
FORWARD-TIME
POPULATION GENETICS
SIMULATIONS

FORWARD-TIME
POPULATION GENETICS
SIMULATIONS
Methods, Implementation,
and Applications

BO PENG
Department of Genetics, University of Texas,
M.D. Anderson Cancer Center

MAREK KIMMEL
Department of Statistics, Rice University

CHRISTOPHER I. AMOS
Department of Genetics, University of Texas,
M.D. Anderson Cancer Center

Copyright 2012 by Wiley-Blackwell. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created ore extended by sales
representatives or written sales materials. The advice and strategies contained herin may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Peng, Bo, 1974-
Forward-time population genetics simulations : methods, implementation, and

applications / Bo Peng, Marek Kimmel, Christopher I. Amos.
p. ; cm.

Includes bibliographical references and index.
ISBN 978-0-470-50348-5 (pbk.)
I. Kimmel, Marek, 1959- II. Amos, Christopher I. III. Title.
[DNLM: 1. Genetics, Population. 2. Biological Evolution. 3. Computer

Simulation. 4. Models, Genetic. QU 450]
LC-classification not assigned
576.5’8–dc23

2011033593

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

To Zheng, Benjamin, William, and Elena

CONTENTS

PREFACE xiii

ACKNOWLEDGMENTS xvii

LIST OF EXAMPLES xix

1 BASIC CONCEPTS AND MODELS 1

1.1 Biological and Genetic Concepts / 2
1.1.1 Genome and Chromosomes / 2
1.1.2 Genes, Markers, Loci, and Alleles / 3
1.1.3 Recombination and Linkage / 4
1.1.4 Sex Chromosomes / 5
1.1.5 Mutation and Mutation Models / 5

1.2 Population and Evolutionary Genetics / 7
1.2.1 Population Variation and Mutation / 8
1.2.2 The Wright–Fisher Model and Random Mating / 8
1.2.3 The Hardy–Weinberg Equilibrium / 9
1.2.4 Genetic Drift and Effective Population Size / 10
1.2.5 Natural Selection / 10
1.2.6 Linkage Equilibrium / 13
1.2.7 Population Structure and Migration / 15

viii CONTENTS

1.2.8 Demographic History of Human Populations / 16
1.2.9 Coalescent and Backward-Time Simulations / 17
1.2.10 Forward-Time Simulations / 20

1.3 Statistical Genetics and Genetic Epidemiology / 21
1.3.1 Penetrance Models / 21
1.3.2 Simple and Complex Genetic Diseases / 24
1.3.3 Phenotypic, Allelic, and Locus Heterogeneity / 24
1.3.4 Study Designs of Gene Mapping / 25

References / 27

2 SIMULATION OF POPULATION GENETICS MODELS 31

2.1 Random Genetic Drift / 31
2.1.1 Dynamics of Allele Frequency and

Heterozygosity / 32
2.1.2 Persistence Time / 34

2.2 Demographic Models / 35
2.2.1 The Bottleneck Effect / 36

2.3 Mutation / 38
2.3.1 A Diallelic Mutation Model / 38
2.3.2 Multiallelic Mutation Models / 40

2.4 Migration / 42
2.4.1 An Island Model of Migration / 42

2.5 Recombination and Linkage Disequilibrium / 44
2.6 Natural Selection / 45

2.6.1 Single-Locus Diallelic Selection Models / 45
2.6.2 Multilocus Selection Models / 48

2.7 Genealogy of Forward-Time Simulations / 49
2.7.1 Genealogy of Haploid Simulations / 49
2.7.2 Genealogy of Diploid Simulations / 52

References / 53

3 ASCERTAINMENT BIAS IN POPULATION GENETICS 55

3.1 Introduction / 55
3.2 Methods / 58

3.2.1 Evolution of a DNA Repeat Locus / 58

CONTENTS ix

3.2.2 Conditional Distributions and Ascertainment Bias
of Allele Sizes / 60

3.2.3 Simulation Method / 62
3.3 Results / 64

3.3.1 Summary of Modeling Results / 64
3.3.2 Comparisons of Empirical Statistics Derived from

Human and Chimpanzee Microsatellite Data / 68
3.4 Discussion and Conclusions / 69
References / 71

4 OBSERVING PROPERTIES OF EVOLVING
POPULATIONS 73

4.1 Introduction / 74
4.1.1 Allelic Spectra of Complex Human Diseases / 74
4.1.2 An Evolutionary Model of Effective Number

of Disease Alleles / 75
4.1.3 Simulation of the Evolution of ne / 76

4.2 Simulation of the Evolution of Allele Spectra / 77
4.2.1 Demographic Models / 77
4.2.2 Output Statistics / 80
4.2.3 Mutation Models / 84
4.2.4 Multilocus Selection Models / 84
4.2.5 Evolve! / 87
4.2.6 Validation of Theoretical Results / 89

4.3 Extensions to the Basic Model / 90
4.3.1 Impact of Demographic Models / 90
4.3.2 Impact of the Mutation Model / 92
4.3.3 Impact of Subpopulation Structure / 93
4.3.4 Impact of Migration / 94
4.3.5 Distribution of Equilibrium Disease Allele

Frequency / 96
4.3.6 Varying Selection and Mutation Coefficients / 97
4.3.7 Evolution of Disease Predisposing Loci

Under Weak Selection / 98
4.3.8 Discussion / 100

References / 102

x CONTENTS

5 SIMULATING POPULATIONS WITH COMPLEX
HUMAN DISEASES 105

5.1 Introduction / 106
5.2 Controlling Disease Allele Frequencies at the Present

Generation / 108
5.2.1 Introduction of Disease Alleles / 108
5.2.2 Trajectory of Disease Allele Frequency / 110
5.2.3 Forward- and Backward-Time Simulations / 111
5.2.4 Random Mating with Controlled Disease Allele

Frequency / 117
5.3 Forward-Time Simulation of Realistic Samples / 120

5.3.1 Method / 121
5.3.2 Drawing Population and Family-Based

Samples / 126
5.3.3 Example 1: Typical Simulations With or Without

Scaling / 132
5.3.4 Example 2: A Genetic Disease with Two DPL / 134
5.3.5 Example 3: Simulations of Slow and

Rapid Selective Sweep / 136
5.4 Discussion / 141
References / 143

6 NONRANDOM MATING AND ITS APPLICATIONS 147

6.1 Assortative Mating / 148
6.1.1 Genetic Architecture of Traits / 149
6.1.2 Mating Model / 151
6.1.3 Simulation of Assortative Mating / 156

6.2 More Complex Nonrandom Mating Schemes / 158
6.2.1 Customized Parent Choosing Scheme / 158
6.2.2 Example of a Nonrandom Mating in

a Continuous Habitat / 161
6.3 Heterogeneous Mating Schemes / 164

6.3.1 Simulation of Population Admixture / 167
6.4 Simulation of Age-Structured Populations / 170

6.4.1 Simulation of Age-Structured Populations / 172
6.4.2 A Hypothetical Disease Model / 174

CONTENTS xi

6.4.3 Evolution of an Age-Structured Population
with Lung Cancer / 179

References / 182

APPENDIX: FORWARD-TIME SIMULATIONS USING
simuPOP 185

A.1 Introduction / 185
A.1.1 What is simuPOP? / 185
A.1.2 An Overview of simuPOP Concepts / 186

A.2 Population / 189
A.2.1 Creating a Population / 189
A.2.2 Genotype Structure of a Population / 192
A.2.3 Subpopulations and Virtual Subpopulations / 194
A.2.4 Accessing Individuals in a Population / 196
A.2.5 Population Variables / 198
A.2.6 Altering the Structure, Genotype, or Information

Fields of a Population / 199
A.2.7 Multigeneration Populations and Parental

Information / 202
A.2.8 Saving and Loading a Population / 204

A.3 Operators / 204
A.3.1 Applicable Generations / 205
A.3.2 Operator Output / 206
A.3.3 During-Mating Operators / 208
A.3.4 Function Form of Operators / 209
A.3.5 Operator Stat / 210
A.3.6 Hybrid and Python Operators / 212

A.4 Evolving One or More Populations / 215
A.4.1 Mating Scheme / 215
A.4.2 Conditionally Terminating an Evolutionary

Process / 217
A.4.3 Evolving Several Populations

Simultaneously / 218
A.5 A Complete simuPOP Script / 219
Reference / 226

INDEX 227

PREFACE

Forward-time population genetics simulation is simple in concept. Given
a population with individuals of certain genotype, we evolve the popula-
tion generation by generation, subject to various demographic and genetic
forces such as population size change, mutation, selection, recombination,
and migration. Population properties such as allele frequencies can be ob-
served dynamically or be studied at the end of the simulation. Because
this process mimics fundamental ways the human populations evolve, it
is not surprising that such simulations have been used for decades and
played an important role in the development and application of population
and evolutionary genetics. However, due to the overwhelming demand for
computing power in realistic population simulations, the applications of
this simulation method have largely been limited to the development and
demonstration of theoretical population genetics principles.

Recent years have witnessed a renewed attention to this old subject.
Rapid developments in both methodology and software development have
made forward-time population genetics simulation a promising tool to
study complex evolutionary histories of different types of populations, with
novel applications in the areas of population and evolutionary genetics, sta-
tistical genetics, genetic epidemiology, and even conservation biology. The
revival of this simulation method can be largely contributed to two forces.
The first is a strong need for highly flexible simulation method to simulate
and study complex evolutionary histories. Although a large number of spe-
cialized methods are available, none of them is as flexible as forward-time

xiii

xiv PREFACE

simulations because forward-time simulations follow the direction at which
populations evolve and can, at least in principle, simulate arbitrarily com-
plex evolutionary scenarios. The second driven force is the continuous
increase of the power of personal computers, which makes it possible to
simulate millions of individuals for extended generations in a reasonable
amount of time.

The fundamental advantage of forward-time simulations over other sim-
ulation methods is flexibility. Because this method is not restricted by any
assumption, it can be used to simulate arbitrary complex evolutionary sce-
narios. However, despite the availability of a large number of simulation
programs, very few of them can harness the full power of this simula-
tion method. A typical forward-time simulation program is designed to
simulate particular evolutionary processes for particular types of studies.
Users are usually allowed to choose from a number of stocked genetic
models and their parameters, but are not allowed to define their own evo-
lutionary processes. For example, none of the existing programs can be
used to study the evolution of a disease predisposing mutant, a process
that is of great importance in statistical genetics and genetic epidemiol-
ogy. Researchers who work on novel evolutionary models or new applica-
tion areas without existing software are usually forced to write their own
software.

The implementation of simuPOP was motivated by the studies of the evo-
lutionary history of complex human diseases. Instead of a special-purpose
program written for a few publications, this program was designed from
ground up to be a general-purpose population genetics simulation pro-
gram that can be used to simulate arbitrary evolutionary processes. Using
a scripting language design, users of simuPOP could make use of many of
its unique features, such as customized chromosome types, arbitrary non-
random mating schemes, virtual subpopulations, information fields, and
Python operators to construct and study almost arbitrarily complex evo-
lutionary scenarios. This unique design makes simuPOP the best and in
many aspects the only software packages for the simulation of complex
evolutionary scenarios. Although some evolutionary scenarios could be
simulated using other software packages, this book uses simuPOP to sim-
ulate all examples and lists source code of most examples so that users can
learn how to implement various evolutionary scenarios and write their own
simulations based on these examples. Note that although we describe most
major features of simuPOP in the appendix of this book, this book is not a
complete reference to simuPOP. Readers who would like to write complex
scripts in simuPOP should refer to the simuPOP user’s guide and reference
manual for details.

PREFACE xv

Chapter 1 of this book gives an overview of important concepts and
models that will be used in this book. Because of the mere number of
concepts and models involved, they are introduced in a brief and often
casual way. Interested readers should refer to standard textbooks on these
subjects for more in-depth descriptions.

Chapter 2 simulates a number of standard population genetics models
using a forward-time approach. The goal of these simulations is to demon-
strate the impact of genetic factors such as mutation, selection, and recom-
bination on standard Wright–Fisher models and how to use simuPOP to
simulate them. Because detailed descriptions of these models are widely
available in textbooks such as Principles of Population Genetics [1], we
describe these models and their theoretical properties briefly, only as a way
to motivate our simulations. Although simulations in this chapter are con-
firmatory in nature, they could be used to set up more complex evolutionary
scenarios in which more than one genetic factor would be applied.

The rest of this book is devoted to applications of forward-time simula-
tions in various research topics. Each chapter starts with a short description
of the research topic and why forward-time simulations are used. The sim-
ulation processes are then described in detail. Because the primary focus of
this book is on simulation techniques and not on particular research topics,
we will present and discuss the results of these simulations briefly, leaving
in-depth discussions to published papers on these topics. The simuPOP
scripts that are used to perform all simulations are listed in the last sections
of these chapters. Readers who are not interested in implementation details
can safely skip these sections.

With continued increase of the power of personal computers and the
availability of a powerful and flexible simulation engine, a wide range of
interesting research topics could be attacked by forward-time population
genetics simulations. We hope that this book can help researchers who are
interested in such simulation design and implement their own simulations.
We would welcome any comments and discussions and would appreciate
the readers who would alert us to any errors they discover in this book.

Bo Peng

Houston, Texas
2011

ACKNOWLEDGMENTS

The work covered in this book, especially the design and implementation
of simuPOP, was done when the first author was a PhD student in the
Department of Statistics at Rice University and a postdoctoral fellow in the
Department of Epidemiology at the University of Texas, M. D. Anderson
Cancer Center. The helpful and supportive comments of faculty and fellow
students of the departments are hereby acknowledged.

A number of colleagues and students have helped in the development of
simuPOP and in the writing of this book in various ways. Yaji Xu, a gradu-
ate research assistant, spent a lot of time on the documentation of simuPOP.
His hard work during the summer of 2007 resulted in the first simuPOP
release (0.8.0) that has a comprehensive online help system and a com-
plete reference manual. Biao Li, a doctoral candidate in the Department of
Bioengineering at Rice University, has helped in the development of allele
frequency trajectory simulation functions and pedigree-related features of
simuPOP and has written and executed some of the simulations for this
book, especially the ones for Chapter 3. He also helped with the prepara-
tion of the bibliography and many figures of the book. Jianzhong Ma, PhD,
read through the draft of this book and provided many useful suggestions.
A high school student, Blake Kushwaha, helped proofread this book. They
all deserve our sincere appreciation.

Numerous technical problems were encountered during the design and
implementation of simuPOP and we relied on various online forums for
help. We would especially like to thank the Python and SWIG (Simplified

xvii

xviii ACKNOWLEDGMENTS

Wrapper and Interface Generator, http://www.swig.org) user com-
munity, whose prompt replies to many e-mails were essential to the imple-
mentation of simuPOP.

User involvement was modest until early 2007, but has since then driven
the development of simuPOP. Questions, bug reports, and feature requests
from users have greatly enhanced the reliability and usability of this pro-
gram and have led to the addition of many important features such as
information fields and virtual subpopulations. One of the users, Tiago
Antão, deserves a special thanks for his many bug reports and his
contribution to the simuPOP online cookbook.

The development of a large software application such as simuPOP re-
quired a huge amount of time, many of which had to be drawn from time
I should have spent with my wife Zheng Meng and our three children
Benjamin, William and Elena. Their support during the past several years
allowed me to pursue a career that I really enjoy, but has required many
extra hours under the moonlight. I would like to dedicate this book to them.

Part of Bo Peng’s research was supported by a training fellowship from
the W.M. Keck Foundation to the Gulf Coast Consortia through the Keck
Center for Computational and Structural Biology, and a Cancer Preven-
tion Fellowship provided by the Jerry and Maury Rubenstein Foundation
through the University of Texas, M.D. Anderson Cancer Center. Related
research activities for all authors were partly supported by grant CA75432
from the National Cancer Institute, by grants ES09912 and R01CA133996-
01 from the National Institutes of Health, and by grant 3T11F 01029 from
Komitet Badań Naukowych (Polish Research Committee). Most of the sim-
ulations were performed using the Rice Terascale Cluster, funded by the
National Science Foundation under grant EIA-0216467, by Intel, and by
HP, and using the High Performance Cluster at the M.D. Anderson Cancer
Center.

Bo Peng

LIST OF EXAMPLES

2.1 Decay of Homozygosity Due to Random Genetic Drift 33
2.2 Absorption Time and Time to Fixation 35
2.3 Demonstration of a Bottleneck Effect 38
2.4 Diallelic Mutation Model 40
2.5 k-Allele and Stepwise Mutation Models 41
2.6 An Island Model of Migration 43
2.7 Recombination Between Three Loci 44
2.8 Single-Locus Diallelic Selection Models 46
2.9 A Two-Locus Symmetric Viability Model of Natural Selection 49
2.10 Number of Ancestors of a Haploid Simulation 51
2.11 Number of Ancestors of a Diploid Simulation 53
3.1 Script to Simulate the Evolution of Microsatellite Marker

Using a Scaling Technique 63
4.1 A Demographic Model with Population Split and Rapid

Population Expansion 78
4.2 A Python Class That Defines Instant and Exponential

Population Expansion Models 80
4.3 A Python Function to Calculate Effective Number of Alleles 82
4.4 A Self-Defined Operator to Calculate Effective Number

of Alleles 83
4.5 Simulation of Multiple Independent Single-Locus

Selection Models 86
4.6 Evolve a Population Subject to Mutation and Selection 88

xix

xx LIST OF EXAMPLES

5.1 Straightforward Simulation of the Introduction of a
Disease Allele 108

5.2 Reintroduction of a Disease Allele When It Is Lost 110
5.3 Simulating Allele Frequency Trajectory Forward in Time 113
5.4 Simulating Allele Frequency Trajectory Backward in Time 117
5.5 Using a Controlled Mating Scheme with a

Backward-Simulated Trajectory 119
5.6 Simulation of Populations with Realistic Pattern of

Linkage Disequilibrium 125
5.7 A Single-Locus Penetrance Model of Breast Cancer 127
5.8 Draw Case–Control Samples 128
5.9 Generating Case–Control Samples 129
5.10 Generating Affected Sibpair Samples 131
5.11 Simulation of a Disease Model with G × G

and G × E Interactions 136
5.12 Generation of Trio Samples from Simulated Population 138
6.1 A Quantitative Trait Model 151
6.2 A Sequential Selfing Mating Scheme 156
6.3 An Example of Assortative Mating 157
6.4 Simulation of Mating Behaviors of Pilot Whales 160
6.5 A Mating Scheme with Continuous Habitat 162
6.6 Use of a Heterogeneous Mating scheme to Simulate

Partial Self-Fertilization 166
6.7 Simulating an Admixed Population with Recorded

Ancestral Values 169
6.8 Example of the Evolution of Age-Structured Population 174
6.9 Implementation of the Lung cancer Disease Model 177
6.10 Evolution of Lung Cancer 181
A.1 A Simple Example 188
A.2 Access Genotype Structure of a Population 192
A.3 Define and Use Virtual Subpopulations 195
A.4 Access to Individuals in a Population 198
A.5 Use of Population Modification and Batch Access Functions 201
A.6 Keeping Multiple Ancestral Generations During an

Evolutionary Process 202
A.7 Recording Parentship of Individuals During Evolution 203
A.8 Applicable Generations of an Operator 206
A.9 Use of Parameter Output of Operators to Redirect

Operator Output 207
A.10 Use of an inheritTagger to Track Individual Ancestry 209

LIST OF EXAMPLES xxi

A.11 An Asymmetric Stepwise Mutation Model with
Random Steps 213

A.12 Use of a Python Operator to Draw Sample at Every 100
Generations 214

A.13 Control of the Number and Sex of Offspring in a
Monogamous Mating Scheme 216

A.14 Use a Terminator to Terminate an Evolutionary Process
Conditionally 217

A.15 Evolve Several Replicates of a Population Simultaneously 219
A.16 A Sample simuPOP Script 221

CHAPTER 1

BASIC CONCEPTS AND MODELS

The simulation approaches that are described in this book involve knowl-
edge from several disciplines. First, the genes and genomes are the targets
of simulations, so some understanding of biology and genetics is needed.
Then, the simulations involve the evolution of a collection of individuals
over a long period of time, and we are concerned with the dynamics of the
properties of the whole population rather than with a small number of indi-
viduals. This involves knowledge of population and evolutionary genetics.
Finally, as the most important application area, we will simulate the evolu-
tion of human diseases and produce populations with affected individuals.
Techniques from statistical genetics and genetic epidemiology will be used
to locate genes that are responsible for the diseases.

This chapter reviews basic concepts and, more importantly, various
mathematical models that will be used in this book, organized by disci-
plines. To target the most essential components, these concepts are often
defined in a casual way that may not reflect their full biological or statisti-
cal complexity. For more in-depth descriptions and concrete examples, the
reader should refer to standard textbooks on these topics [1–4]. Readers
who are already familiar with one or more of the disciplines can skip
relevant sections.

Forward-time Population Genetics Simulations: Methods, Implementation, and Applications,
Bo Peng, Marek Kimmel, and Christopher I. Amos.
© 2012 Wiley-Blackwell. Published 2012 by John Wiley & Sons, Inc.

1

2 BASIC CONCEPTS AND MODELS

1.1 BIOLOGICAL AND GENETIC CONCEPTS

1.1.1 Genome and Chromosomes

The genetic material of humans is called the human genome, which consists
of 23 pairs of chromosomes. Humans are called diploid because we have
two sets of chromosomes, one set of which was inherited from each parents.
Some species, like bacteria, have only one set of chromosomes (called hap-
loid), some plants have four (tetraploid), six (hexaploid), or more (poly-
ploid) copies. Because this book concerns mostly human genomes and
diseases, almost all examples simulate diploid populations.

Chromosomes are composed of deoxyribonucleic acid (DNA)
molecules. DNA usually consists of two complementary chains twisted
around each other to form a double helix. Each chain is a linear sequence
of four nucleotides: adenine (A), guanine (G), cytosine (C), and thymine
(T). Adenine pairs with thymine and cytosine pairs with thymine by means
of hydrogen bonds. DNA plays two fundamental biological roles.

• DNA carries the instructions for making the components of a cell
(mostly proteins). A single strand of DNA can act as a template
for the enzymatic synthesis of a complementary strand of messenger
ribonucleic acid (mRNA) through a process called transcription. The
information encoded in mRNA is then translated to protein during a
complex translation process that takes place in the cell’s ribosomes.
If anything wrong happens in the DNA that interrupts or changes this
process, the body may not get the right amount of certain protein and
show symptoms of a disease.

• Information encoded in DNA can be passed to daughter cells when
a cell divides. During meiosis (the process during which gametes are
produced as the result of DNA replication and two rounds of cell divi-
sions of germline cells), DNA is replicated and used to form daughter
cells. For humans, the inheritance pattern follows the Mendelian Law,
that is, gametes contain one of the two sets of parental chromosomes,
and offspring are formed by two parental gametes.

The lengths of double-stranded DNA molecules are described in units of
base pairs, and for longer molecules in kilobase pairs (kb) or megabase
pairs (Mb). Human chromosomes vary greatly in length and are num-
bered roughly in the order of their lengths. The longest chromosome
(chromosome 1) is of about 263 Mb, and the shortest one (chromosome

BIOLOGICAL AND GENETIC CONCEPTS 3

21) is about 50 Mb. The overall size of the human autosomes is around
3093 Mb.

1.1.2 Genes, Markers, Loci, and Alleles

A gene is a specific region of DNA that codes for a single protein or enzyme.
It is composed of a set of three adjacent nucleotides (a codon). These 64
different types of codons correspond to 20 kinds of amino acids that are
the building blocks of proteins. A gene can be long (some genes span
several Mb) and have complex structures. The most important aspects for
genetic simulations are the location and variations occurring within or near
a gene.

Genetic markers are DNA sequences that can be identified by a variety of
biological techniques. Genetic markers are useful if they are polymorphic,
meaning there is population variation at the marker. A marker may be short,
such as a single base pair change (single nucleotide polymorphism), (SNP),
or long, like microsatellites, which are short regions of tandemly repeating
DNA sequence. Genes and markers are related, but are different concepts:
a physical gene can have multiple markers, and a marker does not have to
be inside a gene. Genes perform biological functions and can contribute to
diseases, and they can be homomorphic (having no population variation).
Markers do not have to be functional, but need to have a known location
and are usually required to be polymorphic.

The position of a gene or marker on a chromosome is known as its locus
(the plural form is loci). Variants of the DNA sequence at this locus among
individuals are called alleles. If a marker (e.g., a SNP marker) has two
alleles, it is called diallelic. If an individual carries the same alleles on both
DNA strands at a locus, he is said to be homozygous at this locus. Otherwise,
he is heterozygous at this locus. Generally speaking, at each locus there is a
wild-type allele that is thought to be result in the wild or normal phenotype.
In this book, all alleles are coded as numbers. The wild-type allele is often
coded as allele 0, and others as allele 1, 2, 3,

The DNA sequence of interest is the genotype of an individual. The
physical expression of a genotype is called the phenotype. For example,
some genes control the color of our eyes. These genes are the genotype
of the phenotype eye color. Note that the underlying relationship between
DNA sequence and phenotype is more complex than such one-to-one or
many-to-one correspondences, but for all the purposes of this book, we
assume that one or several genes cause a single phenotype, which can often
be observed as a quantitative trait such as blood pressure or the affection
status of a disease.

4 BASIC CONCEPTS AND MODELS

1.1.3 Recombination and Linkage

Genetic recombination, also called crossing over, refers to genetic events
that can occur during the formation of sperm and egg cells. During the early
stages of cell division in meiosis, two chromosomes of a homologous pair
may exchange segments, producing genetic variations in germ cells. For
example, if one homologous chromosome has a haplotype (genetic
sequence on the same chromosome) AB, and another homologous chromo-
some has a haplotype ab, one of the gamete cells, because of recombina-
tion, may have a chromosome with genotype Ab. Such gametes are called
recombinants. The proportion of recombinants is called the recombination
rate between these two loci, which is 1

2 if two loci are on two different
chromosomes, and thus segregate independently. In addition to the inde-
pendent assortment of chromosomes, which leads to 223 different types of
gametes due to random choices of chromosomes, recombination leads to
more variations among gametes, and therefore variations among offspring
of the same parents.

The genetic distance (also called map distance) between two loci is
defined as the average number of crossovers between the loci per meiosis.
The unit of genetic distance is the centiMorgan (cM). Two loci are 1 cM
apart if on average there is one crossover occurring between these two loci
on a single strand for every 100 meiosis. The distribution of recombination
events varies between the sexes: females have on average 1.65-fold more
recombination events when they make eggs than males do when they make
sperms. Even on a single chromosome, recombination rate is uneven, and
there exists recombination hotspots with peak recombination rate hundreds
or thousands times that of the surrounding regions [5].

Because of the uneven recombination rates across chromosomes, the
map distance does not have to reflect the true physical distance between
them, which is measured in base pairs. As a genome-wide average for loci,
1 cM roughly corresponds to one million base pairs (1cM/Mb). This pro-
vides a rough estimate of the distance between two markers if their genetic
distance is known and small. For longer map distances, because the occur-
rence of multiple crossovers between two loci can no longer be ignored,
various map functions should be used. The recombination fraction mea-
sures the probability that two alleles will be observed to show a crossover
event and there is probability that an odd number of crossovers will occur
between the two loci, since an even number of crossovers would not lead
to an observable reshuffling of genetic material at the two loci. The sim-
ple x = θ formula where x is physical distance and θ is map distance is
known as Morgan’s map function. This function is accurate only for very

BIOLOGICAL AND GENETIC CONCEPTS 5

short distances in which the probability of an even number of crossovers
is very low. Other frequently used map functions include the Haldane map
function x = − 1

2 ln (1 − 2θ) and Kosambi map function x = 1
4 ln 1+2θ

1−2θ
.

Despite the random occurrence of recombination events, the general
rule holds that if two loci are physically close to each other, they tend to
cosegregate during meiosis because of the low probability of crossing over
between them. This property enables the use of a marker to determine the
inheritance pattern of and potentially the location of a disease-predisposing
gene that has previously been localized. The effectiveness of this method
depends on two related concepts: linkage and linkage disequilibrium (LD).
Two markers are linked if the recombination fraction between them is less
than 1

2 , and are unlinked if they segregate independently (the recombination
rate equals 1

2). Linkage is a measure of how closely two markers, or a marker
and a disease gene, are located on a chromosome. This concept is related
to, but different from, how the alleles at a marker are associated with the
disease alleles in the population (LD between the marker and the disease
gene). We will introduce the exact definition of LD later.

1.1.4 Sex Chromosomes

The first 22 pairs of human chromosomes are identical between male and
female, they are called autosomes. The members of the last pair are known
as the sex chromosomes because they differ between the sexes. Females
have two copies of the X chromosome, and males have one X chromosome
and a smaller Y chromosome. Because X and Y chromosomes have different
lengths (and genetic material), X and Y chromosomes cannot recombine
over their entire lengths as autosomes do. In fact, only a small portion
(<10%) of the X and Y chromosomes (pseudoautosomal regions) can re-
combine during spermatogenesis. The X chromosome in females behaves
like an autosome (and can recombine along the entire length with another
copy of X chromosome).

1.1.5 Mutation and Mutation Models

Any change of genetic material is called a mutation. It is the source of
genetic variation in the human population. Mutation can be caused by the
substitution of a single base in the genome, small insertions and dele-
tions of a few bases, expansions or contractions in the number of tandemly
repeated DNA motifs, insertions, deletions, duplications, and inversions of
long segments of DNA, translocation of chromosomal segments, and even
changes in chromosomal number. The probability that a mutation happens

6 BASIC CONCEPTS AND MODELS

at a locus is called the mutation rate at this locus. Mutation rates can differ
from locus to locus. If we consider a single nucleotide as a locus, the mu-
tation rate is below 10−8 per locus, per generation. Microsatellite markers
have a higher mutation rate, which is up to 10−4. Because mutations may
have different effects on different alleles, there can be several mutation
rates influencing variability at a single locus.

Mutations will change the genotype of an individual, but not necessarily
the phenotype. For example, because multiple codons can code the same
amino acid, a mutation may change a codon without altering the encoded
amino acid. Such a mutation is called a silent or synonymous mutation. A
nonsynonymous mutation changes the codon in such a way that gene prod-
uct is changed. Mutation can happen in somatic (body) or germline cells, but
somatic mutations will not change the evolutionary process. These mutated
cells may propagate and cause diseases such as cancer, but as long as the
germline cells are unaffected, the mutation will not be passed to gametes.

Despite all the complexities behind mutation events, mutation in this
book is simply a change from one allele to another allele at a marker
locus. Because we do not restrict the types of markers, this concept can
encompass most mutation events, except for chromosome number changes,
which are usually so deleterious that they lead to offspring that are not
reproductive in humans. For example, mutation at a SNP marker can change
the nucleotide at this marker to another one, mutation at a microsatellite
marker can produce a new allele with another number of short tandem
repeats, a mutation that knocks out a whole gene can be considered as
creating a new null allele.

If we categorize alleles into wild-type alleles and disease alleles, a
mutation from a wild-type allele to a disease allele is called forward
mutation, and a mutation from a disease allele to a wild-type allele is called
back mutation. Because there are far more ways to damage the proper func-
tion of a gene than to restore it, back mutations are frequently assumed to
happen at a much lower rate than forward mutations. When there are a
large number of disease alleles, we can assume an infinite allele mutation
model so that each mutation event will generate a different mutant. There
is another frequently used model called infinite site mutation model, which
assumes that each mutation happens at a different site of a long sequence.
This model is equivalent to the infinite allele mutation model if we consider
the whole sequence as a marker.

If the number of allele states is limited, a much more realistic model is the
k-allele model. Under a k-allele model, a locus can have at most k alleles.
When a mutation happens, an allele has probability 1

k−1 to become any
other allele. If we treat allele 0 as wild-type allele and all others as disease

POPULATION AND EVOLUTIONARY GENETICS 7

TABLE 1.1 Kimura’s Two Parameter Mutation Model

Nucleotide A G C T

A 1 − α − 2β α β β

G α 1 − α − 2β β β

C β β 1 − α − 2β α

T β β α 1 − α − 2β

alleles, the probability of mutating from a wild-type allele to disease allele
is 1 and the probability of mutating from a disease allele to a wild-type
allele is 1

k−1 . When k is large, the back mutation rate is very small, so we
can approximate the infinite allele model with a k-allele model. At the other
extreme, a two-allele model can be used to model the mutation between
the two alleles of a SNP marker.

If the assumption that an allele can mutate to any other allele at equal
probability does not hold, more complicated models can be applied. For
example, due to biological reasons, the rate of transitions between purines
(A ↔ G) or pyrimidines (C ↔ T) may be different from the rate of
transversions between a purine and a pyrimidine (A, G ↔ C, T). Kimura’s
two parameter model models these differences using two parameters with
mutation rates displayed in Table 1.1.

Microsatellite markers mutate in a different manner. During the muta-
tion, the number of tandem repeats will change by a small number as the
result of expansions or contractions. The simplest model is the symmetric
stepwise mutation model where allele a mutates to allele a + 1 or a − 1
with equal probability. Extensions to this model exist. For example, a gen-
eralized stepwise mutation model mutates allele a to a + n or a − n where
n is drawn from a random distribution. A geometric generalized stepwise
mutation model assumes a geometric distribution for n.

1.2 POPULATION AND EVOLUTIONARY GENETICS

The genetic composition of our human population is the result of a long
and complex evolutionary process. Studying this evolutionary process can
provide valuable information about our current population. For example,
without any ancestry information, our human population would present
to us as 6 billion independent individuals and there would be no way
to explain why some people are genetically more similar to each other
than others.

8 BASIC CONCEPTS AND MODELS

An enduring goal of population and evolutionary genetics is to under-
stand the forces that govern how populations and species evolve. There
are many such forces such as demographic changes (notably the changes
of population size) and genetic factors such as recombination, mutation,
migration, genetic drift, and selection. All these forces can leave signals
on the current population and we are often interested in inferring the
existence, time, intensity, and duration of these forces. Among these forces,
researchers are especially interested in elucidating the relative contributions
of genetic drift and natural selection to extant patterns of genetic variation
[6, 7]. More specifically, the neutral theory posits that most polymorphisms
are either neutral or slightly deleterious and changes in allele frequency are
primarily governed by the stochastic effects of genetic drift in populations
of finite size. An alternative view is that a significant proportion of vari-
ation does affect the ability of an organism to survive and reproduce and
will therefore be subject to natural selection.

1.2.1 Population Variation and Mutation

Population variation refers to the phenotypic and genotypic variations
among humans. We all differ from each other phenotypically, in features
such as skin color and height. Many of these differences have a genetic
basis and tend to “run in families.” The ultimate source of genetic variation
is mutation. We often assume that initially all individuals in a population
have the same genotype at a locus, which is called the wild-type allele,
until a mutant is introduced to the population as a result of mutation. The
new mutants will then spread in the population according to Mendels law
of independent assortment. The mutant alleles usually become extinct, but
some of them can reach higher allele frequency over time. The forces that
can help maintain a mutant in a population or reach higher allele frequency
include balancing selections (such as heterozygous advantage), strong ge-
netic drift caused by small population size or bottlenecks, positive selection,
or being linked to a gene under positive selection (the hitchhiking effect).
These forces are important in the simulation of human genetic diseases.

1.2.2 The Wright–Fisher Model and Random Mating

The simplest case of a Wright–Fisher model is based on a haploid popula-
tion of fixed size N. Assume that there is no selection or mutation, and the
genes in the offspring generation are derived by sampling with replacement
from the parental generation. Assume that there are Xt = i copies of allele
a in generation t, the distribution of Xt+1 follows a binomial distribution.

POPULATION AND EVOLUTIONARY GENETICS 9

Namely,

Pr (Xt+1 = j) =
(

N

j

) (
i

N

)j (
1 − i

N

)N−j

, i, j = 0, 1, ..., N. (1.1)

The basic features of Wright–Fisher models are random mating and
nonoverlapping generations and all other assumptions can be relaxed. If
the population is diploid, there will be 2N genes, so all N in Equation
(1.1) need to be replaced by 2N. Population size does not have to remain
constant from generation to generation. If two sexes are considered, mat-
ing between males and females is assumed to occur randomly from their
respective groups. If selection is considered, individuals will be chosen
randomly with a probability that is proportional to its fitness value.

Random mating is an idealized mating scheme that implies that an
individual has equal probability to mate with anyone else in the popu-
lation. This is of course far from reality. Human populations have complex
structures and many factors (demographic or social) that prevent the free
flow of genes within and between populations. Although most simulations
that will be discussed in this book use random mating schemes to simu-
late the Wright–Fisher models, nonrandom mating schemes will be used
occasionally to simulate more complex evolutionary processes.

1.2.3 The Hardy–Weinberg Equilibrium

Under the assumptions of random mating with sexual reproduction,
nonoverlapping generations, and no migration, mutation, and natural selec-
tion, the genotype and allele frequencies of a diallelic locus in an infinitely
sized diploid population remain constant from generation to generation. As
a result, Hardy–Weinberg equilibrium occurs and the distribution of geno-
types in the population can be described by the following simple mathe-
matical relation:

AA : p2, Aa : 2pq, aa : q2, (1.2)

where p2, 2pq, and q2 are the frequencies of the genotypes AA, Aa, and
aa in zygotes of any generation, p and q are the frequencies of A and a

in gametes of the previous generation, and p + q = 1. Hardy–Weinberg
equilibrium indicates a simple conversion between allele and genotype
frequencies and is widely used in theoretical models in population genet-
ics. The mathematical derivation of Equation 1.2 can be found in many
population genetics textbooks.

10 BASIC CONCEPTS AND MODELS

1.2.4 Genetic Drift and Effective Population Size

Genetic drift is the random change in allele and haplotype frequencies in
populations of finite size, as a result of random sampling of gametes from
generation to generation. In a large population, on an average, only a small
change in the allele frequency will occur. However, when the population
size is small, genetic drift can lead to rapid and random change of allele
frequencies, and can result in fixation or the loss of an allele. Genetic
drift is an important factor when designing a forward-time simulation. For
example, even if a disease allele has the same initial frequencies in two
populations at the beginning of a set of replicate simulations, the allele
frequencies might differ greatly at the end, making direct comparisons
between the final populations difficult.

According to the assumptions used to develop the Wright–Fisher law,
all individuals are involved in the transmission of genetic materials from
parental to the offspring generation. This is not the case for human pop-
ulations, partly because not all humans are in reproductive ages and also
because not all individuals reproduce. That is to say, the breeding popula-
tion sizes of human populations are smaller than their census population
sizes. When we perform a forward-time simulation, there is no need to
simulate a large population with only a small percent of genetically active
individuals. It is therefore more practical to simulate a random mating pop-
ulation in the size of an idealized Wright–Fisher population that contains
the same amount of genetic drift observed in the actual population under
consideration. The size of such an idealized population is called the effec-
tive population size of a given population, which plays an essential role in
population genetics studies [8]. There are many methods to estimate the ef-
fective population size of the human populations, using different properties
of the Wright–Fisher model. The estimated effective population size of the
human population is on the order of 104, far less than its census size 6 × 109.

On the other hand, not all features of a natural population can be
captured by a Wright–Fisher population with an appropriate effective pop-
ulation size. Because forward-time simulations are capable of simulating
nonrandom mating schemes in natural populations, they can be used to
study complex evolutionary processes with unknown or varying effective
population sizes.

1.2.5 Natural Selection

Natural selection is a process that favors or induces survival and perpet-
uation of one kind of organism over others. Selection can be positive (or

POPULATION AND EVOLUTIONARY GENETICS 11

advantageous) or negative (or purifying) and has a profound impact on the
evolution of the human population. In addition, selection can be balancing
in which the genotypes have a mixture of positive and negative selection
pressures so that there is no net effect of selection on the individual alleles.
The central concept of natural selection is fitness, namely, the ability of
organisms to survive and reproduce in the environment in which they find
themselves [9]. Although the concept of fitness can be quite involved, this
book uses the simplified version of two fitness concepts: absolute fitness
and relative fitness.

The absolute fitness is a statistic that is used to summarize the total fit-
ness, namely, viability, mating success, fecundity, and so on of individuals.
In terms of simulation, the absolute fitness used in this book is the prob-
ability of surviving of offspring. For example, if a mating event produces
10 offspring, each with an absolute fitness of 0.8, the number of surviv-
ing offspring follows a binomial distribution with parameters 10 and 0.8.
Because absolute fitness describes the absolute viability of individuals, the
survival probability of one individual is independent of the probabilities of
others.

Although absolute fitness is easy to think about, a different statistic called
relative fitness, is almost always used. The relative fitness, of an individual
equals its absolute fitness normalized in some way and can be understood
as the relative ability of an individual to pass his or her genotype on to
a future generation comparing a genotype with a referent genotype. We
model relative fitness as the relative probability to mate (which we will call
selection against parents) due to its simplicity in implementation.

If we assume that selection acts only on a single DSL, natural selection
can be modeled by the relative fitness of genotypes AA, Aa, and aa. Assume
that genotypes AA, Aa, and aa have population frequency PAA, PAa, and
Paa, and relative fitness wAA, wAa, and waa, respectively. Assume that n

offspring are produced andwij is the survival rate of offspring with genotype
ij. nPijwij offspring with genotype ij will survive and lead to

P ′
ij = Pijwij

PAAwAA + PAawAa + Paawaa

, (1.3)

where P ′
ij is the genotype frequency of genotype ij in the offspring gen-

eration . Now, using the “ability-to-mate” approach with sexless random
mating, the proportion of genotype ij in the offspring generation is the
number of ij individuals times its probability to be chosen:

P ′
ij = nij

wij∑N
n=1 wn

, (1.4)

12 BASIC CONCEPTS AND MODELS

where N = nAA + nAa + naa is the size of the parental generation. Pij in
Equation 1.4 equals to that is Equation 1.3 because

nij

wij∑N
n=1 wn

= nij

wij

nAAwAA + nAawAa + naawaa

= Pijwij

PAAwAA + PAawAa + Paawaa

.

This implies that at least in the case of a sexless Wright–Fisher model,
natural selection that selects against parents using relative fitness values
is equivalent to natural selection that selects against offspring using their
absolute fitness values.

We call a fitness (selection) model additive if the fitness relationships
for genotypes AA, Aa, and aa are 1, 1 − s/2, and 1 − s, recessive for the
case of 1, 1, and 1 − s, and dominant for the case of 1, 1 − s, and 1 − s.
These models can be generalized using a general dominance model with
fitness relationships 1, 1 − hs, and 1 − s for genotypes AA, Aa, and aa.
Other models include heterozygous advantage or heterozygous disadvan-
tage, meaning the fitness of heterozygotes (Aa) is higher or lower than
the fitness of AA and aa, respectively. Heterozygous advantage tends to
maintain multiple alleles in a population, so it belongs to a broader defini-
tion of balancing selection defined as a type of selective regime in which
multiple alleles at a locus are maintained in a population. On the contrary,
purifying selection removes deleterious alleles from a population, and pos-
itive selection favors certain alleles. Purifying selection tends to keep only
the wild-type allele in the population, while positive selection will lead
to the removal of the wild-type allele in favor of the mutant allele. Note
that neutral alleles may be carried along because they are in close vicin-
ity of another locus under positive selection. This phenomenon is called
genetic hitchhiking, which can cause selective sweeps in which a selec-
tively advantageous allele increases in frequency and results in changes of
the frequency of alleles that are in linkage disequilibrium with it.

Selection pressure does not have to be constant over the lifetime of an
individual or over the evolutionary history of the human population. For
example, some diseases like Alzheimer show decreased fitness only at the
later part of human lives. Because such diseases may not affect the fitness
before the mating age, they may show no overall selective disadvantage.
Another example is that a disease may be advantageous at first, but at a cost
of deteriorated fitness later. Such a model is called antagonistic pleiotropy.
The selection pressure on a disease allele may also change because of
environmental and social changes.

POPULATION AND EVOLUTIONARY GENETICS 13

TABLE 1.2 An Example of
Frequency-Dependent Selection

Fitness BB Bb bb

AA 1 1 1
Aa 0.999 0.99 0.9
aa 0.998 0.98 0.8

Selection can also act on several loci, the fitness of the individual is then
determined by the genotypes at all loci. Theoretical studies sometimes treat
these loci separately and apply single-locus fitness model to each locus
independently [10]. However, because the overall fitness of an individual
is the combined effect of multiple loci, relative fitness at individual locus
cannot be used separately in simulations.

Simple multilocus selection models combine single-locus fitness values
to produce an overall fitness value. The overall fitness of an individual with
fitness gi, i = 1, ..., L, at each locus is g = ∏L

i=1 gi for a multiplicative
multilocus selection model and g = 1 − ∑L

i=1 (1 − gi) for an additive one.
In such a model, the marginal fitness at a locus, meaning the population
average of the fitness of individuals having certain genotype at a locus,
is close to the single-locus model at this locus. Therefore, from a popula-
tion point of view, these models lead to roughly independent evolution of
individual locus.

The disease loci can interact with each other, and with environmental fac-
tors in many ways. It is difficult to analyze these models because marginal
fitness can change because of the changes of environment factors or
allele frequency at other loci. The change of fitness as a result of different
genotype frequencies within a population is called frequency-dependent
selection. This type of selection is observed in many natural environments
and may be explained by interaction between disease loci. Such an example
is given in Table 1.2 where locus B acts as a modifier to locus A. Locus B

does not cause the disease by itself, but decreases the fitness of individuals
with allele a, from slightly (Aa or aa with heterozygote Bb) to highly dele-
terious (with homozygote bb). Therefore, the total disease allele frequency
changes with respect to the frequency of allele b, and we may no longer
have constant selection pressure over locus A.

1.2.6 Linkage Equilibrium

Linkage disequilibrium is the nonrandom association of alleles between
two or more loci. Although it is commonly used to measure correlations

14 BASIC CONCEPTS AND MODELS

between linked loci, linkage disequilibrium can be detected between un-
linked loci because non-random associations can arise due to many rea-
sons, including population structure, admixture, and epistatic selection.
It is sometimes desired to differentiate linkage disequilibrium caused by
linked loci from associations between arbitrary loci.

In a diploid population, two alleles A and a are segregating at locus A,
and alleles B and b are segregating at a second locus B. There are then
four possible gametes ab, aB, Ab, and AB. Let their frequencies in the
gametic pool be pab and so on. If loci A and B are unlinked, meaning that
alleles A and a segregate independent of B and b, and there is no spurious
association between these two loci, the haplotype frequency pab should
equal to papb. This case is called linkage equilibrium. If loci A and B are
linked, alleles at these two loci tend to cosegregate. For example, if allele
a is associated with allele b, the genotype frequency pab may no longer
equal to the product of allele frequencies. To measure the level of such
cosegregation, we define linkage disequilibrium as

D = pab − papb, (1.5)

when both loci are diallelic, meaning that only two alleles exist at each
locus. If additional alleles are present at either locus, then this definition
is extended to encompass haplotypic and allelic frequencies, but multi-
ple values of the disequilibrium coefficient will be needed to characterize
the loci.

A drawback of using D to measure association between loci is that the
range of D depends on the frequency of these gametes. To fix this problem
and have a measure that ranges between 0 and 1, another measure of linkage
disequilibrium

D′ = D

Dmax
(1.6)

is commonly used, where Dmax is the theoretical maximum for the observed
allele frequencies.

Dmax =
{

min (pA (1 − pB) , (1 − pA) pB) , if D > 0,

min (pApB, (1 − pA) (1 − pB)) , otherwise.

Other frequently used measures of linkage disequilibrium include

r2 = D2

pA (1 − pA) pB (1 − pB)
. (1.7)

POPULATION AND EVOLUTIONARY GENETICS 15

Because the sign of D depends on the choice of alleles, the absolute values
of D are used in this book unless alleles to be used are specified at both
loci.

When there are more than two alleles at one or more loci, the average
of pairwise LD values are used. That is to say,

D =
∑
i,j

pai
pbj

∣∣paibj
− pai

pbj

∣∣ , (1.8)

D′ =
∑
i,j

pai
pbj

∣∣∣∣paibj
− pai

pbj

Dmax (i, j)

∣∣∣∣ , (1.9)

r2 =
∑
i,j

pai
pbj

∣∣∣∣∣
(
paibj

− pai
pbj

)2

pai

(
1 − pai

)
pbj

(
1 − pbj

)
∣∣∣∣∣ , (1.10)

where
∑

i

∑
j iterate through all alleles ai at locus A and bj at locus B.

Dmax (i, j) is defined analogous to Dmax. Note that other definitions (e.g.,
use haplotype frequency paibj

instead of allele frequencies pai
pbj

) have
been used for multiallelic LD measures and Equations 1.8–1.10 are the
ones that are implemented in this book. Because the sign of D depends on
the choice of reference alleles at loci A and B, we use Equations 1.8 and
1.9 to obtain positive LD values unless reference alleles are specified at
each locus.

A disease mutant, when it is first introduced to the population, may have
high LD with its surrounding markers, particularly if the disease mutant
(a) occurs on a haplotype that has the minor allele (b) at the second lo-
cus. Linkage disequilibrium will deteriorate when recombination happens
between loci A and B. It is proved that with recombination rate r, assuming
a large population, mating at random,

Dt = (1 − r) Dt−1 = · · · = (1 − r)t D0, (1.11)

so linkage disequilibrium will decay to zero eventually in a population
of infinite size. The rate of such decay depends on recombination rate,
namely, the genetic distance, between two loci. If the population is not
large or mating at random, the decay will be more gradual, but will still
occur if mating does not strictly occur according to the mutant allele type.

1.2.7 Population Structure and Migration

Until now, we have assumed that mating in a population is random. That
is to say, any individual will have the same probability to mate with any

16 BASIC CONCEPTS AND MODELS

individual of the opposite sex. This does not hold in the presence of popu-
lation structure, when a population is divided into several subpopulations.
Mating can be assumed to be random within subpopulations, but is not
allowed between subpopulations. Because of the stochastic nature of gene
flow, subpopulations may have distinct genetic features even if they evolve
from the same founder population.

Migration can exchange individuals, therefore genetic materials, be-
tween subpopulations. Migration rate usually refers to the percentage of
individuals that migrate to other subpopulations. Two migration models
that have been studied extensively in theoretical population genetics are
the island model and the stepping stone model [11]. Assuming n subpopu-
lations numbered from 1 to n, an island model allows migration from any
subpopulation to any other subpopulation. The migration rate matrix can
be written as

rij =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − r r
n−1 r

n−1
r

n−1 1 − r r
n−1

...
r

n−1 1 − r r
n−1

r
n−1 r

n−1 1 − r

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where rij is the percentage of individual that will migrate from subpopula-
tion i to j.

A stepping stone model allows migration only between adjacent sub-
populations, that is, from subpopulation i to i − 1 and i + 1. This leads to
a migration rate matrix

rij =

⎛
⎜⎜⎜⎜⎜⎝

1 − r r

r/2 1 − r r/2

...

... ... r/2 1 − r r/2

... r 1 − r

⎞
⎟⎟⎟⎟⎟⎠ .

Following the same idea, two-dimensional stepping stone models can be
used to model the migration to adjacent cities of human populations.

1.2.8 Demographic History of Human Populations

Demographic history of a population has strong impact on the genetic
composition of the current generation. For example, families in a population
that has gone through rapid population expansion tend to be large because

POPULATION AND EVOLUTIONARY GENETICS 17

parents in such a population tend to have many offspring. A population
may have reduced genetic variation and skewed allele frequency spectrum
of polymorphisms if it experienced a population bottleneck, which refers to
a reduction in population size that increases the effects of genetic drift and
reduces genetic variation. The effect of a bottleneck on patterns of genetic
variation depends on how severe the decrease in population size is and the
duration of the bottleneck. Other important demographic factors include
migration and population admixture. The latter refers to populations origin
from two or more genetically separated populations.

The human populations have gone through a complex migration and
settlement process. Modern human morphology was first found in Africa
about 130,000 years ago, and only substantially later in other parts of the
world. This is believed to be the result of a “Out of Africa” process, which
consists of potentially several rounds of migration events. Some evidence
suggest that there was a brief adventure around 90,000 years (4000–4500
generations) ago [12]. Then, there was an early “southern route” dispersal
from the Horn of Africa around 55,000–85,000 years ago (around 3000
generations), along the tropical coast of Indian Ocean to Southeast Asia
and Australasia. The real “out of Africa” migration to Eurasia happened
around 45,000–55,000 years (2000–2500 generations) ago. During the
migration, the founder population is split into subpopulations and migrate
to different geographic regions, driving other humans to complete genetic
extinction. This process can be modeled by a sequential colonization pro-
cess in which a subpopulation migrates only to its adjacent subpopulations
[13]. After subpopulations settled down, the population size usually ex-
panded quickly. An exponential population growth model can largely be
used, although some researchers prefer a logit model. Despite all the com-
plexity and uncertainties in the demographic models of real human popu-
lations, examples in this book usually use a constant population size model
or an exponential population expansion model.

1.2.9 Coalescent and Backward-Time Simulations

The coalescent is a stochastic model of gene genealogies that has become
the central theoretical tool in population genetics for understanding, in-
terpreting, and simulating genetic variation [14]. It provides not only a
theoretical framework from which all sorts of statistical inferences can be
made from observed genotype data but also a simulation method that can
be used to simulate genetic samples efficiently.

A simple coalescent process starts with n alleles in a population of size
2N. The process is followed backward in time until a common ancestor of

18 BASIC CONCEPTS AND MODELS

two allele is found. Because the probability that alleles genes find a common
ancestor in the parental generation is 1

2N
(the first gene can choose its parent

freely, the second gene must choose the same parent as the first gene) and(
1 − 1

2N

)j−1 1
2N

in the j generations back in time if no common ancestor
is found in the last 1, 2,. . . , j − 1 generations, the coalescence time T2 for
two alleles to find a common ancestor follows a geometric distribution with
parameter 1

2N
:

Pr (T2 = j) = 1

2N

(
1 − 1

2N

)j−1

,

which can be approximated by an exponential distribution. The mean of
T2 is therefore 2N generations. Similarly, the probability that two genes
out of the k genes find a common ancestor Tk = j has approximately a
geometric distribution with parameter

(
k

2

)
/(2N). These two alleles will

coalesce as a parental allele and the process continues with n − 1 alleles.
The process stops when a single allele is found, which is referred to as the
most recent common ancestor (MRCA) of all alleles. By simulating the
coalescence of k alleles, a (random) gene genealogy of these k alleles can
be constructed (Figure 1.1).

The coalescent process can be used to model genetic variation of sam-
ples because the parents of all alleles belong to this coalescent tree, and
the genotypes of all genes in this tree can be determined regardless of the
genotype information of the rest of the populations. The patterns of genetic
variation are shaped by two stochastic events: (i) the history of coalescent

0

T2

T3

T4

Present

Past

FIGURE 1.1 Illustration of the coalescent process.

POPULATION AND EVOLUTIONARY GENETICS 19

events, which can be modeled as exponential random variables; and (ii)
the history of mutational events, which can be modeled as Poisson random
variables. Under the assumption of neutrality (no selection), mutations are
uniformly distributed along the branches of a genealogy, and therefore the
number of mutations occurring on a branch is proportional to its length
(i.e., time to coalescence). The neutrality assumption plays a crucial role
in this process because it allows these two stochastic events to be applied
independently. That is to say, a coalescent tree can be constructed before
mutations can be applied to the branches of this tree using arbitrary
mutation models. This cannot be done with selection because the length
of a branch would then depend on the number of mutations on this branch.

The coalescent process provides a model that can be used to build test
statistics and make statistical inferences. For example, the properties of a
sample generated under a (neutral) coalescent process can be used to test
the existence of natural selection. Given a collection of genotype data, the
coalescent process can be used to describe the data in terms of possible
previous events. Because different data sets tend to have different prob-
abilities of being generated for different parameters, they can be used to
infer these parameters. The most well-known example might be the dating
of Mitochondrial Eve, which is estimated from the coalescent times to the
MRCA of worldwide samples of human mitochondrial DNA (mtDNA).
mtDNA is a single, nonrecombining molecule that is unlikely to be under
selection. Because mtDNA is exclusively maternally inherited, the MRCA
of mtDNA represents the common ancestor of all women. The results show
that Mitochondrial Eve lived about 200,000 years ago in Africa, which is
one of the major evidences for the Out of Africa model.

The coalescent process also provides a flexible way to simulate genetic
samples. The process can be split into two steps. In the first step, a co-
alescent tree is constructed according to a specified demographic model.
During the coalesce process, random pairs (i, j) are chosen from all possible
combinations and are assigned with a random waiting time that is exponen-
tially distributed. The process continues backward in time until the MRCA
of all genes is found. In the second step, the process goes forward in time.
For each branch of the coalescent tree, the number of mutations is deter-
mined using a Poisson distribution with a parameter that is proportional to
the length of the branch. Finally, starting from a random genotype of the
MRCA, the mutation events are applied to each branch and the genotype of
all genes on the coalescent tree is determined, which contains the sample
we are interested.

The coalescent model can be extended to variable population size, pop-
ulation structure, and long sequences with recombination. However, due

20 BASIC CONCEPTS AND MODELS

to the theoretical basis of the neutral theory, a coalescent process cannot
model selection. It is then difficult to simulate the evolution of genetic
diseases if a selection model is assumed for the disease allele. There have
been a few approaches [15–18] that allow the simulation of selection using
coalescent-like processes, but complex selection models such as multilocus
selection model can still not be simulated.

A large number of programs are available to simulate genetic data us-
ing a coalescent approach. Although relatively limited in feature, Richard
Hudson’s ms program [19] remains one of the most popular programs.
msHOT [20], SNPsim [21], COSI [22], CoaSim [23], SelSim [24], and oth-
ers extend the algorithm to provide features such as varying recombination
rates, gene conversion, complex demographic models, and a single-locus
selection model. A survey of such software is provided in Liu et al [25].

1.2.10 Forward-Time Simulations

Forward-time population genetics simulation is simple in concept. Given
a population with individuals of certain genotype, we evolve the popula-
tion generation by generation, subject to various demographic and genetic
forces such as population size change, mutation, selection, recombination,
and migration. There are two key differences between forward-time and
backward-time simulations:

1. Unlike coalescent-based approaches that simulate only individuals
in a coalescent tree, forward-time simulations keep track of com-
plete ancestral information. This gives forward simulations a wider
application area if evolutionary processes themselves rather than their
outcome are of interest [26] or if population-level properties are
studied [27].

2. Because the coalescent theory is based on a neutral Wright–Fisher
model, coalescent-based simulations can only simulate a random mat-
ing scheme with limited ability to simulate natural selection. In con-
trast, because there is no theoretical restriction, forward-time simu-
lation approaches can simulate arbitrary nonrandom mating schemes
and any genetic or environmental factors, so they can be used to sim-
ulate complex evolutionary processes that cannot be completely char-
acterized by a Wright–Fisher model. This gives forward-time simu-
lations a wider application area than coalescent-based simulations.

A number of forward-time simulation programs are available. If we
exclude early applications developed primarily for teaching purposes,

STATISTICAL GENETICS AND GENETIC EPIDEMIOLOGY 21

notable forward-time simulation programs include easyPOP [28], Nemo
[29], FreGene [30], GenomePop [31], ForwSim [32], ForSim [33], and
SFS CODE [34], with an increasing list maintained at the “Other Simula-
tion Tools” section of the simuPOP online cookbook. These programs are
designed with specific applications and evolutionary scenarios in mind and
excel for the purposes for which they were designed. A potentially large
number of options are provided to allow users to choose from a number of
stocked genetic models.

