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PREFACE 

During the last several decades, seismic soil-structure interaction has been a major topic in earthquake 
engineering since it is closely related to the safety evaluation of many important engineering projects, such 
as nuclear power plants, to resist earthquakes. The significance of the interaction has long been recognized 
because of the massive and stiff nature of the structure and, often, soil softness. In recent years the 
importance of dynamic soil-structure interaction to earthquake behaviors of high arch dams has also been 
realized, since the effects of energy radiation through the infinite canyon and the non-uniform ground 
motions on the dam response may be significant. Nuclear power plants and high arch dams are only two 
examples for which dynamic soil-structure interaction is important and needs to be seriously considered in 
engineering practice. 

In dealing with the analysis of dynamic soil-structure interactions, one of the most difficult tasks is the 
modelling of unbounded media. Many numerical methods or techniques have been developed to solve this 
problem, such as transmitting boundaries of different kinds, boundary elements, and infinite elements and 
their coupling procedures. It is noteworthy that the two recently published books, Finite Element Modelling 
of Unbounded Media by John P. Wolf and Chongmin Song and Foundation Vibration Analysis Using 
Simple Physical Models by John P. Wolf, are considered important developments in this aspect. Significant 
contributions have also been made on the Chinese side in recent years. These include a time domain 
transmitting boundary developed by Z. P. Liao and his co-workers and a 3-D infinite boundary element for 
modelling arch dam canyons developed by Zhang Chuhan and his colleagues. In addition, many engineering 
applications using advanced procedures are also being conducted both in China and Switzerland. 

To exchange the current developments, the Chinese-Swiss Worlcshop on Soil-Structure Interaction was 
held during July 14-18, 1997 at Tsinghua University, Beijing, China. The idea of the workshop was initiated 
by John P. Wolf in Spring 1996. Many specific issues were settled in June 1996 by Zhang and Wolf in 
Acapulco, Mexico, during the 1 lWCEE. A Planning Committee co-chaired by Zhang and Wolf was then 
established. As part of the preparation, the above-mentioned two books were provided by the Swiss side to 
the Chinese participants before the workshop. 

Twenty-three participants from China and Switzerland attended the workshop, and 18 presentations 
were given. Two presentation series were given by the Swiss scientists summarizing the advanced 
procedure of modelling unbounded media by the scaled boundary finite-element method and the simple 
physical methods for practical analysis of soil-structure interaction. Sixteen presentations were given by the 
Chinese scientists coveting a rather wide range of the latest achievements of research in China. 

The workshop consisted of nine half-day sessions, with one afternoon set aside for local sightseeing. 
Each session had 2-3 presentations, each followed by a 30-minute discussion. Due to the generous allotment 
of time and small number of participants, the discussions were rather thorough and lively. Before the closing 
ceremony, the final session was devoted to a panel meeting, ha which urgent research needs and some 
benchmark examples were discussed. 

As the final achievement of the workshop, we now publish these proceedings, It is hoped that the 
research and applications of dynamic soil-structure interaction will continue to progress, and the academic 
cooperation between the scientists from our two countries in this field will further advance. 

Finally, we would like to express our thanks to the Swiss Federal Institute of Technology Lausanne; the 
Department of Sciences and Technology, the Ministry of Water Conservancy of China; the National Key 
Projects on Basic Research and Applied Research, State Commission of Sciences and Technology of China; 
and the National Science Foundation of China for their financial support for this workshop. 

Zhang Chuhan 
John P. Wolf 



viii 

LIST OF PLANNING COMMITTEE 

Co-chairmen: Prof. Zhang, Chuhan Dr. Wolf, John P. 

Members: 

Prof. Chen, Houqun 

Prof. Liao, Zhenpeng 

Prof. Xu, Zhixin 

Dr. Yao, Zhenhan 

Prof. Dong, Zheren 

Prof. Chen, Shihui 

Dr. Sarlos, Gerard 

Prof. Lin, Gao 

Dr. Wu, Shiming 

Dr. Song, Chongmin 

Dr. Liu, Xila 

Prof. Wang, Guanglun 

Secretary: Dr. Jin, Feng 



ix 

LIST OF P A R T I C I P A N T S  

Bie Shean 

Chen Houqun 

Chen Jianyun 

Ding Boyang 

Jin Feng 

Liao Zhenpeng 

Lin Gao 

Liu Jingbo 

Lou Menglin 

Qiu Zonglian 

Shao Xiumin 

Song Chongmin 

Song Erxiang 

Wang Guanglun 

Wolf John P. 

Wu Shiming 

Xiong Jianguo 

Xu Zhixin 

Yao Zhenhan 

Yuan Xiaoming 

Zhang Chuhan 

Zhao Chongbin 

Zhou Xiyuan 

Dept. of Hydraulic Engineering, Tsinghua University 

China Institute of Water Resources and Hydropower Research 

Dept. of Civil Engineering, Dalian University of Technology 

Lanzhou Earthquake Research Institute 

Dept. of Hydraulic Engineering, Tsinghua University 

Institute of Engineering Mechanics, State Seismological Bureau 

Dept. of Civil Engineering, Dalian University of Technology 

Dept. of Civil Engineering, Tsinghua University 

Institute of Structural Theory, Tongji University 

Dept. of Civil Engineering, Tsinghua University 

Institute of Mathematics, China Academy of Sciences 

Dept. of Civil Engineering, Swiss Federal Institute of Technology 

Dept. of Civil Engineering, Tsinghua University 

Dept. of Hydraulic Engineering, Tsinghua University 

Dept. of Civil Engineering, Swiss Federal Institute of Technology 

Dept. of Civil Engineering, Zhejiang University 

Institute of Engineering Mechanics, State Seismological Bureau 

Institute of Structural Theory, Tongji University 

Dept. of Engineering Mechanics, Tsinghua University 

Institute of Engineering Mechanics, State Seismological Bureau 

Dept. of Hydraulic Engineering, Tsinghua University 

CSIRO Division of Exploration and Mining, Australia 

China Academy of Building Research 



This Page Intentionally Left Blank



xi 

CONTENTS 

Preface ................ ............................................................ . ........................................................... vii 

Simple Physical Models for Foundation Dynamics 

John P. Wolf ......................................................................................................................... 1 

The Scaled Boundary Finite-Element Method-Alias Consistent Infinitesimal 

Finite-Element Cell Method-for Unbounded Media 

Song Chongmin and John P. Wolf ....................................................................................... 71 

Effects of Soil-Structure Interaction on Nonlinear Response of Arch Dams 

Zhang Chuhan, Xu Yanjie and Jin Feng .............................................................................. 95 

Application of Transmitting Boundaries to Non-Linear Dynamic Analysis of 

an Arch Dam-Foundation-Reservoir System 

Chen Houqun, Du Xiuli and Hou Shunzai ........................................................................... 115 

A Decoupling Numerical Simulation of Wave Motion 

Liao Zhenpeng ..................................................................................................................... 125 

Scattering of Plane SH Waves by Cylindrical Surface Topography of 

Circular-Arc Cross-Section 

Yuan Xiaoming, Liao Zhenpeng and Xu Shumei ................................................................ 141 

Applications of Infinite Elements to Dynamic Soil-Structure Interaction Problems 

Zhao Chongbin ..................................................................................................................... 153 

Non-Reflecting Boundary Conditions for Wave Propagation Problems and 

Their Stability Analysis 

Shao Xiumin ........................................................................................................................ 161 

Boundary Element Method for SH Waves in Elastic Half Plane with Stochastic 

and Heterogeneous Properties 

Yao Zhenhan and Xiang Jialin ........................................................................................... 175 

Effects of Soil-Structure Interaction on Structural Vibration Control 

Lou Menglin and Wu Jingning ............................................................................................ 189 

Dynamic Soil-Structure Interaction for High-Rise Buildings 

Wu Shiming and Gan Gang ................................................................................................. 203 

Nonlinear Dynamic Analysis of Saturated Soil-Structure Interaction by FEM 

Song Erxiang, Yao Zhiquan and Qiu Zonglian .................................................................... 217 



xii 

Dynamic Soil-Structure Interaction on Layered Strata under Seismic Wave Incidence 

Xu Zhixin and Liao Heshan ................................................................................................. 231 

Nonlinear SSI-Simplified Approach, Model Test Verification and Parameter 

Studies for Seismic and Air-Blast Environment 

Xiong Jianguo, Wang Danming, Fu Tieming and Liu Jun .................................................. 245 

A Direct Method for Analysis of Dynamic Soil-Structure Interaction 

Based on Interface Idea 

Liu Jingbo and Lu Yandong ................................................................................................ 261 

An Analytical Approach for Evaluation of Global Dynamic Impedance of 

Semi-Circular Dam Canyon Cut in an Elastic Half-Space 

Lin Gao, Chen Jianyun and Sun Keming ............................................................................ 277 

A Coupling Model of FE-BE-IE-IBE for Nonlinear Layered Soil-Structure Interactions 

Zhang Chuhan, Wang Guanglun and Chen Xinfeng ........................................................... 293 

A Hybrid Procedure of Distinct-Boundary Element for Discrete Rock Dynamic Analysis 

Jin Feng, Wang Guanglun and Zhang Chuhan .................................................................... 313 

Author Index .............................................................................................................................. 321 



SIMPLE PHYSICAL MODELS FOR 
FOUNDATION DYNAMICS 

JOHN P. WOLF 
(Institute of Hydraulics and Energy, Department of Civil 
Engineering, Swiss Federal Institute of Technology Lausanne, 
CH- 1015 Lausanne, Switzerland) 

Abstract 

As an alternative to rigorous boundary-element solutions, simple physical models can be 
used to determine e.g. the interaction force-displacement relationship (dynamic stiffness) of 
foundations and the seismic effective foundation input motion. Translational and rotational 
cones and their corresponding lumped-parameter models (spring-dashpot-mass models) together 
with simple one-dimensional wave patterns in the horizontal plane allow surface, embedded and 
pile foundations even for a layered site to be analyzed and thus form a major step towards 
developing a strength-of-materials approach to foundation-vibration analysis. The analysis can 
mostly be performed directly in the time domain. The physical models provide physical insight 
which is often obscured by the mathematical complexity of rigorous solutions, offer simplicity in 
application as well as in the physics and in the rigorous mathematical solution of the physical 
model, are sufficiently general to enable reasonably complicated practical cases to be solved, 
exhibit adequate accuracy, allow physical features to be demonstrated and offer the potential 
for generalizations. 

Introduction 

A key aspect of any foundation vibration or dynamic soil-structure interaction analysis is the 
calculation of the interaction force-displacement relationship (dynamic stiffness) on the basemat- 
soil interface. To discuss the concepts, a specific case is addressed (Fig. 1): the vertical degree of 
freedom with the force P0 and displacement u 0 of a rigid, massless disk of radius r 0 on a soil layer 
of depth d resting on a flexible rock halfspace. G represents the shear modulus, a9 Poisson's ratio 
and p the mass density, from which the dilatational wave velocity Cp follows. Indices L and R 
are introduced to identify constants associated with the layer and the rock respectively. 

To determine the P0-u0 relationship, rigorous methods exist: either the region of the layer 
and part of the halfspace are modeled with axisymmetric finite elements and sophisticated 
consistent transmitting boundaries are introduced to represent wave propagation towards 
infinity or the boundary-element method is applied whereby the free surface and the interface 
between the layer and the halfspace must be discretized when the fundamental solution of the 



full space is used. In these rigorous methods a formidable theoretical background is required. A 
considerable amount of expertise in idealizing the actual dynamic system is necessary [8], and a 
significant amount of data preparation has to be performed. The computational expense for just 
one run is large, making it difficult from an economical point of view to perform the necessary 
parametric studies. A false sense of security could thus be provided to the user. The engineer 
tends to be intimidated by these procedures. The effort to interpret the results is also significant. 
These rigorous methods with their mathematical complexity obscure the physical insight and 
belong more to the discipline of applied computational mechanics than to civil engineering. 
They should only be used for large projects of critical facilities such as nuclear-power plants, 
bunkered military constructions, dams, etc. with the corresponding budget and available time to 
perform the analysis. For all other projects, the most majority, the simple physical models to re- 

present the unbounded soil summarized in this paper should be used. 
For instance, the soil below the disk is modeled as a truncated rod (bar) with its area varying 

as in a cone (Fig. 2). The vertical force P0(t) produces an incident dilatational wave propagating 
with the velocity c L (for agL<l/3 ) along a cone (with Apex 1) with mass density PL and a 
specific opening angele determined by z L downwards from the disk. At the beginning of the 
excitation before the wave reaches the soil-rock interface, the wave pattern in the layer will be 
the same as that occurring in a halfspace. The corresponding displacement in the truncated semi- 
infinite cone is inversely proportional to the distance from apex 1 

zL f t -  (1) 
u ( z , t ) -  zL + Z 

with z measured from the free surface. Apex 1 is specified in such ~a way as to yield the same 
static-stiffness coefficients for the truncated seml-mfimte cone p Cp gr 0 1 z~ and the disk on a 
homogeneous halfspace with the material properties of the layer 4GLrd(1-VL), yielding 

z L r~ (1 -  ~L) 2 

r o 2 1 - 2 ~  L 
(2) 

Fig. 1 

r 0 

ip01u0 
d SOIL , LAYER 

ROCK / 

Vertical motion of disk on surface layer resting on flexible 
rock halfspace. 



At the interface of the layer and the rock (z=d) the incident wave f will lead to a refracted wave 
h propagating in the rock in the same direction as the incident wave along its own cone with 
the apex distance-to-radius ratio z ~ / { r 0 ( z  ~ + d / / z ~ /  (apex 2, dotted line). (Note that the 
aspect ratio of the rock's cone is generally different fromthat of the layer's cone. However, in the 

I - - I  

special case aDR=V L, both cones have the same proportions and z R equals z~ + d ) .  The 
displacement in the rock UR(Z,t) is formulated as 

L R 
Z 0 Z 0 / d Zo L + d  h t - - - f f ~  

U R ( Z ' t ) -  z ~ - d + z  Cp 
d z) 
R R (3) 

Cp Cp 

with the numerator chosen for convenience. In addition, a reflected wave g is created 
propagating back through the layer along the indicated cone (apex 3) in the opposite upward 
direction. The resulting displacement in the layer UL(Z,t ) then equals / z)z  z) 

zoL f t - - -  L- + g t - w + - i -  L - (4) 
UL(Z' t ) - -  Z L + Z Cp Zo L + 2 d -  z Cp Cp 

4 ~  
ix 
l x\ 
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Notice that the denominators in Eqs. 3 and 4 are the distances to the apexes of the respective 
cones. At the interface z=d the arguments of the three functions f, g and h are the same, 

L The upwave g will reflect back at the free surface and then propagate downwards t - d / c p .  



along the cone (apex 4) shown in Fig. 2. Upon reaching the interface of the layer and the rock, a 
refraction and a reflection again take place, etc. The reflection coefficient -tx, defined as the ratio 
of the reflected wave g to the incident wave f, is determined by formulating compatibility and 
equilibrium at the interface. From a practical point of view sufficient accuracy results from using 
the high-frequency limit which corresponds to replacing the cone by a prismatic bar. 

L R 
PLOP --PRCp (5) 

--13t, = L R 
PLCp -I- PRCp 

The resulting displacement in the layer UL(t,z) is equal to the superposition of the contributions 
of all cones; i.e. the displacements of the incident wave and of all subsequent upwaves and 
downwaves are summed. Denoting the incident wave at z=0 as U0(t)(= f( t))  the displacement 
UL(Z,t) of the layer at depth z and time t may be expressed as the wave pattern 

incident wave 

UL(Z,t) = 

upwave from rock 

+Z(-tx) j 
j=l 

(C+) z-----L~ u 0 t -  
z L + z  

downwave from surface 

( z) z  0It z) zLUo t-_--U+_-L- L 
Cp Cp Cp Cp 

+ 
z~ + 2 j d -  z z~ + 2jd + z 

(6) 

The integer k is equal to the largest j for which at least one of the arguments of u0 for a specific 
z and t is positive. 

The cones describing the wave propagation in the layer can be unfolded to form a single 
layered cone. This generalized unfolded layered cone represents a wave pattern whose 
amplitude decays with distance, that considers the reflections at the free surface and the 
reflections and refractions at the layer-rock interface and that spreads resulting in radiation of 
energy in the horizontal direction. Through the choice of the cone as a physical model, the 
complicated three-dimensional wave pattern with body and surface waves and three different 
velocities is replaced by the simple one-dimensional wave propagation governed by the one 
constant dilatational wave velocity of the conical rod, whereby plane sections remain plane 
(theory of strength of materials). Only the (one) unknown u 0 needs to be introduced. 

As an example, the vertical dynamic-stiffness coefficient for harmonic loading of the disk on 
the soil layer-rock halfspace based on the refolded layered cone equals [45] 



coT 
l + i ~  

S(co) = K 0o 1r e -ij~ (7) 
1 + 2 Z(-{x) j 

j=l  1 + jK 

where K=4GLr0/(1-~L) denotes the static-stiffness coefficient of the disk on a homogeneous 
L and ~c=2d/z~. The numerator is equal to the halfspace with the properties of the layer, T=2d/Cp 

dynamic-stiffness coefficient of the truncated semi-infinite cone modeling the halfspace which is 
multiplied by the transfer function u0 (c~176 determined from Eq. 6 which introduces the 
reflections of the layered system. Equation 7 represents a compact expression with a clear 
physical interpretation. 

To check the accuracy, the case of a stiffer and denser layer than the halfspace is examined. 
This situation can occur for a new sand fill over soft alluvial virgin soil. It is typical for some sea 
coast areas. The ratios d/ro=l, GL/GR=5, pL/PR=l.25 and VL=VR=I/3 are selected, resulting in an 
impedance ratio pLCL/(pRCR)=2.5. The apex ratio for the vertical motion equals z~/r0=2.094 
(Eq. 2) and the reflection coefficient -o~=+3/7 (Eq. 5). In this case z~ = z~ +d. The non- 
dimensionalized vertical dynamic-stiffness coefficient S(co)/K (Eq. 7) is decomposed as 

L (shear-wave velocity Cs). The spring and damping coefficients kv(ao)+ia o Cv(a o) with ao=COro/c s 
kv(a0), Cv(a 0) of the unfolded layered cone agree well with the rigorous result using the 
consistent-boundary formulation [38] denoted as exact in Fig. 3. 

To capture the horizontal radiation of energy through a layer with cones, the sum in Eq. 7 
must be evaluated up to a large j. The sum may be avoided if the layer is idealized by an ordinary 
non-radiating cone frustum (finite element of a tapered bar) with vertical dynamic-stiffness 
coefficients (index 1 for top (rl=ro), index 2 for bottom [25]) 

s,,, = 1 c' 1 + d tan / ~ ' P /c (8a) 

S12 (co)= $2, (to)= -p(Cp L )2 r~r21 z ~z~d + d L 1 cod / Cp 

sin(rod ! c L p) 

I( ) 1 ,~,Cp s:: (co): p(c~)~ ~r? z~ + d~ ~, 
z~ d tan(oxt / Cp ) 

_ zo ~ +__3d 1 (z~) ~ 

(8b) 

(8c) 

In this ordinary frustum, waves reflected at the layer-rock interface cannot spread and radiate 
energy horizontally as they propagate back upwards. Instead, they are focused in the narrowing 
neck of the frustum. This disadvantage makes the ordinary frustum used to model the soil layer 
whose dynamic-stiffness matrix (Eq. 8) can be assembled with the dynamic-stiffness coefficient 
of the cone representing the rock halfspace to calculate the layered system clearly inferior (Fig. 
3). The spring and damping coefficients of the ordinary frustum oscillate more than they should. 



The simple physical models such as the unfolded layered cone easily fit the size and 
economics of a project, and no sophisticated computer code needs to be available. Use of these 
procedures leads to some loss of precision, which is more than compensated for by their many 
advantages. It cannot be the aim of the engineer to calculate the complex reality as closely as 
possible. For a well balanced design which is both safe and economical rigorous results are not 
called for in a standard project. Their accuracy is anyhow limited because of the many 
uncertainties (for instance in defining the soil profile), some of which can never be eliminated. 

As the simple physical models cannot cover all cases, they do not supplant the more 
generally applicable rigorous boundary-element method, but rather supplement it. It should also 
be stressed that an improved understanding can be gained from the results of a rigorous analysis, 
which should thus be developed to enable progress. As experience increases, the key aspects of 
the behavior can be identified. This then leads to the development of simplified procedures 
which, however, still capture the salient features of the phenomenon. These physical models for 
soil dynamics are not the first attempt to capture the physics which has not been properly 
evaluated yet. On the contrary they make full use of the experience gained from the rigorous 
state-of-the-art formulations. The physical models are thus not only simple to use and lead to 
valuable physical insight, but they are also quite dependable incorporating implicitly much more 
know-how than meets the eye. 

As described by Roesset in the foreword covering the early work on simple models of [50], 
the same researchers engaged in the derivation of rigorous procedures based on elasto-dynamics 
have at the same time tried to explain their results with simple models. These attempts dating 
back to the thirties were not always successful. Summaries, written by Roesset [29, 30], who 
contributed significantly to the advancement of the state of the art, influenced the development 
significantly. A brief historical review with a classification of the methods concentrating on 
certain key aspects influenced by the preferences of the author follows. For a more complete 
evaluation of the rich tradition the reader is referred to the literature mentioned in the references 
of this paragraph. The first group to calculate the interaction force-displacement relationship of a 
foundation on the surface of a halfspace consists of truncated semi-infinite cones introduced 
by Ehlers [5] for translational motion and much later by Meek and Veletsos [15] for rotational 
motion. An application to the torsional motion is described in Veletsos and Nair [35]. Wedges for 
plane-strain conditions are examined by Gazetas and Dobry [7]. It is important to stress that in a 
practical application the (one dimensional) wave propagation does not have to be addressed as 
the dynamic stiffness of the semi-infinite cone is exactly equal to that of a simple discrete- 
element model consisting of a spring and a dashpot (for rotation also of a mass moment of inertia 
with its own internal degree of freedom) with frequency-independent coefficients. Based on this 
arrangement the coefficients of the discrete elements are determined not from the cone model - 
but as an extension - from calibration with rigorous solutions of elasto-dynamics. This permits 
not only material damping to be considered (Veletsos and Nair [36]), but allows generalizations 
to embedded and inhomogeneous sites (Wolf and Somaini [40]) whereby also an additional 
discrete-element (a spring) can be introduced (de Barros and Luco [2]). In this second group, the 
lumped-parameter models, the early single-degree-of-freedom systems determined in an ad-hoc 
manner (Whitman [39], Richart, Hall and Woods [28]) are also included. Starting from the 
discrete-element model of the rotational cone, a family of lumped-parameter models also called 
spring-dashpot-mass models can be constructed systematically for any dynamic-stiffness 
coefficient (Wolf [41]). In the third group, wave patterns in the horizontal plane are prescribed. 
Dobry and Gazetas [4] assume simple cylindrical waves to calculate dynamic-interaction factors 



which permit a pile group to be analysed considering dynamic pile-soil-pile interaction. Finally, 
the fourth group consists of calibration procedures to determine approximate expressions for 
the dynamic-stiffness coefficients in the frequency domain and the static-stiffness coefficients 
for a wide range of foundations (Gazetas [9], [11], Pais and Kausel [27]), in many cases also 
being guided by the dynamic-stiffness coefficient of the rotational cone. 

This paper concentrates on summarizing the research and development performed in an 
informal, enthusiastic, and collegial atmosphere from 1990 to 1994 with Dr. J.W. Meek. His role 
as leader and his significant contributions in generalizing the concept of cones (group 1 [18, 22]) 
and the wave pattern in the horizontal plane (group 3 [21]) are acknowledged. In addition, the 
extension of the systematic formulation to construct consistent lumped-parameter models (group 
2 [42, 44]) is addressed. For details the reader can consult the references cited above or the 
book [50] which contains easy-to-follow derivations, many examples and engineering 
applications. 

Concepts, Classification and Examples 

Applications 

The simple models to be summarized can be used in the majority of cases for the final 
dynamic analyses of foundation vibration and soil-structure interaction. In addition, the 
following considerations are appropriate. In certain cases, the effect of the interaction of the soil 
and the structure on the response of the latter will be negligible and need thus not be 
considered. This applies, for example, to a flexible high structure with small mass where the 
influence of the higher modes (which are actually affected significantly by soil-structure 
interaction) on the seismic response remains small. It is then possible to excite the base of the 
structure with the prescribed earthquake motion. For loads applied directly to the structure, the 
soil can in this case be represented by a static spring or the structure can even be regarded as 
built-in. In other cases, which include many everyday building structures, ignoring the 
interaction analysis can lead to an overly conservative design. It should be remembered that 
seismic-design provisions [26] allow for a significant reduction of the equivalent static lateral 
force (up to 30%)for soil-structure interaction effects. For these two categories, to determine if 
a dynamic interaction analysis is meaningful or not and to calculate the reduction in the 
response of everyday structures, i.e. to perform the actual dynamic analysis, physical models are 
well suited. They are also appropriate to help the analyst to identify the key parameters of the 
dynamic system, for preliminary design, to investigate alternative designs, to perform parametric 
studies varying the parameters with large uncertainties such as the soil properties or the contact 
conditions on the structure-soil interface. Finally, simple models are used to check the results of 
more rigorous procedures determined with sophisticated computer codes. 

Overview 

To construct a physical model, physical approximations are introduced for the cone models 
and the assumed wave patterns in the horizontal plane, which at the same time simplify the 
mathematical formulation. The latter can then be solved rigorously, in general in closed form. 
These assumptions of mechanics permit a much better evaluation of the consequences than 



when mathematical proximations are introduced, such as e.g. neglecting certain higher-order 
derivatives in the differential equations of the rigorous formulation. For the lumped-parameter 
models, which for more complicated cases does involve curve fitting, a visual check of the 
accuracy is possible by comparing the dynamic-stiffness coefficients of the rigorous procedure 
and the physical model. 
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Fig. 4 Physical models to represent dynamic stiffness. 
a) Disk on surface of halfspace with truncated semi- 

infinite translational cone 
b) Disk on surface of halfspace with truncated semi- 

infinite rotational cone. 
c) Disk on surface of soil layer resting on flexible rock 

halfspace with corresponding cones. 
d) Anti-symmetry condition with respect to free surface 

for disk and mirror-image disk with corresponding 
double cones to calculate Green's function. 

e) Discrete-element model for translational cone. 
f) Discrete-element model for rotational cone. 
g) Lumped-parameter model consisting of springs and 

dashpots with one internal degree of freedom 
corresponding to f. 

h) Lumped-parameter model consisting of springs, 
dashpots and a mass with two internal degrees of 
freedom. 

An overview of the physical models to calculate the interaction force-displacement 
relationship (dynamic stiffness) of the unbounded soil and the effective foundation input motion 
for seismic excitation is presented. 



A summary of the key expressions used to model the various foundations is specified in the 
Appendix. 

The simplest case consists of a rigid massless circular basemat, called disk in the following, 
resting on the surface of  a homogeneous soil halfspace. A translational degree of freedom, e.g. 
the vertical motion, is examined (Fig. 4a). To determine the interaction force-displacement 
relationship of the disk and thus its dynamic stiffness, the disk's displacement (as a function of 
time) is prescribed and the corresponding interaction force, the load acting on the disk (as a 
function of time), is calculated. The halfspace below the disk is modeled as a truncated semi- 
infinite rod (bar) with its area varying as in a cone with the same material properties. A load 
applied to the disk on the free surface of a halfspace leads to stresses, due to geometric 
spreading, acting on an area that increases with depth, which is also the case for the translational 
cone. As already mentioned, by equating the static stiffness of the translational cone to that of 
the disk on a halfspace, the cone's opening angle is calculated. It turns out that the opening 
angle for a given degree of freedom depends only on Poisson's ratio of the soil. Through the 
choice of the physical model, the complicated three-dimensional wave pattern of the halfspace 
with body and surface waves and three different velocities is replaced by the simple one- 
dimensional wave propagation governed by the one constant dilatational-wave velocity of the 
conical rod, whereby plane cross-sections remain plane. The radiation condition (outwardly 
propagating waves only) is enforced straightforwardly by admitting waves traveling 
downwards only. For the horizontal motion a translational cone in shear with the shear-wave 
velocity is constructed analogously. For the rocking and torsional degrees of freedom, rotational 
cones can be identified using the same concepts (Fig. 4b). 

The same cones can also be used to examine a surface foundation for a site consisting of  a 
soil layer resting on flexible rock halfspace, as already discussed in the Introduction. The 
vertical degree of freedom is addressed in Fig. 4c using the corresponding translational cone. 
The same approach can be applied for the horizontal and rotational degrees of freedom. The 
vertical force applied to the disk produces dilatational waves propagating downwards from the 
disk. The opening angle of this cone follows again from equating the static stiffness of the 
truncated semi-infinite cone to that of the disk on a homogeneous halfspace with the material 
properties of the layer. At the interface of the soil layer and the rock halfspace the incident wave 
will lead to a refracted wave propagating in the rock in the same direction as the incident wave 
along its own cone (dotted lines). In addition, a reflected wave is created propagating back 
through the soil layer along the indicated cone (dashed lines) in the opposite upward direction. 
The latter will reflect back at the free surface and then propagate downwards along the cone 
shown in Fig. 4c. Upon reaching the interface of the layer and the rock, a refraction and a 
reflection again take place, etc. The waves in the layer thus decrease in amplitude and spread 
resulting in radiation of energy in the layer in the horizontal direction (in addition to the energy 
loss through the rock halfspace). 

The concepts of cone models can be expanded to the analysis of embedded cylindrical 
foundations. Again, the vertical degree of freedom of a foundation embedded in a halfspace is 
addressed in Fig. 4d, but the following argumentation is just as valid for the horizontal, rocking 
or torsional ones. The embedded part is discretized with disks. To represent a disk within an 
elastic fullspace, a double-cone model is introduced. Its displacement field defines an 
approximate Green's function for use in an uncomplicated (one-dimensional) version of the 
boundary-element method. To enforce the stress-free condition at the free surface of the 
halfspace (Fig. 4d), a mirror-image disk (again modeled as a double cone) placed symmetrically 
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(with respect to the free surface) and excited simultaneously by the same force is considered. 
Indeed, any halfspace problem amenable to a solution via cone models may also be solved in the 
fullspace. It is only necessary to augment the actual foundation in the lower halfspace by its 
mirror image in the upper halfspace. By exploiting principles of antisymmetry and superposition, 
the soil's flexibility matrix defined at the disks located within the embedded part of the 
foundation can be set up. The rest of the analysis follows via conventional matrix methods of 
structural analysis. The concept can be expanded to a fixed boundary and also to an interface 
with another halfspace. This permits cylindrical foundations embedded in a soil layer resting 
on a rigid or flexible rock halfspace to be calculated using cones. The methodology points 
towards a general strength-of-materials approach to foundation dynamics using the 
approximate Green's functions of the double-cone models. 

A generalization is possible, enabling the dynamic-stiffness coefficients of a foundation on 
the surface of or embedded in a layered halfspace to be calculated. For each layer a dynamic- 
stiffness matrix based on cones is established. Assembling the dynamic-stiffness coefficients of 
the underlying halfspace and the dynamic-stiffness matrices of the layers yields that of the 
layered site. 

Returning to the translational and rotational cones of Figs. 4a and b, it should be emphasized 
that in an actual soil-structure-interaction or foundation vibration analysis the cones are not 
represented physically by finite elements of a tapered rod. For practical applications it is not 
necessary to compute explicitly the displacements of the waves propagating along the cone. 
The attention can be restricted to the interaction force-displacement relationship at the disk. The 
translational cone's dynamic stiffness can rigorously be represented by the discrete-element 
model shown in Fig. 4e. It consists of a spring with the static stiffness (of the disk on a 
halfspace) in parallel with a dashpot with its coefficient determined as the product of the 
density, the dilatational-wave velocity (for the vertical degree of freedom) and the area of the 
disk. As the latter is equal to the disk on a halfspace's limit of the dynamic stiffness as the 
frequency approaches infinity, the cone's dynamic stiffness will be exact for the static case and 
for the limit of infinite frequencies (doubly-asymptotic approximation). For intermediate 
frequencies the cone is only an approximation of the disk on a halfspace. One rigorous 
representation of the rotational cone's dynamic stiffness is shown in Fig. 4f. The model again 
consists of a spring with the static stiffness in parallel with a dashpot with as coefficient the 
exact high-frequency limit of the dynamic stiffness (density times dilatational-wave velocity 
times disk's moment of inertia for the rocking degree of freedom). An additional internal degree 
of freedom is introduced, connected by a spring (with a coefficient equal to minus a third of the 
static-stiffness coefficient) to the footing and by a dashpot (with a coefficient equal to minus the 
high-frequency limit) to the rigid support. Again, the rotational cone's dynamic stiffness is 
doubly asymptotic. This is easily verified by noting that the internal degree of freedom of the 
discrete-element model is not activated in the two limits. 

The model of Fig. 4f is shown for a translational degree of freedom in Fig. 4g, which forms 
the starting point to develop systematically a family of consistent lumped-parameter models, 
also called spring-dashpot-mass models. The direct spring is chosen to represent the static 
stiffness. The coefficients of the other spring and of the two dashpots are selected so as to 
achieve an optimum fit between the dynamic stiffness of the lumped-parameter model and the 
corresponding exact value (originally determined by a rigorous procedure such as the 
boundary-element method). If the direct dashpot is used to represent the high-frequency limit of 



11 

the dynamic stiffness, the number of coefficients available for the optimum fit is reduced to two. 
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Fig. 5 Displacement patterns in horizontal plane. 
a) Vertical displacement on free surface from loaded 

source subdisk. 
b) Horizontal displacement from loaded source pile. 

To increase the number of coefficients and thus the accuracy, several systems of Fig. 4g can be 
placed in parallel. Figure 4h shows the lumped-parameter model for three such systems, whereby 
two of them are combined to form a new system consisting of two springs, one independent 
dashpot (the two dashpots in series have the same coefficient) and a mass. A total of six 
coefficients keeping the doubly-asymptotic approximation thus results. It can be shown that 
these six frequency-independent coefficients, which can be determined using curve fitting 
applied to the dynamic stiffnesses (involving the solution of a linear system of equations only) 
will be real (but not necessarily positive). The springs, dashpots and mass will represent a stable 
lumped-parameter model with only two additional internal degrees of freedom. The 
fundamental lumped-parameter model of Fig. 4g is easy to interpret physically. This physical 
insight is, however, lost to a large extent in the model shown in Fig. 4h. But the latter does allow 
the analyst to model quite complicated cases, as will be demonstrated, such as a foundation 
embedded in a soil layer resting on rigid rock. Use is implicitly made of the results obtained with 
the state-of-the-art formulation which leads to the rigorous dynamic stiffnesses used in the opti- 
mum fit. By comparing visually the dynamic stiffness of the lumped-parameter model with the 
rigorous solution, the accuracy can be evaluated. 

Fig. 6 
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Interpretation of dynamic-stiffness coefficient for harmonic 
excitation as spring and as dashpot in parallel with 
frequency-dependent coefficients. 
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As an example of an extension, spring-dashpot-mass models can also be constructed to 
determine the dynamic soil pressure acting on a vertical rigid wall retaining a semi-infinite 
uniform soil layer for horizontal seismic excitation. 

Summarizing, two types of physical models are described in connection with Fig. 4: the 
translational and rotational cones [truncated semi-infinite single or double cones based on rod 
(bar) theory with the corresponding one-dimensional displacement and wave propagation] and 
the lumped-parameter models (spring-dashpot-mass models). The latter can conceptionally be 
constructed from the former by assembling the exact discrete-element models of the cones in 
parallel and using calibration with rigorous solutions. 

The models shown in Fig. 4 prescribe a displacement pattern varying with depth along the 
axis of the cone. To extend the application, displacement patterns in the horizontal plane 
other than those corresponding to the strength-of-materials assumption of plane cross-sections 
remain plane are introduced as a third type of physical models in this text. One-dimensional 
wave propagation is again prescribed. 

Two examples follow. For a vertical point load on the surface of an elastic halfspace the 
displacement in form of a Green's function may be deduced via non-mathematical physical 
reasoning, then calibrated with a few constants taken from a rigorous solution. By superposing 
point loads, an approximate Green's function is constructed for a subdisk of radius Ar 0 (Fig. 5a). 
In the near field the displacement amplitude is inversely proportional to the distance r from the 
center of the loaded source subdisk (body wave), and the wave propagates with a velocity 
which is slightly less than the Rayleigh-wave velocity CR. In the far field the displacement 
amplitude decays inversely proportional to the square root of r (surface wave), and the wave 
propagates with c R. Arbitrary shaped foundations can be treated as an assemblage of subdisks. 
The through-soil coupling of neighboring foundations can also be analyzed using subdisks. 

To analyze a pile group, the dynamic-interaction factor describing the effect of the loaded 
source pile on the receiver pile is applied (Fig. 5b). To calculate the interaction factor e.g. for a 
horizontal motion of a source pile, it is assumed that dilatational waves propagating with the 
corresponding velocity Cp are generated in the direction of motion and shear waves propagating 
with the velocity c s in the perpendicular direction. The amplitudes of both types of these 
cylindrical waves decay inversely proportional to the square root of the radius. 

Examples 

To illustrate the concepts of constructing physical models, some examples with selected 
results are presented, which also allow the accuracy to be evaluated. 

Harmonic excitation with frequency to is addressed. Complex-variable notation is used in the 
following. From the complex response u(to)=Reu(to)+ilmu(to), the magnitude is calculated as 
~/Reu2(o~)+Imu2(t.o) and the phase angle as arctan [Imu(to)/Reu(to)]. Applying a 
displacement with amplitude Uo(tO), the corresponding force amplitude P0(to) is formulated as 

P0(o~)=S(co)u0(r (9) 

with the (complex) dynamic-stiffness coefficient S(to). In foundation dynamics it is appropriate 
to introduce the dimensionless frequency a o 

t.or 0 
a o = ~ (10) 

C s 
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with r 0 representing a characteristic length of the foundation, for example, the radius of a disk, 
and c s the shear-wave velocity. Using the static-stiffness coefficient K to nondimensionalize the 
dynamic-stiffness coefficient 

S (ao)=K[k(ao)+iaoc(ao)] (11) 

is formulated. The spring coefficient k(a 0) governs the force which is in phase with the 
displacement, and the damping coefficient c(a 0) describes the force which is 90 ~ out of phase. 
The dynamic-stiffness coefficient S(a0) can thus be interpreted as a spring with the frequency- 
dependent coefficient Kk(a0) and a dashpot in parallel with the frequency-dependent 
coefficient (r0/cs)Kc(ao) (Fig. 6). 

Fig. 7 
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First, the rocking degree of freedom of a rigid disk with radius r 0 (Fig. 7a) resting on the 
surface of an undamped homogeneous soil halfspace with shear modulus G, Poisson's ratio a) 
and c s is addressed. The rigorous result denoted as exact is specified in [32]. The discrete- 
element model representing exactly the rotational cone (which is a doubly-asymptotic 
approximation of the disk on a halfspace) is shown in Fig. 7b with K 2 - 8 G r ~  / (3(1-~) ) ) ,  
C 2 =pCp~:r 4 / 4 ( p = m a s s  density, cp=dilatational-wave velocity). The accuracy of the 
corresponding dynamic-stiffness coefficient (Fig. 7c) is acceptable. Better agreement is achieved 
when the coefficients of K 1 and C 1 are determined by an optimum fit based on the exact values, 
leading to the fundamental lumped-parameter model with the same arrangement of the springs 
and dashpots. The coefficients K 1, C1 are presented in the caption. 
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Fig. 8 Dynamic-stiffness coefficients of square foundation on 
surface of homogeneous soil halfspace modeled with 
subdisks (ag= 1/3). 

Second, the Green's function illustrated in Fig. 5a is applied. The vertical and rocking 
degrees of freedom of a rigid square foundation of length 2b resting on the surface of a soil 
halfspace is investigated with the exact result given in [52]. One quadrant is discretized with 
7x7 subdisks. Figure 8 shows the dynamic-stiffness coefficients. The agreement is good. 

As another application of the subdisks, the through-soil coupling in the vertical direction of 
two square rigid basemats of length 2b and distance d=2b on a halfspace is addressed (Fig. 9a). 
Each basemat is discretized into 10xl0 subdisks. The dynamic-stiffness coefficient S12(a 0) 
representing the through-soil coupling of the two basemats in their centers of gravity points 1 
and 2 in the vertical direction is normalized as 

S 12(a0)=Gb [kv 12(ao)+iaocv 12(ao)] (12) 

with ao=o)b/c s. A good agreement (Fig. 9b) exists with the exact solution of [53]. 
Third, the vertical degree of freedom of a rigid disk on the surface of an undamped soil layer 

of depth d resting on rigid rock (Fig. 10a) is examined (with the exact solution specified in [12]). 
The cone model with the wave pattern representing the reflections at the rigid interface and the 
free surface is shown in Fig. 10b. The corresponding dynamic-stiffness coefficient (Fig. 10c) 
yields a smooth approximation in the sense of an average fit to the exact solution, which 
becomes increasingly irregular. The unit-impulse response function shown in Fig. 10d exhibits 
jump discontinuities from the reflected waves at the travel times from the disk at the surface to 
the rock and back and at multiples thereof. The unit-impulse response function of the halfspace 
is also shown. The lumped-parameter model (spring-dashpot-mass model) of Fig. 10e based on 
an optimum fit leads to the results shown in Fig. 1 Of. 

Fourth, a rigid cylindrical foundation embedded with the depth e in a halfspace is addressed 
(Fig. 1 l a). In the embedded part of the foundation, 8 disks with their double cones are selected. 
For the rocking motion, the dynamic-stiffness coefficient is presented for three embedment ratios 
in Fig. 1 lb. The derivation from the exact result of [1] shown for e/r0=l is less than 10%. For 
vertically propagating S-waves with the amplitude uf(o)) at the free surface (Fig. l la) the 
effective foundation imput motion consisting of the horizontal component with amplitude 
u~(o)) defined at the center of the basemat and of the rocking component with amplitude 
O~ (co) are calculated (Fig. 1 lc and d). The agreement with the exact solution [14] is excellent. 
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Diverting somewhat, it is instructive to derive an approximate expression for the vertical 
static-stiffness coefficient of the embedded cylindrical foundation. The substructure-deletion 
method [3] is used which expresses the stiffness coefficient of the embedded foundation as a 
function of that of the surface foundation and of the stiffness matrix of the excavated part (Fig. 
12a). Applying the strength-of-materials concept, the stiffness coefficient of the disk on the 
surface of the halfspace is calculated based on the cone (Eq. 13) and the stiffness matrix of the 
excavated part is determined for a cylindrical rod (Eq. 14) 

(13a) R s = K s Us 

K ~ ' =  �9 
Zo 

Ps 

r( Jtu~} 

where (Table A- 1) 

(14a) 

where 
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K Ecr~rg = z~ 
- = K s ~ (14b) 

e e 

with the interaction forces R and P, the displacement u, the constrained modulus E e and the 
apex height of the cone z 0 (Fig. A-2). The subscripts s and e denote the surface and the 
embedded cases and the superscript oo the infinite halfspace. The stiffness coefficient of the 
embedded foundation is defined as 

Formulating equilibrium 

R e = K e u e ( 1 5 )  

R s v P  s 

R e = - P  e 

and eliminating all interaction forces and Us yields 

Setting the coefficient equal to zero leads to 

K 2 
K ~ e 

K -  K s 

Substituting Eq. 14b results in 

(16a) 

(16b) 

(17) 

(18) 

K e = K s 1 + (20) 

For ~=0.25, e/zo=(e/r0)(ro/zo)=0.566e/r o, with zo/ro specified in Table A-1 leading to 

-/ K e = K s 1 +0.566 e 
ro (21) 

which hardly deviates from the expression determined from curve fitting [27] shown in 
Table A-6 

K e = K s 1 + 0.54 (22) 

In Fig. 12b, the vertical static-stiffness factor l+0.566e/r o is compared to that determined with 
cones and with the exact value. For the rocking motion, the solution using cones is very close to 
the exact result and the equation specified in Table A-6 (dashed line). 

Applying a Taylor expansion for e/zo<<l yields 

z__Ro 

Ke _ Ks e Zo (19) 
1 e e 

J 
z0 
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Fig. 13 Rigid cylinder embedded in soil layer on rigid rock. 
a) Cylindrical foundation with layer fixed at its base (r0/e=l, r0/d=l/3, 

~=1/3). 
b) Array of disks with double-cone models and mirror-image disks for 

vertical motion. 
c) Vertical dynamic-stiffness coefficient for harmonic excitation with 

cone model (5% material damping). 
d) Spring-dashpot-mass model with coupling of horizontal and 

rocking motions (coefficients see Table A-7). 
e) Horizontal dynamic-stiffness coefficient for harmonic excitation 

with spring-dashpot-mass model (undamped). 



21 

Fifth, a rigid cylindrical foundation embedded with the depth e in a soil layer resting on rigid 
rock (Fig. 13a) is discussed. The cones are applied to calculate the dynamic-stiffness coefficient 
of the vertical degree of freedom and the lumped-parameter model that of the horizontal motion. 
In the embedded part of the foundation (Fig. 13b), 8 disks with doubles cones are selected (two 
are shown in the figure, one with a solid and one with a dashed line). To enforce approximately 
the stress-free condition at the free surface and the fixed boundary condition at the base of the 
layer, mirror images of the disk with the loads acting in the indicated directions with the 
corresponding double cones (dashed lines) are introduced. The dynamic-stiffness coefficient 
(Fig. 13c) is surprisingly accurate, as can be seen from a comparison with the exact solution 
determined with a very fine mesh of boundary elements [6]. The spring-dashpot-mass model for 
the coupled horizontal and rocking degrees of freedom is shown in Fig. 13d. The coupling term 
is represented by placing the spring-dashpot-mass model of Fig. 4h at the eccentricity e. The 
agreement for the horizontal dynamic-stiffness coefficient in Fig. 13e with the exact value [31] is 
good. 
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a) Elevation and plan view of 3x3 pile group (s/(2r0)=5, 

~/(2r0)=15, ~=0.4, Ep/Es=1000, pp/Ps=l.43, 5% material 
damping). 

b) Dynamic-stiffness coefficient for harmonic excitation with cone 
model and dynamic-interaction coefficient. 
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Finally, a rigidly capped floating pile group taking pile-soil-pile interaction into consideration 
is addressed. The 3x3 pile group in a halfspace is shown in Fig. 14a (s=distance between axes of 
two neighboring piles, g=length of pile, 2r0=diameter of pile, E=Young's modulus of elasticity, 
p=density). To model the single pile, 25 disks with the corresponding double cones are used. To 
calculate pile-soil-pile interaction, the dynamic-interaction factor based on the sound physical 
approximation illustrated in Fig. 5b - but for vertical motion - is determined. The dynamic- 
stiffness coefficient in the vertical direction of the pile group (normalized with the sum of the 
static-stiffness coefficients of the single piles) calculated with cones is astonishingly accurate 
(Fig. 14b) with the exact solution specified in [13]. Even details of the strong dependency on 
frequency are well represented. 

Spring-dashpot-mass models with frequency-independent coefficients and with a few 
internal degrees of freedom can be constructed for practical use in many other cases. As an 
example, a spring-dashpot-mass model to calculate the dynamic pressure on a vertical rigid wall 
retaining a semi-infinite soil layer on rigid rock caused by a horizontal earthquake (Fig. 15) is 
addressed [51 ]. 

The model to perform a seismic analysis directly in the time domain is shown in Fig. 16. On 
the mass m with its degree of freedom u0 acts the load -mUg(t) with the known seismic 
acceleration time history of the rock's interface iig(t). The spring-dashpot part has three internal 
degrees of freedom u l, u2, u3. The coefficients of the mass, the 4 springs and 4 dashpots are 
equal to 

2 
rn = 0.543 

4 ( 1 -  v ) ( 2 -  v) 

K 1 = -0.682o~2m 

K 2 = -0.318o~2m 

K 3 - 0 . 2 7 3 ~ m  

K 4 = 2to2m 

C 1 = -0.658to 1 m 

C 2 = -0.344to 1 m 

C 3 = 0.232to~ m 

C 4 =o~lm 

ph 2 (23a) 

(23b) 

(23c) 

(23d) 

(23e) 

(23f) 

(23g) 

(23h) 

(23i) 

with Poisson's ratio ag, mass density 9 and layer thickness d. COl is the circular natural frequency 
of the layer (---'nCs/2) with shear-wave velocity c s = ~/G / p = and shear modulus G. The resultant 
dynamic soil pressure R acts at a height = 0.637h (Fig. 16). These coefficients apply for a soil 
layer without material damping. As for spring-dashpot-mass models of the dynamic-stiffness 
coefficients, material damping can be introduced directly into the algorithm [23, 50]. Excellent 
agreement of the results with those of the approximate but accurate solution of Reference [37] 
arises. 
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Requirements 

1. Physical insight. The mathematical complexity of rigorous solutions in elastodynamics 
often obscures physical insight and intimidates practitioners. By simplifying the physics of the 
problem, conceptual clarity with physical insight results. As an example, the calculation of the 
dynamic stiffness of a disk on the surface of a soil layer resting on rigid rock (Fig. 10a) - a 
complicated three-dimensional mixed boundary-value problem with dispersive waves - is 
addressed. In the physical model made up of truncated cones (Fig. 10b), for which the familiar 
strength-of-materials theory applies, the wave pattern is clearly postulated. The one-dimensional 
waves propagate with the dilatational-wave velocity (a material constant), reflecting back and 
forth, spreading and decreasing in amplitude, and thus radiating energy towards infinity in the 
horizontal direction. 

- T - - - -  

0g 

Fig. 15 Vertical rigid wall retaining a semi-infinite soil layer on rigid rock with 
prescribed horizontal seismic motion at its base. 

. . c  

ct3 
r 

c~ 

[(4 

i 
- 

Fig. 16 Spring-dashpot-mass model to calculate resultant pressure on vertical 
rigid wall. 
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2. Simplicity. Due to the simplification of the physical problem, the physical model can be 
rigorously mathematically solved. The fundamental principles of wave propagation and 
dynamics are thus satisfied exactly for the simple physical model. Closed-form solutions (even in 
the time domain) exist for the (one-dimensional) cones. For instance, to calculate the dynamic 
stiffness of the disk on the soil layer resting on rigid rock with cones (Fig. 10b), the analysis can 
be performed with a hand calculator as no system of equations is solved; for the embedded 
cylindrical foundation with cones (Fig. 13b), a special-purpose computer code can easily be 
written; and when lumped-parameter models are applied (Figs. 10e, 13d), a standard general- 
purpose structural dynamics program which permits springs, dashpots, and masses as input can 
be used directly. The practical application of the physical models is thus also simple, together 
with the physics and the rigorous mathematical solution. 

3. Generality. To be able to provide engineering solutions to reasonably complicated 
practical cases and not just to address academic examples, the physical models must reflect the 
following key aspects of the foundation-soil system for all translational and rotational degrees of 
freedom [ 8]. 

�9 The shape of the foundation-soil (structure-soil) interface: Besides the circle, the 
rectangle and the arbitrary shape, which can be modeled as an equivalent disk or directly 
(Fig. 8) without "smearing", can be represented as a three-dimensional case or, if appli- 
cable, as a two-dimensional slice of a strip foundation. 

�9 The nature of the soil profile: The homogeneous halfspace, the layer resting on a 
flexible halfspace, and the layer resting of a rigid halfspace as well as the layered 
halfspace with many layers can be modeled. 

�9 The amount of embedment: Surface, embedded (with soil contact along the total height 
of the wall or only on part of it), and pile foundations can be represented. 

The physical models must also allow the calculation of the effective foundation input motion 
for seismic excitation. They must work well for the static case, for the low- and intermediate- 
frequency ranges important for machine vibrations and earthquakes, and for the limit of very 
high frequencies as occurring in impact loads. 

4. Accuracy. Due to many uncertainties, the accuracy of any analysis will always be limited. 
A deviation of +20% of the results of the physical models from those of the rigorous solution for 
one set of input parameters is, in general, acceptable. This engineering accuracy criterion is, in 
general, satisfied, as can be verified by examining the dynamic-stiffness coefficients shown in 
Figs. 7, 11, 13 and 14. It should also be remembered that for a transient loading such as an 
earthquake the deviations (with both signs) are "smeared" over the frequency range of the 
excitation and thus further reduced compared to the larger error for one frequency. 

The use of the physical models does indeed lead to some loss of precision compared to 
applying the rigorous boundary-element procedure or the sophisticated finite-element-based 
method; however, this is more than compensated by the many advantages discussed in this 
section. 

5. Demonstration of physical features. Besides leading (by construction of the physical 
model) to physical insight of the mechanisms involved in foundation vibration (item 1), the 
physical models are also well suited to demonstrate certain unexpected features and to derive 
further results. Four examples follow. 
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1. Placing a row of an infinite number of identical vertical point loads on the surface of a 
halfspace as a simple physical model, the vertical dynamic stiffness of a two-dimensional 
slice of a rigid surface strip foundation can be determined. An analytical solution can be 
derived. The static stiffness is zero, but the spring coefficient increases abruptly to a more 
or less constant value for larger frequencies. By contrast, the damping coefficient begins 
from infinity at zero frequency and then diminishes asymptotically for increasing 
frequency. The same features exist in the rigorous solution. 

2. As can be shown, the radiation damping ratio in a two-dimensional model is significantly 
larger than in the corresponding three-dimensional case (just the contrary of what is 
expected intuitively). To model a two-dimensional slice of a strip foundation on a half- 
plane, wedges can be used which are again based on rod theory, just as cones represent 
a disk on a halfspace (three-dimensional situation). For both the translational and 
rotational motions, the damping ratios ~=b0c(b0)/[2k(b0)] of the wedges are significantly 
larger than those of the cones (Fig. 17). The dimensionless frequency parameter is 
defined as b0=o~z0/c with z 0 denoting the apex height of the cone or wedge and c the 
appropriate wave velocity. The multipliers are also specified in the figure. 

3. For the frequency range below the cutoff frequency of the soil layer resting on rigid 
rock, the radiation damping and thus the damping coefficient of the dynamic stiffness 
vanish, which is well simulated using cones and lumped-parameter models. See Figs. 10c 
and 10f, where below the cutoff frequency for dilatational waves, a0=rc, c(ao) is very 
small. 

4. The combined structure-soil system can be modeled approximately as an equivalent one- 
degree-of-freedom system. The corresponding effective natural frequency and damping 
ratio can be determined by modeling the soil as cones. 
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Fig. 17 Overestimation of radiation damping ratio of two-dimensional modeling 
with wedges when compared to that of three-dimensional modeling 
with cones for translational and rotational motions. 

6. Suitability for everyday practical foundation-vibration analysis. Especially the ease in 
use, the sufficient generality and the good accuracy allow the physical models to be applied for 
foundation vibration and dynamic soil-structure-interaction analyses in a design office. 
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7. Potential for generalization. The concepts and certain features of the physical models 
can be generalized and the results applied in much more sophisticated calculations. Three 
examples of such extensions are listed. 

1. The cone models lead to simple Green's functions, and the analysis of an embedded 
foundation can be interpreted as a straightforward application of the one-dimensional 
boundary-element method. The rigorous calculation can be performed also with a boun- 
dary-element method based on the same concept, the major difference being that the 
Green's function of the three-dimensional fullspace is used and not the one-dimensional 
solution derived from the rod theory of cones. 

2. A consistent spring-dashpot-mass model (lumped-parameter model) for the dynamic- 
stiffness matrix of any general flexible foundation can be systematically constructed 
starting from the same fundamental lumped-parameter model (Fig. 4g). In general, a large 
number of these building blocks are assembled in parallel for each coefficient of the 
matrix to be represented. 

3. The interaction force-displacement relationship of some physical models will involve 
convolution integrals which can be evaluated exactly very efficiently using a recursive 
formulation. The same procedure can also be applied to the corresponding relationship of 
any general flexible foundation. 
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Fig. 18 Foundation of three-cylinder compressor with cranks at 120 ~ with 
dynamic models. 
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Summarizing, the cone models with the prescribed deformation of rod (bar) theory, the 
spring-dashpot-mass models based on them, and the displacement patterns in the horizontal 
plane present a major step towards developing a strength-of-materials approach to foundation 
dynamics. The aim is the same as in stress analysis of structural engineering, where, for instance 
for very complicated skew-curved prestressed concrete bridges, beam theory is applied 
successively and the general three-dimensional theory of elasticity is not needed. As in stress 
analysis, each specific case has to be calculated based on the strength-of-materials approach. It 
is not sufficient just to use tables of dynamic-stiffness coefficients calculated for certain cases 
based on the rigorous formulation of elastodynamics. As the soil is a three-dimensional body 
without a dominant axial direction, the strength-of-materials approach, with prescribed 
displacement behavior taking all essential features into account, will be more difficult to 
formulate in foundation engineering than in structural engineering. Concluding, the dynamic 
analyst should always "make things as simple as possible but no simpler (H. Einstein). Or to state 
it differently: "Simplicity that is based on rationality is the ultimate sophistication" (A.S. 
Veletsos). 
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Fig. 19 Response including coupling of rocking motion with horizontal 
motion. 
a) Vertical displacement at edge of foundation block. 
b) Horizontal displacement 

E n g i n e e r i n g  A p p l i c a t i o n s  

Selected simple engineering applications taken from [50] follow. 
As a first example, a machine foundation on the surface of a soil halfspace excited by a three- 

cylinder compressor operating at 9 Hz with the cranks at 120 ~ resulting in a moment (Fig. 18) is 
investigated. The discrete-element models of the cones shown in Figs. 4f and 4e are used to 
represent the soil in the rocking and horizontal motions. Including the coupling between the 
horizontal and rocking motions increases the rocking response (Fig. 19a). 
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Fig. 20 Rigid block on disks with lumped-parameter models of disks on surface 
of soil layer resting on rigid rock. 

The second example examines non-linear soil-structure-interaction analysis. A rigid block 
with individual footings, which can uplift, resting on the surface of a soil layer with Cs=750 m/s 
and d/r0=l is discussed (Fig. 20). An idealized horizontal earthquake acts during 2s. Only the 
vertical and rocking motions of the block's bottom center are considered in the calculation. The 
spring-dashpot-mass model of Fig. 4h is used to represent the soil neglecting through-soil 
coupling. As the fundamental frequency in rocking lies below the cutoff frequency of the layer, 
no radiation damping occurs during the free vibration phase after 2s. This leads to no decay 
occurring in the gaps (Fig. 21a). If the soil is a halfspace, the gaps are much smaller and decay 
rapidly after 2s (Fig. 21b). 

The third example, also addressing nonlinear soil-structure-interaction analysis, discusses the 
vibration of a hammer foundation embedded in a soil layer on rigid rock (d/r0=2) with an 
excentrically mounted anvil (Fig. 22). The head impacts with a velocity Ch=5 m/s against the 
anvil. As a tension-resistant connection for the pads of the anvil is not provided, the anvil will 
partially uplift from the block, when the dynamic stress in tension exceeds the static stress. The 
dynamic system with 14 degrees of freedom (Fig. 23) is constructed using the spring-dashpot- 
mass models of Figs. 13d and 4h. As expected, the partial uplift of the anvil increases the motion 
significantly when compared with the result of a linear analysis (Fig. 24). The response for a soil 
halfspace is also plotted. 

As a final example, the vertical seismic motion of a structure founded on the surface of a soil 
layer on rigid rock (Fig. 25) for a record of the Loma Prieta earthquake is investigated. Two 
radius-to-depth ratios-are addressed. For d/r0=l, the vertical fundamental frequency of the 
structure-soil system is smaller than the corresponding fundamental frequency of the layer 
(=cutoff frequency) which eliminates radiation damping. For d/r0=4, the opposite applies which 
results in radiation damping occurring. The analyses are performed with the layered cone model 
(Fig. 10b) and with the spring-dashpot-mass model (Fig. 10e). From the structural distortion 
u t -  u~ plotted for the shallow and the deep layers in Fig. 26, the significant influence of 
radiation damping resulting in smaller peaks and a larger decay is clearly visible. 
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modeling coupled horizontal and rocking motions for 
horizontal earthquake varying depth of soil layer (see Fig. A- 
30, h/r0=2, m/(pr~)=l, a)=l/3, ~=0.025, ~g=0.05). 

The same effect is also present for the coupled horizontal and rocking motions (see Fig. A- 
30) of a structure of height h, fixed-base frequency co s, mass m and material damping ratio ~ on a 
soil layer. While the natural frequency ratio ~ / o )  s of the equivalent one-degree-of-freedom 
system (Fig. A-31) is hardly effected by d = d / r 0 = (Fig. 27a), the equivalent damping ratio 
depends for large ~(= O)sh / c s), i.e. for a significant soil-structure interaction effect, strongly on 
d (Fig. 27b). For the shallow layer d =1, no radiation damping is activated, as ~ converges for 
large ~ essentially to the material damping of the soil ~g=0.05. For the halfspace shown for 
comparison, ~ increases significantly for increasing ~, due to the large effect of radiation 

. . , , . ,  

damping. For the intermediate site with d =4, a transmission occurs. 
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Appendix. Bare Essentials For Practical Application 

The book Foundation Vibration Analysis Using Simple Physical Models [50] contains a 
summary at the end of each chapter with the key findings and relations. Of the latter those 
equations which are necessary to analyze practical cases are listed in the following. The 
subdivision corresponds to the chapters of the book [50] which should be consulted for a 
complete description including derivations and examples. Other tables for the analysis of 
foundations concentrating on harmonic loading are specified in the handbook [9]. 

A.1 Foundation on Surface of Homogeneous Soil Halfspace 

A. 1.1 Cone Model 

For all components of motion a rigid basemat with area A 0 and (polar) moment of inertia I 0 on 
the surface of a homogeneous soil halfspace (three-dimensional foundation) with Poisson's ratio 
ag, shear-wave velocity c s, dilatational-wave velocity Cp and density p (Fig. A-l)  can be modeled 
as a truncated semi-infinite cone of equivalent radius r 0, apex height z 0 and wave velocity c (Fig. 
A-2a and Fig. A-3). For the horizontal and torsional cones deforming in shear the appropriate 
wave velocity c equals c s. For the vertical and rocking cones deforming axially c equals Cp for 
~<1/3 and is limited to 2c s for 1/3<a9<1/2. The translational cone model for the displacement u 0 is 
dynamically equivalent to the spring K- and dashpot C-system (Fig. A-2b). The rotational cone 
for the rotation O0 corresponds exactly to the discrete-element models with one internal degree 
of freedom O1 and a small number of springs(s) Ko, dashpot(s) C O and in the monkey-tail 
configuration a mass moment of inertia Mo (Fig. A-2c). All coefficients are frequency inde- 
pendent. For the vertical and rocking motions in the case of nearly-incompressible soil 
(1/3<~<1/2), a trapped mass AM and a trapped mass moment of inertia AMo assigned to the 
basemat arise. The properties of the cones and the discrete-element models which are all that is 
necessary for the modeling of a basemat of arbitrary shape on the surface of the soil (e.g. in a 
general-purpose structural dynamics program working directly in the time domain) are summa- 
rized in a nutshell in Table A-1. 

Cs= 1 - ~  shear modulus G 

constrained modulus E c 

Static-Stiffness Coefficient 

K h = 8Gr0 
2 - ~  

K r  --  
8Gr 3 

3 ( 1 -  ~) 

horizontal Kv = ,,ziG_.. r____~ ~ vertical 
1 - ~  

rocking Kt = 6 ~ l_..z_~ Gr ~ torsional 
3 
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Fig. A-1 Disk on surface of homogeneous Fig. A-2 
soil halfspace. 
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Cone model and equivalent discrete- 
element model. 
a) Cone 
b) Discrete-element model for 

translation 
c) Discrete-element models for 

rotation. 

Radiation-Dashpot Coefficient (high-frequency behavior) 
C = pcA 0 translational C o = pcI 0 rotational 

Translational Cone 
Stiffness Formulation 
Interaction force-displacement relationship (Fig. A-2b) 

Po(t) = Ku0(t ) + Cu0(t) + AMtio (t) 

(AM=0 for horizontal motion and for vertical motion when 19<1/3) 
Dynamic-stiffness coefficient for harmonic loading 

S(ao) = K[k(a o) + iaoc(a o)] 

with dimensionless spring coefficient k(ao) for horizontal motion and for vertical motion when 
a)<l/3 

k(a0)=l 

for vertical motion when 1/3<a9<1/2 

k(a o) = 1 - 0 . 6 ~ : ( 1 - ~ )  ~ - -  ag 

dimensionless damping coefficient 

and dimensionless frequency 

c(a0)  = z0 Cs 
r 0 c 

(or o 
a o = 

C s 
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Flexibility Formulation 

Displacement-interaction force relationship (Fig. A-2b) 
For horizontal motion and for vertical motion when ~<_1/3 

t po(z) d z Uo(t) = ~ h l ( t -  x) 
o K 

with unit-impulse response function 
c 

- - - t  

hi(t  ) c zo - - - e  t>0 
z0 

=0 t<0 
The convolution integral with the first-order term hi(t) (Duhamel integral) at time station n can 
be evaluated efficiently by the recursive procedure expressing the displacement at time station n 
as a linear function of the displacement at the previous time station n-1 and of the normalized 
interaction forces at the same two time stations 

P0n P0n-1 
U~ = aU~ + b ~  + bl K 

where the recursive coefficients are specified as (At=time step) 
cAt 

a = e  z0 

cat cat 

e z ~  - e  zo +1 
b o - 1 +  cAt b l -  cAt - e  

cat 
z0 

z0 z o 

The unconditionally stable recursive evaluation which is suitable even for a hand calculation is 
exact when Po(t) is piecewise linear. 
For vertical motion when 1/3<a9<1/2 

t P(X) 
Uo(t) = ~ h 4 ( t -  I:) . . . . .  dx 

o K 

with 
1 - ~  

1 T = 2 . 4 v _  3 

h4(t)  = 
4 c s 1 

x ( 1 -  ~3) r~ I1  T 4 

1 Cs t 

ro 
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* s inh 1 c--~-s I1  - -4t t20 
ro , 

=0 t<0 

The recursive evaluation with the second-order term h4(t) proceeds as 

U0n alU0n_ 1 + a2U0n_ 2 4- b 0 Pon Pon-1 P o n - 2  = ~ + b 1 , + b 2 
K K K 

where 

1 Cs At 

~.4(,-~) ro 
a 1 = 2e cosh 1 c s I1  _ 4At  

( 1 )  r~ 7 
2 .4  ~ - ~  

and 

with r(t)=ra(t) 

a 2 = - e  

1 Cs At 

1.~(o_~) ro 

r(At) r(2At) - (2 + a 1)r(At) 
b o = _ _ _ _  b 1 = 

At At 

b 2 - 
r ( 3 A t ) -  (2 + a 1 ) r ( 2 A t ) +  (1 + 2a 1 - a 2 ) r ( A t )  

n ( 1 - ~ ) )  ro + t  + 
r 4 ( t ) = -  

2 c s 

At 

2 1 Cs t 
1 - -  (-~/ 

7 n ( 1 - x ) ) r  o 2.4~)- ro 
~ e  

I 1 -  4 2 c s 

7 

*sinh 
1 

CS l_  t 
ro 

~ 

1 Cs t 

rt(1-19) to e 2"4(X)-3) r0 
2 c s 

*cosh 
1 

c_~ I1_4- 
ro 7 

t~O 

=0 t<O 
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Fig. A-3 

TRANSLATION ROTATION 
VERTICAL HORIZONTAL ROCKING TORSIONAL 

ro ro r o 

t .,~\ I l ~/ /f',~o. I z0l / i \  / i ~ / ~ 
, ~uo, zo ~ u o .  1 ' ,L_<~ zoI-~-~'% 

/ '  / , .  ' \  ~ - / '  i , ,  ~ \ / J  lc~  ~ \  
~ . , . . ~  ' I . . . .  : " p  \ ~  

) ) 

AXIAL SHEAR AXIAL SHEAR 

Cones for various degrees of freedom with corresponding 
apex ratio (opening angle), wave-propagation velocity 
and distortion. 

Fig. A-4 

~ Uo m 
Oo 

K C 
K C 

a) b) 

Standard spring-dashpot-mass model with no internal 
degree of freedom for 
a) Translational motion. 
b) Rotational motion. 

