force systems of Figs.
2/14a and 2/14d are equivalent, and that =(Fd) in Fig. 2/14a is
equal to Rd in Fig. 2/14d.
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3 =+f303

(a) (b)

(d)
Figure 2/14
Principle of Moments
This process is summarized in equation form by
R = 2F
My = EM = 2(Fd) (2/10)
Rd = M,

The first two of Egs. 2/10 reduce a given system of forces to a force-couple
system at an arbitrarily chosen but convenient point O. The last equation
specifies the distance d from point O to the line of action of R, and states
that the moment of the resultant force about any point O equals the sum
of the moments of the original forces of the system about the same point.
This extends Varignon’s theorem to the case of nonconcurrent force sys-
tems; we call this extension the principle of moments.

For a concurrent system of forces where the lines of action of all
forces pass through a common point O, the moment sum 2M about
that point is zero. Thus, the line of action of the resultant R = =F,
determined by the first of Egs. 2/10, passes through point O. For a
parallel force system, select a coordinate axis in the direction of the
forces. If the resultant force R for a given force system is zero, the
resultant of the system need not be zero because the resultant may be
a couple. The three forces in Fig. 2/15, for instance, have a zero resul-
tant force but have a resultant clockwise couple M = Fyd.

Figure 2/15
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Sample Problem 2/8

Determine the resultant of the four forces and one couple which act on the
plate shown.

Solution. Point O is selected as a convenient reference point for the force—
couple system that is to represent the given system.

[R, = ZF.] R, = 40 + 80 cos 30° — 60 cos 45° = 66.9 N
[R, = 3F,] y = 50 + 80 sin 30° + 60 cos 45° = 1324 N
[R = JR? + RA R = J/(66.9% + (132.4)®> = 1483 N Ang.
R 1324
B =1.0¥ at =1 = o
|:6 = tan RJ 6 = tan 56.9 63.2 Ans.

Mg = 140 — 50(5) + 60 cos 45°(4) — 60 sin 45°(7)
—237TN-'m

The force-couple system consisting of R and M, is shown in Fig. a.
We now determine the final line of action of R such that R alone represents
the original system.

[Rd = |M,|] 1483d = 237 d = 1600 m Ans.

Hence, the resultant R may be applied at any point on the line which makes a
63.2° angle with the x-axis and is tangent at point A to a circle of 1.6-m radius
with center O, as shown in part b of the figure. We apply the equation Rd =
Mg in an absolute-value sense (ignoring any sign of M) and let the physics of
the situation, as depicted in Fig. a, dictate the final placement of R. Had M,
been counterclockwise, the correct line of action of R would have been the tan-
gent at point B.

The resultant R may also be located by determining its intercept distance b
to point C on the x-axis, Fig. c. With R, and R, acting through point C, only R,
exerts a moment about O so that

Rb = M| and

Alternatively, the y-intercept could have been obtained by noting that the mo-
ment about O would be due to R, only.

A more formal approach in determining the final line of action of R is to
use the vector expression

rXx R = MO

wherer = xi + yj is a position vector running from point O to any point on the
line of action of R. Substituting the vector expressions for r, R, and M, and
carrying out the cross product result in

(xi + yj) % (66.91 + 132.4j) = —-237k
(132.4x — 66.9)k = —237k
Thus, the desired line of action, Fig. ¢, is given by
132.4x — 66.9y = —237

By setting y = 0, we obtain x =
culation of the distance b.

—1.792 m, which agrees with our earlier cal-

Y
2m | ‘
[ |
60 N 5m g
50 N ‘
A i
e —— "
T r 140 N'm
2m |
. | soN
2m | |
40N O 300
Im
¥
I
1N
[|R=1483N
1
(a) |
Mol = 7 1} \9=632°
237N-mCJK._lx
S
& R=1483N
"
(b) 1660.m | 63.2°
; A &
e Ny
@
(& ™
132.4x - 66.9y = ,/
—237 ¥
(c) '
@ I
L= _—r _ —x

Helpful Hints

(D We note that the choice of point O as

a moment center eliminates any mo-
ments due to the two forces which
pass through O. Had the clockwise
sign convention been adopted, M,
would have been +237 N -m, with the
plus sign indicating a sense which
agrees with the sign convention. Ei-
ther sign convention, of course, leads
to the conclusion of a clockwise mo-
ment M.

(2) Note that the vector approach yields

sign information automatically,
whereas the scalar approach is more
physically oriented. You should mas-

ter both methods.
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PROBLEMS ¥ ¥ y
Fl F| F|
Introductory Problems TF & '
d —x —x —x
2/73 Determine the resultant R of the three tension forces _L F ,{ F F/‘ by
acting on the eye bolt. Find the magnitude of R and F d . «/ \\&/ i
the angle 6, which R makes with the positive x-axis. / \
Ans. R = 1743 kN, 6, = 26.1° (@) (b) (c)

20 kN

4 kN
Problem 2/73

2/74 Determine the equivalent force-couple system at the
center O for each of the three cases of forces being
applied along the edges of a square plate of side d.

y y y

| F_| F_|

| | ]

F
:17 l—--——x l———x 2 l———x
_EV (0] VF 0 (0]
—d— —a-Z —d—
(a) (b) (¢)
Problem 2/74

2/75 Determine the equivalent force—couple system at the
origin O for each of the three cases of forces being
applied along the edges of a regular hexagon of width
d. If the resultant can be so expressed, replace this
force—couple system with a single force.

Ans. (@) R = 2Fi alongy = _g
()R = —2Fialongy = 3Td
d

©R = F(—-i + J/3j) alongy = —/3x + 7

Problem 2/75

2/76 Determine and locate the resultant R of the two
forces and one couple acting on the I-beam.

8 kN

25 kN'm .
DETETN

5 kN
Problem 2/76

2/77 If the resultant of the two forces and couple M passes
through point O, determine M.
Ans. M = 148.0 N-m CCW

Problem 2/77
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2/78 A commercial airliner with four jet engines, each
producing 90 kN of forward thrust, is in a steady,
level cruise when engine number 3 suddenly fails.
Determine and locate the resultant of the three re-
maining engine thrust vectors. Treat this as a two-
dimensional problem.

Problem 2/78

2/79 Replace the three forces acting on the bent pipe by a
single equivalent force R. Specify the distance x from
point O to the point on the x-axis through which the
line of action of R passes.

Ans. R = —50i + 20j Ib, x = 65 in. (off pipe)

501b

S e

|5*‘

60 1b

Problem 2/79

Representative Problems

2/80 The directions of the two thrust vectors of an exper-
imental aircraft can be independently changed from
the conventional forward direction within limits. For
the thrust configuration shown, determine the equiv-
alent force—couple system at point O. Then replace
this force—couple system by a single force and specify
the point on the x-axis through which the line of ac-
tion of this resultant passes. These results are vital
to assessing design performance.

Problem 2/80

2/81 The flanged steel cantilever beam with riveted
bracket is subjected to the couple and two forces
shown, and their effect on the design of the attach-
ment at A must be determined. Replace the two
forces and couple by an equivalent couple M and re-
sultant force R at A.

Ans. R = 1.644i + 1.159j kN
M, = 222 kN-m CCW

2 kN

0.15m
015m

500 N'm
——x 4
12 kN

Problem 2/81

2/82 The gear and attached V-belt pulley are turning
counterclockwise and are subjected to the tooth load
of 1600 N and the 800-N and 450-N tensions in the
V-belt. Represent the action of these three forces by
a resultant force R at O and a couple of magnitude
M. Is the unit slowing down or speeding up?

Problem 2/82
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2/83 Replace the three forces which act on the bent bar
by a force-couple system at the support point A.
Then determine the x-intercept of the line of action
of the stand-alone resultant force R.

Ans. R = 400i — 3010j Ib
M, = 18,190 Ib-ft CW
x = 6.05 ft

! 2500 Ib

1200 Ib

Problem 2/83

2/84 Two integral pulleys are subjected to the belt ten-
sions shown. If the resultant R of these forces passes
through the center O, determine 7' and the magni-
tude of R and the counterclockwise angle f it makes
with the x-axis.

Problem 2/84

2/85 While sliding a desk toward the doorway, three stu-
dents exert the forces shown in the overhead view.
Determine the equivalent force-couple system at
point A. Then determine the equation of the line of
action of the resultant force.

Ans. R = 45i — 15j b, M, = —1650k lb-in.
1 110

= —Zx +
Y ¥ 3

Problem 2/85

2/86 The asymmetric roof truss is of the type used when
a near normal angle of incidence of sunlight onto the
south-facing surface ABC is desirable for solar energy
purposes. The five vertical loads represent the effect
of the weights of the truss and supported rooffng ma-
terials. The 400-N load represents the effect of wind
pressure. Determine the equivalent force—couple sys-
tem at A. Also, compute the x-intercept of the line of
action of the system resultant treated as a single
force R.

500 N

Problem 2/86
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2/87 Determine the x- and y-axis intercepts of the line of

action of the resultant of the three loads applied to

the gearset. Ans.x = 1.637m,y = —0.997 m

Problem 2/87

2/88 As part of a design test, the camshaft—drive sprocket

is fixed and then the two forces shown are applied to
a length of belt wrapped around the sprocket. Find
the resultant of this system of two forces and deter-
mine where its line of action intersects both the x-
and y-axes.

Ty =500 N

T, =400 N

Problem 2/88

2/89

2/90

The rolling rear wheel of a front-wheel-drive auto-
mobile which is accelerating to the right is subjected
to the five forces and one moment shown. The forces
A, = 60 1b and A, = 500 Ib are forces transmitted
from the axle to the wheel, F = 40 1b is the friction
force exerted by the road surface on the tire, N =
600 Ib is the normal reaction force exerted by the
road surface, and W = 100 1b is the weight of the
wheel/tire unit. The couple M = 2 Ib-ft is the bear-
ing friction moment. Determine and locate the re-
sultant of the system.

Ans. R = 20ilb, d = 2.40 ft above A

Problem 2/89

A rear-wheel-drive car is stuck in the snow between
other parked cars as shown. In an attempt to free the
car, three students exert forces on the car at points
A, B, and C while the driver’s actions result in a for-
ward thrust of 40 Ib acting parallel to the plane of
rotation of each rear wheel. Treating the problem as
two-dimensional, determine the equivalent force—
couple system at the car center of mass G and locate
the position x of the point on the car centerline
through which the resultant passes. Neglect all forces
not shown.

'/3-’0.:«—66”4—) AN |2

50 1b 70 1b

Problem 2/90
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2/91 An exhaust system for a pickup truck is shown in the

A

{ W?I |
0.5 02~ 0.65 0,65 0.5~ 0.4]

figure. The weights W, W,,, and W, of the headpipe,
muffler, and tailpipe are 10, 100, and 50 N, respec-
tively, and act at the indicated points. If the exhaust-
pipe hanger at point A is adjusted so that its tension
F, is 50 N, determine the required forces in the
hangers at points B, C, and D so that the force-cou-
ple system at point O is zero. Why is a zero force—
couple system at O desirable?

Ans. Fg = 989N, Fr = F, = 642N

Fe Fp

Dimensions in meters

Problem 2/91

2/92 The pedal-chainwheel unit of a bicycle is shown in

the figure. The left foot of the rider exerts the 40-1b
force, while the use of toe clips allows the right foot
to exert the nearly upward 20-lb force. Determine the
equivalent force—couple system at point O. Also, de-
termine the equation of the line of action of the sys-
tem resultant treated as a single force R. Treat the
problem as two-dimensional.

Problem 2/92
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SECTION B. THREE-DIMENSIONAL FORCE SYSTEMS

Figure 2/16

//[‘J.'Q —.'Cl)

Figure 2/17

2/7 RECTANGULAR COMPONENTS

Many problems in mechanics require analysis in three dimensions,
and for such problems it is often necessary to resolve a force into its
three mutually perpendicular components. The force F acting at point
O in Fig. 2/16 has the rectangular components F,, F,, F., where

F, = F cos 6, F=\/Fx2+Fy2+FZZ
Fioogif,, F=Fi + ]+ Fk (2/11)
Fcos6, F = F(icos#6, + jcos 6, + kcos6,)

Il

w3

The unit vectors i, j, and k are in the x-, y-, and z-directions, respectively.
Using the direction cosines of F, which are [ = cos #,, m = cos 6, and
n = cos f,, where > + m? + n? = 1, we may write the force as

[F = FUi + mj + nk)] (2/12)

We may regard the right-side expression of Eq. 2/12 as the force
magnitude F' times a unit vector ny which characterizes the direction of
F, or

F = Fn; (2/12a)

It is clear from Eqs. 2/12 and 2/12a that ny = li + mj + nk, which
shows that the scalar components of the unit vector ny are the direction
cosines of the line of action of F.

In solving three-dimensional problems, one must usually find the x,
¥, and z scalar components of a force. In most cases, the direction of a
force is described (a) by two points on the line of action of the force or
(b) by two angles which orient the line of action.

(a) Specification by two points on the line of action of the force.
If the coordinates of points A and B of Fig. 2/17 are known, the force
F may be written as

7 (xg — xi + (yo — y)j + (29 — 2Pk
)2

\-"’(xg - x1)2 + (y2 = lez + (22 =25

Thus the x, y, and z scalar components of F are the scalar coefficients
of the unit vectors i, j, and k, respectively.
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(b) Specification by two angles which orient the line of action of
the force. Consider the geometry of Fig. 2/18. We assume that the
angles 6 and ¢ are known. First resolve F into horizontal and vertical
components.

F., = Fcos ¢
F, = Fsin ¢

Then resolve the horizontal component F., into x- and y-components.

F, = F,, cos 8§ = F cos ¢ cos
F, = F,, sin 6 = F cos ¢ sin 6

The quantities F,, F,, and F, are the desired scalar components of F.

The choice of orientation of the coordinate system is arbitrary, with
convenience being the primary consideration. However, we must use a
right-handed set of axes in our three-dimensional work to be consistent
with the right-hand-rule definition of the cross product. When we rotate
from the x- to the y-axis through the 90° angle, the positive direction for
the z-axis in a right-handed system is that of the advancement of a right-
handed screw rotated in the same sense. This is equivalent to the right-
hand rule.

Dot Product

We can express the rectangular components of a force F (or any other
vector) with the aid of the vector operation known as the dot or scalar
product (see item 6 in Art. C/7 of Appendix C). The dot product of two
vectors P and Q, Fig. 2/19a, is defined as the product of their magnitudes
times the cosine of the angle a between them. It is written as

P-Q = PQ cos o

We can view this product either as the orthogonal projection P cos a of
P in the direction of Q multiplied by @, or as the orthogonal projection
Q cos a of Q in the direction of P multiplied by P. In either case the dot
product of the two vectors is a scalar quantity. Thus, for instance, we
can express the scalar component F, = F cos 6, of the force F in Fig.
2/16 as F,.= F+i, where i is the unit vector in the x-direction.

\
F
y \
\
- = i \| —
<& .= ¥ nﬂj, ﬁunit vector)

— \ —""—-
‘-—-_L - —
(a) (b)

Q \4,,F,1=F'“

Figure 2/19

Figure 2/18
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Figure 2/20

In more general terms, if n is a unit vector in a specified direction,
the projection of F in the n-direction, Fig. 2/195, has the magnitude
F, = F-n. If we want to express the projection in the n-direction as a
vector quantity, then we multiply its scalar component, expressed by
F-n, by the unit vector n to give F,, = (F-n)n. We may write this as
F, = F-nn without ambiguity because the term nn is not defined, and
so the complete expression cannot be misinterpreted as F- (nn).

If the direction cosines of n are «, 8, and v, then we may write n in
vector component form like any other vector as

n=ui+ gj+ vk

where in this case its magnitude is unity. If the direction cosines of F
with respect to reference axes x-y-z are /, m, and n, then the projection
of F in the n-direction becomes

F,=Fn=F(li+ mj+ nk)-(ai + Bj + vk)
=Fla + mB + ny
because
ii=jj=kk=1
and
i'fj=ji=ik=ki=jk=kj=0

The latter two sets of equations are true because i, j, and k have unit
length and are mutually perpendicular.

Angle between Two Vectors

If the angle between the force F and the direction specified by the
unit vector n is 6, then from the dot-product definition we have F-n =
Fn cos 6 = F cos 6, where |n| = n = 1. Thus, the angle between F and
n is given by

F'n
6= P
cos 7 (2/13)
In general, the angle between any two vectors P and Q is
P-
6 = cos ! P_g (2/13a)

If a force F is perpendicular to a line whose direction is specified by the
unit vector n, then cos § = 0, and F-n = 0. Note that this relationship
does not mean that either F or n is zero, as would be the case with
scalar multiplication where (A)(B) = 0 requires that either A or B (or
both) be zero.

The dot-product relationship applies to nonintersecting vectors as
well as to intersecting vectors. Thus, the dot product of the noninter-
secting vectors P and Q in Fig. 2/20 is @ times the projection of P’ on
Q, or P'Q cos o = PQ cos a because P’ and P are the same when treated
as free vectors.
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Sample Problem 2/9

A force F with a magnitude of 100 N is applied at the origin O of the axes
x-y-z as shown. The line of action of F passes through a point A whose coordinates
are 3 m, 4 m, and 5 m. Determine (a) the %, y, and z scalar components of F, (b)
the projection F,, of F on the x-y plane, and (c) the projection Fgp of F along
the line OB.

Solution. Part (a). We begin by writing the force vector F as its magnitude
F times a unit vector ngy.
OA i+4+5
F=FnOA=FO:= 100[M]
OA V82 + 42 + 52
= 100[0.424i + 0.566j + 0.707k]
= 42.4i + 56.6j + 70.Tk N

The desired scalar components are thus

@ F,= 424N F,=566N F,=1707N Ans.

Part (b). The cosine of the angle f,, between F and the x-y plane is

V32 + 4°

gogif =t e—————— = 10.707
Va2 + 2 46
so that F,, = F cos 6,, = 100(0.707) = 70.7 N Ans.

Part (e¢). The unit vector nyg along OB is

OB i+ 6 +2
npp =28 _ 6Lt 8 42k _ egai + 0688 + 0.229k

OB /g% + 6 + 22
The scalar projection of F on OB is

@ Fop = Fongp = (42.4i + 56.6j + 70.7k)- (0.688i + 0.688j + 0.229k)
= (42.4)(0.688) + (56.6)(0.688) + (70.7)(0.229)
=844 N Ans.

If we wish to express the projection as a vector, we write

Fop = F'npggngp
84.4(0.6881 + 0.688] + 0.229Kk)

= 58.1i + 58.1j + 19.35k N

F=100N

Helpful Hints

() In this example all scalar components
are positive. Be prepared for the case
where a direction cosine, and hence
the scalar component, are negative.

(2 The dot product automatically finds
the projection or scalar component of
F along line OB as shown.
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PROBLEMS

Introductory Problems

2/93 The 70-m microwave transmission tower is steadied
by three guy cables as shown. Cable AB carries a ten-
sion of 12 kN. Express the corresponding force on
point A as a vector.

Ans. T = 5691 — 4.06§ — 9.75k kN

Problem 2/93

2/94 The cable AB which connects two structures carries
a tension of 400 N. Express the force F which acts
on point A as a vector in terms of the unit vectors i,
J, and k. Determine the projection of F onto the x-

axis.
z
|
350 |
i [ 500 mm 150
mm
P
( A T Sy | 100
. =~ mm
-~ ~
/' A / S~y
x” B

Problem 2/94

2/95 The rigid pole and cross-arm assembly is supported
by the three cables shown. A turnbuckle at D is tight-
ened until it induces a tension T in CD of 1.2 kN.
Express T as a vector. Does it make any difference
in the result which coordinate system is used?

Ans. T = 0.321i + 0.641j — 0.962k kN, No

Problem 2/95

2/96 Use the result cited for Prob. 2/95 and determine the
magnitude T';p of the projection of T onto line GF.
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2/97 The turnbuckle T is tightened until the tension in
cable OA is 5 kN. Express the force F acting on point
O as a vector. Determine the projection of F onto the
y-axis and onto the line OB. Note that lines OB and

OC lie in the x-y plane.
Ans. F = 1.358i + 2.91j + 3.83k kN
F, = 291 kN, Fop = 263 kN

Problem 2/97

2/98 The cable exerts a tension of 2 kN on the fixed
bracket at A. Write the vector expression for the ten-
sion T.

Problem 2/98

2/99 The cable BC carries a tension of 750 N. Write this
tension as a force T acting on point B in terms of the
unit vectors i, j, and k. The elbow at A forms a right

angle. Ans. T = —598i + 411j + 189.5k N

Problem 2/99

2/100 The force F has a magnitude of 500 lb and acts
along the line AM, where M is the midpoint of the
vertical side OB of the parallelepiped. Express F as
its magnitude times the appropriate unit vector and
determine its x-, y-, and z-scalar components.

z
|
|

B

16"

Problem 2/100
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2/101 The force F has a magnitude of 2 kN and is directed
from A to B. Calculate the projection F¢p of F onto
line CD and determine the angle f# between F and

€. Ans. Fep = JEKN, 6 = 56.8°

02m

Problem 2/101

Representative Problems

2/102 In opening a door which is equipped with a heavy-
duty return mechanism, a person exerts a force P
of magnitude 8 1b as shown. Force P and the normal
n to the face of the door lie in a vertical plane. Ex-
press P as a vector and determine the angles 6,, b,
and 6, which the line of action of P makes with the
positive x-, y-, and z-axes.

Problem 2/102

2/103 The tension in the supporting cable BC is 800 Ib.
Write the force which this cable exerts on the boom
OAB as a vector T. Determine the angles 6,, f,, and
6, which the line of action of T forms with the pos-
itive x-, y-, and z-axes.
Ans. T = 110.7i — 775j + 166.0k 1b
0, = 82.0° #, = 165.6° 6, = 78.0°

Problem 2/103

2/104 The rectangular plate is supported by hinges along
its side BC and by the cable AE. If the cable tension
is 300 N, determine the projection onto line BC of
the force exerted on the plate by the cable. Note
that E is the midpoint of the horizontal upper edge
of the structural support.

A

Problem 2/104
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2/105 The shafts and attached brackets are twisted in op-

posite directions to maintain a tension 7' of 500 N

in the wire joining A and B. Express the tension,

considered as a force acting on A, as a vector in the

form of Eq. 2/12 and determine the projection of T
onto the line DC.

Ans. T = 500(0.370i + 0.410j — 0.833k) N

Tpe = 458 N

Problem 2/105

2/106 The access door is held in the 30° open position by

the chain AB. If the tension in the chain is 100 N,
determine the projection of the tension force onto
the diagonal axis CD of the door.

Problem 2/106

»2/107 The power line is strung from the power-pole arm
at A to point B on the same horizontal plane. Be-
cause of the sag of the cable in the vertical plane,
the cable makes an angle of 15° with the horizontal
where it attaches to A. If the cable tension at A is
200 Ib, write T as a vector and determine the mag-
nitude of its projection onto the x-z plane.

Ans. T = 191.0i + 28.7j — 51.8k 1b
T..=19791b

Problem 2/107

»2/108 The spring of constant £ = 15 Ib/in. is attached to
the disk at point A and to the end fitting at point B
as shown. The spring is unstretched when 6, and
fiy are both zero. If the disk is rotated 15° clockwise
and the end fitting is rotated 30° counterclockwise,
determine a vector expression for the force F which
the spring exerts at point A. The magnitude of the
spring force is the constant £ multiplied by the de-
flection (lengthening or shortening) of the spring.

Ans. F = —0.719i + 9.48j — 1.734k 1b

36”__ k=151b/in.

\/,

Problem 2/108
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»2/109 Determine the x-, y-, and z-components of force F
which acts on the tetrahedron as shown. The quan-
tities a, b, ¢, and F' are known, and M is the mid-

point of edge AB. 9ack
Ans. F, =
Ja? + b2Ja® + b + 4c?
2bcF

F
Y Ve 02 + b+ 4t

2+b2
F,=F 2a2 P
a‘® + b* + 4c

Problem 2/109

| »2/110 A force F is applied to the surface of the sphere as
shown. The angles 0 and ¢ locate point P, and point
M is the midpoint of ON. Express F in vector form,
using the given x-, y-, z-coordinates.
Ans. F =

F[(Z sin ¢ — 1)(icos 6 + jsin #) + k(2 cos q&)]

Vb — 4 sin ¢

Problem 2/110
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2/8 MoMENT AND COUPLE

In two-dimensional analyses it is often convenient to determine a
moment magnitude by scalar multiplication using the moment-arm rule.
In three dimensions, however, the determination of the perpendicular
distance between a point or line and the line of action of the force can
be a tedious computation. A vector approach with cross-product multi-
plication then becomes advantageous.

Moments in Three Dimensions

Consider a force F with a given line of action acting on a body, Fig.
2/21a, and any point O not on this line. Point O and the line of F
establish a plane A. The moment M, of F about an axis through O
normal to the plane has the magnitude My = Fd, where d is the per-
pendicular distance from O to the line of F. This moment is also referred
to as the moment of F about the point O.

The vector M, is normal to the plane and is directed along the axis
through O. We can describe both the magnitude and the direction of M,
by the vector cross-product relation introduced in Art. 2/4. (Refer to
item 7 in Art. C/7 of Appendix C.) The vector r runs from O to any
point on the line of action of F. As described in Art. 2/4, the cross prod-
uct of r and F is written r X F and has the magnitude (r sin «)F, which
is the same as Fd, the magnitude of M,.

The correct direction and sense of the moment are established by
the right-hand rule, described previously in Arts. 2/4 and 2/5. Thus,
with r and F treated as free vectors emanating from O, Fig. 2/215, the
thumb points in the direction of My, if the fingers of the right hand curl
in the direction of rotation from r to F through the angle a. Therefore,
we may write the moment of F about the axis through O as

The order r X F of the vectors must be maintained because F X r
would produce a vector with a sense opposite to that of My; that is,
F xr= _Mo.

Evaluating the Cross Product

The cross-product expression for M may be written in the deter-
minant form

i j k
My =Sngasuy, S (2/15)
Wi 1,

(Refer to item 7 in Art. C/7 of Appendix C if you are not already familiar
with the determinant representation of the cross product.) Note the sym-
metry and order of the terms, and note that a right-handed coordinate
system must be used. Expansion of the determinant gives

Mp = (I F; — r A + B, — n ) + (nF, — nf)k

(b)

Figure 2/21
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Figure 2/23

Figure 2/24

To gain more confidence in the cross-product relationship, examine
the three components of the moment of a force about a point as obtained
from Fig. 2/22. This figure shows the three components of a force F
acting at a point A located relative to O by the vector r. The scalar
magnitudes of the moments of these forces about the positive x-, y-, and
z-axes through O can be obtained from the moment-arm rule, and are

My =rFy — 5l M, =k -k, M=l —5F

which agree with the respective terms in the determinant expansion for
the cross product r x F.

Moment about an Arbitrary Axis

We can now obtain an expression for the moment M, of F about
any axis A through O, as shown in Fig. 2/23. If n is a unit vector in the
A-direction, then we can use the dot-product expression for the compo-
nent of a vector as described in Art. 2/7 to obtain M, n, the component
of My, in the direction of A. This scalar is the magnitude of the moment
M, of F about A.

To obtain the vector expression for the moment M, of F about A,
multiply the magnitude by the directional unit vector n to obtain

(M, = & x F-n)n] (2/16)

where r X F replaces M. The expression r X F-n is known as a triple
scalar product (see item 8 in Art. C/7, Appendix C). It need not be writ-
ten (r X F)-n because a cross product cannot be formed by a vector
and a scalar. Thus, the association r X (F-n) would have no meaning.
The triple scalar product may be represented by the determinant

Ty Ty T
M, =M, = |F, F, F, (2/17)
(o ({2 Y

where «, B, y are the direction cosines of the unit vector n.

Varignon’s Theorem in Three Dimensions

In Art. 2/4 we introduced Varignon’s theorem in two dimensions.
The theorem is easily extended to three dimensions. Figure 2/24 shows
a system of concurrent forces F, Fo, F3, . ... The sum of the moments
about O of these forces is

rxFi+rxFy+rxFy3+--=rx (F +Fy+Fy+--)
=r x 2F
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where we have used the distributive law for cross products. Using the
symbol M, to represent the sum of the moments on the left side of the
above equation, we have

(Mo =3¢ x B =r x R) (2/18)

This equation states that the sum of the moments of a system of con-
current forces about a given point equals the moment of their sum about
the same point. As mentioned in Art. 2/4, this principle has many ap-
plications in mechanies.

Couples in Three Dimensions

The concept of the couple was introduced in Art. 2/5 and is easily
extended to three dimensions. Figure 2/25 shows two equal and opposite
forces F and —F acting on a body. The vector r runs from any point B
on the line of action of —F to any point A on the line of action of F.
Points A and B are located by position vectors ry and rp from any point
0. The combined moment of the two forces about O is

M=I'AXF+1'BX(—F)=(1‘A*I‘B)XF

However, ry — rp = r, so that all reference to the moment center O
disappears, and the moment of the couple becomes

Thus, the moment of a couple is the same about all points. The magni-
tude of M is M = Fd, where d is the perpendicular distance between
the lines of action of the two forces, as described in Art. 2/5.

The moment of a couple is a free vector, whereas the moment of a
force about a point (which is also the moment about a defined axis
through the point) is a sliding vector whose direction is along the axis
through the point. As in the case of two dimensions, a couple tends to
produce a pure rotation of the body about an axis normal to the plane
of the forces which constitute the couple.

Figure 2/25
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Figure 2/26

Couple vectors obey all of the rules which govern vector quantities.
Thus, in Fig. 2/26 the couple vector M; due to F, and —F; may be added
as shown to the couple vector My due to Fy and —Fy to produce the
couple M, which, in turn, can be produced by F and —F.

In Art. 2/5 we learned how to replace a force by its equivalent force—
couple system. You should also be able to carry out this replacement in
three dimensions. The procedure is represented in Fig. 2/27, where the
force F acting on a rigid body at point A is replaced by an equal force
at point B and the couple M = r x F. By adding the equal and opposite
forces F and —F at B, we obtain the couple composed of —F and the
original F. Thus, we see that the couple vector is simply the moment of
the original force about the point to which the force is being moved. We
emphasize that r is a vector which runs from B to any point on the line
of action of the original force passing through A.

Figure 2/27
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Sample Problem 2/10

A tension T of magnitude 10 kN is applied to the cable attached to the top
A of the rigid mast and secured to the ground at B. Determine the moment M,
of T about the z-axis passing through the base O.

Solution (a). The required moment may be obtained by finding the component
along the z-axis of the moment My, of T about point O. The vector M, is normal
to the plane defined by T and point O, as shown in the accompanying figure. In
the use of Eq. 2/14 to find My, the vector r is any vector from point O to the
line of action of T. The simplest choice is the vector from O to A, which is written
asr = 15j m. The vector expression for T is

12i — 15§ + 9k ]
JA2)2 + (=152 + (9)
= 10(0.566i — 0.707j + 0.424k) kN

T:TB.AB::].OI:

From Eq. 2/14,

[Mp =r x F1 M, = 15§ X 10(0.566i — 0.707j + 0.424k)
= 150(—0.566k + 0.424i) kN-m

The value M, of the desired moment is the scalar component of M, in the z-
direction or M, = M, -k. Therefore,

M, = 150(-0.566k + 0.424i)-k = —84.9 kN'm Ans.

The minus sign indicates that the vector M., is in the negative z-direction. Ex-
pressed as a vector, the moment is M, = —84.9k kN-m.

Solution (b). The force of magnitude 7' is resolved into components T, and T,
in the x-y plane. Since T, is parallel to the z-axis, it can exert no moment about
this axis. The moment M, is, then, due only to T, and is M, = T,,d, where d
is the perpendicular distance from T, to O. The cosine of the angle between T

and T, is V157 + 122/V15% + 122 + 92 = 0.906, and therefore,

T,, = 10(0.906) = 9.06 kN

The moment arm d equals OA multiplied by the sine of the angle between 15k
and OA, or

d = 15L=9.37m

J122 + 152
Hence, the moment of T about the z-axis has the magnitude
M, = 9.06(9.37) = 84.9 kN'-m Ans.

and is clockwise when viewed in the x-y plane.

Solution (c). The component T, is further resolved into its components T, and
T,. 1t is clear that T exerts no moment about the z-axis since it passes through
it, so that the required moment is due to 7', alone. The direction cosine of T with
respect to the x-axis is 12//92 + 122 + 152 = 0.566 so that T, = 10(0.566) =
5.66 kN. Thus,

M, = 5.66(15) = 84.9 kN-m Ans.

T=10kN

Helpful Hints

(D We could also use the vector from O
to B for r and obtain the same result,
but using vector OA is simpler.

@) Itis always helpful to accompany your
vector operations with a sketch of the
vectors so as to retain a clear picture
of the geometry of the problem.

(3 Sketch the x-y view of the problem
and show d.
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Sample Problem 2/11

Determine the magnitude and direction of the couple M which will replace
the two given couples and still produce the same external effect on the block.
Specify the two forces F and —F, applied in the two faces of the block parallel
to the y-z plane, which may replace the four given forces. The 30-N forces act
parallel to the y-z plane.

Solution. The couple due to the 30-N forces has the magnitude M; = 30(0.06) =
1.80 N - m. The direction of M is normal to the plane defined by the two forces, and
the sense, shown in the figure, is established by the right-hand convention. The
couple due to the 25-N forces has the magnitude M, = 25(0.10) = 2.50 N-m
with the direction and sense shown in the same figure. The two couple vectors
combine to give the components

M, = 1.80sin 60° = 1.559 N-m

M,= —-2.50 + 1.80cos 60° = —1.600 N-m
Thus, M= J(1559)2 + (—1.600)2 = 2.23N-m Ans.
1.559
> 35 =1 5 =1 - o
with 6 = tan 1600 tan " 0.974 = 44.3 Ans.

The forces F and —F lie in a plane normal to the couple M, and their mo-
ment arm as seen from the right-hand figure is 100 mm. Thus, each force has
the magnitude

2.23

[M == Fd] F = m =223 N Ans.

and the direction 6 = 44.3°

Helpful Hint

(D Bear in mind that the couple vectors
are free vectors and therefore have
no unique lines of action.

Sample Problem 2/12

A force of 40 1b is applied at A to the handle of the control lever which
is attached to the fixed shaft OB. In determining the effect of the force on the
shaft at a cross section such as that at O, we may replace the force by an equiv-
alent force at O and a couple. Describe this couple as a vector M.

Solu@n. The couple may be expressed in vector notation as M = r x F, where
r = OA = 8 + 5kin. and F = —40i 1b. Thus,
M = (8 + 5k) X (—40i) = —200j + 320k Ib-in.

Alternatively we see that moving the 40-b force through a distance d =
V52 + 82 = 9.43 in. to a parallel position through O requires the addition of a
couple M whose magnitude is

M = Fd = 40(9.43) = 377 lb-in. Ans.

The couple vector is perpendicular to the plane in which the force is shifted, and
its sense is that of the moment of the given force about 0. The direction of M
in the y-z plane is given by

0= tan'lg- = 32.0° Ans.

z
|

|

e 40 Ib
I —

I
1 (40 1b)
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PROBLEMS

Introductory Problems

2/111 The weight of the computer system is 80 1b with
center of gravity at point G. Determine the moment
M, of this weight about point O on the horizontal
table top. Find the magnitude of M.
Ans. M, = —320i + 160j lb-ft, M, = 358 lb-ft

z
[
|
|

Problem 2/111

2/112 Determine the moments of force F about point O
and about point A.

Problem 2/112

2/113 The two forces acting on the handles of the pipe
wrenches constitute a couple M. Express the couple

as a vector. Ans. M = —761 + 295§ N-m

150 N

150 N

Problem 2/113

2/114 The helicopter of Prob. 2/58 is redrawn here with
certain three-dimensional geometry given. During a
ground test, a 400-N aerodynamic force is applied
to the tail rotor at P as shown. Determine the mo-
ment of this force about point O of the airframe.

z
|

B

Problem 2/114
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2/115 The structure shown is constructed of circular rod
which has a mass of 7 kg per meter of length. De-
termine the moment Mg, about O caused by the
weight of the structure. Find the magnitude of My,.

Ans. My = —192.61 — 27.5j N-m
M, = 1946 N-m

Problem 2/115

2/116 The turnbuckle is tightened until the tension in
cable AB is 1.2 kN. Calculate the magnitude of
the moment about point O of the force acting on
point A.

Problem 2/116

2/117 The right-angle pipe OAB of Prob. 2/99 is shown
again here. Replace the 750-N tensile force which
the cable exerts on point B by a force-couple system
at point O.

Ans. R = —598i + 411j + 189.5k N
M, = —361i — 718j + 419k N-m

Problem 2/117

2/118 In an attempt to pull down a nearly sawn-through
branch, the tree surgeon exerts a 400-N pull on the
line which is looped around the branch at A. Deter-
mine the moment about point C of the force exerted
on the branch and state the magnitude of this
moment.

Problem 2/118
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2/119 The figure of Prob. 2/101 is shown again here. If
the magnitude of the moment of F about line CD is

50 N-m, determine the magnitude of F.
Ans. F = 228 N

02m

0.2m

Problem 2/119

Representative Problems

2/120 Two 1.2-1b thrusters on the nonrotating satellite are
simultaneously fired as shown. Compute the mo-
ment associated with this couple and state about
which satellite axes rotations will begin to occur.

Problem 2/120

2/121 A 50-1b force is applied to the control pedal as
shown. The force lies in a plane parallel to the x-z
plane and is perpendicular to BC. Determine the
moments of this force about point O and about the
shaft OA.

Ans. My = —90.61 — 690j — 338k lb-in.
MOA = —690 Ib-in.

Problem 2/121

2/122 A moment (torque) M applied to the shaft and at-
tached arm causes a tension T of 120 Ib applied to
A by the restraining cable AB. Determine the mo-
ment M, of the tension about point O.

Problem 2/122
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2/123 A 300-N force is applied to the handle of the winch
as shown. The force lies in a plane which is parallel
to the y-z plane and is perpendicular to line AB of
the handle. Determine the moments of this force
about point O and about the x-axis.

Ans. My = —98.7i + 17.25] + 299k N-m
M, = -987N-m

. B //’.:()éﬂ mm

Problem 2/123

2/124 Compute the moment My, of the 250-1b force about
the axis 0-0.

Problem 2/124

2/125 A 50-N horizontal force is applied to the handle of
| the industrial water valve as shown. The force is
‘ perpendicular to the vertical plane containing line

OA of the handle. Determine the equivalent force—

‘ couple system at point O,
Ans. R = —383i — 32.1j N
M, = 6431 — 766j + 6250k N-mm

2
|
I

125 o
fe mm ]
| /_____—"—
I

Problem 2/125

five of the engines of its reaction control system.
Four of the thrusts are shown in the figure; the fifth
is an 850-N upward thrust at the right rear, sym-
metric to the 850-N thrust shown on the left rear.
Compute the moment of these forces about point G
and show that the forces have the same moment
‘ about all points.

2/126 A space shuttle orbiter is subjected to thrusts from

Problem 2/126
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2/127 The specialty wrench shown in the figure is de-
signed for access to the hold-down bolt on certain
automobile distributors. For the configuration
shown where the wrench lies in a vertical plane and
a horizontal 200-N force is applied at A perpendic-
ular to the handle, calculate the moment M, ap-
plied to the bolt at O. For what value of the distance
d would the z-component of My be zero?

Ans. M, = —48.6j — 949k N'm,d = 74.5 mm

Problem 2/127

2/128 In picking up a load from position B, a cable tension
T of magnitude 24 kN is developed. Calculate the
moment which T produces about the base O of the
construction crane.

Problem 2/128

2/129 Using the principles to be developed in Chapter 3 on
equilibrium, one can determine that the tension in
cable AB is 103.6 N. Determine the moment about
thex-axis of this tension force acting on point A. Com-
pare your result to the moment of the weight Wof'the
15-kg uniform plate about the x-axis. What is the mo-
ment of the tension force acting at A about line OB?

Ans. M, = 31.1 N'm, (M) = —31.1 N-m
Mop = 0

z
|

w4

0.35m |

Problem 2/129

2/130 The special-purpose milling cutter is subjected to
the force of 1200 N and a couple of 240 N-m as
shown. Determine the moment of this system about
point O.

Problem 2/130
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2/131 The rigid pole and cross-arm assembly of Prob. 2/95
is shown again here. Determine the vector expres-
sion for the moment of the 1.2-kN tension (a) about
point O and (b) about the pole z-axis. Find each mo-
ment in two different ways.

Ans. (a) Mg = —2.891 — 0.962k kN-m
(b) M, = —0.962k kN-m

Problem 2/131

2/132 The 180-1b force is applied at point A of the bracket.
Determine the moments of this force about point B,
about point C, and about the line BC.

~e

-s.{

b
|
!
A
e

L 180 1b

X

Problem 2/132

2/133 A 1.8-1b vertical force is applied to the knob of the
window-opener mechanism when the crank BC is
horizontal. Determine the moment of the force
about point A and about line AB.

Ans. My = —5.40i + 4.68j lb-in.
M,z = —4.05i — 2.34k lb-in.

Problem 2/133

2/134 Determine the vector expression for the moment
M, of the 600-N force about point Q. The design
specification for the bolt at O would require this
result.

Problem 2/134
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2/9 RESULTANTS

In Art. 2/6 we defined the resultant as the simplest force combination
which can replace a given system of forces without altering the external
effect on the rigid body on which the forces act. We found the magnitude
and direction of the resultant force for the two-dimensional force system
by a vector summation of forces, Eq. 2/9, and we located the line of action
of the resultant force by applying the principle of moments, Eq. 2/10.
These same principles can be extended to three dimensions.

In the previous article we showed that a force could be moved to a
parallel position by adding a corresponding couple. Thus, for the system
of forces F,, Fy, Fy ... acting on a rigid body in Fig. 2/28a, we may
move each of them in turn to the arbitrary point O, provided we also
introduce a couple for each force transferred. Thus, for example, we may
move force Fy to O, provided we introduce the couple M; = r; x Fy,
where r; is a vector from O to any point on the line of action of F;.
When all forces are shifted to O in this manner, we have a system of
concurrent forces at O and a system of couple vectors, as represented in
part b of the figure. The concurrent forces may then be added vectorially
to produce a resultant force R, and the couples may also be added to
produce a resultant couple M, Fig. 2/28c. The general force system,
then, is reduced to

R=F1+’F2+F3+"'=EF

(2/20)
M=M, +M, + Mg + --- = 3@ x F)

The couple vectors are shown through point O, but because they are free
vectors, they may be represented in any parallel positions. The magni-
tudes of the resultants and their components are

R,=3F,) R =3F, R, =3F
R = J(SF,? + (SF,)? + (SF,?
M, =3rxF), M=3cxF), M=3cxF,
M=JM2+M2+M?

(2/21)

M

(a) (b) (c)

Figure 2/28
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The point O selected as the point of concurrency for the forces is
arbitrary, and the magnitude and direction of M depend on the partic-
ular point O selected. The magnitude and direction of R, however, are
the same no matter which point is selected.

In general, any system of forces may be replaced by its resultant
force R and the resultant couple M. In dynamics we usually select the
mass center as the reference point. The change in the linear motion of
the body is determined by the resultant force, and the change in the
angular motion of the body is determined by the resultant couple. In
statics, the body is in complete equilibrium when the resultant force R
is zero and the resultant couple M is also zero. Thus, the determination
of resultants is essential in both statics and dynamics.

We now examine the resultants for several special force systems.

Concurrent Forces. When forces are concurrent at a point, only the
first of Egs. 2/20 needs to be used because there are no moments about
the point of concurrency.

Parallel Forces. For a system of parallel forces not all in the same
plane, the magnitude of the parallel resultant force R is simply the mag-
nitude of the algebraic sum of the given forces. The position of its line
of action is obtained from the principle of moments by requiring that
r Xx R = M. Here r is a position vector extending from the force—
couple reference point O to the final line of action of R, and M, is the
sum of the moments of the individual forces about 0. See Sample Prob-
lem 2/14 for an example of parallel-force systems.

Coplanar Forces. Article 2/6 was devoted to this force system.

Wrench Resultant. When the resultant couple vector M is parallel
to the resultant force R, as shown in Fig. 2/29, the resultant is called a
wrench. By definition a wrench is positive if the couple and force vectors
point in the same direction and negative if they point in opposite direc-
tions. A common example of a positive wrench is found with the appli-
cation of a screwdriver, to drive a right-handed screw. Any general force
system may be represented by a wrench applied along a unique line of
action. This reduction is illustrated in Fig. 2/30, where part a of the
figure represents, for the general force system, the resultant force R
acting at some point O and the corresponding resultant couple M. Al-
though M is a free vector, for convenience we represent it as acting
through O.

In part b of the figure, M is resolved into components M, along the
direction of R and M, normal to R. In part ¢ of the figure, the couple

Positive wrench Negative wrench

Figure 2/29
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(a) (b)

() (d)

Figure 2/30

M, is replaced by its equivalent of two forces R and —R separated by a
distance d = My/R with —R applied at O to cancel the original R. This
step leaves the resultant R, which acts along a new and unique line of
action, and the parallel couple M;, which is a free vector, as shown in
part d of the figure. Thus, the resultants of the original general force
system have been transformed into a wrench (positive in this illustra-
tion) with its unique axis defined by the new position of R.

We see from Fig. 2/30 that the axis of the wrench resultant lies in
a plane through O normal to the plane defined by R and M. The wrench
is the simplest form in which the resultant of a general force system
may be expressed. This form of the resultant, however, has limited ap-
plication, because it is usually more convenient to use as the reference
point some point O such as the mass center of the body or another
convenient origin of coordinates not on the wrench axis.
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700 Ib-in.

(3/
1000 Ib-in.

Sample Problem 2/13 z
|
J

Determine the resultant of the force and couple system which acts on the
rectangular solid.

80 1b
Solution. We choose point O as a convenient reference point for the initial step

of reducing the given forces to a force—couple system. The resultant force is

Q) R = ZF = (80 — 80)i + (100 — 100)j + (50 — 50)k = 0 1b
The sum of the moments about O is 80 b
@ My = [50(16) — 700]i + [80(12) — 960]j + [100(10) — 1000]k lb-in. x -7 ;
= 100i Ib-in. 107 100 1b
Hence, the resultant consists of a couple, which of course may be applied at any 1001b "~
point on the body or the body extended. ~y

Helpful Hints

(D Since the force summation is zero, we conclude that the resultant, if it exists,
must be a couple.

(2) The moments associated with the force pairs are easily obtained by using the
M = Fd rule and assigning the unit-vector direction by inspection. In many
three-dimensional problems, this may be simpler than the M = r x F approach.

Sample Problem 2/14

Determine the resultant of the system of parallel forces which act on the
plate. Solve with a vector approach.

Solution. Transfer of all forces to point O results in the force—couple system

R = ZF = (200 + 500 — 300 — 50)j = 350j N

M, = [50(0.35) — 300(0.35)]i + [—50(0.50) — 200(0.50)]k
= —87.5i — 125k N-m

The placement of R so that it alone represents the above force—couple system is
determined by the principle of moments in vector form

rX R = MO
(xi + yj + 2zk) x 350j = —87.5i — 125k
350xk — 350z = —87.5i — 125k

From the one vector equation we may obtain the two scalar equations

350x = —125 and —350z = —87.5

Hence, x = —0.357 m and z = 0.250 m are the coordinates through which the Helpful Hint
line of action of R must pass. The value of y may, of course, be any value, as p

(1) permitted by the principle of transmissibility. Thus, as expected, the variabley (1) You should also carry out a scalar so-
drops out of the above vector analysis. lution to this problem.
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Sample Problem 2/15

Replace the two forces and the negative wrench by a single force R applied
at A and the corresponding couple M.

Solution. The resultant force has the components

[R, = 2F,] R, = 500 sin 40° + 700 sin 60° = 928 N

[R, = ZF,] R, = 600 + 500 cos 40° cos 45° = 871 N

[R, = 2F.] R, = 700 cos 60° + 500 cos 40° sin 45° = 621 N

Il

Thus, R = 928i + 871j + 621k N
and R = J(928)2 + (871)% + (621)2 = 1416 N Ans.

The couple to be added as a result of moving the 500-N force is

1D M =1r x F] Mgy = (0.08i + 0.12j + 0.05k) x 500(i sin 40°
+ j cos 40° cos 45° + k cos 40° sin 45°)

where r is the vector from A to B.
The term-by-term, or determinant, expansion gives
M;q, = 18.951 — 5.59j — 16.90k N'm

(2) The moment of the 600-N force about A is written by inspection of its x- and z-
components, which gives

Mo = (600)(0.060)i + (600)(0.040)k
= 36.0i + 240k N'm

The moment of the 700-N force about A is easily obtained from the moments of
the x- and z-components of the force. The result becomes

M,y = (700 cos 60°)(0.030)i — [(700 sin 60°)(0.060)
+ (700 cos 60°)(0.100)]j — (700 sin 60°)(0.030)k

= 1051 — 71.4j — 18.19k N-m
(3) Also, the couple of the given wrench may be written

M’ = 25.0(—i sin 40° — j cos 40° cos 45° — k cos 40° sin 45°)
= —16.07i — 13.54j — 13.5dk N'm

Therefore, the resultant couple on adding together the i-, j-, and k-terms of the

four M’s is
@ M = 49.4i — 9055 — 24.6k N-m
and M = J49.42 + (90.52 + (24.6)2 = 106.0 N'm Ans.

Helpful Hints

(1) Suggestion: Check the cross-product
results by evaluating the moments
about A of the components of the
500-N force directly from the sketch.

(2) For the 600-N and 700-N forces it is
easier to obtain the components of
their moments about the coordinate
directions through A by inspection of
the figure than it is to set up the
cross-product relations.

(@) The 25-N'm couple vector of the
wrench points in the direction oppo-
site to that of the 500-N force, and
we must resolve it into its x-, y-, and
z-components to be added to the
other couple-vector components.

(@) Although the resultant couple vector
M in the sketch of the resultants is
shown through A, we recognize that
a couple vector is a free vector and
therefore has no specified line of
action.
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Sample Problem 2/16

Determine the wrench resultant of the three forces acting on the bracket.
Calculate the coordinates of the point P in the x-y plane through which the
resultant force of the wrench acts. Also find the magnitude of the couple M of
the wrench.

Solution. The direction cosines of the couple M of the wrench must be the same
as those of the resultant force R, assuming that the wrench is positive. The
resultant force is

(i
\\

R = 20i + 40j + 40k Ib R = /202 + (40)% + (40)%2 = 60 1b
and its direction cosines are
cos . = 20/60 = 1/3 cos 0, = 40/60 = 2/3 cos 6, = 40/60 = 2/3

The moment of the wrench couple must equal the sum of the moments of
the given forces about point P through which R passes. The moments about P
of the three forces are

(M)g, = 20yk Ib-in.
(M)R)_ = —40(3)i — 40xk lb-in.
(M), = 40(4 — y)i — 40(5 — x)j lb-in.
and the total moment is Helpful Hint
M = (40 — 40y)i + (200 + 40x)j + (—40x + 20y)k lb-in. (1) We assume initially that the wrench

; ; ; is positive. If M turns out to be neg-
The direction cosines of M are

ative, then the direction of the cou-
cos B, = (40 — 40y)/M ple vector is opposite to that of the
resultant force.
cos 6, = (=200 + 40x)/M
cos 6, = (—40x + 20y)/M

where M is the magnitude of M. Equating the direction cosines of R and M gives

M

0 — 40y = —

-4 Oy 3
—200 + 40x = 2M

3
—40x + 20y = 4

3

Solution of the three equations gives
M = —120 lb-in. x=3in. y=2in. Ans.

We see that M turned out to be negative, which means that the couple vector is
pointing in the direction opposite to R, which makes the wrench negative.
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PROBLEMS 2/137 The thin rectangular plate is subjected to the four
forces shown. Determine the equivalent force—
Introductory Problems couple system at O. Is R perpendicular to M,?
Ans. R = F(0.5] — 0.1340k)
2/135 A baseball is thrown with spin so that three con- M, = Fb(1.866i + 0.268] + k), yes
current forces act on it as shown in the figure. The
weight W is 5 oz, the drag D is 1.7 oz, and the lift ]

L is perpendicular to the velocity v of the ball. If it |
is known that the y-component of the resultant is
—5.5 oz and the z-component is —0.866 oz, deter-
mine L, ¢, and R.

Ans. L = 1oz, 0 = 30°, R = 5.82 0z

|
|l
- 30°

Problem 2/137

2/138 The spacecraft of Prob 2/120 is repeated here. The
plan is to fire four 1.2-1b thrusters as shown in order
to spin up the spacecraft about its z-axis, but the

2/136 Three equal forces are exerted on the equilateral thruster at A fails. Determine the equivalent force—
plate as shown. Reduce the force system to an couple system at G for the remaining three
equivalent force-couple system at point O. Show thrusters.
that R is perpendicular to M. |

Problem 2/135

Problem 2/136

Problem 2/138
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2/139 The pulley and gear are subjected to the loads
shown. For these forces, determine the equivalent
force—couple system at point O.

Ans. R = 792i + 1182j N
M, = 260i — 504j + 28.6k N-m

330 1
mm

1200 N

Problem 2/139

Representative Problems

2/140 The commercial airliner of Prob. 2/78 is redrawn
here with three-dimensional information supplied.
If engine 3 suddenly fails, determine the resultant
of the three remaining engine thrust vectors, each
of which has a magnitude of 90 kN. Specify the y-
and z-coordinates of the point through which the
line of action of the resultant passes. This infor-
mation would be critical to the design criteria of
performance with engine failure.

Problem 2/140

2/141 Two upward loads are exerted on the small three-
dimensional truss. Reduce these two loads to a sin-
gle force-couple system at point O. Show that R is
perpendicular to M. Then determine the point in
the x-z plane through which the resultant passes.

Ans. R = 600j Ib, M, = 1200i + 4800k Ib-ft
x=8ftz=-2ft

Problem 2/141

2/142 Represent the resultant of the force system acting
on the pipe assembly by a single force R at A and a
couple M.

Problem 2/142
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2/143 Replace the two forces and single couple by an
equivalent force-couple system at point A.

Ans. R = —20i — 37.9j + 12.65k kN

M = 45.3j + 40.9k kN-m

Problem 2/143

2/144 Determine the x-and y-coordinates of a point
through which the resultant of the parallel forces
passes.

70 1b

= 80 1b

Problem 2/144

2/145 The motor mounted on the bracket is acted on by
its 160-N weight, and its shaft resists the 120-N
thrust and 25-N-m couple applied to it. Determine
the resultant of the force system shown in terms of
a force R at A and a couple M.

Ans. R = —120i — 160k N
M= -7i+9j + 24k N'm

— 5 —n

T 200mm

E et —

-y
4 e
il
mm
74
mm
h
Problem 2/145

2/146 In tightening a bolt whose center is at point O, a
person exerts a 40-lb force on the ratchet handle
with his right hand. In addition, with his left hand
he exerts a 20-1b force as shown in order to secure
the socket onto the bolt head. Determine the equiv-
alent force—couple system at O. Then find the point
in the x-y plane through which the line of action of
the single-force resultant passes.

401b

Problem 2/146
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2/147 Replace the two forces acting on the pole by a
wrench. Write the moment M associated with the
wrench as a vector and specify the coordinates of
the point P in the y-z plane through which the line
of action of the wrench passes.

Ans.M=%‘T(i+j},y=0,z=—

Problem 2/147

»2/148 Replace the two forces acting on the rectangular
solid by a wrench. Write the moment M associated
with the wrench as a vector and specify the coor-
dinates of the point P in the x-y plane through
which the line of action of the wrench passes.

Ans. M = Fz—b i-k

x=a+cy=>b/2

Problem 2/148

»2/149 The resultant of the two forces and couple may be
represented by a wrench. Determine the vector ex-
pression for the moment M of the wrench and find
the coordinates of the point P in the x-z plane
through which the resultant force of the wrench
passes.

Ans. M = 10i + 10j N'm
x=2z=01m

Problem 2/149

»2/150 Replace the system of two forces and couple shown
in Prob. 2/143 by a wrench. Determine the magni-
tude of the moment M of the wrench, the magni-
tude of the force R of the wrench, and the
coordinates of the point P in the x-y plane through
which R passes.

Ans. M = 269 kN'm, R = 44.7 kN
x =022l m,y = —-0.950 m
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CHAPTER REVIEW

In Chapter 2 we have established the properties of forces, moments,
and couples, and the correct procedures for representing their effects.
Mastery of this material is essential for our study of equilibrium in the
chapters which follow. Failure to correctly use the procedures of Chapter
2 is a common cause of errors in applying the principles of equilibrium.
When difficulties arise, you should refer to this chapter to be sure that
the forces, moments, and couples are correctly represented.

Forces

There is frequent need to represent forces as vectors, to resolve a
single force into components along desired directions, and to combine
two or more concurrent forces into an equivalent resultant force. Spe-
cifically, you should be able to:

1. Resolve a given force vector into its components along given direc-
tions, and express the vector in terms of the unit vectors along a
given set of axes.

2. Express a force as a vector when given its magnitude and informa-
tion about its line of action. This information may be in the form of
two points along the line of action or angles which orient the line
of action.

3. Use the dot product to compute the projection of a vector onto a
specified line and the angle between two vectors.

4. Compute the resultant of two or more forces concurrent at a point.

Moments

The tendency of a force to rotate a body about an axis is described
by a moment (or torque), which is a vector quantity. We have seen that
finding the moment of a force is often facilitated by combining the mo-
ments of the components of the force. When working with moment vec-
tors you should be able to:

1. Determine a moment by using the moment-arm rule.

2. Use the vector cross product to compute a moment vector in terms
of a force vector and a position vector locating the line of action of
the force.

3. Utilize Varignon’s theorem to simplify the calculation of moments,
in both scalar and vector forms.

4. Use the triple scalar product to compute the moment of a force vec-
tor about a given axis through a given point.

Couples

A couple is the combined moment of two equal, opposite, and non-
collinear forces. The unique effect of a couple is to produce a pure twist
or rotation regardless of where the forces are located. The couple is use-
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ful in replacing a force acting at a point by a force—couple system at a
different point. To solve problems involving couples you should be able
to:

1. Compute the moment of a couple, given the couple forces and either
their separation distance or any position vectors locating their lines
of action.

2. Replace a given force by an equivalent force-couple system, and vice
versa.

Resultants

We can reduce an arbitrary system of forces and couples to a single
resultant force applied at an arbitrary point, and a corresponding re-
sultant couple. We can further combine this resultant force and couple
into a wrench to give a single resultant force along a unique line of
action, together with a parallel couple vector. To solve problems involv-
ing resultants you should be able to:

1. Compute the magnitude, direction, and line of action of the resul-
tant of a system of coplanar forces if that resultant is a force; oth-
erwise, compute the moment of the resultant couple.

2. Apply the principle of moments to simplify the calculation of the
moment of a system of coplanar forces about a given point.

3. Replace a given general force system by a wrench along a given line
of action.

Equilibrium

You will use the preceding concepts and methods when you study
equilibrium in the following chapters. Let us summarize the concept of
equilibrium:

1. When the resultant force on a body is zero (SF = 0), the body is in
translational equilibrium. This means that its center of mass is ei-
ther at rest or moving in a straight line with constant velocity.

2. When the resultant couple is zero (EM = 0), the body is in rota-
tional equilibrium, either having no rotational motion or rotating
with a constant angular velocity.

3. When both resultants are zero, the body is in complete equilibrium.
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REVIEW PROBLEMS 2/153 The blades of the portable fan generate a 1-Ib thrust
T as shown. Compute the moment M, of this force

2/151 Using the principles of equilibrium to be developed about the rear support point O. For comparison, de-

in Chapter 3, you will soon be able to verify that termine the moment about O due to the weight of
the tension in cable AB is 85.8% of the weight of the motor-fan unit AB, whose weight of 9 b acts
the cylinder of mass m, while the tension in cable at G. .

AC is 55.5% of the suspended weight. Write each Ans. Mg = 13.14 lb-m.. CcCw
tension force acting on point A as a vector if the | Moy, = 26.1 1b-in. CW

mass m is 60 kg.
Ans. T,p = —280i + 420j N
280i + 168.1j N

1—-‘0.8111 < 2m ‘

Problem 2/151

2/152 A die is being used to cut threads on a rod. If 15-1b
forces are applied as shown, determine the magni-
tude F' of the equal forces exerted on the %—in. rod

by each of the four cutting surfaces so that their Problem 2/153
external effect on the rod is equivalent to that of . "
this bwo 5:0b fovnen: 2/154 For the angular position # = 60° of the crank OA,

the gas pressure on the piston induces a compres-
sive force P in the connecting rod along its center-
line AB. If this force produces a moment of 720
N-m about the crank axis O, calculate P.

Problem 2/152

Problem 2/154
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2/155 Calculate the moment My, of the 250-N force about
the base point O of the robot.
Ans. M, = 189.6 N-m CCW

Problem 2/155

2/156 Represent the resultant of the three forces and cou-
ple by a force—couple system located at point A.

3 kN
1.5m

P r—w— 35m-—-|
25m Y j
10 kN'm

==
160° i
5kN

4 kN

Problem 2/156

2/157 Reduce the given loading system to a force—couple
system at point A. Then determine the distance x
to the right of point A at which the resultant of the
three forces acts.

Ans. R = 80 lb down, M4, = 1240 lb-in. CW

x = 15.5in.
200 1b 180 1b
g 20"
18 T
300 1b
Problem 2/157

2/158 A force F acts along the line AB inside the right
circular cylindrical shell as shown. The quantities r,
h, 6, and F are known. Using the x-, y-, and z-co-
ordinates shown, express F as a vector.

Problem 2/158

2/159 The directions of rotation of the input shaft A and
output shaft B of the worm-gear reducer are indi-
cated by the curved dashed arrows. An input torque
(couple) of 80 N-m is applied to shaft A in the di-
rection of rotation. The output shaft B supplies a
torque of 320 N-m to the machine which it drives
(not shown). The shaft of the driven machine exerts
an equal and opposite reacting torque on the output
shaft of the reducer. Determine the resultant M of
the two couples which act on the reducer unit and
calculate the direction cosine of M with respect to

the x-axis. Ans. M = —320i — 80j N'm
cos 6, = —0.970

Problem 2/159
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2/160 Replace the force P applied at point A by an equiv-
alent force-couple system at point B.

z I\“-. P
| |

| A: 44:

=y

Problem 2/160

2/161 Three couples are formed by the three pairs of equal
and opposite forces. Determine the resultant M of
the three couples.

Ans. M = —20i — 6.77j — 372k N-m

Problem 2/161

2/162 When the pole OA is in the position shown, the ten-
sion in cable AB is 600 lb. (@) Write the tension force
exerted on point A as a vector using the coordinates
shown. (b) Determine the moment of this force
about point O and state the moments about the x-,
y-, and z-axes. (¢) Determine the projection of this
tension force onto line AO.

z

OA = 50
OB = 40’

\
\
|
it |
0G =30 I
I
|
|

Problem 2/162

2/163 The combined action of the three forces on the base
at O may be obtained by establishing their resultant
through O. Determine the magnitudes of R and the
accompanying couple M.

Ans. R = 1093 1b, M = 9730 Ib-ft

400 1b

600 1b

Problem 2/163
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2/164 During a drilling operation, the small robotic device
is subjected to an 800-N force at point C as shown.
Replace this force by an equivalent force-couple sys-
tem at point O.

Problem 2/164

@ *Computer-Oriented Problems

*2/165 Four forces are exerted on the eyebolt as shown. If
the net effect on the bolt is a direct pull of 600 Ib
in the y-direction, determine the necessary values

of T and ¢. Ans. T = 204 1b, # = 21.7°

Problem 2/165

*2/166 The trap door OA is raised by the cable AB which
passes over the small guide pulleys at B. The ten-
sion everywhere in the cable is T, and this tension
applied at A causes a moment M, about the hinge

M
at 0. Plot the quantity TO’ which is the moment

arm relative to O of the tension applied at A, as a
function of the door angle @ for the range 0 = # =
90°. Determine the maximum and minimum values
of the moment arm over this range of 6.

Problem 2/166

*2/167 With the 300-1b cylindrical part P in its grip, the
robotic arm pivots about O through the range —45°
= 0 = 45° with the angle at A locked at 120°. De-
termine and plot (as a function of ¢) the moment
at O due to the combined effects of the 300-1b part
P, the 120-lb weight of member OA (mass center
at (7)), and the 50-1b weight of member AR (mass
center at Gy). The end grip is included as a part of
member AB. The lengths L, and L, are 3 ft and 2
ft, respectively. What is the maximum value of M,
and at what value of # does this maximum occur?

Ans. M = 1230 cos 6 + 650 cos(60° — ) lb-ft
(M) max = 1654 1b-ft at # = 19.90°

Problem 2/167
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*2/168 A flagpole with attached light triangular frame is

shown here for an arbitrary position during its
raising. The 75-N tension in the erecting cable re-
mains constant. Determine and plot the moment
about the pivot O of the 75-N force for the range
0 = 0 = 90°. Determine the maximum value of this
moment and the elevation angle at which it occurs;
comment on the physical significance of the latter.
The effects of the diameter of the drum at D may
be neglected.

Problem 2/168

The rectangular plate is tilted about its lower edge
by a cable tensioned at a constant 600 N. Deter-
mine and plot the moment of this tension about
the lower edge AB of the plate for the range 0 =

Sl 7200 sin 6

V4l + 24 cos 6

Ans. Myp =

‘m

Problem 2/169

*2/170 As part of the design process for a larger mecha-

nism, the portion shown in the figure is considered.
The spring of modulus £ = 200 N/m is attached
to the fixed point O and to the slider A which
moves along the slot. The unstretched length of
the spring is 150 mm, and the force in the spring
is the constant k times the deflection of the spring.
Plot the x-, y-, and z-components of the spring force
as applied to A as the slider moves in the range
—200 = x = 200 mm.

Problem 2/170
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In many applications of mechanics, the sum of the forces acting on a body is zero, and a state
of equilibrium exists. What are the two primary forces acting on each slowly moving balloon?
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SECTION B. Equilibrium in Three Dimensions
3/4 Equilibrium Conditions

Chapter Review

3/1 INTRODUCTION

Statics deals primarily with the description of the force conditions
necessary and sufficient to maintain the equilibrium of engineering
structures. This chapter on equilibrium, therefore, constitutes the most
important part of statics, and the procedures developed here form the
basis for solving problems in both statics and dynamics. We will make
continual use of the concepts developed in Chapter 2 involving forces,
moments, couples, and resultants as we apply the principles of
equilibrium.

When a body is in equilibrium, the resultant of all forces acting on
it is zero. Thus, the resultant force R and the resultant couple M are
both zero, and we have the equilibrium equations

[R=2F:0 M=2M:o] (3/1)

These requirements are both necessary and sufficient conditions for
equilibrium.

All physical bodies are three-dimensional, but we can treat many of
them as two-dimensional when the forces to which they are subjected
act in a single plane or can be projected onto a single plane. When this
simplification is not possible, the problem must be treated as three-
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Chapter 3

Equilibrium

dimensional. We will follow the arrangement used in Chapter 2, and
discuss in Section A the equilibrium of bodies subjected to two-dimen-
sional force systems and in Section B the equilibrium of bodies subjected
to three-dimensional force systems.

SECTIONA. EQUILIBRIUMIN TWO DIMENSIONS

3/2 SYSTEM ISOLATION
AND THE FREE-BoDY DIAGRAM

Before we apply Egs. 3/1, we must define unambiguously the par-
ticular body or mechanical system to be analyzed and represent clearly
and completely all forces acting on the body. Omission of a force which
acts on the body in question, or inclusion of a force which does not act
on the body, will give erroneous results.

A mechanical system is defined as a body or group of bodies which
can be conceptually isolated from all other bodies. A system may be a
single body or a combination of connected bodies. The bodies may be
rigid or nonrigid. The system may also be an identifiable fluid mass,
either liquid or gas, or a combination of fluids and solids. In statics we
study primarily forces which act on rigid bodies at rest, although we also
study forces acting on fluids in equilibrium.

Once we decide which body or combination of bodies to analyze, we
then treat this body or combination as a single body isolated from all
surrounding bodies. This isolation is accomplished by means of the free-
body diagram, which is a diagrammatic representation of the isolated
system treated as a single body. The diagram shows all forces applied to
the system by mechanical contact with other bodies, which are imagined
to be removed. If appreciable body forces are present, such as gravita-
tional or magnetic attraction, then these forces must also be shown on
the free-body diagram of the isolated system. Only after such a diagram
has been carefully drawn should the equilibrium equations be written.
Because of its critical importance, we emphasize here that

the free-body diagram is the most important single step
in the solution of problems in mechanics.

Before attempting to draw a free-body diagram, we must recall the
basic characteristics of force. These characteristics were described in
Art. 2/2, with primary attention focused on the vector properties of
force. Forces can be applied either by direct physical contact or by re-
mote action. Forces can be either internal or external to the system
under consideration. Application of force is accompanied by reactive
force, and both applied and reactive forces may be either concentrated
or distributed. The principle of transmissibility permits the treatment
of force as a sliding vector as far as its external effects on a rigid body
are concerned.
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We will now use these force characteristics to develop conceptual
models of isolated mechanical systems. These models enable us to write
the appropriate equations of equilibrium, which can then be analyzed.

Modeling the Action of Forces

Figure 3/1 shows the common types of force application on me-
chanical systems for analysis in two dimensions. Each example shows
the force exerted on the body to be isolated, by the body to be removed.
Newton’s third law, which notes the existence of an equal and opposite
reaction to every action, must be carefully observed. The force exerted
on the body in question by a contacting or supporting member is always
in the sense to oppose the movement of the isolated body which would
occur if the contacting or supporting body were removed.

MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS

Type of Contact and Force Origin

Action on Body to Be Isolated

1. Flexible cable, belt,
chain, or rope

Weight of cable 9‘
negligible
Weight of cable o1 —/_/_
not negligible =

N Force exerted by
a flexible cable is
T

always a tension away

2. Smooth surfaces

from the body in the
direction of the cable.
P
~

Contact force is
compressive and is
normal to the surface.

3. Rough surfaces

Rough surfaces are
capable of supporting
a tangential compo-
nent F (frictional
force) as well as a
normal component

N of the resultant
contact force R.

4. Roller support

0
|
==
%,
)
~
N
A
R /
S
N
2\?

Roller, rocker, or ball
support transmits a
compressive force
normal to the
supporting surface.

N

5. Freely sliding guide

S ol

N

Collar or slider free to

~
~
~
~
move along smooth
[+)]  guides; can support
force normal to guide
N

only.

Figure 3/1
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MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS (cont.)
Type of Contact and Force Origin Action on Body to Be Isolated

6. Pin connection Pin Pin A freely hinged pin
free not free connection is capable
toturn toturn of supporting a force
in any direction in the
plane normal to the
axis; usually shown
as two components R,
and R,. A pin not free
to turn may also
support a couple M,

7. Built-in or fixed support A A built-in or fixed
[ support is capable of

A A supporting an axial
or = 7 force I, a transverse
T : force V (shear force),

—~Weld and a couple M
v (bending moment) to
prevent rotation.

8. Gravitational attraction The resultant of
gravitational
attraction on all
G elements of a body of
mass m is the weight

W =mg and acts
toward the center of

T

W=mg the earth through the
center mass G.
9. Spring action ) Spring force is tensile
Linear Nonlinear if spring is stretched
Neutral F F and compressive if
posntlon

l\:\f\r\\:h—)-— force required to
deform the spring a
unit distance.

| Hardening compressed. For a
I ' F linearly elastic spring
\—” | the stiffness % is the
| Softemng
——x

Figure 3/1, continued

In Fig. 3/1, Example 1 depicts the action of a flexible cable, belt,
rope, or chain on the body to which it is attached. Because of its flexi-
bility, a rope or cable is unable to offer any resistance to bending, shear,
or compression and therefore exerts only a tension force in a direction
tangent to the cable at its point of attachment. The force exerted by the
cable on the body to which it is attached is always away from the body.
When the tension T is large compared with the weight of the cable, we
may assume that the cable forms a straight line. When the cable weight
is not negligible compared with its tension, the sag of the cable becomes
important, and the tension in the cable changes direction and magnitude
along its length.

When the smooth surfaces of two bodies are in contact, as in Ex-
ample 2, the force exerted by one on the other is normal to the tangent
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to the surfaces and is compressive. Although no actual surfaces are per-
fectly smooth, we can assume this to be so for practical purposes in many
instances.

When mating surfaces of contacting bodies are rough, as in Example
3, the force of contact is not necessarily normal to the tangent to the
surfaces, but may be resolved into a tangential or frictional component
F and a normal component N.

Example 4 illustrates a number of forms of mechanical support
which effectively eliminate tangential friction forces. In these cases the
net reaction is normal to the supporting surface.

Example 5 shows the action of a smooth guide on the body it sup-
ports. There cannot be any resistance parallel to the guide.

Example 6 illustrates the action of a pin connection. Such a con-
nection can support force in any direction normal to the axis of the pin.
We usually represent this action in terms of two rectangular compo-
nents. The correct sense of these components in a specific problem de-
pends on how the member is loaded. When not otherwise initially
known, the sense is arbitrarily assigned and the equilibrium equations
are then written. If the solution of these equations yields a positive al-
gebraic sign for the force component, the assigned sense is correct. A
negative sign indicates the sense is opposite to that initially assigned.

If the joint is free to turn about the pin, the connection can support
only the force R. If the joint is not free to turn, the connection can also
support a resisting couple M. The sense of M is arbitrarily shown here,
but the true sense depends on how the member is loaded.

Example 7 shows the resultants of the rather complex distribution
of force over the cross section of a slender bar or beam at a built-in or
fixed support. The sense of the reactions F' and V and the bending couple
M in a given problem depends, of course, on how the member is loaded.

One of the most common forees is that due to gravitational attrac-
tion, Example 8. This force affects all elements of mass in a body and
is, therefore, distributed throughout it. The resultant of the gravita-
tional forces on all elements is the weight W = mg of the body, which
passes through the center of mass G and is directed toward the center
of the earth for earthbound structures. The location of G is frequently
obvious from the geometry of the body, particularly where there is sym-
metry. When the location is not readily apparent, it must be determined
by experiment or calculations.

Similar remarks apply to the remote action of magnetic and electric
forces. These forces of remote action have the same overall effect on a
rigid body as forces of equal magnitude and direction applied by direct
external contact.

Example 9 illustrates the action of a linear elastic spring and of a
nonlinear spring with either hardening or softening characteristics. The
force exerted by a linear spring, in tension or compression, is given by
F = hx, where k is the stiffness of the spring and x is its deformation
measured from the neutral or undeformed position.

The representations in Fig. 3/1 are not free-body diagrams, but are
merely elements used to construct free-body diagrams. Study these nine
conditions and identify them in the problem work so that you can draw
the correct free-body diagrams.
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Construction of Free-Body Diagrams

The full procedure for drawing a free-body diagram which isolates
a body or system consists of the following steps.

Step 1. Decide which system to isolate. The system chosen should
usually involve one or more of the desired unknown quantities.

Step 2. Next isolate the chosen system by drawing a diagram which
represents its complete external boundary. This houndary defines the
isolation of the system from all other attracting or contacting bodies,
which are considered removed. This step is often the most crucial of all.
Make certain that you have completely isolated the system before pro-
ceeding with the next step.

Step 3. Identify all forces which act on the isolated system as ap-
plied by the removed contacting and attracting bodies, and represent
them in their proper positions on the diagram of the isolated system.
Make a systematic traverse of the entire boundary to identify all contact
forces. Include body forces such as weights, where appreciable. Repre-
sent all known forces by vector arrows, each with its proper magnitude,
direction, and sense indicated. Each unknown force should be repre-
sented by a vector arrow with the unknown magnitude or direction in-
dicated by symbol. If the sense of the vector is also unknown, you must
arbitrarily assign a sense. The subsequent calculations with the equilib-
rium equations will yield a positive quantity if the correct sense was
assumed and a negative quantity if the incorrect sense was assumed. It
is necessary to be consistent with the assigned characteristics of un-
known forces throughout all of the calculations. If you are consistent,
the solution of the equilibrium equations will reveal the correct senses.

Step 4. Show the choice of coordinate axes directly on the diagram.
Pertinent dimensions may also be represented for convenience. Note,
however, that the free-body diagram serves the purpose of focusing at-
tention on the action of the external forces, and therefore the diagram
should not be cluttered with excessive extraneous information. Clearly
distinguish force arrows from arrows representing quantities other than
forces. For this purpose a colored pencil may be used.

Completion of the foregoing four steps will produce a correct free-
body diagram to use in applying the governing equations, both in statics
and in dynamics. Be careful not to omit from the free-body diagram
certain forces which may not appear at first glance to be needed in the
calculations. It is only through complete isolation and a systematic rep-
resentation of all external forces that a reliable accounting of the effects
of all applied and reactive forces can be made. Very often a force which
at first glance may not appear to influence a desired result does indeed
have an influence. Thus, the only safe procedure is to include on the
free-body diagram all forces whose magnitudes are not obviously
negligible.

The free-body method is extremely important in mechanics because
it ensures an accurate definition of a mechanical system and focuses
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attention on the exact meaning and application of the force laws of stat-
ics and dynamics. Review the foregoing four steps for constructing a
free-body diagram while studying the sample free-body diagrams shown
in Fig. 3/2 and the Sample Problems which appear at the end of the
next article.

Examples of Free-Body Diagrams

Figure 3/2 gives four examples of mechanisms and structures to-
gether with their correct free-body diagrams. Dimensions and magni-
tudes are omitted for clarity. In each case we treat the entire system as
a single body, so that the internal forces are not shown. The character-
istics of the various types of contact forces illustrated in Fig. 3/1 are
used in the four examples as they apply.

SAMPLE FREE-BODY DIAGRAMS
Mechanical System Free-Body Diagram of [solated Body

1. Plane truss

Weight of truss
assumed negligible
compared with P

2. Cantilever beam

Rk

_'] A Mass m

3. Beam
/\
Smooth surface M
contact at A.

Mass m

4. Rigid system of interconnected bodies
analyzed as a single unit

P —-— Weight of mechanism | P —€— |

neglected | I—

m R W=mg
B,

Figure 3/2

¢
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In Example 1 the truss is composed of structural elements which,
taken all together, constitute a rigid framework. Thus, we may remove
the entire truss from its supporting foundation and treat it as a single
rigid body. In addition to the applied external load P, the free-body di-
agram must include the reactions on the truss at A and B. The rocker
at B can support a vertical force only, and this force is transmitted to
the structure at B (Example 4 of Fig. 3/1). The pin connection at A
(Example 6 of Fig. 3/1) is capable of supplying both a horizontal and a
vertical force component to the truss. If the total weight of the truss
members is appreciable compared with P and the forces at A and B, then
the weights of the members must be included on the free-body diagram
as external forces.

In this relatively simple example it is clear that the vertical com-
ponent A, must be directed down to prevent the truss from rotating
clockwise about B. Also, the horizontal component A, will be to the left
to keep the truss from moving to the right under the influence of the
horizontal component of P. Thus, in constructing the free-body diagram
for this simple truss, we can easily perceive the correct sense of each of
the components of force exerted on the truss by the foundation at A and
can, therefore, represent its correct physical sense on the diagram. When
the correct physical sense of a force or its component is not easily rec-
ognized by direct observation, it must be assigned arbitrarily, and the
correctness of or error in the assignment is determined by the algebraic
sign of its calculated value.

In Example 2 the cantilever beam is secured to the wall and sub-
Jjected to three applied loads. When we isolate that part of the beam to
the right of the section at A, we must include the reactive forces applied
to the beam by the wall. The resultants of these reactive forces are shown
acting on the section of the beam (Example 7 of Fig. 3/1). A vertical
force V' to counteract the excess of downward applied force is shown, and
a tension F to balance the excess of applied force to the right must also
be included. Then, to prevent the beam from rotating about A, a coun-
terclockwise couple M is also required. The weight mg of the beam must
be represented through the mass center (Example 8 of Fig. 3/1).

In the free-body diagram of Example 2, we have represented the
somewhat complex system of forces which actually act on the cut section
of the beam by the equivalent force-couple system in which the force is
broken down into its vertical component V (shear force) and its horizon-
tal component F' (tensile force). The couple M is the bending moment in
the beam. The free-body diagram is now complete and shows the beam
in equilibrium under the action of six forces and one couple.

In Example 3 the weight W = mg is shown acting through the
center of mass of the beam, whose location is assumed known (Example
8 of Fig. 3/1). The force exerted by the corner A on the beam is normal
to the smooth surface of the beam (Example 2 of Fig. 3/1). To perceive
this action more clearly, visualize an enlargement of the contact point
A, which would appear somewhat rounded, and consider the force ex-
erted by this rounded corner on the straight surface of the beam, which
is assumed to be smooth. If the contacting surfaces at the corner were
not smooth, a tangential frictional component of force could exist. In
addition to the applied force P and couple M, there is the pin connection
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at B, which exerts both an x- and a y-component of force on the beam.
The positive senses of these components are assigned arbitrarily.

In Example 4 the free-body diagram of the entire isolated mecha-
nism contains three unknown forces if the loads mg and P are known.
Any one of many internal configurations for securing the cable leading
from the mass m would be possible without affecting the external re-
sponse of the mechanism as a whole, and this fact is brought out by the
free-body diagram. This hypothetical example is used to show that the
forces internal to a rigid assembly of members do not influence the val-
ues of the external reactions.

We use the free-body diagram in writing the equilibrium equations,
which are discussed in the next article. When these equations are solved,
some of the calculated force magnitudes may be zero. This would indi-
cate that the assumed force does not exist. In Example 1 of Fig. 3/2,
any of the reactions A, A, or B, can be zero for specific values of the
truss geometry and of the magnitude, direction, and sense of the applied
load P. A zero reaction force is often difficult to identify by inspection,
but can be determined by solving the equilibrium equations.

Similar comments apply to calculated force magnitudes which are
negative. Such a result indicates that the actual sense is the opposite of
the assumed sense. The assumed positive senses of B, and B, in Example
3 and B, in Example 4 are shown on the free-body diagrams. The cor-
rectness of these assumptions is proved or disproved according to
whether the algebraic signs of the computed forces are plus or minus
when the calculations are carried out in an actual problem.

The isolation of the mechanical system under consideration is a cru-
cial step in the formulation of the mathematical model. The most im-
portant aspect to the correct construction of the all-important free-body
diagram is the clear-cut and unambiguous decision as to what is included
and what is excluded. This decision becomes unambiguous only when
the boundary of the free-body diagram represents a complete traverse
of the body or system of bodies to be isolated, starting at some arbitrary
point on the boundary and returning to that same point. The system
within this closed boundary is the isolated free body, and all contact
forces and all body forces transmitted to the system across the boundary
must be accounted for.

The following exercises provide practice with drawing free-body
diagrams. This practice is helpful before using such diagrams in the
application of the principles of force equilibrium in the next article.
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FREE-BODY DIAGRAM EXERCISES

3/A In each of the five following examples, the body to be essary in each case to form a complete free-body dia-
isolated is shown in the left-hand diagram, and an in- gram. The weights of the bodies are negligible unless
complete free-body diagram (FBD) of the isolated body otherwise indicated. Dimensions and numerical values
is shown on the right. Add whatever forces are nec- are omitted for simplicity.

Incomplete FBD

g\
IN

—

. Bell crank
supporting mass
m with pin support
at A.