Although these programs can be used to simulate a large number of
standard evolutionary processes, they are not flexible enough to be applied
to problems outside their designed application areas. Researchers who work
on complex evolutionary models or new application areas without existing
simulation tools are usually forced to write their own software. In addition,
because most of these programs are designed to simulate populations or
samples resulting from certain evolutionary processes, they produce little
output during the evolutionary processes. This makes it difficult to obtain,
for example, the age of mutants in the simulated population when such
information is needed.

In order to simulate and study a wide variety of evolutionary processes
for different applications, we designed a general-purpose population genet-
ics simulation program named simuPOP [35, 36]. In contrast to competing
applications that use command-line options or configuration files to direct
the execution of a limited number of predefined evolutionary scenarios,
simuPOP provides users a large number of Python objects and functions,
including individual, population, mating schemes, operators (objects that
manipulate populations), and simulators to coordinate the evolutionary pro-
cesses. This unique design makes simuPOP the best, and in many aspects
the only software package for the simulation of complex evolutionary sce-
narios. This book uses simuPOP to simulate all examples. Readers who
are interested in implementing their own simulations but are not famil-
iar with simuPOP should refer to Appendix: “Forward-Time Simulations
Using simuPOP” for an introduction to simuPOP.

1.3 STATISTICAL GENETICS AND GENETIC EPIDEMIOLOGY

1.3.1 Penetrance Models

A genetic disease is a disease caused by abnormal expression of one or more
genes in a person, causing a clinically observed phenotype. One of the goals
of genetic epidemiological studies is to locate these genes, usually called

22 BASIC CONCEPTS AND MODELS

disease predisposing loci (DPL), so that we can detect, avoid, or develop
treatments for these diseases. This process is called gene mapping.

Disease alleles are passed from parents to offspring, but do not always
cause the phenotype (disease). The probability that certain genotype causes
a phenotype is called the penetrance of the genotype. For example, if we
assume that a disease is caused by a single locus, with one disease-causing
allele a and one wild-type allele A, the penetrance for this disease is defined
as the following:

f0 = Pr (affected | AA)

f1 = Pr (affected | Aa)

f2 = Pr (affected | aa)

The case f0 is specifically termed the frequency of phenocopies, indicating
individuals who are affected without carrying a disease-causing allele.

If fi is either 0 or 1, the penetrance is called full penetrance. In the
simplest case of one locus–two alleles, two disease alleles have to be present
in a recessive penetrance model to cause the disease, whereas only one
disease allele is needed in a dominant penetrance model. If the risk to
be affected in a heterozygous person is half that of a person with two
disease alleles, the penetrance is additive. Multiplicative penetrance can
be similarly defined. These four basic models are listed in Table 1.3.

If the heterozygous phenotype is different from either of the homozy-
gotes, these two alleles are called codominant. A simple example of codom-
inant alleles is the human ABO gene that determines the blood types—A,
B, AB, or O. In this case, the genotype at this locus fully determines the
blood type of an individual. Among the three alleles, alleles A and B are
dominant over allele O because allele A or B determines type A or B,
irrespective of the presence of an O allele. Conversely, allele O is said

TABLE 1.3 Basic Penetrance Models.

Genetic Models

Genotype General Dominant Recessive Additive Multiplicative

AA f0 0 0 0 0
Aa f1 1 0 s s

aa f2 1 1 2s s2

STATISTICAL GENETICS AND GENETIC EPIDEMIOLOGY 23

TABLE 1.4 Penetrance at the ABO Locus.

Phenotype

Genotype Type A Type B Type AB Type O

A/A 1 0 0 0
A/B 0 0 1 0
A/O 1 0 0 0
B/B 0 1 0 0
B/O 0 1 0 0
O/O 0 0 0 1

to be recessive with respect to A or B. Alleles A and B are codominant
because they are both expressed in the phenotype when present in the same
genotype A/B (Table 1.4).

Multilocus penetrance models are much more complicated because the
interaction between these disease susceptibility loci can be arbitrary. Only
the simplest models have been studied, because of their mathematically
tractability [37]. Assuming that the single-locus penetrance models are
fi, i = 1, 2, ..., a multiplicative multilocus penetrance model has overall
penetrance f = 1 − ∏

i (1 − fi) and an additive model has overall pene-
trance f = max

(
1,

∑
i fi

)
. That is to say, assuming that all disease sus-

ceptibility loci follow an additive penetrance model
(

0, s, 2s
)
, an additive

multilocus penetrance model has penetrance ns where n is the number of
disease alleles at all loci.

Interaction between disease susceptibility loci can take different forms.
Table 1.5 lists the penetrance of a two-locus epistatical penetrance model
where the effect of dominant allele A at locus A is visible only when the
individual also carries allele B at locus B. The model is symmetric in that
the opposite is also true.

TABLE 1.5 An Example of Epistatical
Penetrance Models.

Locus B

Locus A BB Bb bb

AA 1 1 0
Aa 1 1 0
aa 0 0 0

24 BASIC CONCEPTS AND MODELS

1.3.2 Simple and Complex Genetic Diseases

If a genetic disease is caused by a single disease predisposing locus, it
is called monogenic. Otherwise, it is called polygenic. Since monogenic
diseases usually have a clear family inheritance pattern and high penetrance,
they are easier to map. This may be why they are also called simple diseases.
On the other hand, polygenic diseases usually do not obey the single-gene
dominant or single-gene recessive Mendelian law. Their family inheritance
traits are usually unclear because the disease can be caused by the joint
effects of multiple genotypes and environmental factors. Because of the
complexity in inheritance patterns, they are called complex diseases.

One hypothesis of the genetic basis of complex human disease is
that much of the genetic variation underlying complex traits is derived
from effects of common alleles [38–40]. This “Common Disease – Com-
mon Variant” hypothesis has important implications for disease mapping
because common variants are relatively easy to detect by genetic associa-
tion studies. More importantly, because common variants are more often in
stronger linkage disequilibrium with their surrounding markers than rare
variants, genetic associations are likely to exist for multiple markers if with
the true disease locus. This makes it possible to use a fraction of tagging
markers to perform genome-wide association studies.

However, despite the fact that hundreds of common variants have been
identified for a number of complex diseases using genome-wide association
studies [41, 42], they only explain a small proportion of genetic heritabil-
ity of these diseases. It is therefore suspected that much, if not most, of
the genetic risks of complex human diseases is due to a large number of
rare variants with relatively high penetrance (the “Common Disease – Rare
Variant” hypothesis) [43]. Because the statistical power of genome-wide
association studies is substantially weaker in the detection of rare vari-
ants, new study designs and statistical methods are required to detect these
variants.

1.3.3 Phenotypic, Allelic, and Locus Heterogeneity

All human genetic diseases could have been mapped and possibly treated
if genetic diseases had homogeneous genotypes and phenotypes. Unfortu-
nately, this is not the case. The same disease might develop at different ages
and might show diverse characteristics (phenotype). The phenomenon that
the same disease shows different features in different families or subgroups
of patients is called phenotypic heterogeneity. It is often assumed that
phenotypic heterogeneity is caused by different genetic factors, but there

STATISTICAL GENETICS AND GENETIC EPIDEMIOLOGY 25

are cases in which the same known mutation causes variable symptoms or
even multiple unrelated effects.

Genetic heterogeneity refers to the phenomenon of different mutations
causing the same disease in different subgroups or families. More specif-
ically, different alleles at the same locus (allelic heterogeneity) or at dif-
ferent loci (locus heterogeneity) can cause the same symptoms. A classical
example of locus heterogeneity is given by mutations in the genes BRCA1
and BRCA2 that increase the risk of breast cancer. All these heterogene-
ity effects, plus incomplete penetrance that will be introduced below, pose
prohibitive challenges in the mapping of complex human diseases. In the
presence of allelic heterogeneity, when individuals are preferentially sam-
pled due to having a specific disease, such as breast cancer, it is likely
that specific mutant alleles will be in LD with different marker alleles. The
result will be a loss of power to detect association with any of the marker
alleles near the causal variant. For this reason, for example, association
studies of breast cancer have not identified BRCA1 and BRCA2 despite
the high penetrance of mutations in these genes.

1.3.4 Study Designs of Gene Mapping

The aim of gene mapping is to locate genetic variants on the genome
that predispose to disease or some quantitative traits. There are two main
approaches to gene mapping: linkage mapping in pedigrees and association
mapping in the population. These two approaches differ in study design,
statistical method, risk of false positive, and map resolution.

The basic principle of linkage mapping in pedigrees is the cosegregation
of a phenotype and a genetic marker within families. If a marker is linked
to a disease predisposing locus, it tends to be inherited together so that
affected offspring tend to share the same chromosomal segments. Both
nuclear families (two parents and their offspring) and large pedigrees (three
or more generations) can be used for linkage studies, but one of the most
common study designs uses affected sibpairs, namely, two affected siblings
with their parents (if available).

A linkage test is a test of linkage between two markers, one of them
can be disease status. This is done by testing if the recombination fraction
between two markers is less than 1

2 . This hypothesis testing problem can
be carried out using the likelihood ratio test. The LOD score is often used
to assess the evidence for linkage, which is defined as

LOD (θ) = log10
L (data | θ)

L (data | θ = 1/2)
,

26 BASIC CONCEPTS AND MODELS

where θ is a recombination frequency. Usually, we make a number of
estimates of recombination frequency θ and estimate LOD score for each
estimate. The estimate with the highest LOD score will be considered the
best estimate. A computer program can optimize LOD from all θ between
0 and 1/2. This test statistic differ from the standard likelihood rate test
statistic by a constant factor (4.6). The range of θ is often truncated to be
between 0 and 0.5, which leads to nonstandard testing conditions for this
test (due to boundary constraints). A LOD score of 3 has been used as the
threshold for linkage testing, which means the likelihood of observing the
given pedigree if the two loci are unlinked is less than 0.001. If a frequen-
tist approach to hypothesis testing is assumed, and the genome-wide level
of significance is set to 0.05, allowing multiple testing from evaluating a
genome-wide panel of markers, then a LOD score of 3.3 is sufficient for
detecting genome-wide significant evidence for linkage.

Uncertainties in haplotypes (unknown phase), affection status (incom-
plete penetrance), and other factors can cloud the relationship between
genotype and phenotype and reduce the power of this test. Even without
these factors, the calculation of L (data | θ) is a nontrivial task. The han-
dling of large pedigrees, existence of loops in the pedigree (which occur
when an allele can be transmitted through alternate paths, for instance, due
to inbreeding), and large number of markers requires highly innovative
computer algorithms. For large pedigrees with many markers, approxi-
mate methods such as MCMC (Markov Chain Monte Carlo) must be used.
Reference [44] provides a thorough treatment of this topic.

Association studies look for a correlation between a specific variant and
disease status or a quantitative trait in the population. For example, an asso-
ciation test for 2 × 2 contingency tables can be used to detect the association
between a marker and disease status. Assume that we have a sample of M

cases, and N controls. At each marker, the numbers of two alleles A and a

in the case and control groups are counted as shown in Table 1.6. The χ2

statistic for 2 × 2 contingency table is used to test the association between
the marker and the disease status. This is the basic allele-based association
test. More complex statistical tests include genotype-based association tests

TABLE 1.6 Illustration of the Case–Control Association Test

Cases Controls Total

Allele A a11 a12 a1
Allele a a21 a22 a2

Total 2M 2N 2M + 2N

REFERENCES 27

or trend tests. Reference [45] provides an excellent tutorial on statistical
methods for population association studies.

REFERENCES

1. T. Strachan and A. P. Read, Human Molecular Genetics, Garland Science,
2003.

2. M. A. Jobling, M. Hurles, and C. Tyler-Smith, Human Evolutionary Genetic,
Garland Science, 2004.

3. D. L. Hartl and A. G. Clark, Principles of Population Genetics, Sinauer As-
sociates, Inc, 1997.

4. D. J. Balding, M. Bishop, and C. Cannings, Handbook of Statistical Genetics,
John Wiley & Sons, Inc., 2003.

5. S. Myers, L. Bottolo, C. Freeman, G. McVean, and P. Donnelly, A fine-scale
map of recombination rates and hotspots across the human genome. Science,
310(5746):321–324, 2005.

6. The neutral theory of molecular evolution, by Kimura M, Cambridge Univer-
sity Press http://www.amazon.com/Neutral-Theory-Molecular-Evolution/dp/
0521317932/ref=sr 1 1?s=books&ie=UTF8&qid=1321048439&sr=1-1.

7. The causes of molecular evolution, by Gillespie, JH , Oxford University Press
http://www.amazon.com/Causes-Molecular-Evolution-Oxford-Ecology/dp/
0195092716/ref=sr 1 1?s=books&ie=UTF8&qid=1321048520&sr=1-1.

8. B. Charlesworth, Fundamental concepts in genetics: effective population size
and patterns of molecular evolution and variation. Nat Rev Genet, 10(3):
195–205, 2009.

9. H. A. Orr, Fitness and its role in evolutionary genetics. Nat Rev Genet,
10(8):531–539, 2009.

10. J. K. Pritchard and M. Przeworski, Linkage disequilibrium in humans: models
and data. Am J Hum Genet, 69(1):1–14, 2001.

11. M. Kimura and G. H. Weiss, The stepping stone model of population structure
and the decrease of genetic correlation with distance. Genetics, 49(4):561–576,
1964.

12. P. Forster and S. Matsumura, Evolution: Did early humans go north or south?
Science, 308(5724):965–966, 2005.

13. H. Liu, F. Prugnolle, A. Manica, and F. Balloux, A geographically explicit
genetic model of worldwide human-settlement history. Am J Hum Genet,
79(2):230–237, 2006.

14. J. F. C. Kingman, The coalescent. Stoch. Process. Appl, 13:235–248, 1982.

15. S. M. Krone and C. Neuhauser, Ancestral processes with selection. Theor
Popul Biol, 51(3):210–237, 1997.

28 BASIC CONCEPTS AND MODELS

16. P. Donnelly and T. G. Kurtz, Genealogical processes for Fleming-Viot
models with selection and recombination. Ann Appl Probab, 9:1091–1148,
1999.

17. P. Fearnhead, Ancestral processes for non-neutral models of complex diseases.
Theor Popul Biol, 63(2):115–130, 2003.

18. G. Coop and R. C. Griffiths, Ancestral inference on gene trees under selection.
Theor Popul Biol, 66(3):219–232, 2004.

19. R. R. Hudson, Generating samples under a Wright-Fisher neutral model of
genetic variation. Bioinformatics, 18(2):337–338, 2002.

20. G. Hellenthal and M. Stephens, mshot: modifying Hudson’s ms simulator to
incorporate crossover and gene conversion hotspots. Bioinformatics,
23(4):520–521, 2007.

21. D. Posada and C. Wiuf, Simulating haplotype blocks in the human genome.
Bioinformatics, 19(2):289–290, 2003.

22. S. F. Schaffner, C. Foo, S. Gabriel, D. Reich, M. J. Daly, and D. Altshuler,
Calibrating a coalescent simulation of human genome sequence variation.
Genome Res, 15(11):1576–1583, 2005.

23. T. Mailund, M. H. Schierup, C. N. S. Pedersen, P. J. M. Mechlenborg, J. N.
Madsen, and L. Schauser, CoaSim: a flexible environment for simulating
genetic data under coalescent models. BMC Bioinformatics, 6:252, 2005.

24. C. C. A. Spencer and G. Coop, SelSim: a program to simulate popula-
tion genetic data with natural selection and recombination. Bioinformatics,
20(18):3673–3675, 2004.

25. Y. Liu, G. Athanasiadis, and M. E. Weale, A survey of genetic simula-
tion software for population and epidemiological studies. Hum Genom, 3(1):
79–86, 2008.

26. F. Calafell, E. L. Grigorenko, A. A. Chikanian, and K. K. Kidd, Haplo-
type evolution and linkage disequilibrium: a simulation study. Hum Hered,
51(1–2):85–96, 2001.

27. F. Balloux and J. Goudet, Statistical properties of population differentiation
estimators under stepwise mutation in a finite island model. Mol Ecol, 11(4):
771–783, 2002.

28. F. Balloux, Easypop (version 1.7): a computer program for population genetics
simulations. J Hered, 92(3):301–302, 2001.

29. F. Guillaume and J. Rougemont, Nemo: an evolutionary and population
genetics programming framework. Bioinformatics, 22(20):2556–2557, 2006.

30. M. Chadeau-Hyam, C. J. Hoggart, P. F. O’Reilly, J. C. Whittaker, M. De
Iorio, and D. J Balding, Fregene: simulation of realistic sequence-level data
in populations and ascertained samples. BMC Bioinformatics, 9:364, 2008.

31. A. Carvajal-RodrÃguez, Genomepop: a program to simulate genomes in pop-
ulations. BMC Bioinformatics, 9:223, 2008.

REFERENCES 29

32. B. Padhukasahasram, P. Marjoram, J. D. Wall, C. D. Bustamante, and M.
Nordborg, Exploring population genetic models with recombination using
efficient forward-time simulations. Genetics, 178(4):2417–2427, 2008.

33. B. W. Lambert, J. D. Terwilliger, and K. M. Weiss, Forsim: a tool for exploring
the genetic architecture of complex traits with controlled truth. Bioinformatics,
24(16):1821–1822, 2008.

34. R. D Hernandez, A flexible forward simulator for populations subject to se-
lection and demography. Bioinformatics, 24(23):2786–2787, 2008.

35. B. Peng and M. Kimmel, simuPOP: a forward-time population genetics sim-
ulation environment. Bioinformatics, 21(18):3686–3687, 2005.

36. B. Peng and C. I. Amos, Forward-time simulations of non-random mating
populations using simuPOP. Bioinformatics, 24(11):1408–1409, 2008.

37. N. Risch, Linkage strategies for genetically complex traits: II. The power of
affected relative pairs. Am J Hum Genet, 46(2):229–241, 1990.

38. E. S. Lander and N. J. Schork, Genetic dissection of complex traits. Science,
265(5181):2037–2048, 1994.

39. N. Risch and K. Merikangas, The future of genetic studies of complex human
diseases. Science, 273(5281):1516–1517, 1996.

40. E. S. Lander, The new genomics: global views of biology. Science,
274(5287):536–539, 1996.

41. R. McPherson, A. Pertsemlidis, N. Kavaslar, A. Stewart, R. Roberts, D. R.
Cox, D. A. Hinds, L. A. Pennacchio, A. Tybjaerg-Hansen, A. R. Folsom, E.
Boerwinkle, H. H. Hobbs, and J. C. Cohen, A common allele on chromosome 9
associated with coronary heart disease. Science, 316(5830):1488–1491, 2007.

42. C. I. Amos, Successful design and conduct of genome-wide association stud-
ies. Hum Mol Genet, 16(2):R220–R225, 2007.

43. N. S. Fearnhead, B. Winney, and W. F. Bodmer, Rare variant hypothesis for
multifactorial inheritance: susceptibility to colorectal adenomas as a model.
Cell Cycle, 4(4):521–525, 2005.

44. Analysis of Human Genetic Linkage, by Jurg Ott, The Jons Hopkins Univer-
sity Press (http://www.amazon.com/Analysis-Human-Genetic-Linkage-Ott/
dp/0801861403).

45. D. J Balding, A tutorial on statistical methods for population association stud-
ies. Nat Rev Genet, 7(10):781–791, Oct 2006.

CHAPTER 2

SIMULATION OF POPULATION
GENETICS MODELS

This chapter uses simuPOP to simulate a number of standard population
genetics models. The goal of these simulations is to demonstrate how to
use various simuPOP features to simulate genetic factors such as muta-
tion, selection, and recombination. Because detailed descriptions of these
models are widely available in textbooks such as Principles of Population
Genetics [1], we describe these models and their theoretical properties
briefly, only as a way to motivate our simulations. Although simulations in
this chapter are confirmatory in nature, they could be used to form the basis
of more complex evolutionary scenarios in which more than one genetic
factor would be applied.

2.1 RANDOM GENETIC DRIFT

The Wright–Fisher model is a model of random genetic drift with binomial
sampling, which is characterized by the independent binomial sampling
of parents with replacement. A standard diploid Wright–Fisher model as-
sumes a constant population of N individuals (2N chromosomes). Because
offspring chromosomes are chosen independently from an infinite pool of

Forward-time Population Genetics Simulations: Methods, Implementation, and Applications,
Bo Peng, Marek Kimmel, and Christopher I. Amos.
© 2012 Wiley-Blackwell. Published 2012 by John Wiley & Sons, Inc.

31

32 SIMULATION OF POPULATION GENETICS MODELS

gametes, this process is equivalent to a haploid Wright–Fisher model with
2N individuals.

2.1.1 Dynamics of Allele Frequency and Heterozygosity

The basic property of random genetic drift is the random drift of allele
frequency due to binomial sampling. Assuming that there are no additional
genetic forces such as mutation and natural selection, let Yn be the number
and Xn = Yn

2N
be the frequency of allele 1 of a diallelic marker at generation

n, the distribution of the number of alleles at generationn follows a binomial
distribution with parameters 2N and xn−1 = yn−1

2N
,

Pr (Yn | Yn−1 = yn−1) = Binomial
(

2N,
yn−1

2N

)
. (2.1)

Assuming x1 = p is the starting allele frequency, the expected allele fre-
quency E (Xn) keeps constant because E (Xn | Xn−1) = Xn−1. In addition,
because the probability that an individual being homozygous in the next
generation is

Ft+1 = 1

2N
+

(
1 − 1

2N

)
Ft,

the probability of an individual being heterozygous is

Ht = 1 − Ft =
(

1 − 1

2N

)
Ht−1 =

(
1 − 1

2N

)t

H0. (2.2)

That is to say, the proportion of heterozygotes in this population is expected
to decay exponentially.

� EXAMPLE 2.1

Let us simulate a basic Wright–Fisher process of random genetic drift
with N = 100 and p = 0.5. Although we can run a large number of sim-
ulations sequentially or simultaneously by running replicates of the same
population (as shown in Source Code A.25), this example evolves a large
population with 100 subpopulations, each with 100 individuals. Because
a random mating scheme evolves each subpopulation separately in the ab-
sence of migration, such a simulation effectively evolves 100 populations
independently.

RANDOM GENETIC DRIFT 33

This example calculates the frequency of allele 1 and the proportion
of heterozygotes of each subpopulation at generations 0, 20, ..., and 80,
and stores the results in variables subPop[sp][’alleleFreq’]
and subPop[sp][’heteroFreq’] where sp is a subpopulation
index. It then uses a PyEval operator to calculate and output the average
allele and heterozygote frequencies across all subpopulations using a
relatively complex Python expression. In addition to generation number
and mean observed allele frequency and heterozygote frequency, this
expression also calculates the expected heterozygosity using formula 2.2
with H0 = 2pq = 0.5.

As we can see from the output of this example, although the mean
frequency in 100 subpopulations remains close to 0.5, heterozygosity in
each subpopulation decreases (although allele frequencies deviate from the
initial frequency in different directions), resulting in a decreased average
proportion of heterozygotes in these subpopulations.

SOURCE CODE 2.1 Decay of Homozygosity Due to Random
Genetic Drift

>>> import simuPOP as sim
>>> # [100]*100 means a population with 100 subpopulations, each of size 100.
>>> pop = sim.Population([100]*100, loci=1)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
... sim.PyOutput(’gen: mean freq mean Ht (expected Ht)\gn’)
...],
... preOps=[
... # Statistics in subpopulations are by default not calculated.
... # This is changed by specifying variables with a ’_sp’ suffix.
... sim.Stat(alleleFreq=0, heteroFreq=0,
... vars=[’alleleFreq_sp’, ’heteroFreq_sp’], step=20),
... # Variables in subpopulations are stored in dictionaries
... # subPop[subPopID] where subPopID can be virtual.
... sim.PyEval(r’"%2d: %.4f %.4f (%.4f)\n" % (gen,’
... ’sum([subPop[x]["alleleFreq"][0][1] for x in range(100)])/100.,’
... ’sum([subPop[x]["heteroFreq"][0] for x in range(100)])/100.,’
... ’0.5*(1-1/200.)**gen)’, step=20)
...],
... matingScheme=sim.RandomMating(),
... gen=100
...)
gen: mean freq mean Ht (expected Ht)

0: 0.4982 0.4951 (0.5000)
20: 0.5017 0.4692 (0.4523)
40: 0.5260 0.4182 (0.4092)
60: 0.5343 0.3744 (0.3701)
80: 0.5272 0.3303 (0.3348)

100

34 SIMULATION OF POPULATION GENETICS MODELS

2.1.2 Persistence Time

Because Xn is bounded by frequencies 0 and 1, alleles in a standard Wright–
Fisher process will eventually become fixed or lost. Assuming an initial
allele frequency p, the mean time (in generation) until an allele is fixed
conditioning on it is eventually fixed at

t1 (p) = −4N

(
1 − p

p

)
ln (1 − p) . (2.3)

Similarly, the mean time to loss until an allele is lost is

t0 (p) = −4N

(
p

1 − p

)
ln p. (2.4)

Because the probability that an allele gets lost (instead of fixed) equals its
initial allele frequency p, the mean persistence time of an allele is

t (p) = pt1 (p) + (1 − p) t0 (p) = −4N
[
(1 − p) ln (1 − p) + p ln (p)

]
.

(2.5)

� EXAMPLE 2.2

Using a terminator that terminates the evolution of a population after an
allele gets lost or fixed, this example simulates the persistence time of 500
populations with N = 100 and p = 0.4. It initializes allele 0 with a fre-
quency of 0.4 and uses a RandomSelection mating scheme to simulate
the random binomial selection of gametes in a population with 2N chro-
mosomes. This mating scheme is almost identical to a RandomMating
mating scheme in a population with N individuals except that it ignores
individual sex and chooses gametes from a pool of 2N chromosomes ran-
domly.

At the end of each generation, a Stat operator is used to calculate the
frequency of alleles at locus 0. A Terminator is then used to terminate
the evolution of a population if variable alleleFreq[0][0] in its local
namespace is either 0 or 1. Function Population.evolve returns after
all populations have been terminated and returns the number of generations
each population has evolved.

The rest of the example goes through each population and determines
whether or not the allele is lost or fixed by checking its frequency at the
end of evolution. The last print statement outputs the observed mean
persistence times for all populations and populations with fixed or lost
alleles and compares them with their theoretical estimates calculated from
Equations 2.3–2.5.

DEMOGRAPHIC MODELS 35

SOURCE CODE 2.2 Absorption Time and Time to Fixation

>>> import simuPOP as sim

>>> from math import log

>>> N = 100

>>> p = 0.4

>>> pop = sim.Population(2*N, ploidy=1, loci=1)

>>> # Use a simulator to simulate 500 populations simultaneously.

>>> simu = sim.Simulator(pop, rep=500)

>>> gens = simu.evolve(

... initOps=sim.InitGenotype(prop=[p, 1-p]),

... # A RandomSelection mating scheme choose parents randomly regardless

... # of sex and copy parental genotype to offspring directly.

... matingScheme=sim.RandomSelection(),

... postOps=[

... # calculate allele frequency at locus 0

... sim.Stat(alleleFreq=0),

... # and terminate the evolution of a population if it has no

... # allele 0 or 1 at locus 0.

... sim.TerminateIf(’alleleFreq[0][0] in (0, 1)’),

...],

...)

>>> # find out populations with or without allele 1

>>> gen_lost = []

>>> gen_fixed = []

>>> for gen,pop in zip(gens, simu.populations()):

... if pop.dvars().alleleFreq[0][0] == 0:

... gen_lost.append(gen)

... else:

... gen_fixed.append(gen)

...

>>> print(’’’\nMean persistence time: %.2f (expected: %.2f)

... Lost pops: %d (expected: %.1f), Mean persistence time: %.2f (expected: %.2f)

... Fixed pops: %d (expected: %.1f), Mean persistence time: %.2f (expected: %.2f)’’’\

... % (float(sum(gens)) / len(gens), -4*N*((1-p)*log(1-p) + p*log(p)),

... len(gen_fixed), 500*p, float(sum(gen_fixed)) / len(gen_fixed),

... -4*N*(1-p)/p*log(1-p), len(gen_lost), 500*(1-p),

... float(sum(gen_lost)) / len(gen_lost), -4*N*p/(1-p)*log(p)))

Mean persistence time: 268.42 (expected: 269.20)

Lost pops: 195 (expected: 200.0), Mean persistence time: 308.99 (expected: 306.50)

Fixed pops: 305 (expected: 300.0), Mean persistence time: 242.48 (expected: 244.34)

>>>

2.2 DEMOGRAPHIC MODELS

Human and other populations have experienced various complex demo-
graphic events such as population splitting and expansion during evolution.
Because the demographic history of a population has profound impact on
the genetic composition of the population, it is important to incorporate
realistic demographic histories in the simulation of human populations.
Being a forward-time simulator, simuPOP requires the specification of the

36 SIMULATION OF POPULATION GENETICS MODELS

exact number and sizes of subpopulations at every generation. Once one
has a clear idea which demographic model to use, it is generally easy to
implement it using the mechanism described in this chapter.

2.2.1 The Bottleneck Effect

Because the variance of the binomial distribution of Equation 2.1 increases
with smaller population size N, the impact of random genetic drift is more
rapid in small populations than in large populations. If the population size
grows rapidly after a period of small size, the increased population size
tends to decrease the force of subsequent genetic drift and therefore freeze
the impact of dramatic changes that occurred before population expansion.
This phenomenon, called a bottleneck effect, plays an important role in the
evolution of many human populations.

� EXAMPLE 2.3

This example simulates a demographic model where a population of size
1000 is evolved for 40 generations before experiencing a bottleneck com-
prising 20 individuals for 10 generations. The population size then rebounds
to 1000 individuals and maintains a constant population size for another
50 generations. This demographic model is implemented using a function
demo that returns a population size of 1000 or 20 according to the passed
generation number.

In order to study the impact of this bottleneck on the evolution of al-
leles, we trace the frequency of an allele in five replicate simulations.
Instead of reporting allele frequencies for each replicate, this example
uses a VarPlotter operator to plot the trajectories of the frequency
of allele 0 during evolution. This operator is defined in a utility module
simuPOP.plotter. In addition to a working R environment, a Python
module rpy (http://rpy.sourceforge.net) that provides a link
between Python and R is needed to make use of this module.

Operator VarPlotter evaluates expression alleleFreq[0][0]
for each replicate and plots the current and historical values of this ex-
pression at every 10 generations (parameter update=10). Because the
figures will be updated at every 10 generations, an animation will be dis-
played during the evolution of this population. The figures are displayed on
the screen and are saved to files ch3 bottleneck x.pdf (x = 10,. . . ,
100) because of the use of parameter saveAs.

A visualization operator usually calls more than one R functions such
as par, plot, and lines to plot a figure. When an additional keyword

DEMOGRAPHIC MODELS 37

parameter is provided to this operator, it will be passed to R functions if
the parameter name is prefixed with a function name. For example, param-
eters plot ylim=[0,1] and plot ylab=’Allele Frequency’
pass parameters ylim=[0,1] and ylab=’Allele Frequency’ to
function plot to customize the plots.

As we can see from the trajectory of allele frequencies at generation
100 (Figure 2.1), because of a relatively large population size (1000),
these alleles have similar allele frequencies in the first 40 generations.
Frequencies of these alleles change rapidly due to strong genetic drift during
the bottleneck period, but stabilize again after the population size rebounds
to 1000 individuals.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generation

A
lle

le
 fr

eq
ue

nc
y

FIGURE 2.1 Impact of population bottleneck. Simulation of genetic drift in five
replicate populations starting with initial allele frequency of 0.5 over a period of
100 generations. The population size is kept constant at 1000 individuals until
generation 40, at which point the population size is reduced to 20 individuals. The
population size then rebounds to 1000 individuals at generation 49 and remains at
this population size for the remainder of the simulation.

38 SIMULATION OF POPULATION GENETICS MODELS

SOURCE CODE 2.3 Demonstration of a Bottleneck Effect

import simuPOP as sim
from simuPOP.plotter import VarPlotter
def demo(gen):

split subpopulation 0 at generation 10 and 20
if gen >=40 and gen < 50:

return 20
else:

return 1000

pop = sim.Population(size=1000, loci=1)
simu = sim.Simulator(pop, rep=5)
simu.evolve(

initOps=[
sim.InitSex(),
sim.InitGenotype(freq=[0.5, 0.5])

],
matingScheme=sim.RandomMating(subPopSize=demo),
postOps=[

sim.Stat(alleleFreq=0),
VarPlotter(’alleleFreq[0][0]’, update=10,

saveAs=’Figures/bottleneck.pdf’,
plot_ylim=[0,1], plot_ylab=’Allele Frequency’,
lines_col=’black’, lines_lwd=1.5)

],
gen=101

)

2.3 MUTATION

There are many mutation models for different types of genetic markers
and models, and the definition of a mutation rate can differ from model to
model. This section demonstrates how to use simuPOP mutators (mutation
operators) to simulate a number of models for single-nucleotide polymor-
phism (SNP) and microsatellite markers.

2.3.1 A Diallelic Mutation Model

A mutation model with n allelic states can be defined with a mutation
rate matrix

(
pij

)
n×n

where pij is the probability that an allele i mutates
to allele j per locus per generation. If we start with a specific allele at a
locus, this matrix determines the distribution of allelic states at the next
generation. Running this process for many steps creates a Markov chain
because the next state depends on only the current state and on the mutation
matrix. Therefore, a mutation rate matrix is a transition matrix of a Markov
process. Another concept, called a substitution matrix, is often used in the
theoretical analysis of these models. A substitution matrix is defined to be

MUTATION 39

Q = R − I where I is the identity matrix, so the rows of such a matrix sum
to zero.

A mutation rate matrix for a diallelic model with a wild-type allele A

and a disease allele a has two free variables, namely, a forward mutation
rate u (the probability that an allele A mutates to allele a at each generation)
and a backward mutation rate v (the probability that an allele a mutates to
allele A). The mutation rate matrix for this model is

(
u 1 − u

1 − v v

)
.

Assuming that the frequency of allele A is pt−1 at generation t − 1, its
frequency at the next generation, if we do not consider the impact of genetic
drift, would be

pt = pt−1 (1 − u) + v (1 − pt−1) (2.6)

because 1 − u of allele A will remain as allele A and v of allele a will be
mutated to allele A. Mathematical manipulation of Equation 2.6 leads to

pt − v

u + v
=

(
p0 − v

u + v

)
(1 − u − v)t , (2.7)

which implies an equilibrium allele frequency p = v
u+v

if t → ∞.
Of course, if u = 0 or v = 0, the equilibrium allele frequency will be 0
or 1 because one of the alleles will mutate to the other.

� EXAMPLE 2.4

simuPOP provides a mutation operator SNPMutator(u,v) to simulate
a mutation model with mutation rate matrix

(
u 1 − u

1 − v v

)
.

This mutator is named SNPMutator because it is usually applied to
single-nucleotide polymorphism markers that has two allelic states.

This example evolves three populations of size 10,000 for 500 genera-
tions. Instead of applying the same operator to all populations, this example
uses three InitGenotype operators to initialize them with different start-
ing allele frequencies 0.8, 0.5, and 0.2, respectively. The trick here is the
use of parameter reps, which accepts one or more indices of populations
on which an operator is applicable. Negative indices are also acceptable.

40 SIMULATION OF POPULATION GENETICS MODELS

For example, operator PyOutput in this example outputs a newline string
after the last population has been evolved (reps=-1).

A SNPMutator is used to mutate between alleles 0 and 1 with mutation
rates u = 10−2 and v = 10−3. As we can see from the output, allele fre-
quencies at these populations gradually approach and then oscillate around
(due to genetic drift) an equilibrium allele frequency of v

u+v
= 9.1%.

SOURCE CODE 2.4 Diallelic Mutation Model

>>> import simuPOP as sim
>>> from math import log
>>> pop = sim.Population(size=10000, loci=1)
>>> simu = sim.Simulator(pop, rep=3)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... # Because of the use of parameter reps, these operators are
... # applied to different populations.
... sim.InitGenotype(freq=(0.2, 0.8), reps=0),
... sim.InitGenotype(freq=(0.5, 0.5), reps=1),
... sim.InitGenotype(freq=(0.8, 0.2), reps=2)],
... preOps=sim.SNPMutator(u=0.01, v=0.001),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0, step=100),
... sim.PyEval(’gen’, reps=0, step=100),
... sim.PyEval(r"’\t%.3f’ % alleleFreq[0][0]", step=100),
... sim.PyOutput(’\n’, reps=-1, step=100)
...],
... gen=500
...)
0 0.200 0.499 0.793
100 0.133 0.196 0.340
200 0.115 0.130 0.189
300 0.099 0.109 0.111
400 0.099 0.088 0.114
(500, 500, 500)

2.3.2 Multiallelic Mutation Models

A multiallelic mutation model mutates between multiple alleles at a locus.
A stepwise mutation model is usually used to model the mutation of mi-
crosatellite markers. The basic form of this model, namely, a symmetrical
stepwise mutation model, assumes that the entire sequence of allelic states
can be described by integers and that, if an allele changes state by mutation,
it moves either one step in the positive direction or one step in the nega-
tive direction in the allele space. In comparison, a k-allele mutation model
assumes that there are k alleles at a locus and a mutation event mutates
an allele to any other allele. A k-allele model with a sufficiently large k

MUTATION 41

can be used to approximate an infinite allele model because a mutant in
such a model has a high probability to be a new mutant. Stepwise models
have been used to describe mutations among repetitive DNA sequences
such as microsatellites, while k-allele models would be appropriate more
generically.

� EXAMPLE 2.5

This example evolves two populations each with 10 subpopulations. Indi-
viduals in both populations are initialized with random sex and alleles 100
at the beginning of the evolutionary process. We choose an initial allele
of 20 because we assume that there are already 20 tandem repeats at the
microsatellite locus.

During evolution, a stepwise mutation model with mutation rate μ =
10−4 is applied to the first population, and a k-allele mutation model with
k = 10,000 and with the same mutation rate is applied to the second popu-
lation. An operator Stat is used to calculate allele frequency at all subpop-
ulations, which are used to calculate the mean number of different alleles
contained in the populations. Because alleles are more likely to mutate to an
existing allelic state in a stepwise mutation model than in a k-allele model,
the average number of distinct alleles in the first population is smaller than
that in the second population, as predicted in Ref. [2].

SOURCE CODE 2.5 k-Allele and Stepwise Mutation Models

>>> import simuOpt
>>> simuOpt.setOptions(quiet=True, alleleType=’long’)
>>> import simuPOP as sim
>>> pop = sim.Population(size=[2500]*10, loci=1)
>>> simu = sim.Simulator(pop, rep=2)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=20),
...],
... preOps=[
... sim.StepwiseMutator(rates=0.0001, reps=0),
... sim.KAlleleMutator(k=10000, rates=0.0001, reps=1),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... # Use vars=[’alleleFreq_sp’] to calculate allele frequency for
... # each subpopulation
... sim.Stat(alleleFreq=0, vars=[’alleleFreq_sp’], step=200),
... sim.PyEval(’gen’, step=200, reps=0),
... sim.PyEval(r"’\t%.2f’ % (sum([len(subPop[x][’alleleFreq’][0]) "
... "for x in range(10)])/10.)", step=200),
... sim.PyOutput(’\n’, reps=-1, step=200)
...],

42 SIMULATION OF POPULATION GENETICS MODELS

... gen=601

...)
0 1.30 1.40
200 2.60 5.30
400 2.70 6.10
600 2.80 6.60
(601, 601)

2.4 MIGRATION

Subpopulations evolve separately and tend to become more and more genet-
ically distinct due to the impact of random genetic drift. Migration allows
the exchange of individuals, and thus genotypes, between subpopulations.
It glues subpopulations together and limits the genetic divergence between
subpopulations.

2.4.1 An Island Model of Migration

In an island model of migration, a large population is split into many sub-
populations like islands in an archipelago. Migration in a basic island model
is assumed to occur evenly between all islands so that the probability that
a randomly chosen allele in any subpopulation comes from a migrant is
the same across islands. Under some simplified conditions (e.g., no genetic
drift), the frequency of an allele in one island at generation t equals to

pt − p̄ = (p0 − p̄) (1 − m)t ,

where m is the migration rate, p0 is the initial frequency, and p̄ is the
average frequency across all subpopulations. Obviously, all islands will
have the same allele frequency p̄ when t approaches infinity.

� EXAMPLE 2.6

simuPOP provides an operator Migrator to migrate individuals between
subpopulations. It uses a migration matrix

(
mij

)
where mij is the proba-

bility that an individual moves from subpopulation i to subpopulation j at
each generation. Diagonal items of this matrix, namely, the probability that
an individual stays in his or her own subpopulation, can be left unspecified
because they are determined automatically from mii = 1 − ∑

j /= i mij. Be-
cause operator Migrator needs to record the destination subpopulation
of each individual before it moves individuals, it requires an information
field migrator to from the populations to which. Note that this operator
can also migrate individuals by proportion and by individual count, and can

MIGRATION 43

migrate to new subpopulations, which effectively creates subpopulations
with migrants.

This example creates two populations, each with three subpopulations
of 10,000 individuals. The frequencies of allele 0 for these three subpopu-
lations are initialized to 0.2, 0.3, and 0.5, respectively. At the beginning of
each generation, individuals in the first population migrate between three
subpopulations following an island model with migration rate 0.01. For
comparison purposes, no migration is allowed for the second population.

This example calculates allele frequencies in subpopulations and uses
a FST statistic, a measure of population differentiation based on genetic
differences between populations, to quantify the genetic diversity among
three subpopulations. FST is calculated as the correlation of randomly cho-
sen alleles within the same subpopulation relative to that found in the entire
population. It should be close to 0 if populations are genetically close due
to free interbreeding.

We evolve the population for 201 generations and output FST and allele
frequencies in the three subpopulations at every 50 generations. As we
can see from the output, allele frequencies of the first population approach
an equilibrium frequency of 0.33, whereas those in the second populations
remain distinct, which are also reflected in the dynamics of the FST statistics
of the two populations.

SOURCE CODE 2.6 An Island Model of Migration

>>> import simuPOP as sim

>>> from simuPOP.utils import migrIslandRates

>>> p = [0.2, 0.3, 0.5]

>>> pop = sim.Population(size=[10000]*3, loci=1, infoFields=’migrate_to’)

>>> simu = sim.Simulator(pop, rep=2)

>>> simu.evolve(

... initOps=[sim.InitSex()] +

... [sim.InitGenotype(prop=[p[i], 1-p[i]], subPops=i) for i in range(3)],

... preOps=sim.Migrator(rate=migrIslandRates(0.01, 3), reps=0),

... matingScheme=sim.RandomMating(),

... postOps=[

... sim.Stat(alleleFreq=0, structure=0, vars=’alleleFreq_sp’, step=50),

... sim.PyEval("’Fst=%.3f (%s)�’ % (F_st, ’, ’.join([’%.2f’ % "

... "subPop[x][’alleleFreq’][0][0] for x in range(3)]))",

... step=50),

... sim.PyOutput(’\n’, reps=-1, step=50),

...],

... gen=201

...)

Fst=0.101 (0.20, 0.30, 0.50) Fst=0.101 (0.20, 0.30, 0.50)

Fst=0.024 (0.28, 0.31, 0.42) Fst=0.113 (0.20, 0.27, 0.51)

Fst=0.011 (0.30, 0.34, 0.40) Fst=0.085 (0.24, 0.24, 0.48)

Fst=0.004 (0.38, 0.33, 0.38) Fst=0.141 (0.22, 0.23, 0.54)

Fst=0.001 (0.39, 0.36, 0.37) Fst=0.166 (0.19, 0.22, 0.55)

(201, 201)

44 SIMULATION OF POPULATION GENETICS MODELS

2.5 RECOMBINATION AND LINKAGE DISEQUILIBRIUM

Genetic recombination breaks existing parental chromosomes and intro-
duces new recombinant chromosomes to the population. If two loci are
linked (located on the same chromosome), recombination tends to reduce
the linkage disequilibrium between these two loci. The rate at which linkage
disequilibrium decays follows Equation 1.11 (see Example 2.7). Although
it is relatively easy to model recombination between two adjacent loci, the
impact of recombination on multiple linked loci, especially when natural
selection is involved, is a complicated issue.

� EXAMPLE 2.7

This example simulates a population of 10,000 individuals. Each individual
has a chromosome with 10 loci. These loci are arranged in two groups, at
locations 0, 1, 2, 3, 4, 10, 11, 12, 13, 14. The population is initialized with
random sex and two haplotypes, one with all 0 alleles and another with all
1 alleles. The linkage disequilibrium D are therefore 0.25 between all loci
at the beginning of this evolutionary process.

We evolve the population for 100 generations and use a Recombina-
tor operator to recombine parental chromosomes before they are transmit-
ted to offspring. Instead of specifying recombination rates between adjacent
loci explicitly, this example specifies recombination rates as the product of
loci distance and a recombination intensity 5 × 10−4. For example, the re-
combination rate between loci 1 and 2 is 5 × 10−4 because they are located
1 unit apart, and the recombination rate between loci 4 and 5 is 2.5 × 10−3

because they are 5 units away from each other.
We calculate and display linkage disequilibrium values between loci

(1, 2), (4, 5), and (0, 9), along with expected linkage disequilibrium between
loci (1, 2) and (4, 5). As we can see from the output of the example, the
linkage disequilibrium values between loci 1 and 2 decay more slowly than
values between loci 4 and 5 because of stronger recombination between
these loci 4 and 5.

SOURCE CODE 2.7 Recombination Between Three Loci

>>> import simuPOP as sim

>>> pop = sim.Population(size=10000, loci=10, lociPos=range(5) + range(10, 15))

>>> pop.evolve(

... initOps=[

... sim.InitSex(),

... sim.InitGenotype(haplotypes=[[0]*10,[1]*10]),

...],

... matingScheme=sim.RandomMating(ops=sim.Recombinator(intensity=0.0005)),

NATURAL SELECTION 45

... postOps=[

... sim.Stat(LD=[[1,2],[4,5],[8,9],[0,9]], step=10),

... sim.PyEval(r"’gen=%d\tLD12=%.3f (%.3f)\tLD45=%.3f (%.3f)\tLD09=%.3f\n’%"

... "(gen, LD[1][2], 0.25*0.9995**(gen+1), LD[4][5],"

... "0.25*0.9975**(gen+1),LD[0][9])", step=10)

...],

... gen=100

...)

gen=0 LD12=0.250 (0.250) LD45=0.249 (0.249) LD09=0.248

gen=10 LD12=0.249 (0.249) LD45=0.242 (0.243) LD09=0.232

gen=20 LD12=0.248 (0.247) LD45=0.234 (0.237) LD09=0.213

gen=30 LD12=0.247 (0.246) LD45=0.225 (0.231) LD09=0.201

gen=40 LD12=0.246 (0.245) LD45=0.216 (0.226) LD09=0.189

gen=50 LD12=0.246 (0.244) LD45=0.214 (0.220) LD09=0.178

gen=60 LD12=0.245 (0.242) LD45=0.208 (0.215) LD09=0.166

gen=70 LD12=0.246 (0.241) LD45=0.202 (0.209) LD09=0.156

gen=80 LD12=0.245 (0.240) LD45=0.193 (0.204) LD09=0.147

gen=90 LD12=0.245 (0.239) LD45=0.186 (0.199) LD09=0.136

100

2.6 NATURAL SELECTION

Simulation of natural selection can be achieved in two ways: selection
of parents using relative fitness values and selection of offspring using
absolute fitness values. The first method is easier to use and is more efficient,
and the second method can be useful in modeling certain evolutionary
processes when multiple offspring are produced and selected.

Selection of parents is performed during mating. In this case, all parents
are assigned a fitness value fi ≥ 0, i = 1, ..., N. During each mating event,
parents are chosen at a probability that is proportional to their fitness val-
ues. More specifically, in the standard Wright–Fisher model with natural
selection, the probability that individual k is selected for mating is fk∑N

i=1 fi

at each mating event.
Another mechanism for natural selection is performed during the pro-

duction of offspring. Using this method, a fitness value is assigned for each
offspring, which is interpreted directly as the survival probability of this
individual. For example, if an individual has fitness 0.9, it will have a prob-
ability of 0.1 to be discarded, regardless of fitness values of other offspring.
Because most theoretical models use relative fitness and a large number of
offspring will be discarded if small fitness values are used, this method is
used less frequently than the selection of parents method.

2.6.1 Single-Locus Diallelic Selection Models

Assuming that the relative fitness of three genotypes AA, Aa, and aa at a
locus are 1, 1 − hs, and 1 − s respectively, the change in the frequency of

46 SIMULATION OF POPULATION GENETICS MODELS

the A allele in a single generation follows equation

�p = p′ − p = pqs (ph + q (1 − h))

w̄
,

where q = 1 − p and w̄ = 1 − 2pqhs − q2s is the mean fitness of the
population. When 0 < h < 1, because �p is always positive or negative
(depending on the sign of s), the frequency of allele A will continuously
increase or decrease. This model is called directional selection.

When h < 0, �p can be positive or negative, depending on the allele
frequency. If the heterozygous genotype has a greater fitness than either
homozygous genotype, the allele will reach a stable allele frequency p̂ =
1−h

1−2h
(solved from �p = 0) because �p < 0 when p > p̂ and �p > 0 when

p < p̂. This situation is called overdominance or heterozygote superiority.

� EXAMPLE 2.8

This example evolves three populations of 10,000 individuals for 200 gen-
erations, all with an initial frequency of 0.5 at the first locus. It uses a
MapSelector to assign fitness to individuals according to their geno-
types at locus 0. Mutants in these populations are subject to purifying
(s = 0.1, h = 0.5), positive (s = −0.1, h = 0.2) , and balancing (s = 0.1,
h = −0.5) selection, respectively.

The dynamics of allele frequencies in these populations are calculated
and outputed using operators Stat and PyEval. Because of different
types of selection pressure, allele 0 gets fixed in the first population, gets
lost in the second population, and reaches an equilibrium allele frequency
p̂ = 0.75 in the third population.

The trajectory of allele frequencies in these three populations is also
plotted using a VarPlotter operator (Figure 2.2). A number of parame-
ters are passed to this operator to customize the look and feel of the figures.
In particular, a parameter lines lty rep=[1,2,3] is used to pass
a list of values to the lines function that draw allele frequencies for
different replicates.

SOURCE CODE 2.8 Single-Locus Diallelic Selection Models

>>> import simuPOP as sim
>>> from simuPOP.plotter import VarPlotter
>>> pop = sim.Population(size=10000, loci=1, infoFields=’fitness’)
>>> simu = sim.Simulator(pop, rep=3)
>>> h = [0.5, 0.2, -0.5]
>>> s = [0.1, -0.1, 0.1]
>>> simu.evolve(
... initOps=[

NATURAL SELECTION 47

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generation

A
lle

le
 fr

eq
ue

nc
y

h = 0.5 s = 0.1
h = 0.2 s = −0.1
h = −0.5 s = 0.1

FIGURE 2.2 Trajectories of allele frequency for three populations under differ-
ent selection pressures. Trajectories of the frequency of allele 0 for three popula-
tions that are subject to different selection pressures.

... sim.InitSex(),

... sim.InitGenotype(freq=(0.5, 0.5))

...],

... preOps=[sim.MapSelector(loci=0,

... fitness=(0,0):1, (0,1):1-h[x]*s[x], (1,1):1-s[x], reps=x)

... for x in range(3)],

... matingScheme=sim.RandomMating(),

... postOps=[

... sim.Stat(alleleFreq=0),

... sim.PyEval(r’"%.3f\t" % alleleFreq[0][1]’, step=50),

... sim.PyOutput(’\n’, reps=-1, step=50),

... VarPlotter(’alleleFreq[0][0]’, update=200,

... legend=[’h=%.1f s=%.1f’ % (x,y) for x,y in zip(h,s)],

... saveAs=’Figures/selection.pdf’,

... lines_lty_rep=[1, 2, 3], lines_col=’black’,

... lines_lwd=2, legend_x=120, legend_y=0.3,

... plot_ylab=’Allele Frequency’, plot_ylim=[0,1]),

...],

... gen=201

...)

48 SIMULATION OF POPULATION GENETICS MODELS

0.484 0.504 0.493
0.173 0.785 0.334
0.058 0.955 0.264
0.010 0.995 0.251
0.002 0.999 0.248
(201, 201, 201)

2.6.2 Multilocus Selection Models

Multilocus selection models determine individual fitness from genotypes at
multiple loci. In general, 3n parameters will be needed to specify a diploid
selection model with n loci. For example, a list of nine values are passed to
operator MaSelector in Example 2.9 to simulate a symmetric viability
model with recombination (Table 2.1) [3].

� EXAMPLE 2.9

This example simulates a symmetric viability model with recombination.
The population consists of 10,000 individuals, each with a chromosome
with two linked loci. These two loci are initialized independently with an
allele frequency of 0.5, which result in an equal frequency of 0.25 for all
haplotypes AB, Ab, aB, and ab..

During evolution, a multiallelic selection operator MaSelector is used
to assign fitness value to all individuals according to their genotype at
two loci, using a symmetric viability model with a = 1, b = 1.5, c = 2.5,
d = 4. This example uses two Stat operators to calculate the population
mean fitness, frequency of all haplotypes, and the linkage disequilibrium
between these two loci. Note that mean fitness has to be calculated before
mating and after the MaSelector because the fitness values are set by
the MaSelector to all parents.

Because a < b and c < d, the fitness of a genotype increases with the
number of heterozygous loci. Consequently, the frequencies of haplotypes
Ab and aB increase during evolution that improves the mean fitness of the
population and causes linkage disequilibrium between these two loci.

TABLE 2.1 A symmetric Viability Model
of Natural Selection.

Fitness BB Bb bb

AA a b a

Aa c d c

aa a b a

GENEALOGY OF FORWARD-TIME SIMULATIONS 49

SOURCE CODE 2.9 A Two-Locus Symmetric Viability Model of
Natural Selection

>>> import simuPOP as sim
>>> pop = sim.Population(size=10000, loci=2, infoFields=’fitness’)
>>> a, b, c, d = 1, 1.5, 2.5, 4
>>> r = 0.02
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=(0.5, 0.5)),
... sim.PyOutput(’LD, AB, Ab, aB, ab, avg fitness\n’),
...],
... preOps=[
... sim.MaSelector(loci=[0, 1], wildtype=0,
... fitness=[a, b, a, c, d, c, a, b, a]),
... sim.Stat(meanOfInfo=’fitness’),
...],
... matingScheme=sim.RandomMating(ops=sim.Recombinator(rates=r)),
... postOps=[
... sim.Stat(haploFreq=[0,1], LD=[0,1], step=20),
... sim.PyEval(r"’%.3f %.2f %.2f %.2f %.2f %.2f\n’ % (LD[0][1], "
... "haploFreq[(0,1)][(0,0)], haploFreq[(0,1)][(0,1)],"
... "haploFreq[(0,1)][(1,0)], haploFreq[(0,1)][(1,1)],"
... "meanOfInfo[’fitness’])", step=20),
...],
... gen=100
...)
LD, AB, Ab, aB, ab, avg fitness
0.001 0.25 0.25 0.26 0.25 2.25
0.022 0.23 0.27 0.27 0.23 2.26
0.090 0.16 0.34 0.34 0.16 2.27
0.178 0.07 0.43 0.43 0.07 2.36
0.205 0.05 0.45 0.46 0.04 2.43
100

2.7 GENEALOGY OF FORWARD-TIME SIMULATIONS

2.7.1 Genealogy of Haploid Simulations

Due to the stochastic nature of the parent selection process, it is likely
that some parents will have one or more offspring, while some parents
will have none. Assuming that there are N haploid parents (sequences)
in the parental generation, let X be the number of distinct reproducing
parents and k be the number of mating events, also the number of offspring,
we have

Pr (X = p | k, N)

= Pr (X = p − 1 | k − 1, N)
N − (p − 1)

N
+ Pr (X = p | k − 1, N)

p

N

50 SIMULATION OF POPULATION GENETICS MODELS

because the kth offspring has to inherit its genotype from a new parent if
there are i − 1 distinct parents after k − 1 mating events, and it has also to
inherit from an existing parent if there are already i distinct parents. Taking
expectation at both sides and assuming k ≥ 1 (E (X | 0, N) = 0), because
there can be at most k distinct parents for k mating events, the expected
number of reproducing parents after k mating events is

E (X | k, N) =
k∑

p=1

pPr (X = p | k, N)

= N
(

1 − (
1 − N−1

)k
)

.

It is easy to see that limN→∞ E(X|N,N)
N

= 1 − e−1 ∼ 0.632. That is to
say, on average, only 63.2% of the parents will have the opportunity
to pass their genotypes to the offspring generation in a haploid random
mating scheme.

� EXAMPLE 2.10

simuPOP is capable of recording one or more ancestral generations in a
population during evolution. If the parents of all offspring are recorded,
the complete pedigree information becomes available from which we can
analyze how genotypes are transmitted from ancestors to the present pop-
ulation. This process involves the use of parameter ancGen to create pop-
ulations that store specified number of ancestral generations and the use
of operators IdTagger and PedigreeTagger to assign unique IDs to
individuals and record IDs of offspring in their information fields. Refer to
Section A.2.7 for details.

After a population is created, it can be converted to a Pedigree ob-
ject using function Population.asPedigree. A Pedigree object
is basically a Population object with additional capacity to refer to
individuals by their IDs, and additional functions to analyze relationship
between individuals. For example, if you would like to know the offspring
of all individuals, you can call function

ped.locateRelatives(OFFSPRING, resultFields=offFields)

to locate all offspring of each individual and put their IDs in specified infor-
mation fields offFields. Other relatives such as spouses (it is common
to have multiple spouses when random mating is used), siblings (share at
least one parent), and full siblings (share two parents) can be identified

GENEALOGY OF FORWARD-TIME SIMULATIONS 51

similarly, and more distant relationship can be derived from these relation-
ships. In addition, this class also provides functions to identify parents or
offspring of specified individuals across several generations.

Example 2.10 evolves a population of 1000 sequences forward in time
for 1000 generations, using a haploid Wright–Fisher model. It uses a Id-
Tagger to assign a unique ID to all individuals and a parentTag-
ger with one information field father id to record the parent of each
offspring.

A function Pedigree.identifyAncestors() is used to identify
all ancestors of individuals at the present generation. The next several lines
remove all individuals except for these related ancestors. The population
size of the remaining population is returned and printed. Because there
are always less parents than their offspring, fewer and fewer ancestors
contribute to the last generation if we look backward in time. It is not
surprising that a small number of individuals in the starting population are
ancestors of all individuals in the present population. This is essentially why
coalescent simulations are much more efficient for simulating individual
loci than the corresponding forward-time simulations.

