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Introduction

Having been born and raised in the rural coal-filled mountains of southern 
West Virginia during the nineteen forties, my brothers, sisters and I 
learned early to respect the earth and other living things. Our parents 
taught us to tend large areas of land, to plant them thick with crops every 
year, and take care of our animals. Along with cows, chickens, and our 
crops, they often spoke of the earth itself as a living thing, and that’s the 
way I grew to see and understand it. The very dirt under our feet was 
viewed as a precious thing, not something to disparage or belittle, let alone 
poison or wear out. It was that dirt, after all, that helped create what we 
saw as the natural miracle of food to eat.
     But it was not only our job to plant, harvest then help with canning and 
storing food in our cellar each year. We also had to keep wild animals 
from helping themselves too much to our crops and livestock. I suppose it 
was from my earliest years that I learned the tricks of wildlife, along with 
the occasional off-the-beaten-path human, to get young plants and the 
occasional chicken to eat. Almost from necessity, I grew up with a healthy 
respect for natural intelligence.1

     It was only quite a few years later when I attended a great university in 
the Midwest, however, that I learned animals didn’t have any intelligence.2

They didn’t have any intelligence, it was claimed, because they have no 
language abilities.3 Animals can neither speak nor write any recognized 
language because they do not have the vocal apparatus, language areas of 
the brain, and in most cases do not have fingers suited for writing. Hence, 
so the argument went,  they cannot reason.  Reasoning in language was the

                                                     
1 Unless otherwise indicated, I use “natural intelligence” and “intelligence” interchangeably 

as that intelligence naturally found in humans and animals. These are in contrast to 
“artificial intelligence” which is deliberately designed by humans for specific purposes. 
These terms are more precisely specified and defined later.

2 I use the term “animal” to refer to nonhuman animals, though obviously humans are 
animals as well.

3 The term “language” is taken to refer to any alphanumeric system, with rules of grammar. 
“Natural language” is taken to refer to languages which are historically given with no 
explicit rules laid down from the start which govern their use. Such rules continually 
change. This is in contrast to “artificial language” which is taken to refer to languages 
that are essentially simple, with rules explicitly set forth. See Nordenstam 1972.

xvii
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essence of intelligence, the experts claimed, and scores on IQ tests, which 
animals cannot even take, eventually became circularly definitive of that 
intelligence. Thus, according to experts, it followed that animals had none.

The Continuing Influence of Behaviorism 

At the time, those disciplines that study and conduct research into 
intelligence were under the influence of the movement known as 
behaviorism, led by B.F. Skinner. Skinner and his adherents held that all 
behavior, human and animal, was explainable as responses to external 
stimuli. Following the classical science model, simple, linear causal chains 
were taken to explain everything a human or animal does.
     Based upon inherited neural mechanisms, behaviorism is a mechanical 
determinist theory whose origins can actually be traced back many 
centuries, at least to Descartes. According to Descartes, animals were 
merely reactive mechanical organisms, like wound-up clocks. They could 
not feel pain and they certainly possessed no intelligence. They had no 
intelligence, he claimed, because they had no soul, which meant they also 
had no free will.
    On the other hand, he held that humans do have souls and hence also 
have freedom of will because they have the ability to reason. Reason, he 
argued, is the highest achievement of mankind and it is reason and the 
freedom of our wills that he held distinguishes us from animals. Though 
our view of animal pain has changed since Descartes, we still largely view 
them the same way he did, as reactive creatures with no real intelligence. 
     We also still largely view intelligence the way he did. As the basic S-R 
theory developed, the more important behaviors of human beings came to 
be viewed as those that are acquired. Since humans are equipped with a 
vocal apparatus and language centers in the brain, language could be 
explained as an acquired, conditioned response to external stimuli. 
Animals, on the other hand, were and still are largely viewed as creatures 
equipped solely with reflexes and instinctive behavior. We’re all familiar 
with Pavlov’s dogs, taught by classical conditioning to respond in certain 
ways to external stimuli.
     But over many years, even with extraordinary ad hoc changes to the 
basic theory, later passing under other names, it became clear to some 
researchers that unbiased observation shows that basic stimulus-response 
schemes do not work. One of the most important things to recognize about 
early behaviorism is that both humans and animals were and still are 
largely conceived by some to be passive receptors of external stimuli. 
Jettisoning earlier concepts such as freedom and will, as well as other 
references to internal motivation, the aim was to focus solely upon the 
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environment and external observable forces acting upon both humans and 
animals. We and our animal friends came to be viewed as reactive 
organisms, not in control of ourselves; we become whatever external 
stimuli make us to be.
     But innumerable clinical and other studies accumulated irrefutable 
evidence of failures of S-R schemes to explain even ordinary human and 
animal behavior. Among many other things, they leave out self-
directiveness found in intentional and sometimes prescient, anticipatory 
behavior involved even in simple everyday problem-solving. They also 
entirely leave out exploratory, playful, as well as improvised, innovative, 
and creative (yes—oh that dreaded of concepts to the behaviorists—even 
creative) activity of both humans and animals. Though later versions of 
behaviorism were not quite so strict, they nonetheless maintained the basic 
reactive scheme to explain all behavior.
     The basic S-R model remains influential in the behavioral sciences 
though it is no longer found in its most stark form advocated by Skinner. 
Still found in intelligence theories by those who call themselves 
“materialists,” “eliminative materialists,” “naturalists,” and “neural 
network theorists,” among others, the underlying S-R scheme was 
modified placing more control in neural mechanisms and chemistry of the 
brain. In place of single causal chains whole networks of interconnected 
causal chains were put in place, acknowledging multiple determinants as 
well as multiple resultants. The capacity for thought or reason, viewed as 
exclusively an aspect of specific language portions of the brain, came to 
be seen as the controlling feature of intelligent behavior.

Myths of the Representational, Top-Down, Linguistic Mind 

Among the most persistent myths about intelligence is that language is a 
necessary condition to think or to act intelligently. Representationalism, 
the picture of mind or intelligence itself as a large set of symbolic 
alphanumeric representations of the world with rules for their manipula-
tion, arose as a prominent view along with the computational theory of 
mind.
     This myth is a natural consequence of centuries of influence by twin 
scholarly movements known as nominalism and conceptualism that arose 
long before behaviorism. Basically, nominalism is the view that all we can 
know of what we may call “reality” is the language we use to describe it. 
There are no facts out there, objectively existing independent of language 
speakers. All we have, according to nominalists, are the language labels we 
use to describe or name our experience. There is always a language 
representational interface between us and reality, if there is any such thing. 
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We have no direct or immediate contact with reality; we have nothing of 
reality itself.
     Similarly, conceptualists claim that all we have and can know are 
concepts “in our minds.” There is nothing beyond those, they say, that is 
real. Though possibly not realizing the historical sources, these twin 
movements have led some even recently to issue stark pronouncements 
about “making our own reality.”
     It is important to stress this essence of nominalism and conceptualism 
due to their continuing influence upon our view of intelligence. Both 
doctrines hold that there is nothing cognitive that is not mediated by 
language. We do not have any immediate contact with the world or reality, 
they claim. We can only have mediated contact through language about
our experience or by way of representations in the brain.
     Following this line of argument, however, still others who eventually 
became known as postmodernists argued even more strongly that nothing 
in our language can correspond with anything outside of ourselves. Indeed, 
they still argue that we can make our language do just about whatever we 
want it to, hence we can make reality any way we want it to be. This line of 
argument extending from earliest nominalism and conceptualism has led to 
a tradition bereft of moorings tied to concepts such as fact, evidence, and 
truth.
     Others known as realists argued that though we may only have our 
language or representations, they must nonetheless correspond to 
something outside ourselves that we can put to test and verify. But testing 
and verification must always be done with instruments defined by 
linguistic means. Any other claims to know must be excluded from the 
domain of intelligence.
     The effect of these combined arguments by both postmodernists and 
realists has been to entirely remove the locus of intelligence from the 
person to the mechanics of language and objective representations of 
reason. Later additional arguments placed the rules governing the 
mechanics of language and reason in specific areas of the brain. Those 
parts of the brain became the machine’s central processor and the claimed 
true locus of all intelligence.
     Over many centuries, especially since Descartes, the influence of 
mechanism along with the twin movements of nominalism and 
conceptualism led to the mechanics of artificial computer languages, which 
paradoxically became the paradigm for the mechanics, the essence, of 
natural intelligence.
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With the development of the neurosciences, especially Hebb’s notion 
of the cell assembly, more attention eventually focused upon the overall 
dynamics of the brain instead of behaviorist explanations that did not work 
in any case. Neural systems became important in the development of 
computer models of the mind.
     Additionally, it should be mentioned that the shift from behaviorism to 
neurology helped to better explain certain diseases such as autism that 
confounded (and still confounds, to some degree) the experts. Nonetheless, 
global theories of the brain tending toward global theories of intelligence 
followed the same representationalism found in nominalism and 
conceptualism.
     Today, representationalism and the computational theory of mind are 
pervasive in fields such as psychology—especially in intelligence research 
and IQ studies, and also, obviously, in artificial intelligence. These are 
determinist, top-down, verbal,4 knowledge-based approaches to mind and 
intelligence, still adhering to an underlying though extended mechanical S-
R model. 
     Perhaps the most highly influential view today is that intelligence is 
found in those neural centers of the brain where purported “grammar 
genes” are the controlling feature. The science of genetics has been used to 
add yet another layer of determinism to the model. It is a genetic
determinist, logico-linguistic, top-down model driving the train of 
intelligence research in the U.S. But it is an approach that has proven to be 
a manifest failure to capture even the most rudimentary aspects of any 
natural intelligence system.
     Among other things, this approach leaves entire categories of human as 
well as animal cognition out of the intelligence picture altogether. It leaves 
out entire facets of complex sensorimotor awareness, control, and 
intentional behavior evident even in simple tasks because of the prior 
assumption that these have nothing or very little to do with intelligence.
     The arguments upholding this view are based not only upon false 
assumptions about the science of genetics but also false assumptions about 
human cognition generally. Moreover, they are based upon ignoring reams 
of documented evidence of human and animal intelligent behavior found in 
everyday experience that is unrelated to language. At the most 
fundamental level, they are based upon the false assumption that 
intentional doings, knowing how, are reducible to knowledge that (or just
“knowledge”),5 the kind of knowing we can put in declarative sentences 

                                                     
4 The word “verbal” means “by linguistic means.” It refers to communication by language, 

either spoken or written. 
5 The term “procedural”, as in “procedural knowledge”, is sometimes used to refer to 
knowing how. I will use the phrase “knowledge that” and the term “knowledge” 
equivalently to refer to declarative assertions, or claims to know, in language. In the 
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and encode into machines. This assumption underlies virtually all existing 
theory of intelligence, as well as the standardized tests used to measure it, 
even while extensive evidence shows that it is false. Indeed, the evidence 
shows that knowing how and knowledge that are two very different kinds 
of intelligence, not one. 

Knowing How and Sensorimotor Intelligence 

This astonishing neglect of the intelligence of knowing how has not only 
diminished and thwarted our understanding of basic performances or 
practical tasks such as knowing how to tie one’s shoes or drive a car, it 
entirely leaves out whole facets involved in understanding what everyone 
would agree is highly intelligent behavior such as knowing how to prove 
complex mathematical theorems or perform surgery. Indeed, evidence 
shows that the intelligence of knowing how expands across all our 
intelligence. It is the most fundamental kind of intelligence, found in the 
most practical or procedural physical tasks to the highest levels of human 
thought and creative endeavors of the mind. Yet it is missing almost 
entirely in predominant theories of intelligence.
     To some degree there is an irony involved in the fact that the very top-
down, logico-linguistic and knowledge-based serial and additive approach 
to intelligence so pervasive in intelligence research cannot address even 
basic intentional doings. It especially cannot address sensorimotor 
performances found in those who are largely visually-oriented (as opposed 
to verbal), nor does it capture the know how involved in fundamental tasks 
of basic math and logic. It leaves out an entire panoply of indexical signs 
of intelligence traversing the entire spectrum of intentional doings.
     In contrast to much of the research directed to human intelligence, 
many researchers in artificial intelligence have more recently turned to 
more mathematical and less logical approaches to understanding and 
simulating human and animal intelligence. Based in part on the 
development of high-speed computers and advanced imaging techniques, 
great strides have been made by designing sensory architectures for 
biologically inspired approaches, especially in robotics. This was 
necessary to get away from the Good Old Fashioned Artificial Intelligence 
(GOFAI) approach emphasizing the knowledge-based, top-down, serial 
approach to intelligence founded upon so many false assumptions.

                                                                                                                         
philosophical literature “knowledge that” is used to emphasize the declarative sentence or 
proposition following “that”. “Knowing how” was earlier called “practical intelligence” by 
the ancients (though they did not use that notion to mean the same thing we do today when 
we generally use that phrase).
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     Yet even the more recent mathematical approaches are still inadequate. 
For example, though neural network (connectionist) approaches are 
promising in efforts to simulate actual perceptual and intentional 
sensorimotor performances, they are fraught with some fundamental flaws. 
Those flaws largely center on some of the same basic classical science 
assumptions that simple causal chains of the top-down, linear, functional-
block oriented strategies are sufficient to describe and explain the 
emergent dynamics of actual intelligence. 
     Moreover, these approaches still largely rely upon the old 
representationalist, top-down knowledge that assumptions and fail to 
capture the unique, context-sensitive smoothness, timing, and immediacy 
of human and animal sensory and sensorimotor awareness of knowing how
clearly evident in intelligent behavior spanning all intelligence.
     In other areas, while some recent animal intelligence researchers affirm 
that language is not necessary for thought (Marc Hauser 2000), they still 
largely rely upon those same representationalist models. They still follow 
what amounts to the same top-down computational model. Moreover, their 
efforts are premised as well upon faulty classical science reductionist, 
linear assumptions, striving for simple, direct causal chains that cannot 
account for emergent intelligence phenomena found in actual experience.
     Among other things, extensive empirical research demonstrates the 
need for a broad theory of signs by which both animals and humans exhibit 
as well as disclose their cognition in the shapes and patterns of what they 
do. For example, as things now stand, major theories of intelligence do not 
include accounts of relatively ordinary stealth patterns used by both 
humans and animals to elude predators. They also neglect more complex 
and interesting deadly offensive patterns such as aggressive mimicry found 
in both humans and animals. 
     Likewise, these theories do not touch upon highly intelligent 
improvisational elements found in the likes of both defensive and offensive 
combat behavior as well as insurgency and counter-insurgency strategies. 
They have made few attempts to tie their theories of intelligence to the 
concepts and strategies commonly debated in and around intelligence 
agencies in the capitals of the world and often deployed by military as well 
as criminal and terrorist groups. 

Toward Signs and Self-Organization 

A broad theory of signs would include a set of classifications, clearly 
defined, of the self-organizing and emerging patterns and shapes human 
and animal cognition takes in the world extending far beyond written and 
spoken natural and artificial language behavior. Moreover, it would extend 
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beyond patterns of individuals to include patterns of teams, networks, and 
coordinated groups or “cells” of individuals who share common objectives 
on many levels. Yet to find efforts to set forth such a theory of signs, one 
must look back many decades in the annals of philosophy.
     Additionally, none of the predominant verbal-based theories of 
intelligence today address the self-organizing dynamics of intelligence 
found in the actual experience of living sentient beings, let alone groups of 
such beings. The predominant theories are static, reductionist, 
nondynamic, and may as well be describing programmed, unmoving 
automatons. The actual living, breathing, moving, brilliant, sweating, 
angry, laughing, planning, violent, coordinating, improvising, and loving 
activity found in the intelligent behavior of living beings is largely if not 
entirely missing. 
     To summarize, right now intelligence is largely viewed as a one-
dimensional, top-down, language-and number-based special single ability 
that some have more of than others. It is viewed as given largely at birth in 
one’s genetic inheritance, and cannot be modified to any significant degree 
by education, training, or experience.
     Moreover, the predominant view is that intelligence is found in one or 
two parts of the brain but not in others. It is definitely not found in other 
parts of the body or in anything the body does that is unrelated to the use 
of language, logic, and number. It is definitely not found in lower animals 
or at least certainly not in the superior ways it is found in us (or at least in 
some of us, so the argument goes) due to language centers of our brains. 
Most importantly, it is held to be entirely measured by standardized IQ 
tests.
     Unlike just about everything else in the natural world, intelligence is 
viewed as this special single ability that does not emerge from innumerable 
interactions among those components making up a life. On the contrary, 
this inborn central processor is that special ability that anoints riches and 
material success on those who are privileged to be born with much of it. 
Like Venus issuing forth from the head of Zeus, intelligence is viewed as 
issuing forth from certain parts of a superior brain that is master of all it 
surveys. And like a goddess that imparts favors on all who worship her, 
intelligence assures the one who has a lot of it much success and power in 
this world.
     It is this almost supernatural and strictly hierarchical view of 
intelligence that has formed our view of humanity itself, as well as our 
relation with the rest of the animal kingdom. It is a view that has also 
wrought sometimes miserable and often very inhumane consequences to 
the world. Cut off from the natural world in many ways, it is little wonder 
that it is this view—more than just about anything else—that not only gave 
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rise to what C.P. Snow called the “Two Cultures,” but to some of the most 
pernicious social and economic divisions found in our history.

The world needs a different way of looking at intelligence 

I have approached natural intelligence as a multi- and interdisciplinary 
phenomenon. I view intelligence as very much a part of the natural world 
and hence as a living thing, an emerging richly textured set of patterns that 
are highly complex, dynamic, self-organizing, and adaptive.
     In both scope and content, this book draws upon the behavioral 
sciences, the neurosciences, philosophy, as well as computer sciences and 
engineering to address the above and many more fundamental issues about 
the nature of intelligence. Above all, I wish to broaden and re-carve the 
universe of intelligence without the biases of historical accident and whims 
of power, based solely upon the facts of intelligence found in the natural 
world.

Myrna Estep 
Silverton, Colorado 
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1 The Problem of Intelligence 

In common parlance, the word “intelligence” has both descriptive and 
normative senses. In its descriptive sense, it is used as a noun to mean 
anything from secret information gathered about a purported enemy to the 
capacity of individuals to reason and solve problems. Intelligence agencies 
gather information they call “intelligence” about real or suspected enemies 
so that their government may be in a more powerful position to deal with 
the supposed enemy. When individuals use their minds to reason about 
problems and end up solving them, we think of that behavior as exhibiting 
intelligence.
     The power to reason, especially to reason well, brings with it an 
increased capacity to effectively solve a wide variety of problems. It is that 
capacity that also bestows even greater knowledge and power on the 
individual who has it. Thus in common language, “information”, 
“knowledge”, “reason”, and “problem-solving“ are clearly tied to these 
senses of “intelligence”. And so is the concept of power. 
     These senses of “intelligence” are even more fundamentally tied to the 
explicit use of language and the rules of logic, including the use of 
number.1 They are tied to a notion of intelligence that is exhibited 
specifically in human language behavior, including reading, writing, and 
speaking. Though some research in lower animal use of language and logic 
has expanded the notion of intelligence to other animals in addition to us, 
the concept is still largely confined to human beings. 

This sense of intelligence is sometimes referred to as natural or real
intelligence to distinguish it from artificial intelligence. The term “real” is 
not adequate to make the distinction, however, because insofar as they 
exist, both kinds are real. I use “natural intelligence” and “intelligence” 
interchangeably as that kind naturally occurring in humans and animals. 
These are in contrast to “artificial intelligence” which is deliberately 
designed by humans for specific purposes.

In spite of a wide range of intelligence research programs covering 
diverging theories, the accepted usage of the term “intelligence” is still 

                                                     
1 Though language use and number use are not identical, their expressions fall under the 

concept “alphanumeric”. 

   1
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largely defined in terms of scores on Intelligence Quotient (IQ) tests. The 
problem space of natural intelligence has been carved such that a single 
score, labeled “g” (for general intelligence), is taken to define 
“intelligence”.

Moreover, the descriptive use of the term leads even ordinary 
laypersons to conceive of intelligence as a single thing found in the human 
being, specifically in certain parts of the cerebral cortex of the brain. It 
enables a person to solve problems or achieve many things. That is 
especially so if the person has a lot of this thing called “intelligence.” Both 
the descriptive sense and advocates of the “g” concept lend support to the 
view that intelligence is this single thing, a mental faculty observed in a 
person’s use of language and logic, a quantifiable superior use of specific 
portions of the brain.

In this sense, the ordinary layperson has much in common with early 
American psychologists who chose to ignore findings–and warnings—of 
European scientists who had carefully studied human intelligence over 
many decades. Alfred Binet (1857–1911) and later Jean Piaget (1896–
1980) knew that intelligence was not and could not be a single reified, 
scaleable thing found “in the head.” The phenomenon of natural
intelligence, of which human intelligence is one kind, is far more complex 
than that.

Unlike his American counterparts, for example, Binet knew that testable 
intelligence, even using his own instruments, is a very small part of a 
much larger natural phenomenon. And Piaget later warned that the word 
“intelligence” “is nothing but a collective term, used to designate a 
considerable number of processes and mechanisms whose significance 
becomes clear only if they are analyzed singly and in the order in which 
they develop”(Piaget 1971, p. 40). They both understood that human 
intelligence should be conceived as functionally integrated throughout 
everything a person intentionally2 does, not confined to the use of 
language and related symbolic tools, or to certain parts of the brain.

Anticipating a view confirmed by research almost a century later 
(though still debated), Binet devised a program to assist special education 
children using a set of physical exercises “designed to improve, by transfer 
to mental functioning, the will, attention, and discipline” necessary for 
studying academic subjects. At one point, he warned against those who 
claim that intelligence is a fixed quantity, a quantity that cannot be 

                                                     
2 The concept of intentionality has sometimes recently been defined to mean that one must 

know what one is doing, where “know” is essentially limited to verbal knowledge. I am 
not using intentionality in that limited sense. It is expanded here to include any 
deliberativeness in behavior, including mental and physical deliberate acts.



increased (Binet 1909). He demanded “We must protest and react against 
this brutal pessimism; we must try to demonstrate that it is founded upon 
nothing.”
     But many American scientists largely ignored Binet and Piaget. In spite 
of Binet’s admonitions, they took his scores as measures of what they 
claimed was this single entity called “intelligence” that they also held was 
inherited and fixed for life. More egregiously, they ignored his warnings 
that his tests measured a very small slice of human intelligence. They 
proceeded to commit the twin fallacies of reification and hereditarianism, 
as well as a fundamental category mistake, based upon the false 
assumption that intelligence is a single thing, a fixed, inherited, scaleable 
quantity that cannot be increased (or at best can be increased only 
minimally), found in specific portions of the brain.
     Moreover, placing enormous unqualified faith in test instruments and 
methods, many of these American psychologists held that these scores 
“marked people and groups for an inevitable station in life” (Gould 1981, 
p. 157). In spite of often overwhelming differences in the quality of life of 
individuals and groups, they held that those differences were the direct 
result of inherited and unalterable differences in intelligence. In a word, 
inherited intelligence was conceived as the great hierarchical natural social 
class “divider” among individuals and groups.
     Much has already been written about these early American 
psychologists, such as H.H. Goddard, Lewis M. Terman, and R.M. Yerkes, 
and the disastrous effects of social policies based upon their views of 
intelligence and very naïve understanding of genetics. Though their view 
of intelligence as a single general capacity for conceptualization and 
problem solving was later challenged by Thurstone and Guilford, who 
argued for a number of factors or components of intelligence, it is the 
former view that has been largely adopted in the United States.
     This book is not about this earlier unfortunate period in the history of 
intelligence research and misguided social policies based upon it. 
However, with the publication of The Bell Curve (Herrnstein and Murray 
1994), some of the same fallacies and issues involving reification and 
especially hereditarianism were repeated—and continue to be debated 
today. These issues have become increasingly important over the years 
since that publication due to the prevalent acceptance of those authors’ 
view of intelligence and the ready acceptance of public policies based 
upon it.
     It is a genetic determinist view echoing earlier American psychologists 
Goddard, Terman, and Yerkes that intelligence is that single thing, now 
called “g”, a fixed, inherited, scaleable quantity that cannot be increased. 
The acceptance of this view has also unfortunately been bolstered in part 
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by the growth of interest in and misinformation surrounding the science of 
genetics as well as the neurosciences.
     Though some of the same known faulty assumptions and fallacious 
arguments for reification and hereditarianism persist—and indeed, seem to 
proliferate greatly under more politically conservative administrations, it is 
the genetic determinist view of intelligence that appears to prevail.
     In efforts to correct that trend, my objective is to turn to more 
fundamental theoretical, philosophical, empirical, and methodological 
research issues about intelligence in general and natural intelligence in 
particular. Along the way, I will revisit many of those basic arguments, 
concepts, and assumptions held by those who view human intelligence 
along the same lines as our earlier hereditarian American psychologists.

1.1 Some of the Basic Issues 

Recurring fundamental issues about the nature of intelligence found in 
human beings seem to revolve around three questions: 

1.  Is intelligence a single entity or is it many? 

2.  Is intelligence inherited or acquired?  

3.  To what extent does the cultural context or environment influence 
the development of intelligence, if at all?

     Though many prevailing theories take positions on these issues, there 
are still other significant questions that are often not asked in the 
intelligence research community.

4. What are those intentional patterns, outside the scope of language 
behavior, by which humans exhibit or disclose their intelligence?

5. Indeed, to what extent does the domain of human intelligence overlap 
with animal intelligence?

6. Fundamentally, what is the range, depth, and scope of intelligence? 

     Of course, the first two questions may pose false choices. Moreover, it 
may be misleading or outright false to think of intelligence as a single or 
multiple “entity.” This is fundamentally a category mistake since 
intelligence is a process or group of processes, not an entity. This mistake 
has in turn led some theorists to argue that intelligence is found in specific 
molecules and locations in the brain.
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     A more scientific approach is to look upon intelligence found in a 
person or animal as a group of capabilities or processes bound together to 
form a single intelligent being. We may speak of the intelligence of that 
being as though it is a single thing while actually referring to many 
capabilities or processes. It may also be the case that some facets of 
intelligence or those having a direct bearing upon it, are acquired or 
emerge over time while others are clearly genetically inherited.

The Single and Multiple Capacity Views 

But our natural language use of such terms is not a very good guide. The 
issues that fundamentally divide many if not most intelligence scientists 
clearly fall into two diverging groups. There are those scientists who hold 
the view that intelligence is a single capacity that every human being 
possesses to a greater or lesser extent. However it is defined, these 
scientists also hold that standardized verbal instruments that consist of 
linguistic and logico-mathematical tests can measure this capacity.
     On the other hand, there are other scientists who hold that intelligence 
is composed of a much wider set of competences. Moreover, they argue 
that many if not most of those are not measurable by standard verbal 
methods.
     The former group argues for what is called the “g-theory” of 
intelligence, where the letter “g” stands for general intelligence. It is 
conceived as the single determinant of all things intelligent located in 
specific parts of the brain. The g-theory proponents have been largely 
successful in promoting a simple, direct causal chain view of intelligence 
that originates from a single cause and is measurable by standard IQ tests. 
The latter group of scientists, on the other hand, argues for the multiple 
intelligence or “MI-theory.” These multiple intelligences include but 
extend beyond a person’s verbal and mathematical abilities. They are 
found integrated throughout intentional human activity in the world.
     However the above questions are parsed, other issues flow from them. 
If intelligence is conceived to be a single, inherited property located in 
certain parts of the brain, then it may be argued that explanations of 
intelligence are reducible to explanations of portions of the central nervous 
system. On this view, intelligence may be reducible to certain neuronal 
clusters found in the brain. This is a genetic determinist position that has 
been gaining substantial ground in some research communities over at 
least the last 15 years. With this view, it is held that questions about the 
influence of context or environment on intelligence can be largely ignored. 
     On the other hand, if intelligence is conceived to be many capabilities, 
some of which are found in one’s interactions and transactions with objects 
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in one’s environment, then questions about the influence of the context or 
environment on intelligence must be asked. Moreover, the view of 
intelligence-as-many also raises the issue of whether or not measures of 
performance on standard IQ tests are viable and complete measures of 
these many capabilities making up intelligence.
     Standard IQ tests are paper and pencil tests that measure linguistic cum
logico-mathematical capabilities. Yet there are intentional, clearly 
intelligent human activities that are unrelated to the use of language and 
logic. Recognizing this fact leads to yet another issue implied but not 
stated above in question 4: Is intelligence found in any human activity 
unrelated to the use of language and logic? If the answer to that question is 
yes, then standard IQ tests do not measure it.

Where Are the Facts of Intelligence Found? 

A more fundamental question underlying all the above particular questions 
is: “Where are the facts of intelligence to be found?” Are they found in 
measures of the central nervous system, in language and logic performance 
scores on standard IQ tests? Or are the facts of intelligence found 
distributed throughout one’s knowing how to interact and transact with and 
transform objects in one’s context or environment? Are the facts of 
intelligence found in one’s genetic profile, neuronal firings, or scores on 
standard IQ tests? Or are they found in an individual knowing how to live 
his or her life? 
     If intelligence is conceived of and researched as a single thing 
occupying a specific controlling place (or distributed among certain 
places) in the brain, a question I will ask is the following: “How successful 
has that view been in explaining the facts of intelligence as found in actual 
human and animal experience?” If intelligent beings are endowed with 
many intelligences what is the evidence for the many? How are they 
related to one another? More to the point, we might ask, by virtue of what 
are they all bound together to form a coherent, intelligent single being? 
     Though Gardner’s (1983) theory of multiple intelligences is the best 
known among several of the multiple theories, there are reasons to raise 
issues with his classification of kinds of intelligence. I will assess many 
arguments both for and against the single theory view. But I will also take 
issue with proponents of multiple intelligence theory as well. At minimum, 
the intelligence research community in general has left undone the 
substantial theoretical and experimental work necessary to show the scope 
of intelligence we have in common with the rest of the animal kingdom. 
Indeed, from my own point of view, it is unfortunate that much of the 
research currently underway is not even asking that question. 
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     For clarification, my use of the phrase “natural intelligence” is not 
identical or equivalent with Gardner’s use of the term “naturalist” in 
“naturalist intelligence” (Gardner 1998). He has identified at least eight 
kinds of intelligences, of which naturalist intelligence is one. My use of 
“natural intelligence” is far broader and includes all the kinds of 
intelligence Gardner identifies as well as much more.
     It will also become clear that by “intelligence research community” I 
include other disciplines besides psychology. Professionals from other 
disciplines currently addressing the nature of intelligence generally include 
but are not limited to neuroscientists, biologists, geneticists, biochemists, 
computer scientists, mathematical physicists, and philosophers who have 
written extensively about the mind, brain, and theories of consciousness.
     Unfortunately, though the study of intelligence, mind, and even the 
brain extends back as early as the Greeks, one finds few cross-bred studies 
that call upon serious efforts in these disciplines. And though the study of 
intelligence is well represented both historically and across the academic 
curriculum, it is currently very much claimed as the province of 
psychology, especially in the United States.
     Regardless of the discipline in which one finds intelligence research, 
however, major problems follow from varying positions taken on the 
above issues. In chapters that follow I will address each of these in turn.

1.2 The Faulty Sciences of Intelligence 

Among other problems, some intelligence research largely adheres to what 
many in other scientific fields view as faulty scientific method. If accurate, 
this may be due as much to the sheer complexity of the problem of 
intelligence as it is to any failure in scientific method. But the complexity 
of a research problem is not resolved by trying to define it out of existence.
     Nor is it resolved by relying solely upon known classical data collection 
procedures and methods to the neglect of theory and concept formation 
that may expand searches to the poorly understood or to the unknown. The 
latter practice in particular has much in common with the man who lost his 
keys in the woods but persisted in looking for them under a lamppost since 
it was only there that he had any light.3 Among other things, the futility of 
such an effort should be obvious. 

                                                     
3 This story is attributed to E. Steiner whose work in systems theory and educational theory 

is well known. See Methodology of Theory Building, Educology Research Associates, 
Sydney, Australia, 1988.
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1.2.1 The Anti-Theory Bias 

Coming largely out of the American behavioral science tradition, much 
intelligence research is decidedly anti-theory and anti-concept formation. 
Some researchers who study intelligence tend to hold the position that 
theory and concepts somehow arise naturally out of data collection. This is 
an erroneous understanding of inductive processes inherited from earlier 
periods of Western science. In the early history of American science, for 
example, theorizing was often viewed as mere speculating. Research 
methodology was largely restricted to verification procedures. Data 
collection was thought to be not just central, but the whole work of 
research (Steiner 1988).
     Though that view has changed to a large extent, especially in natural 
sciences such as physics, the behavioral and certain of the life sciences still 
lag behind. For example, commenting recently on a colleague’s work on 
intelligence, noted neuroscientist Antonio R. Damasio states, “There is an 
enormous resistance against theory in neuroscience and biology” 
(Rothstein 2004). His own research on the brain and intelligence has met 
the same anti-theory resistance as have others in the field. 

A Misleading Heritage of Inductivism 

Historically, the preoccupation with data collection and its interpretation is 
part of the heritage of inductivism that includes not only a 
misunderstanding of induction and scientific inference generally, but also a 
misunderstanding of the nature of human learning. Among other things, 
though there are at least two distinct concepts of induction, only one was 
generally recognized. Moreover, also along misconceived inductivist lines, 
human learning was and is still taken by many to be a passive experience 
of associations. These are points made by many, including Medawar 
(1964, 1969), and ones I will more fully address in later sections.
     An anti-theory and anti-concept formation bias based on the heritage of 
inductivism is well documented in certain of those sciences that study the 
nature of intelligence (Steiner 1988). But this bias has been around much 
longer in the history of Western science generally before the study of 
intelligence became a part of psychology. It has been around long enough 
for the behavioral sciences to have learned something of the problems 
created by such a view. For example, even in 1861, Darwin noted (Darwin 
and Seward 1903): 

“About thirty years ago there was much talk that geologists ought only to 
observe and not theorize; and I well remember someone saying that at this rate a 
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man might as well go into a gravel-pit and count the pebbles and describe the 
colors. How odd it is that anyone should not see that all observation must be for or 
against some view if it is to be of any service.” 

     Indeed, it is common to find a similar anti-theory bias as well as a clear 
bias for data collection to the exclusion of theory in some prevailing 
intelligence research efforts. This is so even where, other than asserting 
correlation coefficients among data, the relation between data collected 
and cognitive functions is not made evident or even clearly identified. 
Good recent examples of this are reaction time studies of Jensen (Jensen 
1998), but examples are evident in research on cognition generally.

Confusing Cause and Correlation 

First, though the point is amply argued elsewhere (Gould 1981), the 
assumption that a correlation somehow implies a causal relation is not 
warranted. The empirical fact that there is a correlation among sets of data 
does not imply anything at all about a causal relation among the sets. 
Second, as Gould notes, “It is not even true that intense correlations are 
more likely to represent cause than weak ones” (Gould 1981, pp. 242–
243). That is, the strength of a correlation does not tell us anything about 
the nature of the cause. Yet the assumption that it does underlies basic 
arguments by proponents of the g-theory.
     The inference to a cause must come from somewhere other than the fact 
of a correlation, even a strong one. Likewise, no such inference may be 
warranted at all. We might show any number of positive and negative 
correlations among a variety of data sets and still fail to find a cause 
anywhere, much less be warranted to make an inference to one. This may 
be so because there is no necessary connection among the sets of data; at 
best only probabilistic claims may be made about correlations and none at 
all about cause. 
     These issues point to larger problems of causality, statistical 
probability, verification and validation. These are certainly crucial in 
experimental science. But defining the entire scientific enterprise in terms 
of data collection and correlations, and delineating the object of research 
solely or primarily in terms of those procedures is to thwart the goal of 
scientific method. The aim of scientific method is usually taken to be the 
generation of scientific knowledge, the generation of theory consisting of 
causal laws and law-like statements permitting prediction and control.
     Even the most precise data collection and verification procedures have 
underlying theory and concepts on which they depend for their validity. 
Indeed they depend upon these even to begin to do anything. Those who 
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collect data must know what to select and what not to select as data. Yet in 
intelligence research, underlying theory and concepts are often not only 
unquestioned, they are also apparently often unrecognized. Underlying 
implied concepts and theoretical structures are left unexamined for logical 
and other problems, leading sometimes to wholesale fallacious inferences 
based upon those same unexamined assumptions and concepts.
     No matter how good the data, it is only as good as the assumptions and 
concepts it rests upon.

1.2.2 Invalid Reductionism 

Reductionism in general is the view that scientific understanding of a 
phenomenon can be gotten from analysis of its parts. And it has been 
remarkably successful in the natural sciences such as physics. There are 
very large differences, however, between reductionist strategies in the 
physical sciences and those sciences directed to the study of living things. 
     A rather pervasive underlying fallacy often found in intelligence 
research is a kind of reductionism in which a researcher projects into 
structures or phenomena of a lower order the characteristics of structures 
of a higher order such as intelligence.
     It is given that all extant scientific inquiry into the natural world, 
including intelligence, posits kinds of hierarchical structures. For example, 
human societies are composed of individuals; individuals of cells; and cells 
are composed of molecules, and molecules of atoms. A viable question to 
then ask is whether or not an explanation of components at one level of the 
hierarchy can be reduced to explanations of components at a lower level.
     Strict reductionists in particular hold that descriptions of higher level 
processes and structures can only be explained in terms of descriptions of 
some lower level processes and structures. Descriptions of higher level 
phenomena such as intelligence must be “reduced” to descriptions and 
explanations of lower level processes such as neural activity.
     One must also keep in mind that the term “reduction” here means 
establishing a clear deductive relationship among the sets of description. A 
valid reduction absolutely requires establishing such a deductive 
relationship. The descriptions of higher level intelligence must be validly 
deduced from descriptions of lower level activity. 
     Coming out of the discipline of physics, reductionists are generally 
determinists. As applied to an understanding of intelligence, however, this 
is basically the idea that if you want to explain some higher level behavior 
or a complex problem, such as our intelligence, the answer is found in 
understanding the building blocks that make up that behavior. Those 
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building blocks are then taken to completely causally “determine” that 
higher level behavior such as intelligence. The idea is that if the higher 
level behavior is reducible to these lower level building blocks, then one 
has a causal explanation for the higher level behavior. One can then 
explain the higher level behavior by composing it from the lower level.
     In the case of intelligence, some argue the causal determinants, the 
building blocks, are neurons. Others argue that the building blocks are 
genes. Since DNA is the more basic of the two, and reductionists would 
presumably want to ultimately reduce intelligence to our DNA sequences, 
we should look at that argument first. 

The Faulty Genetic Argument 

The question then becomes: Can the intelligence of individuals be reduced 
to the behavior of neural cells of their brain? Can an individual’s 
intelligence be reduced to their DNA? A further question might then be: 
Can the biology of the brain, including intelligence, be reduced to physics?
     Though some argue for just such reductions, their arguments are often 
filled with logical, conceptual, methodological and empirical error. Such 
wholesale material reductionist arguments found in intelligence research 
are fraught with logical inconsistencies, methodological problems, and 
unwarranted claims not backed by the data.
     In this reductionist genetic deterministic point of view, proteins 
unleashed by genes are claimed to cause or control (determine) behavior. 
There is an assumption that somehow genes act on their own, that they 
autonomously turn on and off the synthesis of particular proteins that 
eventually “cause” our intelligence.
     But genes do not actually work this way. As Sapolksy explains 
(Sapolsky 2000), more than 95% of DNA is “non-coding.” That means 
that it does not act on its own. The regulation of on- and off-switches of 
our DNA actually comes in some instances from chemical messages from 
other (non-DNA) parts of the cell; others come from other cells in the 
body; in still other cases, genes are turned off or on by environmental 
factors. There is in fact an interaction between genes and the environment.
     Empirically, genetic scientists know that there is no direct causal  
(deductive) chain from our genes to the features that appear at the level of 
the entire organism. They know that the way we are nurtured by our 
families, societies, and culture at large either reinforces or retards what we 
are genetically naturally given. It’s not “all in the genes,” as Sapolsky 
explains, and the study of genetics will never “gobble up every subject 
from medicine to sociology.” 
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     Additionally, neurons act chemically and electrically to perform and 
permit certain brain functions. In the scientific theory of neural activity, 
there are concepts and theory appropriate to describe neural activity at that 
level. But among those concepts and theory describing the activity of 
neurons one will not find concepts and theory describing individuals 
solving a calculus problem, understanding a poem, or falling in love. It is 
not neurons that solve math problems, understand poems, or fall in love; it 
is individuals. Individuals are not DNA made flesh. 
     Moreover, from the empirical fact that every time you solve an equation 
an imaging technique can show certain neural activity in your brain, it does 
not follow that the neural activity is the solving of the equation. No matter 
how many established correlations there are between neural activity in 
your brain and your intelligent behavior, you are the one who solved the 
equation. Indeed, you are the one who chose the equation in the first place. 
It was not the mechanics of neural clusters that did it for you.
     As Cohen explains (Cohen 1994) human DNA space is not a map of 
human space because, among other things, there is no unique 
correspondence between the two spaces. There is no way to assign to each 
sequence in DNA space a unique animal that it “codes for.” Cohen further 
explains, “Biological development is a complicated set of transactions 
between the DNA ‘program’ and its host organism, neither alone can 
construct a creature and neither alone holds all the secrets, not even 
implicitly.”
     I would say that biological development is a complicated set of 
transactions between the DNA program, the host organism, as well as the 
environment in which the organism finds itself. The point is there is an 
individual in a context in addition to the neural networks in the 
individual’s brain.

A Neo-Darwinist Influence 

In spite of a rather widely held view that there is “a mapping from genes to 
character, from a genome to a phenome,” popularized by some neo-
Darwinists, this simple reductionist view of our biology is wrong for a 
whole host of reasons, some of which I will discuss in later sections. For 
now, it is sufficient to recognize that it is another instance of the fallacy of 
projecting into structures or phenomena of a lower order the characteristics 
of structures of a higher order. Even more specifically, those genetic 
reductionist theories that argue that a human’s genes completely specify 
the living person are factually wrong.
     It should be mentioned that a variation on this kind of reductionist 
fallacy is also found in behaviorist stimulus-response theories of cognition 
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that still manage to find their way in some popular theories of learning. 
That is, one finds the method of reducing higher level cognitive processes 
to lower-level conditioned associations among stimulus events. Indeed, 
some prevailing S-R theories actually deny that there is such a thing as 
intelligence, claiming instead that we are all bundles of environmentally 
conditioned responses, on all levels, to stimuli.
     Though perhaps not widely accepted, this point of view on intelligence 
is still found in some academic research circles. Historically, it is nowhere 
better represented than in the classic works of B. F. Skinner, but it is also 
found in the works of the philosopher W. V. O. Quine and some of his 
present-day eliminative materialist followers.
     In their defense, reductionist efforts in general are built in part on the 
understandable supposition that one should not use complex interpretations 
of data if simpler interpretations are possible. But the fact is that almost 
without exception such simple “reduced” interpretations of intelligence do
not even fit the data of intelligence research. This is especially the case in 
investigations of higher level human cognition, as in logico-mathematical 
reasoning. It is also the case in investigations of animal cognitive processes 
and is found across the board in cognition research generally (Sebeok and 
Rosenthal 1981).
     Among other things, what is missing in reductionist theories of 
intelligence is any coherent account or explanation of how intelligence 
develops from interactions of all those components at various levels of the 
building blocks. A central issue is “How does intelligence develop from 
the level of genes or neurons, and from the interactions, transactions, and 
reactions to the environment in which the body and brain housing those 
genes and neurons finds itself?”
     More to the point, however, just how far down in the hierarchy should a 
reduction go? If a reductionist explanation is taken to the level of neurons 
and DNA, why not to the level of atoms or even subatomic particles? The 
actions of our brain mass depend on cell biology and chemistry; chemistry 
depends upon quantum mechanics; quantum mechanics depend upon the 
laws of physics. The combinatorial effects alone amount to at least an 
immense number4 of required calculations, making the reductionist task 
quite literally impossible. It is, to quote Stewart (1995), a “reductionist 
nightmare.”

                                                     
4 An immense number,  = 10110 . In contrast to a finite number of items that can be put on 

a list and examined, for an immense number of items (though countable) this is not 
possible. There would not be sufficient memory capacity in any computer that could ever 
be built to store an immense number of items. See Walter M. Elsasser, Atoms and 
Organism; A New Approach to Theoretical Biology, Princeton University Press, 1966.
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     Even at higher levels and given the absence of context in many 
intelligence research studies, one does not find coherent explanations or 
accounts of relations between sensorimotor functions and the development 
of thought itself. That is, one does not find explanatory accounts of 
relations between perception and intelligence or like accounts of structural 
differences and relations between higher level thought processes, such as 
abstract conceptual structures, and intentional sensorimotor behavior. Such 
explanations are daunting and require considerably more than simple 
reductions that do not work and may be impossible in any case.

1.2.3 Neglect of Emerging Intelligence

The hierarchical building blocks reductionist view of intelligence 
obviously has many problems. Among those problems is the fact that there 
is enormous empirical evidence showing that natural intelligence generally 
is a kind of emergent phenomenon.5 If nothing else, it is one of nature’s 
enormously complex set of patterns of certain kinds revealed and disclosed 
sometimes in very complicated, subtle and interesting ways in action and 
thought by members of the animal kingdom. Evidence shows that it is a 
phenomenon that emerges from an “ocean of complexity”6 and is not a 
direct consequence of simplicities of natural laws at lower levels.
     Intelligence emerges at higher structural levels made possible by the 
interactive activity of sometimes immense numbers of elements across 
multiple domains and large numbers of structures, and relations that 
interact and combine in highly complex ways at lower levels, 
progressively leading to higher ones, still interacting and combining all 
along the way in even more highly complex ways. Emergent phenomena 
cannot be understood by breaking them up into constituent parts, at lower 
levels of development, and analyzing those parts independently in 
isolation.
     That is because the properties of emergent phenomena of interest, in 
this case intelligence, are properties of the interactions between the parts,
rather than being properties of the parts themselves. The model for 
emerging intelligence must be organizational, not isolated parts or 
“building blocks.” The interaction-based properties are not there in the 
parts when they are studied independently. The DNA of intelligent beings 
such as ourselves and our nearest relatives in the animal kingdom, 
chimpanzees, cannot be studied independently to find our intelligence. 

                                                     
5 One only has to consult numerous publications on this topic such as Piaget’s earlier work, 

especially his 1950. Also see Alwyn Scott 1994.
6 The phrase is Ian Stewart’s. See his 1995.
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Again, our DNA is not us. Our genes are not us (Cohen and Stewart 1994) 
nor are they our intelligence. 
     Methodologically, the empirical facts supporting the view that 
intelligence is emergent also indicate the need for a different mathematical 
and scientific approach to study it. This is a matter I will discuss in much 
greater detail in a later chapter. Mathematically, emergent phenomena are 
nonlinear. That means that they are phenomena that do not obey the 
mathematical superposition principle that requires a general solution as a 
function of a certain finite number of particular solutions (Saaty and Bram 
1964). That is, where  is an operator, it is said to be linear if the effect of 
operating on the sum of two entities, for example functions, is equal to the 
sum of the effects of operating on them separately: (f + g) = (f) + (g).
Where this equivalence does not hold, the operator is nonlinear.

Inadequacies of the Classical Linear Approach 

Yet that is precisely the way intelligence is treated by most researchers 
today. The g-theorists in particular treat what they call general intelligence 
as a function of a finite number of particular solutions. General 
intelligence, they claim, is an overall score that is a function of a battery of 
psychometric tests. They hold that all that needs to be understood about 
intelligence can be gotten by understanding the quantifiable parts in 
isolation, such as verbal and math scores, then composing or adding 
together our understanding of the parts. Any future research, such as 
implications for employment demands, would extend the inquiry by 
simply adding more to the parts in isolation (Jensen 1998). 
     Though the classical linear and reductionist approach in the sciences of 
intelligence is easier, and certainly more expedient and cost-effective, at 
best it reveals a small portion of the reality it portends to study. With this 
approach, complex cause can be expressed as a convenient sum of simple 
components. Then the combined effect becomes the sum of the effects 
from each component of the total cause.
     Yet this approach leaves us a severely truncated, distorted and blind 
view of the actual scope and contents of intelligence. The empirical facts 
of emergent intelligence phenomena in a broader domain of actual 
experience, are not generally recognized by reductionists.
     However, emergent phenomena are certainly not outside the low-level 
laws of nature. They interact with, cooperate with, build on, or follow from 
them in complicated ways we have yet to understand. That understanding 
will require the development of new conceptual, theoretical, and 
methodological tools beyond current linear mean-field theory, data 
collection and simple verification procedures. 
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     Researching intelligence as an emergent phenomenon means that it can 
only be understood by examining its many hierarchical layers and their 
interactions, instead of reducing it to one or a few building blocks. It 
means trying to understand the fundamental mechanisms of self-organizing 
complexity found in dynamic living beings that give rise to emergent 
phenomena. Focusing upon the nature of self-organization in intelligence 
will alone require a fundamental redirection to our traditional ways of 
viewing intelligence as issuing forth from a centralized genetic linguistic 
source or as imposed by external “civilizing” forces and authority. 
     It also means that the problem space of intelligence must be re-carved 
permitting a broader scope of inquiry allowing nonlinear analyses as well 
as syntheses. The scientific community must, among other things, 
construct intelligence from the relevant physics and biochemistry and
electrophysiology and neuronal assemblies and cultural configurations and
mental states7 and analysis and synthesis of interactions among all these. 
This is a much larger and more daunting task than simple reductionist 
efforts, involving all relevant levels and their interactions involved in a 
complex emergent phenomenon.
     To briefly summarize, though reductionism in intelligence research is 
expedient, it has purchased that expediency by carving much of the actual 
space of intelligence out of the picture. Generally, attempted reductions 
fail by defining the scope of the reduced phenomena too narrowly or by 
otherwise making inflated claims that cannot be logically supported or 
even backed up empirically by the data. Moreover, these arguments are 
often unable to provide adequate, fallacy-free scientific explanations of 
even the simplest intelligent acts.

1.2.4 Neglect of Theory Construction and Concept Formation 

Theory construction is now often recognized as necessary even in the 
behavioral sciences. However, little consideration has been given 
concerning how one goes about it. How does one go about constructing 
theory or forming a concept? How does one even begin? More 
importantly, how does one recognize existing implied theory that may be 
hidden beneath all that data collection? Accepted ways of doing things 
sometimes blind us to questions we should be asking about the structures 
lying just beneath the surface.

     The reticence to address these tasks among researchers in diverse
 fields studying intelligence is still pervasive. Biology, psychology, the

                                                     
7 This point was made by Alwyn Scott in his 1994, p. 160, though he was referring to 

consciousness.

neuro-
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     More pointedly, there is a need to address alternative theory and 

away layers of data collection efforts and their underlying assumptions and 
interpretations to gain access to underlying implied theory and concepts. 
One must first be able to recognize theory especially where it may be 
partially hidden among other structures and methods of science. Only then 
can those underlying structures be critically assessed for their adequacy. If 
they are shown to be inadequate, then existing structures may be emended 
or extended. 

Mechanism and Organicism 

Many intelligence research efforts, for example, adhere to an underlying 
mechanical (machine) theory or model. They adhere to this model even 
while they do not explicitly acknowledge doing so. Because it remains 
largely hidden beneath data collection efforts, it is not critically examined 
or questioned to determine its adequacy. For that very reason, it is part of 
an underlying structure that entails fallacies, such as begging the very 
question at hand.
     In a mechanistic or machine model of anything, for example, the 
emphasis is on non-modifiable parts that are the determining factors in 
what that thing does. A machine is an object that consists of parts that act 
in predetermined ways. The content and form of the parts, the way the 
parts are combined, determine the function of the machine.8 It is a 
powerful model for deriving one-way causal chains in efforts to explain 
the behavior of a thing, or at least some of it. 

                     Fig. 1.1. Single Capacity Mechanistic Effects Model 
                                                     
8 Generally, I use the term “machine” as identical with the concept “algorithm”.

sciences, education, computer science, artificial intelligence, and philosophy, 
among others, all contribute explicit or implied concepts, theory, and 
method to rational inquiry into intelligence. Given the multidisciplinary 
and interdisciplinary nature of such inquiry and research, there is a need to 

will show that the task of theory construction requires that one first peel

address those fundamental structures and methods having a direct bearing 

concepts more appropriate to the facts of intelligence. In later sections, I 

upon our understanding of the nature of intelligence.
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     The usual intelligence researcher takes an experimentalist’s standpoint 
in which intelligence is reduced to a single capacity or factor (or to a very 
small number of such factors) such as g, and the effects are taken as linear 
and additive. This is represented in the graph above. It is a non-statistical 
mechanistic effects model in which all context or background variables are 
controlled so as not to affect theory or measurement of intelligence.
     On the above model, it is the single intelligence factor g that is taken to 
determine all intelligent behavior. It is this model or point of view that 
posits a central all-purpose “controller” or genetic central processor in 
charge of all things intelligent. This all-purpose controller is viewed as the 
single general capacity, the intelligent cause that determines all intelligent 
effects. It is this mechanistic point of view, for example, that focuses upon 
tests of how quickly the machine can perform, as in reaction time measures 
on intelligence tests, to determine intelligence levels. These are actually 
measures of just how quickly that central processor, the intelligence factor 
g, works. 

Fig. 1.2. Sociological Mechanistic Effects Model

     In contrast to the single intelligence factor g model, the sociological 
mechanistic effects model takes into account not only any inherited 
intelligence factor, but also background and context as determinants of 
intelligent behavior. It is a statistical mechanistic effects model that 
basically posits that the linear and additive combination of intelligence, 
background and context factors determine all intelligent behavior. 
     Yet the use of such models in intelligence research assumes as given on 
one level what one seeks to prove on another. This is the fallacy of begging 
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the question. In intelligence research based upon either of the above non-
statistical or statistical mechanical models, it is intelligence itself that is 
assumed to be a non-modifiable machine and the determining factor for 
much of the rest of human behavior.
     This uncritical assumption in turn is based in part on prior unquestioned 
assumptions that the components of intelligence, the parts, are discrete, 
atomistic, linear and additive. In sum, these models view intelligence as a 
linear, nondynamic system. Intelligence is viewed as given from the start, 
not emerging from interactions of components of the organism. It is 
viewed as a central processor acting upon the organism to produce kinds of 
observed intelligent behavior. 
     The mechanistic view is in stark contrast to the organismic or self-
organizing view. In some sciences when researchers collect data and 
construct theories about living things, many have recognized the need to 
use appropriate concepts and underlying models to direct their inquiry. 
These are models in which states of affairs are represented like an 
organism, a dynamic self-organizing living thing.
     In contrast to the machine model, the organismic point of view stresses 
the organization of the parts of the organism and the interactions among 
them, especially in contexts. It does not focus upon the properties of the 
parts in isolation but their organization and information input, intake, 
action upon, output, and transfer in environments. The dynamics of the 
entire organism in an environment are viewed as nonlinear, self-organizing 
complexity.

                       Fig. 1.3. Simple Feedback Organismic System Model 

     Early attempts to model an organism’s interactions with an environment 
displayed the usual simple feedback model as in the above graph. 
Biologists focused upon negative feedback because that was identified as 
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the mechanism used by living things to stabilize physiological processes, 
preventing extreme oscillations in those processes.
     For example, regulation of body temperature in warm-blooded animals 
is by receptors in the hypothalamus. Blood temperatures are maintained 
within a certain range not only for comfort but the health and life of the 
animal. If external temperatures rise above or drop below certain 
thresholds, physiological responses by the animal will act to stabilize body 
temperature by bringing it back into a certain range. The animal acquires 
temperature information that elicits a negative response to counteract the 
information, seeking to reestablish stability. As helpful as negative 
feedback is, however, it is a limitation on the use of information by an 
organism.
     In contrast to negative feedback, positive feedback reinforces change in 
a system in the same direction as initial information indicates. Unless 
checked by negative feedback, positive feedback can result in a 
snowballing effect resulting in wild oscillations and eventual destruction of 
a system. Viewing the world’s ecosystem as a whole, unchecked rising 
global temperatures or population growth may be examples of this.
     Nonetheless, taken together these two measures of information are still 
limitations of the feedback model to adequately characterize intelligence. 
In a later chapter I will present a more fully developed self-organizing 
complexity theory model demonstrating information-extensions beyond 
the simple feedback model. The information extensions are necessary for 
an adequate theory models approach to the science of natural intelligence.
     Unlike the mechanistic models above, in an organism the parts are not 
assumed to have non-alterable natures and fixed actions. The functions of 
an organism are not viewed as predetermined. Rather, the parts act 
interdependently to maintain the function of the whole organism in an 
environment. At a minimum, any concept of a central “controller” is 
expanded beyond any one central point of the organism to include all parts 
of the organism and their organization, their complex interactions. It is 
conceived as context-sensitive, adaptive, and self-organizing, a nonlinear 
living phenomenon. 
     Like other living things, all parts of the human are viewed as acting 
interdependently to maintain the human throughout his or her life. On an 
organismic model, human intelligence is not confined to that part of human 
behavior when he or she is engaging in verbal behavior but expanded to 
include human intentional behavior as humans act, react, interact, transact, 
transform and are transformed by what they experience in the environment 
and in themselves. 
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Narrowing the Intelligence Domain to Suit Tools at Hand 

In some ways, some researchers have excluded the broader domain of 
intentional behavior so as to render the object of their research, 
intelligence, amenable to the tools they have at hand. These are tools to 
measure those parts they can submit to IQ tests. That is, these researchers 
have attempted to carve the universe of intelligence to suit their available 
data collection and verification procedures instead of carving it based on 
available facts. They have tried to define much of the problem space of 
intelligence out of existence. 
     Narrowing the object of research to available test and measurement 
tools has the added benefit that one can also derive one-way causal chains 
of behavior from these procedures, thus affirming a chosen self-fulfilling 
research strategy. Such a focus excludes what does not fit in chosen 
underlying, largely unexamined mechanistic models and supporting 
concepts and methods. 
     More to the point, without addressing fundamental theory, concepts, 
and assumptions such as these, it is abundantly clear that wholesale 
fallacies and other logical and methodological problems result.
     And conclusions based upon fallacies, no matter how much they are 
abetted with collected data, cannot be valid. 

1.2.5 Unexamined Assumptions, Concepts, and Fallacies

Some intelligence theories are built upon unquestioned if not unrecognized 
assumptions, underlying theory, models and concepts such as those above. 
In some cases, where assumptions have been challenged, the answering 
arguments have been superficial and fallacious as well.
     Almost without exception, for example, proponents of g-theory have 
largely based their research on the following implicit, largely unquestioned 
or unproven claims: 

1. That intelligence is only human intelligence; all other kinds of 
apparent animal intelligence can be explained as instinctual or “hard-
wired”;

2. That intelligence is a single all-purpose general capacity, a largely 
inherited mental ability confined to certain parts of the brain; 

3. That intelligence is embedded solely in the use of language and logic; 
it is not found in anything the human does that is unrelated to the use 
of language and logic; 

4. That general intelligence is operationally defined in terms of 
performances on standard IQ tests; 
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     The scope of the domain of intelligence is taken to be verbal, 
substantially if not entirely omitting visual and sensorimotor intentional 
behavior unless they are defined in terms of language performances as on 
IQ tests. More generally, these researchers have narrowed the scope of 
intelligence to the ability to verbally generalize. This point of view does 
not take into account enormous evidence that intelligence generally and 
reason in particular may not need language at all.9

     Ironically, even the actual use of language itself, the actual doing of 
language speaking, reading, and writing, goes far beyond the scope of 
language as measured by standard IQ tests. Such tests focus almost 
exclusively upon declarative and description functions of language, 
leaving out the vast majority of forms and functions actually found in 
human language behavior and experience.
     For example, human beings use language indexically to either literally 
or figuratively point to objects in their experience. Examples of indexical 
use include using words such as “this” and “that” when speaking of 
something the person can point to or of some idea or abstraction in their 
minds. Moreover, language speakers use language demonstratively in their 
own behavior to disclose their own knowing. This is often done quite 
indirectly, for example, with the use of physical gestures and figurative 
language such as metaphors. The role of gesture and metaphor in higher 
cognitive efforts such as theorizing itself, or the quite figurative and 
imagist notion of elegance, as in mathematical proofs, are nowhere 
captured by intelligence tests.

The Scope of Cognition 

More fundamentally, the intelligence research community has not clarified 
and defined the scope of cognition that is usually taken to formally 
demarcate the scope of intelligence. Though most ordinary dictionaries 
define “cognition” in terms of knowing, the history of its treatment in the 
behavioral sciences has been to eliminate references to the word 
“knowing” altogether while substituting limited kinds of language 
behavior. The cognitive has been largely taken to be isomorphic with the 
linguistic.
     However, there is no widespread agreement that cognition excludes 
behavior that is unrelated to language and logic, or that it either excludes 
or includes such things as artistic activity, exploratory behavior in the 
environment, or in the realm of ideas, socializing, or even some of the 
more creative endeavors of the mind.
                                                     
9 One has only to consult reams of evidence provided by the autistic research community, 

among others. I recommend Grandin 1994.
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     Moreover, perhaps due to professional disagreement as well as 
insufficient data, the research community has not always clearly defined 
behavior that is inherited, either as reflex or instinctive action, and 
distinguished these from behavior that is acquired. Nor has it clearly 
defined the structures of perception and their relation to instinctual, reflex, 
and acquired behavior. Given these definitional gaps alone, the scope and 
depth of intelligence is left poorly understood.
     Additionally, questions related to consciousness and awareness10

generally are missing almost entirely from intelligence research. Related 
concepts such as “thinking” and “mental act” are also left ambiguous or 
are arbitrarily reduced to language representations in the mind. In part, 
these concepts are related to issues in the entire spectrum of perception 
research, pattern recognition studies, and research into kinds of 
sensorimotor awareness related to intentional behavior. But they all rest on 
poorly defined boundaries that are fundamentally necessary to any serious 
science of intelligence. 
     However, given some broadly agreed upon parameters, numerous 
studies of higher primates alone show that human intelligence is only one
kind of natural intelligence (Goodall 1990; Allen et al. 1997). At a bare 
minimum, the intelligent use of tools found in the animal kingdom, 
especially in chimpanzee behavior, is evidence of enormous overlap with 
our own intelligence. Human intelligence does not exhaust the category of 
all intelligence.
     Though human intelligence has been studied and researched possibly 
more than any other kind, there is a wide consensus of opinion in the 
scientific as well as lay community that we do not have a clear 
understanding of and wide agreement on the content or scope of what has 
been studied. Aside from g-theorists, most researchers agree that we do not 
have an adequate definition of intelligence generally, including human 
intelligence.
     In spite of arguments by advocates of certain single theories of (human) 
intelligence, profound arguments and evidence show that our current 
conceptions of intelligence in general and human intelligence in particular 
are entirely too narrow. The past decade alone has shown that these 

                                                     
10 The word “awareness” is unfortunately often thought related to some mystical or 

mysterious ability. I am certainly not using that term with any such meaning. Indeed, my 
notion of “immediate awareness” as developed in previous publications and included 
here is supported by empirical scientific evidence demonstrated in clinical trials. The 
reader should note that significant questions related to levels and degrees of awareness 
have become public with unfortunate cases of persons in what is termed “persistent 
vegetative state.” With these cases our unfortunate lack of understanding of awareness 
and consciousness became apparent.
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advocates have been forced to repeatedly revise, sometimes in ad hoc
manner, some of the most cherished assumptions and principles of their 
theories.
     For example, as already noted, proponents of g-theory assert that 
intelligence is a single capacity that can be measured and operationally 
defined with standard IQ tests. The basic argument is that since we know 
that many different measures of mental ability are correlated positively 
with each other, hence, based upon a variety of multivariate tests, it 
follows that there is an underlying general factor, g, called general 
intelligence (Murray 1995). 
     It is worth mentioning, however, that what such standard tests actually 
give is a value, called the “Intelligence Quotient,” or “IQ”. As one 
example, the Stanford-Binet test provides a procedure for observing where 
a person ranks on certain tests relative to others, where other factors are 
ruled out. Since performance on IQ tests is given a value, intelligence is 
sometimes called a “variable.” But strictly speaking, intelligence is not a 
variable. Variables are symbols, say x, taking on one of a set of values 
ranging from low to high, say from 60 to 150. 
     In this as well as many other instances, otherwise careful researchers 
sometimes take a symbol of something for the thing symbolized. They 
commit what is called the fallacy of reification, which leads them to 
commit still other, sometimes subtle, fallacies as well. In this case, 
researchers have claimed that the symbol, x, the variable that is actually a 
label for an average of many performances on tests, is intelligence. 
Perhaps even more egregiously, the flip side of this fallacy is to assume 
that because a researcher has put a name or label on one of a set of values, 
that they have solved a concrete problem. 
     More specifically, “intelligence” is operationally defined by many 
within the scope of language and logic as scores (variables) on standard IQ 
tests. From such scores, it is then held to be a concrete, specific mental 
activity; it takes place “in the mind,” “in the brain.” It is not found in the 
rest of the body or in anything the person does with their bodies unrelated 
to the use of language and logic.
     This is an unquestioned and largely unchallenged assumption by some 
intelligence researchers: intelligence is the use of language, including 
number. This assumption has been followed by a proliferation of studies 
on linguistics, especially recursive features of human language use, genetic 
origins of language, and the dismissal of lower animal intelligence as 
merely instinctual or a matter of imitation or cueing. 
     In spite of reams of multivariate test results and multiple regression 
analyses, however, those theories have barely, if at all, touched an 
understanding of natural intelligence. Minimally, this is so because such 
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tests are aimed at symbolic artifacts of a narrow slice of human intentional 
behavior, not the broader domain of intentional behavior itself.
     It is also because lower animals have largely been left out, along with 
the entire scope of intentional behavior humans have in common with 
animals that is largely unrelated to language. Though there is evidence that 
certain higher primates have some language ability, even assuming the 
narrow definition of “intelligence,” they would simply not qualify even to 
take the tests. On some theories, in the entire natural universe, this rarefied 
thing called “intelligence” is held to be found only in human beings. 

1.2.6  A Bankrupt Theory of Knowing in the Sciences of 
Intelligence

Yet even for human beings, there was a time in our evolutionary 
development when language use, in the sense of alphanumeric symbolic 
expressions, was non-existent. Millions of years ago, human beings had 
yet to evolve to the point that we were language users. One of our earlier 
ancestors, Australopithecus, did not have language ability. It is not even 
certain that our immediate ancestor, Homo erectus had language ability, in 
spite of evidence in skull remains of Broca’s area of their brains. On some 
theories of intelligence, it would have to follow that we (or our ancestors) 
were not then intelligent beings, though there is no escaping the fact that 
even in a more primitive state, our ancestors were nonetheless excellent 
problem solvers of a certain kind. 
     More problematically for those theories, from the point of view of 
adequate scientific explanation of intelligence, it appears from much 
accumulated evidence that Neanderthals had at least rudimentary language 
ability. Yet they became extinct approximately 30,000 years ago. Even 
though our ancestor Australopithecus and perhaps Homo erectus did not 
have language ability, in order to survive, they were nonetheless able to 
reason, in some more primitive sense, even without language and without 
knowing the rules of logic or how to use numbers.
     That is, without knowing in the only sense of “knowing” that some 
intelligence theorists would accept. Another unquestioned and implicit 
assumption by some verbal theorists of intelligence, for example the g-
theorists (among others), is that to know a rule is to know how to speak or 
write with it and to know how, where, when, and in what right proportion, 
to apply it.
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Kinds of Knowing and the Intellectualist Legend 

But there are at least two senses of “know” here: there is knowledge of a 
rule and there is knowing how, where, when, and in what right proportion 
to apply it. Like other theories of intelligence, the g-theorist view of human 
knowing contains false assumptions about the relation between knowledge
of rules and knowing how to apply or use them. It assumes what Ryle 
(1949) referred to as the “intellectualist legend” to explain the move from 
knowing a rule to knowing how to apply it. It is one thing to know a rule, 
expressed in a statement or sentence; it is quite another to know how to 
apply or use a rule in any rational action, practice or performance.
     According to the legend, originally derived from Descartes, actual 
intentional doings with the body are not part of intelligence. Only the rules 
stated in language describing or prescribing the doings are part of 
intelligence. Intelligence involves only mental or language-dependent 
knowledge with the use of alphanumeric natural or artificial languages. 
According to the legend, knowing that rule or prescription is both 
necessary and sufficient to know how to apply it. 
     Moreover, among other things, the g-theorist view of knowing omits 
entirely any consideration of knowing how to do something or knowing 
what to do in the absence of any explicit language rule. For the g-theorist,
strictly speaking, there is no such kind of knowing. Though allowing for 
learning from experience, for g-theorists there must always be an explicit 
language-based rule, a kind of mental script that one can read and 
understand that drives the train of all the person intelligently does.
     However, these assumptions were shown to be false decades ago, a 
finding confirmed many times by later philosophers and scientists who 
studied the problem (Maccia 1987, 1989; Scheffler 1965). Ryle proved 
once and for all that there are at least two kinds of intelligence; there are 
two kinds of knowing. There is knowledge that (or “knowledge”) and 
knowing how. They are not reducible to one another. Indeed, he showed 
that “knowing how” names a different kind of intelligence altogether from 
the traditionally recognized knowledge that. But many intelligence 
theorists, particularly g-theory proponents, appear to be unaware of the 
distinction and its profound implications for their own theories. 
     The theory of knowledge, or epistemology, assumed by g-theorists as 
well as many other intelligence researchers is bankrupt from the start. It is 
bankrupt because it fundamentally assumes what is false: that there is only 
one kind of knowing, knowledge that, expressed verbally. And it further 
assumes that knowing how (intentional doing) is reducible to knowledge.
They assume a view of knowledge that can be subsumed safely within the 
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scope of certain forms and functions of language and logic, including 
number.
     Unlike the intelligence of knowledge that which can be found 
evidenced in artifacts of written and spoken language, the intelligence of 
knowing how is found in actual intentional doings that are largely unrelated 
to language. Knowing how traverses the entire spectrum of knowing, the 
entire spectrum of intelligence. It is the most fundamental kind of 
intelligence, found in all intelligent behavior.
     That is, facts of knowing how are found in doing, not in linguistic 
artifacts. Knowing a rule, in the sense of knowledge that (such as knowing 
some prescription or algorithm), may be necessary in the case of knowing 
how to do some performances or tasks, but it is far from sufficient to know 
how to use it, to apply it. This spans a continuum of intelligence from 
simple tasks such as knowing how to tie one’s shoes to knowing how to 
prove theorems or perform any surgery.
     It should be mentioned here that though doing mathematics is thought 
by many to be an entirely language-based intelligence activity, the actual 
relation between number (and the doing of mathematics generally) and 
language is very far from clear. This is so in spite of a prevalent view, 
especially among nominalism-inspired intelligence theorists, that reduces 
number and numerosity in general, such as knowing how to count, to 
language. This is an issue to which I will return much later and show that 
such a reduction is not possible and is not consistent with the evidence. 

1.2.7 A Missing Distinction between Rule-governed
and Rule-bound Intelligence 

Moreover, there are kinds of knowing how requiring no such rule at all. 
Indeed, our fundamental understanding of the relation between rules and 
intelligence in general is not clear. The very notion of “rule” itself is not 
clear and it may be beneficial for us to spend a little time trying to clarify 
it.
     In one formal sense, the notion of “rule” may be thought equivalent to 
the mathematical notion of “function”. The idea of a function is that a 
value depends upon some argument to which a procedure, recipe or 
algorithm has been applied. In a relevant sense, we may use the notion of 
function here to mean that one clearly rule-governed act of intelligence 
depends on some other clearly rule-governed act of intelligence because a 
procedure or rule has been applied. A function is a way to turn one act of 
intelligence into another by following a definite procedure or rule.
     Thus in one familiar sense we have an algorithmic or functional notion 
of knowing, of intelligence. It is a notion of knowing set forth in a rule (or 
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set of rules) in the form of step-by-step operations. Performing these step-
by-step operations leads to the performance of some overall intelligent 
function or task. This may be thought of as the rule-governed notion of 
intelligence, at least in its practical sense. This notion is effectively 
captured in the use of any existing algorithm, procedure, or recipe used to 
accomplish some task. Additionally, this notion of intelligence is fully 
consistent with the single capacity theory and many multiple theories as 
well.
     However, there is another sense of knowing which cannot be captured 
by this sense of function and algorithm. There are kinds of intelligent 
performances for which we do not have a prior rule, procedure or 
algorithm that, when successfully followed, leads to the accomplishment 
of a given intelligent task. In other words, for such intelligent 
performances there is no existing overall algorithm or rule or set of rules 
characterizing the intelligent performance itself. 
     Nonetheless, intelligent beings act intentionally and quite rationally 
without such rules. Moreover, such acts are not exceptional but, when 
examined closely, can be found in everyday activity. Such activity is 
clearly intentional, patterned and intelligent even in the absence of a prior 
rule in part because the intelligent being is making or generating the rule as 
they carry out the activity. Because the activity is not random, there is
some algorithm or set of rules involved in the actual activity. How they are 
generating such patterned intentional intelligent behavior is another 
question which, for the time being I will set aside. However, this issue 
points to a set of problems that any fully developed theory of natural 
intelligence must address.
     This intelligence or knowing is not governed by some prior procedure 
or algorithm. In this sense, such intelligence may be said to be rule-bound,
but not rule-governed. Rule-bound intentional behavior is found in 
virtually everything we do because much of our everyday activity on many 
levels is not rule-governed. There are no over-all algorithms characterizing 
much of our intentional, clearly intelligent activity. Needless to say, 
innovative, improvisational, exploratory, playful and creative behaviors are 
also kinds of rule-bound intentional behavior. At its most fundamental 
levels, knowing how is rule-bound instead of rule-governed.
     I will have much more to say about the distinction between rule-
governed and rule-bound later to more fully explain the concept of 
emergent self-organization in intelligence. I will also expand upon the 
relation between these and other kinds of intelligence. Prevailing theories 
of intelligence, however, have nothing to say about this distinction, nor the 
kinds of intelligence characterized by it.
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1.2.8 Neglect of Multiple Signs and Disclosure of Intelligence 

There are many kinds of performance-embedded knowing how just as there 
are many kinds of language-embedded knowledge that. The highly 
complex relations between them must be examined in any responsible and 
comprehensive theory of intelligence that addresses the involvement of the 
brain and the rest of the body. Among other things, what is needed is a 
thorough analysis and assessment of how organisms acquire and act upon 
information. This will be a recurring question throughout.

Signals, Cues, and Clues 

The biological literature has experimentally shown that information can 
flow within groups or even within individuals themselves via two distinct 
pathways: signals and cues (Lloyd 1983; Seeley 1989). In general, signals
are stimuli shaped by natural selection. An example is a chemical trail left 
by ants leading to food sources. A cue is a stimulus conveying information 
only incidentally such as a deer trail through the woods (Camazine et al. 
2001, p. 21).
     To expand this to include verbal pathways found in language-speaking 
primates, we must include the concept of clue as well. In general, clues are 
facts capable of being described in language. 
     Of course the term “information” is defined technically in its 
mechanical sense in terms of uncertainty of occurrences at categories, 
including signals, cues, and clues. Thus there is a prior need to view an 
organism’s acquisition and action upon information spanning verbal, 
visual, and sensorimotor categories of intelligence. 
     I have stressed that many intelligence theorists emphasize the brain, 
particularly language centers, the Broca and Wernicke areas, to the 
apparent exclusion of all else in their concept of intelligence. Minimally, 
the behavioral, neurological, epistemological, and anthropological 
evidence shows that such exclusion is not warranted.
     Moreover, it does not appear warranted from a genetic point of view 
either. Scientifically, we know that very little of the overall scheme for 
embryonic development is special to the brain. Although thousands of 
genes are involved in brain development, a large number of them are 
shared with or have close counterparts in genes that guide the development 
of the rest of the body (Marcus 2003).
     But on many intelligence theories, other than being a host or carrier for 
the brain, the rest of the body has little to do with intelligence. In contrast, 
extensive research into sign use, expanding far beyond just symbol use    
by both humans and lower animals shows that symbolic alphanumeric
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expressions (spoken or written) are only one means or one way by which 
we express or represent one kind of knowing in our intelligent behavior 
(Neurath et al. 1955).11 It is only one way that humans (and some lower 
primates) acquire and act upon information.
     Just as lower animals, human beings express, exhibit or disclose their 
knowing by what they do. What they do is often a sign or pattern of signs 
(“signature”) of their intelligence. The concept of sign is taken to include 
the notions of signal, cue, and clue, mentioned above, but expands beyond 
these to include patterns of doings that may involve any combination of 
these.
     Viewing intelligence as a self-organizing system, signs of that 
intelligence arise from multiple interactions among visual, verbal, and 
sensorimotor components of the human or lower animal. Those are the 
components of knowing systems; they are the categories of ways humans 
and lower animals acquire and act upon information that flows to, through 
and from them in terms of signals, cues, clues, and patterns of these.
     Beyond the use of symbols, human beings use other signs exhibiting or 
disclosing their intentional doings. Indeed, the doings themselves also 
function as signs. Humans also exhibit or disclose their knowing, their 
intelligence, with patterns or forms in their own minds and patterns or 
forms in the way they move and touch with their own bodies. Humans can 
move and touch intelligently, clumsily or stupidly, or fatally. We also 
exhibit or disclose knowing, our intelligence, with the use of artifacts 
beyond symbols such as icons, that is with public images such as 
diagrams, schemas, drawings, and paintings.

Exhibiting and Disclosing Intelligence 

It is important to stress the differences between exhibiting intelligence and 
disclosing intelligence. Prevailing single- and multiple capacity theories of 
intelligence emphasize exhibition and almost entirely neglect disclosure. 
To exhibit is to present for others to see. It is to show outwardly, to 
display; to demonstrate openly. It is a public showing. All other things 
equal, there is nothing hidden or intended to be hidden about exhibitions. 
IQ tests are designed for takers to exhibit what they know. They are 
intended to measure that intelligence that is exhibited, specifically in 
language and number.

                                                     
11 Obviously, the concepts “sign” and “symbol” are not identical or equivalent. I use 

Morris’ definition of “sign” which in general is the broader concept, with “symbol” 
largely confined to alphanumeric indices. 
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     However, most of our intelligence is actually disclosed by what we do. 
It is disclosed usually in ordinary things we do everyday, in what we do, 
how we do what we do, and in the timing, sensitivity, and smoothness with 
which we do what we do. The disclosure of something is the act or process 
of revealing or uncovering. To disclose something is to expose it to view, 
as by removing a cover.12 We remove a cover on a major kind of our 
intelligence by our doing, our knowing how.
     For example, just as lower animals, human beings disclose a major kind 
of their intelligence by making intelligent moves with their bodies when 
avoiding predators in the wild or in the streets. They may know how to 
engage in stealth patterns of movement that they may only have imagined 
as a possible way of avoiding becoming a victim.
     More to the point, human beings disclose their intelligence when they 
perceive even very well-hidden predators before becoming their target. 
Evidence I present later shows that human sensorimotor awareness 
embedded within the cognitive structures of knowing how permits “homing 
in” on indicators of predators before subjects are even aware that they are 
doing so. 
     More often than not, moreover, humans perceive the indicators of the 
predator yet if asked cannot say what those indicators are. Even more 
interesting, humans will often verbally deny what tests show they have 
accurately perceived. Their language reports of their own knowing, their 
own intelligence, correlate negatively with what they actually know. 
Language is not always a valid guide to intelligence, to knowing.
Sometimes it misses the facts of intelligence altogether. 
     There is a real sense in which this kind of accurate human perceiving, a 
kind of knowing, is a function of intelligence that extends beyond human 
language in the sense that it extends beyond the human ability to talk about 
it, to describe it (De Becker 1997). It is a part of our intelligence that we 
are unfortunately often taught to ignore by a tradition dominated and to 
some extent blinded by an almost exclusive focus upon language and its 
rules.
     More to the point, it is a tradition that largely ignores the overlap of our 
intelligence with that of lower animals who would not for a moment ignore 
the signs, the signals and cues, of a predator in their midst. Yet human 
beings ignore such indicators some of the time because we are taught to 
ignore nonlinguistic signs within ourselves and around us.
     This kind of sensorimotor-emergent knowing is what I have earlier 
referred to as immediate awareness. It underlies and is embedded within 

                                                     
12 See any standard American English dictionary such as The American Heritage College 

Dictionary, Third Edition, New York: Houghton Mifflin, 1993.
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our knowing how. It is not equivalent to knowing how, but knowing how
depends upon it to work. Without immediate awareness, we would never 
have survived as a species. Moreover, we would also not be able to 
function intelligently in the world, especially that part of our intelligent 
behavior removed from paper and pencil tests of our intelligence.
     From the moment of our birth if not before, we are immersed within 
constantly changing unique particulars such as shapes, smells, forms, 
colors, shades, edges, and surfaces that remain beneath the surface of our 
verbalizable knowledge that they are there. Our sensorimotor awareness, 
our immediate awareness, interacts, reacts and transacts with this myriad of 
unique particulars enabling us to know how to do many things, including 
surviving by detecting hidden predators.
     We manifest, exhibit, and disclose immediate awareness in what we 
know how to do. 

1.2.9 Mechanical “Hard-Wired” and Natural Intelligence: Absent 
the Difference

For all the above reasons and far more, human intelligence operationally 
defined as the single capacity denoted by “g” and in terms of IQ tests 
cannot be identical or equivalent with natural intelligence. But proponents 
of this view argue that what others call “natural intelligence” is really just 
hard-wired, instinctual behavior.
     Among other fallacies committed, their arguments are circular. They 
define intelligence in terms of language performance on IQ tests which, 
ipso facto, are beyond the capability of lower animals. They then conclude 
from their own definition, not from evidence, that all lower animal 
behavior is not intelligent but instinctual. At best, animal behavior 
appearing to be intelligence is held to be the result of imitation or cueing. 
     Instinctual, “hard-wired” behavior is inborn, patterned behavior 
characteristic of a species in response to specific environmental stimuli. 
Instinctual behavior is not intentional, but involuntary reflex, and usually 
single-pathed, determined by natural selection. For example, in response to 
specific environmental stimuli, say, the sight of a predator, an animal may 
immediately take flight. Intentional behavior, on the other hand, is 
deliberate and purposeful. It is planned behavior, not an instinctual or 
reflex response. It often involves multiple pathways to an envisioned 
(though not necessarily visible) goal, not just a single path. 
     However, the intelligence of our non-language-speaking ancestor, 
Homo erectus, is distinguished in part from Australopithecus by the fact 
that H. erectus designed tools for specific purposes. Such tools designed 
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for specific tasks were later shown to require a multistage process going 
far beyond simple imitation, a limited process. Clearly, our ancestors had 
the intelligence of knowing how even in the absence of language ability. 
     Among numerous animal experiments, the famous “dangling banana” 
experiments by Wolfgang Köhler (1973) demonstrate the same kind of 
knowing how intelligence. In many efforts by chimpanzees to reach a 
banana suspended overhead on a string out of arm’s reach, they tried 
multiple pathways. The only tools at their disposal were empty boxes and a 
stick. The chimps initially did not see the boxes as tools they could use to 
reach the banana, but eventually tried multiple ways of stacking the boxes 
to do exactly that. In spite of some failures, they persisted in trying to stack 
the boxes in the right configuration so as to climb on top of them then use 
the stick to knock the banana free. They eventually succeeded. 
     All criticisms to the contrary, the chimpanzee behavior exhibited 
planning, insight, and persistence. They tried multiple paths to reach the 
banana, not one. Thus their efforts were clearly not reducible to instinctual 
or reflex response. Moreover, they demonstrated an ability to use an 
indirect if not novel approach to reach a goal. They also later demonstrated 
an ability to transfer what they learned to new situations.
     But even where such animal behavior may appear to be quite 
intelligent, it cannot be, according to some theorists of intelligence. Human 
intelligence is the only intelligence in their theory because it is formed and 
informed with language.
     The self-correcting, clearly purposeful and intentional problem-solving
behavior of the chimpanzees is not accepted as intelligent behavior by 
these theorists. Ignoring empirical evidence in favor of a self-fulfilling 
definition and uncritically held assumptions renders their position 
inevitable.
     Yet regardless of where one comes out on the instinctual versus
intentional/intelligent behavior debate, proponents of such intelligence 
theories commit other kinds of fallacies and circularity as well. Though I 
will address these issues later, “intelligence” is ill defined in part because it 
is test designers who define it. Those efforts have resulted not only in 
circularity but ambiguity and unwarranted narrowness in our over-all 
understanding of intelligence. 

1.3 Requirements for a New Science of Intelligence 

The above problems with the current sciences of intelligence largely map 
requirements for a new approach. Based on arguments in later sections, the 
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neural, genetic, and linguistic cum logico-mathematical reductionist 
arguments are rejected. Rather, it is a fundamental principle here that the 
facts of intelligence are found in the broadest domains of actual human and 
animal experience. The facts of intelligence are found in what humans and 
animals do, specifically what they know how to do. 
     From this principle, other requirements for a science of intelligence 
follow. Throughout, it is those facts of intelligence found in a broad 
domain of actual human and animal experience that drive the requirements 
for a new scientific approach and methods.
     These methods are not limited to the classical approach with existing 
data collection restricted to narrow portions of the domain of human 
language experience. At minimum, the classical approach is too narrow 
because it recognizes only one kind of intelligence, one kind of knowing, 
while excluding at least two other major fundamental cognitive categories. 
These major categories of intelligence, of knowing, show up in both 
human and animal intentional behavior.

1.3.1 A Broader Theory of Knowing

Knowing how and immediate awareness are kinds of intelligence found in 
conjunction with one another in intentional behavior. Because of their 
dynamic, self-organizing structures spanning sensory (including 
somatosensory) and sensorimotor systems, they require an entirely 
different scientific approach from that used to measure largely verbal 
intelligence.

Knowledge That, Knowing How, Immediate Awareness

Minimally, verbal intelligence is largely a public matter because in 
principle it can to a large degree be manifested in public, alphanumeric 
language structures that are separate from the person. Those language 
structures are available to anyone to inspect. On the other hand, knowing
how in conjunction with immediate awareness is somehow manifested in
the person or animal and evidenced in what they do. It is manifested in, 
among other things, what they do, how they do it, and the manner, 
sensitivity, timing, and seamless quality with which they do what they 
know how to do. 
     This distinction between verbal intelligence, knowledge that, and the 
intelligence of knowing how is obviously not just a cognitive distinction. It 
is also a distinction between where one looks for the facts of what a human 
or animal knows. For knowledge that intelligence, one looks to language 
structures for facts related to whether or not one knows. For knowing how 
intelligence, one looks to actual structures and patterns of doing for facts to 
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determine whether or not one knows how. Among other things, it is this 
distinction that entails a like distinction between rule-governed and rule-
bound intelligence.
     Among other things, rule-governed intelligence is what we call a 
recursively enumerable set. That means it is a set of things we can count. It 
is a computable (machine model) set, on the standard digital computer, a 
set of problems or function instances that can be defined over discrete, 
countable domains. Verbal intelligence as measured by standard 
intelligence tests is clearly rule-governed intelligence. Those intelligence 
problems require “yes” or “no” decisions. As such, there are classical 
effective algorithms that can be used to address these problems. Standard 
IQ test formats are extensions of these algorithms. 
     On the other hand, knowing how intelligence is largely rule-bound 
intelligence. As such, it requires a different approach to its computability, 
if it is entirely computable at all. Knowing how problems are those that can 
not be addressed with classical algorithms requiring “yes” or “no” 
decisions. Minimally, this kind of intelligence requires an approach that 
generates dynamic self-organizing patterns of interactions among very 
large numbers of components or elements in the way something is done. 
Knowing how requires that we look at the dynamic patterns in the actual 
doing of something, requiring an altogether different model for this kind of 
intelligence.
     Fundamental properties of intelligence are found in knowing. This
means that the requirements for a new scientific approach include a more 
complete theory and classification of kinds of knowing, in addition to a 
more complete theory of the emergence, manifestation and disclosure of 
knowing in actual experience. These will also provide a more 
comprehensive view of the relation between human and animal 
intelligence, and, as well, the relation between these and artificial 
intelligence.
     Single capacity theories of intelligence restrict the scope of intelligence 
to verbal (linguistic) activity. However, arguments and evidence in the 
following chapters demonstrate the need to extend the scope of intelligence 
to kinds of intentional behavior unrelated to the use of language. I have 
already made reference above to such kinds of behavior found within a 
broader domain of actual human and animal experience.
     Technically, the term “knowing” refers to a cognitive relation between 
subject(s) and object(s). It is used here in place of “knowledge” since that 
term is usually limited to language-based declarative sentence knowing. 
Arguments and evidence support the broader scope of the concept of 
“knowing” to include at least two additional major cognitive categories not 
currently addressed in current intelligence theories. An adequate theory of 
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knowing, not limited to “knowledge”, will provide the theoretical bridge 
linking human and lower animal intelligence.
     These two additional categories of cognition, of knowing, are 
interrelated in highly complex ways that account for the dynamic 
emergence of natural intelligence. As noted, evidence for that emergence 
requires a different scientific approach than the classical approach 
currently used in most intelligence research. The dynamic nature of 
knowing how in conjunction with immediate awareness shows that they 
require a different mathematical and methodological strategy.
     Briefly, the classical approach defines problems over discrete rather 
than continuous domains. As already noted, it is reductionist, linear, 
additive, and focuses almost exclusively upon existing data collection and 
verification procedures. It focuses on knowledge representations in 
symbolic language behavior and locates natural intelligence primarily in 
only one area of the brain, language centers of the cerebral cortex. 

Knowing how, on the other hand, refers to the actual dynamic shapes 
and patterns of intentional doing in the world that can be unrelated to 
language behavior. Even when we become language speakers, we must 
know how to use words; know how to read and write; we must know how 
to determine what is relevant in a context; know how to recognize and 
discriminate among the mouthings, vocalizations, tones, and signings of 
language tokens.

Knowing how in conjunction with immediate awareness is at the 
foundation of all our intelligence. Because of their dynamic structures they 
require definition over continuous, rather than discrete domains, and can 
be shown to be self-organizing, nonlinear, adaptable, flexible, and even 
self-complicating intelligence phenomena.
     A research focus upon knowing how in conjunction with immediate 
awareness extends the location of intelligence beyond a few language parts 
of the brain to include much (if not all) of the rest of the brain and body. 
The major structures of intelligence are viewed as emergent, nonlinear 
phenomena, evidenced by a broad range of multiple signs and “signatures” 
in both human and animal behavior.
     Almost without exception, however, the current intelligence research 
strategies narrowly define intelligence so that it is measurable by classical 
standard linear instruments and is limited to verbal behavior. By their very 
self-imposed limitations, existing methodological approaches cannot 
measure at least two major categories of cognition found in the larger 
domain of natural intelligence evidenced in human and animal behavior. 
     A more complete and exhaustive classification of kinds of intelligence, 
however, shows the need to include these two additional categories. 
Addressing these entails not only extensions beyond the classical  
approach as noted above, especially recognizing the distinction between 
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rule-governed and rule-bound intelligence, it also requires extensions 
beyond the classical computational approach to intelligence research. 
These distinctions, among others, have already been implemented in more 
advanced sciences and are also required in the sciences studying 
intelligence.
     The intelligence of immediate awareness involves a radical departure 
from the entrenched traditional view that all human intelligence is 
reducible to acts of classification. For many centuries, the human mind has 
been modeled and viewed as a representation-filled classification machine. 
By its very nature, however, classification involves kinds of symbolic 
representations and the use of rules of logic. The act of classification is the 
act of identifying instances of a class or category of things by comparing 
its properties with other members.
     However, evidence shows that immediate awareness proceeds by the 
cognitive use of nonlogical indexicals. Nonlogical indexicals are indicators 
found in the cognitive structures of knowing how and immediate 
awareness. As such, they overreach the scope of symbolic representation; 
they overreach the scope of verbal intelligence. The objects of this 
knowing are not class objects because they are not language objects and 
are not gotten by logical operations of comparing properties. As such, they 
are unique individuals, not class objects.
     Nonetheless, our scientific understanding of the intelligence of 
immediate awareness is possible because it is publicly accessible with a 
more informed view of the shapes and patterns of intentional doings found 
in human and animal behavior. That accessibility is made possible by 
extending our understanding of how intelligence is exhibited and 
disclosed, that the full spectrum of intelligence is comprised of multiple 
signs, including signals, cues, and clues, and their relations. These multiple 
signs are not random doings, but intentional. The fact of their intentionality 
means that these doings show patterns, and are part of the highly complex 
patterns of natural intelligence. 