Rotational Cone 
Stiffness Formulation 
Interaction moment-rotation relationship (Fig. A-2c) 

M o (t) = KoO o (t) + CoO o (t) + AMoO o (t) 
t 

-Sh  1 (t - 1;) CoO 0 (1;)dl; 
0 

(AMo=0 for torsional motion and for rocking motion when a9<1/3) 
The recursive evaluation of the convolution integral with h 1 (t) is described above. 
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Dynamic-stiffness coefficient for harmonic loading 

So(ao)  = K o [ k o ( a o ) +  ia0co(ao) ] 

with dimensionless spring coefficient ko(a o) for torsional motion and for rocking motion when 
a9<1/3 

ko(ao)  = 
1 a~ 

1 -  - 2  (roc) 
Z0Cs 

for rocking motion when 1/3<t~<1/2 

1 a~ 09~,1-~,(~-~) ~ 
- -  0 ko(ao  ) = 1 -  2 16)  

911:(1- ag) + a2 

Z0C s a 2 

3roe (roe)2 + a  zocs 

and dimensionless damping coefficient 

co(ao)  = 

Flexibility Formulation 
Rotation-interaction moment relationship (Fig. A-2c) 
For torsional motion and for rocking motion when a9<1/3 

Oo(t) = i he (t - x) M~ (x) dx 
o Ko 

with unit-impulse response function 
3 c  

~ ~ t  
C 2 z o ha(t  ) = ~ e  

z o 

( / * 3 c o s ~ ~ t - ~ f 3 s i n ~ ~ t  t _> 0 
2 z o 2 z 0 

= 0 t < 0 

The recursive evaluation with the second order term h2(t) proceeds as: 

O0n = a lO0n_ 1 + a 2 0 0 n _  2 + b 0 M ~  + b 1 M~ + b 2 M ~  
Ko Ko Ko 

where 
3 cat 

cAt 
al  = 2e 2 z 0 COS 

2 z o 
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and substituting r(t) = r2(t ) 

_3cat 
a 2 : - e  zo 

3 ct 

r 2 (t) t 2 f f3  z o 2 zo i f3  ct = - e s i n ~ ~  t > 0 
3 c 2 z o 

= 0 t < 0 

b o, b 1 and b 2 follow from the equations specified in connection with the convolution with 
h4(t)(end of Section Translational Cone). 

A.1 .2  Spring-Dashpot-Mass Model  

Standard Spring-Dashpot-Mass Model 

Besides a spring with the static-stiffness coefficient K (=K# for rotational motion) a dashpot and 
a mass (mass moment of inertia for rotational motion) are present (Fig. A-4) with the coefficients 

r0 c = r ~  7 K M = -  T g K 
Cs C s 

7 and g are specified in Table A-2 with the mass moment of inertia of the disk (rigid structure) m. 

Table A-2 Static Stiffness and Dimensionless Coefficients of the 
Standard Spr ing-Dashpot -Mass  Model  for a Disk 
with Mass on a Homogeneous Halfspace 

Static 
Stiffness K 

Dimensionless Coefficients of 

Dashpot 7 Mass g 

Horizontal 8Gr 0 0.58 0.095 
2-a9 

Vertical 4Gr o ! 0.85 0.27 

Rocking 

Torsional 

l -x)  

8 a r  3 

3(1- x)) 

16Gr~ 
3 

0.3 0.24 
1+ 3(1-ag)m 

8rSp 

0.433 / m 
2m ~r0 ~ 

1+ r~--p 

0.045 
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Fundamental Sprin g-Dashpot-Mass Model 

Besides a spring with the static-stiffness coefficient K (= K~ for rotational motion) and a direct 
dashpot C o connecting the basemat node with mass M 0 (mass moment of inertia for rotational 
motion) to the rigid support (Fig. A-5), an internal degree of freedom with its own mass M1 (mass 
moment of inertia for rotational motion) is introduced which is attached to the disk node by a 
dashpot C1 

Co r0 r0 = __ 7o K C1 = __ 71K 
C s Cs 

r g r g 
Mo = _-i- go K M1 = ~ gl K 

C s Cs 

]tO, ~1, gO and gl are specified in Table A-3. 

A. 1.3 Wedge  Model 

For the horizontal and rocking motions a rigid basemat with width 2b on the surface of a 
homogeneous soil halfplane (two-dimensional strip foundation) can be modeled with a 
truncated semi-infinite wedge with apex height z 0 and wave velocity c (Fig. A-6). For the 
horizontal wedge deforming in shear c equals c s and for the rocking wedge deforming axially c 
equals Cp for a9<1/3 and is limited to 2c s for 1/3<~<1/2. For the rocking motion in the case of the 
nearly-incompressible soil (1/3<a9<1/2) a trapped mass moment of inertia AMo assigned to the 
basemat arises. The properties are summarized in Table A-4. 

Po~ Uo 

, 

C 1 kllr < I 
K<! Co 

Fig. A-5 Fundamental spring-dashpot-mass 
model (monkey-tail arrangement) 
with one internal degree of freedom. 

Static-Stiffness Coefficient 

r~Gb 2 
K h = 0  horizontal K r =  rocking 

2 ( 1 - v )  

Radiation-Dashpot Coefficient (high-frequency behavior) 

8b 3 
C h = pc s 2b horizontal C r - p c - -  rocking 

12 
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Dynamic-Stiffness Coefficient for Harmonic Loading 

horizontal S(b o) - 

rocking S(bo) = 

bo H(z)(b0) pc 22b 

H(2)(bo) z 0 

bo H(2)(b 0) pc 28b  3 

H (2) (b o) z o 12 

with dimensionless frequency parameter defined with respect to properties of wedge 

b 0 = r176 
C 

and Hankel functions of second kind H (2). 

Table A-4 Key Expressions to Model a Two-Dimensional  Foundation on 
the Surface of a Homogeneous Soil Halfplane with a Wedge 

, ,  

Motion 

Aspect Ratio 
Z o 

b 

Poisson's 
Ratio a9 

Wave 
Velocity c 

Trapped 
Mass Moment 
of Inertia 
AMo 

Horizontal 

2-a9 

all a9 

Rocking 

8(1- v) c 2 

3rt C s 

C s 

1 1 1 
< -  - < a 9 < -  

3 3 2 

Cp 2C s 

3(  1) 8b3 b 
0 4 ~--3  Pl--2 

A1.4 Material Damping 

Material damping is introduced in the frequency domain based on the correspondence principle 
applied to the elastic solution. For non-causal linear-hysteretic damping the shear modulus G 
and constrained modulus E c are multiplied by 1 + 2i~g (~g = hysteretic-damping ratio), resulting 
in the solution for the damped case. The corresponding spring and damping coefficients kr 
cr o) are expressed approximately as a function of the elastic values k(a0), c(ao) 

kr (a o ) = k(a o ) - ~gaoC(a 0 ) 

2 ~ g  
c; (a o ) = c(a 0 ) + ..... k(a o ) 

ao  
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For Voigt visco-elasticity with damping proportional to frequency (defined as the ratio ~0 at o0) 
the factor equals 1+io)2~0/o~ 0, and the correspondence principle is applied directly to the 
discrete-element model (or lumped-parameter model). Each original spring with coefficient K is 
augmented by a dashpot with coefficient C = 2(~0/o0)K in parallel, and each original dashpot 
with coefficient C by a pulley-mass with coefficient (~0/o)0)C (Fig. A-7). Masses in the original 
model remain unchanged. 
For frictional (hysteretic) material damping which preserves causality, non-linear frictional 
elements replace the augmenting dashpot and pulley-mass. The corresponding forces acting 
between the nodes with displacements u 0 and u 1 are equal to (sgn () returns the algebraic sign 
of the argument) 

P = K[u 0 - Ul[ tan ~5 sgn (u 0 - 1~11 ) 

P : C[/10 - Ul I 0.5 tan ~5 sgn (ii 0 - ii 1) 

with the overbar denoting the short-term memory (current or last peak value) and tanS=2~g 
(5=friction angle). Incorporation of these frictional elements in the discrete-element model (or 
spring-dashpot-mass model) permits causal analysis in the time domain taking hysteretic 
damping independent of frequency into consideration. 
These concepts also apply to the spring-dashpot-mass models for a foundation on the surface of 
a layer on rigid rock (Appendix A2) and for a foundation embedded in a halfspace or in a layer 
(Appendix A3). 

A.2 Foundation on Surface of Soil Layer on Rigid Rock 

A.2.1 Unfolded Layered Cone Model 

For all components of motion a rigid basemat with equivalent radius r 0 on the surface of a soil 
layer of depth d resting on rigid rock (Fig. A-8) can be visualized as a folded cone. When 
unfolded, this layered cone enables a wave pattern to be postulated which incorporates the 
decay of amplitude as the waves propagate away from the basemat as well as the reflections at 
rock interface and at the free surface. The aspect ratio z0/r 0 (opening angle) of the unfolded 
layered cone is the same as that of the truncated semi-infinite cone used to model a disk on a 
homogeneous halfspace with the same material properties as the layer (Table A-l). 
From the wave pattern it follows that the translation u0(t) (or rotation O 0(t)) of the basemat on a 
layer is equal to that of the basemat, with the same load acting, on a homogeneous halfspace 
(~0(t) or Oo(t)) (generating function), augmented by echoes of the previous response (Fig. A- 
9). The appropriate echo constants are derived for the flexibility formulation, then inverted to 
obtain the echo constants of the stiffness formulation. 
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Fig. A-6 

I 

a) 

Horizontal and rocking wedges with corresponding apex 
ratio (opening angle), wave-propagation velocity and 
distortion. 
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Fig. A-7 Augmenting elements to represent Voigt visco-elasticity. 
a) Original spring with augmenting dashpot. 
b) Original dashpot with augmenting pulley mass. 
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Fig. A-8 Disk on surface of soil layer resting on rigid rock. 
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Fig. A-9 Nomenclature for loaded disk in vertical motion on surface 

of soil. 
a) Halfspace with generating displacement. 
b) Layer with resulting displacement, 
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Echo Constant 

Echo formula for translation in a flexibility formulation 
k 

u 0 (t) = ]~ eFt0  ( t -  jT)  
j=0 

with flexibility echo constants 

2 ( -1 )  j e F - 1 e F =  j > 1 
I + j K  

2d 2d 
and T =  ..... K=  ..... 

C Z 0 

and appropriate wave velocity c and aspect height z 0 (Table A-l). The integer k is equal to the 
largest index j for which the argument t-jT of U 0 is positive. 

Echo formula for rotation in a flexibility formulation 

k k F - - ,  ~ , ~ l ( t - i T ]  0 o(t) - X e ~ j O o ( t - j T )  + Xel j  
j=o j=o 

with flexibility echo constants 

2 ( -1 )  j 
eFo = 1 eoFj = (1 + j~:)2 

[ 1 
e~0 - 0 e~ - 2 ( -1 )  j (1 + jN)3 

1 ] 
(1 + j~:): 

j>_l 

j > l  

t 
and Ol( t)  = J h l ( t -  1:)Oo(I: ) dx 

0 

with unit-impulse response function 
C 

hl( t  ) c zo _ = - - e  t > 0 
Z0 

= 0 t < 0 

F (influence functions) which follow from eFj Alternatively, using pseudo-echo constants e rm 

and el~ (see [50], p. 175-177) the echo formula for rotation equals 

k 
Oo(t ) s F -  ma t )  = ermOo(t - 

m=0 

with time step At. 

Echo formula for translation in a stiffness formulation 
k 

Uo(t) = x e K u o ( t - j T )  
j=o 
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with stiffness echo constants 

e~ =1 

and for rotation 

with stiffness echo constants 

j-1 K F 
e~ = -  ~ e e ej_ e 

g=0 

O o ( t )  = 

k 
Z ermK O0 (t - mat)  

m=O 

j > l  

m-1 
er~ - 1  K er ~ F erm -y_. j > l  -- e rm_g -- 

g=0 

Flexibility Formulation 

In a flexibility formulation, in the first step, the prescribed interaction force P0(t) (or moment 
M0(t)) is applied to the cone modeling a disk on the associated homogeneous halfspace with the 
same material properties as the layer, resulting in the surface displacement g0(t) (or rotation 
O0(t )) using the procedure described in Section A I.1 (Fig. A-9a). In the second step, the 
displacement u0(t ) (or rotation O0(t)) of the basemat on the layer follows from g0(t) (or O0(t)) 
using the corresponding echo formula. 

Stiffness Formulation 

In a stiffness formulation, in the first step, the prescribed surface displacement u0(t) (or rotation 
O0(t)) is converted to the displacement g0(t) (or rotation O0(t)) of a disk on the associated 
homogeneous halfspace using the corresponding echo formula. In the second step, insertion 
into the interaction force-displacement relationship of the cone modelling a disk on the 
associated homogeneous halfspace leads to the interaction force P0(t) (or moment M0(t)) acting 
on the basemat using the procedure described in Section AI.1 (Fig. A-9a). 

Static-Stiffness Coefficient 

K L = K ~1 K~ = K o 
z 

j=0 
Z e  + Z e  

j=0 j=0 

index L for disk on layer, no index for disk on homogeneous halfspace with material properties 
of layer 

K~ = 2-a9 8Gr~ 1+-2 horizontal 

Kv L 4 G r o ( ~ )  = i -  ~ 1 + 1.3 vertical 

Kr t" - 8Gr3 1+ rocking 

K L - 16G_,,r 3 1 + ~  torsional 
t - 3 10 
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Fig. A-10 Disk on surface of soil layer resting 
on flexible rock halfspace. 
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Fig. A-11 Disk in vertical motion on soil layer 
resting on flexible rock halfspace 
with wave pattern in correspon- 
ding cones. 

Dynamic-Stiffness Coefficient for Harmonic Loading 

translation 

rotation 

S ( r  K 

coT 
l + i ~  

K 
-ijc0T oo 

1 + 2 y_.(_l) j e 
j=l 1 + j ~  

So(co ) - K o 
1 (0~T) 2 

1 - -  
3 K: 2 + (coT) 2 

+ i  m 
CoT (COT) 2 

3x: K 2 + (coT) 2 

:_  ~ e ~ T  oo e-ijc~ 

1 + i (1 + jK) 3 + i ~  ]~ (--1) j 
1 + 

K: j=, (1 + j~)2 
K~ 

with static-stiffness coefficients of homogeneous halfspace with material properties of layer K, 
K o (Table A-2). 

Foundation on Surface of Soil Layer on Flexible Rock Halfspace 

The unfolded cone can be generalized to the case of a layer on flexible rock (Fig. A-10) 
considering the refraction at the layer-rock interface. The only modification consists of replacing 
in the expressions for the echo constants the reflection coefficient associated with the rigid rock, 
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-1, by the corresponding value -o~ for the flexible rock. All flexibility and stiffness formulations 
for the dynamic analysis remain valid. 

- - ~  = 

PLC2L PRCl~ 
zL+d 
pL c2 pR c2 

z ~ + d  z~ 

= PLC2L- PRCl~ 

PLC2L +PRC2R 
for - / 

Indices L and R refer to the layer and the rock. z~ measured from the interface determined with 
the properties of the rock halfspace (Table A-1) leads to the apex 2 of the rock's truncated semi- 
infinite cone (Fig. A-11). 
For the dynamic-stiffness coefficients frequency-dependent reflection coefficients for translation 
and rotation-o~(o~) can also be used ([50], pages 193 and 196). A generalization to the halfspace 
with many layers exists ([50], Appendix D). 

A.2.2 Basic Spring-Dashpot-Mass Model 

The basic spring-dashpot-mass model can be used to represent the dynamic behavior for all 
components of motion of a disk on the surface of a soil layer on rigid rock in a standard finite- 
element program for structural dynamics in the time domain. The model (Fig. A-12) with two 
additional internal degrees of freedom (u l, u2) consists of four springs K i, three dashpots Ci and 
one mass M whose real frequency-independent coefficients are specified for various ratios of 
the radius r 0 of the disk to the depth d of the layer and Poisson's ratio ~ for the horizontal, 
vertical, rocking and torsional motions in Table A-5. 

K i = kiGr 0 i = 1, ..., 4 
r 3 

Ci = ci G r__~ i = 1, ... 3, M = mG 
C s Cs 

To construct a lumped-parameter model for the rotational motions representing the relationship 
between the rotation and the moment, the fight-hand side has to be multiplied by r~. 

Uo I' Po 

K1 

U 1 ' ~ ~  U2 
C2 

C l l  I I K.,~--->" C2 

Fig. A-12 Basic spring-dashpot mass model with two internal 
degrees of freedom. 
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Fig. A-13 

I 

Cylindrical foundation embedded in soil halfspace. 

Fig. A-14 
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RECEIVER J .............. ] '~ 

Green's function based on disk embedded in fullspace with 
double-cone model. 

A.3 Embedded Foundation and Pile Foundation 

A.3.1 Double-Cone Model 

To analyze a foundation with embedment e for all components of motion (Fig. A-13), a rigid disk 
of radius r 0 embedded in a full-space, which is modeled with a double-cone model, is the 
building block (Fig. A-14). The aspect ratio z0/r 0 and the wave velocity c are the same as for the 
one-sided cone used to model a surface disk (Table A-1). The only change consists of doubling 
the static-stiffness coefficients K and Ko(Table A-2). The double cone's displacement field 
defines approximate Green's functions for use in a matrix formulation of structural mechanics. 
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Green's Function 

T r a n s l a t i o n a l  D o u b l e  C o n e  (F ig .  A - 1 4 )  

d i s t ance  a 

g ( a ,  t )  = 

wi th  u n i t - i m p u l s e  r e s p o n s e  func t i on  

h l ( t  ) = c 
z o 

= 0 

1 1 hl~t c) 
2 K  1 +  a 

Z 0 

C 
~ t  

e zo t > 0 

t < 0 

g ( a ,  ~ )  - 
1 1 

�9 (0a  

e c 

a 
2 K  1 + ~  l + i ~  

z o 

~ z  0 

c 

w i t h  

R o t a t i o n a l  D o u b l e  C o n e  

1 1 / a/ ( a )  
- 2 h2 t -  + - 1 +  .1. h 3 t - -  

3 c t / / 
h 2 ( t  ) _ c 2 zo - ~ e 3 cos  ~ ~ t - x/3 sin ~ ~ t 

z o 2 z o 2 z o 
= 0 

3 c 
- - ~ t  ~ c 

h 3 ( t )  2x /3  c 2 zo = e sin ~ ~  t 
z o 2 z o 

= 0 

t > 0  

t < 0  

t>_O 

t < 0  
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go (a,o)) = 
3 1 . coz 0 

2 K----~ / 1+ ~o) 3 + l'--'-c 

3+ 3iC~ ( ~ /2 + i,,, o 
C C 
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/ z /2 1 +  

�9 c o a  
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e c 
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Fig. A-15 Modeling of free and fixed boundaries. 
a) Disk embedded in halfspace with free 

boundary with anti-symmetrically loaded 
mirror-image disk to represent free surface. 

b) Disk embedded in halfspace with fixed 
boundary with symmetrically loaded 
mirror-image disk to represent fixed 
boundary 

Fig. A- 16 Arrangements of mirror- 
image disks embedded in 
fullspace with loads and 
double cones to model 
disk embedded in soil 
layer resting on rigid 
rock. 
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For vertical motion of a pile the weighted Green's function of the double cone gcone (a,r as 
above and of the fullspace for a point load gfullspace (a,O)) is used 

g(a , (0 )  -- w ( a )  gcone (a,0))  4- ( 1 -  w(a))gfullspac e (a,(O) 

with the weighting function 

w(a )  = 1 a < r 0 

and where 

--0.8 a-r~ 
: e r~ a > r o 

and with 

gfullspace (a, 0)) = 
1[ la/ ] 

4r~G ~ -  % 

l/e_iao s 
. . . . .  t- i + 
a o a 2 r Cpa 0 

-ics ao 
e Cp 

/ ) /cs,  / X -  1 -  i 3 3 e -ia~ 2 3c 3 e 
. . . . .  --2 - c ag a o a2o r Cp pa o 

_iCs a0 
Cp 

r = a2 + r a 0 = ~ 
C s 

To model the free surface of a soil, a mirror-image disk (embedded in the fullspace and also 
represented by a double cone) loaded by the same time history of force as the original disk and 
with the same sign is introduced (Fig. A-15a). The same procedure can be used to model a fixed 
boundary, but the force on the mirror-image disk acts in the opposite direction (Fig. A-15b). To 
model a disk embedded in a soil layer resting on rigid rock, the concept of anti-symmetrically 
loaded mirror-image disks to represent the free surface and of symmetrically loaded mirror-image 
disks for the fixed boundary is applied repeatedly (Fig. A-16). 

Pi ~ . . . . . . . . .  

Pi / MIRROR 
,I, ..~ ~--SOURCE j 

P'.{_ . . . . . . . . .  ~'J_ FREE 
I 

"" el Ae~juuu~f,//,/////////./~ ":~ [ T l -  
~.u. , / F/'/ / / / / / / / / / / / /~ _.L_':_L_,~o~,w, ' ' , I ,  ,~ i 

I_ ro J 

Fig. A-17 Stack of disks to model embedded 
cylindrical foundation with anti- 
symmetrically loaded mirror-image 
disks. 
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Fig. A-18 Fundamental spring-dashpot-mass model for foundation embedded 
in halfspace with coupling of horizontal and rocking motions. 

Matrix Formulation 

Modeling the soil region which will later be excavated by a stack of rigid disks separated by soil 
matrix for harmonic loading IS g (o3)] of an embedded (Fig. A-17), the dynamic-stiffness l 0o J - - 

cylindrical foundation with respect to the rigid-body displacement amplitudes {Uo(O3)} and 
corresponding force amplitudes {P0(o~)} is formulated with standard matrix methods of 
structural analysis as 

{Po(r = [S~o(~) ] {Uo(O3)} 

where 

[S~o(O3)] = [A] T [sf((0)] [A] + o~2[M] 

[A] is the kinematic-constraint matrix of the rigid foundation with {u(o3)} denoting the 
displacement amplitudes of the disks 

{u(o3)} = [A] {Uo((O)} 
is the rigid-body mass matrix of the excavated soil and IS f (0,))] the [M] dynamic-stiffness 

I .  ii 

matrix of the free field / 

[sf(03)]-  [G((I))] -1 

where the dynamic-flexibility matrix of the disks embedded in the soil equals 

{u(o3)} - [G(o~)] {P(o~)} 

with the corresponding force amplitudes {P(co)}. In [G(o~)] the sum of the Green's functions 
g(a,~) of the source disk and g(a',o~) of the mirror-image disk appears (Fig. A-17). 
In the time domain, the corresponding interaction force-displacement relationship of an 
embedded foundation at time nat equals 

{Po}n =[A]T[Sf]otA]{uo}n-[A]T[Sf]o{U}n-[M]{iJO}n 

[ Sf ]o is the instantaneous dynamic-stiffness matrix of the free field 

[sf]0 = [G]o 1 
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where the displacement-force relationship of the disks equals 

{U}n -- {U}n h - [ G ] 0 { P } n  

n-1 
wi th  {U}n = Z [G]n-k{P}k 

k=l 

[G]n_ k is the dynamic-flexibility matrix in the time domain (displacements at time n caused by unit 
forces acting at time k). 

Table A-6 Static Stiffness and Dimensionless Coefficients of the Funda- 
mental Spring-Dashpot-Mass Model (Monkey-Tail Arrange- 
ment) for a Cylinder Embedded in a Haifspace 

Horizontal 

Vertical 

Rocking 

Torsional 

K r  I 

Static Stiffness K 

/~o) 
8Gr~ 1+ 
2-19 

4Or~ ~4~o) 1~ 

[ /~o/31 8Gr 3 e e 
1 +2 .3- -+0 .58  

3(1 - 19) r o 

Gro 3 e 
K~ = Kr - 2(2-19) 1 + 

16~r~ ( ~ o )  1+2.67 

Dimensionless Coefficients of 

Dash 9ots Mass 

Yo 

0.68 + 0.57~o 

0.80+0.35 e 
ro 

0.15631-- e 
ro 

-0.08906(~o / 2 

o oo~4/~o) ~ 

0.32-0.01/~o / 4 

0.40 + 0.03/~-o ) 2 

0.29+ 0.091~ 

~tl 

0.38 

o~+ o lO/~o) 2 

0.20 + 0.25~o 
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Static-Stiffness Coefficient 

cylindrical foundation of radius r 0 embedded with height e in a soil layer of depth d on rigid 
rock (d=~: embedded in halfspace) 

( 1 ~ /  ( e ) ( d )  K h - 8Gr~ 1 + -  1 + 1 + horizontal 
- 2 - a )  2 ~0 

4Gr~ (1 + 1 . 3 ~ /  (1 + 0.54~-o / Kv = l -a9 

K r  -- 

e ,1+(085 028 0/  
1 e 

d 
8Gr~ 1 

3(1-a9)(  1+-6 ~-)  

vertical 

rocking 

I d/ * 1+2.3 e ~ + 0 . 5 8  1+0.7 
ro 

Kt _- ~16 Gr 3 1 + ~ 1 + 2 . 6 7 ~  torsional 
3 10 r o 

- eK  h coupling Khr - -~ 

A.3.2 Spring-Dashpot-Mass Model 

Fundamental Sprin g-Dashpot-Mass Model 

A cylindrical rigid foundation with embedment e in a halfspace can be modeled with the 
fundamental spring-dashpot-mass model described in Section A1.2 (Fig. A-5). The coupling 
between the horizontal and rocking motions is achieved by connecting the horizontal spring- 
dashpot-mass model with eccentricities fK, fc to the base (Fig. A-18). 

fK -- 0.25e fc = 0.32e + 0.03e 

The coefficients are specified as a function of the embedment ratio e/r 0 in Table A-6 09=1/4). 
Note that the coefficients of the rocking spring-dashpot-mass model are defined with respect to 
K r (and not K0r ), although Kor is the coefficient of the direct spring (Fig. A-18). 

2 r o r r o 
f o r  = ~ 7oKr  f i r  = ~  r M l r =  - T ~ I K r  

Cs C s C s 
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Basic Spring-Dashpot-Mass Model 

To represent a cylindrical rigid foundation with embedment e in a soil layer resting on rigid rock 
(Fig. A-19), a spring-dashpot-mass model for all degrees of freedom is described. For the vertical 
and torsional motions the basic spring-dashpot-mass model with four springs, three dashpots 
and a mass introducing two internal degrees of freedom (Fig. A-12) is directly applicable 
(described in Section A2.2). For the coupled horizontal and rocking motions, a physical 
representation (Fig. A-20) exists, consisting of three basic spring-dashpot-mass models, one of 
which is attached with the eccentricity e to take the coupling into consideration. For various 
ratios of the radius r 0 of the foundation to the depth d of the layer and lateral contact ratios ec/e, 
the frequency-independent real coefficients for all springs, dashpots and masses are specified in 
Table A-7 09=1/3). 

Table A-7 Dimensionless Coefficients of the Basic Spring-Dashpot-Mass 
Model for a Cylinder Embedded in a Soil Layer on Rigid Rock 
(Embedment Ratio e/r0=l) 

Vertical I 

k2 4. 339543 E+OI 

k3 - .617014  E+01 

I 1 .  O0 k 4  +. 1 6 6 2 0 2  E+02 

- . 918456  E+O1 C l  
C2 - .  596381 E+O0 
C3 +. 131164 E+02 
m - .987169  E+oo 
k l  - .  190169 E+02 
k2 4.102770 E+02 

1 k3 - .  256293 E+02 

0 . 5 0  k. 4 4 . 4 8 0 3 7 9  E+OI 

C l - . 8 0 3 9 1 9  E+O0 

C 2 - .  3 7 8 9 7 2  E+01 

:l C3 + . 1 3 1 6 7 7  E+02 

, i, m ,, - 3 6 4 8 7 4  E+O1 

i i k l  - .  199866 E+02 
~I i k2 4.324059 E+O1 

..~31 138239 E+03 
u " ~  0.00 k4! +.151110 E+02 

"~ ~ - 577181 E+O1 "~ C! - 
0 -.891247 E+OI �9 . .  C 2 
~ C3 4 . 1 5 1 4 2 5  E+o2 

o ~ m - . 4 8 5 8 1 5  E+02 

~1 k'l - .  215677 E+02 
i:::3 :.,~ "~::D E:: k2  995664 E+01 

O b - , ,  299529 E+02 
~ 1 .00  ~ +. 122789 E+OI 

0 e l  - . 2 1 4 8 5 6  E+O1 

0 C 2 ' -.703468 E+O1 
",~-~I C3 4.195563 E+02 
~) m - .476605 E+O1 

k l  - .  263609 E+02 
k2  +. 106994 E+02 
k3 - .415582  E+02 

I 
~ 0 . 5 0  k4 +.391023 E+O0 

CI - .734715  E-02 
' C2 - .  1 0 1 4 7 2  E+02 

C 3 4 . 1 9 5 3 3 0  E+O2 
m - . 6 7 4 2 7 7  E+O1 

kl - .  1 4 7 1 0 8  E+02 

k2 +. 600489 E+OI 

k3 - .  355109 E+02 
0 . 0 0  k a  4.527313 E+OI 

! C i 203850 E*OI 

C 2 -. 830045 E+O1 

C 3 145304  E+O2 
m 200705 E , 0 2  

H o r i z o n t a l  II R o c k i n g  !1 C o u p l i n g  II T o r s i o n a l  
-.124401E+02 
4.286199 E+OI 

-.208541E+02 

+.794575 E*01 

-.590158 E+01 

-.516028 E+01 

+.130103 E+02 

- .163126 E+02 

-.123585 E+02 

+.382788 E+01 

-.116229 E+02 

4.697738 E+01 

-.129978 E+01 

-.357027 E+01 

+.102413 E+02 

-.820645 E+01 

-.113528 E+02 
+.187819 E+01 

-.141228 E+02 
+.837372 E+01 

-.169786 E+01 

-.396633 E+01 

+.710633 E+01 
- . 1 4 2 8 9 4  E+02 

- .800686 E+01 
+.248098 E+01 
- .530555 E+01 
+.460883 E+01 
- .638370 E-01 
- .234186 E+01 
+.101919 E+02 
- .598035 E+01 
-.I05510 E+02 

+.323771E+01 

-.101866 E+02 

-.125229 E+02 
-.583152 E+O0 

.814822 E-G1 

+.130945 E+02 

-.315268 E+01 

- .885823  E - 0 1  

+.322858 E+01 

- . 680666  E+O0 
- .918010  E+01 
4.934512 E+O0 
- .466308  E+01 

+.821627 E+01 

- .212247 E+01 
- .316747 E+O0 
4.266675 E+01 
- .342125  E+01 
- .801960  E+01 
+.103933 E+01 
- .800817  E+01 
+.584466 E+01 
- .101867  E+01 
- .157192  E+01 
+.313092 E+01 
- . 2 1 7 5 8 6  E+01 

-.112339 E+02 

+.271244 E+01 
-.112792 E+02 

+.830774 E+01 

-.185381E+01 

-.147482 E+01 

+.461482 E+01 
-.101760 E+02 

- .812675  E+01 
+.327590 E+01 
- . 1 8 3 7 1 1 E + 0 2  

+.579774 E+01 +.434718 E+01 

- .691681E-O1 - .831614 E+O0 
- .475156 E+O1 - .272228 E+01 
+.114226 E+02 +.507228 E+01 
- .148975 E+02 - .147137 E+02 
- .922525 E+01 - .736535 E+01 
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- 788239 E+01 - .157724 E+03 
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. 425306  E-O1 168579  E+01 
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.139626 E+02 920928 E+02 
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+.202777 E+01 

-.141784 E+02 
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-.333135 E+01 

-.340080 E+01 
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+ :184030 E+01 
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+.326137 E+01 
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+. 178780 E+01 
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- .  736101 E+O0 
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-.150459 E+02 
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-.230599 E+01 

+.132374 E+02 

-.513171E+O0 

-.403901E+O0 

+.511390 E+01 

-.515523 E+O0 

- . 8 2 0 9 5 9  E+01 
+ .236828 E+O0 
- . 2 9 5 2 1 3  E+O0 
+ .794727 E+01 
- . 2 8 8 5 4 5  E+O0 
- . 3 0 8 1 7 6  E-01  

+ . 1 6 0 0 8 2  E+01 

- . 3 7 2 5 9 6  E-O1 

- . 1 5 8 8 8 1 E + 0 2  
216892 E+01 

* 122884 E+01 
+ .175253 E+02 
-.770582 E+O0 

- . 1 1 4 1 1 8  E+01 

+ . 8 9 9 1 1 8  E+01 

- . 2 4 4 9 0 0  E+01 

- . 1 6 4 8 6 5  E+02 
+ . 1 6 2 6 3 1 E + 0 1  
- . 3 5 9 6 6 5  E+01 

4 .138158  E+02 

- . 7 8 6 3 0 9  E+O0 
- . 1 2 9 2 1 8  E+01 
+ .600218 E+01 
- . 1 5 9 8 8 9  E+01 
- . 7 9 0 2 7 4  E+01 
+ .176502 E-01 
- . 1 7 9 8 9 7  E-01 
4 .788488 E+01 
- . 1 2 8 6 7 0  E+O0 

263292 E-03 
4 . 1 5 7 1 2 5  E+01 

- . 3 3 1 6 4 9  E-03  
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A.3.3 Pile Foundation 

Single Pile 

The formulation based on disks embedded in a fullspace with their corresponding double cones 
and anti-symmetrically and symmetrically loaded mirror-image disks to model a free surface and a 
fixed boundary can straightforwardly be applied to the dynamic analysis of a single pile (Fig. A- 
21). The cylindrical soil region between the disks is not just analytically excavated as for an 
embedded foundation, but replaced by the difference of the material properties of the pile and 
the soil. 

Pile Group 

For a pile group, pile-soil-pile interaction can be considered with one dynamic-interaction factor 
in vertical direction and one in the lateral direction (x(o)), defined as the amplitude ratio of the 
displacement at the head of a receiver pile UrO)) to the corresponding displacement of the loaded 
source pile Us(O)) under its own dynamic load (Fig. A-22). 

= Ur((O) 
Us(O)) 

,L L g0 ~. i 
e E -! Oo ec 

~ / / ~ / / / / / / / / / / / / / / / / / / / ~ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / ~  

Fig. A-19 Cylindrical foundation with partial 
contact over embedment height 
embedded in soil layer resting on 
rigid rock. 
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Fig. A-20 Basic spring-dashpot mass model 
for embedded foundation with 
coupling of horizontal and rocking 
motions. 

Fig. A-21 Stack of disks to model pile 
embedded in halfspace with anti- 
symmetrically loaded mirror-image 
disks. 
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Dynamic-Interaction Factor 

vertical (Fig. A-22 a) 

io  
_~gm d 

Ctv(~ ) = e e Cs 

with the radius r 0, pile distance d and material damping ratio ~g. 
lateral (horizontal) (Fig. A-22 b) 

o~ f (0~) = cos 2 00~ (0 ~ to) + sin 2 0ct f (90 ~ ~)  

with the angle 0 between the horizontal load and the line connecting the source and the 
receiver piles. 

-~e- ;gcod -ito d 
o~f (0o,(0) __ Cpe Cp 

ct f (90 ~ 03) = o~ v (co) 

The dynamic-interaction factor referred to the free-field of the soil (at the location of the receiver 
pile) tx f (co) can be transformed to the corresponding factor referred to the head of the receiver 
pile itself ct h (co) based on the concept of substructuring with replacement (see [50], p. 283). 

Matrix Formulation 

Dynamic-stiffness matrix for harmonic loading with rigid pile cap 

IS(o))] = [A]T[G(o))]-I[A] 

with kinematic-constraint matrix [A] and dynamic-flexibility matrix [G(o~)] discretized at pile 
heads. For instance, for vertical motion (Fig. A-23) and with the dynamic-stiffness coefficient 
S(to) of a single pile 

1 
Ui(O)) -- 'S(o)) 

( i~l~v(dij,(o)Pj((o) + Pi(o)) + ~ ~v(dij,(o)Pj((o)) 
j=l j=i+l 

i - 1, ..., n 

which is generalized to 

- 

A.4 Simple Vertical Dynamic Green's Function 

To calculate the vertical and rocking dynamic-stiffness coefficients for harmonic loading of an 
irregular basemat which cannot by represented by an equivalent disk on the surface of a 
homogeneous halfspace, the basemat is modeled as an assemblage of subdisks. 



63 

A.4.1 Dynamic-Flexibili ty Matrix of Subdisk 

For small values of the dimensionless frequency a o = (or o / c s, the amplitude of the vertical 
displacement uo(ao) produced by a vertical load with amplitude P(a o) acting on the source disk 
of radius r o equals (Fig. A-24) 

uo(ao)  = V(ao) 
K(1 + 0.74iao)  

with static-stiffness coefficient 
K = 6Gr o for a) = 113 

The Green's function outside the disk is approximated as 

u(r,  ao) = u 0(a0)me -i~(a~ 

a) 
RECEIVER 

6 PILE 

~ ~ S O ~ U R C  e ~ 
r o v  PILE 

b) +, U r (90 ~ 
- ~  . . ~  

i "'",,u~ f 
"1~---~ ~ Umd 

SH-WAVE ~ \ / ~ "  I f d Cs ~ Ur 
. / ~ R E C E I V E R  

0 ." ,"-. f 

SOURCE P - WAVE 
PILE Cp 

1 dil i 

dij 

J (~  
Pj 

pn ~L~.) n 

Fig. A-23 Plan view of arrangement of piles in 
group. 
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@ ~  FIELD 

l / r  
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( . . ~ - ~  ~ : . C R  FIELD 

�9 . CR 

RECEIVER 

Fig. A-22 Cylindrical waves emitted from 
shaft of loaded source pile and 
propagating towards receiver pile 
determining dynamic-interaction 
factors. 
a) Vertical. 
b) Lateral (horizontal). 

Fig. A-24 Vertical displacement on free 
surface from source subdisk loaded 
vertically. 
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The amplitude-reduction factor A equals 

2 r o A = 
71; r 
2 r o 

m = -- 
~: ~ f r  

with (index R for Rayleigh wave) 

for 

for 

rf = 0.3~ R = 

The phase angle q0(a o) equals 

( r  2 )  
-.~(a o.) = 1 . 1 6  a o - 

r o 

 'ao/ (ro = - + 1 . 0 7  a o 
4 

r < rf 

r > rf 

(near field) 

(far field) 

1.76 
r o 

a o  

2ro 
for r - < 5 r f  

/g 

) 2r~ 
for r > 5rf 

of the vertical forces ~.~P(a 0)} acting on the subdisks and of the vertical With the amplitudes 
displacements {u(a 0 )} 

{u(ao) } = [G(ao)]{P(ao)} 

where the dynamic-flexibility matrix [G(a0)] is constructed based on the approximate Green's 
function of the subdisk. 

I - -I 

Fig. A-25 Structure-soil system with rigid 
base. 

I I  I I  (~ 

Fig. A-26 Soil system ground with excava- 
tion and rigid structure-soil 
interface. 

A.4.2 Matrix Formulation 

The dynamic-stiffness matrix with respect to the displacement amplitudes of the rigid basemat 
{u o (a o )} equals 

[S(ao) ] = [A]T[G(ao)]-I[A] 
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with the kinematic-constraint matrix [A] defined as 

{u(ao) } = [A] {uo(ao) } 

A.5 Seismic Excitation 

A.5.1 Basic Equation of Motion 

Frequency Domain 

Basic equation of motion of substructure method for harmonic loading for analysis of dynamic 
soil-structure interaction for seismic excitation (Fig. A-25) 

[ [Sss (f-o)l[Zs0 (~)11f {Uts (o~)} ] I { 0 } -t-{Po(O,)}} 
with amplitudes of total disp.lacements in nodes within structure (Uts(f.0)l and on rigid 
structure-soil interface {u~ (co)} and dynamic-stiffness matrix of stmctur~e (static'-stiffness matrix 
[K], mass matrix [M], hysteretic damping ratio ~). 

[S s (m)] - [K](1 + 2i;) - m2 [M] 

~S0g0 (r denotes the matrix of unbounded soil with excavation (ground, Fig. dynamic-stiffness 
-26). Amplitudes of soil's interaction forces are formulated as 

. .I  

with the effective foundation input motion (Uo g (co)} (Fig. A-26). Defining driving loads as 

the equation of motion equals 

Time Domain 

Basic equation in time domain (viscous damping matrix of structure) 

[ ]{ } [ [Css][Cs0]lI{fits(t)}} [Mss ][Ms0 ] {i.its (t)} + 
[Mos ][Moo ] {ti~ (t)} [Cos ][Coo ]J[{u~ (t)} + 

{ } [Nos][Koo] {u~(t)} = -{Po (t)} 
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A.5.2 Interaction Force of Soil and Driving Load 

(Section AI.1) 
translation 

rotation 

Disk on Homogeneous Halfspace Modeled with Cones 

Po(t) 

with P~(t) 

= K(uD(t ) - u~)(t))+ C(fi~)(t)- fi~)(t)) 

= Ku~(t) + Crib(t) - P0 g(t) 
= Ku~)(t) + Cfio g (t) 

Mo(t) Ko (0~ ( t ) -  og (t)) + C o (O~ ( t ) -  og (t)) 

- } h i  (t - x)Co (0~ (x)-  0g (x))dx 
0 

= KoO~(t ) + Co6~(t ) - }h i ( t - ' l : )  Co6~(x)dx-Mg(t) 
0 

with 
t 

Mg(t) = KoOog(t)+ C o O g ( t ) -  j'hl(t-1:)CoOg(1:)dx 
0 

(Section A2.1 ) 
translation 

Po(t) 

with 

Disk on Layer on Rock Modeled with Unfolded Layered Cone 

jw, ug,t jT)/) 
+ c j (u~(t-jT/-  u~(t- iT/) 

k k 
= K Z e ~ u ~ ( t - j T )  + C 2 e ~ u ~ ( t - j T )  - Pog(t) 

j=0 j=0 

k k 
Pg(t) = KXeKu g( t - jT)  + CXeKu g( t - jT)  

j=0 j=0 
analogously for rocking unfolded layered cone 

Embedded Foundation Modeled with Stack of Disks 

for vertically propagating free-field motion  {u f (t)} 
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with 

{Po} n = [m]T[zf]0[m](u~} n --[m]T[zf]0{~}n 
-[M]{i.i~} n - [m]T[sf]0{Uf}n 

= [A]T [sf ]0 [A]{u~ }n -- [A]T [sf ]0 (fi}n 

--[M]{iiO}n - {P~}n 

{Pg}n = [m]T[zf ]0 {uf }n 

A.5.3 Effective Foundation Input Motion 

Effective Foundation Input Motion for Harmonic Loading 

{U~(~)} -[sg0(~)]-l[m]T[Zfb(f.0)]{uf(f.0)} 

with dynamic-stiffness matrix [Sfb (~)1 and motion of free field {u f (c0)} in those nodes (disks) 
b which will later lie on the structure-soil interface and with kinematic-constraint matrix [A] (see 
Fig. A-27). 

Surface Foundation on Homogeneous Halfspace Modeled with Subdisks 

(Section A4) 
vertical and rocking motions {u g (03)} caused by vertical free-field displacement with amplitude 

- - I ~ X  

f (0~)e Ca f(x,(O) = U z U z 
propagating horizontally in x-direction with apparent velocity c a 

{ug(m)} = 

with {ufb (0~)} equal to {u: (x, CO)} evaluated in nodes b. 

Surface Foundation Modeled with Distributed Springs 

Vertical and rocking motions Wo g, ~g caused by vertical free-field displacement propagating 
horizontally with apparent velocity c a 

f x,t, uf( a) u z = t -  

for square foundation of length 2a and spring constant k (Fig. A-28) 

(x)Cat+ 'Caf  ,d 
k4a2 ~k2a u f t - ~  dx = ..... u 

-a C a 2a t_a/Ca 
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~g(t) = 
1 +a uf ( __X_X/ 

- ~  I xk2a t -  dx 
k -4a4 -a c a J 

3 
2 I t + a / C a  t+a/Ca 

_- 3 Ca XU f ( ~ ) d X  - t I 
2 a 3 k,t-a/c a t_a/Ca 

u f ( x ) d x )  

(Section A3.1) 

Embedded Foundation Modeled with Stacks of Disks 

for vertically propagating free-field motion with amplitude {u f ((o)} 

{U~)(O.))} = [sg((o) ] - I [A]T[s  f (~) ] {u f(tO)} 

STRUCTURE 

FREE FIELD GROUND 

Fig. A-27 Physical interpretation of basic 
equation of motion in total 
displacements with effective 
foundation input motion and 
driving loads. 

S $ 

u ! 

a a 

F / 7 

Ca w~ ~~ k 

/t~// i U'z 
I' I 
/ i 

r t 
Y Z 

Fig. A-28 Effective foundation input motion 
for vertical component of 
horizontally propagating wave 
acting on rigid square basemat with 
distributed springs beneath. 

A.5.4 Foundation Represented by Spring-Dashpot-Mass Model 

When a spring-dashpot-mass model for the soil is used, the effective seismic input motion 
U g �9 . 0(t)} is m a first step a piled at the base (where the structure will later be connected) of the . J P 

soil model, leading to the reaction forces (driving loads) ~Pg (t)}. The latter a r e  then applied to 
!he total dynamic model in the second step, yielding the t ~total--Jdynamic response. The procedure 
is summarized in Fig. A-27. As an example the rocking motion of a rigid block on a homoge- 
neous halfspace modeled with the lumped-parameter model (discrete-element model) of Fig. A- 
2c is addressed in Fig. A-29. 
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A.6 D y n a m i c  Soi l -Structure  Interact ion 

A simple coupled dynamic model (Fig. A-30) consisting of a vertical rigid bar with the horizontal 
and rocking springs and dashpots with frequency-dependent coefficients Kk(a0), (r0/c s) Kc(ao) 
and Koko(ao), ro/Cs) Koc9(a0) representing the soil attached at one end and at the other one, 
at a distance equal to the height h, a spring with coefficient k connected to a mass m, which 
models the structure, correctly captures the essential effects of soil-structure interaction for a 
horizontal seismic excitation ug. The dynamic-stiffness coefficients of the soil are calculated with 
cones for a halfspace (Section AI.1) and with unfolded layered cones for a layer resting on rigid 
or flexible rock (Section A2.1). 
The coupled system can be replaced by an equivalent one-degree-of-freedom system (Fig. A-31) 
enforcing the same structural distortion u as in the coupled dynamic system with the same mass 
m, the effective natural frequency ~, the effective damping ratio ~ and the effective input 
motion ug. 

1 1 1 1 

m~ - ~ + ~ ( a 0 )  § ~s f'Or (a0) 

; = ms2 ; + ~ ~-s2 ) 1 -  ;g  -b ~,(~'0--------~; h ( 0 2  (a'0) q- ~ ; r f . o r  (~.0) (ao) 
og r 2 

= U g 2 CO s 

with the natural frequencies 
. / - 7 " " -  

COs = ~]k  f ixed-  base structure 
I x x L  

/ K k ( a o i  rigid structure and rocking 
(ao ) f.O h m motion prevented 

/ K o k o  (a0) rigid structure and horizontal 
(a0 ) (O r 

mh 2 motion prevented 

the damping ratios 

a~176 horizontal radiation 
;h(~O) = 2k(~o) 

ao%(ao) rocking radiation 
; r (a .0)  = 2k~(~0 ) 

and the hysteretic material damping of the structure ~ and of the soil ~g. 
For a redundant coupled structure-soil system where the mass of the structure can only displace 
horizontally but not rotate (Fig. A-32), the equivalent one-degree-of-freedom system for 
horizontal seismic excitation is defined by the parameters 

1 1 1 3 

(~2 "- CO s 2 ' 0,)2 (~ 0 ) d- (D s 2 + 12m2 (ao) 
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~g 

= ~ -  
(~2 

0) 2 ( a o  ) 
_ 366)2~ ( a 0 ) [ ; _ ;  

+ ' 

~2 
u g 

2 
O) s 

-- ; r  (~-0)] 

M g Mglo l--~h .,, o~~g - - - - . .  oc~~ /A 
-Ko/3 Ko - K o / 3 ~ ~  

t 
Fig. A-29 Rigid structure on soil halfspace. 

Discrete-element model of soil with 
applied effective foundation input 
rotational motion yielding reaction 
moment, which as driving moment 
acts on total dynamic system 
leading to total rotation. 

'---* ug + U 

Fig. A-31 Equivalent one-degree-of-freedom 
system leading to same structural 
distortion with same mass, effective 
input motion, effective damping 
ratio and effective natural 
frequency determining effective 
spring. 
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Fig. A-30 Coupled dynamic model of 
structure and soil for horizontal and 
rocking motions. 
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Fig. A-32 Redundant coupled dynamic model 
of structure with zero rotation of 
mass and of soil for horizontal and 
rocking motions. 
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THE SCALED BOUNDARY FINITE-ELEMENT METHOD 
-ALIAS CONSISTENT INFINITESIMAL FINITE-ELEMENT 
CELL M E T H O D -  FOR UNBOUNDED MEDIA 

Song Chongmin and John R Wolf 
(Institute of Hydraulics and Energy, Department of Civil Engineering, Swiss Federal 
Institute of Technology Lausanne, CH- 1015 Lausanne, Switzerland) 

Abstract 

The scaled boundary finite-element method, alias the consistent infinitesimal finite-element cell method, 
is developed. The governing partial differential equations of linear elastodynamics are transformed to a 
system of linear second-order ordinary differential equations of displacements as functions of the radial 
coordinate. Introducing the definition of the dynamic stiffness a system of nonlinear first-order ordinary 
differential equations of the dynamic-stiffness matrix as functions of frequency results. The asymptotic 
expansion for high frequency yields the boundary condition satisfying the radiation condition. In an 
application only the boundary of the medium is discretized with surface finite elements yielding a reduction 
of the spatial dimension by one. No fundamental solution is necessary, and thus no singular integrals must be 
evaluated. General anisotropic material is analysed without any increase in computational effort. Boundary 
conditions on free surfaces and on interfaces between different materials are enforced exactly without any 
discretization. This method is exact in the radial direction and converges to the exact solution in the finite- 
element sense in the circumferential directions. 

1 Introduction 

To analyse dynamic medium-structure interaction based on the substructure method in the frequency 
domain, the dynamic-stiffness matrix in the degrees of freedom on the structure-medium interface of 
the unbounded medium is determined. For a transient load the dynamic-stiffness matrix throughout the 
frequency range of interest is needed. The boundary-element method can be used. Only the boundary is 
discretized, leading to a reduction of the spatial dimension by one. A fundamental solution satisfying the 
governing equations in the domain must be determined. This analytical solution is often very complicated 
exhibiting singularities and for general anisotropy does not even exist. In each boundary element shape 
functions in the form of polynomials interpolate the displacements and surface tractions. Numerical 
integration of the polynomials with the fundamental solution involving singularities yields the non-symmetric 
coefficient matrices. As the fundamental solution satisfies exactly the radiation condition at infinity, the 
boundary-element method is well suited to analyse unbounded (infinite and semi-infinite) media. 

It is the goal of the present paper to describe a novel procedure, called the scaled boundaryfinite-element 
method, which is based entirely on finite elements but with a discretization on the boundary only. Thus, the 
advantages of the finite-element method and the boundary-element method are combined. 

To develop the scaled boundary finite-element method, a three-dimensional linear elastic unbounded 
medium with a section shown in Fig. 1 is addressed. The total boundary must be visible from a zone outside 
the medium where the so-called scaling centre O is chosen. In the medium with volume V the governing 
equations of elastodynamics apply. On the doubly-curved boundary S of the medium, the displacements and 
surface tractions are prescribed on Su and St, respectively. The radial direction points from the scaling centre 
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Fig. 1 Modelling of unbounded medium with surface finite elements with scaling centre outside medium 
(section). 

to a point on the boundary, where two circumferential directions tangential to the boundary are identified. 
The boundary is discretized with doubly-curved surface finite elements with any arrangement of nodes. 

For an unbounded medium the dynamic behaviour is described by the dynamic-stiffness matrix in the 
frequency domain [Se~ (0~)], relating the displacement amplitudes in the degrees of freedom on the boundary 
S to the corresponding force amplitudes. Alternatively, the same force-displacement relationship can be 
represented in the time domain by the unit-impulse response matrix. 

In general terms, the concept of the scaled boundary finite-element method can be described as follows, 
By scaling the boundary in the radial direction with respect to the scaling centre O with a scaling factor 
larger than 1, the whole domain is covered (Fig. 2). The scaling applies to each surface finite element. 
Its discretized surface on the boundary is denoted as S e (superscript e for element). Continuous scaling 
of the element yields a truncated semi-infinite pyramid with volume V e. The scaling centre O is at its 
apex. The "top" of the truncated pyramid is the surface finite element. The sides of the truncated pyramid 
forming the boundary A e follow from extending straight lines passing through the scaling center from the 
curved edge of the surface finite-element to infinity. Note that no discretization on A e occurs. Obviously, 
assembling all the truncated pyramids by connecting their sides which corresponds to enforcing compatibility 
and equilibrium results in the total medium with volume V and the closed boundary S. No boundaries A e 

whose extensions passing through the scaling centre remain: Mathematically, the scaling corresponds to a 
transformation of the coordinates for each finite element, resulting in the two curvilinear local coordinates 
in the circumferential directions on the surface and the dimensionless radial coordinate representing the 
scaling factor. This transformation is unique due to the choice of the scaling centre. Summarizing, scaling 
of the boundary discretized with finite elements is applied, which explains the name of the scaled boundary 
finite-element method. 

A powerful extension of the basic case with the scaling centre not located on the boundary shown in 
Fig. 1 is addressed. When during the assemblage process some sides of the truncated pyramids are not 
connected or some truncated pyramids are missing, an additional boundary A with its extension passing 
through the scaling centre is created. The case of a missing truncated pyramid is illustrated in Fig. 3 with 
the displacements and surface tractions prescribed on Au and At, respectively. Thus, the boundary conditions 
on Au and At can be modelled without spatial discretization by formulating them only on the finite-element 
edges P1 and P2 located on the boundary. The tops of all truncated pyramids form the boundary S which is 
not a closed surface. The total boundary of the medium consists of S and A. The scaling centre O is thus 
chosen on the (total) boundary. This applies when modelling a foundation embedded in a half-space where 
the free surface is not discretized. 
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Au At / ' ~  

Fig. 2 Scaled boundary (section). Fig. 3 Modelling of unbounded medium with 
surface finite elements with scaling centre on 
extension of boundary (section). 

This transformation of the geometry involving the discretization of the boundary with finite elements 
and scaling in the radial direction leads to a system of linear second-order differential equations for the 
displacements with the dimensionless radial coordinate as the independent variable. The coefficient matrices 
are constant. No approximation other than that of the finite elements in the circumferential directions is 
introduced. After substituting the definition of the dynamic-stiffness matrix in the differential equations, it is 
shown that the dynamic-stiffness matrix is a function of the dimensionless frequency which is proportional 
to the product of the frequency and the dimensionless radial coordinate. This permits the equation for 
the dynamic-stiffness matrix on the boundary to be expressed as a system of nonlinear first-order ordinary 
differential equations in the frequency as the independent variable with constant coefficient matrices. 

In comparison with the conventional finite-element method and the boundary-element method, the 
scaling boundary finite-element method has the following features which will be discussed. As is shown in 
Table 1, the scaled boundary finite-element method not only combines the advantages of the finite-element 
method and the boundary-element method but also exhibits additional advantages: 

1. reduction of the spatial dimension by one, reducing the discretization effort and the number of degrees 
of freedom 

2. no fundamental solution required which permits general anisotropic material to be addressed and 
eliminates singular integrals 

3. radiation condition at infinity satisfied exactly for unbounded media 

4. no discretization on that part of the boundary and interfaces between different materials passing 
through the scaling centre 

5. exact in the radial direction 

6. converges to the exact solution in the finite-element sense in the circumferential directions 

The novel approach is described for the three-dimensional vector wave equation addressing an unbounded 
medium in Reference [1]. The corresponding derivation is based on the assemblage of an infinitesimal 
finite-element cell and on similarity. This physically motivated derivation leads to the same final equation 
for the dynamic-stiffness matrix after performing the limit of the cell width analytically as that derived 
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Table 1 Advantages of scaled boundary finite-element method compared with those of finite-element and 
boundary-element methods. 

FINITE- 

ELEMENT 

METHOD 

BOUNDARY- 

ELEMENT 

METHOD 

reduction of spatial dimension by one X X 

no fundamental solution required X X 

no singular integrals to be evaluated X X 

suitable for anisotropic material X X 

radiation condition satisfied exactly X X 

boundary conditions on free and fixed surfaces and 
interfaces between different meaterials satisfied 
without discretization 

SCALED 

BOUNDARY 

FINITE-ELEMENT 

METHOD 

X 

in the scaled boundary finite-element method. The procedure is called the consistent infinitesimal finite- 
element cell method reflecting its derivation, which could also be applied to a bounded medium. The 
consistent infinitesimal finite-element cell method is described in great detail in the book (Reference [2]) 
where the parabolic and elliptic partial differential equations are also addressed. The historical development 
is described in Reference [1 ] citing references, and will not be repeated. 

The governing equations of three-dimensional elastodynamics are summarized in Section 2. The scaled 
boundary transformation of the geometry is derived in Section 3 and then applied to the governing equations 
of elastodynamics in Section 4. The boundary is discretized with surface finite elements in Section 5, which 
leads to the scaled boundary finite-element equation in displacement with the dimensionless radial coordinate 
as the independent variable. The scaled boundary finite-element equation in the dynamic-stiffness matrix is 
derived in Section 6. The boundary condition which is necessary to be able to start the solution procedure of 
the differential equation follows from an asymptotic expansion for high frequency in Section 7. Examples 
demonstrating the high accuracy and versatility of the scaled boundary finite-element method are described 
in Section 8. Conclusions are stated in Section 9. The key equations for the two-dimensional case are 
specified in Appendix A. 

2 Governing Equations of Elastodynamics 

The governing equations of three-dimensional elastodynamics are formulated in Cartesian coordinates 
2, 33, 2'. A circumflex (^) is introduced to denote a point in space, as the coordinates x, y, z are reserved for 
the boundary, which is discretized in an application. To simplify the nomenclature, the circumflex is omitted 
when used in a subscript to indicate a direction. 

The unbounded medium shown in Fig. 3 is addressed. The boundary consisting of Su and St is discretized, 
and the boundary Au and At, whose extension passing through the scaling centre, is not discretized. 

The differential equations of motion in the frequency domain expressed in displacement amplitudes 
{u} - {u(2,33,;~)}-[ Ux Uy u z ]T are formulated as 

[c] r{o)  + {p} + c02p(.} = 0 (1) 

with the mass density P and the amplitudes of the body forces {p}. The stress amplitudes {cy} follows from 
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Hooke's law with the elasticity matrix [D] as 

]r {o}- [  Ox Oy ~z "Cyz "Cxz "Cxy -[D]{~} 

The strain amplitudes {~} are defined from the strain-displacement relationship 

{E}--[  Ex Ey Sz Vyz Yxz Yxy ]T--[L]{ bt} 

ILl = 

with the differential operator ILl 

The boundary conditions are equal to 

{ , , } -  {/i} 
{t}-  {~} 

- 3 
32 

3 

3 
3{ 

3 3 a-7 
3 3 
3-{ 3~ 
3 3 

. ~  37 

(2) 

(3) 

(4) 

on S, (5a) 

on St (5b) 

and 

{u} - 0 on Au (6a) 

{t} - 0 on At (6b) 

with the prescribed displacement amplitudes {fi} and prescribed surface traction amplitudes {7}. For 
simplicity, the right-hand sides of (6) are assumed to be zero. 

3 Scaled B o u n d a r y  Transformat ion  of G e o m e t r y  

The transformation of the geometry corresponding to the scaled boundary discussed in Section 1 is 
addressed. The coordinates on the (doubly-curved) boundary are denoted as x, y, z. A point on the boundary 
is described by its position vector (unit vectors i, j, k) 

-- xT+ y j +  z~r (7) 

The Cartesian coordinates 2, ~9, s are transformed to the curvilinear coordinates ~, rl, ~ (Fig. 4). The scaling 
centre is selected outside of the domain (Fig. 1) or on the boundary (Fig. 3). It coincides with the origin 
of the coordinate system 2, ~9, s The dimensionless radial coordinate ~ is measured from the scaling centre 
along the position vector 

r -.ff+)~/+ ~ (8) 

is constant (equal to 1) on the boundary. In a practical application, the geometry of the boundary is so 
general that only a piecewise description is feasible. (Doubly-curved) surface finite elements are used. 

A specific finite element is addressed. The geometry of this finite element on the boundary is represented 
by interpolating its nodal coordinates {x}, {y} and {z} using the local coordinates rl, 

x(rl, ~) - [N(rl, ~)]{x} (9a) 

y(n, ~) - [N(rl, ~)]{y} (9b) 

z(rl, ~) - [N(TI, ~)]{z} (9c) 
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X 

Fig. 4 Scaled boundary transformation of geometry of surface finite element. 

with the mapping functions 

[N(n, ;)] - [ N1 (n, ~) N2(n, ~) ... ] 

A point in the domain is obtained by scaling that on the boundary 

(10) 

r - - ~  (11)- 

Expressed in coordinates 

2(~, T1, ~) = ~x(rl, ~) (12a) 

~9(~, rl, ~) = ~y(rl, ~) (12b) 

s rl, ~) = ~(rl ,  ~) (12c) 

applies with ~ - 1 on the boundary and - 0 in the scaling centre. The uniqueness of the transformation is 
guaranteed by the choice of the scaling centre, from which the total boundary must be visible. 

To transform the differential operator [L] in the 2, 29, ~ coordinate system (Eq. (4)) to that in the ~, rl, 
coordinate system, the Jacobian matrix is required 

~,~ ~,~ ~,~ ] 
[f(~,r l ,~)]-  x,n Y'n z,n J (13) 

s ~,; ~,; 

The partial derivatives are calculated using (12) and (9), leading, for instance, to 

2,~ - x - [N] {x}  (14a) 

2,11 - ~2c,rl - ~[N, n ]{x} (14b) 
2, ;  - ~c , ;  - ~ [N , ;  ] {x}  (14c)  

Substituting in (13) yields 

[f(~,~,U~)]-I 1 ~ ~ J[j(q,~)] (15) 
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with the abbreviation 

I x y z 

[J(r l ,~)]-  X,ri Y,n z,n (16) 

x,~ y,~ z,~ 

The argument 1"1 and ~ is omitted for conciseness. [J] depends on the geometry of the boundary only. Its 
determinant is equal to 

[JI - x(y, rl z,; -z,rl y,; ) + y(z,n x,; -X,rl z,; ) + z(x,rl y,; -Y,n x,; ) 

[J] and IJI can be non-dimensionalized with a characteristic length r0 with respect to the boundary as 

[J] = r0[J] 

ISl- r3tj~ 

where [J~ and [J-] are dimensionless. The inverse of the matrix [J] is written as 

1 1 [ Y,n z ,;-Z,rl  Y,; z y , ; - y z , ;  YZ,rl -zY,  n ] 
[J] - --~l [ z,nx,;-x,nz,g xz,g-zx,g zx,n-xz, n l 

x,n Y,; -Y,n x,; yx,; - x y , ;  xy, n - yx, n 

The coefficients in (1 9) satisfy the identities 

(zy,; - y z , ;  ),n + (YZ,n -ZY, n ),~ - -2(Y,n z,; -z,nY,~ ) 

(xz,; - zx ,g  ),n +(zx,n -xz ,n  ),~ - -2 (z ,nx ,g  - x ,n  z,; ) 

(yx,; - x y , ;  ),n + (xy, n - yx,n ) ,~ - " 2(x,n Y,; -Y,n x,; ) 

The derivatives with respects to 2, 33, 2 are transformed to those with respect to ~, rl, ~ using (1 5) 

(17) 

(18a) 

(lSb) 

(19) 

(20a) 

(20b) 

(2Oc) 

_ [ j ~ - I  -1 1 (21) 

The geometrical interpretation of the coordinate transformation is discussed (Fig. 4). The derivatives 
of the position vector of a point on the boundary (Eq. (7)) with respect to rl and ~ represent two tangential 
vectors 

-r,n -- x,n 7+ Y,n -f + z,n lc (22a) 

~,~ - x,~ i '+ y,; j +  z,; ~c (22b) 

with ~, 11, respectively, being constant. The three vectors ~, ?,n, ?,; form the base of the transformed 
coordinate system of the finite element. Eq. (17) is equivalent to 

iJi = (7,n xT,;)  

The infinitesimal volume dV for any ~ is calculated as 

dV - r,~" (r,rl xr , ; )d~dnd~ 

(23) 

(24) 

Using (11) and (23) leads to 

dV = P_.,21jld~dTId ~ (25) 
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The outward normal vectors to the surfaces (q, ~), (~, ~) and (~, rl), where the coordinates ~, 11 and ~, 
respectively, are constant, are equal on the boundary (~ - 1) to 

g~ -- -?,n x-?,; -- (y, n z,; - z , n  y,; )-{ + (z,n x,; -x,rl z,; ) ] + (x,rl y,; _ y, rl X,; )~ 

~rl _ -?,; x-7 -- (zy,; - y z , ;  )-{+ (xz,; -ZX,; )-f + (yx,; - xy , ;  )~: 

if; -- -? x -?,q -- (yz,n -zY,  rl )7'+ (zx,rl -xz ,q  ) j +  (xY, rl -YX,rl )~: 

(26a) 

(26b) 

(26c) 

The magnitude of a vector is denoted with the same symbol omitting the arrow sign (e.g. g~ - ]~1). 
The transformation of infinitesimal surfaces for any ~ between the two coordinate systems is specified 

using (11) and (26) as 

dSg - Ir,n • Idnd~ - I~, n • Idqd~ - ~2ggdrld~ 

dS n [r,; • -- r,~ Id~d~ I~?,; x?ld~d ~ - ~gnd~d~ 

dS ~ - [ r ,~  xr,n ]d~drl - [ ?  • ~?,n Id~dq - ~g;d~drl 

The unit normal vectors of the three surfaces (Fig. 4) follow from (26) as 

(27a) 

(27b) 

(27c) 

g~ 
-nx 7+ .}7+ 

ffrl _ nxrlT+ nyq/+ nzrl~ _ ~rl 
- grl 

g~ 

(28a) 

(28b) 

(28c) 

Eqs. (19), (26) and (28) yield 

Substituting (29) in (21) results in 

I g~n~x grlnq x 
1 1 g~n} gnn~y 

[j]- -- ]-~ g~n~z gnnq z 1 g~n} 

g~n~z 

(29) 

a 

a 

The partial derivatives with respect to 2, 33, s are expressed as a function of those with respect to ~, 1"1, ~. 

(30) 

Governing Equations of Elastodynamics with Geometry in Transformed 
Coordinate System 

For the governing equations of elastodynamics in Section 2, the scaled boundary transformation of 
Section 3 is applied to the geometry of the domain. Only the spatial coordinates are affected. The components 
of the displacements, strains and stresses are still defined in the original coordinate system 2, )~, L This is 
analogous to the procedure of mapping parent elements to curvilinear elements in the finite-element method. 