SOURCE CODE 2.10 Number of Ancestors of a Haploid Simulation

>>> import simuPOP as sim
>>> pop = sim.Population(1000, ploidy=1, ancGen=-1,
... infoFields=[’ind_id’, ’father_id’])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.IdTagger(),
...],
... matingScheme=sim.RandomSelection(
... ops=[
... sim.IdTagger(),
... sim.PedigreeTagger(infoFields=’father_id’)
...],
...),
... gen = 1000
...)
1000
>>> # a pedigree with only paternal information
>>> pop.asPedigree(motherField=’’)
>>> IDs = pop.identifyAncestors()
>>> allIDs = [ind.ind_id for ind in pop.allIndividuals()]
>>> removedIDs = list(set(allIDs) - set(IDs))
>>> pop.removeIndividuals(IDs=removedIDs)
>>> # number of ancestors...
>>> sizes = [pop.popSize(ancGen=x) for x in range(pop.ancestralGens())]
>>> print(sizes[0], sizes[100], sizes[500], sizes[999])
(1000, 18, 4, 3)

52 SIMULATION OF POPULATION GENETICS MODELS

2.7.2 Genealogy of Diploid Simulations

In the diploid case, each mating event requires two parents chosen from
their own respective sex groups, we have

E
(
X | k, Nm, Nf

) =
[
Nm

(
1 − (

1 − N−1
m

)k
)

+ Nf

(
1 −

(
1 − N−1

f

)k
)]

or N
(
1 − (1 − 2/N)k/c

)
if we assume equal number of male and female

parents, and that each mating event produces c offspring. When c = 2,
the ratio of expected number of parents to the number of offspring ap-

proaches limN→∞ E(X|2N,N,N)
2N

= 1 − e−2 ∼ 0.865. This implies that on av-
erage 86.5% of parents are needed to produce an offspring population of
the same size [4, 5]. More importantly, about 60% of parents are needed to
produce an offspring population with half the size of the parental genera-
tion. The balance proportion is at approximately 80%, meaning on average
80% of parents are needed to produce 80% of offspring in the offspring
generation. If we trace the number of ancestors who contribute their geno-
types to the last generation backward in time, roughly 80% of all ancestors
will be involved. Interestingly, even if we only need to simulate 5% of
individuals of the last generation, more and more ancestors will contribute
their genotypes to these 5% of individuals if we trace back in time, and
eventually 80% of all ancestors will be involved.

� EXAMPLE 2.11

We repeat the simulation performed in Example 2.10, this time for a diploid
population using a RandomMating mating scheme. Instead of 1000 se-
quences, this example evolves a population of 1000 diploid individuals.
Parentship is recorded during evolution using operators IdTagger and
PedigreeTagger. After evolution, the pedigree object is trimmed to
remove all ancestors who are not related to individuals in the present
generation.

The result shows that there are 804 individuals in the starting population
who are ancestors of the present population. Although these individuals
might not contribute genetically to the present generation when the chro-
mosome sequences are short, most of them will contribute their genotypes
to the present population when chromosomes are long so that pieces of
both maternal and paternal chromosomes will be passed to an offspring
population because of genetic recombination.

REFERENCES 53

SOURCE CODE 2.11 Number of Ancestors of a Diploid Simulation

>>> import simuPOP as sim
>>> pop = sim.Population(1000, ancGen=-1,
... infoFields=[’ind_id’, ’father_id’, ’mother_id’])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.IdTagger(),
...],
... matingScheme=sim.RandomMating(
... ops=[
... sim.IdTagger(),
... sim.PedigreeTagger()
...],
...),
... gen = 1000
...)
1000
>>> # a pedigree with only paternal information
>>> pop.asPedigree()
>>> IDs = pop.identifyAncestors()
>>> allIDs = [ind.ind_id for ind in pop.allIndividuals()]
>>> removedIDs = list(set(allIDs) - set(IDs))
>>> pop.removeIndividuals(IDs=removedIDs)
>>> # number of ancestors...
>>> sizes = [pop.popSize(ancGen=x) for x in range(pop.ancestralGens())]
>>> print(sizes[0], sizes[100], sizes[500], sizes[999])
(1000, 801, 786, 804)

This result has significant practical importance. If the simulated genome
sequence is long enough so that almost all offspring chromosomes inherit
part of their genotypes from both parental copies of parental chromosomes,
80% of all ancestor chromosomes will be involved in an ancestor recom-
bination graph. This will be the case even when only a small sample is
simulated using a coalescent approach. Only when there are very few
recombination events during the evolutionary process can this graph be
significantly reduced. This is essentially why coalescent simulations are
no longer significantly more efficient than forward-time simulations in the
simulation of long sequences.

REFERENCES

1. D. L. Hartl and A. G. Clark, Principles of Population Genetics, Sinauer Asso-
ciates, Inc, 1997.

2. M. Kimura and T. Ohta, Stepwise mutation model and distribution of allelic
frequencies in a finite population. Proc Natl Acad Sci USA, 75(6):2868–2872,
1978.

54 SIMULATION OF POPULATION GENETICS MODELS

3. R.C. Lewontin and K. Ken-ichi, The evolutionary dynamics of complex poly-
morphisms. Evolution, 14:458–472, 1960.

4. C. Wiuf and J. Hein, On the number of ancestors to a DNA sequence. Genetics,
147(3):1459–1468, 1997.

5. B. Derrida, S. C. Manrubia, and D. H. Zanette, On the genealogy of a population
of biparental individuals. J Theor Biol, 203(3):303–315, 2000.

CHAPTER 3

ASCERTAINMENT BIAS IN
POPULATION GENETICS

3.1 INTRODUCTION

Ascertainment bias in population genetics is usually studied in two con-
texts. One of them is discovery of polymorphic loci and is best illustrated by
invoking the example of SNPs (single-nucleotide polymorphisms). Most
of the published data on SNP sampling frequencies are obtained in a two-
step process, where the first step involves discovering chromosomal loca-
tions of a number of SNPs, and the second one involves DNA sequencing
of a sample of n chromosomes restricted to locations discovered in the
first step. The first step is called SNP discovery or ascertainment and is
based on the number of chromosomes smaller than n. As demonstrated
in a number of studies, taking into account the ascertainment scheme is
a very important aspect of SNP data analysis. For example, Polanski and
Kimmel [1] derived expressions for modeling the way in which ascertain-
ment modified SNP sampling frequencies and distorted inferences concern-
ing the rate. A more recent study [2] considers chip-based high-throughput
genotyping, which has facilitated genome-wide studies of genetic diver-
sity. Many studies have utilized these large data sets to make inferences

Forward-time Population Genetics Simulations: Methods, Implementation, and Applications,
Bo Peng, Marek Kimmel, and Christopher I. Amos.
© 2012 Wiley-Blackwell. Published 2012 by John Wiley & Sons, Inc.

55

56 ASCERTAINMENT BIAS IN POPULATION GENETICS

about the demographic history of human populations using measures of
genetic differentiation such as FST or principal component analysis. How-
ever, again, the single-nucleotide polymorphism chip data suffer from as-
certainment biases caused by the SNP discovery process in which a small
number of individuals from selected populations are used as discovery pan-
els. Albrechtsen et al. [2] generate SNP genotyping data for individuals that
previously have been subject to partial genome-wide Sanger sequencing
and compare inferences based on genotyping data with inferences based on
direct sequencing. They demonstrate that the ascertainment biases will dis-
tort measures of human diversity and possibly change conclusions drawn
from these measures in some unexpected ways. They also show that details
of the genotyping calling algorithms can have a surprisingly large effect
on population genetic inferences. This type of ascertainment bias will be
of importance in forthcoming genetic and genomic studies and the role of
forward simulations will be rather serious.

However, in this chapter, we would like to show application of SimuPOP
to ascertainment bias occurring in the interspecies or interpopulation stud-
ies. If any genetic measure of variability or diversity (such as heterozy-
gosity) and its underlying cause (such as mutation rate) is studied in more
than one species, a careful consideration of selection of the portions of the
genome that are used as a basis for comparison is needed. Depending on
from which species the polymorphisms are ascertained, the comparison
of variability between the two species may be biased. We will consider a
specific scenario, in which two extant species, such as humans and chim-
panzees, are traced to a common ancestral species. Also, we will consider
microsatellite loci, which can be modeled mathematically in a relatively
simple way, so that the forward-time simulations can be compared with
exact computations. Also, data are available in the literature to make the
example interesting from the population genetics viewpoint.

In our example, ascertainment bias of interspecies (population) studies
of microsatellite loci occurs when a locus is selected based on its large
allele size in one species, in which it is first discovered (say, the cognate
species 1). This bias is reflected in average allele length in any noncog-
nate species 2 being smaller than that in species 1. This phenomenon was
observed in various pairs of species, including comparisons of allele sizes
in human and chimpanzee. Various mechanisms were proposed to explain
the ascertainment bias. Here, we examine the simplest possible framework:
A single-step asymmetric and unrestricted stepwise mutation model with
genetic drift. The mathematical model is analyzed based on coalescence
theory. The mechanism of ascertainment bias in this model is a tighter
correlation of allele sizes within a cognate species 1 than of allele sizes
in two different species 1 and 2. We present computations of the expected

INTRODUCTION 57

bias, given the mutation rate, population sizes of species 1 and 2, time of
separation of species 1 and 2, and the age of the allele. In particular, using
the coalescence theory, we show that when the past demographic histories
of the cognate and noncognate taxa are different, the rate and directionality
of mutations will impact the allele sizes in the two taxa differently than the
simple effect of ascertainment bias.

Microsatellite polymorphisms, characterized by variations of copy num-
bers of short motifs of nucleotides, have become a common tool for
gene mapping and evolutionary studies since they are abundantly found
in genomes of a large number of organisms [3–6]. High mutation rates at
these loci are the attractive feature of using the microsatellites as desired
tools for molecular evolutionary studies, since consequences of accumula-
tion of past mutation events are easily expected to be seen as differences
of allele frequency distributions even in closely related taxa [7–9]. How-
ever, in cross-species comparisons of allele size distributions at microsatel-
lite loci, some apparently discordant findings (namely, a systematic bias
of average allele sizes in one species compared to another) led some in-
vestigators to argue that these repeat loci may not be the most efficient
tools for interspecies studies [10, 11]. In general, for evolutionary studies,
microsatellite loci identified in one species (or population) are studied in
other species (or populations), making use of their comparative genome
homology. Nevertheless, the process of detection (in the cognate taxon)
and its use in a noncognate taxon may inherently impact the allele size
distribution and other associated summary measures of genetic variation
(such as heterozygosity, allele size variance, or number of segregating al-
leles). This discordance, called the ascertainment bias, is claimed to have
been observed in sheep [12], swallows, cetaceans, ruminants, turtles, and
birds [13]. However, Rubinsztein et al. [10] and Amos and Rubinsztein [14]
explained such observations as intertaxa differences of rates and patterns
of mutations at microsatellite loci.

The goal of the present investigation is to address this issue. Our ap-
proach is different from other attempts to study similar problems (see Ref.
[15]), since we consider a general model of mutations (called the gener-
alized stepwise mutation model (GSMM)) that is shown to be applicable
for microsatellites [8, 16], on which we superimpose the effects of demo-
graphic differences of cognate and noncognate taxa, as both of these factors
are known to jointly affect the features of polymorphisms at microsatellite
loci in extant taxa [17]. In particular, using the coalescence theory, we show
that when the past demographic histories of the cognate and non-cognate
taxa are different, the rate and directionality of mutations will impact the al-
lele sizes in the two taxa differently than the simple effect of ascertainment
bias.

58 ASCERTAINMENT BIAS IN POPULATION GENETICS

3.2 METHODS

3.2.1 Evolution of a DNA Repeat Locus

We consider a DNA repeat locus originated t units of time ago (backward
time t), and observed at present (time 0). Adjective “backward” will be
usually omitted. The chromosomes containing the locus belong to one of
the two populations (labeled 1 and 2), which diverged t0 time units before
present (time t0) from an ancestral population (labeled 0). The essentials are
depicted in Figure 3.1. The ancestral population consists of 2N0 chromo-
somes, and populations 1 and 2 of 2N1 and 2N2 chromosomes, respectively.
We assume the time-continuous Fisher–Wright–Moran model [17]. At the
locus considered, alleles mutate according to the unrestricted generalized
stepwise mutation model [8]. Specifically, the action of genetic drift and
mutation can be represented by the following coalescence/mutation model:

1. Chromosomes 1 and 2, sampled at time 0 from populations 1 and 2,
respectively, have a common ancestor T units of time before present
(Figure 3.1). Random variable (rv) T has exponential distribution
with parameter 1/(2N0), shifted by t0, that is,

Pr[T > τ] =
{

1, τ ≤ t0,

exp[−(τ − t0)/(2N0)], τ > t0.
(3.1)

In other words, as long as the two chromosomes or their direct an-
cestors belong to different populations (i.e., for τ ≤ t0, in backward

X0

X2

N2

X1

N1

N0

t born)(Locus

T (Coalescence)

t0 split)(Species

0 (Present)

Ancestral species

2Species1Species

FIGURE 3.1 Demographic scenario employed in the mathematical model and
SimuPOP simulations. N0, N1, and N2 are effective sizes of the ancestral, cognate,
and noncognate populations, respectively; X0, X1, and X2 are increments of allele
sizes due to mutations in the ancestral allele, in chromosome 1, and in chromosome
2, respectively.

METHODS 59

time), they cannot coalesce. From the moment the populations con-
verge (i.e., for τ > t0 in backward time), the distribution of the time
to coalescence is exponential with parameter 1/(2N0).

2. Chromosomes 1 and 1′, sampled at time 0 from population 1, have a
common ancestor T units of time before present, either in population
1, if T ≤ t0, or in the ancestral population 0, if T > t0. Therefore, the
random variable T has a more complex exponential distribution of
the form

Pr[T > τ] =
{

exp[−τ/(2N1)], τ ≤ t0,

exp[−t0/(2N1) − (τ − t0)/(2N0)], τ > t0.
(3.2)

In other words, as long as the two chromosomes or their direct an-
cestors belong to population 1 (i.e., for τ ≤ t0, in backward time),
they coalesce with intensity 1/(2N1). From the moment the species
converge (i.e., for τ > t0 in backward time), the coalescence intensity
is 1/(2N0).

3. Initial size (number of repeats) at the locus at time (t) of the origin
of the locus is equal to a constant. Choosing this constant equal to 0
is not a restrictive assumption. In our model, we assume that before
time t, there are no mutation events.

4. Mutation epochs along the lines of descent occur according to a Pois-
son process with constant intensities ν0, ν1, and ν2 in populations 0,
1, and 2, respectively. Each mutation event alters the allele size S by
adding to it a random number of repeats U, that is,

S → S + U.

U is an integer-valued random variable with probability-generating
function (pgf)

ϕk(s) = E(sU) =
∞∑

i=−∞
Pr[U = i]si.

The pgf ϕk(s) and, equivalently, the distribution of U are gen-
erally different in each population k (k = 0, 1, 2). Consequently,
the change of the allele size, during a time interval of length �t

spent in population k, is a compound Poisson random variable with
pgf exp{ν�t[ϕk(s) − 1]}. For the asymmetric single-step stepwise

60 ASCERTAINMENT BIAS IN POPULATION GENETICS

mutation model (SSMM), we have

ϕk(s) = bks + dk/s, (3.3)

where bk = Pr[U = 1] and dk = Pr[U = −1] are the respective probabil-
ities of expansion and contraction of the allele in a single mutation epoch.

3.2.2 Conditional Distributions and Ascertainment Bias of
Allele Sizes

The main purpose of this section is to use the principles of the coalescence
theory (as reviewed by Tavaré [18]) to derive conditional expected allele
size at a chromosome, given the allele size on another chromosome sampled
either from a different or from the same population as the original chro-
mosome. This information is crucial for obtaining theoretical estimates of
the ascertainment bias in conjunction with other effects.

Chromosomes Sampled from Populations 1 and 2 We use no-
tation as in Figure 3.1: X0, X1, and X2 denote the incremental changes of
allele sizes in the ancestral chromosome 0, and in chromosomes 1 and 2,

respectively. Conditionally on T , X0, X1 and X2 are independent random
variables. Let us note that while chromosome 0 always lives in population
0, chromosomes 1 and 2 begin their lives in population 0 and then continue
in populations 1 and 2. Let Y1 = X0 + X1 and Y2 = X0 + X2 denote the
allele sizes at time 0 (present time) at chromosomes 1 and 2, respectively.
We want to find the expected allele size at chromosome 2, jointly with the
allele size at chromosome 1 being equal to i (conditional on {T = τ}),

E[Y2; Y1 = i|T = τ] =
∑

j

E[X0 + X2; X0 = j; Y1 = i − j|T = τ]

= E[X2|T = τ] Pr[Y1 = i|T = τ] (3.4)

+
∑

j

j Pr[X0 = j|T = τ] Pr[X1 = i − j|T = τ].

If we translate the above into the language of generating functions, we
obtain∑

i

E[Y2; Y1 = i|T = τ]si = E[X2|T = τ]fX0|T=τ(s)fX1|T=τ(s)

+sf ′
X0|T=τ(s)fX1|T=τ(s). (3.5)

METHODS 61

Chromosomes Sampled from Population 1 Using the same rea-
soning, we obtain∑

i

E[Y ′
1; Y1 = i|T = τ]si = E[X′

1|T = τ]fX0|T=τ(s)fX1|T=τ(s)

+ sf ′
X0|T=τ(s)fX1|T=τ(s). (3.6)

Probability Generating Functions and Expectations of Incre-
mental Changes of Allele Sizes Random variables X0, X1, and X2

result from compounding the Poisson process [19] of mutations, with vary-
ing intensities ν0, ν1, and ν2, by matching distributions of allele size changes
with pgf values ϕ0(s), ϕ1(s), and ϕ2(s), respectively. The choice of intensity
and pgf depends on the population in which the chromosomes reside during
a given time interval. Without getting into detail, we obtain

fX0 |T=τ(s) =

⎧⎪⎨
⎪⎩

exp{(t − t0)ν0[ϕ0(s) − 1] + (t0 − τ)ν1[ϕ1(s) − 1]}, τ ≤ t0,

exp{(t − τ)ν0[ϕ0(s) − 1]}, t0 < τ ≤ t,

1, τ > t,

(3.7)

fXi|T=τ(s) =

⎧⎪⎨
⎪⎩

exp{τνi[ϕi(s) − 1]}, τ ≤ t0,

exp{(τ − t0)ν0[ϕ0(s) − 1] + t0νi[ϕi(s) − 1]}, t0 < τ ≤ t,

exp{(t − t0)ν0[ϕ0(s) − 1] + t0νi[ϕi(s) − 1]} τ > t,

(3.8)

for i = 1, 2. Also, fX′
1|T=τ(s) ≡ fX1|T=τ(s). The conditional expected val-

ues are obtained by differentiation of respective pgf values and setting
s = 1.

Computational Expressions for E [Y2; Y1 = i] and E [Y ′
1; Y1 = i]

In the single-step stepwise mutation model, the pgf values ϕ0(s), ϕ1(s), and
ϕ2(s) have the form as in Equation 3.3. We note the expansion

eνt[bs+d/s−1] =
∑
i∈Z

βis
i =

∑
i∈Z

e−νtIi(2νt
√

bd)

(
b

d

)i/2

si (3.9)

valid for |s| = 1, where Ii = I−i is the modified Bessel function of the first
type, of integer order i [20]. Using this expansion, it is possible to represent
the right-hand sides of Equations 3.5 and 3.6 as power series in variable s.
Finally,

E[Y2; Y1 = i] =
∫ ∞

0
E[Y2; Y1 = i|T = τ]fT (τ)dτ,

62 ASCERTAINMENT BIAS IN POPULATION GENETICS

E[Y ′
1; Y1 = i] =

∫ ∞

0
E[Y ′

1; Y1 = i|T = τ]fT (τ)dτ,

where fT (τ) is the distribution density of the time to coalescence, based
on Equations 3.1 and 3.2, respectively. A computational expression for
Pr[Y1 = i] can be similarly obtained.

Suppose that a DNA repeat locus discovered in a genome search of
population 1 is retained for further study if it has a minimum number of x

repeats of the motif, that is, if

Y1 ≥ x.

This criterion is also a substitute measure of this locus’s variability, and
hence of its polymorphism. The reason is that, irrespective of directionality
of mutational changes, in the GSMM model the extremes of repeat count
are strongly positively correlated with variance of repeat count and het-
erozygosity at the locus. This latter is a consequence of the random walk
mechanism of mutations in this model (for a discussion and references, see
Ref. [8]).

If the locus is retained and a sample of n individuals from the noncognate
population 2 is typed for this locus, then the expected values of the mean
repeat count in the sample is equal to

E

(
1

n

n∑
i=1

Y2i |Y1 ≥ x

)
= E[Y2|Y1 ≥ x] =

∑
i≥x E[Y2; Y1 = i]∑

i≥x Pr[Y1 = i]
.

If a sample of n individuals of the cognate population 1 is typed for this
locus, then the expected values of the mean repeat count in the sample is
equal to

E

(
1

n

n∑
i=1

Y ′
1i |Y1 ≥ x

)
= E[Y ′

1|Y1 ≥ x] =
∑

i≥x E[Y ′
1; Y1 = i]∑

i≥x Pr[Y1 = i]
.

The ascertainment bias of the mean allele size can be defined as

B = E[Y2|Y1 ≥ x] − E[Y ′
1|Y1 ≥ x]. (3.10)

3.2.3 Simulation Method

Despite the complexity of the theory involved in the study of ascertainment
bias, simulation of such a process is straightforward. Example 3.1 explains
how to evolve a founder population for t generations and evolve again from

METHODS 63

generation t − t0 if a random allele from the simulated population exceeds
a specified threshold.

� EXAMPLE 3.1

This example creates a founder population of size N. This diploid popula-
tion has a locus with two alleles with an initial allele of 100. The founder
population is evolved for t − t0 generations before a copy of this population
is expanded to a size of N1 and is evolved for another t0 generations. The
original population will also evolve t0 generations if a random allele from
this population has more tandem repeats than a specified threshold. The
difference between the mean number of tandem repeats in these two pop-
ulations will be returned as a measure of ascertainment bias. During this
evolutionary process, a step-wise mutation model with different mutation
rates and increasing probabilities can be specified for the evolution of the
founder and two split populations.

SOURCE CODE 3.1 Script to Simulate the Evolution of Microsatellite
Marker Using a Scaling Technique

def simuAscerBias(t, t0, N, N1, N2, v0, v1, v2, incProb, thresh):

’’’This function evolves a founder population of N individuals for

t-t0 generations. A copy of this population is expanded to a size of

N1 and continued to evolve for t-t0 generations. If a randomly chosen

allele from the this population has more tandem repeats than a

specified threshold, the same copy of population (at generation

t-t0) is evolved similarly with a population size of N1. Ascertainment

bias is returned as the length difference between the first and

second populations.’’’

while True:

Evolve an ancestral population with size N0

pop = sim.Population(size=N, loci=1)

pop.evolve(

initOps=[

sim.InitSex(),

sim.InitGenotype(genotype=[100])

],

preOps=sim.StepwiseMutator(rates=v0, incProb=incProb, loci=0),

matingScheme=sim.RandomMating(),

gen=t-t0

)

make a copy of pop

pop1 = pop.clone()

Evolve for another t0 generations with population size N1

pop1.evolve(

preOps=sim.StepwiseMutator(rates=v1, incProb=incProb, loci=0),

matingScheme=sim.RandomMating(subPopSize=N1),

gen=t0

)

64 ASCERTAINMENT BIAS IN POPULATION GENETICS

draw a random allele from pop1

ind1 = pop1.individual(randint(0, N1-1))

if the allele length is greater than the threshold,

if ind1.allele(randint(0,1)) > thresh:

Evolve pop2 for t0 generations with population size N2

pop.evolve(

preOps=sim.StepwiseMutator(rates=v2, incProb=incProb, loci=0),

matingScheme=sim.RandomMating(subPopSize=N2),

gen=t0

)

return (sum(pop1.genotype()) - sum(pop.genotype()))/(2.*N1)

Direct execution of simulations described in Example 3.1 is however
infeasible. Because populations are large, it is time-consuming to evolve
them for tens of thousands of generations. What makes things worse is that
the probability that a random allele exceeds a specified threshold can be
low, meaning many attempts may be needed to obtain a successful measure
of ascertainment bias.

This problem can be addressed through the use of a scaling technique
[21]. Compared to a regular simulation that evolves a population of size
N for t generations, a scaled simulation with a scaling factor λ evolves a
smaller population of size N/λ for t/λ generations with magnified (mul-
tiplied by λ) mutation, recombination, and selection forces. This method
could be justified by a diffusion approximation to the standard Wright–
Fisher process [21, 22]; however, because the diffusion approximation only
applies to weak genetic forces in the evolution of haploid sequences, it
cannot be used when nonadditive diploid or strong genetic forces are used.
Simulations for this chapter are performed with scaling factor of 100, where
populations with sizes Ni/100 are evolved for ti/100 generations, under
mutation models with mutation rates 100νi. Running the simulations with
different scaling factors yields identical results for λ < 100.

3.3 RESULTS

3.3.1 Summary of Modeling Results

The purpose of our modeling is to determine in what circumstances the
presence or absence of differences, observed in sizes of alleles at loci dis-
covered in a cognate species (population 1) and then typed in a noncognate
species (population 2), can be attributed to ascertainment bias or alterna-
tively to differential effects of genetic drift or mutation rate and pattern.

RESULTS 65

Before we present numerical result, let us review the intuitions concerning
these effects. These intuitions are in a major part valid independent of a
particular model of mutations:

1. Ascertainment bias per se results from a stronger correlation between
allele states of chromosomes in cognate population 1 compared to
the correlation between allele states in cognate population 1 versus
noncognate population 2.

2. Genetic drift can reduce the effects of ascertainment bias. Indeed, if
the cognate population 1 is much larger than the noncognate popula-
tion 2, then the coalescence process within population 1 has the star-
like structure characterized by reduced dependence of allele states
[23]. Therefore, the difference in correlations of allele states of chro-
mosomes in cognate population 1 compared to correlations of allele
states in cognate population 1 versus noncognate population 2 will
be reduced. Note that the size of the noncognate population 2 will not
influence the difference of expected allele sizes, but it may influence
other indices of polymorphisms.

3. Mutation rate and pattern, different in populations 1 and 2, obviously
can influence the differences in allele sizes between chromosomes in
different populations.

Figures 3.2 and 3.3 depict a series of modeling studies of B, the com-
bined effect of ascertainment bias, genetic drift, and differential mutation
rate on the mean repeat count based on SimuPOP model, compared to those
obtained using Equation 3.10. Basic parameter values approximate the evo-
lutionary dynamics of dinucleotides in humans and chimpanzees: Time
from divergence of species t0 = 5 × 106 years = 2 × 105 generations for
Figure 3.2 and t0 = 6.25 × 106 years = 2.5 × 105 generations for Figure
3.3, the age of the repeat locus in the range t = 5 × 105 generations, muta-
tion rate ν = 1 × 10−4 per generation, and probability of increase of allele
size in a single mutation event, b = 0.55. Effective size of the current hu-
man population is 2N = 4 × 105 individuals.

Figure 3.2 compares simulation results with theoretical estimates from
Equation 3.10. It depicts the values of B for the basic parameter values
b0 = b1 = b2 = b and ν0 = ν1 = ν = 0.0001, with the effective sizes of
all populations concurrently varying from 2 × 104 to 4 × 105 individuals
and with mutation rates ν1 (3.2.a) or ν2 (3.2.b) varying from ν to 5ν. Figures
3.2 a and b makes it explicit that the combined effect of ascertainment bias,

66 ASCERTAINMENT BIAS IN POPULATION GENETICS

N

B

−
6

−
4

−
2

0
2

4
6

10,000 50,000 100,000 150,000 200,000

B(v2 = 0.0001)
Theoretical

B(v2 = 0.0003)
Theoretical

B(v2 = 0.0005)
Theoretical

N

B

0
4

8
12

16

10,000 50,000 100,000 150,000 200,000

B(v1 = 0.0001)
Theoretical

B(v1 = 0.0003)
Theoretical

B(v1 = 0.0005)
Theoretical

(a)

(b)

FIGURE 3.2 Comparison of SimuPOP simulations with mathematical expres-
sions from Equation 3.10. (a) Values of B for the basic parameter values b0 =
b1 = b2 = b and ν0 = ν1 = ν = 0.0001, with the effective sizes of all popula-
tions concurrently varying from 2 × 104 to 4 × 105 individuals and with mutation
rates ν2 varying from ν to 5ν. (b) Values of B for the basic parameter values
b0 = b1 = b2 = b and ν0 = ν2 = ν = 0.0001, with the effective sizes of all pop-
ulations concurrently varying from 2 × 104 to 4 × 105 individuals and with mu-
tation rates ν1 varying from ν to 5ν.

genetic drift, and differential mutation rate on the mean repeat count can
result in a range of B values from positive to negative ones.

Figure 3.3a depicts the values of B for the basic parameter values
b0 = b1 = b2 = b, with the effective sizes of the ancestral and noncog-
nate populations kept at a much lower level of 2N0 = 2N2 = 2 × 104

individuals, with the size of the cognate population kept at the basic
level 2N1 = 2N = 4 × 105. The lower effective population sizes 2N0

and 2N2 can be regarded as reflecting the lower population counts of
common ancestors of humans and chimpanzees and of their chimpanzee

RESULTS 67

v1

B

0
2

4
6

8
10

12

1e−04 2e−04 3e−04 4e−04 5e−04

B(t,t0,N0,N1,N2,v0,v1,v2)
Theoretical line

v1

B

−
4

−
2

0
2

4
6

8

1e−04 2e−04 3e−04 4e−04 5e−04

B(t,t0,N0,N2,N1,v0,v2,v1)
Theoretical line

(a)

(b)

FIGURE 3.3 Comparison of SimuPOP simulations with mathematical expres-
sions from Equation 3.10. (a) Values of B for the basic parameter values b0 =
b1 = b2 = b, with the effective sizes of the ancestral and noncognate populations
kept at the level of 2N0 = 2N2 = 2 × 104 individuals, with the size of the cog-
nate population kept at the basic level 2N1 = 2N = 4 × 105. The mutation rate
of the cognate (larger) population is varied from ν1 = 1 × 10−4 to 5 × 10−4 per
generation, while the mutation rates of the ancestral and the noncognate (smaller)
population are set at ν0 = ν2 = 1.5 × 10−4 per generation. (b) A reverse config-
uration: The mutation rate of the noncognate (larger) population is varied from
ν1 = 1 × 10−4 to 5 × 10−4 per generation, while the mutation rates of the an-
cestral and the cognate (smaller) population are set at ν0 = ν2 = 1 × 10−4 per
generation.

descendants. The mutation rate of the cognate (larger) population is var-
ied from ν1 = 1 × 10−4 to 5 × 10−4 per generation, while the mutation
rates of the ancestral and the noncognate (smaller) population are set at
ν0 = ν2 = 1.5 × 10−4 per generation. At ν1 ≈ 3 × 10−4, the value of B is
approximately equal to 5, the difference of mean allele size observed when
human loci are typed in chimpanzee, as described in the following section.

68 ASCERTAINMENT BIAS IN POPULATION GENETICS

Figure 3.3b depicts the reverse configuration. Now, the effective sizes of
the ancestral and cognate populations are kept at the level of 2N0 = 2N2 =
2 × 104 individuals, with the size of the noncognate population kept at
the basic level 2N1 = 2N = 4 × 105. The mutation rate of the noncognate
(larger) population is varied from ν1 = 1 × 10−4 to 5 × 10−4 per genera-
tion, while the mutation rates of the ancestral and the cognate (smaller) pop-
ulation are set at ν0 = ν2 = 1.5 × 10−4 per generation. At ν1 ≈ 3 × 10−4,
the value of B is approximately equal to −1, the difference of mean allele
size observed when chimpanzee loci are typed in human, as described in
the following section.

3.3.2 Comparisons of Empirical Statistics Derived from
Human and Chimpanzee Microsatellite Data

As an illustration of our model we use, without claiming generality, the
well-known data published by Cooper et al [24]. These authors previously
examined 40 human microsatellite markers and their homologues in a panel
of nonhuman primates and showed that human loci tend to be longer, a trend
that was apparent in several other studies. Taken at face value, these data
indicate that since their most recent common ancestor, more microsatellite
expansion mutations have occurred in the lineage leading to humans com-
pared to the lineage leading to chimpanzees. Based on this, they suggested
that this provided evidence that microsatellites tended to expand with time
and were doing so more rapidly in humans. However, an alternative expla-
nation is that the length differences are due to ascertainment bias arising
from the selection of longer than average human loci as markers. Cooper
et al [24] presented the necessary reciprocal experiment showing that hu-
man microsatellites tend to be longer than their chimpanzee homologues,
regardless of the species from which the loci were cloned. The data com-
prised 38 chimpanzee-derived CA-repeat microsatellites that were ampli-
fied in a panel of six chimpanzees and six humans.

For loci that are polymorphic in both species, the difference between the
reciprocal comparisons can be used to estimate the size of the ascertainment
bias affecting human–chimpanzee comparisons. For dinucleotide repeat
loci cloned and characterized in humans (n = 22), human loci were an
average of 5.18 repeat units longer than in chimpanzees, while dinucleotide
repeats cloned from chimpanzees (n = 25) were on average 1.23 repeat
units longer in humans. As noticed in the previous section, these data are
reproduced by our model assuming specific values of effective population
sizes, mutation rates, and times to separation of species.

DISCUSSION AND CONCLUSIONS 69

3.4 DISCUSSION AND CONCLUSIONS

Computations presented in this chapter demonstrate that the scaled forward
simulations using SimuPOP closely match the analytical solution of the
evolutionary model of Section 3.2.1. Let us note that the ability to perform
the mathematical derivations of Section 3.2.2 depends on the simplicity
of the assumed microsatellite discovery criterion Y1 ≥ x. If this criterion
is replaced by a condition on heterozygosity or variance, the theoretical
derivations become practically impossible. On the other hand, it is easy to
use any other microsatellite discovery criterion in SimuPOP simulations.

Data of Cooper et al [24] analyzed by us show that when the human-
derived dinucleotide repeat loci were typed in chimpanzee, they show a
trend toward smaller mean allele sizes in the chimpanzee compared to that
in human populations. These and other data also suggest that the same
holds for other measures of within-population variation (i.e., the chim-
panzees showing lower heterozygosity and allele size variance compared
to humans). The theoretical model, discussed in Section 3.2.1, shows that
these observations are in agreement with ascertainment bias, caused by a
selective choice of the human-specific loci. In the reciprocal experiment,
the chimpanzee-derived dinucleotides, typed in humans populations, also
show a trend toward smaller mean allele sizes in the chimpanzee compared
to that in human populations.

These observations imply that the ascertainment bias is a factor of an
appreciable order of magnitude in interpreting interpopulation genetic vari-
ation at microsatellite loci, when the loci are selectively chosen for poly-
morphism in one of the populations being compared. However, its effect
is confounded by other differences in evolutionary dynamics between the
cognate and noncognate populations as well as interpopulation differences
of rates of mutations at the loci. For example, under the assumption that
dinucleotide loci evolving under a generalized stepwise mutation model [8]
show that with mutation rate and population size being the same in cognate
and noncognate populations, the mean allele size in the cognate population
may be several repeat units larger. The bias decreases as population size
(and mutation rate) increases (Figure 3.2a and b). However, our numerical
computations show that differences of population size as well as mutation
rate may enhance or decrease this ascertainment bias, depending upon the
pattern of difference. As shown in Figure 3.2a, increased mutation rate in
the noncognate population can reduce, or even reverse, the ascertainment
bias. Likewise, increased mutation rate in the cognate population may am-
plify the bias (Figure 3.2b). Numerical evaluations of the model suggest
that the primary reason of ascertainment bias is the tighter correlation of

70 ASCERTAINMENT BIAS IN POPULATION GENETICS

allele sizes within the cognate population. Thus, intuitively it is clear that
population size differences between cognate and non-cognate populations
may also erase or amplify ascertainment bias. If the cognate population is
of larger size or is growing more rapidly than the noncognate one, a reduced
bias is expected.

The differences of patterns of ascertainment biases seen at the human-
specific versus chimpanzee-specific dinucleotide loci can be explained in
terms of the above theoretical predictions, if the mutation rate is higher
for humans as explained in Section 3.2.1. The observed pattern (namely,
the ascertainment bias is of a lower magnitude for the chimpanzee-specific
loci) is also consistent with effective population size in chimpanzees be-
ing smaller than that of human populations. In this sense, our observation
and theoretical predictions are consistent with the assertion of Rubinsztein
et al [10], although an expansion bias of mutations is not necessary to
explain the observed differences in humans and chimpanzees.

Our theory and data can also be used to explain the apparently discordant
conclusions reached by other investigators examining this issue. For exam-
ple, Ellegren et al. [13] observed smaller allele sizes in noncognate species
compared to that in cognates of birds, which could be predominantly due
to ascertainment bias alone. Crawford et al. [11], in contrast, found longer
median allele sizes in sheep (compared to that in cattle), regardless of the
origin of the microsatellites. This may be the case where the ascertainment
bias effect is erased (or even reversed) due to mutation rate and effective
population size differences in sheep and cattle. Cooper et al. [24] also pub-
lished reciprocal studies on ascertainment bias, analogous to our data of
the present paper. Their observations are not at variance with our findings,
as they also observed some chimpanzee-specific loci being significantly
longer in humans.

There had been some discussions with regard to the dependence of inter-
population allele size differences on the absolute repeat lengths of alleles
[13, 14]. It is true that for microsatellites there is a general tendency of
increased level of polymorphism at loci harboring larger alleles [25]. Our
theory shows that loci exhibiting larger degree of polymorphism will be
subject to lesser bias of ascertainment (due to looser correlation of allele
sizes in the cognate population). Hence, appropriate adjustment of inter-
locus differences of polymorphism as well as allele sizes should be made
in addressing the importance of ascertainment bias. Our approach to ana-
lyzing of “centered” statistics at least partially circumvents this interlocus
component of variability.

In summary, we conclude that ascertainment bias should be an important
consideration for interpretation of interpopulation differences of genetic

REFERENCES 71

variation at microsatellite loci, but this bias can be reduced or even re-
versed when the past demographic histories of cognate and noncognate
populations are drastically different. In addition, mutation rate differences
in populations (either due to their reproductive behavior or differences of
cell division during oogenesis and spermatogenesis) can also mimic ascer-
tainment bias.

REFERENCES

1. A. Polanski and M. Kimmel, New explicit expressions for relative frequencies
of single-nucleotide polymorphisms with application to statistical inference
on population growth. Genetics, 165(1):427–436, 2003.

2. A. Albrechtsen, F. C. Nielsen, and R. Nielsen, Ascertainment biases in SNP
chips affect measures of population divergence. Mol Biol Evol, 27(11):2534–
2547, 2010.

3. S. D. Pena, P. C. Santos, M. C. Campos, and A. M. Macedo, Paternity testing
with the F10 multilocus DNA fingerprinting probe. EXS, 67:237–247, 1993.

4. R. Deka, M. D. Shriver, L. M. Yu, L. Jin, C. E. Aston, R. Chakraborty, and R. E.
Ferrell, Conservation of human chromosome 13 polymorphic microsatellite
(CA)n repeats in chimpanzees. Genomics, 22(1):226–230, 1994.

5. A. M. Bowcock, A. Ruiz-Linares, J. Tomfohrde, E. Minch, J. R. Kidd, and L. L.
Cavalli-Sforza, High resolution of human evolutionary trees with polymorphic
microsatellites. Nature, 368(6470):455–457, 1994.

6. C. R. Primmer and H. Ellegren, Patterns of molecular evolution in avian mi-
crosatellites. Mol Biol Evol, 15(8):997–1008, 1998.

7. J. L. Weber and C. Wong, Mutation of human short tandem repeats. Hum Mol
Genet, 2(8):1123–1128, 1993.

8. M. Kimmel and R. Chakraborty, Measures of variation at DNA repeat loci
under a general stepwise mutation model. Theor Popul Biol, 50(3):345–367,
1996.

9. R. Chakraborty, M. Kimmel, D. N. Stivers, L. J. Davison, and R. Deka, Relative
mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc Natl
Acad Sci USA, 94(3):1041–1046, 1997.

10. D. C. Rubinsztein, J. Leggo, and W. Amos, Microsatellites evolve more rapidly
in humans than in chimpanzees. Genomics, 30(3):610–612, 1995.

11. A. M. Crawford, S. M. Kappes, K. A. Paterson, M. J. deGotari, K. G. Dodds,
B. A. Freking, R. T. Stone, and C. W. Beattie, Microsatellite evolution: testing
the ascertainment bias hypothesis. J Mol Evol, 46(2):256–260, 1998.

12. S. H. Forbes, J. T. Hogg, F. C. Buchanan, A. M. Crawford, and F. W. Allendorf,
Microsatellite evolution in congeneric mammals: domestic and bighorn sheep.
Mol Biol Evol, 12(6):1106–1113, 1995.

72 ASCERTAINMENT BIAS IN POPULATION GENETICS

13. H. Ellegren, C. R. Primmer, and B. C. Sheldon, Microsatellite “evolution”:
directionality or bias? Nat Genet, 11(4):360–362, 1995.

14. W. Amos and D. C. Rubinsztein, Microsatellites are subject to directional
evolution. Nat Genet, 12(1):13–14, 1996.

15. A. R. Rogers and L. B. Jorde, Ascertainment bias in estimates of average
heterozygosity. Am J Hum Genet, 58(5):1033–1041, 1996.

16. M. Kimmel, R. Chakraborty, D. N. Stivers, and R. Deka, Dynamics of re-
peat polymorphisms under a forward–backward mutation model: within- and
between-population variability at microsatellite loci. Genetics, 143(1):549–
555, 1996.

17. M. Kimmel, R. Chakraborty, J. P. King, M. Bamshad, W. S. Watkins, and
L. B. Jorde, Signatures of population expansion in microsatellite repeat data.
Genetics, 148(4):1921–1930, 1998.

18. S. Tavaré, Line-of-descent and genealogical processes, and their applications
in population genetics models. Theor Popul Biol, 26(2):119–164, 1984.

19. J. F. C. Kingman, Poisson Processes, Oxford University Press, Oxford, 1993.

20. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, with
Formulas, Graphs, and Mathematical Tables, U.S. Government Printing Of-
fice, 1972.

21. C. J. Hoggart, M. Chadeau-Hyam, T. G. Clark, R. Lampariello, J. C. Whittaker,
M. De Iorio, and D. J. Balding, Sequence-level population simulations over
large genomic regions. Genetics, 177(3):1725–1731, 2007.

22. Warren J. Ewens, Mathematical Population Genetics, Springer, 2004.

23. F. Tajima, The effect of change in population size on DNA polymorphism.
Genetics, 123(3):597–601, 1989.

24. G. Cooper, D. C. Rubinsztein, and W. Amos, Ascertainment bias cannot
entirely account for human microsatellites being longer than their chimpanzee
homologues. Hum Mol Genet, 7(9):1425–1429, 1998.

25. J. L. Weber, Informativeness of human (DC-DA)n.(DG-DT)n polymorphisms.
Genomics, 7(4):524–530, 1990.

CHAPTER 4

OBSERVING PROPERTIES OF
EVOLVING POPULATIONS

Coalescent-based methods only simulate individuals in a coalescent tree,
namely, people who are genetically related to the sample that is simulated.
Because only a small fraction of ancestors is simulated, it is not possible to
gather population properties of the ancestral populations during simulation.
On the other hand, because these methods are based on standard Wright–
Fisher models, the properties of the ancestral populations can be derived
theoretically, so there is less demand to study them through simulations.
In contrast, forward-time simulation methods evolve populations genera-
tion by generation, so it is easy to observe population properties during an
evolutionary process. This is especially useful for the study of evolution-
ary processes that cannot be completely characterized by a Wright–Fisher
model. Because these processes are usually mathematically intractable,
forward-time simulations often remain the only effective method to study
the properties of these processes.

In this chapter, we use forward-time population genetics simulations to
follow the evolution of human genetics diseases and investigate the impact
of various genetic and demographic factors on the allelic spectra of human
diseases, based on a model proposed by Reich and Lander [1]. Because
the goal of this chapter is to demonstrate how to observe the properties of

Forward-time Population Genetics Simulations: Methods, Implementation, and Applications,
Bo Peng, Marek Kimmel, and Christopher I. Amos.
© 2012 Wiley-Blackwell. Published 2012 by John Wiley & Sons, Inc.

73

74 OBSERVING PROPERTIES OF EVOLVING POPULATIONS

evolving populations, we present simulation results only briefly. Interested
readers should refer to Refs [2, 3] and other references for more details on
this topic.

4.1 INTRODUCTION

4.1.1 Allelic Spectra of Complex Human Diseases

Allelic spectrum of a gene refers to the number and frequency of alle-
les at this gene. A spectrum is called simple if it contains a few common
alleles that are carried by a majority of the population, and diverse if it con-
tains many rare alleles (Figure 4.1). For example, three mutations in the
BRCA1 and BRCA2 genes account for approximately 90% of the BRCA1
and BRCA2 mutations identified in Ashkenazi Jews. In contrast, a diverse
spectrum can have many rare alleles, which is a relevant way to charac-
terize BRCA1 and BRCA2 in non-Ashkenazi European populations [4].
Understanding why allelic spectra of the same gene would differ in different
human populations is one of the goals of this chapter.

The nature of the allelic spectra of genes involved in a genetic disease is
crucial for the success of mapping these genes using association or linkage
disequilibrium (LD) methods because the statistical power of these methods
will be greatly reduced if a gene contains many rare alleles (for impact of
allelic heterogeneity, see Section 1.3.3). Two major hypotheses have been
proposed to describe the genetic structure of complex human diseases:

0 5

(a) (b)

10 15

10
20

30 Most common: 30.2%
Five most common: 66.8%
Effective number of alleles: 7.2

0 5 10 15

1
3

5 Most common: 5.2%
Five most common: 18.2%
Effective number of alleles: 67.2

FIGURE 4.1 Examples of simple and diverse allelic spectra. Examples of simple
(a) and diverse (b) allelic spectra. Fifteen most frequent alleles are plotted for both
spectra, ordered by allele frequencies (y-axis). Effective number of alleles of both
spectra are estimated using Equation 4.1 with

∑
fi = 1.

INTRODUCTION 75

while the common disease–common variant (CDCV) hypothesis proposes
that common diseases are usually caused by one or a few common disease
susceptibility alleles at each disease-predisposing locus [5], the common
disease–rare variants (CDRV) hypothesis proposes that common diseases
might be caused by many rare alleles, each having a relatively large impact
on the disease [6, 7]. simuPOP-based mapping methods can be used to
provide data supporting one hypothesis or the other.

4.1.2 An Evolutionary Model of Effective Number
of Disease Alleles

Allelic diversity of a locus can be summarized by its effective number of
alleles [8], which is reciprocal of the expected allelic identity, namely, the
probability that two randomly chosen alleles are identical. Because two
randomly chosen alleles are likely to be different if there are many rare
alleles, a diverse spectrum will have a high effective number of alleles.

Genetic diversity of disease alleles can be summarized by a similar
concept called effective number of disease alleles, which is defined as the
reciprocal of the expected allelic identity among disease alleles. Assuming
that allele 0 is the wild-type allele and all others are disease alleles, the
effective number of disease alleles at a locus can expressed as

ne = 1

φdis
= (1 − f0)2∑

i > 0 f 2
i

, (4.1)

where φdis is the expected allelic identity among disease alleles and fi

is the allele frequency of allele i, i = 0, 1, If there are k alleles at a
locus (including a wild-type allele 0), ne reaches its maximum value of
k − 1 when all disease alleles have the same frequency, regardless of the
frequency of the wild-type allele. If a population is in mutation–selection
equilibrium, the equilibrium effective number of disease alleles at a disease
susceptibility locus is

ne = 1 + 4Nμ (1 − fe) ,

where N is the effective population size, μ is the mutation rate under an
infinite allele mutation model, and fe is the equilibrium total disease allele
frequency [9].

Reich and Lander [1] models the evolution of the effective number of
disease alleles (ne) using an instant population growth model. Assuming
that the total disease allele frequency 1 − f0 = ∑

i>0 fi is not far from its

76 OBSERVING PROPERTIES OF EVOLVING POPULATIONS

equilibrium value fe during evolution, the estimated ne, under the infinite
allele model, is

n̂e = 1 + 4Nμf0, (4.2)

where N is the effective population size and μ is the mutation rate. The
equilibrium total disease allele frequency fe is determined by the nature
of disease. For example, the equilibrium value of the total disease allele
frequency of recessive diseases can be approximated by

fe =
√

μ/s, (4.3)

where s is the selection coefficient, provided that s � μ.
For a population that has expanded instantly from size N0 to N1, the

proportion of alleles derived from preexpansion will decay exponentially

with the rate
(

1−fe

fe

)
μ. The effective number of disease alleles will increase

with expectation:

ne (t) =
(

n−1
e1 + (

n−1
e0 − n−1

e1

)
exp

(
− ne1

2N1fe
t

))−1

, (4.4)

where ne0 = 1 + 4N0μs (1 − fe) and ne1 = 1 + 4N1μs (1 − fe) [1].
Although the allelic spectra of both rare and common diseases are sim-
ilar in equilibrium states, the rates at which these are approached differ
greatly because the rate of reaching equilibrium is determined by the total
disease allele frequency (fe) within the exponential term of Equation 4.4. If
the population has not reached a mutation selection equilibrium, common
diseases at the beginning of the population expansion are likely to have
simpler spectra than the rare diseases. This point will be further illustrated
with simulations in the later sections.

4.1.3 Simulation of the Evolution of ne

Mathematical analysis of the evolution of ne led to the conclusion that
CDCV hypothesis holds and that the phenomenon is caused by transient
effects of demography (population expansion) [1]. Although in the long run
when human population reaches mutation, selection, and drift equilibrium,
all diseases will have diverse spectra, these authors argue that common
diseases tend to have simpler spectra because they diversify their spectra
more slowly than the rare diseases.

However, the evolution of human populations is much more complex
than what is assumed in this model and it is unclear whether or not Reich and

SIMULATION OF THE EVOLUTION OF ALLELE SPECTRA 77

Lander’s conclusions [1] still hold when alternative or additional genetic
features are incorporated into the model. Because mathematical analyses of
the extended models are prohibitively difficult, forward-time simulations
are used to study the evolution ofne under more realistic models. Among the
features considered are more complex demographics, finite allele mutation
models, population structure and migration, and population size.

4.2 SIMULATION OF THE EVOLUTION OF ALLELE SPECTRA

4.2.1 Demographic Models

Reich and Lander [1] used a simple instant population growth model. Un-
der the model assumption, a population with an initial population size N0

would evolve G0 generations, instantly expand its size to N1, and continue
to evolve for another G1 generation. This model is definitely unrealistic,
but it provides a mathematically tractable case that provides theoretical
results for an extreme case to which other models can be compared. Be-
cause an exponential population expansion model is more realistic for most
populations, we will simulate both instantaneous and exponential popula-
tion expansion models. Example 4.1 demonstrates how to implement a
demographic model in simuPOP.

� EXAMPLE 4.1

The easiest method of implementing a demographic model is to define a
demographic function, which is a user-defined Python function that accepts
a generation number and a parental population, and returns a list of subpop-
ulation sizes of the corresponding offspring population. A single number
can be returned if there is no population structure. When such a function
is passed to the subPopSize parameter of a mating scheme, it will be
called to determine the population size of the offspring population at each
generation.

A demographic function can accept one or both parameters gen and
pop. Because simuPOP uses parameter names to determine the types of
input parameters, other parameter names are unacceptable for this function.
For example, an instant expansion model can be implemented using the
following demographic function:

def ins_expansion(gen):
’An instant population growth model’
if gen < G0:

78 OBSERVING PROPERTIES OF EVOLVING POPULATIONS

return N0
else:

return N1

More complex demographic models such as an exponential population
expansion model could be defined similarly. However, because a demo-
graphic function does not accept parameters other than pop and gen,
variables such as N0, G0, and N1 must be defined outside of function
ins expansion, either as global variables or in a namespace where this
function is defined. This method is not recommended because functions
defined in this way are not well encapsulated and cannot be reused in other
scripts.

A better implementation is demonstrated in this example where a func-
tion demoModel is defined returning a demographic function with pa-
rameters N0, G0, and N1. This demographic function is used to determine
the initial population size and is passed to the mating scheme to determine
the size of the offspring generation at each generation. The change of pop-
ulation size is printed using two Stat and two PyEval operators that
display parental and offspring population sizes at each generation.

SOURCE CODE 4.1 A Demographic Model with Population Split and
Rapid Population Expansion

>>> import simuPOP as sim
>>> from math import ceil
>>> def demoModel(N0, N1, G0):
... def func(gen):
... if gen < G0:
... return N0
... else:
... return N1
... return func
...
>>> def simulate(demo, gen):
... pop = sim.Population(size=demo(0))
... pop.evolve(
... initOps=sim.InitSex(),
... preOps=[
... sim.Stat(popSize=True),
... sim.PyEval(r"’%d: %d ’ % (gen, popSize)"),
...],
... matingScheme=sim.RandomMating(subPopSize=demo),
... postOps=[
... sim.Stat(popSize=True),
... sim.PyEval(r"’--> %d\n’ % popSize"),
...],
... gen=gen
...)
...
>>> simulate(demoModel(100, 1000, 2), 5)

SIMULATION OF THE EVOLUTION OF ALLELE SPECTRA 79

0: 100 --> 100
1: 100 --> 100
2: 100 --> 1000
3: 1000 --> 1000
4: 1000 --> 1000
>>>

Because population structure limits the free flow of genotype between
subpopulations, we are also interested in the evolution of disease spec-
tra in structured populations. In this chapter, we will use a model where
the founder population split into m equally sized subpopulations right be-
fore population expansion. The split subpopulations will keep their rela-
tive proportion during population expansion. Example 4.2 defines a class
demoModel to implement this demographic model. This class is defined
in a module reichDemo and will be imported and used in later examples.

� EXAMPLE 4.2

Although it is possible to split parental populations using operators such
as SplitSubPops during evolution, it is easier to split populations in
the demographic function. By passing parameter pop to the demographic
function, the parental population will be passed to the demographic func-
tion, so member functions such as Population.mergeSubPops can
be used to split, merge, and even resize the populations before mating starts.
This example uses function Population.splitSubPop to split the
population into m subpopulations at generation G0 in both instant and
exponential population expansion models.

If multiple demographic models are to be defined, an object-oriented
implementation is recommended because it provides better readability and
maintainability. This example defines a class demoModel that is initialized
by parameters N0, G0, N1, G1, and m. These parameters are stored as
attributes of the class to make them accessible to other member functions.
An instant and an exponential population growth model are defined as
member functions of this class. By defining a self. call member
function, objects instantiated from the demoModel class are callable and
can be used as a demographic function. For example, a demoModel object
created from

demo_func = demoModel(’exponential’, 1000, 100000, 500, 500, 1)

can be used as a demographic function for an exponential population ex-
pansion model with N0 = 1000, N1 = 100000, G0 = 500, and G1 = 500
with no population structure.

80 OBSERVING PROPERTIES OF EVOLVING POPULATIONS

SOURCE CODE 4.2 A Python Class That Defines Instant and
Exponential Population Expansion Models

import math

class demoModel:

def __init__(self, model, N0=1000, N1=100000, G0=500, G1=500, m=1):

’’’Return a demographic function with population split and expansion

model: ’linear’ or ’exponential’

N0: Initial population size.

N1: Ending population size.

G0: Length of burn-in stage.

G1: Length of population expansion stage.

m: Split population into m subpopulations before population expansion.

’’’

self.N0, self.N1, self.G0, self.G1, self.m = N0, N1, G0, G1, m

self.model = model

def __call__(self, gen, pop=None):

if self.model == ’instant’:

return self.ins_expansion(gen, pop)

else:

return self.exp_expansion(gen, pop)

def ins_expansion(self, gen, pop):

if gen < self.G0:

return self.N0

elif self.m > 1:

if gen == self.G0: # split population

avoid floating point problem

pop.splitSubPop(0, [1./self.m] * self.m)

return [self.N1//self.m]*(self.m-1)+[self.N1-self.N1//self.m*(self.m-1)]

else:

return self.N1

def exp_expansion(self, gen, pop):

rate = (math.log(self.N1) - math.log(self.N0))/self.G1

if gen < self.G0:

return self.N0

elif self.m > 1 and gen == self.G0: # split population

pop.splitSubPop(0, [1. / self.m] * self.m)

if gen == self.G0 + self.G1 - 1:

N = self.N1

else:

N = int(self.N0 * math.exp((gen - self.G0) * rate))

if self.m > 1:

return [N // self.m] * (self.m-1) + [N - N // self.m * (self.m-1)]

else:

return N

4.2.2 Output Statistics

We are interested in two statistics: the total disease allele frequency and
effective number of disease alleles at a locus, which measure the rareness
and the allelic diversity of the disease alleles, respectively. Because allele

SIMULATION OF THE EVOLUTION OF ALLELE SPECTRA 81

frequencies add up to one, the total disease allele frequency can be obtained
by

∑∞
i=1 fi = 1 − f0. The observed effective number of disease alleles

can be calculated from calculated allele frequencies using Equation 4.1.
Example 4.3 demonstrates how to calculate these statistics in simuPOP.

� EXAMPLE 4.3

simuPOP does not support the calculation of these statistics directly. How-
ever, the Stat operator provides native support for the calculation of allele
frequency. We can calculate the total disease allele frequency and effective
number of disease alleles at a locus from allele frequencies calculated by
operator Stat. For example, the operator

Stat(alleleFreq=0),
PyEval(’"%.2f" % (1-alleleFreq[0][0])’),
PyEval(’"%.2f" % (1./sum([(alleleFreq[0][x]/(1-alleleFreq[0][0]))**2’

’for x in alleleFreq[0].keys() if x != 0]))’)

calculates and outputs both statistics at locus 0.
This approach, however, is not reusable because the expressions are valid

for a specific locus and it would be a mess to use such expressions to output
ne for multiple loci or for ne in multiple subpopulations. Moreover, this
expression is error prone because it does not handle the case when there is
no disease allele (f0 = 1, ne = 0). It makes sense to define a function to
calculate ne clearly.

This example defines a function calcNe to calculate the effective num-
ber of disease alleles at specified loci and save the result in a dictionary
ne of the population’s local namespace. This function can be passed to a
PyOperator to calculate the effective number of disease alleles at spec-
ified loci. For example, operators

PyOperator(func=calcNe, param=[0, 1])
PyEval(r’"%.3f\t%.3f" % (ne[0], ne[1])’)

would calculate and output this statistic at loci 0 and 1 during an evolution-
ary process.

This example calculates ne at two loci. The first locus has 10 disease
alleles with similar allele frequencies, and the second locus has a major
locus that is 10 times more frequent than other 10 disease alleles. As ex-
pected from our previous analysis, the effective number of disease alleles
at the second locus is smaller than that at the first locus.

82 OBSERVING PROPERTIES OF EVOLVING POPULATIONS

SOURCE CODE 4.3 A Python Function to Calculate Effective
Number of Alleles

>>> import simuPOP as sim

>>> def calcNe(pop, param):

... ’Calculated effective number of disease alleles at specified loci (param)’

... sim.stat(pop, alleleFreq=param)

... ne =

... for loc in param:

... freq = pop.dvars().alleleFreq[loc]

... sumFreq = 1 - pop.dvars().alleleFreq[loc][0]

... if sumFreq == 0:

... ne[loc] = 0

... else:

... ne[loc] = 1. / sum([(freq[x]/sumFreq)**2 \

... for x in list(freq.keys()) if x != 0])

... # save the result to the sim.Population.

... pop.dvars().ne = ne

... return True

...

>>> pop = sim.Population(1000, loci=2)

>>> sim.initGenotype(pop, freq=[0.9] + [0.01]*10, loci=0)

>>> sim.initGenotype(pop, freq=[0.9] + [0.05] + [0.005]*10, loci=1)

>>> calcNe(pop, param=[0,1])

True

>>> print(pop.dvars().ne)

0: 9.82506393861892, 1: 3.6730830927173557

When there are multiple subpopulations, we will need to calculate the
effective number of disease alleles in each subpopulation as well as the
whole population. It is challenging to calculate all these using a function,
so Example 4.4 defines a customized operator. This operator is defined in
module reichStat and will be used in later examples.

� EXAMPLE 4.4

Although it is easy to extend function calcNe to perform more calcula-
tions according to parameters passed from a PyOperator, a more elegant
solution is to define an operator with an interface that is similar to operator
Stat so that it can be used as a regular simuPOP operator. The trick here
is to define a class that is derived from operator PyOperator and point
its func parameter to a member function of the class. Because this class
is derived from PyOperator, it can accept regular operator parameters
such as begin, end, step, and at, and call the member function when
this operator is applied to a population.