Pull P

2. Control lever
applying torque
to shaft at O.

B

3. Boom OA, of
negligible mass
compared with
mass m. Boom
hinged at O and
supported by
hoisting cable at B.

4. Uniform crate of
mass m leaning
against smooth
vertical wall and
supported on a
rough horizontal
surface.

5. Loaded bracket
supported by pin
connection at A and
fixed pin in smooth
slot at B.

mg
T %@z
_B f
B

A

[}
A

Figure 3/A
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3/B In each of the five following examples, the body to be tions are necessary in each case to form a correct and
isolated is shown in the left-hand diagram, and either complete free-body diagram. The weights of the bodies
a wrong or an incomplete free-body diagram (FBD) is are negligible unless otherwise indicated. Dimensions
shown on the right. Make whatever changes or addi- and numerical values are omitted for simplicity.

Wrong or Incomplete FBD

1. Lawn roller of
mass m being
pushed up
incline 6.

2. Prybar lifting
body A having
smooth horizontal
surface. Bar rests
on horizontal
rough surface.

3. Uniform pole of
mass m being
hoisted into posi-
tion by winch.
Horizontal sup-
porting surface
notched to prevent
slipping of pole.

4. Supporting angle e
bracket for frame; B
Pin joints.

5. Bent rod welded to A
support at A and
subjected to two
forces and couple.

Figure 3/B
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3/C Draw a complete and correct free-body diagram of labeled. (Note: The sense of some reaction components
each of the bodies designated in the statements. The cannot always be determined without numerical

weights of the bodies are significant only if the mass
is stated. All forces, known and unknown, should be

calculation.)

1. Uniform horizontal bar of mass m
suspended by vertical cable at A and
supported by rough inclined surface
at B.

Al m |B =
f"!n”

5. Uniform grooved wheel of mass m
supported by a rough surface and by
action of horizontal cable.

2. Wheel of mass m on verge of being
rolled over curb by pull P.

6. Bar, initially horizontal but deflected
under load L. Pinned to rigid support
at each end.

3. Loaded truss supported by pin joint at
A and by cable at B.

7. Uniform heavy plate of mass m
supported in vertical plane by cable
C and hinge A.

C

4. Uniform bar of mass m and roller of
mass m taken together. Subjected to
couple M and supported as shown.

Roller i .
oller is free to tumm ’)M
0

8. Entire frame, pulleys, and contacting
cable to be isolated as a single unit.

Figure 3/C
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3/3 EqQuiLiBRIUM CONDITIONS

In Art. 3/1 we defined equilibrium as the condition in which the
resultant of all forces and moments acting on a body is zero. Stated in
another way, a body is in equilibrium if all forces and moments applied
to it are in balance. These requirements are contained in the vector
equations of equilibrium, Eqgs. 3/1, which in two dimensions may be
written in scalar form as

(37, =0 sF, =0 3M,=0) (3/2)

The third equation represents the zero sum of the moments of all forces
about any point O on or off the body. Equations 3/2 are the necessary
and sufficient conditions for complete equilibrium in two dimensions.
They are necessary conditions because, if they are not satisfied, there
can be no force or moment balance. They are sufficient because once
they are satisfied, there can be no imbalance, and equilibrium is assured.

The equations relating force and acceleration for rigid-body motion
are developed in Vol. 2 Dynamics from Newton’s second law of motion.
These equations show that the acceleration of the mass center of a body
is proportional to the resultant force XF acting on the body. Conse-
quently, if a body moves with constant velocity (zero acceleration), the
resultant force on it must be zero, and the body may be treated as in a
state of translational equilibrium.

For complete equilibrium in two dimensions, all three of Egs. 3/2 must
hold. However, these conditions are independent requirements, and one
may hold without another. Take, for example, a body which slides along
a horizontal surface with increasing velocity under the action of applied
forces. The force-equilibrium equations will be satisfied in the vertical
direction where the acceleration is zero, but not in the horizontal direction.
Also, a body, such as a flywheel, which rotates about its fixed mass center
with increasing angular speed is not in rotational equilibrium, but the two
force—equilibrium equations will be satisfied.

Categories of Equilibrium

Applications of Eqs. 3/2 fall naturally into a number of categories
which are easily identified. The categories of force systems acting on
bodies in two-dimensional equilibrium are summarized in Fig. 3/3 and
are explained further as follows.

Category 1, equilibrium of collinear forces, clearly requires only the
one force equation in the direction of the forces (x-direction), since all
other equations are automatically satisfied.

Category 2, equilibrium of forces which lie in a plane (x-y plane)
and are concurrent at a point O, requires the two force equations only,
since the moment sum about O, that is, about a z-axis through O, is
necessarily zero. Included in this category is the case of the equilibrium
of a particle.

Category 3, equilibrium of parallel forces in a plane, requires the
one force equation in the direction of the forces (x-direction) and one
moment equation about an axis (z-axis) normal to the plane of the forces.
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Two-force members

Figure 3/4

CATEGORIES OF EQUILIBRIUM IN TWO DIMENSIONS
Force System Free-Body Diagram Independent Equations
1. Colli
ollinear SF.=0
2. Concurrent LF.=0
at a point )
IF,=0
3. Parallel IF,=0 ZIM,=0
4. General LF,=0 XIM,=0
3 EFy =0
|
|
L —x

Figure 3/3

Category 4, equilibrium of a general system of forces in a plane
(x-y), requires the two force equations in the plane and one moment
equation about an axis (z-axis) normal to the plane.

Two- and Three-Force Members

You should be alert to two frequently occurring equilibrium situa-
tions. The first situation is the equilibrium of a body under the action
of two forces only. Two examples are shown in Fig. 3/4, and we see that
for such a two-force member to be in equilibrium, the forces must be
equal, opposite, and collinear. The shape of the member does not affect
this simple requirement. In the illustrations cited, we consider the
weights of the members to be negligible compared with the applied
forces.

The second situation is a three-force member, which is a body under
the action of three forces, Fig. 3/5a. We see that equilibrium requires
the lines of action of the three forces to be concurrent. If they were not
concurrent, then one of the forces would exert a resultant moment about
the point of intersection of the other two, which would violate the
requirement of zero moment about every point. The only exception oc-
curs when the three forces are parallel. In this case we may consider the
point of concurrency to be at infinity.
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The principle of the concurrency of three forces in equilibrium is of
considerable use in carrying out a graphical solution of the force equa-
tions. In this case the polygon of forces is drawn and made to close, as
shown in Fig. 3/5b. Frequently, a body in equilibrium under the action
of more than three forces may be reduced to a three-force member by a
combination of two or more of the known forces.

Alternative Equilibrium Equations

In addition to Eqs. 3/2, there are two other ways to express the
general conditions for the equilibrium of forces in two dimensions. The
first way is illustrated in Fig. 3/6, parts (a) and (b). For the body shown
in Fig. 3/6a, if SM, = 0, then the resultant, if it still exists, cannot be
a couple, but must be a force R passing through A. If now the equation
3F, = 0 holds, where the x-direction is arbitrary, it follows from Fig.
3/6b that the resultant force R, if it still exists, not only must pass
through A, but also must be perpendicular to the x-direction as shown.
Now, if My = 0, where B is any point such that the line AB is not
perpendicular to the x-direction, we see that R must be zero, and thus
the body is in equilibrium. Therefore, an alternative set of equilibrium
equations is

EFA=0 EMA=0 EMBZO

where the two points A and B must not lie on a line perpendicular to
the x-direction.

A third formulation of the equilibrium conditions may be made for
a coplanar force system. This is illustrated in Fig. 3/6, parts (c) and (d).
Again, if XM, = 0 for any body such as that shown in Fig. 3/6c, the
resultant, if any, must be a force R through A. In addition, if ZMgz = 0,
the resultant, if one still exists, must pass through B as shown in Fig.
3/6d. Such a force cannot exist, however, if XM = 0, where C is not

IM,= 0} satisfied

LM, = 0 satisfied TF.=0

(a) (b)

EM,=0
EMp=0

IM, = 0 satisfied } satisfied

(e) (d)

Figure 3/6

\Fl

Fy
(a) Three-force member

(b) Closed polygon
satisfies ZF = 0

Figure 3/5
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collinear with A and B. Thus, we may write the equations of equilibrium
as

EMA =0 EMB =0 EMC =0

where A, B, and C are any three points not on the same straight line.

When equilibrium equations are written which are not independent,
redundant information is obtained, and a correct solution of the equa-
tions will yield 0 = 0. For example, for a general problem in two di-
mensions with three unknowns, three moment equations written about
three points which lie on the same straight line are not independent.
Such equations will contain duplicated information, and solution of two
of them can at best determine two of the unknowns, with the third
equation merely verifying the identity 0 = 0.

Constraints and Statical Determinacy

The equilibrium equations developed in this article are both neces-
sary and sufficient conditions to establish the equilibrium of a body.
However, they do not necessarily provide all the information required
to calculate all the unknown forces which may act on a body in equilib-
rium. Whether the equations are adequate to determine all the un-
knowns depends on the characteristics of the constraints against
possible movement of the body provided by its supports. By constraint
we mean the restriction of movement.

In Example 4 of Fig. 3/1 the roller, ball, and rocker provide con-
straint normal to the surface of contact, but none tangent to the surface.
Thus, a tangential force cannot be supported. For the collar and slider
of Example 5, constraint exists only normal to the guide. In Example 6
the fixed-pin connection provides constraint in both directions, but offers
no resistance to rotation about the pin unless the pin is not free to turn.
The fixed support of Example 7, however, offers constraint against ro-
tation as well as lateral movement.

If the rocker which supports the truss of Example 1 in Fig. 3/2
were replaced by a pin joint, as at A, there would be one additional
constraint beyond those required to support an equilibrium configura-
tion with no freedom of movement. The three scalar conditions of equi-
librium, Egs. 3/2, would not provide sufficient information to determine
all four unknowns, since A, and B, could not be solved for separately;
only their sum could be determined. These two components of force
would be dependent on the deformation of the members of the truss as
influenced by their corresponding stiffness properties. The horizontal
reactions A, and B, would also depend on any initial deformation re-
quired to fit the dimensions of the structure to those of the foundation
between A and B. Thus, we cannot determine A, and B, by a rigid-body
analysis.

Again referring to Fig. 3/2, we see that if the pin B in Example 3
were not free to turn, the support could transmit a couple to the beam
through the pin. Therefore, there would be four unknown supporting
reactions acting on the beam, namely, the force at A, the two compo-
nents of force at B, and the couple at B. Consequently the three inde-
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pendent scalar equations of equilibrium would not provide enough
information to compute all four unknowns.

A rigid body, or rigid combination of elements treated as a single
body, which possesses more external supports or constraints than are
necessary to maintain an equilibrium position is called statically inde-
terminate. Supports which can be removed without destroying the equi-
librium condition of the body are said to be redundant. The number of
redundant supporting elements present corresponds to the degree of
statical indeterminacy and equals the total number of unknown external
forces, minus the number of available independent equations of equilib-
rium. On the other hand, bodies which are supported by the minimum
number of constraints necessary to ensure an equilibrium configuration
are called statically determinate, and for such bodies the equilibrium
equations are sufficient to determine the unknown external forces.

The problems on equilibrium in this article and throughout Vol. 1
Statics are generally restricted to statically determinate bodies where
the constraints are just sufficient to ensure a stable equilibrium config-
uration and where the unknown supporting forces can be completely
determined by the available independent equations of equilibrium.

We must be aware of the nature of the constraints before we attempt
to solve an equilibrium problem. A body can be recognized as statically
indeterminate when there are more unknown external reactions than
there are available independent equilibrium equations for the force sys-
tem involved. It is always well to count the number of unknown vari-
ables on a given body and to be certain that an equal number of
independent equations can be written; otherwise, effort might be wasted
in attempting an impossible solution with the aid of the equilibrium
equations only. The unknown variables may be forces, couples, dis-
tances, or angles.

Adequacy of Constraints

In discussing the relationship between constraints and equilibrium,
we should look further at the question of the adequacy of constraints.
The existence of three constraints for a two-dimensional problem does
not always guarantee an equilibrium configuration. Figure 3/7 shows
four different types of constraints. In part a of the figure, point A of the
rigid body is fixed by the two links and cannot move, and the third link
prevents any rotation about A. Thus, this body is completely fixed with
three adequate (proper) constraints.

In part b of the figure, the third link is positioned so that the force
transmitted by it passes through point A where the other two constraint
forces act. Thus, this configuration of constraints can offer no initial
resistance to rotation about A, which would occur when external loads
were applied to the body. We conclude, therefore, that this body is in-
completely fixed under partial constraints.

The configuration in part ¢ of the figure gives us a similar condition
of incomplete fixity because the three parallel links could offer no initial
resistance to a small vertical movement of the body as a result of exter-
nal loads applied to it in this direction. The constraints in these two
examples are often termed improper.

(a) Complete fixity
Adequate constraints

(b) Incomplete fixity
Partial constraints

(¢) Incomplete fixity
Partial constraints

A |

(d) Excessive fixity
Redundant constraint

Figure 3/7
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In part d of Fig. 3/7 we have a condition of complete fixity, with
link 4 acting as a fourth constraint which is unnecessary to maintain a
fixed position. Link 4, then, is a redundant constraint, and the body is
statically indeterminate.

As in the four examples of Fig. 3/7, it is generally possible by direct
observation to conclude whether the constraints on a body in two-
dimensional equilibrium are adequate (proper), partial (improper), or
redundant. As indicated previously, the vast majority of problems in this
book are statically determinate with adequate (proper) constraints.

Approach to Solving Problems

The sample problems at the end of this article illustrate the appli-
cation of free-body diagrams and the equations of equilibrium to typical
statics problems. These solutions should be studied thoroughly. In the
problem work of this chapter and throughout mechanics, it is important
to develop a logical and systematic approach which includes the follow-
ing steps:

1. Identify clearly the quantities which are known and unknown.

2. Make an unambiguous choice of the body (or system of connected
bodies treated as a single body) to be isolated and draw its complete
free-body diagram, labeling all external known and unknown but
identifiable forces and couples which act on it.

3. Choose a convenient set of reference axes, always using right-
handed axes when vector cross products are employed. Choose mo-
ment centers with a view to simplifying the calculations. Generally
the best choice is one through which as many unknown forces pass
as possible. Simultaneous solutions of equilibrium equations are fre-
quently necessary, but can be minimized or avoided by a careful
choice of reference axes and moment centers.

4. Identify and state the applicable force and moment principles or
equations which govern the equilibrium conditions of the problem.
In the following sample problems these relations are shown in
brackets and precede each major calculation.

5. Match the number of independent equations with the number of
unknowns in each problem.

6. Carry out the solution and check the results. In many problems
engineering judgment can be developed by first making a reasonable
guess or estimate of the result prior to the calculation and then
comparing the estimate with the calculated value.
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Sample Problem 3/1

Determine the magnitudes of the forces C and T, which, along with the other
three forces shown, act on the bridge-truss joint.

Solution. The given sketch constitutes the free-body diagram of the isolated
section of the joint in question and shows the five forces which are in equilibrium.

Solution I (scalar algebra). For the x-y axes as shown we have

[EF, = 0] 8 + Tcos40° + Csin 20° — 16 = 0
0.766T + 0.342C = 8 (@)
2F, = 0] T sin40° — Ccos20° — 3 = 0
0.643T — 0.940C = 3 (&)
Simultaneous solution of Egs. (a) and (b) produces
T =90kN C = 3.03kN Ans.

Solution Il (scalar algebra). To avoid a simultaneous solution, we may use
axes x'-y’ with the first summation in the y'-direction to eliminate reference to
T. Thus,

[ZF, = 0] —C cos 20° — 3 cos 40° — 8 sin 40° + 16 sin 40° = 0
C = 3.03 kN Ans.
[ZF, = 0] T + 8 cos 40° — 16 cos 40° — 3 sin 40° — 3.03 sin 20° = 0
T = 9.09 kN Ans,

Solution Il (vector algebra). With unit vectors i and j in the x- and y-direc-
tions, the zero summation of forces for equilibrium yields the vector equation

[EF = 0] 8i + (T cos 40°1 + (T sin 40°)j — 3j + (C sin 20°)i
— (Ccos 20°j — 16i = 0
Equating the coefficients of the i- and j-terms to zero gives
8 + T cos 40° + Csin 20° — 16 = 0
Tsin40° — 3 — Ccos 20° = 0

which are the same, of course, as Egs. (a) and (b), which we solved above.

Solution IV (geometric). The polygon representing the zero vector sum of the
five forces is shown. Equations (a) and (b) are seen immediately to give the pro-
jections of the vectors onto the x- and y-directions. Similarly, projections onto
the x'- and y'-directions give the alternative equations in Solution II.

A graphical solution is easily obtained. The known vectors are laid off head-
to-tail to some convenient scale, and the directions of T and C are then drawn
to close the polygon. The resulting intersection at point P completes the solution,
thus enabling us to measure the magnitudes of T and C directly from the drawing
to whatever degree of accuracy we incorporate in the construction.

Helpful Hints

() Since this is a problem of concurrent
forces, no moment equation is
necessary.

(2) The selection of reference axes to fa-
cilitate computation is always an im-
portant consideration. Alternatively
in this example we could take a set
of axes along and normal to the di-
rection of C and employ a force sum-
mation normal to C to eliminate it.

\

o
.-20°
m - k 8 kN
3 kN
/40°
ki 16 kN

(3) The known vectors may be added in
any order desired, but they must be
added before the unknown vectors.
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Sample Problem 3/2

Calculate the tension 7' in the cable which supports the 1000-1b load with
the pulley arrangement shown. Each pulley is free to rotate about its bearing,
and the weights of all parts are small compared with the load. Find the magni-
tude of the total force on the bearing of pulley C.

Solution. The free-body diagram of each pulley is drawn in its relative position
to the others. We begin with pulley A, which includes the only known force. With
the unspecified pulley radius designated by r, the equilibrium of moments about
its center O and the equilibrium of forces in the vertical direction require

[EM,, = 0] Tyr — Tor = 0 T, =T,
[SF, = 0] Ty+T,—1000=0 2T, =1000 T, =T, =5001b

From the example of pulley A we may write the equilibrium of forces on pulley
B by inspection as

Ty =T, = Ty/2 = 250 1b

For pulley C the angle 6 = 30° in no way affects the moment of T about the
center of the pulley, so that moment equilibrium requires

T=Tg o T=2501b Ans.
Equilibrium of the pulley in the x- and y-directions requires
[SF, = 0] 250 cos 30° — F, = 0 F, = 2171
[EF, = 0] Fy, + 250sin30° — 250 =0 F, = 1251b

Y.

F=JF2+F2 F= /@177 + (1252 = 250 Ib Ans.

1000 1b
Helpful Hint

(@ Clearly the radius r does not influence
the results. Once we have analyzed a
simple pulley, the results should be
perfectly clear by inspection.

Sample Problem 3/3

The uniform 100-kg I-beam is supported initially by its end rollers on the
horizontal surface at A and B. By means of the cable at C it is desired to elevate
end B to a position 3 m above end A. Determine the required tension P, the
reaction at A, and the angle # made by the beam with the horizontal in the
elevated position.

Solution. In constructing the free-body diagram, we note that the reaction on
the roller at A and the weight are vertical forces. Consequently, in the absence
of other horizontal forces, P must also be vertical. From Sample Problem 3/2 we
see immediately that the tension P in the cable equals the tension P applied to
the beam at C.

Moment equilibrium ahout A eliminates force R and gives

[EM, = 0] P6cosf) — 981(4cos ) =0 P =654N Ans.
Equilibrium of vertical forces requires
[ZF, = 0] 6564 + R — 981 =0 R =327TN Ans.
The angle # depends only on the specified geometry and is

sin § = 3/8 0 = 22.0° Ans.

6 m CX 2m

AQ E— 5

Helpful Hint

(D Clearly the equilibrium of this paral-
lel force systemisindependent of 6.



Article 3/3 Equilibrium Conditions 123

Sample Problem 3/4

Determine the magnitude T of the tension in the supporting cable and the
magnitude of the force on the pin at A for the jib crane shown. The beam AB is
a standard 0.5-m I-beam with a mass of 95 kg per meter of length.

Algebraic solution. The system is symmetrical about the vertical x-y plane
through the center of the beam, so the problem may be analyzed as the equilib-
rium of a coplanar force system. The free-body diagram of the beam is shown in
the figure with the pin reaction at A represented in terms of its two rectangular
components. The weight of the beam is 95(10°)(5)9.81 = 4.66 kN and acts
through its center. Note that there are three unknowns A, A, and T' which may
be found from the three equations of equilibrium. We begin with a moment
equation about A, which eliminates two of the three unknowns from the equa-
tion. In applying the moment equation about A, it is simpler to consider the
moments of the x- and y-components of T than it is to compute the perpendicular
distance from T to A. Hence, with the counterclockwise sense as positive we write

[EM, = 0] (T cos 25°)0.25 + (T sin 25°)(5 — 0.12)
—10(56 — 1.5 — 0.12) — 4.66(2.5 — 0.12) = 0

from which T = 19.61 kN Ans.
Equating the sums of forces in the x- and y-directions to zero gives

[EF, = 0] A, —1961cos25°=0 A, = 17.7T kN

[SF, =01 A, +19.61lsin25°—466—-10=0 A, =6.37kN

[A=VA2+A2 A=Ja7.777%+ (6.37° = 1888kN Ans.

Graphical solution. The principle that three forces in equilibrium must be
concurrent is utilized for a graphical solution by combining the two known ver-
tical forces of 4.66 and 10 kN into a single 14.66-kN force, located as shown on
the modified free-body diagram of the beam in the lower figure. The position of
this resultant load may easily be determined graphically or algebraically. The
intersection of the 14.66-kN force with the line of action of the unknown tension
T defines the point of concurrency O through which the pin reaction A must
pass. The unknown magnitudes of T and A may now be found by adding the
forces head-to-tail to form the closed equilibrium polygon of forces, thus satis-
fying their zero vector sum. After the known vertical load is laid off to a conve-
nient scale, as shown in the lower part of the figure, a line representing the given
direction of the tension T is drawn through the tip of the 14.66-kN vector. Like-
wise a line representing the direction of the pin reaction A, determined from the
concurrency established with the free-body diagram, is drawn through the tail
of the 14.66-kN vector. The intersection of the lines representing vectors T and
A establishes the magnitudes T and A necessary to make the vector sum of the
forces equal to zero. These magnitudes are scaled from the diagram. The x- and
y-components of A may be constructed on the force polygon if desired.

A} 25° 5, B
—1-05m (QmD) |
f| t T
— == 012m %I-Smjl
10 kN
I 5m
y T
I
i 25°

T

A, Y l
4.66 kN

10 kN
Free-body diagram

Helpful Hints

(1) The justification for this step is Varig-
non’s theorem, explained in Art. 2/4.
Be prepared to take full advantage of
this principle frequently.

(2 The calculation of moments in two-
dimensional problems is generally
handled more simply by scalar algebra
than by the vector cross product
r X F. In three dimensions, as we will
see later, the reverse is often the case.

(3) Thedirection of the force at A could be
easily calculated if desired. However,
in designing the pin A or in checking
its strength, it is only the magnitude
of the force that matters.

e s =T
A.‘. 25
| | |
-l 7 n
4.66 kN 1 10 kN
14.66 kN
14.66 kN

Graphical solution



124 chapter3 Equilibrium

PROBLEMS

Introductory Problems

3/1 The mass center G of the 1400-kg rear-engine car is
located as shown in the figure. Determine the normal
force under each tire when the car is in equilibrium.

State any assumptions.

Ans. Np = 2820 N, N, = 4050 N

Problem 3/1

3/2 A carpenter carries a 12-lb 2-in. by 4-in. board as
shown. What downward force does he feel on his
shoulder at A?

1 5 - 2: | 1

Problem 3/2

3/3 A carpenter holds a 12-1b 2-in. by 4-in. board as shown.
If he exerts vertical forces on the board, determine the
forces at A and B.

Ans. Ny = 12 1b down, Ng = 24 1b up

6 —

Problem 3/3

3/4 The 450-kg uniform I-beam supports the load shown.
Determine the reactions at the supports.

- 5.6 m <—24m-—~|

Problem 3/4

3/5 The 20-kg homogeneous smooth sphere rests on the
two inclines as shown. Determine the contact forces at

Anod B. Ans. N, = 101.6 N, N = 196.2 N

Problem 3/5



Problems

Article 3/3 125

3/6 With what force magnitude T must the person pull on
the cable in order to cause the scale A to read 500 Ib?
The weights of the pulleys and cables are negligible.
State any assumptions.

Problem 3/6

3/7 What horizontal force P must a worker exert on the
rope to position the 50-kg crate directly over the

iler?
trailer? Ans. P = 1266 N

Problem 3/7

3/8 The 600-1b drum is being hoisted by the lifting device
which hooks over the end lips of the drum. Determine
the tension T in each of the equal-length rods which
form the two U-shaped members of the device.

Problem 3/8

3/9 What fraction n of the weight W of a jet airplane is

the net thrust (nozzle thrust 7' minus air resistance

R) in order for the airplane to climb with a constant
speed at an angle 6 with the horizontal?

Ans. n = sin

Problem 3/9

3/10 Determine the force magnitude P required to lift one
end of the 250-kg crate with the lever dolly as shown.
State any assumptions.

275 mm

Problem 3/10
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3/11 Find the angle of tilt @ with the horizontal so that
the contact force at B will be one-half that at A for
the smooth cylinder. Ans. 6 = 18.43°

Problem 3/11

3/12 Determine the magnitude P of the vertical force re-
quired to lift the wheelbarrow free of the ground at
point B. The combined weight of the wheelbarrow
and its load is 240 1b with center of gravity at G.

19” ¥ 2 lﬂ 8”

Problem 3/12

3/13 To facilitate shifting the position of a lifting hook
when it is not under load, the sliding hanger shown
is used. The projections at A and B engage the
flanges of a box beam when a load is supported, and
the hook projects through a horizontal slot in the
beam. Compute the forces at A and B when the hook
supports a 300-kg mass.

Ans. A = 491 kN, B = 1.962 kN

600

400
| mm

-
B

Problem 3/13

3/14 Three cables are joined at the junction ring C. De-
termine the tensions in cables AC and BC caused by
the weight of the 30-kg cylinder.

Problem 3/14

3/15 The 100-kg wheel rests on a rough surface and bears
against the roller A when the couple M is applied. If
M = 60 N-m and the wheel does not slip, compute
the reaction on the roller A. Ans. F, = 231N

Problem 3/15
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3/16 The uniform beam has a mass of 50 kg per meter of
length. Compute the reactions at the support O. The
force loads shown lie in a vertical plane.

1.4 kN

A 0 0.6m
: N
" 0.6m | 30°

Problem 3/16

3/17 To accommodate the rise and fall of the tide, a walk-
way from a pier to a float is supported by two rollers
as shown. If the mass center of the 300-kg walkway
is at G, calculate the tension T in the horizontal cable
which is attached to the cleat and find the force un-
der the roller at A.

Ans. T = 850N, A = 1472 N

Problem 3/17

Representative Problems

3/18 Determine the magnitude P of the force which the
man must exert perpendicular to the handle of the
high-pressure washer in order to cause loss of contact
at the front support B. Note that the operator pre-
vents movement of the wheel with his left foot. The
60-kg machine has its mass center at point G. Treat
the problem as two-dimensional.

310 125
mm mm

Problem 3/18

3/19 If the screw B of the wood clamp is tightened so that
the two blocks are under a compression of 500 N,
determine the force in screw A. (Note: The force sup-
ported by each screw may be taken in the direction

of the screw.) Ans. A = 1250 N

150 mm 100 mm|
| |

Problem 3/19
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3/20 The uniform 15-m pole has a mass of 150 kg and is
supported by its smooth ends against the vertical
walls and by the tension T in the vertical cable. Com-
pute the reactions at A and B.

Problem 3/20

3/21 Determine the force P required to begin rolling the
uniform cylinder of mass m over the obstruction of
height A. m

_ mg
Ans. P = =7

Problem 3/21

3/22 The elements of a heavy-duty fluid valve are shown
in the figure. When the member OB rotates clockwise
about the fixed pivot O under the action of the force
P, the element S slides freely upward in its slot,
releasing the flow. If an internal torsional spring ex-
erts a moment M = 20 N-m as shown, determine
the force P required to open the valve. Neglect all
friction.

Problem 3/22

3/23 The spring of modulus £ = 3.5 kN/m is stretched

10 mm when the disk center O is in the leftmost po-
sition x = 0. Determine the tension T required to
position the disk center at x = 150 mm. At that po-
sition, what force N is exerted on the horizontal slot-
ted guide? The mass of the disk is 3 kg.

Ans. T = 328 N, N = 203 N up

Problem 3/23
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3/24 A block placed under the head of the claw hammer

as shown greatly facilitates the extraction of the nail.
If a 50-Ib pull on the handle is required to pull the
nail, calculate the tension T in the nail and the mag-
nitude A of the force exerted by the hammer head on
the block. The contacting surfaces at A are suffi-
ciently rough to prevent slipping.

Problem 3/24

3/25 The indicated location of the center of gravity of the
3600-1b pickup truck is for the unladen condition. If

a load whose center of gravity is x = 16 in. behind
the rear axle is added to the truck, determine the
load weight W;, for which the normal forces under
the front and rear wheels are equal.

Ans. W, = 550 1b

Problem 3/25

3/26 To test the validity of aerodynamic assumptions

made in the design of the aircraft, its model is being
tested in a wind tunnel. The support bracket is con-
nected to a force and moment balance, which is ze-
roed when there is no airflow. Under test conditions,
the lift L, drag D, and pitching moment M; act as
shown. The force balance records the lift, drag, and
a moment Mp. Determine My in terms of L, D,
and Mp.

Airflow ———~

Problem 3/26

3/27 In a procedure to evaluate the strength of the triceps

muscle, a person pushes down on a load cell with the
palm of his hand as indicated in the figure. If the
load-cell reading is 35 lb, determine the vertical ten-
sile force F' generated by the triceps muscle. The
lower arm weighs 3.2 1b with mass center at G. State

any assumptions. Rwg B = 40106

Problem 3/27
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3/28 A person is performing slow arm curls with a 20-1b
weight as indicated in the figure. The brachialis mus-
cle group (consisting of the biceps and brachialis
muscles) is the major factor in this exercise. Deter-
mine the magnitude F of the brachialis-muscle-group
force and the magnitude E of the elbow joint reaction
at point E for the forearm position shown in the fig-
ure. Take the dimensions shown to locate the effec-
tive points of application of the two muscle groups;
these points are 8 in. directly above E and 2 in. di-
rectly to the right of E. Include the 3.2-1b forearm
weight which acts at point G. State any assumptions.

—— Biceps
— Brachialis

Problem 3/28

3/29 A woman is holding an 8-Ib weight in her hand with
the entire arm held horizontally as shown in the fig-
ure. A tensile force in the deltoid muscle prevents the
arm from rotating about the shoulder joint O; this
force acts at the 21° angle shown. Determine the
force exerted by the deltoid muscle on the upper arm
at A and the x- and y-components of the force reac-
tion at the shoulder joint O. The weight of the upper
arm is Wy, = 4.1 Ib, the weight of the lower arm is
W, = 2.4 Ib, and the weight of the hand is W;; =
0.9 Ib; all these weights act at the locations shown in
the figure.

Ans. Fp = 160.21b, O, = 149.51b, O, = —4221b

(WU
< 5.2"— |

16.5”
— 254" —— 4

Problem 3/29

3/30 With his weight W equally distributed on both feet,
a man begins to slowly rise from a squatting position
as indicated in the figure. Determine the tensile force
F in the patellar tendon and the magnitude of the
force reaction at point O, which is the contact area
between the tibia and the femur. Note that the line
of action of the patellar tendon force is along its mid-
line. Neglect the weight of the lower leg.

_— Quadriceps muscle

I"g | Patella

Patellar
tendon

Problem 3/30

3/31 For the design of the belt-tensioning device, deter-
mine the dimension [ if the mass m maintains a spec-
ified tension T in the belt for the position shown.
Neglect the mass of the arm and central pulley com-
pared with m. Also determine the magnitude R of the
force supported by the pin at O.

Ans. | = T6/8
mg

e
,R — v’STz Z m2g2
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Problem 3/31

3/32 The uniform 18-kg bar OA is held in the position
shown by the smooth pin at O and the cable AB. De-
termine the tension 7' in the cable and the magnitude
and direction of the external pin reaction at O.

1.2m

Problem 3/32

3/33 The exercise machine is designed with a lightweight
cart which is mounted on small rollers so that it is
free to move along the inclined ramp. Two cables are
attached to the cart—one for each hand. If the hands
are together so that the cables are parallel and if each
cable lies essentially in a vertical plane, determine
the force P which each hand must exert on its cable
in order to maintain an equilibrium position. The
mass of the person is 70 kg, the ramp angle 6 is 15°,
and the angle B is 18°. In addition, calculate the force
R which the ramp exerts on the cart.

Ans. P = 455N, R = 691 N

Problem 3/33

3/34 Calculate the magnitude of the force supported by
the pin at C under the action of the 900-N load ap-
plied to the bracket. Neglect friction in the slot.

Problem 3/34

3/35 A uniform ring of mass m and radius r carries an
eccentric mass mg at a radius b and is in an equilib-
rium position on the incline, which makes an angle
« with the horizontal. If the contacting surfaces are
rough enough to prevent slipping, write the expres-
sion for the angle 6 which defines the equilibrium

position. 4 5
Ans. 6 = sin1|:— (1 + —) sin a:|
b mo

Problem 3/35
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3/36 The concrete hopper and its load have a combined
mass of 4 metric tons (1 metric ton equals 1000 kg)
with mass center at G and is being elevated at con-
stant velocity along its vertical guide by the cable
tension 7. The design calls for two sets of guide roll-
ers at A, one on each side of the hopper, and two sets
at B. Determine the force supported by each of the
two pins at A and by each of the two pins at B.

T

10°

mm

400 mm
Problem 3/36

3/37 During an engine test on the ground, a propeller
thrust 7 = 3000 N is generated on the 1800-kg air-
plane with mass center at G. The main wheels at B
are locked and do not skid; the small tail wheel at A
has no brake. Compute the percent change n in the
normal forces at A and B as compared with their “‘en-

gine-oft” values. o~ _396%, ny = 2.28%

Problem 3/37

3/38 The elements of a wall-mounted swing-away stool are
shown in the figure. The hinge pin P fits loosely
through the frame tube, and the frame tube has a
slight clearance between the supports A and B. De-
termine the reactions on the frame tube at A and B
associated with the weight L of an 80-kg person. Also,
calculate the changes in the horizontal reactions at
C and D due to the same load L. State any
assumptions.

85 mm
Problem 3/38

3/39 The hook wrench or pin spanner is used to turn
shafts and collars. If a moment of 80 N+ m is required
to turn the 200-mm-diameter collar about its center
O under the action of the applied force P, determine
the contact force R on the smooth surface at A. En-
gagement of the pin at B may be considered to occur
at the periphery of the collar. Ans. R = 1047 N

Problem 3/39

3/40 In sailing at a constant speed with the wind, the sail-
boat is driven by a 1000-1b force against its mainsail
and a 400-1b force against its staysail as shown. The
total resistance due to fluid friction through the wa-
ter is the force R. Determine the resultant of the lat-
eral forces perpendicular to motion applied to the
hull by the water.
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Problem 3/40

3/41 A portion of the shifter mechanism for a manual car
transmission is shown in the figure. For the 4-1h force
exerted on the shift knob, determine the corresponding
force P exerted by the shift link BC on the transmission
(not shown). Neglect friction in the ball-and- socket
joint at O, in the joint at B, and in the slip tube near
support I). Note that a soft rubber bushing at D allows
the slip tube to self-align with link BC.

Ans. P = 13.14 1b

1"
41b Al(—-)-1

/‘

Slip tube

Problem 3/41

3/42 A torque (moment) of 24 N+m is required to turn the
bolt about its axis. Determine P and the forces be-
tween the smooth hardened jaws of the wrench and
the corners A and B of the hexagonal head. Assume
that the wrench fits easily on the bolt so that contact
is made at corners A and B only.

Problem 3/42

3/43 The car complete with driver weighs 1700 1b and
without the two airfoils has a 50%-50% front—rear
weight distribution at a certain speed at which there
is no lift on the car. It is estimated that at this speed
each of the airfoils A; and A, will generate 400 Ib of
downward force L and 50 lb of drag force D on the
car. Specify the vertical reactions N4 and Ng under
the two pairs of wheels at that speed when the air-
foils are added. Assume that the addition of the air-
foils does not affect the drag and zero-lift conditions
of the car body itself and that the engine has suffi-
cient power for equilibrium at that speed. The weight
of the airfoils may be neglected.

Ans. Ny = 1201 1b (48.0%), Ny = 1299 1b (52.0%)

Detail
e ——
D == —<— Air flow
-

Problem 3/43

3/44 Determine the external reactions at A and F for the
roof truss loaded as shown. The vertical loads rep-
resent the effect of the supported roofing materials,
while the 400-N force represents a wind load.

500 N

10m i

Problem 3/44
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3/45 Calculate the normal forces associated with the front
and rear wheel pairs of the 1600-kg front-wheel-drive
van. Then repeat the calculations when the van
(a) climbs a 10-percent grade and () descends a 10-
percent grade, both at constant speed. Compute the
percent changes n, and ng in the normal forces com-
pared with the nominal values. Be sure to recognize
that propulsive and braking forces are present for
cases (a) and (b).

Ans. Ny = 9420 N, N = 6280 N
(@) Ny = 9030 N (—4.14%), Np = 6590 N (+4.98%)

(b) Ny = 9710 N (+3.15%), Ng = 5900 N (—5.97%)

—1200 mm —

Problem 3/45

3/46 It is desired that a person be able to begin closing the
van hatch from the open position shown with a 10-
Ib vertical force P. As a design exercise, determine
the necessary force in each of the two hydraulic
struts AB. The mass center of the 90-1b door is 1.5
in. directly below point A. Treat the problem as two-
dimensional.

Problem 3/46

3/47 The man pushes the lawn mower at a steady speed
with a force P that is parallel to the incline. The mass
of the mower with attached grass bag is 50 kg with
mass center at G. If # = 15°, determine the normal
forces Np and N under each pair of wheels B and
C. Neglect friction. Compare with the normal forces
for the conditions of § = 0 and P = 0.

Ans. Ngp = 214 N, No = 260 N
With ¢ = P = 0: Nz = 350 N, N = 140.1 N

Problem 3/47

3/48 The small crane is mounted on one side of the bed of
a pickup truck. For the position # = 40°, determine
the magnitude of the force supported by the pin at O
and the oil pressure p against the 50-mm-diameter
piston of the hydraulic cylinder BC.

Problem 3/48
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3/49 The pin A, which connects the 200-kg steel beam

3/50

with center of gravity at G to the vertical column, is
welded both to the beam and to the column. To test
the weld, the 80-kg man loads the beam by exerting
a 300-N force on the rope which passes through a
hole in the beam as shown. Calculate the torque (cou-
ple) M supported by the pin.

Ans. M = 494 kN-m CCW

Problem 3/49

The cargo door for an airplane of circular fuselage
section consists of the uniform semicircular cowling
AB of mass m. Determine the compression C in the
horizontal strut at B to hold the door open in the
position shown. Also find an expression for the total
force supported by the hinge at A. (Consult Table
D/3 of Appendix D for the position of the centroid or
mass center of the cowling.)

\ Light strut

- Closed position of B

Problem 3/50

3/51 The cargo door for an airplane of circular fuselage
section consists of the uniform quarter-circular seg-
ment AB of mass m. A detent in the hinge at A holds
the door open in the position shown. Determine the
moment exerted by the hinge on the door.

Ans. My = 0.709mgr CCW

- Closed position of B

Problem 3/51

3/52 The rubber-tired tractor shown has a mass of 13.5
Mg with center of mass at G and is used for pushing
or pulling heavy loads. Determine the load P which
the tractor can pull at a constant speed of 5 km/h
up the 15-percent grade if the driving force exerted
by the ground on each of its four wheels is 80 per-
cent of the normal force under that wheel. Also find
the total normal reaction Ny under the rear pair of
wheels at B.

Problem 3/52



136 cChapter3 Equilibrium

3/53 Pulley A delivers a steady torque (moment) of 900 1b-
in. to a pump through its shaft at C. The tension in
the lower side of the belt is 150 lb. The driving motor
B weighs 200 Ib and rotates clockwise. As a design
consideration, determine the magnitude R of the
force on the supporting pin at O.

Ans. R = 287 1b

Problem 3/53

3/54 The receiving unit for a wireless microphone system,
exclusive of the antenna, has a mass of 1100 grams
with mass center at G. A single 375-g half-wave an-
tenna with mass center at C is mounted to the re-
ceiver at point O as shown. Plot the reaction forces
at A and B and their sum as functions of the antenna
angle # over the range 0 = # = 90°. Physically in-
terpret your plot. Treat the problem as two-
dimensional.

D

[N \
60 15 30
mm mm mm

Problem 3/54

3/55 A slender rod of mass m; is welded to the horizontal
edge of a uniform semicylindrical shell of mass m.,.
Determine an expression for the angle ¢ with the hor-
izontal made by the diameter of the shell through m,.
(Consult Table D/3 in Appendix D to locate the cen-
ter of gravity of the semicircular section.)

my

Ans. = tan ! 4
2!7’L2

Problem 3/55

3/56 When setting the anchor so that it will dig into the
sandy bottom, the engine of the 80,000-1b cruiser
with center of gravity at G is run in reverse to pro-
duce a horizontal thrust T of 500 lb. If the anchor
chain makes an angle of 60° with the horizontal, de-
termine the forward shift b of the center of buoyancy
from its position when the boat is floating free. The
center of buoyancy is the point through which the
resultant of the buoyant forces passes.

Problem 3/56
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3/57 The uniform 400-kg drum is mounted on a line of center G of the jig by calculating 7 and 6. Note that
rollers at A and a line of rollers at B. An 80-kg man the mass center of the pipe section is at O.
moves slowly a distance of 700 mm from the vertical Ans. 7 = 367 mm, 0 = 79.8°

centerline before the drum begins to rotate. All roll-
ers are perfectly free to rotate, except one of them at
B which must overcome appreciable friction in its
bearing. Calculate the friction force F exerted by that |
one roller tangent to the drum and find the magni-

tude R of the force exerted by all rollers at A on the _ Horiz.
drum for this condition. ‘ —l.
Ans. F = 306N, R = 3770 N a

Dia. = 480 mm

Problem 3/59

»3/60 The lumbar portion of the human spine supports the
entire weight of the upper torso and the force load
imposed on it. We consider here the disk (shaded red)
between the lowest vertebra of the lumbar region
(L;) and the uppermost vertebra of the sacrum re-

Problem 3/57 gion. (a) For the case L = 0, determine the com-

pressive force C and the shear force S supported by

3/58 The pipe bender consists of two grooved pulleys this disk in terms of the body weight W. The weight
mounted and free to turn on a fixed frame. The pipe W, of the upper torso (above the disk in question) is

is bent into the shape shown by a force P = 60 lb. 68% of the total body weight W and acts at G,. The
Calculate the forces supported by the bearings of the vertical force F' which the rectus muscles of the back
pulleys. exert on the upper torso acts as shown in the figure.

(b) Repeat for the case when the person holds a

050" weight of magnitude L = W/3 as shown. State any
- — | assumptions.
" A S Ans. (@) C = 0.770W, S = 0.669W

(b) C = 2.53W, S = 2.20W

Problem 3/58

»3/59 A special jig is designed to position large concrete
pipe sections (shown in gray) and consists of an 80-
Mg sector mounted on a line of rollers at A and a line
of rollers at B. One of the rollers at B is a gear which
meshes with a ring of gear teeth on the sector so as
to turn the sector about its geometric center O. When
a = 0, a counterclockwise torque of 2460 N -m must
be applied to the gear at B to keep the assembly from
rotating. When a = 30° a clockwise torque of 4680
N-m is required to prevent rotation. Locate the mass

Problem 3/60
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SECTION B. EQUILIBRIUMIN THREE DIMENSIONS

3/4 EqQuiLiBRIUM CONDITIONS

We now extend our principles and methods developed for two-di-
mensional equilibrium to the case of three-dimensional equilibrium. In
Art. 3/1 the general conditions for the equilibrium of a body were stated
in Eqgs. 3/1, which require that the resultant force and resultant couple
on a body in equilibrium be zero. These two vector equations of equilib-
rium and their scalar components may be written as

2F

Il
=]

or 3F, =
(3/3)

§ 4
o

I !

c o o (=) =] fl=)

The first three scalar equations state that there is no resultant force
acting on a body in equilibrium in any of the three coordinate directions.
The second three scalar equations express the further equilibrium
requirement that there be no resultant moment acting on the body about
any of the coordinate axes or about axes parallel to the coordinate axes.
These six equations are both necessary and sufficient conditions for com-
plete equilibrium. The reference axes may be chosen arbitrarily as a
matter of convenience, the only restriction being that a right-handed
coordinate system should be chosen when vector notation is used.

The six scalar relationships of Eqs. 3/3 are independent conditions
because any of them can be valid without the others. For example, for
a car which accelerates on a straight and level road in the x-direction,
Newton’s second law tells us that the resultant force on the car equals
its mass times its acceleration. Thus, XF, # 0, but the remaining two
force—equilibrium equations are satisfied because all other acceleration
components are zero. Similarly, if the flywheel of the engine of the ac-
celerating car is rotating with increasing angular speed about the x-axis,
it is not in rotational equilibrium about this axis. Thus, for the flywheel
alone, XM, # 0 along with 2F_ # 0, but the remaining four equilibrium
equations for the flywheel would be satisfied for its mass-center axes.

In applying the vector form of Eqs. 3/3, we first express each of the
forces in terms of the coordinate unit vectors i, j, and k. For the first
equation, ZF = 0, the vector sum will be zero only if the coefficients of
i, j, and k in the expression are, respectively, zero. These three sums,
when each is set equal to zero, yield precisely the three scalar equations
of equilibrium, £F, = 0, £F, = 0, and 2F, = 0.

For the second equation, XM = 0, where the moment sum may
be taken about any convenient point O, we express the moment of
each force as the cross product r X F, where r is the position vector
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from O to any point on the line of action of the force F. Thus M =
3(r x F) = 0. When the coefficients of i, j, and k in the resulting
moment equation are set equal to zero, respectively, we obtain the three
scalar moment equations XM, = 0, EM), = 0,and ZM, = 0.

Free-Body Diagrams

The summations in Egs. 3/3 include the effects of all forces on the
body under consideration. We learned in the previous article that the
free-body diagram is the only reliable method for disclosing all forces
and moments which should be included in our equilibrium equations.
In three dimensions the free-body diagram serves the same essential
purpose as it does in two dimensions and should always be drawn. We
have our choice either of drawing a pictorial view of the isolated body
with all external forces represented or of drawing the orthogonal pro-
jections of the free-body diagram. Both representations are illustrated
in the sample problems at the end of this article.

The correct representation of forces on the free-body diagram re-
quires a knowledge of the characteristics of contacting surfaces. These
characteristics were described in Fig. 3/1 for two-dimensional problems,
and their extension to three-dimensional problems is represented in Fig.
3/8 for the most common situations of force transmission. The repre-
sentations in hoth Figs. 3/1 and 3/8 will be used in three-dimensional
analysis.

The essential purpose of the free-body diagram is to develop a reli-
able picture of the physical action of all forces (and couples if any) acting
on a body. So it is helpful to represent the forces in their correct physical
sense whenever possible. In this way, the free-body diagram becomes a
closer model to the actual physical problem than it would be if the forces
were arbitrarily assigned or always assigned in the same mathematical
sense as that of the assigned coordinate axis.

For example, in part 4 of Fig. 3/8, the correct sense of the unknowns
R, and R, may be known or perceived to be in the sense opposite to
those of the assigned coordinate axes. Similar conditions apply to the
sense of couple vectors, parts 5 and 6, where their sense by the right-
hand rule may be assigned opposite to that of the respective coordinate
direction. By this time, you should recognize that a negative answer for
an unknown force or couple vector merely indicates that its physical
action is in the sense opposite to that assigned on the free-body diagram.
Frequently, of course, the correct physical sense is not known initially,
so that an arbitrary assignment on the free-body diagram becomes
necessary.

Categories of Equilibrium

Application of Egs. 3/3 falls into four categories which we identify
with the aid of Fig. 3/9. These categories differ in the number and type
(force or moment) of independent equilibrium equations required to
solve the problem.

Category 1, equilibrium of forces all concurrent at point O, requires
all three force equations, but no moment equations because the moment
of the forces about any axis through O is zero.
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MODELING THE ACTION OF FORCES IN THREE-DIMENSIONAL ANALYSIS

Type of Contact and Force Origin

Action on Body to Be Isolated

1. Member in contact with smooth
surface, or ball-supported member
z z

g Ty oxo

———n

Force must be normal to the
surface and directed toward
the member.

2. Member in contact z
with rough |
surface [

z
|
| The possibility exists for a
| . force F tangent to the surface
< . .
. (friction force) to act on the
- \E{ >F member, as well as a normal
- M force N,
-3 )t ¥ :
N

3. Roller or wheel support >
with lateral |
constraint

A lateral force P exerted by the
guide on the wheel can exist, in
addition to the normal force N.

A ball-and-socket joint free to
pivot about the center of the
ball can support a force R with
all three components.

In addition to three components
of force, a fixed connection

can support a couple M
represented by its three
components.

Thrust bearing is capable of
supporting axial force R, as
well as radial forces R, and R,.
Couples M, and M, must, in
some cases, be assumed zero
in order to provide statical
determinacy.

Figure 3/8
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CATEGORIES OF EQUILIBRIUM IN THREE DIMENSIONS
Force System Free-Body Diagram Independent Equations
1. Concurrent
at a point
IF, =0
IF, =0
IF,=0
2. Concurrent
with a line
IF, =0 M, =0
IF, =0 IM,=0
IF,=0
3. Parallel
IF. =0 IM, =0
EIM,=0
4. General
IF, =0 IM, =0
IF, =0 IM, =0
IF, =0 IM, =0

Figure 3/9

Category 2, equilibrium of forces which are concurrent with a line,
requires all equations except the moment equation about that line,
which is automatically satisfied.

Category 3, equilibrium of parallel forces, requires only one force
equation, the one in the direction of the forces (x-direction as shown),
and two moment equations about the axes (y and z) which are normal
to the direction of the forces.

Category 4, equilibrium of a general system of forces, requires all
three force equations and all three moment equations.

The observations contained in these statements are generally quite
evident when a given problem is being solved.

Constraints and Statical Determinacy

The six scalar relations of Egs. 3/3, although necessary and suffi-
cient conditions to establish equilibrium, do not necessarily provide all
of the information required to calculate the unknown forces acting in a
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(@) Complete fixity
Adequate constraints

(b) Incomplete fixity
Partial constraints

(¢) Incomplete fixity
Partial constraints

(d) Excessive fixity
Redundant constraints

Figure 3/10

three-dimensional equilibrium situation. Again, as we found with two
dimensions, the question of adequacy of information is decided by the
characteristics of the constraints provided by the supports. An analytical
criterion for determining the adequacy of constraints is available, but it
is beyond the scope of this treatment.* In Fig. 3/10, however, we cite
four examples of constraint conditions to alert the reader to the problem.

Part a of Fig. 3/10 shows a rigid body whose corner point A is com-
pletely fixed by the links 1, 2, and 3. Links 4, 5, and 6 prevent rotations
about the axes of links 1, 2, and 3, respectively, so that the body is
completely fixed and the constraints are said to be adequate. Part b of
the figure shows the same number of constraints, but we see that they
provide no resistance to a moment which might be applied about axis
AE. Here the body is incompletely fixed and only partially constrained.

Similarly, in Fig. 3/10c¢ the constraints provide no resistance to an
unbalanced force in the y-direction, so here also is a case of incomplete
fixity with partial constraints. In Fig. 3/10d, if a seventh constraining
link were imposed on a system of six constraints placed properly for
complete fixity, more supports would be provided than would be neces-
sary to establish the equilibrium position, and link 7 would be redun-
dant. The body would then be statically indeterminate with such a
seventh link in place. With only a few exceptions, the supporting con-
straints for rigid bodies in equilibrium in this book are adequate, and
the bodies are statically determinate.

*See the first author’s Statics, 2nd Edition SI Version, 1975, Art. 16.
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Sample Problem 3/5

The uniform 7-m steel shaft has a mass of 200 kg and is supported by a ball-
and-socket joint at A in the horizontal floor. The ball end B rests against the
smooth vertical walls as shown. Compute the forces exerted by the walls and the
floor on the ends of the shaft.

Solution. The free-body diagram of the shaft is first drawn where the contact
forces acting on the shaft at B are shown normal to the wall surfaces. In addition
to the weight W = mg = 200(9.81) = 1962 N, the force exerted by the floor on
the ball joint at A is represented by its x-, y-, and z-components. These compo-
nents are shown in their correct physical sense, as should be evident from the
requirement that A be held in place. The vertical position of B is found from
7 = 2% + 62 + B2 h = 3 m. Right-handed coordinate axes are assigned as
shown.

Vector solution. We will use A as a moment center to eliminate reference to
the forces at A. The position vectors needed to compute the moments about A
are

Fag = -1 — 3 + 16km and rug=-21i-6j+3km

where the mass center G is located halfway between A and B.
The vector moment equation gives

[ZM, = 0] rap X By + B) + ryg x W =0
(=2i — 6j + 3k) x (B,i + B,j) + (=i — 3j + 1.5k) x (—1962k) = 0
TR 3 Ik
AR NS e i L BB | 1.5 | =0
B, B, 0 0 0 -1962

(=3B, + 5890)i + (3B, — 1962)j + (2B, + 6B )k = 0
Equating the coefficients of i, j, and k to zero and solving give
B, = 654N and B, = 1962N Ans.

The forces at A are easily determined by

[SF = 0] (654 — A)i + (1962 — A))j + (~1962 + Ak = 0
and A, =654N A =1962N A, = 1962N
Finally A=JAZ+AZ+ A2

= J(654)2 + (1962)% + (1962)%2 = 2850 N Ans.

Scalar solution. Evaluating the scalar moment equations about axes through
A parallel, respectively, to the x- and y-axes, gives

[ZM, = 0] 1962(3) - 3B, =0 B, = 1962 N
[EMAy = 0] —1962(1) + 3B, =0 B, =654 N

The force equations give, simply,

[ZF, = 0] ~A, +654 =0 A =6564N

[ZF, = 0] =4, + 1962 = 0" A, = 1962 N

[SF, = 0] A, - 1962 =0 A, = 1962N

Helpful Hints

(1) We could, of course, assign all of the
unknown components of force in the
positive mathematical sense, in which
case A, and A, would turn out to be
negative upon computation. The free-
body diagram describes the physical
situation, so it is generally preferable
to show the forces in their correct
physical senses wherever possible.

(@ Note that the third equation —2B,, +
6B, = 0 merely checks the results of
the first two equations. This result
could be anticipated from the fact
that an equilibrium system of forces
concurrent with a line requires only
two moment equations (Category 2
under Categories of Equilibrium).

(3 We observe that a moment sum
about an axis through A parallel to
the z-axis merely gives us 6B, —
2B, = 0, which serves only as a check
as noted previously. Alternatively we
could have first obtained A, from
2F. = 0 and then taken our moment
equations about axes through B to
obtain A, and A,.

v
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Sample Problem 3/6

A 200-N force is applied to the handle of the hoist in the direction shown.
The bearing A supports the thrust (force in the direction of the shaft axis), while
bearing B supports only radial load (load normal to the shaft axis). Determine
the mass m which can be supported and the total radial force exerted on the
shaft by each bearing. Assume neither bearing to be capable of supporting a
moment about a line normal to the shaft axis.

e

Radial & @&

bearing - Thyyst
bearing

m

2 , 2 ; : : Di ions i illimeters
Solution. The system is clearly three-dimensional with no lines or planes of TR aRCI e

symmetry, and therefore the problem must be analyzed as a general space system x

of forces. A scalar solution is used here to illustrate this approach, although a " ]170.TN

solution using vector notation would also be satisfactory. The free-body diagram ‘ +

of the shaft, lever, and drum considered a single body could be shown by a space
(1) view if desired, but is represented here by its three orthogonal projections.

The 200-N force is resolved into its three components, and each of the three
views shows two of these components. The correct directions of A, and B, may
be seen by inspection by observing that the line of action of the resultant of the
two 70.7-N forces passes between A and B. The correct sense of the forces A,
and B, cannot be determined until the magnitudes of the moments are obtained,
so they are arbitrarily assigned. The x-y projection of the bearing forces is shown
in terms of the sums of the unknown x- and y-components. The addition of A,

x

and the weight W = mg completes the free-body diagrams. It should be noted mg =9.81m mg =9.81m
that the three views represent three two-dimensional problems related by the
corresponding components of the forces. Helpful Hints
@ From the x-y projection (@ If the standard three views of ortho-
graphic projection are not entirely
[EMO = 0] 10009.81m) — 250(173.2) = 0 m = 44.1 kg Ans. fan‘)_ﬂiar’ then review and practice

them. Visualize the three views as
the images of the body projected onto
[EM, = 0] 150B, + 175(70.7) — 250(70.7) = 0 B, = 354N the front, top, and end surfaces of a

¥ % clear plastic box placed over and
[EFx ~ D] Ax + 354 - 70.7 =0 Ax = 354 N aligned with the body

From the x-z projection

The y-z view gives
® (@ We could have started with the x-z

[EM, = 0] 150B, + 175(173.2) — 250(44.1)(9.81) =0 B, = 520 N projection rather than with the x-y
[SF, = 0] A, + 520 - 1732 — (441)981) =0 A, = 868N PROfChon.
[ZF, =0] A, =T07N (3 The y-z view could have followed im-

mediately after the x-y view since the
determination of A, and B, may be

4, = JAZ + A2 A, = J(354)% + (86.8)2 = 935N Ans. made after m is found.
@ [B = VB2 + B2 B = J(35.4)% + (520)2 = 521 N Ans. (@ Without the assumption of zero mo-

ment supported by each bearing
about a line normal to the shaft axis,
the problem would be statically
indeterminate.

The total radial forces on the bearings become
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Sample Problem 3/7

The welded tubular frame is secured to the horizontal x-y plane by a ball-
and-socket joint at A and receives support from the loose-fitting ring at B. Under
the action of the 2-kN load, rotation about a line from A to B is prevented by
the cable CD, and the frame is stable in the position shown. Neglect the weight
of the frame compared with the applied load and determine the tension T in the
cable, the reaction at the ring, and the reaction components at A.

Solution. The system is clearly three-dimensional with no lines or planes of
symmetry, and therefore the problem must be analyzed as a general space system
of forces. The free-body diagram is drawn, where the ring reaction is shown in
terms of its two components. All unknowns except T may be eliminated by a
moment sum about the line AB. The direction of AB is specified by the unit

1
vector n = ——— (4.5 + 6k) = %(3j + 4k). The moment of T about AB
J6% + 4.5

is the component in the direction of AB of the vector moment about the point A
and equals r; X T-n. Similarly the moment of the applied load F about AB is
ry X Fen. With CD = ./46.2 m, the vector expressions for T, F, r;, and r, are

T
T=——(2i + 25 - 6k) F = 2 kN
J4622

r,=-i+25m r,=25+6km

The moment equation now becomes

[EMup = 0] (—i + 2.5)) x (2 + 255 — 6k)-1(3j + 4k)

46.2
+ (2,51 + 6k) x (2§)-(3j + 4k) = 0

Completion of the vector operations gives

48T

V46.2

and the components of T' become

+20=0 T = 2.83 kN Ans.

T, = 0833kN T, = 1.042kN T, = —250 kN

We may find the remaining unknowns by moment and force summations as
follows:

[EM, = 0] 2(2.5) — 4.5B, — 1.042(3) =0 B, = 0.417 kN Ans.
[EM, = 0] 45B, - 2(6) — 1.042(6) =0 B, = 4.06 kN Ans.
[SF, = 0] A, +0417+0833=0 A, = —1.250 kN Ans.
[SF, = 0] A +2+1042=0 A,=-304kN Ans.
[SF, = 0] A, +406-250=0 A,= -1556kN Ans.

Helpful Hints

() The advantage of using vector nota-
tion in this problem is the freedom to
take moments directly about any axis.
In this problem this freedom permits
the choice of an axis that eliminates
five of theunknowns.

(2 Recall that the vector r in the expres-
sion r x F for the moment of a force
is a vector from the moment center to
any point on the line of action of the
force. Instead of ry, an equally simple
choice would be the vector AC.

(3) The negative signsassociated with the
A-components indicate that they are
in the opposite direction to those
shown on the free-body diagram.
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PROBLEMS

Introductory Problems

3/61 A force of magnitude P = 40 b is applied to the
stationary machine handle as shown. Write the force
and moment reactions at O as vectors. Neglect the
weight of the handle assembly.

Ans. R = —38.6i — 10.35k |b
M = —103.5i — 193.2j + 386k lb-in.

Problem 3/61

3/62 Three workers are carrying a 4-ft by 8-ft panel in the
horizontal position shown. If the homogeneous panel
weighs 100 Ib, estimate the lifting force exerted by
each worker.

Problem 3/62

3/63 Determine the tensions in cables AB, AC, and AD.
Ans. Tpg = 47.81b, Tyo = 47.81b, Typ = 31.21b

Problem 3/63

3/64 The uniform I-beam has a mass of 60 kg per meter
of its length. Determine the tension in the two sup-
porting cables and the reaction at D.

Problem 3/64

3/65 The vertical mast supports the 4-kN force and is con-
strained by the two fixed cables BC and BD and by
a ball-and-socket connection at A. Calculate the ten-
sion Ty in BD. Can this be accomplished by using
only one equation of equilibrium?
Ans. T; = 4.90 kN
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Problem 3/65

3/66 An overhead view of a car is shown in the figure. Two
different locations C and D are considered for a single
jack. In each case, the entire right side of the car is
lifted just off the ground. Determine the normal re-
action forces at A and B and the vertical jacking force
required for the case of each jacking location. Con-
sider the 1600-kg car to be rigid. The mass center G
is on the midline of the car.

1575 mm

Problem 3/66

3/67 The light right-angle boom which supports the 400-
kg cylinder is supported by three cables and a ball-
and-socket joint at O attached to the vertical x-y
surface. Determine the reactions at O and the cable
tensions.

Ans. O, = 1962 N, O, = 0, 0, = 6540 N
TAC = 4810 N, TBD = 2770 N, TBE = 6564 N

Problem 3/67

3/68 The industrial door is a uniform rectangular panel
weighing 1200 Ib and rolls along the fixed rail D on
its hanger-mounted wheels A and B. The door is
maintained in a vertical plane by the floor-mounted
guide roller C, which bears against the bottom edge.
For the position shown compute the horizontal side
thrust on each of the wheels A and B, which must be
accounted for in the design of the brackets.

g3

Detail of
door hanger

Problem 3/68
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3/69 A three-legged stool is subjected to the load L as
shown. Determine the vertical force reaction under
each leg. Neglect the weight of the stool.

Ans. Ny = 0.533L, N = N = 0.233L

Dimensions in millimeters
Problem 3/69

3/70 Calculate the compression P in each leg of the equi-
lateral spreader frame ABC, which ensures the ap-
plication of equal vertical forces to the rim of the
concrete hopper. The total load L is 840 1b. Note that
determination of P would be a first step in the design
of the frame.

Problem 3/70

Representative Problems

3/71 The three-wheel truck is used to carry the 100-kg box
as shown. Calculate the changes in the normal force
reactions at the three wheels due to the weight of the
box.

Ans. AN, = 66.1 N, ANz = 393 N
ANg = 522 N

Problem 3/71

3/72 One of the vertical walls supporting end B of the 200-
kg uniform shaft of Sample Problem 3/5 is turned
through a 30° angle as shown here. End A is still
supported by the ball-and-socket connection in the
horizontal x-y plane. Calculate the magnitudes of the
forces P and R exerted on the ball end B of the shaft
by the vertical walls C and D, respectively.

Problem 3/72
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3/73 The smooth homogeneous sphere rests in the 120°
groove and bears against the end plate which is nor-
mal to the direction of the groove. Determine the an-
gle #, measured from the horizontal, for which the
reaction on each side of the groove equals the force
supported by the end plate.

Ans. 68 = 30°

of V-groove

— — — Horizontal

Problem 3/73

3/74 The mass center of the 30-kg door is in the center of
the panel. If the weight of the door is supported en-
tirely by the lower hinge A, calculate the magnitude
of the total force supported by the hinge at B.

|
80 mm | % 360 mm

1500 mm

Problem 3/74

3/75 As part of a check on its design, a lower A-arm (part
of an automobile suspension) is supported by bear-
ings at A and B and subjected to the pair of 900-N
forces at C and D. The suspension spring, not shown
for clarity, exerts a force Fg at E as shown, where E
is in plane ABCD. Determine the magnitude Fg of
the spring force and the magnitudes F, and Fp of
the bearing forces at A and B which are perpendic-
ular to the hinge axis AB.
Ans. Fg = 3950 N, Fy = 43T N, Fz = 2450 N

900 N
Problem 3/75

3/76 Determine the magnitudes of the force R and couple
M exerted by the nut and bolt on the loaded bracket
at O to maintain equilibrium.

Problem 3/76
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3/77 The square steel plate has a mass of 1800 kg with

mass center at its center (. Calculate the tension in
each of the three cables with which the plate is lifted
while remaining horizontal.

Ans. Ty = Ty = 541 kN, T, = 9.87 kN

Problem 3/77

3/78 During a test, the left engine of the twin-engine air-

plane is revved up and a 500-lb thrust is generated.
The main wheels at B and C are braked in order to
prevent motion. Determine the change (compared
with the nominal values with both engines off) in the
normal reaction forces at A, B, and C.

Problem 3/78

3/79 One of the three landing pads for a proposed Mars

lander is shown in the figure. As part of a design
check on the distribution of force in the landing
struts, compute the force in each of the struts AC,
BC, and CD when the lander is resting on a horizon-
tal surface on Mars. The arrangement is symmetical
with respect to the x-z plane. The mass of the lander
is 600 kg. (Assume equal support by the pads and
consult Table D/2 in Appendix D as needed.)
Ans. Fyro = Fop = 240 N tension
Fep = 1046 N compression

.
N~ 550 %
Dimensions in millimeters

Problem 3/79

3/80 The spring of modulus 2 = 900 N/m is stretched a

distance 6 = 60 mm when the mechanism is in the
position shown. Calculate the force P, required to
initiate rotation about the hinge axis BC, and deter-
mine the corresponding magnitudes of the hearing
forces which are perpendicular to BC. What is the
normal reaction force at D if P = P, ;,/2?

55

Problem 3/80
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3/81 A smooth homogeneous sphere of mass m and radius
r is suspended by a wire AB of length 2r from point
B on the line of intersection of the two smooth ver-
tical walls at right angles to one another. Determine
the reaction R of each wall against the sphere.
Ans. R = mg/ \ﬁ

Problem 3/81

3/82 The uniform 15-kg plate is welded to the vertical
shaft, which is supported by bearings A and B. Cal-
culate the magnitude of the force supported by bear-
ing B during application of the 120-N-m couple to
the shaft. The cable from C to D prevents the plate
and shaft from turning, and the weight of the assem-
bly is carried entirely by bearing A.

600 mm

Problem 3/82

3/83 The shaft, lever, and handle are welded together and
constitute a single rigid body. Their combined mass
is 28 kg with mass center at G. The assembly is
mounted in bearings A and B, and rotation is pre-
vented by link CD. Determine the forces exerted on
the shaft by bearings A and B while the 30-N - m cou-
ple is applied to the handle as shown. Would these
forces change if the couple were applied to the shaft
AB rather than to the handle?

Ans.A = 1679 N, B = 117.1 N

}00 mm

Problem 3/83

3/84 Consider the rudder assembly of a radio-controlled
model airplane. For the 15° position shown in the
figure, the net pressure acting on the left side of the
rectangular rudder area is p = 4(10°°) N/mm?. De-
termine the required force P in the control rod DE
and the horizontal components of the reactions at
hinges A and B which are parallel to the rudder sur-
face. Assume the aerodynamic pressure to be
uniform.

Dimensions in
millimeters

Problem 3/84
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3/85 The unit ABCD of the radial-arm saw weighs 40 Ib
with center of gravity at G. If a horizontal 10-1b force
is applied to the control handle in sawing the board,
calculate the corresponding bending moment acting
on the column at A (total moment about a horizontal
axis through A). The reaction of the wood on the saw
teeth is 15 b in the direction shown, and to a close
approximation, its point of application may be taken
as E. What justification exists for treating the saw as

L uto g
being in equilibrium? Ans. M = 711 Ib-in.

Problem 3/86

3/87 The upper ends of the vertical coil springs in the
stock racecar can be moved up and down by means
of a screw mechanism not shown. This adjustment
permits a change in the downward force at each
wheel as an optimum handling setup is sought. Ini-
tially, scales indicate the normal forces to be 800 Ib,
800 lb, 1000 Ib, and 1000 Ib at A, B, C, and D, re-
spectively. If the top of the right rear spring at A is
lowered so that the scale at A reads an additional 100
Ib, determine the corresponding changes in the nor-
mal forces at B, C, and D. Neglect the effects of the
small attitude changes (pitch and roll angles) caused
by the spring adjustment. The front wheels are the
same distance apart as the rear wheels.

Ans. ANy = =100 1b, AN = 100 Ib
ANp = —100 1b

Problem 3/85

3/86 The rigid pole and cross-arms of Prob. 2/95 are
shown again here. Determine the tensions T, and
T'qp in the two supporting cables resulting from the
1.2-kN tension in cable CD. Assume the absence of
any resisting moments on the base of the pole at O
about the x- and y-axes, but not about the z-axis.
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Simplified spring detail

Problem 3/87

3/88 The uniform 30- by 40-in. trap door weighs 200 lb

3/89

and is propped open by the light strut AB at the angle

= tan~! (4/3). Calculate the compression Fg in the
strut and the force supported by the hinge D normal
to the hinge axis. Assume that the hinges act at the
extreme ends of the lower edge.

Problem 3/88

The boom AB lies in the vertical y-z plane and is sup-
ported by a ball-and-socket joint at B and by the two
cables at A. Calculate the tension in each cable re-
sulting from the 20-kN force acting in the horizontal
plane and applied at the midpoint M of the boom.
Neglect the weight of the boom.

Ans. T, = 33.0kN, T, = 22.8 kN

Problem 3/89

> 3/90 A rectangular sign over a store has a mass of 100 kg,
with the center of mass in the center of the rectangle.
The support against the wall at point C may be
treated as a ball-and-socket joint. At corner D sup-
port is provided in the y-direction only. Calculate the
tensions Ty and T, in the supporting wires, the total
force supported at C, and the lateral force R sup-

ported at D. Ans.T; = 347N, T, = 431N
R =631N,C = 768 N

Il

Problem 3/90



154 chapter3 Equilibrium

»3/91 The awning window is temporarily held open in the
50° position shown by a wooden prop CD until a
crank-type opening mechanism can be installed. If
a = 0.8mandb = 1.2 m and the mass of the window
is 50 kg with mass center at its geometric center,
determine the compressive force Fp in the prop and
all components of the forces exerted by the hinges A
and B on the window. Assume that A is a thrust-
bearing hinge but that hinge B is not.

Ans. A, = —1409N, A, = 1182N,A, = -920N
B, = —470N, B, = 285N, Fop = 227N

Problem 3/92

»>3/93 Under the action of the 40-N-m torque (couple) ap-
plied to the vertical shaft, the restraining cable AC
limits the rotation of the arm OA and attached shaft
to an angle of 60° measured from the y-axis. The col-
lar D fastened to the shaft prevents downward mo-
tion of the shaft in its bearing. Calculate the bending
moment M, the compression P, and the shear force
Vin the shaft at section B. (Note: Bending moment,
expressed as a vector, is normal to the shaft axis, and
shear force is also normal to the shaft axis.)

Ans. M = 47.7TN'm, P = 320N,V = 274 N

¥4
! 160 mm/rl
—— oA

Problem 3/91

»3/92 The uniform rectangular panel ABCD has a mass of
40 kg and is hinged at its corners A and B to the
fixed vertical surface. A wire from E to D keeps edges
BC and AD horizontal. Hinge A can support thrust
along the hinge axis AB, whereas hinge B supports
force normal to the hinge axis only. Find the tension
T in the wire and the magnitude B of the force sup-
ported by hinge B.

Ans. T = 2TTN,B = 169.9 N

180 mm

Problem 3/93
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» 3/94 The portable reel is used to wind up and store an air 200 N
hose. The tension in the hose is 100 N and a vertical
200-N force is applied to the handle in order to steady
the reel frame. Determine the minimum force P
which must be applied perpendicular to the handle
DE and the vertical components of the force reactions
at the feet A, B, and C. The diameter of the coil of
reeled hose is 300 mm, and the weight of the loaded
reel and its frame may be neglected. State any

assumptions. Ans. P = 50 N, N, = 108.6 N
Ng = 324 N,N, = 581N

OD = 300 mm
Dimensions in millimeters

Problem 3/94
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Equilibrium

CHAPTER REVIEW

In Chapter 3 we have applied our knowledge of the properties of
forces, moments, and couples studied in Chapter 2 to solve problems
involving rigid bodies in equilibrium. Complete equilibrium of a body
requires that the vector resultant of all forces acting on it be zero
(ZF = 0) and the vector resultant of all moments on the body about a
point (or axis) also be zero (EM = 0). We are guided in all of our solu-
tions by these two requirements, which are easily comprehended
physically.

Frequently, it is not the theory but its application which presents
the difficulty. The crucial steps in applying our principles of equilibrium
should be quite familiar by now. They are:

1. Make an unequivocal decision as to which system (a body or collec-
tion of bodies) in equilibrium is to be analyzed.

2. Isolate the system in question from all contacting bodies by drawing
its free-body diagram showing all forces and couples acting on the
isolated system from external sources.

3. Observe the principle of action and reaction (Newton’s third law)
when assigning the sense of each force.

4. Label all forces and couples, known and unknown.

5. Choose and label reference axes, always choosing a right-handed set
when vector notation is used (which is usually the case for three-
dimensional analysis).

6. Check the adequacy of the constraints (supports) and match the
number of unknowns with the number of available independent
equations of equilibrium.

When solving an equilibrium problem, we should first check to see
that the body is statically determinate. If there are more supports than
are necessary to hold the body in place, the body is statically indeter-
minate, and the equations of equilibrium by themselves will not enable
us to solve for all of the external reactions. In applying the equations of
equilibrium, we choose scalar algebra, vector algebra, or graphical anal-
ysis according to both preference and experience; vector algebra is par-
ticularly useful for many three-dimensional problems.

The algebra of a solution can be simplified by the choice of a moment
axis which eliminates as many unknowns as possible or by the choice of
a direction for a force summation which avoids reference to certain un-
knowns. A few moments of thought to take advantage of these simpli-
fications can save appreciable time and effort.

The principles and methods covered in Chapters 2 and 3 constitute
the most basic part of statics. They lay the foundation for what follows
not only in staties but in dynamics as well.
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REVIEW PROBLEMS

3/95 The device shown in the figure is useful for lifting
drywall panels into position prior to fastening to the
stud wall. Estimate the magnitude P of the force re-
quired to lift the 25-kg panel. State any assumptions.

Ans. P = 351 N

Problem 3/95

3/96 The light bracket ABC is freely hinged at A and is
constrained by the fixed pin in the smooth slot at B.
Calculate the magnitude R of the force supported by
the pin at A under the action of the 80-N-m applied
couple.

200

Problem 3/96

3/97 A 50-kg acrobat pedals her unicycle across t e taut
but slightly elastic cable. If the deflection at the cen-
ter of the 18-m span is 75 mm, determine the tension
in the cable. Neglect the effects of the weights of the

cable and unicycle. Ans. T = 294 kN

Problem 3/97

3/98 The uniform bar with end rollers weighs 60 lb and is
supported by the horizontal and vertical surfaces and
by the wire AC. Calculate the tension T in the wire
and the reactions against the rollers at A and at B.

| 4

Problem 3/98
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3/99 A freeway sign measuring 12 ft by 6 ft is supported ‘ D 50 50
by the single mast as shown. The sign, supporting
framework, and mast together weigh 600 b, with
center of gravity 10 ft away from the vertical center-
line of the mast. When the sign is subjected to the
direct blast of a 75 mi/hr wind, an average pressure
difference of 17.5 1b/ft? is developed between the
front and back sides of the sign with the resultant of
the wind-pressure forces acting at the center of the

All pulleys

sign. Determine the magnitudes of the force and mo- have a
ment reactions at the base of the mast. Such results r;glus of
mm

would be instrumental in the design of the base.
Ans. R = 1396 1b, M = 25,600 lb-ft

12— 4

Problem 3/100

3/101 A vertical force P on the foot pedal of the bell crank
is required to produce a tension T of 400 N in the
vertical control rod. Determine the corresponding
bearing reactions at A and B.

Ans. A = 183.9 N up, B = 424 N up

Problem 3/99

3/100 Magnetic tape under a tension of 10 N at D passes
around the guide pulleys and through the erasing
head at C at constant speed. As a result of a small
amount of friction in the bearings of the pulleys, the
tape at £ is under a tension of 11 N. Determine the
tension 7' in the supporting spring at B. The plate
lies in a horizontal plane and is mounted on a pre-
cision needle bearing at A.

Problem 3/101
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3/102 Explain why the 50-kg uniform circular rod cannot
be in static equilibrium when in the indicated
position.

Problem 3/102

3/103 The power unit of the post-hole digger supplies a

torque of 4000 lb-in. to the auger. The arm B is free
to slide in the supporting sleeve C but is not free to
rotate about the horizontal axis of C. If the unit is
free to swivel about the vertical axis of the mount
D, determine the force exerted against the right
rear wheel by the block A (or A'), which prevents
the unbraked truck from rolling. (Hint: View the
system from above.) Ans. A’ = 41.71b

)

Problem 3/103

3/104 The joints at O and A are vertical hinges which can

support force in all three coordinate directions and
moment about the x- and z-axes. The mass of arm
OA is 2 kg, that of arm AB is 2.5 kg, and that of
tray C is 4 kg. The mass center of each member is
located at its geometric center. Determine the re-
action at O for the configuration shown.

Problem 3/104

3/105 Each of the three uniform 1200-mm bars has a mass

of 20 kg. The bars are welded together into the con-
figuration shown and suspended by three vertical
wires. Bars AB and BC lie in the horizontal x-y
plane, and the third bar lies in a plane parallel to
the x-z plane. Compute the tension in each wire.
Ans. Ty = 1472 N, Ty = 245 N, T = 196.2 N

4
I
|
|

Problem 3/105
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3/106 A large symmetrical drum for drying sand is oper-
ated by the geared motor drive shown. If the mass
of the sand is 750 kg and an average gear-tooth
force of 2.6 kN is supplied by the motor pinion A to
the drum gear normal to the contacting surfaces at
B, calculate the average offset ¥ of the center of
mass & of the sand from the vertical centerline. Ne-
glect all friction in the supporting rollers.

Detail of contact
at B

Problem 3/106

3/107 The 900-lb boom with center of gravity at 7 is held
in the position shown by a ball-and-socket joint at
O and the two cables AB and AC. Determine the
two cable tensions and the x-, y-, and z-components
of the force reaction at O.
Ans. Tap = 454 1b, Ty = 554 1b
0, = —4891b, 0, = —5821b, 0, = 14451b

2

|
|
|
|
|
|
[ .

= B
0A =50’ “x
0G =30’

OB =0C = 40’

Problem 3/107

3/108 Three identical steel balls, each of mass m, are
placed in the eylindrical ring which rests on a hor-
izontal surface and whose height is slightly greater
than the radius of the balls. The diameter of the
ring is such that the balls are virtually touching one
another. A fourth identical ball is then placed on
top of the three balls. Determine the force P exerted
by the ring on each of the three lower balls.

Problem 3/108

3/109 The drum and shaft are welded together and have
a mass of 50 kg with mass center at (. The shaft is
subjected to a torque (couple) of 120 N-m, and the
drum is prevented from rotating by the cord
wrapped securely around it and attached to point C.
Calculate the magnitudes of the forces supported by
bearings A and B.

Ans. A = 610N, B = 656 N

Dimensions in millimeters

Problem 3/109
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3/110 The L-shaped bar is supported by a ball-and-socket
joint at O [case (a)] and the two cables as shown.
Explain why this configuration is improperly con-
strained. (b) The ball-and-socket joint is now re-
placed by the universal joint which can support, in
addition to three force reactions, a moment about
the y-axis but no moments about the x- and z-axes.
Plot the two cable tensions, the magnitude of the
force reaction at O, and the moment reaction at O
as functions of the position x of the 100-1b cylinder

over the range 0.5 = x = 4.5 ft. Explain any unusual 20"
characteristics of these plots. Neglect the weight of
the bar throughout.

Problem 3/111

@ *Computer-Oriented Problems

*3/112 The jib crane is designed for a maximum capacity
of 10 kN, and its uniform I-beam has a mass of 200
kg. (a) Plot the magnitude R of the force on the
pin at A as a function of x through its operating
range of x = 0.2 m tox = 3.8 m. On the same set
of axes, plot the x- and y-components of the pin
reaction at A. (b) Determine the minimum value of
R and the corresponding value of x. (¢) For what
value of R should the pin at A be designed? (Use
g = 10 m/s?)

Problem 3/110

3/111 The device shown in section can support the load L
at various heights by resetting the pawl C in an- |
other tooth at the desired height on the fixed ver-
tical column D. Determine the distance & at which
the load should be positioned in order for the two
rollers A and B to support equal forces. The weight
of the device is negligible compared with L.

Ans. b = 10.33 in.

Problem 3/112
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*3/113 Determine and plot as a function of 6 the tension
T which must be produced by the winch in order
to steadily rotate the structural member about the
fixed pivot at O. Use the range 0 = 6 < 0,,,.,, where
Oimax 18 the value of 6 at which T goes to zero. The
structural member has a mass of 35 kg per meter
of its length.

2750 cos 0 + 687 cos(f + 60°)
am T e [ 4sin(f + 60°) ][8 i

1
8 cos(f + 60“)]2

Omax = 79.1°

Problem 3/113

*3/114 The 50-kg cylinder is suspended from a clamping
collar at C which can be positioned at any horizon-
tal position x between the fixed supports at A and
B. The cable is 11 m in length. Determine and plot
the tensions in cable segments AC and BC as func-
tions of x over the interval 0 = x = 10 m. What is
the maximum value of each tension and for what
value of x does it occur?

50 kg

Problem 3/114

*3/115 Two traffic signals are attached to the 36-ft sup-
port cable at equal intervals as shown. Determine
the equilibrium configuration angles «, 3, and ¥,
as well as the tension in each cable segment.

Ans. a = 14.44°, B = 3.57°, y = 18.16°
Tap = 529 1b, Tpe = 513 1b, Ty = 539 1b

100 b

Problem 3/115

*3/116 The two traffic signals of Prob. 3/115 are now re-
positioned so that segment BC of the 36-ft support
cable is 10 ft in length and is horizontal. Specify
the necessary lengths AB and CD and the tensions
in all three cable segments.

[ 35’ '

Problem 3/116



Review Problems 163

*3/117 The horizontal boom is supported by the cables AB
and CD and by a ball-and-socket joint at O. To de-
termine the influence on the reaction at O of the
position of the vertical load L along the boom, we
may neglect the weight of the boom. If R repre-
sents the magnitude of the total force at O, deter-
mine by calculus the minimum ratio R/L and the
corresponding value of x. Then write a computer
program for R/L and plot the results for 0 < x <
6 m as a check on your calculations.