1.3.2 A Broader Theory of Signs of Intelligence 

A broader domain of human and animal experience within which we must 
look for facts of natural intelligence leads to a broader view of the signs by 
which animals and humans exhibit and disclose their knowing. Intelligence 
is not narrowed to that slice of the domain of experience that includes 
verbal behavior. We must extend beyond that narrow slice and look more 
at the multiple ways human beings and animals exhibit and disclose what 
they know. What is needed is a broader theory of signs to include rule-
bound knowing, exhibited and disclosed by multiple signs, patterns, and 
interactions among these.
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     Neither the full scope of intelligence itself nor the dynamic growth of 
intelligence can be explained solely within the domain of verbal 
intelligence structures. These must include accounts of flexible task-
centered problem-solving skills that are, among other things, sensitive to 
changing environments. These skills are part of the intelligence of knowing
how and immediate awareness. 

Toward Three-Dimensional Signs and Patterns

Research into the full scope of intelligence will require extending beyond 
the largely (though not exclusively) one- or two-dimensional symbolic 
domain of verbal intelligence to include the broader realm of three-
dimensional patterns of sign-making, sign-exhibiting, and sign-disclosure 
of dynamic intentional doings. This extension includes a continuum of 
cognition spanning from the verbal to nonverbal sensorimotor and 
associational categories obviously tied to sensory and motor categories. 
     Three-dimensional signs such as signals and cues, include gestures (as 
with hands), but also full-body doings such as tasks and other 
performances. Some studies of human gestural patterns have tied those to 
language use, especially speech, showing that spoken languages 
themselves are not limited to one- or two-dimensional symbols (as 
alphanumeric letters or numbers), words and rules of grammar (McNeill 
1992). Thus, those researchers sought to show that even spoken languages, 
let alone sign languages used by hearing impaired persons, must be 
considered from the broader perspective of three-dimensional referential 
functions of gestures.
     Moreover, those studies follow a long line of research directed to the 
relation between gesture and thought, seeking explanatory links between 
“inner forms” of thought and “outer forms” of expression that may or may 
not take language form.
     These lines of inquiry must be continued. At present, for example, I 
mentioned earlier that the research community does not have an 
explanation of the relation between mathematics and language. Some 
research suggests that the actual doing of mathematics appears to rely 
more on those inner abstract forms such as images than on any 
alphanumeric representations “in the mind.” Yet we have little 
understanding of the relationship between those and the alphanumeric 
expressions on paper mathematicians produce.
     We have little understanding of the role of imagery in general in human 
intelligence. Indeed, there are disputes about the meaning of “image”     
and whether or not we even experience such things, though the scien-    
tific evidence to date supports the existence of mental imagery and its 
effective role, for example, in mental practice of motor movement. Some 
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researchers who acknowledge there are such things want to limit them to 
visual images while others want to expand the concept to include other 
sense images. These include the auditory, olfactory and kinesthetic senses.
     At the foundation of such inquiries is that recurring central question: 
How do humans and animals acquire and act upon information? That 
question leads back to the need to extend intelligence beyond one- or two-
dimensional cognitive categories to include three-dimensional sensory and 
motor domains and to establish sign categories of dynamic, self-organizing 
systems. These sign categories, including but not limited to signals and 
cues, span all sensorimotor capacities, including visual, auditory, olfactory, 
gustatory, and somatosensory categories (including touching, moving, and 
proprioception).
     It should be stressed that neither a person nor an animal knows how just 
by doing something; it is the way they do it—the timing, sensitivity and 
smoothness in their patterns of doing—that shows whether or not they 
know how. This fact requires very close scrutiny of the structures of 
immediate awareness which make knowing how possible. It is the 
structures of immediate awareness which provide the foundation for an 
extended theory of signs by which natural intelligence is exhibited, 
disclosed, and revealed. 
     Elsewhere (Estep 2003), I have given meaning to “immediate 
awareness” as consisting of a complex hierarchy (or stacked set of 
“sheets”) of primitive cognitive relations. Those primitive relations consist 
of the preattentive and attentive phases of neural activity, along with the 
sensory and sensorimotor systems. This involves the somatosensory 
system, specifically moving and touching,13 but also includes imagining, 
the use of images and abstract, especially spatial forms in the mind.
     It is interesting to point out that in contrast to much of the human 
intelligence research community, computer science areas of robotics have 
been making strong gains based upon biological models of sensory and 
motor systems of humans and animals. Since the early years of artificial 
intelligence, patterned on what was then taken to be human intelligence, 
that community has changed from largely top-down, knowledge- and 
logic-based serial and linear approaches to more massively parallel and 
distributive nonlinear approaches to understanding intelligence. They have 
looked more at the ways living biological systems are organized so as to 
permit the generation of kinds of intelligent behavior in what that living 
system does. 

                                                     
13 Technically, the sensory system includes the somatosensory system, but I have explicitly 

mentioned all these here to make certain there is no ambiguity as to which systems are 
involved in immediate awareness.
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1.3.3 Methods of Nonlinear Science: The Emergence
of Self-Organizing Dynamical Intelligence 

The classical scientific approach to the study of natural intelligence can be 
safely described as static and nondynamic. Largely on the model of an 
inorganic machine, it views intelligence as static and nondynamic and 
employs methods that are static and nondynamic as well. It is a top-down, 
logic- and knowledge-based, serial processing approach. Among other 
things, classical methods assume that effects of intelligence are additive 
and linear, especially as measured by standard IQ tests. The dynamic self-
organizing complexity, directiveness, flexibility, adaptivity, and even the 
rhythm of intelligence are missing altogether on the classical view.
     With a broader domain of both human and animal experience from 
which the facts and data of intelligence are found, there is a clear 
requirement for the sciences of intelligence to expand theory models and 
methods beyond static linear and additive models. 
     Where intelligence is viewed as a living thing on the model of an 
organism, it exhibits dynamic self-organizing complexity and emergent 
properties and relations that must be accounted for. Living systems of 
organized complexity such as natural intelligence require geometric
configuration theory models that permit analysis of properties and relations 
of entire large ensembles of coupled elements in nonlinear dynamic 
interaction with one another and their environment. That organismic theory 
model must incorporate the strengths of mechanical models, but it must go 
beyond them to permit inquiry and configuration analyses that in turn 
permit representations of that self-organized complexity. 
     Recall that classical models and methods in intelligence research are 
mechanistic, either statistical or non-statistical. By their very structures, 
they are limited to either representations of organized simplicity, limited to 
very few factors, or representing unorganized complexity in the form of 
average combinations of factors. While these models are directed to setting 
forth simple, direct causal chains that are based upon fallacious 
assumptions in any case, the aim of a self-organizing complexity theory 
models approach is to capture the pattern-generating rules of natural 
intelligent agents in the context of their actual experience. 

Self-Organization

Self-organization refers to kinds of pattern-formation processes found in 
both physical and biological systems. Patterns in self-organizing systems 
emerge at global levels from large numbers of interactions among lower 
level components of those systems. Additionally, just to be technically 
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precise, the rules or algorithms that characterize those lower level 
interactions are executed based on local information in a self-organizing 
system without reference to global patterns (Camazine et al. 2001). 
Patterns emerge from the internal dynamic processes of a self-organizing 
system; they are not imposed on the system from any external source. That 
is, a self-organizing system is just that: it organizes itself without any 
instructions from outside itself. 
     Our concern here is with self-organization in living things, but we must 
also briefly compare properties of self-organization in physical (inorganic, 
mechanical) systems with those in biological systems. Self-organization in 
physical systems involves large numbers of components that are inorganic. 
For example, the grains of sand in a desert or chemicals in a reaction 
experiment. Compared to biological components, these inorganic 
components are relatively simple. They obey physical laws and their large 
number of interactions produces predictable deterministic patterns. 
     Biological systems also obey the laws of physics, but the mechanisms 
of self-organization in living things involve a much greater level of 
complexity precisely because the interacting components are living. 
Moreover, the rules governing the interactions of large numbers of living 
components also differ from physical systems in part because they are they 
are influenced by genetically controlled properties not found in physical 
systems (Camazine et al. 2001).
     Though incomplete in crucial respects, the difference between 
mechanical physical self-organizing systems and biological self-organizing 
systems is driven home with the following: 

 “. . the subunits in biological systems acquire information about the local 
properties of the system and behave according to particular genetic programs that 
have been subjected to natural selection. This adds an extra dimension to self-
organization in biological systems, because in these systems selection can finely 
tune the rules of interaction” (Camazine et al. 2001, p. 13). 

     Fine tuning the rules of interaction is not an option available to self-
organizing physical systems. However, this description is incomplete at 
best. In biological systems interactions between components are minimally 
based upon information transfer as signals or cues. As noted earlier, 
signals are stimuli shaped by natural selection specifically to convey 
information, while cues are stimuli that convey information only 
incidentally.
     However, complex social environments may be intentionally designed 
with cues to deliberately, not incidentally, convey information. Moreover, 
with sufficient genetic engineering, signals originally shaped by natural 
selection can also be altered. They can be reshaped by human intervention. 
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Because human beings are also biological systems that are self-aware, they 
can and do use their intelligence to alter the rules of self-organization 
themselves.
     The defining characteristic of self-organizing systems such as natural 
intelligence is that the organization emerges from multiple (in some cases 
immense numbers of) interactions among their components. Moreover, 
development or growth of natural intelligence does not arise from 
independent modules but is an emergent consequence of large numbers of 
interactions across many domains. 
     Thus, as with an organism, we must view natural intelligence, knowing,
as a large population of simpler components which through time works 
upwards, synthetically constructing larger aggregates of rule-governed or 
rule-bound objects. These objects interact nonlinearly with one another 
and with their environment—in support of the overall life-like dynamics 
and emergent patterns and qualities of a natural knowing system. The self-
organizing organismic theory model approach is a bottom-up, highly 
distributed and massively parallel view of knowing, of natural intelligence. 

Theory Models Approach to Intelligence Inquiry 

As earlier noted this view of intelligence as a living thing requires a 
mathematical and scientific approach very different from the classical top-
down, verbal rule-governed, logic-based, linear and additive approaches. 
Those approaches are largely anti-theory and anti-concept formation; are 
either reductive or, as indicated by the primary value attached to data 
collection and verification procedures, inductive.
     Given the enormous variety and range of intelligence experience, a 
theory of natural intelligence must incorporate the major mechanisms by 
which intelligent beings, both human and animal, acquire and act upon 
information.
     What is needed is an integrated mathematical configuration model
permitting characterizations of organized complexity. Again, these charac-
terizations are based on nonlinear assumptions. Such characterizations can 
be provided by an integrated organismic theory model, formed from the 
integration of set theory, information theory graph theory and general
dynamical system theory. This theory model will be referred to with the 
acronym “SIGGS” throughout the remaining chapters. 

Set Theory 

Set theory is of course necessary to demarcate the scope of the natural 
intelligence universe based upon logic and facts found within the domain 
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of animal and human experience. Though I have outlined as well as 
referred to this above, in the next chapter I will endeavor to more precisely 
carve the problem space of natural intelligence according to principles of 
set theory. 

Information Theory 

Information theory is necessary to adequately characterize how organisms, 
including humans, acquire and act upon information. The term 
“information” used here is not identical to the ordinary language use which 
often refers to content or meaning. Looking upon an organism as an 
intelligence system, information theory provides a way to give meaning to 
the categorization of components of the system, connections of that system 
and its environment, and the uncertainty of occurrences at those categories.
     Every system has information in the sense that occurrences of its 
components or affect relations or both can be classified according to 
categories. The added condition of uncertainty of occurrences at categories 
is necessary to develop information properties on the system and its 
environment (or negasystem). The concept “information” can be 
mathematically defined in our theory model in terms of uncertainty of 
occurrences at cognitive categories.
     Though we have sorted three distinct pathways of information transfer 
that organisms use, including signals, cues and clues, we must rigorously 
clarify and classify the categories of occurrences of that information. This 
classification must span the entire cognitive repertoire of intentional 
behavior, including interacting components of verbal (by linguistic means), 
visual and sensorimotor categories.

Graph Theory and Dynamical Systems Theory 

Graph theory is necessary to adequately characterize connections among 
components in a group. With digraph theory, an intelligence system group 
becomes a set of points; system affect relations become sets of directed 
lines; and digraph properties of a system result when certain condition are 
placed on its affect relations or its group. Given the large number of 
connections and relations among components at local levels in self-
organizing systems, emerging in kinds of global dynamics, digraph theory 
provides powerful mathematical tools to characterize those connections 
and relations (Steiner 1988).
     Graph theory and tools of dynamical systems theory are necessary       
to describe the integrated behavior of intelligence that is coordinating     
the actions of many, possibly an immense number, of components. The 
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domain of experience is characterized by a very high degree of variation at 
all levels. At the brain level alone, there is extraordinary variation in 
neuronal chemistry, neural network structure, synaptic strength, to name 
just a few. Individual humans have highly variable personal histories, 
genetic influences, bodily responses, and motivations. As one noted 
neuroscientist has stated regarding the brain (Edelman 2004), this variation 
must not be dismissed as noise but seen as fundamental. Patterns 
nonetheless emerge from enormous variation, even under unpredictable 
circumstances.
     The usefulness of dynamical systems theory as a basic mathematical 
and methodological framework for natural intelligence is that even though 
we may not know all the details of the order of connections or 
interrelations among possibly an immense number of primitive relations, 
we can nevertheless build a theory model to explain fundamental, generic 
properties of natural intelligence. 
     In part, this can be done with the use of random Boolean networks 
within the context of phase space, a space of possibilities. This will permit 
viewing a large population of fundamental objects and relations in highly 
complex dynamic interactions. The properties of Boolean networks have 
been thoroughly studied and techniques have been developed for 
determining the dynamical properties of specific kinds of networks 
(Forrest and Miller 1991). Thus they are of tremendous value in studying 
those fundamental properties of complex dynamical systems such as 
natural intelligence. I will return to Boolean networks and their usefulness 
in intelligence theory in a later chapter. 

From a Symbol-based View to a Geometric View of Natural 
Intelligence

The nonlinear theory model approach permits reorienting the perspective 
on intelligence from a classical top-down symbol-based view to a 
geometric-based performance of intelligent agents in a fitness landscape. 
By turning to a phase space of intelligence possibilities, utilizing a broad 
array of variables from major categories of knowing, the very dynamics of 
a natural intelligence agent can be evaluated as that agent works his or her 
way through the landscape.
     The geometric orientation to the study of natural intelligence can also 
be greatly effected with the use of high-speed computers, particularly for 
the study of knowing how and immediate awareness. This requires the use 
of highly parallel distributed processing and connectionist models capable 
of simulating rule-bound knowing, as opposed to limiting simulations to 
rule-governed, symbol-based knowledge. Such computer-based research 
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programs have already proven highly useful in the study of gait analysis 
(Simon 2004), part of the intelligence of knowing how.
     For a study of a natural intelligence system, where the computer is used 
as an instrument permitting experimentation of a kind in a hypothetical 
universe, what is needed is an approach to computation permitting a focus 
upon on-going, dynamic interactive knowing behavior—rather than a focus 
upon final results. That is, what is needed is a computational architecture 
of an intelligent system permitting a natural method of knowing behavior 
generation.
     This natural method must reflect the distributed and parallel structures 
of human knowing systems. These natural intelligence systems include a 
hierarchy of the above mentioned populations of simple components 
constructing aggregates of simple rule-governed or rule-bound objects 
interacting nonlinearly with one another and with their environment to 
produce emergent structures of intelligence. 
     At each level, the primitives must be identified and rules governing or 
bounding their behavior under conditions at that level must be specified. 
Primitive knowing behavior, our species of knowing how in conjunction 
with immediate awareness, must be organized in the architecture of the 
artificial system similarly with their natural counterparts. From this 
organization, emergent properties of knowing, of natural intelligence, 
arise.
     These considerations also apply to an understanding of the relation 
between natural and artificial intelligence. The classical approach to 
artificial intelligence has been premised upon a discrete, top-down view of 
natural intelligence as symbol-based, rule-governed knowledge that. That 
approach, the usual Artificial Intelligence (AI) approach, is a serial 
processing strategy, with problems defined over the natural numbers, 
integers, rationals, or domains encodable in the integers, requiring a great 
deal of elaborate programming and prior knowledge engineering. It is an 
approach built upon a centralized control structure with access to large sets 
of predefined data structures, operating with algorithms defined by 
mathematical formulas and discrete procedures.

1.4 Summary 

The above should make clear that I am approaching the intelligence 
domain as multidimensional. The scope of intelligence is extended beyond 
the single capacity theory to reflect the facts of natural intelligence found 
in human and animal experience. Natural intelligence is an emergent 
consequence of interactions across multiple domains. An extended domain 
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of intelligence includes many kinds of knowing beyond the traditional 
language-based propositional knowing that and beyond applied knowing 
that in action or behavior.
     Because of the dynamical nature of these extended kinds of knowing, I 
also argue for an extension of our theoretical methods including 
mathematical models for defining the problems of that domain. For 
reasons cited above and more to be explored, nonlinear methods and 
models are superior to classical methods and models in intelligence 
research. These include the following: 

1. Nonlinear theory models approach to natural intelligence permits a 
more complete and exhaustive classification of kinds of knowing; it 
does not limit the scope of cognition to only one kind or category of 
knowing, verbal (linguistic) intelligence.

2. Nonlinear theory models approach incorporates the strengths of 
classical statistical and nonstatistical models and methods, permitting 
characterizations of organized simplicity and unorganized 
complexity, but goes beyond these to permit characterizations of 
organized complexity.

3. Nonlinear theory models approach is not reductionist as are classical 
models.

4. Nonlinear theory models approach permits a dynamic configurational 
    analysis of the natural intelligence of an entire organism in its 
interactions, transactions, interactions, and reactions in an  environment. 

     Borrowing a point made elsewhere (Langton 1989), the traditional 
classical approach to intelligence research has from the beginning 
embraced and continues to embrace underlying theory, assumptions, and 
methodology that bear little or no demonstrable relationship to the method 
by which intelligence is actually generated in natural systems. It is an 
approach which has focused upon outputting intelligent solutions,
knowledge that, rather than intelligent behavior, knowing, thus missing 
most of the domain of intelligence altogether. 
     The use of nonlinear theory modeling in natural intelligence research 
can profoundly enlarge our understanding of natural intelligence. It can 
change the current single or limited multiple capacity view of intelligence 
as a top-down, knowledge-based rule-governed non-dynamic phenomenon 
to one of the dynamic emergence of self-organizing intelligence and 
growth in possibilities.
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     More to the point, nonlinear theory modeling can provide us with a 
more realistic view of the nature of actual intelligence found in human and 
animal experience. 



2 The Universe of Intelligence 

The universe of intelligence includes both natural and artificial kinds.1

Natural intelligence occurs in living things in the world, if not also in the 

broader natural universe. Artificial intelligence is generally held to be that 

which is found in machines intentionally designed to simulate the logical 

forms of human reason. The concept “machine” is logically equivalent to 

the concept “algorithm” and it is broadly construed to include software.

     The distinction between natural and artificial intelligence however, 

should not be seen as mutually exclusive. There is an overlap between the 

two, though that is not generally recognized or acknowledged in those 

sciences and disciplines of engineering that concern themselves with either 

kind. We will take a look at the area of overlap between the two later.

     Moreover, some computer scientists have endeavored to map natural 

intelligence onto machines, creating artificial intelligence or, as some call 

it (depending upon the engineering method), artificial life. They have 

endeavored to do all this without first getting clear on the nature of 

intelligence as such and natural intelligence in particular. We will also 

look at those issues as well. For now, we have to get clear on more 

fundamental distinctions to allow us to proceed with the maximum of 

clarity. Some readers may find the following section a bit elementary. If 

so, please feel free to skip to later sections.

2.1 Carving the Problem Space 

When rational inquiry is directed to anything, it starts within what is called 

a “universe of discourse.” One can think of this in some of the same ways 

we think about the natural universe, only a universe of discourse is 

specifically directed to a certain subject matter of inquiry or research. It is 

comprised of highly specialized language about a given subject. It contains 

concepts, distinctions, definitions, conjectures, explicit as well as implicit 

                                                          
1 I use the terms “intelligence” and “natural intelligence” interchangeably and specifically 

use the term “artificial” when referring to that which is intentionally designed by humans 

for specific purposes.

49
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assumptions, arguments, and methods. The natural universe, on the other 

hand, contains everything there is.

     A universe of discourse contains everything that is known or rationally 

conjectured about a subject matter at hand. It is within that universe, 

containing concepts, distinctions, definitions, assumptions, arguments, and 

methods that the inquirer’s or scientist’s question or problem must be 

posed. However, because this universe is mostly in the background, the 

rational inquirer may not explicitly speak or write much about it, or he or 

she may limit what they have to say about it to just a few things.

     Usually, an inquirer or scientist will start out with a few agreed upon 

definitions or concepts as well as a few assumptions to clarify what the 

problem or question is that they are posing. They will leave the rest 

unstated. Nonetheless the entire universe of discourse is there as a set of 

prior agreed upon concepts, distinctions, assumptions or conditional 

assertions that are held to be true, if only provisionally, and which permit 

the inquirer to ask rational questions or pose rational problems to be 

solved. Those problems must be solved within that universe. 

      Most of the background universe of discourse of any particular subject 

matter is never explicitly examined by the one doing inquiry. That 

background is there in principle as a position upon which a given inquirer 

may “rest” while he or she sets about to extend the scope of that universe 

by addressing unanswered questions or unsolved problems. The existing 

concepts, distinctions, definitions, assumptions, arguments, and methods 

are assumed by the inquirer or scientist in order to proceed.

     Of course, the individual scientist over many years may and indeed 

should examine much of that background in the course of their education, 

training, or research. But it is in fact impossible in any given lifetime to 

examine all of it, to ensure that the assumptions are all true or that the 

concepts, definitions, distinctions, and arguments are all valid, or that the 

evidence supporting all the arguments holds up. For that, we tend to rely 

upon the public, verifiable work of generations of scientists that came 

before or will come after all of us. 

2.1.1 Rational Inquiry and Ideology: The Differences 

It is worth mentioning at this point that rational inquiry is that inquiry that 
critically assesses, in terms of reason and evidence, any concept, 
definition, assumption, distinction, argument, and method used to solve 
any rational problem or to pose and answer any rational question. Though 
it is acknowledged that a given inquirer or scientist cannot in his or her 
lifetime personally critically assess all those that exist in any given 
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universe of discourse, in principle any of those assumptions, definitions, 

concepts, and methods are subject to critical scrutiny by reason and 

evidence.

     There are no sacred assumptions, definitions, concepts, and methods 

that are beyond question in rational inquiry. If any one of these does not 

meet the standards that reason and evidence require, they may be changed 

or jettisoned for alternatives. Where those assumptions, definitions, 

concepts, and methods are changed or jettisoned, however, the rational 

inquirer must give powerful arguments for doing so. In turn, those 

arguments must withstand the same critical scrutiny by reason and 

evidence.

     Another way of putting this in perspective is to say that any rational 

inquiry—by that I mean any question or problem posed to be addressed in 

terms of reason and evidence—actually starts as a conditional or 

hypothetical. “If such and such is true or valid, then. . .” The “If such and

such is true or valid” part of the conditional is often not actually stated, 

but assumed. That part of the conditional is made up of what may very 

well consist of an infinite chain of assumptions, arguments, and concepts, 

some of which are perhaps very tenuously linked to one another, that the 

inquirer must use to allow his or her question or problem to be addressed 

at all. To be sure, any one of those assumptions may in fact turn out to be 

false; any one of the arguments may turn out to be invalid or unsound; or 

the concepts, definitions, and distinctions may turn out to be confused or 

inadequate.

     In order for inquiry to proceed at all, however, we must start 

somewhere. But it is the wise and careful inquirer or scientist who 

recognizes that there is always a risk involved. There is a risk that we may 

find, sooner or later, that one or more of those prior assumptions lurking in 

the background may be false. Or we may find that we are working with a 

very confused concept or inadequate definition; or that we may be 

committing some subtle fallacy not yet recognized. Worse, we may go our 

merry way without discovering any of this because we never asked the 

questions we should have asked in the first place. We have not recognized 

that there is a problem. 

     This is the crucial difference between rational inquiry and that pseudo-

inquiry sometimes posed by ideologues. Ideologies, and those who defend 

them, generally demand that some or all prior definitions, concepts, 

assumptions, and methods never be questioned. They demand that some or 

all of these be uncritically accepted without question as a basis on which 

to proceed with anything at all. This is a demand for reason to step aside 

and be replaced by obedience to authority, even if it is only the authority 

of some written script somewhere whose author is unknown or who is 
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unavailable to answer questions. It is obedience to authority whose 

reasons, evidence, and even credentials remain beyond your reasonable 

assessment and critical scrutiny. Ideology demands blind acceptance and 

obedience to unquestioned authority. Rational inquiry demands critical 

assessment of anything and anyone in terms of reason and evidence.

     The “. . .then. . .” part of the above conditional sentence is generally 

followed by a question or problem. The problem should always consist of 

an explicitly formed question, not formed as a hidden assertion or a 

declaration that we already believe is true. The question should not be 

rhetorical since these always contain one or more hidden assumptions that 

are implicitly claimed to be true. An example of a rhetorical question is 

the famous or infamous “When did you stop beating your wife?” The 

question contains the not-so-well-hidden and perhaps unproven 

assumption that the one being questioned is guilty of beating his wife.

     In essence, we must make it very clear that we are asking a genuine 

question and not presumptively claiming something to be true. An 

example is the following: “If the laws of mathematics are true, then can 

elements of the real number R and complex number C fields be used to 

describe and explain intelligence?” That is an example of a rationally 

formed problem, a question, posed within a universe of discourse.

     But when we become aware of a problem within a given subject matter 

and seek to pose a question to solve it, we are already beginning to 

demarcate what is called a “problem space” within that larger universe. 

We are beginning to “carve up” the problem space by our very 

conceptualization of the question we seek to answer. Our question has 

packed within it many assumptions and concepts that may have been 

uncritically accepted in our minds without proper questioning and close 

scrutiny.

2.1.2 Careless Carving 

This is the point at which any rational inquirer must be very careful 

indeed. For if the problem space in that universe is carved carelessly or if 

the inquirer cuts the problem space on a bias, that cutting will henceforth 

doom the inquiry to a skewed, fanciful, partial or completely false answer. 

As one scientist put it, “We should not be surprised that when we put 

crooked questions to Nature that she then returns crooked answers” (Geach 

1971).

     Worse yet, that careless carving may create harm that is not even seen. 

It may not be seen because it becomes the accepted way of looking at the 

problem. Worse, the “crooked answers” may become the accepted 

solution. Without a careful examination of at least the core necessary prior 
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assumptions, concepts, definitions, and distinctions that make the inquiry 

possible, followed by that very careful posing of the question, the inquirer 

can create harm that may take generations if not centuries to correct. 

     Unlike the hypothetical nature of the rational method of inquiry, the 

harm that may follow may not be hypothetical at all. In the past, crooked 

questions leading to crooked answers have led to much suffering and the 

deaths of many innocent lives, sometimes over many years or even many 

centuries.

     The subject matter here is intelligence, which falls within the broader 

domain of behavior generally. Speaking in the language of set theory, 

intelligence is a set of elements, or subsets that may themselves be sets of 

elements. And the set of intelligence itself, with its subsets, is another set 

within a larger set of elements. We will want to consider the subsets of the 

set of intelligence; and we will want to consider the larger set of which 

intelligence is a part. 

     Intelligence in general is often taken to be a subject of study by 

psychology, and that will be the approach we will initially take. Lately, 

however, it has become the focus of the neurosciences and has for some 

time been the focus of computer sciences and engineering. In earlier 

centuries, it was the subject matter of philosophy. Philosophers tended to 

analyze the human mind or psyche in terms of a universe of possibilities 

(“what is it possible to know?”) as well as in terms of the power of human 

reason to achieve knowledge of that universe. They asked fundamental 

questions about the nature, extent and power of human reason of certain 

kinds.

2.2 Classical Origins and Fabric of Intelligence Theory: 
Cut on Biases 

For about 2500 years philosophers and scientists have written much about 

the nature of intelligence, its categories and kinds. They have also written 

much about who and what has what kind and who and what does not.

     The nature of intelligence was often couched by philosophers within 

theories of the mind, soul or psyche. It is at the core of fundamental 

questions about the nature of humanity itself. It is also at the core of 

fundamental questions about the relation between humanity and the rest of 

the world, if not the rest of the universe. It is central in fundamental 

questions about the relation between body and mind and issues about 

human freedom. Indeed, for some philosophers intelligence was conceived 

as that part of us that we have in common with the gods. 

     Moreover, it is also at the core of issues related to what knowledge and 

knowing are and what they are not; what can be known as well as what 
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can only be believed. It is also about who, by virtue of intelligence, can 

attain the highest good and who cannot. It is about who and what rules and 

who and what gets ruled in societies and in nature.

     Alongside religious theories of relations between gods and humans, 

intelligence ranks high among those things that have been held by 

philosophers and some scientists to justify power and privilege rankings 

among people in societies and governments.

2.2.1 Plato and Aristotle’s Conflicting Theoretical Stage 

Setting a theoretical stage to be followed by many scientists and 

philosophers over the next almost 2500 years, both Plato (427–347 B.C.) 

and Aristotle (384-323 B.C.), in their own ways, set forth theories of 

intelligence that one way or another have been used to both elevate some 

groups to rule others and condemn still other groups to be ruled.

     Between the two, however, it is Plato who shows the most 

egalitarianism. It is first in Plato that we find a theory of intelligence that 

emphasizes the role of reason, and a theory that all are capable of it. For 

Plato, pure reason and the senses are polar opposites. The role of reason in 

human life is to unveil the ideal eternal forms behind those sensible 

appearances that we experience with our bodily senses and that always 

mislead us. It is only the objects of intelligence, pure reason, that are 

perfectly knowable because only they are the perfectly real. The objects of 

the senses, on the other hand, are fleeting appearances, mere illusions of 

our bodily senses.

     Plato’s theory of intelligence was part of his theory of the psyche or 

soul. These fit into his much larger theory of the ideal state, the Republic. 

He held that the soul, our psyche, was divided into three capabilities: 

reason (the philosophic capabilities); will (or spirit); and appetite. One can 

identify three parts of the soul, he claimed, because they are sometimes in 

conflict with each other. A person may have an appetite for something, yet 

have the willpower or spirit to resist. A correctly operating soul, just as a 

correctly operating state, requires the highest part, reason, the philosophic 

capabilities, to control the lowest part, appetite, with assistance from the 

will or spirited capabilities.

     The appetitive capabilities are usually associated with the body or 

sensuality, and with material gain. But these can be ruled by reason. The 

spirited capabilities, the will, can give rise to self-consciousness and self-

assertiveness, a sense of self or pride. These too can be ruled by reason. 

The will can give rise to courage, when ruled by reason; but it can also 

give rise to brutality, ambition, contentiousness, indignation, as well as 
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temper when it is not. It is only the philosophic capabilities, reason, which 

can develop into wisdom.

Plato’s Dichotomy of Mind and Body 

It is clear that Plato’s view of intelligence was also based on a larger 

complex view of the human. As a metaphysical dualist, he regarded the 

body and soul as separate entities, positing an “unreal” world of the senses 

and physical processes as well as a “real” world of ideal forms. He held 

that only the soul or reason could perceive the ideal forms, exemplified in 

truths of mathematics. When the body and the soul combine, the body 

obstructs the soul’s ability to recall the ideal forms. “Knowledge is not 

given by the senses but acquired through them as reason organizes and 

makes sense out of that which is perceived” (Zusne 1957; Plucker 2003).

     Plato’s theory of the human, all humans, was the first attempt to set 

forth a taxonomy, a systematic classification, of human being or behavior. 

He set forth that classification in terms of capabilities. In the ideal state, 

those persons whose capabilities for reason are strongest are to rule the 

rest.  They may be male or female, slave or free. And the good life is the 

life of proper development of the psyche or soul, in which reason rules the 

appetites with the help of the will. 

     Later, however, Plato’s student Aristotle (384-323 B.C.E.) held that the 

highest levels of reason are found only in certain persons. The highest 

levels of reason, said Aristotle, are found in men. Some will rule and 

others will be ruled by birth. “. . . from the hour of their birth, some are 

marked out for subjection, others for rule” (McKeon 1941).

     In Politica, containing his writings on intelligence, Aristotle claimed 

that man rightly takes charge over woman because he has superior 

intelligence. Moreover, he compared this to the relationship between 

human beings and tame animals.

“It is the best for all tame animals to be ruled by human beings. For this is how 

they are kept alive. In the same way, the relationship between the male and the 

female is by nature such that the male is higher, the female lower, that the male 

rules and the female is ruled” (McKeon 1941).

For these same reasons, Aristotle continues, some people are by nature

destined to be slaves: 

“That person is by nature a slave who can belong to another person and who only 

takes part in thinking by recognizing it, but not by possessing it. Other living 

beings (animals) cannot recognize thinking; they just obey feelings. However, 
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there is little difference between using slaves and using tame animals: both 

provide bodily help to do necessary things.”

     Invoking an a priori theory of natural kinds, instrumental value, and 

limitation of social and civil rights applied to those of purported inferior 

intelligence, he claimed that a slave is no more than a tool of his master. 

“Together with the wife and the ox, a male or female slave is a householder’s 

indispensable beast of burden. . .But slaves have no right to leisure or free time. 

They own nothing and can take no decisions. They have no part in enjoyment and 

happiness, and are not members of the community” (McKeon 1941). 

In part, Aristotle held that the development of intelligence follows 

biological development. Stating a principle that continues to be repeated 

today, he held that those that are larger and stronger are more intelligent. 

Female animals, including human females, are smaller and weaker than 

male animals. From this fact it followed, according to Aristotle, that 

women are not only smaller and weaker than men but rationally inferior as 

well.

     For these same reasons, he argued that it is right even to go to war 

against those who are inferior as are slaves and women. They are inferior 

in intelligence. They are therefore inferior by nature. Thus it follows, 

according to Aristotle that it is only right that they should be conquered, 

ruled, and taken as slaves.

     It is first in Aristotle that the Western world finds a theory of the 

superiority and inferiority of certain people tied directly to a theory of 

their biology which in turn is directly tied to a theory of their intelligence. 

This interconnected theory of intelligence in whole or in part we continue 

to find today.

     Moreover, contrary to his teacher Plato, Aristotle held that the body 

and the mind exist as facets of the same material being. The mind is 

simply one of the body’s functions. The mind is the intellect which 

consists of two parts, the passive and the active. The intellect is not a set 

of capabilities as found in Plato’s writing, but is:

“in its essential nature activity. . .When intellect is set free from its present 

conditions, it appears as just what it is and nothing more: it alone is immortal and 

eternal . . . and without it nothing thinks.”

     The psyche or soul is the actualization of the capacities of the human: 

nutritive, sensitive, and rational. The capacities are of the body hence the 

Aristotelian Dictum: Anatomy and Intelligence are Destiny 
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soul cannot exist without the body. He described the psyche as the “form” 

of the intellect, a substance able to receive knowledge.

     Knowledge is obtained through the psyche’s capability of intelligence, 

and the five senses are also necessary to obtain it. Foreshadowing later 

philosophers such as Hume, as well as some naturalists today, Artistotle 

also held that the senses are stimulated by phenomenon in the 

environment. Memory is merely the persistence of sense impressions. 

Mental activities are all primarily biological. He also held that the body 

and the psyche form a unity and that thinking requires the use of images.

     While some animals can imagine, only man thinks, according to 

Aristotle. Knowing (nous) differs from thinking in that it is an active, 

creative process leading to the recognition of universals. Universals are 

the essences of particular existing things. Induction is the primary way of 

knowing. It is a direct insight into those essences in particulars. Particulars 

are individual, non-repeatable, unique. Everything that exists is 

particulars. Knowing is akin to intuition; it does not cause movement, and 

it is independent of the other functions of the psyche (Zusne 1957). 

Early Differences Between Theory and Practice 

Aristotle sorted theoria (speculating or contemplating) from praxis

(acting). This was the original division between theory and practice, a 

division that would develop and be reinterpreted through the centuries 

fundamentally splitting body and mind.

     These two fundamental distinctions between body and mind, and 

between theoria and praxis, came to have the most profound effect upon 

our present day concept of intelligence. After Aristotle and culminating in 

the works of Descartes with full sanction of powerful religious authorities, 

these distinctions were later conceived as unbreachable dichotomies. 

     For Aristotle, however, theoria consists of rational activities related to 

knowledge of universals, and praxis consists of rational activities related 

to moral activity. But in our present day notion of intelligence, and as this 

distinction has been reinterpreted over many centuries, rational activities 

related to theory consists of language representations of knowledge that. It 

is this that now largely defines intelligence while rational activities related 

to any practice or acting— knowing how –related to a broader concept of 

praxis—are left out of the intelligence picture altogether. Today, theoria is 

intelligence while praxis is merely doing. 
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2.2.2 Anthropocentrism, Language, Gender, Race, Size, Wealth, 
and Place 

It is interesting to note that before Aristotle, Plato had a far more complex 

view of women and slaves. He did not regard either as inferior in 

intelligence or as inferior by nature. In principle, they could attain the 

highest levels of human achievement in intelligence and in all fields of 

endeavor. “. . . all the pursuits of men are the pursuits of women also. . .” 

he said (Gould and Wartofsky 1976).

     But later religious and most philosophic tradition followed Aristotle on 

the intellectual and “natural” superiority of men. This view was reinforced 

with the rise of Christianity, especially the Catholic Church, and the 

influence of Aristotle. Texts of the Old Testament were translated in terms 

of Aristotelean theories.

     It was St. Augustine (A.D. 354-430) who later attempted to reconcile 

apparent contradictions in Biblical passages that imply that woman as well 

as man reflects the divine image, while St. Paul claimed women were 

inferior. St. Paul called man the glory of God, while woman is the glory of 

man. He also prescribed different rules of conduct for each, greatly 

restricting the range of women’s freedom and liberty. Augustine concluded 

that it is in man alone, as well as man together with woman, that the divine 

image is reflected. By herself, however, woman, created as the helpmate of 

man, does not reflect the divine image. 

     Centuries later, with the rise in power of the Catholic Church, Thomas 

Aquinas (ca. 1225–1274) based many of his own ideas on those of 

Aristotle, metaphysically interpreting them to fit his Christian theological 

framework. He claimed in the Summa Theologiae and elsewhere that the 

inferiority of women lies not just in bodily strength but in force of intellect.

Nonetheless, he says, such inferior intelligence contributes to the “order 

and beauty of the universe.” Arguing a principle that is also repeated 

today, woman’s inferiority is just part of the nature of things. 

     Thus just as Augustine and Aristotle before him, Aquinas reduced the 

value of women to instrumental worth because of her weaker physical 

strength and because of her inferior intelligence. Unlike men, she has no 

intrinsic value of her own. Worse, women’s supposed inferiority was part 

of God’s plan. It was in the nature of things for women to be inferior. And 

any presupposition to the contrary was “unnatural” and therefore against 

the will of God.
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The Intrinsic and Instrumental Intelligence Difference 

Just as others had done so before, Aquinas invoked Aristotle’s a priori

theory of instrumental value to rationalize claims about the intellectual 

inferiority of women and their use by men (George 1999). That theory is 

found implied in biblical passages such as 1 Corinthians 11:10, in which 

St. Paul says that “man was not created for the sake of woman, but woman 

was created for the sake of man.” This passage echoes Genesis 2:18-19: “It 

is not good that the man should be alone. I will give him a helpmate.” 

     In the theory of value, when it is claimed that one thing exists for 

another, then that thing is inferior to the other for which it exists. The 

inferior exists as an instrument to be used by the superior. For Aquinas, 

biblical sources were absolute authority and not to be questioned, not even 

with his rather profound intelligence. The Christian bible claimed that 

woman was created for the sake of man, so it had to be.

     It followed that if women were inferior by nature in their intelligence, 

then they were likewise inferior also in society and in the home. He took 

other passages as indicating that intelligence is the core of woman’s 

“divinely ordained” inferiority. In 1 Corinthians 11:3 St. Paul says “man is 

the head of woman,” and in Ephesians 5:22 “a husband is the head of his 

wife.” Aquinas takes it as evident that men are meant to rule women by 

virtue of intellectual superiority because they are by nature superior to 

them.

     The views of Aristotle and Aquinas are reflected in varying degrees 

throughout Western philosophy, even today. Their basic arguments are 

still heard especially, though not exclusively, in religious circles. Theories 

of intelligence coupled with theories of the brain and behavior are found 

merged with underlying theories of the moral or instrumental worth of 

whole groups in larger political contexts (Gottfredson 1998).

The Intelligence Center of the Universe 

In most philosophic theories during the classical and medieval periods, 

mankind—but more specifically the human male—was regarded as the 

center of the universe. The highest levels of intelligence, found only in 

human males, according to Aristotelian doctrine, adopted as dogma by the 

Church, made human males God’s centerpiece.

     As such, the human male became regarded as the highest point in the 

hierarchy of all being in the entire universe. The human male was 

regarded as a reflection of God, having been made in His image by virtue 

of his superior intelligence. His was a superior life, based upon this 

reflected divinity, based in part on his assumed superior intelligence.
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     As earlier noted, such theories were used to rationalize slavery and war 

against those considered inferior. Before the period known as the 

Enlightenment, monarchies headed by kings together with religious 

leaders used the same theories embedded within so-called sacred texts and 

legal systems to make women and others legally dependent upon and in 

some cases owned by husbands and masters. Though the state may own all 

men not of royal birth, it was men who owned women. 

     Under various such legal systems as the Napoleonic Code, for example, 

women were made totally dependent upon their husbands. It was the 

husband who chose where she lived, controlled her property, if she had 

any, and had absolute authority over her and her children. If she was 

caught committing adultery, the husband could order her imprisoned, 

divorce her, and even kill her.

     Theories of intelligence are not mere academic exercises. Such theories 

can and do have far-reaching, sometimes unimaginably horrible 

consequences to the value, quality, and length of life itself. 

2.2.3 The Fabric of Concepts Defining Intelligence Since 
Darwin

It is fitting that our review of the Western origins of theories of 

intelligence began with Classical theories of Plato and Aristotle since it is 

Aristotle who is later regarded as the father of psychology.2 Until around 

the mid-nineteenth century, writings about human intelligence and mental 

ability generally were dominated by both Platonic philosophy and 

Christian theology interpreted with Aristotelian principles, especially as 

found in Aquinas.

     It is with the publication of Darwin’s Origin of the Species in 1859, 

however, that human and animal behavior began to be seen as products of 

mechanical evolution in natural selection. Heredity became a focal point 

of the science of intelligence, yet still within the context of theories of the 

psyche, mind, or soul left over from 2,500 years of philosophy mixed with 

religion.

     Since the late nineteenth century, psychologists have analyzed human 

behavior in terms of what are called theoretical “constructs” and causal 

chains of certain kinds. In some cases, American psychologists took a 

theoretical construct meant to explain a small segment of human behavior 

and expanded it to explain everything in human behavior.

                                                          
2 Aristotle’s De Anima (On the Soul) is sometimes referred to as the first book of 

psychology.
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     The concept of Intelligence Quotient (IQ) is just such a construct. 

Wrested from the context of empirical findings and warnings of its 

originator, Alfred Binet, the concept of IQ was redefined and born on the 

crest of a wave of political conservative forces in the United States. It was 

taken to explain everything, including deplorable social conditions that 

accompanied huge poverty-stricken immigrant populations pouring into 

the United States in the 19th century to fulfill the needs of industrial 

development.

     Early intelligence tests were used at Ellis Island to deny the 

“feebleminded” entrance to the country; they were also used by the U.S. 

Army to label entire groups of men as morons who nonetheless could be 

trained to fire a rifle; and they were used to inspire a eugenics movement 

resulting in forced sterilization of minorities, among other often heinous 

and cruel abuses (McLaren 2005).

     The general concept of intelligence we currently find in the U.S. is an 

outgrowth of this history. It is related to a number of other concepts, some 

of which are inherited from earlier Classical and medieval theories. 

Certain of these are central to an understanding of what intelligence is 

taken to be at its core, while others are peripheral though they may 

nonetheless play a significant role in our scientific understanding of it.

     What the central concepts are and how they have been claimed to be 

related to intelligence is something we should review. This is so because 

the meanings of these concepts determine the very scope as well as 

meaning of the universe of intelligence as it is understood today. These in 

turn can direct intelligence research efforts in a certain direction, and they 

can be used to effectively quash efforts in other directions. 

     Though each discipline may “carve up” the problem space of an object 

of inquiry in its own way, they each contribute to a broader understanding 

of that object, sometimes sharing tools such as methodologies, 

experimental and clinical strategies, concepts, distinctions, definitions, and 

assumptions to do so. Clearly, intelligence generally, and natural 

intelligence in particular, are objects of both multi- and interdisciplinary 

inquiry.

     The concepts related to intelligence, as they are currently largely 

understood, determine the scope as well as the content, the elements, of 

the set or universe of intelligence. Taken together, they form an 

interrelated network that is so tightly woven together that the larger 

integrated picture must be seen before we can assess whether or not what 

we are looking at is distorted.

     In other words, we must get clear on how the problem space has 

already been carved to determine any biases to the cut. Though the above 

historical review of Classical and some medieval theories already 
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demonstrates many biases as to the distribution of intelligence among 

persons, and resulting inequalities and social abuses following that 

distribution, we did not look at the nature of the concept of intelligence 

itself for biases. That is what we will now do.

Reason, Logic and Language 

Following the ancient theoretical stage set by Plato and Aristotle, 

“intelligence” has been defined almost exclusively in terms of the ability to 

reason. And reason, divided earlier by Aristotle into theoria and praxis,

with clear preference given to theoria as that kind humans have most in 

common with the gods, emphasizes the use of rational tools by the mind. 

That is, it emphasizes the use of logic, also originally conceived and 

formulated by Aristotle in the form of deductive syllogisms, though logic 

has since developed far beyond those. 
     Minimally, reason includes the ability to plan and solve problems. It is 
obviously a core concept of intelligence. Following Aristotle, the concept 
“reason” eventually came to be defined almost exclusively in terms of 
concepts and rules of logic,3 concepts and rules of evidence (which are 
sometimes taken to be reducible to rules of inductive logic), and the use of 
number. These rules are necessary to plan and solve problems. Thus logic 
also became another core concept of intelligence because of its integral 
relation with reason: reason is understood to be wholly dependent upon 
logic.
     Even more narrowly, however, logic is itself sometimes taken to 
include only those concepts and rules that are publicly expressible by 
means of certain elements (not all) of public formal language4 or 
symbolizations. Performing deductions and inductions expressed as 
propositions5 in declarative sentence form or their tokens was (and is still) 
                                                          
3 The discipline of logic eventually expanded far beyond Aristotle’s syllogistic (deductive) 

forms that dealt solely with categories. Syllogistic logic is limited in part because it 

leaves out all of relational logic, does not utilize operators and connectives, among other 

things. Additionally, Aristotle and later logicians recognized the power of generality that 

can be gotten by substituting special symbols for terms of arguments, as well as limiting 

the ambiguities involved in natural languages. This eventually led to the development of 

highly technical symbolic notation to permit the expression of complex ideas.
4 A formal language is one completely defined in terms of its syntactics (rules of form); 

semantics (rules of content); and pragmatics (rules of function). It is an artificial 

language with rules laid out from the start which completely, with the exception of 

primitive terms, defines it. Formal languages are in contrast to natural languages which 

are historically given, are described as having “semantic thickness” or meaning, and 

which evolve with use.
5 A proposition is a complete unit of thought that can be asserted in a declarative sentence. 

It is that unit in language that is considered either true or false. Such complete thoughts 

as “The chair is red” or “Steve is late” are propositions. They are either true or false, 
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thought by some to be both the necessary and sufficient conditions for 
reasoning about anything. Thus logic in turn is understood to be wholly 
dependent upon the grammar and elements of language. To the extent that 
the relation between logic and formal languages is not held to be as strict 
as this interpretation suggests, nonetheless, the rules of logic are held to be 
necessary and sufficient conditions to reason.

     The network of concepts and definitions so far says that the meaning of 

intelligence is that it is entirely tied to reason, which in turn is defined 

entirely in terms of logic, taken to mean performing deductions and 

inductions expressed in declarative sentences or their tokens in language. 

All the network of concepts related to intelligence in general, including 

natural intelligence, is within the broader domain of language ability, 

specifically the use of public language, including its elements and 

grammar.

Number

It should be stressed that this understanding of intelligence also applies to 

the use of number, indeed to the entire scope of numerosity. A highly 

arguable and unproven if not outright false assumption is that the ability to 

develop and use numerical concepts depends upon the ability to use 

language. It is assumed that all of mathematics is merely a subset of the 

larger set of formal languages and that the ability to use numbers or other 

concepts of mathematics is entirely derivable from the ability to use 

language (Gelman and Butterworth 2005). I will raise significant 

arguments and empirical evidence against this assumption later. Needless 

to say this theory of numerosity is based upon the same network of 

questionable and problematic concepts that define the larger theory of 

intelligence of which it is a part. 

     In effect this integrated fabric or network of concepts and definitions so 

far paints a picture of intelligence as a subset of the domain of public 

alphanumeric language ability, including both formal and natural 

languages. This point should be stressed about this development of the 

concept of intelligence: there is no part of the entire domain of intelligence 

that is not included within the set of public language ability. Intelligence is 

understood as subsumable within speaking, reading, and writing natural or 

formal languages. It should also be stressed that this view of intelligence 

as within the domain of public language ability functions solely according 

to the rules and principles of logic.

                                                                                                                                      
while the directive “Close that door,” is neither true nor false. Though philosophers often 

talk of propositions as abstract entities that may or may not get expressed in declarative 

sentences, for all practical purposes we can think of them as such.
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     However, it is not clear at this point that the converse holds. That is, it 

is not clear that the entire domain of public language ability is included 

within the domain of intelligence. In fact, we will see that this converse 

does not hold. Indeed, this view of intelligence omits certain forms and 

functions of public natural language itself. 

     This network of concepts and definitions reviewed so far demarcating 

(“carving”) the problem space of intelligence has carried over to natural

intelligence where that includes the intelligence of lower animals. Natural 

intelligence has been taken to be a subdomain, a subset, of the larger 

category of intelligence.6 Until recently, natural intelligence, indeed 

intelligence in general, was largely thought to be found solely within 

human beings. Only human beings were thought capable of performing 

logical or number operations with their minds, so the very notion of lower 

animal intelligence was left out of the picture of intelligence altogether. 

Besides that, only humans had language abilities. Or so it was thought. 

Knowledge

Moreover, continuing on the stage set by the Classical and some medieval 

philosophers, intelligence was tied to the concept “knowledge”. The aim of 

our ability to reason was to give us knowledge of reality. Recall that for 

Plato only the perfectly real is the perfectly knowable; these are the Forms. 

It is the philosophic capability of pure reason that permits human beings to 

know anything at all. Aristotle disagreed, as did many later philosophers, 

but they all tied the notion of mind and reason to some kind or kinds of 

knowledge. This in turn affected their theories of how one learns or comes 

to know anything. 

     Our contemporary notion of “knowledge” is that it is defined in terms 

of certain elements of language, called “propositions.”7 These are 

elementary units of thought captured or represented in language or 

symbolizations that are at least in principle capable of being shown to be 

true or false. In general, the philosophic community still does not 

recognize a broader concept of knowing that extends beyond language 

propositions. As currently conceived reason deals only with propositions 

                                                          
6 Again, readers should keep in mind that I use the terms “intelligence” and “natural 

intelligence” interchangeably, in contrast to artificial intelligence.
7 A proposition is a complete unit of thought that can be asserted in a declarative sentence. 

It is that unit in language that is considered either true or false. Such complete thoughts 

as “The chair is red” or “Steve is late” are propositions. They are either true or false, 

while the directive “Close that door,” is neither true nor false. Though philosophers often 

talk of propositions as abstract entities that may or may not get expressed in declarative 

sentences, for all practical purposes we can think of them as such.
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that are asserted in declarative sentences. Only those propositions shown 

to be true can be put together to comprise knowledge of any kind. Thus 

intelligence is further defined and delimited in terms of this concept of 

knowledge.

     Moreover, this tapestry of concepts defining intelligence also 

demarcates those who “have” it from those who do not. According to 

some contemporary intelligence researchers, even if lower animals have 

some primitive form of language, they cannot be said to know anything. 

This is so in part because their languages (or any other means of 

communication), if they have any, do not operate according to recursive 

rules permitting an infinite number of possible combinations (Pinker and 

Bloom 1990; Pinker 1994; Dennett 1994).
     Contradicting increasing evidence to the contrary (Pot 1997; Fagot et 
al. 2001), only human language can do that, they say. Moreover, animals 
do not perform logical operations because it is held that they do not have 
minds, though they have brains. And they clearly have no concept of truth, 
a defining concept of “knowledge.” Animals behave solely in terms of 
“hard wired” instincts, primitive senses, and motor responses, it is argued. 
And instincts, primitive senses, and motor responses have nothing to do 
with intelligence, so it is still claimed. Though some may speak of the 
senses and instincts in some metaphorical sense as “intelligent,” they 
really are not, so the argument goes.
     Thus far, this family of related concepts seems to paint a rather concise 
and decisive picture of what intelligence is and what living things “have” 
it and which living things do not. Human beings have it; other living 
things do not.
     To summarize briefly, intelligence in general came to be defined in 
terms of reason which is defined in terms of rules of logic, which in turn 
define the rules of reason; and in terms of knowledge, consisting of 
truthful assertions that are in turn expressed in terms of certain elements 
and the universal grammar of public language.
     This notion of intelligence was later expanded by intelligence test 
designers to include reasoning about designs and patterned blocks, with 
the capacity to put them in some logical order, which means according to a 
logical rule describing a pattern. This latter expansion was about as far as 
any notion of practical reason, what Aristotle called “rational activities 
related to activity” or praxis, was allowed to go. 

The Continuing Cartesian “Split”: Body and Mind  

Until about the early 1980’s, the intelligence universe of discourse was 

largely carved just this way by researchers and test designers. The larger 

universal set was human behavior divided into three domains. The domain 
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or set of intelligence within that universe was demarcated in terms of the 

intersection of reason (rules of logic), public language, and knowledge. 

These included within them the rules of grammar and the application of 

rules of logic. Problem solving was viewed as the application of rules 

already known, such as rules of logic and numerosity. This intersection 

was labeled by psychologists as the cognitive domain.

    The other two domains of human behavior include the affective (or 

emotive) domain and the psychomotor domain, but only the cognitive 

domain is taken to include intelligence. These three major domains were 

held, and are still largely held, to be mutually exclusive, and to exhaust all 

kinds of human behavior.

     Some recent research has looked at areas of possible overlap between 

the domains, particularly emotion and reason. Most if not all of that 

research focuses upon how emotions contribute to reasoning effectively 

about our daily or professional lives. Additionally, some research also 

focuses upon how to reason about one’s and others’ emotions. These 

studies sometimes refer to Emotional Intelligence as though they are 

referring to a separate kind of intelligence (Grewal and Salovey 2005). 

However, as far as I can determine, none of the research addresses 

fundamental mechanisms of affect within the structures of intelligence or 

reason itself.

     In other words, emotion and reason may be related in that one may act 

on the other but they are still fundamentally mutually exclusive categories. 

Reflecting more than one dichotomy going back to Aristotle, reason is 

cognitive; emotion is still not cognitive but may have contributory or 

instrumental value to successfully reason (Grewal and Salovey 2005; 

Damasio 1994; Ekman 1980; Feldman et al. 2001).

     The view of many in the behavioral science community was and still is 

that if there are kinds of human behavior that do not fit into one or the 

other of the three domains, then it should be put into a “junk” or “other” 

category. The junk category has included such behavior as improving or 

improvising, innovative, and even merely “different” ways of approaching 

a practice or accepted way of doing something.

     In the history of psychology, for example, the junk category often 

included kinds of behavior or thinking “outside the box” that cannot be 

described or explained within the three-domain framework as kinds of 

intelligence or as emotive or as psychomotor behavior.

     Underlying this network of related concepts, assumptions, and 

definitions is the notion that all intelligence is a single thing. Intelligence is 

largely conceived to be a single human ability or aptitude exhibited in 

public language ability governed by grammar and logic used to assert or 

record knowledge or solve problems with rules already known. The 
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presumption was and still is that intelligence is found only in the cognitive 

domain, not in either the emotive or psychomotor. And of course, the 

cognitive domain was and is still defined in terms of language and logic, 

which in turn defines intelligence.

     Language containing the clearest expressions of intelligence was 

entirely stripped of everything except the formal rules of logic and 

propositions or their symbolic tokens. It was stripped of all emotive forms 

and functions, exclamations, and all idiosyncratic, figurative, 

metaphorical, indexical and personalized expressions. Certainly, it was 

stripped of spontaneous and commonly used three-dimensional manual 

gestures human beings often make while speaking.

     Likewise, it was stripped of all sentences referring to the senses or any 

other internal states unless objective instruments could independently and 

publicly verify them. Truth, a defining property of knowledge, was 

operationally defined; it was placed solely within the domain of public 

syntactical rules of language and logic. 

     Additionally, that single thing, intelligence, was identified with only 

one part of the human body, the brain. But it was not found in the total

brain, only one part (or at most two parts) of it. It was only found in the 

language centers of the cerebral cortex. It was definitely not found 

expressed or exhibited by activities of the rest of the human body unless 

descriptions of what the body did were reducible to descriptions of what 

the brain told the body to do. Then it was reducible to propositions, to 

declarative sentences of the form, “The brain tells (causes) the body or 

central nervous system, CNS, to do x, y, z (effects).” And those sentences 

were operationally defined, hence verifiable. They could be shown to be 

true or false relative to a set of rules defining verification, truth and falsity. 

They were reducible to public knowledge hence they were expressions of 

intelligence. If they were not so reducible, then they were not expressions 

of any intelligence. 

     By virtue of limiting intelligence to language asserting or recording 

knowledge, anything that a human being knows how to do with their body 

was held to be motor, not cognitive, behavior. Anything that a human 

being knows how to do not reducible to language sentences about what 

they know how to do was not considered a part of intelligence.

     In case it may be missed, it is important to stress the underlying 

Cartesian split between body and mind, as well as the split between theory 

and practice inherent in this carving of intelligence space. On the Cartesian 

mind- and proposition-centered view of human intelligence, the body is 

merely a reactive machine doing what the mind tells it to do. 

     In the Cartesian world-view, if a person knows how to do something, 

say, play a viola, what they know how to do must not only be reducible to 



68      2 The Universe of Intelligence 

a set of sentences, propositions, describing what they know how to do, and 

prescriptions telling them how to do it. The person must first read and 

understand the prescriptions telling them how to do it and then follow 

those prescriptions to put into practice what the prescriptions tell them to 

do. Only then can a person actually successfully and intelligently do 

anything.
     On the Cartesian view, the location of intelligence is in the mind which 
though found in the brain is not reducible to it. This is so because the brain 
is a material substance and is therefore a machine. To some extent 
following the Platonic model, the mind controlled by pure reason is that 
part of the human we have in common with God. The body is mere 
material substance that must be brought under our control, the control of 
our proposition-embedded intelligence. 
     The Cartesian bifurcation of body and mind/intelligence is a view well-
established in the Western world. In some materialistically modified ways, 
it is also firmly established in the usually accepted taxonomy of human 
behavior in psychology and more recent theories of human behavior and 
intelligence.
     More to the point, on the Cartesian view, intelligence is not found in the 
rest of the body or what the body does. It is certainly not found in the 
senses or in any motor behavior. It is given that the mind controls the 
body, so the body gets its instructions for doing whatever it does from the 
mind. It is worth repeating: knowing how to do something that involves 
one’s body, like playing the viola or playing tennis, or knowing how to 
throw a curve ball, therefore, must be reducible to sentences about
knowing how to do something. Knowing how to do anything must be 
reducible to sentences and instructions in order for it to be included in the 
domain of intelligence because that’s what intelligence is.

     In outline, this is the fundamental story approved by Church authorities 

when Descartes first put it forth in 1637, a post hoc justification by a 

famous philosopher for many abusive Church practices. It was directly 

taught or assumed by thousands of priests and teachers and philosophers 

over the next more than 350 years. 

     However, in the 1940’s, setting a new stage to be followed over 60 

years later by philosophers and neuroscientists alike, Gilbert Ryle in the 

Concept of Mind nailed his theses to the door of Cartesianism, 

overthrowing one of its most fundamental principle of faith: The 

reducibility of knowing how to knowledge that. Though barely noticed at 

the time, and still largely ignored, that reducibility was shown to be 

logically impossible. The sacred mind-body dichotomy used to shore up so 

many other false dichotomies and myths was itself shown to be a myth, to 

encompass legends that served merely to prop up other arguments that 

turned out to be just so much puffery.
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     Logically and empirically, knowing how to do something is not 

derivable from a description or prescription about knowing how. Knowing 

how is found in the person, not in language. It is found in the person 

actually doing something whether it is performing some physical task with 

the body or performing mathematical proofs with the mind.

     It turns out, Ryle showed, that knowing how is a different kind of 

intelligence. It is altogether different from the traditional Cartesian- and 

Church-approved knowledge that. Knowing how is a kind of intelligence. 

It is not a set of  “mindless” motor responses. 

     With Ryle’s overwhelmingly tight arguments shaking the foundations 

of Cartesianism, those who held to the faith were left scrambling for a 

counterargument. They had to show him wrong in order to shore up the 

long-held mind-body dichotomy and its principles. They had to shore up 

the dichotomy because so many other things were built upon it. It was that 

basic dichotomy, after all that allowed the Church, kings and princes to 

keep whole groups in virtual subservience as instruments, purportedly “in 

the service of God.” It was that dichotomy that formed the foundation of 

rationales for keeping whole groups such as women, serfs, and slaves from 

learning how to read and write and enter certain professions. It was that 

dichotomy that served to support the very status quo and foundation of 

Church-approved society itself. 

     In spite of overwhelmingly powerful arguments, the tight hold of the 

mind-body dichotomy, declarative sentences, propositions as the pinnacle 

of intelligent expression, would not die. It would not die because of the 

mind-in-the-brain-centered, linguistic, verbal notion of human intelligence.

     In effect, the dogma continues today shoring up the intelligence testing 

industry. Knowing how to do anything unrelated to language speaking and 

writing ability is not really knowing anything at all. The problem space 

was carved such that professionals in the fields studying intelligence could 

not and still largely do not acknowledge nonpropositional intelligence.

     Later, when sciences showed those portions of the brain where 

language and cognitive activity (so defined) occurred, it was claimed that 

the Western world had finally located the “seat” of intelligence in the 

brain. Language centers in the cerebral cortex of the brain, conceived as 

the “controller” of all intelligent activity, are held to be the center of that 

intelligence, excluding other parts of the brain and the rest of the body.

Making the Natural Artificial 

Intelligence was stripped of the body, except for the brain, or certain parts 

of it; stripped of the senses; stripped of emotion; stripped of things the 

body can do that are not dependent upon the use of language, those 
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sensorimotor behaviors. In an interesting twist, the concept of natural 

intelligence was largely made artificial. In other words, this single thing, 

this natural intelligence found in humans, was stripped of everything that 

made it “natural” in the first place.

     Indeed, tests of natural intelligence, the intelligence found in living 

things (specifically humans), that have gained much attention, actually pit 

humans against machines. Human intelligence is pitted against computers, 

archetypes of artificial intelligence. It is the artificiality of artificial 

intelligence that has, in some professions, become the standard for all

intelligence.

     It is certainly not the naturalness of intelligence found in living things 

that is the standard for all intelligence. This is so, first of all, because we 

do not know what that naturalness is; and secondly, because our Western 

concept of intelligence has so evolved that we have stripped everything 

from the concept that might have led us to a greater understanding of it. 

Patterned after deterministic causal machines, intelligence is held to be 

determined by the mechanical application of rules of logic, number and 

grammar.

     The Western world’s notion of intelligence is a narrowly algorithmic, 

rule-governed notion, leaving out any notion of intelligent rule-bound

activity that includes knowing how to do anything at all beyond engaging 

in verbal behavior.8

The Intelligence of the Large and Small 

In one way or another, size has almost always been correlated with 
intelligence. For some time it was generally supposed that because human 
males tend to be physically larger than human females, they must 
therefore be more intelligent. This was a belief firmly held by Aristotle, 
who also held, contrary to his contemporary Galen, that the location of 
thought was in the heart, not the brain.9 When mental activity was later 
shown to be related to the brain, it was then held that humans with larger, 
heavier brains are more intelligent than those with smaller ones. Males 
have larger and heavier brains than females, hence (so the argument goes) 

they are more intelligent.

                                                          
8 Needless to say, it also excludes creative behavior. One psychologist at a major state 

university in the state of Texas once stated to me that “if a student wants to study creative 

behavior, we send him or her to the religion department.”
9 Like many Classical Greeks, Aristotle held that the heart and not the brain was the center 

for human thought. According to the Classical Greek view, all living things obtained 

their vitality or life from pneuma (air). Growth, movement and thought were made 

possible by alterations of pneuma. Disagreement over the role of the brain in mental 

activity persisted until at least the 18th century.
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     Human males are thought by some even today as more intelligent than 

human females in part due to their (on average) larger, heavier brains. 

However, the brain of the sperm whale on average weighs 7,800g, the 

elephant’s weighs 7,500g, and the typical human male brain weighs 

1,500g. By parity of reasoning, if size and weight of the brain are used to 

determine intelligence, then the sperm whale and the elephant are about 

five times as intelligent as the human male.

     It is also believed today by some that the relationship between brain 

weight and body size is a criterion for comparing intelligence. In that case, 

if we ranked humans and the above animals along with mice in order of 

how large their brains are in relation to their body weight mice would rank 

ahead of them all with their brain comprising 3.2% of its body weight.

     In fact, however, we know that neither absolute brain weight nor the 

relationship between brain weight and body size provide us with rational 

standards for comparing the intelligence of different species.

     Nonetheless, many who study intelligence apparently prefer to find it 

only in creatures that are about our size and who speak a language we 

understand. It is a lot easier to study ourselves and others like us than 

those creatures who may be a lot smaller or a lot larger and who may not 

speak at all.

     Until relatively recently, larger animals such as elephants, whales, and 

giant octopi have been excluded from intelligence research. Some of the 

exclusion may be attributable to the difficulties with extending research 

into natural environments or setting up research laboratories and other 

conditions to permit studying them.

Brainless Intelligence and Intentionality? 

Even on the other end of the size spectrum, amoebae are still excluded, not 

just due to their size but because they have no brain. Usually seen under a 

microscope, with no central nervous system or brain, they are 

automatically excluded as intelligent creatures. This is so in spite of the 

strong reservations of some scientists (Stewart 1998). 

     At a minimum, we require that intelligent beings, no matter what size 

they are, must have a brain. This is a fundamental unproven assumption 

tied to yet another fundamental unproven assumption. In observing 

behavior, we tend to attach intelligence to behavior that is intentional, 

purposeful. An underlying assumption is that only creatures with brains 

can act with intention and purpose. Therefore, the argument goes, only 

creatures with brains can have cognitive abilities, can have intelligence.

     Even more narrowly, some argue that only human brains can act with 

intention and purpose because only human brains have language centers 
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with universal grammar. Yet examined closely, though we are quick to 

attribute such intentionality, cognition, and intelligence to ourselves and 

others like us, we demur attributing these to other creatures, based largely 

on some of the same unproven assumptions.

     In the case of both ourselves as well as the amoebae we are not even 

certain what constitutes intentional, cognitive behavior. Though the 

amoeba may look as though it is acting intentionally and with purpose, we 

claim that it really is not. After all, how could it, given that it has no brain? 

However, just what evidence do you have that even though your distant 

neighbor, with whom you have never spoken, and who acts as though he 

or she has intentions and purposes, he or she actually does have intentions 

and purposes?

     Aside from observing your neighbor’s obvious behavior, just as you 

examine the amoeba’s behavior under a microscope, you have no way of 

knowing. Yet because your neighbor looks like you in relevant respects—

and you are pretty certain that your neighbor has a central nervous system 

(CNS) including a brain while the amoeba does not, you freely attribute 

intentionality and purposiveness, hence intelligence, to your neighbor that 

you withhold from the amoeba. Do we have a rational basis for 

withholding intentionality, purposiveness, and intelligence from amoebae? 

     Even focusing solely upon higher primates, we do not yet know enough 

about natural intelligence even among the higher primates other than 

ourselves to claim that they do not “have” intelligence or that they do not 

possess intelligence at higher levels.

     We are also not even certain what “higher” means here. Given the 

tendency to establish a hierarchy when carving the space of such an 

important concept as intelligence, we must view with some suspicion 

those hierarchies already noted that were established within a network of 

biases formed over many centuries sometimes solely on the basis of the 

approval of unquestioned religious authorities.

     Historically the concept of “higher” intelligence has been correlated 

with the use of certain abstract logical and mathematical concepts in 

problem solving. Where this has fallen short of good predictions of 

intelligent behavior, then it has been correlated with the speed with which 

such concepts are used (Jensen 1998).

     But these claimed indicators of “higher” intelligence are still tightly 

woven within the above historical network of concepts that have been 

taken to define intelligence in the first place. Given the dubious 

assumptions interwoven within that network, turning to fast performances 

on cognitive tests appears to be yet another form of begging the very 

question(s) at issue. It assumes what it seeks to prove.
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     It is that network of concepts and underlying questionable, unproven 

assumptions that are subject to challenge. Among other things, evidence 

we will examine later shows that human ancestors were certainly endowed 

with some forms of intelligence long before they became language 

speakers and long before they acquired an understanding of explicit 

concepts of logic and mathematics. So among other assumptions we have 

already examined, the assumption that intelligence requires language will 

not hold either. 

     Those who claim that we do know enough about intelligence to 

establish this hierarchy are basing their claims upon the above 

questionable network of concepts, definitions, and assumptions that 

largely rest on the ability to use language and logic. Their claims also rest 

on a network of assumptions related to size, gender, and outright 

anthropocentrism that appears to have been largely left over from pre-

Enlightenment centuries of adherence to religious dogma and magical 

belief. Taken collectively, these concepts are largely little more than a 

form of begging the very question at issue.

2.3 Today’s IQ Tests: Circularity, Bias, and American 
Eugenics

Even assuming what we already claim to know about intelligence, we do 

not know enough to assume or claim that only one gender, race, or ethnic 

group tends to “have” it at its purportedly higher levels (whatever we take 

that to mean) than others. Though some researchers have set forth highly 

elaborate arguments to show that such differences are due either to 

genetics or “cultural pathology” of those groups scoring low on standard 

IQ tests, their arguments have been shown to fail to meet scientific 

evidentiary and logical standards.

     Some of the problems are related to the way otherwise respectable 

scientific techniques are used to make the argument. For example, the use 

of principal components analysis combined with factor analysis to 

establish the existence of g is fraught with errors of reification and other 

fallacies. Moreover, extending such arguments way beyond existing data 

to appeal to over-arching genetic or “cultural pathology” explanations is 

not warranted either by genetics or test data. Unfortunately, these 

arguments sometimes appear to support the authors’ biases more than 

provide explanations of statistical differences in IQ test performance, even 

given some of the dubious assumptions those tests are based upon.
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     Contrary to some researchers, there are alternative explanations to 

statistical differences in IQ test performance between genders, races, 

ethnic, and socio-economic groups. Moreover, IQ tests are based not only 

upon the same set of assumptions, concepts, and definitions we are 

challenging here, but on other unproven and dubious assumptions as well. 

2.3.1 The Economic Argument 

One of the most insidious assumptions underlying the arguments of those 

who hold that current IQ tests are a valid measure of general intelligence 

or g is the assumption that Darwinian survivability in a U.S. type laissez

faire economy is the best broader test of general intelligence. This 

assumption is held by those researchers advancing a theory of genetic 

superiority/inferiority and cultural pathology, such as criminal behavior, to 

explain racial differences in IQ test performance.10 Their argument goes 

something like this:

1. Those who score well on current general intelligence tests tend to do 
well economically in the United States.

2. Those who do not score well on those same tests do not do well 
economically in the United States.

3. Those same populations who do not score well on those same tests 
and who do not do well economically in the United States are 
statistically often the same populations who end up on welfare rolls 
and in trouble with the criminal justice system.

4. Thus, those groups not scoring well on IQ tests and not doing well 
economically in the U.S. are genetically or culturally determined to 
have inferior intelligence.

     Among other problems, the premises with evidence missing are those 

tying low IQ scores, low economic performance in the U.S., and increased 

numbers on welfare and in trouble with the criminal justice system, to 

genetic profiles of whole racial groups. 

     Setting the genetic determinist argument aside for the time being, 

however, the fact that these same populations in other cultures with more 

humane economic arrangements tend to score on a par with more 

“successful” groups appears to elude these researchers.

                                                          
10 This view is shared by many in the single capacity intelligence research community; it 

can be found spelled out in some detail in many sources. I recommend Gottfredson 1998 

as a start.
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     Moreover, those same populations in other cultures with more humane 

economic arrangements do not tend to end up on welfare or in trouble with 

the law in any significantly greater numbers than do other racial groups. 

The mountain of prior hidden, uncritical and biased assumptions, 

concepts, definitions, and methods underlying this view literally begs for 

critical scrutiny and question. We will return to specific issues 

surrounding genetic and biological determinism later. 

     More to the point, however, what good reasons are there to suppose 

that intelligence is a single ability or capability that can be measured by 

standard IQ tests or by Darwinian survivability in the U.S. laissez faire

economy? What does it mean to claim that such survivability in a specific 

cultural economic context is a valid measure of intelligence anyway?

The Issue of Test Validity 

The validity of a test is that it actually measures what it says it measures.11

But the validity of a test must be subject to measures that are outside the 

scope of the test itself. Otherwise, what one gets is logical circularity, a 

question-begging kind of “self-fulfilling” condition that may not actually 

measure anything.

     What do standard IQ tests claim to measure? Intelligence, as defined in 

terms of “g-theory,” a single group of related cognitive abilities taken to 

define intelligence in the first place. How does the validity of standard IQ 

tests get measured? The validity of these tests is measured by the fact that 

they claim to measure what they measure. That is, the tests are designed to 

define, measure, as well as assess their own validity to measure the very 

things the tests say are the things they measure. In sum, it is the tests that 

define and measure what they say is intelligence and it is the tests that 

define and assess what they say is their own validity.

     The circularity here should be apparent. This is not an innocent or 

benign circularity. It is vicious. Moreover, going beyond this to claim as 

well that the best general test of intelligence is the U.S. laissez faire

economic system as a whole, with virtually uncountable and certainly 

uncontrollable variables, is worse than merely vicious. It becomes a brutal 

disparagement of poverty-stricken groups, let alone a scientifically invalid 

argument.

     How did the subject of intelligence end up with this kind of politically 

charged as well as logical circularity? How did it end up with the 

extrapolation of test scores far beyond any justifiable purpose?

                                                          
11 There are different kinds of validity in test design, content, and construction. I am setting 

those other concepts aside.
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     When Alfred Binet founded the French School and devised intelligence 

tests, he regarded those as just practical ways of separating fast learners 

from slower ones. An intelligence quotient (IQ) was just an average of a 

number of very different abilities that he used so that he could determine 

how to help slower students. He did not regard IQ as a real existing thing 

found within the brain with properties that could be studied.

2.3.2 Reification and the Eugenics Argument 

On the other hand, Sir Francis Galton (1822-1911), widely recognized as 

the father of behavioral genetics, promulgated the theory that intelligence 

was very much a real thing with a basis in biological, e.g. eugenics fact. 

Galton believed that this real thing, intelligence, could be studied using 

reaction times on cognitive tasks.

     Galton is credited with having founded the English School of 

Intelligence that had more influence on the development of the concept of 

intelligence in the U.S. than did Alfred Binet’s French School.

     Influenced by his cousin Charles Darwin, Galton began to study 

heredity in 1865. He became convinced that success in life was due to 

superior mental faculties inherited by offspring through heredity. He later 

published a series of studies and books advocating the principle that 

“human mental abilities and personality traits, no less than the plant and 

animal traits described by Darwin, were essentially inherited” (Seligman 

2002).
     His studies and publications along with the growing popularity of his 
ideas, gave rise to the eugenics movement calling for methods of 
improving the biological make-up of the human species through selective 
parenthood. At one point, he proposed human breeding restrictions to 

curtail the birth of “feeble-minded” babies (Irvine 1986).

     Though eugenics later became very popular in the United States as well 

as in Europe, the rise of the Nazi movement and WWII brought an end to 

that popularity. The Holocaust, based in part upon principles of eugenics, 

brought disrepute to the movement.

     In 1925, however, Galton’s theories were greatly advanced by Lewis 

Terman (1877–1956) who directly tied them to scores on the Stanford-

Binet intelligence test. With this, “Galton’s belief in the adaptive value of 

natural ability became thereby translated into widespread conviction that 

general intelligence provides the single most critical psychological factor 

underlying success in life”(Sternberg 2003). Among some racist groups, it 

also became one of the most critical factors underlying the worth of some 

human lives.



2.3 Today’s IQ Tests: Circularity, Bias, and American Eugenics      77 

     When Charles Spearman (1863–1945) invented what is called “factor 

analysis,” Galton’s English School of Intelligence gained favor among 

scientists. Using Galton’s concept of correlation and his own concept of 

factor analysis, Spearman found that all tests of intelligence are positively 

correlated. In a matrix of positive correlation coefficients, he calculated a 

first principal component that he called “g” or general intelligence.

     Confusing multiple correlations with causal explanation, he also 

fallaciously reified and interpreted g as a real entity. As Gould notes, 

Spearman “imagined that he had identified a unitary quality underlying all 

cognitive mental activity—a quality that could be expressed as a single 

number and used to rank people on a unilinear scale of intellectual worth” 

(Gould 1981, p. 251). 

     For the reader somewhat unfamiliar with correlation matrices, we 

should explain the rationale underlying the argument for g. The degree to 

which any two or more tests measure something in common is indexed by 

their correlation, labeled r, ranging from –1 to +1. A positive r means that 

individuals who score high on a given test also tend to score high on the 

other. On the other hand, a negative r means that high scores on one test 

go with low scores on the other.

     When a number of different tests are administered to the same group of 

individuals, an r can be computed for each pair of tests considered 

separately. The results of those computations are what are called a 

“correlation matrix”. On intelligence tests, the correlation matrix tends to 

consist of all positive r, but below 1.00.

     When Spearman showed the first formal factor analyses of such 

correlation matrices, he concluded that a single factor, g, accounted for the 

positive correlations among tests. This is a notion still accepted by many 

psychometricians, but it is a notion fraught with serious theoretical and 

logical risks. Those risks usually involve the fallacy of reification, of 

taking a first principal component calculated for a matrix of correlation 

coefficients as a “real” entity, when it may not be.

     Concluding that g is a real entity is not warranted unless there is 

independent evidence of g beyond the fact of correlation itself. The mere 

fact of a number of positive correlations of mental tests does not warrant 

the inference to the existence of g.

     Many psychometricians consider the intelligence test that best 

measures g is the one that has the highest correlations with all other tests 

of intelligence. These are called “g-loaded” tests. Not only did Spearman 

regard g as a real existing entity, general intelligence. Some of his 

adherents have argued that it is genetically determined.

     Later, however, L.L. Thurstone (1887–1955) rotated the factors in the 

analysis and found several primary mental abilities instead of only one 
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found by Spearman. Thurstone thus disputed the prominence assigned to 

general intelligence, the g factor. Along with the spurious confusion of 

multiple correlations with causation, and the lack of any evidence of g

independent of the correlations themselves, Thurstone’s early findings, 

followed by many others, provide good reasons to seriously question or 

reject the single-capacity or “g” theory of intelligence altogether. 

     In the current field of psychological theories about intelligence, 

however, it appears that there are two opposing theoretical approaches. 

Some psychologists who follow the Galton-Spearman hereditarian 

argument hold there is one unilinear construct of general intelligence, g,

ranking above and controlling all lower abilities and aptitudes. This 

construct is modeled upon a hierarchical grouping of capabilities with one 

general capability, g, held to be the controlling factor for all lower ranking 

capabilities.

     However, increasing dissatisfaction with standard IQ tests and 

theoretical and evidentiary reasons have resulted in a growing consensus 

among other intelligence specialists from a variety of related professions 

that there are many different intelligences. Though this is not the prevalent 

view, the major disputes between the two camps indicate that a more 

fundamental, unified, logically consistent and exhaustive approach to 

intelligence is both warranted and necessary.

2.3.3 A Static Hierarchy: g the Controller

For more than one hundred years psychologists have addressed the nature 

of intelligence. Their efforts have produced a hierarchically arranged stack 

of conceptual “blocks” or aptitudes of behavior with general intelligence, 

g, as the top block on the stack. That top block is argued to be thoroughly 

measured by standard IQ tests, which provide a single quantity based upon 

a correlation coefficient of a series of declarative language, paper and 

pencil tests.

     The stack of blocks is in essence a top-down, linear, functional-block 

oriented, serial processing model.  In many ways it mirrors the Classical 

and medieval religious as well as Cartesian anthropocentric view, with “g”

placed at the top of the hierarchy directing everything else falling below it.

     General intelligence, g, is the top block on the stacked pile of mental 

attributes or abilities because it is conceived to be the high-level 

“controller” of all other blocks below it, the aptitudes “arrayed at 

successively lower levels” (Gottfredson 1998). Overall, the view of 

intelligence is fundamentally conceived as a rigid, static arrangement. 

Intelligence is not conceived as a dynamic, self-organizing, and adaptive 
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system integrated throughout all other kinds of behavior. It is not self-

acting or self-directive, but largely reactive.

     As the concept “g” is explicated by its proponents to be general 

intelligence, the top block on the pile, while ranking categories of specific 

aptitudes and abilities below it, we need to take a very hard look at what 

these theoreticians specifically take g to be and how it relates to those 

other aptitudes and abilities that it controls. Just as importantly, we need to 

take a hard look at what they take to not be intelligence.

     One of the proponents of g states: 

 “The g factor is especially important in just the kind of behaviors that people 

usually associate with “smarts”: reasoning, problem solving, abstract thinking, 

quick learning. . .” (Gottfredson 1998, pp. 24-29). 

     It should quickly be noted that the kinds of behaviors she mentions are 

logico-linguistic, emphasizing verbal and written language, as well as the 

speed of their processing (e.g. “quick learning”). She continues by 

explaining the historical significance of these, given the findings of 

psychometrics.

“Several decades of factor-analytic research on mental tests have confirmed a 

hierarchical model of mental abilities. The evidence. . .puts g at the apex in this 

model, with more specific aptitudes arrayed at successively lower levels. . .verbal 

ability, mathematical reasoning, spatial visualization and memory, are just below 

g, and below these are skills that are more dependent on knowledge or experience” 

(Gottfredson 1998). 

     Based upon this particular researcher’s descriptions, g is a mental 

aptitude that is found in “reasoning, problem solving, abstract thinking, 

quick learning. . .” And just what might comprise that aptitude expressed 

in reasoning, problem solving, abstract thinking, and quick learning? 

Clearly, the researcher is referencing kinds of rule-governed behavior 

where the rules are primarily those of logic.

     The mental aptitude comprising g appears to be logic rules, along with 

rules governing number. This becomes more evident in the following 

description of tests and test items: 

“Some tests and test items are known to correlate better with g than others do. In 

these items the ‘active ingredient’ that demands the exercise of g seems to be 

complexity. More complex tasks require more mental manipulation, and this 

manipulation of information—discerning similarities and inconsistencies, drawing 

inferences, grasping new concepts and so on– constitutes intelligence in action. 
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Indeed, intelligence can best be described as the ability to deal with cognitive 

complexity. . .” (Gottfredson 1998). 

     The concept of “mental manipulation” of information, unpacked to 

mean “discerning similarities and inconsistencies, drawing inferences, 

grasping new concepts,” is a description of the application of rules of 

logic. For this researcher, applying rules of logic is “intelligence in 

action.”

     Moreover, the “cognitive complexity” referenced in the above 

paragraph turns out to be dealing with instances of logic problems 

“discerning similarities and inconsistencies, drawing inferences, grasping 

new concepts.” So we know that g, this ability to deal with cognitive 

complexity, is expressed in the ability to use the rules of logic.

     The scope of g, as explained by its proponents, is overlaid with 

elements of language. This is easily verified by examining the description 

the researcher gives of test conditions for determining individual 

differences in g.

“The general factor explains most differences among individuals in performance 
on diverse mental tests. This is true regardless of what specific ability a test is 
meant to assess, regardless of the test’s manifest content (whether words, numbers 
or figures) and regardless of the way the test is administered (in written or oral 

form, to an individual or to a group). . .” (Gottfredson 1998).

     These diverse tests are, in one way or another, tests of a person’s 

language ability. They are tests of knowledge that. They are not tests of 

knowing how nor are they tests of visual and any sensorimotor 

intelligence.

Missing From g: Experience 

Perhaps the most astonishing cut in this widely accepted carving of 

intelligence space is the relation between intelligence, knowledge, actual 

experience, and knowing how. This relation is at best muddled. At worst, 

there is no relation. This is evident in the hierarchical model as noted in 

the above quotation, partially repeated here, with my emphasis:

“The evidence. . .puts g at the apex in this model, with more specific aptitudes 

arrayed at successively lower levels… and below these are skills that are more 

dependent on knowledge or experience, such as the principles and practices of a 

particular job or profession. . .”
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     The reader should note where the researcher places actual experience.  

So pervasive is the “knowledge that” propositional bias in intelligence 

studies, that the prevailing view is that actual experience working with 

day-to-day problems or even knowing how to do things in one’s job or 

profession, rank lower than g.

     Underlying this assumption is that all the products of civilization, from 

actually setting out complex mathematical proofs, building supersonic jets, 

expansive bridges spanning our widest bodies of water, to the 

development and testing of medicines, super technology such as 

computers and even language itself, are all reducible to written 

descriptions and “how to” manuals to build them all. Knowing how to 

make anything based upon the awareness that comes with experience is 

left out of the intelligence picture altogether. 

     The powerful, far-ranging and demonstrably false assumption 

underlying this view is that knowing how to build any of these or operate 

with any of the machinery, including language itself—is reducible to sets 

of descriptions and prescriptions, our knowledge that. Yet of experience 

and knowing how, or “practical intelligence,” the author states: 

“Practical intelligence like ‘street smarts,’ for example, seems to consist of the 

localized knowledge and know-how developed with untutored experience in 

particular everyday settings and activities—the so-called school of hard knocks” 

(Gottredson 1998).

    However, knowing how names a different kind of intelligence than the 

one purportedly found in g. It is one that is not measured by standard IQ 

tests. The usual interpretations of the g-theory dismiss knowing how as a 

kind of “street smarts” acquired by experience. It is astonishing that 

experience itself is given such short shrift in any theory of intelligence 

since it is by all other accounts the larger domain of which intelligence is a 

part.

     Given the constraints the g-theory imposes on both facts about the 

objective reality of natural intelligence, as well as the means by which to 

measure it, it cannot give any account whatsoever of this kind of 

intelligence found pervasively underlying the most magnificent 

achievements of human kind.

     More to the point, the researcher makes clear that knowledge and ex-

perience are not identical with g. Though she earlier made clear that one’s 

accumulated knowledge often correlates with g, it is not g. Experience, or 

“street smarts” as she refers to it, “seems to consist of the localized

knowledge and know-how developed with untutored experience. . .In 

contrast, general intelligence is not a form of achievement. . .”
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     As to other forms of intelligence, however, the author states the 

following:

“Other forms of intelligence have been proposed; among them, emotional 

intelligence and practical intelligence are perhaps the best known. They are 

probably amalgams either of intellect and personality or of intellect and informal 

experience in specific job or life settings, respectively” (Gottfredson 1998).

     Why the researcher would cite emotional and practical intelligence as 

opposed to considering the seven or eight categories of kinds of 

intelligence proposed by Gardner (1993), is puzzling. With respect to 

practical intelligence, however, the researcher’s view is certainly not in 

accord with research and arguments leading back in time as far as 

Aristotle’s much earlier theory of praxis. Recall that he specifically 

defined this kind of intelligence as reason related to moral activities. It 

was not conceived by him to be idiosyncratic in any way, tied to 

personality or “informal experience.”

     With regard to emotional intelligence, the literature is not at all clear on 

this. As pointed out earlier, the current research appears not to address 

itself to specific affective mechanisms within reason itself, but to look for 

the contributory or instrumental value of emotions to effectively reason in 

one’s everyday life and work. As far as I can determine, this is not another 

“form of intelligence.” 

     Arguing that g is not affected by social context, the author goes further, 

offering conclusions based upon the above network of dubious concepts 

and even more dubious and some outright false assumptions. She states: 

“the fact that g is not specific to any particular domain of knowledge or mental 

skill suggests that g is independent of cultural content . . .tests of different social 

groups reveal the same continuum of general intelligence. This observation 

suggests either that cultures do not construct g or that they construct the same g.

Both conclusions undercut the social artifact theory of intelligence” (Gottfredson 

1998).

     Yet close analysis of what general intelligence is taken to be shows that 

g is specific to a particular domain of knowledge and mental skill. It is 

specific to the body of knowledge and skill called “logic” and it is specific 

to language skills, including the use of number. The rules of logic and 

even natural language grammars have universal rules and attributes which 

can be found cross-culturally, accounting for the claim “different social 

groups reveal the same continuum of general intelligence. .”

     Of course, ultimately the conclusion that the author argues for is that 

intelligence is based in genetics and is, therefore, largely unmodifiable at 
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birth. This in turn is based upon the network of interrelated dubious 

concepts and arguments defining intelligence as g in the first place, and 

upon dubious and outright false assumptions that largely beg the very 

questions at issue.

2.3.4 Biological Determinism Revisited

The g-theory architects and its advocates make no pretense at being 

anything other than genetic determinists when it comes to intelligence. The 

primary theses of The Bell Curve (TBC) include the claim that intelligence 

is predominantly due to genetic factors that are largely unmodifiable by 

education or experience.

     Moreover, according to the authors, it largely determines life outcomes 

and involvement in poverty and crime. Those scoring low on IQ tests tend 

to have poorer life outcomes and show a higher incidence of involvement 

in crime. Nurture plays little or no part at all in life outcomes of 

individuals; it is only genetically determined intelligence that counts. 

     In spite of numerous research studies contradicting these and other 

claims, one of its authors recently asserted:

“As for the special case of the heritability of IQ, we can all sit back and relax. The 

answer is on the way, not from psychometrics but from genetics” (Murray 2000). 

     It should be noted at the outset that the Human Genome project was not 

complete when Murray and Herrnstein were writing The Bell Curve.

Empirical data that might have been used to support such arguments was 

not available. Nor was it available when Arthur Jensen stated: 

“differences in allele frequencies between populations exist for all heritable 

characteristics, physical or behavioral, in which we find individual differences 

within populations” (Jensen 1998).