This example defines a class Ne that is inherited from class PyOp-
erator. The init function of this class accepts parameters loci,
subPops, and vars that have the same default values and meanings as the
corresponding parameters in a Stat operator. Function self. Ne will

SIMULATION OF THE EVOLUTION OF ALLELE SPECTRA 83

be called upon when this operator is applied to a population. This function
calculates allele frequencies at specified loci and (virtual) subpopulations.
If ’ne sp’ is provided in parameter vars, allele frequencies in all or
specified subpopulations will be calculated and saved in subpopulation dic-
tionaries such as subPop[(0,0)][’ne’]. A function calcNe is also
defined in this module, which simply applies operator Ne to a population.
Compared to the function defined in Example 4.3, this function accepts
parameters vars and subPops and can calculate effective number of al-
leles in specified (virtual) subpopulations. Class Ne and function calcNe
are defined in module ch5 reichStat.py and will be imported and
used in later examples.

SOURCE CODE 4.4 A Self-Defined Operator to Calculate Effective
Number of Alleles

import simuPOP as sim

class Ne(sim.PyOperator):

’’’An operator that calculates the effective number of disease alleles

at specified loci.

’’’

def __init__(self, loci=sim.ALL_AVAIL, subPops=sim.ALL_AVAIL, vars=[],

*args, **kwargs):

self.loci = loci

self.vars = vars

self.subPops = subPops

sim.PyOperator.__init__(self, func=self._Ne, *args, **kwargs)

def _calcNe(self, freq):

’Calculate Ne from allele frequencies’

if len(freq) == 0 or freq[0] == 1:

return 0

else:

f_dis = 1 - freq[0]

return 1. / sum([(freq[x]/f_dis)**2 \
for x in list(freq.keys()) if x != 0])

def _Ne(self, pop):

calculate allele frequency

sim.stat(pop, alleleFreq=self.loci, subPops=self.subPops,

vars=[’alleleFreq_sp’, ’alleleFreq’] if ’ne_sp’ in self.vars else [])

determine loci

loci = range(pop.totNumLoci()) if self.loci == sim.ALL_AVAIL else self.loci

ne for the whole population

if len(self.vars) == 0 or ’ne’ in self.vars:

pop.dvars().ne =

for loc in loci:

pop.dvars().ne[loc] = self._calcNe(pop.dvars().alleleFreq[loc])

if ’ne_sp’ in self.vars:

if self.subPops == sim.ALL_AVAIL:

subPops = range(pop.numSubPop())

else:

84 OBSERVING PROPERTIES OF EVOLVING POPULATIONS

subPops = self.subPops

for sp in subPops:

pop.dvars(sp).ne =

for loc in loci:

pop.dvars(sp).ne[loc]=self._calcNe(pop.dvars(sp).alleleFreq[loc])

return True

def calcNe(pop, *args, **kwargs):

’Calculate ne statistics of pop’

Ne(*args, **kwargs).apply(pop)

4.2.3 Mutation Models

Reich and Lander [1] used an infinite allele model where there is a single
wild-type allele and an infinite number of disease alleles. Because each
mutation event introduces a new disease allele, no backward mutation is
allowed. Because it is not feasible to simulate an infinite number of alleles,
we use a k-allele mutation model to mimic an infinite allele mode. We
assume that allele 0 is the wild-type allele and alleles 1 to k − 1 are disease
alleles. Because an allele in a k-allele mutation model can mutate to any
other allele with equal probability 1

k−1 , the probability that a mutant dupli-
cates with an existing allele will be low if k is large (e.g., >10,000). On the
other hand, if some genes can only have a small number of variants, we can
simulate them using k-allele models with smaller k values (e.g., k = 20).
Recurrent and backward mutations can no longer be ignored in these cases
and it would be interesting to see if the theoretical model described in
Section 4.1.2 still holds for these genes.

4.2.4 Multilocus Selection Models

To simplify computations, we follow Reich and Lander and assume that
all disease alleles at a locus have the same fitness effect. That is to say, we
categorize alleles at specified loci as wild-type (alleles A) and disease alleles
(alleles a) and assign individual fitness values according to the number of
disease alleles. For example, an additive single-locus selection model would
assign fitness values 1, 1 − s/2, and 1 − s for individuals with genotype
AA, Aa, and aa, respectively.

For simplicity, we assume that loci under selection are unlinked, and
there are no interaction among genotypes at these loci. In this case, the
multilocus selection model can be treated essentially as a series of single-
locus models. Although a general multilocus model of natural selection for
diploid populations requires 3L parameters to determine individual fitness
from all combinations of genotypes at L loci, only 2L parameters (hi and

SIMULATION OF THE EVOLUTION OF ALLELE SPECTRA 85

si for each locus) are needed if we assume that natural selection works
independently on each locus.

Although we can calculate fitness values at each locus, an individual in
a population can only have one fitness value, so an overall fitness value has
to be synthesized from fitness values at these loci. A big question, however,
is how to combine locus-specific fitness values and whether the choice of
multilocus selection models will have a significant impact on the outcome
of the evolutionary process.

Several multilocus selection models are available. In addition to a
multiplicative model where locus-specific fitness values are multiplied
(f = �fi, where fi is the fitness value at locus i and f is the overall fitness
value of an individual), an additive model (f = max(0, 1 − ∑

(1 − fi)))
and an exponential model (f = exp(− ∑

(1 − fi))) are also frequently
used. Fortunately, despite the different methods to parameterize single-
locus fitness values, the evolution of a locus in these multilocus selection
models does not have to depend on interactions with other loci. Given the
assumption that the marginal fitness value at a locus is gNN , gNS , and gSS

for genotypes NN, NS, and SS, respectively, and the frequencies and fit-
nesses of genotypes at other loci are pi and fi, respectively (where i iterates
through all possible genotypes at other loci) for an individual having geno-
type XY at locus A (XY can be NN, NS, or SS), the expected (average)
overall fitness value is

f ′
XY =

∑
i

pififXY = fXY

∑
i

pifi (4.5)

under the multiplicative multilocus fitness model and

f ′
XY =

∑
i

pi (1 − (1 − fi) − (1 − fXY)) = fXY − 1 +
∑

i

pifi (4.6)

under the additive model. From the viewpoint of locus A, because XY can
be of any genotype at this locus, Equations 4.5 and 4.6 imply a system-
atic decrease (

∑
i pifi ≤ ∑

i pi = 1, 1 − ∑
i pifi ≥ 0) of fitness of every

individual compared to a selection model with A as the only locus. Be-
cause fXY are relative fitness values, such changes of fitness will have very
little, if any, impact on the selection process. The probability of being se-
lected is the same for a systematic multiplicative change of fitness values
(cgXY∑

k cgXkYk

= gXY∑
k gXkYk

where c is the multiplicative factor and k iterates over

the individuals in the population considered) and is only slightly different
for an additive change when c = 1 − ∑

i pigi � gXY (usually the case for
common diseases). Note that Equations 4.5 and 4.6 hold only when locus A

86 OBSERVING PROPERTIES OF EVOLVING POPULATIONS

and other loci are unlinked so that the frequency of individuals with certain
genotypes can be written as the product of genotype frequencies at each
locus.

� EXAMPLE 4.5

If there is only one disease-predisposing locus, we can use a multiallelic
selector (MaSelector) to specify individual fitness values according to
the number of disease alleles they carry. This selector categorizes alleles at
specified loci as wild-type (alleles A) and disease alleles (alleles a) and as-
sign individual fitness values using a list of three elements (and 3L elements
if there are L disease predisposing loci). For example, operator

MaSelector(loci=0, wildtype=0, fitness=[1, 1-s/2., 1-s])

simulates a selection model that assigns fitness values 1, 1 − s/2, and 1 − s

for individuals with genotype AA, Aa, and aa at locus 0, respectively.
Multiple single-locus selection models can be combined using a MlS-

elector operator. For example, operator

MlSelector([
MapSelector(loci=0, fitness=(0,0):1, (0,1):0.99, (1,1):0.98),
MapSelector(loci=1, fitness=(0,0):1, (0,1):1, (1,1):0.98)

], mode=MULTIPLICATIVE)

simulates a two-locus selection model where individual fitness is the prod-
uct of fitness values at two loci. That is to say, an individual with geno-
type (0,1) at locus 0 and (1,1) at locus 1 will have fitness value
0.99 × 0.98 = 0.9702.

This example demonstrates the independent evolution of loci under these
multilocus selection models. It evolves three populations under different
selection models: a single-locus additive model, a single-locus recessive
model, and a multilocus selection model that is the production of these two
models. As shown in this example, the allele frequencies of the two loci
of the third population (last two columns of the output) roughly follow the
loci in the first two population under corresponding single-locus selection
models (first two columns).

SOURCE CODE 4.5 Simulation of Multiple Independent
Single-Locus Selection Models

>>> import simuOpt

>>> simuOpt.setOptions(quiet=True, alleleType=’binary’)

>>> import simuPOP as sim

SIMULATION OF THE EVOLUTION OF ALLELE SPECTRA 87

>>>

>>> pop = sim.Population(size=[10000]*3, loci=[1]*2, infoFields=’fitness’)

>>> simu = sim.Simulator(pop, rep=3)

>>> simu.evolve(

... initOps=[

... sim.InitSex(),

... sim.InitGenotype(freq=[0.5, 0.5])

...],

... preOps=[

... sim.MaSelector(loci=0, fitness=[1, 0.99, 0.98], reps=0),

... sim.MaSelector(loci=0, fitness=[1, 1, 0.99], reps=1),

... sim.MlSelector([

... sim.MaSelector(loci=0, fitness=[1, 0.99, 0.98]),

... sim.MaSelector(loci=1, fitness=[1, 1, 0.99])],

... mode=sim.MULTIPLICATIVE, reps=2)

...],

... matingScheme=sim.RandomMating(),

... postOps=[

... sim.Stat(alleleFreq=[0,1], step=50),

... sim.PyEval(r"’%.3f\t’ % alleleFreq[0][1]", reps=0, step=50),

... sim.PyEval(r"’%.3f\t’ % alleleFreq[0][1]", reps=1, step=50),

... sim.PyEval(r"’%.3f\t%.3f\n’ % (alleleFreq[0][1], alleleFreq[1][1])",

... reps=2, step=50),

...],

... gen = 151

...)

0.496 0.499 0.499 0.496

0.358 0.435 0.367 0.439

0.242 0.385 0.264 0.382

0.172 0.345 0.186 0.328

(151, 151, 151)

>>>

4.2.5 Evolve!

With appropriate operators to perform mutation, selection, and output
statistics, it is relatively easy to set up a simulation. Example 4.6 defines a
function evolvePop to perform all the simulations. For the sake of sim-
plicity, we do not provide a parameter handling mechanism in this example
and will import this module and call upon function evolvePop directly
for all simulations that will be discussed in the rest of this chapter.

� EXAMPLE 4.6

This example defines a function evolvePop to evolve a population with
one or more unlinked loci, using an instant or exponential population ex-
pansion demographic models, a k-allele mutation model with varying k and
mutation rates, and a multiplicative multilocus model of natural selection.

This function uses the length of fitness values (3L) to determine the
number of loci (L). It creates a demographic object and uses it to determine
the size of an initial population (demo func(0)). Every individual in

88 OBSERVING PROPERTIES OF EVOLVING POPULATIONS

this population has L unlinked loci and two information fields fitness
and migrate to, which are used for natural selection and migration,
respectively. Before evolution, the population is initialized with random
sex and random genotype with specified initial allelic spectra.

Mutation, natural selection (assignment of fitness values), and migration
are applied to parental populations at the beginning of each generation
before a random mating scheme is used to produce offspring populations.
A MlSelector operator is used to combine fitness values at multiple loci
using a multiplicative multilocus selection model. In order to accommodate
arbitrary single-locus selection models, we accept three fitness values for
each locus, so a list of 3L values need to be specified when there are L

disease predisposing loci.
Because the calculation of population statistics can be time consuming,

we wrap operators Ne and PyEval in operators IfElse so that statistics
in the whole population and in each subpopulation are calculated only if
valid output files are specified. Because expressions to output disease allele
frequency and effective number of disease alleles are variable because
of varying number of disease loci, they are constructed at the beginning
of this function. The IfElse operators also accept additional keyword
arguments so that parameters such as begin and step can be used to
control when and at which frequency these statistics are calculated. This
function calculates and returns to total disease allele frequency and effective
number of disease alleles at all loci at the end of the evolution.

SOURCE CODE 4.6 Evolve a Population Subject to Mutation
and Selection

import simuOpt

simuOpt.setOptions(quiet=True, alleleType=’long’)

import simuPOP as sim

from reichDemo import demoModel

from reichStat import Ne

from simuPOP.utils import migrIslandRates

from itertools import product

def evolvePop(model, N0, N1, G0, G1, initSpec, mu, k, fitness,

m=1, migrRate=0, logfile=’’, sp_logfile=’’, **kwargs):

’’’Evolve a population with specified allele frequencies (parameter

initSpec) using given demographic (model, N0, N1, G0, G1, m), mutation

(a k-allele model with parameters mu and k) and natural selection models

(a multi-locus selection model with fitness vector s). Total disease

allele frequency and effective number of alleles in the population

and in all subpopulations are recorded if names of log files are provided.

This function returns a tuple of these two statistics at the end of the

evolution. Additional keyword arguments could be used to control when and

how often statisitcs are outputed.

’’’

SIMULATION OF THE EVOLUTION OF ALLELE SPECTRA 89

L = len(fitness) // 3

if not hasattr(mu, ’__iter__’): # if a single mutation rate is given

mu = [mu]*L

Create expressions to output f_e and ne at all loci, which are

"%d\t%.4f\t%.4f\n" % (gen, 1-alleleFreq[x][0], ne[x])

for locus x.

statExpr = ’"%d’ + r’\t%.4f\t%.4f’*L + r’\n" % (gen,’ + \
’, ’.join([’1-alleleFreq[%d][0], ne[%d]’ % (x, x) for x in range(L)]) + ’)’

demo_func = demoModel(model, N0, N1, G0, G1, m)

pop = sim.Population(size=demo_func(0), loci=[1]*L,

infoFields=[’fitness’, ’migrate_to’])

pop.evolve(

initOps=[

sim.InitSex(),

sim.InitGenotype(freq=initSpec)

],

preOps=[

sim.KAlleleMutator(k=k, rates=mu, loci=range(L)),

sim.MlSelector([

sim.MaSelector(loci=i, fitness=fitness[3*i:3*(i+1)])

for i in range(L)], mode=sim.MULTIPLICATIVE),

sim.Migrator(rate=migrIslandRates(migrRate, m), begin=G0+1),

],

matingScheme=sim.RandomMating(subPopSize=demo_func),

postOps=[

sim.IfElse(logfile != ’’ or sp_logfile != ’’,

Ne(loci=sim.ALL_AVAIL, vars=[’ne’] if m == 1 else [’ne’, ’ne_sp’]),

**kwargs),

sim.IfElse(logfile != ’’,

sim.PyEval(statExpr, output=’>>’ + logfile), **kwargs),

sim.IfElse(m > 1 and sp_logfile != ’’,

sim.PyEval(statExpr, output=’>>’ + sp_logfile,

subPops=sim.ALL_AVAIL will evalulate the expression in each

subpopulation’s local namespace (vars(sp)).

subPops=sim.ALL_AVAIL, begin=G0), **kwargs),

],

finalOps=Ne(loci=sim.ALL_AVAIL),

gen = G0 + G1

)

return tuple([1-pop.dvars().alleleFreq[x][0] for x in range(L)] + \
[pop.dvars().ne[x] for x in range(L)])

4.2.6 Validation of Theoretical Results

To verify theoretical estimates of equilibrium effective number of disease
alleles, we used different combinations of N, μ, and s and evolved constant
size populations for a long period of time until they reaches mutation,
selection and drift equilibrium. Total disease allele frequency and effective
number of disease alleles at the end of the simulation are collected and
plotted in Figure 4.2.a and b, along with their theoretical expectations using
Equations 4.3 and 4.2, respectively. Note that curves in Figure 4.2.b are
almost horizontal, indicating that the effective numbers of alleles for rare
and common diseases are similar in equilibrium states. This is because the

90 OBSERVING PROPERTIES OF EVOLVING POPULATIONS

Selection coefficient

(a) (b)
T

ot
al

 d
is

ea
se

 a
lle

le
 fr

eq
ue

nc
y

%

0.01 0.3 0.6 0.99

0
2

4
6

8
μ=10−4

μ=10−5

N=104

N=106

Selection coefficient

E
ffe

ct
iv

e
nu

m
be

r
of

 a
lle

le
s

0.01 0.3 0.6 0.99

1
5

50
40

0

μ=10−4

μ=10−5
N=104

N=106

FIGURE 4.2 Allele frequency and effective number of alleles of simple reces-
sive diseases in equilibrium state. Total disease allele frequency (a) and effec-
tive number of disease alleles (b) of simple recessive diseases in equilibrium
state, using different parameter settings (N = 104 or 106, μ = 10−4 or 10−5,
s = 0.01, 0.3, 0.6, 0.99). Solid and dotted lines are theoretical expectations of

fe =
√

μ
s

for μ = 10−4 and 10−5, respectively. Each dot in the figures represents

average values of 10 replicate simulations.

equilibrium ne is determined by N, μ, and f0 = 1 − ∑
i>1 fi (Equation

4.2) and the only differentiating factor f0 falls largely between 0.9 and 1
for these diseases and have only a small impact on the value of equilibrium
ne.

The evolution of ne under an instant population expansion model also
conforms well with theoretical estimates. For example, we picked three
diseases with different initial total disease allele frequencies and evolved
them using a demographic model where the founder population grows in-
stantly from N0 = 104 to N1 = 107. The dynamics of the effective number
of disease alleles of three diseases are plotted in Figure 4.3, with theoreti-
cal estimates calculated according to Equation 4.4 plotted in dotted lines.
It is clear that the effective number of disease alleles increases slower for
diseases with higher equilibrium total disease allele frequencies.

4.3 EXTENSIONS TO THE BASIC MODEL

4.3.1 Impact of Demographic Models

Different human populations have different demographic histories. Some
populations like the isolated Scandinavian Saami have had approximately
constant population size, but most human populations are thought to have
undergone a rapid population expansion [10]. Because isolated populations

EXTENSIONS TO THE BASIC MODEL 91

0 1000 2000 3000 4000 5000

0
10

0
20

0
30

0
40

0
50

0

Generation after expansion

E
ffe

ct
iv

e
nu

m
be

r
of

 a
lle

le
s

f = 9.75%
f = 3.34%
f = 1.75%

FIGURE 4.3 Evolution of simple recessive diseases. The dynamics of the effec-
tive number at instant population expansion from N0 = 104 to N1 = 107 for two
diseases with equilibrium total disease allele frequencies, which are determined

from fe =
√

μ
s

where μ = 10−5 and s =0.01, 0.99, respectively.

generally have small population sizes, genetic diseases in these populations
have a relatively small number of alleles (see Equation 4.2). Consequently,
we are only interested in large populations with high equilibrium effective
number of disease alleles.

Among many population expansion models, the exponential population
growth model is a simple but yet reasonably realistic one. It is widely as-
sumed that the general human population had constant size N0 = 10, 000
until G0 = 5000 generations before the present, and then expanded ex-
ponentially to its present-day size of N1 = 6 billion [11–13]. G0 = 5000
corresponds to 100,000 years ago given a 20 year generation time. Such
a huge population is difficult to simulate using simulations. Fortunately,
because the human populations have complex population structures and
are far from randomly mating, their effective population sizes are much
smaller than their census population sizes. We use N1 = 106 or N1 = 107

as the size of the present population in our simulations.
The choice of demographic models can have a large impact on the evo-

lution of allelic spectra. As pointed out in Ref. [1], slower population
expansion would result in a slower growth in allelic diversity. If we use
an exponential population growth model, the human population increases
rather slowly most of the time. This has two consequences: during the
slow-growing period, small population size tends to limit the growth of the
effective number of alleles, so ne will increase more slowly than in a faster

92 OBSERVING PROPERTIES OF EVOLVING POPULATIONS

0 1000 3000 5000

1
5

20
10

0
50

0

Generations after expansion

(a) (b)
E

ffe
ct

iv
e

nu
m

be
r

of
 a

lle
le

s

instant
exponential

0 1000 3000 5000

1
2

5
10

50

Generations after expansion

E
ffe

ct
iv

e
nu

m
be

r
of

 a
lle

le
s

instant
exponential

FIGURE 4.4 Impact of demographic models on effective number of alleles.
Evolution of ne of a rare (s = 0.99, (a)) and a common disease (s = 0.01, (b))
under instant and exponential population growth models. N0 = 104, N1 = 107,
and μ = 10−5. The two solid black curves are theoretical estimates under the
infinite allele model and instant growth.

growth model; the “large population” stage is effectively shorter than in
the instant growth model and gives diseases less time to reach equilibrium.

Figure 4.4 plots the dynamics of ne in four simulations, which use the
same basic parameters (N0 = 104, N1 = 107, μ = 10−5) but different se-
lection coefficients (s = 0.99 for rare diseases and s = 0.01 for common
diseases) and demographic models (instantaneous, exponential). Although
equilibrium ne is close to 400 for all six cases, the kinetics are quite differ-
ent. The effective number of alleles for common diseases increases more
slowly than that of the rare disease, but the difference is smaller for the ex-
ponential growth model than that of the instant growth model. Due to the
demographic difference, ne of a rare disease under the exponential growth
model at generation 5000 is at the same level as the instant population
growth model at generation 1000.

4.3.2 Impact of the Mutation Model

The theoretical model uses an infinite allele mutation model. When the
effective population size is large, this model leads to an unrealistically
large ne. For example, when N = 109 and μ = 10−5, the equilibrium ne =
3.2 × 104 for a common disease with a total disease allele frequency of
0.2. However, due to the constraints on gene length, silent or recurrent
mutations, effective number of alleles for real human diseases is usually
smaller than this number.

In the previous simulations, we used a k-allele model with a large number
of alleles (k > 104) to mimic the infinite allele model. Recurrent mutations

EXTENSIONS TO THE BASIC MODEL 93

0 1000 3000 5000

0
10

0
20

0
30

0
40

0

Generations after expansion

E
ffe

ct
iv

e
nu

m
be

r
of

 a
lle

le
s

k = 100

k = 500

k = 1000

k = 2000

FIGURE 4.5 Impact of mutation models on effective number of alleles. Change
of ne with number of allelic states 100, 500, 1000, 2000, using an instant popu-
lation growth model. N0 = 104, N1 = 107, μ = 10−5, s = 0.1. Solid curve is the
theoretical estimate under the infinite allele model.

do occur, but at such a small rate that they have almost no impact on the
proportion of alleles derived from before population expansion or on the
equilibrium effective number of alleles.

The probability of recurrent mutation increases with decreasing k. This
leads to smaller observed equilibrium ne compared to ne under the infinite
allele model. To verify this, we simulate the evolution of ne of a disease with
s = 0.1 in a population that has grown instantly from N0 = 104 to N1 = 107

at 6000 generations ago, using k-allele models with k = 100, 500, 1000,
or 2000. Among these k-values, only k = 2000 reaches the ne expected
under the infinite allele model (Figure 4.5). Although it is not clear how
exactly ne will change with k when k > ne, when k < ne and there are
enough disease alleles to fill every allelic state (high N, μ, or small s),

ne will be close to k (ne ∼
(

(k − 1)
(

1
k−1

)2
)−1

= k − 1) regardless of the

exact values of N, μ, or s (k = 100 in Figure 4.5).
Although equilibrium ne with small maximum number of allele states is

smaller than that of the infinite allele model, at the beginning the former in-
creases faster than the latter. This takes place because μN, the mutation rate
from susceptibility to normal alleles, is no longer negligible and accelerates
the dissolution of the dominant disease allele when k is small.

4.3.3 Impact of Subpopulation Structure

The human population went through complex migration patterns that might
impact the allelic spectra of human diseases. We will start from the simplest
cases when no migration is allowed among subpopulations.

94 OBSERVING PROPERTIES OF EVOLVING POPULATIONS

Suppose the population after instant expansion is split into m equally
sized subpopulations, which then evolve independently without migra-
tion afterward. In each subpopulation, the equilibrium ne equals 1 +
4N

m
μ (1 − fe) (Equation 4.1 with population size replaced by N

m
) where

f0 is assumed to be the same in all subpopulations because it is determined
by the nature of disease. Because of the smaller population size and ex-
pected effective number of alleles, subpopulations reach equilibrium state
quicker than in a large uniform population. Consequently, ne of a struc-
tured population tends to evolve faster than that in a uniform population
and equilibrium ne is also larger.

The equilibrium ne in the whole population is located between nl =
1 + 4N

m
μ (1 − fe) ∼ ne/m (when the allelic spectra are identical in all

subpopulations) and nh =
(∑m

i=1

∑nj

j=1

(
mfj

mfe

)2
)−1

= (∑m
i=1

1
m2 nl

)−1 =
mnl = m + 4Nμ (1 − fe) ∼ m + ne (when disease alleles are totally dif-
ferent among subpopulations, here we assume equal fe and nl in all subpop-
ulations). Assuming a split-and-grow demographic model, allelic spectra
in subpopulations are similar at the beginning and become increasingly
distinct over time. Therefore, ne will approach nh in the long run when the
differences between allelic spectra in subpopulations increase with time.
The difference between nh and ne in a single population is determined by
the number of subpopulations m. For example, in the case of a rare dis-
ease in many small tribes, each tribe may be dominated by one or a few
tribe-specific mutants. The overall ne will be close to the number of tribes,
larger than the small ne in individual tribes.

To confirm these analyses, we evolve a rare (s = 0.9) and a common
(s = 0.01) disease, using a demography where a founder population is ex-
panded instantly from N0 = 104 to N1 = 107 and at the same time splits
into m (m = 20) subpopulations. The equilibrium effective number of al-
leles of the whole population is around 400 for both diseases if we ignore
population structure (Figure 4.6.a and b). We see that ne in each subpop-
ulation evolves roughly as expected, and the overall ne, as the result of
composition of allelic spectra in 100 subpopulations, increases faster and
arrives at a larger equilibrium ne than that expected theoretically using a
single population.

4.3.4 Impact of Migration

Although ne in a structured population tends to be larger than in a sin-
gle population, ne in each subpopulation evolves as expected, unless new

EXTENSIONS TO THE BASIC MODEL 95

0 1000 3000

(a) (b)

5000

2
5

20
10

0
50

0
10 subpopulation, no migration

Generations after expansion

E
ffe

ct
iv

e
nu

m
be

r
of

 a
lle

le
s

whole population ne

averaged subpopulation ne

0 1000 3000 5000

2
5

20
50

20
0

10 subpopulation, no migration

Generations after expansion

E
ffe

ct
iv

e
nu

m
be

r
of

 a
lle

le
s whole population ne

averaged subpopulation ne

FIGURE 4.6 Impact of population substructure on effective number of alleles.
Evolution of ne of a rare (s = 0.99, (a)) and a common disease (s = 0.01, (b))
after instant population expansion from N0 = 104 to N1 = 107 with μ = 10−5.
The population is split into 10 subpopulations after expansion. No migration is
allowed. Thick lines are total ne, thin lines are ne of the first subpopulation. Note
that the y-axes are in log scale.

mutants are introduced by migration. From a single subpopulation point
of view, migration is a way to introduce new mutants, usually at a higher
intensity than by mutation alone. Consequently, in a subpopulation with
migration, ne is larger than that in an isolated subpopulation. On the other
hand, while the homogenizing effect of migration is not obvious soon af-
ter population split, when allelic spectra in subpopulations are similar to
each other, it mixes alleles from subpopulations and keep ne of a struc-
tured population away from nh. In an extreme scenario when migration is
so strong that all subpopulations have the same allelic spectra, ne of the
whole population is the same as that of a single subpopulation.

Migration does not have the same impact on common and rare dis-
eases. When a disease is common, a significant proportion of migrants are
affected. The impact of migration on the allelic spectrum is strong com-
pared to weak mutation and selection. When a disease is rare, there are
few affected migrants, so disease alleles tend to remain private in their own
subpopulation. Since selection is strong in this case, migration is no longer
a dominating force.

These analyses are confirmed by Figure 4.7, which is similar to Figure
4.6 except that migration is allowed between subpopulations. In these sim-
ulations, 0.1% of individuals in a subpopulation migrate to the adjacent
subpopulations at each generation. When a disease is common, migration
is strong enough to make allelic spectra more similar in all subpopulations.

96 OBSERVING PROPERTIES OF EVOLVING POPULATIONS

0 1000 2000 3000 4000

(a) (b)
2

5
20

10
0

50
0

10 subpopulation, with migration

Generations after expansion

E
ffe

ct
iv

e
nu

m
be

r
of

 a
lle

le
s

whole population ne

averaged subpopulation ne

0 1000 2000 3000 4000

2
5

20
50

20
0

10 subpopulation, with migration

Generations after expansion

E
ffe

ct
iv

e
nu

m
be

r
of

 a
lle

le
s

whole population ne

averaged subpopulation ne

FIGURE 4.7 Impact of migration on the evolution of effective number of alleles.
Evolution of ne of a rare (s = 0.99, (a)) and a common disease (s = 0.01, (b)) after
instant population expansion from N0 = 104 to N1 = 107 with μ = 10−5. The
population is split into 10 subpopulations after expansion. Migration following an
island model with a migration rate of 0.1% is allowed. Thick lines are total ne,
thin lines are ne of the first subpopulation. Note that the y-axes are in log scale.

The allelic spectrum of the whole population is therefore closer to those of
the subpopulations (compare common diseases in Figure 4.6b).

In conclusion, the allelic structure is more diverse in a subpopulation with
new mutants introduced as a result of migration than the allelic structure
of an isolated subpopulation. However, from the whole population point of
view, the homogenizing effect of migration decreases ne, which otherwise
is greater than ne in a single population. The impact depends on the number
of subpopulations, level of migration, and the commonness of the disease.

4.3.5 Distribution of Equilibrium Disease Allele Frequency

Although the disease allele frequencies (fe) under a mutation selection
equilibrium can be estimated for a population of infinite size, the actual
distribution of disease allele frequencies in finite populations varies. Be-

cause fe of loci under strong purifying selection is small (e.g., fe =
√

μ

s

for the case of a recessive disease when s � μ), fe can rarely reach higher
allele frequency. On the other hand, for common alleles with s ∼ μ, the
impact of random genetic drift is stronger, which leads to a wider distri-
bution of fe. Assuming forward and reverse mutation rates μS, μN, and
selection coefficient s for an additive model with fitness values 1, 1 − s/2,
and 1 − s for genotypes 00, 01, and 11, respectively, the distribution of
equilibrium overall frequency fe of susceptibility alleles in the population

EXTENSIONS TO THE BASIC MODEL 97

is given by Wright’s formula:

f (fe) = cf (βs−1)
e (1 − fe)(βN−1) eσ(1−fe) (4.7)

where βS = 4NμS, βN = 4NμN, and σ = 2Ns (s in this book is twice that
is Ref.) are scaled parameters. The normalization constant c can be obtained
by numerical integration. This formula works best in the cases of weak se-
lection

(
e.g., s ≤ 10−3

)
. For larger s

(
e.g., s = 0.2, N = 104, σ = 4000

)
,

the exponential term will dominate f (fe) and make it essentially a delta
function at 0.

To observe the distribution of fe in finite populations, we evolved 50
populations for extended generations, using a fixed population size of
N = 105, μ = 10−5, and different selection coefficients. We use a k-allele
model with k = 200, so the forward and backward mutation coefficients are
βS = 4μN = 4 and βN = 0.02, respectively. The total disease allele fre-
quencies and effective numbers of alleles of these simulations are plotted in
Figure 4.8.

4.3.6 Varying Selection and Mutation Coefficients

In this section, we study the allelic spectra of DSL responsible for polygenic
diseases. Because we would like to know if our results for single-locus
selection models still holds for multilocus cases, we start from multilocus
selection models where natural selection is assumed to act on these loci
independently. More specifically, we assume that the disease has L DSL
located on different chromosomes and the overall fitness fits a multiplicative
or additive multilocus model.

DSL of polygenic diseases usually do not contribute equally to the dis-
eases. There might be some DSL that are under strong selection and many
other DSL that are only slightly deleterious. The same holds for mutation
rates. These locus-by-locus differences may cause interactions among DSL
and disallow the dissection of the multilocus model into several single-locus
models.

Figure 4.9 shows the results of two simulations with varying selection
coefficients (a) or varying mutation rates (b). The diseases are recessive at
each DSL and the overall fitness is modeled by a multiplicative model. The
population size and mutation rate are N = 105 and μ = 10−5, respectively.
Simple estimates of f0 and ne assuming a single-locus model are given
by the solid lines, which match f0 and ne at each DSL of the multilocus
model almost perfectly. This is true for other simulations we have run using
additive single and multilocus models (results not shown). It is therefore

98 OBSERVING PROPERTIES OF EVOLVING POPULATIONS

Total disease allele frequency

E
ffe

ct
iv

e
nu

m
be

r
of

 a
lle

le
s

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
10

0
10

0
10

s=5e−04

s=1e−04

s=5e−05

s=0

FIGURE 4.8 Distribution of total disease allele frequencies. Total disease
allele frequency and effective number of alleles of 50 simulations with N = 105,
μ = 10−5, k = 100, s = 0.5 × 10−4, 10−4, 0.5×10−3 (from top to bottom). Solid
curves are densities given by Equation 4.7. The mean 1 − f0 of all DSL at the last
generation is used to estimate μS and μN.

safe to treat this multilocus model as a set of independent single-locus
models.

4.3.7 Evolution of Disease Predisposing Loci
Under Weak Selection

Evolution of the allelic spectrum of a DSL is determined by population size,
mutation rate, and most importantly by the total disease allele frequency
of the DSL. In the context of a common disease, the distribution of f0 is

EXTENSIONS TO THE BASIC MODEL 99

Selection coefficient

Total disease allele frequency

2e−04 1e−03 5e−03 5e−02

0
0.

2
0.

4

Effective number of alleles

0
5

10

Mutation rate

(a) (b)

Total disease allele frequency

1e−05 2e−05 5e−05 1e−04

0
0.

4

Effective number of alleles

0
20

40
FIGURE 4.9 Varying selection and mutation coefficients. Total disease allele
frequency (f0) and effective number of alleles (ne) of a common disease caused by
50 loci with varying selection coefficient (a) or mutation rate (b) in a population of
constant size 105. (a) Disease with varying selection coefficient at each DSL. DSL
are equally spaced in the interval (ln 0.0001, ln 0.05) with μ = 10−5 (b) Disease
with varying mutation rate at each DSL that are equally spaced in the interval
(ln 6.5 × 10−6, ln 1.2 × 10−4) with μ = 0.01. Diseases are recessive at each DSL.

Solid lines are theoretical estimates given by f0 =
√

μ
s

and Equation 4.2.

quite dispersed, especially when N is small (see Figure 4.8). Consequently,
we would expect highly dispersed fexp at the beginning of population
expansion. This results in different evolutionary patterns between DSL with
identical parameter settings. An example in the supplementary material
confirms this. In this example, four DSL of a polygenic disease evolve
under identical parameter settings. The evolution of ne at these DSL differs
greatly because their fexp deviate from f0 due to small initial population
size and the resulting dispersed distribution of f0.

Figure 4.10 plots the dynamics of the total disease allele frequency (f)
and the effective number of alleles (ne) of four DSL of a polygenic disease
(L = 10), under an instant population growth model with N0 = 104, N1 =
106, and G0 = 5000, with μ = 10−5 and s = 0.001 identical at all DSL.
Multiplicative multilocus selection model is used. Although the equilibrium
f0 of all DSL is 0.1, the distribution of f0 at generation 5000 is quite
dispersed because of the small population size during the burn-in period.
After population expansion, f0 of all DSL approaches 0.1 slowly, but the
evolution of ne at each DSL is roughly determined by the total disease
allele frequency of DSL at the beginning of the population expansion (see
the theoretical curves in the right panel of Figure 4.10). Consequently, ne

of the DSL of a common disease may approach their equilibrium states at
vastly different rates.

100 OBSERVING PROPERTIES OF EVOLVING POPULATIONS

Total disease allele frequency

0 2000 4000 6000 8000 10,000

0.
0

0.
2

0.
4

fexp = 6e−04

0 2000 4000 6000 8000 10,000

0.
0

0.
2

0.
4

fexp = 0.0294

0 2000 4000 6000 8000 10,000

0.
0

0.
2

0.
4

fexp = 0.1427

0 2000 4000 6000 8000 10,000

0.
0

0.
2

0.
4

fexp = 0.0467

Effective number of alleles

0 2000 4000 6000 8000 10,000

1
2

5
20

50

0 2000 4000 6000 8000 10,000

1
2

5
20

50

0 2000 4000 6000 8000 10,000

1
2

5
20

50

0 2000 4000 6000 8000 10,000

1
2

5
20

50
FIGURE 4.10 Evolution of disease susceptibility loci. Dynamics of the total
disease allele frequency (left panel) and the effective number of alleles (right panel)
of four DSL of a polygenic disease (L = 10), using a multiplicative multilocus
selection model and an instant growth demographic model with N0 = 104, N1 =
106, G0 = G1 = 5000, s = 0.001, and μ = 10−5 are identical for all DSL. The
horizontal dashed lines in the left panel are f0 = 0.1, which is the equilibrium
total disease allele frequency estimated using a single-locus model. Solid lines in
the right panel are theoretical estimate of ne with f0 being the total disease allele
frequency of DSL just before population expansion.

4.3.8 Discussion

Summarizing our simulations, we expect increased allelic diversity with
the following:

1. Larger population size (or larger recent population size for varying
demographic model),

2. Higher mutation rate, more allele states (may be the result of a longer
gene),

EXTENSIONS TO THE BASIC MODEL 101

3. Smaller total disease allele frequency at the beginning of population
expansion. This may be the result of higher selection pressure, shorter
evolution time before expansion, or by chance (genetic drift),

4. Longer evolutionary history (older mutants), and
5. More subpopulations and/or lower migration among subpopulations.

We have run many simulations to study the impact of each genetic feature
on the allelic diversity. For example, we used k = 200, 500, 1000, 2000 to
see the impact of possible number of allelic states on the effective number
of alleles. We also varied selection rate (s ∈ [0.0001, 0.99]) and mutation
rate (μ ∈ [

6.5 × 10−6, 1.2 × 10−4
]
) over a wide range of possible values.

Although direct comparison is not possible since these simulations use dif-
ferent population size, length of evolution, and so forth, we can conclude
from all simulations that the allelic spectrum is most sensitive to the total
disease allele frequency at the beginning of population expansion (fexp).
For other genetic features, it is difficult to rank their relative importance.
If two conflicting forces (such as higher mutation rate but quicker popula-
tion expansion) are involved, it seems necessary to resort to a simulation
program.

The total disease allele frequency at the disease locus (or loci in a poly-
genic disease setting) at the beginning of population expansion has a great
impact on the evolution of allelic diversity. Although disease alleles that
are under strong purifying selection generally have small total disease al-
lele frequencies, disease alleles that are under mild selection can reach
higher frequencies, especially in small populations where genetic drift is
strong. Because population size is a limiting factor of effective number
of disease alleles, a severe bottleneck would remove most alleles of both
rare and common diseases and result in simple spectra. If a bottleneck is
recent, both rare and common diseases will have simple spectra, while rare
diseases will recover their diversity quicker than common ones.

The above independence-based argument, however, is potentially in-
complete, because the relationship between commonness and weak se-
lection for a polygenic disease does not have to hold as in the case of
monogenic diseases. If a common disease is caused by several loci under
weak selection, then according to our model, these DSL will be common
and will have simple allelic spectra. This is the CDCV hypothesis in the
cases of polygenic diseases [15]. However, a common disease may well
be caused by rare alleles at numerous DSL, if each can single-handedly
cause the disease. This is referred to as the genetic heterogeneity model.
Our model suggests that these DSL will be rare and have highly diverse

102 OBSERVING PROPERTIES OF EVOLVING POPULATIONS

allelic spectra. Although theoretical studies and empirical data suggest that
DSL for a complex disease are usually under weak selection, we cannot
rule out the possibility of the heterogeneity model [16]. As a matter of
fact, a common disease may be caused by a few loci with common alleles
and many more with rare alleles. These common loci are most ready to be
mapped.

REFERENCES

1. D. E. Reich and E. S. Lander, On the allelic spectrum of human disease. Trends
Genet, 17(9):502–510, 2001.

2. J. K. Pritchard, Are rare variants responsible for susceptibility to complex
diseases? Am J Hum Genet, 69(1):124–137, 2001.

3. B. Peng and M. Kimmel, Simulations provide support for the common disease-
common variant hypothesis. Genetics, 175(2):763–776, 2007.

4. P. Tonin, B. Weber, K. Offit, F. Couch, T. R. Rebbeck, S. Neuhausen, A. K.
Godwin, M. Daly, J. Wagner-Costalos, D. Berman, G. Grana, E. Fox, M. F.
Kane, R. D. Kolodner, M. Krainer, D. A. Haber, J. P. Struewing, E. Warner,
B. Rosen, C. Lerman, B. Peshkin, L. Norton, O. Serova, W. D. Foulkes, and J. E.
Garber, Frequency of recurrent BRCA1 and BRCA2 mutations in Ashkenazi
Jewish breast cancer families. Nat Med, 2(11):1179–1183, 1996.

5. E. S. Lander, The new genomics: global views of biology. Science,
274(5287):536–539, 1996.

6. N. S. Fearnhead, B. Winney, and W. F. Bodmer, Rare variant hypothesis for
multifactorial inheritance: susceptibility to colorectal adenomas as a model.
Cell Cycle, 4(4):521–525, 2005.

7. I. Gorlov, O. Gorlova, M. Frazier, M. Spitz, and C. Amos, Evolutionary evi-
dence of the effect of rare variants on disease etiology. Clin Genet, 79(3):199–
206, 2011.

8. M. Kimura and J. F. Crow, The number of alleles that can be maintained in a
finite population. Genetics, 49:725–738, 1964.

9. D. L. Hartl and R. B. Campbell, Allele multiplicity in simple Mendelian dis-
orders. Am J Hum Genet, 34(6):866–873, 1982.

10. M. Laan and S. Pääbo, Demographic history and linkage disequilibrium in
human populations. Nat Genet, 17(4):435–438, 1997.

11. H. C. Harpending, M. A. Batzer, M. Gurven, L. B. Jorde, A. R. Rogers, and
S. T. Sherry, Genetic traces of ancient demography. Proc Natl Acad Sci USA,
95(4):1961–1967, 1998.

12. L. Kruglyak, Prospects for whole-genome linkage disequilibrium mapping of
common disease genes. Nat Genet, 22(2):139–144, 1999.

REFERENCES 103

13. D. E. Reich and D. B. Goldstein, Detecting association in a case-control study
while correcting for population stratification. Genet Epidemiol, 20(1):4–16,
2001.

14. J. K. Pritchard and M. Przeworski, Linkage disequilibrium in humans: models
and data. Am J Hum Genet, 69(1):1–14, 2001.

15. D. J. Smith and A. J. Lusis, The allelic structure of common disease. Hum Mol
Genet, 11(20):2455–2461, 2002.

16. Q. Yang, M. J. Khoury, J. Friedman, J. Little, and W. D. Flanders, How many
genes underlie the occurrence of common complex diseases in the population?
Int J Epidemiol, 34(5):1129–1137, 2005.

CHAPTER 5

SIMULATING POPULATIONS WITH
COMPLEX HUMAN DISEASES

Complex diseases such as hypertension and diabetes are usually caused
by multiple disease susceptibility genes, environmental factors, and inter-
actions among them. Simulating populations or samples with complex
diseases is an effective approach to study the likely genetic architecture
of these diseases and to develop more efficient gene mapping methods.
Compared to traditional backward-time (coalescent) methods, population-
based, forward-time simulations are more suitable for this task because they
can simulate almost arbitrary demographic and genetic features, especially
complex models of natural selection. Forward-time simulations also allow
the researchers to perform head-to-head comparisons among gene mapping
methods based on different study designs and ascertainment methods. How-
ever, due to a number of methodological and computational constraints,
forward-time simulations have not been widely used for the simulations
of genetic samples. This chapter demonstrates a few methods to simulate
populations with complex human diseases and discusses advantages and
limitations of these simulation approaches.

Forward-time Population Genetics Simulations: Methods, Implementation, and Applications,
Bo Peng, Marek Kimmel, and Christopher I. Amos.
© 2012 Wiley-Blackwell. Published 2012 by John Wiley & Sons, Inc.

105

106 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

5.1 INTRODUCTION

Simulated data sets of known disease predisposing loci (DPL) have been
widely used in the development and application of statistical methods that
detect susceptibility genes for human genetic diseases [1, 2], for example,
to compare the power of popular study designs and statistical methods
for GWA studies [3–5], to simulate case–control samples for evaluating
the power of new statistical methods [6], and to study the performance of
statistical tests under different disease models [7, 8].

Many computer programs have been developed to simulate genetic data.
If we exclude specialized methods that simulate genetic data for particular
types of samples, currently available simulation methods can be categorized
roughly into backward-time-based (coalescent), forward-time-based, and
sideways methods [9].

Sideways methods permute or sample from existing genome sequences.
Although they excel at retaining allele frequency and linkage disequilib-
rium (LD) information from existing sequences, they are limited in their
ability to introduce new genetic features (such as the effects of natural
selection) and new haplotypes.

Coalescent methods excel at simulating random samples, but it is dif-
ficult to use these methods to simulate casecontrol or other types of
samples with genetic diseases because a coalescent simulation constructs
a genealogical tree from samples with unknown genotypes and cannot
effectively control the number of affected individuals once the genotypes
of these samples are simulated. If a large number of samples are simulated
before a disease model is applied, the coalescent method becomes ineffi-
cient, especially when long genomic sequences are simulated, unless spe-
cial algorithms are used to approximate the standard coalescent process. In
addition, many coalescent method-based programs simulate samples with
random marker locations, which makes defining a genetic disease with
consistent DPL difficult. Finally, most of these methods were designed
to simulate case–control samples of relatively simple disease models and,
therefore, have limited applicability to important research areas such as the
detection of gene–environment interaction, admixture mapping, or family-
based associations.

Forward-time simulation methods evolve a population forward in time,
subject to arbitrary genetic and demographic factors. Because such a sim-
ulation can closely mimic the complex evolutionary histories of human
populations that harbor the genetic diseases of interest, these methods
can, in theory, simulate genetic samples with arbitrary complexity. Ar-
bitrary disease models could be applied to the resulting population from

INTRODUCTION 107

which samples based on different study designs can be drawn and an-
alyzed. However, this method suffers from a number of theoretical and
computational issues, which have prevented the power of this simula-
tion method from being fully explored in existing forward-time simulation
methods:

• Efficiency The forward-time simulation method is inefficient because
ancestors who do not have offspring in the resulting population are
simulated, and a large population must be simulated before samples
can be drawn from it. This is becoming less and less of a problem due to
the increasing power of personal computers and the wider availability
of high-performance cluster computer systems.

• Simulation Length and Initialization Unlike the coalescent approach,
which starts from a single individual (MRCA), forward-time simula-
tions usually start from an initial population of moderate size. How to
initialize this population is a surprisingly difficult question. In addition,
the properties of populations simulated using a forward-time approach
depend heavily on the initial populations, which are often simu-
lated under arbitrary equilibrium assumptions. Simulating an initial
population inaccurately can affect the validity of conclusions made
about the performance of a test.

• Introduction of Disease In the coalescent approach, the age of the
mutant is random because the age of MRCA of any affected individual
is random. This is difficult to achieve using a forward-time approach.
A more serious problem is that newly introduced disease mutants,
especially those under purifying or intense selection, tend to be lost
quickly, and simulations may have to be repeatedly restarted.

• Control of Disease Allele Frequency and Linkage Disequilibrium
Even if the same initial populations are used, the resulting popula-
tions will vary because of random genetic drift. The forward-time
approach is directly affected by genetic drift, making it difficult to
control the allele frequency at the ending generation, which makes a
fair comparison of simulated samples difficult. In addition, existing
implementations of forward-time simulations vary in their abilities to
simulate high-density genetic markers with realistic LD patterns and
none of them can readily simulate samples that use existing genetic
markers in the human genome.

• Population and Pedigree-Based Sampling Although it is possible to
collect different types of samples from a simulated population, for
example, affected and unaffected individuals for a case–control design

108 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

and parents with affected offspring for an affected subpair design,
existing forward-time simulation programs do not provide methods to
draw samples.

This chapter focuses on simulation techniques that address these problems
and demonstrates how to use forward-time simulations to simulate samples
with complex human diseases.

5.2 CONTROLLING DISEASE ALLELE FREQUENCIES
AT THE PRESENT GENERATION

5.2.1 Introduction of Disease Alleles

A genetic disease is caused by disease predisposing alleles at one or more
loci. To simulate a genetic disease forward in time, one or more disease
alleles have to be introduced to a population in some way.

The most straightforward method to introduce a disease allele to a pop-
ulation is to introduce it manually at a fixed generation. If the disease allele
is introduced only once, all alleles at the present generation would have
the same age. However, because of random genetic drift, newly introduced
mutants have a small probability to survive (1/N if a mutant is introduced
to a population of size N). For example, if we introduce a disease allele to
a population of 1000 individuals, the allele is likely to be lost after a few
generations (Example 5.1).

� EXAMPLE 5.1

This example simulates the evolution of 10 populations with 1000 individ-
uals. These populations are initialized with random sex and all wild-type
alleles (0). A PointMutator operator is used to introduce a disease
allele (1) to the first locus of the first individual at the beginning of the
evolution. The populations are evolved for 100 generations and the allele
frequencies at locus 0 are calculated at the end of evolution. The last print
statement prints the number of allele 1 at locus 0 in each population, using
a variable alleleNum that is set by the Stat operator.

SOURCE CODE 5.1 Straightforward Simulation of the Introduction
of a Disease Allele

>>> import simuOpt
>>> simuOpt.setOptions(quiet=True, alleleType=’long’)
>>> import simuPOP as sim

CONTROLLING DISEASE ALLELE FREQUENCIES AT THE PRESENT GENERATION 109

>>> pop = sim.Population(size=1000, loci=[1])
>>> simu = sim.Simulator(pop, 10)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.PointMutator(loci=0, allele=1, inds=0)
...],
... matingScheme=sim.RandomMating(),
... finalOps=sim.Stat(alleleFreq=0),
... gen = 100
...)
(100, 100, 100, 100, 100, 100, 100, 100, 100, 100)
>>> print([x.dvars().alleleNum[0][1] for x in simu.populations()])
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Because disease alleles introduced at a fixed generation will most likely
get lost, it is natural to reintroduce the disease allele when it is lost and ter-
minate the evolution when a certain disease allele frequency is reached. For
example, a disease allele can be reintroduced if it gets lost in the population,
and the evolution process stops only after the disease has been established
in the population with an appreciable frequency (Example 5.2). Although
this simulation method has the advantage that all populations have the same
disease allele frequency, multiple attempts have to be made to introduce the
disease allele, which results in different lengths of evolution time. Because
many population properties such as the level of linkage disequilibrium de-
pend on evolution time, this method is inappropriate for the simulation
of disease loci with surrounding markers. The following section tries to
address this problem by simulating trajectories of disease allele frequen-
cies and evolving populations that condition on these trajectories.

� EXAMPLE 5.2

This example simulates an evolutionary process where a disease allele
is introduced whenever there is no disease allele in the population
(alleleFreq[0][1]=0), and the simulation terminates when the dis-
ease allele reaches a frequency of 0.05. This is achieved by a Stat operator
that calculates the allele frequency at the beginning of each generation, an
IfElse operator that calls a PointMutator to introduce a disease allele
whenever the allele frequency is zero, and a TerminateIf operator that
terminates the evolution when the frequency of the disease allele is greater
than or equal to 0.05.

Because disease alleles are easily lost, many attempts will be needed be-
fore an allele survives and reaches a sizable frequency. As a matter of fact,
among the five populations simulated in Example 5.2, the population with
the shortest evolution length needed 28 attempts and 232 generations, and

110 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

the population that evolved longest needed 352 attempts and 3047 gen-
erations. This example uses a list introGen to store the generation num-
ber at which a mutant is introduced, using two PyExec operators that
execute two Python statements.

SOURCE CODE 5.2 Reintroduction of a Disease Allele When
It Is Lost

>>> import simuOpt

>>> simuOpt.setOptions(quiet=True, alleleType=’long’)

>>> import simuPOP as sim

>>> pop = sim.Population(size=1000, loci=[1])

>>> simu = sim.Simulator(pop, 5)

>>> simu.evolve(

... initOps=[

... sim.InitSex(),

... sim.PyExec(’introGen=[]’)

...],

... preOps=[

... sim.Stat(alleleFreq=0),

... sim.IfElse(’alleleFreq[0][1] == 0’, ifOps=[

... sim.PointMutator(loci=0, allele=1, inds=0),

... sim.PyExec(’introGen.append(gen)’)

...]),

... sim.TerminateIf(’alleleFreq[0][1] >= 0.05’)

...],

... matingScheme=sim.RandomMating()

...)

(1963, 773, 613, 232, 417)

>>> # number of attempts

>>> print([len(x.dvars().introGen) for x in simu.populations()])

[271, 70, 35, 28, 54]

>>> # age of mutant

>>> print([x.dvars().gen - x.dvars().introGen[-1] for x in simu.populations()])

[55, 73, 196, 133, 70]

5.2.2 Trajectory of Disease Allele Frequency

The idea of trajectory simulation has been used by others [10, 11], in the
context of coalescent simulations. For example, Wang and Rannala [11]
used an additive selection model and a forward approach with a normal
approximation to the binomial selection process. This method can handle
one disease predisposing locus and arbitrary demographic models. Coop
and Griffiths [10] used diffusion approximation and a backward approach
to simulate the trajectory of the allele frequency of a single locus in a
population with a constant size. Our method extends these methods and
also the method described in Slatkin [12].

We assume that the population size at generation t is Nt . The locus dis-
cussed is diallelic with wild-type allele A and disease allele a. Relative

CONTROLLING DISEASE ALLELE FREQUENCIES AT THE PRESENT GENERATION 111

fitnesses of genotypes AA, Aa, and aa are 1, 1 + s1, and 1 + s2, respec-
tively. s1 and s2 can assume any value greater than −1. Allele a is called
advantageous if si > 0, and deleterious if si < 0 (i = 1, 2). s1 and s2 can
take different signs, as in the case of balanced selection.

Suppose that disease allele a is introduced to a population at generation
1 and spreads according to a Wright–Fisher model with varying population
size and a selection model described above. At generation T , the population
is surveyed and i copies of allele a are found. We are interested in simulating
the trajectory H = {i0 = 0, i1 = 1, ..., iT = i}, where it is the number of
copies of allele a at generation t. The length T of the trajectory is the age
of the mutant.

The dynamics of allele frequency xt can be modeled as follows:
Assume that at generation t − 1, there are it−1 copies of allele a. Population
allele frequency is equal to xt−1 = it−1

2Nt−1
. Assume that the next generation is

formed from an infinite-sized gene pool. The expected frequency of allele
a at generation t is expressed by the following [12]:

x′
t = (1 + s1) xt−1 (1 − xt−1) + (1 + s2) x2

t−1

(1 − xt−1)2 + 2 (1 + s1) xt−1 (1 − xt−1) + (1 + s2) x2
t−1

, (5.1)

= xt−1
1 + s2xt−1 + s1 (1 − xt−1)

1 + s2x
2
t−1 + 2s1xt−1 (1 − xt−1)

. (5.2)

Therefore, the probability that there are it copies of allele a at generation
t, given the population size Nt , equals

Pr (it | it−1) =
(

2Nt

it

)
x′it

t

(
1 − x′

t

)2Nt−it
, (5.3)

where x′
t is the expected allele frequency as opposed to the real allele

frequency xt = it
2Nt

.

5.2.3 Forward- and Backward-Time Simulations

Equations 5.1 and 5.3 provide a basis for a rejection-sampling algorithm to
simulate allele frequency trajectories in a forward-time manner. One may
start from a single disease mutant (or multiple mutants if starting from
an existing allele frequency) and simulate allele frequencies at each gener-
ation until generation T . The resulting trajectory will be accepted if xT is
within a designed range or rejected otherwise.

This algorithm works in principle and is used by programs such as
GeneArtisan [11]. However, it suffers from several major problems:

112 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

• If T is large, the disease allele is under strong purifying selection, or
if the acceptance region is too narrow, the acceptance probability of a
trajectory is small. Obtaining one valid trajectory may require millions
of attempts.

• This method assumes a fixed T (age of mutant), but T should be ran-
dom. Unbiased samples of the trajectories can only be simulated if T

is chosen randomly from its distribution, which is usually unknown. If
an inappropriate T is chosen, the simulated trajectories will be biased.

An alternative to the forward-time algorithm is a backward approach,
which was first explored by Slatkin [12] in a monogenic disease setting.
Using this approach, a trajectory can be generated by a model that assumes
i copies of allele a at t = T and proceeds backward in time until the allele
is lost. The generation at which the allele is lost becomes generation 0, if
there is exactly one copy of allele a at generation 1. This approach avoids
the mentioned problems of the forward-time approach.

The basic idea is to match the forward process as close as possible by
reversing the Equation 5.3 with an appropriately inverted Equation 5.1.
This can be achieved by solving the equation

xt = x′
t−1

1 + s2x
′
t−1 + s1

(
1 − x′

t−1

)
1 + s2x′2

t−1 + 2s1x
′
t−1

(
1 − x′

t−1

) (5.4)

for x′
t−1, with known it , xt , Nt , and Nt−1. Equation 5.4 is obtained from (5.1)

by replacing xt−1 (now unknown) by x′
t−1 and replacing x′

t (now known)
by its sample value xt . Because Equation 5.4 always has a unique solution
(between 0 and 1), the backward binomial selection can be done for all
combinations of s1, s2, and xt . Given Nt−1 and x′

t−1, we can then simulate
it−1 by

Pr (it−1 | it) =
(

2Nt−1

it−1

)
x

′it
t−1

(
1 − x′

t−1

)2Nt−1−it−1
. (5.5)

Note that this process can naturally simulate varying population size and
selection pressure because Equation 5.5 concerns only the size and selection
coefficients of the previous generation.

� EXAMPLE 5.3

simuPOP provides functions simulateForwardTrajectory
and simulateBackwardTrajectory in a utility module
simuPOP.utils to simulate allele frequency trajectories forward-
or backward-in-time. A forward-time trajectory simulation starts from

CONTROLLING DISEASE ALLELE FREQUENCIES AT THE PRESENT GENERATION 113

a specified generation with specified allele frequencies at one or more
loci. The simulator simulates allele frequencies forward in time, until
it reaches a specified ending generation. In contrast, a backward-time
trajectory simulation starts from the ending generation with specified
allele frequencies and simulates backward in time until the allele gets
lost. Both of these functions handle more unlinked loci or more arbitrary
demographic models and varying fitness values. A Trajectory object
will be returned if a trajectory is simulated successfully. This object pro-
vides a number of functions to determine the length and other properties
of a trajectory. For example, a member function freq(gen, subPop)
can be used to retrieve the frequency of all loci at specified generation and
subpopulation.