Thus, only the differential operator [L] in (4) is addressed. Substituting (30) in (4) yields 

(31) 
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with 

g~ 
i b l ] -  

grl 
[b2] -  

g~ [b 3] = 

- n} 0 0 

0 n~ 0 

0 0 nz ~ 

o ,.z ~ ,.y~ 
.z ~ 0 ~ 

nx ~ 0 0 

0 ny q 0 
0 0 nz rl 

o ,,z ~ ,,y~ 
,,z n o ,,x n 

,,y~ ,,x ~ o 

- nx ~ 0 0 
0 ny ~ 0 

0 0 nz ~ 

o -z ~ d 
.z ~ o ,.x ~ 
d ~ o 

(32a) 

(32b) 

(32c) 

Note that [b 1 ], [b 2] and [b 3] are independent of ~. The following identity can be verified by substituting (32), 
(28), (26) and (20) 

([JI [bZ]),q -+-(IJ[ [b3]),~ - -21J[ [b 1] (33) 

The amplitudes of the surface tractions {t} - [  tx ty t z iT 

normal vector ~ - nxi + nyj  + nzk equal 

on any boundary with the outward unit 

"1 
nx 0 0 0 nz ny [ 

{ t } - -  0 ny 0 n z 0 n x J {c~} (34) 
0 0 n z ny nx 0 

By comparing (34) and (32), the traction amplitudes on the surfaces (1"1, ~), (~, ~) and (~, rl), where the 
coordinates ~, rl and ~, respectively, are constant, are written as 

{tr -- ~ [ b l ]  r{cy} (35a) 

{t q } - ~{b2] r {o'} (35b) 

{t;} - ~[b3]  r{cy} (35c) 

5 Boundary  Discretization with Finite Elements  

The exact differential equations in the frequency domain with the geometry in the transformed coordinate 
system are specified in (1) with [L] in (31). The truncated semi-infinite pyramid whose top is one finite 
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element on the boundary (Fig. 2) is addressed. The superscript e is dropped for conciseness. To derive a 
finite-element approximation, (1) is multiplied by a weighting function {w} -- {w(~, 1"1, ~)} and integrated 
over the domain of the truncated pyramid 

1 

+ fv {w}T {p}dV + 0)2 J(v {w} T p{u}dV -- 0 (36) 

The second term of (36) denoted as I is examined. Substituting (25) yields 

I =  ~ {w}TIJI ([b2]T{o',rl}+[b3]T{G',~})drld~ d~ (37) 

where S~ denotes the surface with a constant ~. Applying Green's theorem to the surface integral results in 

I -- ~ {w} T (IJl[b3] T{ry}drl + ]JJ[b2] T{cy}d~) 

-- fSS~ (({w}TIJI[b2]T)'rl +({w}TlJ[[b3]T)';){cY}drld;) d~ (38) 

with the contour I-g (resulting from scaling the edge of the surface finite element) of Sg. Substituting (35b) 
and (35c) in (38) and using (33) leads to 

I - -  fl~176 ( f~{w} r ({t~}g~dr I + {trl}grld~) 

+ ) i 2j + d~ (39) 

Substituting (25) in the first, third and fourth terms in (36) and using (39) yields 

i. 
--~ fs~ (--2{w}T[bl]T q- {W,q }T[b2]T -F (w,;}T[b3] T) {(y}lJldl"ld; 

_j_~2 fsg {W}T {p} [J[dTld~ -it- ('02~2 fsg {W}T p{u)]J]dTld~)d~-O (4O) 

Eq. (40) is satisfied by setting the integrand of the integral over ~ equal to zero. This corresponds to enforcing 
the equation of motion (1) exactly in the ~ direction 

-~  fs~ (--2{w}T[bl]T + {w'n }r[b2]T + {W'~}T[b3]T) {~3}lJIdrld~ 

+~2 fs~{w}r{P}lJldqd~+oa2~2 fs~{w}rp{u}lJIdqd~--O (41) 

Note that no volume integrals are present in (41). 
The displacement amplitudes of the finite element on the boundary (~ - 1) are interpolated using shape 

functions [NU(rl, ~)]. It is postulated that the same shape functions apply with the displacement amplitudes 
{u(~) } for all surfaces S~ with a constant 

{u(~, n, ~)) = [NU(n, ~)] {u(~)} (42) 



81 

The stress amplitudes are calculated substituting (42) and (31) in (3) using (2) 

( (O} -- [D] [B1]{u(~)},~+~ (43) 

with 

[B 1] - [bl][NU(rl, ~)] 

[ B2] - [b2][NU(TI, ~)],n +[b3][NU(rl, ~)],~ 

(44a) 

(44b) 

[B 1] and [B 2] are independent of ~. The displacement discretization also applies to the weighting function 
{w} = {w(~, n, ~)} 

{w(~,n,  ~)} = [NU(n,~)]{w(~)} (45) 

Substituting (45)in (41) for arbitrary {w(~)} yields 

~2 fsg[B1]r {(y,~ }ljidrld~_ ~fSg (_2[B1]T + [BZ]T){o.} Ijldrld ~ 

-}-0)2~2 fs{ [NU(vl, ~)]Tp{u}[Y[drld~+~{T}+~2{p}--O (46) 

with 

{ T } -  Jrg[NU(rl,~)] r ({t~}g~dq+{tn}gqd~) (47) 

{p) _ f2g [NU (rl, ~)]T {p} [j[dqd~ (48) 

{T} corresponds to the amplitudes of the nodal forces resulting from the surface tractions acting on those 
surfaces A whose extensions pass through the scaling centre (Fig. 2) and {P} to the body forces. Substituting 
the stress amplitudes of (43) in (46) results in the differential equations expressed in displacement amplitudes 

( , ) ~2 fs~[B1]T[D] [B1]{u(~)},~ +~[B2]{u(~)},~__~ff[B2]{u(~)} ]Sldqd ~ 

-~fs~(-2[B1]T+[Ba]r)[D] [B1]{u(~)},~+~[BZ]{u(~)} IJIdnd~ 

+o~2~ 2 fs~[N.(n, ~)]rp[N"(n , ~)]{u(~)}]Jldrld~ +~{T} +{2{p} _ 0 (49) 

Introducing the coefficient matrices 

[E~ - fs~ [B1]T[D][B1]IjIdrld~ 
[El] - fs~ [B2]T[D][B1]IjIdrld~ 
[E2] -- fsg [B2]T [O] [B 2] [Jldqd~ 

(50a) 

(50b) 

(5Oc) 

and 

[M o] - f~[NU(n, ~)]Tp[NU(rl, ~)] ]J[dqd~ (5~) 
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yields 

[E~ },~ +(2[E ~ - [ E  1 ] + [E1]T)~{u(~)},~ 
+ ([El] T -[E2]){u(~)} + r176 +~{T} +{2{p} _ 0 (52) 

Note that the coefficient matrices [E~ [Eli, [E2], [M 0] are independent of ~. Integrations over the surface 
finite element (at ~ = l) only are involved. For later use, the coefficient matrices are non-dimensionalized 

[E ~ -- aro[/~ ~ (53a) 

[E 1] -- aro[E 1] (53b) 

[E 2] -- Gro[/~ 2] (53c) 

and 

[M ~ = pr3 [At/~ (54) 

with the shear modulus G. 
Eq. (52) applies to the domain of the truncated pyramid corresponding to one finite element on the 

boundary. To model the total domain, an assemblage as in the conventional finite-element method is 
performed. To simplify the nomenclature, the same symbols are used for the assembled coefficient matrices 
and the assembled displacement amplitudes in the following. In the assemblage process the nodal forces 
{T} in (47) will cancel with the exception of those on the part At of the total boundary passing through the 
scaling centre with prescribed surface tractions. The case of the free surface (6b) and vanishing body forces 
leading to {it} = 0 and {P} = 0 is addressed. The assemblage process yields 

[E~ },~ +(2[E 0] - [ E  l] + [E1]T)~{u(~)},~+([E1]T --[E2]) {u(~) } + r176 } -- 0 (55) 

Eq. (55) represents the scaled boundaryfinite-element equation in displacement formulated in the frequency 
domain in three dimensions. It is a system of linear second-order ordinary differential equations for the 
displacement amplitude {u(~)} in the dimensionless radial coordinate ~ as the independent variable. As 
already pointed out, the coefficient matrices [E~ [E 1], [E2], [M ~ are independent of ~. In the scalar case, a 
transformation to the Bessel differential equation is possible. 

6 Dynamic-Stiffness Matrix on Boundary 

The dynamic-stiffness matrix of the unbounded medium corresponding to all the degrees of freedom on 
the boundary [SC~(r is addressed. For any surface S ~ with a constant ~, the virtual work is formulated as 

{w(~)} T {R(~)} = fs~ {w}v {t~}dS~ (56) 

with the amplitudes of the resultant forces {R(~)} and of the surface tractions {t~}. Substituting the 
weighting function {w} (Eq. (45)) and the infinitesimal surface dS~ (Eq. (27a)) yields for an arbitrary {w(~,)} 

{R(~) } - fs~ [NU(rl' ~)]T {t~}~Zg~dTid~ (57) 

Substituting (43) in (35a) and then in (57) and using (44) leads to 

1 [BZ]{u(~)}) ~2lj[drld ~ (58) {R(~)}-  fs,[B1]T[D] ([B1]{u(~)},~+~ 

Introducing [E~ [E 1] (Eqs. (50a) and (50b)) results in 

{R(~)} -- [E~ +[E1]T~{u(~)) (59) 
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The dynamic-stiffness matrix on a surface with constant ~ is defined as (superscript oo for unbounded) 

-{R(~)} = [S~(0),~)]{u(~)} (60) 

Equating the right-hand sides of (59) and (60) yields 

-[S~176 ~)]{u(~)} - [E~ +[E1]r~{u(~)} (61) 

From (55) and (61) the equation for IS~176 (0), ~)] can be derived. Differentiating (61) with respect to ~ leads to 

- [s ~176 (co. ~)].~ {u(~)}  - Is~176 (c0. ~)] { u ( ~ ) } . ~ -  [u~  
- (2[E ~ + [E1]r)~{u(~)},~, - [ E l i  r{u(~)  } - 0 (62) 

Adding (55) and (62) results in 

- IS  ~176 (0), ~)],~ {u(~)} - ([S(0), ~)] q- ~[E1]){u(~)},~- [E2] {u(~) } --[- 0)2 [M~ {u(~) } - 0 

Solving (61) for {u(~)},~ and substituting in (63) yields for arbitrary {u(~)} 

([SOO (03, ~)] + ~[E1])(~[E0]) - 1 ([SOO (0), ~)] + ~[E 1 ] T) _ ~[S(0), ~)],~ -~[E 2 ] + 0) 2 ~3 [M o] _ 0 

(63) 

(64) 

Introducing the dimensionless dynamic-stiffness matrix denoted with a bar 

(65) 

and substituting (53) and (54) in (64) leads to 

([~c,o (0), ~)]-Jr-[~,1]) [~,0]-1 ([~cx~ (0), ~)] -Jr- [~,I]T) _ [~cxz (0..3, ~)] 

( 0)ro ~) 2 
\ Cs ) 

[MO] = 0 (66) 

with the shear-wave velocity Cs = X/~/p. The coefficient of the last term defines the dimensionless frequency 
for any 

a o ( 0) , ~ ) = 0) r__~o ~ (67) 
Cs 

The second-last term is written as 

~[~qoo (co, ~)],{ _ ao [~oo (03, ~)],ao (68) 

After substituting (67) and (68) in (66), the only independent variable in the equation is ao. Thus, the 
dimensionless dynamic-stiffness matrix is a function of ao only 

(69) 

The term with the derivative ao[S~176 (ao)],ao can be interpreted either for varying ~ with fixed co or for varying 
co with fixed 

ao[g~176  (ao)],ao - ~[~~176 co[~~176 (70) 

Differentiating (65) with respect to ~ and using (69) and (70) yields 

~[s~176 ~)1,~ = [s~176 + co[s~176 ~)1,o, (71) 
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Substituting (71) in (64) results in 

(Is ~176 (co, ~)] + ~[E~])(~[E~ (IS ~176 (o~, ~)] + ~[E~] r )  - IS ~176 (co, ~)] - 

m[S~176 q- f.02~3[M 0] = 0 (72) 

For the boundary (~ = 1) the dynamic-stiffness matrix is expressed as 

([ S~176 (0))] -+- [ E1 ])[E0]-I ([ Sc~ (0))1 + [ E1 ]T) _ [SOO (0))] _ 0)[8 ~ (0))],m - [ E  2] --k 0)2 [M~ -- 0 (73) 

This represents the scaled boundaryfinite-element equation in dynamic stiffness formulated in the frequency 
domain for a three-dimensional unbounded medium. It is a system of nonlinear first-order ordinary 
differential equations in the independent variable, which is the frequency. 

Comparing (73) for the three-dimensional case and (A.13) for the two-dimensional case the scaled 
boundary finite-element equation can be unified using the spatial dimension s (= 2 or = 3) 

([SO~ (0))] q-[El])[E~ -1 ([SCX)(0))] q-[Eli  T) - ( s -  2)[S~176 0)[SC*~ (0))] ,m - [E 2] + 0)2[M~ - 0 (74) 

This equation is identical to equation (56) for the unbounded medium in Reference [ 1 ]. 

7 Asymptotic  Expansion for High Frequency 

The dynamic-stiffness matrix [S~176 at high frequency is expanded in a power series of i0) in descending 
order starting at one 

m 1 
[S ~176 (0))] ~ i0)[Coo] + [Koo] + ~ (i0)))[Aj] (75) 

j=l 

The first two terms on the right-hand side represent the singular part [S~(0))] with the constant dashpot 
matrix [Coo] and the constant spring matrix [Koo] (Reference [4], p. 256). The third term denotes the 
asymptotic expansion with m terms of the regular part [S~(0))] with the unknown coefficient matrices [Aj] 
(j -- 1,... ,m). A concise formulation results when the transformation based on the following eigenvalue 
problem is introduced 

[M~162 = [e~162 rAzJ (76) 

[M ~ and [E ~ are positive definite matrices resulting in positive eigenvalues [AZJ. The eigenvectors [r are 
normalized as 

[~]r [E0][r = [i] (77) 

yielding 

and 

[r176162 = FA2J (78) 

[E0]-~ _ [r [r r 

Premultiplying (74) by [r and postmultiplying by [r results in 

([s~176 + [el])([s~176 + [eli T) - ( s -  2)[s~176 0)[s~176 + 0) 2 IA2J -- 0 

(79) 

(80) 

where 

[sOO(co)]-  [~]r[soo(co)][~] (81) 
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and 

Substituting (75) in (81) yields 

with 

[e l] - - [ r162 (82a) 

[e 2] = [r162 (82b) 

m 1 
[soo (co)] ~ io~[coo] + [koo] + ~ (ico)J [aj] 

j=l 
(83) 

(92) 

[coo] = [o]r [coo] [O] (84a) 

[koo] = [o]r[Koo][O] (84b) 

[as]- [o]T [Aj][O] (84c) 

Substituting (83) in (80) and rearranging in descending order of the power series of ic0 leads to 

(it0) 2 ([Coo] 2 -  [A2J) + im ([c~][koo] + [k~][c~] + [coo][el] T -+-[el][coo]- ( s -  1) [coo]) 

+ [coo][al] + [al][Coo] + ([koo] + [el]) ([koo] + [el] T) - ( s -  2)[koo]- [e 2] 
1 

+ - -  ([coo][aa] + [aa][c~] + ([k~] + [eli)[aa] + [al] ([koo] + [eli T) - ( s -  3)[al]) ~ 0 (85) 

In (85), m = 2 is selected. The generalization to any m leading to additional terms is straightforward. 
The coefficient matrix of each term of the power series in ico is set equal to zero in descending order. The 

first yields 

[Coo] 2- [A2J (86) 

Selecting the positive roots of each element on the diagonal of [AZJ leads to 

[coo] = IAJ (87) 

The dashpot matrix [Coo] follows from (84a) as 

[Coo]- ([(1)] -I) T [AJ [(1)] -I (88) 

As each coefficient of [AJ is positive, [Coo] will be positive definite. 
The second term in (85) results after substituting (87) in 

[AJ [koo] + [koo] [AJ - - [AJ [e 117" _ [el] [Aj + ( s -  1) [AJ (89) 

This linear equation for [koo] is a Lyapunov equation with a diagonal coefficient matrix [AJ. Its solution for 
each element kookl equals 

1 (s - ])AkSkl) (90) 1 (_Ake]k_Alekl+ kookl -- Ak + Al 

with the Kronecker delta 5At (=1 for k = l; =0 for k --/- l). The spring matrix [Koo] is calculated from (84b) as 

[Koo] -- ([cI)] -1) T [koo] [(i)]_ 1 (91) 

The third term in (85) leads after substituting (87) with the known [koo] to 

[AJ [al] + [aa] [AJ - - ([k~] + [el]) ([koo] + [ea] T) + ( s -  2)[k~] + [e 2] 
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This equation for [al] is in the same form as (89). Analogously, [a2] is determined from the fourth term in 
(85) with the known [coo] = FA], [koo] and [al] 

FaJ [a2] + [a2] [AJ - - ([koo] + [e l ] ) [a l l -  [al] ([koo] + [el] T) + ( s -  3)[al] (93) 

The coefficient matrices [A j] result from (84c) as 

[Aj]- ([cl~] -I) T Fay j [~]-I (94) 

After calculating [Coo], [Koo], [A1] and [A2], the asymptotic behaviour for m = 2 follows from (75). 
In an actual application of the scaled boundary finite-element method in the frequency domain the 

boundary condition at the specified high frequency 03h [Soo(03h)] follows from (75) for a selected m. The 
dashpot matrix [Coo] is calculated after solving an eigenvalue problem (Eq. (88)), and the spring matrix 
[Koo] (Eq. (91)) as well as the coefficient matrices of the asymptotic expansion [A j] (Eq. (94)) follow from 
Lyapunov equations. [Soo(03h)] is then used as the starting value to integrate the scaled boundary finite- 
element equation in frequency (Eq. (74)) for decreasing 03. 

The scaled boundary finite-element equation is processed for decreasing frequencies starting at a very 
large value 03h which replaces co --~ oo. The starting value of [Soo(03h)] is determined based on an asymptotic 
expansion at high frequency (Eq. (75)). 

8 E x a m p l e s  

(1) Spherical Cavity Embedded in Full-Space 
The spherical cavity of radius r embedded in a full-space with shear modulus G, Poisson's ratio v and 

mass density 9 is addressed. A uniform normal displacement amplitude u0(03) is prescribed on its wall, the 
structure-medium interface, yielding the pressure amplitude p(03). This one-dimensional problem is solved 
in Section 2.3 of Reference [4]. The analytical solution of the dynamic-stiffness coefficient relating u0(03) to 
the total interaction force R(03) = 4rtr2p(03) is specified as 

SO~ (03) - 1 6rtGr (1  + 
1 - V  1 (i03r) 2 ) 

2(1 - -  2V) Cp Cp + i03r 
(95) 

with the dilatational-wave velocity cp. 
The coefficients E ~ E 1, E 2 and M ~ follow as 

E ~ - 8rt 1 - v Gr (96a) 
1 - 2v 

v Gr (96b) E 1 16rtl - 2v 

1 Gr (96c) E 2 - 1 6rt 1 - 2v 

M ~  4rtpr 3 (97) 

Substituting (96) and (97) in (74) yields 

1 1 - 2 v  1 ~2 
(S ~ (co) ) 

8re 1 - v Gr 

1 - 5 v  

1 - v  

l + v  
SO~ (03) - 03Soo (03),co +4~ r3 903 2 - 1 6re 1 _ v G r = O  (98) 

The accuracy of the scaled boundary finite-element method is investigated. First, the asymptotic 
expansion for high frequency, which provides the boundary condition, is examined. An asymptotic expansion 
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can be derived from the analytical solution and used in a comparison with that of the scaled boundary finite- 
element method. The coefficients of the asymptotic expansion of the analytical solution of Soo (o~) specified 
in (95) for high frequency are 

Coo - 4gr2 pCp (99a) 

Koo -- 8g 1 - 3v Gr (99b) 
1 2v 

A1 - -  4~pc3p (99c) 

A2 -- -4rcpc 41 (99d) 
F 

The coefficients of the asymptotic expansion are calculated from the scaled boundary finite-element method. 
From (76) and (77) 

m o 
A 2 - -  ( 1 0 0 )  

E o 

r _ (g 0) -0.5 ( 101) 

result. The dashpot coefficient Coo follows from (88) as 

A 
Coo -- 17s 2 - 4rcr2pcp (102) 

and the spring coefficient Koo from (89) and (91) as 

Koo - E ~  1 - 8re 1 - 3 v  Gr (103) 
1 - 2v 

The coefficients A1 and A2 result from (92), (93) and (94) as 

A 1 - -  4xpC3p (104a) 

A 2  - -  -4rcpc 41 (104b) 

As expected, the coefficients of the asymptotic expansion Coo, Koo, A1, A2 determined from the scaled 
boundary finite-element equation are identical to those of the analytical solution (Eq. (99)). 

The scaled boundary finite-element equation (Eq. (98)) is solved starting from the boundary condition 
evaluated at different frequencies e0h 

m 1 

Soo(COh) ~ iCOhCoo + Koo + ~ ,  ~ JqCOh~jAj 
j = l  

(~05) 

The analysis is performed for Poisson's ratio v -  0.25 using the Bulirsch-Stoer method described in 
Reference [3], starting at COb -- aohcp/r  for aOh -- 3 and -- 6. The dynamic-stiffness coefficient is decomposed 
in the dimensionless spring coefficient k(ao) and damping coefficient c(ao) as 

S ~ (ao) - Koo (k(ao) + iaoc(ao)) (106) 

with the static-stiffness coefficient Koo and the dimensionless frequency ao - o)r/cp. As shown in Fig. 5, 
the (small) error of the boundary condition decreases for decreasing a0. Even for a O h -  3 with the 
boundary condition Koo(0.333 + i2) (the analytical solution equals Koo(0.325 + i2.025)), the results are 
highly accurate. 
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Fig. 5 Dynamic-stiffness coefficient of spherical cavity for different starting values. 
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Fig. 6 Circular cavity embedded in full-plane with prescribed translational motion. 

(2) Circular Cavity Embedded in Full-Plane 
As a two-dimensional in-plane wave propagation problem with an analytical solution available, the 

circular cavity embedded in a full-plane is discussed (Fig. 6). On its rigid wall, the structure-medium 
interface, a constant horizontal displacement u0 is enforced. The radius of the cavity is r, and the material 
properties of the full-plane are chosen as the Lain6 parameters X and G, the shear modulus (X = 2 G v / ( 1  - 2v) 
with Poisson's ratio v). The shear- and dilatational-wave velocities equal 

/-d 
C s -  ~/ p (107a) 

I " 

cp - = - Cs (107b) 
p - 2v 

The analytical solution for the dynamic-stiffness coefficient equals[5] 

S~176 (ao)  - nGa2c~[3 _ ct _ ~ (108) 
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with 

H~2) (ao) 

OC-- aoH~2)(ao ) 

Cp Cs 
--  _ _ a o  c. . 2>(Csao) 

Cp 

(109a) 

(109b) 

o r  
a0 -- - -  (110) 

Cs 

Due to symmetry only one quarter of the structure-mediurn interface is discretized with 4 3-node line 
elements of equal length. The boundary condition of the dynamic-stiffness matrix [S~176 is determined 
from the asymptotic expansion with m = 2 (Eq. (75)) at Oh = aohcs/rO for aOh -- 6. [SO~ of order 16x 16 
is calculated for decreasing o with the scaled boundary finite-element method based on the Bulirsch-Stoer 
method of Reference [3]. The dynamic-stiffness coefficient S ~176 (o) follows from 

soo (c0)- {r176176 (111) 

with the vector {q~} determined from the translational motion of the rigid structure-medium interface. S ~176 (o) 
non-dimensionalized with the shear modulus G is decomposed in k(ao) and c(ao). Excellent agreement with 
the analytical solution for v -  1/3 of (108) results (Fig. 7). 
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Fig. 7 Dynamic-stiffness coefficient of circular cavity. 

(3) Prism Embedded in Half-Space 
The three-dimensional motion of a prism of length 2b embedded with depth e in a half-space of 

shear modulus G, Poisson's ratio v and mass density 9 (Fig. 8) is calculated. The embedment ratio 
e/b = 2/3 and v = 1/3 are selected. The finite-element discretization of one quarter of the structure-medium 
interface is shown in Fig. 9. The dynamic-stiffness matrix [SC~(m)] is calculated for decreasing o using 
the scaled boundary finite-element method based on the Bulirsch-Stoer method of Reference [3], starting 
from the boundary condition [SC~(Oh)] determined from the asymptotic expansion with m = 2 (Eq. (75)) 
at Oh = aOhcs/rO for aOh = 40. A rigid interface is introduced. {~)h}, {~)v}, {~)r} and {q~t} correspond to 
the motion patterns of the nodes on the structure-medium interface associated with the horizontal, vertical, 
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Fig. 8 One quarter of square prism embedded in 
half-space. 

Fig. 9 Finite-element mesh of one quarter of 
structure-medium interface of square prism. 

rocking and torsional motions, respectively. The dynamic-stiffness coefficients Sff (co), S 7 (co), S 7 (co) and 
S~ (co) are calculated from (111). After normalization with the static-stiffness coefficients a decomposition 
in the dimensionless spring coefficients and damping coefficients is performed as specified in (106). The 
dynamic-stiffness coefficients plotted in Fig. 10 are compared with the results of the boundary-element 
method for the horizontal, vertical and rocking degrees of freedom in the frequency domain[7] and with 
those of the hybrid method for the torsional degree of freedom[8]. 

9 Conclusions 

The consistent infinitesimal finite-element cell method, which was originally developed using finite- 
element assemblage and similarity, is reexamined for an unbounded medium starting from the governing 
equations of elastodynamics. The procedure is called the scaled boundary finite-element method. 

1. Applying the scaled boundary transformation to the geometry, the governing equations of 
elastodynamics yields the scaled boundary finite-element equation in displacements with the 
dimensionless radial coordinate as the independent variable. No approximation other than that of the 
surface finite elements is introduced. The scaled boundary finite-element equation in dynamic stiffness 
with the frequency as the independent variable is independent of the radial coordinate which can be 
solved without addressing the radial direction. 

2. A reduction of the spatial dimension by one is achieved with this finite-element procedure, as only the 
boundary is discretized with surface finite elements. Furthermore, no discretization of that part of the 
boundary and material interfaces whose extensions pass through the scaling centre is required. 

3. In contrast to the boundary-element method no fundamental solution is required. This expands the 
scope of application and avoids the singular integrals. When applied to an unbounded medium, the 
scaled boundary finite-element method satisfies the radiation condition at infinity exactly. 

4. The scaled boundary finite-element method is exact in the radial direction and converges to the exact 
solution in the finite-element sense in the circumferential directions. 

5. Examples demonstrate the high accuracy achieved with a small number of surface finite elements. 
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Fig. 10 Dynamic-stiffness coefficients of rigid prism embedded in half-space. 

A Summary  of Equat ions  for Implementa t ion  of Two-Dimensional  Elastody- 
namics  

The derivation of the scaled boundary finite-element equations for two-dimensional elastodynamics 
follows closely that of the three-dimensional case. For easy reference the key equations used for the 
implementation of the method are listed. 

The differential equations of motion (Eq. (1)) still hold for the two-dimensional case with displacement 
amplitudes {u} = [ Ux Uy ]r and stress amplitudes {cy} - [  O'x (5'y 'tZxy ]T where the differential operator 
equals 

s 
o2 

3 [L] - (A.1) 

The scaled boundary transformation of the geometry is defined with the dimensionless radial coordinate 
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Fig. 10 Dynamic-stiffness coefficients of rigid prism embedded in half-space. 

by 

where the coordinates on the boundary 

2(~, q) -- ~2c(q) (A.2a) 
3)(~, q) -- ~ ( q )  (A.2b) 

x(q) = [N(q)]{x} (A.3a) 

y(rl)--  [N(q)]{y} (A.3b) 

are represented by interpolating the nodal coordinates {x}, {y} using the mapping function [N(q)]. 
The coefficients for a (curved) line finite element in the scaled boundary finite-element method are 

specified in the same form as those for the three-dimensional case (Eqs. (50) and (51)) 

[E ~ - L~I[B 1]r [D] [B1][j[dq (A.4a) 

[E 1 ] - - / _ ~  I[B2]T- [D] [g ~ ] Igldn (A.4b) 
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[E 2] - f_S l[Ba] r [D] [B 2] IJI drl (A.4c) 

and 

[M 0] -- fSl[Nu(TI)]Tp[NU('l'l)]lJ[dTI (A.5) 

The curvilinear coordinate rl in [N(~)] equals § 1 and - 1 at the two ends of the line element. [D] denotes the 
two-dimensional elasticity matrix. The determinant equals 

[JI =xy,n-yx,n (A.6) 

where x, y are functions of rl described in (A.3). The matrices 

[B 1] -[bl][NU(rl)] (A.7a) 
[B 2] --[b2][NU(Ti)],n (A.7b) 

are calculated with 

1 I Y'q [81] -- ~ 0 

--X~ 

,I -y ~ 1 [b ~ ] -  ~ o x 
x --y 

01 mX~r I 

Y,n 

(A.8a) 

(A.8b) 

and the shape functions [N u (I"!)] 

(A.9) 

The scaled boundary finite-element equation in displacement equals 

[E0]~ 2 { u(~) },~,~ +([E 0] - [E 1 ] + [E 1 ] T )~ { u(~) },~ --[E 2] { u(~) } + C02 [M~ 2 { u(~) } -- 0 (A.10) 

which should be compared with that for the three-dimensional case in (55). 
Using the dynamic-stiffness matrix 

- [ S  c~ ((o, ~)] {tt(~)} - [E~ @[El] T {u(~)} (A.11) 

with 

[s~(m,~)] = c [~(a0) ]  (A.12) 

the scaled boundary finite-element equation in dynamic stiffness is derived as 

([S c~ (0))] n t- [Eli)[E~ -1 ([S cxz (co)] n t- [El] T) -03[8 c~ (0))],o1- [E 2] -k-o)2[m 0] - 0 (A.13) 

Eq. (A.12) should be compared with (65) and (69) for the three-dimensional case, and (A.13) with (73). 
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EFFECTS OF SOIL-STRUCTURE INTERACTION 

ON NONLINEAR RESPONSE OF ARCH DAMS 

Zhang Chuhan, Xu Yanjie and Jin Feng 

(Tsinghua University, Beijing, China, 100084) 

Summary 

Effects of two important factors on earthquake response of high arch dams are considered and 
combined into one program. These factors are: effects of dam-canyon interaction and that of local 
nonlinearity of the contraction joint opening between the dam monoliths. The substructuring technique is 
employed, thus the equilibrium iteration involves only the degrees of freedom in nonlinear substructure. 
For modeling of rock canyon, the discrete parameters are obtained based on a curve fitting, thus allowing 
the nonlinear dam system to be solved in the time domain. A simplified earthquake input procedure is 
also used, which takes into account the radiation damping of the infinite canyon while preventing the 
artificial amplification of the ground motion through the rock mass. Two engineering examples are given 
to demonstrate the significant effects of the above-mentioned two factors on the response of the structure. 

Introduction 

Starting from the end of this century, construction of a series of high arch dams up to 250m-300m in 
height are being planned or conducted. These projects include: the Ertan arch dam (240m high, under 
construction) on the Yalun River, the Laxiwa arch dam (250m high, in preliminary design) on the Yellow 
River, the Xiaowan arch dam (292m high, in preliminary design) on the Lanchang River, and the Xiluodu 
arch dam (275m high, in feasibility study) on the Jinsha River. All these projects are located in 
seismically active regions with design basis earthquakes between a PVA of 0.22g and 0.32g. For seismic 
analysis of such high arch dams to resist strong earthquakes, it is necessary to consider some important 
factors which are not accounted for in the current procedures. These factors include (1)complete 
interaction effects between the dam and the rock foundation; (2)nonlinearities of the dam with contraction 
joint opening during the extreme ground motions. 

State-of-the-art procedures dealing with seismic analysis of arch dams assume a truncated massless rock 
foundation and apply the design earthquake input at the rigid base beneath the truncated rock foundation. 
These assumptions neglect the interaction effects due to radiation damping of the infinite mass rock and 
the non-uniform input motions along the canyon. Recent studies[I]-[4] have revealed that these 
interaction effects are important and should be included in the analysis. With this objective, a time 
domain procedure of coupling finite elements (FEs), boundary elements (BEs) and infinite boundary 
elements (IBEs) has been developed by the authors[5][6]. Studies on the effects of interaction on the 
response of the dam have been conducted in detail for some of the above-mentioned arch dams[7]. 

With regard to the nonlinear behaviors of arch dams, the most important nonlinearity is initiated by the 
contraction joint opening during strong ground motions. This phenomenon often occurs in the upper 
portion of a dam where the largest tensile stresses up to 5-6MPa are expected to occur in the arch 
direction for moderately strong earthquake motion. It is evident that the contraction joints can only 
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sustain very limited values of tensile stress even if they are properly grouted. Thus, the opening of 
contraction joints is inevitable leading to a substantial reduction of tensile stresses in arch direction, 
while, on the other hand, a significant increase in the possibility of cracking of vertical cantilevers. 
Problems of such nonlinearities of arch dams were first raised by Clough[8]. Dowling and Hall [9] 
presented a 2-D discrete joint element for simulation of gradual opening and closing of joints of 3-D arch 
dams in an approximate manner. The nonlinear analysis of the Pacoima dam subjected to the 1971 San 
Femando earthquake is performed as a case study. Following up, Fenves[10] used a 3-D nonlinear joint 
element and an efficient numerical procedure for solving this problem. The F.E. substructuring technique 
is employed by considering the set of joint elements as a single nonlinear substructure while the 
cantilevers between joints as linear ones and their degrees of freedom can be condensed out. A typical 
arch dam-Big Tujunga was analyzed using the presented method. 

The objective of this study is to combine the above-mentioned two factors into one program, i.e. the 
complete interaction effects between arch dam and foundation, and the nonlinearities of the contraction 
joint opening. The development of the time domain BE-IBE coupling model for simulation of rock 
canyon provides a means for solving problems with structural nonlinearities. The joint element and the 
solution technique for dam substructure developed by Fenves are retained in this new program and the 
discrete parameters for simulation of infinite rock canyon are incorporated into the program. For 
examination of the effects of these two factors on the dam response, the earthquake analysis of the 
Laxiwa arch dam and Big Tujunga arch dam are performed. 

System Analyzed 

Shown in Figure 1 is a complete dam-canyon-reservoir system. 
Finite elements are used for discretization of the dam and the reservoir, assuming the latter being 

incompressible. The dam may be viewed to consist of a series of cantilever elements separated by nearly 
vertical contraction joints. Since the joints can be expected to open and close during an earthquake, it is 
evident that the dam behaves as a locally nonlinear subsystem, provided the dam body, excluding the 
joints remains linear elastic. Preliminary analysis showed that a significant redistribution of stresses will 
occur due to this nonlinearity, thus raising a concem of the integrity and safety of the dam. The 
substructure of the canyon is discretized into boundary elements and infinite boundary elements. 
Frequency-dependent impedance functions are first obtained for all degrees of freedom on the dam 
canyon interface. By using a curve fitting, these impedance functions are transformed into a mass-spring- 
dashpot system which is frequency independent. Finally, these discrete parameters together with the 
linear substructure of cantilevers of the dam body are condensed into the boundaries of the nonlinear 
substructure-a set of contraction joint elements. The equilibrium iteration during a time step is conducted 
only for the degrees-of-freedom for the nonlinear substructure. 

1. Mode l ing  o f  Rock  C a n y o n  and Free  Field Input  
3-D boundary elements (BEs) and infinite boundary elements (IBEs) are used for discretization of the 

canyon, taking into account the irregular geometrical conditions in the near field of the canyon. The 
detailed formulations of the infinite boundary elements can be found elsewhere[ 11 ]. 

Numerical integration of the boundary integral equation by BE-IBE coupling leads to a series of linear 
equations 

[H] {u} = [G]{p} (1-1) 

where [H] and [G] are coefficient matrices assembled from individual elements including the 
contribution due to IBEs to [HI, with no contribution to [G] from these elements due to the traction-free 
condition. Equation (1-1) can then be used to obtain impedance functions at all defined nodes on canyon 
surface in frequency domain. It is, therefore, necessary to condense the impedance functions into the dam 
canyon interface. 

Partitioning equation (1-1) according to the degrees-of-freedom associated with the dam-canyon 
interface c and the remaining portion of the canyon surface r leads to equation(I-1) rewritten as 
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Hcc Her Uc 
-- Grrl { ; i }  (1-2)  

After condensation and recognizing the traction-free condition p,. = 0, equation (1-2) becomes 

where 

H'~.~.u~.=G'~.cp ~, (1-3) 

H'cc = Hcc - HcrH~' Hrc ( 1 - 4 )  

G'cc = Gcc - H,.rHTr 1Gr,: 

Introducing now the following relationship between the nodal forces Fc and traction Pc 

Fc =~Pc (1-5) 

into equation (1-3) leads to 

S,.,:u,: = F,: ( 1 - 6 )  

and 

S~. c = {uG)7' H'cc (1-7) 

where ~, is the transformation matrix constructed from the interpolation shape functions; scc is by 
definition the impedance matrix defined on the dam-canyon interface. 

Since s~.~.(co) in equation (1-6) are frequency dependent, it is necessary to transform them into discrete 
parameters so that the entire dam-canyon system can be solved in the time domain for nonlinearities of 
the structure. Applying the following relationship 

Sc~. = -co2~cc +icogc~. +k~c (1-8) 
m 

to each coefficient of the impedance matrix yields the discrete parameters ~cc,~-cc,kcc, which are the 

elements of equivalent mass m~.c, damping C-co and stiffness Ec~. matrices respectively. 

Assuming that co~ and co2 represent the prescribed excitation frequency at the two boundary points 
within the frequency range of interest and that the corresponding impedance functions Scc(Co~) and 

s,.(co2 ) are known, the substitution of scc at the above points into equation (1-8) leads to 

1 
= ~ {Re[S.. (0),)1 - Re[S., (0)2)]} 

" c o  2 - c o ?  

1 c,.- = ~1 { 1--llm[S,.c(0)l)] + ~Im[Scc(0)2)]} (1-9) 
z~ 0)1 0)2 

n 
k,. = Re[S,. (0),)] + 0)2~,. 

in which m~.c,k~, are obtained by equating the real parts of scc, and c~.c is based on averaging the 
imaginary parts at the boundary points. 

The three parameters for all degrees-of-freedom and their coupling terms on the dam-canyon interface 
can be obtained from equation (1-9) and then assembled to give matrices mcc, Ccc and Ecc and to form the 
corresponding equation of motion for the canyon 

'm~.~. i~c + C~c iq. + K~. u~. = .~ (1-1 O) 

in which uc,z~c and//c denote the interaction displacement, velocity and acceleration vectors of the 

canyon respectively, and F~. represents the interaction forces acting on the canyon interface. 
For coupling the equations of the canyon motion with the dam, the total response of the arch dam and 
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its boundary connection with canyon can be written in partitioned form as 

M~.d M~.~. Oc LCcj C~.~. Oc LKcj K~.~. Uc = F~. (1-11) 

where M,C,K are the mass, damping and stiffness matrices of the system respectively; F denotes the 
load vector; subscripts d and c refer to the degrees of freedom associated with the internal nodes of the 
dam and the boundary nodes connecting with the canyon respectively. 

Combining equation (1-10) and (1-11) and noting that 

F c = -F~.  (1-12) 
U~. = u~. + u~. 

the equation of motion for dam-canyon interaction are finally obtained as 

M~.d M~.~. + M~.c i?t c + L C~.d Ccc + C--c~. fi ~. + k Kcd K,.~. + Kcc J[ uc 

- [  M~.cg~. + C~.c~-~. + K~.~.gc (1-13) 

Solving equation (1-13) and using equation (1-12), the total displacement field (u ,  u~) r for the dam 
can be obtained. 

It should be noted that the terms of the right hand side of equation (1-13) are now free-field motions 
acting on the dam-canyon interface. The equation (1-13) can either be linear or nonlinear and be solved 
by a typical numerical scheme such as the Newmark average acceleration method. 

As a linear application example, the Laxiwa arch dam (250m high) is selected to perform the interaction 
analysis. Figure 2 shows the profiles of the canyon and the dam. The corresponding parameters are" for 
concrete, E=3.5 x 104MPa; p=2400kg/m3; v =0.167, for rock, G=l.4 x 104MPa; p=2680kg/m3; 

v =0.23. Figure 3 shows the impedance functions of the canyon. They behave in gradual monotonic 
fashion within the frequency range considered due primarily to the high shear modulus of the canyon 
rock. 

The comparison of the response functions at the dam crest between the interaction model (i.e. infinite 
mass foundation) and the standard massless foundation is shown in Figure 4. Significant reduction in the 
dam response in the entire frequency range for interaction model is observed. 

2. Mode l ing  o f  Non l inea r  Cont rac t ion  Joints o f  D a m  
A 3-D nonlinear joint element[12] is shown in Figure 5. The element is of isoparametric and consists 

of two coincident surfaces each of which is defined by four nodes. The coordinate transformation 
between the global and natural coordinate system can be written as the form: 

where 

4 

X = Z N , X  , (2-1) 
./=1 

1 s)  j = 1,2,3,4 (2-2) N / = N/+4  = ~-(1 + r / r ) ( 1  + s / 

in which X are global coordinates of a point on the joint surface and y j  are coordinates of nodes j and 

j + 4 ; N /  are shape functions in the natural coordinate system; rl ,sj are the coordinates of node j .  

The global displacements of the bottom and the top surfaces of the joint are expressed in terms of nodal 
displacements uj as follows: 
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4 

ub~ = Z N./u.i (2-3a) 
./=I 

8 
U,~p = Z N./u./ (2-3b) 

./=5 

The displacements of the bottom and the top surfaces can be further transformed into the orthonormal 
coordinate system by 

u~,,, = auh, . (2-4a) 

u- , v : au,o p (2-4b) 

where a is a function of the natural coordinates r and s and can be constructed through coordinate 
transformation between global and local orthonormal coordinate systems. 

The relative displacements between the two surfaces of the joint element are given by 

v = u~,,p -~ho, (2-5) 

Substituting equation (2-4) and (2-3) into (2-5) provides the relative displacements v in terms of nodal 
displacements 

v = Bu (2-6) 

. = { u ; . ~  .3 .~ ,,~ .6 

B = [ - N  l - N  2 - N  3 - N  4 N 1 N  2 N 3 N 4 ]  (2-7) 

and 

N j  = N/a (2-8) 

The constitutive relationship between resisting stresses and the relative displacements of the joint can 
be assumed as follows 

{ k,o ~ v, __ q,,, / k, . (2-9) q, = t = 1,2,3 
v, > qo~ / k, 

where qi denotes the resisting stresses in i direction, k, is the stiffness of the joint in compression, v~ is 

the relative displacement in i direction, qo~ is a specified tensile strength of the joint. Figure 6 shows the 

nonlinear constitutive relationship. It is reasonable to assume that the subsequent tensile strength of the 
joint will drop down to zero after the first opening of the joint when v, > q o ~ / k , .  The tangent stiffness 
matrix for the nonlinear joint element can be constructed. We start with the equilibrium condition 
between resisting stresses q and the nodal forces p by using the virtual work principle: 

P = IA B TqdA (2-10) 

where p is the nodal force vector in the global coordinate system. 

From equation (2-10), the tangent stiffness matrix kr is given by 

I ~.~c~ (2-11) 
~ d u  

A 

Using equations (2-9) and (2-6) for ch and ci, in equation (2-11) yields 
du 
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k.r : IB'r kT(v)BdA (2-12) 
A 

where k- T is a diagonal matrix, in which the diagonal terms are 

k-z; : I  k' v, <_q,,,/k~ (2-13) 
Lo v, >q,, , /k,  

The integration of equations (2-10) and (2-11) are carried out for the nodal forces p and the tangent 
stiffness matrix kT using the standard Gauss integration in the natural coordinate system as in the normal 

finite element procedure. 

3. Solution scheme for nonlinearities of dams 
As noted previously, the arch dam-canyon system can be first divided into substructures of dam body 

and canyon respectively. The effects of reservoir water can be viewed as added mass by finite elements 
and attached to the dam-fluid interface. The impedance of the canyon rock are transformed into discrete 
parameters and attached to the dam-canyon interface. The remaining task is to solve the equations of 
motion of the dam body which includes linear elastic cantilevers and a set of nonlinear contraction joints. 

Fenves[ 10] presented a procedure to achieve this objective based on a substructuring technique for local 
nonlinearities given by Clough and Wilson[ 13]. The procedure is summarized as follows: 

The equations of motion at time t j+~ for a linear substructure is given by 

m///+l + cti,+, + ku /+, = f ,+l + q ,+l (3-1) 

where m, c, k are the mass, damping and stiffness matrices, respectively; f is the time depending loads; q 

denotes the forces at the boundary of the substructure. 
If the Newmark integration scheme is employed for the solution, equation (3-1) can be written as 

k * u~+~ : p j+~ + q,+~ (3-2) 

in which the effective stiffness and effective load are: 

k* = aom + alc + k (3-3a) 

P.]+I : fl+l +m[aou./ +a2ui +a3i!/l+C[alu./ +a4h/ +as//j] 

The integration constants a 0 a I . . - a  5 have the form 

1 6 1 
a0 = ~ ' 2  al = --7-. " a2 - " aAt aAt aAt 

a 4 = - - -  1; a s = - 2) 
a 2 a 

in which 

(3-3b) 

(3-4a) 

d __ 0.50; a _> 0.25(0.5 + 6) 2 (3-4b) 

Assuming the damping matrix has the form of Rayleigh damping, i.e. 

c=bom+btk (3-4c) 

the effective stiffness matrix k* and the effective load vector p]+~ can be expressed in terms of 

m, k, u j, ~)j,//j at time j and f,+~. 

Since the linear substructure is coupled with the nonlinear substructure at the boundaries between the 
two, the iteration of equations of motion for the nonlinear substructure involves computation of boundary 
displacements and forces in the linear substructure. Equation (3-2) is valid for the solution of iteration n 
for the response at time t/+~ 
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k" " " " ( 3 - 5 )  U/+l -- P.i+l + q.i+l 

in which k* and Pj+I do not depend on the response at time t./+~. Partitioning the domain into the internal 

and boundary degrees of freedom denoted by subscripts i and b with the latter being connected with the 
nonlinear substructure, we obtain 

k-* " -* " (3-6) ub(./+O = P./+1 + q.j+l 

where 
" *  _ _  * _ * , , khh kh, (k,)-~ k,h (3.7a) 

m ,  �9 �9 �9 

P.l+l = Ph(./+l) khi (k/, ) - I  * - P i ( . / + I )  (3.7b) 

Similar equations of motion to equation (3-1) for nonlinear substructure at time t./+l can be written as 

MO./+l + P(I) j+1,  U./+I) = Fj+1 + Q.i+1 ( 3 - 8 )  

where M is the mass matrix; P(u.j+I, u/+l) is the vector of restoring forces which is a nonlinear function 

of c?./+~ and u�9 Fj+I is the time dependent loads; and Q/+~ is the boundary forces of the nonlinear 

substructure. 
Applying the Newmark integration scheme to equation (3-8) gives an incremental form for n+  1 

iteration 

where 

K* AU = AP* (3-9) 

K* = a o M  + a l C  T + K T _ 3Q (3-10a) 
3 U  

Ap* F,+, '"  . " , "  " (3-10b) = - MU/+I  - P(U/+1 U/+1 ) + Q/+I 

in which, KT and CT are the tangent stiffness and tangent damping matrix respectively, and have the 

3P 3P 
form K T = ~  C T - For equilibrium and compatibility conditions between the nonlinear 

oV' : U  
substructure and the linear ones, the following relation is applied. 

Q7+1 = - Z  q~+l (3-11 a) 

u h = a h U 

where ah is a Boolean matrix. 
Substituting equation (3-6) into (3-11) yields 

QT+, Z-" Z P./+l k-* " �9 = - -  / ' / h ( / + l )  

and 

3 U  

Substituting (3-12a,b) into (3-10a,b) yields 

K* = a o M + a l C  T + K T + Z ~* 

(3-1 lb) 

(3-12a) 

(3-12b) 

(3-13a) 

~ - ,  ..~ . , , ,  ,, ~ - ,  ,, 
AP* = F/+ 1 + p./+j - MU./+l - P(U./+l U./+I ) -  ub(./+O (3-14) 
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Solving the equation (3-9) iteratively under the effective load of earthquake ground motion, the response 
of the nonlinear substructure can be obtained, and then the responses of the whole system are solved. 

Two important points should be noted in the analysis. (1)The equilibrium iteration during a time step 
involves only the degrees of freedom in nonlinear substructure leading to a substantial reduction of 
computation for structures with local nonlinearities; (2)The effective stiffness matrices of the linear 
substructures k-* are computed once. Only the tangent stiffness matrix K r and the tangent damping 

matrix cr need to be evaluated and assembled into K* during the equilibrium iteration. 

4. A Simpl i f ied  Input  Procedure  for Ear thquake  Ground  Mot ions  
Although the free-field input expressed in equation (1-13) is feasible, a simplified procedure is used in 

current stage, which takes into account the discrete parameters of the canyon, i.e. the effects of radiation 
damping while eliminating the amplification of the input motions due to the canyon rock mass. Assuming 
a uniform earthquake ground motion is applied at the rigid base beneath the truncated rock foundation, 
the dynamic load on a linear substructure is given by 

f = - (mr  + m~ )i)g (4-1) 

where ii~ is the free-field ground acceleration at the supports; r is an influence coefficient vector, and rng 

is the mass matrix that couples the DOF in the substructure and the support points. (For lumped mass 
formulation m~ = 0). The dynamic load on the nonlinear substructure is 

F : - ( M r  + Mx )iia, (4-2) 

where similar definition of the terms apply. In the current version of ADAP-88, the model of massless 
foundation is still being used, and hence the propagation of seismic waves through the foundation rock 
and radiation damping of the rock canyon are neglected. For inclusion of this dam-canyon interaction 
effect, this paper uses the matrices of discrete parameters ~.c,Cc~. and Kcc from equation (1-9) to form 

the effective stiffness k* in equation (3-3a) and to replace the massless rock for foundation substructure. 
For computation of effective load vector p~+~ in equation (3-3b), the free-field input at the dam-canyon 

interface should have been used. However, in the current stage, a simplified and approximate procedure is 
employed, i.e. to input the earthquake ground motion at the base beneath the discrete parameter system 
without considering the equivalent mass ~.~. in the system. This simplified procedure is approximate to 
the massless foundation input for effective forces while retaining the foundation mass in the response 
system. Thus, it takes into account the radiation damping but prevents an arbitrary amplification of the 
input motion through the foundation mass. 

Engineering Applications 

The Big Tujunga arch dam, located in Big Tujunga canyon, Los Angeles County, California was 
chosen as an engineering example for nonlinear analysis to examine the effects of dam-canyon interaction 
on the structural response. In order to compare the present results with those provided by Fenves, all the 
parameters related to the dam, rock canyon and earthquake ground motion are the same as the 
reference[ 10 ]. The dam has a crest length of 132m and the maximum dam height is 84m. The thickness 
varies from 24m at the base to 2.8m at the crest. The contraction joints are spaced approximately 16.5m 
along the crest. The finite element mesh of the dam with three contraction joints is shown in Figure 7. 
where six mesh elevations consisting of 12 thick shell elements and 18 3-D shell elements are used. The 
foundation for massless model is discretized into 80 3-D solid elements to a depth of 80m, the rock 
canyon for infinite mass foundation model is discretized into 60 boundary elements plus 38 infinite 
boundary elements. The impedance functions are then transferred to be the discrete parameters and 
attached to the dam-canyon interface. The material properties for the concrete are: unit weight=2400 
kg/m3; modulus of elasticity-2.75 x 104MPa; Poisson's ratio=0.2; for the foundation rock: unit 
weight=2580kg/m3; modulus of elasticity=l.80 x 104MPa; Poisson's ratio=0.32. Rayleigh damping in the 
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dam is represented by a viscous damping ratio of 0.05 in the first and fifth modes. No material damping in 
the foundation is assumed for both mass and massless models. Full reservoir water with Westergaard's 
added mass approximation is employed. 

The earthquake ground motion used in the analysis is the Lake Hughes No.12 record obtained during 
the 1971 San Fernando earthquake. The three components are scaled and shown in Figure 8 with the 
maximum peak acceleration of 0.6g acting in the cross-canyon direction. Time step At of 0.01s is used, 
although At = 0.005s was also examined to verify the convergence of the response. 

Static analysis of the dam-reservoir-foundation system is first performed before a nonlinear dynamic 
analysis can be carried out. This includes stress analysis under self-weight of concrete and hydrostatic 
pressure of the reservoir water. 

Dynamic analysis is first conducted for linear analysis assuming the contraction joints are closed. 
Nonlinear analysis is then performed allowing for the opening of the contraction joints. Both linear and 
nonlinear analysis are performed using massless and infinite mass foundation for comparison. Figure 9-10 
show comparisons of displacements at dam crest between massless and infinite mass foundation for cases 
of joints closed and joints open respectively. The comparison of joint opening between the two 
foundation models is shown in Figure 11. Vivid reduction can be observed in joint opening and crest 
displacements when infinite mass of the foundation is considered. Comparing the displacements for joints 
closed with that of joints open, the latter shows significant increase in displacements in all three 
directions. In addition, the displacements behave asymmetrically during the periods of joint opening. 

Comparisons of stresses between the two foundation models and between the two cases of contraction 
joint conditions (i.e. joints closed and joints open) are shown in Figures 12-15. The comparisons of 
maximum tensile and compressive stresses in arch and cantilever between different cases are also listed in 
Tables 1 and 2. The observations from these results are summarized as follows 

Table 1. Comparison of maximum tensile stresses between 
infinite mass and massless foundation (MPa) 

Foundation Upstream Downstream 
. , .  

Model Case Arch Cantilever Arch Cantilever 
. . . . . . .  

Massless Joints closed 16.28 6.64 11.50 6.49 
. . . . . .  

. . . . . . . .  

Joints open 11.10 8.44 7.72 11.93 
. . . . . . . . . . . .  

Inf. Mass Joints closed 14.07 5.77 9.87 5.32 
. . . . . .  

7.86 10.28 Joints open 9.33 7.92 

Table 2. Comparison of maximum compressive stresses between 
infinite mass and massless foundation (MPa) 

Foundation 

Model Case 

massless Joints closed 

Joints open 

inf. mass Joints closed 

Joints open 

Arch 

21.77 

19.08 

16.80 

15.41 

Upstream 

Cantilever 

7.87 

10.72 

6.56 

10.48 

Downstream 

Arch 

16.27 
. . . .  

14.90 

12.87 
. . . .  

13.06 

Cantilever 

5.89 

7.32 
. . . . .  

5.21 

6.52 
, , ,  

(1)From tables 1 and 2 significant reduction in arch stresses for the case of joints open is observed 
especially for the tensile stresses. However, the increase in cantilever stresses is also obvious due to a 
load transfer from the horizontal arch system to the vertical elements. The reduction and the increase of 
stresses in both directions can reach 25-30% for tensile stresses. 
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(2)Consideration of the infinite mass foundation with radiation damping receives benefits of further 
reduction in arch stresses. In the meantime, the increase of cantilever stresses due to the joints open is still 
significant, but the final stress level has a slight drawdown when compared with that of the massless 
foundation. 

(3) From Figures 14 and 15, changes in stress pattern both in arch and in cantilever directions are 
important due to joint opening. An abrupt dropdown of arch stresses near the contraction joints is evident 
as shown in Fig. 14. The cantilever stresses are redistributed, and the maximum stresses increase and 
move upward in comparing the cases of joints closed. 

Conclusions 

The objective of this paper is to attempt to consider two important factors in earthquake analysis of high 
arch dams, i.e. dam-canyon interaction and nonlinearity of dam response due to the contraction joint 
opening. Findings from the results of investigation are: 

(1)Effects of contraction joint opening of arch dams on the response are significant, resulting in a 
substantial stress reduction in the arch direction due to the release of constraint between the dam 
monoliths. However, a significant increase in cantilever stresses is also observed, implying that the 
dynamic loads are partially transferred to the vertical components of the structure. 

(2)Effects of canyon radiation due to the infinite mass foundation are also significant on both linear and 
nonlinear responses of dams (i.e. joints closed and joints open respectively). Although the patterns of 
influence due to contraction joint opening are similar for both massless foundation and the infinite mass 
canyon, consideration of the latter results in a further reduction of arch stresses, and, in the mean time, 
reduces the net increase in cantilever stresses when compared with the massless foundation. 

(3)The computer program which combines the above two factors is in a preliminary stage-a simplified 
earthquake input procedure is being used, which takes into account the radiation damping of the canyon 
but prevents the amplification of ground motion through the rock mass. Further efforts should be devoted 
to incorporating the free-field input procedure into the program. 

Acknowledgment 

The authors gratefully acknowledge the financial support for this work, which was provided by the 
National Key Projects on Basic Research and Applied Research: Applied Research on Safety and 
Durability of Major Construction Projects and the Ministry of Electric Power under contract: 96-221-03- 
02-02(1) 'Study on Earthquake Responses of High Arch Dams due to Contraction Joint Opening'. 

References 

1. P.S. Nowak and J. F. Hall, 'Arch dam response to non-uniform seismic input', J. eng. mech. ASCE 
116, 1125-1139(1990). 

2. S. B. Kojic and M. D. Trifunac, 'Earthquake stresses in arch dams, 1: theory and antiplane 
excitation', J. eng. mech. ASCE 117, 532-552(1991). 

3. J. Dominguez and O. Maeso, 'Model for the seismic analysis of arch dams including interaction 
effects', Proc. 10th world conf. earthquake eng. Madrid 8, 4601-4606 (1992). 

4. A.K. Chopra and H. Tan, 'Modeling of dam-foundation interaction in analysis of arch dams', Proc. 
10th world conf. earthquake eng. Madrid 8, 4623-4626(1992). 

5. Zhang Chuhan, Jin Feng and Wang Guanglun, 'A method of FE-BE-IBE coupling for seismic 
interaction of arch dam-canyons', Boundary Element Methods, Proc. 5th Japan-China symposium on 
boundary element methods, Elsevier, Amsterdam, 293-302(1993). 

6. Zhang Chuhan, Jin Feng and O. A. Pekau, 'Time domain procedure of FE-BE-IBE coupling for 
seismic interaction of arch dams and canyons', Earthquake eng. struct, dyn. 24, 1651-1666(1995). 

7. Zhang Chuhan, Jin Feng and Wang Guanglun, 'Seismic interaction between arch dam and rock 



105 

canyon', Proc. 1 l th world conf. earthquake eng. Acapulco, Paper No. 595, 41-48. 
8. R.W. Clough, 'Nonlinear mechanisms in the seismic response of arch dams', International research 

conf. on earthquake eng., Skopje, Yugoslavia (1980). 
9. M.J. Dowling and J. F. Hall, 'Nonlinear seismic analysis of arch dams', J. eng. mech. ASCE 115, 

768-789 (1989). 
10. G. L. Fenves, S. Mojtahedi and R. B. Reimer, 'ADAP-88: A computer program for nonlinear 

earthquake analysis of concrete arch dams', Report No. EERC 89-12, Earthquake Engineering 
Research Center, University of California, Berkeley, CA, 1989. 

11. Zhang Chuhan, Song Chongmin and O. A. Pekau, 'Infinite boundary elements for dynamic problems 
of 3-D half space', Int. J. numer, methods eng. 31,447-462 (1991). 

12. J. Ghaboussi, E. L. Wilson and J. Isenberg, 'Finite element for rock joints and interfaces', J. soil 
mech. found, div. ASCE 99, 833-848 (1973). 

13. R. W. Clough and E. L. Wilson, 'Dynamic analysis of large structural systems with local 
nonlinearities', computer methods in applied mech. and eng., vol. 17/18, 107-129(1979). 



106 

C 

Dam 
,. / s  FE-BE-IBE C O U P L I N G  

Reservoir ~ A 

Z 

Rock Canyon -~x 

Fig. 1 Schematic layout of 
dam-canyon system 

Fig. 2 Canyon profile for computed 
impedance functions 

0.4 0.4 f 
0.3 0.3 

Re 
0.2 ~ 0.2 = = e - A 

I ~  e e Re . -  - 

o.1 . . . . .  "~ 0.1 
Im ,o, Im 

O0  = :. : e - ~ 0 . 0  - - - 

-0"1 ! i , j ' -0.1 i , 
" 4 . 0  ~ 0  ' 1 ; ~ . 0  8 ' . 0  ' 1 2 . 0  ' 

f (Hz) f (Hz) 

0.4 

0 3  

0.2 ~ Re 

0.1 
l m  

0.0 ~ -  : - - 

- 0 1  ' 4 .  ' ' ' t , 
0 0 8.0 12.0 

f (Hz) 

0.4 r -  - . Re . 

,-, 0 "31  . . . .  : �9 _ 

f ,~ o.1 _ ~  

iil . . . . . .  
0 4.0 8.0 12.0 

f (Hz) 

0 . 5 -  

0.4 0.4 

0.3 0.3 

ir ~ 0.2 Re ~ 0.2 

0.1 Iv~ 0.1 

l m  
0.0 e _- �9 = = e - ~ 0.0 

, i I 1 i i i 4 ) . 1  
- 0 . 1 0  4 .0  8.0 12.0 

f (Hz) 

0 . 5 -  

Re 

i ! ! 1 | | | 

0 4.0 8.0 12.0 

f (Hz) 

o BE-IBE coupl ing o D i s c r e t e  m o d e l  

Fig. 3 Impedance functions of dam-canyon interface at point A 



107 

45 

411 

35 

30 

81o 

10 

0 0 

-- Massless Found. 
--Inf. Mass Found. 

'l ,t ;~ 
11 11 J l  
11 t l  
I t  t l  4 ~ I 
I~t I I It • l 
If\" I I I  I ~ 

.-~ l I I s 
1 2 3 4 

Dimensionless Freq. o / ~  
1 

24 

20 

16 

~ zz 

< 

I - - M a s s l e s s  Found. 
--Inf. Mass Found. 

~ 1 6  

~o 

-- Massless Found. 
- Inf .  Mass Found. 

e I 

r~ II ?, 
It ^ I l I I', 
t~ ,~ ~ I I !, I i  , ~ I / ' ,  

4 I ] l  I 4 , 

O0 1 2 3 4 O0 1 2 3 4 

Dimensionless Freq. =/or* Dimensionless Freq. o/~t j 

(a) Stream (b) Cross-stream (c) Vertical 

Fig. 4 Comparison of response functions between the massless and infinite mass foundation 

5 
x3 

a) LOCAL AND GLOBAL COORDINATE SYSTEMS 

4, 8 

1 
1 , 5  

3,7 

+1 

-1 
2, 6 

b) NATURAL COORDINATE 
SYSTEM 

Fig. 5 Nonlinear joint element 

q, 

qoi 

ki 

V i 

Fig. 6 Stress-relative displacement relationship for joint element 



108 

I 

I 
I 

1 

Fig. 7 F.E. discretization of Big Tujunga dam with three contraction joints 
(After Fenves et al. [10]) 
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Application of Transmitting Boundaries 
to Non-Linear Dynamic Analysis of 
an Arch Dam-Foundation-Reservoir System 

Chen Houqun Du Xiuli Hou Shunzai 
(China Institute of Water Resources and Hydropower Research) 
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arch dam, dynamic interaction, transmitting boundary, non-linear seismic response 

Introduction 

In China a series of important arch dam with a height of about 300m has been designed and planned to be 
constructed in the areas with high seismicity. Seismic safety becomes one of the most critical problems for 
hydropower construction at present in China. 

The importance of foundation interaction on the displacements and stresses resulting from loading an 
arch dam has long been recognized for static as well as dynamic loads. With the introduction of the finite 
element method, the validity of the foundation interaction model was greatly improved for static loads as the 
foundation flexibility can be considered by including some adjacent rock mass to a certain extent to form a 
dam-foundation model with fixed boundaries. However the matters are much more complicated in seismic 
analysis. At least following three factors should be considered in this case, such as: 

1.the spatial variation both in amplitude and the phase angle of a seismic input along the canyon of dam 
base, particularly, for a high dam in deep valley which is more sensitive to the differential ground motion of 
dam abutments; 

2.the energy dispersion of seismic wave in the semi-infinite rock foundation media; 
3.the effects of the spatial topographical features of a canyon and the non-linear behaviors of geological 

structures almost unavoidably existed in the near-field foundation for every dam site. 
To solve the problem mentioned above some artificial boundary conditions have to be involved to 

prevent wave reflections at the boundaries of finite discrete models for infinite medium under the action of 
seismic incident waves. For earthquake engineering of dams some approaches with artificial boundary 
conditions represented through dynamic impedance of infinite foundation medium are commonly used in 
practice. However, those approaches not only couple all boundary points but also are basicly formulated in 
frequency domain. They are non-local both in space and in time, therefore, usually require too large 
computer storage and high computer speed for a three-dimensional arch dam system. Particularly, they are 
difficult to be efficiently and precisely used, while the non-linearities both of the geological structures in 
foundation and of the dam with joints must be considered. 

In this paper a study of seismic behavior of a high arch dam with dynamic interation with reservoir 
and foundation based on the wave propagation in a non-uniform and local non-linear medium by using an 
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explicite finite element method with transmitting boundaries is presented. Together with its easy 
implementation and high accuracy enough for engineering practice, the applied approaches is distinguished 
from others for its features of decoupling motion of any node on the artificial boundary of a discretized 
model from the others except its neighboring ones. Some results of the application of this approach to 
seismic analysis of a designed Xiaowan arch dam with a maximum height of 292m in China is illustrated and 

a comparison is made with the conventional method. 

Br ie f  descript ion o f  the approach  

The arch dam foundation system can be divided into an interior region with a discrete dam and its 
adjacent near-field foundation, and a far-field foundation region by a set of artificial boundaries. All 
important near-field topographical and geological features can be contained within the interior discrete 
model of a reasonable size. At the artificial transmitting boundaries the outgoing waves from the interior 
region can be transmitted without reflection and also the effects of the spatial variation of the motions at dam 
base along the canyon can be included under the action of incident seismic wave. 

The equation of motion at any interior node of the finite element model at time t has the form 
m,/.J,j (t) + Do.Q) + ~.(t)  = ~j(t)  (1) 

in which m~ is the lumped mass of node i ; O~j is the acceleration of j direction at node i ; D 0.(t), 

F~s ( t ) ,  ~j (t) are the damping, restoring and external forces ofj direction at node i ,  respectively. The m~ 

includes the added mass due to hydrodynamic pressure with an assumption of incompressible reservoir water. 
A Raleigh damping is adopted for derivation of D o (t) as 

D~(t) = 2~:COom, O~s (t) (2) 

in which ~: is the damping ratio of material; co o can be taken as the fundamental frequency of the 

system. 
Using central differences for the derivatives for lumpd-mass finite element model, a simple step-by-step 

solution can be provided by an explicit integration scheme as follows: 
, , : , , _ 

_,j = ~j  - F~j +~7rt~ miU,j -(~-r ~COo)m,U,j (3) 

in which the restoring force F~ at fight-hand side is only related to the nodal displacements of elements 

correlated with node i. 
The formula (3) is conditional stable, therefore, the time step for integration is limited as 

At < min( ARlm AP~in) (4) 
- 

in which n is the number of media; A/~m, C~, are the minimum element size and maximum wave velocity of 

medium i,  respectively. 
In general, it is required, that 

1 1 

here, a / ~  = m a x ( ~ . ~ ,  AR~, x ,. ..... zkR~.~ ), 2ram is the minimum incident wave length. 

A general expression of one way wave motion at transmitting boundary can be derivated based solely on 
wave propagation. It is not geared to any particular system of equations tu 

All outgoing waves impinging upon the transmitting boundary with different wave speeds (C i) and 
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incident angles (Q,) may be expressed by their apparent propagation along the x-axis, normal to the 

boundary (Fig- 1). 

<] 
[ . . . . . .  

b-3 b-2 

, , ,  

O -  - ..... ~ X 

(a) 

Fig-1 

b-I 

j+l 

~ L _ .  
d b 

j-1 

03 

X 

(b) 

Artificial Boundaey and Outgoing Waves 

For one-wave propagation any outgoing wave U, of boundary point b at time(t + At) should be equal to 
its value of a point which is at a distance of (C, At)from the point b along the x-axis at forward time t as 

U, (x~,yb ,z~,t + At) = U~ (Xb -- CzXt, xb,Yb,t) (6) 

For linear wave field in the region of artificial boundary, If all outgoing waves are combined in a resultant 
outgoing wave with a constant artificial wave speed (Ca), as a consequence a error will be introduced as 

AU(xb.y~ ,z~ ,t + At) = U(x ,y , z , t  + At) -  U(xb -coAt,yb ,z~ ,t) (7) 

It is easy to be proved that the error is also a wave propagating along the x-axis with the same speed and can 
be transmitted according to formula (6) too. Therefore a multi-transmitting formula of N-order can be 
written as 

N 

U(x b,yb,zb,t + At) ~ Y.(-1) "+~ Cu. U(xb - ncoAt, Yb,Zb,t(n- OAt) 
n=i 

(8) 

where C~ = N ! / [ ( N - n ) t n ! ]  

By using a quadratic interpolation, the displacement at the computational points in finite element model 
can be written as 

N ( 1 )  "+' U(xb,yb,zb,t + At) = E - C. u ~r. b r  (9) 
n = i  

where 

U. =[Xb,Yb,z~,t--(n-- 1)At),U(x b - Ar, yb,zb,t--(n--  1)At)," ..... 
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U ( x  b - 2 n A x ,  y b , z  b , t  - ( n  - 1)At)] r (10) 

~r is a function of co, At and Ax and it can be calculated using the formula in Ref. [2]. 

In order to separate the outgoing waves from the total displacement in the region of artificial boundary, 
the incident seismic wave, which can be calculated from wave theory in continues medium, should be 
subtracted from the displacement obtained from formula (3). 

In principle, the adopted approach can also be used for any oblique incident waves. Even for vertical 
incident seismic wave, the ground motions will variate along the canyon of an arch dam base. 

Application to non-linear dynamic analysis 

A study on a three-dimensional response of a high arch dam-foundation-reservoir system based on the 
seismic wave propagating in a foundation with nonlinear fault and transmitting boundaries in time domain 
was firstly carried out. The calculated Xiawan arch dam is located in the upper reach of the Lanchuang River 
in Yunnan province. It is a parablical double curvature arch dam of 292m high. Its design earthquake 
intensity is IX degree with a horizontal peak acceleration of 0.308g, while the vertical peak acceleration is 
2/3 of the horizontal one. The sketch of the mathematical model is shown in Fig-2 In the V-type canyon only 
the most important fault F7 located 76m apart from the dam heel was considered in the analysis. A non-linear 
constitutive relation with Druker-Prager cap model 

/S ( 

J 
i 
t I 

. Artificial Bounda D' region 

Fig-2 

. r  

" ~  Incident waves(P SV SH) 

Sketch of the Mathematical Model 

- 7  

was adopted for fault FT. A finite element mesh automatically generated in the program and the dam- 
foundation system was modeled by 1364 8-node three-dimensional solid elements. For simplicity the dam- 
reservoir interaction was considered through added mass with neglect of the compressibility of reservoir 
water. 