     But even if the Human Genome project had been complete at the time, 

it would not have provided evidence to support these and other genetic 

determinist claims.

Neo-Darwinism and the Heritability Argument 

These authors’ point of view on intelligence and later ones to be noted, 
reflect what is known as a Neo-Darwinist view of genetics. Not only is it a 
distortion of the science of genetics, but when used as a basis for 
determinist arguments about intelligence, it greatly undermines any 
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rational, scientific understanding of the subject. A quick review of some 
basics of genetics, and behavioral genetics in particular, easily shows the 
problems with such arguments.

     Some clarification of terms is in order. The term “allele” refers to a 

different form that a gene can take. Alleles determine the characters (the 

characteristics) of an organism. The word “character” is geneticists’ term 

for any definable feature of form, pattern, or behavior of an organism. For 

example, the gene for seed color has at least two alleles, yellow and green. 

     For Neo-Darwinists, only genes and alleles matter. Organisms such as 

human beings are only a kind of secondary by-product of genes. As 

Stewart notes: “. . .the source of all important action [for the Neo-

Darwinist] is seen as the molecule DNA” (Stewart 1998, p. 102).

     Since its origin with Galton, the science of behavioral genetics 

generally has sought to understand the genetic and environmental 

contributions to individual variations in human behavior. This is 

enormously difficult if for no other reason than the fact that it is often 

difficult to define the behavior in question. We have seen that issue with 

the concept of intelligence itself. 

     Having defined “intelligence” for scientific purposes, however, as g-

theorists claim, it is also necessary to measure the behavior with 

acceptable degrees of validity and reliability. As one noted genetic 

scientist observed:

“Sometimes there is an interesting conflation of definition and measurement, as in 

the case of IQ tests, where the test score itself has come to define the trait it 

[purportedly] measures.  This is a bit like using batting averages to define hitting 

prowess in baseball. A high average may indicate ability, but it does not define the 

essence of the trait” (McInerney 2004). 

     This conflation of definition and measurement throws all claims to 

validity and reliability into question because arguments supporting it are 

fallacious. As noted earlier, they are instances of circularity or begging the 

very question at issue. More egregiously, any arguments and 

measurements based upon these are themselves in turn fallacious as well. 

Entire research programs based upon such fallacious claims and 

arguments cannot be valid and neither can be any conclusions drawn from 

them.

     Adding to the complexity for such intelligence research are the 

enormous scientific obstacles to correlating genotype (an individual’s 

genetic endowment) and behavior. Not only is there the above problem of 

defining the behavior at issue, but there is another problem in identifying, 

defining, and excluding other possible causes, thus allowing a scientific 



2.3 Today’s IQ Tests: Circularity, Bias, and American Eugenics      85 

evaluation of any supposed correlation. This is made almost impossible 

for correlations between genotypes and such complex behaviors taken to 

define intelligence.

     Added to this is the fact that individuals sharing a given genotype may 

end up with very different behaviors. Twin studies showing 

schizophrenics whose identical twins are unaffected by the disease are a 

case in point. Such problems are even greater for studies of intelligence, 

even given an acceptable definition of intelligence, which we do not yet 

have.

     Like all complex traits, intelligence involves multiple genes. Hence the 

genetic and psychological research task is compounded many times over 

for multiple genetic contributions to highly complex behaviors. In general, 

as one scientist noted, “it is easier to discern the relationship between 

biology and behavior for chromosomal and single-gene disorders than for 

common, complex behaviors” (McInerney 1999). There has been no such 

productive research to date with complex genetic contributions to 

intelligence.

     Nonetheless, the authors of The Bell Curve tied their conclusions to 

“substantial heritability” of intelligence. In something of an irony, this is 

in fact another obstacle to their genetic determinist arguments. Heritability 

is a statistical construct that estimates the amount of variation in a 

population attributable to genetic factors. But the explanatory power of 

heritability arguments is severely limited. Heritability figures apply only to 

the population studied and only to the environment in place at the time the 

study was conducted.

“If the population or the environment changes, the heritability most likely will 

change as well. Most important, heritability statements provide no basis for 

predictions about the expression of the trait in question in any given individual” 

(McInerney 1999). 

     The Neo-Darwinist view underlying much of the g-theory of 

intelligence reflects much misunderstanding of genetics. In the life of an 

organism, the role of genetics is not to determine everything about it. 

Genes orchestrate many physical and chemical processes carried out in an 

environment. They are not a blueprint for the fully developed human. 

Environments always have a determinant effect on what one’s genetic 

endowment does. From the level of activity of individual cells, including 

cell division, to the level of behavior of entire colonies of organisms, we 

do not find a world “where everything obeys instructions coded in its 

DNA and nothing else matters” (Stewart 1998). 
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     Indeed, as Stewart goes on to explain, DNA seems to exploit 

mathematical principles of growth and form found in the natural world 

surrounding it. DNA mechanics must be understood in conjunction with 

universal mathematical principles found in the rest of nature. Natural 

intelligence is more properly seen to be integrated complex patterns 

emerging in part from the acting, interacting, reacting, and transacting 

operations of the intentional unique person, their cultural and social 

context, their DNA, and universal dynamic mathematical principles of the 

natural world (Stewart 1998).

     Contrary to the Neo-Darwinist arguments of g-theory proponents, there 

is no rational basis for ascribing every aspect of an organism to 

information in its genes. Indeed, once an organism gets going, genes 

appear to take on a minimal role in the growth and form of its intelligence. 

     The faulty Neo-Darwinist genetic determinist argument, however, 

concludes that intelligence is largely if not entirely due to genetic factors 

and it is largely if not entirely unmodifiable for that reason. Moreover, 

when public social policy is then based upon such arguments, institutions 

such as public education are seen to be largely an expensive waste of time. 

This point of view is rather succinctly stated by the following adherent of 

the g-theory:

“People are in fact unequal in intellectual potential. . . Although subsequent 

experience shapes this potential, no amount of social engineering can make 

individuals with widely divergent mental aptitudes into intellectual equal” 

(Gottfredson 1998). 

     Setting aside the red herring claims using terms such as “unequal” and 

“equals”, not only is this argument based upon faulty genetic theory, it is 

contradicted by numerous empirical studies on the efficacy of public 

educational intervention alone to boost cognitive abilities. The following 

are just a few such studies cited in a five-year follow-up of research 

conducted after the publication of The Bell Curve:

“There appears to be a broad consensus that preschool Head Start-type programs 

.do not produce lasting improvements in cognitive ability, unless they are 

extremely intensive. One such intensive program, however, is the Abecedarian 

Project, the results of which showed a five-point IQ difference in favor of the 

treatment group at age 15” (Reifman 2000). 

     The author notes as well that even Jensen concurred that these results 

indicated a probable rise in the level of g. Additional research includes the 

following:
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“These investigators found. . .black students’ scores on the Armed Forces 

Qualification Test (the same cognitive ability test used in TBC [The Bell Curve]). . 

rose sharply over the four years of college, in comparison to a relatively flat line 

for whites. . .This shows the apparent error in Herrnstein and Murray’s 

characterization of cognitive ability as a relatively static entity” (Reifman 2000, 

emphasis mine). 

     Additionally, (Reifman 2000) evidence was cited in the Cognitive
Acceleration through Science Education (CASE) program, conducted with 
11–12 year-olds, in which some program effects were present at a two-
year follow-up, with transfer even to subjects such as English. Contrary to 
fallacious arguments for the genetic bases in determining life outcomes 
and involvement in poverty and crime, other studies were also cited that 
cast serious doubt on the significance Murray and Herrnstein attributed to 
IQ. With respect to involvement in crime, other researchers noted the 
following:

“Herrnstein and Murray would have first identified the known predictors of crime 

and then sought to demonstrate that IQ could explain variation above and beyond 

these criminogenic risk factors. . .By limiting their analysis primarily to three 

factors —IQ, SES [social economic status], and age — they risk misspecifying 

their model and inflating the effects of IQ” (Cullen et al. 1997). 

     The author rightly concludes that the available evidence contradicts the 

major genetic determinist theses of The Bell Curve.

A Short History of Rising IQ Scores 

But the genetic determinist arguments of The Bell Curve are also 
contradicted by the history of rising scores on IQ tests themselves. 
Average scores on these tests have been rising substantially and 
consistently all over the world since the tests were invented, at a rate of 
about three IQ points per decade (Neisser 1997). Though the cause is not 
entirely known, Neisser hypothesizes that such environmental nurturing 
factors as better nutrition, schooling, better child-support systems and 
advances in technology may be part of the explanation.
     In the United States, the most widely used and best known IQ tests are 
the Stanford-Binet and various Wechsler scales. These include five verbal 
subtests such as information, comprehension, arithmetic, vocabulary and 
explaining similarities. They also include five performance subtests in 
which a child must copy designs using patterned blocks, put related 
pictures in a proper order, and so on.12 Scores on these subtests are added 

                                                          
12 The reader should take note that these performances must be done in accordance with a 

test-approved rule. Independent individual problem solving and critical thought, 

especially thinking “outside the box,” are not included in this scale of intelligence.
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up and converted to an IQ by noting where it falls in the established 
distribution of WISC [Wechsler Intelligence Scale for Children] scores for 
the appropriate age.

     To those unfamiliar with how IQ scores are determined, the 

distribution is the crucial reference for assigning a score. Conventionally, 

the mean of each age group in the standardization sample taken when the 

test was initially standardized defines an IQ score of 100. The standard 

deviation of the sample defines 15 IQ points. Given appropriate sampling 

and a normal (“bell curve”) distribution, this means that about two-thirds 

of the population in any age group will have IQs between 85 and 115 

(Kerlinger 1973).13

     Thus IQ actually reflects relative standing in an age group. It does not 

reflect any absolute achievement of any kind. In spite of this, g-theory

advocates nonetheless take IQ scores to define g, which they in turn take 

to be a real existing thing with properties found inside the individual’s 

brain that is genetically determined. However, one child getting a raw 

score on the WISC that is higher than another may mean they both have 

the same IQ. And though raw scores may rise throughout their school 

years, IQ scores themselves “rarely change much after age 5 or 6” 

(Neisser 1997).

     But IQ tests themselves are often changed. Revised versions of these 

tests are standardized on new samples and scored relative to those samples

alone. The only way to compare difficulties of two versions of a test is by 

conducting a separate study in which the same subjects take both tests. 

Such studies have been carried out by Flynn (Flynn 1984) with results 

showing that in virtually every case the subject achieved higher scores on 

older versions of a test.

     On versions of the Wechsler Adult Intelligence Scale-Revised [WAIS-

R], a group of subjects who averaged 103.8 on the new WISC-R had a 

mean of 111.3 on the older WAIS. According to Neisser (1997): 

“This implies that the actual IQ-test performance of adults rose by 7.5 points 

between 1953 . . .and 1978.”

     Flynn’s research showed increasing raw scores in every age range on 

every major test in every modern industrialized country. It has been 

“continuous and roughly linear from the earliest days of testing to the 

present” (Flynn 1987).

     As to the purported genetically driven differences in mean test scores 

between African-Americans and the general white population of the 

                                                          
13 See especially Kerlinger’s section on factor analysis.
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United States, which is about 15 points or one standard deviation of the IQ 

distribution, Americans have gained about 3 IQ points per decade, or 15 

points over a 50-year period (Neisser 1997). And surprisingly, the largest 

“Flynn effects” [increasing raw scores] appear on highly “g-loaded” tests 

such as Raven’s Progressive Matrices, a test very popular in Europe.

     As Neisser notes, such increases in raw scores are entirely too rapid to 

result from genetic changes. “. . .the sheer size of the gains undermines the 

very concept of ‘genetic intelligence’” (Neisser 1997, emphasis mine).

     Moreover, alternative explanations for the Flynn effects, such as 

increasing levels of test-taking sophistication, do not work.

“An ongoing rise of 0.3 IQ points per year means, however, that if a representative 

sample of the American children of 1997 were to take that 1932 [Stanford-Binet] 

test, their average IQ would come out to be around 120. This would put about one-

quarter of the 1997 population above the 130 cutoff for ‘very superior’—10 times 

as many as in 1932. Does that seem plausible?” (Neisser 1997) 

     Additionally, doing a kind of “backwards” assessment: 

“Judging the American children of 1932 by today's standards. . .we find that their 
average IQ would have been only about 80! . . Either America is now a nation of 

shining intellects, or it was then a nation of dolts” (Neisser 1997)

     The enormous rise in IQ test scores, particularly on the most g-loaded

tests, casts more than just serious doubt on the genetic determinist thesis 

of the authors of The Bell Curve and their followers. Indeed, it casts 

serious doubt on the legitimacy of the tests to measure intelligence in the 

first place.

Suspect Racial Sorting 

Moreover, it should also be mentioned here that the authors of The Bell 

Curve sorted African Americans from other groups in their assessment of 

longitudinal, socioeconomic, and IQ tests. However, such a sorting is itself 

suspect. This is so even if it reflects self-sorting by the subjects 

themselves.

     Research and knowledge obtained from the Human Genome Project 

(Royal and Dunston 2004) has challenged the applicability of the term 

“race” to human population groups at all. Human population groups are 

more appropriately described in terms of genome variation. Sorting human 

groups according to race in assessments of IQ test scores casts doubt or 

suspicion on any conclusions based upon any such racial “sorting.” 

     But the evidence has not deterred followers of the g-theory who have 

turned to still other sources and methods to buttress faulty genetic 
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determinist arguments. The emphasis upon DNA as the source of all 

things intelligent has been abetted with an increased focus upon the 

precision of mathematics in measurements of g. The study of intelligence 

has become highly mathematical. Mathematical methods hold the promise 

of objectivity precisely because of their precision.

     But as noted elsewhere and clearly demonstrated even with their own 

psychometric instruments, especially as demonstrated in trends shown by 

the Flynn effects, precision is not the same as accuracy. One can very 

precisely measure the wrong thing, or make faulty inferences based upon 

very precise measurements.

Precisely measuring physical stature, brain size, speed of nerve 

conduction, and brain wave correlations under the pretense of measuring 

intelligence are examples of building additional faulty arguments on top of 

already thoroughly fallacious ones which in turn are based in part upon 

outright false assumptions.14

2.4 Summary

The history of carving intelligence space is that it has been cut on too 

many biases. Many of those are held over from centuries of unquestioned 

obedience to authority combined with a lack of critical thought.

     It has been cut on the human bias because until recently lower animals 

have been largely excluded for a variety of reasons. Descartes held that 

animals had no intelligence because he held they had no souls; more 

recently, they have been excluded because it is claimed they do not have 

recursive language capabilities.

     Intelligence space has also been cut on nothing more than a 

convenience and comfort bias, ruling out some animals as too large or too 

inconvenient to study.

     Intelligence space has also over many centuries been cut on the 

language, knowledge cum propositional bias since it is only there, some 

argue, that we can have true sentences, the gold standard of intelligence.

     Moreover, intelligence space has been cut on the public and 

verificationist bias ruling out references to internal states such as kinds of 

sensation, imagery, and sensorimotor awareness.

                                                          
14 This is amply illustrated by Gottfredson. See the reference above, in which she states: 

“brain size as determined by magnetic resonance imaging is moderately correlated with 

IQ (about 0.4 on a scale of 0 to 1). So is the speed of nerve conduction. The brains of 

bright people also use less energy during problem solving than do those of their less able 

peers.”
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     It has been cut on the test bias, excluding those parts of intentional, 

purposeful behavior that are not amenable to existing data collection 

instruments. It has been cut on the brain bias excluding organic life that 

has no brain or spinal cord. More specifically, it has been cut on the 

language centers in the cerebral cortex bias, excluding other parts of the 

brain that we have known for some time play a large part in otherwise 

intelligent activity and practices.

     Moreover, intelligence space has also for centuries been cut on gender 

and racial biases that still hold sway in spite of all evidence to the 

contrary. These biases are often based on spurious economic and other 

arguments by many professionals who ought to know better. 

     The domain of intelligence generally, but natural intelligence in 

particular, has been demarcated far too narrowly and too many of the cuts 

have been crooked. Of course not all of these biased cuts of intelligence 

space are accepted or implicitly assumed by all intelligence researchers. 

Nonetheless, some or all of the cuts are found liberally peppered 

throughout the research literature and current research strategies of many 

intelligence researchers.



3 The Genesis of Intelligence: Innate and 
Emergence Arguments 

One of the most crucial issues in human intelligence research today is 
determining how the mind or brain makes sense of the world. Generally, 
this issue revolves around explaining how the brain forms concepts (also 
known as universals) or categories utilizing the extraordinary variation it 
experiences by way of sensory receptors processing multiple perceptual 
signals from the environment and within ourselves. This issue in turn is 
directly related to our understanding of major mechanisms by which the 
brain and body deal with information and form knowledge of anything at 
all.
     Of course, the very framing of the issue is often in terms of language. 
Categories and concepts are often questionably taken to be solely linguistic 
or verbal elements. Unlike classes and representations, however, categories 
and concepts cannot be easily explained as language products. Moreover, 
to refer to processes or operations such as “abstraction” in order to explain 
how concepts and categories are formed is often to muddle the issue even 
more. The issue is then usually redirected to whether or not the 
mechanisms that generate concepts and categories, as well as classes or 
representations are “innate” or acquired.
     There is a great deal of confusion attached to these terms themselves, 
hence we should get clear on those first then look at the issue of innateness 
and whether or not the entire problem should be framed the way it is.

3.1. Categorization, Classification, Concepts and 
Representation

To categorize a thing is to classify it as a kind. In effect, categories and 
classes are logically equivalent concepts. Classes and kinds are in turn 
defined in terms of groups of entities that share certain properties in 
common. Those properties are taken to define membership in that kind    
or class. In effect, our concept of the class in question is defined in terms 
of those properties shared by the things falling in the class. In the actual act 
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or process of classification, we (correctly) classify things based on their 
properties and the similarity or resemblance of those properties with others 
of a kind or class.
     There are at least two things to observe right away with the meanings of 
these terms. First, in order to correctly classify anything at all, one must 
already somehow be cognitively in possession of the concept of the class 
used to do the classifying in the first place. Second, one must already be in 
possession of, or understand the rule, by which one can discern and 
compare properties of the things being classified in order to determine 
their similarity or resemblance with the things already classified, and to 
note any dissimilarity.
     A concept is a general or universal notion. It is a notion that is usually 
taken to be abstract that somehow applies to many things or events. 
Concepts clearly define classes. As youngsters, all other things being 
equal, we grow up learning the meaning of a concept by learning that 
certain properties of things, such as size, texture, color, and so on, are 
similar or resemble still other things that can be grouped or classified 
together. Exactly how we learn this is not clear. What is clear is that 
possessing concepts assumes that we already possess the means by which 
to group similar things together. We must already possess a rule that 
permits us to compare properties of things noting their similarity and 
resemblance as well as the dissimilarity and lack of resemblance of things 
that should not be classified together. 
     Obviously, the notion of a concept is that it is much broader than all the 
things that any person might experience which may be classified by means 
of it. The concept triangularity is an abstract mathematical notion or 
object, a universal. We will never actually experience triangularity, though 
we all experience many particular representations of triangles. There is a 
real sense in which concepts are ideas in the mind while representations 
may be “concretely” experienced. 
     A representation is usually defined as a presentation of something that 
stands for something else. That is, a representation can be a visible or 
tangible thing that stands in place of something else as an equivalent or 
that results in an equivalent. Representations can take many forms, such as 
symbols, pictures, patterns of action. For example, 1’s and 0’s can 
represent meaning in many forms such as literature, messages, paintings, 
actions. Drawings of particular triangles can be taken to represent the idea 
of triangularity however imperfectly. 
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3.1.1 Reality and the Influence of Representationalism 

As we saw in the last chapter, the history of thought about human 
intelligence is filled with various theories directed primarily to answering 
the questions, “What is intelligence, mind, soul?” and “Who has superior 
intelligence, mind, and soul?”
     In general, the concepts of intelligence, mind, and soul were merged, 

along with the concept reason. Classical philosophers sorted intelligence 

generally according to speculative (or theoretical) reason and practical 

reason, with the speculative held to be superior to the practical. With few 

exceptions, intelligence was held to be a property of humans. With few 

exceptions, it did not generally extend to the rest of the animal world. 

     Though there is no widely agreed upon definition of intelligence, 

nonetheless its boundary it is taken by most professionals these days to be 

the cognitive domain of human behavior. The cognitive, in turn, is taken to 

be identical with verbal knowledge, knowing that shows up in intentional 

or rule-governed linguistic behavior. Knowing anything at all is in turn 

defined in terms of reason that operates according to rules of logic and 

grammar. And though knowing has been largely limited to logico-

linguistic performances, excluding practical doings and kinds of behavior 

not related to logic and language, strong arguments and evidence show that 

such a restriction is not warranted. 
     But intelligence researchers have often not addressed themselves to the 
question “What is knowing?” They assumed that either the question had 
already been settled, or that it is one they need not ask. After all, they had 
already behaviorally or operationally defined the cognitive domain, even if 
it did have all those problems we earlier pointed out. Nonetheless, the full 
scope of any study of intelligence must sooner or later address all of the 
who, what, when where, why, and how of knowing. In many ways, 
answering the who question is putting the cart before the horse. We must 
first know more about knowing. 
     During and immediately following the Classical period, some 
philosophers addressed themselves to that question “What is knowing?” 
and focused upon even more basic questions such as “What objects or 
things can we know?” along with the implicit question, “What objects or 
things are real?”
     Further implied within these latter questions is that one cannot 
reasonably be said to know that which is not real. Amid much controversy 
over questions about reality itself, these questions were entwined with 
“How can we know, or come to know, anything at all?” With the birth of 
the science of psychology in the 19th century, this last question was 
reduced to theories of learning, defined behaviorally or operationally, 
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which are now central in questions about the nature of intelligence 
generally.
     But all the bundle of interconnected questions related to “What is 
knowing?” turn out to be like a woven fabric: one can not address a single 
thread without pulling on the others as well. To Plato, the standards for 
knowing something, as opposed to merely having an opinion or belief,
seemed to require that what one knows, the object of one’s knowing has to 
be objectively real, independent of the one who knows. Otherwise, one 
could not be said to know anything at all.
     Thus the underlying prior question “What is real?” took center stage 
when he introduced abstract, immaterial, eternal Forms, later known as 
universals, as the only things that are perfectly knowable because they are 
the only things that are perfectly real. Knowing, universals, and reality 
were intimately connected. 

3.2 The Continuing Problem with Universals (Concepts): 
Some History 

The question “What is real?” soon turned to the problem with universals. 
Today, we refer to these as concepts. It is a problem that has persisted to 
this day. This problem might be stated as follows: How do we experience 
universal or common properties in particular things? When we see a 
triangle drawn on a piece of paper, for example, how do we know that it is 
a triangle? Why isn’t it just a bunch of pencil marks? After all, we do not 
see triangularity the universal. We see particular pencil marks on a piece of 
paper. But the pencil marks are in the shape of a triangle that are drawn or 
otherwise represented on some tangible medium, the piece of paper.
     On the other hand, triangularity the universal is a Form, a perfect 
abstract idea. As such, there is no way it can actually be found in those 
pencil marks on paper. An individual drawn triangle is a particular. And 
particulars, according to Plato, are always imperfect. They are the things 
we come to apprehend or perceive with our senses. Yet, we can look at a 
drawn particular triangle, as imperfect as it is, and see that it represents its 
ideal perfect Form or idea of Triangularity. We understand that the pencil 
marks represent a triangle. 

Plato

Forms or universals which we experience with reason were contrasted by 
Plato with those particulars, bound by space and time, which we 
experience with our senses. It is particular things in the material world, 
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like those pencil marks on paper that we experience with sight, touch, 
smell, hearing, or taste. But it is only with our faculty of reason that we 
experience universals or Forms such as triangularity. For another example, 
just as the name “Socrates” was the name of a particular individual, an 
existing flesh and blood human, it is Humanity that is the Form, the 
universal. Yet when Socrates’ fellow Athenians saw Socrates the 
individual, particular human being, they knew he was a human being, a 
particular instance of the universal Form, Humanity. Yet the universal 
Form, humanity, was not to be seen in the flesh and blood making up the 
particular individual who was Socrates. 
     Even though particulars were conceived by Plato to be imperfect copies 
or instances of their universal, perfect Form, the problem Plato posed was 
that we could never actually know any instance or particular of any 
universal. That is because those particulars, those individual instances that 
are imperfect images of universals, like Socrates in flesh and blood, are 
fleeting and illusory.
     For Plato, one cannot know anything with one’s senses because they are 
always imperfect. At best, one can only have beliefs or opinions about 
sense objects. A drawn image of a right triangle is imperfect. The drawn 
lines are never perfectly straight. The angles are never perfect. Moreover, 
it can be erased or otherwise simply fade with time. Socrates the person 
was flesh and blood that must, sooner or later, die. On the other hand, one 
cannot see, touch, smell, taste, or hear perfect and eternal universals. One 
can only apprehend them with reason. 
     Plato’s reasoning about this was generally as follows: Our senses can 
deceive us, so we can never be certain of anything we experience or 
become acquainted with by way of our senses. It is only the mind or 
reason, devoid of all trickery of the senses, that can provide us with any 
certainty and hence, real knowledge. And real knowledge is only 
knowledge of universals, never of particulars in the world.
     Plato answered the bundle of interwoven questions, “What is real?” 
“What can we know?” and “How can we know anything?” in the 
following ways: 

1. The perfectly real or being [not becoming] is the perfectly knowable.
2. To be perfectly knowable is to be an object of intelligence (reason), 

not an object of the senses. 
3. To be an object of intelligence (reason) is to be a universal or Form. 

That is, it is to be an essence or common quality grasped by reason in 
a concept. 

4. To be universal is to be unchanging. That is, it is to be permanent or 
stable and enduring. Essences do not change. 
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5.  Pure thought is consistent. That is, the essences or Forms can be 
unified under the Form of Forms which is the One or the True or the 
Good or the Beautiful.

6. But to be an object of the senses [sight, touch, smell, taste, or hearing] 
is to be an appearance. It is the way an essence appears to one. It is a 
becoming, not a being.

7. A becoming is changing, an appearance, thus it is imperfect, it cannot 
be a universal. To change is to be non-permanent or non-stable and 
non-enduring. Appearances all change. 

     One of the first things to notice is that Plato’s view of knowledge 
renders it impossible to know anything about the material world. We can 
only have opinions or beliefs about it. Our only relation with the material 
world is through our senses. As such, we can never have any certainty 
about the material world precisely because we cannot apprehend it with 
reason. We cannot apprehend it with reason because the material world is 
not perfect. It is fleeting, always changing, and never stable. There is 
nothing permanent or enduring about it. Only properties of perfection, 
permanence, and endurance apprehended with the mind, with reason, can 
give us certainty, and hence, knowledge. 
     Again, for Plato, knowledge was directly tied to these concepts of 
reason, perfection and certainty. Knowing was conceived by him to be a 
pure, non-sensory relation between reason, found in the subject (the 
person) and the eternal Form or universal that is the object. This knowing 
relation between a subject and object also assumes many other things. It 
assumes that the capability of reason in a subject, a person, is itself non-
sensory.
     Somehow, reason itself in a person is separate from the body of that 
person. The mind and the body are separate. The mind or reason could not 
be part of the body because the body is an imperfect, sensory-laden 
material thing that is non-enduring. Yet the object of the knowing relation, 
in Plato’s theory, is an eternal Form, a universal, perfect thing.
     Another assumption by Plato is that the Form or universal, the object of 
the knowing relation, is also not found in the subject. Universals or Forms 
are not concepts found “in the mind” of persons though it is the mind that 
puts the subject in contact with the universals or Forms. They do not 
inhabit the mind. Universals or Forms were thought by Plato to inhabit a 
different, non-sensory, immaterial, eternal realm. To mix imperfection of 
the body with the perfection of eternal Forms was conceived by Plato to be 
impossible. It was a contradiction, an abomination of reason itself as well 
as the Forms.
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     Yet another obvious assumption by Plato is that the answer to the 
question, “What is real?” is found in the Forms. The immaterial, non-
sensory, eternal Forms are real, while the material, sensory world is not.
     Plato’s answer to the remaining question, “How can we know or come 
to know anything at all” was brilliantly set forth in his Allegory of the 
Cave. It is in that Allegory that he sorted out other concepts related to his 
view of knowing. In the process of coming to know, each person is 
initially shackled by their senses that constantly deceive them into thinking 
they know when they do not. They are surrounded by shadows of images 
of physical things that they take for reality. They are in a cave of darkness 
and cannot get out of it on their own.
     In the world of the senses surrounded by illusions, the Cave, we cannot 
be said to know anything. We are in darkness. We can actually only make 
conjectures and have beliefs and opinions about things because those 
things are shadows of images of physical things. The things we perceive 
with our senses are actually many steps removed from the physical things 
that cast the shadows that we see. The only way we can have any relation 
with these shadows and images and physical things is by way of our 
senses. Using only our senses, since we do not yet know how to reason, we 
are tricked into believing those shadows of images of physical things are 
real. Yet none of it is actually real. 
     Once we get help from one who knows how to reason, however, we 
then slowly and painfully enter the Intelligible World of the mind, of 
reason. In the intelligible world, using reason, we can have knowledge 
which brings understanding. The intelligible world is a world governed by 
reason, not our senses. It gives us knowledge and understanding, not 
belief, opinion, or conjecture.
     The sensible world is a world of becoming; the intelligible world is a 
world of being. In the intelligible world we are more truly human beings. 
Moreover, the Intelligible World is the world of mathematicals and the 
Forms. It is by means of reason using the mathematicals that we come to 
know the Forms, the universals, which are perfect, real and eternal. 
     The process of coming to know is slow and painful. Breaking free of 
the shackles of the senses and the world of shadows and illusions is not 
easy. The process is neither continuous nor smooth. It is a process of 
painful conversions from less to more adequate states, until reason is free 
of the senses, including free of the use of images in the mind.

Aristotle

In contrast to Plato, for Aristotle there was no separation between the mind 
and the body. Indeed, the psyche, mind or soul is conceived by Aristotle to 
be a substance able to receive knowledge. However, though knowledge is 
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obtained through the mind’s capability of intelligence, the five senses are 
also necessary to obtain it.
     Foreshadowing a much more modern and scientific view, Aristotle held 
that the senses are stimulated by phenomenon in the environment. 
According to him, memory is the persistence of those sense impressions. 
As he describes the process, the senses receive “the form of sensible 
objects without the matter, just as the wax receives the impression of the 
signet-ring without the iron or the gold” (Editors of Britannica Online 
1997).
     Contrary to Plato, Aristotle maintained that mental activities were 
primarily biological, and that the psyche or mind was the "form" part of 
intellect. He insisted that the body and the psyche form a unity. That is, the 
body and the mind exist as facets of the same being. The mind is one of the 
body’s functions.
     Moreover, again in contrast to Plato, Aristotle believed that thinking, 
reasoning requires the use of images. While some animals can imagine, 
however, only man thinks.

“Knowing (nous) differs from thinking in that it is an active, creative process 
leading to the recognition of universals; it is akin to intuition, it does not cause 
movement, and it is independent of the other functions of the psyche” (Zuzne 
1957 pp. 8–9).

     Intellect consists of two parts: something similar to matter (passive 
intellect) and something similar to form (active intellect). Aristotle says 
that intellect

“. . .is separable, impassible, unmixed, since it is in its essential nature activity. 
When intellect is set free from its present conditions, it appears as just what it is 
and nothing more: it alone is immortal and eternal . . . and without it nothing 
thinks” (Britannia Online 1997).

     Later, medieval philosophers continued to address the same bundle of 
questions: “What is real?” “What can we know?” “How can we know or 
come to know anything?” They gave credit to Plato for at least offering an 
explanation of how universal properties of particular things are imperfectly 
modeled after their universal Forms. They gave credit to Aristotle for 
offering an explanation of how the human mind acquires its universal 
concepts of particular things from actual experience.
     Though neither Plato nor Aristotle’s views on these issues provide 
adequate explanations, their respective positions were something of a 
baseline from which later philosophers and scientists worked.
     Working upon the stage set by Plato and Aristotle, it was later during 
the medieval period when three very different, separate and competing 
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views or theories on these issues began to clearly form. These theories are 
still with us today and have great impact on various theories of both human 
and animal cognition, as well as theories of intelligence. These competing 
positions can generally be classified into one of three categories: as 
Realism, Conceptualism, and Nominalism.

3.2.1 Realists, Conceptualists, and Nominalists on Universals 

Each of these views is highly diverse, so sketches below will provide only 
the highlights of each. For example, few realists of either the Medieval or 
later periods agreed with Plato’s realism on universals. And some later 
versions of each of the theories can be found to be somewhat overlapping. 
But it is with the rise of conceptualism and nominalism that the history of 
thought about intelligence, about knowing, took highly complex paths 
away from realism.
     In very general terms, realists are those who assert the objective 
existence of universals before the existence of particular things. Universals 
have a posterior, objective reality or existence prior to and distinct from 
the particular things that are instances of universals. Moreover, universals 
have an objective reality prior to and distinct from the universal concepts 
or words in our languages. Those universal or general words represent
universal concepts.
     For realists, the universals themselves, and the concepts and words in 
language or mind representing them, are two entirely different categories. 
Realists never doubted the objective existence of universals, independent 
of minds that may or may not conceive of them, and independent of 
languages which may or may not have terms referring to them. As we saw 
above, Plato’s realism is possibly the best example of this. 
     On the other hand, conceptualists are those who allow universals only, 
or primarily, as concepts “in the mind.” Conceptualists were an early form 
of a movement later known as Idealism that survives today in some 
theories of knowledge, such as coherence theories, mind and intelligence. 
The conceptualists held and still hold that universals have no reality apart 
from merely being concepts in the minds of persons. Universals are ideas 
in our minds that we have conceived or invented to explain certain kinds of 
common experience.
     Nominalists are those who acknowledge only, or primarily, universal 
words (Klima 2004). In general, nominalists deny that universals exist 
objectively and independently of persons and their languages. Whether 
universal concepts are in the minds of persons or not, it is terms or words 
in languages that count. And it is only in languages, according to 
nominalists, that we can find words having universal meaning.
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     For nominalists, universals are not found outside languages. Universals 
are only so many pencil or pen marks on paper or vocalizations when we 
speak. It is languages, those alphanumeric symbols and signs we write or 
words we speak according to agreed upon rules that ultimately matter in all 
things related to intelligence, to the mind. Languages are the necessary 
interface, the representations, between a subject and a reality that may or 
may not “be out there” beyond us and our language. In fact, according to 
some nominalists, it is best that we speak only of language, of 
representations, not of any reality that may or may not be beyond it.
     In our day, it is nominalism that has come to hold a predominant view 
of intelligence, indeed of all knowledge. Nominalists and conceptualists 
gave up the concept of objectively existing facts, existing independently of 
either persons’ minds or languages, as a basis for the truth of knowledge 
claims. Indeed, the notion of objective truth was actually given up entirely. 
Perhaps the most extreme version of this is found in recent theories of the 
origins of mathematics, which has been described by an early proponent of 
nominalism as “a game played according to certain simple rules with 
meaningless marks on paper.”1

3.2.2 Theories of Knowledge and the Scope of Intelligence

Since Plato and Aristotle, philosophers and some scientists have argued for 
many theories of knowledge, mind and intelligence.2 Strictly speaking, 
those theories are attempts to get clear on the content as well as the 
boundaries or limits of intelligence. These are the Classical questions, 
“What can we know?” and “How do we know or come to know anything 
at all?” “Are there some things that are beyond human knowledge?” “Are 
there things we cannot ever know?” 
     The limits of intelligence have both a breadth and depth, but also a kind 
of ceiling as well as floor. Various philosophers and scientists over many 
centuries have addressed these or similar questions, giving different 
answers.
     It is unfortunate that psychologists who tend to dominate the sciences 
of intelligence have given short shrift to the work of some philosophers. In 

                                                     
1 There is some dispute about the authenticity of this quote, attributed to David Hilbert. It is 

quoted in E.T. Bell, Mathematics: Queen and Servant of Science, G. Bell & Sons Ltd, 
London, 1952, p. 21. It has also been quoted in N. Rose, Mathematical Maxims and 
Minims, Raleigh N C, 1988. Whether correctly attributed to Hilbert or not, it is an 
accurate reflection of formalists’ view of mathematics.

2 This section is intended solely to provide a broad summary of these theories; it is not an 
exhaustive examination of them and of the issues each theory entails. 
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some ways, this neglect has resulted in claims by psychologists about 
intelligence that have no firm basis, or in some cases no basis at all.
     On the other hand, it can also be shown that philosophers themselves 
have tended to neglect major categories of knowing (not knowledge) due to 
nominalist/representationalist/conceptualist biases that developed over 
many centuries. For example, setting aside Aristotle’s early examination of 
practical intelligence, the prevailing theories barely mention knowing how 
at all. Nowhere does it get a serious, detailed examination until the 1940’s 
with the publication of Ryle’s The Concept of Mind (1949).

Realism, Coherence, and Pragmatism 

Generally, the major theories are divided into Realism, Coherence, and 
Pragmatism. The latter has recently developed into what is now referred to 
as Naturalism stressing a purely physical-causal account of mind, 
intelligence, and knowledge. In its early form naturalist philosophers 
tended to adopt simple behaviorist, stimulus-response (S-R) causal models 
to explain knowledge, mind, and intelligence. The most recent 
manifestation, however, has extended beyond simple S-R causal schemes 
to adopt multiple-causal theories based upon genetic determinism. This 
development has led to a host of other problems we will address.
     Each of these theories essentially defines the concept of knowledge, but 
also mind and intelligence. The scope or reach of intelligence and mind are 
set forth in terms of theories or standards of truth for knowledge claims. 
Each of the different theories of truth developed by Realists, Coherence 
Theorists, and Pragmatists, were initially developed as excluding the 
others.3

     Realists developed what is called the Correspondence Theory of Truth. 
The basic idea is that a sentence or proposition is true if and only if it 
corresponds to how things are in the world. Although the theory goes back 
at least to Aristotle, it has been given various new formulations, influenced 
by Wittgenstein, where propositions are true or false (and hence 
meaningful) if they picture states of affairs or facts.
     Conceptualists, or Coherence Theorists, developed what is called the 
Coherence Theory of Truth. This is the view that truth consists in a 
relationship between sentences, sometimes called “truth bearers.” Truth is 
not a relationship between sentences and facts objectively and 
independently “out there” in the world.  For Coherence Theorists, a 
sentence or statement is true if it coheres, it is consistent with, logically 
follows or gains support from other statements or sentences within a 

                                                     
3 Only later was consideration given to adopting all the standards, appropriately modified, 

to evaluate any given knowledge claim.
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framework of beliefs or linguistic system. Conceptualists and Idealist 
philosophers have traditionally held the coherence theory of truth.
     In the earlier American Pragmatist tradition, pragmatists emphasized 
the relationship between truth and successful scientific inquiry. In a sense, 
pragmatist theories claim that truth is whatever works or is useful in its 
entirety, based on science. Truth is a property of the end result of 
successful scientific research. Their understanding of successful scientific 
research, in turn, is whatever enables us to have control over nature.
     American Pragmatist philosophers such as James, Dewy, and Peirce 
emphasized these connections between truth and science and that which 
has useful, long-term practical consequences. Some recent American 
philosophers, influenced by pragmatist conceptions of truth and 
knowledge, include W. V. O. Quine, Hilary Putnam, and Richard Rorty. 
     Each of these major theories in turn takes different positions primarily 
on two major issues: (1) What is real? (2) How do we know or come to 
know anything? The above standards for the truth of claims reveals deep 
divisions between them, influenced in part by traditional 
nominalism/conceptualism, but also by representationalism and debates 
between rationalism and empiricism.
     Additionally, for some realist philosophers, not all objects of human 
knowledge are found in a causal relationship with a subject, the one who 
knows. For Plato, the Forms or universals existed outside any causal 
relationship with human beings. Some contemporary realists, allowing for 
human freedom of choice or decision, also hold that not all objects of 
knowledge are in causal relationships with a subject. Many philosophers 
who consider themselves materialists hold that everything is caused. 
     In essence, the basic issue between rationalism and empiricism 
concerns the extent to which our knowledge depends upon sense 
experience. Rationalists argue that there are ways in which we can have 
concepts and knowledge independently of sense experience. We have a
priori knowledge such as mathematics, logic, and certain ethical or moral 
knowledge, according to rationalists. On the other hand, empiricists 
generally claim that sense experience is the only source of all our concepts 
and knowledge. All knowledge ultimately arises from our sense 
experience.
     Though there are different kinds of realists, they all largely make two 
kinds of claims about the “realness” of objects. They make existence
claims and independence claims. In essence, realists claim: (1) That real 
objects exist; and (2) The existence of those real objects is independent 
ofpersons and anything anyone happens to say or think about the matter. 
This last point should be stressed: for realists the existence of real objects 
is independent of anyone’s experience, linguistic practices and conceptual 
schemes.
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     Moreover, for realists, the standard that a knowledge claim must meet 
in order to qualify as knowledge is the correspondence standard. For a 
claim or belief to be true, it must correspond to an objectively existing fact. 
For most realists, there are a priori facts such as mathematical facts and 
ethical/moral facts. These facts do not at all depend upon sense experience, 
thus realists are sometimes rationalists.
     But they are also sometimes Empiricists in the sense that some kinds of 
facts do depend upon our sense experience in the world. There is a 
complicated sense in which the structure of an asserted proposition or 
claim must mirror (or correspond to) the structure of the objective fact. 
Those facts may be either a priori, independent of sense experience, or a
posteriori, dependent upon sense experience.

The Language Interface Issue 

In addition to the issue of whether or not there exists an objective reality 
apart from and independent of persons, another central issue that became 
paramount involves whether or not there is an “interface” of some kind 
that exists between the Subject (one who knows) and an Object (that which 
is known).
     Because of the almost obsessive focus upon language representational 
systems, the rise of Nominalism virtually guaranteed that, of course, there 
must be some language or symbolic/representationalist interface between 
Subject and Object that filters (or in some cases blocks) the relation 
between the Subject and any reality that may or may not be out there 
beyond us all. Whether or not anything “out there” is real, and whether we 
know anything at all, are taken to entirely depend upon the nature of that 
interface between Subjects and Objects, if they exist at all. 
     Language representations were necessary, it was argued, because 
meaning required them. Everything must be represented or labeled with 
language to be meaningful and to be known. Furthermore, everything can 
only be meaningful or known through its label.
     Not only that, the argument went much further to make what amounts 
to an unsupportable metaphysical claim: The only existing objects are 
those for which we have a (language) label. James was one of the few 
Pragmatists who lamented what he called the “usurpation of metaphysics 
by language” (James 1884) entailed by such a view. But it is also the 
usurpation of knowing, of intelligence, by language as well. 
     The argument stated that for all those streams of sensory information 
bombarding our nerve receptors at any time, only language as an interface 
can provide any meaning to it all. Moreover, so the argument went, though 
we do not have direct access to any reality that may or may not be out 
there beyond us, at least we do have access to our language reports about 
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what we experience. Language was a necessary condition to make sense of 
that experience. 
     In a sense, Coherence theories and Pragmatist theories, based in part 
upon the language interface thesis, developed somewhat in reaction to and 
against kinds of Realism. Coherence theories, for example, are kinds of 
anti-Realism. Realists never doubted the objective existence of objects 
independent of persons and independent of languages and concepts. It is 
that objective and independent existence that gives us facts, and makes 
facts so stubborn and ineluctable.
     Moreover, Realists argue that it is our direct acquaintance with facts 
that ends a potentially vicious regress of justification for our knowledge 
claims. Facts are out there independent of our language and independent of 
us. Everything we can justifiably claim to know must rest on the truth of 
our claims and that truth is ultimately resolved by reference to objective 
and independent facts.
     But for Coherence Theorists, there are no facts or “truth-makers” 
existing independently of representations or concepts in the minds of 
persons. Coherence theories, historically an outgrowth of kinds of 
conceptualism, require a representational interface with the world that may 
or may not be beyond the knower and the representation or concept. In the 
end, all we really have are concepts in our minds. 
     Again, the coherence standard for a knowledge claim is that the claim 
must cohere, that is, be consistent, with other sentences about the world. 
This is in stark contrast to the correspondence standard which holds that 
the structure and content of the sentence or proposition must correspond 
with an objective fact in the world that exists independently of the Subject.
     Others argued that clear conceptions of anything, to constitute a 
knowledge claim, must be related to their practical consequences. Peirce, 
the father of pragmaticism,4 claimed that the whole meaning of a clear 
conception of anything consists in the entire set of its practical 
consequences. A meaningful conception must have some experiential, 
practical value. Meaning was tied directly to a collection of possible 
empirical observations under specifiable conditions (Burch 2001).
     Peirce rejected realist foundationalist theories, holding that science only 
deals with phenomena, not “reality” which may or may not be beyond our 
phenomenal experience.
     For all practical purposes, however, under some Pragmatist theories, 
e.g. Peirce’s theory, it becomes virtually impossible to determine the 
clearness of a conception. That is because he defined it in terms of the 
entire set of practical consequences for all time. In its traditional sense, the 

                                                     
4 This is Peirce’s own term which he used in order to distinguish his own scientific 

philosophy from other conceptions and theories that were called "pragmatism".
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pragmatic criterion for knowledge is set very high, virtually beyond the 
reach of any individual or group precisely because it includes the entire set 
of practical consequences of any clear conception. The idealism that may 
be evident in such a view, however, should not be misread. Peirce 
especially tied concepts to practical, lived consequences. He did not leave 
them “in the mind.” 
     Contemporary Pragmatists, especially starting with Quine (1969), have 
turned to a more stark version of the theory, called Neo-Pragmatism or 
Naturalism (also physicalism). Certainly in contrast to Realists and 
Coherence theorists, the new Naturalism embeds everything within a 
physical, causal context. There is no a priori knowledge. There are no 
abstract objects or universals, only physical stimulations at our nerve 
endings and our observation sentences about those stimulations.
     In a sense, the new Pragmatists or Naturalists are harking back to 
earlier Empiricism, given the perceived failures of Rationalism to 
satisfactorily explain human mind, intelligence, and knowledge. From the 
Naturalist perspective, every event has a cause; all our mental events have 
causes; our knowledge, hence, has a physical cause. Thus it is 
characteristic of naturalists to look for justifications in psychological 
processes, where those are reduced to causal physical processes, 
responsible for the presence of our beliefs and claims to know. Those 
causal processes, however, differ according to different naturalist 
philosophers.
     As with the Coherence Theorists, for naturalists such as Quine there are 
no objective facts existing independently of persons. There are only 
communities of language speakers who share stimulatory events and 
observation sentences reporting on stimulations.
     More recent naturalists argue for an even more determinist theory. For 
genetic causal determinists such as Pinker (1994), there are specific 
“grammar genes” that control the brain and behavior through linguistic 
rules and representations. Specific genes of DNA become the engine that 
drives everything in human mind, intelligence, and knowledge.
     Naturalists argue that it is rational to be guided by the methods of 
natural science. Quine and others have argued that theory of knowledge 
and metaphysics should be approached in ways that are continuous with 
the sciences, or at least not inconsistent with them. In many respects, Neo-
Pragmatists share much in common with early Behaviorists in that the 
fundamental underlying model of their theories is the basic S-R approach 
to knowledge, mind/brain, and intelligence.
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A Postmodern Heritage and Realist Counterargument 

An assessment of each of these theories with some representative 
arguments, demonstrate that Coherence and Neo-Pragmatist Theories, as 
reactions against kinds of Realism, opened the door very wide to Post-
modernism. Developing on the historical waves of Nominalism and 
Conceptualism, the anti-Realist theories proceeded to break down 
traditional notions of objective truth, facts, and the possibility of human 
reason to discover or come to know either.
     Each of the major theories of knowledge worked out by philosophers 
over the last approximately 2,500 years has different standards that a 
knowledge claim must meet in order to qualify as knowledge.
     Realists of certain kinds hold that one can know some objects 
independently of sense experience, that we can know certain things a
priori. Mathematics and kinds of moral knowledge are sometimes taken to 
fall into that category. This is represented in the above graph where 
Rationalism and Realism intersect. Plato’s theory is probably the best 
example of this.
     But, contrary to Plato, contemporary realists also hold that we can know
facts and laws about the physical world. These realists hold the 
correspondence theory of truth. Claims to know must correspond to 
objective facts in the world, independent of persons, languages, and 
concepts. Moreover, that correspondence must be falsifiable, testable, and 
replicable. Bertrand Russell’s theory is a good example of this. 
     For example, reflecting a realist point of view, Russell explains what a 
fact is:  “Everything that there is in the world I call a ‘fact’” (1948, p. 143).
The computer screen in front of me is a fact, the ending of the Civil War is 
fact; my toothache is a fact. Facts are also characterized by Russell as 
independent of anyone.

“I mean by a ‘fact’ something which is there, whether anybody thinks so or not.
Most facts are independent of our volitions; that is why they are called ‘hard’, 
‘stubborn’, or ‘ineluctable’. Physical facts for the most part, are independent, not 
only of our volitions but even of our existence” (1948, p. 143).

     Facts are what make statements true or false. But “Facts are wider than 
experience” (1940, p. 383). They are wider than experience precisely 
because they exist independently of persons, of their language, concepts, 
and their experience. 
     Thus, facts exist objectively and independently of anyone. He defines 
“belief” in the following way: “A belief. . .is a certain kind of state of body 
or mind or both” (1948, p. 145-6). He continues, “A belief. . .is a 
collection of states of an organism bound together by all having in whole 
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or part the same external reference.” There are various kinds of belief, but 
there are standards that any of them must meet to be true.
     “Truth” is defined as a certain relation between a belief and one or 
more facts other than the belief. When that relation is absent, the belief is 
false. However, problems result when we try to precisely delineate the 
relation which must hold. Nonetheless, it is clear that truth is the 
correspondence of belief with the facts that are independent of all of us. 
Actually believing a statement to be true is neither necessary nor sufficient 
for it to be true. 
     In later writings, Russell defined “knowledge” as a subclass of true 
beliefs. Every case of knowledge is a case of true belief, but not vice versa.
However, it should be pointed out that though we are largely discussing 
knowledge by description here, that is knowledge set forth in language, he 
also set forth a theory of knowledge by acquaintance.
     Contrary to virtually all contemporary philosophy, Russell held that one 
of the most important kinds of knowledge, (though he perhaps should have 
called it knowing), knowledge by acquaintance, does not require belief. In 
his 1913 theory of knowledge manuscript (1984) knowledge by 
acquaintance is not defined as a subclass of belief.
     Acquaintance was his theory of immediate awareness, the relation of 
what is present— but not represented—to a Subject. With this, he 
dispensed with the nominalist requirement that there be a representational 
interface between a subject and an object in all kinds of knowing. This 
distinguishes knowledge by acquaintance from knowledge by description.
     To summarize, conceptualists and nominalists hinged everything upon 
concepts in our minds and whatever games we play with our words. 
Realists want whatever we think or claim to be true to somehow 
correspond with the facts “out there” independent of us all, beyond our 
languages and beyond our concepts. Ideally, for realists, that 
correspondence must be replicable and testable. Early pragmatists agreed 
with realists on the requirement to test claims out in experience; later 
pragmatists also wanted to reduce all knowledge and belief to stimulations 
of our neural systems.  Conceptualists and nominalists, on the other hand, 
will settle for whatever story our language rules permit.
     In some ways, nominalists and conceptualists gave up the notion of a 
reality separate from and independent of the subject and posited instead a 
language-centered conceptual interface between the subject and object and 
within the subject. In extreme forms these theories hold that there is 
nothing beyond that interface.
     The problem of universals was traded by nominalists and conceptualists 
for the problem of how the mind represents anything to itself. It survives 
today in linguistic and cognitive science theories that strive to prove the 
genetic origins of universals, including the rules of universal grammar 
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(UG) by which the mind does its representing with the use of universals. 
This is a continuation of a legacy of both nominalism and conceptualism, 
of idealism.

3.2.3 Today’s Representationalist Myths: Cognitive Maps in the 
Brain

Both nominalism and conceptualism are evident in varieties of what is 
today known as representationalism that arose during what is called the 
Linguistic Turn in philosophy. The Linguistic Turn is described as having 
been born of Analytic Philosophy during the first few decades of the 20th

century. It is characterized as having turned every philosophical problem 
into a problem about language, or at least into a problem dependent upon 
language.
     Later, the Cognitive Turn, starting in the 1960’s, was supposed to have 
replaced the emphasis upon language by turning back to a study of the 
mind. However, the Cognitive Turn, as we will see, has been little more 
than an extension of the Linguistic Turn. It still sees the mind and 
intelligence generally as a linguistic/symbolic representational system.
     Representationalism is a theory that proposes kinds of linguistic /

representations are mental
 “words.” Basically, it is a theory that depicts the brain or mind as  filled with
 representations manipulated according to  universal grammar rules. Recent
 variations on this to include vector notation do not diverge from the basic

 model (Churchland 1995).  In essence, it follows the classical concept of
 mechanical device, a machine where the concept “machine” is identical with
 “algorithm” and “computer”.5  The brain, mind and intelligence generally are 
conceptualized as machines that process linguistic/symbolic representations

 according to universal rules. 
     The rules of the representationalist model are interpreted by some as 
“innate” mechanisms. In essence, the innate machine is a central processor 
that permits cognition to occur in both humans and animals. The notion of 
“cognitive map”, used today by many cognitive scientists and those in 
artificial intelligence, captures this theory and model quite well. The 
following is one example of the use of that notion in explaining how 
animals, in particular honeybees, navigate:

                                                     
5 The terms “algorithm”, “computer”, “machine”, “formal system”, and “recursive system” 

are equivalent and identical in meaning.

sym-
bolic “pictures” of the mind, of intelligence. Mental 
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“Cognitive maps are representations in the brain of the geometric relationships 
between salient sites in an animal’s environment. . .They have a system in their 
brain for manipulating symbols associated with landmark coordinates. . .” (Hauser 
2000, pp. 76–77). 

     In spite of the obvious intent to meet rigorous scientific standards, such 
talk of “representations in the brain” appears to be metaphorical. It is 
metaphorical because there literally are no such representations “in the 
brain.” Moreover, technically, animals do not engage in “manipulating 
symbols associated with landmark coordinates.” Honeybees are not 
symbol-using creatures; they do not have even the concept of a coordinate. 
Close inspections of the insides of honeybee brains have not turned up any 
neural counterpart to the mathematical concept of “coordinate” (Esch et al. 
2001).6

     This nominalist approach to the mind and intelligence has led to much 
confusion between representations of a thing and the thing represented. In 
this case, the author’s theory appeals to representations of landmark 
coordinates as a way of explaining the remarkable navigational abilities of 
bees to locate food, return to the hive, tell his fellow bees about it, then 
return to the food site.
     The author takes his theoretical representations to be cognitive maps 
located inside the brains of bees. Yet there are no such representations 
there. This confusion between a representation of something and the thing 
represented has led to collapsing levels of inquiry and fallacious inferences 
based upon that collapse. Though bolstered by much laboratory and 
clinical work, no matter how much empirical data is used to buttress such 
arguments, conclusions based on fallacies cannot be either valid or sound. 
As noted by Geach (1957), no experiment can either justify or straighten 
out a confusion of thought. 
     Setting aside the issue that good science does not permit appeals to 
metaphors, the representationalist strategy and its progeny, the 
computational theory of mind and intelligence, are actually attempts to 
avoid problems, not solve them. But in the representational attempt to 
avoid the problem of universals, it has unfortunately succeeded in 
introducing far more serious ones in addition to the original problem of 
universals which it has not disposed of. 
     Though the nominalist/conceptualist/idealist strategy was initially an 
attempt to side-step the realist’s problem of explaining how universals can 

                                                     
6 Latest research shows that the honeybee’s navigational capability is due to retinal image 

flow on the way to their destination. They have what amounts to a visually driven 
odometer. Moreover, bee dances convey information about the direction of the food 
source and the total amount of image motion en route to the food source, but they do not 
convey information about absolute distances.
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exist objectively and independently of the person, the representationalist 
strategy has actually introduced far more problems. In many ways, the 
nominalist, conceptualist, and idealist have merely placed themselves 
many steps removed from the same problem, introducing even more 
serious problems along the way. 
     For example, we might ask the nominalist: How can written or spoken 
words or “representations in the brain” have any universal reference?  If 
we are speaking of written words, we are faced with the same problem 
above with drawn right triangles. A written word may merely be pencil 
marks on a piece of paper. We are still left with the question, “How can 
that written word have universal meaning?” By parity of reasoning, the 
same issue applies to spoken words, which may otherwise be just so much 
noise.
     Moreover, some might argue that words, in both natural and artificial 
languages, can mean whatever we want them to mean. Once we are 
committed to a set of rules, however, of course those rules in part also 
determine meaning.
     But we are no closer to answering the original question: “Why do 
universal words have universal or common meaning applied to many 
things, some applying in principle to an uncountable infinite number of 
things—as in the right triangle example?” Further: “How can the 
Pythagorean Theorem possibly hold for all possible right triangles?” There 
are, in principle, an uncountable infinite number of right triangles. How 
can the Pythagorean Theorem possibly hold for them all? How do you 
know that the Theorem applies to them all? 
     The nominalist can reply that it is all a matter of stipulating a definition. 
“It’s all a matter of semantics.” Yet that will still not answer the original 
question. We are still left with the problem of how a word in this language 
in this time and place can correctly apply to an infinite number of things 
for all time and place.
     The nominalist has not solved a problem by stepping many places back 
from the realist’s position and placing language in between him/herself 
and a reality that may or may not be beyond it. The nominalist has only 
introduced even more problems. 
     Likewise, for the conceptualist/idealist who holds that universals are 
concepts in the minds of persons, we can ask the same question, “How can 
a concept in the mind of one or many persons have universal reference?” 
“How can a concept such as triangularity hold for all triangles for all space 
and all time?”
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     Moreover, “How did the concepts get there in the minds of persons (or 
animals) in the first place?”

3.3 The Innate Versus Emergence Arguments 

In many respects, the study of intelligence today has been claimed as the 
province of linguists and psychometricians. The former have also devoted 
themselves in the last several decades to “innate” determinist explanations 
for grammar or syntax,7 to some degree following the same line of 
arguments found in The Bell Curve. It is syntax that makes language 
possible, they argue. Thus, it is syntax, in their view, that makes 
intelligence possible.
     More recently, proponents of this argument have turned to the science 
of genetics, including physics, chemistry and evolutionary theory to make 
their case. Though the root argument was earlier advanced by Chomsky 
(Chomsky 1972), its latest advocates include Pinker and Bloom (Pinker 
and Bloom 1990) among others.
     Based on claims that there is a universal grammar (UG) shared by all 
natural languages, it is their view that language is an evolutionarily unique
development in human beings, not found in other animals. It should be 
kept in mind that since a prevalent view of intelligence is that it is g, an 
essentially logico-linguistic measure, it follows on their view that if 
language is genetically determined, then intelligence is genetically 
determined as well.

3.3.1 The Genetically Encoded Syntax Argument 

As the term “innate” is often used ambiguously, we should get clear at the 
outset what these proponents of genetic determinism of intelligence mean 
by it. At the core of the innatist arguments is the claim that syntax is 
genetically encoded in human beings; it is not acquired.
     There is purportedly an innate cognitive structure in a certain location 
in certain molecules in the brain that determines what basic structures and 
processes will be found in the syntax of any natural language. The notion 
of “innate” in their theory refers to that claim that there is a specific 
physical location in the brain, the “syntax module” or “grammar genes” 
that does syntax processing.

                                                     
7 Syntax refers to the set of rules allowing language speakers to encode semantic 

information and generate an infinite number of sentences. Semantics refers to the 
meanings of words.
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     Attributing language structures to specific genetic structures appears to 
be a category mistake of the most obvious sort. However, the innatist 
proponents seriously contend that the structures of Universal Grammar 
(UG) are found in specific nerve and DNA cells. 
     On one level, the underlying model of this particular argument is the 
same as the g-theory central processing unit, a machine view of 
intelligence. It is the model of a centralized control unit, a determinist 
causal agent, that drives everything related to language, hence also 
everything related to intelligence. Consistent with the single-capacity g-
theory of intelligence, it is also a top-down, linear, functional-block 
oriented, serial processing model.
     An opposing explanation of origins of language is the emergent theory. 
This view holds that syntax is not the result of specific syntax genes or 
“module” in the brain, even though some elements of syntax may very 
well be based genetically. Rather, the rules of syntax largely emerge in a 
highly distributed, parallel fashion as a consequence of how language 
develops evolutionarily (Schoenemann 1999). On this view, syntax largely 
develops as a set of cultural conventions that allow communication of our 
semantics, or meaning.
     Setting Pinker and Bloom’s argument almost on its head, one emergent 
theorist put the relationship as follows: “The grammatical and syntactic 
regularities that are found across languages occur because of the universals 
of semantic cognition, not universals of syntax and grammar” 
(Schoenemann 1999, p. 310). 
     More recently, advocates of the innate argument have proposed that 
language and its structures are found within molecular structures of the 
brain. They have proposed that the actual chemical workings of certain 
molecules produce kinds of sentence structure. They have utilized the 
language of physics and chemistry to attribute physical and chemical 
properties to language, including describing “weak” and “strong” forces 
between words to explain the language behavior of verbs and adjectives 
just as physicists explain the behavior of subatomic particles. 
     Setting aside the glaring reductionist fallacies involved in these 
proposals, we should look at just how much of actual language behavior 
could be explained this way. Among other things, in addition to faulty 
reductionism, the use of obvious metaphors such as “sentence molecules” 
begs many serious questions. 
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3.3.2 Nonverbal Communication: Beyond Alphanumeric 
Symbols and Vocalizations 

A fundamental issue between the innatist and emergence theories revolves 
around the meaning of “language” in the first place. Among other things, 
depending upon how the two theories differ on the meaning of “language”, 
it would also follow that their respective views of the meaning of 
“intelligence” will differ as well.
     The innatist genetic determinist arguments hold that “language” is 
defined in terms of the rules of grammar and words as linguistic units. 
Their definition excludes nonverbal communication means, such as 
gestures. The rules of grammar are a recursive set of rules that allows 
humans flexibility to express meaning in alphanumeric written or spoken 
sentences.
     Human language as defined by the innatists is held to be far more 
flexible than found in any other communication system. It allows humans 
to generate in principle an infinite number of sentences of any desired 
complexity. Moreover, language in this sense permits us to generate 
sentences that go beyond the immediate present and to refer to events in 
other places at other times. It can be used to imagine, fantasize, and to 
describe events that have never existed and never will. In this sense, 
Chomsky, Pinker, and Bloom claim that language as they define it is 
entirely unique to humans; it is not found in lower animals.8

     It should be pointed out that the innatists often appeal to distinctions 
between communication systems and languages, arguing that though lower 
animals communicate, they do not possess language. In a sense, this is an 
attempt to do a definitional end run around any opposing argument. It is a 
way of defining a problem out of existence. Again, they stress that 
language is a unique development among human beings having no real 
counterpart in the animal world.
     However, most natural language dictionaries, and even more technical 
ones, do not agree with the innatists’ definitional distinctions between 
communication and languages. The term “communication”, strictly 
defined in an ordinary college dictionary (American Heritage 1993) is:

     “The exchange of thoughts, messages, or information. . .Interpersonal 
rapport.”

     To communicate is: 

                                                     
8 It is this infinite capacity that leads some philosophers such as Daniel Dennett (1994) to 

claim the intelligence superiority of humans over all other forms of life.
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“To convey information about; make known; impart. . .To reveal clearly; 
manifest. . .To have an interchange, as of ideas. . .To express oneself in such a 
way that one is readily and clearly understood. . .To be connected, one with 
another. .” 

     Consistent with the meaning of “communication”, “language” is 
defined as: 

“The use by human beings of voice sounds, and often written symbols 
representing those sounds, in combinations and patterns to express and 
communicate thoughts and feelings. . .A nonverbal method of communicating 
ideas, as by a system of signs, symbols, gestures, or rules. . .Body language; 
kinesics. . .The manner or means of communication between living creatures other 
than human beings” 

     Given only one of its usages, the word “language” refers to only one 
kind or means of communication, though it is broadly understood as 
largely identical and equivalent with “communication”. Nonetheless, the 
innatists demarcate the meaning of “language” such that it is reserved for 
human beings, largely due to the recursive rules which permit infinite 
variety in sentence formation and meaning.9

     But analysis of the variety of means by which both humans and lower 
animals communicate shows that this narrow demarcation is not justified. 
Moreover, the delimitation of “intelligence” to language behavior on the 
part of humans is even less justified.

Gestures

In opposing the innatist arguments, some emergent theorists point to 3-
dimensional gestural communication systems among lower animals as well 
as humans as evidence of a broader scope of the meaning of “language”. In 
their view, language not only includes 2-dimensional alphanumeric 
symbolic written and spoken systems with recursive rules, but extends far 
beyond those to include intentional signs, cues, gestures and other 
intentional patterns of whole-body performances, movements, and 
nonverbal communication behavior.
     For example, not only are manual gestures part of human present-day 
speech patterns, cross-cultural studies have shown the spontaneous
emergence of sign languages among deaf communities everywhere 
(Goldin-Meadow and Mylander 1998). Sign languages that do not rely on 
either spoken or written words are genuine languages with grammars.

                                                     
9 This also permits them to questionably include numerosity in the use of language.
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     In some ways even more interesting, studies of congenitally blind 
people have shown that they “would gesture while they spoke regardless of 
whether the listener was sighted or not” (Corballis 1999). 
     These studies strongly suggest that gestures are coupled in the brain to 
the act of speaking, even though the innatists do not include gestures in 
their definition of “language” and do not account for them in their theories 
of grammar. Nonetheless, there are individuals who use only sign 
language, who cannot speak, who manage to learn and teach subjects as 
abstract as mathematics.
     For example, at Gallaudet University, where students use only 
American Sign Language (ASL), all subjects are taught in ASL, including 
mathematics, chemistry, philosophy, poetry. They do not use spoken or 
written words and sentences at all. On the innatists’ theory, there is 
apparently no way to account for this. Gestures are not language, 
according to the innatists, yet persons using only gestures are somehow 
learning and teaching languages such as mathematics, chemistry, 
philosophy, and poetry. 
     In the opinion of many experts, gestural communication is as natural to 
the human condition as is spoken language. If there is such a thing as a 
universal grammar found in a specific “syntax module” in the brain, as 
Chomsky, Pinker, and Bloom claim, they have not tied it to the use of 
signs in sign language, but have limited it solely to spoken and written 
alphanumeric languages defined by universal grammar.
     In some ways, following the digital machine model, the innatist 
arguments have essentially demarcated language in terms of two 
dimensions. They have done so while leaving out three-dimensional 
gestures along with other behavioral manifestations that are often found in 
actual language behavior. They have excluded these three-dimensional 
means of communication from their meaning of “language” altogether. 
Elements of real human (and animal) communication, analogical (as 
opposed to two-dimensional) signals, including voice pitch, loudness, 
posture, facial expression, gait and gesture, all found in actual language 
behavior, are excluded (McNeill 1992, p. 4). 
     Though there are different theories about the relationship between the 
origins of language in the spoken and written sense, and gestural 
communications, one theory is that language actually emerged from 
manual gestures rather than from vocalization in the evolution of H.
sapiens. Since higher primates, including hominids, are largely visual 
animals, one theory is that voluntary communication using the hands was 
an early preadaptation of apes that were to become hominids.
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     Gestural communication is silent, thus the survival of hominids in 
hostile environments was better assured by using it rather than 
vocalizations. Moreover, gestural communication is fundamentally spatial
communication. It would therefore have been a more efficient way of 
communicating the presence of dangerous predators.
     Others argue that manual and vocal communication developed in 
parallel. Armstrong and his colleagues (Armstrong et al. 1995) have 
argued that the basic elements of syntax are intrinsic to gesture. Drawing 
on evidence from primatology and anthropology, they have set forth a 
theory that language emerged through visible bodily action. This would 
make sense only if the origins of language are largely found in semantic 
(meaning) structures, rather than being generated from a central syntax 
processing unit in the brain. 

From Manual Gestures to Whole Body Performances

At least some theorists of the evolution of semantic (meaning) complexity 
adopt realist assumptions for their underlying model. Sounding like 
Russell, they assume that there are features of the real world which 
objectively exist regardless of whether anyone perceives them or even has 
a word for them. Among the most basic realist assumptions necessary is 
that in an unavoidably limited view of all of reality, there is a degree of 
honesty required of any organism to survive. 
     But even more fundamentally, in accordance with evolved neural 
systems, all organisms divide up the world differently. Those divisions are 
what Schoenemann (1999) means by “cognitive categories” or “semantic 
units” that essentially drive the evolution and development of language. 
Thus the notion of “increased semantic complexity” refers to the increase 
in the number of cognitive categories, their perceived interrelationships, 
and the number of signs that can be used.
     Both humans and animals use signs to stand for cognitive categories 
they use to carve up and make sense of the world and their experience in it. 
Citing Peirce’s (Hartshorne et al. 1931-1958) definition of “sign” as 
anything which stands for something else for somebody, Schoenemann 
makes the obvious point that human beings are not the only sign users in 
the natural world. Generally, the term “sign” refers to any nonverbal 
means of communication. This includes physical gestures, facial 
expressions, cries, laughter, and the like.
     The use of signs by animals to communicate according to some 
cognitive category has been demonstrated in numerous animal studies 
such as ape language studies (Premack and Premack 1972, 2003); monkey 
calls (Page 1999; Griffen 1984, 1992); bees (Esch et al. 2001); and 
possibly in prairie dogs (Soussan 2004). 
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     Schoenemann and others (Edelman 2004) argue that most cognitive 
categories are independent of, and exist prior to, language itself. Brain 
mechanisms involved in processing meaning are not limited to language 
but evolved and emerged relative to highly complex interactions, reactions 
and transactions with the environment and experience. In turn, the ways 
we experience the world depend upon evolved sensory systems, upon our 
evolutionary history. 
     Earlier arguments that animals are merely reactive organisms are also 
not supported. An example of this, as it pertains to infranimals, is Griffin’s 
notion of animal communication as the “Groans of Pain” (GOP) reactive 
interpretation. However, as pointed out by Page, this view is no longer 
tenable:

“If indeed a vervet monkey, for example, is just expressing an emotional state 
when it yelps at the approach of a predator, why would it matter whether there is 
an interested audience for this yelping? . . But the monkey emits alarm cries only 
if there is another monkey in the vicinity who might benefit from what the signaler 
‘has to say’. .” (Page 1999, pp. 125-6). 

     There is ample evidence and strong arguments to support the contention 
that cognitive categories exist independently of and prior to language, as 
the audience effect of the vervet monkey cries suggest. Indeed, 
evolutionary theory itself strongly supports the argument that 
communication would not even have evolved if such categories did not 
already exist, prior to the development of language. All the evidence points 
to words and sentences, as well as their grouping and manipulation 
according to rules of grammar, as a process secondary to thought.
     The entire debate on this particular issue between innatists and 
emergent theorists is reminiscent of remarks by James about the 
“usurpation of metaphysics by language,” (James 1884) mentioned earlier. 
Under the influence of nominalism, the view that all we have of what we 
may call “reality” is the language we use to describe it, came the belief that 
everything must be labeled with language to be known or experienced. 
With this also came the belief that the only existing objects are those for 
which we (already) have a language label. In essence, it is this nominalist 
view that has led to the claim that there is only language-mediated 
knowledge that.
     It is also the view reflected in the innatist arguments that language 
centers in the brain provide us with ready-made language categories by 
which to process everything we experience in the world. It is the view that 
humankind already has all the concepts, ideas, and rules needed to know or 
understand anything because those concepts, ideas, and rules are already 
found in language.
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     Yet humans invent new words and new concepts to refer to things that 
do not exist in the physical world, such as mathematical concepts. In our 
ever-expanding understanding of kinds of space, for example, we invent 
new concepts and words to characterize and describe those spaces. These 
concepts and words are not already given in our language or our thought. 

3.3.3 Evolutionary Argument against Innatists 

The innatist argument for a “syntax module” somewhere in the brain, 
along with the corollary argument that the origin of language is unique in 
human beings, with no homologies to other animals, does not hold up. 
While innatist proponents claim that language is an evolutionary 
development, many tenets of the theory are not consistent with 
evolutionary biological facts. Their theory has been roundly criticized by 
foremost scientists in human evolution and anthropology. 
     Among other problems is the very definition of universal grammar 
(UG), or syntax, itself. Though syntax is supposed to be a set of rules 
genetically encoded somewhere in a syntax module in the brain, the 
description given of these shows that they are not actually rules at all but 
features so general in scope “that they are really nothing more than 
descriptions of our cognitive semantic universe” (Schoenemann 1999, p. 
311). This is problematic for innatists, because it is also consistent with the 
emergent view that grammatical rules in any natural language are cultural 
inventions.
     Moreover, innatist theory has been highly criticized for ignoring a 
number of important evolutionary principles. These include such principles 
as (a) that evolutionary change likely occurs through incremental steps; (b) 
that these steps most likely build on prior adaptations; (c) that behavioral 
change drives genetic change; and others (Schoenemann 1999). 
     It is important to recognize these principles and how the innatist theory 
and explanation conflicts with or ignores them. Again, given that the 
innatist argument is built in part on the presumption that human language 
is a unique phenomenon, “without significant analog in the animal world,” 
(Schoenemann 1999), it is difficult to see how it could be explained by 
evolutionary theory at all. If the development of human language shares no 
homologies with features found in other organisms, then it likely defies 
scientific explanation. As one noted theorist points out: 

“If this is the case, its existence cannot be explained in the scientific sense of the 
word because scientific explanations (as opposed to religious or mythical ones) 
are descriptions of the interplay between the laws of the natural world” (Cartmill 
1990).
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     In spite of this rather astonishing implication of their theory, Pinker 
(1994) has nonetheless argued that syntax has no homologies in related 
species. However, substantial research has shown that both chimpanzees 
and baboons do in fact have cognitive structures permitting abstract 
thought (Fagot et al. 2001). This is significant in the case of baboons 
because they are part of a different primate family that split from the 
family that gave rise to apes and then humans some 30 million years ago. 
It has been known for some time that chimpanzees have also demonstrated 
abstract thought. 
     In the case of chimpanzees, our nearest related species, experimentation 
has shown that chimpanzees use logical structures, including equivalence 
and order relations, when grouping objects both within sets of objects as 
well as between sets. They showed a higher level of logical organization 
than monkeys do (Fagot et al. 2001; Pot 1997).
     Moreover, there are marked similarities between the brains of humans 
and brains of chimpanzees with respect to language. Researchers at Mount 
Sinai School of Medicine, Columbia University and the National Institutes 
of Health found that a region of the brain thought to control language is 
proportionately the same size in humans and chimpanzees.
     This finding apparently disproves a long-standing theory that the brain 
section, the planum temporale of the left hemisphere, was enlarged only in 
humans. The study showed that 94 percent of the chimpanzee brains 
studied demonstrated the same asymmetry (Gannon and Holloway 1998). 
That region of the temporal cortex is also known as Wernicke's area, 
thought to control language comprehension, but only in humans.
     Though it is not clear what the interpretation of the finding should be, 
one author of the study believes chimps may converse using a 
sophisticated array of facial, body and hand gestures, perhaps augmented 
with grunting or other vocalizations Holloway 1998). Others from the 
same study stated: 

“If both chimps and humans have an enlarged planum temporale, their common 
ancestor probably had the feature as well, though the brain region may not have 
acquired its language functions until humans split off from other primates 6 to 8 
million years ago. Finally, it may well be that the planum temporale is not 
involved in language in either chimps or humans.”

     Again, it has been evident for some time that chimps have the cognitive 
structures underlying “argument relationships.” As Schoenemann notes, 
“to argue that this is not evidence of homology is to argue that humans and 
chimps independently evolved underlying cognitive structures that allow 
them to mark the same semantic features“ (Schoenemann 1999, p. 314).



122      3 The Genesis of Intelligence: Innate and Emergence Arguments 

     That argument, however, contradicts established principles of evolutio-
nary biology. Among them, that evolutionary change most likely occurs 
through incremental steps and that these steps are most likely to build on 
prior adaptation. Quoting Jacob, Schoenemann notes “Evolution does not 
produce novelties from scratch. It works on what already exists. . .” (Jacob 
1977).
     He also notes that other uniquely human adaptations, such as 
bipedalism, show clear homologies with related species. Moreover, the 
principle of building upon previous adaptations is evident in the 
evolutionary development of cortical circuitry co-opted from circuitry for 
non-verbal movements, permitting the development of speech.
     To argue that syntax alone has no homologies is to defy evolutionary 
biological explanation. Moreover, a corollary to the evolutionary 
biological principle that behavioral change drives genetic change is that “if 
some behavioral change is beneficial, we are therefore provided with an 
explanation for why it evolved.”
     Nonetheless, Pinker and Bloom “argue that “need” is an insufficient 
explanation for the existence of syntax in natural language. . . [reflecting] a 
Lamarckian perspective on evolution” (Schoenemann 1999, p. 316; Pinker 
and Bloom 1990). 
     According to Schoenemann, Pinker and Bloom beg the question at 
issue of how much of syntax is genetic:

“. . .much of human behavior is clearly “Lamarckian” in this sense. If some 
mechanism is needed by a language in order for that language to effectively 
communicate certain aspects of the reality of its speakers, then a mechanism will 
be invented or a convention will be settled on to accomplish this” (Schoenemann 
1999, p. 316).

     To go to such lengths as Pinker and Bloom have gone to deny 
homology in the face of such convincing evidence “belies a profound and 
unreasonable bias,” states Schoenemann. 
     One might also conclude that it belies a remarkable insistence on an 
anthropocentric view of the natural universe, with human intelligence 
uniquely placed at the pinnacle of an intelligence hierarchy, divorced 
entirely from all other living things beneath it. 

3.3.4 Cognitivism, Mechanism, and “Innateness”: How the 
Mind Does Not Work 

In addition to the above linguists and psychologists, some theorists in other 
fields hold that universal ideas or concepts are innate. These theorists 
appeal not only to “innate knowledge,” but also “innate mechanisms” as 
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explanations to solve the problem of universals. “Universality is often a 
telltale sign of an innate mechanism at work” (Hauser 2000, p. 24) as one 
theorist says. Yet invoking the concept of “innate knowledge” or an 
“innate mechanism” is just another way of attempting to sidestep the 
original problem.
     As the above assessment of such arguments shows, appeals to 
“innateness” often turn out to be pseudo explanations masquerading as 
solutions. One can still ask, “How does the supposed innate knowledge or 
mechanism make universals have universal reference—especially those 
universals that have reference to an infinite number of things for all time 
and all place?”
     One attempt to answer this is yet a further appeal to natural selection. 
One theorist writes: “When organisms, including humans, encounter 
recurrent themes or statistical regularities, natural selection builds such 
information into their brains“ (Hauser 2000, p. 23). Yet, though an appeal 
to natural selection may be a partial answer to the problem of some 
universals, it will not work at all with others, such as triangularity. The 
universal triangularity is not reducible to a “recurrent theme” or a 
“statistical regularity” though particular representations of it may be. We 
are still left with the original problem of universals. 
     In a further attempt to explain the concept of “innateness,” one author 
states:

“What is innate . . .is the mechanism for learning about a specific domain of 
knowledge, not the knowledge itself. Thus, the learning mechanism filters the 
experiences, guiding the organism to attend to some events in the environment but 
not others. . we are born with a learning mechanism that allows us to recognize 
objects such as hockey pucks and coffee mugs and make predictions about their 
behavior.” (Hauser 2000, p. 23). 

     Thus contrary to earlier philosophers who wrote of innate knowledge, 
this author claims that what is innate is not the knowledge itself but the 
mechanism for learning about a specific domain of knowledge.

Innate Learning Mechanisms 

Though this author does not explain what he means by “learning 
mechanism” he describes to some degree what it does. The purported 
learning mechanism filters experiences and guides the organism. The 
author does not provide any explanation of how, exactly, it does this, 
though his description is reminiscent of earlier philosophers’ attempts to 
explain the same things with appeals to a process of “abstraction.”
     But just as with such appeals that beg the question, so does the appeal 
to inscrutable “learning mechanisms.” Any so-called process of abstrac-
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nominalist strategies to explain the mind and intelligence, in particular the 
problem with universals, is a continuation of a failed nominalist and 
idealist tradition. A view of the mind or brain as having representations of 
the world and manipulating those representations according to innate 
mechanisms or rules begs far more questions than it answers. 
     It is yet another attempt to avoid the problem while introducing even 
more problems in the process. In particular, the appeal to “innate 
knowledge” has historically been proven to be a pseudo-solution to the 
problem of universals. That is because it is no solution at all, but a barely 
disguised attempt to avoid the problem.

The Classical Computational View of Mind and Intelligence 

Representationalism, born of nominalism and conceptualism, in turn gave 
birth to the computational view of mind and intelligence. Together, they 
became the program of the new cognitive sciences born along with early 
artificial intelligence. More specifically, representationalism merged with 
the program of cognitivism that is pervasive today in theories of mind and 
intelligence.
     Though cognitive science may be any theory about how the mind or 
intelligence works, cognitivism is the view that all mental phenomena—all 
phenomena included in intelligence —are fundamentally cognitive. In the 
accepted sense of “cognitive” that meant that all mental and intelligence 
phenomena involve thinking.
     As Dreyfus explains (1995), the notion of thinking was then expanded 
under cognitivism far beyond its traditional boundaries involving only 
thoughts and reason. It was expanded to include perception, as well as 
skills and emotion. Thinking was traditionally conceived to be in a 
separate category from perception, skills and emotion. However, under 
cognitivism it was expanded such that skills, emotion, and perception were 
described and explained as unconscious “thinking,” which seems to be a 
metaphorical stretching of the meaning of the word.
     It is important to stress the underlying classical mechanical view of 
thinking extended to include perception, skills and emotion that these 
developments entailed. Fundamentally, thinking (or reasoning) was 
interpreted according to propositional or sentential logic categories. These 
in turn were treated as Boolean categories and operations, encoded as 
strings of “0”s, “1”s. This included the familiar “all-or-none” concepts, 
including the operators “and”, “or”, “either-or”, “not”, used in machine 

Representationalism, as found in current conceptualist/idealist and 
On the surface, this appears to be a pseudo solution as well.
ence and guiding the organism. We are still left with the original question. 
tion, for example, assumes what it seeks to explain, i.e. filtering experi- 
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logic. Thus, all thinking, including the extended categories of perception, 
emotion, and skills, was represented or encoded as “0”s and “1”s and 
manipulated according to traditional Boolean operators.
     This underlying theory of computation, now known as the classical 
theory, developed over many decades, following the works of logicians 
such as Gödel, Turing, Church, Kleene, Post, among others. It has been 
enormously successful in laying the foundation of computer science 
generally and developments in artificial intelligence.
     However, for reasons I will later, it is a theory that may be necessary 
but is no longer sufficient for the foundation of modern scientific 
computation, where the appropriate algorithms are based on the real
numbers. The classical theory of computation is also inadequate for a 
science of natural intelligence. From a mathematical point of view, the 
contemporary representationalist cum classical computational theory of 
mind and intelligence, born of earlier nominalism and conceptualism 
(idealism), is based in formal logic, having little relation with the 
continuous concepts of real and complex numbers. It is combinatorial 
rather than analytical. Natural intelligence, however, requires a 
mathematical analytical (real number) approach. 
     In part, the classical computational view underlies those 
representationalist theories that appeal to “innate mechanisms” and “innate 
knowledge” to explain knowing universals (or cognition and knowing in 
general), especially that found in babies and animals. It is the point of view 
taken by earlier theorists such as R. Gregory and W.V.O. Quine, and later 
theorists such as P. Churchland, and others.
     Representationalists, even those that diverge from the traditional 
sentential categories, nonetheless follow an underlying mechanistic, 
classical computational model. What is wrong with this computational 
theory of mind and intelligence is, among other things, the underlying 
theory of computation. It is a discrete and linear, top-down, logic- and 
knowledge-based serial approach to computation that cannot handle actual 
continuous nonlinear natural intelligence found in even the simplest things 
both humans and animals know how to do. 

Missing Practical Intelligence 

But there are other problems as well. The traditional representationalist 
cum conceptualist (idealist) approach to mind and intelligence leaves out at 
least two major categories of knowing. In the history of serious thought 
about human intelligence, stemming back to the Greek philosophers who 
addressed practical intelligence sorting it from the theoretical and 
speculative knowledge held in highest esteem, later theorists tended to 
leave it out altogether.
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     As earlier points of view on the questions “What can be known?” “How 
can we know or come to know anything at all?” diverged into the realist, 
conceptualist, and nominalist camps, those in turn later congealed into at 
least 3 major theories of knowledge, not knowing. With few exceptions, 
these major theories did not address knowing how or immediate awareness 
at all.
     These theories became the Realist, Coherence, and Pragmatist theories 
of knowledge. They all assumed a representationalist, propositional 
foundation of all human knowledge. It was knowledge that had to be 
mediated by language, either written or spoken.
     The influence of nominalism, combined with the later 
representationalist and computational theory of mind and intelligence, 
became so strong that most philosophers never questioned the underlying 
assumption that all knowing can be represented in public natural or 
artificial languages. The propositional view of knowing and intelligence 
became the predominant view. 
     Moreover, with few exceptions, each philosopher who identified him or 
herself as in the Realist, or Coherence, or Pragmatist camp fundamentally 
rejected any notion of immediate awareness. It is rejected precisely 
because of the notion that it is “immediate” and not “mediated” by 
representations. There can be nothing cognitive that is immediate precisely 
because, so the doctrine held all cognition is mediated by language, by 
representations.
     Furthermore, coming to know was excluded as not a proper question for 
philosophers. “Coming to know” was assumed to be identical to learning, 
held to be mostly a psychological matter.
     Each of these theories assumes that knowledge, embedded solely within 
propositional or language structures constitute the full scope of 
intelligence. Where they had major disagreements usually concerned 
competing explanations of the sources of our concepts and knowledge. 

Rationalist Sources of Innate Arguments 

The representationalist strategy that eventually developed into the compu-
tational theory of mind followed in part from what is called the Rationalist 
Tradition. This is a position that holds that at least some propositions can 
be known a priori, not based on experience, and other propositions can be 
known when they are deduced from a priori propositions.
     Mathematics is traditionally thought by Rationalist to be known a priori
and by deduction. Some rationalists hold that ethics is also known the 
same way, while still others hold that metaphysical claims such that God 
exists, we have free will, and our mind and body are distinct substances, 
are all known a priori (or by intuition) and by deduction (Markie 2004). 
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     But some Rationalists hold that we have innate knowledge or we have 
innate concepts. It is in these arguments that one finds some parallels with 
those advocating the computational theory of mind and current innate 
arguments for universal grammar.
     Traditionally, innate knowledge has been explained as knowledge that 
is independent of any experience and is simply somehow in us as part of 
our rational natures. This is either because of our capacity for pure reason, 
or because we are born with certain structures in the mind. However, 
experiences may trigger a process by which we bring this knowledge to 
consciousness, though the experiences do not provide us with the 
knowledge itself. It has in some way been with us all along. 
     Earlier Rationalists argued that we gained the knowledge in an earlier 
existence. This is the Platonic argument. Others argued, as contemporary 
computational mind theorists, that it is part of our nature through natural 
selection. The appeal to “innate mechanisms” is an appeal to innate 
knowledge (or an innate “learning mechanism”) following this same 
rationalist tradition to some degree.
     The innate concept (universal) argument is much the same as the innate 
knowledge argument. Some argue that some of our concepts are not gained 
from experience. Though sense experiences may trigger a process by 
which these concepts are brought to consciousness, experience does not 
provide the concepts themselves. They are simply part of us. Since we do 
not experience perfect mathematical objects, such as triangularity, nor do 
we experience immense numbers, these have been argued to be “innate” 
concepts. Our knowledge of them may be “innate” as well, or so the 
argument goes. 
     Yet such appeals to “innateness” are bogus explanations. In the first 
place, even with the example of such mathematical concepts as 
triangularity, not all otherwise perfectly healthy individuals have the 
concept. Yet if such concepts were innate, in the sense that they are part of 
us as rational beings or because natural selection somehow selected for 
them in us, then it would be reasonable to assume that all human beings 
would have them. Yet not all do.
     Moreover, if “innate” mechanisms are somehow in us for some of the 
same reasons, just waiting for the right experience to somehow “spark” or 
give rise to the knowledge that goes with them, we are left with explaining 
exactly how that occurs as well as explaining how it is that not all 
otherwise healthy human beings have such a mechanism or the supposed 
knowledge that goes with it. 
     While appearing to be an explanation, the appeal to “innate” 
mechanisms or “innate” knowledge is in fact something on the order of an 
ad hoc attachment to a theory to provide the appearance of an explanation 
where there isn’t one. It is a fraud of an explanation.
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     Lastly, if the appeal to “innate” mechanisms or “innate” knowledge is a 
disguised appeal to a genetic explanation (as advocated by some psycholo-
gists, linguists and intelligence researchers), that has even more serious 
problems attached to it than the historical “innate” arguments.
     For reasons already touched upon earlier, we now know enough about 
the human genome to know that genes just don’t work that way. Not only 
are genes not primary in determining what a person is, becomes, does, and 
knows, there is no genetic counterpart to mathematical or any other 
concepts in the mind.
     In spite of prevalent and, unfortunately popular notions to the contrary, 
the state of our knowledge and understanding of our own intelligence, 
including how we know or come to know, is not advanced enough to 
provide scientifically respectable explanations for these serious problems 
of natural intelligence.

3.4 Summary 

We explored the meaning of intelligence and scope of cognition by 
looking at the development of realism, nominalism (conceptualism), and 
the rise of representationalism. We also looked at major theories of 
knowledge since cognition is largely defined in terms of knowing. We saw 
that from the time of Plato, philosophers addressed themselves to the 
question “What is knowing?” and focused upon even more basic questions 
such as “What can we know?” along with implicit questions such as “What 
is real?” These questions are in turn related to others such as “How can we 
know, or come to know, anything at all?”
     Over time, the latter questions were largely reduced to psychological 
theories of learning. Moreover, earlier concepts such as practical 
intelligence were dropped with the rise of language representationalist and 
the classical computational theories of the mind. None of the major 
theories of knowledge: realism, coherence, and neo-pragmatism, addressed 
knowing how to do anything. 
     As only one of many such issues, the problem of universals has come 
down through the centuries as a particular sticking point in most theories 
of knowledge. This in turn has affected theories of intelligence and the 
mind. The problem of universals can be summed up in the following 
question: How do we experience universal or general, common properties 
in particular things? When we see a triangle drawn on a piece of paper, 
how do we know that it is a triangle? Why isn’t it just a bunch of pencil 
marks? Responses to this particular problem vary dramatically among 
various theories of knowledge and intelligence. 
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     In general, realists are those who assert the objective existence of 
universals. By “objectivity,” they mean that these exist independently of 
human beings, of human language, and of human concepts. Nominalists 
are those who primarily acknowledge only universal words. Conceptualists 
(later known as idealists) are those who primarily allow universals only as 
concepts of the mind. Both nominalists and conceptualists hold that 
universals have no reality apart from merely being concepts in the minds 
of persons or common words in languages.
     Given the influence of nominalism, representationalism quickly became 
dominant during the Linguistic Turn in philosophy during which every 
philosophical problem was turned into a problem about language, or at 
least into a problem dependent upon language. Though the later Cognitive 
Turn was supposed to have replaced the emphasis upon language by 
turning back to a study of the mind, it still sees the mind and intelligence 
generally as a linguistic/symbolic representational system manipulated by 
universal rules of grammar. 
     With the rise of neo-pragmatist theories, there was a reduction of 
knowledge and all things related to the mind and intelligence, especially 
language, to causal theories. This was accompanied by representationalist 
theories that propose kinds of linguistic/symbolic “pictures” of the mind, 
of intelligence. Mental representations became kinds of mental words.
     Some recent psychologists, linguists, and other theorists hold that 
universal ideas or concepts are innate. These theorists have appealed not 
only to “innate knowledge,” but also “innate mechanisms” as explanations 
to solve the problem of the origins of language, universals and to explain 
intelligence in terms of language acquisition.
     As noted, some theorists hold that there are innate structures that act as 
a central processor driving the engine of language and intelligence. That 
central processor, they say, is found in “grammar genes” in a specific 
location in the brain. Intelligence, these theorists claim, is confined to 
logico-linguistic/symbol structures of spoken and written language. It 
excludes anything unrelated to language. 
     Closely examined, however, their arguments have been found to be 
fallacious, begging the questions at issue and in many respects were found 
to contradict established evolutionary principles. Moreover, where 
“innate” is taken to refer to genetically encoded mechanism brought about 
by natural selection, their arguments betray a fundamental 
misunderstanding of genetics as well, while still not explaining the 
problem of universals. 
     Some of the arguments for innate molecular structures taken to be the 
origins of language betray fallacies of reductionism that collapse biological 
as well as levels of explanation without justification; a confusion of 
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correlation with cause; and given to unwarranted and unscientific use of 
metaphor in place of evidence and argument. 
     We concluded that invoking the concept of innateness turns out to be 
another way of attempting to sidestep the issues. The appeal to 
inadequately explained or supported innateness is a pseudo explanation 
masquerading as a solution. One can still ask, “How do the purportedly 
innate structures make universals have universal reference?
     The problem with universals remains unresolved. Representational and 
computational theories of mind and intelligence leave out much of our 
intelligence. They leave out a concept of natural intelligence that includes 
other animals besides us, and by their very structure, such theories do not 
recognize the intelligence of knowing how and immediate awareness.



