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Preface 

When we wrote this book it was, admittedly, flrst of all for the sake of our 
own enjoyment and enlightenment. We will, however, add our sincerely meant 
(but rather traditional) hope that it will prove interesting to graduate students, 
to colleagues and to anyone else, who will bother to read it. 

The book was written as a joint effort by a theoretically inclined population 
geneticist and an experimental ecologist who share opinions on what is interesting 
in the fleld of theoretical ecology. While we believe that qualifled natural history 
is of indisputable intrinsic value, we think that ecology is a natural science which 
should have a theoretical framework. On the other hand, theoretical ecology must 
draw its inspiration from nature and yield results which give insight into the 
flndings of the naturalist and inspire him to make new observations and 
experiments. Without this relationship between fleld biology and theory, mathe­
matical ecology may become a discipline totally divorced from biology and 
solve-albeit interesting-mathematical problems without signiflcance for ecology. 
Therefore, in addition to theoretical population biology (including some original 
models) the book also discusses observational data from nature to show how the 
theoretical models give new insight and how observations give rise to new 
theoretical thought. While no book on ecology could do without the mention 
of the hare-lynx example (and ours is, therefore, no exception) we have tried to 
bring new examples mainly derived from one of the authors' fleld of experience: 
microbial ecology and marine biology. 

Weare aware that the book does not cover all important or even interesting 
aspects of theoretical ecology. In addition to this lack of completeness we might 
add two other aspects not covered. We do not treat realistic population models 
of particular systems. While such models are important, not least from a 
practical point of view (e.g. pest control, flshery science and forestry) we do not 
feel that models with little generality belong within the framework of this book. 
The book does not treat what is usually referred to as "systems ecology", a 
subject which more often than not has provided excuses for collecting large 
numbers of trivial data and for substituting insight with computer outputs which 
resemble the above-mentioned data. 

Ecology is a relatively new science and it deals with very complex systems. 
It has, therefore, sometimes suffered from lack of stringency on the part of its 
students. This situation has not been improved by the recent tendency of ecology 
to become a kind of public ideology. The question of stability and diversity, 
thoroughly discussed and analyzed by May (1973a), examplifles this. What May 
calls the "conventional> complexity begets stability < wisdom" has in many minds 
ideological undertones implying a special kind of perfection of nature and how 
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man spoils it all. The word "strategy" is usually a harmless synonym for 
adaptation when used in connection with single species; the term "ecosystem 
strategy" is a meaningless phrase explaining nothing (as if the members of an 
ecosystem by mutual agreement decided to ration phosphorus or to feed the pill 
to "K-strategists" in order to retain community stability). We have throughout 
the book, to the best of our ability, tried to be rigorous in our choice of terms. 
We believe that properties of biological communities should be explained as the 
result of the properties of single populations shaped by natural selection and 
that selection acts through individual fitness. 

One of our original objectives was, if not to integrate, then to demonstrate the 
connection between population genetics and population ecology. This idea is not 
new, and as with previous attempts we have not been fully successful. Most 
elementary textbooks which attempt to integrate the two subjects have in fact 
resulted in collecting separate chapters on the two fields within one book. With 
respect to experimental and field studies of populations, there are unfortunately 
not many examples to draw on yet. The school of "ecological genetics" is mostly 
genetics and the ecology is not very sophisticated. Most contributions to the 
unification of genetics and ecology by other workers consist mainly of studies 
on isozyme patterns in relation to environmental gradients; the genetical substance 
of these studies is rarely significant. As an example of a recent successful attempt 
to study ecological genetics in the field, the reader is referred to Volume 6 in this 
series (Stern and Roche, 1974). 

On the theoretical side many ecologists have recognized the evolutionary 
significance of ecology and thus the connection to genetics. However, their models 
are usually devoid of sex, that is their alleles or genotypes behave like distinct 
species in models of competition. So Mendel and Hardy-Weinberg are excluded 
and with them the whole basis of population genetics (and the realism of the 
models as well when treating outbreeding species). Population geneticists, on the 
other hand, have largely ignored absolute population sizes in their models. Since 
ecologists devote most of their lives to studying population sizes, the starting 
point has not been too hopeful. Recently, however, several workers have 
contributed to the unification of population genetics and ecology with respect 
to the theory of density dependent selection and the evolution of the niche; 
this work is discussed together with a few original contributions in Chapters 1 
and 3. 

The structure of the book is as follows. In Chapter 1 we discuss aspects of 
population growth and fitness and we explore different models of density­
dependent growth and density-dependent selection. Finally we give a critical 
discussion on how the concept of "r- and K-selection" has been used for 
describing the properties of real populations. 

In Chapter 2 we explore different models of interspecific interactions and 
discuss the stability of multispecies systems with competitive, mutualistic and 
prey-predator interactions. 

In Chapter 3 we discuss the concept of the niche and limiting similarity. This 
chapter is written with the conviction that the theory of niche packing and 
limiting similarity is one of the most important achievements of theoretical 
ecology and we discuss evidence from nature in some detail. 
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In Chapter 4 we discuss models of geographically structured populations and 
the significance of migration-extinction equilibria. The last section of the chapter 
is devoted to the theory of island biogeography which, together with the theory 
of limiting similarity, constitutes the most important component of a unifying 
theory of ecology so far achieved. 

Finally, in Chapter 5, we try to bring the theories discussed in this book in 
context with a spectrum of other ideas and theories pertaining to the community 
concept. 

Within some of the chapters a few sections only describe the mathematical 
derivation of some expressions. Also in some places mathematical techniques 
usually not mastered by biologists are applied. Such sections are printed with 
small type; they are not necessary for a general understanding of the book or the 
models they describe. 
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and Genetics, University of Aarhus in 1974-75. These seminars were attended not 
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of the niche), Jorgen Hylleberg (marine bottom communities), Niels Keiding 
(stochastic extinction of populations), Hans H. Lassen (the theory of island 
biogeography), and Ebbe Thue Poulsen (the model on density dependent growth 
described in Chapter 1; this model will also be published separately). Timothy 
Prout contributed specifically in clarifying our ideas on density dependent 
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thinking on nearly all the topics treated in this book. 
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a series of seminars held by Jonathan Roughgarden at Stanford; special gratitude 
for this inspiration is expressed here. 

Finally we want to acknowledge the careful reviews of this book by Werner 
Fenchel and by Niels Keiding who helped to clarify our minds on many of the 
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1. Population Growth and Fitness 

The principal variable in any population ecological model is the population 
size(s) of the organism(s) under investigation within the habitat or geographical 
area of interest. The size of a specific population may be measured in numerous 
units which are more or less equivalent. An obvious unit to consider is the 
individual organism, and the population size is then expressed as the number of 
individuals in the population or as the density of individuals within the area of 
investigation. This approach is well suited for the description of populations of 
most animals, whereas individual counts may cause problems in some species 
of plants. Alternatively, we may measure the population size in units of biomass, 
i.e., the weight or energy content. 

These two ways of keeping account of the population will in many organisms 
be equivalent: given the size distribution of the individuals in the population, 
transformations from number of individuals to biomass and back are possible. 
In the following, we will use the general term size, and by that refer to either of 
the two basic measurements or to transformations thereof. 

In this chapter we will present a discussion of the simplest models which 
describe the growth and regulation of single species populations without reference 
to the species possibly interacting with other species in the habitat. We will also 
discuss some simple models allowing the basic parameters for the growth and 
regulation of the population to be shaped by natural selection. 

1.1 Density-Regulated Population Growth 

A theory for population growth and regulation was essentially initiated by 
the observation by Malthus (1798) that if one considers population growth as a 
result of the reproduction characteristics of individuals, then populations either 
grow indefinitely with a constant doubling time or they vanish. According to 
Malthus the only possibility for a constant or even for a limited, nonzero 
population size is that the initial population size is conserved through time. The 
rationale behind Malthus' model is that the individuals of the population are 
considered to be identical and independent and they are considered to die off 
at a constant rate d and to reproduce at a constant rate b. If the population is 
assumed to be so large that the population size may be measured by a continuous 
variable x(t) through time, then the model may be stated. 

dx/dt= (b - d)x (1.1) 
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which integrates to 

x(t) = Xo exp [(b - d)t] (1.2) 

where Xo is the initial population size at time zero. The birth and death rates are 
connected in the model such that the population behavior is completely described 
by the parameter r = b - d; r is referred to as the Malthusian parameter, the 
intrinsic rate of increase, the reproduction potential or the unlimited growth rate. 
From Eq. (1.2) it appears that the population grows infinitely if r > 0, decreases 
to a vanishingly small size if r<O, and conserves the size Xo for r=O. Neither of 
these results are general characteristics of natural populations, and at least the 
unlimited growth is obviously impossible for any extended period of time. The 
growth of natural populations is thus inadequately described by the model. 

Malthus' model of population growth has been the reference model of 
demography; extended analysis has shown that the prediction of the model rests 
on the assumption of independent life and reproduction of the individuals. Thus, 
population limitation and stability must be the result of inhibitory interactions 
between the individuals in the population at high densities. 

The simplest possible model of density regulation is the logistic model for 
population growth (Verhulst, 1838; Pearl and Reed, 1920). The model assumes 
that the reproductive rate per individual decreases linearly with population 
size, i.e., 

dx/dt=rx(K-x)/K. (1.3) 

The two constants may be interpreted as (1) the reproduction potential, r (assumed 
positive), of an individual in the absence of inhibition from other individuals, i.e., 
the population growth rate at low densities, and (2) the carrying capacity, K, 
of the environment, i.e., the upper limit of the population size that allows growth. 

Equation (1.3) integrates by observing that 

d(1/x-1/K)/dt( = -x- 2dx/dt) = -r(1/x-1/K) 

and, therefore, 

1/x - 1/ K = (1/xo -1/ K) exp( - rt) 

where Xo is the population size at time zero. This rearranges to 

x(t) = [Kxo exp(rt)]/[(K - xo) + Xo exp(rt)J . (1.4) 

For relatively small initial population sizes (i.e., small xo/K) we get approximately 
exponential growth, i.e., 

x ~ Xo exp(rt) 
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Fig. 1. The growth of a population of Hydra in a mixed culture of freshwater organisms 
and a logistic curve fitted to the data. (Redrawn from Bick, 1964) 

and after some time we get convergence of x to K at an exponential rate, i.e., 

IK - xl ~ (const.) exp( - rt) 

(see Fig. 1). The population will thus stabilize at the size K. 
The model as a description of a natural population, rests on a range of 

assumptions about the life and death of the individuals and about the inter­
actions between the individuals. Among these assumptions may be mentioned 
the following: 

1. The response in the multiplication rate as function of population size is 
instantaneous, thus no time-lags are allowed (e.g. as the time from birth to re­
productive age, or other effects of age structure in the population). 

2. The carrying capacity is independent of the .population size in the past; 
a resource cannot be eaten up. 

3. The interactions between the individuals are described solely by an effect 
of filling up limited space; no effect like increased reproductive success of sexual 
organisms with increasing population size (i.e., an Allee effect), or alternatively 
antagonistic interactions which are proportional to random encounters of 
individuals are considered in the model. 

This last assumption of the model [Eq.(1.3)] may have only restricted 
implications with respect to its qualitative predictions. Assuming a real population 
for which dx/dt~O for x less than a value K>O and negative elsewhere, the 
logistic model will still give a pretty good description of the population growth 
over a limited range of population sizes. The model may even be used in connec­
tion with an Allee effect, i.e., that the population cannot increase at low densities, 
if we restrict our attention to population sizes above a certain level. 

A correlation between resources and population sizes in the past [i.e., 
2. discussed above] may be built into the model, for instance 

dx/dt=rx(t)[K -x(t-T)]/K (1.5) 
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as discussed by Hutchinson (1948). Such models may be used to describe 
Nicholson's (1954) population cage experiments with blow flies (see Fig. 3). In one 
of his experiments Nicholson supplied a constant amount of food per day to the 
adult flies and unlimited amounts of food to the larvae. The egglaying of the 
flies is limited by the food availability, such that a high adult population density 
results in a low production of eggs and a low density of adults results in a high egg 
production. In the model [Eq. (1.5)] the population may produce considerable 
overshoots relative to the carrying capacity resulting in regular oscillations in 
population size through time. Interpretations of Nicholson's (1954) data have 
been thoroughly discussed by May (1973a), Maynard Smith (1974), and Oster 
(pers. comm.). 

An alternative, and probably more realistic formulation of the effect of a 
time-lag is 

dx/dt = rx(t) [K -] f(r)x(t- r)dr1/ K (1.6) 

where f is some weighting distribution. The analysis of this kind of model has 
not proceeded very far, but presumably Eqs.(1.3) and (1.5) may be considered to 
delimit the possibilities. These time-lag models of resource-population interactions 
share many properties with the time-lag models constructed in order to describe 
deviations from assumption 1. of the logistic model. An important class of such 
models are the discrete generation models which will be discussed later in this 
section. 

The parameters of the logistic model [Eq.(1.3)], i.e., the reproduction poten­
tial and the carrying capacity, may be deduced from suitable assumptions on 
the density dependence of the birth and death rates in a way parallel to the 
construction ofthe Malthusian model. Suppose that the birthrate ofthe population 
is b at all densities and that the death rate increases linearly with population size, 
i.e., equals d + IX, where d is the basic death rate of a small population where the 
individuals do not interact and I is a measure of the interaction between 
individuals. According to this model, the growth of the population is described by 

dx/dt=x[b-(d+ IX)]. (1.7) 

By rearranging the terms in Eq.(1.7) we see that it corresponds to the logistic 
model [Eq. (1.3)] with r = b - d (as in the Malthusian model) and K = (b - d)/l. 
This formulation provides a more plastic definition of the carrying capacity K 
and it might be used as a tool for predicting the change in the equilibrium 
population size following changes in the environment. A deterioration of the 
environment of the organism could be modeled as a relative increase in the basic 
death rate: d' = d(1 + e). The effects of this change are to decrease the reproduction 
potential r and the carrying capacity K, which per definition is the equilibrium 
population size. This decrease in K is a reflection of a new balance between 
birthrate, death rate, and the intensity of the interaction. However, the change 
is in this model independent of the birthrate, viz., 

K'-K= -de/I. (1.8) 
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Many organisms are characterized by regular breeding cycles which 
correspond to different seasons of the year. The growth of sU(~h populations is 
often well described by a continuous approximation like Eq. (1.3) if considered 
over a long period of time. This kind of approximation is parallel to the descrip­
tion of the population size as a continuous variable. However, a closer description 
of the growth and regulation of populations of such species is of course expected 
thro~gh the application of similar simple discrete generation models. For 
simplicity, let us confine our attention to the simplest situation of discrete 
generation models where the interval between breedings corresponds to the 
length of life of the individuals. These models may apply to the description of 
populations of, e.g., annual plants or insects. These simple models are commonly 
referred to as discrete nonoverlapping generation models. 

Another reason for considering such models is that they are more useful for 
studying single components of the life cycle of organisms. From an evolutionary 
point of view, breeding is an important event in the life of an individual which 
involves mating and segregation. These processes simplify considerably in models 
with discrete nonoverlapping generations; we will return to this aspect of the 
models later. 

We will here consider two discrete generation models which are obtained by 
arguments parallel to those leading to the two different parameterizations of the 
logistic model as represented by Eqs. (1.3) and (1.7) respectively. Anderson (1971) 
and Roughgarden (1971) considered the following model, 

Ax=Rx(K-x)/K, (1.9) 

where Ax is the change in population size between two generations, R > 0 is the 
growth rate per individual per generation of the population during one genera­
tion for a small population with no interaction between the individuals, and K 
is the carrying capacity. An alternative and often convenient formulation of 
Eq. (1.9) is in terms of the recurrence equation 

x'=x[(1 +R)-(R/K)x] (1.10) 

where x' is the population size of a generation following a generation with the 
population size x. 

From Eq.(1.9) it is inferred that the population size is increased in successive 
generations if x < K, decreased if x> K, and unchanged if x = K. In order to study 
the behavior of the population around the equilibrium :X = K, consider Eq. (1.10) 
when the population size deviates a little from the equilibrium, i.e., x = K + e. 
With this notation it follows that 

e'=e(1-R)-(R/K)e2 • (1.11) 

If the population is close to equilibrium, i.e., e is close to zero, then the first 
term of the recurrence Eq.(1.11) will dominate. Therefore, if O<R< 1, then e' 
will have the same sign as e and le'l < lei such that the population will approach 
the equilibrium without passing it. On the other hand, if R > 1, then e' and e will 
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Fig. 2. The behavior of populations growing according to a discrete generation model 
[Eq. (1.9)] for different values of R 

Fig. 3. A blowfly 

have opposite signs and a population with a size above but close to K will in the 
next generation have a population size smaller than K. Furthermore, when R > 2, 
then le'l > lei for all e sufficiently small such that the deviation from the 
equilibrium will increase in size and the population will oscillate away from the 
equilibrium. For 1 < R < 2, on the other hand, the population will show damped 
oscillations around the equilibrium, approaching it closer for each generation 
(Fig. 2). 

From Eq. (1.10) it is seen that the model is only a reasonable description as 
long as the initial population size x is restricted to the interval 

O<x< (1 +R)j(RjK) (1.12) 

because otherwise we would get x';£ 0, i.e., the population would collapse im­
mediately. However, the further requirement that x' should belong to this interval 
when x does is equivalent to R < 3. Thus when 2 < R < 3, a population started in 



1.1 Density-Regulated Population Growth 7 

the interval [Eq.(U2)] will stay there and perform oscillations between high and 
low population sizes, either as a stable limit cycle or as complete chaos 
(Fig. 2). 

The possibility for oscillations in the model [Eq.(UO)] is due to its inherent 
time-lag (see May, 1975). The multiplication in population numbers during 
reproduction at the end of a generation period depends only on the size of the 
population as newborns, a situation which resembles that of Nicholson's (1954) 
experiments as discussed in connection with the model described by Eq.(1.5). 
However, as long as we restrict the use of the model to situations where R is small, 
then its behavior is rather close to that of the continuous time logistic model and 
we may take advantage of the simple mathematical formulation of Eq. (1.10). 

The second discrete generation model, formulated by the same principle as 
the model [Eq.(1.7)], is due to Poulsen (1975). The key observation is that discrete 
generations mean discrete breeding and not necessarily a discrete death event. 
The change in population size, u say, during a generation between two successive 
periods of reproduction is described by the equation 

du/dt= -U(d+IU) ( 1.13) 

from t = 0 to the generation time T, such that u(O) = Bx, where B is the number 
of offspring produced by each adult individual. The recurrence equation between 
two generations is then 

x'=u(T) . (1.14) 

By observing that Eq.(U3) is just another version of Eq.(1.3) we get from 
Eq. (1.4) that 

u(t) =(Bx exp( - td))/[l + 6xB(1- exp( - td))] , (1.15) 

where 6 = lid is the interaction constant relative to the basic death rate. From this 
and Eq.(U4) we get the recurrence equation for the model as 

X' = (xBD)/[l + 6xB(1- D)] (1.16) 

where we have put D = exp( - Td) as a basic, discrete death rate parameter. 
It can be seen from Eq. (1.16) that when BD < 1, the population will decrease 

through time and eventually vanish. When BD> 1, then the population size will 
increase when low but decrease when sufficiently high. A stationary point is found 
as the solution to the equation x' = x = x which from Eq. (1.16) gives 

x=(BD-1)j[6B(1-D)] : (1.17) 

below this point the population size will always increase and above it it will 
always decrease. This equilibrium point corresponds to the carrying capacity, K, 
of the environment. In order to study the behavior around the equilibrium point 
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Fig. 4. A population growing according to model [Eqs. (1.13) and (1.14)]. The smooth curve 
connects the sizes of the adult population at the end of each generation. (Redrawn from 

Poulsen, 1975) 

write recurrence Eq.(1.16) in terms of the population size with a small deviation 
from equilibrium, i.e., x = x + e; 

e' = e/[BD + ebB(l- D)] . (1.18) 

When close to the equilibrium (e small) the first term in the denominator dominates 
so that the multiplication factor of e between generations is approximately l/BD 
which is less than unity whenever the equilibrium [Eq.(1.17)] exists. Therefore, 
the deviation will decrease for each generation and the signs of e and e' are the 
same so that the equilibrium will be approached without passing it. 

The properties of this model are thus very parallel to what was found for the 
continuous time logistic model. This close relation becomes even more apparent 
if in Eq. (1.16) we substitute K =x as given by Eq.(1.17). This yields 

x' = x(BD)K/[(K - x) + xBD] (1.19) 

which is of the form of Eq.(1.4) with BD=exp(rT) where T is the generation 
length. Actually the time dependent behavior is 

x(n) = x(BDt K/[(K - x) + x(BD)n] ( 1.20) 
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where x(n) is the population size after n generations. Thus the model [Eq.(1.16)] 
is really the discrete time analog of the logistic model. The behavior of a 
population growing according to the model is shown on Figure 4. 

This model provides an even more plastic definition of the carrying capacity 
K than does the parameterization [Eq.(1.7)] of the logistic model. The density 
limitation of the population numbers does not occur at population sizes around 
the carrying capacity but rather in populations of young individuals at very high 
densities (Poulsen, 1975). This remark pertains of course only to the adult 
population; if we choose to count the population of newborn individuals, then 
their carrying capacity is BK; at equilibrium they "hit the ceiling" in each 
generation and the population limitation occurs at population densities around 
the carrying capacity. 

1.2 Genetical Models of Population Growth 

When simple models of population growth are considered it is assumed that 
all the individuals in a population are identical and unchangeable. However, 
natural populations are characterized by a high degree of genetic variation (see, 
e.g. Dobzhansky, 1970; Lewontin, 1974) which makes the individuals different 
and changeable. From the ecologist's point of view the primary interest is the 
states and changes in the variation that directly influence the relation between 
the population and its environment. The change in the genetic composition of the 
population through time is explored in the science of population genetics; in the 
following we will introduce some concepts from this field and discuss some 
problems on the borderline between genetics and ecology. 

A fundamental consideration in population genetics is the situation of two 
alternative alleles at a locus in a diploid and outbreeding organism. Denote the 
two alleles A and a and suppose that the three genotypes AA, Aa and aa occur in the 
numbers Xl> X2, and X3 respectively in the population so that the total population 
size is X=Xl +X2 +X3. In order to facilitate the formulations we introduce two 
additional sets of parameters, the genotypic frequencies f;=xJx (fl + 12 + 13 = 1) 
and the frequencies of A: 

P=(2X l +x2)/(2x) = 11 +(1/2)/2 

and of a: (1.21 ) 

The gene frequencies are simply the frequencies of the alleles in a pool of 
gametes if all individuals contribute the same number of gametes to this pool. 
We will now and in the following assume that populations reproduce by random 
union of gametes. This may occur by random pair formation (random mating) 
and equal fertility of all pair formations. In this situation a new zygote is formed 
by the union of two gametes, one from each parent, and when the parents are 
chosen at random, then we might as well choose the two gametes at random from 
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all gametes in the population. A probably more obvious example of random 
union of gametes is found in marine organisms which show synchronized 
spawning. If we denote the gene frequencies in the male gametes P3 and q3 and 
in the female gametes p~ and q~, then by random union of the gametes the 
frequency of the genotype AA among newly formed zygotes becomes P'iP3. 
Similarly the frequency of the Aa genotype becomes P~q3 + P3q'i and that of 
the aa genotypes becomes q~q3. If we in addition to random union of gametes 
also assume that the gene frequencies in males and females are equal, i.e., 
P~ = P3 = P and q~ = q3 = q, then the proportions of the genotypes in the newly 
formed zygotes become p2, 2pq, and q2 for AA, Aa and aa respectively. These 
proportions are the Hardy-Weinberg proportions. Note that the zygote formation 
by random union of gametes does not alter the gene frequency, since 
p2 + 1/2(2pq) = p(p + q) = p. 

From these results we get the internal structure of the zygote population; 
however, we will have to determine its contribution to the population, from our 
ecological model. In discrete population models, the zygote population initiates 
a new generation and all we have to determine is the size of the zygote population 
u(O) which then determines the exact composition of the population as 

(1.22) 

In the discrete time logistic model, the Poulsen model (given by Eq. (1.13) and 
Eq. (1.14) the change in the population size and composition is now described 
by the equation, 

duJ dt = - u;(d + IU) . (1.23) 

With this model and with no difference between the genotypes the genotypic 
proportions do not change during the generation and we can thus expect the 
genotypes to occur in Hardy-Weinberg proportions throughout the generation. 

If we consider a continuously breeding population (such as the logistic model 
modeled by Eq. (1.7)) the rate of production of zygotes is bx. The zygotes are in 
Hardy-Weinberg proportions such that the population will evolve according to 

dxddt=p2Xb-xM+IX) , 

dX2/dt=2pqxb-X2(d+ IX), (1.24) 

if there are no differences between the genotypes in relation to growth and 
reproduction. The total population grows according to Eq. (1.7) which is obtained 
by summing Eq. (1.24). The gene frequency does not change in this model 
(dp/dt=O) and if the popUlation is in Hardy-Weinberg proportions (e.g., Xl = p2X) 
then it will remain so ever after (dfJdt = 0). Furthermore, if the population 
deviates from these proportions initially, then they will converge towards them. 
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This can be shown by considering the commonly used measure of deviations 
from Hardy-Weinberg proportions 

(1.25) 

which is such that 11 = p2 + pqF, 12 = 2pq(1- F), and 13 = q2 + pqF. Differentiating 
Eq. (1.25) yields (after some calculations) the equation 

dF/dt= -bF, 

which integrates to 

F(t) = F(O) exp( -bt). (1.26) 

This means that deviations from the Hardy-Weinberg proportions decrease at an 
exponential rate which is the birthrate. Thus, the genotype frequencies converge 
to the Hardy-Weinberg proportions considerably faster than the rate (b-d) at 
which the population converge to its equilibrium size. We will, therefore, expect 
that a population at equilibrium size will be in Hardy-Weinberg proportions at a 
locus where the genotypes do not differ with respect to the population growth 
parameters. 

These laws of the Hardy-Weinberg proportions constitute the basic laws of 
population genetics but in order to make the theory interesting to ecology we 
must suppose that the genotypes are different with respect to the population 
parameters. In the model [Eq. (1.24)] even simple differences between the 
genotypes yield a mathematically complicated model. This is in part due to the 
fact that the Hardy-Weinberg law is not absolute but the convergence to it is 
gradual as shown by Eq. (1.26). In discrete genera~ion models, however, each 
generation is initiated by a population structure as shown in Eq. (1.22); we have 
a simple recurrent structure in the model since the three dimensional variable 
(Ub U2' U3) is determined by the two dimensional variable (p, u). 

First let us explore the Poulsen model given by Eq. (1.13) and Eq. (1.14). 
The first observation to make is that Eq. (1.23) describing the time-dependent 
behavior ofthe population between two breeding periods has not been integrated 
in the situation where d and I depend on the genotype. Thus, we will initially 
restrict our attention to models where the differences between the genotypes 
show either before or after the time of the density-dependent death, i.e., models 
which are basically of the same structure as the commonly used population 
genetics models. A simple density-independent selection model was considered by 
Poulsen (1975). In this model the zygotes of the different genotypes have different 
probabilities of initiating their development (e.g., the probability that eggs will 
hatch). With this model we get instead of Eq. (1.22) as the initial population 
composition the following: 

U1(O)=P1p2(Bx) , 

U2(O) = P 22pq(Bx ) , 

U3(O) = P 3q2(Bx) , 

(1.27) 



12 1. Population Growth and Fitness 

where Pi is the survival probability of the zygotes. From Eq. (1.27) we get by 
summation 

u(O)=P(Bx) 

where 

The growth of the population Eq. (1.27) is governed by Eq. (1.23). Thus from 
Eq. (1.14) and Eq. (1.16) we get the composition of the adult population 

X'I = P IP2xBD/[1 + (jPxB(1- D)] , 

x~ =P22pqxBD/[1 +(jPxB(1-D)] , 

X3 = P3q2 x BD/[1 + (jPxB(1- D)] , 

with the total population size 

x' = PxBD/[l + (jPxB(1- D)] , 

and where (j = I/d. 

(1.28) 

(1.29) 

Comparing Eq. (1.28) and Eq. (1.29) reveals that the gene frequency has changed 
independently of the initial population size to 

(1.30) 

with the change in gene frequency 

(1.31) 

The change in gene frequency is zero if either p=O or q=O or if 

(1.32) 

which are the three potential equilibrium points. We only have to consider p 
as an equilibrium point if it is positive and less than unity. So Eq. (1.32) is only a 
valid equilibrium point if either P 2> PI and P 3 or if P 2 < PI and P 3. The first 
possibility where the survival probability of the heterozygote is larger than that of 
both homozygotes is called overdominance (or heterosis) and the second possibility 
where the survival probability of the heterozygote is less than that of both 
homozygotes is called underdominance. The additional cases will be called 
directional selection; when P 1 '?,P2 '?,P3 then the square bracket in Eq. (1.31) is 
always positive, i.e., p'> p and the gene frequency of A will always increase until 
it is fixed in the population and a is absent. Similarly, when P 1 ~ P 2 ~ P 3 then 
we have directional selection in favor of a which will eventually become fixed 
in the population. 
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When we have over- or underdominance, then the square bracket in Eq. (1.31) 
has different sign according to whether p < p or p > p. In the case of over­
dominance the sign is positive when p is below the equilibrium point and 
negative when p is above the equilibrium point; thus in this case the gene 
frequency will increase below and decrease above the equilibrium. If we further 
observe that 

p' - p=(p' - p)+(p- p)= [1- pq(2Pz - PI - P3)/F] (p- p)<(p- p), 

we see that the gene frequency can never pass the equilibrium. Therefore, in the 
case of overdominance the gene frequency will converge towards the equilibrium 
gene frequency p given by Eq. (1.32). 

For underdominance the situation is reversed; the gene frequency will increase 
above the equilibrium point and decrease below it. Depending on whether the 
population starts above or below the equilibrium one of the genes will become 
fixed and the equilibrium point p is therefore unstable. 

In any of the selection cases the change in gene frequency is always so as to 
increase the mean survival probability P. This may be argued intuitively by 
differentiating P with respect to p and remembering that q= 1- p: 

(1.33) 

which inserted into Eq. (1.31) reveals that 

p' - p= [pq/(2P)] 8Pj8p (1.34) 

Thus, from points where P is an increasing function of p, the gene frequency 
will be increasing, and from points where P is a decreasing function of p the 
gene frequency will be decreasing. The equilibrium point p in Eq. (1.32) will in 
the case of overdominance be the maximum of P and in the case of under­
dominance it will be the minimum. 

After this digression into population genetics we can return to the ecological 
problem of the influence of selection on population growth and regulation. The 
differential survival of the early zygotes modifies the number of offspring per 
parent, B, as seen in Eq. (1.29). Therefore, the condition for increase in the 
population size now becomes P BD > 1. Under this condition, as seen from Eq. (1.29), 
we see that the population size changes towards 

K(p)=(PBD-1)j[bPB(1-D)J . (1.35) 

We may even consider this expression as a measure of the population size 
through the selection process if the change in gene frequency is very slow compared 
to the rate of convergence of the population size to equilibrium. The dependence 
of K(P) on the gene frequency is illustrated by the relation 
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From this it is seen that the effect of the gene frequency p on K(P) may be 
strong if FBD is close to unity, whereas if B is very large, then Eq. (1.36) may 
be as close to zero as we wish. Thus, dependent on whether B is small or large, 
the adult population size will show dependence or virtual independence of the 
gene frequency. 

Another kind of density-independent selection model that fits into the framework of the 
discrete generation logistic model is one in which differences in the fertility of the different 
genotypes are allowed (Prout, pers. comm.). Assume that the proportions F b F 2, and F 3 of 
the adult genotypes are sterile, or for some other reason do not participate in breeding. Then 
the effective adult population is xi = FiXi, such that 

(1.37) 

where xe is the number of breeding adults and;; is the frequency of genotype i among all 
adults. 

If we assume that the adult population is in Hardy-Weinberg proportions with gene 
frequency p, then from Eq. (1.21) the gene frequency of the gametes is 

and the composition of the zygote population is now given by 

u,(O) = (p')2 BFx , 

U2(O) = 2(p' q')BFx , 

U3(O) = (q')2 BFx . 

(1.38) 

(1.39) 

The population will thus be in the Hardy-Weinberg proportions throughout the generation, 
thus justifying the previous assumption. Comparing this with Eq. (1.27) we see that apart from 
the genotypic proportions, the two models are equivalent ecologically speaking. In both 
instances, the net effect of genetic variation is to change the net birth factor B. From a 
genetical point of view, however, the difference is large since in the model [Eq. (1.39)J the 
population is in Hardy-Weinberg proportions whenever observation is possible whereas 
Eq. (1.27) does not fit these proportions [it may if the survival probabilities have a special 
structure, so existence of the Hardy-Weinberg proportions is not a certain criterion for the 
absence of selection (Prout, 1965)]. The fecundity model considered here has an interesting 
counterpart in sexual organisms which mate. If the fecundity of a pair is determined by the 
female only and if all females are mated, then even strong selection for mating selectivity 
in males will have no effect on the population size of the zygotes. This kind of selection 
which does not influence population size has been termed soft selection by Wallace (1968). 
However, if the birth factor B is very large, then the zygotic selection model [Eq. (1.27)J 
is equivalent to a soft selection model, and so is the model [Eq. (1.39)]. 