Ans. R/L = /47x%/162 — z/3 + 1
(R/L)min = 0.951 at x = 0.574 m

Problem 3/117

*3/118 The basic features of a small backhoe are shown
in the illustration. Member BE (complete with hy-
draulic cylinder CD and bucket-control links DF
and DE) weighs 500 Ib with mass center at G,. The
bucket and its load of clay weigh 350 Ib with mass
center at G,. To disclose the operational design
characteristics of the backhoe, determine and plot
the force T in the hydraulic cylinder AB as a func-
tion of the angular position 6 of member BE over
the range 0 = 6 = 90°. For what value of 6 is the
force T equal to zero? Member OH is fixed for this
exercise; note that its controlling hydraulic cylin-
der (hidden) extends from near point O to pin I.
Similarly, the bucket-control hydraulic cylinder
CD is held at a fixed length.

34"

Problem 3/118

*3/119 The mass center of the 1.5-kg link OC is located at
G, and the spring of constant £ = 25 N/m is un-
stretched when 6 = 0. Plot the tension T required
for static equilibrium over the range 0 = 6 = 90°
and state the values of T for # = 45° and # = 90°.

Ans. T = 523N at 0

8.22 N at @

45°
90°

~
1l

O0G =160 mm
OB = BC = 240 mm

Problem 3/119



The Skydome and CN Tower in Toronto are distinctly different structures. In both cases,

however, the engineers had to calculate the force supported by each major component
of the overall structure.



CHAPTER OUTLINE

STRUCTURES

4/1 INTRODUCTION

In Chapter 3 we studied the equilibrium of a single rigid body or a
system of connected members treated as a single rigid body. We first
drew a free-body diagram of the body showing all forces external to the
isolated body and then we applied the force and moment equations of
equilibrium. In Chapter 4 we focus on the determination of the forces
internal to a structure, that is, forces of action and reaction between the
connected members. An engineering structure is any connected system
of members built to support or transfer forces and to safely withstand
the loads applied to it. To determine the forces internal to an engineer-
ing structure, we must dismember the structure and analyze separate
free-body diagrams of individual members or combinations of members.
This analysis requires careful application of Newton’s third law, which
states that each action is accompanied by an equal and opposite reaction.

In Chapter 4 we analyze the internal forces acting in several types
of structures, namely, trusses, frames, and machines. In this treatment
we consider only statically determinate structures, which do not have
more supporting constraints than are necessary to maintain an equilib-
rium configuration. Thus, as we have already seen, the equations of equi-
librium are adequate to determine all unknown reactions.

The analysis of trusses, frames and machines, and beams under con-
centrated loads constitutes a straightforward application of the material
developed in the previous two chapters. The basic procedure developed
in Chapter 3 for isolating a body by constructing a correct free-body
diagram is essential for the analysis of statically determinate structures.
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Stringer
l.
\

Cross beam

Figure 4/1

ANWNAAN - AN

PO AAAAD

Commonly Used Bridge Trusses
m . N
Fink Pratt

Howe Warren

Commonly Used Roof Trusses

Figure 4/2
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4/2 PLANE TRUSSES

A framework composed of members joined at their ends to form a
rigid structure is called a fruss. Bridges, roof supports, derricks, and
other such structures are common examples of trusses. Structural mem-
bers commonly used are I-beams, channels, angles, bars, and special
shapes which are fastened together at their ends by welding, riveted
connections, or large bolts or pins. When the members of the truss lie
essentially in a single plane, the truss is called a plane truss.

For bridges and similar structures, plane trusses are commonly uti-
lized in pairs with one truss assembly placed on each side of the struc-
ture. A section of a typical bridge structure is shown in Fig. 4/1. The
combined weight of the roadway and vehicles is transferred to the lon-
gitudinal stringers, then to the cross beams, and finally, with the weights
of the stringers and cross beams accounted for, to the upper joints of
the two plane trusses which form the vertical sides of the structure. A
simplified model of the truss structure is indicated at the left side of the
illustration; the forces L represent the joint loadings.

Several examples of commonly used trusses which can be analyzed
as plane trusses are shown in Fig. 4/2.

Simple Trusses

The basic element of a plane truss is the triangle. Three bars joined
by pins at their ends, Fig. 4/3a, constitute a rigid frame. The term rigid
is used to mean noncollapsible and also to mean that deformation of the
members due to induced internal strains is negligible. On the other
hand, four or more bars pin-jointed to form a polygon of as many sides
constitute a nonrigid frame. We can make the nonrigid frame in Fig.
4/3b rigid, or stable, by adding a diagonal bar joining A and D or B and
C and thereby forming two triangles. We can extend the structure by
adding additional units of two end-connected bars, such as DE and CE
or AF and DF, Fig. 4/3c, which are pinned to two fixed joints. In this
way the entire structure will remain rigid.

Structures built from a basic triangle in the manner described are
known as simple trusses. When more members are present than are
needed to prevent collapse, the truss is statically indeterminate. A stat-
ically indeterminate truss cannot be analyzed by the equations of equi-
librium alone. Additional members or supports which are not necessary
for maintaining the equilibrium configuration are called redundant.

To design a truss we must first determine the forces in the various
members and then select appropriate sizes and structural shapes to
withstand the forces. Several assumptions are made in the force analysis
of simple trusses. First, we assume all members to be two-force members.
A two-force member is one in equilibrium under the action of two forces
only, as defined in general terms with Fig. 3/4 in Art. 3/3. Each member
of a truss is normally a straight link joining the two points of application
of force. The two forces are applied at the ends of the member and are
necessarily equal, opposite, and collinear for equilibrium.

The member may be in tension or compression, as shown in Fig.
4/4. When we represent the equilibrium of a portion of a two-force mem-
ber, the tension 7" or compression C acting on the cut section is the same

(b)

(c)

Figure 4/3

Tension Compression

Two-Force Members

Figure 4/4
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Figure 4/5

—
=
—

(a)

(b)

Figure 4/6

Compression

AB
Tension

Figure 4/7

for all sections. We assume here that the weight of the member is small
compared with the force it supports. If it is not, or if we must account
for the small effect of the weight, we can replace the weight W of the
member by two forces, each W/2 if the member is uniform, with one
force acting at each end of the member. These forces, in effect, are
treated as loads externally applied to the pin connections. Accounting
for the weight of a member in this way gives the correct result for the
average tension or compression along the member but will not account
for the effect of bending of the member.

Truss Connections and Supports

When welded or riveted connections are used to join structural
members, we may usually assume that the connection is a pin joint if
the centerlines of the members are concurrent at the joint as in Fig. 4/5.

We also assume in the analysis of simple trusses that all external
forces are applied at the pin connections. This condition is satisfied in
most trusses. In bridge trusses the deck is usually laid on cross beams
which are supported at the joints, as shown in Fig. 4/1.

For large trusses, a roller, rocker, or some kind of slip joint is used
at one of the supports to provide for expansion and contraction due to
temperature changes and for deformation from applied loads. Trusses
and frames in which no such provision is made are statically indeter-
minate, as explained in Art. 3/3. Fig. 3/1 shows examples of such joints.

Two methods for the force analysis of simple trusses will be given.
Each method will be explained for the simple truss shown in Fig. 4/6a.
The free-body diagram of the truss as a whole is shown in Fig. 4/6b.
The external reactions are usually determined first, by applying the
equilibrium equations to the truss as a whole. Then the force analysis
of the remainder of the truss is performed.

4/3 METHOD OF JOINTS

This method for finding the forces in the members of a truss consists
of satisfying the conditions of equilibrium for the forces acting on the
connecting pin of each joint. The method therefore deals with the equi-
librium of concurrent forces, and only two independent equilibrium
equations are involved.

We begin the analysis with any joint where at least one known load
exists and where not more than two unknown forces are present. The
solution may be started with the pin at the left end. Its free-body dia-
gram is shown in Fig. 4/7. With the joints indicated by letters, we usu-
ally designate the force in each member by the two letters defining the
ends of the member. The proper directions of the forces should be evi-
dent by inspection for this simple case. The free-body diagrams of por-
tions of members AF and AB are also shown to clearly indicate the
mechanism of the action and reaction. The member AB actually makes
contact on the left side of the pin, although the force AB is drawn from
the right side and is shown acting away from the pin. Thus, if we con-
sistently draw the force arrows on the same side of the pin as the mem-
ber, then tension (such as AB) will always be indicated by an arrow away



Article 4/3

Method of Joints

169

from the pin, and compression (such as AF) will always be indicated by
an arrow toward the pin. The magnitude of AF is obtained from the
equation 2F, = 0 and AB is then found from XF, = 0.

Joint F' may be analyzed next, since it now contains only two un-
knowns, EF and BF. Proceeding to the next joint having no more than
two unknowns, we subsequently analyze joints B, C, E, and D in that
order. Fig. 4/8 shows the free-body diagram of each joint and its corre-
sponding force polygon, which represents graphically the two equilib-
rium conditions XF, = 0 and 2F, = 0. The numbers indicate the order
in which the joints are analyzed. We note that, when joint D is finally
reached, the computed reaction Ry must be in equilibrium with the
forces in members CD and ED, which were determined previously from
the two neighboring joints. This requirement provides a check on the
correctness of our work. Note that isolation of joint C shows that the
force in CE is zero when the equation XF, = 0 is applied. The force in

1 AF 2 EF EF
AF BF AF
AB R,
A /AF BF
AR Joint F'
4 CE=0
Ry
Joint A BC < > CD
3 Joint C
BF BC
p 5 gF
BE 7 L\ BEi i DE
: DE
AB BC
BF Joint E
6 DE
AB cD
cD
L) R DNRz
2
Joint B Joint D
.
y
|
|
A pL———x
B c ,r
R, L R,

Figure 4/8
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this member would not be zero, of course, if an external vertical load
were applied at C.

It is often convenient to indicate the tension 7" and compression C
of the various members directly on the original truss diagram by draw-
ing arrows away from the pins for tension and toward the pins for com-
pression. This designation is illustrated at the bottom of Fig. 4/8.

Sometimes we cannot initially assign the correct direction of one or
both of the unknown forces acting on a given pin. If so, we may make
an arbitrary assignment. A negative computed force value indicates that
the initially assumed direction is incorrect.

Internal and External Redundancy

If a plane truss has more external supports than are necessary to
ensure a stable equilibrium configuration, the truss as a whole is stati-
cally indeterminate, and the extra supports constitute external redun-
dancy. If a truss has more internal members than are necessary to
prevent collapse when the truss is removed from its supports, then the
extra members constitute internal redundancy and the truss is again
statically indeterminate.

For a truss which is statically determinate externally, there is a
definite relation between the number of its members and the number of
its joints necessary for internal stability without redundancy. Because
we can specify the equilibrium of each joint by two scalar force equa-
tions, there are in all 2j such equations for a truss with j joints. For the
entire truss composed of m two-force members and having the maximum
of three unknown support reactions, there are in all m + 3 unknowns
(m tension or compression forces and three reactions). Thus, for any
plane truss, the equation m + 3 = 2j will be satisfied if the truss is
statically determinate internally.

A stmple plane truss, formed by starting with a triangle and adding
two new members to locate each new joint with respect to the existing
structure, satisfies the relation automatically. The condition holds for
the initial triangle, where m = j = 3, and m increases by 2 for each
added joint while j increases by 1. Some other (nonsimple) statically
determinate trusses, such as the K-truss in Fig. 4/2, are arranged dif-
ferently, but can be seen to satisfy the same relation.

This equation is a necessary condition for stability but it is not a
sufficient condition, since one or more of the m members can be ar-
ranged in such a way as not to contribute to a stable configuration of
the entire truss. If m + 3 > 2j, there are more members than inde-
pendent equations, and the truss is statically indeterminate internally
with redundant members present. If m + 3 < 2j, there is a deficiency
of internal members, and the truss is unstable and will collapse under
load.

Special Conditions

We often encounter several special conditions in the analysis of
trusses. When two collinear members are under compression, as indi-
cated in Fig. 4/9a, it is necessary to add a third member to maintain
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X x Fy F%
F3 ~ /
y . ‘ !

LF, = O requires F; = F,
IF, =0 requires Fy = F

LF, =0 requires F; =0
LF,. = 0 requires Fy, = 0

’ LF, = 0 requires F; =0 \
. Fy Fy
/ 3IF, = 0requires F| = F, /F2
(a) (b) (c)

Figure 4/9

alignment of the two members and prevent buckling. We see from a force
summation in the y-direction that the force F5 in the third member must
be zero and from the x-direction that F; = F,. This conclusion holds
regardless of the angle # and holds also if the collinear members are in
tension. If an external force with a component in the y-direction were
applied to the joint, then F3 would no longer be zero.

When two noncollinear members are joined as shown in Fig. 4/9b,
then in the absence of an externally applied load at this joint, the forces
in both members must be zero, as we can see from the two force
summations.

When two pairs of collinear members are joined as shown in Fig.
4/9c, the forces in each pair must be equal and opposite. This conclusion
follows from the force summations indicated in the figure.

Truss panels are frequently cross-braced as shown in Fig. 4/10a.

D B D B
Such a panel is statically indeterminate if each brace can support either
tension or compression. However, when the braces are flexible members
incapable of supporting compression, as are cables, then only the tension
member acts and we can disregard the other member. It is usually evi- i = 5 i

dent from the asymmetry of the loading how the panel will deflect.

If the deflection is as indicated in Fig. 4/10b, then member AB should (a) (b)
be retained and CD disregarded. When this choice cannot be made
by inspection, we may arbitrarily select the member to be retained.
If the assumed tension turns out to be positive upon calculation, then
the choice was correct. If the assumed tension force turns out to be
negative, then the opposite member must be retained and the calculation
redone.

We can avoid simultaneous solution of the equilibrium equations for
two unknown forces at a joint by a careful choice of reference axes. Thus,
for the joint indicated schematically in Fig. 4/11 where L is known and
F, and F5 are unknown, a force summation in the x-direction eliminates
reference to F; and a force summation in the x'-direction eliminates
reference to Fy. When the angles involved are not easily found, then a
simultaneous solution of the equations using one set of reference direc-
tions for both unknowns may be preferable. Figure 4/11

Figure 4/10
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Sample Problem 4/1

Compute the force in each member of the loaded cantilever truss by the
method of joints.

Solution. If it were not desired to calculate the external reactions at D and E,
the analysis for a cantilever truss could begin with the joint at the loaded end.
However, this truss will be analyzed completely, so the first step will be to com-
pute the external forces at D and E from the free-body diagram of the truss as
a whole. The equations of equilibrium give

[EMy = 0] 5T — 20(5) — 30(10) = 0 T = 80 kN
[5F, = 0] 80 cos 30° — E, = 0 E, = 69.3kN
[SF, = 0] 80 sin 30° + E, — 20 — 30 = 0 E, = 10kN

Next we draw free-body diagrams showing the forces acting on each of the
connecting pins. The correctness of the assigned directions of the forces is verified
when each joint is considered in sequence. There should be no question about
the correct direction of the forces on joint A. Equilibrium requires

[ZF, = 0] 0.866AB — 30 =0 AB=346kNT Ans.
[ZF, = 0] AC — 0.5(346) = 0 AC =1732kNC Ans.

where T stands for tension and C stands for compression.

Joint B must be analyzed next, since there are more than two unknown
forces on joint C. The force BC must provide an upward component, in which
case BD must balance the force to the left. Again the forces are obtained from

[ZF, = 0] 0.866BC — 0.866(34.6) = 0 BC =346kNC Ans.
[EF, = 0] BD — 2(0.5)(346) = 0 BD =346kNT Ans.

Joint C now contains only two unknowns, and these are found in the same
way as before:

[ZF, = 0] 0.866CD — 0.866(34.6) — 20 = 0
CD = 57.TkN T Ans.
[ZF, = 0] CE — 17.32 — 0.5(34.6) — 0.5(57.7) = 0
CE = 635kN C Ans.
Finally, from joint E there results
[ZF, = 0] 0.866DE = 10 DE = 1155kNC Ans.

and the equation £F, = 0 checks.

30 kN

¥
I _4AB
|
|
| /60°
(g, il
= 600
346 kN fgqo
BC
30 kN
Joint A Joint B

Helpful Hint

(D It should be stressed that the ten-
sion/compression designation refers
to the member, not the joint. Note
that we draw the force arrow on the
same side of the joint as the member
which exerts the force. In this way
tension (arrow away from the joint)
is distinguished from compression
(arrow toward the joint).

DE
60° 69.3 kN

CE="
63.5 kN
10 kN

Joint E

BC=
34.6 kN

CD
AC = ’i CE
17.32 kN
2

0 kN

Joint C
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PROBLEMS

Introductory Problems

4/1 Determine the force in each member of the simple
equilateral truss.
Ans. AB = T36 NT,AC = 368 NT,BC = 736 N C

Problem 4/1

4/2 Determine the force in each member of the loaded
truss. Discuss the effects of varying the angle of the
45° support surface at C.

s 6 £

Problem 4/2

4/3 Determine the force in each member of the truss. Note
the presence of any zero-force members. B

Ans. AB = 5kN T, BC = 5/2kN C

CD =15kNC, AC = 5/5kNT,AD = 0

5 kN

l

» B

Problem 4/3

4/4 Calculate the forces in members BE and BD of the
loaded truss.

1000 Ib

Problem 4/4

4/5 Determine the force in each member of the loaded
truss.

Ans. AB = 12kN T, AE = 3 kN C
BC = 520kNT,BD =6kNT
BE = 520kNC,CD = DE = 6 kN C

I

E

1 A

3 kN

D
Problem 4/5
4/6 Calculate the force in each member of the loaded truss.

E D

2 kN

3m

B

Problem 4/6
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4/7 Determine the force in each member of the loaded
truss. Make use of the symmetry of the truss and of

the loading, Ans. AB = DE = 96.0kN C
AH = EF = T5KN T, BC = CD = T5kN C
BH = CG = DF = 60 kN T

CH = CF = 480 kN C, GH = FG = 1125 kN T

30 kN 60 kN 30 kN

Problem 4/7

4/8 Determine the force in each member of the loaded
truss. All triangles are isosceles.

D Yi6 kN
~—3m—]
Problem 4/8

4/9 Determine the force in each member of the loaded
truss. All triangles are equilateral.

Ans. AB = kaNCAE =5/3kNT

BC :?Jach BD = 3/3kN C, BE = L/3kN C

D =R /3kNT,DE=L/BkNT

4 kN 2 kN

Problem 4/9

Representative Problems

4/10 Solve for the forces in members BE and BD of the
truss which supports the load L. All interior angles
are 60° or 120°.

L

Problem 4/10

4/11 Determine the force in member AC of the loaded
truss. The two quarter-circular members act as two-

force members. I
Ans. AC = 3 A
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Problem 4/11

4/12 Calculate the forces in members CG and CF for the
truss shown.

Problem 4/12

4/13 Each member of the truss is a uniform 20-ft bar
weighing 400 1b. Calculate the average tension or
compression in each member due to the weights of

the members. 0 AB = BC = 1000//31b T
AE = CD = 2000//31b C
BD = BE = 800//31b T
= 1400//3 b C

Problem 4/13

4/14 A drawbridge is being raised by a cable EI. The four
joint loadings shown result from the weight of the

roadway. Determine the forces in members EF, DE,
DF, CD, and FG.

Problem 4/14

4/15 The equiangular truss is loaded and supported as
shown. Determine the forces in all members in terms

of the horizontal load L.
Ans. AB=BC =LT,AF=EF=LC
DE=CD=L/2T,BF =DF =BD =0

Problem 4/15

4/16 Determine the forces in members BI, CI, and HI for
the loaded truss. All angles are 30°, 60°, or 90°.

Cc D

Problem 4/16
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4/17 A snow load transfers the forces shown to the upper
joints of a Pratt roof truss. Neglect any horizontal
reactions at the supports and solve for the forces in
all members.

Ans. AB = DE = BC = CD = 335kN C
AH = EF = 3kNT,BH = DF = 1kN C
CF =CH=1414kNT,FG = GH = 2kN T

1 kN

Zm F

Problem 4/17

4/18 The loading of Prob. 4/17 is shown applied to a Howe
roof truss. Neglect any horizontal reactions at the
supports and solve for the forces in all members.
Compare with the results of Prob. 4/17.

1 kN

2m H 2m G 2m F

Problem 4/18

4/19 Calculate the forces in members CF, CG, and EF of
the loaded truss.
Ans. CF = 15381b C, CG = 41701b T, EF = 0

i 2000 1b
O i L
b |
10’
’ 2000 Ib
¥ 13 )b
= :
10°
" 16 B |
\
10
i
HE~ — — ———pA-L
26—

Problem 4/19

4/20 Determine the force in each member of the pair of
trusses which support the 5000-Ib load at their com-
mon joint C.

5000 Ib

Problem 4/20

4/21 The rectangular frame is composed of four perimeter
two-force members and two cables AC and BD which
are incapable of supporting compression. Determine
the forces in all members due to the load L in position
(@) and then in position (b).

Ans. (a) AB = AD = BD =0,BC=LC
5L 4L
AC = 3 T,CD = - C
(b) AB = AD = BC = BD =0

5L 4L
C=—T = —
A 3 , CD 3C

Problem 4/21
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4/22 Determine the forces in members AB, CG, and DE of 4/24 Verify the fact that each of the trusses contains one

the loaded truss. or more elements of redundancy and propose two
separate changes, either one of which would remove
the redundancy and produce complete statical deter-
minacy. All members can support compression as
well as tension.

L/2 L L

Problem 4/22

4/23 The movable gantry is used to erect and prepare a
500-Mg rocket for firing. The primary structure of
the gantry is approximated by the symmetrical plane
truss shown, which is statically indeterminate. As the
gantry is positioning a 60-Mg section of the rocket
suspended from A, strain-gage measurements indi-
cate a compressive force of 50 kN in member AB and
a tensile force of 120 kN in member CD due to the

60-Mg load. Calculate the corresponding forces in (c) )
members BF and EF.
Ans. BF = 1884 kN C, EF = 120kN T Problem 4/24

4/25 Analysis of the wind acting on a small Hawaiian

16 m church, which withstood the 165-mi/hr winds of
[ Hurricane Iniki in 1992, showed the forces transmit-
1 ted

i ed to each roof truss panel to be as shown. Treat the
’ structure as a symmetrical simple truss and neglect

any horizontal component of the support reaction at

5 A. Tdentify the truss member which supports the
e largest force, tension or compression, and calculate
© ;

= s tonee. Ans. FD = 24,500 1b T
[=1

g 2450 Ib

e

J 7000 1b

16 m 24_m 16 m

Problem 4/23 4550 1b

6000 1b

24

Problem 4/25
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4/26 The 240-ft structure is used to provide various sup-
port services to launch vehicles prior to liftoff. In a
test, a 10-ton weight is suspended from joints F and
G, with its weight equally divided between the two
joints. Determine the forces in members GJ and GI.
What would be your path of joint analysis for mem-
bers in the vertical tower, such as AB or KL?

6 sections ) i
R w
IJ
7N N
‘ ‘ f
|
8
= 10 tons
5]
w
=]
2
D
7
™
Aam}
B
A E

o

Problem 4/26

»4/27 The tower for a transmission line is modeled by the
truss shown. The crossed members in the center sec-
tions of the truss may be assumed to be capable of
supporting tension only. For the loads of 1.8 kN ap-
plied in the vertical plane, compute the forces in-
duced in members AB, DB, and CD.

Ans. AB = 389kN C,DB = 0,CD = 0.932kN C

’-‘ 5 panels at 3 m ‘—"
H I J D E A

Problem 4/27

»4/28 Find the forces in members EF, KL, and GL for the

Fink truss shown.
Ans. EF = 751 kN C,KL = 40kN T
GL = 20kN T

0 M K J

} P
l*—— 6 panels at 5 m %

Problem 4/28
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4/4 METHOD OF SECTIONS

When analyzing plane trusses by the method of joints, we need only
two of the three equilibrium equations because the procedures involve
concurrent forces at each joint. We can take advantage of the third or
moment equation of equilibrium by selecting an entire section of the
truss for the free body in equilibrium under the action of a nonconcur-
rent system of forces. This method of sections has the basic advantage
that the force in almost any desired member may be found directly from
an analysis of a section which has cut that member. Thus, it is not
necessary to proceed with the calculation from joint to joint until the
member in question has been reached. In choosing a section of the truss,
we note that, in general, not more than three members whose forces are
unknown should be cut, since there are only three available independent
equilibrium relations.

Illustration of the Method

The method of sections will now be illustrated for the truss in Fig.
4/6, which was used in the explanation of the method of joints. The
truss is shown again in Fig. 4/12a for ready reference. The external
reactions are first computed as with the method of joints, by considering
the truss as a whole.

Let us determine the force in the member BE, for example. An imag-
inary section, indicated by the dashed line, is passed through the truss,
cutting it into two parts, Fig. 4/12b. This section has cut three members
whose forces are initially unknown. In order for the portion of the truss
on each side of the section to remain in equilibrium, it is necessary to
apply to each cut member the force which was exerted on it by the
member cut away. For simple trusses composed of two-force members,
these forces, either tensile or compressive, will always be in the direc-
tions of the respective members. The left-hand section is in equilibrium
under the action of the applied load L, the end reaction R,, and the
three forces exerted on the cut members by the right-hand section which
has been removed.

We can usually draw the forces with their proper senses by a visual
approximation of the equilibrium requirements. Thus, in balancing the
moments about point B for the left-hand section, the force EF is clearly
to the left, which makes it compressive, because it acts toward the cut
section of member EF. The load L is greater than the reaction R, so
that the force BE must be up and to the right to supply the needed
upward component for vertical equilibrium. Force BE is therefore ten-
sile, since it acts away from the cut section.

With the approximate magnitudes of R, and L in mind we see that
the balance of moments about point E requires that BC be to the right.
A casual glance at the truss should lead to the same conclusion when
it is realized that the lower horizontal member will stretch under the
tension caused by bending. The equation of moments about joint B elim-
inates three forces from the relation, and EF can be determined directly.
The force BE is calculated from the equilibrium equation for the
y-direction. Finally, we determine BC by balancing moments about point

¥
|
|
L ——x

(b)

Figure 4/12

g
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E. In this way each of the three unknowns has been determined inde-
pendently of the other two.

The right-hand section of the truss, Fig. 4/12b, is in equilibrium
under the action of Ry and the same three forces in the cut members
applied in the directions opposite to those for the left section. The proper
sense for the horizontal forces can easily be seen from the balance of
moments about points B and E.

Additional Considerations

It is essential to understand that in the method of sections an entire
portion of the truss is considered a single body in equilibrium. Thus, the
forces in members internal to the section are not involved in the analysis
of the section as a whole. To clarify the free body and the forces acting
externally on it, the cutting section is preferably passed through the
members and not the joints. We may use either portion of a truss for
the calculations, but the one involving the smaller number of forces will
usually yield the simpler solution.

In some cases the methods of sections and joints can be combined
for an efficient solution. For example, suppose we wish to find the force
in a central member of a large truss. Furthermore, suppose that it is
not possible to pass a section through this member without passing
through at least four unknown members. It may be possible to deter-
mine the forces in nearby members by the method of sections and then
progress to the unknown member by the method of joints. Such a com-
bination of the two methods may be more expedient than exclusive use
of either method.

The moment equations are used to great advantage in the method
of sections. One should choose a moment center, either on or off the
section, through which as many unknown forces as possible pass.

It is not always possible to assign the proper sense of an unknown
force when the free-body diagram of a section is initially drawn. Once
an arbitrary assignment is made, a positive answer will verify the as-
sumed sense and a negative result will indicate that the force is in the
sense opposite to that assumed. An alternative notation preferred by
some is to assign all unknown forces arbitrarily as positive in the tension
direction (away from the section) and let the algebraic sign of the answer
distinguish between tension and compression. Thus, a plus sign would
signify tension and a minus sign compression. On the other hand, the
advantage of assigning forces in their correct sense on the free-body
diagram of a section wherever possible is that doing so emphasizes the
physical action of the forces more directly, and this practice is the one
which is preferred here.
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Sample Problem 4/2

Calculate the forces induced in members KL, CL, and CB by the 20-ton load
on the cantilever truss. I

Gl F E D C B A
Solution. Although the vertical components of the reactions at A and M are 5 6 panels at 12"
statically indeterminate with the two fixed supports, all members other than AM

are statically determinate. We may pass a section directly through members KL,

CL, and CB and analyze the portion of the truss to the left of this section as a
(1) statically determinate rigid body.

The free-body diagram of the portion of the truss to the left of the section
is shown. A moment sum about L quickly verifies the assignment of CB as com-
pression, and a moment sum about C quickly discloses that KL is in tension. The
direction of CL is not quite so obvious until we observe that KL and CB intersect
at a point P to the right of G. A moment sum about P eliminates reference to
KL and CB and shows that CL must be compressive to balance the moment of
the 20-ton force about P. With these considerations in mind the solution becomes
straightforward, as we now see how to solve for each of the three unknowns
independently of the other two.

20 tons

@) Summing moments about L requires finding the moment arm BL = 16 + Helpful Hints

(26 — 16)/2 = 21 ft. Thus, (1) We note that analysis by the method

[EM;, = 0] 20(5)(12) — CB(21) = 0 CB = 57.1 tons C s e Ljemty euld necasrate Horking
with eight joints in order to caleulate

Next we take moments about C, which requires a calculation of cos 6. From the the three forces in question. Thus,

given dimensions we see 6 = tan '(5/12) so that cos # = 12/13. Therefore, the method of sections offers a con-

5 siderable advantage in this case.
[EM. = 0] 20(4)(12) — 75KL(16) = 0 KL = 65.0 tons T Ans.

(2) We could have started with moments

Finally, we may find CL by a moment sum about P, whose distance from C about C or P just as well.

is given by PC/16 = 24/(26 — 16) or PC = 38.4 ft. We also need B, which is

given by B = tan }(CB/BL) = tan *(12/21) = 29.7° and cos B = 0.868. We ® We cf’uld also ha\.fe d‘eten.‘mined CL
e Have by a force summation in either the x-

or y-direction.
@ [EMp = 0] 20(48 — 38.4) — CL(0.868)(38.4) = 0

CL = 5.76 tons C Ans.
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Sample Problem 4/3

Calculate the force in member D.J of the Howe roof truss illustrated. Neglect
any horizontal components of force at the supports.

Solution. Tt is not possible to pass a section through DeJ without cutting four
members whose forces are unknown. Although three of these cut by section 2
are concurrent at JJ and therefore the moment equation about o could be used
to obtain DE, the force in DJ cannot be obtained from the remaining two equi-
librium principles. It is necessary to consider first the adjacent section 1 before
analyzing section 2.

The free-body diagram for section 1 is drawn and includes the reaction of
18.33 kN at A, which is previously calculated from the equilibrium of the truss
as a whole. In assigning the proper directions for the forces acting on the three
cut members, we see that a balance of moments about A eliminates the effects
of CD and JK and clearly requires that CJ be up and to the left. A balance of
moments about C eliminates the effect of the three forces concurrent at C and
indicates that JK must be to the right to supply sufficient counterclockwise mo-
ment. Again it should be fairly obvious that the lower chord is under tension
because of the bending tendency of the truss. Although it should also be apparent
that the top chord is under compression, for purposes of illustration the force in
CD will be arbitrarily assigned as tension.

By the analysis of section 1, CJ is obtained from

[EM, = 0] 0.707CJ(12) — 10(4) — 10(8) = 0 CJ = 1414 kN C

In this equation the moment of CJ is calculated by considering its horizontal
and vertical components acting at point /. Equilibrium of moments about J
requires

[EM; = 0] 0.894CD(6) + 18.33(12) — 10(4) — 10(8) = 0

CD = -18.63 kN

The moment of CD about o is calculated here by considering its two components
as acting through D. The minus sign indicates that CD was assigned in the wrong
direction.

Hence, CD = 18.63 kN C

From the free-body diagram of section 2, which now includes the known
value of CJ, a balance of moments about G is seen to eliminate DE and JK. Thus,

[EM = 0] 12D + 10(16) + 10(20) — 18.33(24) — 14.14(0.707)(12) = 0

DJ =1667kN T Ans.

Again the moment of CJ is determined from its components considered to be
acting at J/. The answer for D.J is positive, so that the assumed tensile direction
is correct.

An alternative approach to the entire problem is to utilize section 1 to de-
termine CD and then use the method of joints applied at D to determine D.J.

W™ L Kl J I\l( H wp
10 kN J

Ff — 6 panelsat4 m ———

10 kN

Section 1

18.33 kN

Helpful Hints

(D There is no harm in assigning one or
more of the forces in the wrong di-
rection as long as the calculations
are consistent with the assumption.
A negative answer will show the
need for reversing the direetion of
the force.

@ If desired, the direction of CD may
be changed on the free-body diagram
and the algebraic sign of CD reversed
in the caleulations, or else the work
may be left as it stands with a note
stating the proper direction.

10 kN

~

18.33 kN

(3) Observe that a section through mem-
bers CD, D.J, and DE could be taken
which would cut only three unknown
members. However, since the forces
in these three members are all con-
current at [, a moment equation
about D would yield no information
about them. The remaining two force
equations would not be sufficient to
solve for the three unknowns.
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PROBLEMS

Introductory Problems

4/29 Determine the force in member CG.
Ans. CG = 1414 kips T

F 10’ E
10
¢ D
5 kips 5 kips 5 kips

Problem 4/29

4/30 Determine the forces in members BC, CF, and EF of
the loaded truss.

A

Problem 4/30

4/31 Determine the forces in members GH and CG for
the truss loaded and supported as shown. Does the
statical indeterminacy of the supports affect your
calculation?

Ans. CG = T0.TkN T, GH = 100 kN T, No

J 4m H 4m

50 kN

Problem 4/31

4/32 Determine the force in member DG of the loaded
truss.

5 panels at 4’ —-‘

A

Problem 4/32

4/33 Determine the forces in members BC, BE, and BF.
The triangles are equilateral.

Ans. BC = BE = —=T,BF = —=C

Problem 4/33
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Representative Problems

4/34 Determine the forces in members DE and DL.

Problem 4/34

4/35 Calculate the forces in members BC, BE, and EF.
Solve for each force from an equilibrium equation
which contains that force as the only unknown.

Ans. BC = 21 kN T,BE = 841 kN T
EF = 295kN C

14 kN

G =

Problem 4/35

4/36 Determine the forces in members BC and FG of the
loaded symmetrical truss. Show that this calculation
can be accomplished by using one section and two
equations, each of which contains only one of the two
unknowns. Are the results affected by the statical in-
determinacy of the supports at the hase?

12’
300 Th —>r E
K
-
C J
200 b =—= F
b
100 1b =L 4 a
&

Problem 4/36

4/37 The truss is composed of equilateral triangles of side
a and is supported and loaded as shown. Determine
the forces in members BC and CG.

Ans. BC = CG =L/3T

D

Problem 4/37

4/38 The truss shown is composed of 45° right triangles.
The crossed members in the center two panels are
slender tie rods incapable of supporting compression.
Retain the two rods which are under tension and
compute the magnitudes of their tensions. Also find
the force in member MN.

J H G F E D

KLMNlO

100 kN

Problem 4/38
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4/39 Determine the force in member BF.
Ans. BF = 2.66 kips C

\
3 kips E
DA P o

Problem 4/39

4/40 The members CJ and CF of the loaded truss cross
but are not connected to members Bl and DG. Com-
pute the forces in members BC, CJ, CI, and HI.

6 kN

60° 3m 3m C 3m 3 m
A B D E

I H G

\ \
4 kN 10 kN 8 kN

Problem 4/40

4/41 The truss supports a ramp (shown with a dashed
line) which extends from a fixed approach level near
joint F to a fixed exit level near /. The loads shown
represent the weight of the ramp. Determine the
forces in members BH and CD.

Ans. BH = 0.683L T, CD = 1.932L C

Problem 4/41

4/42 Determine the forces in members CD, CJ, and D.J.

6 panels at 3* |

Problem 4/42

4/43 Compute the force in member GM of the loaded |
it Ans. GM = 0

0} N M

8 panels at 3 m

Problem 4/43
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4/44 Compute the force in member HN of the loaded
truss. Compare your answer with the stated result of
Prob. 4/43.

LR @ P O

N M

= 8panelsat 3m

Problem 4/44

4/45 Determine the forces in members DJ and EJ of the
loaded truss.
Ans. DJJ = 045L T, EJ = 0.360L T

?ﬁ" ‘V {K 'V T V;

L L L L J
6 panelsat8m ———|

Problem 4/45

4/46 Determine the force in member HP of the loaded
truss. Members FP and G@ cross without touching
and are incapable of supporting compression.

o [t~
bo |t~

L L L L L & L L

Ao

———— 9 panels at 20’

Problem 4/46

4/47 Determine the forces in members DE, EI, FI, and HI
of the arched roof truss.

Ans. DE = 297 kN C, EI = 264 kN T

FI = 206 kNT HI = T59kN T

’—:4*--:——6T6——-4:~i-4-—‘- 67-»!&67-—'--4-—‘

100

Il

75 kN

Dimensions in meters

Problem 4/47

4/48 Find the force in member J@ for the Baltimore truss
where all angles are 30°, 60°, 90°, or 120°.

U v W X Y

B C D E F GH|J| K L M

100 kN 100 kN

Problem 4/48

P 4/49 Determine the force in member DK of the loaded
overhead sign truss. Ans. DK = 1kip T

< 6panelsat § ———

Problem 4/49
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H—l2mﬁ<—5 panelsat8m——+
|

» 4/50 In the traveling bridge crane shown all crossed mem-

bers are slender tie rods incapable of supporting com-

pression. Determine the forces in members DF and

EF and find the horizontal reaction on the truss at
A. Show that if CF = 0, DE = 0 also.

Ans. DF = 768 kN C, EF = 364 kN C

A, = 101.1kN

|
T

22 m

Problem 4/50

» 4/51 Determine the force in member DG of the compound

truss. The joints all lie on radial lines subtending an-
gles of 15° as indicated, and the curﬁd members
act as two-force members. Distance OC = OA =

OB = R. Ans. DG = 0.569L C

Problem 4/51

| 4/52 A design model for a transmission-line tower is

shown in the figure. Members GH, FG, OP, and NO

are insulated cables; all other members are steel bars.

For the loading shown, compute the forces in mem-

bers FI, FJ, EJ, EK, and ER. Use a combination of
methods if desired.

Ans. FI = ER = 0,FJ = T81kN T

EJ = 361kN C,EK = 224 kN C

Il

(4m 4m 4m 4m 4m 4m
) ) |
K | j
J L [
I M 6 m
H N
60° |F  ENQ P Z-60° i
G| a0 300 10 6 m
pl\r
25 kN 25 kN diia
C s
6 m
B T B
6 m
A U |
X
54m

Problem 4/52
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(e)

Figure 4/13

4/5 SPACE TRUSSES

A space truss is the three-dimensional counterpart of the plane truss
described in the three previous articles. The idealized space truss con-
sists of rigid links connected at their ends by ball-and-socket joints (such
a joint is illustrated in Fig. 3/8 in Art. 3/4). Whereas a triangle of pin-
connected bars forms the basic noncollapsible unit for the plane truss,
a space truss, on the other hand, requires six bars joined at their ends
to form the edges of a tetrahedron as the basic noncollapsible unit. In
Fig. 4/13a the two bars AD and BD joined at D require a third support
CD to keep the triangle ADB from rotating about AB. In Fig. 4/13b the
supporting base is replaced by three more bars AB, BC, and AC to form
a tetrahedron not dependent on the foundation for its own rigidity.

We may form a new rigid unit to extend the structure with three
additional concurrent bars whose ends are attached to three fixed joints
on the existing structure. Thus, in Fig. 4/13¢ the bars AF, BF, and CF
are attached to the foundation and therefore fix point F in space. Like-
wise point H is fixed in space by the bars AH, DH, and CH. The three
additional bars CG, FG, and HG are attached to the three fixed points
C, F, and H and therefore fix G in space. The fixed point E is similarly
created. We see now that the structure is entirely rigid. The two applied
loads shown will result in forces in all of the members. A space truss
formed in this way is called a simple space truss.

Ideally there must be point support, such as that given by a ball-
and-socket joint, at the connections of a space truss to prevent bending
in the members. As in riveted and welded connections for plane trusses,
if the centerlines of joined members intersect at a point, we can justify
the assumption of two-force members under simple tension and
compression.

Statically Determinate Space Trusses

When a space truss is supported externally so that it is statically
determinate as an entire unit, a relationship exists between the number
of its joints and the number of its members necessary for internal sta-
bility without redundancy. Because the equilibrium of each joint is spee-
ified by three scalar force equations, there are in all 3j such equations
for a space truss with j joints. For the entire truss composed of m mem-
bers there are m unknowns (the tensile or compressive forces in the
members) plus six unknown support reactions in the general case of a
statically determinate space structure. Thus, for any space truss, the
equation m + 6 = 3j will be satisfied if the truss is statically determi-
nate internally. A simple space truss satisfies this relation automatically.
Starting with the initial tetrahedron, for which the equation holds, the
structure is extended by adding three members and one joint at a time,
thus preserving the equality.

As in the case of the plane truss, this relation is a necessary con-
dition for stability, but it is not a sufficient condition, since one or more
of the m members can be arranged in such a way as not to contribute
to a stable configuration of the entire truss. If m + 6 > 3j, there are
more members than there are independent equations, and the truss is
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statically indeterminate internally with redundant members present. If
m + 6 < 3j, there is a deficiency of internal members, and the truss is
unstable and subject to collapse under load. This relationship between
the number of joints and the number of members is very helpful in the
preliminary design of a stable space truss, since the configuration is not
as obvious as with a plane truss, where the geometry for statical deter-
minacy is generally quite apparent.

Method of Joints for Space Trusses

The method of joints developed in Art. 4/3 for plane trusses may be
extended directly to space trusses by satisfying the complete vector
equation

F =0 (4/1)

for each joint. We normally begin the analysis at a joint where at least
one known force acts and not more than three unknown forces are pres-
ent. Adjacent joints on which not more than three unknown forces act
may then be analyzed in turn.

This step-by-step joint technique tends to minimize the number of
simultaneous equations to be solved when we must determine the forces
in all members of the space truss. For this reason, although it is not
readily reduced to a routine, such an approach is recommended. As an
alternative procedure, however, we may simply write 3; joint equations
by applying Eq. 4/1 to all joints of the space frame. The number of
unknowns will be m + 6 if the structure is noncollapsible when removed
from its supports and those supports provide six external reactions. If
the number of equations (3/) equals the number of unknowns (m + 6),
then the entire system of equations may be solved simultaneously for
the unknowns. Because of the large number of coupled equations, a com-
puter solution is usually required. With this latter approach, it is not
necessary to begin at a joint where at least one known and no more than
three unknown forces act.

Method of Sections for Space Trusses

The method of sections developed in the previous article may also
be applied to space trusses. The two vector equations

ZF =0 and M =0

must be satisfied for any section of the truss, where the zero moment
sum will hold for all moment axes. Because the two vector equations are
equivalent to six scalar equations, we conclude that a section should in
general not be passed through more than six members whose forces are
unknown. The method of sections for space trusses is not widely used,
however, because a moment axis can seldom be found which eliminates
all but one unknown, as in the case of plane trusses.

Vector notation for expressing the terms in the force and moment
equations for space trusses is of considerable advantage and is used in
the sample problem which follows.
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Sample Problem 4/4

The space truss consists of the rigid tetrahedron ABCD anchored by a ball-
and-socket connection at A and prevented from any rotation about the x-, y-, or
z-axes by the respective links 1, 2, and 3. The load L is applied to joint E, which
is rigidly fixed to the tetrahedron by the three additional links. Solve for the
forces in the members at joint E and indicate the procedure for the determination
of the forces in the remaining members of the truss.

Solution. We note first that the truss is supported with six properly placed
constraints, which are the three at A and the links 1, 2, and 3. Also, with m =
9 members and j = 5 joints, the condition m + 6 = 3j for a sufficiency of
members to provide a noncollapsible structure is satisfied.

The external reactions at A, B, and D can be calculated easily as a first step,
although their values will be determined from the solution of all forces on each
of the joints in succession.

We must start with a joint on which at least one known force and not more
than three unknown forces act, which in this case is joint E. The free-body dia-
gram of joint E is shown with all force vectors arbitrarily assumed in their pos-
itive tension directions (away from the joint). The vector expressions for the three
unknown forces are

Fgp = L/_; (-i-j), Fge = %C (—=3i — 4k), Fpp = —?2 (—3j — 4k)
Equilibrium of joint E requires

[ZF:‘]] L+FEB+FEC+FED=0 or

F
T4 'f;(*i*j) +E§Q(—3i+4k)+%(—3j—4k)=0

o
Rearranging terms gives

P % i 3FEC)i s (_FE = 3FED)j + (_4FEC e 4FED)k =0

( S B 5 b 5 5

N,
Equating the coefficients of the i-, j-, and k-unit vectors to zero gives the three
equations

Fgp | 3Fpc Fgp  3Fgp
e i T e e e S s R )
/2 5 2 5 EC ED
Solving the equations gives us
Fgg= —L/Jy2 Fpo=-5L/6 Fgp = 5L/6 Ans.

Thus, we conclude that Fgp and Fg are compressive forces and F, is tension.

Unless we have computed the external reactions first, we must next analyze
Jjoint C with the known value of Fpc and the three unknowns Fpp, Frys, and
Fep. The procedure is identical with that used for joint E. Joints B, D, and A
are then analyzed in the same way and in that order, which limits the unknowns
to three for each joint. The external reactions computed from these analyses
must, of course, agree with the values which can be determined initially from an
analysis of the truss as a whole.

Helpful Hints

() Suggestion: Draw a free-body dia-
gram of the truss as a whole and ver-
ify that the external forces acting on
the trussare A, = Li, A, = Lj, A, =
(4L/3)k, B, = 0,D, = —Lj, D, =
~(4L/3)k. '

(@ With this assumption, a negative nu-
merical value for a force would indi-
cate compression,
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PROBLEMS

(In the following problems, use plus for tension and minus
for compression.)

4/53 Determine the forces in members AB, AC, and AD.
Ans. AB = —4.46 kN, AC = —1.521 kN
AD = 1.194 kN

Problem 4/53

4/54 The base of an automobile jackstand forms an equi-
lateral triangle of side length 10 in. and is centered
under the collar A. Model the structure as one with
a ball and socket at each joint and determine the
forces in members BC, BD, and CD. Neglect any
horizontal reaction components under the feet B, C,
and D,

800 1b

Problem 4/54

4/55 The rectangular space truss 16 m in height is erected

on a horizontal square base 12 m on a side. Guy wires
are attached to the structure at E and G as shown
and are tightened until the tension T in each wire is
9 kN. Calculate the force F' in each of the diagonal

members. Ans. F = —3.72 kN

Problem 4/55
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4/56 The tetrahedral space truss has a horizontal base
ABC in the form of an isosceles triangle and legs AD,
BD, and CD which support the mass m from point
D. Each vertex of the base is suspended by a vertical
wire from overhead supports. Calculate the forces in-
duced in members AC and AB.

Problem 4/56

4/57 For the space truss shown, check the sufficiency of
the supports and also the number and arrangement
of the members to ensure statical determinacy, both
external and internal. By inspection determine the
forces in members DC, CB, and CF. Calculate the
force in member AF and the x-component of the re-
action on the truss at D.

Problem 4/57

4/58 The space truss is shown in an intermediate stage of
design. The external constraints indicated are suffi-
cient to maintain external equilibrium. How many
additional members are needed to prevent internal
instability and where can they be placed?

Problem 4/58

4/59 Determine the force in member BD of the regular
pyramid with square base. Ans. DB = —2.00L

Problem 4/59
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4/60 The space truss shown is secured to the fixed sup-
ports at A, B, and E and is loaded by the force L
which has equal x- and y-components but no vertical
z-component. Show that there is a sufficient number
of members to provide internal stability and that
their placement is adequate for this purpose. Next
determine the forces in members CD, BC, and CE.

Problem 4/60

4/61 The pyramidal truss section BCDEF is symmetric

about the vertical x-z plane as shown. Cables AE, AF,
and AB support a 5-kN load. Determine the force in

member BE. Ans. Tgp = —2.36 kN

Problem 4/61

>4/62

> 4/63

A space truss is constructed in the form of a cube
with six diagonal members shown. Verify that the
truss is internally stable. If the truss is subjected to
the compressive forces P applied at F' and D along
the diagonal FD, determine the forces in members

FEend BG.  png Fpg = ~P/\3, Fgo = P8

Problem 4/62

The lengthy boom of an overhead construction crane,
a portion of which is shown, is an example of a pe-
riodic structure—one which is composed of repeated
and identical structural units. Use the method of sec-
tions to find the forces in members F.J and G.J.

Ans. FJ = 0, GJ = —70.8 kN

BC=BD=CD=2m

5000 kg

Problem 4/63
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P 4/64 The space truss supports the structure of an amuse-
ment park ride (not shown) which rotates about a
vertical axis. The eight footpads form a regular octa-
gon, and ABCDE is a pyramid with a 5-ft-square base
BCDE and vertex A, which is 1 ft above the base.
The plane of figure BCDE is 4 ft above the plane of
the footpads. The diagonals of the trapezoidal faces
such as BCGF cross without touching. If the vertical
load L is transmitted to point A and if instrumenta-
tion indicates a tensile force of 0.3L in member BC,
determine the forces in members CF and CG. (Hint:
Begin your analysis at point A and make full use of

symmetry.) Ans. CF = 0.051L, CG = —0.312L

Problem 4/64
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4/6 FRAMES AND MACHINES

A structure is called a frame or machine if at least one of its indi-
vidual members is a multiforce member. A multiforce member is defined
as one with three or more forces acting on it, or one with two or more
forces and one or more couples acting on it. Frames are structures which
are designed to support applied loads and are usually fixed in position.
Machines are structures which contain moving parts and are designed
to transmit input forces or couples to output forces or couples.

Because frames and machines contain multiforce members, the
forces in these members in general will not be in the directions of the
members. Therefore, we cannot analyze these structures by the methods
developed in Arts. 4/3, 4/4, and 4/5 because these methods apply to
simple trusses composed of two-force members where the forces are in
the directions of the members.

Interconnected Rigid Bodies with Multiforce Members

In Chapter 3 we discussed the equilibrium of multiforce bodies, but
we concentrated on the equilibrium of a single rigid body. In this present
article we focus on the equilibrium of interconnected rigid bodies which
include multiforce members. Although most such bodies may be ana-
lyzed as two-dimensional systems, there are numerous examples of
frames and machines which are three-dimensional.

The forces acting on each member of a connected system are found
by isolating the member with a free-body diagram and applying the
equations of equilibrium. The principle of action and reaction must be
carefully observed when we represent the forces of interaction on the
separate free-body diagrams. If the structure contains more members or
supports than are necessary to prevent collapse, then, as in the case of
trusses, the problem is statically indeterminate, and the principles of
equilibrium, although necessary, are not sufficient for solution. Al-
though many frames and machines are statically indeterminate, we will
consider in this article only those which are statically determinate.

If the frame or machine constitutes a rigid unit by itself when re-
moved from its supports, like the A-frame in Fig. 4/14a, the analysis is
best begun by establishing all the forces external to the structure treated
as a single rigid body. We then dismember the structure and consider
the equilibrium of each part separately. The equilibrium equations for
the several parts will be related through the terms involving the forces

I
IV /Y

Rigid Nonrigid
noncollapsible collapsible

(a)

Figure 4/14
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(b)

T Vector

A, notation

Figure 4/16

of interaction. If the structure is not a rigid unit by itself but depends
on its external supports for rigidity, as illustrated in Fig. 4/14b, then
the calculation of the external support reactions cannot be completed
until the structure is dismembered and the individual parts are
analyzed.

Force Representation and Free-Body Diagrams

In most cases the analysis of frames and machines is facilitated by
representing the forces in terms of their rectangular components. This
1s particularly so when the dimensions of the parts are given in mutually
perpendicular directions. The advantage of this representation is that
the calculation of moment arms is simplified. In some three-dimensional
problems, particularly when moments are evaluated about axes which
are not parallel to the coordinate axes, use of vector notation is
advantageous.

It is not always possible to assign the proper sense to every force or
its components when drawing the free-body diagrams, and it becomes
necessary to make an arbitrary assignment. In any event, it is absolutely
necessary that a force be consistently represented on the diagrams for
interacting bodies which involve the force in question. Thus, for two
bodies connected by the pin A, Fig. 4/15a, the force components must
be consistently represented in opposite directions on the separate free-
body diagrams.

For a ball-and-socket connection between members of a space frame,
we must apply the action-and-reaction principle to all three components
as shown in Fig. 4/15b. The assigned directions may prove to be wrong
when the algebraic signs of the components are determined upon cal-
culation. If A,, for instance, should turn out to be negative, it is actually
acting in the direction opposite to that originally represented. Accord-
ingly, we would need to reverse the direction of the force on both mem-
bers and to reverse the sign of its force terms in the equations. Or we
may leave the representation as originally made, and the proper sense
of the force will be understood from the negative sign. If we choose to
use vector notation in labeling the forces, then we must be careful to
use a plus sign for an action and a minus sign for the corresponding
reaction, as shown in Fig. 4/16.

We may occasionally need to solve two or more equations simulta-
neously in order to separate the unknowns. In most instances, however,
we can avoid simultaneous solutions by careful choice of the member or
group of members for the free-body diagram and by a careful choice of
moment axes which will eliminate undesired terms from the equations.
The method of solution described in the foregoing paragraphs is illus-
trated in the following sample problems.
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Sample Problem 4/5

The frame supports the 400-kg load in the manner shown. Neglect the
weights of the members compared with the forces induced by the load and com-
pute the horizontal and vertical components of all forces acting on each of the
members.

Solution. We observe first that the three supporting members which constitute
the frame form a rigid assembly that can be analyzed as a single unit. We also
observe that the arrangement of the external supports makes the frame statically
determinate.

From the free-body diagram of the entire frame we determine the external
reactions. Thus,

[(EMy = 0]  550.4)981) - 5D =0 D = 432kN
[5F, = 0] A, -432=0 A =432kN
[SF, = 0] A, —392=0 A =392kN

Next we dismember the frame and draw a separate free-body diagram of
each member. The diagrams are arranged in their approximate relative positions
to aid in keeping track of the common forces of interaction. The external reac-
tions just obtained are entered onto the diagram for AD. Other known forces are
the 3.92-kN forces exerted by the shaft of the pulley on the member BF, as
obtained from the free-body diagram of the pulley. The cable tension of 3.92 kN
is also shown acting on AD at its attachment point.

Next, the components of all unknown forces are shown on the diagrams.
Here we observe that CE is a two-force member. The force components on CE
have equal and opposite reactions, which are shown on BF at E and on AD at
C. We may not recognize the actual sense of the components at B at first glance,
so they may be arbitrarily but consistently assigned.

The solution may proceed by use of a moment equation about B or E for
member BF, followed by the two force equations. Thus,

[EMy = 0] 3.92(5) — 3E,.(3) = 0 E, = 13.08 kN Ans.
[SF, = 0] B, + 392 — 13.08/2 =0 B, = 262kN Ans.
[SF, = 0] B, +392-1308=0 B, =915kN Ans.

Positive numerical values of the unknowns mean that we assumed their direc-
tions correctly on the free-body diagrams. The value of C, = E, = 13.08 kN
obtained by inspection of the free-body diagram of CE is now entered onto the
diagram for AD, along with the values of B, and B, just determined. The equa-
tions of equilibrium may now be applied to member AD as a check, since all the
forces acting on it have already been computed. The equations give

[EMs = 0] 4.32(3.5) + 4.32(1.5) — 3.92(2) — 9.15(1.5) = 0
[ZF, = 0] 432 — 13.08 + 9.15 + 392 + 432 = 0
[ZF, = 0] —13.08/2 + 2.62 + 392 = 0

.fmeﬁme -

T A
l.Sm ‘
15

T 28
1.5m

1.
1.5m

i 1l

&b

Helpful Hints

0]

@

We see that the frame corresponds to
the category illustrated in Fig. 4/14a.

Without this observation, the problem so-
lution would be much longer, because the
three equilibrium equations for member
BF would contain four unknowns: B, B,,,
E,, and E,. Note that the direction of the
line joining the two points of force appli-
cation, and not the shape of the member,
determines the direction of the forces act-
ing on a two-force member.

0.4(9.81)
=3.92kN
Di=>= E
3.92 kN
A,=3.92kN —_
3.92 kN —):-1%
iy
A= | 3.92kN| 13.92kN
432kN 392 KN . 3;32 kN
X
B, fY < -~
: 1, — 3.92 kN
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Sample Problem 4/6

Neglect the weight of the frame and compute the forces acting on all of its
members.

Solution. We note first that the frame is not a rigid unit when removed from
(1) its supports since BDEF is a movable quadrilateral and not a rigid triangle.
Consequently the external reactions cannot be completely determined until the
individual members are analyzed. However, we can determine the vertical com-
ponents of the reactions at A and C from the free-body diagram of the frame as

(2) a whole. Thus,

[(SMg = 0] 50(12) + 30(40) — 304, = 0 A, =601b Ans.
[SF, = 0] C, — 504/5) — 60 =0 C, = 1001b Ans.

Next we dismember the frame and draw the free-body diagram of each part.
Since EF is a two-force member, the direction of the force at E on ED and at F
on AB is known. We assume that the 30-1b foree is applied to the pin as a part
(3) of member BC. There should be no difficulty in assigning the correct directions
for forces E, F, D, and B.. The direction of B,, however, may not be assigned by
inspection and therefore is arbitrarily shown as downward on AB and upward

on BC.

Helpful Hints
Member ED. The two unknowns are easily obtained by

0 E
)75,

(1) We see that this frame corresponds to
50 1b Ans. the category illustrated in Fig. 4/14b.

100 Ib Ans. @ Thedirectionsof A, and C, are not ob-
vious initially and can be assigned ar-
bitrarily to be corrected later if
necessary.

(3 Alternatively the 30-1b force could be
applied to the pin considered a part of
BA, with a resulting change in the re-
action B,.

Il
Il

[EMp = 0] 50(12) — 12E
[EF = 0] D — 50 — 50

Member EF. Clearly F is equal and opposite to E with the magnitude of 50 Ib.

Member AB. Since F is now known, we solve for B, A,, and B, from

[EM, = 0] 50(3/5)(20) - B,(40) =0 B,=151b Ans.
[ZF, = 0] A, + 15 -503/5) =0 A, =151 Ans.
[ZF, = 0] 50(4/5) — 60 — B, = 0 B, =-201b Ans.

The minus sign shows that we assigned B, in the wrong direction.

Member BC. The results for B,, B,, and D are now transferred to BC, and the
(4) remaining unknown C, is found from

[SF, = 0] 30 + 1003/5) = 156 = C, =0  C, = 751b Ans. >4, 4P 50 \e—c,
We may apply the remaining two equilibrium equations as a check. Thus,

(2F, = 0] 100 + (—20) — 100(4/5) = 0 C, =100 Ib

(EM¢ = 0] (30 — 15)(40) + (-20)(30) = 0 (@) Alternatively we could have returned

to the free-body diagram of the
frame as a whole and found C,.
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Sample Problem 4/7

The machine shown is designed as an overload protection device which re-
leases the load when it exceeds a predetermined value 7' A soft metal shear pin
§ is inserted in a hole in the lower half and is acted on by the upper half. When
the total force on the pin exceeds its strength, it will break. The two halves then
rotate about A under the action of the tensions in BD and CD, as shown in the
second sketch, and rollers E and F release the eye bolt. Determine the maximum
allowable tension T'if the pin S will shear when the total force on it is 800 N.
Also compute the corresponding force on the hinge pin A.

Solution. Because of symmetry we analyze only one of the two hinged mem-
bers. The upper part is chosen, and its free-body diagram along with that for the
connection at D is drawn. Because of symmetry the forces at S and A have no x-
components. The two-force members BD and CD exert forces of equal magnitude
B = C on the connection at D. Equilibrium of the connection gives

Bceosf + Ccos0 —T =0
B = T/(2 cos 6)

[EF, = 0] 2Bcos = T

From the free-body diagram of the upper part we express the equilibrium
of moments about point A. Substituting S = 800 N and the expression for B
gives

[EMA = 0]

(cos A)(50) +

(sin 0)(36) — 36(800) — g(%) =.0

2 cos 2 cos 6

Substituting sin 6/cos ¢ = tan 6 = 5/12 and solving for T give

5(36) Y
T(25 e 13) = 28 800

T = 1477 N or T = 1477 kN Ans.
Finally, equilibrium in the y-direction gives us
(2R = 10] S —Bsingd - A=0
BC)O—ﬂ5 A=0 A = 492 N Ans.

2(12/13) 13

Dimensions
in millimeters

Released
position

y
[
\
!

/8

—x
C
Helpful Hints

() It is always useful to recognize sym-
metry. Here it tells us that the forces
acting on the two parts behave as
mirror images of each other with re-
spect to the x-axis. Thus, we cannot
have an action on one member in the
plus x-direction and its reaction on
the other member in the negative x-
direction. Consequently the forces at
S and A have no x-components,

(@ Be careful not to forget the moment
of the y-component of B. Note that
our units here are newton-
millimeters.
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PROBLEMS

(Unless otherwise instructed, neglect the mass of the var-
ious members and all friction in the problems which
follow.)

Introductory Problems
4/65 Determine the magnitudes of all pin reactions for the

frame loaded as shown.
Ans. A = 512N, B =D = 1013 N

Problem 4/65

4/66 For an 80-N squeeze on the handles of the pliers,
determine the force F applied to the round rod by
each jaw. In addition, calculate the force supported
by the pin at A.

80N

95 mm——

Y

35 mm =

O,

80N
Problem 4/66

4/67 Compute the force supported by the pin at A for the
slip-joint pliers under a grip of 30 Ib.
Ans. A = 15761b

Problem 4/67

4/68 Determine the components of all forces acting on
each member of the loaded frame.

Lo——x

Problem 4/68

4/69 Determine the components of all forces acting on
each member of the loaded truss. What is the pri-
mary difference between this problem and Prob.
4/68?

Ans. A, =C., =B, =0
A, = 0.707P, B, = — 0.707P, C, = 0.293P

Problem 4/69
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4/70 A force P is applied to the midpoint D of link BC.
State the value of the couple M which would render
(a) the horizontal force transmitted by pin B zero and
(b) the vertical force transmitted by pin B zero.

Problem 4/70

4/71 The automobile bumper jack is designed to support
a 4000-N downward load. Begin with a free-body di-
agram of BCD and determine the force supported by
roller C. Note that roller B does not contact the ver-

tical column. Ans. C = 6470 N

150 mm 150 mm

=400 mm |

4000 N

1100 mm

***24pmm

BEE

Problem 4/71

4/72 Determine the reaction at the roller F for the frame
loaded as shown.

[ 0.5 m

Problem 4/72

4/73 The device shown in the figure is designed to drive
brads into picture-framing material. For a gripping
force of 10 1b on the handles, determine the force F
exerted on the brad. Ans. F = 95 1b

0.75”
<=1 2.5"-—>~|

Problem 4/73
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4/74 The device shown is used to straighten bowed deck-
ing boards just prior to final nailing to the joists.
There is a lower bracket (not shown) at O which fixes
the part OA to a joist, so that the pivot A may be
considered fixed. For a given force P exerted perpen-
dicular to the handle ABC as shown, determine the
corresponding normal force N applied to the bent
board near point B. Neglect friction.

/
15°/

Problem 4/74

Representative Problems

4/75 The “jaws-of-life”” device is utilized by rescuers to pry
apart wreckage, thus helping to free accident victims.
If a pressure of 500 Ib/in.? is developed behind the
piston P of area 20 in.?, determine the vertical force
R which is exerted by the jaw tips on the wreckage
for the position shown. Note that link AB and its
counterpart are both horizontal in the figure for this

position. Ans. R = 1111 1b
R
4%7 ’I
4 O
A —
1}.’__ ® =
& b
1
R

18” ’—J

o 'q

Problem 4/75

4/76 The wingnut B of the collapsible bucksaw is tight-
ened until the tension in rod AB is 200 N. Determine
the force in the saw blade EF and the magnitude F
of the force supported by pin C.

Problem 4/76

4/77 Determine the magnitude of the pin reaction at A
and the magnitude and direction of the force reaction
at the rollers. The pulleys at C and D are small.

Ans. A = 999 N, F = 314 N up

. D
0.5m
a
o
G ) —9C
1A B F O
‘ 60 kg
~—04m—=~—04m ! 04m —~|

Problem 4/77



Article 4/6 Problems 203

4/78 The figure illustrates a common problem associated 4/79 Compound-lever snips, shown in the figure, are de-
with simple structures. Under the loadings L, the signed to replace regular tinners’ snips when large
rafters can rotate, the ridge beam at A can lower, cutting forces are required. For the gripping force of
and the walls BC and DE can rotate outward, as 150 N, what is the cutting force P at a distance of 30
shown in part b of the figure. This phenomenon is : mm along the blade from the pin at A?

sometimes clearly observed in old wooden farm struc- Ans. P = 1467 N
tures as a central sagging of the ridge beam when
viewed from the side. A simple remedy is shown in |
part a of the figure. A chain or cable is stretched be-
tween fasteners at B and E, and the turnbuckle F is
tightened until a proper tension is achieved, thereby
preventing the outward tilting of the walls. For given
values of the dimension d and the point loads L
(which result from the distributed loads of the rafter

and roofing weights and any additional loads such as

snow), calculate the tension T required so that there |<—80 mm i n??n : n??n M
are no outward forces on the walls at B and E. As-

sume that the support of the rafters at the ridge Problem 4/79

beam is purely horizontal and that all joints are free

to rotate.

4/80 A pair of 20-1b forces is applied to the handles of the
small eyelet squeezer. The block at A slides with neg-
ligible friction in a slot machined in the lower part
of the tool. Neglect the small force of the light return
spring AE and determine the compressive force P ap-
plied to the eyelet.

201b

A\:, 'f\:\f\n\f\-'\;\p\,hE .

TSR s )

e Lt

20 1b

Problem 4/80

Problem 4/78
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4/81 A small bolt cutter operated by hand for cutting
small bolts and rods is shown in the sketch. For a
hand grip P = 150 N, determine the force @ devel-
oped by each jaw on the rod to be cut.

Ans. @ = 2.TkN

Dimensions in millimeters

Problem 4/81

4/82 In the spring clamp shown, an internal spring is
coiled around the pin at A and the spring ends bear
against the inner surfaces of the handle halves in or-
der to provide the desired clamping force. In the po-
sition shown, a force of magnitude P = 6 lb is
required to release the clamp. Determine the com-
pressive force at B if P = 0.

1.6” —

| 447 |

Problem 4/82

4/83 For the paper punch shown find the punching force
€ corresponding to a hand grip P.

Ans. @ = P2
a

Problem 4/83

4/84 The clamp is adjusted so that it exerts a pair of 200-
N compressive forces on the boards between its
swivel grips. Determine the force in the threaded
shaft BC and the magnitude of the pin reaction at D.

* Dimensions in millimeters

Problem 4/84



Article 4/6 Problems 205

4/85

4/86

An 18-1b force is applied to the handle OAB of the
cork puller. Determine the extraction force F exerted
on the cork.

Ans. F' = 542 1b

Problem 4/85

The unstretched length of spring EF is 300 mm. De-
termine the magnitude of the pin reaction at O.

600

500

Problem 4/86

4/87 The dual-grip clamp shown in the figure is used to

provide added clamping force with a positive action.
If the vertical screw is tightened to produce a clamp-
ing force of 3 kN and then the horizontal screw is
tightened until the force in the screw at A is doubled,
find the total reaction R on the pin at B.

Ans. R = 7.00 kN

Problem 4/87

4/88 The special box wrench with head B swiveled at C to

the handle A will accommodate a range of sizes of
hexagonal bolt heads. For the nominal size shown
where the center O of the bolt and the pin C are in
line with the handle, compute the magnitude of the
force supported by the pin at C' if P = 160 N. Assume
the surface of the bolt head to be smooth.

30
L = 120mm ——

mm P

B
A ¥

g /Ta ..._“.‘ =OF ?-l 'bé?’_ AT :‘y‘;ge: :&: -;%‘i'j:":‘:-.‘\,".
30 4 SN - Ay W
B

Problem 4/88
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4/89 Compute the force in link AB of the lifting tongs
which cross without touching.
Ans. Fyp = 1650 Ib tension

Problem 4/89

4/90 Determine the vertical clamping force at E in terms
of the force P applied to the handle of the toggle
clamp.

80 mm
12 mm

2

160 |
16 mm e P

Problem 4/90

4/91 Determine the x- and y-components of all forces act-
ing on each member of the loaded frame for the con-
ditions (a) # = 0 and (b) # = 30°. Force P is applied
to the midpoint of member BC.

P
Ans.(a}Ax:Bx:Cx=Dx=§
A, =B, =C, =D, = 0.289P
E.=E, =0

b)A, = B, = C, = 0433P
A, = C, = 0.75P, B, = 1.25P
D, = 1.299P, D, = 0.25P, E, = 0.866P
E, = 1.5P
(force magnitudes only)

Problem 4/91

4/92 Determine the x- and y-components of all forces act-
ing on each member of the loaded frame for the con-
ditions (a) # = 0 and (b) 8 = 30°. Force P is applied
to the midpoint of member BC.

Problem 4/92

4/93 The figure shows a wheel puller which is designed to
remove a V-belt pulley P from its tight-fitting shaft
S by tightening of the central screw. If the pulley
starts to slide off the shaft when the compression in
the screw has reached 1.2 kN, calculate the magni-
tude of the force supported by each jaw at A. The
adjusting screws ) support horizontal force and keep

the side arms parallel with the central screw.
Ans. A = 0.626 kN
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4/95 The elements of a front-hinged automobile-hood as-
sembly are shown in the figure. The light linkages
BC and CD and the gas-pressurized strut EF hold the
hood in the open position shown. In this position, the
hood is free to rotate clockwise about pin O; pin A is
locked until the hood has been lowered to a nearly
closed horizontal position. For a hood weight of 80 1b
with center of gravity at G, determine the minimum
compression force C in the strut which will maintain
the open-hood position. Note that there are two links
OA spaced across the front of the car, but only one
set of the remaining links located on the inside of the
right-front fender. Ans. C = 772 1b

Problem 4/93

4/94 The figure shows a high-pressure hand pump used
for boosting oil pressure in a hydraulic line. When
the handle is in equilibrium at # = 15° under the
action of a force P = 120 N, determine the oil pres-
sure p which acts on the 46-mm-diameter piston.
(Pressure on the top of the piston is atmospheric.)

A0 =4" DE=3"
BC=CD=9"

Problem 4/95

Problem 4/94
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4/96 In the special position shown for the log hoist, booms |
AF and EG are at right angles to one another and |
AF is perpendicular to AB. If the hoist is handling a
log weighing 4800 1b, compute the forces supported
by the pins at A and D in this one position due to the
weight of the log.

Problem 4/96

4/97 A 250-N force is applied to the foot-operated air Dimensions in millimeters
pump. The return spring S exerts a 3-N-m moment

. - ; Problem 4/97
on member OBA for this position. Determine the cor- s i

responding compression force C in the cylinder BD. 4/98 A lifting device for transporting 135-kg steel drums
If the diameter of the piston in the cylinder is 45 mm, is shown. Calculate the magnitude of the force ex-
estimate the air pressure generated for these condi- erted on the drum at E and F.

tions. State any assumptions.
Ans. C = 510 N, p = 321 kPa

340 340
mm mm

~—— 500 *J
mim

Problem 4/98
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4/99 The toggle pliers are used for a variety of clamping

purposes. For the handle position given by a = 10°
and for a handle grip P = 150 N, calculate the clamp-
ing force C produced. Note that pins A and D are
symmetric about the horizontal centerline of the tool.

Ans. C = 1368 N

P 20 mm 60 mm

Problem 4/99

4/100 Determine the compression force C exerted on the

can for an applied force P = 50 N when the can
crusher is in the position shown. Note that there
are two links AB and two links AOD, with one pair
of linkages on each side of the stationary portion of
the erusher. Also, pin B is on the vertical centerline
of the can. Finally, note that small square projec-
tions E of the moving jaw move in recessed slots of
the fixed frame.

Problem 4/100

4/101 Determine the compression force G exerted on the
can for an applied force P = 50 N when the can
crusher is in the position shown. Point B is centered
on the bottom of the can.

Ans. C = 235 N

Problem 4/101

4/102 The 80-kg ventilation door OD with mass center at

( is held in the open position shown by means of a
moment M applied at A to the opening linkage.
Member AB is parallel to the door for the 30° posi-
tion shown. Determine M.

Problem 4/102
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4/103 The car hoist allows the car to be driven onto the

platform, after which the rear wheels are raised. If
the loading from both rear wheels is 1500 Ib, deter-
mine the force in the hydraulic cylinder AB. Neglect
the weight of the platform itself. Member BCD is a

4/105 A carpenter builds the square frame ABCD and

then braces it with member EF as shown in order
to prevent racking (distortion into a rhombic shape)
under the applied force P. Determine the tension T
in the brace as a function of x. Take all connections

right-angle bell crank pinned to the ramp at C. to be pin joints. Member DC is firmly fastened to
Ans. AB = 3970 1b C the floor. 3 PL

Ans. T = ——
‘ x

Problem 4/103

4/104 The aircraft landing gear consists of a spring- and e S 4
hydraulically-loaded piston and cylinder D and the L
two pivoted links OB and CB. If the gear is moving :
along the runway at a constant speed with the
wheel supporting a stabilized constant load of 24
kN, calculate the total force which the pin at A

— L -

Problem 4/105

4/106 An adjustable tow bar connecting the tractor unit
SUppore; H with the landing gear oJ of a large aircraft is
shown in the figure. Adjusting the height of the
hook F at the end of the tow bar is accomplished hy
the hydraulic cylinder CD activated by a small hand
pump (not shown). For the nominal position shown
of the triangular linkage ABC, calculate the force P
supplied by the cylinder to the pin C to position the
tow bar. The rig has a total weight of 100 1b and is
supported by the tractor hitch at E.

Problem 4/104 |
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30" 247 g

Problem 4/106

4/107 The pruning mechanism of a pole saw is shown as

it cuts a branch S. For the particular position
drawn, the actuating cord is parallel to the pole and
carries a tension of 30 Ib. Determine the shearing
force P applied to the branch by the cutter and the
total force supported by the pin at E. The force ex-
erted by the light return spring at C is small and

may be neglected.  , . p _ 33815, E = 6.11b

AB = r:m=ET>:3",E—B=D—C=4%~.W=6"

Problem 4/107

4/108 A double-axle suspension for use on small trucks is

shown in the figure. The mass of the central frame
F is 40 kg, and the mass of each wheel and attached
link is 35 kg with center of mass 680 mm from the
vertical centerline. For a load L = 12 kN transmit-
ted to the frame F, compute the total shear force
supported by the pin at A.

750 mm ——

Problem 4/108

4/109 For the pruning shears shown, determine the force

® applied to the circular branch of 15-mm diameter

for a gripping force P = 200 N. (Suggestion: First

draw a free-body diagram of the isolated branch.)
Ans. @ = 2.15 kN

190 .

Dimensions in millimeters

Problem 4/109

4/110 The designers of lamp mechanisms, such as that

shown in the figure, usually rely on joint friction to
aid in maintaining static equilibrium. For the pres-
ent problem, assume that sufficient friction exists
at point C to prevent rotation there, but ignore fric-
tion at all other joints. If the mass of the lamp fix-
ture is 0.6 kg with mass center at GG, determine the
spring force F, necessary for equilibrium in the po-
sition shown.

Problem 4/110
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4/111 In the particular position shown, the excavator ap-
plies a 20-kN force parallel to the ground. There are
two hydraulic cylinders AC to control the arm OAB.
Determine the force in the hydraulic cylinders AC
and the pressure p against their 95-mm-diameter
pistons. Neglect the weights of the members com-
pared with the 20-kN force.

Ans. Fyo = 48.8 kN, p = 6.89 MPa

0.2m 04m .0.6m
X s 09m 14m /[
(o e—201m e 1o S
R !—_ D
SR TE L
0.28m~— - = ===
. 055m | b -_%
045 m” T 3
G B C—
3.5m
H I
o F
B e 20 kN

Problem 4/111

4/112 Determine the force in hydraulic cylinder DE of the
excavator of Prob. 4/111. Also determine the pres-
sure p against the 105-mm-diameter piston of the
single cylinder. Neglect the weights of the members
compared with the other forces acting.

4/113 Determine the force in hydraulic cylinder GH of the
excavator of Prob. 4/111. Also determine the pres-
sure p against the 95-mm-diameter piston of the
single cylinder. Use the additional dimensional de-
tail supplied in the figure. Neglect the weights of
the members compared with the 20-kN force.

Ans. GH = 452 kN, p = 6.38 MPa

Problem 4/113

4/114 The angle of elevation @ of the upper arm of a

“cherry picker” is controlled by the two hydraulic
cylinders attached to the upper end of the lower
boom of the rig. Each piston rod of the cylinder is
connected to the chain which engages the sprocket
A, as shown in the enlarged view. The sprocket is
welded to the end of the upper arm. Determine the
magnitude R of the total force supported by the
hinge pin B and the oil pressure p in the upper cyl-
inder to support the arm in the position ¢ = 30°. A
constant pressure of 80 kPa is maintained in the
lower cylinder with the lower arm in the position
B = 60° The net area of the pistons subjected to
hydraulic pressure is 7.85 (10~%) m?. The mass cen-
ter of the 120-kg upper boom is at midlength, and
the combined mass of the hinged bucket and man
is 110 kg.
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/

B
D\
2y,
Problem 4/114 Detail of hoisting mechanism
|
» 4/115 The design of a hoisting mechanism for the dump Problem 4/115

truck is shown in the enlarged view. Determine the
compression P in the hydraulic cylinder BE and the
magnitude of the force supported by the pin at A
for the particular position shown, where BA is per-
pendicular to OAE and link DC is perpendicular to
AC. The dump and its load together weigh 20,000
Ib with center of mass at G. All dimensions for the
indicated geometry are given on the figure. |
Ans. P = 26,900 1b, A = 14,600 lb
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» 4/116 The shipboard crane is supporting a load of 4 tons AN
in the position shown where # = 30°, The hoisting f
drum B is operated by a high-torque electric motor.
Caleulate the added compression P in the hydraulic
cylinder and the magnitude R of the additional force
supported by the pin at O, both due to the effect of
the 4-ton load.

Ans. P = 43,100 1b, R = 35,400 lb .
1200 b

/*\f \ .

Problem 4/117

4/118 Determine the force acting on member ABC at con-
nection A for the loaded space frame shown. Each
connection may be treated as a ball-and-socket joint.

Z
I~ 1kN |
|
2m

Problem 4/116

4/117 In the schematic representation of an actual struc-
ture, T represents a turnbuckle, C and D are non-
thrust-bearing hinges whose axes are along the line
CD, and B, E, and F are ball-and-socket joints. De-
termine the tension T in the turnbuckle and the
force in member EF.

Ans. T = 1569 b, EF = 429 1b

Problem 4/118
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CHAPTER REVIEW

In Chapter 4 we have applied the principles of equilibrium to two

classes of problems: (a) simple trusses and (b) frames and machines. No
new theory was needed, since we merely drew the necessary free-body
diagrams and applied our familiar equations of equilibrium. The struc-
tures dealt with in Chapter 4, however, have given us the opportunity
to further develop our appreciation for a systematic approach to me-
chanics problems.

The most essential features of the analysis of these two classes of

structures are reviewed in the following statements.

(a) Simple Trusses
1.

Simple trusses are composed of two-force members joined at their
ends and capable of supporting tension or compression. Each inter-
nal force, therefore, is always in the direction of its member.

Simple trusses are built from the basic rigid (noncollapsible) unit of
the triangle for plane trusses and the tetrahedron for space trusses.
Additional units of a truss are formed by adding new members, two
for plane trusses and three for space trusses, attached to existing
joints and joined at their ends to form a new joint.

. The joints of simple trusses are assumed to be pin connections for

plane trusses and ball-and-socket connections for space trusses.
Thus, the joints can transmit force but not moment.

External loads are assumed to be applied only at the joints.

. Trusses are statically determinate externally when the external con-

straints are not in excess of those required to maintain an equilib-
rium position.

. Trusses are statically determinate internally when constructed in

the manner described in item (2), where internal members are not
in excess of those required to prevent collapse.

. The method of joints utilizes the force equations of equilibrium for

each joint. Analysis normally begins at a joint where at least one
force is known and not more than two forces are unknown for plane
trusses or not more than three forces are unknown for space trusses.

. The method of sections utilizes a free body of an entire section of a

truss containing two or more joints. In general, the method involves
the equilibrium of a nonconcurrent system of forces. The moment
equation of equilibrium is especially useful when the method of sec-
tions is used. In general, the forces acting on a section which cuts
more than three unknown members of a plane truss cannot be
solved for completely because there are only three independent
equations of equilibrium.

. The vector representing a force acting on a joint or a section is

drawn on the same side of the joint or section as the member which
transmits the force. With this convention, tension is indicated when
the force arrow is away from the joint or section, and compression
is indicated when the arrow points toward the joint or section.
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10.

11.

When the two diagonal members which brace a quadrilateral panel
are flexible members incapable of supporting compression, only the
one in tension is retained in the analysis, and the panel remains
statically determinate.

When two joined members under load are collinear and a third mem-
ber with a different direction is joined with their connection, the
force in the third member must be zero unless an external force is
applied at the joint with a component normal to the collinear
members.

(b) Frames and Machines

1.

Frames and machines are structures which contain one or more
multiforce members. A multiforce member is one which has acting
on it three or more forces, or two or more forces and one or more
couples.

. Frames are structures designed to support loads, generally under

static conditions. Machines are structures which transform input
forces and moments to output forces and moments and generally
involve moving parts. Some structures may be classified as either a
frame or a machine.

- Only frames and machines which are statically determinate exter-

nally and internally are considered here.

. If a frame or machine as a whole is a rigid (noncollapsible) unit when

its external supports are removed, then we begin the analysis by
computing the external reactions on the entire unit. If a frame or
machine as a whole is a nonrigid (collapsible) unit when its external
supports are removed, then the analysis of the external reactions
cannot be completed until the structure is dismembered.

. Forces acting in the internal connections of frames and machines

are calculated by dismembering the structure and constructing a
separate free-body diagram of each part. The principle of action and
reaction must be strictly observed; otherwise, error will result.

. The force and moment equations of equilibrium are applied to the

members as needed to compute the desired unknowns.
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REVIEW PROBLEMS ' 4/122 Show that the force in the horizontal member BD
‘ is independent of its position x within the triangular
4/119 Calculate the forces in members BH, HI, and BC truss. Each side of the overall truss supports a cen-
for the truss loaded by the 40- and 60-kN forces. tered vertical load L as shown by the two dashed
Ans. BH = 471 kN C vectors, and their loads are then distributed to the

HI = 40 kNT joints as shown by the solid vectors.

BC = 6.67 kN C

Lx

|l 4panelsat5m
J I H

(
40 kN 60 kN

Problem 4/119

4/120 Determine the components of all forces acting on

each member of the loaded frame. [ Problem 4/122

4/123 The basic structural shape and loading of Prob.
4/122 is now treated as the loaded frame shown in
the figure. Determine the force in the horizontal
member BD as a function of its position x within

the frame. 0.289Ld
e

Ans. BD =

L———x

Problem 4/120

4/121 Calculate the force in member BG using a free-body
diagram of the rigid member ABC.
Ans. BG = 1800 1b C

E 10 F 10 G

10 '

O

107 10" A ‘ Problem 4/123
X;

900 Ib

Problem 4/121



218 cChapter4 Structures

4/124 The nose-wheel assembly is raised by the applica-
tion of a torque M to link BC through the shaft at
B. If the arm and wheel AO have a combined weight
of 100 Ib with center of gravity at G, find the value
of M necessary to lift the wheel when D is directly
under B, at which position angle ¢ is 30°.