The acceleration recorded at rock foundation during an atter shock of Tangshan earthquake in 1976 with 
its peak acceleration scaled to one half of the design values were used as the incident s and p waves in the 
analyses. For comparison, three alternatives of input, with one streamwise component, one cross-stream 
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component, and all three components simultaneously were applied respectively. In order to reveal the effect 
of fault FT, three foundation models ware analyzed separately. They are: Model 1-without fault, Model 2 
with fault of linear property and Model 3-with fault of non-linear property. There are altogether 5 different 

analytical cases as shown in Table-1 

Table- 1 Analytical Cases 

Analytical Cases . . . .  1 

Seismic Input X 
. ,  

Foundation Model 1 

2 3 4 

Y X+Y+Z X+Y+Z 

1 1 2 

5 

X+Y+Z 

3 

/ 

For analytical cases 1 ,  2 ,  and 3, the responses of arch dam system were also analyzed by using 

conventional program ADAP-CH84 with massless foundation and fixed boundaries. 
Some analytical results are illustrated as follows. 
The time-history plots of acceleration and displacement responses at crest and heel of the dam are shown 

in Figs. 3 and 4, respectively. The stress responses of dam at centroid of upstream element are shown in Fig 

5 for example. 
Peak dynamic stresses at centroid of elements at different part of dam are indicated in Table-2. A 

comparison of arch and cantilever stresses at crown of dam by using presented method and conventional 
method are shown in Table-3. In Table-4 the stresses of dam at some typical positions are compared for 3 
different foundation Model 

Table-2 Peak d,. Stress at Centroid of  Element (MPa) 
Down stream 

Right Sx 

Abutment sy 

1222.5 Sz 
. . . .  

Crown Sx 

1222.5 Sy 

Sz 

Lett sx 

Abutment sy 

1222.5 Sz 

Crown Sx 

1120.0 sy 

Sz 

Heel Sx 

966.5 sy 

Sz 

Upstream 

A B (A-B)/A(%) A 
, 

2.42 1.73 -29 

1.09 0.68 -38 

1.09 0.29 -73 
, , ,  

2.17 2.85 31 
. . . . . . . .  

0.26 0.29 12 

0.62 0.56 -10 

1.09 0.68 -38 

1.76 0.32 -82 
. . . . .  

1.06 0.42 -60 
. ,  

1.31 1.40 7 
. ,  

0.31 O. 16 -48 
. .  

1.75 0.95 -46 

0.73 0.97 33 

0.50 0.86 72 
. . . . . . . . . .  

2.23 4.29 92 

B (A-B)/A(%) 

0.94 0.44 -53 

1.94 1.01 -48 
, ,  

0.64 0.12 --81 

2.18 2.51 15 
. . . .  

0.28 0.34 21 
, , ,  

0.73 1.07 47 
, , ,  

1.60 0.36 -78 

1.23 0.67 -46 

0.99 0.09 -91 

1.03 0.83 -19 

0.99 0.29 -12 

1.03 1.36 32 
, ,  

0.54 0.27 -50 

0.58 0.27 -53 

1.24 0.26 -79 
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Conclusion and remark 

The transmitting boundary approach is first successfully applied in a three-dimensional non-linear arch 
dam system with consideration of the dynamic interactions of dam-foundation-reservoir. From the study on 
dynamic behavior of Xiaowan arch dam, some conclusions aid in understanding the important seismic 
behavior of arch dam for engineers can be drawn as follows. 

Table-3 Arch and Cantilever stresses at crown (Mpa) 

1222.5 ~ 1120.0 

A 

B 

(A-B)/A(%) 
A 
B 

(A-B)/A(%) 

A 

B 

(A-B)/A(%) 

A 

B 

(A-B)/A(%) 

A 
B 

(A-B)/A(%) 

A 

B 

(A-B)/A(%) 

Arch 

0.76 

0.88 

16 
2.34 
2.79 

19 

2.17 

Cantilever 

0.32 

0.36 

-16 
1.07 

1.92 

79 

1.55 

Arch 

0.61 

0.51 

-16 
1.07 
1.92 

79 

1.55 

Cantilever 

0.76 

0.57 

-25 
1.30 

1.70 

31 

1.99 

Arch 

0.43 

0.60 

40 

0.76 
0.71 

-7 

fl966.5 

1.08 

Cantilever 

0.55 

0.43 

-22 
3.88 

3.61 

-7 

3.89 

3.23 1.75 1.75 1.40 1.13 5.60 

49 13 13 -30 5 44 

0.56 0.43 0.43 0.49 0.41 0.54 

0.59 0.82 0.82 0.34 0.35 0.16 

5 91 91 -31 -15 -70 
1.83 0.68 0.68 0.86 0.40 1.25 
1.54 0.48 0.48 1.05 0.36 1.52 

-16 -29 -29 22 -10 22 

2.19 1.14 1.14 1.44 0.55 1.99 

2.57 1.06 1.06 1.95 0.37 0.92 

17 -7 -7 35 -33 -54 

* Arch and cantilever stress mean s~, Sz, recpectively for method with transmitting boundaries. 

1.As the energy dispersion through transmitting boundaries for xiaowan dam in the central part with 
more significant dynamic effects the stresses calculated by presented method are reduced by (40-49)% for 
arch and cantilever, recpectively comparing with the conventional method with the assumptions of a massless 
foundation and its fixed boundaries. However, for the abutments, the stresses by presented method are 
significantly increased by (30-80)%. It obviously reveal the effect of non-uniform input at dam base along the 
canyon. 

2. With consideration of the fault F 7 in foundation the dam stresses have some reduction, but at 

abutments the stresses are increased by(20-30)%. However, the effect of non-linearity in this case is less than 
10%. 

As for the applies approach, following problems warranted further study can be remarked: 
1. A criteria for unstability with high frequency oscillation near the transmitting boundaries and its 

countermeasures need to be investigated with consideration both the coupling effect of interior motion 
equation with artificial boundary conditions and the effect of numerical discretization. 

2. The material damping effect of foundation media for wave propagation in time domain need to be 
improved. 
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Table-4 

Right 

Abutment 

1222.5 

Crown 

1222.5 

Left 

Abutment 

1222.5 

Crown 

~ I120.0 

Heel 

fi966.5 

Stresses of Dam with Different Foundation Model 

Sx 

sy 
Sz 

Sx 

Sz 

Sx 

sy 

Sz 

Sx 

sy 

Sz 

Sx 

Sy 

Sz 

Case 1 

Upstream 

Case 2 Case 3 Case 1 

2.12 

0Vlpa) 

Down stream 

Case 2 Case 3 
, , ,  

3.18 3.44 3.42 1.14 1.65 1.54 

2.53 2.64 1.29 1.32 1.29 

1.26 1.33 1.29 

2.17 1.87 1.88 

0.25 0.28 0.27 

0.99 1.00 

1.77 

0.74 

2.19 1.95 

0.33 0.43 0.43 

0.84 0.83 0.49 1.48 0.90 0.87 

1.20 1.21 1.17 1.81 1.84 1.83 

1.36 1.25 

1.27 

1.16 

1.23 1.28 

1.14 0.66 0.64 

0.31 

1.23 

0.73 

0.32 

1.28 

.067 

0.32 

1.44 

0.55 

0.76 0.92 0.85 
, ,  

1.99 1.40 1.48 

1.78 1.71 1.70 

1.56 1.98 2.03 

1.55 1.30 1.20 

0.34 0.20 0.20 

1.99 1.53 1.45 

1.08 0.90 1.00 

0.79 0.49 0.55 

3.89 2.81 3.06 
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A DECOUPLING NUMERICAL SIMULATION 
OF WAVE MOTION 

Liao Zhen-Peng 
(Institute of Engineering Mechanics, 9 Xue-fu Rd. Harbin China 150080) 

Abstract  
A direct numerical simulation of wave motion has been studying since the late 70s for analysis of 

the soil-structure dynamic interaction and other near-field wave motion problems in various fields. This 

paper provides a brief summarization of the studies carried out so far. 

I Introduction 

The soil-structure system consists of two distinct parts: the bounded structureand the unbounded soil. 
The structure whose dynamic response is to be determined consists of the actual structure and possibly an 
irregular adjacent soil region. The unbounded soil whose effects on the structure response is to be 

determined contains no wave ource or scattering wave source. To analyze the structure response using the 
direct numerical method, a finite soil box which encloses the structure is introduced. Having discretized 

the box, the fundamental problem of the analysis is to set up two types of equations, that is, the equations 

governing the motion of nodes within the box and the Artificial Boundary Conditions (ABCs) which 

govern the motion of nodes on the edge of the box. Great efforts for establishing and solving the two 

types of equations have led to considerable development of computational approaches for the analysis [1- 
8]. The author and his co-workers have been working on the topic since the late 70s. Our studies is based 

on a physical understanding of the local characteristic of wave motion, that is, a disturbance at a space 
point at a time station is only transmitted to its adjacent space points at the next time station; and our 
methodology may be described as a natural simulation of the essential feature of wave motion. The simple 
idea has been run through our studies either to set up the two types of equations of motion or to clarify 

accuracy and stability of numerical integration of the equations. This paper provides a brief 

summarization of our studies carried out so far. An outline of the remainder of the paper is as follows. In 
Section II, a general set of local ABCs are formulated based on a straightforward simulation of the one- 

way wave propagation. Accuracy of the boundary conditions and their relationships with other famous 

schemes are also discussed. In Section III, explicit lumped-mass finite element equations of motion of the 

interior nodes are presented based on the above mentioned essential feature of wave motion. Accuracy of 
the equations are then studied via clarifying differences of wave motions in the discrete model from those 
in the corresponding continuous model. Justification of using the lumped-mass equations instead of the 
consistent-mass ones is also discussed. In the final Section IV, the stable numerical integration of the 
ABCs in coupling with the equations of interior nodes are studies for practical implementation of the 

direct method. 
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II L o c a l  A r t i f i c i a l  B o u n d a r y  C o n d i t i o n s  

1. M u l t i - T r a n s m i t t i n g  F o r m u l a  

Artificial boundary  

C z ~ CaAt @ caAt 

I 
• . _ A )< . . . . . . . .  v 

" 2  1 

- - - - -  cxAt . . . . .  ~ c~At - 

0 

Fig. 1. Schematic of apparent propagation of a one-way wave along the 

x -axis approaching the artificial boundary. 

Since ABCs are used to prevent the wave reflection at the edge of the soil box, a natural approach to 

set up the boundary conditions is a direct simulation of the one-way wave motion, which are passing 

through the edge from the interior to the exterior of the box. The starting point to perform the simulation 

is a general expression of the out-going waves. Having considered the local characteristic of wave motion, 

the expression may be presented in the local sense, that is, it describes the wave motion merely for a 
boundary point and its neighborhood within a short time interval containing the time station under 
consideration. Suppose that a point o on the boundary is considered (Fig. 1). Let the x-axis pointing to the 
exterior of the box pass this point and be perpendicular to the boundary. The outgoing waves impinging 
upon the boundary point may be expressed by their apparent propagation along the x-axis, 

u(t, x ) :  ~_,f j(~xjt-x) (1) 
j-1 

where u( t , x )  is a function of t and x and consists of arbitrary number of one-way waves f j  ( c~ t  - x ) ,  

each of which propagates along the x-axis with an apparent speed Cxj, f j  are arbitrary functions. It can 

be shown that a system of local ABCs can be derived via a direct simulation of Eq.(1) using the space- 
time extrapolation without knowing any detail of Eq.(1). The apparent propagation of one of the one-way 
waves in Eq.(1) is written (neglecting the subscript j ) as 

u( t , x )  : f (Cxt - X), (2) 

where f is an arbitrary and unknown function and the apparent speed c x is an unknown real positive 

number. Using the forward characteristic, Cxt - x ,  it is easy to see that 
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u(t + A t , x )  = u ( t , x -  G A t ) ,  (3) 

where At is the time step. Although this type of space-time extrapolation equation in association with 
Kirchhoff 's  formula may be used to set up an exact ABC in some simple cases [9], it is impossible to 
derive ABCs directly from Eq.(3) in general cases, because c x is unknown. However, if an artificial wave 

speed c a is introduced to replace the unknown physical speed c x in Eq.(3), approximate ABCs can be 

derived from Eq.(3) as follows. First, Eq.(3) is replaced by 

u(t + At, x)  = u ( t , x -  caAt ) + Au(t  + At, x),  (4) 

where Au(t  + A t , x )  expresses the error caused by c a replacing G. Eq. (4) yields 

Au(t + A t , x )  = u(t + A t , x ) -  u ( t , x -  CaZXt ) (5) 

Substituting Eq.(2) into Eq.(5) leads to that Au(t  + At, x)  would be a function of c x ,ca,  At  and cxt - x .  If 

Cx, G and At are fixed, we may write 

Au(t  + A t , x )  -- f l (Cxt - x) (6) 

where fl is a function of the forward characteristic. Eq.(6) means that the error Au(t  + A t , x )  is also a 

wave propagating along the x-axis with the same speed c x . Recognition of Au(t  + At, x) being a wave is 

the point in this derivation. Following Eq.(4) the error wave may be written as 

Au(t + A t , x )  = Au(t ,  x - C a A t  ) + AZu(t + A t , x )  (7) 

Having replaced t and x in Eq.(5) by t -  At and x -  CaAt, respectively, the first term in the right-hand 

side ofEq.(7) is written as 

Au(t ,  x -  CaAt ) = u(t,  x -  CaAt ) - u ( t -  A t , x -  2CaAt ) (8) 

and the error term in Eq.(7) is written: 

A 2 u(t - At, x)  = Au(t  + At, x)  - Au(t ,  x - caAt ) (9) 

Substitution of Eq.(7)into Eq.(4) yields 

u(t  + At, x) = u(t,  x -  CaAt ) - Au(t ,  x -  G A t )  + AZu(t + At, x)  (10) 

It is easy to see that A 2 (t + At, x) and the higher-order error terms similarly introduced are all 

functions of the forward characteristic ( C x t -  x ) .  Following the above formulation we obtain 

where 

N-I  

u(t  + At, x) - u(t ,  x - caAt ) + ~ A n u(t,  x - eaAt ) + A N u(t  + At, x),  
n=l 

(11) 
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A ~ u(t ,  x - c~At)  = A~-lu(t ,  x - CaAt ) - A n-1 u( t  - A t , x  - 2c~At), n =  1,..., N - 1  (12) 

A N u(t  + At,  X) = AN-Iu( t  + At,  x )  - AN- lu ( t ,  X -- c~At)  (13) 

Next, suppose that the origin of the x-axis is the boundary point o underconsideration. Substituting x =0 

and t = p A t  into Eq.(11) and neglecting the higher-order term A NH(t "k" At ,  0)  yield 

N 

u((p + 1)At, 0) = ~ A"- 'u (pAt , -  c a A t ) ,  (14) 
n=l 

where A 0u - u, the integer p stands for the time station. If C a used for simulating the nth error wave 

A " - l u ( t  + At ,x)  is replaced by Ca, Eq.(14) may be written 

N 

u((p + 1)At, 0) - ~ A"-~u(pAt, - c~ At) 
n=l 

(15) 

Since Eq.(14) or (15) is valid for each one-way wave in Eq.(1), it remains valid for the wave system 
expressed by Eq.(1) if a common artificial speed is used for transmitting the same order error wave of 
each wave in Eq.(1). The discrete quantities of u(t ,  x )  in Eq.(14) or (15) stand now for the total 

displacements contributed by all the incident one-way waves. Although Eq.(15) seems more general than 

Eq.(14), Eq.(14) is more practical and simpler than Eq.(15), because the physical speeds Can are unknown. 

J If a single artificial speed is used, it can be shown using Eq.(12) that [10-12] 

n+l 

A " u ( p A t , - C a A t  ) = ~"- lJ+lC~.  l u ( ( p +  1 -  j ) A t , - j c a A t ) ,  
j=l 

where C~. are the binomial coefficients. Substituting Eq.(16) into Eq.(14) yields 

(16) 

N-I 

u ( ( p  + 1)At, 0) = ~ AN,jU((  p + 1 - j ) A t , -  j c a A t ) ,  (17) 
n=l 

AN, j = (--1)J+l C u (18) 

The local ABC Eq.(17) is the Multi-Transmitting Formula (MTF), which provides a family of ABCs 
with variable approximation orders. The formula was derived in the early 80s for the incidence of plane 
waves in homogeneous media[ 10-12], therefore, the range of applicability of MTF was not fully revealed. 
The present derivation of MTF[ 13-14] is based on Eq.(1), the general expression of linear one-way wave 
motion, therefore, MTF can be applied to all cases where Eq.(1) valids in principle. 

The common methodology in derivation of ABCs is started with some assumptions on material 
properties of the unbounded exterior medium (for example, homogeneous or layered, acoustic or 
elastic, ...) and the mode of wave motion (for example, anti-plane or in-plane, 2-or 3-dimensional, ...). 
A specific type of ABCs may then be derived from a particular set of partial differential equations which 
govern the wave motion in the exterior medium. This common methodology has led to a number of 
valuable results, however, ABCs thus derived must be set up for each particular case[15-19]. The 
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distinguishing feature of MTF is that it is not geared to any particular set of differential equations of 

motion, but instead of the particular assumptions on the exterior medium and the wave mode, it is based 

on a general assumption of the common process of various one-way wave motions, therefore, it applies 

without modification to all the cases where Eq.(1) valids in principle, for example, the unbounded exterior 
may be homogeneous or layered, acoustic or elastic, isotropic or anisotropic, and the one-way wave may 

be either 2- or 3- dimensional, transient or time harmonic, and so on. 

2. A generalization of MTF 
Suppose that Eq.(1) is generalized into 

u(t, x) = ~ f  j(Cx t -  x) + ~ 'g j ( t )h j (x )  (19) 
J J 

where gj and hj in the second summation are arbitrary and unknown functions, which represent some 

extreme cases of the one-way wave motion. For example, the summation represents the waves 
propagating parallel to the boundary as hj (x) are constant, and the static field as gj (t) are constant, and 

so on. In order to facilitate generalizing MTF for the expression Eq.(19), Eq.(17) is first rewritten as 

Sb/~ +1 = 0 

P = u(pAt, ncaAt ) and the discrete linear operator S is given by where u. 
N 

S = B ~ - Z AN,,BJ 
j=l 

where the backward shift operator Bm a is defined by 

(20) 

(21) 

J P P-J (22) BmZ,l n = bln+ m 

Eq.(20) is used to simulate the first summation in Eq.(19). We now consider the simulation Of the second 
summation in Eq.(19). Following the time-space extrapolation Eq.(17), the corresponding space 
extrapolation at the time station t = (p + 1)At may by written 

or  

where 

M 
btp+l p+l (23) 

0 = Z AM,qblq 
q=l 

Tu~ +1 =0 (24) 

M 
0 (25) T = B ~  qBq 

q=l 

The linear combination of the generalized one-way waves expressed by Eq.(19) is approximately 

simulated by 

( s r ) ~ ;  '+l = 0 (26) 

Substituting Eqs.(21) and (25) into Eq.(26) and using the operational rule 

RJ+P 
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lead to 

N M N M 

btp+l p+l-j p+l _ Z Z AN, AM, .p+l-j o - Z AN,jUj + Z AM, qltq J q"q+J 
j=l q=l j=l q=l 

(27) 

The approximation order of Eq.(27) is given by the integers Nand M, AN, j and AM, q a r e  determined by 

Eq.(18). Eq.(27) is reduced to MTF as M=0. Displacements in Eq.(27) are sampled at the computational 
points x = - j c a A t .  These points do not generally coincide with the nodal points x = - n A x  in finite 

elements or finite differences, Ax is the space step. In order to implement Eq.(27) in the domain 

discretization computation, an interpolation scheme is required to express displacements at the 

computational points in terms of those at the nodal points. The interpolation may be realized in a number 

of ways, as summarized in [2]. 

3. Spurious reflection analysis 
The spurious reflection from an artificial boundary may be described by a reflection coefficient R 

defined by 

e-Iu0 "/u' I (28  

where U~ and U0 R are the amplitudes at the boundary point x = 0 caused by a harmonic plane wave of 

incidence and the wave reflected from the boundary, respectively. Analyses of R are usuallycarried out in 
the steady-state case. These analyses are appropriate for the transient-state computation if it is performed 

by the . Fourier transform. However, if the transient computation is performed by the step-by-step 
integration, R in the steady-state case is no longer completely appropriate. For this reason, the transient- 

state case in the definition of R has been suggested to account for the reflection in the step-by-step 
integration [ 10-12]. In this case, it is assumed that the wave field merely consists of the incident wave in 

implementation of the ABCs. Suppose that a plane acoustic wave with an speed c impinges upon the 
boundary at an angle of incidence 0 with respect to the x-axis, the explicit formulas of R have been 

obtained[2, 13]. 

At c a At Ca cos0 - 2sin n ~ m c o s 0  R = 2 sin rt --~ --~ T c 

N 
R = sin(rt(At / T)(1 (c a / c )cos0) )  

sin(rt (At / T)(1 +(c  a / c) cos0)) 

in the transient-state (29) 

in the steady -state (30) 

where T stands for the vibration period. Numerical results of R versus 0 in the entire range of 0 < 0 < 
90 ~ in the two extreme cases are shown in Fig.2 for Eq.(27), c a = c and A t / T  = 0.1. Conclusions 

drawn from the figure are as follows. The first, a coupling of the space extrapolation to MTF does reduce 
substantially R in the transient case, particularly for the large incident angles. However, the coupling has 
no effect on R in the steady case. The second considerable differences between R values in the two cases 
appear for the large incident angles. The differences become more obvious as At / T approaches zero. In 
fact, R in the ideal transient-state case approaches zero with an order of magnitude of (At / T )  N + M within 

the entire range ~)1 -< n / 2 ,  as shown by Eq.(29) with A t / T  ~ 0; while R in the steady-state case is 

reduced to 
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- -  N=2 ,M=0 
. - .  N = 2 , M = I  
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Fig.2 R in the transient- and steady-state cases for Eq.(27),  

ca=c and At/T=0.1 
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" "  real ist ic  
0 t r a n s i e n t ~  

60 70 80 
O(deg.) 

90 

(b) Eq.(27),N=2,M = 1 

Fig.3 Comparison of R in the realistic case with R in the 

two extreme cases for Eq.(27),  ca=c and At/T=I/40 
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I 

R - I c -  ca cos0 
+ c a cos0 

(31) 

which means that R in this case would not be further reduced as A t / T ---> 0, as shown by the solid line in 

Fig.2(b). Since the differences of R values in the two extreme cases are significant, particularly, for the 
large angles of incidence, a question arises: which R would be more appropriate for describing the 
spurious reflection from the boundary in the step-by-step integration? To answer this question, a realistic 
reflection analysis has been performed by a numerical simulation of the reflection for incidence of a plane 
acoustic wave ([ 13] and [20]). The numerical simulation is summarized as follows. Consider a rectangular 
computational domain, a ABC is imposed on its one edge, whose center is the artificial boundary point 
under consideration, and the displacements of the other edges are assigned by the given incident wave. 
Having discretized the computational domain, the numerical simulation is started with t=0, at which the 
wavefront of the incident wave just arrives at the boundary point under consideration. Having assigned 
the initial values of the discrete grid in terms of the incident wave, the numerical simulation is performed 
by the step-by-step integration. If the computed displacement of the boundary point is denoted by u(t, 0 ) ,  

which is a function of time t and the angle 0 of incidence, the total error of the computed displacement is 

e(t, O ) = f (t) - u(t, O ) (32) 

where f i t)  is the displacement of the incident wave at the boundary point. Since all sorts of numerical 
errors except the one caused by the ABC have been carefully reduced to a negligible extent in the 

numerical simulation by using a sufficient large size of the computational domain, refining the grid, 
selecting the total computing time length and the time increment, e(t, O) would represent the realistic 
spurious reflection from the artificial boundary. Substituting the Fourier amplitude spectra of e(t, O) and 
the incidence wave into Eq.(28) leads to the realistic reflection coefficients needed. Fig.3 presents a 
comparison of R values in the realistic case with R values in the two extreme cases for Eq.(27), c~ = c 

and A t/T=O.O25:The close relation between R values in the transient and realistic cases shown in Fig.3 
speaks that R in the transient case does play a more important role than R in the steady case in governing 
accuracy of local ABCs in the numerical simulation performed by the step-by-step integration. The 
conclusion has been demonstrated by a number of numerical experiments, for example, Fig. 7 in [13]. 

This conclusion also greatly simplifies analysis of the spurious reflection, because the formulation of R in 
the transient case does not involve the reflection waves. Therefore, Eq.(29) is correct for all sorts of one- 
way waves of incidence though it was originally derived for the acoustic case. 

4. Relationships between MTF and other local ABCs 

Most local ABCs are derived from a particular set of partial differential equations, which govern the 
motion in the unbounded exterior. Therefore, their derivations are based on an particular assumption on 
the exterior model including the mechanical properties of the media and the motion mode under 
consideration. This methodology has led to a number of valuable results, as summarized in [1 ]. Since all 
the local ABCs are approximate one-way wave equations, some relationship between MTF and these 
local ABCs must exist. To clarify the relationship, the differential form of MTF is derived from Eq.(17) in 
the limit of At approaching to zero as following [2, 21 ],  
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+C a U = 0  (33) 

It can be shown that Eq.(15) with several artificial speeds reduces to the following equation as At 

approaches zero, 

Ij=~IQ-~t+CaJ-~---X~I u = 0  (34) 

Similarities and differences between MTF in the above differential forms and the other two major types of 
local ABCs, that is, the Clayton-Engquist's and Higdon's ABCs, are discussed as follows. 

(1) MTF and Clayton-Engquist ABC 
It has been shown that Eq.(33) is equivalent to the Clayton-Engquist ABC in the acoustic case if c a 

is equal to the acoustic wave speed [22]. However, the artificial speed c a in MTF can be adjusted so that 

perfect transmission may be achieved by MTF for a particular angle of incidence, as pointed out in [2, 21 ]. 
A more important difference between the two types of ABCs is in their ranges of applicability. The 
Clayton-Engquist ABCs in the acoustic case are derived from the paraxial rational expansion of the 
dispersion relation of the acoustic equation. The derivation of the ABCs cannot be directly extended to 
even the case of vector waves in homogeneous, isotropic and elastic media because the vector wave 
equations are not uniquely specified from their dispersion relations. In order to generalize the ABCs to the 
elastic case, a general form of the paraxial approximation must be additionally assumed using the hint 
provided in the acoustic case and the general form is then specified by matching it to the full elastic wave 
equations [15]. The ABCs thus derived for the elastic case are more complicated than that for the acoustic 
case. On the contrary, MTF applies without modification to all situations in which the one-way waves 
concerned can be expressed by Eq.(1) in principle, as mentioned earlier. 

(2) MTF and Higdon ABC 
Started with the finite difference approximation of the acoustic equation, Higdon presented a set of 

local ABCs [23]: 

~ + c  u = 0  j=l COS0 j 1~ t (35) 

where 10 Jl < 71: / 2, c is the acoustic speed. Since Eq.(35)is derived from the acoustic equation and using 
i 

the notion of plane wave incidence, the acoustic speed e and the incident angle 0 j are inherent in Eq. (35). 

The relation between Eq.(34) and Eq.(35) is easily seen by substituting caj - c / c o s 0 j  into Eq.(34). 

Eq.(35) has been then generalized to the elastic case with modification of the physical wave speed c in the 
equation [24-26]. It is interesting to note that the Higdon's generalization is much simpler than the 
CIayton-Engquist's. This may be explained by the close relation of the Higdon's theory with Eq.(34), 
which applies without modification to all cases where Eq.(1) valids in principle. In fact, using the 
artificial speed c a instead of the physical speed c, Higdon's theory may be regarded as that the one- 
dimensional apparent wave propagation of the form u = f (c t -x)  satisfies the first-order differential 

relation 
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+ C  a / / = 0  (36) 

if c a = c, and Higdon's ABCs are then a combination of the first-order differential relations, which is 
identical to Eq.(34). 

III W a v e  Mot ions  in Discrete Grids 

Having performed the spatial discretization, the inertial force term in the resulted ordinary 

differential dynamic equation of the interior nodes is proportional to the mass matrix. The conventional 

consistent mass matrix is not diagonal, which leads to not only increasing the cost of computation but also 

violating the causality of wave propagation with a finite speed. With the local characteristic of wave 

motion in mind, the author in the early 80s suggested using the lumped mass matrix instead of the 

consistent one for numerical simulation of wave motion in the computational region [27]. In order to 

justify the suggestion, wave motions in discrete grids with lumped-mass and consistent-mass matrices 

are studied and compared with those in the corresponding continuum. The studies are briefly summarized 
as follows. 

1. One-dimensional wave motions in discrete grids 
Elementary notions of wave motion in discrete grids may be clarified in a simple 1-D case. Consider 

the 1-D wave equation 

0211 02// (37) 
0 t  2 =c2 0 X  2 

where the constant c o is the wave speed in the continuous model. It is well-known that harmonic waves 

with wave number c o / c  o satisfy Eq.(37) for any frequency o .  If Eq.(37) is discretized in space by 

finite elements of space step A x and in time by central finite differences of time step At ,  the equation of 

motion of the discrete model in the frequency domain is written 

Uj+ 1 + 2 b U j  + Uj_ 1 = 0 (38) 

where b is a function of co, which is governed by A x = c o A t / A x ,  o N = n / A t  and the mass matrix 

being lumped or consistent [2]. Analysis of Eq.(38) yields that wave motions satisfying Eq.(38) are 
strongly frequency-dependent [28-29]: 

(1) Nyquist frequency and frequency aliasing The time discretization leads to so-called Nyquist 
frequency c0 s ,  and wave motions in the discrete model at any frequency o > o s would appear at a 

frequency within the band [0, o s ]. This frequency aliasing implies that the discrete model cannot be 

used to simulate wave motions at c0 (> o s )  ; and that if wave motions at o > co s are introduced (say, by 

dynamic loading or the round-off errors in the numerical simulation), they would not only reduce 

accuracy but also might cause numerical instabilities of the simulation, which will be discussed later. 
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(2) Cut-off frequency and accuracy The time and space discretizations lead to another characteristic 
frequency o~u(<co N), which is so-called the cut-off frequency. Wave motions are dispersive in 

<o3 <co which is non-traveling and 0 <co <O~u and reduced to the parasitic oscillation in co u _ _ N, 

concentrated in the neighborhood of the exciting source. Let the desired frequency upper limit be denoted 
by co c, wave motions in the desired band of 0 < co < co c may be simulated for an allowable error 

caused by the dispersion, if the grid is refined such that co ~ is properly larger than co c. 

It is interesting to point out that the dispersive errors of the consistent mass model are not less than 
those of the corresponding lumped-mass one within the desired frequency band co < co r and that the 

parasitic oscillations attenuate much faster for the lumped-mass model than the consistent-model. 

(3) Stability criteria The stability criterion of the step-by-step numerical integration of the equations 
of motion may be set up in the frequency domain according to the dispersion equation. The criterion is 

that if the wave number is independent and real, the stability is guaranteed by the frequency in the 
dispersion equation being real. The stability criteria thus derived for the lumped- and consistent-mass 
models are as follows: 

c0A t <_ A x f o r  lumped - mass } (39) 

c0A t < A x / ~f3 f o r  c o n s i s t e n t -  mass 

The criterion for the consistent-mass is harsher than that for the lumped-mass in selecting the time step 
At. 

2. Multi-dimensional wave motions in discrete grids 
Wave motions in discrete grids have been analyzed for the anti-plane, in-plane and 3-dimensional 

cases using the approach similar to the 1-D case. For simplicity, the uniform square or cubic finite 
elements are used to discretize the interior medium which is homogeneous, isotropic, and linear elastic,. 
The results are as follows [30-32]. 

(1) Stability criteria It is like the 1-D case that the numerical stability criterion for the consistent-mass 
is harsher than that for the lumped-mass in the multi-D cases. For example, in the anti-plane case, 

c.,.A t < A x f o r  l u m p e d  - mass ,  ; (40) 

c.,.At <_ A x  / ~f6 f o r  cons i s ten t  - m a s s , J  

where c s is the S-wave speed, A x is the size of the square finite elements; and in the in-plane case, 

CpAt <_ A x  

CpAt < + c s Cp Ax  

f o r  lumped - mass, ] 

f o r  consistent - mass, 
(41) 

where C p is the P-wave speed. 

(2) Anisotropy and polarization drift Besides the dispersion, the anisotropy and the polarization 
drift appear in wave motions in the multi-D discrete models. The anisotropy is shown by the direction- 
dependent dispersion curves in Fig.5.7 in [2] for the anti-plane case. Besides that the dispersion carves are 
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direction-dependent for the P-and SV-waves in the in-plane case, the polarization drift of the waves may 
appear. The drift is described by the deviation of the angle between the wave propagating direction and 
the particle vibrating direction in the discrete grid from that in the corresponding continuum. The drift 
shown in Fig.5.10 in [2] for the in-plane case reveals that the direction of the particle vibration in the 
discrete model is no longer parallel or perpendicular to the direction of wave propagation for the P- or 
SV- wave, respectively, at the higher frequencies. The polarization drift might also appear in the SH type 
of waves in the 3-D discrete model. All the above discretization effects are not desired in the numerical 
simulation and appear at high frequencies. They can be reduced to an allowable extent in the desired 
frequency band by appropriately refining the discrete grids. However, understanding them is important in 
choosing the proper discrete model parameters to guarantee accuracy and stability of the numerical 
simulation, because these effects are inherent in wave motions in the discrete models, which are the 
counterparts in the corresponding continuum. 

(3) Complexity of wave motions in multi-D discrete grids The number of wave motion types in the 
discrete models is much larger than that in the corresponding continuum. To have a general picture of the 
complexity, let the frequency be independent and real. All types of wave motion in discrete models may 
be revealed by considering the wave numbers being complex, which satisfy the dispersion equation. 
There might be four types of wave motion in each characteristic direction for each dispersion equation, 
that is, the traveling wave, attenuated traveling wave, evanescent motion and parasitic oscillation. Having 
combined the motions in two characteristic directions, 16 types of motions might appear in the anti-plane 
case. Since there are two independent dispersion equations in the in-plane case, 32 types of motions might 
appear there, half of them are P-type and the other half are SV-type. In the 3-dimensional case, there are 3 
independent dispersion equations for P-, SV- and SH-type of motions; 64 type of motion might appear for 
each dispersion equation and total number of the wave types reaches 3 • 64=192. Since most of the wave 
types never appear in the continua, they are not desired in the numerical simulation. Although they occur 
merely at the undesired high frequencies and may be eliminated by refining the discrete grids and 
considering the realistic damping effects, understanding them is again helpful for the accurate and stable 
implementation of the numerical simulation. 

IV Stable Implementa t ion  of  the Numer ica l  S imulat ion  

Since the discrete equations of motion for both the boundary nodes and the interior nodes are local 
and explicit, the step-by step numerical integration of the equations is simple and easy in programming. 
(Note that Eq.(27) samples the wave field at points which are not gemerally on the discrete grid, so an 
interpolation scheme might be needed in the implementation.) The numerical simulation has been used in 
analyses of soil-structure interaction and other near-field wave motion problems in complicated situations 
including the infinite exterior medinum being layered, anisotropic and elastic[33-36]. The common 
problem encountered in the implementation is the instability of the numerical integration. Studies on the 
problem have yielded some semi-empirical schemes, which lead to stable implementation without 
effects on the accuracy desired. Such schemes include the smoothing technique [37, 2], the boundary 
damping layer [2], the special interpolation schemes [38, 2]. Although the stability problem seems not 
serious from a practical point of view, it is worthy to be further studied for the numerical simulation to be 
based on a solid theoretical basis. Among the studies carried out so far [1], the following is our 
preliminary ones. 

1. Mechanism of the instability 



137 

Consider the longitudinal wave propagation in a semi-infinite uniform elastic rod, excited by a given 
vibration at the end of the rod. The wave is simulated by the decoupling numerical approach suggested in 
the present paper. The instability phenomenon encountered in the simulation is shown in Fig.4. It can be 

seen that the instability is of the form of oscillation at frequencies higher than the desired but less than the 

cut-off frequency co , ,  and that it does not always occur (Fig.4(b)). In order to understand the phenomena, 

the exact solution of the discrete model has been derived in the frequency domain. It is found that the 

necessary and sufficient condition for the exact solution being finite is 

IRI < 1, 03 < co u (42) 

where R is the reflection coefficient in the steady state. Fig.5 shows the relation of IRI 1IN versus co for 

co _< co,. This figure plus the stability condition (42) provide a full explanation of major features of the 

stability phenomena. First, the stability criterion derived from the condition (42) for the simple 1-D model 
is 

A'r, c a / c o < 1.5 (43) 
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The criterion (43) explains why does the instability occur in Fig.4(a) but not in Fig.4(b). This is because 

At ,  = 1, c a / c  O = 2.0 and Ax = 1, c a / c  O = 1.2 for 4(a) and Fig.4(b), respectively; the former does not 

satisfy (43), but the later does. Second, the frequences at which the unstable oscillation takes place in 
Fig.4(a) are within the range of 0.5co n < co < co u, as counted from the time domain numerical results, 

which coincide with those frequencies at which IR] > 1, as shown by the curve of ~ = c a / c o = 2.0 in 

Fig.5. In conclusion, the instability comes from the multi-reflection of the traveling waves at the 

undesired high frequencies and their multi-amplification (IR[> 1) at the artificial boundary point. 

Therefore, the stable implementation may be guaranteed by eliminating the motion at the undesired high 
frequencies. This thought has led to some stable implementation schemes, as mentioned earlier. 

2. Approximate stability criteria 
The above study in the frequency domain for the 1-D model is helpful for understanding the 

mechanism of instability. However, it is questionable whether the condition of stability (42) for the 1-D 
case is still valid for the multi-D cases becuase of the coupling effcts of several intersected artificial 
boundaries. Further more, the stability criterion derived from Fourier analysis in the frequency domain 

cannot fully explain all the instability phenomena in the time domain, for example, the drift instability, 

which is caused by accumulation and propagation of the round-off error in the step-by-step integration. 
These considerations have led to searching for an approach in the time domain. As for the explicit step- 
by-step integration of a system of linear equations concemed here, the equations of all boundary and 
interior nodes may be written 

YP+'= AY p (44) 

where the vector YP stands for displacements and velocities of all nodes at the time station t = p A t  and 

the previous time stations, A is a square matrix, whose elements are determined by the coefficients of the 

equations. Following the approach developed in structure dynamics [39], the stability condition may be 
written 

p (A) < 1 (45) 

where p (A) is the spectral radius of A, that is , the maximum modulus of eigenvalues of A. The 

inequality (45) may be used to judge the stability for any particular discrete model numerically. However, 

it is difficult to derive the stability criterion from the condition directly for a class of discrete models. In 
order to cope with this difficulty, the following approximate approach has been proposed [2,40]. A local 

discrete system is first taken from a class of discrete models under consideration. The local system, which 
is composed of a few nodes on an artificial boundary and their adjacent interior nodes of the original 
discrete models, is then decoupled by imposing the fixed or free boundary condition on its all boundaries 
accept the artificial one to prevent waves going out of the boundaries. The approximate criterion of 
stability for the original discrete models may be then determined numerically using the matrix A of the 

local system according to the inequalily (45). To illustrate this approach, the above mentioned 1-D model 
is considered again. Since the elements of A are determined by Az - A t e  o / z~c,  o~ - c a / c o and the total 

number J of nodes of the local system, the values of p (A) are also governed by the parameters. Define a 

critical value c~ 0 for given values of Az and J such that p (A)<I for ot < ot 0 and p (A)> 1 for c~ > ot 0. 

A few values of ot 0 thus computed are listed in Table 1, the last row in the Table is for comparison, the 

numbers in the row are computed from Eq.(43), which is derived from the exact solution in the frequency 
domain. 
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Table 1 the critical value c~ for the 1-D discrete model 
0 

0.5 0.6 0.7 0.8 0.9 1.0 

10 3. 025 2. 521 2. 161 1. 891 1. 681 1. 513 

20 3. 006 2. 505 2. 147 1. 879 1. 670 1. 503 

Eq. (43) 3. 000 2. 500 2. 143 1. 875 1. 667 1. 500 

In conclusion, the author feels justified in saying that the decoupling numerical simulation of wave 
motion is one of the most practical and promising approaches proposed so far for solving problems in the 
fields of the soil-structure dynamic interaction and the near-field wave motion, and worthy to be further 
studied. 
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Abstract 

The main points in formulating the closed-form solutions of two-dimensional scattering of 
plane SH waves by cylindrical suface topography of hill and canyon with circular-arc 
cross-section in a half-space are presented. The solutions are reduced to solving a set of infinite 
linear algebraic equations using the auxiliary functions and the exterior region form of Grafts 
addition theorem. The effects of the height(depth)-to-width ratio of the surface topography on 
surface ground motion are finally illustrated. 

Introduction 

Field investigation and strong motion records have shown that the local suface topography 
might play an important role in interpretation of wave propagation phenomena and earthquake 
damages. Although numerical methodsl"~are a powerful tool for studying scattering of elastic 
waves by suface topography of arbitrary shape, the analytical solutions for comparatively sim- 
ple cases are still valuable for checking accuracies of approximate solutions and providing in- 
sight into the physical nature of the problem. However, the exact solutions available so far for 
the problem under consideration are very limited 5-9. The two-dimensional scattering of plane 
SH waves by cylindrical suface topography of circular-arc cross-section in a half-space is stu- 
died using the wave functions expansion method in this paper. Two difficulties in formulating 
the closed-form solution of the problem are solved by using the exterior region form of Grafts 
addition theoremSand the auxiliary functions method 9. The solution presented here will be 
separately reduced to the known one9'Swhen the hill and canyon have a semi-circular cross-sec- 
tion. 

Formulation 

The cross-section of two-dimensional model to be analyzed is shown in Fig.1. It represents 
an elastic, isotropic and homogeneous half-space with circular-arc topography of a cylinder 
of radius a. In the Figure, (a) and (b) stand for hill and canyon topography respectively. The 
shape of the topography is characterized by the ratio of height(depth)-to-half-width, d / L, 
as shown in Fig. 1.Two rectangular coordinate systems and the two corresponding polar systems 



142 

employed in the paper are shown in Figs.2 and 3 for the hill and canyon, separately.u 0, 2, /~ 

and ~ are amplitude, wavelength, wavenumber and incident angle of the incident plane SH 
wave, respectively. 

4, 

(a) Hill (b) Canyon 

Fig.1 The half-space with circular-arc hill and canyon topography 

]-, 

0 ,7 

T 
h 

o l  ~ 3'1 

SH 

d 

Fig.2 Coordinate systems for canyon model 
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Fig.3 Coordinate systems for hill model 

The general solution of the scattering displacements satisfying the wave equation and the 
boundary condition on the flat surface for the above two models can be written in the 
coordinate (x~, y~) 

(dr) , 0 ) =  U Z H ( .  1) (1) U (r l 1 0 (/~rl)(6 A cosnO +6(2)B s innO ) (1) n n 1 n n 1 
n--o 
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( 1 )  
where A , B are constants to be determined and H ( �9 ) are the Hankel functions of the first 

kind with order n and 

5 ( ' ) -  1 + (-- 1)" 5(:)= 1 - - ( - -  1)" (2) 
tl P n 

For the circular-arc canyon model, Cao and Lee l~ studied the same scattering 

problem as one in this paper. They appoximated the flat surface of the half-space close to the 

canyon by the surface of a circle of large radius.However, the value of the radius can not too be 
large because accuracies of numerical results available for Bessel functions are limited. This 

would result in an ad hoe choice of the radius and prevent a strict test on its accuracies for cases 

where the canyon does not have a semi-circular section. Therefore, their solution is 

appoximate. The key in the formulation of the exact solution in our paper is to present a trans- 
form formula of Hankel functions from coordinates (r I , 01) into (r, 0) in the region D 

(Fig.2).As shown in Fig.4 and Fig.5, the circle with radius h divided x -y  plane into the 'interior 

region' f~ and the 'exter ior  region' R.The transform formula quoted in Cao and Leelpaper is 
suitable for the interior region f~ but not for region D.The transform for the Hankel functions of 

integer n is written according to the Grafts addition theorem 

T 
h 

0 

X 

0! 

/ i  

Fig.4 interior region f~ for the transform formula Fig.5 exterior region R for the transform formula 
oo 

H (') (U){ c o s n ~  H (1) W ) {  cos ta l (  
s i n n ~  } - -  ~ ( V ) J  ( } n . . . .  n + m  s i n m x  

f o r l W I  < IVl (4) 

where U, V, W, ff and Z are real values of variables, and angle ~ is defined by the equations 

V -  W c o s O  = U c o s ~  (5) 

W s i n ~  = U s i n x  (6) 

To preform the transform in the region R, the variables in (4) can be replaced by 

U = fl r ~ , qJ = O ~ - O , V = fl r , W = fl h , x = O (7) 

Using the relationships of the coordinate systems in Fig.2, equations (5) and (6) are 
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satisfied.Inserting (7) into (4) results in 

cO ?1 

t ,. . , , ,  l. ) 
" s innO,  = ( -  1 ..o~ " ([3r)-~2 -- [J + . ( ~ h ) -  ( -  1)"Jm_ . ( [3h) l s inmO 

(r, O)~R (8 )  

Formula (8) are suitable for the exterior region R.Noting that the region R encloses the region 
D and substituting (8) into (1) leads to 

c o  c o  

u (r, 0 ) - -  u o H )([3r)[621)A P cosmO + B Q sinmO] (9) 
i i  m ,  i i  i i  ! I  m ,  n 

m , , O n s O  

where 

m e ,  - 5 - [ j  +,(#h) + ( -  ] ) ' j  _,(#h)] (10) 

.. = ~ . _ , ( ~ h ) ]  ( 1 1 )  

For the circular-arc hill model, to avoid the singularity of the Hankel functions near the 
point o](Fig.3), the half-space can be divided into the two parts as shown in Fig.6.In the circle 
region, the following mixed boundary-value problem should be solved 

F F 
g r i t t i e r  - k ' ~ ' ~ x x k ~ x  

SH 

Z ~ 
Fig.6 Division of the half-space for hill topography 

a z(a, 0 ) = 0  --q~< 0~<q~ (12) 
cr (a,  O)= -d 0 = o t h e r s  (13) 

r z  r z  

u(a ,  O)= ~ 0 = o t h e r s  (14) 

where equation (12) represents traction-free boundary condition on the hill topography and 
equations (13) and (14) represent the continiuty boundary conditions between the two 
regions. To solve the mixed boundary-value problem, we use the auxiliary functions, which 
are defined separately by 

o (a, O) - q~ + 2 k n  <~ O <<. q~ + 2 k n  
�9 (0 )  = r~ ( ] 5 )  

a (a, O) -- -d 0 = o thers  
r g  r g  

k =0,__+ 1,+ 2,... 

v<o)=( ~ 
u(a,  O ) -  

- q~ + 2kn ~< 0 ~< ~o + 2krc (16) 
O - - o t h e r s  

k = 0,__+ 1, ___+ 2,--- 
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then 

�9 ( 0 ) -  0 --  rc ~< 0 ~ rc (17 )  

which is equivalent to satisfaction of the boundary condition (12) and the continuity condition 
(13), and 

W(0)  - 0 - ~ ~< 0 ~< r~ (18 )  

which is equivalent to satisfaction of the continuity condition (14). Making @(0) and W(0) Fou- 
rier series expansions in [-~, re] and letting the expansion coefficients equal zero, the boundary 
condition (12) as well as the continuity conditions (13) and (14) will all be satisfied. 

For the circular-arc hill and canyon models, the constants A n and B n both can be deter- 
mined by satisfying the corresponding boundary conditions and then the following infinite 

algebraic equations are yielded 
o0 

a A -- E (19) 
m n  n m 

n - - O  
oo 

E b n = F (20) 
m n  II m 

n = O  

m - - - -  0,|,2~**" 

where Emand Fmare the known coefficients related with the incident waves. 

Numerical Results 

1.Accuracies of the solutions 
Since the equation of wave motion and the boundary condition on the fiat free surface are 

strictly satisfied, convergence of the numerical solutions to the exact ones will be checked using 
the boundary condition and the interface conditions with the increasing of the truncation 
order.The results shown in our research indicate that the maximum stress residual may be re- 
duced to a sufficient small number if an appropriate truncation order n is adopted.The results 

also show that if the maximum stress and displacement residuals are limited within 5% the accu- 
racies of the displacements can be guaranteed in the frequency range 0 ~ r t ~ 3 ,  where 

2L BL (22) 
q -  2 - ~ 

2.Comparison with Cap and Leers results 
The dimensionless displacements along the free surface are defined by 

1 

(23) u d --  { [ R e ( u ) ] 2  + [Ira(u)]2 } ~ / u o 

where Re(u) and Im(u) are the real and imaginary parts of the complex variable u, the total dis- 

placements. 
The dimensionless displacements on the free surface are shown in Figs 7 and 8, where the 

solid and the dot lines represent the results obtained by the authors and Cap and Lee in 
reference 10, respectively.Fig.7 shows the numerical results for d / L  =0.5, r/= 2 and incident 
angles ~ = 90 ~ .Fig. 8 shows the same results but for d / b =  0.25. In using the Cap and Leers 

method, the ratio of the radius of the big circle to the radius of the canyon is assumed to be 
50, and in this case we found that the results obtained here are in agreement with the results in 
Fig.7 and Fig. 10 in Cap and Lee~s paper.The comparison between the solid and dot lines shows 
that Cap and Lee/s results agree with ours quit well in the general trend, especially for the re -  
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sponse of the surface of the canyon.However, differences between the two methods appear in 

responses of the free surface away from the canyon, and become considerable as d /  L is 

small.For example, as shown in Fig.8, the dimensionless displacement on y / L - 3 . 1  is 14% 

bigger than ours.Besides, less terms of the series are required for the convergence of the solu- 

tion by ours method than by Cao and Lee/s method.For  example, for d / L  = 0.5 and r/= 2 the 

minimum number of the terms of the series is equal to 14 for our solution and equal to 20 for 

their solution.The above differences are come from the big circle assumption made by Cao and 

Lee to approximate the infinite half-space, which result in the multiple reflections of the waves 

inside the big circle, and therefore, stronger vibration phenomena appear in their 

results.Meanwhile, the reflections between the canyon and the big circle may result in more en- 

ergy concentrated near the canyon and bigger displacements appear in some observation points 

of the ground surface. 

t,t d 

i 
~ Yuan and Liao 
.. . . . . . . .  Cao and Lee 

! 

�9 . . .-:..  . . .  ..~. . .; ' :- . ' -  

2 " - - 
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0 
- 4  -3  - 2  -1 0 1 2 3 4 

, r / t .  
Fig.7 Comparison between authors' method and Cao and Lee/s for canyon of d / L = 0.5 

t~ d 

YuanandLiao 1 
4 T .. . . . . . . .  Cao and Lee 

:I j , 
1 

i . J - l ~  __L L I J_ 

:x/t. 
Fig.8 Comparison between authors' method and Cao and Lee's for canyon of d / L = 0.25 

3.Surface ground motion near the topography 

To exhibit the effects of the canyon and hill on surface ground motion, the displacements 
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u d for some typical cases are shown in Fig.9 to Fig. 12 for d / L -- 1. F rom the Figures, it can be 

seen that the canyon mainly play a barrier role in the effects on surface motion, which develops 

a shadow zone behind the canyon and nearly sdanding wave motion in front of the canyon for 

acute and grazing incident waves. By campar ion with canyon, the hill acts as receiver, which 

can get more energy from the incidence for vertical incident waves and then produce considera- 

ble amplification of surface motion. 
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(a) Grazing incidence 
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(b) Vertical incidence 

Fig.9 Surface displacements of hill and canyon for r/= 0.15 
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Fig.10 Surface displacements of hill and canyon for r/= 1 

Ltd la d 

1 1 

h , t L , 4 _ _  

o ! 2 3 

A 

! 2 3 

(a) Grazing incidence (b) Vertical incidence 

Fig.11 Spectral amplification at hill top and canyon bottom 



148 

~d 

....... - - - ~ f f - -  

. . ~  

o 

Ud 
5t- 

- .  

i 

1 2 3 

(a) Grazing incidence (b) Vertical incidence 

Fig. 12 Spectral amplification at hill and canyon rims 
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F o r  check ing  accurac ies  o f  va r ious  n u m e r i c a l  m e t h o d s ,  Figs.  13 a n d  14 show the dis- 

p l a c e m e n t  u d for  d / L  = 1 a n d  c~ = 0 ~ ,30 ~ ,60 ~ a n d  90 ~ . The  d i s p l a c e m e n t  u d versus  y / L  

for q = 1 is s h o w n  in F i g u r e  13 a n d  the d i s p l a c e m e n t  u d versus  tt at  t o p  o f  the  hill (y / L = 0) is 

d e m o n s t r a t e d  in F i g u r e  14. T h e  c o r r e s p o n d i n g  n u m e r i c a l  resul ts  o f  the Figs .13 a n d  14 are l isted 

in Tab les  1 a n d  2, separa te ly .  I t  can  be seen t h a t  the  effects o f  the  hill on  g r o u n d  m o t i o n  of  the 

hill a n d  its n e i g h b o r h o o d  are  qui te  compl i ca t ed .  F o r  example ,  the  m a x i m u m  u d does  no t  al- 

ways occur  at  t o p  o f  hill a n d  does  n o t  a lways  a p p e a r  for  ver t ical  inc idence o f  SH waves.  The  

compl i ca t ed  effects d e p e n d  s t rong ly  on  the angle  a n d  the f r equency  of  the  incidence.  

Table 1 Numerical  results for Fig. 13 

y/L ~t=O ~ at=30 ~ ct=60 ~ or_=90 ~ 

Table 2 Numerical  results for Fig.14 

'7 ~---0~ ~ =3~176 ~=60 ~ . ~=9~ 

-3.00 2.231 1.852 2.367 2.210 0.01 
-2.50 1.775 2.162 1.927 2.138 0.06 
-2.00 2.268 1.985 1.817 1.747 0.11 
-1.90 2.088 1.710 2.082 1.702 0.16 
-1.80 1.855 1.521 2.336 1.689 0.21 
-1.70 1.657 1.535 2.536 1.711 0.26 
-1.60 1.612 1.765 2.648 1.768 0.31 
-1.50 1.762 2.095 2.650 1.855 0.36 
-1.40 2.029 2.403 2.531 1.964 0.41 
-1.30 2.292 2.604 2.280 2.086 0.46 
-1.20 2.454 2.635 1.896 2.215 0.51 
-1.10 2.443 2.451 1.379 2.349 0.56 
-1.00 1.950 1.674 0.608 2.575 0.61 
---0.90 0.386 0.666 1.946 1.826 0.66 
-0.80 0.773 1.226 1 .922  0.708 0.71 
--0.70 1.136 1 .511  1.699 0.376 0.76 
--0.60 1.355 1.587 1.364 1.287 0.81 
-0.50 1.452 1 .551  1 .165  2.089 0.86 
-0.40 1.448 1.440 1.177 2.739 0.91 
-0.30 1.361 1.262 1 .359  3.243 0.96 
-0.2~ 1 .211  1.047 1 .673  3.612 1.01 
-0.10 1.019 0.859 2.046 3.843 1.06 
+0.00 0.804 0.771 2.384 3.922 1.11 
+0.10 0.614 0.829 2.644 3.843 1.16 
+0.20 0.573 1.029 2.835 3.612 ,1.21 
+0.30 0.752 1.322 2.969 3.243 1.26 
+0.40 1.042 1.635 3.013 2.739 1.31 
+0.50 1.358 1.911 2.914 2.089 1.36 
+0.60 1.674 2.123 2.651 1.287 1.41 
+0.70 1.963 2.267 2.251 0.376 1.46 
+0.80 2.156 2.288 1.665 0.708 1.50 
+0.90 2.168 2.038 0.750 1.826 1.60 
+I.00 1.155 0.629 1.708 2.575 1.70 
+1.I0 1.127 0.721 1.957 2.349 1.80 
+1.20 1.128 0.815 2.162 2.215 1.90 
+1.30 1.141 0.902 2.328 2.086 2.00 
+1.40 1.159 0.981 2.463 1.964 2.10 
+I.50 1.178 1.052 2.573 1.855 2.20 
+1.60 1.198 1.118 2.661 1.768 2.30 
+1.70 1.217 1.179 2.728 1.711 2.40 
+1.80 1.235 1.237 2.779 1.689 2.50 
+1.90 1.253 1.290 2.811 1.702 2.60 
+2.00 1.269 1.341 2.826 1.747 2.70 
+2.50 1.339 1.562 2.691 2.138 2.80 
+3.00 1.393 1.744 2.282 2.210 2.90 

3.00 

2.005 2.005 2.005 2.005 
2.110 2.114 2.121 2.124 
2.310 2.323 2.350 2.364 
2.566 2.598 2.663 2.696 
2.792 2.854 2.981 3.045 
2.846 2.945 3.150 3.255 
2.658 2.794 3.076 3.224 
2.333 2.497 2.846 3.030 
2.000 2.188 2.594 2.813 
1.719 1.928 2.389 2.643 
1.494 1.723 2.244 2.536 
1.315 1.565 2.151 2.490 
1.171 1.441 2.102 2.496 
1.050 1.341 2.087 2.547 
0.946 1.255 2.099 2.637 
0.855 1.175 2.130 2.765 
0.775 1.097 2.175 2.927 
0.712 1.014 2.229 3.124 
0.680 0.925 2.286 3.360 
0.711 0.841 2.350 3.646 
0.826 0.764 2.388 3.96~ 
1.070 0.782 2.392 4.340 
1.454 1.011 2.299 4.689 
1.894 1.446 1.993 4.760 
2.134 1.834 1.479 4.232 
2.050 1.952 1.138 3.392 
1.827 1.893 1.145 2.818 
1.617 1.395 1.264 2.617 
1.456 1.716 1.370 2.648 
1.340 1.669 1.445 2.788 
1.260 1.657 1.500 2.977 
1.166 1.730 1.602 3.405 
1.094 1.881 1.808 3.776 
0.950 1.954 2.210 3.826 
0.711 1.747 2.659 3.374 
0.595 1.270 2.957 2.620 
0.813 0.652 3.054 1.914 
1.188 0.407 2.980 1.697 
1.544 1.043 2.959 2.149 
1.803 1.668 3.323 2.619 
1.805 2.036 3.770 2.456 
1.481 2.030 3.640 1.640 
1.093 1.889 3.147 0.830 
0.783 1.785 2.662 0.311 
0.546 1.727 2.260 0.103 
0.413 1.667 1.895 0.140 



150 

5 

4 

3 

u d 

1.0 

5 0 . 8  

4 

3 

u d 

o ~ 
-3 -2 - I  0 I 2 3 

Y/L 

Fig.15 Displacements on the free surface of hill for d / L = 1 
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Fig.16 Displacements on the free surface of hill for d / L = 0.5 

To exhibite the effects of  the h e i g h t - t o - w i d t h  ratio of  the hill on the surface motion,  3 - D  

plots of  surface displacements u d versus y / L and the dimensionless frequency r/are presented 

in Figures 15, 16 and 17 for d / L -  1, 0.5 and 0.25, respectively.As expected, the effects of  

the hill decrease generally as d / L becomes smaller and the displacement for low d / L generally 

approaches to 2, the displacement of  the free field in the obsence of  hil l .However,  the effects 

are still quite considerable even for d / L = 0.25 if the excitation frequency is high. The amplifi- 

cation at the hill top is observed in the Figures. Yet this amplification does not appear 

systematicallly, and it depends significantly on the characteristics of  both the incident waves 

and the hill structure. Although the dependence is complex, some general features can Still be 

observed. First, the results presented here exhibit that the maximum response of  the displace- 

ments at the hill top will occur as the incident wavelenghs are conparable with, or slightly 

shorter than the hill width. For ~7 = 1 and the vertical incidence, for example, for the hill with 

d / L  = 1, 0.5 and 0.25 the displacement u d at the hill top are 95%, 40% and 20% higher than 

that in the free field in the obsence of  the hill, respectively.The second feature we can observed 

is that the amplification at the hill top generally decreases with decreasing of  the incident angle 

from ~ = 90 ~ to ~ = 0 ~ , and deamplification at the hill top will occur for the grazing incidence 
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of e - 0  o . In general trend, the above two feartures are agreeable to the results obtained by 
other methods. Besides, it can be seen from the results presented here that the degree of the 

complixity of the surface displacement pattern will increase with increasing of the frequency of 
the incident waves. 

i I 

ua : ! / f ' ~ ~ 0 !  06 11 

o , t 
-3 -2  -1 o I 2 3 

yI, L 

Fig. 17 Displacements on the free surface of hill for d / L = 0.25 

C o n c l u s i o n s  

An analytical method is presented in this paper to obtain closed-form solutions of 

two-dimensional scattering of plane SH waves by cylindrical hill and canyon of circular-arc 

cross-section.Although truncation treatment of the infinite equations is inevitable for numerical 
solution, it has been tested that errors of the truncation converge to zero with increasing the 

truncation order. Complex effects of the height(depth)-to-width ratio of the topography on 

wave motion have been demonstrated by a series of numerical solutions using the method pres- 
ented in the paper. 
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A P P L I C A T I O N S  O F  I N F I N I T E  E L E M E N T S  TO D Y N A M I C  
S O I L - S T R U C T U R E  I N T E R A C T I O N  P R O B L E M S  

Chongbin Zhao 
(CSIRO Division of Exploration and Mining, Perth, WA 6009, Australia) 

Abstract 

This paper presents a brief summary on the research, which was mainly related to the applications of 
infinite elements to dynamic soil-structure interaction problems and carried out by the author and his 
coworkers during the last decade. Owing to the complex and complicated nature of practical engineering 
problems, infinite elements often need to be coupled with finite elements to deal with such problems. This 
has enabled the combination of infinite elements and finite elements to be used to successfully solve many 
practical problems in various engineering fields, such as earthquake engineering, structural engineering, 
geotechnical engineering, dam engineering and so forth. Several examples are given in this paper to show 
the applications of infinite elements to dynamic soil-structure interaction problems in engineering practice. 

1 Introduction 

It is well known that compared to the structural size in engineering practice, the Earth's crust is vast on 
the geometrical side, and therefore can be treated as an infinite medium on the mathematical analysis side. 
This poses a challenge problem for the conventional finite element method because the modelling domain 
must be finite in the conventional finite element analysis. The early treatment of this problem is to simply 
cut a finite region of the Earth's crust as the foundation medium of a structure, and then to model the 
structure and its foundation medium of finite size using the finite element method. This treatment may be 
acceptable for static problems, provided the foundation medium of a structure is taken large enough. 
However, this treatment does not work at all for dynamic problems because it cannot avoid the wave 
reflection and refraction behaviour on the artificially truncated boundary, no matter how large the 
foundation of a structure is taken. 

To solve the above-mentioned problem more effectively and efficiently, great efforts have been made 
during the last a few decades. Among them the infinite element is one of the most powerful techniques to 
tackle the above problem [ 1-21 ]. The theory of infinite elements can be found in many open literatures [ 1- 
4, 6-7, 13] and will not be repeated in this paper. The infinite element was initially proposed for dealing 
with static problems in infinite elastic media [ 1, 4] and later extended to the solution of steady-state wave 
propagation problems in infinite elastic media [2-3, 6-7, 13]. Only very recently, the transient infinite 
element was developed for solving truly transient heat transfer, mass transport and pore-fluid flow 
problems in infinite media [11, 14, 18, 19]. 

Considering the relevance to the topic of this paper, we only present some numerical results obtained 
from using the combination of finite elements and infinite elements for solving dynamic soil-structure 
interaction problems. The basic idea behind using the combination of finite and infinite elements is as 
follows. The finite element is used to effectively model the geometric irregularities and material varieties 
in a structure and the near field of its foundation, while the infinite element is used to effectively and 
efficiently model the wave propagation behaviour in the far field of the foundation. To demonstrate the 
applicability of infinite elements to various practical engineering problems, several examples are given to 
show how to use the combination of finite and infinite elements for solving the dynamic soil-structure 
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interaction problems in earthquake engineering, structural engineering, geotechnical engineering and dam 
engineering in the following sections. 

2 Applications of Infinite Elements to Wave Propagation Problems in Earthquake 
Engineering 

The free field distribution of a site due to an earthquake is a wave scattering problem in the infinite 
medium. This free field distribution is often affected by the site geometrical and geological conditions. 
Applications of the coupled method of finite elements and infinite elements to this kind of problem have 
been reported in several publications [7, 10]. An example are only given below to demonstrate the 
applicability of using infinite elements to solve some practical problems in earthquake engineering. 

For the above-mentioned purpose, a V-shaped canyon with different ratios of top width to height is 
considered. H and L are used to stand for the height and top width of the canyon respectively. As shown 
in Fig. 1, the near field of the canyon is simulated by eight-node isoparametric finite elements, while the 
far field of the canyon is modelled by dynamic infinite elements. Since this study aims to investigate the 
displacement distribution pattern along the canyon surface, it is appropriate to use a unit plane harmonic 
wave in the analysis. To meet different needs for the study, the unit wave may be considered to have 
different wave types (i.e., P-wave or SV-wave), different circular frequencies and different incident angles. 
The horizontal line (Y=0) is chosen as the wave input boundary where the incident harmonic wave is 
transformed into dynamic loads using the elastic wave theory. The angle between the normal of the front 
of the plane harmonic wave and the vertical line is defined as the wave incident angle. According to this 
definition, 0 = 0 means that the harmonic wave is vertically propagating onto the wave input boundary, 
while 0 ~ 0 implies that the harmonic wave is obliquely propagating onto the wave input boundary. In 
order to reflect the effects of wave incident direction on free field motion, different incident angles have 
been considered in the analysis. 

The following parameters are used in the computation" the height of the canyon is 100 m; the elastic 
modulus of the canyon rock mass is 24 x 106 kPa ; the unit weight and Poisson' s ratio of the canyon rock 
mass are 24kN/m 3 and 113 respectively. For the purpose of investigating the effect of the circular 
frequency of the incident wave, the dimensionless frequency is defined as 

toH 
a o = . (1) 

where a o is the dimensionless frequency; to is the circular frequency of the incident harmonic wave; C s 
is the S-wave velocity in the canyon rock mass. 

{ : 
4H-L J2 I L 4H-L J2 

I o 
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\ \ Y ,<" I ' / I  I 

o_ . x  
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Fig. 1 Discretized mesh for a V-shaped canyon 
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Fig. 2 Distributions of displacement amplitudes along V-shaped canyons 
due to SV wave vertical incidence 

A u  

4 
. . , . --~, 

3 i i i ! 

o 

- 3  - 2  - 1  o l 2 3 x/H 
r  

A u  
4 

- . . .. _ 

3 .  i i i i 

i .... " . . . . . . .  ! . . . . . . . . .  i 

0 I I 

- 3  - 2  - 1  0 l 2 3 x / I t  

Av 
4 . . �9 . . . 

3 .  i i i ! 

2 i i i i 

| 
- 3  - 2  - 1  0 1 2 3 x / l l  

A v  
4 _  ~ , . -, . . 

3 ......... i . . . . . .  i . . . . . . . . . . .  i . . . . . . .  i . . . . . .  

2 ......... :: i i .  i 

- 3  -2  - I  0 l 2 3 x/H 
( a , ,= l .O)  

: U H = I  "- - U H = 3  - . - . 4 - . - -  U H = 5  

Fig. 3 Distributions of displacement amplitudes along V-shaped canyons 
due to SV wave oblique incidence 

Fig. 2 and Fig. 3 show the displacement amplitude distribution along the V-shaped canyon due to 
harmonic SV wave incidences with different incident angles. In these figures, A v and Av are the 
displacement amplitudes in the horizontal and vertical directions respectively. It is clear that in the case of 
vertical incident waves (Fig. 2), the symmetric nature of the displacement pattern along the canyon surface 
is maintained for the SV wave incidence. Both the maximum value and the pattern of the displacement 
amplitudes are different for different ratios o f  canyon width to height (/JH), especially for higher 
frequency wave incidences (a o = 1.0). This indicates that the canyon topographic condition has 
significant effects on free field motions along the canyon surface. The maximum value of the 
displacement amplitude can reach over 3 for the SV wave vertical incidence. This maximum value 
appears at the top of the narrower canyon (L/H=I). Even though the input waves are vertical, both the 
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horizontal and vertical displacement components are not zero for the SV wave incidences due to wave 
mode conversion. In the case of oblique incident waves (Fig. 3), the related results show that the pattern of 
the displacement amplitude appears to be asymmetric and its distribution along the canyon surface is also 
different due to different ratios of canyon width to height (/A-/). This phenomenon can also be attributed 
to wave mode conversion along the canyon surface in the case of SV wave incidences. 

3 Applications of Infinite Elements to Dynamic Soil-Structure Interaction Problems 
in Structural Engineering 

To investigate the effect of foundation flexibility on the dynamic response of a structure with the soil- 
structure interaction included, a three dimensional multistorey frame structure with a plate foundation 
resting on a rock medium is considered. The frame structure is modelled using three dimensional frame 
elements, while the plate and the near field of the rock mass are modelled using the thick plate elements 
and solid elements respectively. To reflect the wave propagation between the near and far fields, the far 
field of the rock mass is modelled using three dimensional dynamic infinite elements [13]. Fig. 4 shows 
the discretized model of the frame structure-plate foundation-rock mass system. It needs to be pointed out 
that owing to the symmetric nature of the problem, only a quarter of the structure, the plate and the rock 
mass medium is considered and shown in Fig. 4. It is also assumed that only horizontal periodic loading is 
applied at the center of the plate (point O in Fig. 4). The plate foundation is considered both flexible and 
rigid so that the related results can be compared with each other. 
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Fig. 4 Discretized mesh for a frame-plate-soil system 

The following parameters are used in the calculation. For the frame structure, the sections of columns 
and beams are 0.4 x 0.4m 2 ; the elastic modulus is 24 x 106kPa; Poisson's ratio is 0.16; unit weight is 
24kN/m 3 . For the plate foundation, the width and thickness are 10m and lm respectively; the elastic 
modulus is 24 x 10 ~ kPa for the rigid plate and 24 x 106kPa for the flexible plate, Poisson' s ratio is 0.33. 
For the rock mass, the elastic modulus is 24 x l O 6 k P a ;  Poisson's ratio is 0.33; the unit weight is 
2 4 k N  / m 3 . 

