?-,u’

...--—-""'_

,/

HPRODUCING

FIaS3 Video

Technlque§for Video Pros and Web Designers

@ Best practices for production, encoding, and integration
® Build custom video players for web and mobile use

e Apply transparency and effects with After Effects

JOHN SKIDGEL @

Press

Producing Flash CS3 Video

Techniques for Video Pros and Web Designers

This page intentionally left blank

Producing Flash CS3 Video

Techniques for Video Pros and Web Designers

John Skidgel

AMSTERDAM e BOSTON e HEIDELBERG ¢ LONDON
NEW YORK e OXFORD e PARIS ® SAN DIEGO

SAN FRANCISCO e SINGAPORE ¢ SYDNEY e TOKYO Focal

B AR : Press
ELSEVIER Focal Press is an imprint of Elsevier

Senior Acquisitions Editor: Paul Temme

Publishing Services Manager: George Morrison
Senior Project Manager: Brandy Lilly
Associate Editor: Dennis McGonagle
Assistant Editor: Chris Simpson
Marketing Manager: Becky Pease

Focal Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2007, John Skidgel. Published by Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
E-mail: permissions@elsevier.com. You may also complete your request online

via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact”
then “Copyright and Permission” and then “Obtaining Permissions."

Recognizing the importance of preserving what has been written, Elsevier prints its
books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-240-80910-6

For information on all Focal Press publications
visit our website at www.books.elsevier.com

07 08 09 10 11 543 2 1

Printed in Canada

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID o0 Foundation

Dedication
This book is dedicated to Blanca Josephine Skidgel and Ava Josephine Skidgel.

Acknowledgements

The idea for this book came to me in July of 2004. Paul Temme of Focal Press was
instrumental in helping me hone in on this vision and patient enough to let me
pick the time to write it. | was lucky to have Scott Fegette as a technical editor. |
have valued his feedback, insight, and assistance. Whenever I'm in a pinch | know
Dan Cowles will be there to help with a shoot. I'm ever grateful for his assistance.
Lastly, | would not be able to write without support from my wonderful family.
Thank you, Allison, Beatriz, and Ava!

This page intentionally left blank

Contents

DediCatioN........cuoiiiiiiii e

AcknowledZemeNnts ...t

Getting Started withFlash Video

Video and the WED.............ccoiiiee e

Flash Video and Web 2.0

BefOre YOU BEZIN........cc.oiiiiiiiiiiiiiie et

How This Book Is Organized
Required Software

Tutorial: Inserting Flash Video in Flash Professionalccccocoiniiiiinn,
Tutorial: Inserting Flash Video in Dreamweaverc.cccccooiiiiiiiiiiiee

WIAPPING UP ..o

Video Production Tipsfor Flash Video

Shoot with the Best Possible Format..................cc.oooviiiiiiiiicc e

Controlling Camera Motion ...

Avoid Quick Zooms and Whiplash Panning
Controlling Movement
Use a Tripod or a Stabilizer Wherever Possible

Don't Sweat Title and Action Safe Zones..................ccooooeiiiiiiiiiiieeccee e

Simplify Backgrounds ...

Use Depth of Field to Your Advantage

Get Good Exposure and Light Softly......................

Shooting for Blue and Green SCreeNccooveiiiiiiiieiiiiieeieiee e

Reduce or Turn Off Detail or Sharpening
Exposure Is Everything
Shooting Blue and Green Screen

Recording Room Tone and Effectsc.ccooiviiiiiiiiiiiicce

WIaPPING UP......ooiiiiii e

An Introduction to Flash Professional and ActionScript 3

Getting Acquainted with Flash Professional CS3..............cccooiiiiiiiiiciccece

Creating Flash Documents ...

New Document dialog
Tutorial: Creating a Reusable Flash Template

........... 15

........... 15

15

........... 18

........... 19

19
19
21

vii

INEErface OVEIVIEWooiiiiiiiiiii ettt 27
Timeline 29
The Stage, Shapes and Symbols 30
Tool Palette 31
Properties Panel 32
Library Panel 34
Components Panel 35
The Actions Panel 36
Compiler Errors and Output Panels 37
The Help Panel 38
Testing with the Preview Window 38

WIAPPING UP ... 38

Encoding Flash Video 39

Analog and Digital THEOrycooiiiiii e 40
The Analog-to-Digital Process 40
Color Spaces 40
Color Sampling 41
Quantization 42
Data Rate 42

COMPIESSION ...ttt ettt sttt ettt ettt 42
Lossy and Lossless Codecs 43
Intraframe and Interframe Compression 44
Compression Ratios 44
The Takeaway 44

Important Factors Regarding Compression..................ccooooviiiiiiiiiiii 44
Internet Access Speed 45
Flash Player Versions and Video Codecs 45

ENCOAING DECISIONS ..ottt 47
Pixel Dimensions 48
Frame Rate 49
Aspect Ratio 49
Interlaced and Progressive Frames 51
Frame Content 52
Bit Rate 53
Disk Space and Bandwidth Quota 54
Video Delivery Methods Supported by Flash Video 54
Flash Video Encoders 55

Flash Video Encoding Settingscccoiiiiiiiiiiii e 56
The Settings Dialog 57

ENcoding TULOTIALSc.ooiiiiiiii e 62
Tutorial: Encoding with the Import Video Wizard 62
Tutorial: Batch Encoding Several Clips 66
Tutorial: Setting Cue Points 67
Tutorial: Exporting Cue Points from an Existing FLV 68

viii

Wrapping Up 70

5 CustomizingFlash Video Players 71
Custom Player Development ... 72
Tutorial: Creating a Flash Video Text Banner...............c.cccooiiiiiiiiiiiiiiic e 72
Tutorial: Skinning the FLVPlayback Componentcooiii e 77

Part 1: Adding Components to the Stage 78
Part 2: Skinning the Components 83
Part 3: Writing the ActionScript 96
Tutorial: Writing a Custom Player from Scratch...............cccooiiiiiiiiiiiic, 104
Writing the Base Video Player Class 105
Wrapping Up 110

6 Interactive Video Concepts 111

Designing Navigation and Interaction....................ccociiiiiiiiiiii i 112
Flowcharts 112
Prototyping 113
Helpful Interaction Design Questions 115
Interaction Design Tips 115

Backgrounds, Loops and Flash Video ... 116

Tutorial: RePeating LOOPS..........c.coiiiiiiiiiiiiiici e 116
Part 1: Setting Up the FLA File 117
Part 2: Adding Text, Button, and Video Elements Elements 118
Part 3: ActionScript Code for Loops and Navigation 124

Tutorial: Intro, Exit, and RetUIN LOOPSccoveiuiiiiiiiiiii e 128
Part 1: Setting Up the FLA File 129
Part 2: Adding Backgrounds, Buttons, and Video 130
Part 3: ActionScript Code for Intro, Exit, and Return Loops 133

WIaPPING UP.....ooiiiiiiii s 136

7 Video Transparencyand Effects 137

Flash Video and Transparencyc.ccociiiiiiiiiiiiiin i 138

Tutorial: Creating Flash Video with Transparency 138
Creating Transparent Video on a Web Pageccocooiiiiiiiiiiii e 144
Tutorial: Exporting Transparency from Flash 144
MaSKING VIA@O ...t 147
Tutorial: Masking Video 147

Applying Blend Modes and Effects to Videoccoiiiiiiiiiiiiii e 149
Tutorial: Applying Blend Modes and Color Effects 149
Tutorial: Applying Bitmap Effects Directly 150
Tutorial: Applying Bitmap Effects Dynamically 152

WIapPIiNg UP ... 156

8 Enhancing Flash Deployment 157

Deploying Flash with HTML ..o 158

How Flash Video Is Embeddedcooiiii e 158

Browser Compatibility and Web Standardsccccooiiiii 159
What Are Web Standards? 159
Object and Embed Tags 161

Flash Player Version Detectionccccooiiiiiiiiiii i 162

The EOLAS Patent and Active Content................... 163

Tutorial: Using SWFODJECt..........c.cocoiiiiiiiiiiic e 163

Ensuring Your Web Site Can Serve Flash Video..................ccociiiiiiiiiiiice 167

WIFAPPING UP.. .o 168

9 More FlashVideo Applications 169

Displaying Closed Captionsccooouiiiiiiiiiiiiii e 170
The FLVPlayback Captioning Component 170
Flash CS3 Support for Timed Text 172
Targeting Dynamic Text Fields for Use with Captions 178

Displaying Cue POINESccooiiiiiiiii i 180

Creating Video Playlistscooiiiiiiii e 183
Arrays 183
XML 187

The External APl ... 195
Flash Player and Browser Communication 195

10 Flash Media Server andFlash Lite Video 209

Serving Flash Video with a Streaming Server..................cccooiiiiiiiiiii 210
Specifying a Streaming URL 210
Using Bandwidth Detection 211

Flash Lite 2 and Mobile Video....................ccociiiiiiiiii 212
Preparing Video for Flash Lite 213
How To: Exporting Mobile Video from the Adobe Media Encoder 213
How To: Exporting Mobile Video from QuickTime Pro 214
Mobile Video Encoding Considerations 214

The ActionScript Video Object in Flash Lite 2 215

Previewing Video with Flash Lite Applications 215
Deploying Flash Lite Applications with Video 215
How To: Create a Template Using Device Central 216
Tutorial: Import an Illustrator File into Flash Professionalc.ccoccoiiiiiiiiiinn, 218
Importing an Adobe lllustrator CS3 File 218
Structuring the Movie's Layers and Timeline 220
Configuring Buttons 221
Importing and Bundling Device Video 224
Tutorial: Writing ActionScript and Testing inDevice Central......................cociiiiiinn 225
Testing the Movie in Device Central 229
WIAPPING UP ...ttt 230

xi

CHAPTER 1

Getting Started with
Flash Video

Flash Video offers unparalleled reach while offering
the most options for interactivity from any Internet
video format. This chapter introduces you to the
number one streaming video format.

® Video and the WEDccovveiiiiiiiiiiciece e, 2
© Before YOu Begin......ccoooiiiiiieiieie e 3
® Tutorial: Inserting Video in Flash Professional CS3 4
® Tutorial: Inserting Video in Dreamweaverc..ccc.cv.... 7

Video and the Web

File formats, such as HTML, GIF, and JPEG, have made distributing text and im-
ages over the World Wide Web common. The MP3 audio file format expanded the
Web to become a vehicle for audio distribution. It wasn't until the introduction of
Flash Video (FLV) in Adobe Flash Player that video became viewable by the major-
ity of the general Internet audience.

In Web 1.0 (1994 - 2003), Web video was difficult to distribute because author-
ing support for integrating video with other Web content was nonexistent, few
formats were guaranteed to be ubiquitous across platforms, and few people had
broadband connectivity. These factors made for poor viewing experiences as video
plug-ins were not available or too bothersome to install and update.

666 =)
5 it @J /é‘ v | |G|~ Google Q
Additional plugins are required to display all the media on this page. |__. Install Missing Plugins...)

et

Click here to download plugin.

Transferring data... (v]

Figure 1.1: A missing plug-in message frequently seen with other video formats.

Flash Video and Web 2.0

With Web 2.0 (2004 to present day), video is everywhere on the web thanks to
Flash Video: You Tube, Google Video, CNet reviews, The New York Times, and on
countless marketing and movie trailer sites. Designers, developers, and producers
choose Flash Video because it has the reach, performance, tooling options, and
potential for rich experiences that no other video format can match:

0 99% of Internet-connected PCs can play Flash Player 7 content and 80% of PCs
will be capable of playing Flash Player 9 content within one year of release.

0 The Flash Platform and Flash Video are truly cross-platform. Players exist for vari-
ous versions of Windows, Mac OS X, and Linux.

0 There are many tooling options for Flash Video: one can create sophisticated Flash
applications with Flash Professional or Flex. With about five clicks, one can insert

2 Chapter 1: Getting Started with Flash Video

encoded Flash Video into a web page with Dreamweaver. There are several ways
to create Flash Video with third-party solutions from On2, Sorenson, Autodesk,

and the open-source community.

This is all I'll say about the strengths of Flash Video. If you need more information, go to
Adobe’s Developer Center website and view the Flash Video technology center:
http://www.adobe.com/devnet/flash/video.html.

Before You Begin

This book is not a book meant to replace the documentation that comes with
Adobe Flash Professional CS3. If it did, it would have to be a thousand pages or
more! It won't cover how to do shape tweens, teach you how to develop compo-
nents, or use Flash to skin an Adobe Flex application.

This book is for video and design professionals who are not skilled at using Flash
Professional but want to learn how to develop Flash Video content. This book

can also help the Flash developer who is not aware of most video terms and best
practices and wants to improve the production quality of her video. I'm going to
cover how to create decent video for Flash Video distribution and teach you how
to create Flash applications with video. We'll walk through code and you should
feel quite comfortable in working with ActionScript and how it pertains to video by
the end of the book.

How This Book Is Organized

This book has eight chapters. This chapter, Chapter 1, discusses the book's organi-
zation and then presents two simple tutorials for working with Flash Video. Here
are the rest of the chapters:

Chapter 2: This chapter reviews basic video production skills for Flash Video. It's a
short crash course for the interactive developer with little to no video experience.

Chapter 3: Interactive video concepts
Chapter 4:

Chapter 5: This covers video compression and includes background material on
video formats and compression technology. It includes tutorials for encoding a
single file, a batch of files, and embedding cue point in video.

Chapter 6: Here we build two Flash Video players from scratch.

Chapter 7: Here we get creative with Flash Video, alpha channels, and the Flash
Player's bitmap and color effects.

Chapter 8: This is a primer on embedding Flash Video in HTML pages. It discusses
several methods for embedding Flash Video.

Chapter 9: In this chapter, we work with XML, closed-caption text, and integration
between the Flash Player and JavaScript.

Before You Begin 3

o Chapter 10: This last chapter discusses preparing video for streaming servers and

mobile devices.

Icon Glossary

Throughout the book are short relevant notes. To better distinguish between tips,
cautionary notes, DVD-ROM content, and useful resources on the Internet, the
book has the following icons:

Production tip Cautionary note
Keyboard shortcuts and Production gotchas to avoid.
time-saving methods.

@ On the DVD-ROM @ Web reference
"%/ Material on the book’s DVD-ROM. Links to Internet resources.

How to Use the Book and DVD

The DVD has three main folders: Additional Content, Completed Tutorials, and
Tutorials. When beginning any of the tutorials, you'll be asked to copy folders from
the Tutorials folder to your local hard drive. The files in this folder are places to
start. In most cases they won't compile to anything useful until you've completed
the tutorial. If you'd like to see how something was done, look inside the Com-
pleted Tutorials folder. The Additional Content folder has a few things you might
find useful such as cheat sheets, additional code examples, and sample content.

When I buy a book, | make a backup of the DVD-ROM content. | also file the book’s CD or
DVD in a disc storage case. It's often too easy to lose a disc or have it become damaged.

Required Software
You should have Adobe Flash Professional CS3 to complete the book’s tutorials.

Adobe Dreamweaver CS3 is required for the short tutorial at the end of this chap-
ter. It or another HTML or text editor can be used for the XML and HTML tutorials
that are later in the book.

Adobe After Effects Professional 7 is required for the tutorials in Chapter 5.

To get a free trial version of these products, go to: http://www.adobe.com/downloads/ and
look for the trial links for Flash Professional, Dreamweaver, and After Effects.

Tutorial: Inserting Flash Video in Flash Professional

The Import Video wizard in Flash Professional provides several easy steps for creat-
ing Flash Video from an encoded FLV or nonencoded source video. In this tutorial
we'll import a video that is encoded as Flash Video and add it to an existing Flash
document.

4 Chapter 1: Getting Started with Flash Video

A few small steps
With the grand re-opening of the new market, many locals decided to visit
Saturday morning despite the prediction of large crowds.

Figure 1.2: The finished example.

Navigate to the Tutorials > Chapter 1 folder. Copy the Insert in Flash folder to
your computer.

Open Flash Professional and choose File > Open. Navigate to the Insert in Flash
folder and open the file, feet_traffic.fla.

Select File > Import > Import Video. The first step in the wizard appears.

Where is your video file?

{®) On your computer:

File path: (Choose...)

Figure 1.3: Selecting a source video in the Import Video wizard.

Select On your computer and click Choose. Select feet_traffic.flv in the Insert in
Flash folder and click Select (Windows) or Open (Mac OS X). Click Continue.

In the next step, select Progressive download from a web server (it should already
be selected). Click Continue.

Tutorial: Inserting Flash Video in Flash Professional 5

How would you like to deploy your video?

@ Progressive download from a web server This deployment method requires
- Flash Player 7 or later.

_ Stream from Flash Video Streaming Service

Progressive Flash Video delivery

_ Stream from Flash Media Server lets you stream the video using

[T As maohile device viden bundled in SWF HTTP slreamilng. This OF‘tiP" will
convert the video file you import
() Embed video in SWF and play in timeline to a Flash Video file, and
E = - - configure a Flash Video
Linked QuickTime video for publishing to QuickTime component to play the video.

Figure 1.4: Selecting a source video in the Import Video wizard.

6. The Skinning step appears. Select SkinOverPlaySeekFullvcreen.swf from the Skin
dropdown. This skin offers play, pause, seek, and full-screen video controls.

The video's skin determines the
appearance and position of the
play controls. The easiest way to
get Flash video up and running is
to select one of the provided skins.

To create your own look for the
play controls, create a custom skin
SWF, select "Custom” in the Skin
drop-down box, and enter the
relative path of the skin SWF in the
URL field.

To remove all play controls and
only import your video, select
“MNone” from the Skin drop down
box.

Minimum width: 155 Minimum height: 60O

Skin: '_ SkinOverPlaySeekFullscreen.... I:] Color: E

Figure 1.5: Selecting a skin.

7. Click the Color control, and at the top of the pop-up panel, set the Color to
#666677 and the Alpha to 50%.

|#6555?? A!pha:ISO% E @

Figure 1.6: Specifying the skin color and alpha (opacity).

8. You should see an instance of the FLVPlayback component on the stage. For best
practice purposes, we should give the instance a name. Select the component and

6 Chapter 1: Getting Started with Flash Video

in the Properties panel, name it myFlvPlayback. Naming the instance is important
if the component will be used with ActionScript. Now would be a good time to set
both the X and Y properties to 0 using the Properties panel too.

| & Properties x | Filters | Parameters

Ii

W 427.0 0 X 0.0

' Instance of: FLVPlayback

myFivPlayback Swap...

H: 240.0 | Y: 0.0

Figure 1.7: Name the instance of the playback.

Preview the movie by choosing Control > Test Movie.

. It looks good, but now let's set the controls to fade away when the pointer is
not over the video portion of the Flash movie. Close the preview by pressing
Control+W (Windows) or Command+W (Mac OS).

. Select Window > Component Inspector. Click the Parameters tab.

. Select the myFIvPlayback instance on the Stage. In the Component Inspector
panel, set the skinAutoHide property to true.

4[Parlm!tcrs | Bindings = Schema | I

Mame Value

align center

autoPlay true

cuePoints [{middle,00:00:03.719,Navigation}]
preview MNone

scaleMode maintainAspectRatio

skin SkinOverPlaySeekFullscreen.swi
skinAutoHide true =

skinBackgroundAlpha |false
skinBackgroundColor [Erue
source feet_traffic.fiv

i
Ly

Figure 1.8: Adjusting properties for the myFLVPlayback instance.

. Select Control > Test Movie to preview the movie.

Tutorial: Inserting Flash Video in Dreamweaver

Dreamweaver includes the Insert Flash Video command, which is the easiest way
to get video onto an existing web page. Here's how it works: after picking an
encoded FLV file, Dreamweaver inserts a playback SWF referencing the video and
includes the required HTML and JavaScript in the web page.

Dreamweaver does not convert raw video to Flash Video. If your video is not encoded as
Flash Video, you will need to process it with Flash Professional, Premiere Pro CS3, the
QuickTime export module for Flash Video, the stand-alone Flash Video Encoder, or a third-
party encoder.

Tutorial: Inserting Flash Video in Dreamweaver

e Flash Video Example
e file:/{ fUsers [skidgel {Documents/John/FLV#%20Book /DVD -ROM/Complete "-'_"Q.- Inquisitor

A few small steps

With the grand re-opening of the new market, many locals decided to visit Saturday morning

despite the prediction of large crowds.

Figure 1.9: Previewing the page in a browser.

Navigate to the Tutorials > Chapter 1 folder. Copy the Insert in Dreamweaver
folder to your computer.

Open Dreamweaver and choose File > Open. Navigate to the Insert in Dream-
weaver folder and open the file, index.html.

Select the text, “remove this text and place video here” and delete it.

Select Insert > Media > Flash Video or select Flash Video from the Insert Flash
button in the Common toolbar.

amn WeosFe%-B-BRRo-°-B-F
i Flash m}

EEEEEEEE 45 Flash Button

: - _ |AfFlash Text b :
|<2] Code | < split [GfDesign] Title: [Flash Video Exampl s Flashpaper | O [El, &, | 6% Y Check

- 2 Flash Video [

Figure 1.10: Adding Flash Video from the Insert bar.

8 Chapter 1: Getting Started with Flash Video

The Insert Flash Video dialog appears. Select Progressive Download Video as the
Video type.

Set the movie to display. Enter feet_traffic.flv in the URL field.
Choose the Corona Skin 2.

Click Detect Size to properly size the SWF file. The dialog updates to show the
width as 640 pixels and the height as 360 pixels.

Note the remaining options that can be set, such as auto play, auto rewind, and a custom-
ized message that appears when Flash is not installed.

Insert Flash Video

A
Ly

Video type: | Progressive Download Video 3]

URL: feet_traffic.fiv | Browse... |
bl

(Enter the relative or absolute path of the Flash Video file)

Skin: | Corona Skin 2 {min width: 141))

Width: 640 ™ constrain Detect Size |

j —"
Height: 360 Total with skin: 640x360
D Auto play
D Auto rewind

E Prompt users to download Flash Player if necessary

Message: = hvent on this page requires a newer version

of Adobe Flash Player. Do you want to
download it now?

o To see the video, preview the page in browser.

Figure 1.11: The Insert Flash Video dialog.

Click OK when finished. Choose File > Preview in Browser and select a web
browser to preview the page.

If you need to change the settings, select the video object in the Design view and
change the settings in the Property Inspector (Window > Properties).

P ‘E‘ Flash Video | W 640 E Constrain [Reset‘.l File feet_traffic.flv [:"Class | None I:-I
FLWPlayer H 360 Total with skin: 640x360 Skin | Corona Skin 2 (min width: 141) I-:]
:‘ Auto play
Auto rewind

Figure 1.12: The Property Inspector palette showing the settings for a Flash Video element.

Tutorial: Inserting Flash Video in Dreamweaver 9

Wrapping Up
While they are undoubtedly the easiest ways to get video into a Flash movie or a
web page, these two tutorials are barely scratching the surface of what's possible

with Flash Video and the creative arsenal provided by Adobe. Luckily, there are
seven more chapters in the book.

10 Chapter 1: Getting Started with Flash Video

© © © © © © 0 0O

CHAPTER 2

Video Production Tips
for Flash Video

Shoot with the Best Possible Format............cccoooiiiiincns 12
Controlling Camera Motion...........cccovveeeeeiiiiiiiiieee e 12
Don't Sweat Title and Action Safe Zones............ccccccoee. 16
Simplify Backgroundscccooiiiiiiiiiiii e 16
Get Good Exposure and Light Softly..........ccccoooiiiiiiins 18
Shooting for Blue and Green Screencccccvevveeeeinnnne. 20
Recording Room Tone and Effects..........ccccccoeviiiiiiinninns 23

WIapPing UpPeuumiiiiiiiiiiiiiiiieeeee e 24

If you are new to video production, this chapter is for you. It covers best practices for shoot-
ing video for streaming media and blue and green screen compositing, as well as providing
small tips, like not forgetting to record sound effects.

If your only intention is to post a video clip on the Internet, it's strongly recom-
mended that you tailor your production and editing methodology to optimize for
this delivery format. You want small, continuously playing media that loads quickly
and looks its best given the preceding constraints. While broadband is reaching
mainstream levels, there will always be the need for quickly loading video with a
small footprint, such as video for cell phones, or small talking-head instructional
videos that are part of rich Internet applications (RIAs). Following is a list of optimi-
zation tips to produce video that looks good and loads quickly.

Shoot with the Best Possible Format

If your camera supports progressive recording, always shoot in this mode when
you're targeting Flash Video. Shooting in 24p or 30p preserves frame detail and
progressive footage is easier to compress than interlaced footage. Whenever
possible shoot in HDV, HD, or a higher quality standard definition format such as
DVC-Pro 50. These formats retain more picture information and afford more flex-
ibility in postproduction.

1920 x 1080 HD 1280 x 720 HD 720 x 480 SD

Figure 2.1: With an HD-sized frame, you have more creative cropping options.

Shooting in 24p mode or 24 fps means the footage has six fewer frames a second
to compress. Using 24p cameras is an excellent choice for shooting process pho-
tography because they shoot in progressive mode, which makes compositing much
easier than interlaced footage. Since progressive footage keeps all the information
in a single frame intact, it's easier to pull a decent key. When motion is split within
a frame across two fields of video, it's much more difficult to pull a clean key since
the motion is slightly stuttered.

12 Chapter 2: Video Production Tips for Flash Video

@

An animated explanation of Panasonic's variant of 24p for the DVX-100 can be found at:
http://www.skidgel.com/blog/2005/12/10/animation-explaining-24p-advanced/ and
http://www.skidgel.com/blog/2005/12/09/animation-explaining-24p-standard/.

Controlling Camera Motion

The job of the cinematographer is not just to make the audience say, “what amaz-
ing cinematography.” If the audience only talks about the cinematography, the
filmmakers have failed. The cinematography shold help tell the story, it should not
distract from it. Success is achieved when the cinematographer has developed her
skills, her workflow is smooth and facilitates rather than hinders her craft, and she
follows—but occasionally breaks for dramatic effect—the formal rules that are
grounded in narrative and cinematic guidelines.

Avoid Quick Zooms and Whiplash Panning

Fast, unmotivated zooms and indiscriminate whiplash pans are a clear sign of an
amateur filmmaker. First of all, this is never seen in professional video and cinema-
tography. Filmmakers almost always shoot with a fixed-length lens. If they want
the camera to move more closely to the subject, they move the camera and not
the lens because it looks more natural, as if the audience is moving closer to the
subject. Quick zooms and pans often look blurry, and they can strobe. At 24 fps, a
quick pan looks even worse.

Not all zooms are bad, they just need to be motivated by the narrative needs

of the story. Instead of zooming in on a subject, cut from a medium shot to a
close-up. While this sounds counterintuitive, it is what filmmakers and editors
have been doing for over a century, because the viewers' eyes along with their
imaginations, will connect the dots and create the rest of the zoom in their minds.
This is the real power of the language of film, and you should employ it wherever
possible.

Controlling Movement

Excluding the movement of actors, movement that changes the view within a shot
is caused either by camera movement or by changing the focal length of the lens
(zooming in or out). Instead of whipping a camera around, controlled pans and
tilts make your video look more professional.

Pan and Tilt

Panning involves rotating the camera to the left or right on the y axis. This is best
done by rotating the camera using a pan and tilt head attached to a tripod. While
panning can be done while holding the camera, it's not smooth and is best done
for short pans.

Controlling Camera Motion 13

ipan

tilt
Figure 2.2: Pan and tilt.

Two readily available styles of tripod heads are fluid and fluid-effect. Fluid head
gives the smoothest pans because the resistance created by pushing oil through
the internal mechanisms dampens jerky movements and softens horizontal and
vertical pans. A fluid-effect tripod softens movement with two internal greased
plates arranged so that they work against each other to dampen vertical and
horizontal rotations. A fluid-effect head is not as smooth as a pure fluid head, but
it can do the job and is a lot less expensive.

PAN AND TILT GUIDELINES

There are several guidelines to remember when panning. A pan that is done too
quickly causes judder, noticeably long movements for elements within a frame. To
avoid judder, you simply need to:

Slow down your pans.

Turn off Optical Image Stabilization (OIS) when panning with a tripod. It will fight
you the entire length of the pan and create more judder.

If you want a fast pan, consider cutting between the two shots as it can often give
you the same visual effect, but remember to follow the 30-degree rule.

Use a Tripod or a Stabilizer Wherever Possible

Although handheld shots are great, they are not meant for all shots. If you video-
tape scenery, interviews, or other B roll (extra footage), a level tripod gives you
steady footage, smoother pans and tilts, and video that compresses better.

Motion in a shot is easily controlled by shooting on a sturdy tripod. Time your pans
correctly. Tighten the tilt head, or you could be in a for an unpleasant surprise if
you apply any pressure up or down during a pan.

14 Chapter 2: Video Production Tips for Flash Video

Don't Sweat Title and Action Safe Zones

If your only distribution medium is the Internet, there is no need to frame shots
to fall within the action-safe or title-safe areas because it does not get cropped
like video on a television. Likewise, titles or text do not need reside within the title
safe area when designing motion graphics for Flash Video delivery since the entire

frame will be seen on the web page.

Action Safe

Title Safe

—Full frame of video

Figure 2.3: The guidelines for action and title safe do not apply to Flash Video.

Simplify Backgrounds

File size increases as there is more detail or motion in each frame. It goes without
saying that a frame with a subject in front of a solid color compresses more than

a frame with the same subject in front of moving machinery. However, a subject
in front of a static field of color is boring to watch. One possible solution would
include an establishing shot of the subject in front of the machinery followed by
the subject in front of a simple background. Conversely, the edit could start with
the subject against the simple background with a few meaningful cutaways to the

complex scenery with the subject.

i ™

Figure 2.4: Two shots with simple backgrounds.

Use Depth of Field to Your Advantage

Another method for limiting detail is to use a shallow depth of field. Bring the
subject into focus and have the background in soft focus. This will instruct the

Don't Sweat Title and Action Safe Zones 15

compression software to preserve detail in the foreground. Having the background
appear soft and out of focus reduces the chance of motion artifacts.

Depth of field (DOF) is the area in front of the camera where elements look sharp
and in focus. Let's assume you're shooting a scene and the subject is 9 feet in front
of you. When you focus on the subject, the depth of field could range from 8 to
11 feet. Anything within this area will be in focus, and anything outside of it will
be soft and out of focus. Realistically, only one infinitely thin plane is truly in sharp
focus at any one time, but depth of field is much deeper than this. The thin plane
in focus is about one third of the way into the entire depth of field.

focus
v
1/3 2/3
out of focus depth of field out of focus

Figure 2.5: Depth of field is the area in front of the camera that is in focus.

When shooting extreme closeups in macro mode, the focus plane is closer to the middle of
the entire depth of field.

To take full advantage of the relationships between focal length, aperture, and the
depth of field with your camera, learn the following rules:

DOF Decreases as Focal Length Increases

Depth of field is inversely proportional to focal length; that is, depth of field de-
creases as focal length increases. This means that a telephoto lens has less depth
of field than a normal lens. You can use this property of a telephoto lens to your
advantage when shooting with a zoom lens. First zoom all the way into a small
area on the subject, like the eyes. Focus the lens so that the eyes are sharp and
then zoom out to the desired framing. Since a zoom lens maintains the same focal
plane regardless of zoom, you are guaranteed sharp focus.

Conversely, depth of field increases as focal lengths decrease. This means a wide-
angle lens has more depth of field than either a telephoto or normal lens. In run-
and-gun situations, it is best to set focus quickly and then go wide, since depth of
field is deeper at short (wide) focal lengths.

16 Chapter 2: Video Production Tips for Flash Video

out of focus out of focus

The narrower the angle of view,
the shallower the depth of field.

out of focus depth of field out of focus

Figure 2.6: Depth of field decreases as focal length increases.

DOF Increases as Aperture Decreases

Depth of field is also inversely proportional to aperture, so depth of field increases
as the aperture closes. This means at f/8 there is more depth of field than at f/2.
When you squint (close) your eyes to focus on an eye chart, you are essentially

doing the same thing.

focus

smaller aperture yields a
greater depth of field

out of focus depth of field out of focus

@ larger aperture yields a

shallower depth of field

out of focus depth of field out of focus

Figure 2.7: Depth of field increases as the aperture becomes smaller and decreases as it
becomes larger.

DOF and the Camera-to-Subject Distance

Depth of field increases as the subject moves farther away from the camera and
decreases the closer he is to the camera. To get more depth of field, move the
camera farther from the subject or move the subject farther from the camera. To

Simplify Backgrounds 17

get less depth of field, move the camera closer to the subject or bring the subject
closer to the camera.

focus

The farther the subject is from the
camera, the greater the depth of field.

out of focus fo;us depth of field out of focus

The closer the subject is to the camera,
the shallower the depth of field.

out of focus depth of field out of focus

Figure 2.8: Depth of field increases as subject moves farther from the camera.

Racking Focus

Racking focus is a narrative film technique where the focus is shifted from one sub-
ject to another within the same frame. This is seen a lot in over-the-camera dialog
shots. For example, while one man in the foreground smiles to himself, the camera
shifts focus from him to another man plotting against him.

Figure 2.9: An example of racking focus between two characters.

Get Good Exposure and Light Softly

Footage with soft, even light compresses better than footage with hard edges cre-
ated by shadows or overbright light values. Soft light can be achieved by applying
diffusion material to the lights or by applying a soft box to the key light. Important
information can be lost in dark exposures because compression will most likely

throw out any detail in dark areas.

18 Chapter 2: Video Production Tips for Flash Video

Key only Key, Fill, and Rim

Key and Fill

Figure 2.10: Four point lighting can dramatically improve the quality of video.

Reduce or Turn Off Detail or Sharpening

A camera's detail or sharpening setting is often used to boost sharpness. While this
may be fine for footage that will not undergo any postprocessing, it is not recom-
mended if you plan to use a product, such as Red Giant's Magic Bullet or Nattress
Film Effects, to deartifact and retime the video. When most codecs encounter
sharpening, they creates additional compression artifacts known as ringing, and
overly sharp images are a telltale sign of bad video. It's hard to make bad video
look good.

To learn more about Magic Bullet, visit: http://www.redgiantsoftware.com.
To learn more about Nattress Film Effects, go to: http://www.nattress.com.

Exposure Is Everything

Unless you're shooting 4:4:4 uncompressed, most camera codecs are not kind to
blown-out whites. While this may be the look you're going for, you are far better
off doing this in postproduction, where you have more control over the entire im-
age. Keep your brightness values below 100 IRE or at least turn the zebras on your
camera. Shoot a stop or two down when the highlights begin to clip. In general, it
is better to shoot the image slightly underexposed (and I stress slightly) and crank
the brightness up later in postproduction.

Get Good Exposure and Light Softly 19

07/10/2004 04:55:16 PM
e

__.____ —

-' ﬁiﬁﬁi_ |
! ; Ilﬂ :
h —ryipe :
i | ¥ = -)

-100

-200

1A: I 4335 l;b s ?2II|| 59, S-I KGB . lll]hs!ﬂlv

Figure 2.11: Monitor video levels with a waveform monitor.

You should use a graduated neutral-density (ND) filter when shooting outdoors in
bright sunlight. Shooting without one will blow out the sky and make the subject
appear to be backlit. Stopping the entire image down with the iris or the camera’s
ND filters will dull the image indiscriminately. A graduated ND filter contains a
translucent gradient in the glass that cuts the brightness progressively less from top
to bottom. This brings the sky under 100 IRE while not under exposing the subject.
If the subject still appears backlit, a bounce card or reflective disc can serve as a fill
light.

Camera codecs are equally unforgiving when it comes to dark, severely under-
exposed images. When a dark image is recorded, the codec crushes the shadow
detail and creates dark artifacts that are both muddy and blotchy. When you try
to adjust the levels, these artifacts are impossible to repair. Again, look on the
waveform monitor and be prepared to throw another light on the set, or shoot at
a different time of day when more light is available.

It should go without saying that you want to get the best unadulterated expo-
sure you can and avoid having the camera’s codec, poor light, or a Gaussian filter
screwed onto the camera's lens make the artistic decisions for you. If you shoot
an image that is balanced and properly exposed, you will have far more creative
options available to you in postproduction and your footage will look better when

compressed.

20 Chapter 2: Video Production Tips for Flash Video

o)

Shooting Blue and Green Screen

Process photography is shooting a foreground element such as an object or talent
against a color, normally blue or green, for creating a composite with a back-
ground plate. For example, you cannot afford to shoot your talent in front of the
Eiffel Tower, so you shoot them in front of a green wall. In postproduction you key
out (remove) the green color, and you are left with only the talent, who you can
superimpose on top of a picture of the Eiffel Tower.

Backdrop Options

You can shoot talent against paper or fabric backdrops, against painted walls,

or you can use a combination of portable backdrops and walls. Backdrops are
smaller and transportable. They offer larger spaces but require more care to keep
clean and require dedicated space. Paper is cheaper than fabric, and paint is even
cheaper than paper if you are painting on an existing wall and are not building a
platform. Framed flexible fabric backdrops will run from $150 — $400. Rolled fabric
will run $20 per yard for a roll that is 5 feet wide. A 9-foot by 3-foot roll of green
paper is about $50 dollars, but the stand for holding the paper costs about $150.

You can find resellers of blue and green screen paint, backdrops, and kits online, by search-
ing the Internet for “blue screen material.”

Figure 2.12: A typical studio with a backdrop and painted sets pieces.

Lighting Issues

All lights should be the same color temperature. Lighting a green screen with vary-
ing color temperature will create subtle uneven color shifts on the screen that can
confuse the keying software. For example, if you mix tungsten and daylight bal-
anced lights, the screen will cast an orange-yellow tint. If you use tungsten lighting
on a shoot in broad daylight, it will cast a blue tint. In either case, you don't want
the lights to add color to the screen. That will make things difficult to key, since the

Get Good Exposure and Light Softly 21

keying software is looking for blue or green, and not for some new color created
by mixing lights of different color temperatures.

The screens should also be lit as evenly as possible. An evenly lit screen is easier to
key because the screen appears as one solid color. When you don't light the screen
evenly, you have to create garbage mattes and adjust the white and black points
before keying, which means more work and an overall decrease in the quality of
the matte. In short, do your best when shooting green and blue screen footage
and don't assume it can be easily fixed in postproduction.

Recording Room Tone and Effects

Room tone is 30 and preferably 60 seconds of audio recorded on set before sets
and equipment are broken down. It is used by the sound editor when doing
automatic dialog replacement (ADR) work or when patching over pops and clicks
in the sound track. It's an important step in audio production and should not be
overlooked.

Figure 2.13: A single microphone recording room tone.

n Any usable sound effects should also be recorded on set. This may be a door closing or
opening, footsteps, slaps, spills, car engines, horns, opening a jar, or anything else the inter-
face might need for a button click, slider drag, or screen transition.

Wrapping Up

This chapter covered just a few basic guidelines for producing video. If you can
follow these guidelines, your video will be greatly improved. To learn more specific
techniques for video, film, and audio production, visit Focal Press's web site at:

http://www.focalpress.com.

22 Chapter 2: Video Production Tips for Flash Video

CHAPTER 3

An Introduction to Flash
Professional and ActionScript 3

A short primer on how to design compelling user
experiences for your Flash Video projects.

® Creating Acquainted with Flash Professional CS3 24
© Creating Flash Documents...........ccoveviieeiiieciiee e 24
© Interface OVErVIEW.coviiiiiiiiieiie it 27

© WIapPiNg UP ..ooveeiieeiee et 38

Getting Acquainted with Flash Professional CS3

This chapter is not a replacement for the official documentation. It is an overview
illustrating what features are most used in creating Flash Video content. To learn
more about a topic that is covered here, select Help > Flash Help.

The primary way to author Flash Video content is with Flash Professional. While you can use
Flex Builder, the Flex SDK, or Flash Develop, this book and chapter focuses on Flash Profes-
sional CS3.

Creating Flash Documents

You can create a new document from either the Start Page window or the New
Document dialog. The Start Page window is shown when Flash Professional
launches. It has several shortcuts for creating different Flash document types or for
accessing recently open documents. It also has shortcuts to help as well as online
resources.

6/‘\?"‘1

Fl

ADOBE" FLASH™ CS3 PROFESSIONAL

Open a Recent Item Create New Create from Template

T chunkyPlayerfla B Fiash File (ActionScript 3.0) T Advertising
Chunk.as T Flash File (ActionScript 2.0) TH BREW Handsets
VidenCnntroller as ﬁ Flash File (Mnhile) ﬁ Consumer Devices

VideoPlayer.as

T Actlonscript File 'B Global Handsers
VideoController.as ActionScript C..munication Fil ﬁ Japanese Handsets
player fla Flash JavaScript File 5 More...

videoPlayer.as Hlash Project

Chunk.as Extend
Open...

EIEY- EIENEGE
A=

@ Flash Exchange =

| Getting Started
o 9 = Get the most out of Flash
Kl -New Features » Firmd thie lates lips, pouvdsis, and muore
1] Resuvurces s in Adobe Dridge.

__| Don't show again

Figure 3.1: The Start Page for Flash Professional CS3.

New Document Dialog

Within the New Document dialog are the General or Templates tabs. Both of these
tabs offer several starting points for creating a Flash document. The General tab
contains blank documents with a few settings and the Templates tab has docu-
ments that are significantly tailored for web advertising banners, mobile phones
and devices, quizzes, and presentations. We'll create documents mostly from the
New Document dialog, but following this section is a short tutorial on creating a
document template.

24 Chapter 3: An Introduction to Flash Professional and ActionScript 3

Mew Document

Type:

T Flash File (ActionSeript 3.0)
T Flash File (ActionScript 2.0)
T Flash File (Mahile)

B Flash Slide Presentation

[General | Templates |

Dascription:

Create a new Flash document (*.fla) in the Flash
Document window. The Publish Settings will be set for
ActionScript 3.0. Use Flash documents to set up the
media and structure for Flash movies and applications.

'l Flash Form Application

T ActionScript File

T ActionScript Communication File
"= Flash JavaScript File

T Flash Project

(Gancer) @0

Figure 3.2: In Flash Professional CS3, you can target either ActionScript 2 or 3 when you
create documents in the New Document dialog.

When you choose a new type in the New Document dialog, that type will be selected the
next time you invoke the dialog.

ActionScript is the scripting language in Flash that has many similarities to
JavaScript. At the time of this writing, Flash Player 9, which introduced ActionScript
3, is at 90% penetration and rising. That said, all the tutorials, except the Flash Lite
tutorial, will target ActionScript 3. So in most cases, when we create a new file for
this book, we'll pick Flash File (ActionScript 3).

An editable Flash document has fla as the the file extension and this book will refer
to one as an FLA file. A Flash document that has been compiled for deployment
has the swf file extension and this book will refer to one as an SWF file. While

a Flash document can contain most, if not all, the ActionScript code on a frame,
code can reside in seperate ActionScript files. An ActionScript file has an as file
extension and this book will refer to one as an ActionScript file. A Flash Video file
has an flv file extension and this book will refer to one as an FLV file.

©

Flash Video file

Editable Flash
authoring document

Compiled Flash file ActionScript
for deployment code file

Figure 3.3: The icons used to represent FLA, SWF, ActionScript, and FLV files.

Note that when you deploy your project on a web server, you will deploy the SWF
and FLV files alongside any HTML and JavaScript files that are needed to properly
display the Flash Video content in a Web browser such as Internet Explorer, Firefox,

Creating Flash Documents 25

or Safari. The FLA and ActionScript files do not need to be deployed, as they are
combined when the SWF file is generated.

You will often hear these file types pronounced as a “flah file,” a “swif file," or a “f-I-v file.”
Some people will say “a-s code” but most developers say “ActionScript code,” when it's
internal to the FLA file or “ActionScript class files,” when the code is external to the FLA file.

Tutorial: Creating a Reusable Flash Template

If you plan to create a lot of Flash Video documents that will make use of the full
screen functionality added in a revision to the Flash Player 9, a document template

with this publishing option set can save you a lot of repeat steps. Let's create a
template now.

Launch Flash Professional CS3. Choose File > New.

In the New Document dialog select Flash File (ActionScript 3).

New Document

e
{ General | Templates -

Type: Descriptig
Tl Flash File (ActionScript 3.0)]

. . : Createa
ﬁ Flash File (ActionScript 2.0) Documen|
ﬁ Flash File (Mobile) ActionScr
'ﬁ Flash Slide Presentation media an

'ﬁ Flash Form Application

=11 ActionScript File

i ActionScript Communication File
"% Flash JavaScript File

™ Flach Praiact

Figure 3.4: An ActionScript 3-based Flash file is the first in the list.

A new Flash document is created. Choose File > Publish Settings. Click the HTML
tab at the top of the window.

Publish Settings

Current profile: Default }‘] CRESESIL AN

| Formats | Flash | HTMt}

Figure 3.5: Click the HTML tab to see the HTML publish options.

From the Template menu, select Flash Only - Allow Full Screen. Click OK at the
bottom of the window.

Flash For Pocket PC 2003

Flash HTTPS

Flash Only

LCLHEGE Flash Only - Allow Full Screen
Flash with AICC Tracking d

Flash with FSCommand

Figure 3.6: Click the Template menu to select Flash Only - Allow Full Screen.

26 Chapter 3: An Introduction to Flash Professional and ActionScript 3

5.

Choose File > Save as Template. The Save as Template dialog appears. In this
dialog enter information according to the following screen shot. By entering Video
Templates for the Category, the application will create a new template category
for the template and place it in the new category. Click Save.

Save as Template

Preview:

Name: Flash File (AS 3) Full Screen

Category: video Templates @

Description: | A Flash document with
the full screen publishing
option enabled.]

(Caneel) 5o

Figure 3.7: Entering information for the new template.

Close the document used to create this template. Do not save it. To test this work,
select File > New and click the Templates tab. Select the Video Templates category
and the dialog should resemble the following screen shot.

Mew from Template

| General | Templates }

Category: Templates: Praview:
Advertising Bl Flash File (AS 3) Full Screen
BREW Handsets
Consumer Devices
Clubal Handsets
lapanese Handsets
Photo Slideshows
Quiz
Video Templates Description:

A Flash document with the full screen
publishing option enabled

Figure 3.8: The template just created in the New Document dialog.

Interface Overview

Flash Professional CS3 has many user interface elements that you may have used
in graphic and video software. At a high level, the interface elements we'll cover in

this section are the:

Stage: It is like the monitor window in Premiere, the canvas window in Photoshop,
or the artboard in lllustrator. It's where you draw, place, and animate elements.

Timeline: It is optimal for cell-based animation but not as flexible as the Timeline in
After Effects. It has layers that work like traditional layers in Adobe lllustrator.

Interface Overview 27

o Tool palette: This has tools for drawing, coloring, and transforming elements as
well as creating text.

0 Properties panel: It resembles the one in Dreamweaver the most, but there are
parallels to the Control palette in Illustrator or InDesign. It's where you name ele-
ments and inspect and set properties such as scale, position, and opacity.

0 Library panel: It is most like the Browser window in Final Cut Pro or the project
window in Premiere and After Effects. This is where you keep and organize assets
you create within Flash, such as movie clips and graphic symbols as well as exter-
nal assets, such as images.

Where Flash differs from traditional design and video applications is that it sup-
ports the creation of interactive content. The following interface elements are
crucial to creating interactivity:

0 Actions panel: You write code in this panel. Best practice has most code on the first
frame of a locked layer named “Actions.” Standalone ActionScript files do not use
the Actions panel, but have their own document window.

o Components panel: This lists the installed components in the application’s con-
figuration folder. In Flash Professional CS3, Adobe changed the behavior of the
panel to show only the Components for the currently open document's version of
ActionScript.

o Components Inspector panel: For any component, this panel shows all the param-
eters for the coponent. If you don't set component parameters in code, this panel
is a more comfortable alternative to the Parameters tab that is docked with the
Properties and Filters tabs.

" @ Flash File Edit View Insert Moddfy Text Commands Control Debug Window Help S i) & & sunzazem @

oY Ya) T Uncitled-3*
- @ Dﬂ 3 w 13 n % » EL - 3 B £l] &3 70 =) [Coker = | Swatehes | =
Wiwel s . @Y 217 Type: [Solid__ 18]
i L)
| [T% 7]
Mleane L RD R 1 ue o Eee——————y ““

dr| - s wertszace s B & o (B) 51 “i
= 51 ul
CAETm

S o5 M SN [FERwoWNE /S uE -l

* brsarties | Filers | Farsaters |

Fl

Documen $ae | S50x 400 pivels | macgeouns | | Famersse 17 8

Urmitied-3. Fublan: | Semings Payer® Aeenfoior 10 Prefle Defaui

[y 7 o
] -~

Figure 3.9: The default Flash Professional CS3 user interface.