Problem 4/124

4/125 Determine the forces in members AB, BI, and CI of
the simple truss. Note that all curved members are

two-force members.
Ans. AB = 226LT,BI = L T,CI = 0458L T

Arc of radius 50 m - H

3¢ c¢ q* E&
L L L L
—15 m-—{=-15 m— 20 m——= 15m4-$15m7*

Problem 4/125

4/126 The structure of Prob. 4/125 is modified in that the
four curved members are replaced by the two mem-
bers AIH and HGF. Instrumentation indicates the
tension in members CH and DH to be 0.5L each.
Determine the forces in members AR, BI, and CI.
Is the problem solvable without the information
about CH?

Arc of radius 50 m — _.

2 *B *c #D ¢E
L il I L
15m-—=15m-=>{<~—20m ——~15m-~15m—

Problem 4/126

4/127 A pneumatic cylinder pivoted at F operates the lever
AB of the quick-acting toggle clamp, which holds
the work in position while it is machined. For an
air pressure of 400 kPa above atmospheric pressure
against the 50-mm-diameter piston, determine the
clamping force at G for the position « = 10°. For
this position the piston rod is perpendicular to AB.

Ans. G = 2.30 kN

Dimensions in millimeters
Problem 4/127

4/128 Determine the force in each member of the loaded
truss.

Problem 4/128
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4/129 The loading on the truss of Prob. 4/128 is modified rectly above the center of rectangle FGHI. Deter-
as shown in the figure. Determine the force in each mine the force in member CD.
member. Ans. CD = 24L T

BC =LC,BK = CD = 0.333L C
CE = 0471L C, CK = 0.1381L T
DE = EK = 0.255L C

Ans. AB = 1471L C, AK = 0.1057L T }
\

L/3 L/3

Problem 4/129

4/130 An antitorque wrench is designed for use by a crew- ‘
man of a spacecraft where he has no stable platform
against which to push as he tightens a bolt. The pin Problem 4/131
A fits into an adjacent hole in the structure which
contains the bolt to be turned. Successive oscilla-
tions of the gear and handle unit turn the socket in
one direction through the action of a ratchet mech- ‘

4/132 The elements of a stump grinder with a total mass
| (exclusive of the hydraulic cylinder DF and arm CE)
of 300 kg with mass center at GG are shown in the
figure. The mechanism for articulation about a ver-
tical axis is omitted, and the wheels at B are free to
turn. For the nominal position shown, link CE is
horizontal and the teeth of the cutting wheel are
even with the ground. If the magnitude of the force
F exerted by the cutter on the stump is 400 N, de-
termine the force P in the hydraulic cylinder and
the magnitude of the force supported by the pin at
175 40 120 mm | ‘ C. The problem is to be treated as two-dimensional.
mm mm i

anism. The reaction against the pin A provides the
“antitorque’ characteristic of the tool. For a grip-
ping force P = 150 N, determine the torque M
transmitted to the bolt and the external reaction R
against the pin A normal to the line AB. (One side
of the tool is used for tightening and the opposite
side for loosening a bolt.)

L 450 >=——900- l‘--,-T‘- 500 —=—500 —
200

Problem 4/130

Dimensions in millimeters 20"

4/131 The depicted structure is under consideration as the TIRA TR
upper portion of a transmission-line tower and is

supported at points F, G, H, and I. Point C is di- Problem 4/132
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4/133 The structure shown is being considered as part of 4/135 The tree feller cuts off large trees near ground level
a large cylindrical vessel which must support exter- and then continues to grasp the trunk. Determine
nal loads. Strain-gage instrumentation indicates the force in hydraulic cylinder AB for the position
that the compressive force in member BE is 0.8L. shown if the tree weighs 6000 Ib. Determine the re-
Determine the forces in members AB and DE. Make quired pressure on the 4.72-in.-diameter piston of
use of symmetry. the cylinder.

Ans. AB = 0.434L T, DE = 1.166L C Ans. Fap = 59,900 Ib, p = 3420 Ib/in.2

Problem 4/135

P 4/136 Each of the landing struts for a planet exploration
spacecraft is designed as a space truss symmetrical
about the vertical x-z plane as shown. For a landing
force F' = 2.2 kN, calculate the corresponding force
in member BE. The assumption of static equilib-

o=225° | rium for the truss is permissible if the mass of the

truss is very small. Assume equal loads in the sym-
metrically placed members.

4/134 Determine the punching force P in terms of the Ans. Fpp = 1.620 kN
gripping force F for the rivet squeezer shown.

Problem 4/133

Problem 4/134

Problem 4/136
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P 4/137 The bar bender for forming reinforcing steel con-
sists of the lever OAB hinged at O to the fixed base
plate. The forming rollers at A, O, and C are all free
to rotate. For the 60° position shown, a force of 50
Ib is required on the handle. Calculate the x- and y-
components of the force R exerted by the base plate
on the shaft of roller O for this position. (Sugges-
tion: Analyze separate free-body diagrams of the
bent bar and of the lever and attached rollers. Ob-
serve that the force exerted by the bar on the roller
at O is in addition to the force R supplied by the Problem 4/138

base plate.) Ans. R, = 8381b, R, = 433 b

*4/139 Determine and plot the forces in all members of
| the loaded simple truss as functions of the angle «
over the range 0 = o = 90°. State the minimum
values for the forces in members AC and CD and
the values of a at which these minima occur.

Ans. AB = 3/3kN T, BC = 6 kN C
3.3

AC = f_# kN T
J3cos a + sin «

AD - E i smrcv — 3J3 cos « kN T
4 4(/3 cos o + sin )

cD - E " QSiEa — B\a"gcosakNC
2 2(y3 cos @ + sin «)

(AC)min = 2.60 kN T at a = 30°

(CD)pyn = 6kN Cat a = 0

'}}A 2m B

Problem 4/137

@ *Computer-Oriented Problems

*4/138 The simple truss of Prob. 4/2 is modified as shown
in the figure, in that the angle of the support sur-
face at C can be varied from 0 (vertical) to 90° (hor-
izontal). (a) Plot the force in member BC as a
function of # over this range. Note any unusual
conditions. (b) For what value of 4, if any, is the Problem 4/139
force in member BC zero? (¢) If member BC is de-
signed to fail at a load of 1000 Ib in either tension
or compression, what is the allowable range for the
angle 67
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*4/140 The type of marine crane shown is utilized for both
dockside and offshore operations. Determine and
plot the force in member BC as a function of the
boom angle 6 for 0 = 0 = 80°. Neglect the radius
of all pulleys and the weight of the boom.

Problem 4/140

*4/141 The “‘jaws-of-life” device of Prob. 4/75 is redrawn
here with its jaws open. The pressure behind the
piston P of area 20 in.? is maintained at 500 1b/in.2
Calculate and plot the force R as a function of @
for 0 = 6 = 45°, where R is the vertical force acting
on the wreckage as shown. Determine the maxi-
mum value of R and the corresponding value of the
Jaw angle. See the figure of Prob. 4/75 for dimen-
sions and the geometry associated with the condi-
tion # = 0. Note that link AB and its counterpart
are both horizontal in the figure for # = 0 but do
not remain horizontal as the jaws open.

Ans. R, = 1314 1b at # = 45°

Problem 4/141

*4/142 A door-opening mechanism is shown in the figure.
The spring-loaded hinges at O provide a moment
K6 which tends to close the door, where 6 is the
door-opening angle and the torsional spring con-
stant Ky = 500 Ib-in./rad. The motor unit at A
provides a variable moment M so that the slowly
opening door is always in quasi-static equilibrium.
Determine the moment M and the pin force at B
as functions of ¢ for the range 0 = 0 = 90°.

14"

Problem 4/142

*4/143 The structural members support the 3-kN load
which may be applied at any angle 6 from essen-
tially —90° to +90°. The pin at A must be designed
to support the maximum force transmitted to it.
Plot the force F at A as a function of # and de-
termine its maximum value and the corresponding
angle 6.

Ans. Fy = 6kNatg = — 26.6°

300
mm

‘ _‘
(2]
600 ‘ 600 .
e ————— S 3 KN

Problem 4/143
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*4/144 The uniform 30-kg ventilation door OAP is opened | N
by the mechanism shown. Plot the required force \
in the cylinder DE as a function of the door open-
ing angle 6 over the range 0 =60 = 6., where 6, \
is the maximum opening. Determine the minimum | ‘ \U
and maximum values of this force and the angles 275 525 \
at which these extremes occur. Note that the cyl-
inder is not horizontal when 6 = 0.

350 E 400 |

AB = 300, CD =DB =150
Dimensions in millimeters

Problem 4/144




When forces are continuously distributed over a region of a structure, the cumulative effect
of this distribution must be determined. The cables of this cable-stayed bridge support the
weight of both the roadway and any vehicles distributed along its length.
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5/1 INTRODUCTION

In the previous chapters we treated all forces as concentrated along
their lines of action and at their points of application. This treatment
provided a reasonable model for those forces. Actually, “concentrated”
forces do not exist in the exact sense, since every external force applied
mechanically to a body is distributed over a finite contact area, however
small.

The force exerted by the pavement on an automobile tire, for in-
stance, is applied to the tire over its entire area of contact, Fig. 5/1a,
which may be appreciable if the tire is soft. When analyzing the forces
acting on the car as a whole, if the dimension b of the contact area is
negligible compared with the other pertinent dimensions, such as the
distance between wheels, then we may replace the actual distributed
contact forces by their resultant R treated as a concentrated force. Even
the force of contact between a hardened steel ball and its race in a loaded
ball bearing, Fig. 5/1b, is applied over a finite though extremely small
contact area. The forces applied to a two-force member of a truss, Fig.

225
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Enlarged view
of contact

Figure 5/1

5/1c, are applied over an actual area of contact of the pin against the
hole and internally across the cut section as shown. In these and other
similar examples we may treat the forces as concentrated when analyz-
ing their external effects on bodies as a whole.

If, on the other hand, we want to find the distribution of infernal
forces in the material of the body near the contact location, where the
internal stresses and strains may be appreciable, then we must not treat
the load as concentrated but must consider the actual distribution. This
problem will not be discussed here because it requires a knowledge of
the properties of the material and belongs in more advanced treatments
of the mechanics of materials and the theories of elasticity and plasticity.

When forces are applied over a region whose dimensions are not
negligible compared with other pertinent dimensions, then we must ac-
count for the actual manner in which the force is distributed. We do this
by summing the effects of the distributed force over the entire region
using mathematical integration. This requires that we know the inten-
sity of the force at any location. There are three categories of such
problems.

(1) Line Distribution. When a force is distributed along a line, as
in the continuous vertical load supported by a suspended cable, Fig.
5/2a, the intensity w of the loading is expressed as force per unit length
of line, newtons per meter (N/m) or pounds per foot (Ib/ft).

(2) Area Distribution. When a force is distributed over an area, as
with the hydraulic pressure of water against the inner face of a section
of dam, Fig. 5/2b, the intensity is expressed as force per unit area. This
intensity is called pressure for the action of fluid forces and stress for
the internal distribution of forces in solids. The basic unit for pressure
or stress in SI is the newton per square meter (N/m?), which is also
called the pascal (Pa). This unit, however, is too small for most appli-
cations (6895 Pa = 1 Ib/in.%). The kilopascal (kPa), which equals 103
Pa, is more commonly used for fluid pressure, and the megapascal, which
equals 10° Pa, is used for stress. In the U.S. customary system of units,
both fluid pressure and mechanical stress are commonly expressed in
pounds per square inch (Ib/in.2).

(3) Volume Distribution. A force which is distributed over the vol-
ume of a body is called a body force. The most common body force is the
force of gravitational attraction, which acts on all elements of mass in
a body. The determination of the forces on the supports of the heavy
cantilevered structure in Fig. 5/2¢, for example, would require account-
ing for the distribution of gravitational force throughout the structure.
The intensity of gravitational force is the specific weight pg, where p is
the density (mass per unit volume) and g is the acceleration due to grav-
ity. The units for pg are (kg/m®)(m/s?) = N/m? in SI units and Ib/ft3
or Ib/in.? in the U.S. customary system.

The body force due to the gravitational attraction of the earth
(weight) is by far the most commonly encountered distributed force. Sec-
tion A of this chapter treats the determination of the point in a body
through which the resultant gravitational force acts, and discusses the
associated geometric properties of lines, areas, and volumes. Section B
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Figure 5/2

treats distributed forces which act on and in beams and flexible cables
and distributed forces which fluids exert on exposed surfaces.

SECTION A. CENTERS OF MASS AND CENTROIDS

5/2 CENTER OF MAss

Consider a three-dimensional body of any size and shape, having a
mass m. If we suspend the body, as shown in Fig. 5/3, from any point
such as A, the body will be in equilibrium under the action of the tension
in the cord and the resultant W of the gravitational forces acting on all
particles of the body. This resultant is clearly collinear with the cord.
Assume that we mark its position by drilling a hypothetical hole of neg-
ligible size along its line of action. We repeat the experiment by sus-
pending the body from other points such as B and C, and in each
instance we mark the line of action of the resultant force. For all prac-
tical purposes these lines of action will be concurrent at a single point
(G, which is called the center of gravity of the body.

An exact analysis, however, would account for the slightly differing
directions of the gravity forces for the various particles of the body,
because those forces converge toward the center of attraction of the
earth. Also, because the particles are at different distances from the
earth, the intensity of the force field of the earth is not exactly constant
over the body. As a result, the lines of action of the gravity-force resul-
tants in the experiments just described will not be quite concurrent, and
therefore no unique center of gravity exists in the exact sense. This is
of no practical importance as long as we deal with bodies whose dimen-
sions are small compared with those of the earth. We therefore assume
a uniform and parallel force field due to the gravitational attraction of
the earth, and this assumption results in the concept of a unique center
of gravity.

Determining the Center of Gravity

To determine mathematically the location of the center of gravity
of any body, Fig. 5/4a, we apply the principle of moments (see Art. 2/6)
to the parallel system of gravitational forces. The moment of the resul-

Qe =

(a)

(c)

Figure 5/3

e e

7/
Q!
o
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Figure 5/4

tant gravitational force W about any axis equals the sum of the moments
about the same axis of the gravitational forces dW acting on all particles
treated as infinitesimal elements of the body. The resultant of the grav-
itational forces acting on all elements is the weight of the body and is
given by the sum W = | dW. If we apply the moment principle about
the y-axis, for example, the moment about this axis of the elemental
weight is x dW, and the sum of these moments for all elements of the
body is [ x dW. This sum of moments must equal Wx, the moment of
the sum. Thus, xW = [ x dW.

With similar expressions for the other two components, we may ex-
press the coordinates of the center of gravity G as

fxdW fydw % fzdw
z:

W i W

(5/1ia)

x =

To visualize the physical moments of the gravity forces appearing in the
third equation, we may reorient the body and attached axes so that the
z-axis is horizontal. It is essential to recognize that the numerator of
each of these expressions represents the sum of the moments, whereas
the product of W and the corresponding coordinate of G represents the
moment of the sum. This moment principle finds repeated use through-
out mechanics.

With the substitution of W = mg and dW = g dm, the expressions
for the coordinates of the center of gravity become

e A (5/1b)

Equations 5/1b may be expressed in vector form with the aid of Fig.
5/4b, in which the elemental mass and the mass center GG are located
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by their respective position vectorsr = xi + yj + zkandr = xi+ yj
+ zk. Thus, Egs. 5/1b are the components of the single vector equation

(5/2)

The density p of a body is its mass per unit volume. Thus, the mass
of a differential element of volume dV becomes dm = p dV. If p is not
constant throughout the body but can be expressed as a function of the
coordinates of the body, we must account for this variation when cal-
culating the numerators and denominators of Egs. 5/1b. We may then
write these expressions as

Jyp dVv J zp dV
_— oz = (5/3)

fpdv fpdv

fxpdV
xT="—"r—— y=

fpdV

Center of Mass versus Center of Gravity

Equations 5/1b, 5/2, and 5/3 are independent of gravitational ef-
fects since g no longer appears. They therefore define a unique point in
the body which is a function solely of the distribution of mass. This point
is called the center of mass, and clearly it coincides with the center of
gravity as long as the gravity field is treated as uniform and parallel.

It is meaningless to speak of the center of gravity of a body which
is removed from the gravitational field of the earth, since no gravita-
tional forces would act on it. The body would, however, still have its
unique center of mass. We will usually refer henceforth to the center of
mass rather than to the center of gravity. Also, the center of mass has
a special significance in calculating the dynamic response of a body to
unbalanced forces. This class of problems is discussed at length in Vol.
2 Dynamics.

In most problems the calculation of the position of the center of
mass may be simplified by an intelligent choice of reference axes. In
general the axes should be placed so as to simplify the equations of the
boundaries as much as possible. Thus, polar coordinates will be useful
for bodies with circular boundaries.

Another important clue may be taken from considerations of sym-
metry. Whenever there exists a line or plane of symmetry in a homo-
geneous hody, a coordinate axis or plane should be chosen to coincide
with this line or plane. The center of mass will always lie on such a line
or plane, since the moments due to symmetrically located elements will
always cancel, and the body may be considered composed of pairs of
these elements. Thus, the center of mass G of the homogeneous right-
circular cone of Fig. 5/5a will lie somewhere on its central axis, which
is a line of symmetry. The center of mass of the half right-circular cone
lies on its plane of symmetry, Fig. 5/5b. The center of mass of the half
ring in Fig. 5/5¢ lies in both of its planes of symmetry and therefore is

(a)

(c)

Figure 5/5
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Figure 5/6

Figure 5/7

situated on line AB. It is easiest to find the location of G by using sym-
metry when it exists.

5/3 CENTROIDS OF LINES,
AREAS, AND VOLUMES

When the density p of a body is uniform throughout, it will be a
constant factor in both the numerators and denominators of Egs. 5/3
and will therefore cancel. The remaining expressions define a purely
geometrical property of the body, since any reference to its mass prop-
erties has disappeared. The term centroid is used when the calculation
concerns a geometrical shape only. When speaking of an actual physical
body, we use the term center of mass. If the density is uniform through-
out the body, the positions of the centroid and center of mass are iden-
tical, whereas if the density varies, these two points will, in general, not
coincide.

The calculation of centroids falls within three distinct categories,
depending on whether we can model the shape of the body involved as
a line, an area, or a volume.

(1) Lines. For a slender rod or wire of length L, cross-sectional area
A, and density p, Fig. 5/6, the body approximates a line segment, and
dm = pA dL. If p and A are constant over the length of the rod, the
coordinates of the center of mass also become the coordinates of the
centroid C of the line segment, which, from Eqgs. 5/1b, may be written

jde

8 NG e A

jydL jzdL
—_ Z="— (5/4)

L L

Note that, in general, the centroid C will not lie on the line. If the rod
lies on a single plane, such as the x-y plane, only two coordinates need
to be calculated.

(2) Areas. When a body of density p has a small but constant thick-
ness ¢, we can model it as a surface area A, Fig. 5/7. The mass of an
element becomes dm = pt dA. Again, if p and ¢ are constant over the
entire area, the coordinates of the center of mass of the body also become
the coordinates of the centroid C of the surface area, and from Eqgs. 5/1b
the coordinates may be written

[raa  [yaa  [eaa

zZ2 =

A i A A

(5/5)

T —

The numerators in Eqs. 5/5 are called the first moments of area.” If the
surface is curved, as illustrated in Fig. 5/7 with the shell segment, all

*Second moments of areas (moments of first moments) appear later in our discussion of
second moments of area, also called area moments of inertia, in Appendix A.
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three coordinates will be involved. The centroid C for the curved surface
will in general not lie on the surface. If the area is a flat surface in, say,
the x-y plane, only the coordinates of C in that plane need to be
calculated.

(3) Volumes. For a general body of volume V and density p, the
element has a mass dm = p dV. The density p cancels if it is constant
over the entire volume, and the coordinates of the center of mass also
become the coordinates of the centroid C of the body. From Egs. 5/3 or
5/1b they become

fde J‘de J‘de
Xr=—r— y=—— z= (5/6)

e Y % v

Choice of Element for Integration

The principal difficulty with a theory often lies not in its concepts
but in the procedures for applying it. With mass centers and centroids
the concept of the moment principle is simple enough; the difficult steps
are the choice of the differential element and setting up the integrals.
The following five guidelines will be useful.

(1) Order of Element. Whenever possible, a first-order differential
element should be selected in preference to a higher-order element so
that only one integration will be required to cover the entire figure.
Thus, in Fig. 5/8a a first-order horizontal strip of area dA = [ dy will
require only one integration with respect to y to cover the entire figure.
The second-order element dx dy will require two integrations, first with
respect to x and second with respect to y, to cover the figure. As a further
example, for the solid cone in Fig. 5/8b we choose a first-order element
in the form of a circular slice of volume dV = 772 dy. This choice re-
quires only one integration, and thus is preferable to choosing a third-
order element dV = dx dy dz, which would require three awkward
integrations.

(2) Continuity. Whenever possible, we choose an element which
can be integrated in one continuous operation to cover the figure. Thus,
the horizontal strip in Fig. 5/8a would be preferable to the vertical strip
in Fig. 5/9, which, if used, would require two separate integrals because
of the discontinuity in the expression for the height of the strip at
x = xj.

(3) Discarding Higher-Order Terms. Higher-order terms may al-
ways be dropped compared with lower-order terms (see Art. 1/7). Thus,
the vertical strip of area under the curve in Fig. 5/10 is given by the
first-order term dA = y dx, and the second-order triangular area %dx dy
is discarded. In the limit, of course, there is no error.

(4) Choice of Coordinates. As a general rule, we choose the coor-
dinate system which best matches the boundaries of the figure. Thus,
the boundaries of the area in Fig. 5/11a are most easily described in

4 €ONce
< @,
¥ '

e

dx
Ody
—_——X
(a)
|y |y
| |
dy
@B -
@
oy
/ \
i z
(b)

Figure 5/8
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Figure 5/10

rectangular coordinates, whereas the boundaries of the circular sector
of Fig. 5/11b are best suited to polar coordinates.

(5) Centroidal Coordinate of Element. When a first- or second-
order differential element is chosen, it is essential to use the coordinate
of the centroid of the element for the moment arm in expressing the
moment of the differential element. Thus, for the horizontal strip of area
in Fig. 5/12a, the moment of dA about the y-axis is x, dA, where x, is
the x-coordinate of the centroid C of the element. Note that x, is not the
x which describes either boundary of the area. In the y-direction for this
element the moment arm y, of the centroid of the element is the same,
in the limit, as the y-coordinates of the two boundaries.

As a second example, consider the solid half-cone of Fig. 5/12b with
the semicircular slice of differential thickness as the element of volume.
The moment arm for the element in the x-direction is the distance x, to
the centroid of the face of the element and not the x-distance to the
boundary of the element. On the other hand, in the z-direction the mo-
ment arm z, of the centroid of the element is the same as the z-coordi-
nate of the element.

With these examples in mind, we rewrite Egs. 5/5 and 5/6 in the
form

21|
Il

<2
Il

z = (5/5a)

e

(a) (b)

Figure 5/11
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(b)
Figure 5/12
and
§ fxch ) fyﬂdv ) fzcdv
o = y = = = = (5/6a)

It is essential to recognize that the subseript ¢ serves as a reminder that
the moment arms appearing in the numerators of the integral expres-
sions for moments are always the coordinates of the centroids of the
particular elements chosen.

At this point you should be certain to understand clearly the prin-
ciple of moments, which was introduced in Art. 2/4. You should recog-
nize the physical meaning of this principle as it is applied to the system
of parallel weight forces depicted in Fig. 5/4a. Keep in mind the equiv-
alence between the moment of the resultant weight W and the sum (in-
tegral) of the moments of the elemental weights dW, to avoid mistakes
in setting up the necessary mathematics. Recognition of the principle of
moments will help in obtaining the correct expression for the moment
arm x,, y,, or z, of the centroid of the chosen differential element.

Keeping in mind the physical picture of the principle of moments,
we will recognize that Eqgs. 5/4, 5/5, and 5/6, which are geometric re-
lationships, are descriptive also of homogeneous physical bodies, because
the density p cancels. If the density of the body in question is not con-
stant but varies throughout the body as some function of the coordi-
nates, then it will not cancel from the numerator and denominator of
the mass-center expressions. In this event, we must use Egs. 5/3 as
explained earlier.

Sample Problems 5/1 through 5/5 which follow have been carefully
chosen to illustrate the application of Eqs. 5/4, 5/5, and 5/6 for calcu-
lating the location of the centroid for line segments (slender rods), areas
(thin flat plates), and volumes (homogeneous solids). The five integration
considerations listed above are illustrated in detail in these sample
problems.

Section C/10 of Appendix C contains a table of integrals which in-
cludes those needed for the problems in this and subsequent chapters.
A summary of the centroidal coordinates for some of the commonly used
shapes is given in Tables D/3 and D/4, Appendix D.
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Sample Problem 5/1 >
Centroid of a circular arc. Locate the centroid of a circular are as shown in >
the figure. il
P a' C
e —

Solution. Choosing the axis of symmetry as the x-axis makesy = 0. A differ-
ential element of arc has the length dL = r d# expressed in polar coordinates,
and the x-coordinate of the element is r cos 6.

Applying the first of Egs. 5/4 and substituting L = 2ar give

[Lx = jx dL] (2ar)x = f (rcos6) rdé
2arx = 2r? sin a
5 _rsina A
o

For a semicircular arc 2a = m, which givesx = 2r/7. By symmetry we see
immediately that this result also applies to the quarter-circular arc when the
measurement is made as shown.

Helpful Hint

(D It should be perfectly evident that polar coordinates are preferable to rectan-
gular coordinates to express the length of a circular arc.

Sample Problem 5/2

Centroid of a triangular area. Determine the distance & from the base of a
triangle of altitude % to the centroid of its area.

Solution. The x-axis is taken to coincide with the base. A differential strip of
area dA = x dy is chosen. By similar triangles x/(h — y) = b/h. Applying the
second of Eqs. 5/5a gives -

— P — & |

e

[IPSE—— A _}

% bh _ J” bh = y) bh?
Ay = J’ —_ == —_—dy = —
[Ay ¥e dAl R4 Y e

PR
and y== Ans.
3 Helpful Hint
This same result holds with respect to either of the other two sides of the (1) We save one integration here by us-

triangle considered a new base with corresponding new altitude. Thus, the cen- ing the first-order element of area.
troid lies at the intersection of the medians, since the distance of this point from Recognize that dA must be expressed
any side is one-third the altitude of the triangle with that side considered the in terms of the integration variable

base. ¥; hence, x = f(y) is required.
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Sample Problem 5/3

Centroid of the area of a circular sector. Locate the centroid of the area of
a circular sector with respect to its vertex.

Solution I. The x-axis is chosen as the axis of symmetry, and ¥ is therefore
automatically zero. We may cover the area by moving an element in the form of
a partial circular ring, as shown in the figure, from the center to the outer pe-
riphery. The radius of the ring is ry and its thickness is dr, so that its area is
dA = 2rqa dry.

The x-coordinate to the centroid of the element from Sample Problem 5/1
is x, = ry sin a/a, where ry replaces r in the formula. Thus, the first of Eqs.
5/ba gives

5 Lo
[AF = f x, dA] Lyt S f (w)mr@a dro)
2m o

0
r2ox = %ra sin «
= 2rsin a
X == Ans.
of

Solution Il. The area may also be covered by swinging a triangle of differential
area about the vertex and through the total angle of the sector. This triangle,
shown in the illustration, has an area dA = (r/2)(r df), where higher-order terms
are neglected. From Sample Problem 5/2 the centroid of the triangular element
of area is two-thirds of its altitude from its vertex, so that the x-coordinate to
the centroid of the element is x, = %r cos f. Applying the first of Eqs. 5/5a gives

[A% = f x, dA] (ra)x = f Er cos 6)(Zr? do)
rlax = %r3 sin «
Tl e2arsin o
and as before X= 3 Ans.
o

For a semicircular area 2« = m, which gives x = 4r/37. By symmetry we
see immediately that this result also applies to the quarter-circular area where
the measurement is made as shown.

It should be noted that, if we had chosen a second-order element r, dr, d6,
one integration with respect to # would yield the ring with which Solution I
began. On the other hand, integration with respect to r initially would give the
triangular element with which Solution II began.

P DTS —. - |

Solution I

Helpful Hints

(1) Note carefully that we must distin-
guish between the variable r; and
the constant r.

(2) Be careful not to use Ty as the cen-
troidal coordinate for the element.
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Sample Problem 5/4

Locate the centroid of the area under the curve x = ky3 from x = 0 to
x = a.

Solution I. A vertical element of area dA = y dx is chosen as shown in the
figure. The x-coordinate of the centroid is found from the first of Eqs. 5/5a. Thus,

a
[AE:chdA] fjaydx=jxydx
0 0
Substitutingy = (x/k)"3 and & = a/b® and integrating give
3ab_  3d% )
Tx — T Xw= %a Ans.

In the solution for ¥ from the second of Eqs. 5/5a, the coordinate to the
centroid of the rectangular element isy, = /2, where y is the height of the strip
governed by the equation of the curve x = ky?. Thus, the moment principle
becomes

lA37=fych] 3:—bi=f(%)ydx

Substituting y = b(x/a)'® and integrating give

3ab _ _ 3ab®
£ T2 0

wilba

y =%£b Ans.

Solution Il The horizontal element of area shown in the lower figure may be
employed in place of the vertical element. The x-coordinate to the centroid of the
rectangular element is seen to be x, = x + %(a — x) = (@ + x)/2, which is
simply the average of the coordinates @ and x of the ends of the strip. Hence,

[A.f=fxch] a_cf:(a—x)dy=r(a+x)(a - dy

0 2

The value of ¥ is found from
b b

[Ay = jych] if (@ —x)dy = f yla — x) dy
0 0

where y. = y for the horizontal strip. The evaluation of these integrals will check
the previous results for X and .

———x

dy

_.L
1
1,

Helpful Hint

(1) Note that x,
element.

a

x for the vertical
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Sample Problem 5/5

Hemispherical volume. Locate the centroid of the volume of a hemisphere of
radius r with respect to its base.

Solution I. With the axes chosen as shown in the figure, ¥ =z = 0 by symme-
try. The most convenient element is a circular slice of thickness dy parallel to the
x-z plane. Since the hemisphere intersects the y-z plane in the circle y* + 22 =
r2, the radius of the circular sliceisz = +./72 — y2. The volume of the elemental

slice becomes
dV = #(r® — y¥ dy

The second of Eqs. 5/6a requires
{1 T
WW:J%dW yfawz—ﬂn@=fyﬂﬂfy%®
0 0

where y, = y. Integrating gives

PR R [ | o
i G e

coles

r Ans.

Solution II. Alternatively we may use for our differential element a cylindrical
shell of length y, radius 2, and thickness dz, as shown in the lower figure. By
expanding the radius of the shell from zero to r, we cover the entire volume. By
symmetry the centroid of the elemental shell lies at its center, so that y, = y/2.
The volume of the element is dV = (2112 dz)( y} Expressing y in terms of z from
the equation of the circle givesy = +/r 2 Using the value of 2 ST 3 computed
in Solution I for the volume of the helmsphere and substituting in the second of
Eqgs. 5/6a give us

5

S e
(Vy = fyc avl  Gmdy = J M ZF @m/i - P dz

0 2
r 4
:f wr? — 2 dz = T
0 4
y = %r Ans.

Solutions I and II are of comparable use since each involves an element of
simple shape and requires integration with respect to one variable only.

Solution IIl. As an alternative, we could use the angle 6 as our variable with
limits of 0 and #/2. The radius of either element would become r sin 6, whereas
the thickness of the slice in Solution I would be dy = (r df) sin # and that of
the shell in Solution IT would be dz =(r d6) cos 6. The length of the shell would
bey = r cos 4.

Ve =Y

Solution 1

Z’_; -

et
]

Yo =321

Solution IT

Solution III

Helpful Hint

(1) Can you identify the higher-order el-
ement of volume which is omitted
from the expression for dV?
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PROBLEMS 5/3 Specify the x-, y-, and z-coordinates of the mass center
of the homogeneous semicylinder.

Introductory Problems Ans. X = 0,y = —50.9 mm, z = —180 mm

5/1 With your pencil, make a dot on the position of your | ¥
best visual estimate of the centroid of the triangular |

area. Check the position of your estimate by referring
to the results of Sample Problem 5/2 and to Table
D/3.
10
8
/ Problem 5/3
/ 5/4 Specify the x-, y-, and z-coordinates of the mass center
6 of the quarter-cylindrical shell.
|
4 / 360 mm I
, I/
2
0 120 mm
0 2 4 6 8 10
Problem 5/4
Prablens 33 5/5 Determine the y-coordinate of the centroid of the
5/2 With your pencil, make a dot on the position of your shaded area. Check your result for the special case
best visual estimate of the centroid of the area of the a = 0. 2h3 —a?)
circular sector. Check your estimate by using the re- Ans.y = 302 —a)
sults of Sample Problem 5/3.
y
|
|
f
|
|
|
h I
1
ﬂ\ / o
_t _ _460°y 60° P
Problem 5/5

Problem 5/2
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5/6 Determine the x- and y-coordinates of the centroid of
the shaded area.

5/9 Determine the coordinates of the centroid of the
shaded area. 3

Ans. x = %b,j = ‘;a

y
\
\
; 3 /
p=1+—=-—_ /
I =ik N
| :
|
|
| ~
L=
|
|
L___ —
O 1 ) *
Problem 5/6 | Problem 5/9
5/7 Determine the x- and y-coordinates of the centroid of i 5/10 Determine the coordinates of the centroid of the
the trapezoidal area. | shaded area.
Ans. 5 Mo+ 26) . @ +ab+B®
T e+ b Y T 8@+ b 7
y l
| |
| |
|
|
|
|
“ |
b |
—— —x
h
Problem 5/7 Problem 5/10

5/8 Locate the centroid of the shaded area shown.

By =56 x%5
| <
: ~
4 8
1 | \
| \
0~ 5o
Problem 5/8

5/11 Determine the coordinates of the centroid of the
shaded area.

Ans. X = 1443,y = 0.361k

xy=k

y
|
|
|
|
|
|
|
|
|
|
|
|
0

e 2 SEEamia

il 2

Problem 5/11
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Representative Problems

5/12 Find the distance z from the vertex of the right-
circular cone to the centroid of its volume.

Problem 5/12

5/13 Locate the centroid of the shaded area.
X = 2a/5,y = 3b/8

B _ o

Problem 5/13

5/14 The mass per unit length of the slender rod varies
with position according to p = py(1 — x/2), where x
is in feet. Determine the location of the center of
mass of the rod.

Problem 5/14

5/15 Determine the x-coordinate of the mass center of the
tapered steel rod of length L where the diameter at
the large end is twice the diameter at the small end.

Ans.x = 3L

" Dia. =2D

Dia.=D
Problem 5/15

5/16 Let ¢ — « and determine the x- and y-coordinates of
the centroid of the shaded area.

Problem 5/16

5/17 Determine the x- and y-coordinates of the centroid of

the shaded area. Ans. ¥ = 0.762,5 = 0533

Problem 5/17
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5/18 Determine the y-coordinate of the centroid of the
shaded area.

Problem 5/18

5/19 Determine the x- and y-coordinates of the centroid of
the shaded area. %o

Ans.i=6(w_ 1),§=

a

T —1

e

————x

Problem 5/19

5/20 Determine the y-coordinate of the centroid of the
shaded area.

Problem 5/20

5/21 Determine the x- and y-coordinates of the centroid of
the shaded area.

Problem 5/21

5/22 Determine the coordinates of the centroid of the

shaded area.
¥
: __y=bs1n-7-r2-§-
~
I
| |
I |
' b
I
|
I
|
0 ___x
/ a
!

Problem 5/22
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5/23 Locate the centroid of the shaded area between the

two curves. - _ 24 - _ 6
Ans. X = 55, ¥ = 7
4 ol
! Y4
' /
P
I ///x=yE
SR (S

Problem 5/23

5/24 Determine the coordinates of the centroid of the
shaded area.

¥

Problem 5/24

5/25 Locate the centroid of the area shown in the figure
by direct integration. (Caution: Observe carefully the

proper sign of the radical involved.)
2a s 10 — 317a

—m? T3a-»n

Ans. x =

==

Problem 5/25

5/26 Determine the z-coordinate of the centroid of the vol-

ume generated by revolving the shaded area through
180° about the z-axis.

Problem 5/26

5/27 Determine the x-coordinate of the centroid of the

solid spherical segment. Ans. & %R

Problem 5/27

5/28 Determine the x- and y-coordinates of the centroid of
the volume generated by revolving the cross-hatched
triangular area through 90° about the z-axis.

4
|
|
I
l

Problem 5/28
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5/29 The thickness of the triangular plate varies linearly
with y from a value #; along its base y = 0 to 2t at
y = h. Determine the y-coordinate of the center of
mass of the plate. Ariss 5 = R

o
o

T

e

Y

: —
!

!

|

|

|

I

v = AT Pl 2 D
e
MRS A 1

&

|
|
|
=
|
|
|

b

i

~
(=]

Problem 5/29

5/30 Calculate the distance i measured from the base to
the centroid of the volume of the frustum of the
right-circular cone.

|

lfrJ
|

zZ

Problem 5/30

5/31 Determine the z-coordinate of the centroid of the
solid generated by revolving the quarter-circular area
through 90° about the z-axis. 1a

N oal =
NPty

Problem 5/31

5/32 Determine the z-coordinate of the centroid of the vol-
ume obtained by revolving the shaded area within
the parabola about the z-axis through 180°.

z
|
|

Problem 5/32

5/33 The homogeneous slender rod has a uniform cross
section and is bent into the shape shown. Calculate
the y-coordinate of the mass center of the rod.
(Reminder: A differential arc length is dL =
Jidn? + (dy)? = V1 + (dx/dy)? dy.)

Ans.y = 574 mm

100 mm

Problem 5/33

5/34 Determine the z-coordinate of the centroid of the vol-
ume obtained by revolving the shaded triangular area
about the z-axis through 360°

|

z
|
|
|
|
|
|

Problem 5/34
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5/35 Determine the z-coordinate of the centroid of the vol-
ume generated by revolving the shaded area around
the z-axis through 360°. Ans. 3 = 5a/8

z
|
|
|
I
[
I
I
|
|
|
|

e
Problem 5/35

5/36 Locate the mass center of the homogeneous solid
body whose volume is determined by revolving the
shaded area through 360° about the z-axis.

Problem 5/36

»5/37 Determine the y-coordinate of the centroid of the
plane area shown. Set # = 0 in your result and com-
pare with the result y = L;;E for a full semicircular

W
area (see Sample Problem 5/3 and Table D/3). Also
evaluate your result for the conditions A = % and
a
h ==
2 2
é[a2 _ h2]3.'2

2[; — gin ! i—t] - hJa® — B2

7 = 0.562a, h = g: 7 = 0.705a

Ans. y

2

h =

Lt E~]

Problem 5/37

» 5/38 Determine the coordinates of the centroid of the vol-
ume obtained by revolving the shaded area about the
z-axis through the 90° angle.

Problem 5/38

»5/39 The cylindrical shell of uniform small thickness has
a radius r and height z which varies from zero at
0 = 0tohat & = 7according to z = k0 where k is
a constant. Determine the x-, y-, and z-coordinates of
the mass center of the shell.

Ans. x =

3 |¥

4
—Trz'z 3

)

Problem 5/39
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» 5/40 Locate the center of mass of the homogeneous bell-
shaped shell of uniform but negligible thickness.

_ a
Ans. z =

T — 2

Problem 5/40

»5/41 Locate the center of mass G of the steel half ring.
(Hint: Choose an element of volume in the form of a
cylindrical shell whose intersection with the plane of
the ends is shown.) o + 4R2

Ans. vt = orR

Problem 5/41

» 5/42 Determine the x-coordinate of the mass center of the
homogeneous hemisphere with the smaller hemi-
spherical portion removed. 45

Ans. x = m

Problem 5/42
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5/4 ComprosITE BoDIES AND FIGURES:
APPROXIMATIONS

When a body or figure can be conveniently divided into several parts
whose mass centers are easily determined, we use the principle of mo-
ments and treat each part as a finite element of the whole. Such a body
is illustrated schematically in Fig. 5/13. Its parts have masses my,
mg, m3 with the respective mass-center coordinates ¥, X,, X, in the
x-direction. The moment principle gives

(ml + mz + m:a)f = mlfl o m2.£2 + m3.§3

where X is the x-coordinate of the center of mass of the whole. Similar
relations hold for the other two coordinate directions.

We generalize, then, for a body of any number of parts and express
the sums in condensed form to obtain the mass-center coordinates

= _2m¥ - 3mj Smz
[“zm Y"zm Z"zm (5/7)

Analogous relations hold for composite lines, areas, and volumes, where
the m’s are replaced by L’s, A’s, and Vs, respectively. Note that if a hole
or cavity is considered one of the component parts of a composite body
or figure, the corresponding mass represented by the cavity or hole is
treated as a negative quantity.

An Approximation Method

In practice the boundaries of an area or volume might not be ex-
pressible in terms of simple geometrical shapes or as shapes which can
be represented mathematically. For such cases we must resort to a
method of approximation. As an example, consider the problem of lo-

Figure 5/13
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cating the centroid C of the irregular area shown in Fig. 5/14. The area
is divided into strips of width Ax and variable height h. The area A of
each strip, such as the one shown in red, is 2 Ax and is multiplied by
the coordinates x, and y, of its centroid to obtain the moments of the
element of area. The sum of the moments for all strips divided by the
total area of the strips will give the corresponding centroidal coordinate.
A systematic tabulation of the results will permit an orderly evaluation
of the total area =A, the sums Ax. and XAy, and the centroidal
coordinates
5 5

We can increase the accuracy of the approximation by decreasing
the widths of the strips. In all cases the average height of the strip
should be estimated in approximating the areas. Although it is usually
advantageous to use elements of constant width, it is not necessary. In
fact, we may use elements of any size and shape which approximate the
given area to satisfactory accuracy.

irregular Volumes

To locate the centroid of an irregular volume, we may reduce the
problem to one of locating the centroid of an area. Consider the volume
shown in Fig. 5/15, where the magnitudes A of the cross-sectional areas
normal to the x-direction are plotted against x as shown. A vertical strip
of area under the curve is A Ax, which equals the corresponding element
of volume AV. Thus, the area under the plotted curve represents the
volume of the body, and the x-coordinate of the centroid of the area
under the curve is given by

x = % which equals X =

ZVx,
IV

for the centroid of the actual volume.

—X

Figure 5/15

Figure 5/14
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Sample Problem 5/6 y

Locate the centroid of the shaded area. 12" »‘

Solution. The composite area is divided into the four elementary shapes shown
in the lower figure. The centroid locations of all these shapes may be obtained
from Table D/3. Note that the areas of the “holes” (parts 3 and 4) are taken as
negative in the following table:

A X ¥y XA yA
PART in.2 in. in. in.® in3 S
1 120 6 5 720 600
2 30 14 10/3 420 100 1 I \
3 —-14.14 6 1.273 -84.8 -18 4 5
4 -8 12 4 -96 -32 -
TOTALS 127.9 959 650 : -
The area counterparts to Eqs. 5/7 are now applied and yield @
P AY S 959 :
[X = E:l Xo= m = 7.50 in. Ans.
<  ZAy = _ 650 :
[Y = EA:I Y = 279 - 5.08 in. Ans.
Sample Problem 5/7 6
Approximate the x-coordinate of the volume centroid of a body whose length o
is 1 m and whose cross-sectional area varies with x as shown in the figure. . 5
E gl |
= 2
Solution. The body is divided into five sections. For each section, the average 1 |
area, volume, and centroid location are determined and entered in the following 0 I | L
: 0 0.2 0.4 0.6 0.8 1.0
table: . m
A Volume V X Vx
INTERVAL m? m? m m*
0-0.2 3 0.6 0.1 0.060
0.2-0.4 45 0.90 ' 0.3 0.270
0.4-0.6 5.2 1.04 0.5 0.520
0.6-0.8 5.2 1.04 0.7 0.728
0.8-1.0 4.5 0.90 0.9 0.810
TOTALS 4.48 2.388
Helpful Hint
=tV - . 2.388 (D Note that the shape of the body as a
® [ 7 EV] A 448 Deaddan Ans, function of y and z does not affect X.
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Sample Problem 5/8 R .

Locate the center of mass of the bracket-and-shaft combination. The vertical
face is made from sheet metal which has a mass of 25 kg/m?. The material of
the horizontal base has a mass of 40 kg/m?, and the steel shaft has a density of
7.83 Mg/m®.

Solution. The composite body may be considered to be composed of the five
elements shown in the lower portion of the illustration. The triangular part will
be taken as a negative mass. For the reference axes indicated it is clear by sym-
metry that the x-coordinate of the center of mass is zero.

The mass m of each part is easily calculated and should need no further
explanation. For Part 1 we have from Sample Problem 5/3

For Part 3 we see from Sample Problem 5/2 that the centroid of the triangular
mass is one-third of its altitude above its base. Measurement from the coordinate
axes becomes

z = —[150 — 25 — §(75)] = —100 mm

The y- and z-coordinates to the mass centers of the remaining parts should be
evident by inspection. The terms involved in applying Eqs. 5/7 are best handled
in the form of a table as follows:

m ¥y z my mz
PART kg mm mm kg:mm kg mm
1 0.098 0 21.2 0 2.08
2 0.562 0 —175.0 0 —42.19
3 —0.094 0 —100.0 0 9.38
4 0.600 50.0 —150.0 30.0 —90.00
5 1.476 75.0 0 110.7 0
TOTALS 2.642 140.7 —120.73

Equations 5/7 are now applied and the results are

> Zmy = A0
[Y = Em] Y = 2642 53.3 mm Ans.

= =mz = —-120.73
[ ﬂ] T —45.7T mm Ans.
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PROBLEMS

Introductory Problems

5/43 Determine the coordinates of the centroid of the trap-
ezoidal area shown.

Ans. X = 233 mm, Y = 333 mm

600

mm

A

600 |

mm

Problem 5/43

5/44 Calculate the y-coordinate of the centroid of the
shaded area. *

¥
|
|
|

e 32 -} 32
mim mm
Problem 5/44
5/45 Determine the y-coordinate of the centroid of the
shaded area. ding, T 4 \/iaa — 913
' 3(wa® — 4h?)

Problem 5/45

5/46 Determine the y-coordinate of the centroid of the
shaded area.

Problem 5/46

5/47 Determine the coordinates of the centroid of the
shaded area.

Ans. X = 244 mm, ¥ = 117.7 mm

¥y
|
lr‘— 200 mm —— 200 mm —-+= 150 mm -

Problem 5/47

5/48 Determine the x- and y-coordinates of the centroid of
the shaded area.

Dimensions in millimeters

Problem 5/48
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5/49 Determine the y-coordinate of the centroid of the
shaded area.

Ans. Y = 102.5 mm

Problem 5/49

Representative Problems

5/50 Determine the distance H from the bottom of the
base plate to the centroid of the built-up structural
section shown.

10 h __—>| l-‘flO B

Dimensions in millimeters

Problem 5/50

5/51 By the method of this article, determine the x- and
y-coordinates of the centroid of the shaded area of
Prob. 5/19, repeated here.

= Ta

a
Ans. X = TR

¥ =

T —1

Problem 5/51

5/52 Locate the mass center of the slender rod bent into
the shape shown.

300 mm —— mm
|

Problem 5/52

5/53 The rigidly connected unit consists of a 2-kg circular
disk, a 1.5-kg round shaft, and a 1-kg square plate.
Determine the z-coordinate of the mass center of the

s Ans. Z = 70 mm

Problem 5/53



252 Chapter5 Distributed Forces

5/54 Determine the height above the base of the centroid
of the cross-sectional area of the beam. Neglect the
fillets.

6.24"
PR U

-
1.40”
13.71" 0.87”

1.40”
3

L) TN

Problem 5/54

5/55 The homogeneous hemisphere with the smaller
hemispherical portion removed is repeated here from
Prob. 5/42. By the method of this article, determine
the x-coordinate of the mass center.

Problem 5/55

5/56 Determine the position of the mass center of the cy-
lindrical shell with a closed semicircular end. The
shell is made from sheet metal with a mass of 24
kg/m?, and the end is made from metal plate with a
mass of 36 kg/m?2.

Problem 5/56

5/57 Calculate the x-, y-, and z-coordinates of the mass
center of the bracket formed from the steel plate of
uniform thickness. )

Ans. X = 383 mm,Y = 646 mm, Z = 208 mm

P mm
Problem 5/57

5/58 The 400-mm X 400-mm aluminum plate is 6 mm
thick. A steel wire which has a mass of 0.5 kg per
meter of length is welded to the plate as shown. De-
termine the required position s of the 50-mm-radius
hole if the mass center of the entire unit is to be at
the geometric center of the plate. Neglect the diam-
eter of the wire relative to the 400-mm dimension of
the plate, and check to see that the hole clears the
wire,

400 mm

Problem 5/58
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5/59 Determine the coordinates of the mass center of the
welded assembly of uniform slender rods made from
the same bar stock.

- 3
Ans. X = =

— 2a = m
’Y__6+7T’Z—6+'rr

6 +

Problem 5/59

5/60 The welded assembly is made of a uniform rod weigh-
ing 0.370 1b per foot of length and the semicircular
plate weighing 8 b per square foot. Calculate the co-
ordinates of the center of gravity of the assembly.

Problem 5/60

(

5/61 Determine the distance H from the bottom of the
base to the mass center of the bracket casting.
Ans. H = 1.717 in.

Problem 5/61

5/62 The assembly shown is formed of uniform rod. For
what value of the length [ will the mass center be

; 3 ;
located at a height of Zr above the supporting

surface?

Problem 5/62

5/63 Determine the coordinates of the mass center of the
bracket, which is constructed from sheet metal of
uniform thickness.

Ans. X = 248in.,Y = 2.71in., Z = —0.882 in.

z
\
\
\

4" =N Y

Problem 5/63
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5/64 Calculate the coordinates of the mass center of the
metal die casting shown.

Dimensions in millimeters
Problem 5/64

5/65 The figure shows the underwater cross-sectional area
A a distance x aft of the bow at the waterline of a
sailboat hull. The variation of A with x is shown in
the graph for a particular hull. Determine the dis-
tance X aft of point P to the center of buoyancy of
the hull (centroid of the displaced volume of water).
The location of the center of buoyancy is a critical
parameter in the design of the hull.

Ans. X = 12.53 ft

16
s ~
2] N
. " N
& g N
< N
4 V4 N\
N,
% 4 s 12 18 20 24
x, ft
Problem 5/65

5/66 Determine the x-coordinate of the centroid of the por-
tion of the homogeneous sphere shown.

Problem 5/66

5/67 Determine the dimension % of the rectangular open-
ing in the square plate which will result in the mass
center of the remaining plate being as close to the
upper edge as possible. Ans. h = 0.586a

wa|a

Y
|
|
|

i OO g
Problem 5/67

5/68 Determine the depth h of the circular hole in the
cube for which the z-coordinate of the mass center
will have the maximum possible value.

Rl 175

mm 175 mm
mm

Problem 5/68
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P 5/69 A cylindrical container with an extended rectangular

back and semicircular ends is all fabricated from the
same sheet-metal stock. Calculate the angle & made
by the back with the vertical when the container
rests in an equilibrium position on a horizontal

surface. Ans. a = 39.6°

»5/70 The circular disk rotates about an axis through its

center O and has three holes of diameter d positioned
as shown. A fourth hole is to be drilled in the disk at
the same radius r so that the disk will be in balance
(mass center at 0). Determine the required diameter
D of the new hole and its angular position.

Ans. D = 1.227d, 0 = 84.9°

Problem 5/69

Problem 5/70
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Figure 5/16

5/5 THEOREMS OF Pappus”

A very simple method exists for calculating the surface area gener-
ated by revolving a plane curve about a nonintersecting axis in the plane
of the curve. In Fig. 5/16 the line segment of length L in the x-y plane
generates a surface when revolved about the x-axis. An element of this
surface is the ring generated by dL. The area of this ring is its circum-
ference times its slant height or dA = 27y dL. The total area is then

A =27 f ydL
Because yL = J y dL, the area becomes
A = 27yL (5/8)

where y is the y-coordinate of the centroid C for the line of length L.
Thus, the generated area is the same as the lateral area of a right-
circular cylinder of length L and radius .

In the case of a volume generated by revolving an area about a
nonintersecting line in its plane, an equally simple relation exists for
finding the volume. An element of the volume generated by revolving
the area A about the x-axis, Fig. 5/17, is the elemental ring of cross-
section dA and radius y. The volume of the element is its circumference
times dA or dV = 27y dA, and the total volume is

V= 277J‘ydA

Figure 5/17

*Attributed to Pappus of Alexandria, a Greek geometer who lived in the third century A.D.
The theorems often bear the name of Guldinus (Paul Guldin, 1577-1643), who claimed
original authorship, although the works of Pappus were apparently known to him.
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Because yA = J- y dA, the volume becomes

o

where y is the y-coordinate of the centroid C of the revolved area A.
Thus, we obtain the generated volume by multiplying the generating
area by the circumference of the circular path described by its centroid.

The two theorems of Pappus, expressed by Egs. 5/8 and 5/9, are
useful for determining areas and volumes of revolution. They are also
used to find the centroids of plane curves and plane areas when we know
the corresponding areas and volumes created by revolving these figures
about a nonintersecting axis. Dividing the area or volume by 27 times
the corresponding line segment length or plane area gives the distance
from the centroid to the axis.

If a line or an area is revolved through an angle 6 less than 2, we
can determine the generated surface or volume by replacing 27 by 6 in
Eqgs. 5/8 and 5/9. Thus, the more general relations are

and

V = 6yA (5/9a)

5o
XD

where 0 is expressed in radians.
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Sample Problem 5/9

Determine the volume V and surface area A of the complete torus of circular

cross section.

Solution. The torus can be generated by revolving the circular area of radius
a through 360° about the z-axis. With the use of Eq. 5/9a, we have

V = 0FA = 27(R)(ma?) = 27°Ra?

Similarly, using Eq. 5/8a gives

A = 6rL = 27(R)(2ma) = 47°Ra

Ans.

Ans.

Helpful Hint

(1) We note that the angle 6 of revolu-
tion is 27 for the complete ring. This
common but special-case result is
given by Eq. 5/9.

Sample Problem 5/10

Calculate the volume V of the solid generated by revolving the 60-mm right-
triangular area through 180° about the z-axis. If this hody were constructed of
steel, what would be its mass m?

Solution. With the angle of revolution # = 180°, Eq. 5/9a gives

V = 6rA = 730 + 3(60)1[3(60)(60)] = 2.83(10°) mm?

The mass of the body is then

m =

3
3 kg 5 3 1m
pV = [7830 -—-—m3] [2.83(10°) mm”] 1000 mm

2.21 kg

Ans.

z
\
I
El

mm
l’x
—

7

o, |

|
30 60 ‘J
H*mm mm

Helpful Hint
(D Note that # must be in radians.
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PROBLEMS

Introductory Problems

5/71 Using the methods of this article, determine the sur-
face area A and volume V of the body formed by re-
volving the rectangular area through 360° about the

XIS Aps. A = 10 300 mm?, V = 24 700 mm?

er‘n.m

z
|
I 35 mm
.*"

Problem 5/71

5/72 The circular arc is rotated through 360° about the y-
axis. Determine the outer surface area S of the re-
sulting body, which is a portion of a sphere.

Problem 5/72

5/73 The quarter-circular area is rotated through 360°
about the y-axis. Determine the volume of the re-
sulting body, which is a portion of a sphere. B

27/ 2a
Ans. V = Silvet

3

Problem 5/73

5/74 Compute the volume V of the solid generated by re-
volving the right triangle about the z-axis through
180°.

8 mm
Problem 5/74

5/75 The body shown in cross section is a complete cir-
cular ring formed by revolving the octagonal area
about the z-axis. The entire surface is to be covered
with a special coating. Determine this surface area.

Ans. A = 177 100 mm?®

e —— N

< %\\ 7’20
' \§ W40
Ry | 20

e
| 40 20 60 20
Dimensions in millimeters

Problem 5/75
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5/76 Determine the volume V generated by revolving the
quarter-circular area about the z-axis through an an-
gle of 90°,

Problem 5/76

Representative Problems

5/77 Calculate the volume V of the spacer in the form of
the complete ring of the semicircular section shown.

Also compute the total surface area A of the spacer.

Ans. V = 6.56 in.5 A = 29.3 in2

Problem 5/77

5/78 Compute the volume V and total surface area A of
the complete circular ring whose cross section is
shown.

mm

Problem 5/78

5/79 Determine the total surface area of the body gener-
ated by revolving the shaded area through 360° about

the x-axis, Ans. A = w2z — 1)

Problem 5/79

5/80 The water storage tank is a shell of revolution and is
to be sprayed with two coats of paint which has a
coverage of 500 ft per gallon. The engineer (who re-
members mechanics) consults a scale drawing of the
tank and determines that the curved line ABC has a
length of 34 ft and that its centroid is 8.2 ft from the
centerline of the tank. How many gallons of paint
will be used for the tank including the vertical cylin-
drical column?

Problem 5/80
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5/81 The two circular arcs AB and BC are revolved about
the vertical axis to obtain the surface of revolution
shown. Compute the area A of the outside of this
surface.

Ans. A = 1579 in.2

Problem 5/81

5/82 Calculate the weight W of the aluminum casting
shown. The solid is generated by revolving the trap-
ezoidal area shown about the z-axis through 180°.

z

Problem 5/82

5/83 Determine the surface area of one side of the bell-
shaped shell of Prob. 5/40, shown again here, using
the theorem of Pappus. Aig A = i — 9

Problem 5/83

5/84 A steel die, shown in section, has the form of a solid
generated by revolving the shaded area around the z-
axis. Calculate the mass m of the die.

Z

mm
160 mm |

Problem 5/84

5/85 Determine the volume V and total surface area A of
the solid generated by revolving the area shown
through 180° about the z-axis.

Ans. V = 1.775(105 mm?3 A = 105 800 mm?

[
”’L'rsmm”l

Problem 5/85
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5/86 A hand-operated control wheel made of aluminum
has the proportions shown in the cross-sectional
view. The area of the total section shown is 15 200
mm?, and the wheel has a mass of 10.0 kg. Calculate
the distance 7 to the centroid of the half-section. The
aluminum has a density of 2.69 Mg/m?.

Problem 5/86

5/87 Determine the volume generated by rotating the
semicircular area through 180°.
Ans. V = 361 000 mm?

Problem 5/87

5/88 Calculate the volume V of the large neoprene washer
in the form of the complete ring of section shown.
Also compute the overall surface area A.

Problem 5/88

5/89 A surface is generated by revolving the circular arc
of 0.8-m radius and subtended angle of 120° com-
pletely about the z-axis. The diameter of the neck is
0.6 m. Determine the outside area A generated.

Ans. A = 4.62 m>

LO.S m—>—!
|

Problem 5/89

5/90 The shaded area is bounded by one half-cycle of a
sine wave and the axis of the sine wave. Determine
the volume generated by completely revolving the
area about the x-axis.

|en->-tq—c-—>-‘
&
i =
i
© E
L
»
¥

Problem 5/90
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5/91 Calculate the mass m of concrete required to con-
struct the arched dam shown. Concrete has a density

3
of 2.40 Mg/m"”. Ans. m = 1.126(10°) Mg

10 m
Section A-A

Problem 5/91

5/92 In order to provide sufficient support for the stone
masonry arch designed as shown, it is necessary to
know its total weight W. Use the results of Prob. 5/7
and determine W. The density of stone masonry is
2.40 Mg/m®.

Problem 5/92
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SECTIONB. SPECIALTOPICS

5/6 BeAmMS—EXTERNAL EFFECTS

Beams are structural members which offer resistance to bending
due to applied loads. Most beams are long prismatic bars, and the loads
are usually applied normal to the axes of the bars.

Beams are undoubtedly the most important of all structural mem-
bers, so it is important to understand the basic theory underlying their
design. To analyze the load-carrying capacities of a heam we must first
establish the equilibrium requirements of the beam as a whole and any
portion of it considered separately. Second, we must establish the rela-
tions between the resulting forces and the accompanying internal re-
sistance of the beam to support these forces. The first part of this
analysis requires the application of the principles of statics. The second
part involves the strength characteristics of the material and is usually
treated in studies of the mechanics of solids or the mechanics of
materials.

This article is concerned with the external loading and reactions
acting on a beam. In Art. 5/7 we calculate the distribution along the
beam of the internal force and moment.

Types of Beams

Beams supported so that their external support reactions can be
calculated by the methods of statics alone are called statically determi-
nate beams. A beam which has more supports than needed to provide
equilibrium is statically indeterminate. To determine the support reac-
tions for such a beam we must consider its load-deformation properties
in addition to the equations of static equilibrium. Figure 5/18 shows

-

Continuous

] =
End-supported cantilever

-

I

Combination Fixed

Statically determinate beams Statically indeterminate beams

Figure 5/18
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examples of both types of beams. In this article we will analyze statically
determinate beams only.

Beams may also be identified by the type of external loading they
support. The beams in Fig. 5/18 are supporting concentrated loads,
whereas the beam in Fig. 5/19 is supporting a distributed load. The
intensity w of a distributed load may be expressed as force per unit
length of beam. The intensity may be constant or variable, continuous
or discontinuous. The intensity of the loading in Fig. 5/19 is constant
from C to D and variable from A to C and from D to B. The intensity is
discontinuous at ), where it changes magnitude abruptly. Although the
intensity itself is not discontinuous at C, the rate of change of intensity
dw/dx is discontinuous.

Distributed Loads

Loading intensities which are constant or which vary linearly are
easily handled. Figure 5/20 illustrates the three most common cases and
the resultants of the distributed loads in each case.

In cases @ and b of Fig. 5/20, we see that the resultant load R is
represented by the area formed by the intensity w (force per unit length
of beam) and the length L over which the force is distributed. The re-
sultant passes through the centroid of this area.

In part ¢ of Fig. 5/20, the trapezoidal area is broken into a rectan-
gular and a triangular area, and the corresponding resultants R, and
Ry of these subareas are determined separately. Note that a single re-
sultant could be determined by using the composite technique for finding
centroids, which was discussed in Art. 5/4. Usually, however, the deter-
mination of a single resultant is unnecessary.

For a more general load distribution, Fig. 5/21, we must start with
a differential increment of force dR = w dx. The total load R is then
the sum of the differential forces, or

fwdx

As before, the resultant R is located at the centroid of the area under
consideration. The x-coordinate of this centroid is found by the principle

J’ xw dx, or

R =

of moments Rx =

fxw dx
R

%=

For the distribution of Fig. 5/21, the vertical coordinate of the centroid
need not be found.

Once the distributed loads have been reduced to their equivalent

concentrated loads, the external reactions acting on the beam may be
found by a straightforward static analysis as developed in Chapter 3.

1w
]
- C D <
A B
Figure 5/19
L2
R=wL

R = 1 wlL
2
<—2L/3—1

(e)

Figure 5/20

Figure 5/21
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Sample Problem 5/11

Determine the equivalent concentrated load(s) and external reactions for the
simply supported beam which is subjected to the distributed load shown.

Solution. The area associated with the load distribution is divided into the rec-
tangular and triangular areas shown. The concentrated-load values are deter-
mined by computing the areas, and these loads are located at the centroids of
the respective areas.

Once the concentrated loads are determined, they are placed on the free-

i_;._ f—>te @

|
ft
A 1 B
iy — —_—

E

Helpful Hint

(1) Note that it is usually unnecessary to
reduce a given distributed load to a
single concentrated load.

1

body diagram of the beam along with the external reactions at A and B. Using 5(160) (6)=4801b
principles of equilibrium, we have ) 5 é/,/’4(/I60 Ib/ft
[SM, = 0] 1200(5) + 480(8) — Rp(10) = 0 120 Ib/ft ‘I, 120 b/t
A B
Rp = 984 1b Ans. (120) (10) = 1200 Ib
[EME = 0] RA(].O) — 1200(5) — 480(2) = 0 12001b 480 1b
R, = 69 1b Ans. e 5 —"{‘-' 3 *»**
A
A
RA RB
Sample Problem 5/12 wlx)

Determine the reaction at the support A of the loaded cantilever beam.

Solution. The constants in the load distribution are found to be w, = 1000
N/m and £ = 2 N/m®. The load R is then

8 4\ |8
R = fwdx =f (1000 + 2%) dx = (IOOOx +"E) = 10048 N
0
0
The x-coordinate of the centroid of the area is found by
J xw dx fﬁ g
R = 1000 +
e 7 10048DJC(OOO 2x°) dx
1 2 g B8
= 4 & = 4.
10 043 (500x° X )|0 449 m
From the free-body diagram of the beam, we have
[EM, = 0] M, — (10 048)(4.49) = 0
M, = 45100 N-m Ans.
[ZF, = 0] A, = 10048 N Ans.

Note that A, = 0 by inspection.

; W =wg + kad

m
P Ll

I-i— ——8m—————
A

L

Helpful Hints
(@ Use caution with the units of the

constants wy and k.

(2) The student should recognize that
the calculation of R and its location
X is simply an application of cen-
troids as treated in Art. 5/3.

10048 N

~——449m— Y
Ax—& 1B
¥y
m\pA Y
|

A
A,

——%
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PROBLEMS 5/96 Calculate the reactions at A and B for the beam

loaded as shown.
Introductory Problems

5/93 Determine the reactions at A and B for the beam
subjected to the uniform load distribution.
Ans. Ry = 1.35 kN, Rg = 0.45 kN

400 Ib/ft

6 kN/m
Al G ]
— . e Problem 5/96
L 300 mm —==— 300 mm *-I 5/97 Determine the reactions at A for the cantilever beam
subjected to the distributed and concentrated loads.
Problem 5/93 Ans. A, = 0,A, = 8kN, M, = 21 kN-m
5/94 Determine the reactions at the supports A and B for y
the beam loaded as shown. 2 kN :
/«ffﬂ/ T N
; ] |
Aﬁ;ﬂ o B : 3m 1.5m > 1.5ma‘
l l
\! 0} b} ’7‘ Problem 5/97

5/98 Calculate the support reactions at A and B for the

Problem 5/94
loaded beam.

5/95 Determine the reactions at A and B for the loaded
g Ans. A, = 0,A, = 6031b, B, = 757 Ib

b 2
|
|
|
bm——x 160 Ib/ft

Problem 5/98

Problem 5/95
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5/99 Determine the reactions at A and B for the beam
subjected to a combination of distributed and point

loads.
Ans. A, = T50 N, A, = 3.07 kN, B, = 1224 kN

2 kN/m

15 kN

Problem 5/99

5/100 Calculate the support reactions at A and B for the
beam subjected to the two linearly varying load
distributions.

Problem 5/100

Representative Problems

5/101 The beam is subjected to an elliptical load distri-
bution and the point loads shown. For what value
of the force P will the reaction at B go to zero?

Ans. P = 6.96 kN

4 kN/m

2m 3m Im 2m 2m

Problem 5/101

5/102 Calculate the support reactions at A and B for the
beam subjected to the two linearly distributed loads.

6 kN/m

Problem 5/102

5/103 Determine the force and moment reactions at the
support A of the built-in beam which is subjected to
the sine-wave load distribution.

2wl wl?
Ry = — = —
Ans. Ry ' d My =
Wy

1 j\\Sine wave

Problem 5/103

5/104 The cantilever beam is subjected to a parabolic dis-
tribution of load symmetrical about the middle of
the beam. Determine the supporting force R4 and
moment M, acting on the beam at A.

w
|
I
I

Problem 5/104
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5/105 The load per foot of beam length varies as shown.
For x = 10 ft, the unit load is w = 300 lb/ft. At x
= 0, the load is increasing at the rate of 50 Ib/ft per
foot. Calculate the support reactions at A and B.

Ans. Ry = 667 1b, Ry = 1167 1b

- 10 .

Problem 5/105

5/106 A cantilever beam supports the variable load shown.
Calculate the supporting force R4 and moment M4
at A.

_—w=wy+ kx? ‘

90 b/t

50 1b/ft

| 20’ -

Problem 5/106

5/107 A beam is subjected to the variable loading shown. |
Calculate the support reactions at A and B.

Ans. Ry = 1900 1b, R = 1600 Ib

———

—w = wy— kax?

200 Ib/ft
100 Ib/ft

Agr— "tlfj.'sﬁl
o 20 |

Problem 5/107

5/108 Determine the force and moment reactions at the
support A of the cantilever beam subjected to the
load distribution shown.

Vx

/—w=k
/

‘ l

Problem 5/108

5/109 Determine the reactions at A and B for the beam
subjected to the distributed and concentrated loads.
Ans. A, = 5.56 kN, B, = 4 kN, B, = 1111 kN

6kN/m |[<€— 7
0.5m
Sarr e e — — — — i Y
= A B
T | =
0.6 m 14m 04m 0.6m

Problem 5/109

5/110 Determine the reactions at the supports of the beam
which is acted on by the combination of uniform
and parabolic loading distributions.

Parabolic
region

’,,rVertex 6 kN/m

3m

Problem 5/110
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»5/111 The transition between the loads of 10 kN/m and |

tion of form w = ky + kyx + kox? + kyx®, the slope

37 kN/m is accomplished by means of a cubic func- ‘

of which is zero at its end points x = 1 m and x =
4 m. Determine the reactions at A and B.
Ans. Ry = 431 kN, Rz = 744 kN

Cubic
function

37 kN/m

le 3m

Problem 5/111

1m—~

» 5/112 The quarter-circular cantilever beam is subjected to
a uniform pressure on its upper surface as shown.
The pressure is expressed in terms of the force p
per unit length of circumferential arc. Determine
the reactions on the beam at its support A in terms
of the compression C,, shear V,, and bending mo-

ment My, Ans. Cy = pr, V4 = pr, M, = pr?

Problem 5/112
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.5/7 BEAMS—INTERNAL EFFECTS

The previous article treated the reduction of a distributed force to
one or more equivalent concentrated forces and the subsequent deter-
mination of the external reactions acting on the beam. In this article we
introduce internal beam effects and apply principles of statics to calcu-
late the internal shear force and bending moment as functions of loca-
tion along the beam.

Shear, Bending, and Torsion

In addition to supporting tension or compression, a beam can resist
shear, bending, and torsion. These three effects are illustrated in Fig.
5/22. The force V is called the shear forece, the couple M is called the
bending moment, and the couple T is called a torsional moment. These
effects represent the vector components of the resultant of the forces
acting on a transverse section of the beam as shown in the lower part
of the figure.

Consider the shear force V and bending moment M caused by forces
applied to the beam in a single plane. The conventions for positive values
of shear V and bending moment M shown in Fig. 5/23 are the ones
generally used. From the principle of action and reaction we can see that
the directions of V and M are reversed on the two sections. It is fre-
quently impossible to tell without calculation whether the shear and
moment at a particular section are positive or negative. For this reason
it is advisable to represent V and M in their positive directions on the
free-body diagrams and let the algebraic signs of the calculated values
indicate the proper directions.

As an aid to the physical interpretation of the bending couple M,
consider the beam shown in Fig. 5/24 bent by the two equal and opposite
positive moments applied at the ends. The cross section of the beam is
treated as an H-section with a very narrow center web and heavy top
and bottom flanges. For this beam we may neglect the load carried by
the small web compared with that carried by the two flanges. The upper
flange of the beam clearly is shortened and is under compression,
whereas the lower flange is lengthened and is under tension. The resul-
tant of the two forces, one tensile and the other compressive, acting on
any section is a couple and has the value of the bending moment on the
section. If a beam having some other cross-sectional shape were loaded

Figure 5/24

M
Combined loading

Figure 5/22

+V
+M +M

+V

Figure 5/23
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in the same way, the distribution of force over the cross section would
be different, but the resultant would be the same couple.

Shear-Force and Bending-Moment Diagrams

The variation of shear force V and bending moment M over the
length of a beam provides information necessary for the design analysis
of the beam. In particular, the maximum magnitude of the bending mo-
ment is usually the primary consideration in the design or selection of
a beam, and its value and position should be determined. The variations
in shear and moment are best shown graphically, and the expressions
for V.and M when plotted against distance along the beam give the
shear-force and bending-moment diagrams for the beam.

The first step in the determination of the shear and moment rela-
tions is to establish the values of all external reactions on the beam by
applying the equations of equilibrium to a free-body diagram of the beam
as a whole. Next, we isolate a portion of the beam, either to the right
or to the left of an arbitrary transverse section, with a free-body dia-
gram, and apply the equations of equilibrium to this isolated portion of
the beam. These equations will yield expressions for the shear force V
and bending moment M acting at the cut section on the part of the beam
isolated. The part of the beam which involves the smaller number of
forces, either to the right or to the left of the arbitrary section, usually
vields the simpler solution.

We should avoid using a transverse section which coincides with the
location of a concentrated load or couple, as such a position represents
a point of discontinuity in the variation of shear or bending moment.
Finally, it is important to note that the calculations for V and M on each
section chosen should be consistent with the positive convention illus-
trated in Fig. 5/23.

General Loading, Shear, and Moment Relationships

For any beam with distributed loads we can establish certain general
relationships which will aid greatly in the determination of the shear
and moment distributions along the beam. Figure 5/25 represents a por-
tion of a loaded beam, where an element dx of the beam is isolated. The
loading w represents the force per unit length of beam. At the location
x the shear V and moment M acting on the element are drawn in their
positive directions. On the opposite side of the element where the co-
ordinate is x + dx, these quantities are also shown in their positive

w = flx) -] |"7 dx
w vV w
% ! ( 5 M +dM
S |
—N—x —> [—dx M
V+dV

Figure 5/25
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directions. They must, however, be labeled V + dV and M + dM, since
V and M change with x. The applied loading w may be considered con-
stant over the length of the element, since this length is a differential
quantity and the effect of any change in w disappears in the limit com-
pared with the effect of w itself.

Equilibrium of the element requires that the sum of the vertical
forces be zero. Thus, we have

V-wdx —(V+dV) =0

or
w=—— (5/10)

We see from Eq. 5/10 that the slope of the shear diagram must every-
where be equal to the negative of the value of the applied loading. Equa-
tion 5/10 holds on either side of a concentrated load but not at the
concentrated load because of the discontinuity produced by the abrupt
change in shear.

We may now express the shear force V in terms of the loading w by
integrating Eq. 5/10. Thus,

or

V = V, + (the negative of the area under
the loading curve from x; to x)

In this expression V|, is the shear force at xy and V is the shear force at
x. Summing the area under the loading curve is usually a simple way to
construct the shear-force diagram.

Equilibrium of the element in Fig. 5/25 also requires that the mo-
ment sum be zero. Summing moments about the left side of the element
gives

M+wdx§2£+(V+dV)dxf(M+dM):O

The two M’s cancel, and the terms w(dx)?/2 and dV dx may be dropped,
since they are differentials of higher order than those which remain.
This leaves

V=— (5/11)
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which expresses the fact that the shear everywhere is equal to the slope
of the moment curve. Equation 5/11 holds on either side of a concen-
trated couple but not at the concentrated couple because of the discon-
tinuity caused by the abrupt change in moment.

We may now express the moment M in terms of the shear V by
integrating Eq. 5/11. Thus,

M X
J dM = f V dx
M, X9
or

M = M, + (area under the shear diagram from x, to x)

In this expression M|, is the bending moment at x, and M is the bending
moment at x. For beams where there is no externally applied moment
M, at x, = 0, the total moment at any section equals the area under
the shear diagram up to that section. Summing the area under the shear
diagram is usually the simplest way to construct the moment diagram.

When V passes through zero and is a continuous function of x with
dV/dx # 0, the bending moment M will be a maximum or a minimum,
since dM/dx = 0 at such a point. Critical values of M also occur when
V crosses the zero axis discontinuously, which occurs for beams under
concentrated loads.

We observe from Egs. 5/10 and 5/11 that the degree of V in x is one
higher than that of w. Also M is of one higher degree in x than is V. Con-
sequently, M is two degrees higher in x than w. Thus for a beam loaded
by w = kx, which is of the first degree in x, the shear V is of the second
degree in x and the bending moment M is of the third degree in x.

Equations 5/10 and 5/11 may be combined to yield

(5/12)

Thus, if w is a known function of x, the moment M can be obtained by
two integrations, provided that the limits of integration are properly
evaluated each time. This method is usable only if w is a continuous
function of x."

When bending in a beam occurs in more than a single plane, we may
perform a separate analysis in each plane and combine the results
vectorially.

*When w is a discontinuous function of x, it is possible to introduce a special set of expres-
sions called singularily functions which permit writing analytical expressions for shear V
and moment M over an interval which includes discontinuities. These functions are not
discussed in this book.
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Sample Problem 5/13

Determine the shear and moment distributions produced in the simple beam
by the 4-kN concentrated load.

Solution. From the free-body diagram of the entire beam we find the support
reactions, which are

R, = 16kN R, = 24kN

A section of the beam of length x is next isolated with its free-body diagram
on which we show the shear V and the bending moment M in their positive
directions. Equilibrium gives

[SF, = 0] 16 -V=0 V=16kN
(Mg, = 0] M-16x=0 M=16x

These values of V and M apply to all sections of the heam to the left of the 4-kN
load.

A section of the beam to the right of the 4-kN load is next isolated with its
free-body diagram on which V and M are shown in their positive directions.
Equilibrium requires

[EF, = 0] V+24=0 V
[EMp, = 0] -24H)10 -x) + M=0 M

—2.4 kN

Il
Il

2.4(10 — x)

These results apply only to sections of the beam to the right of the 4-kN load.

The values of V and M are plotted as shown. The maximum bending moment
occurs where the shear changes direction. As we move in the positive x-direction
starting with x = 0, we see that the moment M is merely the accumulated area
under the shear diagram.

4 kN

R,=1.6kN Ry =24 kN
y 14
|
| M
%
74
1.6 kN
V, kN
|
\ \
' \ !
1.61 |
[
\
01 y — X, m
0 6 10

Helpful Hint

(1) We must be careful not to take our
section at a concentrated load (such
asx = 6 m) since the shear and mo-
ment relations involve discontinu-
ities at such positions.
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Sample Problem 5/14

The cantilever beam is subjected to the load intensity (force per unit length)
which varies as w = wj sin (mx/l). Determine the shear force V and bending

moment M as functions of the ratio x//.

Solution. The free-body diagram of the entire beam is drawn first so that the
shear force V; and bending moment M, which act at the supported end at x =
0 can be computed. By convention V; and M, are shown in their positive math-
ematical senses. A summation of vertical forces for equilibrium gives

[SF, = 0] :

A summation of moments about the left end at x = 0 for equilibrium gives

')

1
[SM = 0] —Mo—fx(wdx)=0 M, = —f woxsin-?-dx
0 0
2 t 2
i ) W A S
M, — [sm 7 7 cos l:|0 =

From a free-body diagram of an arbitrary section of length x, integration of
Eq. 5/10 permits us to find the shear force internal to the beam. Thus,

[dV = —w dx]

or in dimensionless form

74

wOl

M X wil
[dM = V dx] dM = f -
M, 0575
M- My =2 [x
o
M= _wyl®
o
or in dimensionless form
Mo Lfx
wolz m l

The variations of V/wyl and M/wyl? with x/I are shown in the bottom fig-
ures. The negative values of M/wl? indicate that physically the bending moment

474 X
dv = —f wy sin
0

-

L £
Vuffwdx=0 v0=fw0sin"—”‘dx=
0

l

l

wyl
T/

T

is in the direction opposite to that shown.

[

LR

1 + cos %)

The bending moment is obtained by integration of Eq. 5/11, which gives

(1 + cos ?) dx

x

. LT
+ — sin T]
(il 0

[x + isin—q-Trx— - 0]
T 1

3 mr)
-1+ —sin—
T {

A

2wl

-0.318

wnlz

Helpful Hints

(D In this case of symmetry it is clear

that the resultant R = V,, = 2wyl/=
of the load distribution acts at mid-
span, so that the moment require-
ment is simply M, = —-RI/2 =
—wgl?/m. The minus sign tells us
that physically the bending moment
at x = 0 is opposite to that repre-
sented on the free-body diagram.

(@ The free-hody diagram serves to re-

mind us that the integration limits
for V as well as for x must be ac-
counted for. We see that the expres-
sion for V is positive, so that the
shear force is as represented on the
free-body diagram.

0 02 xfl 06 08 1.0



Article 5/7 Beams—Internal Effects 277

Sample Problem 5/15

Draw the shear-force and bending-moment diagrams for the loaded beam
and determine the maximum moment M and its location x from the left end.

Solution. The support reactions are most easily obtained by considering the
resultants of the distributed loads as shown on the free-body diagram of the beam
as a whole. The first interval of the beam is analyzed from the free-body diagram
of the section for 0 < x < 4 ft. A vertical summation of forces and a moment
summation about the cut section yield

[EF, = 0] V = 247 — 12.5¢%
M =0 M+ (12.5x2)§ — Uk =0 M= 247 — 4173

These values of V and M hold for 0 < x < 4 ft and are plotted for that interval
in the shear and moment diagrams shown.

From the free-body diagram of the section for which 4 < x < 8 ft, equilib-
rium in the vertical direction and a moment sum about the cut section give

[SF,=0]  V+100(x - 4) + 200 — 247 =0 V= 447 — 100«
[EM =01 M+ 100 — 4) ’6;—4 +2000x — 2(4)] — 247x = 0

M = —267 + 447x — 50x2

These values of V and M are plotted on the shear and moment diagrams for the
interval 4 < x < 8 ft.

The analysis of the remainder of the beam is continued from the free-body
diagram of the portion of the beam to the right of a section in the next interval.
It should be noted that V and M are represented in their positive directions. A
vertical force summation and a moment summation about the section yield

V = -3531b and M = 2930 — 353x

These values of V and M are plotted on the shear and moment diagrams for the
interval 8 < x < 10 ft.

The last interval may be analyzed by inspection. The shear is constant at
+300 1b, and the moment follows a straight-line relation beginning with zero at
the right end of the beam.

The maximum moment occurs at x = 4.47 ft, where the shear curve crosses
the zero axis, and the magnitude of M is obtained for this value of x by substi-
tution into the expression for M for the second interval. The maximum moment is

M = 732 lb-ft Ans.

As before, note that the moment M at any section equals the area under the
shear diagram up to that section. For instance, for x < 4 ft,

[AM = dexJ Mfo:f (247 — 12.5x2) dx
0

and, as above, M = 247x — 4.17x3

100 Ib/ft

TRI =247 b TRZ =653 lb

12,522
2 1o v 3001
r- 3 5100
4
12-x Y
M
X
M
v
247 1b 653 Ib
100(x — 4)
200 1b | ——

T2
¥ Y by

247 1b

V,1b
|

' ——1300

247 |
r\ I

ol :
) 4 8; 10| 12
— 4.47 J :

|

|

|

|

M, -t | 353

- |

|

| |

| |

0 | ] |
0 4 s\ 110/ 12
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PROBLEMS
Introductory Problems

5/113 Determine the shear-force and bending-moment
distributions produced in the beam by the concen-
trated load. What are the values of the shear and
moment when x = [/2?

Ans.V = P/3,M = Pi/6

P

e L.,
. y 4‘
/
— H
Problem 5/113

5/114 Draw the shear and moment diagrams for the
loaded cantilever beam.

P P
: !
B = ‘L B ¥
[
EA

Problem 5/114

5/115 Draw the shear and moment diagrams for the
loaded beam and determine the distance d to the
right of A where the moment is zero.