4 The Intelligence of Doing: Sensorimotor 
Domains and Knowing How 

A recurring question in intelligence studies which we addressed to some 

degree in the last chapter is where the human mind and intelligence come 

from. In much of the research literature, the term “mind” often gets 

interpreted or defined as “consciousness” or “conscious awareness”, 

without clarifying what those concepts mean, though they often get 

explained in nominalist terms.

     For example, “consciousness” often gets defined as “consciousness 

that” such and such is the case, meaning that the one who is conscious can 

say or otherwise indicate that they are aware. Likewise, “awareness” gets 

defined the same way, as “awareness that” such and such is the case.

     Neither of these are equivalent to “consciousness of” or “awareness of”

which may be outside explicit, straight-forward verbal or linguistic 

indicators or parameters of a subject altogether. Determining whether or 

not a subject is conscious or aware may have to be sought another way. 

     Words such as “categorization”, “mappings”, “abstraction” and 

“discrimination” also get used in proposed explanations, yet those often 

leave us with far more questions than answers. 

     We looked at arguments that the genesis of intelligence, identified with 

verbal intelligence, is found in language centers in the brain where the 

biological bases of universal grammar are supposed to be found. For all the 

reasons and evidence considered, and more we did not, those arguments do 

not hold up. They do not hold up in part because they commit too many 

fallacies, beg too many questions, base too many claims upon assumptions 

known to be false, and violate fundamental scientific principles of 

evolution.

4.1 The Intelligence of Doing 

Humans tend to be good at thinking and doing; and thinking is a kind of 

doing. It is an old adage that if you really want to know what someone 

thinks, look more at what the person does and listen less to what they say. 

 131
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Extended to intelligence, the obvious principle is that intelligence is 

disclosed more in what one does than in what one says.

     What humans know how to do is far more pervasive and fundamental 

than their verbal intelligence; indeed, knowing how is fundamental to all 

intelligence, including the verbal. Moreover, it is not reducible to the 

verbal. You cannot bring someone to know how by telling them how. 

Knowing how showed up long before hominids became language 

speakers; it still shows up after we are born before each of us becomes 

language speakers.

     Though we do not know what animals are thinking or even if some of 

them think at all, we know that they are also good at doing a lot of things, 

including tricking humans. As noted in the Introduction, from my earliest 

years trying to keep wildlife from stealing crops and chickens, I learned to 

carefully watch them and never underestimate their intelligence. 

     On a broader evolutionary scale, some have posed a much larger 

question: How did inanimate matter evolve into creatures like ourselves 

who can think? Among many other things, some biologists have proposed 

that given the overwhelming odds against survival, mammals eventually 

learned the trick of providing nests for their offspring. Nests made it safer 

for offspring to learn by trial and error without being punished for being 

wrong. The nest made it possible to get things wrong without dying 

(Cohen 1998). 

     This trick enabled mammals not only to have fewer offspring because 

more of the ones they had survived, but it also meant that the mechanisms 

for survival no longer had to be entirely built into their genome. Parent 

mammals taught the trick of making nests to their offspring who in turn 

provided protective nests to their own. The trick of providing nests for 

offspring eventually led to a new kind of intelligence that included 

learning and teaching (Cohen 1998).

     In some ways, this larger evolutionary perspective provides a more 

informed way of looking at intelligence than examining brain structures. 

As Cohen notes: 

“Mind isn’t just a matter of sophisticated brain structure. The cultural context that 

passes on tricks through learning and teaching is crucial, particularly for the most 

important and apparently unique features of human beings: imagination, 

creativity, and morality.” 

     Mammalian know how, knowing how to build nests, knowing how to 

teach their young, and the young knowing how to learn enabled greater 

survival. Understanding the emergence of the intelligence of doing 

requires that we look not only at sophisticated brain structures, but also the 
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context in which those structures find themselves, along with acquired 

processes of teaching and learning. We have to look at the processes of 

reaction, interaction, transaction among all these components of the 

patterns of emergence. 

4.1.1 A Two-Pronged Approach to Intelligence Inquiry 

Though the brain evolved and is not artificially designed, intelligence is a 

product both of evolution and intentional design. Teaching is a deliberate 

process to bring about changes in the intelligence and behavior of the one 

being taught. Moreover, persons can seek ways to teach themselves. They 

can deliberately set out to shape their own intelligence in ways that the 

natural world would not.1

     Thus a theory of natural intelligence cannot be reduced to the biology 

of the brain. It must look more broadly at the context and experience 

within which intelligence emerges. To be explicit: there are at least two 

major categories of phenomena to which a science of intelligence (where 

we are specifically addressing human intelligence) must attend. One 

category includes the brain and its context; the other category includes the 

person and the person’s experience in the objective world. The former 

major category is solely from an objective science point of view; the latter 

category is addressed with both an objective science point of view as well 

as the phenomenal view of the person in relation to an object.2

     Moreover, the latter category requires viewing the phenomenal 

experience of the person within a set or matrix of relations obtaining 

between Subject (S) and Object(s) (O). Not all objects within such a set 

will be physical; many will be artifacts, including ideas. For example, the 

accumulated knowledge of a discipline may constitute an artifact which 

becomes an object in the relation with a Subject. As such, these require a 

different level and kind of inquiry than object-level science as performed 

in a clinical laboratory.

     This chapter will focus on the structures and nonlinear cognitive 

elements employed in active natural intelligence. In particular, it will 

focus upon the neurobiological architecture of the sensorimotor system 

and awareness and how kinds of intelligent doing emerge from those. 

                                                     
1 Humans can also intervene in natural brain and intelligence processes by artificial means 

such as drug inducement. I will not explore those possibilities here. 
2 The word “object” is used in the broadest sense to refer to any term of thought, where 

“term” is not limited to its language sense as a word. Objects can include physical or 

abstract terms, including patterns.
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     Though much of the research into intelligence assigns motor-related 

behavior to the non-cognitive, extensive neurobiological and related 

research reveals highly complex cognitive behavior at very primitive 

levels. Moreover, it will address to some extent how those sensory and 

motor areas are related to highly abstract thought structures as found, for 

example, in mathematical cognition, though most of these issues will be 

addressed in a later chapter.

    Indeed, within a larger biological and evolutionary perspective, 

knowing how and cognitive awareness at primitive sensorimotor levels is 

necessary to account for our very survival. These findings call into 

question the definition of “cognition” and “intelligence” as usually 

circumscribed by language centers of the brain and evidenced solely or 

even primarily in verbal behavior. More broadly, I want to focus on 

certain intentional aspects of everyday experience and knowing exhibited 

or disclosed in normal human and animal doings.

Fallacies to Avoid 

Clearly, psychological matters are involved in our inquiry. However, the 

natural intelligence domain of inquiry is neither equivalent nor identical 

with the psychological. Nor is it equivalent or identical with the 

neurological.

     Instances of the difference can be shown in part with the distinction 

between learning and coming to know. Though there is an obvious relation 

between the two, the concept “coming to know”, if only because it 

includes the concept “know” cannot be reduced to the concept “learning” 

and behavioral change. The concept “know” implicitly includes normative 

standards such as the concepts “fact”, “truth” and “justification”. 

Moreover, it includes standards for performance that are included in our 

understanding of knowing how to do something.

     The concept of learning does not necessarily include any of these. One 

can learn much that is false; one can learn bad, ineffective, and even 

fatally incompetent ways of doing things. But it cannot be said (at least not 

without contradiction or nonsense) that one comes to know anything which 

is false; one cannot be said to know how to do a task yet consistently fail 

or perform badly and ineffectively when doing it. 

     Moreover, though it may be tempting on reductionism grounds, physics 

and neurophysiology must not be assumed as sole premises in theory of 

natural intelligence. We certainly need to understand neural and physical 

theories and methods in order to fully understand natural intelligence. 

These are necessary and must be part of any complete causal theory of 

natural intelligence. However, necessity is not sufficiency. To assume 
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physics and physiology as sole premises results in kinds of material 

reductionist, or naturalistic fallacies (Russell 1984, p. 51). 

     One example of such fallacies is to argue that because we know certain 

empirical facts about the retina, it is therefore the case that we can solve 

the problem of kinds of intelligence we obtain when we observe things 

with our eyes. Knowledge of the retina will not answer questions about the 

knowledge or intelligence we obtain by using our eyes.

     Among other things, this is faulty reductionism; it is also equivocation 

and yet another example of a category mistake. Intelligence gotten by 

using our eyes cannot be found by surgically opening up the retina. This is 

similar to the claim that we can find the explanation of a man's moral

values by performing an autopsy on him. 

     Moreover, it should be added that the other side of this fallacy includes 

the assumption that because we use our brains to think, that there are 

neural networks [connections] in our brain when we think, we can 

therefore solve the natural intelligence problem by operating on the brain 

or submitting it to fMRI (functional magnetic resonance imaging) to 

observe its neural processing when we think.

     But we will not find thought, reasons, logic, or universals in brain 

tissue when we open the skull or observe its functional MR images. 

Though such fallacies are readily passed off as explanations in some 

circles these days, they are rejected here. 

     Scientific inquiry into intelligence is broadly multi- and 

interdisciplinary, drawing upon concepts, methods, and research strategies 

spanning many disciplines from physics, chemistry, biology, 

neuroscience, psychology, and anthropology. It also requires the 

normative discipline of epistemology, the study of knowledge, knowing, 

belief, and theory of evidence and justification.

     Epistemological analysis and inquiry proceed differently from 

psychological and neurophysical analysis and inquiry. Its objects, 

methods, and categories differ in that there is a greater reliance upon 

logical and mathematical analysis, seeking critical examination of prior 

hidden assumptions and underlying models, then evaluating those against 

a full spectrum of evidence and standards. It is usually (though not 

always) less involved in direct data collection and analysis though those 

are certainly taken into account. In many senses, epistemology is more a 

meta-level inquiry than are other areas of inquiry, particularly psychology.

     It is important to stress these differences between kinds of inquiry 

because of the deeply ingrained material and genetic determinism that has 

pervaded American society. As earlier noted, this is the view that the 

answer to all serious questions about intelligence or life itself can be found 

at the physical, material or genetic level. Yet, to paraphrase a noted 
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reproductive biologist, one can sit brain tissue and DNA in a test tube 

forever, and it will not come to life; it will not do anything but die and 

decay (Cohen 1998; Stewart 1998). DNA code alone must be plugged into 

a highly complex, multi-leveled network of support for life to eventually 

emerge.

     Certainly, as neuroscientists assert, our sensations are functions 

minimally of our sense organs and our nervous system. However, this is 

not primitive knowledge, but a scientific inference which we make. Hence 

it cannot form sole premises of scientific inquiry into intelligence, though 

we must include that knowledge in our quest to understand the emergence 

of natural intelligence. For example, we must seek to understand how 

visual processes emerge to become seeing and observing, and how these 

and other senses emerge as awareness (both “awareness of” and 

“awareness that”) and perception found in the intelligence of everyday 

knowing how.

     A scientific explanation of natural intelligence must seek to provide a 

causal account of relationships among many domains. These include the 

neurological and physical domains, but also contextual and highly 

subjective domains as well. The aim of a science of intelligence is to 

explain how intelligence emerges from interrelationships among 

components in all those domains. In general, I will refer to the contextual 

and subjective domains as the domain of experience, when referring to 

human and animal intelligence. 

4.1.2 Cognition, Consciousness, Awareness 

We must use knowledge of the most primitive sensory and sensorimotor 

components in order to determine where the organism enters the circle of 

cognition. Neither the concept of cognition nor the concept of intelligence 

is taken here as identical with the concept of consciousness, as the latter 

term is defined in many neurological and other research communities 

today. That term is often defined in terms of ill-defined and question-

begging processes such as categorization and abstraction. Or it is defined 

in nominalist terms that presumptively require a language interface 

between a subject and object. 

     For example, technically categorization is a process of classification. 

Both terms already imply the existence of one or more concepts since a 

concept is a necessary condition to the existence of a category. Likewise, 

concepts and categories are necessary conditions to the process of 

classification. Classification is a process of sorting things based upon 

similarities among properties of the things sorted. Thus the process of 

classification already assumes the possession of a rule of similarity (a 
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concept and a category) to permit the process to begin in the first place. To 

define the term “consciousness” in terms of “categorization” begs the 

question. It assumes what it seeks to explain. 

     Any definition that assumes what it seeks to explain ends up not 

explaining anything. The process of categorization assumes more basic 

levels by its very definition. In spite of this, some theorists apparently 

believe they have provided the most primitive levels of explanation of 

consciousness, when they have not (Edelman 2004). Additionally, the 

following terms are used in similar inadequate ways: “concept”, 

“discrimination”, “identification”, “detection”, and “abstraction” resulting 

in questionable analysis and explanation. 

     Moreover, relations between “consciousness”, “awareness” and 

“cognition” are often left very unclear. Edelman (2004) proposes that 

consciousness (hence the mind) arises as a result of the interaction of two 

parts of the neural system differing in their anatomical structure and 

evolutionary history. Primary consciousness, being aware of things in the 

world, arises from reentrant processes that connect perceptual 

categorization and value-laden memory.

     On his theory, “higher consciousness” requires that one make the 

distinction between self and non-self; it also requires semantic ability, the 

assignment of meaning to a symbol. In essence, this is actually linguistic 

ability, though he apparently thinks one only has that when one can master 

a whole system of symbols and a grammar.

     Though not directly significant for purposes here, one should note that 

Edelman’s self and non-self requirement contradicts empirical research on 

the formation of self-identity and some basic logical principles in children. 

These occur before they have developed semantic ability as he defines it 

(Piaget 1950, 1971, 1972, 1990; Piaget and Inhelder, 1956; Gruber and 

Vonëche 1995). 

     Thus according to Edelman being aware of one’s self is possible if the 

brain is capable of perceptual categorization, memory, learning and 

self/non-self discrimination. Regions of the brain that function to define 

self within a species include the amygdala, the hippocampus, the limbic 

system, and the hypothalamus. Regions that define non-self include the 

cortex, the thalamus and the cerebellum. We will return to all this below. 

     In effect, an adequate theory of cognition in relation to natural 

intelligence, specifically the intelligence of doing, must provide adequate 

definitions of the above terms and answer at least the following questions:

What are the most fundamental primitives of the sensorimotor system 
that comprise the first step into cognition?
What are the cognitive parameters of awareness?
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What are the sensorimotor primitives of awareness?
Specifically, how are these related to concept formation?
Are these primitives still there in the most outer reaches of abstract 
reason and thought?
What is the relation between cognitive awareness in humans and 
animals?

     Indeed, what is the scope of cognition, the length, breadth, floor and 

ceiling of natural intelligence? 

     We can start by focusing upon a broader concept of subject experience, 

where “experience” is broadly defined in terms of awareness and doing.

4.2 The Science of Awareness 

A bit of history: before the advent of objective scientific measures and the 

growth of the neurosciences, the test of any direct or immediate3 awareness 

of even conveniently sized objects was traditionally some version of 

Descartes’ (1596–1650) introspective method of doubt or some other 

appeal to the possibility of illusion or error in perception. It is worthwhile 

to retrace a few historical steps here since our present understanding of the 

problems and some of these concepts directly follow from them. 

     A close look at Descartes’ method of doubt alone shows that these tests 

and methods were directed largely to what one is justified in believing. 

They were largely directed to knowledge by description (knowledge that)

by closely reflecting upon what evidence or reasons one has for believing 

something. They were not actually directed to knowledge by acquaintance,

the kind of knowing that comes from first-hand physical, immediate 

awareness and experience.

     Russell (1912) had initially introduced the distinction between 

knowledge by acquaintance and knowledge by description primarily to 

provide a foundation in actual immediate physical experience and 

awareness for the latter. 

     Yet over many decades various philosophers argued against the notion 

of direct or immediate awareness as a kind of knowing or cognition, as 

well as the distinction between knowing by acquaintance and knowing by 

description, precisely by appealing to the same tests of the possibility of 

illusion, hallucination, and other sources of error. They allowed mediate

                                                     
3 The term “immediate” means there is no language interface between the subject who is 

aware and the object of that awareness. Sometimes the word “direct” is used. “Mediate” 

awareness means there is such an interface. 
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awareness (“awareness that”), the kind a person can verbally report upon, 

but even then one could not refer to internal states such as pain to prove it.

     The major conclusion drawn from their arguments seemed to be that 

the only kind of knowledge we can actually have is knowledge by 

description. It is the only kind that can be publicly checked out, because it 

can be represented in propositions, without resorting to private 

introspection or personal subjective experience of individuals. 

     However, the very framing of the distinction and the argument in the 

first place, by comparing knowledge by acquaintance with knowledge by 

description, led to these and other fallacious arguments against knowledge

by acquaintance and certainly against immediate awareness. These 

philosophers mistakenly thought that knowledge by acquaintance should 

meet the same kind of standards as knowledge by description. They would 

not allow a non-propositional knowing. 

     But beliefs are not necessary conditions to a subject’s knowledge by 

acquaintance or immediate awareness. Neither is justification for beliefs, 

or reflecting about beliefs, as those are the province of knowledge by 

description. Any justification for knowledge by acquaintance or 

immediate awareness has to be found in what one discloses in one’s actual 

experience, especially in what one knows how to do. One cannot look to 

verbal structures for such justification because it is not found there. It must 

be looked for in the structures of actual experience, especially the 

structures of knowing how.

     Moreover, since the logical possibility of kinds of error or hallucination 

is always present, the framing of the distinction and the argument led as 

well to some philosophers and others pitching the objective foundations of 

all cognition, reason, and knowledge altogether. These are largely known 

as postmodernists.

     Again, though Russell had initially introduced knowledge by 

acquaintance in relation to knowledge by description primarily to provide 

a foundation in actual physical experience for the latter, it is clear that in 

the arguments against it propositional knowledge by description was given 

priority over any direct or first-hand experience or awareness. 

     Given the influence of nominalism and representationalism, that 

priority is not entirely unexpected. Knowledge by description was and still 

is the standard by which all epistemological categories and intelligence are 

evaluated and tested.

     Immediate awareness will always fail the propositional knowledge by 

description (knowledge that) test. But that is not the test that should be 

used.
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4.2.1 Cortical Structures and Information: Neural Bases of 
Awareness and Intelligent Doing 

We should clarify the use of certain terms here as well as get clear on the 

overall anatomy and physiology of the senses and movement (Seeley et al. 

2002).4 Trivially, the sensorimotor system of the human is that system that 

is of or relating to both the sensory and motor system.

     The sensory system includes the somatosensory system which is the 

sensory system of somatic sensation. Somatic sensation consists of various 

sensory receptors that permit the experiences of touch, pressure, 

temperature, pain (which includes itching and tickles), muscle movement, 

joint position (including posture and movement), and facial expression.

     The somatosenses include the cutaneous skin, kinesthesia (movement) 

and organic senses which have to do with information from the organs, 

such as stomach pains.

     The sensorimotor area is that area of the cortex including the precentral 

gyrus and the postcentral gyrus and combining sensory and motor 

functions.

Fig. 4.1. Brain Showing Postcentral and Precentral Gyrus 

     The primary motor area is a group of networked cells in mammalian 

brains that controls movements of specific body parts associated with cell 

groups in that area of the brain. This area is linked by neural networks to 

corresponding areas in the primary somatosensory cortex. 

     The motor pathway consists of the corticospinal tract which originates 

in the pyramidal neurons of the motor cortex. The cell bodies in the motor 

cortex send long axons to the motor cranial nerve nuclei of the midbrain, 

pons, medulla oblongata. The bulk of these fibers extend to the spinal cord. 

                                                     
4 Much of the information in this section relies upon Seeley et al. 2002; Hernegger 2005; 

and Edelman 2004.
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     Sensation enters the periphery via sensory axons. All sensory neurons 

have their cell bodies sitting outside the spinal cord in a clump called a 

dorsal root ganglion. There is one such ganglion for every spinal nerve. 

The proximal end of the axon enters the dorsal half of the spinal cord, and 

immediately turns up the cord towards the brain.

     These axons are called the primary afferents, because they are the same 

axons that brought the signal into the cord. (In general, afferent means 

towards the brain, and efferent means away from it.) The axons ascend in 

the dorsal white matter of the spinal cord.

     At the medulla, the primary afferents finally synapse. The neurons 

receiving the synapse are now called the secondary afferents. The 

secondary afferents cross immediately, and form a new tract on the other 

side of the brainstem. This tract of secondary afferents will ascend all the 

way to the thalamus, which is the clearinghouse for everything that wants 

to get into cortex. Once in thalamus, they will synapse, and a third and 

final neuron will go to cerebral cortex, the final target (WUSM 2005). 

     The primary somatosensory area in the human cortex is found in the 

postcentral gyrus. Areas of this part of the brain map to certain areas of the 

                       Fig. 4.2. Basic Somatosensory Pathway 
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body depending upon the amount of somatosensory input from that area. 

This somatosensory map is called the homunculus. 5

     The motor homunculus is made up of a somatotopic representation of 

different body parts in the primary motor cortex. The leg area is located 

close to the midline with the head and face area located laterally on the 

convex side of the cerebral hemisphere. The arm and hand motor area is 

the largest and occupies the part of the precentral gyrus located in between 

the leg and face area. 

                                                Fig. 4.3. Homunculus

     A sensory system is part of the nervous system consisting of sensory 

receptors, neural pathways, and those parts of the brain which function to 

process information. The sensory systems include those for vision, 

hearing, somatic sensation, taste, and olfaction.

     Receptive fields have been identified for the visual, auditory, and 

somatosensory systems so far. These systems code for four aspects of a 

stimulus, including type, intensity, location, and duration. 

                                                     
5 Latin: little man.
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Reticulo-Thalamo-Cortical (RTC) System 

Organisms store and analyze information in the cortical network, 

centralizing controls in the reticulo-thalamo-cortical (RTC) system. 

Complex interactions, reactions, and transactions with the environment are 

enabled by the neocortical network. The primary and secondary sensory 

areas of that network represent the peripheral sensory receptor system in 

the cortex. These areas continue the functions of analysis and filtering of 

information from the environment. 

     As part of the sensory system’s filtering function, the visual system 

analyzes differences in light, colors, movement, shapes and contours. It is 

important to note that the filtering function is the means by which the 

sense qualities are selected before the act of seeing can take place. The 

cortical sensory detectors are the carrier of code for the sense qualities 

which have to be decoded into information in order to be meaningful. 

     A viable theory of intelligence must be clear on the mechanisms of 

percept (sense) formation. This includes not only the biology of the brain, 

but also the context or environment in which the brain finds itself. 

Moreover, such a theory must become clear on concept formation, without 

a conceptual “collapse” or dissolving of, the crucial differences between 

percepts and concepts. “Percept” and “concept” are two different 

categories of mind and intelligence; they are not one. 

4.2.2 How Concepts (Universals) Get Formed: A Global Map 
Theory

Again, consciousness usually gets defined in terms of kinds of awareness. 

One example of this is Edelman’s (2004) definition of “primary 

consciousness” as the “state of being mentally aware of things in the 

world, of having mental images in the present” (Edelman 2004, p. 9). This 

is then used by him in explanations of how cognition arises. He explains 

that this kind of consciousness can be possessed by both humans and 

animals, but one of its defining features is that it is not accompanied by 

any sense of a socially defined self. Setting aside references to the self and 

non-self condition, we should look at his explanation of how perceptual 

categories are formed. 

     According to his theory, perceptual categorization in mammals is 

carried out by interactions between the sensory and motor systems in what 

Edelman calls “global mappings.” This is a dynamic structure containing

“. . .various sensory maps, each with different functionally segregated properties, 

linked by reentry. These are linked in turn by non-reentrant connections to motor 
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maps and subcortical systems such as the cerebellum and basal ganglia” (Edelman 

2004, p. 49). 

     Global maps “sample the world of signals by movement and attention” 

and then categorize the signals as coherent through reentry and 

synchronization of neuronal groups (Edelman 2004, p. 49). Consisting of 

both sensory and motor components, this is what he says is the main basis 

for perceptual categorization in higher brains.

     But he goes on to explain that this categorization by itself cannot 

generate generalizations across signal complexes. Generalizations require 

that the brain map its own activities that are represented by global 

mappings, “to create a concept—that is, to make maps of its perceptual 

maps” (Edelman 2004).

“Higher order cortical maps in the prefrontal, parietal, and temporal areas are 

likely to carry out this construction, which might correspond to a ‘universal,’ a 

concept. . .generalization arises by abstracting certain features of such mappings 

by means of higher order maps” (Edelman 2004, p. 50). 

     Edelman continues by elaborating upon the function that memory 

performs in these processes, and outlines the interactions of the three 

major parts of global neural systems. These include the thalamocortical 

maps; the subcortical organs concerned with temporal succession, 

including the hippocampus; basal ganglia; and cerebellum; and the 

ascending value systems. The latter are neuronal structures which have 

different neurotransmitters; from nuclei of origin they each send axons up 

and down the nervous system in a spreading fashion. The value systems 

directly affect learning and memory as well as control bodily responses 

necessary for survival.

     Though not all of it is described here, Edelman’s Theory of Neuronal 

Group Selection is impressive. Concept formation is intended to precede 

language. The perceptual system and memory in part drive the formation 

of concepts. Those structures that drive concept formation are those that 

categorize, abstract features, and recombine patterns in different kinds of 

global mappings. 

     However, even at this point, one must raise some serious questions 

regarding his explanations. I have already alluded to some of these above. 

But in addition, we must question his use of categorization and concept;

his appeal to a purported process of abstraction; and his resting the 

process of “sampling” on attention (with movement).

     Notice that he uses the notion of categorization as somehow temporally 

and morphologically prior to the notion of concept in the formation of 
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consciousness. Somehow, categorization by global maps sampling the 

world of signals by movement and attention occurs prior to the formation 

of any concept or universal.

     However, this contradicts the usual understanding of category. The 

process of categorization, indeed the process of sampling as well, requires 

a prior concept of category and rule for sampling. His explanation of this 

process appears to be begging some questions, that is, assuming what he 

seeks to explain. 

     Additionally, he says that generalizations, maps of perceptual maps, 

arise by “abstracting” certain features of such mappings by means of 

higher order maps. The use of the notion of abstraction is yet another can 

of worms. Purported processes of abstraction have a very long and 

dubious history in inquiry into the operations of the mind going back 

many centuries. And appeals to “abstraction” are commonly found in 

material reductionist arguments in explanations for how generalizations 

supposedly arise. Additionally, these are tied to an equally troubling 

concept of induction that often gets defined as “learning”.

The Bogus Process of Abstraction 

Possibly one of the best recent descriptions is given by Quine (1966; 1969) 

a naturalist philosopher who sought neural explanations for the formation 

of beliefs. His description of abstraction fits well with Edelman’s use of 

the term.

     As found in both Edelman and Quine, the process of abstracting 

requires that one single out for attention from other features of the 

environment some single feature given in sense experience. This process 

may be repeated many times to then form generalizations based upon those 

experienced features. That is, it is the method of induction, he claims, that 

is the psychological process of abstraction from experiential events to 

general concepts or universals. 

     It is specifically these claims regarding the doctrine of abstractionism, 

the “lynch pin” which supports what Edelman claims is the process of 

forming those generalizations or “maps of perceptual maps” that give rise 

to concepts or universals. Generalizations arise by “abstracting” certain 

features of such mappings by means of higher order maps. 

     But the process of abstractionism breaks down when we carefully 

analyze the formation of any kind of concept, including logical, 

arithmetical, and color concepts by this process. In order for one to attend 

to “certain features” of such mappings, they must already have some prior 

rule by which to do so.
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     Appeals to abstractionism always assume a (usually hidden) prior rule. 

The process of abstracting “certain features” depends upon a prior rule of 

similarity of some property that the one doing the abstracting discerns that 

the features have in common. Otherwise, there is nothing to direct the 

process; there is nothing to select some features over others. There has to 

be some rule holding the purported process of abstracting together such 

that it results in selecting certain features and not others.

     Apparently, Edelman wants the higher order maps to fulfill that 

function. This is supposed to be made possible by recategorical properties 

of memory and the redundancy built into nonlinear interactions in 

multidimensional networks of neuronal groups. “Such interactions allow a 

non-identical “reliving” of a set of prior acts and events. . .” (Edelman 

2004, p. 52). 

     Yet this will not work. The formation or learning of concepts or 

universals as Edelman describes still presupposes cognizance of, not 

merely discrimination of, features. That is, such an explanation already

assumes the concept, universal, or intelligence it sought to explain. That 

concept, universal, or intelligence is in the purported act of abstracting 

itself. The acts of memory re-categorizing the same features will not 

dissolve this problem as the memory itself must act according to the same 

or a like rule. No matter how many times a feature gets recycled or 

reentered and recombined by memory and global maps, it does so by virtue 

of a prior rule. 

     Moreover, it should be pointed out that Edelman deals solely with 

perceptual concepts and their formation. He has left aside the formation of 

abstract concepts entirely. 

Edleman’s explanation is based upon a faulty appeal to “sampling” which 

is actually a concept of learning that is in turn based upon an entirely 

spurious sense of induction. There are two senses of the concept 

“induction” which must be distinguished from one another. There is 

induction as statistical form of argument and there is induction as process.

Edelman is using the latter. That is, he takes induction to be a process of 

concept formation in which one somehow derives concepts or universals 

from sampled sense data.

     This sense of induction can be traced back to Francis Bacon (Anderson 

1960), who presented induction as a way of discovering truth. For Bacon, 

through the supposed “process of abstraction” from particulars, 

generalizations about the world can arise. That is, induction as process or 

learning takes place.

A Spurious Sense of Induction: The Appeal to “ Sampling” 
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     But this is an unsupportable notion of induction because the so-called 

process of abstraction already assumes what it purportedly seeks to 

establish. It is yet another instance of begging the question. Induction as 

process is erroneously taken to be a kind of logic of discovery when in fact 

it is a logic of verification (of what one already assumes to be true). 

     True induction is in fact a kind of statistical inference or reasoning 

which is involved in determining whether theory is supported by data. That 

is, it is a kind of statistical argument.6 When induction is taken in the sense 

as a statistical form of argument, it rules out other spurious senses of the 

kind involved in Edelman’s appeal to sampling as a way of forming 

concepts or universals. 

A Problem with Attention 

Another problem with Edelman’s explanation is that he starts the process 

of global mapping with attention. He says, global maps “sample the world 

of signals by movement and attention.” Thus, consciousness, specifically 

“primary consciousness,” which he defines in terms of awareness (“being 

mentally aware of things in the world, of having mental images in the 

present”), can only arise from the level of attention. If I have accurately 

interpreted his claims, attention (along with movement) is the starting or 

entry point for consciousness.

     But there are serious problems with this position, in addition to his 

concept of consciousness and its relation to awareness and the numerous 

faulty assumptions underlying his use of the terms “category”, “concept”, 

and the process of “abstraction”. There is substantial empirical evidence 

showing that there is a great deal of cognitive awareness prior to the level 

of attention.

     Yet on Edelman’s theory, this is not tied in to his theory of how 

consciousness or concepts (universals) arise. Levels of preattentive 

selection and how they are related to attention should be closely analyzed.

4.2.3 Primitive Awareness 

Admittedly, there is debate over how early the attentional filter operates 

across the sensorimotor process. However, experimental evidence shows 

                                                     
6 Through induction, one makes an inference from some instances of a collection to all

instances of that same collection. The conclusion makes a claim which goes beyond the 

premises, making the conclusion only probable and not logically necessary. It is 

induction as statistical inference which is the true sense of induction, not induction as

process.
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that preattentive analysis precedes the first storage of information and 

conscious perception. It has a latency period of about 60 ms.

     During the preattentive phase, the RTC and the stimulus excite primary 

arousal of the activation system itself and the sensory fields. The body and 

its senses become aligned with the stimulus via the sensorimotor paths of 

the reticular brain stem. In general, the function of the sensory system 

during the preattentive phase, including the sensory fields of the cortex, is 

to analyze stimuli so that the sensory system can filter the stimuli and 

align the filtered sense qualities with the stimulus.

     According to experts (Wolfe 1996), preattentive orientation proceeds 

subconsciously (which appears to be interpreted as the absence of 

“consciousness that” such and such is the case) at the level of the nervous 

system. It is only when sensory perception is attained that attention can 

then focus upon information as an object with which it can operate.

     Only when this level is reached does preattention make the transition to 

the conscious attention of a cognitive system. And this appears to be the 

line between non-cognitive neurophysical activity and cognitive

neurophysical activity, according to some experts (Kunimoto 2001).

     Some appear to argue that only at the attention phase, interpreted as 

“consciousness that” or “awareness that” does a subject’s neurophysical 

activity become (or is held to be) cognitive. This is the level at which 

subjects can give responses in language or by some other acceptable 

public indicator that he or she is aware of a stimulus. Any activity below 

this is held to be non-cognitive. 

     However, there is substantial evidence we will review of cognitive 

immediate awareness below the threshold of attention. If that is the case, 

then the intelligence research community must radically revise its 

understanding of the cognitive domain and the place where we enter it; the 

entire scope of natural intelligence must be enlarged to accommodate the 

facts. Moreover, Edelman’s theory of consciousness, among others, would 

seem to require revision.

As noted, earlier attempts by theorists to address the problem of awareness 

in general tended to rely upon introspective reports of inner, subjective 

experiences. Perhaps among the earliest examples is found in Descartes’ 

method of doubt, referenced above, but these are also found much later in 

James (1890) and certainly in Russell (1984). However, as we also noted, 

these reports are more appropriate to test and evaluate knowledge by 

description than acquaintance or immediate awareness.

Scientific Definitions of “ Awareness”  
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     Though theorists and researchers today use more objective methods, 

they still tend to identify attention as the starting point for intentional 

cognitive activity. This is due in large part to the fact that attention is 

usually interpreted to mean one’s conscious “awareness that” such and 

such is the case and subjects can explicitly verbally or otherwise indicate 

in a straight-forward, conscious “awake” fashion that they are aware. The 

concept of attention is tied to subject linguistic reports of experienced 

stimuli.

     Obvious problems and disagreements with this have been widely 

reported in cases of subject extreme disability, such as coma or persistent 

vegetative state.7 With the exception of looking at some measures of 

awareness under surgical anesthesia, I will not directly address those 

issues here since there are ample problems even under the most ideal 

conditions.

Possible Subject Bias 

Among other problems, one drawback with any experimental inquiry 

relying upon introspective or otherwise subjective reports of one’s inner 

experiences is, of course, that subjects’ reports of their inner or private 

experience may very well be influenced by bias.

     Among other things, any given subject may claim to be unaware of a 

stimulus unless they are completely confident in their response, or they 

may claim to be aware on the basis of just about any sensation. Individual 

subjects may tend to determine whether or not they aware on the basis of 

their own private criteria for awareness. Thus such reports cannot be used 

to precisely define awareness in general. They certainly cannot precisely 

define “immediate awareness”.

     Subject bias can also be found even in experimental studies on 

awareness without introspective reports. In sensory discrimination tasks, 

for example, there is evidence that subjects can sometimes be 

systematically underconfident. That means that they may systematically 

claim not to see stimuli that they have partially or even entirely seen 

(Bjorkman et al. 1993; Kunimoto et al. 2001; De Becker 1997). 

     Moreover, with objective definitions based on correct versus incorrect 

identifications by the subject, subjects making an incorrect identification 

may nonetheless still have some awareness of the stimuli.

     Even with objective definitions based on chance and greater than 

chance performance, issues of whether perception of a stimulus can occur 

without awareness will not be resolved because they are insensitive to 

                                                     
7 News reports of the Terri Shaivo case are abundant as this is being written, March 2005.
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subjects’ phenomenal experience. There are other approaches as well with 

similar or even more complicated problems.

     Among the more promising objective measure of awareness appears to 

be offered by Kunimoto (Kunimoto et al. 2001). They have suggested that 

the general concept of awareness should not be viewed in terms of two 

mutually exclusive states, awareness or unawareness. It should be viewed 

as a continuum of states ranging from unaware through an infinite number 

of partially aware states, to complete awareness.

Awareness of and Awareness that 

However, Kunimoto et al. have not clearly distinguished between 

“awareness that” such and such is the case [tying awareness to “that” 

clauses or linguistic reports] and “immediate” awareness which is not tied 

to such reports. This is so even though their stated concern is with 

subliminal awareness. This distinction should be factored into any 

continuum, with a clear map showing where the two categories lay on it.

     Their proposal is to measure awareness in terms of subjects’ ability to 

discriminate between correct and incorrect responses using a metric 

provided by Signal Detection Theory (SDT). “Awareness” is operationally 

defined such that a subject is aware if and only if confidence is related to 

accuracy (with the metric greater than zero). The approach uses both 

subjective reports for assessing awareness by analyzing confidence reports 

with techniques developed in SDT to eliminate response bias.

     Because Kunimoto’s operationally defined concept of awareness ties 

awareness to subject reports of their own inner states, and though this 

method may overlap in some ways with our concerns, it does not directly 

address immediate awareness in its fullest sense.

     It is apparently more addressed to “awareness that” than immediate 

awareness which would occur in the absence of language and reflection 

about the awareness. Nonetheless, we will shortly return to the Kunimoto 

study.

4.2.4 Experimental Evidence of Immediate Awareness 

The scope of immediate awareness should be viewed as a spectrum of 

primitive sensory relations extending from the preattentive phases to 

attentive, layered in complex succeeding integrated network “sheets” 

throughout the sensory system, including somatosensory, and 

sensorimotor system, as well as the imagination.
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     Sorting such a hierarchy of primitive relations of the entire spectrum of 

awareness, including those of immediate awareness, and showing where 

they lay on the continuum, poses a challenge that has yet to be undertaken. 

Evidence for cognitive immediate awareness (“awareness of” in contrast to 

“awareness that”) activity during the preattentive phase has been 

empirically shown or strongly suggested in a variety of research studies 

(Li et al. 2002; Colombo et al. 1995; Näätänen et al. 2001).

     The following list generally describes a number of those research 

studies, but the list should not be considered exhaustive. 

Kunimoto (Kunimoto, et al. 2001) using their method described earlier, 
conducted four subliminal perception experiments using the relationship 
between confidence and accuracy to assess awareness. Their operational 
definition of “awareness” was applied to simple visual tasks. Subjects
discriminated among stimuli and indicated their confidence in each
discrimination response. Subjects were classified as aware of the stimuli
if their confidence judgments predicted accuracy and were classified as 
unaware if they did not. In the first experiment, findings indicated that 
subjects' claims that they are "just guessing" should not be accepted as
sufficient evidence that they are completely unaware of the stimuli.

     Their experiments tested directly for subliminal perception by 

comparing the minimum exposure duration needed for better than chance 

discrimination performance against the minimum needed for confidence to

predict accuracy.

     The latter durations were slightly but significantly longer, suggesting

that under certain circumstances people can make perceptual

discriminations even though the information that was used to make those 

discriminations is not consciously available. “Consciously” again means 

“consciousness that.”

     Kunimoto has stated that the major contribution of their research 

findings may be methodological in that they have shown how to dissociate 

perception from awareness in that people “can discriminate among stimuli 

at better than chance levels even with displays so brief that their 

confidence is unrelated to their accuracy.”

     They also propose that their operational definition of “awareness” 

could be applied to auditory perception, memory, or other cognitive tasks 

to determine the extent to which various types of performance are carried 

out with or without awareness. 

Li (Li et al. 2002) conducted experiments testing rapid visual
categorization in the absence of awareness. Subjects were asked to 
respond to masked and unmasked natural scenes when they contained an 
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animal. Subjects also rated their confidence in perceiving the contents of 
each masked image. For a majority of the scenes, masking effectively 
prevented awareness of the stimuli, as indicated by the fact that 
confidence ratings did not predict categorization accuracy. For the same 
scenes, however, subjects responded significantly above chance level to 
the presence of animals.

     In the same experiments, motor responses started to reflect correct

categorizations at the same time for masked and unmasked stimuli. This 

indicated that early responses in “normal” (unmasked) visual 

categorization probably also rely on the first milliseconds of stimulation. 

Similar results were obtained with simpler displays for which stimulus and 

mask contrast could be controlled. In those cases the earliest motor 

responses to “perceived” and “unperceived” targets showed virtually 

identical distributions.

     According to the researchers, these experiments showed that 

information about the first milliseconds of visual stimulation can 

propagate throughout the visual system, unaffected by later changes, and 

determine behavior even when it is not (or not yet) available to 

consciousness. Again, “consciousness” here refers to “consciousness 

that.”

Repp (2001) conducted research on finger-tapping which revealed an 
internal mechanism which guides motor actions in response to 
subliminal changes in stimuli. Through a total of five experiments, 
subjects were assessed in terms of sensorimotor coordination, phase 
correction, timing adjustment of a repetitive motor activity to maintain 
synchrony or some other intended temporal relation with an external 
sequence of events. They were also tested in terms of phase resetting 
which is a more dramatic timing adjustment that immediately restores 
synchrony after a large synchronization error. 

     In each test, subjects correctly altered their motor actions in response to 

subliminal changes in stimuli even without a conscious perception of 

change. Repp concluded that the brain agent guiding the motor behavior 

is below the perceptual threshold. At some level, the brain is much more 

sensitive to timing information than the results of previous psychophysical 

experiments suggest. This precise timing information seems to be used in 

the control of actions, without awareness (interpreted as “awareness 

that”).

In Colombo (Colombo et al. 1995), researchers tested visual search 
asymmetries in 3- and 4-month old infants indicative of a preattentive 
phase. Thirty-two infants from each age group were presented with 2 
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visual arrays to the left and right of midline. The stimuli were 
constructed of feature-positive and feature-absent arrays, each paired 
with a corresponding homogeneous array in which no discrepant 
element was embedded. The visual fixations of infants were measured, 
showing a “pop-out” effect for feature-present stimuli in both age 
groups. The results were similar to but not as strong as results found for 
adults.

     As the researchers note, the findings may reflect limitations of infant 

visual search, the methodology used to assess it, or the difference in the 

size of the effect between adults and infants. The findings also show 

evidence of visual quality selection in the preattentive phase for infants. 

In Näätänen (Näätänen et al. 2001), tests were conducted with multiple 
simultaneously active sources of seemingly chaotic composite signals, 
with overlapping temporal and spectral acoustic properties, impinging 
on subjects’ ears. In spite of the chaotic composite signals with 
overlapping temporal and spectral acoustic properties, the subjects’ 
perception is an orderly “auditory scene” that is organized according to 
sources and auditory events. This allows them to select messages easily 
and recognize familiar sound patterns, and to distinguish deviant or 
novel sound patterns.

     The data suggest that subjects’ ability to organize such impinging 

signals is based on a kind of “sensory intelligence” [sic] in the auditory 

cortex.

“Even higher cognitive processes than previously thought, such as those that 

organize the auditory input, extract the common invariant patterns shared by a 

number of acoustically varying sounds, or anticipate the auditory events of the 

immediate future, occur at the level of sensory cortex (even when attention is not 

directed towards the sensory input)” (Näätänen et al. 2001). 

 Some studies on “blindsight” or “numbsense” convey how some 
persons who are conventionally blind or insensible by objective 
measures can nonetheless discriminate visual or tactual test stimuli 
correctly with near-perfect accuracy (Weiskrantz 1997).

     These patients will insist that they can’t “see” or “feel” anything 

despite objective evidence to the contrary, demonstrating a level of 

awareness I refer to as “awareness of” not reducible to the subject’s 

“awareness that.” Subject actual responses correlated negatively with their 

verbal reports.

Similar studies conducted decades earlier showed that subjects 
presented with a series of nonsense syllables who were then subjected to 
mild electric shocks at the sight of certain syllables, soon showed 
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symptoms of anticipating the shock at the sight of “shock syllables.” 
Yet, on questioning, they could not identify the syllables. The subjects 
had come to know when to expect a shock but could not tell what made 
them expect it. These findings are similar to other experiments which 
showed they knew or could identify persons by signs they could not tell 
(Polanyi 1966; De Becker 1997). The findings also seem to suggest that 
subjects also knew patterns of timing associated with “shock syllables” 
by signs they could not tell. 

 Finally, experiments in human perception show that in spite of “noise” 
in images and gaps in contours caused by light intensity variations and 
occlusions, human perception is able to account for these by using an 
intrinsic process of line completion and grouping of parts into whole 
entities (Livingston and Hubel 1988). There is evidence that this entire 
process is purely preattentive without any top-down (knowledge or 
“awareness that”) influences. Edelman (2004, p. 37) depicts the Kanizsa 
triangle demonstrating these intrinsic processes of perception in order to 
also demonstrate the context-dependency of perception.

     The above list of various experiments involves most of the sensory 

(including somatosensory) and the sensorimotor system. They also involve 

large numbers of primitives in the preattentive phase and attention system. 

They show cognitive immediate awareness of objects that is not mediated 

by linguistic units or grammatical rules. In fact, certain of the experiments, 

as in the blindsight and numbsense experiments, showed that subjects’ 

correct responses correlated negatively with their own verbal language 

reports.

     More to the point, the experiments show that humans will often 

verbally deny what tests show they have accurately perceived: their 

language reports of their own knowing correlate negatively with what they 

actually know.

     Language is not always a valid guide to all kinds of intelligence, to 

knowing. Sometimes it misses facts of intelligence altogether. 

Evidence of Awareness Under Anesthesia 

Studies showing the incidence of awareness under surgical anesthesia are 

not directly related to our inquiry due to the nonstandard conditions of 

such research. However, some of these studies should be mentioned due to 

the close attention they have paid to defining and examining the 

parameters of awareness under surgical anesthesia. The obvious alarming 

possibilities of awareness under those conditions have led researchers to 

closely examine many variables that others may be inclined to neglect. 
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Their efforts to closely refine an understanding of awareness and its 

conditions should be part of our inquiry. 

     One study specifically reviewed definitions of awareness, its incidence, 

clinical relevance, causes, and ways to avoid it (Schwender et al. 1995). 

This study sorted the following stages of intra-operative awareness in 

patients:

Conscious awareness with explicit recall and with severe pain; 
Conscious awareness with explicit recall but no complaints of pain; 
Conscious awareness without explicit recall and possible implicit recall; 
Subconscious awareness without explicit recall and possible implicit 
recall;
No awareness. 

     Explicit recall is tied directly to patients’ verbal reports. There are 

methodological problems associated with demonstrating implicit recall. 

However, such recall may be tied to postoperative development of post-

traumatic stress, including re-experiencing the event awake or in dreams, 

sleep disturbance, and avoidance of stimuli. 

     In spite of methodological problems, the spectrum of stages of 

awareness is tied to sense perception (pain) and memory as well as 

possible behavioral profiles post-operatively. Though nonstandard, such an 

instrument provides a far better way of measuring degrees and kinds of 

awareness and absence of awareness than seen in some standard research.

     A second study examined the extent to which meaningful auditory input 

can be processed by the brain during surgical anesthesia (Aceto et al. 

2003). They examined whether patients may be able to remember some 

information implicitly after anesthesia as well through a “dream-like 

process” that is subconscious awareness. The details of the experimen-

tation are too lengthy to repeat here. However, we should look at 

definitions of “awareness” they used. 

     They sorted one kind of awareness where that is defined as ability to 

recall (obviously “awareness that”) events that occurred while patients 

were considered to be unconscious. This was sorted from subconscious

awareness, a state in which information registered by the brain does not 

enter consciousness.

     In postoperative interviews, none of the patients were able to recollect 

explicit memories of intra-operative events. However, their study showed 

that auditory information may be processed and retained in the form of 

implicit memory during deep general anesthesia (Aceto et al. 2003, p. 

633). One patient reported a dream associated with a tape played while 

under anesthesia. Their findings included that auditory information 
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perceived during anesthesia “was incorporated into this form of dream” 

and related to the implicit memory system. 

     Even under induced subconscious states such as those brought about by 

various kinds of anesthesia, patients reveal degrees of awareness. Though 

considerably more research must be done to document those levels of 

awareness, the evidence in some experiments shows degrees of cognition 

as well. 

What the Experiments Show 

Cognition is viewed by a number of cognitive scientists, neuroscientists, 

and intelligence researchers as starting with the attention system and 

continuing on to “higher” levels, that are one way or another aligned with 

language. But all of the experiments cited above showed some deeper level 

of cognitive awareness, below the attention system threshold, that correctly

affected subjects’ overall behavioral responses.

     For example, in Kunimoto et al. 2001, their experiments showed that 

people can make perceptual discriminations even though the information 

that was used to make those discriminations is not consciously available. In 

this as well as in the remaining experiments, “consciously” means 

“consciousness that.”

     Moreover, some of the experiments, including Kunimoto et al. 2001, 

also show that there is in fact a negative correlation between subjects’ 

own verbal judgment (knowledge that) about their own awareness and 

their awareness as actually measured in the experiments. Kunimoto et al. 

2001 found that subjects “can discriminate among stimuli at better than 

chance levels even with displays so brief that their confidence is unrelated 

to their accuracy.” In other words, their responses correlated negatively 

with their verbal confidence levels. Their cognitive awareness transcended 

their verbal cognition. 

    The same finding is evidenced in Li et al. 2002. Even though masking 

effectively prevented awareness of the stimuli and confidence ratings did 

not predict categorization accuracy, subjects nonetheless responded 

significantly above chance level to the presence of animals. Subjects’ 

motor responses started to reflect correct categorizations at the same time 

for masked and unmasked stimuli.

     Li et al. concluded that information about the first milliseconds of 

visual stimulation (the preattentive phase) can propagate throughout the 

visual system, unaffected by later changes, and determine behavior even

when it is not (or not yet) available to consciousness. Again,

“consciousness” here refers to “consciousness that.”
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     Repp 2001 concluded that the brain agent guiding the motor behavior is 

below the perceptual threshold and that the brain is much more sensitive to 

timing information than the results of previous psychophysical 

experiments suggest. This precise timing information seems to be used in 

the control of actions, without awareness (again, “awareness that”).

     Näätänen concluded (Näätänen et al. 2001) that the data suggest that 

subjects’ ability to organize impinging signals is based on a kind of 

“sensory intelligence” [sic] in the auditory cortex.
     Weiskrantz (1997), Polanyi (1966) and De Becker (1997) all cite 
experiments or findings that show subjects’ actual intelligent responses 
correlated negatively with their verbal reports.
     This evidence among much more supports the argument that the circle 

of cognition is larger and deeper than previously thought. This is so as it 

pertains to not only vision, but also the psychomotor and entire sensory 

motor parts of the brain. 

     Among many things, these and related experiments tend to show that 

not just the brain but the entire central nervous system (CNS) of the human 

is an intelligence system designed to “home in” on indicators present to 

them long before they are aware that they are doing so. It is this capacity 

of the primitive sensory and sensorimotor systems shown in some of the 

experiments which permitted subjects’ cognitive awareness and in some 

cases appropriate motor response before they are even aware that they are 

aware.

4.2.5 Primitives of the Preattentive Phase of Awareness 

The preattentive phase in human perception appears to be the most 

fundamental primitive level of cognition. The experiments above 

including other strong evidence exists showing that it is at that point that 

natural intelligence actually begins, at least in the human.

     The research literature defines preattentive processing (of visual 

information) as that in which visual tasks can be performed on large multi-

element displays in less than 200 to 250 msec of eye movements 

(Treisman and Hayes 1992). In certain visual experiments, the subjects 

accomplished search task in time less than 200 msec, suggesting that 

certain information in the display is processed in parallel by the low-level 

visual system and that visual information is processed unattentively.
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Visual Fields 

As Hernegger explains (2005), there are several visual fields (prefrontal, 

supplementary, and parietal fields); the same is true of the other sensory 

systems. There are also several hand-arm fields in the immediate vicinity 

of the visual fields. This proximity suggests a coupling of eye-hand-arm 

control by the RTC activation system. 

                             Fig. 4.4. Organization of the Visual System 

     The entire visual system is usually divided into distinct processes. 

These include distinctions between object and spatial vision that are 

related to different neural pathways. One pathway is the dorsal stream that 

processes visual information to the parietal cortex, and a ventral stream 

that processes to the temporal cortex.

     Preattentive vision operates in parallel segregating objects from a 

background. This is familiarly known as the “pop-out” effect. If 

background features permitting segregation of the object are not available, 

then a serial inspection is conducted by attentive vision.

     The organization of the visual system is both parallel as well as 

hierarchical. Parallel pathways transfer different kinds of information from 

the retina to the LGN (lateral geniculate nucleus) and cortex.8 The 

                                                     
8 The striate cortex: The lateral geniculate projects to the striate cortex, or Brodmann's area 

17, which is located in the occipital lobe at the back of the brain. The striate cortex, also 

called area V1, is the most highly developed cortical structure in humans. Most of the 
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pathways recombine in the cortex. After recombining, two pathways 

emerge as shown in the graph, the dorsal, magno-dominated pathway 

flows to the parietal cortex. This pathway involves space, movement and 

action. A ventral, parvo-dominated pathway flows into temporal areas and 

is primarily concerned with object identification and perception (Lamme 

and Roelfsema, 2000). 

     Properties of visual information such as shape, color, and size that can 

actually be called a part of unattended input are processed preattentively 

without needing focused attention. Again, preattentive processing is 

information without focused or selective attention.9 Because the 

processing occurs so quickly it obviously occurs in the absence of 

language and in the absence of reflection about the process. 

Fig. 4.5. Preattentive Feature Selection and Grouping 

     Experimentation shows that preattentive processing of features acts to 

deploy attention. Not until sensory perception is attained can attention 

                                                                                                                         
cortex is organized into layers, and the striate cortex is the most laminated region in the 

brain with at 6 to 9 discrete layers.
9 There is either some confusion or sheer carelessness in the use of these terms in the 

research literature. The use of qualifiers such as “focused” or “selective” to modify the 

word “attention” appears to be redundant since “attention” is defined in those terms.
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focus upon information as an object with which it can operate; only when 

this level is reached does preattention make the transition to the conscious

attention of a cognitive system. 

                                      Fig. 4.6. Preattentive to Attention Grouping

     There are a number of fields of selective attention that serve to align 

the body and senses toward the stimulus. These include neurons in the 

parietal, temporal, and frontal cortex. They also include neurons in the 

region of the supplementary motoric areas in field number 6. The best-

known example is the frontal visual field. In the immediate vicinity of 

these sensory fields with attention functions are the sensory hand-arm field 

and the like, all of which serve to align the body and sensory systems to 

the stimulus.

     Though normal human visual experience is by means of conscious, 

aware percepts (such as seeing shades of yellow in a sunrise), a visual 

stimulus that bypasses visual awareness can nonetheless be transformed 

into a motor output. This has been demonstrated in both normal as well as 

pathological subjects (Lamme and Roelfsema 2000, p. 571). The very 

segregation of visual pathways into ventral and dorsal streams may 

underlie differences between conscious perception and visually guided 

action bypassing consciousness. 

Preattentive and Automatic Processes 

Issues have arisen because of the similarity between automatic processes 

and preattentive ones, and the need to distinguish preattention from 

attention. By definition, both kinds of processes occur in the absence of 

attention. Additionally, even if they are different and distinct processes, a 
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recurring issue is whether automatic and preattentive processes reflect the 

same underlying processes. Usually, neuroscientists sort both the 

preattentive and attention processes from automatic processes in a variety 

of ways.

     Treisman (Treisman et al. 1992) argued that there are significant 

differences. First, automatic and preattentive processes become 

independent from attention in different ways. Though automatic processes 

are developed through extended practice, preattentive processes are 

governed by mechanisms that are either innate or acquired early in life.

     Moreover, in the same source, Treisman argues that automatic and 

preattentive processes “are functionally different because automatic 

processes support skilled behavior while preattentive processes support 

low-level perceptual functions such as feature detection.”

Primitive Preattentive Features, Processes and Cognition 

Though there is no doubt that automatic processes support skilled 

(intelligent doing) behavior, so do preattentive processes as well. This is 

evident in the experiments cited above as well as other studies on 

intelligent performances (Frank et al. 2004). 

     It should be stressed at the outset that the preattentive processes of 

awareness are obviously in the absence of language. This was 

demonstrated explicitly in a number of the experiments above, especially 

Kunimoto, et al. Moreover, preattentive processes are understood as well 

to be in the absence of attention, usually taken to be the starting point of 

cognition. Yet much cognitive activity is evident preattentively before 

attention as all of the above experiments show.

     Moreover, the activity of preattentive feature selection cannot be the 

activity of classification, though researchers may describe it, in some 

metaphorical sense, as classification. It does not proceed by comparing 

properties of objects based on a principle of similarity. There are, in most 

preattentive processing, no conjunctions of features, including no 

conjunctions of like features with which to compare properties. Moreover, 

preattentive processing takes place in new-born babies, seeing features for 

the first time.

     Additionally, it should also be emphasized that though much of the 

research on the preattentive phase of awareness is related to preattentive 

processing of visual information, preattentive awareness in general is not 

limited to the visual system. Though we know more about vision than 

other sensory systems, the above experiments involved the auditory, 

tactile, as well as the visual system. The preattentive processes are found 
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in auditory, tactile, olfactory, and other senses of the somatosensory and 

sensorimotor systems as well.

     The peculiar characteristic of preattentive processing in the visual 

system is that one’s visual system processes just single features of an item 

such as hue or form of an object. These are a limited set of visual features 

or properties that are detected very rapidly and accurately by the low-level 

visual system. These features “pop-out” and are detected in parallel, 

immediately, within approximately 200-250 msec. This is usually 

contrasted with attentional processes that can handle conjunctions of 

features, are usually thought to be conducted in a serial manner, taking 

more time. 

     For example, one can preattentively process the color of an apple, but 

cannot preattentively process a conjunction of features such as color, 

shape, size, and so on. If an object is made up of a conjunction of unique 

features, then the current view is that these objects cannot be detected 

unattentively.10 A conjunction target item is composed of two or more 

features. A search for such an object is called a "conjunction search". 

     An example of an experimental preattentive task is the detection of a 

red circle in a group of blue circles. The target object, the red circle, has a 

in the array. All non-target objects are considered distractors. An 

experimental subject can usually tell immediately at a glance whether the 

target is present or absent. The visual system identifies the target through a 

difference in hue because the red target is in a space filled with blue 

distractors.

     The primitive features identified that are used during the preattentive 

phase (but of course not necessarily in each case) minimally consist of the 

following: color, orientation, motion, size, curvature, depth, vernier offset 

(small departures from the colinearity of two line segments), gloss and, 

perhaps, intersection and spatial position/phase.

     As Wolfe notes (Wolfe et al. 1996, 1998)11 there may be a few other 

local shape primitives to be discovered because the primitives of 

preattentive shape processing are not entirely known. The problem is a 

lack of a widely agreed upon understanding of the layout of "shape space." 

Shape or form appears to be the most problematical primitive feature in the 

preattentive phase. For example, simple color space is a two-dimensional 

plane or it could be three-dimensional if the surface has luminance. As 

                                                     
10 Though there is some evidence in the research literature which contradicts this.
11 Moreover, there are differences in how each of the primitive features is actually 

processed in the preattentive phase. However they are in fact processed, they are used to 

intentionally guide attention to some object.

visual property "red" that the blue distractor objects do not. It “pops-out” 
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Wolfe notes, it is not clear what the "axes" of shape space might be. But 

preattentive processing of “shape space,” whatever we take that to be, 

enables us to then make sense of objects we attend to, and to make sense 

of a whole lot of other properties of things, including motion. 

     The following table is a partial list of preattentive features taken from a 

recent research survey (Healey 2005):

Table 4.1. Lists of Some Preattentive Features

List One List Two 

length binocular lustre

width stereoscopic depth

size 3-D depth cues 

curvature 3-D orientation

number lighting direction

intersection texture properties

closure artistic properties

color (hue) direction of motion 

intensity

flicker

line (blob) orientation  

     Treisman (1991) was among the first researchers to document 

preattentive processing, determining to a large extent which visual 

properties are detected preattentively. She called those properties 

“preattentive features.” Additionally, she hypothesized how the human 

visual system actually performs preattentive processing.

     Triesman’s and other researchers essentially demonstrated two different 

ways that preattentive and nonpreattentive tasks are performed. Though 

their findings have recently met with some challenge (VanRullen et al. 

2004), they demonstrated that preattentive tasks are performed bottom-up 

in parallel. Such processing takes place very quickly. On the other hand, 

nonpreattentive tasks are performed serially, taking far more time. 

     Conjunction targets are processed serially, thus nonpreattentively, and 

take more time. An example would be a red circle target, made up of two 

features, red and circular. Healey (2005) presents an experiment in which 

one of these features is present in each of the distractor objects, red 

squares and blue circles. By its very design, the experiment denies the 

visual system of a subject a unique visual property to search for when 

trying to locate the target. When a viewer searches for red items, the visual 

system always returns true because of the red squares in each display; 

moreover, a search for circular items always returns blue circles.

     According to Healey, numerous studies have shown that this target 

cannot be detected preattentively. Viewers must perform a time-
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consuming serial search through the displays to confirm its presence or 

absence. The experiment shows that such a target search is conducted by 

attention processes. 
     In contrast to Kunimoto’s method, Triesman and other researchers 
measured preattentive task performance in two different ways: by 
response time and by accuracy. In the response time model viewers were 
asked to complete target detection quickly while still maintaining a high 
level of accuracy, with the number of distractors in a scene repeatedly 
increased. If task completion time is relatively constant and below some 
chosen threshold, independent of the number of distractors, the task is said 
to be preattentive. If the task were not preattentive, viewers would need to 
search serially through each display to confirm a target's presence or 
absence.
     In the accuracy model, a display is shown for a small, fixed exposure 
duration, then removed from the screen. Again, the number of distractors 
in the scene varies across trials. If viewers can complete the task 
accurately, regardless of the number of distractors, the feature used to 
define the target is assumed to be preattentive.

Preattentive Feature Integration 

Based upon extensive experimentation, Triesman and other researchers 
compiled the above list of features that are detected preattentively. 
Moreover, Triesman proposed a Feature Integration Model for 
preattentive processing to explain how that process works.

             Fig. 4.7.  Triesman's feature integration model
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     In the above figure, individual feature maps are accessed to detect 

feature activity. This is conducted in parallel by the preattentive process. 

However, focused attention acts through a serial scan of the master map of 

locations.

     Triesman’s hypothesis was proposed to explain how preattentive 

processing occurs. If the target has a unique feature, one can simply access 

the given feature map to see if any activity is occurring. Feature maps are 

encoded in parallel, so feature detection is almost instantaneous. However, 

a conjunction target cannot be detected by accessing an individual feature 

map.

     As Healey’s examples show, activity there may be caused by the target, 

or by distractors that share the given preattentive feature. In order to locate 

the target, one must search serially through the master map of locations, 

looking for an object with the correct combination of features. Focused 

attention requires a larger amount of both time and effort because of the 

requirement for a serial search. 

     Feature Integration Theory led to the view that our perception of the 

visual world relies on the parallel extraction of a set of preattentive 

features which is then followed by the serial integration of these features 

into a coherent object. The integration of features is performed by visual 

attention. In visual search experiments, the detection of preattentive 

features can be performed in parallel, whereas searching for more complex 

stimuli such as feature conjunctions requires a serial examination by some 

form of attentional spotlight (Wolfe et al. 1989; Treisman and Gelade 

1980).

Possible Dichotomy of Visual Discrimination 

Thus we are also left with the notion that there exists a dichotomy of 

visual discrimination tasks, with parallel/preattentive discriminations at 

one level, and serial/attentive discriminations at another.

     However, more recent theories of attention have posed challenges to 

this dichotomy. VanRullen et al. (2004), provide evidence that challenges 

the assumption that preattentive and parallel processing are two equivalent 

ways to refer to the same subset of visual discrimination tasks. According 

to them, experimentation with dual tasks reveals that some tasks can be 

preattentive but not parallel, and parallel but not preattentive. 

     Though they do not directly challenge the notion of preattentive 

features, their results show that such features are not limited to early 

cortical representations and that there is in fact a hierarchy of preattentive 

features. They agree that preattentive features can be processed in parallel, 

but with constraints. Their experiments showed that the preattentive (dual) 
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tasks that result in parallel search seemed to rely on neuronal selectivities 

present in early visual areas, such as orientation and color. Those that 

result in serial search probably rely on higher level neuronal selectivities 

such as color and orientation conjunctions, animals, and faces. 

     They propose that a feature or stimulus is preattentive if there exists a 

neuronal population selective to that feature or stimulus, independent of 

the cortical area involved. “. . .neurons in V1 are well known for their 

selectivity to orientation (in columns) or color (in blobs). . .Similarly, 

neurons selective for simple conjunctions of color and orientation. . can 

most likely be found in areas beyond V4” (VanRullen et al. 2004). 

Detection and Attention to Faces 

Interestingly, a number of visual search studies demonstrated that facial 

information such  as identity and expression is not registered in parallel 

even though one of their own researcher’s dual task experiments indicates 

that gender facial information is available to our visual systems even when 

attention (in dual task) is not (Brown et al. 1997; Reddy et al. 2002). Thus, 

they also propose the following general principle: 

“[T]hat the extent to which our preattentive (dual task) features can be 

discriminated in parallel is an inverse function of the receptive field size of the 

neurons that represent this feature. At higher levels of the ventral hierarchy, only 

very few “features” can be processed in parallel, and the corresponding stimuli 

must be well enough separated to avoid having a target and a distractor falling 

within a single receptive field” (VanRullen et al. 2004). 

     They also speculate that with receptive fields covering the entire visual 

field, there could be no parallel processing “even when the target is 

defined as a preattentive [dual task] feature.” In the case of pop-out that 

nonetheless occurs for features that are not discriminated without 

attention, they are left with determining the mechanism that underlies the 

parallel search, assuming that attention is limited and cannot be deployed 

simultaneously across the entire search array. 

     Healey (2005) and others have pointed out that if the low-level visual 

system can be harnessed during visualization, it can be used to draw 

attention to areas of potential interest. Indeed, it is this low-level visual 

system, including preattentive processing of features, that is fundamental 

for knowing how to do anything at all and for survival itself, as some of 

the above experiments involving predator images indicates.

     But this same low level visual system, including preattentive and 

attention processes, has become the focal point of interest to software 
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designers and those engineers who seek more biologically inspired models 

for artificial intelligence. Expanded to the complete sensory and 

sensorimotor awareness system, these processes should also be a focal 

point of interest to those who seek to understand the full scope of 

intelligence, especially the intelligence of doing, knowing how.

4.3 Primitive Intelligence of Moving and Touching 

Some of the above listed experiments involve the visual sense of motion as 

well as visually guided action. What is called the Middle Temporal 

complex (MT+) region of the inferior temporal sulcus, consisting of 

Middle Temporal (MT), Medial Superior Temporal lateral (MSTl) and 

Medial Superior Temporal dorsal (MSTd), has multiple regions specialized 

in different aspects of motion perception. It is motion perception that 

extracts the three-dimensional structure of the world, defining the edges 

and forms of objects.

     Motion perception involves what are called the “what,” “where,” and 

“when” pathways and sharing of information. While some neurons are 

good at determining the direction in which an object is moving, they 

cannot identify the object.

     Some cells in layers of the visual system are sensitive to orientation 

and also to motion in particular directions. Parts of (Medial Temporal 

complex) MT+, MSTl and MSTd sense when objects move; others sense 

when you move. Moreover, different patterns of optic flow are produced 

in your retina when you move in different directions and the neurons in 

MSTd recognize these different patterns. Analyzing the above 

experiments, it is fairly easy to see that this enormously complex system is 

involved in them all.

     All the regions of the brain that guide a variety of movements are 

involved as well. There are multiple representations of space in the 

posterior cortex that makes all this possible. The Lateral Intra Parietal 

(LIP) region represents locations of objects that you intend to look at and 

may reach for.

     The Medial Intra Parietal (MIP) region represents immediate extra-

personal space, which is the space you can reach to, guiding arm 

movements. The Anterior Intra Parietal (AIP) region represents the shape 

information we need in order to grasp objects. And the Ventral Intra 

Parietal (VIP) region represents the near space used to guide the head, 

mouth and lips during feeding. This region receives visual and tactile 

information from the face (Vilis 2002).
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     Touch discriminative ability depends on a variety of touch receptors 

coding millions of stimuli. This is part of the somatosensory system, 

including multiple types of sensation from the body - light touch, pain, 

pressure, temperature, and joint and muscle position sense, all of which 

may be involved in highly complex interrelations with one another. Each 

of these kinds of sensation is carried by different pathways; each has 

different targets in the brain, and each cross one another at different levels.

     The primary motor cortex (also known as M1) works in association 

with premotor areas to plan and execute movements. Premotor areas plan 

actions together with the basal ganglia and refine movements based upon 

sensory input which requires the cerebellum. 

4.3.1 Multiple Spaces of the Senses, Images and Probing 

Natural intelligence systems use the body to attend to physical things 

outside it. We attend to things outside our body, from our body, and we 

can feel our own body in terms of the things outside it to which we are 

attending.

     There is a spatial direction to the primitive relations of the preattention 

phase and of attention. There is also a sense in which we can make an 

external physical thing function as a proximal term12 of immediate 

awareness. That is, there is a sense in which we extend our kinesthetic 

bodily intelligence to include that object we attend to, by extending our 

body with instruments, such as mechanical probes, that we use to attend to 

an object or set of objects.

     Moreover, we do this as well with purely abstract objects, including 

images. We can use images in our minds as proximal terms to probe or to 

stand in for physical objects (Kosslyn 2002),13 as well as previous events in 

time. Some recent research has shown how subjects use images to reinstate 

a context from the past as aids in remembering past events (Quiñones 

2005).

     Additionally, there is increasing evidence of the effects of motor 

imagery-based mental practice for activating cerebral and cerebellar 

sensorimotor networks. The evidence suggests that mental practice may be 

an effective substitute or complement to physical practice to activate 

compensatory networks for motor rehabilitation (Lacourse, et al. 2004).

                                                     
12 The terms “proximal” and “distal” are borrowed from anatomy, but can be used to  

analyze the structure [or anatomy] of our intelligent doing, knowing how.
13 According to Kosslyn, using images this way also causes the same effects on memory 

and the body as occur during actual perception, but the two functions are not identical.
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     Though I provide an example of physical probing in a medical surgical 

task, I hope it is clear that I do not limit probing in general to physical 

spaces and with sense [physical] objects. Human beings also probe abstract 

spaces, as mathematicians and logicians clearly evidence. Both Russell 

(1903) and Gödel (1964a, 1964b), for example, have pointed out the close 

analogy between how we know reality with our senses and how we know 

abstract objects of mathematics with our minds. They both recognized the 

significance of immediate awareness in mathematical knowing.

     One who performs a complex task must know how to coordinate 

movements of their body, using most if not all their senses, by a kind of 

"cognitive indwelling" in the external physical thing that is functioning as 

a proximal term of their knowing how. There is a sense in which all the 

things we use in a physical task performance, such as tools or other 

implements as probes become extensions of our body, specifically, 

extensions our bodily natural intelligence.

     From an intentional phenomenal (first-person) point of view, the senses 

along with imagining, touching and moving form a multi-relational, multi-

layered set, with touching, imagining and moving on a higher level than 

any of the other senses, except sight. All these must be examined within 

the context of spatial relations each sense has with the body and spatial 

relations of moving and touching.

     A clarification of all this should help to understand a little better the 

significance of the nature of probing. With respect to the particular senses, 

seeing, hearing, feeling, tasting, smelling, there are a number of principles 

pertaining to these which require explanation over and above the spatial 

relation each sense has with our bodies. Firstly, not all of the senses are on 

the same primitive epistemic phenomenal level. The epistemic level is that 

pertaining to intentionality. In physiologically unimpaired persons, the 

sense of sight may take some priority over the other senses, and it is clear 

that the space of our visual experience is not identical to the space of the 

other senses. 

     For example, visual space is binocular space, while the space of the 

other senses, for example smell, is not. But as already noted, we still have 

limited understanding of the space of all the primitive features processed 

during the preattentive phase of the visual system. We do not yet have a 

complete understanding of “shape space.”

     Additionally, there are different representations of space in visually 

guided actions. The multiple representations of space in the posterior 

cortex, used to guide a variety of movements such as grasping and 

reaching, and feeding, are mapped on several forms of egocentric frames 

of reference and are derived from several modalities of sensory 

information such as visual, somatosensory, and auditory (Vilis 2002). 
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Moreover, the MT+ complex helps to extract the three-dimensional 

structure of the physical world, to define the form of objects, to define 

relative motion of parts of objects, and a variety of other facets of moving 

objects.

     The senses of sight, hearing, feeling, smelling and tasting are 

epistemologically sorted from touching, (specifically discriminative 

touching) which is not identical to mere tactile feeling. The former is 

clearly intentional while the latter is not.

     Eccles (2002) cited an excellent experiment effectively showing the 

difference between the two. The experiment showed the effect of silent 

thinking on the cerebral cortex, in which a subject was:

“. . .concentratedly attending to a finger on which just detectable touch stimuli 

were to be applied. There was an increase in the rate of cerebral blood flow 

(rCBF) over the finger touch area of the postcentral gyrus of the cerebral cortex. 

These increases must have resulted from purely mental attention because actually 

no touch was applied. . .” (Eccles 2002). 

     These senses are also sorted from moving, which is treated as a 

complex sensory and somatosensory-motor phenomenon in the 

neurophysiological literature (Berthoz et al. 1995), involving the above 

different representations of space in visually guided actions. I include 

moving with touching as primitives at a level higher and distinct from 

though including the other senses, including tactile feeling.

     In part, this is because the concept touching is clearly bodily

intentional, in the sense that we use our bodies cognitively to index in 

kinds of space when we touch. On the other hand, mere tactile feeling is 

not used this way.14 Moreover, the space of feeling and the space of 

touching are not identical. For example, intentional touching is not clearly 

always in Euclidean three-dimensional space because of the relation of 

imagining, including anticipatory imagining to it, as we will see below. 

However, mere tactile feeling [such as feeling a pin prick] clearly is in 

Euclidean space. A pin prick is felt here, now, in this space that I can 

physically point to.15

     The senses and the concepts touching and moving are enormously 

complex concepts. One way of distinguishing the senses from touching 

                                                     
14 Substantial empirical research has established this claim, including that of Berthoz et al. 

1995. Also see Gardner 1993, especially references included under bodily-kinesthetic 

intelligence.
15 There is an enormous diversity and complexity of kinds of space characterizing the 

primitive features in the preattentive phase and the senses, as well as touching and 

moving. Thus I have chosen to limit the discussion here. 
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and moving and other primitive epistemic relations, including imagining, 

is to note that the objects of the senses, that is particular sights, smells, 

tastes, or configurations of these, are exactly that. They are particulars 

which occur "now" with the subject. They are not universals or 

generalizations publicly accessible to anyone, though in principle the same 

particular may be experienced by more than one person.16

     The intentional concept of touching is more complex in that it entails a 

deliberateness with the body which is not found with the senses per se and

where imagining is involved there may be abstract universals which may 

be experienced by more than one person. A thorough analysis of the 

epistemic structure of touching requires an analysis of probes, their 

intentional use, and epistemic relation to our body.

     It should be noted that our scientific knowledge and understanding of 

human moving [movement generally, or whole-body displacement] is 

quite limited. We do not as yet even understand how moving is stored in 

the memory, how we spatially image or reconstruct a trajectory path [path 

integration] in our minds, or how we "home" in on a target, objective or 

goal with our bodily movements. 

     Moreover, what we know of the human use of the fingers as probes to 

explore or come to know the texture and shape of objects has much in 

common with results of scientific neural experimentation with the rat 

trigeminal system. We know that rats rely on rhythmic movements of their 

facial whiskers much as humans rely on coordinated movements of 

fingertips to explore or come to know objects in their proximal 

environment. The trigeminal system is a multilevel, recurrently 

interconnected neural network which generates complex emergent 

dynamic patterns of neural activity manifesting synchronous oscillations 

and even chaotic behavior (Nicolelis et al. 1995).

     There is an epistemological sense in which touching requires that one

intentionally heed and focus upon the object of touching with one's body, 

whereas one can experience with one's senses without that kind of 

intentionality. Moreover, this intentional heeding and focusing will differ 

epistemically in its structure depending upon whether or not one has 

unaided visual access to the object(s) to which one is heeding or focusing. 

It will also differ depending upon whether or not one is touching the object 

directly with one's body [for example with a hand or finger], or if the 

touching is mediated by an instrument used as a mechanical probe of some 

kind.

                                                     
16 That is, these particular objects of the senses necessarily have a temporal relation with 

the subject who is having particular sensations, but only in principle can two subjects 

experience the same particular object of the senses, such as a particular color or taste.
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     For example, if one is probing with one's fingers the interstices of a 

surgical incision not visually accessible, the intentional structure of that

coming to know, the probing, differs from the digital inspection of a wound 

which is visually accessible. This is so in part because the structure of the 

former requires more complex relations of imagining. As with any kind of 

exploration, such probing requires continuously forming images of the 

object that is the particulars making up the configuration of the inside of 

the incision, as touching proceeds.

     Moving which has epistemological significance is clearly intentional 

and requires a focal heeding with one's body, as does touching. However, 

it is not clear whether the space of intentional moving is equivalent to or 

identical with the space of intentional touching because of the relation of 

imagining and especially imagining which is anticipatory to the latter.

     Moreover, intentional touching is obviously a more close17 relation than 

moving which can be more distant. With touching, the body is clearly used 

indexically in a very close, concrete way with proximal objects. With 

moving, the indexical function of the body may be more abstract because it 

can involve objects that are imagined and anticipated which may be at 

great distances from the body.

     The same kind of heeding or focusing found with touching and moving 

is not found with experiences of the other senses precisely because of the 

unique digital or indexical use of the body, and the spatial relations of 

touching and moving with the body. Moreover, though touching may 

involve any part of our body, the fingers as digital indexes are pivotally 

involved in an epistemic sense, as a means of directing our coming to know

an object of touch.

     As already noted, there is an epistemic sense in which we extend our 

body to include the object presented, to which we attend, from the 

[sometimes imagined and anticipated] focal and subsidiary configurations 

of particulars we are aware of with our fingers. And as our analysis of 

probing shows, the relation of imagining is also pivotally involved in 

touching, in tactile efforts to come to know objects of touch. Not only are 

images formed of configurations of physical particulars presented, but 

images are also formed of abstract configurations of particulars 

anticipated.

                                                     
17 I emphasize that the terms “close” and “distant” as epistemic relations are defined in 

relation to proximity with the human body. The human body is the ultimate instrument of 

all our external knowing. 
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4.3.2 Smoothness and Timing in Intelligent Doing 

The entire scope of knowing how can be classified according to 

performance standards as well as the number of paths and termini that 

define a task. Standards for intelligent performance include such notions 

as smoothness in the actual doing or execution of a task as well as timing 

and other conditions as well.

Timing in the actual performance of a task or method is usually one 

sure sign that a person knows how to do what they are doing. Timing is 

directly related, usually, to the actual demonstrated physical smoothness 

of the performance.

     In F.C.S. Bartletts' (1958) early study of thinking and skills acquisition, 

he noted that the movements of a novice, a person who does not know 

how, are oscillatory. That means that the person’s movements exhibit 

wavering between extremes, a “jaggedness” or discontinuity between 

movements that do not exhibit the controlled, continuous movements of 

one who knows how.

     As a skill or task is mastered, however, a learner develops timing and 

controlled movements so that the oscillations are reduced and the actions 

flow continuously. That is, the actions, the movements, of one who knows

how are smoothly connected, both sequentially (spatially) and temporally. 

     The smoothness condition alone is demonstrated in a variety of ways 

and, depending upon the task being performed, can be captured well in 

time-lapse photography with a digital camera. When one closely examines 

and analyzes someone (or an animal) performing a task, the sensorimotor 

system and much more of the entire central nervous system is involved. 

One’s sense of sight, smell, even taste, hearing, and certainly touching and 

moving is fully integrated in a dynamic, continuous performance.

     According to Maccia (1973), the smoothness condition in knowing how

not only distinguishes knowing how from an accidental "happened to be," 

it also distinguishes a procedure, a way of doing something, from a 

performance, a doing of something. It is evident that one can know a 

procedure for doing something without being able to do it, such as 

Olympic judges. 

     Moreover, the more a person or animal practices or does a task, the 

better their sensorimotor system becomes “tuned” to do it the next time. 

The task itself becomes so familiar that the very perceptual and conceptual 

clues and cues which characterize the doing of it, especially if these are 

redundant, become part of the “conceptual and perceptual repertoire” of 

one who knows how. This is a clear demonstration of all that variability 

and plasticity found in the mapped connections between the senses 

through the thalamus to the region of the somatosensory cortex. 
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     So little attention has been paid to knowing how that we do not have 

adequate research establishing a coherent, consistent and complete theory 

showing how it is integrated within cognition generally. Human 

performances alone, let alone animal performances, need extensive study 

and research to delve into the most fundamental levels of those 

components which can give rise to the expertise in performance that we 

witness everyday in certain fields.

     Because kinds of intelligent doing show up in the smoothly timed, 

highly context-dependent patterns of moving and touching by one who 

knows how, these must be incorporated within a broader theory of natural 

intelligence. The emergence of smoothly timed and context-sensitive 

patterns from the complex dynamics involved in interactions of very large 

numbers of all the sensory and motor components and relations between 

them must be explained.

     Explanations of this kind of intelligence, however, must be on many 

levels, not reduced to the neurological and biological. Some researchers 

(Kunimoto et al. 2001) have insisted that at least with respect to the 

components of awareness, the phenomenal experience of subjects must be 

incorporated into the research. Their experiments included controls on 

subject verbal responses. There are other ways, however, how this might 

be done which can be concretely demonstrated by analyzing the 

interactions among those components of very complex tasks. 

Limitations of Computational Models of Awareness: Selection 
without Classification 

One of Edelman’s (2004) arguments against computer models of the brain 

and mind is that the “mapped connections from the sense of touch in the 

hand through the thalamus to the region of somatosensory cortex are 

variable and plastic.” As he explains, those regions of the somatosensory 

cortex that map the fingers shift their boundaries as a result of excessive 

use of even one finger.

     His point is that there is a highly variable context-dependency involved 

in the dynamic circuit variation of the sense of touch. Computer models, 

especially top-down, logic- and knowledge-based models cannot handle 

this kind of context-dependency and variability. And he is correct. 

     Though I will address these limitations more thoroughly in a later 

chapter, we should briefly review why this is so. As obvious as the 

distinction may be, we must sort levels of scientific inquiry to make clear 

some fundamental concepts about the preattentive and attentive phases of 

awareness. There is the level of the object of inquiry itself. In this case, the 
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preattentive and attentive phases of cortical and central nervous system 

phenomena are the object of scientific and technological inquiry.

     There is the next level, the level of language describing the phenomena, 

language about the object or phenomena of interest. That language sets 

forth representations of the objects of interest, setting forth (under the best 

conditions) necessary and sufficient descriptions to fully explain the 

phenomena. Those representations are not found in the object itself.

     We should take care not to confuse the level of the object or 

phenomena with that level at which we set forth representations of the 

object or phenomena. We should not confuse the symbol of something for 

the thing we symbolize. 

     The evidence we have reviewed in experiments and some clinical trials 

supports the view that the preattentive phase of cognition is the most 

primitive. It is located at the perceptual “edge” of the circle of cognition, 

the most primitive point at which we actually enter that circle.

     Because the preattentive phase selects single, unique features, the 

activity of that phase cannot literally be classification. There is a pervasive 

confusion in the neuroscience research literature between selection and 

classification. The assumption is that when an organism selects, it has 

therefore classified.

     Yet selection and classification are neither identical nor equivalent. 

First, selection of single unique features is not classification because it 

does not proceed by comparing features because only single features are 

selected. Nor does it proceed by selecting properties of objects based on a 

principle of similarity [among properties]. That is the only notion of 

classification recognized by scientists adopting the logico-linguistic notion 

of intelligence, as well as those adopting the computer model of mind. 

Though researchers may describe what is happening in the preattentive 

process as classification, they must be doing so in some metaphorical 

sense.

      In most preattentive processing, no conjunctions of features, including 

no conjunctions of like features with which to compare properties is taking 

place. Moreover, preattentive processing takes place in new-born babies, 

seeing features for the first time.

     It should be mentioned, however, that VanRullen, Reddy, and Koch’s 

research has shown that in dual tasks pop-out can occur for features that 

are not discriminated without attention. 

     In effect, the fact that the activity in the preattentive phase cannot be a 

classification process means that it does not work according to classical 

Boolean operators such as conjunction. This has been empirically verified 

in a number of experiments, some of which are described above. As such, 
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it follows from this that the preattentive phase cannot be reduced to 

classical machine models of cognition.

     It is follows from the empirical evidence presented thus far that the 

primitive phases of human cognition cannot be understood or modeled 

with classical top-down, knowledge-based, discrete, functional-block, 

linear models. These are the same underlying models of human cognition 

found in classical IQ research and those tests based upon it. It also 

includes underlying assumptions as well of current computer systems 

architectures of intelligence.

     In sum, neurobiological architectures are not modular, linear, or 

feedforward. The neurobiological representations of visual modalities 

alone, including depth, motion, color, and form are entirely unlike those 

currently employed by conventional computer vision systems. However, 

we will look more closely at computational problems with natural 

intelligence in a later chapter. 

     In the preattentive processing phase alone, we have yet to figure out all 

the primitives involved and exactly how the process and the interrelations 

among all the primitives actually work. In the visual system, we have three 

types of cones that allow us to distinguish between about 2 million colors, 

but there are probably billions of actual primitive featural relations 

involved in the preattentive phase and attention system. Again, we do 

know that however the process works preattentive processing acts 

intentionally to deploy attention, the place where actual perception occurs.

4.4 Summary 

This chapter sought to understand the fundamental structures that give rise 

to the intelligence of doing by looking at sophisticated brain structures and 

the context in which those structures find themselves, along with some 

focus upon the phenomenal experience of human subjects.

     Specifically, we looked at the neurobiological architecture of the 

sensorimotor system and awareness and how kinds of intelligence emerge 

from those. We found that extensive neurobiological and related research 

reveals highly complex cognitive behavior at very primitive levels. 

Where We Enter the Circle of Cognition: Immediate Awareness 

The primary objective was to determine from knowledge of the most 

primitive sensory and sensorimotor components where the human 

organism most likely enters the circle of cognition. The concept of 

cognition is not taken here as identical with the concept of consciousness, 
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as it is defined in some recent theories (Edelman 2004). Because his theory 

is to some degree representative, we critiqued some of Edelman’s 

definitions, including “categorization”, “concept”, and “abstraction”, 

finding that they assume what they seek to explain.

     Additionally, his explanation of concept formation is inadequate. His 

appeal to the questionable process of “abstraction,” which is actually an 

underlying appeal to a problematic notion of induction renders his 

explanation unacceptable. The use of the notion of abstraction is yet 

another example of a process that assumes what it seeks to explain. The 

formation or learning of concepts or universals as Edelman describes still 

presupposes cognizance of, not merely discrimination of, features. That is, 

such an explanation already assumes the concept, universal, or intelligence 

it sought to explain. 

     Another problem with Edelman’s explanation, along with other 

theorists, is that he starts the process of global mapping at the level of 

attention. There is substantial empirical evidence showing that there is a 

great deal of cognitive awareness prior to that level, specifically in the 

preattentive processes.

     The research literature on preattentive and attentive processes shows 

that there is some dispute on when and where the preattentive processes 

make the transition to attention. Preattentive orientation proceeds 

subconsciously, interpreted as the absence of “consciousness that” such 

and such is the case, at the level of the nervous system. Many researchers 

hold that it is only when sensory perception is attained that attention can 

then focus upon information as an object with which it can operate. Some 

appear to argue that only at the attention phase, interpreted as 

“consciousness that” or “awareness that” (aligned with language) does a 

subject’s neurophysical activity become cognitive. 

     However, we reviewed substantial evidence in multiple experiments of 

cognitive immediate awareness below the threshold of attention. All of the 

experiments cited showed some deeper level of cognitive awareness, 

below the attention system threshold, not aligned with language that 

correctly affected subjects’ overall behavioral responses. Moreover, as 

noted, some of the experiments also show that there is in fact a negative

correlation between subjects’ own verbal judgment (knowledge that) about 

their own awareness and their awareness as actually measured in the 

experiments.

     This evidence shows that the circle of cognition is larger and deeper 

than previously thought. Minimally, the evidence supports our position 

that it begins with immediate awareness; this is prior to the level of 

attention and is not aligned with language. This is so not only as it pertains 
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to vision, but also the psychomotor and entire sensory motor parts of the 

brain.

     Thus I argued that not only do we need to revise our understanding of 

the scope and depth of the cognitive domain and the place where we enter 

it, we must also revise our understanding of a network of related concepts, 

minimally including cognition itself, natural intelligence and learning. If 

the empirical findings and our interpretations of them are correct, natural 

intelligence begins with cognitive immediate awareness in the preattentive 

phase.

     Additionally, researchers in those experiments as well as those who 

have investigated cognitive awareness under surgical anaesthesia 

recommend a broader spectrum of the concept of awareness. The general 

concept of awareness is not viewed by many researchers in terms of two 

mutually exclusive states, awareness or unawareness, but is viewed as a 

continuum of states ranging from unaware through an infinite number of 

partially aware states, to complete awareness. This continuum also 

distinguishes between “awareness that” such and such is the case [tying 

awareness to “that” clauses or linguistic reports] and “immediate

awareness” which is not tied to such reports.

Primitive Selection and Problems with Consciousness 

Arguments were also presented raising issues with the description of the 

preattentive phase and with the use of the concepts “conscious” and 

“attention”, and distinctions between cognitive and non-cognitive. Because 

the organism is already making preparations and aligning its senses with 

some stimulus during the preattentive phase, this logically implies that the 

organism is already directing itself in ways to attend to some stimulus that 

it has already in some more primitive sense selected to align itself with.