28 Chapter 3: An Introduction to Flash Professional and ActionScript 3

Timeline

Layers are shown on the left side of the Timeline window. To the right are the
frames for the movie. Layers run from top to bottom where bottom layers are in
the background and top layers are in the foreground. Time or duration runs from
left to right where the left most frame is the first frame in the Flash document.

9>
|I:I!:l.
—

A
-n ”5 IF'. .ls. 20” 2.5 ”30” .35 40 .I‘lsl 50. .‘#
D —F+ S actions - » @
al text « « @
E— @ mak @Bl
F —— B video -a0
G_':I.I-”"i.fi‘ T t BO MW 1 2o o (g V4 | |
H 1 J K

Figure 3.10: Layer visibility toggle (A), Lock toggle (B), Layer Outline Color (C), a normal
layer (D), a mask layer (E), a masked layer (F), New Layer button (G), Create Motion Guide
Layer button (H), New Folder button (1), Delete button (J), Non-editable layer icon (K), and
a Frame Script is marked with a lower case a and o (L).

Each layer has a name, an indication that the layer is editable, visibility and lock
toggles, and a selection outline color. A layer is editable when the layer is visible
and not locked. Double-click layer text to name a layer. Double-click layer icon to
display Layer Properties dialog. The types of layers are:

Normal layer: It is the standard layer that is rendered when the movie is compiled
as a SWF.

Guide layer: It is used to help with placing elements. Like horizontal and vertical
guides a guide layer is visible during authoring time, but is not visible during run-
time when the compiled SWF file plays. Anything can exist on a guide layer to help
with placement, but remember that it won't be rendered in the final movie.

Mask layer: It is used to reveal portions of layers below it. Artwork on this layer
defines the area that is shown in the final movie. This type of layer is useful for
creating video shapes that are non-rectangular and Chapter 6 features a tutorial on
masking video.

Motion guide layer: This layer is like a null layer in After Effects or a 3-D program.
It is not shown but is used as the animation settings for another layer. This book
won't cover how to use them, so look them up in Flash's online help if you'd like
to learn more about them.

Below the list of layers are buttons for creating a new layer, a motion guide layer,
and a layer folder, and deleting a layer. At the end of this button strip is a resize
handle to increase the width of the Layer pane.

The Layer Properties dialog is accessed by selecting Modify > Timeline > Layer
Properties, double-clicking a layer icon, or context-clicking on a layer and choos-

Interface Overview 29

ing Layer Properties. It is for changing any of the properties that can be set in the

Layer pane.

ActionScript can be placed on just about

anything; a button, a movie clip, or a frame.

While that is fine for informal interactive
development, it is not considered best prac-
tice because placing code throughout a FLA
file makes managing the code difficult.

What most developers use are frame scripts.

This is accomplished by creating a layer at
the top of the layer list named Actions or
ActionScript, selecting a frame in this layer

(usually the first), and entering code in the
Actions panel. Any code entered when this
frame is selected is attached to the frame.

With the introduction of Flash Professional
CS3, a FLA can have a document class

file associated with it. This is a seperate
ActionScript document that contains all the
code for the movie. This is nice for seperat-
ing code from the design and for portability
and reuse. Document classes are covered in
Chapters 5 and 9.

The stage is where elements are drawn, placed, and animated. It is adjacent to the

Timeline and the two panes form one window. Like most modern graphic applica-

tions it sports rulers, guides, and the ability to zoom in and out. The Edit, View,

Insert, and Modify application menus help in placing and editing elements on the

stage.
B C
|
{1 rd = o] e
A<’. G I L il A e P e 54

L

¥:

¥

1

E

i

B

[El

il

i

£

Fi

J

4) e o b b - o s)) i:;_-],

: b -)

5

A stage with rulers (A) and guides (C). Also notice the Edit bar (B) which is
used to navigate between the stage and nested movie clips and symbols. Setting the zoom

level (D) is at the left side of the Edit bar.

Chapter 3: An Introduction to Flash Professional and ActionScript 3

Shapes and Symbols

Understanding the relationship between shapes and symbols will help you make
the most of Flash Professional. Let's review the differences between shapes,
graphic symbols, button symbols, movie clip symbols, and instances.

A shape is a graphic element that is used once. While a shape can be copied and
pasted, the copy is not linked in any way to the original shape. A symbol, by con-
trast, is stored in the Library and instances of the symbol are placed on the stage.
When a symbol is edited, all instances of it are updated to reflect the new appear-
ance. While an instance inherits its appearance from the original symbol, effects
can be applied directly to it to differentiate it from the original symbol. That said,
you will use three types of symbols in this book.

A graphic symbol is artwork or text that is stored in the Library for reuse. An ex-
ample of a graphic symbol is an icon used multiple times in a button symbol. Sym-
bols do not exist on the stage, but instances of the graphic symbol do. A graphic
symbol does not have its own timeline and can only be animated inside the main
timeline or in a movie clip symbol. Sounds and interactivity are also not possible
inside a graphic symbol.

A button symbol has a timeline with four frames: an Up frame for the normal state,
an Over frame for the hover state, a Down frame for the depressed state, and a
Hit frame used to define the clickable area for the button. A button symbol can
generate events and integrate with ActionScript code.

A movie clip symbol is like a graphic symbol but also has its own timeline, can
include sound, and can be accessed from ActionScript code. For this reason, a
movie clip can contain animation. Components, which we will use to play video
and create user interfaces, are movie clips with editable properties.

Creating Symbols

To create a symbol, select an element or elements on the stage you wish to make a
symbol and choose Modify > Convert to Symbol. In the Symbol Properties dialog,
you can set the symbol type as well as other properties.

Tool Palette

Like most graphic applications, Flash Professional has a tool palette with selection,
shape creation, color, transformation, and view tools. Let's go over what's unique
to Flash and what you will encounter when customizing video player skins.

Object Drawing Mode

To make shape creation more like Illustrator where the stroke and fill for a shape
are connected, turn on Object Drawing mode. You do this by clicking the Object
Drawing toggle button when the Pen or any of the shape tools are active.

Interface Overview 31

=[]
Hass
s

/|

A B

Figure 3.12: Object Drawing mode on (A) and off (B).

The Gradient Transformation Tool

The Gradient Transformation tool facilates directly scaling and rotating gradients.
It's located underneath the Transformation tool. In Chapter 5, we'll use the Gradi-
ent Transformation tool to scale and rotate the gradient fills of several buttons and
other user interface controls.

+W.I Free Transform Tool (Q)

orm Tool {

Figure 3.13: The Gradient Transformation tool.

Properties Panel

The Properties panel displays settings for the selected item on the stage. Since
there are many types of objects to select at any given time: a shape, a symbol, a
text object, or a component to name just a few, the Properties panel displays the
appropriate settings for the selected object. Settings that you will often set are x
and y position and the name of an instance. There are lots of other properties such
as symbol type, bitmap effects, color and gradient, or blend mode.

||-' Shape @ zl 1 ul +) | Custom... | Cap: = @
AT l‘é & l!l __| Struke hinting Scale. | Miter: 3 Join: =

W: |115.0 | X: |-413.€
g H: 115.0 | ¥: -332.£

[+ Propertics x [[Flters | Parameters | =

* Instance of: FLVPlayback Color: None @

S\M.‘lp.... @

Blend: Normal W

_! Use runtime bitmap caching

[Properties < [Filters. | Parameters |

Dynamic Text 18] A Myriad Fro Bold @ ?E @ B T Iil ~ @

. T

<Instance Name>| v [0 E| A% | Mormal %] | Anti-alias for readabili B8] | Embed...
W: 214.9 X: -243.¢ [a] | Single line o) [< B var: | | [Auto kern W

H: [137.0 | ¥: |-339.€

o

Target:

Figure 3.14: The Properties panel shown for a shape (A), component (B), and text field (C).

32 Chapter 3: An Introduction to Flash Professional and ActionScript 3

Instances have names so they can be referenced by ActionScript code. For instance when
playing a video, you need the instance name of the object that will play it.

By default, two other tabbed panels are docked with the Properties panel. They
are the Filters and the Parameters panels. The Filters panel is used to apply Flash
Player filters to a movie clip. Filters include drop shadow, glows, bevels, and blurs.
In Chapter 6 we'll go into more detail about the filters and apply them using this
panel or ActionScript. The Parameters panel is used for setting component proper-
ties.

I personally prefer the Component Inspector panel to the Parameters panel since it is much
larger by default. | think this makes it easier to see and set component properties.

A component is a movie clip that has parameters that can be set using the Pa-
rameters tab, the Component Inspector panel, or via ActionScript. For example,
the FLVPlayback component which plays Flash Video has a skinBackgroundColor
property for setting the skin's fill color. This property and all other component
properties appear in the Parameters panel. Components can often eliminate the
need to write code since their properties are exposed to the user through a user
interface. Some components can also be highly customized. The components that
are included when targeting ActionScript 3 are a big improvement over the V2
Components that shipped with Flash MX2004 and 8.

Adjusting Movie Properties and Publish Settings

When there is no selection the Properties panel shows the properties for the FLA
file. From here you can click the Size button to display the Document Properties
dialog or the Settings button to display the Publishing Options dialog. The Docu-
ment Properties dialog presents controls for setting metadata, the size of the FLA
and SWF, or the background color.

Document Properties

Title:
Description:
Dimensions: 550 px (width) X 400 px (height}
Match: () Printer () Contents ®) Default

Background color: I:I

Frame rate: 12 fps

Ruler units: | Pixels |'¢l
Make Default (Cancel) @

Figure 3.15: The Movie Properties dialog.

Interface Overview 33

The Publish Settings dialog helps with generating the SWF, changing the target
player or ActionScript version, and setting HTML publishing options. The Publish-
ing Options dialog, like we learned in the template creation tutorial, is crucial for
setting web page parameters to correctly enter full-screen mode.

Library Panel

The Library panel stores symbols and assets imported into a FLA file. Elements in
the panel can be grouped into folders and in many ways, it is like a Mac OS X
Finder window or Windows Desktop Explorer window in table view. You are free
to drag and drop items from one folder to another and when you need to use an
item on the stage, you drag it from the Library panel directly to the stage. Like
most other Adobe products, it has a Panel options menu and a set of command
buttons along the bottom of the panel for creating symbols and folders, viewing
properties or deleting items from the Library.

a - %
[Componentd Component| Library x |- = A
[bitmap.fla [#] 4 5 New Symbol... =B
2 items | New Folder |
| New Font... |
New Video...
Rename
Move to New Folder...
Duplicate...
| Name Al Type | I?f!le[e
] FLvplayback Compiled cj =G
myVideo Movie Clip | ECIT WITH..
Properties...
Linkage...
Compone an
[—) Jalr Select Unused Items
Update..
C r

Shared Library Properties...

Keep Use Counts Updated
Update Use Counts Now

Help

Figure 3.16: The Library panel’s Panel Options button (A), Panel Options menu (B), and
Command buttons (C).

Creating a video object is a task you'll have to do often. A video object is a box for
displaying video. It can be used to store embedded video that is synchronized with
a timeline or you can insert a blank video object, give it an instance name, and
write ActionScript code to display and control video.

34 Chapter 3: An Introduction to Flash Professional and ActionScript 3

While you can import video into the Library panel, you should do this only when the clips
are small or when working with embedded device video for Flash Lite. Embedded video
clips dramatically increase a SWF's size and they are not as network efficient as external
video that uses a component or a video object that is ActionScript-controlled.

To create a video object using the Library panel, do the following:

Click the Panel Options button. Choose New Video from the menu.

In the Video Properties dialog, select the video type and click OK. The video
object is now stored in the Library panel and you can use it like any other imported

graphic or symbol.

A
I Video Properties
Symbol: 'VideoObject m
= (Cancel)
o BB eea i PR TG _Cancel)
@ Video (ActionScript-controlled) Import
[Bundle source in SWF for mohile and devices
Update
Export..
Video Properties
Symbol: FootTrafficVideo (s)
{ Cancel
Troa: ® Embedded (synchronized with Timelinc) (5 Cancel =)
f: Video (ActionScript-controlled) -(Import...)
(Update)
Source: [Users /ckidgel /Documents/john/Writing /FLV Book/DV... W
Wednesday, November 2, 2005 11:24 AM opere
640 = 360 pixels
14.58 seconds, 387.9 Kb of video data
B —-

Figure 2.17: Two versions of the Video Properties dialog showing embedded video (A) and
ActionScript-controlled video (B).

Components Panel

Components are movie clips with editable properties that you can set using the
Parameters panel or the Components Inspector panel. While component proper-
ties can be set with ActionScript, they also be set through the Parameters panel or
the Component Inspector panel without writing any code. To access components
choose Window > Components. To use a component, you drag it from the Com-

ponents panel to the stage.

When you create a FLA file for ActionScript 3, the Components panel will only
show you components that are written for ActionScript 3, such as the ActionScript
3 User Interface components and the FLVPlayback components for ActionScript 3.

Interface Overview 35

| Components x| | Component Inspector x | V.=

Lg @ User Interface E FLVPlayback bl
¥ & video 3
E FLVPlayback —[: Parameters | Bindings Schema ———
02 FLvpiaybackCanptioning SRR Valiie
() BackButton align center
@a BufferingBar autoPlay true
(= CaptionButton cuefﬂlnls Hone
preview None
30 ForwardButton scaleMode maintainAspectRatio
E2 FullScreenButton skin None
&) MuteButton skinAutoHide false
skinBackground/ 0.35
O PauseBitton skinBackground(#993999 (NI
&) PlayButton source
5 PlayPauseButton wvolume 1
& SeekBar

[®] StopButton
=] ValumeBar

Figure 2.18: The Components and Components Inspector panels in Flash Professional CS3.

Several chapters in the book will use the ActionScript 3 User Interface components
as well as the FLVPlayback components. We'll set properties using both the panel
interfaces and ActionScript. We'll also create Flash Video applications without
using components since that is a question Flash developers often have.

The Actions Panel

The Actions panel, not surprisingly, is where you enter ActionScript code. It is
shown by choosing Window > Actions. A few Actions panel features that | use
regularly are at the top of the panel.

| click the Check Syntax button before testing a movie. It reports coding errors in
the Compiler Errors panel.

o To the left of the Check Syntax button is the Auto Format button. It reformats

)

code according to the settings in the Auto Format preferences. This is helpful when
| enter code quickly and want to have consistent indenting and spacing.

Be sure to check the Auto Format preferences first though, so you can adjust them to your
coding style. Choose File > Preferences (Windows) or Flash > Preferences (Mac OS X) and
select the Auto Format category.

o The Code Collapse buttons collapse an arbitrary selection of code down to a

button. This feature is great when working on a section of code because you

can collapse the code blocks you're not currently working on. Note that you can
also collapse code by clicking the collapse/expand controls to the right of the line
numbers in the gutter. To expand code that has been collapsed, click the collapse/
expand controls in the gutter or click the Expand All button.

To collapse code that exists outside of the current selection (inverse code collapse) press the
Option key (Mac OS X) or the Alt key (Windows) and click the Collapse Code button.

36 Chapter 3: An Introduction to Flash Professional and ActionScript 3

R B B Y PDEAE
D ———Tpockage..]
i) function CustowPlaver () {
21
E _ 22 A Wire up the controls
T 3 | vidPlayback .playPauseButton = playl sback :
4 widF topEUtton = stopF H
25 widD Layback = mustcllayback ;
6 vidPlayhock .ze=kRor = seekP loyhock 3
i viuP Luybuck buf fer ingBur = buf TerP luybuck ;
28 widP layback .full = ful dack ;
9 vidPlayhack .ful |SerepnTokeliver = folse;
E)
n S/ zat the source for the video clip
a7 APl ayhock _S0Urce = T 1INKATS F v 3
33
34 A7 When the video iz finished, revind it
3 WidP lavback .autokewind = true;
EL
37 // Current Time Indicotor ond total time
38 A7 Add a s hat will listen tor playheod updates convert from milliseconds tO mmiss
el widP layback . ventListener (VideoCvent.PLAVICAD_UPDATC, setTimeCode);
48
41 £/ Set the buttons for fit to stage
42 fitToStageDutton.setStyle ("icon", FitToStageOff);
43 fitToStageButton.setStyle {"selectedplcon”, FitToStogeOn);
&4 T1itToStogebutton.setityle (“"selectealverlcon”, FitToStagedn);
45 fitToStageButton.actStyle {"sclectedbounlcon”, FitToStageDn;
46
a7 Af Turn button into a toggle
48 fitToStageButton.toggle = truc;
49
58 A7 AUd u click event lislersr Lo Lhe bullun und run Uhe LogyleF ilTuSloge Tunclion
51 fitToStageButton.oddEverkListencr (MouscEvent.CLICK, togglcFitToStage);
57 fitTnStogeRutton . selected = frie;
53
54 ik wk,
F L Line 22 of 36, Col 1

Figure 2.19: Check Syntax (A), Auto Format (B), and Code Collapse command buttons
(©), and Collapsed Code button (D), Collapse/Expand controls (E), and Line and Column
Numbers (F).

Compiler Errors and Output Panels

The Compiler Errors and Output panels are used extensively when debugging
code. The Compiler Errors panel is automatically shown when errors occur in
code. There are times when the error description isn't clear. What | usually do in
this case is right-click (Windows) or Control-click (Mac OS X) on the error listing in
the Compiler Errors panel and choose Copy Description. | will then paste the error
description into Google and search for it. The returned search results will often list
several blog or forum posts where someone has encountered the same error and
community members have responded with solutions.

-
] Compiler Errors - 1 reported * | =
Location Description
ticon.

Co to Source
Copy Description |-,

CustomPlayer.as, Line 42 1084: Syntax errg|

] Copy Source

| Clear

Figure 2.20: The Compiler Errors dialog.

The Output panel comes in handy when trying to test a portion of code. When |
want to see if a method is being called properly, | will add a trace statement to the

Interface Overview 37

method and test the FLA file. If the method is called properly, | will see the text |
traced in the Output panel.

The Help Panel

| use the Help panel a lot. It's displayed by choosing Help > Flash Help. | spend
most of my time reading not about features, but about ActionScript. When I'm
using a class for the first time, | will look the class up in Help and learn what its
methods and properties are and | will also read the sample code listings if they
exist for the class.

Testing with the Preview Window

To preview your work, you choose Control > Test Movie. By default, the Pre-
view window appears in a separate window. If you'd like to test movies in a new
tab in the Flash interface, follow these steps:

Choose File > Preferences (Windows) or Flash > Preferences (Mac OS X).
Select the General category.

Check Open test movies in tabs and click OK.

Wrapping Up

This chapter presented highlights of the Flash Professional interface and how to
make best use of it when authoring Flash Video content. It certainly won't be
the only introduction to user interface features. As we progress through each
tutorial, | will discuss the user interface or ActionScript concepts where appropri-

ate. With that said, let's move on to the next chapter and learn about encoding
Flash Video.

38 Chapter 3: An Introduction to Flash Professional and ActionScript 3

CHAPTER 4

Encoding Flash Video

Understanding how video is encoded on your cam-
corder, decoded on your computer, and encoded for
delivery helps you get the best quality possible. It
also reinforces why best practices should be fol-
lowed when shooting video.

® Analog and Digital Theory.........cccveivieeiiieciie e, 40
© COMPIESSION .ottt 42
® Important Factors Regarding Compression 44
© ENcoding DECISIONSeeevvieeiiieiciiee e 47
© Flash Video Encoding Settings.........ccccoovvveviviiiiieeecieeee. 56
© Encoding TutorialS.........ccccovvieiiiiiiiiee e 62

© WIapPing UP ..coveeiieiiee et 70

This chapter covers converting video from its original format to one of the Flash
Video codecs: Sorenson Spark or On2 VPé. It starts, however, with a brief intro-
duction to analog and digital theory. It's meant to help you understand how digital
processing influences the quality of your video. It also discusses the factors outside
digital processing such as Internet access speed, site quota limits, and targeting a
specific version of the Flash Player.

Analog and Digital Theory

For something to be analog means that it is analogous, or similar to the original.
Let's take an example of cymbals clapping. When they collide, sound vibrations are
produced. An analog microphone and recorder record the cymbals as an analog
waveform. The waveform reproduces sound vibrations that are analogous to the
vibrations of the original.

So one might ask, “When a digital recording of the cymbals plays back, the sound
it produces appears to be analogous to the original sound. What is the difference?”
The difference is in how each method represents the recording of the original
sound. An analog recording represents the sound as a smooth physical waveform.
A digital recording, by contrast, is a sampled, discreet, and often compressed
approximation.

The Analog-to-Digital Process

Another misconception is that digital video cameras are completely digital. This

is not true, because the charged coupled device (CCD) outputs an analog signal
measured in volts that the camera’s digital signal processor (DSP) converts into a
digital signal. This conversion involves two steps: color sampling and quantization.
These steps yield a data rate that then can be further compressed before the video
is stored or transmitted.

Color Spaces

Before we talk about color sampling, it is important to have a brief discussion
about color spaces. Digital pictures originate in the RGB (red, green, and blue)
color space. Computer-generated motion graphics and renderings also originate in
RGB. This color space has three discreet channels of color where color is distributed
across red, green, and blue. When the three channels are combined, they form a
full-color image.

Broadcast video, however, is broadcast in a different color space known as Y'CbCr.
You will also hear Y'CbCr referred to as YUV or possibly YIQ. This is incorrect.
Video software developers (or let's blame their marketing departments) have
constantly referred to Y'CbCr as YUV. YUV actually refers to the way Y'CbCr

is represented in PAL, and YIQ is the actual way Y'CbCr is referred to in NTSC.

40 Chapter 4: Encoding Flash Video

Y'CbCr represents luma (Y) and chrominance (Cb and Cr). The Y channel contains
all green information as well as parts of the red and blue information. The Cb and
Cr channels contain the remaining red and blue information. Broadcast television
uses the Y'CbCr color space because it is easier to compress with little noticeable
difference (more on that in the next section) and because the luma channel, or Y,
offers compatibility with black-and-white televisions.

Color spaces may affect your material if you convert between color spaces in
postproduction. If your nonlinear editor (NLE) works in YUV, but your motion
graphics package works in RGB, there will be slight color shifts. If color consistency
is important, you should take the time to learn more about these issues. One way
is to search the Internet with the query string, “converting YUV to RGB."

Color Sampling

The human eye is better at discerning between shades of gray than it is at discern-
ing between different colors. Video standards exploit this weakness by preserving
the luminance channel while taking fewer samples of the color information. Most
commonly, color sampling refers to the stored ratio of luminance to chrominance
across four lines of video.

4:4:4 4:2:2 4:1:1 4:2:0
do/do|do/do| |0|®|d6|®| [0/ @|%|°®
do/do|do/do| (0| ®|d6|®| (6/®|®|® @|%|®
do/do|do/do| |0|®|d6|®| [0/ @|%|°®
dodo/do/do| |0|®|6/®| [(B[®|®|® Q|®%]°®
@Y ®Cb OCr

Figure 4.1: Color sampling.

4:4:4:(4) samples every pixel for color and luminance in the 4 x 4 array of pixels.
Itis used when quality is of the utmost concern and storage space is not an issue.
Given a proper conversion, 4:4:4 Y'CbCr is nearly identical to the original RGB
source in picture and size and so it is the highest-quality sampling rate. It is nearly
identical because rounding errors can occur when converting between the two
color spaces. As a result, 4:4:4 is limited to high-end applications in production and
postproduction and is not used in broadcast or other means of distribution. The
fourth 4 represents the alpha channel or key when it is present.

4:2:2 samples every pixel in the first and third columns for luminance and color but
samples only luminance for the second and fourth columns. Think of it as all of the
flavor with half of the calories. 4:2:2 is used in DVCpro50 and 100 HD cameras.

4:1:1 samples every pixel for luminance but samples only the first column for color.
It's all the flavor with a quarter of the calories. 4:1:1 is used in NTSC Mini DV.

Analog and Digital Theory 41

0 4:2:0 samples every pixel for luminance but alternates between sampling Cr and
Cb color information. Like 4:1:1, it's all the flavor with a quarter of the calories, but
some bites have pepper and some have salt and you chew to experience the flavor.
4:2:0 is used for broadcast, PAL DV, and DVD, but it is also part of the prosumer
high-definition video (HDV) standard.

When working with video and computer-generated imagery, or even working be-
tween different video software packages, a noticeable color shift can result when
converting between RGB and YUV color space.

Quantization

The difference between a frame of digital video and a frame of film is that the
digital video frame is described in discreet color values, whereas the color values
for a frame of film are continuously variable and infinite. For example, a pixel in an
8-bit video frame has a tonal value between 0 and 255 for each of its three chan-
nels Y'CbCr.

Quantizing each frame is the next step in analog-to-digital conversion. It involves
assigning a precise value to each image pixel based on the image's bit depth. In
most cases, this is 8 bits per channel or 24 bits for all three. For this level of quan-
tization, a pixel is one of 16.7 million colors. The actual number can actually be
lower when shooting NTSC since its 8-bit gamut ranges from 16 to 235.

Data Rate

The data rate for a digital video format is calculated by multiplying the number of
horizontal pixels sampled for Y'CbCr by the number of vertical pixels and multiply-
ing this sum by the quantizing level (bit depth) and the frame rate. This calculation
is the raw or effective data rate. Applying a compression algorithm can get the
data rate even lower.

Compression

Compression decreases a video segment’s storage and bandwidth requirements
by removing or reducing redundant or less-important information. Compression

is not always a given with digital video. Depending upon the stage in production,
postproduction, or distribution, different compression schemes, or compression-
decompression algorithms (codecs), come into play. Codecs are written to solve
particular needs. For instance, the codec used for real-time teleconferencing is not
sufficient for displaying a feature film in a theater, and vice versa. In the first case,
the result is akin to blowing up a one-inch postage stamp to 12 feet across. In the
reverse case, the teleconference never gets by the first frame as the video signal is
hundreds of times larger than the recommended size.

42 Chapter 4: Encoding Flash Video

The following list classifies codecs by their place in the spectrum between produc-
tion and distribution:

Production codecs are used by the camera to store video onto media (in most
cases tape, but disc and solid-state memory are being used). A camera normally
only supports one codec, but higher-end cameras geared at film and news produc-
tion are now capable of supporting a few codecs (some even employ little to no
compression). A production codec has to preserve as much information as it can

in the audio and video signals while still being economically stored on the camera
media.

Postproduction codecs are present, but most video producers simply use the pro-
duction codec they shot with in the postproduction process. Postproduction or in-
termediate codecs are used when the video producer needs to incorporate motion
graphics, special effects, or is required to transcode material into a specific format
for television or film distribution. These codecs are used because they are better

at preserving more audio and video quality than production codecs and because

more storage and specialized processing power is available during postproduction.

Distribution codecs are used for delivering audio and video content quickly and
efficiently. They squeeze the material to the smallest size possible and ensure that
the media doesn't clog a network connection. While audio and video quality de-
creases significantly, newer codecs and Internet speeds are improving to the point
that Internet video can be as good as DVD video. The Flash Player includes two
distribution codecs: Sorenson Spark and On2 VP6 and the VP6 codec can certainly
produce video that rivals DVD quality.

Lossy and Lossless Codecs

While some codecs are lossless or near lossless, most production, postproduction,
and distribution codes are “lossy” codecs. That is to say, some information is lost
in the encoding process. In general, you will use lossy codecs throughout your
project, but try to minimize their use.

By contrast, lossless codecs preserve most if not all of the information, but require
significantly more processing power and available storage. There are also lossless
codecs that preserve most if not all of the original image information. They are
great for preserving high levels of quality, but they do not offer real-time de-
compression with normal computing hardware, which is important when you are
editing material. To make up for this, video producers working in this format often
purchase a video board that greatly accelerates the decompression and compres-
sion. Production and postproduction codecs can be either lossy or lossless. Distri-
bution codecs are always lossy and probably will continue to be until processing
power, access speeds, and storage become irrelevant.

Compression 43

Intraframe and Interframe Compression

Intraframe compression looks for patterns within the same frame, and interframe
compression looks for patterns across frames. Intraframe compression offers bet-
ter quality than interframe compression because the integrity of each frame is
maintained with intraframe compression. Since interfame compression attempts to
remove redundant information across different frames, some unique information
is lost. Normally, codecs either are just intraframe or employ both intraframe and
interframe compression methods.

DV and HDV are two lossy codecs widely used in production. DV and its larger-
capacity siblings, DVCPro 50 and DVCPro 100, are intraframe codecs whereas
HDV is both an intraframe codec and an interframe codec. Both Flash Player co-
decs (Spark and VP6) are lossy codecs that employ both interframe and intraframe
compression. The keyframe interval setting in the Flash Video encoder specifies the
amount of interframe compression.

Compression Ratios

Compression ratios represent how efficient a codec is by relating the original size

to the compressed size. A compression ratio of 2:1 is considered lossless, and
higher compression ratios most likely involve sacrificing some image quality for size.
Hardware-based codecs tend to be high quality or lossless but require hardware
such as a board to work. Software-based codecs vary according to their purpose.
Streaming and real-time playback codecs tend to have high compression ratios,

and there are now almost completely lossless software codecs available for produc-
tion archiving and exchange. Many DV codecs are not hardware-based and have

a compression ratio of 5:1. Sorenson Spark and VP6 both have high compression
ratios (in the ballpark of 30:1).

The Takeaway

Compression is used from the moment you press record on the camera to the mo-
ment your audience presses play on your Flash movie. When producing video, you
will want to start with the best codec possible. This will be limited by your camera.
When going into postproduction, remain at this codec, but also consider keeping
material in a higher quality production codec if you are going to be combining
your source material with text, graphics, or effects. How you deliver your material
to your audience often dictates what distribution codec to use. In short, you main-
tain quality by not compressing the video to a distribution codec until it is ready to
go on your web site.

Important Factors Regarding Compression

How you encode your video is influenced by these two factors: your audience’s In-
ternet access speed and the Flash Player version you wish to target. The first factor

44 Chapter 4: Encoding Flash Video

is important because not everyone has access to a high speed Internet connection.
The second is important because there are some people who have not updated
their version of the Flash Player.

Internet Access Speed

The speed at which your audience accesses the Internet will often dictate the
speeds at which you offer your material. If a significant portion of your audience
accesses the Internet using low-bandwidth dial-up modems, you will certainly
want to publish a video with a total bit rate around 40k a second. Conversely,
users accessing the Internet over DSL or cable modems can handle a total bit rate
between 200k and 500k per second.

Flash Player Versions and Video Codecs

With Flash Video, there are two codecs to choose from: the Sorenson Spark codec
and the On2 VP6 codec. The former was introduced in Flash Player 6 and the lat-
ter was introduced in Flash Player 8.

Flash Player Version

6 7 8 9
Sorenson Spark Codec Progressive Video On2 VP6 Codec Full-Screen Support
Embedded Video Alpha Channel Support

Streaming Video

___ 9
Flash Professional Authoring Version
nnx nnx 2004 8 cs 3
Media Components FLVPlayback Components Skin Full-Screen Support

Custom Playback Component Video Preview

Video Import Wizard Closed Captioning

Figure 4.2: Video features introduced across Flash Player and Flash Professional releases.

Sorenson Spark

When the Sorenson Spark codec was initially introduced in Flash Player 6, the
player only supported embedded video (which was usually small in size) or stream-
ing video. Embedded video has to be added to the SWF, which makes the SWF
inefficiently big and prone to sync issues since the frame rate for the SWF and the
FLV need to be the same or a multiple of the other. Having the FLV reside on a
server and streamed into a SWF is a much better option, but it requires the content

Important Factors Regarding Compression 45

producer to have a Flash Streaming Server (it was originally called Flash Communi-
cation Server but its name has since changed to Flash Media Server).

With the introduction of Flash Player 7, an FLV file could reside alongside a SWF
on a regular web site and be progressively downloaded into the SWF without

a streaming server. While this doesn't always work as well as playback from a
streaming server, it allows anyone with a web site to easily host and deploy video
with their Flash content. Player 7 also improved playback performance, and as a
result of these two developments, the use of Flash Video increased dramatically.

The Spark codec is a paired-down version of H.263, a codec originally intended for
real-time video conferencing. It excludes some of H.263's compression and decom-
pression features in order to keep its footprint small. While this seems unfortunate,
it was necessary, since Macromedia (now Adobe) has always strived for keeping
the Flash Player’s footprint as small as possible.

To learn more about the differences between the Spark and H.263 codecs, read Fabio Son-
nati's blog at: www.progettosinergia.com/flashvideo/flashvideoblog.htm.

On2 VP6 Codec

The VP6 codec developed by On2 Technologies was licensed by Macromedia for
Flash Player 8. It was added to keep the Flash platform’s video offerings competi-
tive. The primary advantage VP6 has over Spark is that it offers the same quality at
a much lower bit rate (or significantly increased quality at the same bit rate). This
difference can really be seen in scenes with motion, blur, or gradations. For ex-
ample, footage compressed with Spark will look choppy, pixelated, and have bands
of color, while the same footage compressed with On2 will appear much smoother
and preserve more detail.

A great tool for comparing codec and encoding software quality is the Flash Video FAQ site
put together by Roguish. It's located at: http://www.flashvideofaq.com/.

The VP6 codec also introduced support for alpha channels. This allows the Flash
Video producer to seamlessly composite video on top of other elements inside a
Flash movie or on top of elements in a web page. An alpha channel is a separate,
grayscale layer of video that creates transparency in the video. Where there are
white or light pixels, the video will appear transparent, and where there are dark or
black pixels, the video will appear opaque.

46 Chapter 4: Encoding Flash Video

The foreground element is shot in front An alpha channel is created from keying
of a green screen the background color out

1

X/
= L9
The background element ,/

I /i

The alpha channel is used to overlay the
foreground element over the background
element

Figure 4.3: Alpha Channels

So the question people often ask is, “Which codec should | use?" In short, Soren-
son Spark is the way to go when you want the greatest reach. The On2 VP6 codec
is obviously the choice when you require better quality, increased size and perfor-
mance, and more creative options. Or if you look at Adobe's published numbers on
market penetration, simply use On2 VP6 because 93 % of users have Flash Player
8 or above. The question then really becomes: Does the user have Flash Player 8
or Flash Player 9? Flash Player 9 offers ActionScript 3, which is significantly faster.

If you can identify your audience early in the game and what Flash Player the majority of
them have installed, your decision becomes much easier.

Encoding Decisions

With your target bandwidth and player version known, it's time to look at the
video you wish to deliver and analyze its:

Pixel dimensions: Is it standard definition (roughly 720 x 480) or high definition
(1280 x 720 or larger)?

Frame rate: Is it 24, 25, or 30 frames per second (fps)?

Encoding Decisions 47

3.

Aspect ratio: Is it normal video with an aspect ratio of 4:3, or is it widescreen video

with an aspect ratio of 16:9?

Frame format: Is it interlaced video with video fields interleaved to form a full

frame or is it progressive video that has full frames of video?

Content: Does it have a lot of motion, fast cuts, and transitions?

Pixel Dimensions

Pixels (picture elements) are the tiny squares of color arranged on a two-dimen-

sional grid that form an image. The aspect ratio of a single video pixel is its width

relative to its height. One would imagine that video pixels would be perfectly

square like the pixels on a computer screen. This could not be further from the
truth! The NTSC and PAL digital video formats have rectangular (also referred to as
non-square) pixels. A 4:3 NTSC video is 10% narrower than a computer’s square
pixel, whereas a 4:3 PAL video is roughly 7% wider than a computer's square pixel.
These formats have rectangular pixels because of recent broadcast technology.

NTSC AND PAL VIDEO FORMATS
National Television Standards Committee
(NTSC) is the video broadcast standard used
in the United States, Canada, and Japan.
Phase Alternate Line (PAL) is the video
broadcast standard in Europe and parts of
Africa and Asia. NTSC video plays at 29.97
fps at a resolution of 720 x 480 pixels. PAL
video plays at 25 fps at a resolution of 720
x 576 pixels. Although NTSC has a slightly
higher frame rate, PAL has slightly greater
resolution and is closer to the frame rate

of film, 24 fps. The two formats also have
different pixel aspect ratios.

The frame rate of film is based on an
integer—24. This is to say that the time
base for film accurately correlates to real
time. The frame rate for NTSC video, on the
other hand, does not accurately correlate

to real time because its frame rate is not
based on a whole number. The frame rate
for video is 29.97 fps. This discrepancy
originated when color television was intro-
duced in the United States. Black-and-white
television broadcasts ran at a whole frame
rate of 30 fps. When color was introduced
to the broadcast signal, the frame rate had
to be adjusted to maintain compatibility
with the black-and-white standard to keep
the picture and sound synchronized. As

a result, running video at 29.97 frames

per second without dropping frames does
not correspond to real time—in one hour,
there is a difference of 108 frames between
29.97 non-drop-frame video and real time.
Dropping, or not counting, a pair of frame
numbers every 66 seconds and 20 frames
keeps NTSC video in step with real time.

NTSC video used to be 640 x 480 or 648 x 486. In the 1990s, the NTSC D1 video
standard was defined to be 720 x 486. By packing more discreet blocks of resolu-
tion, more detail was made available. When DV and DVD were defined, however,
720 x 480 was considered preferable to 720 x 486 mostly because the compres-
sion algorithms used in DV and DVD rely upon DCT compression algorithms,
which work on 858 pixel blocks.

48 Chapter 4: Encoding Flash Video

Large frame sizes require higher bit rates and are larger in file size. When video
contains detail that is crucial to the viewer's understanding, crop the video to focus
on the important area, because shrinking the entire image down makes it practi-
cally worthless. Interviews, or “talking head” video, can be much smaller since the
framing is usually tight on the subject and the audio is usually more important than

the image. Video shot using a high-definition (HD) camera will look better. HD
resolutions are either 1280 x 720 or 1920 x 1080.

320 x 240

320 x 180

1920 x 1080 HD 1280 x 720 HD 720 x 576 (PAL) 720 x 480 (NTSC)

Figure 4.4: Comparing the relative size of different video standards.

Frame Rate

Frame rate is the number of frames shown per second. Higher frame rates cre-
ate smoother motion but also larger file sizes, because there are more frames to
compress and higher bit rates are required. It is recommended that you work in
multiples of the source's original frame rate. For example, with 24 fps video, you
can consider encoding at 24, 12, 8, or 6 fps, and with 30 fps video, you can con-
sider 30, 15, or 10. When there is little motion in the video (such as talking head
video), you can often get away with lower frame rates because the sound is often
more important than image.

Aspect Ratio

Nearly all NTSC and PAL video is created with a 1.33 aspect ratio. This aspect ratio
is referred to as the “standard"” because it has been used for decades. Moving for-
ward to today, most plasma and LCD televisions that support high-definition video

Encoding Decisions 49

have a 16:9 or a 1.78 aspect ratio. This aspect ratio is referred to as “widescreen”
because it is closer to film aspect ratios.

With the Mini DV and DVD-Video standards, standard-definition (SD) video can
also have a 16:9 aspect ratio. Shooting 16:9 also gives you more of a film look,
and in the future, when televisions are mostly 16:9 rather than 4:3, your footage
won't be pillar-boxed, with black bars on both sides of the frame, which is how
4:3 footage is fit into a 16:9 display. Video footage at 16:9 is created by a video
camera with a native 16:9 CCD or with an anamorphic lens adapter. The anamor-
phic process compresses the video image horizontally to a 4:3 video file that is
stored on tape. During the capture process, you flag the video as anamorphic and
the nonlinear editor (NLE) stretches the video back to the 16:9 aspect ratio during
playback.

With Flash Video, you need not worry about action and title-safe margins because
computer displays do not have underscan and overscan issues. This also means
you can crop video to best suit your design or material. You may, however, want to
use one of the standard aspect ratios if you are going after a specific look.

I2.40:1 I’I 6:9 (1.78:1) I4:3 (1.33:1)
[
1.85:1
4:3(1.33:1) __| 1.85:1
16:9 (1.78:1) _ 2.40:1 __

Figure 4.5: Common aspect ratios used in film and television production.

50 Chapter 4: Encoding Flash Video

Interlaced and Progressive Frames

The largest drawback for NTSC and PAL video from a production and aesthetic
standpoint is that their playback is interlaced. Video has been interlaced since the
beginning of television. Three factors determined the frame rate for NTSC video:
bandwidth constraints, AC current, and the introduction of color television.

Interlaced Progressive

Figure 4.6: Interlaced and progressive footage.

The initial goal for television was to have the frame rate be 60 fps, which easily
produces an image without flicker. 60 fps was also chosen because it matches the
frequency of AC electrical current, which is 60 hertz or cycles per second. Since
cathode ray tube (CRT) televisions rely upon electricity to a great degree, having
the timing of the display match the electrical current simplifies a lot of things.

Unfortunately, broadcasting 60 fps consumed too much bandwidth, and thus the
engineers went back to the drawing board and came up with the method known
as interlacing. Interlacing is the process of splitting each frame into two separate
fields. Each field contains half of the vertical resolution of the original frame. It's as
if the image is sliced horizontally into many layers, and the even slices create one
field and the odd slices create the other. Since each field has half of the original
resolution, it occupies half the bandwidth, and since the image is refreshed 60
times per second, flicker is not as noticeable. NTSC video is broadcast at 29.97 fps
or 59.94 fields per second. PAL video is broadcast at 25 fps or 50 fields per second.
The Europeans went for consistency with their film production methods, which call
for film to be shot at 25 fps and to match the AC current in European countries,
which is 50 hertz.

While interlacing saves transmission bandwidth and produces smoother motion
due to its higher recording rate, it produces a less detailed image than progres-
sive video. Interlaced fields are interleaved and recorded 1/60 of a second apart
from one another. This shakiness is most noticeable when freezing on a frame of
interlaced video of a quick motion like a bouncing ball. Before cameras such as the
DVX100 and the XL2, most SD video cameras produced interlaced footage. With
these new cameras, progressive footage can be shot and is better for film outs,
blue screen and green screen compositing, and compression for DVD and stream-
ing video.

Encoding Decisions 51

To produce better Flash Video, shoot using a progressive frame rate wherever your
camera supports it. It will compress better and faster since you will not have to
de-interlace it. If you shoot in 24p mode, which is 24 fps, your video will be 20%
smaller than if you shot at 30 fps. If you shoot interlaced video during production,

be sure to de-interlace it before encoding to Flash Video.

24P VIDEO

The 24p format satisfies the needs of both
those going to film and those requiring
progressive footage for more efficient
streaming video.

The majority of low-cost 24p cameras shoot
in both interlaced and progressive modes.
Interlaced footage is shot at 59.94 fields
per second, or if you prefer to refer to the
footage in frames, 29.97 fps. Progressive
footage is shot at 29.97 fps or 23.976 fps.
In either mode, video is captured progres-
sively at 24 fps. Pulldown is then applied in
the camera to convert the frame rate from
24 fps to 29.97 fps before being recorded
to tape. The cameras offer two methods for
applying pulldown: 24p standard and 24p
advanced.

24p Standard

The 24p standard mode applies the same
3:2 pulldown cadence used when film is
processed by a telecine for television broad-
cast. This mode is fine for video intended

to be broadcast, but if this is not your

goal, you are better served by shooting in
the advanced mode. Despite offering the
smoothest conversion between 29.97 and
23.976 fps, the integrity of the original pro-
gressive frames is sacrificed for compatibility
with 29.97 material. Looking at the cadence
diagram makes this more evident. The
standard mode compromises the integrity of

Frame Content

every third frame in the original progres-
sive source because the original progressive
frame has to be recreated by recombining
fields from two interlaced frames. This is
not as clean as the advanced mode because
both frames have to be decompressed

and then recompressed to create the third
frame.

24p Advanced

The 24p advanced mode employs a
pulldown method of 2:3:3:2. As with

the standard mode, or 3:2 pulldown, the
cadence begins by recording one frame
onto two fields and the second frame on
three fields. Instead of recording the third
frame onto three fields, it is recorded onto
two fields, and the fourth frame is recorded
onto two fields. When the original frames
are mapped to fields, the pattern is AA BB
BC CC DD. Now the excitement around the
advanced mode is that this cadence faith-
fully encodes the full progressive frames
into an interlaced signal. The advance
mode's cadence, 2:3:3:2, is subtly differ-
ent than the standard pulldown of 2:3:2:3.
This difference in rhythm allows for all the
original frames to be recovered intact from
single interleaved 60i frames. An NLE that
understands the mode’s pulldown pattern
throws away the “23" frame and uses the
remaining frames to restore the original pro-
gressive footage.

In order for active video (think sports, dance, or action scenes) to look good en-

coded, great care is required in the encoding process. This is simply because active

video has more detail to preserve across multiple frames. By contrast, simpler video,

such as a talking head against a stationary background, requires less care since

there's less new detail in each successive frame.

To make active video look good, the encoding will often employ a higher bit rate,

two-pass encoding, and variable bit rate encoding. The first method makes the

52

Chapter 4: Encoding Flash Video

video larger since more bits per second add to the encoded video's file size. The
second two methods can reduce the final size while improving overall quality, but
they both increase the time to encode the video and sometimes they're not avail-
able in the encoding software. Two-pass encoding means the encoder looks at the
video twice so it's bound to take longer. Variable bit rate encoding takes longer
because the encoder has to more efficiently pack the video based on the current
level of detail and the budgeted bit rate.

To help simplify the frame content, here are some things you can do during pro-
duction: shoot using a tripod and limit handheld shots, light the subject evenly, set
the proper exposure and white balance, and shoot in progressive mode if possible.
In postproduction, use transitions and effects wisely and don't introduce intermedi-
ate compression steps.

Bit Rate

Bit rate is the amount of data (measured in bits or bytes) per second that the
encoded video and audio require for smooth playback. The bit rate you choose is
ultimately influenced by your audience’s Internet access speed and the process-
ing power of their computers, but it is also influenced by how you plan to deliver
your video (via a streaming server, by progressive download, or by local playback
on a DVD-ROM); the quality (inherent motion, frame size, and frame rate) of the
video; and the quality of the audio (number of discreet audio channels and sample
frequency). The more data footage occupies per second, the higher the quality and
the slower it is to download. If the footage does not contain a lot of motion, you
can choose a higher bit rate.

Voice-only recordings can also be heavily compressed if the original source audio
was cleanly recorded. With good audio, you can encode a 64 Kbps mono audio
track and everything will most likely be fine. If your soundtrack has important
nature sounds or is showcasing a musical performance, however, you should
devote more of the bit rate to the audio. In these cases, most viewers are willing to
sacrifice video quality for better audio.

Constant and Variable Bit Rate

With the constant bit rate compression method, the data rate is held constant
regardless of what is being compressed. Portions that do not require the full data
rate waste space. Portions that require more than the full data rate suffer in quality.
By contrast, the variable bit rate method analyzes content in multiple passes and
varies the data rate based upon specified data rate targets. Portions that need de-
tail are given the maximum amount of bandwidth, and less detailed sequences are
given lower amounts. That all said, variable bit rate encoding is more efficient and
tends to deliver better quality video but it takes longer to encode than constant bit
rate encoding.

Encoding Decisions 53

CONSTANT BIT RATE VARIABLE BIT RATE

Constant Data Rate Average Data Rate Maximuszata e

& : 2
N | [7

Minimum Data Rate

Figure 4.7: Comparing constant and variable bit rates.

Table 4.1: Recommendations for choosing a delivery method based upon your video.

Connection Speed Width Height FPS Keyframe Interval Video Bit Rate Audio Bit Rate
Source video includes a lot of motion, zooms, transitions, and action sequences

1.5 Mbps 320 240 30 60 750 Kbps 96 Kbps

(local area network)

768 Kbps 320 240 30 60 575 Kbps 64 Kbps

(fast DSL)

384 Kbps 320 240 30 30 340 Kbps 32 Kbps

(slow DSL)

56 Kbps 160 120 10 20 40 Kbps 8 Kbps

(dial-up modem)

Source video includes little to no motion such as “talking head" video

1.5 Mbps 320 240 30 60 650 Kbps 96 Kbps
(local network)

768 Kbps 320 240 15 30 230 Kbps 64 Kbps
(fast DSL)

384 Kbps 320 240 15 20 150 Kbps 32 Kbps
(slow DSL)

56 Kbps 160 120 10 20 40 Kbps 8 Kbps
(dial-up)

Disk Space and Bandwidth Quota

Disk space is the amount of data you can store on your web site at any given time.
Network transfer is the amount of data your site can transfer per month. Both of
these are set by your hosting provider as part of your hosting plan. While HTML
and optimized graphics and Flash movies are fairly small, Flash Video can occupy

a lot of space and can fill up your web site's disk space quickly. When thousands
of users download videos from your site, once you have gone over the network
transfer quota, your hosting provider may block additional visitors or charge you
extra for any additional transfers. If you plan to serve a lot of video or if your site
becomes very popular, you either will want to compress your video more or pay
additional fees for a larger bandwidth quota.