Fig. 5 shows the dimensionless horizontal displacement distribution of the frame structure. In this 
figure, the solid triangle, the solid dot and the solid square represent the numerical results for column 1, 
column 2 and column 3 respectively. H is the height of the frame. It is observed that when the frame is 
subjected to a horizontal movement induced by the dynamic load on the plate, the maximum value of the 
displacement difference within each storey of the frame structure occurs in the ground storey of the frame 
for both rigid and flexible plate foundations. This implies that the safety of the columns in the ground 
storey is the controlling factor in the seismic design of frame structures. This is due to the fact that the 
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repeated reflection within the columns between the ground floor and the first floor takes place and 
consequently, the wave energy is trapped in these regions. In addition, the flexibility of the plate 
foundation has a significant effect on the displacement response of the ground storey of the frame 
structure, as can be clearly seen in Fig. 5. 
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Fig. 5 Dimensionless horizontal displacement distribution of the frame columns 

4 Applications of Infinite Elements to Dynamic Soil-Structure Interaction Problems 
in Geotechnical Engineering 

Retaining walls are frequently used in geotechnical engineering. Once a retaining wall undergoes an 
earthquake event, the dynamic soil-structure interaction should be included in the seismic design of the 
retaining wall. Generally, a retaining wall is a finite structure, while its foundation soil is a infinite 
medium. Thus, the coupled method of finite and infinite elements is very suitable for solving this kind of 
problem. 

Fig. 6 shows a typical soil-retaining wall system in geotechnical engineering. The near field of this 
problem consists of the retaining wall, the backfill soil and part of the natural soil, while the far field is 
comprised of the rest of the natural soil and the base rock mass. As was mentioned before, f'mite elements 
and dynamic infinite elements are used to model the near and far fields of the natural soil and rock mass 
respectively. The parameters used for the retaining wall, backfill soil, natural soil and rock mass can be 
found in a previous publication [12]. 

Fig. 7 shows the effect of different backfill soils on the acceleration amplitude distribution of the 
retaining wall due to plane SV wave vertical incidence. In this figure,//a and i; a are the amplitudes of the 
horizontal and vertical acceleration components of the retaining wall; co is the circular frequency of the 
incident harmonic wave; Stations 1, 2 and 3 represent the top, the middle and the bottom of the wall; 
Cases 1, 2 and 3 are corresponding to the softer, the medium and the stiffer backfill soil situations. It is 
clear that although the backfill soil has negligible influence on the dynamic response of the retaining wall 
in the case of low frequency wave incidences, it has a considerable effect on the response of the wall 
during high frequency wave incidences. This indicates that the change in mechanical properties of the 
backfill soil should be accounted for in the seismic design of a retaining wall. Since unit harmonic waves 
are used in the calculation, the acceleration amplitudes obtained here can serve as amplification factors of 
the wall to incident harmonic waves. It is concluded from the related results that the configuration of a 
retaining wall may affect significantly the amplification factor of the retaining wall to an input earthquake 
because an earthquake wave can be decomposed into several harmonic waves. 
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5 Applications of Infinite Elements to Dynamic Soil-Structure Interaction Problems 
in Dam Engineering 

In this section, an example is used to show how the infinite elements are applied to solve dynamic soil- 
structure interaction problems in dam engineering. A typical embankment dam with either a central clay 
core or an upstream inclined concrete apron is considered and shown in Fig. 8, where the dam and the near 
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field of its foundation medium are modelled using finite elements, but the far field is modelled using 
dynamic infinite elements. The details about the configuration and the parameters of the dam-soil 
foundation system can be found in an open literature [17]. Only some results are briefly given and 
discussed below. 
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Fig. 8 Discretized mesh for an embankment dam-foundation system 

Fig. 9 shows the dynamic response of an empty embankment dam on a layered foundation due to SV 
wave vertical incidence. In this figure, the solid lines represent amplification factors in the horizontal 
direction, while the dashed lines denote amplification factors in the vertical direction for several stations 
on the upstream surface of the dam. It is observed that the resonant frequencies of the system with an 
upstream inclined concrete apron are different from those of the system with a central clay core because 
the concrete apron is much stiffer than the central clay core. However, since the thickness of the inclined 
concrete apron is very small, the increase of the resonant frequencies of the dam with the concrete inclined 
apron is not profound although it deserves being considered in the analysis. 
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Fig. 9 Dynamic response of the empty dam due to SV wave vertical incidence 
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In terms of the amplification factors of the system due to different impervious members, it has 
recognized that the types of impervious members have a significant influence on the dynamic response of 
the system in the low frequency range of excitation. The reason for this is that the material damping of the 
system plays a considerable role in the dynamic response of the system for low frequency excitation. In 
the case of the embankment dam with an upstream inclined concrete apron, the total material damping of 
the system decreases as the hysteretic coefficients of the related materials decrease, compared with the 
central clay core case. Thus, the amplification factors as well as the dynamic response of the dam with an 
upstream inclined concrete apron increase in the low frequency range. This leads to the conclusion that 
central clay cores are more suitable as impervious members for embankment dams, from the seismic 
resistant point of view. Since the dynamic response of a dam is dominated by the radiation damping of the 
system for high frequency excitation, the amplification factors for the dam with either an upstream 
inclined concrete apron or a central clay core are nearly the same due to the identical radiation damping of 
the foundation. 

6 Conclusions 

The dynamic infinite element has the following two main advantages. Firstly, the concept of the 
infinite element is very clear in physics. Secondly, the formulation of the infinite element is very easy to 
be include into the existing finite element codes. Thus, infinite elements have been widely used to solve 
dynamic soil-structure interaction problems in earthquake engineering, structural engineering, 
geotechnical engineering, dam engineering and so forth. However, further research is needed to develop 
the infinite element for solving dynamic soil-structure interaction problems in time domain, since the 
current dynamic infinite element can only be used to solve dynamic soil-structure interaction problems in 
frequency domain. 
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T H E I R  S T A B I L I T Y  A N A L Y S I S  
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Abstract  

In this paper, a few kinds of non-reflecting boundary conditions are introduced, which have been 

used for a variety of wave propagation problems, such as acoustic waves, isotropic and anisotropic 

elastic waves, and waves in fluid saturated porous media. The stability of finite element methods for 

the acoustic wave equation with non-reflecting boundary conditions is discussed and the corresponding 

stability conditions are given. Some numerical results are presented to show the correctness of the 

theoretical analysis and the effectiveness of the boundary conditions suggested by the author of this 

paper and her cooperator. 

w Introduct ion  

In the numerical simulations of wave propagation in unbounded or semi-unbounded media artificial 

boundaries are usually introduced to obtain bounded computational regions. Then some artificial 

boundary conditions have to be imposed on these boundaries, which should eliminate the artificial 

(unphysical) reflection of waves on the boundaries so that the obtained solution rather accurately 

simulate the solutions on the unbounded regions, and therefore, are called non-reflecting boundary 

conditions. 

In recent thirty years, a variety of non-reflecting boundary conditions have been developed (see 

[1]). They can mainly be divided into two classes. One class is called viscous (or damping) boundary 

conditions, which are analogous to have some viscous midia outside the computational domains to 

absorb, rather than reflect, the radiated energy. Among them are: The classical viscous boundary 

condition suggested by Lysmer and Kuhlemeyer N, whi& use viscous damping forces to act along the 

boundary; Viscous strip along the boundaries, in which field variables are multiplied by a negative 

exponent factor to gradually reduce their amplitudes, i.e., a damping term is added into the differential 

equations, and so on. But generally speaking, the boundary conditions of this type is not very effective 

in absorbing the artificial reflecting waves. A possible exception is so-called PML (perfectly matched 

layer) technique which was suggested recently by BerengerN for the electromagnetic waves and then 
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was applied to other fields. 

Another class of non-reflecting boundary conditions is based on the one-way wave equations. De- 

composite the wave operator into first-order operators, each one of which is a one-way wave equation, 

i.e., represents a wave propagating only in one direction. We can take the equations of outgoing 

waves as the artificial boundary conditions. They are generally of pseudodifferential operator forms, 

which are nonlocal and can not be calculated. Approximating them by using different formulas (Tay- 

lor, Chebyshev, Pad6 or least-squares), different boundary conditions of differential forms can be 

obtained. What is most widely used was given by clayton and EngquistN, Engquist and Majda [~]'N, 

based on the Pad6 approximation of pseudodifferential operators. Let the artificial boundary be x = 0, 

and the domain be t >_ 0, x _ 0. For the acoustic wave equation 

02u 02u 1 02u 
Ox 2 + 092 C'(x,  9) Ot2 = f(x ,  9, t), (1.1) 

the Clayton-Engquist-Majda conditions are the followings: 

B, l.-0 = + V 07- 28- v . - 0  

( ~  O B u  1 0 2 BN+llx=o = 

The corresponding condition for the elastic wave equations are complicated, and we are not going to 

write them here. 

Higdon [71 proposed a more general boundary condition of the form 

/II.= cos a j ) ~ - / -  c u - 0 (1.3) 

which contains (1.2) as its special case. He also presented some discrete boundary conditions which 

are discrete counterparts of (1.3). 

Modeling the physical processes of wave propagation, Liao Zhenpeng and othersN[9] developed a 

kind of discrete conditions of the form 

N 

U ( x , y , t )  = y~(-1)J+xC~rU(x - jCA A t , y , t  - (j - 1) A t) (1.4) 
j=l 

(which the authors call Multi-Transmitting Formula), where U is the unkonwn (scalar or vector); 

( x , y , z )  point on the artificial boundaries; N positive integer not smaller than 1, which is just the 

order of boundary conditions; CA artificial wave velocity, the range of which is given in the papers; 

N 
C~ = (N - j)!j[" 

Liao's conditions have a wide range of applications. In fact, they are most general conditions. 

Shao and Lan [1~ suggested a improvement version of the Liao Zhenpeng conditions of the second 

order. They take the rectangular { - a  < x < a,0 < y < b} as the computational domain, where 

x - +a  and y = b are the artificial boundaries. First, they enlarge the domain to { - a - A x - 2 C A  A t  < 

x <_ a + A x  + 2CA/k  t, 0 <_ y <_ b + A y  + 2CA/~ t}, where Ax and Ay are mesh sizes in the original 
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domain, CA the artificial wave velocity. Then non-reflecting boundary conditions are imposed on the 

new boundaries x = -t-a •  • 2CA/~ t and y = b + Ay  + 2CA/k t. For example, on the boundary 

x = a + / k x  + 2CA A t, the condition is 

U(a + Ax  + 2CA A t, y, t + At)  = ax U(a + Ax  + 2CA A t, y, t) 
(a.5) 

+a~U(a + /kx ,  y, t) + a3U(a, y, t) - U(a +/kx ,  y, t - / k t ) ,  

where 
ax= l~-~s 2s2 

1 , a 2 = l + s ,  a 3 = - ~ ,  

s _ C a A t  
/kx " 

The conditions on the other boundaries are similar. This kind of conditions has satisfactory accuracy 

and stability, and has been successfully applied to a variety of wave propagation problems, such as 

acoustic waves, isotropic and anisotropic elastic waves, and waves in fluid saturated porous media. 

The authors of [10] determine the wave velocity CA by minimizing the reflecting coefficients. For 

the acoustic wave equation (1.1), CA = C. For anisotropic elastic waves, CA should be the minimal 

wave velocity among all velocities in different directions and of different kinds. In the special case of 

isotropic elastic waves, CA = C,. For the waves in the two-phase media mentioned above, CA = Cp2, 

i.e., the velocity of dilatational wave of the second kind (the slow dilatational wave). 

Numerical experiments have indicated that the stability is a serious problem when non-reflecting 

boundary conditions are used. The higher the order of boundary conditions the more unstable. It 

implies that the accuracy and the stability are contradictory requirements. In the next two sections, 

the stability of finite element methods for the wave equation (1.1) with the first and second order non- 

reflecting boundary conditions (1.2) is discussed. The stability conditions are presented. Comparing 

them with the stability conditions for the Dirichlet or Neumann boundary conditions, it can be 

discovered that the stability properties become much worse in the present case. 

w Finite  e lement- f in i te  difference schemes  

In this section, some knowledge and notations of the sobolev spaces will be used. It is necessary 

for the description of the numerical method and the proofs of the following theorems. The readers 

who are not familiar with them may ignor the details and only notice the conclusions. 

Let the computational domain be ~ , ~  = { ( x , y ) ' - a  < x < a,0 < y < b};F1 = { ( x , y ) ' - a  <_ 

x < a, y = 0} be a natural boundary, and 0 ~ t ' -  0~/F1 be the artificial boundary. 

Introduce the inner product notations 

Define the space 

(u,v)= f / uvdxdy, (u, v) = fort' uvds. 

H ~ , ~  = {v(x, y) ~ H * ( ~ )  �9 v l r ,  = 0}. 

In the following discussion, let n denote outer normal direction, and s tangential direction of the 

boundary O~t'. Suppose that in (1.1), C(x,y)  E L~176 and C(x ,y)  > O; f ( x , y , t )  E H~(f~) • C([O,T]). 

Consequently, f ( x ,  y, t) e L2(a) • C([0, T]). Hence f (x ,  y, t ) e  L ~ ( a )  • C([0, T]). For convenience of 

computation, we write f ( x , y , t )  as - f (x ,y , t ) /C2(x ,y) ,  where - f ( x , y , t )=  C2(x, y) f (x, y, t). 
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Corresponding to the first-and seoncd-order non-reflecting boundary conditions in (1.2), consider 

the following generalized solutions of initial-boundary value problems of the equation (1.1). 

P r o b l e m  I: Find a function u(x, y, t) which is second-order continuously differentiable with respect 

to t when (x, y) E f~ and belongs to HX'~ for any fixed t E [0, T], and satisfies the following equations 

(, ) ~ - ~ , .  +(vu, w,) - (~ ,v)+ 7,v -0 
Ou 

(~y~ + ~ , v) = 0 (2.1) 
(;:)1,<o- 0 

o 

for every v(x, y )e  Hl'~ 
P r o b l e m  II: Find a function u(x,y,t) which is second-order continuously differentiable with 

respect to t when (x, y) E f~ and belongs to HX'~ for any fixed t E [0, r] ,  and satisfies the following 
equations 

(, ) o 

0 2 u 0 2u ,.-, Ou Ov 
(o,,ot + ~ ~) + �89 o ~ '  'J Os-' O~ ) = (2.2) 

o 
0 

for ~v~ry ~(x, ~) e Hl'~ 

For the sake of simplicity and clearness of the conclusions, we will only consider the homogeneous 

media (i.e., C(x,y) - const.) and uniform right-angled triangle and square elements. The general 
cases will be discussed in the paper [11]. 

Discretise the spatial variables x and y by using the finite element method. Denote the nodes by 

P~(i = 1, . . . ,  m). Suppose that S h is a finite element space, S h E H~(f~), and its basis functions are 

~ ( i  = 1 , . - . , m )  which possess the feature ~ (P j )  = 5ii. Take ~ as the function v in (2.1) and (2.2) 

(except those ~i which correspond to the nodes on rl) .  Find the solutions of the problems I and II 

in the subspace S h. Then the problems are reduced to the following initial value problems of ODEs 

I M [I + S U -  W = MG(t) 
I '" W +  M B U = 0  (2.3) 

u(o)  = u,(o)  - w ( o )  - o 

I M ~l + S U -  W = MG(t) 
I I "  I/V + Ms {I +SBU = 0 (2.4) 

v(0) = v , ( 0 ) =  w(0)  = 0 

where U is the nodal unknown vector, M the mass matrix, S' the stiffness matrix, MB the boundary 

mass matrix, SB the boundary stiffness matrix, and W the vector related with the normal derivative on 

the artificial boundary. The elements of the matrices M, S, MB, SB and the vector W are, respectively, 

MiJ - -~  f fn ~iP:idxdy, 

( M.  )ij - ~ ~a. r162 

( i , j= l , 2 . . . ,m)  

f f  

S~j - J]a Vc?~. Vc2jdxdy, 

( s~  ),j = ~-c [ ds 
2 Joa, Os Os 

(2.5) 
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Wi = fo Ou (i 1 m) (2.6) a, '~n TidS'  = ' " "  ' 

and G(t)  is a vector which consists of the values of the function f (z ,  y, t) at nodes. 

Through a lumping process the matrices M and MB are replaced by diagonal matrices. In the 

case of right-angled triangle elements mentioned above, the entrices of element mass matrix are 

h~ 
M~] -  ~ i = j  (2.7) 

0 i T ~ j ,  

and the entrices of element boundary mass matrix are 

(MB),5 = { 2-~ i =  j (2.8) 
0 i C j .  

In the case of square elements, the corresponding entrices are 

h 2 
M~]= ~ i = j  (2.9) 

0 i C j  

and (2.8), respectively. Here h is the mesh size. 

Discretise the time variable in (2.3) and (2.4) by using the following finite difference schemes 

U,~+x _ U ,~ _ Vn+X 
At - 

Vn+l _ V" 
M A t  + S U ' ~ -  W n  = M G~ 

W "~+~ + M B V  '~+x = 0 

(2.10) 

and 

That is, 

and 

u n +  1 __ U n 

A t  = V"+~ 

M V"+X - V"  A t  + S U " -  W "  = M G "  

W "+~ - W "  V " + 1 -  V"  
A t  + MB ~ t  + SB U "+ ~ = 0 .  

(2.11) 

{ M V  "+~ = M V  n -  A t S U "  + A t W "  + A t M G "  

U,,+x = U ~ + A t  V "+x 

W,,+~ = - M B V , , +  ~ 

(2.10)' 

I M V  "+1 = M V  n -  A t S U  ~ + ~ t W  ~ + A t M G "  

U "+~ = U" + A t V  "+~ (2.11)' 
W "+1 - W " -  M B ( V  n+l - V " ) -  A t S B U  "+1. 

The initial values U ~ V ~ and W ~ are zero. Utilizing the formulas (2.13)' and (2.14)', U "+1, V '~+1 and 

W n+x can be obtained successively from U '~, V n and W n. 

w S t a b i l i t y  o f  t h e  s c h e m e s  ( 2 . 1 0 )  a n d  ( 2 . 1 1 )  

In the following discussions, An~x and An~iu denote the maximum and minimum eigenvalues of a 
matrix, respectively. 
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L e m m a  1, For the finite element space of right-angled triangle elements and linear basis functions, 

the following inequalities 

A ~ ( S )  < 9, A ~ ( M )  > lfl 
(3.1) 

h An~(MB) _< L" 

are valid. 

Proof. First, consider the maximum eigenvalue of the stiffness matrix S. As is well known, 

u T s u  
Amax(S)- max . (3.2) 

Ue Rm U T U 

For the nodal unknown vector U, we have 

u T s u  = ~ ( u ~ ) T s ~  ~ <_ qA.~.(S~)uTu, 
e 

where q is the maximum number of elements which meet at a node, and S ~ the element stiffness 

matrix. In our case, q = 6 and 

S ~ l /  1 - I  0 / 
= ~ -1  2 -1  or its transpose, 

0 - 1  1 

so that Am~x(S ~) = 3/2. From (3.2), the first inequality can be obtained. 

The element mass matrix M r and the element boundary mass matrix M~ are both diagonal matri- 
h 2 h 

ces. It is easy to get their eigenvalues. From (2.7), A~.~(M ~) = ~-~-. And from (2.8), Am~,(M~) = 2--6"" 

Utilizing again the fact that maximum and minimum eigenvalues of a matrix are equal to maximum 

and minimum of its Rayleigh quotient, respectively, and noticing that a node is at least a vertex of 

one element and a boundary node is at most vertex of two line elements, we have the second and third 

inequalities of (3.1), which completes the proof. 

L e m m a  2. For the finite element space of square elements and bilinear basis functions, the 

following inequalities 
h 2 

h 
a .(MB) <_ 5" 

are valid. 

Pro@ The approach is similar to the Lemma 1. We have only to notice that in the present case, 

q = 4, and 
4 - 1  - 2  - 1  

S~ 1 -1  4 -1  - 2  
- 6  - 2  -1  4 -1  

-1  - 2  -1  4 

So that A ~ , ( S  ") = 1, and the entrices of the element mass matrix and the element boundary mass 

matrix are (2.9) and (2.8), respectively. The proof is completed. 

Now we investigate the stability of the schemes (2.10) and (2.11). 

Define the following inner products and norms of vectors: 

(u, - uTv, IIUII  - w/(U, U)=, 

(U, V)M = UTMV, IIUllM = v/(U, U)M, 

(u, g ) s -  uTsv,  IlUlls = v/(u, U)s. 
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The latter two definitions of norm are reasonable because of the positive-definiteness of the matrices 

M and S. For the norms I1" I1~ and I1" IIM, there is inequality 

1 1 

About the scheme (2.10), i.e., the non-reflecting boundary condition of the first order, we have the 

following Theorem 1 and 2. 

T h e o r e m  1. For the finite element space of uniform right-angled triangle elements and linear 

basis functions, if the condition 
C A t  

< 0.18 (3.5) 
h - 

is satisfied, then for any T E R and N E Z +, 0 < (N + 1) /k  t < T, there exists a constant (71 such 

that the solution of (2.10) is subjuct to the inequality 

max IIU"+IlIM + max IIV"+~IIM < Clllfll O<n<N O<n<N __ oo~ 

i.e., the scheme (2.10) is stable. 

Proof. From (2.10), 

un+ 1 __ 2U n .-[- U n-1 U n __ U n-x 
M A t  2 + SU" + MB At  = MG".  

(3.6) 

(3.7) 

. i" u n +  1 U n -  1 \ T 
Multiply the equation (3.7) by /~ t~  ....... ~ t  ) , and sum the obtained equation from 0 to N 

with respect to n. Since M is a diagonal matrix, the first term of the left-hand side can be reduced to 

At  (Un+l - un-1)  T A t  M U"+I - 2U"/~t2 + U"-X 

-- ( U"+I - u"  ) M U"+I/xt- Un ( Un - Un-1) M U" - U"-X/kt " 

After the summation, we obtain 

At ~ At  M = M 
,,=0 At  2 At  At  " 

Here the condition U ~ - U -1 = 0 has been used. For the second term of the left-hand side we have 

( un+ l -- U n - 1 )  T 
/~t l~t S U n  -- �89 { (UnTx)TSUn+I  - - (  Un+l -- u n ) T S (  UnTi -- u n )  

After the summation it becomes 

/kt ~ /kt 
n'-0 

- ( u " - ~ ) ~ s u " - ~  + ( u .  - u - - ~ ) ~ s ( u  - - u - - , ) } .  

s v "  : + �89 

- � 8 9  N+I  --  u N ) T s ( u  N+I -- U N) 

..- ( u N T 1 ) T s u N + I  __ ( u N + I ) T X ( u N + X  -- u N ) .  

For the third term, it can be proved that 

/kt (Un+l - un-1)  T un - -  u n-1 
A t  MB At  = ( U"+I -- U"-X)TMB( U'+I - g " - l )  

+ ~ t  (v'* - U"-I)TMB(U" - U "-1) - 2 - ~ t ( U  "+1 - U")TMB(U "+1 - U"). 
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It follows that 
N (un+I __Un-1)T u n - - u  n-1 

At ~ At MB At n-'O 

= -2- At MB At n"-O 
At f 2- ( UN+I - UN uN+I -- UN ~ ) ~ ( ~ ) .  

Thus the equation (3.7) is reduced to 

uN+ _ _  uN T uN+I _ _  uN ( UN+ ) TSUN+I 
At ) (M---~--MB) At  + 1 

= At  ~ At MG". 
n=O 

From the Lemma 1, 

(uN+~ _ U N T UN+a _ UN 
A, )(M_r ~,~ 

- - A t  M 

( U ~ + ' ) T s ( u N + ,  _ U ~) = ( U ~ + ' , U " + '  _ UN)= <_ I IUN+ ' I I~ .  I IUN+ * _ UNII=,  

and 

If we take At such that 

then 

At ~ At 
n--O 

( U'~+I _ U,',-x ) 
MB At >_ O. 

3 C A t  
a = l - -  >0 ,  

h 

ii ~+,- ~Nll ~ _ + I IUN+' I I~ - I I U N + ' I I = I I U N + '  -- U~I I=  left of (3.8) > a At M 

> [[u N+~ u N /A ,~ (S)  
-~ ~; Ii:,+"u~+'"~- V~=r A,,,u~+,,,= IJ u~+,_u~A, I1~, 

From the Lemma 1, 

left of (3.8) II ~+ ' -  ~]12 + IIuN+aII~ 
a A t  M 

h At M 

At + IIS~+~ll~ 

~ ~ t {  I1~+'-~11 ~+'/~ + , / g a ~  h ,/-a A t  M -- II IIs 
> ( l _ a V / 3  C A t )  [[ uN+' -- uN [] ~ 
- -  ' V / ~  ''' h oz / ~ t  M 

(3.8) 

(3.9) 

(3.10) 
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Take At  once again such that  
3v/3 C A t  

1 -  / ~  h > _ e > 0 ,  

where e is a positive number small enough, which will be determined later. It implies 

i.e., 

(3.11) 

Then from (3.10), 

For the right-hand side of (3.8) we have 

C A t < -3(1  - e) = + (1 - e)V/9(1 - e) 2 + 54. (3 13) 
h - 27 

It is easy to see that  (3.12) (consequently, (3.13)) contains (3.9). (3.13) can be replaced by the 

following stronger condition 

C A t  - 3 + V ~  - l + v ~  
< (1 - e)~ = (1 - e) u -  

h - 27 9 " 

i 1 62 the condition mentioned above becomes If we t a k e e = l -  " 1 +  v~ 

C A t  
< 0.18. 

h - 

left of (3.8) > 0.0113 
uN+' _ U N 

At  
M 

original vector. Obviously, 

IG~'I _< C=l[flloo (i = 1 , . . . , m ) .  

Introduce the m-dimensional vector 

E -  { 1 , 1 , . . . , 1 }  T. 

Then 

N (un+l ~ un-1)T 
At y~ At 

n ' -O  

N ( u " + ~ - u " )  r 
M G ' ~ < - 2 A t ~  At 

n = 0  + 

MG~. , 

where the notation ( )+ denotes a vector the entries of which are absolute values of entries of the 

At ~ At MG" < 2 A t  ~ At 
n = 0  n = 0  + 

= 2 A t ~ At IlfllooE 
n--0  + M 

< 2 A t ~  At 
n- -0  M 

N Un+t _ U n 1 C41[/ll ' /k t ~ IIEII~. 
_< 0.0113 A t ~ At  + 0.0113 oo 

n=O n=O 

From (3.14)and (3.15), it is obtained that 

C4 N 
K = (0.0113) 2 /k t ~ IIEII~- 

n = 0  

U lrl, 

M 

+ KIIfll 2 O 0 9  

�9 C=llfllooME 

(3.15) 

(3.14) 

C/k t)  2 )2C/k t 2(1 - ~)2 < 0, (3 12) 
27 - - 7  + 6 ( 1 - ~  h - " 
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From the discrete Gronwall's inequality[ is] we get 

That is 

Moreover, 

It follows 

m ~ •  " "  " ' I I~"+~IIM- m ~ x  
O<n<N O<n<N 

U "+1 - -  U" 

At 1 _<Kllfll" e x p { 2 T }  = CIll f l l  2 O0 O0 ~ 

M 

m a x  IIV"+'IIM < V/C-~llflloo. 
O < n < N  

IIU"+~IIM ~< At{IIV"+IlIM + IIV"IIM + . . - +  IIVIlIM}. 

(3.16) 

max IIU"+XIIM < T~) l l f l l  (3.17) 
0 < n < N  - -  o o .  

Adding (3.16) and (3.17), we obtain (3.6), which completes the proof. 

T h e o r e m  2. For the finite element space of uniform square elements and bilinear basis functions, 
if the condition 

C A t  
<0.3  (3.18) 

h - 

i s  satisfied, then the scheme (2.10) is stable in the sense of (3.6). 

Proof. The approach is similar to the Theorem 1. But in the present case, 

and 

a - 1  
2 C A t  

A,,~x(S) < 16C 2 

An~in(M)- h ~ 

from the Lemma 2. Thus the condition corresponding to (3.11) should be 

2 C A t  
> ~ > 0 .  v/-gh - 

The conditions (3.12) becomes 

4 + 2 ( l _ e )  2 c A t  
h 

(1 - e)2 < O. 

If we take e = 1 - i - 1  ; v ~ ' l  2 the stability condition 

C A t  
< 0.3 

h - 

can be obtained, which completes the proof. 

About the scheme (2.11), i.e., the non-reflecting boundary condition of the second order, we have 

the following Theorem 3 and 4. Their proofs are similar to those of the Theorem 1 and 2, but are 

more complicated. We will not write them, and only give the conclusions. 

T h e o r e m  3. Suppose that Of/Ot is bounded when t E [0, T], (x,y) E f~ and a <_ CT, b < CT. 

For the finite element space of uniform right-angled triangle elements and linear basis functions, if the 
condition 

C A t  h 2 
< (3.19) h - 52.17C2T 2 
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is satisfied, then for any N 6 Z +, 0 < (N + 1) /k  t < T, there exists a constant C~ such that the 

solution of (2.11) is subjuct to the inequality 

max IIU"IIM + max IIv"IIM + max 
O<n<N O<n<N O<n<N 

i.e., the scheme (2.11) is stable. 

v +l v tl ,32o, 
At M 

T h e o r e m  4. Suppose that  Of/Ot  is bounded when t 6 [0, T], (x, y) 6 f~ and a <_ CT,  b <_ CT. For 

the finite element space of uniform square elements and bilinear basis functions, if the condition 

C A t  h 2 

h - 40C2T 2 

is satisfied, then the scheme (2.11) is stable in the sense of (3.20). 

w Numerical experiments 

In the numerical computation of the following examples of the acoustic wave equation the nonre- 

fleeting boundary conditions (1.2) and (1.5) were used. The results corresponding to the two kinds of 

boundary conditions cannot be distinguished. 

E x a m p l e  1. Acoustic wave equation, ft = { ( x , y ) " - 1 0 0 0 m  < x < 1000m, 0 < y < 1000m},C = 

3200m/see,  and 

f (x, y, t) = g( t )5(x)5(y  - 500), 

where 

1000s in50t .exp  -2500 t -  , 0_<t_< 57I (41) 
71" g(t) 0 t > 5-0" 

The square meshes are used. Take h = 20m, T = 3 sec, At  = 0.002 sec. The numerical results are 

shown in Fig. 1. 

E x a m p l e  2. Acoustic wave equation. The computational domain is the same as in Example 1. 

It consists of two parts, in which the wave velocities are 

C I = 3300m/sec,  C n = 200Ore/sec, 

respectively. On the boundary y = 0 the following Dirichlet condition is imposed: 

u(x, v, t)l -o = 

where g(t) is the function (4.1). The square meshes are used. We take h = lOm, T = 3sec and 

/kt = 0.001 see. The numerical results are shown in Fig.2. 

The results have shown the effectiveness of the non-reflecting boundary conditions and confirmed 

the theoretical conclusions, that is, the computations are stable when the stability conditions given 

in this paper are satisfied. 

The non-reflecting boundary condition (1.5) has been also successfully applied to the isotropic 

and anisotropic elastic wave equations and the two-phase wave equation. Due to the limited space of 

paper, we will not exhibit the figures here. 

The numerical experiments were conducted by using our program package SWS (a finite element 

program package for the numerical simulation of seismic wave propagation). 
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Fig 2. Wavc f i c l d  of Example 2 wi th  the second order  

absorb ing  boundary condi t ion 
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BOUNDARY ELEMENT METHOD FOR SH WAVES IN 
ELASTIC HALF PLANE WITH STOCHASTIC AND 
HETEROGENEOUS PROPERTIES 

Yao, Z.H. and Xiang, J.L. 
(Department of Engineering Mechanics, Tsinghua University, Beijing, China 100084) 

Abstract 

: In this paper a scheme of stochastic boundary element method for wave propagation in elastic half 
plane with stochastic and heterogeneous properties has been presented. As an example the problem of SH 
wave propagation in random stratified media is studied. Some statistical measures of the response are 
presented in the corresponding numerical examples. 

Introduction 

Wave propagation is of great importance in earthquake engineering, ocean engineering and in noise 
control engineering. Heterogeneity is a common character of the medium in such problems, especially in 
earthquake and ocean engineering. On the other hand, randomness-arises because of uncertainties associated 
with the geometry, boundary and initial conditions, and the applied loads. It is well known that the material 
properties of soil medium in seismic wave propagation problems are not well defined generally, and it can be 
addressed a random field. Although the randomness in wave propagation may be small, their combination 
may results in large and unexpected excursions of the response. Therefore it is of practical interest to 
develop methods to address the wave propagation problems in random heterogeneous medium. 

At present a number of methods have been developed for the analysis of random or stochastic systems, 

such as Monte-Carlo method, perturbation methods, etc.[I-3]. In recent years, many researchers have 
begun developing stochastic finite element methods[3-6], as well as stochastic boundary element 
methods[7-11 ] for the engineering systems with randomness. 

So far the stochastic boundary element method is based on the perturbation methods. The basic idea is 
to decompose the random operator (i.e., a partial differential equation with random coefficients) into a 
deterministic part and a zero-mean random part. Then the problem may be reduced into an integral equation 

with a random kernel. That is built using the Green's function of the deterministic part of the operator as a 
base, plus a random forcing function. The random kernel and the field variable can be written in terms of 
Neumann or Taylor series, a set of recursive integral equations is generated, and the equations can be solved 
by boundary element method. The main problem here is that although the solution process is recursive for 
the field variables, it is not so for the statistical measures of the field variable. 

Boundary element methods are suitable for a wide range of engineering problems. It is well known that 

the boundary element methods are based on the knowledge of the fundamental solution or free space 
Green's function of the problem at hand. When the problem considered involves a heterogeneous medium, 
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such fundamental solutions are not available. Some of the researchers use very complicated fundamental 
solution for problems in layered media[ 12], which is difficult and inefficient to implement in coding. 

As to the wave propagation problem in heterogeneous media, there exists some methods to deal with 
the heterogeneity, such as the layered media model. In each layer the homogeneous free space Green's 
function can be used to generate the boundary element equation, then the connective conditions on the 
interfaces are used to get the global algebra equations. Other researchers use specific Green's function for 
the heterogeneous media, such as Shaw and Makris[13] used a transformation relation to reduce the 
heterogeneous Helmhlotz equation into a homogeneous one. The homogeneous Green's function is used to 
built a specific Green's function for wave propagation problem in heterogeneous media. Although their 
method requires that the material properties must satisfy a special relationship, it is justified that there still 
exist some degrees of freedom in this relationship to fit the real media. In this paper we have adopted the 
idea of transforming a heterogeneous Helmholtz equation into a homogeneous one in [13]. A deterministic 
boundary element formulation based on a boundary element method for harmonic SH wave propagation 
problem in homogeneous elastic half space is developed. It is applied to study the scattering of harmonic SH 
wave by sub-surface topography in a heterogeneous half space. 

Therea~er, a heterogeneous random model for the material properties of the heterogeneous half space 
is proposed and a stochastic boundary element method is developed by introducing the perturbation 
technique. 

The problem of harmonic SH wave propagation in a random stratified half space is studied. Some 
statistical measures of the response displacement on the surface of an irregular topography are presented in 
the corresponding numerical examples. It is demonstrated that the stochastic boundary element method is 
quite efficient. 

Governing Equations 

The time harmonic SH wave propagation problem in heterogeneous media is governed by the hetero- 
geneous Helmholtz equation 

V.[,u(r)Vw(r)]+,o(r)(o:w(r) - 0 (1) 

where r stands for the position vector, ,u(r), p(r)  stand for the shear modulus and the density of the 

material. They are position dependent material properties. The equation is written in the dimensionless form, 
where 

]./(1')-- ,Ll(dimensional)//../ref, p ( r ) =  P,,,,,~,.,,o,,,,IP,~f, ca(r)= (_O (dimensional) /(O re f 

2 2 
W -  W(dimensional,/Lref, (x,y,:)- (x , y ,Z) (d imens iona l , /Lre f  , PrefOrefLref l ,Llref  -- l 

As the referenced length it is taken the characteristic length of the sub-topography. 
The boundary conditions at the free surface of a half space and at the surface of a sub topography on 

the half space (Fig. 1) are: 

8~VlOy '~"IO'v[ 
= O, l,-~-I s = 0 (2). 

y=O 

By setting N(r)= p(r)co 2, a simple transform of the variable g / ( r )= pg(r)w(r) turns equation (1)into 

+ v p ) -  + = o (3) 
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Fig. 1 Wave propagation in half space with sub-topography 

By further requiring 

(Vp" V p ) / ( 4 p  2) - V2p/(2p)+ N / , u  - k 2 (4) 

where k is assumed to be a constant, equation (3) can be reduced to a standard Helmholtz equation 

V2p ' + k2p ' ( r ) -  0 (5) 

The boundary condition equation (2) can be transformed into a new form as well, which is described by 
variable N(r).  Therefore ~( r )  must satisfy the following differential equation and boundary conditions" 

V2~" + kZv =0 

0 (ll-l/2 ~) I =0 onSf 
~?Y y=0 

p = 0 on S 
On 

(6) 

By further requiring the shear modulus of the material satisfies 

oPl 
Oyl,=o =0  

(7) 

the boundary condition on the free surface of the half space can be simplified, 

Oq/ 

8y y= 0 
- 0  onSf (8) 

Hence we have transformed the problem of wavepropagation in a heterogeneous media into solving a 
standard homogeneous Helmholtz equation with some restriction on material properties of the 
heterogeneous media. The Green's function of a homogeneous Helmholtz equation for elastic half space is 
well known, which can be written as 

G* ] r (.,. - ~LH; - '(k~) + H(o 2'(kcr 2 )] (9) 

where H(o2)(*) the second kind zero order Hankel function, and 
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_)2 )2 
(10) 

The total field~c(r) can be decomposed into an analytical part ~,r and a scattering part ~ ( r ) .  The 

analytical part~, 'a satisfies Helmholtz equation and the free surface boundary condition (8), which is 

composed of the incident and reflective wave in a free surface half space without the irregular sub- 
topography. Therefore ~'~ satisfies not only Helmholtz equation and the free surface boundary condition on 

Sf, but also the irregular sub-topography boundary condition 

V2~) rs "4- k2~ '~ = 0 

- 0 on Sf (1 la-c) & 
- + - on S 

B o u n d a r y  E l e m e n t  for S c a t t e r i n g  W a v e  

By setting O s O~'s OG* 0 - - On ' Q * -  311 ' and ~ denoting the differentiation in the outward normal 

direction n on S, applying Green's theorem with Green's function on equation (9), the displacement 
function ~'s and the derivative QS can be related through integral equation. This can be written as 

C(p)~cS(p)  - f [ G * ( p , q ) Q S ( q ) - Q * ( p , q ) ~ S ( q ) l d S ( q )  (12) 
S 

A numerical solution can be obtained by discretizing the surface S and approximating the integrals in 
equation (12) by a weighted sum of functions evaluated at the surface points. If m is the total number of 
points on the surface, then equation (12) can be approximated by a set of linear algebraic equations with 
order 111, 

H 7  ~ = G Q  ~ (13) 

where H, G are square matrices whose elements are computed by numerical integration of the kernel 
functions. The elements of the vectors ~u ~ and Q~ are the displacements and derivatives at nodal points on 

surface S, respectively. In order to solve this algebraic equation (13), we should apply the corresponding 
boundary conditions. The boundary condition equation (11 c) can be written in a matrix form 

Q~= A hu ~ +Qa, (14a) 

Qa* ~__ a ~ Ora -- Qa (14b )  

where A is a diagonal square matrix, the element can be evaluated by 

( 1  0/, 1 (15) 
A . -  2-~110nJ 

i 

The elements of vector Qa" are combination of the analytical displacements and their derivatives at the 

surface points. Substituting equation (14a) into (13) leads to the final algebraic equations 
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(H - GA)7 ~ = GQ ~* (16) 

where the unknown displacements 7 ~s are on the left side and the known values Qa, are on the right side. 

Solution of equation (16) yields approximate value for the unknown displacement on the surface points. 
Once the scattering displacement 7~Sand its derivatives QS are known on the entire surface, the 

displacement of the total field ~ can be calculated using the relationship between total field and the 
scattering and analytical fields. The original displacement in the heterogeneous media can also be calculated 
using the transformation relationship between ~(r) and w(r). 

Specific Material Variation 

Equation (4) and (7) forces a relationship between ~z(r)and N(r) ,  hence it is a limited approach to 

such problems. This restriction may be justified by the fact that the actual variations of material properties 
are generally only known at a few locations and fit by some convenient functional form anyway. The final 
judgement lies on how many degrees of freedom exist in this relationship. According to Shaw and 

Makris E~q, equation (4) can be simplified by a transformation, V = ,u ~ , leading to 

v Z v - % + k 2 V - O  (17a) 

OV I - 0 (17b) 
8 y  y:o 

as the required relationship and boundary condition. If a relationship between N and V is allowed, one 
choice would be 

N(r) : A(r)V(r) + Bo v2 (r) (lS) 

where A is a function of position and B 0 is a constant. This leads to 

vZv +(k 2 -B0)V= A(r) (19) 

which is a linear Helmholtz equation with constant coefficients. There will be some degrees of freedom in 
the solution of homogeneous equation plus many degrees of freedom chosen for A(r). 

This approach may be illustrated by the special case of stratified media, where lz(r)and p(r)depend 
only on one spatial coordinate, e.g., the depth y.  Then equation (19) is reduced to an ordinary differential 

equation with constant coefficients whose solution can be written as 

V(y) : al ek>' + a2 e'~y + V c (y) (20) 

where 2 = B 0 - k 2 > 0, VC(y)is a particular solution of equation (19) corresponding to the forcing term 
A~). Consider a semi-infinite region with y < 0, then a~ must vanish to have finite /.t as y approaches 

infinity, lfwe chose a decaying exponential plus a constant term as A0'), e.g., 

A(y) - ce o + ~ cej e r7 (21) 
j=l 

Consider the case with a single exponential term in A(y), i.e., m=l, the corresponding solution Vis 

+ (22) 

The boundary condition, e.g., equation (17b) requires 

+ (23) 
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There will be five independent parameters, i.e., %, al, 2 ,  Y~, a2,which can be determined by five 

independent parameters of material properties at different locations. 
Two examples for the distribution of the material properties with coordinate y are illustrated in Fig. 2a, 

2b. In Fig. 2a the values of the parameters are a o = -0.0387, a~ = 0.319, 2 = 0.197, 7' 1 = 3.05, and az = 

-0.535, and the corresponding material properties at different locations arekt(0)=0.25, /~(-oo)=1.0, 
p(0) = 0.4, p(-oo) = 1.0, r = 0.64, co = 0.5r CO') is defined as V/N 1/~-. 
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(a) Case 1 (b) Case2 

Fig. 2 Distributions of material properties along depth 

In Fig.2b the material properties are the same as in Fig. 2a, at the given positions, the only difference is 
co= 1.0x, and the values of the corresponding parameters are a 0 =-0 .0347 ,  a I = 1.22, 2=0 .184 ,  
Yl = 12.9, a 2 = - - 0 . 5 0 7 .  These examples are hypothetical and are given to illustrate the potential uses of 

this approach. 

R a n d o m  H e t e r o g e n e o u s  M o d e l  and P e r t u r b a t i o n  E x p a n s i o n s  

I. Random heterogeneous model 
Randomness arises because of uncertainties associated with material properties, geometry, boundary 

and initial conditions, and applied loads. The concept of uncertainties can be classified into three categories. 
(1) Uncertainty regarding constant system parameters results in a spread or density of  possible parameter 

values, i.e., random variable model. (2) Uncertainty regarding of parameters as time-dependent processes, 
where the statistics of each process may be either time-dependent or -independent, i.e., random function 
model. (3) Uncertainty with respect to the behavior of parameters as functions of  spatial coordinates, i.e., 

random stochastic field model. 
In extending the boundary element formulation to include uncertainties, we have used the random field 

model for the heterogeneous media at first. Then we use the transformation technique again so as to transfer 
the random heterogeneous field model into a homogeneous random variable model. 

Provided that the material properties of the stratified heterogeneous half space described above are 
random field, i.e., ,u = / l ( r ,y ) ,  p =  p ( r , y ) ,  where Y represents one realization in a random experiment. By 

setting N - p ( r , y )  co 2 - N ( r , y ) ,  V - ~ - V ( r , y ) ,  which are also random fields. Assuming ,u and N 

are weak random field, we can decompose the random fields V and N into mean value parts, which are 
position dependent and deterministic, and random fluctuation parts, which are position-independent and 
have zero expectation values, i.e., 

V ( r , y )  - V ( r ) +  8"~q (y) (24a) 
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N(r,y) = N(r)+ cN, (y) (24b) 

where I:1 (y), N 1 (y) are random variables which are position independent. 

Now we restrict our work to the specific heterogeneous media described above. Hence the wave umber 
k in equation (17a) becomes a random variable, and can be expressed in terms of series of small 
parameter 6, which is deterministic, if the orders higher than one are omitted, we have 

k(7' ) = f + gk, 0') (25) 

Substituting equations (25) and (24a,b) into equation (17a), and equating terms of the same order in G, 

produces 

~g V2ff " 
k(y) = if-- T - T -  (26a) 

k, = f (r)V~ (y) + g(r)N, 0") 

f(r)=--~--~- y 7 -  

1 

I g ( r )  - 
2ff~ -2 L 

(26b) 

(27) 

where the over line denotes the mean values of the functions. 

2. Perturbation expansion 
Above we have transformed the wave propagation problem in heterogeneous media into a wave 

scattering problem in homogeneous media, which is determined by the wave number k, see equations (11 a- 
c). Now the wave number k is random variable, the dependence on k in equation (16) is indicated explicitly 
by writing 

{H(k)_G(k)A(k)}~(k)  = G(k)Qa,(k) = G(A(k)~t/a _Qa) (28) 
w 

Expanding the matrices and vectors H, G, 7/about the mean value k with 6 - ek~ yields 

_ - -  1 

H(k) = H + 6H k + 762H--k, +... 
z 

(29a) 

- -  - -  1 

= +a% +Ta 

(29b,c) 

where the subscript k denotes partial differentiation (no summation implied for repeated subscripts) and the 
over line denotes evaluation of the functions at the respective mean values. 
In order to simplify the calculation, we assume that the analytical part of ~,  e.g. 7 ~a, Qa are given at the 

mean value of k, i.e., 

~a = ~-a, Q" - Q" (30a,b) 

Another assumption is about matrix A,  i.e., A(k) is approximated by its mean value, 

A(k) = A(k) (31) 
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By substitution of equations (29)-(31) into equation (28), and equating terms of the same order6, it 

produces a set of recursive relations" 

( H -  G-A)~  - ( ~ . A  - H,.)T-" + G~.Q a" (32a-c) 

( H -  GA) 7-~k k = (G,,A - H,.,.)~-s + 2(GkA - Hj,.)T~.," + ~.t , .Q a* 

The recursive system can be solved efficiently since the coefficient matrix on the left hand side is the same 
for all orders. Equations (32a-c) are solved recursively for the unknown component of ~ u~, ~ s  and 7t~. 

The solutions are substituted appropriately into equation (29c), which is used below to evaluate the first and 

second order moments (mean and standard deviation) of the response. 

3. Expectation of the response 

The total wave field displacement ~ and the displacement w in heterogeneous media can be considered 

as functions of wave number k, and can be expanded into series of small paramete 6 about the mean value 

k-. By applying the expectation operation to the expansions, such as equation (29c), and consider the 
relationship between ~ and w, the mean and variance of the displacement w can be achieved. 

Given the mean and variance, it is possible to establish confidence bounds on specific realization of the 
displacement w. One possible approach for a random variable x with mean value 7/is to use the Chebyshev 

inequality, 

2 { } o 
P r l - a < x < r l + a  > 1 - - ,  (33) 

a "  

or the one sided versions 
0 2 

_ ~ ( 3 4 )  P{x < r/+a} > 0 2 +a z 

{ } ~ a "  (35) P x > r / - a  _ > 0"2 +a-  

where P stands for the probability, r/ is the mean value of the random variable x, 0" is the variance. 

If the probability P is given, the deviation of the random variable can be calculated as 

~ P (36) 
a = +  1 - P  o- 

then the probability P{7/-  a < x < 7/+ a} will be not less than the given value P.  Therefore the deviation 

calculated here can be used to determine the confidence bound of the random variable corresponding to the 

probability P .  
The method in this section is used by Ettouney, Benaroya and Wright (1989) for probabilistic structural 

analysis[10] and also for probabilistic acoustics analysis[ll]. We have adopted this method for the 
probabilistic analysis of wave propagation in random heterogeneous media. Some applications are 

introduced in the following section. 

N u m e r i c a l  E x a m p l e s  

The boundary element methods for deterministic as well as for random wave propagation problems 
were introduced in the previous sections. In this section we will first apply the methodology to the solution 
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of the wave propagation in a deterministic stratified media, and then to the solution of wave propagation in 
a random heterogeneous media. 

1. Wave scattering by semi-circular canyon ---deterministic case 

I X 

Fig. 3 Canyon Boundary Element Mesh 

Consider a harmonic SH wave propagation in a heterogeneous half space, where exists a semi-circular 
canyon on the surface of the half-space, as depicted in Fig.3. The heterogeneous halfspace is assumed to be 
stratified media. The specific variations of the material properties are described above, e.g., the square root 
of shear modules p(y)can be described by equation (22), and the function N(y)= pco2by equation (18). 

The material properties at different positions together with the corresponding parameters in equation (22) 
are listed at the end of that section. 

Fig. 4a-b show the results of the displacement amplitude on the surface of the semi-circular canyon. 
The results of the displacement amplitude of a corresponding wave propagation problem in a homogeneous 
media are also depicted in Fig, 4a-b. The distributions of the material properties corresponding to Fig. 4a 
and Fig. 4b are shown in Fig.2a and Fig.2b respectively, The material properties of the corresponding 
homogeneous media are the same as the material properties of the heterogeneous media at infinity. 
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Fig. 4 Displacement amplitude along surface of the topography 

Fig.4a and Fig.4b indicate that the structures of the displacement amplitude in the stratified media are 
analogous with those in the homogeneous media, and the magnitudes of the amplifications in the stratified 
media are greater than those in the homogeneous media. This may be justified that the velocity of shear 
wave near the surface of the stratified media is smaller than at infinity. In Fig. 2a and 2b the velocity on the 
surface is about 75% of the velocity at infinity, and a greater amplitude is needed to meet the requirement of 
the conservation of energy. 

It should be pointed out that the purpose of the example problem is to illustrate the application of the 
boundary element method developed for wave propagation in heterogeneous media. More practical 
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examples with actual stratified material behaviour as well as material with multi-dimensional variations 

should be studied in the future. 

2. Wave scattering by sediment soil structure--deterministic case 

X 

o,~t, c, 

Fig. 5 Half plane with semi-circular sediment soil structure 

On the elastic half plane, there is a semi-circular sediment soil structure as shown in Fig. 5. The material 

parameters for the elastic half plane and the sediment structure are different, and two pairs of examples have 
been analyzed. 
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Fig. 6 Displacement amplitude on the sediment surface 

Case la, lb: The material for the half plane is stratified, and the material parameters are the same as 
shown in Fig. 2a-b. In the heterogeneous case of Hard Bed / Soft Valley, the material parameters of the 
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sediment structure are the same as those for the half plane media as - y  approaches infinity, i.e., p~ = 1.0, 

/4 = 1.0, C,t - 1.0. In this case of Soft Bed / Hard Valley, the material parameters of the sediment are the 

same as those for the free surface of  the half plane. The circular frequency of  the incident wave is o) = rpr. 

The results of  the displacement amplitude along the uper surface of the sediment structure are shown in Fig. 

6a-b, corresponding to Fig. 2a-b. 
Case 2a, 2b: The material for the half plane is the same as Hard Bed / Soil Valley heterogeneous case in 

Case l a, lb. The circular frequency of  the incident wave is a)= q;T. The results of  the displacement 

amplitude along the uper surface of the sediment structure are shown in Fig. 6c-d, corresponding to Fig. 2a- 

b and for a series of incident angle. 

3. Wave propagation in random stratified media probabilistic case 
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We will now apply the stochastic BEM to solve the problem of wave scattering from a semi-circular 

canyon on random stratified media. The configure of the canyon is the same as in the previous section. The 
mean values of the random field V(r,y)and N(r,y)are also the same as in the previous section. The 

random variables V~ (7')and N~ (7')are assumed to have a normal probability density distribution, and the 

variances of V~ (7')and N~(y)are set to be the same, i.e. ecrv, = CO'N, = O', and we have set o-= 0.1, 0.2, 

0.3 respectively, and s = 0.5 for the following probabilistic analysis. 

The displacement amplitudes of the canyon surface together with a probability of non-exceedence of 

84% and 97% are calculated using the Chebyshev inequalities that were described above. These non- 

exceedence levels are chosen since they correspond to one and two standard deviations from the mean in a 

normal density function, hence they are widely used in engineering applications. 

Fig. 7a through 7f show the results of the probabilistic analysis. The mean values of the material properties 

in Fig. 7a-c and Fig 7d-f are illustrated in Fig. 2a and Fig 2b respectively. The confidence bounds in Fig 7a-f 

can be interpreted as that the displacement amplitude will fall into the bounded zone with a given 

probability, e.g., 84% or 97%, when the material properties vary randomly. These confidence bounds can be 

used for design or analysis decision. This confidence estimate methodology has much advantage over the 

conventional "deterministic zone approach". The deterministic zone approaches use the "best guess" and 

upper and/or lower limits of the material properties as three levels to produce upper and lower bound values 

of the response quantities of interest. The deterministic zone, i.e., the space between the upper and lower 

bounds, is then used for design or analysis decision. The main drawback of the deterministic zone approach 

is that it cannot tell what are the probabilities that the response quantities will fall outside the deterministic 

zone, the confidence estimate methods can solve the dilemma. 
It should be reiterated that the purpose of the examples is to illustrate the application of the stochastic 

boundary element method presented herein. Further studies will be concentrated on more realistic random 

heterogeneous media. 

S u m m a r y  

A boundary element formulation for wave propagation problem in heterogeneous media is introduced. 

The formulation assumes that the heterogeneous media is stratified and the material properties satisfy 

certain relationships. The wave propagation problems in the stratified half space are transformed into a wave 

scattering problem in a corresponding homogeneous media, which is solved by boundary element method. 

The problem of wave scattering by a semi-circular canyon on a stratified heterogeneous half space was 

studied in order to demonstrate the use of the boundary element formulation for wave propagation in 

heterogeneous media. The surface displacement amplitudes of the canyon are given and compared to the 

results in the corresponding homogeneous media. 

Then a stochastic boundary element presented for wave propagation in random stratified media is 

formulated. The formulation assumes that the shear modules and density of the heterogeneous media are 

random fields. A decomposition of the random fields is used to transform the wave propagation problem in 

random heterogeneous media into a wave scattering problem in a corresponding homogeneous media with a 

random wave number. A perturbation approach is used to solve the scattering problem in the homogeneous 

media. The statistical properties of the response measures, such as the means and mean square are 

evaluated. These statistical measures are used to evaluate the response measures at different confidence 

levels. 

Again the problem of wave scattering by the canyon on the stratified random half space was studied. 

The displacement amplitudes on the canyon surface together with non-exceedence of 80% and 97% are 

given to illustrate the use and value of the formulation. 
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In conclusion, we should point out that the purpose of this work is to illustrate the potential of BEM in 
solving problems with heterogeneity and randomness. There are many works remains to be done in these 
areas. 
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Abstract 

The control effectiveness of Tuned Mass Damper (TMD) device is studied in this paper for 
high-rising building rested on the soft soil, subjected to seismic excitation. Two approaches, random 
analysis in frequency domain and determinative analysis in time domain, are applied for evaluating 
the effects of soil-structure interaction (SSI) on the dynamic response of the structure with TMD 
device. The numerical results in the case studies show that the TMD effectiveness to reduce the 
seismic behavior of the structure decreases drastically due to the strong interaction between the 
structure and the soil. So that, the SSI effects should be taken into consideration in dynamic analysis 
and design of the TMD control of the structures subjected to earthquakes when the soil is soft. 

Introduction 

The theory of structure control has remarkably been developed in recent years since the new 

concept of the structure control in civil engineering was suggested by Professor Yao [q. Many 
different types of active, passive and hybrid control techniques have been developed and studied 
through theoretical and experimental research. The structure control devices had been set upon many 
high-rising buildings in the word, to reduce the dynamic behavior of the structure. It has been shown 
that the structure control is coming critically important to suppress the dynamic response of the 
structures due to strong wind and earthquake excitations. 

However, the soil-structure interaction is not considered in the most studies and designs of the 
structure control. In recent decades, the research results in the field of soil-structure interaction 
indicate that SSI has an important effect on the dynamic response of the structures when the soil is 
soft. In general, there are three major influences. (1) It will change the dynamic characteristics of the 
soil-structure system, such as modal frequencies and vibrating shapes. Especially, the fundamental 
frequency will have more decreases and rigid body motion of the structure will be produced or 
enhanced. (2) It will increase the modal damping as some vibrating energy in the structure will 
transfer to the soil. This type of damping is called radiation damping. (3) It will influence the free- 
field ground motion. Obviously, modal frequencies and damping of the system are also the important 
factors considered in the structure control. 

Recently, the SSI effects on the structure control have been studied in several researches [2-7]. 
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Most works focused on the SSI effects on the active control of the structures subjected to 
earthquakes. However, TMD control is one of the most popular and practicable control techniques 
used to suppress the seismic response of the high-rising buildings and the long-span bridges. Its 
effectiveness to reduce the dynamic behavior of the structure is more dependent upon the 
fundamental frequency of the system. In this paper, the SSI effects on the TMD control for seismic 
response of high-rising buildings are investigated. 

Equat ion  of  Mot ion  

1. Structure  rested on rigid foundat ion  
If the soil-structure interaction is not considered, the equation of motion for the structure with 

TMD device, under the seismic excitation including translational and rotational components Xg(t) 
and 0g(t), can be written as 

[ . ]  {.su,, (,)} + [q{u..,.,,, + (,)} (1) 

in which [M],  [C] and [K] are (n x n) mass, damping and stiffness matrices respectively, n is the 

number of the degrees of freedom (DOF) of the structure-TMD system. {Gap(t)} is the relative 

displacement vector of the system with respect to the structure's base foundation. [F] represents a (n 

x 2)quasistatic transformation matrix. {fig(t)} is the acceleration vector of the free-field ground 

motion, 

[b (t)J 
(2) 

In general, "Og(t) is equal to zero in the structural seismic analysis. 

2. Structure  rested on soft soil 
If the structure with TMD device is built on the soft soil, the equation of motion of the soil- 

structure system can be described by the equations of motion of two subsystems, structure-TMD 
subsystem and rigid base foundation subsystem including the effect of the soft soil. 

For the structure-TMD subsystem, its equation of motion can be expressed as 

(3) 

Eq. (3) is somewhat different to Eq. (1) as structure's base foundation has an additional motion 

t ,,,[iif(t)~ relative to the free-field ground motion t ,,,~iig(t)~ due to the SSI effect. Similar to t ,-,~iig(t)~' 

(4) 

The equation of motion for the rigid structure's base foundation can be written as 
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[mf ]({/gf (,)} -k- {/gg (t)})"+" [FIT [m]({/gsup (t)} + [F]{/;I (t)} + [U]{fig (t)}) = {fs (,)} (5) 

where [Mi] is a ( 2 •  2 )mass  matrix of the rigid structure's base foundation. {fs(t)} is a force 

vector including the horizontal force ps(t) and rotational moment p~(t). They represent the action of 

the soft soil on the structure's base foundation. They can be written in detail: 

0 
(6) 

{s , ( , ) }  = (7) 

in which m i and Js are mass and inertia moment of the structure's base foundation. The thickness 

of the base foundation is thought as small and negligible. 
According to the results of the research in the field of soil-structure interaction, the force 

vector {fs(t)} can be expressed in frequency domain using the impedance matr ix .  

(8) 

where {F~(co)} and {Us(co)} are the Fourier transformations of {fs(t)} and {Us(t)} respectively. 

[Ss(co)]is the impedance matrix of the soil, a (2 x 2)complex coefficient matrix. It can be written in 

detail: 

 oo( o)l + LC ( o)coo(oD] 
(9) 

Obviously, stiffness coefficient kv and damping coefficient c~j are dependent on the exciting 

frequency co. Some researchers [8'9] found that a frequency-independent impedance can be safely 
taken corresponding to the fundamental frequency of the soil-structure system. They also compared 
their results with the more rigorous analysis and showed that their results are within a reasonable 
agreement. Therefore, Eq. (8) can be written approximately in time domain as follows : 

-{fs(t)} = [Ks]{us(t)} + [C~]{Us(t)} (10) 

in which [Ks] = [K~.(co0)],[Cs] = [Cs(co0) ]. co o is the fundamental frequency of the soil-structure 

system. 
From Eq.(3), following relationship can be obtained: 

[ M]({/4sup (t)/ "b [~-']{/gf (t)} "Jr-[I-']{/gg(t)/) -" -[C]{~/sup (t)/- [g]{b/sup(t)/ (11) 
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Substituting Eqs. (10) and (11) into Eq. (5), a new equation can be arrived: 

Let 

[Mf ]({/if (t)} + {~g (t)})- [1-'] r [C]{/~su p (t)} + [C ]{/gf (t)} 

: o  (12) 

(13) 

where {u(t)} describes the displacement vector of the structure-TMD subsystem relative to the 

free-field ground motion {ug (t)}. 

Assembling Eqs. (3) and (12), the final equation of motion for the structure with (n+2) degrees of 
freedom can be obtained as follows, 

[M 0 7[, a(t) l [ c - ~  lIu(')1 [ K - ~  7~u(t) ~ 
o M~A[/~,(,)J + ~c ~cr + "x "Kr - r  r +CsJ[u~(,)J - r  r +Ks/lU~(,lJ 

m - - -  

0 M/ I2 
(14) 

where [12] is a (2 • 2)uni t  matrix. If the rotational component in {ug(t)} is neglected, that is 

O g (t) = O, {Peff (t)} in Eq. (14) is becoming as 

{peg(t)} = _ [Mo 
0 

(15) 

in which {F l} is the first column in [F] and {e} T = {1, 0}. In this paper, seismic response analysis 

in time domain for the soil-structure system with TMD device is carried using Eq. (15). It means that 
only horizontal seismic excitation is taken into consideration. 

3. Random Response Analysis 

If the flee-field ground motion Jig(t) is mathematically assumed as a stationary random process, 

the mean square value of seismic response of the structure is given by following equation: 

E[6:] = I[Hs(co)[2S(co)dco (16) 
- o o  

where S(co) is the power spectral density function of the free-field ground motion s A filtered 

non-white noise model [~0] is taken in this study: 
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(_0 2 
1 + 4~2g _-5 

S(CO) = cog �9 S ~ ~  (17) 

( 0 2  (1)2 1"+  2 
1-  +442g ---5 COb 

COg 

in which the parameters cog, (O h and ~g are dependent on the property of the soil. 

In Eq. (16), the symbol 6 represents the seismic response at any position of the structure, such as 
acceleration a,o p and displacement Uto p at the top of the structure or shear force Qbase at the 

structure's base. Usually, ato p , Uto p and Qba, e are the most important response required to check the 

safety or confortableness of the structure. 

An influence factor is defined by following ratio" 

(18) 

where 6 indicates the seismic response of the structure with TMD control as well as 6 indicates the 
seismic response at same position of the structure without TMD control. The value of R 8 is 

changeable with the shear wave velocity V s of the soil and the dimensionless ratio COn4D/CO 0 . COn4 D 

is the designed frequency of the TMD device, co o is the fundamental frequency of the soil-structure 

system. Comparing Rsvalues obtained from different shear wave velocity V, of the soil can be 

reveal the SSI effects on the control effectiveness of the TMD device. The greater value of R~ 

indicates the smaller effectiveness of the TMD control. 

Case Study and Discussion 

1. Parameters in case study 
In this research, the shear buildings with (L x L) square cross-section, rested on half-space, are 

selected for illustration. As well as two types of structure's base foundation, surface foundation and 

group-piles foundation, are taken in consideration respectively. The TMD device is installed at the 

bu;lding top. Its damping ratio is designed as 8% and mass is equal to 2% of the first modal mass of 
the building. Details of the parameters are listed in Table 1 to Table 5. 

Table 1. Parameters of building-TMD system 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ......................... 

No. width height TMD mass 

............... L (m) . . . . . . . .  H (m) . . . . . . . .  (kg) 
1 16 45 (12 F) 6.4x104 
2 90 (24 F) 1.3x 105 

3 24 45 (12 F) 1.3x105 
............ _4 ..................... 90 (24 F) 2.6x 105 

floor mass floor inertia layer stiffness 

............ (kg) moment ........................... ~ / m )  ......... 

5.3x105 0 8.4x108 

1.06• 106 0 1.68x10 9 
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Table 2. Parameters of rigid structure's base mat 
, . . . . . . . . . . . . . . . . . . . . .  

width L mass 
(m) (kg) ........... 
16 9.8x10 s 

. . . . . . . . . .  

inertia moment 
kg.m 2 

4.9x10 7 

Table 3. 

cat size 
(m 2) 

Parameters of group-piles 

cat mass cat inertia moment 
(kg) (kg.m 2) 

16x16 9.8x105 4.9x107 
24x24 2.0x106 2.1x108 

pile 
length 

(m) 

15 

pile pile mass pile Young' s pile 

diameter density modulus span 
(m) (kg/m 3) (Gpa) ......... (m) 

0.4 2.5x103 34 2m 
0.6 3m 

Table 4. 

Poisson's 
ratio 

Parameters of the soil 

damping 
ratio V~ = 100m/s 

shear elastic modulus ( N/m 2 ) 

V~ = 150m/s  V~ =200m/s  V s =350m/s V s - - O O  

0.35 0.125 1.7x107 4.3x 10 7 8.4x 10 7 2.8x 108 oo 
. . . . . . . . . . . . . . .  

Table 5. 
. . . . . . . . . . . . . . . . . . . . .  

Parameters of filtered non-white noise model 
. . . . . .  

kinds of soil I II III IV 
C O g  

(rad/s) 

near field earthquake 41.89 31.42 25.13 16.75 

far field earthquake 35.90 25.13 19.33 13.23 
~g 0.64 0.72 0.80 0.90 

COb (rad/s) 25.13 

In case study, E1 Centro and San Fernando earthquake records are selected as the horizontal 

seismic input ~ g ( t ) .  The acceleration peak value of E1 Centro wave is modified to 100 c m / s  2 as well 

as the peak value of San Fernando wave is 265.7 c m / s  2 . 

2. SSI effects on TMD control of soil-structure system without group-piles 
In this case, the structure's base foundation is assumed as a rigid mat which keeps contact 

continuously with soft soil during earthquake. Building No. 1 is selected as an example to analyze the 

SSI effects on effectiveness of the TMD control. 

(1) Random analysis 
Figure 1 and Figure 2 give the computing results from Eq. (18) according to different shear wave 

velocity V s of the soil. In the figures, U,o p and d,o p represent the horizontal displacement at the 

building top with respect to the free-field ground motion and to the displacement of the base 
foundation respectively. Obviously, d,o p is only the dynamic elastic deformation and Uto p includes 

d,o p and rigid body motion component. In the computing condition of V s ---> m, it represents the case 

that SSI is not taken into consideration. 
From the numerical results, it is shown that if the building modal damping ratio is small, for 
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example # = 1% in steel structure, the TMD still has an important function to reduce the dynamic 

behavior when the soil is stiff or rigid in the case of V s = 35Orals or V~ --, oo. Otherwise, if the 

building is rested on soft soil, the TMD has a little function to reduce the dynamic behavior in spite 
of low modal damping of the structure. 

(2) Determinative analysis in time domain 
The designed frequency of TMD device coru~ is equal to 0 .98o  0. The time history of the 

seismic response of Building No.1 for two extreme cases (V~ = oo, 100 m / s )  are shown in Figure 3 

and Figure 4. In the figures, the solid and dotted line represent the seismic response of the structure 
with and without TMD control respectively. 

The results illustrate that when the soil is very soft, there is nearly no difference between 
seismic responses of the building with TMD and without TMD. This means that the strong SSI effect 
makes TMD lose its function. 

3. SSI effects on TMD control of soil-pile-structure system 
The main assumption in this study is that all of the discussed problems of the soil are limited in 

the range of the linear viscoelastics. The impedance matrix of the group-piles is obtained 

approximately through applying the interaction factor between two piles [11]. 
(1) Random analysis 

The computing results of the SSI effects on the effectiveness factor R~ of the TMD control are 

shown in Figure 5 to Figure 9. From the numerical results, it can be summarized that SSI brings 
down the TMD function to reduce the seismic response of the structures with the decrease of the 
shear wave velocity V~ of the soil. 

(2) Determinative analysis in time domain 
The seismic response of the soil-pile foundation-structure systems subjected to horizontal 

excitations of E1 Centro and San Fernando waves are shown in Figure 10 and Figure 1 1. In general, 
some conclusions similar to the ones in the case of random response analysis, can be obtained. But 
sometime the effectiveness of the TMD control does not decrease monotonously with the decrease of 
V, , because resonance between the system fundamental frequency coo and dominant frequency 

component co/ in earthquake wave influences significantly the dynamic response of the building. 