     It has to have made such a selection since any given stimulus would be 

in an environment filled with possibly an infinite number of stimuli from 

which to select. The preattentive phase is said to precede conscious 

sensation which is held to occur with the activation of attention, with 

(again) the problematic use of the term “conscious” tied to “awareness 

that” such and such is the case. And it is in the attention system combined 

with the activation system that, so it is claimed, cognition occurs. 

     The experiments cited earlier, however, reveal that this nominalist 

framework within which some research is interpreted must be rejected.

To summarize, intelligent doing, knowing how in relation with 

immediate awareness, is more fundamental in the total scope and structure 

of natural intelligence than is knowledge that. It is deeper, broader, and 
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more intricately threaded throughout the tapestry of everything an 

intelligent being does.

     Verbal intelligence is a narrow slice of the total intelligence of the 

person. Indeed, it misses some of the most important and far-reaching 

properties of natural intelligence altogether.

     In the remaining chapters, we will look closely at intelligent doing 

involving abstract structures and methods as in the doing of mathematics. 

And we will examine computational models, and more issues and 

problems related to natural intelligence. 



5 Universals, Mathematical Thought and 
Awareness

In the last chapter, we left unfinished an examination of the issues 

surrounding the formation of concepts, otherwise known as universals. We 

examined Edelman’s (2004) global mapping theory that sought to explain 

the formation of concepts by means of interaction of two parts of the 

neural system, but we found that theory seriously inadequate for a variety 

of reasons. Among other things, his explanation of the process of 

formation of concepts does not work. In the first place, it begs too many 

questions and effectively collapses concepts to percepts. Even given his 

theory, however, there is no way to explain the formation of abstract 

concepts as in mathematics. 

     We also left unfinished the job of examining intelligent doing where 

that addresses those abstract objects and methods dealing with them as 

found in mathematics. We also mentioned that there are serious limits on 

the use of computer models to characterize kinds of intelligence. 

Specifically, the use of top-down, logic- and knowledge-based models are 

unable to characterize self-organizing complexity of emergent properties 

of intelligent doing and immediate awareness. 

     With respect to the computability issues, we agree with Edelman’s 

criticisms of the top-down computational approach to mind and 

consciousness, though our reasons for disagreement will extend beyond 

his. Serious assessment of the evidence concerning preattentive processes 

alone shows the limitations on computer models of such processes.

     Based on that evidence, it appears that activity in the preattentive phase 

does not work according to classical Boolean operators such as 

conjunction. This has been empirically verified in a number of 

experiments, some of which were described earlier. As such, the 

preattentive phase cannot be reduced to classical machine models of 

cognition. It cannot be understood or modeled with classical top-down, 

knowledge-based, discrete, functional-block, linear models. As I earlier 

noted, these are the same underlying models found in classical IQ research 

and tests based upon it.

     Later, I will examine in much greater depth these and other issues 

related to the computability of kinds of natural intelligence. We will 
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distinguish between whether or not certain processes of an intelligent 

organism are computable on the standard Von Neumann digital computer; 

and whether or not such processes are computable, even in principle. I will 

argue that there are limitations even in principle on the computability of 

facets of living intelligent systems.

     This chapter will examine several issues. One of those is related to 

mathematical doing, the kind of intelligent doing or knowing how par

excellence involving the conception and use of universals. We will 

examine several different arguments on the nature and origins of 

mathematical thought. This may require going back over some of the 

ground we have already covered when we earlier addressed the formation 

of universals. Mathematic doing, from counting and elementary arithmetic 

to the far reaches of algebra, number theory, combinatorics, topology, 

among other branches, is entirely about universals and their patterns.

     Involved in this will also be an examination of related issues 

surrounding immediate awareness and problems related to analyzing 

phenomenal relations between subjects and objects. This includes 

addressing the limits of classification and the nature of objects of the 

awareness relation between a subject and object. This will in turn lead us 

in following chapters to examine in much greater detail those problems 

with computational approaches to kinds of intelligence.

5.1 On the Origins and Nature of Mathematical Thought 

The concept of “origins” here is not intended to be historical, 

anthropological, or cultural. It is intended in the most general sense, 

broadly including assessments of the neurological and epistemological 

research on the nature of mathematical thought. Since we have already 

surveyed much of the historical development of some concepts related to 

this kind of intelligence, we will not repeat that here. That development 

already includes an examination of how different theories of knowledge 

developed and how the nature of reason and logic were viewed. Needless 

to say, mathematical thought and reason is implicit within that 

development.

     Given the increased interest in the origins of mind, specifically where 

the concept of “origins” is interpreted to mean genetic origins, we should 

clarify the nature of a peculiar kind of fallacy that continues to rear its 

head in such discussions. It is called the “Genetic Fallacy.”
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The Genetic Fallacy 

Recall that no matter how much data one might present, or how strongly 

committed one might be to an argument, if the argument is based upon a 

fallacy, then it cannot be valid. If the argument is not valid, it cannot be 

sound. Therefore reasonable people must reject the argument.

     A recurring fallacy in discussions of the origins and nature of 

mathematical thought is the “Genetic Fallacy.” In general, this is a fallacy 

of irrelevancy. That means that it is an argument employing reasons and 

evidence that are irrelevant to the objective truth, validity, and soundness 

of an idea or argument.

     In the genetic fallacy this involves appealing to the origins or history of 

an idea, or in this case, the entire discipline of mathematics to make 

unwarranted claims. It is fallacious to either support or reject an idea based 

on its origins or source, including its past, unless its past in some way 

directly affects the truth, validity and soundness of the idea or argument. 

The genetic fallacy is committed when one nonetheless evaluates an idea 

or argument based upon where (or from whom) the idea or argument 

originates, rather than evaluating the argument or idea on its content and 

objective merits.

     It should also be mentioned that the genetic fallacy is usually 

committed by those who are otherwise known as reductionists. As noted 

earlier, though there are valid reductions in the sciences, especially 

sciences such as physics and chemistry, reductionist arguments in the life 

sciences are sometimes fraught with fallacies and logical incoherencies. In 

essence, these are arguments advocating the view that the biological 

origins of a thing are the most scientifically revealing features of a thing; 

that some facets of living things, such as intelligence, are really as 

primitive as their origins. 

     The discipline of mathematics has been around for thousands of years. 

During that time, just as in the sciences, mathematicians have established 

formal, proven methods and techniques to objectively evaluate the truth, 

consistency, coherency, and pragmaticism1 of their abstract ideas, 

concepts, theorems, principles and laws. It is those established proven 

methods and techniques that determine the nature and worth of the ideas of 

mathematics. It is not persons who happen to be mathematicians; or 

persons who happen to be cognitive scientists. 

     Thus, in contrast to arguments committing the genetic fallacy, the 

nature and value of mathematical and scientific ideas, concepts, laws, 

                                                     
1 This is Charles Sanders Peirce’s term, which meant the long-term consequences of testing 

out an idea in the world. 
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theorems, can be objectively determined and evaluated by established 

methods and techniques. The human origins or history of the ideas are 

irrelevant.

     It appears to me that when closely examined, among other problems, 

the overall argument proposed by Lakoff and Núñez (2001) commits the 

genetic fallacy. Their arguments commit other fallacies as well, but it is 

the genetic fallacy in particular that we should examine first since it is 

directly related to their fundamental thesis about all of mathematics. 

     We should start with some of their recent arguments on the origins and 

nature of mathematics and assess these in terms of the genetic and other 

fallacies we have pointed out in earlier assessments. 

5.1.1 A Postmodern View: The Body Shapes Development and 
Content of Mathematics 

Lakoff and Núñez (2001) aver that they are not mathematicians. 

Nonetheless, they state that it is their intention to analyze mathematical 

ideas and theorems for meaning and truth, among other things: 

“This book is about mathematical ideas, about what mathematics means-and why. 

It is concerned not just with which theorems are true, but with what theorems 

mean and why they are true by virtue of what they mean.” 

     They state they are cognitive scientists who are studying the origins of 

mathematical ideas. They also state that they have looked at those ideas, 

not as mathematicians but as cognitive scientists, and come up with what 

they say is a plausible explanation for where mathematicians” ideas come 

from. Their theory is a theory of what they call “embodied mathematics”; 

mathematics comes from the bodies of mathematicians. Their theory, they 

claim:

“. . .is the first attempt at a rigorous methodology for Mathematical Idea Analysis-

a cognitive analysis of the structure of mathematical ideas, of how those ideas are 

rooted in everyday bodily experience, what cognitive mechanisms they use, and 

how they are related to one another.” 

     Where do those abstract concepts and ideas of mathematicians come 

from according to Lakoff and Núñez?

“Most ideas are unconscious, and that is no less true of mathematical ideas. 

Abstract ideas, for the most part, arise via conceptual metaphor-a mechanism for 

projecting embodied (that is, sensory-motor) reasoning to abstract reasoning.” 
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     Among other things, setting aside the almost paradoxical reference to 

unconscious ideas; the lack of clarity as to what “unconscious” means; and 

what sensory-motor reasoning amounts to, these authors conclude that 

abstract ideas of mathematics are born of the sensorimotor regions of the 

brain that generate conceptual metaphors.

“The authors believe that understanding the ideas implicit in mathematics-

especially the metaphorical ideas-will demystify mathematics and allow it to make 

more sense. Moreover, understanding mathematical ideas and how they arise from 

our bodies and brains will make it clear that embodied mathematics is all that 

mathematics is-the only mathematics we know or can know.”

     The authors’ position in general is that such abstract ideas developed by 

mathematicians, even the most esoteric ideas, are little more than 

metaphor:

“conceptual metaphor plays a central, defining role in mathematical ideas within 

the cognitive unconscious-from arithmetic and algebra to sets and logic to infinity 

in all of its forms: transfinite numbers, points at infinity, infinitesimals, and so on. 

Even the real numbers are constituted by metaphorical ideas coming out of the 

way we function in the everyday physical world.” 

     Those mathematicians in particular who the authors label “romantic” or 

Platonic realists are especially bothersome because according to Lakoff 

and Núñez they are suffering from the delusion that those ideas actually 

have something to say about objectively existing reality, “truth”, and the 

universe. But according to Lakoff and Núñez, mathematics has nothing to 

do with reality. Again, it is all metaphor. 

“Mathematics is not built into the universe. The portrait of mathematics has a 

human face.” 

     These authors base their theory on the concept of a technical use of the 

term “metaphor” which is  “a grounded inference-preserving cross-domain 

mapping — a neural mechanism that allows us to use the inferential 

structure of one conceptual domain (say, geometry) to reason about 

another (say arithmetic)” (Lakoff and Núñez 2001). Summarizing their 

point of view, one might possibly state their argument as follows: 

 Ideas of mathematics originate in the minds of mathematicians; 
 Ideas of mathematics arise via conceptual metaphor; 
 Conceptual metaphor is a mechanism for projecting “embodied 
reasoning“ of the sensorimotor system to abstract reasoning; 
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Therefore abstract ideas of mathematics are all metaphor. And: 
Mathematical ideas are not “built into” the universe, but are“embodied” 
in brains and bodies of persons. 

     On its face, this is an argument based upon the genetic fallacy, 

wholesale fallacious reductionism, along with a great deal of ambiguity 

and equivocation, among other things. It is a relativistic postmodern 

reconstructionist view born of nominalism and conceptualism. 

     Though the authors claim they are dedicated to reason and love 

mathematics, they reduce mathematical reason to natural selection and 

biological origins. In effect, they “animalize” reason, rendering it 

subservient to natural selection. Based upon their reductionist assumptions, 

they have ignored the power of mathematical reason, indeed reason of any 

kind, to be independent even of its origins.

     Moreover, though they ground their position by positing the existence 

of a neural metaphor mechanism, a “grounded inference-preserving cross-

domain mapping” permitting us to use cross-domain inferential structures, 

in point of fact, there is no evidence of any such neural mechanism. In fact, 

the neural mechanisms necessary and sufficient to construct coherent and 

unique percepts, let alone concepts, from a large set of ambiguous and 

highly segregated sensory and motor signals are basically unknown 

(Tononi and Edelman 1998). 

     Their arbitrary and ungrounded assertions about this purported neural 

metaphor mechanism has no evidence to back it up either in neuroscience 

or physiology. This so-called neural mechanism is evidently designed to 

support an unsupportable argument. 

     Additionally, contrary to these authors’ postmodern reductionist point 

of view regarding the objectivity of mathematics (that it has none), given 

all the clearly objective and repeatable tests to which many mathematical 

ideas have been put over at least the last 2,500 years, it is clear that the 

natural world, indeed the universe at large, is remarkably in agreement 

with many of those ideas.

     Any argument against these authors’ view could cite the fact that 

mathematical ideas, theorems, concepts have been objectively and 

repeatedly tested, both in abstract problems in mathematics itself as well as 

in applied empirical problems in demanding fields such as physics, 

chemistry, biology, and engineering sciences, among others. One could 

note that mathematical ideas, just like ideas and concepts of any other 

hard-core discipline, (physics immediately comes to mind), must “test out” 

in the real world, “out there” independently of any of us.

     There is not only a consistency and a coherence requirement that 

mathematical arguments and assertions, concepts, ideas, and theorems 
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must meet; there is also a pragmatic requirement for mathematical 

concepts and ideas. 

     Mathematical ideas, concepts, theorems, and principles are fruitfully 

utilized in all serious research and all knowledge-generating disciplines in 

the world. Indeed, it is mathematics that gives form to all our knowledge 

of the world because it gives form to laws and law-like statements used to 

describe, explain, and predict.

Conceptual Metaphors and Begging the Question 

Moreover, even setting aside the absence of any evidence in neuroscience 

or physiology to support the authors’ questionable use of “conceptual 

metaphor” at the level of the sensorimotor system, it also seems to beg 

many questions. Unlike the literary definition of “metaphor” the authors 

claim that conceptual metaphor is a basic cognitive function and that it is 

by means of this function that mathematical ideas arise.

     What does “conceptual metaphor” as a function or process amount to? 

The authors say that it functions to “project embodied reasoning” of the 

sensorimotor system to abstract reasoning. However, the sensorimotor 

system does not reason in any understandable sense of that word. The 

sensorimotor system does many things, but reasoning is not one of them.

     What does the notion of “projection” amount to? The authors do not 

adequately explain this, however, the explanation of metaphor entails that 

that humans “naturally see common traits in subjects which are factually 

distinct.” Though the authors utilize the notion of conceptual metaphor to 

explain how abstract ideas of mathematics are formed, even assuming it 

does exist, their concept of metaphor already entails the explanation they 

seek. That explanation is that humans tend to see common traits in subjects 

which are factually distinct. Hence, according to the authors, spatial and 

other metaphors abound in mathematics. Their explanation, in addition to 

committing the genetic fallacy among others, also begs the question. 

     It is difficult to make sense of the notion of “embodied mathematics.” It 

is not clear that Lakoff and Núñez mean anything other than that the 

discipline of mathematics, just as all other disciplines of any kind, 

originates from persons who occupy bodies.

     One is almost astonished with such a line of argument. But even though 

individual persons who are mathematicians may be the originating source 

for mathematical ideas, those ideas do not remain there. Their objectivity 

is found in the formal expression and the objective tests to which these 

ideas have been subjected, sometimes over millennia.
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     Mathematical concepts, theorems, and principles are not identified, 

except usually for historical purposes, with those persons who may have 

conceived of or discovered them. The ideas are certainly not identical with 

some “embodiment” either in the persons who discovered or conceived of 

them or those who may come to know them. 

     Lakoff’s and Núñez’s arguments represent an outgrowth of the 

coherence theory of knowledge combined with earlier conceptualism. 

These have been combined with spurious biological reductionism. Recall 

that for coherence theorists and conceptualists, there are no facts in the 

world “out there” independent of subjects (persons). Early conceptualists 

held that all we have are concepts “in our minds.”

     Coherence theorists essentially held that we could not escape the self-

referring network of our sentences. Neo-pragmatists held that there is no 

escape from the circle or “web of our beliefs” that are reducible to 

stimulations of our nerve endings and observation sentences based upon 

those. And now Lakoff and Núñez argue that we are embodied minds, and 

there is no escape from our bodies such that we can know anything at all 

“out there” beyond those. 

5.1.2 The Language Causal Argument: Language Shapes the 
Development and Content of Mathematics 

Perhaps more problematic in many ways are the innatist cum nominalist 

arguments regarding numerical concepts, extending to mathematical 

concepts in general. This is the issue whether or not the ability to develop 

numerical concepts depends on language ability which in turn is 

genetically based in language centers of the brain. Linguists and those 

psychologists convinced that thoughts in general are inseparable from 

words we use to label or “name” them are convinced that numerical 

cognition depends upon language.

     Generally, this argument is also a genetically determinist argument, 

reducing language and hence mathematics to biology. The argument is 

that numerical cognition depends upon knowledge of the vocabulary of 

counting words2 and the recursive capacity of syntax and morphology.

     The innatist language argument is that children’s initial counting is 

embedded in natural language as a result of their learning more and more 

count words. This argument is advanced by some linguists and like-

minded psychologists, including Pinker and Bloom (1990); Bloom (1994), 

Pinker (1994). 

                                                     
2 The counting words are the natural numbers.
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     Recalling Quine’s (1969, 1978) learning-as-induction argument, their 

explanation is that as this learning progresses children infer that there are 

more count words. Then with enough actual experience they also infer that 

the counting numbers are discretely infinite. This learning process is 

supposed to be inductive. All those inferences are purportedly made based 

upon so many experienced instances or particulars, the numbers.

     However, this is induction in the spurious sense, in which 

generalizations are supposedly reached based upon experience of so many 

particular instances. The problem with this notion of induction (and 

learning), as well as the argument, is that it assumes what it seeks to 

establish. The recognition that one counting number follows another, after 

another, and after another, on and on. Then the recognition that the series 

goes on infinitely, assumes cognizance of the rule allowing the numbers to 

continue. And it assumes cognizance of infinity.

     Hauser et al. (2002) argue that the mathematical idea of discrete 

infinity is derived from the recursive capacity of human languages that is 

unique to humans. That is, they argue that there is a simple, direct causal 

dependence of mathematical knowledge upon the recursive generative 

capacity of natural language.

     Yet there are numerous experiments showing that number concepts and 

language concepts are not only neurologically distinct, number concepts 

cannot be reduced to natural language concepts. As some researchers 

assert “. . .it is one thing to hold that language facilitates the use of 

numerical concepts and another that it provides their causal underpinning” 

(Gelman and Butterworth, 2005).

     Gelman and Butterworth (2005) argue that numerical concepts have an 

ontogenetic origin and a neural basis that are independent of language. 

Excluding the non-mathematical use of number terms and notation, 

numerosity is the cardinality denoted by numbers, including both 

approximate and exact values.

     Their research cited a number of neuroimaging experiments showing 

the distinct cerebral circuits that underlie observed language and number 

dissociation. They also cited research showing very rapid learning of new 

vocabulary for abstract concepts of numerosity among relatively primitive 

groups. That rapid learning supports the conclusion that the learners 

already possessed the concepts of numerosities and the idea of discrete 

infinity:

“the English counting system is almost always instantaneously mastered by 

Warlpiris . . . independently of formal Western-style education.’ . . .the Oksapmin 

of New Guinea, a group who used [sic] use a fixed number of sequential positions 
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on their body as “count words”. . .Within 6 months, the Oksapmin had introduced 

a generative counting rule. . .” (Gelman and Butterworth 2005). 

Additionally, the above researchers’ rejection of the language thesis, that 

language is necessary for mental representation and manipulation of 

numerosities, is also supported by numerous neuroimaging studies.

The Neurological Evidence 

Those parts of the brain involved in numerical processing are in the 

parietal lobe, not in the language areas of the brain (Cipolatti and 

Harskamp 2001). Indeed, there is evidence that numerical and linguistic 

processing work at cross purposes: 

“One neuroimaging study has found that activity in Broca’s area is depressed 

relative to rest during numerical tasks, suggesting that numerical and linguistic 

processing are even in opposition” (Presenti et al. 2000).

     Based on these and other arguments and evidence, these authors 

conclude that understanding recursive infinity and mathematical thought in 

general are not derived from language at all. Their conclusion is consistent 

with a number of arguments one can find going back in the mathematical 

and philosophical literature many centuries. Specifically, one can find 

testimony to this effect from mathematicians themselves (Hadamard 

1945), based on much introspection.

     However, setting introspection aside, there is a growing body of brain-

imaging evidence that supports dividing numerical abilities into exact 

calculation and approximate calculation. Under functional magnetic 

resonance imaging (fMRI) and event-related potentials (ERPs), different 

portions of the brain have been shown to activate depending upon whether 

a task involves exact calculation or approximate calculation.

     In general, the evidence shows that approximation mathematical tasks 

involve the following areas of the brain (Dehaene et al. 1999): 

Bilateral parietal lobes: The banks of the left and right intraparietal 
sulci, extending anteriorily to the depth of the postcentral sulcus and 
laterally into  the inferior parietal lobule; 

Right precuneus; left and right precentral sulci; left dorsolateral 
prefrontal cortex; left superior prefrontal gyrus; left cerebellum, and left 
and right thalami. 
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     Research shows that most of these fall outside traditional perisylvian 

language areas. They are instead associated with visuo-spatial and 

analogical mental transformations (Dehaene et al. 1999). 

    On the other hand, fMRI showed that exact calculation involves the 

following:

A large left-lateralized activation in the left inferior frontal lobe;

Smaller activation was found as well in the left cingulated gyrus,  left 
precuneus, right parieto-occipatal sulcus, left and right angular gyri, and 
right middle temporal gyrus (Dehaene et al. 1999). 

     The angular gyrus is thought to have functional links with posterior 

language areas such as Wernicke’s area, because it is assumed to be 

involved in mapping visually presented inputs onto linguistic 

representations (Horwitz et al. 1998). For example, research has shown 

that one side-effect of damage to the left angular gyrus, is a condition 

called anomia, in which subjects have difficulty finding words for objects 

and confrontive naming difficulty. These individuals have difficulty 

naming objects and describing pictures, for example. 

     Moreover, lesions involving the angular gyrus, or when damage occurs 

between the fiber pathways linking the left inferior parietal lobule with the 

visual cortex, can also result in Pure Word Blindness. This is due to an 

inability to receive visual input from the left and right visual cortex and to 

transmit this information to Wernicke’s area so that auditory equivalents 

may be called up. Such patients are thus unable to read and suffer from 

alexia3 (Joseph 2000).

     Thus the most recent conclusions based upon neuroimaging 

experiments regarding numerical functioning are the following:

Arithmetical approximation relies on nonverbal visuo-spatial cerebral 
networks (S. Dehaene, et al. 1999). 

Arithmetical exact calculation is arguably language-dependent in that 
the areas, together with the left angular gyrus and left anterior cingulate,   
may constitute a network involved in the language-dependent coding of 
exact addition facts as verbal associations (S. Dehaene, et al. 1999).

                                                     
3 Alexia is a neurological disorder characterized by loss of the ability to read or understand 

the written word. It is a complex visual disturbance resulting from disease in the visual-

association areas at the back of the brain.
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     However, the evidence for exact calculation being language-dependent 

relies upon interpretations of a portion of the brain that is not generally 

considered a classical language area, the left angular gyrus (S. Dehaene, et 

al. 1999; Gelman and Butterworth, 2005). 

     All characterizations of the left angular gyrus make reference to visual 

functions because it apparently functions to map visually presented inputs 

onto linguistic representations. Thus the conclusions remain unsettled as to 

whether or not there are any language-dependent numerical functions. 

    Indeed, there is some evidence showing that there may be experimenter 

intervention in some fMRI experiments in the form of asking questions of 

subjects, hence leading subjects to process arithmetical operations via 

language centers when they otherwise would not. If so, findings from these 

experiments would be questionable.

5.1.3 Thinking in Patterns and Images 

Mathematicians generally regard their entire discipline as a science of 

patterns, a spatial concept, whether one is referring to numbers, functions, 

geometric forms, sets, or any combination of these. Popular conceptions of 

mathematics as essentially about number, or numerosities, are mistaken. 

However, one finds this conception pervasive, even among those cognitive 

scientists and others researching the nature of mathematical thought. For 

example, one finds the following: 

“the numbers generated by counting seem to be the foundation of mathematical 

thought” (Gallistel and Gelman 2000). 

     But mathematics ceased to be the science of number as of about 500 

B.C. Up to that time, it was almost entirely arithmetic, a series of 

techniques for counting, measuring, and accounting. From about 500 B.C. 

to 300 A.D., however, mathematics eventually came into its own as a 

discipline with Greek mathematics, especially Thales. It was Thales who 

intoduced assertions of mathematics that could be logically proved by 

formal argument. It was Thales who introduced the idea of the theorem, 

the bedrock of mathematics (Devlin 1994).

     Thus, investigating thought processes associated with counting the 

integers and reals will be enlightening on many levels, but it will not, in 

the end, say much about mathematical thought. Investigations of 

mathematical thought would require focusing upon spatial formal thought 

processes or patterns about patterns consisting of very high-level 
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abstractions, functions such as permutations, transformations, and 

deductions, among other things. 

     Nonetheless, to the degree that research into those mental or brain 

processes involved in counting may shed light upon any other 

mathematical thought process, it is illuminating that the research tends to 

support the view that such thought is non-verbal.

     Visual and verbal systems of the brain are separate systems, though 

related in some complex ways. Above, I cited neurological evidence 

showing that arithmetical approximation relies on nonverbal visuo-spatial 

cerebral networks while arithmetical exact calculation is arguably 

language-dependent. Though this last point is disputed, it appears that the 

areas of the brain that are activated during exact calculations, together with 

the left angular gyrus and left anterior cingulate, may constitute a network 

involved in the language-dependent coding of exact addition facts as 

verbal associations (S. Dehaene, et al. 1999).

     As I also noted above, however, this evidence relies upon 

interpretations of a portion of the brain that is not generally considered a 

classical language area, the left angular gyrus (S. Dehaene, et al. 1999; 

Gelman and Butterworth, 2005). 

Mathematical Thought and Space 

However, while extant neurological studies appear to give much attention 

to the issue whether or not mathematical thought (or just numerosity) is 

language-dependent, they give short shrift to the issue of the relation 

between mathematical thought and spatial reasoning.

     It appears that the visual system contains separate subsystems for 

mental imagery and mental rotation. These are central to understanding 

mathematical thought, especially the formal properties of symmetry and 

regularity of patterns.

     Mathematicians study transformations of objects, including rotations, 

translations, reflections, stretchings and shrinkings of objects (Devlin, 

1994). They investigate whether or not a given spatial figure is 

symmetrical, which means that after undergoing some transformation, the 

figure itself is left invariant. Examples of symmetrical figures (non-

dynamic in these examples) are the circle and snowflake. One can rotate or 

reflect a circle and still get the same circle; one can rotate a snowflake one-

sixth of a complete rotation, and it will look the same. 

     In investigating symmetry alone, mathematicians want to determine the 

symmetry group for any figure. That is the collection of all transformations 

that leave that figure invariant. Combining two transformations, they seek 

to establish a third; if successful, they determine that there is a pattern in 



194      5 Universals, Mathematical Thought and Awareness 

the operation of combining the two to get a third. For circles, that pattern 

reveals the arithmetical laws of associativity, identity, and inverses. 

     Likewise, mathematicians investigate properties of sphere packing, 

determining the most efficient mathematical structures that would 

completely fill a space. In the same way, mathematicians investigate tiles 

to determine what shapes can be stacked together to completely fill a 

space.

     In all this, mathematicians rely upon spatial thought processes as well 

as imagination. They must be able to image in their minds what happens 

under certain transformations of objects. Moreover, they image 

mechanically manipulating the objects themselves in order to “see” in their 

minds what happens under those transformations. 

     Moreover, topology, that area of mathematics that studies properties of 

figures that are unchanged by stretching and twisting the surface, relies 

heavily upon mathematicians’ abilities to spatially image the effects of 

these functions in their minds. This is supported by substantial evidence 

from studies of mental rotation and mental scanning of objects (Kosslyn 

1980; Shepard and Cooper, 1982; Knauff et al. 2002). In a sense, objects 

or figures, even though abstract and not physical, are imagined as things to 

manipulate in certain ways (Trojano et al. 2000).

     Recent research including functional brain-imaging techniques has 

shown that mental imagery makes use of much the same neural substrates 

as perception in the same sensory modality. Spatial operations on mental 

images as well as those operations on visually presented material, share the 

same neural substrate (Trojano et al. 2000; Kosslyn et al. 2001).

     That is, the research supports the view that analysis of visual space in 

perception and imagery has a common neural basis in the parietal lobes. 

Neural networks involved in spatial transformation might be shared by 

several cognitive functions, including visuospatial imagery (Trojano et al. 

2000).

     Not only is spatial imagery and its underlying neural substrate involved, 

but intentional (imagined) motor tasks as well. Investigations of the neural 

correlates of motor planning, independently from actual movements, show 

that the posterior parietal cortex combines somatosensory and visuomotor 

information; the dorsal premotor cortex then generates the actual motor 

plan and the primary motor cortex executes the plan (De Lange, et al. 

2005).

Space and Theorem-Proving 

Given the central place of theorem-proving in mathematical thought, one 

would naturally expect a number of studies to focus upon deductive 
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processes. And indeed, cognitive psychologists have conducted studies 

investigating processes underlying different forms of deductive reasoning, 

including conditional, syllogistic, and relational forms of deductive 

argument (Braine and O’Brein 1998; Rips 1994; Knauff and Johnson-

Laird 2000, 2001).

     Predictably, sentential mental proof theories hold that such reasoning 

takes place as a result of applying language-like rules of inference, while 

mental model theory holds that such reasoning relies on the construction 

and manipulation of spatially organized mental models (Knauff et al. 

2002). A third view is that visual mental imagery is used in reasoning that 

is similar to perceptions.

     On the neurological level, the sentential mental proof theory would 

predict that language centers of the brain would be activated when subjects 

engage in deductive reason; the spatial theory would predict that the 

cortical areas involved in spatial working memory would be activated; and 

the visual theory would, of course, predict that the primary visual cortex or 

nearby visual regions would be activated by reasoning deductively. 

     Knauff et al. conducted fMRI experiments to investigate the neural 

substrates of deductive reasoning (limited to conditional and relational 

forms of deductive arguments), specifically its visual and spatial 

components. They found that deductive reasoning “is based on spatial 

representations and processes.” Their results:

“. . .appear to corroborate the mental model theory of reasoning. Sentential 

accounts, such as the theory of mental proof, are not supported by the present 

data” (Knauff et al. 2002).

Their results as to the visual imagery theory of reasoning were left unclear.

“On the one hand, we did not find activation in the primary visual cortex. On the 

other hand, increased activation occurred in the visual association cortex and 

parietal regions, although there was no correlated visual input” (Knauff et al. 

2002, p. 211). 

     However, these and many more neurological facts are necessary but not 

sufficient to both describe and explain the intelligence of mathematical 

doing. On the neurological level alone, considerably more research must 

be conducted on all kinds of reason, extending beyond deductive forms. 

     Moreover, there are other issues to address. Citing only one highly 

significant issue involving perception and motion of motor tasks 

manipulating physical or imagined objects, for example, to determine the 

effects of transformations, how do we perceive structure in motion? We do 
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not yet know the neural correlates of the ability to interpret changing 

configurations as organized wholes, an obvious necessary condition for 

mathematicians to deal with transformations of abstract objects and spatial 

patterns, among other things. 

     Even if we had all the neurological questions answered, mapping all the 

neural correlates with mental functions and the highest level abstractions, 

we will still have the issues of autonomy, independence, and objectivity of 

reason left unanswered. Those must be addressed at higher levels of reason 

itself.

5.1.4 The Realism Argument: Reality and Reason Shape the 
Development and Content of Mathematics 

Among the fundamental positions on the nature of mathematics that 

Lakoff and Núñez particularly objected to is the position of mathematical 

realism. Historically, of course Plato was the philosopher who set the 

standard for this position. Though hardly any realists today follow Plato’s 

version, nonetheless some of the foremost mathematicians in the world 

consider themselves mathematical realists.4

     In spite of the growth of the coherence and conceptualist view of 

knowledge and ensuing postmodernism, realism even in mathematics 

nonetheless experienced a rebound in the 1930’s with Gödel’s famous 

consistency and incompleteness proofs. These reaffirmed that the 

touchstone for knowledge, truth and reality are those objectively existing 

facts or universals beyond us all and beyond our languages, and also 

beyond our formalisms.

     However, the realist is presented with serious problems explaining how 

he or she knows or can verify the objective and independent existence of 

universals. How can universals such as facts or truth have an objective 

reality independent of persons and even independent of language?

     Over many centuries, realist philosophers and scientists proposed a 

variety of theories setting forth standards for verifying the existence of 

what they hold is real. All those standards, including the famous 

correspondence standard, seemed to arguably reduce to subjective 

conditions of an observer. No matter how many statements of purported 

fact anyone or any group made, all these ultimately seemed to depend 

upon direct observations by someone.

     In 1931, however, Gödel’s two famous theorems seemed to prove that 

there are mathematical facts independent of persons and language 

                                                     
4 Sir Roger Penrose is probably one of the best known mathematical realists today.
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formalisms. In essence, his theorems proved that nobody can set up a 

formal system and then consistently state about that formal system that he or 

she perceives (with mathematical certainty) that its axioms and rules are 

correct, and that they contain all of mathematics.

     This is so because anyone who says they perceive the correctness of the 

axioms and rules must also claim to perceive their consistency. But the 

assertion of the consistency of those axioms is itself not provable in that 

formal system.

     Hence the person who claims to perceive the truth of something that 

cannot be proved in the system [i.e. the assertion of the consistency of its 

axioms] has to abandon the claim that the system contains all of 

mathematics. But then we are left with the larger problem of explaining how 

it is they perceive such truth. How can someone know that the axioms are 

consistent?

Ontological and Epistemological Issues 

The history of issues about mathematical thought appears to revolve 

around two separate but related questions, which we might label the 

ontological and the epistemological: (1) Are mathematical objects 

(including numbers and functions) real, in the sense of being independent 

of humans and their languages? and (2) What are the processes or 

structures of reason, specifically mathematical reasoning, which permit us 

to establish whether or not such objects are real? How can we establish any 

mathematical knowledge?

     Gödel was a realist in the Platonic sense. He distinguished between a 

system of all true mathematical propositions, which he called mathematics 

in the “objective sense,” from a system of all demonstrable mathematical 

propositions, which he called mathematics in the “subjective sense.”

     His Second Theorem demonstrated that no axiom system can possibly 

fully comprise all true mathematical propositions, that is, mathematics in 

the objective sense. The reason that no axiom system can do this is 

because of the indemonstrability of the true assertion of consistency of that 

formal system. 

     In spite of his rather profound arguments, however, at the time the 

actual significance of his proofs was largely ignored. The powerful 

influence of nominalism and conceptualism, combined with other 

philosophical ideas, gave rise to kinds of anti-realism and anti-objectivism

that we see today. 
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Structure of Our Inquiry

I argued earlier that intelligence research must adopt a two-prong 

approach to inquiry into the nature of intelligence. One prong in a fully 

developed inquiry is the brain level. We must use knowledge of the 

sensory and sensorimotor system in any fully developed inquiry into 

intelligence.

     However, all our accumulated knowledge of neural functions of the 

brain is a necessary, but not sufficient level of inquiry. A second prong 

must also look at intelligence from the level of the person in the context of 

the person’s objective experience in the world.

     Essentially, that means seriously analyzing the multiple relations of 

various kinds obtaining between a Subject (S) and Object(s) (O). Among 

other things, that is because intelligence is not solely a natural 

phenomenon occurring at the level of the organism. It also has artificial 

aspects because teaching and the artifacts of accumulated knowledge are 

involved. Artifacts are products of human design; these include physical 

items but also abstract ideas. Note, however, that just because artifacts are 

involved, that does not mean that they are any less “real” than the brain 

itself.

     Moreover, in addition to artifacts, the term “experience” must be broad 

enough to encompass both physical as well as abstract objects. The 

universe within which a fully developed inquiry must proceed includes the 

self-organizing dynamics of relations between a subject and those large 

numbers of objects (components) within that universe that include 

artifactual objects found within the discipline of mathematics. 

     Above, we found that mathematical knowing, the intelligent doing of 

mathematics, is not derivable from Lakoff and Núñez “conceptual 

metaphor” arguments. Those arguments are reductionist and fallacious.

     We also found that mathematical ideas and thought are not derivable 

from genetic language structures and functions. Certain of the arguments 

advocating that position are likewise fallacious in that they inevitably 

appeal to spurious inductivist arguments. Moreover, neuroimaging 

experiments show that the doing of mathematics activates portions of the 

brain that are far from the language centers; indeed much of the fMRI 

evidence arguably shows that mathematical doing activates areas of the 

brain that even work in opposition to the language centers. 

     We should take another look therefore, at the position on the origins 

and nature of mathematics that, though spurned by nonmathematicians 

such as Lakoff and Núñez, commands respect among some of the 

foremost mathematicians in the world, notably Sir Roger Penrose and the 

renowned Kurt Gödel. We will return to the epistemological question 
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later, the question as to the processes and structures of mathematical 

reasoning.

     Gödel’s famous theorems, the consistency and completeness theorems 

have been examined in great detail by many philosophers, mathematicians, 

and logicians. I want to examine these yet again, from an ontological, 

epistemological, and natural intelligence point of view, in order to highlight 

the pivotal disagreements many have with what is called Platonistic 

mathematics.

     These issues will be framed within the context of Gödel’s disagreements 

with what is called Hilbertian or Mechanistic mathematics.

Platonic and Hilbertian Mathematics: The Issues

The central issue comes down to a famous fundamental decidability 

problem. In a commentary on Roger Penrose’s The Emperor’s New Mind 

(1989), referring to Gödel’s 1951 Gibbs lecture (Feferman et al. 1995), 

Martin Davis (1993) says the following: 

(1) “Gödel understood very well what Penrose seems to have missed: that a 

Platonist position concerning mathematical entities is perfectly consistent with a 

mechanist view of mind” (1993).

     He explains that he thinks it quite likely that Gödel would have agreed 

with Penrose’s judgment that mathematical intuition cannot be the product 

of an algorithm, but that Gödel did not assert this as a consequence of his 

famous theorem. Furthermore, (in the same source) Davis says:

(2) “The question of whether mathematical insight5 is the product of an 

algorithmic process is an important and difficult question. But Gödel’s theorem 

has nothing to say about it.”

     I believe it can be fairly quickly shown that Davis’ claims in (1) about 

the “perfect consistency” between Platonistic mathematics and mechanistic 

(formal) mathematics are entirely wrong and that they entail what Penrose 

called the “slippery character” of the insight found in Gödel’s [second] 

theorem.

     Furthermore, contrary to his claim in (2), that Gödel’s theorem has 

nothing to say about whether mathematical insight is a product of an 

algorithmic process I believe the non-algorithmic nature of the insight found 

                                                     
5 It should be noted that Penrose uses the terms ‘intuition’, ‘direct awareness’ and ‘insight’ 

more or less interchangeably.
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in Gödel’s theorem is betrayed even by Davis’ own arguments. Gödel’s 

famous proofs included the following conclusions:

 He showed that it is impossible to give a meta-mathematical proof of 
the consistency of a system comprehensive enough to contain the whole 
of arithmetic, unless the proof uses rules of inference essentially 
different from the transformation rules used in deriving theorems within 
the system.

He demonstrated a fundamental limitation on any axiomatic method 
used to develop any Principia-like system within which arithmetic can 
be developed, showing once and for all time that such systems are 
necessarily incomplete. 

The Second Theorem

At the risk of being repetitious, we should go over the Second Theorem 

again. Gödel’s famous Second Theorem shows the incompletability of 

mathematics. That theorem runs as follows: 

“. . .for any well-defined system of axioms and rules, in particular, the proposition 

stating their consistency. . .is undemonstrable from these axioms and rules, 

provided these axioms and rules are consistent and suffice to derive a certain 

portion6 of the finitistic arithmetic of integers” (Feferman et al. 1995, p. 308).

     The theorem essentially says that nobody can set up a formal system and 

then consistently state about that formal system that he or she perceives 

(with mathematical certainty) that its axioms and rules are correct, and that 

they contain all of mathematics. This is so because anyone who says they 

perceive the correctness of the axioms and rules must also claim to perceive 

their consistency.

     But the assertion of the consistency of those axioms is itself not provable

in that formal system. Hence the person who claims to perceive the truth of 

something that cannot be proved in the system [i.e. the assertion of the 

consistency of its axioms] has to abandon the claim that the system contains 

all of mathematics (Feferman et al. 1995, p. 292).

     But then we are left with the larger problem of explaining how it is they 

perceive such truth. How can someone know that the axioms are consistent? 

What is the source of the knowing? 

                                                     
6 Boolos makes clear in his footnote to Gödel’s paper that this is Peano’s axioms and the rule 

of definition by ordinary induction, with a logic satisfying the strictest finitistic 

requirements.
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     Gödel distinguished between a system of all true mathematical 

propositions, which he called mathematics in the “objective sense,” from a 

system of all demonstrable mathematical propositions, which he called 

mathematics in the “subjective sense.” His Second Theorem demonstrated 

that no axiom system (subjective sense) can possibly fully comprise all true 

mathematical propositions (objective sense). The reason that no axiom 

system can do this is because of the indemonstrability of the assertion of 

consistency of that formal system. 

     Returning to Davis’ comment in (1) above, it appears he is asserting both 

an intra-consistency as well as an inter-consistency between the two 

mathematical systems, Platonistic mathematics (objective) and mechanical 

[formal/Hilbert] mathematics (subjective). To assert that a Platonist position 

concerning mathematical entities is, as he says, “perfectly consistent” with a 

mechanist view of mind, Davis must be claiming to perceive the consistency 

of the axioms and rules of Platonistic mathematics7 and to perceive the 

consistency of the axioms and rules of mechanistic mathematics used to 

define the mechanical view of the mind.

     But the consistency of either mathematical system is not provable in 

either system. It would also follow that the assertion of consistency between 

them is likewise not provable in either or both systems together. 

     Nonetheless, Davis is asserting that it is true that Platonistic mathematics 

is perfectly consistent with a mechanistic view of mind. In sum, Davis is 

claiming to have mathematical insight that is not derivable from axioms of 

either system. 

     Contrary to Davis’ claim, however, there is no perfect inter-consistency

between the two systems because, by Gödel’s theorem, one system [the 

formalist] is incomplete while the other is not. The formalist system of 

mathematics is incomplete because though it may be a well-defined system 

of correct axioms, consisting of all demonstrable mathematical propositions, 

it does not contain all true mathematical propositions.

     The Platonistic or objective system of mathematics, on the other hand, 

does allow true propositions which are not provable in the system. It is 

formalist mathematics, the subjective sense of mathematics (in Gödel’s 

terms), that is incomplete because it is limited to only those propositions 

which are demonstrable. It cannot state its own consistency because the 

assertion of its consistency is not demonstrable with its own axioms and 

rules.

     Objective Platonistic mathematics, on the other hand, is not incomplete 

by Gödel’s theorem precisely because it allows true propositions which are 

                                                     
7 To the extent that the axioms and rules of Platonistic mathematics can be well-defined.
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not provable by the axioms and rules of that system, including the assertion 

of its own consistency.

     In a real sense, Davis has shown himself to be a true Platonist by his own 

words, though I believe his claim regarding inter-consistency between the 

two systems is wrong. 

The Non-algorithmic Nature of Mathematical Insight

With regard to Davis’ comment in (2) above, that Gödel’s theorem has 

nothing to say about whether mathematical insight is the product of an 

algorithmic process, one must counter that it has a lot to say about it.

     In the Gibbs lecture, Gödel introduced a distinction between the First and 

Second Theorems by noting what he meant by a well-defined system of 

axioms and rules. He stated: 

“. . .this only means that it must be possible actually to write the axioms down in 

some precise formalism or, if their number is infinite, a finite procedure for 

writing them down one after the other must be given. . This requirement for the 

rules and axioms is equivalent to the requirement that it should be possible to 

build a finite machine, in the precise sense of a “Turing machine”, which will 

write down all the consequences of the axioms one after the other” (Feferman et 

al. 1995, p. 9). 

     Again, Gödel’s Second Theorem showed that no well-defined system of 

correct axioms can comprise all of objective [Platonistic] mathematics 

because the proposition stating the consistency of the system is true but not 

provable in that well-defined system. Hence it is not included as a 

proposition in that system.

     But he also stated that “. . .as to subjective [formalistic] mathematics, it is 

not precluded that there should exist a finite rule producing all its evident 

axioms” (Feferman et al. 1995, p. 11). That is, Platonistic mathematics, as 

mathematics proper, is non-algorithmic in part because it contains true 

propositions not demonstrable within that system. It contains those true 

propositions of which we have a non-algorithmic insight but which are not 

demonstrable.

     On the other hand, even though subjective formalist mathematics may 

have a finite rule [algorithm] producing all its evident axioms, Gödel stated 

(same source): 

“we with our human understanding could certainly never know it to be such. . .we 

could never know with mathematical certainty that all propositions it produces are 

correct.”
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We would not know this precisely because the consequence concerning 

the consistency of the axioms would constitute a mathematical insight not 

derivable from the axioms and rules of the system.

     In at least these instances, Gödel has most effectively stated that 

mathematical insight is not the product of an algorithmic process. He has 

further demonstrated an inconsistency between formalist and Platonistic 

mathematics.

Implications of Non-algorithmic Insight to a Science of Intelligence 

Based on the above, there are significant ontological, epistemological, and 

natural intelligence questions to ask. Gödel’s consistency theorem has been 

thoroughly examined many times since 1931 by foremost mathematicians 

and logicians in the world. None has had any significant objections to his 

proof.

     Assuming that Gödel has in fact shown that mathematical insight in his 

consistency proof is non-algorithmic, how do we explain it? Clearly, if that 

non-algorithmic insight is there, that alone shows the inconsistency between 

Platonistic and mechanistic mathematics, disproving the mechanical view of 

the mind.

     It also has tremendous significance to our concept of our own natural 

intelligence. That is, our knowing that the corpus of formal mathematics is 

incomplete even while we cannot prove that it is, somehow at least in part 

resides in us rather than in those axioms, theorems, and deductions, a “proof 

for the record,” (Devlin, 1997) that we may try to represent 

alphanumerically on paper.

     There is the additional epistemological question that must be asked. 

What is the nature of that mathematical knowing which permits our minds to 

transcend all that can be gotten from a precise step by step procedure and all 

that is written down or somehow represented alphanumerically in a proof?

Other Mathematical Sources of Non-algorithmic Intelligence 

In some ways, this non-algorithmic element is also found in other 

mathematical problems. One such problem is the famous Berry paradox 

involving the paradox of naming the unnameable. We run into such 

problems when faced with immense and other numbers such as the googol

and the googolplex. Even though immense numbers are finite and countable, 

they are nonetheless clearly unnameable for human beings where “naming” 

is defined in its constructive sense as a description. In that sense, a name is a 

linguistic, alphanumeric, or some other symbolic representation or label, of 

an object.
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     Though we conceive of and reason perfectly well with immense 

numbers, there is no way we can alphanumerically represent or 

linguistically label, that is constructively name those numbers. More to the 

point, they cannot be handled even in principle by the most sophisticated 

digital or super-digital computer imaginable.8

     Again, how do we explain the non-algorithmic element of the mind 

which permits it to “see” or know a truth that cannot be proved and permits 

it to reason with numbers it cannot even name?

     Penrose and Hameroff have turned to an analysis of the behavior of the 

cytoskeletal microtubule (Langton 1989) with Penrose in particular seeking 

a quantum theoretical explanation he calls Objective Reduction (Penrose 

1994). Since I am addressing Penrose’s arguments for an Objective 

Reduction elsewhere, I will not speak to them here. Though I believe his 

may be one of the most promising approaches to explaining the physical 

sources of this element of the mind’s know how, I also believe there are 

fallacies in his effort, not the least of which may be the genetic fallacy.

5.2 Problems with Representation Theories Revisited

I have argued elsewhere (Estep 2003) that an explanation of how the mind 

handles such large numbers and gödelian type proofs rests on a more 

comprehensive theory of knowing than heretofore found in the philosophical 

literature.

     That theory of knowing must be built upon principles of an emergent 

natural realism which fundamentally rejects much of the current nominalism 

one finds pervading philosophy and the sciences concerned with mind, 

brain, and cognition.

     Though there are varieties of nominalism, it is essentially the ontological 

and epistemological view which explicitly or implicitly holds: (a) there are 

no real objects [abstract and/or spatiotemporal]; (b) if there are objects, they 

do not exist independently of our experience or knowledge9 of them; and (c) 

there are no universals, such as properties and relations which exist 

independently of the language with which we describe them.

     With respect to theories of knowing, this view boils down to various 

kinds of representation theories in which knowledge is knowledge 

representation. Though nominalism fundamentally holds that there must be 

                                                     
8 For an interesting discussion involving these numbers and their relation to an emergent 

theory of mind, see Scott 1995.
9 The concept knowing as a different and distinct cognitive relation from the concept 

knowledge is not recognized by nominalists.
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a language interface between our cognitive powers and the world, in its 

stark form the view is that there is only that interface. A language interface 

is some kind of alphanumeric code or symbol system.

     Paraphrasing Frege, nominalists consistently confuse a symbol of or 

about some thing with the thing it is a symbol of. One consequence of this 

has been to relegate concepts such as immediate awareness and a more 

primitive nonrepresentational concept of naming to the conceptual trash bin 

or to stipulatively redefine them as noncognitive.

     Though we have witnessed recent efforts to correct this with an emphasis 

upon enaction, bodily movement, and visual thought processes, from the 

standpoint of scientific inquiry, it appears we are still unwilling or unable to 

recognize the price to be paid.

Naming, Indexes, Classification, Sets, Kinds and Types

The concept naming has both a constructive and non-constructive sense. 

The constructive sense is the one with which we are all familiar. Essentially, 

it is a definite description of an object, including the use of proper names 

such as “Mary” or “John.” This is the language use of the term. However, 

there is the non-constructive sense which is not tied to any alphanumeric, 

linguistic, or other symbolic representation or function, though it is clearly a 

cognitive, indexical function. As we earlier noted, an index functions to 

point to an object. 

     In this non-constructive sense, “naming” refers to a primitive immediate 

awareness relation of a subject to an object in which one “points” to [that is 

primitively indexes] an object. Such a relation does not require an interface. 

     Indexicality presents problems to anyone who would map natural 

intelligence to computers or even theoretical structures. As we also earlier 

noted, most theoretical efforts to map the mind and its cognitive functions 

either to a computer or to theoretical structures intended to explain it rely on 

meaning representation languages to do so.

     Representations are sometimes viewed as analogous to “impressions” 

with causal, not cognitive links to one’s environment, and that the mind 

makes inferences from these representations.10 Among other problems, this 

view is subject to the same criticisms we raised earlier against the bogus 

process of abstraction and the use of a spurious sense of induction. 

     Certain meaning representation languages include, for example, Zadeh’s 

PRUF (1977, 1978), a meaning representation language which uses fuzzy 

                                                     
10 See Hilary Putnam’s criticism of this view in “The Dewey Lectures 1994: Sense, 

Nonsense, and the Senses: An Inquiry into the Powers of the Human Mind,” The Journal 

of Philosophy, Vol. XCI, Number 9, September, 1994.
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set theory and Test Score Semantics (TSS) for translating natural language 

expressions into PRUF. In PRUF, an entity generally is viewed as having 

the effect of inducing elastic constraints on a set of objects or relations in a 

universe of discourse.

     The meaning of an entity is identified with those constraints. However, 

meaning representation languages have been shown to be insufficient to 

characterize the semantics of cognitively functioning indexicals found in 

everyday natural language and in what human beings seem to naturally 

know how to do. Meaning representation languages fail in part because of 

recurring indexicality and because knowing how is not reducible to 

knowledge that.

 The occurrence of indexicality in natural languages and in common 

everyday knowing how is a primitive relation between subject(s) and 

object(s) in which the objects are unique. The term “uniqueness” means that 

these objects are not members of classes in that primitive relation between 

subject and object. As such, they are sui generis objects. 

     But what is a unique as compared to a class object and how is that related 

to representation theories? We should again clarify what a representation is. 

A representation is a classification by use of an alphanumeric symbol or set 

of these denoting some thing or set of things. It is a proposition about or of

something, a that-clause, which is a classification. The concept of 

classification includes kinds and types. Kinds and types are categories of 

classifications. And classes are categories.

     Fundamentally, categories, classes, sets, kinds, and types11 involve 

extension. That means they are all quantitative in nature. They all fall into 

the broader category extended, thus the use of the universal and existential 

quantifier in an alphanumeric calculus or language [representation] about 

them. A representation just is an alphanumeric code or language of some 

kind, usually unary, binary, denary [for computer programs].

     In computer programs these are used to represent declarative sentences 

(knowledge that, i.e. “that” clauses), where the word “sentence” here has a 

technical meaning12 required for computer programs.

                                                     
11 Generally speaking, nominalists reject the existence of classes and concepts. However, 

deferring to kinds and types does not avoid the issue. The accepted hierarchical order of 

these concepts is: category, class, kind, type. Sometimes ‘set’ is used interchangeably 

with ‘class’. They all belong to a broader category, extended or quantitative. The latter 

term is used because of the use of universal and existential quantifiers to bind variables 

substituted for terms. A class is the extension of a concept, such as the class of extended 

objects itself.  
12 The term ‘sentence’ here means a mathematical sentence made up of variables (x,y,z),

quantifiers (  for ‘all’ and  for ‘there exists’), connectives (~ for ‘not’, & for ‘and’, 

for ‘or’,  for ‘implies’), and mathematical symbols such as ‘=‘, ‘+’,’-’, ‘ ‘, ‘0’,’1’, and 
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     The basic unit of these codes or languages is (usually) either 1s, or some 

combination of (sequences of) 1s and 0s. But what are 1s and 0s? Numbers 

are classes or sets.13 Again, what are types and kinds? These are themselves 

categories of classifications. Computational processes are classification 

processes.

     Unlike highly context-sensitive and elastic human and animal 

intelligence which handles unique objects, machine intelligence only 

classifies class objects. Even though situation theory (Barwise and Perry 

1983) was developed to account for context-dependent information not 

necessarily tied to linguistic representations, it nonetheless relies on 

representational [class] concepts to provide an interface. This in turn fails to 

account for non-algorithmic knowing or insight of the kind we see in 

gödelian type proofs.

     One way or another, in nominalist-inspired representational approaches, 

the appeal is to an interface, to classes, types, kinds, and a principle of 

similarity or association tying things together which fall under or into them. 

Regarding situation theory, “information is always taken to be information 

about some situation. . .” (Devlin 1997).

     In sum, representation theories can only deal with class objects. By 

definition, these are objects which have already been classified, where they 

have been sorted14 according to some rule of similarity [with other objects of 

a class, kind or type]. To sort things by some similarity rule means to sort 

them in terms of properties or predicates those things have in common with 

other things of a class or kind.

     But the human mind not only sorts objects in its experience in terms of 

properties or predicates things have in common. The human mind also 

sometimes selects an object in spite of properties that object may have in 

common with others in a class, kind, or type. It sometimes selects an object 

because it is unique, it is “unlike any other” in spite of properties it may 

have in common with others of any kind, type, or class.

                                                                                                                         
‘>‘, and parentheses. A sentence is distinguished from a formula in that a sentence has no 

free variables, they are all bound by quantifiers. ‘First-order’ means that quantification is 

over elements of the set and not over the subsets. Gödel coding can be done by assigning 

distinct positive integers to each of the basic symbols of the language, then to get a gödel 

code number for a given sentence one takes the product of successive prime powers, 2e1,

3e2, 5e3. . .pi
ei. . .pn

en where pi is the ith prime and ei is the integer assigned to the symbol 

occurring at the ith place in the sentence.
13 I am using the term ‘class’ here as synonymous with ‘set’.
14 I am using the term ‘sort’ here in the sense of classifying (or assigning a kind or type to) 

something. Sorting does not have to be tied necessarily to explicit linguistic, alphanumeric, 

or other signs or forms. Where it is not used in the sense of classifying, the word ‘select’ is 

often used. 
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     I have elsewhere (2003) argued that “unlike any other” also cannot be 

gotten from identifying differences among objects. Identifying differences 

would still be merely another classification in terms of identity (or 

sameness) relative to properties or predicates. There is a real sense in which 

we know sui generis objects which are unique, unlike any other, in spite of 

properties the object has in common with or is different from others of a 

kind, type, or class. 

     I have also argued in the same source that it is precisely this kind of 

knowing the unique which is embedded in mathematical know how which 

permits the mind to transcend explicit, alphanumerically formalized step by 

step procedures, algorithms, as well as deal with numbers it cannot even 

name.

5.2.1 Classification and the Nature of Sui Generis Objects of 
Immediate Awareness 

An understanding of immediate awareness and sui generis objects hinges 

on an understanding of what it means to classify something. This 

understanding must come by way of both ontological and epistemological 

analysis of primitive cognitive levels. 

     Again, classification requires the use of language, some kind of types 

or tokens of alphanumeric symbols or representations used to denote sets 

of things. When one classifies some thing, what one is doing is sorting that 

thing from other things based upon a set of criteria, usually a set of 

properties or traits, taken to define the members of a class. The very 

notion of “class” is defined as a set, group, or configuration containing 

members seen as having certain traits in common (American Heritage 

1993).

     Thus the very act of classifying or sorting some thing as a member of a 

class, means that thing is sorted based upon traits it has in common with 

others. It is sorted based upon a principle of similarity among properties. 

Thus it is a class object to the one doing the selecting or sorting. It is not a 

sui generis object. 

     A sui generis object, on the other hand, is a unique object. It is selected 

not on the basis of properties or traits in common with others, but in spite 

of properties or traits it may have in common with other objects. As such, 

in that relation, a sui generis object is not a member of a class. Moreover, 

sui generis objects are not selected based on difference. Sorting a thing by 

picking out properties that make it different is just another way of sorting 

by similarity, which is classification.

     Understanding what a sui generis object is cannot be gotten from 

reading a dictionary meaning of the term because of the contradictions 
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found in the meaning there. Any standard English dictionary will states 

that “sui generis” means “Being the only example of its kind, unique. 

[Lat. Sui generis: sui, of its own + generis, genitive of genus, kind]” 

(American Heritage 1993).

     But strictly speaking, it is a logical inconsistency or contradiction to 

claim that something can be “the only example of its kind.” That is 

because a kind or class requires that there be more than one thing sharing 

properties or traits in common by virtue of which they are sorted or 

classed as “of a kind or class.” There cannot be a single thing that is or has 

its own class or is its own kind.

     There is an obvious tension if not outright contradiction inherent in the 

English language meaning of “sui generis”. This is no doubt due to 

centuries of the influence of nominalism and representationalism, the 

“usurpation of metaphysics by language” lamented by James (1884).

     But strictly speaking, sui generis objects in an immediate awareness 

relation with a subject do not belong to any kind or class. They are 

selected by a subject precisely because they are unique and are of no kind 

or class in that immediate relation with the subject. 

     Because sui generis objects in the immediate awareness relation are not 

class objects, they are not linguistic objects either. As such, they cannot be 

reduced in any way to objects of knowledge by description. The immediate 

awareness knowing of such objects is knowing the unique. Immediate 

awareness is called “non-classificatory” precisely because the object in the 

Subject-Object immediate awareness relation is sui generis. It is an 

entirely unique object to the subject in that relation.
     Some cognitive scientists and researchers object to the use of the word 
“object” to refer to these. Their objections rest largely on the claim that 
these objects do not exist in the material world, hence they are not “real.” 
If they are not found within the structures of the brain somewhere, then 
they do not exist, so the argument goes. 
     However, these objects are very real to subjects; they are in immediate 
relations with subjects and have direct affect upon their intentional and 
intelligent behavior. Moreover, they are not “figments” of the imagination 
either, but are in many instances necessary for survival. They are found 
spanning the entire cognitive domain from the preattentive to the fully 
attentive, conscious phases of intelligent activity, especially within the 
structures of knowing how.

5.3 Phenomenal Experience and Mathematics 

I take functions to be mappings in the mathematical sense as sets of ordered 

n-tuples. But even where we are discussing linguistic grammatical 
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meanings, it is clear that these are kinds of cognitive structure present in 

thought, hence they cannot literally be mathematical functions, though this 

appears to be a major assumption underlying meaning representation 

languages such as those referenced above. Meaning representation 

languages assume language expressions, including indexicals, can be 

reduced to mathematical functions. 

     Taken literally, this assumption means the following: In a context C or 

situation S about a domain U of entities there is always a function i mapping 

the set T of singular terms (or “infons”) used in C or S to the entities in U:

i :  T, C U (5.1)

     The function i posited is constituted by the syntactical and semantical 

meanings of T, (and in the case of natural language sentences asserting 

propositions, the function can be assumed to be constituted of fuzzy or 

classical truth-values).15 Each meaning t in T: C U. That is, the 

syntactical-semantical meaning of an expression, including the cognitive 

content of an expression, is a function that maps contexts [of speech or 

meaning] into [speech or meaning] contents.

     Clearly, functions such as this are operative in veridical thinking, as 

found in scientific theories. And as Castañeda notes it may also be 

appropriate for formal semantics or those concerned with issues of 

veridicality to ignore the cognitive mechanisms, such as primitive indexicals 

or non-constructive naming, that actualize the mappings.

     But those concerned with apparently non-algorithmic cognitive activities 

of the mind, and ultimately the indexicals found even in natural languages 

themselves, cannot ignore those mechanisms. Otherwise, one makes the 

mistake of assuming that human intelligence, understanding and knowing 

consist only in those conditions under which intelligence, understanding and 

knowing can be verified.

     For example, even in a natural language context or situation, the function

i in the above must be understood in the following way: In a natural 

language context C, there are factors which we might assume cause the 

thinker/speaker to think the (one) appropriate functional value in that 

situation or context.

     However, the thinker/speaker does not think the function itself.

Interpretive functions i are external to the cognitive relations or content of 

thinking (Castañeda 1989, p. 141), though they are obviously needed in 

                                                     
15 For more discussion of assumptions underlying set-theoretical approaches to semantics, see 

Castañeda, 1989.
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theories of the processes of thinking and veridicality. What Castañeda is 

actually referring to here is the error mentioned earlier, paraphrasing Frege, 

of mistaking a symbol of or about something for the thing it is a symbol of. 

Demonstrating the Problem with Indexicals 

Castañeda presented an interesting demonstration to show that a basic 

interpretive function may fail to operate in illusory linguistic and conceptual 

experiences. Such experiences are found in such everyday expressions as 

someone pointing in the distance and saying to a friend, “That tiny dot over 

there in the distance is Martha’s house.” 

     Though a functional argument is available for this sentence, the 

functional value is missing. It is missing because the properties of a white 

dot are found in the speaker’s subjective phenomenal experience; they are 

not found in “Martha’s house.”

     That function cannot be cognitive content and neither can it be the same 

as linguistic (grammatical) meaning. The fact is, there is no objective 

proposition that is the external target of that statement, even though the 

natural language speaker who says it speaks and thinks demonstratively 

(i.e., indexically). The speaker non-constructively names an object. 

     The statement expresses a kind of discounted illusory meaning. The 

speaker knows that the tiny dot in the distance is not literally Martha’s 

house. Moreover, though the hearer understands perfectly well what the 

speaker has said, it does not follow from his/her statement that Martha lives 

in a tiny white dot. The statement is cognitively meaningful even though it 

includes a discounted illusory meaning. And neither the speaker nor the 

hearer makes an obvious inference from it. 

     What is needed to explain non-algorithmic insight found in gödelian type 

proofs is an emergent natural realist account of indexicality, subject 

phenomenal experience, including an account of discounted illusory 

meaning, and immediate awareness.

     It also requires retroduction, a form of reason that goes beyond simple 

deduction and induction. This view rejects the nominalist principle of the 

necessity for an interface between mind and world. Moreover, it does so 

without committing the fallacies of an earlier traditional metaphysical 

realism, or those genetic and other fallacies of contemporary 

postmodernism.

     A fully developed theory of natural realism would provide a 

classification of primitive indexical relations between Subjects and Objects, 

where the latter include unique objects. Obviously, it also requires a non-

reductionist, emergent theory of mind and knowing in which our perceptual 
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and conceptual powers are continuously and dynamically extended by 

indexical means.

Retroduction, Reality and Non-algorithmic Insight 

Retroduction16 is a form of inference used to generate ideas, hypotheses, not 

deduce them from prior ideas or statistically verify them. Peirce (1839-

1914) originally recognized and named this form of inference and later 

proposed as a logic of scientific discovery (Hanson 1972). It is a form of 

reasoning about states of affairs for which one does not yet have an 

explanation. Peirce also called retroduction Hypothetic Inference and 

described it as follows: 

“When one contemplates a surprising or otherwise perplexing state of things . . .he 

may formulate it into a judgment. . .he will often finally strike out a hypothesis, or 

problematical judgment, as a mere possibility, from which he either fully 

perceives or more or less suspects that the perplexing phenomenon would be a 

necessary or quite probable consequence. . .That is a retroduction” (Peirce Vol. 8, 

1931-1958, pp. 227–231). 

     Retroduction takes the following form: (1) The surprising phenomenon C 

is observed; (2) But if A were true, C would be a matter of course; (3) 

Hence, there is reason to suspect that A is true. 

     Though retroduction has been criticized as possibly committing the 

fallacy of affirming the consequent, that criticism is actually misdirected. 

Strictly speaking that fallacy applies to deductive arguments, not 

retroductive (or inductive) arguments. The very wording of retroductive 

form indicates that the conclusion is hypothetical; it is not certain as 

deductive conclusions are. 

     In many respects, retroduction can be a kind of rigorous reasoning by 

analogy. Peirce considered it the most important of the three17 kinds of 

logical inference because it was the only one that “opens up new ground.” 

     For example, though far more complicated than the simple retroductive 

form above, Russell utilized retroductive inference (not in the above 

sequence) to reason about the scope of all possible human experience and 

the scope of all possible mathematical facts in order to compare the two. 

He (1903) reasoned as follows: the number of functions of a real variable 

[a real number on the real number line] is infinitely greater than the 

number of moments of time. Even if we could live forever and spent the 

entire eternity of the universe thinking of a new function every single 

                                                     
16 Retroduction was also referred to as ‘abduction’ by Peirce.
17 The three kinds of inference are deduction, induction, and retroduction.
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instant, there would still be an infinite number of functions which we 

cannot have thought of. There would be an infinite number of facts which 

cannot enter our experience. Thus the scope of mathematical facts is 

greater than the scope of possible human experience. 
     His reasoning demonstrates the limited scope of human experience as 
compared to the broader scope of mathematical functions of a real 
variable. That broader scope of mathematical functions contains an infinite 
number of real objects, functions, whose reality does not depend upon 
human existence. 
     Moreover, building on Russell’s argument and recalling earlier 
arguments against the “language thesis,” (that numerosity is causally 
dependent upon language) we may wish to consider the relation that 
names and descriptions have to those infinite functions which “we cannot 
have thought” and which “cannot enter our experience”. How do we name
those functions and how do we describe them? How do we even have a 
concept of those functions which “we cannot have thought” of in the first 
place?

     To make this problem very concrete, we might follow Rucker’s (1982) 

analysis of the Berry Paradox and ask ourselves questions of the following 

kind: What is the smallest natural number that cannot be described (or 

named) to a person in words? If we assume there are numbers that cannot 

be described to a person in a lifetime—or even in the entire life of the 

universe— and if we assume there is a least such number, call it u0, it 

appears that we have just described (named) a particular natural number 

called u0.

     But u0 is supposed to be the first number that cannot be described 

(named) in words. That is, we’re left with an apparent paradox which 

points to the cognition and existence of mental concepts which cannot be 

named or formalized. Can we nonetheless be said to know such objects? 

     To understand these issues, we must also understand nonlinguistic 

indexicality, immediate awareness, rational forms of inference beyond 

deduction and induction, and the part all these play in our overall natural 

intelligence.

5.3.1 Perception and Mathematical Objects

In a famous essay, Gödel drew an analogy between sense perception and 

the perception of abstract objects of mathematics. Though this analogy has 

been extensively commented upon, we might take yet another look at what 

Gödel had to say. 

“But, despite their remoteness from sense experience, we do have something like a 

perception also of the objects of set theory, as is seen from the fact that the axioms 
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force themselves upon us as being true. . .it seems that, as in the case of physical 

experience, we form our ideas also of those objects on the basis of something else 

which is immediately given. .” (Gödel 1964b). 

     At least two things are clear in this statement. First, he distinguishes 

between sense perception and the perception of abstract objects of set 

theory. Second, as with sense perception, we experience the objects of set 

theory based upon something immediately given. 

     His reference to the “immediately given” makes clear his differences 

with Russell and others regarding reliance upon language-based 

assumptions. He later explained in more detail what he meant by the 

“immediately given.” 

“Evidently, the ‘given’ underlying mathematics is closely related to the abstract 

elements contained in our empirical ideas. It by no means follows, however, that 

the data of this second kind, because they cannot be associated with actions of 

certain things upon our sense organs, are something purely subjective. . Rather 

they, too, may represent an aspect of objective reality, but, as opposed to the 

sensations, their presence in us may be due to another kind of relationship between 

ourselves and reality” (1964b, pp. 271-2). 

     We should certainly ask what Gödel meant by “the ‘given’ underlying 

mathematics is closely related to the abstract elements contained in our 

empirical ideas.” Just what those “abstract elements contained in our 

empirical ideas” might be, he did not say. However, we should look at 

Gödel’s comparison between the formation of ideas of physical objects 

and the formation of ideas of abstract objects.

     We also need to understand his statement that though mathematical 

intuition need not be conceived as a faculty giving an immediate

knowledge of mathematical objects, we form our ideas of these objects on 

the basis of something which is immediately given.

     That something, however, is not the sensations which are the data for 

our formation of ideas of physical objects. Moreover, he says that by our 

thinking we cannot create qualitatively new elements but only reproduce 

and combine those that are given.

    Gödel has been criticized for not stating what plays the role of data in 

the case of mathematics (Feferman et al. 1990). But he has stated that it is 

not sensations. Moreover, he gives us an idea of the data he’s referring to 

as follows: That something besides the sensations actually is immediately 

given follows (independently of mathematics) from the fact that even our 

ideas referring to physical objects contain constituents qualitatively 
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different from sensations or mere combinations of sensations, for example 

the idea of object itself (Benacerraf, 1964, p. 271).18

     We can get an idea of the data Gödel is referring to by looking at 

constituents “qualitatively different from sensations or mere combinations 

of sensations” such as the idea of object. For purposes here, I want to 

focus upon properties and relations as the given which we use to form our 

ideas of abstract mathematical objects.

     This is consistent with at least part of Russell’s approach, though his 

view and Gödel’s on the reality of the objects recognized will differ for 

reasons which we might briefly explore. This will require that we look at 

Russell’s analyses of the paradoxes of set theory and his proposed 

solutions, as well as Gödel’s arguments against them, specifically against 

Russell’s no-class theory. These have been thoroughly investigated by 

others, but our efforts will be to clarify the issues and remaining questions 

relative to the recognition of objects of set theory.

5.3.2 The Reality of Sets and Concepts 

We may note that Gödel’s realism extended to both sets (as characterized 

in axiomatic set theory) and to concepts. Concepts are the properties and 

relations of things existing independently of our definitions and 

constructions. Thus these properties and relations are real and exist 

whether we can name them or not. Parallel with the concept “object” is 

Gödel’s concept of “set” which he explicates as follows (Benacerraf 1964, 

p. 262n):

“The operation ‘set of x’s’. . . can only be paraphrased by other expressions 

involving again the concept of set such as: ‘multitude of x’s’, ‘combination of any 

number of x’s’, ‘part of the totality of x’s’, where a ‘multitude’ (‘combination’, 

‘part’) is conceived as something which exists in itself no matter whether we can 

define it in a finite number of words (so that random sets are not excluded.”

     The last comment would indicate that for Gödel there are real objects 

extending beyond our capability to name or formalize them in any 

language. Thus, any formal system we have is incomplete, but we are also 

left with questions regarding the limits of naming objects, including 

concepts, which we nonetheless can (in some sense) think. We are left 

with the issue of how we come to know such objects.

                                                     
18 In contrast, for Russell it is sense data that are immediately given in the acquaintance 

    relation; an “object” is an inference from sense data. 
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     Assuming that sets and concepts are real, how might Gödel explain our 

forming ideas of those objects? Gödel requires a consideration of 

properties and relations of the object that involves a totality of properties 

and relations to which they belong, as well as a relation between a subject

and those properties and relations of the object (as well as the totality to 

which they belong).

     That is, he supports what is called an impredicative theory. These are 

theories that permit quantifiers over a universe of sets of things, including 

(implicitly) the set being defined. Some critics have charged that 

impredicative theories are circular, but their criticisms have not been 

supported.

     Gödel’s support for an impredicative theory is tied to his arguments 

regarding Russellian paradoxes of set theory and the vicious-circle 

principle. Russell had shown as a result of analyzing the paradoxes of 

Cantor’s set theory that our notions of “truth”, “concept”, “being”, and 

“class” are self-contradictory. He concluded that the problem was the 

axiom assuming that for every propositional function there exists a class 

of objects satisfying it, or that every propositional function exists as a 

separate entity. “A separate entity” means something separable from the 

argument (that is, that propositional functions are abstracted from given 

propositions).

     The question is if we reject the existence of a class or concept in 

general, how do we determine under what further hypotheses such entities 

exist? Russell’s strategy was the “no-class” theory in which classes or 

concepts never exist as real objects.

     Thus, sentences containing these terms are meaningful only if they can 

be interpreted as “a manner of speaking” about other things (Gödel, 

1964a, p. 217). To some extent, this was Russell “throwing in the towel” 

on mathematical realism and adopting a nominalism that Gödel held to be 

largely destructive of mathematics. 

     In response, Gödel set forth several arguments against Russell’s vicious 

circle principle. He argued that neither the formalism of classical 

mathematics nor the formalism of Russell’s own Principia Mathematica 

satisfy the vicious circle principle (in its first form).

     The axioms in the formalism of classical mathematics imply the 

existence of real numbers definable in the formalism only by reference to 

all real numbers.

“And since classical mathematics can be built upon the basis of Principia

(including the axiom of reducibility), it follows that even Principia (in the first 

edition) does not satisfy the vicious circle principle. . .” (Gödel 1964a, p. 210). 
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     Moreover, one can deny that reference to a totality implies reference to 

all single elements of it. That is, one can deny that “all” means the same 

thing as an infinite logical conjunction. Though there may be problems 

with this, Gödel suggests that if one takes “all” to mean analyticity, 

necessity, or demonstrability, the circularity of impredicative definitions 

disappears.

     But even if “all” does mean an infinite conjunction, he argues that the 

vicious circle principle applies only to entities we construct. In that case, 

there must be a description [definition] of the construction which does not 

refer to a totality to which the object defined belongs because the 

construction of a thing cannot be based on a totality of things to which the 

thing to be constructed itself belongs.

“If, however, it is a question of objects that exist independently of our 

constructions, there is nothing in the least absurd in the existence of totalities 

containing members, which can be described (that is uniquely characterized) only 

by reference to this totality” (Gödel 1964a).

     Moreover, he argues that this would not contradict the second form of 

the vicious circle principle since one cannot say that an object described 

by reference to a totality “involves” this totality, although the description 

does. Additionally, it would not contradict the third form of the vicious 

circle principle “if ‘presuppose’ means ‘presuppose for the existence’ not 

‘for the knowability’”. 

     Gödel concludes from his arguments that Russell’s vicious circle 

principle, on which his “no-class” theory depends, applies only to the 

constructivist or nominalist position regarding the objects of mathematics 

and logic, particularly toward propositions, classes, and notions. ‘Notion’ 

is understood as a symbol together with a rule for translating sentences 

containing the symbol into sentences not containing it, such that a separate 

object denoted by the symbol “appears as a mere fiction”.19

     Contrary to Russell’s no-class theory and the efforts to render 

impredicative definitions impossible, leading to talk of classes as “mere 

fictions,” Gödel’s critique of Russell’s arguments show that classes and 

concepts may indeed be conceived as real objects. The term “real” here 

                                                     
19 Gödel states that the concept of “notion” may appear to involve one in an infinite 

regress. However, he states that this does not preclude the possibility of maintaining this 

[Russell’s] viewpoint for all the more abstract notions, such as those of the second and 

higher types, or for all notions except the primitive terms.
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means existing objectively and independently of persons, and objectively 

and independently of language. 

     On Gödel’s realistic account, a recognition of a mathematical object, 

say a set, would seem to require first of all a perception (or thinking) of 

elements and relations—a multiplicity—which is perceived (or thought) as 

a unity. In some sense, this would also appear to be entirely consistent 

with Cantor’s definition of a set as “. . .a Many which allows itself to be 

thought of as a One” (Cantor 1932).

     Cantor later defined this in the following way: “By a ‘set’ we mean any 

gathering into a whole M of distinct perceptual or mental objects m (which 

are called the ‘elements’ of M)” (Cantor 1932, p. 282). For both Gödel and 

Cantor, sets exist whether anyone ever perceives or thinks them. The set 

M, consisting of +  ordinals, exists whether humans can perceive or 

think M or not. Thus, a set is the form of a possible thought [of a 

multiplicity as a unity]. 

     It would also seem that forming abstract concepts of mathematics, say 

forming membership relations among sets, requires knowing how to

perform a set operation, in addition to knowing a form of a possible 

thought [of a multiplicity as a unity]. Thus, forming abstract concepts of 

mathematics includes many levels and kinds of knowing.

5.3.3 Intersubjective Requirements of Mathematical Thought 

In spite of or because of the continuing debate between mathematical 

realists and postmodernists on the origin and nature of mathematical 

thought and ideas, the ideas of mathematics must meet rigorous standards 

to be accepted by mathematicians themselves as well as the rest of the 

world. Regardless of the origins of mathematical ideas, their formal 

expression and use must meet agreed upon standards that can be repeatedly 

tested and subjected to intersubjective scrutiny.

     Given its foundation in logic (at least in part) and analytic nature of all 

of mathematics, there are consistency as well as coherence requirements 

that any mathematical idea must meet. Moreover, the pragmatic 

requirement as well must be met.

     That pragmatic requirement has consistently been met over centuries 

when mathematical ideas, theorems, concepts are objectively and 

repeatedly tested, both in abstract problems as well as in applied empirical 

problems in demanding fields such as physics, chemistry, biology, and 

engineering sciences, among others. These ideas, concepts, theorems, and 

principles not only get tested out in mathematics proper. As noted, they 

also get tested out in other disciplines as well.
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5.4 Summary 

We investigated the relation between awareness and universals by closely 

analyzing arguments regarding the origins and nature of mathematical 

ideas and thought in this chapter. We surveyed a number of opposing 

positions.

     As we saw, Lakoff and Núñez argue that the body shapes the 

development and content of mathematics. They sought to find the 

explanation for the origins of mathematics in their notion of “embodied 

mathematics.”

     Among other things, the authors’ questionable use of “conceptual 

metaphor” at the level of the sensorimotor system seems to beg many 

questions. Unlike the literary definition of “metaphor” the authors claim 

that conceptual metaphor is a basic cognitive function and that it is by 

means of this function that mathematical ideas arise.

     We raised a number of questions that Lakoff and Núñez either do not 

address at all or do not adequately address with factual evidence. We 

questioned what “conceptual metaphor” as a process or mechanism 

amounts to. We also questioned whether or not there is an empirical basis 

in neurological science to support that such a process at the level of the 

sensorimotor system exists. Though the authors say that it functions to 

“project embodied reasoning” of the sensorimotor system to abstract 

reasoning, this must itself be a metaphorical use of the term “reason.” The 

sensorimotor system does not reason in any understandable sense of that 

word.

     Additionally, we questioned what the notion of “projection” amounts 

to. The authors do not adequately explain this and there appears to be no 

empirical evidence in the neurological sciences to support the authors’ 

assumption that conceptual metaphor as a function at the level of the 

sensorimotor system exists. Moreover, even if it does exist, their concept 

of metaphor already entails the explanation they seek.

     Among other things, their arguments are characterized by a 

fundamental genetic fallacy and wholesale fallacious biological 

reductionism, along with a great deal of ambiguity and equivocation. It is a 

relativistic postmodern view born of nominalism and conceptualism. 

     We also assessed the language causal argument which holds that the 

genetic language centers in the brain are the causal determinants of 

mathematical thought. This is also a biological reductionist and 

determinist argument. The evidence from many sources, however, does 

not support this position.
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     Indeed, neuroimaging experiments show that the doing of mathematics 

activates portions of the brain that are far from the language centers; 

indeed much of the fMRI evidence arguably shows that mathematical 

doing activates areas of the brain that even work in opposition to the 

language centers. Certain of the arguments advocating that position are 

likewise fallacious in that they inevitably appeal to spurious abstractionist 

or inductivist arguments that beg the question at issue.

     We also assessed arguments regarding neural substrates underlying 

mathematical doing, in particular those parts of the brain activated during 

kinds of deductive reasoning as in theorem-proving. A number of fMRI 

studies have shown that it is the visuo-spatial parts of the brain that are 

activated, not those having to do with language processing. Evidence 

suggests that deductive reasoning is based on spatial representations and 

processes, corroborating the mental model theory of reasoning.

     We then assessed lengthy realist arguments for mathematical realism, 

drawing upon complex arguments from Bertrand Russell as well as Kurt 

Gödel, among other notable mathematicians. 

     Though Gödel’s theorems have been and continue to be analyzed among 

the world’s foremost mathematicians and other scholars, his proof with the 

Second Theorem showed that no well-defined system of correct axioms can 

comprise all of objective [Platonistic] mathematics because the proposition 

stating the consistency of the system is true but not provable in that well-

defined system. Hence it is not included as a proposition in that system.

     This proof has tremendous significance to our concept of our own natural 

intelligence. Among other things, we can raise questions regarding our 

knowing that the corpus of formal mathematics is incomplete even while we 

cannot prove that it is. If Gödel’s proof is correct, that knowing proves a 

kind of non-algorithmic intelligence that somehow resides in us rather than 

in those axioms, theorems, and deductions that we may try to represent 

alphanumerically on paper.

     These results, of Gödel’s proofs as well as supported arguments as to 

their significance, at once support a realist theory of mathematical thought 

and ideas (as opposed to postmodern biological reductionist theory) and 

disproves the language causal argument as well. 

     However, we also argued that the origins of such ideas are not 

necessarily the most scientifically significant thing about them. We argued 

that whatever the origins of mathematical ideas, their formal expression 

must meet agreed upon objective standards that can be repeatedly tested 

and subjected to intersubjective scrutiny. They must “test out” in the real 

world. Mathematical ideas are the basis for all our knowledge, and all the 

most advanced knowledge-generating research in the world, providing 

forms for our laws and law-like statements.
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     I argued as well that an explanation of how the mind handles gödelian 

type proofs and large numbers that appear to defy our ability to even name 

them rests on a more comprehensive theory of knowing than found in the 

philosophical literature.

     That theory of knowing must be built upon principles of an emergent 

natural realism which fundamentally rejects much of the current nominalism 

and biological reductionism one finds pervading philosophy and the 

sciences concerned with mind, brain, cognition, and intelligence. Among 

other things, it must incorporate the concept of non-algorithmic insight in 

the mind’s handling of sui generis objects as well gödelian-type proofs. It 

must also include nonlinguistic indexicality, immediate awareness, 

rational forms of inference beyond deduction and induction, and 

explanations of the part all these play in our overall natural intelligence.



6 Intelligence as Self-Organizing Emerging 
Complexity

Prevailing theories of natural intelligence focus upon where intelligence 

comes from and what it is made of instead of what it does. Above, we 

reviewed various arguments that general intelligence as well as particular 

kinds of intelligence, such as mathematical doing, is found in neural 

language centers of the brain. We showed those arguments are not 

supported either by the evidence or logic.

6.1 Categories of Natural Intelligence 

Substantial evidence in neuroscience, intelligence research, and fields such 

as kinesthetics demonstrates that there are at least three major categories or 

kinds of natural intelligence: verbal (referred to as knowledge that),

knowing how, and immediate awareness. Each of these activates different 

neural substrates of the brain. In some cases, there are overlapping 

activated substrates. But they are not all reducible to language centers nor 

are they reducible to one kind of intelligence.

     The intelligence of knowing how is self-organizing and emergent from 

structures spanning many levels of major parts of both the central nervous 

system and many levels of cognitive functions. At least certain of those 

structures, preattentive, I have grouped together with others and called 

“immediate awareness.” Preattentive structures are below the threshold of 

attention processes yet are cognitive. These structures arise from across 

the sensory and sensorimotor systems, though they have largely been 

empirically demonstrated in the visual system.

     Immediate awareness makes knowing how possible. Together, they are 

the most basic kinds of intelligence, underlying everything else in our 

rational behavior, including verbal intelligence.

     What natural intelligence is, from a biological point of view, is less 

significant than what it does. Living intelligent systems are made up of 

enormous numbers of cells that interact with one another, network 

together, moving, growing, reproducing and dying. This is true as well of 
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those cognitive components at all levels of the natural intelligence system. 

These large numbers of elements of intelligence, of different kinds of 

knowing, are also networked together, moving, growing, reproducing, and 

dying.

     A large body of neurological, psychological, physiological and 

epistemological evidence suggests that intelligence in all forms has to be 

understood as a function of such numerous interacting systems on many 

levels. Thus, a key ingredient of any theory of intelligence is an account of 

how those multiple component processes can be integrated and how large-

scale coherence can emerge within distributed self-organizing activity 

patterns.

     Moreover, there are highly complicated dynamic feedback systems 

both within the organism on many levels and interacting with the 

environment that make possible, among other things, the smoothly timed 

and executed tasks that human beings do every day. This includes the 

intelligence of a mathematician who immediately sees complicated but 

elegant proof patterns which he or she uses to tackle an enormously 

difficult theorem. It also includes a young child learning to recite a poem 

for the first time; or a young recruit learning how to fire an M16A2 on 

target.

     The major mistake prevailing single-capacity theories of intelligence 

make is to assume that the intelligence observed and experienced at the 

level of the entire human is caused by single (or a few) genes or neural 

clusters found in certain areas of the brain, such as the language centers. 

The pursuit of simple, direct chains of causality, however, has led to a 

narrow and fallacious theory of intelligence premised upon classical self-

fulfilling assumptions.

     In this chapter we will be concerned to set forth our approach to theory 

of self-organizing emerging natural intelligence by taking advantage of the 

best theory models. We will also look at some of the problems associated 

with devising theoretical means to measure and analyze the dynamics and 

information transmission occurring in natural intelligence networks. 

6.2 Self-Organization and Pattern Formation 

Self-organization refers to kinds of pattern-formation processes found in 

both physical and biological systems. Patterns in self-organizing systems 

emerge at global levels from large numbers of interactions among lower 

level components of those systems. Additionally, just to be technically 

precise, the rules or algorithms that characterize those lower level 

interactions are executed based on local information in a self-organizing 

system without reference to global patterns (Camazine et al. 2001). 
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     Patterns of self-organization emerge from the internal dynamic 

processes of a self-organizing system; they are not imposed on the system 

from any external source. That is, a self-organizing system is just that: it 

organizes itself without any instructions from outside itself. 

     Our concern here is with self-organization in living things, specifically 

self-organization in natural intelligence. We should also briefly compare 

properties of self-organization in physical (inorganic, mechanical) systems 

with those in biological systems. Self-organization in physical systems 

involves large numbers of components that are inorganic. For example, the 

grains of sand in a desert or chemicals in a reaction experiment. Compared 

to biological components, these inorganic components are relatively 

simple. They obey physical laws and their large number of interactions 

produces predictable deterministic patterns. 

     Biological systems also obey the laws of physics, but the mechanisms 

of self-organization in living things involve a much greater level of 

complexity precisely because the interacting components are living. 

Moreover, the rules governing the interactions of large numbers of living 

components also differ from physical systems in part because they are 

they are influenced by genetically controlled properties not found in 

physical systems (Camazine et al. 2001).

     Though incomplete in crucial respects, the difference between 

mechanical physical self-organizing systems and biological self-

organizing systems is driven home with the following: 

 “. . the subunits in biological systems acquire information about the local 

properties of the system and behave according to particular genetic programs that 

have been subjected to natural selection. This adds an extra dimension to self-

organization in biological systems, because in these systems selection can finely 

tune the rules of interaction” (Camazine et al. 2001, p. 13). 

     Fine tuning the rules of interaction is not an option available to self-

organizing physical systems. However, this description is incomplete at 

best. In biological systems interactions between components are 

minimally based upon information transfer as signals or cues. As noted 

earlier, signals are stimuli shaped by natural selection specifically to 

convey information, while cues are stimuli that convey information only 

incidentally.

     However, complex social environments may be intentionally designed 

with cues to deliberately, not incidentally, convey information. Again, 

teaching is one example of this. Moreover, with sufficient genetic 

engineering, signals originally shaped by natural selection can also be 

altered. They can be reshaped by human intervention. Because human 
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beings are also biological systems that are self-aware, they can and do use 

their intelligence to alter the rules of self-organization themselves. 

Emergence

The defining characteristic of self-organizing systems such as natural 

intelligence, is that the organization emerges from multiple (in some cases 

immense numbers of) interactions among their components.

     As with any organism, we must view natural intelligence, knowing, as a 

large population of simpler components which through time works 

upwards, synthetically constructing larger aggregates of rule-governed or 

rule-bound objects. 

     These objects interact nonlinearly with one another and with their 

environment in support of the overall life-like dynamics and emergent 

patterns and qualities of a natural intelligence system. The classical top-

down linear science approach to intelligence will entirely miss these 

Fig. 6.1. Levels of Awareness and Kinds of Intelligence
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properties. On the other hand, the self-organizing organismic theory model 

approach, which we will address later, is a bottom-up, highly distributed 

and massively parallel nonlinear view of knowing, of natural intelligence. 

     On the most primitive levels of natural intelligence, the interactions 

between the components generate emergent properties. The most primitive 

level of cognition is the preattentive phase of feature selection. At that 

phase of cognition, the living intelligent system selects primitive features 

such as color, shape, size prior to forming conjunctions of those features 

into objects. This is the level of “awareness of” as depicted in the above 

graph. Recall also that though these are examples of feature selection in 

the visual system, preattentive feature selection occurs across other sense 

modalities.

     The interactions among these features form the next level of cognitive 

structure in the natural intelligence system. Those system component 

interactions, at the level of “awareness that” in turn form the components 

and their interactions for the next higher level of cognitive organization, 

with different emergent properties. This process of generating levels of 

emergent properties based on interactions of components proceeds to 

higher levels of intelligence in turn, with each level manifesting its own 

self-organizing properties and emerging properties and their interactions. 

6.2.1 Interactive Systems and Self-Organization 

We earlier rejected classical reductionist explanations of natural 

intelligence. These arguments hold that understanding of a phenomenon 

can be gotten from analysis of its parts. Specifically, it is the view that 

descriptions of higher level processes and structures, such as intelligence, 

can only be explained in terms of descriptions of some lower level 

processes and structures. 

     The classical reductionist approach to natural intelligence, in which a 

single “cause” is identified to account for higher level phenomena, is 

opposed to self-organizing emergent explanations in part because of the 

radical reorientation required of the scientific methodological approach 

necessary. An emergent view of natural intelligence necessitates finding 

formal ways to handle very large numbers of components of data sets at 

all levels of the inquiry. From a purely mathematical point of view, these 

large numbers themselves can present challenging problems for any 

researcher.