Video Delivery Methods Supported by Flash Video

Flash Video supports three forms of delivering video: embedded, streaming, and
progressive download. Embedded video should only be used for very short and

54 Chapter 4: Encoding Flash Video

small video clips: usually no more than 10 seconds worth of video at thumbnail
resolution (80 x 60 pixels, for example).

Keeping FLV files external is considered a best practice since it offers better performance and
memory management. External FLV files and the main SWF file can also have frame rates
independent of one another.

Streaming Flash Video is delivered by sending the video directly to the desktop
from a server equipped with the Flash Media Server. This machine is dedicated to
streaming Flash content such as video. The server is suited for delivering video to
many users simultaneously. If you cannot install a Flash Media server on your web
site, Adobe has partnerships with a few Content Delivery Networks (CDNs) that
are licensing Flash Video Streaming Services for streaming Flash Video; Akamai,
VitalStream, and Mirror Image are a few. You may upload the FLV file to a server
and use one of their skins or use a skin on your server that references the FLV on
their server.

Progressive download is not to be confused with progressive video frames. With
progressive downloads, the client computer downloads the video content from
a web server. Progressive downloads are great when you don't have access to a
Flash Media Server and simply want to put the files on your web site along with
HTML, images, and other web documents.

Table 4.2: Recommendations for choosing a delivery method based upon your video.

Video Embedded Progressive Streaming
is under 5 seconds X X

is over 30 seconds but infrequent viewing X

is over 30 seconds and frequent viewing X

requires instant start or playback X

requires protection X

is live video X

is variable based upon visitor's bandwidth X

Flash Video Encoders

There are now several convenient ways to encode Flash Video. This chapter covers
the Adobe-provided encoding solutions.

The Import Video Wizard in Flash Professional CS3. It walks you through picking
a video, setting compression options, and picking a skin (a user interface) for play-
ing, pausing, skipping chapters, and adjusting sound.

The Adobe Flash Video Encoder. A stand-alone application for encoding a single
file or a batch of video files. This utility can be installed separately on a dedicated
video workstation.

Encoding Decisions 55

3.

The Flash Video Encoding Settings Export Module for QuickTime. This module is
available to any product that supports QuickTime export modules such as Adobe
After Effects, Adobe Premiere Pro, or Apple Final Cut Pro.

Flix Standard and Flix Pro. These are the encoders offered by On2, the developers
behind the On2 VP6 codec available in Flash 8 and above. It has two-pass encod-
ing and variable bit rate encoding.

Sorenson Squeeze. Sorenson Media created the Spark codec used in Flash Player 6
and above. Like Flix, it has two-pass and variable bit rate encoding.

To learn more about these encoders, go to Adobe's Developer Center and read “Selecting
a Flash 8 video encoder” by Elliot Mebane: http://www.adobe.com/devnet/flash/articles/
selecting_video_encoder.html.

Flash Video Encoding Settings

When you run the stand alone Flash Video Encoder, you see a window with a
table grid, several buttons, and a status area.

e8n Flash Video Encoder 1
To start encoding, drag video files into the gueue or dick Add.
| Source File Settings Statusy | |
| ofaura 320%240.mov Flagh & - Medium Quality (800kbps) Waiting | (Add...)
-../bubhles_3120%240. mav Hash ¥ - Medium (Juality (400khps) waiting ———
-../random_320x240.mov Flash 8 - Medium Quality (400kbps) Waiting {_ Duplicate)
o fpufly_320x240.muv Flash & - Medium Quality (400kbps) Waiting
wefcloud_320x240.mov Flash 8 - Medium Quality (400kbps) Waiting
{ Settings...)
i [Start Queue)
Source file:
Qutput file.
Video codec: Audio codec:
Video data rate: Audio data rate:
Elapzed time:
Time left:
Elapsed gueue time:

Figure 4.8: The stand alone Flash Video Encoder application window.

As you add videos to compress, they appear in the table that is referred to as the
encoding queue. The queue has columns listing the source file name and location,
the setting or encoding profile, and the encoding status. By default the medium-
quality encoding profile is applied to each video clip. This window also contains:

56 Chapter 4: Encoding Flash Video

Add button: This displays a Select dialog for choosing additional videos to add to
the queue. Note that you can also drag and drop video files from a folder on your
computer to the encoding queue.

Duplicate button: This does not physically duplicate the source video file. It dupli-
cates the settings and facilitates creating different encoded videos from the same
file. Typically you would create a high-bandwidth version, duplicate it in the list,
and adjust the duplicate for lower bandwidth delivery or using a different codec.
Sometimes you will want to experiment and try out different encoding settings for
quality, performance, and size.

Remove button: This removes an instance from the queue. It does not remove the
original source file from your computer.

Settings button: This button displays the encoding settings for the selected item.

Start queue: This starts the rendering process and renders the first item in the list
and goes through the list until all items in the list have been encoded.

Status group: This shows up-to-date information while the Flash Video Encoder is
processing clips.

The Settings Dialog

The Settings dialog is broken down into five tabs: Profiles, Video, Audio, Cue
Points, and Crop and Resize.

Profiles

The Profiles tab lists the encoding profiles available inside the encoder. Profiles are
preconfigured settings for video and audio compression, cue points, and crop and
resize settings. The dropdown menu contains the default list of encoding profiles.
Below the list of profiles is a summary of the currently selected profile. If you have
altered any of the settings, the dropdown will display *custom” and the summary
will reflect the changes you've made. To save the current encoding settings as a
custom profile, click the Save button.

Note that custom profiles do not appear in the dropdown menu. To use a custom profile,
press the load profile button and select the profile from a location on your computer.

Flash Video Encoding Settings 57

4{ ‘Profiles | Video = Audio = Cue Points = Crop and Resize |

Please select a Flash Video encoding profile: [7_—__.‘|'| a
""Flash 8 - Medium Quality (400kbps) 4

Video encoded for playback with Flash Player 8 or higher
Video: On2 VPE at 400kbps

Qutput filename:

(CCancel) 06

Figure 4.9: The Profiles tab.

Optimizing video for the Web shares similarities with optimizing graphics for the
Web in that optimization presets (or in this case, profiles) are a great way to get
started. You may find better results, however, in creating your own—especially if
you need to custom sizes, cropping, or audio settings. My advice is to experiment
with a few profiles, tailor them to your requirements, and apply them to the same
video. You can then batch encode the variations and inspect the quality of each
profile.

Video

Not surprisingly, settings for encoding the video are chosen in the Video tab. This
tab also contains:

Encode Video checkbox: This enables video encoding for the file. Turn it off and
there won't be a video track in the FLV file.

Video codec: Options are the On2 VP6 codec, which is supported by Flash Player
8 and above, or the Sorenson Spark codec, which is supported by Flash Player 6
and above.

Encode alpha channel: Only available for the On2 VP6 codec. This will encode
and include an 8-bit alpha channel in the FLV file for compositing the clip over a
background Flash movie. An alpha channel needs to be present in the source video
file.

Deinterlace: New in Flash Professional CS3 is the ability to de-interlace video
shot in interlaced mode (such as 60i or 50i). Turn this on when the video you are
encoding is not progressive.

Frame rate: The frame rate for the movie. This defaults to the source's frame rate,
but other rates are listed. Multiples of the frame rate works best.

Quality: Presets for the data rate field that controls bit rate and quality.

Max data rate: The higher the bit rate, the better the quality.

58 Chapter 4: Encoding Flash Video

8.

Key frame placement: Automatic or custom. Automatic allows the encoder to pick
the best interval for keyframes and custom allows you to pick the interval.

Key frame interval: The distance between unique frames. Lower numbers mean
better quality but increase file size.

! Profiles | Video | Audio = Cue Points = Crop and Resize |

Encode video

Video codec: | On2 VPE 4 Quality: | Medium B

] Encode alpha channel Max data rate: 400 kilobits per second

|_| Deinterlace

Key frame placement: | Automatic |'=?]

Frame rate; Same as Source !j fps Key frame interval: frames

Figure 4.10: The Video tab.

Audio

The Audio tab operates like the Video tab in that there is a checkbox for encoding
audio. If your source file has audio, this will be selected by default. Unchecking this
will not include audio in the encoded FLV. If the file does not have audio, the con-
trols in this tab are disabled. With Flash Video there is not a lot of choice when it
comes to audio compression. The only audio codec available is MP3. The data rate
pulldown menu lists the available data rates and stereo and mono combinations.

! profiles = Video | Audio | Cue Points Crop and Resize

E Encode audio

Audio codec: MPEG Layer 11l {MP3) Data rate: | 64 kbps (mono) | 3]

Figure 4.11: The Audio tab.

Setting Cue Points

Cue points are similar to chapter markers. A cue point marks a place in time and
makes the point a destination that can be accessed by clicking a button or link, or
it can be an event where ActionScript code is triggered. Setting cue points is done
in the Cue Points tab of the Flash Video encoding interface. To set a cue point,
position the playhead to a time in the video and press the Add Cue Point button.
Cue points appear in the list and show the name, time, and type. To delete a cue
point, select it and click the Delete button. The Save (folder icon) and Load (disk
icon) buttons save and load the current list of cue points out as a file. This file

can then be reimported later—handy if you have to encode the same clip again
months later.

Flash Video Encoding Settings 59

The tutorial, Exporting Cue Points from an Existing FLV, which is at the end of this chapter
(see page 69), covers how to reclaim cue points from an encoded file in the case when the
cue points were not saved as a list previously.

2

Ir Profiles | Video | Audio | CuePoints | Crop and Resize |

#|=[=[a

. Name | Time | Type | | Cue Point Parameters
Key Issue 00:03:56.082 = Navigation e | =
Name | Value

(CCancel) €06

Figure 4.12: The Cue Points tab.

A cue point is a pointer to a specific time in a Flash Video file. Cue points facilitate
navigation, synchronization, and interactivity. There are three types of cue points:
ActionScript, navigation, and event.

ACTIONSCRIPT CUE POINTS

ActionScript cue points are added dynamically at run time via ActionScript. Since
they are not added during the encoding process, dedicated keyframes are not cre-
ated for them. This makes them less accurate. They are mentioned here merely for
convenience.

NAVIGATION CUE POINTS

A navigation cue point, like a DVD chapter marker, is a destination to seek and
navigate to. For example, a how-to video could have cue points for each instruc-
tional step. In most Flash Video interfaces, they are accessed via a next or previous
chapter button, or a User Interface (Ul) component that lists the video's existing
navigation cue points.

During the encoding process, keyframes are created for each navigation cue point.
By forcing a keyframe, viewers can more accurately access the time specified by
the cue point. Cue points can be shown in a Ul control once the metadata is fully
loaded. Like event cue points, an ActionScript listener can respond to the oc-
curence of a navigation cue point and trigger a function.

EVENT CUE POINTS

Like navigation cue points, event cue points are embedded in the FLV file during
the encoding process. Since they are not exposed to navigational controls, they
can be used exclusively for event-driven effects and interactivity.

60 Chapter 4: Encoding Flash Video

For example, a video may need a cue point to show or hide a dynamic text field.

If you used two navigation cue points to show and hide the text field, these cue

points would also be accessible to the next and previous cue point buttons and

would also show up in a list of cue points if there was one. This may not be de-

siraable if you want to keep your navigation cue points tidy. To work around this

issue, you can place event cue points at times when you want to show or hide an

element since they will not interfere with the navigation cue points.

While ActionScript can listen for and respond to either event or navigation cue points, event
cue points should be used in cases where navigation cue points would be overkill.

Cue Point Parameters

All cue point types can have parameters. For those that are embedded, the encod-

ing tools make it fairly easy to add parameters to individual cue points. Param-

eters are additional properties that can be added to a cue point. For example, a

movie could have several cue points where each cue point has a list of parameters

indexing the characters in each scene. It would then be possible to expose these

parameters in a user interface. Parameters are added to a cue point by selecting

the cue point and adding parameters to the Cue Point Parameters table, which is

to the right of the cue point list.

Crop and Resize

Trimming allows you to set in and out points for the exported FLV. If you don't

have an NLE on the machine on which you're encoding, or simply want to encode

a known portion of video, this is the simplest way to encode a small portion of the

source video.

" Profiles =~ Video = Audic Cue Points | Crop and Resize]7
Crop Resize Trim
: ™ Resize video In point: 00:00:00.000
H H Width: 427 Out point: 00:00:42.042
pixels |5
][Height: 240l
Duration: 00:00:42.042

E Maintain aspect ratio

Cropped size: BS54 x 480

(Co Back) (Cnntinue) (Cancel)

Figure 4.13: The Crop and Resize tab.

The cropping options work exactly like cropping a photograph in Photoshop. If

you're encoding footage that has been letterboxed, you can use the crop options

to remove the black bars that appear at the top and bottom of the frame.

Flash Video Encoding Settings

61

The resize controls include an option to maintain the source material's aspect ratio,
or its height to width ratio. This should remain checked unless your source material
was shot anamorphic and that information is not available.

When preparing video for distribution over the Internet, you do not have to worry about ac-
tion and title safe areas that affect televisions. You can compose action and text close to the
edges without fearing they'll be cropped off.

Encoding Tutorials

Tutorial: Encoding with the Import Video Wizard

The Import Video wizard in Flash Professional provides an efficient and simple
interface for picking a video, encoding it, choosing a skin, and configuring the
FLVPlayback component to properly play the video.

aYaXa) parkcity.swf

P

Figure 4.14: The final video after using the Import Video wizard.

Navigate to the Tutorials > Chapter 4 folder. Copy the Video Wizard folder to
your computer.

Open Flash Professional and choose File > New. Select Flash File (ActionScript
3.0) and click OK.

New Document

! ‘General | Templates

Type: Description:
'ﬁ Flash File (ActionScript 3.0} Cioale 4 new Bl
'h Flash File {ActionScript 2.0) Document windo
ﬁ Flash File {(Mobile) ActionScript 3.0.
i Flash Slide Presentation media and struct
ﬁ Flash Form Application

771 ActionScript File

71 ActionScript Communication File
"% Flash JavaScript File

= Flash Project

Figure 4.15: Flash files for ActionScript 3 are the default document type.

62 Chapter 4: Encoding Flash Video

Choose File > Save and save the file as parkcity.fla in the Video Wizard folder.
Select File > Import > Import Video. The first step in the wizard appears.

Select On your computer and click Choose. Select festivalstreet.mov in the Video
Wizard folder and click Select (Windows) or Open (Mac OS X). Click Continue.

In the next step, select Progressive download from a web server (it should already
be selected). Click Continue.

The Encoding step appears. Click the Video tab and adjust the Max data rate to
300 kilobits per second.

I Profiles | Wideo | Audio Cue Points | Crop and Resize -

E Encode video

ry

Video codec: On2 VPGB I-:] Quality: = Custom | .]

[_] Encode alpha channel Max data rate: 300 kilobits per second

[} Deinterlace

Figure 4.16: Adjusting the video rate.

Click the Audio tab and set the Data rate to 64 kbps (mono). Since the audio is
merely background noise from the town, it's not that crucial.

[Profiles | Video | Audio | Cue Points | Crop and Resize |

™ Encode audio

Audio codec: MPEG Layer 11l (MP3) Data rate: | 64 kbps (mono) | 3]

Figure 4.17: Setting the audio data rate.

Click the Crop and Resize tab. The video is currently 854 x 480, which is too large
for the video data rate set. Click Resize video, and with Maintain aspect ratio
selected, change the height to 240 pixels. The width should update to 427 pixels
and maintain the 16 x 9 aspect ratio.

f

Profiles = Video = Audio = Cue Points | Crop and Resize } —_—

Crop Resize Trim
: W] Resize video In peint; 00;00-00.000
H H Width: 427 : Qut point: 00:00:42.042
S—T
]: Height: 240

Cropped size: 854 x 480 E Maintain aspect ratio Duration: 00:00:42.042

(_ GoBack) (Ccmtinue) C Cancel)

Figure 4.18: Resizing the video while maintaining the aspect ratio.

Encoding Tutorials 63

10. Click Continue. The skinning step appears. In this step, you can pick from one of
many skins with controls that reflect functional options you want to offer your
audience or you can specify the URL for the skin file. In the Skin dropdown select
SkinOverPlayStopSeekFullVol.swf. This skin offers play, pause, stop, seek, volume,
and full-screen video controls.

The video's skin determines the
appearance and position of the
play controls. The easiest way to
get Flash video up and running is
to select one of the provided skins.

To create your own look for the
play controls, create a custom skin
SWF, select "Custom” in the Skin
drop-down box, and enter the
relative path of the skin SWF in the
URL field.

To remove all play controls and
only import your video, select
“"None" from the Skin drop down
box.

Minimum width: 222 Minimum height: GO

skin: '_ SkinOverPlayStopSeekFullVo... |:] Color: I_

Figure 4.19: Selecting a skin.

11. Click the Color control, and set the color to #CCCCCC and the alpha to 50%.

[l

[][#ccceec Alpha:[50% | -]
N]

i

el

|
Figure 4.20: Specifying the skin color and alpha (opacity).

12. Click Continue. You should now see a summary of the encode settings. Click
Finish and the Flash Video Encoding Progress dialog appears. It displays a status
of how long the encoding will take. Since a name was not specified for the output
file, it has the same name as the source file but with “flv" as its file extension. It is
also saved in the Video Wizard folder alongside the original file. After the encod-
ing is complete, the encoded file should be about 2.1 megabytes—a great reduc-
tion in size given the uncompressed version was close to 1 gigabyte!

@ If we were to deploy this file to a web server, we wouldn't deploy the source file because it's
not needed and it's incredibly bigger than the output file.

64 Chapter 4: Encoding Flash Video

Flash Video Encoding Progress

Source file:
Qutput file:

Video codec:
Video data rate:

Elapsed time:
Time left:
Total time:

JUsers/skidgel /Documents/John/FLV Book/DVD-ROM/
JUsers/skidgel /DocumentsJohn /FLV Book/DVD-ROM/

0On2 VPE Audio codec: MPEG Layer Ill (MP3)
300 kbps Audio data rate: 64 kbps (mono)
00:00:08

00:01:50

00:01:58

(Cancel)

Figure 4.21: The progress dialog displays a time estimate for the encoding process.

13. When the encoding process is complete, you should see an instance of the FLV-
Playback component on the stage. For best-practice purposes, we should give

the instance a name. Select the component and in the Properties Inspector panel,

name it myFlvPlayback. Naming the instance is important if the component will
be used with ActionScript. Now would be a good time to set both the X and Y
properties to O using the Properties Inspector panel too.

| & Properties x | Filters | Parameters

E o ——
myFivPlayback Swap...
W 427.0 | X 0.0
H: 240.0 Y: 0.0

: | Instance of: FLVPlayback

Figure 4.22: Name the instance of the playback.

14. More than likely, the size of the Flash movie and the video component are not

the same size. In some cases this is fine, if there will be other content on the stage

such as text, a logo, or other interface controls. In this instance, we simply want to
publish the video and want the video to fill the stage. Select Modify > Document.
The Document Properties dialog appears. Select the Contents radio button in the

Match radio button group. This will quickly match the dimensions of the Flash file
to the size of the FLVPlayback component.

Dimensions: 427 px (width) %

Match: () Printer ® Contents

Background color: lEI

240 px

() Default

(height)

Figure 4.23: Matching the size of the file.

15. Preview the movie by choosing Control > Test Movie.

Encoding Tutorials

65

Tutorial: Batch Encoding Several Clips

Given the time it takes to encode a single video, batch encoding is a must-have
feature when you're frequently producing a lot of Flash Video. It allows you to
select several files to encode, specify the settings, and have the software do the
work while you have lunch, accomplish other tasks, or take a nap. In fact, many
will batch process videos at night if they only have one machine while others will
dedicate a machine to encoding.

Navigate to the Tutorials > Chapter 4 folder. Copy the Batch Encoding folder to
your computer.

Launch the Adobe Flash Video Encoder. It's a stand-alone application that is
included with Flash Professional CS3.

Flash Video Encoder

Figure 4.24: The application icon for the stand-alone Flash Video Encoder.

Now it's time to add the videos we'd like to encode. Click Add in the main applica-
tion window. Navigate to the Batch Encoding folder and select and open all the
files.

Flash Video Encoder
\dd.

3 Status

‘Duplicate

Remove

Settings...

Figure 4.25: To add files to the queue, click Add.

You can also add files to the encoding queue by dragging files from the operating system to
the Flash Video Encoder’'s main application window.

Now you could select individual files and adjust their encoding settings like the
previous tutorial. Rather than covering the same ground again, let's start a batch
encoding process using the default “Medium Quality” settings. Click Start Queue
and the status area at the bottom of the window will indicate to you when the files
are completely rendered. When a file has completely rendered, a green check ap-
pears in the Status column for each file.

66 Chapter 4: Encoding Flash Video

Source file: .../DVD-ROM/Tutorials/Chapter 3/Batch Encoding/random_320x240.mov
Output file: /Users/skidgel /FLV Videos /random_320x240.flv
Video codec: On2 VPG Audio codec: MPEG Layer Ill (MP3)
Video data rate: 400 kbps Audio data rate: 96 kbps (stereo)

Elapsed time: 00:00:03
Time left: 00:00:10

Elapsed queue time: 00:00:03

Figure 4.26: The status area displays progress and a preview of the current frame.

Tutorial: Setting Cue Points

Cue Points are set in the Cue Points tab in the Flash Video Encoder. If you are
working with long form material and need to provide navigation or synchronized
interactivity, you will work in this part of the application probably more than you
thought you would. The following tutorial gets you acquainted to how this works
and suggests a few workflow enhancements. Following the tutorial is another
helpful tutorial on extracting cue points from an existing Flash Video file in the
event you need to encode the original material again but you don't have a cue
point list.

Navigate to the Tutorials > Chapter 4 folder. Copy the Setting Cue Points folder to
your computer.

Launch the Adobe Flash Video Encoder.

Click Add and navigate to the Setting Cue Points folder. Open gemini.mov.
Select the file in the queue and click Settings.

Click the Cue Points tab.

Move the playhead until the current time is 00:00:03.504.

A

|
g 00:00:03.504
T

Profiles | Video = Audio | Cue Points | Crop and Resize -

I
B

Figure 4.27: (A) Playhead, (B) Add Cue Point button.

Click the Add Cue Point (looks like a plus symbol) button and name it ship. Enter
the name for the cue point in the table cell under the Name column.

Encoding Tutorials 67

8.

10.

Set the cue point type to navigation. Click the cell under the Type column and

choose Navigation from the pop-up menu.

Set the remaining cue points according to the following screen capture.

Name Time Type

ship 00:00:03.504 % Navigation
helicopter 00:00:05.839 * Navigation
landing 00:00:17.768 * Navigation
recovery 00:00:20.354 + Navigation
capsule 00:00:22.731 + Navigation

Figure 4.28: Names and time locations for the remaining cue points.

To move the playhead more precisely, press the left and right arrow keys with the
playhead selected. To move the playhead by ten-thousandths of a second, press
Shift and one of the arrow keys. Pressing an arrow key down for a period of time
will speed the seek substantially.

Click OK to apply the cue points. Click Start Queue to encode the file.

In Chapter 9, we'll cover a few tutorials that will take advantage of the cue points set in this
movie.

Tutorial: Exporting Cue Points from an Existing FLV

The following tutorial resulted from a problem | encountered while working on
a project. | had encoded three 20-minute videos for a client and each video had
several cue points. Originally | had encoded at a lower bit rate but the client felt
a higher bit rate would be okay. Unfortunately, | didn't have a batch list or a cue
point list file saved for any of the videos and | didn't want to enter all the cue
points again by hand.

My solution was to write a few lines of ActionScript to trace all of the cue points

in a video file. After a video had played through to the end, | would copy the trace
statements from the Output panel, paste them into a text editor, and save it as an
XML file that | could load in the Flash Video Encoder.

X

[Outpt x | :
=txml wersion="1.8" encoding="UTF-8" standalone="no" 7=
<FLVCoreCuePointss

<CuePoint=
<Time=3504-</Tine=
<Type=znavigation</Type=
Mamez=zhip/Nanmez
</CuePoint=

<CuePoint=
<Timezh3%</Tine=
<Type=hovigation</Types
Mame=he | icopter</Mane=
</CuePoints

Figure 4.29: Viewing the XML generated by the video's cue points in the Output panel.

68 Chapter 4: Encoding Flash Video

1. Navigate to the Tutorials > Chapter 4 folder. Copy the Cue Points to XML folder
to your computer.

2. Open the file, TraceCuePoints.fla in the Cue Points to XML folder.

3. Preview the movie by choosing Control > Test Movie. Look at the text generated
in the Output panel. Close the Preview window.

4. Select all of the text in the output panel and choose Edit > Copy. Launch the text
editor of your choice and choose Edit > Paste. Save the file as gemini_cuepoints.
xml in the Cue Points to XML folder.

5. To use this file, launch the Adobe Flash Video Encoder. Add the uncompressed
movie, gemini.mov, that was used in the previous tutorial. It's in the Tutorials >
Chapter 4 folder on the book's DVD-ROM if you skipped over the last tutorial.

6. Click Settings and click the Cue Points tab. Click the Load button, , above the
cue point list and navigate to gemini_cuepoints.xml. All the cue points appear in
the cue point list. Feel free to encode the file if you wish.

7. Returning to Flash Professional, select the first frame in the Actions layer and open
the Actions panel (Window > Actions). Below is a walkthrough of the code.

The script begins by creating a new video object and adding it to the stage:

var myVideo:Video = new Video(Q);

addChild (myVideo);

It then creates an object that will handle the cue point events.

var customClient:0bject = new Object();
customClient.onCuePoint=cuePointHandler;

The following six lines are typical of bare-bones ActionScript code for video. It
creates NetConnection and NetStream instances to load video into the movie and
connects the custom client created earlier with the video.

var nc:NetConnection = new NetConnection();
nc.connect (null);
var ns:NetStream = new NetStream(nc);

ns.client=customClient;
myVideo.attachNetStream (ns);
ns.play (“gemini.flv”);

Encoding Tutorials 69

This function traces information each time a cue point occurs as structured XML
that the Flash Video Encoder can read.

function cuePointHandler (infoObject:0bject):void {
trace (“<CuePoint>” + “\n” + “ <Time>" + (infoObject.time*1000) + “</
Time>" + “\n” + “ <Type>" + infoObject.type + “</Type>" + “\n” +

}

<Name>" + infoObject.name + “</Name>” + “\n” + “</CuePoint>" + “\n”);

This event listener listens for the beginning and end of the video and generates the
XML required at the beginning and end of the XML file.

ns.addEventListener (NetStatusEvent.NET_STATUS, statusHandler);
function statusHandler (event:NetStatusEvent):void {
switch (event.info.code) {
case “NetStream.Play.Start” :
trace(“<?xml version=\"1.0\" encoding=\"UTF-8\” standalone=\"no\”
?>" + “\n” + “<FLVCoreCuePoints>” + “\n”);
break;

case “NetStream.Play.Stop” :
trace (“</FLVCoreCuePoints>");
break;

Wrapping Up
While some may argue that encoding Flash Video is the least creative process of
authoring Flash Video, it's crucial to producing high-quality video, and it's not only

about transcoding video from one codec to another. Creating cue points and cue
point parameters as well as preserving an alpha channel occur at this time.

70 Chapter 4: Encoding Flash Video

CHAPTER 5

Customizing
Flash Video Players

Using the stock FLVPlayback component is suf-
ficient for most applications. However, there are
times when you want to change their appearance or
build your own player best suited to your needs.

© Custom Player Development...........cccooveiiiiiiiicneiiiinn, 72
® Tutorial: Creating A Flash Video Text Banner 72
© Tutorial: Skinning the FLVPlayback Component................. 77

® Tutorial: Creating a Custom Video Player from Scratch ... 104
© WIapping UpP ...coveieiiieiee e 110

Custom Player Development

In this chapter, we're going to write three custom Flash Video players. We'll start
off simple and create a Flash Video banner. We'll architect the banner so it can be
flexibly deployed in different web pages. Next we'll create a custom player using
the FLVPlayback custom controls. We'll skin the custom controls and hook every-
thing up using ActionScript. We'll add a few additional controls such as a timecode
display and the ability to toggle the size of the video. Lastly, we'll create a player
from scratch without using the components. We'll write methods to play, pause,
and toggle full-screen playback. By the end of the chapter, you'll have a decent
grab bag of knowledge and tricks when working with video, cue points, full-screen
events, and timing.

As with any tutorial covering a lot of code, it's crucial that you double-check for typos and
use the naming suggested in the book. If things don't compile correctly, check the completed
tutorials to double-check your work.

Tutorial: Creating a Flash Video Text Banner

In this tutorial, we'll create a Flash movie that accepts two external variables, a
location for a Flash Video file, and text to draw over the video. Then this movie
will be embedded as the banner at the top of several web pages.

nen Flash Video Banner With Flash Vars
| 4« » |l el| + ||| = fleUsersskidgel | Documents/John /Writing /FLV%20Book /[DVD-RON = -

SERVICES EMPLOYMENT CONTACT

About Us

Lorem ipsum dalor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labare et dalore
magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullameo laboris nisi ut aliquip ex ea commado
consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officla deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmad tempor incididunt ut labare et dolore
magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullameo labaris nisi ut aliquip ex ea commada
consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Exeepteur sint accascat cupidatat non proident, sunt in culpa qui officia deserunt mallit anim id est labarum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate velit cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Figure 5.1: A web page with the Flash Video and text banner.

Navigate to the Tutorials > Chapter 5 folder. Copy the Video Banner folder to your
computer.

Open Flash Professional and choose File > New.

72 Chapter 5: Customizing Flash Video Players

3. In the New Document dialog, select Flash File (ActionScript 3.0) and click OK.

New Document
(General | Templates

pprere—)
Type: Descriptig
T Flash File (ActionScript 3.0) e
B Flash File (ActionSeript 2.0) Documen
i Flash File (Mobile) ActionScr|
T Flash Slide Presentation media an

ﬁ Flash Form Application

11 ActionScript File

1 ActionScript Communication File
" Flash JavaScript File

™ Flach Praiarct

Figure 5.2: The New Document dialog.

4. Select Modify > Document. Set the dimensions to 766 x 72 and the movie's back-
ground color to black. To set the background color, click the color picker, @, and
pick black from the pop-up color swatch control. Click OK.

5. In the Timeline panel above the stage, double-click the first layer, Layer 1, and
rename it to Actions. Lock the layer by clicking the area below the Lock icon.

066 e6e |
i ® a0 @ a0
Actiond
A B C

Figure 5.3: Double-click the layer (A), rename it “Actions” (B), and lock the layer (C).

6. Create two additional layers below the Actions layer and name them Text and
Video. To create a layer, click the Insert Layer button.

066

al Text o o

Al Video « « [
A—ral <08

Figure 5.4: Click the Insert Layer button to insert the Text and Video layers (A).

7. Select the Text layer. Choose the Text tool, , and double-click the stage to cre-
ate a text object. Don't worry too much about placement and size—we'll fix that
next.

8. With the text object selected, modify its properties using the Properties panel.
Change the text to a Dynamic Text field, set the name to bannerTxt, and set
the width, height, and x and y positions to the values indicated in the following
screenshot.

Tutorial: Creating a Flash Video Text Banner 73

10.

11.

12.

13.

14.

| ¢ Properties x '| Filters | Parameters P —— |
[Dynamic Text [3] A Myriad Pro @ ? l:l lil s
T bannertxt | Ay U—E| 4% Normal h‘r-] Anti-alias for readability I-$! Embed... |
w: 3740 x: 120 ('single line %)] <> [E] var: |] Auto kern
H: 310 | v:z40 | & Target: o)

Figure 5.5: The Properties panel.

Pick a nice font on your system. In this example, I'm using Myriad Pro, which is
installed as part of the Creative Suite. To embed the font in the Flash movie, click
Embed and select both Punctuation and Basic Latin. Control-click (Windows) or
Command-click (Mac OS) to select both. Click OK.

Character Embedding

Select the character sets you want to embed. To select
multiple sets or to deselect a set, use Cmd+click.

All (54665 glyphs)

Uppercase [A.Z] (27 glyphs)

Lowercase [a..z] (27 glyphs)

Numerals [0..2] (11 glyphs)

Punctuation [l@#%...] (52 glyphs}

Basic Latin (95 glyphs)

Japanese Kana (318 glyphs)

Japanese Kanji - Level 1 (3174 glyphs)
Japanese (All) (7517 glyphs)

Korean Basic Hangul (3454 glyphs}
Korean Hangul (All} (11772 glyphs)
Traditional Chinese - Level 1 {5609 glyphs) a
Traditional Chinese (All) (18439 glyphs) v

Figure 5.6: Punctuation and Basic Latin is fine for Western languages.

Set the font size to 24 point, and the font color to white.
Lock the Text layer and select the Video layer.

Choose Window > Library. Click the Panel Options button, which is on the right-
hand side of the tab area. Choose New Video from the menu.

e -
| Ubrary x | Components. | "= New Symbol...
[header.fla |":*! = GE= New Folder
One item in library New Font...
I
A B

Figure 5.7: Click the Panel options button (A) and select New Video (B).

In the Video Properties dialog, name the video object backgroundVideo and select
Video (ActionScript Controlled).

Drag an instance of the backgroundVideo movie clip from the Library panel to the
stage.

74 Chapter 5: Customizing Flash Video Players

15. In the Properties panel, give the instance the name, bgVideo, and use the Prop-
erties panel to adjust it's properties to those shown in the following figure.

[¢ Properties x | Filters | Parameters |

I~ Video Instance of: backgroundVideo
j‘@ﬂ bgVideo Swap... |
w: [766.0 X: 0.0 Source: None (external video)
& i

Figure 5.8: Set the video object, bgVideo, to have the same dimensions as the Flash movie.

16. With everything in place, it's time to write the ActionScript. In the Timeline, select
Keyframe 1 in the Actions layer, and open the Actions panel by pressing F9 (Win-
dows) or Option+F9 (Mac). If the panel is not large enough for coding, you should
resize and position it so coding is easier.

17. We first need to create a network connection between the Flash movie and the
video. To do that, we create an instance of the NetConnection class and we'll call
it nc. Using nc as the instance name for the NetConnection instance, by the way,
is fairly common practice. The connect () method is used when connecting to
a Flash Media Server. Since this example is using progressively downloaded video,
we turn this property off by passing nul1 as its setting.

var nc:NetConnection = new NetConnection();

nc.connect(null);
var ns:NetStream = new NetStream(nc);

18. We then create a NetStream object, ns, and associate it with the nc NetConnec-
tion object. We then pass the ns object into bgVideo, the video instance on the
stage. Setting the source for ns is the last thing we do. In this case, we're setting it
to a FlashVar, pageVideo, that we will set in the HTML code. By doing this, we
can reuse this Flash movie as much as we'd like since we're not hard-coding the
video location into the movie.

bgVideo.attachNetStream(ns);

ns.play(root.loaderInfo.parameters.pageVideo);

Tutorial: Creating a Flash Video Text Banner 75

ABOUT FLASHVARS A FlashVar can also be encoded in a

A FlashVar is an external variable passed <param> tag: <param name=FlashVars
to a Flash movie. It resides in the URL ref- value="color=red" />, or inside the
erencing the SWF, or it is part of the Flash <embed> tag: <embed src="movie.
movie's embed code. FlashVars facilitate us- swf" type="application/

ing a single SWF file in multiple web pages x-shockwave-flash"

because variables are external to the SWF. Flashvar="color=red"

- h=|' 2 n h - h ='|24 11
When a FlashvVar is part of a URL, its in the " 10th= 320" height="240%/>

form of movie.swf?color=red.

19. The first line in the next code block automatically resizes the left edge of the text
field, bannerTxt, to fit the text we'll pass in. The remaining code is a conditional
statement that tests to see if we set the pageHeader FlashVar in the HTML. If it
wasn't set, it will display a message reminding you to set it, and if it was set, it's
used for the text we'll see on top of the video.

bannerTxt.autoSize = TextFieldAutoSize.LEFT;

if (root.loaderInfo.parameters.pageHeader == undefined) {
bannerTxt.text = “Set the pageHeader flashVar in the HTML code.”;

} else {

bannerTxt.text = root.loaderInfo.parameters.pageHeader;

20. Compile the movie by pressing Ctrl+Enter (Windows) or Command+Return (Mac
OS). You won't see any video play, but you will see the reminder to set the Flash-
Var. This is actually okay. The real text and video location are set in the HTML page.

21. In Windows Explorer or the Mac OS Finder, open the Video Banner folder where
the files are for this tutorial. You'll see a file named header.swf. This is the com-
piled version of the Flash document we'll reference in the HTML file, index.html.

22. Open index.html in the HTML editor of your choice. Dreamweaver, NotePad,
TextMate, or BBEdit are all excellent choices. On lines 27 and 28, enter the follow-
ing two lines of code and save the file. These two lines set FlashVars for the Flash
movie. The first sets the text to use in the banner and the second sets the source
location for the Flash Video behind the text.

so.addVariable(“pageHeader”, “About Us”);

so.addVariable(“pageVideo”, “video/waves.flv”);

ﬂ In this example, we're using SWFObject, a JavaScript library for embedding Flash. We'll
learn more about embedding Flash in HTML pages in Chapter 6.

23. Save the changes to index.html and preview it in a browser. You should see
“About Us" and a short video animation in the banner.

76 Chapter 5: Customizing Flash Video Players

This tutorial covered the basic building blocks for working with Flash Video without
a component. The NetConnection and NetStream classes are the real workhorses
of any Flash Video project that doesn't rely upon the FLVPlayback component.

Tutorial: Skinning the FLVPlayback Component

The FLVPlayback component is an amazing piece of engineering. The problem
most designers have with it though is that they don't like the default skin, Corona.
Maybe it looks too dated, screams a canned look, or doesn't has the Web 2.0
panache they're looking for. Whatever the reason, Adobe provides a set of inde-
pendent playback controls that work with the FLVPlayback component that can be
heavily customized. You can quickly add the custom playback components to the
stage and open the component parts in the Library panel and change the shape,
color, and size for each control.

This tutorial covers creating a custom video player with:

A button that toggles between play and pause.
A Stop button for halting playback.

A buffering bar that indicates download progress and a seek bar to move the play-
head to different locations in the video.

Timecode text for the current time as well as total time.
An audio mute button.

A control that toggles between scaling and cropping the video to fit the window or
maintaining the aspect ratio for the video.

A control for entering full screen.

we

ouszin o @@ |

Figure 5.9: A customized FLVPlayback player in normal (A) and full-screen mode (B).
The fully chromed FLVPlayback skins can also be customized. To skin these, go to your Flash

application folder and look inside Configuration > FLVPlayback Skins > FLA. There are ver-
sions for both ActionScript 2 and 3.

Tutorial: Skinning the FLVPlayback Component 77

Part 1: Adding Components to the Stage

In this first part of the tutorial, we will add all the elements required for the player
to the stage. The tutorial will cover naming component instances, embedding
fonts, and sizing controls.

1. Navigate to the Tutorials > Chapter 5 folder. Copy the Custom Player (Compo-
nents) folder to your computer.

2. Open Flash Professional. Choose File > New and create a new Flash File (Action-
Script 3). Save the file as customplayer.fla in the Custom Player (Components)
folder.

3. Select Modify > Document. Set the dimensions to 480 x 406 pixels.

4. For this player, several layers need to be created for structuring the player's bezel,
controls, and video. Create them according to the following screenshot.

®8e

4l controls
4l Timecode
al video

=1 control bezel ’ |

RaTeE:

o | |l
oom QO

a
.
.
.
B

Figure 5.10: The required layers for this custom player.

5. A bezel is the background surface for controls. This bezel will have a light steely-
gray gradient and will have rounded corners at the bottom and be squared off at
the top. Click the control bezel layer in the Timeline to make it the active layer.

6. Select the Rectangle Primitive tool. It resides under the Rectangle tool. Draw a
rectangle that fits the lower 20 percent of the stage.

[] Rectangle Tool (R}
) Oval Tool (0)
+ [Rectangle Primitive Tool (R)
< Oval Primitive Tool (O}
) PolyStar Tool

Figure 5.11: The Rectangle Primitive tool is new to Flash Professional CS3.

7. With the rectangle still selected, adjust its height, width, and x and y properties to
match the following screen capture. To specify different rounding for the bottom
corners, deselect the Lock icon located between the entry fields for corner round-
ing. With the constrained rounding off, enter O for the top left and right corners
and 5 for the bottom left and right corners. Finally, set the rectangle’s stroke to a
1-pixel solid.

78 Chapter 5: Customizing Flash Video Players

| ¢ Properties x | Filters | Parameters |

]:[Rectangle Primitive &7 lEl T E|'Snlid —I-$--]
Oy l:l [Stroke hinting Scale: | Normal E‘

w: 4780 | x: 0.5
& = E| N] El
H:[450 | ¥: 360.0 5 K _) 5] Reset

Figure 5.12: The Properties panel.

8. Now let's set the fill and stroke colors. With the rectangle selected, open the Color
panel (Window > Color). Select the Stroke Color chip (Fig. 4.13 A), and enter
#999999 in its color field (Fig. 4.13 B). Then select the Fill Color chip (Fig. 4.13 C),
and set its Type to Linear (Fig. 4.13 D). Select the start color for the gradient (Fig.
4.13 E) and set its color to #FFFFFF. Select the end color for the gradient (Fig. 4.13
F) and set its Alpha to 35% and its color to #CCCCCC.

- -3

Type. Lincar E__ D Type. Lincar E
Al

C _ Overfluw: | Extend ‘-] Overfluw: | Extend ""]

|_] ™ Linear RGB 0] = ':' Linear RGB
H:0" | E|
e
8: [100% | [] 5:80% | ||
soggegs —— B Alpha: 1009 | E| HFFFFFE Alpha: 359 | E| fsccecee |
E-4 b b & F

Figure 5.13: Setting the colors for the stroke and fill.

9. With the bezel created, lock the control bezel layer by clicking the area below the
Lock icon. Now select the controls layer.

Al controls - « @
=l Timecode « o+« O
Sl video |
" control bezel + .

Figure 5.14: Locking a layer

10. Let's add the player controls to the stage. Open the Components panel (Window
> Components) and open the Video category.

Tutorial: Skinning the FLVPlayback Component 79

11.

12.

13.

]_T__It_)TI’LI Components |
@ User Interface
@ video
[FLVPlayback
D FLVPlaybackCaptioning
(1 BackButtan
BufferingBar
CaptionButton
ForwardButton
FullScreenButton
MuteButton

PauseButton

HEEBOEMNE

PlayButton

E

PlayPauseButton
= SeekBar

(&) StopButton

= VolumeBar

Figure 5.15: The FLVPlayback custom components.

Click-drag the following components to the stage: PlayPauseButton, StopButton,
BufferingBar, SeekBar, MuteButton, and FullScreenButton. Use the following table
and the Properties panel to name, scale, and position the components on the
stage. The BufferingBar component should appear on top of the SeekBar compo-
nent. If it isn't, select the BufferingBar and choose Modify > Arrange > Bring to
Front.

Table 5.1: Settings for the Player Components

Component Instance Name X Y Width Height
PlayPauseButton playPausePlayback 13 3725 24 24
StopButton stopPlayback 42 376.6 16 16
BufferingBar bufferPlayback 64 380 200 6
SeekBar seekPlayback 64 380 200 6
MuteButton mutePlayback 360 3725 24 24
FullScreenButton fullScreenPlayback 450 3725 24 24

In the Components panel, open the User Interface category and drag a Button
component to the stage. Position it between the mutePlayback and fullScreen-
Playback buttons. Name the button fitToStageButton and set its x and x position
to 422 and 372.5, respectively. Set both the width and height to 24 pixels.

Clear the text from the button. We'll place an icon inside the button later. Select
the button and in the Parameters panel (normally docked with the Properties
panel), delete the text from the Label attribute.

80 Chapter 5: Customizing Flash Video Players

14.

15.

16.

17.

18.

19.

|
4

| Propenies | Filters | Parameters x |

- Component emphasized false
w'l —_— label |
fitToStageButton

labelPlacement right
w: 2.0 | X [422.0 selected false

B R pmm—— toggle true .
H: [24.0 | ¥: 3725

D @6

Figure 5.16: Clearing the text label from the button component.

Lock the controls layer and select the timecode layer.

Now let's add a text field for the current time. As the video advances, this text field
will update to show the current time. Select the Text tool and create a text box to
the right of the bufferPlayback instance. With it selected, adjust its settings using
the Properties panel. Set the text type to Dynamic Text and name the instance
currentTimeText. Select Trebuchet MS as the font, set the size to 14, and click

the Bold icon. Using the Color Picker control, E, in the Properties panel, set the
color to #000000 and the opacity to 70%. The following screen capture shows the
Properties panel and settings for this text field.

| & Properties x | Filters | Parameters |
[Dynamic Text [§] A Trebuchet Ms F lEI lil Al
lcurrentTimeText | iy U— %! Normal I-H [Anti-alias for readability | é] | Embed...
w: 420 | x:[267.7 ["single line BB e[E]|van [] CAutokem
H: 249 | ¥:3731] @& Target:

Figure 5.17: Properties for the currentTimeText text field.

To embed the font Trebuchet MS in the document, click Embed in the Properties
panel and select both Punctuation and Basic Latin. Control-click (Windows) or
Command-click (Mac OS) to select both. Click OK.

This player will also have a text field displaying the video's total time. Duplicate the
currentTimeText text field and rename it, totalTimeText. Set its x position to 316
and y position to 375. Set its font size to 12. Finally set its color to #000000 and
opacity to 35%.

Let's create some additional separation between the two timecode displays by
adding a vertical rule between them. From the Tools palette, select the Zoom tool,
, and click-drag a marquee in between the currentTimeText and totalTimeText
text fields.

From the Tools palette, select the Line tool, ’E In the Properties panel, set the
stroke weight to 1 and the cap style to Round.

Tutorial: Skinning the FLVPlayback Component 81

20.

21.

22,

23.

24.

25.

Drawing Object & 1 [] Sotid ———— %) | custom... | cap. =
& [stroke hinting Scale:@ Miter: 3 Join:| None
w:[o.0 | x:[313.0] ¥ Round ‘
H:240 | Y:3736) SAuare

Figure 5.18: Adjusting the Cap style.

In the Color panel, select the stroke color and set the fill type to linear. Set the first
color in the gradient to #CCCCCC and the last color in the gradient to #666666.

With the Line tool, drag a ling between the timecode fields. The line should be
about 24 pixels tall and have an x and y position of 313, 376.

%5 & |z}5 Jeeo [28s |ee0 jess o0 [aos |30 [3s 320 325|330 335 [3e0 |3as |3s00 30

370
Ty

T
it

400 zes| zac| o o3es| a0
P P Pl AR (Fh

Figure 5.19: The vertical stroke separating the timecode text fields.

Lock the timecode layer and select the video layer. Return the current zoom level
to 100% by double-clicking the Zoom tool in the Tools palette.

From the Components panel, open the Video category and drag the FLVPlayback
component to the stage. Name the instance vidPlayback and set the x and y posi-
tion to 0, 0 and the width and height to 480 x 360.

Remove the FLVPlayback component’s default skin. Select the component, and in
the Parameters panel set the Skin attribute to None.

|
x

[[Properties | Filters | Parameters x |

Component align center @

J. —— autoPlay true [-] @
idElavoack cuePoints None 4

w: 4800 x: 0.0 preview None v W
scaleMode maintainAspectRatio | &
H: [360.0 ¥: 0.0 skin [None [s14

Figure 5.20: Setting the skin to None in the Parameters panel.

Save the file by choosing File > Save. The player's visual design is not where it
needs to be, but we'll soon change that as we begin to skin the components.

82 Chapter 5: Customizing Flash Video Players

The Custom Player after placing all the controls.

Now it's time to skin the components. In this tutorial, we'll be using more of Flash
Professional’s design tools. If you haven't worked with them before, I'll provide
enough information in the form of step-by-step instructions and screen captures
to get you through the material. If you feel you need more guidance, seek out The
Focal Easy Guide to Flash by Birgitta Hosea.

We'll also be working with the Library panel extensively, so | would recommend
increasing the panel's width and increasing the width of the Name column because
we will be working with folders within the Library panel that are significantly

nested.
= B
| Library x | =
customplayer2.fla [T
57 items
ok 1
Name " Type
[F component Assets Faldd
I FLV Playback Skins Fold 1
Stop Button Fold
Seek Bar Fold
_ Play Button Fold
?' Pause Button Fold
,_. Mute Button Fold
' FullScreen Buttan Fald

A widened Library panel with a wide Name column.