The SSI effects on the resonance can not be described monotonously. 

Conclusions 

The SSI effects on the TMD control of the high-rising buildings have been investigated. The 
numerical case studies give us following several practical conclusions. 

1. The function of TMD control to suppress the seismic response of the buildings is weakened by 
the soil-structure interaction with decrease of the shear wave velocity of the soil. The stronger 
interaction between the soil and the structure, the more reduction of the TMD control effectiveness. 

2. If the high-rising building with higher modal damping, for example more than 5% in 
reinforced concrete structure, is rested on soft soil, TMD technique is not available to control the 
seismic response of the building efficiently. 

3. If the soil is not very soft and damping of the building is small, for example about 1% or 2% in 
the steel structure, TMD control can still be applied to reduce the seismic response of the building. 
However, the frequency of the TMD device corm D has to be designed to equal approximately to the 

fundamental frequency co o of the soil-structure system rather than the fundamental frequency of the 

structure without considering the SSI effect. 
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Abstract 

The authors analyze vibration impedance function of raft and pill foundations on lay- 

ered media with 3-D model consisting of spacial beam, columm and panel elements. The 

paper presents super-structure-foundation-soil 3-D dynamic interaction equations and cor- 

responding program with substructure method. The recults are compared for commonly 

used frame and frame-shear wall structures on different subsoil, different types of founda- 

tion and different input of seismic waves. The results show variation of vibration period of 

structure, displacement, stresses under consideration of interaction. It can be seen that it 

is necessary to compile a soil-structure interaction program of dynamic analysis for high- 

rise buildings. 

Introduction 

The importance of dynamic soil-structure interaction for high-rise buildings has being 

recognized, because of two effects. (1) the feedback action from structure affects the 

composition of frequency spectrum of soil motion, resulting in increasing of component 

approaching that of natural frequency of the super-structure~ (2) the soil flexibility af- 

fects the dynamic behavior of super-structure (including frequency and vibration mode) 

and damping of the whole structure resluting in part of vibration energy dissipating 

through hysteresis and wave radiation. It is necessary to take soil-structure interaction in- 

to account for seismic analysis, especially for a structure built on soft soil. 

There are several approaches, such as finite element method, sub-structure method 

and hybrid method for analyzing soil-structure interaction, among which sub-structure 

method is widely used for its advantages which each system (including super-structure, 

foundation and soil) can be analyzed with its the most suitable approach within its zone 

1~. In this method, the super-structure is often simplified as multi-nodel system of 

bending-shear or shear pattern, and vibration impedance function of massless rigid disc on 

homogeneous elastic half space, and is analyzed in plane domain [2] -'~ ~6]. However, 
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since a real structure is in 3-D and dynamic soil-structure interaction is also a spacial prob- 

lem, it is necessary to set up a model in 3-D. 

Based on the characteristics of high-rise structures, the assumptions are made that 

box (raft) foundations with or without piles are resting on transversely layered isotropic 

visco-elastic half space (simplified as layered media). A model of 3-D with spacial beam, 

column and panel elements is used for analysis of vibration impedance function of box 

(raft) foundations embeded certain depth with horizontal and vertical vibration of piles in 

layered soils. Then, 3-D super-sturcture-foundation-soil dynamic interaction is analyzed 

with substructure method, and corresponding program is compiled. Examples of two 

types of structure on different soils and foundations, and different seismic input are giv- 

en, and the results are compared. Some conclusions are drawn for reference of seismic de- 
sign. 

Motion Equations 

With 3-D high-rise structure-foundation-soil dynamic interaction models as shown in 

Fig. l ( a ) ,  Fig. (b) and (c) represent motions in x and y direction resulting from seismic 

input on foundation approximately equal to the acceleration in free field t],(t) and e,(t) .  

b I, L L L 

I 1 l 
(a) (b)  

L V~  LV~L 

v ,  h~q~., 

q q 1 

(c) 

Fig. 1 3-D High-Rise Structure-Foundation-Soil Dynamic Interaction Models 

1. Motion Equations of Super-Structure 

Super-structure is discritized as spacial beam, column element and panel element 

which can simulate behavior of shear walls. The stiffness matix of each element can be 

found [-10]. Gerenally, in a high-rise building with N floors, for its large size in horizon- 

tal plane of each floor and great stiffness of whole building, it is rational to assume that 

each floor has infinite stiffness in-plane. Therefore, each floor only has three degrees of 

freedom, i.e. two horizontal displacements and one rotational displacement around the 

vertical axis of mass centre of the structure, and the transversal stiffness matrices can be 

obtained by static congregation method [10]. 
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From Fig. l ( b )  and (c),  the dynamic equilibrium equations of each floor can be ex- 

pressed in terms of matrix as following: 

I Em] Era] 

F= C~, 
+/<. <, 

tCo~ Co, 

If {a} + {h}~,o.} + {a,} + {ao} 1 
{~} + {hi,o,} + {~,} + {~o} 

[J] {o} 

C,o {/~} + K,. K,, K,0 { v } -  

Coo. {0} Ko, Ko, Koo {0} 
0 (1) 

Let 

1 ICx C K K 1 [M ]=  [m] , [C]= C.. C,,,, C.o , [ K ] =  K,~ K.  K,, / 
E J] Co. Coy Coo Ko, Ko, KooJ 

where, EM-I, EC~ and [K~ are mass matrix, damping matrix and stiffness matrix of super- 

structure, respectively, with 3N • 3N~ Rayleigh damping for the structure, i.e. Ec-] -- 

aEM-] + bEK~; h, ,  height of each floor to the mass centre of the {oundation~ u0 and v0 , 

displacements in x and y direction of the foundation, respectively~ ~0x and %, , rotations of 

the foundation around y and x axices. 

2. Motion Equations of Foundation 

Assume P2 and P~ representing horizontal forces acting on the foundation from soil, 

and M2 and M~ representing moments acting on the foundation. Then,  motion equations 

of the foundation can be expressed as shown in Eq. (2):  
N 

m o ( i~ o Jr- ~ g ) -Jr- ~ m , ( i~ =g + h , ~oo~ -F i~ o -+ i~ , ) -Jr- P;  = ~ 

mo(~bo + ~bg) + ~m,(i,,.= + h,~ooy + ibo + ~bg) + P;, = 

N (2) 
I~ox  + ?m~h~(i%= + h~ox + i~o + i~g) + M2 = 0 

N 

I:.~o(Oo:, + ~m.h~(i , .  + h~(oo, + ~o + ~),) + M; = 0 
i - -1  

where, I~  and I,~ representing summution of rotational moment of inertia of m~ , mass of 

each floor and too, mass of foundation around their axices, x and y, respectively, in 

which the relationship between displacemants of foundation Uo, Vo, 9o~and 90, , and forces, 

P2 ,  P ; ,  M2 and M; can be expressed in terms o{ vibration impedance function of founda- 
tion. 

(1) Impedance Foundation of Box (Raft) Foundation on Layered Media 

Normally, the shape of foundation of high-rise building is most likely of rectangular 

or square. [8] presented vibration impedance function o{ rectangular foundation on lay- 

ered madia with certain embeded depth, as following [-7], 
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KHn = f n (anGnrnkn + G, lSul ) 

3 2 

6 ?'9 r~ 

K . ,  = -  fnEa.G.zcr.k.  + G. I (z~-  1l)S...] 

C n , - -  1[2(rL -F ~,)Gnrnkn -F G, lS.z] 
O9 

C~ = -112(r/, + r/.)G,r~k,a, + 2(r L + rl.)G~r~z~k, 
69 

+ O,r~a,[s~ + -~ + _-_2 - a,Z-~)s.,]} 

Cm, = __ ~1 [2(r L + 7L)Gnz, rnk u + G,l(z, -- ~)S.,]I 

in which, KHH, K~, Kn~and CHn,C~ and Cn, are stiffnesses in horizontal, rocking, and, 

coupled by horizontal and rocking, and their corresponding dampings. 

(2) Vibration Impedance Function of Pile Foundation on Layered Media 

Horizontal vibration impedance function of single pile E8], 

for friction pile: [K']  -- ( [Tn]  + [Tzz]EKr] ) ( [T~]  -t- [T~z]EKr]) -~ (4a) 

for tip bearing pile: [K']  ---- [T=][T~,] -~ (4b) 

in which, [Kr]  , dynamic stiffness of pile tip and [Tn] ,  [Tx2], [Tn] ,  IT,2] ,  block matri 
ces of transfer matrix I T ] .  

Vertical vibration impedance function of single pile [9],  
for friction pile: k ' =  (tz~ Jr- tzzk.)/(tx~ Jr- txzk~) (5a) 

for tip bearing pile : k' = tzz/t~z (5b) 

in which, k~ , dynamic stiffness of pile tip and t~,  t~z, tn ,  tzz , element of transfer matrix 
[ t ] .  

The vibration impedance function of pile foundation with a group of n piles can be ob- 
tanied by superposing each single pile: 

i - -1  

i = 1  

' kH~z~ + ) ~ ~ k z z X l  
i = 1  

Ch~ = 2 cbn 
i = 1  

Ch~ = ~ ( c~  -- c~nz~) 

C ~  2 ( c ~ _ _ 2 c h ~ z ~ +  , z , 2 = c ~ z ~  + ) s  
i = 1  

(3) 

(6 )  
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where, K'uu , K ~ , K ~ a n d  C'uu,C~,C~,g iven  by changing x and y with x~ and y~ , respective- 

ly~ z~ , distance between mass centre of foundation to its bottom t and, x~ and y~ repre- 

senting coordinates of its pile, respectively. 

Then,  following equations are given. 
P~ Cuuuo + ~ " ~ " = ~ " Cu~9o~ + K u u u o  + Ku~9o~ 

= Cu,9o, + KYnnVo + K~,9or (7) P ;  C~nO0 + " " 

M~ = C~#o + C~#o~ + K~uo  + K~9o~ 

= c ~ 0 0 ,  + K'~Vo + K~9o, M;, C'u#o + " 
For the case of foundation consisting of box (raft) and piles, its vibration impedance 

function can be obtained just simply superposing these two parts. 

3. Motion Equations of 3-D System 

Combining Eq. (1 ) ,  (2) and (7 ) ,  the motion equation of high-rise superstructure- 

foundation-soil 3-D dynamic interaction system in time domain can be obtained: 

in which, 

[Xr] = 

[~']{~} + [C]{~+ [~]{~} = -  [~]{b,,} 
m 0 mh 0 

[M] 0 m 0 m___hh 

0 0 0 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

N N 

m T 0 0 

0 m r 0 

mh r 0 0 

0 mh r 0 

m o +  ~ m ,  0 E m , h ,  0 
i,= l i - 1  

N N 

i=, l i =  l 

N N 

mih, 0 I,,,, -[- ~ m,h~ 0 
i = 1  i = l  

N N 

0 ~ m,h, 0 I~  + ~ m,h, 
i== l i== l 

-[c] [o]. ] 
. . . . . . . . . . . . .  . . . . . . . .  o .. . . . . . .  . . . . . . .  o [  

[ c ' ] =  [o] o c~., o c~, l 
I 

c~,  0 c~, 0 / 

o Ch~ 0 C~J 

[• =[ o K~,, o K~,], 
K ~  0 K~ 0 ] 

0 K~,, 0 K~J 
m = {m, m,- . .mN} ~" 

mh = {mtht m2h2"'m2~h2~} T 

{-D = { u~ u2""uN v~ v2""vN at 8,'"0N Uo Vo ~o~ ~o~} r 

{ D , }  = {0 0..-01/~, ~,, 0 0} T 

(8) 
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It is to be mentioned that the stiffness matrix, [-K] , contains vibration impedance 

for taking soil-structure dynamic interaction into account, and the coefficents are frequen- 

cy dependent. Taking natural frequency of the structure without dynamic interaction as an 

initial value, find the natural frequency of the system under considering dynamic interac- 

tion by iterative method, from which the vibration impedance of the foundation is deter- 

mined, consequently, seismic response of super-structure can be continued. 

Seismic Response Analysis For Different Types of Structure 

1. Data for Analysis 

Frame and frame-shear wall are common structure systems for high-rise buildings. 

Fig. 2 and 3 are examples of these two types of structure, both with 12 stories and height 

between each floor, 3. 6m. Size of cross-section of beam, column and shear-wall are 

shown in Table 1 and 2. Table 3 shows strengths of concrete for each floor. Raft founda- 

tions (32m X 17m X 0. 8m) with or without piles are adopted. Fig. 4 shows plane view of 

pile foundation arrangement, with coefficients shown in Table 4. Shear wave velocities for 

layers are given as 100m/s, 200m/s, 300m/s, 400m/s and 500m/s, respectively. E1 Cen- 

tro and Taft are taken as seismic input with adjustment of peak acceleration to 35 gal. 

Table 1. Cross-Section of Beam and Column for Frame Structure 

Floor 

1~3  

4~6  

7~12 

Column 

(mm) 

400X700 

400 • 600 

400X500 

Beam 1 

(mm) 

250X700 

250X700 

250X700 

Beam 2 

(mm) 

250X400 

250X400 

250X400 

Table 2. Cross-Section of Beam, Column and Shear-Wall for Frame-Shear Wall Structure 
System 

Floor 

1~4  

5~7  

8~12 

Column 

(rnm) 
_ _  

400• 

400 X 600 

400X500 

Thickness of Shear-wall 

(ram) 

200 

2O0 

180 

Beam 1 
(ram) 

250X700 

250X700 

250X700 

Beam 2 

(mm) 
. . . . . .  

250X400 

250X400 

250X400 

Table 3 Strengths of Concrete 

Floor 

Grade of Concrete 
, 

1~4  

C35 

5,-..7 

C30 

8~12 

C25 
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Fig. 2 Plane View of Frame Structure 
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Fig. 3 Plane View of Frame-Shear Wall Structure System 

I K .... ! I ! ;," ~, ;2 1 ! ! ;~ ;K I ;~ 

16X2000=32000 

Fig. 4 Plane Arrangement of Pile Foundation 

Table 4 Coefficients of Pile Foundation 

Unit Weight 
( k N / m  3) 

24.5 

Yang's Modulus Diameter of the Pile 

(MPa) (m) 

2.55X10 ' O. 5 

Pile Length 

(m) 

12.5 

2. Results  and Observations 

(1)  Natural Period 

Table 5 shows  ratio of natura! period of first modes with or without taking inter- 

action into account for two types of structure s y s t e m ,  from which natural period of 

the structure increases as taking interaction into account and increases with increasing 
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flexibility of soil. For a same site, the natural period of the structure with piles is 

smaller than that without piles, and corresponding natural periods of horizontal vibra- 

tion have greater incremant than rotational vibration (Ts/Ts,  T6/T6,Tg/T,), while 

the increments of natural period of first 3 modes are smaller than those of others. By 

comparing the ratio of there two types of structure system, it can be seem that the ra- 

tio of all modes of frame-shear wall structure is greater than that of frame structure,  

because of great stiffness of frame-shear wall structure,  especially on flexible soil. 

Table 5 Ratio of Period of Structures 

~ T~/T~ 
type ~ Vs( m / s  ) 

of structure~ l 
1.073 

I00 L(1"~176 (1.oo5) (i. 

200 

Frame Structure 300 

400 

500 

I00 

Frame-Shear 

Wall 

Structure 

200 

300 

400 

500 

Tz/T, T. /T,  T, /T,  Ts/T~ T. /T.  T, /T,  T. /T.  T. /T,  

1.042 1.000 1.848 1.154 1.112 1.341 1.296 1.167 

000) (1.033) (1.032) (1.000) (1.090) (1.058) (1.000) 

1.014 1.013 1.000 1.151 1.078 1.000 1.252 1.105 1.027 

(1.002) (1.002) (1.000) (1.010) (1.011) (1.000) (1.026) (1.022) (1.000) 

1.006 1.006 1.000 1.043 1.038 1.000 1.113 1."066 1.000 

(1.001) (1.001) (1.000) (1.005) (1.007) (1.000) (1.015) (1.013) (1.000) 
, .  

1.003 1.003 1.000 1.020 1.021 1.000 1.054 1.040 1.000 

(1.001) (1.001) (1.000) (1.004) (1.005) (1.000) (1.010) (1.010) (1.000) 
. .  

1.002 1.002 1.000 1.012 1.013 1.000 1.031 1.026 1.000 

(1.001) (1.001) (1.000) (1.003) (1.003) (1.000) (1.007) (1.007) (1.000) 

1.1-87 1.506 1.556 1.727 2.100 1.887 1.691 2.314 1.785 

(1.021) (1.045) (1.001) (1.639) (1.589) (1.326) (1.164) (1.515) (1.588) 

1.031 1.063 1.059 1.724 1.625 1.487 1.205 1.567 1.598 

(1.003) (1.007) (1.000) (1.059) (1.195) (1.074) (1.005) (1.461) (1.064) 
. .  

. . . . .  

1.012 1.026 1.000 1.330 1.505 1.206 1.117 1.490 1.458 

(1.002) (1.004) (1.000) (1.031) (1.100) (1.043) (1.001) (1.340) (1.056) 

1.007 1.014 1.000 1.144 1.365 1.127 1.059 1.486 1.213 

(1.001) (1.003) (1.000) (1.021) (1.062) (1.029) (1.001) (1.237) (1.050) 
. .  

1.004 1.009 1.000 1.076 1.236 1.088 1.016 1.480 1.079 

(1.001) (1.002) (1.000) (1.015) (1.043) (1.021) (1.000) (1.161) (1.046) 

Note: Values in brackets refer to those with piles. 

(2) Displacement of Floor 
Because of flexibility of soil and spacial interaction, seismic input in x direction 

causes displacement at each floor in x direction, meanwhile, it also causes displace- 

ment in y direction and rotational displacement around mass centre; the similar for 

seismic input in y driection. The direction of seismic input is refered to primary one, 

the other is refered to secondary. From Table 6 and Fig. 5, one can find that displace- 

ment in primary direction will decrease for frame structure because of the rigid soil, 

while for frame-shear wall structure it may increase or decrease because of the rigid of 

soil; displacement in secondary direction and rotation increase dramatically especially 
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for stiff structure and flexible soil. With increasing soil s t i f fness ,  displacement ap- 

proaches to that of rigid soil. Pile foundation has an effect on restraining displace- 

ments of floor and foundation. An another important factor affecting floor displace- 

ment is spectrum characteristics of seismic input,  as well as s tresses ,  which causes 

different influences for two types of structure sys tem,  i. e. , frame and frame-shear 

wall structural systems.  

Table 6 Floor Displacements in Superstructure 

Displacement at Top Floor Displacement at Foundation Type of Input in x Shear Wave 

Structure Direction Velocity 

Frame 

Structure 

El Centro 

Wave 

Taft Wave 

El Centro 

Wave 

100 

5O0 

100 

5OO 

100 

/ 

500 
Frame-Shear 

Well Structur ! oo 

Taft Wave 100 

500 

U(m) 

O. 3695X 10 -1 

O. 3682• 10 -1 

(0. 3653X 10 -1) 
O. 3693X 10 -1 

(0.3695X10-']  

0. 2321X 

O. 2085X 

(0.2276X 

0.2286• 

(0.2313• 

O. 1643• 

0.2011X 

'(0.1683X 
O. 1661X 

(0.1626X 

0.2148X 

0.2270• 

(0.2269X 

0.2100X 

(0.2162X 

V(m) 

O. 1966X10 -5 

O. 1304X10 -1 

(0. 2997• -z) 
Oo 

(0. 

10 -1 O. 

10 -1 O. 

10 -1) (0. 
10 -1 O. 

10 -1) (0. 

10 -1 O. 

10 -1 O. 

10 -1) (0. 

10 -1 O. 

10 -1) (0. 

10 - I  O. 

10 -1 0. 

10 -1) (0. 

I0 LI O. 

10 -1) (0. 

1490X10 -= 

4282X10 -s)  

1294• -s  

9829X10 -z 

2366X10 -z) 

9722X10 -s  

2471X10 -s)  

9048• -8 

9720• -z 

1413• -z) 

8633X10 -s  

2932X10 -s)  

IOISXIO -~ 

9762• -z 

1753X10 -z) 

1037XlO -= 

3064X10 -s )  

O(rad) 

O. 1213X10 -~ 

O. 9162• -4 

(0. 2304X10-4) 

O, 

(0. 

O~ 

(0. 

O~ 

(o. 

Oo 

)(0. 

8853X10 -s  

2153X10 -s)  

9782X10-' 

6658X10 -4 

1957X10 -4) 

5334X10 -s  

1344X10 -s)  

1279X10-' 

5851X10-' 

9365X10 -s)  

5375X10 -s  

1209X10 -s)  

O. 1205X 10 -s  

o.36oIxIo-' 
(0. 9678X10 -s)  

O. 4090X 10 -s  

(0.1092X 10 -s)  

Note. Values in brackets refer to those with piles. 

Uo(m) 

O. 2124X 10-' 

(0. 4246X lO-S)i 
O. 1264X 10 -s  

(0. 2975X 10 -4) 

O. 2147X 10 -z 

(0. 4454X 10 -s )  

O. 8002X 10 -4 

(0.1607X 10 - ( )  

O. 1761X 10 -z 

(0. 3183X 10 -s)  

O. 1435X 10 -s  

(0. 2794X 10 -4) 

0 

O. 1606X 10 -z 

(0. 3878X 10 -s )  

O. 1138X 10 -s  

(0.1954X 10 -4) 

Vo(m) 

O. 1250• 10 -z 

(0. l?74X 10 -s )  

O. 4763X 10 - (  

(0.1343• -4) 

O. 1194X10 -z 

(0.1548X10 -s )  

O. 4255 X 10 -4 

(0.1321X 10 -4) 

O. 5798X 10 -s  

(0.1722X 10 -s )  

O. 7687• 

(0.1685• -4) 

O. 8977X 10 -s  

(0. 2023X 10 -s)  

O. 7402X 10- '  

(0.1686• 10-')  

%.(rad) 

O. 1997X10 -s  

(0. 2259X 10 - ( )  

O. 1286 X I0 - (  

(0. 2473X 10 - s )  

O. 1598 X 10 -s  

(0. 2399X10-') 

O. 7142X10 -s  

(0.1407X 10 - s )  

O. 1158X10 -3 

(0.1550X 10 - ( )  

O. 1395 X 10 - (  

(0. 2271 X 10 - s )  

O. 1403X10 -3 

(0. 2019X 10 - ( )  

O. 1146X10 - (  

(0.1725 X 10 -s )  

?oy(rad) 

0 

O. 2400X 10 -3 

(0. 3833X 10 -4) 
. . . . .  

O. 1455 X 10 - (  

(0. 3720• 10 -s )  

O. 1725 X 10 -s  

(0. 3071X 10 -4) 

O. 1247X 10 - (  

(0. 3740• 10 -s )  

0 

o. Is04xio-' 
(0. 3123X 10 -4) 

O. 2072X 10 - (  

(0. 5088X 10 -5) 

0 

O. 2081X i0 -8 

(0. 3943X 10 - ( )  
0.zmxi0-' 

(0. 4867X 10 -s )  
. . . . . . . . . . . .  

I I I  / /  ,", 

ii!/ 
o 2 ' 0  4'0 0 I'o ~o o .~ ;o xlo-'  

u ( m m )  v (mm)  0 ( r a d )  

Fig. 5 ( a )  Floor Disp lacements  of Frame Structure  

E1 Centro Wave 

a. Rigid Soil 

b . - - -  vo-- 100m/s 

c . - - - -  Vo = 500m/s  

Taft Wave 

d . - - -  Rigid Soil 

e . - - -  Vo = 100m/s 

f . - - ' -  V o -  500m/s  
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(3) Floor Shear Forces 

~ : ,  ~ :  and Q : ,  Q: listed in Table 7 represent shear forces at top of foundation in x 

and y input primary driections with and without dynamic interaction. Fig. 6 only gives out 

shear force envelope of super-structure in x input direction, from which shear force in pri- 

mary direction at top of foundation increases considerablly under interaction condition, 

and its variation along height under interaction condition is quite different from stiff base 

condition, meanwhile it causes large floor shear forces in secondary direction, especially 

for frame-shear wall structure. It can be seen from Table 7 that floor forces in primary di- 

rection for both frame and frame-shear wall structural systems can possiblly increase or 

decrease. The possibility of increasing is greater than that of decreasing, and the incre- 

ment and decrement values depend on stKfness of structure, stiffness of soil and type of 

foundation. The stiffer the structure and the more flexible the soil, the greater variation 

of shear force is. From the example, the range of shear force ratio at top of foundation for 

frame structure is about 0. 807~1.087,  and 0. 470~1.578 for frame-shear wall structure. 

Not counting extremely soft case, shear forces at top of foundation for frame structure 

vary from -- 150~ to 1 0 ~ ,  while for flame-wall structure from -- 30~  to 20~.  

12 

I0 

8 

I.u 4 

2 

" L/ / 

iL.~, e I I! / 

W 
;o o ; i'o o ; 

u(mm) v(mm) O(rad) 

Fig. 5 (b) Floor Displacements of Frame-Shear Wall Structure 

Table 7 Shear Force Ratio at Top of Foundation of Sturctures 

Type o{ 

Structures 

Frame 

Structure 

Seismic 

Waves 

El Centro 

Wave 

Taft Wave 

s ) 

Shear Force R a u ~ ~  

Q;/Q; 

Ci;/Q; 

Ci;/Q; 

100 

O. 863 

(0. 897) 

0. 897 

(1.020) 

O. 955 

(0.971) 

0. 807 

(1.048) 

2OO 

O. 959 

(0.967) 

O. 876 

(0.998) 

1.016 

(0.945) 

1. 087 

(1. 009) 

300 

Oi 902 

(0. 982) 

I. 042 

(I. 003) 
O. 964 

(0.961) 

I .  068 

(1.017) 

400 

0.921 

(0. 988) 

0.973 

(1.004) 

O. 927 

(0.973) 

1.015 

(1.013) 

500 

O. 960 

(0.991) 

O. 993 

(I. 004) 

O. 941 

(0.980) 

1. 004 

(1.009) 
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Type of 

Structures 

Frame-Shear 

Wall 

Structure 

Seismic 

Waves 

El Centro 

Wave 

Taft Wave 

~Shear Force Rau )-,o,,, 

100 

~:/Q: 

iTi;/q; 

~; /q;  

1.350 

(0. 772) 

0.475 

(0. 981) 

1.578 

(0. 766) 

0. 470 
(0. 778) 

Note: Values in brackets refer to those with piles. 

200 

1.169 

(0. 9O8) 

O. s55 
(0.802) 
O.s6z 

(0.767) 

1. 003 

(1. 108) 

300 

0.892 

(0. 850) 

o. 957 

(o. 832) 

O. 939 

(0.915) 

1.050 

(1.217) 

400 

O. 797 

(0. 694) 

O. 956 

(0. 768) 

0.976 

(0. 952) 

1.019 

(1.109) 

500 

0.834 

(0. 709) 

1.086 

(0.899) 

O. 986 

(0. 966) 

1.016 

(1.057) 
. . . . . . .  

(4) Overturning Moment 
Table 8 

Type of 

Structures 

Frame 

Structure 

Frame-Shear 

Wall 

Structure 

Overturning Moment Ratio at Top of Foundation of Structures 

Seismic 

Waves 

El Centro 

Wave 

s ) 

OV:mt:;:i n %  a t i ~ , , ~ o  

~ : / M ;  

M,"/Mr" 

M,"/M: 

Mr 

M : / M :  

~i;/Mr 

M~,/M: 

100 

O. 873 

(1.005) 

O. 929 

(0. 997) 

O. 896 

(1. 035) 

0. 782 

(0. 980) 

0. 958 

(0. 928) 

O. 503 

(0. 995) 

Taft Wave 

El Centro 

Wave 

Taft Wave 

M ; / M ;  

O. 607 

(O. 875) 

O. 719 

(0. 968) 

Note: Values in brackets refer to those with piles. 

200 

O. 947 

(1.002) 

1. 024 

(O. 993) 

1. 032 

(0. 994) 

0.912 

(0. 998) 

0.86z 
(0. 965) 

0.916 

(1.004) 

0.955 

(0.944) 

1. 051 

(1.061) 

300 

1.005 

(1.001) 

1.000 

(0.996) 

1.068 

(0.995) 

0. 981 

(0. 998) 

O. 909 

(0. 988) 

O. 980 

(1.014) 

0.898 

(0.986) 

0. 969 

(1.085) 

400 

1. 005 

(1. 001) 

O. 990 

(0.997) 

O. 998 

(0.996) 

O. 994 

(0. 998) 
, ,  

0.911 

(0, 996) 

1.000 

(1.006) 

O. 921 

(0.992) 

O. 945 

(I. 043) 
. 

500 

1.003 
(1. 001) 

O. 993 

(0. 998) 

O. 996 

(0. 997) 

O. 997 

(0.999) 

0.959 

(0. 997) 
, 

I. 019 

(1.002) 

0.915 

(0.995) 

o. 996 

(1.029) 

m 

Mx M; and M;  Mr* in Table 8 represent overturning moment at top of foundation 

in x and y seismic input primary directions with and without taking interaction into ac- 

count. Fig. 7 only gives out envelope of overturning moment of super-structure in x 
direction with seismic input, from which one can see that there exist possibilities of 
increasing and decreasing of overturning moment both for two types of s t ruc ture .  In- 

creasing of overturning moment most likely occurs at top part of the structure,  while 

the decreasing occurs at the low part of the structure,  meanwhile accompanyed with 

greater overturning and torsional moments in secondany direction, especially for 

frame-shear wall structure,  which may be harmful during earthquake. From Table 8, 
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there are several factors affecting the value of overturning moment,  such as stiffness 

of structure,  stiffness of soil and their relative ratio, type of foundation and spectrum 

characteristics of seisumic input. From the example, the variation range of overturn- 

ing moment ratio at top of foundation of frame structure is around 0. 7 8 2 ~  1. 068~ 

while the range for frame-shear wall structure is about 0. 503-~1.085. Not counting 

extremely soft soil (V.---100m/s),  overturning momnet at top of foundation of frame 

structure varies from - - 1 0 ~  to 10M, for frame-shear wall structure f r o m - 1 5 ~  to 
10~ 

1 2 - -  

10 

d.f b 

4 

X 10 3 1 1  
II, 

0 1.0 2.0 0 0~5 1.0 X10 ~ 
Q, (KN)  Q , (KN)  

10 

8 

$ 

41 

. ~ i 1  , xlo '  
0 2.0 4.0 0 

Q , ( K N )  

i l l  I I ] 

1.0 2 . 0  XlO ~ 
Q , ( K N )  

(a) Frame Structure (b) Frame-Shear Wall Structure 

Fig. 6 Shear Force Envelopes of Floors in Superstucture 

Conclusions 

The anthors established a 3-D dynamic high-rise structure-foundation-soil inter- 

action model based on substructure method, and a compiled computer program, which 

makes it possible to take interaction into account for high-rise buildings quantitatively 

under earthquake condition. Compare the results of dynamic interaction for different 

types of structure,  foundations, soils and seismic input waves, some conclusions can 
be drawn. 

1. Natural period of each mode of the structure under consideration of interaction 
is greater in varying degree than that without interaction, varying with stiffness of 

structure,  soil and types of foundation. The stiffer the structure and the softer of the 

soil, the greater increase of natural period is. For a same soil, increase of natural pe- 

riod for foundation with piles is smaller than that without piles. Increase of natural 

period of torsional vibration is smaller than that of horizontal vibration. 

2. The interaction obviously causes 3-dimensional displacements, one of which, 

displacment in primary diseetion may increase or cleerease, the variation depends on 

stiffness of structure and soil, i. e. , the greater the stiffness of structure and the soft- 

er the soil, the greater the variation is~ For a same soil, pile foundation can restrain 
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the variation of displacement; the other two displacements, secondary transverse and 

torsion displacements, increase drameticaly compared to those for stiff base (without 

interaction). The secondary transverse and torsional displacements caused on founda- 

tion have little effects on floor displacemants in the superstructure. 

l i b  LFI 

~1o, , / ,Xl0, ~,~ ! 

2.0 4.0 0 1.0 2.0 0 1.0 2.0 •  ~ 
M,(KN �9 m) M,(KN ~ m) M,(KN �9 m) 

(a) Frame Structure 

12 

10 

8 

~4 

2 

Fig. 7 

'31 

\\ '- " h ~ b  

\ \3 \  I l l'\u I-~ h L! 

2 \  t,i  ! 
~x o" \ lO' ~h h ~ ~ 0'---- \ ' ,  • )~ h 

2.0 4.0 0 2.0 4.0 0 2.0 4.0 X l 0  ~ 
M,(KN �9 m) M:(KN �9 m) M,(KN �9 m) 

(b) Frame-Shear Wall Structure 

Overturning Moment Envelope of Superstructure 

3. The interaction also obviously causes 3-dimensional stresses in structure. The 

stress in primary direction may increase or decrease compared to stiff base (without 

interaction), meanwhile, it causes stresses and torsional moment in secondary direc- 

tions. Stress distribution along the height of the structure is different from that in 

stiff base (without interaction), which may be greater than that for stiff base, espe- 

cially top part of the structure. Therefore,  it is not rational to consider dynamic inter- 

action just reducing peak value of acceleration and analyzing stress distribution for 

stiff base condition. 
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4. Dynamic characteristics and seismic response of the structure taking interac- 
tion into account depend not only upon stiffness of structure itself, also upon stiffness 
of soil, type of foundation and spectrum chanacteritics of seismic input. Therefore, it 

is necessary to compile a set of computer program of 3-D superstructure-foundation- 

soil dynamic interaction. 
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N O ~  DYNAMIC ANALYSIS OF 

SATURATED SOIL-STRUCTURE INTERACTION BY FEM ~ 

Song Erxiang, Yao Zhiquan and Qiu Zonglian 
(Tsinghua University, Beijing, China, 100084) 

Abstract 

Nonlinear dynamic interaction of saturated soil and structure is analyzed by using the direct finite 
element method. Undrained conditions are assumed and an overlay model is proposed to describe both 
plastic deformation and pore pressure build up in the porous soil. In order to model the infinite soil region 
by a finite element mesh appropriately, the viscous boundary with minor modifications is applied to the 
nearly incompressible soil. Some numerical examples are presented to show the performance of the 
analysis procedure and to investigate some influence factors. 

1. Introduction 

Since the last two decades, much efforts have been devoted to the study of dynamic soil-structure 
interaction, and considerable progress has been made in understanding this problem as well as in the 
analysis methods. For a comprehensive review of the state of the art one may refer to the paper by 
Zhang[1], Xiong[2] and the monographs by Wolf [3][4] and many other papers. 

In most of the papers published, the soil is often assumed to be a linear elastic or visco-elastic material. 
This is appropriate for vibrations in relatively small amplitude, and is also valuable for giving insight into 

more complex response of SSI system. However, for the vibration under relatively strong earthquake, the 
soil may show strong non-linearity, and a linear analysis may not sufficient. Although the equivalent linear 

analysis method has been proposed to treat the nonlinearity of the soil, its disadvantages are obvious 
compared with a truly nonlinear analysis. For instance, it does not calculate any residual deformation, and 
for some cases it may predict a false resonance. Therefore, truly nonlinear analysis is necessary for 
important structures. 

Soil can be considered as the most complicated engineering material, especially when considering 

dynamic repeated loading. Under relatively low load level, it already shows nonlinearity. And another well 
known fact is that soil under repeated shearing may densify in drained condition and in undrained 
conditions pore pressure may build up, or even cause liquefaction of the soil. Past earthquake hazards, 

such as those happened during the Niigata earthquake in Japan and Tangshan earthquake in China, 
showed that soil liquefaction may cause collapses of many buildings. 

" This project is financially supported by the National Natural Science Foundation of China 
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In this paper attempts are made to study the nonlinear analysis of soil-structure interaction. The soil is 
seen as a two phase material, and special attention is paid to consider the plastic deformation and pore 
pressure build up in the porous soil. An overlay model is proposed to describe the soil plasticity and pore 

pressure build up. The direct finite element method together with the viscous boundary is employed to 

model the soil-structure system. Some numerical examples are presented to show the performance of the 

analysis procedure and to investigate some influence factors. 

2. Equation of Motion of Saturated Soils 

The dynamic equation of motion for saturated soil was first derived by Biot[5] and later was developed 
by many researchers. Here we use the formulation given by Zienkiewicz[6]. 

The overall equilibrium equation of the saturated soil is written as 

o-jj,j + b~ = p//~ + p f#~ (1) 

where o" 0 are the total stresses, i.e. the effective stress plus the pore water pressure p, b~ is the body 

force, p the density of the soil-water mixture, and p f  is the density of the water, w~ is the averaged 

displacement of pore water relative to the soil skeleton. The two superimposed dots represent second 

derivative with respect to time. In the last term, the actual fluid mass in a unit total volume should be 

npf,the drop of n is due to that w~ is defined as the ratio of the displaced fluid quantity over the total 

cross sectional area. 
The continuity equation is written according to the principle that the out flow of pore fluid must be equal 

to the decrease of the pore volume and the volume expansion of the pore fluid, thus we have 

tip,,, = -g',, -- ( 1 -  n),b / Ks + ~,'~ / (3K~) - n[~ / K f  (2) 

The first 3 terms on the right hand side are all pore volume decrease due respectively to the rearrangement 

of soil particles, compression of soil particles by the pore pressure p, compression of soil particles by the 

effective mean stress, and the last term represents the pore fluid expansion. In the above equations, the 

stress is defined as positive for tension, whereas the pore pressure is positive for compression. 

Considering the equilibrium of the flowing fluid, on which the seepage force, the pressure difference, the 

water weight and the inertia forces are acting, we may obtain the dynamic form of the Darcy's law relating 

the seepage velocity with the water pressure as follows 

-P,, + PfgJ = kolfvj + Pf (u i  + fi'i / n) (3) 

Eqs. (1)-(3) together with the strain-displacement relation and the strain-effective stress relation, which are 

all similar to those in continuum mechanics, define the whole problem. By eliminating the stresses, strains 

and pore pressure variables, two sets of equations governing the six displacement variables u~ and w~ may 

be obtained. 

For engineering application it is often more convenient to use some simplified form of the above 
equations. For some limit conditions simplification is also necessary to get better numerical performance 
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of the solution procedure. For medium speed phenomena, a so called U-p formulation is preferred. In this 

case ~ is relatively small and can be neglected. Then the variable wi can be simply eliminated by using 

equation (2) and (3) to give 

I n (k~jp,j ),, - ~ ' ~ ,  - -(k~jp yiij ),, + i~y + ~ p - o';i / (3K,)  (4) 

Consequently the number of variables is reduced. 
Under earthquake excitation, the loading rate is too rapid to allow significant dissipation of the pore fluid, 

even for a sandy soil. Hence, undrained conditions may be assumed. In undrained conditions, the seepage 

velocity and displacement can never reach significant values, then we obtain the limiting case of untrained 

behavior. The equations are obtained by making ko.=O, thus Eq. (4) reduces further to 

- k .  - n p  / K f  + (1 - n ) p  / K s - &;j / (3Ks)  (5) 

As Ks is much greater compared with Kf for soil, the terms containing K, can be neglected. Then p, with its 

positive definition being changed now to be the same as the normal stress, is related with the volume strain 

as 

p = Kw~ii with Kw = K f  (6) 
n 

Then an explicit relation between the total stress and the strain can be obtained, allowing the displacement 

field to be solved with a procedure similar to that used for one phase material. After the solution of the 
displacements, the strains and then the effective stress and the pore pressure can be determined. Hence the 

influence of the pore pressure can be considered with minor extra efforts. This is the so called effective 

stress method, which will be applied later in this paper. 

3. Stress-Strain Relationship of Saturated Soil 

Much efforts have been made to study the behavior of soil under repeated loading. Basically, there are 

two lines which can be followed for the analysis of soil under repeated loading. One is within the framework 

of elasto-plasticity theory. A complicated stress-strain model should first be developed to model the cyclic 

behavior of soil, such as the nested yield surface model[7] and the bounding surface model[8]. While this 

method is good for its solid theoretical background, it also has some serious disadvantages. As pointed 

out by Finn et al[9], none of these models can predict the volume change satisfactorily, and formidable costs 

prevent them from being used for practical analysis. Another line we may follow is that we construct a 

model based directly on cyclic loading tests to describe the soil behavior for a certain type of loading. 

Analysis with this kind of models is considered to be more reliable and more economical, at least in the 

present stage of development. 
In this study we will follow the second line. A densification model is proposed to model the pore pressure 

build up in the soil during repeated loading. The soil failure is described by the well established Mohr- 

Coulomb model. Then the two models are combined to form an overlay model to give a reasonable 

description of the soil behavior. 
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(1) Failure condition of soil 
Soil under dynamic loads shows a relatively high strength and high stiffness. This is more pronounced 

for clay under undrained dynamic loading. However, the difference under earthquake conditions, the 
loading rate of which is relatively low, is not large, and can be neglected for an engineering analysis [ 10]. 
Under many cycles of repeated loading, the soil always shows a densification or pore pressure build up. At 
the same time the strength and stiffness degrade. This will be modeled here with the densification model. 
Experiments also show that the effective soil strength parameters are about the same as those under static 
loading. Therefore the well established Mohr-Coulomb model is employed in this study to model the 

failure of a sandy soil. The failure surface of the model is expressed as 

0 .5 (0"  1 -- 0"3)  + 0 5 ( 0 "  1 + ty3) sin ~b- ccos~b = 0 (7) 

Nonassociated plastic flow is assumed to give a more realistic prediction of the plastic volume change of 
the soil. The plastic potential function takes the same form as the yield function with only the friction 
angle being replaced by the dilatancy angle. An efficient procedure is proposed in reference [11] to 

integrate this model. 
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Fig. 1 Pore pressure build-up in undrained cyclic tests (Seed et al, 1976) 

O. 50 

O. 40 

.~ 0.30 

0. 20 

0. I0  

O. O0 

i i i 

\\. 

= 7 7 z  

2. 
Model p r e d i c t i o n  

D =637. 
T e s t s  by Lee  & F o c h t  r 

o o ! o , ! ! 

1 10 100 1000 I 0 0 0 0  

N 
1 

Fig. 2 Cyclic loading strength from undrained tests 



221 

(2) The densification model 
Many tests have been reported on the cyclic behavior of soil. The main results about the pore pressure 

build up can be summarized as two curves, one is the p / o'~ versus N/NI curve (Fig. 1), and the other the 

Nt versus r c /o''o curve (Fig. 2), where Nt is the number of cycles to liquefaction. The first curve was 

proposed by Seed [ 12]. It expresses that there exists a nearly unique relation between the normalized pore 

pressure and the normalized cyclic loading cycles. The function of this curve can be written as 

p 1 1 N _ 1] ~ = - + - - a r c s i n [ 2 (  )1/ 
o-too 2 n" N t 

where r/ is a constant. The average curve in Fig. 1 is corresponding to 17 = 0.7. The second figure 

indicates that the number of cycles to liquefaction depends strongly on the shear stress ratio and the 

relative density. 
The densification model proposed here is based on these two curves. It is intended to predict directly the 

volume densification instead of pore pressure increase. This is to make it applicable both for undrained 

and partially drained conditions. In order to use undrained test results to predict the densification, we need 

to relate the densification to the excess pore pressure. In an undrained test the total stress remains the same 

after one cycle, hence the change of pore pressure dp and the effective mean stress do ' '  should be equal 

in magnitude and opposite in sign, i.e. 

dp = - d o "  (9) 

The effective isotropic stress do-' can be estimated as 

r i G '  = K ( 4 e , ,  - 

where K is the compression modulus of the soil skeleton, and doe,, and doevc are the total and plastic 

volume strain (densification) increment respectively. Under undrained conditions d c  v can be neglected 

compared to doevc. Thus from the above two equations we get 

dp = Kda'vc (11) 

This equation enables us to estimate the densification from the pore pressure induced by cyclic loading. 
Indeed, K will also change with the stress state. However an average value of interest will be used herein 

to simplify the numerical procedure. In this way the densification estimated may be not so accurate, but 

the pore pressure build-up under undrained and partially drained conditions is believed to be modeled 

properly. 

By using the above relation between densification and pore pressure build up and the two test curves we 

are able to give a formula to predict the densification under cyclic loading. However the model proposed 

here is not just by curve fitting. Attention is paid to make the model give reasonable prediction not only 

for undrained but also partially drained conditions. To this end consideration is given to the fact that as 

densification is accumulating, it will be more and more difficult to achieve further densification. Therefore 
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a hardening term is included in the model. Here we just write out the formulas below, for detailed 

derivation the reader is refereed to reference [13]. 

do%c = F ( ~m,m , e vc )dN 

1 

F ( ~ , o ~  DI(-- ~ -  Smin) ~ (~,m)Oexp(-D2gvc) 
O" m O" m 

f P D 1 = D 10"m0 / K D 2 - D~K / Crm0 

(12) 

(13) 

(14) 

where cvciS the densification, N is the number of loading cycles, D 1 ,D~, 0 and Stain a r e  material 

parameters describing soil behavior under cyclic loading and can be determined by cyclic undrained tests, 

Smm is the threshold cyclic shear stress ratio below which no densification occurs; O'mois the initial 

consolidation stress, O'm is the present effective stress, r c is the shear stress induced by cyclic loading. 
For anisotropicly consolidated soil, it is generally realized that the pore pressure build up will be limited 

[ 14].The limit of the pore pressure in undrained tests can be estimated by the following formula (see Fig. 3) 

f 

Pmax  = 0 - m O  - O ' d o  / M 
(15) 

where 0 - d  "- 0-1 --  0"3 is the deviator stress, and M is the slope of the failure line and can be related with 

the angle of internal friction. Here we just use the slope of the Mohr-Coulomb failure line. 
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Fig. 3 Limiting value of pore pressure in soil under anisotropic conditions 

The explanation for this pore pressure limitation is that when the soil approaches failure, more dilatancy 
will be developed so that the pore pressure will remain stable around some value. This means that no 
densification can be achieved any more. However, this is only true for undrained conditions. For partially 
drained conditions further densification may be expected, at a more or less lower rate. According to the 
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discussion above, the effect of static shear stress is considered in an approximate way. That is, the 

densification ratio will be reduced to a very small amount when the failure line is approached. 

The model given so far is only applicable to uniform cyclic loading. In order to apply it for earthquake 
loading an approximate procedure is used to transform the load cycles to the length of the dynamic shear 
stress path, i.e. to write the densification model as 

dc,, c = f (--~,m ,C,,c)dr (16) 

One cycle of loading can be seen as that the shear stress goes form 0 to r~ four times. By further 

assuming a uniform densification during the whole stress path, we have 

~c f d r  = F (17) 4~o 

By analyzing each factor in F, we see the change of exp(-Dzcvr within one cycle is very small, hence it 

can be seen as a constant. Besides, 0 is usually much larger than 1, the change of (re / or" - Smi n) o.5 is 

much slower than that of ( r  C /or '  m)~ Hence as an approximation, only the factor (z 'c /cr  m')~ is 

considered as a varying term in considering the integration, and even one step further only T is seen as a 
variable. Then we have 

1 Z.0_ 1 

f(-~m ,CVc) = D~( r Smin) ~ ~ (Or'm) 0 exp(-Dze'vc ) (18) 

where D 1 -0191 / 4 ,  and the original dynamic cyclic shear stress amplitude v c in F is replaced by the 

current cyclic shear stress T and all the other variables remain the Same as above. 

The densification is actually a plastic volume strain and it can be treated in the system response analysis 

in a similar way as for ordinary plasticity. Densification will reduce the effective stress and at the same 
time increase the pore pressure. 

----4,---------4 

l 

~ Ci 0 

Fig. 4 A soil-structure system 
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4. Analysis of the Soil-Structure System 

For definiteness, the soil considered here in the soil-structure system is assumed to lie above a relatively 

hard layer, such as a rock or a very dense sand layer (Fig. 4). Then only the soil above this hard layer is 

discretized into finite elements. Earthquake input can be prescribed on the lower boundary. The 

superstructure can be ether a frame or a shear-wall structure. The soil and the shear wall are discretized 
into 6 node triangle elements. The lowest order element is rejected for its serious shear locking for 
incompressible material. The frame structure is discretized into 3 node Mindlin beam elements, which 

enables the consideration of shear deformation in beams and columns. More important is that this type of 

beam elements can easily insure deformation compatibility with the surrounding soil elements. Since the 
soil layer extends to infinity in both directions, a transmitting boundary is applied on the vertical artificial 

boundary to maintain the mesh in a manageable size. 

(1) The transmitting boundary 

Many types of transmitting boundaries are proposed to model the infinite soil region. Some of these 
boundaries are frequency dependent and cannot be applied for time domain analysis. The most suitable 
transmitting boundary for time domain analysis by finite elements should be the viscous boundary, first 

developed by Lysmer and Kulehmeyer [15] and then improved by White et al [ 16], and the interpolation 

transmitting boundary by Liao and Wong [17]. The higher order Liao boundary has a high accuracy, but it 

may have stability problem. The first order Liao boundary and the viscous boundary are mathematically 

the same. For simpleness and efficiency, the viscous boundary is employed in this study. That is both 

normal and tangential surface tractions are applied on the vertical boundary and they are calculated as 

cr = apVp  r = b p V  s (19) 

As suggested by White et al, the constants a and b should be dependent on the Poisson's ratio. Here we 

just take an average value for a and b, namely we take a=l.0 and b=0.74. To determine the surface 

tractions we also need the P and S wave velocities. As here we are considering undrained soil, the P wave 
velocity should be calculated as 

Vp = x / ( K  + K~,, + 4G / 3) / p (20) 

whereas the S wave velocity is calculated as usual. Obviously, Vp is much greater than Vs. As stated in Eq. 

(19), the P wave velocity should be applied in the normal direction of the artificial boundary and the S 

wave velocity in the tangential direction. However numerical calculations show that it gives poor results 

when doing in this way for undrained soil. Somewhat better results can be obtained by applying the S 
wave velocity in both directions. 

To investigate the accuracy of such a boundary treatment, the vertical vibration of a footing on a 

horizontal soil layer is analyzed by using several meshes, the distance from the footing edge to the 

artificial boundary ranges from 3 to 8 times the footing width. The fundamental period of the soil layer is 
estimated to be Is, and the period of the load is 0.25s. Hence it ensures the existence of energy 
transmission to the far region in the reality. Both the free boundary and the two versions of viscous 

boundary are employed for the analysis. It is found by examining the displacement time history of the 
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footing that the present version of viscous boundary performs better than all the other boundaries. 
However, a little damping is always needed to get satisfactory results. 

When there is plasticity close to the artificial boundary, the S wave velocity Vs must be reduced. As an 
elasto-perfectly plastic model is employed here, a zero value for Vs is used in the incremental equilibrium 
equations when this occurs. The validity of this treatment requires still some study. 

(2) Governing Equation of the Soil-Structure System 
The dynamic equation of motion of the SSI system can be written as 

[M]{/~} + [C]{/t} + [X]{u} = -[M]{m}iYtg + {Fv} (21) 

where {u}, {z~}, {/~} are respectively the nodal displacements, velocities and accelerations with respect 

to the underlying rock layer.[M], [C] and [K] are respectively the mass matrix, damping matrix and 
stiffness matrix. When plasticity presents, it is more appropriate to use the incremental form of Eq. (21) 

and then the matrix [K] should be the tangential matrix, fig is the earthquake induced acceleration of the 

underlying hard layer. If only the horizontal acceleration is considered, for instance, then 

{m} = [1,0,1,0 ...... 1,0] 7" . {F  v } is the force vector corresponding to the viscous dampers on the artificial 

boundary. It is nonzero only when there is difference between the motion on the near side of the artificial 

boundary and the motion in the free field. Hence it is written as 

where 

= - [ G ] ( { u b } -  

[Cb ] = Y [ N ] v l a ~ P  01 bpVs [N]dA 

(22) 

(23) 

I N 0 . . . . . .  N n 0] 
[ N ] -  0 X 1 . . . . . .  0 X n 

(24) 

p is the mass density of the soil, Vp and Vs are the P and S wave velocities respectively. {Ub } and {itbf } 

are respectively the nodal velocities on the boundary and in the corresponding free field. 
Substituting Eq.(22) into Eq. (21) and moving the term containing the unknown nodal velocities to the 

left, we have 

where 

[M]{/J} + [C]{/t} + R ( u ) = - [ M ] { m } i i g  + {Fv} (25) 

{F v } = [C b ] {t/bf } [C] = [C] + [C b ] (26) 

The mixed mass matrix, i.e. a combination of the consistent and the lumped mass matrix, is employed, 
in order to enhance the accuracy and allow somewhat coarser mesh [18]. For the 6 node triangle element 
the lumped mass matrix is calculated by using the Newton-Kotes integration, which lumps the mass just to 
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the 3 nodes on the middle of the element sides. By using the mixed mass matrix, the element size can be 

~k min/4, where ~ min is the minimum wave length to be considered. This is checked by doing calculations 

with different element sizes. 

The determination of damping matrix is still a difficult problem. As nonlinearity has been considered, a 

part of the damping may be thought as included in the plasticity. However, damping and plasticity are not 

exactly the same. Besides, what we apply here is an elasto-perfectly plastic model, which predicts no 

plasticity for low level deformations. Hence, an explicit damping matrix [C] is still included. Here [C] is 

assumed to be a linear combination of the mass and stiffness matrix, but now this is done at element level, 
i.e. 

[C]  e = a o [ M ]  e + a l [ K ]  e (27) 

where[M] e and [K] e are respectively the element mass and stiffness matrix. The 2 constants ao and a l are 
estimated as below 

a 0 = ~:co a 1 = ~:/co (28) 

where o~ and ~ are respectively the fundamental frequency and the corresponding damping ratio for each 

part of the structure, i.e. the soil or the superstructure. 

In the above equation for establishing the damping matrix, the element stiffness matrix [K]  e c a n  be taken 

in several different ways, such as the elastic stiffness matrix, the tangential stiffness matrix or a 

combination of them [19]. It may be more proper to use the tangential stiffness, but many tests are 

interpreted by using the elastic stiffness and satisfactory results are claimed. Hence here we just use the 
elastic stiffness, which also makes the analysis simpler. 

The free field motion is calculated by assuming an upwards propagating shear wave. This assumption is 
reasonable for soil underlay by rock layers. 

To solve Eq. (25) Newmark's method is applied to treat the time variable and the initial stiffness method 

is used to treat the material plasticity. In order to avoid error accumulation, it is suggested to use the global 

equilibrium equations instead of the incremental equilibrium equations to estimate the out of balance error. 

Comparisons show that this procedure is much more accurate with only minor extra computational effort. 

5. Numerical Examples and Discussions 

As numerical examples the earthquake response of a soil-structure system is analyzed by the above 

numerical procedures. The structure considered is a framed structure of 15 storeys high on raft foundation. 

One building unit is taken for the analysis and two dimensional deformation is assumed. The stiffness is 

calculated from the frame structure and the masses are due to the whole unit of the building. Detailed 

information is given in reference [20].The soil layer is assumed to be 20m thick. The Tianjin record of the 

Tangshan earthquake, with the maximum acceleration being adjusted to 0. l g, is used as the earthquake 

input on the bottom boundary. Strictly speaking it is not proper without doing a back calculation to find 

the motion of the underlying rock layer, but considering the random nature of any earthquake, it can be 

seen as acceptable to do in such a way. Before performing the earthquake response analysis, a static 

analysis is first carried out to obtain the initial stresses in the soil. The time history of the displacement at 

the top of the structure and the base shear forces are shown in Fig.5 and 6. The contour of residual pore 
pressure is shown in Fig.7. , 
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From Fig. 7 we note that the maximum pore pressure occurs relatively far from the structure and close to 

the ground surface. This is in agreement with the pore pressure build up mechanism recognized through 

experiments. Just beneath the structure, the normal stress is in a greater magnitude, and consequently the 

shear stress ratio is smaller. Next to the structure, the pore pressure is also smaller due to the existence of a 

much greater static shear stress. As here completely undrained conditions are assumed, the maximum pore 

pressure occurs very close to the surface. In reality pore pressure dissipation may easily occur close to the 

free surface, then we may expect the maximum pore pressure will occur at somewhat deeper position. This 

is in agreement with field observations. 

For the same structure, analysis is also carried out by the conventional procedure, that is without the 

consideration of soil-structure interaction. In this analysis the soil is assumed to be completely rigid and 

only the superstructure is taken for the analysis. The earthquake input is prescribed at the raft foundation. 

In order to see the interaction effect by comparing this analysis with the former one, this earthquake input 

is calculated from the free field response analysis by using the same earthquake excitation on the bottom 

boundary. The results are shown in Fig. 8 and 9. By comparing them with Fig. 5 and 6 we see that the 

interaction analysis gives a somewhat greater displacement and lower base shear. 
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Fig. 5 Displacement at top of the structure with SSI 
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Fig. 6 Base shear force of the structure with SSI 

Completely undrained assumption is an extreme condition. Another extreme is to assume totally drained 
condition, namely to completely neglect the influence of the pore water during the dynamic analysis. To 
get some insight into the influence of the pore water, drained analysis is also carried out. The results are 

shown in Fig. 10 and 11. Here we note a reduction of displacement response and an increase in base shear. 

However, we cannot conclude that it is on the safe side if pore water is not considered. As pore pressure 
build up reduced the strength and stiffness of the soil. It may cause failure of the structure after the 
earthquake. 
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All the calculations above were carried out on a 586 micro computer, the computer time consumed for 

each interaction analysis was about 2 hours. For each time step only 3-4 iterations were needed, and no 

numerical instability was noted for this type of nonlinear problem with non-proportional damping. 

6. Conclusion 

Numerical procedures are discussed for the nonlinear analysis of dynamic soil-structure interaction. The 

soil is seen as a two phase material and undrained conditions are assumed. Attention is paid to consider 
the elasto-plastic deformation and the pore pressure build up in the porous soil. For this purpose an 
overlay model is proposed which combines the well established Mohr-Coulomb model for the soil 

plasticity and a densification model for the pore pressure build up. Calculations show the efficiency of this 
model. 
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Fig. 7 Contour of the steady pore pressure at t = 10s 
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Fig. 8 Displacement at top of the structure without SSI 

In order to model the infinite soil region by finite elements, the viscous boundary with minor 
modifications is tried for the undrained incompressible soil. The accuracy seems acceptable. However, it 
still requires some research into its application when nonlinearity exists close to the artificial boundary. 
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Some numerical examples showed a satisfactory performance of the numerical model and the 
computational procedure, although both nonlinearity and nonproportional damping are involved here. The 

computer time for an interaction analysis is quite modest. This is encouraging for doing truly nonlinear 
analysis 
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Fig. 9 Base shear force of the structure without SSI 

What worth mentioning is that calculations show plasticity and pore pressure build up are more prominent 
in the far field. Therefore, it is imperative to study transmitting boundaries for such kind of problems. 

Nonlinear dynamic soil structure interaction is a very complex problem. This study is still to be continued 
further. Much has to be done in investigating the performance of the model and the numerical procedures as 
well as the various influence factors on the response of a soil-structure system. 
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DYNAMIC SOIL-STRUCTURE INTERACTION ON LAYERED 
STRATA UNDER SEISMIC WAVE INCIDENCE 

Xu Zhixin and Liao Heshan 
( Institute of Structural Theory, Tongji University, Shanghai, China, 200092 ) 

A b s t r a c t  

Soil-structure interaction solved by means of boundary element method in frequency domain is 
presented. Some examples illustrate the practical use of this method. A new type of two dimensional 
boundary element method in time domain, velocity type boundary element method, is also presented. 

Introduction 

Amplification of earthquake ground motion on soft soil deposit is well known and verified by recent 
earthquakes and downhole recordings [1], [2], [3]. This phenomena is most significant in basin type soft 
alluvium. Soil-structure interaction has been studied by many authors using various methods [4], [5], [6]. 
Presented here is the soil structure interaction problem solved by means of boundary element method in 
frequency domain which can treat the irregularity at surface as well as on substrata easily. Also presented 
is a new type of boundary element method, the velocity type boundary element method in which the 
traction and velocity are used as unknowns. The merits of this method are that the singular integrals are of 
same order of singularity and that in calculating acceleration time history only derivative once to time is 
needed. 

Boundary Element Method in Frequency Domain 

On the boundary of a certain elastic medium under harmonic excitation, the following integral equation 
holds. The time factor exp(icot)is omitted here and hereafter. 

(1) 

where c o = 8 o + lim I ~ d S  (2) 
-+0 S~ 

is the free term. The direct calculation of c~j can be found in [7]. U o is the Green's function for infinite 

region. T 0 is the traction component corresponding to U o [6]. 

1 
uij = 4--~g (V8 ~j - zr,i r,j) (3) 

_ ~  / 2 Cp 
= (1 co2-~+.c~ c~) c~ .C~P )exp(-imr Cp)/r exp(-imr/Cs).r - 7T ( -  m 2r2 + lmr Cp lmr 
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,~ 2 2 3C2p 3Cp oc s 3c C s + + 1) 
Z = (-co'r '-  - + icorS + 1)exp(-icor c s ) / r -  --T(-coCp 2r2 icor 

C p and c,. are the longitudinal and transverse wave velocity respectively. 
For the region where incident wave exists, the following equation is used: 

- u ,5 , , )  = [. , [ u o ( t  , - t , , , , ) -  r , ,(u,  - (4) 

exp(-icor Cp)/r 

where u(/), and t~j)i are the displacement and traction components of the incident wave. ui and t i are the 

displacement and traction components of the total wave field. On free boundary, t ; -  0. On interior 

boundary conditions of continuity and equilibrium have to be fulfilled. To solve Eq. (4), boundary element 
is used. For calculating c 0 on nonsmooth boundary and the singular integral for quadrilateral 

isoparametric element, a closed form expression of c o and direct calculation of the singular integral by 

Liao and Xu [7] reduces the computing effort and increases the accuracy. 

Soil-structure interaction can be easily treated. The structure can be represented by an impedance. The 

structure is modelled as a multi-degree-of-freedom system. The equation of motion can be expressed as: 

[M]{//} + [C]{ti} + [K]{u} = -[M][N]{//o } (5) 

where {//o } is the excitation at the base of the structure with frequency co. Putting {u} = [qbl{y(t)}, 

setting [q~]~[M][~]=[I], then [~]r[K][~]=[f2]2,  assuming [~] r [C] [~]=  2[~,][f2], then relation 

between the force acting upon the base of structure {Fo} and the displacement {u o} is" 

 j{u0 } = {F0 } 

where K o (co) = _co2 ([ N]r[ M][ N] + [H]r[ O(co )] [H]) 

[HI = [~]r[ M][N] 

D(co) : co 2(-0) 211]+ 2i[r + [f212) -' 

Assuming that the foundation base and the soil is in full contact, the relation between {F0 }and {u o }with 

t, and u, on the soil can be formulated according to condition of continuity and equilibrium. 

E x a m p l e s  
1. Effect of soft layer on the amplification of ground motion for inclined incident SH wave is shown in 

Fig. 1 and Fig.2. It can be seen that near the edge of the soft deposit the amplification factor is much higher 
than that on the part away from the edge. Also noticed is that the amplification varies rapidly on the region 
near the edge. 

2. A containment structure was built on the cut of a slope of a mountain. The raft foundation of the 
containment is modelled as medium I ,  while the mountain is modelled as medium II .  The containment 
structure and the primary loop are modelled as lumped mass system (Fig.3). The input ground motion is 
assumed to be comprised in P ,  SV and SH waves with incident angle 0.  One set of bed rock motion and 
the motion of the base of the structure is shown in Fig.4 . Twenty sets of bed rock ground motion and 
seismic input for the structure are calculated. In this case the average amplification of peak ground 

acceleration is around 1 for vertical incidence (0 =0  ~ and 1.1 for inclined incidence (0 = 3 0  ~ with 
maximum of 1.33. 
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Velocity Type Boundary Element Method 

1. Velocity Type Boundary Integral Equation 
The computing effort of boundary element method in time domain is much higher than in frequency 

domain. Therefore it is not used as frequently as in frequency domain. Here a new type, the velocity type, 
boundary element method devised by the authors is presented. The merits of this type of boundary element 
method are that the singular integral are of the same order of singularity and that in computing acceleration 
only differentiation to time once is necessary. The method is illustrated here for two dimensional problem. 
The boundary integral equation in time domain is 

c o ( Y ) E ( Y , t  ) = I [ G o ( X -  Y , t ) * t , ( X , t ) -  ~ ( X -  Y , t ) * E ( X , t ) ] d S ( X )  (7) 

where �9 means convolution, Gij is the two dimensional Stoke's solution, F 0 is the stress kernel derived from 

Gij. i , j = l , 2 .  

The body force is neglected here. Zero initial condition is implied, c o is the free term. 

co = 8 0 when Y is in the interior of the domain, 

co = 0 when Y situates outside of the domain, 

1 
co = ~ 8 0 when Y is on the smooth boundary, 

C 0 - -  
1 x [ 2(1-v)(q~l-(p2)+(sin2q)l-sin2q)2)/2sin2 q) 1 - sin2 (P 2 sin2q~l-sin2(p2 

4 n ( 1 - v )  2 (1- v ) (q~ l - ~p 2) - (sin 2 (p l - sin 2 q~ 2) / 2 

) when Y situates at nonsmooth boundary point, q~l and q~2 are the angles between the tangents of the 

boundary segments with the x axis, q~ l>(p 2 �9 
The stress in the interior of the domain can be computed from: 

cy,,(Y,O = I [Kko(X - Y,O*tk - Lko(X - Y,O*uk ] d S ( X )  (8) 

Kko = L OGkm c3 Gk~ c3 Gkj ) 
cqy,,, 6o + P( c3yj + ~y~ (9) 

c~ Fk; ) Lko = L c3 Fk,, 8o + ~(  c3 Fki + .. (1 O) 
c~ y,, c3 y j c3 y~ 

The expressions of K~j and Luj are omitted for simplicity. Gij and Fij are shown in the Appendix. It can be 
seen that the singularity of Fij is one order higher than that of Gij on the wave front. This handicaps the use of 
the same integration scheme for these two integrations. To overcome this difficulty, improve the smoothness 
of the solution and make the acceleration time history which is the wanted one in seismic response analysis 
more accurate, a new type of integral equation is devised. Differentiating Eq.(7) with respect to time results in 

- I~( (To , t~-Fo,v i )dS(X)  (11) C o Vi (Y,, t) 

Here the zero initial condition for displacement and velocity has been used. 
The stress field in the interior can be expressed as 

cy o(Y,O = I (Kko ,tk - L 'ko ,v , )dS(X ) (12) 

Eq.(11) is called velocity type integral equation. A dot over a function means its time derivative, t over a 
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function means its integration over time. 

2. Discre t iza t ion  and W a y  o f  Solu t ion  
Eq.(11) is solved by discretization in both time domain and space domain. In time domain ti and vi are 

discretized at constant interval using the same interpolation function. 

N 

t ,(x,O = ~ - ' % ( t ) t , , , ( X )  (13) 
71=/ 

N 

vi(X, 0 = ~ % ( t ) v m ( X  ) (14) 
n=l 

q) ,, ( t)  = 

I t - T , , I  

AT 
, T ._ ,< t<T .+I  

t < Tn_ 1 or t >  Tn+ 1 

(15) 

where T~ =i AT, i=1,2,-  �9 . , N .  

q~ n (t) can also be expressed as 

(t - T.+ 1 ) H(t - T,,+ 1 ) + (t - 7"._ 1 ) H(t - T._ 1 ) -  2 (t - T,, ) H(t  - T. ) 
q),,(t) = AT 

1 
= ~ A2,[(t - T , )H( t -  T,)] 

AT  

H(t) is the Heaviside function, /x .2 represents the second order difference operator. 
Inserting Eqs. (13), (14) and (16) into Eqs. (11) and (12), the following equations can be obtained: 

1 ~ Is{[AZ,,G,j(X - Y, T v -  T . ) l tm-  [A2.~"( X -  Y, T N -  T . ) l v m > ( X )  co~;(v, T.,.) = ~-~,,=, ,,, 

1 ~ i.~.{[A2.Kk, ( X _  Y, Tx - T,,)]tk, ' _ [A2,,E,~.(X_ y, Tx - T,,)]v~,}dS(X) 

(16) 

(17) 

(18) 

The expressions of G~j', F0" are shown in the Appendix, K~aj" and L~aj ~" are omitted here. These expressions 
have no singularity on the wave front, t,,,and v m are function of space. The solution for quadratic 
isoparametric element is worked out. It is easy to extend to other types of element. The following expressions 
are assumed: 

3 

tm = E N,(~)t,,, ,  (19) 
I=1 

3 

vi,, = Z N,(~)vm,  (20) 
I=1 

3 

x, = Z N , ( ~ ) x ,  (21) 
I=l 

N , ( ~ )  = ~ ( ~ -  1) / 2,  N2(~)  = 1 - ~  2 , N s ( ~ )  = ~ ( ~  + 1) / 2 

Where NI( 0 is the shape function, tin I and vm~ are the value of tin and Vin at node 1 respectively. Eq.(21) 
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expresses the transform of boundary element e to coordinate ~, x;~ is the component of the position vector of 
node 1 of element e. Eq. (17) and Eq. (18) can be expressed as: 

U M 1 
(22) 

I,{[ " [ - ' "  - I 1 N M 1 A 2 n K k o . ( X -  Y, r N - T,,)]N,(~)tk,,,- m2n._.kij(X Y~ r N T n )  N , ( g ) v k , , ,  dS(X) (23) 
n=l e=l e 

Repeated indices of i, k, 1 imply summation. Se means boundary element e. M is the number of elements. At 
each node Y, v~ (Y, T N) can be expressed as V~N p, p is the numerical order of the node Y. Thus Eq. (22) 

takes the form 
N 

~_~([G]N_, ' {r},,  - [F]N.  {V}  ) = 0 (24) 
n = 1 

Where subscript n means the traction and velocity associated with qb n(t) o r  at time T,,. The element of {T}n 

and {V}n a re  tin p and v~n p respectively, n means at time T,,. p is the numerical order of the node. Subscript 
l H N-n means the matrices resulting from G~ and F,j at time TN-T,. Eq. (24) can be expressed as 

= (25) [~]o {T} - [F ]o {V} ~ -{Q} 
N-1 

{O } N = ~'~ ([6] N_,, { r  } - [t7 ] N-,, {V } ) (26) 
n=l 

For the region where incident wave acts, replacing vj (Y,t) and tj (Y,t) by v~ (Y,t) - v(/)~ (Y,t) and 

t~(Y,t)- t( j)~(Y,t)  respectively, and v(z)i(Y,t)and t(s)~(Y,t ) being discretized in the same way as 

v i (Y,t) and tj (Y, t ) ,  Eq.(22) becomes" 

n=l e=l 

-[AZ.Fo! ' ( X -  Y,T u - T.)IN,(~.)(v,., - v(/)i. ,)}dS(X) 

Eq.(25) becomes: 

[G]o {T} N - [F]o  {VIN = -[Q]N +[R]N 

(27) 

(28) 

N 

[R]N = ~ ([G]N-,, {T(s) ) N --[FIN-,, {V(s) ),,) (29) 
n=l 

�9 he elements of and are and respectively 

When the traction and velocity before and at TN_ 1 = ( N -  1)AT are known, {Q} N is known. {R} N is 

known since the incident wave field is known. On the surface boundary either {V}N or o r  some 

combination of them is given for the first, second or third boundary value problem respectively. On interior 
boundary the number of equations from neighbouring domains are the same as the total number of unknown 

elements of and {V}N on that boundary. Thus starting from N = 1, the unknowns can be solved. The 

computation effort is low since the inverse of matrix is necessary only at the first time step. 