     For example, even when intelligent organisms such as human beings 

seem to be doing relatively simple things, their interactions add up to 

unmanageable complexity very quickly. 
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Complexity

In general, complexity of a system can be defined as the amount of 

information necessary to describe it (Cohen and Stewart 1994). More 

specifically, complexity is the size of a problem measured by some natural 

number, n. Algorithmically, the number of steps an algorithm needs for 

particular problems (of a class of problems) would be some natural 

number N which depends upon n, the size of the problem (Penrose 1989, 

p. 141).

     A theory of natural intelligence has at least two kinds of complexity of 

a natural intelligence system to address. One is the complexity of the 

system itself; the other is the complexity of its development or growth in 

intelligence in an environment. Also adding to measures of complexity are 

the complicated positive and negative feedback mechanisms one finds in 

natural intelligence systems as well. These complicated causal loops result 

in nonlinearities and can lead to high levels of unpredictability.

     We can see how the amount of complexity of data sets consisting of 

certain numbers of components can rise very quickly with the number of 

interactions among those components. The number of ways pairs of 

components can interact is, let us say, half the square of the number of 

components. If you have 10 components, that means there are 50 

interactions between them; if you have 100, then there are 500 

interactions, and so on. The following table gives one an idea of how 

quickly the interactions increase relative to the increase in the number of 

components.

Table 6.1.  Sample Interactive Components Matrix 

 Number of Components Number of  Interactions 

 10 50

 100 500

 1,000 500,000

 10,000 50,000,000

 100,000 5,000,000,000

     To give a real-world example of the problems, we could cite research 

in knowing how where typical problems revolve around smoothness and 

timing in the execution of a given task. Keep in mind that smoothness and 

timing are clear indicators of knowing how to do something. Depending 

upon the task, these often must be taught. One must come to know how to 

perform such that smoothness and timing are exhibited in one’s doing. 

Such problems are involved in performing kinds of surgery, performing 
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rescue operations that involve fast movement such as running and quickly 

accessing casualties who may be trapped in various kinds of accidents; or 

military recruits learning just about any kind of basic infantry task.

     All these examples involve highly complex physical movements in 

combination with highly complex mental operations related to immediate 

planning and execution involving large numbers of variables. Research 

into any facet of such tasks involves many factors. Taking only one of 

those as an example, gait analysis, we can demonstrate the highly complex 

nature of the inquiry involved. 

     For example, gait data sets consist of many kinds of variables, 

including kinematic, kinetic, electromyographic, metabolic, and 

anthropometric, to name just a few (Chau 2001). The data sets are high-

dimensional sets, hence statistical analysis methods become almost useless 

beyond five variables. Moreover, conducting research observations of 

such whole body performances are limited because human observation 

and interpretation of performance events are limited to three-dimensions.

     Additionally, classical scientific reductionist approaches such as factor 

analysis are based on linear assumptions while the phenomenon itself is 

nonlinear. Multivariate statistical methods are useful only to the extent 

that the data is reducible to very few dimensions, and principal 

components analysis is useful only to reveal linear relationships among 

variables.

     High-dimensionality of nonlinear phenomena requires alternative 

methods. Because of the very large number of components involved and 

complicated connections between them, research in natural intelligence 

systems involving knowing how inevitably requires computational and 

formal methods to process massive amounts of data.

     A number of highly effective mathematical methods have been devised 

to generate general principles governing the system under study, even if 

we do not know everything about all the components involved. 

Nonetheless, we can still make useful predictions about system behavior, 

given certain known conditions. 

     Natural intelligence systems, like other living systems, behave in 

highly distributed, massively parallel and extraordinarily integrated 

fashion. Complex feedback systems and damping are the norm even for 

common intelligent actions. Network models are necessary to increase our 

understanding of such systems and to overcome narrow perspectives of 

single or limited causal chains. 
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6.3 Mechanism and Organicism Revisited 

In Chapter 1 we looked at two broad categories of theory models 

underlying and governing most intelligence research. We sorted out the 

single-capacity and sociological-mechanistic effects models governing 

much of that research. Both of these models are mechanistic but in 

different ways.

     In the context of the discussion of self-organization and emergence, we 

need to revisit those models and introduce even more differences between 

those and organismic models, models of living things.

6.3.1 Organized Simplicity and Unorganized Complexity 

We earlier noted that a mechanistic point of view is one in which states of 

affairs are represented like a machine, where “machine” is defined as an 

object consisting of parts ordered to function in predetermined ways to 

bring about certain specified effects. The parts of a machine have fixed

actions with the actions specific to a certain kind of machine resulting 

from a combination of its parts. The effects of a machine are additive. 

     The mechanistic point of view can be either statistical or non-statistical. 

A non-statistical point of view characterizes or generates representations of 

organized simplicity. This point of view is limited to representations of 

systems of a few parts because of the computational complexity problems 

which result with many parts. This was represented earlier in the single-

capacity mechanistic effects model. 

     That is, the organized simplicity point of view and associated methods 

work extremely well with systems which can be split into isolable causal 

chains. These are causal chains in which there are connections or relations 

between two or just a few variables. To determine the effects of such a 

system, what is needed is an equation for each part in isolation, one for 

each combination of parts, and one for the context (Steiner 1988).

     Thus, for a system of two parts, only four equations are required, but 

for one of ten parts, the number of equations increases to 1,035. The 

growth in the number of equations is a result of the possible combinations 

of parts. For n parts, there are 2
n combinations. For a machine of 20 parts, 

there are 220 or over a million combinations, thus the complexity of a 

system of organized simplicity which results is exponential (Steiner, 

1988).

     A statistical mechanistic point of view, as depicted in the sociological 

mechanistic effects model in Chapter 1, and as found in some cognitive 
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science and intelligence theories (Gärdenfors, 1988), generates repre-

sentations of unorganized complexity.

     Ultimately, the underlying principle in systems of unorganized 

complexity is the second law of thermodynamics, with the probability of 

the system tending toward maximum entropy. This is based in part on 

viewing the components of the system as discrete, atomistic, linear, 

additive, and in isolation. It is based on such a view without taking into 

account the interrelations of the components and functions of the entire 

intelligence state of affairs, including the directiveness, self-organization, 

and emergent properties found in human knowing.

     Taking their model from classical physics, rather than accounting for 

each combination or interaction of parts, the statistical mechanistic point of 

view addresses average combinations or interactions. This is precisely the 

approach taken by Gärdenfors (1988) in his model of intelligence 

dynamics and its applications. 

     The major problem with this approach, however, is that viewed as a 

whole, the system must be very large to secure accuracy (Steiner 1988). 

The relative error of average values is of the order n/ n. A system of 20 

parts would be too large for non-statistical mechanistic treatment, and such 

a system would be too small for the statistical approach because the error 

would be too great, an error rate of approximately one in five. 

     Thus far we have the following characterizing principles for the 

mechanistic point of view: 

States of affairs represented as a machine, that is they are represented as 
an object in which parts are combined or ordered to function in 
predetermined ways to bring about specific effects. One-way causal 
chains.
Determining factors are non-alterable parts combined. 
Effects of a machine: linear and additive [summative]. 
The entire state of affairs is not a determining factor. 
May be either statistical or non-statistical [discrete mathematics]. 
If non-statistical, it represents organized simplicity; if statistical, it 
represents unorganized complexity.
Limited to one- or two-variable problems; not multivariable.

     There are other properties as well. The emphasis in these models is 

upon homeostasis, the maintenance of an equilibrium or “balance” 

between a system, its components, and whatever is taken to be outside the 

system (whatever is not the system). This includes whatever is 

contradictory of or inconsistent with the system. Such systems are not 
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characterized by growth or evolution, but by entropy, a tendency toward 

disorder.

     Whether explicitly identified or not, this theoretical focus on 

intelligence or belief revision is for purposes of maintaining consistency,

or to rid one’s “doxastic (belief) system” of unwanted structural tensions 

of whatever sort. A kind of mental hygiene approach is a clear principle of 

the mechanistic point of view as applied to natural intelligence systems. 

6.3.2 Organized Complexity 

The organismic point of view is one in which states of affairs are 

represented like a living thing. This point of view stresses the organization 

and interactions among the parts. It does not stress the properties of the 

parts in isolation from one another. In general, an organism is viewed as a 

structured whole in which the content and form of its parts are determined 

by the function of the whole.

     In an organism, the parts do not have non-alterable natures and fixed 

actions. The parts act interdependently to maintain the function of the 

whole organism. The parts of an organism are not simply combined and 

then it is determined what the whole is to be. Rather, the content and form 

of the parts change relative to a whole. The emphasis in an organismic 

state of affairs is on the whole taken as determining its parts, thus 

generating representations of organized complexity. As such, the effects of 

the whole are not linear, isolated and additive. Rather, they are

configurational, they are organized to be interactive, continuous, and 

transactional (Steiner 1988; Jen 1990).

     Research directed to organized complexity of any kind, including 

natural intelligence systems would necessarily require concepts, models, 

and mathematical cum logical tools sufficient to represent multivariable 

complex dynamic configurations of complex organization, of the 

interaction of large (immense, infinite) numbers of variables or 

components. Logical and mathematical concepts and tools appropriate for 

nonlinear, continuous, complex dynamic systems are needed. 

     Organisms differ from machines in many ways. Among those 

differences is the fact that though both can exhibit homeostatic 

equilibrium, only an organism exhibits heterostasis. Examples of 

homeostasis in a living organism would include maintenance processes 

such as thermoregulation in warm-blooded animals. In cool weather, for 

example, certain centers of the brain are stimulated to turn on heat-

producing mechanisms of a normally healthy body, and body temperature 

is monitored back to the center so that temperature is maintained at a 
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constant level (so long as the temperature of the environment of the system 

does not exceed a certain level). Similar mechanisms exist throughout the 

body to maintain constant physicochemical variables.

     But living organisms also exhibit a tendency toward increased 

differentiation, organization, tensions, and other improbable states. That is, 

living organisms exhibit growth, which machines do not. To fully 

understand the concept “heterostasis” and the limitations on homeostasis, 

we must explore the nature of open systems in contrast to closed systems. 

This will enable us to better understand the inadequacies of machine 

models, which are closed, as models for theorizing about natural 

intelligence systems.

     While demonstrating the differences between open and closed systems, 

we will also explore the mathematical tools necessary to characterize 

phenomena of open living systems. To summarize what we have said thus 

far with respect to the organismic point of view, we have set forth the 

following characterizing principles: 

States of affairs represented as an organism are represented as a 
structured whole determined by the function of the whole. 
Alterable parts of an organism act interdependently to maintain the 
function of the whole organism generating organized complexity. 
The emphasis is on the entire organism as a determining factor of effects 
not parts determining effects. The organismic system is multivariable. It 
is not limited to one- or two-variable problems as most causal, discrete, 
linear model problems are. 
The system exhibits both homeostasis and heterostasis. 
Characterizations of organismic systems require continuous, dynamic, 
nonlinear mathematics. 
Organismic systems are characterized by negative entropy [negentropy], 
tendencies toward highly improbable states.

     As earlier noted, mathematically, emergent phenomena are nonlinear.

That means that they are phenomena that do not obey the mathematical 

superposition principle (Saaty and Bram 1964). For example, where  is 

an operator, it is said to be linear if the effect of operating on the sum of 

two entities, for example functions, is equal to the sum of the effects of 

operating on them separately: (f + g) = (f) + (g).1 Where this 

equivalence does not hold, the operator is nonlinear.

                                                     
1 This is the distributive law.



234      6 Intelligence as Self-Organizing Emerging Complexity 

     Thus in place of correlation functions and linearizations, which are 

appropriate to some degree for deterministic systems, there is a need to 

turn to nonlinear mathematics and information-theoretic measures, 

measures of order and randomness, to understand the behaviors of these 

systems.

Causality

Machine models usually emphasize static single, one-way causal chains in 

which the sum of causal determinants is equal to causal effects. However, 

living things are characterized by dynamic complex positive and negative 

feedback loops, with nonlinear multiple causal determinants, effects, and 

multiple directional causality.

     For these and other reasons, the machine model view of causality is not 

sufficient for scientific analysis and research into living systems, 

especially natural intelligence systems.

     Causality is a property of certain kinds of connections between things. 

Analysts of networks use graph theory to help sort out those connections 

and possible causal relationships between their components.

     We can initially sort out inventories of causes (determinants) of certain 

effects (resultants) that comprise a concatenation that does not contain 

bidirectional connections or chaining. This is depicted in the following:

     Reductionist models assume that causality acts deterministically 

upward through any material hierarchy, from atoms to molecules, cells to 

organs, eventually to the level of the entire organism. However, it is clear 

that there is downward causation as well (P.B. Anderson, et al. 2000; Scott 

2002), as evidenced in intentional as well as unintentional human 

intervention on many levels in the genetic development and growth of 

living species, including ourselves.

Fig. 6.2. Single and Multiple Determinants and Resultants 
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     Weak downward causation2 assumes that molecular components of 

living organisms are governed by nonlinear dynamics with basins of 

attraction.

“Death, in this formulation is but another of the attractors shared by the interacting 

molecules, and a physician’s job is to keep the molecules of a patient within the 

basin of the living state” (Scott 2002, p. 302).

     However, living systems are characterized by complicated feedback 

information systems including both positive and negative feedback. 

Though mechanistic-minded reductionists may prefer to focus upon 

negative feedback because of its obvious stabilizing features, self-

organizing systems use positive feedback. Above, I cited thermoregulation 

of body temperature in warm-blooded animals as an example of negative 

feedback. If external temperatures rise above or drop below certain 

thresholds, physiological responses by the animal will act to stabilize body 

temperature by bringing it back into a certain range.

     In contrast, positive feedback tends to reinforce change in a system in 

the same direction as initial information indicates. This can result in 

growth or heterostasis. On the other hand, it left uncontrolled, it can have a 

snowballing effect. 

     Positive feedback has an amplifying effect that can prove destructive. 

But in living organisms, one finds both positive and negative feedback, 

with negative feedback tending to keep positive feedback under control. 

These mechanisms for information input, toput, output, and feedback 

create self-organizing emergent structures and patterns in systems 

involving large numbers of components. 

6.4 Nonlinear Theory Models Approach to Natural 
Intelligence

The domain of natural intelligence is multi- and high dimensional. The 

scope of intelligence is extended far beyond the single capacity theory to 

reflect the facts of natural intelligence found in human and animal 

experience. An extended domain of natural intelligence includes many 

kinds knowing and their components that extend far beyond the traditional 

view of intelligence as language-based propositional knowing. These 

kinds act on other kinds to produce even newer kinds of intelligence.

                                                     
2 Three kinds of downward causation have been sorted, including strong, weak, and

medium, though strong downward causation is generally rejected.
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     Because of the self-organizing dynamical and emergent nature of the 

elements of the domain of natural intelligence, we take a nonlinear 

theoretical model approach to characterize that dynamics. This approach 

has a number of advantages over the classical science approach: 

1. Nonlinear theory models approach to natural intelligence permits a 
more complete and exhaustive classification of kinds of intelligence; 
it does not limit the scope of cognition to only one kind or category 
of knowing, verbal (linguistic) intelligence. 

2. Nonlinear theory models approach incorporates the strengths of 
classical statistical and nonstatistical models and methods, permitting 
characterizations of organized simplicity and unorganized 
complexity, but goes beyond these to permit characterizations of 
organized complexity. 

3. Nonlinear theory models approach is not reductionist as are classical 
models; it incorporates reductions at levels where those are 
appropriate but extends beyond reductionist methods to include 
retroductive models of hypothesis formation, description and 
explanation of emergent phenomena. 

     The theory models approach to inquiry is a methodology for seeking 

out theory as a source of wanted theory. It is a methodology for forming 

the theory sought out into a model or point of view from which the wanted 

theory can arise. As explained by Steiner and Maccia (Maccia and Maccia 

1966; Steiner 1988) the theory models approach is a retroductive approach 

to devising concepts and hypotheses. As such, it is not reductionist.

     A reductionist approach would mean that the theory one is seeking is 

equivalent to the source theory. On this approach, one assumes that 

concepts and hypotheses are already given or ready-made in the source 

theory.

     However, not all concepts and hypotheses are ready-made. With 

emerging new facts and phenomena, ideas must be rationally devised. A 

deductive approach would mean that the wanted theory is derivable from 

the source theory, that is, one would search for concepts and hypotheses 

from which concepts and hypotheses can be derived. This again assumes 

that ideas are already made and waiting to be derived. 

     On the other hand, as explained by Steiner (1988), the theory models 

approach, because it incorporates retroductive forms of inference, is based 

upon analogy. An example is the use of digraph theory to theorize about 

influence relations. On the basis of an analogy between the relations of 

points and the relations of persons, concepts and hypotheses about 

influence relations can be devised.
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     More specifically, this same analogy can be used to form concepts and 

hypotheses about natural intelligence relations between persons as 

knowers (or cognitive “centers”) and object(s) of those relations. The 

dynamics of natural intelligence can be gotten by means of the theory 

models approach with the use of digraph theory. 

     The nature of configuration complexes is central to understanding the 

nature of organized complexity. Moreover, an understanding of these is 

necessary to see the differences between the mathematics of summative 

complexes and the mathematics of configuration complexes. 

     In general, the differences are found in discrete linear mathematical 

approaches and continuous nonlinear mathematical approaches, with 

much of our current understanding of the nature of complexity founded 

upon discrete mathematics. In general, differences between discrete and 

continuous theoretical approaches look something like the following 

(Blum, 1989).

                 Table 6.2. Complexity Theory: Discrete and Continuous

 Discrete Continuous 
Underlying Mathematics Logic, Combinatorics, 

Number Theory 

Analysis, Differential

Equations

Foundations Firm Weak 

Formal Models Turing Models, RAMs 

(all equivalent)

Various (incomparable) 

Analysis of Algorithms Systematic Ad hoc 

Complexity Theory Highly Developed Not Developed

     As earlier noted the view of intelligence as a living thing requires a 

mathematical and scientific approach very different from the classical top-

down, verbal rule-governed, logic-based, linear and additive approaches. 

Those approaches are largely anti-theory and anti-concept formation; are 

either reductive or, as indicated by the primary value attached to data 

collection and verification procedures, or inductive.

     Given the enormous variety and range of intelligence experience, a 

theory of natural intelligence must incorporate the major mechanisms by 

which intelligent beings, both human and animal, acquire and act upon 

information.

     What is needed in a new scientific approach to intelligence is an 

integrated mathematical configuration model permitting characterizations 

of organized complexity. Again, these characterizations are based on 

nonlinear assumptions. Such characterizations can be provided by an 

integrated organismic theory model, formed from the integration of set

theory, information theory graph theory and general dynamical system
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theory. This theory model will be referred to with the acronym “SIGGS” 

throughout the remaining chapters. 

6.4.1 The SIGGS Theory Model 

SIGGS is a formal theory model originally devised in the 1960’s by 

Steiner (Maccia) and Maccia (1966). Since that time, it has been greatly 

extended by Thompson (2005) and Frick (1983, 1990). In particular, 

Thompson has developed a consistent nomenclature and definitions of the 

properties of the model. In general, those will be followed here, though the 

explication here will tend to be less formal and more intuitive in order to 

more fully explicate the properties of the theory model.

     Primitive terms for SIGGS, as corrected and extended by Thompson 

include set, element/component/object, contained in, ordered pair, 

universe of discourse, characterization, occurrences, parameters, 

connection, relation, affect relation (for Steiner Maccia information 

system), event, and sequence.

     The mathematics of set theory provided the means to formally define 

“system” as a group of at least two components with at least one affect 

relation and with information (Maccia & Maccia, 1966; Steiner, 1988). In 

essence, a system is an ordered pair consisting of an object set S, and a 

relation set, R. Set theory is used to give meaning to the definition of 

“system” in that a group of at least two components becomes a set of at 

least two elements which form a sequence.

     In addition to formally defining “system” set theory is of course 

necessary to demarcate the scope of the natural intelligence universe based 

upon logic and facts found within the domain of animal and human 

experience. As we demonstrated in an earlier chapter, with set theory, we 

more precisely carved the problem space of natural intelligence. 

     Also, set theory allows the quantification of a complex organization as 

a whole. Information theory allows the quantification of action; graph 

theory permits the quantification of structure; and general systems theory 

permits an organismic perspective to treat complexities of configurations

of a whole.

     Relations between components (elements, constituents) of a system, 

affect relations, are also given meaning through digraph theory. Digraph 

theory is in turn based upon set theory. Digraph theory is mathematical 

theory which characterizes between pairs of points lines which can be 

directed. The group of a system becomes a set of points and an affect 

relation becomes a set of directed lines. Digraph theory fully captures and 
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extends beyond Russell’s (1903, 1984) notion of sense or direction of a 

relation.

     Within a system interpreted as a group of at least two components with 

at least one affect relation and with information, the set theoretic notion of 

“function” permits quantification of influence or affect relations in that an 

affect relation is a mapping of the group into itself.

     With the use of information theory, information is a qualifier of affect 

relations. It becomes a characterization of occurrences at categories in a 

classification. These occurrences may be of system components or system 

affect relations or both. Because a classification is a set of categories, set 

theory is also basic to information theory. 

     Properties of a system are subsets which are sorted out from the set of 

all systems, the power set, because they have conditions on them over and 

above the conditions which make them a system. For this reason, 

properties of a system are not part of the definition of “system”. Though 

we will clarify this later, a subset of systems with an environment consists 

of those systems from the set of all systems which have an added 

condition of a negasystem [given meaning by the set-theoretic notion of 

“complement”].

     Not all systems necessarily have an environment, but all systems do 

have a negasystem. Use of set theory is explicit in the conditions regarding 

sizeness and homeomorphismness. The set theoretic characterization, 

cardinality, is explicit in the condition sizeness, while homeomorphic 

mapping is explicit in homeomorphismness. 

     The set characterization “complement” marks off the system from its 

surroundings, the negasystem (or “not-system”). Within whatever universe 

of discourse is selected, components which do not belong to the system 

are the negasystem. For example, the system could refer to the formal 

intelligence conditions constituting qualitative knowing obtaining of a 

person or persons while the negasystem could refer to all else which does 

not belong to that set of conditions. 

     Because the function from one set into another is constituted by an 

association of elements in one set with those in another, the association 

between intelligence conditions in one person with those conditions in 

another may be mapped. Similar mappings may be obtained by selecting a 

person as the system and a group as the negasystem or a machine as the 

system and the person might constitute the negasystem. Where 

intelligence properties of a person, P1 affect (influence) those properties of 

another, P2, the formal intelligence conditions obtaining of P2 are a 

function of the intelligence conditions obtaining of P1.

     More technically, the SIGGS theory model consists of a group of 

related terms, such that some of the terms are primitive or undefined and 
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others are defined. Primitive terms are obviously required to prevent 

circularity. All defined terms are defined through the primitive terms or 

through defined terms which have already been defined by means of 

primitive terms. The terms constituting the SIGGS theory model are 

characterizations with respect to a system in general and not with respect 

to only one kind of system, for example a biological system. The theory 

models a group of related characterizations about a general system or a 

general system descriptive theory. 

6.4.2 Information Theory 

The advantage of utilizing SIGGS to devise theory of self-organizing 

emerging natural intelligence is that it permits representations of 

organized complexity. This is due in part to the fact that it is based upon 

assumptions of non-linearity and complex interactions among the parts 

which make up the system.

     It also includes information theoretic measures which are not provided 

on the standard uncertainty increasing (unorganized complexity) and 

uncertainty maintaining (organized simplicity) theory models. Obviously, 

information theory is necessary to adequately characterize how organisms, 

including humans, acquire and act upon information. The term 

“information” used here is not identical to the ordinary language use 

which often refers to content or meaning. It is used here as defined within 

communication theory in a selective sense in terms of uncertainty.

     The concept “information” can be sorted into at least two or possibly 

more senses3 depending upon whether there are alternatives in the 

characterization. There is information in its selective sense, when there are 

alternatives available; and information in its non-selective sense, when 

there are no alternatives available.

                                                     
3 Klir (1989) has expanded beyond these two senses of “information.” 

     Where “information” is defined in terms of alternatives available for 

selection, the more alternatives, the less specific a (decision) situation is, 

hence the greater the amount of information. When there is only one 

alternative possible, the situation is fully specific hence there is no infor-

mation (from the point of view of the selective sense of “information”). 

     Following Maccia and Maccia’s (1966) example, in the characteri-

zation “C6H6 is the formula for benzene”, there are no alternatives. The 

characterization is fully specific, hence from a non-selective point of view 

the characterization is information.
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     However, from a selective point of view the characterization is not 

information since there are no alternatives. There is no uncertainty. In the 

following characterization, there is uncertainty: “penicillin is related to 

recovery from streptococcus infection or it is not so related”. There is 

uncertainty because not all occurrences can be characterized by means of 

one category of the two possible. 

     The above characterization of information is an extension beyond 

Hartley’s (1928) original formulation, which was concerned to set up a 

quantitative measure whereby the capacities of various systems (in 

electrical communication) to transmit information may be compared.

     Looking upon an organism as an intelligence system, either in isolation 

or in the context of other organisms, information theory provides a way to 

give meaning to the categorization of components of the system, 

connections of components to one another, connections between the 

system and its environment, and the uncertainty of occurrences at those 

categories.

     Information is a characterization of occurrences by means of 

categories. For example, biological information would be a 

characterization of occurrences at categories with respect to living 

organisms. Additionally, characterizations of occurrences are sometimes 

themselves made into other characterizations. An example given by 

Maccia and Maccia (1966, p. 9) is in telegraphy in which a message 

characterized in terms of categories of letters is made into a 

characterization in terms of categories of dots, dashes, and spaces. 

     Klir’s analysis (1989) has shown that several characterizations of 

information are possible, depending upon the mathematical theory 

assumed. In the following characterization of the SIGGS theory model, 

information will be taken in its selective sense, within a communication 

context, and with a frequency interpretation of probability. 

     The frequency interpretation of the concept of probability is used in 

SIGGS. Probability theory is mathematical theory which characterizes 

frequencies of occurrences with respect to classifications, that is sets of 

categories. An occurrence is at a category in a classification if it is 

assigned to that category. The probability that a given occurrence can be 

assigned represents the ratio of the frequency of occurrences at that 

category to the frequency of all occurrences at every category in the 

classification.

     The incorporation of information theory in SIGGS permits the 

characterization of the transmission of natural intelligence components. 

As information theory permits the characterization of occurrences at 

categories, we are concerned with occurrences at intelligence categories of 
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signed expressions of intelligence that is symbolic, iconic, and enactive. 

Thus, with SIGGS, we have the following:

Where T = measure of shared information: 

P1, P2  = systems; 
H = basic information function 
H(P1) = amount of information in one system’s action 
H(P2) = amount of information in another system’s action
H(P1,P2) = amount of information in both systems’ action taken jointly 

     then,

 T(P1, P2 ) = H(P1) + H(P2) - H(P1, P2)

Information-Theoretic Extensions of Simple Feedback Model 

SIGGS theory model provides information measures which extend the 

usual cybernetic models, as seen in the simple feedback model in Chapter 

1. On the usual cybernetic model, input is what the system takes in, but 

measures of what is available to the system from the negasystem and how 

that relates to the input remains unknown. In addition, output on the 

cybernetic model is what is available from the system, but what the 

negasystem gets and how that relates to the output remains unknown. 

SIGGS distinguishes the following “feed” functions and “put” properties. 

The “feed” transition functions move components from one subsystem to 

another, while the “put” properties identify the component partitioned sets 

(Thompson 2005). 

FI, Feedin is transmission of toput from a negasystem to input in a 
system. It is information from the system’s surroundings to the system. 
FO, Feedout is transmission of fromput from a system to output in         
a negasystem. It is information from the system to its surroundings. 
FT, Feed-through is transmission of toput from a negasystem through     
a system to output of a negasystem. 
FB, Feedback is transmission of fromput from a system through a 
negasystem to input of a system. It is information from the system 
through its surroundings and back to the system. 

     Feedthrough is feedback with respect to the negasystem. The property 

of a system having an environment is referred to as “toputness” on the 

SIGGS theory model. As with the system, a negasystem can also have 

properties. For example, as a system can have the condition of selective 

information on a negasystem available for its [the system’s] selection, so 
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too a negasystem can have the condition of selective information on a 

system available for its [the negasystem’s] selection.

TP, Toputness is negasystem components for which system input 
control qualifiers are “true.” It is the system’s environment or selective 
information on a negasystem which is available to a system for 
selection.
IP, Input is resulting transmission of toput components; systm 
components for which system input control qualifiers of toput 
components are “true.” 
FP, Fromput is system components for which negasystem fromput 
control qualifers are “true.” 
OP, Output is resulting transmission of fromput components; 
negasystem components for which negasystem output-control qualifiers 
of fromput components are “true.” 
SP, Storeput is system input components for which system fromput 
control qualifiers are “false.” 

4

     Every system has information in the sense that occurrences of its 

components or affect relations or both can be classified according to 

categories. Here, we are concerned with categories of natural intelligence.

     The added condition of uncertainty of occurrences at categories is 

necessary to develop information properties on the system and its 

                                                     
4 This is an earlier version taken from Maccia & Maccia 1966. The outer rectangle is the 

negasystem; the inner centered rectangle is the system.

Fig. 6.3. Graph of SIGGS Theory Model
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environment or negasystem. The concept “information” can be 

mathematically defined in our theory model in terms of uncertainty of 

occurrences at natural intelligence categories.

     Though we have sorted three distinct pathways of information transfer 

that organisms use, including signals, cues and clues, a fully developed 

theory would require rigorous clarification and classification of the 

categories of occurrences of that information. This classification must 

span the entire intelligence repertoire of intentional behavior, including 

interacting components of verbal (by linguistic means), visual and 

sensorimotor categories.

6.5 SIGGS Applied to Natural Intelligence Systems 

Given the set, information, graph, and general systems theoretic properties 

of SIGGS, we will outline the application of that theory model as a model 

for theorizing about natural intelligence. Where appropriate, we will 

extend concepts of that model. 

Elements and Signs of Natural Intelligence 

Above, we identified the intelligence universal set as consisting of the 

subsets verbal knowledge that (labeled QN here because it involves 

extension, hence is quantitative intelligence); immediate awareness 

(labeled QL here because it includes sense data traditionally known as 

primary and secondary qualities, hence it is qualitative intelligence); and 

knowing how (labeled PF here because it is performative intelligence).

     Quantitative intelligence (QN) is reasoning directed to knowledge or 

knowing of classes, universals, and individuals or instances which are in 

turn characterized by means of classes or universals. It proceeds largely by 

class logic, with partitioning and definition, characterized by abstract 

inference.

     Qualitative intelligence (QL), on the other hand, is reasoning directed to 

individuated qualities or attributes given in experience that uniquely mark 

off a person, thing, or universal. Such reasoning does not proceed by

classification of shared properties or attributes, but in part by ostensive

indexical non-logical operators such as “none-other”. “None-other” is not 

the logical operator negation of “other” as “non-other” or “not-other”, but 

is an operator which separates one from all others. Far more research is 

necessary to isolate those mechanisms by which immediate awareness, 

qualitative knowing, proceeds across the entire spectrum of human and 

animal sensory systems. 
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     Performative intelligence (PF) proceeds in actual doings that exhibit or 

otherwise discloses patterns of smoothness and timing. This kind of 

intelligence cannot be reduced to class structures of quantitative reason 

because, in part, performative knowing has qualitative knowing structures 

embedded within it. Qualitative intelligence characterizes human 

intelligence, but in certain crucial respects does not characterize artificial 

intelligence.

     Elsewhere (Estep 2003) I identified the universe of signs of intelligence 

consisting of the symbolic (SYM), iconic (IK), and enactive (EN) subsets. 

We should clarify that we are defining the intelligence universe so as to 

focus upon signed knowing, that is public expressions, representations, or 

artifacts of knowing. These are exhibited or disclosed as patterns of 

intelligence.

     The context of knowing is defined in our theory in terms of the position

that is the artifacts (public expressions, signed expressions) for coming to 

know. The intelligence universe is different from the intelligence universal 

set which includes the subsets: subject, object, content, and context of 

knowing. Our concern here is to provide at least the outlines of a general 

theory and some of the formal and contingent relations obtaining of the 

intelligence universe, so as to later relate these to computability 

(decidability) and complexity theory.

     In essence, we are concerned with two sets, the set of intelligence 

categories of knowing K = {QN, QL, PF}, and the set of categories of 

signs of knowing, S = {SYM, IK, EN}. From their Cartesian product, we 

obtain nine ordered pairs:

     K  S = {(QN, SYM), (QN, IK), (QN, EN), (QL, SYM), (QL, IK), (QL, 

EN), (PF, SYM), (PF, IK), (PF,EN)}

     We could include in the universal intelligence set not only the 

categories of knowing but also the categories of signs of knowing. With 

this, we have the following intelligence set: 

     Intelligence Set E = {QN, QL, PF, SYM, IK, EN}. We can then form 

the power set, of E denoted by (E), which is the set of all subsets of E, 

that is: 

(E) = { , E, {QN}, {QL}, {PF}, {SYM}, {IK}, {EN}, {QN, QL}, 

{QN, PF}, {QN,SYM}, {QN, IK}, {QN,EN}, . . . {n64 }}. 

     The formation of our power set (E) yields 64 elements, the possible 

classes of intelligence subsets. We are primarily concerned with setting 



246      6 Intelligence as Self-Organizing Emerging Complexity 

forth at least the outlines of a hypothetical axiomatic material system with 

theoretical ordering by means of set theory, information theory, and 

digraph theory.

6.5.1 The Use of Digraph Theory to Characterize Intelligence 
Relations

We earlier noted that digraph theory is mathematical theory which 

characterizes between pairs of points lines which can be directed.5 Directed 

graphs consist of ordered pairs. The links in a directed graph are called 

arcs. Directed graphs or digraphs can be used to represent non-symmetric 

relations like “is the mother of” or “is hostile to.” Undirected graphs6

consist of unordered pairs. They are used for relations which are 

necessarily symmetric, such as “is the sibling of” or “conspires with.”

     The lines are used to indicate relations; the concept “relation” refers to 

function. Digraph theory can be applied to analyze groups of a system. The 

group of a system can be interpreted as a set of points (vertices or nodes) 

and an affect relation can be interpreted as a set of directed lines. 

     The use of graph theory in the SIGGS theory model permits the 

characterization of relations as intelligence affect relations between 

intelligence systems or between their components.

     For example, persons or machines (natural or artificial intelligence 

systems) can be represented on directed graphs as (lettered) points and a 

communication (intelligence) relation between any two systems as a 

directed line segment (line segment and arrow) connecting the two 

systems.

     Where there is an arrow or arrows between two points, there is a 

directed connection or pairing. Where there is a line without an arrow, a 

directed connection is assumed in one or the other or both directions.

Fig. 6.4. Directed Graph 

                                                     
5 The prefix “di” indicates that digraphs are graphs with directed lines.
6 These are also known as graphs. 
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     In the above graph, there is a directed connection or pairing between s1 

and s2, s1 and s3, s2 and s1, and s3 and s1. Where there is only one arrow 

between two points the directed connection is direct. This is found in the 

connection between s1 and s2; s2 and s1; and s1 and s3. The graph is not 

completely connected, but is disconnected.

     In non-valued graphs, nodes are either connected or not. Either Mary is 

the mother of Jill or she is not. In valued graphs, the lines have values 

attached to represent characteristics of the relationships, such as strength, 

duration, capacity, flow. 

     Reflexive graphs allow a node to have a tie to itself. These are useful 

when analyzing collectives or large groups such as cities. Nodes might 

represent banks with ties representing money transfers between them; a 

given bank will have ties to itself.

     A graph is connected if there exists a path from every node to every 

other. A maximal connected subgraph is called a component. A maximal

subgraph is a subgraph that satisfies some specified property (such as 

being connected) and to which no node can be added without violating the 

property.

     A digraph that satisfies the connectedness definition given above (i.e.

there exists a path from every node to every other) is called strongly

connected. That is, for any pair of nodes a and b, there exists both a path 

from a to b and from b to a. A digraph is unilaterally connected if between 

every unordered pair of nodes there is at least one path that connects them. 

That is, for any pair of nodes a and b (and a b), there exists a path from 

either a to b or from b to a. A digraph whose underlying graph is 

connected is called weakly connected.

     A maximal strongly connected subgraph is a strong component. A

maximal weakly connected subgraph is a weak component. A maximal 

unilaterally connected subgraph is a unilateral component.

     Moreover, digraph properties of a system result when certain 

conditions are placed on the system’s affect relations or its group. For 

example, complete connection, strength, unilateralness, weakness, and 

disconnection exemplify digraph properties of a system arising from 

conditions on its affect relations. The properties of passive dependency, 

active dependency, independency, and interdependency also exemplify 

digraph properties of a system due to conditions on the group.

     With digraph theory, an intelligence system group becomes a set of 

points; system affect relations become sets of directed lines; and digraph 

properties of a system result when certain condition are placed on its affect 

relations or its group.

     Given the large number of connections and relations among 

components at local levels in self-organizing systems, emerging in kinds 
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of global dynamics, digraph theory, with dynamical system theory, 

provides powerful mathematical tools to characterize those connections 

and relations. These tools are necessary to describe the integrated behavior 

of intelligence systems coordinating the actions of many, possibly an 

immense number, of components.

     In addition to the above properties of SIGGS, two additional 

parameters are necessary to define a general natural intelligence system. 

These include a linearly ordered time set, T, and a system state-transition 

function,  (Thompson 2005). 

Linearly ordered time set, T =df linearly ordered set. This set is required 
to give the natural intelligence system a dynamic property which may be 
mapped over the reals. This set assigns an appropriate time that an event 
occurs. Without this set there would be no order or sequence to the 
events of a system. 

     Because our theory is largely about human intelligence phenomena, we 

cannot have a purely formal theory. It concerns contingent relations in 

reality. This presents some problems for checking on the coherence of the 

theory, but given its partial formalization a check on logical consistency is 

nonetheless possible. This is so because there are deductive links to be 

checked out.

     Ordering through digraphs also gives us the advantage of presenting a 

theory which expresses relations which are contingent and also recursive 

and asymmetrical. That advantage is the use of path analytic techniques to 

check out correspondence of the relations expressed in the theory to those 

in reality. Path analysis is a procedure for estimating the path coefficients 

from correlational data using regression techniques (Steiner, 1988). 

     In our theory, we are interested in properties of relations (specifically 

affect relations) on natural intelligence sets, the properties of reflexivity, 

symmetry, and transitivity; properties of functions of intelligence sets, such 

as surjection, injection, and bijection; as well as graph-theoretic properties 

on intelligence groups, such as connectedness.

     For the latter, we are concerned with contingent relations rather than 

pure formal relations between the sets, thus we will focus upon directed

graphs in which the relations are recursive and asymmetrical. 

System state transition function,  =df the function that maps a current 

system state onto a subsequent system state. This is required in order to 

alter the state of a system. Whereas T moves objects about the system, 

changes the state of the system due to new affect relations defined by 

the move.
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     Moreover, we will later be concerned with the computability of those 

relations that is functions, on natural intelligence sets. We are interested in 

formalisms which establish that we can map the objects of one intelligence 

set onto the objects of another.

Social Network Theory and Patterns of Intelligence 

Social network theory and analysis, based upon digraph theory can be 

helpful to demonstrate properties of SIGGS on certain levels. This section 

is intended solely for illustration.

     Nodes and edges in digraph theory and analysis can consist of many 

things. Here, we are concerned with natural intelligence networks. Recall 

that the structure of our inquiry (where this is limited to human natural 

intelligence) permits at least two major categories: Analysis of intelligence 

relations between a given person or persons and other person or persons; 

and between person or persons and objects in the world.

     Thus the population of nodes (the object set) can consist of persons and 

objects, while the edges consist of relations, specifically affect relations 

between persons and objects. This is the relation set.

     We also assume that boundaries on the population of nodes (persons) 

are imposed on the persons themselves, so this is not necessarily a 

naturally occurring cluster or network such as a neighborhood group. It is a 

network of persons brought together by shared objectives. There are many 

levels of analysis of such networks, and we will assume that some 

individuals in the network, which we will call Network A (assuming only 

one network for simplicity that is not connected with other networks) have 

not had any face-to-face contact with others in the network, whereas others 

have. However, they are all bound together nonetheless by a larger 

organization or network of networks, which we will call Network B, 

sharing the same objectives. 

     Such a network as Network A is unlike a family because (a) individuals 

in the network are not related to one another; and (b) one assumes that 

most if not all family members have met one another face to face at some 

point in time. 

     Just as individuals who are nested in work relations, this particular 

Network A is institutionalized largely by those shared objectives. 

Moreover, each individual in Network A is part of a personal family, lives 

in a neighborhood, and is nested as well within a work environment. This 

individual may or may not be nested in each of these with other members 

of the original Network A. In effect, the original Network A is a network 

nested within a network that is nested within a network, and so on. 
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     A digraph or social network analysis of such a network, from the point 

of view of natural intelligence, is faced with a multi-modal hierarchical 

structure nested design. It requires that the analyst focus on multiple levels 

of analysis simultaneously to ascertain how any given individual is 

embedded within that total structure. 

     It will generally be the case that any given individual member of the 

original Network A will be connected by many different kinds of ties and 

relations to any number of other individuals who may or may not be part 

of the original Network A or Network B.

     Indeed, from the point of view of one who may be conducting an 

inquiry into Network A, it will be those relations of a given member that 

will initially become known prior to the researcher learning of the 

existence of the Network A. Like picking up single strands of thread to 

follow back to their original source, a researcher may follow a single 

strand to many other interconnected strands and networks before coming 

upon the network that ties so many together. It is the relation set that is 

often found before the object set is discovered.

     If we are intelligence researchers wanting to collect data about certain 

kinds of relations among persons, we can take any number of approaches. 

Effectively, we will want to look at a universe of possible relations. Our 

research question and background assumptions may indicate the kinds of 

relations most significant that we may decide to start with. If we are 

searching for intelligence related to either a criminal or terrorist threat, for 

example, we may know from data mining that a cluster of electronic 

transfers of funds has taken place between networks of individuals who 

may otherwise be beyond suspicion.

     Thus, we might want to sort out both material and informational 

relations to look at, starting with any nodes (persons) whose names may 

have popped up in data mining. Material things in general are usually 

located at or near a given node (person or group of persons) at a given 

time. Movements of money, people, and things can take place between 

nodes (persons). Informational relations, however, can be shared by more 

than one person at a time. 

     Intelligence can be transferred between persons and groups just as 

material and information7 can. If researchers are focused upon intelligence 

related to criminal or terrorist activities, they must use a prior set of 

indicators or patterns by which to analyze the dynamics of any network. 

That is obviously beyond the scope of this work; our intention is to use 

                                                     
7 This sense of information is neither identical nor equivalent to the concept of intelligence 

as we are using it here, though it is related. 
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indicators of kinds of natural intelligence by which to analyze a 

hypothetical network.

Fundamental Properties of Networks: Density and Connectedness 

We are especially interested in fundamental properties of networks and 

how to use those to analyze specific network configurations on all levels of 

a natural intelligence system. Specifically, network analysts are concerned 

to discover how the network structure emerges from the micro-relations 

between individual parts. The usefulness of network methods to map such 

multi-modal hierarchical relations is the core of its power. 

     Keep in mind that digraph theory, or graph theory in general, is a 

mathematical theory that can be used on the most micro-levels of analysis 

of the intelligence of a given organism to the most macro-levels of 

intelligence of groups of organisms such as human beings. 

     Thus, digraphs are used in the theory and analysis of neural networks in 

the brain as well as in computer architectures, social networks, and in the 

theory and analysis of natural intelligence in general.

     There are two fundamental properties of digraph theory or network 

analysis in general that are of crucial concern in understanding theory and 

analysis of any network. These are density and connectedness.

     Through axiomatization and digraphing, because they are both ways of 

ordering explanatory theoretical sentences, we have evidence of 

completeness. Any gaps in the theory will be shown because missing 

deductive links will be apparent in axiomatization and missing connections 

will be apparent in the case of digraphs. With respect to digraphs, 

presented as path diagrams meeting the requirements for path analysis 

[connections must be asymmetrical], the density and connectedness of the 

digraph indicate whether connections are missing.

     Density is the number of direct connections over the number of possible 

connections. Density is given by the following equation: 

D =  DC/N(N-1) (6.1)

 Where   “D”     stands for density 

               “DC”  stands for number of direct connections 

               “N”     stands for the number of nodes

     Density cannot fall below some minimal value because obviously less 

than N-1 direct connections results in some nodes not being connected.
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 Connectedness is the number of direct and indirect connections over the 

number of possible connections, given by the following equation: 

C = DC + IC/N(N-1) (6.2)

Where  “IC” stands for the number of indirect connections. 

     Our theory is generally concerned with real and possible intelligence 

elements obtaining of natural or artificial systems. This includes a concern 

for the characterization of the association between the set of intelligence 

properties obtaining of one system and the intelligence properties 

obtaining of another. An example would include interactive systems or 

sets, with any number of elements, where the intelligence properties of one 

system affect those of another.

     That is, where A and B denote the individual sets A intelligence 

properties and B intelligence properties respectively, if to each element in 

set A there is assigned a unique element in set B, then such an assignment 

is called a function: f: A  B 

     The set of intelligence properties obtaining of A is the domain of f and 

the set of intelligence properties obtaining of B is the co-domain of f. If a 

 A, then the element in B which is assigned to a is the image of a.

     For example, let f assign to verbal quantitative knowledge (QN) or 

knowledge that about each discipline its formal intelligence classification, 

such as analytic-a priori; synthetic-a posteriori; a priori-synthetic. Here 

the domain of f is the set of intelligence conditions constituting 

quantitative knowledge about each discipline. The co-domain of f is the list 

of possible intelligence categories which make up the logical and 

evidential criteria for propositional assertions. For example, the image of 

quantitative knowledge about mathematics is analytic-a priori.

     The range of f: A  B is f(A) is a subset of B. Applied to A and B 

above, f(A) = {analytic-a priori; synthetic-a posteriori; a priori-

synthetic}. Obviously f (A)  B. That is, quantitative knowledge about 

disciplines and the elements in B which appear as the image of at least one 

element in A are a subset of B. 

     In our theory, we also want to focus upon the sets (QN), (QL), and (PF) 

between which certain elements are related in some way. For example, we 

may want to focus upon the set of ordered pairs of intelligence conditions 

of a certain category satisfying a certain equation. This set would be a 

subset of A  B and would contain all points of the graph of the equation. 

The subset is a relation from A to B.
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Partial Order on the Intelligence Set 

A partial order on a set A is a relation [sometimes denoted by the symbol 

 ] such that (i) a a for all a  A; (ii) a  b and b   a  a = b ; (iii) a  b 

and b  c  a  c. That is, a relation partially orders a set if and only if it 

is reflexive, transitive, and antisymmetric. 

     For purposes of illustration, we will cut down on our power set, limiting 

it to three elements. Thus, assume that S = {QN, QL, PK,}.  The power set 

of S we will denote by S), the set of all subsets of S. That is,

S) = { , S,{QN}, {QL}, {PK},  {QN, QL}, {QN, PK},{QL, PK}}. 

     A partial order on the set (S) is set inclusion (  is replaced by  ). If 

we have T, P, Q, R (S), the following  properties obtain: (i) T  T; (ii) 

P  Q and Q  P imply that P = Q; (iii) P  Q and Q  R imply P  R.

     Where we substitute the natural numbers N = 1, 2, 3, 4, 5, 6, for some 

of the above subsets of the power set, the partial order is graphically 

presented below where the arrows indicate set inclusion. (Not all 

admissible lines are drawn in the figure). 

Fig. 6.5. Partial Order on Natural Intelligence Set 
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     In the above graph, {3}  {2, 3} means that {3}  {2, 3}. Also, {3} 

{1, 2, 3} is implied in {3}  {2, 3}  {1, 2, 3}. Some pairs of elements 

in the power set will not satisfy any of the relations of , =, . As an 

example, {1, 3}  {2, 3}.

     A set A and a partial order  together form a pair (A, ) called a 

partially ordered set. Where a b, a is said to be smaller than or precede b

and b is greater than or follows a. Where a b then a b is written as a b

(with a, b R). A partially ordered set (A, ) is totally ordered if, for every 

a, b  A, either a b or b a.

     As earlier noted, digraph theory is mathematical theory which 

characterizes between pairs of points lines which can be directed. A 

digraph consists of a finite collection of points, P1, P2, P3, . . .Pn, together 

with a described subset of the set of all ordered pairs of points which are 

directed lines. If D is a digraph, the graph obtained from D by removing 

the arrows is called the “underlying graph” of D. 

     Again, a digraph D is said to be connected (or weakly connected) if it 

cannot be expressed as the union of two disjoint digraphs. This is 

equivalent to saying that the underlying graph of D is a connected graph. A 

subdigraph of a digraph is a subset of points and directed lines of the 

digraph which constitutes a digraph. 

     As noted above, there are three different ways a digraph may be 

connected. A digraph is strongly connected or strong if every two points 

are mutually reachable. A digraph is unilaterally connected or unilateral if 

for any two points at least one is reachable from the other. A digraph is 

weakly connected or weak if every two points are joined by what is called 

a semipath, an alternating sequence of points and arcs (or directed lines) 

which are distinct (Harary, 1969). 

     Intelligence sets A and B mentioned above can be represented on 

graphs as lettered points and a communication (intelligence) relation 

between two sets as a directed line segment (line segment with an arrow) 

connecting the two sets. Where there is an arrow or arrows between two 

points, there is a directed connection or pairing. A connection of one or 

more points or components to one or more other points or components is 

called an affect relation. Following earlier assumptions, where there is a 

line without an arrow, a directed connection will be assumed in one or the 

other directions or in both directions.

     A direct directed affect relation is a directed affect relation in which the 

channel (line) is through no other point. An indirect directed affect 

relation is a directed affect relation in which the channel (line) is through 

other components (points). A completely connected intelligence affect 

system is, by definition, not possible since such a system would have 
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complete connectedness if and only if all its intelligence affect relations 

were direct directed ones, that is direct channels from and to each 

intelligence component.

     Where there is only one arrow between two points, the directed 

connection is direct. Where there is no line between a given point and 

other points, there is no connection or pairing with any of the other points.

     A directed walk in a digraph is an alternating sequence of points and 

arcs (or lines). A closed walk has the same first and last points, and a 

spanning walk contains all the points. A path is a walk with all points 

(hence all arcs) distinct, except the first and the last.

     A digraph is unilateral if and only if for every pair of distinct points, Px

and Py, there exists a directed path from Px to Py or (in the exclusive sense 

of “or”) from Py to Px. It follows that all strong digraphs are unilateral 

however it is not the case that all unilateral digraphs are strong. 

     A digraph is disconnected if and only if the points constitute two 

disjoint digraphs, that is with no directed line joining any point in one 

digraph to any point in the other.

     Digraphs, hence, fall into four mutually exclusive subsets with respect 

to connectedness: 

C0 =  disconnected digraphs 

C1  =  weakly connected digraphs 

C2  =  unilateral digraphs 

C3  =  strongly connected digraphs 

     The use of digraph theory added to the SIGGS theory model permits a 

high level of precision in theory and analysis of properties of systems, such 

as natural intelligence systems. Any intelligence network would have 

complete connections if and only if all its affect relations were direct 

directed ones, direct channels from and to each component of the network. 

     Theory and analysis of the transmission of intelligence between nodes 

(persons) in an intelligence network requires the use of information theory. 

This will permit us to characterize occurrences at categories. 

6.5.2 Information-Theoretic Measures on Natural Intelligence 
Systems

We are interested in measures of information (uncertainty) in an 

intelligence system in general, and measures of information in the 

transmission of intelligence between persons or groups, either within or 

between systems, though we will tend to focus primarily upon the former.
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     Propositional knowledge that (QN) is relatively non-problematic to 

measure as long as we have publicly expressed linguistic or alphanumeric 

propositions which represent a system’s intelligence that. But we will see 

that the above approach to non-propositional and nonlinguistically

expressed or disclosed intelligence, immediate awareness and knowing

how, (PF) and (QL) presents unique problems when we look at elements of 

kinds of intelligence thought to be uniquely human. This will require 

viewing these uniquely human kinds of intelligence from a purely 

syntactical perspective that is from the perspective of the amount of 

information resulting from actions or performances at natural intelligence 

categories.

Information-Theoretic (Uncertainty) Measures of Intelligence 

Again, we assume that human and machine intelligence systems and 

transmission networks are not complete or “all knowing,” hence there must

be uncertainty of occurrences at the categories where we interpret that 

uncertainty as explicated in terms of probability distribution. The existence 

of alternatives for the occurrence of any intelligence (for example 

qualitative intelligence) component indicates the selective sense of 

information, which can be measured and such measures of the 

transmission of information shared between two or more systems can be 

calculated with the Shannon (1949) formula.

     The basic information function is designated by “H.”. By summing over 

the amount of information associated with each selection, weighted by the 

probability that the selection will occur, the value of H can be obtained. To 

state this more precisely, H(C) is the average uncertainty per occurrence 

with reference to the classification C. It is the average number of decisions 

needed to associate any one occurrence with some category ci in C, with 

the provision that the decisions are appropriate; it is a function of the 

probability measures in C: 

   n 

                 H(C) =    p(ci) log2 1/p(ci)

      i=1 

(6.3)

A  measure of joint uncertainty would be: 

m        n 

                             H (CIJ) =      p(ci , c’j) log2 1/p(ci c’j) (6.4)
   i=1    j=1 
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 The measure for conditional uncertainty would be: 

m      n

                     H (CI CJ) = p(ci c’j) log2 1/p(ci c’j)

i=1     j=1 

(6.5)

The three H measures are related as follows: 

H(CI) + H(CJ CI) = H(CIJ)
(6.6)

The T measure is the amount of shared information: 

TICI,CJP  = H(Ci) + H(CJ)  H(CIJ) (6.7)

Measures of Uncertainty and Intelligence Categories of Occurrences 

To address the extension of the above information-theoretic measures on 

intelligence sets, and to evaluate our own use of Shannon’s probability 

measure on those same sets, we will continue with a geometric approach to 

the intelligence universe. 

     We are interested in the limits of probability theory to capture the 

information of an intelligence system in general and the transmission of 

information in natural intelligence systems in particular. Moreover, we are 

concerned to set out the limits of any of the measures to address the nature 

of information-theoretic measures of intelligence. 

     The information base from which affect relations are determined 

(which also determines the intelligence network or system in general and 

the components of that network) may be well-defined or it may not be. As 

Thompson (2005) points out, we may only have an idea or a guess as to 

what components are actually contained in the information base. Even 

though we may only have a working hypothesis as to what components are 

contained within it, whatever guess or idea we are working with will 

produce the system components. Thus, the definition of the information 

base is crucial, especially when referring to criminal or terrorist systems. 

Integrating data mining technologies within the larger theory of natural 

intelligence makes possible real-time predictions. 
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     Given the ambiguities surrounding definitions of the information base, 

we should give consideration to alternatives to classical crisp measures of 

information. Though this is not the place to explore all the limitations on 

probability theory to capture information transmission of a natural 

intelligence system, we should at least outline certain of the problems.

     Klir et al. (1989; Klir and Yuan, 1995; Klir and Wierman, 1999) has 

made evident certain of the limitations on probability theory for dealing 

with various situations under uncertainty. First, it is clear that Dempster-

Shafer theory is more general than probability theory with respect to the 

bodies of evidence that can be conceptualized by either of the two theories. 

The additivity axiom of probability theory is replaced in the Dempster-

Shafer theory with the weaker superadditivity and subadditivity axioms. A 

consequence of this replacement is that it is not required in the Dempster-

Shafer theory that degrees of belief be allocated to singletons of the 

universal set. When they are, Dempster-Shafer assumes the mathematical 

structure of probability theory.

     With respect to evidence, possibility theory and probability theory are 

virtually disjoint sets. As Klir notes (1989), the only body of evidence they 

share consists of one focal element that is a singleton, that is the case of 

total certainty (which means we are referring to the nonselective sense of 

information).

     Moreover, they involve different types of uncertainty. Probability 

theory captures uncertainty in terms of dissonance, measured by Shannon 

(1948) entropy. In possibility theory, uncertainty is expressed primarily in 

terms of nonspecificity measured by function V, with some amount of 

potential conflict, measured by function C. Also, since possibility 

distributions are in a one-to-one correspondence with fuzzy sets, it is also 

meaningful, according to Klir, to characterize possibility distributions by 

their degrees of fuzziness.

     In essence, the two theories are complementary in the applications of 

their formalisms. Probability theory characterizes the number of 

occurrences expected at a given category in a classification at a given time. 

Possibility theory characterizes the number of occurrences that can occur 

at that same category at any one time. 

     Moreover, possibility theory is less computationally sensitive to error in 

the assessment of possibility degrees than probability theory is in the 

assessment of probability degrees. This is because possibility theory 

employs the operators maximum and minimum and the error does not 

accumulate when we operate on possibility distributions. No matter how 

many times we operate with them, the error cannot exceed the largest error 

in the assessment of possibilities. On the other hand, in probability theory, 
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where the basic operations are sum and product, the error increases with 

the number of operations performed. 

     With respect to fuzzy set theory, the membership grade functions are in 

the range [0, 1]. This is a generalization of classical set theory which 

includes the range {0, 1} of characteristic functions. For standard fuzzy set 

operators, the law of excluded middle and the law of contradiction are 

violated. Fuzzy set theory and probability theory cannot be directly 

compared because fuzzy set theory does not involve the power set (X) or 

a -field of selected subsets of X. Both the latter are necessary in the 

formalization of probability theory. 

     Given the increasing complexity of self-organizing emerging systems, 

there has been greater acceptance in the second half of the twentieth 

century of alternative mathematical formalizations of uncertainty. Until 

recently, probability theory was the only available theory for formalizing 

uncertainty. Alternatives allowing more refinement in measures of 

uncertainty, especially of cognitive processes have become more accepted. 

Among these alternatives are those Klir has elaborated upon as noted 

above.

Information-Theoretic Measures of the Universal Intelligence Set 

Setting aside issues related to probability interpretation of information, the 

information-theoretic measures incorporated within SIGGS provides 

means for categorizing major components of intelligence networks. 

Occurrences of kinds of intelligence behavior, in terms of the major 

categories of natural intelligence we sorted above (QN, QL, PF) can be 

viewed as selective information. 

     The probable occurrence of instances in each of these categories can be 

determined, especially within the context of the above theory of signs, 

including symbolic (SYM), iconic (IK), and performative (EN). Patterns of 

natural intelligence occurring within these categories can be determined 

with the use of information-theoretic measures provided by SIGGS. 

     Moreover, the array of patterns of interactive natural intelligence 

behavior can also be characterized with the information-theoretic 

measures. That is, flow of natural intelligence occurrences according to 

categories of intelligence and signs of intelligence from person(s) to other 

person(s) and groups can be determined. Measures of TP, toput, IP, input, 

with measures of commonality, T, may be obtained.
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6.6 From a Symbol-based View to a Geometric View of 
Natural Intelligence 

The nonlinear theory model approach as illustrated with SIGGS permits 

reorienting the perspective on intelligence from a classical top-down 

symbol-based, single-capacity view to a geometric-based performance of 

intelligent agents in a fitness landscape. By turning to a phase space of 

intelligence possibilities, utilizing a broad array of variables from major 

categories of intelligence, the very dynamics of a natural intelligence 

agent can be evaluated as that agent works his or her way through the 

landscape. As an additional tool, Boolean networks can provide well-

developed concepts and methods to increase our knowledge and 

awareness of the dynamic nature of natural intelligence systems. 

6.6.1 Boolean Networks 

The properties of Boolean networks have been thoroughly studied and 

techniques have been developed for determining the dynamical properties 

of specific kinds of networks (Forrest and Miller 1991). Thus they are of 

tremendous value in studying the fundamental properties of highly 

complex dynamical systems which may have very large, even immense, 

numbers of interrelated components.

     The dominant dynamical behaviors of Boolean networks ffound in 

complex, dynamical systems, are characterized by properties such as state 

cycles, frozen components [in which components of the network are 

“locked” into either the on or off position], and stability to perturbation.

These properties in turn are dependent upon the structural properties of the 

network, that is, N (network), K (variables), and number of Boolean 

functions for each element.

     Even though most natural intelligence phenomena manifest themselves 

over continuous domains, it is sometimes useful to initially simplify the 

data and functions. A Boolean network N (I, F) is defined by a set of nodes 

corresponding to intelligence components, I = {x1, . . .xn} and a list of 

Boolean functions F = (f1, . . .fn).

     The state of an intelligence component is determined by the values of 

other intelligence components at a given time, t, by means of Boolean 

logic functions. Generally, if an intelligence component is regulated by K

variables, the number of possible combinations of their presence or 

absence is 2
K. For each of these states, the response may be 0 or 1. Thus 

the number of possible Boolean functions of K variables is (22)K.
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     Boolean logic uses the basic statements AND, OR, and NOT. Using 

these and a series of Boolean expressions, the final output would be one 

TRUE or FALSE statement:

If A is true AND B is true, then (A AND B) is true 

If A is true AND B is false, then (A AND B) is false 

If A is true OR B is false, then (A OR B) is true 

If A is false OR B is false, then (A OR B) is false 

     The state of each component is functionally related to the states of other 

components using these logic rules.

     The list of Boolean functions F represents the rules of regulatory 

interactions between the components. Any intelligence component 

transforms its inputs (regulatory factors that bind to it) into an output, 

which is the state or expression of the component itself. 

Combining gates (switches) and inputs enables us to work out how all 

the combinations affect each other. For example, with 2 intelligence 

components and 2 possible states, there are 4 combinations. The table 

below will give the reader some idea of the increasingly very large 

numbers and interactions that result in combination. 

                               Table 6.3. Boolean Network Combinations 

Switches Number of Networks

1 22 = 4 

2 44 = 256 

3 88 = 1.7  107

     Given their core properties, switching Boolean networks are important 

for an adequate theory of complex but ordered systems, such as the 

interacting neurons in a neural network or interacting primitive relations in 

a natural intelligence network.

     This is so because these networks facilitate handling the large number 

of elements involved as well as their connections, their interrelations.     

Boolean network models are also important because one can trace the 

behavior of populations of very large numbers of interacting elements 

making up different network configurations, with varying parameters, 

across landscapes known as Poincaré maps or spaces of possibilities, so as 

to evaluate their properties.

     Again, there are highly complicated and complex negative and positive 

feedback connections in natural intelligence. These can become even more 

complex with input functions that are called “canalizing.” This is where a 

single input in a fixed state is sufficient to force the output to a fixed state, 

regardless of the state of any other input. A lot of such functions can force 
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portions of the network to a fixed state, breaking it up into active and 

passive structures. 

     The simplest pattern behavior is a state cycle consisting of a single 

pattern of 1s and 0s, a cycle of length 1. The length of the cycle of a 

network could be the total number of states in state space, in which case 

the system will repeat every pattern it is capable of displaying. In a 3 

relation system, the length of the cycle is 8 possible states (i.e. 23). A 

Boolean network can have many state cycles that is attractors (families of 

trajectories), each one with a collection of trajectories flowing into it that is 

its basin of attraction. 

     Because the network operation is determined only by the logic of the 

gates and their input connections (in terms of 1s or 0s), we can apply it 

(map it) to any real life situation that has a similar decision structure and 

interconnectivity.

     Moreover, we can devise a specific network that reflects what we know 

about an actual situation or set of events, such as in natural intelligence or 

in complex social interactions. If we have properly factored in the 

variables such that we have the correct configuration, we can study the 

network to predict behavior. 

Random Boolean Networks 

Under conditions of incomplete knowledge such that we do not know all 

the variables and do not know the correct configurations, then we can 

randomly initialize the values. Given any number of gates (N) inputs to 

each (the connections, K), random networks will show some behavior. 

Generally, the behavior can be roughly categorized as follows:

The network can rapidly approach a fixed state, a point attractor. In 
these systems it doesn’t matter from which initial state we begin, the 
network always converges to the same point.
The network can cycle through a chaotic sequence affecting all the 
components, rarely giving the same combined output state.
The network can settle down to a short sequence affecting only a few of 
the components. Many may be fixed in 0 or 1 states and the remainder 
cycle through a succession of repeating states.

Discrete Digital and Continuous Analogue Domains

Moreover, the entire scope of natural intelligence phenomena is both 

discrete and continuous. That is, it consists of discrete problems definable 

over the integers or any numbers that can be effectively encoded into the 
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integers, and it also consists of continuous problems defined over the real 

numbers. Discrete problems assume that all underlying spaces are 

countable. Continuous problems are defined over the real numbers, in 

which the underlying spaces are not countable.

     Though we started the discussion of Boolean networks based on simple 

binary logic, which would no doubt work for most discrete problems, it is 

possible to extend these network models to include intermediate real 

values between 1 and 0.

     Smoothly timed movements in the intelligence of knowing how and 

immediate awareness, for example, require fuzzy values in place of binary 

values. Generally, fuzzy valued networks will also exhibit attractor 

dynamics and self-organizing criticality, when the system develops or 

evolves to a critical point and then maintains itself at that point. 

     Because knowing how and immediate awareness depend upon 

structures and connections of the sensory and sensorimotor systems, a 

research focus permitting intermediate real values is crucial to those facets 

of natural intelligence. Recall, however, that this will not work with certain 

kinds of indexical operators in human language.

     Taking only one rather complicated example where such a research 

focus will largely work, the kinds of stealth movement tactics developed 

during any military basic infantry training demonstrate the necessity for 

these and the total inadequacy of models based upon binary logic.

     Disciplined moving, touching, and even apparently simple tasks such as 

knowing how to hold a weapon and squeeze a trigger with just the right 

amount of pressure do not come naturally and must be learned. Top-down, 

digital linear models used to research such learning inevitably fail because 

of the lack of context-dependent sensitivity that self-organizing, emergent 

and continuous models can provide.

     The geometric orientation to the study of natural intelligence can also 

be greatly effected with the use of high-speed computers, particularly for 

the study of knowing how and immediate awareness. Methods for doing 

this will be more closely assessed in the next chapter.

     This requires the use of highly parallel distributed processing and 

connectionist models capable of simulating rule-bound knowing, as 

opposed to limiting simulations to rule-governed, symbol-based

knowledge. Such computer-based research programs have already proven 

highly useful in the study of gait analysis (Simon 2004), part of the 

intelligence of knowing how.

     For a study of a natural intelligence system, where the computer is used 

as an instrument permitting experimentation of a kind in a hypothetical 

universe, what is needed is an approach to computation permitting a focus 

6.6 From a Symbol-based View to a Geometric View of  Natural Intelligence
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upon on-going, dynamic interactive knowing behavior—rather than a 

focus upon final results. That is, what is needed is a computational 

architecture of an intelligent system permitting a natural method of 

knowing behavior generation.

     This natural method must reflect the distributed and parallel structures 

of human knowing systems. These natural intelligence systems include a 

hierarchy of the above mentioned populations of simple components 

constructing aggregates of simple rule-governed or rule-bound objects 

interacting nonlinearly with one another and with their environment to 

produce emergent structures of intelligence. 

     At each level, the primitives must be identified and rules governing or 

bounding their behavior under conditions at that level must be specified. 

Primitive knowing behavior, our species of knowing how in conjunction 

with immediate awareness, must be organized in the architecture of the 

artificial system similarly with their natural counterparts. From this 

organization, emergent properties of knowing, of natural intelligence, 

arise.

     These considerations also apply to an understanding of the relation 

between natural and artificial intelligence. The classical approach to 

artificial intelligence has been premised upon a discrete, top-down view of 

natural intelligence as symbol-based, rule-governed knowledge that.

     That approach, the usual Artificial Intelligence (AI) approach, is a 

serial processing strategy, with problems defined over the natural 

numbers, integers, rationals or domains encodable in the integers, 

requiring a great deal of elaborate programming and prior knowledge

engineering. It is an approach built upon a centralized control structure 

with access to large sets of predefined data structures, operating with 

algorithms defined by mathematical formulas and discrete procedures.

     We will more thoroughly address these issues in the following pages. 

6.7 Summary 

The major objective of this chapter was to emphasize the crucial 

importance of focusing on what natural intelligence does as opposed to 

where it comes from. We set forth our approach to theory of natural 

intelligence by examining properties of self-organization while also 

looking at some of the problems associated with devising theoretical 

means to measure and analyze the dynamics and information transmission 

occurring in natural intelligence networks. 
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     We focused upon natural intelligence as a large population of simpler 

components which through time works upwards, synthetically 

constructing larger aggregates of rule-governed or rule-bound objects. We 

noted that a theory of natural intelligence has at least two kinds of 

complexity to address: the complexity of a natural intelligence system 

itself; the other is the complexity of its development or growth in 

intelligence in an environment. Also adding to measures of complexity are 

the complicated positive and negative feedback mechanisms one finds in 

natural intelligence systems as well. These complicated causal loops result 

in nonlinearities and can lead to high levels of unpredictability.

     We also addressed the problems associated with any kind of research 

directed to organized complexity of any kind. Such research requires 

concepts, models, and mathematical cum logical tools sufficient to 

represent multivariable complex dynamic configurations of complex 

organization, of the interaction of large (possibly immense, infinite) 

numbers of variables or components.

     Seeking those concepts, models, and mathematical tools we turned to 

SIGGS, a formal theory model originally devised in the 1960’s by Steiner 

(Maccia) and Maccia (1966) and extended by Thompson (2005) and Frick 

(1983, 1990).

     The mathematics of set theory provide the means to formally define 

“system” as a group of at least two components with at least one affect 

relation and with information (Maccia & Maccia, 1966; Steiner, 1988). In 

essence, a system is an ordered pair consisting of an object set S, and a 

relation set, R. Set theory is used to give meaning to the definition of 

“system” in that a group of at least two components becomes a set of at 

least two elements which form a sequence.

     In addition to formally defining “system” set theory is of course 

necessary to demarcate the scope of the natural intelligence universe based 

upon logic and facts found within the domain of animal and human 

experience. As we demonstrated in an earlier chapter, with set theory, we 

more precisely carved the problem space of natural intelligence. 

     Also, set theory allows the quantification of a complex organization as 

a whole. Information theory allows the quantification of action; graph 

theory permits the quantification of structure; and general systems theory 

permits an organismic perspective to treat complexities of configurations

of a whole.

     The advantage of utilizing SIGGS to devise theory of self-organizing 

emerging natural intelligence is that it permits representations of 

organized complexity. This is due in part to the fact that it is based upon 

assumptions of non-linearity and complex interactions among the parts 

which make up the system.
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     It also includes information theoretic measures which are not provided 

on the standard uncertainty increasing (unorganized complexity) and 

uncertainty maintaining (organized simplicity) theory models. Obviously, 

information theory is necessary to adequately characterize how organisms, 

including humans, acquire and act upon information. 

     Looking upon an organism as an intelligence system, either in isolation 

or in the context of other organisms, information theory provides a way to 

give meaning to the categorization of components of the system, 

connections of components to one another, connections between the 

system and its environment, and the uncertainty of occurrences at 

intelligence categories.

     The added condition of uncertainty of occurrences at categories is 

necessary to develop information properties on the system and its 

environment or negasystem. The concept “information” is mathematically 

defined in our theory model in terms of uncertainty of occurrences at 

natural intelligence categories.

     Though we have sorted three distinct pathways of information transfer 

that organisms use, including signals, cues and clues, a fully developed 

theory would require rigorous clarification and classification of the 

categories of occurrences of that information. This classification must 

span the entire intelligence repertoire of intentional behavior, including 

interacting components of verbal (by linguistic means), visual and 

sensorimotor categories.

     We identified the intelligence universal set as consisting of the subsets 

verbal knowledge that (labeled QN because it involves extension, hence is 

quantitative intelligence); immediate awareness (labeled QL because it 

includes sense data traditionally known as primary and secondary 

qualities, hence it is qualitative intelligence); and knowing how (labeled PF 

because it is performative intelligence).

     We used concepts of digraph theory such as group and directed lines, to 

interpret the object set and relation set of an intelligence system as a set of 

points and system affect relations as sets of directed lines. We 

demonstrated that digraph properties of a system result when certain 

condition are placed on its affect relations or its group.

     We were especially interested in fundamental properties of networks 

and how to use those to analyze specific network configurations on all 

levels of a natural intelligence system. Specifically, we were concerned to 

discover how the network structure emerges from the micro-relations 

between individual parts. The usefulness of network methods to map such 

multi-modal hierarchical relations in intelligence systems is the core of its 

power.
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     We demonstrated that the use of digraph theory added to the SIGGS 

theory model permits a high level of precision in theory and analysis of 

properties of intelligence systems.

     We also used information theory to demonstrate information-theoretic 

(uncertainty) measures on an intelligence network. The existence of 

alternatives for the occurrence of any intelligence (for example QN, 

quantitative intelligence) component indicates the selective sense of 

information. This sense of information can be measured in an intelligence 

system and such measures of the transmission of information shared 

between two or more components of systems (or two or more systems) can 

be calculated with the Shannon (1949) formula.

     We also noted that the information base from which affect relations of a 

group are determined (which also determines the intelligence network or 

system in general as well as the components of that network) may be well-

defined or it may not be. A researcher may only have an idea or a guess as 

to what components are actually contained in the information base. The 

definition of the information base is crucial, especially when referring to 

criminal or terrorist systems. Thus, given the ambiguities surrounding 

definition of the information base, we determined that consideration to 

alternatives to crisp measures of information, including formalisms of the 

Dempster-Shafer theory of evidence; imprecise probabilities; and 

possibility theory should be explored and possibly included. Moreover, 

integrating data mining technologies within the larger theory of natural 

intelligence utilizing SIGGS makes possible real-time predictions. 

     In addition to the SIGGS theory model, we also noted the value of 

Boolean networks as an added tool of the model. The nonlinear theory 

model approach permits reorienting the perspective on intelligence from a 

classical top-down symbol-based, single-capacity view to a geometric-

based performance of intelligent agents in a fitness landscape.

     Properties of random Boolean networks in analysis and theory of self-

organizing and emergent configurations of natural intelligence were 

explored in an earlier publication (Estep, 2003). By turning to a phase 

space of intelligence possibilities, utilizing a broad array of variables from 

major categories of intelligence, the very dynamics of a natural 

intelligence agent can be evaluated as that agent works his or her way 

through the landscape. Boolean networks can provide well-developed 

concepts and methods to increase our knowledge and understanding of the 

dynamics of natural intelligence systems. 
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A recurring theme throughout has been that classical science approaches to 

theory of intelligence are not at all adequate to address the full scope and 

depth of natural intelligence actually observed in human and animal 

experience. The classical approach underlies the single-capacity theory 

which holds that natural intelligence of both humans and animals reflects 

the unfolding of genetic structures in the brain already determined at birth. 

In part, the failure of these approaches is due to methods and concepts that 

are overwhelmingly discrete, serial, top-down and linear.

     Likewise, the classical approach to artificial intelligence as well is 

premised upon a discrete, serial, top-down view of intelligence as symbol-

based, rule-governed (algorithmic) knowledge that. And in spite of an 

enormous increase in our understanding of biological systems, brought 

about in part by growth in the neurosciences, these basic structural 

approaches to artificial intelligence continue. In general, this is a 

continuation of the fundamental conceptual and methodological split 

between mechanistic and organismic approaches to intelligence. 

     The usual Artificial Intelligence (AI) approach is a serial processing 

strategy, with problems defined over the natural numbers, integers, 

rationals, or domains encodable in the integers, requiring a great deal of 

elaborate programming and prior knowledge that (QN) engineering.

     It is an approach built upon a centralized control structure with access 

to large sets of predefined data structures, operating with algorithms 

defined by mathematical formulas and discrete procedures. Similar to their 

counterparts in the IQ industry, it is a program premised upon and still 

seeking to build intelligence systems that bear little resemblance to actual 

intelligence found in the natural world. 

     This chapter will address certain facets of this problem in light of the 

broader theory of natural intelligence we generally laid out in earlier 

chapters. We will explore a host of other problems as well, comparing the 

classical artificial intelligence approach to more recent neural network 

(connectionist) approaches. Though recent years have witnessed 

burgeoning interest in and development of more biologically-inspired 

architectures, certain of the same problems identified earlier persist. Many 

of these problems rest on an inadequate theory of natural intelligence. 

 269
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7.1 Classical Architectures for Natural Intelligence 

In Albus (1981, 1991), “intelligence” is defined as “that which produces 

successful behavior,” resulting from natural selection. More specifically, it 

is “the ability of a system to act appropriately in an uncertain environment, 

where appropriate action is that which increases the probability of success, 

and success is the achievement of behavioral subgoals that support the 

system’s ultimate goal”.

     Albus’ theory is intended to be a theory of intelligence in general, not 

limited to that of lower animals. His definition is one that is largely shared 

in the artificial intelligence research and development community. 

Moreover, the natural or artificial system’s ultimate goal and criteria of 

success are defined externally to the intelligent system in the following 

way:

“For an intelligent machine system, the goals and success criteria are typically 

defined by designers, programmers, and operators. For intelligent biological 

creatures, the ultimate goal is gene propagation, and success criteria are defined by 

the processes of natural selection” (Albus 1991). 

     One would hardly dispute that the goals and success criteria for 

intelligent machines are defined by designers, programmers, and operators. 

With respect to intelligent biological systems, on the other hand, Albus’ 

characterization of the goals and success criteria are more appropriately a 

characterization of the intelligence of infra-animals rather than humans.

     Similar to the single-capacity intelligence theories (of human 

intelligence), it is a genetically driven, top-down model that fails to capture 

the broader scope of intelligence actually found in animal and human 

experience.

     Indeed, it may be distorting the concept “intelligence” altogether to 

collapse it to what are normally regarded as instinctual or involuntary 

activities such as gene propagation and to focus exclusively upon what is 

given with genetic inheritance. Roaches and rats are examples of 

successful gene propagation which readily come to mind. They are clearly 

examples of successful natural selection where the goal is gene 

propagation.

     One might assume that learning, where this is not limited to a change in 

behavior which persists, but in the sense of coming to know, might be an 

important facet of specifically human intelligence. 

     But for Albus this is not the case. We learn that in his definition of 

“intelligence”, learning in the sense of coming to know is not required at 

all. However, learning may be required only to become more intelligent as 
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a result of experience. Thus he defines “learning” as consolidating short-

term memory into long-term memory, and exhibiting altered behavior 

because of what was remembered (Albus 1991, p. 474).

     In other words, “learning” as at least one major mechanism of system 

dynamics is limited to infra-animal learning and is largely reactive. Any 

kind of envisionment and conceptualization in light of knowledge of the 

past and consideration of future possibilities, are not included in learning. 

Coming to know is not considered at all. 

7.1.1 Learning, Knowledge, Knowing and Intelligence 

According to Albus, intelligence is solely a product of and a mechanism 

for biological advantage. It is a product and mechanism for generating 

biologically advantageous (gene propagating) behavior. On such a view, 

hence, knowledge, knowing, belief, and learning (as well as coming to 

know) will be justified only to the extent that they have survival value in 

the process of genetic natural selection. And we will see that in general 

that is precisely the view Albus takes in his design of an architecture for 

intelligent systems in general.

     Of course, this approach to intelligence is not new having been tried by 

or is implicit in the work of certain philosophers, for example, Quine 

(1969). It is also explicitly apparent or implicit in the formal learning 

[inductive] theories found in Holland (1975; Holland et al. 1986) and other 

theorists of computational learning. Thus, before proceeding with Albus, 

we might review certain pivotal assumptions and arguments of such a 

position as it has been set forth elsewhere.

     We saw earlier that in Quine’s naturalist theory that conditioned or 

stimulatory response is held to be a determinant of claims to know. 

Quine’s position on theory of knowledge is parallel to Albus’ view, 

holding that knowledge, mind and meaning are to be explained and 

modeled solely in terms of single causal chains of natural science.

     In Quine’s case, that means that knowledge, mind and meaning are 

reduced to sensory stimulation and linguistic reports about those sensory 

stimulations. Knowledge is made up of linguistic reports, verbal or written, 

of our sensory observations, and analytical hypotheses. Observation 

reports or sentences are clearly the most important, according to Quine, 

since they are what we learn to understand first. Knowing how is not 

considered at all, and neither is immediate awareness. Nonlinguistic 

knowing of any kind is excluded altogether.
     Moreover, the only method of discovery or learning allowed for by 
Quine and also Albus (when he speaks of knowing) is inductive inference.  
And as earlier noted of Quine’s concepts of learning and induction, found 
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also in Albus’ theory, they are concepts fraught with logical inconsis-
tencies and confusion. Just as we saw earlier in Quine’s notion of learning, 
Albus has confused two entirely different senses of the concept “induction” 
which must be distinguished from one another.
     Of course, as earlier noted, there is a valid sense of induction as 
statistical form of argument in which an inference is made from some 
members of a class of things to the whole class. There is also a mistaken 
notion of induction as process. This is a sense of induction which is taken 
to be a process of reasoning in which one derives “theory” or an hypothesis 
from (sense) data.
     Often, one finds the notion of derivation interpreted as the process of 
“abstraction,” which essentially begs the question. Processes of abstraction 
assume the principle they seek to establish. As earlier noted, this spurious 
sense of induction is traceable back to Francis Bacon (Anderson 1960), 
who presented induction as a way of discovering truth. This mistaken 
notion is built into Albus’ proposed architecture of intelligence. 
     Keeping in mind certain of the basic arguments for and earlier 
criticisms of a theory of knowing reduced to single causal chains of natural 
science, and the explanation of knowledge, knowing, belief, and learning 
(as well as coming to know) in terms of natural selection, we should look 
closely at an architecture of intelligent systems based on such arguments 
combined with a spurious sense of induction. 
     For Albus there are four major system elements of intelligence: sensory
processing, world modeling, behavior generation, and value judgment.
Inputs to and outputs from intelligent systems are by means of sensors and 
actuators. Machine actuators are motors, pistons, valves, solenoids, and 
transducers; natural actuators are muscles and glands. Actuators move, 
exert forces, position arms, legs, hands, and eyes. They generate forces to 
point sensors, excite transducers, move manipulators, handle tools, and the 
like.
     Sensors provide input to a sensory processing system. Such input may 
be provided by sensors which include visual brightness, color sensors, 
tactile, force, torque, position detectors, velocity, vibration, acoustic, range, 
smell, taste, pressure, temperature measuring devices. We will largely 
focus upon Albus’ sensory processing system. 

     Albus’ notion of the sensory processing system is based on 

quantification principles cited above, and entails the same problems we 

saw with Quine’s arguments for sensory stimulations as the basis for 

knowledge, (observation) sentences and meaning. For example, Albus 

states:

 “Sensory processing algorithms integrate similarities and differences between 

observations and expectations over time and space so as to detect events and 

recognize features, objects, and relationships in the world” (1991, p. 476). 
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     Thus sensory processing in Albus’ theory depends on an equivalent of 

Quine’s mysterious appeal to an “inborn propensity to find one stimulation 

qualitatively more akin to a second than to a third.” That is, it depends 

upon an “inborn sense of similarity,” which in turn depends upon 

recognition of patterns. 

     The equivalent to this in Albus’ theory is an “internal world model,” 

which generates “expectations” with which the sensory observations are 

compared in a sensory processing (pattern recognizing) system element.

     But problems with all this in both Quine’s and Albus’ theories are 

immediately evident. Recognition of patterns already entails a notion of 

sense of similarity. Moreover, a sense of similarity entails recognition of 

patterns. In other words, both Quine’s and Albus’ explanation of sensory 

processing begs the very question or problem at hand. 

     Moreover, their accounts of sensory processing in turn depend upon 

what we have earlier argued is the spurious sense of induction. That is, in a 

human system, generalizations or expectations are reached by a process of 

purported reasoning from discrete sensory data, based on the equally 

spurious “inborn propensity” or “inborn sense of similarity.”

     In a computer, these same generalizations and expectations are held to 

be reached by the same purported inductive sensory reasoning process 

comprised of algorithms which integrate similarities and differences 

between observations and expectations in order to detect and recognize 

aspects of reality. 

     To continue our discussion, we must introduce certain technical 

concepts and methods which we will use in our analyses.

Vectors, States, and Trajectories 

A vector is an ordered set or list of variables. In the design of a pattern 

“recognizing” intelligent machine, one must describe many variables and 

characterize many simultaneous multivariant computations. Thus, vector 

notation is one way to do this. An ordered set or list of variables defines a 

vector as follows: 

Fig. 7.1. Vector
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     Components of a vector can be coordinates of a point as in the above 

graph, (vx, vy) corresponding to the tip of the vector. A vector space is 

defined as the locus of all pairs of components that can exist. Vectors can 

have two or more components. A vector with two components is a surface;

three components define a volume; four or more components defines a 

hyperspace.

Vectors can specify a state which is an ordered set of variables. For 

example, the epistemic state of a person or machine might be characterized 

by the following state vector: Ep = (ep1, ep2, ep3,), where: 

                                               Ep1 : QN intelligence 

                                               Ep2 : QL intelligence 

                                               Ep3 : PF intelligence 

     The state vector is in a space consisting of all possible combinations of 

values of the variables in the ordered set (ep1, ep2, ep3), defining the space 

Sep. Every point in that space corresponds to a unique epistemic (knowing) 

condition, and the entire space corresponds to all possible epistemic 

(knowing) conditions.

     In terms of obtaining of a given knower, each variable is time-

dependent. Thus we can add one more variable, time (t) to our state vector, 

Ep = (ep1, ep2, ep3, t). That is, through time, the point defined by Ep will 

move through four-dimensional space. 

Ep

and the later discussion that many things (though we will argue not proper 

names) can be represented as vectors. For example, gestures and motions 

which “point” can be represented by a trajectory. Pictures can be 

represented as two-dimensional arrays of points, each with its own 

brightness and hue (Albus, 1981, 1991). 

      Each point would then be represented as three numbers corres-ponding 

to color brightness (red, blue, green). Where each of the numbers is zero, 

the color is black; where they are large and equal, the color is white. 

Where there is a large number of points spaced closely together such that 

the human eye cannot discern the spaces, the eye cannot distinguish that 

array of a closely spaced large number of points from a real object. 

It is important for our purposes in the analysis of intelligent systems 

tory,  T .  For  our  purposes,  we  have added the variable,  time (t) to  our 

state vector. Through time, the vector will move along the time axis. Since 

some curve. 

we take each of the other variables as time-dependent, the trajectory will 

not be a straight line parallel to the time axis, thus the trajectory will be 

Figure 7.2 shows the locus of the point traced by Ep as it defines a trajec-
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Fig. 7.2. Trajectory of Kinds of Intelligence 

     Moreover, sounds, musical notes and chords can be represented as 

vectors, as well as symbols. Any ordered set of binary digits corresponds 

to components of a binary vector. Significant for the characterization of 

natural language discourse is the fact that symbols can be represented with 

continuously variable components.

     Thus if the underlying hyperspace is continuous, each point 

corresponding to some symbol has a neighborhood of points around it 

which are closer to it than any other symbol’s points. Utilizing an example 

of points in hyperspace corresponding to the symbols a and e, Albus 

(1981, pp. 107-108f) discusses how we might view the points in such a 

neighborhood.

Functions and Operators 

Within the context of vectors, a function is a mapping of points in one 

hyperspace onto points in another. In mathematics generally, a function is 

a relationship between symbols which can sometimes be in a one-to-one 

correspondence with physical variables [keeping in mind the ambiguity of 

the term “variable”]. Where the relationship is in a one-to-one 

correspondence with physical variables, there is sometimes an asymmetry, 

sense or direction in the relation.

     For example, we can map a set of states [that is, a state vector, or all 

combinations of values of variables in an ordered set] defined by 
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independent variables, that is a set of causes, onto a set of states defined by 

dependent variables, a set of effects. This can be expressed as: f: C  E. 

This means that f is a relation mapping the set C into the set E, that for any 

particular state in C, f will compute a state in set E. 

     As we saw with digraphs earlier, functions can be expressed in a variety 

of ways: as an equation, as a graph, as tables or matrices, and as circuits.

     Tables such as matrices can be used to define non-Boolean functions, 

but they define a continuous function only at the discrete points that are 

represented in the table. Accuracy of a continuous function depends on the 

number of entries, the resolution on input variables. 

    Above, we illustrated how epistemic states can be denoted by vectors 

and sets of epistemic states can be denoted by sets of points in hyperspace. 

We will extend the notion of a function as a mapping from one set of states 

to another to a mapping of points in one vector hyperspace onto points in 

another.

     An operator can be defined as a function mapping input Ep = (ep1, ep2,

ep3, . . .epn) onto the output scalar variable K, written either as K = H (Ep) 

or as K = H (ep1, ep2, ep3, . . .epn). The functional operator is often 

indicated by engineers as a circuit or “black box”, which exhibits input-

output processes.

     Where we have a set of operators, h1, h2, h3, . . . hn operating on an input 

vector, Ep, as in the following figure below, we then have a mapping H : 

Ep  K (alternatively, K = H (Ep)) where the operator H = (h1, h2, h3, . . . 

hn) maps every input vector Ep into an output vector K. Ep is a vector or 

point in input space. The information function H is a mapping from input 

space onto output space. 

     In the above Figure, H is a function mapping input vector Ep into scalar 

variable K. H denotes information functions which we discussed in the last 

chapter.

Fig. 7.3. H Function Mapping Input Vector into Output K 
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Fig. 7.4. H as Function Mapping Input Vectors Ep into Ouput K 

     In the above Figure, the set of functions H = (h1, h2, h3, . . . hn ) maps 

input vector Ep into output vector K. For the sake of simplicity, we will 

limit our discussion to a single Ep which will map into one and only one 

K. As we stated above, variables in Ep may be time-dependent, hence Ep 

will trace a trajectory TEp through an input space. The H function will map 

each point Ep on TEp into a point K on a trajectory TK in output space.

Fig. 7.5. H Maps TEp Into TK

In this Figure, H maps every input vector Ep in input space into an 

output vector K in output space. Thus, H maps TEp into TK.

7.1.2 Goal-seeking Intentional Behavior 

The proposed structure of goal-seeking and hierarchical control systems on 

Albus’ model is top-down and reactive. It incorporates the usual 

engineering representations of the structure of control systems for sensory-

interactive, goal-directed behavior, where each level of the sensory 

processing hierarchy includes pattern “recognizers” (classifiers) in the 

process.
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     He includes a servomechanism or simple input-output-feedback (simple 

cybernetic) information control system with one-dimensional input 

commands, output and feedback (though vector notation permits 

generalization to multi-dimensions). 

     Where: 

     “R” refers to reference or command vectors; 

     “F” refers to feedback vectors; “ep1” through “epn” refers to epistemo-

logical (intelligence) conditions; 

     “H” refers to information operations; 

     “A” refers to actuators; 

      “S” refers to sensors

     The command or reference vector is indicated by R, consisting of 

variables ep1 through epj. The feedback vector is indicated by F consisting 

of sensory variables epj+1 through epn. Again, the H [operators] computes 

an output vector K consisting of K1 through Kk, driving the actuators 

affecting the environment.

     In its usual representation, a command or reference vector R establishes 

a setpoint and over time the feedback vector F varies, thus establishing an 

input trajectory TEp. The H function or operator computes an output vector 

K for each input thus producing output trajectory TK.

    The R [reference or command] vector can be a symbol or string of 

symbols signifying a goal, task, or plan, and can be viewed as a decom-

position into a sequence of subcommands, subreferences, subgoals. Then 

the output string K1, K2, . . .Kn will represent a sequence of subtasks, 

subgoals or subplans.

     In many engineering designs, problems with stability, speed and such 

are handled with the H functions, provided they are correctly formulated 

and defined over the space traversed by the input trajectory [Ep input]. If 

so, then error between the command or reference input [R] and the ouput 

Fig. 7.6. Input-Output Graph 
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vector [K] is null and the ouput trajectory TK will drive the actuators to 

achieve a goal, perform a task, and so on.