Ans. d = 267 m

Problem 5/115

5/116 Draw the shear and moment diagrams for the
loaded beam. What are the values of the shear and
moment at midbeam?

—
| e

b . ;
3 ‘ 3 3

Problem 5/116

5/117 Draw the shear and moment diagrams for the beam
subjected to the two point loads. Determine the
maximum bending moment M, and its location.

5P1 3l

Ans. M. = Eatx =

Problem 5/117

5/118 Construct the shear and moment diagrams for the
beam loaded by the 2-kN force and the 1.6-kN-m
couple.

2 kN
1.6 kN-m

P i, B Y
e ¥ O | )
A
e e
;1-b 0.5m ——L- 0.5 m ‘*"‘Tl“f 0.5m-—

Problem 5/118

5/119 Draw the shear and moment diagrams for the uni-
formly loaded beam and find the maximum bending
moment M, ... wiZ

Ans. M .. = e

| l |

Problem 5/119



Article 5/7 Problems 279

5/120 Draw the shear and moment diagrams for the
loaded beam and determine the maximum value
M., of the moment.

300 1b/ft

L -
PR NP M

Problem 5/120

5/121 Determine the shear and moment diagrams for the
loaded cantilever beam. Specify the shear V and mo-
ment M at the middle section of the beam.

Ans. V = 48 — 0.6x kN
M = -03(8 — x)*kN-m
V=24kN,M = — 48kN'm

600 N/m

Problem 5/121

Representative Problems
5/122 Draw the shear and moment diagrams for the lin-

early loaded cantilever beam and specify the bend-
ing moment M, at the support A.

wy

| !

Problem 5/122

5/123 Draw the shear and moment diagrams for the beam
loaded as shown. Specify the maximum moment

2
Ans. M., = wgi,

£z

Problem 5/123

5/124 Draw the shear and moment diagrams for the beam
loaded by the force F applied to the strut welded to
the beam as shown.

F

E ot

i
e

o
\

o~

-

Problem 5/124

5/125 The I-beam supports the 1000-1b force and the 2000-
1b-ft couple, applied to the 2-ft strut welded to the
end of the beam. Calculate the shear V and moment
M at the section midway between A and B.

Ans. V = 1467 Ib, M = —200 Ib-ft

1000 Ib

2000 Ib-ft

Problem 5/125
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5/126 The angle strut is welded to the end C of the I-beam
and supports the 1.6-kN vertical force. Determine
the bending moment at B and the distance x to the
left of C at which the bending moment is zero. Also
construct the moment diagram for the beam.

1.6 kN

400 mm !

450 mm i
Problem 5/126

5/127 Derive expressions for the shear force V and bend-
ing moment M as functions of x in the cantilever
beam loaded as shown.

Ans. V = 2000 — 100x — x° |b
M = -12,500 + 2000x — 50x% — 1x* Ib-ft

w:w0+kx2t\\

100 Ib/ft 400 Ib/ft

- 10°

Problem 5/127

5/128 The adjusting screw of the special-purpose offset
clamp supports a compression of 500 N. Calculate
the shear force V, the tension 7, and the bending
moment M at section A of the clamp bar for x =
250 mm. Which of these three quantities changes
with x?

Problem 5/128

5/129 Plot the shear and moment diagrams for the beam
loaded with both the distributed and point loads.
What are the values of the shear and moment at x
= 6 m? Determine the maximum bending moment
M,

max-
Ans. V= —600 N, M = 4800 N-matx = 6 m
M. = 5620 N-matx = 425 m

1500 N

Aix SOfN/m l l iB
LZmﬁ—LBm—»l-eZm»\«Zm—ﬂ!

Problem 5/129

5/130 Repeat Prob. 5/129, where the 1500-N load has
been replaced by the 4.2-kN-m couple.

4.2 kN-m

N\

(\o l V B
Zm».

800 N/m
’» —x

.

5/131 Draw the shear and moment diagrams for the beam
of Prob. 5/96 repeated here and specify the shear V
and moment M at a section 6 ft to the left of the
support at A.

Ans. V.= —18001b, M = —6000 lb-ft

3m !2m,

Problem 5/130

400 1b/ft

Problem 5/131
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Problems

5/132 Draw the shear and moment diagrams for the beam
of Prob. 5/106 repeated here and specify the shear
V and moment M at the midlength of the beam.

o w =wy + kx?
e

w
\
\
\

90 Ib/ft
" 50 Th/ft

! 20

Problem 5/132

5/133 The heavy-duty paper clip is clamped to a 10-mm
stack of papers and exerts a clamping force of 40 N
on each side of the stack at A with P = 0. It re-
quires forces of P = 40 N to relieve the compression
at A, and the 10-mm gap increases as P exceeds 40
N. Determine and plot the force F and bending mo-
ment M supported by the middle of the spring at C
as functions of P from P = 0 to P = 80 N. Bear in
mind that the bending moment does not change as
long as the geometric configuration of the clip does
not change.

Ans. For P = 0: F = 40N, M = 1.2 N-m CCW
For0 < P<40N:F =40 — 2P, M = 12N'm
ForP > 40N: F = —P, M = 0.030P

P P

Problem 5/133

5/134 Derive expressions for the shear V and moment M
in terms of x for the cantilever beam of Prob. 5/104
shown again here.

w
|
[
|

Wy

Problem 5/134

» 5/135 The beam supports a uniform unit load w. Deter-
mine the location x of the two supports so as to min-
imize the maximum bending moment M, in the
beam. Specify M.

Ans. x = 0.207L, M., = 0.0214wlL>?

L

Problem 5/135
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»5/136 The uniform quarter-circular member of mass m
lies in the vertical plane and is hinged at A and sup-
ported against the vertical wall by its small roller
at B. For any section S, write expressions for the
shear force V, compression C, and bending moment
M due to the weight of the member.

2
Ans. V = ﬂ(ﬂsin ) — cos 6)
ks

2
C = 2" (9 cos 0 + sin 6)
w

2,
M=ﬂ6cosﬂ
T

Problem 5/136
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5/8 FLExIBLE CABLES

One important type of structural member is the flexible cable which
is used in suspension bridges, transmission lines, messenger cables for
supporting heavy trolley or telephone lines, and many other applica-
tions. To design these structures we must know the relations involving
the tension, span, sag, and length of the cables. We determine these
quantities by examining the cable as a body in equilibrium. In the anal-
ysis of flexible cables we assume that any resistance offered to bending
is negligible. This assumption means that the force in the cable is always
in the direction of the cable.

Flexible cables may support a series of distinct concentrated loads,
as shown in Fig. 5/26a, or they may support loads continuously distrib-
uted over the length of the cable, as indicated by the variable-intensity
loading w in 5/26b. In some instances the weight of the cable is negli-
gible compared with the loads it supports. In other cases the weight of
the cable may be an appreciable load or the sole load and cannot be
neglected. Regardless of which of these conditions is present, the equi-
librium requirements of the cable may be formulated in the same
manner.

General Relationships

If the intensity of the variable and continuous load applied to the

cable of Fig. 5/26b is expressed as w units of force per unit of horizontal

length x, then the resultant R of the vertical loading is

R:de:J‘wdx

F,

Figure 5/26
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where the integration is taken over the desired interval. We find the
position of R from the moment principle, so that

fxd.R

R

Ra_c=fde x =

The elemental load dR = w dx is represented by an elemental strip of
vertical length w and width dx of the shaded area of the loading diagram,
and R is represented by the total area. It follows from the foregoing
expressions that R passes through the centroid of the shaded area.

The equilibrium condition of the cable is satisfied if each infinites-
imal element of the cable is in equilibrium. The free-body diagram of a
differential element is shown in Fig. 5/26c. At the general position x the
tension in the cable is 7', and the cable makes an angle 6 with the hor-
izontal x-direction. At the section x + dx the tension is T + dT, and
the angle is 6 + df. Note that the changes in both T and # are taken
to be positive with a positive change in x. The vertical load w dx com-
pletes the free-body diagram. The equilibrium of vertical and horizontal
forces requires, respectively, that

(T + dT) sin (# + df) = Tsin 6 + w dx
(T + dT) cos (6 + d#) = T cos 6
The trigonometric expansion for the sine and cosine of the sum of two

angles and the substitutions sin d6 = d# and cos d6 = 1, which hold
in the limit as d6 approaches zero, yield

(T + dT)(sin 6 + cos §d6) = Tsin 0 + w dx

Il

(T + dT)(cos 6 — sin #df) = T cos @
Dropping the second-order terms and simplifying give us

Tcos 6d6 + dT sin 6 = w dx
—T sin #df + dT cos 6 = 0

which we write as
d(T sin 6) = w dx and d(T cos ) =0

The second relation expresses the fact that the horizontal component of
T remains unchanged, which is clear from the free-body diagram. If we
introduce the symbol Ty = T cos 6 for this constant horizontal force,
we may then substitute 7' = T)y/cos f into the first of the two equations
Just derived and obtain d(T tan 8) = w dx. Because tan # = dy/dx, the
equilibrium equation may be written in the form

A (5/13)
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Equation 5/13 is the differential equation for the flexible cable. The
solution to the equation is that functional relation y = f(x) which sat-
isfies the equation and also satisfies the conditions at the fixed ends of
the cable, called boundary conditions. This relationship defines the shape
of the cable, and we will use it to solve two important and limiting cases
of cable loading.

Parabolic Cable

When the intensity of vertical loading w is constant, the condition
closely approximates that of a suspension bridge where the uniform
weight of the roadway may be expressed by the constant w. The mass
of the cable itself is not distributed uniformly with the horizontal but is
relatively small, and thus we neglect its weight. For this limiting case
we will prove that the cable hangs in a parabolic arc.

We start with a cable suspended from two points A and B which are
not on the same horizontal line, Fig. 5/27a. We place the coordinate
origin at the lowest point of the cable, where the tension is horizontal
and is T}, Integration of Eq. 5/13 once with respect to x gives

dy wx
- = — +
dx TO C

where C is a constant of integration. For the coordinate axes chosen,
dy/dx = 0 when x = 0, so that C = 0. Thus,

dy _ wx
dx Ty

which defines the slope of the curve as a function of x. One further
integration yields

Y * wx wx?
L dy = L Fodx or |y = Z_TO (5/14)

Alternatively, you should be able to obtain the identical results with
the indefinite integral together with the evaluation of the constant of

1

i
hp 5B
S ammsan A

R (R R e e ST T e T FoeR]

w = Load per unit of horizontal length
(a) (b)

Figure 5/27
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integration. Equation 5/14 gives the shape of the cable, which we see is
a vertical parabola. The constant horizontal component of cable tension
becomes the cable tension at the origin.

Inserting the corresponding values x = /4 andy = h, in Eq. 5/14
gives

2

= iR = 2
0= Sh, so that  y = hu(x/ly)

The tension T is found from a free-body diagram of a finite portion of
the cable, shown in Fig. 5/27b. From the Pythagorean theorem

T = JTZ + w??
Elimination of T, gives
T = wix® + (1,%/2h,)° (5/15)
The maximum tension occurs where x = [, and is
Thax = WAVl + (14/2h,)? (5/15a)

We obtain the length s, of the cable from the origin to point A by in-
tegrating the expression for a differential length ds = /(dx)2 + (dy)>.
Thus,

SA (A lA P
f ds = f V1 + (dy/dx)? dx = f V1 + (wx/Ty)* dx
0 0 0

Although we can integrate this expression in closed form, for computa-
tional purposes it is more convenient to express the radical as a conver-
gent series and then integrate it term by term. For this purpose we use
the binomial expansion

5 nin - 1) , i nin — 1n — 2)x3 3

(1L+x)" =1+ nx o1 x 31

which converges for x* < 1. Replacing x in the series by (wx/T,)? and
setting n = % give the expression

iA 2.2 4 4
0 ZTO STU

2 (h . 2 (1 !
- oS LW L7
ZA[l + 3 ([A) 5 (ZA) + ] (5/16)

This series is convergent for values of h/l, < %, which holds for most
practical cases.

The relationships which apply to the cable section from the origin
to point B can be easily obtained by replacing %4, 4, and s, by hg, lg,
and sp, respectively.
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Figure 5/28

For a suspension bridge where the supporting towers are on the
same horizontal line, Fig. 5/28, the total span is L = 2[,, the sagis h
= hy,, and the total length of the cable is S = 2s,. With these substi-
tutions, the maximum tension and the total length become

L
Tonax = “’7 1+ (L/4h)? (5/15b)

2 4
8 (h 32 (h
L ‘:1 + 5 (E) = E (E) = j| (5/16a)

This series converges for all values of h/L < . In most cases / is much
smaller than L/4, so that the three terms of Eq. 5/16a give a sufficiently
accurate approximation.

S

Catenary Cable

Consider now a uniform cable, Fig. 5/29a, suspended from two
points A and B and hanging under the action of its own weight only. We
will show in this limiting case that the cable assumes a curved shape
known as a catenary.

The free-body diagram of a finite portion of the cable of length s
measured from the origin is shown in part & of the figure. This free-
body diagram differs from the one in Fig. 5/27b in that the total vertical
force supported is equal to the weight of the cable section of length s

(a) (b)

Figure 5/29
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rather than the load distributed uniformly with respect to the horizon-
tal. If the cable has a weight u per unit of its length, the resultant R of
the load is R = pus, and the incremental vertical load w dx of Fig. 5/26¢
is replaced by u ds. With this replacement the differential relation, Eq.
5/13, for the cable becomes

(6/17)

Because s = flx,y), we must change this equation to one containing only
the two variables.
We may substitute the identity (ds)?> = (dx)2 + (dy)? to obtain

d* _ n dy'\*
= = 5/18
&2 T, 1+ (dx) (5/18)

Equation 5/18 is the differential equation of the curve (catenary) formed
by the cable. This equation is easier to solve if we substitute p = dy/dx
to obtain

dp ©
—— = —dx
V1 +p2 TU

Integrating this equation gives us

In(p + /1 +p2):£x+c
TO

The constant C is zero because dy/dx = p = 0 whenx = 0. Substituting
p = dy/dx, changing to exponential form, and clearing the equation of
the radical give

d_y _ eu-t:Tn =3 e*M_"Tﬂ ~ sinh E
dx 2 TU

where the hyperbolic function” is introduced for convenience. The slope
may be integrated to obtain

y =&coshﬁ+l(
I Ty

The integration constant K is evaluated from the boundary condition

~x = 0 when y = 0. This substitution requires that K = —To/1, and

hence,

5 = g (cosh Ex _ 1) (5/19)
I Ty

*See Arts. C/8 and C/10, Appendix C, for the definition and integral of hyperbolic functions.
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Equation 5/19 is the equation of the curve (catenary) formed by the
cable hanging under the action of its weight only.

From the free-body diagram in Fig. 5/29b we see that dy/dx =
tan § = us/Ty. Thus, from the previous expression for the slope,

e (5/20)
w Ty

We obtain the tension T in the cable from the equilibrium triangle of
the forces in Fig. 5/29b. Thus,

T2 = 2% + T2

which, when combined with Eq. 5/20, becomes

T2 = T02 (1 + ginh? E) = 7p.2 cosh? =
TO LN
or
T = T, cosh &= (5/21)
Ty

We may also express the tension in terms of y with the aid of Eq. 5/19,
which, when substituted into Eq. 5/21, gives

T="Ty+ wy (5/22)

Equation 5/22 shows that the change in cable tension from that at the
lowest position depends only on wy.

Most problems dealing with the catenary involve solutions of Egs.
5/19 through 5/22, which can be handled by a graphical approximation
or solved by computer. The procedure for a graphical or computer so-
lution is illustrated in Sample Problem 5/17 following this article.

The solution of catenary problems where the sag-to-span ratio is
small may be approximated by the relations developed for the parabolic
cable. A small sag-to-span ratio means a tight cable, and the uniform
distribution of weight along the cable is not very different from the same
load intensity distributed uniformly along the horizontal.

Many problems dealing with both the catenary and parabolic cables
involve suspension points that are not on the same level. In such cases
we may apply the relations just developed to the part of the cable on
each side of the lowest point.
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Sample Problem 5/16

The light cable supports a mass of 12 kg per meter of horizontal length and
is suspended between the two points on the same level 300 m apart. If the sag
is 60 m, find the tension at midlength, the maximum tension, and the total length
of the cable.

fe——— 300 m——— -

S

Solution. With a uniform horizontal distribution of load, the solution of part
(b) of Art. 5/8 applies, and we have a parabolic shape for the cable. For h =
60m, L = 300 m, and w = 12(9.81)(10?) kN/m the relation following Eq. 5/14
with /[, = L/2 gives for the midlength tension

wlL? _ 0.1177(3007 _
[TO —; —gh—] 0= _W = 22.1 kN Ans.

The maximum tension occurs at the supports and is given by Eq. 5/15b. Thus,

wlL L\2
o Sl Lo
[’“‘“ 2 1+(4h)]

=g 2
_ 12080103000 | (39‘1) =283 kN

4(60)

T Ans.

max 2

The sag-to-span ratio is 60/300 = 1/5 < 1/4. Therefore, the series expres-
sion developed in Eq. 5/16a is convergent, and we may write for the total length

+§(z)2 _g(z)ﬁ ]
G L 5) 5 \5

300[1 + 0.1067 — 0.01024 + |
329 m

S = 300 l:l

Il

Ans.

L=

12 kg/m

75n11 75 m

R =12(150)(9.81)(1073)
=17.66 kN

Helpful Hint

(D Suggestion: Check the value of Ty
directly from the free-body diagram
of the right-hand half of the cable,
from which a force polygon may be
drawn.
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Sample Problem 5/17

Replace the cable of Sample Problem 5/16, which is loaded uniformly along
the horizontal, by a cable which has a mass of 12 kg per meter of its own length
and supports its own weight only. The cable is suspended between two points on
the same level 300 m apart and has a sag of 60 m. Find the tension at midlength,

the maximum tension, and the total length of the cable.

Solution. With a load distributed uniformly along the length of the cable, the

Soluti
solution of part (¢) of Art. 5/8 applies, and we have a catenary shape of the cable. T, :02“3_1; ?(N
Equations 5/20 and 5/21 for the cable length and tension both involve the min- 0.33
imum tension T, at midlength, which must be found from Eq. 5/19. Thus, for N |
x = 150m,y = 60 m, and p = 12(9.81)(1073) = 0.1177 kN/m, we have 0.32
0 - - 3"1077 [wsh (0.117;)(150) % 1] 0.31 iy /-ﬁ 7;)6 |
. 0
7.06 17.66 0-30 ~3 0
or —T;— = cosh Ty -1 0.99 cosh 17_66) —lgk
Ty N
This equation can be solved graphically. We compute the expression on each 0.28 \
side of the equals sign and plot it as a function of T\,. The intersection of the 22.5 23.0 23.5 24.0
two curves establishes the equality and determines the correct value of T,. This Ty, kN

plot is shown in the figure accompanying this problem and yields the solution
Ty = 23.2 kN
Alternatively, we may write the equation as

17.66  7.06

il ALy
Ty Ty

f(Ty) = cosh

and set up a computer program to calculate the value(s) of Ty which renders

f(Ty) = 0. See Art. C/11 of Appendix C for an explanation of one applicable
numerical method.

The maximum tension occurs for maximum y and from Eq. 5/22 is () Note that the solution of Sample

Problem 5/16 for the parabolic cable

Helpful Hint

Tonax = 232+ (0:1177)(60) = 30.2°kN i gives a very close approximation to

@ From Eq. 5/20 the total length of the cable becomes the values for the catenary even
though we have a fairly large sag.

SEry 23.2 i (0.1177)(150) _ 330 m e The approximation is even better for

0.1177 23.2 smaller sag-to-span ratios.
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PROBLEMS

(The problems marked with an asterisk (*) involve tran-
scendental equations which may be solved with a computer
or by graphical methods.)

Introductory Problems

5/137 A mason stretches a string between two points 50
ft apart on the same level with a tension of 10 Ib at
each end. If the string weighs 0.1 1b, determine the
sag h at the middle of the string.

Ans.y = 0.750 in.

*5/138 A power tug is towing a barge with a cable which
has a mass of 14 kg per meter of its length. It is
observed that the tangent to the cable at point A
is horizontal. Determine the tensions at A and B.

Problem 5/138

5/139 The Golden Gate Bridge in San Francisco has a
main span of 4200 ft, a sag of 470 ft, and a total
static loading of 21,300 Ib per lineal foot of horizon-
tal measurement. The weight of both of the main
cables is included in this figure and is assumed to
be uniformly distributed along the horizontal. The
angle made by the cable with the horizontal at the
top of the tower is the same on each side of each
tower. Calculate the midspan tension T, in each of
the main cables and the compressive force C exerted
by each cable on the top of each tower.

Ans. Ty = 50.0 (10%) Ib, C = 44.7(10°) Ib

f

|
470° i
e sl

. m

B B 2 e o el o N

AL n‘n-:':M=N.n‘F;MMx‘ww-mmm‘aﬂwﬁuwwnﬂwwwwwwwwwu‘ [PRIAR
i
o

— — == — e B R s

— 4200"

Problem 5/139

*5/140 A light fixture is suspended from the ceiling of an
outside portico. Four chains, two of which are
shown, prevent excessive motion of the fixture dur-
ing windy conditions. If the chains weigh 15 1b per
foot of length, determine the chain tension at C
and the length L of chain BC.

1A B c
A '
— 20

Problem 5/140

5/141 A cable weighing 25 newtons per meter of length is
suspended from point A and passes over the small
pulley at B. Calculate the mass m of the attached
cylinder which will produce the sag of 9 m. Also
determine the horizontal distance from A to C. Be-
cause of the small sag-to-span ratio, use the approx-
imation of a parabolic cable.

Ans.m = 270 kg, AC = 791 m

Problem 5/141

*5/142 Repeat Prob. 5/141, but do not use the approxi-
mation of a parabolic cable. Compare your results
with the printed answers for Prob. 5/141,
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5/143

5/144

5/145

A cable supports a load of 50 kg/m uniformly dis-
tributed with respect to the horizontal and is sus-
pended from the two fixed points located as shown.
Determine the maximum and minimum tensions
T ax @nd T in the cable.

Ans. T = 35.6 kN, Ty = 21.0(10%) N

: 100 m

Representative Problems

*5/146 The glider A is being towed in level flight and is
400 ft behind and 100 ft below the tow plane B.
The tangent to the cable at the glider is horizontal.
The cable weighs 0.5 Ib per foot of length. Caleu-
late the horizontal tension T, in the cable at the
glider. Neglect air resistance and compare your re-
sult with that obtained by approximating the cable
shape by a parabola.

Problem 5/143

A horizontal 350-mm-diameter water pipe is sup-
ported over a ravine by the cable shown. The pipe
and the water within it have a combined mass of
1400 kg per meter of its length. Calculate the com-
pression C exerted by the cable on each support.
The angles made by the cable with the horizontal
are the same on both sides of each support.

Problem 5/144

A cable of negligible mass is suspended from the
fixed points shown and has a zero slope at its lower
end. If the cable supports a unit load w which de-
creases uniformly with x from w, to zero as indi-
cated, determine the equation of the curve assumed
by the cable. Shxc? i
Ans.y _W (1 = g)

Problem 5/145

Problem 5/146

5/147 The light cable is suspended from two points a dis-
tance L apart and on the same horizontal line. If
the load per unit of horizontal distance supported
by the cable varies from w, at the center to w, at
the ends in accordance with the relation w = a +
bx?, derive the equation for the sag h of the cable

in terms of the midspan tension T\,
L2
Ans. h = —— +
s 48T, (bwg + wy)

Problem 5/147

*5/148 Find the total length L of cable which will have the
configuration shown when suspended from points
A and B.

S 40m

= 8

Problem 5/148
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*5/149 Find the total length L of chain which will have a
sag of 6 ft when suspended from two points on the
same horizontal line 30 ft apart.

Ans. L = 33.0 ft

| 0 |

Problem 5/149

*5/150 A series of spherical floats are equally spaced and
securely fastened to a flexible cable of length 20 m.
Ends A and B are anchored 16 m apart to the bot-
tom of a fresh-water lake at a depth of 8 m. The
floats and cable have a combined weight of 100 N
per meter of cable length, and the buoyancy of the
water produces an upward force of 560 N per me-
ter of cable length. Calculate the depth h below the
surface to the top of the line of floats. Also find the
angle 6 made by the line of floats with the hori-
zontal at A.

- 6m— ]

Problem 5/150

*5/151 Numerous small flotation devices are attached to
the cable, and the difference between buoyancy
and weight results in a net upward force of 30 new-
tons per meter of cable length. Determine the force
T which must be applied to cause the cable config-
uration shown.

Ans. T = 1210 N
B T

[
=

25m

Problem 5/151

*5/152 Calculate the tension T required to steadily pull
the cable over a roller support on the utility pole.
Neglect the effects of friction at the support. The
cable, which is horizontal at A, has a mass of 3
kg/m. Also determine the length of cable from A
to B. "

30 m-—

Problem 5/152

*5/153 A rope 40 m in length is suspended between two
points which are separated by a horizontal distance
of 10 m. Compute the distance & to the lowest part

of the loap. Ans. h = 1853 m

|5— 10m—-

Problem 5/153

*5/154 A cable which weighs 50 newtons per meter of
length is secured at point A and passes over the
small pulley at B on the same level under a tension
T'. Determine the minimum value of T to support
the cable and the corresponding deflection h.

= 100 m -]

Problem 5/154
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5/155 The blimp is moored to the ground winch in a gentle
wind with 100 m of 12-mm cable which has a mass
of 0.51 kg/m. A torque of 400 N-m on the drum is
required to start winding in the cable. At this con-
dition the cable makes an angle of 30° with the ver-
tical as it approaches the winch. Calculate the
height H of the blimp. The diameter of the drum is

0.5 m. Ans. H = 89.7Tm

Problem 5/155

*5/156 A length of cable which has a mass of 1.2 kg/m is
to have a sag of 2.4 m when suspended from the
two points A and B on the same horizontal line
10 m apart. For comparison purposes, determine
the length L of cable required and plot its config-
uration for the two cases of (¢) assuming a para-
bolic shape and (b) using the proper catenary
model. In order to more clearly distinguish be-
tween the two cases, also plot the difference (yq
— ¥p) as a function of x, where C and P refer to
catenary and parabola, respectively.

10 m |

Problem 5/156

*5/157 The moving cable for a ski lift has a mass of 10
kg/m and carries equally spaced chairs and pas-
sengers, whose added mass is 20 kg/m when av-
eraged over the length of the cable. The cable leads
horizontally from the supporting guide wheel at A.
Calculate the tensions in the cable at A and B and
the length s of the cable between A and B.

Ans. T4 = 274 kN, Ty = 33.3kN,s = 64.2 m

Problem 5/157

*5/158 A spherical buoy used to mark the course for a
sailboat race is shown in the figure. There is a wa-
ter current from left to right which causes a hori-
zontal drag on the buoy; the effect of the current
on the cable can be neglected. The length of the
cable between points A and B is 87 m, and the
effective cable mass is 2 kg/m when the buoyancy
of the cable is accounted for. Determine the ten-
sions at both A and B.

32m

Problem 5/158
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*5/159 The tree surgeon attempts to pull down the par-

tially sawn-through tree trunk. He creates a ten-
sion Ty = 200 N in the rope, which has a mass of
0.6 kg per meter of its length. Determine the angle
6,4 at which he pulls, the length L of rope between
points A and B, and the tension 7'z at point B.
Ans. 6y = 12.64°, L = 13.06 m, Tz = 229 N

Problem 5/159

*5/160 Reconsider Prob. 5/159. If the length of the rope

*5/161

between points A and B is 13.02 m, determine the
tension Ty which the tree surgeon must exert at
A, the angle 6, at which he pulls, the tension Ty
at B, and the angle 65 which the rope makes with
the horizontal at B. The rope has a mass of 0.6 kg
per meter of its length.

For aesthetic reasons, chains are sometimes used
instead of downspouts on small buildings in order
to direct roof runoff water from the gutter down
to ground level. The architect of the illustrated
building specified a 6-m vertical chain from A to B,
but the builder decided to use a 6.1-m chain from
A to C as shown in order to place the water farther
from the structure. By what percentage n did the
builder increase the magnitude of the force exerted
on the gutter at A over that figured by the archi-
tect? The chain weighs 100 N per meter of its

lsnigth; Ans. n = 29.0%

1m
Problem 5/161
*5/162 A 50-kg traffic signal is suspended by two 21-m
cables which have a mass of 1.2 kg per meter of
length. Determine the vertical deflection & of the

junction ring A relative to its position before the
signal is added.

J<7—20m > 20 m —i

50 kg

Problem 5/162
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5/9 FLUID STATICS

So far in this chapter we have treated the action of forces on and
between solid bodies. In this article we consider the equilibrium of bod-
ies subjected to forces due to fluid pressures. A fluid is any continuous
substance which, when at rest, is unable to support shear force. A shear
force is one tangent to the surface on which it acts and is developed
when differential velocities exist between adjacent layers of fluids. Thus,
a fluid at rest can exert only normal forces on a bounding surface. Fluids
may be either gaseous or liquid. The statics of fluids is generally called
hydrostatics when the fluid is a liquid and aerostatics when the fluid is
a gas.

Fluid Pressure

The pressure at any given point in a fluid is the same in all direc-
tions (Pascal’s law). We may prove this by considering the equilibrium
of an infinitesimal triangular prism of fluid as shown in Fig. 5/30. The
fluid pressures normal to the faces of the element are pq, ps, p3, and p,
as shown. With force equal to pressure times area, the equilibrium of
forces in the x- and y-directions gives

p1dydz = pydsdzsin @ pydxdz = psds dz cos 0

Since ds sin # = dy and ds cos # = dx, these equations require that
PL=P2=DP3 =P

By rotating the element through 90°, we see that p, is also equal to the
other pressures. Thus, the pressure at any point in a fluid at rest is the
same in all directions. In this analysis we need not account for the
weight of the fluid element because, when the weight per unit volume
(density p times g) is multiplied by the volume of the element, a differ-
ential quantity of third order results which disappears in the limit com-
pared with the second-order pressure-force terms.

In all fluids at rest the pressure is a function of the vertical dimen-
sion. To determine this function, we consider the forces acting on a
differential element of a vertical column of fluid of cross-sectional area
dA, as shown in Fig. 5/31. The positive direction of vertical measure-
ment & is taken downward. The pressure on the upper face is p, and
that on the lower face is p plus the change in p, or p + dp. The weight
of the element equals pg multiplied by its volume. The normal forces on
the lateral surface, which are horizontal and do not affect the balance
of forces in the vertical direction, are not shown. Equilibrium of the fluid
element in the h-direction requires

pdA + pgdAdh —(p +dp)dA =0
dp = pg dh (5/23)

This differential relation shows us that the pressure in a fluid increases
with depth or decreases with increased elevation. Equation 5/23 holds

———t

dz Py

prdydz

dy

dx dy dx |
Pa—y py dx dz

Figure 5/30

(p +dp)dA

Figure 5/31

/ 2 pads dz
i ,e
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for both liquids and gases, and agrees with our common observations of
air and water pressures.

Fluids which are essentially incompressible are called liguids, and
for most practical purposes we may consider their density p constant for
every part of the liquid.” With p a constant, integration of Eq. 5/23 gives

The pressure pg is the pressure on the surface of the liquid where h =
0. If pg is due to atmospheric pressure and the measuring instrument
records only the increment above atmospheric pressure,” the measure-
ment gives what is called gage pressure. It is computed from p = pgh.

The common unit for pressure in SI units is the kilopascal (kPa),
which is the same as a kilonewton per square meter (10° N/m?2). In
computing pressure, if we use Mg/m® for p, m/s? for g, and m for h,
then the product pgh gives us pressure in kPa directly. For example, the
pressure at a depth of 10 m in fresh water is

s kg'm 1
= pgh = (1.0 E;‘—)(Q.Sl 32) (10 m) = 98.1(1031“%—2'“—2)
m’ S S m

.
|

98.1 kN/m? = 98.1 kPa

In the U.S. customary system, fluid pressure is generally expressed
in pounds per square inch (Ib/in.?) or occasionally in pounds per square
foot (Ib/ft%). Thus, at a depth of 10 ft in fresh water the pressure is

1b 1 ®P .
= = 423\ 728 o8 in.) = 4. in.2
p = pgh (62 1 ft3)(172 ; .3) (120 in.) 33 1b/in

Hydrostatic Pressure on Submerged Rectangular Surfaces

A body submerged in a liquid, such as a gate valve in a dam or the
wall of a tank, is subjected to fluid pressure acting normal to its surface
and distributed over its area. In problems where fluid forces are appre-
ciable, we must determine the resultant force due to the distribution of
pressure on the surface and the position at which this resultant acts.
For systems open to the atmosphere, the atmospheric pressure Do acts
over all surfaces and thus yields a zero resultant. In such cases, then,
we need to consider only the gage pressure p = pgh, which is the incre-
ment above atmospheric pressure.

Consider the special but common case of the action of hydrostatic
pressure on the surface of a rectangular plate submerged in a liquid.
Figure 5/32a shows such a plate 1-2-3-4 with its top edge horizontal and
with the plane of the plate making an arbitrary angle 6 with the vertical
plane. The horizontal surface of the liquid is represented by the x-y'
plane. The fluid pressure (gage) acting normal to the plate at point 2 is

*See Table D/1, Appendix D, for table of densities.
‘TAtmospheric pressure at sea level may be taken to be 101.3 kPa or 14.7 lb/in.2



Article 5/9

Fluid Statics

299

represented by the arrow 6-2 and equals pg times the vertical distance
from the liquid surface to point 2. This same pressure acts at all points
along the edge 2-3. At point 1 on the lower edge, the fluid pressure equals
pg times the depth of point 1, and this pressure is the same at all points
along edge 1-4. The variation of pressure p over the area of the plate is
governed by the linear depth relationship and therefore it is represented
by the arrow p, shown in Fig. 5/32b, which varies linearly from the value
6-2 to the value 5-1. The resultant force produced by this pressure dis-
tribution is represented by R, which acts at some point P called the
center of pressure.

The conditions which prevail at the vertical section 1-2-6-5 in Fig.
5/32a are identical to those at section 4-3-7-8 and at every other vertical
section normal to the plate. Thus, we may analyze the problem from the
two-dimensional view of a vertical section as shown in Fig. 5/32b for
section 1-2-6-5. For this section the pressure distribution is trapezoidal.
If b is the horizontal width of the plate measured normal to the plane
of the figure (dimension 2-3 in Fig. 5/32a), an element of plate area over
which the pressure p = pgh acts is dA = b dy, and an increment of the

Liquid

(b) (c)

Figure 5/32
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Figure 5/33

resultant force is dR = p dA = bp dy. But p dy is merely the shaded
increment of trapezoidal area dA’, so that dR = b dA’. We may therefore
express the resultant force acting on the entire plate as the trapezoidal
area 1-2-6-5 times the width & of the plate,

R=bJ‘dA’:bA'

Be careful not to confuse the physical area A of the plate with the geo-
metrical area A" defined by the trapezoidal distribution of pressure.

The trapezoidal area representing the pressure distribution is easily
expressed by using its average altitude. The resultant force R may there-
fore be written in terms of the average pressure p,, = é( P t po) times
the plate area A. The average pressure is also the pressure which exists
at the average depth, measured to the centroid O of the plate. An alter-
native expression for R is therefore

R = p,,A = pghA

where b = ¥ cos 6.

We obtain the line of action of the resultant force R from the prin-
ciple of moments. Using the x-axis (point B in Fig. 5/32b) as the moment
axis yields RY = [ y(pb dy). Substitutingp dy = dA’ and R = bA’ and
canceling b give

which is simply the expression for the centroidal coordinate of the trap-
ezoidal area A'. In the two-dimensional view, therefore, the resultant R
passes through the centroid C of the trapezoidal area defined by the
pressure distribution in the vertical section. Clearly Y also locates the
centroid C of the truncated prism 1-2-3-4-5-6-7-8 in Fig. 5/32a through
which the resultant passes.

For a trapezoidal distribution of pressure, we may simplify the cal-
culation by dividing the trapezoid into a rectangle and a triangle, Fig.
5/32c, and separately considering the force represented by each part.
The force represented by the rectangular portion acts at the center O of
the plate and is Ry = pyA, where A is the area 1-2-3-4 of the plate. The
force R, represented by the triangular increment of pressure distribu-
tion is %( P1 — P2)A and acts through the centroid of the triangular
portion shown.

Hydrostatic Pressure on Cylindrical Surfaces

The determination of the resultant R due to distributed pressure on
a submerged curved surface involves more calculation than for a flat
surface. For example, consider the submerged cylindrical surface shown
in Fig. 5/33a where the elements of the curved surface are parallel to
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the horizontal surface x-y' of the liquid. Vertical sections perpendicular
to the surface all disclose the same curve AB and the same pressure
distribution. Thus, the two-dimensional representation in Fig. 5/33b
may be used. To find R by a direct integration, we need to integrate the
x- and y-components of dR along the curve AB, since dR continuously
changes direction. Thus,

Rx=bJ'(de)x=bfpdy and Ry=bf(de)y:bjpdx

A moment equation would now be required if we wished to establish the
position of R.

A second method for finding R is usually much simpler. Consider
the equilibrium of the block of liquid ABC directly above the surface,
shown in Fig. 5/33c¢. The resultant R then appears as the equal and
opposite reaction of the surface on the block of liquid. The resultants of
the pressures along AC and CB are P, and P,, respectively, and are easily
obtained. The weight W of the liquid block is calculated from the area
ABC of its section multiplied by the constant dimension b and by pg.
The weight W passes through the centroid of area ABC. The equilibrant
R is then determined completely from the equilibrium equations which
we apply to the free-body diagram of the fluid block.

Hydrostatic Pressure on Flat Surfaces of Any Shape

Figure 5/34a shows a flat plate of any shape submerged in a liquid.
The horizontal surface of the liquid is the plane x-y’, and the plane of
the plate makes an angle 6 with the vertical. The force acting on a
differential strip of area dA parallel to the surface of the liquid is
dR = pdA = pgh dA. The pressure p has the same magnitude through-
out the length of the strip, because there is no change of depth along

(a) (b)

Figure 5/34
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the strip. We obtain the total force acting on the exposed area A by
integration, which gives

R=de=jpdA pgjhdA

Il

Substituting the centroidal relation kA f h dA gives us

R = pghA (5/25)

The quantity pgh is the pressure which exists at the depth of the cen-
troid O of the area and is the average pressure over the area.

We may also represent the resultant R geometrically by the volume
V'’ of the figure shown in Fig. 5/34b. Here the fluid pressure p is rep-
resented as a dimension normal to the plate regarded as a base. We see
that the resulting volume is a truncated right cylinder. The force dR
acting on the differential area dA = x dy is represented by the elemental
volume p dA shown by the shaded slice, and the total force is represented
by the total volume of the cylinder. We see from Eq. 5/25 that the av-
erage altitude of the truncated cylinder is the average pressure pgh
which exists at a depth corresponding to the centroid O of the area
exposed to pressure.

For problems where the centroid O or the volume V' is not readily
apparent, a direct integration may be performed to obtain R. Thus,

R=de:deA:jpghxdy

where the depth & and the length x of the horizontai strip of differential
area must be expressed in terms of y to carry out the integration.

After the resultant is obtained, we must determine its location. Us-
ing the principle of moments with the x-axis of Fig. 5/34b as the moment
axis, we obtain

- _ fy(px dy)
RY = jy dR or Y="—— (5/26)

Jpx dy

This second relation satisfies the definition of the coordinate Y to the
centroid of the volume V' of the pressure-area truncated cylinder. We
conclude, therefore, that the resultant R passes through the centroid C
of the volume described by the plate area as base and the linearly vary-
ing pressure as the perpendicular coordinate. The point P at which R is
applied to the plate is the center of pressure. Note that the center of
pressure P and the centroid O of the plate area are not the same.

Buoyancy

Archimedes is credited with discovering the principle of buoyancy.
This principle is easily explained for any fluid, gaseous or liquid, in equi-
librium. Consider a portion of the fluid defined by an imaginary closed
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Figure 5/35

surface, as illustrated by the irregular dashed boundary in Fig. 5/35a.
If the body of the fluid could be sucked out from within the closed cavity
and replaced simultaneously by the forces which it exerted on the bound-
ary of the cavity, Fig. 5/35b, the equilibrium of the surrounding fluid
would not be disturbed. Furthermore, a free-body diagram of the fluid
portion before removal, Fig. 5/35¢, shows that the resultant of the pres-
sure forces distributed over its surface must be equal and opposite to its
weight mg and must pass through the center of mass of the fluid ele-
ment. If we replace the fluid element by a body of the same dimensions,
the surface forces acting on the body held in this position will be iden-
tical to those acting on the fluid element. Thus, the resultant force ex-
erted on the surface of an object immersed in a fluid is equal and
opposite to the weight of fluid displaced and passes through the center
of mass of the displaced fluid. This resultant force is called the force of
buoyancy

F = pgV (5/27)

where p is the density of the fluid, g is the acceleration due to gravity,
and V is the volume of the fluid displaced. In the case of a liquid whose
density is constant, the center of mass of the displaced liquid coincides
with the centroid of the displaced volume.

Thus when the density of an object is less than the density of the
fluid in which it is fully immersed, there is an imbalance of force in the
vertical direction, and the object rises. When the immersing fluid is a
liquid, the object continues to rise until it comes to the surface of the
liquid and then comes to rest in an equilibrium position, assuming that
the density of the new fluid above the surface is less than the density of
the object. In the case of the surface boundary between a liquid and a
gas, such as water and air, the effect of the gas pressure on that portion
of the floating object above the liquid is balanced by the added pressure
in the liquid due to the action of the gas on its surface.

An important problem involving buoyancy is the determination of
the stability of a floating object, such as a ship hull shown in cross sec-
tion in an upright position in Fig. 5/36a. Point B is the centroid of the
displaced volume and is called the center of buoyancy. The resultant of
the forces exerted on the hull by the water pressure is the buoyancy
force F' which passes through B and is equal and opposite to the weight
W of the ship. If the ship is caused to list through an angle «, Fig. 5/36b,



304 cChapter5 Distributed Forces

@ F

Figure 5/36

the shape of the displaced volume changes, and the center of buoyancy
shifts to B’.

The point of intersection of the vertical line through B’ with the
centerline of the ship is called the mefacenter M, and the distance s of
M from the center of mass G is called the metacentric height. For most
hull shapes h remains practically constant for angles of list up to about
20°. When M is above G, as in Fig. 5/36b, there is a righting moment
which tends to bring the ship back to its upright position. If M is below
G, as for the hull of Fig. 5/36¢, the moment accompanying the list is in
the direction to increase the list. This is clearly a condition of instability
and must be avoided in the design of any ship.
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Sample Problem 5/18

A rectangular plate, shown in vertical section AB, is 4 m high and 6 m wide
(normal to the plane of the paper) and blocks the end of a fresh-water channel
3 m deep. The plate is hinged about a horizontal axis along its upper edge
through A and is restrained from opening by the fixed ridge B which bears hor-
izontally against the lower edge of the plate. Find the force B exerted on the
plate by the ridge.

Solution. The free-body diagram of the plate is shown in section and includes
the vertical and horizontal components of the force at A, the unspecified weight
W = mg of the plate, the unknown horizontal force B, and the resultant R of
the triangular distribution of pressure against the vertical face.

The density of fresh water is p = 1.000 Mg/m? so that the average pressure
1S

[Pay = pghl] Pay = 1.0009.81)3) = 14.72 kPa

The resultant R of the pressure forces against the plate becomes
[R = p,,Al R =

This foree acts through the centroid of the triangular distribution of pressure,
which is 1 m above the bottom of the plate. A zero moment summation about A

(14.72)(3)(6) = 265 kN

R
AT
&

A.\‘
- .
2m ’L mg 4 m
R = e
1m |
i, < B L

Helpful Hint

(1) Note that the units of pressure pgh are

establishes the unknown force B. Thus, (103 kg )( ) ( 108 kg- m)( )
[M, = 0] 3(265) ~ 4B =0 B =198.7kN s s A sy A
= kN/m= = kPa.
Sample Problem 5/19 (
: : = @ 4| e
The air space in the closed fresh-water tank is maintained at a pressure of Air 8"
0.80 Ib/in.2 (above atmospheric). Determine the resultant force R exerted by the _i
air and water on the end of the tank. |
Water 30"
Solution. The pressure distribution on the end surface is shown, where p, = Side vi B_L End vi
0.80 Ib/in.2 The specific weight of fresh water is p = pg = 62.4/1728 = 0.0361 eI ki
Ib/in.? so that the increment of pressure Ap due to the water is Py A

Ap = u Ah = 0.0361(30) = 1.083 lb/in.?

The resultant forces R, and R, due to the rectangular and triangular distribu-
tions of pressure, respectively, are

L = PoA; = 0.80(38)(25) = 760 b

Ry = Apy Ay = 3'%8—3 (30)(25) = 406 1b

The resultant is then R = R; + Ry = 760 + 406 = 1166 lb. Ans.

We locate R by applying the moment principle about A noting that R, acts
through the center of the 38-in. depth and that Ry acts through the centroid of
the triangular pressure distribution 20 in. below the surface of the water and
20 + 8 = 28 in. below A. Thus,

[Rh = M 4] 1166k = 760(19) + 406(28) h = 22.1 in. Ans.

Helpful Hint
() Dividing the

pressure distribution

into these two parts is decidedly the
simplest way in which to make the

calculation.
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Sample Problem 5/20

Determine completely the resultant force R exerted on the cylindrical dam
surface by the water. The density of fresh water is 1.000 Mg/m3, and the dam
has a length b, normal to the paper, of 30 m.

Solution. The circular block of water BDO is isolated and its free-body diagram
is drawn. The force P, is

_ (1.000)(9.81)(4)

9 (30)(4) = 2350 kN

P, = pghA = %br

The weight W of the water passes through the mass center G of the quarter-
circular section and is

{4)>
mg = pgV = (1.000){9.81)—4— (30) = 3700 kN

Equilibrium of the section of water requires
[SF, = 0] R, = P, = 2350 kN

[2F, = 0] R, = mg = 3700 kN

The resultant force R exerted by the fluid on the dam is equal and opposite
to that shown acting on the fluid and is

= — fro8EmM2 £ aTnm 2. —
[R=JVR?*+R7 R = J(2350)* + (3700)* = 4380 kN Ans.

The x-coordinate of the point A through which R passes may be found from the
principle of moments. Using B as a moment center gives

4 16
2350 | — | + 3700 | ——
4r (3) e (371)

r
E_,_mggrARyx_o,x_ 3700 =255m Ans.

Py

Alternative Solution. The force acting on the dam surface may be obtained
by a direct integration of the components

dR, = pdAcosf and dR, = p dA sin @
where p = pgh = pgr sin 6 and dA = b(r d#). Thus,

11','2 w2

R, = J pgr?b sin 6 cos 0.d6 = —pgr? l:m—i-?—g] = Logr%
0
i 0 sin26]7* 1

R, = f per?b sin® 0.do = pgr?h by = qmpgrib
0

Thus, R = JR? + Ry'z = %pgrzb\/'l + 77/4. Substituting the numerical

values gives
R = 5(1.000)(9.81)(4%)(30)/1 + m2/4 = 4380 kN Ans.

Since dR always passes through point O, we see that R also passes through
O and, therefore, the moments of R, and R, about O must cancel. So we write
R.y, = R,x,, which gives us

x1/yy = Ro/R, = (3pgr?b)/Gmpgr?b) = 2/m
By similar triangles we see that

x/r = x1/y; = 2/7 and x = 2r/m = 2(4)/m = 255 m Ans.

]

Helpful Hints

(D See note (1) in Sample Problem 5/18
if there is any question about the
units for pgh.

() This approach by integration is fea-
sible here mainly because of the sim-
ple geometry of the circular arc.
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Sample Problem 5/21

Determine the resultant force R exerted on the semicircular end of the water
tank shown in the figure if the tank is filled to capacity. Express the result in
terms of the radius r and the water density p.

Solution I. We will obtain R first by a direct integration. With a horizontal
strip of area dA = 2x dy acted on by the pressure p = pgy, the increment of the
resultant force is dR = p dA so that

Il

R=[paa= [ ppyecan - 200 [ 3/Z =52 a
0

Integrating gives R = %,cvgrEl Ans.

The location of R is determined by using the principle of moments. Taking
moments about the x-axis gives

o
[RY = jy dR] 30ar’Y = 2pg L y:r? -y dy
Integrating gives %pgra? = pg,;r g and Y= 31—7; Ans.

Solu!ion H_. We may use Eq. 5/25 directly to find R, where the average pressure
is pgh and h is the coordinate to the centroid of the area over which the pressure
acts. For a semicircular area h = 4r/(3m).
[R = pghAl R = pg —— = Zpgr® Ans.
3m 2

which is the volume of the pressure-area figure.

The resultant R acts through the centroid C of the volume defined by the
pressure-area figure. Calculation of the centroidal distance Y involves the same
integral obtained in Solution I.

Helpful Hint

(@) Be very careful not to make the mis-
take of assuming that R passes
through the centroid of the area over
which the pressure acts.

Sample Problem 5/22

A buoy in the form of a uniform 8-m pole 0.2 m in diameter has a mass of
200 kg and is secured at its lower end to the bottom of a fresh-water lake with
5 m of cable. If the depth of the water is 10 m, calculate the angle # made by
the pole with the horizontal.

Solution. The free-body diagram of the buoy shows its weight acting through
G, the vertical tension 7' in the anchor cable, and the buoyancy force B which
passes through centroid C of the submerged portion of the buoy. Let x be the
distance from G to the waterline. The density of fresh water is p = 10° kg/m?,
so that the buoyancy force is

[B = pgV]
Moment equilibrium, EM, = 0, about A gives

B = 10%(9.81)7(0.1)%(4 + x) N

cos 8 = 0

200(9.81)(4 cos 6) — [10%(9.81)m(0.1)%(4 + x)] Lt

5

4+ 314 A

Thus, x = 3.14m and 6 = sin?! ( ) = 44.5°

10 74
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PROBLEMS

Introductory Problems

5/163 The submersible diving chamber has a total mass of
6.7 Mg including personnel, equipment, and ballast.
When the chamber is lowered to a depth of 1.2 km
in the ocean, the cable tension is 8 kN. Compute the
total volume V displaced by the chamber.
Ans. V = 5.71m?

Problem 5/163

5/164 Specify the magnitude and location of the resultant
force which acts on each side and the bottom of the
aquarium due to the fresh water inside it.

e 0.7m

0.3 m

04m

Problem 5/164

5/165 A rectangular block of density p; floats in a liquid
of density py. Determine the ratio r = h/c, where
h is the submerged depth of block. Evaluate » for
an oak block floating in fresh water and for steel
floating in mercury.

Ans.r =B r = 08,0577
P2

Problem 5/165

5/166 The forms for a small concrete retaining wall are
shown in section. There is a brace BC for every
1.5 m of wall length. Assuming that the joints at A,
B, and C act as hinged connections, compute the
compression in each brace BC. Wet concrete may be
treated as a liquid with a density of 2400 kg/m?.

Problem 5/166
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5/167 A deep-submersible diving chamber designed in the

form of a spherical shell 1500 mm in diameter is
ballasted with lead so that its weight slightly ex-
ceeds its buoyancy. Atmospheric pressure is main-
tained within the sphere during an ocean dive to a
depth of 3 km. The thickness of the shell is 25 mm.
For this depth calculate the compressive stress o
which acts on a diametral section of the shell, as
indicated in the right-hand view.

Ans. ¢ = 463 MPa

Problem 5/167

5/168 Fresh water in a channel is contained by the uni-

form 2.5-m plate freely hinged at A. If the gate is
designed to open when the depth of the water
reaches 0.8 m as shown in the figure, what must be
the weight w (in newtons per meter of horizontal
length into the paper) of the gate?

Problem 5/168

5/169 When the sea-water level inside the hemispherical
chamber reaches the 0.6-m level shown in the fig-
ure, the plunger is lifted, allowing a surge of sea
water to enter the vertical pipe. For this fluid level
(a) determine the average pressure o supported by
the seal area of the valve before force is applied to
lift the plunger and (b) determine the force P (in
addition to the force needed to support its weight)
required to lift the plunger. Assume atmospheric
pressure in all airspaces and in the seal area when
contact ceases under the action of P.

Ans. o = 10.74 kPa, P = 1.687 kN

Seawater
supply

0.6 m
Problem 5/169

5/170 One end of a uniform pole of length L and density
p' is secured at C to the bottom of a tank of liquid
of density p and depth k. For the conditions p' < p
and h < L, find the angle 6§ assumed by the pole.

Problem 5/170
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5/171 The cross section of a fresh-water tank with a 5/173 The solid concrete cylinder 6 ft long and 4 ft in di-

slanted bottom is shown. A rectangular door 1.6 m
by 0.8 m (normal to the plane of the figure) in the
bottom of the tank is hinged at A and is opened
against the pressure of the water by the cable under
a tension P as shown. Calculate P.

Ans. P = 12,57 kN

Problem 5/171

Representative Problems

5/172 A block of wood in the form of a waterproofed 16-

in. cube is floating in a tank of salt water with a
6-in. layer of oil floating on the water. Assume that
the cube floats in the attitude shown, and calculate
the height & of the block above the surface of the
oil. The specific weights of oil, salt water, and wood
are 56, 64, and 50 lb/ft?, respectively.

Problem 5/172

ameter is supported in a half-submerged position in
fresh water by a cable which passes over a fixed pul-
ley at A. Compute the tension T in the cable. The
cylinder is waterproofed by a plastic coating. (Con-
sult Table D/1, Appendix D, as needed.)

Ans. T = 8960 lb

T

Problem 5/173

5/174 A marker buoy consisting of a cylinder and cone has
the dimensions shown and weighs 625 Ib when out
of the water. Determine the protrusion & when the
buoy is floating in salt water. The buoy is weighted
so that a low center of mass ensures stability.

Problem 5/174
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5/175 A channel-marker buoy consists of an 8-ft hollow

steel cylinder 12 in. in diameter weighing 180 1b and
anchored to the bottom with a cable as shown. If
h = 2 ft at high tide, calculate the tension 7' in the
cable. Also find the value of 2 when the cable goes
slack as the tide drops. The specific weight of sea
water is 64 1b/ft3. Assume the buoy is weighted at
its base so that it remains vertical.

Ans. T = 12161b, h = 4.42 ft

Problem 5/175

5/176 A fresh-water channel 10 ft wide (normal to the

plane of the paper) is blocked at its end by a rec-
tangular barrier, shown in section ABD. Supporting
struts BC are spaced every 2 ft along the 10-ft
width. Determine the compression C in each strut.
Neglect the weights of the members.

Problem 5/176

5/177 The hinged gate ABC closes an opening of width &
(perpendicular to the paper) in a water channel.
The water has free access to the underside as well
as the right side of the gate. When the water level
rises above a certain value of &, the gate will open.
Determine the critical value of 4. Neglect the mass
of the gate.

Ans. h = aﬁ

Problem 5/177

5/178 The rectangular gate shown in section is 10 ft long

(perpendicular to the paper) and is hinged about its
upper edge B. The gate divides a channel leading to
a fresh-water lake on the left and a salt-water tidal
basin.on the right. Calculate the torque M on the
shaft of the gate at B required to prevent the gate
from opening when the salt-water level drops to
h = 3ft.

Problem 5/178
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5/179 The hydraulic cylinder operates the toggle which

closes the vertical gate against the pressure of fresh
water on the opposite side. The gate is rectangular
with a horizontal width of 2 m perpendicular to the
paper. For a depth A = 3 m of water, calculate the
required oil pressure p which acts on the 150-mm-
diameter piston of the hydraulic cylinder.

Ans. p = 7.49 MPa

Problem 5/179

5/180 The triangular and rectangular sections are being

considered for the design of a small fresh-water con-
crete dam. From the standpoint of resistance to
overturning about C, which section will require less
concrete, and how much less per foot of dam length?
Concrete weighs 150 1b/ft3.

Problem 5/180

5/181 The barge crane of rectangular proportions has a
12-ft by 30-ft cross section over its entire length of
80 ft. If the maximum permissible submergence and
list in sea water are represented by the position
shown, determine the corresponding maximum safe
load w which the barge can handle at the 20-ft
extended position of the boom. Also find the total
displacement W in long tons of the unloaded barge
(1 long ton equals 2240 1b). The distribution of ma-
chinery and ballast places the center of gravity G of
the barge, minus the load w, at the center of the

gl Ans. w = 100,800 b, W = 366 long tons

Problem 5/181

5/182 The cast-iron plug seals the drainpipe of an open
fresh-water tank which is filled to a depth of 20 ft.
Determine the tension T required to remove the
plug from its tapered hole. Atmospheric pressure
exists in the drainpipe and in the seal area as the
plug is being removed. Neglect mechanical friction
between the plug and its supporting surface.

611

Problem 5/182
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5/183 The Quonset hut subjected to a horizontal wind and 5/185 The upstream side of an arched dam has the form
the pressure p against the circular roof is approxi- of a vertical cylindrical surface of 500-ft radius and
mated by p, cos 6. The pressure is positive on the subtends an angle of 60°, If the fresh water is 100 ft
windward side of the hut and is negative on the lee- deep, determine the total force R exerted by the wa-
ward side. Determine the total horizontal shear @ ter on the dam face.

_ 6
on the foundation per unit length of roof measured Bag B 1a60U0% L

normal to the paper.
pap Ans. @ = %m‘po

Problem 5/183

5/184 The semicylindrical steel shell with closed ends has
a mass of 26.6 kg. Determine the mass m of the lead
ballast which must be placed in the shell so that
it floats in fresh water at its half-radius depth of
150 mm.

Problem 5/185

5/186 The fresh-water side of a concrete dam has the
shape of a vertical parabola with vertex at A. De-
termine the position b of the base point B through
which acts the resultant force of the water against
the dam face C.

f 27 m |

Problem 5/184

Problem 5/186
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5/187

5/188

A structure designed for observation of sea life be-
neath the ice in polar waters consists of the cylin-
drical viewing chamber connected to the surface by
the cylindrical shaft open at the top for ingress and
egress. Ballast is carried in the rack below the
chamber. To ensure a stable condition for the struc-
ture, it is necessary that its legs bear on the ice with
a force that is at least 15 percent of the total buoy-
ancy force of the submerged structure. If the struc-
ture less ballast has a mass of 5.7 Mg, calculate the
required mass m of lead ballast. The density of lead

= 3
in 1182 Mz Ans.m = 4.24 Mg

Problem 5/187

The small access hole A allows maintenance work-
ers to enter the storage tank at ground level when
it is empty. Two designs, (a) and (), are shown for
the hole cover. If the tank is full of fresh water,
estimate the average pressure o in the seal area of
design (a) and the average increase AT in the initial
tension in each of the 16 bolts of design (b). You
may take the pressure over the hole area to be con-
stant, and the pressure in the seal area of design (b)
may be assumed to be atmospheric.

(b)

Problem 5/188

5/189 The 3-m plank shown in section has a density of 800

kg/m? and is hinged about a horizontal axis
through its upper edge O. Calculate the angle ¢ as-
sumed by the plank with the horizontal for the level
of fresh water shown. Ans. 6 = 48.2°

Problem 5/189

5/190 The deep-submersible research vessel has a passen-

ger compartment in the form of a spherical steel
shell with a mean radius of 1.000 m and a thickness
of 35 mm. Calculate the mass of lead ballast which
the vessel must carry so that the combined weight
of the steel shell and lead ballast exactly cancels the
combined buoyancy of these two parts alone. (Con-
sult Table D/1, Appendix D, as needed.)

Problem 5/190
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5/191 The elements of a new method for constructing con-

crete foundation walls for new houses are shown in
the figure. Once the footing F is in place, polysty-
rene forms A are erected and a thin concrete mix-
ture B is poured between the forms. Ties T prevent
the forms from separating. After the concrete cures,
the forms are left in place for insulation. As a design
exercise, make a conservative estimate for the uni-
form tie spacing d if the tension in each tie is not
to exceed 6.5 kN. The horizontal tie spacing is the
same as the vertical spacing. State any assumptions.
The density of wet concrete is 2400 kg/m?”.

Ans. d = 0.300 m

Problem 5/191

5/192 The trapezoidal viewing window in a sea-life aquar-

ium has the dimensions shown. With the aid of ap-
propriate diagrams and coordinates, describe two
methods by which the resultant force R on the glass
due to water pressure, and the vertical location of
R, could be found if numerical values were supplied.

Water level

Problem 5/192
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CHAPTER REVIEW

In Chapter 5 we have studied various common examples of forces
distributed throughout volumes, over areas, and along lines. In all these
problems we often need to determine the resultant of the distributed
forces and the location of the resultant.

Finding Resultants of Distributed Forces

To find the resultant and line of action of a distributed force:

1. Begin by multiplying the intensity of the force by the appropriate
element of volume, area, or length in terms of which the intensity
is expressed. Then sum (integrate) the incremental forces over the
region involved to obtain their resultant.

2. To locate the line of action of the resultant, use the principle of
moments. Evaluate the sum of the moments, about a convenient
axis, of all of the increments of force. Equate this sum to the mo-
ment of the resultant about the same axis. Then solve for the un-
known moment arm of the resultant.

Gravitational Forces

When force is distributed throughout a mass, as in the case of grav-
itational attraction, the intensity is the force of attraction pg per unit of
volume, where p is the density and g is the gravitational acceleration.
For bodies whose density is constant, we saw in Section A that pg cancels
when the moment principle is applied. This leaves us with a strictly
geometric problem of finding the centroid of the figure, which coincides
with the mass center of the physical body whose boundary defines the
figure.

1. For flat plates and shells which are homogeneous and have constant
thickness, the problem becomes one of finding the properties of an
area.

2. For slender rods and wires of uniform density and constant cross
section, the problem becomes one of finding the properties of a line
segment.

Integration of Differential Relationships

For problems which require the integration of differential relation-
ships, keep in mind the following considerations.

1. Select a coordinate system which provides the simplest description
of the boundaries of the region of integration.

2. Eliminate higher-order differential quantities whenever lower-order
differential quantities will remain.

3. Choose a first-order differential element in preference to a second-
order element and a second-order element in preference to a third-
order element.
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4. Wherever possible, choose a differential element which avoids dis-
continuities within the region of integration.

Distributed Forces in Beams, Cables, and Fluids

In Section B we used these guidelines along with the principles of
equilibrium to solve for the effects of distributed forces in beams, cables,
and fluids. Remember that:

1. For beams and cables the force intensity is expressed as force per
unit length.

2. For fluids the force intensity is expressed as force per unit area, or
pressure.

Although beams, cables, and fluids are physically quite different appli-
cations, their problem formulations share the common elements cited
above.
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REVIEW PROBLEMS

5/193 Determine the x-coordinate of the centroid of the
shaded area. Ans. X = 3.66 in.

Problem 5/193

5/194 Determine the x- and y-coordinates of the centroid
of the shaded area.

Problem 5/194

5/195 Calculate the y-coordinate of the centroid of the
shudel area. Ans. ¥ = 99.7 mm

Dimensions in millimeters
Problem 5/195

5/196 Determine the volume V and total surface area A of
the complete ring which is shown in section. All four
corner radii of the cross section are 10 mm.

10 mm

—T__—__—"___ N
BS

Problem 5/196

5/197 The assembly consists of four rods cut from the
same bar stock. The curved member is a circular arc
of radius b. Determine the y- and z-coordinates of
the mass center of the assembly.

Ans. Y = 0.461b,Z = 0.876b

Problem 5/197
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5/198 Determine the position of the center of mass of the | 5/201 Determine the maximum bending moment M, for
homogeneous thin conical shell shown. the loaded beam and specify the distance x to the

right of end A where M, exists.

| Ans. M., = 1864 N-matx = 0.879 m

| = L e

" —
Iyv—

2m T 1m

\ Problem 5,201
Problem 5/198 |
5/202 The triangular sign is attached to the post embed-

5/199 Draw the shear and moment diagrams for the beam, ded in the concrete base at B. Calculate the shear
which supports the uniform load of 50 1b per foot of . force V, the bending moment M, and the torsional
beam length distributed over its midsection. Deter- moment T in the post at B during a storm where
mine the maximum bending moment and its ‘ the wind velocity normal to the sign reaches 100
location. Ans. M, = 500 Io-ftatx = 6 ft | km/ h. The air p_ressure (called stagnat‘lon pres§ure)

against the vertical surface corresponding to this ve-
50 1b/ft locity is 1.4 kPa.
| . — _=
, Y 4 8 | :

T

Problem 5/199 |

5/200 Sketch the shear and moment diagrams for each of
the four beams loaded and supported as shown.

| i

=

—y
=
iy
\ /
it
Ve
/
L \

M Problem 5/202

(b) (d) !

Problem 5/200
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5/203 A signboard is supported by two posts embedded in
concrete at A and B. Determine the moment M
which the concrete exerts on each post at A and B
during a storm when the wind velocity is 100 km/h.
The air pressure (called stagnation pressure)
against the vertical surface corresponding to this
wind velocity is 1.4 kPa. A B = 984 i w5

Problem 5/204

5/205 A cable is suspended from points A and B on the
same horizontal line and supports a total load W
uniformly distributed along the horizontal. Deter-
mine the length S of the cable. (Recall that the con-
vergence of the series of Eq. 5/16a requires that the
sag-to-span ratio be less than 1/4.)

Problem 5/203 Ans. § = 1479 ft

5/204 The frame shown enables transfer of a 75-kg dis-
abled person to and from a wheelchair and a fresh-
water swimming pool. A small hand pump at B
pressurizes the upper end of the cylinder to control
the tension and length of link AC. For the position
# = 60° link AC is under a tension of 670 N. Cal-
culate the volume of the submerged portion of the
person. Neglect the weight of the frame assembly.
Recall that the density of fresh water is 1000 kg/m?,

Problem 5/205
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5/206 Determine the depth i of the square hole in the
solid circular cylinder for which the z-coordinate of
the mass center will have the maximum possible
value.

Problem 5/206

5/207 Determine the y-coordinate of the centroid of the
volume obtained by revolving the shaded area about
the x-axis through 180°. 150

Ans. 5 = m

Problem 5/207

5/208 Locate the mass center of the body which is con-
structed of sheet metal of uniform thickness.

Dimensions in millimeters

Problem 5/208

5/209 A flat plate seals a triangular opening in the vertical
wall of a tank of liquid of density p. The plate is
hinged about the upper edge O of the triangle. De-
termine the force P required to hold the gate in a
closed position against the pressure of the liquid.

Ang, B = B8 (h + 9)

6

2

Problem 5/209

5/210 A solid floating object is composed of a hemisphere
and a cone of equal radius r made from the same
homogeneous material. If the object floats with the
center of the hemisphere above the water surface,
find the maximum altitude h which the cone may
have before the object will no longer float in the
upright position illustrated.

Problem 5/210
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5/211 The figure shows the cross section of a rectangular
gate 4 m high and 6 m long (perpendicular to the
paper) which blocks a fresh-water channel. The gate
has a mass of 8.5 Mg and is hinged about a hori-
zontal axis through C. Compute the vertical force P
exerted by the foundation on the lower edge A of
the gate. Neglect the mass of the frame to which
the gate is attached. Ans. P = 348 kN

Problem 5/211

5/212 The horizontal steel shaft with two diameters is
welded to the fixed block at A. Construct the dia-
grams of shear and moment in the shaft due to its
weight. Determine the values of the shear force and
bending moment at the discontinuity in diameter.

y
|
|
|

60 mm dia.

400 ’ 400 ’
= mm ‘ mm '
Problem 5/212

5/213 As part of a preliminary design study, the effects of
wind loads on a 900-ft building are investigated. For
the parabolic distribution of wind pressure shown
in the figure, compute the force and moment reac-
tions at the base A of the building due to the wind
load. The depth of the building (perpendicular to
the paper) is 200 ft.

Ans. A = 1.440(10% Ib, M = 7.78(108) Ib-ft

X
|
|
|

12 1b/ft?

Problem 5/213

' »5/214 Regard the tall building of Prob. 5/213 as a uniform
upright beam. Determine and plot the shear force
and bending moment in the structure as a function
of the height x above the ground. Evaluate your ex-
pressions at x = 450 ft,

Ans. V = 1.440(10%) — 150

—3—— x3f2 Ib

M = 7.78(10%) — 1.440(10%)x + %xﬁfﬂ Ib-ft

Vii-450 = 0.931(10%) Ib
M|y 450 = 2.21(10%) Ib-ft

@ *Computer-Oriented Problems

*5/215 Construct the shear and moment diagrams for the
loaded beam of Prob. 5/107, repeated here. Deter-
mine the maximum values of the shear and mo-
ment and their locations on the beam.

Ans. Vo, = 1900 b at x = 0

M, . = 9080 Ib-ft at x = 9.63 ft
w
|
| w=wy— kx®
| W=
200 1b/ft
100 Ib/ft
L —— —x
AR —B

| 20 N

Problem 5/215
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*5/216 The 30° cylindrical sector is made of copper and is
attached as shown to the semicylinder made of alu-
minum. Determine the angle @ for the equilibrium
position of the cylinder resting on a horizontal
surface.

Aluminum

Problem 5/216

*5/217 A homogeneous charge of solid propellant for a
rocket is in the shape of the circular cylinder formed
with a concentric hole of depth x. For the dimen-
sions shown, plot X, the x-coordinate of the mass
center of the propellant, as a function of the depth
x of the hole from x = 0 to x = 600 mm. Deter-
mine the maximum value of X and show that it is
equal to the corresponding value of x.

Ans. X = 322 mm

600 ™ /j/i

"]

Problem 5/217

*5/218 Set up the integral expression for the y-coordinate
of the centroid of the uniform slender rod bent
into the shape shown. Then, for the valuesa = 2
and b = 8, numerically evaluate your integral
expression.

Problem 5/218

*5/219 An underwater detection instrument A is attached
to the midpoint of a 100-m cable suspended be-
tween two ships 50 m apart. Determine the depth
h of the instrument, which has negligible mass.
Does the result depend on the mass of the cable or
on the density of the water? Asie, b =SB

50 m ‘

Problem 5/219
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*5/220 As a preliminary step in the construction of a
tramway across a scenic river gorge, a 505-m cable
with a mass of 12 kg/m is strung between points
A and B. Determine the horizontal distance x to
the right of point A to the lowest point on the cable
and compute the tensions at points A and B.

*5/221

Problem 5/220

A length of power cable is suspended from the two
towers as shown. The cable has a mass of 20 kg
per meter of cable. If the maximum allowable cable
tension is 75 kN, determine the mass p of ice per
meter which can form on the cable without the
maximum allowable tension being exceeded. If ad-
ditional stretch in the cable is neglected, does the
addition of the ice change the cable configuration?

Ans. p = 8.63 kg/m

A

Problem 5/221

*5/222 A right circular cylinder of density p, floats in a

liquid of density py. If d is the diameter of the
cylinder and £ is the submerged depth, plot the

h
ratio r = 7 as a function of 2L over the range
P2

0= % = 1. Evaluate r for a pine cylinder floating
2

in sea water.

Problem 5/222
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When contacting surfaces tend to slip on each other, friction forces are produced and must be
accounted for. This mountan climber depends on friction between his body and the rocks as
well as friction between the rope and mechanical devices through which the rope can slip.
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6/1 INTRODUCTION

In the preceding chapters we have usually assumed that the forces
of action and reaction between contacting surfaces act normal to the sur-
faces. This assumption characterizes the interaction between smooth
surfaces and was illustrated in Example 2 of Fig. 3/1. Although this ideal
assumption often involves only a relatively small error, there are many
problems in which we must consider the ability of contacting surfaces to
support tangential as well as normal forces. Tangential forces generated
between contacting surfaces are called friction forces and occur to some
degree in the interaction between all real surfaces. Whenever a tendency
exists for one contacting surface to slide along another surface, the fric-
tion forces developed are always in a direction to oppose this tendency.

In some types of machines and processes we want to minimize the
retarding effect of friction forces. Examples are bearings of all types,
power screws, gears, the flow of fluids in pipes, and the propulsion of
aircraft and missiles through the atmosphere. In other situations we
wish to maximize the effects of friction, as in brakes, clutches, belt

327
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SECTIONA.

drives, and wedges. Wheeled vehicles depend on friction for both starting
and stopping, and ordinary walking depends on friction between the
shoe and the ground.

Friction forces are present throughout nature and exist in all ma-
chines no matter how accurately constructed or carefully lubricated. A
machine or process in which friction is small enough to be neglected is
said to be ideal. When friction must be taken into account, the machine
or process is termed real. In all real cases where there is sliding motion
between parts, the friction forces result in a loss of energy which is
dissipated in the form of heat. Wear is another effect of friction.

FRICTIONAL PHENOMENA

6/2 TvyPES OF FRICTION

In this article we briefly discuss the types of frictional resistance
encountered in mechanics. The next article contains a more detailed
account of the most common type of friction, dry friction.

(a) Dry Friction. Dry friction occurs when the unlubricated surfaces
of two solids are in contact under a condition of sliding or a tendency
to slide. A friction force tangent to the surfaces of contact occurs both
during the interval leading up to impending slippage and while slippage
takes place. The direction of this friction force always opposes the mo-
tion or impending motion. This type of friction is also called Coulomb
friction. The principles of dry or Coulomb friction were developed largely
from the experiments of Coulomb in 1781 and from the work of Morin
from 1831 to 1834. Although we do not yet have a comprehensive theory
of dry friction, in Art. 6/3 we describe an analytical model sufficient to
handle the vast majority of problems involving dry friction. This model
forms the basis for most of this chapter.

(b) Fluid Friction. TFluid friction occurs when adjacent layers in a
fluid (liquid or gas) are moving at different velocities. This motion causes
frictional forces between fluid elements, and these forces depend on the
relative velocity between layers. When there is no relative velocity, there
is no fluid friction. Fluid friction depends not only on the velocity gra-
dients within the fluid but also on the viscosity of the fluid, which is a
measure of its resistance to shearing action between fluid layers. Fluid
friction is treated in the study of fluid mechanics and will not be dis-
cussed further in this book.

(c) Internal Friction. Internal friction occurs in all solid materials
which are subjected to cyclical loading. For highly elastic materials the
recovery from deformation occurs with very little loss of energy due to
internal friction. For materials which have low limits of elasticity and
which undergo appreciable plastic deformation during loading, a consid-
erable amount of internal friction may accompany this deformation. The
mechanism of internal friction is associated with the action of shear
deformation, which is discussed in references on materials science. Be-
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cause this book deals primarily with the external effects of forces, we
will not discuss internal friction further.

6/3 DRy FRICTION

The remainder of this chapter describes the effects of dry friction
acting on the exterior surfaces of rigid bodies. We will now explain the
mechanism of dry friction with the aid of a very simple experiment.

Mechanism of Dry Friction

Consider a solid block of mass m resting on a horizontal surface, as
shown in Fig. 6/1a. We assume that the contacting surfaces have some
roughness. The experiment involves the application of a horizontal force
P which continuously increases from zero to a value sufficient to move
the block and give it an appreciable velocity. The free-body diagram of
the block for any value of P is shown in Fig. 6/1b, where the tangential
friction force exerted by the plane on the block is labeled F. This friction
force acting on the body will always be in a direction to oppose motion
or the tendency toward motion of the body. There is also a normal force
N which in this case equals mg, and the total force R exerted by the
supporting surface on the block is the resultant of N and F.

A magnified view of the irregularities of the mating surfaces, Fig.
6/1c, helps us to visualize the mechanical action of friction. Support is
necessarily intermittent and exists at the mating humps. The direction
of each of the reactions on the block, R, R5, R5, ete. depends not only

mg

(a)

(b)

Impending
motion
|
Static [ Kinetic
F| friction | friction
(no motion) (motion)

|
g I =1“st‘ —~F=1; N

Figure 6/1
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on the geometric profile of the irregularities but also on the extent of
local deformation at each contact point. The total normal force N is the
sum of the n-components of the R’s, and the total frictional force F is
the sum of the #-components of the R’s. When the surfaces are in relative
motion, the contacts are more nearly along the tops of the humps, and
the ¢-components of the R’s are smaller than when the surfaces are at
rest relative to one another. This observation helps to explain the well-
known fact that the force P necessary to maintain motion is generally
less than that required to start the block when the irregularities are
more nearly in mesh.

If we perform the experiment and record the friction force F as a
function of P, we obtain the relation shown in Fig. 6/1d. When P is zero,
equilibrium requires that there be no friction force. As P is increased,
the friction force must be equal and opposite to P as long as the block
does not slip. During this period the block is in equilibrium, and all
forces acting on the block must satisfy the equilibrium equations. Fi-
nally, we reach a value of P which causes the block to slip and to move
in the direction of the applied force. At this same time the friction force
decreases slightly and abruptly. It then remains essentially constant for
a time but then decreases still more as the velocity increases.

Static Friction

The region in Fig. 6/1d up to the point of slippage or impending
motion is called the range of static friction, and in this range the value
of the friction force is determined by the equations of equilibrium. This
friction force may have any value from zero up to and including the
maximum value. For a given pair of mating surfaces the experiment
shows that this maximum value of static friction F,,,, is proportional to
the normal force N. Thus, we may write

Frax = usN (6/1)

where pu, is the proportionality constant, called the coefficient of static
friction.

Be aware that Eq. 6/1 describes only the limiting or maximum value
of the static friction force and not any lesser value. Thus, the equation
applies only to cases where motion is impending with the friction force
at its peak value. For a condition of static equilibrium when motion is
not impending, the static friction force is

F<uN

Kinetic Friction

After slippage occurs, a condition of kinetic friction accompanies the
ensuing motion. Kinetic friction force is usually somewhat less than the
maximum static friction force. The kinetic friction force F), is also pro-
portional to the normal force. Thus,
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where w,, is the coefficient of kinetic friction. It follows that u, is gen-
erally less than p,. As the velocity of the block increases, the kinetic
friction decreases somewhat, and at high velocities, this decrease may
be significant. Coefficients of friction depend greatly on the exact con-
dition of the surfaces, as well as on the relative velocity, and are subject
to considerable uncertainty.

Because of the variability of the conditions governing the action of
friction, in engineering practice it is frequently difficult to distinguish
between a static and a kinetic coefficient, especially in the region of
transition between impending motion and motion. Well-greased screw
threads under mild loads, for example, often exhibit comparable fric-
tional resistance whether they are on the verge of turning or whether
they are in motion.

In the engineering literature we frequently find expressions for max-
imum static friction and for kinetic friction written simply as F' = uN.
It is understood from the problem at hand whether maximum static
friction or kinetic friction is described. Although we will frequently dis-
tinguish between the static and kinetic coefficients, in other cases no
distinction will be made, and the friction coefficient will be written sim-
ply as p. In those cases you must decide which of the friction conditions,
maximum static friction for impending motion or kinetic friction, is in-
volved. We emphasize again that many problems involve a statie friction
force which is less than the maximum value at impending motion, and
therefore under these conditions the friction relation Eq. 6/1 cannot he
used.

Figure 6/1c shows that rough surfaces are more likely to have larger
angles between the reactions and the n-direction than do smoother sur-
faces. Thus, for a pair of mating surfaces, a friction coefficient reflects
the roughness, which is a geometric property of the surfaces. With this
geometric model of friction, we describe mating surfaces as “‘smooth”
when the friction forces they can support are negligibly small. It is
meaningless to speak of a coefficient of friction for a single surface.

Friction Angles

The direction of the resultant R in Fig. 6/1b measured from the
direction of N is specified by tan &« = F/N. When the friction force
reaches its limiting static value F,,, the angle a reaches a maximum
value ¢,. Thus,

tan ¢, = g

When slippage is occurring, the angle « has a value ¢y, corresponding to
the kinetic friction force. In like manner,

tan ¢y, = p;

In practice we often see the expression tan ¢ = u, in which the
coefficient of friction may refer to either the static or the kinetic case,
depending on the particular problem. The angle ¢, is called the angle of
static friction, and the angle ¢, is called the angle of kinetic friction. The



332

Chapter 6

Friction

_ Cone of
static friction

Cone of
~ kinetic friction

Figure 6/2

friction angle for each case clearly defines the limiting direction of the
total reaction R between two contacting surfaces. If motion is impend-
ing, R must be one element of a right-circular cone of vertex angle 24,
as shown in Fig. 6/2. If motion is not impending, R is within the cone.
This cone of vertex angle 2¢, is called the cone of static friction and
represents the locus of possible directions for the reaction R at impend-
ing motion. If motion occurs, the angle of kinetic friction applies, and
the reaction must lie on the surface of a slightly different cone of vertex
angle 2¢y,. This cone is the cone of kinetic friction.

Factors Affecting Friction

Further experiment shows that the friction force is essentially in-
dependent of the apparent or projected area of contact. The true con-
tact area is much smaller than the projected value, since only the peaks
of the contacting surface irregularities support the load. Even rela-
tively small normal loads result in high stresses at these contact points.
As the normal force increases, the true contact area also increases as
the material undergoes yielding, crushing, or tearing at the points of
contact.

A comprehensive theory of dry friction must go beyond the me-
chanical explanation presented here. For example, there is evidence that
molecular attraction may be an important cause of friction under con-
ditions where the mating surfaces are in very close contact. Other factors
which influence dry friction are the generation of high local tempera-
tures and adhesion at contact points, relative hardness of mating sur-
faces, and the presence of thin surface films of oxide, oil, dirt, or other
substances.

Some typical values of coefficients of friction are given in Table D/1,
Appendix D. These values are only approximate and are subject to con-
siderable variation, depending on the exact conditions prevailing. They
may be used, however, as typical examples of the magnitudes of fric-
tional effects. To make a reliable calculation involving friction, the ap-
propriate friction coefficient should be determined by experiments which
duplicate the surface conditions of the application as closely as possible.
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Types of Friction Problems & CONQ%
We can now recognize the following three types of problems en- >

countered in applications involving dry friction. The first step in solving
a friction problem is to identify its type.

(1) In the first type of problem, the condition of impending motion
is known to exist. Here a body which is in equilibrium is on the verge
of slipping, and the friction force equals the limiting static friction
Fax = MsN. The equations of equilibrium will, of course, also hold.

(2) In the second type of problem, neither the condition of im-
pending motion nor the condition of motion is known to exist. To de-
termine the actual friction conditions, we first assume static equilibrium
and then solve for the friction force F' necessary for equilibrium. Three
outcomes are possible:

(@) F < (Fax = wN): Here the friction force necessary for equi-
librium can be supported, and therefore the body is in static
equilibrium as assumed. We emphasize that the actual friction
force F is less than the limiting value F, ., given by Eq. 6/1 and
that F' is determined solely by the equations of equilibrium.

(b) F = (Fax = sN): Since the friction force F is at its maximum
value F .., motion impends, as discussed in problem type (1).
The assumption of static equilibrium is valid.

() F > (Fax = meN): Clearly this condition is impossible, because
the surfaces cannot support more force than the maximum pN.
The assumption of equilibrium is therefore invalid, and motion
occurs. The friction force F' is equal to w,N from Eq. 6/2.

(3) In the third type of problem, relative motion is known to exist
between the contacting surfaces, and thus the kinetic coefficient of fric-
tion clearly applies. For this problem type, Eq. 6/2 always gives the
kinetic friction force directly.

The foregoing discussion applies to all dry contacting surfaces and,
to a limited extent, to moving surfaces which are partially lubricated.
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Sample Problem 6/1

Determine the maximum angle 6 which the adjustable incline may have with
the horizontal before the block of mass m begins to slip. The coefficient of static
friction between the block and the inclined surface is p,.