Tutorial: Skinning the FLVPlayback Component

Skinning the Base Button Appearance

Choose Window > Library to open the Library panel. Select the FLVPlayback Skins
folder and click the New Folder button, E at the bottom left of the Library panel.
Create a new folder named _CircleButton inside the FLVPlayback Skins folder.

Let's create the round buttons. Rather than replace the contents of the _Square-
Button folder, we'll create a new folder and set of movie clips to use as a basis for
our buttons. Select the _CircleButton folder and choose New Symbol from the
Panel options menu, - *=, at the top right of the Library panel. Select Movie Clip
for the type and name the symbol CircleBgNormal. This will be the “normal” or
‘up"” state for a button.

. The CircleBgNormal symbol should already be open. If it is not open, in the Library
panel double-click CircleBgNormal. To facilitate button construction, create three
layers: one for the Stroke, another for the Highlight, and a third for the Fill. The
stroke should be the topmost layer and the file should be the bottommost layer.

§3 9 i D
qJ Stroke j . .
] Highlight « +« W
 Fill |

Figure 5.23: The layer structure for the circular buttons.

Select the Fill layer and select the Oval Primitive tool, , from the Tools palette.
Draw a circle that is 24 x 24 pixels and place it at O, 0. Press and hold the Shift
key while drawing with the Oval Primitive tool to constrain the shape to a perfect
circle.

With the circle selected, open the Color panel, set the stroke to none (Fig. 4.24
A), select the fill (Fig. 4.24 B), and set the fill type to Linear (Fig. 4.24 C). Select
the start color (Fig. 4.24 D) and set it to #EEEEEE (Fig. 4.24 E). Select the end color
(Fig. 4.24 F) and set it to #555555 (Fig. 4.24 Q).

- —x]

[Colar [Swatches | : [Color | Swatches | =
A'Er/q e, (Enear 18— C (P e (e B |
BABEIR] overtow. (Etens 19 Ovelion: (it W

EM ("] Linear RGB B] Linear RGB

23 | 7] R85
Sl ol
5238 | [585 |

Alpha: T00% | [v] #EEeeEE — E Alpha: To0% | |: 555555 —nG

D -4 & a @—F

Figure 5.24: The Gradient fill.

Select the Gradient Transform tool from the Tools palette. It's grouped with the
Free Transform tool.

84 Chapter 5: Customizing Flash Video Players

10.

VW1 Free Transform Tool (Q) £
“J Gradient Transform Tool (

Figure 5.25: The Gradient Transform tool.

We'll rotate the gradient so it runs vertically with the light end on top and the dark
end on the bottom. Click the circle and drag-rotate the gradient's rotation handle
(Fig. 4.26 A) counter-clockwise from the lower-right corner to the upper-left corner
(Fig. 4.26 B).

B

Figure 5.26: Rotating the gradient.

Lock the Fill layer and select the Highlight layer.

In the Tools palette, select the Fill Color control and choose black as the fill color.
In a later step, we'll change the fill to a semi-transparent gradient, but for now a
dark color will help with sizing, shaping, and positioning the highlight.

Figure 5.27: Select black or enter #000000 for the fill color.

Select the Oval tool, (9. Tun Object Drawing mode off if it is currently on. The
button is in the Tools palette near the bottom. When this mode is on, it makes
shape creation work like it does in Adobe Illustrator or Fireworks, which we don't

Tutorial: Skinning the FLVPlayback Component 85

need for this shape. We'll use the default behavior for shaping the highlight, so
Object Drawing mode is better turned off.

5l [

Figure 5.28: Turn off Object Drawing mode.

. Rulers and Grids will help to draw these shapes. Turn on Rulers by selecting View
> Rulers. Turn on Grids by selecting View > Grid > Show Grid.

. Use the Oval tool to draw a circle that is 18 x 18. Pick the Selection tool, \E
double-click the circle, select the lower two-thirds of the circle, and press Delete.

{0 R [P L O N 0 o o

Figure 5.29: Select the lower two-thirds of the circle.

. With the highlight shape selected, open the Color panel, select the fill (Fig. 4.30
A) and set the fill type to Linear (Fig. 4.30 B). Select the start color (Fig. 4.30 C)
and set it to #FFFFFF (Fig. 4.30 D). Select the end color (Fig. 4.30 E) and set it to
#B3B3B3 (Fig. 4.30 F) and the Alpha to 35% (Fig. 4.30 G).

| Lalar x| swatches | —'

Type. “Linear : l

1%

| Lalor % | Swatchas |

'I Type, | Lincar :‘_ B i)' 1|

A-- Overllow. Extend _I - Overflluw. Exlerd _‘I
.-] Jﬁ x " Linear RGB .J[‘ﬁ:j s " Linear RGB
R:7255 | 778 | [
e
B:255 | 8179 | [1]
Alpha: T00% | !:_ HFFFFFE ¢ G ——apha: 355 | [v] mE3EIEE -
| I
C-A u} a a—E

Figure 5.30: Adjusting the highlight's fill style and colors.

. Select the Gradient Transform tool from the Tools palette. We'll rotate the gradient
so it runs vertically with the light end on top and the dark end on the bottom. Click
the shape and drag-rotate the gradient's rotation handle (Fig. 4.31 A) clockwise

86 Chapter 5: Customizing Flash Video Players

15.

16.

17.

from the top-right corner to the lower-right corner (Fig. 4.31 B). Then select the
gradient’s scale handle (Fig. 4.31 C) and drag it to the bottom of the shape

(Fig. 4.31 D).

o—>

Figure 5.31: Adjusting the gradient direction and scale.

o

O —n

Chose Edit > Deselect All. Select the Selection tool from the Tools palette. Move

the cursor just below the highlight shape until the cursor changes to the reshape

cursor, %, Click and drag the bottom part of the highlight shape up about 3 pixels
until the shape is crescent-shaped.

A

Figure 5.32: Reshaping the highlight.

Move the highlight into place. Position it near the top of the circle. Use the follow-

ing screen capture to help in positioning it.

| = Properties x | Filters | Parame

i
]
(i

Figure 5.33: Positioning the highlight shape.

Lock the Highlight layer. Unlock the Background layer, select the circle, and chose
Edit > Copy. Lock the Background layer and select the Stroke layer. Chose Edit >

Paste in Place.

Tutorial: Skinning the FLVPlayback Component

87

18. In the Color panel (Window > Color), select the Fill color control and select None
for the type. Then select the Stroke color control and select Linear for the type and
choose #999999 for the gradient's start color and #717171 for the end color.

Figure 5.34: The final button.

19. Choose File > Save. Click Scene 1 in the Edit bar to close the CircleBgNormal
movie clip and return to the document's default scene.

l?ﬂ | = % ﬁ% CircleBaNormal

T

Figure 5.35: Use the edit bar to navigate within a Flash document.

20. In the Library panel, duplicate the CircleBgNormal movie clip twice and rename
one CircleBgOver (the “over” button state) and the other CircleBgDown (the
“down" button state). To duplicate it, right-click (Windows) or Control-click (Mac
OS) on the movie clip and choose Duplicate from the context menu.

21. In the Library panel, double-click CircleBgOver. The movie clip opens and occu-
pies the stage and timeline. Since we duplicated the normal state, we have all the
same layers—we just need to modify them visually.

22. Select the Stroke layer and then select the stroked circle on the stage. Change the
stroke color using the Color panel to #FF9900.

23. Double-click the CircleBgDown movie clip. Lock the Stroke layer and unlock the
Fill layer. Select the fill shape and using the Color panel reverse the gradient. Drag
the start color to the middle, drag the end color to the start position, and then
drag what was the start color (but is now in the middle) to the end. We now have

the base shape for all the buttons.

Customizing the Playback Icons

The next several steps cover redrawing the icons used inside the FLVPlayback but-
tons. We'll redraw the shapes and then move the circular button into the appropri-
ate movie clips. We'll then align and center the icons within the button.

@ While you can follow the steps I've provided, feel free to simply copy and paste them from

the finished FLA file, customerplayer.fla in Completed Tutorials > Chapter 5 > Custom Player
(Components).

88 Chapter 5: Customizing Flash Video Players

The icons used inside the buttons are filled with white, which we will be changing
to black. To simplify editing, choose Modify > Document and set the document's
background color to middle gray or #999999. Choose View > Grid > Edit Grid and
set the horizontal and vertical units to 1. This will create a tight grid that is excel-
lent for checking pixel-level accuracy and drawing icons sized for the screen.

Background color: ’E

Frame rate: - |ﬂ59599

Ruler units:

(_Make Default)

Figure 5.36: Setting the document’s background color to gray.

In the Library panel, open the FLV Playback Skins > Play Button > Assets folder.
Double-click the Playlcon movie clip. Turn on Object Drawing mode in the Tools
palette. Delete the shape and redraw it with the Pen tool according to the follow-
ing screen capture. Set the fill color to #333333. The stroke should be set to none.

| = Properties l_uml Parameters ==

{:& Drawing Object 27 1
2 (W] |) stroke

W: 10,0 | X1 (0.0
h

H 100 | ¥ 0.0

Figure 5.37: Redrawing the play icon.

Open the FLV PLayback Skins > Pause Button > Assets folder. Double-click the
Pauselcon movie clip. Delete the existing shapes and use the Rectangle tool to re-
draw the icon according to the following screen capture. Each rectangle should be
3 x 8 pixels and about 2 pixels apart. When they are both selected, their combined
x and y coordinates should be 0, 0. Set the fill color to #333333.

Tutorial: Skinning the FLVPlayback Component 89

[= Properties x | Filters | Parameters |

Shape & 1
& [m

8.0 X 0.0

g0 | v:lo0

Figure 5.38: Redrawing the pause icon.

Open the FLV Playback Skins > FullScreen Button > Assets folder. Double-click
the FullScreenlcon movie clip. Delete the existing shapes and use the Rectangle
and Pen tools to redraw the icon according to the following screen capture. Set the
fill color to #333333.

| = Properies = | Filters | 1 | = Properties = | Filers. | Parameers |

'—[Rectangle Primitive & /] 15 v il Document Size: | 480 % 406 pixels | Backgr

& [[swroke ninting customplayer2fla Publish; | Setings... Player:

. w150 | X 0.0 cr H N R Docare
H:120 | ¥:0.0 2 b (L]

Figure 5.39: Redrawing the full-screen icons.

Open the FLV Playback Skins > Mute Button > Assets folder. Double-click the
MuteOfflcon movie clip. Delete the existing shapes and use the Ellipse tool to
redraw the icon according to the following screen capture. Set the fill color to
#333333.

Open the MuteOnlcon and redraw the icon according to the following screen
capture. Set the fill color for all the shapes to #333333.

20 Chapter 5: Customizing Flash Video Players

10.

I @ properties » Lriers | Paramesers | J[c properves » [Gitters | Paramenees |

I— Oval Primitive & 1 “ Document Size: | 480 x 406 pixels | Ba

& [stroke | Fl costompleyer2 e Publish: [Sewngs.. | pa

w10 | %00 | Sunangle:® 1|* Doc
A 40 | ¥:[30 | Endangle @ |*

Figure 5.40: The mute off and mute on icons.

Open the PlayButtonNormal movie clip in the Play Button folder. Select the button
layer and delete the existing movie clip. Drag a copy of the CircleBGNormal movie
clip from the _CircleButton folder to the stage. Position the new button shape at 0,
0. Center the play icon shape over the button shape—set the x position to 8 and
the y position to 7.

Choose Edit > Select All and then choose Edit > Copy. Open the PlayButtonDis-
abled movie clip. Delete the contents of the icon and button layers. Select the
button layer. Choose Edit > Paste in Place. Cut the Playlcon movie clip and paste
it to the icon layer (using Edit > Paste in Place).

Adjust the opacity of both movie clips using the Properties panel. Select each
movie clip (Fig. 4.41 A) and then select Alpha (opacity) from the Color drop down
(Fig. 4.41 B) and set the alpha value to 50% (Fig. 4.41 C).

| © Propesties « | Filters | P I

Movie Clip E Instance of- Playlcon Color: _Alpha WH
@ icon_me swap... | |

Figure 5.41: Adjusting the opacity for the disabled state.

Using the same set of steps, update the remaining two button states. Use
CircleBgOver for the PlayButtonOver and CircleBgDown for PlayButtonDown.
Once you have modified the play button, update the pause, stop, mute, and full-
screen buttons using the same set of circle buttons with the redrawn icon movie
clips. Customizing these buttons may take a while, but hang in there.

Tutorial: Skinning the FLVPlayback Component 921

The Toggle Size Button

The toggle size button is not a native FLVPlayback component button like the play,
stop, or full-screen buttons. That said, we will use an ActionScript 3 button com-
ponent and simply copy and paste the circle button movie clips into the movie clip
skins for this button. The icon we'll draw and assign using ActionScript, and we'll
write the sizing code using sizing methods that were recently added to the new
FLVPlayback component class.

When we added an ActionScript 3 button component to the stage, the application
automatically added the assets for the component to the Library panel. They're in
a folder named Component Assets. Open that folder.

'E Component Assets Folder
LF_: _private Folder
=1 .
|"~ ButtonSkins Folder
e
.~ Fit Assets Folder

FitToStageOf Mavie Clip
FitToStageOn Mavie Clip

Figure 5.42: The Component Assets folder.

Create a folder and name it Fit Assets inside the Component Assets folder. Create
two empty movie clip symbols named FitToStageOff and FitToStageOn. These two
symbols will be dynamically loaded into the fit-to-stage button. To facilitate the
loading, both symbols need to be exposed to ActionScript as a class. In the Symbol
Properties dialog, select Export for ActionScript and use the default class name,
which is the same name as the symbol.

Symbol Properties

Name: FitToStageOff Eﬁ
Type: (@ Movie clip @

() Button
O Graphic (et) (Basic)
Linkage
Identifier:
Class: FitToStageDff
Base class: flash.display.MovieClip

Linkage: ™ Export for ActionScript
[l Export for runtime sharing
™ Export in first frame
__ Impaort for runtime sharing

Figure 5.43: Exporting a symbol for ActionScript.

Open the FitToStageOn movie clip. Using the Rectangle Primitive tool, draw a
rounded rectangle that is 15 x 12 pixels. Set the stroke color to #333333 and the
fill color to #666666. Set the corner radius to 2 and position the shape at 0.5, 0.5.

92 Chapter 5: Customizing Flash Video Players

N

10.

| = Properties x | Filters | | |
I]:[Rectangle Primitive - El iE E| Solid
& IEI [~ stroke hinting
Wi [15.0 | X: (0.5 £ 1M a'\ 2 ||

H:[12.0 | ¥ 0.5 N2 B okiia fiY

Figure 5.44: The FitToStage icon.

Select the shape and copy it. Now double-click the FitToStageOff movie clip.
Choose Edit > Paste in Place. Remove the fill color by choosing the no-color
swatch, , in the fill color picker control.

Draw a rectangle inside the larger rectangle that is 8 x 5 pixels. Position it at 4, 4.

In the Component Assets folder open the ButtonSkins folder. We will now “port”
the skin we created for the FLVPlayback components to the states for this button.

For each of these movie clips, turn off 9-slice scaling. You can do that by selecting
the movie clip in the Library panel and clicking the Properties button, then at the
bottom of the panel, clicking the Advanced button in the Symbol Properties dialog
and deselecting Enable Guides for 9-slice scaling.

9-slice scaling uses two horizontal and two vertical guides to slice up a movie clip for
proportional scaling. The four guides create nine regions that preserve the proportions of the
four corners while scaling the remaining five middle areas to fit. For more information on
9-slice scaling, go to: http://www.adobe.com/go/vid0204 and http://www.adobe.com/go/
vid0205.

Open the Button_upSkin movie clip and remove the contents. Open CircleBgNor-
mal, copy its shapes, and paste them into the corresponding layers in the But-
ton_upSkin movie clip.

Open Button_selectedUpSkin, drag an instance of Button_upSkin, and position it
at o0, 0.

Open the Button_downSkin movie clip and remove the contents. Open
CircleBgDown, copy its shapes, and paste them into the corresponding layers in
the Button_downSkin movie clip.

Tutorial: Skinning the FLVPlayback Component 93

11.

12.

13.

14.

15.

16.

Open the Button_selectedDownSkin movie clip, remove the contents, drag an
instance of Button_downSkin, and position it at 0, 0.

Open Button_overSkin, remove its contents, and copy the corresponding shapes
from CircleBgOver and paste them into Button_overSkin.

Open Button_selectedOverSkin, remove its contents, drag an instance of But-
ton_overSkin, and position it at 0, 0.

Open the Button_disabledSkin movie clip, remove the contents, drag an instance
of Button_upSkin to the stage, and position it at 0, 0. Set the Alpha property for
the movie clip to 35%.

Open the Button_selectedDisabledSkin movie clip, remove the contents, drag an
instance of Button_downSkin, and position it at 0, 0. Set the Alpha property for
the movie clip to 35%.

.
selected up

selected over
'it‘JL.’_'[L‘lJ_L“.‘H!h led
:wi‘]L'L‘[L'd_L]l_l‘.‘.'H
down

OVET

up

[((IJD € ¢

emphasized

disabled

tocusRectSkin

Figure 5.45: If you open the Button component in the Library, you'll see all the states.

Skinning the Seek Bar

A seek bar displays the position of the current frame in relation to the video's
duration. It also provides a way to move playback to any point of the duration by
clicking in the seek bar or dragging the seek bar handle.

Open the SeekBarProgress movie clip. Delete the contents. Select the Rectangle
Primitive tool. In the Properties panel, set the Stroke to none and the Fill to Black.
Draw a rectangle that is 200 x 6 pixels and position it at 0, 0. With the shape
selected, change the corner rounding to 3.5 in the Properties panel.

94 Chapter 5: Customizing Flash Video Players

17.

18.

19.

| = Properties x | Filters | Parameters |

]:[Rectangle Primitive & 1 d
&y lEl " | Stroke hinting
w: 2000 x: (0.0 £ B o Bl

H: 6.0 | Y: 0.0 o35 435 |v

Figure 5.46: The seek bar shape.

Use the Color panel (Window > Color) and set the Fill color to a Linear gradient.
Use #333333 as the start color and #999999 as the end color.

Use the Transform Gradient tool to rotate and scale the gradient. The gradient
should run vertically and the start (darker) color should be at the bottom and the

end (lighter) color should be at the top of the shape.

I
Figure 5.47: The gradient rotated and scaled.

Open CircleBgNormal and copy the contents of all the layers at once (if neces-
sary, unlock layers). Open the SeekBarHandle movie clip, delete the contents, an

d

choose Edit > Paste. Group the collection of shapes by choosing Modify > Group.

Scale the collection of shapes to 8 x 8 pixels and position it at -4, —4. This nega-
tive offset will center the handle vertically upon the seek bar.

Skinning the Buffer Bar

The buffer bar displays a “barber shop poll” animation when the streaming is de-

layed. In this case, we won't change the shape or animation. Instead we'll modify

the color of the barber shop poll from nuclear day-glow green to a warm yellow.

In the Library panel, open the BufferingPattern movie clip in the BufferBar folder.

The graphic is comprised of five groups. Each group consists of five diagonal
shapes. Select the first group and choose Modify > Ungroup. With the shapes
selected, set the fill color to #FFCC00. Choose Modify > Group. Repeat this for t
remaining four groups.

he

Open the Seek Bar folder and double-click the SeekBarProgress movie clip. Copy

the shape and then double-click the BufferingBar component in the Library panel.

Look at the layers in the movie clip.

Al script
4l Outline

ED pattern

Figure 5.48: The layer structure for the BufferingBar component.

Tutorial: Skinning the FLVPlayback Component

95

Select the mask layer and delete the contents inside it. Choose Edit > Paste and
position the pasted shape over the pattern. The x and y position for the pasted
shape should be 1, 1.4. As a best practice, | like to fill shapes used as masks with
red. Select the shape and set the fill to #FF0000.

B

=
o

[Properties = | Filers | Parameters |

1 { Rectangle Primitive)

&
w:[2000 Xx: L0 Ve
-

wleo | ¥:[ta |

N

| St niting Suale.

35 1 N3 [
2.5 [[¥ ki35

v Reset

Figure 5.49: The mask shaped placed over the animated buffer pattern movie clip.
When finished, click Scene 1 in the Edit bar.

LM:' & % [EZ] BufferingPattarn

i 400 {%p;so |300 250
U T i I L tieal U O AT U Pt

Figure 5.50: To return to the player screen, use the Edit bar.

The player should now look like the following screen capture. Choose Modify >
Document to set the movie's background color back to white. Choose File > Save.

¢ U@

&

Figure 5.51: The updated player.

If you're doing a double-take on the ActionScript 3 button component, don't be alarmed. It
doesn't accurately show the updated skin at designtime. When the movie runs, it will load
the correct skins.

Part 3: Writing the ActionScript

Up to this point, we've laid out and customized the video player's interface. In this
third section, we will connect code to the controls and add functionality missing
from the component such as a timecode display and the scaling toggle.

26 Chapter 5: Customizing Flash Video Players

1. Choose File > New and in the New Document dialog, select ActionScript File.

Type:

ﬁ Flash File (ActionScript 3.0)

ﬁ Flash File (ActionScript 2.0)

i Flash File (Mobile)

ﬁ Flash Slide Presentation

T Flash Form Application

= ActionScript File

-_1“_:, ActionScript Communication File
=% Flash JavaScript File

= Flash Project

Figure 5.52: Select ActionScript File from the Type list.

2. Save the file as CustomPlayer.as in the Custom Player (Components) folder.

3. Document classes need to begin with the package statement. Enter:

package {
}

4. Inside the package statement, add the following five import statements:

import flash.display.MovieClip;
import flash.events.*;

import f1.controls.Button;
import fl.video.*;
import flash.text.TextField;

A Flash movie file with a timeline requires the MovieCl1ip class to be imported.
The f1.events class is used to listen for events triggered by interface controls.
The f1.controls.Button class is needed for the scaling toggle button. The
f1.video class contains the methods and properties for working with the FLV-
Playback component. Lastly, the flash.text.TextField class is imported for
the timecode text field.

After the import statements, add the class declaration:

public class CustomPlayer extends MovieClip {

3

Note that the class name has to be the same name as the file name minus the file
extension. A document class normally extends the MovieCl1ip class. All of the
methods and properties for this class have to reside within this declaration.

5. Choose File > Save to save your work.

6. Return briefly to the customplayer.fla file, and with nothing selected, show the
Properties Inspector. Enter CustomP1ayer in the Document class text field. This

Tutorial: Skinning the FLVPlayback Component 97

associates the CustomPlayer.as with the timeline in this movie. Note that the “.as"”
extension is not needed.

| ¢ Properties | Filters | Parameters |

F Document Size: | 480 x 406 pixels] Background: lEI Frame rate: 12 | fps
customplayer.fla Publish: | Settings.. | Player: 9 ActionScript: 3.0 Profile: Default
Document class: CustomPlayer ?’

Figure 5.53: Entering the Document class for the entire movie

7. Save the file and then click the Pencil icon to the right of the Document class text
field. This will switch to the FLVPlayback.as file.

ABOUT DOCUMENT CLASSES To set the Document class, make sure noth-
A Document class is an external Action- ing is selected (choose Edit > Deselect All),
Script class file that is paired with an FLA and in the Property inspector for the Flash
file. At compile time, the Document class movie, enter the path and name of the class

in included with the compiled SWF. Atrun file in the Document class field or in the
time, the Document class is constructed and Publish Settings dialog (choose File > Pub-

run when the SWF's timeline is initialized. lish Settings > Flash tab > Settings button).
Prior to ActionScript 3 and Flash CS3, the To learn more about document classes, go
best practice was to place code in a layer to the Flash Developer Center on Adobe.
named “actions” in the first frame. While com and read this article: http://www.
this practice is better than having code adobe.com/devnet/flash/articles/flash9_

sprinkled across movie clips, it still requires ~ as3_preview.html.
the code to reside in the FLA. When the

code is inside the FLA file, quick reuse and

version control is more difficult.

8. The next three lines of code create three variables for creating the timecode control.

private var currentTime:uint;

private var allTime:uint;

The video's current time is stored in the currentTime variable. This variable is
declared as an uint, or an unsigned integer. An unsigned integer is essentially a
positive number and requires less memory than a variable declared as a number.
Likewise, the video's duration is stored inside the uint variable, al1Time.

9. After the variables are declared, we need to write the constructor function. This is
code that is automatically run when the document class is constructed by the Flash
player. Add the following:

public function CustomPlayer () {

3

10. Inside the CustomPTayer () function (between the curly braces), enter:

98 Chapter 5: Customizing Flash Video Players

vidPlayback.playPauseButton = playPausePlayback;
vidPlayback.stopButton = stopPlayback;
vidPlayback.muteButton = mutePlayback;

vidPlayback.seekBar = seekPlayback;
vidPlayback.bufferingBar = bufferPlayback;
vidPlayback.fullScreenButton = fullScreenPlayback;
vidPlayback.fullScreenTakeOver = false;

The FLVPlayback component that we added to the stage in Part 1 is named vid-
Playback. The first six lines of code are all that are required to connect the custom
playback buttons and controls to the video. The last line in this code block will
keep the interface controls on screen when the video enters full-screen mode.

11. We now need to set the source for the video. The file, filmmakers.flv, is located in
the same directory as the customerplayer.fla file, so enter:

vidPlayback.source = “filmmakers.flv”;

12. We can now test our efforts. Choose Control > Test Movie. You should see a video

playing inside the player with several filmmakers briefly introducing themselves.

06006 customplayer.swf

oe | @ e@

Figure 5.54: The Flash Video Player running.

You can play, pause, stop, mute the audio, and scrub with the seek bar. The
timecode is not shown and you cannot enter full-screen mode. The timecode will
be shown after we write two methods to populate the timecode text fields in steps
16 and 17. We could enter full-screen mode if the movie was playing inside a web
page, so we'll test that at the end of the tutorial when we publish the movie and
an HTML page with it.

Tutorial: Skinning the FLVPlayback Component 29

13. One of the properties available to the FLVPlayback component is autoRewind.
By setting it to true, the player will automatically rewind the video when the

video reaches the end. To set it, enter:

vidPlayback.autoRewind = true;

14. Add an event listener to the video to listen for playhead updates:

vidPlayback.addEventListener (VideoEvent.PLAYHEAD_UPDATE, setTimeCode);

The PLAYHEAD_UPDATE occurs continuously as the movie plays. By listening

to this event, we can keep track of the current time. The addEventListner
method listens for the playhead to update, and when it does, it calls the set-
TimeCode method, which we will write shortly.

15. The button for scaling the video, fitToStageButton, is an ActionScript 3 component
and has the setSty1e method to add symbols or movie clips as an icon inside the
button. Enter:

fitToStageButton.setStyle (“icon”, FitToStageOff);
fitToStageButton.setStyle (“selectedUpIcon”, FitToStageOn);

fitToStageButton.setStyle (“selectedOverIcon”, FitToStageOn);
fitToStageButton.setStyle (“selectedDownIcon”, FitToStageOn);

The setStyle method accepts two parameters: the button state in which to the
use the icon and a named movie clip or symbol in the Flash document’s Library to
use as the icon.

16. The next three lines turn the button into a toggle button, select the button (toggles
it on), and add an event listener.

fitToStageButton.toggle = true;

fitToStageButton.selected = true;
fitToStageButton.addEventListener (MouseEvent.CLICK, toggleFitToStage);

The ActionScript 3 button component has a property, toggle, that turns a button
instance into a toggle button, a button that works like a switch. One click turns it
on and another click turns it off. When the movie loads, fitToStageButton.
selected = true runs and selects the button by default. The event listener
listens for every time the button is clicked. When the CLICK event occurs, the
toggleFitToStage method is called.

17. Place the cursor after and outside the entire CustomPTayer function. We will
now write the first of three public methods for the class. Write the setTimeCode
method:

100 Chapter 5: Customizing Flash Video Players

public function setTimeCode (evt:VideoEvent):void {
currentTime = Math.round(evt.playheadTime);
allTime = Math.round(vidPlayback.totalTime);

currentTimeText.text = timeCode(currentTime);
totalTimeText.text = timeCode(allTime);

This method accepts an event of type VideoEvent as a parameter. The event is
PLAYHEAD_UPDATE, which we wrote code to listen for in step 13. The method
uses this event to set the currentTime variable to the playheadTime prop-
erty. This property stores the playhead time in seconds. To simplify the processing,
it's rounded to the nearest whole number using the Math . round() method, so
instead of setting currentTime to 1.25, it sets it to 1. You may have also noticed
that just before the opening curly brace, there is a colon followed by the keyword,
void. Since this function does not return a value after it is executed, we use the
void keyword.

The al1T1ime variable is set in this method using the FLVPT1ayback component's
totalTime property. This is a real convenience as it would normally require
several lines of code to determine if we were not using this component. Similarly,
al1Time is rounded to the nearest whole number using Math. roundQ).

The next two lines of code set the text property of the two timecode text fields,
currentTimeText and total TimeText, to the result of passing current-
Time and al1Time to the timeCode () method.

18. The timeCode function is going to accept an input of milliseconds and return
a nicely formatted timecode string, tcString. Let's begin writing this longer
method by entering:

public function timeCode (theTime:uint):String {

3

The function statement for timeCode () accepts a parameter declared as an un-
signed integer (uint), theTime, and returns a String once it completes.

19. Place the cursor inside the function and declare these three variables:

var theMin:uint Math.floor(theTime/60) ;
var theSec:uint = theTime%60;

var tcString:String =

The first line declares a variable, theM1in, to store minutes. We set it to the result
of applying the Math. floor () method to the incoming parameter, theTime
divided by 60, or the number of seconds in one minute. Flooring a number rounds

Tutorial: Skinning the FLVPlayback Component 101

20.

21.

a number to the lowest available whole number. This ensures that the number of
minutes is accurate.

The second variable, theSec, is the number of seconds when the method is called.
Where the preceding function ignored the remaining seconds, this variable is all
about the remaining number of seconds. It uses the operator modulo (%) to set
theSec to the remainder of theTime divided by 60. For example, when the-
Time is equal to 119, the theSec will equal 59, or the remainder of dividing 119
by 60.

The tcStringis a String or text-formatted variable for storing the timecode.
It's a string and not a number because a timecode field contains a non-numerical
character, the colon character (:), and is not a pure number.

After these internal variables are defined, enter the remaining code inside the
method:

if (theMin < 10) {
tcString += “07;
}
if (theMin >= 1) {
tcString += theMin.toString(Q);
} else {
tcString += “07;

}

[T
L

tcString +=
if (theSec < 10) {

tcString += “07;

tcString += theSec.toString(Q);
} else {

tcString += theSec.toString();

}

return tcString;

This series of if-else statements formats the time into a timecode string. It begins
by first creating the minutes, appending a colon character, and by creating the
seconds. In each stage, the result is appended to the string, tcString. This value
is then returned to the function that called it.

The last bit of code we need to write is the code to toggle between displaying the
video at actual size and scaling the movie to fit within the video component. On
sites featuring Flash Video players, you will often see video that is scaled to fit the
display area and a button to show the video at its smaller actual size. To create this
functionality enter:

102 Chapter 5: Customizing Flash Video Players

pubTlic function toggleFitToStage (event:MouseEvent):void {
if (fitToStageButton.selected == true) {
vidPTayback.scaleMode = VideoScaleMode.NO_SCALE;

} else if (fitToStageButton.selected == false) {
vidPlayback.scaleMode = VideoScaleMode.MAINTAIN_ASPECT_RATIO;

This function is triggered when the toggleFitToStage button is clicked. It uses
an if-else statement to respond when the button is selected. If it's selected, it sets
the vidPlayback object's VideoScaleMode property to NO_SCALE. This pres-
ents the video at actual size. If the button is not selected, the VideoScaleMode
is set to MAINTAIN_ASPECT_RATIO. This scales the video to fit the size of the
FLVPTayback component.

22. Switch back to the customplayer.fla file. Choose File > Publish Settings. Click the
HTML tab.

23. Choose Flash Only - Allow Full Screen from the Template dropdown menu and
click OK at the bottom of the dialog.

Flash For Pocket PC 2003

Flash HTTPS

Flash Only

LCLIEIEE « Flash Only - Allow Full Screen .)
Flash with AICC Tracking =

Flash with FSCommand

Figure 5.55: Select Flash Only - Allow Full Screen.

ABOUT FULL-SCREEN MODE set, an exception is thrown when a viewer
Before Adobe introduced full-screen support presses a button to enter the mode. The
in Flash Player 9.027, a lot of custom Flash ~ Flash Only - Allow Full Screen publishing
Video players were implementing full-screen template sets this parameter, but if you are

functionality by switching to a new Flash writing the embed code, you'll need to set
Video player in a web page scaled to fit the this paramter.

monitor. Note that full-screen mode can only be
When a SWF file enters full-screen mode entered by a click or keyboard event. In ad-
in a web browser, the allowFullScreen dition, text fields cannot be modified while
parameter must be set to true, in the web in full-screen mode. These limitations are to

page's embed code. If this parameter is not protect viewers from malicious code.

24. Choose File > Publish Preview > Default (HTML). Your web browser should
launch and display the Flash Video player. You should be able to click the full-
screen button to enter full-screen mode. When the player enters full-screen mode,
a message will appear saying that pressing the Escape key will exit full-screen
mode. This message cannot be altered or removed.

Tutorial: Skinning the FLVPlayback Component 103

&

To review the final working code in case you run into errors, insert the book’s DVD-ROM
and look in the Completed Tutorials > Chapter 5 Complete > Custom Player (Components)
folder. Open the file CustomPlayer.as.

Tutorial: Writing a Custom Player from Scratch

In this tutorial, we will create a Flash Video player without the FLVPlayback com-
ponent. Instead, we will use two custom classes in ActionScript: one for basic video
control that we will write and another for presenting and controlling the interface
that is already written. This will give you more exposure to the methods and prop-
erties that are necessary for developing video applications with Flash. It will also
introduce you to working with classes and packages. Classes represent objects and
are the cornerstone of object-oriented programming. The key take-away, however,
is that classes facilitate reusable code and make it easy to write a class once and
use it for several projects.

| have already skinned the components so we can focus on the code. Feel free to
open up the movie clips in the Library and see how the components are structured
and to look at the changes | made to them. This tutorial’s Flash document uses the
new ActionScript 3 Ul components—not the FLVPlayback components. They are
incredibly lightweight and they are easy to customize and skin. Also, I've included
the Adobe lIllustrator CS3 document, symbols.ai, containing the icons used in this
player. It's in the Custom Player (Classes) folder along with the other media for
this tutorial.

The VideoController class, the prewritten file, is fully commented and uses some of the same
code written in the previous tutorial. That said, we won't walk through it step-by-step. Do
look at the source file, however, and look at the onMetaData method to see how it stores
cue points into an array and later a data provider for the cue point dropdown.

Figure 5.56: Player running within the browser window (A) and running full screen (B).

104 Chapter 5: Customizing Flash Video Players

3.

Writing the Base Video Player Class

The base video class will handle loading the video and managing playback. It will
also provide methods to control the volume and share video metadata.

Navigate to the Tutorials > Chapter 5 folder. Copy the Custom Player (Classes)
folder to your computer.

Launch Flash Professional CS3. Choose File > New. In the New Document dia-
log, select ActionScript File. Choose File > Save. Navigate to the Custom Player
(Classes) folder you just copied. In the Save dialog, open the com folder and then
open the flv folder. Save this ActionScript file here and name it VideoPlayer.as.

You should also see the VideoController.as file in this same directory. This is the prewritten
ActionScript file that will interface with the code you're about to write and connects it to
the player's user interface controls.

After saving the file, enter the package declaration:

package com.flv {

3

You'll notice that the com. f1v reflects the directory structure of where the Ac-
tionScript files are located. This is a namespace for the package statement. When
you write your own ActionScript libraries consisting of several classes or when you
use several shared and open-source libraries, namespaces facilitate organization
and prevent conflicts between code that might have similar method and property
names.

It's considered best practice to use your own domain name when packaging classes. For
example, if your domain was foo.org, you have a package starting org.foo.

Next, let's import the Flash classes that are required to build our base functionality.
Within the braces that define our package, type the following import statements:

import display.Sprite;
import media.Video;
import net.NetConnection;

import net.NetStream;
import events.NetStatusEvent;
import media.SoundTransform;

The Sprite class is actually lighter weight than the MovieClip class because a sprite
doesn't require a timeline. Since this class doesn't need one, we'll import it and
extend it when we write the class declaration.

The next three imported classes are prerequisite for working with video. In this
chapter's first tutorial, we worked with NetConnection and NetStream classes
and allow a Flash movie to open a connection to a video and play it.

Tutorial: Writing a Custom Player from Scratch 105

The NetStatus event class will be used to capture metadata such as duration and
cue points from the video file.

The video file we'll be using for this tutorial does not have sound associated with it.
In the case you want to use a different video with audio, we'll import the
SoundTransform class so we can use its methods to adjust the volume.

5. Now write the class declaration:

public class VideoPlayer extends Sprite {

3

Nothing new here. Remember that the class must have the same name as the file,
minus the “.as" file extension. Since we imported the Spriite class to use as the
basis for this code, we're extending this class to inherit the functionality and meth-
ods available to the Sprite class.

6. Next, let's declare the variables we'll need for this class:

private _vid:Video;
private _ns:NetStream;
private _nc:NetConnection = new NetConnection();

private _vidUrl1:String;
private _vidClient:0Object new Object();
private _vidVolume:Number i3

In this file, we'll prefix class variables with an underscore character. This is con-
sidered a best practice among some ActionScript developers. It also helps with
naming getter and setter methods that will allow other classes to access this class
file's properties.

The _vid variable is a video object. It's the video we'll load and play. Back again to
the first tutorial, we're using the customary variable names _ns and _nc to refer
to the NetStream and NetConnect1ion objects that will pipe the video into the
SWF.

The URL for the video is stored in _vidURL. We won't set the location explicitly
in the file, but we'll write a “setter” method so the VideoController class can
modify it. A setter is a method that sets an object's property. To learn more about
setter and getter methods in ActionScript, search for “setter” or “getter” in Flash
CS3 Professional’s help documentation.

When a Flash Video file has metadata inside it, one needs to create an additional
object to listen to it and optionally process the information. If one is not set, the
Flash Player will throw an exception and remaining code may not run and cause
additional errors. The _vidClient variable is the object we'll define to listen for
these events. Within the realm of this class, the object won't do anything, but we'll

106 Chapter 5: Customizing Flash Video Players

expose this object to the VideoController class so it can process the video's
metadata.

Lastly, we create a number for the volume and set it to 1 or full volume.

7. Now enter the constructor function for the class:

public function VideoPlayer(vidwW:uint, vidH:uint) {
_nc.connect(null);
= new NetStream(_nc);
_vid = new Video(vidW, vidH);
addChild(_vid);

_vid.attachNetStream(_ns);

_ns.client = vidClient;

vidClient.onMetaData = onMetaDataEvent;
startVideo(Q);

The constructor accepts two parameters, the video's width (vidW) and height
(vidH). This means the user can set the height and width for the video exter-
nally and promote reuse. Both parameters are declared as unsigned integers since
heights and widths for video are always positive numbers.

The first several lines of the constructor are similar to the code we wrote in the

first tutorial. They create a connection to an external video file, and facilitate its
playback. What is unique however, are the addChi1d() method and the client
property. The addChi1d() method is the ActionScript 3 way of adding movies to
the display list, the stack of things currently on the Flash document's stage. The
client property is a way to specify which object should be the recipient for the
metadata received by the NetStream instance, _ns.

Lastly, The constructor function doesn't start video playback. Instead it calls the
startVideo() method that starts the video and pauses it at the first frame.

8. Place the cursor outside and after the constructor function and create the first
function. This function sets the _vidUr1 variable. Since the method is declared as
public, the VideoController class will be able to set the location easily.

public function set vidUrl(value:String):void {

_vidUrl = value;

}

9. The VideoController will want access to the NetStream instance _ns for it's
seek bar functionality. Enter:

Tutorial: Writing a Custom Player from Scratch 107

public function get ns():NetStream {

return _ns;

}

One thing you may have noticed about the past two functions are the words get
and set in between the function keyword and the method name. This is how get-
ter and setter methods are written in ActionScript 3. Getter and setters, as they are
often referred to, allow you to keep variables private to the class while providing

a simple and controlled way for other classes to read and write to these variables.
For example, the VideoController class creates a new instance of this class
and names it _myVideo. To access the ns object, one writes _myVideo.ns.

10. Let's write a getter method that will return the client object, _vidClient, at-
tached to the NetStream object, _ns. Enter:

public function get vidClient():0bject {

return _vidClient;

}

To see how the VideoController class will make use of this getter method,
look at the methods setupProgress(), getVideoTime(), and onEnter-
Frame() in VideoController.as.

11. Add the method to load the stream and show the first frame of video:

public function startVideo():void {
ns.play(_vidurl);
ns.seek(0);

ns.pause();

The play () method begins playback of the video defined by _vidURL. It doesn't,
however, make it appear on stage, the attachVideoStream() and
addChild() methods do that back in the constructor function.

Since it may not be desirable to have the video start playback automatically, we
use the seek () and pause() methods to go to the first frame and pause when
the video has loaded.

12. To toggle between play and pause states, write the following method:

public function playVideo():void {

_ns.togglePause();
}

13. There are two controls that will need the ability to seek to a portion of the video:

108 Chapter 5: Customizing Flash Video Players

pubTlic function seekToVideo(seekTime:Number):void {

3

_ns.seek(seekTime) ;

The player's user interface contains a slider User Interface component and a drop
down menu. The slider is extended to work like the seekBar FLVPlayback com-
ponent: as the user drags the slider, the player seeks to different parts of the video.
The dropdown or combo box User Interface component holds all the video's cue
points and their corresponding location in time. It will use this method to move the
playhead to a cue point.

14. Write the method to adjust volume:

public function adjustVolume(newSoundVolume:Number):void {

var st:SoundTransform = new SoundTransform();
st.volume = newSoundVolume;
_ns.soundTransform = st;

_vidVolume = newSoundVolume;

The Video and NetStream objects do not have methods for controlling audio.
Instead, we need to create a SoundTransform object and associate it with the
ns object using the soundTrans form method to adjust the sound.

15. Write the dummy method for ignoring metadata:

private function onMetaDataEvent(info:Object):void {

3

16.

17.

// Do nothing. Here to prevent errors.

This method will ignore metadata associated with the video. This will prevent pos-
sible errors when the player encounters the metadata. Two forward slashes, //,
create commented code that is ignored by the Flash compiler.

Save the file. Open the file player.fla in the Custom Player (Classes) folder you
copied to your computer. Choose Edit > Deselect All in case something is selected.
In the Properties panel, notice that the file has a document class associated with it.
It's the prewritten file, VideoController.as.

Choose Control > Test Movie to compile the movie. No video plays. That's
because the video location is actually set in HTML in a FlashVar. To preview the
movie, launch a web browser and open the file index.html in the Custom Player
(Classes) folder.

In addition to looking over the VideoController.as file, check out the index.html file in the
text editor of your choice. If you encounter issues, look at the completed tutorial on the
DVD-ROM.

Tutorial: Writing a Custom Player from Scratch 109

Wrapping Up

By now, you should be more familiar with the methods and properties for the FLV-
Playback component class and the Video, NetStream, and NetConnection
classes. As you gain more experience with these, feel free to extend these project
files further.

110 Chapter 5: Customizing Flash Video Players

CHAPTER 6

Interactive Video Concepts

® Designing Navigation and Interaction..............c...ccoece.. 112
® Backgrounds, Loops, and Flash Video...........c...cccccceene. 116
© Tutorial: Repeating LOOPScovveivieiiieiiie e 116
® Tutorial: Intro, Exit, and Return LOOPS..........cccceveverueennnenn 128

© WIrapping UP ..coveeiieiiie ettt 136

Designing Navigation and Interaction

On one end of the spectrum, a Flash Video project is like putting in a video tape
and pressing play. Beyond that are players that have playback controls like a DVD-
remote: play, pause, next chapter, previous chapter, current time, etc... And be-
yond that are rich internet applications that involve presenting data with video or
video with data. This section guides you through designing Flash Video navigation
and interaction. | explain working methods and the tools used to create navigation
and point out things you can do to make your projects easier to use.

Flowcharts

A flowchart or sitemap, shows all the links between every screen in your Flash
Video application or how Flash Video integrates within a larger website. It is a
bird's-eye view of the your project, and it is crucial to interactive design and
production. For example, a Flash designer uses a flowchart to design screens and
animations while an ActionScript developer uses it to write navigation and func-
tional code.

Figures 6.3 and 6.21 are examples flow charts for Flash Video applications. They were
drawn using Adobe Illustrator CS3, but OmniGraffle or Microsoft Visio would have been
fine, too.

Is) if no butbh 15
rehnitg? Main |/ clicked, loop
@ . o Menu video.
—> oy inbo s m@
s pley raan'Flv) AN
oh bution (s clicked,
pley exit flv
before going fo
destinahion,
1
L »
L

)
gah
when Finished
P [
n u
. and play retvm: Ay,

Figure 6.1: Whiteboard flowchart.

Developing a flowchart should begin soon after you understand the project's
scope. | like to begin flowcharts early. When talking with the client or team, | will
go up to a white board or use pen and paper and sketch a flow. As | draw the
diagram, | talk through it, asking questions as needed. When using a whiteboard,

112 Chapter 6: Interactive Video Concepts

it's easy to erase one idea and sketch a new idea quickly. When the session is done,
| take a picture of the whiteboard with a digital camera.

When you photograph a white board, be careful to not catch too much glare, or parts of the
whiteboard will be obscured. Also, write legibly and use markers that create solid lines.

Once you have the flowchart recorded, draw it in a program like OmniGraffle,
Microsoft Visio, or Adobe lllustrator. Having the flowchart in a digital form allows
you to make updates quickly, and you can reuse flowchart components. If you can,
always sketch the initial flowchart. Although this sounds contradictory to the previ-
ous paragraph, a sketch is often faster to produce, it can be done anywhere and by
anyone, and it is judged fairly because of its rough appearance.

Prototyping

Prototyping is creating a functional version of the project for evaluation purposes.
The goal is to gain valuable feedback on the project's features before production.
When prototyping a Flash Video project, you have the following options:

Create a prototype from sketches, lllustrator, Visio, or Omnigraffle wireframes.

Author a small subset of the project and run it locally or post it on a site for testing.

Paper Prototyping

This option can be produced in a few hours. Usually, you want to test to see
whether people get the idea and purpose of the project, test your naming scheme,
and test overall functionality. You can create prototypes at any stage of develop-
ment, but prototyping with paper at the beginning has the most bang for the buck
because paper prototypes are produced quickly and cheaply, and yield a lot of
valuable feedback. There is no need to make huge investments in production and
design when an hour's worth of sketching and a few interviews will do.

Lo&p
Heading
Choose a VTdee
3 e en

»Llick fo p(uf . i _:' fmﬁﬁf

Video = e
/nn'.tllhbfﬂ > l".)
conaly | About Video 3] Video description
=y o o shoun while
—_— —_— “w

Figure 6.2: Paper prototype.

Designing Navigation and Interaction 113

You can use either hand-drawn sketches or the wireframes for paper prototypes. |
usually conduct two to three rounds of quick testing with paper sketches before
moving to the more finished designs.

Authoring a Functionally Limited Prototype

Putting together a prototype that exhibits portions of the functionality you envi-
sion for your Flash Video application is a good way to test user experience, feasibil-
ity, or performance. Determine which and how much video content to show early.
If you include video for the sake of feedback on both the presentation and content
of the video, include as much as you need. If you are only testing design and navi-
gation, use short video clips to make moving between screens and video quick.

When you prototype a small test, your options are to run it locally on your
machine or deploy it your web site. Viewing the prototype locally on a computer
is faster than waiting for it to deploy to a site, but it won't give you an accurate
indication of network latency and playback performance. If your material is time-
sensitive or shouldn't be released just yet, a local prototype is a good alternative or
you could deploy the material to an unpublished or password protected directory.
Publishing to a site is also good for testing performance across several browsers,
operating systems, and older computers.

When testing a functionally limited prototype, you test for the same things—does
the viewer get the idea and purpose? More importantly, with the benefit of de-
signing a few screens, you are testing whether the visual design makes interacting
with the content easy.

Usability Testing

Usability should not be left until the end because it is, hands down, the best
method for discovering potential interface problems. Ideally, it begins as up-front
research and continues throughout production with testing. By testing iteratively,
you learn from the viewers what makes the project easy to use and enjoyable. The
usability testing process involves the following steps:

Planning. Write the screening questionnaire used in recruiting and the test plan,
which covers the goals and content of the usability tests.