Hierarchical Control

Throughout we have emphasized that coming to know and knowing are not 

identical or equivalent to coming to behave. That is, knowing and learning

are not identical nor are they equivalent. Knowing includes knowing that,

knowing how, and immediate awareness. Knowing that and what 

programmers refer to as procedural knowledge are claimed to be 

embedded in computer programs or wired into their circuitry, though their 

notion of procedural knowledge (as in Albus’ theory) is not identical to 

knowing how. 

Fig. 7.7. Hierarchical Control System

     It is not terribly significant for our purposes whether or not computers 

can be said to know as opposed to behave as though they know (for 

example, meeting some Turing test requirement). I will leave such issues 

to others.

4

mands or references R3 [and their order]. 

     In Figure 7.7, the highest level input is a symbolic vector denoting a 

complex task, and there are R vectors at each level of the hierarchy. 

Information feedback at the highest level includes data identifying a problem

or work space and thus decides output vectors  K  and simple task com- 
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     Part of the output K4 becomes part of the input vector R3 at the next 

lower level. R3 is of course a symbolic vector identifying simple 

commands or references [with necessary modifications]. This process of 

information transmission continues at each level of the hierarchy with 

appropriate changes in the information categories.

     Feedback information at F3, for example, might include identification of 

position of elements necessary to the performance of a task, as well as state 

sequencing information from output vector K3. Feedback information at F2

might be information from sensors identifying position errors between 

objects to be grasped, in addition to other sequencing information. The 

operators H function continuously at each level, producing outputs each 

instant of time. However, feedback loops at lower levels will obviously be 

faster than at higher levels.

     Response to an environment by such a control mechanism depends in 

part on the extent to which feedback vectors at each level contain sensory 

information from that environment. Responses to the feedback vectors in 

turn depend upon H functions at that level, and success or failure of a 

performance is held to be determined in terms of whether H functions at 

each level are sufficient to provide correct mappings to maintain the 

output.

7.1.3 Control System Information Limitations 

The above hierarchical control system with the addition of a complex 

sensory processing system, internal world models and multiple levels of 

feedback, is in structure still a linear, additive simple cybernetic model. It 

is reactive and has serious information-theoretic limitations. 

     As we noted in the last chapter, on the above usual cybernetic model, 

input is information transmitted to the system. In the above Figure this 

corresponds to Ep, consisting of R and F vectors fed into the operation H 

system [space]. Output is the information transmitted from the system, 

corresponding to K vectors in the same Figure. Finally, feedback, F vectors 

is information transmitted from the system through the surroundings and 

back to the system.

     We earlier noted that the simple cybernetic model obviously provides a 

powerful theoretical perspective for homeostatic systems that is self-

preserving operations, the maintenance of system goals in equilibrium 

with an environment. It is a theoretical perspective of a reactive, 

deterministic linear system. 
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     Transmission of information to and from the system [the hierarchy of 

subsystems within the larger overall system] is directed toward 

maintenance of specified goals. The major assumption on this model is that 

information fed back into the system is both necessary and sufficient for 

the regulation of the system’s operations. That is, success or failure of the 

system’s goal-seeking performance is determined by whether or not the H 

functions provide correct mappings so as to maintain the output trajectory 

within a range of successful performance in spite of disturbances or other 

information [uncertainties] in the environment. 

     However, the above cybernetic model does not provide a perspective 

for systems characterized by growth, hierarchical differentiation, emergent 

properties, evolution, and change. In essence, these are systems that have 

interdependent, transactional relations with that which is outside the 

system.

     This lack of a heterostatic perspective is due in part to the information 

limitations on the above model. We can see this by looking again at the 

concepts “input”, “output”, and “feedback”.

     In the above model [and amply illustrated in Albus’ control system], 

input is information transmitted to the system. It is what the system takes 

in. However, information that is available to the system from all that is 

outside the system [from the negasystem] and how that relates to the input

remains unknown. We should perhaps emphasize that the concept 

“information” here is used in its technical sense as a selection on 

alternatives, the logarithm [to base 2] of the number of available choices 

(Shannon and Weaver 1949).

     For example, if there are 16 alternative messages among which to 

choose or decide, then 16 = 2
4 and log2 16 = 4, hence the situation is 

characterized by 4 bits of information. If we do not know what the 

alternatives are available to a system for selection from all that is outside 

the system, then we really do not know how many bits of information 

actually characterize the situation. We have an information limitation on 

the system. 

     Moreover, on the above model, output is information transmitted from 

the system. It is information available from the system. However, what the 

negasystem actually gets and how that relates to the output remains 

unknown. Again, we do not know how many bits of information actually 

characterize the situation. Additionally, feedback on the model relates the 

output to the input.

     There are at least two information measures missing here in addition to 

the ones cited above: (1) a measure of the selective information from a

negasystem through a system to a negasystem; and [given (1)], (2) a 

measure of selective information from a system through a negasystem to a
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system. This reveals tremendous gaps in selective information on this 

model.

     Obviously, an Achilles’ heel of the above model is the extent to which 

variations in an environment are ignored. There is no recognition in the 

model of information measures sufficient to handle the interdependencies, 

interactions and transactions with an environment.

     In sum, Albus’ model of an intelligence system completely misses 

fundamental necessary conditions of natural intelligence. It completely 

omits any context-interdependency and sensitivity that are necessary to any 

natural intelligence system. Moreover, it omits the very goal-seeking and 

intentionality it was purportedly designed to include, and is instead an 

essentially reactive system. 

7.2 Biologically-Inspired Architectures: VLSI 

Top-down, logic based programming such as Albus’ model has long been 

and still is a paradigm for knowledge representation systems. But it is 

inadequate to address simulations of natural intelligence actually found in 

human and animal experience. Neural networks offer the best approaches 

to date, specifically in the form of self-organizing feature maps, though 

there are major difficulties even with these.

     A major difficulty for neural network programs is the fact that most of 

the current theoretical work done on brain dynamics is still based on the 

original McCulloch-Pitts (1943) single switch model (Scott 2002; Brooks 

1996). In 1996, Brooks emphasized a number of major problems facing 

artificial intelligence, pinpointing this fact. Along with Hebb’s (1949) 

quantifications of changing synaptic weights, he indicated that “we pretty 

much have the modern computational model of neurons used by most 

researchers.”

     But it is yet unclear whether or not newer models of real neuronal 

activity have made much of an impact on artificial models of intelligence. 

An artificial neural network is designed to model the way in which the 

brain performs a particular task or function. The human brain contains 

around 10 billion neurons. There are many different sorts of neurons, but 

they all share certain basic properties. The main cell body receives signals 

from other neurons by means of dendrites. The neuron itself builds up a 

signal inside itself. When it reaches a certain threshold level, it “fires,” 

discharging the signal down its long axon and over to other cells through 

connections at the end of the axon called synapses. These are connected to 

the dendrites of other cells.
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     Moreover, each neuron has around 10,000 connections on average to 

other neurons, both incoming by way of dendrites and outgoing by way of 

axons. The connections can be local with nearby neurons or distant either 

in adjacent layers of the brain or much farther away. 

     The neurons in a network are connected together so that the outputs of 

some feed the inputs of others. The input to the cells arrives in the form of 

signals down the inputs. In the human brain, the signals take the form of 

chemical connections between the ends of nodes. The signals build up in 

the cell and eventually it discharges through the output. We say that the 

cell fires. Then the cell can start building up signals again.

     In the human brain, neurons are connected in extremely complex 

networks with countless interconnections. An artificial neural net has a 

much simpler structure, following McCullough-Pitts, when it is simulated 

on a computer. That model usually has exactly one switch, but will differ 

in the number of layers and feedback loops. 

     When brain neuron networks are simulated on a computer, they are 

designed as adaptive parallel distributed processing machines using 

massive interconnections of processing units, neurons. They may be 

structured in several different ways, and the structure or architecture is 

linked to the learning algorithm characterizing the network’s functions 

Thus, the nature of a neuron in computer control architecture is that of a 

basic processor in a network of such processors.

     Each neuron has a set of connecting links characterized by a weight or 

strength. An input signal xi of synapse j connected to neuron k is multiplied 

by the synaptic weight wkj. (The first subscript refers to the neuron in 

question and the second subscript refers to the input end of the synapse). 

Each neuron also has a summing function for summing the input signals 

weighted by the respective synapses of the neuron. Each neuron also has 

an activation function [also referred to as a squashing function] which 

limits the amplitude of the output of the neuron. This function limits the 

permissible amplitude range of the output signal to some finite value, 

usually written as the closed unit interval [0,1] or as [-1,1]. An external 

threshold function is also included in the graph. This function has the 

effect of lowering the net input of the activation function. T 

     In essence, each neuron sums its inputs with respect to weights, 

subtracts a threshold and applies an activation function to the result. The 

activation function,  (  ), defines the output of a neuron in terms of the 

activity level at its input. There are basically three types of activation 

function, including threshold and piecewise linear, but our concern in part 

is with sigmoidal (“S”-shaped) functions because they more closely 

characterize actual dynamic behavior of living things.
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     Some form of nonlinear activation function is necessary in order to try 

to obtain dynamic, self-organizing mappings central to a mathematical 

characterization of natural intelligence. It is especially important to realize 

that the self-organizing patterns of connections among the neurons of these 

networks is such that they are capable of modification as a function of 

experience. That is, neural networks can learn, and to some degree, they 

may be said to be able to come to know. 

7.2.1 Neuromorphic Architectures 

The basic principle behind neuromorphic computational systems is that 

building such systems true to the representations and architectures used by 

neurobiology will permit the production of capable, autonomous robots 

while also suggesting testable hypotheses as to how biological systems 

accomplish sensory and motor tasks (Higgins 2001). 

     An assumption underlying this principle is that bottom-up, multi-

layered and massively parallel processing found throughout the biological 

world can be implemented in neuromorphic VLSI (very large scale 

integration) hardware. Whether or not this is a realistic assumption is an 

issue I will not address here, though one should note the extraordinary 

amount of memory and spatial-temporal frequency space required for the 

computations (Higgins 2001, p. 237; Scott 2002, p. 297). Whatever the 

case, large numbers of parallel sensors and redundant actuators are 

necessary.

     The neuromorphic (neural network) approach to sensory system 

programs and architecture is in contrast to Albus’ top-down classical 

approach. Generally, the various neuromorphic architectures consist of the 

following:

     (a) A single-layer feedforward neural network is the simplest form of 

such networks. It consists of an input layer of source nodes or neurons that 

projects one-way [that is, it feedsforward] onto an output layer of 

computation nodes. The “single-layer” refers solely to the output layer of 

neurons.

     (b) Multilayer feedforward networks, which are the most common, 

contain one or more hidden layers of computation nodes called hidden 

neurons or hidden units. The purpose of the hidden units is to intervene 

between the external input and the network output. By adding one or more 

hidden layers, a network is enabled to extract higher-order statistics for a 

more global perspective in spite of its local connectivity with the extra set 

of synaptic connections and extra dimension of neural interactions.
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     The outputs of neurons in each layer are connected to the inputs of the 

neurons in the layer above. The source nodes of the input layer supply 

elements of the activation pattern which constitute the input signals 

applied to the computation nodes of the second layer [that is, the first 

hidden layer]. The output signals of this second layer are then inputs to the 

third layer, and so on for the remainder of the network. The output signals 

of the output or final layer are then the overall response of the network to 

the activation pattern supplied by the source nodes of the initial input 

layer.

     A network or ensemble is said to be fully connected if every node in 

each layer of the network is connected to every other node in the adjacent 

forward layer. If some of those communication links or synaptic 

connections are missing, then the network is partially connected.

     Each connection from one node to another carries a strength which 

indicates how important the connection is. Strong connections have more 

influence on the node they connect into than weaker ones. They contribute 

more to the firing of the cell. The information carried by the network is 

stored in the differing strengths of the node connections. The strengths 

between the nodes are called weights in the program and are stored as 

numbers. Neural networks are being implemented in specially created 

integrated circuits, but most programmers simulate neural networks using 

software.

     The term “feedforward” means that the connections between one layer 

and the next only run in one direction. There are connections from layer 1 

to layer 2, from layer 2 to layer 3 etc. but no connections in the other 

direction. The opposite of a feedforward net is called a recurrent net, 

which have feedback connections. 

     (c) Recurrent networks have at least one feedback loop. They may 

consist of a single layer of neurons with each neuron sending its output 

signal back to the inputs of all the other neurons, with no self-feedback 

loops, or they may consist of a multilayer system of neurons with one or 

more feedback loops. Either single- or multilayer networks may also 

include self-feedback loops. Self-feedback is the output of a neuron fed 

back to its own input. Moreover, a recurrent network may have a hidden 

layer or it may not. As explained by Haykin (1994), the presence of 

feedback loops in recurrent structures has a profound impact on the 

learning capability and performance of the network. Feedback loops also 

involve the use of particular branches composed of unit-delay elements 

which result in nonlinear dynamical behavior. 

     For our purposes, we should point out that recurrent networks often 

have attractor states, which we discussed earlier. This means that signals 

passing through the recurrent net are fed back and changed until they fall 
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into a repeating pattern, which is then stable (i.e. it repeats itself 

indefinitely as it rattles round the loop). The input signals change until they 

reach one of these attractor states, and then they remain stable. When using 

recurrent networks, the goal is to train the weights so that the attractor 

states are the ones that you want.

     (d) Lattice structures are one- or many-dimensional arrays of neurons 

with a corresponding set of source nodes supplying input signals to the 

array. The dimension of the lattice refers to the number of the dimensions 

of the space in which the graph lies. 

Learning Algorithms 

An artificial neural network is a massively parallel distributed processor 

that has a natural capacity for storing experiential learning and making that 

available for use. It learns or comes to know [in a restricted sense of 

“know”] by means of algorithms which modify the synaptic weights of the 

network so as to achieve a learning or knowing goal. Generally, it is 

possible for neural networks to learn in a variety of ways and under certain 

specifiable conditions. 

     (a) Supervised learning. This occurs when there is an external 

“teacher”, target or desired response the neural network is designed to 

achieve. The teacher has knowledge of the environment which is 

represented as a set of input-output examples to the network. The network, 

however, does not have knowledge of the environment.

     Thus, the teacher or whatever makes up the teaching or desired 

response signal feed provides the network with the desired or target 

response, the optimum response to be performed by the neural network. 

Network parameters are then adjusted by both a training signal and error 

signal, until the network simulates the correct response. This in essence is 

referred to as the error-correction method of supervised learning. For our 

purposes, it is fundamentally flawed precisely because the environment is 

not in the feedback loop of the network. Moreover, without a “teacher” or 

teaching signal feed, a network cannot learn new strategies for particular 

or unique situations not covered by a set of defined examples used to train 

the network. 

     Other supervised learning algorithms include the Least Mean Square 

algorithm, which involves a single neuron [thus, it will not be of concern 

here], and the Back Propagation algorithm, which involves a multilayered 

interconnection of neurons. With this algorithm, error terms are back-

propagated throughout a network layer by layer until it reaches the correct 

value.



7.2 Biologically-Inspired Architectures: VLSI      287 

     (b) Reinforcement learning. This is learning of an input-output mapping 

by a process of trial and error for the purpose of maximizing a 

performance index, the reinforcement signal (Haykin, 1994). It may be 

either non-associative or associative reinforcement learning. In the former, 

the reinforcement is the only input the network receives from its 

environment; in the latter, the environment provides information in 

addition to the reinforcement. With respect to associative reinforcement 

learning, with many kinds of input from the environment, it is necessary to 

carefully consider an evaluation function on the network, a critic function, 

and a prediction function.

     A supervised learning system is one largely governed by a set of targets 

or desired responses. It is an instructive feedback system. On the other 

hand, a reinforcement learning system is one which is directed to 

improving performance and learning on the basis of any measure whose 

values can be supplied to the system. It is an evaluative feedback system 

(Haykin 1994). In a supervised learning network, an external source [a 

“teacher”] provides direction to the system. In a reinforcement network, 

the network has to probe, that is explore, the environment through trial and 

error and delayed reward searching for directional information.

     (c) Unsupervised learning. There is no external teacher or critic in this 

learning process. That is, there are no examples of the function to be 

learned by the network. Rather, a task-independent measure of the 

representation that the network must learn is used and the free parameters 

of the network are optimized relative to that measure. In effect, the 

network becomes “tuned” to the statistical regularities of the input data and 

develops the ability to form internal representations for encoding features 

of the input, creating new classes automatically (Becker 1991; Haykin 

1994).

     Self-organizing networks perform unsupervised learning. Thus, with 

respect to possible computer generated characterizations of natural 

intelligence, the issue actually comes down to mapping some variety of 

unsupervised multilayer recurrent neural network topology into a machine. 

Self-Organizing Feature Map (SOFM) 

Basically, a self-organizing feature map is one in which topographic maps 

are formed of the input patterns. The neurons are placed at nodes of a 

lattice and become selectively “tuned” to various input patterns (vectors) 

in the learning process. Over time, the neurons are supposed to become 

ordered so that a meaningful coordinate system for different input features 

is created over the lattice. Thus the spatial locations or coordinates of the 

neurons in the lattice correspond to features of the input patterns.
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     Self-organizing feature maps were inspired by the way the human brain 

is actually organized. It is organized such that different sensory inputs are 

represented by topologically ordered maps on the brain. The sensory and 

somatosensory-motor areas of the brain are mapped similar to layered 

“sheets” onto different areas of the brain.

     The human brain is organized relative to these different maps such that 

we are able to make associations between both spatial and temporal 

information that is streaming simultaneously, on multiple levels, to our 

sensory and somatosensory-motor systems. Our brains know how to 

reinforce connections between things that often appear together in those 

data streams, which make it possible for us to be aware of our environment 

and to form higher order combinations of things. This in turn permits us to 

make sense of our experience and act intelligently in the world. The human 

brain is a natural, self-organizing feature map, building topographic maps 

onto itself. 

     Thus artificial self-organizing feature maps used in computers are 

designed specifically to be like the human brain in that respect. They are 

designed to be like natural brain “computational maps,” sharing the same 

(or almost the same) functional properties.

     The computational maps are performed in Kohonen’s Self-Organizing 

Feature Map (SOFM) by parallel processing arrays that can handle large 

amounts of information very quickly. They can rapidly sort and process 

complex input and represent the results in a simple and systematic form.

7.2.2 The Problem of “Brittleness” 

In a thought experiment using a version of the Cocktail Party Problem 

(2003), I sought to determine whether and how any neural network 

architecture could handle hierarchical streams of data and the formation of 

higher categories of things. In general, I wanted to determine whether or 

not and to what extent any of them could handle relatively ordinary kinds 

of natural intelligence demonstrated in human experience virtually 

everyday. Because of the unsupervised nature of the natural intelligence 

disclosed in the Cocktail Party Problem, all but the Self-Organizing 

Feature Map were ruled out.

     In general, though biological systems such as us are remarkably 

adaptive in most environments, including highly cluttered and noisy ones, 

the most advanced computer architectures available are “brittle” and 

virtually unable to adapt at all. 

     Some history: In 1953, Colin Cherry conducted perception experiments 

at MIT in which subjects were asked to listen to two different messages 
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from speakers at the same time and try to separate them. His work revealed 

that humans have the ability to separate sounds from a background. He 

hypothesized and demonstrated that the human ability to do this is based in 

part on the characteristics of the sounds such as gender of the speaker, 

direction from which sound is coming, pitch of voice and speaking speed. 

Human beings have an ability to make objects of interest pop out from a 

cluttered, noisy background. 

     Since his pivotal findings, a number of clinical studies have been 

conducted that are essentially variations on Cherry’s original experiment. 

To date, given the multi-modal nature of the phenomenon, among many 

other things, the research community still does not have a solution to the 

Cocktail Party Problem. That problem might be stated as follows: How are 

human beings able to make objects of interest pop out from a cluttered, 

noisy background?

The Party 

My own version of the Cocktail Party Problem (2003) differed somewhat 

from the usual presentation. Moreover, my assessment of the problem 

from a natural intelligence perspective also differed from the usual 

assessments. Those tend to focus solely upon sensory mechanics from a 

biological perspective, leaving out the phenomenological first-person 

perspective entirely, apparently on the assumption that the 

phenomenological perspective of the person has nothing to do with the 

person’s ability. My version of the Cocktail Party Problem went as 

follows:

     Think of the last time you were at a party or gathering of some kind, or 

just in a crowded room with, say, five or more people. Everyone is milling 

around the room simultaneously in conversation on various topics, at 

various levels of interest (some dull; some highly animated and loud), at 

various decibel levels, and with music playing in the background as well. 

You may have been having a conversation with someone, but during your 

own conversation with the person in front of you, you nonetheless could 

overhear conversation of someone else in another part of the room. But 

you weren’t paying any real attention to that other person and what they 

were saying or to whom they were saying it. Again, you really didn’t pay 

any attention to them and what they were saying because you were 

engaged in your own conversation with someone standing right in front of 

you.

     During your own conversation, however, midst all the other 

background sounds and conversational noise, the person you overheard in 

the background stopped talking. They stopped talking long enough for you 
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to then take notice that they had stopped talking. You noticed because you 

no longer heard their voice in the midst of all the other noise and 

conversation, coming from the direction of the room where you heard their 

voice, even in the midst of your own conversation with someone else 

standing right in front of you.

     It is the absence of that other person’s voice that causes you to lean 

forward and possibly turn your head in the direction of the room where 

you last heard them speak. You were trying to determine if they were still 

there and if they were still speaking, but possibly at a lower level than you 

could hear. You were trying to track a single voice in the midst of all the 

other sounds and noise, listening for more of the same conversation from 

that same voice, and in the midst of all the other noise, you knew what to 

expect to hear. You were also trying to explain why you didn’t hear them 

anymore.

     These details of the Party demonstrate relatively ordinary abilities of 

human beings. We know how to isolate and excise objects from their 

background on the basis of many things, including the timing of the 

occurrences of things. We know how to form expectations about what we 

should look for and what to anticipate or recognize next, without actually 

attending to or paying attention at all to what we are doing, or to even be 

aware that we are doing it. We ordinarily do not even know that we are 

doing this.

     On lower levels of awareness, immediate awareness, that we do not 

ordinarily notice or even recognize, we make associations between both 

spatially and temporally contiguous information that is streaming on 

multiple levels, to our sensory and somatosensory-motor systems. Our 

brains know how to reinforce those connections between things that often 

appear together in its multiple, simultaneously occurring data streams that 

permit us to be aware of and recognize objects in our environment and in 

us.

     From all those streams of data on many levels, and in many complex 

interrelations, our brains form higher order combinations of synchronized 

features that permit us to make sense of our experience and act 

intelligently in the world.

      The massive numbers of highly complex and interrelated neural 

networks in our brains process whole objects, such as a human face, 

knowing it is composed of eyes, nose, mouth and so forth, and that they 

nearly always appear together. Our brains are aware of and recognize 

higher-level objects, in part because of the similarities of their parts, to 

form an ascending hierarchy of related objects. The neural networks in our 

brains reinforce the interconnections among the parts of things, thus 

increasing our ability to detect and segment images into objects.
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     The Cocktail Party Problem was intended to demonstrate that our real-

world, real-time environment is very “noisy” and cluttered, yet, assuming a 

healthy organism, human beings know how to “track” single, unique 

objects such as voices in all that noise and clutter without much effort and 

without awareness that we are even doing so.

     Moreover, as individuals, we experience the world around us and in us 

from our own points of view, with limited and sometimes distorted 

perceptions of what is “out there” or “in us.” We view a world in which 

there is a great deal that is often hidden from us by other objects, by 

lighting and darkness, and even by our own wishes and fears. Nonetheless, 

we are often more successful than not in maneuvering our way in the 

world carrying out tasks that demonstrate our abilities to handle a great 

deal of uncertainty and lots of unknowns. 

     Our natural intelligence, operated in part by neural networks in our 

brains, manages our lives and tasks we perform every day by awareness 

and attending, on some level(s), to significant portions of occluded objects, 

thereby verifying or falsifying their presence in real-time.

     The programs and architecture of our brains perform intelligent tasks 

every single day. Take any human being, equipped with the finest natural 

intelligence architecture in the known universe, place that human being in 

just about any context such as the Party, and that human will be able to do 

all these things. Yet the architectures of our most sophisticated intelligent 

machines are unable to do virtually any of this.

     As Brooks noted, biological systems can adapt to new environments. 

They do not always adapt perfectly because obviously many biological 

systems die in some environments. Nonetheless, such systems are in 

general usually able to adapt. However, our most sophisticated computer 

programs, as well as our most sophisticated architectures, cannot adapt. 

They are “brittle.” A program compiled for one architecture often cannot 

run on another. 

     Even lower biological organisms than us know how to adapt, 

sometimes much better than we can in some environments. For example, 

some insects know how to embed themselves in larger organisms that they 

then use as hosts providing food and protection so as to permit them to 

“run themselves” within that host. Brooks asked, “Can we build a program 

which can install itself and run itself on an unknown architecture?” “How 

about a program which can probe an unknown architecture from a known 

machine and reconfigure a version of itself to run on the unknown 

machine?”

     The abilities to do these things are flexible, plastic and adaptive 

capabilities found within the biological world. Yet our approaches to build 

such architectures and programs still mimic the top-down, linear models or 
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our neural network models are not sufficiently real-world or robust to 

permit such capabilities.

     An obvious advantage of the SOFM model is that it is the 

computational maps designed to perform in general the way the brain 

performs. But it does not handle hierarchical structures very well, in part 

due to problems with classifying data and forming categories. This is the 

classical problem of universals all over again. The formation of universals 

cannot be accomplished solely by associationist mechanisms. 

     Moreover, it is not successful in extracting or organizing hierarchical 

categories from streams of sensory data, such as the categories of primitive 

relations found in immediate awareness. 

     Again, such streams as found in the Cocktail Party are often highly 

“noisy,” containing a lot of irrelevant information that must be “selected 

out” or otherwise dealt with in order to simulate kinds of intelligence, 

kinds of knowing, found there. However, there are good reasons to 

question whether or not the classical view of noise is the right one. That 

classical view has been that noise is something to get rid of for the sake of 

having crisp categories, boundaries and decisions. 

     It appears that much prior categorization is necessary to get the SOFM 

to operate well, and it certainly does not simulate how humans are able to 

“track” single voices and be aware of and track the absence of a single 

voice in a noisy crowd. The necessity for prior categorization, which 

would not be possible to computationally solve the cocktail party problem 

anyway, is clearly a major deficit with respect to architecture necessary to 

simulate natural intelligence.

     Moreover, any adequate model to map such real time streams of 

sensory data must have an architecture that memorizes the synchronicity 

among those various sensory inputs. It must score each new sensory 

experience for its similarity to all previous such experiences (using 

appropriate association principles), which the SOFM may be able to do to 

some extent, but it must form higher order categories based on those.

     Such a model must also automatically recognize higher-level, emergent 

objects by logging similarities of component parts to form a hierarchy of 

related objects. It must have a working memory that categorizes 

associations by similarity of objects.

     With a face, for instance, it must be able to self-organize a higher-level 

face object with the component parts. By reinforcing associations between 

spatially and temporally contiguous information, it must be able to 

reinforce those connections between things that appear together and often 

in its data stream. Due to those reinforced connections, it must be able to 

form higher-order combinations of synchronously occurring features. 

These must occur from the topology of the network.
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     But SOFM is not adequate to do much of any of these things. For that 

very reason, even if other problems did not exist, it cannot simulate actual 

natural intelligence. 

Noise and Uncertainty 

As noted above, another challenge sometimes posed to Artificial 

Intelligence involves recognition that noise is often not a nuisance but an 

integral part of understanding intelligence. This is comparable to 

arguments made by Edelman (2004) regarding neural variability. In both 

the organization of the brain (at all levels) and in all external 

environments, there is an extraordinary amount of variation which should 

not be dismissed as noise. 

     Though most top-down computer models attempt to select out noise 

and treat signals as unambiguous, the fact is human beings more often than 

not “make sense” of noise as well as messages. They do this seamlessly 

and instantly, without much hesitation in most normal circumstances. Even 

in circumstances that are not normal, human beings usually know how to 

very quickly sort through it, discern patterns, and either dismiss it or take 

steps to appropriately handle it. Yet there has been little research on “noise 

understanding” in intelligence research in general or in artificial 

intelligence in particular. 

     In the above Cocktail Party Problem, for example, we demonstrated the 

human natural intelligence ability to reason in the context of a great deal of 

uncertainty and noise. Our analysis showed that there is a great deal of 

incompleteness in the data stream flows to the central actor in our 

demonstration, yet that person was able to handle the incompleteness and 

information uncertainty very quickly and appropriately in that context. 

Though the research community still does not have a solution to the Party 

Problem, nonetheless we have at least something of a baseline data set for 

artificial designs of such noise handling intelligence systems.

     Realistic environments require reasoning systems capable of identifying 

and implementing effective actions in the face of incompleteness in 

knowledge, knowing, and awareness of the world. What are the 

mechanisms of our natural intelligence which enable us to know how to 

isolate and excise objects from their background on the basis of many 

things, including the timing of the occurrences of things? What are the 

mechanisms of intelligence that permit us to make a great deal of sense of 

cluttered, noisy environments?



294      7 Mapping Natural Intelligence to Machine Space 

The Role of Indexicals in Natural Intelligence 

Elsewhere (Estep 1993, 1996, 2003) I have written extensively about 

multiple signs of intelligence, particularly those that appear to escape our 

ability to construct theory and adequate methods of analysis to understand 

them. Indexicals are just such signs of intelligence. Indexicals are 

indicators used either in language or in nonlinguistic behavior to point to 

objects or ideas, including obligations.

     These include indicators occurring as words such as “this”, “that”, 

“now”, “I”, or as gestures, images, and patterns of action. Examples of 

such indicators in language are “This person needs my help.” “I must now 

keep my promise.” In general, theories of intentionality that include 

concepts of moral autonomy must also include adequate theory of both 

linguistic and nonlinguistic indexicals. 

     Linguistic indexicals such as “this”, “that”, “I” are also referred to as 

proper names, along with the usual understanding of proper names such as 

“Mary” or “John.” Indexicals exhibit a network and structure of thought 

contents when we use them to point to items of experience as we 

experience them. These are decidedly first-person mechanisms of natural 

intelligence.

     We earlier addressed immediate awareness and the role nonlinguistic 

indexicals play at that level of intelligence. I also argued (2003) that 

Artificial Intelligence (AI) and Artificial Life (AL) approaches cannot 

handle either indexically-functioning words or gestures, images, and 

patterns of action. That is primarily because indexicals are highly context-

interdependent; but it is also because such indexicals cannot be conflated 

with mathematical functions. This is largely due to the first-person nature 

of their occurrence and meaning. 

     Of course, a prevailing view in the AI community (especially the 

“strong” AI community) is that everything is a computer. One needs solely 

to map things to sets of numbers and so long as we have appropriate 

algorithms to act on those numbers, we can, in principle, compute 

anything. As also earlier noted, one of the ways AI engineers and others 

try to enable a computer to behave as speakers of a natural language 

behave is to design a meaning representation language for that natural 

language. The natural language is then translated into the meaning 

representation language which in turn is then used by the computer to 

generate natural language behavior. 

     I analyzed some of the problems with indexicals by looking at the use 

of those meaning representation languages to map linguistic indexicals into 

computers. My assessment showed that AI and AL approaches to linguistic 
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indexicals fail precisely because those approaches conflate grammatical 

meaning with mathematical functions.

     Again, “function” is taken to be a mapping in the mathematical sense as 

a set of ordered n-tuples. Mathematical functions can be sorted into several 

categories. For some finite function, we can think of an ordered pair in 

propria persona, such as counting the number of pencils on my desk.

     Other finite or infinite functions we cannot think in propria persona but

as falling under a property or set of properties which we can then think in

propria persona, for example f: A B where A is the set of natural 

numbers N and B is the set of all integers Z.

     We have a complex property representing the infinite function f, that is 

we have a rule for finding pairs of arguments and values of the function. 

But we are not thinking the function in propria persona. As pointed out by 

Castañeda (1989, in theory of language we must distinguish between the 

following two kinds of proposition: (a) The quadruple of 3 is a number; (b) 

F: N  {y: y = 4 x and x  N} and F(3) is in N.  Proposition (a) is a 

simple relational proposition; proposition (b) is a functional proposition. 

The two are equivalent but not identical. To think (a) is not to think (b).

     If cognitive or natural intelligence content and grammatical meaning 

are mathematical functions, then they are sets of ordered pairs. But this is 

not what Mary L. thinks or says when he thinks and says “This is 

Richard’s house,” (using the indexical “this”) nor “This appears to be 

Richard’s house.”

     There are even greater obstacles for computer programs, and the 

underlying conflation of grammatical meaning with mathematical function 

with sentences containing discounted illusory meaning such as “That 

yellow dot over there on that mountain is Richard’s house.” For analysis of 

just such a sentence containing discounted illusory meaning and first-

person indexicals, see Castañeda (1989) or Estep (2003). Can any

computer architecture or program handle indexicals?

7.2.3 Problems with Pattern Recognition and Limits of 
Classification

In many respects, the foundations of engineering design, as well as other 

systems inquiry into pattern recognition, are permeated with logical 

confusions, conflations, and distortions of meaning. Much of this is the 

result of the inordinate influence of mechanism along with short shrift 

given to organismic (biological) models. In general, many engineering 

models of intelligence apparently have not tried to devise theory of 

intelligence based upon actual natural intelligence systems, either human 

or animal, but instead started with an underlying machine model upon 
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which to build their theory. This includes pattern recognition systems as 

well. Instead of closely analyzing and studying actual human recognition, 

then proceeding to devise artificial models based upon that, they started 

with a machine model while ignoring facts of actual pattern recognition. 

Even where biological considerations were included, mechanistic models 

tended to have more influence on design. 

     In effect, what is often called “pattern recognition” is in fact discrete 

feature pattern matching classification. Though many systems scientists 

and engineers might not find a problem with this (Zimmerman 1993) our 

arguments above should give them reason to pause. Logically, the concept 

of recognition and the concept of classification are neither identical nor 

equivalent, even though they are often used in computer science as though 

they are. This has resulted in much theoretical as well as practical 

confusion in the theory and development of pattern recognition systems. 

     Rosenblatt’s (1958) original proposal of the perceptron as a “model for 

information storage and organization in the brain” was the original pattern 

recognition system. He conceived the perceptron as a layered structure in 

which each layer of single-switch model neurons receive inputs from 

another layer, performing logical operations on them, then passing the 

results to the next layer. The weights of the neurons are modified enabling 

the system to classify patterns. With more inputs and weight modifications, 

the ability of the model neurons to classify patterns increases. 

     As Scott (2002) notes, these pattern recognizers were very limited. The 

maximum number of patterns recognized could not be any more than the 

number of neural elements from which the system is constructed; and 

translations, rotations and scalings of a learned pattern are perceived as 

new patterns. Moreover, the perceptron had difficulties detecting patterns 

within patterns. All these things are quite easily performed by human 

beings.

     Since Rosenblatt, any current source in pattern recognition studies will 

state that the fundamental problem in pattern recognition is to name the

pattern. As stated above, the overwhelming response to the pattern 

recognition problem by the systems science and engineering community in 

general is to treat it as a feature classification problem.

     As we saw earlier, any spatial pattern such as a painting or picture, a 

symbol or a sound can be represented as a vector, and any visual or 

auditory sequence or a string of symbols can be represented as the 

trajectory of a vector through hyperspace. Thus when a pattern is given a 

name it is held to be recognized, and all patterns referred to by a given 

name are in the same class. The latter shows clearly that the concept 

“name” is class name. An instance of a name is an instance of a class. 
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     For illustrative purposes, we might briefly and only partially outline the 

design for a robot-control system which is modeled on the brain, which 

includes goal-directed behavior and pattern recognition. This will of course 

include a sensory processing hierarchy which provides sensory feedback 

into each level of the behavior-generating hierarchy.

     Each level of the sensory-processing hierarchy processes an incoming 

stream of data and recognizing (classifying) patterns in the process. We 

will assess exactly what is involved in pattern recognition in light of our 

discussion above. To accomplish our goals, we will draw heavily upon 

Albus (1981, 1991), Mizrai (1990), and others. 

     Assume we have a continuous hyperspace with points corresponding to 

symbols, and each symbol has a neighborhood of points. For the sake of 

simplicity, we will limit the symbols to two in number, a and e. The 

following is an adaptation of a diagram provided in Albus (1981): 

Fig.7.8. Neighborhood of Points 

     According to Albus (1981, p. 107), we can view the points in the 

neighborhood in one of two ways: (1) we can view the difference between 

the neighborhood points and the exact symbol point as deriving from noise 

on the channel transmitting variables denoting the vector components.

     For example, in signal detection theory the detection of a vector within 

some neighborhood of a symbol vector corresponds to the recognition of 

that symbol against a noisy background; (2) alternatively, we could view 

the difference between the exact symbol point and neighborhood points as 

deriving from distortions or variations in the symbol itself.

     Albus explains that this makes the best sense if the components of the 

symbol’s vectors are values of attributes or features of the symbol, rather 

than arbitrary digits. If so, then a neighborhood of points will correspond 

to a cluster of feature (or attribute) vectors from a symbol set which is not 

identical, but nearly so.
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     As an example, the vectors of a printed symbol e will vary in each 

instance of its printing on a piece of paper due to variations in the paper on 

which they are printed [or variations in the printing apparatus]. And if the 

feature vectors fall in compact clusters far from the feature vectors of other 

symbols, the letter e will be recognized in spite of the fact that no two 

specimens are exactly alike.  He states (1981, p. 108): 

“This is a fundamental concept in pattern recognition theory. Hyperspace is 

partitioned into regions, and the existence of a feature vector in a particular region 

corresponds to the recognition of a pattern or symbol. By definition, the best set of 

features is the one that maximizes the separability of pattern vectors. . .it is 

important to select a set of features that is easily measured and that produces 

widely separated and compact clusters in feature space.” 

     Again, on this view, the concept “recognition” is reduced to the concept 

“feature classification”, and underlying this reduction is the further 

reduction of cognition in general to classificatory functions. Only 

quantitative (QN) intelligence is acknowledged. Moreover, the enormously 

varied and highly complicated and dynamic nature of neural networks is 

not built into pattern recognition in part because pattern recognition is still 

based upon the original McCullough-Pitts single-switch model. 

     Pattern recognition has developed beyond the perceptron in part by 

including internal feedback loops which permit patterns to emerge. 

However, human pattern recognition spans both an immediate 

(nonlinguistically mediated) sensory and motor sense as well as a 

linguistically mediated sense. Moreover, the combination of other 

cognitive, sensory and sensorimotor relations involved in an act of 

recognition varies with the nature of the object recognized.

     Whatever is recognized by a human being is usually immediate. This 

includes both sensory and motor patterns as well as imagined patterns. 

Patterned objects may be quantitative (QN); qualitative (QL); or 

performative (PF). Moreover, patterned objects may not be temporally or 

spatially present to a subject at all. Examples of these include the very 

patterns of translations, rotations, and scalings referred to by Scott. These 

are mathematical patterns that human beings can recognize immediately 

even if they occur with imagined objects in the mind, not “real” ones.

     Additionally, pattern recognition broadly construed must include 

objects remembered as well as mathematical objects (functions) just 

mentioned as well as (for example) patterns of set theoretical objects. 

Patterns of objects in sensation are immediately present as are other objects 

of immediate awareness. These can include immediate objects of attention 

and even conceptualization, the recognition of ideas. 
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     Any discussion of pattern recognition should also include discussion yet 

again of the role of linguistic and nonlinguistic indexicals. Patterns of 

linguistic indexicals such as the use of “this”, “that”, “now”, “I”, and 

others, along with patterns of nonlinguistic indexicals such as gestures and 

other “pointings” to physical as well as abstract objects and ideas, are 

woven throughout natural intelligence. These patterns disclose much of the 

breadth and depth of any natural intelligence system, including the 

intelligence of human beings. Yet machine pattern recognition to date has 

little to say about either indexicals or their patterns in intelligence. 

     Above and elsewhere, I have shown that the proper name or indexical 

relation in acts of recognition is not elliptical for nor a disguised definite 

description. That is, this relation is not reducible to classification. The 

immediate relation between subject and object actually found in human 

pattern recognition does not include reflection upon (conscious reasoning 

about) that object. The object is recognized without any reflection upon its 

properties or relations.

7.2.4 Kinds of Space: Revisiting the Problem with Universals 

Possibly more than anywhere else in his theory of intelligence, it is in his 

discussion of pattern recognition that two major problems become 

apparent. One problem is the absence of an account of universals; the other 

problem is the neglect of perceiver-dependent natural intelligence. In fact, 

the latter is either completely missing or confused with perceiver-

independent action.

     To analyze Albus’ account of pattern recognition that includes 

assessment of points, their neighborhoods, and differences between them, 

we must take into account various kinds of space. Because Albus uses both 

abstract entities such as points and physical entities (in hyperspace, which 

cannot be visualized but can be conceptualized) and printed letters (in two-

dimensional physical place) to draw the distinctions (1) and (2) above, 

including reference to properties or attributes of symbols, we must make 

the following distinctions with respect to the concept “space”.

     We can divide entities into three classes: (a) those which are not in any 

place; (b) those entities in one place at one time but never in more than one 

place; (c) those entities which are in many places at once. Different kinds 

of space might also include visual, tactile, and physical (“real,” Euclidean, 

or constructed) space, as well as more abstract kinds such as hyperspace. 

     Russell (1911–1912) illustrates the division with logical relations, 

human bodies, and general qualities or properties such as colors. Logical 

relations do not exist anywhere in (physical) space; human bodies can only 
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exist in one place at a time, but general properties or qualities (universals) 

such as whiteness may be said to be in many places at once.

     The latter reference to color must be further clarified. Physicists 

generally do not include references to secondary qualities such as color in 

their physical descriptions because they are perceiver-dependent.

     Above, colors were referenced as numbers corresponding to color 

brightness. Of course, the numbers represent electromagnetic wave lengths 

at ängstrom levels. For most human observers, we know how colors are 

perceived and under what conditions.

     But in the above discussion of properties or attributes of the symbols, 

there is a conflation of talk about perceiver-independent properties and 

perceiver-dependent ones. There is a conflation of kinds of space, for 

example physical or sensible space and hyperspace, and a conflation of 

function-argument (mathematical) talk with subject-predicate (natural 

language) talk. These conflations can and do ultimately lead to distortions 

and confusions regarding human pattern recognition and natural 

intelligence in general. Thus, it is best to sort them out as best we can. 

     Confining ourselves solely to simple physical examples, such as the one 

given above of a printed character on a piece of paper, we are led to a 

common sense subject-predicate (natural language) notion of things and 

their qualities or attributes. In this example, the “thing” is a printed 

character on a piece of paper that is taken to be a “bundle” of its sensible 

qualities or properties. Since it is a two-dimensional character printed in 

ink on a piece of paper, it will have both visual and tactile qualities which 

are somehow supposed to coexist in one continuous portion of space.

     But this common space in which the thing and its qualities are supposed 

to exist is a scientifically, inferentially derived constructed “real” space. 

The visual and tactile qualities of which an observer is aware are not in 

that space. Those qualities are perceiver-dependent, not perceiver-

independent. In a sense, the visual and tactile qualities have their own 

“space.”

     At this point, we must raise a fundamental conceptual issue regarding 

Albus’ account (2) above of the difference between the exact symbol and 

its neighborhood. He says that the difference is due to the components 

(variables) of the symbol itself where these are values of attributes 

(properties) or features of the symbol.

     Thus, a neighborhood of points would correspond to a cluster of feature 

vectors (from a symbol set) which is not identical, but nearly so. That is, a 

point [in hyperspace] is taken to represent an exact symbol, (in constructed 

“real” space) and variables of the symbol are values (numbers represented 

by points in hyperspace) of attributes (not in constructed real space, but in 

their own perceiver-dependent space) of the symbol (which is in 
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constructed real space). A neighborhood of points in hyperspace then 

represents or corresponds to visual, tactile attribute (feature, property) 

vectors, or list of variables. 

     The conflation of kinds of space must be sorted out based on a valid

logical, mathematical, empirical, and ontological ground. Otherwise,

inferences based on the above confusions and conflations cannot lead to 

sound theorizing about pattern recognition. 

Costs of Ignoring Phenomenological First-Person Experience 

Pattern recognition ultimately refers back to recognition by someone. The 

indexical used to point (either in language or in action) to an object 

immediately recognized is always in the immediate experience of someone.

     Patterns immediately present in face recognition are perhaps among the 

most studied. Computational face recognition is at the forefront of much 

computer image research. However, existing computer face recognition 

programs are unable to be deployed in realistic settings, where most face 

recognition actually takes place, with the normally high variability found 

in viewing distances, illumination, and sensor “noise.”

     Yet, all other things being equal, human beings have little trouble 

immediately recognizing faces under those conditions. It would seem that 

human recognition capability should provide the model for machine 

recognition systems. To some extent, there have been efforts to more 

closely examine those natural intelligence capabilities of human beings 

when they recognize faces. But to an even greater extent, machine face 

recognition architectures and algorithms are not based upon the human 

model.

     Sinha et al. (2005) have set forth some findings about actual human 

face recognition to determine strategies that might be used in the 

development of machine-based algorithms. A few of those will be 

mentioned here. 

Human beings can recognize faces in extremely low resolution images. 
As the authors point out, while the temptation of machine face 
recognition systems is to increase the amount of detail in face images, 
high resolution images are not always available. Future research might 
turn to face recognition with low resolution imagery and more 
theoretical work done on human recognition to determine how humans 
are able to recognize faces under extremely low resolution. 

Human ability to tolerate degradations of face images increases with 
familiarity. Apparently this ability is not the result of some general 
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purpose compensatory processes. Observers’ recognition performance 
with low-quality surveillance video is much better when the individuals 
pictured are familiar colleagues, rather than those with whom the 
observers have interacted infrequently.

     Moreover, the authors note that this ability is not accrued based on 

experience in the absence of first-hand familiarity with target individuals; 

even experienced forensic law enforcement perform poorly unless they are 

familiar with those target individuals.

     The authors pose the following question for research: How does the 

facial representation and matching strategy used by the visual system 

change with increasing familiarity, so as to yield greater tolerance to 

degradations? Clearly, it is with increased first-hand experience of

someone with an individual, increased familiarity of someone with the 

target individual, which results in greater tolerance to degradation of the 

target face recognition.

     Yet, the authors note, we do not know what aspect of the increased 

experience with a given individual leads to an increase in the robustness of 

the encoding permitting face recognition under conditions of degradation. 

At the very least, the authors propose that researchers draw a distinction 

between familiar and unfamiliar face recognition. 

     We might suggest that a thorough analysis and theoretical 

understanding of immediate awareness intelligence as outlined above and 

earlier (Estep 2003) would provide the research basis for examining this 

ability of human beings to tolerate degradations of face images when one 

is familiar with the person whose face is to be recognized. Immediate 

awareness is that kind of natural intelligence found within the person and 

is usually revealed or disclosed in their knowing how.

Facial features are processed holistically. The authors also found that 
contrary to most machine face recognition algorithms which process 
features, evidence shows that facial recognition is dependent on 

“holistic” processes involving an interdependency between featural and 

configural information. They note that although feature processing is 

important for facial recognition, their findings suggest that configural 

processing is at least as important. 

     Thus conventional machine recognition approaches cannot work (at 

least by themselves) to simulate natural intelligence face recognition. The 

actual interdependency of feature and configuration information processing 

is evidence that conventional and neural network (neuromorphic) programs 

and architectures are necessary. 
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7.3 Problems with Complexity 

As noted, neuromorphic architectures require large numbers of parallel 

sensors and like numbers of redundant actuators. This poses complexity 

problems that are unlikely to go away, especially given the increasing 

inclusion of computational systems into more devices. This requires more 

attention to complexity and problems posed by the classical theory.

     Classical theories of computation and computational complexity are 

directed to discrete problems defined over the integers or any numbers that 

can be effectively encoded into the integers. These theories assume that all 

underlying spaces are countable hence they cannot address arbitrary sets of 

real or complex numbers.

     From the point of view of the theory of natural intelligence developed 

above it can be argued that classical discrete computational theories and 

classical theories of computational complexity are not sufficient to 

characterize natural intelligence. 

     Following Blum et al. (1989), we should briefly explore new theoretical 

attempts to integrate central ideas and concepts from classical discrete 

theory in a computational approach more appropriate to problems defined 

over continuous domains. The objective is to briefly provide an overview 

of the development of theoretical foundations for a theory of 

computational complexity for such problems defined over continuous 

domains, for example epistemological problems.

     Drawing upon results established elsewhere (Blum et al. 1989), we 

should look at some comparisons between results over integers with results 

over the reals and complex numbers. Such comparisons will be instructive 

by focusing attention on issues regarding basic concepts such as 

decidability, computability, and complexity. 

7.3.1 Decidability

Understanding the notion of decidability/undecidability is intimately 

connected with the question “What is a computable function?” In general, 

relative to a universe or domain U, a set is decidable if there is some 

effective procedure for deciding for any given element u in U, whether or 

not u is in that set. Put differently, in the context of computability, a set is 

decidable if its characteristic function is a computable function that is if the 

function defined on U has value 1 on the set and 0 off the set.

     In the 1930’s, the logicians Gödel, Turing, Church, Kleene, et al. set 

forth their own distinct formal notions of effective procedure or algorithm 

and input-output function on the natural numbers N = {0, 1, 2, 3. . .}. In 
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each of their efforts, a function f from N to N is defined to be computable if 

it is the input-output function of a machine (algorithm). A set S of natural 

numbers is decidable if there is some algorithm that, given any natural 

number n will output 1 (yes) if n is in S and 0 (no) if n is not in S. Though 

their formalisms were quite different from one another, the class of 

computable functions (hence decidable sets) was the same. 

     However, the resulting classical theory of computation or decidability is 

a discrete theory since the effective procedures are processes over the 

domain of natural numbers. It can be extended to the integers, the rational 

numbers, or any domain that can be effectively encoded in N.

     For example, by gödel coding sentences of a first order language as 

natural numbers, one can formally ask and answer questions about the set 

of true sentences of various mathematical sentences.

     And Gödel’s incompleteness and undecidability theorems showed that, 

given an arithmetic sentence such as the Goldbach conjecture, there is no 

effective procedure that will decide whether or not that sentence is a true 

assertion about the integers.

     As Blum (1990) explains, the advent of the digital computer brought an 

increased interest in the realm of the solvable with the search for efficient 

algorithms. It was found that a number of problems, for example the 

Traveling Salesman problem (TSP), while solvable in principle, defied 

efficient solution.

“Thus, amongst the solvable, there appeared to be yet another rich and natural 

hierarchy, with the dichotomy of tractability/intractibility, mirroring the earlier 

dichotomy of decidability/undecidability. Thus, the theory and field of 

computational complexity was born” (Blum 1990).

     That theory of complexity is captured in the NP-completeness results 

and the basic “P = NP?” question. The latter research has shown the equi-

valence of thousands of difficult problems from diverse, unrelated areas. 

Hence, an efficient solution to one can be converted into an efficient solu-

tion to another. Some research in the area has been directed to harnessing 

the complexity of difficult mathematical problems to advantage. 

     However, the formalisms of classical complexity theory are built upon 

the models and formalisms of classical computation theory (Blum 1990). 

Central to this is that complexity [on the classical theory] is measured as a 

function of word size L of a function input or problem instance (where 

numbers are represented in binary notation and a function input is 

represented as a finite string of numbers).

     The complexity of an algorithm for computing a function, that is 

solving a problem, is the maximum number of steps (machine operations) 
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for solution over all inputs or problem instances of size L. A function is 

defined to be tractable or solvable in polynomial time if it is computable 

or solvable by a machine with complexity function bounded above by a 

polynomial function of L. Otherwise, the function or problem is said to be 

intractable.

     But the classical concepts of computability, decidability, and 

complexity are all defined over integers or mechanisms encoded into the 

integers. If the natural intelligence universe is a universe over the reals or 

complex numbers, then we cannot formulate our decidability/computa-

bility and complexity questions about that universe following the classical 

theory.

     There are problems, for example, with the use of the terms “recursive” 

and “recursively enumerable” as applied to uncountable sets. These terms 

strictly speaking only apply to countable sets. Moreover, on the classical 

theories the construction of a universal machine (algorithm) is based upon 

an effective encoding of machines by natural numbers. This encoding 

collapses the sequences of numbers into a single number. Over the 

integers, this is done with a gödel coding. Such a collapsing destroys the 

algebraic structure of the underlying spaces.

     In the future, we will no doubt see new efforts to redefine measures of 

complexity, to view a real number as an entity in its own right [rather than 

as a decimal approximation], and to maintain fundamental mathematical 

operations, polynomial [or rational] maps and tests as primary rather than 

reducing all computations to bit operations. With these efforts, the 

algebraic structure of the underlying space is preserved, that is the 

algebraic and dynamic structure of the algorithms becomes apparent. 

These efforts will be shown to provide a more adequate computational 

approach to epistemic problems over continuous domains. 

Computability of Rule-Governed and Rule-Bound Natural Intelligence 

Natural intelligence structures (just as physical objects and mathematical 

structures) can be represented as numbers and symbols in a computer. 

Programs can manipulate these numbers and other symbols according to 

algorithms. For physical and mathematical systems, we have scientific and 

mathematical laws which give us algorithms for determining how systems 

behave. Thus, when a computer program is run the numbers and symbols 

are modified by those laws, allowing consequences of the laws to be 

deduced (or induced; retroduced, depending upon the logical forms 

governing the modification).

     From the point of view of scientific method, it is important to point out 

that in that sense, as Wolfram (1984) notes, executing a computer program 
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is like performing an experiment, though the objects in a computer 

experiment follow the laws of the computer program which can be of any 

consistent form. That is, computation permits experiments of a certain 

kind in a hypothetical universe. Thus we can arrive at formal 

characterizations of natural intelligence structures. We can arrive at formal 

characterizations of natural intelligence.

     Natural intelligence generally is a natural learning or coming-to-know 

phenomenon, though there may be intentional interventions in what is 

otherwise naturally occurring. Teaching is one such intervention.

     Understanding of how humans and animals learn over the past several 

decades has produced an enormous literature and computational models 

designed to simulate those processes. Since growth and learning are 

related, we might briefly review some elementary principles of growth. 

Thus, we will look to the mathematical bases of conventional models of 

natural phenomena as bases for growth in intelligence phenomena. 

     For example,  in the simplest case, where we have a system consisting 

of elements of only one kind, we could have an equation which shows us 

that the growth of the system is directly proportional to the number of 

elements present in the system: dQ = a1Qdt. Depending upon whether the 

a1 is positive or negative, the growth of the system increases or decreases. 

Q0 signifies the number of elements at t = 0.
     This is called the exponential law, and it is used to characterize growth 
in a variety of disciplines such as biological systems. Among other such 
laws, I consider its use to characterize natural intelligence growth. The 
exponential law as well as others can be seen to be over-all descriptions or 
“rules” which govern kinds of natural intelligence behavior.

     However, there are interesting problems which arise where the rule-

governedness of the process of coming to know (and reasoning found 

there) and knowing in general, is correlated with recursive enumerability, 

without taking into account the rule-boundedness of certain kinds of 

dynamic intelligence systems.
     That is, where a rule-governed set must have an effective procedure for 
listing (counting) its members, such a view cannot account for the rule-
bounded behavior found in the performance of certain kinds of very highly 
complex cognitive, that is natural intelligence tasks.
     In many respects, where all of natural intelligence is correlated with 
recursive enumerability this correlation amounts to the use of conceptual 
tools of classical computational theory and formal logical systems to 
address the nature of and to resolve dynamic, fine-grain intelligence 
problems. Paraphrasing Mandelbrot (1983) it is similar to attempts to use 
Euclidean geometry to describe the shape of a cloud, a mountain, or a tree. 
It cannot work. As he succinctly pointed out, clouds are not spheres, 
mountains are not cones, and bark is not smooth.
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     Likewise, the patterns of the natural intelligence universe are irregular 

and fragmented compared to the precise lines of Euclidean geometry. They 

exhibit not only a higher degree but can also exhibit an altogether different 

level of complexity.

     Possibly the most important facet of this problem to be taken into 

account is the simple and rather obvious fact that natural intelligence 

systems are not complete. And when they are growing and thriving, kinds 

of knowing are highly complex dynamical natural intelligence sets.

Recursively Enumerable Natural Intelligence 

Rule-governed knowledge that (QN) is what we call a recursively 

enumerable set. That means that it is a set of things we can count. It is a 

computable set, on the standard digital computer. It is a set of problems or 

function instances that can be defined over discrete, countable domains.

     As such, there are effective algorithms we can use to address those 

problems. Algorithms are sequential decision procedures to generate an 

answer to a problem. Knowledge that (QN) problems are those requiring 

“yes” or “no” decisions.

     On the other hand, rule-bound knowing, which includes knowing how 

(PF), with immediate awareness (QL) embedded within it, requires a 

different concept or approach to its computability altogether, if it is indeed 

computable at all. Minimally, knowing how requires an approach that 

generates dynamic self-organizing patterns of interactions among very 

large numbers of components or elements in the way something is done. 

That is, a knowing how problem requires that we look at the dynamic 

patterns in the actual doing of something.

     Computationally, knowing how requires a massively parallel and 

distributed approach. But any given instance of knowing how to do 

something may not be entirely computable at all due to immediate 

awareness embedded within it. Rule-bound knowing behavior may be 

regular, even predictable behavior to some extent because it is bound by a 

rule.

     But “rule-boundedness” simply means that once we input a function1

into a computer, we simply have to wait for the computer to show us how it 

will map the points onto a real or complex number graph. That is, for 

example, we have to wait for the computer to show us which points will 

fall within a fixed circle on that graph, and which ones will fly to infinity. 

If it is computable, rule-bound knowing would be found in the dynamic 

                                                          
1 For example, a real or complex number function.
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patterns of the components of doing which fall within a fixed circle on a 

graph.

     In a sense, the behavior generated by the computer is its own shortest 

description. It is its own algorithm. In the vocabulary of computation 

theory, such algorithms are said to be incompressible. There are no 

compressed overall law-like descriptions of the behavior obtained with 

such algorithms. That is, we do not have a compact overall description or 

algorithm of what the computer will do prior to its generating the behavior 

(shortest description) or algorithm that it in fact generates of rule-bound 

knowing.

     Such incompressible algorithms may be used to some degree to 

characterize or simulate rule-bound knowing, but they will fail to do so 

completely. Rule-bound knowing is made up of those components or 

elements of a set which include kinds of primitive2 epistemic [cognitive] 

relations and their terms constituting immediate awareness (QL) in 

intersection with knowing how (PF). But we must beware of mistaking the 

symbol of something for the thing symbolized. We must not mistake a 

representation of something for the something represented. To do so is to 

fall into a fallacious trap, leading to kinds of fantasy, metaphorical 

theorizing.

     To generate rule-boundedness as opposed to rule-governedness, we can 

input arbitrary reals [or complex numbers], iterate certain functions on 

those numbers, maintaining mathematical operations as primary rather 

than reducing all computations to bit operations, and simply watch the 

dynamics of the numbers unfold.

     We can use the computer to try to understand the dynamic, self 

organizing patterns of knowing how. But we must not mistake the patterns 

the computer shows us for the knowing itself. Actual knowing how will 

have immediate awareness embedded within it whereas the simulation will 

not.

     This massively parallel and distributed approach means that it may be 

possible to characterize and simulate knowing how by iterations of 

mathematical functions, generating discrete as well as continuous 

dynamical mappings.

     But knowing how is not rule-governed, where this means we have 

explicitly formulated the compressible, overall algorithm or rule for each 

step by step procedure of each detail of the knowing behavior to generate 

                                                          
2 For the sake of readers who may not be familiar with this term in these contexts, the term 

‘primitive’ basically means that “not derived from something else.” A primitive object or 

relation is a basic object or relation that is not based upon anything else. In sound 

theories, both primitive and defined terms are used. The primitive terms are given 

meaning through the alternative terms; they are necessary to prevent circularity. 
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“yes” and “no” answers. “Yes” and “no” answers are responses to a 

knowledge that (QN) problem. They are not answers to a knowing how

(PF) or immediate awareness (QL) problem.

     If we want to know if someone knows how to do something, we ask 

them, tell them, or otherwise direct them to do it. We then watch to see if 

the patterns, timing, and context-sensitivity of their doing show that they 

know how. In a sense, in the computational approach to a knowing how

problem, the computer takes over and proceeds to show us what it can and 

will do, what behavior it will generate. And we have to simply wait to see 

what it does (Wolfram 1984).3 The shortest way to predict or understand 

what a knowing how system will do is to watch what it does. 

     This rule-bound (but not rule-governed) behavior was never recognized 

by the traditional Artificial Intelligence (AI) research program because of 

its adherence to the top-down, sequential rather than parallel approach to 

computing. It was also never recognized because classical AI research was 

(and still is to a large extent) directed to a different set of problems formed 

as questions requiring “yes” or “no” responses. In essence, classical AI is 

directed to knowledge that problems that are clearly rule-governed.

     On the other hand, it may even be the case that the rules of rule-bound

behavior are not formalizable or capable of being made explicit in a 

sequential algorithm.

     Classical computer researchers assumed that if behavior is regular [in 

some sense] then it is rule-governed and is therefore computable on the 

standard Von Neumann computer. They assumed that all that was needed 

is enough knowledge that engineering and writing enough explicit rules. 

They assumed knowing how is reducible to knowledge that, an assumption 

earlier proved false by Ryle. This explains their emphasis on logic and 

knowledge-based information processing in classical AI and its subsequent 

failures with commonsense know how and understanding of human beings 

that Dreyfus recognized. 

     The futility of such AI efforts is now well recognized and documented, 

even by early proponents of AI, though there remains a pervasive 

assumption and misconception that all knowing can somehow be reduced 

                                                          
3 Wolfram states the distinction in terms of computational reducibility and computational

irreducibility. In computationally irreducible systems, general mathematical formulas 

[algorithms] that describe the overall behavior of such systems are not known and it is 

possible no such formulas can ever be found. For such systems, we can only turn to 

explicit simulation of the behavior of that set in a computer. Computationally irreducible 

systems are not sets of computable problems that can be solved [with “yes” and “no” 

responses] in a finite time with definite algorithms. Thus, as Wolfram points out, there 

are questions we can ask about the behavior of such systems that cannot be answered by 

any finite mathematical or computational process. Such questions are undecidable.
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to and represented as knowledge that. One sees the latter assumption in 

certain of Penrose’s comments (1994) but also in efforts by Lenat (1995) 

to reduce what he calls “commonsense knowledge” to knowledge that 

statements even though such commonsense knowing entails knowing how. 

     Confusions about the reducibility of knowing how (PF) to knowledge

that (QN) are still pervasive in the artificial intelligence research 

community. However, the top down sequential approach is not appropriate 

to a knowing how (PF) problem. These problems are not statable in 

sentences requiring “yes” or “no” responses. There is no exhaustive list of 

sentences about performing surgery, running, or firing an M16A2 on target 

which will represent the immediate awareness and knowing how of one 

who performs surgery, runs, or fires an M16A2 on target. Though there 

may be elements of commonsense knowing which can be so represented, 

such representations will not exhaust the category of commonsense 

knowing because there is that commonsense know how of which Dreyfus 

spoke.

     The concept “immediate awareness” is a set of primitive relations of 

knowing made evident in what human beings know how to do. It is 

nonpropositional awareness that includes primitive relations of touching and 

moving as well as other dynamic primitive relations of knowing how. Fully

developed, the extended theory of immediate awareness and the theory of 

natural intelligence in general are within a broader theory of sign relations,

not limited to alphanumeric symbolic relations that continue to dominate 

current theories of mind and intelligence. 

7.4 Summary 

The objective of this chapter has been to generally compare and assess the 

classical and neural network (neuromorphic) approaches to mapping 

natural intelligence to machine space. The classical approach is obviously 

built upon a centralized control structure with access to large sets of 

predefined data structures, operating with algorithms defined by 

mathematical formulas and discrete procedures. It is a program premised 

upon and seeking to build intelligence systems that bear little resemblance 

to actual intelligence found in the natural world. 

     We examined Albus’ (1981, 1991) proposed intelligence system, an 

essentially classical computer architecture. Though he defined 

“intelligence” as “that which produces successful behavior,” resulting from 

natural selection, we noted deficiencies of this as it relates to human 

behavior. Moreover, his proposed structure of goal-seeking and hierar-

chical control systems is top-down and reactive. It incorporates the usual 
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engineering representations of the structure of control systems for sensory-

interactive, goal-directed behavior, where each level of the sensory 

processing hierarchy includes pattern “recognizers” (classifiers) in the 

process.

     Knowing that and what programmers refer to as procedural knowledge 

are claimed to be embedded in computer programs or wired into their 

circuitry, though their notion of procedural knowledge (as in Albus’ 

theory) is not identical to knowing how. He includes (QN) quantitative 

intelligence, but omits performative (PF) and immediate awareness (QL) 

intelligence. His hierarchical control system with the addition of a complex 

sensory processing system, internal world models and multiple levels of 

feedback, is in structure still a linear, additive simple cybernetic model. It 

is reactive and has serious information-theoretic limitations. It does not 

provide a perspective for systems characterized by growth, hierarchical 

differentiation, emergent properties, evolution, and change. 

     This lack of a heterostatic perspective is due in part to the information 

limitations on the model. We can see this by looking again at his concepts 

“input”, “output”, and “feedback”. Input is information transmitted to the 

system. It is what the system takes in. However, information that is 

available to the system from all that is outside the system [from the 

negasystem] and how that relates to the input remains unknown. 

Moreover, on Albus’ model, output is information transmitted from the 

system. It is information available from the system. However, what the 

negasystem actually gets and how that relates to the output remains 

unknown. Again, we do not know how many bits of information actually 

characterize the situation. Additionally, feedback on the model relates the 

output to the input. 

      There are at least two information measures missing here in addition to 

the ones cited above: (1) a measure of the selective information from a

negasystem through a system to a negasystem; and (2) a measure of 

selective information from a system through a negasystem to a system. 

This reveals tremendous gaps in selective information on this model. A 

clear deficiency of his system is the extent to which variations in an 

environment are ignored. There is no recognition in the model of 

information measures sufficient to handle the interdependencies, 

interactions and transactions with an environment.

     Albus’ model completely misses fundamental necessary conditions of 

natural intelligence. It completely omits any dynamic context-

interdependency and sensitivity that are necessary to any natural 

intelligence system. Moreover, it omits the very goal-seeking and 

intentionality it was purportedly designed to include, and is instead an 

essentially reactive system. 
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     On the other hand, artificial neural networks are supposed to be 

designed to model the way the brain performs a particular task or function. 

The basic principle behind neuromorphic computational systems is that 

building such systems true to the representations and architectures used by 

neurobiology will permit the production of capable, autonomous robots 

while also suggesting testable hypotheses as to how biological systems 

accomplish sensory and motor tasks. 

     However, a major difficulty for neural network programs is the fact that 

most of the current theoretical work done on brain dynamics is still based 

on the original McCulloch-Pitts (1943) single switch model. Moreover, it 

is yet unclear whether or not newer models of real neuronal activity have 

made much of an impact on artificial models of intelligence. Though 

biological systems such as us are remarkably adaptive in most 

environments, including highly cluttered and noisy ones, the most 

advanced computer architectures available are “brittle” and virtually 

unable to adapt at all.

     I presented analysis of the Cocktail Party so as to demonstrate the 

brittleness of computer programs in comparison to relatively ordinary 

intelligent abilities of human beings. The Cocktail Party Problem 

demonstrates that our real-world, real-time environment is very “noisy” 

and cluttered, yet, assuming a healthy organism, human beings know how 

to “track” single, unique objects such as voices in all that noise and clutter 

without much effort and without awareness that we are even doing so.

     Realistic environments require reasoning systems capable of identifying 

and implementing effective actions in the face of incompleteness in 

knowledge, knowing, and awareness of the world. Yet in spite of 

burgeoning research and development in the neurosciences, we do not 

know the mechanisms of our natural intelligence which enable us to know

how to isolate and excise objects from their background on the basis of 

many things, including the timing of the occurrences of things.

     I argued that Artificial Intelligence (AI) and Artificial Life (AL) 

approaches cannot handle indexically-functioning words or gestures, 

images, and patterns of action. That is primarily because indexicals are 

highly context-interdependent; but it is also because such indexicals cannot 

be conflated with mathematical functions. This is largely due to the first-

person nature of their occurrence and meaning. 

     We also briefly examined findings in computer pattern recognition, 

noting that it is in fact discrete feature pattern matching classification. The 

concept “recognition” is reduced to the concept “feature classification”, 

and underlying this reduction is the further reduction of cognition in 

general to classificatory functions. Only quantitative (QN) intelligence is 

acknowledged. Moreover, the enormously varied and highly complicated 
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and dynamic nature of neural networks is not built into pattern recognition 

in part because pattern recognition is still based upon the original 

McCullough-Pitts single-switch model.

     We noted that pattern recognition broadly construed must include 

objects remembered as well as mathematical objects (functions) just 

mentioned, as well as (for example) patterns of set theoretical objects. 

Pattern recognition should also include linguistic and nonlinguistic 

indexicals that are woven throughout natural intelligence. These patterns 

disclose much of the breadth and depth of any natural intelligence system, 

including the intelligence of human beings. Yet machine pattern 

recognition to date has little to say about either indexicals or their patterns 

in intelligence. 

     Assessment of current computer recognition programs apparently show 

that machine face recognition architectures and algorithms are not based 

upon the human face recognition system. Though human beings can 

recognize faces in extremely low resolution images, the temptation of 

machine face recognition systems is to increase the amount of detail in 

face images. However, high resolution images are not always available. 

Future research might turn to face recognition with low resolution imagery 

and more theoretical work done on human recognition to determine how 

humans are able to recognize faces under extremely low resolution.
     Also, human beings have the ability to tolerate degradations of face 
images if they are familiar with target subjects. Yet, the authors note, we 
do not know what aspect of the increased experience with a given 
individual leads to an increase in the robustness of the encoding permitting 
face recognition under conditions of degradation. At the very least, the 
authors propose that researchers draw a distinction between familiar and 
unfamiliar face recognition. 
     We suggest that a thorough analysis and theoretical understanding of 
immediate awareness intelligence as outlined above and earlier (Estep 
2003) would provide the research basis for examining this ability of human 
beings.  Immediate awareness is that kind of natural intelligence found 
within the person and is usually revealed or disclosed in their knowing
how.
     Additionally, facial features are processed holistically. Contrary to most 
machine face recognition algorithms which process features, evidence 
shows that facial recognition is dependent on “holistic” processes 
involving an interdependency between featural and configural information. 
Thus conventional machine recognition approaches cannot work (at least 
by themselves) to simulate natural intelligence face recognition. The actual 
interdependency of feature and configuration information processing is 
evidence that conventional and neural network (neuromorphic) programs 
and architectures are necessary. 
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     As noted, neuromorphic architectures require large numbers of parallel 

sensors and like numbers of redundant actuators. This poses complexity 

problems that are unlikely to go away, especially given the increasing 

inclusion of computational systems into more devices. This requires more 

attention to complexity and problems posed by the classical theory.

     Complexity problems also have implications for kinds of natural 

intelligence that I have grouped as rule-governed and rule-bound. Only 

rule-governed natural intelligence is recursively enumerable. In many 

respects, where all of natural intelligence is correlated with recursive 

enumerability this correlation amounts to the use of conceptual tools of 

classical computational theory and formal logical systems to address the 

nature of and to resolve dynamic, fine-grain intelligence problems. 

Paraphrasing Mandelbrot (1983) it is similar to attempts to use Euclidean 

geometry to describe the shape of a cloud, a mountain, or a tree. It cannot 

work. As he succinctly pointed out, clouds are not spheres, mountains are 

not cones, and bark is not smooth.

     Rule-governed knowledge that (QN) is what we call a recursively 

enumerable set. That means that it is a set of things we can count. It is a 

computable set, on the standard digital computer. It is a set of problems or 

function instances that can be defined over discrete, countable domains. As 

such, there are effective algorithms we can use to address those problems. 

Algorithms are sequential decision procedures to generate an answer to a 

problem. Knowledge that (QN) problems are those requiring “yes” or “no” 

decisions.

     On the other hand, rule-bound knowing, which includes knowing how 

(PF) and immediate awareness (QL), requires a different concept or 

approach to computability altogether, if they are indeed computable at all. 

Minimally, knowing how requires an approach that generates dynamic   

self-organizing patterns of interactions among very large numbers of 

components or elements in the way something is done. That is, a knowing

how problem requires that we look at the dynamic patterns in the actual 

doing of something. Computationally, knowing how requires a massively 

parallel and distributed approach. But any given instance of knowing how 

to do something may not be entirely computable at all due to immediate 

awareness embedded within it.

     Confusions about the reducibility of knowing how (PF) to knowledge

that (QN) are still pervasive in the artificial intelligence research commu-

nity. However, the top down sequential approach is intrinsically not suited 

to knowing how and immediate awareness. Classical computer architec-

tures and programs fail as approaches to mapping natural intelligence to 

machine space. Neural network models are likewise insufficient. 



8 Summary and Conclusions of Self-Organizing 
Natural Intelligence 

We sought to investigate natural intelligence to broadly carve the universe 
of discourse in terms of actual human and animal experience. We also 
sought to investigate and critically evaluate current leading scientific 
theories of intelligence and methods of research, along with standardized 
tests.
     The Western world has inherited a single-capacity, top-down additive 
view of intelligence limited to human beings, as the unfolding of logico-
linguistic abilities genetically determined at birth and largely unmodifiable 
by education and experience. This view is substantially at odds with the 
facts of natural intelligence as found in actual human and animal 
experience and evidence from a variety of disciplines including biology 
and neuroscience. 
     We found major problems with this theory that is supported by 
classical methods of behavioral science. Since the late nineteenth century, 
psychologists have analyzed human behavior in terms of what are called 
theoretical “constructs” and single causal chains of certain kinds. In some 
cases, American psychologists took a theoretical construct meant to 
explain a small segment of human behavior, reified and expanded it to 
explain everything in human behavior. ‘Intelligence quotient’ is one such 
construct.
     Among many other problems, the classical approach to intelligence 
research is based upon a misleading heritage of inductivism evidenced by 
an anti-theory, narrow data collection methodology based upon 
mechanistic models, faulty reductionism, and causal-correlation 
confusions. Additionally, this approach is characterized by neglect of 
theory construction and concept formation along with narrowing the 
domain of inquiry, intelligence, to suit the classical data collection 
methods at hand.
     Results based upon this approach include the single-capacity theory 
founded upon unexamined assumptions, inadequate concepts, and 
numerous fallacies. It has resulted in an excessively narrow view of human 
intelligence generally, limited largely to verbal knowledge verified by 
verbal test instruments. This reflects an underlying bankrupt theory of 
knowing based upon an equally narrow view of the scope of cognition. 

 315
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Even more broadly, the classical approach to intelligence research has 
supported a view of intelligence that neglects multiple signs and disclosure 
of kinds of intelligence in a larger domain of human and animal 
experience.

8.1 A History of Biased Intelligence Space 

Historically, theories of intelligence developed based largely upon faulty 

reasoning, inadequate empirical methods, and obedience to religious and 

state authority. The very meaning of ‘intelligence’ and the carving of 

intelligence space has largely been the result of the inertia of false 

dichotomies written into unquestioned dogma and tradition instead of the 

result of objective reason and science.

     Questions about intelligence seem to have revolved around “who and 

what has it,” “who and what does not,” “who has more of it than anyone 

else,” and, (by virtue of having more of it than anyone else) “who should 

rule” and “who should be ruled.” 

     In most philosophic theories during the classical and medieval periods, 

mankind--but more specifically the human male--was regarded as the 

center of the universe. According to Aristotelian doctrine, the highest 

levels of intelligence are found only in some human males. This was 

adopted as dogma by the Church, largely making human males God’s 

centerpiece.

     As such, the human male became regarded as the highest point in the 

hierarchy of all being in the entire universe under God. The human male 

was regarded as a reflection of God, having been made in His image by 

virtue of his superior intelligence. His was held to be a superior life, based 

upon this reflected divinity, based in large part on his assumed superior 

intelligence.

     Theories of intelligence were used to rationalize slavery and war 

against those considered inferior. Before the period known as the 

Enlightenment, monarchies headed by kings together with religious 

leaders used the same theories embedded within so-called sacred texts, 

written in accordance with Aristotelian doctrine, and legal systems, to 

make women and others legally dependent upon and in some cases owned 

by husbands and masters.

     Theories of intelligence are not mere academic exercises. Such theories 

can and do have far-reaching, sometimes unimaginably horrible 

consequences to the value, quality, and length of life itself. 

     Over many centuries, intelligence space has been cut on the human bias 

because until recently lower animals have been largely excluded as not 
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having any intelligence. Showing his obedience to Church authority, 

Descartes had argued that animals do not have any intelligence because, he 

argued, they have no souls. More recently, lower animals have been 

excluded by some intelligence researchers because it is claimed (in spite of 

growing evidence to the contrary) they do not have recursive language 

capabilities.

     Intelligence space has also over many centuries been cut on the 

language, knowledge cum propositional bias since it is only there, some 

argue, that we can have true sentences. Due in large part to the enormous 

influence of nominalism over many centuries, verifiable sentences became 

the gold standard used to determine whether or not someone is intelligent. 

Hence, intelligence space has been cut on the public language and 

verificationist bias ruling out references to internal states such as kinds of 

sensation, imagery, and sensorimotor awareness, as well as any knowing

how to do anything at all evidenced in physical practices.

     Concurrently, it was also cut on the paper and pencil test bias, 

excluding those parts of intentional, purposeful behavior that are not 

amenable to existing (verbal) data collection instruments.

     Additionally, intelligence space has been cut on the brain bias 

excluding organic life that has no brain or spinal cord. As astonishing as it 

may seem to some readers, there may be very good evidential reasons to 

expand our understanding of intelligence beyond animals with brains to 

include living things that do not.

     More specifically, intelligence space has been cut on the language-

centers-in-the-cerebral-cortex bias, excluding other parts of the brain that 

we have known for some time play a large part in intelligent activity and 

practices.

     In spite of mounting evidence to the contrary, many still believe that 

mathematics (often thought associated solely with the highest levels of 

verbal intelligence) is the result of language ability, that it is made 

possible by those language centers in the brain. Yet we know that 

mathematical thought and doing cannot be reduced to language ability, it 

cannot be reduced to activity in the Broca and Wernicke areas of the brain. 

Evidence even shows that mathematical thought and doing are often at

odds with language ability. 

     Moreover, intelligence space has also for centuries been cut on gender 

and racial biases that still hold sway in spite of all evidence to the 

contrary. In some respects, reasoning on these matters may as well be 

occurring around 384-323 B.C., alongside Aristotle. These biases are often 

based on spurious economic and other arguments by many intelligence 

research professionals who ought to know better. At the very least, they 

should be willing to reexamine the mountain of unquestioned and 



318      8 Summary and Conclusions of Self-Organizing Natural Intelligence 

uncritically accepted assumptions upon which their arguments are based, 

along with the fallacies liberally found throughout. 

     The domain of intelligence generally, but natural intelligence in 

particular, has been demarcated far too narrowly and too many of the cuts 

have clearly been biased to serve arbitrary traditions of power or 

prejudices of the day. Of course not all of these biased cuts of intelligence 

space are accepted or implicitly assumed by all intelligence researchers. 

Nonetheless, some or all of the above crooked cuts are still found liberally 

peppered throughout the research literature and current research strategies 

in the field. 

8.2 Natural Intelligence as Self-Organizing and Emerging 

The single-capacity, top-down additive theory of intelligence holds that it 

is the unfolding of logico-linguistic abilities genetically determined and 

given at birth and largely unmodifiable by education or experience. Their 

theory places ‘g’ for general intelligence, at the very top of the intelligence 

hierarchy, controlling everything else beneath it. It is largely this theory 

that provides the basis for public policies related to education in the 

United States and is the basis for standardized intelligence tests. 

     However, evidence from empirical research in a variety of disciplines 

studying human and animal learning and intelligence, as well as actual 

human and animal experience, show that natural intelligence generally is a 

kind of self-organizing, emergent nonlinear phenomenon. Contrary to the 

single-capacity theory based upon classical methods, natural intelligence 

phenomena cannot be understood by breaking it up into constituent parts at 

lower levels of development and analyzing these parts in isolation. These 

“parts” include verbal ability, mathematical reasoning, spatial visualization 

and memory. According to the theory these parts are analyzed 

independently in isolation, scores are added together, then according to the 

standardized test requirements, one’s intelligence quotient score is 

determined.

     But actual natural intelligence cannot be understood this way. 

Properties of intelligence are not found in parts and their analysis in 

isolation. Indeed, natural intelligence is found as properties emerging from 

the interactions between parts rather than being properties of the parts 

themselves. Moreover, the single-capacity theory does not even have an 

adequate theory of the fundamental parts involved in natural intelligence. 

     Natural intelligence is not a static hierarchical stack of “blocks” with 

‘g’ at the top of the stack, controlling everything below it. On the contrary, 
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it is one of nature’s enormously complex sets of patterns of certain kinds 

revealed and disclosed sometimes in very complicated, subtle and 

interesting ways in action and thought by members of the animal kingdom.  

     There is enormous empirical evidence showing that human intelligence 

is a self-organizing dynamic phenomenon that emerges from an “ocean of 

complexity” and is not a direct consequence of simplicities of natural 

laws, such as genetic laws, at levels of biological development. Single-

capacity theories have no way to account for growth and emergence of 

intelligence since it is viewed on the classical model as largely a 

mechanical consequence of genetic conditions in parts of the brain.

     Intelligence emerges at higher structural levels made possible by the 

interactive activity of sometimes immense numbers of elements across 

multiple domains. That interactive activity involves large numbers of 

structures and relations that combine in highly complex ways at lower 

levels, progressively leading to higher ones, still interacting and 

combining all along the way in even more highly complex ways.

     The model for natural intelligence must be an organismic model of a 

living thing. It must be organizational, not isolated parts or “building 

blocks” that get added together by a controlling central processor as the 

top block on the stack. The interaction-based properties are not there in the 

parts when they are studied independently but are in the interactions 

themselves.

     Moreover, we fundamentally reject the genetic determinism of current 

theories of intelligence. The DNA of intelligent beings such as ourselves 

and our nearest relatives in the animal kingdom, chimpanzees, cannot be 

studied independently to find our intelligence. Our DNA is not us. Our 

genes are not us nor are they our intelligence.

     In contrast to the biological determinism of the single-capacity theory, 

the view developed here is that a theory of natural intelligence cannot be 

reduced to the biology of the brain. It must look more broadly at the 

context and experience within which intelligence emerges. There are at 

least two major categories of phenomena to which a science of 

intelligence (where we are specifically addressing human intelligence) 

must attend. One category includes the brain and its context; the other 

category includes the person and the person’s experience in the objective 

world. The former major category is solely from an objective science point 

of view; the latter category is addressed with both an objective science 

point of view as well as the phenomenal view of the person in relation to 

an object.

     Moreover, the latter category requires viewing the phenomenal 

experience of the person within a set or matrix of relations obtaining 

between Subject (S) and Object(s) (O). Not all objects within such a set 
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will be physical; many will be artifacts, including ideas. For example, the 

accumulated knowledge of a discipline may constitute an artifact which 

becomes an object in the relation with a Subject. As such, these require a 

different level and kind of inquiry than object-level science as performed 

in a clinical laboratory. 

8.2.1 Multidimensional and Multilayered Intelligence 

Given the enormous empirical evidence of the self-organizing and 
emergent view of natural intelligence, we approached the intelligence 
domain as multidimensional and multi-layered. We demonstrated that the 
scope of intelligence is extended far beyond the single capacity g-theory to 
reflect the facts of natural intelligence found in human and animal 
experience and in enormous evidence from research studies in a variety of 
disciplines.
     An extended domain of intelligence includes many kinds of knowing, 
intentional rational behavior. These kinds of knowing extend beyond the 
traditional verbal language-based propositional knowing that (QN) and 
beyond applied knowing that in action or behavior.
     For decades, it has been both logically and empirically demonstrated 
that knowing how (PF) to do something is not reducible to language-based 
propositional knowledge that. Though recognized by Classical Greek 
philosophers, the nature of praxis as a rational activity was virtually 
eliminated as a kind of intelligence, particularly after the Church-approved 
mind-body split by Descartes. 
      Contrary to the Cartesian split, knowing how (PF) is a different kind of 
intelligence from knowledge that (QN) that must be included in any 
exhaustive classification of natural intelligence. 
     Moreover, empirical studies of the nature of cognitive immediate 
awareness (QL), even under surgical anesthesia, and its integration in the 
sensory, somatosensory, and sensorimotor systems related to intentional 
moving and touching (among other kinds of behavior) demonstrates the 
need to include immediate awareness as a natural intelligence category as 
well. Moreover, because of the part immediate awareness plays in making 
knowing how possible, there is a necessity for far more research to more 
accurately determine the parameters of this category of knowing.

8.2.2 Three Major Kinds of Natural Intelligence 

These three major categories of knowing, knowledge that (QN) or 
“quantitative knowing), knowing how (PF or “performative knowing”), 
and immediate awareness (QL or “qualitative knowing) comprise the 
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major categories of the universe of natural intelligence. Because of the 
dynamical nature of these extended kinds of knowing, I argued for an 
appropriate and comparable extension of theoretical and empirical 
methods including mathematical models for defining the problems of that 
domain.

8.3 Nonlinear Methods for a Science of Intelligence 

For reasons cited above and more we explored throughout, nonlinear 

methods and models are superior to classical methods and models in 

intelligence research. Other sciences across the board from physics to most 

of the life sciences have since moved far beyond the classical methods still 

used in intelligence research by many in the behavioral sciences.

     There are good reasons for intelligence research to likewise move into 

the future. These include at least the following: 

1. We demonstrated that nonlinear theory models approach to natural 
intelligence permits a more complete and exhaustive classification of 
kinds of knowing; it does not limit the scope of cognition to only one 
kind or category of knowing, verbal (linguistic) intelligence. In fact, 
we have shown that there are minimally three major categories of 
kinds of natural intelligence. These include knowledge that or 
quantitative intelligence (QN), emphasizing its classificatory 
structures; immediate awareness or qualitative intelligence (QL), 
emphasizing primary and secondary qualities as objects of this kind 
of intelligence; and knowing how or performative intelligence (PF) 
obviously emphasizing its structures in doing. 

2. We also demonstrated how more advanced nonlinear theory models 
incorporate the strengths of classical statistical and nonstatistical 
models and methods, permitting characterizations of organized 
simplicity and unorganized complexity, but goes beyond these to 
permit characterizations of organized complexity. In effect, these 
permit configurations of self-organizing, emergent dynamics of 
natural intelligence. This is a geometric bottom-up approach as 
opposed to the classical top-down symbolic approach. 

3. We also demonstrated that a more advanced nonlinear theory models 
approach is not reductionist as are classical models. We demonstrated 
the use of retroduction, a source for generating ideas, concepts, and 
hypotheses instead of assuming that ideas, concepts, and hypotheses 
are already made.
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     The use of nonlinear theory modeling in natural intelligence research 

can profoundly enlarge our understanding of natural intelligence. It can 

change the current single or limited multiple capacity view of intelligence 

as a top-down, knowledge-based rule-governed static phenomenon to one 

of the dynamic emergence of self-organizing intelligence and growth in 

possibilities.

     Classical approach to intelligence research has from the beginning 

embraced and continues to embrace underlying theory, assumptions, and 

methodology that bear little or no demonstrable relationship to the method 

by which intelligence is actually generated in natural systems. It is an 

approach which has focused upon outputting intelligent solutions,

knowledge that, rather than intelligent behavior, knowing, thus missing 

most of the domain of intelligence altogether. 

Human intelligence is sorted from infra-animal intelligence by the fact 
that it exhibits or discloses itself on a spectrum from a purely 
quantitative intelligence (QN), ‘knowledge that’, to a purely qualitative
intelligence (QL), ‘immediate awareness’, with performative
intelligence (PF), ‘knowing how’, interwoven throughout. The scope of 
infra-animal intelligence on that same spectrum is not yet determined, in 
part due to a regrettable lack of sufficient research.

The approach to intelligence found in single capacity theories largely 
rests on principles that define a narrow scope of quantitative intelligence 
(QN), reduced to neural, genetic, or rule-governed linguistic cum logico-
mathematical structures. As noted, this conceptualization of intelligence 
is largely defined in terms of the operations of class logic. Their 
methods of data collection and verification, hence, follow classical 
science approaches.

     A nonlinear scientific theory model of self-organizing complexity is an 

organismic point of view permitting representations of organized 

complexity in natural intelligence. This cannot be done with classical 

methods Living systems of organizing complexity such as natural 

intelligence require geometric theory models that permit analysis of 

properties and relations of entire ensembles of coupled elements in 

dynamic interaction with one another and their environment. It is by 

understanding the structure and active, dynamic behavior of ensembles of 

coupled epistemic elements that we can understand the emergence of 

natural intelligence. 

     Among some of our findings, based upon a nonlinear theory models 

approach involving the SIGGS theory model, we included the following: 
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A pivotal distinction between quantitative and qualitative intelligence 
rests in part on the notion of individuation and also on the differences 
between logical and non-logical indexicals. Since quantitative 
intelligence operates or proceeds by means of class logic, with a 
quantification and identity apparatus, it aims at identifying classes, 
universals or instances, members of classes and universals. It aims at 
identifying extended objects by means of logical or class operators and 
logical indexicals. 

Intelligence that operates according to non-logical indexicals is ignored, 
based on the assumption that the cognitive is isomorphic solely with 
class (extensional) logic. I argue that this assumption is false, that it 
contradicts the facts of actual natural intelligence experience. In sum, I 
argue that cognition extends beyond class extensional logic to include 
immediate awareness cognition of individuals, the unique, and includes 
performative, knowing how structures as well. 

The dynamic view of intelligence I argue for is that bodiliness 
[physicality] of intelligence is manifested and disclosed in the world in 
part by the use of indexical signs. It is indexicality that forms the 
foundations of a theory of multiple signs of intelligence. Those multiple 
signs are especially found in behavior that is comprised of the 
conjunction of knowing how and immediate awareness.

But I also do not sanction any reduction of these kinds of cognition to 
physical (neural) mechanisms or sensation, as found in many materialist 
views. I support a self-organizing, emerging organismic model for 
natural intelligence. Where intelligence is reduced to physical 
mechanisms or sensation, that characterization is too narrow because 
they cannot account for actual facts of either human or animal 
intentional behavior. Moreover, as should by now be obvious, I do not 
support those theories of intelligence that are restricted to mentalness,
such as linguistic ordering or use; they are also entirely too narrow, 
ignoring major facets of actual intelligence found in structures of 
knowing how and experience.

     There is nonlinguistic (nonverbal) intelligence, nonlinguistic knowing, 
and there are nonlinguistic indexicals by which humans and animals 
manifest that broad array of natural intelligence. Where indexicality is 
extended beyond linguistic signs to include nonlinguistic ones, we have a 
basis for an extended notion of representation of knowing, and for a 
concept of intelligence as a naturally emergent, self-organizing and 
adaptive system.



324      8 Summary and Conclusions of Self-Organizing Natural Intelligence 

8.4 Some Issues Left Unresolved 

Inevitably, there remain a number of unresolved issues. Certain of these 

are directly related to problems identified in “Mapping Natural Intelligence 

to Machine Space,” but they are found across the entire natural intelligence 

space. We will touch upon only a few here as we have dealt with each of 

these in greater detail throughout.