Solution. The free-body diagram of the block shows its weight W = mg, the
normal force N, and the friction force F exerted by the incline on the block. The
friction force acts in the direction to oppose the slipping which would occur if no
friction were present.

Equilibrium in the x- and y-directions requires

[EF, = 0] mgsinf — F =0 F = mgsin
[EFJ,=0] -mgcosf + N =20 N = mg cos 6

Dividing the first equation by the second gives F/N = tan 6. Since the maximum
angle occurs when F' = F_ .. = u.N, for impending motion we have

M, = tan O,  or 6, = tan! . Ans.

¥
\ W=mg
A
\
-

Helpful Hints

(D We choose reference axes along and
normal to the direction of F to avoid
resolving both F and N
components.

into

(2) This problem describes a very simple
way to determine a static coefficient
of friction. The maximum value of #
is known as the angie of repose.

Sample Problem 6/2

Determine the range of values which the mass my may have so that the
100-kg block shown in the figure will neither start moving up the plane nor slip
down the plane. The coefficient of static friction for the contact surfaces is 0.30.

Solution. The maximum value of m, will be given by the requirement for mo-
tion impending up the plane. The friction force on the block therefore acts down
the plane, as shown in the free-body diagram of the block for Case I in the figure.
With the weight mg = 100(9.81) = 981 N, the equations of equilibrium give

[EF, = 0] N - 981cos20°=0 N = 922N
[Froax = N1 F_.. = 0.30(922) = 277N
[EF, = 0] my(9.81) — 277 — 981 sin 20° = 0 m, = 62.4 kg Ans,

The minimum value of m is determined when motion is impending down the
plane. The friction force on the block will act up the plane to oppose the tendency
to move, as shown in the free-body diagram for Case II. Equilibrium in the x-
direction requires

[3F, = 0] mo(9.81) + 277 — 981 sin 20° = 0 m, = 6.01 kg Ans.

Thus, my may have any value from 6.01 to 62.4 kg, and the block will remain at
rest.

In both cases equilibrium requires that the resultant of F,, and N be con-
current with the 981-N weight and the tension 7.

100 h'3) =
~3% A

9!
\\981 N i
. T=mog
-
oK P
20°
N
Casel
¥y
\\981 N "
: T=mog

Frnax }1
“a0°
Case I1
Helpful Hint

(1) We see from the results of Sample
Problem 6/1 that the block would
slide down the incline without the
restraint of attachment to m since
tan 20° > 0.30. Thus, a value of
my will be required to maintain
equilibrium.
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Sample Problem 6/3

Determine the magnitude and direction of the friction force acting on the
100-kg block shown if, first, P = 500 N and, second, P = 100 N. The coefficient
of static friction is 0.20, and the coefficient of kinetic friction is 0.17. The forces
are applied with the block initially at rest.

Solution. There is no way of telling from the statement of the problem whether
the block will remain in equilibrium or whether it will begin to slip following the
application of P. It is therefore necessary that we make an assumption, so we
will take the friction force to be up the plane, as shown by the solid arrow. From
the free-body diagram a balance of forces in both x- and y-directions gives

[EF, = 0] P cos 20° + F — 981 sin 20° = 0
[EF, = 0] N — Psin 20° — 981 cos 20° = 0

Casel P = 500 N
Substitution into the first of the two equations gives

F = -1343 N

The negative sign tells us that if the block is in equilibrium, the friction force
acting on it is in the direction opposite to that assumed and therefore is down
the plane, as represented by the dashed arrow. We cannot reach a conclusion on
the magnitude of F, however, until we verify that the surfaces are capable of
supporting 134.3 N of friction force. This may be done by substituting P =
500 N into the second equation, which gives

N = 1093 N
The maximum static friction force which the surfaces can support is then
Frar = MV Froax = 0.20(1093) = 219 N

Since this force is greater than that required for equilibrium, we conclude that
the assumption of equilibrium was correct. The answer is, then,

F = 134.3 N down the plane Ans.

Casell. P = 100 N
Substitution into the two equilibrium equations gives

F = 242 N N = 956 N
But the maximum possible static friction force is
Frax = #sN] Frax = 0.20(956) = 191.2 N

It follows that 242 N of friction cannot be supported. Therefore, equilibrium
cannot exist, and we obtain the correct value of the friction force by using the
kinetic coefficient of friction accompanying the motion down the plane. Hence,
the answer is

[F, = wN] F = 0.17(956) = 162.5 N up the plane Ans.

y
\
\ 100(9.81) =981 N

Helpful Hint

(1) We should note that even though
2F, is no longer equal to zero, equi-
librium does exist in the y-direction,
so that £F, = 0. Therefore, the nor-
mal force N is 956 N whether or not
the block is in equilibrium.
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Sample Problem 6/4

The homogeneous rectangular block of mass m, width &, and height H is
placed on the horizontal surface and subjected to a horizontal force P which
moves the block along the surface with a constant velocity. The coefficient of
kinetic friction between the block and the surface is p;,. Determine (a) the great-
est value which & may have so that the block will slide without tipping over and
(b) the location of a point C on the bottom face of the block through which the
resultant of the friction and normal forces acts if h = H/2.

Solution. (a) With the block on the verge of tipping, we see that the entire
reaction between the plane and the block will necessarily be at A. The free-body
diagram of the block shows this condition. Since slipping oceurs, the friction force
is the limiting value p, N, and the angle 6 becomes 6 = tan™! u,. The resultant
of Fj, and N passes through a point B through which P must also pass, since
three coplanar forces in equilibrium are concurrent. Hence, from the geometry
of the block

b/2 h b

tan 0 = w, = —

i3 = 2—“‘; Ans.

If h were greater than this value, moment equilibrium about A would not
be satisfied, and the block would tip over.

Alternatively, we may find & by combining the equilibrium requirements for
the x- and y-directions with the moment-equilibrium equation about A. Thus,

2ZF, = 0] N-mg=0 N=mg
[EF, = 0] F,-P=0 P=F,=wN=ppmg
b mgb mgb b
> - i — = A bl =T Ans.
[EM, = 0] Ph — mg 5 0 9B e e s

(b) With A = H/2 we see from the free-body diagram for case (b) that the
resultant of F;, and N passes through a point C which is a distance x to the left
of the vertical centerline through G. The angle fis still § = ¢ = tan! My, as
long as the block is slipping. Thus, from the geometry of the figure we have

X
m = tan 0 = p, S0 x = wH/2 Ans.

If we were to replace w; by the static coefficient g, then our solutions would
describe the conditions under which the block is (a) on the verge of tipping and
(b) on the verge of slipping, both from a rest position.

e
o
| €r— P
H m
h
{
y
|
|
B
A eyl
//eG ]
/ |I
/. m,
F""\ A | = __L_.‘.
y :
I el &
[ 2
2 N
G — = [ D
1T
JOREE 2
Fy—1— .
/0
AN

Helpful Hints

(D Recall that the equilibrium equa-
tions apply to a body moving with a
constant velocity (zero acceleration)
just as well as to a body at rest.

(2) Alternatively, we could equate the
moments about G to zero, which
would give us F(H/2) — Nx = 0.
Thus, with F), = N we get x =
npH/2.
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Sample Problem 6/5

The three flat blocks are positioned on the 30° incline as shown, and a force
P parallel to the incline is applied to the middle block. The upper block is pre-
vented from moving by a wire which attaches it to the fixed support. The coef-
ficient of static friction for each of the three pairs of mating surfaces is shown.
Determine the maximum value which P may have before any slipping takes place.

Solution. The free-body diagram of each block is drawn. The friction forces are
assigned in the directions to oppose the relative motion which would occur if no
friction were present. There are two possible conditions for impending motion.
Either the 50-kg block slips and the 40-kg block remains in place, or the 50- and
40-kg blocks move together with slipping occurring between the 40-kg block and
the incline.

The normal forees, which are in the y-direction, may be determined without
reference to the friction forces, which are all in the x-direction. Thus,

[SF, = 0] (30-kg) N, — 30(9.81) cos 30° = 0 N, = 255N
0 N, = 680N
(40-kg) Ny — 40(9.81) cos 30° — 680 = 0 N, = 1019 N

(50-kg) Ny — 50(9.81) cos 30° — 255

I

We will assume arbitrarily that only the 50-kg block slips, so that the 40-kg
block remains in place. Thus, for impending slippage at both surfaces of the 50-kg
block, we have

Froax = N1 Fy = 0.30(255) = 765 N F, = 0.40(680) = 272 N

The assumed equilibrium of forces at impending motion for the 50-kg block
gives

[EF,=0] P - 765 — 272 + 50(9.81)sin30° =0 P = 103.1 N

We now check on the validity of our initial assumption. For the 40-kg block
with F; = 272 N the friction force F3 would be given by

[EF, = 0] 272 + 40(9.81) sin 30° — F3 = 0 Fy = 468 N

But the maximum possible value of Fy is F3 = N3 = 0.45(1019) = 459 N.
Thus, 468 N cannot be supported and our initial assumption was wrong. We
conclude, therefore, that slipping occurs first between the 40-kg block and the
incline. With the corrected value F'y = 459 N, equilibrium of the 40-kg block for
its impending motion requires

[EF, = 0] Fy + 40(9.81) sin 30° — 459 = 0 F, = 263N
Equilibrium of the 50-kg block gives, finally,
[EF, = 0] P + 50(9.81) sin 30° — 263 — 76.5 = 0
P =938N Ans.

Thus, with P = 93.8 N, motion impends for the 50-kg and 40-kg blocks as a
unit.

Helpful Hints

(D) In the absence of friction the middle
block, under the influence of P,
would have a greater movement than
the 40-kg block, and the friction
force Iy will be in the direction to
oppose this motion as shown.

(2) We see now that Fy is less than
uNy = 272 N.
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PROBLEMS

(Note that, for checking purposes only, the computed re-
sults for all friction coefficients are reported to three sig-
nificant figures, regardless of whether the result begins
with the digit 1.)

Introductory Problems

6/1 The 85-1b force P is applied to the 200-1b crate, which
is stationary before the force is applied. Determine the
magnitude and direction of the friction force F exerted
by the horizontal surface on the crate.

Ans. F' = 85 1b to the left

200 1b

P=851b
e—— 3

i, =0.50
|, =040

Problem 6/1

6/2 The 700-N force is applied to the 100-kg block, which
is stationary before the force is applied. Determine the
magnitude and direction of the friction force F exerted
by the horizontal surface on the block.

P=T00N

4, =0.80
1, =060 [

Problem 6/2

6/3 The designer of a ski resort wishes to have a portion
of a beginner’s slope on which the skier’s speed will
remain fairly constant. Tests indicate the average
coefficients of friction between skis and snow to be
iy = 0.10 and u; = 0.08. What should be the slope
angle ¢ of the constant-speed section?

Ans. 0 = 4.57°

N

--—-—""'E_-_-

Problem 6/3

6/4 The coefficients of static and kinetic friction between

the 100-kg block and the inclined plane are 0.30 and
0.20, respectively. Determine (a) the friction force F
acting on the block when P is applied with a magni-
tude of 200 N to the block at rest, (5) the force P
required to initiate motion up the incline from rest,
and (c) the friction force F acting on the block if P =
600 N.

Problem 6/4

6/5 The 1.2-kg wooden block is used for level support of

the 9-kg can of paint. Determine the magnitude and
direction of (a) the friction force exerted by the roof
surface on the wooden block and (b) the total force
exerted by the roof surface on the wooden block.

Ans. (@) F = 316N, (b)) P = 100.1 N up

Problem 6/5

6/6 The magnitude of force P is slowly increased. Does the

homogeneous box of mass m slip or tip first? State the
value of P which would cause each occurrence. Neglect
any effect of the size of the small feet.

P
A 30°
e
CF -i,=0.50
|
L B N\ C 2
< T R———

Problem 6/6
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6/7 The light bar is used to support the 50-kg block in its F
vertical guides. If the coefficient of static friction is
0.30 at the upper end of the bar and 0.40 at the lower
end of the bar, find the friction force acting at each
end for x = 75 mm. Also find the maximum value of
x for which the bar will not slip.

Ans. Fy = Fg = 126.6 N, x,,,,, = 86.2 mm

| Problem 6/9

6/10 The 300-1b crate with mass center at (G is supported

on the horizontal surfaces by a skid at A and a roller

‘ at B. If a force P of 60 b is required to initiate motion

of the crate, determine the coefficient of static fric-
tion at A.

Problem 6/7
ry P

6/8 The 30-kg homogeneous cylinder of 400-mm diameter 127

rests against the vertical and inclined surfaces as T

shown. If the coefficient of static friction between the ' | : ' 1.?”

cylinder and the surfaces is 0.30, calculate the applied i L

clockwise couple M which would cause the cylinder to AP 24”%{e 24" —|

slip.

Problem 6/10

6/11 The illustration shows the design of a cam-type lock-
ing device, which, in the presence of sufficient fric-
tion, limits the movement of body B to be to the left
only; rightward movement is prevented. The surface
of the cam near point D is circular with center at C.
Given the distance L, specify the cam offset d so that
the device will work if the coefficient of static friction

30° :
1, 18 0.20 or greater. Ao, iF == OBE,
Problem 6/8
6/9 The tongs are designed to handle hot steel tubes which
are being heat-treated in an oil bath. For a 20° jaw
opening, what is the minimum coefficient of static fric- | )
tion between t}_le jaws and tl:le tube '{vhi.ch will enable Allswikle g o No
the tongs to grip the tube without slipping? ‘ mokion - moton
Ans. Yo = 0.176 - § _———-

Problem 6/11
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6/12 The uniform 14-ft pole weighs 150 lb and is sup-
ported as shown. Calculate the force P required to
move the pole if the coefficient of static friction for
each contact location is 0.40.

< 8 -

Problem 6/12

Representative Problems

6/13 The uniform pole of length / and mass m is placed
against the supporting surfaces shown. If the coeffi-
cient of static friction is p, = 0.25 at both A and B,
determine the maximum angle 0 at which the pole

can be placed before it begins to slip.
Ans. # = 59.9°

1057

Problem 6/13

6/14 The strut AB of negligible mass is hinged to the hor-
izontal surface at A and to the uniform 25-kg wheel
at B. Determine the minimum couple M applied to
the wheel which will cause it to slip if the coefficient
of static friction between the wheel and the surface
is 0.40.

Problem 6/14

6/15 The 180-Ib man with center of gravity G supports the
75-1b drum as shown. Find the greatest distance x at
which the man can position himself without slipping
if the coefficient of static friction between his shoes
and the ground is 0.40. Ans. x = 1052 fi

!- : |

Problem 6/15

6/16 The force P is applied to (a) the 60-1b block and (b)
the 100-lb block. For each case, determine the mag-
nitude of P required to initiate motion.

Pila)

=012~

N

100l == P(b)

Problem 6/16
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6/17 The system of two blocks, cable, and fixed pulley is
initially at rest. Determine the horizontal force P
necessary to cause motion when (a) P is applied to
the 5-kg block and (b) P is applied to the 10-kg block.
Determine the corresponding tension 7' in the cable

for each case. 4 . () p — 1373 N, T = 1128 N

(b) P = 1373 N, T = 245 N

_Pla)
F\pts =0.50

-3 P (h)
\

i, = 0.60

Problem 6/17

6/18 Determine the range of weights W for which the 100-1b
block is in equilibrium. All wheels and pulleys have
negligible friction.

Problem 6/18

6/19 The uniform rod with center of mass at G is sup-
ported by the pegs A and B, which are fixed in the
wheel. If the coefficient of friction between the rod
and pegs is u, determine the angle 6 through which
the wheel may be slowly turned about its horizontal
axis through O, starting from the position shown, be-
fore the rod begins to slip. Neglect the diameter of
the rod compared with the other dimensions.

+ b
Ans. 6 = tan™! (,u.a ) |
a

Problem 6/19

6/20 The 10-kg solid cylinder is resting in the inclined
V-block. If the coefficient of static friction between
the cylinder and the block is 0.50, determine (a) the
friction force F' acting on the cylinder at each side
before force P is applied and (b) the value of P re-
quired to start sliding the cylinder up the incline.

Problem 6/20

6/21 The homogeneous semicylinder rests on a horizontal
surface and is subjected to the force P applied to a
cord firmly attached to its periphery. The force P is
slowly increased and kept normal to the flat surface
of the semicylinder. If slipping is observed just as
reaches 40°, determine the coefficient of static fric-
tion pg and the value of P when slipping occurs.

Ans. p, = 0.122, P = 0.1661mg

Problem 6/21
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6/22 The sliding glass door rolls on the two small lower

wheels A and B. Under normal conditions the upper
wheels do not touch their horizontal guide. (@) Com-
pute the force P required to slide the door at a steady
speed if wheel A becomes “frozen’ and does not turn
in its bearing. (b) Rework the problem if wheel B be-
comes frozen instead of wheel A. The coefficient of
kinetic friction between a frozen wheel and the sup-
porting surface is 0.30, and the center of mass of the
140-1b door is at its geometric center. Neglect the
small diameter of the wheels.

Problem 6/22

6/23 A clockwise couple M is applied to the circular cyl-

inder as shown. Determine the value of M required
to initiate motion for the conditions my = 3 kg,
me = 6 kg, (u,)g = 0.50, (u)e = 0.40, and r = 0.2 m.
Friction between the cylinder C and the block B is

negligible. Ans. M = 294 N'm

Problem 6/23

6/24 Repeat Prob. 6/23, except let (u,); = 0.20. All other

conditions of Prob. 6/23 remain the same.

6/25 The figure shows the design in section of a loaded

bracket which is supported on the fixed shaft by the
roller at B and by friction at the corner A. The co-
efficient of static friction is 0.40. Neglect the weight
of the bracket and show that the bracket as designed
will remain in place. Find the friction force F.

Ans. F = 400 1b

' 20" —i

Problem 6/25

6/26 Determine the magnitude P of the horizontal force

required to initiate motion of the block of mass m,,
for the cases (a) P is applied to the right and () P is
applied to the left. Complete a general solution in
each case, and then evaluate your expression for the
values 0 = 30°, m = my = 3 kg, u, = 0.60, and
w, = 0.50.

B_|

Problem 6/26
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6/27 Find the maximum distance x from the horizontal

centerline of the drawer at which the force P may be
applied and still allow the drawer to be opened with-
out binding at the corners. Neglect friction on the
bottom of the drawer and take the coefficient of static
friction at the corners to be p,.

Ans. x = 2—%

|
|

Problem 6/27

6/28 The two uniform slender bars constructed from the

same stock material are freely pinned together at B.
Determine the minimum angle 6 at which slipping
does not occur at either contact point A or C. The
coefficient of static friction at both A and C is p, =
0.50. Consider only motion in the vertical plane
shown.

Problem 6/28

ghalp

6/29 The movable left-hand jaw of the C-clamp can be slid

along the frame to increase the capacity of the clamp.
To prevent slipping of the jaw on the frame when the
clamp is under load, the dimension x must exceed a
certain minimum value. For given values of @ and b
and a static friction coefficient pu, specify this design
minimum value of x to prevent slipping of the jaw.

a — bu,

Ans.x =
2pg

Lol

Problem 6/29

6/30 Two automobiles, both of which have the mass center

located as shown midway between the front and rear
axles, are identical except that one is front-wheel-
drive and the other is rear-wheel-drive. The cars are
driven at constant speed up ramps of various incli-
nations. From a theoretical design viewpoint, which
car could climb the ramp of higher inclination angle
67 Justify your answer.

Problem 6/30
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6/31 Determine the distance s to which the 90-kg painter
can climb without causing the 4-m ladder to slip at
its lower end A. The top of the 15-kg ladder has a
small roller, and at the ground the coefficient of static
friction is 0.25. The mass center of the painter is di-
rectly above her feet. o

Problem 6/31

6/32 The two blocks are placed on the incline with the
cable taut. (a) Determine the force P required to in-
itiate motion of the 15-kg block if P is applied down
the incline. (b) If P is applied up the incline and
slowly increased from zero, determine the value of P
which will cause motion and describe that motion.

Problem 6/32

6/33 Repeat Prob. 6/32, but with u, = 0.50 between the
blocks. All other conditions remain the same.
Ans. (@) P = 714N, (b) P = 1620N

6/34 The uniform slender rod of mass m and length L is
initially at rest in a centered horizontal position on
the fixed circular surface of radius R = 0.6L. If a
force P normal to the bar is gradually applied to its
end until the bar begins to slip at the angle # = 20°,
determine the coefficient of static friction p,.

Problem 6/34

6/35 The body is constructed of an aluminum cylinder
with an attached half-cylinder of steel. Determine the
ramp angle ¢ for which the body will remain in equi-
librium when released in the position shown where
the diametral section of the steel half-cylinder is ver-
tical. Also calculate the necessary minimum coeffi-
cient of static friction pu,.

Ans. 6 = 8.98° u, = 0.158

40 mm

Problem 6/35
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6/36

6/37

The uniform slender rod is slowly lowered from the
upright position (§ = 90°) by means of the cord at-
tached to its upper end and passing under the small
fixed pulley. If the rod is observed to slip at its lower
end when # = 40°, determine the coefficient of static
friction at the horizontal surface.

6/38 The uniform slender bar of length [ is placed in the
opening of width d at the 30° angle shown. For what
range of [ /d will the bar remain in static equilibrium?
The coefficient of static friction at A and B is p, =
0.40.

Problem 6/36

The three identical rollers are stacked on a horizontal
surface as shown. If the coefficient of static friction
i, is the same for all pairs of contacting surfaces, find
the minimum value of p, for which the rollers will

not shp. Ans. Hg: = 0.268

Problem 6/37

Problem 6/38

6/39 The single-lever block brake prevents rotation of the

flywheel under a counterclockwise torque M. Find
the force P required to prevent rotation if the coef-
ficient of static friction is p,. Explain what would
happen if the geometry permitted & to equal p.e.

=

Problem 6/39
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6/40 A block of mass m,, is placed between the vertical wall

and the upper end A of the uniform slender bar of
mass m. If the coefficient of static friction is p, be-
tween the block and the wall and also between the
block and the bar, determine a general expression for
the minimum value f,,;,, of the angle @ for which the
block will remain in equilibrium. Evaluate your ex-
pression for the conditions u, = 0.5 and

(@) = = 0.1,
fﬂu

(b) LI 1, and
mg
m

(¢) — = 10.
my

For each case, state the minimum coefficient of static
friction (u,)z necessary to prevent slippage at B.

mg

Problem 6/40

6/41 A block of mass m, is placed between the vertical wall

and the small ideal roller at the upper end A of the
uniform slender bar of mass m. The lower end B of
the bar rests on the horizontal surface. If the coeffi-
cient of static friction is p, at B and also between the
block and the wall, determine a general expression
for the minimum value 6,;, of @ for which the block
will remain in equilibrium. Evaluate your expression

m

for p, = 0.5 and = 10. For these conditions,

my
check for possible slipping at B.

2
Ans. 6. = tan ! (#mn‘z) Opin = 21.8°
'S

Problem 6/41

6/42 A woman pedals her bicycle up a 5-percent grade on

a slippery road at a steady speed. The woman and
bicycle have a combined mass of 82 kg with mass
center at G. If the rear wheel is on the verge of slip-
ping, determine the coefficient of friction p, between
the rear tire and the road. If the coefficient of friction
were doubled, what would be the friction force F act-
ing on the rear wheel? (Why may we neglect friction
under the front wheel?)

100

Problem 6/42

6/43 The industrial truck is used to move the solid 1200-

kg roll of paper up the 30° incline. If the coefficients
of static and kinetic friction between the roll and the
vertical barrier of the truck and between the roll and
the incline are both 0.40, compute the required trac-
tive force P between the tires of the truck and the
horizontal surface. Ans. P = 9291 kN
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zontal force to the carrier handle. Assume that each

worker supports half the weight of the panel.
Ans. p, = 0.126
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SECTION B. APPLICATIONS OF FRICTION IN MACHINES

In Section B we investigate the action of friction in various machine
applications. Because the conditions in these applications are normally
either limiting static or kinetic friction, we will use the variable w (rather
than w, or w,) in general. Depending on whether motion is impending
or actually occurring, u can be interpreted as either the static or kinetic
coefficient of friction.

6/4 WEDGES

A wedge is one of the simplest and most useful machines. A wedge
is used to produce small adjustments in the position of a body or to apply
large forces. Wedges largely depend on friction to function. When sliding
of a wedge is impending, the resultant force on each sliding surface of
the wedge will be inclined from the normal to the surface by an amount
equal to the friction angle. The component of the resultant along the
surface is the friction force, which is always in the direction to oppose
the motion of the wedge relative to the mating surfaces.

Figure 6/3a shows a wedge used to position or lift a large mass m,
where the vertical loading is mg. The coefficient of friction for each pair
of surfaces is u = tan ¢. The force P required to start the wedge is
found from the equilibrium triangles of the forces on the load and on
the wedge. The free-body diagrams are shown in Fig. 6/3b, where the
reactions are inclined at an angle ¢ from their respective normals and
are in the direction to oppose the motion. We neglect the mass of the
wedge. From the free-body diagrams we write the force equilibrium con-
ditions by equating to zero the sum of the force vectors acting on each
(a) body. The solutions of these equations are shown in part ¢ of the figure,
where R, is found first in the upper diagram using the known value of
mg. The force P is then found from the lower triangle once the value of
Ry has been established.

If P is removed and the wedge remains in place, equilibrium of
the wedge requires that the equal reactions R, and R, be collinear as
shown in Fig. 6/4, where the wedge angle « is taken to be less than .
Part a of the figure represents impending slippage at the upper surface,
and part ¢ of the figure represents impending slippage at the lower sur-
face. In order for the wedge to slide out of its space, slippage must occur
at both surfaces simultaneously; otherwise, the wedge is self-locking,
and there is a finite range of possible intermediate angular positions of
R, and R, for which the wedge will remain in place. Figure 6/4b illus-
trates this range and shows that simultaneous slippage is not possible
if @ < 2¢. You are encouraged to construct additional diagrams for the
case where @ > ¢ and verify that the wedge is self-locking as long as
a < 2.

(b) (c) If the wedge is self-locking and is to be withdrawn, a-pull P on the
wedge will be required. To oppose the new impending motion, the re-
actions R; and Ry must aqat on the opposite sides of their normals from
Figure 6/3 those when the wedge was inserted. The solution can be obtained as

Forces to raise load
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Y Range of Ry h
20 — o ‘

2 3

il
R : 20 -
Range of R,

(@) Slipping impending (b) Range of Ry = R, (¢) Slipping impending
at upper surface for no slip at lower surface

Figure 6/4

with the case of raising the load. The free-body diagrams and vector
polygons for this condition are shown in Fig. 6/5.

Wedge problems lend themselves to graphical solutions as indicated
in the three figures. The accuracy of a graphical solution is easily held
within tolerances consistent with the uncertainty of friction coefficients.
Algebraic solutions may also be obtained from the trigonometry of the
equilibrium polygons.

R,

|
|®

Forces to lower load

Figure 6/5

6/5 SCREwWS

Screws are used for fastening and for transmitting power or motion.
In each case the friction developed in the threads largely determines the
action of the screw. For transmitting power or motion the square thread
is more efficient than the V-thread, and the analysis here is confined to
the square thread.
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Force Analysis

Consider the square-threaded jack, Fig. 6/6, under the action of the
axial load W and a moment M applied about the axis of the screw. The
screw has a lead L (advancement per revolution) and a mean radius r.
The force R exerted by the thread of the jack frame on a small repre-
sentative portion of the screw thread is shown on the free-body diagram
of the screw. Similar reactions exist on all segments of the screw thread
where contact oceurs with the thread of the hase.

If M is just sufficient to turn the screw, the thread of the screw will
slide around and up on the fixed thread of the frame. The angle ¢ made
by R with the normal to the thread is the angle of friction, so that
tan ¢ = p. The moment of R about the vertical axis of the screw is
Rrsin (o + ¢), and the total moment due to all reactions on the threads
is ZRr sin (@ + ¢). Since r sin (@ + ¢) appears in each term, we may
factor it out. The moment equilibrium equation for the screw becomes

M = [rsin (o« + ¢)] =R
Equilibrium of forces in the axial direction further requires that
W = ZR cos (e + ¢) = [cos (o + ¢)] =R
Combining the expressions for M and W gives
M = Wrtan (¢ + ¢) (6/3)
To determine the helix angle «, unwrap the thread of the screw for one
complete turn and note that « = tan ! (L/27r).
We may use the unwrapped thread of the screw as an alternative
model to simulate the action of the entire screw, as shown in Fig. 6/7a.
The equivalent force required to push the movable thread up the fixed

incline is P = M/r, and the triangle of force vectors gives Eq. 6/3
immediately.

Figure 6/6
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(¢) To lower load (x>0)

Figure 6/7

Conditions for Unwinding

If the moment M is removed, the friction force changes direction so
that ¢ is measured to the other side of the normal to the thread. The
screw will remain in place and be self-locking provided that a < ¢, and
will be on the verge of unwinding if &« = ¢.

To lower the load by unwinding the screw, we must reverse the
direction of M as long as @ < ¢. This condition is illustrated in Fig.
6/7b for our simulated thread on the fixed incline. An equivalent force
P = M/r must be applied to the thread to pull it down the incline. From
the triangle of vectors we therefore obtain the moment required to lower
the screw, which is

M = Wrtan (¢ — «) (6/3a)

If @ > ¢, the screw will unwind by itself, and Fig. 6/7¢ shows that the
moment required to prevent unwinding is

M = Wrtan (a — &) (6/3b)
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Sample Problem 6/6

The horizontal position of the 500-kg rectangular block of concrete is ad-
Justed by the 5° wedge under the action of the force P. If the coefficient of static
friction for both pairs of wedge surfaces is 0.30 and if the coefficient of static
friction between the block and the horizontal surface is 0.60, determine the least
force P required to move the block.

Solution. The free-body diagrams of the wedge and the block are drawn with
the reactions Ry, Ry, and Ry inclined with respect to their normals by the
amount of the friction angles for impending motion. The friction angle for lim-
iting static friction is given by ¢ = tan ! u. Each of the two friction angles is
computed and shown on the diagram.

We start our vector diagram expressing the equilibrium of the block at a
convenient point A and draw the only known vector, the weight W of the block.
Next we add Ry, whose 31.0° inclination from the vertical is now known. The
vector Ry, whose 16.70° inclination from the horizontal is also known, must close
the polygon for equilibrium. Thus, point B on the lower polygon is determined
by the intersection of the known directions of Ry and R, and their magnitudes
become known.

For the wedge we draw Ry, which is now known, and add R, whose direc-
tion is known. The directions of R, and P intersect at C, thus giving us the
solution for the magnitude of P.

Algebraic solution. The simplest choice of reference axes for calculation pur-
poses is, for the block, in the direction a-a normal to R; and, for the wedge,
in the direction b-b normal to R,. The angle between R, and the a-direction is
16.70° + 31.0° = 47.7°. Thus, for the block

[EF, = 0] 500(9.81) sin 31.0° — R, cos 47.7° = 0
Ry = 3750 N

For the wedge the angle between R, and the b-direction is 90° — (2¢; +
5°) = 51.6° and the angle between P and the b-direction is ¢ + 5° = 21.7°
Thus,

2F, = 0] 3750 cos 51.6° — P cos 21.7° = 0
P = 2500 N Ans.

Graphical solution. The accuracy of a graphical solution is well within the
uncertainty of the friction coefficients and provides a simple and direct result.
By laying off the vectors to a reasonable scale following the sequence described,
we obtain the magnitudes of P and the R’s easily by scaling them directly from
the diagrams.

W =50009.81) N

oy =tan' 0.30 a 7 \R-
= 16.70° A
ty=tan™! 0.60
=31,0°

W=4905N

Helpful Hints

(D Be certain to note that the reactions
are inclined from their normals in
the direction to oppose the motion.
Also, we note the equal and opposite
reactions R,

(@) It should be evident that we avoid si-
multaneous equations by eliminating
reference to Ry for the block and R,
for the wedge.
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Sample Problem 6/7

The single-threaded screw of the vise has a mean diameter of 1 in. and has
5 square threads per inch. The coefficient of static friction in the threads is 0.20.
A 60-1b pull applied normal to the handle at A produces a clamping force of 1000
b between the jaws of the vise. (@) Determine the frictional moment My, devel-
oped at B, due to the thrust of the screw against the body of the jaw. (b) Deter-
mine the force @ applied normal to the handle at A required to loosen the vise.

Solution. From the free-body diagram of the jaw we first obtain the tension T
in the screw.

[EM- = 0] 1000(16) — 10T = 0 T = 1600 lb

The helix angle « and the friction angle ¢ for the thread are given by
1 L

1/5
=— T — = i
@ tan o tan 27(0.5)

¢ =tan"! p = tan"!0.20 = 11.31°

= 3.64°

where the mean radius of the thread is r = 0.5 in.

(a) To tighten. The isolated screw is simulated by the free-body diagram shown
where all of the forces acting on the threads of the screw are represented by a
single force R inclined at the friction angle ¢ from the normal to the thread. The
moment applied about the screw axis is 60(8) = 480 lb-in. in the clockwise di-
rection as seen from the front of the vise. The frictional moment Mg due to the
friction forces acting on the collar at B is in the counterclockwise direction to
oppose the impending motion. From Eq. 6/3 with T' substituted for W the net
moment acting on the screw is

M = Trtan (a + ¢)
480 — Mp = 1600(0.5) tan (3.64° + 11.31°)
Mp = 266 lb-in. Ans.

(b) To loosen. The free-body diagram of the screw on the verge of being loos-
ened is shown with R acting at the friction angle from the normal in the direction
to counteract the impending motion. Also shown is the frictional moment Mz =
266 lb-in. acting in the clockwise direction to oppose the motion. The angle be-
tween R and the screw axis is now ¢ — «, and we use Eq. 6/3a with the net
moment equal to the applied moment M’ minus Mg. Thus

M = Trtan (¢ — o
M’ — 266 = 1600(0.5) tan (11.31° — 3.64°)
M' = 374 lb-in.

Thus, the force on the handle required to loosen the vise is

Q@ = M'/d = 374/8 = 4681b Ans.

1000 1b
/4
c
R T 60(8) =480 lb-in.

(a) To tighten

@t T

Mpg M

(b) To loosen

Helpful Hints

(1) Be careful to calculate the helix an-
gle correctly. Its tangent is the lead
L (advancement per revolution) di-
vided by the mean circumference 27r
and not by the diameter 2r.

(2) Note that R swings to the opposite
side of the normal as the impending
motion reverses direction.
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PROBLEMS

(Unless otherwise instructed, neglect the weights of the
wedges and screws in the problems which follow.)

Introductory Problems

6/47 If the coefficient of friction between the steel wedge
and the moist fibers of the newly cut stump is 0.20,
determine the maximum angle « which the wedge
may have and not pop out of the wood after being
driven by the sledge. Ans. @ = 29.6°

Problem 6/47

6/48 The 7° wedge is driven under the spring-loaded wheel
whose supporting strut C is fixed. Determine the
minimum coefficient of static friction w, for which
the wedge will remain in place. Neglect all friction
associated with the wheel.

Problem 6/48

6/49 The 40-mm-diameter screw has a double square

thread with a pitch of 12 mm and a lead of 24 mm.
The screw and its mating threads in the fixed block
are graphite-lubricated and have a friction coefficient
of 0.15. If a torque M = 60 N-m is applied to the
right-hand portion of the shaft, determine (a) the
force P required to advance the shaft to the right and
(b) the force P which would allow the shaft to move
to the left at a constant speed.

Ans. (@) P = 75.3 kN, (b)) P = 8.55 kN

Problem 6/49

6/50 The device shown is used for coarse adjustment of

the height of an experimental apparatus without a
change in its horizontal position. Because of the slip-
Joint at A, turning the screw does not rotate the cy-
lindrical leg above A. The mean diameter of the
thread is % in. and the coefficient of friction is 0.15.
For a conservative design which neglects friction at
the slipjoint, what should be the minimum number
N of threads per inch to ensure that the single-
threaded screw does not turn by itself under the
weight of the apparatus?

Problem 6/50
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6/51

6/52

The 10° doorstop is inserted with a rightward hori-
zontal force of 30 1b. If the coefficient of static friction
for all surfaces is p, = 0.20, determine the values
N;; and N of the normal forces on the upper and
lower faces of the doorstop. With the given informa-
tion, can you determine the force P required to ex-
tract the doorstop?

Ans. Ny = 53.51b, N, = 50.81b

Problem 6/51

The bar clamp is being used to clamp two boards to-
gether while the glue between them cures. What
torque M must be applied to the handle of the screw
in order to produce an 80-1b compression between the
boards? The %—in.-diameter single-thread screw has
12 square threads per inch, and the effective coeffi-
cient of friction is 0.2. Neglect any friction in the
pivot contact at C. What torque M’ is required to
loosen the clamp?

Problem 6/52

6/53 Determine the force P required to force the 10° wedge

under the 90-kg uniform crate which rests against
the small stop at A. The coefficient of friction for all

surfaces is 0.40. Ans. P = 449 N

Problem 6/53

Representative Problems

6/54 The coefficient of static friction p, between the 100-

Ib body and the 15° wedge is 0.20. Determine the
magnitude of the force P required to raise the 100-1b
body if (@) rollers of negligible friction are present
under the wedge, as illustrated, and (b) the rollers
are removed and the coefficient of static friction
e = 0.20 applies at this surface as well.

Problem 6/54

6/55 For both conditions (a) and (b) as stated in Prob.

6/54, determine the magnitude and direction of the
force P’ required to lower the 100-1b body.
Ans. (a) P’ = 6.451b, (b) P' = 13.55 1b
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6/56

6/57

6/58

The two 5° wedges shown are used to adjust the po-
sition of the column under a vertical load of 5 kN.
Determine the magnitude of the forces P required to
raise the column if the coefficient of friction for all
surfaces is 0.40.

Problem 6/56

If the loaded column of Prob. 6/56 is to be lowered,
calculate the horizontal forces P’ required to with-

draw the wedges. Ans. P' = 3.51 kN

The large turnbuckle supports a cable tension of
10,000 Ib. The li-in. screws have a mean diameter of
1.150 in. and have five square threads per inch. The
coefficient of friction for the greased threads does not
exceed 0.25. Determine the moment M applied to the
body of the turnbuckle (a) to tighten it and () to
loosen it. Both screws have single threads and are
prevented from turning.

Problem 6/58

6/59 Calculate the horizontal force P on the light 10°

wedge necessary to initiate movement of the 40-kg
cylinder. The coefficient of static friction for both
pairs of contacting surfaces is 0.25. Also determine
the friction force F at point B. (Caution: Check care-
fully your assumption of where slipping occurs.)
Ans. P = 986 N, Fy = 246 N

Problem 6/59

6/60 The threaded collar is used to connect two shafts,

both with right-hand threads on their ends. The
shafts are under a tension T = 8 kN. If the threads
have a mean diameter of 16 mm and a lead of 4 mm,
calculate the torque M required to turn the collar in
either direction with the shafts prevented from turn-
ing. The coefficient of friction is 0.24.

Problem 6/60
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6/61 The collar A has a force fit on shaft B and is to be

removed from the shaft by the wheel-puller mecha-
nism shown. The screw has a single square thread
with a mean diameter of 20 mm and a lead L of 6
mm. If a torque of 24 N -m is required to turn wheel
C to slip the collar off the shaft, determine the av-
erage pressure p (compressive stress) between the
collar and the shaft. The coefficient of friction for the
screw at E is 0.25, and that for the shaft and collar
is 0.30. Friction at the ball end D of the shaft is

negligible. Ans. p = 2400 kPa

Problem 6/61

6/62 The two 4° wedges are used to position the vertical

column under a load L. What is the least value of the
coefficient of friction p, for the bottom pair of sur-
faces for which the column may be raised by applying
a single horizontal force P to the upper wedge?

Problem 6/62

6/63 The vertical position of the 100-kg block is adjusted

by the screw-activated wedge. Calculate the moment
M which must be applied to the handle of the screw
to raise the block. The single-threaded screw has
square threads with a mean diameter of 30 mm and
advances 10 mm for each complete turn. The coeffi-
cient of friction for the screw threads is 0.25, and the
coefficient of friction for all mating surfaces of the
block and wedge is 0.40. Neglect friction at the ball

joint A. Ans. M = 730 N-m

Problem 6/63

6/64 The bench hold-down clamp is being used to clamp

two boards together while they are being glued. What
torque M must be applied to the screw in order to
produce a 200-b compression between the boards?
The %—in,~diameter single-thread screw has 12 square
threads per inch, and the coefficient of friction in the
threads may be taken to be 0.20. Neglect any fric-
tion in the small ball contact at A and assume that
the contact force at A is directed along the axis of the
screw. What torque M’ is required to loosen the
clamp?

- —
l =W @
WizZzZ——->__|

Problem 6/64
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> 6/65 Replace the square thread of the screw jack in Fig.

6/6 by a V-thread as indicated in the figure accom-
panying this problem and determine the moment M
on the screw required to raise the load W. The force
R acting on a representative small section of the
thread is shown with its relevant projections. The
vector R, is the projection of R in the plane of the
figure containing the axis of the screw. The analysis
is begun with an axial force and a moment summa-
tion and includes substitutions for the angles y and
B in terms of #, &, and the friction angle ¢ = tan ! .
The helix angle of the single thread is exaggerated
for clarity.

2 (43

(@)
tana + o [1 + tanzicos

Ans. M = Wr

i}
15= ;.Ltana\/l + tan2§c052cr

Problem 6/65

| »>6/66 A scissors-type jack with a single square thread

which engages the threaded collar G and turns in a
ball thrust bearing at D is being designed. The thread
is to have a mean diameter of 10 mm and a lead (ad-
vancement per revolution) of 3 mm. With a coeffi-
cient of friction of 0.20 for the greased threads, (a)
caleulate the torque M on the screw required to raise
a load of 1000 kg from the position shown and (b)
calculate the torque M required to lower the load
from the same position. Assume that platform AB
and line DG will remain horizontal under load. Ne-
glect friction in the bearing at D.

Ans. ()M = 35.7N-m, (b) M = 1215 N-m

(ﬁ:m:ISOmm,mzﬁ:SOmrﬂ

Problem 6/66
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6/6 JOURNAL BEARINGS

A journal bearing is one which gives lateral support to a shaft in
contrast to axial or thrust support. For dry bearings and for many par-
tially lubricated bearings we may apply the principles of dry friction.
These principles provide a satisfactory approximation for design
purposes.

A dry or partially lubricated journal bearing with contact or near
contact between the shaft and the bearing is shown in Fig. 6/8, where
the clearance between the shaft and bearing is greatly exaggerated to
clarify the action. As the shaft begins to turn in the direction shown, it
will roll up the inner surface of the bearing until it slips. Here it will
remain in a more or less fixed position during rotation. The torque M
required to maintain rotation and the radial load L on the shaft will

Figure 6/8

cause a reaction R at the contact point A. For vertical equilibrium R
must equal L but will not be collinear with it. Thus, R will be tangent
to a small circle of radius r called the friction circle. The angle between
R and its normal component N is the friction angle ¢. Equating the sum
of the moments about A to zero gives

M = Lr; = Lrsin ¢ (6/4)

For a small coefficient of friction, the angle ¢ is small, and the sine
and tangent may be interchanged with only small error. Since u = tan ¢,
a good approximation to the torque is

M = uLr (6/4a)
This relation gives the amount of torque or moment which must be

applied to the shaft to overcome friction for a dry or partially lubricated
journal bearing.
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6/7 THRUST BEARINGS; Disk FRrRICTION

Friction between circular surfaces under distributed normal pres-
sure occurs in pivot bearings, clutch plates, and disk brakes. To examine
these applications, we consider the two flat circular disks shown in Fig.
6/9. Their shafts are mounted in bearings (not shown) so that they can
be brought into contact under the axial force P. The maximum torque
which this clutch can transmit is equal to the torque M required to slip
one disk against the other. If p is the normal pressure at any location
between the plates, the frictional force acting on an elemental area is
up dA, where p is the friction coefficient and dA is the area r dr d@ of
the element. The moment of this elemental friction force ahout the shaft
axis is upr dA, and the total moment becomes

M = fpprdA

where we evaluate the integral over the area of the disk. To carry out
this integration, we must know the variation of x and p with r.

In the following examples we will assume that u is constant. Fur-
thermore, if the surfaces are new, flat, and well supported, it is reason-
able to assume that the pressure p is uniform over the entire surface so
that 7R%p = P. Substituting the constant value of p in the expression
for M gives

}LP 2 R
M= fo fo r®dr df = 3uPR (6/5)
(

We may interpret this result as equivalent to the moment due to a fric-
tion force pP acting at a distance 2R from the shaft center.

If the friction disks are rings, as in the collar bearing shown in Fig.
6/10, the limits of integration are the inside and outside radii R; and
R, respectively, and the frictional torque becomes

R3_R_3

= B
M = EMPR——Q g2
(e} 1

(6/5a)

After the initial wearing-in period is over, the surfaces retain their
new relative shape and further wear is therefore constant over the sur-
face. This wear depends on both the circumferential distance traveled

Figure 6/9
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Figure 6/10

and the pressure p. Since the distance traveled is proportional to r, the
expression rp = K may be written, where K is a constant. The value of
K is determined from the equilibrium condition for the axial forces,
which gives

277 R
P=J’pdA=Kf Jdrd9=2wKR
o “o
With pr = K = P/(2wR), we may write the expression for M as

N . ,ﬁf"f ;
M—f,uprdA—2WR0 Drdrdt)

which becomes

M = iuPR (6/6)

The frictional moment for worn-in plates is, therefore, only (%) / (%), or
3 as much as for new surfaces. If the friction disks are rings of inside
radius R; and outside radius R,, substitution of these limits gives for
the frictional torque for worn-in surfaces

M = IuP(R, + R)) (6/6a)

You should be prepared to deal with other disk-friction problems
where the pressure p is some other function of r.
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Sample Problem 6/8

The bell crank fits over a 100-mm-diameter shaft which is fixed and cannot
rotate. The horizontal force T' is applied to maintain equilibrium of the erank
under the action of the vertical force P = 100 N. Determine the maximum and
minimum values which 7' may have without causing the crank to rotate in either
direction. The coefficient of static friction 1 between the shaft and the bearing
surface of the crank is 0.20.

Solution. Impending rotation occurs when the reaction R of the fixed shaft on

the bell crank makes an angle ¢ = tan ' u with the normal to the bearing

surface and is, therefore, tangent to the friction circle. Also, equilibrium requires

that the three forces acting on the crank be concurrent at point C. These facts

are shown in the free-body diagrams for the two cases of impending motion.
The following calculations are needed:

Friction angle ¢ = tan ' = tan! 0.20 = 11.31°
Radius of friction circle ry = rsin ¢ = 50 sin 11.31° = 9.81 mm
1 120

Angle # = tan ﬁ = 33.7

Angle B = sin1 (_;% PR A L eI P

J(120)% + (180)2

(a) Impending counterclockwise motion. The equilibrium triangle of forces
is drawn and gives

T, = Pcot (8 — B) = 100 cot (33.7° — 2.60°)
T, = Thax = 1656.8 N Ans.

(b) Impending clockwise motion. The equilibrium triangle of forces for this
case gives

Ty = Pcot (8 + B) = 100 cot (33.7° + 2.60°)
Ty = Toyn = 1362 N Ans.

(6) Clockwise motion impends
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PROBLEMS 6/69 AtorqueM of 1510 N - m must be applied to the 50-mm-
diameter shaft of the hoisting drum to raise the
Introductory Problems 500-kg load at constant speed. The drum and shaft
together have a mass of 100 kg. Calculate the coeffi-

6/67 Circular disk A is placed on top of disk B and is sub- cient of friction p for the bearing.
jected to a compressive force of 80 Ib. The diameters Ans. = 0.271

of A and B are 9 in. and 12 in., respectively, and the
pressure under each disk is constant over its surface.
If the coefficient of friction between A and B is 0.40,
determine the couple M which will cause A to slip on
B. Also, what is the minimum coefficient of friction
i between B and the supporting surface C which will
prevent B from rotating? b M = 080 Tk

i = 0.300

80 Ib

Problem 6/69

‘ 6/70 Determine the tension T in the cable to raise the
\ 800-kg load if the coefficient of friction for the 30-mm
bearing is 0.25. Also find the tension T}, in the sta-
tionary section of the cable. The mass of the cable
and pulley is small and may be neglected.

Problem 6/67

6/68 The two flywheels are mounted on a common shaft
which is supported by a journal bearing between
them. Each flywheel has a mass of 40 kg, and the
diameter of the shaft is 40 mm. If a 3-N - m couple M
on the shaft is required to maintain rotation of the
flywheels and shaft at a constant low speed, compute
(a) the coefficient of friction in the bearing and (b)
the radius r; of the friction circle.

‘ Problem 6/70

6/71 Calculate the tension 7 required to lower the 800-kg
‘ load described in Prob. 6/70. Also find T\,
Ans. T = 3830 N, T, = 4020 N

Problem 6/68 |
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6/72 The 20-kg steel ring A with inside and outside radii

of 50 mm and 60 mm, respectively, rests on a fixed
horizontal shaft of 40-mm radius. If a downward
force P = 150 N applied to the periphery of the ring
is just sufficient to cause the ring to slip, calculate
the coefficient of friction . and the angle 6.

6/75 The axial section of the two mating circular disks is

shown. Derive the expression for the torque M re-
quired to turn the upper disk on the fixed lower one
if the pressure p between the disks follows the rela-
tion p = k/r’, where k is a constant to be deter-
mined. The coefficient of friction u is constant over

the entire surface.
| Ans. M = plL

o — T

In(r,/r;)

~

Problem 6/72

Representative Problems

6/73 The weight of the drum D and its cable is 100 Ib, and
the coefficient of friction p for the bearing is 0.20.
Determine the force P required to raise the 80-1b cyl-
inder if the bearing friction is (@) neglected and (b)
included in the analysis. The weight of the shaft is

negligible. Ans. (@) P = 50 1b, (h) P = 52.9 b

Problem 6/75

6/76 The front wheels of an experimental rear-drive ve-
hicle have a radius of 300 mm and are designed with
disk-type brakes consisting of a ring A with outside
and inside radii of 150 mm and 75 mm, respectively.
The ring, which does not turn with the wheel, is
forced against the wheel disk with a force P. If the

| pressure between the ring and the wheel disk is uni-
form over the mating surfaces, compute the friction
force F' between each front tire and the horizontal
road for an axial force P = 1 kN when the vehicle is
powered at constant speed with the wheels turning.
The coefficient of friction between the disk and ring
is 0.35.

Problem 6/73

6/74 Determine the force P required to lower the 80-lb
cylinder of Prob. 6/73. Compare your answer with
the stated results of that problem. Is the no-friction
value of P equal to the average of the forces required
to raise and lower the cylinder?

Problem 6/76
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6/77 The telephone-cable reel has a mass of 250 kg and is
mounted on an 80-mm-diameter shaft. If the coeffi-
cient of friction between the shaft and its bearing is
0.30, calculate the horizontal tension T' required to

turn the reel. Ans. T = 564 N

Problem 6/77

6/78 The pulley system shown is used to hoist the 200-kg
block. The diameter of the bearing for the upper pul-
ley is 20 mm, and that for the lower pulley is 12 mm.
For a coefficient of friction u = 0.25 for both bear-
ings, calculate the tensions T, T, and Ty in the three
cables if the block is being raised slowly.

Problem 6/78

6/79 Calculate the tensions T, T4, and T, for Prob. 6/78
if the block is being lowered slowly.
Ans. T = 899N, T, = 949N, Ty, = 1013 N

6/80 An automobile disk brake consists of a flat-faced ro-
tor and caliper which contains a disk pad on each side
of the rotor. For equal forces P behind the two pads
with the pressure p uniform over the pad, show that
the moment applied to the hub is independent of the
angular span j of the pads. Would pressure variation
with 6 change the moment?

Problem 6/80

6/81 In a design test on friction, shaft A is fitted loosely
in the wrist-pin bearing of the connecting rod with
center of gravity at G as shown. With the rod initially
in the vertical position, the shaft is rotated slowly
until the rod slips at the angle «. Write an exact ex-
pression for the coefficient of friction .

1

2
(_di) -1
I sin «

Ans. p =

Vertical

Problem 6/81
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6/82 For the flat sanding disk of radius a, the pressure p

developed between the disk and the sanded surface
decreases linearly with r from a value p at the center
to po/2 at r = a. If the coefficient of friction is p,
derive the expression for the torque M required to
turn the shaft under an axial force L.

o]
™
P 1
P
,,

Problem 6/82

I

6/83 Each of the four wheels of the vehicle weighs 40 1b

and is mounted on a 4-in.-diameter journal (shaft).
The total weight of the vehicle is 960 lb, including
wheels, and is distributed equally on all four wheels.
If a force P = 16 lb is required to keep the vehicle
rolling at a constant low speed on a horizontal sur-
face, calculate the coefficient of friction which exists
in the wheel bearings. (Hint: Draw a complete free-
body diagram of one wheel.) A = 0.204

40"

Problem 6/83

6/84 The 10-Mg crate is lowered into an underground

storage facility on a two-screw elevator designed as
shown. Each screw has a mass of 0.9 Mg, is 120 mm
in mean diameter, and has a single square thread
with a lead of 11 mm. The screws are turned in syn-
chronism by a motor unit in the base of the facility.
The entire mass of the crate, screws, and 3-Mg ele-
vator platform is supported equally by flat collar
bearings at A, each of which has an outside diameter
of 250 mm and an inside diameter of 125 mm. The
pressure on the bearings is assumed to be uniform
over the bearing surface. If the coefficient of friction
for the collar bearing and the screws at B is 0.15,
calculate the torque M which must be applied to each
screw (a) to raise the elevator and (b) to lower the
elevator.

Detail of collar
bearing at A

Problem 6/84
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6/85 The hemispherical thrust bearing on the end of the
shaft supports an axial force P. Derive the expression
for the moment M required to rotate the shaft at con-
stant speed if the pressure p is proportional to sin a
and the coefficient of friction is . Ans. M = uPr

o

Problem 6/85

6/86 Determine the expression for the torque M required
to turn the shaft whose thrust L is supported by a
conical pivot bearing. The coefficient of friction is u,
and the bearing pressure is constant.

Problem 6/86
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Figure 6/11

6/8 FLEXIBLE BELTS

The impending slippage of flexible cables, belts, and ropes over
sheaves and drums is important in the design of belt drives of all types,
band brakes, and hoisting rigs.

Figure 6/11a shows a drum subjected to the two belt tensions T,
and T, the torque M necessary to prevent rotation, and a bearing re-
action R. With M in the direction shown, T, is greater than T,. The
free-body diagram of an element of the belt of length » d# is shown in
part b of the figure. We analyze the forces acting on this differential
element by establishing the equilibrium of the element, in a manner
similar to that used for other variable-force problems. The tension in-
creases from T at the angle 6 to T + dT at the angle # + d¢. The
normal force is a differential dN, since it acts on a differential element
of area. Likewise the friction force, which must act on the belt in a
direction to oppose slipping, is a differential and is u dN for impending
motion.

Equilibrium in the ¢-direction gives

Tcosd?g+ pdN = (T + dT)cos%)

or wdN = dT

since the cosine of a differential quantity is unity in the limit. Equilib-
rium in the n-direction requires that

dN = (T + dT)sin%ﬂ + Tsin%

or dN = T do

where we have used the facts that the sine of a differential angle in the
limit equals the angle and that the product of two differentials must be
neglected in the limit compared with the first-order differentials
remaining.

Combining the two equilibrium relations gives

dT
? - }Ldﬂ

Integrating between corresponding limits yields

il j‘*
J"rl T o X

or T,

where the In (T,/T) is a natural logarithm (base e). Solving for T, gives

Ty = Tyer# (6/7)
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Note that B is the total angle of belt contact and must be expressed in
radians. If a rope were wrapped around a drum n times, the angle j
would be 27n radians. Equation 6/7 holds equally well for a noncircular
section where the total angle of contact is 8. This conclusion is evident
from the fact that the radius r of the circular drum in Fig. 6/11 does
not enter into the equations for the equilibrium of the differential ele-
ment of the belt.

The relation expressed by Eq. 6/7 also applies to belt drives where
both the belt and the pulley are rotating at constant speed. In this case
the equation describes the ratio of belt tensions for slippage or impend-
ing slippage. When the speed of rotation becomes large, the belt tends
to leave the rim, so Eq. 6/7 involves some error in this case.

6/9 ROLLING RESISTANCE

Deformation at the point of contact between a rolling wheel and its
supporting surface introduces a resistance to rolling, which we mention
only briefly. This resistance is not due to tangential friction forces and
therefore is an entirely different phenomenon from that of dry friction.

To describe rolling resistance, we consider the wheel shown in Fig.
6/12 under the action of a load L on the axle and a force P applied at
its center to produce rolling. The deformation of the wheel and sup-
porting surfaces as shown is greatly exaggerated. The distribution of
pressure p over the area of contact is similar to the distribution shown.
The resultant R of this distribution acts at some point A and must pass
through the wheel center for the wheel to be in equilibrium. We find the
force P necessary to maintain rolling at constant speed by equating the
moments of all forces about A to zero. This gives us

P=2L=4

r

L

.

where the moment arm of P is taken to be r. The ratio p, = a/r is called
the coefficient of rolling resistance. This coefficient is the ratio of resist-
ing force to normal force and thus is analogous to the coefficient of static
or kinetic friction. On the other hand, there is no slippage or impending
slippage in the interpretation of p,.

Because the dimension a depends on many factors which are diffi-
cult to quantify, a comprehensive theory of rolling resistance is not avail-
able. The distance a is a function of the elastic and plastic properties of
the mating materials, the radius of the wheel, the speed of travel, and
the roughness of the surfaces. Some tests indicate that a varies only
slightly with wheel radius, and thus «a is often taken to be independent
of the rolling radius. Unfortunately, the quantity a has also been called
the coefficient of rolling friction in some references. However, a has the
dimension of length and therefore is not a dimensionless coefficient in
the usual sense.

i)

Figure 6/12
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Sample Problem 6/9

A flexible cable which supports the 100-kg load is passed over a fixed circular
drum and subjected to a force P to maintain equilibrium. The coefficient of static
friction u between the cable and the fixed drum is 0.30. (@) For @ = 0, determine
the maximum and minimum values which P may have in order not to raise or
lower the load. (b) For P = 500 N, determine the minimum value which the
angle @ may have before the load begins to slip.

Solution. Impending slipping of the cable over the fixed drum is given by Eq.
6/7, which is T,/T; = e*?,

(1) (@) With @ = 0 the angle of contact is § = #/2 rad. For impending upward

motion of the load, Ty = P .., T; = 981 N, and we have
Piax/981 = 030072 p = — 981(1.602) = 1572 N Ans.

For impending downward motion of the load, 75 = 981 N and T; = P,
Thus,

981/Pin = %302 p . = 981/1.602 = 612 N Ans.

(b) With T, = 981 N and T; = P = 500 N, Eq. 6/7 gives us
981/500 = ¢"3% 0,308 = In(981/500) = 0.674

B=225rad or B =225 (%) = 128.7°
a = 128.7° — 90° = 38.7° Ans.

981 N

(b)P=500N

Helpful Hints

(1) We are careful to note that B must
be expressed in radians.

@ In our derivation of Eq. 6/7 be cer-
tain to note that Ty, > T,.

(3) As was noted in the derivation of Eq.
6/17, the radius of the drum does not
enter into the calculations. It is only
the angle of contact and the coeffi-
cient of friction which determine the
limiting conditions for impending
motion of the flexible cable over the
curved surface.
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PROBLEMS

Introductory Problems

6/87 What is the minimum coefficient of friction u be-
tween the rope and the fixed shaft which will prevent
the unbalanced cylinders from moving?

Ans. p = 0.221

Problem 6/87

6/88 Determine the force P required to (a) raise and (b)
lower the 40-kg cylinder at a slow steady speed. The
coefficient of friction between the cord and its sup-
porting surface is 0.30.

Problem 6/88

6/89 It is observed that the two cylinders will remain in
slow steady motion as indicated in the drawing. De-
termine the coefficient of friction p between the cord
and the fixed shaft. )

Problem 6/89

6/90 A force P = mg/6 is required to lower the cylinder
at a constant slow speed with the cord making 1}
turns around the fixed shaft. Calculate the coefficient
of friction p between the cord and the shatft.

Problem 6/90
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6/91 The 180-lb rock climber is lowered over the edge of 6/93 For a certain coefficient of friction u and a certain

the cliff by his two companions, who together exert
a horizontal pull T' of 75 1b on the rope. Compute the
coefficient of friction p between the rope and the
rock.

Ans. 1 = 0.699

angle a, the force P required to raise m is 4 kN and
that required to lower m at a constant slow speed is
1.6 kN. Calculate the mass m. Ans.m = 258 kg

Problem 6/91

Problem 6/93

6/92 In western movies, cowboys are frequently observed
hitching their horses by casually winding a few turns
of the reins around a horizontal pole and letting the
end hang free as shown—no knots! If the freely hang-

Representative Problems

6/94 A 50-kg package is attached to a rope which passes

ing length of rein weighs 2 oz and the number of
turns is as shown, what tension 7' does the horse
have to produce in the direction shown in order to
gain freedom? The coefficient of friction between the
reins and wooden pole is 0.70.

Problem 6,/92

over an irregularly shaped boulder with uniform sur-
face texture. If a downward force P = 70 N is re-
quired to lower the package at a constant rate, (a)
determine the coefficient of friction 1 between the
rope and the boulder. (b) What force P" would be re-
quired to raise the package at a constant rate?

Problem 6/94
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6/95 The 180-1b tree surgeon lowers himself with therope | 6/97 A garden hose with a mass of 1.2 kg/m is in full con-

over a horizontal limb of the tree. If the coefficient
of friction between the rope and the limb is 0.60,
compute the force which the man must exert on the
rope to let himself down slowly. Ans. P = 23.71b

Problem 6/95

6/96 Magnetic tape passes around the light idler pulleys

B and over the fixed circular recording head A with
a constant speed. The tape tension is unchanged as
it passes around the idler pulleys. Calculate the min-
imum spacing a in the design of this unit for which
the ratio of the tensions T'; and Ty will not exceed
1.15. The coefficient of friction between the tape and
the head is 0.10.

Problem 6/96

tact with the ground from B to C. What is the hori-
zontal component P, of the force which the gardener
must exert in order to pull the hose around the small
cylindrical guard at B? The coefficient of friction be-
tween the hose and the ground is 0.50, and that
between the hose and the cylinder is 0.40. Assume
that the hose does not touch the ground between A

sad B, Ans. P, = 552 N

Problem 6/97

6/98 Calculate the horizontal force P required to raise the

100-kg load. The coefficient of friction between the
rope and the fixed bars is 0.40.

100 kg

Problem 6/98
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6/99

=020

Determine the range of cylinder weights W for which
the system is in equilibrium. The coefficient of fric-
tion between the 100-1b block and the incline is 0.20
and that between the cord and cylindrical support
surface is 0.30.

Ans. 866 = W =9431b

=030

Problem 6/99

6/100 The uniform 3-m beam is suspended by the cable

6/101

which passes over the large pulley. A locking pin at
A prevents rotation of the pulley. If the coefficient
of friction between the cable and the pulley is 0.25,
determine the minimum value of x for which the
cable will not slip on the pulley.

Problem 6/100

A device designed for lowering a person in a sling
down a rope at a constant controlled rate is shown
in the figure. The rope passes around a central shaft
fixed to the frame and leads freely out of the lower
collar. The number of turns is adjusted by turning
the lower collar, which winds or unwinds the rope
around the shaft. Entrance of the rope into the up-
per collar at A is equivalent to % of a turn, and pas-
sage around the corner at B is also equivalent to ﬁ
of a turn. Friction of the rope through the straight
portions of the collars averages 10 N for each collar.
If three complete turns around the shaft, in addi-

tion to the corner turns, are required for a 75-kg
man to lower himself at a constant rate without ex-
erting a pull on the free end of the rope, calculate
the coefficient of friction p between the rope and
the contact surfaces of the device. Neglect the small
helix angle of the rope around the shaft.

Ans. p = 0.195

i

L

Problem 6/101

6/102 The cylinder of mass m is attached to the ring A,

which is suspended by the cable that passes over the
pulley, as shown in part a of the figure, A couple M
applied to the pulley turns it until slipping of the
cable on the pulley occurs at the position § = 20°,
shown in part b of the figure. Calculate the coeffi-
cient of friction u between the cable and the pulley.

(a) (b)

Problem 6/102
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6/103

6/104

For the design of the band brake shown, find the
couple M required to turn the pipe in the V-block
against the action of the flexible band. A force P =
25 b is applied to the lever, which is pivoted about
0. The coefficient of friction between the band and
the pipe is 0.30, and that between the pipe and the
block is 0.40. The weights of the parts are negligible.

Ans. M = 1834 lb-in.

Problem 6/103

Replace the flat belt and pulley of Fig. 6/11 by a V-
belt and matching grooved pulley as indicated by
the cross-sectional view accompanying this problem.
Derive the relation among the belt tensions, the an-
gle of contact, and the coefficient of friction for the
V-belt when slipping impends. A V-belt design with
a = 35° would be equivalent to increasing the co-
efficient of friction for a flat belt of the same ma-
terial by what factor n?

V-belt —
cross section

Problem 6/104

6/105 Shown in the figure is the design of a band-type oil-
filter wrench. If the coefficient of friction between
the band and the fixed filter is 0.25, determine the
minimum value of A which ensures that the wrench
will not slip on the filter, regardless of the magni-
tude of the force P. Neglect the mass of the wrench
and assume that the effect of the small part at A is
equivalent to that of a band wrap which begins at
the three-o’clock position and runs clockwise.

Ans. h = 27.8 mm

Problem 6,/105

» 6/106 The chain has a mass p per unit length. Determine
the overhang & below the fixed cylindrical guide for
which the chain will be on the verge of slipping. The
coefficient of friction is p. (Hint: The resulting dif-
ferential equation involving the variable chain ten-
sion T at the corresponding angle 6 is of the form
dT/de + KT = f(8), a first-order, linear, nonhom-
ogeneous equation with constant coefficient. The so-
lution is

T'= G4 e’K”je’KHf(H) do

where C and K are constants.)
2ur
1+ u?

Ans. h = (1 + e*7)

Problem 6/106
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CHAPTER REVIEW

In our study of friction we have concentrated on dry or Coulomb

friction where a simple mechanical model of surface irregularities be-
tween the contacting bodies, Fig. 6/1, explains the phenomenon ade-
quately for most engineering purposes. This model helps to visualize the
three types of dry-friction problems which are encountered in practice.
These problem types are:

1.

Static friction of less than the maximum possible value and deter-
mined by the equations of equilibrium. (This usually requires a
check to see that ' < u,N.)

. Limiting static friction with impending motion (F = <IN).

. Kinetic friction where sliding motion occurs hetween contacting sur-

.

faces (F = . N).
Keep in mind the following when solving dry-friction problems:

A coefficient of friction applies to a given pair of mating surfaces. It
is meaningless to speak of a coefficient of friction for a single surface.

- The coefficient of static friction u, for a given pair of surfaces is

usually slightly greater than the kinetic coefficient -

. The friction force which acts on a body is always in the direction to

oppose the slipping of the body which takes place or the slipping
which would take place in the absence of friction.

. When friction forces are distributed over a surface or along a line,

we select a representative element of the surface or line and evaluate
the force and moment effects of the elemental friction force acting
on the element. We then integrate these effects over the entire sur-
face or line.

- Friction coefficients vary considerably, depending on the exact con-

dition of the mating surfaces. Computing coefficients of friction to
three significant figures represents an accuracy which cannot easily
be duplicated by experiment. When cited, such values are included
for purposes of computational check only. For design computations
in engineering practice, any handbook value for a coefficient of static
or kinetic friction must be viewed as an approximation.

Other forms of friction mentioned in the introductory article of the

chapter are important in engineering. Problems which involve fluid fric-
tion, for example, are among the most important of the friction problems
encountered in engineering, and are studied in the subject of fluid
mechanics.
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REVIEW PROBLEMS

6/107 A 100-1b block is placed on a 30° incline and released
from rest. The coefficient of static friction between
the block and the incline is 0.30. (a) Determine the
maximum and minimum values of the initial ten-
sion T in the spring for which the block will not slip
when released. (b) Calculate the friction force F on
the block of T = 40 1b.

Ans. (@) Ty = 76.01b, Ty, = 24.01b

(b) F = 101b

Problem 6/107

6/108 Three boxes are placed on the incline in contact
with each other and released from rest. The coeffi-
cients of static friction under boxes A, B, and C are
0.30, 0.20, and 0.35, respectively. Describe what
happens.

2 1= 0.30

Problem 6/108

6/109 The homogeneous disk of mass m is resting on the
right-angled supporting surfaces shown. The ten-
sion P in the cord is very gradually increased from
zero. If the friction at both A and B is characterized
by w, = 0.25, what happens first—does the homo-
geneous disk slip in place or does it begin to roll up
the incline? Determine the value of P at which this
first movement occurs. dns; P = 6958mg

He = 0.25

Problem 6/109

6/110 The figure shows a jam cleat designed for a sailboat
where the large friction forces developed by the
cams prevent the rope from slipping. Determine the
force R supported by each cam bearing for the 900-
N rope tension. The coefficient of static friction be-
tween the rope and the cams is 0.80.

= = 20 mm
Problem 6/110

6/111 A frictional locking device allows bar A to move to
the left but prevents movement to the right. If the
coefficient of friction between the shoe B and the
bar A is 0.40, specify the maximum length b of the
link which will permit the device to work as

described. Ans. b = 96.9 mm

Allowable v
motion =
~— i

Problem 6/111
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6/112

6/113

The circular cylinder weighs 50 1b and is held by a
cord fixed to its periphery at B and to the ground
at A, If the coefficient of static friction is 0.60, cal-
culate the force P required to cause the cylinder to
slip.

B

607\ A

u, = 0.60
Problem 6/112

Calculate the torque M which the engine of the
pickup truck must supply to the rear axle to roll the
front wheels over the curbing from a rest position
if the rear wheels do not slip. Determine the mini-
mum effective coefficient of friction at the rear
wheels to prevent slipping. The mass of the loaded
truck with mass center at G is 1900 kg.

Ans. M = 3.00 kN m, p,,;, = 0.787

130 mm 1600 mm 1200 mm
Problem 6/113

6/114 The detent mechanism consists of the spring-loaded

plunger with a spherical end, which is designed to
position the horizontal bar by engaging the spaced
notches. If the spring exerts a force of 40 N on the
plunger in the position shown and a force P = 60 N
is required to move the detent bar against the
plunger, calculate the coefficient of friction between
the plunger and the detent. It is known from earlier
tests that the coefficient of friction between the
light bar and the horizontal surface is 0.30. Assume
that the plunger is well lubricated and accurately
fitted so that the friction between it and its guide is
negligible.

Problem 6/114

6/115 A compressive force of 600 N is to be applied to the

two boards in the grip of the C-clamp. The threaded
screw has a mean diameter of 10 mm and advances
2.5 mm per turn. The coefficient of static friction is
0.20. Determine the force F which must be applied
normal to the handle at C in order to (a) tighten
and (b) loosen the clamp. Neglect friction at point A.

Ans. (@) F = 852N, (b) F = 356 N

Problem 6/115

6/116 A 500-kg log is being steadily pulled up the incline

by means of the cable attached to the winch on the
truck. If the coefficient of kinetic friction is 0.80 be-
tween the log and the incline and 0.50 between the
cable and rock, determine the tension 7' which must
be developed by the winch.

Problem 6/116
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6/117

The 4600-1b lathe with mass center at G is posi-
tioned with the aid of the 5° steel wedge. Determine
the horizontal force P required to remove the wedge
if the coefficient of friction for all contacting sur-
faces is 0.30. Also show that no horizontal move-
ment of the lathe takes place. Ans. P = 913 Ib

36"

6/118

92“ 3 k

Problem 6/117

The movable head of a universal testing machine
has a mass of 2.2 Mg and is elevated into testing
position by two 78-mm-diameter lead screws, each
with a single thread and a lead of 13 mm. If the
coefficient of friction in the threads is 0.25, how
much torque M must be supplied to each screw
(a) to raise the head and (b) to lower the head? The
inner loading columns are not attached to the head
during positioning.

Problem 6/118

6/119 The small roller of the uniform slender rod rests

against the vertical surface at A while the rounded
end at B rests on the platform which is slowly piv-
oted downward beginning from the horizontal po-
sition shown. If the bar begins to slip when ¢ = 257,
determine the coefficient of static friction u, be-
tween the bar and the platform. Neglect friction in
the roller and the small thickness of the platform.
Ans. p, = 0.767

0 B

= A
f—i1— |

Problem 6/119

6,/120 Determine the range of cylinder mass m for which
the system is in equilibrium. The coefficient of fric-
tion between the 50-kg block and the incline is 0.15
and that between the cord and cylindrical support
is 0.25.

=025

Problem 6/120
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6/121

6/122

6/123

Under the action of the applied couple M the 25-kg
cylinder bears against the roller A, which is free to
turn. If the coefficients of static and kinetic friction
between the cylinder and the horizontal surface are
0.50 and 0.40, respectively, determine the friction
force F acting on the cylinder if (@) M = 20 N-m
and (b) M = 40 N-m.

Ans. (@) F = 1333 N, (h) F = 1276 N

Problem 6/121

The cylinder weighs 80 1b and the attached uniform
slender bar has an unknown weight W. The unit
remains in static equilibrium for values of the angle
# ranging up to 45° but slips if 6 exceeds 45°. If the
coefficient of static friction is known to be 0.30, de-
termine W.

Problem 6/122

The jack shown is designed to lift small unit-body
cars. The screw is threaded into the collar pivoted
at B, and the shaft turns in a ball thrust bearing at
A. The thread has a mean diameter of 10 mm and
a lead (advancement per revolution) of 2 mm. The
coefficient of friction for the threads is 0.20. Deter-
mine the force P normal to the handle at D required
(@) to raise a mass of 500 kg from the position
shown and (b) to lower the load from the same po-
sition. Neglect friction in the pivot and bearing at A.

Ans. (@) P = 786N, (b)) P = 396 N

Problem 6/123

6/124 The elements of a rolling mill are shown here. In

the design of the roller spacing, determine the max-
imum slab thickness b so that the slab will enter
the rollers by means of friction alone if the coeffi-
cient of kinetic friction is ;. Assume that (b — a)
is small compared with d.

Problem 6/124

6/125 The 8-kg block is resting on the 20° inclined plane

with a coefficient of static friction u, = 0.50. De-
termine the minimum horizontal force P which will
cause the block to slip. Ans. P — 953 N

Problem 6/125
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»6/126 The device shown is designed to prevent clockwise

rotation in the horizontal plane of the central wheel
by means of frictional locking of the two small roll-
ers. For given values of R and r and for a common
coefficient of friction p at all contact surfaces, de-
termine the range of values of d for which the device
will operate as described.
2r + (1 — u?R
Ans, ——5——

Tz <d<®+2

Problem 6/126

@ *Computer-Oriented Problems

*6/127 Plot the force P required to move the 100-kg crate

up the 10° incline starting from rest at various val-
ues of x from zero to 10 m. Determine the least
possible value of P and the corresponding value

oL Ans. P, = 517Natx = 7.5m

Problem 6/127

*6/128 The 100-kg load is elevated by the cable which
slides over the fixed drum with a coefficient of fric-
tion of 0.50. The cable is secured to the slider A
which is pulled slowly along its smooth horizontal
guide bar by the force P. Plot P as a function of #
from 6 = 90° to # = 10° and determine its maxi-
mum value along with the corresponding angle 0.
Check your plotted value of P,,, analytically.

: P =‘

e =

A |
Problem 6/128

*6/129 The small roller on the upper end of the uniform
rod rests against the vertical surface at A while the
rounded end B rests on the platform which is
slowly pivoted downward beginning at the horizon-
tal position shown. For a coefficient of static fric-
tion p, = 0.40 at B, determine the angle 6 of the
platform at which slipping will occur. Neglect the
size and friction of the roller and the small thick-
ness of the platform. Ans. 6 = 5.80°

A

Problem 6/129
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*6/130 The uniform slender pole rest against a small roller

at B. End A will not slip on the horizontal surface
if the coefficient of static friction p, is sufficiently
large. (a) Determine the required minimum value
of u, to prevent slipping for any value of 6 from
# = 0to 8 = 60° and plot 1, versus 6. From these
results find the range of # for which the pole will
be unstable if u, = 0.4. (b) At what angle 6 is the
pole most unstable, and what is the least coeffi-
cient of static friction p, which would be required
to prevent slipping for this angle?

Problem 6/130

*6/131 The semicylindrical shell of mass m and radius r

is rolled through an angle # by the force P which
remains tangent to its periphery at A as shown. If
P is slowly increased, plot the tilt angle f as a fune-
tion of P up to the point of slipping. Determine the
tilt angle 6,,,,, and the corresponding value P,
for which slipping occurs. The coefficient of static
friction is 0.30. Ans. 0_,, = 59.9°

Prax = 0.295mg

Problem 6/131

*6/132 A heavy cable with a mass of 12 kg per meter of

length passes over the two fixed pipes 300 m apart
on the same level. One end supports a 1600-kg cyl-
inder. By experiment it is found that a downward
force P of 60 kN is required to induce slipping of
the cable over both pipes at a constant rate. De-
termine the coefficient of kinetic friction p, be-
tween the cable and the pipes, the maximum
tension T' in the cable between the pipes, and the
sag h in the cable.

fe 300 mm =—3

1600 kg

Problem 6/132

*6/133 The uniform slender rod of mass m and length L

is initially at rest in a centered horizontal position
on the fixed circular surface of radius R = 0.6L.
If a force P normal to the bar is gradually applied
to its end, determine the maximum equilibrium
angle # which the rod can reach before slipping
takes place. The coefficient of static friction be-
tween the rod and its support is 0.15.

Ans. 0 = 11.04°

Problem 6/133
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*6/134 The device is designed to permit an adjustment to
the horizontal tension T in the cable passing
around the two fixed wheels in order to lower the
mass m. If the coefficient of friction between the
cable and the wheel surfaces is 0.40, determine and
plot the ratio T/mg as a function of 6 in the range
0 < 6 < 90°. Also find the value of the shear force
V in the adjusting pin at D terms of mg for 6 =
60°,

Problem 6/134




The analysis of multi-link structures which change configuration is generally best handled
by a virtual-work approach. This construction platform is a typical example.
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VIRTUAL WORK

7/1 INTRODUCTION

In the previous chapters we have analyzed the equilibrium of a
body by isolating it with a free-body diagram and writing the zero-
force and zero-moment summation equations. This approach is usually
employed for a body whose equilibrium position is known or specified
and where one or more of the external forces is an unknown to be
determined.

There is a separate class of problems in which bodies are composed
of interconnected members which can move relative to each other. Thus
various equilibrium configurations are possible and must be examined.
For problems of this type, the force- and moment-equilibrium equations,
although valid and adequate, are often not the most direct and conve-
nient approach.

A method based on the concept of the work done by a force is more
direct. Also, the method provides a deeper insight into the behavior of
mechanical systems and enables us to examine the stability of systems
in equilibrium. This method is called the method of virtual work.

7/2 WORK

We must first define the term work in its quantitative sense, in
contrast to its common nontechnical usage.

385



386 Chapter7 Virtual Work
F '
L"‘\\LA N A - Work of a Force
Feosal = | | Consider the constant force F acting on the body shown in Fig. 7/1a,

(a)

(b)

X F dr Az
\ ~ /
\ 503 A GZS“?‘;’S "
‘o N jd"f Cog
A,
(b)
Figure 7/3

whose movement along the plane from A to A’ is represented by the
vector As, called the displacement of the body. By definition the work U
done by the force F on the body during this displacement is the com-
ponent of the force in the direction of the displacement times the dis-
placement, or

U = (Fcos a) As

From Fig. 7/1b we see that the same result is obtained if we multiply
the magnitude of the force by the component of the displacement in the
direction of the force. This gives

U = F(As cos a)

Because we obtain the same result regardless of the direction in which
we resolve the vectors, we conclude that work U is a scalar quantity.

Work is positive when the working component of the force is in the
same direction as the displacement. When the working component is in
the direction opposite to the displacement, Fig. 7/2, the work done is
negative. Thus,

U= (Fcosa As = —(F cos 6) As

We now generalize the definition of work to account for conditions
under which the direction of the displacement and the magnitude and
direction of the force are variable.

Figure 7/3a shows a force F acting on a body at a point A which
moves along the path shown from A; to A,. Point A is located by its
position vector r measured from some arbitrary but convenient origin
O. The infinitesimal displacement in the motion from A to A’ is given
by the differential change dr of the position vector. The work done by
the force F during the displacement dr is defined as

dU = F-dr (7/1)

If F denotes the magnitude of the force F and ds denotes the magnitude
of the differential displacement dr, we use the definition of the dot prod-
uct to obtain

dU = F ds cos «

We may again interpret this expression as the force component F cos «
in the direction of the displacement times the displacement, or as the
displacement component ds cos « in the direction of the force times the
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force, as represented in Fig. 7/3b. If we express F and dr in terms of
their rectangular components, we have

dU = (F, + jF, + kF,)-(idx + jdy + kd2)

F.dx + F,dy + F,dz

To obtain the total work U done by F during a finite movement of
point A from A; to Ay, Fig. 7/3a, we integrate dU between these posi-
tions. Thus,

U= jF-dr = j(dex + F,dy + F,dz)
or

U:J‘Fcosads

To carry out this integration, we must know the relation between the
force components and their respective coordinates, or the relations be-
tween F and s and between cos « and s.

In the case of concurrent forces which are applied at any particular
point on a body, the work done by their resultant equals the total work
done by the several forces. This is because the component of the resul-
tant in the direction of the displacement equals the sum of the compo-
nents of the several forces in the same direction.

Work of a Couple

In addition to the work done by forces, couples also can do work. In
Fig. 7/4a the couple M acts on the body and changes its angular position
by an amount d6. The work done by the couple is easily determined /
from the combined work of the two forces which constitute the couple. /
In part b of the figure we represent the couple by two equal and opposite /
forces F and —F acting at two arbitrary points A and B such that F' = .
M/b. During the infinitesimal movement in the plane of the figure, line (@)
AB moves to A’B’. We now take the displacement of A in two steps, first,
a displacement drp equal to that of B and, second, a displacement
dry,p (read as the displacement of A with respect to B) due to the ro-
tation about B. Thus the work done by F during the displacement from
A to A’ is equal and opposite in sign to that due to —F acting through
the equal displacement from B to B'. We therefore conclude that no work
is done by a couple during a translation (movement without rotation).

During the rotation, however, F does work equal to F-dr,,z =
Fb d6, where dry,g = b df and where d# is the infinitesimal angle of
rotation in radians. Since M = Fb, we have

(b)
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The work of the couple is positive if M has the same sense as d# (clock-
wise in this illustration), and negative if M has a sense opposite to that
of the rotation. The total work of a couple during a finite rotation in its
plane becomes

U=fMd6

Dimensions of Work

Work has the dimensions of (force) X (distance). In SI units the
unit of work is the joule (J), which is the work done by a force of one
newton moving through a distance of one meter in the direction of the
force (J = N-m). In the U.S. customary system the unit of work is the
foot-pound (ft-1b), which is the work done by a one-pound force moving
through a distance of one foot in the direction of the force.

The dimensions of the work of a force and the moment of a force
are the same although they are entirely different physical quantities.
Note that work is a scalar given by the dot product and thus involves
the product of a force and a distance, both measured along the same
line. Moment, on the other hand, is a vector given by the cross product
and involves the product of force and distance measured at right angles
to the force. To distinguish between these two quantities when we write
their units, in SI units we use the joule (J) for work and reserve the
combined units newton-meter (N-m) for moment. In the U.S. customary
system we normally use the sequence foot-pound (ft-1b) for work and
pound-foot (lb-ft) for moment.