The models considered so far are the commonly used models of population 
genetics, that is models of density independent selection. More elaborate discussions 
of such models may be found in population genetics textbooks (e.g. Ewens, 1969; 
Crow and Kimura, 1970). The additional feature of the models which may be 
explored in an ecological context is the influence of density-independent selection 
on population size in a density-regulated population (Poulsen, 1975; Prout, in 
preparation). 

We will now turn to the problem of density-dependent selection. We have 
already mentioned that when the three genotypes have different death parameters 
(d or I) we cannot integrate Eq. (1.23) to get the recurrence equations for gene 
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frequencies and population sizes. However, we can apply a technique which is 
commonly used in genetics; viz. to find the conditions for the initial increase of 
rare genes. Suppose that gene A is very rare, then the homozygote AA will be 
extremely rare and in the population the gene A will predominantly be found in 
heterozygous individuals, Aa. Thus, in this state, the population may be considered 
to consist of only two types of individuals, viz. Aa and aa which occur in the 
numbers 2pBx and (1-2p)Bx respectively, if we neglect quantities of the order pZ, 
where p as before is the gene frequency of A. Also assuming as above that the 
zygotes have different probabilities of initiating their development, then we get 

( 1.40) 

From this stage the decrease of the zygote population from the initial composition 
and size [Eq. (1.40)] to the adult stage is determined by Eq. (1.23), which with 
the assumption of genotype-dependent death parameters, reads 

dUz/dt= -uz(dz + !ZU) , 

dU3/dt = - u3(d3 + !3U) . 
(1.41) 

This system cannot be solved explicit ely, but the solution [uz(t), U3(t)] is continuously 
differentiable in the initial values [uz(O), U3(0)], and the initial values are differen­
tiable functions of p, such that the solution to Eq. (1.41) is a differentiable 
function of p. To emphasize this we will for the present calculations write the 
solution of Eq. (1.41) as [uz(t, p), U3(t, p)]. Our interest is to express the gene 
frequency after one generation, p', as a function of the initial gene frequency p 
under the assumption that p is small. By Taylor expansion of p' we get using 
uz(t,O)=O: 

p' = uz(T, p JI{2[uz(T, p) + U3(T, p)]} 

= {8uz/8p(T, 0)/[2U3(T, O)]} p + terms of order pZ . (1.42) 

Thus, the condition for increase of the frequency of A when rare is that the 
factor of pin Eq. (1.42) should be larger than unity. In the following this condition 
is calculated, with the result shown as Eq. (1.47). 

From Eq. (1.41) we have, by again using bi=IJdi, 

such that we get the differential equation 

~ (3U2(t, 0)) = _ d [1 s: (0)] 3U2(t, 0) . 
dt 3p 2 +U2U3 t, 3p' 

This equation may, by using the abreviation Dit= exp( -d;t) and 

(1.43) 

(1.44) 

(1.45) 
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be integrated to 

OU2(t,0) _ OU2(0, O)'D 1[1 + b U (0 0) (1- D )](d2 • 2)!(d J • J ) 
op - Op 2, 3 3 , 3, (1.46) 

Using Eq. (1.46), with (ou2Iop) (0, 0) = 2P2Bx, and inserting Eq. (1.45) into the brace of Eq. 
(1.42) we get the condition for invasion with Di=exp( -diT); 

(1.47) 

Now, if we assume that the population size x of the parental generation is at 
equilibrium corresponding to a population consisting of individuals entirely of 
genotype aa, i.e., 

(1.48) 

or 

(1.49) 

then the bracket in the denominator of Eq. (1.47) simplifies to P3D3B such that 
the condition for increase of A when rare becomes 

(1.50) 

We may generalize the above treatment to include differences in the birth factor B 
among genotypes, and we may assume that the density dependent death rate of 
any specific genotype is influenced differently by the numbers ofthe other genotypes, 
i.e., is a function of the genotypic composition of the population. The death rate of 
genotype i is then di + InUl + li2U2 + li3U3, such that lij is the death rate added on 
genotype i for each individual of genotype j. This extension of the model thus 
allows differences between the genotypes in their vital requirements, and thereby 
differences in the competitive pressure between pairs of individuals. Taking these 
generalizations into account, the condition for increase of A when rare becomes 

(1.51) 

where the exponents only involve the density dependent death rates imposed on 
the population by the presence of the common homozygote (Poulsen, 1975). 

Let us first confine our interest to the simple situation where the only difference 
between the genotypes is in the death rates, i.e., the relevant condition is Eq. (1.50) 
with P2 = P3 = 1. Taking logarithms on both sides of Eq. (1.50) gives the 
equivalent condition 

[log(B) - d2 T]/12 > [log(B) - d3 T]/13 . (1.52) 
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m 
-1 

Fig. 5. The condition for increase of a new allele affecting the death rate parameters: 
m= I-dzld3 and 11= 1-02103. The curves shown are m+(bld3-1)I1=O for different values 
of bld3. The condition that BD3> 1 is that m> 1-bld3 as shown for bld3 = 2 and bld3 = 1.1 

by the broken lines 

If we define the parameter b = log(B)/T, which is the continuous time birthrate given 
a birth factor of B in the time interval T, then Eq. (1.52) simplifies to 

(1.53) 

showing that the condition for increase of A is in terms of the relative changes in 
the death parameters but dependent on the ratio bjd3 . Designate the relative 
decrease in d by m and in z by Jl, such that d2=(1-m)d3 and z2=(1-Jl)z3. 
Figure 5 shows the values of m and Jl for which A increase for different values 
of bjd3 ; A increases for (m, Jl) above or to the right of the lines shown in Figure 5: 

(1.54) 

It is evident that A will increase whenever both m and Jl are positive because 
then the death rate of the heterozygote Aa is lower than that of the homozygote 
aa at all population densities. Outside this range, the new allele A will have to 
decrease the basic death rate while sacrificing competitive ability (i.e., the density­
dependent death rate) or vice versa. The parameter bjd3 of the condition 
measures roughly the difference in population size between the newborn 
zygotes and the adults at equilibrium relative to a similar difference at low popula­
tion densities, i.e., 

bjd3 = lim [log(xju)jlog(xju)] . 
u--+O 

(1.55) 

Therefore, we may interpret high values of bjd3 as meaning a highly competitive 
milieu, and low values as meaning a population only slightly influenced by 
competition. This interpretation is in accordance with the results as they emerge 
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from Figure 5. For b/d3 small (i.e., close to unity) even a very high improvement 
of the competitive ability can only payoff a very slight decrease in the basic 
death rate, whereas just a slight improvement in the basic death rate can pay 
off a considerable decrease in the competitive ability. On the other hand, for large 
values of b/d3 very large increases in the basic death rate can be tolerated as long as 
this is associated by a decrease in I. SO dependent on the initial situation in terms 
of b/d3 the population will evolve towards higher competitive ability of the 
individuals or towards increasing its basic multiplication factor BD. However, 
except for very extreme cases, any population can evolve in both directions, but the 
likelihood of going in either direction may vary. 

The equilibrium size of the population is likely to change if the new allele A 
is increasing in the population. The initial change has not been determined 
explicitly. However, we may characterize the growth parameters of the genotypes 
by the corresponding carrying capacity, K3 as given by Eq. (1.48) for the homo­
zygote aa and K2 as the similar quantity in terms of the parameters of the 
heterozygote Aa (this last "carrying capacity" is only to be considered as a formal 
definition because a population of pure heterozygotes is inconceivable in a sexual 
organism). For small m and f1 the ratio of the K's may by Taylor expansion be 
approximated as 

K2/K3 = 1 + f1+({(B-1) Td3D3/[(D3B-l) (1-D3)]} -1)m 

> 1 + f1[1-({(B -1) Td3D3/[(D3B -1) (1- D 3)]} -1) [(b/d3) -1JJ (1.56) 

where the evaluation comes from the condition for increase of A given by 
Eq. (1.54). The approximation of the ratio of the K's, and consequently the 
evaluation, depends only on the basic birth and death parameters of the common 
homozygote, band d3, and numerical calculations of the factor of f1 in the evalua­
tion [Eq. (1.56)] show that it is always negative. The applied evaluation is the best 
possible in the sense that we may always choose m and f1 such that the two 
sides of the evaluation are arbitrarily close, with A increasing in the population. 
Therefore, when f1 is positive, the right hand side of the evaluation is less than 
unity, and it is possible to choose m and f1 such that K2 < K3 with A increasing 
in the population. In this situation an allele that increases the competitive 
ability of its carriers may increase in the population even if its "carrying capacity" 
is lower than the actual population size. 

This, however, does not prove that the population size initially declines, 
nor that the population will reach a new equilibrium where the population size is 
lower than the initial. Iteration of the model has, however, shown that the increase 
of a new allele in the population due to selection may in fact cause the population 
size to decline (Poulsen, pers. comm.). 

In a more general treatment we have to turn to the condition [Eq. (1.51)] 
which by taking logarithms may be written as 

(1.57) 

where ri is the continuous time growth rate corresponding to the multiplication 
factor BiP;Di=exp( -riT). In this formulation of the condition [Eq. (1.57)J for the 
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increase of the allele A it becomes even more apparent that it is a comparison of 
the reproduction potential or unlimited growth rate with the competitive ability 
measured by the density dependent death rate per individual in the population. 
However, as is apparent from the definition, in this model the quantity r is 
composed of the birthrate b, the death rate corresponding to the initial survival 
of the zygotes, p= [log(P)]/T, and the death rate d, such that r;=b - p-d. These 
three components are basically of a quite different nature, just to mention that b 
corresponds to a discrete event whereas d is a true continuous time death rate. 
Further, any sensible use of a model like this has to specify constraints on the 
parameters in terms of the physiology and environment of the organism that we 
have in mind. We will return to this point in a later section. 

We will now turn to the model for discrete generation population growth 
[given by Eq. (1.10)] for studying density dependent selection. This model has 
proved useful in studying genetical variation in ecological models (Anderson, 
1971; Charlesworth, 1971; Roughgarden, 1971, 1975). It may be viewed as an 
approximation to the discrete logistic model if the reproductive potential R is 
small and positive (for another approximation, closely related to Eq. (1.19) see 
Clarke, 1972). However, the preceding results suggest cautious interpretation of the 
two parameters K and R in the linear model, as discussed in section 1.1. 

Let R; and K; be the growth parameters of the three genotypes such that 
the recurrence equations between two generations are 

X'1-p2X=p2XRl(Kl-X)/Kl, 

Xz -2pqx=2pqxR2(K2 -x)/K2 , 

X3-q2X=q2xR3(K3-X)/K3 . 

(1.58) 

This formulation simplifies considerably by defining the fitnesses of the three 
genotypes as functions of x: 

w;(x) = 1+R;(K;-x)/K;, (1.59) 

and observe that the total population size changes according to 

x'=wo(x) x (1.60) 

where 

(1.61) 

The gene frequency recurrence equation is now 

(1.62) 

where we for convenience have dropped the symbols showing that the fitnesses are 
functions of the total population size. 
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The equilibria of this model are found by solving the equations p' = p= jj and 
x'=x=x which are obtained from Eq. (1.60) and Eq. (1.62). From Eq. (1.60) we 
have wo(x) = 1 and from Eqs. (1.59) and (1.61) we get 

Collecting terms in x gives the solution: 

~ jj2R 1 +2jjqR2+ifR3 
X= jj2RdKl +2jjqR2/K2 + q2R3/K3 . 

(1.64) 

Thus, the equilibrium population size is the weighted harmonic mean of the 
carrying capacities K; with the weights R; (Anderson, 1971; Charlesworth, 1971). 
Using this and the equlibrium equation obtained from Eq. (1.62) which is 

( 1.65) 

then we get an equation with which we could determine the equilibrium gene 
frequency jj, and thereby through Eq.(1.64) the whole equilibrium structure. 
However, this.is a very complicated equation and we will not follow a general 
solution here; it is presented by Anderson (1971). We can, however, state the 
conditions for a solution. If we substract Eq.(1.65) from Eq.(1.63) we get 

(1.66) 

which is symmetric to Eq.(1.65). From Eq.(1.65) and (1.66) it is seen that p=O 
and x = K3 and q=O and x = Klare trivial solutions to the equations. Solutions 
with nonzero values of jj and of q may be found from the linear equations which 
arise from Eqs. (1.65) and (1.66) by taking away a factor p and q respectively. 
Since q = 1- p, we get a solution for jj in both equations and by equating them we 
get an equation for X. However, p being a frequency we must require that it is 
positive and less than 1. The solution we get from Eq. (1.65): 

is positive and less than unity only if Kl <X<K2 or K 2<x<K 1 . By a symmetric 
argument with respect to the solution from Eq. (1.66) we see that a valid 
solution is characterized by one of the two following conditions: (1) if x<Kz, 
then K 1 and K3 are less than x, or (2) if x > K2, then K 1 and K3 are greater than 
X. Thus the system has only a valid nontrivial equilibrium if either K z is greater 
or smaller than both Kl and K 3, i.e., either over- or underdominance is 
required with respect to the carrying capacities. If this is the case, a few calcula­
tions show that an internal equilibrium indeed exists. 

By an argument quite similar to the one leading to Eq. (1.34) we can write 

p' - p = [pq/(2wo)J awol ap , ( 1.68) 
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and thus the change in gene frequency is such that wa(x) locally increases as a 
function of p. However, note that when p changes and x changes then the fitnesses 
change so we cannot conclude from Eq. (1.68) that Wa increases. In fact it does 
not because for small populations it is of the order 1 + R whereas at equilibrium 
it is 1. 

Another maximum principle, originally suggested by MacArthur (1962) for a 
continuous generation model and translated into the present model by Anderson 
(1971) is the following. Define the functions 

( 1.69) 

and observe that from Eq.(1.64) we have that K(P)=x. The interpretation of the 
functions K and R is straightforward; they are the mean carrying capacity and 
the mean reproductive potential respectively. If the selection forces are small 
compared to the rate at which the population size goes to equilibrium, then we 
may expect that the population size at any instant is given by K(P). To see the 
relevance of this, observe from the definition [Eq.(1.61)] of Wa that 

Wa = 1 +R(p)- [R(P)/K(p)] x (1.70) 

which differentiated with respect to p yields 

3wa/3p=(1-x/K)3R/3p+(x/K) (R/K)3K/3p. (1.71) 

When x;:::;K(p) then Eq. (1.68) and Eq. (1.71) yield the approximative relation 

p' - p= [Pq/(2wa)] [R(P)/K(P)] 3K(p)/3p. (1.72) 

Thus the direction of increase in p (when x;:::; K(p)) is to increase K(P). [From 
Eq.(1.72) it is also seen that the internal equilibrium point is stable for over­
dominance with respect to the K's and unstable for underdominance.] 

The procedure for reaching this result is rather sloppy; the formal arguments 
given above are outlined by Anderson (1971) and Roughgarden (1975). (Rough­
garden also generalizes the principle to include the possibility of more species.) 

For the more simple situation, where Ri=R, and the genotypes only differ 
with respect to the carrying capacities, then the question becomes more simple 
and the internal equilibrium is of the form [Eq.(1.32)] with the K's replacing 
the P's. Further, Eq.(1.72) is more reliable because R is a constant and from 
Eq. (1.71) and Eq. (1.68) we get the exact relation 

p' - p = [pq/(2wa)] (Rx/ K2)3K(P)/3p (1.73) 

which shows that the gene frequency will here always change in a direction 
where K(p) increases. 
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These results, i.e., that the carrying capacity is always maximized at equi­
librium is in contrast to our previous results with the Poulsen model. This is due 
to the basic differences in the parameterization and formulation of the two 
models. In the Anderson-Roughgarden model the equilibrium population size 
K of a homozygous population is considered to be directly influenced by the 
genetic variation, and superiority in the competition at high population sizes is 
only allowed as an increase in the carrying capacity. Thus, almost by definition, 
the increase of a superior genotype will lead to an increased population size. 
The formulation used in the Poulsen model is fundamentally different. Here the 
equilibrium population size is found as a balance between the density dependent 
death and birthrates, and the total population size is only influenced by genetic 
variation through the evolution of the birth, death and competition parameters 
of the individuals. 

The discrepancy of the two models is therefore expected, but both being 
simple and somewhat artificial models, it is still a question as to which gives 
the closest prediction in a natural population. Superficially, the much more 
detailed Poulsen model seems preferable, and we certainly believe it to be so in 
many cases. However, the Anderson-Roughgarden model may well in many 
cases summarize complicated interactions between the parameters involved in 
birth, death and competition, where the Poulsen model would be too complicated 
to answer even the simplest questions. This virtue of mathematical simplicity 
of the Anderson-Roughgarden model will become handy in the later discussion 
of evolution of species interactions (Chapt. 3), but in the following exposition 
of life cycle characteristics of single species populations, the Poulsen model is 
the natural reference. 

1.3 Competition and Bacterial Growth in Chemostats 

To illustrate the concepts of reproduction potential, carrying capacity, and 
competition, let us explore the simplest possible population model conceivable, 
that of the growth of bacteria in a chemostat. The chemostat is used for growing 
microorganisms in a physiological steady-state under constant environmental 
conditions. The theory of this system was developed independently by Monod 
(1950) and by Novick and Szilard (1950). The chemostat is the best understood, 
albeit very unnatural ecological system. 

A chemostat (Fig. 6) consists of a culture vessel with an overflow, and with 
the addition of a sterile substrate at a constant rate, f The dilution or washout rate 
of the system is given as D = f/V where V is the volume of the culture vessel. 
The cells growing in the culture are assumed to be distributed homogeneously 
in the volume so that their washout rate is also D; this is usually accomplished 
by a magnetic stirrer. If we add a bacterial inoculate to the chemostat and we 
set D < Jim, where Jim is the unlimited growth rate of the bacterial strain with 
the particular substrate used, then the bacterial population will Increase 
according to 

dx/dt=x[Ji(x)-DJ, (1.74) 
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Fig. 7. The relation between specific growth rate, /1, and population density, x, in a chemostat 
for two strains of bacteria and their equilibrium population sizes for two different dilution 
rates, D j and Dz. Strain 1 will win at the high dilution rate D j but will be excluded at Dz 

when the two strains are grown in the same chemostat 

where Il(x) is the density dependent growth rate. As x increases, Il(x) will decrease 
due to the competition for the substrate between the bacteria. This decrease will 
continue until Il=D, and we will arrive at a steady-state situation with a 
population density X, the carrying capacity, where the cells divide at a constant rate 
D. Figure 7 shows two examples of the relationship between x and D for the 
case of a linear functional form of Il(x). One (strain 1) with a high value of 11m 
and a low ability for competition, i.e., a rapid decrease of Il(x) with x, and the 
other (strain 2) with a low value of 11m but a high competitive ability, i.e. a slow 
decrease of Il(x) with x. It can be seen that strain 1 can sustain a higher 
population size than strain 2 at high dilution rates, whereas the opposite is the 
case at low dilution rates. 

We can imagine the two strains of bacteria in Figure 7 as two genotypes of the 
same species, and we can then from the figure predict the outcome of the growth 
of the two types in a mixed culture for different dilution rates. If the two 
strains are using the same substrate qualities at the same rate per unit 
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population size, then the growth rate of both strains is a function of the total 
population size in the chemostat. At the dilution rate Dl both strains will grow 
as long as the total population size is less than x~. Reaching this population 
size strain 2 will cease to grow, whereas strain 1 will continue growing, such that 
the total population size will grow and thereby cause a total population size 
where the population of strain 2 will start declining. Thus, at dilution rate D 1 

strain 1 will be superior in the competition with strain 2, and we will end up 
with a monoculture of strain 1. At dilution rate D2 the opposite situation will 
emerge, and we will end up with a monoculture of strain 2. Note that in any case, 
the strain with the highest X, the carrying capacity, will win. 

In order to discuss the significance of this in some more detail, we will 
consider bacteria which are limited by their energy (carbon) source. It has been 
shown empirically that bacterial growth as a function of a limiting, dissolved 
carbon source can be described by 

(1.75) 

where s is the concentration of the limiting substrate and Ks is a constant 
measuring the substrate concentration corresponding to the growth rate I1m/2. 
[Eq.(1.75) has the form of the Michaelis-Menten equation describing enzyme 
kinetics.] 

Equations (1.74) and (1.75) provide a complete description of the kinetics of 
the chemostat. Combining the two equations we have 

dx/dt =x[l1ms/(Ks+s) - D] 

which provides an expression for the substrate concentration at steady state, viz., 

(1. 76) 

Thus the steady state substrate concentration decreases with decreasing dilution 
rate in accordance with the fact that a low dilution rate gives a low washout 
rate of the bacteria but a higher steady state population and a more intense 
competition. 

We may take small values of Ks to mean high "substrate affinity", in the sense 
that the growth rate [Eq. (1.75)] increases rapidly to 11m at a relatively low 
substrate concentration: 

11m - 11 = 11m1(1 + s/ Ks) . (1.77) 

Conversely, high Ks values mean that 11 does not approach 11m until the 
substrate concentration is high. In naturally occurring strains of bacteria, how­
ever, the two parameters of the growth rate seem to be highly correlated. A strain 
having a small Ks and thus a high competitive ability with respect to a limiting 
resource, trades this off by having a low 11m, and a strain with a high 11m will 
have a high K., too. As seen from Figure 8 we can expect bacteria with high 11m 
and Ks values to win in chemostats with high dilution rates, or equivalently, high 
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Fig. 8. Left: The specific growth rate of two strains of bacteria as function of the concentration 
of a limiting substrate. Right: The growth rates of a Spirillum sp. (open circles) and of a 
Pseudomonas sp. !filled circles) in lactate limited chemostats. (After Veldkamp and Jannasch, 

1972) 
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Fig. 9. The growth rates of two photosynthetic sulfur bacteria as functions of sulfide 
concentration. (After Veldkamp and Jannasch, 1972) 

substrate concentrations in the reservoir. On the other hand, bacteria with low 
11m and Ks values are expected to win at low dilution rates or low substrate 
concentrations. These two types of bacteria are in fact found in nature (Fig. 8). 
They were already recognized by the early microbial ecologists as the zymogenous 
microflora which utilizes high concentrations of organic substrates (such as will 
occur periodically, e.g., close to fresh carrion) and the autochonous microflora 
which generally dominates undisturbed soils which have only low concentrations 
of easily decomposable, dissolved organics (see Winogradsky, 1949). The two 
extreme types (large 11m and large Ks vs. small 11m and small Ks) also correspond 
to the r- and the K-selected species of MacArthur (1962). In a chemostat with a 
given value of D and of the substrate concentration in the reservoir, only one 
strain (or genotype, or species) will persist, but as mentioned, a chemostat is not a 
natural system. In nature, the temporal and spatial heterogeneities make the 
persistence of both types intelligible (see also ChapA). 

Veldkamp and Jannasch (1972) in a review on competition in the chemostat 
discuss an example with two photosynthetic sulfurbacteria growing in sulfide 
limited chemostats. They found two forms of which one had the lowest value 
of 11m as well as the highest value of Ks. To the extent that sulfurbacteria always 
are sulfide limited in nature, this species would not exist. However, it could be 
shown that at very high sulfide concentrations, when the substrate becomes toxic 
and limits both forms, then the form which is inferior as competitor at all optimal 
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and suboptimal concentrations becomes the superior form (Fig. 9). This is an 
interesting example, because the species has "traded" a high value of ilm, not for 
an improved utilization of a scarce resource in a competitive situation, but for 
coping with a resource when it becomes toxic at high concentrations. This is a 
situation that photosynthetic sulfurbacteria would experience early a succession. 

1.4 Reproductive Effort of Populations 

In order to study the effect of selection with respect to features which increase 
the unlimited growth rate vs features which increase competitive ability, one 
could compare the relative amount of resources allocated to reproduction in 
different populations. This is often difficult in practice. In flowering plants, 
however, the reproductive effort can be estimated by the weight of the flowers 
compared to the weight of the vegetative organs. 

Such a study was carried out by Gadgil and Solbrig (1972) on populations 
of dandelions (Taraxacum officinale). This plant has the advantage of being 
parthenogenetic and fertilization never takes place. Gadgil and Solbrig (1972) 
studied three localities situated within a distance of 1/2 km, which differed with 
respect to environmental conditions. The first one was a dry, frequently mowed 
lawn with many bare patches due to disturbance. The dandelions in this 
locality were probably exposed to a considerable density independent mortality. 
A second locality was somewhat more protected and the third one had a nearly 
totally undisturbed vegetation and was much more moist; here the dandelions 
could be expected to be limited mainly by competition. 

Gadgil and Solbrig (1972) isolated four biotypes of dandelions from these 
three localities. The types were characterized by isozyme patterns and by 
morphological characters which were retained when the plants were grown 
under identical and controlled conditions. There were considerable differences 
between the biotypes with respect to numbers of flowering heads, the amount of 
nonreproductive tissue produced, and in the first time of flowering. The biotype 
allocating most energy into flower production was predominantly found in the 
first mentioned dry and disturbed locality, and the form producing more leaves 
and fewer flowers was found practically exclusively in the moist, undisturbed 
locality. The two intermediate types were mainly found in the intermediate 
locality. Further, the biotype found in the disturbed habitat produced flowers 
earlier than the rest of the biotypes. 

This study represents one of the few examples of the effect of density 
dependent selection on reproductive effort which are both convincing and 
amenable to analysis. 

The variation in clutch size of different birds species and of the same species of 
birds in different localities has attracted considerable interest in the literature. 

Clearly birds do not in general lay the maximum number of eggs which they 
are physiologically capable of producing since most birds will readily replace 
eggs which have been removed from their nest. Rather clutch size expresses a 
compromise that maximizes the fitness of the parent birds. An increase in 
clutch size would lead to an insufficient feeding of the youngs and, therefore, an 
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Fig. 10. The changes in the allocation of resources between clutch size, avoiding predators, 
and competitive ability for three groups of birds (p: passerines; h: hole nesters; i: insular 

birds) in temperate climates and in the tropics n. (Modified after Cody, 1966) 

excess mortality, whereas a decrease in the clutch size would not be compensated 
sufficiently by a decreased mortality (Lack, 1947). There is, however, a wide 
variation in clutch size between different kinds of birds. For example, the 
California condor first matures after five years and then produces only one egg 
every second year (Mertz, 1971), whereas ducks may have clutch sizes of 
about ten. 

Cody (1966) discusses clutch sizes of birds in terms of a graphical model 
shown in Figure 10. It assumes that birds may allocate their resources (represented 
by the spherical surface in the figure) between clutch size, competitive ability 
and predation protection (especially nest predation). As competitive interactions, 
for example, become more intense, selection will favor fewer resources being 
allocated to egg production and more resources to competitive ability, e.g., to 
maintain a territory. If density independent mortality (unpredictability of food 
availability or an unpredictable climate) is more important, then more resources 
will be allocated to increase clutch size (however, see Mountford, 1973). Nest 
predation will, according to Cody (1966) tend to decrease clutch size since the 
parents then will have to spend more time protecting the nest and thus less time 
can be spent gathering food. This should explain the high clutch sizes characteristic 
for hole nesters. 

Cody's model does predict some of the characteristic trends in clutch size, 
e.g., the lower clutch size found in nearly all tropical birds compared to their 
temperate relatives (Fig. 11). This is explained by the higher predictability of 
environmental factors in lower latitudes, which will increase the intensity of 
competition (Chap. 3). Cody also mentions that nest predation is more frequent 
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Fig. 11. The average clutch size of buntings (Emberiza spp.) at different latitudes. Open circles: 
southern hemisphere;filled circles: northern hemisphere. (After Cody, 1966) 

in the tropics. The low clutch sizes of oceanic birds (the albatross, for example) 
is similarly explained by the constant supply of food resources and the nearly 
constant climatic conditions of oceanic islands. 

The model of Cody is in many respects of a so general a nature that it may 
indeed explain anything found regarding clutch sizes. It is, for instance, not 
trivial that decreased predation will lead to an increased clutch size. This is 
certainly not the case for birds breeding on oceanic islands; here the model simply 
claims that in say albatross colonies, competition is even more intense so as to 
overshadow the effect of absent predation. If hole nesters are relieved from 
mortality due to predation as compared with their relatives nesting in the open, 
why then are the hole nesters not subject to a more intense competition which 
tends to decrease clutch size? The model is useful in systematizing the observa­
tions on clutch sizes of birds and give some predictions which may be tested 
but it is too general to contribute to a deeper insight in density dependent 
selection. 

This theory describes the variations in the mean clutch size of different 
bird populations. However, many bird species show considerable variation in 
clutch size within populations. This may be understood as an effect of varying 
environments (Mountford, 1973) along the same lines as discussed in the next 
section. 

1.4.1 Delayed Germination of Annual Plants 

It is well known that some desert plants show delayed germination, i.e., only 
a certain fraction of seeds from a given year will germinate the following spring; 
of the remaining, a fraction will germinate in the following spring, and so on. This 
is interpreted as an adaptation to an unpredictable climate; some years will be 
too dry to allow the plants to produce new seeds. Consequently, an annual plant 
is believed to increase its reproductive success by producing seeds with delayed 
germination; this will increase the probability that at least a fraction of the seeds 
will germinate in a favorable year. Cohen (1967) proposed a model describing this 
phenomenon. Since this model is also discussed in detail by MacArthur (1972) 
we will only treat it briefly here. In the present context the model is interesting 
because it shows that an unpredictable climate and the resulting density 
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independent mortality may lead to adaptations which decrease the short term 
reproduction potential by maximizing the long-term growth rate. 

We start with N seeds one winter and suppose that every spring a fraction G 
germinates. In a good year, the NG seeds produce each S seeds, whereas in bad 
years theNG pi ants fail to reproduce. In both kinds of years (1- G)N will remain in 
the soil. After a good year, there will therefore be SNG+N(I-G)=N(SG+ I-G) 
seeds in the soil, and after a bad year only (1 - G) N seeds. If the fraction of good 
and bad years are p and 1-p respectively, then in a sequence of T years, 
where Tl were good and T2 were bad, the original N seeds will have multiplied 
by a factor 

In the long run, Tl will be close to pT and T2 to (1- p) T such that in the 
average the multiplication of the population of seeds per year is 

R=(GS + I-G)p(1- G)(l-p). (1.78) 

This multiplication factor is maximized for a germination frequency G where 

dRjdG=(S-I)p(GS + 1-G)(p-l)(I- G)(l-P)-(I- p) (GS+ 1-G)p(I-G)-P=O, 

or 

G=(Sp-l)j(S-I) (1.79) 

which is close to p for large S. 
Thus in order to maximize the reproductive success a plant should produce 

seeds of which approximately a fraction corresponding to the frequency of good 
years should germinate each year. 

1.4.2 Demographic and Energetic Components of the Unlimited Growth Rate 

When we leave comparisons of related species or genotypes of the same species 
for which measures such as say the division rate of bacteria or the number of 
flower heads of dandelions are reasonable measure of the reproductive effort and 
start to compare organisms covering a wider taxonomical or ecological range, 
then it is nessesary to arrive at a better understanding of the components of the 
reproductive potential since it is these components which are directly affected 
by selection. 