This example simulates the trajectories of several alleles under purifying,
balancing, or varying selection pressures under a constant or exponential
population expansion model. In the first example, a locus with an initial fre-
quency of 0.2 evolves for 500 generations and ends at a frequency between
0.1 and 0.11. A constant population size of 4000 individuals is used. The
second example uses a different demographic model where a population of
size 4000 expands to a size of 10,873 in 100 generations. Because genetic
drift is weaker in larger populations, the allele frequency trajectories in
Figure 5.1b are smoother than those in Figure 5.1a. The last two examples
simulate the trajectories of disease predisposing alleles under balancing
and varying selection pressures. Because the allele is under positive puri-
fying selection in the last example, the allele frequencies in Figure 5.1d
rise to higher frequencies before they return to an ending allele frequency
between 15% and 16%.

SOURCE CODE 5.3 Simulating Allele Frequency Trajectory
Forward in Time

import math
from simuPOP.utils import *
case 1: constant population size
traj = simulateForwardTrajectory(N=4000, fitness=[1, 0.999, 0.998],

beginGen=0, endGen=500, beginFreq=0.2, endFreq=[0.1, 0.11])
case 2: exponential population expansion
def Nt(gen):

return int(4000*math.exp(gen*0.01))

traj = simulateForwardTrajectory(N=Nt, fitness=[1, 0.999, 0.998],
beginGen=0, endGen=500, beginFreq=0.2, endFreq=[0.1, 0.11])

case 3: balancing selection
traj = simulateForwardTrajectory(N=4000, fitness=[1, 1.001, 0.998],

beginGen=0, endGen=500, beginFreq=0.2, endFreq=[0.2, 0.22])
case 4: varying selection pressure
def fitnessFunc(gen, subPop):

114 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

if gen > 200:
return (1, 0.996, 0.994)

else:
return (1, 1, 1.02)

traj = simulateForwardTrajectory(N=4000, fitness=fitnessFunc,
beginGen=0, endGen=500, beginFreq=0.2, endFreq=[0.15, 0.16])

0

(a) (b)

(c) (d)

100 200 300 400 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Constant population size

Generation

A
lle

le
 fr

eq
ue

nc
y

0 100 200 300 400 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Exponential population expansion

Generation

A
lle

le
 fr

eq
ue

nc
y

0 100 200 300 400 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Balancing selection

Generation

A
lle

le
 fr

eq
ue

nc
y

0 100 200 300 400 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Varying selection pressure

Generation

A
lle

le
 fr

eq
ue

nc
y

FIGURE 5.1 Examples of forward-time simulated allele frequency trajectories.
Sample trajectories and minimal and maximum allele frequencies of 100 simulated
trajectories of four disease predisposing alleles. A constant population size of 4000
individuals (a, c, and d) and an exponential population expansion model (b) are
used. The alleles are under a purifying selection model with s = −0.001 (a and b),
a balancing selection model with fitness values 1, 1.001, and 0.998 for genotypes
AA, Aa and aa, respectively (c), and a varying selection pressure where a positive
recessive selection model with s = 0.02 is used for the first 200 generations and
an additive purifying selection model with s = −0.003 is used for the rest of the
generations. Dotted lines in each figure represent minimal and maximum allele
frequencies at each generation for 100 simulated trajectories.

CONTROLLING DISEASE ALLELE FREQUENCIES AT THE PRESENT GENERATION 115

Backward trajectory simulations are more interesting because simulated
trajectories can have different lengths. If an allele is under positive selec-
tion, it can reach a sizable frequency in a relatively short period of time,
and the simulation will succeed most of the time. If an allele is under pu-
rifying selection, it can be difficult to simulate a trajectory because most
of the trajectories will become fixed instead of lost (allele frequency will
increase if we look backward in time), and only the latter yield a successful
trajectory. If an allele is neutral, the success rate will depend on the present
allele frequency and on whether or not there is a limit on the minimum or
maximum trajectory length.

Due to the constant downward drift of allele frequency, it is difficult
for alleles under purifying selection to reach relatively high frequencies.
Because dramatic changes of allele frequencies are more likely to happen
in small populations, reaching a sizable frequency during a bottleneck is
a common way for an allele under purifying selection to become common
in the present population.

However, if an allele under purifying selection has reached a certain
present allele frequency, the length of its trajectory does not have to be
longer than an allele under positive selection. As a matter of fact, the age
of a mutant is invariant to the sign of selection coefficient [13]. This result
is counterintuitive but it reflects the fact that an allele under purifying
selection has to reach a high allele frequency fast before it is removed from
the population.

� EXAMPLE 5.4

This example simulates trajectories of alleles under different selection and
demographic models. The first four examples (Figure 5.2a–d) use a con-
stant population size of 50,000 and the last two examples (Figure 5.2e and
f) use an exponential population growth model where the population size
is constant at N0 = 104 5000 years ago and then grows exponentially to
its current size 106. The selection models for the first demographic model
are neutral (s1 = s2 = 0), advantageous (s1 = 0.0005, s2 = 0.001), delete-
rious (s1 = −0.0005, s2 = −0.001), and a mixed selection model in which
the disease allele is advantageous before 2000 generations ago (s1 = 0.001,
s2 = 0.002) and is under purifying selection in the recent 2000 generations
(s1 = −0.0001, s2 = −0.0002). A neutral model and a model with purify-
ing selection are used for the last two examples (Figure 5.2e and f). In all
cases, the current allele frequency is 10%. For each selection model, 100
replicates are simulated and 3 trajectories corresponding to 5%, 50%, and
95% quantiles of the trajectory length are plotted.

116 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

0 5000

(a) (b)

(c) (d)

(e) (f)

10,000 15,000 20,000

0.
00

0.
10

0.
20

0.
30

Neutral

Generation

A
lle

le
 fr

eq
ue

nc
y

95%
50%
5%

0 5000 10,000 15,000 20,000

0.
00

0.
10

0.
20

0.
30

s1=0.005, s2=0.001

Generation
A

lle
le

 fr
eq

ue
nc

y

95%
50%
5%

0 5000 10,000 15,000 20,000

0.
00

0.
10

0.
20

0.
30

s1=−0.0005, s2=−0.001

Generation

A
lle

le
 fr

eq
ue

nc
y

95%
50%
5%

0 5000 10,000 15,000 20,000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Varying selection pressure

Generation

A
lle

le
 fr

eq
ue

nc
y

95%
50%
5%

0 5000 10,000 15,000 20,000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Population expansion: neutral

Generation

A
lle

le
 fr

eq
ue

nc
y

95%
50%
5%

0 5000 10,000 15,000 20,000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Population expansion with selection

Generation

A
lle

le
 fr

eq
ue

nc
y

95%
50%
5%

FIGURE 5.2 Examples of backward-time simulated allele frequency trajecto-
ries. Three simulated trajectories selected for 5%, 50%, and 95% quantile of tra-
jectory lengths of 100 simulated trajectories, of four disease predisposing alleles.
A constant population size of 50,000 individuals (a–d) and an exponential pop-
ulation expansion model (e and f) are used. The alleles are either neutral (a and
e), under purifying selection models (b and f), a positive selection model (c), or
varying selection pressure (d).

CONTROLLING DISEASE ALLELE FREQUENCIES AT THE PRESENT GENERATION 117

SOURCE CODE 5.4 Simulating Allele Frequency Trajectory
Backward in Time

import simuPOP as sim
import math
from simuPOP.utils import *
example 1
traj = simulateBackwardTrajectory(N=50000, fitness=[1, 1, 1],

endGen=10000, endFreq=0.1)
example 2
traj = simulateBackwardTrajectory(N=50000, fitness=[1, 1.001, 1.002],

endGen=10000, endFreq=0.1)
example 3
traj = simulateBackwardTrajectory(N=50000, fitness=[1, 0.999, 0.998],

endGen=10000, endFreq=0.1)
example 4
def fitnessFunc(gen, subPop):

if gen > 8000:
return (1, 0.999, 0.998)

else:
return (1, 1.001, 1.002)

traj = simulateBackwardTrajectory(N=50000, fitness=fitnessFunc,
endGen=10000, endFreq=0.1)

example 5
def demoFunc(gen):

if gen < 5000:
return 10000

else:
return int(10000*math.exp(0.000921*(gen-5000)))

traj = simulateBackwardTrajectory(N=demoFunc, fitness=[1, 1, 1],
endGen=10000, endFreq=0.1)

example 6
traj = simulateBackwardTrajectory(N=demoFunc, fitness=[1, 0.999, 0.998],

endGen=10000, endFreq=0.1)

5.2.4 Random Mating with Controlled Disease Allele
Frequency

With simulated allele frequency trajectories of disease predisposing loci, it
is necessary to develop a method to perform random mating while control-
ling the disease allele frequency during evolution. The rejection-sampling
algorithm, in which the next generation is regenerated if its allele frequency
does not match the simulated one, can be used in principle. However, this
algorithm is not efficient for practical use, especially when more than one
disease predisposing locus are involved.

Controlled random mating has been used in the framework of coales-
cence in case of haploid populations [14, 15]. The algorithm separates
generation t − 1 and t into case and control groups and generates offspring

118 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

of the case and control groups at generation t from their counterparts at
generation t − 1.

The above works for a haploid population with one disease predisposing
locus because of the independent segregation of wild-type and disease
alleles. However, it does not work for a diploid population in which the
wild-type and disease alleles cosegregate as heterozygotes. For a diploid
population, an approximate algorithm can be used. This algorithm splits the
random mating process into two stages: (i) A rejection-sampling method
is applied so that only individuals with disease alleles are accepted until
we obtain enough disease alleles to fit the simulated frequency trajectory.
(ii) Only individuals with no disease allele are accepted; they fill the rest
of the offspring generation.

Cosegregation of multiple loci because of selection against multiple
disease predisposing loci complicates the problem even more. It is difficult,
and sometimes impossible, to satisfy allele frequency requirements at all
disease predisposing loci. Rather than one of several more complicated
algorithms, we choose a simple extension to the diploid algorithm. During
the first stage of this algorithm, we accept individuals that have any of
the needed disease alleles until the frequency requirements at all disease
predisposing loci are met. The second stage proceeds as usual. An obvious
problem with this algorithm is that at the end of the first stage, disease alleles
at some disease predisposing loci are accepted even if the allele frequency
requirements at these disease predisposing loci have been met. This will
result in, on the average, more disease alleles at all disease predisposing
loci. The impact of this problem is generally negligible and is discussed in
detail in Ref. [16].

In forward-time simulations, one mating event can produce more than
one offspring. Because the relationship between offspring of the same fam-
ily is important for gene mapping methods, family structure is preserved
whenever possible. In the implementation of all the algorithms described
above, acceptances and rejections are family based. Namely, the whole
family is accepted or rejected, depending on its contribution to the number
of disease alleles.

� EXAMPLE 5.5

simuPOP provides a mating scheme ControlledRandomMating to
perform random mating conditioning on specified allele frequencies at one
or more loci. The controlled random mating scheme accepts a user-defined
trajectory function that tells the mating scheme the desired allele frequen-
cies at each generation. Although any user-defined function that returns

CONTROLLING DISEASE ALLELE FREQUENCIES AT THE PRESENT GENERATION 119

allele frequencies at one or more loci at each generation can be used,
such a function is usually provided by the func() member function of a
Trajectory object.

If a trajectory is simulated backward in time, one or more disease alleles
have to be introduced to the exact generations when the frequency of an
allele jumps from zero to a positive number. Although it is clear one or more
PointMutator should be used in this context, it can be troublesome to
figure out the starting generation of a trajectory, especially when multi-
ple disease predisposing loci in multiple subpopulations are simulated.
Fortunately, the Trajectory object provides a function mutants()
to return a list of mutants in the format of (locus, generation,
subPop) and a function mutators() to return a list PointMutator
that introduces mutants to the right generations. All you need to do is to
add traj.mutators() to the premating operators of an evolutionary
process. A parameter that specifies the indices of these loci is needed.

This example combines all these pieces. In this example, two alle-
les under positive selection pressure are introduced to a population and
reach frequencies 0.1 and 0.2, respectively. An exponential population ex-
pansion model is used to expand a population from 5000 to more than
15,000 individuals in 1000 generations. According to the simulated tra-
jectory, the first mutant is introduced to generation 168, and the second
mutant is introduced to generation 577. The trajectory is then passed to a
ControlledRandomMating scheme to control the allele frequency of
loci 0 and 1. The frequencies of allele 1 at both loci are calculated at gen-
erations 500, 600, ..., 1000 and are compared with allele frequencies of
the simulated trajectory. As we have discussed in the previous section, the
controlled random mating scheme follows the simulated allele frequency
trajectory well, except for a slight tendency to produce higher than expected
frequencies at some generations.

SOURCE CODE 5.5 Using a Controlled Mating Scheme with a
Backward-Simulated Trajectory

>>> import simuPOP as sim

>>> from simuPOP.utils import Trajectory, simulateBackwardTrajectory

>>> from math import exp

>>> def Nt(gen):

... ’An exponential population expansion model’

... return int(5000 * exp(.00115 * gen))

...

>>> # simulate a trajectory backward in time, from generation 1000

>>> traj = simulateBackwardTrajectory(N=Nt, fitness=[1, 1.01, 1.02], nLoci=2,

... endGen=1000, endFreq=[0.1, 0.2])

>>> # print out mutants in the format of (loc, gen, subPop)

>>> print(traj.mutants())

[(0, 168, 0), (1, 577, 0)]

120 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

>>> pop = sim.Population(size=Nt(0), loci=[1]*2)

>>> # save Trajectory function in the sim.population’s local namespace

>>> # so that the sim.PyEval operator can access it.

>>> pop.dvars().traj = traj.func()

>>> pop.evolve(

... initOps=[sim.InitSex()],

... preOps=traj.mutators(loci=[0, 1]),

... matingScheme=sim.ControlledRandomMating(loci=[0, 1], alleles=[1, 1],

... subPopSize=Nt, freqFunc=traj.func()),

... postOps=[

... sim.Stat(alleleFreq=[0, 1], begin=500, step=100),

... sim.PyEval(r"’%4d: %.3f (exp: %.3f), %.3f (exp: %.3f)\n’ % (gen, alleleFreq[0][1],"

... "traj(gen)[0], alleleFreq[1][1], traj(gen)[1])",

... begin=500, step=100)

...],

... gen=1001 # evolve 1001 generations to reach the end of generation 1000

...)

500: 0.013 (exp: 0.013), 0.000 (exp: 0.000)

600: 0.005 (exp: 0.005), 0.003 (exp: 0.003)

700: 0.011 (exp: 0.011), 0.008 (exp: 0.008)

800: 0.012 (exp: 0.013), 0.031 (exp: 0.031)

900: 0.037 (exp: 0.037), 0.092 (exp: 0.092)

1000: 0.101 (exp: 0.100), 0.200 (exp: 0.200)

1001

5.3 FORWARD-TIME SIMULATION OF REALISTIC SAMPLES

Although simple samples simulated under idealized assumptions can be
used to validate properties of statistical gene mapping methods, only sam-
ples that reflect the complex structure of the human genome and the genetic
basis of human genetic diseases can be used to evaluate and compare the sta-
tistical power of these methods and to compare various sampling designs
under realistic conditions. Otherwise, a gene mapping method may per-
form well in theory and on simulated data sets, but poorly on real data
sets [17, 18].

Utilizing simulation techniques we have developed up to now, this sec-
tion describes a simulation method that simulates genetic samples with
realistic patterns of linkage disequilibrium. To retain the complex genetic
structure of human populations, this algorithm creates an initial popula-
tion of selected markers from a real sample. It then evolves this pop-
ulation forward in time, subject to mutation, recombination, natural se-
lection, and rapid population expansion. This process uses an optional
scaling algorithm to improve its performance when weak additive selec-
tion forces are used and uses a trajectory simulation method to control
the frequency of disease predisposing alleles. Depending on specific ap-
plications, the last step of this process involves different postprocessing
steps. For example, a rejection-sampling algorithm can be used to simulate
case–control samples or trio families (affected offspring with parents) with

FORWARD-TIME SIMULATION OF REALISTIC SAMPLES 121

rare diseases. A few examples are used to demonstrate the applications of
this method.

5.3.1 Method

Because of the complexity of human genomes and their largely unknown
evolutionary histories, it is infeasible to simulate samples that closely
resemble human populations by evolving a simulated initial population.
Therefore, our simulation method uses real empirical data sets to simulate
large populations with additional genetic variations while retaining key
features of the empirical data sets. Thanks to rapid advances in genotyping
technology, the genotype data of millions of single-nucleotide polymor-
phism (SNP) markers of hundreds or even thousands of individuals are
currently available [19, 20], and higher density data will become available
in the near future [21]. The availability of data facilitates the creation of
an initial population with selected markers that match an existing sample,
which usually contains markers from commercially available genotyping
platforms.

Creation of an Initial Population The first step of our simulation
method is to create an initial population from a real sample with selected
markers. Depending on the application, one may want to start from an
existing GWA study with thousands of controls, such as the control data
from the Wellcome Trust Case Control Consortium [20], or from a publicly
available data set, such as phase 2 or phase 3 of the HapMap data set [19].
Our study used 993 unrelated individuals (parents in trio and duo samples
and all unrelated individuals) in 10 populations of the phase 3 HapMap
data set because these data are readily available. Depending on the specific
application, markers can be chosen according to markers used in real-
world studies (e.g., the markers on the Illumina 550k genotyping chip) or
by marker distance and minor allele frequency; individuals from one or
more HapMap populations can be selected either as separated populations
or as a single population.

The simuPOP online cookbook provides a number of Python mod-
ules to prepare such an initial population. For example, a script load-
HapMap3.py downloads the third phase of the HapMap data set and save
them in simuPOP format and a script selectMarkers.py can be used
to select markers and individuals according to criteria such as start and
ending positions, number of markers, minor allele frequency, and minimal
distance between adjacent markers, or according to a list of markers.

122 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

Demographic Model We consider the initial populations as small,
isolated populations before the expansion of a typical human population
(around 12,000 years or 600 generations ago, if we assume 20 years per
generation with the invention of agriculture) [22]. We then expand these
populations linearly to a larger population of 105 individuals by adding
the same number of individuals each year, subject to mutation, recombina-
tion, and natural selection. We use linear population expansion instead of a
more commonly used exponential expansion model because a linear model
expands the initial population faster at first, thus better preserving genetic
diversity in the initial population and resulting in a final population of a
larger effective population size. For example, if we start with 993 individ-
uals from the phase 3 HapMap sample and expand the population for 500
generations using linear and exponential population expansion models, the
effective population sizes of the expanded populations with 105 individuals
would be 12,658 and 4603, respectively [23]. The former is comparable to
the effective population size of real human populations.

Evolving the Founder Population During evolution, we mutate all
SNP markers according to a symmetric diallelic mutation model with a mu-
tation rate of 10−8 per base pair per generation. At each generation, parents
are chosen at random and pass their genotypes to offspring according to
Mendelian laws. Parental chromosomes are recombined according to a fine-
scale genetic map estimated from the HapMap data set [24] before one of
the recombinants is passed to an offspring. If a selection model is specified,
parents are chosen with probabilities that are proportional to their relative
fitness values. Our simulation method supports both single-locus and mul-
tilocus natural selection models, including models that involve multiple
interacting DPL. If multiple populations are simulated, a stepping-stone
migration model with a low migration rate is applied to control the genetic
distance between the populations [25].

A scaling approach is used to improve the efficiency of our simulation
[26]. Compared to a regular simulation that evolves a population of size
N for t generations, a scaled simulation with a scaling factor λ evolves a
smaller population of size N/λ for t/λ generations with magnified (mul-
tiplied by λ) mutation, recombination, and selection forces. This method
could be justified by a diffusion approximation to the standard Wright–
Fisher process [23, 26]; however, because the diffusion approximation
applies only to weak genetic forces in the evolution of haploid sequences, it
cannot be used when nonadditive diploid or strong genetic forces are used.
Our simulation program simulates populations with specified population

FORWARD-TIME SIMULATION OF REALISTIC SAMPLES 123

size, so a population simulated using a scaling factor λ would be compa-
rable to an unscaled simulation of a population that is λ times larger.

Control of Disease Allele Frequency To simulate a genetic dis-
ease, we control the frequencies of DPAs at DPL using presimulated allele
frequency trajectories. Either a forward-time approach or a backward-time
approach can be applied. More specifically, if we assume that a DPA existed
before population expansion, we simulate the frequency of DPA forward in
time until it reaches the present generation. The simulation starts from the
frequency of DPA in the initial population and is restarted if the allele fre-
quency at the present generation falls out of the desired range. If the mutant
is recent (e.g., appears within the past 500 generations), we simulate from
the frequency of DPA at the present generation backward in time until the
allele gets lost. Multilocus natural selection models are supported with the
restriction that DPAs have to be unlinked. After the allele frequency tra-
jectories of DPAs are simulated, we use a special random mating scheme
to evolve the population forward in time while following the simulated
trajectories at these loci.

Sample Generation The final postprocessing step of the simulation
process will vary depending on the individual application. To simulate a
common disease with enough affected individuals in the simulated popula-
tion, we can draw samples directly from the population after the affection
status of each individual is determined, usually using a penetrance model
that yields the probability that an individual is affected with a disease
according to his or her genotype (Pr(affection status | genotype)). Alterna-
tively, a rejection-sampling algorithm could be used to draw case–control
samples or samples with independent offspring (such as trios) of a rare dis-
ease. More specifically, we choose parents from the simulated population
and produce offspring repeatedly, apply the penetrance model to determine
the affection status of each offspring, and continue the process until enough
samples are collected.

� EXAMPLE 5.6

Example 5.6 implements this simulation method and provides a function
simuGWAS that will be used to simulate data for examples in the rest of
this chapter. This script defines a function linearExpansion (lines
5–14 in Source Code 5.6) that returns a demographic function from spec-
ified starting and ending population size and number of generations to
evolve, and then a function simuGWAS that evolves a population forward

124 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

TABLE 5.1 Parameters of Function SimuGWAS in Example 5.6

Parameter Usage

pop A starting population saved in simuPOP format
mutaRate Mutation rate for a dialleleic mutation model with the same

forward and backward mutation rates, default to 10−8

recIntensity Recombination rate per base pair per generation, default
to 10−8

migrRate Migration rate
expandGen Number of generations to evolve
expandSize Final population size, it can be an overall population size

or a list of subpopulation sizes if the initial population has
multiple subpopulations

DPL Names of disease predisposing loci
curFreq Frequency of allele 1 at the present generation
fitness A list of fitness values. Should be a length of three times

number of DPL
scale A scaling parameter. This will effectively boost mutation,

migration, and recombination rate and reduce final
population size

logger A Python logging object. If specified, it will be used to
output progress and debug information depending on the
level of logging

in time, subject to mutation, recombination, migration (if there are multiple
subpopulations), population expansion, and natural selection.

Function simuGWAS accepts a number of parameters that specify
the demographic and genetic models used for the evolutionary process
(Table 5.1). Lines 20–24 implement the scaling technique, which merely
multiplies or divides parameters with a scaling factor. If a list of disease
predisposing loci is specified, the frequencies of allele 1 at these loci are
checked. If there is no existing allele at these loci, a backward allele fre-
quency trajectory simulation algorithm is used to introduce a mutant be-
tween generation 0 and expandGen. Otherwise, a forward-time trajectory
simulation algorithm is used to evolve an existing allele to expected allele
frequency. For the sake of simplicity, this function does not handle mixed
forward and backward trajectories.

The rest of the function uses the Population.evolve function to
evolve the population for expandGen generations using a controlled ran-
dom mating scheme. This function outputs the generation number and
population size at the end of each generation, and a measure of population
structure (FST) at every 10 generations if there are multiple subpopulations.

FORWARD-TIME SIMULATION OF REALISTIC SAMPLES 125

SOURCE CODE 5.6 Simulation of Populations with Realistic Pattern
of Linkage Disequilibrium

import simuPOP as sim

from simuPOP.utils import simulateForwardTrajectory, simulateBackwardTrajectory, \
migrSteppingStoneRates

def linearExpansion(N0, N1, G):

’’’Return a linear population expansion demographic function that expands

a population from size N0 to N1 linearly in G generations. N0 and N1 should

be a list of subpopulation sizes.’’’

step = [float(x-y) / G for x,y in zip(N1, N0)]

def func(gen):

if gen == G - 1:

return N1

return [int(x + (gen + 1) * y) for x, y in zip(N0, step)]

return func

def simuGWAS(pop, mutaRate=1.8e-8, recIntensity=1e-8, migrRate=0.0001,

expandGen=500, expandSize=[10000], DPL=[], curFreq=[], fitness=[1,1,1],

scale=1, logger=None):

handling scaling...

mutaRate *= scale

recIntensity *= scale

migrRate *= scale

expandGen = int(expandGen / scale)

fitness = [1 + (x-1) * scale for x in fitness]

pop.dvars().scale = scale

Demographic function

demoFunc = linearExpansion(pop.subPopSizes(), expandSize, expandGen)

define a trajectory function

trajFunc = None

introOps = []

if len(DPL) > 0:

stat(pop, alleleFreq=DPL, vars=’alleleFreq_sp’)

currentFreq = []

for sp in range(pop.numSubPop()):

for loc in pop.lociByNames(DPL):

currentFreq.append(pop.dvars(sp).alleleFreq[loc][1])

if there is no existing mutants at DPL

if sum(currentFreq) == 0.:

endFreq=[(x-min(0.01,x/5.), x+min(0.01, x/5., (1-x)/5.)) for x in curFreq]

traj=simulateForwardTrajectory(N=demoFunc, beginGen=0, endGen=expandGen,

beginFreq=currentFreq, endFreq=endFreq, nLoci=len(DPL),

fitness=fitness, maxAttempts=1000, logger=logger)

introOps=[]

else:

traj=simulateBackwardTrajectory(N=demoFunc, endGen=expandGen, endFreq=curFreq,

nLoci=len(DPL), fitness=fitness, minMutAge=1, maxMutAge=expandGen,

logger=logger)

introOps = traj.mutators(loci=DPL)

if traj is None:

raise SystemError(’Failed to generated trajectory after 1000 attempts.’)

trajFunc=traj.func()

if pop.numSubPop() > 1:

pop.addInfoFields(’migrate_to’)

pop.dvars().scale = scale

126 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

pop.evolve(

initOps=sim.InitSex(),

preOps=[

sim.SNPMutator(u=mutaRate, v=mutaRate),

sim.IfElse(pop.numSubPop() > 1,

sim.Migrator(rate=migrSteppingStoneRates(migrRate, pop.numSubPop()))),

] + introOps,

matingScheme=sim.ControlledRandomMating(loci=DPL, alleles=[1]*len(DPL),

freqFunc=trajFunc, ops=sim.Recombinator(intensity=recIntensity),

subPopSize=demoFunc),

postOps = [

sim.Stat(popSize = True, structure=range(pop.totNumLoci())),

sim.PyEval(r’"After %3d generations, size=%s\n" % ((gen + 1)* scale, subPopSize)’),

sim.IfElse(pop.numSubPop() > 1,

sim.PyEval(r"’F_st = %.3f\n’ % F_st", step=10), step=10),

],

gen = expandGen

)

return pop

5.3.2 Drawing Population and Family-Based Samples

In real-world genetic studies, we never have the luxury to collect genotype
and phenotype information for all individuals in a population and have to
base our analysis on collected samples. To evaluate the performance of
statistical gene mapping methods using simulated data sets, it is necessary
to draw samples from simulated populations.

To simulate a genetic disease, a penetrance model is needed to assign
affection status of individuals in a population according to his or her geno-
type and other properties. For example, using a penetrance table reported
in Ford et al., the probabilities that a BRCA1 carrier gets breast cancer
are 0.036, 0.18, 0.57, 0.75, and 0.83 when she is 30, 40, 50, 60, and
70 years of age, respectively [27]. Example 5.7 demonstrates how to define
a penetrance function and apply it to a population in simuPOP.

� EXAMPLE 5.7

This example implements a disease model of breast cancer according to
a penetrance model [27]. Because single penetrance operators such as
MapPenetrance only consider an individual genotype, we use a
PyPenetrance operator that calculates individual penetrance according
to a user-provided callback function. This callback function takes individ-
ual genotype (parameter geno) and information fields as parameters and
returns a penetrance probability.

This example creates a population of 10,000 individuals with a single-
locus BRCA1 with the frequency of the rare allele being an unrealistically
high value of 0.27. Each individual is assigned a random age between

FORWARD-TIME SIMULATION OF REALISTIC SAMPLES 127

0 and 70. After a penetrance model is applied, a Stat operator is used to
calculate the population prevalence of this disease. Although the example
uses function forms of all operators, it would be easy to assign individual
fitness and track the prevalence of this disease dynamically during an evo-
lutionary process. This example also demonstrates how to define virtual
subpopulations by age and genotype (carrier or not) and how to calculate
statistics for individuals within each virtual subpopulation.

SOURCE CODE 5.7 A Single-Locus Penetrance Model of
Breast Cancer

>>> import simuPOP as sim

>>> import random

>>>

>>> def breatCancer(geno, age):

... # brca1 is recessive

... if 0 in geno:

... return 0

... return [0, 0, 0.036, 0.18, 0.57, 0.75, 0.83][int(age/10)]

...

>>> pop = sim.Population(size=10000, loci=1, infoFields=’age’,

... lociNames=’BRCA1’)

>>> sim.initGenotype(pop, freq=[0.73, 0.27])

>>> sim.initInfo(pop, lambda: random.randint(0, 69), infoFields=’age’)

>>> sim.pyPenetrance(pop, func=breatCancer, loci=0)

>>> pop.setVirtualSplitter(sim.CombinedSplitter([

... sim.InfoSplitter(field=’age’, cutoff=[30,40,50,60]),

... sim.ProductSplitter([

... sim.InfoSplitter(field=’age’, cutoff=[30,40,50,60]),

... sim.GenotypeSplitter(loci=0, alleles=[1,1], names=’carrier’),

...])]

...))

>>> sim.stat(pop, numOfAffected=True, subPops=[(0, sim.ALL_AVAIL)],

... vars=[’propOfAffected’, ’propOfAffected_sp’])

>>> print(’Population prevalence is %.2f%%’ % (pop.dvars().propOfAffected*100))

Population prevalence is 4.56%

>>> for x in range(pop.numVirtualSubPop()):

... print(’Prevalence in group %s is %.2f%%’ % \

... (pop.subPopName((0,x)), pop.dvars((0,x)).propOfAffected*100))

...

Prevalence in group age < 30 is 0.07%

Prevalence in group 30 <= age < 40 is 1.22%

Prevalence in group 40 <= age < 50 is 3.69%

Prevalence in group 50 <= age < 60 is 6.06%

Prevalence in group age >= 60 is 6.12%

Prevalence in group age < 30, carrier is 0.95%

Prevalence in group 30 <= age < 40, carrier is 18.48%

Prevalence in group 40 <= age < 50, carrier is 58.70%

Prevalence in group 50 <= age < 60, carrier is 77.78%

Prevalence in group age >= 60, carrier is 86.87%

A case–control design is a type of retrospective study design that has
been widely used in epidemiological studies, especially genome-wide

128 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

association studies. In a case–control study, people with a specific dis-
ease (cases) are chosen with people who do not have the disease (controls).
The basic idea is to compare genotypes of cases and controls. If alleles or
genotypes at a locus is significantly different in cases and controls, these
alleles or genotypes are claimed to be associated with the disease status.
Because disease outcome might be influenced by other characteristics such
as sex and race, cases and controls are matched so that these characteristics
are similar in these two groups.

If a disease is common enough so that there are enough cases in a simu-
lated population, it is easy to draw case–control samples from a population.
For example, Example 5.8 simulates a disease that is caused by a single
locus with penetrance 0.10, 0.12, and 0.20 for genotypes 00, 01, and 11,
respectively. With a disease allele frequency of 30%, the expected disease
prevalence is 11.74%, which results in more than 1000 affected individuals
in a population of 10,000 individuals. This example draws 500 cases and
500 controls from the population and applies allele-based χ2 tests to assess
the association between disease status and genotype at each locus. As we
can see from the p-values of these tests, the disease-causing locus (locus
2) is strongly associated with the disease. Because no linkage disequilib-
rium exists between these simulated loci, no association is detected for loci
around the disease-causing locus.

� EXAMPLE 5.8

This example creates a population of 10,000 individuals, each with a chro-
mosome with five loci. Function initGenotype, which is the function
form of operator InitGenotype, is used to initialize the population with
a frequency of 0.3 for allele 1. A penetrance operator is then used to set
the affection status of each individual. A function drawCaseControl-
Sample defined in a utility module simuPOP.sampling is then used to
draw a sample of 500 cases and 500 controls. The sample is analyzed using
a Stat operator that performs an allele-based χ2 tests to assess the asso-
ciation between disease status and genotype at each locus. The p-values
of these tests are stored in variable Allele ChiSq p and are printed by
the last print statement.

SOURCE CODE 5.8 Draw Case–Control Samples

>>> import simuPOP as sim

>>>

>>> from simuPOP.sampling import drawCaseControlSample

>>> # create a population with affected individuals

>>> pop = sim.Population(size=10000, loci=5)

FORWARD-TIME SIMULATION OF REALISTIC SAMPLES 129

>>> sim.initGenotype(pop, freq=[0.7, 0.3])

>>> sim.maPenetrance(pop, loci=2, penetrance=[0.1, 0.12, 0.20])

>>> sim.stat(pop, numOfAffected=True, association=range(5))

>>> print(pop.dvars().numOfAffected)

1149

>>> # draw a case control sample and run association test

>>> sample = drawCaseControlSample(pop, cases=500, controls=500)

>>> sim.stat(sample, numOfAffected=True, association=range(5))

>>> print(sample.dvars().numOfAffected, sample.dvars().numOfUnaffected)

(500, 500)

>>> print(’, ’.join([’%.3e’ % sample.dvars().Allele_ChiSq_p[x] for x in range(5)]))

1.870e-01, 8.843e-01, 9.223e-06, 3.084e-01, 7.870e-02

If a disease is rare or if the requested sample size is large or unknown
in advance, it can be difficult to estimate the required population size to
guarantee there are enough cases in the simulated population. Instead of
drawing directly from a population, one solution of this problem is to draw
samples from an infinitely sized offspring population. In practice, we only
need to simulate an offspring population that has enough cases and we
do not have to keep individuals that are not sampled. Therefore, we can
produce offspring repeatedly and can keep or discard them according to
their affection status, until we collect enough cases and controls.

� EXAMPLE 5.9

This example demonstrates how to generate a sample from a population of
10,000 individuals. Because this disease has a low penetrance of only 0.01,
0.02, and 0.10 for genotypes 00, 01, and 11, respectively, the expected dis-
ease prevalence is only 1.68% with a disease allele frequency of 20%. To
produce a sample of 500 cases and 500 controls from this population, we
evolve it for one generation and collect cases and controls from the offspring
population. This process is achieved by the use of virtual subpopulations
and an operator DiscardIf. This example uses a ProductSplitter
that defines four VSPs, namely, affected and unaffected offspring in the
first 500 and last 500 individuals in the offspring population. By discard-
ing all individuals that belong to virtual subpopulations (VSPs) (0, 0) and
(0, 3), we discard affected offspring in the first 500 offspring and unaffected
individuals in the last 500 offspring. The result of this offspring selection
process is an offspring population of 500 controls followed by 500 cases.

SOURCE CODE 5.9 Generating Case–Control Samples

>>> import simuPOP as sim

>>> def genCaseControlSample(pop, nCase, nControl, penetrance):

... ’’’Draw nCase affected and nControl unaffected individuals by producing

... offspring from pop repeatedly until enough cases and controls are

130 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

... collected. A penetrance operator is needed to assign affection status

... to each offspring.

... ’’’

... sample = pop.clone()

... sample.setVirtualSplitter(sim.ProductSplitter([

... sim.AffectionSplitter(),

... sim.RangeSplitter([[0, nCase], [nCase, nCase + nControl]])]))

... sample.evolve(

... matingScheme=sim.RandomMating(ops=[

... sim.MendelianGenoTransmitter(),

... penetrance,

... sim.DiscardIf(True, subPops=[(0,0), (0,3)])],

... subPopSize=nCase + nControl

...),

... gen=1

...)

... return sample

...

>>> if __name__ == ’__main__’:

... pop = sim.Population(size=10000, loci=1)

... sim.initGenotype(pop, freq=[0.8, 0.2])

... sim.initSex(pop)

... sample = genCaseControlSample(pop, 500, 500,

... sim.MaPenetrance(loci=0, penetrance=[0.01, 0.02, 0.10]))

... #

... sim.stat(sample, numOfAffected=True)

... print(sample.dvars().numOfAffected, sample.dvars().numOfUnaffected)

...

(500, 500)

An affected sibpair design is an efficient study design for the mapping
of rare and highly penetrant diseases. The basic idea is that siblings are
expected to share alleles that are identical by descent because of their shared
ancestry. If both siblings are affected, they tend to share the same disease
predisposing alleles at the loci that are associated with the disease. The
proportion of alleles that is identical by descent may differ from expectation
based upon Medelian segregation of parental genotype.

Unless a simulated population has kept parental information during evo-
lution, it is obviously infeasible to draw affected sibpairs and their par-
ents from the simulated population. However, even if a population keeps
parental generations during evolution, it can be difficult to draw siblings
from a population if a random mating process is used to evolve it. This is
because the probability that two offspring share the same parents is 1/N,
which is quite small for a reasonably sized population. Consequently, very
few sibpairs could be sampled from populations simulated using a mat-
ing scheme unless more than one offspring are produced at each mating
event. Similar to what we have shown for case–control samples, we can
draw affected sibpair samples from a multigenerational population if there
are enough affected sibpairs and their parents or generate affected sibpair

FORWARD-TIME SIMULATION OF REALISTIC SAMPLES 131

samples by evolving a population for one generation. This technique is
demonstrated in Example 5.10 and will be used in Example 5.12.

� EXAMPLE 5.10

This example defines a function genAffectedSibpairSample that
makes a clone copy of a passed population, increases its ancestral depth to
keep the parental population, adds required information fields (to record
parentship information), assigns unique IDs to all individuals, and then
evolves the population for one generation. A function drawAffect-
edSibpairSample defined in module simuPOP.sampling is used
to draw the required number of affected sibpair and their parents. With
some more work, this function can make use of the simulation technique
described in Example 5.9 and ensure that enough affected sibpairs are
available in the offspring population.

SOURCE CODE 5.10 Generating Affected Sibpair Samples

>>> import simuPOP as sim
>>>
>>> from simuPOP.sampling import drawAffectedSibpairSample
>>>
>>> def genAffectedSibpairSample(pop, nFamilies, penetrance):
... ’’’Draw nFamilies affected sibpairs and their parents by producing
... siblings from pop repeatedly until enough affected sibpairs are
... collected. A penetrance operator is needed to assign affection status
... to each offspring.
... ’’’
... pop1 = pop.clone()
... pop1.setAncestralDepth(1)
... pop1.addInfoFields([’ind_id’, ’father_id’, ’mother_id’])
... pop1.evolve(
... initOps=sim.IdTagger(),
... matingScheme=sim.RandomMating(
... ops=[
... sim.MendelianGenoTransmitter(),
... penetrance,
... sim.IdTagger(),
... sim.PedigreeTagger(),
...],
... numOffspring=2,
... subPopSize=pop.popSize()*2
...),
... gen=1
...)
... sim.stat(pop1, numOfAffected=True)
... return drawAffectedSibpairSample(pop1, nFamilies)
...
>>> if __name__ == ’__main__’:
... pop = sim.Population(size=10000, loci=1)
... sim.initGenotype(pop, freq=[0.5, 0.5])
... sim.initSex(pop)

132 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

... sim.maPenetrance(pop, loci=0, penetrance=[0.05, 0.15, 0.30])

... sample = genAffectedSibpairSample(pop, 100,

... sim.MaPenetrance(loci=0, penetrance=[0.05, 0.15, 0.30]))

... #

... sim.stat(sample, numOfAffected=True)

... print(sample.dvars().numOfAffected, sample.dvars().numOfUnaffected)

...
(200, 0)

5.3.3 Example 1: Typical Simulations With or Without Scaling

We created an initial population of 993 independent individuals of
the HapMap phase 3 data set, using 5000 markers on region 2p16.3
(chr2:51002576-60032817). This region spans 9.03 Mbp with a genetic
distance of 6.97 cM. It contains ENr112 ENCODE region and has an
average marker distance of 1.81 kb. We evolved this population for 500
generations until it reached 50,000 individuals, subject to mutation (at a
mutation rate of 10−8 per locus per generation), recombination (accord-
ing to the genetic distance between adjacent markers), no selection, and
linear population expansion. The initial population can be prepared using
commands

loadHapMap3.py --gui=batch --chroms=[2]

selectMarkers.py --gui=batch --chroms=[2] --startPos=51000000 --numMarkers=5000

or by executing these scripts using their graphical user interfaces.
In order to evaluate the quality of simulated populations and the im-

pact of the scaling technique, we simulated three expanded populations of
sizes 50,000, 25,000, and 10,000 using scaling factors 1 (unscaled), 2, and
5, respectively, and an expanded population of 50,000 individuals using
a scaling factor of 5. These can be achieved by calling the simuGWAS
function defined in Example 5.6 with appropriate parameters.

Although the first three populations are scaled versions of the same
evolutionary process, the last one is comparable to an unscaled simulation
of a population of size 250,000. Compared to the first three simulations,
genetic drift has a smaller impact on the last simulation because of its larger
population sizes during evolution. This is demonstrated in Figure 5.3 where
the allele frequencies at 5000 markers for all simulated populations are
compared with those for the initial population.

The evolution of LD in such an evolutionary process is more compli-
cated. According to Figure 5.4, all simulated populations had lower LD
values than those of the initial population. Although populations simu-
lated using a scaling approach tended to have lower LD values than those
from unscaled simulations, the differences between mean R2 values were

FORWARD-TIME SIMULATION OF REALISTIC SAMPLES 133

Initial population

E
xp

an
de

d
(λ

=
1,

 N
=

50
,0

00
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Initial population
E

xp
an

de
d

(λ
=

2,
 N

=
25

,0
00

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Initial population

E
xp

an
de

d
(λ

=
5,

 N
=

10
,0

00
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Initial population

E
xp

an
de

d
(λ

=
5,

 N
=

50
,0

00
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 5.3 Comparison between allele frequencies in initial and expanded
populations. Allele frequencies of the initial (x-axis) and expanded (y-axis) pop-
ulations of four simulations with populations sizes 50,000, 25,000, 10,000, and
50,000 and scaling factors λ = 1 (unscaled), 2, 5, and 5, respectively.

negligible especially for markers that are less than 200 kbp apart. A more
detailed analysis showed that average LD increased and then decreased dur-
ing the evolutionary process of all simulations. This phenomenon could be
explained by the fact that our simulation started from a relatively small pop-
ulation, so LD first built up because of a bottleneck effect. With increasing
population size, the natural decay of LD through genetic recombination
gradually prevailed at a rate accelerated by the impact of rapid population
expansion [28, 29]. The simulation with a scaling factor of 5 and popu-
lation size 50,000 had the lowest LD values because it had a relatively
short period of bottleneck and a faster rate population expansion than other
simulations.

134 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

Marker distance (kbp)

A
ve

ra
ge

 L
D

 (
R

2)

5004003002001000

0.
20

0.
10

0.
05

0.
02

0.
01

Initial population
Expanded (λ=1, N=50,000)
Expanded (λ=2, N=25,000)
Expanded (λ=5, N=10,000)
Expanded (λ=5, N=50,000)

FIGURE 5.4 Decay of linkage disequilibrium as a function of marker distance.
Average LD values as a function of marker distance for the initial population and
four expanded populations of sizes 50,000, 25,000, 10,000, and 50,000, using
scaling factors λ = 1 (unscaled), 2, 5, and 5, respectively. The y-axis is plotted in
log scale to distinguish LD curves in low LD regions. Marker distances were cut
into bins of 10 kbp. For example, the average LD at point 200 kbp represents the
mean pairwise LD values of all pairs of markers that were 200–210 kbp apart.

5.3.4 Example 2: A Genetic Disease with Two DPL

We extracted 6000 markers (2000 markers each) on chromosomes
2 (chr2:20014298-31200250), 5 (chr5:20005983-32781509), and 10
(chr10:41756307-55305682) of 993 independent individuals from phase
3 of the HapMap sample. We selected markers from a commercially avail-
able genotyping chip (the Illumina 550k array) to match markers used in
real-world GWAS. The average distance between adjacent markers was
5.61 kb.

Two markers, rs4491689 (chr2:26494285) and rs6869003
(chr5:27397573), were selected to be DPL of a genetic disease. The
first marker was assumed to be under purifying selection, with fitness
values of 1, 0.996, and 0.994 for genotypes AA, AG, and GG, respectively.
The second marker was assumed to be under positive selection, with fitness
values of 1, 1.001, and 1.005 for genotypes CC, CT, and TT, respectively.
A multiplicative multilocus selection model was used. Because these two
loci reside on different chromosomes, we considered natural selection to
be applied to these loci independently [30]. We assumed that DPAs existed
longer than 500 generations, and we used a forward-time simulation

FORWARD-TIME SIMULATION OF REALISTIC SAMPLES 135

method to simulate trajectories of the frequencies of the minor alleles at
both loci, starting from their frequencies in the chosen HapMap sample
(0.28 for marker rs4491689 and 0.07 for marker rs6869003). The ending
allele frequencies were 0.05 for marker rs4491689 and 0.15 for marker
rs6869003, which were chosen in concordance with the selection pressure
that was applied to each marker. We did not scale this simulation because
of the use of a nonadditive diploid selection model.

We used a logistic model with gene–gene and gene–environment inter-
actions to model a disease that involves these two genetic markers and a
random environmental factor with two states 0 and 1. We assumed that the
disease was mild and was not the source of the selection pressure on the
two DPL. The model can be expressed as

Y = logit (Pr (Y = 1 | g1, g2, e)) = α + β1g1 + β2g2 + β3g1g2

+ γ1g1e + γ2g2e, (5.6)

where Y is the disease status, g1 and g2 are number of DPAs at two markers,
respectively, and e is the random environmental factor. This model is an
extension of the one-gene, one-environmental model used in Li and Conti
[31]. We chose positive α, βi, and γi values so that the presence of each DPA
increases the probability that an individual is affected with the disease. We
chose β1 = β2/2, γ1 = γ2/2 so that DPA at the marker rs4491689 had less
impact on the disease than DPA at marker rs6869003. Finally, we controlled
parameters α, βi, and γi so that the prevalence of the disease was 1%.
Because there were less than 1000 affected individuals in the expanded
population, we used a rejection-sampling algorithm, as demonstrated in
Example 5.9, to populate an offspring population of exactly 1000 cases
and 1000 controls from the expanded population.

� EXAMPLE 5.11

We use scripts loadHapMap3.py and selectMarkers.py to pre-
pare an initial population. In order to select markers from the Illumina
array, we extracted marker names from the array annotation file and passed
them to script selectMarkers.py. The population is evolved using
function simuGWAS defined in Example 4.6.

Because penetrance model defined by Equation 5.6 requires several
parameters, this example defines a function penetrance that returns
a penetrance function from parameters α, βi, and γi. The returned function
is passed to function genCaseControlSample defined in Example
5.9 to produce a sample of 1000 cases and 1000 controls. The sample is
analyzed using allele-based χ2 association tests.

136 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

SOURCE CODE 5.11 Simulation of a Disease Model with G × G
and G × E Interactions

import simuOpt

simuOpt.setOptions(gui=False, alleleType=’binary’)

import simuPOP as sim

import random, math

from ch6_genCaseCtrl import genCaseControlSample

def penetrance(alpha, beta1, beta2, beta3, gamma1, gamma2):

def func(geno):

e = random.randint(0, 1)

g1 = geno[0] + geno[1]

g2 = geno[2] + geno[3]

logit = alpha + beta1*g1 + beta2*g2 + beta3*g1*g2 + gamma1*e*g1 + gamma2*e*g2

return 1 / (1. + math.exp(-logit))

return func

sample = genCaseControlSample(pop, 1000, 1000,

sim.PyPenetrance(func=penetrance(-5, 0.20, 0.4, 0.4, 0.2, 0.4),

loci=[’rs4491689’, ’rs6869003’]))

sim.stat(sample, association=sim.ALL_AVAIL)

get p-values

sample.dvars().Allele_ChiSq_p

We counted the number of alleles in cases and controls, created a 2 × 2
contingency table, and used a χ2 test to assess the association between
the disease status and alleles at each marker. The negative of the base 10
logarithm of thep-values at all markers were plotted in Figure 5.5. Although
the χ2 tests detected both genetic factors correctly, more sophisticated sta-
tistical methods or larger samples would be needed to detect the gene–gene
and gene–environment interactions in this data set.

5.3.5 Example 3: Simulations of Slow
and Rapid Selective Sweep

In the previous example, natural selection was not expected to have a strong
impact on LD patterns around DPL because it changed frequencies of both
DPAs slowly over a long period of time. In contrast, strong selection can
bring a new beneficial mutation to high frequency or fixation in a population
in a relatively short period of time. This phenomenon, also called selec-
tive sweep, has a profound impact on patterns of linked genetic variation
through the hitchhiking effect. The signatures of selective sweep have been
used for the development of statistical methods to identify chromosomal
regions that have been under positive selection [32] and for the identifi-
cation of DPL in genome-wide association analysis [33]. Although theo-

FORWARD-TIME SIMULATION OF REALISTIC SAMPLES 137

−
lo

g1
0(

p−
va

lu
e)

rs4491689

rs7720081

rs6869003

chr2 chr5 chr10
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

FIGURE 5.5 −Log10 p-values of allele-based χ2 tests at 6000 loci. Negative of
the base 10 logarithm of p-values of allele-based χ2 tests between 1000 cases and
1000 controls at 6000 markers (2000 each) on chromosomes 2, 5, and 10. Markers
rs4491689 and rs6869003 are causal. Marker rs7720081 has low p-value because
it is closely linked to marker rs6869003.

retical models of selective sweep have been simulated for methodological
development using coalescent approaches [14, 32, 34], explicit simulation
of selective sweep using a forward-time approach can be used to study the
impact of different levels of natural selection on different regions of the
human genome and to produce realistic samples to assess the power of
statistical methods.

In order to closely examine the impact of selective sweep on exist-
ing LD patterns of a chromosomal region, we extracted 500 markers on
a short region on chromosome 2 (chr2:234157787-234573235) from 170
independent individuals from the JPT+CHB population of phase 3 of the
HapMap data set. We selected this region because it belongs to the ENr131
ENCODE region with a mean distance of 0.83 kb between markers. We
selected marker rs2173746 with alleles C and T from one of the two haplo-
type blocks in this region and applied different levels of positive selection
during the evolution of this population.

In our first simulation, we assumed that allele T at this marker was
introduced more than 500 generations ago. This allele had a frequency
of 5.88% in the initial HapMap population and reached a frequency of
99% after 500 generations due to positive natural selection with fitness 1,

138 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

1.02, and 1.03 for genotypes CC, CT, and TT, respectively. A forward-time
trajectory simulation algorithm was used to control the frequency of allele
T at the present generation. In our second simulation, we cleared allele
T at this marker from the initial population and introduced it as a new
mutant during the evolutionary process. Using a backward-time trajectory
simulation process, an allele T was introduced at generation 268 and was
brought to a frequency of 99% using a stronger force of natural selection
with fitness 1, 1.05, and 1.11 for genotypes CC, CT, and TT, respectively.
These simulations could be done through functions such as

simuGWAS(pop, DPL=[’rs2173746’], curFreq=[0.99], fitness=[1, 1.07, 1.14])

with default values for other parameters.
We drew 1000 trios from the simulated populations using a rejection-

sampling algorithm. More specifically, we repeatedly chose parents and
produced offspring. We determined the affection status of each offspring
using a logistic regression model

logit (Pr (Y1 = 1)) = −0.5 − gi,

where gi is the number of allele T at locus rs2173746. We kept only affected
offspring and their parents in the sample until 1000 trios were collected.

� EXAMPLE 5.12

This example implements a simple disease model with two parame-
ters. In order to generate trio families with affected offspring, it de-
fines a class TioSampler that evolves a population for one generation.
Instead of using virtual subpopulations, this class uses an explicit function
discardTrio to discard offspring if he or she is unaffected or if his or

her parents have already produced another affected offspring.

SOURCE CODE 5.12 Generation of Trio Samples from
Simulated Population

import simuOpt
simuOpt.setOptions(gui=False, alleleType=’binary’)
import simuPOP as sim

import math
def penetrance(alpha, beta):

def func(geno):
g = geno[0] + geno[1]
logit = alpha + beta*g
return math.exp(logit) / (1. + math.exp(logit))

FORWARD-TIME SIMULATION OF REALISTIC SAMPLES 139

return func

class TrioSampler:
def __init__(self):

IDs of the parents of selected offspring
self.parentalIDs = set()

def _discardTrio(self, off):
’Determine if the offspring can be kept.’
if off.affected() and off.father_id not in self.parentalIDs and \

off.mother_id not in self.parentalIDs:
self.parentalIDs |= set([off.father_id, off.mother_id])
return False

discard unaffected individual or individuals with duplicate parents
return True

def drawSample(self, pop, penet, nFamilies):
self.pop = pop.clone()
self.pop.addInfoFields([’ind_id’, ’father_id’, ’mother_id’])
self.pop.setAncestralDepth(1)
sim.tagID(self.pop, reset=True)
self.pop.evolve(

preOps = penet,
matingScheme=sim.RandomMating(ops=[

sim.MendelianGenoTransmitter(), # pass genotype
sim.IdTagger(), # assign new ID to offspring
sim.PedigreeTagger(), # record the parent of each offspring
penet, # determine offspring affection status
sim.DiscardIf(cond=self._discardTrio)
], subPopSize=nFamilies),

gen = 1
)
return self.pop

sample = TrioSampler().drawSample(pop,
sim.PyPenetrance(penetrance(-0.5, -1.0), loci=’rs2173746’), 1000)

We used LAMP [35] to analyze the data set. Figure 4 plots the simulated
trajectories (Figure 5.6.b and c) as well as LD maps, drawn by HaploView
[36], of this region before evolution for all 500 markers (Figure 4A) and
after evolution with slow (Figure 5.6d) and rapid (Figure 5.6.e) sweeps for
100 markers around DPL. LD maps plot the pairwise D′ measure of LD
between all markers in a region, with high LD pairs marked in bright red.
Comparing LD maps around DPL before (Figure 5.6a) and after evolution
(Figure 5.6.d and e), it was clear that rapid selective sweep introduced
blocks of monomorphic markers (gray areas around marker rs2173746
in Figure 5.6.e) when the haplotype with the mutant became prevalent
when the mutant (allele T at marker rs2173746) was brought to a high
frequency (99%). In contrast, the impact of slow selective sweep on LD
patterns around DPL was barely discernible. As a matter of fact, the initial
population had 50 haplotypes over a region of 100 markers around marker

140 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

FIGURE 5.6 Impact of rapid and slow selective sweep on LD structure. An
initial population of 170 independent individuals of JPT+CHB population of phase
3 of the HapMap data set was expanded to large populations and subjected to
slow (b, d, and f) and rapid (c, e, g) selective sweeps at locus rs2173746. The
trajectories of the frequencies of allele T at this marker in simulations after slow
(b) and rapid (c) sweeps are plotted. LD maps of 500 markers on chromosome 2
of the initial population (a) and 100 markers around locus rs2173746 of expanded
populations after the slow (d) and rapid (e) sweeps are plotted. From these expanded
populations, 1000 cases and 1000 controls were drawn. The negative of the base 10
logarithm of p-values at 500 markers are plotted for slow (f) and rapid (g) sweeps.

rs2173746 (50 markers on each side), with a frequency of 16% for the most
popular haplotype. After rapid selective sweep, only 19 haplotypes existed
in this region, with a frequency of 97% for the most popular haplotype. In
contrast, 195 haplotypes were present in the population resulting from slow
selective sweep, with a frequency of 44% for the most popular haplotype.

The simulated populations could be used to test the performance of sta-
tistical tests designed to detect signals of positive selection along the human
genome [32] and to detect DPL if DPA was under positive selection [33].
For example, when we applied family-based association tests to two sam-
ples of trio families drawn from the simulated populations, the signals from

DISCUSSION 141

rapid selective sweep (Figure 5.6.g) appeared to be wider than those from
slow selective sweep (Figure 5.6.f). This phenomenon could be explained
by stronger LD between DPL and its surrounding loci for the simulation
with rapid selective sweep, but a quantitative analysis using a large number
of simulations would be needed to draw a definitive conclusion.

5.4 DISCUSSION

The genetic composition of a human population is the result of a long and
complex evolutionary process. The demographic and genetic features of
this process have profound implications in the mapping of susceptibility
genes responsible for human genetic diseases. Although resampling-based
methods capture the complexity of existing genome sequences with no
control over the impact of additional genetic and demographic forces, and
the coalescent methods simulate simple samples based solely on a few
theoretical models, the forward-time simulation method described in this
article retains key properties of human genomes by evolving a population
from real human sequences while allowing the introduction of additional
genetic forces such as natural selection. Because this method is not con-
strained by any theoretical limit, it can be used to simulate realistic samples
for a variety of research topics for GWA studies.

In order to retain key features of real human genomes during evolution,
this method expands the founder population rapidly. Because the size of the
founder population is likely to be small, this evolutionary process currently
suffers from a bottleneck effect during the initial stage of population expan-
sion, resulting in a loss of rare haplotypes and reduced genotype diversity.
During rapid population expansion, common haplotypes are maintained
in the population with stable frequency, whereas new haplotypes are con-
stantly introduced by mutation and recombination [30].

Consequently, common haplotypes in the initial population are preserved
in the simulated population, but many rare haplotypes will be replaced
by new haplotypes. Because mutation has a relatively small impact on
common alleles, an increased mutation rate can be used to generate more
new haplotypes in the simulated populations without markedly affecting
other population properties such as allele frequency and LD patterns. This
limitation will become less of a challenge as more human data become
available (e.g., from 1000 Genomes Project [21]).

Because a larger initial population size would reduce the bottleneck
effect and help preserve uncommon haplotypes, we combined all indepen-
dent individuals from 10 populations of the phase 3 HapMap data set for

142 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

examples 1, 2, and 4. The sudden population admixture caused long-range
admixture LD in the combined initial population. Such admixture LD de-
cayed gradually during evolution and did not lead to elevated long-range LD
in the simulated population (Figure 5.2). Nevertheless, the availability of
high-quality sequences of larger samples will allow to generate population-
specific samples and further improve the quality of our simulated data sets.

We evaluated the quality of simulated data sets by comparing allele
frequency and LD patterns between the simulated and the HapMap sam-
ples. However, we did not attempt to tweak our evolutionary process so
that the simulated samples resembled the HapMap sample closely because
we aimed to simulate larger populations with more genetic diversity than
the founder population and because we wanted to use a realistic evolu-
tionary process so that additional genetic or demographic features could
be added. If we consider the method to randomly split and join pieces of
chromosomes used by HapSample [37] as a special form of recombination,
HapSample could be considered as one-generation forward-time simula-
tion method with magnified recombination rates. Our simulation method
would yield results similar to those of the resampling methods if we used
an extraordinarily high scaling factor so that all sequences were essentially
derived directly from haplotypes of the initial population.

We used a fine-scale genetic map to determine the recombination rate
between adjacent markers [24]. This map generally has a higher re-
combination rate between markers from different haplotype blocks and
a lower recombination rate between markers from the same haplotype
blocks. Because recombinations happened mostly between existing hap-
lotype blocks, this genetic map helped us retain the haplotype blocks and
therefore LD structure of the founder population. However, due to the rel-
atively short evolutionary time, the type of genetic map does not have a
strong influence on the simulated population. For example, there is no dis-
cernible difference between LD patterns of simulated populations if we
use a physical map with a recombination rate of 0.01 per Mbp instead of a
genetic map to recombine parental chromosomes during evolution (results
not shown).