Virtual Work

We consider now a particle whose static equilibrium position is de-
termined by the forces which act on it. Any assumed and arbitrary small
displacement dr away from this natural position and consistent with the
system constraints is called a virtual displacement. The term virtual is
used to indicate that the displacement does not really exist but only is
assumed to exist so that we may compare various possible equilibrium
positions to determine the correct one.

The work done by any force F acting on the particle during the
virtual displacement é&r is called virtual work and is

oU = F-or or oU = F &8s cos «

where « is the angle between F and ér, and 8s is the magnitude of ér.
The difference between dr and ér is that dr refers to an actual infini-
tesimal change in position and can be integrated, whereas &r refers to
an infinitesimal virtual or assumed movement and cannot be integrated.
Mathematically both quantities are first-order differentials.

A virtual displacement may also be a rotation 86 of a body. According
to Eq. 7/2 the virtual work done by a couple M during a virtual angular
displacement 86 is U = M &0.

We may regard the force F or couple M as remaining constant
during any infinitesimal virtual displacement. If we account for any
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change in F or M during the infinitesimal motion, higher-order terms
will result which disappear in the limit. This consideration is the
same mathematically as that which permits us to neglect the product
dx dy when writing dA = y dx for the element of area under the curve

y = fix).

7/3 EQUILIBRIUM

We now express the equilibrium conditions in terms of virtual work,
first for a particle, then for a single rigid body, and then for a system of
connected rigid bodies.

Equilibrium of a Particle

Consider the particle or small body in Fig. 7/5 which attains an
equilibrium position as a result of the forces in the attached springs. If
the mass of the particle were significant, then the weight mg would also
be included as one of the forces. For an assumed virtual displacement
or of the particle away from its equilibrium position, the total virtual
work done on the particle is

oU = Fy-6r + Fy-or + Fy-6r + --- = EF-or
We now express >F in terms of its scalar sums and ér in terms of

its component virtual displacements in the coordinate directions, as
follows:

8U = SF-or = (i 3F, + jSF, + kSF)-(idx +jdy + k 62)

SF, 8x + 3F, 8y + SF, 82 = 0

The sum is zero, since XF = 0, which gives ZF, = 0, ZF, = 0, and
>F.= 0. The equation 6U = 0 is therefore an alternative statement of
the equilibrium conditions for a particle. This condition of zero virtual
work for equilibrium is both necessary and sufficient, since we may ap-
ply it to virtual displacements taken one at a time in each of the three
mutually perpendicular directions, in which case it becomes equivalent
to the three known scalar requirements for equilibrium.

The principle of zero virtual work for the equilibrium of a single
particle usually does not simplify this already simple problem because
8U = 0 and XF = 0 provide the same information. However, we intro-
duce the concept of virtual work for a particle so that we can later apply
it to systems of particles.

Equilibrium of a Rigid Body

We can easily extend the principle of virtual work for a single par-
ticle to a rigid body treated as a system of small elements or particles
rigidly attached to one another. Because the virtual work done on each
particle of the body in equilibrium is zero, it follows that the virtual
work done on the entire rigid body is zero. Only the virtual work done
by external forces appears in the evaluation of U = 0 for the entire
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(b) Reactive forces

(¢) Internal forces

Figure 7/7

body, since all internal forces occur in pairs of equal, opposite, and col-
linear forces, and the net work done by these forces during any move-
ment is zero.

As in the case of a particle, we again find that the principle of virtual
work offers no particular advantage to the solution for a single rigid
body in equilibrium. Any assumed virtual displacement defined by a lin-
ear or angular movement will appear in each term in 86U = 0 and when
canceled will leave us with the same expression we would have obtained
by using one of the force or moment equations of equilibrium directly.

This condition is illustrated in Fig. 7/6, where we want to determine
the reaction R under the roller for the hinged plate of negligible weight
under the action of a given force P. A small assumed rotation 86 of the
plate about O is consistent with the hinge constraint at O and is taken
as the virtual displacement. The work done by P is —Pa &6, and the
work done by R is +Rb 86. Therefore, the principle U = 0 gives

—Pa 80 + Rb 86 = 0

Canceling &6 leaves

Pa — Rb =0

which is simply the equation of moment equilibrium about Q. Therefore,
nothing is gained by using the virtual-work principle for a single rigid
body. The principle is, however, decidedly advantageous for intercon-
nected bodies, as discussed next.

Equilibrium of Ideal Systems of Rigid Bodies

We now extend the principle of virtual work to the equilibrium of
an interconnected system of rigid bodies. Our treatment here will be
limited to so-called ideal systems. These are systems composed of two or
more rigid members linked together by mechanical connections which
are incapable of absorbing energy through elongation or compression,
and in which friction is small enough to be neglected.

Figure 7/7a shows a simple example of an ideal system where rel-
ative motion between its two parts is possible and where the equilibrium
position is determined by the applied external forces P and F. We can
identify three types of forces which act in such an interconnected sys-
tem. They are as follows:

(1) Active forces are external forces capable of doing virtual work
during possible virtual displacements. In Fig. 7/7a forces P and F are
active forces because they would do work as the links move.

(2) Reactive forces are forces which act at fixed support positions
where no virtual displacement takes place in the direction of the force.
Reactive forces do no work during a virtual displacement. In Fig. 7/7b
the horizontal force Fy exerted on the roller end of the member by the
vertical guide can do no work because there can be no horizontal dis-
placement of the roller. The reactive force F(, exerted on the system by
the fixed support at O also does no work because O cannot move.
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(3) Internal forces are forces in the connections between members.
During any possible movement of the system or its parts, the net work
done by the internal forces at the connections is zero. This is so because
the internal forces always exist in pairs of equal and opposite forces, as
indicated for the internal forces F, and —F, at joint A in Fig. 7/7c. The
work of one force therefore necessarily cancels the work of the other
force during their identical displacements.

Principle of Virtual Work

Noting that only the external active forces do work during any pos-
sible movement of the system, we may now state the principle of virtual
work as follows:

The virtual work done by external active forces on anideal
mechanical system in equilibrium is zero for any and all
virtual displacements consistent with the constraints.

By constraint we mean restriction of the motion by the supports. We
state the principle mathematically by the equation

where 8U stands for the total virtual work done on the system by all
active forces during a virtual displacement.

Only now can we see the real advantages of the method of virtual
work. There are essentially two. First, it is not necessary for us to dis-
member ideal systems in order to establish the relations between the
active forces, as is generally the case with the equilibrium method based
on force and moment summations. Second, we may determine the rela-
tions between the active forces directly without reference to the reactive
forces. These advantages make the method of virtual work particularly
useful in determining the position of equilibrium of a system under
known loads. This type of problem is in contrast to the problem of de-
termining the forces acting on a body whose equilibrium position is
known.

The method of virtual work is especially useful for the purposes
mentioned but requires that the internal friction forces do negligible
work during any virtual displacement. Consequently, if internal friction
in a mechanical system is appreciable, the method of virtual work cannot
be used for the system as a whole unless the work done by internal
friction is included.

When using the method of virtual work, you should draw a diagram
which isolates the system under consideration. Unlike the free-body di-
agram, where all forces are shown, the diagram for the method of virtual
work need show only the active forces, since the reactive forces do not
enter into the application of U = 0. Such a drawing will be termed an
active-force diagram. Figure 7/7a is an active-force diagram for the sys-
tem shown.
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Degrees of Freedom

The number of degrees of freedom of a mechanical system is the
number of independent coordinates needed to specify completely the
configuration of the system. Figure 7/8a shows three examples of one-
degree-of-freedom systems. Only one coordinate is needed to establish
the position of every part of the system. The coordinate can be a distance
or an angle. Figure 7/8b shows three examples of two-degree-of-freedom
systems where two independent coordinates are needed to determine the
configuration of the system. By the addition of more links to the mech-
anism in the right-hand figure, there is no limit to the number of degrees
of freedom which can be introduced.

The principle of virtual work U = 0 may be applied as many times
as there are degrees of freedom. With each application, we allow only
one independent coordinate to change at a time while holding the others
constant. In our treatment of virtual work in this chapter, we consider
only one-degree-of-freedom systems.”

Systems with Friction

When sliding friction is present to any appreciable degree in a me-
chanical system, the system is said to be “real.” In real systems some
of the positive work done on the system by external active forces (input
work) is dissipated in the form of heat generated by the kinetic friction
forces during movement of the system. When there is sliding between
contacting surfaces, the friction force does negative work because its
direction is always opposite to the movement of the body on which it
acts. This negative work cannot be regained.

Thus, the kinetic friction force u,N acting on the sliding block in
Fig. 7/9a does work on the block during the displacement x in the
amount of —u, Nx. During a virtual displacement &x, the friction force
does work equal to —u,N &x. The static friction force acting on the

*For examples of solutions to problems of two or more degrees of freedom, see Chapter 7
of the first author’s Statics, 2nd Edition, 1971, or SI Version, 1975.
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rolling wheel in Fig. 7/9b, on the other hand, does no work if the wheel
does not slip as it rolls.

In Fig. 7/9¢ the moment M, about the center of the pinned joint
due to the friction forces which act at the contacting surfaces does neg-
ative work during any relative angular movement between the two
parts. Thus, for a virtual displacement 86 between the two parts, which
have the separate virtual displacements §8; and 865 as shown, the neg-
ative work done is —M; 66, — My 86, = —M(86; + 86,), or simply
—M; 6. For each part, My is in the sense to oppose the relative motion
of rotation.

It was noted earlier in the article that a major advantage of the
method of virtual work is in the analysis of an entire system of connected
members without taking them apart. If there is appreciable kinetic fric-
tion internal to the system, it becomes necessary to dismember the sys-
tem to determine the friction forces. In such cases the method of virtual
work finds only limited use.

Mechanical Efficiency

Because of energy loss due to friction, the output work of a machine
is always less than the input work. The ratio of the two amounts of work
is the mechanical efficiency e. Thus,

output work
input work

The mechanical efficiency of simple machines which have a single degree
of freedom and which operate in a uniform manner may be determined
by the method of work by evaluating the numerator and denominator
of the expression for e during a virtual displacement.

As an example, consider the block being moved up the inclined plane
in Fig. 7/10. For the virtual displacement &s shown, the output work is
that necessary to elevate the block, or mg 8s sin 6. The input work
is T 8s = (mg sin 0 + u,mg cos 0) 8s. The efficiency of the inclined
plane is, therefore,

mg ds sin 6 B 1.
mg(sin 6 + py cos ) 6s 1+ wy, cot @

As a second example, consider the screw jack described in Art. 6/5
and shown in Fig. 6/6. Equation 6/3 gives the moment M required to
raise the load W, where the screw has a mean radius r and a helix angle
a, and where the friction angle is ¢ = tan ! . During a small rotation
&6 of the screw, the input work is M 60 = Wr 60 tan (e + ¢). The
output work is that required to elevate the load, or Wr 860 tan «. Thus
the efficiency of the jack can be expressed as

= Wr 80 tan « B tan «
Wr 86 tan (@ + &)  tan (a + &)

As friction is decreased, ¢ becomes smaller, and the efficiency ap-
proaches unity.

AKykmg cos 6

Figure 7/10
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Sample Problem 7/1

Each of the two uniform hinged bars has a mass m and a length /, and is
supported and loaded as shown. For a given force P determine the angle 6 for
equilibrium.

Solution. The active-force diagram for the system composed of the two mem-

bers is shown separately and includes the weight mg of each bar in addition to

the force P. All other forces acting externally on the system are reactive forces

which do no work during a virtual movement éx and are therefore not shown.
The principle of virtual work requires that the total work of all external

active forces be zero for any virtual displacement consistent with the constraints.

Thus, for a movement dx the virtual work becomes

[8U = 0] Péx + 2mg 8h = 0

We now express each of these virtual displacements in terms of the variable 6,

the required quantity. Hence,

.1:=2.l’sin§‘9 and ax=lcosgﬁﬂ

Similarly,
l 7] ATy )
h—Ecosé and 8h——zsm26€
Substitution into the equation of virtual work gives us

[} Lk
PlcosEEB 5 2mgzsm§:53— 0

from which we get

tang = E or 0= 2tan ! *22 Ans.
2 mg mg
To obtain this result by the principles of force and moment summation, it
would be necessary to dismember the frame and take into account all forces
acting on each member. Solution by the method of virtual work involves a sim-
pler operation.

mg mg

Helpful Hints

(1) Note carefully that with x positive to

the right éx is also positive to the
right in the direction of P, so that the
virtual work is P(+éx). With & posi-
tive down o6k is also mathematically
positive down in the direction of mg,
so that the correct mathematical ex-
pression for the work is mg(+dh).
When we express 6k in terms of 86
in the next step, 6k will have a neg-
ative sign, thus bringing our mathe-
matical expression into agreement
with the physical observation that
the weight mg does negative work as
each center of mass moves upward
with an increase in x and 6.

(2) We obtain 6h and &x with the same

mathematical rules of differentiation
with which we may obtain dh and dx.
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Sample Problem 7/2

The mass m is brought to an equilibrium position by the application of the
couple M to the end of one of the two parallel links which are hinged as shown.
The links have negligible mass, and all friction is assumed to be absent. Deter-
mine the expression for the equilibrium angle # assumed by the links with the
vertical for a given value of M. Consider the alternative of a solution by force
and moment equilibrium.

Solution. The active-force diagram shows the weight mg acting through the
center of mass G and the couple M applied to the end of the link. There are no
other external active forces or moments which do work on the system during a
change in the angle 6.

The vertical position of the center of mass G is designated by the distance
h below the fixed horizontal reference line and is & = b cos 8 + ¢. The work
done by mg during a movement 8k in the direction of mg is

+mg 8h = mg 8(b cos 0 + ¢)

I

mg(—b sin 6 86 + 0)
= —mgb sin 6 56

The minus sign shows that the work is negative for a positive value of 6. The
constant ¢ drops out since its variation is zero.

With 6 measured positive in the clockwise sense, 86 is also positive clockwise.
Thus, the work done by the clockwise couple M is +M 6. Substitution into the
virtual-work equation gives us

[6U = 0] M &0 + mg dh =0

which yields

M 80 = mgb sin 6 50
= gin ! —M— Ans.
mgb

Inasmuch as sin # cannot exceed unity, we see that for equilibrium, M is limited
to values that do not exceed mgb.

The advantage of the virtual-work solution for this problem is readily seen
when we observe what would be involved with a solution by force and moment
equilibrium. For the latter approach, it would be necessary for us to draw sep-
arate free-body diagrams of all of the three moving parts and account for all of
the internal reactions at the pin connections. To carry out these steps, it would
be necessary for us to include in the analysis the horizontal position of G with
respect to the attachment points of the two links, even though reference to this
position would finally drop out of the equations when they were solved. We con-
clude, then, that the virtual-work method in this problem deals directly with
cause and effect and avoids reference to irrelevant quantities.

+mg
Helpful Hint

(1) Again, as in Sample Problem 7/1, we
are consistent mathematically with
our definition of work, and we see
that the algebraic sign of the result-
ing expression agrees with the phys-
ical change.
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Sample Problem 7/3

For link OA in the horizontal position shown, determine the force P on the
sliding collar which will prevent OA from rotating under the action of the couple
M. Neglect the mass of the moving parts.

Solution. The given sketch serves as the active-force diagram for the system.
All other forces are either internal or nonworking reactive forces due to the
constraints.

We will give the crank OA a small clockwise angular movement 86 as our
virtual displacement and determine the resulting virtual work done by M and P.
From the horizontal position of the crank, the angular movement gives a down-
ward displacement of A equal to

oy = a 80

adf =248y

where 86 is, of course, expressed in radians.

From the right triangle for which link AB is the constant hypotenuse we
Helpful Hints

may write
BRI gt d @) f\'r.'le that the displacement a M :.)l:
point A would no longer equal 8y if
We now take the differential of the equation and get the crank OA were not in a horizon-
tal position.
0=2cd& +2%8 o &=-2g X '
x (2) The length b is constant so that
56 = 0. Notice the negative sign,
Thus’ [§ eg e SI1g1

which merely tells us that if one
St change is positive, the other must be
negative.
and the virtual-work equation becomes ;
@ We could just as well use a counter-

(sU = 0] M5§+Péx =0 Mso+ P —'Za 58) = 0 clockwise virtual displacement for
x the crank, which would merely re-
verse the signs of all terms.
Mx  Mx &
p===-= Ans.
ya ha

Again, we observe that the virtual-work method produces a direct relation-
ship between the active force P and the couple M without involving other forces
which are irrelevant to this relationship. Solution by the force and moment equa-
tions of equilibrium, although fairly simple in this problem, would require ac-
counting for all forces initially and then eliminating the irrelevant ones.
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PROBLEMS

(Assume that the negative work of friction is negligible in
the following problems unless otherwise indicated.)

Introductory Problems

7/1 The mass of the uniform bar of length / is m while
that of the uniform bar of length 2/ is 2m. For a given
force P, determine the angle @ for equilibrium.

Ans. 0 = 2 tan ! (g)
mg

Problem 7/1

7/2 Determine the couple M required to maintain equilib-
rium at an angle 6. Each of the two uniform bars has
mass m and length /.

Problem 7/2

7/3 The foot-operated lift is used to raise a platform of
mass m. Determine the necessary force P applied at
the 10° angle to support the 80-kg load.

Ans. P = 458 N

Problem 7/3

7/4 The spring of constant k is unstretched when ¢ = 0.
Derive an expression for the force P required to deflect
the system to an angle #. The mass of the bars is
negligible.

Problem 7/4
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7/5

By means of a rack-and-pinion mechanism, large
forces can be developed by the cork puller shown. If
the mean radius of the pinion gears is 12 mm, deter-
mine the force R which is exerted on the cork for given
forces P on the handles.

Ans. R = 11.67P

7/6

Problem 7/5

The upper jaw D of the toggle press slides with neg-
ligible frictional resistance along the fixed vertical col-
umn. Determine the required force F on the handle to
produce a compression i on the roller for any given
value of 6.

Problem 7/6

7/7 For each unit of movement of the free end of the rope

in the direction of the applied force P, the 250-1b load
moves one-fourth of a unit. If the mechanical efficiency
e of the hoist is 0.75, calculate the force P required to
raise the load and the force P’ required to lower the

load. Ans. P = 83.31b, P' = 46.9 Ib

Problem 7/7

7/8 Determine the torque M on the activating lever of the

dump truck necessary to balance the load of mass m
with center of mass at G when the dump angle is 6.
The polygon ABDC is a parallelogram.

Problem 7/8
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7/9 The portable car hoist is operated by the hydraulic cyl-
inder which controls the horizontal movement of end
A of the link in the horizontal slot. Determine the com-
pression C in the piston rod of the eylinder to support

2
Ans.C = P (i—b) -1

the load P at a height A.

Problem 7/9

7/10 The hydraulic cylinder OA and link OB are arranged
to control the tilt of the load which has a mass m and
a center of mass at G. The lower corner C is free to
roll horizontally as the cylinder linkage elongates.
Determine the force P in the cylinder necessary to
maintain equilibrium at a given angle 6.

Problem 7/10

7/11 The hand-operated hoist is designed to lift a 100-kg
load where 25 turns of the handle on the worm shaft
produce one revolution of the drum. Assuming a 40-
percent loss of energy due to friction in the mecha-
nism, calculate the force F normal to the handle arm
required to lift the load. Ans. F = 613 N

|

100 kg

Problem 7/11

Representative Problems

7/12 The speed reducer shown is designed with a gear ra-
tio of 40:1. With an input torque M; = 30 N-m, the
measured output torque is My, = 1180 N-m. Deter-
mine the mechanical efficiency e of the unit.

Problem 7/12
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7/13 The folding linkage is composed of n identical sec-
tions, each of which consists of two identical bars of
mass m each. Determine the horizontal force P nec-
essary to maintain equilibrium in an arbitrary posi-
tion characterized by the angle . Does P depend on
the number n of sections present?

f
Ans. P = mg tan > no

Problem 7/13

7/14 Replace the force P acting on the linkage of Prob.
7/13 by a couple M. Determine the moment M of the
couple necessary to maintain equilibrium in an ar-
bitrary position characterized by the angle 6. Does M
depend on the number n of sections present?

7/15 Determine the couple M which must be applied at O
in order to support the mechanism in the position
# = 30° The masses of the disk at C, bar OA, and
bar BC are mg, m, and 2m, respectively.
Ans. M = ("i-m - mo)gt\,@

Problem 7/15

7/16 Determine the force F which the person must apply
tangent to the rim of the handwheel of a wheelchair
in order to roll up the incline of angle 6. The com-
bined mass of the chair and person is m. (If s is the
displacement of the center of the wheel measured
along the incline and f the corresponding angle in
radians through which the wheel turns, it is easily
shown that s = Rf if the wheel rolls without
slipping.)

Problem 7/16

7/17 Specify the horizontal force F necessary to maintain
equilibrium of the 80-kg platform in terms of the an-
gle # made by the supporting links with the horizon-
tal. Each of the three uniform links has a mass of
10 kg. (Compare the solution by virtual work with a
solution by force and moment equilibrium.)

Ans. F = 932 cot § N

Problem 7/17
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7/18

7/19

7/20

The cargo box of the food-delivery truck for aircraft
servicing has a loaded mass m and is elevated by the
application of a torque M on the lower end of the link
which is hinged to the truck frame. The horizontal
slots allow the linkage to unfold as the cargo box is
elevated. Express M as a function of A.

Problem 7/18

Each of the four uniform movable bars has a mass
m, and their equilibrium position in the vertical
plane is controlled by the force P applied to the end
of the lower bar. For a given value of P, determine
the equilibrium angle 6. Is it possible for the equilib-
rium position shown to be maintained by replacing
the force P by a couple M applied to the end of the
lower horizontal bar?

Ans. 6 = tan! %, no

Problem 7/19

The portable work platform is elevated by means of
the two hydraulic cylinders articulated at points C.
Each cylinder is under a hydraulic pressure p and has
a piston area A. Determine the pressure p required
to support the platform and show that it is indepen-
dent of 6. The platform, worker, and supplies have a
combined mass m, and the masses of the links may
be neglected.

Problem 7/20

7/21 The existing design of an aircraft cargo loader is un-

der review. The platform AD of the loader is elevated
to the proper height by the mechanism shown. There
are two sets of linkages and hydraulic lifts, one set
on each side. Cables F' which lift the platform are
controlled by the hydraulic cylinders E whose piston
rods elevate the pulleys G. If the total weight of the
platform and containers is W, determine the com-
pressive force P in each of the two piston rods. Does
P depend on the height 2? What force @ is supported
by each link at its center joint when W is centered
between A and D?

Ans. P = W, no; Q = g(l + 2—e)

Problem 7/21
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7/22 A device for counting the body radiation of a patient

is shown. The radiation counter A has a mass m and
is positioned by turning the screw of lead L (advance-
ment per revolution) with a torque M which controls
the distance BC. Relate the torque M to the load mg
for given values of b and . Neglect all friction and
the mass of the linkage compared with m.

Problem 7/22

7/23 The postal scale consists of a sector of mass my

hinged at O and with center of mass at G. The pan
and vertical link AB have a mass m, and are hinged
to the sector at B. End A is hinged to the uniform
link AC of mass my, which in turn is hinged to the
fixed frame. The figure OBAC forms a parallelogram,
and the angle GOB is a right angle. Determine the
relation between the mass m to be measured and the
angle 6, assuming that # = 6, whenm = 0.

Ans.m = %mo (tan 0 — tan f)

Problem 7/23

7/24 The elevation of the platform of mass m supported

by the four identical links is controlled by the hy-
draulic cylinders AB and AC which are pivoted at
point A. Determine the compression P in each of the
cylinders required to support the platform for a spec-
ified angle 6.

Problem 7/24
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7/25 The elevation of the load of mass m is controlled by
the adjusting serew which connects joints A and B.
The change in the distance between A and B for one

7/27 Express the compression C in the hydraulic cylinder
of the car hoist in terms of the angle 6. The mass of
the hoist is negligible compared with the mass m of

revolution of the screw equals the lead L of the screw the vehicle. 5
(advancement per revolution). If a moment M is re- b b

3 i R E 4 = 2] - -2
quired to overcome friction in the threads and thrust ans. O = Zmgeot L ¥ L 2 L e 8
bearing of the screw, determine the expression for
the total moment M, applied to the adjusting screw,

necessary to raise the load.

Problem 7/27

7/28 Determine the force P developed at the jaws of the
rivet squeezer of Prob. 4/134 repeated here.

e i

Y

Problem 7/25

7/26 In the design of the claw for the remote-action ac-
tuator, a clamping force C is developed as a result of
the tension P in the control rod. Express C in terms
of P for the configuration shown, where the jaws are
parallel.

-

Problem 7/28

Problem 7/26
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7/29 Determine the force N exerted on the log by each jaw
of the fireplace tongs shown. Ans. N = 1.6P

Problem 7/29

7/30 The antitorque wrench is designed for use by a crew
member of a spacecraft where no stable platform ex-
ists against which to push as a bolt is turned. The
pin A fits into an adjacent hole in the space structure
which contains the bolt to be turned. Successive os-
cillations of the gear and handle unit turn the socket
in one direction through the action of a ratchet mech-
anism. The reaction against the pin A provides the
“antitorque” characteristic of the tool. For a gripping
force P = 150 N, determine the torque M transmit-
ted to the bolt. (One side of the tool is used for tight-
ening and the other for loosening the bolt.)

17.56 P
ol 40 1, NS
mm| mm ‘ 120 mm j{

Problem 7/30

7/31 A power-operated loading platform designed for the
back of a truck is shown in the figure. The position
of the platform is controlled by the hydraulic cylin-
der, which applies force at C. The links are pivoted
to the truck frame at A, B, and F. Determine the
force P supplied by the cylinder in order to support
the platform in the position shown. The mass of the
platform and links may be neglected compared with
that of the 250-kg crate with center of mass at G.

Ans. P = 3.5 kN

250 300
mm mm

I N ) N
)

A
500 RE

I
mm

Problem 7/31

P 7/32 Determine the force @ at the jaw of the shear for the
400-N force applied with ¢ = 30° (Hint: Replace
the 400-N force by a force and a couple at the center
of the small gear. The absolute angular displacement
of the gear must be carefully determined.)

Ans. @ = 13.18 kN

Problem 7/32
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7/4 POTENTIAL ENERGY AND STABILITY

The previous article treated the equilibrium configuration of me-
chanical systems composed of individual members which we assumed to
be perfectly rigid. We now extend our method to account for mechanical
systems which include elastic elements in the form of springs. We intro-
duce the concept of potential energy, which is useful for determining the
stability of equilibrium.

Elastic Potential Energy

The work done on an elastic member is stored in the member in the
form of elastic potential energy V,. This energy is potentially available
to do work on some other body during the relief of its compression or
extension.

Consider a spring, Fig. 7/11, whicl is being compressed by a force
F. We assume that the spring is elastic and linear, which means that
the force F' is directly proportional to the deflection x. We write this
relation as F = kx, where % is the spring constant or stiffness of the
spring. The work done on the spring by F' during a movement dx is dU
= F'dx, so that the elastic potential energy of the spring for a compres-
sion x is the total work done on the spring

VL,=J-Fdx:J fe dlx
0 0

Thus, the potential energy of the spring equals the triangular area in
the diagram of F' versus x from 0 to x.

During an increase in the compression of the spring from x; to
xg, the work done on the spring equals its change in elastic potential
energy or

3
AV, = f kx dx = %k(xzz - 1%

e
X

which equals the trapezoidal area from x; to xs.
During a virtual displacement 8x of the spring, the virtual work
done on the spring is the virtual change in elastic potential energy

8V, = F ox = kx &x

During a decrease in the compression of the spring as it is relaxed
from x = x5 to x = x,, the change (final minus initial) in the potential
energy of the spring is negative. Consequently, if dx is negative, 8V, is
also negative.

When we have a spring in tension rather than compression, the
work and energy relations are the same as those for compression, where
x now represents the elongation of the spring rather than its compres-
sion. While the spring is being stretched, the force again acts in the
direction of the displacement, doing positive work on the spring and
increasing its potential energy.

}<——— Uncompressed length ——

Figure 7/11
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Figure 7/13

Ah

Because the force acting on the movable end of a spring is the neg-
ative of the force exerted by the spring on the body to which its movable
end is attached, the work done on the body is the negative of the potential
energy change of the spring.

A torsional spring, which resists the rotation of a shaft or another
element, can also store and release potential energy. If the torsional
stiffness, expressed as torque per radian of twist, is a constant K, and if
0 is the angle of twist in radians, then the resisting torque is M = K.
The potential energy becomes V, = [ K6 dé or

V, = iK¢? (7/4a)

which is analogous to the expression for the linear extension spring.

The units of elastic potential energy are the same as those of work
and are expressed in joules (J) in SI units and in foot-pounds (ft-1b) in
U.S. customary units.

Gravitational Potential Energy

In the previous article we treated the work of a gravitational force
or weight acting on a body in the same way as the work of any other
active force. Thus, for an upward displacement &k of the body in Fig.
7/12 the weight W = mg does negative work 6U = —mg oh. If, on the
other hand, the body has a downward displacement 8k, with & measured
positive downward, the weight does positive work 8U = +mg h.

An alternative to the foregoing treatment expresses the work done
by gravity in terms of a change in potential energy of the body. This
alternative treatment is a useful representation when we describe a me-
chanical system in terms of its total energy. The gravitational potential
energy V, of a body is defined as the work done on the body by a force
equal and opposite to the weight in bringing the body to the position
under consideration from some arbitrary datum plane where the poten-
tial energy is defined to be zero. The potential energy, then, is the neg-
ative of the work done by the weight. When the body is raised, for
example, the work done is converted into energy which is potentially
available, since the body can do work on some other body as it returns
to its original lower position. If we take V, to be zero at h = 0, Fig.
7/12, then at a height & above the datum plane, the gravitational po-
tential energy of the body is

V, = mgh (7/5)

If the body is a distance & below the datum plane, its gravitational po-
tential energy is —mgh.

Note that the datum plane for zero potential energy is arbitrary
because only the change in potential energy matters, and this change is
the same no matter where we place the datum plane. Note also that the
gravitational potential energy is independent of the path followed in
arriving at a particular level h. Thus, the body of mass m in Fig. 7/13
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has the same potential-energy change no matter which path it follows
in going from datum plane 1 to datum plane 2 because Ah is the same
for all three paths.

The virtual change in gravitational potential energy is simply

oV, = mg &h

where 6h is the upward virtual displacement of the mass center of the
body. If the mass center has a downward virtual displacement, then 6V,
is negative. '

The units of gravitational potential energy are the same as those for
work and elastic potential energy, joules (J) in SI units and foot-pounds
(ft-Ib) in U.S. customary units.

Energy Equation

We saw that the work done by a linear spring on the body to which
its movable end is attached is the negative of the change in the elastic
potential energy of the spring. Also, the work done by the gravitational
force or weight mg is the negative of the change in gravitational poten-
tial energy. Therefore, when we apply the virtual-work equation to a
system with springs and with changes in the vertical position of its mem-
bers, we may replace the work of the springs and the work of the weights
by the negative of the respective potential energy changes.

We can use these substitutions to write the total virtual work U in
Eq. 7/3 as the sum of the work U’ done by all active forces, other than
spring forces and weight forces, and the work —(8V, + 8V,) done by the
spring and weight forces. Equation 7/3 then becomes

[SU' — @V, + ) =0) o (U =8V) (16

where V = V, + V, stands for the total potential energy of the system.
With this formulation a spring becomes internal to the system, and the
work of spring and gravitational forces is accounted for in the 5V term.

Active-Force Diagrams

With the method of virtual work it is useful to construct the active-
force diagram of the system you are analyzing. The boundary of the
system must clearly distinguish those members which are part of the
system from other bodies which are not part of the system. When we
include an elastic member within the boundary of our system, the forces
of interaction between it and the movable members to which it is at-
tached are infernal to the system. Thus these forces need not be shown
because their effects are accounted for in the V, term. Similarly, weight
forces are not shown because their work is accounted for in the V, term.

Figure 7/14 illustrates the difference between the use of Eqgs. 7/3
and 7/6. We consider the body in part a of the figure to be a particle for
simplicity, and we assume that the virtual displacement is along the
fixed path. The particle is in equilibrium under the action of the applied
forces F'; and F, the gravitational force mg, the spring force kx, and a
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(a)

n

kx
mg

Eq.7/3: 6U=0 Eq. 7/6: 6U'=6V, + 5\1, =48V
(b) (c)

Figure 7/14

normal reaction force. In Fig. 7/14b, where the particle alone is isolated,
8U includes the virtual work of all forces shown on the active-force di-
agram of the particle. (The normal reaction exerted on the particle by
the smooth guide does no work and is omitted.) In Fig. 7/14¢ the spring
is included in the system, and 6U" is the virtual work of only F; and Fl,
which are the only external forces whose work is not accounted for in
the potential-energy terms. The work of the weight mg is accounted for
in the 8V, term, and the work of the spring force is included in the 5V,
term.

Principle of Virtual Work

Thus, for a mechanical system with elastic members and members
which undergo changes in position, we may restate the principle of vir-
tual work as follows:

(The virtual work done by all external active forces (other\
than the gravitational and spring forces accounted for in
the potential energy terms) on a mechanical system in
equilibrium equals the corresponding change in the total
elastic and gravitational potential energy of the system
for any and all virtual displacements consistent with the
Lconstm.ints.
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Stability of Equilibrium

Consider now the case of a mechanical system where movement is
accompanied by changes in gravitational and elastic potential energies
and where no work is done on the system by nonpotential forces. The
mechanism treated in Sample Problem 7/6 is an example of such a sys-
tem. With 80" = 0 the virtual-work relation, Eq. 7/6, becomes

Equation 7/7 expresses the requirement that the equilibrium configu-
ration of a mechanical system is one for which the total potential energy
V of the system has a stationary value. For a system of one degree of
freedom where the potential energy and its derivatives are continuous
functions of the single variable, say, x, which describes the configuration,
the equilibrium condition 8V = 0 is equivalent mathematically to the
requirement

=10 (7/8)

Equation 7/8 states that a mechanical system is in equilibrium when
the derivative of its total potential energy is zero. For systems with sev-
eral degrees of freedom the partial derivative of V with respect to each
coordinate in turn must be zero for equilibrium.”

There are three conditions under which Eq. 7/8 applies, namely,
when the total potential energy is a minimum (stable equilibrium), a
maximum (unstable equilibrium), or a constant (neutral equilibrium).
Figure 7/15 shows a simple example of these three conditions. The po-
tential energy of the roller is clearly a minimum in the stable position,
a maximum in the unstable position, and a constant in the neutral
position.

We may also characterize the stability of a mechanical system by
noting that a small displacement away from the stable position results
in an increase in potential energy and a tendency to return to the po-
sition of lower energy. On the other hand, a small displacement away
from the unstable position results in a decrease in potential energy and

LD QD

Stable Unstable Neutral

Figure 7/15

*For examples of two-degree-of-freedom systems, see Art. 43, Chapter 7, of the first author’s
Statics, 2nd Edition, SI Version, 1975.
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a tendency to move farther away from the equilibrium position to one
of still lower energy. For the neutral position a small displacement one
way or the other results in no change in potential energy and no ten-
dency to move either way.

When a function and its derivatives are continuous, the second de-
rivative is positive at a point of minimum value of the function and
negative at a point of maximum value of the function. Thus, the math-
ematical conditions for equilibrium and stability of a system with a sin-
gle degree of freedom x are:

[ av
Equilibrium Tl 0
d*v
Stable @ >0 (7/9)
2
Unstable ﬂ; = ()
dx
L )

The second derivative of V may also be zero at the equilibrium position,
in which case we must examine the sign of a higher derivative to ascer-
tain the type of equilibrium. When the order of the lowest remaining
nonzero derivative is even, the equilibrium will be stable or unstable
according to whether the sign of this derivative is positive or negative.
If the order of the derivative is odd, the equilibrium is classified as un-
stable, and the plot of V versus x for this case appears as an inflection
point in the curve with zero slope at the equilibrium value.

Stability criteria for multiple degrees of freedom require more ad-
vanced treatment. For two degrees of freedom, for example, we use a
Taylor-series expansion for two variables.
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Sample Problem 7/4

The 10-kg cylinder is suspended by the spring, which has a stiffness of
2 kN/m. Plot the potential energy V of the system and show that it is minimum
at the equilibrium position.

Solution. (Although the equilibrium position in this simple problem is clearly
where the force in the spring equals the weight mg, we will proceed as though
this fact were unknown in order to illustrate the energy relationships in the
simplest way.) We choose the datum plane for zero potential energy at the po-
sition where the spring is unextended.

The elastic potential energy for an arbitrary positionx is V, = %kx2 and the
gravitational potential energy is —mgx, so that the total potential energy is

V=V, +Vl] V = ka® — mgx
Equilibrium occurs where

dv dv

[EO] a—kx—mg—() x = mg/k

Although we know in this simple case that the equilibrium is stable, we
prove it by evaluating the sign of the second derivative of V at the equilibrium
position. Thus, d?V/dx? = k, which is positive, proving that the equilibrium is
stable.

Substituting numerical values gives

= 1(2000x% — 10(9.81)x
expressed in joules, and the equilibrium value of x is
x = 10(9.81)/2000 = 0.0490 m or  49.0 mm Ans.

We calculate V for various values of x and plot V versus x as shown. The
minimum value of V occurs at x = 0.0490 m where dV/dx = 0 and d>V/dx® is
positive.

Slf
|
6. —
.=rlk.\'2
4}—
V.d |
ol
|
x, m
L .10

002 004, 006 0.08
x =mglk /

Helpful Hints

(1) The choice is arbitrary but simplifies
the algebra.

(2) We could have chosen different da-
tum planes for V, and V, without af-
fecting our conclusions. Such a
change would merely shift the sepa-
rate curves for V, and V, up or down

but would not affect the position of
the minimum value of V.
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Sample Problem 7/5

The two uniform links, each of mass m, are in the vertical plane and are
connected and constrained as shown. As the angle 6 between the links increases
with the application of the horizontal force P, the light rod, which is connected
at A and passes through a pivoted collar at B, compresses the spring of stiffness
k. If the spring is uncompressed in the position where 8 = 0, determine the force
P which will produce equilibrium at the angle 6.

Solution. The given sketch serves as the active-force diagram of the system.
The compression x of the spring is the distance which A has moved away from
B, which is x = 2b sin 6/2. Thus, the elastic potential energy of the spring is

2
[V, = 3kx?) V, = gk (Zb sin g) = 2kb? sin2§

With the datum for zero gravitational potential energy taken through the
support at O for convenience, the expression for V. becomes

[V, = mghl] Ve = 2mg (—b cos -g)

The distance between O and C is 4b sin 6/2, so that the virtual work done
by P is

sU' = P&(%sing) - 2Pbcos§958

The virtual-work equation now gives

[8U" = 8V, + 8V,]
(i}
2Pb cos g 80 = & (Zkbz sin? E) + 8 (—2mgb cos g)

g

2}
0 + in=&
26 mgbsm2 (]

f
= 2kb? sin 3 cos
Simplifying gives finally

P = kb sing + %mg tan§6 Ans.

If we had been asked to express the equilibrium value of # corresponding to
a given force P, we would have difficulty solving explicitly for 6 in this particular
case. But for a numerical problem we could resort to a computer solution and
graphical plot of numerical values of the sum of the two functions of 6 to deter-
mine the value of ¢ for which the sum equals P.
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Sample Problem 7/6

The ends of the uniform bar of mass m slide freely in the horizontal and
vertical guides. Examine the stability conditions for the positions of equilibrium.
The spring of stiffness & is undeformed when x = 0.

Solution. The system consists of the spring and the bar. Since there are no
external active forces, the given sketch serves as the active-force diagram. We
will take the x-axis as the datum for zero gravitational potential energy. In the
displaced position the elastic and gravitational potential energies are

V, = gkx? = kb sin®? @  and V, = mgg cos 8
The total potential energy is then
V=V, +V, = 1kb? sin® 6 + Smgb cos 6
Equilibrium occurs for dV/d6 = 0 so that

dv

0 kb? sin 0 cos 6 — %mgb sin 6 = (kb® cos B — %mgb) sin @ = 0

The two solutions to this equation are given by

A U
sinf = 0 and cos 6 b

We now determine the stability by examining the sign of the second deriv-
ative of V for each of the two equilibrium positions. The second derivative is

d?*V

EHE = kb%(cos® 0 — sin® ) — émgb cos @

= kb*(2 cos® § — 1) — Jmgb cos 0

Solution l. sinf = 0,0 =0

d*v 2 1 2 mg
p T %, ol =L e
202 kb2 — 1) — 5mgb b b
= positive (stable) ifk > mg/2b
= negative (unstable) ifk < mg/2b Ans.

Thus, if the spring is sufficiently stiff, the bar will return to the vertical position
even though there is no force in the spring at that position.

i L el UL
Solution Il. cos 6 = kb’ 8 = cos b

AL 22\ 1] s () - g

dez " okb 28 \orp) ~ kb i
Since the cosine must be less than unity, we see that this solution is limited to
the case where & > mg/2b, which makes the second derivative of V negative.
Thus, equilibrium for Solution II is never stable. If 2 < mg/2b, we no longer
have Solution II since the spring will be too weak to maintain equilibrium at a
value of 6 between 0 and 90°.

y

©— — — MWW
sy

Helpful Hints

(1) With no external active forces there
is no 8U' term, and 8V = 0 is equiv-
alent to dV/d6 = 0.

(2) Be careful not to overlook the solu-
tion # = 0 given by sin # = 0.

(3) We might not have anticipated this
result without the mathematical
analysis of the stability.

(@) Again, without the benefit of the
mathematical analysis of the stabil-
ity we might have supposed errone-
ously that the bar could come to rest
in a stable equilibrium position for
some value of A between 0 and 90°.
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PROBLEMS

(Assume that the negative work of friction is negligible in
the following problems.)

Introductory Problems

7/33 The potential energy of a mechanical system is given
by V = 6x* — 3x? + 5, where x is the position co-
ordinate which defines the configuration of the
single-degree-of-freedom system. Determine the equi-
librium values of x and the stability condition of each.

Ans. x = 0, unstable; x = %, stable; x = —%, stable

7/34 The uniform bar of mass m and length L is supported

in the vertical plane by two identical springs each of .

stiffness £ and compressed a distance & in the vertical
position # = 0. Determine the minimum stiffness k
which will ensure a stable equilibrium position with
6 = 0. The springs may be assumed to act in the
horizontal direction during small angular motion of
the bar.

Vertical

Problem 7/34

7/35 The bar of mass m with center of mass at G is pivoted
about a horizontal axis through O. Prove the stability
conditions for the two positions of equilibrium.

Ans. 6 = 0, unstable; # = 180°, stable

Vertical

Problem 7/35

7/36 The small cylinder of mass m and radius r is confined
to roll on the circular surface of radius R. By the
methods of this article, prove that the eylinder is un-
stable in case (a) and stable in case (b).

(a) (b)
Problem 7/36

7/37 For the mechanism shown the spring is uncompres-
sed when # = 0. Determine the angle ¢ for the equi-
librium position and specify the minimum spring
stiffness & which will limit # to 30°. The rod DE
passes freely through the pivoted collar C, and the
cylinder of mass m slides freely on the fixed vertical
shaft.

1 mg

- mg
Ans. 0 = — k.= —=
ns Ccos pp | min b\f'3

Problem 7/37
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7/38 The figure shows the cross section of a uniform 60-kg

ventilator door hinged along its upper horizontal
edge at O. The door is controlled by the spring-loaded
cable which passes over the small pulley at A. The
spring has a stiffness of 160 N per meter of stretch
and is undeformed when # = 0. Determine the angle
6 for equilibrium.

Problem 7/38

7/39 For the device shown the spring would be un-

stretched in the position # = 0. Specify the stiffness
k of the spring which will establish an equilibrium
position  in the vertical plane. The mass of the links
is negligible compared with m.

cot 0
Ans. k = L

Z_blfcosﬂ

Problem 7/39

7/40 Determine the equilibrium value of x for the spring-

supported bar. The spring has a stiffness £ and is
unstretched when x = 0. The force F acts in the di-
rection of the bar, and the mass of the bar is
negligible.

Problem 7/40

7/81 One of the critical requirements in the design of an

artificial leg for an amputee is to prevent the knee
joint from buckling under load when the leg is
straight. As a first approximation, simulate the arti-
ficial leg by the two light links with a torsion spring
at their common joint. The spring develops a torque
M = KB, which is proportional to the angle of bend
B at the joint. Determine the minimum value of K
which will ensure stability of the knee joint for

g= Ans. Ky = imgl

Problem 7/41
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Representative Problems

7/82 The cylinder of mass M and radius R rolls without
slipping on the circular surface of radius 3R. At-
tached to the cylinder is a small body of mass m.
Determine the required relationship between M and
m if the body is to be stable in the equilibrium po-
sition shown.

L

>+
T
|
|

3R~

Problem 7/42

7/43 Each of the two gears carries an eccentric mass m
and is free to rotate in the vertical plane about its
bearing. Determine the values of # for equilibrium
and identify the type of equilibrium for each position.

Ans. # = 0, unstable
# = 120°, stable
f = 180°, unstable
0 = 240°, stable

Problem 7/43

7/44 Determine the maximum height A of the mass m for
which the inverted pendulum will be stable in the
vertical position shown. Each of the springs has a
stiffness %, and they have equal precompressions in
this position. Neglect the mass of the remainder of
the mechanism.

Problem 7/44

7/45 One end of the torsion spring is secured to the
ground at A, and the other end is fastened to the
shaft at B. The torsional stiffness K of the elastic
spring is the torque required to twist the spring
through an angle of one radian. The spring resists
the moment about the shaft axis caused by the ten-
sion mg in the cable wrapped around the drum of
radius r. Determine the equilibrium value of & mea-
sured from the dashed position, where the spring is
untwisted. P

mgr*

Problem 7/45
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7/46 For the mechanism shown, the spring of stiffness %

has an unstretched length of essentially zero, and the
larger link has a mass m with mass center at B. The
mass of the smaller link is negligible. Determine the
equilibrium angle 6 for a given downward force P.

P

Problem 7/46

7/47 The cross section of a trap door hinged at A and hav-

ing a mass m and a center of mass at @ is shown in
the figure. The spring is compressed by the rod which
is pinned to the lower end of the door and which
passes through the swivel block at B. When 6 = 0,
the spring is undeformed. Show that with the proper
stiffness & of the spring, the door will be in equilib-
rium for any angle 6. g

Ans. k = ——
ns (12

Problem 7/47

7/48 The 3-1b pendulum swings about axis 0-O and has a

mass center at G. When 6 = 0, each spring has an
initial stretch of 4 in. Calculate the maximum stiff-
ness k of each of the parallel springs which will allow
the pendulum to be in stable equilibrium at the bot-
tom position # = 0.

Problem 7/48

7/49 The solid hemisphere of diameter 2b and concentric

cylindrical knob of diameter b are resting on a hori-
zontal surface. Determine the maximum height A
which the knob may have without causing the unit
to be unstable in the upright position shown. Both
parts are made from the same material. B

Ans. h < b2

Problem 7/49
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7/50 Predict through calculation whether the homoge-

neous semicylinder and the half-cylindrical shell will
remain in the positions shown or whether they will
roll off the lower eylinders.

Problem 7/50

7/51 The uniform link AB has a mass m, and its left end

A travels freely in the fixed horizontal slot. End B is
attached to the vertical plunger, which compresses
the spring as B falls. The spring would be uncom-
pressed at the position # = 0. Determine the angle #
for equilibrium (other than the impossible position
corresponding to # = 90°) and designate the condi-

tion which will ensure stability.
) mg mg
Ans. =28, 18
ns. sin 6 2 k 2

Problem 7/51

7/52 The figure shows a tilting desk chair together with

the design detail of the spring-loaded tilting mecha-
nism. The frame of the seat is pivoted about the fixed
point O on the base. The increase in distance be-
tween A and B as the chair tilts back about O is the
increase in compression of the spring. The spring,
which has a stiffness of 96 kN/m, is uncompressed
when # = 0. For small angles of tilt it may be as-
sumed with negligible error that the axis of the
spring remains parallel to the seat. The center of
mass of an 80-kg person who sits in the chair is at G
on a line through O perpendicular to the seat. Deter-

mine the angle of tilt # for equilibrium. (Hint: The
deformation of the spring may be visualized by allow-
ing the base to tilt through the required angle ¢
about O while the seat is held in a fixed position.)

Problem 7/52

7/53 A proposed parallelogram linkage for an adjustable-

position lamp is shown. If the unstretched length of
the spring is b/2, determine the necessary spring
stiffness % for equilibrium at a given angle 6 with the
vertical. The mass of the lamp and triangular fixture
is m. Check the stability within the working range
from # = 2 sin~! }‘ = 29" to # = 180°.

Ans. k = m_g! e i
6% 1 — {esc 6/2

stable within specified range

Problem 7/53
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> 7/54

»7/55

The front-end suspension of Prob. 4/108 is repeated
here. In a test of the designed action, the frame F'
must be jacked up so that A = 350 mm in order to
relieve the compression in the coil springs. Deter-
mine the value of 2 when the jack is removed. Each
spring has a stiffness of 120 kN/m. The load L is
12 kN, and the central frame F' has a mass of 40 kg.
Each wheel and attached link has a mass of 35 kg
with a center of mass 680 mm from the vertical

centerline. Ans. h = 265 mm

Problem 7/54

The portable roller stand for supporting boards
ejected from a wood planer is designed with a micro-
fine height adjustment produced by turning the
knurled knob of the adjusting screw with a torque M.
The single-thread screw with square threads has a
pitch p (advancement per revolution) and is threaded
into the collar at B to control the distance between
A and B (and hence C and D). The roller E and sup-
porting box have a mass m,, and the four uniform
links (two on each side) have a combined mass m,
and a length 2b for each. Neglect all friction and find
the torque M necessary to raise the roller for a given
value of 6.

(2mq + my)pg
L L -
4

Ans. M = ot 0

end view

Problem 7/55

‘ » 7/56 The uniform garage door AB shown in section has a

mass m and is equipped with two of the spring-loaded
mechanisms shown, one on each side of the door. The
arm OB has negligible mass, and the upper corner A
of the door is free to move horizontally on a roller.
The unstretched length of the spring is r — a, so that
in the top position with # = 7 the spring force is
zero. To ensure smooth action of the door as it
reaches the vertical closed position # = 0, it is desir-
able that the door be insensitive to movement in this
position. Determine the spring stiffness & required

for this design. B +-)

8(12

Ans. k =

Problem 7/56
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Virtual Work

CHAPTER REVIEW

In this chapter we have developed the principle of virtual work. This
principle is useful for determining the possible equilibrium configura-
tions of a body or a system of interconnected bodies where the external
forces are known. To apply the method successfully, you must under-
stand the concepts of virtual displacement, degrees of freedom, and po-
tential energy.

Method of Virtual Work

When various configurations are possible for a body or a system of
interconnected bodies under the action of applied forces, we can find the
equilibrium position by applying the principle of virtual work. When
using this method, keep the following in mind.

1. The only forces which need to be considered when determining the
equilibrium position are those which do work (active forces) during
the assumed differential movement of the body or system away from
its equilibrium position.

2. Those external forces which do no work (reactive forces) need not
be involved.

3. For this reason the active-force diagram of the body or system (rather
than the free-body diagram) is useful to focus attention on only those
external forces which do work during the virtual displacements.

Virtual Displacements

A virtual displacement is a first-order differential change in a linear
or angular position. This change is fictitious in that it is an assumed
movement which need not take place in reality. Mathematically, a vir-
tual displacement is treated the same as a differential change in an ac-
tual movement. We use the symbol 8 for the differential virtual change
and the usual symbol d for the differential change in a real movement.

Relating the linear and angular virtual displacements of the parts
of a mechanical system during a virtual movement consistent with the
constraints is often the most difficult part of the analysis. To do this,

1. Write the geometric relationships which describe the configuration
of the system.

2. Establish the differential changes in the positions of parts of the
system by differentiating the geometric relationship to obtain ex-
pressions for the differential virtual movements.

Degrees of Freedom

In Chapter 7 we have restricted our attention to mechanical systems
for which the positions of the members can be specified by a single vari-
able (single-degree-of-freedom systems). For two or more degrees of free-
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dom, we would apply the virtual-work equation as many times as there
are degrees of freedom, allowing one variable to change at a time while
holding the remaining ones constant.

Potential Energy Method

The concept of potential energy, both gravitational (V) and elastic
(V,), is useful in solving equilibrium problems where virtual displace-
ments cause changes in the vertical positions of the mass centers of the
bodies and changes in the lengths of elastic members (springs). To apply
this method,

1. Obtain an expression for the total potential energy V of the system
in terms of the variable which specifies the possible position of the
system.

2. Examine the first and second derivatives of V to establish, respec-

tively, the position of equilibrium and the corresponding stability
condition.
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REVIEW PROBLEMS

7/57 A control mechanism consists of an input shaft at A
which is turned by applying a couple M and an out-
put slider B which moves in the x-direction against
the action of force P. The mechanism is designed so
that the linear movement of B is proportional to the
angular movement of A, with x increasing 60 mm for
every complete turn of A. If M = 10 N-m, determine
P for equilibrium. Neglect internal friction and as-
sume all mechanical components are ideally con-

nected rigid bodies. Ans. P = 1047 N

Problem 7/57

7/58 Identify which of the problems () through (/) are
best solved (A) by the force and moment equilibrium
equations and (B) by virtual work. Outline briefly the
procedure for each solution.

Plane of each figure is vertical. Size and mass of each
member and applied force are known.

Find @ for equilibrium Find reactions at A and B
(a) (b)

C

Find forces at A, B, and C
(e) ()

Find x for equilibrium.
(e)

Determine maximum
k for stable equilibrium
at 9 =0

(f)

Problem 7/58

7/59 The semicylindrical shell of radius r is pivoted about
a shaft through points O as shown. The mass of the
two support tabs is small compared with the mass of
the shell. Determine the maximum value of h for
which equilibrium in the position shown is stable.

Ans. hy. = 0.363r

Problem 7/59
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7/60 Neglect the mass of the crossed links and determine
the angle 6 for the equilibrium position of the sym-
metrical mechanism in the vertical plane. Each of the
identical rectangular blocks of mass m is homoge-
neous with mass center at G. Evaluate 0 for equilib-
rium when b = a.

Problem 7/60

7/61 The sketch shows the approximate design configu-
ration of one of the four toggle-action hold-down as-
semblies which clamp the base flange of the Saturn
V rocket vehicle to the pedestal of its platform prior
to launching. Calculate the preset clamping force F
at A if the link CE is under tension produced by a
fluid pressure of 2000 lb/in.? acting on the left side
of the piston in the hydraulic cylinder. The piston has
a net area of 16 in.2 The weight of the assembly is
considerable, but it is small compared with the
clamping force produced and is therefore neglected

here. Ans. F = 960,000 Ib

Saturn V. _
base flange ~

Problem 7/61

7/62 The figure shows the cross section of a container
composed of a hemispherical shell of radius r and a
cylindrical shell of height &, both made from the
same material. Specify the limitation of & for stability
in the upright position when the container is placed
on the horizontal surface.

Problem 7/62

7/63 Determine the equilibrium values of # and the
stability of equilibrium at each position for the unbal-
anced wheel on the 10° incline. Static friction is suf-
ficient to prevent slipping. The mass center is at G.

Ans. 0 = —6.82° stable; # = 207°, unstable

r=100 mm

7 =60 mm

Problem 7/63

7/64 Two semicylindrical shells with equal projecting rec-
tangles are formed from sheet metal, one with con-
figuration (@) and the other with configuration (b).
Both shells rest on a horizontal surface. For case (a)
determine the maximum value of & for which the
shell will remain stable in the position shown. For
case (b) prove that stability in the position shown is
not affected by the dimension A.

(@) (b)

Problem 7/64
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7/65 An exploration device, which unfolds from the body

A of an unmanned space vehicle resting on the
moon’s surface, consists of a spring-loaded panto-
graph with detector head B. It is desired to select a
spring that will limit the vertical contact force P to
100 N in the position for which 8 = 120°. If the mass
of the arms and head is negligible, specify the nec-
essary spring stiffness k. The spring is uncompressed

when § = 30°. Ans. b = 1.664 kN/m

Problem 7/65

7/66 The uniform aluminum disk of radius R and mass m

rolls without slipping on the fixed circular surface of
radius 2R. Fastened to the disk is a lead cylinder also
of mass m with its center located a distance b from
the center O of the disk. Determine the minimum
value of b for which the disk will remain in stable
equilibrium on the cylindrical surface in the top po-
sition shown.

2R |
\

Problem 7/66

» 7/67 The platform of mass m is supported by equal legs

and braced by the two springs as shown. If the
masses of the legs and springs are negligible, design
the springs by determining the minimum stiffness %
of each spring which will ensure stability of the plat-
form in the position shown. Each spring has a tensile
preset deflection equal to A.

mg b>
Ans. kmin = E (1 + 1—2)

Problem 7/67

> 7/68 In the mechanism shown the spring of stiffness £ is

uncompressed when ¢ = 60°. Also the masses of the
parts are small compared with the sum m of the
masses of the two cylinders. The mechanism is con-
structed so that the arms may swing past the verti-
cal, as seen in the right-hand side view. Determine
the values of 6 for equilibrium and investigate the
stability of the mechanism in each position. Neglect

frienion Ans. 0 = 0, stable itk < ma/a
unstable if & > mg/a

6 = cos ! %(1 + m_g)

only if £ > mg/a, stable

Problem 7/68
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& ) *7/71 Det ine th ilibri 1 f the dinat

@ *Computer-Oriented Problems / etermine the equilibrium value of the coordinate
x for the mechanism under the action of the 60-N

*7/69 The bar OA, which weighs 50 1b with center of grav- force applied normal to the light bar. The spring has

a stiffness of 1.6 kN/m and is unstretched when
x = 0. (Hint: Replace the applied force by a force—
couple system at point B.) Ans. x = 130.3 mm

ity at G, is pivoted about its end O and swings in
the vertical plane under the constraint of the 20-lb
counterweight. Write the expression for the total po-
tential energy of the system, taking V, = 0 when
@ = 0, and compute V, as a function of ¢ from
# = 0to # = 360°. From your plot of the results,
determine the position or positions of equilibrium
and the stability of equilibrium at each position.
Ans. 0 = 78.0°, stable; 6 = 260°, unstable

Problem 7/71

*7/72 The uniform link OA has a mass of 20 kg and is
supported in the vertical plane by the spring AB
whose unstretched length is 400 mm. Plot the total
potential energy V and its derivative dV/d# as func-

Problem 7/69 tions of ¢ from ¢ = 0 to # = 120°. From the plots

identify the equilibrium values of # and the corre-

sponding stability of equilibrium. Take Vy,=0o0na

level through O.

*7/70 The toggle mechanism is used to lift the 80-kg mass
to a locked position when OB moves to OB’ in the
3° position. To evaluate the design action of the tog-
gle, plot the value of P required to operate the toggle
as a function of 6 from # = 20° to § = —3°.

Problem 7/72

Problem 7/70
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*7/73 Determine the equilibrium angle # for the mecha- *7/74 The uniform 25-kg trap door is freely hinged along
nism shown. The spring of stiffness £ = 12 Ib/in. its bottom edge O-0 and is attached to the two
has an unstretched length of 8 in. Each of the uni- springs each of stiffness £ = 800 N/m. The springs
form links AB and CD has a weight of 10 b, and ave unstretched when 6 = 90°. Take V, = 0 on the
member BD with its load weighs 100 1b. Motion is horizontal plane through O-0O and plot the potential

in the vertical plane. energy V = V, + V, as a function of ¢ from 6 = 0
to 8 = 90°. Also determine the angle 6 for equilib-

rium and determine the stability of this position.

Ans. 6 = T1.7°

16”

Problem 7/74

Problem 7/73
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AREA MOMENTS

APPENDIX OUTLINE OF INERTIA

A/l
A/2
A/3
A/4

Introduction

Definitions

Composite Areas

Products of Inertia and Rotation of Axes

A/1 INTRODUCTION

When forces are distributed continuously over an area on which they
act, it is often necessary to calculate the moment of these forces about
some axis either in or perpendicular to the plane of the area. Frequently
the intensity of the force (pressure or stress) is proportional to the dis-
tance of the line of action of the force from the moment axis. The ele-
mental force acting on an element of area, then, is proportional to
distance times differential area, and the elemental moment is propor-
tional to distance squared times differential area. We see, therefore, that
the total moment involves an integral of form [ (distance)? d(area). This
integral is called the moment of inertia or the second moment of the
area. The integral is a function of the geometry of the area and occurs
frequently in the applications of mechanics. Thus it is useful to develop
its properties in some detail and to have these properties available for
ready use when the integral arises.

Figure A/1 illustrates the physical origin of these integrals. In part
a of the figure, the surface area ABCD is subjected to a distributed pres-
sure p whose intensity is proportional to the distance y from the axis
AB. This situation was treated in Art. 5/9 of Chapter 5, where we de-
scribed the action of liquid pressure on a plane surface. The moment
about AB due to the pressure on the element of area dA is py dA =
ky* dA. Thus, the integral in question appears when the total moment
M = k [ y? dA is evaluated.

427



428 AppendixA Area Moments of Inertia

Figure A/1

Figure A/2

In Fig. A/1b we show the distribution of stress acting on a trans-
verse section of a simple elastic beam bent by equal and opposite couples
applied to its ends. At any section of the beam, a linear distribution of
force intensity or stress o, given by o = ky, is present. The stress is
positive (tensile) below the axis O-O and negative (compressive) above
the axis. We see that the elemental moment about the axis O-0 is
dM = y(o dA) = ky? dA. Thus, the same integral appears when the
total moment M = % [ y? dA is evaluated.

A third example is given in Fig. A/1c, which shows a circular shaft
subjected to a twist or torsional moment. Within the elastic limit of the
material, this moment is resisted at each cross section of the shaft by a
distribution of tangential or shear stress 7, which is proportional to the
radial distance r from the center. Thus, 7 = kr, and the total moment
about the central axis is M = [ r(rdA) = k [ r? dA. Here the integral
differs from that in the preceding two examples in that the area is nor-
mal instead of parallel to the moment axis and in that r is a radial
coordinate instead of a rectangular one.

Although the integral illustrated in the preceding examples is gen-
erally called the moment of inertia of the area about the axis in question,
a more fitting term is the second moment of area, since the first moment
y dA is multiplied by the moment arm y to obtain the second moment
for the element dA. The word inertia appears in the terminology by
reason of the similarity between the mathematical form of the integrals
for second moments of areas and those for the resultant moments of the
so-called inertia forces in the case of rotating bodies. The moment of
inertia of an area is a purely mathematical property of the area and in
itself has no physical significance.

A/2 DEFINITIONS

The following definitions form the basis for the analysis of area mo-
ments of inertia.

Rectangular and Polar Moments of Inertia

Consider the area A in the x-y plane, Fig. A/2. The moments of
inertia of the element dA about the x- and y-axes are, by definition,
dIl, = y? dA and dl, = x% dA, respectively. The moments of inertia of
A about the same axes are therefore

(A/1)

where we carry out the integration over the entire area.
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The moment of inertia of dA about the pole O (z-axis) is, by similar
definition, dI, = r* dA. The moment of inertia of the entire area ahout
0 is

(A/2)

The expressions defined by Eqs. A/1 are called rectangular moments of
inertia, whereas the expression of Eq. A/2 is called the polar moment
of inertia.” Because x> + y® = r?, it is clear that

For an area whose boundaries are more simply described in rectangular
coordinates than in polar coordinates, its polar moment of inertia is
easily calculated with the aid of Eq. A/3.

The moment of inertia of an element involves the square of the
distance from the inertia axis to the element. Thus an element whose
coordinate is negative contributes as much to the moment of inertia as
does an equal element with a positive coordinate of the same magnitude.
Consequently the area moment of inertia about any axis is always a
positive quantity. In contrast, the first moment of the area, which was
involved in the computations of centroids, could be either positive, neg-
ative, or zero.

The dimensions of moments of inertia of areas are clearly L*, where
L stands for the dimension of length. Thus, the SI units for area mo-
ments of inertia are expressed as quartic meters (m*) or quartic milli-
meters (mm?). The U.S. customary units for area moments of inertia
are quartic feet (ft*) or quartic inches (in.%).

The choice of the coordinates to use for the calculation of moments
of inertia is important. Rectangular coordinates should be used for
shapes whose boundaries are most easily expressed in these coordinates.
Polar coordinates will usually simplify problems involving boundaries
which are easily described in r and 6. The choice of an element of area
which simplifies the integration as much as possible is also important.
These considerations are quite analogous to those we discussed and il-
lustrated in Chapter 5 for the calculation of centroids.

Radius of Gyration

Consider an area A, Fig. A/3a, which has rectangular moments of
inertia I, and I, and a polar moment of inertia I, about O. We now
visualize this area as concentrated into a long narrow strip of area A a
distance k&, from the x-axis, Fig. A/3b. By definition the moment of in-
ertia of the strip about the x-axis will be the same as that of the original
area if k,?A= I,. The distance k, is called the radius of gyration of the

*The polar moment of inertia of an area is sometimes denoted in mechanics literature by
the symbol /.
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area about the x-axis. A similar relation for the y-axis is written by con-
sidering the area as concentrated into a narrow strip parallel to the
y-axis as shown in Fig. A/3c. Also, if we visualize the area as concen-
trated into a narrow ring of radius %, as shown in Fig. A/3d, we may
express the polar moment of inertia as k,A = I_. In summary we write

(A/4)

The radius of gyration, then, is a measure of the distribution of the area
from the axis in question. A rectangular or polar moment of inertia may
be expressed by specifying the radius of gyration and the area.

When we substitute Eqs. A/4 into Eq. A/3, we have

(R2 =22+ 17) (A/5)

Thus, the square of the radius of gyration about a polar axis equals the
sum of the squares of the radii of gyration about the two corresponding
rectangular axes.

Do not confuse the coordinate to the centroid C of an area with the
radius of gyration. In Fig. A/3a the square of the centroidal distance
from the x-axis, for example, is ¥2, which is the square of the mean value
of the distances from the elements of the area to the x-axis. The quantity
k.2, on the other hand, is the mean of the squares of these distances.
The moment of inertia is not equal to Ay?, since the square of the mean
is less than the mean of the squares.

Transfer of Axes

The moment of inertia of an area about a noncentroidal axis may
be easily expressed in terms of the moment of inertia about a parallel
centroidal axis. In Fig. A/4 the x,-y, axes pass through the centroid C
of the area. Let us now determine the moments of inertia of the area
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about the parallel x-y axes. By definition, the moment of inertia of the
element dA about the x-axis is

dl, = (y, + d)?dA

Expanding and integrating give us

I = fygsz + 2dxjy0dA +dx2fdA

We see that the first integral is by definition the moment of inertia I,
about the centroidal xj-axis. The second integral is zero, since
[ v dA = Ay, and y,, is automatically zero with the centroid on the x-
axis. The third term is simply Ad,”. Thus, the expression for I, and the
similar expression for I, become

(A/6)

By Eq. A/3 the sum of these two equations gives
I, =1, + Ad? (A/6a)

Equations A/6 and A/6a are the so-called parallel-axis theorems. Two
points in particular should be noted. First, the axes between which the
transfer is made must be parallel, and second, one of the axes must pass
through the centroid of the area.

If a transfer is desired between two parallel axes neither of which
passes through the centroid, it is first necessary to transfer from one
axis to the parallel centroidal axis and then to transfer from the cen-
troidal axis to the second axis.

The parallel-axis theorems also hold for radii of gyration. With sub-
stitution of the definition of % into Egs. A/6, the transfer relation
becomes

k? = k2 + d? (A/6b)

where % is the radius of gyration about a centroidal axis parallel to the
axis about which % applies and d is the distance between the two axes.
The axes may be either in the plane or normal to the plane of the area.

A summary of the moment-of-inertia relations for some common
plane figures is given in Table D/3, Appendix D.
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Sample Problem A/1

Determine the moments of inertia of the rectangular area about the centro-
idal xy- and y,-axes, the centroidal polar axis z, through C, the x-axis, and the
polar axis 2z through O.

Solution. For the calculation of the moment of inertia I, about the x,-axis, a
horizontal strip of area b dy is chosen so that all elements of the strip have the
same y-coordinate. Thus,

h/2
e f ¥? dA] iR f_m ¥?b dy = $5bh? Ans.

By interchange of symbols, the moment of inertia about the centroidal y;-axis is

I, = $5hd? Ans.
The centroidal polar moment of inertia is
I, =1+ 1] I, = 0% + hb%) = LAG? + h?) Ans.
By the parallel-axis theorem the moment of inertia about the x-axis is
2
[, =1, + Ad 2 I, = $5bh® + bh (g) = h% = 3Ap? Ans.

We also obtain the polar moment of inertia about O by the parallel-axis theorem,
which gives us

2 2
I, = I, + Ad% I = 5A0% + %) + A [('23) + (g) }

I, = 1A®? + B? Ans.

Yy M
]
||
:dy
3 o
2 :;
#ﬁ .
h
2
l x

0 e
f——b ——

Helpful Hint

(D If we had started with the second-
order element dA = dx dy, integra-
tion with respect to x holding y
constant amounts simply to multi-
plication by & and gives us the ex-
pression y?b dy, which we chose at
the outset.

Sample Problem A/2

Determine the moments of inertia of the triangular area about its base and
about parallel axes through its centroid and vertex.

Solution. A strip of area parallel to the base is selected as shown in the figure,
and it has the area dA = xdy = [(h — y)b/h] dy. By definition

h 3 47k 3
hisiy P i) bh
Iy ) % 2 == ol ip TSN BRIATY A ERET (5
[I, jy dAls L J;} ¥k bdy =b [3 4, 13 Ans.
By the parallel-axis theorem the moment of inertia I about an axis through the
centroid, a distance h/3 above the x-axis, is

2

= bR bh\(h bh3

e ) AR G g el L e B OR
I =1- Ad“] T 12 (2)(3) 36 Ans.
A transfer from the centroidal axis to the x'-axis through the vertex gives

L bh3 bh\(2h ? bh?

= 2 I re—; — T .

[I =1+ Ad“] i 36+(2)(3) 7 Ans.

=]

Helpful Hints

(1) Here again we choose the simplest
possible element. If we had chosen
dA = dx dy, we would have to inte-
grate y* dx dy with respect to x first.
This gives us y*¢ dy, which is the ex-
pression we chose at the outset.

(2) Expressing x in terms of y should
cause no difficulty if we observe the
proportional relationship between
the similar triangles.
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Sample Problem A/3 pe
I

Calculate the moments of inertia of the area of a circle about a diametral

axis and about the polar axis through the center. Specify the radii of gyration. \ d
.ary
—x
Solution. A differential element of area in the form of a circular ring may be
used for the calculation of the moment of inertia about the polar z-axis through
O since all elements of the ring are equidistant from O. The elemental area is
dA = 27r dry, and thus,
r 4
o= jrz dAl = f ro(@mrg drg) = - = jAr* Ans.
2 Y
The polar radius of gyration is : dry,
'\:/\ ,
I i | /’\d ] ‘
B - k, = — Ans. [ A
J2 | 08 iro sin

By symmetry I, = I, so that from Eci. M RN T T e S R O o] T x
U, =1, + L] L=3L =T = Ans. ;
The radius of gyration about the diametral axis is 1

I r

[k 7 \/%} ke =3 Ans.  Helpful Hints

The foregoing determination of I, is the simplest possible. The result may
also be obtained by direct integration, using the element of area dA = r, dr, dé
shown in the lower figure. By definition

2 r
[, = J y2 dA] I = J f (rg sin 0)%rq dry d6
0 0

27 4 . D
r® sin“ 0
[rtsinte

(=]
W

S

Ans.

(1) Polar coordinates are certainly indi-
cated here. Also, as before, we choose
the simplest and lowest-order ele-
ment possible, which is the differen-
tial ring. It should be evident
immediately from the definition that
the polar moment of inertia of the
ring is its area 27 dry times 7>,

(2) This integration is straightforward,
but the use of Eq. A/3 along with the
result for I is certainly simpler.
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Sample Problem A/4

Determine the moment of inertia of the area under the parabola about the
x-axis. Solve by using (a) a horizontal strip of area and (b) a vertical strip of area.

Solution. The constant k = 3 is obtained first by substituting x = 4 and

y = 3 into the equation for the parabola.

(a) Horizontal strip. Since all parts of the horizontal strip are the same dis-
tance from the x-axis, the moment of inertia of the strip ahout the x-axis is y dA
where dA = (4 — x) dy = 4(1 — y?/9) dy. Integrating with respect to y gives
us

3 2
iL,= J y*dA] I = f 4y* (1 7 %) dy = % = 14.40 (units)* Ans.
0

(b) Vertical strip. Here all parts of the element are at different distances from
the x-axis, so we must use the correct expression for the moment of inertia of
the elemental rectangle about its base, which, from Sample Problem A/1, is
bh3/3. For the width dx and the height y the expression becomes

dl, = 3(dx)y®

To integrate with respect to x, we must express y in terms of x, which gives
y = 3./x/2, and the integral becomes

4 3
2
I, = éjﬂ (32_‘/;) dx = % = 14.40 (units)* Ans.

Solution (a)

—— —x

Solution (b)

L, X --AI-—dx -

Helpful Hint

(D There is little preference between So-
lutions (a) and (b). Solution (b) re-
quires knowing the moment of inertia
for a rectangular area about its base.

Sample Problem A/5

Find the moment of inertia about the x-axis of the semicircular area.

Solution. The moment of inertia of the semicircular area about the x'-axis is
one-half of that for a complete circle about the same axis. Thus, from the results
of Sample Problem A/3

1
LG g At

i‘l 2047
4

We obtain the moment of inertia I about the parallel centroidal axis x, next.
Transfer is made through the distance 7 = 4r/(3w) = (4)(20)/(3w) = 80/(3m)
mm by the parallel-axis theorem. Hence,

9 2
[T =T = Ad% I = 21047 - (202—")(—2%) = 1.755(10% mm?*

Finally, we transfer from the centroidal xy-axis to the x-axis. Thus,

i 2 2 2
(I =1+ Ad?] I, = 1.755(10%) + (M)(ls e -89)
2 3T

= 1.755(10%) + 34.7(10%) = 36.4(10*) mm* Ans.

Helpful Hint

(D This problem illustrates the caution
we should observe in using a double
transfer of axes since neither the x'-
nor the x-axis passes through the
centroid C of the area. If the circle
were complete with the centroid on
the x'-axis, only one transfer would
be needed.
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Sample Problem A/6 5
|
=
I

Calculate the moment of inertia about the x-axis of the area enclosed be-
tween the y-axis and the circular arcs of radius a whose centers are at O and A. > 1

Solution. The choice of a vertical differential strip of area permits one integra-
tion to cover the entire area. A horizontal strip would require two integrations
with respect to y by virtue of the discontinuity. The moment of inertia of the
strip about the x-axis is that of a strip of height y; minus that of a strip of height
y1. Thus, from the results of Sample Problem A/1 we write Ly 1y A

dl, = §(yp dx)ys® — 3(y; do)y,® = §(35° — 9% dx

The values of y, and y, are obtained from the equations of the two curves,
which are x> + y,°> = o® and (x — @)® + y,2 = % and which give y, =

JaZ — x2andy; = Va2 - (x — @)% Thus, Helpful Hint

(1) We choose the positive signs for the
J’ {@®-x)Ja? — 22— [a® - (x — a)?1Va? — (x — )2} dx radicals here since both y, and y, lie

ahove the x-axis.

Simultaneous solution of the two equations which define the two circles gives
the x-coordinate of the intersection of the two curves, which, by inspection, is
a/2. Evaluation of the integrals gives
a2 4 o
AT oL V3 AL
L a“va x 9 ( 9 3

_J:m e (_— % _)
%)

b
(¥

*—l% EID

—J' 02\a (g a}zdx =
0

/3
B

<,

|8

/2
r & — a)?Ja? - (x — a)2dx
0

W
el o

Collection of the integrals with the factor of % gives
4
=k 93 — 2m = 0.0969q* Ans.

If we had started from a second-order element dA = dx dy, we would write
¥? dx dy for the moment of inertia of the element about the x-axis. Integrating
from y, to y, holding x constant produces for the vertical strip

Y2
dl, = U 3 dy] dx = 5(y5° = 3% dx
Y1

which is the expression we started with by having the moment-of-inertia result
for a rectangle in mind.
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PROBLEMS

Introductory Problems

A/1 If the moment of inertia of the thin strip of area about
the x-axis is 2.56(10%) mm?, determine the area A of
the strip to within a close approximation.

Ans. A = 1600 mm?

y
\
\
[ l_T_'
\
| 40 lmm
OL. ___________ Ny

Problem A/1

A/2 Determine by direct integration the moment of inertia
of the triangular area about the y-axis.

¥

|

[

|

| FURSS
0 b

Problem A/2

A/3 The moments of inertia of the area A about the par-

allel p- and p'-axes differ by 50 in.* Compute the area
A, which has its centroid at C. _ -
Ans. A = 10 in.

-

~
,; 1”
AN

X

Problem A/3

A/4 The thin quarter-circular ring has an area of 1600
mm?. Determine the moment of inertia of the ring
about the x-axis to a close approximation.

Problem A/4

A/5 Determine the polar moments of inertia of the semi-
circular area about points A and B.
37 4
P M
’ ( 1 3)

3
Ans. IA = Z‘m"q, IB =

e ———x
A 0
Problem A/5

A/6 Calculate the moment of inertia of the shaded area
about the y-axis.

Problem A/6
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A/7 Show that the moment of inertia of the rectangular
area about the x-axis through one end may be used for
its polar moment of inertia about point O when b is
small compared with a. What is the percentage error

= ?
n when b/a = 1/107 Ans. n = —0.249%

|
|
o+ b
|
|
%

Problem A/7

A/8 Determine the moments of inertia I, and I, of the area
of the thin semicircular ring about the x- and y-axes.
Also find the polar moment of inertia I of the ring

about its centroid C.

Problem A/8

A/9 Calculate the moment of inertia of the rectangular
area about the x-axis and find the polar moment of
inertia about point O.

Ans. I, = 7.2(10% mm?, I, = 15.95(10%) mm*

y
|
|
0 f 25mm _
I
l 60 mm
100 mm
Problem A/9

Representative Problems

A/10 The area of the narrow strip of uniform width is 750
mm?. Using the fact that the width is small com-
pared with the length of the strip, approximate its
moment of inertia about the x-axis. Compare your
answer with the erroneous result of multiplying the
area by the square of its distance from its centroid
to the x-axis.

(s 8

= T = 100‘mm

50 mm

Problem A/10

A/11 Determine the polar radii of gyration of the trian-
gular area about points O and A.

Ans. kg = a, ky =

=

=}

Problem A/11

A/12 Determine the radius of gyration about a polar axis
through the midpoint A of the hypotenuse of the
right-triangular area. (Hint: Simplify your calcula-
tion by observing the results for a 30 X 40-mm rec-
tangular area.)

30 mm

Problem A/12
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A/13 Determine the rectangular and polar radii of gyra-
tion of the shaded area about the axes shown.
Ans. k, = 0.754, k, = 1.673,k, = 1.835

<’

(=]
or-r————— - ——— — —
I

Problem A/13

A/14 In two different ways show that the moments of in-
ertia of the square area about the x- and x'-axes are

the same.
x,
Fd
a 7
7
7
al2 W
7/
—,t—/ x
G
/s
al2 v
7
/
s
/
Problem A/14

A/15 Determine the polar radius of gyration of the area of
the equilateral triangle about the midpoint M of its
base.

SE

Ans. ky = 5

|
al2 M al2

Problem A/15

A/16 The moment of inertia about the x-axis of the rec-
tangle of area A is approximately equal to Ad? if i is
small compared with d. Determine and plot the per-
centage error n of the approximate value for h/d ra-
tios from 0.1 to 1. What is the percentage error for
h = d/4?

hi2

— [ e —=x;
{ h/2

Problem A/16

A/17 Calculate the moment of inertia of the shaded area
about the x-axis. Ans. I, = 9(10% mm?*

)"
\
|
|
|
|
|
|
|
|
|
|

Problem A/17

A/18 Determine the moment of inertia of the guarter-
circular area about the tangent x'-axis.

————x

Problem A/18
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A/19 Determine the moment of inertia of the shaded area A/22 Calculate by direct integration the moment of inertia
about the x-axis using (a) a horizontal strip of area of the shaded area about the x-axis. Solve, first, by
and (b) a vertical strip of area. 16ab® using a horizontal strip having differential area and,

Ans. I, = 205 second, by using a vertical strip of differential area.
y
y I
| | 4
4" x= ky2
————————— x
fffff x Problem A/22
Problem A/19 A/23 The Piane figure is symmetrical with2 respect to the
45° line and has an area of 1600 mm?®. Its polar mo-

A/20 Determine the moment of inertia about the x-axis ment of inertia about its centroid C is 40(10*) mm?,
and the polar radius of gyration about point O for Compute (@) the polar radius of gyration about O and
the semicircular area shown. (b) the radius of gyration about the x;-axis.

Ans. (@) kg = 45.3 mm, (b) kb, = 11.18 mm
e
L———x
Problem A/20
|
A/21 Determine the moments of inertia of the shaded area Problem A/23

about the x- and y-axes. Use the same differential . . . .
clemient for bothcaledlations: A/24 Determine the moments of inertia of the circular sec-

Ans. I, = a%/28, 1, = a*/20 tor about the x- and y-axes.
oy Ly

Problem A/24
Problem A/21
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A/25 Determine the radius of gyration about the y-axis of
the shaded area shown. Ans. k, = 53.1 mm

A/28 Calculate the moments of inertia of the shaded area
about the x- and y-axes, and find the polar moment
of inertia about point O.

Problem A/25

A/26 From considerations of symmetry show that I,, =

I, = I, = I, for the semicircular area regardless of

the angle a.

Problem A/26

A/27 Determine the moment of inertia of the shaded area
Aot e -Sue: Ans. I, = 27.8 (10%) mm*

8 ____L__x,mm
0 20 40

Problem A/27

Problem A/28

A/29 Determine the rectangular moments of inertia of the
shaded area about the x- and y-axes and the polar
radius of gyration about point O.

_b, 4 L B 4
Ans. I, = 4h(h WL, = 48h3(h a®)

1 BN e . s
\/5(1 + E}?)(h + a®)

ko

Problem A/29
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A/30 By the methods of this article, determine the rectan-
gular and polar radii of gyration of the shaded area
about the axes shown.

Problem A/30

» A/31 Calculate the moment of inertia of the shaded area
of the two overlapping circles about the x-axis.
Ans. I, = 0.1988r1

¥
\
ST
- >~
' ~
' o
% AN
/ N\ rd Y
/ r/ \
/ d P \
{ ; \
/
___:____ ’,,,,'L,,x
\ /
\ /
\ /
A\ /
N\ /
N s
~ e
~ -

Problem A/31

» A/32 A narrow strip of area of constant width & has the

form of a spiral r = k6. After one complete turn from
f# = 0to # = 2, the end radius to the spiral is R.
Determine the polar moment of inertia and the ra-
dius of gyration of the area about O.