Recruiting. Find test participants who match the audience criteria.

Testing. Run tests and make note of usability issues and opportunities to improve
interaction.

Analyzing. Examine and report test results and make recommendations for im-
provements.

114 Chapter 6: Interactive Video Concepts

Helpful Interaction Design Questions

Designing navigation and interaction is not always straightforward. When | have a
hard time deciding what to design, | keep the viewer's needs in mind and phrase
questions in terms of what they may need:

What is the most logical organization of the content? Does your project have one
video segment? Are there ways to break it into logical chapters? If there will be
more than one video, what is the best way to provide access to the video content?

What does the viewer see first?

Does the user need to interact with the movie using the keyboard? What other
forms of rich interaction or assistive technology need to be supported? Will data
be used? Are closed captions needed?

On any screen, what is this most important button? Give it additional prominence.
How much time should the user spend on this screen? Is the screen still or
dynamic? Will it remain on screen until the user interacts with it, or will it time out
and display something else if no user-driven event occurs?

Interaction Design Tips

The following design rules can help put into practice your navigation and interac-
tion. They are not complete, and some can be broken, but they can bring order
and clarity to wayward designs.

Keep it simple. Remember that often, less is more. A cluttered interface is hard to
use, and given limited screen real estate, you cannot provide links to everything.
Do not overload the screen with too much stuff.

Be consistent. Place buttons in the same place. Keep selection and activation
colors consistent. Use the same wording for buttons that have the same link or
function.

Provide adequate feedback. When a viewer rolls over a button, the visual state of
the button should change and appear different from the remaining buttons that
have not been selected. Treat selected buttons and nonselected buttons consis-
tently.

Use simple language that viewers understand. Do not succumb to irony and use
clever wording that the viewer will not understand. For specialized projects, do
research and ask participants what terminology and wording is understood in their
community of interest.

Create logical cue points in videos and provide an interface to access them. This
gives the viewer the ability to continue when they are not able to watch the entire
video in one session. If there are no logical cue points in the content, set them at
the same interval so the viewer can skip through the video more quickly.

Designing Navigation and Interaction 115

Backgrounds, Loops, and Flash Video

If you can recall the menus for a Hollywood-produced DVD you enjoyed, you are
most likely familiar with looping video and how it can be applied to Flash Video.
When used as a background design element, looping video provides a continu-
ously animated background. Four common patterns for looping video are:

Loop continuously.
Loop a set number of times and then do something else.

Play once completely and then continuously loop back to a point other than the
first frame of video.

Play once completely and then do something else.

Tutorial: Repeating Loops

In this tutorial we'll create a FLA with four screens. Each screen will have video in
the background but each screen will behave differently in each instance.

Loop video
endlessly

BOCcOHCD)

Loop video 4x Play video Play video

v v v
return to screen A return to screen A play again from
after fourth loop after one play loop point

Figure 6.3: The flow we'll create in this tutorial.

On the first screen, the video will loop continuously. In the second screen, the
video background will play four times and then return to the first screen. In the
third screen, the video will play once and then go to a loop point, bypassing the

116 Chapter 6: Interactive Video Concepts

first few seconds of the movie. In the fourth screen, the video will play once and
then return to the first screen. In all screens there are navigation buttons that the
viewer could click at any time to go to another screen. On the first screen, there
are buttons that link to each of the three other example screens and on each of
these three screens is a button that links back to the first screen. Figure 6.3 shows
a flow diagram of this FLA file.

Part 1: Setting Up the FLA File

Open the DVD-ROM folder Tutorials > Chapter 6. Copy the folder Looping Video
to your computer.

Launch Flash Professional. Choose File > Open. Open the file looping.fla in the
Looping Video folder on your computer.

In the Properties panel, click the Background color chip button and enter A4B7EB
as the background color. This color is used in the background videos we will use
and setting this color now will help with creating the titles until we set a preview
frame. It also helps to set the background color in the case the video is loaded over
a slow connection and is not immediately viewable.

[z

{ —————————————
[& Properties | Filters | Parameters | Output | B
Ducurmnent Size: | 480 x 360 pixels Background:
Fl looping.fla Publish: Settings... Player 9 ActionScript- 3.0 Profile: Default

Document class. ra

Figure 6.4: Setting the background color for the FLA file.

For this FLA file, several layers need to be created for structuring actions, labels,
text, buttons, and video. Using the Timeline window, create them according to the
following screenshot.

@66
Q] Labels
l Text
4l Buttons
al Video

. .
|

oomad

Figure 6.5: The layer structure for this FLA file.

Layout the four screens across the timeline according to the following screenshot.
Instructions follow it.

Tutorial: Repeating Loops 117

= @ [J1 5 10 15 20 25 30 35
S Actiané = ﬁ_. gl 1i 3 e B
ol Labels | Econtinunuslyusplay4x DEpIayuﬂce DElnuppoint
@l Text « +« M 5 Ol= Ola Ola
@l Buttons « + Ola olo Ol Ol
Shilh o Ol= [l Olo

Figure 6.6: The timeline layout for the four screens.

Select the Actions layer and click the dot in the Lock column. This will allow us to
enter code in the frame but will prevent us from inadvertly placing elements on
this frame.

Create the frame labels. Select frame 1 in the Labels layer. In the Properties panel
enter continuously for the frame label.

Jc Properties x | Filters | Parameters | Output

f
~ Frame Tween: MNone &
e continuously

Label type:
| Name I-GJ

Figure 6.7: Labeling the frame.

Select frame 10 and choose Insert > Timeline > Blank Keyframe. Label this frame
play4x. Select frame 20 and insert a blank keyframe and label it playonce. Select
frame 30 and label it looppoint. Select frame 39 and choose Insert > Timeline >
Frame.

Lock the Labels layer. Choose File > Save to save your work.

Part 2: Adding Text, Button, and Video Elements

Select frame 1 in the text layer.

Click the Text tool, E in the Tools panel. In the Properties panel, set the text op-
tions to static text. Set the font to Myriad Pro (this assumes the font was installed

with your copy of Flash Professional CS3. If it wasn't installed, pick a font you like).
Set the size to 36 and the color to #FFFFFF (white).

| ¢ Properties x | Filters | Parameters | Output | Compiler Errors |

[staticText [§] A Myriad Pro @ s [E==5 1=
Text Tool Al o—lﬂ af! Normal 1-3-] | Anti-alias for readability I-ﬁ]
. 'IE o |E [Auto kern
k3 Target: {

Figure 6.8: Set the font properties.

118 Chapter 6: Interactive Video Concepts

3.

With the Text tool, click on the Stage and enter Loop Continuously. Click the
Selection tool, E in the Tools panel. Using the Properties panel, change the text
element’s x and y position to 18, 18.

Apply a drop shadow to the text element. Choose Window > Properties > Filters.
In the Filters panel, click the Add Filter button and select Drop Shadow. Set the
drop shadow settings according to the following screen shot.

| Properties | Fiiters x | Para

Output

Blur X: ’2_|E| _é

Bury: 2 |[7]-
Swength: &% 7] Angle: &5 1[7]
Qualy pistance: 3]

Color: El

Figure 6.9: Apply a drop shadow filter to the text.

The Stage should now look like the following screen shot.

Loop Continuously.

Figure 6.10: The first screen with text.

Let's use this text element on the three other screens. Select the text element and
choose Edit > Copy. Select frame 10 in the Text layer. Choose Edit > Paste in Place.
Use the Text tool to change the text element to Play 4x. Using this same sequence
of steps, select frame 20 in the Text layer and change the text to Play Once. Select
frame 30 and change the text to Loop Point. Lock the Text layer.

Select frame 1 in the Buttons layer.

We will now add navigation buttons to the screens. In the Library panel is a button
symbol, Text Button, that shows a diamond and has up, over, and down states.
Drag the Text Button symbol from the Library panel to the Stage.

Use the Properties panel to name the button symbol button1 and set the x and y
position to 48, 180.

Tutorial: Repeating Loops 119

9.

10.

11.

12.

13.

14.

Drag two additonal buttons to the Stage and name them button2 and button3.
Set the x and y position for button2 to 48, 228. Set the x and y position for but-
ton3 to 48, 280.

Select the Text tool and set the text properties according to the following screen
shot. The type should be Static Text, the font should be Myriad Pro Bold (or
another if it is not installed), the size should be 24, and the color should be 333333
(dark gray).

Je Properties = | Filter

Qutput | Compiler Errors
StaticText %] A [Myriad Pro Bold |@ [z |) [T] 2.

rs | Paramet

T Text Tool AXV ,I:I_|Ei al [Normal ﬁ [Ami-afiasfur readability n
[;[=] [Auta kern
9 | | Target: @

Figure 6.11: Text properties for the button text.

Create a text element next to button1 (the top button) and enter Play 4x. Create
another text element next to button2 (the middle button) and enter Play Once.
Create a third text element next to button3 (the bottom button) and enter Loop
Point. The screen should now look like the following screen shot.

Loop Continuously.

Figure 6.12: The first screen with buttons.

With the buttons created for this screen, it's time to create buttons for the remain-
ing screens. Select the Play 4x text and the button1 instance and choose Edit >

Copy.

Select frame 10 in the Buttons layer and choose Edit > Paste in Place. Change to
the Text tool and change the text to Return. Select the button instance and change
the instance name to button4.

Select both the text element and the button and choose Edit > Copy. Select frame
20 and choose Edit > Paste in Place. Select the button instance and change the

120 Chapter 6: Interactive Video Concepts

instance name to button5. Select frame 30 and choose Edit > Paste in Place. Select
the button instance and change the instance name to button6. We now have but-
tons across all the screens. Lock the Buttons layer.

15. The last elements we need to add to the screens are FLVPlayback components.

16.

17.

18.

19.

Select frame 1 in the Video layer. Choose Window > Components. Open the
Video Category and drag the FLVPlayback component to the Stage.

[Components X} SX
> & User Interface
v @ video
[FLvPlayback
D FLVPlaybackCaptioning

Figure 6.13: The Video components category.

Select this instance of the FLVPlayback component. Using the Properties panel, set
the component’s width to 480 and the height to 360. Set the x and y position to 0,
0. Name the instance myVideo.

| ¢ Properties x | Filters | Parameters | Output | Compiler Errors | |

| Instance of: FLVPlayback

Swap...

Figure 6.14: Instance name and geometric properties for the FLVPlayback component.

Choose Window > Components Inspector to open the Components Inspector
panel. With the myVideo instance selected, click the Parameters tab.

Set the autoPlay property to true.

Click the skin property and then click the magnify button on the right side of the
skin property’s attribute field.

- -
Components | Companent Inspector % | Library = - =
E FLVPlayback, <myVideo> M
4[-Faramﬁers | Bindings = Schema |
Name Value =

align center

autoPlay true

cuePoints None

preview None

scaleMode maintainAspectRatic

skin None @

skinAutoHide false

skinBackgroundAlph: 0.85

skinBackgroundColor #47ABCE [

SOUrce

volume 1

Figure 6.15: Click the magnify button to open the Select Skin dialog.

20. In the Select Skin dialog, choose None from the Skin menu and click OK.

Tutorial: Repeating Loops 121

21.

22,

Select Skin

o)

{ Cancel)

Skin: None _:! Color: J

Figure 6.16: Setting the FLVPlayback to not use a skin.

In the Component Inspector panel, click the source property and click the magnify
button on the right side of the source property’s attribute field. This displays the
Content Path dialog. We'll use this to pick a video to play. Click the folder button
at the right side of the field and navigate to the Looping Video folder on your
computer. Select the file bluetile.flv and click Open.

Content Path

bluetile.flv

@ Match source FLV dimensions

| Download FLV for cue points and dimensions (" cancel 'j(0K)

Figure 6.17: Set the source for the FLVPlayback component.

Now that the source is set, let's improve the quality of the preview. New to Flash
Professional CS3 is the author time preview of Flash Video. You can pick a frame
from the video and use that frame as a placeholder on the stage while you are
authoring your Flash Video content.

In the Components Inspector panel, select the preview property and click the mag-
nify button on the right side of the preview property’s attribute field. This displays
the Select Preview Frame dialog. It has a video player with a controller to pick a
frame to use as the author time preview. Hover over the video and use the timebar

control to move the playhead to 2.500.

122 Chapter 6: Interactive Video Concepts

23.

24.

Select Preview Frame
2.500
The | image is displayed ar ing time anly. To generate a runtime preview image, use the
export button and load the image back by writing your own ActionScript.

Figure 6.18: Selecting the Preview frame.

We can use the myVideo instance with most of the same properties in the play4x
and playonce frames. Select the myVideo instance and choose Edit > Copy. Select
frame 10 in the Video layer and choose Edit > Paste in Place. Select the video
instance and change the instance name to loop4xVideo. Select frame 20 in the
Video layer and choose Edit > Paste in Place. Select the video instance and change

the instance name to play1Video.

The looppoint screen will use a different video with a cue point set as a loop point.
Before we do the next step, however, look at figure 6.19.

A B C

Figure 6.19: This represents one video loop. The first part (A) is the opening part of the
animation. The point after which it ends is the loop point (B). The remaining portion of the
video (C) is the is played continuously when the video is played again, skipping over the
frames defined by (A).

Select frame 30 in the Video layer. Drag another instance of the FLVPlayback com-
ponent from the Components panel to the Stage. Set the x and y location to 0, 0,
set the dimensions to 480 x 360, and name the instance loopPointVideo.

Tutorial: Repeating Loops 123

25. Using the Component Inspector panel, set the autoPlay property to true and
the skin property to none. Set the source to clock.flv (this FLV file is also in the
Looping Video folder on your computer). Set the preview property to 2.000. The
looppoint screen should now look like the following screenshot.

Loop Point

Figure 6.20: The looppoint screen.

26. Lock the Video layer. Choose File > Save to save your work.

Part 3: ActionScript Code for Loops and Navigation

1. Select frame 1 in the Actions layer. Choose Window > Actions to display the Ac-
tions panel. Our strategy is to have the video automatically rewind and play again.
In the Actions panel, enter the following code:

import f1.video.VideoEvent;
stopQ);

myVideo.autoRewind = true;

myVideo.addEventListener(VideoEvent.AUTO_REWOUND, loopVideo);

function ToopVideo(event:VideoEvent):void {
myVideo.play(Q;
}

The first line imports the VideoEvent class. This class contains events that
video objects trigger, like playing or rewinding, and it's needed so we can listen
for the AUTO_REWOUND event. The stop() method holds the playback head
on this frame. The third line sets the myVideo's autoRewind property to true,
which automatically rewinds the video when it finishes. The fourth line attaches
an event listener for the AUTO_REWOUND event to occur. This listener calls the
ToopVideo () function when it does and this callback function plays the video
again.

124 Chapter 6: Interactive Video Concepts

2. After the ToopVideo() function, enter the following ActionScript for the buttons:

addEventListener(MouseEvent.CLICK, clickHandler);

function clickHandler(event:MouseEvent):void {
myVideo.removeEventListener(VideoEvent.AUTO_REWOUND, ToopVideo);
switch (event.target.name) {
case “buttonl”
gotoAndStop(“play4x”);
break;
case “button2” :
gotoAndStop(“playonce”);
break;
case “button3” :
gotoAndStop(“looppoint”);
break;

The first line assigns an event listener to the entire stage and listens for mouse
clicks. When a CLICK event occurs, the c1ickHander () function is called. The
clickHandler function begins by removing the event listener from the video. This
prevents this event listener from causing an error when a similiar event occurs on a
different video object elsewhere in the FLA. The switch statement uses the name
of the item (the target) that was clicked and runs through the cases. The three
cases within the switch statement provide navigation commands to go to three
other frames in the FLA file.

3. Choose Control > Test Movie to preview the FLA file. Notice that the movie does
loop continuously and clicking any of the buttons moves the playhead to one of
the three remaining screens. You'll also notice that the Return buttons and the
loop interactivity do not work on the remaining screens. We'll fix that next.

4. Close the Preview window. Select frame 10 in the Actions layer and choose Insert
> Timeline > Keyframe. In the Actions panel enter the following code:

Tutorial: Repeating Loops 125

5.

var ToopCounter:uint =
removeEventListener(MouseEvent.CLICK, cTlickHandler);

Toop4xVideo.autoRewind = true;
Toop4xVideo.addEventListener(VideoEvent.AUTO_REWOUND, loopVideo4x) ;

function ToopVideo4x(event:VideoEvent):void {
ToopCounter += 1;
if (loopCounter == 4) {
gotoAndStop(“continuously”);
} else {
Toop4xVideo.play(Q);

This frame script begins by stopping the playhead on this frame. A counter,
Toop4xCounter, is then set to 1. To avoid errors being thrown, the CLICK event
and cTlickHandler () function are removed using removeEventListener.

The loop4xvideo FLVPlayback instance is set to automatically rewind and an event
listener is attached to it that calls the ToopVideo4x () function.

When then video rewinds, the ToopVideo4x () function adds 1 to Toop4x-
Counter and then tests to see if the counter equals 4. When it does, it returns to
the first screen and if it doesn't, it plays the video again.

Add an event listener for the button4 instance. When button4 is clicked, the play-
head goes to the frame labeled continuously.

button4.addEventListener(MouseEvent.CLICK, click4);

function click4(event:MouseEvent):void {

gotoAndStop(“continuously”);

Test the movie (Control > Test Movie). Click the Play 4x button on the first screen
and notice how the video loops four times before returning to the first screen.

Close the Preview window. Select frame 20 in the Actions layer and choose Insert
> Timeline > Keyframe. In the Actions panel, enter the following code:

126 Chapter 6: Interactive Video Concepts

removeEventListener(MouseEvent.CLICK, clickHandler);

playlVideo.autoRewind = true;
playlVideo.addEventListener(VideoEvent.AUTO_REWOUND, playlx);

function playlx(event:VideoEvent):void {
gotoAndStop(“continuously”);
}

This frame script begins by stopping the playhead on this frame. Like in the previ-
ous frame script, the CLICK event and c1ickHander () function are removed
and the autoRewind property is set to true. An event listener is attached to the
playlVideo instance and calls the Tooplx () function when it is rewound. The
function returns the playhead to the first screen.

8. Add the event listener for button5. When button5 is clicked, the playhead goes to
the frame labeled continuously.

button5.addEventListener(MouseEvent.CLICK, click5);

function click5(event:MouseEvent):void {
gotoAndStop(“continuously”);
}

9. Test the movie (Control > Test Movie). Click the Play Once button on the first
screen and notice how the video only plays once before returning to the first
screen.

10. Close the Preview window. Select frame 30 in the Actions layer and choose Insert
> Timeline > Keyframe. In the Actions panel enter the following code:

removeEventListener(MouseEvent.CLICK, clickHandler);

ToopPointVideo.autoRewind = true;
ToopPointVideo.addEventListener(VideoEvent.COMPLETE, playFromLoopPoint);

function playFromLoopPoint(event:VideoEvent):void {
ToopPointVideo.seekToNavCuePoint(“Toop™);
ToopPointVideo.play(Q);

This frame script begins by stopping the playhead on this frame. Like in the previ-
ous frame script, the CLICK event and c1ickHander () function are removed
and the autoRew1ind property is set to true. An event listener is attached to

the ToopPointVideo instance and calls the playFromLoopPoint() function
when playback is complete. The function returns the playhead to the cue point
named loop and plays the video again.

Tutorial: Repeating Loops 127

11. Add the event listener for button6. When buttoné is clicked, the playhead goes to
the frame labeled continuously.

button6.addEventListener(MouseEvent.CLICK, click6);

function click6(event:MouseEvent):void {
gotoAndStop(“continuously”);

12. Test the movie (Control > Test Movie). Click the Loop Point button on the first
screen and notice how the video plays once before looping back to the loop point.

13. Close the Preview window. Choose File > Save to save the file.

Tutorial: Intro, Exit, and Return Loops

Intro and exit loops (also called interstitials) add continuity to a Flash Video ap-
plication. For example, a longer introductory video plays first. When a button is
clicked, another video plays in its place in response to the click before doing some-
thing else. Upon returning to the screen, a different video is played in place of the
introductory video.

Is user returning?

yes no

Play return.flv l Play intro.flv

Main Menu

keep playing (iend of movie?

i~

. no
play again ¢—— pytton clicked?

I~

play exit.flv and go to destination
Figure 6.21: Menu with intro and exit loops.
@ If you want to create DVD-style Flash Video applications in a few clicks, look in Encore CS3.

It now offers Flash Video output in addition to DVD-Video and Blu-Ray output. To learn
more, go to: http://www.adobe.com/products/premiere/encore/.

128 Chapter 6: Interactive Video Concepts

Part 1: Setting Up the FLA File

In this tutorial, we will author a news application called “Flash CS3 Video News."
It will consist of a main menu and four news segments. When the main menu
plays for the first time, it will play a longer video where the newscaster introduces
the show. This first video clip is the intro loop. When a button is clicked, the main
menu plays a video in response to the clip before showing one of the news seg-
ments. This is the exit loop. After playing a news segment, the application returns
to the main menu and plays a shorter video clip prompting the viewer to select
another news segment. This is the return loop.

Figure 6.22: The Flash CS3 Video News main menu.

Open the DVD-ROM folder Tutorials > Chapter 6. Copy the folder Advanced
Looping to your computer.

Launch Flash Professional. Choose File > Open. Open the file newscast.fla in the
Advanced Looping folder on your computer.

For this FLA file, several layers need to be created for structuring actions, labels,
text, buttons, and video. Using the Timeline window, create them according to the
following screenshot.

@6 e

@l Actions
4l Labels
4l Buttons
ql Video
™ Background s

OEmEEO

Figure 6.23: The layer structure for this FLA file.

Layout the five screens across the timeline according to the following screenshot.
Instructions follow it.

Tutorial: Intro, Exit, and Return Loops 129

@ &[0! 5 o 15 20 25 30 35 40 45
NI kel] Ol Ol Ol Ol
2l Labels o o | [menu il [, cloneFrame il [quakeFrame il L mansterframep " telepartFrame
al Buttons « o« @ O|
Tl Video « o« @, I]|o - - D|0|
4l Background + o @l

Figure 6.24: The timeline layout for the four screens.

Select frame 1 in the Actions layer and choose Insert > Timeline > Blank Keyframe.
Select frame 2 in the same layer and choose Insert > Timeline > Blank Keyframe.
Insert additional blank keyframes in frames 10, 20, 30, and 40.

Create the frame labels. Select frame 2 in the Labels layer and choose Insert >
Timeline > Blank Keyframe. In the Properties panel, enter menu for the frame
label.

Jc Properties x | Filters | Parameters | Output

f
~ Frame Tween: MNone &
ERES T menu

Label type:
| Name I-GJ

Figure 6.25: Labeling the frame.

Select frame 10 and choose Insert > Timeline > Blank Keyframe. Label this frame
cloneFrame. Select frame 20 and insert a blank keyframe and label it quakeFrame.
Select frame 30 and label it monsterFrame. Select frame 40 and label it teleport-
Frame. Select frame 49 and choose Insert > Timeline > Frame.

Lock the Labels layer. Choose File > Save to save your work.

Part 2: Adding Backgrounds, Buttons, and Video

Select frame 1 in the Background Layer. Choose Window > Library and drag the
mainBackground movie clip from the Library panel to the Stage. Setits x and y
position to 0,0.

a3

| Components Component| Library = | -,

| hewscast.fla B

20 items
R .
Fiauh £33 Wideo News

[Name A7 Type :
[Button Compmenllﬁ
[component Assets Folder o
B Fuvplayback Compiled CI
@ gradientBackground Graphic
mainBackyround Muvie Clip

Figure 6.26: The background for the main screen in the Library panel.

130 Chapter 6: Interactive Video Concepts

Select frame 10 in the Background layer. Choose Insert > Timeline > Blank Key-
frame. Drag a copy of the GradientBackground graphic symbol from the Library to
the Stage. Setits x and y position to 0, 0.

Select frame 2 in the Buttons layer. Choose Window > Components to open the
Components panel. Open the User Interface group and drag an instance of the
Button component to the Stage.

]' Components » [omponent Inspector _-;
@ User Interface

[J Button

|_7| CheckBox

W ColorPicker

Figure 6.27: The User Interface components category.

Using the Properties panel, name the button btnCloning. Set the button's x and y
position to 24, 100 and set the width and height to 100 x 22.

| Properties | Filters | Parameters | Output
| Movie Clip & l Instance of: Button
]

btnClening Swap...

W: [100.0 | X: 24.0

H: 22.0 | Y:|100.0

Figure 6.28: Setting the button properties.

Choose Window > Component Inspector. In the Parameters tab, set the Label
property to Cloning. This sets the button text.

-

[Comj Component Inspector % brary .
() Button, <btnCloning> >

—{ Parameters | Bindings | Schema —

Name Value

emphasized false
enabled true
I label Cloning |
labelPlacement right
selected false
toggle false
visible true

Figure 6.29: Labeling the button in the Component Inspector panel.

Drag three additional buttons to the stage. Using the Properties panel, name
these buttons btnQuake, btnMonster, and btnTeleport. Position them below the
btnCloning button and align their left edges. Use the Component Inspector panel
to set their labels to Earthquake, Sea Monster, and Teleportation. See Figure 6.22
for reference.

Select frame 2 in the Video layer. Using the Components panel, drag an instance
of the FLVPlayback component from the Components panel to the Stage. The
FLVPlayback component is located in the Video category.

Tutorial: Intro, Exit, and Return Loops 131

| Companents x | - e
P @ User Interface
¥ & video
[FLVPlayback
D FLVPlaybackCaptioning

Figure 6.30: The Video components category.

8. Use the Properties panel to adjust the settings for the component. Select the com-
ponent if the properties do not appear in the Properties panel. Name the instance
theVideo. Set the width and height to 480 x 270. Set its x and y position to 92, 0.

| Properties x | Filters | Parameters | Output

: | Instance of: FLVPlayback
theVideo Swap...

W: 480.0 X: 92.0

H: [270.0 | ¥: |0.0

Figure 6.31: Setting properties for the FLVPlayback component.

9. Since this movie is a background design element, it doesn't need a skin, or play-
back user interface. Choose Window > Component Inspector. In the Parameters
tab click the skin property and then click the magnify button on the right side of
the skin property's attribute field.

-
Components | Component Inspector x | Library | =
E FLVPlayback, <myVideo> M
4[‘Parameters | Bindings = Schema |
Name | Walue
align center
autoPlay true
cuePoints Mone
preview None
scaleMode maintainAspectRatio
skin None @
skinAutoHide false
skinBackgroundAlph: 0.85
skinBackgroundColor #47ABCE [
source
volume 1

Figure 6.32: Click the magnify button to open the Select Skin dialog.

10. In the Select Skin dialog, choose None from the Skin menu and click OK.

132 Chapter 6: Interactive Video Concepts

1.

12.

13.

14.

Select Skin

o)

(. Cancel)

£l

skin: | None 1 Color:

Figure 6.33: Setting the FLVPlayback to not use a skin.

Select frame 10 in the Video layer. Drag an instance of the FLVPlayback compo-
nent to the Stage. Name the instance myVideo. Set the width and height to 480 x
270. Set its x and y position to 0, 0.

Repeat the last step for frames 20, 30, and 40 in the Video layer. You should now
have video components for each of the news segments frames.

In each of the news segments frames, a unique video is displayed. Instead of set-
ting the source attribute for these videos with ActionScript, let's set the attribute
using the Components Inspector panel.

In frame 10, select theVideo and using the Component Inspector panel, set the
source attribute to flv/cloning.flv. Select theVideo in frame 20 and set the source
attribute to flv/quake.flv. Select theVideo in frame 30 and set the source attribute
to flv/monster.flv. Select theVideo in frame 40 and set the source attribute to
flv/teleport.flv.

Choose File > Save to save your work.

Part 3: ActionScript Code for Intro, Exit, and Return Loops

Earlier in this tutorial, we inserted blank keyframes on the first two frames in the
Actions layer. Select frame 1 in the Actions layer, show the Actions panel (Win-
dow > Actions) and enter:

var returning:Boolean;

This variable is a Boolean and its possible values are either true or false. It's set in
this frame and not the menu frame (frame 2) because establishing it in frame 2
would reset it everytime the playhead returned to frame 2 from one of the news
segments.

Tutorial: Intro, Exit, and Return Loops 133

2. Select frame 2, the frame that will contain the bulk of the ActionScript, and enter:

import fl1.video.*;
import flash.events.*;

stop();

The f1.video package is imported because this frame script will play video as
well as respond to the COMPLETE event which is specific to video. The flash.
events package because the script listens for the CLICK event.

The stop () method stops the playhead on this frame.

3. After the stop() method, create a new line and enter:

if (returning == true) {
theVideo.source="flv/return.flv”;
theVideo.play();

} else {
theVideo.source="flv/intro.flv”;
returning=true;

This conditional statement checks to see if the returning boolean we set in
frame 1 is true or false. When it is true, it plays return.flv. If the boolean is false, it
plays intro.flv and sets the returning variable to true, which will cause it to play
the return loop upon returning from one of the news segments.

4. For each of the buttons on stage, an event listener needs to be assigned. Add
the event listeners to each button and use the same callback function, c1ick-
Hander () for all of them.

btnCloning.addEventListener(MouseEvent.CLICK,clickHandler);
btnQuake.addEventListener(MouseEvent.CLICK,clickHandler);
btnMonster.addEventListener(MouseEvent.CLICK,clickHandler);
btnTeleport.addEventListener(MouseEvent.CLICK,clickHandler);

5. After the event handlers, create a new line and enter:

var destinationFrame:String;
function clickHandler(event:MouseEvent):void {

destinationFrame=event.target.name;
theVideo.source="flv/cutaway.flv”;

The string variable destinationFrame stores the name of the button clicked.
The clickHandler () function sets destinationFrame to the name of the
button clicked and then plays the exit loop video, cutaway.flv.

134 Chapter 6: Interactive Video Concepts

6.

7.

After the cTickHandler () function enter the following lines of code.

theVideo.addEventListener(VideoEvent.COMPLETE,videoHandler);

function videoHandler(evt:VideoEvent):void {
if (destinationFrame != null) {
switch (destinationFrame) {
case “btnCloning” :
gotoAndStop(“cloneFrame”);
break;
case “btnQuake” :
gotoAndStop (“quakeFrame”);
break;
case “btnMonster” :

gotoAndStop(“monsterFrame”) ;
break;

case “btnTeleport” :
gotoAndStop(“teleportFrame”);
break;

3

destinationFrame = null;
} else {
theVideo.play();

The first line attaches an event listener to theVideo, the FLVPlayback component
on the stage. When the component finishes playing a video, the COMPLETE event
occurs. This event listener calls videoHandler () when the video finishes playing.

Inside the videoHand1er () function are a few conditional statements. The if
statement checks whether or not the destinationFrame variable is set. Recall
that it is set once a button is clicked. If the variable is set, its value is used in a
switch statement to determine what frame to show next. For each button name is
a corresponding frame label to play. If the value is not set, it simply plays whatever
video (intro.flv or return.flv) is playing again.

Choose Control > Test Movie to try the movie out. The intro.flv video plays first
and when you click a button, it plays the exit.flv file before going to one of the
labeled frames. When the video finishes on any of these labeled frames, the play-
head does not return to the main frame. Close the Preview window. In the next
step, we'll add code to return to the main frame from each news segment frame.

On frames 10, 20, 30, and 40 in the Actions layer, enter the following frame script
in the Actions panel.

Tutorial: Intro, Exit, and Return Loops 135

myVideo.addEventListener(VideoEvent.COMPLETE,cloneHandler);

function cloneHandler(evt:VideoEvent):void {
gotoAndStop(“menu”);
}

This script checks to see if the video playing on each frame has finished playing.
When it has finished, it returns the playhead to the menu frame.

9. Choose Control > Test Movie. The movie should now return to the main frame
from all of the labeled frames.

10. Close the Preview window. Choose File > Save to save the file.

Wrapping Up

The concepts of looping and the steps required to make a video loop once, in-
finitely, or a set number of times can be applied to almost any project. Creative
combininations of video can make your Flash Video project take on a new level
of production value and experience. The topics in this chapter will help you make
your video truly interactive with Flash and a small amount of ActionScript.

136 Chapter 6: Interactive Video Concepts

CHAPTER 7

Video Transparency
and Effects

Flash Video can be creatively enhanced through
transparency, masking, and effects.

® Flash Video and Transparencycccceevveereeeneeeneennnnns 138
® Creating Transparent Video on a Web Page 144
© Masking VIdEO0ccocvuiiiiiiiiiie e 147
® Applying Blend Modes and Effects to Video 149

© WIappPing UP ..coueeiiieiiieiie ettt 156

Flash Video and Transparency

An alpha channel facilitates combining a foreground element with a background
plate into a single image. A video with an alpha channel can be incorporated in a
Flash application by roughly following these steps:

An actor is shot in front of a properly lit green or blue screen (see Figure 7.1).

. The footage is captured in an NLE, and sent to a compositing program such as
After Effects, Fusion, Motion, or Shake. In the compositing application, the green is
removed, the remaining edges are softened, and secondary keys or mattes may be
created through the use of rotoscoping or garbage mattes. A final matte is created
from these efforts and saved with the video footage as a separate channel along-
side the video's three other color (red, green, and blue) channels. What remains of
the foreground element may require additional color correction to compensate for
color cast (referred to as “spill") from the background.

. This full-color video with alpha video file is compressed using the On2 VP6 codec
and special attention is given to preserve the alpha channel in the encoding pro-
cess.

The encoded video file is incorporated in a Flash movie and the alpha channel’s
transparency is used to composite the video on top of a background element.

Tutorial: Creating Flash Video with Transparency

For many years Adobe After Effects has been described as “Photoshop for video.”
It's earned this title from its incredible power and the creative flexibility it offers FX
artists and motion designers. In this tutorial, we'll take HD footage shot in a green
screen studio, remove the background, and output a Flash Video file with an 8-bit
alpha channel.

W A DBuisi P G0 Compeetas Ui Dheil Aeeawn Vaw Wedm Sww LS T]

Figure 7.1: The footage before the background has been removed.

138 Chapter 7: Video Transparency and Effects

7.

Section One: Chroma-Key Talent in After Effects

Navigate to the Tutorials > Chapter 7 folder. Copy the superpowers folder to your
computer.

Launch Adobe After Effects. A blank After Effects project file is created.

Choose File > New > New Folder. Name this folder Source. We'll place the source
QuickTime files in this folder. Create an additional folder named Comps.

Choose File > Import. Navigate to the superpowers directory on your computer.
Inside the folder are two subfolders containing source video: DVC-Pro HD and
JPEG2000. If you have Final Cut Studio installed, open DVC-Pro HD and select
throw_dvcprohd.mov. If you do not have Final Cut Studio installed or are on a
Windows PC, open JPEG2000 and select throw_jpg2000.mov.

The footage was shot with the Panasonic AG-HVX200, which uses the DVC-Pro HD codec.
This codec is not part of QuickTime or QuickTime Professional. This codec is installed with
Final Cut Studio.

Click OK. The files then appear in the Project window.

In the Project window, drag the movie to the New Composition button at the bot-
tom of the window. This creates a new composition and places the movie inside it.
It also automatically sets the composition settings to use the size, frame rate, and

duration of the movie—a real time saver.

Figure 7.2: Creating a composition automatically from imported footage.

A composition is created, throw 2. Rename it throw_comp. To rename a comp, se-
lect it and press Return (Windows) or Enter (Mac OS X). Drag these compositions
into the Comps folder in the Project window.

Double-click throw_comp to open it. The composition now appears in the Compo-
sition and Timeline windows.

Display the Effects & Presets palette. Choose Window > Effects & Presets. In the
Contains field, type “Keyl.” The Keylight effect appears.

Flash Video and Transparency 139

10.

11.

12.

13.

53t Keylight

Figure 7.3: Filtering the Effects options by searching.

Click-drag the Keylight filter to the Composition window and drop it on the throw
movie.The Effects Controls palette then appears. Click the Screen Colour (yes, the
plug-in developer is British) eyedropper and then click 20 pixels to the right of the

hand. The composition window updates and the green background is removed.

Figure 7.4: Picking a color to key out.

Keylight includes several options for previewing in View, the first effect setting.
As you work with this effect, change the View setting from Source to Combined
Matte to Final Result. For now, select the Combined Matte mode.

Open the Screen Matte group in the Effects palette. Adjust the Clip Black to 13
and the Clip White to 95. This will increase contrast and remove noise in the
opaque and transparent areas of the matte.

In the Screen Matte group, change the Screen Shrink/Grow to -1.0, and set the
Screen Softness to 1.0. These settings will improve the matte by bringing the
matte edges in slightly and by softening the edges.

7 Screen Matte

[+ o Clip Black

[) clip White

[7% Clip Rollback
[» %) Screen Shrink/Grow
[») Screen Softness 0.5
[>) Screen Despot Black 0.0
[» %) Screen Despot White

- Replace Method
) Replace Colour

Figure 7.5: Use the Screen Matte controls to fine-tune a matte.

When shooting foreground elements (actors and props) against a green or blue screen, “spill”
can occur. This results from the green/blue background reflecting onto the foreground. To re-
move spill, use the Despill and Alpha bias settings. Pick a skin tone with the Despill option.
If the affected area becomes too transparent, use Alpha bias to remove the transparency.

140 Chapter 7: Video Transparency and Effects

14.

Choose File > Save. Save the file in the After Effects and Flash Video folder. Name
the file FLV_Alpha.aep.

15. To export the movie, choose File > Export > Flash Video (FLV). Click OK in the

16.

17.

18.

dialog that appears.

In the Flash Video Encoding Settings dialog, click the Video tab. The Video codec
selected should be On2 VP6, and if it isn't, select it. Check Encode alpha channel.
Set the Quality Settings to medium, keep the Frame rate set to Same as source.

! profiles | Video | Audio Cue Points = Crop and Resize |

™ Encode video

Video codec: | On2 VPG 4 Quality: | Medium k]
M Enende alpha channel Max data rate: 400 kilohits per second
! Deinterlace
Key frame placement: = Automatic 5
Frame rate; Same as Source =1 fps Key frame interval. frames

Figure 7.6: The Video Tab settings.

Click the Crop and Resize tab. Check resize video. Since we want to preserve the
16:9 aspect ratio, set the dimensions to 480 x 270. Click OK.

Save the file as throw.flv in the superpowers folder.

Section Two: Using Transparent Video in Flash

In this section, we will write a small Flash Video application that will reference the
video exported from After Effects in the last section. In this application we will
layer two videos with transparency on top of the stage. Buttons next to the video
area will play different videos. The lower video will play one of two videos of an
arm shot in front of a green screen. The upper video will play one of four effect
videos. Instead of producing and loading eight videos, we will only need siz.

o606 superpower.swf

-

Figure 7.7: The Flash Video application.

Flash Video and Transparency 141

On the DVD-ROM, copy the folder Video Transparency to your computer. Launch
Flash Professional and open the file superpower.fla.

In the Timeline, select frame 1 in the layer named ActionScript. Choose Window >

Actions. Let's begin by assigning graphics to each of the buttons on the side.

fireBtn.setStyle(“icon”, fireGlyph);
atomicBtn.setStyle(“icon”, atomicGlyph);

magicBtn.setStyle(“icon”, magicGlyph);
waveBtn.setStyle(“icon”, waveGlyph);

In the Library are four movie clip symbols: fireGlyph, atomicGlyph, magicGlyph,
and waveGlyph. If you display the Symbol Properties dialog for any of these
movie clips, you will see that they have the Export for ActionScript Linkage prop-
erty set. Setting this property will create a class for it and expose this symbol to
ActionScript. These four lines of code reference each symbol and use the Button
classes’ setStyle() method for these symbols as icons inside the buttons.

Symbol Properties G] Uorary = S
= — e Auperpower. fla BE |
Name: fireGlyph @ e]
33 irems. D
Type: (@) Movie clip Cancel
() Button
© Graphic (Eit) (Basic) ()
Linkage -
= Name A Type
Identifier; | |) Button C«mlcnlE
1ass: [fireGivpt [Component Assets Fader
ey 1412 B ruvpiayback Compiled Cf
Base class: Tlash.display.MovieClip 7| [# (3 Mssirator Craphics Folder
@l (B Button Symbals Falder
[E] atomicCly... Movie Clip
Linkage: ™ Expart for ActionScript fireGlvah Mevie Clip
! Export for runtime sharing [] magicCiyph Maovie Clip
™ Export in first frame waveGlyph Mevie Clip
_ Impart for runtime sharing [Screent Folder

Figure 7.8: The Symbol Properties dialog.

Attach event listeners for each of the four buttons.

fireBtn.addEventListener(MouseEvent.CLICK, clickBtn);
atomicBtn.addEventListener(MouseEvent.CLICK, clickBtn);

magicBtn.addEventListener(MouseEvent.CLICK, cTlickBtn);
waveBtn.addEventListener(MouseEvent.CLICK, clickBtn);

An event listener is code that watches for specific interactivity or processes to occur.
When the specified interaction occurs, a method is called. This process of listening
for events and running code in response to the events is known as event handling.
Event handling requires three things: the event source, the event, and the response
the Flash application gives.

In this code block, an event listener is attached to each of the four buttons. Each
listener watches for the CLICK event and will execute the c1ickBtn method
when this event occurs on any of these four buttons.

142 Chapter 7: Video Transparency and Effects

ﬂ When attaching an event listener, the event that occurs, CLICK in this case, is also passed to
the response function. This allows the response function to use the event to alter or refer-
ence the object, one of these four buttons in this case, that created the event.

4. Write the method cTickBtn() that will respond to the CLICK event.

function clickBtn(event:MouseEvent):void {

In the method's declaration, it begins by accepting a MouseEvent, which will be
referred to as event within the method.

5. Inside the method, enter the following switch() statement:

switch (event.target.name) {

case “fireBtn” :
fxVideo.source = “fire.flv”;
handVideo.source = “hold.flv”;
fxVideo.play(Q);
handVideo.play(Q);
break;

case “atomicBtn” :
fxVideo.source = “atomic.flv”;
handVideo.source = “hold.flv”;
fxVideo.play(Q);
handVideo.play(Q);
break;

case “magicBtn” :
fxVideo.source = “magic.flv”;
handVideo.source = “throw.flv”;
fxVideo.play(Q);
handVideo.play(Q);
break;

case “waveBtn” :
fxVideo.source = “wave.flv”;
handVideo.source = “throw.flv”;
fxVideo.play(Q);
handVideo.play(Q);
break;

A switch statement establishes a high-level condition. In this example, the name
of the target creating the event (the button's name) is the high-level condition.
Case statements within the switch statements instruct the Flash Player how to re-
spond to specific conditions. The first case statement responds to the atomicBtn
being clicked. It sets the source of the fxVideo video object to fire. flv. It also
sets the source of the handVideo video object to hold. flv. It ends by playing
both video clips. The remaining case statements respond to the remaining buttons
being clicked.

Flash Video and Transparency 143

6.

o 0 0 0 o o

Choose File > Save to save the movie. Test the movie by choosing Control > Test
Movie. Click the buttons on the right to see the different effects. Notice how the
movies have transparency and the Flash Movie appears in the background.

Creating Transparent Video on a Web Page

Flash movies, like transparent GIF and PNG graphics, can have a transparent back-
ground. The overall effect is that the Flash movie has no solid background and its
elements seamlessly composite over the web page that contains it. Most modern
browsers support this feature, but the following list is what Adobe officially sup-
ports:

Internet Explorer 3.0 or higher (Windows)

Internet Explorer 5.1* and 5.2* (Macintosh OS X)

Netscape 7.0*

Mozilla/Firefox 1.0 or higher*

AOL*

CompuServe*

* Adobe Flash Player version 6,0,65,0 (Windows) or 6,0,67,0 (Macintosh) or higher
is required.

Transparency mode is not supported in Mac OS Classic (anything prior to OS X) or in a Flash
stand-alone projector. Transparency mode may affect your Flash movie's performance. If
performance is poor, you could use the same background color in the Flash movie and the
web page.

Tutorial: Exporting Transparency from Flash

In this tutorial we'll place video on the stage in Flash and export it using the trans-
parent window mode embed parameter.

AAA (=Bl RN (=]

5 2 @%@ fle.jsusers siiage)Documents, ¥ | b= & 2 @%@ M1 pusers sige|/Documents, ¥ | -

ey

[0 oo [

Figure 7.9: Example web pages with transparent mode off (left) and on (right).

144 Chapter 7: Video Transparency and Effects

Open the DVD-ROM folder Tutorials > Chapter 7. Copy the folder Web Page
Transparency to your computer.

Launch Flash Professional. Choose File > New. Select Flash File (ActionScript 3).
Click OK. A new Flash document opens.

Choose Modify > Document. Set the dimensions to 500 x 500. Click OK.

[Document Properties
Title:
Description:
Dimensions: 500 px (width) X 500 px (height)

Figure 7.10: Setting the dimensions for the Flash movie.

Choose File > Save. Save the file as transparency.fla in the Web Page Transpar-
ency folder on your computer.

Choose File > Import Video. In the Import Video dialog, select On your computer
and click Choose. Navigate to the Web Page Transparency folder on your com-
puter, select the file glow.flv, and click Open. Click Continue.

In the Deployment stage of the Import Video Wizard, select Progressive down-
load from a web server. Click Continue.

In the Skinning stage of the wizard, select SkinOverPlaySeekStop.swf for the
player skin and set the color to #999999 and the alpha to 35%.

Skin: | SkinOverPlaySeekSrop.swf | :] Color: [l
URL: [[¢essasn]
] [T
]
[]

Figure 7.11: Selecting a color and transparency setting for the player skin.

In the last stage of the wizard, click Finish. An instance of the FLVplayback compo-
nent appears on the stage. Select it and name it myVideo in the Properties panel.

Creating Transparent Video on a Web Page 145

| © Properties x | Filters | Parameters | Output

+1 Instance of: FLVPlayback

W: 500.0 X: |0.0

e ——
_m!N'ideo 1 Swap...

H: |500.0 | Y: |0.0

Figure 7.12: Name the FLVPlayback component instance.

9. Choose File > Publish Settings. Click the HTML tab.

10. Select Transparent Windowless from the Window Mode menu. This sets an em-
bed/object parameter of wmode equal to transparent.

[Formats | Flash | HTML }

Template: | Flash Only Pﬂ(Info)

"] Detect Flash Version

Version: 9 . 0 45

Dimensions: [Matth Movie I-ﬁ
Width: Height:

soo0 X 500 pixels

Playback:] Paused at start ™ Display menu
™ Loop "] Device font

Quality: Window
| Opague Windowless
LILGLVRILLEE v Transparent Windowless

Figure 7.13: Setting the Window Mode in the HTML publishing options tab.

11. Choose File > Save to save the document.

12. Choose File > Publish Preview > Default. You should see the video in the page.
The video plays against a white page, but it's not clear really if the background is
transparent.

13. Open the HTML or text editor of your choice and open the file transparency.html
that is located in the Web Page Transparency folder on your computer. Add the
following before the end </head> tag:

<style type="text/css”’>

<!--

body { background: #FF9900 url(stipple.gif); }

-—>

</style>

This will set the web page's background to use a Cascading Style Sheet (CSS) back-
ground color and image.

146 Chapter 7: Video Transparency and Effects

14. Save the file and open it in a web browser. Refresh the browser view if needed.
You should see the movie play against a stippled yellow-orange background.

n If you are editing an existing web page, you need to add <param name="wmode"
value="transparent”> to the Flash movie's OBJECT tag and add wmode="transparent”
inside the EMBED tag.

Masking Video

A mask layer is like an alpha channel—it removes portions of an image. In Flash
Professional, a mask layer is placed above the content to be masked. Any filled
shape or text can be used on a mask layer.

Tutorial: Masking Video

In this tutorial, we'll add video to an existing Flash movie and mask it.

066 maskedviden.swf

At Ground Level

Figure 7.14: Masking video.
1. Open the DVD-ROM folder Tutorials > Chapter 7. Copy the folder Masking
Video, to your computer.

2. Launch Flash Professional. Choose File > Open. Open the file maskedvideo.fla in
the Masking Video folder on your computer.

3. Create two layers below the text layer and name them mask and video. The mask
layer should be on top of the video layer.

i = a0
4l actions « o+ O
al text « « H

@l videa « « O

Figure 7.15: The layer order is important when masking elements.

Masking Video 147

4. Lock the mask layer and select the video layer. This will ensure that content we
add to the stage appears on the correct layer. Since a mask layer affects the layer
below it, it's important to place content on the correct layer.

5. Open the Components panel. Drag an instance of FLVPlayback onto the stage.
Using the Properties panel, name it myVideo.

6. Using the Component Inspector panel, set the source parameter to feet_traffic.flv,
a file that is in the Masking Video folder.