The exponential growth rate in an unlimiting habitat is always a function 
of two kinds of events, i.e., the birth and the death of single individuals, and 
as previously discussed in this chapter, we may in the simplest situation use the 
model that the birth and death events are independent such that r = b - d, where 
band d are the instantaneous birth and death rates respectively. However, if we 
allow an extended life span of the individuals with the death rate and the 
fecundity of individuals dependent on age, then the birth and death of individuals 
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are no longer independent, but both are dependent on the age structure of the 
population. Consider a cohort of animals (a collection of individuals born at the 
same time) from birth at time 0 to the maximum life span w. Designate by la the 
survivorship function at age a, i. e., the proportion of the cohort that survives 
from birth to age a, and designate by rna the fecundity of individuals of age a, i.e., 
the number of off-spring produced by individuals of age a. Each individual of 
the cohort on the average at age a then contributes lama individuals to the next 
generation, i.e. to the cohort born at time a. The whole reproductive contribution 
of the cohort born at time 0, i.e., the net reproduction per individual per 
generation, is 

a=w 

Ro = S lamada . (1.80) 
a=O 

If the survivorship function and the fecundity function are unchanged through 
time, then the population will after some time grow at an exponential rate rand 
attain a stable age structure characteristic for the value of r and the function fa 
(for a formal proof see Pielou, 1969; Williamson, 1972). From the equation for 
exponential growth: x(t)=xoexp(rt) [Eq.(1.2)], we have for a time span of one 
generation, T, that 

x t + T/Xt = Ro = exp(rT) 

or 
r = (logRo)/T . (1.81) 

For a population to grow at the rate r with a stable age structure we must 
require that each age class is growing at the same rate r. Now consider such a 
population which at time t gives birth to y individuals. At time t -1 there were, 
therefore, y exp( - r) newborn individuals, at time t - 2 there were y exp( - 2r), 
and at time t - a there were y exp( - ar) individuals of age O. At time t, the 
total population size including all age classes is 

a=w 

S y1a exp( - ra)da 
a=O 

individuals which give birth to 

a=w 

S ylamaexp(-ra)da=y (1.82) 
a=O 

individuals at time t. Equation (1.82) is an equation connecting the demographic 
parameters la and rna to r (by taking the factor y away on both sides of the 
equation). From Eq.(1.81) we may then get the generation time T 

When the adaptive significance of different reproductive patterns are studied, 
the two parameters, viz., the survivorship function and the age specific fecundity 
must be discussed separately since natural selection affects them directly. How­
ever, we will in the following restrict our attention to the growth rate r to find 
general characterizations of its properties through a diversity of organisms. 
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Fig. 12. The maximum unlimited growth rates for a number of organisms as functions of 
body weight and (below) the relationship between metabolic rate per unit weight and body 
weight for the animal kingdom. The broken line in the upper figure shows the slope of the 

metabolic rate/weight relationship. (After Fenchel, 1974) 

Let us now look at the energetic significance of the unlimited growth rate. 
Clearly r may be taken as a measure of the production of biomass of a 
population which grows exponentially with the rate r. For any species the value 
of the unlimited growth rate is dependent on the environmental factors. However, 
for each species there will be at least one set of environmental factors which yields 
a maximum growth rate, r m' and this value may be considered a species 
characteristic. Such environmental conditions which yield the maximum growth 
rate can often be approximated closely in laboratory cultures. Fenchel (1974) 
collected data on the maximum growth rates for different species and related these 
values to body size (Fig. 12). The relation can be described by the equation 

rm=aWn (1.83) 

where W is the weight, n is a constant taking the value -0.275, and a is a 
constant taking three different values for unicellular organisms, and for hetero­
therm and homoiotherm metazoans respectively. This relationship is reminiscent 
of a well-known relationship between body size and metabolic rate per unit 
weight (Fig. 12). It is intelligible that the ratio between metabolic rate per unit 
weight and the productivity of populations can only vary within certain limits 
so that a correlation between these two parameters could be expected. With 
respect to the graphs we should note the following. 
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1. The curves probably reflect some upper limit of I'm which is energetically 
possible for each size group within each of the three types of organisms. This is 
so because practically all of the species shown are either species frequently used 
in laboratories, domestic animals or pests, all of which are characterized by high 
potential growth rates. Species within each size group which do not have these 
characteristics, as for instance the autochonous microflora or other species which 
are found in climax communities, would yield points below the lines [examples 
are man and the California condor; according to Mertz (1971) the latter has a 
I'm of only about 0.0003jday which is much lower than would be expected from a 
homoitherm animal of that size according to Fig. 12]. 

2. During the evolution from unicellular organisms to metazoa and from 
heterotherms to homoiotherms an increase in potential growth rate took place 
but due to the increased structural complexity, energetic efficiency decreased. 
Thus a homoiotherm mammal has arm which is on the average 2.3 times higher 
that that of a reptile of similar size, but the mammal has a metabolic rate which 
is 55 times higher, mainly due to the higher heat production. The increased 
reproduction potential of birds and mammals relative to that of reptiles has 
mainly been achieved by a shorter development time (Fenchel, 1974). The smaller 
slope of the I"m-body weight relationship (-0.275) relative to that of the 
metabolic rate-body size relationship (-0.249) also shows that with increasing 
size and thus with increasing structural complexity an increasing amount of 
energy resources of species are allocated for maintenance. 

1.5 An Evolutionary Dichotomy 

The previous sections provide examples of the physiological constraints on 
rates of growth and production of eggs on the one hand, and on the ability of 
sustaining life in competitive situations or in other situations of stress on the 
other hand. The evolution of the life cycle and reproduction characteristics of a 
species must occur within these constraints. We have seen that within the 
physiological constraints of bacteria, we find strains with high unlimited growth 
rate and poor competitive ability and other strains with high competitive ability 
and low unlimited growth rate. In dandelions the same variation of types occurs, 
and similar phenomena are observed in bird species. This dichotomy in the life 
and reproduction of organisms is sometimes referred to as r- versus K-strategy. 
The evolutionary forces producing them are named r- and K-selection (Mac­
Arthur, 1962), referring to selection taking place during the initial phase of growth 
in the logistic model, or to selection in a population at its equilibrium size, K. 

In populations mainly controlled by density independent mortality with large 
fluctuations in the population sizes this initial phase of growth is recurrent, and 
selection will favor features that tend to increase I'm' such as increased litter sizes 
or shortened development time (within the physiological constraints discussed 
above). Under other circumstances where populations are mainly controlled by 
inter- and intraspecific competition and are characterized by constant population 
sizes, selection will mainly favor adaptations which increase competitive ability 
which at the same time may mean a sacrifice of say litter size. However, our 



1.5 An Evolutionary Dichotomy 33 

previous discussion show that the argument on r- versus K-selection is only 
meaningful when closely related species are compared, unless, of course, one 
wants to express the triviality that selection does not exclusively favor a maximized 
r m (in which case we would all be bacteria). But to claim that, e.g., butterflies are 
more r-selected than deer (Pianka, 1974), is to render the whole concept 
meaningless. 

Essentially, the concept of r- and K-selection is that individuals of a 
population limited mainly by competition will increase their competitive ability, 
while in populations which are kept far below the carrying capacity by density 
independent mortality selection will favor features which increase the unlimited 
growth rate. However, selection will always favorfeatures which give small positive 
deviations from the realized value of the growth rate, which for any population 
averages zero over any extended period of time. 

The evolutionary dichotomy indicated from the observations of closely related 
species may be compared to our theoretical results of the Poulsen model. First, 
let us consider the situation where the new allele in the population, A, does not 
influence the competitive ability of its carriers but changes the birth factor B 
and the basic death rate d. This is thus a case of pure r-selection (Hairston et aI., 
1970; Pianka, 1972). These two parameters must, however, be specified within the 
physiological constraints of the organism we have in mind. A simple example 
is that the organism has a certain amount of energy to spend for the purpose of 
reproduction, E, such that the birth factor is B = E/s, where s is the size of an 
offspring. The model may then specify that the basic death rate decreases with the 
size of the offspring, i.e., d = do + f(s) where do is a constant and f(s) is a 
decreasing function (Smith and Fretwell, 1974). Let us specify the function f as a 
member of the family of functions f(s)=e/(sK+k) where e, K, and k are positive 
constants. Two distinct possibilities of evolution exist for these models. For 
eK <4k selection will favor a decrease in offspring size for every initial size, i.e., 
the birth factor will increase. On the other hand, for eK > 4k there exists an offspring 
size which is optimal, and to which the population will converge in the course of 
evolution, given the initial offspring size is above a certain suboptimal level. 
Below this level, selection will favor an ever declining offspring size. Examples 
of both these situations are shown in Figure 13 for different shapes of the 
functionf(all with the normalisation of T= 1). 

The analysis of the above model proceeds as follows: The condition for increase of A 
is from Eq.(1.51) and with D=exp( -d): 

(£/S2) exp { - [do + f(S2)]} > (£/S3) exp { - [do + f(S3)]} , (1.84) 

i.e., the evolution is determined by the variation of the function (1/ s) exp [ - f(s)J. Maxima 
and minima of this function are determined by equating the derivative to zero, which 
produces the equation 

or 
of(s)/os= -l/s 

(SK)2 _ (eK - 2k)SK + k2 = 0 

(1.85) 

(1.86) 

which has two positive solutions when eK>4k. By consideration of the second derivative 
of the function in Eq. (1.84) it may be shown that the larger root of Eq. (1.86) always 
corresponds to a maximum and that the smaller root corresponds to a minimum. Thus below 
the minimum the function (l/s) exp[ - f(s)] is increased by going towards zero, and above 
the minimum it is increased by going towards the larger root of Eq. (1.86). 
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Fig. 13. Examples of the functional form of the size-dependent death rate. The figures on the 
left correspond to the situation where decreased offspring size is always favored, and those on 
the right correspond to the situation where an optimal size exists. (., optimal point. 

0, point separating the directions of evolution) 

These considerations are founded on the rather arbitrary choice of the form 
of the function f However, the above conclusion that in some cases there is 
an optimal offspring size to which the population may converge is valid 
whenever the function f at some point increases sufficiently with decreasing size, 
e.g., if k = 0 the optimal offspring size corresponds to a global maximum in 
fitness. The conclusion that the evolution of offspring size may depend on the 
initial size is founded on the assumption that the death rate does not increase 
without bounds at zero. However, the offspring size of zero, or in practice any 
sufficiently low size, is inconceivable for any real organism. But this lower bound 
may then be considered as the optimal offspring size for populations having an 
initially low offspring size. 
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The evolution of offspring number or offspring size through r-selection may 
thus lead to the attainment of an optimal evolutionary stable situation with a 
limited number of large offspring in some situations, and to an ever increasing 
number of tiny offspring in other situations. Thus from this analysis it is 
conceivable that both sharks and sunfish (Mala mala) developed their respective 
reproductive patterns by r-selection; the former produce few « 10) large eggs 
or liveborn fish yearly while the latter produce more than 108 eggs. 

In the more general case, where the new allele is affecting both the reproductive 
potential and the competitive ability, a similar dichotomy is indicated by the 
analysis on p. 17. In any situation an allele which increases the unlimited 
growth rate by sacrificing competitive ability may increase, and so mayan allele 
which increases the competitive ability at the expense of the unlimited growth 
rate (both under the constraints shown in Fig. 5). In any particular case the 
evolutionary change in either direction must be within the physiological con­
straints allowed by the organism, so the model will predict that organisms may 
evolve either mainly to increase the unlimited growth rate (r-selection) or mainly 
to improve competitive ability (K-selection). 

Another indication from the theoretical investigation of the Poulsen model 
is that K-selection, i.e., selection for increased competitive ability, does not 
necessarily result in an increased K. This is in contrast to the clear results from 
experiments with bacteria in chemostats. However, other kinds of competitive 
interactions are conceivable in higher organisms. In the bacteria, the competition 
does not involve any direct interaction between the individuals in the population, 
it is merely a matter of who can most efficiently utilize the available resources. 
In higher animals competition may involve direct interaction between individuals, 
as, e.g., through the establisment of breeding territories. An example of this was 
provided by Strandgaard (1972) who studied a population of roe deer and 
showed that the presence of very dominating males actually decreases the 
population density below the level that the productivity of the environment 
allowed. 

To summarize the theoretical results, selection in a population at its equilibrium 
size, the carrying capacity, may favor both alleles which increase competitive 
ability and alleles which increase the reproduction potential. Thus, in its strict 
interpretation, both r- and K-selection may occur, but selection may even 
result in a decrease in the popUlation size. On the other hand, r-selection may, 
whether it occurs in a population at equilibrium or during the initial increase 
of a population, result in an increase or a decrease in the number of offspring per 
individual. Thus r- and K-strategies may not be immediately reflected in simple 
life cycle characteristics of higher organisms, such as in the number of offspring. 
A better reflection of the two different strategies is contained in the total energy E 
used for reproduction as compared to the energy spent for nonreproductive 
purposes, i.e., competition. This is the actual basis of the concept to many 
authors (e.g., Gadgil and Solbrig, 1972; Pianka, 1972). 

The present findings, i.e., that selection in a competitive environment will 
not necessarily lead to a maximized equilibrium population size and that density 
independent selection may lead to an optimum litter size show that the widely 
used terms r- and K-selection are in some respects not fortunate. 
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Fig. 14. The percentage of bivalves with different kinds of development along the shores of 
Europe from south to north. A: Gibraltar-Arcachon, B: Brest-St.Malo, C: the Channel, 
D: Southern North Sea, E: Northern North Sea and Danish waters, F: Stavanger, G: Lofoten, 

H: Western Finmark, I: Eastern Finmark, J: Spitzbergen. (After Ockelmann, 1965) 

In this context a fruitful and still rather neglected area for theoretical 
population biology is the explanation of a large and fascinating body of 
observational data on 'the life histories of different animals and geographical 
distributions of reproductive patterns of related species. Cole (1954) in a 
pioneering paper studied the consequences of life length, spacing between, and 
sizes of litters and development time on r m using the theory developed in the 
preceding section. The results (which will not be reviewed here) apply to 
many observational data although all the models imply r-selection. There have 
so far been few attempts to follow this approach (e.g., Lewontin, 1965; Cohen, 
1967; Mertz, 1971). Such studies should be extended to cover situations with 
competitive interactions and special biological adaptations such as parasitism 
and complex life cycles. However, the mathematical structure of models of 
density limited populations with continuous reproduction and in which demo­
graphic components and structure are included will be very complex and a 
general analysis such as the one carried out previously in this chapter under very 
simplified assumptions, may not be possible. 

As an example of an interesting and largely unanswered problem we will 
mention the geographical distribution of reproductive adaptations in marine 
invertebrates. Some marine invertebrates produce planktotrophic larvae. These 
are small and feed in the plankton, and they are produced in huge numbers by 
each adult individual. Other forms have lecithotrophic larvae which are larger 
and provided with some nutrients. Finally some forms have direct development, 
in some cases in conjunction with brood protection. It is understandable that 
many littoral forms of isolated islands and species living in isolated estuaries do 
not have long-lived planktonic larvae. No satisfactory explanation, however, has 
so far been given the latitudinal pattern of reproduction (Thorson, 1950; Ockel­
mann, 1965); in the tropics nearly all benthic invertebrates have planktotrophic 
larvae, at higher latitudes an increasing number of species have lecithotrophic 
larvae; in the high arctic practically all species have direct development often in 
conjunction with brood protection (Fig. 14). 
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Other plants and animals constitute an important part of the environment 
for all living organisms. Any species is a part of a web constituted by species 
which exploit each other or compete for vital resources. The persistence of a species 
in a habitat must consequently be understood from its position in the biotic 
community to which it belongs. All heterotrophic organisms provide for the energy 
and nutrients which are needed for maintenance and growth by assimilating and 
oxidizing organic molecules. This is frequently done by eating another organism; 
such relationships are called prey-predator relationships if the "victim" is smaller 
or of about the same size as the "profiteer" and host-parasite relationships if the 
victim is larger than the profiteer and the former is often not killed by the latter. 
This fundamental relationship of energy transfer from primary producers of 
organic matter (plants) through herbivores and detritivores to different levels of 
carnivores constitutes one dimension of a community often described in terms 
of food chains. The limited amount of energy available at each level of the 
community web gives rise to competition between species with overlapping 
requirements and this competition constitutes an alternative direction of rela­
tionships in the community often described in the terms of trophic levels. 

A theoretical study of complex communities is naturally initiated by a descrip­
tion and classification of relationships between pairs of interacting species. 
Following the terminology of Odum (1971) the main interaction types are the 
mentioned prey-predator (- +) and competitive (- -) relationships to which 
mutualism (+ +), commensalism (0 +), ammensalism (0 -), and the trivial 
indifference (00) can be added. These, however, are only the bricks of a 
qualitative description of a community; in order to arrive at predictive models, 
quantification of the intensity of the interactions is needed. 

A community of m interacting species may be described by a set of 
equations like 

(2.1) 

where Xi quantifies the population size of the i'th species and Fi describes the 
relative change in population size of the i'th species as a function of the population 
sizes of the species in the community. The functional form of the F;'s contains 
the qualitative and quantitative description of the community interactions. In the 
following we will explore some simple models ofthe form [Eq. (2.1)] that are more 
or less open to analytical investigations. 
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When aiming at an analysis of a general community model as symbolized 
by Eq. (2.1), it is important to have a profound knowledge of the properties of the 
fundamental interactions in the system, namely the interactions between pairs of 
species. These interactions constitute the atoms in the web of interactions of the 
whole community. Also, two species systems are open to a more complete analysis 
than are the more complex multispecies systems. 

2.1 One-Prey-One-Predator Models 

Lotka (1925) and Volterra (1926) were the first to formulate and analyze a 
simple two-linked food chain. Independently they proposed the following simple 
differential equations to describe a predator-prey system; 

dy/dt= y( -d+Y2X), 

(2.2 a) 

(2.2 b) 

where x and yare the population sizes of the prey and the predator respectively, 
r is the unlimited growth rate of the prey species in the absence of the predator, 
d is the death rate of the predator, and Yl and Y2 are constants describing the loss 
of the prey and the gain of the predator respectively. The model is based on a series 
of simplifying assumptions, the most important of which are the following. 

1. The prey is only limited by the predator; in the absence of the predator 
the prey population would grow unlimited. The model is thus describing a 
situation where the limiting factor for the prey species is predation and not 
intraspecific interaction. 

2. The number of prey eaten per time unit is proportional to random 
encounters between individuals of the prey and the predator populations. This is an 
unrealistic functional response of the predator to its prey (Holling, 1965; Maynard 
Smith, 1974) since it infers that the predator can eat unlimited amounts and 
does not reach any state of satiation. 

3. The predators only compete for prey and no other limiting resources 
(e.g., space) are allowed for. 

4. All responses ofthe populations are instantaneous; the model does not allow 
for time-lags, e.g., the time it takes the predator to handle and ingest the prey. 

5. Finally, like most simple ecological models with the scope of giving~eneral 
insight, it ignores age structure and other time correlations of the populations. 

The Eqs. (2.2 a and b) yield one equilibrium point with X=d/Y2 and y=r/Yl 
where both derivatives vanish and the population sizes remain constant. Dividing 
Eq. (2.2 a) by Eq. (2.2 b) and integrating with respect to x and y yields the function 

Q(x, y)=r log y+d logx-Y1Y-Y2x. 

This function is constant in time (dQ/dt=O), and its value is dependent on the 
initial population sizes Xo and Yo. The equation Q = constant determines a closed 
curve which describes an oscillating system. The system [Eqs. 2.2a and b)] thus 
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Fig. 15. A graphical analysis of model [Eq. (2.2)] 

shows undamped oscillations with neutral stability; any pertubation of the popula­
tions will only change the population trajectory to alternative amplitude values. 
It can formally be shown (Pielou, 1969) that the average population sizes of x and y 
in all cases are the equilibrium values and that the oscillations of the two 
populations areJ/4 cycle out of phase and the period is independent of amplitude 
and equals 2n Vrd. A graphical analysis of the equations in the (x, y) plane is shown 
in Figure 15. 

The undamped, neutrally stable oscillations of the prey-predator system 
[Eqs. (2.2a and b)] are a consequence of the special and very simple structure 
of the model. The only density regulating mechanisms of the model are inter­
specific and this results in the time-lags of the reactions. These pathological 
characteristics disappear as soon as intraspecific competition is allowed for in the 
model. Volterra (1926) proposed the following simple version of the model; 

dx/dt= x(r -(Xx -YIY), 

dy/dt= y( -d+Y2X), 
(2.3) 

in which density dependent regulation ofthe prey species is considered. This model 
is analyzed graphically in Figure 16. Another extension of the model is, of 
course, to allow the predators to compete too, thus giving the general model 

dx/dt=x(r-(Xlx-YIY) , 

dy/dt= y( -d+Y2X-(X2Y)' 
(2.4) 

Figure 17 shows and analysis of this model and one described by Leslie (1948) in 
which the functional form of the prey-predator interaction is changed relative 
to Eq. (2.2). In this model the predator is limited by the number of prey per 
predator rather than by the number of prey; 

dy/dt= yes - y/(Y2X)] . (2.5) 

This model corresponds to the logistic model Eq. (1.3) with the carrying 
capacity as a simple function of the prey abundance. 
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Fig. 16. A graphical analysis of model [Eq. (2.3)] 
Fig. 17. A graphical analysis of models [Eq. (2.4) and Eq. (2.5)] 

Kolmogoroff( 1936) (see also Rescigno and Richardson, 1967) devised a general 
prey-predator model formulated by 

dxjdt=xF(x, y), 

dyjdt= yG(x, y), 

where the functions F and G have the following six properties: 
1. When both species are rare the prey will increase, i.e., F(O, O} > O. 

(2.6) 

2. The per capita increase of the prey population is a decreasing function 
of the size of the predator population, i.e., dF j dy < O. 

3. The multiplication of the predators decreases with their number, i.e., 
dGjdy<O. 

4. For a constant ratio of prey to predators, the multiplication is slowed by an 
increase in the number of predators, i.e., x(dFjdX) + y(dFjdy) <0, and the multi­
plication of the predators is enhanced by an increase in the prey, i.e., 
X(dGjdX} + y(dGjdy) >0. These properties reflect that encounters between prey and 
predators become more frequent with higher population densities. 

5. There exists a critical size b >0 of the prey population below which the 
predator cannot increase, i.e., G(b, 0) = O. 

6. High predator densities or high prey densities prohibit prey growth, i.e., 
there are constants A and a> 0 such that F(A, 0) = F(O, a) = O. 

It may now be shown (Kolmogoroff, 1936) that when 1. through 6. are fulfilled, 
then the model describes a stable limit cycle or a stable equilibrium if and only if 
b < A (Fig. 18). The result does not provide conditions for whether a stable 
equilibrium or a stable limit cycle will be the solution. A local analysis of the 
equilibrium E (Fig. 18) does not in general make that distinction because it is 
possible for E to be stable and at the same time be surrounded by a stable limit 
cycle. However, when A (the carrying capacity of the prey) is much larger than 
the size of the prey population at the equilibrium E, i.e., when the model has 
properties approaching those of the Lotka-Volterra model Eq. (2.2), then we may 
expect a stable limit cycle. Conversely, if A and the equilibrium prey population 
are not too different, the equilibrium E becomes globally stable. 

The general model [Eq. (2.6)] may be used to analyze a variety of models 
(May, 1973 a) and in many situations it may support a global analysis. The simple 
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Fig. 18. A graphical representation of the general prey-predator model (2.6) 
Fig. 19. A prey-predator model showing a stable limit cycle. (After May, 1973a) 
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x 

model [Eq. (2.4)J is such an example. It fulfills all the requirements for stability 
except condition 4. on the function G. This condition is only fulfilled for 
Y2X > ct2y, i.e., there are difficulties for excessive predator densities. However, in that 
region ofthe (x, y) plane the requirement for stability is that the predator decreases 
fast enough to prevent the prey from going extinct, but condition 4. on G is a 
requirement that the predator increases fast enough at low predator densities. 

The condition should, therefore, not be needed in that particular region and in 
fact it may be shown that if the population starts here it will go out of the 
region while being bounded away from the x=O edge (see below). Therefore, the 
prey population will never go extinct due to excessive predator densities but will 
always return to an area where the requirements for Kolmogoroff's result are 
fulfilled and neither of the species will go extinct. In general Kolmogoroffs 
results apply if the isoclines have an appearance as in Figure 18, specifically if 
they only intersect in one point. 

An example of a model fulfilling the requirements 1. through 6. is the model 
[Eq. (2.5)]; this supports the graphical analysis of the model (Fig. 17). 

An example of a predator-prey model which exhibits a stable limit cycle was 
given by May (1973a) with a model which is a hybrid between the models of 
Leslie (1948) given by Eq. (2.5) and the model of ffolling (1965): 

F(x, y)=r[l-x- y/(x+b)] , 

G(x, y) = s[l- y/(yx)J . 
(2.7) 

Kolmogorofrs results apply to this model though not all the requirements 1. 
through 6. are completely fulfilled. Therefore, the predator-prey system is 
always globally stable; when the equilibrium point is unstable there must 
exist a stable limit cycle (Fig. 19). 

A general type of prey-predator model is the following which is an extension 
of a model considered by Rosenzweig and MacArthur (1963): 

F(x, y)=r(x)-YIYCP(X) , 

G(x, y)= -d(Y)+Y2XCP(X) , 
(2.8) 
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Fig.20A and B. Examples of unstable prey-predator systems. (A) a theoretical model. 
(B) Population sizes of Paramecium caudatum (0 ) and its predator Didinium nasutum (.) 

in an experimental system. (After Gause, 1934) 

where r(x) is the density dependent growth rate of the prey in the absence of the 
predator, d(y) is the death rate of the predator assumed to be density dependent, 
and cp(x) is the rate of predation per prey-predator encounter which is allowed to 
be dependent on prey abundance. 

The functions describing the model must be reasonable. We may assume that 
the growth rate of the prey, r(x), is a decreasing function of x, that the death 
rate of the predator, d(y), is an increasing function of y, and that the predation 
rate per predator, xcp(x), is an increasing function of the prey density, x. By these 
assumptions requirements 1. through 3. and the requirements with respect to F in 4 
of KolmogorofI's theorem are fulfilled. By additional, reasonable constraints, 
req uirements 5 and 6 are also fulfilled. As for the Lotka-Volterra model, the 
only trouble is requirement 4 with respect to function G. This condition now reads 

Y2x8[Xcp(x)] /8x- y8d/8y>O (2.9) 

which is not fulfilled for large values of y. However, for sufficiently small y it is 
always fulfilled so that the predator cannot go extinct while the prey population 
persists, i.e., the trajectory of the populations cannot hit the x-axis. The question 
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Fig. 21. The population trajectories in points on the line L in a predator-prey system of the 
type described by Eq. (2.8). In the shaded area below the isocline x(3G/3x) + y(3G/3y)=0, 

Kolmogorotrs theorem is always valid. For further explanation, see text 

Fig. 22. The growth rate as function of density as assumed by the model [Eq. (2.4)J and 
(interrupted line) allowing for a relatively lower growth rate at low densities 

is now whether the trajectory can hit the y-axis. We wiIl show that under wide 
conditions there exists a line L, given by x = AY, such that all trajectories that 
pass this line or any line steeper than L will pass in the direction away from 
the y-axis; see also Figure 21. 

The slope of a trajectory is [yG(x, y)J/[xF(x, y)]. For points on L, where x= },y, the slope 
will be given by 

(1/,1.) G{,1.Y, y)/F(,1.y, y). (2.10) 

The condition that the trajectory is steeper than the line is that Eq. (2.10) is greater than 
(1/,1.) or that G/F is greater than one. Remembering that we are only interested in the condition 
for F <0 (for F >0 the trajectory is evidently away from the line L and the y-axis) then 
we get the condition 

G(}.y, y)<F(,1.y, y) 

which for Eq. (2.8) yields 

This condition is fulfilled for all A sufficiently small if 

YY 1 cp(O) < r(O) + d(y) (2.11 ) 

for all y> a. Thus if the death rate of the predator increases sufficiently fast with its density, 
then it cannot eat up the prey. Comparing Eqs. (2.11) and (2.8) reveals that the condition is 
that with a small prey population, the predation pressure on the per capita growth rate of the 
prey should increase less with the predator density than should the per capita death rate of 
the predator. 
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Fig. 23. The functional response of a predator to prey density as assumed by the model 
[Eq. (2.4)] and (interrupted line) allowing for a saturation effect 

Fig. 24. A predator-prey system as shown on Figure 20A but with the prey having a refuge 
which stabilizes the system 

This condition for global stability of the model [Eq. (2.9)] is only a sufficient 
condition; as mentioned earlier, the simple model [Eq. (2.4)] is always globally stable even 
though Eq. (2.11) is not fulfilled. This may be shown by using the same technique as above 
but substituting the line L with a parabola, x = }.yP, where p >ydrxz. 

The model [Eq. (2.8)] with the above mentioned conditions covers a wide 
range of effects neglected by the simple model [Eq. (2.4)]. The growth potential 
of the prey may be low at low densities due to difficulties in finding mates or for 
other reasons (Fig. 22). Similar density dependent effects on the death rate of the 
predator are allowed. Furthermore the model allows for a general saturation 
effect in the predator's response to the prey (Fig. 23 and Holling, 1965) and for the 
prey having a refuge from the predator (Fig. 24) which always stabilizes the 
system. 

Apart from the interest in global stability of a predator-prey system, it is 
also of interest to know whether the system will stabilize at the equilibrium E 
(Fig. 18) or whether it will exhibit a stable limit cycle. As already mentioned, 
conditions for global stability of E have not been found, but we may ask for 
conditions that E is locally stable, i.e., if the populations are started within a 
specified circle around E they will then converge to E. This is more or less the 
condition that if the system is started with population sizes corresponding to E 
it will stay there, i.e., it becomes a necessary condition for E being a globally 
stable equilibrium. A local stability analysis is in principle carried out as done in 
Chapter 1; a general framework for the analysis of local stability will be discussed 
later in this chapter. Here we will just mention that equilibria where the F = 0 
and the G=O isoclines intersect as shown in Figures 17 and 18 are always 
locally stable (qualitatively stable in the sense of May, 1973 a), and equilibria 
where the isoclines intersect like in Figure 19 mayor may not be stable depending 
on the parameters. The condition for qualitative stability is thus that the slope of 
the F = 0 isocline at E is negative and that of the G = 0 isocline is positive, and 
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Fig. 25. The graphical construction of an F = 0 isocline with a "hump" due to a saturation 
of the predator with prey. Each point of the curve is found as the intersection of the r(x) 
function and the functions ycp(x). When there are two intersections, the F = 0 curve will have a 
hump. The growth rate of the prey is of logistic form, i.e., r(x) = r(K - x)/K, and the 
response of the predator to prey density is of the form shown in Figure 23, i.e., 

xcp(x) = bx/(x+a) 

when both are positive the stability depends on the parameters. This latter 
possibility is probable when the F = 0 has a "hump" or maximum; in the case of the 
model [Eq. (2.8)] this is possible when the predator can be saturated with the 
prey as demonstrated graphically in Figure 25. 

When the equilibrium E = (x, y) is unstable and the populations stabilize in a 
limit cycle, then the ratio between the minimum and maximum prey population 
size is approximately exp[ - (CAjX)2], where c is close to unity (May, 1973a). Thus 
if x is much smaller than A (the carrying capacity of the prey) the population 
size of the prey may become very low during some part of the cycle, in fact < 1. 
This is relevant to experimental laboratory systems, where the extinction of the 
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Fig. 26. A simple, linear food chain 

prey, even when its population minimum is larger than unity, is likely due to 
stochastic events. 

However, the general picture which emerges from studying simple predator­
prey systems is that they act as stabilizers of the community web if both the 
prey and predator populations are density regulated extrinsic to the prey-predator 
relation. This property may be extended to simple linear food chains (Fig. 26) as 
discussed by May (1973a). However, such food chains must be restricted in length 
and cannot themselves contribute much to the diversity of biotic communities. 
At each link of the food chain only a fraction of the assimilated energy can be 
used for growth and reproduction, the remaining is used for maintenance. Further, 
not all food which is ingested is assimilated. We may take 10% as a crude estimate 
of the amount of energy ingested by one link in the food chain which can be 
passed on to the next link (Slobodkin, 1961). Thus in a food chain with say 5 links, 
the "top carnivore" will only receive about 10- 5 times the energy available to the 
first link, e.g., green plants. In nature, food chains are in fact rarely longer 
than 5 links. 

Several experimental predator-prey systems are described in the literature. 
This approach, i.e., to study simple microcosms with for example populations 
of a prey species and its predator and compare their behavior with simple 
mathematical models may be of value for clarifying properties not built into the 
models (e.g., special behavioral properties of the species in question). This type of 
experiment, however, cannot "prove" or "disprove" simple population models. If 
we carefully select organisms and experimental conditions which conform with 
the model, then we can at most prove that the theoretician is capable of integrating 
his equations; using a real biological system only for simulation of a model does 
not yield more insight about the real system or the model than we had before 
the experiment, and we could as well have used an electronic computer. 

Many of the experimental systems described in the literature show divergent 
oscillations, i.e., they are unstable. Most known are the experiments of Gause 
(1934, 1935) who used the ciliate Paramecium caudatum and its ciliate predator 
Didinium nasutum. Gause's systems invariably went extinct after 1-2 oscillations 
(Fig. 20) unless low, constant migration rates of both species were imposed on the 
systems. The main reasons for the divergent oscillations are time-lags in the 
response of the predator to decrease in the prey population (Didinium may 
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continue to divide after starvation, producing smaller individuals, and it thus 
violates requirement 5 of Kolmogoroff) in conjunction with small total population 
sizes so that the trajectories came fatally close to the y- or the x-axis (Williamson, 
1972; Maynard Smith, 1974). Luckinbill (quoted from Maynard Smith, 1974) 
found that adding methyl cellulose to the medium (thus increasing the viscosity 
of the medium which decreased the numbers of prey-predator encounters) or 
decreasing the food level of the prey rendered Gause's systems stable. As discussed 
above, smaller carrying capacities of the prey species tend to damp the oscillations. 

Utida (1957) was able to sustain oscillating populations of a bean weevil and a 
parasitoid wasp for more than 100 generations. Realistic models of systems which 
involve higher animals with complex life cycles and behavior patterns must include 
age structure and time-lags and are mainly based on difference equations. Such 
models are outside the scope of this book; the reader is referred to Nicholson and 
Bailey (1935), Maynard Smith and Slatkin (1973), Maynard Smith (1974), and 
Usher and Williamson (1974). Prey-predator systems in a heterogeneous 
environment and with migration between patches tend to be more stable than 
the same systems in a homogeneous environment (cf. Chap. 4). Huffaker's (1958) 
experiment exemplifies this. The systems consisted of oranges with a herbivorous 
mite and its predator, another mite. Many of these systems went extinct after 
some oscillations but when the spatial arrangement of the system, i.e., trays 
with oranges, became sufficiently complex including migration barriers, etc., 
the systems showed stable limit cycles. This system is analyzed by Maynard 
Smith (1974). 