Ans. I = 1.609R>b, by = 0.690R

Problem A/32
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A/3 CompPOSITE AREAS

It is frequently necessary to calculate the moment of inertia of an
area composed of a number of distinet parts of simple and calculable
geometric shape. Because a moment of inertia is the integral or sum of
the products of distance squared times element of area, it follows that
the moment of inertia of a positive area is always a positive quantity.
The moment of inertia of a composite area about a particular axis is
therefore simply the sum of the moments of inertia of its component
parts about the same axis. It is often convenient to regard a composite
area as being composed of positive and negative parts. We may then
treat the moment of inertia of a negative area as a negative quantity.

When a composite area is composed of a large number of parts, it is
convenient to tabulate the results for each of the parts in terms of its
area A, its centroidal moment of inertia I, the distance d from its cen-
troidal axis to the axis about which the moment of inertia of the entire
section is being computed, and the product Ad?. For any one of the parts
the moment of inertia about the desired axis by the transfer-of-axis the-
orem is I + Ad? Thus, for the entire section the desired moment of
inertia becomes I = X + SAd2.

For such an area in the x-y plane, for example, and with the notation
of Fig. A/4, where I, is the same as I,, and l_f‘, is the same as I, the
tabulation would include

Part Area, A | d, | d Ad,? Ad 2 I, I

y C- 'y x

Sums SA ZAd,? | z2Ad? | 31, | 3

From the sums of the four columns, then, the moments of inertia
for the composite area about the x- and y-axes become

I, = =1, + SAd?
I, = 51, + SAd?

Although we may add the moments of inertia of the individual parts
of a composite area about a given axis, we may not add their radii of
gyration. The radius of gyration for the composite area about the axis
in question is given by & = JI/A, where I is the total moment of inertia
and A is the total area of the composite figure. Similarly, the radius of
gyration k& about a polar axis through some point equals /I./A, where
I, = I, + I, for x-y axes through that point.
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Sample Problem A/7

Calculate the moment of inertia and radius of gyration about the x-axis for
the shaded area shown.

Solution. The composite area is composed of the positive area of the rectangle
(1) and the negative areas of the quarter circle (2) and triangle (3). For the
rectangle the moment of inertia about the x-axis, from Sample Problem A/1 (or
Table D/3), is

I, = 3AR? = %(80)(60)(60)* = 5.76(10°) mm*

From Sample Problem A/3 (or Table D/3), the moment of inertia of the negative
quarter-circular area about its base axis x' is

Sl rt r T gt 5 4
L. = 4( ¢ ) AT (30)* = —0.1590(10°) mm

We now transfer this result through the distance r = 4r/(37) = 4(30)/(37) =
12.73 mm by the transfer-of-axis theorem to get the centroidal moment of inertia
of part (2) (or use Table D/3 directly).

_ m(30°
4

I =1- Ad% I, = —0.1590(10%) — [ (12.73)2]

—0.0445(10%) mm*

The moment of inertia of the quarter-circular part about the x-axis is now

m(30)2

Il

=1+Ad% I, = —0.0445(10°% + [— ] (60 — 12.73)%

—1.624(10%) mm*

Finally, the moment of inertia of the negative triangular area (3) about its base,
from Sample Problem A/2 (or Table D/3), is

I, = —$5bh3 = —$5(40)(30)* = —0.09(10%) mm?*

The total moment of inertia about the x-axis of the composite area is,
consequently,

I. = 5.76(10%) — 1.624(10%) — 0.09(10°) = 4.05(10°) mm* Ans.

The net area of the figure is A = 60(80) — m(30)%2 — 1(40)(30) = 3490 mm?
so that the radius of gyration about the x-axis is

ke = JI,/JA = /4.05(10°)/3490 = 34.0 mm Ans.

(2)
S -
C
(1)

Helpful Hints

(1) Note that we must transfer the mo-
ment of inertia for the quarter-
circular area to its centroidal axis x;
before we can transfer it to the x-
axis, as was done in Sample Problem

A/5.

(2) We watch our signs carefully here.
Since the area is negative, both I and
A carry negative signs.

(@ If there had been more than the
three parts to the composite area, we

would have arranged a tabulation of

the T terms and the Ad? terms so as
to keep a systematic account of the
terms and obtain I = =1 + ZAd>
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PROBLEMS .
Introductory Problems i
A/33 Determine the moment of inertia about the x-axis of |

the square area without and with the central circular
hole.

Ans. I, = 21.3R* I, = 20.6R*
3
2R | 2R
|
[
2R
-
2R

Problem A/33

A/34 Determine the polar moment of inertia of the circu-
lar area without and with the central square hole.

Problem A/34

A/35 By the method of this article, determine the rectan-
gular and polar radii of gyration of the shaded area,
repeated here from Prob. A/30, about the axes
shown,

Ans. by, =k, = —

Problem A/35

A/36 Calculate the polar radius of gyration of the area of
the angle section about point A. Note that the width
of the legs is small compared with the length of each
leg.

ﬂ'-l r-'* 15"

15"

1.5"
-l
A R

20" 1

Problem A/36

A/37 The cross-sectional area of a wide-flange I-beam has
the dimensions shown. Obtain a close approximation
to the handbook value of I, = 657 in.* by treating
the section as being composed of three rectangles.

Ans. I, = 649 in.*

L x 1625
0.380" —| |~—
L_/ ;‘i

f
7.0 | g

Problem A/37



Article A/3 Problems 445

A/38 Determine the moment of inertia of the shaded area
about the x-axis in two ways. The wall thickness is
20 mm on all four sides of the rectangle.

20 mm — |~

Li 360 mm ————

Problem A/38

A/39 Determine the moments of inertia of the shaded area

about the x- and y-axes.
Ans. I, = 4940 I, = 3.37a*

e

Problem A/39

A/40 Calculate the moment of inertia of the shaded area
about the x-axis.

lA

90
mm
30
N . -
l<— 50 mm —><—50 mm —>]

Problem A/40

A/41 Calculate the moment of inertia of the cross section
of the beam about its centroidal xy-axis.
Ans. I, = 10.76(10°) mm?

Problem A/41

Representative Problems

A/42 Determine the moments of inertia of the Z-section
about its centroidal x(- and y,-axes.

=— 100 mm —+
|

20 mm

J‘Io
|
140 mm - "T
|

i
20 mm
7

<100 mm —~

Problem A/42

A/43 Determine the moment of inertia of the shaded area
about the x-axis in two different ways.

Ans.lxz%a4
4a
e
l — @ = | a
I _ e | Y,
| e

Problem A/43
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A/44 Determine the polar radius of gyration about point A/47 Calculate the polar radius of gyration about point O
A for the shaded area shown. of the area shown. Note that the widths of the ele-

ments are small compared with their lengths.
Ans. kg = 7.92 in.

80 mm

SHEES

Problem A/44

A/45 Derive the expression for the moment of inertia of
the trapezoidal area about the x-axis through its

bise: Ans. I, = £ + 3a)h3

Problem A/47

A/48 The rectangular area shown in part a of the figure is
split into three equal areas which are then arranged
as shown in part b of the figure. Determine an ex-

—X pression for the moment of inertia of the area in part

b b about the centroidal x-axis. What percent increase
Problem A/45 n over the moment of inertia for area a does this
represent if A = 200 mm and b = 60 mm?

A/46 A floor joist which measures a full 2 in. by 8 in. has
a l-in. hole drilled through it for a water-pipe in- ! ]
stallation. Determine the percent reduction n in the T
moment of inertia of the cross-sectional area about \
the x-axis (compared with that of the undrilled joist)
for hole locations in the range 0 = y = 3.5 in. Eval-

uate your expression for y = 2 in. h |11213|———x P 2— ——x
-2
= o
re—b- -
(a) (b)

Problem A/48

Section A

Problem A/46
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A/49 Develop a formula for the moment of inertia of the
regular hexagonal area of side a about its central

x-axis. 5\@ .
= ——a

Ans. I,
ns. I, 16

Problem A/49

A/50 Calculate the polar radius of gyration of the shaded
area about its centroid C.
100

Yo

a— —xp

L
500 |

Dimensions in millimeters

Problem A/50

A/51 Calculate the polar moment of inertia of the shaded
area about point O. g B = 0.552(10°) mm?*

Problem A/51

A/52 Determine the moment of inertia of the shaded area
about the x-axis.

Problem A/52

A/53 Calculate the moment of inertia of the standard
12 X 4-in. channel section about the centroidal x,-
axis. Neglect the fillets and radii and compare with
the handbook value of I, = 16.0 in.*

Ans. I, = 16.00 in.*

%1 < 0.65”

0.30"%

< 0.75"

197

Problem A/53

» A/54 For the 2 in. by 8 in. floor joist with the circular hole
of Prob. A/46, determine an expression for the per-
cent n by which the moment of inertia of the shaded
area about its centroidal x'-axis (parallel to x) is re-
duced from the moment of inertia of the complete
undrilled section about the x-axis. Express n in terms
of y for the range 0 = y = 3.5 in. Evaluate your ex-
pression fory = 2 in.

Ans.n = 0.1953 + 2.68y% n = 10.91%
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» A/55 For the H-beam section, determine the flange width
b which will make the moments of inertia ahout the
central x- and y-axes equal. (Hint: The solution of a
cubic equation is required here. Refer to Art. C/4 or
C/11 of Appendix C for solving a cubic equation.)
Ans. b = 161.1 mm

10mm»| l« —*—l ~— 10 mm

I 100 mm

Problem A/55

»A/56 Calculate the value of h for which I, = I, for the
shaded area shown. (Hint: Read the hint for the pre-

vious problem.) Ans. h = 20.0 mm

10
— it

y
|
|

10110
I
|
|
|
|
|
|

30 30
Dimensions in millimeters

Problem A/56
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A/4 Propucts OF INERTIA AND ROTATION OF AXES

In this article, we define the product of inertia with respect to rec-
tangular axes and develop the parallel-axis theorem for centroidal and
noncentroidal axes. In addition, we discuss the effects of rotation of axes
on moments and products of inertia.

Definition

In certain problems involving unsymmetrical cross sections and in
the calculation of moments of inertia about rotated axes, an expression
dl,, = xy dA occurs, which has the integrated form

(A/T)

where x and y are the coordinates of the element of area dA = dx dy.
The quantity I, is called the product of inertia of the area A with respect
to the x-y axes. Unlike moments of inertia, which are always positive for
positive areas, the product of inertia may be positive, negative, or zero.

The product of inertia is zero whenever either of the reference axes
is an axis of symmetry, such as the x-axis for the area in Fig. A/5. Here
we see that the sum of the terms x(—y) dA and x(+y) dA due to sym-
metrically placed elements vanishes. Because the entire area may be
considered as composed of pairs of such elements, it follows that the
product of inertia I, for the entire area is zero.

Transfer of Axes

By definition the product of inertia of the area A in Fig. A/4 with
respect to the x- and y-axes in terms of the coordinates x, vy to the
centroidal axes is

I, = j(xo + d)(y + dy) dA

=J'x0y0dA + dxfxodA +dyfy0dA + dxdyfdA

Figure A/4, Repeated

Figure A/5
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Area Moments of Inertia

The first integral is by definition the product of inertia about the cen-
troidal axes, which we write as Txy. The middle two integrals are hoth
zero because the first moment of the area about its own centroid is
necessarily zero. The fourth term is merely d,d,A. Thus, the transfer-
of-axis theorem for products of inertia becomes

(Ly =T, + d.d,A) (A/8)

Rotation of Axes

The product of inertia is useful when we need to calculate the mo-
ment of inertia of an area about inclined axes. This consideration leads
directly to the important problem of determining the axes about which
the moment of inertia is a maximum and a minimum.

In Fig. A/6 the moments of inertia of the area about the x'- and
y'-axes are

Ly = Jy’ZdA = J(ycos()—xsin 0)% dA
]y. =Jx'2dA = f{ysin9+xc05 0)2 dA

where x' and y’ have been replaced by their equivalent expressions as
seen from the geometry of the figure.

yoinf

Figure A/6

Expanding and substituting the trigonometric identities

= 26 1+ 20
sin28=1——;DS— cos29=—;—os—

and the defining relations for I, L, I, give us

Iy B, B0 !
= B * g cos 26 — L, sin 20 “
9)
I e e : /
e 3 = 5 cos 20 + I, sin 26
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In a similar manner we write the product of inertia about the in-
clined axes as

Ly = jx’y* dA = J (ysin # + x cos #)(y cos § — x sin ) dA
Expanding and substituting the trigonometric identities
sin 6 cos 6 = %sin 26 cos? 6 — sin® # = cos 26

and the defining relations for I,, I,, I.., give us

I. -1
[Ix.y. = = s ¥ sin 20 + I, cos 29] (A/9a)

Adding Eqs. A/9 gives I, + I, = I, + I, = L, the polar moment of
inertia about O, which checks the results of Eq. A/3.

The angle which makes I, and I, either maximum or minimum may
be determined by setting the derivative of either I,. or I, with respect
to 6 equal to zero. Thus,

T
0;—; = (Iy — I,) sin 20 — 21’,5_y cos 260 = 0

Denoting this critical angle by « gives

213-3’
[tan 2a = o IJ (A/10)

Equation A/10 gives two values for 2a which differ by , since tan 2« =
tan (2« + 7). Consequently the two solutions for « will differ by 7/2.
One value defines the axis of maximum moment of inertia, and the other
value defines the axis of minimum moment of inertia. These two rec-
tangular axes are called the principal axes of inertia.

When we substitute Eq. A/10 for the critical value of 26 in Eq. A/9a,
we see that the product of inertia is zero for the principal axes of inertia.
Substitution of sin 2« and cos 2a, obtained from Eq. A/10, for sin 26
and cos 26 in Eqgs. A/9 gives the expressions for the principal moments
of inertia as

i =5 0l 1
Imz"z ’+§J(Ix—1y)2+4rxy2
e (A/11)
il
Lo = " s R R ALE

Mohr’s Circle of Inertia

We may represent the relations in Eqs. A/9, A/9a, A/10, and A/11
graphically by a diagram called Mohr’s circle. For given-values of I, I,
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—

7 F F -=

,
H\

I‘I
Axis through P of
maximum moment
of inertia

e r———
|
|
|
|
|
\
\
\
—~

-

_l‘__

Figure A/7

and I, the corresponding values of /., I, and I,.,, may be determined
from the diagram for any desired angle #. A horizontal axis for the mea-
surement of moments of inertia and a vertical axis for the measurement
of products of inertia are first selected, Fig. A/7. Next, point A, which
has the coordinates (I,, I,,), and point B, which has the coordinates
(I, —1I,,), are located.

We now draw a circle with these two points as the extremities of a
diameter. The angle from the radius OA to the horizontal axis is 2« or
twice the angle from the x-axis of the area in question to the axis of
maximum moment of inertia. The angle on the diagram and the angle
on the area are both measured in the same sense as shown. The coor-
dinates of any point C are (I, I,,), and those of the corresponding point
D are (I, — I, ). Also the angle between OA and OC is 26 or twice the
angle from the x-axis to the x'-axis. Again we measure both angles in
the same sense as shown. We may verify from the trigonometry of the
circle that Eqs. A/9, A/9a, and A/10 agree with the statements made.
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Sample Problem A/8

Determine the product of inertia of the rectangular area with centroid at C
with respect to the x-y axes parallel to its sides.

Solution. Since the product of inertia fxy about the axes xy-yq is zero by sym-
metry, the transfer-of-axis theorem gives us

I, = 1, + d.d,A] I, = d.dbh Ans.
In this example both d, and d, are shown positive. We must be careful to be

consistent with the positive directions of d, and d, as defined, so that their proper
signs are observed.

o
Qe———-+—
|
|
|
|
—]
|
bl

=S

e
b

Sample Problem A/9

Determine the product of inertia about the x-y axes for the area under the
parabola.

Solution. With the substitution of x = @ wheny = b, the equation of the curve
becomes x = ay?/b>.

Solution I. If we start with the second-order element dA = dx dy, we have

dl,, = xy dx dy. The integral over the entire area is
b ra b 2,4
i a’y 1
I:jj dxdzf— 2——)d=—22 Ans.
0 G St e 6 Pagln B bl S BT 3

Solution II. Alternatively we can start with a first-order elemental strip and
save one integration by using the results of Sample Problem A/8. Taking a ver-
tical strip dA = y dx gives dI,, = 0 + &) (x)(y dx), where the distances to the
centroidal axes of the elemental rectangle are d, = y/2 and d, = x. Now we

haVe
fa 2 a
! = :,_ x dI = —_x fix = — x3 = _1a2b2 AnS.

Helpful Hint

(D If we had chosen a horizontal strip, our expression would have become
dl, - yia + x)[(@ — x) dy], which when integrated, of course, gives us the
same result as before.

Sample Problem A/10

Determine the product of inertia of the semicircular area with respect to the
X-y axes.

Solution. We use the transfer-of-axis theorem, Eq. A/8, to write

= 4r ar? 2rt
[Ixy = Ixy + dxdyA] Ly =00k (_ﬁ) (r) (T) = W Ans.

where the x- and y-coordinates of the centroid C ared, = +randd, = —4r/(3m).
Because y is an axis of symmetry, I,, = 0.

B

Helpful Hint

(1) Proper use of the transfer-of-axis
theorem saves a great deal of labor
in computing products of inertia.
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Sample Problem A/11

Determine the orientation of the principal axes of inertia through the cen-
troid of the angle section and determine the corresponding maximum and min-
imum moments of inertia.

Solution. The location of the centroid C is easily calculated, and its position is
shown on the diagram.

Products of inertia. The product of inertia for each rectangle about its cen-
troidal axes parallel to the x-y axes is zero by symmetry. Thus, the product of
inertia about the x-y axes for part I is

I, =1, +dd,Al I,=0+(-125)(+7.5)(400) = —3.75(10*) mm*
where d,=—(75+5)=-125 mm

and d, = +(20 - 10 — 2.5) = 7.5 mm

Likewise for part II,

Iy =1, +ddAl I, =0+ (12.5)(-7.5)(400) = —3.75(10%) mm*

where d, = +(20 - 7.5) = 125 mm, d,=—(5 + 2.5) = —-7.5 mm

For the complete angle

I, = —3.75(10%) - 3.75(10%) = -7.50(10*) mm*
Moments of inertia. The moments of inertia about the x- and y-axes for part

I are
=1+ Ad% I, = £(40)10° + (400)(12.5 = 6.58(10%) mm*
I, = 15(10)(40)* + (400)(7.5)% = 7.58(10*) mm*

and the moments of inertia for part II about these same axes are
I=T1+AdY I, =3(10)40)° + (400)(12.5)% = 11.58(10*) mm*
I, = 75(40)(10)® + (400)(7.5)* = 2.58(10*) mm*

Thus, for the entire section we have

I, = 6.58(10)* + 11.58(10%) = 18.17(10*) mm*
I, = 7.58(10%) + 2.58(10*) = 10.17(10*) mm*

Principal axes. The inclination of the principal axes of inertia is given by Eq.
A/10, so we have

21 2(-17.50)
tan 2a = e Ly g T T e S
|: an 2a TS Ix] tan 2a 1017 - 18.17 1.875
2a = 61.9° a = 31.0° Ans.

We now compute the principal moments of inertia from Egs. A/9 using «
for 6 and get I,,,,, from I, and I,.;;;, from I,.. Thus,

18.17 + 10.1 17 — 10.
R { BT > e 5 11 (0.471) + (7.50)(0.882):| (10%)
= 22.7(10%) mm* Ans.
At 10! 17 — 1017
Tt [18 i . LG B 5 L (0.471) — (7.50)(0.882)} (10*)

= 5.67(10%) mm* Ans.

y
10!
‘-HE“ 2.5 mm

50 mm
|
e,
| 7.5 mm
'y
| 10 mm
i o
|<: 40 mm ——
¥
2 I
Y |
\
\ |
N |
\ 1I |
\ dy l x’
4|
- "\r— | el
f | -
d N o
% |C///iw.a
B, | e %
ASTEEIA d.\'
I . f
|

Helpful Hint

Mohr’s circle. Alternatively we could use Eqs.
A/11 to obtain the results for I, and I ;. or we
could construct the Mohr circle from the calcu-
lated values of I, I, and I... These values are
spotted on the diagram to locate points A and B,
which are the extremities of the diameter of the
circle. The angle 2a and I, and I, are ob-
tained from the figure, as shown.

+l,,(10%) mm*

 Imax =227
I,=10.17

} 1, (10* mm*

A | L

20 = 61.9°

I, =-17.50
|

'

5.67 A
—— I,=18.17 J

-1, (10*) mm?*

xy?
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PROBLEMS

Introductory Problems

A/57 Determine the product of inertia of each of the four
areas about the x-y axes.
Ans. (@) and (¢): I, = 360(10*) mm*

(b) and (d): I, = — 360(10*) mm*

y
|
5050
. | .
| ' |
- |
& i(“’
|
o - | g SRR
N b
! : 60 40
N S S S
|
!(“ @] | i
30| A—A——-—-+-f60——
60
30

Dimensions in millimeters

Problem A/57

A/58 Determine the product of inertia about the x-y axes
of the circular area with three equal square holes.

Problem A/58

A/59 Determine I,, I,, and I, for the rectangular plate
with three equal circular holes.
Ans. I, = 2.44(10°) mm*, I, = 9.80(10%) mm*

I, = —14.14(10°) mm*

100 100
; -
o
%0 __mJ&_Tm_ﬁ&_m_ﬂ
|

Dimensions in millimeters

Problem A/59

A/60 Determine the product of inertia of each of the four
areas about the x-y axes.

]
|
—— 60 - 60—
25 ’— (b) : -} a)
|
— 50—t — -
| | 1
| 40
| | 80 I
eamas | — b e ] — x
i (c) | | [
] : | 40
sofNSIE. | o
| \ S ]
' 25
|
50 f

Dimensions in millimeters

Problem A/60
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A/61 Determine the product of inertia of the shaded area A/64 Obtain the product of inertia of the quarter-circular
about the x-y axes. 6 4 area with respect to the x-y axes and use this result
Ans. I, = 18.40(10°) mm X 5 G T s
i WO to obtain the product of inertia with respect to the
JI' parallel centroidal axes.
| y
L | : Yo
20 ' :
|
|
| — %
60 |
| - ——
|
‘:‘ ************* - Problem A/64

A/65 Solve for the product of inertia of the semicircular
Dimensions in millimeters area about the x-y axes in two different ways.
Ans. I, = 2
Problem A/61 w8

A/62 Determine the product of inertia of the shaded area
with respect to the assigned axes. (Hint: Locate the
centroid of the symmetrical area.)

e

Problem A/65

A/66 Determine the product of inertia of the rectangular
strip number 1 about the x-y axes. Assume that the
width b is small compared with the length L. From
this first result, determine the product of inertia for
each of the strips 2, 3, and 4. Verify that the sum of

Dimensions in millimeters

Problem A/62 the four results is zero.
quarter-circular ring about the x-y axes. Treat the

A/63 Determine the product of inertia of the area of the Jl’ B?ﬁ .
“
I b
case where b is small compared with r. |
|

Problem A/66

Problem A/63
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A/67 Determine the product of inertia of the shaded area

about the x-y axes. 2

b

Problem A/67

Representative Problems

A/68 Derive the expressions for the product of inertia of
the right-triangular area about the x-y axes and

about the centroidal x;-y, axes.

Problem A/68

A/69 Derive the expression for the product of inertia of the
right-triangular area about the x-y axes. Solve, first,
by double integration and, second, by single integra-
tion starting with a vertical strip as the element.

b%h?

Ans. I, = 3

h

S —

b

Problem A/69

Ans. I, = $5a%?

A/T0 Determine the product of inertia of the rhombic area
about the x-y axes. (Hint: Regard the area as a com-
bination of a rectangle and triangles and use the re-
sults of Prob. A/69.)

Problem A/70

A/T1 Calculate the product of inertia of the shaded area
about the x-y axes. (Hint: Take advantage of the

transfer-of-axes relations.) Ans. I, = 1968 ind

Problem A/71

A/72 The products of inertia of the shaded area with re-
spect to the x-y and x'-y' axes are 8(10%) mm?* and
—42(10°) mm*, respectively. Compute the area of the
figure, whose centroid is C.

y

¥
|

[ 50 mm
- |

Problem A/72
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A/73 Determine the moments and product of inertia of the A/77 Determine the maximum and minimum moments of

quarter-circular area with respect to the x'-y" axes. inertia with respect to axes through C for the com-

g, B, = r (e, B i T (= + J3) posite of the two areas shown. Find the angle a mea-
s AT AL hiy = T sured counterclockwise from the x-axis to the axis of
% r maximum moment of inertia. Make use of the results
T of Prob. A/68.
16 / Ans. I, = 3.79a*
y Inin = 0.373a*
¥ ' @ = 1115°
N

A y

X |

\ |

\ |

\
\
\ a
\
X 3 /30(I 2a C .
S ———x
r 2a
a
Problem A/73
A/74 Determine the moments and product of inertia of the |
area of the square with respect to the x'-y’ axes. | Problem A/77

¥ | A/78 Sketch the Mohr cirele of inertia for each of the four

: rectangular areas with the proportions and positions
|

:r'; shown. Indicate on each diagram point A which has
\ % coordinates (I, I,,) and the angle 2@, where a is the
\\ b - = angle from the x-axis to the axis of maximum mo-
\ it ment of inertia.
\ [ 3/0[: .

Problem A/74

A/75 Determine the maximum and minimum moments of
inertia with respect to centroidal axes through C for
the composite of the four square areas shown. Find
the angle @ measured from the x-axis to the axis of
maximum moment of inertia. Ans. I, = B.57a%

Lin = 1.097a*
a = 103.3°

y
|
|

a a

a a
C ——x
a a
a a
Problem A/75

Problem A/78

A/76 Prove that the magnitude of the product of inertia
can be computed from the relation

Ix_v = \""Ix‘l:v - ImaxImin'
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A/19 Find I, and I, for the shaded area and show that the
x-y axes are principal axes of inertia.
Ans. I, = 0.446b I, = 0.2800*

Problem A/79

A/80 Determine the minimum and maximum moments of
inertia with respect to centroidal axes through C for
the composite of the two rectangular areas shown.
Find the angle « measured from the x-axis to the axis
of maximum moment of inertia.

¥
L
E
\

- ——x

Problem A/80

The maximum and minimum moments of inertia of
the shaded area are 12(10%) mm?* and 2(10%) mm?,
respectively, about axes passing through the centroid
C, and the product of inertia with respect to the x-y
axes has a magnitude of 4(10°) mm®. Use the proper
sign for the product of inertia and calculate I, and
the angle a measured counterclockwise from the x-
axis to the axis of maximum moment of inertia.
Ans. I, = 10(10% mm?*, & = 26.6°

A/81

Problem A/81

A/82 The moments and product of inertia of an area with
respect to the x-y axes are I, = 14 in.*, I, = 24 in.*,
and I, = 12 in.* Construct the Mohr circle of inertia
and use it to determine the principal moments of in-
ertia and the angle a from the x-axis to the axis of
maximum moment of inertia.

A/83 Determine the maximum moment of inertia about an
axis through O and the angle & to this axis for the
triangular area shown. Also construct the Mohr cir-

cle of inertia. 4 0 1 = 183.6in a = —16.85°

Yy
|
|

8”

Problem A/83

A/84 Calculate the maximum and minimum moments of
inertia of the structural angle about axes through its
corner A and find the angle « measured counter-
clockwise from the x-axis to the axis of maximum
moment of inertia. Neglect the small radii and fillet.

Y
—= =10 mm
|

A )

80 mm
10 mm

\

1
j_:Jx
AL 60 mm —-)J T

Problem A/84




460 AppendixA Area Moments of Inertia

@ Computer-Oriented Problems

*A/85 Plot the moment of inertia of the shaded area about
the x'-axis as a function of # from 6 = 0 to 8 = 90°
and determine the minimum value of 1. and the
corresponding value of £.

Ans. L. . = 2.09 in, 6§ = 67.5°

NS =

"
3 P

Problem A/85

*A/86 Plot the moment of inertia about the x'-axis as a
function of # from # = 0 to # = 90° and determine
the minimum value of I and the corresponding
value of 6.

50 mm

_____ ] : s g

30 mm

Problem A/86

*A/87 Plot the moment of inertia of the shaded area about
the x'-axis as a function of @ from 6 = 0 to 6 = 180°.
Determine the maximum and minimum values of

I, and the corresponding values of # from the

graph. Check your results by applying Eqs. A/10

and A/11. Ans. Iy, = 0.655b% at 6 = 45°
Iin = 0.4056* at 6 = 135°

Problem A/87

*A/88 Plot the moment of inertia of the Z-section area
about the x'-axis as a function of # from 6 = 0 to #
= 90°. Determine the maximum value of I, and the
corresponding value of 6 from your plot, then verify
these results by using Eqs. A/10 and A/11.

Lﬁ*50mm—>1

IOmEH

l Y

IO
|

__+___x0
|

70 mm =7

— <10 mm

- ﬁtmm
Ff 50 mm *>—|—f

Problem A/88
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*A/89 Plot the moment of inertia of the shaded area about
the x’-axis as a function of 6 from # = 0 to # = 180°.
Determine the maximum and minimum values of
I, and the corresponding values of 6.

Ans. I, = 0.286b* at 6 = 131.1°

Iin = 0.0547b% at 0 = 41.1°

Y
\
\

P -

ECA

bi2 bl2

———x

Problem A/89

*A/90 Determine the moment of inertia of the shaded area
about the x'-axis through O in terms of 6 and plot
it for the range # = 0 to @ = 180°. Find the maxi-
mum and minimum values and their corresponding
angles 6.

120

0 240
Dimensions in millimeters

Problem A/90
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Appendix

MAss MOMENTS
OF INERTIA

See Vol. 2 Dynamics for Appendix B, which fully treats the concept
and calculation of mass moment of inertia. Because this quantity is an
important element in the study of rigid-body dynamics and is not a fac-
tor in statics, we present only a brief definition in this Statics volume
so that the student can appreciate the basic differences between area
and mass moments of inertia.

Consider a three-dimensional body of mass m as shown in Fig. B/1.
The mass moment of inertia I about the axis O-0 is defined as

I = jr'Qdm

where r is the perpendicular distance of the mass element dm from the
axis O-0 and where the integration is over the entire body. For a given
rigid body the mass moment of inertia is a measure of the distribution
of its mass relative to the axis in question, and for that axis is a constant
property of the body. Note that the dimensions are (mass)(length)2,
which are kg-m? in ST units and lb-ft-sec? in U.S. customary units. Con-
trast these dimensions with those of area moment of inertia, which are
(length)*, m* in SI units and ft* in U.S. customary units.

0

Figure B/1

463
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Appendix

C/2 PLANE GEOMETRY

SELECTED ToPICS
OF MATHEMATICS

C/1 INTRODUCTION

Appendix C contains an abbreviated summary and reminder of se-
lected topics in basic mathematics which find frequent use in mechanics.
The relationships are cited without proof. The student of mechanics will
have frequent occasion to use many of these relations, and he or she will
be handicapped if they are not well in hand. Other topics not listed
will also be needed from time to time.

As the reader reviews and applies mathematics, he or she should bear
in mind that mechanics is an applied science descriptive of real bodies and
actual motions. Therefore, the geometric and physical interpretation of
the applicable mathematics should be kept clearly in mind during the de-
velopment of theory and the formulation and solution of problems.

1. When two intersect-
ing lines are, respec-
tively, perpendicular
to two other lines,
the angles formed by

4. Circle

Circumference = 27r
Area = 72
8, \|_ Arc length s = ro

the two pairs are equal.

2. Similar triangles

0 R )
RIS

] 1.2
1 —— = 129
6.=06, Sector area = 3

5. Every triangle inscribed
within a semicircle is
¥ a right triangle.

3. Any triangle
Area = %bh

6. Angles of a triangle

Hl+92+93:1800
i 0y, = 0, + O,
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C/3 SoLip GEOMETRY

1. Sphere

Volume = 33

Surface area = 4mr?

2. Spherical wedge

Volume = %3¢

C/4 ALGEBRA

3. Right-circular cone

. Any pyramid or cone

Volume = %m‘zh

Lateral area = mrL

L= \I‘2+h2

Volume = %Bh
where B = area of base

1. Quadratic equation
ax? + bx + ¢ =0

o 0E Vb - da

C, b2 = 4ac for real roots
2a

2. Logarithms

b* =y, x = logy y
Natural logarithms

b=e = 2718 282
e =y,x = log,y = Iny

log (ab) = loga + logb
log (a/b) = loga — logb
log (1/n) = —logn

log a™ = nloga

logl =0

logjgx =

3. Determinants
2nd order

0.4343 In x

a; by
Ay b2

3rd order

= ajby — ayh,

a; by ¢
Ay b2 Co| = +alb2(.'3 7 b a2b3cl + a3b102
ag by c3 —agbocy — agbicy — absey

. Cubic equation

x*=Ax + B
Letp = A/3,q = B/2.

Case I: g2 — p” negative (three roots real and
distinct)

cosu = q/(pJp), 0 < u < 180°

2./p cos (u/3)

X1
xy = 2/p cos (u/3 + 120°)
x3 = 2p cos (u/3 + 240°)

Case II: g% — p? positive (one root real, two
roots imaginary)

Xy = (q + \/q2 _ p3)1f3 + (q . \"qu _p3)1/3

Case III: ¢% — p® = 0 (three roots real, two
roots equal)

= 1/3 gan — 1/3
X = 297, x9 = x3 = —q

For general cubic equation

B t+axl+bx+e=0
Substitute x = x, — a/3 and get x,®> = Ax, +
B. Then proceed as above to find values of x,
from which x = x, — a/3.
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C/5 ANALYTIC GEOMETRY

1. Straight line 3. Parabola
¥ Y
| |
|
| A m
|
e 1
(N— "
y=a+mx
2. Circle 4. Ellipse
y ¥y y
! \ 5
\
\
\
ey L — =
\
bl o
‘ 2 A, |
W2 4yt=r? L 1y a2 b2

a
(x—a)l+(y-bP=r*

5. Hyperbola

C/6 TRIGONOMETRY

1. Definitions I 1 I v
sin # = a/c csc =c/a S @ - R .

cos = b/c sec O =c/b i B

tan 6 = a/b cot # = b/a 5 6656 0 + _ _ 4

2. Signs in the four quadrants —_— + e 4 =

(+) 1 I ) csc + + - =

M‘B(H (-) \<I|? (=) Bf + ef'/J(\\ (+) sec 0 + - - +

1 7 |>I?
(-) (-) cot 0 + = + =
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Selected Topics of Mathematics

3.

Miscellaneous relations

sin? 6 + cos2 6 = 1
1 + tan® § = sec? 6
1 + cot? 6 = csc? 0

.0 T
sin o = V5(1 — cos )

2
H e J17
cos ~tha 5(1 + cos 6)

sin 20 = 2 sin 6 cos 0

cos 20 = cos® 6 — sin® 0

sin (a = b) = sina cosb * cosasin b
cos (@ = b) = cosacosb + sina sin b

C/7 Vector OPERATIONS

4. Law of sines

a sin A

b sin B

5. Law of cosines

2 =a% + b2 — 2ab cos C
2 =a% + b2 + 2ab cos D

. Notation.

. Unit vectors

Vector quantities are printed in boldface type, and sca-
lar quantities appear in lightface italic type. Thus, the vector quan-
tity V has a scalar magnitude V. In longhand work vector quantities

e
: /

should always be consistently indicated by a symbol such as Vor V

to distinguish them from scalar quantities.

. Addition

Triangle addition P + @ = R

Parallelogram addition P + @ = R
Commutative law P + Q = Q + P
Associativelaw P + (Q + R) = (P + Q) + R

. Subtraction

P-Q=P+ (-Q

ij k
V=Vi+Vj+Vk

k -
where V=V =Jv2+ Vy2 + V,2 i/’/ ’1\\\
sz ~ | \\IV
. Direction cosines [, m, n are the cosines of the angles hetween : 3 T :” 5
V and the x-, y-, z-axes. Thus, I ’!/ } Y
I \ |
1=VJ/V m=V/V n=V/V %jv\\u |
<
so that V = Vli + mj + nk) o | -
and P+m24+n2=1 iVxKi
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6. Dot or scalar product

Q

P-Q = PQcos 0 (]
This product may be viewed as the magnitude of P multiplied by P
the component & cos 0 of Q in the direction of P, or as the magni-
tude of Q multiplied by the component P cos 6 of P in the direction Q -ff Q
of Q. i '_,4*«;_7- Pcos @

Commutative law P-Q = Q-P -~
P

From the definition of the dot product
ii=jj=kk=1
i'j=jii=ik=ki=jk=kj=0

P-Q=(Pi + Pj+ Pk)(@i + Q) + @k
=PQ, + PQ, + P.Q,
PP = PF 4 PE a4 P

It follows from the definition of the dot product that two vec-
tors P and Q are perpendicular when their dot product vanishes,
P-Q = 0.

The angle 6 between two vectors P; and P, may be found from
their dot product expression P,-Py = PP, cos 6, which gives
Pl.I)2 B PIA‘PZ.[ =t P].J,P?.y + P].:PQ,_

PPy P,P,

cos 0 = =Ll + mymgy + nyny

where [, m, n stand for the respective direction cosines of the vec-
tors. It is also observed that two vectors are perpendicular to each
other when their direction cosines obey the relation /;l, + mm,
+ nqng = 0.

Distributive law P-Q+R) =P-Q+ PR

7. Cross or vector product. The cross product P x Q of the two
vectors P and Q is defined as a vector with a magnitude

P x Q = PQ sin ¢

and a direction specified by the right-hand rule as shown. Reversing
the vector order and using the right-hand rule give @ x P =
-P x Q.

Distributive law Px@Q@+R)=PxQ+PxR

From the definition of the cross product, using a right-handed
coordinate system, we get

ixj=k ixk=1 kxi=]j
jxi=-k kxj=-i ixk=—j
ixi=jxj=kxk=0
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8.

With the aid of these identities and the distributive law, the vector
product may be written

PxQ=(Pi+Pj+ Pk x @i+ Q,j+ @k
- (JP‘VQZ - PzQy)i + (PzQx - PxQz)j + (Pny - Per)k

The cross product may also be expressed by the determinant

i j k
PxQ=|P, P, P,
Q: Q @

Additional relations

Triple scalar product (P X Q)-R = R-(P x Q). The dot and cross
may be interchanged as long as the order of the vectors is main-
tained. Parentheses are unnecessary since P x (Q-R) is meaning-
less because a vector P cannot be crossed into a scalar @ -R. Thus,
the expression may be written

PxQR=PQxR

The triple scalar product has the determinant expansion

P, P, P,
PxQR=|Q @ Q.
R, R, R,

Triple vector product (P x Q) x R = -R x (P x Q) = R x
(Q x P). Here we note that the parentheses must be used since an
expression P X @ x R would be ambiguous because it would not
identify the vector to be crossed. It may be shown that the triple
vector product is equivalent to

P xQ xR
or Px(Q x R)

R-PQ — R-QP
P-RQ — P-QR

The first term in the first expression, for example, is the dot product
R-P, a scalar, multiplied by the vector Q.

9. Derivafives of vectors obey the same rules as they do for scalars.

P =hi+hj+bk
dPu) = Pi + Pu
dt
arP-Q _ o o o
TR P-Q + P-Q
dP x Q)

g7 PxQ+PxQ
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10. Integration of vectors. If V is a function of x, y, and z and an
element of volume is dr = dx dy dz, the integral of V over the
volume may be written as the vector sum of the three integrals of
its components. Thus,

deT:ifde+jfde+kjndr

C/8 SERIES
(Expression in brackets following series indicates range of
convergence.)
— -1 i i
1+x)"=1=nx+ n(nw LY x2 =+ B 3)|(n )x3 + < 1]
~ == x3+x5_x7+... [2<oo
sinx =x — PR X |
2 4 6
mf L ET A 2
cosx =1 25+4! 6!+ [x* < oo
) X _ X P 7 i
sinh x = g Sttt [x% < o]
e +e ™ x2 x5 9
cosh x = 7 =1+5+E+_f+ [x? < =]
- X - n
Flx) = 20 4 > ancosn— + > b, sin —
2 n=1 l n=1 l

l !
where a, = % J f(x) cos ? dx, b, = % f flx) sin ? dx
-1 I

[Fourier expansion for —/ < x < []

C/9 DERIVATIVES

d(g) du  dv
n v U0 — U
de ., duw) " dv . du _dx dx
= nx =u— —, =
' dx dx dx dx v2
lim sin Ax = sindx = tandx = dx
Ax—0
lim cos Ax = cosdx =1
Ax—0
d sin x . d cos x st 3 d tan x i
— 5 —

dx ’ dx ? dx
d sinh ; d cosh d tanh
SEY _ cosh x, &SN _ dnh x, SHRHRE _ sech®x

dx dx dx
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C/10 INTEGRALS

xn+1
oy =
o= T
fd_x = Ilnx
X

2
f Ja + bx dx = % J@ + bx)?

2 e
jx\fa + bx dx = 152 (3bx — 2a)J(a + bx)3

fxz\,/a + bx dx = 10553 (8a? — 12abx + 156%%)(a + bx)®
dx _ 2Ja + bx
Ja + bx b
\/ + ——— e +
f;—_zdx— ~Ja + xyb — x + (@ + b) sin? z+z
x dx 1
S + bx — -
fa T B bz [@a + bx — aln (a + bx)]
j x dx ~a + b))t (a + bx _a
(@ + bx)" b2 2—n 1-n
J’ dx 1 1 x\/rE 1 L xy—ab
——— = —tan " —— or tanh ™ ——
a+ b g a = a
xdx 1 2
fa +bx2—2bln(a+bx)

f Va2t a?dx = glx/x® a2 £ a’ln (& + /o = a?)]

e T3 vl
f\’az — x?dx = %(x\a 2 + a?sin 1—)
a

xqa 2dx = “—,f(a, 2)3

2

2

X =535 a o -

fx2\/a2 —x2dx = —Z \,r’(.'_];2 — x2)3 + E (x\/az — x2 + a2 sin 15)
3 / 1,6

ngv’a2 — x2dx = — 3% + 229 J/(@® — 23
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[ =2 - ln(ETmra sk ) o haw(LEE)

Ja + bx + cx? Ve 2/c J—c Vb2 — dac
L =In(x + /x2ia2)
vfxz + g2
J dx Y
= gin ' =
2 — 2 a

x dx
J—= +Ja? + 22
Jaztxz

J'x\/xz +g2dx = %\/(xz + g2)3
2 4
—— x a a
szxfxg +g2dx = 1 Jx2 + g3 F Ex\/x2 ta? - g In (x + JVx? + a2
sinx dx = —cosx

cos x dx = sin x

_ — —_— L —
&
Q
8
Il

1 i 1 + sinx

2 1 - sinx
sin? x dx = % _ Sin42x
cos? x dx = e sin42x
J sin x cos x dx sin: i

J sinh x dx = cosh x
j cosh x dx = sinh x
J‘ tanh x dx = In cosh x

jlnxdx:xlnx —x
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X

¢
Je"x dx = —

a

ea.‘r
J‘xe‘” dx = == {ag — 1)
a

e™(a sin px — p cos px)

aZ +P2

j €™ sin px dx =

e™(a cos px + p sin px)

™ cos px dx =

a2+p2
ax o:.2 e .2 . 2
e sin®x dx = 3 |@sin®x — sin 2x + —
4 + a a
ax 2 e” 2 : 2
e™ cos® x dx = 5 |@cos®x + sin 2¢x + —
4 +a a

e a
e™ sin x cos x dx = — sin 2x — cos 2x

4 + g2 \2
sin x dx = _co;x (2 + sin?x)
.
cos® x dx = 1r31x (2 + cos? x)

cos xdx = sinx — §sin®x + Lsin®x

xsinxdx = sinx — x cosx

|

xcosxdx = cosx + xsinx
x®sinxdx = 2xsinx — (x2 — 2) cosx

x2cosxdr = 2xcosx + (x2 — 2)sinx

(T

Pxy =

d?
Radius of J dx®
curvature 5 dr\31]32

Prao

- A R 5
2+2|=) —r—5
\ 4 (dg) F dﬁz
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C/11 NEeEwToN’s METHOD FOR SOLVING
INTRACTABLE EQUATIONS

Frequently, the application of the fundamental principles of me-
chanics leads to an algebraic or transcendental equation which is not
solvable (or easily solvable) in closed form. In such cases, an iterative
technique, such as Newton’s method, can be a powerful tool for obtain-
ing a good estimate to the root or roots of the equation.

Let us place the equation to be solved in the form f(x) = 0. Part a
of the accompanying figure depicts an arbitrary function f(x) for values
of x in the vicinity of the desired root x,. Note that x,. is merely the value

flx)

fix)

: Tangent to

| flx)atx =y
\
\

T Xy Xy

(a) (b)

of x at which the function crosses the x-axis. Suppose that we have avail-
able (perhaps via a hand-drawn plot) a rough estimate x; of this root.
Provided that x; does not closely correspond to a maximum or minimum
value of the function f(x), we may obtain a better estimate of the root
x, by extending the tangent to f(x) at x; so that it intersects the x-axis
at xo. From the geometry of the figure, we may write

flxy)

tan 8 = f'(xy) =
fixg 5 —

where f'(x;) denotes the derivative of f(x) with respect to x evaluated
at x = x,. Solving the above equation for x, results in

Xg = X9 —

The term —f(x,)/f"(x,) is the correction to the initial root estimate x;.
Once x, is calculated, we may repeat the process to obtain x5, and so
forth.

Thus, we generalize the above equation to

f(xk)
X = Xp —
k+1 k f,{xl.v)
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where

Xp.1 = the (R + 1)th estimate of the desired root x,.

%, = the kth estimate of the desired root x,.
flxy) = the function f(x) evaluated at x = x,
f'(x) = the function derivative evaluated atx = x;,

This equation is repeatedly applied until f(x,.;) is sufficiently close to
zero and x,.1 = x;. The student should verify that the equation is valid
for all possible sign combinations of x,, f(x;), and f'(x,).

Several cautionary notes are in order:

1. Clearly, f'(x;) must not be zero or close to zero. This would mean,
as restricted above, that x; exactly or approximately corresponds to
a minimum or maximum of f(x). If the slope f'(x;) is zero, then the
tangent to the curve never intersects the x-axis. If the slope f'(x;)
is small, then the correction to x;, may be so large that x;,; is a
worse root estimate than x;,. For this reason, experienced engineers
usually limit the size of the correction term; that is, if the absolute
value of f(x,)/f'(x;) is larger than a preselected maximum value,
that maximum value is used.

2. If there are several roots of the equation f(x) = 0, we must be in
the vicinity of the desired root x,. in order that the algorithm actually
converges to that root. Part b of the figure depicts the condition
when the initial estimate x; will result in convergence to x,, rather
than x,. .

3. Oscillation from one side of the root to the other can occur if, for
example, the function is antisymmetric about a root which is an
inflection point. The use of one-half of the correction will usually
prevent this behavior, which is depicted in part ¢ of the accompa-

nying figure.

Example: Beginning with an initial estimate of x; = 5, estimate the
single root of the equation ¢* — 10 cos x — 100 = 0.

The table below summarizes the application of Newton’s method to
the given equation. The iterative process was terminated when the ab-
solute value of the correction —f(x;)/f'(x;) became less than 1075.

k x Flay) ) s e g 1 J{(éi))
1 5.000 000 45.576 537 138.823 916 -0.328 305
2 4.671 695 7.285 610 96.887 065 —-0.075 197
3 4.596 498 0.292 886 89.203 650 —0.003 283
4 4.593 215 0.000 527 88.882 536 —0.000 006
5 4.593 209 —-2(10°8) 88.881 956 2.25(10°19)
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C/12 SELECTED TECHNIQUES FOR
NUMERICAL INTEGRATION

1. Area determination. Consider the problem of determining the
shaded area under the curve y = f(x) fromx = a tox = b, as depicted
in part a of the figure, and suppose that analytical integration is not
feasible. The function may be known in tabular form from experimental
measurements or it may be known in analytical form. The function is
taken to be continuous within the interval ¢ < x < b. We may divide
the area into n vertical strips, each of width Ax = (b — a)/n, and then
add the areas of all strips to obtain A = [ y dx. A representative strip
of area A; is shown with darker shading in the figure. Three useful nu-
merical approximations are cited. In each case the greater the number
of strips, the more accurate becomes the approximation geometrically.
As a general rule, one can begin with a relatively small number of strips
and increase the number until the resulting changes in the area ap-
proximation no longer improve the desired accuracy.

(a)

Rectangular
Ai :ynle
Yi+l1 Ym A =f_y de):ymﬂx

I. Rectangular [Figure (b)] The areas of the strips are taken to be
rectangles, as shown by the representative strip whose height y,, is cho-
sen visually so that the small cross-hatched areas are as nearly equal as
possible. Thus, we form the sum Xy, of the effective heights and mul-
tiply by Ax. For a function known in analytical form, a value for y,,
equal to that of the function at the midpoint x; + Ax/2 may be calcu-
lated and used in the summation.

II. Trapezoidal [Figure (¢)] The areas of the strips are taken to be
trapezoids, as shown by the representative strip. The area A; is the av-
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erage height (y; + y;.1)/2 times Ax. Adding the areas gives the area
approximation as tabulated. For the example with the curvature shown,
clearly the approximation will be on the low side. For the reverse cur-
vature, the approximation will be on the high side.

. Trapezoidal

T
A,‘=J! Yied )
2
' y
A=,[-de§ J§U+y]+y2+___+y”71+~21 Ax
Yi+1

Parabolic

AA= %U’i +4¥; 1 +Yi2)Ax

1
Yies A= fy dx= ?(y” +4yy + 2yo +4yg + 2y
+o 4 2y, o+ 4y, _1+y)Ax

ITI. Parabolic [Figure (d)] The area between the chord and the
curve (neglected in the trapezoidal solution) may be accounted for hy
approximating the function by a parabola passing through the points
defined by three successive values of y. This area may be calculated from
the geometry of the parabola and added to the trapezoidal area of the
pair of strips to give the area AA of the pair as cited. Adding all of the
AA’s produces the tabulation shown, which is known as Simpson’s rule.
To use Simpson’s rule, the number n of strips must be even.

Example: Determine the area under the curve y = x 1 + x2 from
x = 0tox = 2. (An integrable function is chosen here so that the three
approximations can be compared with the exact value, which is A =
Jex V1 + 22dx = 32 + %% = 15/5 - 1) = 3.393 447))

AREA APPROXIMATIONS
NUMBER OF
SUBINTERVALS RECTANGULAR TRAPEZOIDAL PARABOLIC
4 3.361 704 3.456 731 3.392 214
10 3.388 399 3.403 536 3.393 420
50 3.393 245 3.393 850 3.393 447
100 3.393 396 3.393 547 3.393 447
1000 3.393 446 3.393 448 3.393 447

2500 3.393 447 3.393 447 3.393 447
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Note that the worst approximation error is less than 2 percent, even
with only four strips.

2. Integration of first-order ordinary differential equations. The
application of the fundamental principles of mechanics frequently re-
sults in differential relationships. Let us consider the first-order form
dy/di = f(t), where the function f(#) may not be readily integrable or
may be known only in tabular form. We may numerically integrate by
means of a simple slope-projection technique, known as Euler integra-
tion, which is illustrated in the figure.

Slope dy

_ &

7 = () i

() ) s
Slope = f(t3) -

| Accumulated
l algorithmic
error

Beginning at ¢;, at which the value y, is known, we project the slope
over a horizontal subinterval or step (¢; — ¢;) and see that yo = y; +
flt)(ty — ). At 5, the process may be repeated beginning at y,, and
so forth until the desired value of ¢ is reached. Hence, the general ex-
pression is

Yee1 = Y T f(tk)(tk'*l - t.f:)

If y versus t were linear, i.e., if f(¢#) were constant, the method would
be exact, and there would be no need for a numerical approach in that
case. Changes in the slope over the subinterval introduce error. For the
case shown in the figure, the estimate y, is clearly less than the true
value of the function y(#) at ¢5. More accurate integration techniques
(such as Runge-Kutta methods) take into account changes in the slope
over the subinterval and thus provide better results.

As with the area-determination techniques, experience is helpful in
the selection of a subinterval or step size when dealing with analytical
functions. As a rough rule, one begins with a relatively large step size
and then steadily decreases the step size until the corresponding changes
in the integrated result are much smaller than the desired accuracy. A
step size which is too small, however, can result in increased error due
to a very large number of computer operations. This type of error is
generally known as “‘round-off error,” while the error which results
from a large step size is known as algorithm error.
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Example: For the differential equation dy/dt = 5t with the initial con-
dition y = 2 when ¢ = 0, determine the value of y for ¢ = 4.
Application of the Euler integration technique yields the following

results:
NUMBER OF
SUBINTERVALS STEP SIZE yatt = 4 PERCENT ERROR
10 0.4 38 9.5
100 0.04 41.6 0.95
500 0.008 41.92 0.19
1000 0.004 41.96 0.10

This simple example may be integrated analytically. The result is y =
42 (exactly).
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USEFUL TABLES

TABLE D/1 PHYSICAL PROPERTIES

Density (kg/m®) and specific weight (Ib/ft3)

kg/m®  Ib/ft?

Air* 1.2062 0.07530
Aluminum 2 690 168
Concrete (av.) 2 400 150
Copper 8910 556
Earth (wet, av.) 1760 110
(dry, av.) 1280 80
Glass 2 590 162
Gold 19 300 1205
Ice 900 56
Iron (cast) 7210 450

Lead

Mercury

Qil (av.)

Steel

Titanium

Water (fresh)
(salt)

Wood (soft pine)
(hard oak)

kg/m®  Ib/ft?

11370 710
13570 847
900
7830 489
3080 192
1 000 62.4
1030 64
480 30
800 50

*At 20°C (68°F) and atmospheric pressure

Coefficients of friction

(The coefficients in the following table represent typical values under
normal working conditions. Actual coefficients for a given situation will
depend on the exact nature of the contacting surfaces. A variation of 25
to 100 percent or more from these values could be expected in an actual
application, depending on prevailing conditions of cleanliness, surface fin-

ish, pressure, lubrication, and velocity.)

TYPICAL VALUES
OF COEFFICIENT
OF FRICTION

CONTACTING SURFACE STATIC, pu, KINETIC, pp
Steel on steel (dry) 0.6 0.4
Steel on steel (greasy) 0.1 0.05
Teflon on steel 0.04 0.04
Steel on babbitt (dry) 0.4 0.3
Steel on babbitt (greasy) 0.1 0.07
Brass on steel (dry) 0.5 0.4
Brake lining on cast iron 0.4 0.3
Rubber tires on smooth pavement (dry) 0.9 0.8
Wire rope on iron pulley (dry) 0.2 0.15
Hemp rope on metal 0.3 0.2
Metal on ice 0.02

481



482 AppendixD Useful Tables

TABLE D/2 SOLAR SYSTEM CONSTANTS

Universal gravitational constant G = 6.673(10 ') m?/(kg-s?)
= 3.439(10°%) ft*/(Ibf-s?)
Mass of Earth m, = 5.976(10%%) kg
= 4.095(10%%) 1bf-s?/ft
Period of Earth’s rotation (1 sidereal day) =23 h56 min4s
= 23.9344 h
Angular velocity of Earth o = 0.7292(10%) rad/s
Mean angular velocity of Earth-Sun line ® = 0.1991(10 %) rad/s
Mean velocity of Earth’s center about Sun = 107 200 km/h
= 66,610 mi/h
MEAN SURFACE
DISTANCE |ECCENTRICITY| PERIOD MEAN MASS  |GRAVITATIONAL | ESCAPE
TO SUN OF ORBIT OF ORBIT |DIAMETER | RELATIVE | ACCELERATION | VELOCITY
BODY km (mi) e solar days | km (mi) |TO EARTH m/s? (ft/s?) km/s (mi/s)
Sun — — — 1392 000 333 000 274 616
(865 000) (898) (383)
Moon 384 398* 0.055 27.32 3476 0.0123 1.62 2.37
(238 854)* (2 160) (5.32) (1.47)
Mercury | 57.3 x 10° 0.206 87.97 5000 0.054 347 4.17
(35.6 x 109 (3 100) (11.4) (2.59)
Venus 108 x 10° 0.0068 224.70 12 400 0.815 8.44 10.24
(67.2 x 10% (7 700) (27.7) (6.36)
Earth 149.6 x 10° 0.0167 365.26 12 7427 1.000 9.821% 11.18
(92.96 x 10°) (7 918)1 (32.22)* (6.95)
Mars 227.9 x 108 0.093 686.98 6 788 0.107 3.73 5.03
(141.6 x 105 (4218) (12.3) (3.13)

* Mean distance to Earth (center-to-center)

 Diameter of sphere of equal volume, based on a spheroidal Earth with a polar diameter of 12 714 km (7900 mi) and an

equatorial diameter of 12 756 km (7926 mi)
f For nonrotating spherical Earth, equivalent to absolute value at sea level and latitude 37.5°




TABLE D/3 PROPERTIES OF PLANE FIGURES

AREA MOMENTS
FIGURE CENTROID OF INERTIA
/_ﬁr:' Cc — rsino
Arc Segment "/To?'r_:‘" P — —
7= 2 _
Y =7
7
4
T =i =il
X y 4
Circular Area x = art
)
4
1 L=l =%
= _4r ;,z(z_S_Jq
Semicircular Y= ar % 8 9rx
Area
4
—_—x nr
I = —
: 4
4
=1 =&
J|’ * Y 16
|
= _=_4r = i T 4
L xX=y=— I =1 :(——-—-‘)4
Quarter-Circular (0] 3 18 9x
Area r =
= ——x § = nrt
8
y L="(_1snan)
x = I o — 3 Sm 200

Area of Circular
Sector

r 1.
Iy=—z(a +§s1n201}

=X
IZ—EY'EI

Useful Tables
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TABLE D/3 PROPERTIES OF PLANE FIGURES Continued

AREA MOMENTS
FIGURE CENTROID OF INERTIA
Rectangular Area Fois bh®
" “‘”
|
T ! L
jz—-—-—+c—-—-xo = ¥ 12
I
——x
= _ bh
7= 2& 2 2
L;b—"! o= T +F)
3
fe—a—2a— 1%y —  a+b Ix=%
y T T3 b
| =
Triangular Area e K T o bh?
y 18 : e
==
—— ; o
Xy 4
Area of Elliptical _mab® 7 _ {£ _ 4_) sl
Quadrant s _4a *Te’ Y 16 on
3[’ ar
3 s
\ Iy = JT]t:'th’ I.v = (1_2 - g_) a’h
= _ _4b "
b x (6] ¥y = §
¥ 7 = Tab o 4o
. S— T (a® + b%)
L= ab’
=
- %a 21
I = a’%
3b ! °
7 70 _ (aa bﬁ)
Faal ) e
5 21
2ab®
I s =BT
¥=32 -
8
_ 2a%
= 240
_— 15
5

7
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TABLE D/4 PROPERTIES OF HOMOGENEOUS SOLIDS

(m = mass of body shown)

BODY MASS MASS MOMENTS
CENTER OF INERTIA
l
: -27]
I. = %mr2 + %mlz
= Circular . :
N Cylindrical — Ly, = gmr® + gmi®
Shell
7 ) L, = mr
X
9
I, =1,
= %mrz + 1—12le
Half 9r JIx14’51 = 13'13’1
Cylindrical x=— =12 4 L2
Shell m ‘ !
I, = mr’
% 4
Izz = (l = ?) er
I, = 1o 4 %Zm,l2
Circular 1.9 . 1 39
- I smr® + sml
Cylinder s
I, = %mr2
Le= 1
=Lmr? + L2
1 12
4 lexl = Iy1y1
s - I
Semicylinder x =g i 4lmr2 + %mp
I, = %mr2
- 1 16
Izz = (5 = Q) mr2
L, = &m@® + 13
I, = $5m@? + 1%
Rectangular o I, = ﬁm(az + b9
Parallelepiped ) .
2
IJ‘IJ’: = ﬁmb + gmlz
I, = sm@®® + 1%
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TABLE D/4 PROPERTIES OF HOMOGENEOUS SOLIDS Continued

(m = mass of body shown)

MASS MASS MOMENTS
BODY CENTER OF INERTIA
Spherical _ 2 9
Shell - 1, = gmr
= - = 202
Hemispherical s=T Lo = Ly = I, = gmr
Shell 2 Txv _ jzz _ Tﬁ_ﬁmr2
Sphere = I, = %mrz
_ 3r Lo =1, =1, = %mrz
Hemisphere X=— _ N -
8 I, =1, = 22mr
x
[ L
3 ”k’ 2
| ‘ I, = mi?
Uniform - vy~ 12
B \\ Slender Rod . Ini?
N
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TABLE D/4 PROPERTIES OF HOMOGENEOUS SOLIDS Continued

(m = mass of body shown)

MASS MASS MOMENTS
BODY CENTER OF INERTIA
x=y - T
Quarter- Lo = Ly = gmr
Circular Rod _Z L. = mr?
m
I, = %ma2 + ﬁmlz
=172 A g2
Elliptical L, = gmb> + 1gml
Cylinder - L, = im@® + o®
Lo, = imb? + mi?
T
= k2 e ]
Conical - _2n Ly, = amr® + gmh
e
Shell 3 I, = %mrz
Tx}‘ - ‘%mr2 + l—lamhz
I, = i
=Lnr? 4 %mh2
= 4r
Half K= % le-tl = IJ’lJ’l
Conical o iy doeg
Shell S _ % mre + gmh
3 I, = %mr2
= 1 16
L= (3-5m)
| Iy = %mr2 + %th
5N Right- _ _ 3h Ly, = gmr® + qomh?
Y Circular z = T -
"y Cone I. = s5mr
Tyy = 2101’?’!,;!"2 + %m,h2
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TABLE D/4 PROPERTIES OF HOMOGENEQOUS SOLIDS Continued
(m = mass of body shown)

MASS MASS MOMENTS
BODY CENTER OF INERTIA
L =T,
| = %mr2 + gmh2
| . r B
* = ar le-fl - IJ’[JI
: Half Cone " — zﬂ_omrz + 1_1Umhz
r Ne—" | ¥ z=— B
1 » i 4 I, = gmr
= 3 1
L.= (= - =) m?
e (S 2)m
=1 I, = sm®*® + &)
I, = tm@® + c?
- 3c 1 2 2
z=-—8— Izz—gm(a + b%)
T, = ém(b2 + é%cz)
Semiellipsoid fyy = %m(az + %2)
IL.= émb2 + %me2
L, = %ma2 + %m&c2
Elliptic - _ 2 1,9 9
= — I, =3 + b
Paraboloid 73 o smia )
x = %m(b2 + %cz)
x I, = gm@® + 3%
L, = &mb? + ¢?)
vl
%S I, = wma® + ¢?)
Rectangular _ b I, = fgm(@® + b%)
Tetrahedron # = Z _u = B_%m(b2 + 02)
2L I, = &m® + &
4 -
I, = &md® + b?)
Half Torus |5 = &t 4R” L, = I, = 3mR® + Jma®
27R I, = mR? + 3ma?
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INDEX

Absolute system of units, 10
Acceleration, of a body, 8, 115
due to gravity, 11
Accuracy, 13
Action and reaction, principle of, 8, 25, 105, 195, 216, 271
Active force, 390
Active-force diagram, 391
Addition of vectors, 6, 25, 28, 468
Aerostatics, 297
Angle, of friction, 331
of repose, 334
Approximations, 14, 246
Archimedes, 3
Area, first moment of, 230
second moment of, 230, 427
Area moments of inertia, see Moments of inertia of areas
Atmospheric pressure, 298
Axes, choice of, 27, 65, 108, 171, 229, 231
rotation of, 450
Axis, moment, 37, 74

Beams, concentrated loads on, 265
definition of, 264
distributed loads on, 265
external effects, 265
internal effects, 271
loading-shear relation for, 272, 273
resultant of forces on cross section of, 271
shear-moment relation for, 272, 273, 274
statically determinate and indeterminate, 264
types of, 264

Bearing friction, 359

Belt friction, 368

Bending moment, 271

Bending-moment diagram, 272

Bodies, interconnected, 195, 390

Body, deformable, 5
rigid, 4

Body force, 24, 226

Boundary conditions, 285

British system of units, 9

Buoyancy, center of, 303
force of, 303
principle of, 302

Cables, catenary, 287
flexible, 283

490

length of, 286, 289
parabolic, 285
tension in, 286, 289
Cajori, F., 8
Center, of buoyancy, 303
of gravity, 25, 227
of mass, 227, 229
of pressure, 299
Centroids, 230
of composite figures, 246
by integration, 230
of irregular volumes, 247
table of, 483
by theorems of Pappus, 256
Coefficient, of friction, 330, 331, 481
of rolling resistance, 369
Collinear forces, equilibrium of, 115
Components, of a force, 26, 27, 28
rectangular, 6, 27, 28, 64
scalar, 27
of a vector, 6, 26, 27, 64
Composite areas, moment of inertia of, 442
Composite bodies, center of mass of, 246
Composite figures, centroid of, 246
Compression in truss members, 167, 169
Computer-oriented problems, 18, 100, 161, 221, 322, 381,
425, 460
Concentrated forces, 25, 225
on beams, 265
Concurrent forces, equilibrium of, 115, 139
resultant of, 25, 57, 86
Cone of friction, 332
Constant of gravitation, 12, 482
Constraint, 118, 141
adequacy of, 119, 142
partial, 142
proper and improper, 119
redundant, 120, 142
Coordinates, choice of, 27, 65, 108, 231, 316, 429
Coplanar forces, equilibrium of, 115, 116
resultant of, 28, 56
Coulomb, 328
Couple, 48, 75
equivalent, 48
moment of, 48, 75
resolution of, 49, 86
resultant, 56, 85, 86
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vector representation of, 48, 75
work of, 387
Cross or vector product, 38, 73, 469

D’Alembert, J., 4
da Vinei, 4
Deformable body, 5
Degrees of freedom, 392, 410, 420
Density, 229, 481
Derivative of vector, 470
Derivatives, table of, 471
Diagram, active-force, 391
bending-moment, 272
free-body, 16, 104, 108, 139
shear-force, 272
Differential element, choice of, 231
Differentials, order of, 14, 231, 316
Dimensions, homogeneity of, 17
Direction cosines, 7, 64
Disk friction, 360
Displacement, 386
virtual, 388
Distributed forces, 25, 225, 226, 316, 317
on beams, 265
Distributive law, 39, 469
Dot or scalar product, 65, 386, 469
Dynamics, 4, 8

Efficiency, mechanical, 393
Elastic potential energy, 405
Energy, criterion for equilibrium, 410
criterion for stability, 410
elastic, 405
potential, 405, 407, 409
Equilibrium, alternative equations of, 117
categories of, 115, 139
of collinear forces, 115
of concurrent forces, 115, 139
condition of, 56, 115, 138, 389, 391
of coplanar forces, 115, 116
energy criterion for, 409, 410
equations of, 115, 138
of interconnected rigid bodies, 195, 390
of machines, 195
necessary and sufficient conditions for, 115, 138
neutral, 409
of parallel forces, 115, 141
of a particle, 389
of a rigid body, 389
stability of, 119, 409
with two degrees of freedom, 392
by virtual work, 388, 389, 391
Euler, 4
External effects of force, 24

First moment of area, 230
Fixed vector, 5, 24
Flexible cables, 283
differential equation for, 284
Fluids, 297
friction in, 328

incompressible, 298
pressure in, 297
Foot, 9
Force, action of, 23, 105, 106, 140
active, 390
body, 24, 226
buoyancy, 302
components of, 26, 27, 64
concentrated, 25, 225
concept of, 4
contact, 24
coplanar system of, 56
distributed, 25, 225, 226, 316, 317
effects of, 23
friction, 107, 327
gravitational, 12, 25, 107, 226
inertia, 428
intensity of, 226
internal, 24, 226, 271, 391
kinds of, 24
magnetic, 25, 107
measurement of, 25
mechanical action of, 105, 106, 140
moment of, 37, 73
polygon, 56, 117
reactive, 24, 390
remote action of, 107
resolution of, 26, 27, 64, 65
resultant, 56, 85, 86, 227, 316
shear, 271, 297
specifications of, 24
unit of, 9
work of, 386
Force-couple system, 49, 56, 76
Force system, concurrent, 57, 74, 86, 115, 139
coplanar, 56
general, 23, 85
parallel, 26, 57, 86
Formulation of problems, 15
Frames, defined, 195, 216
equilibrium of, 195
Frames and machines, rigidity of, 195
Free-body diagram, 16, 104, 108, 139
Freedom, degrees of, 392, 410, 420
Free vector, 5, 6, 48, 75
Friction, angle of, 331
bearing, 359, 360
belt, 368
circle of, 359
coefficients of, 330, 331, 481
cone of, 332
disk, 360
dry or Coulomb, 328, 329
fluid, 328
internal, 328
journal bearing, 359
kinetic, 330
limiting, 330
in machines, 348
mechanism of, 329
pivot, 360
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Friction (Continued)
problems in dry friction, 333, 376
rolling, 369
screw thread, 349
static, 330
types of, 328
wedge, 348
work of, 392

Gage pressure, 298

Galileo, 3

Gas, 297

Graphical representation, 15, 25, 26, 56

Gravitation, constant of, 12, 482
law of, 12

Gravitational force, 12, 25, 107, 226

Gravitational potential energy, 406

Gravitational system of units, 10

Gravity, acceleration due to, 11
center of, 25, 227

Guldin, Paul, 256

Gyration, radius of, 429

Homogeneity, dimensional, 17
Hydrostatic pressure, 298, 300, 301
Hydrostatics, 297

Hyperbolic functions, 288

Ideal systems, 390
Impending motion, 330, 332, 333
Inclined axes, area moments of inertia about, 450
Inertia, 4, 428
area moments of, see Moments of inertia of areas
principal axes of, 451
products of, 449
Inertia force, 428
Integrals, table of selected, 472
Integration, choice of element for, 231, 316
numerical techniques for, 477, 479
of vectors, 471
Interconnected bodies, 195, 390
Internal effects of force, 24, 226, 271, 391
Internal friction, 328
International System of units, 9

Joints, method of, 168, 189, 215
Joule, 388
Journal bearings, friction in, 359

Kilogram, 9, 10, 13

Kilopound, 10

Kinetic friction, 330
coefficient of, 331, 481

Lagrange, 4

Laplace, 4

Law, associative, 468
commutative, 468
of cosines, 468
distributive, 39, 469

of gravitation, 12
parallelogram, 6, 25, 56
of sines, 468
Pascal’s, 297
triangle, 6, 26
Laws of motion, Newton’s, 8
Length, standard unit of, 10
Limit, mathematical, 14
Line of action, 24
Liquids, 298
Loading-shear relation for beams, 272, 273

Mach, Ernst, 39
Machines, defined, 195, 216
equilibrium of, 195
friction in, 348
ideal or real, 328
Mass, 4, 10
center of, 227, 229
unit of, 9, 10
Mathematical limit, 14
Mathematical model, 15
Mathematics, selected topics in, 465
Mechanical efficiency, 393
Mechanical system, 104
Mechanics, 3
Metacenter, 304
Metacentric height, 304
Meter, 10
Method, of joints, 168, 189, 215
of problem solution, 16, 95, 120, 156, 215, 316, 376, 420
of sections, 179, 189, 215
of virtual work, 385
Metric units, 9
Minimum energy, principle of, 409
Mohr’s circle, 451
Moment, bending, 271
components of, 74
of a couple, 48, 75
of a force, 37, 73
torsional, 271, 428
units of, 37
vector representation of, 38, 73
Moment arm, 37
Moment axis, 37, 74
Moments, principle of, 57, 85, 227, 233, 316
Moments of inertia of areas, 427
for composite areas, 442
dimensions and units of, 429
about inclined axes, 450
by integration, 428
maximum and minimum, 450, 451
Mohr's cirele representation of, 451
polar, 429
principal axes of, 451
radius of gyration for, 429
rectangular, 428
table of, 483
tabular computation of, 442
transfer of axes for, 430, 449
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Morin, 328
Motion, impending, 330, 332, 333
Multi-force members, 195

Neutral equilibrium, 409
Newton, Isaac, 4

Newton's laws, 8

Newton (unit), 9

Newton’s method, 475
Numerical integration, 477, 479

Order of differentials, 14, 231, 316

Pappus, 256
theorems of, 256
Parallel-axis theorems, for area moments of inertia, 451
Parallel forces, equilibrium of, 115, 141
resultant of, 26, 57, 86
Parallelogram law, 6, 25, 56
Particle, 4
Particles, equilibrium of, 389
Pascal (unit), 226
Pascal’s law, 297
Pivot friction, 360
Polar moment of inertia, 428
Polygon, of forces, 56, 117
Potential energy, 405, 407, 409
datum for, 406
units of, 406, 407
Pound, standard, 10
Pound force, 9
Pound mass, 10
Pressure, 226, 297
atmospheric, 298
center of, 299
fluid, 297
gage, 298
hydrostatic, 298, 300, 301
on submerged surfaces, 298, 300, 301
Principal axes of inertia, 451
Principia, 8
Principle, of action and reaction, 8, 25, 105, 165, 19/, 216,
271
of buoyancy, 302
of concurrency of forces, 116
of minimum energy, 409
of moments, 57, 85, 227, 233, 316
of transmissibility, 5, 24, 56
of virtual work, 389, 391, 408
Products of inertia, 449
about inclined axes, 450
Products of vectors, 38, 65, 74, 386, 469

Radius of gyration, 429

Reactive forces, 24, 390

Rectangular components, 6, 27, 28, 64
Rectangular moments of inertia, 428
Redundancy, external and internal, 170, 188
Redundant supports, 119, 142

Repose, angle of, 334
Resolution, force, 26, 27, 64
force and couple, 49, 56, 76
Resultant, of concurrent forces, 25, 57, 86
of coplanar forces, 28, 56
couple, 56, 85, 86
of fluid pressure, 298, 300
force, 56, 85, 86, 227, 316
of forces on beam cross section, 271
of general force system, 85
of parallel forces, 26, 57, 86
Right-hand rule, 37, 65, 73, 469
Rigid bodies, interconnected, 195, 390
Rigid body, 4
equilibrium of, 389
Rolling resistance, coefficient of, 369

Scalar, 5
Scalar components, 27
Scalar or dot product, 65, 386, 469
Screw, friction in, 349
Second moment of area, 230, 427
Sections, method of, 179, 189, 215
Series, selected expansions, 471
Shear force, 271, 297
Shear-force diagram, 272
Shear-moment relation for beams, 272, 273, 274
Shear stress, 428
Singularity functions, 274
SI units, 9
Sliding vector, 5, 24, 37, 75
Slug, 10
Space, 4
Space trusses, 188, 215
Specific weight, 226
Spring, linear and nonlinear, 107
potential energy of, 405
stiffness of, 405
Stability, of equilibrium, 119, 409
of floating bodies, 303
for single degree-of-freedom system, 409
of trusses, 170, 188
Statically determinate structures, 119, 142, 165, 170
Statically indeterminate structures, 119, 142, 170,
189, 195
Static friction, 330
coefficient of, 330, 481
Statics, 4
Stevinus, 3
Stiffness of spring, 405
Stress, 226
shear, 428
Structures, statical determinacy of, 119, 142, 165, 170,
189, 195
types of, 165
Submerged surfaces, pressure on, 298, 300, 301
Subtraction of vectors, 6, 468
Symmetry, considerations of, 229, 449
System, with elastic members, 405
force-couple, 49, 56, 76
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System (Continued)

of forces, concurrent, 25, 57, 74, 86, 115, 139

coplanar, 56
general, 23, 85 i
parallel, 57, 86, 115, 141
ideal, 390
of interconnected bodies, 195, 390
mechanical, 104
real, 392
of units, 9

Table, of area moments of inertia, 483
of centroids, 483
of coefficients of friction, 481
of densities, 481
of derivatives, 471
of mathematical relations, 465
of solar system constants, 482
Tension in truss members, 167, 168
Theorem, of Pappus, 256
of Varignon, 38, 57, 74
Three-force member, 116
Thrust bearing, friction in, 360
Time, 4, 11
Ton, 10
Torque, see Moment, of force
Torsional moment, 271, 428
Transfer of axes, for moments of inertia, 430
for products of inertia, 449
Transmissibility, principle of, 5, 24, 56
Triangle law, 6, 26
Triple scalar product, 74, 470
Triple vector product, 470
Trusses, definition, 167
plane, 167
simple, 167, 188
space, 188, 215
stability of, 170, 188
statical determinacy of, 170, 188, 215
types of, 166
Two-force members, 116, 167

U.S. customary units, 9
Units, 9, 37, 388

Unit vectors, 7, 27, 64, 66, 74
Unstable equilibrium, 409

Varignon, 4
Varignon’s theorem, 38, 57, 74
Vector equation, 8
Vectors, 5, 23
addition of, 6, 25, 28, 468
components of, 6, 26, 27, 64
couple, 48, 75
cross or vector product of, 38, 73, 469
derivative of, 470
dot or scalar product of, 65, 386, 469
fixed, 5, 24
free, 5, 6, 48, 75
moment, 38, 73
notation for, 5
resolution of, 26, 27, 64, 65
sliding, 5, 24, 37, 75
subtraction of, 6, 468
unit, 7, 27, 64, 66, 74
Vector sum, of couples, 76, 85
of forces, 25, 28, 56, 85
Virtual displacement, 388
Virtual work, 385, 388
for elastic systems, 408
for ideal systems, 390, 391
for a particle, 389
for a rigid body, 389
Viscosity, 328

Wear in bearings, 360
Wedges, friction in, 348
Weight, 13, 25, 107, 226
Work, of a couple, 387

of aforce, 386

units of, 388

virtual, 385, 388
Wrench, 86



Conversion Factors

U.S. Customary Units to SI Units

To convert from To Multiply by
(Acceleration)

foot/second? (ft/sec?) meter/second? (m/s) 3.048 x 107 1*

inch/second? (in./sec?) meter/second? (m/s%) 2.54 X 1072+
(Area)

foot? (ft?) meter” (m?) 9.2903 x 102

inch? (in.?) meter? (m®) 6.4516 X

1074

(Density)

pound mass/inch® (Ibm/in.?) kilogram/meter® (kg/m®) 2.7680 x 10*

pound mass/foot? (Ibm/ft®) kilogram/meter® (kg/m?) 1.6018 x 10
(Force)

kip (1000 Ib) newton (N) 4.4482 x 10°

pound force (Ib) newton (N) 4.4482
(Length)

foot (ft) meter (m) 3.048 x 1071*

inch (in.) meter (m) 2.54 x 1072

mile (mi), (U.S. statute) meter (m) 1.6093 x 103

mile (mi), (international nautical) meter (m) 1.852 x 10°*
(Mass)

pound mass (Ibm) kilogram (kg) 4.5359 x 1071

slug (Ib-sec?/ft) kilogram (kg) 1.4594 X 10

ton (2000 Ibm) kilogram (kg) 9.0718 x 102
(Moment of force)

pound-foot (1b-ft) newton-meter (N -m) 1.3558

pound-inch (lb-in.) newton-meter (N -m) 0.1129 8
(Moment of inertia, area)

inch* meter® (m?) 41.623 x 1078
(Moment of inertia, area)

pound-foot-second? (1b-ft-sec?) kilogram-meter? (kg- m?) 1.3558
(Momentum, linear)

pound-second (lb-sec) kilogram-meter/second (kg-m/s) 4.4482
(Momentum, angular)

pound-foot-second (lb-ft-sec) newton-meter-second (kg - m?/s) 1.3558
(Power)

foot-pound/minute (ft-1b/min) watt (W) 2.2597 x 1072

horsepower (550 ft-lb/sec) watt (W) 7.4570 x 102
(Pressure, stress)

atmosphere (std)(14.7 1b/in.?) newton/meter? (N/m? or Pa) 1.0133 x 10°

pound/foot? (Ib/ft?) newton/meter? (N/m? or Pa) 4.7880 x 10

pound/inch? (Ib/in.? or psi) newton/meter? (N/m? or Pa) 6.8948 x 10°
(Spring constant)

pound/inch (Ib/in.) newton/meter (N/m) 1.7513 x 102
(Velocity)

foot/second (ft/sec) meter/second (m/s) 3.048 x 1071*

knot (nautical mi/hr) meter/second (m/s) 5.1444 x 1071

mile/hour (mi/hr) meter/second (m/s) 44704 x

10~ 1x

mile/hour (mi/hr) kilometer/hour (km/h) 1.6093
(Volume)

foot? (ft3) meter® (m?) 2.8317 x 1072

inch? (in.%) meter® (m?) 1.6387 x 1078
(Work, Energy)

British thermal unit (BTU) joule () 1.0651 x 103

foot-pound force (ft-1b) joule (J) 1.3558

kilowatt-hour (kw-h) joule (J) 3.60 x 108*

*Exact value




Sl Unit Prefixes

Sl Units Used in Mechanics

Quantity Unit SI Symbol
(Base Units)
Length meter* m
Mass kilogram kg
Time second ]
(Derived Units)
Acceleration, linear meter/second? m/s?
Acceleration, angular radian/second? rad/s?
Area meter? m?
Density kilogram/meter® kg/m?
Force newton N (= kg-m/s?)
Frequency hertz Hz (= 1/s)
Impulse, linear newton-second N-s
Impulse, angular newton-meter-second N-m-s
Moment of force newton-meter N-m
Moment of inertia, area meter* m*
Moment of inertia, mass kilogram-meter? kg-m?
Momentum, linear kilogram-meter/second kg-m/s (= N:s)

Momentum, angular
Power

Pressure, stress
Product of inertia, ar

Product of inertia, mass

Spring constant
Velocity, linear
Velocity, angular
Volume

Work, energy

kilogram-meter?/second

(Supplementary and Other Acceptable Units)

Distance (navigation)
Mass

Plane angle

Plane angle

Speed

Time

Time

Time

*Also spelled metre.

kg-m?/s (= N-m-s)

watt W(=dJ/s = N-m/s)
Pa (= N'm/m?)
ea meter® m?
kilogram-meter® kg-m?
newton/meter N/m -
meter/second m/s
radian/second rad/s
meter? m?
joule J(=N-m)
nautical mile (= 1.852 km)

ton (metric) t (= 1000 kg)
degrees (decimal) °

radian =

knot (1.852 km/h)
day d

hour h

minute min

Multiplication Factor
1000 000 000 000 = 102
1 000 000 000 = 10?

1 000 000 = 10°

1000 = 10°
100 = 102
10 = 10
01=10"1
0.01 = 1072
0.001 = 1073
0.000 001 = 1078
0.000 000 001 = 107°
0.000 000 000 001 = 10!

2

Prefix

tera
giga
mega
kilo
hecto
deka
deci
centi
milli
micro
nano
pico

w

ymbol

TETEHgeALEFZOS

Selected Rules for Writing Metric Quantities
1. (a) Use prefixes to keep numerical values generally between 0.1 and 1000.
(b) Use of the prefixes hecto, deka, deci, and centi should generally be avoided
except for certain areas or volumes where the numbers would be awkward

otherwise.

(c) Use prefixes only in the numerator of unit combinations. The one exception
is the base unit kilogram. (Example: write kN/m not N/mm; J/kg not md/g)
(d) Avoid double prefixes. (Example: write GN not kMN)

2. Unit designations

(a) Use a dot for multiplication of units. (Example: write N-m not Nm)
(b) Avoid ambiguous double solidus. (Example: write N/m? not N/m/m)
(c) Exponents refer to entire unit. (Example: mm? means (mm)?2)

3. Number grouping

Use a space rather than a comma to separate numbers in groups of three,
counting from the decimal point in both directions. (Example: 4 607 321.048 72)
Space may be omitted for numbers of four digits. (Example: 4296 or 0.0476)




Conversion Charts Between Sl and U.S. Customary Units
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Conversion Charts Between Sl and U.S. Customary Units (cont)
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