=

| Companent Inspectar x | 5

BR FLvplayback, <myVideo> R

S i 1
4 1" Schema

Name Value

align center

autoPlay true

curPaints [{middle 00-00:03. 719N

preview None

scaleMode maintainAspectRatio

skin None

skinAutoHide false
skinBackgroundAlpha 0.35
skinBackgroundCuolor #999999 [
source feet _traffic.fiv
volume 1

Figure 7.16: Setting the source for the video playback component.

7. Lock the video layer and unlock and select the mask layer.
8. Open the Library panel. Drag an instance of the circle graphic symbol to the stage.
9. Position it at 0, 9.3 using the Properties panel.

10. Right-click (Windows) or Control-click (Mac OS X) on the mask layer and choose
Mask from the context menu. Lock the mask layer and the preview can be viewed
at authoring time. Note that the mask layer and layer being masked both must be
locked in order for the mask effect to work.

= a0

Sl actions |
] text « « @
B mask + @ |
ip video e []

Figure 7.17: Mask and masked layers must be locked.

11. To make the video more noticeable, let's write an event listener to listen for the
end of the video and a function to loop the video. Choose Window > Actions.
Select frame 1 in the actions layer. In the Actions panel enter:

import f1.video.VideoEvent;
myVideo.addEventListener(VideoEvent.COMPLETE, ToopVideo);
function loopVideo(evt:VideoEvent):void {

myVideo.play(Q;

}

12. Choose File > Save.

148 Chapter 7: Video Transparency and Effects

13. Choose Control > Test Movie. The video is now masked by the circle shaped layer.

Applying Blend Modes and Effects to Video

Flash Player includes three methods for composing images: blend modes, color
effects, and bitmap effects. Alone and combined, they offer nearly unlimited pos-
sibilities for tinting, overlaying, and blending graphic symbols, bitmap images, text,
and video.

Blend modes in Flash are like transfer modes in Photoshop or After Effects. They
work by applying a compositing mode to a foreground element and its colors then
blend with the background element'’s colors to create interesting visual effects.

There are nearly a dozen blend modes available in Flash. To see a full description of each,
look up “blend modes" in Flash CS3 Professional’s online help.

Color effects can also be applied to any element on the stage. Color effects include
tinting, alpha, brightness, and an advanced mode that let you manipulate indi-
vidual red, green, blue, and alpha channels.

Bitmap effects are filters that can be applied to text elements and movie clips.
They cannot be applied to graphic elements and groups. Flash includes filters for
creating drop shadows, blurring and image, creating glows, and creating custom
filters from convolution kernels.

Tutorial: Applying Blend Modes and Color Effects

In this tutorial we'll modify a video's blend mode and apply a color effect. The end
result will create transparency as well as color interaction between the video and
the background image.

[sXsXs] blendcolor.swf

Figure 7.18: Applying blend modes and color effects to a video clip.

Open the DVD-ROM folder Tutorials > Chapter 7. Copy the folder Blend Modes
and Color Effects to your computer.

Applying Blend Modes and Effects to Video 149

2.

Launch Flash Professional. Choose File > Open. Open the file blendcolor.fla in the
Blend Modes and Color Effects folder on your computer.

On the stage is a video, myVideo, on top of a background image. Select the
myVideo instance. In the Properties panel, select Screen from the Blend menu.

With myVideo selected, choose Tint from the Color menu. Set the Tint amount to
25% and the RGB color values to 153, 51, and 0.

[¢ Properties x | Filters | Parameters | Qutput |

Movie Clip B Instance of: myVideo Color: Tint BE' 125%

mW‘ldeo |5Wﬂﬂ RGB:].53 51 U
w: 6400 x: 30.0 Blend: Screen =
& H: 360.0 Y:15.0 [Use runtime bitmap caching

Figure 7.19: Selecting a color and amount for the tint.
Choose File > Save. Choose Control > Test Movie to preview the movie with the

blend mode and color effects applied to it.

Tutorial: Applying Bitmap Effects Directly

In this tutorial, we will apply a bevel and a drop shadow to a video component.

faee bitmap.swf

Figure 7.20: Bitmap effects can be applied to any movie clip symbol or text element.

Open the DVD-ROM folder Tutorials > Chapter 7. Copy the folder Bitmap Effects
to your computer.

Launch Flash Professional. Choose File > Open. Open the file bitmap.fla in the
Bitmap Effects folder on your computer.

On the stage is an instance of an FLVPlayback component named myFLVPlayback.
Select it and choose Modify > Convert to Symbol. In the Convert to Symbol dialog,
name the symbol myVideo and set the type to Movie clip.

150 Chapter 7: Video Transparency and Effects

Convert to Symbol

MName: myVideo &9
Type: @) Movie clip Registration:

e
(_) Button

() Graphic (Basic)

Figure 7.21: Creating a movie clip from the FLVPlayback component.

The component on the stage is replaced with the new movie clip. If you select it
and look at the Properties panel, you'll see that the object is now a movie clip and
an instance of myVideo and not FLVPlayback. Name the instance fxClip.

| © Properties x | Filters | Parameters | Output I
| Movie Clip | .] Instance of: myVideo

fxChp | Swap...
W 640 0 [Nz 30 o
H: 1360.0 | ¥: 19.9

Figure 7.22: Name the movie clip.

Converting an element to a symbol in Flash is like precomposing a layer in After Effects. The
original element is placed inside a new timeline and can be reused in several places.

Select fxClip and open the Filters panel (Window > Properties > Filters). Click
the Add Filter icon and choose Bevel. Set both the Blur X and Y values to 8, the
Strength to 50, the Quality to High, the Angle to 90, and the Distance to 8.

| Propertias | Filters x [Paran || Properties | Filters x LE@.M.LLM_L
£ i % qp = Eb T4 Blur X: . —| Shadow: IEI
Presets > | + Bevel Blury: 8 |7 i Highlight []
Remove All Styenigth: T Angle: 50 |[]
Enable All Quality: High %) Distance: [§ || 7]
—~ Disable All

Drop Shadow
Blur

Glow

Bevel

B

Figure 7.23: Choose Bevel (A) and the set the filter parameters (B).

Click the Add Filter icon again and select Drop Shadow. Set the Blur X value to 16,
the Blur Y value to 8, and the Strength to 100%. Select High for the Quality set-
ting, enter 90 for the Angle, and enter 8 for the Distance.

Choose File > Save. Choose Control > Test Movie to preview the movie with the

drop shadow and bevel filters applied to it.

Applying Blend Modes and Effects to Video 151

Tutorial: Applying Bitmap Effects Dynamically

Bitmap effects can also be applied using ActionScript. In this tutorial, we will create
a Flash movie that applies different bitmap effects using the fi1ters class and
the ActionScript 3 user interface components. The Flash document is partially com-
plete: elements are on the stage and symbols and components have been added to
the document's library. All that is left to do is write the ActionScript.

GG blendmodesfx.swi

Apply Effact:
L) Neno

i) Drop Shacow
(=) B

() FimLook

Figure 7.24: A sample application that applies different effects to video.

Open the DVD-ROM folder Tutorials > Chapter 7. Copy the folder Bitmap Effects
and ActionScript to your computer.

Launch Flash Professional. Choose File > Open. Open the file bitmap_actionscript.
fla in the Bitmap Effects and ActionScript folder on your computer.

Choose Window > Actions. Select frame 1 in the actions layer. Let's begin by
importing classes we'll be using.

import f1.controls.RadioButton;
import f1.controls.RadioButtonGroup;
import f1.controls.Label;

import flash.text.TextFormat;

import f1.managers.StyleManager;
import flash.filters.BlurFilter;
import flash.filters.DropShadowFilter;
import flash.filters.ColorMatrixFilter;

The first three import statements facilitate working with the ActionScript 3 user
interface components: radio button, button group, and label. A radio button oc-
curs in a group of at least two radio buttons that are mutually exclusive of one
another. Within a group, only one can be selected, and selecting one deselects the
other. The RadioButtonGroup class enforces this exclusivity. The Label class is
for managing labels used for combo boxes, groups of controls, or text fields. In this
application, there is one label, Apply Effect, for the application’s four radio buttons.
The TextFormat and StyleManager classes are for setting typographic attri-

152 Chapter 7: Video Transparency and Effects

butes for text fields and for text used in user interface components. The filters
class includes the bitmap effects classes we'll use in this Flash application: BlurF-
ilter, DropShadowFilter, and ColorMatrixFilter.

Let's add a TextFormat object to change the font color, weight, and font family
for the label fxLabel. Enter:

var tf:TextFormat=new TextFormat;
tf.color=0x555555;

tf.bold=true;
tf.font="Arial”;
fxLabel.setStyle(“textFormat”,tf);

The first creates an instance, tf, of the TextFormat class. The next three lines
set the color to medium gray, set the label in bold, and change the font to Arial.
The fifth line uses the setStyle() method to apply this new style to the label.

If you look at the stage, you'll notice that there are no radio buttons on it. Instead,
we'll create them dynamically with ActionScript. Enter:

var noneRadio:RadioButton = new RadioButton();
noneRadio.label = “None”;

noneRadio.group = myRadioGroup;
noneRadio.move(20, 40);

addChild(noneRadio) ;

var dropRadio:RadioButton = new RadioButton();
dropRadio.label = “Drop Shadow”;
dropRadio.group = myRadioGroup;
dropRadio.move (20, 60);

addChild(dropRadio);

var blurRadio:RadioButton = new RadioButton();
blurRadio.label = “Blur”;

bTurRadio.group = myRadioGroup;
blurRadio.move(20, 80);

addChild(blurRadio) ;

var toneRadio:RadioButton = new RadioButton();
toneRadio.label = “Film Look”;

toneRadio.group = myRadioGroup;
toneRadio.move(20, 100);

addChild(toneRadio);

Each block begins by creating a new instance of the RadioButton class. The
label, radio button group, and position are then set. Lastly, each button is added to
the stage's display list by calling the addChi1d method.

With the label created, create a radio button group. Enter:

Applying Blend Modes and Effects to Video 153

var myRadioGroup:RadioButtonGroup = new RadioButtonGroup(“options”);

myRadioGroup.addEventListener(Event.CHANGE, changeHandler);

This creates a radio button group named myRadioGroup and adds an event
listener to it. The change event will occur anytime a different button within the
group is chosen. When the event occurs, the changeHand1er method will run.
We'll write that function at the end of the tutorial.

. The drop shadow filter in Flash has parameters for distance, angle, color and opac-
ity, blur settings for X and Y directions, strength, and quality.

The last two parameters, strength and quality, need additional explanation.
Strength is how much shadow color is used in the shadow. Higher values can
increase the contrast between the shadow and the background. Zero to 255.0 is
the range of possible values. Quality is the shadow's rendering quality, but note
a value of 1 generates a low-quality shadow while 3 generates a higher-quality
shadow. Enter:

function addShadow(shadowDistance:uint, shadowAngle:uint,
shadowColor:uint, shadowAlpha:Number, blurX:uint, blurY:uint, strength:uint,
quality:uint, videoMC:MovieClip) {

var myFilter:DropShadowFilter = new DropShadowFilter(shadowDistance,
shadowAngle, shadowColor, shadowAlpha, blurX, blurY, strength, quality);
videoMC.filters = [myFilter];

The function declaration includes all the parameters for the filter as well as the
movie clip that will receive the filter. The code inside the function begins with cre-
ating a new drop shadow filter object according to the parameters that are passed
to the function. Filters work by creating them, creating an array and adding the fil-
ter object to the array, and then associating a movie clip’s filters property with the
array. By using an array, a movie clip can have more than one filter applied to it.

Next, let's write the addBTur method. It includes parameters for the distance to
blur a movie clip in X and Y and the quality.

function addBlur(x:uint, y:uint, bQuality:uint, videoMC:MovieClip):void {
var myFilter:BlurFilter = new BlurFilter(x,y,bQuality);

videoMC.filters = [myFilter];

This method accepts all the filter settings and the target movie clip as parameters
for the function. It creates a new blur filter object, creates an array and adds the
filter object to it, and associates the array with the movie clip.

. The next filter uses the color matrix filter. The color matrix filter works by manipu-
lating the color and transparency values of every single pixel in an element. The

154 Chapter 7: Video Transparency and Effects

@

red, green, blue, and transparency components of the pixel are manipulated by a
matrix or array of 20 numbers.

function addTone(al:Number, a2:Number, a3:Number, a4:Number, a5:Number,
a6:Number, a7:Number, a8:Number, a9:Number, alO:Number, all:Number,
al2:Number, al3:Number, al4:Number, al5:Number, al6:Number, al7:Number,
al8:Number, al9:Number, a20:Number, videoMC:MovieClip):void {

var matrix:Array = [

al, a2, a3, a4, a5, a6, a7, a8, a9, alo,

all, al2, al3, al4, al5, al6, al7, al8, al9, a20

113

var myFilter:ColorMatrixFilter = new ColorMatrixFilter(matrix);
videoMC.filters = [colorMatrix];

The add tone function, like the previous two functions, pass in the filter param-
eters and the target movie clip. Since there are 20 numbers in a color matrix, this
method has a lot of input parameters. Finally, like the other functions, it works by
creating a new filter object.

Many different effects can be created with the filter. To see a few examples, review the

Adobe Developer Center article at: http://www.adobe.com/devnet/flash/articles/matrix_
transformations.html.

function changeHandler(event:Event):void {
var rg:RadioButtonGroup = event.target as RadioButtonGroup;
switch (rg.selection) {
case noneRadio :
blurVideo(0, 0, 0, myVideo);
vidDropShadow(0, 90, 0x000000, O, O, O, 1, 1, myVideo);
setTone(1, 0, 0, 0, 0, O, 1, O, O, O, O, O, 1, 0, O, O, O, O, 1, O,
myVideo) ;
break;
case dropRadio :
vidDropShadow(8, 90, 0x000000, 0.75, 16, 8, 1, 3, myVideo);

break;

case blurRadio :
blurVideo(16, 4, 3, myVideo);
break;

case toneRadio :
setTone(0.8, 1.1, -0.7, 0, -77, 0.1, 0.9, 0.3, 0, -78, 0.8, 0, 0.4,
0, -78, 0, 0, 0, 1, 0, myVideo);
break;

This function accepts an event as a parameter and uses the event's target to create
a radio button group for the switch statement that follows. Inside the switch state-
ment are conditions for each of the radio buttons created earlier. The radio button,
noneRad1io, resets the effects and restores the video to its original state. The drop
shadow radio button, dropRadio, calls the addShadow() method that applies

Applying Blend Modes and Effects to Video 155

a shadow to the video. The blur radio button, blurRadio, calls the addBTur ()
method that blurs the video. Finally, the color matrix radio button, toneRad-io,
calls the setTone () method that applies a film processing treatment to the video.

Wrapping Up

In this chapter we covered the creative options a Flash Video developer can do
to blend, composite, and creatively enhance video. By combining several of these
techniques you can make your Flash Video applications more expressive and you
can use a lot of the same masking, filtering, and blend modes on nonvideo movie
clip symbols too.

156 Chapter 7: Video Transparency and Effects

CHAPTER 8

Enhancing Flash Deployment

While all the fun occurs while authoring Flash con-
tent and preparing video, integrating Flash with
HTML can't be avoided. This chapter covers issues
you should know about when deploying to the
Web.

® Deploying Flash with HTMLcoooiiiiiiiiiicceee e 158
® How Flash is Embeddedcccoooeiiiiiiiiiiiicccee, 158
© Browser Compatibility and Web Standards..................... 159
® Flash Player Version Detection..........cccccooovevieiciirinannnn. 162
® The EOLAS Patent and Active Content...........cccooeevenen. 163
® Tutorial: Using SWFODJECt......cc.coiiiiiiiiiieecieeee e 163
® Ensuring Your Web Site Can Serve Flash Video................ 167

© WIapping UP ...coveiiiiieiee e 168

o 0 o0 o

Deploying Flash with HTML

Let's face it, Flash Video is primarily embedded in web pages. Given that relation-
ship, there are several issues to wrangle when publishing video on a web site: web
browser compatibility, ensuring the correct Flash Player is installed, making the
content search engine friendly, displaying alternative content for those who don't
have Flash or JavaScript enabled, and overcoming the “click to activate experience”
caused by recent changes to Microsoft Internet Explorer. As a developer you can:

Use standards-compliant markup.
Use proprietary markup to solve browser compatibility.

Use JavaScript to dynamically embed the video.

Use combinations of the aforementioned methods.

None of these directions are perfect and there are several implementation ap-
proaches for each. In this chapter we'll cover the issues that affect publishing Flash
on web pages and present tutorials that cover some of the popular methods.

How Flash Video Is Embedded

Flash Video (FLV) is “housed” inside a container Flash movie (SWF). The housing
SWEF streams the FLV and provides methods to control playback (either on its own
or through a skin SWF). The housing SWF is embedded inside a web page (HTML).
When a viewer visits a page with Flash Video, the browser loads the Flash Player

plug-in and viewing begins.

The container SWF file is referenced in an HTML
page and presented to web site visitors.

b

Flash Video

b o 1
@ =2 @
2 Container .SWF HTML page

The Flash Video and skin SWF files are external to the
container SWF that reference them. A skin SWF is

Skin .SWF present when using the FLVPlayback component.
il @‘- @
Flash Video Container .SWF HTML page

A Flash Video file (FLV), cannot be directly referenced in a web page. It actually needs
to be referenced inside a container SWF that is referenced by an HTML document.

Figure 8.1: Relationship between an FLV, SWF, and HTML document.

158 Chapter 8: Enhancing Flash Deployment

Browser Compatibility and Web Standards

The Internet is not viewed by only one browser alone. Yes, Microsoft Internet
Explorer commands a large portion of the browser market share, but there are mil-
lions of viewers who also use the Firefox browser, Opera, or Safari on Mac OS X.
The problem is not in how each browser supports Flash, but really how they sup-
port non-HTML (or plug-in) content in general. Flash like QuickTime, Real Media,
or Windows media is placed on a web page using the <embed> tag, the <object>
tag, or both tags.

What Are Web Standards?

At the peak of the first Internet bubble, most web pages were created by mixing
structure and presentation, did not use semantic markup, and used a variety of
proprietary, hack-derived, and inaccessible technologies. The result was sites that
worked for some and appeared broken to others. Coincidentally, many of these
hacked-together pages are not optimized for search engines. The term and move-
ment “Web Standards" grew from the desire for long-term universal access and
interoperability on the World Wide Web.

- The Weh Standards Praject
|« »| I_c_! | + | @ hup:/ fwww.webstandards.ora/ GEF 5[Q- Coogle
p 2D Standards Froje S
\' A Qrassrootrs coalmon elgrifgle
DI' Stanaaras BNS :
ple, afnoraanie access 10
Bl 1E 8 le ! .l L
>ea 3ok [Aboult|rLear Achion | Buzz uss
Rec Buz Task Forces' Latest
Apollo alphas released Accessibility TE ACID2
L The Accessibility Task Force works Acid2 is a test page, written to help
with g vendors ensure proper
technolegy vendors and others to support for Web and related
help promote Web accessibility. standards in their products,

Bt still has high b

WaSP ATF

Figure 8.2: Visit http://www.webstandards.org to learn more best practices.

Web standards promotes the use of semantic markup, open standards (XHTML,
CSS, JavaScript, microformats, and XML), and accessibility among developers and
designers. The movement also works closely with browser manufacturers and web
tooling companies such as Adobe to increase standards support.

Browser Compatibility and Web Standards 159

Semantic Markup

Semantic markup is the practice of marking web pages using appropriate HTML
tags in marking up content. For example, paragraphs are enclosed inside a para-
graph tag, <p>, a first-level heading is placed inside a heading 1 tag, <h1>, and

a numbered list is marked up using the ordered list and list item tags, <o1> and
<11> respectively. When markup reflects the organization and meaning of content,
it future-proofs the content, makes it easier to find via a search engine, and greatly
facilitates changes and updates to both the content and the design.

The practice of applying semantic markup is a best-practice alternative to building
web pages completely with tables. While tables were an effective layout mecha-
nism in the early days of the Web, they should be avoided today. Tables should
only be used for displaying tabular data. Pages should use <div> tags along with
other block-level HTML tags and cascading style sheets (CSS) to create layouts.

Digital Web also has an excellent primer on writing HTML using semantic markup by Joshua
Porter and Richard MacManus. It's at: http://www.digital-web.com/articles/writing_seman-
tic_markup/.

Open Standards

Open standards are web technologies such as HTML, CSS, and JavaScript. They
are standards because they are managed by international nonprofit organizations
with representation from educational institutions, corporations, and the open
source community. These technologies have specification and review processes
that are open to anyone. When a technology reaches a final draft, browser manu-
facturers and tool developers are encouraged to support the specifications. By us-
ing open standards and avoiding proprietary markup, universal access is achievable.

A List Apart has many articles on designing web sites using standards. It can be found at:
http://www.alistapart.com.

While not an open standard, Flash, like all other rich-media technologies, has its
place when it is implemented responsibly. Responsible implementation means us-
ing unobtrusive techniques for inserting content and providing alternative content
and assistance for those who cannot view the material being presented.

Web Page Validation

Having pages validate is sort of like passing a grammar quiz. While there may be
a few correct answers to a question, there's no doubt when an answer is wrong.
That said, it's not surprising that many developers do not or conveniently forget to
validate their pages using the W3C's (World Wide Web Consortium) page valida-
tor. To ensure your page passes validation, here are a few things your markup
needs to do:

160 Chapter 8: Enhancing Flash Deployment

Properly declare a document type and character encoding. The document type
declares what version of HTML you are using. The character encoding is important
when using mathematical or foreign language characters.

All tags should be well-formed. This means items have opening and closing tags
such as a <p>A line of text</p>. For single tags such as the line break tag, a clos-
ing slash should be used:
 instead of simply
.

Avoid deprecated or nonstandard tags and attributes. Use important
 rather than the deprecated important tag. If you do use
non-standard attributes and tags, be sure to namespace them.

Do not improperly nest tags. For example, an <h2> tag should not be inside a <p>
tag.

To learn more about page validation, read Ethan Marcotte's article, Where Our Standards
Went Wrong at: http://alistapart.com/comments/whereourstandardswentwrong/. To vali-
date a page, go to http://validator.w3.org/.

Accessibility

Accessibility has taken on two different but related meanings. Pages are acces-
sible to those with disabilities when they provide hooks for assistive technologies.
Pages are universally accessible when they are viewable by a wide range of user
agents, for example, computers, mobile phones, and consumer electronic devices
such as a Sony PS3 or Nintendo Wii.

To achieve accessibility, here are general things you can do:

Set properties such alt and title on <image> and <11ink> tags. These make
the page easier to read by screen-readers for the visually impaired.

Include closed captions for video content. This makes it accessible to the hearing
impaired.
Properly set tab order and specify access keys on form elements and links. These

two things make it easier to control a web page using a keyboard.

Implement the page using standards-based markup. This will ensure that a wide
variety of user agents can display the content.

These are just some of the things you can do to make your web pages more accessible. To
learn more, visit: http://www.webstandards.org/action/atf/ and http://www.w3.org/TR/
WAI-WEBCONTENT/.

Making web pages accessible is not just for assisting those with disabilities, but
also for making content readable by machines. Setting alt and title properties as
well as metadata in SWF files help with indexing, search engine optimization, and
natural language search.

Object and Embed Tags

Flash is embedded with two tags: <embed> and <object>. The former is a non-
standard tag that originally found its way into HTML when Netscape introduced

Browser Compatibility and Web Standards 161

browser plug-ins. The tag unfortunately never was adopted by the W3C, the body
that governs the HTML specification.

The embed tag, however, has better cross-browser and cross-platform support
since it was fairly well defined at the beginning and all the browser manufactur-
ers implement it the same way. Besides having an unknown future, it invalidates
HTML because it's not part of the HTML spec, and it has horrible support for
showing alternative content. Its <noembed> tag counterpart only works when the
client technology doesn't support the tag, which is the case with some mobile web
browsers. When the client supports the tag (as is the case with all desktop web
browsers), it shows an outline with a broken plug-in and ignores the content set
inside the noembed tag.

The W3C instead developed the object tag because it was less prone to patent
issues (see EOLAS Patent and Active Content on the following page). The problem
with the object tag has been how browser manufacturers have implemented it. Ev-
eryone but Microsoft implemented it using the type property, which uses MIME
file-type descriptions to indicate the object's file type and helper application or
plug-in technology. (MIME types have been used since the beginning of the Web
to describe file formats to web servers.) Instead of going with this standards-based
approach, Microsoft created the proprietary property, class1id, to identify what
Active-X control to use when displaying the plug-in content.

Hopefully the day when Internet Explorer deprecates classid while supporting
the type property will come soon. While the support for the object tag is not as
good as the embed tag, it does support alternative content. Assuming the object
tag is used for inserting Flash, the content placed between the opening and closing
object tags is not rendered when browsers support Flash. When there is no support
available for Flash, the content appears. This content can contain a description of
the Flash movie and a picture serving as a preview. This content is, however, visible
to web crawlers and search engines.

Flash Player Version Detection

The Flash Player is updated with major releases every 12-18 months. When a new
release comes out, it takes less than a year for that version to be on the majority of
computers connected to the Internet. While Adobe improves the update process
with each new release, there is still the need to detect the player version when
serving content that relies upon the latest Flash Player release. For example, after
the release of Flash Player 8, player detection was crucial when serving Flash Video
that used the On2 VP6 codec as it is only available in Flash Player 8 and above.

Player detection is implemented by including JavaScript code that can detect the
version of the Flash Player installed on the viewer's computer and comparing it to
a variable indicating the player version required to view the content. When the

162 Chapter 8: Enhancing Flash Deployment

installed version is equal to or greater than the required version, everything works.
When the installed version is less than the required version, viewers see a message
communicating that they need to upgrade their player. For users using Microsoft
Internet Explorer on Windows, there is Express Install, an Active-X script that does
a seamless install for the Flash Player.

This patent lawsuit caused Microsoft to alter the way active content (Active-X
controls and plug-ins) are experienced. To comply with the lawsuit, Microsoft

had to add a click-to-activate feature inside Internet Explorer. This speedbump, or
pane of glass, interrupts and complicates the Web experience for all viewers. To
circumvent the click-to-activate feature, web developers can insert the object and
embed tags dynamically using JavaScript. While this takes a bit more programming
effort, it is far better to do than to force users to have to click a few more times to
view content.

Click ko activate and use this conkrol

& &c 00:00 | 01:50 (g o)

What happens when active content is not inserted dynamically.

The following tutorial covers inserting Flash content using the JavaScript library:
SWFObject. Back in Chapter 5, we published the custom video player using

the Flash Detection Kit, which is a part of Flash CS3. This tutorial will walk you
through using markup that is unobtrusive, preserves validation, and provides alter-
native content. For it we'll use the custom player created in Chapter 5.

SWFObject is a JavaScript library created by Geoff Stearns. To use it, you down-
load the library from http://blog.deconcept.com/swfobject/, include it with your

The EOLAS Patent and Active Content

web site, reference it in the page containing Flash content, and write a few lines of

JavaScript and HTML.

ADDITIONAL LIBRARIES

Besides SWFObject, there are other libraries
one can use for inserting Flash dynamically.
All these libraries help skirt the EOLAS issue,
can be applied using unobtrusive script-

ing, and can be used to replace alternative
content. Choosing one is akin to choosing a
wine: it partly depends upon your prefer-
ences and the entree (or project) you're
about to have.

Here are a few other libraries you can
consider:

UFO.js, or Unobtrusive Flash Object, was
written by Bobby van der Sluis. It's similiar
to SWFObject in practice and adoption.

http://www.bobbyvandersluis.com/ufo/

flash.jquery.js was written by web develop-
er and designer Luke Lutman. It's a plug-in
for the popular Ajax framework, jQuery. If

you plan to work with Ajax, XML, or dy-
namic HTML, | recommend it. It's frequently
updated, so check it out for revisions.

http://jquery.lukelutman.com/plugins/
flash/

Adobe’s Flash Detection Kit is good for
those who don't want to write a lot of
JavaScript and HTML code and are not
concerned with validation and standards
compliance. It's built into Flash Professional
CS3.

The SWFFix library, which is a collaboration
between Geoff Stearns and Bobby van der
Sluis to offer a best-in-class approach to
inserting Flash content. It's still in develop-
ment, but might be available by the time
you read this book.

http://www.swffix.org

work for years to come.

® Pargirs el s biewt kil e mpbctionwht sl wrsil.

reasons. For more information, see Lt

Tabic of Contents

Done

a6 6 deconcept » SWFObject: Javascript Flash Player detection and embed script =
- QL-J /I‘ un::n //blag.deconcept.com fswinbject/ el Gl swronject q
My Stuff
SWFObFect: Javascript Flash Player s
detection and embed script
SWEORject is a small Javaseript file used for embedding Adohe
Flash content. The script can detect the Flash plug-in in all major Merds
web browsers (on Mac and PC) and is designed to make A
embedding Flash movies as easy a5 possible. It is also very search
engine friendly, degrades gracefully, can be used in valid HTML and Topics

XHTML 1.0 documents®, and is forward compatible, so it should

Please note: SWFObject is the SWF embed script formerly known
as FlashObject. The name was changed due to legal / trademark

Figure 8.4: Download SWFObject from Geoff Stearns’ blog, blog.deconcept.com.

Navigate to the Tutorials > Chapter 8 folder. Copy the SWFODbject Embed folder

to your computer.

Using the HTML editor of your choice, open index.html.

164

Chapter 8: Enhancing Flash Deployment

3. Insert a new line after line 7 and enter the following script tag:

<script src="js/swfobject.js” type="text/javascript”’></script>

This tag references the SWFObject JavaScript library. By including it in the page,
the page can access all the functionality defined within the library.

4. After the opening <body> tag, insert:

<div id="flashcontent”>

</div>

This <div> tag will contain the Flash movie as well as the alternative content. The
id (identifier) attribute is a hook for the SWFObject script to replace the content
inside it with the Flash movie we will soon specify. For now, we'll use an identifier
of flashcontent.

5. Let's now place the alternative content inside this <div> tag. Place the cursor
inside the <div> tag, and enter the following lines of code:

<p><img src="assets/alternative_content.jpg” width="480" height="268"
alt="video still from one interview”></p>

<h2>The video is a short clip from several filmmaker interviews.</h2>

<p>In order to view it, you need to enable JavaScript and install or
upgrade <a href="http://www.adobe.com/go/getflashplayer” title="Get Adobe
Flash Player”>to a newer version of the Adobe Flash Player.</p>

<p>

<img src="http://www.adobe.com/images/shared/download_buttons/

get_flash_player.gif” title="Get Adobe Flash Player” />

</p>

The first paragraph tag contains a graphic showing a still from the video and
includes a message stating that the video cannot be played. It instructs the user to
download the latest version of Flash Player and to enable JavaScript. The text that
follows essentially says the same and the code ends with Adobe's Get Flash Player
button. With JavaScript off or when an obsolete browser is installed, the page will
appear like the following screenshot.

Tutorial: Using SWFObject 165

0006 Flash Embed With SWFObject o)
- @ | £ @ fie://localhost/Users/skidgel /Doc ¥ | > * Google Q)

This'video requires Adobe Flash Player.

Download it at http://www.adobe comy/go/getflashplayer

The video is a short clip from several filmmaker
interviews.

In order to view it, you need to enable JavaScript and install or upgrade to a newer
version of the Adobe Flash Player.

Get ADOBE (3
FLASH PLAYER é

Done

Figure 8.5: How the page appears when the browser cannot display the Flash content.

6. Now let's insert the JavaScript to insert the movie. Place the cursor after the closing
<div> tag (probably at the end of line 20 if all is going to plan) and insert:

<script type="text/javascript”’>
// <![CDATA[

// 11>

</script>

This script block will contain the JavaScript code for inserting the Flash content.
The two forward slashes are single-line JavaScript comments. They prevent the
JavaScript engine inside the web browser from interpreting the code on that line.
The brackets and CDATA statement instructs any HTML page validator to ignore
the content inside the statement and helps with validating the page against a par-
ticular document type. So this double-comment technique is a good snippet to use
whenever you're writing JavaScript code inside the page.

n Ideally most code should be written in an external file and referenced for clear separation of

structure and behavior. Since this is a small tutorial, however, it's perfectly okay to mix them
up a little.

7. The code to insert the Flash video is quite simple, if not a little terse. Inside the
CDATA block, enter:

166 Chapter 8: Enhancing Flash Deployment

var so = new SWFObject(“assets/customplayer.swf”, “flvplayer”, “480”,
“406”, “9”, “#FFFFFE”);

so.addParam(“allowFull1Screen”, “true”);

so.write(“flashcontent”);

The first line creates a new SWFObject named so. When it creates the object, it
specifies the location for the Flash content it will use as well as its identifier, width,
height, required Flash Player version, and background color. The second line adds
an additional parameter for allowing full-screen mode to work. The last line calls
the write method, which does the hard work of taking all the attributes we just
passed to it and dynamically writing this content to the web page when it loads
inside a capable web browser.

Ao Flash Embed With SWFObject (@]
@ ,I‘ @ file:/ /localnost/Users /skidgel/Doc ¥ | I> | [G|* Google Q

& e 00:41[01:50 (g @@

Done Y

Figure 8.6: The page displays properly when JavaScript is enabled inside a capable browser.

On the DVD-ROM are examples of inserting Flash Video using the UFO.js and the
flash.jquery.js JavaScript libraries. Look in > Additional Content > Inserting Flash.

Ensuring Your Web Site Can Serve Flash Video

In the case your hosting provider or internal IT-supported web server hasn't reg-
istered the Flash Video file format with its servers, you won't be able to serve the
files. Flash Video, like JPEG, GIF, or SWF files, are complex file formats (anything

Ensuring Your Web Site Can Serve Flash Video 167

beyond simplified text) and web servers need to be instructed on how to serve
them. That's where MIME types (Multipurpose Internet Mail Extensions) come in.
A mail client, web server, or web browser uses MIME types to correctly interpret
complex file formats. The MIME type for Flash Video is video/x-flv.

If you're running Microsoft Windows 2003 and IS Server 6.0 and cannot see Flash Video
correctly, check out: http://www.adobe.com/go/tn_19439.

Wrapping Up

This chapter covered the issues you'll encounter when integrating Flash Video in

a web page. By following open standards, offering alternative content, and using
unobtrusive insertion techniques, you ensure that your content is future proof, bet-
ter optimized for search engines, and more accessible.

168 Chapter 8: Enhancing Flash Deployment

CHAPTER 9

More Flash
Video Applications

The tutorials presented in this chapter will improve
your ActionScript skills and take your Flash Video
skills to a new level. You'll be ready to create a
variety of custom Flash Video applications by using
one or more of the concepts covered.

© Displaying Closed Captions.........ccccccvevviiieeiieinieiieene 170
© Displaying Cue PoiNtsccccocveiieiiieiie e 180
© Creating Video Playlists...........cccccovveiiiiieiieeiiec e 183
© The External APl........cooviiiiiiiiiieeee e 195

© WIapping Up .oooviiiieiie e 207

Displaying Closed Captions

A lot of audio and video content on the Web today is distributed using the Flash
platform. To make this content more accessible, closed captions (CC) should be

used whenever the audio portion of the content contains essential information.

With Flash CS3, it's much easier to produce video that is more accessible to the

hearing impaired with the FLVPlayback Captioning component.

WHAT IS ACCESSIBILITY?

As you produce and distribute content for the Web, you should consider how you can
make your content more accessible to those with disabilities. Closed captioning is just one
way video content can become more accessible. Other ways include: keyboard navigation,
context menus, or high-contrast modes.

To learn more about accessibility best practices, visit Adobe's Developer Center at:
http://www.adobe.com/accessibility/.

The FLVPlayback Captioning Component

The FLVPlayback Captioning component displays closed captions in the Timed Text
(TT) XML file format for video played back with the FLVPlayback component. The
component works by dynamically creating ActionScript cue points for each caption.
Through ActionScript, the component can manage closed captions for more than
one video file and the display of the captions can be toggled on or off.

These cue points are prefixed with “_caption_" to prevent any conflicts. When you add cue
points as part of the encoding process, it's advised to not use this prefix.

Tutorial: Adding Captions to Flash Video

In this tutorial, we'll quickly add captions to video using the FLVPlayback and
FLVPlayback Captioning components and the Property panel. By the end of it, you
should have something that looks like the following movie.

Figure 9.1: Flash Video with closed captions.

170 Chapter 9: More Flash Video Applications

Navigate to the Tutorials > Chapter 9 folder. Copy the Closed Captions folder to
your computer. Open the folder and double-click captions.fla.

Once the file opens in Flash CS3, open the Components panel by pressing F7
(Windows) or Command+F7 (Mac OS). Open the Video category and drag a FLV-
Playback component to the Stage.

[Companents x | .=
b @ User Interface
Y @ video
[FLvPlayback
D FLVPlaybackCaptioning

Figure 9.2: The playback and captioning components.

If the Properties Inspector is not open, press F3 (Windows) or Command+F3
(Mac OS). Select the playback component and enter vidPTayback for its in-
stance name.

| = Praperties x | Filters | Parameters
| = + Instance of: FLVPlayback

vidPlayback Swap...

Figure 9.3: Setting the instance name for the FLVPlayback component.

Click the Parameters tab in the Properties Inspector and double-click the skin at-
tribute. In the Select Skin window, choose SkinUnderPlayStopSeekMuteVol.swf.

Minimum width: 222 No minimum helght

skin: | SkinUnderPlayStopSeekMuteVal.swi |:I Color: [

URL:
Figure 9.4: The Select Skin dialog.

In the Parameters tab scroll the properties list until the source attribute is in view
and double-click it. In the Content Path dialog, click the Folder icon and select eric.
flv in the Chapter 9 folder. Once the FLV file appears in the dialog, select Match
source FLV dimensions and click OK.

Displaying Closed Captions 171

Content Path

eric.fiv @ B

C M Match source FLV dimensions

__ Download FLV for cue points and dimensions (Ccancel)Q_OH

@ Open p V.
........ -
[Properties [Filters | Parameters x | =
Compuonent akin SkinUnderPlayStopSeckMute Vol swl - @
a skinAutoHide false @

vidPlayback skinBackgroundAlpha 085

W) % 0.1 skinBac dColor — U)

[source enic.fiv o A

H: 2250 ¥: .05 volume 1 3

Figure 9.5: Click the magnify icon in the source field (A). Click the Folder icon to pick the
file (B). Check Match source FLV dimensions (C).

Set the X and Y coordinates for vidPTayback to 0, O in the Properties panel.

From the Components panel, drag a FLVPlaybackCaptioning component to a
location just off the Stage so it does not obscure the video during authoring time.
Using the Properties panel, give this instance a name of myCaptioning.

Select the captioning component, and open the Parameters tab. Set autoLayout to
false, the flvPlaybackName to vidPlayback, showCaptions to true, and the source
to captions.xml. Press Control+Return (Windows) or Command+Return (MacOS)

to preview the movie.

Flash CS3 Support for Timed Text

The last tutorial gave a quick introduction into using the captioning component,
but you probably noticed that the text was not styled. Beyond supporting timed
locations for captions, the captioning component's support for the Timed Text

format includes attributes for:

Character formatting

» Size with absolute sizes (in pixels) or with delta values (+2 or -2)
» Color

» Font

» Normal, bold, or italic

» Justification

Paragraph formatting

» Alignment: center, left, or right

Background formatting

» Background color, or removing the background color entirely

» Turning word wrap on or off

172 Chapter 9: More Flash Video Applications

How Timed Text Files Are Structured

A TT file intended for distribution with a captioned Flash Video file should include
a document declaration, a head section, and a body. The document declaration
section simply states the file is an XML file and follows the Timed Text standard.
You should never need to edit the declaration. The head includes optional styl-

ing information inside <sty1ing> and <style> tags. If you decide to keep the
styling inside the TT file, you will edit the contents of this area a lot and you should
learn about style tags and inheritance. The body section includes languages inside
<d1iv> tags and each language includes one or more captions inside separate
paragraph or <p> tags. If you prepare or style the captions, you will find yourself
working frequently with this section of a TT document too.

To learn more about the Timed Text format, go to http://www.w3.org/AudioVideo/TT/ and
http://www.w3.org/TR/ttaf1-dfxp/.

Tutorial: Setting Timed Text Styling Options

In this next tutorial, we'll tour a Timed Text file and then create and apply styles to
the captions. For this tutorial, you will need a text editor. On the PC, I'd recom-
mend using Dreamweaver or NotePad. On the Mac you could use Dreamweaver,
TextMate, BBEdit, or TextEdit. If an editor you like is not listed, feel free to use that
if it can edit plain text files.

| would recommend to

Figure 9.6: Captions that have been styled.

Navigate to the Tutorials > Chapter 9 folder. Copy the Caption Styling 1 folder to
your computer. Open the folder and open captions.xml in the text editing applica-
tion of your choice.

Beginning at line 4, you'll see the <sty1ing> tag. It contains individual <style>
tags that define the available caption styling. In this document, there is currently
one style, with an 1id (think identification or name) of 1. It specifies that any cap-
tion that references it will be centered and have a font size of 18 pixels.

Displaying Closed Captions 173

<styling>
<style id="1" tts:textAlign="center" tts:fontSize="18"/>

</styling>

3. And if you look at line 9, the <div> tag contains an attribute-value pair of
xm1 :Tang="en". This means the following captions enclosed within the <div>
and </d1iv> tags are in English. Additional languages are added by appending a
new <d1iv> block with a different language. You can learn the language abbrevia-
tions in the cheat sheet on the DVD.

<div xml:Tang="en">

4. Look at the first paragraph tag on line 10. It has attributes for the caption's begin-
ning, its duration, and the style it's using. Between the opening and closing para-
graph tags is the text used for the caption. The beg1in attribute is in the form of
hours:minutes:seconds:frames where frames is measured in hundreds of a second.
The dur attribute sets the caption’s duration. The sty1e attribute references a
<style> tag from the head of the document.

<p begin="00:00:00.00" dur="1400ms" style="1">
The one thing I would recommend to

</p>

5. Now that we've looked at the basic structure of a Timed Text file, let's get down to
styling. Enter (replacing the existing <style> tag) in the following lines of code
between the <sty11ing> tag that begins on line 4.

<styling>
<style id="base" tts:fontFamily="Arial" tts:fontSize="14"/>
<style id="Tleft" style="base" tts:textAlign="left"/>
<style id="center" style="base" tts:textAlign="center"/>
<style i ight" style="base" tts:textAlign="right"/>
<style id d" tts:fontWeight="bold"/>

<style id="italic" tts:fontStyle="italic"/>

<style id="red" tts:color="#ff0000"/>

<style id="orange" tts:color="#ff9900"/>

<style id="yellow" tts:color="#ffee00"/>
</styling>

These nine <style> tags are a basic set one could use for most captioning situa-
tions. The set includes a base style that sets the primary font and size, three styles
for alignment, two styles for emphasizing text with bold or italic text, and three
color styles. The Timed Text format includes a few conveniences for marking up
captions efficiently. If you look at the alignment styles, you'll notice that they

174 Chapter 9: More Flash Video Applications

reference the base style. While captions styled with each would appear to be left,
centered, or right aligned, they would all share the same font and size.

6. To make this point clear, let's apply these styles to the paragraphs below. For the
first caption beginning at 00:00:00.0, type style="1eft" as the last attribute in
the opening paragraph tag. In the next caption, type style="right" as the last
attribute in the opening tag. You should now have something like:

<p begin="00:00:00.00" dur="1400ms" style="Tleft">
The one thing I would recommend to

</p>

<p begin="00:00:01.50" dur="1400ms" style="right">
all filmmakers, short filmmakers,

</p>

7. To preview the changes made to the captions file, save the captions file. In the
Captions Styling 1 folder, open captions.fla. Test the movie to see the changes.
Double-click that file to open it in a Web browser. Notice how the captions shift
from the left to the right and they both have inherited the font and size informa-
tion from the base style.

8. Now we're going to format spans of caption text. This is helpful to do when you
want to emphasize a couple of words in a sentence. Inside the first paragraph
node, place an opening and closing tag around one thing as follows:

The one thing I’d recommend to

The style attributes contain two values, bold and red, which set the text inside the
span to be bold and red. A space between them is all that is needed to indicate
that this text span should use both styles—commas are not needed.

9. In the Captions Styling 1 folder, open captions.fla. Test the movie.

Displaying Closed Captions 175

Code: Complete listing for captions.xml

<?xm1 version="1.0" encoding="UTF-8"7>
<tt xml:lang="en” xmlns="http://www.w3.0rg/2006/04/ttafl” xmlns:tts="http://www.w3.0rg/2006/04/
ttafl#styling”>
<head>
<styling>
<style id="base” tts:fontFamily="Arial” tts:fontSize="18"/>
<style id="left” style="base” tts:textAlign="Tleft”/>
<style id="center” style="base” tts:textAlign="center”/>
<style id="right” style="base” tts:textAlign="right”/>
<style id="bold” tts:fontWeight="bold”/>
<style id="italic” tts:fontStyle="italic”/>
<style id="red” tts:color="#ff0000"/>
<style id="orange” tts:color="#ff9900"/>
<style id="yellow” tts:color="#ffee00”/>
</styling>
</head>
<body>
<div xml:lang="en”>
<p begin="00:00:00.00" dur="1400ms” style="center”>
The one thing I would recommend to
</p>
<p begin="00:00:01.50" dur="1400ms” style="center”>
all filmmakers, short filmmakers,
</p>
<p begin="00:00:03.00" dur="1900ms” style="center”>
or people starting out as filmmakers,
</p>
<p begin="00:00:05.00" dur="2000ms” style="center”>
is to go to film festivals.
</p>
<p begin="00:00:07.40" dur="1900ms” style="center”>
Film festivals are the only place
</p>
<p begin="00:00:09.40" dur="1000ms” style="center”>
to see the work of your peers,
</p>
<p begin="00:00:10.50" dur="1900ms” style="center”>
people just 1like you,
</p>
<p begin="00:00:12.50" dur="1800ms” style="center”>
who want to break into filmmaking,
</p>
<p begin="00:00:14.30" dur="2000ms” style="center”>
that have a story they want to tell,
</p>
begin="00:00:16.50" dur="2400ms” style="center”>
or want to Tearn how to make films.
</p>
begin="00:00:19.00” dur="2800ms” style="center”>
Go there and see what other people are doing.
</p>

Chapter 9: More Flash Video Applications

<p begin="00:00:22.00" dur="1900ms” style="center”>
You see the really great things they did,

</p>

<p begin="00:00:24.00" dur="1900ms” style="center”>
and you see the really bad things that they did,

</p>

<p begin="00:00:26.10" dur="1200ms” style="center”>
so you know what to avoid.

</p>

<p begin="00:00:27.50" dur="2000ms” style="center”>
Plus, you get to hear other people’s war stories,

</p>

<p begin="00:00:30.00" dur="1700ms” style="center”>
things that they’ve already figured out.

</p>

<p begin="00:00:31.80" dur="2500ms” style="center”>
There are tens of thousands of people,

</p>

<p begin="00:00:34.30" dur="2500ms” style="center”>
probably hundreds of thousands of people,

</p>

<p begin="00:00:37.00" dur="2000ms” style="center”>
in this country that are out making

</p>

<p begin="00:00:39.00” dur="1500ms” style="center”>
short films every single day

</p>

<p begin="00:00:41.60" dur="1500ms” style="center”>
trying to tell stories visually.

</p>

<p begin="00:00:44.00" dur="1900ms” style="center”>
Be a part of that big community,

</p>

<p begin="00:00:46.00" dur="2000ms” style="center”>
join organizations, there’s always

</p>

<p begin="00:00:48.20" dur="1800ms” style="center”>
filmmaking organizations in your

</p>

<p begin="00:00:50.30" dur="2000ms” style="center”>
area through colleges, arts

</p>

<p begin="00:00:52.50" dur="2000ms” style="center”>
organizations, places like that.

</p>

</div>
</body>
</tt>

Displaying Closed Captions

Targeting Dynamic Text Fields for Use with Captions

For the times when you'd like to use a custom font, you can link the captioning
component to a dynamic text field above the movie. The advantages to this are
that you can position the captions somewhere else on the stage and you can apply
a drop shadow filter.

Tutorial: Using a Dynamic Text Field for Captions

In this last tutorial on closed captioning, we'll link the captions to a custom-posi-
tioned dynamic text field that has a drop shadow filter applied to it.

\is to éo to

Figure 9.7: Assigning captions to dynamic text with a filter applied.

Navigate to the Tutorials > Chapter 9 folder. Copy the Caption Styling 2 folder to
your computer. Open the folder and open captions_styling2.fla.