The well-known oscillating hare-lynx system in Canada may, together with a 
few others, be taken as an example of stable limit cycles of a prey-predator 
system in nature. As pointed out by May (l973a) this system cannot, however, 
be taken as an illustration of the neutral oscillations of the Lotka-Volterra model 
[Eq. (2.2)] as inferred in some text books. May (1973a) also quotes an example 
where a natural prey-predator system seems to show stable limit cycles where 
conditions are favorable for the prey species but shows a stable equilibrium 
where conditions are less favorable; i.e., the decrease of the K-value of the prey 
damps the oscillations in accordance with the theoretical predictions. 

2.2 Two Species Competing for Resources 

Lotka (1925) and Volterra (1926) also considered the case when two species 
compete for the same resource and proposed the following equations: 

dxddt=rlXl(K l -Xl -/312 X2)!K l , 

dX2/dt=r2X2(K2 -X2 -/321 X d/K2 , 

(2.12) 

where Ki are the carrying capacities of the two species when living alone in the 
habitat and /3ij (~O) are the competition coefficients which measure the degree of 
inhibition of species i due to the presence of species j. Clearly if /312 = /321 = 0 
there is no interaction between the species and Eq. (2.12) degenerates into two 
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Fig. 27. A graphical analysis of a two species competJtJon system obeying model 
[Eq. (2.12)]. Upper left: Situation with stable coexistence. Upper right: Situation where Xl 

always wins. Lower: Situation where the final outcome of competition is determined by the 
initial population sizes 

logistic equations. If Xl and Xl are the absolute numbers of the two species, then 
f312 measures the inhibition of species 2 on species 1 in units of the inhibition of 
species 1 on its own growth. However, the species abundance may be measured 
in any unit so we can choose to measure the size of the population of species 1 
in units of its inhibition on species 2 (when f321 > 0); this coordinate transformation 
changes [Eq. (2.12)] into the equivalent system; 

dx ddt= rlx 1 [(K If321) - Xl - f312f321 X2]/(K If32 d , 
(2.13) 

Therefore, the competition between the two species is completely characterized 
by the quantity rt.=f312f321' If the two species have complete overlap in the 
utilization of resources then the inhibition in growth is for both species determined 
by the quantity X 1+ X2 and rt. = 1. When the overlap in resource utilization is only 
partial then rt. < 1, and when the two species inhibit each other in other ways 
than just by using the same resources, e.g., by preying on each other or by other 
significant antagonistic mechanisms, then rt. > 1. 
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The qualitative consequences of Eq. (2.12) can be analyzed graphically by 
observing the signs of dxJdt and thereby the direction of movement of the 
population in the (xr. X2) plane. The changes in signs occur along the dxJdt=O 
isoclines, i.e., the straight lines K;-x;- [3ijXj=O. As seen in Figure 27 there are 
four qualitatively different outcomes of Eq. (2.12) according to the configurations 
ofthe isoclines. The four possibilities are as follows: (1) Species 1 wins independent 
of initial population densities. (2) Species 2 wins independent of initial population 
sizes. (3) Either species 1 or species 2 wins according to initial population 
densities. (4) Both species remain in the system in stable coexistence. The exact 
requirement for stable coexistence is that [3j K; < 1/ K j which can be interpreted 
to mean that each species inhibits its own growth more than it inhibits the other 
species. In the special case where K 1 = K2 = K it can be seen that [312 and [321 < 1 
is a necessary and sufficient condition for coexistence. In this case, the total 
population size at equilibrium, i\ + Xl> exceeds K which corresponds to the 
interpretation that there is not a total overlap in resource utilization in this case 
([312[321 is necessarily less than unity). This result would seem to indicate that two 
species may be as similar as conceivable save for complete overlap in the resource 
utilization and still coexist. The case where either of the species can win dependent 
on initial conditions, on the other hand, requires that both [3ij's are greater than 
unity, i.e., that some antagonistic mechanism is involved. 

The graphical analysis described above was extended by Rescigno and 
Richardson (1967) to cover models of a general structure like the Eqs. (2.6) 
describing a predator-prey system. The functions F and G are now specified 
according to the qualitative properties of competition. In the present context the 
model should be formulated as 

(2.14) 

The requirements for a global analysis are the following assumptions. 
1. Each species will increase if both are rare, i.e., F;(O, 0) > 0 (a simplifying 

assumption which is not very crucial; an Allee-effect could be allowed). 
2. The per capita increase of each population is a decreasing function of its 

population size and the population size of the other species, i.e., oFJoxj <0 
for i andj= 1, 2. 

3. For each species when alone, there exists a critical population size above 
which it cannot increase, i.e., F1(Ar.0)=F2(0,A2)=0 where the A's (i.e., the 
carrying capacities) are positive. 

4. For each species when alone, there exists a critical population size above 
which the absent species cannot increase, i.e., F 1(0, a1)= F 2(a2, 0) =0 where the 
a's are positive. 

An example is shown in Figure 28. Here the F;(x 1, X2) = 0 isoclines intersect 
in two points and an inspection of the directions of movements as specified by 
the signs of F 1 and F 2 show that S and Al are stable equilibria. The domains 
of attraction of these two points cannot be found explicitly without a more 
specific definition of the functions F;. However, the dotted lines through the 
unstable equilibrium U partition the (Xl' x2)-plane into four regions where the 
one containing S is contained in the domain of attraction of S and similarly for 
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Fig. 28. A two species competition system: An example of a general case with two stable 
equilibria, viz., S and Al 

the region containing Al on the edge. Observe that the equilibria S, U, and 
AI> when viewed locally correspond to the situations of the Lotka-Volterra model 
[Eq.(2.12)] shown in Figure 27. Thus in this way the simple linear model 
[Eq.(2.l2)] may be viewed as an approximation to the general model [Eq.(2.14)] 
when considering populations close to an equilibrium. 

It is clear from Figure 28 that a stable coexistence is guaranteed when Ai < aj 

for i =+= j, a condition formally equivalent to the condition of the Lotka-Volterra 
model. The other property of the Lotka-Volterra model, that the total population 
size of the combined system is larger than the carrying capacity of each species 
does not necessarily generalize to any model (Maynard Smith, 1974). 

Many experimental laboratory experiments illustrate the qualitative pre­
dictions of models such as [Eqs.(2.l2) or (2.14)]. As in the case of similar 
predator-prey systems, the analysis of simple experimental systems may yield 
insight in the particular species used or suggest new general principles, but they 
cannot prove or disprove simple mathematical models. 

The outcome of competition experiments always shows that when two species 
are forced to share a common, limiting resource, one of the species will be 
excluded unless the two species can use some heterogeneity of the experimental 
universe and thereby share the resource through habitat selection. Gause 
(1934, 1935) carried out competition experiments with different species of 
Paramecium competing for bacteria or for yeast cells; these food items were 
supplied to the systems at a constant rate. Experiments with Paramecium caudatum 
and Paramecium aurelia always ended with the competitive exclusion of one of the 
species according to the experimental conditions. In these experiments 10% of 
the populations were removed every day for enumeration and then discarded. 
Consequently the populations were subject to a density independent mortality 
rate so that the growth rates of the species played a role for the outcome of the 
experiments. In experiments with P. caudatum and Paramecium bursaria competing 
for yeast cells in tubes, a stable coexistence was found. This could formally be 
described in terms of the Lotka-Volterra equations in the case of stable co­
existence (fJij/K i < I/K j ). However, the underlying mechanism for the coexistence 
is that P. bursaria is a superior competitor in the sedimented yeast cells in the 
bottom of the tubes and is able to exclude P. cauda tum while P. caudatum on the 
other hand is able to exclude P. bursaria in the yeast suspension above the bottom. 
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Fig. 29. The individual growth during two months in about 20 cm3 sediment of the mud snail 
Hydrobia ulvae as function of its own density in monocultures and as function of the density 
of snails in mixed cultures with H. neglecta containing 20 H. ulvae. (After Fenchel and 

Kofoed, 1976) 

The two species therefore show habitat selection in a heterogeneous environ­
ment and -each of the species is excluded from a part of their "fundamental 
niches" (Chap. 3). In an experimental design which secured a totally homogeneous 
environment one of the two species would always become excluded. 

Vandemeer (1969) studied the interspecific competition of four species of 
ciliates for which the K's and the /3's had been estimated by growing each of the 
species separately and in pairs. The outcome of the four-species system could 
then largely be predicted from a four-species version of Eq.(2.l2). 

Crombie (1946) studied the competition between different species of flour 
insects and also showed that spatial heterogeneity (e.g., small glass tubes into 
which only one of the competing species could enter) may lead to coexistence of 
species which cannot coexist in a homogeneous environment. In competition 
experiments with flour insects such as Tribolium spp. (e.g., Park, 1962) the inter­
action is in part antagonistic due to mutual predation on larvae and pupae 
(/312/321> 1) leading to the case where the outcome of the competition depends 
on the initial population sizes. 

It is clear that when K1 ~ K2 and /312 ~ /321 ~ 1, then the process of competitive 
exclusion or the arrival at an equilibrium situation is very slow; this is often 
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the case with competition experiments with different specIes of Drosophila 
(e.g., Moore, 1952; Ayala, 1969; Barker, 1973). 

The nature and quantification of competition will be discussed in detail in 
Chapter 3 with special reference to field conditions. In experimental populations 
the coefficients of competition may in principle be measured as the decrease of 
fitness of species 1 as a function of increasing numbers of species 2 measured 
by the intraspecific competition of individuals belonging to species 1. Such an 
experiment with two species of mud snails (H ydrobia spp.) is shown in Figure 29. 
These snails ingest diatoms and sediment particles and utilize the attached 
microflora of the latter. In containers with regularly exchanged marine sediment 
they show exploitative competition. On the graph the individual growth of 
H. ulvae is shown as a function of its own density (in about 30 cm2 dishes with 
about 20 cm3 sediment) and as the function of the density of the related species 
H. neglecta (in similar dishes and with 20 individuals of H. ulvae). It can be seen 
that /3ulvae, neglecta is not very far from unity. 

2.3 Mutualistic Pairs of Species 

The species interactions not specifically discussed in the previous sections are 
commensalism (0 +), ammensalism (0 -), and mutualism (+ +). The two 
former may be viewed as special cases of the prey-predator and the competition 
models respectively. However, they degenerate to independent logistically 
growing species with time, depending on the carrying capacity of one of the 
species so that the results of Chapter 1 apply. Stable coexistence is thus 
guaranteed if both species always have positive "carrying capacities." 

Mutualism, however, is a special quality of interaction which has rarely been 
considered from the point of view of theoretical ecology. This is regrettable since 
a vast number of such relationships, many of which are still incompletely under­
stood, are known from nature. One need only to think about insects as 
pollinators, symbiotic micro algae in, e.g., corals and symbiotic nitrogen fixation 
to recognize the significance of mutualistic relationships. Besides the mentioned 
examples which are fundamental to the function of the biosphere, there are great 
numbers of more exotic examples, e.g., cleaning symbiosis of coral fish, hermit 
crabs with symbiotic actinians and fish and cephalopods with symbiotic, 
luminescent bacteria. 

A simple linear model of mutualism would be 

(2.15) 

However, some restraints must necessarily be imposed on the model. The 
benefit that one species gets from its symbiont can never be larger than the 
energy contained in the symbiont or in the resources exploited by the species 
pair. Otherwise the model would constitute a perpetuum mobile. By analogy 
with the competition model this would be avoided by requiring that /312/321 is 
strictly less than unity. When this is fulfilled the model always guarantees stable 
coexistence of the two species. 
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y, 

Fig. 30. A general case of two mutualistic species 

The model can be formulated in the general framework of model Eq.(2.6) and 
model Eq.(2.14) by supposing 

(2.16) 

with the following restraints on the functions Gi . 

1. If both populations are small they can multiply, i.e., Gi(O, 0) >0. 
2. Each species when alone cannot multiply over a certain size (the carrying 

capacity), i.e., G1(B1, 0)= G2(0, B2 )=0 for Bi>O. 
3. The two species interact mutualistically meaning that the per capita 

increase of one species is increased by an increase in the population size of the 
other species, i.e., 8GFJYj>0, it). 

4. There exists a ratio yi/Y2 where an increase in the population sizes 
decreases the per capita growth in each of the species, i.e., Yl(8G;/8Yl)+ 
Y2(8G;/8Y2) < -e, with e>O. This condition secures that the system is not a 
perpetuum mobile. 

Under these conditions Eq.(2.16) will always ha.ve one globally stable 
equilibrium of coexistence (Fig. 30). Condition 1 is not realistic for many 
mutualistic species pairs, i.e., often none of the species can grow without the 
presence of the other species, so that there is a minimum population size of 
species j below which i cannot increase. The model (Fig. 30) can also describe 
such cases. There will then be an unstable equilibrium point U and for 
population sizes below U both species will go extinct and for population sizes 
above U the populations will reach the stable equilibrium E. 

2.4 Linear Models of Food Webs 

The simple models of prey-predator relationships, competition and mutualism 
discussed in the previous sections may readily be extended to describe whole 
food webs. A community with n interacting species may be modelled by 
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equations where the per capita growth rate is a linear function of the population 
sizes Zi. Thus 

n 

(ljzJdzjdt=wi+ L wijZj 
j= 1 

(2.17) 

where the signs of wij are in accordance with the classification of interrelationships 
by Odum (1971) as discussed in the introduction to this Chapter, and Wi 

corresponds to the unlimited growth rate if species i is a primary producer and 
to the death rate if species i belongs to higher trophic levels. An equilibrium 
(2 1 , 22 , ... , 2 n) with Z i > 0 for all i, is determined by the set of linear eq uations 

n 

-Wi= L wijZj, 
j= 1 

i = 1, 2, ... , n, (2.18) 

provided the unique solution is positive (2i> 0 for all i). The global stability 
properties of the system [Eq.(2.17)] have not been determined [similar to 
those of Kolmogoroff (1936) and Rescigno and Richardson (1967)]. We must 
rely on an analysis of the local stability of the equilibrium as determined by 
Eq.(2.l8). Such mathematical techniques have been developed by May (l973a) 
and by Strobeck (1973). 

A local stability analysis is done by considering a small perturbation from the equilibrium 
such that the population sizes are given by Zi = Zi + e" where ei is small. With this change 
in variables we have 

n 

de;/dt=(zi+ei) L wijej 
j= 1 

(2.19) 

from Eqs. (2.17) and (2.18). The behavior of the system around the equilibrium is determined 
by neglecting terms of the order e2 (Gantmacher, 1971), so that Eq. (2.19) becomes the linear 
system 

n 

de;/dt= L (WijZi) ej. 
j= 1 

(2.20) 

The behavior around the equilibrium is thus determined by the community matrix A 
(Levins, 1968) with the elements 

(2.21) 

(For general nonlinear systems the same result applies with the element aij of the community 
matrix being ii{ J[(l/z i)dzjdt]/JzJ. The solution of the system of linear differential Eq. 
(2.20) may be written 

n 

ei= L kij·exp(}.jt) 
j= 1 

(2.22) 

where Ai, i = 1,2, ... , n, are the eigenvalues of the matrix A determined as the real or complex 
roots of the equation 

det(A-An=O, (2.23) 

(I is the identity matrix) and where kij are constants determined by the initial conditions 
(Gantmacher, 1960). The form [Eq. (2.22)] gives a stability qiterion. If Ai>O or the real part 
Re(Ai) > 0, then the term exp(A;t) will increase without limit. On the other hand, if for all i, 
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we have that Re(AJ<O, then the terms will vanish towards zero as time goes on, meaning 
that the populations return to their equilibrium values. Thus a valid equilibrium is locally 
stable if the eigenvalues of the community matrix A [the roots of Eq. (2.23)J all have negative 
real parts, and the equilibrium is unstable if only one of the eigenvalues has a positive real 
part (Gantmacher, 1971). 

This criterion of stability is not entirely useful. If the eigenvalues cannot be determined, 
then the only criterion for negative real parts of all roots of a polynomial equation like 
Eq. (2.23) is the Routh-Hurwitz criterion (Gantmacher, 1971; May, 1973a; Strobeck, 1973) 
which consists of purely algebraic conditions with no immediate appeal to the applicant. 
The criterion, however, is valuable for analyzing simple web models where the number of 
species is small. 

As an example of a local stability analysis we may use the predator-prey model 
(4) Eq. (2.4). The community matrix for this system is 

(2.24) 

The polynomial Eq. (2.23) now reads 

(2.25) 

The criterion for negative real parts of both roots of Eq. (2.25) is that the coefficient to A 
and the constant term are both positive. An inspection of the signs of the elements of the 
community matrix [Eq. (2.24)] reveals that this condition is always fulfilled. Thus a model 
with the signs of Eq. (2.24) is qualitatively stable. On the other hand, if the sign of all is +, 
as in the model shown on Figure 19, then the criterion for negative real parts of Eq. (2.25) 
becomes a condition on the actual values of the parameters. 

As already discussed in the section on predator-prey systems, a local analysis may have a 
limited applicability to global reasoning. 

2.5 Competition Models with Many Species 

The linear Lotka-Volterra model for competition described by Eq. (2.12) 
readily generalizes to more species, i.e., 

dxJdt=riXi(Ki-Xi- L f3ijx)/K i . 
j*i 

(2.26) 

For the subsequent analysis it is convenient to change the parameterization of 
Eq. (2.26) by measuring the population sizes as fractions ofthe carrying capacities. 
Eq. (2.26) then reads 

or by setting 

dx;/dt=rixi(l-xi- L (f3ijK)Ki) Xj}, 
j*i 

then Eq. (2.26) becomes 

dX;/dt=riXi(l- IrJ.ijXj). 
j= 1 

(2.27) 

(2.28) 
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An equilibrium (XbX2, ... ,Xm) with all m species present will be the solution 
to the linear equations 

m 

1= L cxijXj, i=1,2, ... ,m, (2.29) 
j= 1 

and the solution is unique (except for pathological cases) and a valid equilibrium 
is found when Xi> 0 for all i. 

The stability analysis of this equilibrium is more tricky, however, because the 
simple graphical arguments used for the two-species model cannot be used here. 
A general global analysis of the model is not known, so we will have to rely on a 
local stability analysis of the equilibrium (x b x 2, ... , xm). This analysis is outlined 
by May (1973a) and by Strobeck (1973), but the stability conditions were given 
in terms of the rather opaque Routh-Hurwitz criterion which may be used in 
specific models but does not provide general insight in the stability properties. 
Strobeck (1973) considered the three species version of Eq. (2.28) in more detail 
in order to investigate the connection between the stability criterion and the 
condition that the solution to Eq. (2.29) is a valid equilibrium. He showed that 
the condition for the increase of a third species invading a previously stable two 
species equilibrium implies a part of the stability condition for the three species 
equilibrium. Eventually, if all two species marginal equilibria are stable in the 
absence of the third species, and the missing species can invade these equilibria, 
then the internal three species equilibrium exists and is stable. 

A special type of competition model may be analyzed in much more detail, 
viz., models with symmetric competition where either cxij= CXji or f3ij= f3ji for all i 
and j. We will here analyze the first possibility. First observe that the function 

m m 
Q(t)= L L (Xi-Xi) CXi/Xj-X) (2.30) 

i= Ij= 1 

acts like an energy function (Lyapunov function) of the system, I.e., dQ/dt IS 

always negative, see Eq. (2.32) (MacArthur, 1970; May, 1974). 

To see this differentiate to get 

m m 

dQ/dt= I I rJ.ij{(Xi-Xi) dx/dt+(Xj-Xj) dxJdt} =2 I I rJ.iiXrXj)dxJdt (2.31) 
j=lj=l i=lj=l 

due to the symmetry of the two addents. From Eq. (2.28) and the equilibrium Eq. (2.29) we get 

m 

dxJdt= -rix i I rJ.ik(Xk-xd· 
k= 1 

Combining this with Eq. (2.31) reveals that 
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Fig. 31. Alternative community compositions of systems consisting of 1, 2, or 3 competing 

species respectively 

which simplifies to 

dQ/dt= -2 itl rixltl (Xiixi-X)r· (2.32) 

The population sizes are nonnegative so Eq. (2.32) is nonpositive under the 
simple condition that rj> 0 for all i. Therefore, the population will grow such that 
Q decreases and a stable equilibrium will be a local minimum of Q(x). At the 
equilibrium (Xl> X2, ... , xm) we see that Q=O, i.e., the equilibrium is stable if Q>O 
in the neighborhood around the equilibrium. However, Q is a quadratic form over 
the matrix B = (lXij), so the requirement that Q > 0 in the neighborhood of the 
equilibrium is that Q is positive definite, i.e., positive everywhere except at the 
equilibrium. The matrix B is symmetric so its eigenvalues are real (cf. Gantmacher, 
1960) meaning that Q is positive definite provided all the eigenvalues of Bare 
positive. A valid equilibrium determined by Eq. (2.29) is, therefore, globally stable 
provided all the eigenvalues of the symmetric matrix B are positive (MacArthur, 
1970; Strobeck, 1973). 

The influence of the number of species on the stability of an equilibrium may 
be inferred from the following properties of symmetric matrices (MacArthur, 
1971; cf. also Gantmacher, 1960). If we remove the last row and the last column 
from a symmetric matrix then the least eigenvalue is greater than or equal to 
that of the original matrix. Now, the criterion for stability being that all eigen­
values of the symmetric matrix B should be positive (the least eigenvalue positive) 
shows that if we have stable coexistence of m species then we have stable 
coexistence for any lower number of species for which a valid equilibrium exists. 

In symmetric models this may be illustrated by a simple example as shown in 
Figure 31, where we construct a community of an increasing number of competing 
species. Beginning with species 1 and then introducing species 2 we get two 
possibilities for a change in the community composition, i.e., that species 2 excludes 
species 1 or that the two species coexist. However, the coexistence of the 
competitors imply that species 2 can maintain a population in the habitat so that 
the stability of the two species system implies the stability of either of the two 
monospecies equilibria if one of the species is removed. By introducing species 3, 
there are 4 new possibilities of species composition. Again the stability of the 
multispecies equilibrium (123) implies the marginal stability of the two and one 
species equilibria. Thus, the possibility of going to a higher level of complexity 
is limited as compared going to equivalent complexities or to going down in 
species numbers. 
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This sequence is most easily seen in the simple model 

B={! 
a* 

a a*} 
1 a 

a 1 

(2.33) 

as discussed in the following section of this chapter. Deviations from the general 
behavior of symmetric models may be demonstrated by the model 

{
I IX IX*} B= a* 1 IX 

a IX* 1 

(2.34) 

which has the same properties as the symmetric model [Eq. (2.33)] as long as IX and 
IX* are both < 1, i.e., as long as all two species coexistence equilibria exist and are 
stable. However, when IX* > 1> IX, then neither of the two species equilibria exist 
but a three species equilibrium with all species being equally abundant exists. 
In this situation all the one species equilibria are unstable in the three species 
system, so all boundaries repel the population. However, the three species 
equilibrium may only be stable for 1> IXa*; when this condition is not fulfilled, 
none of the equilibria are stable and the behavior is necessarily cyclical. Note, 
however, that we have not demonstrated the existence of a stable limit cycle. 

Mutualistic systems which are symmetric share the property with the sym­
metric, competitive systems that the quadratic form is a global Lyapunov function. 
Thus the remarks on the influence of species numbers on the stability of symmetric 
systems applies to mutualistic systems too. However, the inherent two species 
condition for the validity of the model, IXijrY.ii< 1, or for three species that det(B) >0, 
which guarantees that the system does not grow unlimited, is also the condition 
for Q being positive definite (cf. Gantmacher, 1960) in the three species model. 
Thus, mutualistic systems are stable whenever they are limited in growth. 

2.6 Simple Food Web Models 

Predator-prey interactions are in general stable as discussed previously in this 
chapter whereas competing species within a trophic level lack this kind of inherent 
stability. In order to get a feeling for the influence of predation on the interaction 
between competing species consider the simple food web on Figure 32 and let the 
species x b X2, and x 3 compete in a symmetric fashion with the competition 
matrix [Eq. (2.33)], and let the predator, y, be nondiscriminative such that 

dXI/dt=rxI(1-XI -IXX2 -IX*X3-YY) ' 

dX2/dt = rx2(1- IXXI - X2 - ax3 -yy), 

dX3/dt=rx3(I-IX*XI - IXX2 -X3 -yy), 

dy/dt= y( -d+YXI +YX2 +yx3-c5y), 

(2.35) 
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y 

11\ 
Fig. 32. A community consisting of 3 competing species and a predator 

Let us first consider the system with y=O and analyze the sequence of invasions 
such as is shown on Figure 31. With one species the equilibrium is Xl = 1. If 
species 3 is introduced it will increase provided that oc* < 1 and the populations 
will then go to the stable equilibrium 

If we now introduce species 2 it will increase if 

or, using Eq. (2.36) we have the condition as 

(1 +oc*)/2>oc. 

If Eq. (2.38) is satisfied we will have the stable equilibrium 

Xl =X3 = (l-oc)/(l +oc* - 2oc2) , 

X2 =(1 +oc* - 2oc)/(1 +oc* -2oc2). 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

The influence of the predator on the conditions for invasions and coexistence 
of the competitors may now be analyzed by going through the same sequence 
of events in the presence of y. In the absence of X2 and X3 the equilibrium of 
Eq. (2.35) is 

Xl =(<5+dy)/(<5+l) , 

y=(y-d)/(<5+y2) 
(2.40) 

which is valid for y > d. This is also the condition for global stability according to 
our previous results in section 2.l. 

Now introduce species 3 and observe from Eq. (2.35) that it will increase if 

(2.41) 

Inserting Eq. (2.40) into Eq. (2.41) gives the condition that oc* < 1. Thus the condi­
tion for the invasion of species 3 is independent of the presence of the predator. 
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The equilibrium with the prey species 1 and 3 and the predator is 

Xl =X3=(!5+yd)/[!5(1 +a*)+2y2] , 

y=(2y -d(l +a*))j[!5(l +a*)+2y2] , 
(2.42) 

which is valid for 2y > d(l + a*) and locally stable when a* < 1. The condition for 
the validity of the equilibrium [Eq. (2.42)] is less restrictive than the condition 
for the validity of the equilibrium [Eq. (2.40)]. Thus, if the one-predator-one-prey 
system is stable so is the one-predator-two-prey system, if the two prey species 
can coexist. This conclusion is not surprising since an extra prey species is just a 
resource supply for the predator; a less efficient predator might not be able to 
maintain a population with one of the prey species but might be able to increase 
in the presence of two prey species. In terms of Figure 18 this amounts to the 
point b being above or below the point A. 

Finally, let us introduce species 2. From Eq. (2.35) we observe that it will 
increase if 

(2.43) 

Inserting Eq. (2.42) into Eq. (2.43) reveals that condition [Eq. (2.43)] is identical 
with condition [Eq. (2.38)]. Again the presence of the predator does not change 
the qualitative outcome of the competition. 

This small story shows very nicely that the stabilizing effect of predation 
on a set of competing species may be very limited. However, we have to keep in 
mind that the model used here has a restricted value due to its pronounced 
symmetries. 

A system which is not symmetric with respect to competition is 

(2.44) 

dy/dt= y( -d+yxi +YX2 -Dy) , 

where f=(rl +r2)/2. By setting the derivatives [Eq. (2.44)] to zero we find the equilibrium as 

where 

If X2 =0 then we have the equilibrium 

XI =(rID +fyd)/(rID+fy2), 

y=rl(y -d)/(rID + fy 2) , 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 
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which is valid and stable for y > d [cL Eq. (2.40)]. Now X2 can invade if the numerator of 
Eq. (2.46) is positive. Similarly, if x 1 = 0, it can invade if the numerator of Eq. (2.45) is positive. 
It can now be seen from Eqs. (2.45) and (2.46) that when !Xu and !XZ1 < 1 then Xl, Xz and y 
can only coexist in a certain interval, a < r drz < b with a < 1 < b, i.e., we have in this case a 
stricter criterion for coexistence than if the predator is absent. For (j small the condition for 
coexistence is approximately 

(y - d)!(y - !X1Zd) < r drz < (y - !X21d)!(y - d) . (2.50) 

If !Xu < 1 and !XZ1> 1 with !X12!XZ1 < 1 it can be argued that coexistence of all three 
species may be possible. First, the condition y> d has to be replaced by the stronger condition 
y>O. The conditions for positivity of Xl and Xz for (j small are again approximately 
Eq. (2.50), and the condition that this interval is nonempty is equivalent to the condition 
f> 0, which also insures that D > 0 in the interval Eq. (2.50). The right term in condition (2.50) 
is in this case less than unity, so that coexistence is only possible if fz > r 10 i.e., if the species 
that suffers from competition can compensate for this by a larger reproductive potential. 

This example again shows that it cannot be taken as a generality that predation 
makes coexistence of competitors possible when it is impossible in the absence 
of the predator. In the model [Eq.(2.44)] we found that the criterion for 
coexistence in the absence of the predator (i.e., that both IX'S are less than 
unity) is insufficient in the presence of the predator. Only for a certain range of 
the ratio rdrz can we have coexistence. However, in a similar interval we may 
have coexistence when one of the competition coefficients exceeds one. Thus, in 
this model, the predator is in general restricting the interval of coexistence, but 
is able to move it around. 

More elaborate predator-prey models which take learning by the predator 
or other behavioral characteristics into account may predict a stabilizing effect 
on the community of prey species. Roughgarden and Feldman (1975) considered 
a model in which the predation pressure on rare species is lower than on common 
species due to a habituation to the most frequent prey species by the predator. 
This effect enhances the coexistence of more competing prey species. 

In spite of the general conclusion we arrived at above (i.e., that predation does 
not as a general principle stabilize the coexistence of competing prey species) 
several authors (e.g., Slobodkin, 1961, 1964; Paine, 1966) have, based on verbal 
theory or empirical evidence, arrived at the conclusion that predation enhances 
the diversity of biotic communities. We will here discuss some of these 
examples including observational evidence which exemplify the model of Rough­
garden and Feldman (1975). 

Some laboratory systems which are described in the literature seem to 
exemplify a stabilizing effect of predators on competing prey species, but not all 
these experiments have been analyzed. For example, Utida (1953) enhanced the 
coexistence of two species of bean weevils by adding to the experimental systems 
a parasitoid wasp which attacks both species. 

Slobodkin (1964) studied the competition between two species of Hydra in 
laboratory cultures. In these systems one species always excludes the other. When 
a constant fraction of both species were removed regularly, however, coexistence 
or at least a very long persistence of both species was obtained. In these 
experiments unselective predation was apparently simulated. However, in this 
experiment the predator (i.e., the scientist) did not respond to changes in the prey 
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x, 

Fig. 33. A graphical analysis of a system of two competing species in which a constant 
fraction, m, is removed from both populations per time unit. (Redrawn from Slobodkin, 1961) 

population by increasing in numbers or by starving, in contrast to the models 
considered above. A model describing this experiment was considered by 
Slobodkin (1961). Since a constant fraction of both prey species are removed 
per time unit we can write; 

(2.51) 

where m is a constant removal factor. Consider a system in which, say Xl always 
wins independently of initial conditions when m = 0, i.e., K d f312 > K 2 and 
Kl>K2/f32l (see Section 2.2) and further let rZ>rl. This system can easily be 
analyzed graphically like the Lotka-Volterra model for competition (Fig. 27) by 
letting m be represented by a third axis perpendicular to the (x 1, xz)-plane 
(Fig. 33). It is seen that the species with the highest value of r is favored by the 
"predation" (obviously, when rl <m<rz then species 1 will go extinct while 
species 2 will persist) and that in a certain interval of values of m the two prey 
species coexist. The effect of imposing a removal rate m on the system corresponds 
to changing the carrying capacity, K i, to K;(1-m/ri) [see Eq.(1.8)]. This model 
may be relevant for predator-prey systems where the predator has a very much 
longer generation time than the prey species. 

As mentioned above, the habituation of a predator to the prey species which 
is the most abundant one at any time may stabilize the coexistence of competing 
prey species. There is evidence to show that prey switching is not uncommon. 
Fisher-Piette (1934) showed that the intertidal snail Nucella lapillus preferably 
feeds on barnacles when these are abundant but when mussels dominate, the 
latter are preferred. Lawton et al. (1974) studied the prey selectivity of the 
aquatic hemipteran N otonecta. The insects were kept in containers with two 
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Fig. 34. The percentage of mayflies in the diet of Notonecta as a function of the percentage 
of mayflies of the potential prey species. (Redrawn from Lawton et ai., 1974) 

Fig. 35. The recruitment (R) of new trees in rainforests as function of the distance of the 
parent tree. (Redrawn from Janzen, 1970) 

prey species, the isopod Asellus and the mayfly Cloeon, which were added in 
different proportions. Mter 8-10 days Notonecta preyed supraproportionally on 
the most frequent prey species (Fig. 34). Lawton et al. (1974) also showed that 
N otonecta became more successful in attacking Asellus after having been kept 
in containers with a high density of this isopod for some time. Thus a learning 
process probably plays a role for N otonecta. Other examples on switching in 
predators are given by Murdoch (1969). 

Tropical rainforests are known to be rich in species of trees; more than 
100 species may be found within one hectare. Janzen (1970) explains this as a 
result of seed herbivory. The underlying mechanism is that seeds falling im­
mediately below the mother tree have a very small chance of germinating due to 
prey specific and density responsive insects. These latter gather where their 
preferred seed species are most numerous whereas single, isolated seeds which 
have become more dispersed from the mother tree have a higher probability of 
germination and maturation (Fig. 35). This mechanism will allow for a higher 
number of coexisting trees since it prevents continuous stands of anyone species. 
Janzen (1970) also gives evidence that the assumptions of his model, i.e., specificity 
and density responsiveness of tropical seed predators, hold true. 