3. In tegra t ion  o f  the Cauchy  Integral  
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Similar to static elastic boundary element, in transient dynamic problem the two kernel functions have 
logarithmic and Cauchy singularities respectively when the coordinate of integration approaches the source. 
Here the method presented by the authors [7] is used. This method makes the singular integral a sum of 
regular integral and an algebraic expression. 

It can be shown that (see Appendix, Equation A 1- A5) when r ~ 0 

where 

-1 
F~ = 

4 n ( 1 - v ) r  

is the static kernel, and 

F ~ (x, t) ~ F ~. t H (t) (30) 

~ r  
{~" [ ( 1 - 2 v ) 5  + 2 r  r ] - ( 1 - 2 v ) ( r , j n , - r , , n j ) }  (31) 

On ~ ,i ,j 

i "  

1 ~ ,, |F~i:, n = N  
(32) AT A;, F~ (X, TN - 7",,) --~ [ 0 ,  n < N 

Or 
when r-~ 0, 7n -~ 0, thus the Cauchy's singularity comes from the last term in Eq. (31). It can be seen from 

Eq. (32) that in calaculating [F]k singular integral appears only when k=0, or at the first time step. 
If el and e 2 are the boundary elements connecting at singular point A(Fig. 5), then for calculating [F]0, 

the following integral needs to be calculated. 

Io : I e, F,)" (X - X A , A T) N 3 dS + Ie~ F~j' (X - X A , A T) N , dS 

I~j can be written as 

1 1 
I o. : IeF~j'NgdS-[3 [.~--~(M, R j -  M j R , ) d S +  IeF~j 'NldS -[3 I~2--~(M, R j -  M j R , ) d S +  I o 

where 

- 1 (M, Rj MjR,)dS 
I~ = ~ ~,+~: R-- S 

R = r A + p ( r  - C a )  

R - I R - r ~  I , R, : p , ( r 1 6 2  ~) 

1- 2v 
i=1 ,2 ,  [3 = 

4n (1- v) 

Or 

(33) 

(34) 

(35) 

is the tangent vector of the element at A. 

r = r A + p ( r 1 6 2  + q ( r 1 6 2  2 

M is the outward normal of the element at A. E 1 , e~ are the tangent element at A defined by Eq.(35) 
corresponding to e~ and e 2 respectively. Changing variable in Eq. (34) 

, ,, 1 (MiR j MjR, )J~(~)]d~  +f(z " N  17 - - - -  - [F~j ,J2 ( r  {3 -~. (M, Rj - MjR,)J2 ( r  r + I~j Io = I., [F,j N3J  , ( r  6 R2 

(36) 
J1, J2, Jl and ]~2 are the Jacobian of el, e2, e~ and e~ respectively. It can be seen from the asymptotic 
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behaviour of Ff(X, At) that there is no singularity in the integral in Eq. (36). The integral can be calculated 
by means of ordinary Gauss integration scheme. ~j can be integrated analytically. 

/12 = I~+~2 ~--R-5-(M1R2- M2R1)dS = ~ ln(12/ll) 

121 = - / 1 2  , Ill = I22 = 0 
where 11 and 12 are length of element el and e2respectively. 
When the singular point locates on the interior of the element (Fig. 6), 

,, , ,, 1 (M, Rj - M j R , ) Y ( ~ ) ] d ~  + f~ I~ = IeF~jN2C~)dS = I_,[F~j N2C~)J(~)-~- - -~  

_ 
I~j = O, i, j = 1,2 

(37) 

(38) 

The integral in Eq. (38) can be calculated by means of ordinary Gauss integration. 
The integral involving kernel G 0' can be treated in the same way. The results are given here. For singular 

point at edge node, 
1 t ..~ 1 t 

J~j = II[Go.(AT)N3(~)J,  +(zS o.Jl lnR]d~ + I I [ G o ( A T ) N , ( ~ ) J 2 ( ~ ) + a S  o.Y21nR]d~ 

--0~5 i j( l l  In /  + l 2 l n l  2 - I  1 - 1 2 )  (39) 

where (z = 
3 - 4 v  

8re(1-  v)~t 

For singular point at interior node, 

1 t ,-~ l 

= ~ - . .  --fl[O"(AT)N~(~)J+a5~JlnR]d~-aSo[ln(-~)-l]l :o. (40) 

l is the lengths of element e. 

4. Examples  
(1) Suddenly applied uniform pressure on circular cavity in an infinite plate (Fig.7) 

This axisymmetrical problem has been solved by Chou and Koenig [8] by means of method of 
characteristics. For verification of the present method, the same parameters used in Chou and Koenig' s paper 
are used: a=0.25 in., E=3 x 107 psi, P =0.000793 lb-sec2/in 4, v =0.3, AT=0.25 g sec. The results are shown 
in Fig.8. As can be seen that they agree very well. 
(2) The cross section of an earth dam is shown in Fig.9. p =2.0 T/m 3, Cs=200m/s, Cp=400 m/s. The seismic 
input of vertical incident horizontal acceleration time history at the bed rock is shown in Fig. 10. The response 
at crest of dam is shown in Fig. 11. 

5. Soil-Structure Interaction 
Soil-structure interaction can also be solved in time domain. A structure can be represented as a multi- 

degree-of-freedom lumped mass system. The equation of equilibrium under seismic excitation can be 
expressed as 

[M]{//} + [C]{t~} + [K]{u} = -[M] [N] {//o } (41) 

As usual, here {u} is the relative displacement of the lumped mass, {u o }is the displacement of the base of the 

structure. For two dimensional problem {u 0 } = (ux0, u~0,q) y0)r-Eq.(41)is solved through modal superposition. 

Putting 
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Eq.(41) is decoupled as 

{ .}  = 

[q~] : [q~,,q~_,,-.-,q~,, ] ,  q~, is the ith eigenvector. 

[*I~[MI[*I = [ q ,  assuming [q~]r[C][qb] = diag[2{im~], 

y, + 2~,o~,j~, +o~,"y, : - { , ,  } 

y,(t) : l {~..}~[Ml[Nl{iio(t)}*[e-e~"sino~,.t ] 
f0di 

o~ ~, : ~ , ( J - ~ ,  ) - 

The absolute displacement of the structure is 

{u, } = [Nl{u o } + [,l{Y(t~} 

The force acting upon the base of structure is 

{F o } : [N] r {[M][Nl{iio(t)} + [M][*]{j)(t)}} 

or  

(42) 

i : 1 , 2 ,  ..., n. (43) 

(44) 

(45) 

{F0}: F{iio(t)} (46) 

is a function of {//0 (t)} 
Under the base of the structure, full contact between the base of the structure and the soil beneath it is 
assumed. The traction {r} and velocity {V} on the soil beneath the base of structure are in equilibrium with 

F o and continuous with {//0}respectively. The boundary condition together with {r}-0 on the free 

surface enables one to solve the soil-structure interaction problem. 

Conclusive Remark 

Boundary element method is most suitable for soil-structure interaction with irregular surface 
topography and arbitrary substrata. The new method for calculating the free term and singular integral 
facilitates the use of this method. Practical applications illustrate the capability of this method. 

A new type of boundary element method in time domain, the velocity type boundary element method 
devised by the authors is also presented. Example shows that the result of this method agrees well with 
analytic solution. Further study of the three dimensional problem will be reported later. 
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Appendix 

(1) Expression of Gij and its time integral: 

- g-" 2z m - I  61 Go -1 2 (-1)"'_ 2 
2rcpr [ ~  r,i r,; . . . . . . . .  + 6 o ( 

= Cm 6 m C1 

where 

2 
P -  z--L-2)] (A1) 

C2 ~2 

Integrate over time: 

t c  i 
z~ - , i, j = 1, 2 ,  c I = Cp , C 2 "- C a. . 

r 

, _ 1 s  
Go 4rcp - ~ - [ S ~  ( - 1 ) ' [ J " ' Z m ( S ~  

m=l Cm 

(2) Expression of F~j and its time integral: 

~t @ _~)m+, ] 2 7 , 2 _ 1  

F.,j - 2 rc p r Z.,,,= I C m [3 m [3 m " 
e ( F . , - E T + 2 F  ) 

where c~r 
F = n,r,j  + n y r , , + - ~ n ( S O - 4 r , , r v )  

F 1 = - -  n,r,; +2r, i r,~ 
On 

~r 
F 2 = -nar ,  i +(2 r , r  v - 6 o) 8--n 

Integrate over time: 

F ~ - - -  ~ ( - l~"  ( F ,  zm 
2 - 2 - -  2 FfJ, ,z , , )  

2rcpr m=l Cm P,,, 

Integrate over time again: 

F o -  
2 

la ~ ( [3m Fm - r p ,  ~ " 2rcp 3 -3 m=l Cm 

(12) 

(A3) 

(A4) 

(A5) 
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Abstract 

In the paper a modified lumped parameter model for nonlinear soil-structure interaction (SSI) analysis 
is described, in which the nonlinearities associated with the inelastic soil behavior and the uplift of the 
rectangular foundation from surrounding soil are properly accounted for. In order to verify the simplified 
analysis model two types of model tests had been performed. Finally, the simplified analysis model is 
applied to the nonlinear response analysis of the SSI under seismic and air-blast loading conditions. 

Introduction 

With SSI analysis there are two kinds of nonlinearities. The first one, that has received most attention 
from researchers and practicing engineers, is associated with the nonlinear behavior of the soil. The second 
kind is associated with the partial separation ( uplift ) of the foundation from the soil mass, resulting from 
the inability of the soil to resist tension. The numerical simulation of the inelastic soil behavior in a soil- 
structure system may be divided into two categories: the equivalent linearization analysis [1,2] and the true 
nonlinear analysis. In the later case the soil-structure system is simulated by some sophisticated models, i.e. 
the complete finite element model [3], substructure or hybrid model [4].These sophisticated models are 
also available for the analysis of the nonlinearities of SSI induced by uplift by incorporating some special 
elements at the interface between the foundation and the surrounding soil [5-10].The lumped parametric 
model or the sway-rocking spring model, sometimes referred to as the S-R model, widely used in the linear 
SSI analysis is also widely adopted in studying the effect of uplift of the structure foundation from the soil 
[11,12]. Nevertheless, for most investigators the nonlinear S-R model differs from the linear one only in 
the nonlinearities of the rocking stiffness and damping of the foundation soil ( or the foundation 
impedance ). In the nonlinear S-R model the stiffness and damping of the soil springs ( dashpots ) are in 
general evaluated from the frequency-independent stiffness and damping adopted in the linear S-R model 
multiplied by some coefficients depending on the ratio of the effective contact area of the foundation base 
[ 11, 13-15 ], or determined by some nonlinear moment-rotation relationships established by assuming the 
distribution of contact stresses developed after uplift occurs [16-18]. Moreover, in the nonlinear S-R model 
the vertical component of the response and the effect of the embedment of the foundation are ignored. 

Besides remarkable progress having been made in the numerical simulation of the SSI effects, in recent 
years a great deal of experimental studies [ 19-22] had been carried out aimed at assessing the capability of 
the analysis model to predict structure response. However, few studies have been done on examine the 
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effectiveness for evaluating the nonlinear response of the soil-structure system by comparing the numerical 
results with the observed ones. 

Based on the previous studies [23,24] performed by the author a modified lumped parametric model 
had been proposed [25,26]. In the model the above two kinds of nonlinearities, the vertical component of 
the response and the embedment of the foundation etc. have been properly taken into account. In order to 
verify the availability of the proposed analysis model two types of model tests had been performed. 
Furthermore, parametric studies have been carried out by applying the proposed analysis model to two 
cases: the analyses of response of structures to earthquake and to air-blasting. 

Analysis Model, Expressions and Equations of Motion 

(1) Basic a s sumpt ions  

In establishing the analysis model following basic assumptions have been made: 

(a) The foundation is of rigid rectangular; 

(b) The stiffness of the soil springs for a buried rectangular foundation is composed of three portions 
contributed from the base, the sidewalls of the foundation with normal parallel to the direction of the 
excitation (hereafter it's called the 'parallel' sidewalls) and the sidewalls perpendicular to the direction of 
the excitation (the 'perpendicular' sidewalls), where the stiffness of the base soil springs is the same as for 
a surface foundation. The radiation damping is the same as in the linear SSI analysis for a buried 
foundation; 

(c) Before uplift of the foundation from the supporting soil, i.e. at the linear response stage, the stiffness 
of the soil springs is estimated from the existed information [27]. After uplift the stiffness of the base soil 
spring is given by functions of the effective width of the foundation base, these functions are the same as 
those before uplift. The stiffness of the soil spring associated with parallel sidewalls decreases with a factor 
identical to that of the base spring. The stiffness of the soil spring associated with the perpendicular 
sidewalls is constant without change during uplift. No sliding between the foundation base and the soil 
occurs; 

(d) The impedance-frequency dependency of the soil springs is approximately considered by 
substituting the fundamental frequency of the linear soil-structure system in the initial impedance- 
frequency relationships; 

(e) The inelastic soil behavior is approximately evaluated by supposing the shear modulus (G) to be 
equal to the initial modulus (Go) multiplied by a function of the uplift ratio T as [23] 

G = [ 1- 0.9 T + 0.1 sin (2.5 = T) ] Go (1) 

where ), = ( B - B ) / B, here B and B denote respectively the initial width and the current effective width 
of the foundation base at each time step during numerical calculation process. 

A schematic representation of the equivalent soil-spring model proposed is shown in Fig.1. 

(2) Impedance  o f  a rec tangular  bur ied foundat ion  

The foundation impedance is generally written in the complex form 

K~ a =  K~+iK I (2) 

in which K~ denotes the foundation impedance, K~ the soil stiffness, K I the radiation damping, the 
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subscript i denotes the i-th mode of the vibration, i = z, x, r., with z, x, and r denoting respectively modes 
of the vertical and horizontal translation and rocking around the horizontal axis perpendicular to the 
transversal axis, while i = ~/(-1). 

The soil stiffness for a buried rectangular foundation can be represented by 

K =  K T ~ ( l + q i ) k  i (3) 

where Kj'" is the static stiffness for the surface foundation, rli the coefficients of the embedment 

effectiveness depending on the aspect and buried depth-width ratios of the foundation, ki dynamic stiffness 
coefficients being function of the aspect ratio of the foundation and dimensionless frequency a0, a0 = O~Bo / 
(2Vs), here co is the circular frequency, Bo the original width of the foundation and Vs the velocity of shear 
wave in soil. The coefficients rl~ and ki can be evaluated by using formulas given by Pais and Kausel [ 27 ] 

m 

by introducing the effective width ratiol3, 13 =B / B =1-  7. With consideration of the uplift we present 

the K7 '~" as 

Kf' = G ( B o / 2 ) / (  1 - v ) Z  (4a) 

Kx" = G ( B o / 2 ) / ( 2 - v ) X  (4b) 

K~ '~ = G ( Bo /2  )3/( 1 - v ) R (4c) 

in which G and v denote respectively the shear modulus and Poison's ratio of the soil ,  and 

Z= [3 [ 2.46 ( L / Bo / 13 ) + 18.5 ( L / Bo/13 )--o.2 _ 3.3 ( L / Bo / 13 )-1.4 _ 13.0 ] (5a) 

X= [~ [ 4.2 (L  / Bo / [3) + 33.0 (L  / B o / ~ )  --~ - 6 . 4 ( L / B o / [ 3 ) - ~ 4 - 2 1 . 6 ]  (5b) 

R= 133[ 3.2 (L / Bo ) + 0.8 ] (5c) 

where L is the length of the rectangular foundation. 

According to assumptions (b) and (c) we may write 

K~=K;' + Ki+ Ki (6) 

in which K[ ,Ki and Ki denote the contributions associated with the base, the parallel sidewalls and the 

perpendicular sidewalls respectively. For K ~ Ki and Ki the following expressions can be derived [26]" 
i ' 

~ ' = [ G B o / 2 / (  l - v ) ]  Zkz 

K~' = [ G B o / 2 / ( 2 - v ) ] X  

Kr = [ G ( B o / 2 ) 3 / ( 1 - v ) ] R k r  

Kz = 0.369 [ GBo/2  / ( 1- v ) ] ( L / B0 ) [ H / ( Bo /2  ) ]o.s Z / Z]~=I 

Kx = 1.386 [ GBo/2  / ( 2 -  v ) ] ( L / Bo ) [ H / ( Bo /2  ) ]o.s X / X[~=l 

Kr= 3.2 [ G (Bo/2)3 / ( 1- v)  ] ( L / B o )  [ H / ( B o / 2 )  ] [ 1- 0.576 ao 2/(2.4 + ao 2) ] R/RI~=I 

Kz = [ GBo/2  / ( 1- v )  ] { Z (qzkz)[~=~-0.369 ( L / B o )  [ H / ( B o / 2 )  ]o.s } 

Kx = [ GBo / 2 / ( 2 -  v ) ] { X ( fix kx)l ~=1- 1.386 ( L / Bo ) [ H / ( Bo / 2 ) ]o.s } 

Kr = [ G(Bo / 2 )3 / ( 1- v ) ]{ R ( Tlr k r)113=1- 3.2 ( L / B o )[ H / ( B o / 2 ) ]}[ 1- 0.576ao 2 / ( 2.4 + ao z) 

(7a) 

(7b) 

(7c) 

(8a) 

(8b) 

(8c) 

(9a) 

(9b) 

(9c) 

In the above expressions H is the buried depth of the foundation, ( Z, X, R )113=1 represents the Z, X and 
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R with p = 1. For the radiation damping we may obtain from Ref.[27] 

K~ =o~ 9 [V L Ab+ Vs(Ax + Ay)] 

for the vertical mode, and 

(lOa) 

K~ = cop [ V LAx + Vs ( Ab + Ay ) ] (10b) 

for the horizontal mode, and 

2 2 (10C) K' r = cop {[ VL ( Ib + Ix ) + Vs Iy ] a, z, / ( f + a,, ) + [ VL (B/2)+ Vs (L/2) ]H 3 f / ( f + a o ) } 

for the rocking mode. In the above expressions p stands for the mass density of the soil, VL = 3.4 Vs / [ n 
( 1 - v ) ] , A b = L B ,  A x = 2 H B ,  Ay = 2 H L ,  Ib=LB3/12 ,  I x = L H ( 2 H 2 / 3 + B 2 / 2 ) ,  I y = 2 B H / 3  
[ B 2 / 4 + H  2 ]. 

(3) Distr ibution of  the contact stresses and estimation of  the effective width of  the foundat ion 

From numerical comparison [26] it has been found that the quasi-static distribution is more appropriate 
than the linear and the bilinear distributions and the effective width ratio of the foundation can be estimated 

by 

13=2 [ 1 - 2 F r / ( F z B ) ]  (11) 

where Fr and F~ are respectively the overturning moment and the vertical force acting on the foundation 

base, which will be given later. 

(4) F u n d a m e n t a l  equat ions  o f  mot ion  

By using the substructure technique the motion equation of the superstructure can be written in the 

well-known form as follows 

[ M ] { / i } + [ C ] { 2 } + [ K I { x } : { 0 }  (12) 

in which [ M ], [ C ]and [ K ] denote the mass, damping and the stiffness matrices of the structure 
respectively, the elements in the displacement vector {u} are u~ = Ug + UB + (DB ( hi + H ) + x~ here Ug is the 
horizontal displacement of the input motion, u b and (DB denote the horizontal displacement of the foundation 
base and the rotation of the foundation respectively, hi are the distances from the i-th mass point to the 

foundation top and x~ the elements of the relative displacement vector { x }. 

For the foundation-soil system, assuming the base and the parallel sidewall springs being located at 
the centre of the effective width of the foundation base and the perpendicular sidewall springs at the 
original centre of the foundation base the following motion equations can be written 

�9 d 

Mb(l;igb+ Z o (pbq)b) + K J W b  +(Kj/~ + K ;  )elq0bl = F z ( t )  

Mb (/)b q- Zo,~" ~ ) + K d u b  -" -- Mb /gg nt- Fy ( t ) 

(13a) 

(13b) 

(13c) Mb Zo (1;i~b q)b+/gb +Zofph)+lb(ph+K~t%+(K a': +K-J) e [Wb(%)+e%] =MbZo(g%-/ig)+F~(t)  

where M b stands for the mass of the foundation, z o the height of the c.g. of the foundation measured from 
its base, e the eccentricity of the middle point of the effective contact area of the foundation base during 

uplift relative to that before uplift, Ka"+ K. J denote the sum of the complex stiffness of the soil springs 2 . 
associated with the foundation base and the parallel sidewall, WD the vertical displacement of the original 
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centre of the foundation base, g the gravity acceleration, Fx and Fz the horizont and vertical forces and F r 
the overturning moment acting on the original centre of the foundation base are as follows 

(14a) 
F,,=-~-'mifii 

i=1 

U (14b) 
F z = - Z m i w  b 

i=1 

N N (14c) 
Fr = - ~ m i/~i ( hi + H ) - ~i, b ~ m i [ q% (hi + H) + xi ] 

i=1 i=1 

with m~ being the mass of the i-th mass point of the superstructure, N the total number of the mass points. 

Model Test Verification 

(1) Shak ing  table  test  

A series of shaking table tests was carried out for investigating the nonlinear earthquake response of a 

one story building with rigid footing rested on/or  buried in a soil deposit.The model ground was made of 
prepared clay laid in a container and compacted layer by layer. The container made from thick wood plate 
had an inner size of 120 cm in length, 40 cm in width and 50 cm in depth, its base was fixed on the shaking 
table. In order to minimize the wave reflection a piece of foam-rubber cushion was placed at each inner 
sides of the container. The basic characteristics of the model ground are: shear modulus--3.2xl 06 Pa, mass 
density-- 1.35g/cm 3 and water content --9.8%. The SDOF model structure consisted of a top mass of 11.12 

kg supported by a steel cantilever and a concrete block used for simulating the rigid footing. The cantilever 
had a height of 32 cm measured from the upper surface of the concrete block to the center of the top mass 
and a transversal stiffness of 1.35xl 04 N/m, the concrete block had a mass of 9.30 kg and dimension of 8.6 

cm (height) x 20.0 cm (width) x 23.6 cm (length). 

Tests of following four groups were performed: 

( 1 ) Free field test ( No. I ). The free field test was aimed at: (a) estimating the characteristics of the 
model ground by the measured data of the response, (b) examining the availability of the model ground for 
simulating approximately the infinite extension of the ground in the direction of shaking and (c) observing 

the nonlinearities associated with the inelastic behavior of the soil. 

( 2 ) Test of scattering field or the effective input motion ( No. II ). It was performed by using a rigid 
light-weight box made of plywood buried in the model ground to simulate the massless rigid foundation, 
the outer size of the box was the same as that of the concrete block of the footing of the model structure. 

( 3 ) Test of SDOF structure model with buried footing ( No. III ) and 

( 4 ) Test of SDOF structure model with ground surface supported footing (No. IV ) 

A typical scheme of the model of the soil-structure system and the arrangement of the transducers are 
shown in Fig.2. Besides the accelerometers at the base of the footing and in the neighboring soil there were 
5 pairs of switches to observe the occurrence of the uplift of the footing from the supporting soil. During 
all tests the tested models were subjected to increasing excitation by small increament of peak acceleration. 
The accelerogrom (N-S component) for the E1 Centro earthquake of 1940 with reduced time scale of 1 : 6 

was used as the input motion. 

The variation of the amplification factor ( ~ ) with peak acceleration of the input motion at the shaking 
table ( ag ) is shown in Figs.3 and 4 for tests of No. I and No. II respectively. The amplification factor is 



250 

defined as the ratio of the peak acceleration of the response to ag. From Figs.3 and 4 we see: (i) In the free 
field test for a given ag the responses at all measured points on the model ground surface differ very small. 
It indicates the availability of the model ground for simulating the infinite extension in the shaking 
direction. With increasing ag the response acceleration decreases, this implies the nonlinearilities associated 
with the inelastic soil behavior. (ii) In the scattering field test, contrary to the free field test case, the 
amplification factor ~, of the scattering field increases slightly with increasing ag. Comparing Fig.4 with 
Fig.3 one finds that for a given input motion ag the acceleration in the scattering field is higher than that in 
the free field for our tested case. It is contrary to the theoretical results. This may result from the buried box 
used in the scattering field test deviating from the massless footing. Moreover, from the test results the 
rocking and the vertical components are obviously due to wave scattering. 

Fig.5 shows the horizontal acceleration time histories (A~) of the model superstructure of test No. IV 
and No. III under different input motion levels of ag. In the figure the time history of the input motion ag (t) 
signed with A 6 is also given. From Fig.5 we see that the horizontal response of the model structure with 
buried footing exhibits behavior of typical periodical damped vibration, specially under low level of input 
motion. Does it imply that the damping in the model structure with buried footing is smaller than that with 
surface footing? The relationship of the apparent fundamental frequencies of natural vibration of tests of 
No.III and No. IV obtained from the Fourier spectra of the A~(t) with ag are shown in Fig.6. It shows that 
the frequencies of natural vibration of the system decrease with increasing ag due to soil flexibility and the 
nonlinearilities associated with inelastic soil behavior and resulting from loss of contact between structure 

and surrounding soil, particularly in case of surface foundation. From Fig.6 and the detection of the uplift 
by using switchs at the footing base it was found that the uplift of the foundation base occurs under a 
relatively low level of input motion. 

With purpose of direct measuring the natural vibration behavior of the model structure under different 
foundation conditions free vibration test induced by striking had also been performed. The results obtained 
are listed in Table I. It illustrates that the phenomenon of the damping generated in the model structure 
with buried foundation being lower than that in structure with surface foundation discovered in the 
earthquake-simulation tests is proved by the free vibration test. A reasonable explanation may be that for 
our test the effective depth of the soil layer corresponding to a ratio of the effective depth of soil layer to 
the width of the model footing base of near 5 seems to be less sufficient for simulating a half-space. 

Table 1. Behavior of natural vibration of model structure under different foundation conditions 

F andation condition 

Fundamental frequency Damping ratio 

(Hz) (%) 

Absolutely fixed 

Buried in model ground 

Supported on model ground 

6.75 0.48 

6.73 (6.60*) 1.73 

6.12 4.70 

* Obtained from the earthquake-simulating tests. 

The amplification factors (~,) versus ag for tests No. III and No. IV are shown in Figs.7 and 8 
respectively. The comparison indicates that the response of the model structure with buried foundation is 
higher than that with surface foundation under identical input motion. This may be due to the fact that the 
structure with buried foundation has natural frequency more closing to the predominant frequency of the 
input motion (6.85 Hz), and a lower damping as mentioned above. Comparing Fig.3 with Figs.7 and 8 
indicates that the nonlinearities developed in the soil-structure system is much remarkable than that in the 
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free field. With respect to the response of the footing, Fig.7 along with Fig.8 show that the response of the 
foundation is independent of whether the foundation is buried or ground supported and differs little from 
that in the scattering field, with exception of the rocking and vertical components of the response under a 
higher level of input motion 

The acceleration time histories for test model III obtained from the shaking table tests and numerical 
calculation by using the proposed analysis model are represented in Fig.9. In the numerical calculation 
for the model ground the initial shear modulus Go =5.05 MPa and the Poisson's ratio v =0.4 and for the 
input motion the acceleration time histories of the massless footing model measured during the scattering 
field test ( No. II ) were utilized. The comparison illustrates that not only the peak values but also the 
whole process obtained from the tests and calculations agree well. 

(2) Air -b las t  loading  test  

An inverted" T "type rigid specimen made from concrete was used in the air-blast loading model test. 
The model footing simulating the basement of buildings had 40 cm in length, 16 cm in height and a width 
of 20 cm .The impulsive horizontal loading generated by shock tube was applied to the lateral surface of 
the model tested. The tested model and the arrangement of the accelerometers and displacement 
transducers are shown in Fig. 10. Before the impulsive loading test a series of statically lateral loading tests 
were performed with purpose of investigating the effects of the dimensionless of the footing and the 
constitution of the model ground : dense sand and dense clay. Besides, the results of the static loading tests 
were also used to evaluate the value of the initial modulus of the model ground through conducting an 
inverse analysis. 

Several runs of test under loading with different magnitude of the overpressures had been carried out. 
Before each test the model ground was reconstructed. Approximately identical conditions of the model 
ground were maintained through keeping constant water content and density of the clay used for simulating 

the ground soil. 

A comparison of the horizontal accelerations and the rotations of the model footing obtained from the 
model tests and numerical calculations using the present analysis model for test with incidental 
overpressure of 3.61 kN is presented in Fig.11. It is seen that from both the peak values and the wave 

forms the numerical calculations yield satisfactory results. 

Parametric Studies 

The proposed analysis model is applied to study the dynamic responses of structures to earthquake and 

air-blast loading. 

(1) Se ismic  response  analys is  o f  structures.  

A typical reactor containment building modeled with a 16 lumped mass system and connected to a 
rigid base slab is studied. The foundation slab is rectangular in plan 50.0m by 50.0m and 3.0m in thick 
with a buried depth of 15m. All numerical analyses for the seismic response analysis have been performed 
for four different site soil with shear wave velocity of 350, 450, 600 and 1000 m/s. These sites are assumed 
to be homogeneous half-space. The accelerogram (N-S component) for the E1 Centro earthquake of 1940 is 
employed as the horizontal ground motion applied to the analysis model and scaled to have different peak 
accelerations: 0.2, 0.3, 0.4 and 0.5g. To investigate the effects of the soil-structure interaction with each 
soil site and input motion level the following cases are studied [28]: 
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(a) Neglecting the effect of SSI, i.e. assuming the structure being fixed at its base; 

(b) Linear SSI, i.e. both the inelastic behavior of the site soil and the uplifting of the foundation from 
the soil being ignored; 

(c) Nonlinear SSI neglecting the inelastic soil behavior; and 

(d) Complete nonlinear SSI. Hereafter, it is refer to this case, if no specification is given. 

The results of some typical time histories of responses obtained for condition of peak acceleration ag = 

0.4g and site soil with initial shear wave velocity V s =350 m/s  are shown in Fig.12. From the figures it is 
seen that for the studied structure and the input motion the time histories of the horizontal acceleration and 
displacement of the structure at its top and the rotation of the foundation have identical phase angles or a 

angle of 180 ~ with exception of some additional components of high frequencies happening in the 
acceleration response. Besides, there are vertical acceleration response due to uplift of the foundation even 
under no vertical component of the input motion in the single impulse form. The calculation results 
indicate that the harder is the site soil, the earlier the uplift occurs. 

In Figs. 13 comparisons of the in-structure spectra generated at the top of the structure under ag = 0.4g 

and V s = 350, 600 and 1000 m/s are presented for four cases considered. All spectra have been generated at 
damping taken to be 5% of critical viscous damping. It is evident that for soft soil site the effect of the SSI 
is significant, causing a significant frequency shift in the frequency of peak spectral response, while the 
nonlinear SSI has minor effect in this case. As the site soil becomes harder, the overall effect of the SSI 
decreases, however, the influence of the inelastic soil behavior remains remarkable. For stiff soil site with 
shear wave velocity of 1000 m/s the peak spectral responses from the linear and the nonlinear SSI analyses 
become higher than those from the analysis neglecting the effect of SSI. 

Fig.14 showing the distributions of the shear forces and the bending moments developed along the 
height of the structure under input motion with ag-0.4g for different site soil conditions further illustrates 
the significant effect of the nonlinear SSI taking place mainly in condition of moderately stiff soil site. 
Furthermore, the computed results indicate that the analysis neglecting the effect of the SSI always leads to 
an overestimation of the shear forces and the bending moments in the structure. Comparing with the 
analysis of the linear SSI the nonlinear analysis, in general, yields minor responses of the structure with 
exception of the shear forces developed near the base of the structure. 

In the seismic design of the structures of nuclear power plant the ratio of the effective contact area of 
the base slab is one of the important parameters. The relationship between the ratio of the effect contact 
area of the base slab, the relative base shear and the overturning moment versus the peak accelerations of 
the input motion for site soil with shear wave velocity Vs=350 m/s are shown in Fig.15. In which the 
results corresponding to the two nonlinear SSI cases (c) and (d) considered in this section are given. We 
see that for the studied structure and the environment conditions the uplifting off of the base slab of the 
structure occurs under excitation of the input motion with ag of a little higher than 0.2g. Under ag=0.Sg half 

of the base slab will lift off from the beneath soil. Besides, an approximate linear relationship exists 
between the ratio of the effective contact area and the input motion level. In Fig. 15 the relative base shear 
and the overturning moment are defined as 

N N (15) 
E~* =F , , / [ (  Z m i ) a g ]  and F~*=Fr/[( Z m i ) a g x 0 . 7 7 H o ]  

t=l  i=1 

where Ho is the total height of the superstructure. 

(2) Dynamic response of basement shelter under high-rise building subjected to air-blast loading 
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Besides the earthquake response related problems , the response of buildings to air-blast loading 
constitutes another task encountered in dynamic engineering practice. In this section the proposed analysis 
model is applied to the analysis of the dynamic response of basement shelters under high-rise buildings to 
air-blast loading. The buildings considered have various configurations in plan as shown in Fig. 16. 

In applying expressions of impedance for rectangular foundations to nonrectangular ones the first thing 
is to find the equivalent width and length of the footing base under assumption of the buried depth being 
constant during uplift process. The equivalent characteristics of the footing base for a nonrectangular 
foundation is easy to determined to be 

Be=~/( 12 Io/A o ) and Le=Ao/B e (16) 

where Be and Le are respectively the width and the length of the base of the equivalent rectangular 
foundation, A o and Io denote respectively the original area and the moment of inertia around the axis through 
the c.g. and parallel to the longer side of the base of the foundation. It should be notice that the Be and L e 
obtained were based on the initial parameters of the footing base and they are available only before the uplift 
occurring. After uplift the effective contact area is varying and at each time step it is necessary to evaluate a 
new set of B e and L e by using Eq.15 with the subscript " o " refereed to the associated characteristics 
during the last time step. Moreover, due to no symmetric axis for a nonrectangular foundation under lateral 
loading the uplift of the base may take one of two possible states, taking the " L " footing for instance, 
namely the state (a) and the state (b) shown in Fig.17, where the shadow area denotes the contact area of the 
base. It is easy to prove that among states (a) and (b) with equal contact area the last one which has a minor 
moment of inertia has predominate effect, therefore the state (b) is hereafter adopted as the basis in the uplift 

analysis. 

Based on similar principle for the "parallel" sidewalls, another set of equivalent width Bes and length 
Les of the foundation can be obtained. Therefore, in applying the stiffness expressions for rectangular 
foundations to nonrecatngular ones different equivalent characteristics of the base for the base and the 
sidewalls of the nonrectangular foundation should be used. In order to avoid confusion possibly happening 
in the numerical calculation the initial equivalent characteristics of the base i.e. Beo and Leo is adopted by 
introducing correction stiffness coefficients in Eqs.7 and 8. The correction coefficients are determined 

based on the following consideration, taking the contribution of the parallel sidewalls to the foundation Kz 

for instance, from Eqs.7 and 8 it is seen that the Kz is proportional to a factor of (L/B ~ ). Therefore for 

Kz we have correction factor (Les/Leo)x(Beo/Bes) ~ Substituting the values of the corresponding equivalent 
characteristics we obtain, for example for the L-shaped in plan footing, the correction factor equals to 

0.369 and the stiffness coefficient of Kz becomes 0.369x3.51 = 1.30 instead of 3.51 for the rectangular 
foundation. 

For the radiation damping of the nonrectangular foundations, owing to the assumption (b) introduced 
Eq.9 used for the rectangular foundations remains available if the Ax and Ay in it are defined as the area of 
the sidewalls of the foundation projected on the plans perpendicular to the x- and y-axis respectively. 

In the dynamic response analysis of the high-rise buildings with basement shelters subjected to air- 
blast loading the net lateral loading from computation with consideration of the incident overpressure and 
the structural configuration of interest is utilized[28]. For all buildings studied the incident overpresures 
and the tall height of the structure are identical, the buried depth of the basement and the initial shear 
modulus of the site soil are 8.5m and 25 MPa respectively except for the building with piles, for which the 
corresponding values are 3.2m and 12 MPa respectively. 

The computed responses of the basement shelters are presented in Figs. 18 and 19 for a rectangular and 
Y-shaped in plan buildings and a rectangular building with pile foundation respectively. The areas of the 
footing bases, the minimum effective ratios of the contact area and the peak values of the horizontal 
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translation and rotation are listed in Table 2. 

Table 2. Some basic characteristics of the studied buildings 

Footing with plan Footing base area Maximum Maximum rotation 

(m 2) translation ( 10 -2 rad) 
(mm) 

Ratio of effective 
contact area 

Rectangular 937.04 25.0 0.43 0.35 

L 1218.20 12.0 0.25 0.86 

H 1068.00 17.0 0.24 0.87 

Y 1349.40 15.0 0.22 1.00 

Rectangular with piles 937.04 21.0 0.05 1.00 

From the above results it can be concluded that the configuration of the foundation in plan has significant 
influence on the translations and rotations of the basement under identical other conditions, a small 
variation in the footing base area would result in significant different in the response of the basement 
shelter due to great difference in the foundation stiffness caused by the difference in the configurations. 
Besides, for building with pile foundation the rotation of the basement is much less than other buildings 
owing to its higher rocking stiffness of the foundation contributed by the pile system. 

Conclusions 

(1) A modified lumped parametric model of analyzing the soil-structure interaction with partial lifting- 
off is proposed, in which the inelastic soil behavior and the embedment of the foundation are properly 
accounted for. 

(2) Verification of the proposed analysis model is performed through two kinds of model tests: one 
under earthquake simulation environment and one under air-blast loading. It is shown that the proposed 

model predicts well the nonlinear responses of the soil-structure system. 

(3) Even at nonlinear state the soil-structure system exhibits an apparent behavior of natural vibration. 

Comparing with the surface foundation case, the embedment of the foundation leads to an increase in the 
natural frequencies of the system. With increasing input motion level the apparent natural frequencies of 
the system with buried foundation decreases more slowly than that with surface foundation. In 
circumstances, for instance, when the fundamental natural frequency of the system with buried foundation 
is close to the predominant frequency of the input motion, the response of the system would higher than 
that with the surface supported foundation. However, with increasing input motion level the nonlinear 
effect increase and the embedment effect decreases. 

(4) For the performed test cases it seems the nonlinearities resulted from the loss of contact of the 
foundation with its surrounding soil have a more remarkable effect on the structure response than the 

nonlinearities associated with the inelastic soil behavior. 

(5) From the parametric studies on the seismic response of a typical nuclear containment building it is 
recommended that for soft soil site with shear wave velocity V s < 350 m/s, to carrying out a linear SSI 
analysis is necessary and adequate, however, under input motion with higher level the inelastic soil 

behavior should be taken into account. For moderately stiff soil site (Vs =350 - 450 m/s) it is appropriate 
to consider the inelastic soil behavior neglecting the uplift effect of the foundation. With stiff soil site (Vs > 
450 m/s) it seems necessary to account for both the effect of the inelastic behavior and the uplift effect of 
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the foundation. 

(6) The results of the dynamic response analysis of structures subjected to intensive air-blast loading 
illustrate that the configuration of the foundation in plan has great influence on the response of the 
basement shelters due to the significant difference in the foundation impedance resulted from the variation 
in the configuration of the foundation. The numerical examples performed indicate the pile foundation is 
beneficial to the reduction of the rotation of the basement shelters under air-blast loading condition. 

Finally, further study is needed in respect of the modeling inelastic soil behavior, the simulation of 
buried cylindrical foundations etc. 
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Fig. 16 Configuration in plan of studied structures 

Fig. 17 Possible uplift states, L-shaped in plan of foundation 
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A DIRECT METHOD FOR ANALYSIS OF DYNAMIC 
SOIL-STRUCTURE INTERACTION BASED ON 
INTERFACE IDEA 

Liu J ingbo Lu Yandong  
(Depar tment  o f  Civil Engineering,  Tsinghua Universi ty,  Beij ing China) 

Abstract 

This paper presents a direct finite element method for analysis of dynamic soil-structure interaction 
based on the large general structure analysis software. The method can simulate not only the absorption of 
infinite soil to the scattering wave but also the elasticity recovery capacity of the far field media on the 
boundary. A new input method of wave motion dealing with dynamic soil-structure interaction is also 
proposed which can be used to exactly simulate seismic wave input with any angle. The accuracy of the 
methods presented in this paper is demonstrated by the numerical examples. 

I .  Introduction 

In the practices of earthquake engineering, it is recognized that the dynamic interaction of soil-structure 
may have a significant effect on the response of the structure to earthquake. At the recent twenty years, a 
great achievement on the research of soil-structure interaction have been achieved, computational models 
and methods have been improved progressively, actual data of earthquake observation and large scale 
model experiments on site have been accumulated constantly tl'2l. But researchers should continue working 
to find more reasonable and practicable methods to consider the influence of an infinite soil and input 
problems of wave motion. 

With constructions of tall buildings, large nuclear power station as well as large dams, dynamic 
interaction of soil-structure in earthquake has become an important research subject in the field of 
earthquake engineering. This subject includes two main problems. One is the dynamic response of structure 
and the other is the input method of seismic wave motion. Now great improvements have been achieved in 
the field of dynamic response of structure, in which theories and analytical software have been mature. 
Expending a great deal of manpower, material and financial resources, a great number of large general 
structural analysis software have been developed based on these achievements in the world, such as Super 
SAP, ANSYS and NASTRAN, etc., which can compute dynamic response of a complex structure system 
to a dynamic load. These software can meet the needs of common project. Further more, there are not only 
a complete element but also elements addition or expansion functions in these software, with which they 
can also satisfy the needs of research work to some degrees. In addition, great progress have been made on 
the problem of wave propagation in complex media, the input methods of seismic wave motion and the 
modeling of the radiation condition of wave motion. Now seismic wave response in a heterogeneous media 
including a local complex field can be analyzed. 

Although a great achievement have been achieved, many analytical methods have been developed and 
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many papers have been published, as we face a real project, we find that except for the nuclear power 
station, in the other fields of structure engineering the dynamic interaction of soil-structure is always 

ignored in the analysis of seismic resistance. Even a tall building or a super tall building is constructed on 

some deep and soft soil, something like that has been done. For example, in Shanghai city, although the 
depth of the soft soil reaches 80 meters, seldom do the designers consider the dynamic interaction as 
designing a tall building or a super tall building. Many reasons lead to the serious problem. Complexity of 
the problem is one of the reasons. But another main reason is that the achievements of the two research 
fields mentioned above are not combined well. On the one hand the input of seismic wave motion is not 

considered or roughly considered in large general software, which can not reasonably reflect the phase 

feature of input seismic wave motion and simulate the absorption to the scattering wave. So they can not 
well treat the dynamic interaction of soil-structure. On the other hand the earth media can be well described 
in some analytical methods for seismic wave and the corresponding software, but they are too coarse to be 
employed in the significant structural analysis. 

The main reason for hindering the organic combination of the achievement of the two aspects is that 

generally only the executable file of an advanced dynamic structural analytic software is given, especially 
the latest version. It is difficult to combine the wave motion input method and the artificial boundary into 
the current general software. Although some source programs of a general software, which can be obtained, 

can be reformed, with the appearance of the new version, it is difficult to renew them. At present, in some 
better methods well considering the dynamic soil-structure interaction, generally the stiffness of part of the 

interacting structures is amended-adding stiffness coefficient reflecting the influence of soil resistance, 
which needs to amend the stiffness and mass matrixes generated by a general software on the large scale 
and is in great difficulty. In addition, further work of wave motion input method(such as a slant incident 
wave) in a general situation while analyzing seismic wave motion in a local heterogeneous field is needed 
to develop a method that can accurately and reliably simulate the seismic wave input from an infinite 
media to a local heterogeneous field. 

This paper gives a set of methods combining dynamic structural analysis and wave motion analysis in 
complex media, which can analyze the dynamic interaction of soil-structure by using the latest general 
structural analysis software. They consider not only the effect of varying of amplitude and phase to 
structural response, but the absorption of a scattering wave. we take advantage of the functions of a general 
software themselves and combine the artificial boundaries into them. At the same time we give a input 

method of seismic wave to exactly simulate the procedure of wave motion input which do not decrease the 
accuracy of the scattering wave handled by the artificial boundaries. All these work is done by making 
exterior appending programs and not changing the general software. 

II. Viscous-Spring Boundary 

When we analyze the dynamic interaction of soil-structure by using the finite element method, we 
must cut out a finite computational region of interest from the infinite media of the earth. It is necessary to 
set up an artificial boundary to simulate the absorption of the continua to the scattering wave on the 
boundary of the region, which ensure that the scattering wave does not reflect while passing through the 
boundary TM. Generally two kinds of methods are used to set up the artificial boundaries-precise boundary 
and local boundary. In the former the artificial boundary satisfies the field equation, the boundary condition 
and the radiation condition of the infinite media. This kind of boundary is precise in the finite element 
sense and can be set up on the surface of the construction with an irregular configuration or surrounding 
media. Although this kind of boundary is effective in many cases, besides others limitations, the main 
shortcoming is cohesion of all the nodes motion on the artificial boundary, which lead to more cost of 
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computer memory and computational time. Although the second method is not strictly precise, it can give 
enough accuracy in needed frequent band if the local artificial boundary is arranged suitably. The 
prominent character of the local boundary is that the nodal displacements on the boundary are incoherent 
with others (except for the near nodes). It is practical for less memory and time consuming. Now there are 
many kinds of artificial boundaries, such as the viscous boundary [41, the consistent boundary [5], the 
superposition boundary t61, the paraxial boundary [7], the transmitting boundary [81, the dynamic infinite 
element boundary [9]etc. Many kinds of artificial boundaries are compared each other in reference[ 1 0] and 
[1 1]. In these kinds of boundaries, the viscous boundary, the paraxial boundary, transmitting boundary 
belong to the artificial boundary in time-domain, in which the paraxial boundary and the transmitting 
boundary have a higher accuracy. But for a real project within two order accuracy is often taken for the two 
methods because of the complexity of the higher order one. Although the viscous boundary has only one 
order accuracy, its idea is clear and easy to make program and widely used. Its shortcoming is only 
considering the absorption of the energy of the scattering wave and can not simulate the elasticity recovery 
capacity of the infinite soil. In physical meaning, the mechanical model exerted the viscous boundary can 
be regarded as a separate body floating in the air, which may drift entirely been subject to a load with low 
frequency. This is so-called low frequency stability. A novel artificial boundary is introduce in this paper, 
which can simulate absorption to scattering waves and the elasticity recovery capacity of infinite soil at the 
same time [12]. 

2.1 Formulat ion o f  Artificial Boundary  

The artificial boundary introduced in the analysis of the dynamic interaction of soil-structure is derived 
under the assumption of non-reflecting energy such as the viscous boundary. In the following, the artificial 
boundary condition is derived base on exterior propagation wave [12]. 

In a real problem, because scattering waves caused by a local irregular region or foundation of structure 
generally exist geometric diffusion, it is reasonable to adopt cylindrical waves(2D) or spherical waves(3D) 
to simulate the scattering waves. Only 2D problem is considered in the paper, in which cylindrical waves 
were adopted to simulate the scattering waves radiating in infinite media. In polar coordinate system the 
motion equation of planar cylindrical waves is 

0 2w .c? 2w 1 Ow 
=cs 2 + -  (2.1) 

where, w is anti-plane displacement of media, c~ is propagation velocity of shear wave, cs = x/G / p ,  G is 

the shear modulus and p mass density. 
The solution form of a cylindrical wave ejaculated from the source point can be written as E~3J 

1 r 
w(r , t )  = ----s f (t - - - )  (2.2) 

-4 r Cs 

One can obtain the shear stress at any point in the media employing Eq.(2.2) and the computational 
formulation of shear stress r (r , t )  = GOw / dr 

r(r,t)  = - 2 r ~  f ( t -  + f '  (t r ) 
Cs C s ~ " 

where, f '  denotes the differentiation o f f  with respect to the variable in the parenthesis. The velocity of any 

point can be written as 
c~v(r,t) 1 , r__) 

= ---~f ( t -  (2.4) ---T- 
~/r Cs 

Substituting Eq.(2.2), (2.4) into Eq.(2.3), one can obtain the following relationship between the stress 
on the element at any radius rb, whose normal is radius vector Yb, and velocity as well as displacement at 
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the same point 
G 6 w ( r  b ,t) 

r ( r  b , t )  = - ~  w ( r  b , t )  - pc~ ~ (2.5) 
2r  b 6 t  

It can be seen that if the media is truncated at radius r b where the distributive physical components are 

exerted, a viscous damper Cb and a linear spring Kb 

G (2.6) 
Cb = pc~ ,  Kb 2r  b 

It can be seen that the artificial boundary condition where r=rb is the same as Eq.(2.5). If one can precisely 
determine the distance rb from the wave source to the artificial boundary, one can obtain the coefficient of 

the physical component exerted on the artificial boundary using Eq.(2.6). Thus the reflection of a scattering 
wave on the artificial boundary can be completely eliminated. That is to say one can precisely simulate the 

propagation of waves from a finite region to an infinite one. In this paper we call the artificial boundary 
combining a viscous damper and a linear spring as viscous-spring boundary. If the spring is ignored, the 

boundary degenerates into Lysmer's viscous boundary. It is easy to implement the viscous-spring boundary 

into some large general software. Now we have done it in the program Super SAP. 

2.2 Ref l ec t ive  Coe f f i c i en t  o f  V i s c o u s - S p r i n g  B o u n d a r y  

Because the assumption of cylindrical waves is adopted in the derivation of the artificial boundary, it 

can prefigure that a high accuracy can be obtained if the arc artificial boundary is employed practically. 

However it is more convenient to adopt a linear artificial boundary in the finite element analysis of 

dynamic interaction of soil-structure(although lose accuracy to some degree). Thus only coefficient of the 

linear artificial boundary is studied in the following. 

The incident waves equation can be given according to Eq.(2.2) 

A eiCO(t_r/cs ) 
w I ( r ' t )  = - ~ r  (2.7) 1 

When an incident wave wi(r,t) with an angle 0 reaches a linear artificial boundary, it will produce an 

reflective wave wR(r,t) written as the following according to the mirror image law. 

B ico(t_r,/cs) 
w R ( r ' , t )  = ~ r '  e (2.7)2 

In Eq. (2.7) to is frequency, A and B represent the amplitude coefficient of the incident wave and the 

reflective wave caused by the artificial boundary respectively. It is convenient to use two different 
coordinates r and r '  for the incident wave and the reflective wave respectively, whose source points are 
symmetric to the artificial boundary(see Fig. 2.1). Thus the reflective wave has the same form as the 
incident wave. The total wave field is the sum of the incident wave and the reflective wave, 

w ( r , t )  = w I ( r , t )  + w R ( r ' , t )  (2.8) 
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Fig.2-1 Coordinates system of the incident and reflective wave 
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On the artificial boundary, r=r'=rb, substituting Eq.(2.8) into Eq.(2.5), one can obtain the artificial 
boundary condition 

G ico(t_rb/cs) + icopc~) (A  + B )  1 = ~ - ~ r ~ e  (2.9) rB - ( 2 r  b 
v ~ 

The stresses caused by the incident and reflective wave on the artificial boundary are 

G~II G (1_1__ io)) cos0 = -A + cos0e "~ (2.10)1 
Z"bI = t7~ ]r=rb -~b 2rb Cs 

c3r I ~ '  ~ rb  1 ic~ ) Zrb ico(,-rb/cs) rbR = - G  cos0= B ( ~ - - - + ~  cosOe (2.10)2 
r'=rb Cs 

On the artificial boundary, the stresses caused by the incident and reflective wave satisfy the boundary 
condition. 

rbl + rb~ = r B (2.11) 

Substituting Eq.(2.9), (2.10) into Eq.(2.11), the reflective coefficient of the artificial boundary R=[B/A[ can 
be obtained, 

R = (1 - cos0) / (1 + cos0) (2.12) 

It can be seen that the formulation (2.12) is the same as Lysmer's viscous boundary, which indicates the 
reflective coefficient of viscous-spring boundary will increase with the incident angle 0.  Although the 

two artificial boundaries have the same accuracy, it can be proved by numerical examples that the accuracy 
of the viscous-spring boundary is generally higher than the viscous boundary, because the assumption to a 
scattering wave field as deriving the viscous-spring boundary is more suitable for the practice. 

2.3 The Accuracy of Viscous-Spring Boundary 
When an artificial boundary is set up, the coefficients of viscous damper are constant which do not 

change with the distance rb from the scattering wave source to the boundary, but the stiffness of the spring 
should change with the distance rb. Because in a real problem, the source is not a point, but a distributive 
linear or surface one in space, rb is only elected averagely. In the numerical examples in the paper, rb has 
the same value on every linear artificial boundary, which is the shortest distance from the source point to 
the boundary. 

Wave problems in a continua include two aspects. One is source problem, the other is scattering 
problem. Generally there are more high frequency components in the former, which often make the 
boundary produce errors. Here we consider source problem as an example to test the accuracy and 
efficiency of the elastic artificial boundary used in it. 

The first example is a source problem with SH wave in a homogeneous elastic half space, whose 
mechanical model is shown in Fig. 2.2.  The shear modulus G- l ,  density p =1, the shear wave velocity 

cs=l. Wave source is a transient distributive load along z direction on the surface of the half space F(t, 
x)=Y(t)S(x), where T(t) is a triangular pulse whose duration is 1, spatial distributive function of focus S(x) 
is well-distributed in a finite region, which can be expressed as follow, 

f,01 0<t< T(t) = l - t )  0.5 < t < l  (2.13) 

others 

S(x)={lo [xl---lothers (2.14) 

The computational region is Ix[ < X b and 0 < y < I:6, Xb = Yb = 2, which is discretized by square elements. 
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The element length and width Ax = Ay = 0.05. The central difference method is employed to compute the 

step-by-step integration in time domain and the time step is chosen as At = 0.025. 
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, ! - - - -  

, i 
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X 

Fig.2.2 Mechanical model for a homogeneous elastic half space 

Three observation points, A, B, C, are chosen, whose coordinates are (x, y)=(0, 0), (2, 0) and (0, 2) 
respectively. The theoretical seismogram are shown in Fig. 2.3, In the figure V.S.B. is the result by the 
finite element method (super SAP) combined with viscous-spring boundary. The responding exact solution 
(finite element solution with expansion boundary) and the numerical solution obtained by adopting fix 
boundary and viscous one are also shown in Fig.2.3, marked with E.S., R.B. and V.B. respectively. The 
results demonstrate the solution obtained by using viscous-spring boundary is much closer to the exact 
solution than that using viscous one, and the computational displacement obtained by using the viscous- 
spring boundary converges to zero as time going on, but the one obtained by using viscous boundary 
converges to an non-zero. Thus the viscous-spring boundary is better than the viscous one and the fix 
boundary is the worst. Because what we adopt as rb is only the shortest distance from the source point to 
the artificial boundary, not ones to the different points on the boundary, while determining the stiffness of 
the spring on the artificial boundary, the stiffness determined is wholly bugger, for which the velocity of 
recovering to zero of computational displacement becomes faster. Otherwise the results may be improved 
further. 
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Fig.2.3 The anti-plane wave motion example with artificial boundaries 

The second example is an in-plane wave motion problem, whose model is the same as the first example. 
The elastic modulus E=2.5, Poisson's ratio v =2.5, mass density p =1, SV wave velocity cs=l and P 

wave velocity Cp=,f3, the surface wave load is the same as the first example except that the direction is 
along y axis and the duration is 2. In an in-plane wave motion problem, the damper and spring must be 
exerted on the boundary along tangent and normal direction. The components along the tangent direction is 
the same as the first example, but the ones along the normal must derive theoretically again. But in the 
example we simply substitute E and Cp for G and Cs in Eq. (2.6). Four observation points are chosen, whose 
coordinates are (x, y)=(0, 0), (1, 0), (2, 0), (0, 2) respectively. Their theoretical seismogram are shown in 
Fig.2.4. It can be seen from Fig.2.4, which demonstrate the viscous-spring boundary to be better than the 
viscous one. 
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It can be seen from the above results that the viscous-spring boundary has a good stability and does not 
produce unstability caused by artificial boundary. Thus it can be used to compute long duration wave 
motion, for example, it can be adopted for a real seismic wave input. By comparing the results with the 

exact solution and the numerical solution obtained by using adopting the standard viscous boundary, it can 

be stated the accuracy of the viscous-spring boundary can satisfy the needs of engineering. 

Il l  Input Method of Seismic Wave 

In the problem of dynamic interaction of soil-structure subjected to a seismic wave, whether or not the 

wave motion input to be treated well decides weather or not the situation of wave motion to be successful, 

which directly influences the accuracy of results and its creditability. In boundary element method, wave 
motion input is not difficult, which can be solved by converting seismic wave input into an equivalent load 
acted on the boundary. But in finite element method, in order to model wave radiation to a far field, an 
artificial boundary is needed to introduce in when wave motion is input to the artificial boundary, different 

artificial boundary conditions may sometime influence the input method. For viscous boundary, Joyner 

successfully solved the wave motion input for one dimensional model by means of converting incident 

motion into an equivalent load acted on the artificial boundary. Yasui amended Joyner's methods, who can 

treat approximately slant body wave input in finite element method. In reference[16] a method was 

proposed in which the scattering wave problem was converting into a wave source problem. A fixing- 
releasing boundary method was introduced to treat wave motion input problem in reference[ 17], in which 

the author adopted the infinite element artificial boundary. In this paper a new input method of wave 
motion which is suitable for the viscous-spring boundary is presented. Its fundamental theory and method 
are also appropriate for some others artificial boundary, such as viscous boundary and infinite boundary. 

Finally we give some numerical example to test the effect of the input method. 

3.1 Input  M e t h o d  o f  W a v e  M o t i o n  

In this paper the problem of seismic wave input is converted into a wave source problem. That is to say 
that the input motion is converted into an equivalent load been directly subject to the artificial boundary to 

simulate the wave motion input. 
The motion of an artificial boundary is made up with a known incident wave and a scattering wave 

caused by the soil of the structure. The scattering wave is absorbed by the artificial boundary, the incident 

wave should be inputted into the computational region with some methods. Because in this paper we adopt 
the method in which the input problem is converted into a wave source problem to treat wave motion input, 
suppression low of force is satisfied, the incident wave field and the scattering wave field do not effect 
each other. Thus the incident wave and the scattering wave can be considered separately. In the following 

discussion only the incident wave field is considered. 
Assuming that w0(x, y, t) is known incident wave fields, so-called free wave field, with any incident 

angle, which produces the displacement W0(xB,yB,t) on the artificial boundary. If a finite computational 
region is cut out from in an infinite half space with artificial boundaries, the exact wave motion input 
condition is that the equivalent load exerted on the artificial boundary makes the displacements and stresses 
on the artificial boundary are the same as that of the former free wave field. The condition can be written as 

follow 

W(xB,yB,t) : Wo(X.,y,,t  ) (3.1) 

r (x . , y . , t )  = ro(X. ,y . , t  ) (3.2) 

where, r 0 is the stress caused by w 0 in the former continua. 
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Fig.3.1 The artificial boundary and its separated body 

In order to present wave motion input, assuming that the stress exerted on the artificial boundary point B 
is FB(t). Using concept of separate body in general mechanical analysis, the artificial boundary and physical 
components (damper and spring) appended to it(see Fig.3.1) are separated, fB(t) is the interior force 
between computational region and component of the artificial boundary. The stress at point B is 

r(x B ,y~ ,t) = F B (t) - fB (t) (3.3) 

Substituting Eq.(3.2) into Eq.(3.3) leads to 

Fe (t) = r 0 (xB, y ,  ,t) + f ,  (t) (3.4) 

The motion equation made up with the spring and the damper is 
CbW(X~,ys , t )  + KbW(XB,y~,t  ) = f ~ ( t )  (3.5) 

Substituting Eq.(3.1) into Eq.(3.5) results in 

f B (t) = C b r o (xB , YB ,t) + K b w o (x~ , y~ ,t) (3.6) 

Substituting Eq.(3.6) into Eq.(3.4) yields 

F~(,) = ro (X~ , y~ ,t) + Cb % (X~ , yB ,t) + Kb Wo (Xs , y~ ,t ) (3.7) 

In Eq.(3.7), w0 is known and velocity fv 0 and stress r 0 are determined by w0. Thus according to Eq.(3.7), 

one can obtain the total load FB(t) exerted on the artificial boundary and wave motion input can be 
presented on the viscous-spring boundary. 

For more general condition, if the motion equation of the component exerted on the artificial boundary 
satisfies 

f B (t) = f ~ (w, ~v, # , t )  (3.8) 

the stress exerted on the artificial boundary as wave field input is 

Fe (t) = r 0 (x, ,  YB ,t) + fB (t) (3.9) 

Eq.(3.9) is also suitable for the viscous boundary and infinite element boundary. For example, for a viscous 
boundary, a slant wave propagates into a half space(see Fig.3.2), 

Wo = Wo(xs inO-  y c o s O - c s t )  (3.10) 

on the bottom of the artificial boundary, 
r 0 = ,ocs cosO wB (3.11) 

where WB=W0(XB, YB, t), W represents differentiation of w with respect to time t. fB(t) is 
fB (t) = ,oc, vi, B (3.12) 

Thus the stress needed to be exerted on the artificial boundary can be obtained according to Eq.(3.9) 
Fs(t  ) = pc,(1 + cosO)W~ (3.13) 

when 0=0, 

FB(t ) = 2,oe, vi, n (3.14) 
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The above results is complete the same as that given by other authors which belongs to the precise method 
for one dimensional wave motion input [14'181 

x 

~J ' The artificial 
/~30~'-~I boundary 

y 

Fig.3.2 A slant incident wave 

It is worthy to point out that other authors only gave the incident wave propagating vertically, which 
belongs to the precise input method of one dimensional wave motion input. But the input method proposed 
in this paper can deal with a slant wave motion input. That is to say it can simulate the input procedure of 
multiple point. 

For a 2-D or 3-D problem, one can exert physical component on the boundary point in two direction(2D) 
or three direction(3D) to form an artificial boundary. Firstly, stress caused by the incident wave field on the 
artificial boundary is determined. Then by using Eq.(3.7), stress exerted on every direction is obtained, 
which complicate the input of wave motion. 

3.2 Numerical Examples of Wave Motion Input 
In the following, a homogeneous elastic half space subjectd to an plane incident wave is considered as an 

example to verify the accuracy of the input method of wave motion proposed in this paper. The mechanical 

model employed in the example is an elastic half space as shown in Fig.3.3, the mechanical parameters are: 
shear modulus G=5.292 • 106pa, elastic modulus E=1.323 x 107pa, Poisson's ratio v=0.25, mass 

density p=2.7 kg/m 3, wave velocity Cs=1400m/s, Cp=2425m/s. The range of computational region is 
Xb=Yb=381m. The size of the finite element are &x = Ay =19.05m. Time step is chosen as At=0.005s. 

The elastic half space is subject to a incident SV wave with angle 0 =0 o and 30 o respectively, whose 

time history is shown in Fig.3.4. 
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Fig.3.3 Modeling of elastic half space Fig.3.4 The time history of the incident wave 
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The displacement in time domain of the four observation points A, B, C, D, whose coordinates are (0, 0), 
(0, 381), (381,381), (381, 0) respectively, is presented in Fig.3.5 and 3.6. In these figures, the dashed lines 
represents the analytical solution and the solid lines represent the numerical solution employing the input 
method and the viscous-spring boundary proposed in this paper. It can be clearly seen from the Fig.3.5 and 
3.6 that the results adopting the proposed input method are well agreeable with the analytical solutions, 
which demonstrate that the proposed input method is accurate as treating SV wave input. 

At the same time, we also consider the situation for incident plane SH and P wave especially the one 
with an large angle. Also the results are well agreeable with the analytical solutions, which state that the 
proposed input methods is also precise while treating the incident SH and P wave inputs. 

IV. Numerical Example of Seismic Wave Scattering 

The response of a two dimensional semicircular valley subjected to a SV wave is computed in this 
section based on the proposed viscous-spring boundary and wave motion input method by using finite 
element software (Super SAP). By comparing the results obtained by proposed method with the analytical 
solutions given in[ 19], the accuracy and efficiency of the proposed method are verified. 

The computational model and coordinate system employed in the following example is shown in Fig.4.1. 
The parameters of the model are chosen as follows: shear modulus G=5.292 x 106pa, mass density p 

=2.7kg/m 3, shear wave velocity cs=1400m/s. 

Fig.4.1 
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Modeling of the semicircular valley subjected to an incident SH wave 

A finite computational region is cut out from an infinite media, which is discretized by the finite element 
method. The size of the element close to the boundaries is Ax = Ay = 19.05m along x and y direction 

respectively and the elements close to the semicircular valley are fined down, and the time step is chosen as 
At = 0.0 ls, the computational area, Xb=Yb--476.25m, the radius of the valley a=190.Sm. 

The incident SH wave in time domain is a pulse. The displacement at the surface of semicircular valley 
caused by the incident SH wave are obtained by employing the finite element method. In order to compare 
with the analytical solutions, the numerical solutions are transformed from time domain into frequent 
domain by using Fourier transformation. 

Define a non-dimensional frequency 
r/= 2a / 2 = coa / 7cc s (4.1) 

where ?~ is the wavelength, to is frequency, Cs is SH wave velocity. It can be stated that rl is the 

characteristic coefficient of the ratio of the diameter of the semicircular valley and the wavelength of the 
incident SH wave. 

The amplify coefficients of the ground motion caused by the incident SH waves with angle 0 =0 o, 30 o, 
60 o, 90 o and non-dimensional frequency rl =0.25, 0.50, 0.75, 1.0, are presented in Fig. 4.2 to 4.5, where 
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the horizontal coordinate is position, the vertical coordinate is the magnification coefficients of the ground 
motion, the solid lines represent the analytical solution, the discretized dots represent the numerical 
solutions obtained by using the proposed method. By comparing the results obtained by using the proposed 
method with close form solutions, it can be clearly seen that the agreement is satisfactory. It can be stated 
once more that the input method given in this paper is exact and the viscous-spring boundary has a 
satisfactory accuracy. Thus the set of proposed methods are practicable for analyzing the dynamic 
interaction of soil-structure. 

V. Conclusions 

A direct method for analysis of dynamic soil-structure interaction is presented in this paper. Some of 
conclusions are obtained as following 

1. In the problem of dynamic soil-structure interaction, viscous-spring boundary can be employed to 
simulate the absorption of infinite soil to the scattering wave. Compared with others artificial boundaries, 
this kind of boundary can simulate not only the absorption of infinite soil to energy of scattering wave, but 
also elasticity recovery capacity of the exterior media. Numerical examples demonstrate that the accuracy 
of the viscous-spring boundary is higher than the viscous one and the stability of the former is better. 

2. The physical concept of the new seismic wave input method proposed in this paper is clear and simple. 
Compared with the others input method of wave motion, it expands the exact wave motion input method 
from one dimensional problem to two dimension and in principle is suitable for three dimension. 

3. By making the exterior appending programs, the method is combined into a large general structural 
analysis software (i.e. Super SAP). Numerical examples state that the method has a higher accuracy. 