From the Tool palette, select the Text Tool, |l—|, and draw a text box at the top of
the stage.

With the text box still selected, go to the Property Inspector and change the text
type to Dynamic Text, name the instance, captionsText, and set the width, height,
x and y positions to the values shown in the following screenshot.

178 Chapter 9: More Flash Video Applications

& Open »

| ¢ Properties x | Filters | Parameters |

Dynamic Text | 3] A Helvetica

@ s [[B1Z]

captionsText dy 0 |[v| af Normal

[#] | Anti-alias for readd

w: 302.0 x: (40 [a]

Single line

BIEE ||§_| Var:

O e e
H: 320 | ¥Y: [4.0 G

Figure 9.8: Position the text field at the top of the stage.

Now click the Filters tab and click the Plus button, %, to add the Drop Shadow
filter. Set the filter's parameters to the values shown in the following figure.

| Properties | Filters x | Parameters |
G = Eh] BlurX: |1 E|—| Color: E

- e |
BeofShadow Blury: 1 El =
Strength: 80% El Angle: 90 [+]

Quality: = High ¥+ Distance: 2 E

Figure 9.9: Set the text field's Drop Shadow options.

Select the captioning component, and select the Parameters tab. Set the caption-
TargetName attribute to captionsText. Save and preview the movie.

WHAT ABOUT OTHER FONTS?

In the cases where you want something
other than a default system font, you can
set the captioning component's simpleFor-
matting property to true, and use a text
field with the desired font, color, and size.
Be sure to embed the fonts by clicking the
Embed button in the Property Inspector
and selecting Uppercase, Lowercase, Nu-
merals, and Punctuation.

Note that if the captioning component's
simpleFormatting property is set to true,

Displaying Closed Captions

the following attributes are ignored in the
Timed Text file: backgroundColor, color,
fontSize, fontFamily, and wrapOption. The
following properties, however, are still used:
fontStyle, fontWeight, and textAlign. This
can work to your advantage because color
and font size are not meant to convey
emphasis, but font style, weight, and align-
ment are used to stress words or suggest
character changes through alignment. If
you go the custom route, these more im-
portant style settings will still work without
cramping your style.

179

Displaying Cue Points

It's often recommended to set navigational cue points in long-form material
because it helps the viewer quickly skip over previously watched material. It's also
helpful to show cue points as they occur so the viewer knows she has reached that
section in the material.

Tutorial: Displaying Cue Points over Video

In this tutorial we'll take an ordinary video with embedded cue points and add a

movie clip and ActionScript to display the names of each cue point as they occur.
In order to display the names of each cue point, we need to listen for them. This

is accomplished by writing an event listener that dutifully listens for cue points to
occur and triggers a function each time one is found. The function does the work
of displaying the cue point.

The footage contains snippets of a capsule recovery mission from the Gemini space
program. My father was stationed on one of the carriers doing the recovery work
and | had his 8mm film telecined to 24 fps standard-definition digital video. In the
encoding process, | added several chapter points.

Figure 9.10: Displaying navigational cue points.

For a refresher on how to set cue points and name them, review Chapter 4.

Navigate to the Tutorials > Chapter 9 folder. Copy the CuePoint Overlay folder to
your computer. Open the folder and open cuepoints.fla. Preview the movie and
watch it. The stage contains an instance of the FLVPlayback component named
myVideo.

If it is not already shown, open the Library panel by pressing Ctrl+L (Windows)
or Command+L (MacOS). Drag the cuePointRect movie clip to the stage. This

180 Chapter 9: More Flash Video Applications

will create an instance of the movie clip on the stage. The cuePointRect movieclip
contains a black rectangle and a dynamic text field named cpText.

3. Position it above the video playback controls and name it cpOverlay. By giving
it a name, we will be able to access and manipulate it from ActionScript. Use the
Property Inspector to adjust its properties shown in the following screenshot.

| = Propenties x | Filters | Parameters |

Movie Clip B Instance of:cuePointRe
[chverIav Swap... |

w: [400.0 | x: 0.0 |

H: 36.0 | Y: |264.0

Figure 9.11: Name the instance cpOverlay.

4. With everything in place, it's time to write the ActionScript. In the Timeline, select
Keyframe 1 in the Actions layer, and open the Actions panel by pressing F9 (Win-
dows) or Option+F9 (Mac).

a0 s

al Actions X - @ 0
Sl Elements « « O

Figure 9.12: Lock the Actions layer to prevent objects from being placed on it.

5. Let's first set the cpOverlay instance to be fully transparent by default. To do
that enter the following comment and line of code:

cpOverlay.alpha = 0;

We can set the alpha property since cpOverlay is a movie clip and inherits all the
properties of the MovieCl1ip class, including alpha transparency.

6. Write the event listener that will respond each time a cue point occurs:

myVideo.addEventListener("cuePoint", displayCuePoints);

myVideo is the playback component on the stage. We add an event to it by call-
ing the addEventListener method and instructing this method to listen for cue
point events and to run the displayCuePoints function when one occurs.

7. Now we will write the dispTayCuePoints function.

Displaying Cue Points 181

function displayCuePoints(videoObject:0bject):void {
cpOverlay.alpha = .72;
cpOverlay.cpText.text = videoObject.info.name;
var overlayTimer:Timer = new Timer(41l, 36);

overlayTimer.start(Q);
overlayTimer.addEventListener(TimerEvent.TIMER, fadeOverlay);

In the function declaration we're passing in an object, videoObject:0bject.
This object is the cue point that just occurred. It is passed to the displayCue-
Points function so its metadata will be accessible inside the function.

The first line within the function sets the cpOver1ay movie clip to .72 opacity.
This has the effect of turning the movie clip's visibility back on when a cue point
occurs. The second line says, “In the movie clip cpOverlay, set the text property
of the dynamic text field cpText to the name property of the cue point that just
occurred.” Cue point names are stored in the FLV file's metadata and are accessed
using dot notation. The third line creates a new timer named overlayTimer and
tells it to have a countdown of 41 milliseconds (or roughly 1/24 of a second) and
to repeat 36 times. The fourth line starts the timer. This roughly equates to one
and a half seconds of 24 frames per second video, which is the frame rate of the
encoded video. The fifth line has another event listener, but this time it is listening
for each time the overlayTimer resets and it calls the fadeOverlay function each
time this event occurs.

THE NEW TIMER CLASS to access than the older methods. Because
Prior to ActionScript 3, creating a timer of its several advantages, Adobe also sug-
involved using the setinterval() or gests using the Timer class as a best practice
setTimeout() methods. ActionScript 3 when creating countdown or other timer-

introduces the Timer class (flash.utils.Timer), based functionality.
which is more object oriented and cleaner

8. It's time for the last function. Write the function that fades the cue point text.

function fadeOverlay(event:TimerEvent) {
cpOverlay.alpha = cpOverlay.alpha - .02 ;

}

This function reduces the opacity of cpOverlay by subtracting two-hundreths of
a percent each time it is run. Since this function is run 36 times, the opacity level
will be reduced by 0.72 after the overlayTimer finishes. This will make the cue
point text disappear once again.

9. Save and test the movie.

182 Chapter 9: More Flash Video Applications

Code: Complete listing for cuepoints.fla

cpOverlay.alpha = 0;
myVideo.addEventListener(“cuePoint”, displayCuePoints);
function displayCuePoints(videoObject:0Object):void {
cpOverlay.alpha = .72;
cpOverlay.cpText.text = videoObject.info.name;
var overlayTimer:Timer = new Timer(41l, 36);
overlayTimer.start();

overlayTimer.addEventListener(TimerEvent.TIMER, fadeOverlay);
}
function fadeOverlay(event:TimerEvent) {

cpOverlay.alpha = cpOverlay.alpha - .02 ;
}

Creating Video Playlists

A common-use case is to have one video player play back several videos. A single
video player has several advantages: only one page URL for viewers to remember,
similarly you create one page rather than several, and adding another video can be
as easy as updating an XML playlist file and uploading new video without having
to republish the SWF file.

In the next two tutorials, we'll cover playing back multiple files through an array
and through an XML file. Both implementations can present similar user experi-
ences, but they differ, however, in maintenance. An array-based video player
involves republishing when new movies are added and redeploying the SWF along
with the new videos. An XML-based video player is simpler to maintain because
anyone with a text editor and file transfer (FTP) application can add new videos
because XML files are relatively easy to edit. So, in general, if routine maintenance
is a concern, use XML. If the project will never be updated, use an array.

Arrays

You can think of an array as a container or a list. Contained within the array are
elements. For example, all elements within an array are URLs to video files. Arrays
behave like a list. You add items, you remove items, you sort items, and so on.

Tutorial: Playback Several Videos Sequentially with an Array

In this example, the array will be a playlist and its elements will be URLs to differ-
ent Flash videos. The compiled SWF will begin playback immediately and se-
quentially play the videos from the array. Since this use case as is does not require
anything fancy, we'll simply use a video object. This will keep our file size down. In
the XML player tutorial we'll use the FLVPlayback and user interface components
to make a player with playback controls and a select list to choose the video.

Creating Video Playlists 183

3.

Figure 9.13: The array-based player plays back several effects sample movies.

The code in this tutorial will: create the array, add elements to the array, feed ele-
ments from the array to a dynamically created video player, listen for the end of a
video, and then play the next video. After the last video plays, it will loop back to
the first video in the array.

Navigate to the Tutorials > Chapter 9 folder. Copy the Array Playlist folder to your
computer. Open the folder and open array_playlist.fla.

In the Timeline, Select frame 1 in the Actions layer, and open the Actions panel by
pressing F9 (Windows) or Option+F9 (Mac).

Let's begin by creating the array that will act as the video playlist. On line 3, enter:

var vidList:Array = new Array(Q);

var vidInt:uint = 0;

The first line creates a new array named vidList. This array will contain the four
videos used in this example. The second line creates a number (or a non-negative
integer to be more precise) called vidInt. It's going to keep track of which video
is currently playing and we set it initially to zero since the first element in an array
has an index value of zero.

Now we can add some items to the array. While we could add all the video loca-
tions when constructing the array, that isn't too readable when potentially long
strings are involved. For this reason, I'm going to use the push() method of the
Array class to add the videos to the array. Press return to create a blank line after
the last two lines of code and add this:

vidList.push("video/poof.f1v");
vidList.push("video/bubbles.f1v");

vidList.push("video/random.f1v");
vidList.push("video/smoke.f1v");

184 Chapter 9: More Flash Video Applications

These four lines add the four video locations as elements to the vidList array.
Each item that is pushed onto the array is appended at the end.

5. Since we're using the basic video object, we need to wire it up to the NetCon-
nection and NetStream classes so the movie can display streaming content.
Enter the following four lines of code:

var nc:NetConnection = new NetConnection();
nc.connect(null);

var ns:NetStream = new NetStream(nc);
ns.play(vidList[0]);

The first line creates a new NetConnection object. It's customary to simply call
this object nc. The second line instructs the Flash Player that the movie is not con-
necting to a streaming server such as Adobe Flash Media Server.

6. The next thing to create is a new video object (which is new as of ActionScript 3)
and attach the NetStream ns object to it and attach it to the current timeline's
display list. Add a carriage return and then type:

var vid:Video = new Video(320, 240);

vid.attachNetStream(ns);
this.addChild(vid);

When creating a new video object, the width and height are optional parameters.
The x and y position will default to 0, but you could specify a new position by
setting vid.x and vid.y properties. The Video class's attachNetStream()
method is used to associate ns to vid. This portion of code ends with adding the
vid video object to the stage using the addChi1d() method.

7. This large block of code checks for the end of each video and plays the next video
from the vidList array. Add a carriage return and then type:

ns.addEventListener(NetStatusEvent.NET_STATUS, onNetStatus);
function onNetStatus(event:NetStatusEvent) {
switch (event.info.code) {
case "NetStream.Play.Stop" :
if (vidInt < (vidList.length - 1)) {
vidInt += 1;
ns.play(vidList[vidInt]);
} else {
ns.play(vidList[0]);
vidInt = 0;

3

break;

Creating Video Playlists 185

Since we cannot explicitly listen for discreet NetStatus events, we use a switch
statement to run code if the ns object returns NetStream.Play.Stop. When
this is returned, it's safe to assume that the playhead has stopped and a video has
completely played back. It is safe to assume this because no controls have been
added that would stop playback. Once this code is returned, a switch statement
checks to see what element from the array is playing. When the current element is
not the last one, the code plays the video for the next element. When the last ele-
ment from the array is being played, it loops back to the first element.

8. This last code snippet is a bit of overhead due to changes in ActionScript 3. With
ActionScript 3, the NetStream class requires a callback function for the onMeta-
Data event or a few errors will be thrown. The way to address this is to create a
generic object that will act as a client for the NetStream object. Add a carriage
return and then type:

var nsClient:0bject new Object();
nsClient.onMetaData = function(info:0bject) {
trace(info.duration);

};

ns.client = nsClient;

A generic object, nsCl1ient, is created and then a function is created when this
object returns metadata. For simplicity's sake we trace the duration. The trace
method is not necessary, but listening for meta data is. If there isn't code present
to respond to the onMetaData event, the Flash Player will throw errors if it does
come across meta data and there is no function to respond to it.

9. Choose File > Save. Choose Control > Test Movie to preview the movie.

186 Chapter 9: More Flash Video Applications

Code: Complete listing for array_playlist.fla

// ActionScript goes below

var vidList:Array = new Array();

var vidInt:uint = 0;
vidList.push(“video/poof.f1v”);
vidList.push(“video/bubbles.f1v”);
vidList.push(“video/random.f1v”);
vidList.push(“video/smoke.flv”);

var nc:NetConnection = new NetConnection();
nc.connect(null);

var ns:NetStream = new NetStream(nc);

ns.play(vidList[0]);

var vid:Video = new Video(320, 240);
vid.attachNetStream(ns);

this.addChild(vid);
ns.addEventListener(NetStatusEvent.NET_STATUS, onNetStatus);
function onNetStatus(event:NetStatusEvent) {

switch (event.info.code) {
case “NetStream.Play.Stop” :

if (vidInt < (vidList.length - 1)) {
vidInt += 1;
ns.play(vidList[vidInt]);

} else {
ns.play(vidList[0]);
vidInt = 0;

}

break;

}

var nsClient:0Object new Object();
nsClient.onMetaData function(info:0bject) {
55

ns.client = nsClient;

XML

Extensible Markup Language (XML) is a simple and very open tag-based language
for storing structured data. If you've ever written HTML by hand, you're 95%

of the way there. Like HTML, XML has opening and closing tags like <cap-
tion> and </caption>, attributes inside of tags like <caption time="100"
type="dialog">, and text content inside of tags like <caption>Hello
World</caption>. An XML Document Type Definition (DTD) can be defined
for almost any kind of data.

For our purposes, we will want to create an XML file that defines a list of videos to
playback in succession. To create this using ActionScript, we use the URLLoader
class and the new XML class to load an external XML file, parse it into recognizable
chunks, and use those chunks to populate a list for selecting which video to play.

Creating Video Playlists 187

XML IN ACTIONSCRIPT 3 AND 2
With ActionScript 3, the Flash Player has a
more powerful and easier way to work with
XML data. The new XML class follows the
ECMAScript for XML (EX4) specification.
(ECMAScript is the standard upon which
JavaScript is based.) By implementing EX4,
the Flash Player makes XML a first-class
data type that can be directly and natively
accessed and manipulated.

For example, in ActionScript 2, you would
often have to loop through child nodes to

access data. With EX4, you can use dot no-
tation to access data in a more specific and
targeted way. To learn more about EX4, you
can read the ECMAScript for XML (E4X)
Specification on the Ecma web site:

http://www.ecma-international.org/
publications/standards/Ecma-357.htm

By the way, the old XML class from
ActionScript 2 is still around and has been
renamed the XMLDocument class for up-
dating legacy code to work in ActionScript
3 projects.

Tutorial: Create a Video Playlist with XML

In this tutorial, the XML file will be the playlist and its nodes will be unique videos
with attributes for the Flash Video document's URL, label, and description. The
code will: load the XML, bind the XML's data to a Ul component, and have the Ul
component interact with video and a text field through event listeners.

Figure 9.14: An XML-based video player.

Select a movie to play:

Filmmakars Trailzr
Jean-Paul Benjour
Eric Escobar
Anthony Lucers
24p Standard
24p Adv anced

A trailer of interviews with several
filmmakers

Navigate to the Tutorials > Chapter 9 folder. Copy the XML Playlist folder to your
computer. Open the folder and open videos.xml in the text editing application of
your choice. Below are the contents of this file:

188

Chapter 9: More Flash Video Applications

3.

<?xml version="1.0" encoding="IS0-8859-1"7>
<videos>

<video url="video/filmmakers.flv” title="Filmmakers Trailer” description="A trailer of interviews
with several filmmakers” />

<video url="video/bonjour.flv” title="Jean-Paul Bonjour” description="Jean-Paul Bonjour discusses
what he’s Tearned from working with 24p and how it has influenced how he produces his and friend’s
films.”/>

<video url="video/escobar.flv” title="Eric Escobar” description="Eric Escobar, a 24p filmmaker who
has been accepted at Sundance twice, gives advice on becoming a filmmaker and what makes a good short
film.” />

<video url="video/lucero.flv” title="Anthony Lucero” description="Anthony Lucero is an effects edi-
tor in the Bay Area who has edited visual effects shots for filmmakers such as George Lucas, Tim Bur-
ton, and Robert Rodriguez. He also also written, directed, or edited short films using several profes-
sional HD formats.” />

<video url="video/24p_standard.flv” title="24p Standard” description="An animation showing how 24p
Standard mode works.” />

<video url="video/24p_advanced.flv” title="24p Advanced” description="An animation showing how 24p
Advanced mode works.” />
</videos>

This XML file has a <videos> tag that represents the entire playlist. Each child
node, or <video> tag, within it is a unique video. With the opening <video> tag
are three attributes: the url or location of the video file, a tit1e to use for dis-
play and selection purposes, and a description to give the viewer more context.

Close the videos.xml file and open the file xml_playlist.fla, which is in the same
tutorial folder.

This movie has three objects on the stage. A FLVPTayback component named
vidPlayback, a static text field that is the label for a list component named flvList,
and a dynamic text field, descText, that holds a description for each video. These
three elements will be referenced in the ActionScript that we'll create next.

Press Ctrl+N (Windows) or Command+N (MacOS). In the New Document dialog,
select the General tab, select ActionScript File, and click OK.

New Document

[General | Templates -
Type: Descriptig
ﬁ Flash File {ActionScript 3.0) Createai
T Flash File (ActionScript 2.0) the Script]
i Flash File (Mobile) language
i Flash Slide Presentation DbjE_CtS,_C
'@ Flash Form Application app_ullcat;:
2 seversre el
@ ActionScript Communication File Project fil
T Flash JavaScript File and to pr%
™ Flash Praiect

Figure 9.15: Select ActionScript File from the Type list.

Creating Video Playlists 189

5. Save this file as FLVPlayList.as in the same directory as the xml_playlist.fla docu-
ment. This is going to be the class document file for this movie.

ABOUT DOCUMENT CLASSES To set the document class, make sure
A document class is an external ActionScript nothing is selected (choose Edit > Deselect
class file that is paired with an FLA file. At All) and in the Property panel for the Flash

compile time, the document class is in- movie, enter the path and name of the class
cluded with the compiled SWF. At run time, file in the Document class field, or in the
the document class is constructed and run Publish Settings dialog choose File > Publish
when the SWF's timeline is initialized. Settings > Flash tab > Settings button.

Prior to ActionScript 3 and Flash CS3, the To learn more about document classes, go
best practice was to place code in a layer to the Flash Developer Center on Adobe.
named “actions” in the first frame. While com and read this article: http://www.

this practice is better than having code adobe.com/devnet/flash/articles/flash9_

sprinkled across movie clips, it still requires as3_preview.html.
the code to reside in the FLA. When the

code is inside the FLA file, quick reuse and

version control is more difficult.

6. Return briefly to the xml_playlist.fla file and, with nothing selected, show the
Properties Inspector. If the Properties Inspector is not open, press F3 (Windows) or
Option+F3 (MacOS).

7. Enter FLVPlaylist in the Document class text field. This associates the FLVPlaylist.
as with the timeline in this movie. Note that the “.as" extension is not needed.

| © Properties | Filters | Parameters | Output | Compiler Errors |

I Document Size: | B60 x 380 pixels -I Background: lEl Frame rate; 12 fps
xml_playlist.fla Publish: | Settings... Player: 9 ActionScript: 3.0 Profile: Default
Document class: FLVPlayList &

Figure 9.16: Entering the document class for the entire movie.

8. Save the file and then click the Pencil icon, @ to the right of the Document class
text field. This will switch to the FLVPlayback.as file.

9. The document class needs to begin with the package statement. Enter:

package {

3

10. Inside the package statement, add the following six import statements:

190 Chapter 9: More Flash Video Applications

import flash.events.*;
import flash.net.*;
import fl.controls.SelectablelList;

import fl.video.*;
import flash.text.TextField;
import flash.display.MovieClip;

We need to import these classes because we'll be writing code that uses meth-
ods and properties from them. Document class files (as opposed to code written
internally in an Actions frame) requires that you import all the classes your code
requires. Since we will code a few event listeners, the flash.events class is
required. The flash.net class is needed to import the external XML file. The
f1.controls.SelectableList class contains the methods and properties
for working with the list Ul component. Likewise, the f1.video class contains
methods and properties for working with the FLVPTayback component. The
descText text field requires that we import TextField. Lastly, any Flash movie
file with a timeline requires the MovieCl1ip class to be imported.

11. After the import statements, add the class declaration:

public class FLVPlayList extends MovieClip {

3

Note that the class name has to be the same name as the file name minus the
file extension. A document class normally extends the MovieClip class. All of the
methods and properties for this class have to reside within this declaration.

12. To load an external XML file, create a URLLoader object to load external data:

var flvListLoader:URLLoader = new URLLoader();

13. The class's constructor method now needs to be written. This is code that is auto-
matically run when the document class is constructed by the Flash Player. Add the
following:

pubTlic function FLVPlayList() {
flvListLoader.dataFormat = URLLoaderDataFormat.TEXT;
flvListLoader.addEventListener(Event.COMPLETE, loadComplete);
flvListLoader.load(new URLRequest(“videos.xm1”));

flvList.addEventListener(Event.CHANGE, playVideo);
vidPlayback.addEventListener(“complete”, completePlayback);

The first line inside the constructor sets the data format for fl1vListLoader to
plain text since XML files are plain text files. The next line adds an event listener
to it and points the listener to the ToadComp1ete method, which we will write

Creating Video Playlists 191

in a few steps. The third line uses the Toad () method to point to the playlist file,
videos.xml, which we looked at in step 1.

An event listener is also added to flvList, the list Ul component that displays
the available videos from the list. It also is used for selecting which video to play.
Anytime the current selection in the list changes, the playvideo() method is
called.

The last event listener is for the FLVPTayback instance, vidPTayback. It listens
for when a video plays completely and calls the comp1etePTayback() method.

14. The first function to write is the ToadComplete() method. Add it after the FLV-
Playlist() constructor method.

function ToadComplete(event:Event):void {
var fIvXML:XML = new XML (event.target.data);
for each (var vid in f1vXML..video) {
flvList.addItem({label:vid.@title,
data:vid.@urT,
info:vid.@description});

}

flvList.selectedIndex = 0;

vidPlayback.source = (flvList.getItemAt(0).data);
vidPlayback.play(Q);

descText.text = (flvList.getItemAt(0).info);

When the flvListLoader has completely loaded the videos.xml file, this
method creates a new XML object, F1vXML, from the external XML file. The for
each statement creates a variable vid from each <video> element in the XML
and binds its attributes (title, url, and description) to flvList as the
label shown in the control, the data associated with each label, and as a longer
description that will be used to set the text of the descText dynamic text field.

After the for each block, the first item in the f1vList control is selected and is
played inside flvP1ayback.

15. When the selection changes in flvList, the playVideo method needs to be
called. Enter the following:

function playVideo(event:Event) {
vidPlayback.source = event.target.selectedItem.data;

descText.text = event.target.selectedItem.info;

It responds to the change event by setting the source of vidPTayback to use
the data property of the currently selected item in the list. It also sets the text
property of descText to use the info property.

192 Chapter 9: More Flash Video Applications

16. The last event-handling method to write is the playbackComplete() method.
It performs the task of playing the next video in f1vList once a video completes
and loops back to the first video once the last video finishes playing.

function completePlayback(eventObject:0Object):void {
var idx:uint = flvList.selectedIndex;
if (flvList.selectedIndex == 5) {
vidPlayback.source = (flvList.getItemAt(0).data);
vidPlayback.play(Q);
flvList.selectedIndex = 0;
idx = 0;

} else {
idx += 1;
vidPlayback.source = (flvList.getItemAt(idx).data);
flvList.selectedIndex = idx;
vidPTayback.play(Q);

A variable, idx, is used to store the currently selected item in flvList. If idx is
equal to 5, or the last item in the list, the video player loops back to the first video
in the list. If idx is equal to something else, its value is increased by one and the
video in flvList is selected and played back.

17. Save and preview the movie. A completed version is located in Completed Tutori-
als > Chapter 9 > XML Playlist on the DVD-ROM.

Creating Video Playlists 193

Code: Complete listing for FLVPlayList.as

package {
import flash.events.*;
import flash.net.*;
import f1.controls.Selectablelist;
import fl1.video.¥*;
import flash.text.TextField;
import flash.display.MovieClip;
public class FLVPlayList extends MovieClip {
var flvListLoader:URLLoader = new URLLoader();
public function FLVPlayList() {
flvListLoader.dataFormat = URLLoaderDataFormat.TEXT;
flvListLoader.addEventListener(Event.COMPLETE, loadComplete);
flvListLoader.load(new URLRequest(“videos.xm1”));
flvList.addEventListener(Event.CHANGE, playVideo);
vidPTayback.addEventListener(“complete”, completePlayback);
}
function loadComplete(event:Event):void {
var fTvXML:XML = new XML(event.target.data);
for each (var vid in fl1vXML..video) {
flvList.addItem({label:vid.@title, data:vid.@url, info:vid.@description});
}
flvList.selectedIndex = 0;
vidPlayback.source = (flvList.getItemAt(0).data);
vidPlayback.play(Q);
descText.text = (flvList.getItemAt(0).info);
}
function playVideo(event:Event) {
vidPlayback.source = event.target.selectedItem.data;
descText.text = event.target.selectedItem.info;
}
function completePlayback(eventObject:0bject):void {
var idx:uint = flvList.selectedIndex;
if (flvList.selectedIndex == 5) {
vidPlayback.source = (flvList.getItemAt(0).data);
vidPlayback.play(Q);
flvList.selectedIndex = 0;
idx = 0;
} else {
idx += 1;
vidPlayback.source = (flvList.getItemAt(idx).data);
flvList.selectedIndex = idx;
vidPlayback.play(Q);

Chapter 9: More Flash Video Applications

The External API

The Flash Player's External API facilitates communication between your Flash
movie and its container, which in most cases is a web page. An APl is an applica-
tion programming interface, or a collection of exposed methods for how external
code openly communicates with an existing technology, such as the Flash Player.
The External APl is of interest to Flash Video producers because it enables a whole
new set of interaction possibilities between your Flash Video content and the web
page that contains it. The External APl is a good alternative when you want to:

Put branded elements or controls in the HTML and not the Flash movie
Have hyper-linked text referencing cue points or specific timed locations
Display HTML content when certain events occur in the video

For many developers the External API has replaced the fscommand() and
getURL () methods because it offers better compatibility across browsers and it
requires less code to implement in both the Flash movie and web page.

Table 7.1: Browser and platform support for the External API.

Browser Mac OS Windows
Internet Explorer 5.0 and above n/a yes
Netscape 8.0 and above yes yes
Mozilla 1.7.5 and above yes yes
Safari 1.3 and above yes n/a

Flash Player and Browser Communication

From ActionScript to the containing web page you can: call any JavaScript function
and pass arguments to it, pass data types, and receive a return value from the
JavaScript function. From JavaScript to the Flash movie you can: call an Action-
Script function, pass arguments using standard notation, and return a value to the
JavaScript function.

Tutorial: Control Video with HTML and JavaScript

In this chapter’s final tutorial, we'll cover the work required to enable communi-
cation between Flash Player and the browser. We'll create a web page with an
embedded Flash Video. Ordinary HTML and JavaScript will be used to control
playback, access cue points, and respond to movie events.

The External API 195

2.

3.

nOn Flash Video Player and External AP

‘.4 o m m [}E—J |A_-I‘-7 http:/ /localhost/external / - Q' Google

Gemini VI Recovery

oint was "landing."

My father, Herbert Skidgel, served aboard the
USS Wasp, an Essex-class carrier, during the
Sixties. During this time it was responsible
for recovering three Gemini space crafts.

He shot this footage with an Bmm camera. It
shows several of the steps taken in
recovering the Gemini VI craft on December
16, 1965:

. L , and
searching for the capsule.

+ The on the carrier
via a helicopter.

. the craft.

+ The on the carrier.

Figure 9.17: The example web page with JavaScript-controlled Flash Video.

This tutorial is a web page one might see for a show-and-tell session or a class

project. The techniques employed, however, could also be used for a sales or train-

ing presentation. We will begin by creating a near-empty FLA file. It will appear
to be empty because we won't add anything to the stage. We will, however, add
the FLVPTayBack component to the Library and we will reference an external

ActionScript file as the movie's document class.

Navigate to the Tutorials > Chapter 9 folder. Copy the External API folder to your

computer.

Launch Flash Professional.

Choose File > New. Select Flash File (ActionScript 3.0).

Type:

'h Flash File {(ActionScript 3.0)

T Flash File (ActionScript 2.0)

T Flash File (Mobile)

'h Flash Slide Presentation

'm Flash Form Application

11| ActionScript File

T ActionScript Communication File
"% Flash JavaScript File

™ Flach Prnisrt

New Document

fGeneraI | Templates -

Descriptig

Create ar
Documen
ActionScr|
media an

Figure 9.18: Select Flash File (ActionScript 3) from the Type list.

196

Chapter 9: More Flash Video Applications

3.

7.

Select Modify > Document and set the size to 320 x 240.

Document Properties

Title:

Description:

Dimensions:

320

pX (width)

X

240 px

(height)

Figure 9.19: Set the width and height to same dimensions as the video file.

Save this file in External API > assets folder and use flvext.fla as the file name.

Select Window > Library. Keep it open. Select Window > Components. Open the

Video and drag the FLVPTayback component into the Library panel.

Choose File > Save to save the file.

In order to create an FLVPlayback component through ActionScript, the component has to

be added to the document

's library.

P @ User Interface

¥ & video
[FLvPlayback
0D FLvplaybackCaytioni
[0 BackButton
BufferingBar
[®) CaptionButton
) ForwardButton
£ FullScreenButton
[MuteButton
[0 PauseButton
1 PlayButton
=0 PlayPauseButton
B SeekBar
[StopButton
=1 VolumeBar

| Components x =

- e x
.=|/ color x | Swatches =
—— -

| Library % | V.=

| flvext.fla I'H & =

ng Empty library

Name

A| Type

(= |

Figure 9.20: Drag the FLVPlayback component from the Components panel to the Library

panel.

To create the document class, choose File > New, select ActionScript File, and click

OK. Save the file as ExternalFlashVideo.as in the External API > assets folder.

The External API

197

New Document
{"General | Templates -
Type: Descriptig
ﬁ Flash F'Ele (ActionScript 3.0) Greate ar
B Flash File (ActionScript 2.0) the Seript
T Flash File (Mobile) language
Bl Flash Slide Presentation 9"]'3!“5._:
T Flash Form Application ap[’g:au‘_’
- TR script edi
i) Act?on&;r{pt File — atacaaty
L) ActionScript Communication File Project fil
7 Flash JavaScript File and top
"= Flash Praiect

Figure 9.21: Select ActionScript File from the Type list.

8. The document class needs to begin with the package statement. Enter:

package {
3

9. Inside the package statement, add the following three import statements.

import flash.display.MovieClip;
import fl.video.*;

import flash.external.ExternalInterface;

A Flash movie file with a timeline requires the MovieCl1ip class to be imported.
The f1.video class contains the methods and properties for working with the
FLVPTayback component. Likewise, the ExternalInterface class contains
methods for enabling Flash Player to web browser communication.

10. After the import statements, add the class declaration:

public class ExternalFlashVideo extends MovieClip {

}

11. Create variables:

var vidPlayback = new FLVPTayback();

var vidCuePoint:String;
var vidContentPath:String = “gemini.flv”;

The first variable creates an instance of the video component. The second creates a
string variable for the current cue point. The third is the URL for the video.

12. The class's constructor method now needs to written. This is code that is automati-
cally run when the document class is constructed by the Flash Player. Add the
following:

198 Chapter 9: More Flash Video Applications

function ExternalFlashVideo() {
vidPTayback.addEventListener(“cuePoint”, cp_listener);
vidPlayback.x = 0;
vidPlayback.y = 0;
addChild(vidPlayback);

vidPTayback.source = vidContentPath;
ExternalInterface.addCallback(“controlPlay”, controlPlay);
ExternalInterface.addCallback(“gotoCuePoint”, gotoCuePoint);

The constructor function starts with setting the source for the vidPlayback
video component. It then sets the component’s x and y position and adds its
instance to the movie's display list, which places it on the stage. An event listener is
added to the component to watch for cue points and to run the gotoCuePoint
function when one occurs.

The last two lines of code in the method expose two functions to the External
API: controlPlay() and gotoCuePoint(). The addCallback() method
accepts two parameters: the name of the function to expose and the name to use
externally. For simplicity’s sake, I've used the same for both the internal function
and the external name.

13. To pass the name of each cue point to an external JavaScript function, enter:

function cp_listener(eventObject:0bject):void {
vidCuePoint = eventObject.info.name;
ExternalInterface.call(“cuePointInfo”, vidCuePoint);

The cp_T1istener method accepts a cue point event as a parameter and retrieves
the cue point's name and assigns it to the variable vidCuePoint. The next line
passes vidCuePoint to an external JavaScript function, cuePointInfo(), us-
ing the cal1 () method of the ExternalInterface class.

14. To expose cue point navigation, enter:

function gotoCuePoint(vidCuePoint):void {

vidPTayback.seekToNavCuePoint(vidCuePoint);

This method advances the current frame to the cue point passed to it.

n If you've received an FLV with embedded cue points and you don't have the names handy
for entering later in the HTMVL page, you can see the embedded cue points in the Compo-

nent Inspector panel. Add the FLV to an FLVPlayback component and select the component,

click the Parameters tab in the Properties Inspector, and double-click the Cue Points field.

The External API 199

Flash Video Cue Points

& =
Name | Time | Type
start 00:00:00.000 Navigation -
ship 00:00:03.504 Navigation =
helicopter 00:00:05.839 Navigation Name | Value
landing 00:00:17.768 Navigation
recovery 00:00:20.354 Navigation
capsule 00:00:22.731 Navigation
end 00:00:24.983 Navigation

(" Cancel V€ 0K)
Npte: Event and Navigation cue points are not editable. i

N
- X
Parameters x | =
Component align center I @
T 1 autoPlay true @
myVideo cuePoints .00:00, igati i0,00:00.03. igati i :00:05. iqati Q.E
W: 400.0 X: 0.0 preview None |)
n F S scaleMode maintainAspectRatio]
H: 3000 Y: 0.0 skin SteelExternal AlIAS3 . swf [_V i
|
B A

Figure 9.22: Click the Magnitfy icon (A) to view the cue points (B).

14. To expose the playback controls to JavaScript, write the following case statement:

function controlPlayback(controlFunction):void {
switch(controlFunction) {
case “play”:
vidPlayback.play();
break;
case “pause”:
vidPlayback.pause();
break;
case “stop”:
vidPlayback.stop(Q);
break;
case “next”:
vidPlayback.seekToNextNavCuePoint();
break;

case “previous”:
vidPlayback.seekToPrevNavCuePoint();
break;

200 Chapter 9: More Flash Video Applications

This method will receive a variable from JavaScript using the External API. The
JavaScript is going to pass the id element of the current link to this method as the
variable controlFunction. In the HTML there will be a link with an 1id for each
of the common playback methods. For example, the link around the word play will
have an 1id of play, and when that's passed into the function, the function plays
the video.

15. Test the movie by pression Ctrl+Enter (Windows) or Command+Return (Mac OS).
You should see the video play.

16. In Windows Explorer or the Mac OS Finder, open External APl > assets. You'll see
a file named flvext.swf. This is the compiled version of the Flash document we'll
reference in the HTML file, index.html.

17. Open the External API folder and open the js folder. Open the JavaScript file
flv_external.js in the code editor of your choice.

18. In this tutorial, we'll use a popular open-source JavaScript library, jQuery. More
information about it follows this step. Write the event listener that will work when
the document becomes ready:

$(document) . ready(function(){
$(“‘#cuepoint’) .hide(Q);
$(“a.control”).click(function() { controlPlay(this.id); });

$(“a.chapter”).click(function() { gotoCuePoint(this.id); });
B;

The code, $ (document), refers to the entire web page, or document. The ready
event occurs when the document is ready for manipulation by the web browser
and its JavaScript engine.

When the web page loads, the functions within the $ (document) . ready func-
tion run. The first line temporarily hides the div, #cuepoint. The next two lines
act as event listeners. They listen for when an anchor tag (a web page link) with
the control or chapter class is clicked. In the first case, it passes the anchor
tag's id to the controlPTlay () function. In the second case, it passes the id to
the gotoCuePoint () function.

19. Write the controlPlay () function which will handle playback:

function controlPlay(controlFunction) {
videoPlayer.controlPlay(controlFunction);

3

Back in step 14 we wrote controlPlayback(), an ActionScript function that
has a set of case statements. The control1Play() function listed above forwards

The External API 201

the 1d of the link to the controlPlayback () function, which then calls the
corresponding video playback method.

@ JQuery is a JavaScript framework that includes methods for AJAX and dynamic HTML. What
made it unique from the other Web 2.0 JavaScript frameworks is its XPATH and CSS-like
approach to selecting DOM elements, its terseness, and its chainability. If you'd like to learn
more about it, go to: http://www.jquery.org.

20. Write the gotoCuePoint () function, which will handle cue point navigation:

function gotoCuePoint(vidCuePoint) {

videoPlayer.gotoCuePoint(vidCuePoint);

}

In step 13 we wrote the ActionScript function, gotoCuePoint (). This JavaScript
function, gotoCuePoint (), forwards the id of the link that calls it to the
ActionScript function with the same name and advances to the corresponding cue
point.

21. Write functions for showing cue points events broadcast from the Flash Player.

function cuePointInfo(vidCuePoint) {
$(“#cuepoint strong’).html(vidCuePoint);

$(“#cuepoint’).fadeIn(‘normal’);

This function responds to the ActionScript function cp_Tistener (), which we
wrote in Step 12. When the name of the cue point is passed to cuePointIn-
fo(Q), it replaces the empty text node inside the tag with the name
of the actual cue point. This tells the view what the current cue point is when it
occurs.

22. Save and close the file.
23. Open the HTML file index.html in the External API folder.

24. Reference the external JavaScript file. Insert the following bit of code on line 7
below the <script> tag that references jquery.js.

<script type="text/javascript” src="js/flv_external.js”></script>

This has to come after jquery.js because its functions rely upon the jQuery library. If
it were placed above it, the functionality wouldn't work.

25. Add the id attributes to the playback controls. Starting on line 43, add the id at-
tributes marked in yellow to the following anchor tags:

202 Chapter 9: More Flash Video Applications

id="previous" href="#" class="control">« Previous
id="stop" href="#" class="control">× Stop
id="play" href="#" class="control">Play ›

id="pause" href="#" class="control">|| Pause
id="next" href="#" class="control">Next »

26. Add the 1d attributes to the chapter links. Starting on line 58, add the id attri-
butes marked in yellow to the following anchor tags:

Planes, <a id="ship"
href="#" class="chapter">destroyers, and <a id="helicopter" href="#"
class="chapter">helicopters searching for the capsule.</Ti>

<1i>The astronauts landing
on the carrier via a helicopter.</1i>

Navy Seals recovering
the craft.</1i>

<1i>The craft being secured
on the carrier.

27. Save the file.

28. Before this file can be previewed in the brower on your local machine, the Flash
Player's security settings need to be adjusted. This is because we're testing a file
locally that uses the External API. Open a web browser and go to: http://www.
macromedia.com/support/documentation/en/flashplayer/help/settings_man-

ager04.html. Note that if you upload this to a web server to preview, you won't
have to do this.

T | Yeur Azcount | Contet | Lirked Sinina (Cranga)

f SOLUTIONS | PRODUCTS | SUPPORT COMMUNTIES | COMPANY DOWNLOADE | STORE | BEAMEH

Flash Flayer Docum emtation
Flash Player Help
Global Security Settings panel

Tabla of Cantants Adabe FlashPiayor'™ SettingsMaragar (7]
Flash Player Helg u Q} ‘l ﬁ t‘
Snfngs Manager bl Sesurily Sullings
= Global Privisty Satfings Panal Fcanm wom s 2t ' elor
= ol I ety e, tairivia possil E
- Glabal Enmgn Sottings Panal " r Whena

DI AHSMDIE B Use T Gider £ySie 10 6C08SS NOMAin:
- [ahal Socuwity Setings Pans

O Hwys ask € Mt adow 0% mmys dtny
= Giabal Notfcatinns Satings Panal
= Wahsita Privaty Semngs Panal
|= Wabslls Siarage Selings Panal Lol il El]
Local Sworage Semings
Microphana Sattings |
Camura Soitings
Privacy Semngs Nate: The Sazings Manager that you s88 Sbave S N0t &n image: s the scual

Sossings Manngor [iself. Glick the trbs o soe difsmnt penets, and dick te optiens in

Local Storage Pop-Lip Coaaton e panals 1 changs your Adota Flash Player satings
Privacy Pop-Uip Guestion L
‘Swourity Pop.Up Question I you are & designer o developer a el .
Abaut Updating Adcoe Flash Piayer T T i

Figure 9.23: The Global Security Settings panel for Adobe Flash Player.

The External API 203

29. Click the Edit Locations dropdown menu and choose Add location.

Edit locations... L4

Delete all locations

Figure 9.24: The Edit locations dropdown menu.

30. A pop-up window appears for selecting a file or folder to trust. Click Browse for
folder and pick the External API folder for this tutorial and click Confirm.

Adobe FlashPlayer™ SettingsManager (7]

Truzt thiz location:

| Browseforfles.. | | Browse for folder.. |
[confim] | Cancel |
Always tust fles in these locations: Edit locations... :]

Figure 9.25: Trust this location pop-up window.

31. You can now open the file, index.html in the browser and test the interaction.

If, for any reason, the movie doesn't play, check your code against the code listings
on the following pages. Also, a completed version of this tutorial is on the DVD-
ROM.

204 Chapter 9: More Flash Video Applications

Code: Complete listing for ExternalFlashVideo.as

package {
import flash.display.MovieClip;
import f1.video.*;
import flash.external.ExternalInterface;
var vidPlayback = new FLVPlayback(Q);
var vidCuePoint:String;
var vidContentPath:String = “../flv/gemini.flv”;
public class ExternalFlashVideo extends MovieClip {
function ExternalFlashVideo() {
vidPTayback.addEventListener(“cuePoint”, cp_listener);
vidPlayback.x = 0;
vidPlayback.y = 0;
addChild(vidPlayback) ;
vidPlayback.source = vidContentPath;
ExternalInterface.addCallback(“controlPlay”, controlPlay);
ExternalInterface.addCallback(“gotoCuePoint”, gotoCuePoint);
}
function cp_listener(eventObject:0bject):void {
vidCuePoint = eventObject.info.name;
ExternalInterface.call(“cuePointInfo”, vidCuePoint);
}
function gotoCuePoint(vidCuePoint):void {
vidPTayback.seekToNavCuePoint(vidCuePoint);
}
function controlPlay(controlFunction):void {
switch(controlFunction) {
case “play”:
vidPlayback.play(Q);
break;
case “pause”:
vidPTlayback.pause();
break;
case ‘“stop”:
vidPTayback.stop();
break;
case “next”:
vidPTayback.seekToNextNavCuePoint();
break;
case “previous”:
vidPTayback.seekToPrevNavCuePoint();
break;

The External API

Code: Complete code listing for index.html

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<html Tang="en”>
<head>
<meta http-equiv="Content-Type” content="text/html; charset=utf-8">
<title>Flash Video Player and External API</title>
<script type="text/javascript” src="js/jquery.js”’></script>
<script type="text/javascript” src="js/flv_external.js”></script>
<!--[if IE]><script type="text/javascript” src="js/fix_eolas.js” defer="defer”></script><![endif]-->
<1link rel="stylesheet” href="css/screen.css” type="text/css” media="screen” title="no title”>
<!--[if IE]><1link rel="stylesheet” href="css/ie.css” type="text/css” media="all” title="no
title”’><![endif]-->
</head>
<body>
<noscript>
<p>If the Tinks to the movie’s chapters do not work for you, JavaScript is disabled
in your web browser.
Unfortunately, JavaScript is required to facilitate communication
between the Flash Player and HTML. Turn JavaScript on in your browser (which you can find in the pref-
erences or Internet Tools dialog).</p>
</noscript>
<div id="wrap”>
<div id="header”>
<h1>Gemini VI Recovery</hl>
</div>
<div id="sidebar”>
<p id="player”>
<!--[if !'IE]> -->
<object id="videoPlayer” type="application/x-shockwave-flash” data="assets/swf/flvext.swf”
width="320" height="240">
<!-- <![endif]-->
<!--[if IE]>
<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000” width="320" height="240"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.
cab#version=9,0,0,0” id="videoPlayer”>
<param name="movie” value="assets/swf/flvext.swf” />
<l-->
<!--dgx-->
<param name="play” value="true” />
<param name="menu” value="true” />
<param name="allowScriptAccess” value="sameDomain” />
<param name="quality” value="high” />
<param name="bgcolor” value="#000000" />
<param name="allowScriptAccess” value="sameDomain” />
<param pluginspage="http://www.macromedia.com/go/getflashplayer”>
<p>This movie requires Flash Player.</p>
</object>
<!l-- <![endif]-->
</p>
<p id="controls”>

« Previous

Chapter 9: More Flash Video Applications

× Stop
Play ›
|| Pause
Next »
</p>
<p id="cuepoint”>

The last cue point was .
</p>
</div>
<div id="main”>
<p>My father, Herbert Skidgel, served aboard the USS Wasp, an Essex-class carrier, during the
Sixties. During this time it was responsible for recovering three Gemini space crafts.</p>
<p>He shot this footage with an 8mm camera. It shows several of the steps taken in recovering
the Gemini VI craft on December 16, 1965:</p>
<p>

Planes, <a id="ship” href="#"

class="chapter”>destroyers, and helicopters

searching for the capsule.</Ti>

<1i>The astronauts landing on the carrier
via a helicopter.</Ti>

Navy Seals recovering the craft.</1i>

<1i>The craft being secured on the car-
rier.</1i>

</p>

<div class="clearall”> </div>
</div>
</div>
</body>
</html1>

Wrapping Up

This chapter introduced you to several topics: working with cue points, closed
captions, XML and arrays, and the External API class. You can now take these
techniques and apply them in practical ways in future video projects.

Wrapping Up 207

This page intentionally left blank

CHAPTER 10

Flash Media Server and
Flash Lite Video

The book’s last chapter covers the basics of working
with Flash Media Server and presents a tutorial on
creating a Flash Lite application with device video.

®© Serving Flash Video with a Streaming Server 210
® Flash Lite and Mobile Videocccooviiiiiiiiiicice, 212
® Tutorial: Import an lllustrator File into Flash 218
® Tutorial: Flash Lite ActionScript and Device Central......... 225

© WIrapping UP ..coveeiieiiie ettt 230

Serving Flash Video with a Streaming Server

To stream files, you can set up a Flash Media Server from Adobe, or choose a third-
party server such as the open source Red5 server or the new commercial Wowza
Media Server Pro. If you cannot install a server, you can also have your video
hosted by a Flash Video Streaming Service. These providers offer content delivery
networks configured with Flash Media Server and can handle very high server
loads.

Table 10.1: Flash Video Streaming Options

Option Solution Web Site for More Information

Adobe Flash Media Server Server http://www.adobe.com/products/
flashmediaserver/

Red5 Server http://osflash.org/red5

Wowza Media Server Pro Server http://www.wowzamedia.com

Akamai FVSS Service http://www.akamai.com/html/
technology/products/streaming.html

Limelight Networks FVSS Service http://www.llnw.com/flash.html

VitalStream FVSS Service http://www.vitalstream.com/flash/

Mirror Image Internet FVSS Service = http://www.mirror-image.com/

Despite the increased technical overheard, streaming video has several advantages
over progressive video:

It offers a persistent connection between the viewer's computer and the streaming
server. This makes real-time video conferencing, video on demand, and multi-
player games possible.