Paine's (1966) work on species richness on intertidal rocks is probably the 
most well known example of the effect of a predator on the coexistence of its prey 
species. This study, however, is more appropriately discussed together with 
migration-extinction equilibria in Chapter 4. 



3. The Niche and Limiting Similarity 

3.1 The Concept of the Niche 

Chapter 2 shows in a general way that there is a limit to the similarity of 
coexisting species with respect to the sharing of limiting resources. If we consider 
qualitatively different categories of resources, a simple graphical model described 
by MacArthur and Levins (1964) shows that the number of coexisting species 
can at most equal the number of limiting resources. Consider a (~1> ~ 2) plane 
where ~ 1 and ~ 2 represent the quantities of two different kinds of renewable 
resources. Further, assume that there are two species, Xl and X2, which both 
utilize both kinds of resources but with different efficiencies. We might assume that 

(3.1) 

where ijk is the efficiency with which species j utilizes resource k and ;;Ij is the 
threshold value for the combined availability of the two resources which allow 
speciesj to grow. In the (~1> ~2) plane we can draw the lines dXj/dt=O according 
to Eq. (3.1). These lines represent the resource combinations which can just 
sustain stable populations of Xl and X2 (Fig. 36). [Note: This diagram is different 
from the (Xl' X2) planes used for analysis of competition models in the previous 
chapter. In Figure 36 the populations show positive growth when the resource 
combination corresponds to a point outside the dXj/dt=O lines.] 

It can be seen from Figure 36 that if each of the species utilizes one of the 
resources more efficiently, i.e., the two lines dx j/ dt = 0 intersect in the positive 
quadrant, then the two species can seemingly coexist in a resource combination 
corresponding to the point of intersection. It can also be seen that if a third 
species is introduced it will either not be able to establish a population or it 
will exclude one of the species initially present (unless the three lines intersect in 
one point which can be considered as extremely unlikely). The arguments can 
easily be extended to a system with three types of resources which will then at 
most be able to sustain stable populations of three competing species. 

The model presupposes that the coexisting species can distinguish between 
the different kinds of resources. If the two species cannot distinguish between 
~ 1 and ~ 2 but eat them in the proportions in which they happen to occur, then 
the two lines, dXj/dt=O, are parallel and the two species will not be able to coexist. 
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Fig. 36. A graphical representation of the competition model [Eq. (3.1)] 

In fact, there is in this case only one kind of resource, namely the combined 
resource measured by Bll +Blz . MacArthur and Levins (1964) termed this kind 
of resource utilization fine grained. The resource "grains" are too small for the 
species to distinguish between the different qualities. On the other hand, a utiliza­
tion which distinguishes the resource qualities is called coarse grained. A 
filterfeeding animal which utilizes a wide variety of microplankton species in 
the proportion they occur in the water utilizes its resource in a fine grained 
manner, relative to say a copepod which can specialize on, e.g., diatoms of a 
certain size range. Other terms for this distinction are generalist and specialist 
species. 

As the model has been presented so far, there has been no specific assumption 
about the availability of Bll and Blz as a function of the use, and if only ill/izl 
and i12/i22 are both greater than ffdffz then coexistence is predicted. We now 
assume that the resources Bll and Blz grow in such a way that the balance between 
growth and utilization at any time provides the resource abundance 

(3.2) 

where f/'k is the abundance of resource k when not exploited and Cj is a constant 
measuring the conversion efficiency of the resources into individuals of species j. 
Letting Cj= 1 for simplicity (corresponding to measuring the population sizes of 
the two species in units of their weight on the resources), then Eq. (3.2) for the 
resources allows Eq. (3.1) to be expressed in terms ofthe population sizes only: 

dxt!dt=Xl[(illf/'l +ilz f/'2)-(iil +ii2)Xl-(i ll i2l +i12izz)xz-ffl]' 

dXz/dt= X2[(i2 19'1 + i229'Z) -(i~l + i~2)X2 -(illi2l + i12izz)X1 -ff2] , 
(3.3) 

or it may be written as the ordinary competition equations used in the last 
chapter: 

dxddt=X1r1(K1-x1-{312X2)/K1, 

dX2/dt=X2r2(K2 -X2 - {321X1)/K2, 
(3.4) 
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Fig. 37. A graphical representation of the competition model [Eqs. (3.4) and (3.5)] where the 
carrying capacities (S 1 and S2) of the two kinds of resources are taken into consideration. 
Broken arrows: the resource trajectories when only one of the species is present. Left: both 

species will persist; right: species 1 will be excluded 

where these parameters now are expressed by 

/'j= (ij1 Y 1 +ijzYz- .!Ij) 

Kj = (i j1Y 1 + ijzYz -5)/(iJl + i~2)' 

/Jjj'=(i ll i21 +i12id/(i}l + i~2)' 
(3.5) 

Equation (3.1) thus has the form of the Lotka-Volterra equations [Eq.(2.12)] and 
the condition for stable coexistence of the two species is now given by the 
conditions in Section 2.2, 

(3.6) 

These are now conditions on the resource parameters (Y1 , Y 2 ), if we consider 
the parameters ijk(j, k = 1, 2) and .9j(j = 1, 2) as given species characteristic param­
eters. This can be illustrated by the following graphical argument in the (~1' flJl 2 ) 

plane (Fig. 37). 
If initially Xl = X2 = 0, then the resource combination is (Y1 , Y 2 ). If now x 1 is 

introduced and X2 is absent, then the resource combinations will follow a linear 
trajectory perpendicular to the line dx tf dt = 0 until it reaches this line, since 
from Eq.(3.2)we have (flJl 1, flJl 2 ) = (Y[, Y 2 ) -(ill' idx 1 and dxtfdt=O is given by 
the equation ill~ 1 + i12flJl 2 -51 =0. Similarly, if we keep Xl =0 and introduce Xz 

then the trajectory of (~ [, flJlz) will be a line perpendicular to the line dx z/ dt = O. 
Now if both species are introduced then the resource combinations must move 
between these lines. The intersection between the lines dX1/dt=0 and dXz/dt=O 
is the only point in the (flJl 1 , flJlz) space where the two species can have stable 
coexistence. If this point lies outside the sector of possible resource combinations 
between the lines through (Y[, Yz) perpendicular to the lines dx / dt = 0, then the 
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(~ 1, ~ 2) trajectory cannot reach the equilibrium point and one of the species is 
excluded (Fig. 37). 

From this and Eqs. (3.5) and (3.6) we see that the availability of the resources 
~ 1 and ~ 2 determines whether the two species can coexist. We can also see from 
Figure 37 that the more similar the two species are with respect to the use of the 
resources (Le., for smaller angle between vectors perpendicular to the lines 
dXj/dt=O) the more demanding are the conditions for coexistence on the initial 
availability (91 , 9'2) of the resources. Further, the model provides an interpretation 
of the competition coefficients in terms of the resource utilization parameters. 

The model [Eq. (3.2)] corresponds to logistic growth of the resources with very 
high growth rate (MacArthur, 1970) which may be seen by using Tikhonov's 
(1952) approximate method of solving coupled differential equations (cf. G6bber 
and Seelig, 1975). Thus the model applies for prey-predator systems where the 
generation time of the prey species is very short compared to that of the 
predator. 

The MacArthur-Levins model described above is in many ways a useful tool 
for analyzing coexistence and data on, e.g., food selectivity of coexisting congeners. 
However, organisms may often differ with respect to the utilization of resources 
which are present in a continuous spectrum of qualities, and organisms may also 
differ along several such resource dimensions. The model cannot describe such 
cases. In order to analyze how organisms subdivide their environment and to 
find limits to the similarity of coexisting species, ecologists have for more than 
half a century attempted to formalize the concept of the ecological niche. 

The word "niche" which in different Indoeuropean languages has various 
meanings, such as nest, corner, hole, dwelling place, and recess, was first used by 
Grinnell (1917a, b) as an ecological concept. He reported on the "Niche­
Relationships of the Californian Thrasher" and he tried to explain the bird's 
restricted geographical distribution by "adjustment of the bird in various 
physiological and psychological respects to a narrow range of environmental 
conditions." To Grinnell, the niche was the "various circumstances" in which an 
animal lives and he made the distinction to the habitat, i.e., the area inhabited 
by the creature in question. To Elton (1933) the niche "means the mode of life 
and especially the mode of feeding of an animal. It is used in ecology in the same 
sense that we speak of trades and professions in a human community." 

Thus, while the verbally formulated concept of the niche goes many years 
back, it was Hutchinson (1957) who first gave a formalized definition of the niche: 
"The fundamental niche may be regarded as a set of points in an abstract 
n-dimensional space." The n dimensions are environmental parameters and the 
points in the fundamental niche corresponds to states "of the environment which 
would permit the species ... to exist indefinitely." This was the first model which 
could be manipulated mathematically and used to explain competitive displace­
ment. The fundamental niche is defined by all the points in the niche space in 
which the species can sustain a population; the realized niche is defined as the 
part of the fundamental niche in which the species is not excluded by inter­
specific competition. In terms of Hutchinson's niche concept, the "competitive 
exclusion principle" may be formulated in the following way: In a physical space 
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which corresponds to a point in the niche space belonging to the fundamental 
niche of two species, only one of the species will persist. 

Hutchinson's concept of the niche has had a great influence on ecology, 
theoretically as well as on the observational and experimental field. Yet, it has a 
number of shortcomings which are best illustrated by the formulation of the 
competitive exclusion principle; it states that only one species can be present 
in a physical space corresponding to a point in the niche space, but if this point 
is in the fundamental niche of any other species, then the theory has no way of 
predicting which species will be present. The model ignores the fact that there 
are optimal and suboptimal conditions for growth of a population; in the 
Hutchinson model the response of the organism is an "all or none." The 
concept does not take into account that many niche dimensions are correlated 
and many cannot be arranged linearly as required by the model, e.g., as temporal 
differences between species. This, however, is a minor point, which only requires 
that the niche space should be taken more generally than the linear space 
considered by Hutchinson. 

The Hutchinson niche concept has been developed further by MacArthur and 
Levins (1967) and by Levins (1968) and we will use their formulation of the niche 
concept in the following. To Levins (1968) the niche is a "fitness measure on an 
environmental hyperspace .... Thus, corresponding to each point in the environ­
mental hyperspace, there is a measure of the probability of survival and re­
production in that environment." The fundamental niche is the part of the 
environment (or biotic space) which an organism can exploit according to its 
phenotype and the realized niche is as before the environments to which the 
organism is limited by competition. This niche concept is more dynamic, the 
"realized niche can change rather quickly as a result of environmental change, 
demographic change, or individual learning. The fundamental niche is modifiable 
by way of natural selection." 

This concept of the niche has been further developed and used for theoretical 
work by, e.g., MacArthur (1972), Roughgarden (1972, 1974a, b, 1975), May (1973a), 
and Pianka (1974), and for the analysis of field data by, e.g., Schoener (1968), 
Pianka (1969, 1973), MacArthur (1972), Roughgarden (1974a, b), and Fenchel 
(1975b). A thorough discussion of the niche concept is given by Stern and 
Roche (1974). 

3.2 Niche Dimensions 

The niche has three main dimensions: time, habitat and resource. Organisms 
which differ in their time niches may live in the same habitat and utilize the same 
resources but their periods of activity, presence or breeding are displaced; e.g., 
one species may be day active and the other nocturnal. Many juvenile marine 
animals migrate into shallow water and estuaries in the summer and emigrate to 
deeper water in the winter. These juvenile fish and crustaceans feed mainly on 
the benthic meiofauna (nematodes, small crustaceans, etc.). Figure 38 shows the 
sequence of arrival and growth through time of the most important animals in a 
Danish estuary. It can be seen that the species only overlap slightly in size at any 
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Fig. 38. The arrival, growth and emigration of the vagile macrofauna in a Danish estuary. 
(Redrawn from Muus, 1967) 
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Fig. 39. The distribution of 4 species of the isopod genus Idothea in Danish waters according 
to water turbulence and to salinity. (Redrawn from Muus, 1967) 

one time and, therefore, probably only overlap slightly with respect to food size. 
Thus, these animals have different time niches. 

Creatures with different habitat niches may be identical with respect to the 
utilization of resources and activity periods but differ with respect to habitat 
preference or have different competitive abilities in different habitats. Factors 
such as temperature, feeding and perching places, salinity, humidity and substrate 
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Fig. 40. The size ranges of diatoms eaten by 4 species of ciliates of the genus Remanel/a 
which frequently coexist in marine sand bottoms. (Redrawn after Fenchel, 1968) 

preference are component of the habitat niche. Figure 39 shows the habitat niches 
of four species of marine isopods. 

Species may be active simultaneously in the same habitat but may differ in 
their utilization of (food) resources; they thus differ with respect to their resource 
niches. Figure 40 shows the sizes of diatoms eaten by four congeneric species of 
ciliates coexisting in marine sand. In this case the niche may be described by a 
resource utilization function which specifies the rate at which a species utilizes 
the different resource qualities (Fig. 41 and next section). 

In actual practice it may be difficult to distinguish between habitat and 
resource aspects of the niche. Two kinds of fish may pick worms living on and 
beneath rocks respectively, either because of their morphological or behavioral 
characteristics making them more suited to collect their food in the particular 
habitat, or because of their preference for the specific kinds of worms living in 
the two different habitats. What further complicates the matter is that although 
two different species have different habitat or time niches, their resources may be 
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correlated. A pair of species, one active at day, the other at night, or the above 
mentioned habitat selective fishes could in fact exploit the same prey population. 
Different insects feeding on different parts of the same plant in fact exploit the 
same resource. This problem has not been analyzed sufficiently from a theoretical 
point of view. 

Species-at least those which are not very related taxonomically-living in 
the same area usually differ in more than one of the three dimensions of the 
niche. As seen from Figure 42 a slight separation of niches in each of two 
dimensions between two species will give a larger overall separation of the niches 
if the two resource dimensions are uncorrelated. In fact, by a redefinition of the 
resources ( a turn of the coordinate system in Fig. 42) it is possible to get two 
independent resource dimensions, one with complete overlap and one with 
minimal overlap. 

An example of a study of the niche packing and coexistence of species in 
terms of the niche separations within all three dimensions of the niche: resource, 
habitat and time, is Pianka's (1973) study of lizard communities. 

3.3 The Formulation of Competition Coefficients 

The following theories of limiting similarity of competing species are based 
on Levin's formulation of the niche applied to one dimension. Here we will 
consider a resource spectrum of, e.g., food particle sizes (cf. Fig. 40), but similar 
theories may be developed to study habitat or time dimensions of the niche. 

In a continuous resource spectrum, where the resource quality is described by 
the parameter {}, the niche of a species is described by the utilization function OZ/({}) 
which is the rate by which the individuals use the different resource qualities 
(Fig. 41). The "rate of use" function OZ/ may be resolved into a "resource picking" 
function I, which is a probability distribution describing the preference of the 
different resource qualities, and a rate parameter w which measures the rate of 
consumption per individual per time unit: 

OZ/({}) = wl(Q) . (3.7) 

By definition 1 measures the probability that an individual will consume a given 
resource quality, so that 

S/({} )dQ = 1 . 

With this definition, the total resource used per time unit per individual may be 
expressed in terms of the resource availability ~(Q) as 

(3.8) 

i.e., the resource utilization is proportional to the mean resource availability, with 
the proportionality factor being the rate of resource picking w. The carrying 
capacity for the species must be inversely proportional to the individual resource 
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D 

u 

Fig.4l. The utilization function of a species with respect to a gradient in qualities of a 
resource Q. This niche is assumed to be normally distributed with the mode D and with the 

standard deviation or niche width W 

Fig. 42. Two species with a high degree of niche overlap along two niche dimensions. The 
total niche overlap is less than along either of the two dimensions 

use, and therefore proportional to 1/ro. Besides this proportionality, the carrying 
capacity is a function of the mean resource availability. 

The definition [Eq. (3.7)] of resource exploitation is admittedly crude. The 
principal assumption in the formulation is that the species exploit the resources 
independent oftheir abundance: The form of I does not depend on the functional 
form of f!It. Similarly, the species exploit the resources with the same intensity 
whether they are abundant or not, i.e. ro is independent of the mean resource 
availability. 

If two resource utilization functions of two species, i and j along one niche 
dimension axis, Q, partly or totally overlap, then this indicates competition for 
the resources between the two species (Fig. 43). To measure this competition, 
consider the expression 

(3.9) 
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Fig. 43. The partial niche overlap of two species, i and j, along the resource dimension Q 

which is analogous to Eq. (3.5). This expression is 0 if the curves do not overlap 
and 1 in case of total identity, i.e., {Jii = 1. The expression [Eq. (3.9)J measures the 
probability of both species utilizing an element of the resource measured by the 
similar competitive situation for two individuals belonging to species i. By this 
definition of the competition coefficients we may describe the growth of the 
populations of m species utilizing the resources (l by Eq. (2.26): 

dx;/dt=riXi(Ki-Xi- L {Jijxj}/Ki . 
j*i 

To reach the simple parameterization of Eq. (2.28): 

dX;/dt=riXi(1- f (XijXj) , 
j= 1 

(3.10) 

(3.11) 

we measure the population size as a fraction of the carrying capacity and 
(Xij = {JijK/Ki. Thus from Eq. (3.9) using the expression [Eq. (3.7)] we have 

(3.12) 

From the proportionality of Ki to 1/wi' we see that the competition coefficient is 
independent of the basic rate for resource use Wi. Further, if the mean resource 
availability is the same for the two species, then the competition coefficient 
becomes independent of the resource availability: 

(3.13) 

This situation emerges if all the resource qualities are equally abundant and if 
the two resource picking functions /; and Ii are of equal form but of different 
positions. The consumption rate per individual, w, only determines the population 
size in absolute numbers. 
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Another rationale for the definition [Eq. (3.9)] of the competition coefficients 
can be achieved by the following considerations. As for the discrete case [Eq. (3.2)J 
assume that the abundance of the resource is given by 

(3.14) 

if we assume that only two species are exploiting the resources. Parallel to 
Eq. (3.1) the growth of the species is given by 

(3.15) 

Substituting Eq. (3.14) into Eq. (3.15) yields 

dx ddt = x 1 {CS!fOZt 1dQ - 5 1J - x 1 J OZtidQ - X2 J 0Zt10Zt2dQ} , (3.16) 

which is of the form of Eq. (3.10) with f3ij given by Eq. (3.9) and 

ri= O!fOZtidQ-g] , 
(3.17) 

Ki= 0 !fOZtidQ -5";J/J OZt?dQ , 

which are analogous to Eq. (3.5) 
With the specification [Eq. (3.7)] of the utilization function, the model 

[Eq. (3.14)] provides from Eq. (3.17) the expression for the carrying capacity of 
species i: 

(3.18) 

In the subsequent use of this expression, we will always assume that 5"; is a small 
quantity, such that we may assume 5";=0 and get a satisfactory feeling of the 
properties of a more general model. With this assumption, Eq. (3.18) reads 

(3.19) 

and Ki is thus proportional to 1/Wi. Therefore, the competition coefficients (Xij 
from Eq. (3.12) are in this case independent of the rates Wi with which an 
individual of the species utilizes the resource, but may be dependent on the 
amount of available resources which as seen from Eq. (3.19) is a component of K i . 

In the following we will consider Eqs. (3.12) and (3.19) as definitions of the 
competition coefficients and the carrying capacities in terms of the resource 
preference functions A and the resource availability function !f. However, by doing 
so, we have to keep in mind the basic assumptions on how the species utilize 
the resources, namely that the preference function,/, and the rate of exploitation, 
w, are independent of the resource availability. 

In the general model given by Eqs. (3.9) and (3.10) note that the considerations 
on stability for competitive systems with symmetric competition matrices in 
Section 2.5 apply. These arguments apply to any competition matrix of the form 
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{3ij= <l>;'I'iYij where the matrix {Yij} is symmetric (the factor P j may be absorbed 
as a scaling factor in the population size and 1/llJi is then a factor in the carrying 
capacity). Thus a valid equilibrium of Eq. (3.10) is stable provided the matrix 
U llItillltjd(]} or the matrix U/lJd(]} is positive definite. 

3.4 Limiting Similarity 

In the following we will explore the dynamics of a community of species 
which interact by exploitative competition. We will, throughout the section, 
assume that the niches are Gaussian, i.e., thatl((]) is a normal distribution density. 
This is often a close approximation to what is found in nature. 

The niche described by the utilization function 1lIt((]) = w!((]) (where I is a 
Gaussian distribution function) may be characterized by the mean D of f, viz., 
the position of the niche, and by the standard deviation W off, which is called the 
niche width. Now consider two niches llIti and IlItj in a habitat with a uniform 
resource spectrum, i.e., ~((]) constant. The competition coefficient Eq. (3.13) may 
now be expressed in terms of the niche width and the modal distance dij = Di - D j 
(Fig. 43). In the following we will assume that W; = ltj = W, and by this assumption 
the carrying capacities of the two species are equal save for a factor of the 
resource consumption rates Wi or Wj' This assumption also simplifies the calcula­
tion of the competition coefficients, and by integration of Eq. (3.13) we have that 

(3.20) 

To see this, we first note that the Gaussian distribution has the form: 

(3.21) 

Now, the numerator of (Xij becomes 

(3.22) 

The square bracket can be rewritten: 

(3.23) 

which inserted into Eq. (3.22) reveals 

Here the integral is nearly an integral of a normal distribution like Eq. 3.21 with 
D = (Di + D )/2 and half the variance, the only thing missing is a factor 1/ [2n(W2/2)]. 
The integral of a robability distribution is unity, such that the integral on the right side of 
Eq. (3.24) is [2n(W /2)] and we get 

(3.25) 
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To get (3.20) just observe that from Eq. (3.25) we have 

SIN!! = 1/V'(4n W2) , 

and dividing Eq. (3.25) by Eq. (3.26) yields Eq. (3.20). 

77 

(3.26) 

Now, consider the simple situation of equally spaced niches along the resource 
axis, so that dij = (j - i) d, where d is the modal distance between neighboring 
species (Fig. 43). In this model [Eq. (3.20)] becomes 

(3.27) 

where 

(3.28) 

is the competition coefficient of neighboring species. With this competition matrix, 
species with distance 2d have the competition coefficient a4 , species with 
distance 3d, a9, etc. 

A competition matrix ofthe form [Eq. (3.27)] is symmetric, so that the results on 
stability in Section 2.5 apply here. May (1974) showed that a competition matrix 
of the form [Eq. (3.27)] is always positive definite, so any valid equilibrium in 
this model will be stable. 

Let us first consider a two species system, which has the competition matrix 

B= {! ~} (3.29) 

and, as shown in Chapter 2, p. 59, always gives the stable equilibrium 

(3.30) 

if a < 1, which is always the case from Eq. (3.28). 
For a three species system, where the middle species IS subject to diffuse 

competition (Fig. 44), we have 

(3.31) 

which, as shown in Section 2.6, has a stable equilibrium 

Xl = X 3 = 1/[(1- a) (1 + IXf] 

X2 =(1-a-a2 -(3)![(1-a) (1 +1X)2] 
(3.32) 

provided that i-IX _1X2 - a3 > 0 or that a< 0.54, which from Eq. (3.28) yields the 
condition 

Id/WI> 1.6. (3.33) 
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u 

Fig. 44. Diffuse competition with three species 

Table 1. Limiting similarity of equally spaced species in an unlimited resource spectrum 

Number of species 2 3 4 5 6 

IdjWI> o 1.6 1.1 1.5 1.3 

For higher numbers of species similar conditions may be found; a summary is 
given in Table 1. It is seen that in any case, except that of two species, there is a 
nontrivial lower bound to the closeness of the niches. This lower bound is termed 
the limiting similarity of the species (MacArthur and Levins, 1967). 

The considerations above are based on simplifying assumptions, viz., a 
symmetrical competition matrix (equally spaced niches) and equal carrying 
capacities and niche widths of all species. Also it has been assumed that the 
resource spectrum is unlimited. As will be shown in a later section, these 
assumptions are not always very unrealistic. 

If the resources are limited at the borders of the resource spectrum, for example 
if the resources themselves have a Gaussian distribution, then the conditions for 
coexistence become somewhat relaxed, because the border species are more 
resource limited, rarer, and therefore exert less intense competition on the 
neighboring species. This is in contrast to the situation considered above, where 
the highest population size is always found in the most extreme species, 
see Eq. (3.32). 

Consider therefore the situation where the resource abundance along the 
resource axis has a Gaussian shape. In terms of the model discussed on p. 66 
this corresponds to !/ being a normal distribution function, with variance a 2 , 

say, and the mean arbitrarily set to zero. Now the simple form [Eq.(3.13)] of 
the competition coefficients lY.ij is no longer valid, rather we have to use the 
form [Eq.(3.12)] with Ki defined by Eq.(3.17). For convenience assume that the 
threshold rate for resource consumption, :!Ii, is low such that we may neglect 
it by assuming that :!Ii =0. i.e., 

(3.34) 
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By an argument similar to the one leading to Eq.(3.20) we get 

(3.35) 

where 

(3.36) 

Thus, the competition coefficients are now, from Eq.(3.25), given by 

The expression [Eq.(3.37)J for the competition coefficients is inconvenient and 
not easily interpretable. Define the function 

(3.38) 

which from Eq.(3.35) is the carrying capacity K measured relative to the carrying 
capacity of the species, had its niche position been at the center of the resource 
[k(O) = 1]. The form [Eq.(3.11)J of the growth equations for the species was 
reached by considering the population density as a fraction of the carrying 
capacity. If we now instead measure the population sizes relative to the carrying 
capacity the species would have with an optimal niche location (D = 0), then the 
growth equations become 

(3.39) 

where aij is given by Eq. (3.20) as in the case of unlimited resources. Thus, this 
limitation of the resource only has the effect of changing the carrying capacities, 
not the basic competition structure. 

Let us now, for comparison with Eq. (3.33), limit the attention to a three 
species model where the niches are located at the positions - d, 0, and d for 
species 1, 2, and 3, respectively. This should obviously give the most relaxed 
limiting similarity condition in the case of limited resources. The competition 
matrix is again given by Eq. (3.31) and the relative carrying capacities are from 
Eq. (3.38): 

which provides the equilibrium solution: 

Xl =X3= [k(d)-aJ/(1-a 2)2 , 

X2 = [1 +a4 -2ak(d)J/(1-a2 )2. 
(3.41) 
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Table 2. Limiting similarity for three species dependent on a Gaussian resource 

o/W 1.1 1.4 1.7 2 3 4 5 CfJ 

IdjWI> 0.4 0.8 1.0 1.1 1.3 1.4 1.5 1.6 

1.0.--------== 
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4 

Fig. 45. The minimum eigenvalue of the competition matrix as function of djW for systems 
with 2,3, and infinitely many competing species. (Redrawn from May, 1973a) 

(MacArthur and Levins, 1967). The conditions for validity of this equilibrium 
are first that k(d) > IX, which is equivalent to the condition 

(J>W (3.42) 

i.e., that the resource "width" should be greater than the niche width, while the 
second condition is the parallel of Eq. (3.33): 

(3.43) 

This condition is weaker than Eq. (3.33), which corresponds to k(d) = 1, and here 
k(d) < 1. For (J-+ W (i.e., X1-+0) it becomes true for all IX, but as seen from 
Table 2 the condition rapidly becomes severe for increasing (J and the limiting 
similarity condition is of the same order of magnitude as shown in Table 1. Thus 
the conditions in the uniform resource case are not severely biased by the edge 
effect, i.e., that the border species in the community has a comparatively high 
population size. A further discussion of this point with general values of the 
carrying capacities and with more species is given by May (1973a). 

The significance of these considerations is that they predict what we in fact 
find in nature, namely that the limiting similarity, i.e., the minimal value of d/W, 
should be greater than about one for coexisting species. In other words, the niches 
of coexisting species competing for a limiting resource are displaced along the 
resource axis by approximately one niche width unit (Figs. 40,51,53). 

Another line of reasoning giving the same result is due to May (1973a, 1974). 
It is based on the observation that the absolute value of the minimum eigenvalue 
(rate of return) around the equilibrium essentially vanishes for d/W in an interval 
above zero (Fig. 45). Therefore, for large values of n (already n ~ 3) the return to 
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equilibrium is extremely slow for 0 ~ d/W ~ 1 so that environmental stochasticity 
ma y become significant (see Chap.4). The environmental varia tion may be described 
by a random noise around the mean carrying capacity K with a variance S2. 

The requirement for stability is then roughly that the minimum eigenvalue of the 
competition matrix should exceed s2/K (May, 1973a). What is important here, 
is that the minimum eigenvalue should be bounded away from zero. But the 
eigenvalue becomes practically zero for d/W less than unity, so we get the 
requirement for stability that d/W should be greater than about one. May's (1973 a) 
results are questioned by Feldman and Roughgarden (1975) (for further discussion 
see Chap. 4). 

The significance of May's (1973a, 1974) result is restricted by the fact that 
except for a two species competitive system the deterministic models discussed 
above show that the niches cannot be packed closer than d/W= 1 anyway. In all 
circumstances, however, we conclude that considerations based on admittedly 
simplified assumptions lead to the celebrated limiting similarity condition that 
d/W should be greater than about unity. 

May (1974) and Roughgarden (1974 b) consider other shapes of the utilization 
function. May (1974 b) gives examples of both thick and thin tailed utilization 
functions which produce positive definite competition matrices, all with the 
property that the minimum eigenvalue vanishes in an interval of d/W above 
zero. Roughgarden (1974 b) uses the condition for invasion of the middle species 
in a three species community to determine the limiting similarity. Under symmetric 
competition, this invasibility condition is, as seen in Chapter 2, p. 57, the 
condition for existence of a stable three species equilibrium. Roughgarden 
(1974 b) concludes that a community where the species have thick tailed utilization 
functions can be tighter packed than a community with thin tailed utilization 
functions. This is concluded by measuring the limiting similarity as a bound on 
d/W where W is the square root of the variance of the utilization function. 
However, this width parameter may not exactly correspond to what is intuitively 
thought of as amount of specialization of the species. Two species, each having 
a niche width of W, but one with a thick and one with a thin tailed use of the 
resource, have a quite different "width" of the resource qualities that they specialize 
on. Thus, viewed superficially, the packing in the two communities may be quite 
similar. 

3.5 The Evolution of Competing Species 

It is easy to make intuitive and verbally formulated models indicating that in a 
community of competing species, natural selection will tend to relax competition 
by separating the niches, i.e., by separating the utilization functions. Where a 
species lives together with a competitor, individuals of a phenotype which utilizes 
the part of the resource spectrum not used by the competitor will have a higher 
fitness than an individual of a phenotype which uses the same part of the resources 
as the competing species. It is, perhaps, also intuitively acceptable that selection 
will tend to equalize modal distances and niche widths of species involved in 
diffuse competition. 



82 3. The Niche and Limiting Similarity 

Table 3. Internal structure of the population of species Y 

Genotype AA Aa aa I 
Number YI Y2 Y3 Y 
Frequency p2 2pq q2 1 
Competition coefficients IXxI IXx2 IXx3 

IXz I IXz2 IXz3 

It is much more difficult to make mathematially formulated models which show 
how selection will act on populations with Mendelian genetics involved in competi­
tion. Below we suggest such models which under simplified assumptions may be 
analyzed and show that selection will generally tend to minimize exploitative 
competition (see also Roughgarden, 1975). In the following section we will discuss 
some of the assumptions in more detail in connection with a discussion on the 
components of the niche. 

Our basic set up is a community of three species, x, y, and z, arranged in 
that order along a resource axis. We will assume discrete generations, and that 
the species grow according to the following difference equations in a uniform 
resource spectrum: 

x' -X= Rx(1-x -lXxy- j3z), 

y' - y = Ry(1-lXxx - y-lXzz) , (3.44) 

z' - z = Rz( 1 - j3x - IXzy - z) , 

where R is the finite growth rate and the left sides of the equations are the 
increments of the populations in one generation (see Sect. 1.1). 

Assume that in species y there is genetic variation influencing the competition 
with x and z, and let us for simplicity assume that this variability is at a single 
autosomal locus with two alleles A and a, which have the frequencies p and q 
(= 1- p). The structure of the model is summarized in Table 3 and in terms of 
these parameters, the parameters in Eq. (3.44) are given by 

(3.45) 

The numbers of each of the genotypes of species y change through one generation to 

(3.46) 

so that the change in gene frequency is 

p' -p= [(y'1 + yz/2)/y'] - p= [(y'l + yz/2)- py']/y' . (3.4 7) 
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Consider first the situation of two competing species with z = O. Substituting 
the expressions for y; and y' from Eq. (3.46) and Eq. (3.44) into Eq. (3.47) yields 
the equation 

(3.48) 

which, by substituting Cl.x from Eq. (3.45) and the genotypic frequencies from 
Table 3, produces 

(3.49) 

By arguments similar to the ones arriving at Eq. (1.34), (in this case by 
differentiating Eq. (3.45) with respect to p) we can now from the form of Eq. (3.49) 
deduce that selection will tend to decrease Cl.x; in fact, 

p' - p= [- Rpqxy/(2y')] dCl.x/dp. (3.50) 

From the expression Eq. (3.20) for the competition coefficient, we see that the only 
ways in which Cl.x can decrease is by increasing dxy or by decreasing W, that is by 
increasing niche separation dxY/W In other words the niches will diverge so we have 
given an example of "character displacement". 