Our simulation program allows the simulation of arbitrarily chosen
selection models with multiple interacting genetic factors and at the mean
time allele frequencies at the present generation. If inappropriate parame-
ters are chosen, it is likely that the specified selection model would result in
allele frequencies higher or lower than expected so that no valid trajectory
of allele frequency could be simulated. If this is the case, our trajectory sim-
ulation function will print the average ending frequency for a forward-time
simulation or length of trajectory for a backward-time simulation so that

REFERENCES 143

the simulation parameters can be adjusted accordingly. This is especially
useful if a gene–gene interaction model is used so that marginal selection
pressure can interact with allele frequency and drive the allele frequency
of DPA in unpredictable directions.

Due to different requirements of different applications, the flexibility
of this simulation method is difficult to harness using a traditional single-
execution implementation. This is why we divided our simulation approach
into three steps and implemented different preprocessing and postprocess-
ing scripts for different applications. As we have demonstrated in a few
examples, simuPOP can be used to produce different types of samples from
a simulated population. This allows head-to-head comparison between not
only statistical methods using the same simulated samples but also between
statistical methods based on different study designs and sample types. The
ability to simulate and study the entire population with disease is one of
the greatest advantages of forward-time simulations.

REFERENCES

1. C. I. Amos, J. Krushkal, T. J. Thiel, A. Young, D. K. Zhu, E. Boerwinkle, and
M. de Andrade, Comparison of model-free linkage mapping strategies for the
study of a complex trait. Genet Epidemiol, 14(6):743–748, 1997.

2. P. C. Sham, S. Purcell, S. S. Cherny, and G. R. Abecasis, Powerful regression-
based quantitative-trait linkage analysis of general pedigrees. Am J Hum Genet,
71(2):238–253, 2002.

3. J. Marchini, B. Howie, S. Myers, G. McVean, and P. Donnelly, A new multi-
point method for genome-wide association studies by imputation of genotypes.
Nat Genet, 39(7):906–913, 2007.

4. S. Wiltshire, A. P. Morris, and E. Zeggini, Examining the statistical properties
of fine-scale mapping in large-scale association studies. Genet Epidemiol,
32(3):204–214, 2008.

5. C. C. A. Spencer, Z. Su, P. Donnelly, and J. Marchini, Designing genome-
wide association studies: sample size, power, imputation, and the choice of
genotyping chip. PLoS Genet, 5(5):e1000477, 2009.

6. H.-S. Chai, H. Sicotte, K. R. Bailey, S. T. Turner, Y. W. Asmann, and J.-P. A.
Kocher, GLOSSI: a method to assess the association of genetic loci-sets with
complex diseases. BMC Bioinformatics, 10:102, 2009.

7. H.-Y. Tan, J. H. Callicott, and D. R. Weinberger, Intermediate phenotypes in
schizophrenia genetics redux: is it a no brainer? Mol Psychiatry, 13(3):233–
238, 2008.

8. Z. Bochdanovits, M. Verhage, A. B. Smit, E. J. C. de Geus, D. Posthuma,
D. I. Boomsma, B. W. J. H. Penninx, W. J. Hoogendijk, and P. Heutink,

144 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES

Joint reanalysis of 29 correlated SNPS supports the role of PCLO/Piccolo
as a causal risk factor for major depressive disorder. Mol Psychiatry, 14(7):
650–652, 2009.

9. Y. Liu, G. Athanasiadis, and M. E. Weale, A survey of genetic simulation
software for population and epidemiological studies. Hum Genomics, 3(1):
79–86, 2008.

10. G. Coop and R. C. Griffiths, Ancestral inference on gene trees under selection.
Theor Popul Biol, 66(3):219–232, 2004.

11. Y. Wang and B. Rannala, In silico analysis of disease-association mapping
strategies using the coalescent process and incorporating ascertainment and
selection. Am J Hum Genet, 76(6):1066–1073, 2005.

12. M. Slatkin, Simulating genealogies of selected alleles in a population of vari-
able size. Genet Res, 78(1):49–57, 2001.

13. T. Maruyama, The age of a rare mutant gene in a large population. Am J Hum
Genet, 26(6):669–673, 1974.

14. C. C. A. Spencer and G. Coop, SelSim: a program to simulate popula-
tion genetic data with natural selection and recombination. Bioinformatics,
20(18):3673–3675, 2004.

15. T. Mailund, M. H. Schierup, C. N. S. Pedersen, P. J. M. Mechlenborg, J. N.
Madsen, and L. Schauser, CoaSim: a flexible environment for simulating
genetic data under coalescent models. BMC Bioinformatics, 6:252, 2005.

16. B. Peng, C. I. Amos, and M. Kimmel, Forward-time simulations of human
populations with complex diseases. PLoS Genet, 3(3):e47, 2007.

17. T. Mehta, M. Tanik, and D. B. Allison, Towards sound epistemological
foundations of statistical methods for high-dimensional biology. Nat Genet,
36(9):943–947, 2004.

18. D. Reich and N. Patterson, Will admixture mapping work to find disease genes?
Philos Trans R Soc Lond B Biol Sci, 360(1460):1605–1607, 2005.

19. International HapMap Consortium, A haplotype map of the human genome.
Nature, 437(7063):1299–1320, 2005.

20. M. I. McCarthy, G. R. Abecasis, L. R. Cardon, D. B. Goldstein, J. Little, J. P. A.
Ioannidis, and J. N. Hirschhorn, Genome-wide association studies for complex
traits: consensus, uncertainty and challenges. Nat Rev Genet, 9(5):356–369,
2008.

21. J. Wise, Consortium hopes to sequence genome of 1000 volunteers. BMJ,
336(7638):237, 2008.

22. J. D. Wall and M. Przeworski, When did the human population size start
increasing? Genetics, 155(4):1865–1874, 2000.

23. W. J. Ewens, “Mathematical Population Genetics”, 2004, Springer.

24. S. Myers, L. Bottolo, C. Freeman, G. McVean, and P. Donnelly, A fine-scale
map of recombination rates and hotspots across the human genome. Science,
310(5746):321–324, 2005.

REFERENCES 145

25. M. Kimura and G. H. Weiss, The stepping stone model of population structure
and the decrease of genetic correlation with distance. Genetics, 49(4):561–576,
1964.

26. C. J. Hoggart, M. Chadeau-Hyam, T. G. Clark, R. Lampariello, J. C. Whittaker,
M. De Iorio, and D. J. Balding, Sequence-level population simulations over
large genomic regions. Genetics, 177(3):1725–1731, 2007.

27. D. Ford, D. F. Easton, M. Stratton, S. Narod, D. Goldgar, P. Devilee, D. T.
Bishop, B. Weber, G. Lenoir, J. Chang-Claude, H. Sobol, M. D. Teare,
J. Struewing, A. Arason, S. Scherneck, J. Peto, T. R. Rebbeck, P. Tonin,
S. Neuhausen, R. Barkardottir, J. Eyfjord, H. Lynch, B. A. Ponder, S. A.
Gayther, and M. Zelada-Hedman, Genetic heterogeneity and penetrance anal-
ysis of the BRCA1 and BRCA2 genes in breast cancer families: the breast
cancer linkage consortium. Am J Hum Genet, 62(3):676–689, 1998.

28. M. Slatkin, Linkage disequilibrium in growing and stable populations. Genet-
ics, 137(1):331–336, 1994.

29. G. A. T. McVean, A genealogical interpretation of linkage disequilibrium.
Genetics, 162(2):987–991, 2002.

30. B. Peng, R. K. Yu, K. L. Dehoff, and C. I. Amos, Normalizing a large number
of quantitative traits using empirical normal quantile transformation. BMC
Proc, 1 (Suppl 1):S156, 2007.

31. D. Li and D. V. Conti, Detecting gene–environment interactions using a com-
bined case-only and case-control approach. Am J Epidemiol, 169(4):497–504,
2009.

32. B. F. Voight, S. Kudaravalli, X. Wen, and J. K. Pritchard, A map of recent
positive selection in the human genome. PLoS Biol, 4(3):e72, 2006.

33. G. Ayodo, A. L. Price, A. Keinan, A. Ajwang, M. F. Otieno, A. S. S. Orago,
N. Patterson, and D. Reich, Combining evidence of natural selection with
association analysis increases power to detect malaria-resistance variants. Am
J Hum Genet, 81(2):234–242, 2007.

34. G. McVean, The structure of linkage disequilibrium around a selective sweep.
Genetics, 175(3):1395–1406, 2007.

35. M. Li, M. Boehnke, and G. R. Abecasis, Joint modeling of linkage and asso-
ciation: identifying SNPS responsible for a linkage signal. Am J Hum Genet,
76(6):934–949, 2005.

36. J. C. Barrett, B. Fry, J. Maller, and M. J. Daly, Haploview: analysis and visu-
alization of ld and haplotype maps. Bioinformatics, 21(2):263–265, 2005.

37. F. A. Wright, H. Huang, X. Guan, K. Gamiel, C. Jeffries, W. T. Barry, F.
P.-M. de Villena, P. F. Sullivan, K. C. Wilhelmsen, and F. Zou, Simulating
association studies: a data-based resampling method for candidate regions or
whole genome scans. Bioinformatics, 23(19):2581–2588, 2007.

CHAPTER 6

NONRANDOM MATING AND ITS
APPLICATIONS

In the previous chapters, we have mostly used a random mating scheme
to model the evolution of human populations. The essential feature of this
mating scheme is that if we do not consider natural selection, the probabil-
ity that two individuals in a population will mate is the same for all possible
pairs of individuals. Although not all parents will pass their genotypes to
the offspring generation (see Section 2.7 for an analysis of the genealogy of
forward-time simulations), genotypes of the parental population are mixed
efficiently among members of the next generation. Consequently, an evo-
lutionary process using this mating scheme has a relatively large effective
population size.

However, nonrandom mating can be important in studies of some pop-
ulations of plants and animals, and even humans. In contrast to a random
mating scheme that can be defined rigorously, deviation from random mat-
ing can take many different forms. For example, many plants reproduce
by varying degrees of self-fertilization. Different levels of inbreeding ex-
ists in animal populations, animal populations have many different mating
patterns that cannot be modeled by a random mating scheme. If we limit
ourselves to sexual mating in diploid populations, nonrandom mating oc-
curs when the probability that two individuals in a population will mate is

Forward-time Population Genetics Simulations: Methods, Implementation, and Applications,
Bo Peng, Marek Kimmel, and Christopher I. Amos.
© 2012 Wiley-Blackwell. Published 2012 by John Wiley & Sons, Inc.

147

148 NONRANDOM MATING AND ITS APPLICATIONS

not the same for all possible pairs of individuals. This is certainly the case
for human populations because mating decisions of humans are usually
influenced traits such as appearance, personality, cultural values, and so-
cial status. As we will demonstrate in this chapter, nonrandom mating has
strong influence on the evolution of genes that are related to these traits and
should be considered when we study the genetic background of these traits.
Note that the mating patterns we consider here are trait specific because
traits that are unrelated to mating (e.g., hypertension) can flow roughly
freely during evolution. Even if the population mates nonrandomly, geno-
types that are associated with these traits can be considered to be under
random mating.

This chapter demonstrates how to simulate arbitrary nonrandom mat-
ing schemes in human and other populations using simuPOP. In addition
to usual nonrandom mating schemes such as assortative mating, we also
demonstrate how to use simuPOP to simulate age-structured populations
using overlapping generations. Examples in this chapter use some advanced
features of simuPOP, so refer to Section 6.10 if you are interested in the
implementation of these examples.

6.1 ASSORTATIVE MATING

Assortative mating refers to mate selection on the basis of phenotypic or
genotypic characteristics. The most common form of assortative mating
among humans is one in which individuals mate with others who are like
themselves phenotypically for selected traits. This is referred to as positive
assortative mating. For example, the marital correlation (correlation of
a trait among spouses) of body mass index (BMI) is 0.13 [1], and is as
high as 0.26 for systolic blood pressure [2]. Although such correlations
can be caused by other effects such as increased spousal similarity with
age or cohabitation, evidence has shown that some correlations are truly a
function of assortative mating.

Assortative mating can have a strong impact on the evolution of genes
that are related to the traits. Using an extreme example, if we assume that
a trait with three values is caused by the number of disease allele a at
a single locus and people only mate with spouses with an identical trait,
only three possible mating patterns will exist in the population, namely,
AA with AA, Aa with Aa, and aa with aa. This will cause an increase of
homozygous genotypes (AA and aa) and a decrease of heterozygous ones
(Aa) in a population, which is a deviation of Hardy–Weinberg equilibrium
at this locus.

ASSORTATIVE MATING 149

Assortative mating can also cause spurious associations in genetic as-
sociation studies. For example, Redden and Allison [3] used forward-time
simulations to simulate populations that have gone through positive assor-
tative mating with respect to adiposity, beauty, and intelligence and studied
the impact of such nonrandom mating on the type I error of several statisti-
cal gene mapping methods. This section implements this simulation study
to demonstrate how to use a homogeneous mating scheme to simulate as-
sortative mating.

6.1.1 Genetic Architecture of Traits

Quantitative traits refer to phenotypes (properties) that vary in degree in a
population. They can be binary (e.g., onset of a disease), categorical (e.g.,
race), or numeric (e.g., blood pressure). A quantitative trait model deter-
mines one or more traits of individuals according to his or her genotype,
sex, or other properties. Quantitative traits of individuals are usually as-
signed during evolution to model the evolution of traits or after evolution
for, for example, sampling purposes. Example 6.1 demonstrates how to
apply a penetrance model to a population in simuPOP.

Redden and Allison [3] simulated 40 independent unlinked diallelic loci
for all simulated individuals. An allele frequency of 0.5 was used for all
allele, which led to genotype frequencies 0.25, 0.50, and 0.25 for genotypes
AA, Aa, and aa. These 40 loci are divided into 4 groups, among which 10
of the loci (labeled a1–a10) were used to simulate the phenotype adiposity
(A), 10 loci (labeled b1–b10) were used to simulate the phenotype beauty
(B), and 10 loci (labeled i1–i10) were used to simulate the phenotype
intelligence (I). The final 10 loci (labeled u1–u10) were designated as
uninformative ‘‘random markers’’ and were not utilized in the construction
of any phenotype.

The phenotypic contribution of genotypes in these groups to the cor-
responding phenotype is simply the number of a alleles at these loci. A
normal random variable with mean of 0 and variance 2.5 was added to that
sum to create the phenotypic distributions.

� EXAMPLE 6.1

simuPOP stores trait values as floating point numbers in information fields.
A standard method to implement a quantitative trait model in simuPOP
is to implement it in a callback function and pass the function to a
PyQuanTrait operator. This callback function accepts one or more pa-
rameters of geno (genotype at specified loci), gen (generation number),

150 NONRANDOM MATING AND ITS APPLICATIONS

ind (individual), or names of information fields, and return one or more
trait values. For example, a callback function

def traits(geno):
return sum(geno[:10]) + random.normalvariate(0, 2.5), \

sum(geno[10:20]) + random.normalvariate(0, 2.5), \
sum(geno[20:30]) + random.normalvariate(0, 2.5),

defines a quantitative trait model for Redden and Allison [3]. When this
function is used in a PyQuanTrait operator, for example,

PyQuanTrait(func=traits, loci=range(30), infoFields=[’A’, ’B’, ’I’])

the operator will collect genotype at specified loci for each individual, pass
them to this function, and assign the return values to specified information
fields A, B, and I.

If additional information is needed in a quantitative trait, it can be passed
to the callback function as parameters. For example, function

def qtrait(geno, ind):
’A sex-dependent quantitative trait model’
if ind.sex() == MALE:

return random.normalvariate(sum(geno), 1)
else:

return random.normalvariate(sum(geno), 0.5)

defines a quantitative trait model that returns a random trait that follows a
Gaussian distribution with mean 0, 1, and 2 for genotypes (0,0), (0,1), and
(1,1), respectively, and a variance 1 for male individuals and 0.5 for female
individuals. When this function is passed to operator

PyQuanTrait(func=qtrait, loci=3, infoFields=’trait’)

this operator will go through all individuals, pass genotype at locus 3 and
the individual object itself to function qtrait, and assign its return value
to information field trait.

This example demonstrates a quantitative trait model that depends on
an information field age. This model is defined in function qtrait that
accepts parameters geno and age and returns a tuple of two elements. The
return values are used to assign trait values to information fields trait1
and trait2. Although it is more realistic to apply this quantitative trait
model to an age-structured population, this example assigns individual
fitness randomly for the sake of simplicity.

ASSORTATIVE MATING 151

SOURCE CODE 6.1 A Quantitative Trait Model

>>> import simuPOP as sim

>>> import random

>>> pop = sim.Population(size=5000, loci=2, infoFields=[’qtrait1’, ’qtrait2’, ’age’])

>>> pop.setVirtualSplitter(sim.InfoSplitter(field=’age’, cutoff=[40]))

>>> def qtrait(geno, age):

... ’Return two traits that depends on genotype and age’

... return random.normalvariate(age * sum(geno), 10), random.randint(0, 10*sum(geno))

...

>>> pop.evolve(

... initOps=[

... sim.InitSex(),

... sim.InitGenotype(freq=[0.2, 0.8]),

...],

... matingScheme=sim.RandomMating(),

... postOps=[

... # use random age for simplicity

... sim.InitInfo(lambda:random.randint(20, 75), infoFields=’age’),

... sim.PyQuanTrait(loci=(0,1), func=qtrait, infoFields=[’qtrait1’, ’qtrait2’]),

... sim.Stat(meanOfInfo=[’qtrait1’], subPops=[(0, sim.ALL_AVAIL)],

... vars=’meanOfInfo_sp’),

... sim.PyEval(r"’Mean of trait1: %.3f (age < 40), %.3f (age >=40)\n’ % "

... "(subPop[(0,0)][’meanOfInfo’][’qtrait1’], subPop[(0,1)][’meanOfInfo’][’qtrait1’])"),

...],

... gen = 5

...)

Mean of trait1: 93.566 (age < 40), 182.453 (age >=40)

Mean of trait1: 94.545 (age < 40), 182.620 (age >=40)

Mean of trait1: 95.227 (age < 40), 183.338 (age >=40)

Mean of trait1: 95.808 (age < 40), 183.537 (age >=40)

Mean of trait1: 94.684 (age < 40), 185.260 (age >=40)

5

>>>

6.1.2 Mating Model

Redden and Allison [3] used a simple model of mate selection in which
people mated assortatively on the basis of an emergent trait D (D for de-
sirability). In this model, D = B + I − A + ε, where ε is a normally dis-
tributed random variable with mean zero and variance σ2

ε . The value of σε

was used to control the level of assortative mating.
To simulate assortative mating, Redden and Allison [3] sorted males and

females independently by D and then paired upon D such that the highest
ranked male mated with the highest ranked female and so on for each suc-
cessive rank. Although the pairings of parents are performed sequentially,
there are varying levels of randomness for the pairing of parents with sim-
ilar genotypes because traits A, B, I, and D all have a random component.
In order to keep constant population size and have exact numbers of males

152 NONRANDOM MATING AND ITS APPLICATIONS

and females in the population, all mating events produce a male and a fe-
male offspring. In summary, we need a mating scheme that involves the
following:

• Match males and females by their desirability values. That is to say,
a male with the highest desirability value in male individuals mates
with a female with the highest desirability value in female individuals,
a male with the second highest desirability value mates with a female
with the second highest desirability value, and so on.

• Produce equal numbers of male and female individuals in the offspring
population.

We simulate this mating scheme by sorting individuals by their desirability
(D) values and select and mate parents sequentially. Because parents can
only mate once, we produce two offspring, one male and one female, per
mating event to keep a constant population size and keep equal numbers
of males and females. This is explained in the following example.

� EXAMPLE 6.2

In order to line up males and females side by side, it is necessary to sort
individuals according to trait value D. This can be easily achieved using
function Population.sortIndividuals. However, because this is
a member function that sorts individuals of a particular population, it cannot
be used as an operator during evolution (because operators are objects that
are applied to populations repeatedly). The solution is to define a function

def sortByD(pop):
pop.sortIndividuals(’D’)
return True

and use it in a Python operator

PyOperator(func=sortByD)

This operator needs to be applied immediately before mating.
Because there is no predefined mating scheme that selects parents se-

quentially, we will need to define our own mating scheme. This is not
particularly difficult, but implementing this mating scheme requires some
understanding of the homogeneous mating scheme of simuPOP. Homo-
geneous mating schemes in simuPOP refer to mating schemes that use a
single method to choose parents and produce offspring. It is composed of
a parent chooser that is responsible for choosing one or two parents from

ASSORTATIVE MATING 153

the parental generation and an offspring generator that generates one or
more offspring from the chosen parents. For example, the most commonly
used mating scheme, namely, the diploid sexual RandomMating mating
scheme, is defined as

def RandomMating(numOffspring=1, sexMode=RANDOM_SEX, ops=MendelianGenoTransmitter(),

subPopSize=[], subPops=ALL_AVAIL, weight=0, selectionField=’fitness’):

return HomoMating(chooser=RandomParentsChooser(True, selectionField),

generator=OffspringGenerator(ops, numOffspring, sexMode),

subPopSize=subPopSize, subPops=subPops, weight=weight)

That is to say, this mating scheme is a homogeneous mating scheme
(HomoMating) that uses a RandomParentsChooser to choose two
parents with replacement (the first parameter) from their respective sex
group and an OffspringGenerator to produce offspring. A genotype
transmitter MendelianGenoTransmitter is used by default to trans-
mit genotypes from parents to offspring. Parameters numOffspring and
sexMode are passed to this offspring generator to control the number of
offspring per mating event and the sex of offspring. The constructor of
a homogeneous mating scheme also accepts parameters subPopSize,
subPops, and weight. Parameter subPopSize is used to control the
size of the offspring subpopulation. The latter two parameters are signif-
icant only when the mating scheme is used in a heterogeneous mating
scheme, which will be discussed later.

simuPOP provides a number of genotype transmitters, parent choosers,
and offspring generators and uses them to define a number of commonly
used homogeneous mating schemes (Table 6.1). If a special homogeneous
mating scheme is needed, it can usually be defined using existing parent
choosers and offspring generators. For example, a SelfMating mating
scheme uses a RandomParentChooser to choose a parent randomly
from a population and a selfingOffspringGenerator to transmit
his or her genotype to his or her offspring. If a theoretical model requires
that all parents transmit their genotypes to an offspring population, you can
use a SequentialParentChooser to choose parents sequentially and
self-fertilize parents one by one.

An example of a customized homogeneous mating scheme is provided
in this example. This example uses a mating scheme where a sequential
parent chooser is used to select parents one by one. As you can see from
the value of parent idx recorded by a ParentsTagger, the first
offspring inherits his genotype from the first parent, the second offspring
from the second parent, and so on. Because of the use of a selfing genotype

154 NONRANDOM MATING AND ITS APPLICATIONS

TABLE 6.1 Mating Schemes-Related Classes

Object Usage

Genotype transmitters
CloneGenoTransmitter Copy genotype, sex, and all

information fields of a parent to
offspring

MendelianGenoTransmitter Select one of two parental
chromosomes of two parents
randomly and pass them to the
offspring

SelfingGenoTransmitter Select one of two parental
chromosomes randomly of a
parent twice and pass them to the
offspring

HaplodiploidGenoTransmitter Copy the first set of chromosomes
of a male parent and a random set
of chromosomes of a female
parent to offspring

MitochondrialGenoTransmitter Copy one or more customized
chromosomes of the female
parent to offspring

Recombinator Recombine parental
chromosomes and copy one of
the recombinants to offspring

Parent choosers
SequentialParentChooser Choose a parent sequentially
SequentialParentChooser Choose a male and a female

parent sequentially from their
respective sex group

RandomParentChooser Choose a parent randomly,
regardless of sex, with or without
replacement

RandomParentsChooser Choose a male and a female
parent randomly, with or without
replacement

PolyParentsChooser Similar to a random parents
chooser, but one of the parents
will mate with several spouses
before he or she is replaced

(Continued)

ASSORTATIVE MATING 155

TABLE 6.1 Mating Schemes-Related Classes (Continued)

Object Usage

CombinedParentsChooser Return a pair of parents from two
parent choosers

PyParentsChooser Return a parent or two parents by
calling a user-defined Python
generating function

Offspring generators
OffspringGenerator Produce offspring from one or

two parents using the provided
during-mating operators

ControlledOffspringGenerator Selectively accepting offspring to
control the frequencies of alleles
at one or more loci

Predefined mating schemes
CloneMating Select parents sequentially and

clone them to the offspring
population

RandomSelection An asexual haploid random
mating scheme

RandomMating A diploid random mating scheme
MonogamousMating A random mating scheme in

which parents are chosen only
once

HaplodiploidMating A mating scheme in haplodiploid
populations, using a genotype
transmitter designed for such a
population

SelfMating A random selection mating
scheme that uses a selfing
genotype transmitter

ControlledRandomMating A random mating scheme using a
controlled offspring generator

transmitter, parental chromosomes are chosen twice (randomly) to form
the two homologous copies of offspring chromosomes.

With the appropriate parent chooser and offspring generator to use, it
is then easy to translate the required mating scheme into the simuPOP
language:

156 NONRANDOM MATING AND ITS APPLICATIONS

HomoMating(
chooser=SequentialParentsChooser(),
generator=OffspringGenerator(ops=MendelianGenoTransmitter(),

numOffspring=2, sexMode=(NUM_OF_MALES, 1))
)

Here we use a sexMode that specifies one and only one male individual in
a family, so there will be a male and a female when numOffspring=2.

SOURCE CODE 6.2 A Sequential Selfing Mating Scheme

>>> import simuPOP as sim
>>> pop = sim.Population(100, loci=[5]*3, infoFields=’parent_idx’)
>>> pop.evolve(
... initOps=sim.InitGenotype(freq=[0.2]*5),
... preOps=sim.Dumper(structure=False, max=5),
... matingScheme=sim.HomoMating(
... sim.SequentialParentChooser(),
... sim.OffspringGenerator(ops=[
... sim.SelfingGenoTransmitter(),
... sim.ParentsTagger(infoFields=’parent_idx’),
...])
...),
... postOps=sim.Dumper(structure=False, max=5),
... gen = 1
...)
SubPopulation 0 (), 100 Individuals:

0: MU 44100 01422 24423 | 43130 34400 10114 | 0
1: MU 33444 24430 34342 | 11320 34413 33201 | 0
2: MU 03434 40424 24240 | 34430 41214 30212 | 0
3: MU 13232 23304 20043 | 14130 02231 14240 | 0
4: MU 11112 30400 33342 | 34434 42211 33120 | 0

SubPopulation 0 (), 100 Individuals:
0: MU 44100 34400 24423 | 44100 34400 10114 | 0
1: MU 33444 24430 33201 | 33444 24430 33201 | 1
2: FU 34430 41214 24240 | 34430 41214 24240 | 2
3: FU 13232 02231 14240 | 14130 02231 20043 | 3
4: MU 34434 30400 33342 | 11112 42211 33342 | 4

1

6.1.3 Simulation of Assortative Mating

Example 6.3 demonstrates how to simulate the assortative mating scheme
described in Redden and Allison [3]. Although Redden and Allison [3] used
different statistical methods to test and correct for spurious associations
caused by assortative mating, we simply calculate the Pearson correlation
between genotypes at the A loci (loci 1 through 10) with traits A and B and
genotypes at the U loci (loci 31 through 40) with trait A.

ASSORTATIVE MATING 157

As we can see from the correlation values, trait A is strongly correlated
with genotypes at the A loci, but not correlated with genotypes at the U

loci. This is expected because the A loci contribute directly to trait A, and
the U loci are not related to any trait. What is interesting is the apparent
correlation between trait B and genotypes at the A loci. Although these loci
are not genetically related to trait B, they contribute to trait D by which
assortative mating occurs. Such correlations are therefore an artifact of
positive assortative mating.

� EXAMPLE 6.3

This example starts with a definition of a quantitative trait function. Instead
of deriving trait D from trait values A, B, and I, this function handles all traits
together in function traits. This function is used in a PyQuanTrait
operator to calculate traits A, B, I, and D for each individual at the beginning
of each generation.

The simulation starts with a founding population of 100,000 individuals.
Because our mating scheme requires equal numbers of male and female
individuals, we use a InitSex operator with parameter maleProp=0.5
to specify the proportion of male individuals in the population. This results
in a population of 50,000 men and 50,000 women. All loci in this population
are initialized with allele frequency 0.5.

Individuals are sorted by their desirability values before mating starts
at each generation. Because the function to sort individual is very short,
this example uses a lambda function to define the function in place. Note
that a callback function for a PyOperator must return True or False,
so this lambda uses is None after pop.sortIndividuals(’D’)
to return True because sortIndividuals() does not return a value.

After individuals are sorted, a positive assortative mating scheme is
used to evolve the population for 10 generations. After 10 generations,
the simulated population are analyzed for spurious associations. Because
there is no built-in function to calculate correlation between two vectors,
this example uses a rpy module to pass vectors to a statistical package R
and calculate correlation using a R function cor.

SOURCE CODE 6.3 An Example of Assortative Mating

>>> import simuPOP as sim

>>> from random import normalvariate

>>> sigma = 1

>>> def traits(geno):

... ’genotypes are arranged as a1a2b1b2c1c2... where a,b,c are specified loci’

... A = sum(geno[:20]) + normalvariate(0, 2.5)

158 NONRANDOM MATING AND ITS APPLICATIONS

... B = sum(geno[20:40]) + normalvariate(0, 2.5)

... I = sum(geno[40:60]) + normalvariate(0, 2.5)

... D = B + I - A + normalvariate(0, sigma**2)

... return A, B, I, D

...

>>> pop = sim.Population(100000, loci=[1]*40, infoFields=[’A’, ’B’, ’I’, ’D’])

>>> pop.evolve(

... initOps=[

... sim.InitSex(maleProp=0.5),

... sim.InitGenotype(freq=[0.5, 0.5]),

...],

... preOps=[

... sim.PyQuanTrait(func=traits, loci=sim.ALL_AVAIL,

... infoFields=[’A’, ’B’, ’I’, ’D’]),

... sim.PyOperator(func=lambda pop: pop.sortIndividuals(’D’) is None),

...],

... matingScheme=sim.HomoMating(

... chooser=sim.SequentialParentsChooser(),

... generator=sim.OffspringGenerator(

... ops=sim.MendelianGenoTransmitter(),

... numOffspring=2, sexMode=(sim.NUM_OF_MALES, 1))

...),

... finalOps=sim.PyQuanTrait(func=traits, loci=sim.ALL_AVAIL,

... infoFields=[’A’, ’B’, ’I’, ’D’]),

... gen=10

...)

10

>>>

>>> from rpy import r

>>> def genoTraitCorrelation(loc, trait):

... ’Calculate correlation between trait and genotype at a locus’

... geno = [ind.allele(loc,0) + ind.allele(loc,1) for ind in pop.individuals()]

... qtrait = pop.indInfo(trait)

... return r.cor(geno, qtrait)

...

>>> # correlation between genotype at A loci with trait A

>>> AA = [genoTraitCorrelation(loc, ’A’) for loc in range(10)]

>>> print(’, ’.join([’%.3f’ % abs(x) for x in AA]))

0.267, 0.270, 0.275, 0.272, 0.273, 0.272, 0.273, 0.273, 0.271, 0.273

>>> # correlation between genotype at A loci with trait B (spurious)

>>> AB = [genoTraitCorrelation(loc, ’B’) for loc in range(10)]

>>> print(’, ’.join([’%.3f’ % abs(x) for x in AB]))

0.082, 0.086, 0.087, 0.080, 0.084, 0.086, 0.088, 0.081, 0.091, 0.086

>>> # correlation between genotype at unrelated loci with trait A

>>> UA = [genoTraitCorrelation(loc, ’A’) for loc in range(30, 40)]

>>> print(’, ’.join([’%.3f’ % abs(x) for x in UA]))

0.002, 0.003, 0.000, 0.001, 0.004, 0.001, 0.005, 0.006, 0.000, 0.001

6.2 MORE COMPLEX NONRANDOM MATING SCHEMES

6.2.1 Customized Parent Choosing Scheme

A parent choosing scheme can be quite complicated in reality. For exam-
ple, long-finned pilot whales swim in large social groups known as pods,

MORE COMPLEX NONRANDOM MATING SCHEMES 159

but male whales neither disperse from nor mate within their natal pods.
Instead, they will temporarily leave their pod and mate with females in an-
other pod [4]. Example 6.4 implements the mating behavior of pilot whales
by explicitly choosing parents in a Python function. Although this method
is not particularly efficient, it allows the implementation of arbitrarily com-
plex mating schemes. Methods to improve the efficiency of this method is
discussed in the simuPOP users’ guide.

� EXAMPLE 6.4

A hybrid parent chooser PyParentsChooser accepts a user-defined
Python generator function. This generator function takes a population and
a subpopulation index as parameters pop and subPop. When this parent
chooser is applied to a subpopulation, it will call this generator function
and ask repeatedly for either a parent or a pair of parents. References to
both individual objects or indices relative to a subpopulation are accept-
able. Because a generator function usually do not know the population size
of the offspring population and thus the numbers of parents to return, a
while True loop is usually used to yield parents indefinitely. Because
this function will not be called after the offspring population has been filled,
this infinite loop will not be executed indefinitely.

This example creates a population of 5000 whales. Because mating can
happen only within a subpopulation and a male parent will not leave his pod
after a mating event, this example does not use subpopulations to represent
different pods. Instead, it uses an information field pod to identify the pod
each individual belongs to.

The way male whales mate with female whales in another pod is imple-
mented in function podParentsChooser. In this function, male and
female whales are separated into lists of males and females. Whenever a
pair of parents is needed, a male whale is chosen randomly and female
whales are chosen repeatedly until one in a different pod with the chosen
male is identified.

This example uses a number of advanced features of simuPOP to sim-
ulate and observe the evolution of disease alleles at two loci, one on an
autosomal chromosome and one on a mitochondrial chromosome. The
type of each chromosome is specified by parameter chromTypes. The
mitochondrial chromosome is denoted as a CUSTOMIZED type. Such chro-
mosomes are ignored by regular genotype transmitters, but a Mitochon-
drialGenoTransmitter will choose customized chromosomes of a
female parent randomly and pass them to an offspring. This is why two
genotype transmitters, one for each chromosome, are used in the ops

160 NONRANDOM MATING AND ITS APPLICATIONS

parameter of an OffspringGenerator. Because newborns stay with
their natal pod, we use an InheritTagger to assign each offspring with
a pod index copied from their mother.

We assume that only the first pod has disease alleles and use an oper-
ator InitGenotype to initialize two loci with allele frequency 0.2 to
whales belonging to the first virtual subpopulation (VSP). Because male
whales visit other pods and leave their genotype in other pods and
female whales stay at their own pod, the disease allele at the first locus
spreads to other pods quickly. Because mitochondrial chromosomes are
transmitted maternally, the disease allele at the second locus stays in the
first pod during evolution.

SOURCE CODE 6.4 Simulation of Mating Behaviors of Pilot Whales

>>> import simuPOP as sim

>>> from random import randint

>>>

>>> def podParentsChooser(pop, subPop):

... ’’’Choose parents of parents from different pods’’’

... males = [x for x in pop.individuals(subPop) if x.sex() == sim.MALE]

... females = [x for x in pop.individuals(subPop) if x.sex() == sim.FEMALE]

... while True:

... # randomly choose a male

... male = males[random.randint(0, len(males)-1)]

... pod = male.pod

... # randomly choose a female from different pod

... while True:

... female = females[randint(0, len(females)-1)]

... if female.pod != pod:

... break

... yield (male, female)

...

>>> pop = sim.Population(5000, loci=[1,1], infoFields=[’pod’],

... chromTypes=[sim.AUTOSOME, sim.CUSTOMIZED])

>>> pop.setVirtualSplitter(sim.InfoSplitter(’pod’, values=range(5)))

>>> pop.evolve(

... initOps = [

... sim.InitSex(),

... # assign individuals to a random pod

... sim.InitInfo(lambda : randint(0, 4), infoFields=’pod’),

... # only the first pod has the disease alleles

... sim.InitGenotype(freq=[0.8, 0.2], subPops=[(0,0)]),

...],

... matingScheme = sim.HomoMating(

... sim.PyParentsChooser(podParentsChooser),

... sim.OffspringGenerator(numOffspring=1, ops=[

... sim.MendelianGenoTransmitter(),

... sim.MitochondrialGenoTransmitter(),

... # offspring stays with their natal pod

... sim.InheritTagger(mode=sim.MATERNAL, infoFields=’pod’)])),

... postOps = [

... # calulate allele frequency at each pod

MORE COMPLEX NONRANDOM MATING SCHEMES 161

... sim.Stat(alleleFreq=(0,1), vars=’alleleFreq_sp’,

... subPops=[(0, sim.ALL_AVAIL)]),

... sim.PyEval(r"’Loc0: %s Loc1: %s\n’ % ("

... "’, ’.join([’%.3f’ % subPop[(0,x)][’alleleFreq’][0][1] for x in range(5)]),"

... "’, ’.join([’%.3f’ % subPop[(0,x)][’alleleFreq’][1][1] for x in range(5)]))"),

...],

... gen = 10

...)

Loc0: 0.086, 0.021, 0.026, 0.025, 0.022 Loc1: 0.108, 0.000, 0.000, 0.000, 0.000

Loc0: 0.055, 0.028, 0.027, 0.033, 0.032 Loc1: 0.103, 0.000, 0.000, 0.000, 0.000

Loc0: 0.039, 0.030, 0.033, 0.023, 0.031 Loc1: 0.094, 0.000, 0.000, 0.000, 0.000

Loc0: 0.042, 0.034, 0.030, 0.024, 0.025 Loc1: 0.092, 0.000, 0.000, 0.000, 0.000

Loc0: 0.036, 0.036, 0.021, 0.033, 0.026 Loc1: 0.102, 0.000, 0.000, 0.000, 0.000

Loc0: 0.023, 0.030, 0.032, 0.029, 0.026 Loc1: 0.085, 0.000, 0.000, 0.000, 0.000

Loc0: 0.032, 0.034, 0.030, 0.028, 0.021 Loc1: 0.095, 0.000, 0.000, 0.000, 0.000

Loc0: 0.036, 0.026, 0.027, 0.036, 0.026 Loc1: 0.118, 0.000, 0.000, 0.000, 0.000

Loc0: 0.036, 0.027, 0.023, 0.037, 0.024 Loc1: 0.126, 0.000, 0.000, 0.000, 0.000

Loc0: 0.026, 0.029, 0.030, 0.029, 0.036 Loc1: 0.119, 0.000, 0.000, 0.000, 0.000

10

6.2.2 Example of a Nonrandom Mating in
a Continuous Habitat

One of the most common factors causing nonrandom mating is geographic
location. If a habitat is fragmented into small demes, random mating can be
assumed within each deme and exchange of genotypes between demes can
be achieved through migration. The genetic distance between these demes
is determined by the relative strength of genetic drift and migration. This
model has been simulated in a few occasions in this book.

However, in a continuous habitat where no obvious fragmentation seems
to prevent individual movement, genetic drift can happen locally due to
preferential mating with a spouse in geographic vicinity. Because exchange
of genotypes happens locally among geographically close individuals, ge-
netic information flows gradually over the entire habitat and leads to a pat-
tern of local similarity and increasing differentiation with distance. Such a
model can be simulated by using stepping-stone migration models in one or
two dimensions if we assume random mating within clusters of individuals
[5] or by using nonrandom mating schemes that choose pairs of parents
according to their geographic locations.

� EXAMPLE 6.5

This example defines a mating scheme VicinityMating that imple-
ments mating in a one-dimensional continuous habitat. Instead of using a
global generating function (see Example 6.4), this example derives a mat-
ing scheme from class HomoMating. This mating scheme uses a Python
parents chooser that calls a member function chooseParents and uses

162 NONRANDOM MATING AND ITS APPLICATIONS

a PyTagger to set geographic location of offspring in addition to user-
provided during-mating operators.

In order to select parents according to geographic vicinity, function
chooseParents first sorts individuals by values at an information field.

It then chooses a parent randomly, finds its location p1, identifies all par-
ents with opposite sex within the range of (p1 − v, p1 + v), and randomly
chooses a parent from them. If an individual is too far away from others,
he or she will not be able to find a spouse. The geographic location of an
offspring will be determined by a normal distribution with a mean that is
the average of parental location and a specified variable.

To test this mating scheme, we created a population of 2000 individu-
als. An information field x is used to record geographic location of each
individual. Although the habitat is continuous, we define eight VSPs by
this information field (x < 1, 1 ≤ x < 2, ..., 6 ≤ x < 7, and x > 7). In-
dividuals in this population are scattered uniformly along 0 < x < 8. We
initialize individuals with 4 ≤ x < 5 with a mutant allele with frequency
0.4 and uses a VicinityMating mating scheme to mate parents ran-
domly with an individual who is within 1 unit left or right to it. As we can
see from the output of this example, the mutant spread slowly from the
center to all geographic regions.

SOURCE CODE 6.5 A Mating Scheme with Continuous Habitat

>>> import simuPOP as sim

>>> from random import randint, uniform, normalvariate

>>> class VicinityMating(sim.HomoMating):

... ’’’A homogeneous mating scheme that choose parents that are close to

... each other according to values at an information field.’’’

... def __init__(self, locationField=’x’, varOfLocation=1, vicinity=1,

... numOffspring=1, sexMode=sim.RANDOM_SEX, ops=sim.MendelianGenoTransmitter(),

... subPopSize=[], subPops=sim.ALL_AVAIL, weight=0):

... ’’’Creates a random mating scheme that selects a parent randomly and

... another random parent who is in vivinity with him/her, namely with

... location that is within [x-v, x+v] where x is the location of the first

... parent, and v is specified by parameter vicinity. For each offspring,

... its location is set according to a normal distribution with a mean that

... is the average of parental locations, and a variance varOfLocation.

... ’’’

... self.field = locationField

... self.vicinity = vicinity

... self.varOfLocation = varOfLocation

... if hasattr(ops, ’__iter__’): # if a sequence is given

... # WithArgs is needed because field name is a variable.

... allOps = ops + [sim.PyTagger(sim.WithArgs(self._passLocation, [self.field]))]

... else:

... allOps = [ops, sim.PyTagger(sim.WithArgs(self._passLocation, [self.field]))]

... sim.HomoMating.__init__(self,

... chooser = sim.PyParentsChooser(self._chooseParents),

MORE COMPLEX NONRANDOM MATING SCHEMES 163

... generator = sim.OffspringGenerator(allOps, numOffspring, sexMode),

... subPopSize = subPopSize,

... subPops = subPops,

... weight = weight)

...

... def _passLocation(self, field):

... return normalvariate((field[0]+field[1])/2, self.varOfLocation)

...

... def _chooseParents(self, pop, subPop):

... # sort individuals according to location

... pop.sortIndividuals(self.field)

... while True:

... # select the first parent

... p1 = randint(0, pop.subPopSize(subPop) - 1)

... x1 = pop.individual(p1).info(self.field)

... s1 = pop.individual(p1).sex()

... # find all inviduals with opposite sex within vivinity of p1

... inds = []

... p = p1 + 1

... while p < pop.subPopSize(subPop) and \

... pop.individual(p, subPop).info(self.field) < x1 + self.vicinity:

... if pop.individual(p, subPop).sex() != s1:

... inds.append(p)

... p += 1

... p = p1 - 1

... while p >= 0 and \

... pop.individual(p, subPop).info(self.field) > x1 - self.vicinity:

... if pop.individual(p, subPop).sex() != s1:

... inds.append(p)

... p -= 1

... # if no one is invicinity, find another pair

... if len(inds) == 0:

... continue

... # choose another parent

... p2 = inds[randint(0, len(inds) -1)]

... # return indexes of both parents

... if s1 == sim.MALE:

... yield p1, p2

... else:

... yield p2, p1

...

>>> pop = sim.Population(size=2000, loci=1, infoFields=’x’)

>>> # define VSPs x<1, 1<=x<2, 2<=x<3, 3<=x<4, ...

>>> pop.setVirtualSplitter(sim.InfoSplitter(field=’x’, cutoff=range(1, 8)))

>>> pop.evolve(

... initOps=[

... sim.InitSex(),

... sim.InitInfo(lambda : uniform(0, 8), infoFields=’x’),

... # only individuals in the middle range has certain genotype

... sim.InitGenotype(freq=[0.6, 0.4], subPops=[(0, 4)]),

...],

... matingScheme=VicinityMating(locationField=’x’, vicinity=1, varOfLocation=0.5),

... postOps=[

... sim.Stat(alleleFreq=0, subPops=[(0, sim.ALL_AVAIL)], vars=’alleleFreq_sp’),

... sim.PyEval(r"’%.3f ’ % alleleFreq[0][1]", subPops=[(0, sim.ALL_AVAIL)]),

... sim.PyOutput(’\n’),

...],

... gen = 10

164 NONRANDOM MATING AND ITS APPLICATIONS

...)

0.000 0.000 0.004 0.092 0.229 0.090 0.004 0.000

0.000 0.000 0.011 0.085 0.186 0.079 0.022 0.000

0.002 0.005 0.026 0.078 0.139 0.073 0.028 0.000

0.002 0.007 0.035 0.082 0.106 0.074 0.046 0.016

0.008 0.003 0.039 0.079 0.104 0.080 0.057 0.010

0.006 0.013 0.031 0.106 0.114 0.074 0.086 0.027

0.006 0.007 0.060 0.081 0.093 0.103 0.086 0.045

0.009 0.011 0.050 0.091 0.089 0.064 0.088 0.047

0.006 0.019 0.062 0.072 0.076 0.064 0.066 0.042

0.004 0.021 0.048 0.071 0.075 0.073 0.061 0.051

10

>>>

6.3 HETEROGENEOUS MATING SCHEMES

Individuals in a population do not have to share the same mating pattern.
Different mating patterns might exist for individuals with different or even
the same properties. For example, individuals with different social status
in human populations exhibit different mating patterns, and certain plant
species exhibit both self- and cross-fertilizations in a more or less random
way. These mating schemes can be simulated using heterogeneous mating
schemes in simuPOP.

� EXAMPLE 6.6

A heterogeneous mating scheme (HeteroMating) accepts a list of ho-
mogeneous mating schemes and apply them to different subpopulations or
virtual subpopulations. For example, a heterogeneous mating scheme

HeteroMating([
RandomMating(numOffspring=1, subPops=0),
RandomMating(numOffspring=2, subPops=1)

])

applies two random mating schemes with different parameters to subpop-
ulations 0 and 1 and

HeteroMating([
SelfMating(subPops=0),
RandomMating(subPops=[1,2])

])

applies a self-fertilization mating scheme to the first subpopulation and a
random mating scheme to other subpopulations.

The real power of heterogeneous mating schemes lies on their ability
to apply different mating schemes to different virtual subpopulations. If

HETEROGENEOUS MATING SCHEMES 165

Parental generation

Offspring generation

VSP (0, 1) VSP (1, 0) VSP (1, 1)

VSP (1, 2)VSP (0, 2)

VSP (0, 0)

From VSP (0, 0) From VSP (0, 1) From VSP (1, 2)From SP 1

FIGURE 6.1 Illustration of a heterogeneous mating scheme. A heterogeneous
mating scheme that applies four homogeneous mating schemes to virtual subpop-
ulations (0,0), (0,1), subpopulation 1, and virtual subpopulation (1,2). The first and
last two mating scheme populations are the first and second subpopulations of the
offspring population, respectively.

a mating scheme is applied to a virtual parental subpopulation, parents
will be selected from that VSP. If multiple mating schemes are applied to
the same subpopulation, each of them populates only part of the offspring
subpopulation. This is illustrated in Figure 6.1 where four homogeneous
mating schemes are applied to different virtual and nonvirtual subpopu-
lations and populate two subpopulations of the offspring population. The
first two mating schemes choose parents from two nonoverlapping VSPs,
so parents in this subpopulation will use one of the two mating schemes
according to the VSPs they belong to. The third mating scheme is applied
to the whole subpopulation and the fourth mating scheme is applied to a
VSP (1,2). Because parents in VSP (1,2) also belong to subpopulation 1,
they might be involved in two different mating schemes.

Due to different microenvironmental factors, plants in the same popu-
lation may exercise both self- and cross-fertilizations. Because offspring
resulting from both self- and cross-fertilizations can themselves reproduce
with self- or cross-fertilizations, dividing a population into self- and cross-
mating subpopulations cannot be used to simulate this evolutionary pro-
cess. This example demonstrates how to simulate partial self-fertilization
using a heterogeneous mating scheme with two mating schemes. This ex-
ample applies a SelfMating mating scheme and a RandomMating
mating scheme to two VSPs of the first subpopulation defined by propor-
tions of individuals. The VSPs are defined by a ProportionSplitter

166 NONRANDOM MATING AND ITS APPLICATIONS

so that 20% of individuals go through self-mating and 80% of individ-
uals go through random mating. The proportions of offspring produced
by these two mating schemes are 80% and 20%, respectively, because,
by default, the number of offspring each mating scheme produces is pro-
portional to parental (virtual) subpopulation sizes. As a comparison, we
apply the random mating scheme to a second subpopulation and compare
the observed homozygosity between these two subpopulations. Because
selffertilization tend to increase homozygosity, the first subpopulation ex-
hibits higher homozygosity than the second one.

SOURCE CODE 6.6 Use of a Heterogeneous Mating scheme to
Simulate Partial Self-Fertilization

>>> import simuPOP as sim
>>> pop = sim.Population(size=[10000, 10000], loci=1)
>>> pop.setVirtualSplitter(sim.ProportionSplitter([0.8, 0.2]))
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... preOps=[
... sim.Stat(homoFreq=0, subPops=[0,1], vars=’homoFreq_sp’),
... sim.PyEval(r"’(%.2f, %.2f)\n’ % (subPop[0][’homoFreq’][0], "
... "subPop[1][’homoFreq’][0])"),
...],
... matingScheme=sim.HeteroMating(matingSchemes=[
... sim.RandomMating(subPops=[(0, 0), 1]),
... sim.SelfMating(subPops=[(0, 1)]),
...]),
... gen = 3
...)
(0.50, 0.50)
(0.56, 0.49)
(0.55, 0.49)
3

Example 6.3 implements a positive assortative mating scheme by choos-
ing parents sequentially. Because individuals are sorted by a quantitative
trait, this mating scheme effectively matches parents with high desirability
(trait D) with spouses with high desirability, and parents with low desirabil-
ity with spouses with low desirability. If a less stringent assortative mating
scheme is used, namely, a parent with high desirability can mate with
spouses with certain range of desirability, a heterogeneous mating scheme
can be used. If we divide trait D into three categories as high, medium, and
low desirability using two cutoff points, we can force all mating events to
happen within their own desirability groups. It is also easy to add certain
level of noise to this mating scheme by allowing mating across desirability

HETEROGENEOUS MATING SCHEMES 167

groups (random mating across the whole population) for certain proportion
of parents.

6.3.1 Simulation of Population Admixture

Population structure has been known to cause spurious associations in case–
control association studies [6], so several statistical methods have been
developed to reduce the impact of population structure on GWA studies
[7–9]. On the other hand, population admixture causes long-range admix-
ture LD that could be used to map diseases in admixed populations [10, 11].
Although simulations have been used to evaluate the performance of these
statistical methods, they have not been complex enough to challenge the
statistical methods under realistic situations [12]. For example, Pfaff et al.
[13] broke existing LD of the founder populations from HapMap samples
by sampling alleles instead of haplotypes so that only admixed LD existed
in the simulated sample.

We aimed to simulate realistically admixed populations by mixing pop-
ulations simulated from the HapMap populations. We extracted 5000
markers with minor allele frequency greater than or equal to 0.05 from
chromosome 2 (chr2:50002476-60382263) using 170 and 143 indepen-
dent individuals from phase 2 of the HapMap Japanese in Tokyo, Japan
and Han Chinese in Beijing, China (JPT + CHB) and Maasai in Kinyawa,
Kenya (MKK) populations. The two populations were expanded to a total
size of 50,000 individuals. A low-level migration rate of 0.0001 was ap-
plied to keep the genetic distance between these two populations around
its original level of 0.11 (measured using FST) [14].

To control the levels of true LD and admixture LD, we mixed large
populations to avoid elevated LD caused by a founder effect. We mixed
these two populations using a continuous gene flow model where 5% of
individuals from MKK population migrated to JPT + CHB population for
10 generations [15]. At the beginning of population mixing, we assigned an
ancestral value of 0 to individuals from JPT + CHB population and a value
of 1 for individuals from MKK population. During the admixture process,
the offspring ancestral values were recorded as the mean of parental ances-
tral values. We used a positive assortative mating scheme to mix individuals
because migrants usually do not mate randomly with natives during a real-
world admixture process, and individuals would be efficiently mixed and
have similar ancestral values only after a few generations if the standard
Wright–Fisher random mating process were used to mix parents regardless
of their ethnicity. More specifically, we divided individuals into two groups
according to their ancestral value, one with ancestral values greater than

168 NONRANDOM MATING AND ITS APPLICATIONS

or equal to 0.5 and another with ancestral values less than 0.5. During the
offspring population generation, 80% of all mating events happened within
these two groups and the rest of the mating events happened with parents
chosen randomly from the whole population [16]. This process slowed
down the admixture process and resulted in a distribution of individual an-
cestry values that is closer to that of real populations, such as the mixture
distribution of European ancestry among all African Americans [17]. Ex-
ample 6.7 demonstrates how to implement such an admixing process using
a heterogeneous mating scheme.

� EXAMPLE 6.7

We use scripts loadHapMap3.py and selectMarkers.py to pre-
pare an initial population and use function simuGWAS defined in Example
4.6 to create a large population with two subpopulations (code not listed).

We add two information fields ancestry and migrate to to this
population and initialize individuals in the first population with ancestry
value 0 and individuals in the second population with ancestry value 1. Indi-
viduals are grouped into two virtual subpopulations, one with ancestry
< 0.5 and the other with ancestry >= 0.5.

A migrator is used at the beginning of each generation to migrate in-
dividuals from the second subpopulation to the first at a rate of 5% per
generation. This is a directional migration because no one migrates from
the first to the second subpopulation.

We use a heterogeneous mating scheme with three mating schemes to
perform random mating in the second subpopulation and a nonrandom
mating in the first subpopulation. Because the second and third mating
schemes are applied to virtual subpopulations (0,0) and (0,1) in the
first subpopulation, the first mating schemes will produce all offspring in
the second subpopulation.

The number of offspring produced by these three mating schemes is
controlled by parameter weight. Briefly speaking,

• A negative weight is considered proportional to the source parental
(virtual) subpopulation size. Negative weights are handled before pos-
itive or zero weights.

• If all remaining weights are zero, the number of offspring each mating
scheme produces is proportional to its parental (virtual) subpopulation
sizes.

• If there is any positive weight, the number of offspring each mat-
ing scheme produces is proportional to the assigned weight. Mat-

HETEROGENEOUS MATING SCHEMES 169

ing schemes with zero weight will not produce any offspring in
this case.

Therefore, the first mating scheme will be applied to the whole subpopu-
lation and will produce 20% of the offspring, the second and third mating
schemes will be applied to two virtual subpopulations and will produce
80% of offspring.

In addition to a Mendelian genotype transmitter that transmit parental
genotypes to offspring, all these mating schemes apply a InheritTag-
ger during mating, which passes the average of parental ancestral values
to their offspring. This value therefore records the true ancestry proportion
for all individuals.

SOURCE CODE 6.7 Simulating an Admixed Population with
Recorded Ancestral Values

import simuOpt

simuOpt.setOptions(gui=False, alleleType=’binary’)

import simuPOP as sim

pop.addInfoFields([’ancestry’, ’migrate_to’])

initialize ancestry

sim.initInfo(pop, [0]*pop.subPopSize(0) + [1]*pop.subPopSize(1),

infoFields=’ancestry’)

define two virtual subpopulations by ancestry value

pop.setVirtualSplitter(sim.InfoSplitter(field=’ancestry’, cutoff = [0.5]))

transmitters=[

sim.MendelianGenoTransmitter(),

sim.InheritTagger(mode=sim.MEAN, infoFields=’ancestry’)]

pop.evolve(

initOps=sim.InitSex(),

preOps=sim.Migrator(rate=[

[0., 0], [0.05, 0]]),

matingScheme=sim.HeteroMating(

matingSchemes=[

sim.RandomMating(ops=transmitters),

sim.RandomMating(subPops=[(0,0)], weight=-0.80, ops=transmitters),

sim.RandomMating(subPops=[(0,1)], weight=-0.80, ops=transmitters)

],

),

gen=10,

)

remove the second subpop

pop.removeSubPops(1)

We applied to the population a penetrance model in which individuals’
probability of being affected equals 0.05 + ancestry/6, where ancestry is the
individual’s MKK ancestry value. Individuals with higher MKK ancestry
values were more susceptible to this disease, but none of the 5000 markers
caused the disease directly. Because there were enough affected individuals

170 NONRANDOM MATING AND ITS APPLICATIONS

in the simulated population, we drew 500 cases and 500 controls directly
from the simulated population. We used the STRUCTURE program to
estimate the ancestry values of cases and controls from their genotypes [7]
and plotted the estimated MKK ancestries against the recorded ancestry
values for each individual (Figure 6.2a and b). Because individuals with
high MKK ancestry values are more likely to be affected, cases on average
had higher MKK ancestry values than controls.

In order to demonstrate the impact of population structure on association
analysis, we applied allele-based χ2 tests and structured association tests
proposed by Pritchard et al. [18] to detect the association between disease
status and 2000 simulated markers (Figure 6.2c and d). Although the disease
is not directly caused by any of the simulated markers, a large number
of spurious associations were detected by the χ2 tests. In contrast, the
structured association tests estimated individual ancestry values to control
the impact of population structure and successfully removed most spurious
associations.

6.4 SIMULATION OF AGE-STRUCTURED POPULATIONS

The Wright–Fisher model uses a nonoverlapping generation model that
replaces a parental generation with its offspring generation once the off-
spring generation is created. Because parents in a nonoverlapping gener-
ation model do not stay in the same population as their offspring, such a
model reflects life cycles of semelparous populations such as annual plants
(e.g., all grain crops), salmon, or bamboos in which parents die shortly
after reproduction. It is certainly not realistic for iteroparous populations
such as the human populations in which parents have many reproductive
cycles over the course of its lifetime.

A nonoverlapping generation model can be used to approximate the evo-
lution of human populations because humans usually choose one spouse
from his or her age group (generation), transmit their genotypes to the
offspring generation, and make no further contribution to the evolutionary
process. If we look at the long-term impact of genetic and demographic
factors on the evolution of human populations, we can synchronize ge-
nealogies to form reproducing generations separately by roughly 20 years
and simulate such a population using a nonoverlapping evolutionary model.

However, if we are studying human populations at a finer scale, it be-
comes difficult to ignore the fact that only a small percentage of humans
reproduces at any given time, and that people with different ages stay in
the same population. For example, if we are going to simulate a population

MKK ancestry

50
0

40
0

30
0

20
0

10
0

0

0

0.
2

0.
4

0.
6

0.
8

1.
0

C
as

e

Tr
ue

 a
nc

es
tr

y
E

st
im

at
ed

 a
nc

es
tr

y
(a

)

MKK ancestry

50
0

40
0

30
0

20
0

10
0

0

0

0.
2

0.
4

0.
6

0.
8

1.
0

C
on

tr
ol

s

Tr
ue

 a
nc

es
tr

y
E

st
im

at
ed

 a
nc

es
tr

y

(b
)

−log10(p-value)

60
90

12
0

15
0M

b
012345678910

(c
)

−log10(p-value)
60

90
12

0
15

0M
b

012345678910
(d

)

F
IG

U
R

E
6.