Finally the proposed method not only makes it possible to analyze the dynamic soil-structure interaction 
employing a large general structural analysis software, but also provides a platform to trace the renewing 
and developments of the large general software and be sure to use the latest software to analyze the 
dynamic soil-structure interaction in time. 
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AN ANALYTICAL APPROACH FOR EVALUATION OF 
GLOBAL DYNAMIC IMPEDANCE OF SEMI-CIRCULAR 
DAM CANYON CUT IN AN ELASTIC HALF-SPACE 

Lin Gao, Chen Jianyun and Sun Keming 
(Dept. of Civil Engineering ,Dalian University of Teehnology, Dalian 116023, China) 

Abstract 

An analytical approach for evaluation of global dynamic impedance of semi-circular dam canyon cut in 
an elastic half-space is presented. From the study of the behaviour of complex frequency response functions 
for radial displacements and the dynamic impedance of the canyon surface, a suitable way for simplifying the 
computation of the dynamic impedance of dam canyon is suggested. 

Introduction 

Dynamic soil-structure interaction has significant effect on the seismic response of dam structures. 
Nevertheless, determination of the foundation impedance of the dam canyon, especially for a three- 
dimensional space structure such as arch dam associates with large computational effort and it is too 
complicated for design engineers. For practical engineering implementation, s i m p ~ g  the computation of 
dynamic foundation impedance is a task which demands paying attention to. For this purpose, a rather 
simple example of the global dynamic impendance of a semi-circular dam canyon cut in an elastic half-space 
is first evaluated analytically, then based on the study of the characteristics of frequency-dependent dynamic 
impedance of the dam canyon, a suitable way for simplifying the computation of foundation impedance is 
suggested. 

Modeling and Assumptions 

The dam canyon is assumed as semi-circular with radius of R, and the foundation medium is assumed to 
be linear visco-elastic, homogeneous and isotropic. The dam-foundation interface is simulated by a ring 
shaped area of width b and the external load P is assumed uniformly distributted along the surface of 
canyon. The coordinate system and the displacement components are illustrated in Fig. 1 

P ~ ~ < - - -  ---->l 

U r 

Fig.1 Modeling of the Problem 
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The equations of motion of the system expressed in the cylindrical coordinate system are given as 
follows 

2 c3 cr 1Cror  cg r , o r , - o r  o c3 u, 
+ - ~ + - - - - - L  + ~ +  F, = p 

Or r 0 0  3 z  r 3 t  2 

1 ~cr o c3rzo 2 TrO 02Uo 3r 'O +-- 4 4 + F  o p 
3 r  r 0 0  cgz r 3 t  2 

O'c,.,. 1 ~TOz 30" T 32Uz 
~ + - ~ +  " +  "" + F , = p  

3 r  r 3 0  3 z  r cgt 2 

(1) 

where ur, u0 and Uz are the radial, tangential and longitudinal displacements respectively; or,, o0, Oz and x~o, 
Z0z, z~ are corresponding normal and tangential stresses respectively; Fr,  F0 and Fz are unit volumetric force. 
The complex modulus of elasticity of the foundation medium is expressed as 

E* = E . ( l+ i -2~ t )  

/~ is the hysteretic material damping. 

In order to simplify the derivation, some assumptions have to be introduced. The displacements is 
regarded uniformly distributed along any arbitrary radius r, and the displacement components u0 and ur 
associated with provided external load are considered as negligibly small and the radial displacements 
components is approximated by separable function of the cylindrical coordinates z and r .  Accordingly, the 

displacement field is expressed by 

u, : F(z) ~r 
//0 = /gz = 

( 2 )  

where F(z)  and ~(r) are the variation and decay of u, along the longitudinal and radial direction 

respectively. 
The appropriateness of these assumptions was examined by a numerical example of the same canyon 

with radius r=lO, but subjected to static load excitation only. The calculated radial and tangential 
displacement components for r - lO ,  12.5, 16.0, 20.5, 26.0, 32.5 at z - 0  are illustrated in Fig.2 and Fig.3 
respectively. And distribution of longitudinal displament component along z axis for various r is illustrated in 

Fig.4. 

0.04 

f .. . .  

/ J  J -  - . . . . .  ~ ........... 

-0.02 

-0.04 
-10 -5 0 5 10 

Fig.2 Distribution of radial displacement components along x axis for various r 
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0 . 0 6  

0 . 0 4  

f r 1-re 

0"020 ~ ~  

-10 

= 1 0 , 1 2 . 5 , 1 6 , 2 0 . 5 , 2 6 . 3 2 . 5  
ff 

/ Y  
~J 

z /  j /  

i , - ~ - -~~ - - - - - ~ - - - .  , - : - ~  - ~  ~ r " - : ~  

-5 0 5 10 
Fig.3 Distribution of tangential displacement components along x axis for various r 

0 . 0 0 3  

0.0015 - ~~-~- .... 

o 

-0.0015 - 1 6 = 12.5, 

- 0 ~  . . . . . . .  4 0 1  . . . .  - 2 0 1  , , , , 0 i  , , , , 2 0 1  , , , , 4 0 1  , i , ' . . . .  6 0  

Fig.4 Distribution of longitudinal displacement components along z axis for various r 

It can be seen from these figures dlat u, is small compared with u r , the largest value of u= is about 10% 

o f  u r in the vicinity of z=O and it reduces remarkably with increasing z, the assumption of u= = 0 is 

reasonable. Some discrepancies from the assumptions given in Eq.(2) are found for u o , particularly near the 

horizontal fxee surface notabale deviations exists, The averaged u o accounts for about 70 % of U r at the 

canyon surface and it reduces to about 20% of u at r=20. However, the computed average radial 

impedance along canyon surface is 1213 N / m ,  which is close to the value 1453 N / m  of global impedance 

given by Eq.(59) at co - 0. The error is about 12%. Hence, from the point of view of global impedance, 
though the assumotions made by Eq.(2) seem rather arbitrary, they are acceptable. 

Eventually, based on Eq.(2), the strain components and stress components are formulated as follows: 

c?u, F(z )  c3r 1 8u  o u 1F(z )  qJ(r) a= cT u, 
a, 3 r  Or r 3 0  r r 3 z  

= 0  

13u, 6 u  o c?u~ 3u,  3 F  6Uo 
t o ,  . . . .  = o  , r , ,  - , , r , o  

r 3 0  6 z  c?z 6 r  6 z  c?r 

1 6u  r u o 

r 3 0  r 
( 3 )  

a n d  

cr = 2 G e  + 2 e = ( 2 G + 2 ) . F  . 3 r  2 +--F.c/)  , Vo= = G y o ,  = 0  
Or r 
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er e = 2 G e  o + 2 e = ( 2 G + i t ) . - . 1  F . q ~ + 2 . F . C 3 q k  
r c3r 

: = = . . +- . r  a 2 G c , + A , e  3, F (c3r r 

3 F  
ro t  = G y , .  t = G .  

O z  

ro t  = G y ,  o = 0 

( 4 )  

E * v  E* 
inwhich e = e ~ + e o + e .  , 2 =  , G = ~  

" (1 + v ) . (1 -  2v) 2(1 + v) 

Governing Equations of the Foundation Impedance 

A convenient approach of deriving the governing equations of motion for a complex medium problem 
such as the one discussed here is to make use of scalar energy quantities and the variational calculus. The 
most generally applicable variational concept is Hamilton principle, which may be expressed as: 

( 5 )  

where T and I denote total kinetic energy and potential energy of the system respectively ;W,c denotes work 
done by the nonconservative forces acting on the system and 6 represents variation taken during the 

indicated time interval (tl, t2). 

For a harmonic motion, the kinetic and potential energy functions for the soil domain can be expressed 

in terms of the frequency o and the displacement amplitude. Taking variations ofT, I and Wnc, we find 

T = . . . .  1 oo o o  .W2 2 )7~ o o  w 2 u ~ r  d r  d z  
2 p u r r  . d r  . d O . d z  = p 

Let m =  ~o F 2 d z  , ~ = ~ r . q~ 2 d r  

i; iO o Then bT" _ rc p . co Z m . qk . r . aqk . d z  + zc p . co 2 g . F . f F  . d z  ( 7 ) 

( 6 )  

For the work done by the external force 

W n c = -  2 b . R . P . F ( z ) . q b ( r ) . d  z = O , r = R : - : r c . 2 b P R . F ( z ) . q b ( r )  z=O,r=R 

6 W ,  c = - r e .  2 b P R  . F . 6qk[ t=0,r=R --/r" 2 b P R  . ~b . 8F[ ::0,r=R 

and, for the potential energy 

+ 1 fi:f=f < =--  o,c~ +O-o6" o +or:E, + rrOYro +roz7"o:  + r ~ : y , ) . r d r d t k ~  2 dR ,~o 

= 7C'(I1 +I2 +I3 +I4) 

where 

( 8 )  

( 9 )  

( l O )  

1 = 
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i2 = 1 f= r(2G + A). l-F~drdz 
2a0 aR" r 

13-- ~0 ~ ;  2 " F 2  qk " -~r " d rdz  

oo ( 3 F )  2 
I 4 = 2 ~ ;  ~R G " -~Z  q~ 2 r " d rdz  ( 1 1 )  

Substituting (3) and (4) into (10) and taking variation of it leads to 

6 ( / )  = f ;  ( 2 G + 2 ) ' f ' F ' 6 F ' d Z + f o  ( 2 G + , ~ ) . r I . F . 6 F . d z  
7g 

oo c92 F " 6 F  dz  + ( q k 2 J ~ ) ' ~ ; A ' F ' f i F ' d z - ~ i  G ' ~ .  Oz---- i- �9 

- ~'R ( Z G + /~ ) . m . ( r Cg--~ + ) . # . d r +  2 G + /~ ) . m . - . ~b . 6~  . dr  + ~g G . n qk . r . 6~  . dr  
Or 2 r 

+ ( 2 G + A ) . m - =  . r -6~  +2 .m.~b.6~ + G . ~ .  - 7 -  . r . 6 F  o 
cTr d z  

( 1 2 )  

In which 
, ~ (c9F)2 

m = ~ i  F 2 d z  n=~0 -~z  dz 

~ = r . r  , ( =  r . ~ a r  , rl = - ~ 2 d r  
r 

( 1 3 )  

Substituting (7), (9) and (12) into (5) and making rearrangement of the terms, finally we get 

d2 F } 

Io 
- ( 2 G + 2 ) . m . r . ~ +  . . . . . .  + .c02m) �9 .~b .6q~. 

8r  2 d r  r 

+ ( 2 a + X ) . m .  8r 

0F [~o [ +G . ~ . - - ~  . 8 F  + 2 b P R  . ~. 8F ~=R.~=o = 0 
U Z  

( 1 4 )  

As 6~b and 8 F can be chosen arbitrarily, the terms included in the brackets must turn to zero. Thereby, 

the following governing equations for determining the function F and ~ are obtained. 

where 

8~F 0 
A . F - G . ~ .  Oz  2 (0<z_<oo) ( 15 ) 

1) r 2 0 ~  + r  - r 2 ~r~ ~,~ ~ -  + .~=o , (R__ r__< oo) ( 16 ) 

( 1 7 )  
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( _ ~ )  2 G . n p . co 2 

(2G + 2,)-m 2 G + A  
( 1 8 )  

And the corresponding boundary conditions are given by 

I ] ( 2 G + 2 ) . m .  . r + 2 . m . q k  .6qk g + 2 b P R . F .  ~ F  r=R ,z=O 

O F  5 F  ~o [ + G  . ~ . - - 7 -  . + 2 b P R  . qk . 6 F  ,=R.,=o = 0 
6 r  

( 1 9 )  

According to the assumptions concerning radial components of the displacement u r = F ( z ) . q k ( r ) ,  they 

are symmetrical with respect to z axis 

aF I c3z ~=o = 0  ( 20 ) 

It is reasonable to assume Fl ,=o=l ,  w[,=o =o (21) 
i 

And accordingly, the boundary conditions for determining t~ and F are given by 

0F  
F : I  , - - = 0  (z=0) ( 22 ) 

0z 
0 r  

. . . .  + 2 . m . ~ - 2 b P R  = 0 ( r  = R )  (2G+2) m r 0r 

3~ 
(2G + 2 )  . m . r . ~ + 2 . m . ~b = 0 (r  --+ m )  

0r 

( 2 3 )  

Solution of the Equations 

1. So lu t ion  o f  the  func t i on  ~(r) 

In the formula (16), let x be denoted by x = 7' .  r then 
R ' 

(16) becomes 

+,)r 
3 x  ~ 3 x  

( 2 4 )  

It is the modified Bessel Equation of first order, and the general solution takes the form 

As I, (x) ~ oo with I x I---~ oo, the constant C1 should be taken equal to zero, and ~b(r) becomes 

qk(r) = C 2 k l ( x )  ( 2 5 )  

where k I (x) is the first order modified Bessel function of second kind. 
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At the canyon surface x = Y . R = y  
R 

Substituting it into boundary condition (23), we obtain 

C2 = 2bPR 
(2G + 2 ) . m . y .  ki(y ) + A .m. kl(7" ) 

( 2 6 )  

and r is expressed as 

r = C2kl(X) = 22 .m. kl(Y)-(2G +-~) :-m.y .(ko(y)+ k2(y)) "kl R" 
( 2 7 )  

2. De te rmin ing  the P a r a m e t e r s  ~, ( and y 

(1) Parameter 

~= ~r.O2dr = R2C2 [(x2kE(x))l~ 
2? "2 

( 2 8 )  

Taking into consideration, that k , (~ ) :  o , k;(~) = o 

finally we get 

(2) Parameter ( 

Using the recurrence relation 

leads to 

c2R2 k12(7") - 1+ "k~(y) 
~ =  2 

~ ~ 

k o + k 2 = -2k  I 

(= C2 fR~(x.k2o +x.k22 +2x.kokz).dx/4 

( 2 9 )  

( 3 0 )  

Noting that k '  0 --  - k  1 , x-k  2 - x. k o = 2kl ( 3 1 )  

we get ~ = C2[ 3f~x'k2odX+ ~RX.k22dx-4~Rkodko 1/4 

In the same manner as the derivation of ~ = x. k 2dx, it can be found that 

f;~. ~o ~ - -  [~ t  c ~ ) - ~ o  ~ ~,) t ]/~ 

fS~ ~ ~-- [ ~ ~ ~)- t~ ~ + ~t-~: ~ t]/2 
fRkodk I k2 R =~ ol = - k ~ ( y ) / 2  

Then ( is expressed as 



284 

1 2 

(3) Parameter r/ 
),5 

, =  o'd  

where =-[ ko(y)+k,(y) ]/2 

Solu t ion  o f  the  f u n c t i o n  F(z) 

According to Eq.(15), let 

Eq.(15) becomes 

( 3 2 )  

( 3 3 )  

( 3 4 )  

a = ~ ~ ~ :  ( 3 5 )  

d2F 
~ =  ct2F ( 36 ) 
0z 2 

The general solution of it is expressed as 

F(z) : D~e -'~: + D2e '~ 

Let the real part of a be greater than or equal to zero, the radiation condition requires that D 2 = 0, 

and F(z) becomes F(z) = 1)1 e-c'z 

According to the boundary condition (23) 

D~ = 1 and F(z)= e -'~z ( 3 7 )  

Foundation compliance 

form 
Substituting (27) and (37) into (2), the radial components of the displacement field are expressed in the 

( 3 8 )  

where according to (26), the coefficient C 2 is given by 

Hence 

2bPR 
c ~  

~ ) . r  . �9 �9 
g m.[ (2G+ k; (y )+2  kl(Y) l F(z) "F(z)l =0 

U r = " e  k l  " 

( 3 9 )  

( 4 0 )  

Or, in the abbreviated form u r = F t .  P ( 41 ) 
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where 

F, = 2)'7"" �9 m.[ (2G+ ki(7")+A, k1(7" ) ] "e-ctzkl --i" ( 4 2 )  

F r (z = 0) is exactly the global foundation compliance of the semi-circular dam canyon 

2bR 
F (z = 0) = m. [ (2G + 2 ) ' r "  k;(7') + ~.  k I (7') ]" kl (7") ( 4 3 )  

Determinat ion  of Iteration Parameter  7' 

To obtain solutions of the functions F(z) and ~b(r), the value of the parameter 7' defined by (18)is 

needed. Note that y depends on the quantities m and n,  which in turn depend on F(z)(See Eq. 13). As 

shown in (37), F(z)is a function of c~, and the variable A contained in a (See Eq.35) depends on the 

quantities 4 ,  g" and 7/, which are also function of 7'. As 7" is not known a priori, iterative techniques are 
required to evaluate it. 

Here, an iterative approach is used to obtain 7' for the static loading case, and a special semi-analytical 
approach is proposed to obtain 7' for the dynamic loading case. 

From (18), it is obvious that 7" is a function of quadratic frequency co 2, and the ratio n//m can be 

written as (See Eq. 13) 

" "  n ~o F,~ (z)dz P Iy G" F,~ (z)dz 
. . . . .  ( 4 4 )  
m fo F (z)az 0 p F (z)az 

Making use of(37), we get 

Hence 

m = fO ~ F2(z)dz = Io ~ e-2~*dz = (2a)- '  

n= fo~ F,:(z)dz = a=Io '~ F=(z)dz = a 2 .m 

'/ a 2  

m 

( 4 5 )  

( 4 6 )  

As shown in (44) ,  n//m is equivalent to the ratio of the maximum potential energy to the maximum 

kinetic energy of a shear beam or a soil column. Although, (44) is not an explicit expression of co 2, it is 

obviously, that n//m bears some analogy to the Rayleigh's quotient for evaluating approximate vibration 

frequencies of the struture. The fact that the Rayleigh's quotient provides an upper bound to the vibration 
frequency of the structure, sheds some light to the evaluation ofthe parameter y .  As any assumed shape of 

F(z) ,which is the best choice of y ,will minimize the frequency. Thus, the true value of y is the one that 

minimizes the ratio n//m . Therefore, 

4n/m) - 0 ( 4 7 ,  
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serves the basic equation for evaluating y .  

According to (18): 
y 8 y  _ G 

2R2 4-~ ~) - (~ +2c) 
P 

8y @')(~+2c) ( 4 8 )  

defining the square of  the volumetric wave speed as 

Eq.(48) gives 

Integrating both side of  it, leads to 

c2 p = (2 + 2G) 

P 
+') 

y 2  = ~2  
0 

Introducing dimensionless frequency ~ = 

and solving for y yields 

R 2 

~(~,) c~ 
R2 co 2 

2 
C p 

co.R 

C p 

( 4 9 )  

( 5 0 )  

o ( 5 1 )  

where y o is the value of  y corresponding to the static loading case co = 0,  which can be found as follows. 

Let co 2 =0 ,and take a first approximation of y o as y (01) = 1.0 

Introducing dimensionless quantities 

- ~ - ~ _ ,7 - A ~-C:R ~' r ,7=-~,, A = ~ ,  ~=a-R (52) 

From (29), (32) and (33),  ~:~k), (~k) and r/~ k) are calculated ( k=2,3,. .... ) 

~: , ~:'~ ~;.(~,. ,)-1+ ~:,q.. 

1 C2 ~,(k )2 )) + k22 

i q[ ~:(~:,1 (~,.) -~:(~:')1-~ -,: o ]-- ~:,q ( 5 3 )  

Then, from (17), A~ k ) is evaluated 

( 5 4 )  

(k) is determined and from (35), a o 
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/ .4`> - ' I  

New value of y 0 is obtained by using (18) 

_ 1 
= a - - -  ( 5 5 )  

R 

.(o:,i), I (<'>)' o ~(2G + 21 = (2G + 2) 
( 5 6 )  

The iterative process is continued until the difference between the ith and (i+ 1)th value of y 0 becomes 

less than the specified tolerance e.  

y ~k+l) _y(k) 
0 _<c ( 5 7 )  

Convergence is very fast and the cmxect value of y 0 is obtained in five or six iterations even if the first 

estimation of y 0 is far from the exact value. Once y 0 is evaluated, Eq.(51) is used to calculate the value of 

y for different value of co 2. The iterative procedure is not employed again. 

Behaviour and Properties of Dynamic Foundation Impedance 

The solution given above is derived based on the presupposition that ~b(r) satisfies the modified Besse! 

differential equation. In fact, behaviour of the solution depends on whether y is real, imaginary or complex 

to a greater degree. 

In the following, solutions associated with the foundation medium being of pure elastic and visco- 
elastic case are discussed, in the later case frequency scattering and amplitude attenuation take place, wave 
speed varies with the change of wave number. 

1. Foundation material is pure elastic 
In this case, Lame constants 2 and G are all real, the foundation compliance takes the form 

Fr = 2 ) . y -  �9 
m-[ (2G+ k;(y)+A kl(y ) ] "e-''k' 

Integrating over the z-axis yields 

Fb =If Fr(z)dz=(2G+2l.Y.k~(y)+E.kl(y) "kl ( 5 8 )  

Define foundation impedance as gb = ( & )  -1 ( 5 9 )  

The following behaviour of K b can be found. 

There exist a cut.offfrequency co0 =~f- -  ~ . in case of ~ < ~0,  y _  .._ ~y2 ~ 2 0  is real. k l ( ~  r / i s -  
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also a real function without oscillation and it decays with increasing of r .  

In case of ~ > N o , y is a pure imaginary number. Let 

Then 7 a is real Eq.(16 ) becomes 

z a = i y  ( 6 0 )  

r 2 ~d2~ + r  + r :  - 1 �9 ~b = 0 
dr2 dr ( 6 1 )  

It is a Bessel function of the first order and the solution gives 

= "H(')(~r) ( 6 2 )  Fb i.(2G+2).y.H~I)bR,(ya)+2.H~I)(y, ) 

where is a H o,  otio  of o It is a roal  otio. osoOates and attenuates 

with 7 ,the attenuation factor is 4r2(zr)-V2 . And K b is complex valued, which indicates, that wave motion 

occurs in the elastic half-space and also radiation damping takes place, in despite of the fact, that no material 
damping exists. Such a phenomena is analogous to the wave propagation in the half-space modeled as one- 
dimensional rod with exponentially varying area[2],[3]. 

2. Foundation material is visco-elastic 
In this case, 2 and G are all complex, thus, the impedance of K b is also complex even at co = 0. 

N o w , l e t  7 =a+ib, S=a 2 - b  2 T=2ab ( a r  b r  ) 
R 

( 6 3 )  

and put ( 6 4 )  

we obtain 
C9 r 

r ~ 0:  G 
cgr 2 

+ r O r  
Or 

+ r  
Or 

+(~r~ -1)',~1+~,'~ -0 

+( Tr2 -1).q~2 + Sr2qJl = O ( 6 5 )  

In fact, Bessefs differential equation (24) holds whether x or 7 is real imaginary or complex, and its 

solution has the same form expressed in terms of k 1 -~" or -~-. . Note that, for modified 

Bessel's differential equation, if the solution keeps single valued and satisfies the Sommerfeld radiation 
condition at infinity, the real part of it should not equal to zero and its argument should satisfy the following 
conditions" 

larg~l<~ or ]argy'[<zand a , 0  
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In comparison with the pure elastic case, in the visco-elastic case, no cut-off frequency co 0 will take 
place. Because y is always complex, except at co= 0 (See after). That is, at the real beginning wave 

propagation occurs, and the attenuation behaves faster than that in the pure elastic space, in addition, the 
attenuation behaves different for material with different wave speed. The problem is,. we have to clarify, 
whether there is discontinuity or singularity at co = 0 or not. In case of two dimensional wave propagation, 

such a phenomenon really exists. In views of this, we proceed as follows. 

From (4), for visco-elastic medium 

vE* E* 
2 = ( I+ v ) . ( l - 2 v )  ' G = 2(1+ v--------~ ' E*=  E(I+i / . t )  ( 66 ) 

2 may be expressed also in the form of 

2v 
2 = ~ G  ( 67 ) 

1 - 2 v  

According to the iterative process of y (52) -- (56), we have 

~-~k) = 2 G .  I ' 2  "(~~ +~ff)  
-k~Z(?,)) (68) 

--(k) --" G-~k)'--~gk) "~ I(~'(Ok)3c"-~k)--k2(y))12Vvi " 1 - - 2  ( 6 9 )  

: c  +---5 )): ,0 > 

From (69) and (70), It is easy to fred that a0 and y 0 are real in spite of A and G are complex. This 

means y tends to become real as co approaches zero, and in the meanwhile, wave propagation vanishes 

(See Eq.59). The imaginary part of the impedance at co= 0 results from the imaginary part of 2 and G, 

which reflects the effect of material damping. The problem may also be studied from another point of view, 

we define the dimensionless impedance of the canyon foundation in the form of 

Then 

- -  K n  _ Rb 
K~'= / R b - F b ~  G G ( 7 1 )  

( 7 2 )  

Based on the above analyses, in case ofvisco-elastic material, the behaviour of K b depends fully on the 

property of y .  And at co = 0 , y 0 is real, K b is also real, we arrive at the same conclusion as before. 

After rearrangement, the dimensionless impedance at the canyon surface r=R is expressed in a more 

general form 
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~r(r ) = 2(1-v) k ;  ~.  2v 
( i -  kl y + O -  > 

It may be served for the study of the variation of complex impedance with respect to the variation of 
frequency for both pure elastic and visco-elastic material. 

Numerical Examples and Conclusions 

Based on (73), the complex frequency response functions for radial displacements of the canyon 

surface subjected to harmonic excitations are calculated with E= 2.7 • 104 MPa, p =  2400kg and R = 400 m , 

the results are depicted in Fig.5 for two different values of Poisson's ratio v and two different values of 
hysteretic damping factor /~. As shown in these figures, the Poisson's ratio of the foundation material has 

great effect on its fundamental frequency and on dynamic amplification at this frequency. The dynamic 
amplification of the displacement amplitude at the fundamental frequency is very sensitive to the change of 
hysteretic damping. In case of hysteretic damping /~ = 0, the dynamic amplification does not approach 

infinity due to the existence of  radiation damping. 
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Fig.5 Complex Frequency Response Function for Radial Displacements of  Canyon Foundation 
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The dynamic impedance of the canyon foundation for v = 0.33 and /.t = 0.3 is illustrated in Fig.6. It 

can be seen that in the low frequency range of seismic interest, the variation of the real part with frequency 
can be fitted by a parabola, and the imaginary part can be approximated by a straight line, that is 

(co) = Xo + i O Co - co Mo (74) 

where K 0 is the stiffness for co = 0 ; C o is the slope of the approximated straight line, and M o depends on 

the degress of flatness of the real part of the curve. Thus, a conventional spring-dashpot-mass model is 
reached. 
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Fig.6 Dynamic Impedance of the Dam Canyon 

In the earthquake analyses of a 300" high arch dam in China, based on the Green's function of the 

elastic half-space similar curves of the dynamic impedance of dam canyon were obtained [4]. Because the 
foundation rock of high arch dams is usually very stiff, the dynamic impedance of it is less sensitive to the 
variation of exciting frequency. We may approximate them by the similar expression as (74) 

[Kr (co)] = [K0] +/co[C0]- co2 [Mo] (75) 

[Ko] is the matrix of static impedance, [Co] and [M0] are found by curve-fitting technique. Since [K0], 
[C o ] and [M0] are all frequency independent, the analyses were easy to be carried out in the time domain 

and the non-linearity of the structure could be taken into consideration. 
From the above study, some enlightenment for simplifying the computation of the dynamic 

impedance of dam canyon can be obtained. Since [K0] is the stiffness matrix for co = 0 ,  it can be 
determined by a static approach. [Co] represents the slope of the imaginary part and [M0] reflects the 

degree of flatness of the real part, they can be found empirically. Eq.(75) significantly reduces the 
computational effort of the dynamic structure-foundation interaction analysis of arch dams. 
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A COUPLING MODEL OF FE-BE-IE-IBE FOR 
NONLINEAR LAYERED SOIL-STRUCTURE 
INTERACTIONS 

Zhang Chuhan, Wang Guanglun and Chen Xinfeng 

(Dept. of Hydraulic Eng.,Tsinghua University, Beijing, China, 100084) 

Abstract 

A coupling model of finite elements(FEs), boundary elements(BEs), infinite elements(IEs) and 

infinite boundary elements(IBEs) is presented for analysis of soil-structure interaction(SSI). The radiation 

effects of the infinite layered soil are taken into account by FE-IE coupling, while the underlying bed rock 

halfspace is discretized into BE-IBE coupling whereby the non-horizontal bed rock surface can be 

accounted for. Displacement compatibilities are satisfied for all types of aforementioned elements. The 

equivalent linear approach is employed for approximation of nonlinearity of the near field soil. This 

model has some advantages over the current SSI program in considering the bed rock halfspace and non- 

vertical wave incidence from the far field. Examples of verification demonstrate the applicability and 

accuracy of the method when compared with the FLUSH t2l program. Finally, the effects of the relative 

modulus ratio E,/E~ of rock and soil and the incident angles of non-vertical waves on the responses of the 

structure and the soil are examined. 

Introduction 

In analysis of dynamic soil-structure interactions(SSI) for important projects such as nuclear 

structures(power plants and other structures) built on sites of alluvial deposit, it is of importance that the 

layered and nonlinear properties of the soil can be considered. However, since the dynamic stress-strain 

behavior of soils and the factors affecting the behavior are not easily quantifiable in the current state-of- 

the-art, the soil is commonly modelled as an equivalent linear viscoelastic medium ~11 in SSI analyses for 

earthquake motion, in which the nonlinearities of the soil are accounted for in an approximate manner. 

This simplified procedure is used in the most popular computer codes of SSI analyses for nuclear 

structures such as FLUSH L21 and SASSI TM in the current design practice. Another important consideration 

in performing SSI analyses is that the soil model possesses the capability of properly simulating the 
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radiation damping mechanism. The discretization of the layered halfspace using the finite element method 

requires the use of wave-transmitting side-boundaries to simulate the lateral radiation effects. Another 

alternative for simulating the radiation effect of infinite soil is simply to use a truncated halfspace model 

in which a sensitivity study must be performed to demonstrate the effects on the impedances of the 

foundation due to the wave diffractions and reflections by the truncated boundaries are negligible. 

In many practical cases for simulating soil foundation system, a 2-D horizontally layered stratum 

overlying a rigid base may be assumed such as in FLUSH. In this case, the rigid base boundary may be 

placed at a layer at which the shear wave velocity equals or exceeds 1100m/s I41. However, if a deep soft 

soil or semi-rock is encountered, the rigid base assumption will not be appropriate to describe the 

radiation effects of the lower boundary or will lead to an expensive cost for discretization of the soil to a 

great extent of depth. Another limitation of placing the rigid base at the lower boundary is that the 

inclined wave input can not be performed in the analysis. However, it is important to consider the inclined 

wave input mechanism which causes rocking and torsional motions of the foundation and may 

significantly affect the foundation motion and the structural response. 

With the above-mentioned considerations, this paper presents a coupling model of finite 

elements(FEs)-boundary elements(BEs)-infinite elements(IEs) and infinite boundary elements (IBEx) for 

simulation of soil-structure system for nuclear structures built on a deep soft soil. As shown in Fig. 1, FE 

is employed for discretization of the structure and the near field soil, in which the linear equivalent 

viscoelastic assumptions can be applied and the layered characteristics can also be considered. The soil 

underlying the FE region is a uniform elastic halfspace which can be discretized into BEs. The 

propagating waves from the far field incident to the halfspace surface at varying angles can be applied. To 

achieve the coupling of the FE region with the lateral layered soil, an improved type of infinite element(IE) 

which is able to transport SV and P waves simultaneously is presented to be installed at the side- 

boundaries. For discretization of the boundary interface between the IE region and the uniform halfspace, 

a type of infinite boundary element(IBE) which is compatible with the IEs is employed. This IBE 

possesses the same attenuation behavior of the tractions as the displacements at the far-field. Thus, a 

complete coupling model of FEs-BEs-IEs-IBEs is formed to simulate the linear equivalent and layered soil 

overlying the elastic halfspace. The use of BE-IBE coupling to discretize the underlying bed rock provides 

advantages over the halfspace solution in dealing with special cases as the bed rock surface is not 

horizontal or the bed rock medium is not entirely homogeneous. In this case, the discretization method has 

to be used. On the other hand, if the bed rock surface is honizontal and the medium is homogeneous, to 

analyze the entire system more efficiently, the substructure technique using analytical solution may be 

employed. The entire soil medium is divided into the near and the far fields so that the linear equivalent 

region of the soil and the computational efforts can be reduced as much as possible. Finally, as a test 

example, the earthquake response of a structure founded on a soft soil foundation is analyzed using the 

presented model. Verification of accuracy is first achieved by comparing the results with that analyzed by 

FLUSH. To demonstrate the applicability of the presented coupling system, the responses of the structure 
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under the incidence of the waves at different inclined angles are analyzed. 

Numerical Modelling 

1. Infinite B o u n d a r y  E lements ( IBEs)  wi th  D e c a y i n g  Trac t ions  

The idea of infinite boundary elements(IBE) is borrowed from that of infinite elements [51. It was 

presented by Zhang and Song [6'71 and later was extended to model the far field of arch dam canyons by 

Zhang and Jin [81. This paper extends the function of IBE to discretize the interface between the bottom 

layers on the two sides and the underlying halfspace, in which a decaying variation of displacements and 

tractions from the near to the far field needs to be simulated. 

As shown in Fig.2, a two node element is developed and is mapped from the global into the local 

coordinate system using the following mapping relationship: 

1+~: 
r = r t + 2, + ( m -  1)2, m= 1,2,3... (1) 

2 

where r and ~' are the global and local coordinate respectively; 2, is the wave length for s component; m 

denotes the number of wave length to be integrated; rl is the distance between node 1 and 2 which is also 

defined as the distance from the origin to node 1. 

By using the mapping function given in equation(l), for re=l, the node 1 with r = rl is mapped into 

~'= -1 while the point r = rl+ 2, is mapped into ~=1. Thus, for m=1,2,3 ... the global coordinate r is 

completely transformed into the local coordinate ~ from one wave length to another until r--~ oe. 

Since the asymptotic behaviors of the fundamental solutions U~ and P,] are of following forms 

* e- ikr  

(2) 

the shape functions of the displacements of the IBE with two nodes can be assumed as 

1 ( e_,k / ) 2 _  
U = -~r a,, +b"e-'~'r = ,=IZN'(OU' (3) 

where kp, ks are wave numbers of P and S waves respectively; au, bu are coefficients; /V i are displacement 

shape functions. 

From equation(3) and the nodal displacement of the element, the displacement shape function N, 

can be derived as 
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Nl(r) : - ~  - ~l(e-'k,"r=e-'k"re-'l'"r=e -'1''r - ) 

~2 [_e-&,.q 
N2(r) = x/TrA ~' e 

where A is the determinant 
e-ikPq 

A= e-'k ~r2 

-tkt'r "F e -ikpq e-ik"r ) 

e-,k.~r~ 
e-ik.,r2 

(4) 

(5) 

The same shape functions as equation(4) are used for traction approximation since both the 

displacements and the tractions have the same form of asymptotic behavior as shown in equation(2). 

The shape functions are plotted in Fig.3 from which the decaying trigonometric characteristics of the 

functions are evident. 

To obtain the contributions of the infinite boundary elements, the integrations ~reP'NdF and 

a,U" NdF need to be calculated. A scheme of integration is performed from one wave length to another 

in the global coordinate system until the contribution of further wave lengths is negligible. The above 

integrations are assembled into the coefficient matrices H and G of the normal boundary element system. 

Thus, the halfspace surface with decaying tractions can be simulated by BE-IBE coupling system. 

2. Infinite Elements(IEs) with Multi-wave Numbers 

The concept of infinite elements was first presented by Ungless [91 and Bettess [l~ and subsequently 

studied by a number of researchers jIll-j131. Zhang and Zhao [141[151 studied the infinite elements 

comprehensively for simulation of infinite foundations. A review of this element was given by Zhang and 

Wang [161. Herein, an improved type of the IE in compatible with the IBE described above is presented for 

modelling of the layered soil beyond the near field. The innovative point is that it allows P and SV waves 

to propagate within the element. 

In order to have a displacement compatibility with the IBEs, the mapping relationship of the IE is 

depicted in Fig. 4, where r, t and g, r/represent the global and local coordinate system respectively, 

whereas x, y represent the original coordinate system. Assuming that the same mapping functions for IBE 

in equation(I) are again used for IE in infinite r direction and that the linear interpolation is employed for 

finite t direction, the mapping relationship between the original coordinate x, y system and the local ~:, 7/ 

system can be derived as 

x =  l + q x l +  x 2 + A , + ( m - 1 ) 2 ,  cos0 
\ 2 2 " �9 

Y= 2 Yl + 2 Y2 + - -~2 , . .  +(m-1)A,.. sin0 

(6) 

where xl~yl, and x2~y2 are original coordinates of points 1 and 2 respectively; 0 denotes the angle between 
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r and x coordinates. 

With this mapping functions of equation(6), the original x, y coordinates can be mapped into the 

local ~, r/coordinate system from one wave length to another when m-1,2,3 .... 

The same decaying patterns of the displacement shape functions as equation(4) are used for 

attenuation in r direction of infinite elements and have the form 

N, = 1+ q ~ (r); N 2 = 1-  r / ~  (r) 
2 2 

N3 _ 1 - r/N2 (r); N 4 = 1 + q  N2 (r) 
2 2 

(7) 

Thus, the conditions of displacement compatibility between the IBEs and IEs are assured. Since the 

asymptotic behaviors of N i and cW, when r-~ m have the following forms 
c~ 

(1 / 
iV, oc 0 ~rr e-i~ 

(i = 1,2,3,4) (8) 

the stiffness and mass matrices [K] e and [M] e of the infinite elements are convergent when r--~ m. 

The integration for obtaining [K] e, [M] e for the infinite elements is performed in the global 

coordinate system and executed from one wave length to another as done for infinite boundary elements. 

Assembling the contributions of IEs to the corresponding stiffness and mass matrices of the FE, the 

coupling system of FE and IE can be constructed. 

3. FE-BE- IE- IBE  Coup l ing  for Mode l l ing  Soi l -Structure  Interact ion 

The schematic system shown in Fig.5a is a typical soil-structure interaction problem. The seismic 

input waves are propagating upward from the bed rock halfspace underneath the soil layers. The time 

histories of these waves may be obtained by deconvolution technique after the design ground motion is 

specified as free-surface motion on the top of competent foundation material or the outcrop at the site. 

The structure and the near field soil shown in Fig.5b are discretized into finite elements of which the 

linear equivalent model can be applied to the latter. A transition ring of finite elements between the two 

vertical dash lines of Fig.5f may also be set up for better connection of the near field FE region with the 

far field layers and with the halfspace. Beyond the transition zone the soil is discretized into IEs on two 

sides and into BEs-IBEs on the halfspace interface. Thus, the whole system under wave propagation 

shown in Fig.5a can be divided into two subdomains, i.e. the structure and the near field soil with 

interaction traction -Pc (Fig.5b) and remainder of the layers and the halfspace under the wave incidence 

and the traction Pc on the near field boundaries (Fig.5c). Again, the system of Fig.5c can be redivided into 
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the incident wave field of horizontal layers (Fig.5d) and the corresponding scattering field depicted in 

Fig.5e, the latter may be redivided into two subdomains as shown in Figures 5f and 5g. 

The dynamic equation for harmonic problems can be written as 

SU=F (9) 

where U represents the nodal displacement amplitudes; F is the amplitudes of harmonic loads; and S 

denotes the dynamic stiffness matrix. 

First, as shown in Figures 5a, 5b the degrees of freedom of the structure and near field soil are 

divided into interior domain d and the common boundary c, thus the equation(9) can be partitioned as 

follows 

(10) 

in which the nodal forces Fc are transformed from boundary traction Pc, i.e. Fc = -MpPc in which Mp is the 

transformation matrix constructed from the interpolation shape functions. 

Secondly, the transition ring and the remainder of the infinite soil layers can be divided based on 

degrees of freedom associated with c, i and b shown in Figures 5a and 5f and the dynamic equation of 

this subregion can be partitioned as 

t ,~ s,,  s,~ u; '  = (11) 

where superscripts s and f represent the scattering and the free fields; again, F / =  -Mp Pf and 

F~, = -M'pPb, in which Mr', is the transformation matrix of the shape functions of the halfspace boundary. 

Third, for the domain of halfspace with traction Pb shown in Fig.5g, the formulations of coupling 

BEs and IBEs are derived as 

HbUb" = Gh Ph (12) 

where Hb and Gb are the coefficient matrices derived from the halfspace boundaries by coupling BEs and 

IBEs. Premultiplying equation(12) by ' -~ MpG- b yields 

S'Ub = --Fb (13) 
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where S' = M'pGblHb 

Substituting equation (13) into (11) and combining Ub * and U;" as U2~ yields 

(14) 

o r  

in which 

and noting that 

Lu;J  

S'~Uc" = -F~ + F /  (16) 

s'c scc -' = -SceS-~eSec (17) 

U c =U;I +Ui( (18) 

Combining equations(10), (16) and (18) provides the equations for a complete system in the form 

Sod Scc + S'c U~" L - M p P /  - Soy. f (19) 

where Ui! and P/ are the free field displacements and tractions of the layered halfspace shown in Fig.5d 

of which the solutions are available in referance [ 17]. 

By solving equation(19), the displacement fields [Uj UiI] v can be obtained. Then, using the 

relationship of equation(18) the total responses of displacement fields of the structure and the near field 

soil [Uj U~ ]7 are solved. 

4. Equivalent  Linear  Model  for Near  Field Soil I~1 

An approximation of a truly nonlinear soil, the equivalent linear model replaces the nonlinear 

constitutive relation with a secant modulus and material damping values selected to be compatible with 

the average shear strains induced during the earthquake motion. The parameters required for the analysis 

are low strain shear modulus and Poisson's ratio, material damping values, and their variations with strain 

level. 

The equivalent average shear strain ?'ejj is expressed as 

7elr = 0.65 max 17 max (20)  
t 

in which max denotes the maximum value for time history; Y max  represents the strain history in the 
t 

plane of maximum shear strain; 0.65 is an empirical coefficient. 
The Root Mean Square method is employed to obtain the maximum shear strain max 7m~l, and the 

l 

procedure is summarized as follows" 

Considering the relationship 
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7 "2 max = ( ~ ' x - g y ) 2 + y 2 y  (21) 

yields RMS 2 ( y  max ) m R M S  2 (Ex - Ey ) -k- R M S  2 (~,' xy ) (22) 

where c x, G ,  Y xy are strain components in x, y coordinate system. The right hand side of (22) can be 

obtained using Parseval equation, i.e. 

1 N / 2  1 ~ 12 
RMSZ ( f ) =  ,=Z l 2,lo (23) 

in which F~ (s=0,1, ... N/2) are the amplitude coefficients of the following Fourier's Series" 

N / 2  

f ( t )  = Re Z F,. exp(ico,t) (24) 
s=0 

From equation (23) and (24) yields 
1 ~  2 2 2 

e M S 2  (Ymax) = -2 ,=0( E,.I + I/',l (25) 

in which Es and F, are the amplitudes of the Forier's Series of ( c  x - C y )  and 7"xy respectively and they 

can be calculated from displacement amplitude [G] in the frequency domain. 

The maximum shear strain can be approximately expressed as 

max I)'maxl ~ C'RMS(rmax) (26) 

where C denotes a coefficient of the shear strain ratio which may be derived using the same definition as 

the ratio for the ground motion, i.e. 

C = max y ( t ) ] /RMS(p)  (27) 

where j)(t) is the control motion of the design earthquake. Combining the equations (20), (26) and (27) 

provides the equation for the equivalent average shear strains in the form 

?'e~ ~ 0.65 RMS(rmax) 
RMS(j)) max Ij)(t)l (28) 

The procedure of the linear equivalent method includes the following steps: First, using the low 
strain shear modulus Go and damping ratio ~:o (i.e. initial values) the linear strains c x, Cy,7"x~ for each 

frequency component co, are calculated, and the squares of the amplitudes ]E,.I 2 and I/',12 can be obtained; 
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Secondly, using equation (25) for RMS (Ymax) the first approximation of Ymax for each element can be 

solved by equation(28); Third, using the current values of Ymax, new values of shear modulus Gl(y~ff ) 

and the damping ratios ~l (7 'd)  for each element can be found from the variation curves of G(y ) and 

~'(7' ). These new values of Gl(7"d ) and ~'~ (Yd)  are subsequently used as new parameters for further 

iteration. Repeat the same process until the errors between G~+l(Yeff ) and G~(7"ejf ), and ~i+1 (7"~ff) and 

~'i(7'd) are within a predetermined tolerance. Thus, the values G~+l(Y4j) and ~'i+~ (?'eJ~) are selected to 

be the equivalent linear modulus and damping ratios for nonlinear soil. The corresponding response of the 

structure or the free field motions can be obtained. Two important points are noteworthy in practical 

computation. 

(1) After a preliminary convergence of the iteration for the near field soil, the material parameters G 

and ~ of the finite elements for transition zone and the infinite elements for the far field are changed 

accordingly to be the same as that of the neighboring finite elements of the near field. Additional 

iterations are needed for final convergence. 

(2) The free field solution of the layers overlying the halfspace Uf and Pf in Fig.5d is also repeated 

accordingly using the updated values of the parameters. 

Numerical Verification and Application 

1. Free Field Response  o f  a Soil Layer  Over ly ing  on Elast ic Hal fspace  

The example shown inFigure 6 is a linear soil layer with linear variation of increasing stiffness with 

depth. The velocity of S wave at the bottom of the layer is as five times as that of the surface. Underlying 

is a bed rock halfspace with elastic property. The same problem was solved analytically by Wolf [lvl. The 

following nondimensional parameters are defined 

/ ' 

in which C R and C L s s are S wave velocities for bed rock and soil layer(average) respectively; pR and p/. 
- -  m 

are mass density respectively; C s, p are ratios of velocity, and mass density respectively; a0 is the 

nondimensional frequency; d is the depth of the soil layer. Also, the average velocity of the soil layer is 

defined as 
d 

In this analysis, C s=2.012; ~=1.0; r/R=r/L=0.1; v R= v L =0.33 are assumed, in which r/ and vare 

viscous damping and Poisson's ratio respectively. 

As shown in Fig.6a, the propagating waves with amplitudes A~ and AsRv represent the incident P 

and SV waves from rock with incident angles of gt~ and ~ v  respectively; ut and vt are horizontal and 

vertical displacement responses on the top of the soil layer. The definition of other symbols is described in 

Fig.6a. 
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The soil medium is divided into six layers as shown in Fig.6b. 24 four-node finite elements and 12 

infinite elements are used for discretization of the layers, while the bed rock halfspace is discretized into 4 

BEs and 2 IBEs. The region of FEs with shadow in Fig.6b is selected for the solution domain of the 

near field soil, while the surrounding ring of FEs is the transition zone for better connection with the far 

field layers of IEs and the BE-IBE halfspace. The comparison of magnification factors of the responses 

between the present results and that given by Wolt f17] is shown in Figures 7 and 8. The agreement 

between the two methods is excellent. Thus, the high accuracy of the presented model is verified. 

2. The Response  o f  a Soi l -Structure  Interact ion Sys tem 

Shown in Fig.9 is a typical test example of soil-structure interaction system given in reference [2]. 

Lysmer et. al. studied this example for verification of the computer program FLUSH. Herein, the structure 

is modelled as beam elements and the embeded foundation of concrete is simulated as solid finite 

elements. The soil profile is assumed to have 8 layers of which the first two are clay and the rest are sand. 

The soil layers within the dash line region denoted by elements Ai and Di (i=1,2,-.. 7) are selected as the 

near field of equivalent linear soil region. As mentioned previously, two stages of interation need to be set 

up. After a preliminary convergence of the iteration is obtained, the modulus and damping ratios of the 

transition and infinite elements B,, C~ and E, ,F, are changed to be the same as that of elements A, and D, 

respectively. Then, additional iterations are needed for final convergence. This technique ensures the 

compatibility of parameters at the far field with that of the equivalent linear region while keeping the 

computation price at a reasonable level. 

The typical normalized modulus and damping ratios versus shear strains provided by Seed I~8! are 

used in the analysis. 

In order to compare the present results with that obtained by FLUSH, a high value of modulus as 10 4 

times as that of the neighboring soil layer is assumed for the bed rock halfspace. This high value of 

stiffness is equivalent to the rigid boundary assumption restricted in FLUSH. The horizontal ground 

motion with a maximum acceleration of 0.2g shown in Fig.10 is assumed to be acting at the rigid 

boundary for FLUSH. For present analysis, one half of the above ground motion history is assumed as SV 

waves travelling from the bed rock. Thus, the earthguake input are approximately equivalent for the two 

methods. To demonstrate the effects of far field on the response, a study of boundary truncation by 

eliminating the IEs or the transmitting boundaries(TBs) of the two methods respectively is also performed. 

The comparisons of responses of the structure and the soil layer between the two methods are shown 

in Figures 11 and 12. The agreement between the two is seen to be satisfactory for both cases of with and 

without IEs or transmitting boundaries(TBs). It is evident that the truncation of boundaries gives a 

significantly larger response than the results of considering the far field effects. It can be concluded that 

the radiation damping is an important factor affecting the responses. 

3. Effects o f  Bed Rock  Stiffness and Non-ver t ica l  Wave  Input  

In order to examine the effects of the bed rock stiffness on the response of the structure and the soil, 

'a series of different ratios of bed rock modulus are assumed, i.e. (E,/Es)=1,2,4,6,9, where Er and Es are 
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modulus of the bed rock and the neighboring soil layer respectively. Figures 13 and 14 show the 

acceleration distribution along the depth of the soil and the response spectra at the soil surface and the top 

of the structure. 

The results with (E#'Es)=104 for rigid boundary are also included in the Figures for comparison. It 

appears that the response increases with the increase of rigidity of the bed rock. The most significant 

difference is seen at the bottom of the layers between the case of (E,/Es) =1.0 and the other ratios. This 

fact indicates the effects of wave amplification are significant at the interface between the bed rock and 

the soil layers. For the current example the ratio of (E#'E~) =9.0 can be viewed as a rigid base condition. 

Further study is to examine the influences of non-vertical wave input on the response. SV waves 

with different incident angles: i.e. 0=0 ~ , 30 ~ , 60 ~ are assumed as the input. (E,/E~) =1.0 is 

assumed in this example. The results are shown in Figures 15 and 16. Observations arising from the 

results are summarized as follows: (1) When SV wave incidence is vertical (i.e. 0=0 ~ ) the dominant 

responses in the soil and the structure are in horizontal, and the vertical responses are insignificant. (2) 

When SV wave incidence is non-vertical, both horizontal and vertical responses are important. For 

example, when 0=30 ~ , the horizontal responses are smaller than the case of 0=0 ~ , but the vertical 

responses become more significant. In addition, the rocking motion produced from the phase difference 

due to inclined wave incidence may also become significant. Therefore, the resultant effects of non- 

vertical wave input may or may not increase in foundation motion and structural response depending on 

specific soil conditions and characteristics of the input waves. It is suggested that the input waves with 

different incident angles need to be considered for obtaining the critical response for analysis. 

Conclusions 

In aseismic design and analysis of nuclear structures founded on sites of layered soil deposit, it is 

necessary to consider the following aspects in SSI analysis: (1) infinite and layer characteristics; 

(2)nonlinear behaviors of the soft soil; (3)different input mechanism of earthquake waves from the bed 

rock. The objective of this study is to develop a coupling method of FE-BE-IE-IBE to satisfy the above 

requirements in an approximate manner. Based on the previous research on IEs and IBEs, some 

improvements on these special elements are made for purpose of intercoupling. This includes 

development of a four-node IE capable of transporting multi-waves and a type of IBE with traction 

attenuation. The FE-IE coupling is then used for simulation of infinite layered soil, and BE-IBE coupling 

is used to discretize the bed rock halfspace. Thus, a complete model of structure-soil-bed rock system can 

be constructed. 

With regard to the nonlinearity of soil, the equivalent linear approach is employed allowing the 

system to be solved in the frequency domain. A substructuring technique is also adopted to restrict the 

solution domain to the near field soil and the computational efforts can be reduced. The applicability and 

the accuracy of the method has been verified by comparing the present results of a test example with that 
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by FLUSH program. Studies on the effects of relative stiffness of the bed rock halfspace and of different 

incident earthquake waves are also conducted. This method is being employed for analysis of a nuclear 

plant built on deep soft soil and the results may be reported in the near future. 
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Fig. 5 Schematic representation of SSI 
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F i g .  7 Comparison of free field response of soil layer 
under P wave incidence 
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Fig. 9 Soil-structure interaction system 
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A H Y B R I D  P R O C E D U R E  OF D I S T I N C T  - B O U N D A R Y  
E L E M E N T  F O R  D I S C R E T E  R O C K  D Y N A M I C  A N A L Y S I S  

Jin Feng, Wang Guanglun and Zhang Chuhan 
(Tsinghua University, Beijing, China, 100084) 

Abstract 

A hybrid procedure of distinct element- time domain boundary element for discrete rock dynamics 
analysis is presented, in which the boundary element domain is embedded into DEM procedure as a distinct 
block. Combining the advantages of DEM and BEM, this coupling model not only can model the dynamic 
behaviour of discrete rock medium, but also can simulate the radiation damping of far field and non-uniform 
input of dynamic loading such as earthquake or blasting wave. A simple problem is studied to verify the 
presented procedure. 

Introduction 

Distinct element method(DEM) is a useful tool to study static and dynamic response and stability of 
discrete rocky tunnels or slopes. Since the emergence of the first discrete element model, i.e. distinct element 
method (DEM) proposed by Cundall [1] in the 1970's, significant developments have taken place both in 
numerical simulation and engineering applications. Fully deformable distinct element methods [2'3'4] for two- 
and three-dimensional problems have been reported, which are gaining increasingly more users in rock 
mechanics and engineering. Meanwhile, some other numerical techniques for simulating discontinuous 
medium have been presented. For example, a discontinuous deformation analysis method (DDA) has been 
proposed by Shi and Goodman [5'6], who used strain mode superposition rather than the finite difference 
scheme of DEM to account for element deformation. Another discrete element model proposed by Williams 
and Mustoe [7] uses orthogonal modes to approximate the deformation patterns of block elements, in which 
only a few lower modes are needed to describe complex deformation. On the other hand to simulate granular 
material, Ghaboussi et al. [8] presented a special rigid discrete element. Additionally, as applications of DEM 
in dynamic analysis of rocky slopes and structures, Iwashita and Hakuno [13] studied the dynamic failure 
process of a cliff using the extended DEM, while Meguro et al. [14] also studied the seismic collapse of 
concrete structures by modelling the structure as a system comprising numerous discrete particles. 

One outstanding feature of DEM is its ability to consider the slip and separation behaviours of contact 
joints as well as the deformation of solid rock, in which any constitutive law for the material can be 
implemented. The second important feature of DEM is its inherent suitability for non-linear dynamic 
problems including earthquake shaking and rock blasting. This is due to its explicit time marching scheme 
for solving the dynamic equilibrium equations and its incremental formulation of the constitutive behaviour 
in response to stress increments, where linear and static problems are viewed as special cases of the solution. 

In coupling the DEM with another numerical scheme, Lorig et al. [9] developed a hybrid distinct- 
boundary element system for jointed - intact rock interaction. Huang and Ma [l~ presented a couple procedure 
of distinct element and boundary element which simulate a granular soil deposit as a two-dimensional, 
circular disk assembly. They used this hybrid model to study the behaviour of granular materials under cone 
penetration tests. But the above two hybrid distinct-boundary element procedures are only for static analysis. 
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In the context of dynamic problems, to simulate the effects of radiation damping of far field, hybrid 
schemes have significant advantages. Lemos [~l] developed a dynamic DEM program for studying seismic 
response of a dam-foundation system. Non-reflecting lateral flee-field boundaries are imposed to simulate 
radiation effects. Similarly, Dowding et al. [12'131 studied the dynamic response of an underground cavern 
using a model for coupling near-cavern rigid blocks with surrounding finite elements. The far-field effects 
were considered by introducing a viscous boundary, and the results were compared with a physical model 
test. 

The dynamic boundary element method(BEM) has the advantages of simplicity to model far field, as the 
radiation conditions can be satisfied in the analytical fundamental solutions. In the early of 1980s, two 
approaches of two-dimensional dynamic BEM employing time domain fundamental solutions for transient 
elastodynamics were developed. Niwa et al. t~61 solved two-dimensional dynamic problems utilising a 
simplified three-dimensional time domain fundamental solution. Mansur and Brebbia t17'~8] presented a BEM 
procedure based on two-dimensional fundamental solutions. They systematically studied the integral 
techniques and singularity of each term of fundamental solutions and concluded that the accuracy and 
efficiency of the time domain BEM can be enhanced by analytical integration of the time domain integral 
and the singularity can be treated only at the first time step. The numerical results by these authors are very 
encouraging. Rice and Sadd I191 developed a time domain BEM for problems with a regular free surface 
without discretization of the surface by utilising time domain fundamental solutions of the half-plane. Jin et 
al. L2~ developed a simplified procedure to simulate the effects of the material damping in time domain BEM, 
which employs time domain fundamental solutions of linear elastic medium. As applications of the time 
domain BEM, some simple two- and three-dimensional soil-structure interaction problems have been studied 
by Spyrakos and Beskos [211, and Karabalis and Beskos [221. 

This paper presents a hybrid scheme of DEM and time domain BEM, which can study the effects of 
radiation damping of far field and non-uniform input mechanism on discontinuous medium with continuous 
far field. To the authors' knowledge, there is little work to study these influences. At first, the basic outline 
of distinct element method for deformable blocks and time domain boundary element method with material 
damping are reviewed. Then, the coupling procedure is presented and a simple benchmark problem is studied 
to verify its validation. 

Distinct element method 

As shown in Figure 1 (a), the system 
is divided into blocks by contact joints 
and the interior region of the blocks are 
discretized into triangular elements 
which are assumed to be fully 
deformable. The geometry of the joints 
can be specified individually or 
stochastically generated according to 
statistical data from field measurements. 

It is assumed that normal and shear 
springs with stiffness kn and ks, 
respectively, represent the force- 
displacement relationship of the joints. 
The latter are assumed to exhibit zero 
tension in the normal direction and 
follow Coulomb's friction law for shear, 
i.e. 

force Fh ~ "  
Prescribed 

- 2 v  1 
Prescribed ~ ~ ' - ~  

A r  ~_._ % [~__.motion ub, ub 

(a) System (b) Detail A 

Fig. 1 Deformable DEM system 



315 

Fe, = k,u,, if u, < O 
Fe,=O if u,>O 

Fc.~. = k,u,. if [Fe.,. [ < f [F~,[ + eL (1) 

Fc~, = sign(u,.)(f ]Fcn [+ cL) if [Fc, > f [Fc, [+ cL 

where Fcn and Fcs are, respectively, the normal and tangential components of the contact force vector 
Fc; kn and ks represent the normal and shear stiffness of the joints; Un and Us are the corresponding 
components of the relative joint displacement;f c are friction and cohesion coefficients of the joint material; 
and L denotes the length of the contact boundary. 

The technique by Cundall to determine the deformation of the interior region of blocks employs 
triangular finite difference elements of the constant-strain type. As shown in Figure 1 (b), the grid point N is 
a common node surrounded by elements B1 B2 ... Bn. The inertial mass of each element is assumed to be 
equally distributed to the three vertices of the element yielding a mass of the polygon area confined by F1 be 
lumped at node N. In order to maintain consistency in computing inertial and elastic forces, the boundary F1 
should also be used as the integration route for elastic stresses. Since constant strain elements are assumed, 
the following equation defines the force vector Fe at node N due to elastic deformation of the blocks: 

F e : Icron., d s :  Icron. ,ds=s k i,] : 1,2 
F, F k = l  (2) 

where cr/j" is the stress tensor in the element; nj denotes the unit normal vector of the integration 
boundary; F1 and F are, respectively, the polygon boundaries denoted by dashed and solid lines; and n 
represents the number of boundary segments surrounding node N. 

In DEM solutions, damping is regarded as the dissipater of vibration energy for both static and dynamic 
loading. In both cases, mass proportional damping and stiffness proportional damping may be used 
separately or in combination. In the dynamic case, Rayleigh damping for continuous media yields the 
following equations: 

where Fdm, Fdk are damping 
forces due to mass and stiffness, 
respectively; m represents the 

lumped mass of the node; a, fl 
represent corresponding damping 
constants; and AF denotes the 
incremental total force vector 
including joint contact and 
internal deformation. Empirical 
values of damping ratios can be 

assumed to determine a and ft. 
The solution scheme of DEM 

is illustrated briefly in Figure 2. 
For each time step At, the 
incremental forces acting at each 
node due to deformation of the 
surrounding contact joints and the 
internal deformation of the 
material are determined from 
incremental joint displacements 

F = -  c r m i t  
dm 

Fd~ ~ . v - -  (3) 
At 

BEM 
Eqs (15) [ 

/ \ 

~ , -- / -  -_--:7_-: _-~.-~ Prescribed ' /" Urescrioed "N [Force-motion ] \  //"] .." / { force ] a [ relationship[ \ ~ { m,ouon ) 
F.b J / [ Eqs (1)(2)(3) [ k ~ ~.b,~'b j 

Di= 

] Dynamic equilibrium ] 
Equation Eq. (5) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fig. 2 Schemetic flow chart of DE-BE hybrid 'procrdure 
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and intemal strains by constitutive relationships shown in the upper box of Figure 2. The summation of the 
forces F goes to the lower box, where the dynamic equilibrium equations are applied, namely: 

mfi + a mil = F + m g (4) 
where, mg is gravity force. 

By employing the central difference method for the acceleration on the left hand side of equation (4), 
one obtains 

u(t + Ar / 2) = ( z~(t + Ar / 2 ) (1 -aAr  / 2) + (F  / m + g) At)  / (1 + a Ar / 2) (5) 
The new velocities and displacements, hence the new coordinates, are updated at each time step by 

equation (5). Note that the damping force in equation (5) is centred at time r. 

Time domain boundary element method with damping 

Under zero initial conditions, the time domain boundary integral equation for a two-dimensional linear 
elastic body without body force is given by 

where a;fl= 1, 2; up,pz are, respectively, the displacement and traction vectors; u :z, P:z represent the 

corresponding displacement and traction impulse fundamental solutions and c~p is a constant related to the 

boundary geometry at source point S. Q represents the field point and F denotes the boundary of the two- 
dimensional body. 

Integrating by parts and considering zero initial conditions lead to the following alternative form of 
boundary integral equation Eq. (6): 

%zUz(S,t) = ~ [~U*~,(Q,t;S,r)p,(Q,t)dF]dr+ ~ [Ivs (7) 

�9 , , 

where vp is the velocity vector and U~p,Vap, Ps denote fundamental solutions whose expressions can 
be found in Reference [18]. 

Discretizing the boundary into boundary elements and assuming that velocities and tractions remain 
constant over time increment At transform the integrals of Eq. (7) into the summations given below: 

~ [ ~ P~fl(Q,t;S,r)ufl(Q,t)elF] dr= ~ [D]M-m{u} m 
m=O 

[ 1 Z ~ (8) 
m=O 

M 

~ [ IU*~,(Q't;S'r) P,(O,t)dF]dr=m~_ ~ [G]M-'{u} m 

where t = MAt; D, E, G are coefficient matrices and superscripts m and M-m indicate that the variable 
relates to the corresponding time step. 

A time domain boundary element matrix equation for time step M can established as follows: 
[H]~ u} M : [G]0 {p} M + { B} M (9) 

where 

[H] ~ = [C] + [H'] ~ 
M-1 

{B} M : Z ([GIM-m{p}m--[ITIM-'{U} m) 
m=l 

[H']" = [D]"+ [El" n =0,1 .... M 

(10) 



317 

in which C is a matrix related to the shape of the boundary and vector B is known from previous 
calculation. 

When proportional decay damping model applied, boundary integral equation Eq. (2) takes the 
following modified form: t20j 

capup(S,t)- ~[ ~U*~p(p,t;S,r)pp(p,t)dF' (1-rl)(t-O/aTdr 

+ ~[ ~ V:p(p,t;S,r)vp(O,t)dF] (1- rl) ('-O/zTdr (11) 

Where T is a characteristic time and the damping coefficient of proportional decay damping t2~ 
r/= 1 - exp(-4~r~:) (12) 

Where ~ is the damping ratio of BEM domain. 

When material damPing is sufficiently small, the assumption that (1- q)~t-o/2r remains constant over a 
m m m time increment At is justified. Accordingly, Uflj,pflj should be modified to upj(1-77) (M-m)at/zr and 

pamj(1-rl) (M-m)a'/2~, respectively. This results in the boundary element equation with proportional decay 

damping possessing the same form as Eq.(9), but with one term changed in order to incorporate proportional 
decay damping, namely the term B M is modified to 

M-1 

{B} M = Z ([G]M-m{P} m --[H']M-m{u} m) (1- 17) (M-m)At/2T ( 1 3 )  

m=l 

H y b r i d  procedure of D E M -  B E M  

The domain shown in Fig. 3 can be 
separated into two sub-domain: (1) a discrete 
elastic blocky domain modelled by DEM and 
(2) an infinite or semi-infinite homogeneous 
continuous elastic domain modelled by BEM, 
where the vibration energy in the DEM domain 
will transmit to infinite or the earthquake 
energy will propagate and input into the 
system. 

For assurance of compatibility, a block, 
named interface block, is set along the interface 
between the two domains. The boundary grid 

omain 
Interface Block~ 

Fig. 3 DE-BE hybrid system 

points along the interface of the interface block is called interface grid points. After the length of boundary 
element chosen, some interface grid points, whose distance between each other is approximate the chosen 
length of boundary element, are set to be the nodes of boundary element. So, the displacement of these 
interface grid points is same as that of boundary element nodes. Other interface grid points will be 
approximate consistent with BEM domain. But the interface force is distributed to all interface grid points 
linearly. 

Employing the boundary conditions of free surface, condense BEM Eq. (9) to the interface, one can 
obtain 

[H I ]{u, )M = [G, ]{p, }M * {B, }M (14) 

where, ui, PI denote the displacement and traction vector on the interface, respectively; Blis a vector whose 
components are all known; HI and GI are coefficient matrixes. Eq. (13) can be transformed into 

{FI}=[AII{uI}M+{CI} M (15) 
where, FI is the interface force vector of interface grid points and 
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[A, ]= [RI[G, ]-' [HI l {C, }a4 = -[R][G, ]-1 {B I }M (16) 

where, R is the transform matrix from traction of BEM to interface force. 
Let the time increment At of BEM to be Ktimes of the time increment ArofDEM, namely, At = KAr. In 

a time increment At, The relation between interface force FI and the displacement uI as shown in Eq. 14 can 
be assumed as identity. Then, the whole BEM domain can be treated as a DEM block in a time increment At. 

Under the assumption of constant velocity in a At, the displacements of interface nodes 
M M-1 M - I  K 

{u,} ={u,} +({uk}-{u,} ) ~  k=1,2 .... K (17) 

where, u k is the displacement vector of grid point connected with corresponding BEM nodes. 
When k = K, the traction vector of BEM pM will be updated as follow 

K 

~-"~ [R]-' {F,' } (18> 
{ p , } M = k = ,  K 

Then, B M of BEM is updated. 
As shown in Fig. 2, for the interface grid points, the interface force F1 can determined by Eq. (15). So, 

the BEM domain can be embedded into the DEM procedure as a distinct block. 

Verification of coupling technique 

To verify the validation of proposed hybrid procedure, a column comprised of 4 rock blocks, as shown 
in Fig. 4, is studied and the dynamic displacement histories of point A, B, C and D are compared with that 
obtained by time domain BEM. The top block is discretized by 16 boundary elements. The bottom one is 
modelled by a rigid block and is fixed. The other two blocks are simulated by discrete deformable blocks. A 
uniform distributed step load with amplitude ofp = 1MN/m 2 is applied at the top boundary. The Young's 
module E = 3 • 10~~ density p = 2000 kg/m3,Poisson's ratio v = 0, damping ratio ~ = 0.1, kn = ks = 
10~N/m,f= 1.18 and c = 0.1MPa. The displacement histories of point A, B, C and D are calculated by time 
domain BEM and the hybrid scheme of distinct element and time domain boundary element, as shown in Fig. 
5. 

Because in the case of analysis the interfaces between blocks keeps contact and the stiffness of contact 
springs is big enough, the dynamic behaviour of block system which is simulated by the hybrid scheme is 
just as same as that of a continuous column modelled by TDBEM. The displacements of all nodes reach their 
corresponding static one after a few cycles of oscillation. The displacement histories of points calculated by 
the two method concord with each other very well. It means that the deformable distinct element method can 
simulate the wave propagation behaviour of blocks and the hybrid scheme works well. 

Conclusion 

A hybrid procedure of dynamic boundary element in time domain and deformable distinct element is 
presented. Comparison of the results of time domain boundary element and that of the presented hybrid 
procedure shows that the coupling procedure works well. 



319 

P 

t B E  ' 

D o m a i n  " 

B i 

D E  

20[ 
1.5 �9 Time domain BEM 

~,  �9 Hybrid procedure 

i 1 . 0  " = - ' -  - - -  - - - A  

0.5 

0% ' ' 11o ' ' 2 : 0  ' 
Time (s) 

Fig. 4 Column studied Fig. 5 Comparison of TDBEM and hybrid procedure 
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