To find the equilibria of the two species system with genetic variation, we set 
Eq. (3.44) and Eq. (3.49) equal to zero and find that 

(3.51 ) 

and p=O or p= 1 or 

(3.52) 

with Cl.x in each case given by Eq. (3.45). The equilibrium in the population sizes 
is stable when Cl.x < 1 and if each of the two species have a stable equilibrium 
when they live alone (cf. Sect. 2.2). The genetic equilibrium given by Eq. (3.52) 
is valid and stable if the competition coefficient of the heterozygote is lover than 
that of either homozygote, corresponding to overdominance in ordinary fitness 
parameters (Sect. 1.2). Similarly Eq. (3.52) is valid, but unstable in the case of 
underdominance. Otherwise, the equilibrium Eq. (3.52) does not exist and the 
population will be fixed on the allele with the lowest competition coefficient. 

Note that in this model we have ignored changes in the intraspecific competi­
tion; we will return to that question later and only note that if the difference in 
niche position of the two alleles is small compared with the distance between the 
species and if the niche separation between the two species is not too large, then the 
above analysis provides a valid approximation. Similarly, we have not considered 
the possibility that the resource availability is limited in the peripheries of the 
resource spectrum of the two species. 

Now, let us return to the general three species model [Eq.(3.44)] with the 
genetic variation in species y as shown in Table 3. Two questions may be asked 
in this model: (1) For a fixed niche width W, how will dxy and dyz change, and 
(2) for a fixed dxy = dyz = d, how will W change. 
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By a method similar to that used for arriving at Eq. (3.49) we find that the gene 
frequency change in the three species model is 

p' - p= (- Rpqy/y') [P(IX! -IX!) + q(lX! -lXm (3.53) 

where 

(3.54) 

Equation (3.53) for the gene frequency change looks like Eq.(3.49), but is much 
more complicated because of Eq.(3.54), which shows that the relation between 
the "fitness" parameters is determined by the population sizes. Thus we cannot 
use the simple procedure from the two species system and no attempt to find a 
general solution will be made. However, we can in any case determine the 
conditions for initial increase of a rare allele in the population. 

Suppose that the population consists primarily of individuals of genotype aa 
with a low frequency of the allele A in the population. If in this situation we 
neglect terms of the order p2 in Eq.(3.53) then we get approximately 

p' - p=( - Ry/y')p(lX! -IX!) (3.55) 

so that the rare allele A will increase in the population provided 

(3.56) 

i.e., A increases when the competition experienced by the heterozygote is less 
severe than that of the predominant homozygote. 

To evaluate Eq.(3.56) we may assume that the population sizes are at the 
equilibrium 

x = (1-lXz) [(1- 13) - (lXx -lXz)]/D , 

y=(I-f3) [1+f3-(lXx+lXz)]/D, 

Z= (l-lXx) [(1- 13) + (lXx -lXz)]/D , 

where D = (1- 13) (1 + 13 - 2lXxlXz ) - (lXx -lXzf, and the equlibrium is valid if 

and 13 < lXx, IXz < 1, and it is always stable for R small. 

(3.57) 

(3.58) 

Consider now the example in Figure 46. Each species has a niche width W, 
but the modal distance between x and y( = d + e) differs from that between y and 
z(d - e). By Eq. (3.20) we get the competition coefficients in a population with 
only aa as 

IXx3=exp[ -(d+e3)2/(4W2)] , 

IXz3 = exp [ - (d - e3)2/(4 W2)] , 

13 = exp [- (2d)2/(4 W2)] , 

(3.59) 
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d+e d-e 

x y z 

Fig. 46. Diffuse competition with three species; for fixed Dx and Dz> Dy will move towards the 
middle (e->O) as the result of natural selection 

and the competition coefficients of the rare heterozygote as 

ctx 2 = exp [- (d + e2)2/(4 W2)] = exp { - [(d + e3) + (e2 - e3)]2/(4 W2)} , 

ctz 2 = exp [ - (d - e2)2/(4 W2)] = exp { - [(d - e3) - (e2 - e3)]2/(4 W2)} . 
(3.60) 

If we assume that the niche position of the two genotypes, aa and Aa, only 
differs slightly, then we can get a good approximation of Eq.(3.60) by Taylor 
expansion around e2 - e3 and neglecting square terms. By this procedure we 
get the approximation 

ctx 2 = ctx 3 [1- (e2 - e3) (d + e3)j(2 W2)] , 

ctz 2 = ctz 3 [1 + (e2 - e3) (d + e3)j(2 W2)] . 

Using this, we can write the condition [Eq.(3.56)] for increase of A as 

which simplifies to 

(3.61) 

(3.62) 

Thus the condition for increase of A in terms of the sign of (e2 - e3) is determined 
by the sign of the bracket. From the equilibrium population sizes given by 
Eq.(3.57) by setting ctx =ctx 3 and ctz =ctz 3, we get after some calculations 

(where the second factor is positive and the first factor is of sign - e3), and 

Now, these expressions are still too complicated to handle, but we may analyze 
the situation in the case where e3 is initially small compared to d. In this 
situation condition [Eq. (3.62)] may be rewritten into Eq. (3.67). 
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Fig. 47. The region (the shaded area) with a stable and valid equilibrium of a system as 
shown on Figure 46 as a function of e/d and of d/W 

By Taylor expansion of Eq.(3.59) we get the approximation: 

IXx3 = 1X[1- e3d/(2 W2)J , 

1X%3 =1X[1 +e3d/(2 W2)] , 

where IX is given by Eq.(3.28). From this we get as an approximation 

IXx3 -1X%3 = - e3IXd/(W2) , 

(3.65) 

(3.66) 

showing that both terms in the bracket in Eq.(3.62) are approximately proportional to e3. 
This simplifies the evaluation of that bracket, because its sign is then determined by 
pulling out a factor e3 and setting e3 = 0 in the rest of the terms. Thus, using Eqs. (3.63) and 
(3.64) we get Eq. (3.62) to be 

0< (e2 - e3)e3[ -1X(1- P - 21X+ 21(2)(d/W)2 + 2(1- P)IX(l-IX)] 

which by using P = 1X4 simplifies to 

Calculations of the values of the functions in the bracket show that for all IX 

less than 0.54 (the limiting similarly condition, see Table 1) the bracket is negative. 
Thus the condition for increase of the rare allele A is e2 < e3, i.e., the niche of the 
genotype Aa should be closer to the midpoint between the niches of the species 
x and z. In fact, direct numerical calculations on Eq.(3.62) show that this 
conclusion is not restricted to the situation where e3 is small, but extends to 
any value of e3 for wich the equilibrium [Eq.(3.S7)] is valid (Fig.47). The con­
vergence of the niche of the middle species towards the midpoint position is not 
nesessarily just a small adjustment; as Figure 47 shows the change may be 
quite considerable. 

Let us now consider the question of the evolution of the variance of species y. 
The variance of the utilization function of a species may change in two quali­
tatively different ways, either by increasing the variance in the resources utilized 
by an individual or by incorporating variation in resource use between the 
individuals (Roughgarden, 1972, 1974a). To separate the selection for change in 
variance from the effects previously discussed in this section we will here only 
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Fig. 48. A system consisting of two competing species; given an infinite resource spectrum, 
natural selection will tend to increase dij 

consider the three species situation where· the niches are placed with a distance d 
between neighbors. 

To explore the evolution of the variance in resource utilization between 
individuals in a population, let us consider the situation where the modes of the 
utilization functions of the three genotypes are equally spaced with a distance 8. 

Polymorphism at the locus will then increase the utilization variance of species y. 
However, we already know, that interspecific competition will favor the genotype 
whose niche position is closest to the midpoint between the niches of the species x 
and z, so an increase in variance will result if that genotype is the heterozygote. 
On the other hand, if the optimal genotype is a homozygote the intraspecific 
competition will be relaxed by the variation within the species, such that 
polymorphism may still be possible. The competition coefficient Yij between 
genotype i and genotype j is given by the matrix 

where 

Y 
1 

Y 

(3.68) 

(3.69) 

as for symmetric competition between species. If we assume that E is small as 
before, then we get the approximation 

(3.70) 

Thus the displacement of the niche of Aa by the amount 8 relative to the niche 
of aa only relaxes the interspecific competition by an amount proportional to 82• 

This is in contrast to the change in interspecific competition which from 
Eq.(3.61) is of the order of E=e2-e3. The previous assumption, that the change 
in intraspecific competition is negligible in the consideration of the adjustment 
of the niche position under diffuse competition is therefore justified. However, 
when the center species, y, is initially at the midpoint between x and z, then x = Z 

and the interspecific competition pressure experienced by the new genotype Aa 
is proportional to OCx 2 +ocz2, which from Eq.(3.61) is independent of the first 
order term in 8. Therefore, the difference between aa and Aa in inter- and 
intraspecific competition becomes of the same order of magnitude and we have 
to allow for the intraspecific competition coefficients to become less than unity. 
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The intraspecific competition in species y does not alter the growth equations 
for species x and z in Eq.(3.44), but the growth of the genotypes in species y in 
Eq. (3.46) has to be altered such that 

(3.71) 

and the growth of the total population size of species y is given by 

(3.72) 

The change in gene frequency, given by Eq. (3.53) is now a bit more complicated. 
It turns out to be 

where 
(3.74) 

and aT is given by Eq. (3.54). Assume as before that the allele A is rare, so that 
we can neglect terms of the order p2 to get the condition for increase of A. 
From Eqs.(3.73) and (3.74), the condition for increase of A becomes 

(3.75) 

Now assume that the niche position of the genotype aa is exactly at the 
midpoint between x and z. This implies that ax 3 = az 3 = a and f3 = a4, such that in 
a population where aa is the only genotype we have x = z. The competition 
coefficients of the new genotype Aa become 

ax 2 =exp[-(d+tY/(4 W 2)], 

az 2 =exp[ -(d-8f/(4W2)] , 
(3.76) 

which by neglecting the cubic term in the Taylor expansion is approximated by 

so that 

ax 2 =a[l- 8d/(2 W2) + 82d2/(8 W4)_ 82/(4 W2)] , 

az 2 = a[l + 8d/(2 W2) + r.2d2/(8 W4) - 82/(4 W2)] , 

With this approximation and Eq.(3.70), the condition [Eq.(3.75)] is 

(3.77) 

(3.78) 

(3.79) 
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x y z 

Fig. 49. Diffuse competition with three species; for fixed values of the D's and of ~ and ~, 
natural selection will tend to decrease ~. 

But at equilibrium where, e.g., y'=y, we have from Eq.(3.44) that 20:x+y=1, 
so that condition [Eq. (3.79)] is 

(3.80) 

This condition is fulfilled for 0: < 0.08 or d/W> 3.2, i.e. for loose packing of the 
niches. Thus when the distance between the niches is sufficiently great, the middle 
species will increase its utilization variance by incorporating new alleles. 

Finally, consider the model illustrated by Figure 49, where the three species 
are equally spaced, i.e. dxy = dyz = d and f¥x = Tv" = W, but where the individual 
variance in resource use in species y, Wy, is subject to genetic variation, such that 
the three genotypes have the individual variances Wi, W2 , and W3 , respectively. 
By a calculation similar to the one leading to Eq. (3.35) we may find the 
competition coefficients of this model by 

which by observing that the carrying capacity as a function of the variance 
obeys the relation 

K(W;)/K(W) = (W;/W) (W/Wi) (3.82) 

[from Eq. (3.17) with Y' = 1 and g; = 0], so that Eq. (3.12) provides the competi­
tion coefficients as 

(3.83) 

where 

(3.84) 

Similarly, we get the intraspecific competition coefficients as 

(3.85) 

since distance between the modes of the genotypes is zero. Let us restrict 
attention to the case where the population of y is initially only consisting of 
genotype aa with W3 = W, and investigate the condition [Eq.(3.75)] for the 
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increase of the allele A which supposedly changes the variance. Then r33 = 1 
and r23 = ~ so that Eq. (3.75) becomes 

(x+i)(~aS2 -a)+ y(~ -1)<0, (3.86) 

which for 52 close to one (r23 ~ (33) is approximately 

{2ax[(1/2) + log (a)] + y/2} (1-52»0. (3.87) 

As before we have 2ax + Y = 1, so that Eq. (3.87) simplifies to 

[1 + 4ax log (a)] (1- 52) > 0 . (3.88) 

With x given by Eq. (3.32), the bracket is a function of a and it turns out to be 
positive if a < 0.15 or d/W> 2.8 and negative elsewhere when the initial 
equilibrium exists. Therefore, as in our previous model, selection for increased 
variance (52 < 1) only occurs for large distance between the niches. In any other 
case, selection will favor a decrease in the individual variance. 

In the three species models we have only considered the evolution of the 
middle species with respect to niche position and niche width. However, the 
situation for the outer species is pretty much that of the two species model 
considered in the beginning of this section. We would then predict that if genetic 
variation for the niche parameters occurs in the outer species, then they will show 
character divergence, and then after some time of divergence, niche expansion 
too. These phenomena are unbounded in their evolution in the models considered 
so far, because of the assumption of unlimited resource spectrum, whereas it is 
evident that divergence of the niches must have a bound if we, for example, 
have a Gaussian resource spectrum. 

The theory for three species evolving in a Gaussian resource spectrum is found 
in Roughgarden (1975), where he considers the invasion sequence depicted in 
Figure 31. The first species inhabiting the environment can always sustain a 
population, but through time it will tend to move to the optimum niche location, 
where the mode of the resource spectrum and the mode of the utilization function 
are equal. This evolutionary process is parallel to the convergence of the center 
species in Figure 47 towards the midpoint between its competitors, and selection 
depends linearly on the distance of the niche mode from the mode of the resource 
spectrum. After reaching this goal, the species will start expanding its niche 
towards the optimum niche width equal to the resource width. This increase in 
variance occurs by much weaker selection forces, which are of the order of the 
square of the change of the niche location, parallel to the situation in the 
middle species in a community of three species. However, the increase in the 
genetic component of the niche width is possible with the same genetic variation 
that made the convergence towards the mode of the resource curve possible. Given 
that the first species in our community has reached its optimum position, then a 
second species can invade as long as the niche width of the resident species is 
less than the resource width, i.e., W + G < (Y, where G is the genetic component 
of the niche width. At this point in time the phenomenon of character divergence 
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may be observed. Here two situations may be distinguished. In the first one, the 
resident species has had sufficient time for the incorporation of genetic variance, 
i.e. G>O; then if we assume that the immigrant species is mote homogeneous, 
the resident species will show a rather rapid shift in its niche position and a 
decrease in niche width due to selection against the genotypes whose utilization 
mode is closer to the mode of the immigrant species. Thus, following this early 
stage in the two species community, the former resident species may well occupy 
a more extreme niche position than the immigrant species. The second possibility 
is that the new species migrates into the habitat before the resident species has 
expanded its niche significantly. This situation is parallel to the situation after the 
initial character divergence in the first considered case. Now, given enough 
variation in the two species, they will tend to get symmetric positions around the 
resource mode and the distance from the mode will eventually attain an optimum. 
At this point in time, we may introduce the third species. It will, as we have seen 
in the previous section, only be able to invade under certain conditions of 
similarity to the two resident species if we assume that its niche position is 
between that of the resident species. If the invader succeeds, then processes like 
the ones considered above come into action. The outer species will show character 
divergence (rapid if they have built up a genetic component of the niche width) 
and the middle species will seek the midpoint between its competitors (which 
in this model also may be the mode of the resource spectrum). 

The bricks to build this theory are given by the formulae [Eqs.(3.38) 
and (3.39), which by using the theory of this section, provide the conditions for 
increase of a rare allele, e.g., corresponding to Eq.(3.75) we get 

Roughgarden (1975) used another line of reasoning corresponding to the 
reasoning leading to Eq.(1.73). He established the existence of an optimum niche 
location and an optimum niche width, but the procedure is not suited for the 
investigation of possibilities of genetic polymorphism. 

The arguments presented so far pertain to genetic variation in the exploitation 
of the resources. With variation of an antagonistic nature the results are quite 
different. Suppose we have two species with genetic variation of the form of 
Table 3 in species y, but now it is not in the niche position, but in other inhibitive 
functions of the individuals belonging to species y on species x, such that the 
growth of species y is governed by the equations 

x'-x=Rx(1-x-(XxY) and 

y;- Yi=RYi(1-(Xx- y). 
(3.90) 

Here there will be no change in gene frequency in species y, despite the fact that 
the equilibrium population size of y will be maximal for (Xx maximal, because the 
genotypes all grow according to identical equations (Roughgarden, 1975). 
However, antagonistic mechanisms may be selected for in geographically 
structured populations in migration-extinction equilibrium (Chap. 4, p. 120) 
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where the above considered variation in competition functions may be important 
in determining the successful colonization of a patch and may influence the 
fitness of the individuals through altering the possibility that the successors 
will grow and colonize new patches. 

3.6 Components of the Niche 

In order to interpret observations from nature in the light of the result of 
this chapter, it is necessary to understand the components of the niche in terms 
of populations and individuals. 

In a community of competing species the utilization functions are properties 
of populations. As pointed out by Fenchel (1975b) and by Roughgarden (1972, 
1974a) the niche width is composed of (1) a variance of each individual in the 
utilization of the resources or in the response to environmental factors and (2) 
a variance due to variation in the mean between different individuals within the 
population. These two components have been termed by Roughgarden (1974a) 
the within phenotype component, Vw , and the between phenotype component, Vb. 
To these components should be added the variance due to age structure of the 
population, which we may call the age structure component, Va. We can therefore 
formally write 

Total Niche Width = V; = Vw + Vb + Va . (3.91) 

Each of these components may again have an environmental and a genetical 
component which is subject to natural selection in different ways and with 
different rates. 

The component of the niche width which is due to the presence of different 
age groups in a population, Va, is in many ways the most complex one. In many 
organisms, for example higher vertebrates, this component will only contribute 
to a somewhat increased variance in, e.g., prey size relative to what would be 
found if only adult individuals are studied. However, in organisms where 
metamorphosis is involved in development, e.g., a benthic clam with planktonic 
larvae, analysis of the true niche width will be extremely complicated. Note that 
selection on the Va component will mainly involve changes in the time niche of 
an organism, e.g., by changing the breeding time or the rate of development 
(Fenchel, 1975 b). 

In extreme, a population could have a niche, the variance of which is 100% 
Vw + Va. For example, a clonal culture of a protozoan in a homogeneous 
environment would have a niche width due to the variance of individual 
utilization of the resources plus the variance due to the age structure. The limits 
to the latter would be set by the difference between a cell ready to divide and 
its daughter cells which will be of half the size. 

The between phenotype component, Vb, of the niche is commonly reflected 
in measurable characters of relevance to the exploitation of the resource, e.g. 
the size of mouth or beak. This kind of variation is well studied and normally 
shows an environmental and a genetical component. The question about what 
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regulates the latter is essentially the question of how and why genetical variation 
is maintained in natural populations. At this point, we will only take it as a fact 
that natural populations are genetically polymorphic. For example, the size of 
organisms often responds quickly to selection. Among numerous examples, 
Robertson and Reeve (1952) produced divergent lines differing by 25% of the 
initial size after 15 generations of selection in a population of Drosophila. One 
of the most obvious effects of selection in domestic animals has been to produce, 
e.g., dogs varying in size from that of a large rodent to that of a small calf. 
These examples show that ample variation exists to produce increases in variance 
of population characteristics as considered Section 3.5. The niche width of the 
population growing according to Eq.(3.72) is 

(3.92) 

where the genetical component of l-b is the last term 2pqf,2. 
The environmental component of the between phenotype variance, l-b, shares 

a lot of properties with the within phenotype component, Vw ' In theory, this part 
of l-b is an intrinsic property of the population which is slowly changable through 
time by means of natural selection. In practice, however, distinction of this 
component of l-b is necessary mainly to allow inferences about the (in the long 
run) more important genetic component of l-b. 

Models like the ones considered in Section 3.5 predict that the genetic 
component of l-b should only be nonzero if the species packing is loose enough. 
This, however, is an overinterpretation of the results of such a simple model. 
It does, on the other hand, predict certain intuitively acceptable properties of the 
genetic component of l-b. Environmental stochasticity for example, either in 
general resource abundance or in unpredictable abundance of the different 
resource qualities, will tend to strengthen the condition for limiting similarity of 
species and thus allow a niche expansion of the species present. This aspect of the 
evolution of niche width is discussed in more detail by Roughgarden (1972, 
1974a). 

A change in the mean size of an animal as considered above, will effect the 
mean size offood particles eaten, but rarely their variance. The individual variance 
in particle size, i.e. the ability to select or eat particles say 2, 3, or 4 times larger 
than the optimum size, is a function of morphological and physiological 
properties of the organism with a much more complex basis than the mean size of 
the whole animal or of a trophic organ and will, therefore, respond much more 
slowly to natural selection. This property of the within phenotype component, Vw , 

is shared by the environmental component of the between phenotype component 
of the niche, l-b. Examples of different phenomena in connection with both these 
variances are often found by comparing different species or taxa rather than 
from variation within populations. 

Different species may differ considerably with respect to the within phenotype 
component. In many taxonomic groups there are members with a strictly 
specialized diet and related forms using a wide variety of food items. Many 
estuarine animals adapt readily to a wide span of salinities and temperatures 
while their oceanic relatives are extremely sensitive to changes in these 
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Fig. 50. The macrostome and the microstome form of the ciliate Tetrahymena paravorax 
(schematically drawn). This and some other Tetrahymena spp. have two alternative niches 

with respect to food particle size. (After Corliss, 1973) 

environmental factors. There can be no doubt that the within phenotype 
component of the niche width is responsive to natural selection and that it changes 
through the evolution of the species. A most strange example of a large Vw 
is found in the genus Tetrahymena. In clones of this protozoan the quality of the 
available food determines whether the beast will have a small or a large mouth, 
a micro- or a macrostome form. In cultures, and presumably in nature, 
populations may convert from one form to the other according to the available 
food and thus convert from one food niche to another (Fig. 50). 

We have in this section so far discussed the niche width as a universal constant 
referring back to the theory in the last section. However, the width of the niche 
cannot be discussed without referring to the scale of measurement. The results of 
the theory in the last section are valid only with a scale of measurement where 
the utilization functions of the species in the community in question are Gaussian. 
With respect to food particle size selectivity, the selectivity of an animal is 
probably made by comparing the particle size as a fraction of the mouth, which 
makes it intelligible that the selected particles show a log-normal rather than a 
normal distribution, and that species coexisting on the basis of food particle size 
selectivity often form a geometric series with respect to body size. Thus, in this 
example the theory applies to measurements on a log-scale. 

Summing up this discussion we can say (1) that the niche has a within 
phenotype, a between phenotype, and an age structure component, (2) that all 
three components have an environmental as well as a genetical basis. The genetical 
basis of the components is changing through the course of evolution by natural 
selection, and the genetical component of Vb is mainly maintained by natural 
selection. Often the mode of the niche is more responsive to selection than the 
shape of the niche, as expressed by the width. (3) The total niche width is 
determined by interspecific competition, morphological, physiological and 
behavioral properties of the species and the limits of the resource spectrum -all 
of which tend to restrict niche width -and by intraspecific competition and 
environmental stochasticity which will both tend to increase niche width. 

So far we have mainly had the fundamental niche in mind during this discussion 
although (3) above also takes into account the factors determining the niche 
realized by a particular population in nature. This is partly due to the fact that 
we have focused on resources which are exploited not occupied. The prime 
definition of competitive coefficients [Eq. (3.9)] applies to elements of a food 
resource which are eaten piece by piece; the other extreme is a habitat niche 
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which is occupied by an individual with highest fitness, such that the com­
petition fitness at the point Q is proportional to max {O, [OUi(e)-OUj(e)]}. 
Differences in habitat niche may often be connected with limited interaction 
between the species solely due to spatial isolation, a phenomenon that is more 
thoroughly discussed in Chapter 4. 

When individuals of a population do not utilize a particular resource in nature 
it may have two causes. The species may have evolved in the absence of that 
particular resource or while being excluded from it by competition, such that 
it lacks genotypes which form phenotypes capable of utilizing the resource. 
Alternatively, the individuals in the population are capable of utilizing the resource 
but in the studied population they cannot do so due to competition from other 
species. The phenomenon of ecological release, i.e., that a species increases its 
niche width in habitats devoid of competitors or in the presence of resources not 
available in its usual habitats need not, initially at least, have any genetical basis. 

3.7 Evidence from Nature 

The theory of the ecological niche is first of all significant in the light of 
observations from nature. As a predictive theory it gives insight into a number 
of properties of communities and populations; some examples will be given 
in the following. 

3.7.1 Ecological Release and Ecological Compression 

As already discussed in the previous section, popUlations which are normally 
confined to a restricted number of habitat types may in the absence of com­
petition expand their range to other habitats. MacArthur (1972) and MacArthur 
and Wilson (1967) mention several examples of birds and insects which on the 
mainland are restricted to a single or few, often marginal habitat types. On 
islands with an impoverished fauna, however, the same species may be dominant 
in several habitats which on the mainland are inhabited by other species. 

The fauna of the Baltic Sea constitutes one of the best examples of ecological 
release. This large brackish water sea is only about 5000 years old in its present 
state and no endemic species have yet evolved. This is in contrast to the 
much older "Pontocaspian Sea" (the Caspian Sea, the Black Sea, and the Lake 
Aral) in which the evolution of a spezialized brackish water fauna started already 
in the Miocene period (Remane and Schlieper, 1971). The Baltic Sea is, therefore, 
only inhabited by a relatively low number of estuarine species, a few freshwater 
species (mainly fish and pulmonate snails) and a few arctic marine species which 
are relics from the glacial period and which can endure the constantly low 
salinities (about 10%0 at the island of Bornholm and down to 4%0 in the Gulf of 
Bothnia) and the low temperatures (see Table 4). Many of the Baltic populations, 
however, form separate "races" which are characterized by different isozyme 
patterns as well as by morphological and physiological features. 

The species which have a wide distribution in the Baltic are often limited to 
certain shallow water habitats in the inner Danish waters and the North Sea. 
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Table 4. An example of the reduction of species in the Baltic Sea: the species numbers of 
marine bivalves and prosobranch snails from the North Sea through the inner Danish waters 

to the inner Baltic. (Data from Remane and Schlieper, 1971) 

Bivalves 
Prosobranchs 

North Sea Kattegat {bresund Kiel Bay Outer Baltic Gulf of Finland 

189 
210 

92 
101 

61 
69 

32 
26 

11 
13 

4 
2 

The bivalve Macoma balthica is in the latter mentioned areas restricted to 
relatively clean and well sorted sand in shallow or intertidal localities. In deeper 
waters and in finer sediments it is substituted by its congener, Macoma calcarea 
and the related species Abra nitida and Abra alba. In the Baltic Sea, however, 
Macoma balthica is found at all depths and in all types of sediments from coarse 
sands to mud and silt, while. the other species which require higher salinities are 
absent. Mud snails (Hydrobia spp.), which elsewhere are found only in shallow 
water sediments consisting of silt or fine sand, are also abundant on exposed rocks 
and algae in the Baltic; here the hydrobiid snails are relieved from competition 
by littorinid and rissoid snails which at other places are found on hard substrates. 
Many other examples of ecological release in the Baltic Sea may be mentioned. 

We do not know to what extent genetical changes have played a role in the 
ecological release of the Baltic populations. Outside the Baltic, the larvae of some 
of the species in question show special reactions to light and to substrate 
quality prior to the metamorphosis which lead to habitat selection of the adult 
animal (see Thorson, 1964 for references). It seems likely that such mechanisms 
are altered or absent in the Baltic populations but this has not been 
investigated. 

Amphipods of the genus Gammarus in Northern Europe constitute another 
example of ecological release. In most places the species Gammarus duebeni is 
restricted to marginal habitats such as rock pools and freshwater springs along 
the shore since this species is tolerant to changes in salinities, to extreme 
temperatures, and to anoxia. However, it is very rarely found in the sea or in 
larger freshwater localities since it is apparently an inferior competitor relative 
to other species of Gammarus, some of which are found exclusively in freshwater 
and others in seawater or in brackish water. On Ireland and in a few other places, 
however, the normal freshwater species of Gammarus are absent for historical 
reasons and here G. duebeni is found everywhere in freshwater (Pinkster et aI., 
1970). 

Ecological compression means that when a species successfully colonizes a new 
area, the realized niche of some species already established is restricted. A well­
known example is that of the arctic hare (Lepus arcticus) in Newfoundland. 
Originally it was the only hare in this region where it inhabited the tundra as well 
as forests. After the varying hare (L. americanus) was introduced, the arctic hare 
became restricted to the tundra (Cameron, 1958). 

The limit to ecological compression of competing species within an area is 
ultimatively set by the principle of limiting similarity and by the probability of 
extinction of small populations (see also Chap. 4). Physical heterogeneity of the 
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environment, however, is a prerequisite for habitat selection and a correlation 
between species numbers and environmental complexity could be expected. 
This has been documented for, e.g., faunas of birds in forests where more bird 
species are found when there are several layers of foilage (MacArthur and 
MacArthur, 1961) and for prosobranchs of the genus Conus in coral reefs 
(Kohn, 1968). 

MacArthur (1972) and MacArthur and Wilson (1967) generalize that ecological 
compression dominantly takes the form of habitat compression, whereas the 
food spectrum of the involved populations will remain unaltered. However, 
since ecological compression involving resource and time niches is usually termed 
"character displacement," a not uncommon phenomenon also discussed by the 
above mentioned authors, the question is in part a semantic one. However, it may 
well be that successful colonizations more often lead to habitat compression 
than to specialization in the utilization of food resources. Food resource 
partitioning will probably always involve genetical changes unless it is a result 
of habitat selection, whereas habitat compression may at least initially simply 
result from mutual habitat exclusion without involving any genetical changes. 

3.7.2 Niche Width and Species Numbers 

The theoretical considerations with respect to the limiting niche overlap of 
coexisting species do not imply any assumptions which restrict the generality 
of the result. It therefore follows, that in habitats with few species either the niches 
are wider or they are less densely packed. The phenomenon of ecological 
compression and release indicate that the former explanation may often be the 
correct one. It may be asked how observations from nature fit the considerations 
of the previous section with respect to what determines the width of the niche. 
It was conjectured that environmental stochasticity tends to increase niche width. 

The "latitudinal gradient of species diversity" is one of the most spectacular 
examples of differences in species richness between different areas (see Table 5). 
More recently it has also been found that the deep sea harbors a high number 
of species relative to shelf sediments (Sanders, 1968). These findings support the 
consideration that constant climatic conditions allow for more narrow niches 
while varying or unpredictable environmental conditions lead to wider niches. 
MacArthur (1972) mentions as an example that in a tropical climate fruits are 
available throughout the year and consequently some species of birds may 

Table 5. The numbers of species of different taxa in three regions at different latitudes. 
(Data after Kormondy, 1969) 

Labrador Massachussetts Florida 

Coleoptera 169 2000 4000 
Terrestrial snails 25 100 250 
Coastal fish 75 225 650 
Flowering plants 390 1650 2500 
Marine bivalves 30 150 200 
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specialize as fruit eaters. In temperate climates fruits are only available during a 
restricted part of the year and sedentary birds must, therefore, have wider food 
niches. Many examples of this sort may be given which make the latitudinal 
gradient in species richness intelligible and such considerations also apply to 
the deep sea with its constant environmental conditions. 

The problem of species richness in different climates is discussed in detail 
by Pianka (1966), Sanders (1968), and MacArthur (1972). 

3.7.3 Niche Overlap, Character Difference and Character Displacement 

There is much evidence to show, that in accordance with the theoretical 
considerations, coexisting species which only differ along one niche dimension 
have niches which are spaced by about one standard deviation, i.e., d/W ~ 1 
(see Figs.40 and 51). Jv1any other examples are given by MacArthur (1972). 

It is often difficult to quantify the niche width of natural populations. Instead 
differences in morphological structures have been used as measures of niche 
overlap. Most frequently whole body sizes or the sizes of some trophic organ 
such as beak lengths of birds, which are believed to correlate with food particle 
size selection, have been used. This problem is discussed in detail by Hespen­
heide (1973). Morphological characters of a species may measure the "between 
phenotype component" (Vb) of niche width but the "within phenotype 
component" (Vw ) must be measured seperately when data on character difference 
are to be analyzed in terms of niche overlap. An example of such an analysis 
will be given below in connection with character displacement. 