2
G

en
e

m
ap

pi
ng

in
an

ad
m

ix
tu

re
d

po
pu

la
tio

n.
A

nc
es

tr
y

va
lu

es
an

d
p

-v
al

ue
s

of
as

so
ci

at
io

n
te

st
s.

T
he

to
p

fig
ur

es
pl

ot
re

co
rd

ed
an

d
es

tim
at

ed
M

K
K

an
ce

st
ry

va
lu

es
of

50
0

ca
se

s
(a

)a
nd

50
0

co
nt

ro
ls

(b
).

In
di

vi
du

al
s

ar
e

so
rt

ed
by

th
ei

rt
ru

e
M

K
K

an
ce

st
ry

va
lu

es
.T

he
bo

tto
m

fig
ur

es
pl

ot
th

e
ne

ga
tiv

e
of

th
e

ba
se

10
lo

ga
ri

th
m

of
p

-v
al

ue
s

of
al

le
le

-b
as

ed
χ

2
te

st
s

(c
)a

nd
st

ru
ct

ur
ed

as
so

ci
at

io
n

te
st

s
(d

)
be

tw
ee

n
50

0
ca

se
s

an
d

50
0

co
nt

ro
ls

at
20

00
m

ar
ke

rs
.

171

172 NONRANDOM MATING AND ITS APPLICATIONS

with lung cancer, it is necessary to include individuals with different ages
because age has strong impact on this disease.

6.4.1 Simulation of Age-Structured Populations

An age-structured population consists of individuals with different ages.
The evolution of an age-structured population differs from a standard
Wright–Fisher models in the following ways:

• Instead of evolving by generation, an age-structured population usu-
ally evolves by year or by stage (age-group).

• Instead of surviving for a single generation, individuals in an age-
structured population have a life history and will typically stay in the
population for several years.

• Mating in age-structured population is usually not random. A typical
scenario is that only individuals within certain age range can mate and
produce offspring.

• Parents usually do not die immediately after the production of off-
spring so it is likely that parents and offspring will coexist in the same
population.

Although it is infeasible to directly simulate the evolution of age-structured
populations using a discrete generation model, such evolutionary scenarios
can be imitated through the use of nonrandom mating schemes under a
discrete generation simulation framework. The key here is to use a mating
scheme that copies individuals from parental to offspring generation and
in the mean time produces offspring from selected parents. Example 6.8
demonstrates how to achieve this using a heterogeneous mating scheme of
simuPOP.

The Wright–Fisher model uses a nonoverlapping generation model with-
out age structure, so parents and offspring cannot stay at the same popula-
tion. In order to simulate the evolution of an age-structured population, it is
necessary to copy eligible parents from parental to offspring populations.
More specifically, you will need to do the following:

� EXAMPLE 6.8

Example 6.8 gives an example of the evolution of age-structured popu-
lation. It defines an information field age and uses it to store age of all
individuals. The concept of age here can be extended to stage. For example,
an individual can grow from newborn to junior, adult, and senior, instead

SIMULATION OF AGE-STRUCTURED POPULATIONS 173

of growing year by year. In addition to age, this population also defines in-
formation fields ind id, father id and mother id in order to track
parental relationship in the age-structured population.

In order to determine who should be copied to the offspring population
and who are eligible to mate, this example uses a InfoSplitter to
divide the population into four virtual subpopulations by age. These vir-
tual subpopulations include junior (age <20), adult (20 ≤ age <50), senior
(50 ≤ age <75), and people of age ≥75. We assume that people of age <75
will survive to the next generation (year) and people with age ≥75 will die
and be removed from the population. We assume random mating among
adult individuals, so individuals with 20 ≤ age <50 will mate randomly
with each other and produce offspring.

The simulation starts from the creation of a population of 10,000 indi-
viduals. Before evolution, individuals in this population are initialized with
random sex, age, and genotype and are assigned a unique ID. At the begin-
ning of each generation, individual age is increased by 1, so all individuals
will stay for exactly 75 years (generations) except for those with a nonzero
initial age at the beginning of the evolution.

The nonrandom mating scheme described above is implemented using
a heterogeneous mating scheme that consists of two mating schemes:

• A CloneMating mating scheme copies all parents with age less
than 75 to the offspring population. A -1 weight is used, so everyone is
copied once and only once. This mating scheme uses a CloneGeno-
Transmitter, which clones not only the genotype but also sex and
all information fields. IDs of parents will therefore be kept so that in-
dividuals will be able to locate their parents even if they are now in the
same population. Note that individuals with duplicate IDs will occur
if you decide to store some parental generations during simulation.

• A RandomMating mating scheme is used to produce offspring from
parents in the reproducing age (subPops=[(0,1)]). Three opera-
tors are used to assign a unique ID, record parental IDs, and transmit
genotype for each offspring. This mating scheme produces 1, 2, or 3
offspring at each mating event so that there will be nuclear families
with varying sizes in the resulting population.

The population is evolved for 200 generations. Just to verify that we can
identify parents and their offspring from the resulting population, we use
function drawNuclearFamilySample to draw a family with two or

174 NONRANDOM MATING AND ITS APPLICATIONS

three offspring from the resulting population. Individuals in the selected
family is displayed using a dump function.

SOURCE CODE 6.8 Example of the Evolution of Age-Structured
Population

>>> import simuPOP as sim

>>> from random import randint

>>> pop = sim.Population(10000, loci=1,

... infoFields=[’age’, ’ind_id’, ’father_id’, ’mother_id’])

>>> pop.setVirtualSplitter(sim.InfoSplitter(field=’age’, cutoff=[20, 50, 75]))

>>> pop.evolve(

... initOps=[

... sim.InitSex(),

... # random assign age

... sim.InitInfo(lambda: randint(0, 74), infoFields=’age’),

... sim.InitGenotype(freq=[0.5, 0.5]),

... # assign an unique ID to everyone.

... sim.IdTagger(),

...],

... # increase the age of everyone by 1 before mating.

... preOps=sim.InfoExec(’age += 1’),

... matingScheme=sim.HeteroMating([

... # all individuals with age < 75 will be kept. Note that

... # CloneMating will keep individual sex, affection status and all

... # information fields (by default).

... sim.CloneMating(subPops=[(0,0), (0,1), (0,2)], weight=-1),

... # only individuals with age between 20 and 50 will mate and produce

... # offspring. The age of offspring will be zero.

... sim.RandomMating(ops=[

... sim.IdTagger(), # give new born an ID

... sim.PedigreeTagger(), # track parents of each individual

... sim.MendelianGenoTransmitter()], # transmit genotype

... numOffspring=(sim.UNIFORM_DISTRIBUTION, 1, 3),

... subPops=[(0,1)])

...]),

... gen = 200

...)

200

>>>

>>> from simuPOP import sampling

>>> sample = sampling.drawNuclearFamilySample(pop, families=1, numOffspring=(2,3))

>>> sim.dump(sample, structure=False)

SubPopulation 0 (), 4 Individuals:

0: FU 0 | 0 | 14 34676 30053 28957

1: MU 1 | 0 | 49 30053 27189 25057

2: FU 0 | 0 | 14 34677 30053 28957

3: FU 0 | 0 | 58 28957 24865 24284

6.4.2 A Hypothetical Disease Model

We use a proportional hazards model to model the risks of lung caner. We
assume that individuals who do not suffer from any genetic or environmen-
tal risk factor has the lowest risk of getting lung cancer and model their

SIMULATION OF AGE-STRUCTURED POPULATIONS 175

risks with a hazard function

h0 (t) = β0 exp (a0 (t − 18)) ,

where t is age in years and β0 and α0 are sex-dependent parameters. h (t)
is assumed to be zero if t ≤ 18 because teenagers rarely get lung cancer.

The hazard functions for individuals with certain genetic or environ-
mental risk factors are assumed to be h (t) = β exp (a0 (t − 18)) which is
proportional h0 (t). Furthermore, we assume that all these risk factors in-
fluence β multiplicatively. For example, if a male smoker carries a disease
allele at locus G2, his risk of getting lung cancer at the age t will be modeled
by a hazard function

h (t) = rMSrG1β0 exp (a0 (t − 18)) ,

where rMS and rG1 are relative risks for male smoker and for G1 carriers.
We assume that lung cancer is caused by seven interacting genetic and

environmental risk factors. More specifically, we assume that there is a gene
G1 that contributes to smoking (e.g., through nicotine addition), which in
turn influences the risk of COPD and lung cancer. The risk of COPD is also
influenced by a gene G4 and if someone has COPD, he or she has increased
risk of getting lung cancer. Two other genes G2 and G3 also contribute to
the risk of lung cancer, but G3 only contributes to the risk of lung cancer
of smokers. In addition, a random genetic factor exists and influences the
risk of lung cancer with a relative risk directly. Such a model is illustrated
in Figure 6.3.

For each individual, we determine whether or not he or she will smoke
and simulate the age at which he or she gets COPD and lung cancer accord-
ing to his or her genotype, smoking status, and a random environmental
factor. Because

h (t) = dF (t) /dt

1 − F (t)
,

we calculate

F (t) = 1 − exp

(
−

∫ t

0
h (θ) dθ

)

and determine the age of onset using

t = F−1 (u) , (6.1)

where u follows a uniform distribution between 0 and 1.

176 NONRANDOM MATING AND ITS APPLICATIONS

Percent of smokers

G1
G1: AA 20%
G1: Aa 30%
G1: aa 40%

G4: AA 1
G4: Aa 1.5
G4: aa 2

COPD relative risk

LC relative risk 2

LC relative risk
Male: 10
Female: 8

COPD relative risk

G2: AA 1
G2: Aa 1.3
G2: aa 1.8

LC relative risk

G3: AA 1
G3: Aa 1.3
G3: aa 1.8

LC relative risk
(Smoker only)

Male: 6
Female: 6

G2

G3Lung cancer
Smoker only

LC relative risk
Uniform(1, 1.3)

Virus

Smoking

COPD

G4

FIGURE 6.3 A hypothetical lung cancer risk model. A hypothetical lung cancer
risk model with four genetic factors, smoking, chronic obstructive pulmonary
disease (COPD), and a random environmental factor.

For each individual, we simulate his or her smoking status, age at which
he or she is affected with lung cancer, and age of death according to geno-
types at four loci and a random effect. For example, if a male individual
has genotype Aa at locus G1, he will have 30% of chance to become a
smoker. The age at which he is affected with COPD will be calculated
from Equation 6.1 according to a personal hazard function determined by
his smoking status and his genotype at locus G4. This age will be compared
with his age of death (a random number drawn from a uniform distribution
from age 60 to 80) to determine whether or not he will be affected with
COPD before his end of life. These information are then combined with
his genotypes at G2 and G3 and a random effect to determine the age at
which he will be affected with lung cancer. We assume that all lung cancer
patients will die after 6 years and adjust the age of death of lung cancer
patients accordingly.

� EXAMPLE 6.9

Because genotype of individuals are fixed when he or she is born, we deter-
mine an individual’s smoking status, age of onset of lung cancer, and age of
death and store these information in information fields smoking, age LC,
and age death. This procedure is implemented in function initial-
ize of the LC model class. This function will be used in Example 6.10

SIMULATION OF AGE-STRUCTURED POPULATIONS 177

to initialize smoking status, age of onset, and death for individuals in the
starting population and for all offspring when they are born.

SOURCE CODE 6.9 Implementation of the Lung cancer
Disease Model

import simuPOP as sim

from random import uniform, randint

from math import exp

class LC_model:

def __init__(self, LC_beta0_male, LC_beta0_female, LC_a0, COPD_beta0,

COPD_a0, G1_smoking_rate, rr_G2, rr_G3, rr_G4, rr_random,

rr_LC_maleSmoker, rr_LC_femaleSmoker, rr_COPD_smoker,

rr_LC_COPD):

’’’LC model with parameters for different relative risks

A disease model is responsible for updating age_LC, age_death, and

smoking. It can use other information fields to its own use.

’’’

self.LC_beta0_male, self.LC_beta0_female, self.LC_a0, self.COPD_beta0, \
self.COPD_a0, self.G1_smoking_rate, self.rr_G2, self.rr_G3, self.rr_G4, \
self.rr_random, self.rr_LC_maleSmoker, self.rr_LC_femaleSmoker, \
self.rr_COPD_smoker, self.rr_LC_COPD = \

LC_beta0_male, LC_beta0_female, LC_a0, COPD_beta0, \
COPD_a0, G1_smoking_rate, rr_G2, rr_G3, rr_G4, rr_random, \
rr_LC_maleSmoker, rr_LC_femaleSmoker, rr_COPD_smoker, rr_LC_COPD

def _cdf(self, t, beta, a):

use a stepwise function to approximate integration

ch = sum([beta*exp((i-18)*a) for i in range(18, t+1)])

v = 1 - exp(-ch)

return v

def _ageOfOnset(self, beta, a):

’’’Calculate age of onset with a given beta and a. This is only used to initialize

a population without considering cessation and other factors.

’’’

u = uniform(0, 1)

a bisection method will be more efficient..

for age in range(80):

if self._cdf(age, beta, a) > u:

return age

return 100

def initialize(self, ind):

’’’Determines the risk of LC for passed offividual. The return value is the

multiple of a base hazard function.

’’’

geno = [ind.allele(x,0) + ind.allele(x,1) for x in range(4)]

smoking, determined by G1

ind.smoking = uniform(0,1) < self.G1_smoking_rate[geno[0]]

original age of death

ind.age_death = randint(60, 80)

coefficient for LC and COPD

LC_beta = self.LC_beta0_male if ind.sex() == sim.MALE else self.LC_beta0_female

COPD_beta = self.COPD_beta0

178 NONRANDOM MATING AND ITS APPLICATIONS

smoking

if ind.smoking:

if ind.sex() == sim.MALE:

LC_beta *= self.rr_LC_maleSmoker

else:

LC_beta *= self.rr_LC_femaleSmoker

COPD_beta *= self.rr_COPD_smoker

G2

LC_beta *= self.rr_G2[geno[1]]

G3

if ind.smoking:

LC_beta *= self.rr_G3[geno[2]]

G4

COPD_beta *= self.rr_G4[geno[3]]

if self._ageOfOnset(COPD_beta, self.COPD_a0) < ind.age_death:

LC_beta *= self.rr_LC_COPD

random factor

LC_beta *= 1 + self.rr_random * uniform(0,1)

LC?

ind.age_LC = self._ageOfOnset(LC_beta, self.LC_a0)

adjust age of death if someone will get LC

if ind.age_death < ind.age_LC + 6:

ind.age_death = ind.age_LC + 6

return ind.age <= ind.age_death

def updateStatus(self, pop):

required by the evolutionary process but this disease model

currently does not need to update individual status dynamically.

return True

We determine the age of onset of each individual when he or she is
born, but this simulation model can be easily extended so that individual
susceptibility to lung cancer can be variable in response to events such
as cessation. In this case, h (t) of individuals can vary year by year and
individual affection status should be calculated as

G(t) = P(t ≤ T < t + 1 | T ≥ t)

= F (t + 1) − F (t)

1 − F (t)

= 1 − exp

(
−

∫ t+1

t

h (θ) dθ

)
.

If we assume h(θ) is roughly constant between t and t + 1,

G(t) ∼ 1 − exp (−h (t)) ∼ h (t) + 1

2
h (t)2 ,

so we can use h(t) to approximate G(t) at each year.

SIMULATION OF AGE-STRUCTURED POPULATIONS 179

6.4.3 Evolution of an Age-Structured Population
with Lung Cancer

Example 6.10 simulates an evolutionary scenario where an age-structured
population with lung cancer is evolved year by year. This simulation sce-
nario can be used to observe the impact of environmental factors on the
incidence of lung cancer (or other complex human diseases) and to generate
realistic samples for the development of efficient gene mapping methods
for the detection of gene–environment interaction for such a disease. For
simplicity, this example simulates a stable environmental factor (smoking
pattern), so the disease prevalence will stabilize over time.

The value of such an evolutionary process lies in the fact that it can
closely mimic real human populations with complex population structure
and changing environmental factors. For example, within the United States,
historical changes in tobacco products and in patterns of usage over the
last century have dramatically influenced the number of people that smoke
[19]. These patterns illustrate the wave-like uptake of cigarette smoking
by sequential generations of Americans. The incidence of LC and the cor-
responding mortality rate in the U.S. population parallel these tobacco
smoking patterns, with a time lag of about 30 years [19]. By simulating
such a pattern of smoking, we can observe the dynamic of disease preva-
lence as a result of changing smoking behavior. Such a simulation can
be used to validate individual disease models, and once a disease model
has demonstrated realistic individual, familial, and population properties,
it can be used to predict the population prevalence of lung cancer when cer-
tain cancer prevention strategies are used to change population smoking
patterns.

� EXAMPLE 6.10

This example defines a function LC evolve that evolves an age-structured
population with lung cancer using a disease model described in Example
6.9. In this function, a population is first created with four unlinked loci
and five information fields age, smoking, age death, age LC, and
LC. Among these information fields, age is the age of individual that
will be updated at each year (generation), smoking, age death, and
age LC are determined by function initialize of a disease model,
and LC is determined by whether or not individual age is greater than
age LC.

A virtual splitter CombinedSplitter is assigned to the population to
categorize individuals by age, sex, and smoking status (lines 10–17). This
splitter consists of two InfoSplitter and a SexSplitter, which

180 NONRANDOM MATING AND ITS APPLICATIONS

define virtual subpopulations 0, 1, and 2 with individuals of age < 20, 20 ≤
age < 40, and age ≥ 40, respectively; virtual subpopulations 3 and 4 with
male and female individuals, respectively; and virtual subpopulations 5, 6,
and 7 according to smoking status. In order to avoid confusion, meaningful
names are given to each virtual subpopulation and are used to refer to these
VSPs later.

Before evolution, seven operators are used to initialize individual sex,
age, genotype at four loci, and information fields (lines 20–23). Instead of
assigning random ages as we have done in Example 6.8, this example uses
a sequence 0, 1, ..., 74 to initialize ages of all individuals in the popula-
tion sequentially. After individual sex, age, and genotypes are initialized,
function initialize of the passed disease model object is used to de-
termine smoking, age death, and age LC of each individual. The
function will return False when the age of an individual is greater than
his or her age of death, which will effectively remove these individuals from
the starting population. Note that the PyOperator applies the function
to all individuals one by one because this function is defined with param-
eter ind. If a parameter pop is used, the function would be applied to the
whole population.

The population is then evolved year by years, marked by increased age of
all individuals (line 25). The increase of age will cause the death (removal
from the population) of some individuals if their age is greater than their
age of death (line 26).

A heterogeneous mating scheme is then used to evolve the population
using two mating schemes. The first mating scheme copies all individu-
als from the parental to the offspring population, and the second mating
scheme uses a RandomMating scheme to produce individuals from par-
ents between the age of 20 and 40. The offspring will have a random sex, an
initial age of zero, and will be initialized by function initialize of the
disease model object. This mating scheme produces exactly popSize/75
offspring because it uses a demographic function

lambda pop: pop.popSize() + popSize/75

and the first pop.popSize() individuals will be produced by the clone
mating scheme because of use of a -1 weight.

At the end of each year, the affection status of each individual is de-
termined by comparing each individual’s age with his or her age of onset
of lung cancer. This is achieved by evaluating statement LC = age >=
age LC for each individual using operator InfoExec. The population

SIMULATION OF AGE-STRUCTURED POPULATIONS 181

prevalence of lung cancer is then calculated at each generation by calcu-
lating the mean of information field LC in all virtual subpopulations.

SOURCE CODE 6.10 Evolution of Lung Cancer

import simuPOP as sim

from ch7_LC_model import LC_model

def LC_evolve(popSize, alleleFreq, diseaseModel):

’’’

’’’

pop = sim.Population(size=popSize, loci=[1]*len(alleleFreq),

infoFields = [’age’, ’smoking’, ’age_death’, ’age_LC’, ’LC’])

pop.setVirtualSplitter(sim.CombinedSplitter(splitters=[

sim.InfoSplitter(field=’age’, cutoff=[20, 40],

names=[’youngster’, ’adult’, ’senior’]),

sim.SexSplitter(),

sim.InfoSplitter(field=’smoking’, values=[0, 1, 2],

names=[’nonSmoker’, ’smoker’, ’formerSmoker’])

]

))

pop.evolve(

initOps=[

sim.InitSex(),

sim.InitInfo(range(75), infoFields=’age’)] +

[sim.InitGenotype(freq=[1-f, f], loci=i) for i,f in enumerate(alleleFreq)] + [

sim.PyOperator(func=diseaseModel.initialize),

],

preOps=[

sim.InfoExec(’age += 1’),

die of lung cancer or natural death

sim.DiscardIf(’age > age_death’)

],

matingScheme=sim.HeteroMating([

sim.CloneMating(weight=-1),

sim.RandomMating(ops = [

sim.MendelianGenoTransmitter(),

sim.PyOperator(func=diseaseModel.initialize)],

subPops=[(0, ’adult’)])

],

subPopSize=lambda pop: pop.popSize() + popSize/75),

postOps = [

update individual, currently ding nothing.

sim.PyOperator(func=diseaseModel.updateStatus),

determine if someone has LC at his or her age

sim.InfoExec(’LC = age >= age_LC’),

get statistics about COPD and LC prevalence

sim.Stat(pop, meanOfInfo=’LC’, subPops=[(0, sim.ALL_AVAIL)],

vars=[’meanOfInfo’, ’meanOfInfo_sp’]),

sim.PyEval(r"’Year %d: Overall %.2f%% M: %.2f%% F: %.2f%% "

r"NS: %.1f%%, S: %.2f%%\n’ % (gen, meanOfInfo[’LC’]*100, "

r"subPop[(0,3)][’meanOfInfo’][’LC’]*100,"

r"subPop[(0,4)][’meanOfInfo’][’LC’]*100,"

r"subPop[(0,5)][’meanOfInfo’][’LC’]*100,"

r"subPop[(0,6)][’meanOfInfo’][’LC’]*100)"),

],

182 NONRANDOM MATING AND ITS APPLICATIONS

gen = 100

)

if __name__ == ’__main__’:

LC_evolve(10000, [0.5, 0.1, 0.2, 0.3], LC_model(

LC_beta0_male=0.0025, LC_beta0_female=0.0015, LC_a0=0.012,

COPD_beta0=0.00015, COPD_a0=0.01, G1_smoking_rate=[0.3, 0.4, 0.5],

rr_G2=[1, 1.5, 1.8], rr_G3=[1, 1.1, 1.3], rr_G4=[1, 1.5, 2],

rr_random=1.3, rr_LC_maleSmoker=10, rr_LC_femaleSmoker=8,

rr_COPD_smoker=6, rr_LC_COPD=2))

REFERENCES

1. D. B. Allison, M. C. Neale, M. I. Kezis, V. C. Alfonso, S. Heshka, and S. B.
Heymsfield, Assortative mating for relative weight: genetic implications. Be-
hav Genet, 26(2):103–111, 1996.

2. M. A. Speers, S. V. Kasl, D. H. Freeman, and A. M. Ostfeld, Blood pressure
concordance between spouses. Am J Epidemiol, 123(5):818–829, 1986.

3. D. T. Redden and D. B. Allison, The effect of assortative mating upon genetic
association studies: spurious associations and population substructure in the
absence of admixture. Behav Genet, 36(5):678–686, 2006.

4. B. Amos, C. Schlötterer, and D. Tautz, Social structure of pilot whales revealed
by analytical DNA profiling. Science, 260(5108):670–672, 1993.

5. M. Kimura and G. H. Weiss, The stepping stone model of population structure
and the decrease of genetic correlation with distance. Genetics, 49(4):561–576,
1964.

6. W. C. Knowler, R. C. Williams, D. J. Pettitt, and A. G. Steinberg, Gm3;5,13,14
and type 2 diabetes mellitus: an association in American Indians with genetic
admixture. Am J Hum Genet, 43(4):520–526, 1988.

7. J. K. Pritchard and P. Donnelly, Case–control studies of association in struc-
tured or admixed populations. Theor Popul Biol, 60(3):227–237, 2001.

8. B. Devlin and K. Roeder, Genomic control for association studies. Biometrics,
55(4):997–1004, 1999.

9. A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, and
D. Reich, Principal components analysis corrects for stratification in genome-
wide association studies. Nat Genet, 38(8):904–909, 2006.

10. X. Zhu, A. Luke, R. S. C., T. Quertermous, C. Hanis, T. Mosley, C. C. Gu, H.
Tang, D. C. Rao, N. Risch, and A. Weder, Admixture mapping for hypertension
loci with genome-scan markers. Nat Genet, 37(2):177–181, 2005.

11. M. W. Smith and S. J. O’Brien, Mapping by admixture linkage disequilibrium:
advances, limitations and guidelines. Nat Rev Genet, 6(8):623–632, 2005.

12. D. Reich and N. Patterson, Will admixture mapping work to find disease genes?
Philos Trans R Soc Lond B Biol Sci, 360(1460):1605–1607, 2005.

REFERENCES 183

13. C. L. Pfaff, E. J. Parra, C. Bonilla, K. Hiester, P. M. McKeigue, M. I. Kamboh,
R. G. Hutchinson, R. E. Ferrell, E. Boerwinkle, and M. D. Shriver, Population
structure in admixed populations: effect of admixture dynamics on the pattern
of linkage disequilibrium. Am J Hum Genet, 68(1):198–207, 2001.

14. B. S. Weir and C. C. Cockerham, Estimating F-statistics for the analysis of
population structure. Evolution, 38(6):1358–1370, 1984.

15. J. C. Long, The genetic structure of admixed populations. Genetics,
127(2):417–428, 1991.

16. B. Peng and C. I. Amos, Forward-time simulations of non-random mating
populations using simuPOP. Bioinformatics, 24(11):1408–1409, 2008.

17. H. Tang, J. Peng, P. Wang, and N. J. Risch, Estimation of individual admixture:
analytical and study design considerations. Genet Epidemiol, 28(4):289–301,
2005.

18. J. K. Pritchard, M. Stephens, N. A. Rosenberg, and P. Donnelly, Association
mapping in structured populations. Am J Hum Genet, 67(1):170–181, 2000.

19. M. J. Thun, S. J. Henley, and E. E. Calle, Tobacco use and cancer: an epidemi-
ologic perspective for geneticists. Oncogene, 21(48):7307–7325, 2002.

APPENDIX

FORWARD-TIME SIMULATIONS
USING simuPOP

A.1 INTRODUCTION

A.1.1 What is simuPOP?

simuPOP is a general-purpose individual-based forward-time popula-
tion genetics simulation environment based on Python, a dynamic object-
oriented programming language that has been widely used in biological
studies. More specifically,

• simuPOP is a population genetics simulator that simulates the evo-
lution of populations. It uses a discrete generation model, although
overlapping generations could be simulated using nonrandom mating
schemes.

• simuPOP explicitly models populations with individuals who have
their own genotype, sex, and auxiliary information such as age. The
evolution of a population is modeled by populating an offspring pop-
ulation with offspring produced from parents in this population.

Forward-time Population Genetics Simulations: Methods, Implementation, and Applications,
Bo Peng, Marek Kimmel, and Christopher I. Amos.
© 2012 Wiley-Blackwell. Published 2012 by John Wiley & Sons, Inc.

185

186 FORWARD-TIME SIMULATIONS USING simuPOP

• Unlike coalescent-based programs, simuPOP evolves populations
forward in time, subject to an arbitrary number of genetic and
environmental forces such as mutation, recombination, migration, and
population size changes.

• simuPOP is a general-purpose simulator that does not aim at any
particular application area. It is a development tool with which a
large number of simulations can be implemented. Owing to an object-
oriented design, all classes can be extended by users to define cus-
tomized genetic effects in Python. In contrast, other programs either
do not allow customized effects or force users to modify code at a
lower (e.g., C/C++) level.

simuPOP consists of a number of Python modules that provide a large num-
ber of Python classes and functions, including population, mating schemes,
operators, (objects that manipulate populations) and simulators to coordi-
nate the evolutionary processes. More than 70 operators are provided, cov-
ering all important aspects of genetic studies such as mutation, migration,
recombination, gene conversion, natural selection, penetrance, quantita-
tive trait, statistics calculation, and sample generation. In addition, because
simuPOP provides a large number of functions to manipulate populations,
it can also be used as a data manipulation and analysis tool.

Although it is generally easy to translate an evolutionary process
into a simuPOP script, it can be a daunting task if the script involves
complex demographic and genetic features and functions to interoper-
ate with other applications and file formats. Fortunately, an increas-
ing list of simuPOP functions and scripts, many of which are con-
tributed by simuPOP users, are provided in the simuPOP online cook-
book (http://simupop.sourceforge.net/cookbook). These
recipes include functions to manipulate genetic data in other formats (e.g.,
the HapMap data set) [1], user-defined operators to extend the functionality
of simuPOP, examples to use some of the advanced features of simuPOP,
scripts to demonstrate classic population genetic models, and complete
scripts that simulate a variety of evolutionary processes. It is strongly rec-
ommended that users of simuPOP make use of this resource and contribute
to it whenever possible.

A.1.2 An Overview of simuPOP Concepts

A simuPOP population consists of individuals of the same genotype struc-
ture, which consists of properties such as number of homologous sets of
chromosomes (ploidy), number of chromosomes, names and locations of

INTRODUCTION 187

markers on each chromosome, and names of auxiliary information attached
to each individual (information fields). Individuals can be divided into sub-
populations that can be further grouped into virtual subpopulations (VSPs)
according to individual properties such as sex and affection status. Each
population has a dictionary, called its local namespace, that is used to store
arbitrary Python variables.

simuPOP uses a discrete-generation model in which the evolution of
a population for one generation is characterized by the generation of an
offspring population from a parental population (Figure A.1). During this
process, arbitrary numbers of operators (Python objects that act on a pop-
ulation) can be applied to the parental population (premating operator),
offspring population (postmating operators), or to offspring when he or
she is produced (during-mating operators). At the end of a generation, the
offspring population becomes the parental population of the next genera-
tion. This process can repeat for specified generations or be terminated if
a pre- or postoperator fails to apply.

A simuPOP mating scheme is responsible for choosing parent or parents
from a parental (virtual) subpopulation and for populating an offspring pop-
ulation. simuPOP provides a number of predefined homogeneous mating
schemes, such as random, monogamous, or polygamous mating, selfing,
and haplodiploid mating in hymenoptera. More complicated nonrandom
mating schemes such as mating in age-structured populations can be con-
structed using heterogeneous mating schemes, which apply multiple ho-
mogeneous mating schemes to different (virtual) subpopulations.

During-mating
 operators

Premating
 operators

Postmating
 operators

Parents

Parental generation Offspring generation

M
F

F
M
F

Offspring

FFFFMMFMFMFMFMFMFMF
MFFMMFFFMFMFMF

MFFFMMFFMFMFMFMFFMF
FMFFMMFFMFMFMFMFFFM
MMFFMMFFMMFFFFMMFFF
FFMMFFMMFFFFMMMFFMF
FFMFFMMMFMMFFMMFFFM
MFFFFFMMFMMMFFFMMFF

FIGURE A.1 A life cycle of an evolutionary process. Illustration of the discrete-
generation evolutionary model used by simuPOP. A life cycle of a generation starts
from a parental population and ends at an offspring population. Operators can be
applied to the parental population before mating and to the offspring population
after mating. A mating scheme is responsible for choosing parents and produce
offspring. During-mating operators are used to transmit genotype and other infor-
mation from parents to offspring.

188 FORWARD-TIME SIMULATIONS USING simuPOP

SOURCE CODE A.1 A Simple Example

>>> import simuPOP as sim
>>> pop = sim.Population(size=1000, loci=2)
>>> pop.evolve(
... initOps=[
... # Initialize individuals with random sex (MALE or FEMALE)
... sim.InitSex(),
... # Initialize individuals with two haplotypes.
... sim.InitGenotype(haplotypes=[[1, 2], [2, 1]])
...],
... # Random mating using a recombination operator
... matingScheme=sim.RandomMating(ops=sim.Recombinator(rates=0.01)),
... postOps=[
... # Calculate Linkage disequilibrium between the two loci
... sim.Stat(LD=[0, 1], step=10),
... # Print calculated LD values
... sim.PyEval(r"’%2d: %.2f\n’ % (gen, LD[0][1])", step=10),
...],
... gen=100
...)

0: 0.25
10: 0.22
20: 0.19
30: 0.17
40: 0.16
50: 0.17
60: 0.16
70: 0.14
80: 0.12
90: 0.10
100

These concepts are demonstrated in Source code A.1, where a standard
diploid Wright–Fisher model with recombination is simulated. This source
code records a Python interactive session where Python commands are
executed immediately after they are entered. This is extremely useful for
debugging and testing and for the demonstration of simuPOP features. On
the other hand, you can put all the commands in a file (usually with a
.py file extension) and execute the file in batch mode. Refer to the Python
documentation for how to write a Python script.

The first line of Source code A.1 imports the standard simuPOP mod-
ule. It imports simuPOP as module sim to make the script easier to read
(e.g., sim.InitSex instead of simuPOP.InitSex). The second line
creates a diploid population of 1000 individuals, each having 1 chromo-
some with 2 loci. The evolve() function evolves the population using a
random mating scheme and five operators.

Operators InitSex and InitGenotype are applied at the begin-
ning of the evolutionary process. Operator InitSex initializes individual
sex randomly and InitGenotype initializes all individuals with two

POPULATION 189

haplotypes -1-2- and -2-1- at equal probabilities (default value of pa-
rameter freq). The populations are then evolved for 100 generations. A
random mating scheme is used to generate offspring by selecting male and
female individuals randomly from the parental population. Instead of using
the default Mendelian genotype transmitter that transmits one of the two
homologous chromosomes from parents to offspring, a Recombinator
(during-mating operator) is used to recombine parental chromosomes with
a recombination rate of 0.01 before one of the recombinants is transmitted
to offspring.

Two operators are applied to the offspring generation (postmating) at ev-
ery 10 generations (parameter step). Operator Stat calculates linkage
disequilibrium between the first and second loci. The results of this oper-
ator are stored in the local namespace of the population. The last operator
PyEval retrieves calculated linkage disequilibrium values from the local
namespace and outputs it with a generation number and a trailing new line.
The result represents the decay of linkage disequilibrium of this population
at 10 generation intervals. The return value of the evolve function, which
is the number of evolved generations, is also printed.

A.2 POPULATION

Populations are the most important objects in simuPOP because all other
functions and objects are designed to examine or change population proper-
ties. This section describes how to create a population, and how to examine
and modify its properties using its member functions. Because there are
more than 80 member functions in the Population class, this section
lists only some of the more frequently used ones. Refer to the simuPOP
reference manual for a complete list and description of all member
functions.

A.2.1 Creating a Population

A Population object consists of one or more generations of individuals,
grouped by subpopulations, and a Python dictionary to hold arbitrary vari-
ables. It is instantiated (a process to create an object from the construction
function of the corresponding class) from the init function of class
Population. Several parameters can be used to specify the genotype
and population structure of a population. Acceptable parameters and their
usages are listed in Table A.1.

190 FORWARD-TIME SIMULATIONS USING simuPOP

TABLE A.1 Parameters to Create a Population Object

Parameter with Usage Examples
Default Value

size=[] A list of subpopulation
sizes. The length of this
list determines the
number of
subpopulations of this
population

size=2000
size=[1000,
2000]

ploidy=2 Number of homologous
sets of chromosomes

ploidy=1

loci=[] Numbers of loci on
each chromosome. The
length of this parameter
determines the number
of chromosomes

loci=10
loci=[20]*5

chromTypes=[] A list that specifies the
type of each
chromosome, which
can be AUTOSOME,
CHROMOSOMEX,
CHROMOSOMEY, or
CUSTOMIZED

chromTypes=
[AUTOSOME]*22
+ [CHROMOSOMEX,
CHROMOSOMEY]

lociPos=[] Positions of all loci on
all chromosomes, as a
list of float numbers.
Default to 1, 2, ..., and
so on on each
chromosome

lociPos=range(100)

ancGen=0 Number of the most
recent ancestral
generations to keep
during evolution

ancGen=2

chromNames=[] A list of chromosome
names Default to ” for
all chromosomes

chromNames=[’ch1’,
’ch2’]

(Continued)

POPULATION 191

TABLE A.1 (Continued)

Parameter with Usage Examples
Default Value

alleleNames=[] A list or a nested list of
allele names. If a list of
alleles is given, it will
be used for all loci in
this population.
Otherwise, it should
specify allele names for
all loci.

alleleNames=[’A’,
’C’, ’G’, ’T’]
alleleNames=[[’A’,
’T’],[’C’, ’G’]]

lociNames=[] A list of names for each
locus.

lociNames=[’a’,’b’]

subPopNames=[] A list of subpopulation
names. All
subpopulations will
have name ” if this
parameter is not
specified.

subPopNames=[’CEU’,
’YRI’]

infoFields=[] Names of information
fields (named float
number) that will be
attached to each
individual.

infoFields=’fitness’
infoFields=[
’a’, ’b’]

Using these parameters, small or large populations with different struc-
tures can be created. For example,

pop = sim.Population(size=1000, ploidy=1, loci=2)

creates a haploid population of 1000 individuals, each of them having 1
chromosome with 2 loci.

pop = sim.Population(size=[1000]*5, loci=[10]*5, infoFields=’fitness’)

creates a diploid population with 5 subpopulations, each with 1000 indi-
viduals. These individuals have 5 chromosomes, each with 10 loci and
an information field named fitness. Note that simuPOP uses a naming
convention such that plural forms of parameter names are used (e.g., in-
foFields, loci, rates) if they accept multiple inputs, although both

192 FORWARD-TIME SIMULATIONS USING simuPOP

single and list formats of inputs are acceptable by these parameters (e.g.,
loci=5, loci=[20, 40]).

An independent copy of a population object can be created using its
clone() member function. This function is very useful because assign-
ment in Python creates only a new reference to an existing object. For
example, if pop is a Population object,

pop1 = pop
pop2 = pop.clone()

create a new reference of pop as pop1 and a new population object pop2.
Modifying object pop will modify pop1, but not pop2.

A.2.2 Genotype Structure of a Population

The genotype structure of a population includes the number of homologous
copies of chromosomes, the chromosome types and names, the number
of loci on each chromosome, the position and name of each locus, and
the information fields attached to each individual. A number of member
functions are provided to retrieve such information from a Population
object, along with some utility functions to, for example, look up the index
of a locus by its name (e.g., locusByName()). Table A.2 lists some of
the frequently used functions.

Source code A.2 demonstrates how to create a population and use its
member functions to access its structural and genotypic information. This
Source code creates a diploid population with two chromosomes. Loci
names are specified so that correct loci can be identified by their names
even if some other loci are inserted or removed during evolution (and lead
to change of loci indices). It is worth noting that following the convention
of the Python programming language, all indices in simuPOP start from
0 and end points are not part of ranges. That is to say, loci are indexed
as 0, 1, 2, ..., n-1 if there are n loci, and range(chromBegin(1),
chromEnd(1)) can be used to iterate through loci on chromosome 1 (the
second chromosome) because chromEnd(1) returns the index of the last
locus on chromosome 1 plus 1.

SOURCE CODE A.2 Access Genotype Structure of a Population

>>> import simuPOP as sim
>>> pop = sim.Population(size=[20, 30], loci=[10, 20], lociPos=list(range(20, 50)),
... lociNames=[’loc1_%d’ % x for x in range(1, 11)] +
... [’loc2_%d’ % x for x in range(1, 21)],
... alleleNames=[’A’, ’C’, ’G’, ’T’], infoFields=’a’)
>>> pop.ploidy()

POPULATION 193

TABLE A.2 Genotype Structure-Related Member Functions

Function Usage

ploidy() Returns the number of homologous
sets of chromosomes

numChrom() Returns the number of
chromosomes

numLoci(chrom) Returns the number of loci on a
chromosome

totNumLoci() Returns the total number of loci on
all chromosomes

absLocusIndex(chrom, locus) Returns the absolute index of the
locus locus on chromosome
chrom

chromLocusPair(locus) Returns the index of a locus on a
chromosome from its absolute
index

chromBegin(chrom) Returns the index of the first locus
on a chromosome

chromEnd(chrom) Returns the index of the last locus
on a chromosome plus 1

lociNames() Returns the names of all loci
locusPos(locus) Returns the position of a locus
locusName(loc) Returns the name of a locus
locusByName(name) Looks up the index of a locus from

its name
lociByNames(names) Looks up indices of loci from their

names
alleleName(allele, locus=0) Returns the name of an allele at a

locus
infoField(idx) Returns the name of an information

field
infoFields() Returns the names of all

information fields
infoIdx(name) Returns the index of an information

field

2
>>> pop.numChrom()
2
>>> pop.numLoci(1)
20
>>> pop.chromBegin(1)
10
>>> pop.chromEnd(1)

194 FORWARD-TIME SIMULATIONS USING simuPOP

30
>>> pop.totNumLoci()
30
>>> pop.chromLocusPair(22) # chromosome number and relative index
(1, 12)
>>> pop.locusName(22)
’loc2_13’
>>> pop.lociByNames([’loc1_4’, ’loc2_2’])
(3, 11)
>>> pop.alleleName(1)
’C’
>>> pop.locusPos(15)
35.0
>>> pop.infoFields()
(’a’,)
>>> pop.infoField(0)
’a’

A.2.3 Subpopulations and Virtual Subpopulations

A simuPOP population can have several subpopulations. After a popula-
tion is created, you can check its structural information using functions
popSize(), numSubPop(), and subPopSize(sp), which return
the total population size, number of subpopulations, and size of a par-
ticular subpopulation, respectively. A simuPOP subpopulation is usually
anonymous but a name can be assigned to a subpopulation so that it can
be identified after its index has been changed due to the merge and split of
other subpopulations (see Table A.3).

TABLE A.3 Population Structure-Related Member Functions

Function Usage

popSize() Return the size of a population
numSubPop() Return the number of

subpopulations
subPopIndPair(idx) Return the subpopulation ID and

relative index of an individual,
given its absolute index

subPopSize(sp) Return the size of a
subpopulation

subPopName(sp) Return the name of a
subpopulation

subPopByName(name) Return the index of a
subpopulation from its name

setVirtualSplitter(splitter) Set a virtual splitter to define
virtual subpopulations

numVirtualSubPop() Return the number of virtual
subpopulations

POPULATION 195

Individuals in a simuPOP subpopulation can be further grouped into
virtual subpopulations according to their properties. For example, all male
individuals, all unaffected individuals, all individuals with information field
age greater than 20, and all individuals with genotype (0, 0) at a given
locus can form VSPs. VSPs do not have to add up to the whole subpopu-
lation, nor do they have to be nonoverlapping. Unlike subpopulations that
have strict boundaries, VSPs change easily with the change of individual
properties.

VSPs are defined by splitters, which are simply definition of VSPs. A
splitter defines the same number of VSPs in all subpopulations, although
sizes of these VSPs may vary across subpopulations due to individual differ-
ences. For example, a SexSplitter() defines two VSPs, the first with
all male individuals and the second with all female individuals; an InfoS-
plitter(field=’x’, values=[1, 2, 4]) defines three VSPs
whose members have values 1, 2, and 4 at information field x, respec-
tively. These VSPs have their own names (e.g., ’Male’ and ’Female’
for two VSPs defined by a SexSplitter) that describe the definition
by which they are defined. Several splitters are provided in simuPOP and
more complex VSPs can be defined as unions or intersections of existing
VSPs.

A VSP is represented by a (sp, vsp) pair where sp and vsp are
index or name of the subpopulation and the VSP within this subpopulation.
A VSP can be used in most places where a subpopulation is needed. For
example, function subPopSize([0, ’Male’]) can be used to count
the number of male individuals in a subpopulation if a SexSplitter()
is used to define VSPs by individual sex. Source code A.3 demonstrates
how to apply virtual splitters to a population, how to check VSP names
and sizes, and how to apply different operations to individuals in different
VSPs. This Source code uses the function form of operators InitSex,
InitInfo, InitGenotype, and Dumper, which will be described in
detail later. Note that parameter subPop accepts a single subpopulation or
VSP ID, and parameter subPops accepts a list of subpopulation or VSP
IDs. Because subPops=[0,1] refers to two subpopulations 0 and 1, a
single VSP should be specified as subPops=[(0,1)].

SOURCE CODE A.3 Define and Use Virtual Subpopulations

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=[200, 400], loci=5, infoFields=’x’)
>>> sim.initSex(pop)
>>> # assign random numbers using operator InitInfo
>>> sim.initInfo(pop, lambda: random.randint(0, 3), infoFields=’x’)

196 FORWARD-TIME SIMULATIONS USING simuPOP

>>> # define a virtual splitter by information field ’x’
>>> pop.setVirtualSplitter(sim.InfoSplitter(field=’x’, values=[0, 1, 2, 3]))
>>> pop.numVirtualSubPop() # Number of defined VSPs
4
>>> pop.subPopName([0, 0]) # Each VSP has a name
’x = 0’
>>> pop.subPopSize([0, 0]) # Size of VSP 0 in subpopulation 0
62
>>> pop.subPopSize([1, 0]) # Size of VSP 1 in subpopulation 1
110
>>> # define a virtual splitter by sex
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> pop.numVirtualSubPop() # Number of defined VSPs
2
>>> pop.subPopName([0, 0]) # Each VSP has a name
’Male’
>>> pop.subPopSize([0, 1]) # Size of VSP 0 in subpopulation 0
109
>>> # initialize male and females with different genotypes.
>>> sim.initGenotype(pop, genotype=[0]*5, subPops=[(0, 0)])
>>> sim.initGenotype(pop, genotype=[1]*5, subPops=[(0, 1)])
>>> sim.dump(pop, max=6, subPops=0, structure=False)
SubPopulation 0 (), 200 Individuals:

0: FU 11111 | 11111 | 1
1: FU 11111 | 11111 | 0
2: MU 00000 | 00000 | 3
3: MU 00000 | 00000 | 1
4: MU 00000 | 00000 | 1
5: MU 00000 | 00000 | 0

A.2.4 Accessing Individuals in a Population

Individuals are building blocks of a population. An individual object cannot
be created independently from a population, but references to individuals
can be retrieved using member functions of a population object. More
specifically,

• pop.individual(idx) returns a reference to the idx-th individ-
ual in a population object pop.

• pop.individuals() returns an iterator that iterates
through all individuals in this population (e.g., “for ind in
pop.individuals()”).

• pop.individuals(subPop) returns an iterator that iterates
through individuals within a (virtual) subpopulation.

The individual objects returned by these functions are instances of the
Individual class. They have access to all genotypic structure-related
functions listed in Table A.2 (technically speaking, both the Individual
and Population classes are derived from the GenoStruTrait class,

POPULATION 197

TABLE A.4 Member Functions of the Individual Class

Function Usage

sex() Return the name of a subpopulation
setSex(sex) Return the index of a subpopulation

from its name
affected() Set a virtual splitter to define virtual

subpopulations
setAffected()
allele(idx, ploidy=-1, Return the size of a population

chrom=-1)
setAllele(allele, idx, Return the number of subpopulations

ploidy=-1, chrom=-1)
genotype(ploidy=ALL AVAIL, Return the subpopulation ID and

chroms=ALL AVAIL) relative index of an individual, given
its absolute index

setGenotype(geno, Return the size of subpopulation
ploidy=ALL AVAIL,
chroms=ALL AVAIL)

info(field) Return the number of virtual
subpopulations.

setInfo(value, field) Remove specified subpopulations

so they both have access to all member functions of the base class) and to
some member functions to read and write individual sex, affection status,
genotype, and information fields (Table A.4). For example, function In-
dividual.sex() returns the sex of an individual, which can be MALE
or FEMALE.

From a user’s point of view, genotypes of an individual are stored se-
quentially and can be accessed locus by locus or in batch. The alleles are
arranged by position, chromosome, and ploidy. That is to say, the first allele
on the first chromosome of the first homologous set is followed by alleles
at other loci on the same chromosome, then alleles on the second and later
chromosomes, followed by alleles on the second homologous set of the
chromosomes for a diploid individual. A consequence of this memory lay-
out is that alleles at the same locus of a nonhaploid individual are separated
by Individual.totNumLoci() loci.

simuPOP provides several functions to read and write individ-
ual genotypes. For example, functions Individual.allele()
and Individual.setAllele() can be used to read and
write single alleles; functions Individual.genotype() and

198 FORWARD-TIME SIMULATIONS USING simuPOP

Individual.setGenotype() can be used to read and write indi-
vidual genotypes in batch mode. The setGenotype function accepts
a list of alleles, which will be reused if its length is less than the total
number of required alleles. For example, you can quickly set all alleles of
an individual ind to 1 using function ind.setGenotype(1).

Individual information fields can be accessed using functions In-
dividual.info(field) and Individual.setInfo(value,
field), or as attributes of an Individual object. For example, if an
individual ind has information field id, you can read its value using
ind.id and set its value using statement ind.id=55. Source code A.4
demonstrates how to access and modify individual sex, affection status,
and information fields using these functions.

SOURCE CODE A.4 Access to Individuals in a Population

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=[4, 5], loci=4, infoFields=’a’)
>>> # iterate through all individuals in the first subpopulation of pop
>>> for ind in pop.individuals(0):
... ind.setSex(sim.FEMALE)
... ind.setAllele(1, idx=1, ploidy=1)
... ind.a = random.randint(2, 5)
...
>>> ind = pop.individual(2)
>>> ind.sex() # The numeric value of FEMALE is printed
2
>>> ind.genotype()
[0, 0, 0, 0, 0, 1, 0, 0]
>>> ind.setGenotype([1, 0, 1])
>>> ind.genotype()
[1, 0, 1, 1, 0, 1, 1, 0]
>>> ind.a
5.0
>>> ind.a = 10
>>> ind.a
10.0

A.2.5 Population Variables

Each simuPOP population has a Python dictionary that can store arbitrary
Python variables. These variables are usually used by various operators to
set and retrieve population statistics. For example, the Stat operator cal-
culates population statistics and stores the results in this dictionary. Other
operators such as the PyEval and TerminateIf read from this dictio-
nary and act upon its values.

POPULATION 199

The Population class provides two member functions, namely, Pop-
ulation.vars() and Population.dvars() to access a popula-
tion dictionary. These functions return the same dictionary object, but
dvars() returns a wrapper class so that you can access keys in this dictio-
nary as attributes. For example, pop.vars()[’alleleFreq’][0] is
equivalent to pop.dvars().alleleFreq[0].

It is important to understand that this dictionary forms a local namespace
in which Python expressions can be evaluated. That is to say, items in
this dictionary can be treated as variables in a namespace and be used
to execute Python statements and expressions. This is the basis of how
expression-based operators work. For example, the PyEval operator in
Source code A.1 evaluates an Python expression

’%d: %.2f\n’ % (gen, LD[0][1])

in a population’s local namespace when it is applied to that population. This
expression uses two variables gen and LD. Variable gen is created and
maintained automatically during the evolution of a population. It records
the current generation of the population. Variable LD is set by operator
Stat when it is applied to the population before operator PyEval is
applied. Because arbitrary Python expressions can be evaluated, a PyEval
operator can output these statistics or their derived values in any format.
For example, expression

’1-sum([x*x for x in alleleFreq[0].values()])’

calculates the expected heterozygosity (H = 1 − ∑
p2

i where pi is the
allele frequency of allele i) at locus 0 after a dictionary of allele frequencies
alleleFreq is calculated by operator Stat(alleleFreq=0).

A.2.6 Altering the Structure, Genotype, or Information Fields
of a Population

The Population class provides a number of member functions to alter
the structure of a population and to access individual genotype and infor-
mation fields in batch mode. Table A.5 lists some of the frequently used
functions. Complete prototypes are ignored because some of them accept
many parameters.

Function removeIndividuals removes individuals from a popula-
tion according to their indices, IDs (value at an information field), or the re-
turn values of a filter function that accepts each individual as its input value.

200 FORWARD-TIME SIMULATIONS USING simuPOP

TABLE A.5 Population Modification Functions of the Population Class

Function Usage

removeSubPops Remove specified subpopulations
mergeSubPops Merge specified subpopulations into one

subpopulation
splitSubPop Split a subpopulation into subpopulations with

given sizes
resize Resize a population with new subpopulation sizes
removeIndividuals Remove individuals by indices, IDs, or a filter

function
addIndFrom Add individuals with the same genotype structure

from another population
addChrom Add a chromosome to the current population
addChromFrom Add chromosomes from another population with the

same number of individuals
addLoci Add some loci to the current population
addLociFrom Add loci from another population with the same

number of individuals
removeLoci Remove selected loci from a population
genotype Return a list-like object that represents genotypes of

all individuals in a (sub)population
setGenotype Set genotype of all individuals in a (sub)population

using a lists of alleles
addInfoFields Add additional infomation fields to a population
removeInfoFields Remove specified information fields of a population
indInfo Return values of an information field of all

individuals or individuals in a (virtual)
subpopulation

setIndInfo Set values of an information field of all individuals
or individuals in a (virtual) subpopulation using a
list of values

Alternatively, function removeSubPops can be used to remove subpop-
ulations or groups of individuals who share the same properties (use VSP).
Functions extractIndividuals and extractSubPops work sim-
ilarly. However, instead of removing selected individuals or (virtual) sub-
populations, they copy these individuals and form a new population from
them. These functions are usually used to draw samples from an existing
population.

Functions mergeSubPops and splitSubPop merge and split ex-
isting subpopulations and are usually used to merge or split parental

POPULATION 201

populations during the simulation of demographic models with popula-
tion merge and split. If population size needs to be changed, the function
resize can resize a population and the function addIndFrom can merge
individuals from another population to the current population.

When simuPOP is used to process real empirical data sets, functions
such as removeLoci, addLociFrom, and addChromFrom can be
used to remove loci or combine data sets with different loci. We will not
go into the details of these functions because they are used primarily for
data processing, which is not the focus of this book. Refer to scripts such
as loadHapMap3.py (a script to import the HapMap data sets and save
them in simuPOP formats) in the simuPOP online cookbook for examples
on how to use these functions.

Individuals in a population share the same set of information fields,
so the addition and removal of information fields can be performed only at
the population level. Because the unused information fields tend to hinder
the efficiency of simulations, it is a common practice to use minimal set of
information fields during evolution and add additional information fields
using function addInfoFields for postevolution data analysis.

Finally, the Population class provides functions to access individ-
ual genotype and information fields in batch mode. For example, function
indInfo returns values of an information field of all individuals or in-
dividuals belonging to a (virtual) subpopulation. This makes it easy to
calculate summary statistics of these information fields. Similarly, func-
tion genotype returns genotypes of all or individuals in certain (virtual)
subpopulation so that you can count, for example, the number of mutants
in a population. For performance considerations, function genotype re-
turns a special object that directly exposes the underlying genotypes to
users. Modifying this object will change individual genotypes.

Source code A.5 demonstrates how to use some of the mentioned
functions.

SOURCE CODE A.5 Use of Population Modification and Batch
Access Functions

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=[4, 6], loci=2, infoFields=’x’)
>>> pop.setIndInfo([random.randint(0, 10) for x in range(10)], ’x’)
>>> sum(pop.indInfo(’x’)) / pop.popSize() # get the mean of field x
6.0
>>> pop.setGenotype([0, 1, 2, 3], 0)
>>> pop.genotype(0) # for the first subpopulation
[0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
>>> pop.setVirtualSplitter(sim.InfoSplitter(cutoff=[3], field=’x’))
>>> pop.mergeSubPops(subPops=[0,1]) # merge two subpopulations

202 FORWARD-TIME SIMULATIONS USING simuPOP

0
>>> pop.setGenotype([0]) # clear all values
>>> pop.setGenotype([5, 6, 7], [0, 1]) # only for x >= 3
>>> pop.indInfo(’x’, 0)
(8.0, 9.0, 10.0, 8.0, 10.0, 5.0, 0.0, 1.0, 2.0, 7.0)
>>> pop.removeSubPops([(0,0)]) # remove individuals with x < 3
>>> pop.popSize()
7
>>> pop.genotype(0) # so all existing individuals have genotype 5, 6, 7
[5, 6, 7, 5, 6, 7, 5, 6, 7, 5, 6, 7, 5, 6, 7, 5, 6, 7, 5, 6, 7, 5, 6, 7, 5, 6, 7, 5]

A.2.7 Multigeneration Populations and Parental Information

All simulations we have described so far discard parental information.
That is to say, a parental population is discarded when it is replaced by its
offspring population at the end of an evolutionary cycle. This behavior can
be changed by setting the ancestral depth of a population, namely, how
many ancestral generations to keep during an evolutionary process. For
example, a population

Population(10000, loci=5, ancGen=2)

created in Source code A.6 will keep its parental (ancGen=1) and grand-
parental (ancGen=2) generations during an evolutionary process. At the
end of each generation, the existing grandparental generation is dicarded,
the parental generation becomes the grandparental generation, the present
population becomes the parental generation, and the offspring population
becomes the present generation. After 20 generations, the population ob-
ject will have 3 generations, namely, the offspring population at the end of
generation 17, 18, and 19. These generations could be set as the present
population using function Population.useAncestralGen(gen)
where gen is 0 for present, 1 for parental, and 2 for grandparental
generation.

SOURCE CODE A.6 Keeping Multiple Ancestral Generations During
an Evolutionary Process

>>> import simuPOP as sim
>>> pop = sim.Population(size=10000, loci=5, ancGen=2)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.7, 0.3]),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.MaPenetrance(loci=2, penetrance=[0.05, 0.1, 0.12]),
...],

POPULATION 203

... gen=20

...)
20
>>> for gen in range(pop.ancestralGens() + 1):
... pop.useAncestralGen(gen)
... sim.stat(pop, numOfAffected=True)
... print(’Number of affected individuals in generation %d is %d’ % \
... (gen, pop.dvars().numOfAffected))
...
Number of affected individuals in generation 0 is 760
Number of affected individuals in generation 1 is 773
Number of affected individuals in generation 2 is 787

Although the multigeneration population created in Source code A.6
keeps two ancestral generations, it does not keep any parental informa-
tion, so it is not possible to identify parents of each individual. In order
to keep parental information, it is necessary to assign unique IDs to all
individuals and store IDs of parents to their offspring. simuPOP reserves
information fields ind id, father id and mother id and operators
IdTagger and PedigreeTagger for such purposes. More specifically,
in order to track parentship of a population, you should add information
fields ind id, father id, and mother id to the population and use
operator IdTagger to assign a unique ID to field ind id of each in-
dividual and an operator PedigreeTagger to record the ID of the fa-
ther and mother of each offspring to fields father id, and mother id
respectively.

Source code A.7 demonstrates how to assign IDs and record parentship
of each individual during evolution. In this Source code, an operator Id-
Tagger is used to initialize all individuals in the starting population with
IDs 1, 2, ..., 1000. During evolution, operator IdTagger assigns a unique
ID to each offspring and operator PedigreeTagger copies ind id of
his or her parents to fields father id and mother id. If we examine
the value of these information fields of the simulated population, we can see
that individuals have unique IDs, and two individuals share the same parents
because each mating event produces two offspring (numOffspring=2).