When provisioned correctly, streaming servers can provide highly scalable distribu-
tion of content, which allows for hundreds and potentially thousands of simultane-
ous high-performance connections.

You can serve video that is appropriate to the viewer's connection speed.
Streaming video usually starts to play faster than progressive video.

Users can seek to different locations in the video and that conserves both local and
remote computing resources because only the requested frames are sent to the
viewer's PC.

Media files are more secure since streaming files are not stored in the local com-
puter’s cache.

You can track viewing and usage statistics.

Specifying a Streaming URL
Setting the source location for a video located on a streaming server is as easy as

setting one stored on an HTTP-based server for progressive download. The URL
will follow the pattern of: rtmp://www.yourservername.com/path_to/stream.flv.

210 Chapter 10: Flash Media Server and Flash Lite Video

This can be used as the source parameter for an instance of the FLVPlayback com-
ponent, or it can passed to the play () method of the NetStream object.

Using Bandwidth Detection

When using Flash Media Server (FMS), it's possible to use FMS's bandwidth detec-
tion features to serve files tailored to the bandwidth capabilities of each viewer.
This provides a better viewing experience for all viewers, because viewers with
slower connections receive video that is smaller, and viewers with faster connec-
tions receive video that is larger and not as compressed. In both cases, video loads
quickly and the perception of speed is roughly the same for both viewers.

Not all streaming providers support native bandwidth detection. In the case your
FMS installation does not come with this support, you'll need to upload an Action-
Script Communication file (main.asc in this case) to the application folder residing
on the streaming server.

You can download a sample main.asc file to use at: http://www.adobe.com/go/learn_fl_
samples. Download the Samples.zip file, unarchive the file, and look in \ComponentsAS2\
FLVPlayback.

When providing multiple instances of the same video at different sizes and

bit rates, you specify a SMIL (Synchronized Multimedia Integration Language,
pronounced “smile") file. It is an XML-based file format listing a server location,
unique files for target bandwidths, and the duration for each file:

<smil>
<head>

<meta base="rtmp://www.yourservername.com/videoapp/streams” />
<Tlayout>
<root-Tayout width="320" height="240" />
</layout>
</head>
<body>

<switch>
<video src="video_low.flv” system-bitrate="56000" dur="3:00.1">
<video src="video_med.flv” system-bitrate="128000" dur="3:00.1">
<ref src="video_hi.flv” dur="3:00.1"/>
</switch>
</body>
</smil>

Also, to configure the Flash movie to work with streaming servers that support
bandwidth detection natively, you need to add the following two lines of Action-
Script to your client-side code:

import fl.video.*;

VideoPlayer.iNCManagerClass = f1.video.NCManagerNative;

Serving Flash Video with a Streaming Server 211

When using the FLVPlayback component with Adobe Flash Media Server, follow
these steps on your local computer and on your installation of Flash Media Server.

On the Flash Media Server

Create a folder inside the Flash Media Server application folder. For example pur-
poses, let's call it videoapp.

If needed, upload the main.asc file to the videoapp folder.
Create another folder, streams, inside the videoapp folder.

Upload all Flash Video files for this application to the streams folder.

On Your Local Computer

Select File > Import > Import Video.

Select Stream from Flash Video Streaming Service (FVSS) or Stream from Flash
Media Server (FMS). Enter the URL for the file on the server.

@Already deployed to a web server, Flash Video Streaming Service, or Flash Media Server:

URL:

Examples: http://mydomain.com/directory/video.flv
rtmp://mydomain.com /directory/video.xml

Figure 10.1: Using the Flash Video wizard.

Go through the rest of the Import Video wizard. Save and compile the file. Upload
the compiled SWF file to your web server and test.

Flash Lite 2 and Mobile Video

Native Flash Video using the Sorenson or On2 codecs will not be supported by
Flash Lite until Flash Lite 3 is released. In the meantime, Flash Lite 2 supports de-
vice video, that is, video supported natively by the target device. For the best way
to determine what video formats your target device supports, check the device
specifications for the target device or use ActionScript to determine the supported
formats. You can also use Device Central to view video formats supported by the
target device.

Device Central may not list your target device, but device profiles are updated as new
devices supporting Flash Lite are introduced. To check for new device profiles, launch Device
Central and choose Devices > Check for Device Updates.

212 Chapter 10: Flash Media Server and Flash Lite Video

General Video Web

Motorola
RAZR V3m

Default Player Native
Addressable Size 176 x 144 px

Supported Formats
3IGPP

3GPP2

MPEG4

Background

Color #FFOO0D000

Figure 10.2: Click the Video tab to see which formats are supported by a device.

Preparing Video for Flash Lite

The mobile video types typically found on Flash Lite-enabled mobile devices are
3GP, 3GP2 (also known as 3GPP2), AVI, MOV, MPEG-4, and WMV. Again, the
best way to find out what format to use is to look at the device's specifications or
browse the device's information in Device Central. To export a video for a mobile
device, you have several options for converting video to a device-supported format
shown in the following table.

Table 10.2: Mobile Video Compression Options

Option Web Site for More Information

Adobe Media Encoder http://www.adobe.com/products/creativesuite/produc-
tion/

Apple QuickTime Pro http://www.apple.com/quicktime/pro/

Apple Compressor http://www.apple.com/finalcutstudio/compressor/

IMTOO 3GP Video Converter http://www.imtoo.com/3gp-video-converter.html
Total Video Converter http://www.effectmatrix.com/total-video-converter/
Xilisoft 3GP Converter http://www.xilisoft.com/3gp-video-converter.html

Sorenson Squeeze Compression http://www.sorensonmedia.com/pages/?pagelD=2
Suite

Telestream Episode (Mac OS X) http://www.telestream.net/products/ff_transworkflows.
or FlipFactory (Windows) htm

How To: Exporting Mobile Video from the Adobe Media Encoder

The Adobe Media Encoder is available in all of Adobe's dynamic media applica-
tions: Premiere Pro, After Effects, Encore, and Sound Booth. To export device video
such as 3GP using the Adobe Media Encoder, follow these steps:

Flash Lite 2 and Mobile Video 213

Launch a project created in Premiere Pro.
Select a sequence or clip to export. Choose File > Export > Adobe Media Encoder.
Select H.264 from the Format menu.

Select a device preset from the Preset menu. This will use the default encoding
settings, but you are free to experiment and adjust the settings in the Video and
Audio tabs.

If you'd like to preview the encoded video in Device Central, check Open in
Device Central.

How To: Exporting Mobile Video from QuickTime Pro

Apple QuickTime Pro is a paid upgrade to the cross-platform media technology

by Apple Inc. For about $30, you can export to any video and audio codec that is
bundled with QuickTime. To export a mobile device video format from QuickTime,
follow these steps:

Launch QuickTime Player. Open a movie you'd like to export.

Choose File > Export. Choose Movie to 3G from the Export drop down. Select a
mobile video preset from the Use drop down. Consult with the device specifica-
tions on which presets are compatible with your phone. Click Save to export the

video.
0N\ Save exported file as...
Save As: intro 2.3gp B
Where: | @ Documents i
Export: : Movie to 3G J $—] (Options...)
Use: ' 3GPP - Release 5 |"$]
=)
2

Figure 10.3: Exporting a QuickTime movie as a mobile device video.

Mobile Video Encoding Considerations

As powerful as handsets are becoming, it should be obvious that they still lack the
processing power, high-speed Internet connections, storage, and memory capacity
found on desktop and portable computers. Given all this, video for mobile devices
cannot have the same duration, frame size, fps, and data rate as desktop video.
That said, you may have to edit video down, crop, and encode at a lower frame
rate and bit rate. Find out what is best for your device and test various encoding
settings before deploying your project.

214 Chapter 10: Flash Media Server and Flash Lite Video

o 0 0 o0 o

o 0 0 0 0 o o

The ActionScript Video Object in Flash Lite 2

Controlling video playback with Flash Lite is a bit different than controlling video
playback with Flash Player for PCs. The main difference is that you do not work
with the NetStream object and attach it to the video object. With Flash Lite, you
use the Video object’s playback methods directly. The following five methods are
for controlling video playback in Flash Lite 2:

Video.play()

Video.stop()

Video.pause()

Video.resume()

Video.close()

The other difference between the two Flash implementations are methods and
properties available to the desktop implementation that are not supported by Flash
Lite 2. They are:

Video.attachVideo()

Video.clear()

Video.deblocking

Video.height

Video.width

Video.smoothing

Video._visible

Previewing Video with Flash Lite Applications

Given the variety of possible video formats, previewing video is not currently sup-
ported while authoring content in Flash Professional CS3. To preview a Flash Lite
SWF file with video, you need to load and view the SWF on the target device or
you can use Adobe Device Central if the target device's profile is installed. | have
to say that Device Central is an incredible application for previewing Flash Lite
content and its integration with Flash Professional CS3 and the other Creative Suite
applications is superb.

Deploying Flash Lite Applications with Video

You have two options for deployment: embedding the video in the SWF file's
library (referred to as “bundled video") or loading it from an external location such
as the phone's available memory or from a networked location (referred to

as “external video").

Flash Lite 2 and Mobile Video 215

Bundled Device Video

Embedding or bundling device video with the deployed SWF guarantees that
handset users can view your video content because it resides on the phone and
not on the network. It does, however, greatly increase the size of the SWF since it's
embedded into the SWF file.

External Device Video

External device video is not embedded inside the deployed Flash Lite SWF. It
resides outside the SWF file and can be stored on the phone in available memory
or it can be streamed from a network address. To play external video, you pass the
location of the video to the Video.play () method. The following are example
use cases of referencing external video given a video object with an instance name
of myVideo and a 3gp-formatted video file named products.3gp.

When the video is in the same directory as the SWF file, write:
myVideo.play(“products.3gp”);

When the video is in a directory relative to the SWF file, write:
myVideo.play(“videos/products.3gp”);

For devices that support the file:// protocol, you can also write:
myVideo.play(“file://c:/videos/products.3gp”);

For devices that support network access, you can place the file on an RTSP server
(Real Time Streaming Protocol) and pass this to the play () method:
myVideo.play(“rtsp://serverAddress/videos/products.3gp”);

How To: Create a Template Using Device Central

Device Central integrates with Creative Suite to facilitate creating and previewing
mobile content. You can create a blank lllustrator, Flash, or Photoshop file tailored
to a specific mobile device supporting Flash Lite. This section will cover creating an
lllustrator document for a Motorola Razr phone. After adding content, it can be
imported into Flash Professional and made into a Flash Lite application.

Launch Adobe Device Central. The Start page for Device Central appears. From
the Create New Mobile list, click Illustrator File. If the Start page is not present
after launching Device Central, choose File > New Document In > Flash.

216 Chapter 10: Flash Media Server and Flash Lite Video

ADORE" DEVICE CENTRAL CS3

Open for Testing Create New Mobile
& open... T Fiash File
B Phntnshnp File

Device Profiles T tustrator File

@ Browse Davices ==

J Getting Started >> _ et the most out of Device Lentral,
J B i connect with Fhe mobile community

and more available at Adobe.com > >
J Device Updates >>

I_i Don't show again

Figure 10.4: The Start page for Device Central.

In Device Central's main application window, click the Group By button, (] and
choose Carrier. This button is on the right side of the Available Devices header bar.

Content Type
Display Size

Flash Lite Version
Manufacturer
Region

Figure 10.5: You can sort the Available Devices profiles a number of ways.

In the Available Devices list, Open the Verizon category (Fig 8.6 A), select Mo-
torola RAZR V3m (Fig 8.6 B), and click Create (Fig 8.6 C). The new document will
open in lllustrator.

ane Adobe Device Cantral]
=X O e o
= Y F 1
Color Mede RCE Color Target Devices 1
Faster Resolution: 72 Pixels inch Size: 176 % 220 o m
Contant Type: | Fusiecrmen]
Mty i Sire Presets
176 x 220 pu =
Matching Devices: 1 -
Mame *| Dol
») DoCotln ey Motirals WALE Vis
» 0 oo
> O e
» [Sofdank
A T v @ s
[e vamioo ",
[Mesorota nazR VI L]
B — 1 Mesersia mazn vam "
[Samsung ScH-A550 17
1
! Custom Site for A8 Seheeted Deviees 2 .
wami Tn pn Hew 0 e o cram— . S
_ 4

Figure 10.6: Creating an lllustrator file in Device Central.

Flash Lite 2 and Mobile Video 217

Tutorial: Import an Illustrator File into Flash Professional

The next two tutorials will cover creating a Flash Lite application. We'll start by
creating a Flash Lite application from Device Central and then import an Illustrator
file that has symbols that we can use for buttons. In the second tutorial, we'll write
the application’s ActionScript and test the document using Device Central. The ap-
plication will use footage from Chapter 5, but formatted for a mobile device.

Adale Device Central
| @ Motceola RAZR Vim e =
ENTE
S ——
P Saw 1208 (1757 W
Image Farmat. ©F
Omaans. 178 % 110 55
. —
Narkigre ——— 10 %
Austasin Drenrs . 4 s
= *| Dotey sne el [Narme =
» [Dotoro Cims —g——— 7 %
» oot
> @ g N
[O Sonlank ¥ bcabng
¥ O vaton [Cpre——
Sarwih b Sarven
Fa Peapananaty
O seaie 1w
%
e
[r—— vl
| =] =]
Wstsrcm 2R .
Y
|le=——= v R Kance

Figure 10.7: The Flash Lite application running inside Device Central.

Importing an Adobe Illustrator CS3 File

Navigate to the Tutorials > Chapter 8 folder on the DVD-ROM. Copy the Flash
Lite Video folder to your computer.

Launch Adobe Device Central. When the Start page appears, click Flash File under
the Create New Mobile list. If the Start page is not present after launching Device
Central, choose File > New Document In > Flash.

. The New Document tab appears. At the top are the settings for the document.
Choose Flash Lite 2.1 from the Player Version menu, ActionScript 2.0 from the
ActionScript Version menu, and Application from the Content Type menu.

Player Version: = Flash Lite 2.1 Iy Target Devices: 1
ActionScript Version: | ActionScript 2.0 I-C—] Document Size: 176 x 204 px m
Content Type: | Application e

Figure 10.8: The Flash Lite Document Settings panel.

From the Matching Size Presets panel, double-click Motorola RAZR V3m.

Device Central opens Flash Professional CS3 and creates a Flash document with
document settings matching this targeted device.

218 Chapter 10: Flash Media Server and Flash Lite Video

10.

11.

12.

Choose File > Save. Name the file superpower.fla in the Flash Lite Video folder.

Choose File > Import > Import to Stage. Navigate to the Flash Video folder on
your computer. Select the Illustrator file chsp_home.ai and click Import.

If you own a version of the Creative Suite 3 with Illustrator CS3, open chsp_home.ai and
chsp_video.ai. Working with symbols in Illustrator CS3 feels a lot like Flash Professional.

Collapse all the high-level layers. Afterwards, the layers panel should look like the
screen portion on the right (A) of the following screenshot.

Import "chap_home.ai” to Stage

Check Mustrator layers to import Import options:
= 5]

L _JU

~ [[] «compousa puns L]

El [ccomeaund pas 1 @ ,?\

E O <Cansausd > f z i@ =L t 5|
o . & & b [eontrais B
™ .5 & To set Impiaet options, select one or [P MGG g
a) <Cnpornd P 6 @ mara items on the left |i'_‘ »[Jsan 5]
& L] <comsousa pus 7 % ' [eceac 8
v [] <compausd pu> & %

w [] <Campausd paths 3 %

B v [t o

& ¥ [<troups ~In

Ll [T st amanund Pasha L1k

Convert layers 1o | Flash Layers]

¥ Place objects at ariginal positicn

(! Set stage size 1o same size as Mlustrator atboard fcrop area (175 x 220)

[Import unused symbols

[l tmport as a single bitmap image =

(Cancel) (0K

s

Figure 10.9: The lllustrator import dialog.

With the layers collapsed, we can now adjust how the high-level layers are im-
ported. Select the controls layer and uncheck Create movie clip if it isn't already.
Repeat this for the SoftkKeyBG layer. This will preserve the layer but allow the ele-
ments on these layers to be independent of one another.

In the options below the layers list, check Import unused symbols. There are a
few additional buttons we'll use for the individual video screens. They are included
as symbols in the file, but are not currently used in the Illustrator file's art board.
Check Set stage to same size as Illustrator art board.

Click OK. The file is imported directly to the stage and movie clips are automati-
cally added to the Library.

This file uses the typeface Myriad. It's installed with most Adobe applications. If it isn't
installed on your computer, replace it with a font such as Arial or Helvetica.

Choose File > Save.

Tutorial: Import an lllustrator File into Flash Professional 219

Structuring the Movie's Layers and Timeline

In the Timeline window add two layers at the top: Labels and Actions.

al Actions L]
Al text - O
=l conrrols « O
Al SofiKeyAG e+ O
W Srars S|
al SereenBG « « @

Figure 10.10: The additional layers to create.

Select the Labels layer, click frame 1, and in the Properties panel enter Home.

[+ Froperties | iters. | Param
z Frame
| ! home

Label type:

Name o

Figure 10.11: Frame labels in the Timeline are modified in the Properties panel.

Click frame 10 in the Timeline window. Choose Insert > Timeline > Blank Key-
frame. Select frame 10 and enter fire for the frame label in the Properties panel.
The remaining frame labels should also be created in the Labels layer.

Click frame 20. Choose Insert > Timeline > Blank Keyframe. Select frame 20 and
enter waves for the frame label in the Properties panel.

Click frame 30. Choose Insert > Timeline > Blank Keyframe. Select frame 30 and
enter magic for the frame label in the Properties panel.

Click frame 40. Choose Insert > Timeline > Blank Keyframe. Select frame 40 and
enter atomic for the frame label in the Properties panel. Select frame 49 and
choose Insert > Timeline > Frame to provide enough room to see the atomic
frame label.

Select the SoftKeyBG layer. Click frame 49 and choose Insert > Timeline > Frame
to extend the contents of this layer throughout the movie. Select the Screen BG
layer and repeat the same steps to extend the background gradient throughout
the movie.

Select the Actions layer. In frames 1, 10, 20, 30, and 40 insert a keyframe by
choosing Insert > Timeline > Blank Keyframe.

H Q.Dl....s....1.0....1.5...2.0....2.5...39...??...?....4.5...
a S o O Ojo Olo 0
Al Labels P mlg home aft fre gff, waves ok, magic ol laser 0
Ql text « « @i,
4l controls « « @
4l Softkeys « + @
] SoftkeyBG . o« [Of o
Sl Stars « o« M|,
‘4l ScreenBG P DH O

Figure 10.12: Key frames set for the layers in this movie thus far.

220 Chapter 10: Flash Media Server and Flash Lite Video

9.

10.

Now it's time to work on the controls for the home frame. Lock all the layers ex-
cept the controls layer. Select the fireButton.

Choose File > Save.

Configuring Buttons

You'll notice that the button has a proper instance name in the Properties panel.
In lllustrator, | was able to give instance names for each instance of the BgBut-
tonUpBg symbol. | could not, however, set this symbol as a button clip in lllustra-
tor. We'll use the Library panel to change it into a button, and we'll add a rollover
state to it. Looking at the Library panel, notice that the imported Illustrator docu-
ment is organized into folders based on the original file's layers and the settings
chosen in the Import dialog.

R — .
([chsp_homeai
b
|_& contrals
(= Nustrator Symbals

["_f Assets

BgButtonOverBg
BgButtonlUpBg
PauseBtn
Pauselcon
PlayBtn
Playlcon
EmButtonOverBg
SmButtonUpBg
StopBtn
Stoplcon

|t_' ScreenBG
[softkeyBG
r—' Stars
[text

Figure 10.13: Library hierarchy.

In the Library panel, open chsp_home.ai > lllustrator Symbols. Double-click the
BgButtonOverBg movie clip. Choose Edit > Select All and then Edit > Copy. This
graphic is the overstate for the movie's buttons.

Select the BgButtonOverBg movie clip and click the Symbol Properties button, [@],
at the bottom of the Library panel. In the Symbol Properties dialog, check Button
as the symbol's type. Click OK.

Double-click the BgButtonOverBg movie clip. In the Timeline, click the Over
frame and choose Insert > Timeline > Blank Keyframe. Choose Edit > Paste in
Place. The button now has an overstate.

Tutorial: Import an lllustrator File into Flash Professional 221

10.

E ® a0
ol Layer 1 e - W

Bl 5@ 3 f B B[] oz 2
Eﬂf] %SCQT!E]. &Bﬁﬂunnnﬂnﬂu
|)
e—

Figure 10.14: The overstate added to the button movie clip.

On a mobile phone, the user will press the five-way buttons on the phone, and as the selec-

tion moves to a new button, this graphic will indicate the currently selected button.

Convert the PlayBtn, PauseBtn, and StopBtn movie clips to button symbols by
selecting each one, clicking the Symbol Properties button, [, and checking Button
in the Symbol Properties dialog.

Double click the SmButtonOverBg movie clip in the Library panel. Choose Edit >
Select All and then Edit > Copy. This graphic is the overstate for the movie's play,
stop, and pause buttons.

In the PlayBtn, PauseBtn, and StopBtn button symbols, create a blank keyframe
in the Over frame (Insert > Timeline > Blank Keyframe) and paste the rollover
graphic using Edit > Paste in Place.

Note that this graphic is only the button background. You still need to copy and paste the
play, stop, and pause shape icons. If you don't copy and paste them, the icon at the center
of each button will disappear when the button is in the rollover state.

For each of these buttons, select and copy the shape icon in the Up frame and
paste it into the Over frame using Edit > Paste in Place.

Using the Time bar, click Scene 1 to return to it.

L,I;I| =] % & (% BqButtontinga

Figure 10.15: Navigating back to Scene 1 via the Time bar.

Select the FIRE button on the stage. Make sure you select the button shape and
not the button text, which are separate elements. When you see a selection rect-

angle around the entire button shape, you have selected the button.

=>—‘ _1 ”

Figure 10.16: The FIRE button selected.

In the Properties panel, change the button’s instance type to Button from Movie
Clip. Also set the tracking option to Track as button. If you don't set this properly,

222 Chapter 10: Flash Media Server and Flash Lite Video

11.

12.

13.

14.

15.

the buttons will flicker because the Flash Lite player will treat them like movie clips
instead of buttons and play through the Up and Over frames continuously.

| Properties x | Filters | Parameters |

| Button |b] Instance of: BgButton

ireButton | | Swap... | | Track as button I-a"_!

w: 800 | x: 80 |
H: [20.00 | ¥: |130.0

Figure 10.17: Set the fireButton as a Button symbol.

Follow the previous step to change the WAVES, MAGIC, and ATOMIC buttons.
They should all be Button clips and tracking as a button. When you are finished,
lock the controls layer in the Timeline.

Unlock the SoftKeysBG layer. Choose Edit > Select All and then choose Edit >
Copy. Choose Edit > Deselect All. Delete the HOME text since this is the home
screen and it's only needed on the other screens.

Select frame 10 in the same layer and choose Insert > Timeline > Blank Keyframe.
Choose Edit > Paste In Place. Then select frame 49 and choose Insert > Timeline
> Frame. This will extend HOME and EXIT, the two phone soft keys across the
remaining frames in the movie. Soft keys are the buttons controlled by the two left
and right select buttons below a phone's screen and above the phone’s five-way
navigation buttons.

Figure 5.18: The left and right soft keys (A) and the five-way navigation buttons (B).

Lock the SoftKeys layer and unlock and select the controls layer again. We will
now place the play, pause, and stop buttons we modified in steps 2-5.

Select frame 10 for the controls layer. Insert a blank keyframe. Drag the StopBtn,
PlayBtn, and PauseBtn buttons from the Library panel to the stage. Use the fol-
lowing table and the Properties panel to name and position each instance.

Tutorial: Import an Illustrator File into Flash Professional 223

16.

17.

Table 8.3: Name and Position Information for the Play, Pause, and Stop Buttons

Button Symbol Name X Y

PlayBtn playButton 68 160
StopBtn stopButton 20 160
PauseBtn pauseButton 116 160

Select frame 49 and insert a frame (Insert > Timeline > Frame) to extend these
buttons across the rest of the movie. Lock the controls layer.

Insert a new layer named video and place it above the controls layer but below
the text layer. To insert a new layer, choose Insert > Timeline > Layer.

Importing and Bundling Device Video

With the user interface elements in place, let's add the video. In the Library panel
click the Panel Options button, * =, and choose New Video. In the Video Proper-
ties dialog, name the symbol, fire. For Type, select Video (ActionScript-controlled)
and check Bundle source in SWF for mobile and devices. Check Export for
ActionScript and keep the Identifier set as fire. Click Import and navigate to the
Flash Lite Video folder on your computer. Open the video folder and import the
file, fire.3gp.

Video Properties

Symbol: fire @
(Cancel)

Type: () Embedded (synchronized with Timeline)
(®) Video (ActionScript-controlied) (Import... a
E Bundle source in SWF for mobile and devices
(Update)

Source: [Users/skidgel/Documents/John /Writing/FLV Book /DV...
Friday, May 4, 2007 7:54 AM
38.8 Kb of video data

Export...

™ Export for ActionScript

Identifier: fire

Figure 10.19: The Source property will reflect the location of the video on your computer.

Remember that device video can either be linked to externally or bundled inside the com-
piled SWF file. In order to control video playback with ActionScript, the video needs to have
an indentifer exported for ActionScript.

Import the other three video files in the Flash Lite Video > Video folder repeating
the previous step. Use the file name (minus the file extension) as the Symbol and
Identifier names for each of the videos.

Select frame 10 in the video layer and insert a blank keyframe. Drag the fire video
from the Library panel to the stage. In the Properties panel, name the instance
fireVideo and set its position to 8, 8.

224 Chapter 10: Flash Media Server and Flash Lite Video

Select frame 20 in the video layer and insert a blank keyframe. Drag the waves
video from the Library panel to the stage. Name the instance wavesVideo and set
its position to 8, 8.

Select frame 30 in the video layer and insert a blank keyframe. Drag the magic
video from the Library panel to the stage. Name the instance magicVideo and set
its position to 8, 8.

Select frame 40 in the video layer and insert a blank keyframe. Drag the atomic
video from the Library panel to the stage. Name the instance atomicVideo and set
its position to 8, 8.

Choose File > Save. The structure, layout, and visuals for the Flash movie are now
complete. You've learned how to import Illustrator artwork, construct buttons from
Library assets, and import and place video for Flash Lite applications. In the next
tutorial, we'll write the ActionScript to control both navigation and playback.

0 Olo Olo 0
fire B WaVES 5 magic atomic d

DE Ole O ole

al ActionScript .
Wl Labels .
Ql text .
al Video D
'a] controls .

-

-

3

Al Softkeys
4l SoftKeyBC
Q) Stars

4l ScreenBG

Al <30 F

th| 5 Scene 1

OO0 EEEE @
& (& e [[[0 & o[

BH B[] 40 240fps 16 | Fm—m———————

Figure 20: A screen from the application after completing the first part of the tutorial.

Tutorial: Writing ActionScript and Testing in
Device Central

The ActionScript used in Flash Lite 2.x is based on ActionScript 2.0. This means if
you had never used ActionScript before reading this book, the code may look a
little different than what you've seen in the previous chapters. Rest assured, how-
ever, the code we'll cover is a lot simpler than the code in the previous chapters.

In the Timeline select frame 1 in the ActionScript layer. In this layer we'll write
code that will set global settings for the movie and create navigation between this
screen and the different frames containing video.

Tutorial: Writing ActionScript and Testing in Device Central 225

2.

3.

Choose Window > Actions to open the Actions panel. Enter the following:

fscommand2 (“FullScreen”, true);
fscommand2 (“SetQuality”, “high”);
fscommand2 (“SetSoftKeys”, “”, “Exit”);

_focusrect = false;
stop(;

The first three lines of code use the fscommand2 function. The fscommand2
function facilitates communication between a Flash Lite SWF and the Flash Lite
player or an application on the mobile device. The function is different than
fscommand in that it accepts multiple arguments rather than one, it runs immedi-
ately rather than the end of frame, it can return a value, and it only works in Flash
Lite—it does not work with the desktop Flash players.

The first line enables full-screen mode, the second turns on higher quality render-
ing, and the third line sets the right soft key label to “Exit" and sets the left soft
key label to be blank.

Setting _focusrect to false turns off the yellow outline the Flash Lite player
draws around selectable interface elements. Since we created overstates for all the
buttons, setting this to true, the default, would be overkill and not improve the
design.

The stop() method stops playback and keeps the player on this frame until the
user triggers the navigation code we're about to write.

When the Flash Lite application initially runs, the first button, fireButton,
should be selected by default. Enter:

if (selectedItem == null) {
Selection.setFocus(fireButton);

} else {
Selection.setFocus(selectedItem);
}

This if-else statement selects the first button, fireButton, when there is no selection.
This occurs when the SWF begins to play. If there is a selection, it preserves the
current selection.

226 Chapter 10: Flash Media Server and Flash Lite Video

4.

Let's write the navigation code:

fireButton.onPress = function() {
selectedItem = this;
gotoAndStop(“fire”);

15

wavesButton.onPress = function() {
selectedItem = this;
gotoAndStop(“waves”);

b5

magicButton.onPress = function() {
selectedItem = this;
gotoAndStop(“magic”);

55

atomicButton.onPress = function() {
selectedItem = this;
gotoAndStop(“atomic”);

IE

There are event listeners for each of the four buttons on the stage. In each of these
onPress event listeners, a function is assigned to move the playhead to a frame
with one of the labels we created in the last tutorial.

Choose File > Save.

The last code that needs to be written for this frame is an event listener that will
respond when the user clicks the right soft key and wants to exit the application.
Enter:

Key.removelListener(softKeyListener);
var softKeyListener:0Object = new Object ();
softKeyListener.onKeyDown = function () {
var keyCode = Key.getCode ();
if (keyCode == ExtendedKey.SOFT2) {
fscommand2 (“Quit”);

55
Key.addListener(softKeyListener);

This application will use soft keys in several frames and all frames will use an event
listener with the same name to simplify removing and reattaching it across frames.
The first line removes the event listener from the Key object so one with the same
name but different navigational instructions can be attached to it.

The next seven lines create an object, softKeyL1istener, that will listen for keys
that are pressed and will quit the application if the SOFT2 key or right button is
pressed. The last line reattaches the listener to the Key object.

Tutorial: Writing ActionScript and Testing inDevice Central 227

7. This frame contains the fire video. The code in this frame can also be used in the
remaining video frames with slight modifications. Select frame 10 in the Action-
Script layer. In the Actions window enter the following code:

stopQ);
fscommand2 (“SetSoftKeys”, “Exit”, “Home”);
fireVideo.play(Q;

Selection.setFocus(pauseButton);

The stop() method parks the playhead on this frame. It will stay here until the
navigational code that is part of the soft key event listener runs. The next line of
code sets the soft keys for the current frame. The third line of code plays the video
instance, fireVideo. Since the video begins playing, the focus is moved to the
pause button for convenience.

8. The three button symbols on the stage, stopButton, playButton, and
pauseButton, need to be connected to the video object. Enter:

stopButton.onPress = function() {
fireVideo.stop(Q);
Selection.setFocus(playButton);

bs

playButton.onPress = function() {
fireVideo.resume();
Selection.setFocus(pauseButton);

Is

pauseButton.onPress = function() {
fireVideo.pause(Q);
Selection.setFocus(playButton);

};

These three event listeners listen for the onPress event. This occurs when the
center button on the phone’s five-way control is pressed.

The stopButton code stops playback by calling the stop() method. It conve-
niently sets the focus to the playButton so the user can play the video again.
The remaining three buttons work in similar ways. The playButton button
resumes playback and sets the focus to the pause button, and the pauseButton
button pauses the video and sets the focus to the play button.

9. The last several lines of code address the phone’s soft keys. The code works a lot
like the event listener written earlier with the exception that it listens for an ad-
ditional soft key, SOFT2.

228 Chapter 10: Flash Media Server and Flash Lite Video

Key.removelListener(softKeyListener);

var softKeyListener:0bject = new Object();

softKeyListener.onKeyDown = function() {
var keyCode = Key.getCode();
if (keyCode == ExtendedKey.SOFT1) {
fscommand2 (“Quit”);
} else if (keyCode == ExtendedKey.SOFT2) {
gotoAndStop (“home”);
}
55
Key.addListener(softKeyListener);

It begins by removing the listener, recreating the listener object, and creating a
function for the listener. The function listens for either soft key to be pressed. The
left soft key still exits the application. The right soft key returns the user to the
home screen.

10. Now you can copy and paste this code in frames 20, 30, and 40 in the ActionScript
layer. In each frame you'll have to change all instances of fireVideo to the instance
name of the video placed in the frame. In frame 20, use wavesVideo, in frame 30
use magicVideo, and in frame 40 use atomicVideo.

11. Choose File > Save.

Testing the Movie in Device Central

1. Choose Control > Test Movie. Adobe Device Central should launch. If you see the
following warning in the Message panel, change the Content Type to Application
and make sure the target device supports Flash Lite 2.

[¥ ContentType |

[Standalone Player 5]

|y filefs

Name: superpower.swi
File Size: 128 KB (131920 Bytas)

|esnny

The file superpower.swf cannot be emulated!

The selected content type Standalone Player is not
supported by the Flash Lite player on this device.

Figure 10.21: Change the content type to Application.

You should now be able to navigate to the different video frames; play, pause, and
stop the video; and return to the home frames. Use the buttons on the device that
appears in the center panel. They are live. Device Central offers many ways to pre-
view Flash Lite content. For example, you can preview the content on any number
of devices that support the Flash Lite and ActionScript versions you are targeting. It

Tutorial: Writing ActionScript and Testing inDevice Central 229

also includes preview controls to see how backlighting, environmental reflections,
and gamma can affect the appearance of your content.

S

\ [~

L L\L T

. sju @ssos

C

Figure 10.22: The Device Central application user interface.

The Output window, (Fig 8.22 A) (View > Flash Output > View), shows trace
statements and device messages. You can preview content as it would appear on
similar devices by double-clicking a device in the Available Devices list (Fig 8.22
B). You can stop the movie, pause it, and restart it as well as zoom and rotate the
device (Fig 8.22 C). Change the appearance and simulate various display condi-
tions using the options in the Display panel (Fig 8.22 D).

Wrapping Up

This chapter introduced you to streaming video basics and to device video with
Flash Lite. If you've completed all the tutorials in the book, you should have a solid
foundation to work with Flash Video in Flash applications on web pages and now

on alternative devices.

230 Chapter 10: Flash Media Server and Flash Lite Video

Accessibility, best practices, 170

Action safe zone, irrelevance in Flash, 15
Actions panel, Flash Professional, 36
ActionScript

bitmap effects, 152-156

cue points, 60

Device Central, 225-229

Flash Lite video object, 215

Flash player customization, 96-104

intro, exit, and return loop codes, 133-136
loops and navigation codes, 124-128

XML and software version, 188

Active content, dynamic insertion, 163
addBlur(), 154-156

AddCallback, 199

addchild(), 107-108, 153, 185

addShadow(), 155

Adobe, see After Effects Professional 7; Device Central; Dream-
weaver CS3: Flash Professional CS3: Illustrator
After Effects Professional 7, creating Flash video with transparency,
138-144

Alpha

channel incorporation into Flash application, 138
setting, 91

Analog-to-digital conversion

color sampling, 40-42

quantization, 40, 42

Aperture, depth of field relationship, 17

Array, playlist creation tutorial, 183-187
Aspect ratio, standards, 49-50
attachNetStream(), 185

attachVideoStream(), 108
AUTO_REWOQOUND, 124

Background
blue screen, 21

232

simplification in shooting, 15
Bandwidth quota, encoding decisions, 54
Base button, customization, 84-88
Bitmap effects
overview, 149
tutorials
direct application, 150-151
dynamic application, 152-156
Bit rate
constant versus variable, 53-54
definition, 53
Internet connection speed and video delivery, 54
Blend modes
overview, 149
tutorial, 149-150
Blue screen
backdrops, 21
creating Flash video with transparency, 138-144
shooting
detail/sharpening setting turn off, 19
exposure, 19, 20
lighting, 21-22
Bundled device video, deployment in Flash Lite, 216, 224-225
Buttons
adding to loops, 120-122
configuration for mobile video, 221-224
customization
base button, 84-88
toggle size button, 92-94

call(), 199

Captioning, see Closed captions

CC, see Closed captions

clickBtn(), 143

clickHandler(), 126-127, 134
Closed captions (CC)

accessibility, 170

dynamic text field tutorial, 178-179

233

FLVPlayback Captioning component tutorial, 170-172
fonts, 179
timed text
attributes, 172
file structure, 173
tutorial for styling option setting, 173-177
Codecs
distribution, 43
lossy versus lossless, 43
overview, 42, 44
postproduction, 43
production, 43
Sorenson Spark, 45-47
VP6, 46-47
Color effects
overview, 149
tutorial, 149-150
Color panel, Flash Professional, 79, 82
Color sampling
overview, 40
schemes, 41-42
Color spaces, 40-41
Compiler Errors panel, Flash Professional, 37
Component Inspector
cloning, 131
repeating loops, 124
Components panel, Flash Professional, 35-36, 80
Compression
codecs, see Codecs
considerations
Flash player version and codecs, 45-47
Internet access speed, 45
intraframe versus interframe, 44
mobile video, 213
ratio, 44
controlPlay(), 199, 201
controlPlayback(), 201-202
cp_listener(), 202
Cropping
After Effects, 141

234

encoding, 61, 63

Cue points

ActionScript cue points, 60

display over video tutorial, 180-183
event cue points, 60-61

exporting from existing Flash video, 68-70
navigation cue points, 60
parameters, 61

setting, 59-60, 67-68
cuePointInfo(), 199, 202
CustomPlayer(), 98-99

Data rate, calculation, 42

Depth of field (DOF)

aperture relationship, 17

camera-to-subject distance relationship, 17-18
definition, 16

focal length relationship, 16

Device Central

ActionScript writing, 225-229

button configuration, 221-224

movie layer and timeline structuring tutorial, 220-221
movie testing, 229-230

target device compatibility, 212

template creation, 216-217

Disk space, encoding decisions, 54

Document class, ActionScript, 97-98

DOF, see Depth of field

Dreamweaver CS3, importing video tutorial, 7-9

Effects Control, After Effects, 140
Embedded video

approaches, 158

browser compatibility, 159

embed tag, 161-162

Flash player version detection, 162-163

235

object tag, 161-162
selection factors, 54-55
Web standards
accessibility, 161
open standards, 160
overview, 159
semantic markup, 160
Web page validation, 160-161
Encoding
Adobe Flash Video Encoder batch encoding of several clips, 66
encoders, 55-56
Flash Professional CS3 encoding with Import Video wizard, 55,
62-65
mobile video considerations, 214
settings
Audio tab, 59
Crop and Resize tab, 61-62
Cue Points tab, 59-62
overview, 56-57
Profiles tab, 57-58
Video tab, 58-59
EOLAS patent, lawsuit, 163
Event cue points, 60-61
Exposure, blue screen shooting, 19, 20
Extensible Markup language (XML)
playlist creation tutorial, 187-195
tags, 187
External API, Flash player
applications, 195
browser and platform support, 195
video control with HTML and JavaScript, 195-207
External device video, deployment in Flash Lite, 216
Externallnterface class, 199

Flash Detection Kit, dynamic insertion of Flash, 164
flash.jquery.js, dynamic insertion of Flash, 164
Flash Lite

ActionScript video object, 215

236

Device Central, see Device Central
encoding considerations, 214
previewing video, 215
version and codec compatibility, 212
video deployment
bundled device video, 216, 224-225
external device video, 216
overview, 215
video export
Adobe Media Encoder, 213-214
compression options, 213
QuickTime Pro, 214
Flash Media Server (FMS), bandwidth detection, 211-212
Flash player customization
ActionScript writing, 96-104
base button, 84-88
playback icon , 88-91
seek bar, 94-96
skinning, see Skinning
text banner creation, 72-77
toggle size button, 92-94
writing from scratch
base video player class, 105-109
overview, 104
Flash Professional CS3
encoding with Import Video wizard, 55, 62-65
lllustrator file import, 218-219
importing video tutorial, 4-7
interface elements
Actions panel, 36
Compiler Errors panel, 37
Components panel, 35-36
Help panel, 38
Library panel, 34-35
Output panel, 37-38
overview, 27-28
Properties panel, 32-34
stage, shapes, and symbols, 30-31
timeline, 29-30
tool palette, 31-32

237

New Document dialog, 24-26

Preview window, 38

template creation tutorial, 26-27

Flix, Flash encoder, 56

Flowchart, development, 112-113
FLVPlayback Captioning component, tutorial, 170-172
FMS, see Flash Media Server

Focal length, depth of field relationship, 16
Frame content, simplification, 52-53
Frame rate, encoding decisions, 49
fscommand(), 195

Full-screen mode, 103

getURL(), 195

gotoCuePoint(), 199, 201-202

Gradient Transformation, Flash Professional CS3, 32, 84, 86, 95
Green screen, see Blue screen

Help panel, Flash Professional, 38
High definition, advantages in shooting, 12

id attributes, 202-203

lllustrator

button configuration for mobile video, 221-224
file import into Flash Professional, 218-219
Importing video tutorials

Dreamweaver CS3, 7-9

Flash Professional CS3, 4-7

Interaction design, tips, 115

Interfaced frames, 51-52

238

JavaScript, video control with external API, 195-207

Label class, 152

Library panel

Flash player customization, 83-84, 89

Flash Professional, 34-35

Lighting

blue screen shooting, 21-22

soft light advantages, 18

load(), 192

loadComplete(), 192

loop1x(), 127

Loops

guidelines, 116

intro, exit, and return loop tutorial
ActionScript code, 133-136
adding backgrounds, buttons, and video, 130-133
FLA file setup, 129-130
overview, 128

repeating loop tutorial
ActionScript code for loops and navigation, 124-128
element addition, 118-124
FLA file setup, 117-118

loopVideo(), 124-125

loopVideo4x(), 126

M

Masking, tutorial, 147-148

math.floor(), 101

math.round(), 101

MIME, see Multipurpose Internet Mail Extensions

Mobile video, see Device Central; Flash Lite

Multipurpose Internet Mail Extensions (MIME), Flash compatibility,
168

239

National Television Standards Committee (NTSC), video format, 48
Navigation cue points, 60

NetConnection class, 105-106, 185

NetStatus event class, 106

NetStream class, 105-106, 109-110, 185-186

NTSC, see National Television Standards Committee

Object Drawing, Flash Professional CS3, 31
Object tag, 161-162

Output panel, Flash Professional, 37-38
Oval tool, Flash Professional CS3, 85-86

PAL, see Phase Alternate Line

Panning, guidelines, 13-14

pause(), 108

Phase Alternate Line (PAL), video format, 48
Pixel, dimensions, 48-49

play(), 108, 211

playbackComplete()195

Playback icon, customization , 88-91

Playlist

advantages, 183

array tutorial, 183-187

Extensible Markup language tutorial, 187-195
playvideo(), 192

Preview window, Flash Professional, 38
Progressive frames, 51-52

Progressive video, selection factors, 54-55
Properties panel, Flash Professional, 32-34, 132
Prototyping

functionally limited prototype authoring, 114
paper prototyping, 113-114

usability testing, 114

push(), 184

240

Quantization, analog-to-digital conversion, 40, 42

QuickTime
Flash encoder, 56
mobile video export, 214

Rack focus, technique, 18
RadoiButtonGroup class, 142, 153
Rectangle tool, Flash Professional CS3, 89
Resizing

After Effects, 141

encoding, 62-63

Room tone, recording, 22

Screen Matte, After Effects, 140
Script tag, 202
seek(), 108
Seek bar, customization, 94-96
setStyle, 100, 142, 153
setTimeCode, 100
setTone(), 156
Skinning
Flash Professional CS3 imported videos, 6
tutorials
ActionScript writing, 96-104
adding components to stage, 78-82
base button, 84-88
overview, 77
playback icon , 88-91
seek bar, 94-96
toggle size button, 92-94

Sorenson Spark, compression considerations, 4547

Sorenson Squeeze, encoder, 56
SoundTransform, 106, 109
Sprite class, 106

241

Stage, Flash Professional CS3, 30-31
StartVideo, 107

stop(), 124, 134, 226, 228

Streaming video

advantages over progressive video, 210
Flash Media Server and bandwidth detection, 211-212
options, 210

selection factors, 54-55

streaming URL specification, 210-211
Style tag, timed text tutorial, 173-177
StyleManager class, 152

SWEFFix, dynamic insertion of Flash, 164
SWFObiject, tutorial, 163-167

switch(), 143

tcString, 102
Text, adding to loops, 118-120
Text banner, creation in Flash video, 72-77
TextFormat class, 152-153
Tilt, guidelines, 13-14
timeCode(), 101
Timed text, see Closed captions
Timeline, Flash Professional CS3, 29-30
Title safe zone, irrelevance in Flash, 15
Toggle size button, customization, 92-94
Tool palette, Flash Professional, 31-32
Transform Gradient, see Gradient Transformation
Transparency
After Effects creating Flash video with transparency, 138-144
alpha channel video incorporation into Flash application, 138
masking tutorial, 147-148
Web video creation

browser support, 144

transparency export from Flash, 144-147
Tripod, importance, 14
24p format
interfaced versus progressive frames, 52
selection factors, 12

242

UFO.js, dynamic insertion of Flash, 164
URLLoader class, 187, 191
Usability, testing, 114

VideoController class, 106-108

VideoEvent class, 124

videoHandler(), 135

Video playlist, see Playlist

Video tag, XML, 189

VP6, compression considerations, 46-47
W

Web 2.0, Flash popularity, 2

Web server, Flash compatibility, 167-168
X

XML, see Extensible Markup language

Zoom, guidelines, 13

243

This page intentionally left blank

	Producing Flash CS3 Video: Techniques for Video Pros and Web Designers
	Copyright Page
	Contents
	Dedication
	Acknowledgements
	Chapter 1 Getting Started with Flash Video
	Video and the Web
	Before You Begin
	Tutorial: Inserting Flash Video in Flash Professional
	Tutorial: Inserting Flash Video in Dreamweaver
	Wrapping Up

	Chapter 2 Video Production Tipsfor Flash Video
	Shoot with the Best Possible Format
	Controlling Camera Motion
	Don’t Sweat Title and Action Safe Zones
	Simplify Backgrounds
	Get Good Exposure and Light Softly
	Shooting for Blue and Green Screen
	Recording Room Tone and Effects
	Wrapping Up

	Chapter 3 An Introduction to Flash Professional and ActionScript 3
	Getting Acquainted with Flash Professional CS3
	Creating Flash Documents
	Interface Overview
	Wrapping Up

	Chapter 4 Encoding Flash Video
	Analog and Digital Theory
	Compression
	Important Factors Regarding Compression
	Encoding Decisions
	Flash Video Encoding Settings
	Encoding Tutorials
	Wrapping Up

	Chapter 5 CustomizingFlash Video Players
	Custom Player Development
	Tutorial: Creating a Flash Video Text Banner
	Tutorial: Skinning the FLVPlayback Component
	Tutorial: Writing a Custom Player from Scratch

	Chapter 6 Interactive Video Concepts
	Designing Navigation and Interaction
	Backgrounds, Loops and Flash Video
	Tutorial: Repeating Loops
	Tutorial: Intro, Exit, and Return Loops
	Wrapping Up

	Chapter 7 Video Transparency and Effects
	Flash Video and Transparency
	Creating Transparent Video on a Web Page
	Masking Video
	Applying Blend Modes and Effects to Video
	Wrapping Up

	Chapter 8 Enhancing Flash Deployment
	Deploying Flash with HTML
	How Flash Video Is Embedded
	Browser Compatibility and Web Standards
	Flash Player Version Detection
	The EOLAS Patent and Active Content
	Tutorial: Using SWFObject
	Ensuring Your Web Site Can Serve Flash Video
	Wrapping Up

	Chapter 9 More FlashVideo Applications
	Displaying Closed Captions
	Displaying Cue Points
	Creating Video Playlists
	The External API

	Chapter 10 Flash Media Server andFlash Lite Video
	Serving Flash Video with a Streaming Server
	Flash Lite 2 and Mobile Video
	Tutorial: Import an Illustrator File into Flash Professional
	Tutorial: Writing ActionScript and Testing inDevice Central
	Wrapping Up

	Index