Hutchinson (1959) found for a variety of animal groups that a length ratio 
of 1.3 allows for the coexistence of congeners based on size difference only. 
Schoener (1965) gave a long list of ratios of beak lengths for related birds living 
in the same areas. Within several taxonomic groups, ratios smaller than 
Hutchinson's value of 1.3 were found. However, in many cases the groups of 
species studied by Schoener are not really coexisting but show habitat selection 
within the geographical region where they are found. The fact that groups 
consisting of large birds (e.g., birds of prey) generally conform to Hutchinson's 
ratio while smaller birds (e.g., passerines) often do not, confirm this interpretation 

..c 

g.10 B.sa(sl B. pl/osa 
o 

15L---3-o----~--~----~0--~1~0--~2~0--~3~0 20 10 
Individuals / 83 cm2 

Fig. 51. The depth distribution of two sand burrowing amphipods of the genus Bathyporeia 
coexisting in a Danish beach. (Redrawn from Nicolaisen and Kanneworff. 1969) 
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since smaller birds more easily develop habitat selection, for example with 
respect to feeding places, than do larger species. 

Brown and Wilson (1956) coined the term character displacement to describe 
the phenomenon, that when two closely related species coexist they may differ 
more from each other than allopatrically occurring populations of the same 
two species. Character displacement really describes two different phenomena. 
In zones of overlap of two related species, morphological or behavioral features 
which hinder hybridization may develop. This may happen when the hybrid has 
lower fitness than the parental forms. Character displacement may also describe 
changes in morphological or behavioral changes which relieve competition in 
zones of overlap. Here we will only di~cuss the latter type of character 
displacement. 

Hutchinson (1959) reviewed the cases of character displacement known at the 
time; these were mainly based on metric measures of some terrestrial vertebrates 
and a few arthropods. Hutchinson also showed that in two corixids (aquatic 
hemipterans) which coexist through size difference in some localities, the larger 
species reproduces first so that the size ratio remains constant throughout the 
life cycle. Most cases of character displacement in coexisting congeners manifested 
themselves as a ratio in linear dimensions of about 1.3. This supports the 
consideration in Section 3.6, that changes in the average size of organisms may 
occur rapidly as a result of natural selection. 
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Fig. 52. The shell lengths (the mean and ± 1 standard deviation) of the mud snails 
Hydrobia ventrosa and H. ulvae in 15 localities where they coexist (above) and in 17 

localities where only one of the species is found (below). (After Fenchel, 1975b) 
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Fig, 53. Above, left: the average particle sizes consumed as function of shell length in the three 
species of Hydrobia. Above right: the range of particle sizes consumed by the total 
populations of H, ulvae and of H. ventrosa in a locality where they coexist (above) and where 
each of the species occur alone (middle and below). Below: the cumulative shell lengths 
distribution of two populations of H ydrobia and the cumulative particle size distribution of 
particles consumed by 3 individual snails plotted on probability paper. (After Fenchel, 

1975b) 

The three species of mud snails (Hydrobia spp.) living in Danish lagoons 
and estuaries show habitat selection with respect to salinity; the species 
Hydrobia ventrosa, Hydrobia neglecta, and Hydrobia ulvae having optimum 
salinities at around 20, 25, and 30%0 respectively, Although they all have wide 
ranges in tolerance to salinity, they usually show mutual exclusion according to 
salinity (and probably also some other environmental factors). In some salinity 
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gradients and in other complex systems of lagoons, however, two or sometimes 
all three species may coexist. In such localities the species show character 
displacement with respect to size and to reproductive periods (Fenchel, 1975b). 
For example where H. ventrosa and H. ulvae coexist the have a size ratio of about 
1.4 whereas they are of about the same size where they occur allopatrically 
(Fig. 52). 

Hydrobiids feed on diatoms and on sediment particles, utilizing attached 
microflora on the latter. The average particle size ingested is a linear function of 
body length (Fig. 53). As also shown on the figure, the standard deviation of the 
ingested particles of an individual is about 0.4log2 units and the standard 
deviation of shell lengths of single populations is about O.110g2 units (thus, the 
"within phenotype component" of niche width is larger than the "between 
phenotype component" + the "age structure component" in this case). In order 
for the species to have a niche separation of one standard deviation the size ratio 
would have to be (0.42+0.12)1/2Iog2 units which equals a factor of about 1.3. 
Here we see that character displacement in fact leads to a size difference which 
would allow the snails to coexist and that they conform to the prediction that 
djW ~ 1 assuming that they only differ in their resource niches with respect to 
food particle size (Fig. 53). 

The theory in the preceding section predicts the observed character divergence 
in the hydrobiids, but it also predicts a decrease in the genetic component of the 
between individual variance, v" + Va. As seen from the above considerations the 
within phenotype variance, Vw , does indeed constitute a large part of the total 
variance in the food utilization. This, however, should be compared to a similar 
partitioning of the variance in populations where the two species do not 
coexist. However, the total utilization variance of the species seems not to 
depend on the allopatric or sympatric state (Fig. 53). Fortunately, there exist 
direct evidence of a decrease in the age component, Va, of the between individual 
variance. In populations where the species live alone, the breeding season is 
extended and overlapping. On the other hand, in populations where the two 
species compete, both species tend to have a restricted and nonoverlapping 
breeding period (Fenchel, 1975b). 



4. Geographically-Structured Populations and 
Migration-Extinction Equilibria 

In the two previous chapters we have primarily considered population inter­
actions under the tacit assumption of homogeneous environments and it was 
possible to arrive at theoretical conclusions which give insight in many observa­
tions from nature. Yet, nature seldom consists of homogeneous environments 
but must often be described as a heterogeneous mosaic of more or less isolated 
habitat patches each harboring larger or smaller populations, with migration 
between them. This structure has to be taken into account when a complete 
description of ecosystems is attempted. Such considerations lead to conclusions 
which in part differ qualitatively from those arrived at in the previous chapters. 
However, there is no contradiction between the two ways of looking at biological 
communities. Rather it is a question of scale; within each habitat patch the 
mechanisms outlined in the previous chapters are believed to function. But the 
interaction between a larger number of more or less isolated environmental patches 
interconnected by low rates of migration will result in systems with special, and 
in many ways, complex features. 

Hutchinson (1951) and Skellam (1951) were the first to consider that more 
species, depending on the same resource, could coexist within a patchy environment, 
given certain rates oflocal extinctions and certain migration rates between patches. 

Consider say a beech forest in which the trees are always able to exclude 
other plants by competition. We would expect such an area to remain a 
homogeneous and pure stand of trees devoid of other plant species. However, if 
patches are cleared at intervals due to, e.g., fires or timbering, various annual plants 
and shrubs could colonize these patches since they grow and reproduce faster 
than trees. Eventually the trees would take over the patch again by the competitive 
exclusion of the other plants. However, if the annual plants in the mean time had 
produced seeds and these had been dispersed to new, cleared patches then the 
plants could subsist in the forest by their ability for dispersal and fast 
growth, provided that local clearings appear sufficiently often. Such species 
were termed fugitive species by Hutchinson but they are often referred to as 
opportunistic species or simply as "weeds". The considerations clearly apply to 
species depending on emphemeral habitats or resources, and to environments 
characterized by periodical disturbances such as temporal ponds, carrion, dung, 
etc. Several species may well utilize such resources through what is known as a 
succession. The species which are the first to utilize the resources and later are to 
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Fig. 54. The food web of a rocky shore on the Washington coast. (Redrawn from Paine, 
1966) 

become excluded by other species, are superior with respect to reproductive 
potentIal and dispersal relative to the climax species. The study of Paine (1966) also 
illustrates the coexistence of competitors in a fugitive equilibrium. The intertidal 
rocks along the Pacific coast of Washington harbor a fauna which forms a food 
web as shown in Figure 54. When Paine removed the "top predator", the seastar 
Piaster, within an area, then the numbers of the remaining species dropped and 
eventually mussels totally dominated the rocks. This experiment has been used for 
exemplifying the role of predators in stabilizing the coexistence of competing prey 
species. The correct interpretation is probably that the seastar clears patches on the 
rocks which are then colonized by a variety of species. The number of species in a 
patch is eventually reduced by competitive exclusion leaving only mussels. By that 
time, however, the seaster has cleared new patches which are open for colonization. 

In the following we will investigate some models which describe aspects of 
coexistence in heterogeneous environments with migration and local extinctions. 
But first we will analyze the effect of migration on a single population and explore 
the effect of competition in a community with geographical subdivision and 
limited mixing. These models correspond to the models applied in population 
genetics (Wright, 1969). 

4.1 Migration Pressure and Competition 

We will here discuss a model described by Fenchel (1975a); it was inspired 
by the distribution patterns of mud snails in Danish estuaries and lagoons. As 
already discussed, the three species of Hydrobia have different optima with 
respect to salinity. The species which prefers the highest salinities forms large, 
widely distributed populations in the sediments of the more open waters, whereas 
the two brackish water species are mainly confined to small isolated populations 
in coves, lagoons and the innermost parts of estuaries where the salinities are 
low. All three species, however, have wide ranges of tolerance with respect to 
salinity and could probably in the absence of the two other species sustain popula­
tions over nearly the total environmental range populated by the genus. The 
question here is what will be the species composition of a small patch, HI, in 
which species Xl is a superior competitor will be, if HI is surrounded by a large 
large population of species Xl, from which individuals migrate into HI at a 
constant rate m (Fig. 55). 
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We will look at the growth of x 1 and X2 in H 1 and assume it is described 
by the modified Lotka-Volterra equations [cf. Eq. (2.12)]: 

dxddt=x1r1(K1-x1-[312X2)/K1 

dx2/dt=X2 r2(K2 -X2 - [321Xd/K2 +m, 
(4.1) 

where m (~O) is the migration rate of species 2 from H 2 into H 1. According 
to the assumptions both Ks and rs are positive. The interesting situations are 
those in which for m = 0 species 1 excludes species 2 under all or a part of the 
initial conditions. This is the case if 

(4.2) 

which will be assumed in the sequel. 
The assymetry of the model is an approximation because emigration to H2 

of species 1 will tend to modify the composition of the immigrants to H 1. However, 
this may be neglected as long as H 1 is very small compared to H 2 • 

The possible equilibria of Eq. (4.1) are found by equating the right sides to zero 
and solving for Xl and X2. One solution, the trivial one, where species 1 is absent 
from H b is 

(4.3) 

This equilibrium is unstable provided X21 < K d [312, i. e., if 

(4.4) 

Thus if Xl> 0 initially, coexistence will occur if Eq. (4.4) is fulfilled. 
The coexistence equilibrium depends on the type of competition. In case of 

exploitative interaction with incomplete niche overlap, i.e., when 

there may be a single coexistence equilibrium given by 

where 

A = (K2 - [321K 1)/[2(1- [312[321)] < 0, 

B = K 2/[r2(i- [312[321)] > 0 . 

(4.5) 

(4.6) 

This equilibrium exists and is stable if x\ > 0, which is equivalent to condition 
Eq. (4.4). If Eq. (4.4) is not fulfilled, then species 2 will exclude its superior 
competitor, species 1, from H 1. The same conclusions can be drawn if 
[312 = 1/[321. 
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With antagonistic interaction, i.e., when /312 > 1//321, there may be two co­
existence equilibria, 

x2s=A-(A2+mB)1/2 and xls=Kl-/312X2s and 

x2u=A+(A2+mB)1/2 and xlu=Kl-/312X2u, 

where A and B are given by Eq. (4.6), but now A>O and B<O. 

(4.7) 

The equilibrium (Xls' X2s) is always stable when it exists, and the equilibrium 
(Xlu,X2u) is always unstable. When condition Eq. (4.4) is fulfilled, i.e., when the 
(0, X2t) equilibrium is unstable, the s-equilibrium exists and the u-equilibrium 
does not exist. On the other hand, if Eq. (4.4) is not fulfilled, the equilibria 
Eq. (4.7) may still be relevant. If 

/3l2~2Kl/(Kl/32l+K2), (4.8) 

then neither of the equilibria (4.7) exists when Eq. (4.4) is not fulfilled and 
(0, X2t) is the only stable equilibrium. Thus, the situation is the same as in the 
case /312 ~ 1//321' However, if Eq. (4.8) is false, then for m belonging to the interval 

both equilibria of Eq. (4.7) exist, so that there are two stable equilibria 
(Xls' X2s) and (0, X2t) and one unstable equilibrium separating them on the curve 
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Fig. 55. A system such as described by the model [Eq. (4.1)]. Species 1 is a superior 
competitor in habitat 1 but is subject to a certain migration of species 2 from habitat 2 
(left). Right: equilibrium composition of the competing species in habitat 1 as function of m 
with all other constants fixed (K 1 = 2K2) for four different sets of values of competition 

coefficients. Broken lines: unstable equilibria. (Altered after Fenchel, 1975a) 
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determined by dXz/dt=O. If f312>Kt/K 2 , the left side of (4.9) [right side of 
Eq. (4.4)] is negative and has to be replaced by 0, signifying that the equilibrium 
(0, X2') is stable for all m. In spite of this, species 1 can sustain a population in 
H 1 as long as it is sufficiently numerous. In practice, a disturbance of the 
population through a discrete, exceptionally high migration rate may cause a 
sudden change from one stable equilibrium to the other resulting in a permanent 
loss of species 1 in the area. If m is greater than or equal to the right side of 
Eq. (4.9), neither of the equilibria of Eq. (4.7) exists, so species 2 will exclude 
species l. 

Figure 55 shows the equilibrium compositions xz/(x 1 + X2)% in the various 
cases as functions of m with all other constants fixed. 

The model gives a number of qualitative predictions of interest. Figure 55 
and the Eq. (4.4) show that a superior competitor in a small habitat (a small K d 
may be excluded by an inferior competitor if the latter has a high rate of 
migration into the habitat (i.e., large populations in the neighboring habitats). 
This prediction which can be confirmed in the fiel<i (Fig. 56 and Fenchel, 1975a) 
is also of significance for the theory of island biogeography (see Sect. 4.5). 

Given moderate migration rates or habitats of about equal sizes we may expect 
coexistence of the species in both habitats although one of the species would 
always be excluded in a homogeneous area. 

If the migration rates decrease regularly when going from the center of one 
habitat towards the center of the other, then m on Figure 55 may be taken as a 
measure of distance and the curves will describe the gradual transition from one 
species to the other. The steepness and exact position of the slope with respect 
to the factors which determine the outcome of competition will also depend on 
migration rates which again depend on the presence or absence of migration 

o 2 
, , c::::::J 

km H. ventrosa 

Fig. 56. The distribution pattern of two species of H ydrobia inside and outside a brackish water 
lagoon in the Limfjord, Denmark. The situation is parallel to Figure 55. Outside the lagoon 
H. ulvae is superior and inside H. ventrosa is superior as competitor but a gradient in the 

composition of the snail fauna is found. (Redrawn from Fenchel, 1975a) 
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H. ulvae extends its distribution towards lower salinities where the migration distance is the 
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barriers and the sizes and densities of the populations. This is exemplified on 
Figures 56 and 57. It shows the gradient between H. ulvae (the marine species, 
corresponding to species X2 of the model) and the brackish water species 
H. ventrosa in two estuaries with a salinity gradient. It can be seen that in the 
shortest gradient H. ulvae penetrates into lower salinities in accordance with 
the model. 

4.2 Migration Between Identical Habitat Patches 

Levin (1974) studied a model of a system with two identical patches and with 
two competing species with antagonistic interrelationship; i.e., in a homogeneous 
patch one of the species would always be excluded according to th.;: initial 
population sizes. 

In the notation of Eq. (2.28) we have 

(4.10) 

dX2/dt=X2(l-X2 -ocxd, 
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Fig. 58. A graphical representation of the model [Eq. (4.12)] 

The system [Eq. (4.10)] has 4 equilibria; 

1. .\\=O;xz=O 

2. Xl = 0; X z = 1 

3 . .x\=1;xz=0 

4. xl=o:/(l+o:);xz=o:/(1+o:), 

of which 2. and 3. are stable (cf. Sect. 2.2). 

109 

(4.11) 

Now consider a system consisting of two isolated patches (Fig. 58). If this 
system is inhabited by Xl and Xz we have according to Eq. (4.11), 16 possible 
equilibria of which the following 4 are stable; 

[x 1 = 1; Xz =0] [Xl =0; Xz = 1]; [Xl =0; Xz = 1] [x 1 = 1; Xz =0] 

[x 1 = 0; X z = 1 ] [x 1 = 0; X z = 1]; [x 1 = 1 ; X z = 0] [x 1 = 1 ; X z = 0] , 

where each pair of bracket describes the conditions in patches 1 and 2. These 
situations could initially be brought about by historical or stochastic events and 
they will remain stable since there is no interaction between the two patches. Now 
consider one of the equilibria in which different species have become established 
in the two patches, e.g., that species 1 is established in patch 1 and species 2 is 
established in patch 2. Let us now allow for a low migration rate of individuals 
between the patches. For patch 1 Eq. (4.10) now becomes 

dxt!dt= x}(l- x} -o:xi)+ m(xi - xD, 

dxi/dt=xW -xi -o:xi)+m(x~ -xD, 
(4.12) 

where Xl and XZ denote the population sizes in patches 1 and 2 respectively, 
and where m is a migration constant which is considered identical for the two 
species such that migration is assumed to be proportional to the population 
SIzes. 

Now it can be seen intuitively, that as long as m is small the system will remain 
stable (i.e., both species will persist) since in patch 1 the system will tend toward 
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the (x 1 = 1, X 2 = 0) equilibrium and in order to change this trend a minimum 
influx of species 2 is necessary. So for sufficiently small values of m we will 
have coexistence in both patches. Levin (1974) proved this result formally, 
determined the new equilibrium as a function of m, and showed that the 
condition for coexistence is that 

0<m«1/2) (0:-1)/(0:+ 1) (4.13) 

If the right inequality of Eq. (4.13) is not satisfied one of the two species will take 
over the entire system [a violation of Eq. (4.13) will lead to an unstable 
equilibrium in (4.12)]. 

This result is a special case of the general mathematical theory of weak 
interactions (Karlin and McGregor, 1972). This theory as well as the model 
discussed above show that the heterogeneity constituted by a migration barrier 
between identical patches is·sufficient to maintain a higher degree of complexity 
than a totally homogeneous environment would allow. 

The principle may be extended to n identical patches with a limited rate of 
migration between them. Such a system may in principle maintain n otherwise 
mutually exclusive species in a stable coexistence. 

It is clear that the equilibria discussed here are in a sense neutral, i.e., if one 
species population due to say stochastic fluctuations becomes rare it may go 
extinct altogether, since the system is not globally stable; it can, therefore, be 
expected that complex systems maintained as discussed above will eventually 
simplify to a lower number of species. However, such a loss of species may be a 
very slow process. It can, therefore, be expected that in nature we may find systems 
of identical patches (islands, small isolated forests, lakes, mountain tops) with 
different faunal compositions, which were originally established by some historical 
event, and which will seem stable as may be inferred from the observation of some 
migration between patches. 

4.3 Stochastic Extinction of Populations 

In the previous chapters we have confined our interest to situations where the 
population sizes are virtually infinite i.e., we have assumed populations so large 
that they can be described by a continuous variable. In this framework, the 
population of a species may go extinct either because the environment cannot 
support it or because of the influence of other species. Extinction in this context 
means that the population size vanishes to zero. In order to describe this process 
strictly, we have to realize that at some stage our description of population size as a 
continuous variable is invalid; we will have to describe the population as a 
collection of individuals for whom death and reproduction are discrete, stochastic 
events, i.e., we have to take into account what May (1973 a) termed demographic 
stochasticity. Similar reservations apply to conditions for the invasion of a species 
into a habitat. A newly introduced species will be represented by few individuals 
and demographic stochasticity will be decisive for the success of the colonization. 
This is especially important for the description of a single immigration event; 
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in the deterministic theory we have so far explored, the condition for potential 
success of invasions assumes recurrent immigration events. 

The simplest example of a population growth model where the finite number 
of individuals is taken into account is a discrete generation model described by 
the Galton-Watson or branching process. Assume that we have a population size 
Xn at generation 17 and that the i'th individual, i= 1, 2, ... , X n, gets Pi progeny, 
then the next generation will have the size 

Xn 

X n + 1 = L Pi· 
i= 1 

(4.14) 

Now, assume that the individuals reproduce independently and that the actual 
number of offspring Pi of an individual is drawn from a common probability 
distribution: 

Probability(P i = k) = P(Pi = k) = Pk , (4.15) 

for k=O, 1,2, ... , where 

(4.16) 

The event Pi=O means that the individual i dies before reproduction. The event 
Pi = 1 either means that the individual dies after leaving one offspring or that the 
individual survives without leaving offspring. However, in the following we will 
always interpret the process in terms of, e.g., an annual organism with a discrete 
breeding season; i.e., all individuals die after the breeding season and mayor may 
not leave progeny. 

With these assumptions the stochastic process X 0, Xl, X 2, ... , X", . .. , is called a 
branching process with offspring distribution [Eq. (4.15)]. The model is a discrete 
time and discrete number analog of the unlimited growth model [Eq. (1.1)] and 
we may expect it to have similar properties. However, we are only interested 
in the stochastic description for low population sizes, it may also be a good 
approximation to the initial growth of the logistic model, if the carrying capacity 
is sufficiently large. 

An introduction to the properties of this kind of process is found in Karlin 
(1966); more advanced results are given by Harris (1963). Here we will give some 
fundamental properties of the model. 

If we start a population with one individual, i.e., X 0= 1, then the probability 
of dying out at the first breeding period is q 1 = Po. If the initial individual leaves k 
offspring, Xl = k, then the probability of extinction by the next generation is pt. 
The event of having k offspring has the probability Pk so that the probability 
of having k offspring in the first generation and then dying out in the second 
generation is PkPt. Summing all the probabilities of having a zero population 
after the two first breeding periods we get the total probability of extinction at 
time 2, i.e., X 2 = 0, as 

(4.17) 
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Fig. 59. The probability of extinction for populations of an organism with binary fission and 
with different probabilities of dying before dividing (Po) as function of the founding population 

size (Xo) 

This argument may be continued so that if the probability of Xn=O is q., then 

00 

qn+ 1 =qn+ I P(Xn=k)p~. (4.18) 
k= 1 

Thus the probabilities of zero population sizes form an increasing sequence 
Po = q 1 < q2 < ... < qn < ... converging to the probability q which IS within the 
bounds 

Po<q~1. (4.19) 

The extinction probability q is unity if and only if the mean offspring size m is 
less than or equal to one, where 

00 

m= I kpk' (4.20) 
k= 1 

If m> 1, then the extinction probability is strictly less than unity and with the 
probability 1- q the population size will grow to infinity. The expected value of 
the population size in the n'th generation is mn, this may be seen from the 
definition [Eq. (4.14)]. 

The extinction probability q pertains to a population starting with one 
individual, i.e., X 0 = 1, but if we start out with Xo individuals, then the descendants 
of each of the initial individuals grow independently as populations started from 
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one individual. The probability of extinction is therefore, qXo (Fig. 59). By a 
similar argument as the one leading to Eq. (4.17) we therefore get for q; 

(4.21) 

The extinction probability q is then the smallest positive root of this equation. 
With respect to density dependent models, such as the logistic models 

described in Eq. (1.9) and Eq. (1.13), no stochastic analog has been formulated 
or analyzed sufficiently. However, we can get a lower limit for the extinction 
probability for this model. In the branching model for unlimited growth with 
m> 1, the population either dies out with a probability q or it keeps growing 
away from the extinction state. In the density dependent model, if the population 
does not die out initially, it will have a size Xn ~ K and with an offspring mean 
of one. Thus a population size of K will have an extinction probability which is 
greater than a branching process with a mean m> 1 started at X 0 = K which will 
have the extinction probability qK. This must be a gross underestimate of the 
extinction probability of the density dependent population since if it grows to a 
size above K, it is expected to return to K again. Therefore, the extinction 
probability will approach unity but the expected time for the extinction will 
increase with increasing K. This may be formulated as follows: Given a large 
collection of populations of the size K, then these populations will go extinct at a 
rate which increases with decreasing K. 

Stochastic variation in population size may also be due to environmental 
stochasticity, e.g., a variation in resource abundance or in a density independent 
death rate. Let us first look at the simplest model of unlimited growth with 
periodically varying multiplication rates, 

x'=(R+ 1)x (4.22) 

such that R varies from generation to generation according to the scheme: 
Rio R 2 ,···, R k , Rio R 2 ,···, Rko ••• The fate of the population may, therefore, be 
expressed at the k'th generation by 

(4.23) 

revealing that the population is growing if the product (R 1 + 1) (R2 + 1) .. . (Rk + 1) 
is larger than one and that it will vanish if the product is less than unity. 
This maybe ex pressed in terms of the mean, 

k 

(Ilk) L 10g(Rj + 1) (4.24) 
j= 1 

which determines whether the population grows or vanishes according to whether 
the mean is larger or smaller than zero. 

Now turning to the stochastically varying R, we pick for each generation a 
value for R according to the probability distribution of R. The environmental 
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variation is, therefore, described by the sequence of independent random variables 
Rb R 2 , ..• , Rb Rk+ b"" and the fate of the population at any generation k is 
determined by equations like Eq. (4.23). From Eq. (4.23) we immediately get the 
population mean after k generations as 

(4.25) 

i.e., the mean population size increases or decreases according to whether the 
expected value E(R + 1) is greater or less than unity. However, the expected value 
of the population size may not be very informative with respect to the form of the 
distribution of the population size (Lewontin and Cohen, 1969). The mean may be 
high because the population has a vanishing small probability of growing 
extremely fast while it at the same time has a high probability of going extinct. 
A more interesting quantity is the probability that the population after k genera­
tions is above some size y, i.e., the quantity 

Prob.(X(k) > y) . (4.26) 

In order to find this probability we can use the idea expressed in Eq. (4.24); 

Prob.(X(k) > y) = Prob. [log(X(k») > log(y)] 

= probtt
1 

10g(R j + 1) > log(y) -IOg(x)j , (4.27) 

where we have used Eq. (4.23). We may rewrite Eq. (4.27) as 

Prob.(X(k) > y) = Prob.{(1/k) jt1log(RH 1) > [log(y) -log(X)]/k}. (4.28) 

For large values of k the arithmetic mean on the left side of the inequality will 
be very close to the expected value E[log(R + 1)] of the logarithm of the growth 
factor with a probability approaching unity (from the law of large numbers). 
On the other hand, the quantity [log(y/x)]/k on the right side of the inequality 
becomes vanishing small for large values of k. Hence, we can conclude that the 
probability that the population number X(k) is larger than a constant y for k 
(the number of generations) tending to infinity is positive if and only if the 
expected logarithmic growth rate E[log(R + 1)] is larger than zero. When this is 
the case the probability [Eq. (4.28)] in fact approaches unity which may be seen 
using the central limit theorem (Lewontin and Cohen, 1969). Comparison with 
the behavior of the mean population size is obtained by observing that the 
logarithm is a concave function such that by Jensen's inequality we get 

10g[E(R + 1)] > E[log(R + 1)] ; (4.29) 

i.e., the growth of the population guarantees increase of the mean but the 
opposite cannot be concluded. 
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This result generalizes to the branching process model where the condition 
for positive probability for growth is that E[log(m)] is positive; in this case the 
growth of the population will be approximately given by 

Xn ~exp{nE[log(m)] + Vn V}, 

provided that it does not go extinct, and where V is the variance over the random 
environment of logm, the logarithm of the mean offspring number in a particular 
generation (Keiding, 1975). 

May (1973 b) suggested a model for investigating the influence of a randomly 
varying environment on density dependent growth. In this model the population 
grows according to the differential equation 

dx/dt=x(A -x), (4.30) 

where A is given by the formal equation 

A= Ao+w(t). (4.31) 

In Eq. (4.31) w is a white noise with the mean zero and the variance S2, so that A 
becomes a white noise with the mean Ao. (A white noise is a formal expression 
for the derivative of the stochastic process of Brownian motion, such that a 
Brownian motion with variance S2 is the solution to the differential equation 
dB/dt= w(t).) The integration of a stochastic differential equation like Eq. (4.30) 
involves some ambiguities (see Feldman and Roughgarden, 1975) depending on 
the applied integral calculus. May (1973b) got by one integral calculus the condition 

(4.32) 

for growth of the population. Feldman and Roughgarden (1975) using an alternative 
approach got no condition on the size of the variance. Furthermore, Feldman 
and Roughgarden (1975) point out the difficulty in the biological interpretation 
of the quantity A, because in the model [Eq. (4.30)] it is the growth rate of x 
for x close to zero, but at the same time it plays a role as the equilibrium 
population size in the deterministic model. Feldman and Roughgarden (1975) 
suggest and analyze an alternative model where 

dx/dt=rx{1-x[1+w(t)]/K} . (4.33) 

Here the random variation is put on the carrying capacity, or rather the inverse 
carrying capacity, and the population can grow and exist independent of the 
variance of w. 

If we return to the discrete formulation of population growth, i.e., either 
Eq. (1.10) or Eq. (1.14) then for very small population sizes the population growth 
is approximately described by Eq. (4.22) such that the condition for the successful 
invasion of a species into a habitat with a randomly varying environment is 

E[log(1 + R)] >0. (4.34) 
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If the growth rate R is small, then we may approximate Eq. (4.34) by 

E[log(1 + R)] = E(R -1/2R2 + ... ) 

~ E(R) -1/2Var(R) + E(R)2 

~E(R)-1/2Var(R) , 

(4.35) 

where Var signifies the variance. Thus, Eq. (4.34) is fulfilled and the population 
size grows when small if the mean growth rate is larger than half the variance 
of the growth rate (Keiding, 1975). When the growth rate is small, then Eq. (4.22) 
may be viewed as an approximation to a continuous time growth model (full 
details are given in Keiding, 1975), such that May's (1973b) condition seems to 
resemble the condition for the initial growth of a species in a randomly 
varying environment. 

4.4 Fugitive Equilibria 

We will now return to the problem offugitive equilibria in a patchy environment 
with local extinctions and recolonization through migration between patches, 
such as the beech wood example discussed in the introduction to this chapter. 
Recently, several theoretical studies on this topic have been carried out (Cohen, 
1970; Levins and Culver, 1971; Horn and MacArthur, 1972; Levin and Paine, 
1974; Slatkin, 1974). In all these models the total population size of a species is 
measured by the number of patches inhabited by the species. No account of the 
dynamics within each is kept, only the events of extinction or colonization of a 
species in a patch are considered. All models are based on simplifying assump­
tions and differ in some important aspects (Slatkin, 1974). The main conclusion 
of all these models, however, is that under wide conditions it is possible for species 
to coexist in a patchy environment even if the same species cannot coexist in a 
homogeneous population. 

Consider an area consisting of many isolated and identical patches which may 
be inhabited by two competing species. Let Pi and P2 be the frequencies of 
patches which harbor species 1 and 2 respectively and let P 12 be the frequency 
of patches with both species present such that Po = 1-Pi - P 2 - P 12 is the 
frequency of empty patches. The population size of species i is measured by 

(4.36) 

where the weighting factor Wi (~1) describes that the species i may on the average 
sustain a smaller population in a patch where its competitor is present. The 
invasion and colonization of an empty patch is assumed to occur with the rate 
miQiP 0, i.e., proportionally to the abundance of the species and to the number 
of empty patches. The populations of species i are assumed to go extinct with the 
rate ei in patches were it occurs alone so that the rate of production of empty 
patches by species i is eiPi' If we now, in order to get started, assume that a 
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species cannot invade a patch already inhabited, i.e., P 12 = 0, the system may be 
described by the following equations; 

dPo/dt= -(mlQl +m2Q2) PO+e1P1 +e2 P2' 

dPddt=mlQ1Po-e1P1 [=Pl(mlPo-etl], 

dP2/dt=m2Q2 Po- e2P2 [=P2(m2 PO-e2)] ' 

(4.37) 

where from Eq. (4.36), Qi=Pi. If we start out with an empty area, i.e., Po= 1, 
then i can invade if mi> ei and the frequency of inhabited patches will increase 
and stabilize at 

(4.38) 

These equilibria for i= 1,2 are the only equilibria of the system [Eq. (4.37)], of 
which one is stable and one is unstable. This is seen by considering a situation 
where species 1 is alone in the area and observe that the condition for species 2 
to be able to invade, viz. that m2PO-e2>0, from Eq. (4.38) is equivalent to 

(4.39) 

Thus species 2 can invade if it is able to sustain a higher occupation frequency 
than species 1. If it invades it will increase to the frequency given by Eq. (4.38) 
and thus exclude species 1. 