SOURCE CODE A.7 Recording Parentship of Individuals During
Evolution

>>> import simuPOP as sim
>>> pop = sim.Population(size=1000, loci=5, ancGen=2,
... infoFields=[’ind_id’, ’father_id’, ’mother_id’])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.7, 0.3]),
... sim.IdTagger(),

204 FORWARD-TIME SIMULATIONS USING simuPOP

...],

... matingScheme=sim.RandomMating(ops=[

... sim.MendelianGenoTransmitter(),

... sim.IdTagger(),

... sim.PedigreeTagger()],

... numOffspring=2),

... postOps=[

... sim.MaPenetrance(loci=2, penetrance=[0.05, 0.1, 0.12]),

...],

... gen=20

...)
20
>>> pop.indInfo(’ind_id’)[:5]
(20001.0, 20002.0, 20003.0, 20004.0, 20005.0)
>>> pop.indInfo(’father_id’)[:5]
(19443.0, 19443.0, 19838.0, 19838.0, 19755.0)
>>> pop.indInfo(’mother_id’)[:5]
(19181.0, 19181.0, 19854.0, 19854.0, 19756.0)

A.2.8 Saving and Loading a Population

A population can be saved to a disk file using function Popula-
tion.save(filename), and be loaded from this file using global func-
tion loadPopulation(filename). simuPOP uses a binary format to
save a population object. The format is not human readable, but is portable
in the sense that a file saved in one platform can be loaded by simuPOP on
another platform. The simuPOP cookbook provides a number of functions
to save and load simuPOP populations in formats used by other genetic
analysis software.

A.3 OPERATORS

Operators are objects that act on populations. During an evolutionary pro-
cess, operators are applied to populations repeatedly, just like what robots
do in an automotive production line. There are two types of operators:
operators that are applied to populations before or after mating, and oper-
ators that are applied to offspring during mating. Some operators could be
applied to both populations and individuals to perform different tasks.

Operators that are applied to populations are used in parameters
initOps, preOps, postOps, and finalOps of the Popula-
tion.evolve() function. The initOps operators are applied before
an evolutionary process, the preOps operators are applied to the parental
population at each generation before mating, the postOps operators are
applied to the offspring population at each generation after mating, and
the finalOps operators are applied after an evolutionary process. These

OPERATORS 205

operators include fitness operators that set individual fitness values before
mating, mutation operators that mutate alleles, statistics calculators that
calculate population statistics, and operators that report the progress of an
evolutionary process.

Operators that are applied to individuals are used in the ops param-
eter of a mating scheme. They are usually used to transmit genotype or
other information from parents to offspring. Examples of such operators
include MendelianGenoTransmitter that transmits parental geno-
type to offspring according to Mendelian laws and PedigreeTagger
that records the IDs of parents to each offspring.

A.3.1 Applicable Generations

Operators are, by default, applied to all generations during an evolution-
ary process. This can be changed using the begin, end, step, and at
parameters of operators. As their names indicate, these parameters control
the starting generation (begin), ending generation (end), generations be-
tween two applicable generations (step), and an explicit list of applicable
generations (at, a single generation number is also acceptable). Other pa-
rameters will be ignored if parameter at is specified. If the number of gen-
erations to evolve is fixed (parameter gen of the Population.evolve
function is specified), negative generation numbers are allowed. They are
counted backward from the ending generation. For example, if a simulation
starts at generation 0, and the evolve function has parameter gen=10,
the simulator will stop at the beginning of generation 10. Generation -1
refers to generation 9 (the last generation), and generation -2 refers to
generation 8, and so on.

These parameters give simuPOP the flexibility to apply operators at se-
lected generations. For example, you can calculate and output statistics at
every 10 generations to avoid excessive report or apply different migration
models during different stages of an evolutionary process. Source code
A.8 demonstrates how to set applicable generations of an operator. In this
Source code, operators InitSex ad InitGenotype are applied once
before evolution. Operators Stat and PyEval are applied at every 10
generations, namely, generations 0, 10, 20, At these generations, opera-
tor Stat is applied before mating (on the parental population) to calculate
allele frequency at locus 0, and PyEval is applied after mating (on the
offspring population) to output variable alleleFreq[0][1] where 0
and 1 are locus and allele indices respectively. Although PyEval is ap-
plied after mating, the allele frequencies it reports are actually frequencies
of the parental population calculated by operator Stat before mating.

206 FORWARD-TIME SIMULATIONS USING simuPOP

An operator MapSelector is used to select against allele 1 starting from
generation 50, so the frequency of allele 1 decreases quickly after that
generation.

SOURCE CODE A.8 Applicable Generations of an Operator

>>> import simuPOP as sim
>>> pop = sim.Population(size=2000, loci=1, infoFields=’fitness’)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
...],
... preOps=[
... sim.Stat(alleleFreq=0, step=10),
... sim.MapSelector(begin=50, loci=0,
... fitness={(0,0):1, (0,1):0.99, (1,1):0.97})
...],
... matingScheme=sim.RandomMating(),
... postOps=sim.PyEval(r"’%3d: %.2f\n’ % (gen, alleleFreq[0][1])",
... step=10),
... gen=100
...)

0: 0.50
10: 0.52
20: 0.52
30: 0.50
40: 0.48
50: 0.48
60: 0.46
70: 0.46
80: 0.44
90: 0.37

100
>>>

A.3.2 Operator Output

All operators we have seen write their output to the standard output, namely,
a terminal window. However, in a complex evolutionary system where
multiple statistics are recorded, you might want to store certain statistics
in one file and others in another file. In these cases, you can use parameter
output of operators to direct their output to other destinations.

Parameter output accepts an output specification string or a user-
defined Python function (Table A.6). Because statistics are usually collected
and outputted repeatedly during evolution, the most frequently used format
is ’>>filename’. Files specified in this way will be opened before
evolution, accept inputs from one or more operators during evolution, and
be closed afterward. A comma or tab separated file can be created in this
way if proper delimiters are outputted.

OPERATORS 207

TABLE A.6 Acceptable Inputs for Parameter Output of Operators

Parameter Usage

” Supress output
’filename’ Write output to a file named filename and

close it Existing content of this file will be cleared
’>filename’ Equivalent to ’filename’
’>>filename’ Append output to a file named filename. Clear

the file before evolution if this file already exists
’>>>filename’ Append output to a file named filename. Do

not clear the file before evolution if this file al-
ready exists

’!expr’ Obtain an output specification string by evaluat-
ing expression expr in the local namespace of
the current population

a Python function Send the output to a user-defined Python function

A output specification will be considered as an expression if it starts
from an exclamation symbol. Such an expression will be evaluated in a
population’s local namespace to determine a proper output. For example,
parameter output=’!”gen %d.txt” % gen’ directs output from
an operator to files gen 0.txt, gen 1.txt etc at generations 0, 1,
As an advanced feature, operator output could be sent directly to a Python
function for real time analysis.

Source code A.9 demonstrates how to use the output parameters to
record two LD measures to files LD.txt and R2.txt separately.

SOURCE CODE A.9 Use of Parameter Output of Operators to
Redirect Operator Output

>>> import simuPOP as sim
>>> pop = sim.Population(size=2000, loci=2)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[1, 2, 2, 1])
...],
... matingScheme=sim.RandomMating(ops=sim.Recombinator(rates=0.1)),
... postOps=[
... sim.Stat(LD=[0, 1]),
... sim.PyEval(r"’%3d: %.4f\n’ % (gen, LD[0][1])",
... output=’>>LD.txt’),
... sim.PyEval(r"’%3d: %.4f\n’ % (gen, R2[0][1])",
... output=’>>R2.txt’)

208 FORWARD-TIME SIMULATIONS USING simuPOP

...],

... gen=100

...)
100
>>> # print the first five lines of the output
>>> print(’’.join(open(’R2.txt’).readlines()[:5]))

0: 0.6123
1: 0.5055
2: 0.4075
3: 0.3513
4: 0.2808

A.3.3 During-Mating Operators

Source code A.1 uses operator Recombinator(rate=0.01) in the
ops parameter of mating scheme RandomMating. This operator re-
trieves parental chromosomes, recombines them with specified recombi-
nation rate, and passes one recombinant from each parent to the offspring.
The random mating scheme in Source code A.8 does not specify an ops
parameter so that a default during- mating operator for this mating scheme,
namely, a MendelianGenoTransmitter(), is used to transmit geno-
type from parents to offspring according to Mendelian laws. These during-
mating operators are called genotype transmitters just to indicate they are
responsible for transmitting parental genotypes to offspring.

In addition to genotype transmitters, other during-mating operators
could be applied during the production of offspring. For example, op-
erator PedigreeTagger records the IDs of parents to information
fields of offspring, and operator InheritTagger passes parental in-
formation fields to offspring. It is important to remember that a geno-
type transmitter needs to be explicitly specified when the ops parameter
is used.

Source code A.10 uses an operator InheritTagger to record the
ancestry of each individual. The simulation starts from a population of
1000 individuals, half with ancestry value 0 and half with ancestry value
1. During evolution, a MendeliangenoTransmitter passes parental
genotypes and a InheritTagger passes the mean of ancestral ancestry
values to their offspring. Because a random mating scheme selects par-
ents randomly, it is not surprising that the majority of the individuals have
an ancestry value around 0.5 after only a few generations. This Source
code uses operator InitInfo to assign a sequence of values ([0,1])
to individuals in a population, and a population member function Pop-
ulation.indInfo to get the values of information field anc of all
individuals.

OPERATORS 209

SOURCE CODE A.10 Use of an InheritTagger to Track Individual
Ancestry

>>> import simuPOP as sim
>>> pop = sim.Population(size=1000, loci=20, infoFields=’anc’)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
... sim.InitInfo([0,1], infoFields=’anc’),
...],
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.InheritTagger(mode=sim.MEAN, infoFields=’anc’)]),
... gen=10
...)
10
>>> # find the ancestral values
>>> anc = pop.indInfo(’anc’)
>>> print(’min anc: %.3f, mac anc: %.3f’ % (min(anc), max(anc)))
min anc: 0.432, mac anc: 0.558

A.3.4 Function Form of Operators

Operators are usually applied to populations during evolution, although
they can also be applied to a population directly, using their function coun-
terparts. These functions are named similar to the corresponding classes.
They take a population object as their first parameter, create an operator
using the rest of the parameters, and apply the operator to the passed popu-
lation. For example, operators used in the initOps parameter of Source
code A.10 can be moved before function pop.evolve to initialize the
population as follows:

pop = sim.Population(size=1000, loci=20, infoFields=’anc’)
sim.initSex(pop)
sim.initGenotype(pop, freq=[0.5, 0.5])
sim.initInfo(pop, [0, 1], infoFields=’anc’)
pop.evolve(...) # ignored

Function stat is the function form of operator Stat, which is fre-
quently used to calculate statistics of populations. For example, it is more
efficient to calculate the minimum and maximum of ancestry values of the
simulated population in Source code A.10 using

stat(pop, minOfInfo=’anc’, maxOfInfo=’anc’)
print(’min anc: %.3f, max anc: %.3f’ % \

(pop.dvars().minOfInfo[’anc’], (pop.dvars().minOfInfo[’anc’]))

because the Stat operator calculates the statistics internally without copy-
ing values of information field ’anc’ to a list.

210 FORWARD-TIME SIMULATIONS USING simuPOP

A.3.5 Operator Stat

Operator Stat is used to calculate statistics for populations, subpopula-
tions, or groups of individuals in subpopulations that share certain prop-
erties (virtual subpopulations). Instead of returning calculated statistics in
some way, this operator stores one or more variables in a population’s
local namespace. These variables can be accessed by other operators such
as PyEval or directly from a population object using member function
Population.vars() or Population.dvars().

Table A.7 lists acceptable parameters of the Stat operator and the
variables it sets for each statistics. Variables marked by an asterisk (∗)
are the default variables that will be set for a statistic. An alternative set
of variables can be specified via parameter vars of this operator. For
example, operator

Stat(association=ALL_AVAIL, vars=’Armitage_p’)

performs Cochran–Armitage trend tests at all available loci of a population
and sets a dictionary Armitage p for the p-values of the tests. The default
allele-based association tests will not be performed in this case.

This operator by default does not calculate statistics for subpopulation.
If you list a set of (virtual) subpopulations using parameter subPops, in-
dividuals from these subpopulations will be pulled together for calculation.
For example,

pop.setVirtualSplitter(SexSplitter())
stat(pop, alleleFreq=0, subPops=[(ALL_AVAIL, ’Male’)])

calculates allele frequency at locus 0 for all male individuals in all subpopu-
lations of population pop. The results will be saved to variables allele-
Freq and alleleNum, although they are the allele frequency among all
male individuals instead of the allele frequency for all individuals in a
population. This example uses [(ALL AVAIL, ’Male’)] to represent
the first virtual subpopulations in all available subpopulations. Similarly,
[(0, ALL AVAIL)] or [(ALL AVAIL, ALL AVAIL)] can be used
to refer to all virtual subpopulations in a specific subpopulation or in all
subpopulations.

Subpopulation-specific statistics can be calculated for variables marked
by a s symbol in Table A.7, by specifying variables with a sp suffix
in parameter vars of the Stat operator. The resulting variables will
be stored in dictionaries subPop[sp] where sp is the ID of (virtual)
subpopulations. For example, operator

OPERATORS 211
T

A
B

L
E

A
.7

P
ar

am
et

er
s

an
d

V
ar

ia
bl

es
of

O
pe

ra
to

r
S

t
a

t

St
at

is
tic

s
Pa

ra
m

et
er

V
ar

ia
bl

es

Po
pu

la
tio

n
si

ze
p

o
p

S
i

z
e

=
F

a
l

s
e

p
o

p
S

i
z

e
∗s

i ,
s

u
b

P
o

p
S

i
z

e
l

N
um

be
r

of
m

al
e

in
di

vi
du

al
s

n
u

m
O

f
M

a
l

e
s

=
F

a
l

s
e

n
u

m
O

f
M

a
l

e
s

∗s
i ,

n
u

m
O

f
F

e
m

a
l

e
s

∗s
i ,

p
r

o
p

O
f

M
a

l
e

s
sf

,
p

r
o

p
O

f
F

e
m

a
l

e
s

sf

N
um

be
r

of
af

fe
ct

ed
in

di
vi

du
al

s
n

u
m

O
f

A
f

f
e

c
t

e
d

=
F

a
l

s
e

n
u

m
O

f
A

f
f

e
c

t
e

d
∗s

i ,
n

u
m

O
f

U
n

a
f

f
e

c
t

e
d

∗s
i ,

p
r

o
p

O
f

A
f

f
e

c
t

e
d

sf
,p

r
o

p
O

f
U

n
a

f
f

e
c

t
e

d
sf

A
lle

le
co

un
ta

nd
fr

eq
ue

nc
y

a
l

l
e

l
e

F
r

e
q

=
[

]
a

l
l

e
l

e
F

r
e

q
∗s

d
,a

l
l

e
l

e
N

u
m

∗s
d

H
et

er
zy

go
te

fr
eq

ue
nc

y
h

e
t

e
r

o
F

r
e

q
=

[
]

h
e

t
e

r
o

F
r

e
q

∗s
d
,h

e
t

e
r

o
N

u
m

sd

H
om

oz
yg

ot
e

fr
eq

ue
nc

y
h

o
m

e
F

r
e

q
=

[
]

h
o

m
o

F
r

e
q

∗s
d
,h

o
m

o
N

u
m

sd

G
en

ot
yp

e
fr

eq
ue

nc
y

g
e

n
o

F
r

e
q

=
[

]
g

e
n

o
F

r
e

q
∗s

d
,g

e
n

o
N

u
m

∗s
d

H
ap

lo
ty

pe
fr

eq
ue

nc
y

h
a

p
l

o
F

r
e

q
=

[
]

h
a

p
l

o
F

r
e

q
∗s

d
,h

a
p

l
o

N
u

m
∗s

d

Su
m

of
in

fo
rm

at
io

n
fie

ld
s

s
u

m
O

f
I

n
f

o
=

[
]

s
u

m
O

f
I

n
f

o
∗s

d

M
ea

n
of

in
fo

rm
at

io
n

fie
ld

s
m

e
a

n
O

f
I

n
f

o
=

[
]

m
e

a
n

O
f

I
n

f
o

∗s
d

V
ar

ia
nc

e
of

in
fo

rm
at

io
n

fie
ld

s
v

a
r

O
f

I
n

f
o

=
[

]
v

a
r

O
f

I
n

f
o

∗s
d

M
ax

im
um

of
in

fo
rm

at
io

n
fie

ld
s

m
a

x
O

f
I

n
f

o
=

[
]

m
a

x
O

f
I

n
f

o
∗s

d

M
in

im
um

of
in

fo
rm

at
io

n
fie

ld
s

m
i

n
O

f
I

n
f

o
=

[
]

m
i

n
O

f
I

n
f

o
∗s

d

L
in

ka
ge

di
se

qu
ili

br
iu

m
L

D
=

[
]

L
D

∗s
d
,L

D
p

r
i

m
e

∗s
d
,R

2
∗s

d
,L

D
C

h
i

S
q

sd
,L

D
C

h
i

S
q

p
sd

,
C

r
a

m
e

r
V

sd

A
ss

oc
ia

tio
n

te
st

s
a

s
s

o
c

i
a

t
i

o
n

=
[

]
A

l
l

e
l

e
C

h
i

S
q

p
∗s

d
,A

l
l

e
l

e
C

h
i

S
q

sd
,G

e
n

o
C

h
i

S
q

sd
,

G
e

n
o

C
h

i
S

q
p

sd
,A

r
m

i
t

a
g

e
p

sd

N
eu

tr
al

ity
te

st
s

n
e

u
t

r
a

l
i

t
y

=
[

]
P

i
∗sf

Po
pu

la
tio

n
st

ru
ct

ur
e

s
t

r
u

c
t

u
r

e
=

[
]

F
s

t
∗f

,F
i

s
f

,F
i

t
f

,f
s

t
d
,f

i
s

d
,f

i
t

d
,G

s
t

f
,g

s
t

d

H
ar

dy
–W

ei
nb

er
g

eq
ui

lib
ri

um
H

W
E

=
[

]
H

W
E

∗s
d

∗:
D

ef
au

lt
va

ri
ab

le
,s

:a
va

ila
bl

e
fo

r(
vi

rt
ua

l)
su

bp
op

ul
at

io
ns

if
v

a
r

n
a

m
e

s
p

is
sp

ec
ifi

ed
.i

:i
nt

eg
er

va
ri

ab
le

,f
:fl

oa
tv

ar
ia

bl
e,

d
:d

ic
tio

na
ry

va
ri

ab
le

.

212 FORWARD-TIME SIMULATIONS USING simuPOP

Stat(alleleFreq=0, vars=’alleleFreq_sp’)

calculates allele frequencies at locus 0 for all subpopulations and sets vari-
ables such as subPop[0][’alleleFreq’], whereas

Stat(alleleFreq=0, subPops=[(ALL_AVAIL, 0)], vars=’alleleFreq_sp’)

calculates allele frequencies for specified virtual subpopulations and
sets variables such as subPop[(1,0)][’alleleFreq’]. Note that
pop.dvars(sp).alleleFreq can be used as a shortcut to access
variable pop.dvars().subPop[sp][’alleleFreq’].

Variables set by the Stat operator can be an integer (marked by a i

symbol in Table A.7), a float number (f), a list of numbers (l), and a dic-
tionary (d). The keys of these dictionaries vary from statistic to statistic.
For example, variable meanOfInfo[’fitness’] records the mean
of information fitness; variable alleleFreq[0][a] records the fre-
quency of allele a at locus 0 using alleles as keys; and variable hap-
loNum[(0,1,2)][(0,0,1)] records the frequency of haplotype -
0-0-1- at loci 0, 1, and 2, using a tuple of alleles as keys. Because keys
of these dictionaries sometimes cannot be determined in advance, access
to these dictionaries with an invalid key will return 0 instead of triggering
an KeyError exception. For example, if there are alleles 0, 2, 3 at locus
1, operator

Stat(alleleFreq=1)

will set dictionaries alleleFreq[1] and alleleNum[1] with keys 0,
2, and 3. You can use expression len(alleleFreq[1]) to obtain the
number of alleles at this locus, expression alleleFreq[1].keys()
to obtain a list of available alleles, and most importantly, expressions
such as

alleleFreq[1][1]

to output or display frequency of a particular allele without worrying about
whether or not there is such an allele at this locus.

A.3.6 Hybrid and Python Operators

Given the large number of population genetics models and statistics, it
is not possible for simuPOP to provide native support for all of them.
Fortunately, owing to the scripting language design, it is easy to extend

OPERATORS 213

functions of simuPOP in Python through the use of user-provided callback
functions.

A simuPOP callback function is a user-defined Python function that is
passed to and called by simuPOP. The interface of this function is specified
by simuPOP. For example, a demographic function is a callback function
that is passed to the subPopSize parameter of a mating scheme and is
called by the mating scheme at each generation before mating happens.
This function accepts a generation number with parameter gen and/or a
parental population with parameter pop and returns the population size
(if there is no population structure) or a list of subpopulation sizes of the
offspring population. It is noted that simuPOP depends on parameter names
to determine what should be passed to a callback function. For example, a
mating scheme will pass a parental population to function demo(pop), a
generation number to function demo(gen), and both parental population
and generation number to function demo(pop, gen).

A hybrid operator is an operator that accepts a callback function (Does it
accept something else, since it is called a hybrid?). The number and mean-
ing of input parameters and return values vary from operator to operator.
For example, a hybrid mutator sends a to-be-mutated allele to a callback
function and uses its return value as the mutant allele. A hybrid selector
uses return values of a user-defined function as individual fitness values.
Such an operator handles the routine part of the work (e.g., scan through a
chromosome and determine which allele needs to be mutated) and leaves
the creative part to users. For example, Source code A.11 defines an asym-
metric stepwise mutation model with random steps using a hybrid mutator
called PyMutator. This mutator mutates alleles at loci 2 and 5 with spec-
ified mutation rates and sends alleles to be mutated to a callback function
randomStep, which mutates an allele a to allele a − 1, a, a + 1, a + 2
with equal probabilities. Because of the upward trend of this mutational
process, the average number of tandem (why are they tandem repeats, this
seems to be single repeat differences between alleles) repeats increases
during evolution.

SOURCE CODE A.11 An Asymmetric Stepwise Mutation Model with
Random Steps

>>> import simuPOP as sim

>>> import random

>>> def randomStep(allele):

... return allele + random.randint(-1, 2)

...

>>> pop = sim.Population(size=1000, loci=[10])

214 FORWARD-TIME SIMULATIONS USING simuPOP

>>> pop.evolve(

... initOps=[

... sim.InitSex(),

... sim.InitGenotype(genotype=100)

...],

... matingScheme=sim.RandomMating(),

... postOps=sim.PyMutator(func=randomStep, rates=[1e-3, 1e-2],

... loci=[2, 5]),

... gen = 1000

...)

1000

>>> # count the average number of tandem repeats at both loci

>>> sim.stat(pop, alleleFreq=[2, 5])

>>> sum([x*y for x,y in pop.dvars().alleleNum[2].items()])/(2.*pop.popSize())

99.859

>>> sum([x*y for x,y in list(pop.dvars().alleleNum[5].items())])/(2.*pop.popSize())

104.9455

A Python operator PyOperator is the most flexible hybrid operator in
simuPOP because its callback function takes a population or an individual
as its input and can perform arbitrary operations on them. When this opera-
tor is applied to a parental or offspring population, it passes the population
directly to a callback function with an optional parameter (parameters pop
and param). For example, operator PyOperator used in Source code
A.12 passes offspring populations to a function drawSample at every
100 generations. This function draws cases and controls from these popu-
lations and saves samples for later analysis. Numbers of cases and controls
are passed to this function using parameter param. Note that a callback
function for operator PyOperator must return True or False and the
evolution of a population will be terminated if False is returned.

SOURCE CODE A.12 Use of a Python Operator to Draw Sample at
Every 100 Generations

import simuOpt
simuOpt.setOptions(quiet=True, alleleType=’binary’)
import simuPOP as sim
from simuPOP.sampling import drawCaseControlSample

def drawSample(pop, param):
’Rest fixed locus to all zero alleles’
nCase, nCtrl = param
sample = drawCaseControlSample(pop, cases=nCase, controls=nCtrl)
sample.save(’sample_%d.pop’ % pop.dvars().gen)
return True

pop = sim.Population(size=10000, loci=1)
pop.evolve(

initOps=[
sim.InitSex(),
sim.InitGenotype(freq=[0.5, 0.5]),

],
matingScheme=sim.RandomMating(),

EVOLVING ONE OR MORE POPULATIONS 215

postOps=[
sim.MaPenetrance(loci=0, penetrance=(0.01, 0.1, 0.15), step=100),
sim.PyOperator(func=drawSample, param=(100, 100), step=100),

],
gen = 500

)

A.4 EVOLVING ONE OR MORE POPULATIONS

Function Population.evolve() evolves a population generation by
generation, following a discrete-generation evolutionary model depicted
in Figure A.1. This function accepts a mating scheme and several lists
of operators, which are all Python objects with their own properties and
member functions. Table A.8 lists the parameters that are accepted by
function Population.evolve.

A.4.1 Mating Scheme

A mating scheme specified by parameter matingScheme is used to select
parents from the parental population and populate an offspring population.
A mating scheme is responsible for the following:

1. Determining the Size of the Offspring Population The offspring pop-
ulation has by default the same number of individuals as the parental

TABLE A.8 Acceptable Parameters of Function Population.evolve

Parameter Usage

initOps A list of operators that will be applied before evolution.
They are usually used to initialize a population and prepare
it for evolution

preOps A list of operators that will be applied to the parental pop-
ulation at the beginning of each generation

matingScheme A mating scheme that produces an offspring population
from a parental population

postOps A list of operators that will be applied to the offspring
population at the end of each generation

finalOps A list of operators that will be applied after evolution
gen Generations to evolve. Default to -1, which will cause the

evolutionary process to continue indefinitely
dryrun If set to True, the evolve function will print a descrip-

tion of the evolutionary process and exit

216 FORWARD-TIME SIMULATIONS USING simuPOP

population, but you can specify a fixed population size or a dynamic
population size using parameter subPopSize. In the latter case, a
Python function should be defined to return the population size of the
offspring population at each generation.

2. Determining How the Parents Are Chosen A RandomMating mat-
ing scheme chooses a male and a female parent randomly, at equal
probability or at a probability that is proportional to individual fitness
values if an information field named fitness exists. It is the most
frequently used mating scheme in this book.

3. Determining the Number of Offspring Per Mating Event This is con-
trolled by parameter numOffspring, which can be a fixed number
(default to 1) or a random distribution.

4. Determining the Sex of Offspring This can be determined randomly
or may follow a fixed pattern. Parameter sexMode is used to control
this behavior.

5. Determining How Parental Genotypes and Other Information Are
Passed to Offspring Each mating scheme has a default genotype
transmitter that can be overridden with a list of operators in the pa-
rameter ops of a mating scheme.

Source code A.13 demonstrates some of the features of a simuPOP mat-
ing scheme using a monogamous mating scheme. Unlike a random mat-
ing scheme in which parents can mate with several spouses, this mating
scheme chooses parents without replacement, so each parent can have only
one spouse. In order to ensure equal number of male and female parents,
each mating event produces exactly one male and one female offspring. A
ParentsTagger is used to track the parents of each offspring so that we
can determine the parents of each offspring in the simulated population.
This mating scheme can be used to simulate theoretical models in which
all parents pass their genotypes to the offspring population or to simulate
strictly controlled mating schemes such as animal breeding programs for
endangered species.

SOURCE CODE A.13 Control of the Number and Sex of Offspring
in a Monogamous Mating Scheme

>>> import simuPOP as sim

>>> pop = sim.Population(10, loci=10, infoFields=[’father_idx’, ’mother_idx’])

>>> pop.evolve(

... # use a proportion instead of probability to ensure equal numbers of

... # males and females

... initOps=[

EVOLVING ONE OR MORE POPULATIONS 217

... sim.InitSex(maleProp=0.5),

... sim.InitGenotype(freq=[0.2, 0.8])

...],

... matingScheme=sim.MonogamousMating(numOffspring=2,

... # fix the number of male offspring, the rest are females.

... sexMode=(sim.NUM_OF_MALES, 1),

... ops=[sim.MendelianGenoTransmitter(),

... sim.ParentsTagger()] # track indexes of parents

...),

... gen=10,

...)

10

>>> # number of male and female offspring?

>>> sim.stat(pop, numOfMales=True)

>>> # sex of offspring?

>>> [ind.sex() for ind in pop.individuals()]

[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]

>>> pop.dvars().numOfMales

5

>>> # parents of the first five offspring

>>> pop.indInfo(’father_idx’)[:10]

(0.0, 0.0, 2.0, 2.0, 8.0, 8.0, 4.0, 4.0, 6.0, 6.0)

A.4.2 Conditionally Terminating an Evolutionary Process

It is not always possible to know in advance the number of generations to
evolve. For example, you may want to evolve a population until a specific
allele gets fixed or lost in the population. In this case, you can let the simu-
lator run indefinitely (do not set parameter gen of the evolve function)
and depend on a terminator to terminate the evolution of a population.
The easiest method to do this is to use population variables to track the
status of a population and to use a TerminateIf operator to terminate
the evolution according to the value of an expression.

Source code A.14 demonstrates the use of such a terminator, which
terminates the evolution of a population if allele 0 at locus 5 is fixed or lost.
This operator uses expression len(alleleNum[5])==1 to determine
if the allele is fixed or lost because alleleNum[5] is a dictionary of allele
numbers, and len(alleleNum[5])==1 implies that there is only one
allele left at this locus. Source code A.14 also demonstrates the application
of an interesting operator IfElse, which applies an operator, in this case
a PyEval, only when an expression returns True.

SOURCE CODE A.14 Use a Terminator to Terminate an Evolution-
ary Process Conditionally

>>> import simuPOP as sim
>>> pop = sim.Population(50, loci=[10], ploidy=1)
>>> pop.evolve(
... initOps=sim.InitGenotype(freq=[0.5, 0.5]),

218 FORWARD-TIME SIMULATIONS USING simuPOP

... matingScheme=sim.RandomSelection(),

... postOps=[

... sim.Stat(alleleFreq=5),

... sim.IfElse(’alleleNum[5][0] == 0’,

... sim.PyEval(r"’Allele 0 is lost at generation %d\n’ % gen")),

... sim.IfElse(’alleleNum[5][0] == 50’,

... sim.PyEval(r"’Allele 0 is fixed at generation %d\n’ % gen")),

... sim.TerminateIf(’len(alleleNum[5]) == 1’),

...],

...)
Allele 0 is fixed at generation 19
20
>>> pop.dvars().gen
20

A.4.3 Evolving Several Populations Simultaneously

simuPOP can evolve several populations simultaneously, which allows
side-by-side comparison between instances of the same evolutionary pro-
cess or evolutionary processes under slightly different settings. For ex-
ample, Source code A.15 evolves three replicates of the same population
simultaneously, subject to different intensity of mutations. Allele frequen-
cies of allele 0 of three replicates are printed in a tabular format. This Source
code uses a Simulator object, which is essentially a list of populations.

This Source code starts with the creation of a population of 5000 individ-
uals. Instead of evolving this population directly, it creates a Simulator
object with three replicates of this population. The evolve function of
the simulator accepts the same set of parameters as the evolve function
a Population class. The only difference is that this function evolves all
populations in a simulator for one generation before it moves to the next
generation.

Operators are applied to all populations in a simulator unless a parameter
reps is used to specify indices of applicable populations. In this Source
code, three SNPMutator operators are applied to three populations using
different mutation rates. In order to print the outputs in a tabular format, a
PyEval operator outputs a generation number once (for the first replicate),
while PyEval operator outputs allele frequency at the first locus for each
population, prefixed with a ’\t’, followed by a newline character that
is outputted by a PyOutput operator, which is applied only to the last
replicate.

The Simulator class provides several functions to access its
populations. Function Simulator.population(idx) returns a ref-
erence to the idx-th population in a simulator. Function Simula-
tor.populations() returns an iterator that iterates through all pop-
ulations in a simulator. Changing the returned population references will

A COMPLETE simuPOP SCRIPT 219

change populations in a simulator. If you would like an independent copy of
a population, you can extract a population from a simulator using function
Simulator.extract(idx).

SOURCE CODE A.15 Evolve Several Replicates of a Population
Simultaneously

>>> import simuPOP as sim
>>> pop = sim.Population(5000, loci=1)
>>> # three copies of the same population
>>> simu = sim.Simulator(pop, rep=3)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... preOps=[
... sim.SNPMutator(u=0.01, reps=0),
... sim.SNPMutator(u=0.02, reps=1),
... sim.SNPMutator(u=0.05, reps=2),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.PyEval(’gen’, step=20, reps=0),
... sim.PyEval(r"’\t%.3f’ % alleleFreq[0][0]", step=20),
... sim.PyOutput(’\n’, step=20, reps=-1),
...],
... gen=100
...)
0 0.503 0.493 0.480
20 0.411 0.316 0.177
40 0.340 0.206 0.065
60 0.277 0.112 0.024
80 0.240 0.081 0.014
(100, 100, 100)
>>> # access populations in a simulator
>>> for pop in simu.populations():
... print(pop.dvars().alleleFreq[0][0])
...
0.2108
0.0542
0.0072
>>> # extract a population
>>> pop = simu.extract(1)
>>> # print out allele frequency
>>> pop.dvars().alleleFreq[0][0]
0.0542

A.5 A COMPLETE simuPOP SCRIPT

Although different Python modules could be used to provide command
line (e.g., getopt, optparse and argparse) or graphical (e.g.,

220 FORWARD-TIME SIMULATIONS USING simuPOP

Tkinter) user interfaces to a simuPOP script, a simuPOP utility mod-
ule simuOpt has been designed to provide a flexible user interface
specifically for simulation studies. Instead of providing a fixed user in-
terface, this module allows users to execute the same simuPOP script
in batch mode (no user interaction), interactive mode (accept user in-
put from command line), or through a graphical parameter input dialog.
Source code A.16 lists a complete simuPOP script that makes use of this
module.

The first line of this script is called a shebang line that tells a Linux/Unix
system which interpreter should be used to execute a script. Because the
Python executable might reside in different paths under different oper-
ating systems (e.g., /usr/bin or /usr/local/bin), a /usr/env
python command is usually used to locate a Python interpreter and exe-
cute it.

The string surrounded by a pair of matching triple quotes in lines
2–8 is a module doc string. It describes the main purposes of the script
and is accessible via variable doc . By passing this docstring to a
simuOpt.Param object (line 78), this string will become part of the help
message.

All examples we have seen use the standard simuPOP module. This
module uses 8 bits to store an allele, so each locus can have 256 possi-
ble allelic states, ranging from 0 to 255. A run-time validation mechanism
is used to monitor a simulation, which will terminate the execution of
a script with a detailed error message when an invalid operation is de-
tected. Other variants of the core simuPOP modules are provided for dif-
ferent applications. For example, a long allele version having 232 (or 264

for 64 bit operating systems) possible allele states can be used to simu-
late certain population genetics models such as an infinite allele model;
a binary allele version that uses 1 bit for each allele should be used for
diallelic (SNP) markers; and an optimized module that bypasses run-time
validation can be used for production scripts that have been thoroughly
tested.

Lines 10–12 demonstrate how to use the simuOpt.setOptions
function to control which variant of simuPOP to load and how to load it. This
Source code uses alleleType=’binary’ and optimized=True to
load an optimized diallelic version of simuPOP. It also uses quiet=True
to suppress a banner message when simuPOP is imported. Finally, op-
tion ’version=1.0.4’ indicates that this script is only compatible to
simuPOP 1.0.4 and later. An error message will be displayed if an earlier
version of simuPOP is imported.

A COMPLETE simuPOP SCRIPT 221

SOURCE CODE A.16 A Sample simuPOP Script

#!/usr/bin/env python

’’’

This script demonstrates the decay of linkage disequilibrium under the impact

of genetic recombination. The simulation starts with populations in which

two loci are under complete linkage disequilibrium. During evolution, parental

chromosomes are recombined before they are passed to their offspring, resulting

a gradule decay of linkage disequilibrium between these two loci.

’’’

import sys

import simuOpt

simuOpt.setOptions(alleleType=’binary’, optimized=True, quiet=True, version=’1.0.4’)

import simuPOP as sim

options = [

{’name’: ’popSize’,

’default’: 1000,

’type’: int,

’label’: ’Population Size’,

’validator’: ’popSize > 0’,

},

{’name’: ’gen’,

’default’: 50,

’type’: int,

’label’: ’Generations to evolve’,

’validator’: ’gen > 0’,

},

{’name’: ’recRate’,

’default’: 0.01,

’type’: (int, float),

’label’: ’Recombination Rate’,

’validator’: ’recRate >= 0. and recRate <= 0.5’,

},

{’name’: ’numRep’,

’default’: 5,

’type’: int,

’label’: ’Number of Replicate’,

’validator’: ’numRep > 0’,

},

{’name’: ’measure’,

’default’: "D’",

’type’: (’chooseOneOf’, ["D’", ’R2’]),

’label’: ’LD measure’,

’description’: ’’’A measure of linkage disequilibrium to be outputed.

Acceptable input includes

|D’: Lewontin’s D’ measure which is the standard LD measure divided

by the theoretical maximum for the observed allele frequencies.

|R2: R2 is the correlation coefficient between pairs of loci.

’’’,

},

]

def simuLDDecay(popSize, gen, recRate, numRep, measure):

’’’Simulate the decay of linkage disequilibrium as a result

of recombination.

’’’

simu = sim.Simulator(

sim.Population(size=popSize, ploidy=2, loci=[2]),

rep=numRep)

simu.evolve(

initOps=[

sim.InitSex(),

sim.InitGenotype(haplotypes=[[0, 1], [1, 0]])

],

222 FORWARD-TIME SIMULATIONS USING simuPOP

matingScheme=sim.RandomMating(ops=sim.Recombinator(rates=recRate)),

postOps=[

sim.Stat(LD=[0, 1]),

sim.IfElse(measure=="D’",

sim.PyEval(r"’%.4f\t’ % LD_prime[0][1]"), # if measure=="D’"

sim.PyEval(r"’%.4f\t’ % R2[0][1]")), # if measure=="R2"

sim.PyOutput(’\n’, reps=-1),

],

gen = gen

)

if __name__ == ’__main__’:

get all parameters

pars = simuOpt.Params(options, ’’’A demonstration of the decay of linkage

disequilibrium with the impact of genetic recombination.’’’, __doc__)

if not pars.getParam():

sys.exit(0) # cancelled or -h, --help

call the simulation function

simuLDDecay(pars.popSize, pars.gen, pars.recRate, pars.numRep, pars.measure)

Lines 14–50 define five parameters size, gen, recRate, numRep,
and measure using a list of parameter specification dictionaries. These
dictionaries can have keys name, default, type, label, descrip-
tion, and validator, which are used to obtain, validate, and convert
user inputs for each parameter (Table A.9). For example, because the type
of parameter numRep is int, simuPOP will try to convert user inputs to
an integer (e.g., from string ’50’ or ’5*10’ to 50) and reject invalid
inputs such as 50.5. Similarly, parameter measure will only accept one
of the two specified values D’ and R2. In addition to one or more allowed
Python types, the type field also accepts values such as ’numbers’,

TABLE A.9 Acceptable Keys in a Parameter Specification Dictionary

Field Usage

name Name of the parameter
default Default value for this parameter
type Type of acceptable input, which help simuPOP deter-

mine the GUI widget for a parameter, how to convert
user input to appropriate format, and how to validate a
parameter

label A label to display in the parameter input dialog. If this
field is missing, a parameter will not be displayed in
the parameter input dialog

description A detailed description of the parameter, which will be
displayed as tooltip of the parameter in the parameter
input dialog and be used to generate help messages of
the script

validator A function or an expression to validate a user input

A COMPLETE simuPOP SCRIPT 223

and ’filename’, which accept a list of integer or float numbers, and a
valid filename, respectively.

Although the type of parameter provides type validation for user inputs,
a validator can be used to provide further validations. This item accepts
a function or a Python expression. When a function is provided, it will
be applied to a user input. A user input will be rejected if this function
returns False. For example, if a parameter defines a probability, a function
returned by function simuOpt.valueBetween(0,1) will return True
only if the input is between 0 and 1.

This example uses expressions to validate parameters. These expres-
sions are evaluated in a dictionary where variables are defined from names
and values of parameters. A parameter will be rejected if its validating
expression returns False. For example, expression ’gen > 0’ will re-
ject 0 as an input for parameter gen. This method is very flexible in that
information from other parameters can be used to validate a parameter.
For example, if two parameters opt1 and op2 are required to have the
same length, expression ’len(opt1) == len(opt2)’ can be used
to validate both parameters.

Lines 52–73 define a function simuLDDecay, which is the main sim-
ulation function of this script. This function is an extension to Source code
A.1. It allows the simulation of several replicates of the population si-
multaneously and also allows the display of two linkage disequilibrium
measures.

Function simuLDDecay will only be executed if the script is executed
as a script (if name == ’ main ’, line 75), not imported as a
module. This is a very useful feature of Python because the same script
can be executed directly or be used as a Python module to provide func-
tions to another module. For example, if a user would like to call function
simuLDDecay with different parameters, he or she can import this script
as a module and call this function directly as follows:

from simuLDDecay import simuLDDecay
for r in [0.1, 0.01, 0.002]:

simuLDDecay(1000, 50, r, 2, ’R2’)

The last block (lines 75–82) is the execution part of this script. It de-
fines a simuOpt.Params object using the parameter specification list
options, a short description, and a detailed description doc . A func-
tion pars.getParam() is used to obtain values of parameters size,
gen, recRate, numRep, and measure. If successful, parameter values
are passed to function simuLDDecay to perform the simulation.

224 FORWARD-TIME SIMULATIONS USING simuPOP

There are a number of advantages of using the simuOpt.Params class
to handle user inputs. By specifying the type of parameters, this class auto-
matically converts user inputs into required types. Arbitrary Python expres-
sions are allowed so that users can use expressions such as range(10) to
input long arguments. If a list of values (e.g., numbers) is needed, single
input will be converted to a list automatically. The simuOpt.Params
also validates user input and will reject a value if it is not of required type
or does not pass specified validation function or expression.

The getParams() function of the Params class does all the hard job
of obtaining values of parameters from command line, configuration file,
a graphical parameter input dialog, or interactive user input. It first checks
command line for argument -h or –help and will print a help message
and return False if one of them is specified. This usage message is created
from descriptions of the script and parameters. The help message of script
simuLDDecay.py is listed below.

Before falling into a particular mode to collect user input, the
getParams function processes command line arguments such as –
gen=50 to obtain values for parameters. Parameters of a Boolean
type can be set to True by parameter –param. If a configuration
file is specified by command line argument –config, this function
will try to obtain values of parameters from this file. A configuration
file can be created manually, but is most frequently saved by function
Params.saveConfig(filename).

The getParams function then checks for command line option –gui
to determine which user interface to use. If the script is executed under
a batch mode (–gui=batch), this function will return True directly,
so default values will be used for parameters that are not specified from
command line or a configuration file. For example, command

> simuLDDecay.py --gui=batch --size=5000

will execute the script with specified population size and default param-
eters of all other parameters. In contrast, if the script is executed under
an interactive mode (–gui=interactive), if running in an interactive
mode, this function will prompt users for values of parameters that have
not been specified through command line or a configuration file.

If no gui mode is specified, the script will be executed in GUI mode
where a parameter input dialog will be displayed for users to view and
edit parameters (Figure A.2). Different GUI widgets such as checkbox and
listbox will be used for different types of parameters. Detailed descriptions
of parameters are displayed as tooltips to these parameters. A parameter

A COMPLETE simuPOP SCRIPT 225

FIGURE A.2 Parameter input dialog for Source code A.16. A parameter input
dialog with five parameters. The label of the second parameter is marked in red
when the OK button is clicked because its input value is not of required type (int).

will be marked in red if an invalid parameter is detected when the OK
button is pressed.

Values of each parameter can be accessed as attributes of the Param
object if function pars.getParam() returns True. Line 82 of Source
code A.16 uses this feature to pass values to function simuLDDecay to
execute the main simulation program. Alternatively, values of all param-
eters can be returned as a list using function Param.asList or as a
dictionary using function Param.asDict. Because parameter order and
names of the Param object match those of the simuLDDecay function,
we can also pass parameters to this function using

simuLDDecay(*pars.asList())

or

simLDDecay(**pars.asDict())

We prefer the method used in Source code A.16 because it is less error
prone.

In summary, despite the availability of other parameter-handling mod-
ules, we recommend the use of module simuOpt because it allows a

226 FORWARD-TIME SIMULATIONS USING simuPOP

self-documentary method to describe parameters and a flexible mecha-
nism to execute the same script in both GUI and batch mode. However, for
the sake of brevity, we do not use this style in examples we describe in this
book.

REFERENCES

1. International HapMap Consortium, A haplotype map of the human genome.
Nature, 437(7063):1299–1320, 2005.

INDEX

ABO locus
blood types, 22
penetrance at, 23

Absolute fitness, 11,
45

Age-structured populations,
170

admixtured population, gene
mapping, 171

evolution of, 174
hypothetical disease model,

174–178
lung cancer, evolution of,

179–182
nonoverlapping generation

model, 170
simulation of, 170–174
Wright–Fisher model,

170
Allele-based χ2 tests, 137

Allele frequency trajectories
backward-time simulation,

111–112, 116, 117
controlled mating scheme,

119–120
controlled random mating,

117–118
dynamics of, 111
forward-time simulations, 111–112,

114, 118
reject-sampling algorithm,

111
simulation of, 113–114

Alleles, 3
frequency and effective number,

90
Allele spectra evolution, simulation

demographic models, 77–80
evolution, 87–89
example, 77–78, 79, 81, 82

Forward-time Population Genetics Simulations: Methods, Implementation, and Applications,
Bo Peng, Marek Kimmel, and Christopher I. Amos.
© 2012 Wiley-Blackwell. Published 2012 by John Wiley & Sons, Inc.

227

228 INDEX

Allele spectra evolution (Continued)
multilocus selection models, 84–87
mutation models, 84
output statistics, 80–84
source code, 78–79, 80, 82, 83–84
theoretical results validation, 89–90

Allelic diversity, 100
Allelic heterogeneity, 25
Ancestral chromosome, 60
Antagonistic pleiotropy, 12
Ascertainment biases, 65

patterns of, 70
Ascertainment bias mechanism, 56
Assortative mating, 157–158
Asymmetric single-step stepwise

mutation model (SSMM),
59–60

Backward-simulated trajectory
controlled mating scheme,

119–120
Backward-time simulations, 17–20
Balancing selections, 8, 12
Bessel function, 61
Biological and genetic concepts

genes, markers, loci, and alleles, 3
genome and chromosomes, 2–3
mutation models, 5–7
recombination and linkage, 4–5
sex chromosomes, 5

Bottleneck effect phenomenon, 36
Breeding population sizes, 10

Callback function, 150
Case–control association test

illustration, 26
Census population sizes, 10
Chimpanzee-derived CA-repeat

microsatellites, 68
Chip-based high-throughput

genotyping, 55
Chromosomes, 2–3

independent assortment, 4
Coalescence time, 18

Coalescent-based approaches, 20, 73,
106

Coalescent process, 17, 20
illustration of, 18

Coalescent simulations, 17–20
Cochran–Armitage trend tests, 210
Codominant, 22, 23
Common ancestor, 18
Common disease-common variant

(CDCV) hypothesis, 24, 75,
76, 101

Common disease–rare variants
(CDRV) hypothesis, 75

Complex demographic models,
78

Complex diseases, 24
Complex evolutionary process, 7
Complex human diseases, 179

allelic spectra of, 74–75
ControlledRandomMating scheme,

119
Crossing over, 4

Demographic models, 35–38
bottleneck effect, 36–38
example, 36–37
impact of, 90–92
population bottleneck, impact of,

37
source code, 38

Deoxyribonucleic acid (DNA), 2
repeat locus, 58, 62
roles in, 2
sequences, 3

Diffusion approximation, 64, 110
Disease alleles

controlling, 108
evolutionary model

effective number of,
75–76

frequencies, 98, 99, 101
simulation of, 108–109
trajectory simulation,

110–111

INDEX 229

Disease predisposing loci (DPL),
22, 106

genetic disease, 106, 134
LD patterns, 139
under weak selection, evolution,

98–100
Disease-predisposing locus, 86
Disease susceptibility loci, evolution

of, 100
Disequilibrium coefficient, 14
Diverse allelic spectra, examples of,

74
DNA. See Deoxyribonucleic acid

(DNA)
Dominant penetrance model, 22
drawNuclearFamilySample function,

173

Effective population size, 10
Epistatical penetrance models, 23
Equilibrium disease allele frequency

distribution of, 96–97
Evolutionary process

life cycle of, 187
Evolutionary processes, 21
Evolving populations

allele spectra evolution, simulation,
77–90

basic model extensions, 90–102
demographic models, impact of,

90–92
discussion, 100–102
disease predisposing loci under

weak selection, evolution,
98–100

equilibrium disease allele
frequency, distribution of,
96–97

migration, impact of, 94–96
mutation model, impact of, 92–93
subpopulation structure, impact

of, 93–94
varying selection and mutation

coefficients, 97–98

complex human diseases, allelic
spectra of, 74–75

effective number of disease alleles,
evolutionary model, 75–76

ne evolution, simulation of, 76–77
observing properties, 73–74

Exponential population expansion
model, 77

Fisher–Wright–Moran model, 58
Fitness value, 85
Forward-time simulation methods,

20–21, 73, 106, 118
breast cancer, single-locus

penetrance model of, 127–128
case–control samples

draw, 128–129
generation, 129–131

control of disease allele frequency
and linkage disequilibrium,
107

disease model, simulation of, 136
drawing population and

family-based samples, 126
efficiency, 107
genealogy of, 49–53

diploid simulations, 52–53
example, 50–51, 52
haploid simulations, 49–51
source code, 51, 53

genetic disease, DPL, 134–135
introduction of disease, 107
operators, 204–205

applicable generations, 205–206
during-mating, 208–209
function form of, 209
hybrid and python, 212–215
output, 206–208
Stat, 210–211

population
access to individuals, 196–198
conditionally terminating,

217–218
creating, 189–192

230 INDEX

Forward-time simulation methods
(Continued)

genotype structure of, 192–194
mating scheme, 215–217
multigeneration, 202–204
parental information, 202–204
pedigree-based sampling,

107–108
save and loading of, 204
structure, genotype/information

fields alteration, 199–202
variables, 198–199

realistic samples, forward-time
simulation of, 120–121

demographic model, 122
disease allele frequency, control

of, 123
founder population, evolving,

122–123
initial population, creation of,

121
linkage disequilibrium,

125–126
sample generation, 123

SibpairSample, 131–132
simulation length and initialization,

106
simuPOP, 185–186

overview of, 186–189
script, 219–226

slow/rapid selective sweep,
simulations of, 136–138

LD structure, 140
subpopulations, 194–196
trio samples, generation of,

138–139
virtual subpopulations,

194–196
scaling, simulations,

132–134
Frequency-dependent selection, 13

Gaussian distribution, 150
genCaseControlSample, 135

Gene–environment interaction,
106

detection of, 179
Gene mapping, 22
General dominance model, 12
Generalized stepwise mutation model

(GSMM), 7, 57, 62
Genes, 3
Genetic disease, 21, 108
Genetic distance, 4

unit of, 4
Genetic drift, 10, 65, 113
Genetic heterogeneity, 25
Genetic hitchhiking phenomenon,

12
Genome, 2–3
Genotypes, 3

based association tests, 26
phenotypic contribution of, 149

Genotype structure-related member
functions, 193–194

Geometric generalized stepwise
mutation model, 7

GWA studies, population structure on,
167

Haldane map function, 5
Haplotype, 4
Haplotype frequency, 15
HapMap data set, 122
HapMap populations, 137, 167
Hardy–Weinberg equilibrium, 9
Heterogeneous mating scheme

illustration of, 165
partial self-fertilization,

166
Hitchhiking effect, 8
Human genetic diseases

susceptibility genes for, 106
Human populations

demographic history, 16–17
genetic composition of,

141
Hybrid operator, 213

INDEX 231

Infinite allele model, 93
mutation model, 6

Infinite site mutation model, 6
InitGenotype, 205
Instant population growth model,

75
Island model, 16

k-allele model, 6, 7, 40, 93
mutation model, 84

Kimura’s two parameter mutation
model, 7

Kosambi map function, 5

Linkage, 4–5
Linkage disequilibrium (LD), 5, 15,

44–45, 73
decay of, 134
example, 44
information, 106

evolution of, 132
source code, 44–45
structure

rapid/slow selective sweep,
impact of, 140

Linkage equilibrium, 13–15
Linkage mapping, principle of,

25
Linkage test, 25
Loci, 3
Locus heterogeneity, 25
LOD score, 25, 26
Lung cancer

disease model, implementation of,
177–178

evolution of, 181–182

Map distance. See Genetic distance
Map functions, 4
MapSelector, 206
Marginal fitness, 13
Markers, 3
Markov Chain Monte Carlo (MCMC),

26

Mating scheme
classes, 154–155
with continuous habitat, 162–164
sequential selfing, 156

MendelianGenoTransmitter(), 205,
208

Mendelian genotype transmitter, 169,
189

Microsatellite polymorphisms, 57
Migration, 42–43

example, 42–43
homogenizing effect of, 95
impact of, 94–96
island model, 42–43
rate matrix, 16
source code, 43

Mitochondrial DNA (mtDNA),
19

Monogamous mating scheme,
216–217

Morgan’s map function, 4
Most recent common ancestor

(MRCA), 18
Multilocus penetrance models, 23
Multilocus selection models,

84–87
example, 86
source code, 86–87

Multiplicative multilocus fitness
model, 85

Multiplicative multilocus selection
model, 13

Multiplicative penetrance, 22
Mutation, 38–42

coefficients, 97–98, 99
diallelic mutation model, 38–40
example, 39–40, 41
multiallelic mutation models,

40–42
source code, 40, 41–42

Mutation models, 5–7
impact of, 92–93

Mutation rate, 6, 38, 65
matrix, 38, 39

232 INDEX

Natural selection, 10–13, 45–49
example, 46, 48
multilocus selection models,

48–49
negative, 10
positive, 10
single-locus diallelic selection

models, 45–48
source code, 46–48, 49
symmetric viability model, 48

ne evolution, simulation of,
76–77

Neutrality, assumption, 19
Neutral theory

theoretical basis, 20
Nonadditive diploid selection model,

135
Nonoverlapping generations, 9
Nonrandom mating, 147

assortative mating, 148
mating model, 151–156
simulation of, 156–158
traits, genetic architecture of,

149–151
customized parent choosing

scheme, 158–161
factors for, 161
heterogeneous schemes, 164–167

population admixture, simulation
of, 167–170

plants/animals, populations of,
147

Nonsynonymous mutation, 6
Normalization constant, 97

Offspring generator, 153
Operators

parameter output of, 207–208
Operator stat

parameters and variables of, 211
Out of Africa model, 19

Penetrance models, 22
Phenotype, 3

Phenotypic heterogeneity, 24
Pilot whales, mating behaviors

simulation, 160–161
Poisson distribution, 19
Poisson random variable, 59
Polymorphisms, 56

features of, 57
Population

ancestral depth of, 202
and evolutionary genetics

coalescent and backward-time
simulations, 17–20

forward-time simulations, 20–21
genetic drift and effective

population size, 10
Hardy–Weinberg equilibrium, 9
human populations, demographic

history, 16–17
linkage equilibrium, 13–15
natural selection, 10–13
population structure and

migration, 15–16
population variation and

mutation, 8
Wright–Fisher model and

random mating, 8–9
parameter input dialog for source

code, 225
structure and migration, 15–16
variation and mutation, 8

Population admixture, 17
Population bottleneck, 17
Population Class

member functions of, 197
population modification functions

of, 197
Population.evolve function, 124

acceptable parameters of, 215
Population expansion models, 91
Population genetics models

ascertainment bias in, 55–57
demographic models, 35–38

bottleneck effect, 36–38
discussion and conclusions, 69–71

INDEX 233

forward-time simulations,
genealogy, 49–53

of diploid simulations,
52–53

of haploid simulations,
49–51

methods, 58–64
allele sizes, conditional

distributions and ascertainment
bias, 60–62

DNA repeat locus evolution,
58–60

simulation method, 62–64
migration, 42–43

island model, 42–43
mutation, 38–42

diallelic mutation model, 38–40
multiallelic mutation models,

40–42
natural selection, 45–49

multilocus selection models,
48–49

single-locus diallelic selection
models, 45–48

random genetic drift, 31–35
allele frequency and

heterozygosity, dynamics,
32–33

persistence time, 34–35
recombination and linkage

disequilibrium, 44–45
results, 64–68

human and chimpanzee
microsatellite data, mpirical
statistics derived comparisons,
68

summary of, 64–68
simulation, 31

Population genetics simulator,
185

Population modification, use of,
201–202

Population object, parameters,
190–191

Population structure-related member
functions, 194

Positive selection, 12
Probability-generating function (pgf),

59
Pseudoautosomal regions, 5
Purifying selection, 12
PyEval, 205
PyExec operators, 110
PyQuanTrait operator, 150
PyOperator, 214

Quantitative trait model, 3, 151

Random genetic drift, 31–35
absorption time and time to fixation,

35
allele frequency and heterozygosity,

dynamics, 32–33
basic property of, 32
example, 32–33, 34
homozygosity decay due to, 33
persistence time, 34–35
source code, 33, 35
Wright–Fisher process, 32

Random mating, 8–9
assumptions of, 9

RandomParentChooser, 153
Recessive penetrance model, 22
Reciprocal experiment, 69
Recombinants, 4
Recombination, 4–5, 44–45

example, 44
source code, 44–45

Recombination fraction, 4
Recombination frequency, 26
Recombination hotspots, 4
Rejection-sampling algorithm,

123
Relative fitness, 11, 45

Selection coefficients, 76, 99
Selective sweeps, 12
SelfMating mating scheme, 165

234 INDEX

Sex chromosomes, 5
X chromosome, 5
Y chromosome, 5

Shebang line, 220
SibpairSample, 131–132
Silent/synonymous mutation, 6
Simple allelic spectra

examples of, 74
Simple recessive diseases, evolution

of, 91
Simulation approaches, 1
Simulation method, 62–64

example, 63
source code, 63–64

simuPOP, 186
discrete-generation model, 187
mating scheme, 187
populations simultaneously,

218–219
Python modules, 186

simuPOP model, 65
callback function, 213
comparison, 66, 67
features of, 148

simuPOP script, 221–222
simuPOP subpopulation, 194,

195
Single-locus model, 97

selection models, 84, 88
Single nucleotide polymorphism

(SNP), 3, 55, 121
discovery process, 56
markers, 121, 122

Single-step stepwise mutation model,
61

Somatic mutations, 6
Split-and-grow demographic model,

94
Statistical gene mapping methods

performance of, 126
Statistical genetics and genetic

epidemiology

gene mapping, study designs, 25–27
penetrance models, 21–23
phenotypic, allelic, and locus

heterogeneity, 24–25
simple and complex genetic

diseases, 24
Stepping stone model, 16
Stepwise mutation model, 40
STRUCTURE program, 170
Subpopulation-specific statistics,

210
Subpopulation structure, impact of,

93–94
Substitution matrix, 38
Symmetric stepwise mutation model, 7

Tagging markers, 24
Terminator, 217–218
Trajectory object, 119
Transition matrix, 38
Transversions, 7
Two-allele model, 7
Two-locus epistatical penetrance

model, 23

VicinityMating mating scheme, 162
Virtual subpopulations (VSPs), 129,

160, 210
definition of, 195–196
splitters, definition of, 195

Wild-type allele, 8
Wright–Fisher law, 10
Wright–Fisher model, 8–9, 31, 73,

111, 170, 172, 188
features of, 9

Wright–Fisher process, 122
Wright’s formula, 97

X chromosome, 5

Y chromosome, 5