The Problem of Universals 

In spite of claims by some neuroscientists, cognitive scientists, and 

philosophers to the contrary, the problem of universals persists. This most 

ancient of philosophical questions is at the core of issues surrounding our 

lack of understanding of mind, intelligence, and consciousness. That 

problem may be stated as follows: “Why do universal concepts or words 

have universal or common meaning applied to many things?” Some 

concepts and words can apply in principle to an uncountable infinite 

number of things. How is this so? More to the point: how do we know that 

this is so? What are the structures of our intelligence that permit our 

knowing to extend so far? 

     The problem of universals is not resolved by efforts to collapse 

concepts into percepts, as found in Edelman’s (2003) theory and 

elsewhere (Lakoff and Núñez 2000; Scott 2002). It is not resolved by 

spurious biological and language reductionist or analytic arguments 

intended to define the problem away.

     With respect to theories of intelligence, the problem of universals is 

central to resolving other issues related, for example, to mathematical 

intelligence, including knowing how to prove theorems or perform 

transformations on abstract objects.

     In my opinion, the problem of universals is directly related to coming 

to terms with the intelligence of knowing how. As a culture we still largely 

either deny or disparage practical intelligence due to centuries of 

cumulative prejudice and poor reasoning. Currently, though some 

standardized intelligence tests claim to measure what they refer to as 

‘procedural knowledge’ it is neither identical nor equivalent to knowing

how. The underlying assumption on those tests is that knowing how is 

reducible to rule-governed knowledge that when it is not; and neither is 

mathematical intelligence including mathematical knowing how. 
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The Problem of Indexicals 

The intelligence research community has not adequately addressed the 

larger set of ways intelligence is disclosed or exhibited in the world. 

Indeed, it barely addresses disclosure at all. It has almost exclusively 

focused upon verbal intelligence that is amenable to and measurable with 

the data collection instruments they have at hand.

     I have throughout addressed the role that linguistic and nonlinguistic 

indexicals play in intelligence. Patterns of linguistic indexicals such as the 

use of ‘this’, ‘that’, ‘now’, ‘I’, and others, along with patterns of 

nonlinguistic indexicals such as gestures and other “pointings” to physical 

as well as abstract objects and ideas, are woven throughout natural 

intelligence. These patterns disclose much of the breadth and depth of any 

natural intelligence system. Yet theories of intelligence have little to say 

about them. 

     Though I addressed immediate awareness and the role nonlinguistic 

indexicals play at that level of intelligence, I also argued (2003) that 

Artificial Intelligence (AI) and Artificial Life (AL) approaches cannot 

handle either indexically-functioning words or gestures, images, and 

patterns of action. That is primarily because indexicals are highly context-

interdependent; but it is also because such indexicals cannot be conflated 

with mathematical functions. This is largely due to the first-person nature 

of their occurrence and meaning. 

     In order to fully develop a robust theory of natural intelligence, a broad 

theory of indexicality must also be developed. This must be interwoven 

with a broad theory of signs that clearly identify the means humans and 

animals use to exhibit and disclose their intelligence. This will include 

taking seriously the first-person, phenomenal experience of Subjects with 

Objects.

The Problem of Awareness 

Many fundamental questions remain about the scope and depth of 

awareness in general, but immediate awareness in particular. The research 

literature on preattentive and attentive processes shows that there is some 

dispute on when and where the preattentive processes make the transition 

to attention. Preattentive orientation proceeds subconsciously, interpreted 

as the absence of “consciousness that” such and such is the case, at the 

level of the nervous system. Many researchers hold that it is only when 

sensory perception is attained that attention can then focus upon 

information as an object with which it can operate. Some appear to argue 

that only at the attention phase, interpreted as “consciousness that” or 
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“awareness that” (aligned with language) does a subject’s neurophysical 

activity become cognitive. 

     However, there is substantial evidence in multiple experiments of 

cognitive immediate awareness below the threshold of attention. We cited 

a number of experiments showing some deeper level of cognitive 

awareness, below the attention system threshold, not aligned with language 

that correctly affected subjects’ overall behavioral responses.

     This evidence shows that the circle of cognition is larger and deeper 

than previously thought and this should be aligned with the scope of 

natural intelligence generally. Minimally, the evidence supports our 

position that intelligence begins with immediate awareness; this is prior to 

the level of attention and is not aligned with language. This is so not only 

as it pertains to vision, but also the psychomotor and entire sensory motor 

parts of the brain.

     Thus I argued that not only do we need to revise our understanding of 

the scope and depth of the cognitive domain and the place where we enter 

it, we must also revise our understanding of a network of related concepts, 

minimally including cognition itself, natural intelligence and learning. If 

the empirical findings and our interpretations of them are correct, natural 

intelligence begins with cognitive immediate awareness in the preattentive 

phase.

     Additionally, we looked at experiments involving patients under 

surgical anaesthesia. Researchers investigating cognitive awareness under 

surgical anaesthesia recommend a broader spectrum of the concept of 

awareness. The general concept of awareness is not viewed by many 

researchers in terms of two mutually exclusive states, awareness or 

unawareness, but is viewed as a continuum of states ranging from unaware 

through an infinite number of partially aware states, to complete 

awareness. This continuum also distinguishes between “awareness that”

such and such is the case [tying awareness to “that” clauses or linguistic 

reports] and “immediate awareness” which is not tied to such reports.

     In spite of the growing research into the nature of awareness, however, 

we still do not have a clear understanding of its scope and depth even 

under normal conditions. Nor do we have an adequate understanding of all 

the variables involved under what are admittedly highly variable 

conditions under the best of circumstances. There is a need to pursue far 

more research, especially given the interrelatedness of awareness with all 

other intentional behavior. 
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The Problem of Autonomy 

Moreover, the issue of autonomy, a necessary condition to self-direction 

and self-organizing behavior at higher levels of natural intelligence, is one 

of the conditions separating reactive mechanisms from kinds of living 

intelligent organisms such as ourselves. In principle, it also separates 

human beings from animals. Yet it is usually noticeably missing in 

theories of intelligence.

     The issue of autonomy is sometimes confused with the issue of 

intentionality. In philosophic circles, ‘intentionality’ is often taken to 

mean that one “knows what one is doing,” where the meaning of ‘know’ is 

limited to knowledge that (Searle 1992, 1995). That means that one can 

provide a verbal or written description of what one is doing. In my opinion 

this definition or understanding of intentionality falls into the nominalist 

trap.

     As I have argued and made clear with evidence throughout, much that 

we know extends far beyond the verbal and is not reducible to it. As noted, 

I have used ‘intentionality’ to mean deliberativeness or purposiveness in 

behavior, not limited to the verbal category of knowing.

     However, the concept of ‘autonomy’ is neither identical nor equivalent 

to the concept ‘intentional.’ The usual definition of ‘autonomy’ is either 

“self-ruling” or “self-governing;” it is central to the notion of 

independence and freedom. In Kant’s words (1785), however, autonomy is 

the “giving of law to one’s self,” specifically the moral law, a categorical 

imperative.

     While I do not wish to enter into arguments about Kant’s moral theory, 

it appears to me that his concept of autonomy as the giving of law to 

oneself is more appropriate to an understanding of human reason and 

intelligence, specifically the independence of reason, thought, and human 

freedom.

     In contrast, the notion of “self-ruling” does not necessarily include the 

notion that one is ruled by a law or rule that one has given to one’s self. It

may be a rule that has been externally imposed upon a person, even in an 

otherwise benign fashion. It could be that someone or some agency taught 

or otherwise handed the rule to a person who then unquestioningly 

accepted it and used it to rule oneself. We may rightly ask in that case, 

however, whether or not that person is autonomous and free. But Kant’s 

notion of “giving law to oneself” is clearly a free and rational independent 

choice.

     Autonomy in Kant’s sense is found throughout higher levels of reason; 

it is not found solely in moral or ethical reasoning (as Kant may have 
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surmised) but is found even in more esoteric areas of reason and thought 

in mathematics, science, philosophy, and elsewhere. 

     At present, I do not see many intelligence researchers pursuing theories 

of autonomy, in Kant’s sense, in human intelligence and reason. 

Ironically, though these questions, along with questions about the nature 

of intentionality, are found in artificial intelligence, I do not believe they 

have made much recent impact in studies of natural intelligence. At least 

not since Kant asked them. 



References

Acar W (1988) Theory Versus Model Further Comments. Systems Research, 5, pp 
172–173

Aceto P, Valente A, Gorgoglione M, Adducci E, De Cosmo G, (2003) 
Relationship between awareness and middle latency auditory evoked 
responses during surgical anaesthesia. British Journal of Anaesthesia 90 (5) 
pp 630–5 

Adleman L (1995) A Boom in Plans For DNA Computing. Science 268, pp 498–
499

Albus JS (1981) Brains, Behavior, and Robotics. Peterborough, NH, BYTE 
Albus JS (1991) Outline for a Theory of Intelligence. IEEE Transactions on 

Systems, Man and Cybernetics 21 (3) May/June 
Allen C, Bekoff MA (1997) Species of Mind: The Philosophy and Biology of 

Cognitive Ethology. MIT Press, Cambridge 
Allgood K, Yorke J (1989) Fractal Basin Boundaries and Chaotic Attractors. 

Proceedings of Symposia in Applied Mathematics: Chaos and Fractals, 39, 
American Mathematical Society 

Almog J, Perry J, Wettstein H (eds) (1989) Themes From Kaplan. Oxford, New 
York

American Heritage College Dictionary (1993) Third Edition, Houghton Mifflin, 
Boston, New York 

Anderson AK, Phelps EA (2001) Lesions of the human amygdala impair enhanced 
perception of emotionally salient events. Nature 411, 17, pp 305–309 

Anderson PB, Emmeche C, Finnemann NO, Christiansen PV (2000) Downward 
Causation: Minds, Bodies and Matter. Aarhus Univ Press, Aarhus Denmark 

Anscombe GEM (1959) An Introduction to Wittgenstein’s Tractatus. Hutchinson 
Univerity Library, London 

Antognetti P, Milutinovic V (eds) (1991) Neural Networks: Concepts, 
Applications, and Implementations Volume III. Prentice-Hall, New Jersey 

Arbib MA, Hanson AR (eds) (1987) Vision, Brain, and Cooperative Computation. 
MIT Press, Cambridge 

Armstrong DF, Stokoe WC, Wilcox S (1995) Gesture and the nature of language. 
Cambridge Univ Press, New York

Ashby WR (1960) Design for a Brain. Chapman and Hall, London 
Ayres FJr (1952) Theory and Problems of Differential Equations. Schaum 

Publishing, New York 
Baars BJ (1998) A Cognitive Theory of Consciousness. Oxford, New York 
Bacon F (1960) The New Organon and Related Writings. Anderson F (ed) Liberal 

Arts Press, New York 

 329 



330      References 

Bak P, Tang C, Wiesenfeld K (1988) Self-Organized Criticality. Phys Rev, A, 38, 
p 364 

Bartlett FC (1958) Thinking. Basic Books, New York
Barwise J, Perry J (1983) Situations and Attitudes. MIT Press, Cambridge. 
Baumgartner P, Payr S (1995) Speaking Minds: Interviews with Twenty Eminent 

Cognitive Scientists. Princeton University Press, New Jersey 
Baumgartner T, Burns TR, et al (1976) Open Systems and Multilevel Processes: 

Implications for Social Research. International Journal of General Systems 3 
(1) pp 25–42 

Becker S (1991) Unsupervised Learning Procedures for Neural Networks. 
International Journal of Neural Systems 2, pp 17–33 

Begley S (1999) Shaped by life in the womb. Newsweek 13 
Bekoff A, Marc A (1997) Species of Mind: The Philosophy and Biology of 

Cognitive Ethology. MIT Press, Cambridge 
Bell DJ (1990) Mathematics of Linear and Nonlinear Systems. Oxford,, New York 
Bell ET (1952) Mathematics: Queen and Servant of Science. G Bell & Sons Ltd, 

London
Benacerraf P, Putnam H (eds) (1964) Philosophy of Mathematics. Prentice-Hall, 

New Jersey 
Bertalanffy L von (1968) General System Theory: Foundations, Development, 

Applications. Braziller, New York 
Berthoz A, Israël I, François PG, Grasso R, Tsuzuku T (1995) Spatial Memory of 

Body Linear Displacement: What is Being Stored. Science 269 (7), pp 95–98 
Binet A (1898) Historique des recherches sur les rapports de l’intelligence avec la 

grandeur et la forme de la tête. L’Année psychologique 5: 245–298 
Binet A (1898) Recherches sur la technique de la mensuration de la tête vivante, 

plus 4 other memoirs on cephalometry. L’Année psychologique 7: 314–429
Binet A (1909) Les idées modernes sur les enfants. Flammarion, Paris 
Binet A, Simon T (1912) A Method of Measuring the Development of the 

Intelligence of Young Children. Courier Co, Illinois 
Bjorkman M, Juslin P, Winman A (1993) Realism of confidence in sensory 

discrimination: The Underconfidence Phenomenon. Perception & 
Psychophysics 54, pp 75–81 

Black M (1964) A Companion to Wittgenstein’s Tractatus. Cornell Univ Press, 
Ithica

Block N J, Dworkin G (1976) The IQ Controversy. Pantheon, New York 
Block N (1995) On a Confusion About a Function of Consciousness. Behavioral 

and Brain Sciences 18, pp 227–287 
Bloom P (1994) Generativity within language and other cognitive domains. 

Cognition 51, pp 177–189 
Blum A (1992) Neural Networks in C++, An Object-Oriented Framework for 

Building Connectionist Systems. Wiley & Sons, New York 
Blum L (1990a) Lectures on a Theory of Computation and Complexity over the 

Reals (or an Arbitrary Ring). Lectures in the Sciences of Complexity II, Jen 
(ed) Addison-Wesley, Massachusetts 



References      331 

Blum L (1990b) A Theory of Computation and Complexity Defined over the Real 
Numbers. Technical Report International Computer Science Inst, Berkeley

Blum L, Shub M, Smale S (1989) On a Theory of Computation and Complexity 
over the Real Numbers: NP Completeness, Recursive Functions and Universal 
Machines. Bulletin of the American Mathematical Society 21 (1), pp 1–46 

Blum L, Smale S (1990) The Gödel Incompleteness Theorem and Decidability 
Over a Ring. Technical Report International Computer Science Inst, Berkeley 

Boolos G (1995) Gödel *1951: Introductory Note. Feferman et al (eds) Kurt Gödel 
Collected Works Vol III Unpublished Essays and Lectures. Oxford, New York 

Bower TGR (1972) The Visual World of Infants. In: Perception Mechanisms and 
Models. WH Freeman, San Francisco, pp 349–357 

Bradley MC (1969) Comments and Criticism: How Never to Know What You 
Mean. J Phil LXVI (5) March 13 

Braine MDS, O’Brien DP (eds) (1998) Mental Logic. Earlbaum, Mahwah, NJ 
Breazeal C, Fitzpatrick P, Scassellati B (2005) An Active Vision System for a 

Social Robot. Artificial Intelligence Laboratory, MIT Cambridge.
Britannica Online (1994–1997) The History of Epistemology: Ancient 

Philosophy. Retrieved 1997 from http://www.britannica.com 
Britannica Online (1994–1997) Physiological Psychology. Retrieved 1997 from 

http://www.britannica.com
Brooks R, Maes P (eds) (1994) Artificial Life IV. MIT Press, Cambridge 
Brooks R (1996) Challenge Problems for Artificial Intelligence. In: Proceedings 

of AAAI–96 
Brown V, Huey D, Findlay J M (1997) Face detection in peripheral vision: Do 

faces pop out? In: Perception 26: 1555–1570 
Bruner J, Olver, Greenfield, et al (1966) Studies in Cognitive Growth. John Wiley 

& Sons, New York 
Burch R (2001) Charles Sanders Peirce. In: The Stanford Encyclopedia of 

Philosophy (Fall 2001 Edition), Edward N. Zalta (ed) 
http://plato.stanford.edu/archives/fall2001/entries/peirce/

Burt C (1909) Experimental Tests of General Intelligence. Brit J Psy 3: 94–177 
Burt C (1912) The Inheritance of Mental Characters. Eugenics Review 4: 168–200 
Burt C (1914) The Measurement of Intelligence by the Binet Tests. Eugenics 

Review 6: pp 36–50, 140–152 
Burt C (1937) The Backward Child. Appleton, New York 
Burt C (1940) The Factors of Mind. Univ of London Press, London 
Burt C (1943) Ability and Income. Brit J Ed Psy 13: 83–98 
Burt C (1949) The Structure of the Mind. Brit J Ed Psy 19: 100–111, 176–199 
Burt C (1955) The Evidence for the Concept of Intelligence. Brit J Ed Psy 25: 

158–177
Burt C (1972) The Inheritance of General Intelligence. Am Psy 27: 175–190 
Cahmi JM (1984) Neuroethology: Nerve Cells and the Natural Behavior of 

Animals. Sinauer Associates, Mass 
Camazine S, Deneubourg JL, Nigel R, Franks JS, Theraulaz G, Bonabeau E 

(2001) Self-Organization in Biological Systems. Princeton University Press, 
New Jersey 



332      References 

Cantor G (1932) Gesammelte Abhandlungen. Fraenkel A, Zermelo E (eds) 
Springer-Verlag, Berlin 

Cantor G (1955) Contributions to the Founding of the Theory of Transfinite 
Numbers. Dover, New York 

Cartmill M (1990) Human uniqueness and theoretical content in 
paleoanthropology. In: Int J Primat (3), pp 173–192 

Cartwright RL (1967) Classes and Attributes. In: Noûs (1) pp 231–242 
Castañeda H-Ñ (1967) Indicators and Quasi-indicators. Am Phil Quarterly (4), pp 

85–100
Castañeda H-Ñ (1975) Individuation and Non-Identity: A New Look. Am Phil 

Quarterly (12), pp 131–140 
Castañeda H-Ñ (1977) Perception, Belief, and the Structure of Physical Objects 

and Consciousness. Synthese (35), pp 285–351 
Castañeda H-Ñ (1981). "The Semiotic Profile of Indexical (Experiential) 

Reference," in Synthese, Vol. 49, pp. 275–316. 
Castañeda H-Ñ (1987) Self-Consciousness, Demonstrative Reference, and the 

Self-Ascription View of Believing. In: Philosophical Perspectives I, 
Metaphysics. Tomberlin J (ed) Ridgeview, Atascadero, California, pp 405–
459

Castañeda H-Ñ (1989) Direct Reference, The Semantics of Thinking, and Guise 
Theory: Constructive Reflections on David Kaplan's Theory of Indexical 
Reference. In Themes from Kaplan. Almog J, Perry J, Wettstein H (eds) 
Oxford, New York 

Castañeda H-Ñ (1989) The Reflexivity of Self-Consciousness: Sameness/Identity, 
Data for Artificial Intelligence. In: Philosophical Topics XVII (1) Spring, pp 
27–58

Castañeda H-Ñ (1990) Indexicality: The Transparent Subjective Mechanism for 
Encountering a World. In: Noûs, XXIV (5), pp 735–749 

Castañeda H-Ñ (1990) Philosophy as a Science and as a Worldview. The 
Institution of Philosophy. Cohen A, Dascal M (eds) Nous Publications, 
Bloomington, Indiana 

Catani M, Jones DK, Ffytche DH (2005) Perisylvian language networks of the 
human brain. Ann Neurol 57(1): 8–16 

Ceci SJ, Williams WM (1997) Schooling, intelligence, and income. Am Psy 
52:1051–1058

Chabris CF (1998) IQ since ‘The Bell Curve’. Commentary 106, pp 33–40 
Chaitin GJ (1966) On the Length of Programs for Computing Binary Sequences. J 

Assoc Comp Mach 13: 547–569 
Chaitin GJ (1974) Information Theoretical Limitations of Formal Systems. J 

Assoc Comp Mach 21: 403–424 
Chaitin GJ (1987) Algorithmic Information Theory. Cambridge University Press, 

Cambridge.
Chalmers D (1996) The Conscious Mind: In Search of a Fundamental Theory, 

Oxford University Press, New York 
Chau T (2001) A review of analytical techniques for gait data Part 1: fuzzy, 

statistical and fractal methods. Gait and Posture 13: 49–66 



References      333 

Cherry EC (1953) Some experiments in the recognition of speech, with one and 
two ears. J Acoust Soc Am 25: 975–979.

Cherry C (1957) On Human Communication. MIT Press, Cambridge 
Chevalier-Skolnikoff S (1981)The Clever Hans Phenomenon, Cuing, and Ape 

Signing: A Piagetian Analysis of Methods for Instructing Animals. In: Sebeok 
T, Rosenthal R (eds) Annals NY Acad Sci, 364: 60–93 

Chisholm RM (1977) Theory of Knowledge, 2nd edn. Prentice-Hall, New York 
Chomsky N (1972) Language and Mind. Harcourt, New York 
Churchland P, Churchland P (1990) Could a Machine Think? Sci Am January 
Churchland PS, Sejnowski TJ (1992) The Computational Brain. MIT Press, 

Cambridge
Churchland P (1995) Interview. In: Baumgartner P, Payr S (eds) Speaking Minds: 

Interviews with Twenty Eminent Cognitive Scientists. Princeton Univ Press, 
New Jersey 

Cipolotti L, Harskamp N (2001) Disturbances of number processing and 
calculation. In: Berndt RS (eds) Handbook of Neuropsychology. Elsevier, 
Amsterdam

Clark A (1989) Microcognition. MIT Press, Cambridge 
Clayes G (2001) Introducing Francis Galton 'Kantsaywhere' and 'The Donoghues 

of Dunno Weir. Utopian Studies 12(2): 188–190 
Cohen J, Stewart I (1994) The Collapse of Chaos: Discovering Simplicity in a 

Complex World. Viking: Penguin Group, New York 
Cohen J, Stewart I (1994) Our Genes Aren’t Us. Discover April pp 78–83 
Cohen J (1998) The Human Mind as an Emergent Phenomenon: The Complicit 

Coevolution of Intelligence and Extelligence. Keynote Address OACES 
Colombo J, Ryther JS, Frick J, Gifford J (1995) Visual Pop-out in Infants: 

Evidence for Preattentive Search in 3- and 4-month-olds. Psych Bul & Rev 2 
(2): 266–268 

Collishaw SM. Hole GJ (2000) Featural and configurational processes in the 
recognition of faces of different familiarity. In Perception 2000 Vol 29 (8): 
893–909

Corballis MC (1999) The Gestural Origins of Language. Am Sci 87 (2) March-
April

Coren S (1994) The Intelligence of Dogs: Canine Consciousness and Capabilities. 
The Free Press, New York 

Cormen TH, Leiserson CE, et al (1992) (eds) Algorithms. MIT Press, Cambridge
Crick F, Koch C (1990) Towards a Neurobiological Theory of Consciousness: 

Seminars in the Neurosciences. Vol 2 pp 263–275
Crick F, Koch C (1992) The Problem of Consciousness. Sci Am Vol 267 (110) 
Crick F (1994) The Astonishing Hypothesis: The Scientific Search for the Soul. 

Simon and Schuster, New York 
Culham JC, Kanwisher NG (2001) Neuroimaging of Cognitive Functions in 

Human Parietal Cortex. Current Opinion in Neurobiology Vol 11, pp 157–163 
Cullen FT, Gendreau P, Jarjoura GR, Wright JP (1997) Crime and the Bell Curve: 

Lessons from intelligent criminology. Crime and Delinquency (43): 387–411



334      References 

Cutland NJ (1980) Computability, An Introduction to Recursive Function Theory. 
Cambridge University Press, Cambridge 

Darwin F (ed) (1887) The Life and Letters of Charles Darwin. Kessinger 
Publishing, London 

Darwin F, Seward AC (eds) (1903) More Letters of Charles Darwin. Kessinger 
Publishing, London 

Davenport JH, Heintz J (1988) Real Quantifier Elimination is Doubly 
Exponential. In: Algorithms in Real Algebraic Geometry. J Symb Comp Vol 
5 (1) 

Davis M (1993) How Subtle is Gödel's Theorem? More on Roger Penrose. Beh Br 
Sci 16 (3): p 612 

Damasio A (1994) Descartes’ Error: Emotion, Reason, and the Human Brain. 
Putnam, New York 

Dawson G, Fischer K (eds) (1994) Human Behavior and the Developing Brain. 
Guilfor, New York 

De Becker G (1997) The Gift of Fear and Other Survival Signals That Protect Us 
From Violence. Dell, New York 

Dehaene S (1992) Varieties of Numerical Abilities. Cognition 44 (1–2) pp 1–42 
Dehaene S, Cohen L (1995) Towards an anatomical and functional model of 

number processing. Math Cogn 1: 83–120
Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S (1999) Sources of 

Mathematical Thinking: Behavioral and Brain-Imaging Evidence. Science 
Vol 284, pp 970–974 

De Lange F, Hagoort P, Toni I (2005) Neural Topography and Content of 
Movement Representations. J Cog Neur (17): 97–112 

Dennett D (1991) Consciousness Explained. Little, Brown and Co, New York 
Dennett D (1994) The Role of Language in Intelligence. In Khalfa J (ed) What Is 

Intelligence? Cambridge University Press, Cambridge 
Descartes R (1960) Discourse on Method and Meditations. Lafleur LJ (trans). 

Bobbs-Merrill, Indianapolis 
Descartes R (1984–1985) The Philosophical Writings of Descartes, Volumes I and 

II. Cottingham J, Stoothoff R, Murdoch D (trans). Cambridge Univ Press, 
Cambridge

Devaney RL (1989) An Introduction to Chaotic Dynamical Systems 2nd edn. 
Addison-Wesley, Massachusetts

Devaney RL (1989) Dynamics of Simple Maps. In Proceedings of Symposia in 
Applied  Mathematics: Chaos and Fractals Vol 39. AMA, Washington DC 

Devlin B, Daniels M, Roeder K (1997) The heritability of IQ. Nature (388): 468–
471

Devlin K (1994) Mathematics the Science of Patterns. Scientific American 
Library, Washington 

Devlin K (1997) The logical structure of computer-aided mathematical reasoning. 
Am Math Monthly Vol 104 (7), pp 632–646 

Dickason A (1976) Anatomy and Destiny: The Role of Biology in Plato’s Views 
of Women. In: Gould CC, Wartofsky MW (eds) Women and Philosophy: 
Toward a Theory of Liberation. Penn State Press, PA 



References      335 

Dreyfus HL (1992) What Computers Still Can't Do: A Critique of Artificial 
Reason. MIT Press, Cambridge 

Dreyfus HL (1995) Cognitivism Abandoned. In: Baumgartner P, Payr S (eds) 
Speaking Minds: Interviews with Twenty Eminent Cognitive Scientists. 
Princeton University Press, New Jersey 

Dubois D, Prade H (1991) Fuzzy Labels, Imprecision and Contextual 
Dependency: Comments on Milan Zeleny's 'Cognitive Equilibrium: a 
Knowledge-Based Theory of Fuzziness and Fuzzy Sets. In Intl J Gen Sys Vol 
19: 383–386 

Dukas R (ed) (1998) Cognitive Ecology: The Evolutionary Ecology of 
Information Processing and Decision Making. University Chicago Press, 
Chicago

Eccles J (2002) The Effect of Silent Thinking on the Cerebral Cortex. In 
TruthJournal, Leadership University 

Edman I (ed) (1928) Theaetetus. In The Philosophy of Plato. Modern Lib, New 
York

Edelman G (2004) Wider than the Sky: The Phenomenal Gift of Consciousness. 
Yale University Press, New Haven 

Egner RE, Denonn LE (1961) (eds) The Basic Writings of Bertrand Russell: 
1903–1959. Simon & Schuster, New York 

Ekman P (1980) The Face of Man: Expressions of Universal Emotions in a New 
Guinea Village. Garland STPM Press, New York 

Ekman P, Rosenberg EL (1997) (eds) What the Face Reveals: Basic and Applied 
Studies of Spontaneous Expression Using the Facial Action Coding System 
(FACS). Oxford, New York

Elman JL (1990) Finding Structure in Time. Cog Sci Vol 14 pp 179–211 
Elman JL (2003) Development: It’s About Time. Dev Sci 6:4 pp 430–433 
Elman J (2005) Connectionist Models of Cognitive Development: Where Next? 

Trends Cog Sci Vol 9: 3 March 
Elmund A, Melin L, Knorring AL, Proos L, Tuvemo T (2004) Cognitive and 

neuropsychological functioning. In Acta Paediatrica Vol 93 (11) pp 1507–
1513

Elsasser WM (1966) Atom and Organism: A New Approach to Theoretical 
Biology. Princeton University Press, New Jersey 

Enard W, Khaitovich P, Klose J, Zollner S, Heissig F, Giavalisco P, Niselt-Struwe 
K, Muchmore E, Varki A, Ravid R, Doxiadis G M, Bontrop R E, Paabo S 
(2000) Intra- and Interspecific Variation in Primate Gene Expression Patterns. 
Science Vol 296: 340–344 

Engel AK, Singer W (2001) Temporal binding and the neural correlates of sensory 
awareness. Trends Cog Sci Vol 5 (1) pp16–25 

Esch H, Zhang S, Srinivasan MV, Tautz J (2001) Honeybee dances communicate 
distances measured by optic flow. Nature 411 pp 581–583 

Estep M (1978a) The Concept of Understanding. SISTM Quarterly Vol 1 (3)
Estep M (1978b) Toward a SIGGS Characterization of Epistemic Properties of 

Educational Design. In Applied General Systems Research: Recent 
Developments and Trends. Klir G (ed) NATO Conference Series. Plenum 
Press, New York 



336      References 

Estep M (1978c) Pragmatics of the SIGGS Theory Model Relative to Pedagogical 
Epistemological Inquiry. In Avoiding Social Catastrophes and Maximizing 
Social Opportunities. SGSR, AAAS, Washington, DC 

Estep M (1978d) A SIGGS Information Theoretic Characterization of Qualitative 
Knowing: Cybernetic and SIGGS Theory Models. In Sociocybernetics Vol 2 
Martinus Nijhoff Social Sciences Division, Leiden, Boston, London 

Estep M (1979) Open Systems Characterizations of Epistemic Properties: 
Implications for Inquiry in the Human Sciences. In Improving the Human 
Condition: Quality and Stability in Social Systems. SGSR and Springer-
Verlag, Berlin, Heidelberg, New York, London 

Estep M (1981) Ways of Qualitative Worldmaking: The Nature of Qualitative 
Knowing. In Applied  Systems and Cybernetics Vol. II: Systems Concepts, 
Models, and Methodology. Lasker G (ed). Pergamon Press, New York 

Estep M (1984) Toward Alternative Methods in Systems Analysis: The Case of 
Qualitative Knowing. In Cybernetics and Systems Research Vol 2 Trappl R 
(ed). Elsevier Science Publishers B.V. (North-Holland), Netherlands 

Estep M (1986) The Concept of Power and Systems Models for Developing 
Countries. In: Cybernetics and Systems Research: An International Journal, 
Hemisphere Publishing Corp of Harper and Row, Washington, DC 

Estep M (1987) Systems Analysis and Power. In Problems of Constancy and 
Change: The Complementarity of Systems Approaches to Complexity. 
Hungarian Academy of Sciences, Budapest 

Estep M (1992) On Models and Retroductive Inference. In Cybernetics and 
Systems Research Vol 1.Trappl R (ed).World Scientific, Singapore, New 
Jersey, London, Hong Kong 

Estep M (1993) On Qualitative Logical and Epistemological Aspects of Fuzzy Set 
Theory and Test-Score Semantics: Indexicality and Natural Language 
Discourse. In First European Congress on Fuzzy and Intelligent Technologies 
Proceedings Vol 2 Zimmerman HJ (ed). Verlag der Augustinus 
Buchhandlung, Aachen, Germany 

Estep M (1996) Critique of James' Neutral Monism: Consequences for the New 
Science of Consciousness. J Cons Stdies 

Estep M (1998) What Gödel Said: On the Non-algorithmic Nature of the Second 
Theorem. Syst Res. Vienna, EMCSR 1998

Estep M (1999) Teaching the Logical Paradoxes: On Mathematical Insight or Is 
there a Non-Algorithmic Element in Gödel's Second Theorem? Abstracts of 
Papers Presented to the Amer Math Soc, Vol 20 (1) 

Estep M (2003) A Theory of Immediate Awareness: Self-organization and 
Adaptation in Natural Intelligence. Springer, Dordrecht 

Eubank S, Farmer D (1990) An Introduction to Chaos and Prediction. In Jen E 
(ed). 1989 Lectures in Complex Systems, Santa Fe Institute Studies in the 
Sciences of Complexity. Addison-Wesley, Massachusetts 

Fagot J, Wasserman EA, Young ME (2001) Discriminating the Relation Between 
Relations: The Role of Entropy in Abstract Conceptualization by Baboons 
(Papio papio) and Humans (Homo sapiens). An Behav Proc, Vol 27 (4) 



References      337 

Familant ME, Detweiler MC (1993) Iconic Reference: Evolving Perspectives and 
an Organizing Framework. In Int J Man-Machine Stdies 39: 705–728 

Farmer J, Doyne (1990) A Rosetta Stone for Connectionism. In Physica D Vol 42, 
pp 153–187 

Feferman S, Dawson JW, Kleene SC, et al (eds). (1986) Kurt Gödel Collected 
Works Vol I. Oxford, New York 

Feferman S, Dawson JW, Kleene SC, et al (eds). (1990) Kurt Gödel Collected 
Works, Volume II. Oxford, New York 

Feferman S, Dawson JW, Kleene SC, et al (eds). (1995) Kurt Gödel Collected 
Works, Volume III. Unpublished Essays and Lectures. Oxford, New York 

Feldman BL, Gross J, Christensen T, Benvenuto M (2001) Knowing what you're 
feeling and knowing what to do about it: Mapping the relation between 
emotion differentiation and emotion regulation. Cognition and Emotion 
15:713–724

Fine K (1989) The Problem of De Re Modality. In: Themes From Kaplan. Almog 
J, Perry J, Wettstein H (eds). Oxford, New York 

Fischer CS, Hout M, Sanchez Jankowski M, Lucas SR, Swidler A, Voss K (1996). 
Inequality by Design: Cracking the Bell Curve Myth. Princeton Univ Press, 
New Jersey 

Flanagan DP, Kaufman AS (eds) (2004) Essentials of WISC-IV Assessment. John 
Wiley, New York 

Flynn JR (1984) The Mean IQ of Americans: Massive Gains. Psych Bul Vol 95 pp 
29–51

Flynn JR (1987) Massive IQ Gains in 14 Nations: What IQ Tests Really Measure. 
Psych Bul, Vol 101, pp 171–191 

Forrest S, Miller JH (1991) Emergent Behavior in Classifier Systems. In Emergent 
Computation. Forrest S (ed). MIT Press, Cambridge 

Foster L, Swanson JW (1970) Experience and Theory. University of Mass Press, 
Amherst

Frank LM, Stanley GB, Brown EN (2004) Hippocampal plasticity across multiple 
days of exposure to novel environments. J Neurosci 24 (35): 7681–9

Freeman JA (1994) Simulating Neural Networks with Mathematics. Addison-
Wesley, Reading, Massachusetts 

Frege G (1892) Über Begriff und Gegenstand. In Vierteljahrsschrift für 
wissenschaftliche Philosophie 16, pp 192–205

Frege, Gottlob (1952). “Uber Sinn und Bedeutung,” (On Sense and Reference), in 
Geach, Peter, and Max Black, (eds.), Translations From the Philosophical 
Writings of Gottlob Frege, New York, Oxford: Oxford University Press. 

Frick T (1983) Non-metric Temporal Path Analysis (NTPA): An Alternative to 
the Linear Models Approach for Verification of Stochastic Educational 
Patterns. Indiana University, Bloomington, Indiana 

Frick T (1990) Analysis of Patterns in Time: A Method of Recording and 
Quantifying Temporal Relations in Education. AERA J, Vol 27 (1), pp 180–
204

Frith C, Perry R, Lumer E (1999) The neural correlates of conscious experience: 
an experimental framework. Trends in Cog Sci, Vol 3 (3), pp 105–114 



338      References 

Fritzke B (1993) Growing Cell Structures-A Self-Organizing Network for 
Unsupervised and Supervised Learning. Technical Report. International 
Computer Science Inst, Berkeley, California 

Fritzke B (1993) Kohonen Feature Maps and Growing Cell Structures-A 
Performance Comparison. International Computer Science Inst, Berkeley, 
California

Galton F (1869/1892/1962) Hereditary Genius: An Inquiry into its Laws and 
Consequences. Macmillan/Fontana, London.

Galton F (1883/1907/1973). Inquiries into Human Faculty and its Development. 
AMS Press, New York. 

Gannon P, Holloway R (1998) Similarities Found In Human, Chimp Brains. 
Science, AAAS January 

Gardner H (1982) Art, Mind, and Brain. Basic Books, New York 
Gardner H (1985) The Mind's New Science. Basic Books, New York 
Gardner H (1993) Frames of Mind: The Theory of Multiple Intelligences. Basic 

Books, New York 
Gardner H (1995) Cracking open the IQ box. In The American Prospect 

http://www.prospect.org/archives/20/20gard.html
Gardner H (1998) Are there additional intelligences? The case for naturalist, 

spiritual, and existential intelligences. In Kane J (ed). Education, information, 
and transformation. Merrill-Prentice-Hall, Upper Saddle River, New Jersey 

Gärdenfors P (1988) Knowledge in Flux: Modeling the Dynamics of Epistemic 
States. MIT Press, Cambridge 

Geach P (1971) Mental Acts, Their Content and Their Objects. Humanities Press, 
New York 

Gelman R, Gallistel CR (2000) Non-Verbal Numerical Cognition: from reals to 
integers. Trends in Cog Sci, Vol 4 (2) 

Gelman R, Butterworth B (2005) Number and Language: How Are They Related. 
In: Trends in Cog Sci, Vol 9 Issue 1 pp 6–10 

George M (1999) What Aquinas Really Said About Women. In: First Things 98, 
pp 11–13 

Goddard HH (1914) Feeble-mindedness: Its Causes and Consequences. 
Macmillan, New York 

Goddard HH (1919) Psychology of the Normal and Subnormal. Dodd, Mead and 
Co, New York 

Gödel K (1951) Some Basic Theorems on the Foundations of Mathematics and 
Their Implications. In: Feferman, et al (eds) (1995) Kurt Gödel Collected 
Works, Volume III. Unpublished Essays and Lectures. Oxford, New York

Gödel K (1964a) Russell's Mathematical Logic. In Benacerraf P, Putnam H (eds) 
Philosophy of Mathematics. Prentice-Hall, New Jersey 

Gödel K (1964b) What is Cantor's Continuum Problem? In Benacerraf P, Putnam 
H (eds) Philosophy of Mathematics. Prentice-Hall, New Jersey 

Goldin-Meadow S, Mylander C (1998) Spontaneous sign systems created by deaf 
children in two cultures. Nature 391:279–281 

Gomi H, Kawato M (1996) Equilibrium-Point Control Hypothesis Examined by 
Measured Arm Stiffness During Multijoint Movement. Science Vol 272, 5, pp 
117–120



References      339 

Goodall J (1986) The Chimpanzees of Gombe. Harvard University Press, 
Cambridge

Goodman,N (1973) Fact, Fiction, and Forecast. Bobbs-Merrill Publishing 
Company, Indianapolis 

Gottfredson LS (1997a) Inequality by design (book review). Personnel 
Psychology, 50, pp 741–746

Gottfredson LS (1997b) Why g matters: The complexity of everyday life. 
Intelligence, 24, pp 79–132

Gottfredson LS (1998c) The general intelligence factor. Scientific American 
Presents, 9, pp 24–29, 51

Gould CC, Wartofsky MW (eds) (1976) Women and Philosophy: Toward a 
Theory of Liberation University Park, Penn State Press, PA 

Gould JL, Gould CG (1994) The Animal Mind. Scientific American Lib, New 
York

Gould SJ (1981) The Mismeasure of Man. WW Norton & Company, New York 
Gould SJ (1994) Curveball. The New Yorker, New York
Grandin T (1995) Thinking in Pictures and Other Reports from my Life With 

Autism. Vintage Books, New York 
Grandin T (2005) Animals in Translation: Using the Mysteries of Autism to 

Decode Animal Behavior. Scribner, New York 
Graves K, et al (1973) Tacit Knowledge. The Journal of Philosophy, Vol. LXX, 

No. 11, June 7
Grewal D, Salovey P (2005) Feeling Smart: The Science of Emotional 

Intelligence. American Scientist, Vol. 93, No. 3, July-August, p 330 
Griffin D (1984) Animal Thinking. Harvard University Press, Cambridge 
Griffin D (1992) Animal Minds. University of Chicago Press, Chicago 
Grimaldi R (1994) Discrete and Combinatorial Mathematics 3rd edn, Addison-

Wesley, Reading, Massachusetts 
Grimson WE, Patil RS (eds) (1987) AI in the 1980s and Beyond: An MIT Survey. 

MIT Press, Cambridge 
Gruber HE, Vonëche J (1995) The Essential Piaget: An Interpretive Reference and 

Guide, 2nd edn. Jason Aronson,  New Jersey 
Guilford JP (1967) The Nature of Human Intelligence. McGraw-Hill, New York 
Gupta D (2001) Computer Gesture Recognition: Using the Constellation Method.  

Caltech Undergraduate Research J, Vol. 1, April 
Gurwitsch A (1963) On the Conceptual Consciousness. In: The Modeling of 

Mind. Sayre KM, Crosson FJ (eds) Notre Dame University, South Bend 
Hackworth D (1997) Military Operations: Vietnam Primer, Lessons Learned. 

Department of the US Army, Washington, DC 
Hadamard J (1945) The Psychology of Invention in the Mathematical Field. 

Princeton University Press, Princeton, New Jersey 
Hameroff S, Rasmussen S, Mansson B (1989) Molecular Automata in Microtubules: 

Basic Computational Logic of the Living State. In Artificial Life Langton, C 
(ed), Vol. VI, Santa Fe Institute Studies in the Sciences of Complexity, 
Addison-Wesley Publishing Company, Reading, MA 



340      References 

Hanson NR (1972) Patterns of Discovery. Cambridge University Press, 
Cambridge

Harary F (1969) Graph Theory. Addison-Wesley, Reading, Massachusetts 
Harmon GH (1977) Thought. Princeton University Press, New Jersey 
Harmon LD (1973) Recognition of Faces. In Sci Am, November 
Hartley RVL (1928) Transmission of Information. In The Bell Sys Tech J, Vol 7, 

pp 535–563
Hartshorne C, Weiss, P (eds) (1931–1958) The Collected Papers of Charles 

Sanders Peirce, Vols I-VI. Harvard University Press, Cambridge 
Hauser MD (2000) Wild Minds: What Animals Really Think. Henry Holt, New 

York
Hauser MD, et al (2002) The Faculty of Language: What Is It, Who Has It, and 

How Did It Evolve? In Science, Vol 298, pp 1569–1579
Hauser RM, Huang MH (1997) Verbal ability and socioeconomic success: A trend 

analysis. In Social Science Res, 26, pp 331–376
Hausman A, Foster T (1977) Is Everything a Class? In Phil Studies, 32, pp 371–

376
Haykin S (1994) Neural Networks: A Comprehensive Foundation. Macmillan, 

New York 
Healey CG (1993) Visualization of Multivariate Data Using Preattentive 

Processing. Masters Thesis, University of British Columbia 
Healey CG (2005) Perception in Visualization. N C State University
Hebb DO (1949) The Organization of Behavior: A Neuropsychological Theory, 

John Wiley, New York 
Heijenoort J (ed) (1967) From Frege to Gödel. Harvard University Press, 

Cambridge
Hempel CG (1965) Aspects of Scientific Explanation. The Free Press, New York,
Hernegger R (1995) Wahrnehmung und Bewusstsein: Ein Diskussionsbeitrag zur 

Neuropsychologie. Spekrum, Heidelburg 
Herrnstein RJ, Charles M (1994) The Bell Curve: Intelligence and Class Structure 

in American Life. The Free Press, New York 
Higashi M, Klir G (1982) Measures of Uncertainty and Information Based on 

Possibility Distributions. In: Int J Gen Sys, 8, SGSR, Washington, DC 
Higashi M, Klir G (1983) On the Notion of Distance Representing Information 

Closeness. In: Int J Gen Sys, 9, ISGSR, Washington, DC 
Higgins C (2001) Sensory Architectures for Biologically Inspired Autonomous 

Robots. Biol Bull 200: 235–242, April 
Hinton GE (1981) Shape Representation in Parallel Systems. In: Proc 7th 

International Joint Conference on Artificial Intelligence, Vancouver, British 
Columbia

Hinton GE, Sejnowski TJ (1986) Learning and Relearning in Boltzmann 
Machines. In: Parallel Distributed Processing: Explorations in Microstructure 
of Cognition. Rumelhart DE, McClelland JL (eds), MIT Press, Cambridge

Hinton GE, Dayan P, Frey B, Neal R (1995) The 'Wake-Sleep' Algorithm for 
Unsupervised Neural Networks. In: Sci Am, AAAS, Vol 268, No 5214, pp 
1158–1161



References      341 

Holland J (1975) Adaptation in Natural and Artificial Systems. University of 
Michigan Press, Ann Arbor 

Holland JH, Holyoak KJ, Nisbett R, Thagard P (1986) Induction: Processes of 
Inference, Learning, and Discovery. MIT Press, Cambridge 

Horwitz B, Rumsey JM, Donohue BC (1998) Functional connectivity of the
     angular gyrus in normal reading and dyslexia. Proc Natl Acad Sci USA,
     July 21: 95(15): 8939–44 
Irvine P (1986) Sir Francis Galton (1822–1911). J Spec Ed, 20(1) 
Jackson P, Reichgelt H, Harmelen F (1989) Logic-Based Knowledge 

Representation. MIT Press, Cambridge
Jacob F (1977) Evolution and Tinkering. Science, Vol 196, pp 1161–1166 
James W (1884) Some Omissions of Introspective Psychology. Mind, 9, January, 

1884, pp 1–26 
James W (1890) The Principles of Psychology, Volumes I and II. Macmillan, 

London
James W (1976) Essays in Radical Empiricism. Harvard University Press, 

Cambridge
Jen E (ed) (1989) Lectures in Complex Systems, Santa Fe Institute Studies in the 

Sciences of Complexity. Addison-Wesley, Reading, Massachusetts 
Jencks C, Phillips M. (1998) The black-white test score gap. Brookings, 

Washington, DC
Jensen A (1998) The g Factor: The Science of Mental Ability. Praeger, Westport, 

CT
Jensen AR (1999) Precis of: "The g Factor: The Science of Mental Ability" 

Psycoloquy, 10(023)
Johnson-Laird PN (1983) Mental Models. Harvard University Press, Cambridge 
Jordan MI (1986) An Introduction to Linear Algebra in Parallel Distributed 

Processing. In Parallel Distributed Processing: Explorations in the 
Microstructure of Cognition, Vol 1: Foundations. Rumelhart DE, McClelland 
JL, PDP Research Group, MIT Press, Cambridge

Joseph R (2000) Neuropsychiatry, Neuropsychology, Clinical Neuroscience. 
Academic Press, New York

Jourdain PEB (1912) The Development of the Theories of Mathematical Logic 
and the Principles of Mathematics. In: The Quart J Pure and App Math, 43, pp 
219–314

Jusczyk PW (1997) The Discovery of Spoken Language. MIT Press, Cambridge 
Kalish D, Montague R, Mar G (1980) Logic: Techniques of Formal Reasoning. 

Harcourt, New York 
Kandel ER, Schwartz JH (1991) Principles of Neural Science, 3rd edn. Elsevier, 

New York 
Kane J (ed) (1998) Education, information, and transformation. Merrill-Prentice 

Hall, Upper Saddle River, NJ 
Kant I (1783) Prolegomena to any Future Metaphysics that will be able to present 

itself As a  Science. Johann Friedrich Hartknoch, Riga. 
Kant I (1785; 1998) Groundwork for the Metaphysics of Morals (Grundlegung zur 

Metaphysik der Sitten) Cambridge University Press, Cambridge



342      References 

Kant I (1788; 1996) Critique of Practical Reason (Kritik der practischen Vernunft) 
Prometheus Books, New York

Kant I (1929) Critique of Pure Reason. (Smith NK, trans), Macmillan, Toronto 
Kaplan D (1989) Demonstratives. In Themes From Kaplan. Almog J, Perry J, 

Wettstein H (eds) Oxford, New York 
Kauffman SA (1990) Requirements for Evolvability in Complex Systems: Orderly 

Dynamics and Frozen Components. Physica D, Vol 42, pp 135–152 
Kauffman SA (1991) Antichaos and Adaptation. Sci Am, Vol 265, No 2, August, 

pp 78–84 
Kauffman SA (1993) The Origins of Order: Self-Organization and Selection in 

Evolution. Oxford, New York 
Kauffman SA (1995) At Home in the Universe: The Search for the Laws of Self-

Organization and Complexity. Oxford, New York 
Keen L (1989) Julia Sets. In Proc of Symposia in Applied Mathematics: Chaos 

and Fractals, Vol 39, Am Math Soc 
Kellert SH, Mark A, Stone AF (1990) Models, Chaos, and Goodness of Fit. In: 

Philosophical Topics, Vol 18, No 2, Fall 
Kelly K (2005) Where You Stand Determines What You See and How You Live. 

CommonDreams
Kerlinger F (1973) Foundations of Behavioral Science, 2nd edn. Holt, Rinehart 

and Winston, New York 
Kessen W (1965) Child. John Wiley, New York
Kirshner D, Awtry T (2004) Visual Salience of Algebraic Transformations. JRes 

Math Ed, Vol 35, No 4, pp 224–257
Klima G (2004) The Medieval Problem of Universals. In: The Stanford 

Encyclopedia of Philosophy. Zalta EN (ed) http://plato.stanford.edu/archives/
win2004/entries/universals-medieval/

Klir G (1972) Trends in General Systems Theory. John Wiley, New York 
Klir G (1989) Is There More to Uncertainty Than Some Probability Theorists 

Might Have Us Believe? In Int J Gen Sys, Vol 15, pp 347–378 
Klir GJ, Yuan B (1995) Fuzzy Sets and Fuzzy Logic: Theory and Applications. 

Prentice Hall, PTR, Upper Saddle River, NJ
Klir GJ, Wierman MJ (1999) Uncertainty-Based Information: Elements of 

Generalized Information Theory. Physica-Verlag/Springer-Verlag, Heidelberg 
and New York 

Knauff M, Johnson-Laird PN (2000) Visual and spatial representations in spatial 
reasoning. In: Proc 22nd Annual Conference of the Cognitive Science Society, 
pp. 759-765,Earlbaum, Mahwah, NJ 

Knauff M, Mulack T, Kassubek J, Salih HR, Greenlee MW (2002) Spatial 
imagery in deductive reasoning: a functional MRI study. Cognitive Brain 
Research 13, pp 203–212 

Köhler W (1973) The Mentality of Apes. Routledge and Kegan Paul, London 
Kohonen T (1982) Self-organized Formation of Topologically Correct Feature 

Maps. Biological Cybernetics, Vol 43, pp 59–69 
Kohonen T (1988) An Introduction to Neural Computing. In: Neural Networks, 

Vol 1, pp 3–16 



References      343 

Kohonen T (1990) The Self-organizing Map. In: Proc IEEE, 78, pp 1464–1480
Kornblith H (1994) Naturalizing Epistemology, 2nd edn. MIT Press, Cambridge 
Kornblith H (1999) In Defense of a Naturalized Epistemology. In: The Blackwell 

Guide to Epistemology. Greco J, Sosa E (eds). Blackwell, Oxford 
Kosslyn S (198) Image and Mind. Harvard University Press, Cambridge 
Kosslyn S (1996) Image and Brain. MIT Press, Cambridge
Kosslyn S, Ganis G, Thompson WL (2001) Neural Foundations of Imagery. 

Nature Publishing Group, Washington DC
Kosslyn S (2002) Visual Mental Images in the Brain: How Low Do They Go. 

Presented at a meeting of AAAS, Cognitive Neuroscience of Mental Imagery, 
February

Kripke S (1972) Naming and Necessity. Harvard University Press, Cambridge
Kuhn TS (1970) The Structure of Scientific Revolutions, 2nd edn. Int Enc Unif 

Sci, University of Chicago Press, Chicago 
Kunimoto C, et al (2001) Confidence and Accuracy in Near-Threshold 

Discrimination Responses. In Consciousness and Cognition, Vol 10, no 3, pp 
294–340

Lacourse MG, Turner J, Randolph-Orr E, Schandler S, Cohen M (2004) Cerebral 
and cerebellar sensorimotor plasticity following motor imagery-based mental 
practice of a sequential movement. J Rehab Res Dev, Vol 41, No 4, July-
August, pp 505–524

Lakoff G, Johnson M (1998) Philosophy in the Flesh: The Embodied Mind and Its 
Challenge to Western Thought. Basic Books, New York 

Lakoff G, Núñez RE (2000) Where Mathematics Comes From: How the 
Embodied Mind Brings Mathematics Into Being. Basic Books, New York 

Lamme VAF, Roelfsema PR (2000) The Distinct Modes of Vision Offered by 
Feedforward and Recurrent Processing. Trends in Neuroscience, Vol 23, pp 
571–579

Langton CG (ed) (1989) Artificial Life, Santa Fe Institute Studies in the Sciences 
of Complexity, Vol 6. Addison-Wesley, Redwood City, California 

Lasswell H (1930) Psychopathology and Politics. University of Chicago, Chicago 
Laughlin RB (2005) A Different Universe: Reinventing Physics from the Bottom 

Down. Basic Books, New York 
Lay SR (1990) Analysis With An Introduction to Proof, 2nd edn. Prentice-Hall, 

New Jersey 
Leakey R, Lewin R (1992) Origins Reconsidered: In Search of What Makes Us 

Human. Little, Brown, Boston 
Lehrer K, Paxson T, (1968) Knowledge: Undefeated Justified True Belief. J Phil, 

Vol LXVI, No 8, April 
Lehrer K (1974) Knowledge. Oxford, New York 
Lehrer K (1980) Knowledge. In Bogdan RJ (ed), Keith Lehrer. D. Reidel 

Publishing Company 
Lehrer K (1983) Coherence and Indexicality in Knowledge. In Tomberlin JE (ed), 

Agent, Language, and the Structure of the World: Essays Presented to Hector-
Neri Castañeda With His Replies. Ridgeview, Atascadero, California 



344      References 

Leibniz GW (1703–05; 1989) Preface to the New Essays (1703–05). In G.W. 
Leibniz: Philosophical Essays. Ariew R, Garber D (trans). Hackett Publishing 
Co, Indianapolis 

Lenat DB (1995) Artificial Intelligence: A Critical Storehouse of Commonsense 
Knowledge is Now Taking Shape. Sci Am, September, pp 80–82 

Lewis D (1979) Attitudes De Dicto and De Se. Phil Rev, Vol 88, pp 513–543 
Li F, Van Rullen R, Koch C, Perona P (2002) Rapid natural scene categorization 

in the near absence of Awareness. In Proc Nat Acad Sci, vol 99, July 
Libet B (1973) Electrical Stimulation of Cortex in Human Subjects, and 

Conscious Memory Aspects. In Iggo A (ed), Handbook of Sensory 
Physiology, Vol. II. Springer-Verlag, Berlin, Heidelberg, New York 

Lipton RJ (1995) DNA Solution for Hard Computational Problems. Science, 
AAAS, Vol 268, 28 April, pp 542–545 

Livingstone M, Hubel D (1988) Segregation of Form, Color, Movement, and 
Depth: Anatomy, Physiology, and Perception. Science, Vol 240, pp 740–749 

Lloyd JE (1983) Bioluminescence and communication in insects. Annual Review 
of Entomology, Vol 28, pp 131–160 

Loux MJ (1970) Universals and Particulars, Readings in Ontology. Anchor Books, 
New York 

Luria AR (1968) The Mind of the Mnemonist. Harvard University Press, 
Cambridge

Maccia ES (1964) Retroduction: A Way of Inquiring Through Models. 
Communicaciones Libres, Memorias del XIII Congreso Internacional de 
Filosofia, Universidad Nacional Autonoma de Mexico. 

Maccia ES, Maccia G (1966). Development of Educational Theory Derived From 
Three Educational Theory Models, Final Report, U.S. Department of HEW. 
U.S. Office of Education, Bureau of Research, Washington DC 

Maccia ES, Maccia G (1971) System Theory and the SIGGS Theory Model. In: 
Proc Int Congress of the History of Science, Moscow 

Maccia ES, Maccia G (1973) Information Theoretic Extension of the Cybernetic 
Model and Theory of Education. Advances in Cybernetics and Systems, Rose 
J (ed), Gordon and Breach Science Publishers 

Maccia ES, Maccia G (1976) The Logic of the SIGGS Theory Model. In: Proc 
AERA

Maccia ES (1976) Logical and Conceptual Analytic Techniques for Educational 
Researchers. In: Proc AERA 

Maccia G (1973) Epistemological Considerations of Educational Objectives. 
Presented to The Philosophy of Education Section, XVth World Congress of 
Philosophy. Varna, Bulgaria, September 

Maccia G (1987) Genetic Epistemology of Intelligent, Natural Systems. In: 
Systems Research, Vol 3 

Maccia G (1989) Genetic Epistemology of Intelligent Systems: Propositional, 
Procedural, and Performative Intelligence. Presented at Hangzhou University, 
Hangzhou, Zhejiang Province, The People's Republic of China 

Mach E (1959) Analysis of the Sensations. Dover Publications, New York 



References      345 

Mackintosh NJ (1998) IQ and human intelligence. Oxford University Press, 
Oxford

Mager RF (1975) Preparing Instructional Objectives, 2nd edition. Feron 
Publishing Co, Belmont, California 

Malcolm N (1958) Ludwig Wittgenstein: A Memoir. Oxford University Press, 
Oxford

Mandelbrot B (1983) The Fractal Geometry of Nature. WH Freeman, New York 
Marcus G (2003) The Birth of the Mind: How a Tiny Number of Genes Creates 

the Complexities of Human Thought. Basic Books, New York 
Markie P (2004) Rationalism vs. Empiricism. The Stanford Encyclopedia of 

Philosophy (Fall 2004 Edition). Zalta, EN (ed). 
<http://plato.stanford.edu/archives/fall2004/entries/rationalism-empiricism/>

Marsh RC (ed) (1956) Bertrand Russell: Logic and Knowledge Essays 1901–
1950, Capricorn Books, New York 

Martin E (1973) The Intentionality of Observation. Can J Phil, Volume III, 
Number 1, September, pp 121–129 

McClelland JL, Rumelhart DE, PDP Research Group (1986) Parallel Distributed 
Processing, Volumes 1 and 2. MIT Press, Cambridge 

McCulloch WS,Pitts W (1943) A logical calculus of the ideas immanent in 
nervous activity. Bull of Math. Biophysics, 5:115–137 

McGue M (1997) The democracy of the genes. Nature, 388, 417–418 
McInerney JD (1999) Genes and Behavior: A Complex Relationship. Judicure: 

Genes and Justice: The Growing Impact of the New Genetics on the Courts, 
November-December, Vol 83, No 3 

McKeon R (ed) (1941) The Basic Works of Aristotle. Random House, New York 
McLaren C (2005) The Great White Way. Stay Free! Magazine 
McNeill D (1992) Hand and Mind: What Gestures Reveal about Thought. 

University of Chicago Press, Chicago 
Medawar P (1964) Is the Scientific Paper Fraudulent? Sat Rev, August 1, pp 42–

43
Medawar P (1969) Induction and Intuition in Scientific Thought, Jayne Lectures 

for 1968. APA Memoirs, Philadelphia 
Meinong A (1899) Über Gegenstände höherer Ordnung und deren Verhältniss zur 

inneren Wahrnehmung. In Zeitschrift für Psychologie des Sinnesorgane, 21, 
pp 182–272 

Mitra S, Sankar KP (1994) Self-Organizing Neural Network as A Fuzzy 
Classifier. In IEEE Transactions on Systems, Man, and Cybernetics, Vol 24, 
No 3, March, pp 385–398 

Mizrai AR (1990) Artificial Intelligence: Concepts and Applications in 
Engineering. Thomson Learning, London 

Morgan AW, Sullivan SA, Darden C, Gregg N (1997) Measuring the intelligence 
of college students. J Learn Dis, Sep-Oct, Vol 30, Number 5, pp 560–565 

Moss F, Wiesenfeld K (1995) The Benefits of Background Noise. Sci Am, 
Volume 273, Number 2, August, pp 66–69 

Murray C (1995) For Whom the Bell Curve Tolls. Skeptic, Vol 3, Number 2, pp 
34–41



346      References 

Murray C (2000) Heritability and the Independent Causal Role. Psycoloquy, 
Volume 11, number 105 

Myerson J, Rank MR, Raines FQ, Schnitzler MA (1998) Race and general 
cognitive ability: The myth of diminishing returns to education. Psych Sci, 9, 
139–142

Näätanen R, Tervaniemi M, Sussman E, Paavilinen E, Winkler I (2001) ’Primitive 
Intelligence’ in the Auditory Cortex. Trends in Neurosciences, Vol 24, 
number 5, pp 283–288 

Nagel E, Newman J (1958) Gödel's Proof. NY University Press, New York 
Neisser U (1997) Rising Scores on Intelligence Tests. Am Sci, September-October 
Neurath O, Morris C, Carnap R (eds) International Encyclopedia of Unified 

Science, Volume 1, Nos. 1–10. University of Chicago Press, Chicago 
Newman L (2000) Descartes' Epistemology. In: Zalta EN (ed) The Stanford Encyc 

Phil
Nicolelis MA, Luiz A, Baccala R, Lin CS, Chapin JK (1995) Sensorimotor 

Encoding by Synchronous Neural Ensemble Activity at Multiple Levels of the 
Somatosensory System. Science, AAAS, Vol 268, 2 June, pp 1353–1358 

Nordenstam T (1972) Empiricism and the Analytic-Synthetic Distinction. 
Universitetsforlaget Stockholm 

Ostwald P (1959) When People Whistle. Language and Speech, 2, pp 137–145 
Ostwald P (1960) The Sounds of Human Behavior-A Survey of the Literature. 

Logos, 3, pp 13–24 
Ostwald P (1964) How the Patient Communicates About Disease with the Doctor. 

Approaches to Semiotics. Sebeok TA, Hayes AS, Bateson MC (eds). Mouton 
& Co, The Hague

Page G (1999) Inside the Animal Mind: A Groundbreaking Exploration of Animal 
Intelligence. Doubleday, New York 

Pant V, Higgins C (2004) A Biomemetic VLSI Architecture for Small Target 
Tracking, IEEE 

Parsons KM (1989) God and the Burden of Proof. Prometheus, Buffalo, New 
York.

Pearson K (1976) The Control of Walking. Sci Am, Vol 235, pp 72–86 
Peirce CS (1931–1958) Collected Papers of Charles Sanders Peirce vols. 1–6 

Hartshorne C, Weiss P (eds). vols. 7–8 Burks AW (ed). Harvard University 
Press, Cambridge, Mass 

Penrose R (1974) The Role of Aesthetics in Pure and Applied Mathematical 
Research. Bull Inst Math Appl, July/August, pp 266–271 

Penrose R (1989) The Emperor's New Mind. Oxford, New York
Penrose R (1994) Shadows of the Mind. Oxford, New York 
Perkins D (1995) Outsmarting IQ : The Emerging Science of Learnable 

Intelligence. The Free Press, New York
Perkins DN, Grotzer TA (1997) Teaching intelligence. Am Psych, 52, 1125–1133
Perry J (1979) The Problem of the Essential Indexical. NOÛS, 13, pp 3–21 
Piaget J (1950) The Psychology of Intelligence. Percey M, Berlyne DE (transl). 

Routledge, London and New York 
Piaget J, Inhelder B (1956) The Child's Conception of Space. Routledge, London



References      347 

Piaget J (1971) Biology and Knowledge: An Essay on the Relations Between 
Organic Regulations and Cognitive Processes. University of Chicago Press, 
Chicago

Piaget J (1972) The psychology of the child. Basic Books, New York
Piaget J (1990) The child's conception of the world. Littlefield Adams, New York 
Pinker S, Bloom P (1990) Natural language and natural selection. Behav Brain Sci 

13(4), pp 707–784 
Pinker S (1994) The Language Instinct: How the Mind Creates Language. William 

Morrow & Co, New York 
Pinker S (1999) How the Mind Works. WW Norton, New York 
Pinker S (2004) How to Think About the Mind. Newsweek, September 27 
Plomin R, Petrill SA (1997) Genetics and intelligence: What's new? Intelligence, 

24, 53–77
Plucker JA (ed) (2003) Human intelligence: Historical influences, current 

controversies, teaching resources. Retrieved September 8, 2004, from 
http://www.indiana.edu/~intell

Pojman LP (1995) What Can We Know, An Introduction to the Theory of 
Knowledge. Wadsworth, Belmont 

Polanyi M (1966) The Tacit Dimension. Doubleday, New York 
Polanyi M (1969) The Unaccountable Element in Science. In: Knowing and 

Being. University of Chicago, Chicago 
Polanyi M (1969) Knowing and Being. Grene M (ed). University of Chicago 

Press, Chicago 
Popper K (1972) Objective Knowledge. Clarendon Press, Oxford 
Popper K, Eccles JC (1977) The Self and Its Brain. Springer-Verlag, New York, 

Heidelberg, London 
Pot P (1997) Logical Structures of Young Chimpanzees’ Spontaneous Object 

Grouping. Int J Primat, Vol 18, No. 1, pp 33–59 
Premack A, Premack D (1972) Teaching Language to an Ape. Sci Am, October, 

1972, pp 92–99
Premack D, Premack A (2003) Original Intelligence: Unlocking the Mystery of 

Who We Are. McGraw-Hill, New York 
Presenti M, et al, (2000) Neuroanatomical Substrates of Arabic Number 

Processing, Numerical Compaison and Simple Addition: A PET Study. J Cog 
Neuroscience, Vol 12, 2000, pp 461–479 

Putnam H (1994) The Dewey Lectures 1994: Sense, Nonsense, and the Senses: An 
Inquiry into the Powers of the Human Mind. The J Phil, Vol. XCI, Number 9, 
September, 1994 

Quine WVO (1951) Two Dogmas of Empiricism. The Phil Rev, Vol. 60, 1951, pp 
20–43

Quine WVO (1953) From a Logical Point of View. Harvard University Press, 
Cambridge

Quine WVO (1960) Word and Object. MIT Press, Cambridge 
Quine WVO (1963) Set Theory and Its Logic. Harvard University Press, 

Cambridge



348      References 

Quine WVO (1969) Ontological Relativity and Other Essays. Columbia 
University Press, New York 

Quine WVO (1970) Grades of Theoreticity. In: Experience and Theory, Foster, 
Swanson (eds). University of Massachusetts Press, Amherst 

Quine WVO, Ullian JS (1978) Web of Belief, 2nd edn. Random House, New York 
Quine WVO (1981) Theories and Things. Harvard University Press, Cambridge
Quine WVO (1990) Norms and Aims. In: The Pursuit of Truth. Harvard 

University Press, Cambridge 
Quiñones E (2005) New Way Of Tracking People's Mental State As They Think 

Back To Previous Events. Medical New Today, 24 Dec 
Rizzolatti G, Arbib MA (1998) Language Within Our Grasp. Trends in 

Neuroscience, Volume 21, number 5, 1998, pp 188–194 
Reifman A (2000) Revisiting the Bell Curve. Psycoloquy: 11(099) 
Renegar J (1988) A Faster PSPACE Algorithm for Deciding the Existential 

Theory of the Reals. In: Proc 29th Ann Symp Comp Sci, October, IEEE 
Computer Society Press 

Repp B (2001) Phase Correction, Phase Resetting, and Phase Shifts After 
Subliminal Timing Perturbations in Sensorimotor Synchronization. J Exp 
Psych: Human Perception and Performance, APA, Vol 27, Number 3, June, 
2001

Rips LJ (1994) The Psychology of Proof. MIT Press, Cambridge 
Rose N (1988) Mathematical Maxims and Minims. Raleigh NC 
Rosen R (1970) Dynamical System Theory in Biology, Vol. I: Stability Theory 

and Its Applications. John Wiley, New York 
Rosenblatt F (1958) The Perceptron: A probabilistic model for information storage 

and organization in the brain. Psychol Rev 65, pp 298–311 
Rothstein E (2004) The Brain? It’s a Jungle in There. NY Times, New York 

Times
Rowland T (1999) Manifold. Eric Weisstein’s Math World, Wolfram Research, 

Inc., Chicago 
Royal CDM, Dunston G (2004) Changing the Paradigm from ‘Race’ to Human 

Genome Variation. Nature Genetics, 2004, Volume 36, pp S5–S7
Rucker R (1982) Infinity and the Mind: The Science and Philosophy of the 

Infinite. Bantam Books, New York 
Russell B (1903) Principles of Mathematics. WW Norton, New York 
Russell B (1911–1912) On the Relations of Universals and Particulars. Proc 

Aristotelian Society 
Russell B (1912) The Problems of Philosophy. Thornton Butterworth, London 
Russell B (1914) Preliminary Description of Experience. The Monist, 24, 

(January), pp 1–16 
Russell B (1915) Our Knowledge of the External World. Open Court, Chicago 
Russell B (1918) Mysticism and Logic. Penguin, London 
Russell B (1921) The Analysis of Mind. George Allen & Unwin, London 
Russell B (1927) An Outline of Philosophy. Allen & Unwin, London 
Russell B (1940) Language and Metaphysics. In: An Inquiry into Meaning and 

Truth. George Allen & Unwin, London 
Russell B (1948) Human Knowledge. Simon and Schuster, New York 



References      349 

Russell B (1984) Theory of Knowledge: The 1913 Manuscript. Eames ER (ed). 
Allen & Unwin, London and New York 

Ryle G (1949) The Concept of Mind. Barnes and Noble, New York, London 
Saaty TL, Bram J (eds) (1964) Nonlinear Mathematics. Dover, New York 
Sapolsky R (2000) It’s Not ‘All in the Genes.’ Newsweek, April 10 
Savage-Rumbaugh S, Lewin R (1994) Kanzi: An Ape at the Brink of the Human 

Mind. John Wiley, New York
Sayre K, Crosson F (1963) The Modeling of Mind. Notre Dame University Press, 

South Bend, Indiana 
Scheffler I (1965) Conditions of Knowledge: An Introduction to Epistemology 

and Education. Scott, Foresman, Glenview, Illinois 
Schilpp PA (ed) (1946) The Philosophy of Bertrand Russell. Library of Living 

Philosophers, Illinois 
Schoenemann PT (1999) Syntax as an Emergent Characteristic of the Evolution of 

Semantic Complexity. In: Minds and Machines, Volume 9, Kluwer Academic 
Publishers, 1999, pp 309–346 

Schwender D, Klasing S, Daunderer M, Madler C, Poppel E, Peter K (1995) 
Awareness during general anesthesia: Definition, incidence, clinical 
relevance, causes, avoidance and medicolegal aspects. Anaesthesist, Nov 44 
(11): 743–54 

Scott A (1995) Stairway to the Mind: The Controversial New Science of 
Consciousness. Springer-Verlag, New York 

Scott A (2002) Neuroscience: A Mathematical Primer. Springer-Verlag, New 
York

Searle J (1967) Proper Names and Descriptions. Encyclopedia of Philosophy, 
Edwards P (ed), Volume 6. Macmillan, New York 

Searle J (1992) The Rediscovery of the Mind. MIT Press, Cambridge 
Searle J (1995) The Mystery of Consciousness. In The New York Review of 

Books, November and December, NY Times, New York 
Sebeok T, Rosenthal R (1981) Clever Hans Phenomenon: Communication with 

Horses, Whales, Apes, and People, New York Academy of Sciences 
Sebeok T (1990) The Sign Science and the Life Science. Symbolicity, Bernard J, 

Deely J, Voigt V, Withalm G (eds) 
Seeley TD (1989) The honey bee colony as a superorganism. Am Sci Vol 77, pp 

546–553
Seeley R, Trent D, Stephens, Tate, P (2002) Anatomy and Physiology, 6th edn, 

McGraw-Hill Science/engineering/Math.
Sejnowski T, Hinton GE (1987; 1990) Separating Figure from Ground with a 

Boltzmann Machine. In: Arbib M, Hanson A (eds), Vision, Brain, and 
Cooperative Computation. MIT Press, Cambridge 

Seligman D (2002) Good breeding. National Review, 54(1), 53–54 
Selverston AI (1992) Pattern generation. Current Opinion in Neurobiology, Dec., 

Volume 2, Number 6, pp 776–780 
Shafer G (1976) A Mathematical Theory of Evidence. Princeton University Press, 

Princeton, New Jersey 



350      References 

Shannon C, Weaver W (1949) The Mathematical Theory of Communication. 
University of Illinois Press, Urbana 

Shepard RN, Cooper LA (1982) Mental Images and Their Transformations. MIT 
Press, Cambridge 

Simon SR (2004) Quantification of human motion: gait analysis-benefits and 
limitations to its application to clinical problems. J Biomech, Volume 37, no 
12, pp 1869–1880

Simonton DK (2003) Francis Galton's Hereditary Genius: Its place in the history 
and psychology of Science. In Sternberg RJ (ed), The anatomy of impact: 
What makes the great works of psychology great. APA, Washington, DC 

Singh S (1997) Fermat's Enigma: The Epic Quest to Solve the World's Greatest 
Mathematical Problem. Walker & Co, New York 

Sinha P, Balas B, Ostrovsky Y, Russell R (2005), Face Recognition by Humans: 
20 Results All Computer Vision Researchers Should Know About. MIT Press, 
Cambridge

Skinner BF (1953) Science and Human Behavior. The Free Press, New York 
Sluga H (1980) Gottlob Frege. Routledge, London 
Soussan T (2004) Prairie Dogs Have Own Language, Researcher Claims. AP 

Press Report 
Steele CM, Aaronson J (1998) Stereotype threat and the test performance of 

academically successful African Americans. In: Jencks C, Phillips M (eds), 
The black-white test score gap. Brookings, Washington, DC

Steels Luc (1993) The Artificial Life Roots of Artificial Intelligence. Artificial 
Life, Vol 1, Number 1/2, MIT Press, Cambridge 

Stein DL (1988) Lectures in the Sciences of Complexity, Santa Fe Institute 
Studies in the Sciences of Complexity, Addison-Wesley Publishing Company 

Steiner E (1976) Logical and Conceptual Analytic Techniques for Educational 
Researchers. In: Proc AERA, San Francisco, Washington, DC 

Steiner E (1988) Methodology of Theory Building. Educology Research Assoc, 
Sydney, Australia 

Sternberg RJ, Wagner RK, Williams WM, Horvath JA (1995) Testing common 
sense. Am Psy, 50, 912–927 

Sternberg RJ (2003) The Anatomy of Impact: What Makes the Great Works of 
Psychology Great. APA, Washington, DC 

Stewart I (1995) Nature's Numbers. Basic Books, New York 
Stewart I (1998) Life’s Other Secret: The New Mathematics of the Living World. 

John Wiley, New York 
Stich S, Nisbett R (1980) Justification and the Psychology of Human Reasoning. 

Phil Sci, Vol 47, pp 188–202 
Stich S (1990) The Fragmentation of Reason. MIT Press, Cambridge 
Stix G (1995) Boot Camp for Surgeons. Sci Am, September, p 24 
Stout GF (1901) A Manual of Psychology, 2nd edn, University Tutorial Press, 

London
Tanenhaus MK, Spivey-Knowlton MJ, Eberhard K, Sedivy J (1995) Integration of 

Visual and Linguistic Information in Spoken Language Comprehension. 
Science, AAAS, Volume 268, 16 June, pp 1632–1634 



References      351 

Tarski A (1951) A Decision Method for Elementary Algebra and Geometry, 2nd 
revised edn. University of California Press, Berkeley 

Terman LM (1906) Genius and Stupidity: A Study of Some of the Intellectual 
Processes of Seven “Bright” and Seven “Stupid” Boys.” Pedagogical 
Seminary, 13, pp 307–373 

Terman LM (1916) The Measurement of Intelligence. Houghton Mifflin, Boston 
Thompson KR (2005) ‘General System’ Defined for Predictive Technologies of 

A-GSBT (Axiomatic-Genereal Systems Behavioral Theory), Raven58 
Technologies

Thurstone LL (1960) The Nature of Intelligence. Littlefield Adams 
Tomberlin J (ed) (1983) Agent, Language, and the Structure of the World: Essays 

Presented toHector-Neri Castañeda with His Replies. Ridgeview Publishing, 
Atascadero, California 

Tononi G, Edelman G (1998) Consciousness and Complexity, Science, Vol 282, 
no 5395, pp 1846–1851 

Trehub SE, Trainor LJ (1993) Listening Strategies in Infancy: The Roots of Music 
and Language Development. In: McAdams S, Bigand E (eds), Thinking in 
Sound: The Cognitive Psychology of Human Audition. Clarendon, Oxford, pp 
278–327

Triesman A (1985) Preattentive processing in vision. In: Computer Vision, 
Graphics and Image Proc 31, 1985, pp 156–177 

Triesman A (1991) Search, similarity, and integration of features between and 
within dimensions. J Exp Psych: Human Perception & Performance, Volume 
17, no.3, 1991, pp 652–676

Triesman A, Gelade G (1980) A feature-integration theory of attention. Cog 
Psych, Vol 12, 1980, pp 97–136 

Triesman A, Gormican S (1988) Feature analysis in early vision: Evidence from 
search asymmetries. In: Psych Rev, Vol 95, no 1, 1988, pp 15–48

Treisman A, Vieira A, Hayes A (1992) Automatic and preattentive processing. 
Am J Psych, 1992, Volume 105, pp 341–362

Trojano L, Grossi D, Linden DEJ, Formisano E, Hacker H, Zanella FE, Rainer 
Goebel, Salle GD (2000) Matching Two Imagined Clocks: the Functional 
Anatomy of Spatial Analysis in the Absence of Visual Stimulation, Cerebral 
Cortex, May, Vol 10: 473–481

Turing AM (1937) On Computable Numbers With An Application to the 
Entscheidungsproblem. In: Proc London Math Soc, Vol 42, pp 230–265

VanRullen R, Reddy, Lavanya,Koch C (2004) Visual Search and Dual Tasks 
Reveal Two Distinct Attentional Resources. J Cog Neuroscience, 16:1, pp 4–
14

Vikhanski L (2001) In Search of the Lost Cord. Joseph Henry Press, Washington, 
DC

Vilis T (2002) The Physiology of the Senses: Transformations for Perception and 
Action. University of Western Ontario 

Vinod VV, Santanu Chaudhury J Mukherjee, Ghose S (1994) A Connectionist 
Approach for Clustering with Applications in Image Analysis. In: IEEE 
Transactions on Systems, Man, and Cybernetics, Vol 24, No. 3, March, pp 
365–383



352      References 

Von Bertalanffy L (1968) General System Theory. Braziller, New York 
Wadsworth SJ, DeFries JC, Fulker DW (1993) Cognitive abilities of children. J 

Learn Dis, November, Volume 26, No 9, pp 611–615
Webster's Encyclopedic Unabridged Dictionary (1989). Portland House, New 

York
Weiskrantz L (1997) Consciousness Lost and Found. Oxford, New York 
Wittgenstein L (1922) Tractatus Logico-Philosophicus. Ogden CK (trans), 

Routledge, London 
Wittgenstein L (1953) Philosophical Investigations. 3rd edn. Anscombe GEM, 

(trans). Macmillan, New York 
Wittgenstein L (1969) Über Gewissheit: On Certainty. Anscombe GEM, Wright 

GH (eds). Harper and Row, New York, London 
Wolfe JM (1996) Visual Search. In: Pashler H (ed), Attention. University College, 

London
Wolfe JM, Bennett SC (1997) Preattentive Object Files: Shapeless Bundles of 

Basic Features. Vision Research, Vol 37, Issue 1, January 
Wolfe JM, Cave KR, Franzel SL (1989) Guided search: An alternative to the 

feature integration model for visual search. J Exp Psych: Human Perception 
and Performance, 15, 419–433 

Wolfram S (1984) Computer Software in Science and Mathematics. Scientific 
American, September, pp 188–203

Wolfram S (ed) (1986) Theory and Applications in Cellular Automata. World 
Scientific, Singapore 

Wolpaw JR (1997) The Complex Structure of Simple Memory. Trends in 
Neurosciences, Vol 20, pp 588–594

Wright C (1983) Frege’s Conception of Numbers as Objects. Aberdeen University 
Press, Aberdeen 

Wright S (1931) Evolution in Mendelian Populations. Genetics, Vol 16, number 
97

Wright S (1932) The Roles of Mutation, Inbreeding, Crossbreeding and Selection 
in Evolution. Proc Sixth Int Cong Genetics, Vol. 1, number 356 

Yerkes RM (1921) Psychological Examining in the United States Army. National 
Academy of Sciences, Vol 15 

Zadeh LA (1971) Fuzzy Languages and Their Relation to Human and Machine 
Intelligence. Proc Conf on Man and Computer, Bordeaux, France, 
Memorandum M-302, Electronics Research Laboratory, University of 
California at Berkeley 

Zadeh LA (1973) Outline of a New Approach to the Analysis of Complex 
Systems and Decision Processes. IEEE Transactions on Systems, Man, and 
Cybernetics, Vol SMC-3, No 1 

Zadeh LA (1977a) A Theory of Approximate Reasoning, Memorandum No 
UCB/ERL M77/58, Electronics Research Lab, College of Engineering, 
University of California at Berkeley 

Zadeh LA (1977b) PRUF-A Meaning Representation Language, Memorandum 
No ERL-M77/61, Electronics Research Lab, College of Engineering, 
University of California at Berkeley 



References      353 

Zadeh LA (1978) PRUF-A Meaning Representation Language for Natural 
Languages," Int J Man-Machine Studies, Vol 10, pp 395-460 

Zadeh LA (1981) Test-Score Semantics for Natural Languages and Meaning 
Representation Via PRUF.  Empirical Semantics. Rieger BB (ed), 
Studienverlag Dr. N. Brockmeyer, Bochum. 

Zadeh LA (1983) A Fuzzy Set-Theoretic Approach to the Compositionality of 
Meaning: Propositions, Dispositions and Canonical Forms. Memorandum No 
UCB/ERL M83/24, 4 April 

Zadeh LA, et al (eds) (1990) Uncertainty in Knowledge Bases. Springer-Verlag, 
Berlin, Heidelberg, New York 

Zalta E (1999) Natural Numbers and Natural Cardinals as Abstract Objects: A 
Partial Reconstruction of Frege’s Grundgesetze in Object Theory. Journal of 
Phil Logic, Vol 28, number 6, pp 619–660

Zimmerman HJ (1993) Proceedings of the First European Congress on Fuzzy and 
Intelligent Technologies, Volumes 1–3, European Laboratory for Intelligent 
Techniques Engineering, Aachen, Germany, 1993 

Zuzne L (ed) (1957) Names in the history of psychology. John Wiley, New York 



Index

A

abstraction, 145 
Albus, J.S., 270 
alexia, 191 
algebra, 182 
algorithm, 28 
American Sign Language, 117 
anesthesia, 154 
animal

intelligence, 33 
anti-theory, 9 
Aristotle, 99 
arithmetic, 182 
artificial intelligence, 46 
artificial neural network, 286 
attention, 147 
Australopithecus, 26 
autonomy, 326 
awareness

levels of;, 227 
immediate, 23 

awareness that, 131 

B

Bacon, F., 272 
begging the question 

fallacy, 187 
Berry Paradox, 213 
Bilateral parietal lobes, 190 
Binet, A., 2 
biological systems 

self-organization, 225 
Blum, L., 303 
Boolean networks, 45 
Boolean networks 

frozen components, 261 
Boolean operators, 125 
Broca, 26 
Brooks, R., 291 

C

Camazine, S., 30 
Cantor, G., 218 
Castañeda, H.N., 295 
Categories of Natural Intelligence, 

223
causality, 9, 234 
cause, 9 
centralized control structure, 269 
cerebral cortex, 2 
Cherry, C., 289 
chimpanzee

intelligence, 24 
chimpanzees, 121 
Chomsky, N., 113 
cingulate, 193 
Circle of Cognition, 176 
classical approach, 36 
Cocktail Party Problem, 289 
cognition, 23 
cognitive science, 124 
Cognitive Turn 

linguistics, 110 
Cohen, 12, 132 
coherence, 103 
combinatorics, 182 
coming to know, 134 
communication

language, 115 
complexity, 16 

defined, 228 

 355 



356      Index 

computational complexity, 303 
computational face recognition, 301 
computational view of mind, 124 
concepts, 93 
conceptualism, 110 
configuration complexes, 237 
conjunction target, 162 
consciousness, 24 
consciousness that, 131 
continuous, 36 
correlation, 9 
cytoskeletal microtubule, 204 

D

Damasio, A., 8 
Darwin, C., 9 
Davis, M., 199 
decidability, 303 
Dennett, D., 115 
Descartes, R., 27 
digraph theory, 246 
digraphs

density, 252 
direct causal chain, 12 
directed graphs, 247 
disclosing

signs, 31 
discrete, 36 
discrete infinity, 189 
DNA, 11 
downward causation 

three kinds, 235 
Dreyfus, H., 124 
dynamical, 40 

E

Edelman, G., 137 
eliminative materialist, 13 
Elsasser, W., 14 
embodied mathematics, 184 
emergence, 226 
Emergent phenomena, 14 
emerging intelligence, 14 
enactive

signs, 242 

epistemology, 135 
exhibiting, 31 

F

face recognition, 301 
fallacy

reductionist, 10 
feedback, 243 

positive and negative, 20 
feedin, 242 
feedout, 242 
feed-through, 242 
fMRI, 135 
foundationalism, 107 
freedom, 327 
fromput, 243 
function, 28 

G

g, 2
gait data sets, 229 
Gardner, H., 7 
Geach, Peter, 111 
general intelligence, 2 
genetic argument, 11 
genetic determinism, 11 
Genetic Fallacy, 182 
geometric view, 45 
gestures, 116, 294 
Gibbs lecture, 202 
goal-directed behavior, 278 
Goddard, H. H., 3 
Gödel, K., 125, 169 
googol, 203 
googolplex, 203 
graph theory, 44 
g-theory, 5 

H

Hebb, D., 283 
Herrnstein, 3 
heterostasis

growth, 233 
Hilbert, David, 102 



Index      357 

Holland, J., 271 
homeostasis, 233 
Homo erectus, 26 
homologies, 121 
homunculus, 142 

I

iconic
signs, 242 

images, 294 
immediate awareness 

QL. See Categories of  Natural 
Intelligence

immense number, 14 
impredicative, 216 
incompressible algorithms, 308 
independence, 327 
indexical, 205 
inductivism, 8 
inference, 9 
information, 21 

featural. See face recognition 
information theory, 44 
information-theoretic measures, 258 
innatist language argument, 188 
innatists, 120 
input, 243 
intellectualist legend, 26 
intelligence dynamics, 231 
Intelligence Quotient, 2 
intelligence’, 1 
intelligent doing 

knowing how, 174 
intentional, 327 
interactive systems, 227 

J

James, W., 105, 119 
Jensen, A., 9 

K

Kant, I., 327 
knowing, 23 
knowing how, 6 

PF. See Categories of Natural 
Intelligence

knowledge by acquaintance, 139 
knowledge by description, 139 
knowledge that, 27 

QN. See Categories of Natural 
Intelligence

knowledge’, 1 
Köhler, W., 33 
Kunimoto, C., 151 

L

Lakoff, G., 185 
lateral geniculate nucleus, 158 
learning, 134 
linear, 15 
linearly ordered time set, 248 
linguistics, 25 

M

Maccia, G., 27 
mathematical doing, 182 
mathematical structures, 194 
McCulloch-Pitts

neuron, 283 
mechanism, 17 
mechanistic effects model, 18 
Medawar, P., 8 
Medial Intra Parietal, 167 
Medial Superior Temporal dorsal, 

167
Medial Superior Temporal lateral, 

167
medulla, 141 
metaphor, 185 
Middle Temporal complex, 167 
MI-theory, 5 
motor pathway, 140 
moving, 170 
multiple intelligences, 6 
multivariate statistical methods, 229 
Murray, C., 3 



358      Index 

N

natural, 1 
natural intelligence, 1 
naturalist, 7 
neo-Darwinist, 12 
neural networks, 140 
neuromorphic computational 

systems, 284 
neurons, 13 
noise, 293 
Nominalism, 105 
nonlinear, 15 
number theory, 182 
numerical concepts, 189 
numerosities, 192 

O

ordered n-tuples., 209 
organicism, 17 
organized simplicity,, 41 
output, 243 

P

pattern recognizers, 296 
pattern-generating, 41 
Peirce, C.S., 104 
perceiver-dependent natural 

intelligence, 299 
perisylvian language areas, 191 
Piaget, J., 2 
planum temporale, 121 
Plato, 96 
Platonistic mathematics, 202 
postcentral gyrus, 141 
postmodern reductionism, 186 
pragmatists, 103 
prairie dogs, 119 
preattentive, 157 
precentral gyrus, 140 
precuneus, 190 
primary afferents, 141 
primary somatosensory cortex, 140 
primitive awareness, 147 
Principia Mathematica, 216 

problem space, 16 
problem-solving, 1 
proof theories, 195 
pseudo explanations, 123 
psychometric tests, 15 
Pythagorean Theorem, 112 

Q

Quine, W.V.O., 13 

R

random Boolean networks 
incomplete knowledge, 263 

real numbers, 125 
realism, 101 
Realism Argument, 196 
reason, 1 
recursively enumerable, 35 
reductionism, 10 
reductionists

strict, 10 
representation, 94 
reticulo-thalamo-cortical, 143 
retroduction, 212 
Rosenblatt, F., 296 
rule-bound, 28 
rule-governed, 28 
Russell, B., 108, 212 
Ryle, G., 26 

S

Sapolksy, R., 11 
Scheffler, I., 27 
Schoenemann, T., 122 
Scott, A., 14 
Second Theorem, 200 
secondary afferents, 141 
Self-organization

defined, 224 
self-organizing, 16 
self-organizing complexity, 41 
self-organizing feature map, 288 
semantics, 113 
sensorimotor, 31, 133 
sensory processing system, 272 



Index      359 

serial processing, 269 
servomechanism, 278 
set theory, 43 
shape space, 169 
SIGGS, 43 
SIGGS theory model, 240 
sign, 118 
signs

signals, 29 
simple feedback model, 20 
Skinner, B.F., 13 
smoothness condition 

knowing how, 173 
social network analysis, 250 
sociological, 19 
somatosenses, 140 
somatosensory system, 140 
sphere packing, 194 
Stanford-Binet. See IQ tests 
state transition function, 249 
Steiner, E., 8, 231 
Stewart, I., 14 
storeput, 243 
sui generis object, 208 
superposition principle, 15 
symbolic

signs. See signs 
syntax, 120 

T

Terman, L., 3 
terrorist systems, 258 
thalamus, 141 
Thales, 192 
The Bell Curve, 3 
theory construction, 17 
theory models, 43 
thinking

mental act, 24 
three-dimensional

Signs of intelligence, 39 
top-down computer models, 293 
topology, 182 
toput, 243 
touching, 170 
transformations, 193 
Truth

correspondence theory, 109 
Turing test, 279 

U

uncertainty, 44 
probability, 259 

universal grammar, 113 
universals, 93 
universe of signs, 245 
unorganized complexity, 41 

V

validation, 9 
value, 25 
vector, 273 
verbal, 31 
verification, 9 
vervet monkey, 119 
visual, 31 
visual fields, 158 
VLSI, very large scale integration, 

282

W

Wernicke
language area of brain, 121 

Wolfram, S., 306 

Y

Yerkes, R.M., 3 