This situation changes radically if we allow for the possibility of cohabitation 
of a patch. Let species i invade and inhabit a patch already occupied by the 
other species with a rate proportional to (mi - f.1i), where f.1i typically is positive 
meaning that the presence of the other species decreases the chance of a 
successful colonization. Further let species i go extinct in cohabited patches with 
the rate (ei + 8i) where 8i is typically positive due to the lower population sizes 
which are the consequence of competition. Building these features into the 
system [Eq. (4.37)] yields the following equations, 

dPo/dt= -(mlQl +m2Q2) PO+e1P 1 +e2P2 , 

dPddt=mlQ1Po-e1P1 -(m2 -f.12) Q2 Pl +(e2 +82) P12 , 

dP2/dt=m2Q2 Po- e2P2 -(ml -f.1d Q1P2 +(el +8d P12 , 

dP 12/dt= (ml - f.1d Q1P2 +(m2 - f.12) Q2Pl - (el + 81 + e2 + 82) P 12 , 

(4.40) 

(Slatkin, 1974). If the area only contains one species, then the equilibrium frequency 
of inhabited patches is given by Eq. (4.38). Now, let species 1 prevail in the area and 
introduce species 2 in low numbers. The fate of this species is then approximately 
described by the linear system (neglecting the squares and the products of P2 

andPd 
dP2/dt=a ll P2 +a12P12 , 

dP 12/dt=a21 P2 +a22P12 , 
(4.41) 
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where the matrix A is given by 

all =m2PO- e2-(m1-J1.1)P1, 

al2=m2W2PO+(e1 +sd, 

a21 = [(ml-J1.1)+(m2-J1.2)] P1, 

a22=(m2 -J1.2) W2 P1-(e1 +S1 +e2 +S2)' 

(4.42) 

The equilibrium with only species 1 is stable (i.e., species 2 cannot invade) if all 
the eigenvalues of the "community" matrix A have negative real parts (cf. 
Sect. 2.4). According to the Routh-Hurwiz criterion this requires first that the 
trace of the matrix is negative, i.e., tr(A)=all +a22 <0, and secondly that the 
determinant of A is positive. These conditions are rather complicated mainly 
because of the large number of parameters, but in some simplified situations we 
can analyze the system. We will in the following give some results of Slatkin 
(1974). 

First consider the simplest model in which the two species are symmetric with 
respecttotheirinteraction, i.e., m1 =m2 =m; J1.1 =J1.2 =J1.; e1 =e2 =e; and Sl =S2 =s. 
From the equality of the migration parameters using Eq. (4.38) we get that the 
trace is 

tr(A)= -(m- J1.)(1-W2) P1 -(2e+2s) , (4.43) 

which is always negative. The determinant becomes 

det(A)= -(m-J1.) P1w2[(m-J1.) P1 +2eJ, (4.44) 

which is negative whenever m>J1. (state [1, 2J possible) and W2>0 (state [1, 2J 
supply migrants). Thus in the completely symmetric case coexistence is always 
possible. 

In the following we will, for convenience, assume that W2 = 1. The "pure 
migration competition" model (Levins and Culver, 1971) assumes that Sl =S2 =0; 
i.e., the only interaction between the species is that they hinder the migration 
of each other. In this model the condition that. the trace is positive thereby 
allowing species 2 to invade is difficult to analyze. The other possibility allowing 
species 2 to invade, i.e., that the determinant is negative, is 

(4.45) 

Condition [Eq. (4.45)J means that the relative decrease in the ability of species 2 
to invade a patch already inhabited by species 1 should be less than the population 
size it can sustain when alone relative to species 1 [cf. Eq. (4.38)]. Thus, under 
migration competition, invasion is rather easy as long as J1. is not too large and the 
two populations formed by the species when living alone are not too different. 
Reversing condition [Eq. (4.45)] we get a similar' condition for the ability of 
species 1 to invade a system in which species 2 is established; we see that 
coexistence is possible for a broad range of parameter values. Note, however, 
that when J1. approaches m then we return to the invasion condition [Eq. (4.39)] 
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for the model in which cohabitation is excluded. Thus for large values of J.1 the 
condition [Eq. (4.45)] becomes one that requires that the equilibrium sizes of the 
two monospecies systems should be nearly equal. 

The last model we will consider is one which Levins and Culver (1971) called 
"extinction competition". Here migration is free to any patch (i.e., J.1i=O) such 
that the interaction between the species is only due to the mutual exclusion from 
cohabited patches. Immigration of species 2 is possible if either the trace of A is 
positive, which is a strong condition on the parameters, or if the determinant of 
A is negative, which is the condition 

(4.46) 

where R is the ratio on the left side of Eq. (4.45). The right side of Eq. (4.46) is 
always positive, such that the condition is fulfilled if 

R=(I-e2/m2)j(I-ei/md>(1 +mi/m2) ' (4.47) 

and if this is not true, then condition [Eq. (4.46)] becomes 

(4.48) 

Condition [Eq. (4.47) says that if the population size of species 2 when alone is 
much larger than that of species 1 when alone, then invasion is guaranteed. If 
Eq. (4.47) is fulfilled then the symmetric condition for the invasion of species 1 is 
not fulfilled and coexistence is not fulfilled. Condition [Eq. (4.48)] may be fulfilled 
for 82 sufficiently small. If we consider the symmetric condition for species 1 we 
see that the condition for coexistence is that the 8'S are sufficiently small. 

We can now see that if condition [Eq. (4.47)] is fulfilled for the invasion of 
species 1 in a species 2 population (the symmetric condition of the one stated) 
then R -1 is large and consequently condition Eq. (4.48)] requires that 82 be very 
small, so if either version of condition [Eq. (4.47)] is fulfilled, coexistence is 
unlikely. 

The model [Eq. (4.37)] may be obtained from the general model [Eq. (4.40)] 
in two ways; by making J.1i=mi or by letting 8i grow towards infinity. These 
possibilities correspond to the situation of competitive exclusion where either 
species introduced in a low number into a population of the other species will 
prohibit its increase. In this situation there cannot be coexistence except for the 
pathological case where the population sizes of each of the species are identical 
when alone in the system. Even in this case we would expect that a finite number 
of patches would lead to the random extinction of one or the other of the 
species. 

Finally we give an example of a case that does not allow the persistent 
coexistence within a patch, but may allow regional coexistence. This is where one 
species excludes the other by competition; this could, e.g., correspond to J.12 = m2 
and 82 > 810 i.e., species 2 cannot invade a patch when species 1 has an established 
pGpulation, and if species 1 invades a patch inhabited by species 2, then species 1 
has a competitive advantage. To take a simple example let 81 = J.11 = 0, then species 1 
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can always invade a population of species 2, and species 2 can invade a population 
of species 1 if condition [Eq. (4.47)] is fulfilled, or if condition [Eq. (4.47)] 
is false then if 

e2 +62 <ed[(1 +mdm2} R -1-1J (4.49) 

where R is the ratio on the left side of Eqs. (4.45) and (4.47). Thus in this system 
coexistence is possible in a situation where it would be impossible in a 
homogeneous population. 

Coexistence of two species in a system of patches is most easily obtained when 
coexistence is possible for a limited time in each patch. Prolonged coexistence, 
however, is hindered by a decrease in the population sizes of both species due to 
competition. The model may therefore apply well to a group of competitors with 
a considerable niche overlap so that coexistence is impossible due to a vanishing 
stability of the coexistence equilibrium (see Sect. 3.4 and May, 1974). In a 
multispecies system we would not expect that all competitors should be found in 
anyone patch but depending on the parameters of the model we could find a 
typical mean number of species in the patches. Thus an extension of these models 
may prove to apply well to the kind of biogeographical data which will be 
discussed in the following section. 

Finally the evolution of interspecific antagonism should be mentioned in this 
connection. If, e.g., individuals of species 2 have adaptations which decrease /12 

or 62 they will increase their fitness within a cohabited patch. On the other hand, 
in patches colonized only by individuals of species 2 which possess adaptations 
increasing /11 or 61> the species could be expected to sustain a population longer in 
this patch and thereby increase its fitness. These arguments, of course, rest on the 
assumption that individuals within a patch are more closely related than individuals 
on the average. 

Thus antagonistic competition is not necessarily minimized like exploitative 
competion as discussed in Sect. 3.5 but may be favored by selection. Examples 
are the evolution of antibiosis in soil microorganisms, growth inhibitors in certain 
shrubs (Muller et al., 1964), and interspecific aggression in animals. 

4.5 The Theory of Island Biogeography 

The theory of island biogeography was originally developed to explain the 
species numbers of oceanic islands; the theory has since proven to have a much 
wider applicability for describing the faunas of isolates and for community 
ecology in general (Diamond, 1973; Simberloff, 1974; Lassen, 1975; Fenchel, 
1975a; MacArthur and Wilson, 1963, 1967). 

Basic to the theory is the empirical observation that species numbers of isolates 
show a positive correlation with area and a negative correlation with the distance 
from sources of colonization. This could in part be understood as an "under­
saturation" of distant islands. However, observations on newly established isolates 
or isolates which have been defaunated artificially indicate a rapid recolonization 
which relatively quickly leads to a stable number of species. 
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The theory of island biogeography explains the species numbers of isolates as a 
dynamic equilibrium between the immigration of new species and the extinction 
of previously established species. It is intuitively clear that isolates will receive a 
higher number of immigrants if they are situated close to the source of immigrants 
or they are larger, thus constituting a larger target for immigrants. The probability 
of extinction of populations is believed to be larger in small isolates because of 
small total population sizes. 

4.5.1 The Immigration and Extinction Curves 

In order to discuss the theory of island biogeography a number of definitions 
must be made. The source of colonists is considered to have a total pool of S* 
species. By immigration to an isolate is meant the arrival of a propagule of a 
species which is not already represented on the isolate. By a propagule is meant 
a number of individuals sufficiently large to be potentially capable of establishing 
a population. Propagules of species which are already established on an isolate 
will, of course, also arrive at a certain rate. However, in accordance with 
MacArthur and Wilson (1967) we will use the term immigration only to describe 
the arrival of species to an isolate where the species is not already established. 

The immigration rate, I, can be plotted against the number of species already 
present in an isolate. The simplest assumption is that I is a linear function of 
the number of species present, S, so that I takes a maximum value for S = 0 and 
the value 0 for S=S*. However, since it is likely that some species are better 
migrants or colonizers than others, we would expect I to be relatively higher for 
low values of S and relatively lower for high values of S so that the immigration 
curve is concave (Fig. 60). 

The extinction rate, E, is the rate of extinction of species which are established 
on the isolate. When S=O, then E=O. If the probability of extinction of the 
individual species populations is independent of S, E would be a linearly 
increasing function of S. However, we would expect the probability of extinction 
ofthe species to increase with increasing S since increasing competitive interactions 
will decrease the population sizes of each of the species. A concave extinction curve 
is therefore predicted (Fig. 60). 
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Fig. 60. The immigration and extinction as functions of species numbers for isolates of 
different sizes and distances from the source of colonization 
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The intersection of the extinction and the immigration curves determines the 
equilibrium number of species, 5, around which the actual number of species 
will vary. Thus, when S = 5, then 1= E. If the actual number of species exceeds 5 
the extinction rate will increase and S will return to 5. Similarly, if S falls below 
5 the immigration rate will increase and the extinction rate will decrease. 

We have not made any assumptions with respect to the qualitative composi­
tion of the fauna. It could be expected that different constellations of species on the 
isolate will yield different extinction and immigration curves. Any given isolate 
will, therefore, have a large number of alternative I and E curves corresponding 
to all the possible combinations of species drawn from the species pool S*. 

The actual extinction and immigration curves are difficult to observe in nature. 
Most evidence supporting the theory is based on a number of predictions deriving 
from the basic assumptions. These predictions include the area and the distance 
effects and their interaction, the constancy of species numbers but alternative 
species compositions of identical isolates (with respect to size and distance), the 
size of the variance of 5, and the shape of the immigration curve. 

4.5.2 The Area and Distance Effects 

The observed distance effect is one of the predictions of the theory; with 
increasing distance from the source of colonization the equilibrium number of 
species will decrease. The effect is especially well studied in the case of bird 
faunas on oceanic islands (MacArthur and Wilson, 1967; Diamond, 1973; see also 
Fig. 61). 

Larger isolates have higher species numbers than small isolates. This also holds 
true when habitat samples of different sizes from a large, homogeneous area such 
as a mainland are compared. It has empirically been found that a good description 
of the species number on an island is given by the equation 5 = CA z , where A is 
the area of the island and where C and z are constants. The parameter C is the 
number of species found in a unit size area, A = 1. The value of C varies according 
to the particular habitat, the taxonomic position of the organisms in question 
and their population densities. The parameter z, which may be determined as the 
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Fig. 61. The number of birds on islands (Moluccas, Melanesia, Oceania) as function of the 
distance from New Guinea given as percentage of the species numbers found on islands close 

to New Guinea. (After MacArthur and Wilson, 1963) 
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slope of the logarithmic regression line of S as a function of A, usually takes values 
between 0.2 and 0.35 (e.g., the number of species will double with an increase in 
area by a factor 10 for z=0.301). The factors influencing the value of z will be 
discussed below, but let us first discuss the reasons for the area effect in general. 

There are two main reasons for a higher equilibrium number of species on 
larger isolates. The probability of migration must increase as the target for 
immigration increases in size. The other reason is that the probability of extinction 
must increase with decreasing size of the isolate. As previously discussed (Sect. 4.3) 
all populations have a finite probability of going extinct. For density regulated 
populations this probability is high and approaches 1, but what is of interest here 
is that the expected time before extinction occurs decreases with decreasing popula­
tion size. On small isolates the absolute population sizes will be smaller and, 
therefore, they will have a higher rate of extinction. 

The size effect may be illustrated further by considering a large island as 
consisting of a number of more or less isolated habitat patches. On such an island, 
an extinct local subpopulation, comparable to a small island, will be relatively 
easily be replaced through migration from a surviving subpopulation somewhere 
else on the island. Total extinction on the large island therefore requires the 
simultaneous extinction of all the local subpopulations. A large isolate will 
therefore have a lower overall extinction rate, and consequently a higher value 
of S than will a small isolate. 

When a number of otherwise identical isolates which vary with respect to size 
and distance are compared, it is possible to distinguish between the effect of area 
and the effect of distance on the observed species numbers. Hamilton et al. (1964) 
found by multiple regression analysis that changes in area alone account for 
80-90% of the variation in bird species numbers on some tropical archipelagos. 
Lassen (1975), in a study of freshwater snails in lakes, found no distance effect, 
i.e., area accounted for 100% of the variation when similar types of lakes are 
compared. This is explained by the high rate of dispersal in freshwater snails in 
conjunction with the high density of lakes in the studied region. 

The equilibrium theory predicts that the relative increase in species when going 
from distant to close isolates is higher for small than for large isolates. It is 
also predicted that when going from small to large isolates the relative increase in 
the equilibrium species number will be higher for distant than for close isolates. 
In other words, higher extinction rates or lower immigration rates will yield 
higher values of z. 

With the simplifying assumptions that I and E are linear functions of S this 
effect is easily made intelligible by the following considerations. 

Consider a large and a small isolate with the extinction curves 

E=asS, 

and with the immigration curve given by 

I =b(S* -S), 

(4.50) 

(4.51) 

(4.52) 
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Fig. 62. Above: the increase in equilibrium species number when going from a small to a large 
island with the same distance from the mainland. Below: The species-area curve for the 
number of birds on three groups of Pacific islands lying at different distances from New 
Guinea; the most distant islands have the steepest curves. Filled circles: within 800 km; 
crosses: 800-3200 km; open circles: more than 3200 km. (After MacArthur and Wilson, 1967) 

as shown on Figure 62. The two isolates will equilibrate at Sz and Ss species 
respectively. The relative increase in S by going from the small to the large isolate 
is given by 

By letting Eq. (4.52) equal Eqs. (4.50) and (4.51) respectively, we have 

Sz =S*b/(az +b), 

Ss= S*b/(as + b) , 

which substituted into Eq. (4.53) yields 

(4.53) 

(4.54) 

(4.55) 

The total species pool, S*, is the same for close and for distant isolates and the 
immigration curves will have lower slopes, i.e., lower values of b for more distant 
isolates. From Eq. (4.55) it can be seen that the relative increase of S will be 
higher for lower values of b, i.e., for more distant islands. In a similar way it can 
easily be shown that the distance effect is greater for smaller than for larger islands. 
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Fig. 63. Species-area curves for freshwater snails in oligotrophic (open circles) and eutrophic 
(filled circles) ponds and lakes in Denmark. (After Lassen, 1975) 

Fig. 64. Species-area curve for freshwater snails in eutrophic lakes, ponds and very' small 
ponds. (After Lassen, 1975) 

These predictions have been demonstrated an several occasions (an example 
is given on Figure 62). Lassen (1975) found a slope of the species-area curve of 
only 0.09 for freshwater snails in Danish eutrophic (nutrient rich) ponds and lakes 
varying in size from 10- 1 to 104 ha, but a slope of 0.25 for oligotrophic (nutrient 
poor) ponds and lakes of the same size range. The total species pool (i.e., the 
number of freshwater snails recorded from Denmark) is 34, which in only little 
more than found in the largest lakes of both categories (Fig. 63). The higher value 
of z (but in general a lower value of oS) for oligotrophic lakes may be explained 
by a higher extinction rate due to the lower population densities relative to 
eutrophic lakes, such that an oligotrophic lake of a size comparable to a eutrophic 
lake actually constitutes a smaller "island." Note that the distribution of the snails 
is not directly governed by the physico-chemical properties characteristic of the 
two types of lakes since the largest lakes of both categories harbor about the 
same number of species which constitute the greater part of the total species pool. 

The slopes of the species-area curves from mainland habitats are generally 
lower than those from isolates. This is in accordance with the considerations 
given above; immigration from one patch to another is generally facilitated relative 
to the immigration to, e.g., islands and the area effect thus should be smaller. 

In the case of very small isolates, qualitative properties may result in values of z 
differing from those found for larger isolates. Thus, Lassen (1975) found that the 
species-area slope for very small ponds «0.1 ha) was very high, i.e., 0.37 (Fig. 64). 
This may be explained by the fact, that in very small ponds, several habitat types 
may be totally absent. A small pond may, for example, be entirely devoid of 
rooted vegetation or alternatively be totally covered by one kind of plant. When 
ponds are a little larger, more habitat types are added until essentially all types of 
freshwater habitats are represented within one pond. Above this size (which 
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Fig. 65. The recolonization curves of 4 defaunated mangrove islands. The numbers of species 
prior to the defaunation are shown on the y-axis. (After Simberloff and Wilson, 1969) 

apparently is around 0.1 ha) the value of z takes a constant and lower value. The 
fact that very small ponds may freeze solid or dry up now and then, probably 
increases the extinction probability, and this effect will also lead to a higher value 
of z. MacArthur and Wilson (1967) give similar examples for very small islands 
devoid of forests. 

Direct evidence from nature on the maintenance of an equilibrium number of 
species is less frequent. Diamond (1969) analyzed two censuses of the bird fauna 
on the Channel Islands off California, made at an interval of 50 years. While the 
total numbers of species on the individual islands had remained relatively constant, 
there had been a high number of replacements with other species; of the original 
species, 17 and 62% had disappeared on the largest and on the smallest islands 
respectively, to be replaced by an equal number of other species. From these 
figures a minimum estimate of the annual immigration and extinction rates at 
equilibrium could be made; these rates were from 0.3 to 1.2% of S for the 
largest and the smallest islands respectively. 

Simberloffand Wilson (1969) defaunated a number of small mangrove islands 
in the Florida Keys and followed the recolonization curves. They found a rapid 
recolonization and the different islands returned to their original species numbers 
(mainly of micro arthropods) within 3-4 months although the composition of each 
of the faunas differed more or less from the original one (Fig. 65). Lassen (pers. 
comm.) followed the colonization by snails in two small artificial ponds of known 
age and was able to follow the extinction of one species while it was being 
replaced by another species. 

4.5.3 The Regulation of the Equilibrium Number of Species 

The regression line of the species-area relationship represents the mean 
equilibrium values around which the actual values will be distributed. The theory 
of island biogeography predicts that during the initial, unsaturated stages following 
defaunation the variance/mean ratio will equal 1; as the equilibrium number of 
species is approached the ratio will decrease to values around 0.5 as a result of the 
regulation of the species number by two opposing forces. The formal argument 



4.5.4 The Colonization Curve 127 

is given by MacArthur and Wilson (1967). Thus variance to mean ratios smaller 
than unity for groups of identical isolates give support to the theory. Such data 
have been reported in the literature (e.g., Lassen, 1975). 

4.5.4 The Colonization Curve 

Under the simplifying assumption of linear I and E curves, the colonization 
curve can be constructed and the time taken for a given isolate to reach a certain 
fraction of the equilibrium number of species can be calculated. 

Assume that E = as(t) and 1= b(S* - S(t)) where S(t) is the number of species in 
the isolate at time t. The rate of change of S is given by 

dSjdt= I - E =bS* -(a+b) S(t). 

By setting Eq. (4.56) equal to zero, we have 

S*=S(a+b)jb, 

which substituted into Eq. (4.56) yields 

or 

5 

dSjdt= [S - S(t)] (a +b) 

d(S - S(t))jdt= - [S - S(t)] (a + b), 

5 ------- -------- --------------

o 5 
5 

/' 
E=aS 

5* 

(4.56) 

Fig. 66. The colonization curve calculated from Eq. (4.57) and the corresponding extinction 
and migration curves shown below 
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showing that the difference between S(t) and the equilibrium species number 
decreases exponentially at the rate (a+b). Therefore we have 

S(t)=S- [S-S(O)] exp[ -t(a+b)]. (4.57) 

Equation (4.57) allows calculation of the colonization curve (Fig. 66) or the time 
taken to reach a certain percentage of the equilibrium species number for given 
immigration and extinction rates, or estimation of the latter from colonization 
curves. It should be remembered, however, that Eq. (4.57) is based on somewhat 
unrealistic assumptions. Attempts to estimate I and E on the basis of colonization 
curves were done by MacArthur and Wilson (1967) for data on the refaunation 
of the Krakatau Islands and by Lassen (1975) for colonization data on freshwater 
snails in artificial ponds. 

4.5.5 The Significance of the Theory of Island Biogeography 

The study of island faunas and floras has long been of importance in ecological, 
biogeographical and evolutionary research. The general ecological significance of 
the theory of island biogeography has recently been stressed by Diamond (1973) 
and by Simberloff (1974). In addition to being a predictive theory for the faunas 
of isolates, it has generated new insight into the nature of biotic communities by 
integrating concepts of competitive interactions, probabilities of extinction, and 
fugitive equilibria into a general theory of biotic communities. 
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The approach adopted in this book is to define parameters which describe 
how the biological and abiological environment affects populations. With simple 
assumptions about these parameters, we have then attempted to build predictive 
models which yield insight with respect to the distribution patterns of organisms 
in nature. This chapter will summarize the significance of the approach for under­
standing the concept of communities. 

We have not taken any a priori attitude to the concept of biotic communities 
except for referring to the fact that within habitats, populations of different species 
may interact, and that other species form a component of the environment to which 
species adapt by natural selection. We have not considered any particular scale for 
the size of a community in terms of diversity or in terms of distribution in time 
or space; nor have we considered any criteria for the delimitation of communities. 
In this respect we are in accordance with Elton (1927) who states that " ... the term 
animal communities is really a very elastic one, since we can use it to describe on 
one hand the fauna of equatorial forest, and on the other hand the fauna of a 
mouse's caecum" (see also Fig. 67). We agree with this elastic definition although, 
as discussed later, the controversy in the literature about the "existence" of 
communities in part stems from a question of scale. 

To Odum (1971) "the community concept is one of the most important 
principles in ecological thought and ecological practice". Somewhat less modest 
are Allee et al. (1949) who write: 'The community concept of modern ecology is one 
ofthe most fruitful ideas contributed by biological science to modern civilization." 
Considering the title of our book it seems appropriate, on this background and at 
this stage, to comment on the concept of communities and on how the book 
relates to it. 

The concept of biological communities stems primarily from the fundamental 
observation that animals and plants are not homogeneously distributed on the 
globe or even within restricted geographical areas, and that the occurence of 
different species is often correlated. Thus, within a given geographical region the 
designations, e.g., beech forest or coral reef predict the presence of many other 
species within the two types of communities in addition to the organisms which 
have given their names to the associations. In part, the discrete distribution of 
assemblages of organisms sometimes found is trivial. Certain qualities of the 
physical and the chemical environment are often found within sharply defined 
areas, and giraffes and elephants would not be expected in the sea just as whales 
and fish are rare on the savannah. 
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Fig. 67. The community of ciliate protozoans associated with the marine amphipod 
Gammarus locusta. }-4: Four species of very site-specific peritrich ciliates; no 3 is parasitized 
by another ciliate, Hypocoma parasitica. 5-6: Two species of chonotrich ciliates living on the 
gills and the abdominal feet respectively. The peritrichs as well as the chonotrichs are 
filterfeeders, utilizing the water currents created by the host. 7: A parasitic ciliate living in some 
way on the skin glands of the host. 8: Two free-swimming ciliates presumably living on 
blugreen algae attached to the host. 9: A suctorian catching other ciliates, and the cysts of a 
ciliate (Gymnodinioides) which excysts at moulting of the host to feed in the moult. 

(After Fenchel, 1965) 

The various theories of biological communities developed largely from studies 
on particular ecological associations. The theories are often flavored by special 
properties of these systems, as well as by the general philosophical attitude of the 
different ecologists. Thus, communities have at one extreme been viewed as a 
kind of "supra organism" with a characteristic structure and development, with 
homeostatic properties and as always being sharply delimited from neighboring 
communities. Others have described communities as arbitrarily defined associa­
tions of organisms which are often found together due to their preferences for 
certain qualities of the physical environment. The first mentioned "holistic" view, 
stressing the biological interactions between species and communities as "natural 
units", was first proposed by Mobius (1877) who coined the word "biocoenosis" 
in a study of oyster beds of the North Sea. 
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Fig. 68A-C. The dominant invertebrates in shallow sand bottoms of the Pacific Northwest of 
USA (A), Greenland waters (B) and Danish waters (C). The same genera (albeit mainly 
different species) and thus the same ecological types are found, demonstrating Thorson's 

concept of "parallel animal communities". (Modified after Thorson, 1957) 

However, the whole range of viewpoints is usually represented among students 
of each of the different kinds of associations. [To be sure, some ecologists who 
have their main experience with desert habitats (e.g., Bodenheimer, 1958) where it 
is difficult to conceive that the scattered flora can be a part of a system structured 
by biological interactions, or with pests (Andrewartha and Birch, 1954), have not 
found any value in the community concept whatsoever.] Within the study of "plant 
sociology", Braun-Blanquet (1932,1951) and Clements (1905, 1916) have supported 
the idea of the community as a fundamental biological unit whereas, e.g., Gleason 
(1926) and Whittaker (1951) disregarded communities as discrete units. 

A quite similar controversy is found in the literature on marine level bottom 
communities. After the turn of the century, Petersen (1913, 1918) divided the 
faunal associations on the sea bottom of Danish waters into "benthic communities" 
on a purely empirical basis. The classification and nomenclature of Petersen are 
still widely used by marine biologists and they are obviously useful for characterizing 
faunal assemblages, not only in Northern European waters but also in other parts 
of the world (see Fig. 68). Following Petersen, many ecologists took up the study 
of marine communities. Of those who studied complex and patchy habitats of 
fjords, estuaries, and the littoral, some gave a formal description of a large number 
of "communities" (e.g., Gislen, 1930). Other authors (e.g., Linroth, 1935; 
MacGinitie, 1939) took the consequence of the confusing picture emerging from 
their studies, and disregarded the concept of benthic communities in spite of the 
fact that relatively homogeneous and fairly well defined faunal assemblages are 
actually found in the sediments of more open waters. Some scientists (notably 
Thorson, 1957; see also references therein) stressed the benthic communities as 
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"biological units" or "biocoenoses"; others advocated the physical factors 
(salinity, mechanical properties of the sediment, temperature) as governing the 
distribution of species and consequently stress the absence of discontinuities 
between communities. 

The two latter mentioned points of view imply that given sufficient data on 
environmental factors, then the faunal composition can always be predicted. This 
implication has led to various suggestions as to how to make formal rules for 
delimiting communities and-not least in the age of the computer-to multifactor 
correlations and the development of similarity indexes based on quantitative 
samples with large numbers of species (e.g., Fager, 1963; Lie and Kelley, 1970). 
Without yielding much biological information this work tends to weaken the 
practical value of Petersen's benthic communities, which are best applied with 
common sense, tact and biological intuition. 

The problem concerning the nature of biological communities as formulated 
by, e.g., the schools of plant sociology or of marine communities is resolved 
or rather rendered a nonproblem when the results of theoretical ecology are 
considered (and the results of natural history as well; many "community ecologists" 
have not considered that very simple experiments and observations could be as 
fruitful for studying the importance of biological interactions as could complex 
statistical analyses of quantitative data). 

First of all it is clear that the biological as well as the abiological environment 
is important for explaining the distribution of organisms. There exist large amounts 
of evidence showing that more or less specific predators are important among, 
e.g., benthic animals, and a long list of mutualistic and commensalistic rela­
tionships are known. Also character divergence and habitat selection, which 
indicate coadaptation, and phenomena like ecological compression and ex­
pansion show that we could expect-as we do find-that distribution patterns 
of many species are positively or negatively correlated, conditioned on the 
physical environment. 

On the other hand, the results derived in Chapters 2, 3 and 4 suggest that the 
number of species with strong biological interactions is limited within anyone 
habitat. Thus, it may be conjectured that any community consists of small groups 
of species with relative strong interactions (such as prey-predator interactions, 
competition, mutualism), which coexist with a larger number of species with 
which there are only weak or no interactions. We have seen that prey-predator 
systems are endowed with some inherent stability but that the number of possible 
trophic levels is restricted. This limit is set by the resources available to the 
system in conjunction with demographic and environmental stochasticity which 
sets a limit to how small populations can be before the probability of extinction 
becomes very high. Within trophic levels strong competitive interactions are in­
herently unstable and the number of species with strong competitive interactions 
must be relatively small even if we allow for several niche dimensions. Finally, 
we have seen that a system of competitors which is stable will also be stable 
if some of the competing species are absent. It is therefore to be expected that 
the majority of species within an area have only weak or no interactions. This 
accounts for the fact that the occurrences of species are often not correlated 
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along environmental gradients and that sharp boundaries between communities 
are frequently not found. 

Finally, when phenomena related to geographical subdivision of populations 
such as migration-extinction equilibria are considered, it is clear that the 
composition of a community will never be totally predictable on the basis of 
environmental factors and this will be increasingly so in complex and patchy 
habitats (archipelagos in a wide sense: lakes, estuaries, topographically complex 
landscapes) and in environments characterized by unpredictable resources. 

Thus the question of whether communities are "real, discrete biological units" 
is in fact not a real problem when we consider communities as the function of the 
component species populations and the environment. It is popular to consider 
ecological systems as a special "organizational level" (analogous to the cellular 
level, the level of the individual and the level of species populations) for which 
theories and predictive models can be made independently of the behavior of the 
individual components. In studies of energy flow and element cycling this has 
proved a useful approach and the practical value of studying, e.g., the effect of 
adding phosphate to a lake on the total photosynthetic activity is indisputable. 
However, the concept of organizational levels with their own properties and a 
special theory for such levels not based on the behavior of single species 
populations may be misleading and result in false analogies. An example has 
been the application of information theory to communities, leading to peculiar 
and somewhat obscure predictions like: " ... that the community seeks to gain 
and does gain information from the environment, only to use such accumulated 
information to block any further assimilation of information" (Margalef, 1968). 
This sort of theory may at the best yield empirically correct descriptions 
(formulated in teleological expressions; communities certainly do not "seek" 
anything whatsoever); it may also generate predictions which are persistent in the 
literature although they cannot be sustained as empirically true generalities [cf. the 
discussion by May (1973a) on stability and diversity]. 

The natural units of ecological systems are, after all, the individual species. 
A community changes by the exclusion or invasion of species just like the single 
species popUlation changes by the birth or the death of individuals. However, the 
single species populations, as Mendelian populations, share pools of genetic 
material which determine the appearance of the species in the future (Dobzhansky, 
1970). Therefore, the removal or addition of individuals because of their genotype, 
i.e., natural selection, changes the genetic composition and thereby the future 
appearance of the individuals in the population. This unifying principle of Mendelian 
populations allows for a predictive theory of the composition and the evolution 
of a species at the population level. Such a unifying principle does not exist for 
ecological systems which consequently must be described in terms of their 
components. Nevertheless, it is often valuable to describe generalizations about 
the behavior of whole communities, e.g., patterns of successions and diversity, but 
any valid explanation of such generalizations must be based on the behavior 
of the single species populations and their interactions. 

Elton's (1927) pioneering book, based on so much ecological knowledge and 
intuition, contains (in addition to a good deal more) a substantial part of the 
ideas and insight discussed in this book, including the concept of the niche and the 
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importance of trophic relationships and of migrations for determining the structure 
of biological communities as we see them in nature. It may, therefore, well be 
asked what are the most important advances in the development of ideas in 
ecological theory since the publication of Elton's book nearly half a century ago. 
Several new ideas have, after all, emerged; this should be clear from the chapters 
of the present book. One aspect which we will stress here is the mathematical 
formulation of the theory. This is important for two reasons. A mathematical 
formulation of a theory (made in conjunction with biological intuition) is more 
resistant against false conclusions and makes it clearer whether a problem is 
understood or not. Secondly, a mathematical formulation leads to quantitative 
(or in ecology, rather order of magnitude) predictions which can be tested in 
nature; the theory of limiting similarity is a good example, where verbal theory 
alone would not have yielded the insight of the mathematically formulated 
theory. 

Many biologists, especially among those who have been trained to distinguish 
details and to study the diversity of life (and this is after all a necessary component 
of the training of a good biologist since one of our most important goals is to 
explain the diversity of life), discard an approach like the one adopted in this 
book as an oversimplification. We acknowledge (and enjoy) the immense 
complexity of nature; still we feel that the theory represented here constitutes 
an, albeit tiny, element of a true understanding of the real world beyond a purely 
descriptive approach. 
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